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Abstract 

We study the sections , eestimates for the affine , dual affine quermassintegrals, slicing inequalities 

for measures and estimates for measures of lower dimensional sections of convex bodies in addition 

the boundary regularity of maps with convex potentials . The centroid bodies, logarithmic Laplace 

transform, monotonicity properties of optimal transportation  ,rigidity , stability of caffarellis log-

concave perturbation theorem and related inequalities examined and characterized . The behavior of 

the extensions of the Brunn-Minkowski and Prbkopa-Leindler theorems, including inequalities for 

log concave functions, and application to the diffusion equation are obtained . We give the relations 

form Brunn Minkowski to brascamp and to sharp and logarithmic sobolev inequalities. We conclude 

the study by the stability ,Gaussian and logarithmic Brunn–Minkowski type inequalities.  
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 الخلاصة 

التقديرات وقمنا بدراسة الأقسام والتقديرات لتكاملات كتلة كوير الافيقية والافيقية المزدوجة ومتباينات التقطيع لاجل القياسات 

لاجل قياسات اقسام البعد الأسفل للاجسام المحدبة واضافة انتظامية الحدود للرواسم مع الجهد المحدب . تم اختبار وتشخيص 

اجسام النقطة الوسطي وتحويل لابلاس اللوغريثمي وخصائص الرتيبية الي التنقل الأمثل والصلابة واستقرارية مبرهنة اضطراب 

سكي بروكوبان مينكوف-المقعر والمتباينات ذات العلاقة . تم الحصول علي السلوك لتمديدات مبرهنات بروم– كافاريلي اللوغريثمي

-ليندلر المحتوية علي المتباينات لاجل الدوال المقعرة اللوغريثمية والتطبيق الي معادلة الانتشار . قمنا باعطاء العلاقات من بروم

ت سوبوليف القاطعة اللوغريثمية . خلصت الدراسة بواسطة الاستقرارية والمتباينات نوع مينكو فسكي الي براسكامب والي متباينا

 مينكوفسكي اللوغريثمية .-جاوسيان وبروم
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Introduction 

      The generalized Busemann-Petty problem asks: If the volume of i-dimensional central 

section of a centrally symmetric convex body in Rn is smaller than that of another such body, 

is the volume of the body also smaller? It is proved that the answer is negative if 2 <  i <
 n. The case of a 2-dimensional section remains open. The proof uses techniques in 

functional analysis and Radon transforms on Grassmannians. We provide estimates for 

suitable normalizations of the affine and dual affine quermassintegrals of a convex body K 

in 𝑅𝑛.  

       We extend the Prtkopa-Leindler theorem to other types of convex combinations of two 

positive functions and we strengthen the PrCkopa-Leindler and Brunn-Minkowski theorems 

by introducing the notion of essential addition. Our proof of the Prekopa-Leindler theorem 

is simpler than the original one.  We show 𝐶1," regularity to the boundary under the 

assumptions that both Ω𝐼 , Ω2 be convex. 

           We develop several applications of the Brunn{Minkowski inequality in the Prekopa 

Leindler form. We show that an argument of B. Maurey may be adapted to deduce from the 

Prekopa Leindler theorem the Brascamp Lieb inequality for strictly convex potentials.  

         We unify and slightly improve several bounds on the isotropic constant of high-

dimensional convex bodies in particular, a linear dependence on the body’s 𝜓2 constant is 

obtained. We present an alternative approach to some results of Koldobsky on measures of 

sections of symmetric convex bodies, which allows us to extend them to the not necessarily 

symmetric setting.  

        Optimal transportation between densities 𝑓 (𝑋), 𝑔(𝑌) can be interpreted as a 

joint probability distribution with marginally 𝑓 (𝑋), 𝑎𝑛𝑑 𝑔(𝑌). We prove monotonicity and 

concavity properties of optimal transportation (Y(X)) under suitable assumptions on f and g. 

We establish some rigidity and stability results for Caffarelli’s log-concave perturbation 

theorem.  

      A detailed investigation is undertaken into Brunn-Minkowski-type inequalities for Gauss 

measure. A Gaussian dual Brunn-Minkowski inequality, the first of its type, is proved, 

together with precise equality conditions, and is shown to be the best possible from several 

points of view. A new Gaussian Brunn-Minkowski inequality is proposed and proved to be 

true in some significant special cases. For origin-symmetric convex bodies (i.e., the unit balls 

of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities 

each of which is stronger than the classical Brunn-Minkowski inequality and a family of 

inequalities each of which is stronger than the classical Minkowski mixed-volume 

inequality.  
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Chapter 1 

Convex Bodies 

We require the notion of an i-intersection body which generalizes the notion of an 

intersection body. Inequalities among the volumes of projection bodies, polar projection 

bodies and their central sections are proved. They are related to the maximal slice problem. 

We show a convex  a more general study of normalized p-means of projection and section 

functions of K. 

Section (1.1): Sections of Convex Bodies  

The starting point is an integral formula of Furstenberg and Tzkoni [5] about the volume of 

𝑘-dimensional of ellipsoids: for every ellipsoid ℇ in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 one has 

                            ∫ |ℰ ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘
= 𝑐𝑛,𝑘|ℰ|

𝑘 ,                                        (1) 

where 𝑣𝑛,𝑘  is the Haar measure on the Grassmannian 𝐺𝑛,𝑘 and 𝑐𝑛,𝑘 is a constant depending 

only on 𝑛 and 𝑘; more precisely, 𝑐𝑛,𝑘 = Γ(
𝑛

2
+ 1)

𝑘
/𝛤 (

𝑘

2
+ 1)

𝑛
. It was proved by Miles 

[16] that this formula can be obtained in a simpler way as a consequence of classical formulas 

of Blaschke and Petkantschin. 

Later, analogous quantities were considered by Lutwak and Grinberg in the setting of convex 

bodies. Lutwak introduced in [11] – for every convex body 𝐾 in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 −
 1 – the quantities 

Φ𝑛−𝑘(𝐾) =
𝜔𝑛
𝜔𝑘
(∫ |𝑃𝐹(𝐾)|

−𝑛𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

−
1
𝑛

                                   (2) 

where 𝑃𝐹(𝐾) is the orthogonal projection onto 𝐹 and 𝜔𝑘 is the volume of the Euclidean unit 

ball in ℝ𝑘. For 𝑘 = 0 and 𝑘 = 𝑛 one sets Φ0(𝐾) = |𝐾| and Φ𝑛(𝐾) = 𝜔𝑛 respectively. 

Grinberg [8] proved that these quantities are invariant under volume preserving affine 

transformations; this justifies the terminology “affine quermassintegrals” for Φ𝑛−𝑘(𝐾). 
From the definition of Φ𝑛−𝑘(𝐾) it is clear that 

𝛷𝑛−𝑘(𝐾) ≤
𝜔𝑛
𝜔𝑘
∫ |𝑃𝐹(𝐾)|𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

= 𝑊𝑛−𝑘(𝐾)                                   (3) 

where 𝑊𝑛−𝑘(𝐾) = 𝑉(𝐾, [𝑘]𝐵2
𝑛, [𝑛 − 𝑘]) are the Quermassintegrals of 𝐾. Lutwak 

conjectured in [12] that the affine quermassintegrals satisfy the inequalities 

                                      𝜔𝑛
𝑗
Φ𝑖
𝑛−𝑗

≤ 𝜔𝑛
𝑖Φ𝑗(𝐾)

𝑛−𝑖                                                   (4) 

for all 0 ≤ 𝑖 < 𝑗 < 𝑛. For example, Lutwak asks if 

Φ𝑛−𝑘(𝐾) ≥ 𝜔𝑛
(𝑛−𝑘) 𝑛⁄ |𝐾|𝑘 𝑛⁄                                    (5) 

with equality if and only if 𝐾 is an ellipsoid; note that the weaker inequality 𝑊𝑛−𝑘(𝐾) ≥

𝜔𝑛
(𝑛−𝑘) 𝑛⁄

|𝐾|𝑘 𝑛⁄  holds true by the isoperimetric inequality. Most of these questions remain 
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open (see [6, Chapter 9]); two cases of (5) follow from classical results: when 𝑘 = 𝑛 − 1 

this inequality is the Petty projection inequality and when 𝑘 = 1 and 𝐾 is symmetric then 

(5) is the Blaschke-Santal´o inequality. 

Lutwak proposed in [13] to study the dual affine quermassintegrals �̃�𝑛−𝑘(𝐾). For every 

convex body 𝐾 in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 −  1 one defines 

                            �̃�𝑛−𝑘(𝐾) =
𝜔𝑛

𝜔𝑘
(∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘

)

1

𝑛
          (6) 

For 𝑘 = 0 and 𝑘 = 𝑛 one sets Φ̃0(𝐾) = |𝐾| and �̃�𝑛(𝐾) = 𝜔𝑛 respectively. Grinberg proved 

in [8] that these quantities are also invariant under volume preserving linear transformations, 

and he established the inequality 

                                     �̃�𝑛−𝑘(𝐾) ≤ 𝜔𝑛
(𝑛−𝑘) 𝑛⁄ |𝐾|𝑘 𝑛⁄                  (7) 

for all 1 ≤ 𝑘 ≤ 𝑛 − 1, with equality if and only if 𝐾 is a centered ellipsoid. The case 𝑘 =
𝑛 − 1 of this inequality is the Busemann intersection inequality (while the case 𝑘 = 1 

becomes an identity for symmetric convex bodies). 

Being affinely invariant, affine and dual affine quermassintegrals appear to be useful in 

asymptotic convex geometry. So, one of the purposes is to give upper and lower bounds for 

Φ𝑛−𝑘(𝐾) and �̃�𝑛−𝑘(𝐾) in the remaining cases. We introduce a different notation and 

normalization which is better adapted to our needs. The question we study is equivalent to 

e.g. [6, Problem 9.7]. 

Definition (1.1.1)[1]: (normalized affine quermassintegrals). For every convex body 𝐾 in 

ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 − 1 we define 

                        𝛷[𝑘](𝐾) = (∫ |𝑃𝐹(𝐾)|
−𝑛𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘

)
−
1

𝑘𝑛
                                         (8) 

We also set 𝛷[𝑛](𝐾) = |𝐾|
1 𝑛⁄ . Lutwak’s conjectures about affine quermassintegrals can 

now be restated as follows: 

(i) For every (symmetric) convex body 𝐾 of volume 1 in ℝ𝑛 and every 1 ≤ 𝑘 ≤  𝑛 − 1, 

                                        𝛷[𝑘](𝐾) ≥ 𝛷[𝑘](𝐷𝑛),                                                    (9) 

where 𝐷𝑛 is the Euclidean ball of volume 1. 

(ii) For every convex body 𝐾 of volume 1 in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

                                   Φ[𝑘](𝐾) ≤ Φ[𝑘](𝑆𝑛)                           (10) 

where 𝑆𝑛 is the regular Simplex of volume 1. 

In view of these conjectures, in the asymptotic setting it is reasonable to ask if the following 

holds true: There exist absolute constants 𝑐1, 𝑐2 > 0 such that for every convex body 𝐾 of 

volume 1 in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

                              𝑐1√𝑛/𝑘 ≤ 𝛷[𝑘](𝐾) ≤ 𝑐2√
𝑛

𝑘
                 (11) 

For 𝑘 = 1 the Blaschke-Santal´o inequality shows that (9) holds true. Proving (10) for 𝑘 =
1 corresponds to Malher’s conjecture. Clearly, (11) for 𝑘 = 1 follows from the Blaschke-

Santal´o and the reverse Santal´o inequality of Bourgain-Milman [3]. 

Note that for 𝑘 = 𝑛 − 1 we have 
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                               Φ[𝑛−1](𝐾) = (
|𝐵2
𝑛|

|Π∗(𝐾)|
)

1

𝑛(𝑛−1)
                                       (12) 

where (𝐾) is the polar projection body of 𝐾. Then, Holder’s inequality and the isoperimetric 

inequality show that (9) holds true. The same is true for (10): this follows from Zhang’s 

inequality; see [30]. 

Definition (1.1.2)[1]: (normalized dual affine quermassintegrals). For every convex body 𝐾 

in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 − 1 we define 

                              �̃�[𝑘](𝐾) = (∫ |𝐾 ∩ 𝐹⊥|𝑛𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘
)

1

𝑘𝑛
                        (13) 

Grinberg’s theorem about dual affine quermassintegrals states that if 𝐾 has volume 1 then 

�̃�[𝑘](𝐾) ≤ �̃�[𝑘](𝐷𝑛) ≤ 𝑐2,                   (14) 

where 𝑐𝑛 > 0 is an absolute constant. As we will see, if the hyperplane conjecture has an 

affirmative answer then 

                                  �̃�[𝑘](𝐾) ≥ 𝑐1                                                                      (15)  

for every centered convex body of volume 1, where 𝑐1 > 0 is an absolute constant. 

In view of the above, here one asks if the following holds true: There exist absolute constants 

𝑐1, 𝑐2 > 0 such that for every centered convex body 𝐾 of volume 1 in ℝ𝑛 and every 1 ≤ 𝑘 ≤
𝑛 −  1, 

                                     𝑐1 ≤ �̃�[𝑘](𝐾) ≤ 𝑐2                                     (16) 
Our estimates on the normalized affine and dual affine quermassintegrals are summarized in 

the following: 

Theorem (1.1.3)[1]:. Let 𝐾 be a convex body of volume 1 in ℝ𝑛. Then, for every 1 ≤ 𝑘 ≤
𝑛 − 1, 

                                        Φ[𝑘](𝐾) ≤ 𝑐1√
𝑛

𝑘
 𝑙𝑜𝑔 𝑛                                                   (17) 

and, if 𝐾 is also centered, 

                                           �̃�[𝑘](𝐾) ≥
𝑐2

𝐿𝐾
                                             (18) 

where 𝐿𝐾 is the isotropic constant of 𝐾. In particular, assuming the hyperplane conjecture 

we have that �̃�[𝑘](𝐾) ≃ 1 for all 1 ≤ 𝑘 ≤ 𝑛 − 1. We also have the bounds 

                              𝛷[𝑘](𝐾) ≤ 𝑐3 (
𝑛

𝑘
)
3 2⁄
√log (

𝑒𝑛

𝑘
)                (19) 

and 

                                 �̃�[𝑘](𝐾) ≥  
𝑐4

√
𝑛

𝑘
√log(

𝑒𝑛

𝑘
)

                                    (20) 

which are sharp when 𝑘 is proportional to 𝑛. 

For the proofs of these estimates, we attempt a more general study of normalized 𝑝-means 

of projection functions of 𝐾, which we introduce for every 1 ≤ 𝑘 ≤ 𝑛 − 1 and every 𝑝 ≠ 0 

by setting 

                      𝑊[𝑘,𝑝](𝐾):= (∫ |𝑃𝐹(𝐾)|
𝑝𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘

)

1

𝑘𝑝
.                 (21) 
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and 

                    �̃�[𝑘,𝑝](𝐾):= (∫ |𝐾 ∩ 𝐹⊥|𝑝𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘
)

1

𝑘𝑝
                          (22) 

respectively. The 𝑘-th normalized affine and dual affine quermassintegrals of 𝐾 correspond 

to the cases 𝑝 = −𝑛 and 𝑝 = 𝑛 respectively: 

                 𝛷[𝑘](𝐾) = 𝑊[𝑘,−𝑛](𝐾) 𝑎𝑛𝑑 �̃�[𝑘](𝐾) = �̃�[𝑘,−𝑛](𝐾).               (23) 

We list several properties of the 𝑝-means and prove some related inequalities. 

We work in ℝ𝑛, which is equipped with a Euclidean structure 〈·,·〉. We denote by ‖· ‖2 the 

corresponding Euclidean norm, and write 𝐵2
𝑛 for the Euclidean unit ball, and 𝑆𝑛−1 for the 

unit sphere. Volume is denoted by | · |. We write 𝜔𝑛for the volume of 𝐵2
𝑛 and 𝜎 for the 

rotationally invariant probability measure on 𝑆𝑛−1. The Grassmann manifold 𝐺𝑛,𝑘 of 𝑘-

dimensional subspaces of ℝ𝑛 is equipped with the Haar probability measure 𝜈𝑛,𝑘. We also 

write �̅� for the homothetic image of volume 1 of a compact set 𝐴 ⊆ ℝ𝑛 of positive volume, 

i.e. �̅�: = |𝐴|−
1

𝑛𝐴. If 𝐴 and 𝐵 are compact sets in ℝ𝑛, then the covering number 𝑁(𝐴, 𝐵) of 𝐴 

by 𝐵 is the smallest number of translates of 𝐵 whose union covers 𝐴. 

The letters 𝑐, 𝑐′, 𝑐1, 𝑐2 etc. denote absolute positive constants which may change from line to 

line. Whenever we write 𝑎 ≃ 𝑏, we mean that there exist absolute constants 𝑐1, 𝑐2 > 0 such 

that 𝑐1𝑎 ≤ 𝑏 ≤ 𝑐2𝑎. 

A star-shaped body 𝐶 with respect to the origin is a compact set that satisfies 𝑡𝐶 ⊆ 𝐶 for all 

𝑡 ∈ [0, 1]. We denote by ‖· ‖𝐶the gauge function of 𝐶: 

                                  ‖𝑥‖𝐶 = inf{𝜆 > 0: 𝑥 ∈ 𝜆𝐶}                                    (24) 
A convex body in ℝ𝑛 is a compact convex subset 𝐶 of ℝ𝑛 with non-empty interior. We say 

that 𝐶 is symmetric if 𝑥 ∈ 𝐶 implies that −𝑥 ∈ 𝐶. We say that 𝐶 is centered if it has centre 

of mass at the origin: ∫ 〈𝑥, 𝜃〉𝑑𝑥
𝐶

= 0 for every 𝜃 ∈ 𝑆𝑛−1. The support function ℎ𝐶: ℝ
𝑛 → ℝ 

of 𝐶 is defined by ℎ𝐶(𝑥) = max {〈𝑥, 𝑦〉: 𝑦 ∈ 𝐶}. The radius of 𝐶 is the quantity 𝑅(𝐶) =
max {‖𝑥‖2: 𝑥 ∈ 𝐶} and, if the origin is an interior point of 𝐶, the polar body 𝐶∘ of 𝐶 is 

                                𝐶∘ ∶= {𝑦 ∈ ℝ𝑛: 〈𝑥, 𝑦〉 ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐶}.                 (25) 
Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, the Blaschke–Santal´o inequality 

and the Bourgain–Milman inequality imply that 

                                         |𝐾°|
1

𝑛 ≃
1

𝑛
                                                                      (26) 

Let 𝐾 be a centered convex body in ℝ𝑛. For every 𝐹 ∈ 𝐺𝑛,𝑘 , 1 ≤ 𝑘 ≤  𝑛 − 1, we have that 

𝑃𝐹(𝐾
°) = (𝐾 ∩ 𝐹)°, and hence, 

                                     |𝐾 ∩ 𝐹|1 𝑘⁄ |𝑃𝐹𝐾
°|1 𝑘⁄ ≃

1

𝑘
                                    (27) 

The Rogers-Shephard inequality [26] states that 

                        1 ≤ |𝑃𝐹𝐾|
1 𝑘⁄ |𝐾 ∩ 𝐹⊥|1 𝑘⁄ ≤ (

𝑛
𝑘
)
1 𝑘⁄

≤
𝑒𝑛

𝑘
.                                   (28) 

See [28], [21] and [25] for basic facts from the Brunn-Minkowski theory and the asymptotic 

theory of finite dimensional normed spaces.  

Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. For every 𝑞 ≥ 1 and  𝜃 ∈  𝑆𝑛−1 we 

define 
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                               ℎ𝑍𝑞(𝐾)(𝜃):= (∫ |〈𝑥, 𝜃〉|
𝑞𝑑𝑥

𝐾
)
1 𝑞⁄
                                    (29). 

We define the 𝐿𝑞-centroid body 𝑍𝑞(𝐾) of 𝐾 to be the centrally symmetric convex set with 

support function ℎ𝑍𝑞(𝐾). 𝐿𝑞–centroid bodies were introduced in [14]. Here we follow the 

normalization (and notation) that appeared in [23]. 

It is easy to check that 𝑍1(𝐾) ⊆ 𝑍𝑝(𝐾) ⊆ 𝑍𝑞(𝐾) ⊆ 𝑍∞(𝐾) for every 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, where 

𝑍∞(𝐾) = 𝑐𝑜𝑛𝑣{𝐾,−𝐾}. Note that if 𝑇 ∈ 𝑆𝐿(𝑛) then 𝑍𝑝(𝑇(𝐾)) = 𝑇(𝑍𝑝(𝐾)). Moreover, as 

a consequence of the Brunn–Minkowski inequality (see [23]), one can check that 

                                          𝑍𝑞(𝐾) ⊆ 𝑐
𝑞

𝑝
𝑍𝑝(𝐾)                                         (30) 

for all 1 ≤ 𝑝 < 𝑞, where 𝑐 > 1 is an absolute constant, and 

                                              𝑍𝑞(𝐾) ⊇ 𝑐𝐾 

for all 𝑞 ≥ 𝑛, where 𝑐 > 0 is an absolute constant. 

A centered convex body 𝐾 of volume 1 in ℝ𝑛 is called isotropic if 𝑍2(𝐾) is a multiple of 𝐵2
𝑛 

. Then, we define the isotropic constant of 𝐾 by 

𝐿𝐾: = (
|𝑍2(𝐾)|

|𝐵2
𝑛|

)

1 𝑛⁄

. 

It is known that 𝐿𝐾 ≥ 𝐿𝐵2𝑛 ≥ 𝑐 > 0 for every convex body 𝐾 in ℝ𝑛. Bourgain proved in [2] 

that 𝐿𝐾 ≤ 𝑐 √𝑛
4
 𝑙𝑜𝑔 𝑛 and, a few years ago, Klartag [9] obtained the estimate 𝐿𝐾 ≤ 𝑐 √𝑛

4
 

(see also [10]). The hyperplane conjecture asks if 𝐿𝐾 ≤ 𝐶, where 𝐶 > 0 is an absolute 

constant. See [19], [7] and [23] for additional information on isotropic convex bodies. 

Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. For every star shaped body 𝐶 in ℝ𝑛 

and any −𝑛 < 𝑝 ≤ ∞, 𝑝 ≠ 0, we set 

                         𝐼𝑝(𝐾, 𝐶) ∶= (∫ ‖𝑥‖𝐶
𝑝
𝑑𝑥

𝐾
)
1/𝑝
. 

If 𝐶 = 𝐵2
𝑛 we simply write 𝐼𝑝(𝐾) instead of 𝐼𝑝(𝐾, 𝐵2

𝑛). 

We first consider the question whether there exist absolute constants 𝑐1, 𝑐2 > 0 such that for 

every convex body 𝐾 of volume 1 in ℝ𝑛 and every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

𝑐1√𝑛/𝑘 ≤ 𝛷[𝑘](𝐾) ≤ 𝑐2√𝑛/𝑘. 

We can prove that the right-hand side inequality holds true up to a log 𝑛 term.  

Theorem (1.1.4)[1]:Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, for every 

1 ≤ 𝑘 ≤ 𝑛 − 1, 

                                       𝛷[𝑘](𝐾) ≤ 𝑐√𝑛/𝑘 𝑙𝑜𝑔 𝑛. 
we introduce a normalized version of the quermassintegrals of a convex body. 

Let 𝐾 be a convex body in ℝ𝑛. For every 1 ≤ 𝑘 ≤ 𝑛 − 1 we define the normalized 𝑘-

quermassintegral of 𝐾 by 

𝑊[𝑘](𝐾):= (∫ |𝑃𝐹(𝐾)|𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

1 𝑘⁄

. 

We also set 𝑊[𝑛](𝐾) = |𝐾|
1 𝑛⁄  and 𝑊[0](𝐾) = 1. Note that 



6 
 

𝑊[1](𝐾) = ∫ [ℎ𝐾(𝜃) + ℎ𝐾(−𝜃)] 𝑑𝜎(𝜃)
𝑆𝑛−1

= 2𝑤(𝐾). 

From the definition and Kubota’s formula (see [28]) it is clear that, for every 1 ≤ 𝑘 ≤ 𝑛 − 1 

one has 

                      𝑊[𝑘](𝐾) = (
𝜔𝑘

𝜔𝑛
𝑉(𝐾, [𝑘]; 𝐵2

𝑛, [𝑛 − 𝑘]))
1 𝑘⁄

. 

Applying the Aleksandrov-Fenchel inequality (see [28, Chapter 6]) one can check the 

following: 

(i) If 𝐾 and 𝐿 are convex bodies in ℝ𝑛, then, for all 1 ≤ 𝑘 ≤ 𝑛, 

𝑊[𝑘](𝐾 + 𝐿) ≥ 𝑊[𝑘](𝐾) +𝑊[𝑘](𝐿). 

(ii) For all 0 ≤ 𝑘1 < 𝑘2 < 𝑘3 ≤ 𝑛, 

                          
𝑊[𝑘2](𝐾)𝑊[𝑘1](𝐵2

𝑛)

𝑊[𝑘1](𝐾)𝑊[𝑘2](𝐵2
𝑛)
≥ (

𝑊[𝑘2](𝐾)𝑊[𝑘1](𝐵2
𝑛)

𝑊[𝑘1](𝐾)𝑊[𝑘2](𝐵2
𝑛)
)

(𝑘2−𝑘1)𝑘3
𝑘2(𝑘3−𝑘1)

. 

(iii) For all 1 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑛, 

𝑊[𝑘2](𝐾)

𝑊[𝑘2](𝐵2
𝑛)
≤
𝑊[𝑘1](𝐾)

𝑊[𝑘1](𝐵2
𝑛)
 . 

Since Φ[𝑘](𝐾) is affine invariant we may assume that 𝐾 is centered. It is well-known that 

Pisier’s inequality (see [25, Chapter 2]) on the norm of the Rademacher projection implies 

that there exists 𝑇 ∈ 𝑆𝐿(𝑛) such that 

                       𝑊[1](𝑇(𝐾)) = 2𝑤(𝑇(𝐾)) ≤ 𝑐√𝑛 𝑙𝑜𝑔 𝑛.  

More precisely, follows from Pisier’s inequality in the case where 𝐾 is symmetric. However, 

it is not difficult to extend the inequality to the non necessarily symmetric case (see e.g. [22, 

Lemma3]). Then, using the affine invariance of Φ[𝑘] and the fact that  𝛷[𝑘](𝐾) ≤ 𝑊[𝑘](𝐾), 
we write 

𝛷[𝑘](𝐾) =  𝛷[𝑘](𝑇(𝐾)) ≤ 𝑊[𝑘](𝑇(𝐾)). 

Since 𝑊[𝑘](𝐵2
𝑛) = 𝜔𝑘

1 𝑘⁄ ≃
1

√𝑘
, it follows from that 

      𝑊[𝑘](𝑇(𝐾)) ≤
𝑊[𝑘](𝐵2

𝑛)

𝑊[1](𝐵2
𝑛)
 𝑊[1](𝑇(𝐾)) ≤ 𝑐√𝑛/𝑘 𝑙𝑜𝑔 𝑛. 

This completes the proof.  

Next, we introduce the 𝑝-mean projection function 𝑊[𝑘,𝑝](𝐾) and the 𝑝-mean width 𝑤𝑝(𝐾) 

of a convex body 𝐾 and prove a weak lower bound in the direction of the left hand side 

inequality. 

𝑝-mean projection function. Let 𝐾 be a convex body in ℝ𝑛. For every 1 ≤ 𝑘 ≤ 𝑛 − 1 and 

for every 𝑝 ≠ 0 we define the 𝑝-mean projection function 𝑊[𝑘,𝑝](𝐾) by 

𝑊[𝑘,𝑝](𝐾):= (∫ |𝑃𝐹(𝐾)|
𝑝𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1
𝑘𝑝

. 

We also set 𝑊[𝑛](𝐾) ∶= |𝐾|
1 𝑛⁄ . Observe that the 𝑘-th normalized affine quermassintegral 

of 𝐾 corresponds to the case 𝑝 = −𝑛: 
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                                Φ[𝑘](𝐾) ∶= 𝑊[𝑘,−𝑛](𝐾). 

It is clear that 𝑊[𝑘,𝑝](𝐾) is an increasing function of 𝑝, 𝑊[𝑠,𝑝](𝜆𝐾) = 𝜆𝑊[𝑠,𝑝](𝐾) for every 

𝜆 > 0 and 𝑊[𝑠,𝑝](𝐾) ≤ 𝑊[𝑠,𝑝](𝐿) whenever 𝐾 ⊆ 𝐿. Moreover, for every 1 ≤ 𝑘 < 𝑚 ≤ 𝑛 −

1 and every 𝑝 ≠ 0, one has 

𝑊[𝑘,𝑝](𝐾):= (∫ 𝑊[𝑘,𝑝]
𝑘𝑝
 (𝑃𝐸(𝐾))𝑑𝑣𝑛,𝑚(𝐸)

𝐺𝑛,𝑚

)

1
𝑘𝑝

. 

In particular, 

                    𝑊[𝑘,−𝑚](𝐾):= (∫ Φ[𝑘]
𝑘𝑝
 (𝑃𝐸(𝐾))𝑑𝑣𝑛,𝑚(𝐸)𝐺𝑛,𝑚

)
−
1

𝑘𝑚
. 

mean width. The 𝑝-mean width of 𝐾 is defined for every 𝑝 ≠ 0 by 

𝑤𝑝(𝐾) = (∫ ℎ𝐾
𝑝
(𝜃)𝑑𝜎(𝜃)

𝑆𝑛−1
)

1 𝑝⁄

. 

It is clear that 𝑤𝑝(𝐾) is an increasing function of 𝑝,𝑤𝑝(𝜆𝐾) = 𝜆𝑤𝑝(𝐾) for every 𝜆 > 0 and 

𝑤𝑝(𝐾) ≤ 𝑤𝑝(𝐿) whenever 𝐾 ⊆ 𝐿. Note that, if 𝐾∘ is the polar body of 𝐾, then 

                                      𝑤−𝑛(𝐾) = (
|𝐵2
𝑛|

|𝐾∘|
)

1

𝑛
. 

Also, for every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

𝑤𝑝(𝐾) = (∫ 𝑤𝑝
𝑝
(𝑃𝐸(𝐾))𝑑𝑣𝑛,𝑘(𝐸)

𝐺𝑛,𝑘

)

1 𝑝⁄

 

and, in particular, 

                   𝑤−𝑘(𝐾) = 𝜔𝑘
1 𝑘⁄
(∫ |(𝑃𝐸(𝐾))

°|𝑑𝑣𝑛,𝑘(𝐸)𝐺𝑛,𝑘
)
−1 𝑘⁄

. 

Using the above we are able to prove that, in the symmetric case, 𝑊[𝑘,−𝑞](𝐾) > 𝑐√𝑛/𝑘 as 

far as 𝑞 ≤ 𝑛/𝑘; recall that Φ[𝑘](𝐾) = 𝑊[𝑘,−𝑛](𝐾). 

Let 𝐾 be a symmetric convex body of volume 1 in ℝ𝑛. Then, for every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

𝑊[𝑘,−𝑛/𝑘](𝐾) ≥ 𝑐√𝑛/𝑘. 

Proof. Using Holder’s inequality, the Blaschke-Santal´o and the reverse Santal´o inequality, 

for every 𝑝 ≥ 1 we can write 

(∫ |𝑃𝐹(𝐾)|
−𝑝𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1
𝑘𝑝

≃ (∫
|(𝑃𝐹(𝐾))

∘|𝑝

𝜔𝑘
2𝑝 𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1
𝑘𝑝

 

≃ √𝑘 (∫ (∫
1

ℎ𝐾
𝑘 (𝜃)

𝑑𝜎𝐹(𝜃)
𝑆𝐹

)

𝑝

𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

1
𝑘𝑝

 

≤ 𝑐√𝑘 (∫    ∫
1

ℎ𝐾
𝑘𝑝(𝜃)

𝑑𝜎𝐹(𝜃)
𝑆𝐹

𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

1
𝑘𝑝
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= 𝑐√𝑘  (∫
1

ℎ𝐾
𝑘𝑝(𝜃)

𝑑𝜎(𝜃)
𝑆𝑛−1

)

1
𝑘𝑝

   

= 𝑐√𝑘𝑤−𝑘𝑝
−1 (𝐾). 

We set 𝑝:=  𝑛/𝑘 ≥ 1. Then, we get 

𝑊[𝑘,−𝑛/𝑘](𝐾) ≥
𝑤−𝑛(𝐾)

𝑐√𝑘
≃

1

𝑐√𝑘

𝜔𝑛
1 𝑛⁄

|𝐾∘|1 𝑛⁄
≃ √𝑛/𝑘.  

This completes the proof.  

Note. What we have actually shown in the proof of Theorem (4.1.2) is that 

𝑊[𝑘,−𝑝](𝐾) ≃ √𝑘 (∫ (∫
1

ℎ𝐾
𝑘 (𝜃)

𝑑𝜎𝐹(𝜃)
𝑆𝐹

)

𝑝

𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

−
1
𝑘𝑝

≥ 𝑐
𝑤−𝑘𝑝(𝐾)

√𝑘
 

for all 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑝 ≥ 1. 

Next, we consider the dual affine quermassintegrals. We first provide a lower bound which 

is sharp up to the isotropic constant of the body. 

Theorem (1.1.5)[1]:Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛 and let 1 ≤ 𝑘 ≤
𝑛 − 1. Then, 

                                        �̃�[𝑘](𝐾) ≥
𝑐

𝐿𝐾
. 

Proof. By the linear invariance of �̃�[𝑘](𝐾), we may assume that 𝐾 is in the isotropic position. 

Let 𝐹 be a 𝑘-dimensional subspace of ℝ𝑛. We denote by 𝐸 the orthogonal subspace of 𝐹 and 

for every 𝜙 ∈ 𝐹 \ {0} we define 𝐸+(𝜙) = {𝑥 ∈ 𝑠𝑝𝑎𝑛{𝐸, 𝜙}: 〈𝑥, 𝜙〉 ≥ 0}. 𝐾. Ball (see [2] 

and [19]) proved that, for every 𝑞 ≥ 0, the function 

𝜙 ⟼ ‖𝜙‖2
1+

𝑞
𝑞+1

(∫ 〈𝑥, 𝜙〉𝑞𝑑𝑥
𝐾∩𝐸+(𝜙)

)

−
1
𝑞+1

 

is the gauge function of a convex body 𝐵𝑞(𝐾, 𝐹) on 𝐹. We will make use of the fact that, if 

𝐾 is isotropic then 

                             |𝐾 ∩ 𝐹⊥|1 𝑘⁄ ≃
𝐿𝐵𝑘+1

(𝐾,𝐹)

𝐿𝐾
. 

See [19] and [23] for a proof. Therefore, 

 Φ̃[𝑘](𝐾)𝐿𝐾 ≃ (∫ 𝐿𝐵𝑘+1(𝐾,𝐹)
𝑘𝑛 𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘

)

1

𝑘𝑛
. 

Recall that the isotropic constant is uniformly bounded from below: we know that 

𝐿𝐵𝑘+1(𝐾,𝐹) ≥ 𝑐, where 𝑐 > 0 is an absolute constant. It follows that 

�̃�𝑘(𝐾)𝐿𝐾 ≃ (∫ 𝐿𝐵𝑘+1(𝐾,𝐹)
𝑘𝑛 𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1
𝑘𝑛

≥ 𝑐, 

and the result follows. Note. shows that if the hyperplane conjecture is correct then (if we 

also take into account Grinberg’s theorem), for every centered convex body 𝐾 of volume 1 

in ℝ𝑛 and for every 1 ≤ 𝑘 ≤ 𝑛 − 1, 

                                  𝑐1 ≤ Φ̃[𝑘](𝐾) ≤ 𝑐2 
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where 𝑐1, 𝑐2 > 0 are absolute constants. This would answer completely the asymptotic 

version of our original problems about the dual affine quermassintegrals. 

The proof of Theorem (1.1.4) has some interesting consequences: 

Corollary (1.1.6)[1]:. Let 𝐾 be an isotropic convex body in ℝ𝑛. For every 1 ≤ 𝑘 ≤ 𝑛 − 1 

we have 

                        𝑣𝑛,𝑘{𝐹 ∈ 𝐺𝑛,𝑘: 𝐿𝐵𝑘+1(𝐾,𝐹) ≥ 𝑐𝐿𝐾`} ≤ 𝑒
−𝑘𝑛, 

where 𝑐 > 0 is an absolute constant. 

Proof. From Grinberg’s theorem – we know that �̃�[𝑘](𝐾) ≤ �̃�[𝑘](𝐷𝑛) ≤ 𝑐2, where 𝑐2 > 0 

is an absolute constant. From (4.5) we get 

(∫ 𝐿𝐵𝑘+1(𝐾,𝐹)
𝑘𝑛 𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1
𝑘𝑛

≤ 𝑐3𝐿𝐾 , 

and the result follows from Markov’s inequality. 

We complement with a second lower bound for �̃�[𝑘](𝐾), which is sharp when k is 

proportional to 𝑛. 

Theorem (1.1.7)[1]:Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. For every 1 ≤ 𝑘 ≤
𝑛 − 1 we have that 

                            �̃�[𝑘](𝐾) ≥
𝑐

√𝑛/𝑘√log(𝑒𝑛/𝑘)
. 

For the proof of this bound, we introduce the p-mean function �̃�[𝑘,𝑝](𝐾) of a convex body 

𝐾. 

Let 𝐾 be a convex body in ℝ𝑛. For every 1 ≤ 𝑘 ≤ 𝑛 − 1 and for every 𝑝 ≠ 0 we define the 

𝑝-mean �̃�[𝑘,𝑝](𝐾) by 

                      �̃�[𝑘,𝑝](𝐾) = (∫ |𝐾 ∩ 𝐹⊥|𝑝𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘
)

1

𝑘𝑝
. 

The normalized dual 𝑘-quermassintegral of 𝐾 is �̃�[𝑘](𝐾):= �̃�[𝑘,1](𝐾). Observe that the 𝑘-

th normalized dual affine quermassintegral of 𝐾 corresponds to the case 𝑝 = 𝑛: 

�̃�[𝑘](𝐾) = �̃�[𝑘,𝑛](𝐾).  

Hölder’s inequality implies that, for a fixed value of 𝑘, �̃�[𝑘,𝑛](𝐾) is an increasing function 

of 𝑝. 

The next Proposition shows that the normalized dual quermassintegrals �̃�[𝑘](𝐾) are strongly 

related to the quantities 𝐼𝑝(𝐾). 

Proposition (1.1.8)[1]:. Let 𝐾 be a convex body of volume 1 in ℝ𝑛 and let 1 ≤ 𝑘 ≤ 𝑛 − 1. 

Then, 

                    �̃�[𝑘](𝐾)𝐼−𝑘(𝐾) = (
(𝑛−𝑘)𝜔𝑛−𝑘

𝑛𝜔𝑛
)
1 𝑘⁄

= �̃�[𝑘](𝐷𝑛)𝐼−𝑘(𝐷𝑛). 

Note. It is easy to check that (
(𝑛−𝑘)𝜔𝑛−𝑘

𝑛𝜔𝑛
)
1 𝑘⁄

≃ √𝑛. 

Proof. We integrate in polar coordinates: 
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Γ−𝑘
−𝑘(𝐾) =

𝑛𝜔𝑛
𝑛 − 𝑘

1

‖𝑥‖𝐾
𝑛−𝑘 𝑑𝜎(𝑥) 

=
𝑛𝜔𝑛

𝑛 − 𝑘𝜔𝑛−𝑘
∫ 𝜔𝑛−𝑘∫

1

‖𝜃‖𝐾∩𝐹
𝑛−𝑘 𝑑𝜎(𝑥)

𝑆𝐹

𝑑𝑣𝑛,𝑛−𝑘(𝐹)
𝐺𝑛,𝑛−𝑘

 

=
𝑛𝜔𝑛

𝑛 − 𝑘𝜔𝑛−𝑘
∫ |𝐾 ∩ 𝐹|𝑑𝑣𝑛,𝑛−𝑘(𝐹)
𝐺𝑛,𝑛−𝑘

 

= 
𝑛𝜔𝑛

𝑛 − 𝑘𝜔𝑛−𝑘
∫ |𝐾 ∩ 𝐹⊥|𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

. 

The definition of �̃�[𝑘](𝐾) completes the proof. 

Proposition (1.1.9)[1]:. Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, for every 

1 ≤ 𝑠 ≤ 𝑚 ≤ 𝑛 − 1, 

�̃�[𝑠](𝐾) ≤ �̃�[𝑠](𝐷𝑛) 

and 

                      
�̃�[𝑚](𝐾)

�̃�[𝑠](𝐾)
≥
�̃�[𝑚](𝐷𝑛)

�̃�[𝑠](𝐷𝑛)
. 

Proof. It is known (see [24]) that for any 𝑞 ≥ 𝑝 ≥ −𝑛 we have 

𝐼𝑝(𝐾) ≥ 𝐼𝑝(𝐷𝑛) 
and 

                          
𝐼𝑞(𝐾)

𝐼𝑝(𝐾)
≥
𝐼𝑞(𝐷𝑛)

𝐼𝑝(𝐷𝑛)
 .  

Note. It is easy to check that 

�̃�[𝑘](𝐷𝑛) = �̃�[𝑘,𝑝](𝐷𝑛) = Φ̃[𝑘](𝐷𝑛) ≃ 1. 

Hölder’s inequality and imply that 

                  �̃�[𝑘](𝐾) ≥ �̃�[𝑘](𝐾) ≥
𝑐√𝑛

𝐼−𝑘(𝐾)
 . 

Now, we use the fact (see Theorem 5.2 and Lemma 5.6 in [4]) that there exists 𝑇 ∈ 𝑆𝐿(𝑛) 
such that 

𝐼−𝑘(𝑇(𝐾)) ≤ 𝑐√𝑛√𝑛/𝑘√𝑙𝑜𝑔 𝑒𝑛/𝑘. 

By the affine invariance of  �̃�[𝑘](𝐾) we have 

                   �̃�[𝑘](𝐾) = �̃�[𝑘](𝑇(𝐾)) ≥
𝑐√𝑛

𝐼−𝑘(𝑇(𝐾))
 , 

and this completes the proof. 

we prove some inequalities involving the 𝑝-means of projection functions of a convex body. 

In particular, we obtain duality relations between Φ[𝑛/2](𝐾) and Φ̃[𝑛/2](𝐾
°̅̅ ̅). These will 

allow us to obtain a second upper bound for Φ[𝑘](𝐾) which is sharp when 𝑘 is proportional 

to 𝑛. 

One source of such inequalities is the following “𝐿𝑞–version of the Rogers- Shephard 

inequality” which was proved in [24]. 

Lemma (1.1.10)[1]:. Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, for every 

1 ≤ 𝑘 ≤ 𝑛 − 1 and every 𝐹 ∈ 𝐺𝑛,𝑘 we have that 
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𝑐1 ≤ |𝐾 ∩ 𝐹
⊥|1 𝑘⁄ |𝑃𝐹(𝑍𝑘(𝐾))|

1 𝑘⁄ ≤ 𝑐2, 
where 𝑐1, 𝑐2 > 0 are universal constants. 

A direct application of Lemma (1.1.10) leads to the following: 

Proposition (1.1.11)[1]:. Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. For every 

1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑝 ≠ 0 we have that 

(i) 𝑐1 ≤ �̃�[𝑘,𝑝](𝐾)𝑊[𝑘,−𝑝](𝑍𝑘(𝐾)) ≤ 𝑐2, 

(ii) 𝑐3 ≤ Φ̃[𝑘](𝐾)Φ[𝑘](𝑍𝑘(𝐾)) ≤ 𝑐4, 

(iii) 𝑐5 ≤ �̃�[𝑘](𝐾)𝛷[𝑘](𝐾) ≤ 𝑐6𝑛/𝑘,  

where 𝑐𝑖 > 0, 𝑖 = 1, . . . , 6 are absolute constants. 

Proof. From the definitions we readily see that 

                              �̃�[𝑘,𝑝](𝐾) = (∫ |𝐾 ∩ 𝐹⊥|𝑝𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘
)
1/(𝑘𝑝)

, 

                                 ≃ (∫ |𝑃𝐹(𝑍𝑘(𝐾))|
−𝑝𝑑𝑣𝑛,𝑘(𝐹)𝐺𝑛,𝑘

)
1/(𝑘𝑝)

 

= 𝑊[𝑘,−𝑝]
−1 (𝑍𝑘(𝐾)). 

This proves (i). Then, (ii) corresponds to the special case 𝑝 = 𝑛. Since 𝐾 ⊆
𝑐𝑛

𝑘
 𝑍𝑘(𝐾), (iii) 

follows.  

A second source of inequalities is the Blaschke-Santalo and the reverse Santalo inequality. 

Since (𝐾 ∩ 𝐹⊥)∘ = 𝑃𝐹⊥(𝐾
∘), for every 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝐹 ∈ 𝐺𝑛,𝑘we have 

                         𝑐𝑛−𝑘𝜔𝑛−𝑘
2 ≤ |𝑃𝐹⊥(𝐾

∘)| |𝐾 ∩ 𝐹⊥| ≤ 𝜔𝑛−𝑘
2 . 

Therefore, 

�̃�[𝑘,𝑝](𝐾) = (∫ |𝐾 ∩ 𝐹⊥|𝑝𝑑𝑣𝑛,𝑘(𝐹)
𝐺𝑛,𝑘

)

1/(𝑘𝑝)

 

≤ 𝜔𝑛−𝑘
2/𝑘

(∫ |𝑃𝐹⊥(𝐾
°)|−𝑝𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑘

)

1/(𝑘𝑝)

 

= 𝜔𝑛−𝑘
2/𝑘

(∫ |𝑃𝐹(𝐾
°)|−𝑝𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1/(𝑘𝑝)

 

= 𝜔𝑛−𝑘
2/𝑘
𝑊[𝑛−𝑘,𝑝]
−(𝑛−𝑘)/𝑘

(𝐾°). 

Working in the same way we check that 

�̃�[𝑘,𝑝](𝐾)𝑊[𝑘,𝑝]
−(𝑛−𝑘)/𝑘

(𝐾°) ≥ 𝑐(𝑛−𝑘)/𝑘𝜔𝑛−𝑘
2/𝑘
. 

We summarize in the following Proposition. 

Proposition (1.1.12)[1]:. Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. For every 

1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑝 ≠ 0 we have: 

(i) 𝑐(𝑛−𝑘)/𝑘𝜔𝑛−𝑘
2/𝑘

≤ �̃�[𝑘,𝑝](𝐾)𝑊[𝑘,𝑝]
−(𝑛−𝑘)/𝑘

(𝐾°) ≤  𝜔𝑛−𝑘
2/𝑘
. 

(ii) If 𝑛 is even, then �̃�[𝑛/2,𝑝](𝐾)𝑊[𝑛/2,𝑝](𝐾
°) ≃

1

𝑛
. 

(iii) If 𝑛 is even, then Φ̃[𝑛/2](𝐾)Φ[𝑛/2](𝐾
°̅̅ ̅) ≃ 1. 
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Taking into account Proposition (1.1.12)(iii) we have the following: 

Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, 

                  Φ̃[𝑛/2](𝐾) ≃ �̃�[𝑛/2](𝐾
∘̅̅̅̅ ) 𝑎𝑛𝑑 Φ[𝑛/2](𝐾) ≃ 𝛷[𝑛/2](𝐾

∘̅̅̅̅ ). 

We can get more precise information if we use the 𝑀-ellipsoid of 𝐾. Let 𝐾 be a convex body 

of volume 1 in ℝ𝑛. Milman (see [17], [18] and also [20] for the not necessarily symmetric 

case) proved that there exists an ellipsoid ℰ with |ℰ| = 1, such that 

𝑙𝑜𝑔 𝑁(𝐾, ℰ) ≤ 𝑣𝑛, 
where 𝑣 > 0 is an absolute constant. In other words, for any centered convex body 𝐾 of 

volume 1 in ℝ𝑛 there exists 𝑇 ∈ 𝑆𝐿(𝑛) such that 

                                   𝑁(𝑇(𝐾), 𝐷𝑛) ≤ 𝑒
𝑣𝑛. 

Theorem (1.1.13)[1]:. Let 𝑛 be even and let 𝐾 be a centered convex body of volume 1 in 

ℝ𝑛. Then, 

𝑐1 ≤ �̃�[𝑛/2](𝐾) ≤ 𝑐2, 

where 𝑐1, 𝑐2 > 0 are absolute constants. 

Proof. We will use the following inequality of Rogers and Shephard [27]. If 𝐾 is a centered 

convex body of volume 1 in ℝ𝑛 then 

                                          |𝐾 − 𝐾| ≤ 4𝑛. 
We choose 𝑇 ∈ 𝑆𝐿(𝑛) so that 

𝑁(𝑇(𝐾 −  𝐾̅̅ ̅̅ ̅̅ ̅̅ ̅), 𝐷𝑛) ≤ 𝑒
𝑣𝑛 

Then, for any 𝐹 ∈ 𝐺𝑛,𝑛
2
, 

               |𝑃𝐹(𝑇(𝐾 − 𝐾̅̅ ̅̅ ̅̅ ̅̅ ))| ≤ 𝑁(𝑇(𝐾 − 𝐾̅̅ ̅̅ ̅̅ ̅̅ )), 𝐷𝑛)|𝑃𝐹  (𝐷𝑛)| ≤ 𝑒
𝑣𝑛𝑐𝑛. 

Moreover, using (5) we have that 

|𝑃𝐹 (𝑍𝑛
2
(𝑇(𝐾)))| ≤ |𝑃𝐹 (𝑐𝑜𝑛𝑣(𝑇(𝐾),−𝑇(𝐾)))| ≤ |𝑃𝐹(𝑇(𝐾 − 𝐾))|

≤  4𝑛|𝑃𝐹(𝑇(𝐾 − 𝐾̅̅ ̅̅ ̅̅ ̅̅ ))|. 
Combining the above with (5.10) and (5.1) we have that 

|𝑇(𝐾) ∩ 𝐹⊥| ≥  
𝑐0

𝑛
2

|𝑃𝐹(𝑍𝑛
2
(𝑇(𝐾)))|

≥
𝑐0

𝑛
2

𝑒𝑣𝑛𝑐𝑛
=: 𝑐1

𝑛
2 . 

So, we have shown that for any 𝐹 ∈ 𝐺𝑛,𝑛
2
, 

                                  |𝑇(𝐾) ∩ 𝐹| ≥ 𝑐1

𝑛

2  .  

This implies that 

Φ̃
[
𝑛
2
]
(𝐾) = Φ̃

[
𝑛
2
]
(𝑇(𝐾)) ≥ min

𝐹∈𝐺
𝑛,
𝑛
2

|𝑇(𝐾) ∩ 𝐹|
2
𝑛 ≥ 𝑐2. 

This shows the left hand side inequality in (7). The right hand side inequality follows.  

Corollary (1.1.14)[1]:Let 𝐾 be a centered convex body of volume 1 in ℝ𝑛. Then, 

              Φ̃[𝑛/2](𝐾) ≃ �̃�[𝑛/2](𝐾
∘̅̅̅̅ ) ≃ Φ[𝑛/2](𝐾) ≃ 𝛷[𝑛/2](𝐾

∘̅̅̅̅ ) ≃ 1. 

Note. In view of Corollary (1.1.6), if 𝑛 is even and 𝑘 = 𝑛/2, becomes a formula: 
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Corollary (1.1.15)[1]:Let 𝐾 be an isotropic convex body in ℝ𝑛. Then, 

𝐿𝐾 ≃ (∫ 𝐿𝐵𝑛
2
+1
(𝐾,𝐹)

𝑛2/2
𝑑𝑣𝑛,𝑛/2(𝐹)

𝐺𝑛,𝑛/2

)

2/𝑛2

. 

In particular, there exists 𝐹 ∈ 𝐺𝑛,𝑛/2 such that 

                           𝐿𝐾 ≤ 𝑐𝐿𝐵𝑛
2
+1
(𝐾,𝐹) . 

we can now give a second upper bound for Φ[𝑘](𝐾), which sharpens the estimate in  

Theorem (1.1.16)[1]:. Let 𝐾 be a convex body of volume 1 in ℝ𝑛 and let 1 ≤ 𝑘 ≤ 𝑛 − 1. 

Then, 

𝛷[𝑘](𝐾) ≤  𝑐(𝑛/𝑘)
3/2√𝑙𝑜𝑔 𝑒𝑛/𝑘. 

Proof. We may assume that 𝐾 is also centered. we have that 

                         𝛷[𝑘](𝐾) =
𝛷[𝑘](𝐾)�̃�[𝑘](𝐾)

�̃�[𝑘](𝐾)
≤

𝑐𝑛/𝑘

�̃�[𝑘](𝐾)
. 

Then, we use the lower bound for �̃�[𝑘](𝐾).   

Section (1.2): Estimates for the Affine and Dual Affine Quermassintegrals  

For 𝐾𝑒
𝑛 be the class of origin-symmetric convex bodies in the Euclidean space ℝ𝑛. Denote 

by 𝑣𝑜𝑙𝑖  (∙) the 𝑖-dimensional Lebesgue measure. We will discuss the following generalized 

Busemann-Petty problem and its variations: 

(𝐺𝐵𝑃). If 𝐾, 𝐿 ∈ 𝐾𝑒
𝑛 and for every 𝑖-dimensional subspace 𝐻 

𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻) ≤ 𝑣𝑜𝑙𝑖  (𝐿 ∩ 𝐻), 
does it follow that 

𝑣𝑜𝑙𝑛(𝐾) ≤ 𝑣𝑜𝑙𝑛(𝐿)? 
When 𝑖 = 𝑛 − 1 this problem was posed by Busemann and Petty [36] in 1956. The 

Busemann-Petty problem has received considerable attention (see, M. Berger [33], V. L. 

Klee [34], and [35] [37] [39]). Many contributed to the solution of this problem (see [40]). 

For the history of Busemann-Petty problem, see [41] [42]. It is now known that the 

Busemann-Petty problem has a negative answer for 𝑛 ≥ 4 (see [43]), and has a positive 

answer for 𝑛 = 3 (see [44]). 

As observed by 𝐾. Ball, one can construct counterexamples to the generalized Busemann-

Petty problem by using the techniques in [45] and letting 𝐾 = the unit cube, 𝐿 = 𝑎 ball of 

appropriate radius, when 𝑛 is sufficiently large and 𝑖 > 𝑛/2. What are the dimensions of and 

ambient spaces so that the generalized Busemann-Petty problem has a positive answer? One 

of the objectives is to prove that the generalized Busemann-Petty problem has a negative  

answer for 2 < 𝑖 < 𝑛. Therefore, only the 2-dimensional case might have a positive answer. 

This remains open in ℝ𝑛(𝑛 > 3). 
The notion body, introduced by Lutwak [46], plays an important role in the solution of the 

Busemann-Petty problem. An origin-symmetric convex body 𝐾 is called an intersection 

body if the inverse spherical Radon transform of the radial function of 𝐾 is a nonnegative 

measure. Based on the work of Lutwak [47], it was shown in [48] that the existence of origin-

symmetric convex non-intersection bodies is equivalent to a negative answer to the 
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Busemann-Petty problem. Then the negative answer to the Busemann-Petty problem in 

ℝ𝑛(𝑛 ≥ 4) comes from the fact that every polytope in ℝ𝑛(𝑛 ≥ 4) is not an intersection body 

([49] [50]); the positive answer to the problem in ℝ3 comes from the fact that every origin-

symmetric convex body in ℝ3 is an intersection body ([32]). The methods employed in [33] 

and [34] depend on the bijectivity of the spherical Radon transform in the space of 𝐶1 even 

functions on the sphere 𝑆𝑛−1. For the generalized Busemann-Petty problem GBP, though 

the volume of central of convex bodies can be expressed as a Radon transform from the 

sphere 𝑆𝑛−1 to the Grassmannian 𝐺𝑟(𝑛, 𝑖), we cannot expect any surjectivity of the Radon 

transform except the hyperplane case. One of the reasons is that the rank of the Grassmannian 

𝐺𝑟(𝑛, 𝑖) is different from that of the sphere 𝑆𝑛−1 except 𝑖 = 1, 𝑛 − 1. Consequently, the 

arguments in [36] and [37] cannot be generalized directly. Moreover, to deal with the 

generalized Busemann-Petty problem, one needs to extend the notion of intersection body. 

We deal with problem GBP by a different approach from the point of view of functional 

analysis. This approach shows that the answer to problem GBP is equivalent to asking the 

positivity of inverse Radon transforms on Grassmannians. It enables one to relate problem 

GBP to certain new classes of centered bodies. They are extensions of the class of 

intersection bodies. A body is called centered if it is star-shaped and symmetric with respect 

to the origin. Let 𝑆𝑒
𝑛 be the class of centered bodies with continuous radial functions. Then 

𝐾𝑒
𝑛 is a subclass of 𝑆𝑒

𝑛 . For each 2 ≤ 𝑖 ≤ 𝑛 − 1, we introduce a class of centered bodies 

𝐼𝑖
𝑛 ⊆ 𝑆𝑒

𝑛 by using Radon transforms on Grassmannians. In the hyperplane case, 𝐼𝑛−1
𝑛  is 

exactly the class of intersection bodies. We show that problem GBP has a positive answer if 

𝐾 ∈ 𝐼𝑖
𝑛 , and that problem GBP is equivalent to whether there is the inclusion 𝐾𝑒

𝑛 ⊆ 𝐼𝑖
𝑛 . we 

prove that there is no polytope in 𝐼𝑖
𝑛 for 3 ≤ 𝑖 ≤ 𝑛 − 1. This yields a negative answer to 

problem GBP for 3 ≤ 𝑖 ≤ 𝑛 − 1. The case of 2-dimensional remains open for 𝑛 > 3. It 

might have a positive answer which would depend on a better understanding about the 

geometry of Grassmannians. Note that the convexity is a 2-dimensional notion. 

M. Meyer [32] showed that if 𝐾 is the cross-polytope (octahedron) then the Busemann-Petty 

problem has a positive answer. He asked whether this could be generalized to polar 

projection bodies (see [32] p. 423). Analytically, polar projection bodies are finite 

dimensional sections of the unit ball of the Banach  space 𝐿1. we give a strong negative 

answer to this question by proving the following theorem: 

For 3 ≤ 𝑖 ≤ 𝑛 − 1 there exist polar projection bodies 𝐾 and 𝐿 in ℝ𝑛(𝑛 ≥ 4) so that 

𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻) < 𝑣𝑜𝑙𝑖  (𝐿 ∩ 𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖), 
but 

𝑣𝑜𝑙𝑛(𝐾) > 𝑣𝑜𝑙𝑛(𝐿). 
Projection bodies and their polars arise in a number of disciplines, including functional 

analysis, crystallography, stereology, geometric tomography, and stochastic and convex 

geometry (see [35]). We will consider their central and establish inequalities related to them 

. 

The following variation of the Busemann-Petty problem is considered to be one of the main 

problems in the local theory of Banach spaces (see [34]). For 𝐾, 𝐿 ∈ 𝐾𝑒
𝑛 , if for every 

hyperplane 𝐻 through the origin 
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𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝐻) ≤ 𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝐻), 
does there exist a numerical constant 𝑐 (not depending on the dimension 𝑛) so that 

𝑣𝑜𝑙𝑛(𝐾) ≤ 𝑐 𝑣𝑜𝑙𝑛(𝐿)? 
The result above shows that 𝑐 > 1 for the class of polar projection bodies. We will show that 

𝑐 ≤ 2 in this case. See [35] for related results. The above question has many equivalent 

formulations (see [36]). One of them is the maximal slice problem: Does there exist a 

numerical constant 𝑐1 so that 

𝑣𝑜𝑙𝑛(𝐾)
𝑛−1
𝑛 ≤ 𝑐1  max

𝐻∈𝐺𝑟(𝑛,𝑛−1)
𝑣𝑜𝑙𝑛−1 (𝐾 ∩ 𝐻)? 

See [38] for a detailed discussion. When 𝐾 is restricted to the class of projection bodies or 

to the class of polar projection bodies, the question has a positive answer (see Ball [40], 

Milman and Pajor [39], and Lindenstrauss and Milman [36]). 

The proof involves finite dimensional Banach space theory. We give a geometric proof and 

give a specific value for the constant so that the results are useful in lower dimensional 

spaces. It will be shown that one can choose 𝑐1 < 1 for any polar projection body 𝐾. Similar 

results are proved for projection bodies.  

Let 𝐶𝑒(𝑆
𝑛−1) be the space of continuous even functions on the unit sphere 𝑆𝑛−1. Denote by 

𝐺𝑟(𝑛, 𝑖) the Grassmann manifold of 𝑖-dimensional subspaces in ℝ𝑛, and denote by 

𝐶(𝐺𝑟(𝑛, 𝑖)) the space of continuous functions on 𝐺𝑟(𝑛, 𝑖). The Radon transform, for 2 ≤
𝑖 ≤ 𝑛 − 1, 

𝑅𝑖: 𝐶𝑒(𝑆
𝑛−1) → 𝐶(𝐺𝑟(𝑛, 𝑖)) 

is defined by 

(𝑅𝑖𝑓 )(𝐻) =
1

𝑖𝜅𝑖
𝑓(𝑢)𝑢∈𝑆𝑛−1∩𝐻
  𝑑𝑢, 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖), 𝑓 ∈ 𝐶𝑒(𝑆

𝑛−1), 

where𝜅𝑖 and 𝑑𝑢 are the volume and the surface area element of the 𝑖-dimensional unit ball, 

respectively. 

Let 𝜌𝐾 be the radial function of a centered body 𝐾 ∈ 𝑆𝑒
𝑛 given by 

𝜌𝐾(𝑢) = max {𝜆 ≥ 0: 𝜆𝑢 ∈ 𝐾}, 𝑢 ∈ 𝑆𝑛−1. 
The Radon transform 𝑅𝑖 is closely connected with the central of centered bodies by the 

following formula 

                                (𝑅𝑖𝜌𝐾
𝑖 )(𝐻) =

1

𝜅𝑖
𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻),       𝐻 ∈ 𝐺𝑟(𝑛, 𝑖)                    (31) 

The dual transform 𝑅𝑖
𝑡 of 𝑅𝑖 is given by 

𝑅𝑖
𝑡: 𝐶(𝐺𝑟(𝑛, 𝑖)) → 𝐶𝑒(𝑆

𝑛1) 
(𝑅𝑖

𝑡𝑔)(𝑢) = 𝑔(𝐻)𝑢∈𝐻∈𝐺𝑟(𝑛,𝑖)
 𝑑𝐻, 𝑢 ∈ 𝑆𝑛−1, 𝑔 ∈ 𝐶(𝐺𝑟(𝑛, 𝑖)). 

We have the following duality (see [40], p. 144, p. 161) 

〈𝑅𝑖𝑓, 𝑔〉 = 〈𝑓, 𝑅𝑖
𝑡𝑔〉,           𝑓 ∈ 𝐶𝑒(𝑆

𝑛−1),     𝑔 ∈ 𝐶(𝐺𝑟(𝑛, 𝑖)),         (32) 
where 〈  , 〉 is the usual inner product of functions on homogeneous spaces. 

Let 𝑋 = 𝑅𝑖(𝐶𝑒(𝑆
𝑛−1)), the range of 𝑅𝑖. Then 𝑋 is a subspace of 𝐶(𝐺𝑟(𝑛, 𝑖)). 

For a positive linear functional 𝜇 on 𝑋, we can define the dual transform 𝑅𝑖
𝑡𝜇 as an even 

positive measure on 𝑆𝑛−1 by 
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〈𝑅𝑖
𝑡𝜇, 𝑓〉 = 〈𝜇, 𝑅𝑖𝑓〉,        𝑓 ∈ 𝐶𝑒(𝑆

𝑛−1),  
where 〈, 〉denotes the pairing of a linear functional and an element of the vector space 𝑋.  

Let 𝑀+(𝑋) be the set of positive linear functionals on 𝑋. We consider the convex cone 

𝑁𝑖 = {𝑅𝑖
𝑡𝜇: 𝜇 ∈ 𝑀+(𝑋)} 

In 𝑀(𝑆𝑛−1), the space of signed measures on 𝑆𝑛−1. This convex cone 𝑁𝑖  is closed under the 

weak* topology of 𝑀(𝑆𝑛−1). Indeed, for a net 𝜎𝑚 → 𝜎, 𝜎𝑚 ∈ 𝑁𝑖 , 𝜎 ∈  𝑀(𝑆
𝑛−1), and 𝑓 ∈

𝐶𝑒(𝑆
𝑛−1), there exists 𝜇𝑚 ∈ 𝑀

+(𝑋) so that 𝜎𝑚 = 𝑅𝑖
𝑡𝜇𝑚. 

We have 

〈𝜎, 𝑓〉 = 𝑙𝑖𝑚〈𝜎𝑚, 𝑓〉 =  𝑙𝑖𝑚〈𝑅𝑖
𝑡𝜇𝑚, 𝑓〉 = 𝑙𝑖𝑚〈𝜇𝑚 , 𝑅𝑖𝑓〉. 

This shows that there exists 𝜇 ∈ 𝑀+(𝑋) so that 

〈𝜇, 𝑅𝑖𝑓〉 = 𝑙𝑖𝑚〈𝜇𝑚, 𝑅𝑖𝑓〉. 
Hence, 

〈𝜎, 𝑓〉 = 〈𝑅𝑖
𝑡𝜇, 𝑓〉, 

that is,𝜎 ∈ 𝑁𝑖. 
Lemma (1.2.1)[32]: Let 𝜌 ∈ 𝑀(𝑆𝑛−1). If 𝜌 ∉ 𝑁𝑖, then there exists 𝑔 ∈ 𝐶(𝑆𝑛−1) so that 

〈𝜌, 𝑔〉 > 0, 〈𝜎, 𝑔〉 ≤ 0        𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎 ∈ 𝑁𝑖 . 
Proof. Since 𝑀(𝑆𝑛−1) is a locally convex Hausdorff space under the weak* topology and 

𝑁𝑖 is a closed convex cone, we can apply the separation theorem. 

If 𝜌 ∉ 𝑁𝑖, there exist 𝑔 ∈ 𝐶(𝑆𝑛−1), a constant 𝑐 and 𝜀 > 0 so that  

〈𝜌, 𝑔〉 ≥ 𝑐 + 𝜀 > 𝑐 − 𝜀 ≥ 〈𝜎, 𝑔〉, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜎 ∈ 𝑁𝑖 . 
Since 0 ∈ 𝑁𝑖, we have 𝑐 − 𝜀 ≥ 0 and 〈𝜌, 𝑔〉 > 0. Since 𝑁𝑖  is a cone, we have 〈𝜎, 𝑔〉 ≤ 0 for 

all 𝜎 ∈ 𝑁𝑖. Otherwise, there is 𝜎1 so that 〈𝜎1, 𝑔〉 > 0. For 𝑟 > 0, 𝑟𝜎1 ∈ 𝑁𝑖  and 

〈𝑟𝜎1, 𝑔〉 = 𝑟〈𝜎1, 𝑔〉 > 𝑐 − 𝜀 
for 𝑟 large. This is impossible. 

Lemma (1.2.2)[32]:. Let 𝜌 ∈ 𝑀(𝑆𝑛−1). If 𝜌 ∉ 𝑁𝑖, then there exists 𝑔 ∈ 𝐶∞(𝑆𝑛−1) so that 

〈𝜌, 𝑔〉 > 0, 𝑅𝑖𝑔 < 0.  
Proof. By Lemma (1.2.1), there exists 𝑔 ∈ 𝐶(𝑆𝑛−1) so that 

〈𝜌, 𝑔〉 > 0, 〈𝜎, 𝑔〉 ≤ 0       𝑓𝑜𝑟 𝑎𝑙𝑙𝜎 ∈ 𝑁𝑖 . 
Choose a sequence 𝑔𝑚 ∈ 𝐶

∞(𝑆𝑛−1) such that 𝑔𝑚 ≤ 𝑔 and 𝑔𝑚 → 𝑔 uniformly. Then 

〈𝜌, 𝑔𝑚〉 > 0 when 𝑚 is large. Since 𝑁𝑖 ⊂ 𝑀
+(𝑆𝑛−1), for 𝜎 ∈ 𝑁𝑖, we have 

〈𝜎, 𝑔𝑚〉 ≤ 〈𝜎, 𝑔〉 ≤ 0. 
Therefore, for 𝜎 = 𝑅𝑖

𝑡𝜇, 𝜇 ∈ 𝑀+(𝑋), 
0 ≥ 〈𝜎, 𝑔𝑚〉 = 〈𝑅𝑖

𝑡𝜇, 𝑔𝑚〉 = 〈𝜇, 𝑅𝑖𝑔𝑚〉. 
This implies that 𝑅𝑖𝑔𝑚 ≤ 0. Then 𝑔𝑚 − 𝜀 satisfies the requirement for small 𝜀 > 0. 

If the Radon-Nikodym derivative of the measure𝜌 with respect to the Lebesgue measure on 

𝑆𝑛−1 is an even continuous function and 𝜌 ∉ 𝑁𝑖, then the function 𝑔 in Lemma (1.2.2) can 

be chosen in 𝐶𝑒
∞(𝑆𝑛−1). Furthermore, if 𝜌 is invariant under a subgroup of 𝑆𝑂(𝑛), then g 

can be chosen as invariant under the same subgroup. 

We are ready to introduce certain new classes of centered bodies. Let 𝜆𝑆𝑛−1  be the Lebesgue 

measure on 𝑆𝑛−1. As usual, one can view a continuous function 𝜌 on 𝑆𝑛−1 as a measure by 

identifying 𝜌 with 𝜌𝜆𝑆𝑛−1  . Define 
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𝐼𝑖
𝑛 = {𝐾 ∈ 𝑆𝑒

𝑛: 𝜌𝐾
𝑛−𝑖 ∈ 𝑁𝑖}, 2 ≤ 𝑖 ≤ 𝑛 − 1, 

where the continuous function 𝜌𝐾
𝑛−𝑖 is viewed as a measure on 𝑆𝑛−1. Then 𝐼𝑖

𝑛 ⊆ 𝑆𝑒
𝑛 and 𝐼𝑛−1

𝑛  

is exactly the class of intersection bodies. These classes of centered bodies are crucial for 

the generalized Busemann-Petty problem. They are generalizations of the class of 

intersection bodies. It can be shown that the class of centered bodies 𝐼𝑖
𝑛 is affine invariant 

and contains all the intersection bodies, i.e., 

𝐼𝑛−1
𝑛 ⊆ 𝐼𝑖

𝑛, 2 ≤ 𝑖 ≤ 𝑛 − 1. 
Elements in 𝐼𝑖

𝑛 are called 𝑖-intersection bodies. 

Lemma (1.2.3)[32]:. Let 𝐾 ∈ 𝑆𝑒
𝑛. Then 𝐾 ∈ 𝐼𝑖

𝑛 if and only if 

𝑅𝑖𝑔 ≤ 0 ⟹ 〈𝜌𝐾
𝑛−𝑖 , 𝑔〉 ≤ 0 

for any 𝑔 ∈ 𝐶𝑒
∞(𝑆𝑛−1).  

Proof. If 𝐾 ∈ 𝐼𝑖
𝑛 , then there exists 𝜇 ∈ 𝑀+(𝑋) so that 𝜌𝐾

𝑛−𝑖 = 𝑅𝑖
𝑡𝜇. We have 

〈𝜇, 𝑅𝑖𝑔〉 ≤ 0 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑅𝑖𝑔 ≤ 0. 

By (1.2
1

2
), the necessity is clear. The sufficiency follows from Lemma (1.2.1). 

The above lemma is an analytic characterization of the classes of centered bodies 𝐼𝑖
𝑛, 𝑖 =

2,… , 𝑛 − 1. We give a geometric characterization by using dual mixed volumes. For 𝐾, 𝐿 ∈
𝑆𝑒
𝑛 and 𝑟 ∈ ℝ, the 𝑟th dual mixed volume of 𝐾 and 𝐿 , �̃�𝑟(𝐾, 𝐿), is defined as 

�̃�𝑟(𝐾, 𝐿) =
1

𝑛
 𝜌𝑢∈𝑆𝑛−1

 
𝐾
𝑛−𝑟(𝑢)𝜌𝐿

𝑟(𝑢)𝑑𝑢.                  (33) 

By the Hölder inequality, there are inequalities 

�̃�𝑟(𝐾, 𝐿)
𝑛 ≤ 𝑣𝑜𝑙𝑛(𝐾)

𝑛−𝑟  𝑣𝑜𝑙𝑛(𝐿)
𝑟  𝑟 >  0          (34) 

                                 �̃�𝑟(𝐾, 𝐿)
𝑛 ≥ 𝑣𝑜𝑙𝑛(𝐾)

𝑛−𝑟  𝑣𝑜𝑙𝑛(𝐿)
𝑟  𝑟 < 0       (35) 

with equality in each of the inequalities if and only if 𝐾 and 𝐿 are dilations of each other. 

Dual mixed volumes were introduced by Lutwak [33] ,[35]. Inequalities (34) and (35) are 

from [36], [34]. 

Lemma (1.2.4)[32]:. If 𝐾 ∈ 𝐼𝑖
𝑛, then 

     𝑣𝑜𝑙𝑖(𝑀 ∩ 𝐻) ≤ 𝑣𝑜𝑙𝑖(𝐿 ∩ 𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖) ⟹ �̃�𝑖(𝐾,𝑀) ≤
                                           �̃�𝑖(𝐾, 𝐿)                           (36) 

for all 𝑀, 𝐿 ∈ 𝑆𝑒
𝑛 . Conversely, let 𝐿 ∈ 𝐾𝑒

𝑛 be a fixed body with 𝐶2 boundary and positive 

curvature. If the implication (36) holds for all 𝑀 ∈ 𝐾𝑒
𝑛, then 𝐾 ∈ 𝐼𝑖

𝑛. 

Proof. Assume 𝐾 ∈ 𝐼𝑖
𝑛 . Then there exists 𝜇 ∈ 𝑀+(𝑋) such that 𝜌𝐾

𝑛−𝑖 = 𝑅𝑖
𝑡𝜇. 

From (32), it follows that 

〈𝜇, 𝑅𝑖𝜌𝑀
𝑖 〉 ≤ 〈𝜇, 𝑅𝑖𝜌𝐿

𝑖 〉. 
By (32 ), this can be written as 

〈𝜌𝐾
𝑛−𝑖 , 𝜌𝑀

𝑖 〉 ≤ 〈𝜌𝐾
𝑛−𝑖 , 𝜌𝐿

𝑖 〉. 
In view of (33), the last inequality is the right-hand side of the implication (36). Conversely, 

for any 𝑔 ∈ 𝐶𝑒
∞(𝑆𝑛−1) satisfying 𝑅𝑖𝑔 ≤ 0, define a centered convex body 𝐿𝜀 by 

𝜌𝐿𝜀
𝑖 =  𝜌𝐿

𝑖 + 𝜀𝑔  

for 𝜀 > 0 sufficiently small. Since 𝐿 has 𝐶2 boundary and positive curvature, this is possible. 

Let 𝑀 = 𝐿𝜀. Then the left-hand side of the implication (36) is equivalent to 𝑅𝑖𝑔 ≤ 0. The 
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right-hand side of (36) becomes 〈𝜌𝐾
𝑛−𝑖 , 𝑔〉 ≤ 0. From Lemma (1.2.3), this shows that 𝐾 ∈

𝐼𝑖
𝑛. 

Theorem (1.2.5)[32]:. If 𝐾 ∈ 𝐼𝑖
𝑛 , then 

𝑣𝑜𝑙𝑖  (𝐾 ∩ 𝐻) ≤ 𝑣𝑜𝑙𝑖(𝐿 ∩ 𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖) ⟹ 𝑣𝑜𝑙𝑛(𝐾) ≤ 𝑣𝑜𝑙𝑛(𝐿) 
for all 𝐿 ∈ 𝑆𝑒

𝑛. 

Proof. Let 𝑀 = 𝐾. From the necessity part of Lemma (1.2.4) and inequality (34), we obtain 

𝑣𝑜𝑙𝑛(𝐾) ≤ �̃�𝑖(𝐾, 𝐿) ≤ 𝑣𝑜𝑙𝑛(𝐾)
𝑛−𝑖
𝑛  𝑣𝑜𝑙𝑛(𝐿)

𝑖
𝑛. 

This gives the required inequality. 

The case of 𝑖 = 𝑛 − 1 was proved by Lutwak [36]. 

Theorem (1.2.6)[32]:. Let 𝐾 ∈ 𝐾𝑒
𝑛 have 𝐶2 boundary and positive curvature. If 𝐾 ∉ 𝐼𝑖

𝑛 , 
then there exists 𝐿 ∈ 𝐾𝑒

𝑛 so that 

𝑣𝑜𝑙𝑖(𝐿 ∩ 𝐻) < 𝑣𝑜𝑙𝑖  (𝐾 ∩ 𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖), 
but 

𝑣𝑜𝑙𝑛 (𝐿) > 𝑣𝑜𝑙𝑛(𝐾). 
Proof. We can apply either Lemma (1.2.2) or Lemma (1.2.4). By Lemma (1.2.2), there is 

𝑔 ∈ 𝐶𝑒
∞ (𝑆𝑛−1) so that 

〈𝜌𝐾
𝑛−𝑖 , 𝑔〉 >  0,   𝑅𝑖𝑔 < 0.                                                        (37) 

Define 𝐾𝜀 ∈ 𝐾𝑒
𝑛 by 

                                             𝜌𝐾𝜀
𝑖 = 𝜌𝐾

𝑖 + 𝜀𝑔           (38) 

for 𝜀 > 0 sufficiently small. Substituting (38) into (37) and using (31) and (33), we have 

𝑣𝑜𝑙𝑛(𝐾𝜀) > 𝑣𝑜𝑙𝑛(𝐾), 
                                             𝑣𝑜𝑙𝑖(𝐾𝜀 ∩ 𝐻) < 𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖).  
The case of 𝑖 = 𝑛 − 1 in Theorem (1.2.6) was proved in [33], [34] ,[35]. It was first proved 

in [36] without the requirement of convexity. From Theorems (1.2.5) and (1.2.6), we obtain 

the following 

Theorem (1.2.7)[32]:. In a given dimension, the problem GBP has a positive answer if and 

only if 𝐾𝑒
𝑛 ⊆ 𝐼𝑖

𝑛. 

The following lemma is elementary. Its proof is similar to that of Lemma 2.1 in [36]. 

Lemma (1.2.8)[32]:. Let 𝐾 ∈ 𝑆𝑒
𝑛 be a centered body of revolution about the 𝑥𝑛-axis. If 𝜙is 

the angle between 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖) and the 𝑥𝑛-axis, then the volume 𝐾 ∩ 𝐻 has the expression 

𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻) =
2(𝑖 − 1)𝜅𝑖−1
𝑖𝑐𝑜𝑠𝜙

 𝜌
𝜙 

𝜋
2
 
(𝜓)𝑖   1 −

𝑐𝑜𝑠2𝜓

𝑐𝑜𝑠2𝜙
𝑠𝑖𝑛 

𝑖−3
2  𝜓 𝑑𝜓. 

Let 𝑢 ∈ 𝑆𝑛−1, 𝑢 = 𝑢(𝑢1, 𝜓) = (𝑢1 sin𝜓 , cos𝜓), 𝑢1 ∈ 𝑆
𝑛−2, 0 ≤ 𝜓 ≤ 𝜋. For any 𝑓 ∈

𝐶(𝑆𝑛−1), define 

𝑓(̅𝜓) =
1

(𝑛 − 1)𝜅𝑛1
𝑓𝑆𝑛−2
 (𝑢(𝑢1, 𝜓))𝑑𝑢1.  𝑢 ∈ 𝑆

𝑛−1. 

The function 𝑓 ̅is obtained by averaging 𝑓 over subspheres parallel to the equator of 𝑆𝑛−1. It 
can be viewed as a function on 𝑆𝑛−1. In fact, we have 

𝑓(̅𝑢) = 𝑓𝛼∈𝑆𝑂(𝑛−1)
 (𝛼𝑢)𝑑𝛼, 𝑢 ∈ 𝑆𝑛−1, 

where 𝑑𝛼 is the normalized Haar measure on 𝑆𝑂(𝑛 − 1). 
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Lemma (1.2.9)[32]:. If 𝐾 ∈ 𝐼𝑖
𝑛 ,then 

𝑔
𝜙

𝜋
2 (𝜓)  1 −

𝑐𝑜𝑠2𝜓

𝑐𝑜𝑠2𝜙
 sin𝜓 

𝑖−3
2  𝑑𝜓 ≤ 0, 0 ≤ 𝜙 ≤

𝜋

2
          (39) 

                                                     ⇓ 

𝑔0

𝜋
2 (𝜓)𝜌𝐾

𝑛−𝑖̅̅ ̅̅ ̅̅ (𝜓)𝑠𝑖𝑛𝑛−2𝜓 𝑑𝜓 ≤ 0 

for all 𝑔 ∈ 𝐶∞([0,
𝜋

2
 ]). The converse is true if 𝐾 ∈ 𝑆𝑒

𝑛 is a centered body of revolution about 

the 𝑥𝑛-axis.  

Proof. If 𝐾 ∈ 𝐼𝑖
𝑛 , by Lemma (1.2.3) we have 

                              𝑅𝑖𝑔 ≤ 0 ⟹ 〈𝜌𝐾
𝑛−𝑖 , 𝑔〉 ≤ 0                         (40)   

for any 𝑔 ∈ 𝐶𝑒
∞(𝑆𝑛−1). If 𝑔 is 𝑆𝑂(𝑛 − 1) invariant, this gives the implication (39) by using 

(31) and Lemma (1.2.8). Conversely, assume 𝐾 is a convex body of revolution about the 𝑥𝑛-

axis. Then 𝜌𝐾is 𝑆𝑂(𝑛 − 1) invariant. The  𝐾 ∈ 𝐼𝑖
𝑛 if there is the implication (40) for every 

g which is 𝑆𝑂(𝑛 − 1) invariant. Since (39) is equivalent to (40) in this case, we conclude 

the proof. 

The above lemma is an analytic characterization of  𝐼𝑖
𝑛 . We do not know if the converse in 

the lemma is true without the assumption of revolution. However, when 𝑖 = 𝑛 − 1, the 

converse is true for any centered bodies (see [33]). In this case, Lemma (1.2.9) provides a 

characterization for the positivity of the inverse spherical Radon transform. 

We use some techniques used in [33] to prove that there are no polytopes in 𝐼𝑖
𝑛, 3 ≤ 𝑖 ≤ 𝑛 −

1. 

Lemma (1.2.10)[32]:. If 𝐾 ∈ 𝑆𝑒
𝑛 is a polytope and 𝑘 > 0, then there is 𝛼 ∈ 𝑆𝑂(𝑛) so that 

𝜌𝛼𝐾
𝑘̅̅ ̅̅ ̅(𝜓) 𝑠𝑖𝑛𝑘𝜓 is strictly decreasing on [𝜓1,

𝜋

2
] for some 0 < 𝜓1 <

𝜋

2
 . 

Proof. Let 𝐾 ∈ 𝑆𝑒
𝑛 be a polytope. We can rotate 𝐾 to a general position 𝛼𝐾 for some 𝛼 ∈

𝑆𝑂(𝑛) such that no (𝑛 − 2)-face of 𝛼𝐾 is in the subspace 

𝐻1 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ
𝑛: 𝑥𝑛 = 0}; 

and no (𝑛 − 1)-face of 𝛼𝐾 is parallel to the 𝑥𝑛-axis. For simplicity, assume that 𝐾 is already 

in such a position. 

Let 𝑝𝑢1  be the plane spanned by the 𝑥𝑛-axis and 𝑢1 ∈ 𝑆
𝑛−2 ⊂ 𝐻1. Then 𝜕𝐾 ∩ 𝑝𝑢1  is a 

centered polygon, denoted by 𝐶(𝑢1). The intersection 𝐶(𝑢1) ∩ 𝐻1 has two points, 𝑝1, 𝑝2, 
which are possibly vertices of 𝐶(𝑢1). The point 𝑝𝑖 is a vertex of the polygon 𝐶(𝑢1) only if 

𝑝𝑖 lies on the intersection of two (𝑛 − 1)-faces of 𝐾, i.e., on an (𝑛 − 2)-face of 𝐾. But if no 

(𝑛 − 2)-face of 𝐾 is contained in 𝐻1, then the intersection of 𝐻1 with an (𝑛 − 2)-face of 𝐾 

is at most of dimension 𝑛 − 3. Thus, the set 

𝜔 = {𝑢1 ∈ 𝑆
𝑛−1: 𝐶(𝑢1) ∩ 𝐻1 𝑎𝑟𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 𝑜𝑓 𝐶(𝑢1)} 

has measure zero in 𝑆𝑛−1. We consider those 𝐻1 intersecting only with two parallel sides of 

𝐶(𝑢1). Denote by 𝑙𝑢1 the pair of parallel sides. Let 𝑢 ∈ 𝑆𝑛−1, 𝑢 = 𝑢(𝑢1, 𝜓  ) =

(𝑢1 sin𝜓 , cos𝜓  ), 𝑢1 ∈ 𝑆
𝑛−2, 0 ≤ 𝜓 ≤ 𝜋. Let 𝜌𝐾(𝑢) = 𝜌(𝜓, 𝑢1), and  

let 𝜃 be the angle between 𝑙𝑢1  and 𝑥𝑛 = 0, and 2𝑏 be the length of 

𝐾 ∩ 𝑝𝑢1 ∩ {𝑥 ∈ ℝ
𝑛: 𝑥𝑛 = 0}. 
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Then for 𝜓  near to 
𝜋

2
, 

𝜌(𝜓, 𝑢1) =
𝑏𝑠𝑖𝑛𝜃

−𝑐𝑜𝑠(𝜓 + 𝜃)
, 𝜌(𝜓,−𝑢1) =

𝑏𝑠𝑖𝑛𝜃

𝑐𝑜𝑠(𝜓 − 𝜃)
. 

Since no (𝑛 − 1)-face of 𝐾 is parallel to the 𝑥𝑛-axis, we conclude that 𝑙𝑢1 is not parallel to 

the 𝑥𝑛-axis. Hence, we have 0 < 𝜃 <
𝜋

2
 . 

Let 

𝑓(𝜓) = [− cos(𝜓 + 𝜃)]−𝑘 + [ 𝑐𝑜𝑠 (𝜓 − 𝜃)]−𝑘𝑠𝑖𝑛𝑘𝜓 . 
By an elementary computation, we have 

𝑓 (
𝜋

2
) = 0, 𝑓′′(

𝜋

2
) = 2𝑘(𝑘 + 1)( 𝑠𝑖𝑛𝜃)−𝑘−2 𝑐𝑜𝑠2𝜃 > 0. 

From the following identity, 

𝜌𝐾
𝑘̅̅̅̅ (𝜓 )𝑠𝑖𝑛𝑘𝜓 =

1

2(𝑛 − 1)𝜅𝑛−1
𝑏𝑘𝑆𝑛−2
  𝑠𝑖𝑛𝑘𝜃𝑓(𝜓)𝑑𝑢1. 

It is easy to see that 𝜌𝐾
𝑘̅̅̅̅ (𝜓 ) 𝑠𝑖𝑛𝑘𝜓  is strictly decreasing on [𝜓1,

𝜋

2
 ] for some 0 < 𝜓1 <

𝜋

2
  . 

The following lemma was proved in [33]. 

Lemma (1.2.11)[32]:. Suppose that 𝑔(𝑡) is continuous on [𝑎, 𝑏], 𝑔1(𝑡, 𝑥) > 0 is continuous 

and increasing for 𝑡 ∈ [𝑎, 𝑥), and 𝑔2(𝑡, 𝑥) > 0 is continuous and decreasing for 𝑡 ∈ [𝑎, 𝑥). 
For 𝑥 ∈ [𝑎, 𝑏], let 

𝐼𝑘(𝑥) = 𝑔𝑎
𝑥 (𝑡)𝑔𝑘(𝑡, 𝑥)𝑑𝑡      (𝑘 = 1,2), 
𝐼(𝑥) = 𝑔𝑎

𝑥 (𝑡)𝑑𝑡. 
Then 

𝐼1(𝑥) ≥ 0 ⟹ 𝐼(𝑥) ≥ 0 ⟹ 𝐼2(𝑥) ≥ 0. 
Theorem (1.2.12)[32]:. There are no polytopes in 𝐼𝑖

𝑛, 2 < 𝑖 <  𝑛. 

Proof. Let 𝐾 ∈ 𝑆𝑒
𝑛 be a polytope in general position as in Lemma (1.2.10). We want to show 

that there exists 𝑔(𝜓) on [0,
𝜋

2
] so that for 3 ≤ 𝑖 ≤ 𝑛 − 1 

𝑔
𝜙

𝜋
2 (𝜓)   1 −

𝑐𝑜𝑠2𝜓

𝑐𝑜𝑠2𝜙
sin 

𝑖−3
2 𝜓𝑑𝜓 ≤ 0,      0 ≤ 𝜙 ≤

𝜋

2
,                (41) 

but 

                            𝑔0

𝜋

2 (𝜓)𝜌𝐾
𝑛−𝑖̅̅ ̅̅ ̅̅ (𝜓)𝑠𝑖𝑛𝑛−2𝜓 𝑑𝜓 > 0                                    (42) 

Then by Lemma (1.2.9), 𝐾 ∉ 𝐼𝑖
𝑛 for 3 ≤ 𝑖 ≤ 𝑛 − 1. 

From Lemma (1.2.10), 𝜌𝐾
𝑛−𝑖̅̅ ̅̅ ̅̅ (𝜓)𝑠𝑖𝑛𝑛−𝑖𝜓 is strictly decreasing on [𝜓1,

𝜋

2
]. It is quite 

straightforward to show that there exists 𝑔 ∈ 𝐶∞([0,
𝜋

2
]) so that 

𝑔
𝜙

𝜋
2 (𝜓)𝑠𝑖𝑛𝑖−2𝜓 𝑑𝜓 ≤ 0,    0 ≤ 𝜙 ≤

𝜋

2
                                 (43) 

and (42) holds. In fact, a function g satisfying the following conditions does the job, 

= 0,     0 ≤ 𝜓 ≤ 𝜓1, 
𝑔(𝜓) > 0, 𝜓1 < 𝜓 < 𝜓2 

< 0, 𝜓2 < 𝜓 <
𝜋

2
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𝑔0

𝜋
2 (𝜓) 𝑠𝑖𝑛𝑖−2𝜓 𝑑𝜓 = 0. 

Hence, it suffices to show that (43) implies (40). 

Let 𝑡 = 𝑐𝑜𝑠𝜓 , 𝑥 = 𝑐𝑜𝑠𝜙, then (40) and (43) become 

   𝑔0
𝑥 (𝜓(𝑡))    1 −

𝑡2

𝑥2
 
𝑖−3

2 𝑑𝑡 ≤ 0                                                    (43) 

and 

                                   𝑔0
𝑥 (𝜓(𝑡))(1 − 𝑡2)

𝑖−3

2 𝑑𝑡 ≤ 0,            (44) 
respectively. Since the function 

(1 − 𝑡2)
3−𝑖
2   1 −

𝑡2

𝑥2

𝑖−3
2

  

is decreasing with respect to 𝑡 for 𝑖 ≥ 3, 0 ≤ 𝑡 < 𝑥 ≤ 1, the inequality (44) implies (43) by 

Lemma (1.2.11), that is, (43) implies (41). 

From Theorem (1.2.7) and Theorem (1.2.12), we have the following: 

Theorem (1.2.13)[32]:. The generalized Busemann-Petty problem has a negative answer for 

2 < 𝑖 < 𝑛. 

The case of 2-dimensional remains open for 𝑛 > 3. In ℝ3 , the answer is positive (see [34]). 

Proposition (1.2.14)[32]:. If 𝐾 is a centered convex body of revolution in ℝ𝑛, then 𝐾 ∈
𝐼2
𝑛, 𝐼3

𝑛, and hence the generalized Busemann-Petty problem has a positive answer for 𝑖 = 2,3. 

Proof. Without loss of generality, assume that the axis of revolution is the 𝑥𝑛-axis. Let 

𝑡 = 𝑐𝑜𝑠𝜓 , 𝑥 = 𝑐𝑜𝑠𝜙, 𝑔1(𝑡) = 𝜌𝐾
𝑛−𝑖(𝜓(𝑡)) 𝑠𝑖𝑛𝑛−𝑖𝜓(𝑡). 

Then (40) becomes 

 𝑔0
𝑥 (𝑡)𝑔2(𝑡, 𝑥)𝑑𝑡 ≤ 0 ⟹ 𝑔0

1 (𝑡)𝑔1(𝑡)𝑑𝑡 ≤ 0            (45) 
where 

𝑔2(𝑡, 𝑥) =
1 −

𝑡2

𝑥2

1 − 𝑡2

     
𝑖−3
2

    , 0 ≥ 𝑡 < 𝑥 ≤ 1. 

Since 𝑔1(𝑡) is decreasing and 𝑔2(𝑡, 𝑥) is increasing with respect to 𝑡 for 𝑖 = 2,3, the 

implication (36) holds by Lemma (1.2.11). Thus, 𝐾 ∈ 𝐼2
𝑛 , 𝐼3

𝑛 by Lemma (1.2.9). 

In the cases of ℝ3 and ℝ4, Proposition (1.2.14) was proved in [33] ,[34]. We remark that the 

class 𝐼𝑖
𝑛(𝑖 > 3) does not contain all the centered convex bodies of revolution. In fact, it does 

not contain any cylinder. This was shown in [35], [36] when 3 < 𝑖 = 𝑛 − 1. The general 

case 3 < 𝑖 ≤ 𝑛 − 1 can be proved similarly. 

If 𝐾 is a cross-polytope (octahedron), Meyer [37] showed that the Busemann-Petty problem 

has a positive answer. He also asked if it is true for any polar projection bodies. We give a 

negative answer to Meyer’s question. It will be seen that the counterexample is even very 

close to the cross-polytope. 

For 𝑓 ∈ 𝐶(𝑆𝑛−1), the cosine transform 𝐶𝑓 of 𝑓 is defined by 

(𝐶𝑓)(𝑢) =
1

2
  |〈𝑢, 𝑣〉|𝑆𝑛−1

 𝑓(𝑣)𝑑𝑣, 𝑢 ∈ 𝑆𝑛−1. 



22 
 

The cosine transform is a bijection of 𝐶𝑒
∞(𝑆𝑛−1) to itself. Denote by ℎ𝐾  the support function 

of a convex body 𝐾. Recall that 𝐾 is a projection body (centered zonoid) if and only if there 

is a (positive) measure 𝜇 on 𝑆𝑛−1 so that 

ℎ𝐾(𝑢) =
1

2
|〈𝑢, 𝑣〉|𝑆𝑛−1
 𝑑𝜇(𝑣), 𝑢 ∈ 𝑆𝑛−1. 

Denote by 𝐾∗ the polar of 𝐾. We need the following lemma which was proved in [38] by 

using convolutions on 𝑆𝑂(𝑛). 
Lemma (1.2.15)[32]:. Let 𝑍 be a projection body in ℝ𝑛. Then there exist 𝐶∞ projection 

bodies of positive curvature, 𝑍𝑚, 𝑚 = 1,2,…, so that 𝑍𝑚 → 𝑍 uniformly and the inverse 

cosine transforms 𝐶−1ℎ𝑍𝑚 > 0,𝑚 = 1,2,…. 

Theorem (1.2.16)[32]:. Let 3 ≤ 𝑖 ≤ 𝑛 − 1. There exist polar projection bodies 𝐾 and 𝐿 in 

ℝ𝑛(𝑛 ≥ 4) so that 

𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻) <  𝑣𝑜𝑙𝑖(𝐿 ∩ 𝐻),𝐻 ∈ 𝐺𝑟(𝑛, 𝑖), 
but 

𝑣𝑜𝑙𝑛(𝐾) > 𝑣𝑜𝑙𝑛(𝐿). 
Proof. Let 𝑍 be a zonotope, e.g., the unit cube. Then the polar 𝑍∗ is the cross-polytope. Since 

every polytope in ℝ𝑛(𝑛 ≥ 4) is not in 𝐼𝑖
𝑛, 3 ≤ 𝑖 ≤ 𝑛 − 1, 𝑍∗ is not in 𝐼𝑖

𝑛. By Lemma (1.2.15), 

there are polar projection bodies 𝑍𝑚
∗ → 𝑍∗ uniformly. In view of the openness of the 

complement of 𝐼𝑖
𝑛 with respect to the Hausdorff metric, 𝑍𝑚

∗  is not in 𝐼𝑖
𝑛 when 𝑚 is sufficiently 

large. Therefore, there exists a 𝐶∞ projection body �̃� of positive curvature such that �̃�∗ is 

not in 𝐼𝑖
𝑛 and the inverse cosine transform 𝐶−1ℎ�̃� > 0. 

Let 𝐿 = �̃�∗. Since 𝐿 is not in 𝐼𝑖
𝑛, by Lemma (1.2.2) there exists 𝑔 ∈ 𝐶𝑒

∞(𝑆𝑛−1) so that 

〈𝜌𝐿
𝑛−𝑖 , 𝑔〉 > 0,        𝑅𝑖𝑔 < 0.                                  (46) 

Consider the deformation of 𝐿, 𝐿𝜀 , defined by 

𝜌𝐿
−1 = 𝜌𝐿

−1 − 𝜀
𝑔

𝑖𝜌𝐿
𝑖+1
,       𝜀 >  0          (47) 

Since �̃� has positive curvature and 𝐶−1𝜌𝐿
−1 >  0, 𝐿𝜀 is a polar projection body  

when 𝜀 is small. From (48) we have 

                                    
1

𝜀
(𝜌𝐿𝜀
𝑖 − 𝜌𝐿

𝑖 ) → 𝑔                                           (48) 

uniformly as 𝜀 → 0. 

On the other hand, from (46) we deduce that there exists 𝛿 > 0 so that 

〈𝜌𝐿
𝑛−𝑖 , 𝑔1〉 > 0,         𝑅𝑖𝑔1 < 0                                  (49) 

whenever |𝑔1 − 𝑔| < 𝛿. Therefore, (43) and (44) give that 

𝜌𝐿
𝑛−𝑖 , 𝜌𝐿𝜀

𝑖 − 𝜌𝐿
𝑖 > 0,     𝑅𝑖(𝜌𝐿𝜀

𝑖 − 𝜌𝐿
𝑖 ) < 0 

when 𝜀 is small. By applying (31), (33) and (34), we obtain 

𝑣𝑜𝑙𝑛(𝐿𝜀) > 𝑣𝑜𝑙𝑛(𝐿), 
𝑣𝑜𝑙𝑖(𝐿𝜀 ∩ 𝐻) < 𝑣𝑜𝑙𝑖(𝐿 ∩ 𝐻), 𝐻 ∈ 𝐺𝑟(𝑛, 𝑖). 

We have seen that the Busemann-Petty problem has a negative answer in the class of polar 

projection bodies in ℝ𝑛(𝑛 > 3). Concerning the shadows of convex bodies, Petty [35] 

constructed the following example: there exist a double cone 𝐾 and a ball 𝐿 in ℝ3 so that 
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𝑣𝑜𝑙2(𝐾| 𝑢
⊥) < 𝑣𝑜𝑙2(𝐿|𝑢

⊥), 𝑢 ∈ 𝑆2, 
but 

𝑣𝑜𝑙3(𝐾) > 𝑣𝑜𝑙3(𝐿), 
where 𝐾|𝑢⊥ is the projection of 𝐾 onto the space 𝑢⊥ orthogonal to 𝑢. 

Double cones and balls are polar projection bodies. One can use an argument similar to the 

proof of Theorem (1.2.16) to show that there are polar projection bodies 𝐾 and 𝐿 so that 

𝑣𝑜𝑙𝑛−1(𝐾|𝑢
⊥) < 𝑣𝑜𝑙𝑛−1(𝐿|𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1, 
but 

𝑣𝑜𝑙𝑛(𝐾) > 𝑣𝑜𝑙𝑛 (𝐿).  
It is natural to ask how far the volumes go when we compare or shadows of polar projection 

bodies. The following is a quantitative answer. 

Theorem (1.2.17)[32]:. If 𝐾 is a polar projection body and 𝐿 ∈ 𝐾𝑒
𝑛, then 

𝑣𝑜𝑙𝑛−1 (𝐾 ∩ 𝑢
⊥) ≤ 𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1 ⟹ 𝑣𝑜𝑙𝑛(𝐾) < 2 𝑣𝑜𝑙𝑛(𝐿), 

𝑣𝑜𝑙𝑛−1(𝐾|𝑢
⊥) ≥ 𝑣𝑜𝑙𝑛−1(𝐿|𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1 ⟹ 𝑣𝑜𝑙𝑛(𝐾) >
3

4
𝑣𝑜𝑙𝑛(𝐿). 

The case of projection is an easy consequence of Ball’s results on the volume ratio. We need 

several lemmas to treat the case of intersection. The first lemma is from [36]. Let 𝛽(∙,∙) be 

the beta function. 

Lemma (1.2.18)[32]:. If 𝐾 ∈ 𝐾𝑒
𝑛,then for 𝑝 ≥ 1, 𝑢 ∈ 𝑆𝑛−1, 

𝑐1
𝑣𝑜𝑙𝑛(𝐾)

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥)
≤

1

𝑣𝑜𝑙𝑛(𝐾)
 |〈𝑢, 𝑥〉|𝑝𝐾
 𝑑𝑥

   
1
𝑝  ≤ 𝑐2

𝑣𝑜𝑙𝑛(𝐾)

𝑣𝑜𝑙𝑛−1 (𝐾 ∩ 𝑢
⊥)
, 

where 𝑐1 =
1

2
(𝑝 + 1)

−
1

𝑝, 𝑐2 =
1

2
𝑛
𝑝+1

𝑝 𝛽(𝑝 + 1, 𝑛)
1

𝑝. 

As noted above, a polar projection body is the unit ball of a finite dimensional subspace of 

𝐿1. For generality, we consider finite dimensional subspaces of 𝐿𝑝. 

Lemma (1.2.19)[32]:. If 𝑀 is the unit ball of an 𝑛-dimensional subspace of 𝐿𝑝, 𝑝 ≥ 1, then 

                            min
𝑢∈𝑆𝑛−1

|〈𝑢,𝑥〉|𝑥∈𝐾
 𝑝𝑑𝑥

|〈𝑢,𝑥〉|𝑥∈𝐿
 𝑝𝑑𝑥

≤
𝑉−𝑝(𝐾,𝑀)

𝑉−𝑝(𝐿,𝑀)
.                                      (50) 

Proof. Since 𝑀 is the unit ball of an 𝑛-dimensional subspace of 𝐿𝑝, there exists a nonnegative 

measure 𝜇 on 𝑆𝑛−1 so that the radial function 𝜌𝑀  is given by 

𝜌𝑀
−𝑝
(𝑢) = |〈𝑢, 𝑣〉|𝑆𝑛−1

 𝑝 𝑑𝜇(𝑣). 
Integrating |〈𝑣, 𝑥〉|𝑝 over 𝐾 and 𝐿 by polar coordinates and using (33), we have 

�̃�−𝑝(𝐾,𝑀)

�̃�−𝑝(𝐿,𝑀)
=

𝜌𝑢∈𝑆𝑛−1
 
𝐾
𝑛+𝑝
(𝑢)𝜌𝑀

−𝑝
(𝑢)𝑑𝑢

𝜌𝑢∈𝑆𝑛−1
 
𝐿
𝑛+𝑝
(𝑢)𝜌𝑀

−𝑝
(𝑢)𝑑𝑢

 

= 
|〈𝑢, 𝑥〉|𝑢∈𝑆𝑛−1    𝑥∈𝐾
 𝑝𝑑𝑥𝑑𝜇(𝑣)

|〈𝑢, 𝑥〉|𝑢∈𝑆𝑛−1    𝑥∈𝐿
 𝑝𝑑𝑥𝑑𝜇(𝑣)

 

≥ 𝑚𝑖𝑛
𝑢∈𝑆𝑛−1

|〈𝑢, 𝑥〉|𝑥∈𝐾
 𝑝𝑑𝑥

|〈𝑢, 𝑥〉|𝑥∈𝐿
 𝑝𝑑𝑥

. 

Lemma (1.2.20)[32]:. If 𝑀 is the unit ball of an 𝑛-dimensional subspace of 𝐿𝑝 containing 

𝐾 ∈ 𝐾𝑒
𝑛, then 
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min
𝑢∈𝑆𝑛−1

𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢
⊥)

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥)
≤ 𝑐3  

𝑣𝑜𝑙𝑛(𝑀)

𝑣𝑜𝑙𝑛(𝐾)

    
1
𝑛 𝑣𝑜𝑙𝑛(𝐿)

𝑣𝑜𝑙𝑛(𝐾)

𝑛−1
𝑛
, 

where 𝑐3 = ((𝑝 + 1)𝑛
𝑝+1𝛽(𝑝 + 1, 𝑛))

1

𝑝. 
Proof. From Lemmas (1.2.18) and (1.2.19), we have 

𝑚𝑖𝑛
𝑢∈𝑆𝑛−1

𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢
⊥)

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥)
≤
𝑐2𝑣𝑜𝑙𝑛(𝑀)

𝑐1𝑣𝑜𝑙𝑛(𝐾)
𝑚𝑖𝑛
𝑢∈𝑆𝑛−1

1
𝑉𝑜𝑙𝑛(𝐾)

|〈𝑢, 𝑥〉|𝐾
 𝑝𝑑𝑥

1
𝑝

1
𝑉𝑜𝑙𝑛(𝐿)

|〈𝑢, 𝑥〉|𝐿
 𝑝𝑑𝑥

1
𝑝

 

≤
𝑐2
𝑐1

𝑣𝑜𝑙𝑛(𝐿)

𝑣𝑜𝑙𝑛(𝐾)

𝑝+1
𝑝
  
�̃�−𝑝 (𝐾,𝑀)

�̃�−𝑝 (𝐿,𝑀)

1
𝑝

 

≤
𝑐2
𝑐1

𝑣𝑜𝑙𝑛(𝐿)

𝑣𝑜𝑙𝑛(𝐾)

𝑝+1
𝑝 𝑣𝑜𝑙𝑛(𝐾)

𝑣𝑜𝑙𝑛(𝐿)
𝑛+𝑝
𝑛  𝑣𝑜𝑙𝑛(𝑀)

−
𝑝
𝑛

1
𝑝

 

= 𝑐3  
𝑣𝑜𝑙𝑛(𝑀)

𝑣𝑜𝑙𝑛(𝐾)

1
𝑛 𝑣𝑜𝑙𝑛(𝐿)

𝑣𝑜𝑙𝑛(𝐾)

𝑛−1
𝑛
. 

Let us turn to the proof of Theorem (1.2.17). From 𝑝 = 1 and 𝐾 = 𝑀 in Lemma (1.2.20), 

we obtain 

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥) ≤ 𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1  ⇒ 𝑣𝑜𝑙𝑛(𝐾) ≤
2𝑛

𝑛 + 1

𝑛
𝑛−1

𝑣𝑜𝑙𝑛(𝐿) 

⟹ 𝑣𝑜𝑙𝑛(𝐾) < 2𝑣𝑜𝑙𝑛(𝐿). 
For the case of projection, Ball [33] showed the following fact: 

𝑣𝑜𝑙𝑛−1(𝐾|𝑢
⊥) ≥ 𝑣𝑜𝑙𝑛−1 (𝐿|𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1⟹ 

𝑣𝑜𝑙𝑛(𝐾) ≥
𝑣𝑜𝑙𝑛(𝐸)

𝑣𝑜𝑙𝑛(𝐾)

1
𝑛−1

𝑣𝑜𝑙𝑛(𝐿), 

where 𝐸 is the ellipsoid of maximal volume contained in 𝐾. Ball also showed the volume 

ratio inequality (see [34], Theorem (1.2.6)) 
𝑣𝑜𝑙𝑛(𝐸)

𝑣𝑜𝑙𝑛(𝐾)
≥
𝑛! 𝜅𝑛

2𝑛𝑛𝑛 2⁄
 .  

It is an exercise to check that 

𝑛! 𝜅𝑛

2𝑛𝑛𝑛 2⁄

1
𝑛−1

>
𝜋

2𝑒

1
2
>
3

4
. 

Theorem (1.2.21)[32]:. If 𝐾 is a polar projection body in ℝ𝑛, then there exists a constant 

𝑐 < 0.92 so that 

𝑣𝑜𝑙𝑛(𝐾)
𝑛−1
𝑛 ≤ 𝑐 max

𝑢∈𝑆𝑛−1
𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢

⊥) . 

Proof. From Lemma (1.2.18), we have 
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𝑣𝑜𝑙𝑛(𝐾)

4𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥)
≤

1

𝑣𝑜𝑙𝑛(𝐾)
|〈𝑢, 𝑥〉|𝐾
  𝑑𝑥, 𝑢 ∈ 𝑆𝑛−1. 

By Lemma (1.1.19), for the unit ball 𝐵 we have 

min
𝑢∈𝑆𝑛−1

1

𝑣𝑜𝑙𝑛(𝐾)
|〈𝑢, 𝑥〉|𝐾
  𝑑𝑥 ≤ �̃�1−(𝐵, 𝐾)

−1 |〈𝑢, 𝑥〉|𝐵
  𝑑𝑥 

≤
1

𝑛 + 1
𝜅𝑛
−
𝑛+1
𝑛 𝑣𝑜𝑙𝑛(𝐾)

1
𝑛 |〈𝑢, 𝜈〉|𝑆𝑛−1

  𝑑𝑣 

=
2𝜅𝑛−1

(𝑛 + 1)𝜅𝑛

𝑛+1
𝑛

𝑣𝑜𝑙𝑛(𝐾)
1
𝑛. 

It follows that 

𝑣𝑜𝑙𝑛(𝐾)
𝑛−1
𝑛 ≤

4

𝜋
  
𝜅𝑛−1

𝜅𝑛

𝑛+1
𝑛

 max
𝑢∈𝑆𝑛−1

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥) . 

It can be shown that 
𝜅𝑛+1

𝜅𝑛

𝑛+1
𝑛

 is decreasing, for example, by using an argument similar to that in 

[36]. It is known that 𝑐 =
𝜅3

2
3

𝜅2
=
16

9𝜋

   
1

3 = 0.827… is the best constant for all convex bodies in 

ℝ𝑛 (see [37], Theorem 9.4.11). Hence, the case of 𝑛 = 4 gives that 𝑐 < 0.92. 

The above theorem was proved by Ball [38] with a bigger constant. He used the 

complementary Blaschke-Santal´o inequality of Bourgain and Milman [39] and the local 

theory of Banach spaces. The main interest is that 𝑐 < 1. This implies that 

𝑣𝑜𝑙𝑛(𝐾) < max
𝐻∈𝐺𝑟(𝑛,𝑖)

𝑣𝑜𝑙𝑖(𝐾 ∩ 𝐻) , 2 ≤ 𝑖 ≤ 𝑛 − 1,  

for polar projection bodies. One suspects that the last inequality is true for all centered 

convex bodies. 

We consider of projection bodies (centered zonoids). Let 𝐾 be a convex body, and let 𝐸 be 

the ellipsoid of minimal volume containing 𝐾. The following lemma is a variation of a result 

of Ball [33]. 

Lemma (1.2.22)[32]:. If 𝐾 is a projection body, then the outer volume ratio of 𝐾 satisfies 

the inequality 

                                           
𝑣𝑜𝑙𝑛(𝐸)

𝑣𝑜𝑙𝑛(𝐾)

1

𝑛
≤
√𝑛𝜅𝑛

1
𝑛

2
                                          (51) 

with equality if 𝐾 is a cube. 

Proof. Since the volume ratio is affine invariant, it suffices to consider convex bodies 𝐾 

defined by 

ℎ𝐾(𝑢) = 𝑐𝑗=1  
𝑚 

𝑗|〈𝑢𝑗, 𝑢〉|,      𝑢, 𝑢𝑗 ∈ 𝑆
𝑛−1,                             (52) 

𝑐𝑗𝑗=1
𝑚 𝑢𝑗⨂ 𝑢𝑗 = 𝐼𝑛, 𝑐𝑗 > 0, 

where 𝑢𝑗⊗𝑢𝑗  is the rank-1 orthogonal projection onto the span of 𝑢𝑗 and 𝐼𝑛is the identity 

operator on ℝ𝑛 (see, for example, [34]). The last equality implies that 

𝑐𝑗=1  
𝑚 

𝑗 =  𝑛, 𝑐𝑗=1  
𝑚 

𝑗|〈𝑢𝑗 , 𝑢〉|
2
=  1. 
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By the Holder inequality, we obtain 

                             ℎ𝐾(𝑢) ≤ 𝑛
1

2 𝑐𝑗=1  
𝑚 

𝑗|〈𝑢𝑗 , 𝑢〉|
2    

1

2
= 𝑛

1

2.                               (53) 

By a result of Ball [35], the volume of the projection body 𝑍 with support function 

ℎ𝑍(𝑢)  = 𝑐𝑗=1  
𝑚 

𝑗|〈𝑢𝑗 , 𝑢〉| 

is at least 2𝑛, that is, 𝑣𝑜𝑙𝑛(𝐾) ≥ 2
𝑛. From (45), 𝐾 is contained in a ball of radius 𝑛

1

2, and 

hence 𝑣𝑜𝑙𝑛(𝐸) ≤ 𝑛
𝑛

2𝜅𝑛. Inequality (46) follows.  

Theorem (1.2.23)[32]:. If 𝐾 is a projection body, then 

𝑣𝑜𝑙𝑛−1 (𝐾 ∩ 𝑢
⊥) ≤ 𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1⟹ 𝑣𝑜𝑙𝑛(𝐾) < 2.07 𝑣𝑜𝑙𝑛(𝐿), 
for all 𝐿 ∈ 𝐾𝑒

𝑛 . 
Proof. Let 𝐼 be an intersection body containing 𝐾. The Radon inverse 𝑅𝑛−1

−1 𝜌𝐼 is a positive 

measure on 𝑆𝑛−1, denoted by 𝜇. By the self-adjointness of 𝑅𝑛−1 and formula (31), we have 

max
𝑢∈𝑆𝑛−1

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥)

𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢
⊥)
≥

𝑣𝑜𝑙𝑛−1𝑆𝑛−1
 (𝐾 ∩ 𝑢⊥)𝑑𝜇(𝑢)

𝑣𝑜𝑙𝑛−1𝑆𝑛−1
 (𝐿 ∩ 𝑢⊥)𝑑𝜇(𝑢)

 

=
〈𝑅𝑛−1𝜌𝐾

𝑛−1, 𝑅𝑛−1
−1 𝜌𝐼〉

〈𝑅𝑛−1𝜌𝐿
𝑛−1, 𝑅𝑛−1

−1 𝜌𝐼〉
=
〈𝜌𝐾
𝑛−1, 𝜌𝐼〉

〈𝜌𝐿
𝑛−1, 𝜌𝐼〉

 

≥
𝑣𝑜𝑙𝑛(𝐾)

𝑣𝑜𝑙𝑛(𝐿)
𝑛−1
𝑛 𝑣𝑜𝑙𝑛(𝐼)

1
𝑛

. 

Therefore, we obtain 

𝑣𝑜𝑙𝑛−1(𝐾 ∩ 𝑢
⊥) ≤ 𝑣𝑜𝑙𝑛−1(𝐿 ∩ 𝑢

⊥), 𝑢 ∈ 𝑆𝑛−1 ⟹ 

𝑣𝑜𝑙𝑛(𝐾) ≤
𝑣𝑜𝑙𝑛(𝐼)

𝑣𝑜𝑙𝑛(𝐾)

1
𝑛−1

𝑣𝑜𝑙𝑛(𝐿), 

which holds for all 𝐾, 𝐿 ∈ 𝐾𝑒
𝑛. In particular, If 𝐾 is a projection body, then Lemma (1.2.22) 

shows that 𝐼 can be chosen so that 

𝑣𝑜𝑙𝑛(𝐼)

𝑣𝑜𝑙𝑛(𝐾)

1
𝑛−1

≤
√𝑛𝜅𝑛

1
𝑛 

2

𝑛
𝑛−1

 

<
𝜋𝑒

2

   
1
2
 < 2.07. 

From the above proof, we have seen that if a class of convex bodies has uniformly bounded 

outer volume ratio then the maximal slice problem has a positive answer in that class. This 

was clear in [33]. More generally, in view of Lemma (1.2.20), this is still true if the minimal 

ellipsoid is replaced by a minimal unit ball of subspaces of 𝐿𝑝, 1 ≤ 𝑝 ≤ 1000. However, 𝑝 

cannot be arbitrarily large. 
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Chapter 2 

Extensions of the Brunn-Minkowski and Boundary Regularity  

We sharpen the inequality that the marginal of a log concave function is log concave, and 

we show various moment inequalities for such functions. Finally, we use these results to 

derive inequalities for the fundamental solution of the diffusion equation with a convex 

potential. 

Section (2.1): Pr�̀�kopa- -Leindler Theorems Including Inequalities for Log Concave 

Functions with Application to the Diffusion Equation 

We give various extensions of the Brunn-Minkowski and PrCkopa-Leindler theorems. The 

Brunn-Minkowski theorem for the convex addition 𝐷 =  𝜆𝐴 + (1 −  𝜆)𝐵 =
 {𝑥 ∈ 𝑅𝑛|𝑥 = 𝜆𝑦 + (1 −  𝜆)𝑧, 𝑦 ∈  𝐴, 𝒵 ∈  𝐵)} of two nonempty, measurable sets 

𝐴, 𝐵 𝐶 𝑅𝑛 reads [ 1,2 ] 

                               𝜇𝑛(𝐷) 
1/𝑛 ≥ 𝜆𝜇𝑛(𝐴)

1

𝑛  +  (1 −  𝜆)𝜇𝑛(𝐵)
1

𝑛,                                    (1)                    

where  𝜇𝑛 means Lebesgue measure in 𝑅𝑛. The requirement that 𝐴 and 𝐵 are nonempty is 

crucial. 

The Pr�̀�kopa -Leindler theorem [65 ] reads 

                                                         ‖ℛ‖1 ≥ ‖𝑓‖1
𝜆‖𝑔‖1

1−𝜆,                                               (2)                                    
where 

                               ℛ(𝑥 ∖ 𝑓, 𝑔) = sup  𝑓 (
𝑥 − 𝑦

𝜆
)
𝜆

 𝑔 (
𝜆

1 − 𝜆
)
1−𝜆

                           (3) 

  and 𝑓, 𝑔 are nonnegative, measurable functions on 𝑅𝑛. If 𝑓 and g are the characteristic 

functions of 𝐴 and 𝐵, respectively, ℛ is the characteristic function of 𝐷. Thus, 𝐸𝑞. (2) 
states that 𝜇𝑛(𝜆𝐴) = >  1 if 𝜇𝑛(𝐴)  =  𝜇𝑛(𝐵)  =  1. By the scaling property𝜇𝑛(𝜆𝐴)  =
 𝜆𝑛𝜇𝑛(𝐴) . 
  Thus 𝐸𝑞. (2) implies 𝐸𝑞. ( 1). In that sense, the Pr�̀�kopa -Leindler theorem can be viewed 

as an extension of the Brunn-Minkowski theorem. 

These theorems are extended here in the following ways. The sup in Eq. (3) is replaced by 

ess sup: 

                                     ℎ(𝑥  |𝑓, 𝑔) =   𝑦∈𝑅𝑛
𝑒𝑠𝑠 𝑠𝑢𝑝 𝑓

 (
𝑥−𝑦

𝜆
)
𝜆
𝑔 (

𝑦

1−𝜆
)
1−𝜆
.                           (4)                   

 The Pr�̀�kopa -Leindler theorem strengthened in this way is contained in Theorems (2.1.2) 

and (2.1.3). 

Our new version really is stronger than the old; generally,  ‖ℎ‖1  ≤ ‖𝑅‖1and there are 

functions 𝑓 and 𝑔 such that ℎ differs greatly from 𝑅. It is a fact, however, established  that 

𝑓 and 𝑔 can always be replaced by functions 𝑓∗ and 𝑔∗ which differ only by null functions 

from 𝑓 and 𝑔 such that 

ℎ(𝑥 |𝑓, 𝑔)  =  ℎ(𝑥 |𝑓∗ , 𝑔∗)  =  ℛ (𝑥 |𝑓∗ , 𝑔∗) . 
Thus, once one knows how to construct 𝑓∗  and 𝑔∗ ,  the strengthened Pr�̀�kopa -Leindler 

theorem follows from the known one. 
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      However, we prefer to work with the essential supremum ℎ, because (1) ℎ( 𝑥 ) is 

unaltered if null functions are added to 𝑓 and 𝑔, and (2) ℎ(𝑥) is lower semicontinuous for 

any measurable 𝑓 and 𝑔. 

The supremum ℛhas neither property. 

           By taking characteristic functions for 𝑓 and 𝑔, a stronger form of the Brunn-

Minkowski theorem results; as above, it can be derived from the known theorem. The 

proof given here of the PrCkopa-Leindler theorem is based on the Brunn-Minkowski 

theorem; it is simpler than the original proof by Pr�̀�kopa and Leindler. 

The idea of our proof is already contained in [66]. Another (rather involved) proof of the 

strengthened Pr�̀�kopa -Leindler theorem is given [67]. 
Other types of convex combinations, ℎ𝛼 , of two functions, 𝑓 and 𝑔 are defined for 𝛼 ∈
 [−∞,∞]; see Eqs. (5) − (7). 
The convex combination in 𝐸𝑞. (4) is the case  𝛼 =  0. theorems of the PrCkopa-Leindler 

type are given for general 𝛼 (Theorems (2.1.1)-(2.1.3)). 𝐴 Brunn-Minkowski-like version 

of these theorems is contained in Corollary (2.1.4). For the case 𝛼 =  0 and with sup 

instead of ess sup, it was first given by Pr�̀�kopa [68]𝐴 much simpler proof for that case 

was found by Rinott [68]; his proof is completely different. Rinott also found the case 𝛼 =
 −1/𝑛 in Corollary (2.1.4). Moreover, he found a converse of 

Corollary (2.1.4), saying that Eq. (18) f or all 𝐴, 𝐵 implies the existence of a log concave 

density function. we consider log concave functions. 𝐴 corollary of the 

Pr�̀�kopa -Leindler theorem is that ∫𝐹 (𝑥, 𝑦) dy is log concave in 𝑥 if 𝐹(𝑥, 𝑦) is log 

concave in (𝑥, 𝑦). This result is sharpened in Theorem (2.1.7). In Theorem (2.1.6) a 

Sobolev-type inequality for log concave measures is given. Some theorems on log concave 

functions have counterparts for log convex functions (Theorems (2.1.9), (2.1.10), and 

(2.1.14)). However, these counterparts are comparatively trivial; they essentially follow 

from the usual convexity arguments (Hölder’s inequality). We stress that the log concave 

theorems and other Brunn-Minkowski and Pr�̀�kopa -Leindler-like theorems do not follow 

trivially from Holder’s inequality. we give inequalities for the moments of a Gaussian 

distribution, compared with the moments of the same distribution perturbed by a log 

concave (or log convex) function (Theorem (2.1.10)). We give an application to the 

diffusion equation in 𝑅𝑛 with convex potential. More applications (the Ising model, the 

one dimensional Coulomb plasma) are given in [66]. 

Given nonnegative measurable functions 𝑓(𝑥), 𝑔(𝑥) on 𝑅𝑛, we shall introduce various 

convex combinations of them, parametrized by the real number 𝛼 ∈  [−∞,∞]. With 0 <
𝜆 < 1, we define 

                ℎ𝛼(𝑥  |𝑓, 𝑔) =   𝑦∈𝑅𝑛
𝑒𝑠𝑠 𝑠𝑢𝑝 

 {[𝜆𝑓 (
𝑥−𝑦

𝜆
)
𝛼
 ⊕ (1 −  𝜆)𝑔 (

𝑦

1−𝜆
)
𝛼

}

1

𝛼
.            (5)   

The symbol ⨁differs from the ordinary addition + in that for 

                         𝑓 = 𝑂    𝑜𝑟    𝑔 = 𝑂,     {𝜆𝑓𝛼 ⨁ (1 −  𝜆) 𝑔𝛼}1/𝛼  =  0.                     (6)            
Otherwise, ⨁and + are the same: For 𝑓 > 0 and 𝑔 > 0, 

{𝜆𝑓𝛼 ⨁ (1 −  𝜆) 𝑔𝛼}1/𝛼 
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{𝜆𝑓𝛼 + (1 −  𝜆)𝑔𝛼}
1
𝛼 ,   𝑖𝑓   − ∞ <  𝛼 <  0, 0 <  𝛼 <  ∞; 

                                             =  𝑚𝑖𝑛(𝑓, 𝑔),       𝑖𝑓 𝛼 = −∞;                                             (7) 
         =  𝑚𝑎𝑥(𝑓, 𝑔),             𝑖𝑓 𝛼 = ∞;                                         

            = 𝑓𝜆𝑔1−𝜆,                   𝑖𝑓 𝛼 = ∞.                                                        
Note, that ⨁ and + are completely identical for 𝛼 <  0; however, for 𝛼 >  0 𝐸𝑞 (6) makes 

them essentially different. Note further that 

ℎ𝛼 (𝑥 )  ≤ ℎ𝓈 (𝑥)𝑖𝑓  𝛼 <  𝛽 . 
We shall often write ℎ𝛼 (𝑓, 𝑔) ℎ𝛼 (𝑥) or ℎ𝛼  if the dependence of 

ℎ𝛼 (𝑥  |𝑓, 𝑔) on 𝑋, f and 𝑔, or both is obvious. The dependence on ℎ is not displayed, 𝜆 

being held fixed. 

As a particular case, take for 𝑓 and g characteristic functions of measurable sets 𝐴, 𝐵 ⊂
𝑅𝑛:  𝑓 =  𝑥 𝐴, 𝑔 =  𝑋 𝐵. Then by 𝐸𝑞𝑠. (6), (7), 

{𝜆𝑓𝛼 ⨁ (1 −  𝜆) 𝑔𝛼}1/𝛼 = 0      𝑜𝑟      0,  
independent of LY. Hence, there is a set C such that 

ℎ𝛼(𝑥 𝐴 , 𝑥 𝐵) =  𝑥𝑐 ,   ∀𝛼 

We shall use the notation 

𝐶 =  𝑒𝑠𝑠{𝜆𝐴 + (1 −  𝜆)𝐵}. 
To stress the difference with the ordinary Brunn-Minkowski addition we give appropriate 

definitions: 

𝜆𝐴 + (1 − 𝜆)𝐵 = {𝑥 ∈ 𝑅𝑛|(𝑥 − 𝜆𝐴) ∩ (1 − 𝜆)𝐵 ≠  𝜙}; 

            𝑒𝑠𝑠{𝜆𝐴 + (1 − 𝜆)𝐵 = {𝑥 ∈ 𝑅𝑛|   𝜇𝑛[ (𝑥 − 𝜆𝐴) ∩ (1 − 𝜆)𝐵] >  0}.            (8)  

The ordinary addition results, if ess sup in 𝐸𝑞. (5) is replaced by sup, The ordinary and the 

essential additions may differ considerably, as can be seen by taking for 𝐴 a single point. 

However, there always 580  /22/4 − 4  exist sets 𝐴∗ and 𝐵∗ which differ from 𝐴 and 𝐵 by 

null sets and such that 

                                  𝐴∗  +  𝐵∗ =  𝑒𝑠𝑠(𝐴∗  +  𝐵∗) =  𝑒𝑠𝑠(𝐴 +  𝐵)                             (9)                       
Equation (9) and the Brunn-Minkowski theorem, 𝐸𝑞. (1), immediately imply the 

strengthened Brunn- Minkowski theorem 

                                 𝜇𝑛(𝐶)
1/𝑛  ≥ 𝜆𝜇𝑛(𝐴)

1

𝑛 + (1 −  𝜆)𝜇𝑛(𝐵)
1

𝑛 ,                                  (10)                         

            If  𝜇𝑛(𝐴)
  >  0, 𝜇𝑛(𝐵) >  0. 

We show how 𝐸𝑞. (10) extends to inequalities for ‖ℎ𝛼‖1 in terms of ‖𝑓‖1 and ‖𝑔‖1 . 
The following theorem is basic. 

Theorem (2.1.1)[63]: Let 𝑓, 𝑔 be nonnegative, measurable functions on 𝑹 and define ℎ−∞ 

as in 𝐸𝑞𝑠. (5) − (7): 

ℎ−∞(𝑥) =   𝑦∈𝑹
𝑒𝑠𝑠 𝑠𝑢𝑝 𝑚𝑖𝑛

  {𝑓 (
𝑥 − 𝑦

1 − 𝜆
) , 𝑔 (

𝑦

1 − 𝜆
)}. 

    Let ‖𝑓‖∞ = ‖𝑔‖∞  ≡  𝑚. Then 

‖ℎ−∞‖1 ≥ 𝜆‖𝑓‖1 + (1 − 𝜆)‖𝑔‖1  . 
Proof:  For 𝑧 >  0, define the sets 

                                      𝐴(𝓏) = {𝑥 ∈ 𝑹 |𝑓(𝑥) > 𝓏}, 
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𝐵(𝓏) = {𝑥 ∈ 𝑹 |𝑔(𝑥) > 𝓏},                           
𝐷(𝓏) = {𝑥 ∈ 𝑹 |ℎ−∞(𝑥) > 𝓏}, 

Then 

𝐷(𝓏)  = 𝑒𝑠𝑠{𝜆𝐴(𝓏) + (1 − 𝜆)𝐵(𝓏) },  
by the definitions of h-, and of the essential addition. 

𝐼𝑓 𝓏 > 𝑚, 𝜇𝑛(Α(𝓏))  >  0 𝑎𝑛𝑑 𝜇𝑛(Α(𝓏)) >  0. 𝑇ℎ𝑢𝑠, 𝑏𝑦 𝐸𝑞.     (10) 

𝜇𝑛(Α(𝓏)) >  𝜆𝜇1(Α(𝓏)) + (1 − 𝜆) 𝜇1(Β(𝓏))
 
. 

Note, further, that 𝜇1(𝐷(𝑧))  =   𝜇1(𝐴(𝑧))  =   𝜇1(𝐵(𝑥))  =  0 𝑓𝑜𝑟 𝑥 ≥  𝑚, and that 

‖𝑓‖1 = ∫  𝜇1(𝐴(𝑧))𝑑𝑥,
∞

0
     etc. 

This gives the desired result.                                                          

Theorem (2.1.1) immediately leads to 

Theorem (2.1.2) [63]: Let f, g be nonnegative measurable functions on 𝑅 and define ℎ𝛼, as 

in 𝐸𝑞𝑠. (5)-(7). Let 1f) ‖𝑓‖1 >  0, ‖𝑔‖1 >  0. Then, for 𝛼 ≥ −1, 

                           ‖ℎ𝛼‖1 ≥ {𝜆‖𝑓‖1
𝛽
+ (1 − 𝜆)‖𝑔‖1

𝛽
}
1 𝛽⁄

,                                           (11)                                

with 𝛽 =  𝛼 (1 + 𝛼)⁄ . In particular, 

                                               ‖ℎ0‖1 ≥ ‖𝑓‖1
𝜆‖𝑔‖1

1−𝜆.                                                      (12)                                      
Proof: It is sufficient to consider bounded functions 𝑓 and 𝑔, since any 𝑓, 𝑔 can be 

approximated from below in 𝐿1 by bounded functions. Now define 

𝐹(𝑥) = 𝑓(𝑥) ‖𝑓‖∞ ⁄ ;    𝐺(𝑥) = 𝑔(𝑥) ‖𝑔‖∞ ⁄ . 

Let us first consider the case 𝛼 ≠  0. Then 

ℎ𝛼(𝑥|𝑓, 𝑔) ess sup
𝑣∈𝑅

{𝜆‖𝑓‖∞
𝛼 𝐹 (

𝑥 − 𝑦

𝜆
)
𝛼

⨁(1 − 𝜆)‖𝑔‖∞
𝛼 𝐺 (

𝑦

1 − 𝜆
)
𝛼

}1 𝛼⁄  

= [𝜆‖𝑓‖∞
𝛼 (1 − 𝜆)‖𝑔‖∞

𝛼 ]1 𝛼⁄  

+ess sup
𝑣∈𝑅

{𝜃𝐹 (
𝑥 − 𝑦

𝜆
)
𝛼

⨁(1 − 𝜃)𝐺 (
𝑦

1 − 𝜆
)
𝛼

}1 𝛼⁄ , 

with the obvious meaning of 𝜃, 0 <  𝜃 <  1. Thus 

ℎ𝛼(𝑥|𝑓, 𝑔)≥[𝜆‖𝑓‖∞
𝛼 + (1 − 𝜆)‖𝑔‖∞

𝛼 ]1 𝛼⁄ ℎ−∞(𝑥|𝐹, 𝐺), 
and by Theorem 1  

                ‖ℎ𝛼‖1≥[𝜆‖𝑓‖∞
𝜆 + (1 − 𝜆)‖𝑔‖∞

𝛼 ]1 𝛼⁄ [𝜆
‖𝑓‖1

‖𝑓‖∞
 + (1 − 𝜆)

‖𝑔‖1

‖𝑔‖∞
 ]             (13)  

Now Eq. (11) for −1 ≤ 𝛼 < 0 𝑜𝑟 0 < 𝛼 ≤ ∞  follows by Hölder’s inequality. 

For 𝛼 =  0, 

ℎ0(𝑓, 𝑔) = ‖𝑓‖∞
𝜆 ‖𝑔‖∞

1−𝜆ℎ0(𝐹, 𝐺) ≥ ‖𝑓‖∞
𝜆 ‖𝑔‖∞

1−𝜆ℎ−∞(𝐹, 𝐺).          
Then Theorem (2.1.1) gives 

                                ‖ℎ0‖1 ≥ ‖𝑓‖∞
𝜆 ‖𝑔‖∞

1−𝜆 [𝜆
‖𝑓‖1

‖𝑓‖∞
 + (1 − 𝜆)

‖𝑔‖1

‖𝑔‖∞
 ]                        (14).           

and Eq. (12) follows by the arithmetic-geometric mean inequality. 

Theorem (2.1.3) [63]: Let 𝑓, 𝑔 be nonnegative measurable functions on 𝑅𝑛 and define ℎ𝛼 

as in Eqs. (5)-(7). Let ‖𝑓‖1  =  0, ‖𝑔‖1 >  0. Then for 𝛼 ≥ −1 𝑛⁄  , 

                                          ‖ℎ𝛼‖1≥{𝜆‖𝑓‖1
𝛾
+ (1 − 𝜆)‖𝑔‖1

𝛾
}1 𝛾⁄                                 (15),                                 
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with 𝛾 =  𝛼/(1 +  𝑛𝛼). In particular, 

‖ℎ0‖1 ≥ ‖𝑓‖1
𝜆‖𝑔‖1

1−𝜆. 

Proof: Write 𝑅𝑛 ∋ 𝑥 =  (𝑦, 𝑧), withy 𝑦 ∈ 𝑅, 𝑧 ∈ 𝑅𝑛−1. Define 

                                         𝐹(𝑧) = ∫𝑑𝑦𝑓(𝑦, 𝑧) ;  𝐺(𝑧) = ∫𝑑𝑦𝑔(𝑦, 𝑧).                (16)                      
Since 

ℎ𝛼(𝑦, 𝑧|𝑓, 𝑔) = ess sup
𝑤∈𝑅𝑛−1

ess sup
𝑣∈𝑅

{𝜆𝑓 (
𝑦 − 𝑣

𝜆
,
𝑧 − 𝑤

𝜆
)
𝛼

⊕ (1 − 𝜆)𝑔 (
𝑣

1 − 𝜆
,
𝑤

1 − 𝜆
)
𝛼

}1 𝛼⁄ , 

it follows from Theorem (2.1.2) that 

                                                  ∫ 𝑑𝑦 ℎ𝛼(𝑦, 𝑧|𝑓, 𝑔) ≥ ℎ𝛽(𝑧|𝐹, 𝐺),                                (17)                                                          

with 𝛽 =  𝑎/(𝑎 +  1). Note, that we used that 

∫𝑑𝑦 𝑒𝑠𝑠 𝑤
  𝑠𝑢𝑝 ≥  𝑒𝑠𝑠 𝑤

  𝑠𝑢𝑝∫𝑑𝑦. 

Note further, that Theorem (2.1.2) does not apply, if x and w are such that 𝐹((𝑧 −
 𝑤)/𝜆)  =  0 𝑜𝑟 𝐺(𝑥/(1 −  𝜆))  =  0. However, 𝐸𝑞. (17) is 

saved 𝑏𝑦 the ⨁ sign in the definition of ℎ𝛽 [cf. 𝐸𝑞. (16)]. 

If we assume Theorem (2.1.3) to be true for 𝑛 −  1, we have that 

 ‖ℎ𝛽(𝐹, 𝐺)‖1
 ≥ {𝜆‖𝐹‖1

𝛾
+ (1 − 𝜆)‖𝐺‖1

𝛾
}
1 𝛾⁄
, 

with 𝛾 =  𝛽/[1 + (𝑛 −  𝐼)𝛽]  =  𝛼/(1 +  𝑛𝛼). With 𝐸𝑞𝑠. (16),( 17) and Fubini’s 

theorem, this leads to 𝐸𝑞. (15). Thus Theorem (2.1.3) is proved 𝑏𝑦 induction.                                     

As an introduction to two corollaries of Theorem (2.1.3), let us define 

the classes of functions 𝐾𝛼(𝑅
𝑛). 𝐾𝛼(𝑅

𝑛) consists of the nonnegative, measurable 

functions 𝐹 on 𝑅𝑛 such that for all 𝜆 ∈  (0, 1) 
𝐹 =  ℎ𝛼(𝐹, 𝐹)    𝑎. 𝑒. 

In more pedestrian  terms, this means that 𝐹 has the following convexity properties (apart 

from null functions). 

𝛼 =  −∞ ∶  𝐹 is unimodal, 𝑖. 𝑒., the sets {𝑧  |𝐹(𝑥)  >  𝑧] are convex. 

−∞ <  𝛼 < 𝑂: 𝐹𝛼is convex. 

𝛼 =  0 ∶  𝐹 is logarithmically concave, i.e., 

𝐹(𝜆𝑥 + (1 −  𝜆) 𝑦)  ≥  𝐹(𝑥)𝜆𝐹(𝑦)𝐼−𝜆. 
0 <  𝛼 <  ∞ ∶  𝐹𝛼 is concave on a convex set, and 𝐹(𝑥)  =  0 outside this set. 

𝛼 =  ∞ ∶  𝐹(𝑥)  = const. on a convex set, and 𝐹(𝑥)  =  0 outside this set. 

Note, that 𝐾𝛼  ⊂  𝐾𝛽 if 𝛼 >  𝛽. This follows from Jensen’s inequality. 

Corollary (2.1.4) [63]: Let A, B be measurable sets in 𝑅𝑛 of positive measure, and let 

𝐶 =  𝑒𝑠𝑠(𝜆𝐴 + (1 −  𝜆)𝐵}. 
Let 𝐹 ∈ 𝐾𝛼(𝑅

𝑛), 𝛼 ≥  −1/𝑛, and let  

𝜇𝐹(𝐴) = ∫𝐹(𝑥)𝑑𝑥
 

𝐴

. 

Then, with 𝛾 =  𝛼/(1 +  𝑛𝛼),  

𝜇𝐹(𝐶) ≥ {𝜆𝜇𝐹(𝐴)
𝛾+(1 − 𝜆)𝜇𝐹(𝐵)

𝛾}
1 𝛾⁄
.  

In. particular, if 𝐹 is log concave, 
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                                               𝜇𝐹(𝐶) ≥ 𝜇𝐹(𝐴)
𝜆𝜇𝐹(𝐵)

1 𝜆⁄ .                                              (18) 
 

Proof: Let 𝑓 =  𝐹𝜒𝐴  and 𝑔 =  𝐹𝜒𝐵 . Then ℎ𝛼(𝑓, 𝑔)  ≤  𝜒𝑐ℎ𝛼(𝐹, 𝐹)  = 

𝜒𝑐𝐹.Apply Theorem (2.1.3) to complete the proof  

 (i) Let 𝐹(𝑥)  ≡  1 ∈  𝐾∞. Then 𝛾 =  1/𝑛 and we recover the Brunn-Minkowski theorem, 

𝐸𝑞. (10). 

(ii) Let 𝐺(𝑥) =  𝑒𝑥𝑝(−𝑥2) ∈  𝐾0. Then in any 𝑅𝑛 

𝜇𝐺(𝐶) ≥ 𝜇𝐺(𝐴)
𝜆𝜇𝐺(𝐵)

1 𝜆⁄ . 
(iii) Let 𝐿(𝑥)  =  (1 + 𝑥2)−1 ∈ 𝐾−1/2 . Then 

𝜇𝐿(𝐶) ≥ {𝜆𝜇𝐿(𝐴)
−1+(1 − 𝜆)𝜇𝐿(𝐵)

−1}
−1

,  in R, 

𝜇𝐿(𝐶) ≥ min{𝜇𝐿(𝐴), 𝜇𝐿(𝐵)}, in R2. 

Corollary (2.1.5) [63]: Let 𝐹(𝑥, 𝑦)  ∈  𝐾𝛼(𝑅
𝑚+𝑛), 𝑥 ∈  𝑅𝑚, 𝑦 ∈  𝑅𝑛. Let 

𝐺(𝑥) = ∫ 𝐹(𝑥, 𝑦)
 

𝑅𝑛
𝑑𝑦. 

Then 𝐺 ∈  𝐾𝛾(𝑅
𝑚), 𝛾 =  𝛼/(1 +  𝑛𝛼). In particular, if 𝐹 is log concawe, so is 𝐺. 

Proof: Since 𝐹(𝑥, 𝑦)  >  0 on a convex set in 𝑅𝑚+𝑛, 𝐺(𝑥)  >  0 on a convex set in 

𝑅𝑚.Now fix points 𝑥0, 𝑥1 in this set, and define 𝑓 (𝑦)  = 𝐹(𝑥1, 𝑦), 𝑔(𝑦)  =  𝐹(𝑥0, 𝑦). Then 

𝐹(𝜆𝑥1  +  (1 −  𝜆) 𝑥0, 𝑦)  ≥  ℎ𝛼(𝑦 |𝑓, 𝑔). 

apply Theorem (2.1.3) to ℎ𝛼(𝑦 |𝑓, 𝑔).                                         
 We prove a Sobolev-type inequality (Theorem (2.1.6)) for log concave measures (i.e., 

measures given by a log concave density function). We shall write 𝐹(𝑥)  =
 𝑒𝑥𝑝[−𝑓(𝑥)], 𝑥 ∈  𝑅𝑛;  𝐹(𝑥) is log concave iff 𝑓(𝑥) is convex. If 𝑓(𝑥) is twice 

continuously differentiable, this means that the second derivatives matrix, 𝑓𝑥𝑥  , is 

nonnegative. 

It is often convenient to write 𝑅𝑛+𝑚  ∋ 𝑥 =  (𝑦, 𝑧), 𝑦 ∈  𝑅𝑚, 𝑧 ∈  𝑅𝑛. 
The matrix 𝑓𝑥𝑥  is then partitioned in an obvious way as 

                                                     𝑓𝑥𝑥 = (
𝑓𝑦𝑦 𝑓𝑦𝑧
𝑓𝑧𝑦 𝑓𝑧𝑧

).                                                       (19)                                                       

We shall often encounter 

                                  𝐺(𝑦) = exp [−𝑔(𝑦) ≡ ∫ 𝐹(𝑦, 𝑧) 𝑑𝑧.
 

𝑅𝑛
                                      (20)                                 

Then 𝐺(𝑦) is log concave by Corollary (2.1.5). 𝐴 sharper form of this result will be given 

in Theorem (2.1.7). 

With 𝐹 as a density function, define 

〈𝐴〉  =  ∫ 𝐴(𝑥)𝐹(𝑥) 𝑑𝑥 ∫ 𝐹(𝑥)𝑑𝑥,
 

𝑅𝑛
⁄

 

𝑅𝑛
 

varA = 〈|𝐴 − 〈𝐴〉|2〉, 

var                                    (𝐴, 𝐵) = 〈(𝐴 − 〈𝐴〉)(𝐵 − 〈𝐵〉 )〉.                                         (21)                   
If 𝑥 =  (𝑦, 𝑥), 𝑦 ∈  𝑅𝑚, 𝑧 ∈  𝑅𝑛, we write 

〈𝐴〉𝑧(𝑦) = ∫ 𝐴(𝑦, 𝑧)𝐹(𝑦, 𝑧) 𝑑𝑧 ∫ 𝐹(𝑦, 𝑧)𝑑𝑧,
 

𝑅𝑛
⁄

 

𝑅𝑛
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                                       〈𝐵〉𝑦 = ∫ 𝐵(𝑦)𝐺(𝑦) 𝑑𝑦 ∫ 𝐺(𝑦)𝑑𝑦,
 

𝑅𝑚
⁄

 

𝑅𝑚
                              (22)                          

so that 〈𝐴〉  =  〈〈𝐴〉𝑍〉𝑦 . In analogy with 𝐸𝑞. (21), 𝑣𝑎𝑟𝑦 , , 𝑐𝑜𝑣𝑦𝑦 , 𝑐𝑜𝑣𝑧, and 𝑐𝑜𝑣𝑧, are 

defined. 

Theorem (2.1.6) [63]:  Let 𝐹(𝑥)  =  𝑒𝑥𝑝[−𝑓(𝑥)], 𝑥 ∈  𝑅𝑛, let f be twice continuously 

dajfferentiable and let 𝑓 be strictly convex. Let 𝑓 have a minimum, so that 𝐹 decreases 

exponentially in all directions; then 

∫ 𝐹(𝑥) 𝑑𝑥 < ∞
 

𝑅𝑛
. 

Let ℎ ∈ 𝐶1(𝑅𝑛), and let var ℎ <  ∞. Then 

                                               𝑣𝑎𝑟 ℎ ≤ 〈(ℎ𝑥 , (𝑓𝑥𝑥)
−1ℎ𝑥)〉,                                            (23)                                                            

where the inner product is with respect to 𝐶𝑛, and h, denotes the gradient of ℎ. 
It is convenient to postpone the proof of Theorem (2.1.6) a moment. 

We prefer to give an immediate corollary first. 

Theorem (2.1.7) [63]: Let 𝐹(𝑥)  =  𝐹(𝑦, 𝑥)  =  𝑒𝑥𝑝[−𝑓 (𝑦, 𝑧)], 𝑦 ∈  𝑅𝑚, 
𝑧 ∈ 𝑅𝑛, satisfy the assumptions of Theorem (2.1.6). Moreover, let the Integrals 

                                                ∫ (𝜙, 𝑓𝑦𝑦𝜙)𝐹𝑑𝑧,
 

𝑅𝑛
∫ (𝜙, 𝑓𝑦)

2
𝐹𝑑𝑧,

 

𝑅𝑛
                                      (24)                

 

converge uniformly in 𝑦 in 𝑎 neighborhood of 𝑎 given point 𝑦0 ∈ 𝑅
𝑚, for all vectors 

𝜙 ∈ 𝑅𝑚.Then, with the notation of Eqs. (19, 20, 22), 𝑔(𝑦) is twice continuously 

differentiable near 𝑦0 , and 

                                                𝑔𝑦𝑦 ≥ 〈𝑓𝑦𝑦 − 𝑓𝑦𝑧(𝑓𝑧𝑧)
−1𝑓𝑧𝑦〉𝑧                                        (25)                               

as 𝑎 matrix inequality. 

Proof: We denote differentiation in a direction t at 𝑦0by a subscript 𝑡. Then Eq. (25) is 

equivalent to saying that for all directions 𝑡 
𝑔𝑡𝑡 ≥ 〈𝑓𝑡𝑡 − 𝑓𝑡𝑧(𝑓𝑧𝑧)

−1𝑓𝑧𝑡〉𝑧. 
By differentiating 𝑔(𝑦) = log ∫𝐹(𝑦, 𝑧) 𝑑𝑧 , one gets 

                                                    𝑔𝑡𝑡 = 〈𝑓𝑡𝑡〉𝑧 − var𝑧 𝑓𝑡                                                  (26).                                         
The differentiation can be done under the integral sign by the uniform convergence of the 

integrals (24), which also ensures the continuity of 𝑔𝑡𝑡. 
The result (25) follows by applying Theorem (2.1.6) with ℎ(𝑧) = 𝑓𝑡(𝑦0, 𝑧).  

Q.E.D. 

Remark(2.1.8) [63]: Even though 𝐹 is assumed to be a log concave function, decreasing 

exponentially in all directions, the convergence of the integrals (24) does not follow 

automatically. For example, define the convex function 𝜙(𝑥), 𝑥 ∈ 𝑅, by 𝜙(0) = 𝜙′(0) =
 0, and 

𝜙"(𝑥) = ∑ 𝑎𝑛𝛿(𝑥 − 𝑛)𝑛≠0 , 𝑎𝑛 > 0, 𝑎𝑛 = 𝑎−𝑛. 

Then 

∫𝜙"(𝑥) exp[−𝜙(𝑥)]𝑑𝑥 = 2∑ 𝑎𝑛 exp[−∑ (𝑛 − 𝑘)𝑎𝑘
𝑛−1
𝑘=1 ]∞

𝑛=1 , 

which can be made divergent by an appropriate recursive definition of 𝑎𝑛 . If we take 

𝑓(𝑦, 𝑧) = 𝑦2 + 𝜙(𝑦 + 𝑧) ,    𝑦,𝑧 ∈ 𝑅, 
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the integrals (24) obviously diverge for all 𝑦. 

The function 𝜙 can be approximated by a 𝐶2 function without changing the conclusion. 

We can obviously restrict ℎ to be real valued. Let us first give the proof for 𝑅1. If 𝑓(𝑥) has 

its unique minimum at 𝑥 =  𝑎, write 

ℎ(𝑥)  − ℎ(𝑎)  =  𝑓′(𝑥) 𝑘(𝑥). 
Then 𝑘(𝑥) is continuously differentiable, except possibly at 𝑥 =  𝑎. However, if we set 

𝑘(𝑎) =  ℎ′(𝑎)/𝑓"(𝑎), 𝑘 is continuous at 𝑥 =  𝑎. 

Now 

∫(ℎ′)2/𝑓"𝐹 𝑑𝑥 = ∫[(𝑘′𝑓′)2/𝑓" + 2𝑘𝑘′𝑓′ + 𝑘2𝑓"] 𝐹 𝑑𝑥 

= ∫[(𝑘′𝑓′)2/𝑓" + (𝑘𝑓′)2]𝐹 𝑑𝑥 + [𝑘2𝑓′𝐹]−∞
𝑎 + [𝑘2𝑓′𝐹]𝑎

∞  

≥ ∫[ℎ(𝑥) − ℎ(𝑎)]2𝐹(𝑥)𝑑𝑥. 

Equation (23) follows by noting that 

var ℎ ≤ 〈[ℎ − ℎ(𝑎)]2〉. 
Now assume that Theorem (2.1.6) has been proved for 𝑥 ∈ 𝑅𝑛−1. Hence we also have 

Theorem (2.1.7) for 𝑧 ∈ 𝑅𝑛−1 at our disposition. Write 𝑅𝑛 ∋ 𝑥 = (𝑦, 𝑧), 𝑦 ∈ 𝑅 , 𝑧 ∈ 𝑅𝑛−1. 

Then 

var ℎ = 〈var
𝑧
ℎ〉𝑦 + var 

𝑦
〈ℎ〉𝑧 , 

with the notation of 𝐸𝑞𝑠. (21, 22). 

Let us first restrict ourselves to functions ℎ with compact support. 

This has the advantage that 𝐹 can be modified outside the support of ℎ in such a way, that 

it satisfies all the assumptions of Theorem (2.1.7) for all 𝑦. Then 𝐺(𝑦) = ∫𝐹(𝑦, 𝑧) 𝑑𝑧 
satisfies the assumptions of Theorem (2.1.6), so that 

var 
𝑦
〈ℎ〉𝑧 ≤ 〈((

𝑑

𝑑𝑦
) 〈ℎ〉𝑧)

2

/𝑔"〉𝑦. 

Now all differentiations can be carried out under the integral signs, since ℎ has compact 

support and 𝐹 has been appropriately modified. Thus we find (cf. Eq. (26)) 

var ℎ ≤ 〈𝐵〉𝑦, 

                                       𝐵 = var 
𝑧
 ℎ +

[〈ℎ𝑦〉𝑧−cov (h,f𝑦) 
𝑧

]2

〈f𝑦𝑦〉𝑧−var f𝑦 
𝑧

.                                               (27)                                      

Applying Theorem (2.1.6) for 𝑧 ∈ 𝑅𝑛−1, with fixed 𝑦 ∈ 𝑅, we have 

var 
𝑧
𝐻 ≤ 〈𝐻𝑧, 𝑓𝑧𝑧

−1𝐻𝑧〉𝑧. 

Since this is true for 

𝐻 = 𝜆ℎ + 𝜇f𝑦 

with arbitrary 𝜆 and 𝜇, we get 

𝐻 ≤ 〈(ℎ𝑧, 𝑓𝑧𝑧
−1ℎ𝑧)〉𝑧 +

〈ℎ𝑦 − (ℎ𝑧, 𝑓𝑧𝑧
−1𝑓𝑧𝑦

 )〉𝑧
2

〈𝑓𝑦𝑦 − (𝑓𝑦𝑧, 𝑓𝑧𝑧
−1𝑓𝑧𝑦

 )〉𝑧
 
. 
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Since 𝑓 is convex, the denominator above is positive and we can use Schwarz’s inequality 

to obtain 

𝐻 ≤ 〈(ℎ𝑧, 𝑓𝑧𝑧
−1ℎ𝑧) +

〈ℎ𝑦 − (ℎ𝑧, 𝑓𝑧𝑧
−1𝑓𝑧𝑦

 )〉𝑧
2

𝑓𝑦𝑦 − (𝑓𝑦𝑧, 𝑓𝑧𝑧
−1𝑓𝑧𝑦

 
〉𝑧 

                                                      = 〈(ℎ𝑥, 𝑓𝑥𝑥
−1ℎ𝑥)〉𝑧.                                                        (28)                                                   

Eq. (23) follows by combining Eqs. (27) and (28). 

Now only the restriction that ℎ has compact support remains to be removed. As an 

intermediate step, let us show that for all ℎ and 𝐹 satisfying the assumptions of Theorem 

(2.1.6) 

                                                         var 
𝑠
ℎ ≤ 〈ℎ𝑥, 𝑓𝑥𝑥

−1ℎ𝑥〉𝑆,                                             (29)                                

where the averages are taken over a ball with radius 𝑆 centered at the origin, instead of 

over all 𝑅𝑛. 

 

Modify ℎ outside the ball smoothly to a function 𝑘 with compact support, and let 

𝑓(𝑁)(𝑥)  =  𝑓(𝑥), 𝑖𝑓 |𝑥| ≤  𝑆;

𝑓(𝑁)(𝑥)  =  𝑓(𝑥)𝑁(|𝑥| −  𝑆)4, 𝑖𝑓 |𝑥| ≥  𝑆.
 

By our results until now, we have that 

𝑣𝑎𝑟𝑁 𝑅 ≤  〈(𝑘𝑥, (𝑓𝑥𝑥
(𝑁)
)
−1
 𝑅𝑥)〉𝑁 , 

with averages with respect to the weight exp[−𝑓(𝑁)(𝑥)]. Equation (29) is proved by taking 

the limit 𝑁 → ∞ and using the monotone convergence theorem. 

Now let 𝑆 → ∞ in 𝐸𝑞. (29). Then 𝑣𝑎𝑟𝑠ℎ +  𝑣𝑎𝑟 ℎ, and 

∫(ℎ𝑥

 

𝑠

, 𝑓𝑥𝑥
−1ℎ𝑥)𝐹 𝑑𝑥 

increases (it may actually increase to ∞). This concludes the proof. 

Let 𝑀𝑖𝑗 =  𝑐𝑜𝑣(𝑥𝑖  , 𝑥𝑗). Then we have the matrix inequality 

                                                             𝑀 ≤  〈(𝑓𝑥𝑥)
−1〉,                                                   (30)                                                

as can be seen by taking ℎ(𝑥)  =  (𝜙, 𝑥) for any 𝜙 ∈ 𝑅𝑛 in Theorem (2.1.6). 

As a curiosity, compare (30) with the one dimensional inequality 

                                                           𝑣𝑎𝑟 𝑥 ≥  〈𝑓′′〉−1,                                                   (31)                                                 
which holds for general weights F. The proof is 

(i)  [𝑐𝑜𝑣(𝑥, 𝑓’)]2  ≤  𝑣𝑎𝑟𝑓’ 𝑣𝑎𝑟 𝑥 =  〈𝑓”〉 𝑣𝑎𝑟 𝑥, 
with Schwarz’s inequality and two integrations by parts. 

(ii) . For the Gaussian weight 𝐹(𝑥)  =  𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)], 
                                                    𝑣𝑎𝑟 ℎ ≤  〈(ℎ𝑥, (2𝐴)

−1ℎ𝑥)〉.                                      (32)  
In particular, if 𝐹(𝑥)  =  𝑒𝑥𝑝[−(𝑥, 𝑥)/2], 

                                                        𝑣𝑎𝑟 ℎ ≤  〈|ℎ𝑥|
2〉                                                      (33).                                             

(iii) . If 𝐹(𝑥)  =  𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)],𝑀 =  (2𝐴)−1, and thus the inequality in (30) holds as an 

equality. 

(iv). The analog in the setting of Theorem (2.1.7) concerns the Gaussian 



36 
 

                     Φ(𝑥, 𝑦) =  𝑒𝑥𝑝 [−(𝑥, 𝑦) (
𝐴 𝐵
𝐵∗ 𝐶

) (𝑥
𝑦
)] , (𝑥, 𝑦) ∈ 𝑅𝑚 × 𝑅𝑛,            (34)          

with a real, positive matrix (
𝐴 𝐵
𝐵∗ 𝐶

).Then 

                                   ∫Φ(𝑥, 𝑦)𝑑𝑦 = 𝑐𝑜𝑛𝑠𝑡. exp[−(𝑥, 𝐷𝑥)] ,                                      (35)                      
with 

                                                       𝐷 =  𝐵 − 𝐵𝐶−1𝐵∗.                                                  (36)                                        
Thus for Gaussians the equality sign in 𝐸𝑞. (25) holds, 

Theorem (2.1.9) [63]: With the notation of 𝐸𝑞𝑠. (34 − 36), let 𝐺(𝑥) be defined by 

∫Φ(𝑥, 𝑦) 𝐹(𝑥, 𝑦) 𝑑𝑦 =  𝐺(𝑥) 𝑒𝑥𝑝[−𝑥, 𝐷𝑥)]. 

Then, if 𝐹(𝑥, 𝑦) is log concave, 𝐺(𝑥) is log concave; if 𝐹(𝑥, 𝑦) is log convex, 𝐺(𝑥) is log 

convex. 

Proof: Write 

Φ(𝑥, 𝑦) = 𝑒𝑥𝑝[−(𝑥, 𝐷𝑥) − (𝑦
′, 𝐶𝑦′)], 

𝑦′ = 𝑦 + 𝐶−1𝐵∗𝑥. 
Then 

                           𝐺(𝑥) =  ∫ exp[−(𝑦, 𝐶𝑦)] 𝐹(𝑥, 𝑦 − 𝐶−1𝐵∗𝑥)𝑑𝑦.                         (37)          
 

If 𝐹(𝑥, 𝑦) is log concave, the integrand in 𝐸𝑞. (37) is log concave. 

Then 𝐺(𝑥) is log concave by Corollary (2.1.5). If 𝐹(𝑥, 𝑦) is log convex, the integrand is 

log convex in 𝑥 for all fixed 𝑦. Then 𝐺(𝑥) is log convex by Hölder’s inequality.                                                                         

Note, that the log concave part of Theorem (2.1.9) also follows from 

Theorem (2.1.7). 

Theorem (2.1.10) [63]: Let 𝐹(𝑥) be a nonnegative function on 𝑅𝑛, and let 𝐴 be 

a real, positive defnite, 𝑛 ×  𝑛 matrix. Assume 𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)] 𝐹(𝑥)  ∈ 𝐿1 and define 

〈𝑅〉𝐹  =  ∫𝑅(𝑥) 𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)] 𝐹(𝑥) 𝑑𝑥/∫𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)] 𝐹(𝑥) 𝑑𝑥 . 

If 𝐹(𝑥)  ≡  1 we write (∙)1. Let 𝜙 ∈  𝑅𝑛, 𝑎 ∈  𝑅. Then 

〈|(𝜙, 𝑥) − 〈(𝜙, 𝑥)〉𝐹|
𝛼〉𝐹 ≤ 〈|(𝜙, 𝑥)|

𝛼〉1, 
when 𝐹 is log concave and 𝛼 ≥  1; 

〈|(𝜙, 𝑥) − 𝑎|𝛼〉𝐹 ≤ 〈|(𝜙, 𝑥)|
𝛼〉1,                𝑖𝑓𝛼 > 0, 

〈|(𝜙, 𝑥) − 𝑎|𝛼〉𝐹 ≥ 〈|(𝜙, 𝑥)|
𝛼〉1,                  𝑖𝑓 − 1 < 𝛼 > 0, 

when 𝐹 is log convex. 

Proof: 𝐵𝑦 a linear transformation such that (𝜙, 𝑥)  → 𝑥1 and by 

Theorem (2.1.9) it suffices to prove Theorem (2.1.10) for the one-dimensional case. This 

wll be done in Lemmas (2.1.11) and (2.1.12).                                              

Lemma (2.1.11) [63]: Let 𝐹(𝑥) be a log convex function on 𝑅, and let the averages (∙)𝐹 

and (∙)1 be computed with the weights 𝑒𝑥𝑝( −𝑥2) 𝐹(𝑥) and 𝑒𝑥𝑝(−𝑥2), respectively. Let 

𝑎 ∈  𝑅. Then 

                                       〈|𝑥 − 𝑎|𝛼〉𝐹 ≥ 〈|𝑥|
𝛼〉1,            𝑖𝑓𝛼 > 𝑜;                                 (38)                     

                                 〈|𝑥 − 𝑎|𝛼〉𝐹 ≤ 〈|𝑥|
𝛼〉1,            𝑖𝑓 − 1 < 𝛼 < 𝑜.                          (39)                
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Proof: Note that 

〈|𝑥 − 𝑎|𝛼〉𝐹 = 〈|𝑥|
𝛼〉𝐺 = 〈|𝑥|

𝛼〉𝐻,             
where 

𝐺(𝑥)  =  𝐹(𝑥 +  𝑎) 𝑒𝑥𝑝(−2𝑎𝑥), 
𝐻(𝑥)  =  𝐺(𝑥)  +  𝐺(−𝑥). 

Since 𝐹 is log convex, 𝐺 and 𝐻 are log convex; moreover, 𝐻 is even. 

Thus, for 𝛼 >  0, it has to be shown that 

                                                    〈𝑥𝛼𝐻(𝑥)〉 ≥  〈𝑥𝛼〉 〈𝐻(𝑥)〉,                                          (40)                                   
with the averages computed over 𝑥 >  0 with the weight 𝑒𝑥𝑝(−𝑥2). But this is equivalent 

to the inequality 

               ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑒𝑥𝑝(−𝑥2 − 𝑦2)[𝐻(𝑥) − 𝐻(𝑦)](𝑥𝛼 − 𝑦𝛼)  ≥  0,
∞

0

∞

0
           (41)        

which is obvious, since 𝐻(𝑥) and 𝑥𝛼 are increasing functions for 

𝑥 >  0.  
If −1 <  𝛼 <  0, 𝑥𝛼 is decreasing for 𝑥 >  0, and hence 

〈𝑥𝛼𝐻(𝑥)〉 ≤  〈𝑥𝛼〉 〈𝐻(𝑥)〉. 
This proves Eq. (39).                                                                                   

Lemma (2.1.12) [63]: Let 𝐹(𝑥) be a log concave function on 𝑅. Then, with the notation of 

Lemma (2.1.11), 

                                    〈|𝑥 − 〈𝑥〉𝐹|
𝛼〉𝐹 ≤ 〈|𝑥|

𝛼〉1,            𝑖𝑓𝛼 ≥ 1                               (42).                    
Proof: Write 

〈|𝑥 − 〈𝑥〉𝐹|
𝛼〉𝐹 = 〈|𝑥|

𝛼〉𝐺 , 
with 

𝐺(𝑥)  =  𝐹(𝑥 + 〈𝑥〉𝐹) 𝑒𝑥𝑝(−2𝑥〈𝑥〉𝐹). 
Then 𝐺(𝑥) is log concave, and 〈𝑥〉𝐺  =  0. By approximation, it is sufficient to assume 𝐺 ∈
 𝐶1. Hence  

                 ∫ 𝑑𝑥 𝑒𝑥𝑝(−𝑥2)𝐺’(𝑥) =  2 ∫ 𝑑𝑥 𝑥 exp(− − 𝑥2) 𝐺(𝑥) =  0 .               (43)        
 

Moreover, there must exist a number 𝐾 such that 𝐺(𝑥) is increasing for 𝑥 <  𝐾; 
decreasing for 𝑥 >  𝐾. 𝐵𝑦 𝐸𝑞. (43) 𝐾 must be finite and we can assume that 𝐾 ≥ 0, say. 

Then 𝐺’(𝑥)  ≥  0 for 𝑥 <  0, and 

𝐸𝑞. (43) implies that 

                                                     ∫ 𝑑𝑥 𝑒𝑥𝑝(−𝑥2) 𝐺′(𝑥)  ≤  0
∞

0
.                                  (44)                                 

It has to be shown that 

                              〈𝑥𝛼[𝐺(𝑥) +  𝐺(−𝑥)]〉  ≤  〈𝑥𝛼〉〈𝐺(𝑥) + 𝐺(−𝑥)〉,                      (45)   
where the averages are with respect to 𝑒𝑥𝑝(−𝑥2), 𝑥 >  0. 
We assumed, that 𝐺’(𝑥)  ≥  0 for 𝑥 <  0, and thus (cf. Eqs. (40, 41)] 

〈𝑥𝛼𝐺(−𝑥)〉 ≤  〈𝑥𝛼〉〈𝐺(−𝑥)〉. 
 

We wish to show the same inequality for the 𝐺(𝑥) part in Eq. (45), which is equivalent to 

                 ∫ 𝑑𝑥 ∫  𝑑𝑦 𝑒𝑥𝑝(−𝑥2 − 𝑦2)[𝐺(𝑥) − 𝐺(𝑦)](𝑥𝛼 − 𝑦𝛼)  ≤  0
𝑥

0

∞

0
.          (46)            

If we write 
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𝐺(𝑥)  −  𝐺(𝑦)  =  ∫ 𝐺’(𝑧) 𝑑𝑧
𝑥

𝑦

 , 

Eq. (46) becomes 

                                     ∫  𝑑𝑧 ψ(𝑧)𝑒𝑥𝑝(−𝑧2)𝐺′(𝑧)  ≤  0
∞

0
,                                          (47)                            

                       ψ(𝑧) = 𝑒𝑥𝑝(𝑧2) ∫ 𝑑𝑥 ∫  𝑑𝑦 𝑒𝑥𝑝(−𝑥2 − 𝑦2)(𝑥𝛼 − 𝑦𝛼).  
𝑧

0

∞

𝑧
         (48)          

If we manage to show that ψ(𝑧)is an increasing function for 𝑧 >  0, 
Eq. (47) follows from Eq. (44) and the fact that 𝐺’(𝑥) ≥  0 for 

0 <  𝑥 <  𝐾;  𝐺’(𝑥)  ≤  0 for 𝑥 >  𝐾, and Lemma (2.1.12) is proved. 

After some manipulation, we find that 

 

ψ′(𝑧)  =  ∫ 𝑑𝑥 𝑒𝑥𝑝(−𝑥2)(𝑥𝛼 − 𝑧𝛼)
∞

𝑧

 

+ 𝑧 𝑒𝑥𝑝(𝑧2) ∫ 𝑑𝑥
∞

𝑧

∫ 𝑑𝑦 𝑒𝑥𝑝(−𝑥2 − 𝑦2)[(𝛼 −  1) 𝑥𝛼−2 + 𝑦𝛼𝑥−2].
∞

0

   

Thus, if 𝛼 ≥  1,𝜓′(𝑧)  >  0.                                                                              
Theorem (2.1.13) [63]: Under the assumptions of Theorem (2.1.10), let 𝑀 be the 

covariance matrix 

𝑀𝑖𝑗 = 〈𝑥𝑖𝑥𝑗〉𝐹 − 〈𝑥𝑖〉𝐹〈𝑥𝑗〉𝐹 . 

Then 

𝑀 ≤ 〈(2𝐴 + 𝑓𝑥𝑥)
−1〉𝐹 ≤ (2𝐴)

−1, 𝑖𝑓 𝐹 ≡  𝑒𝑥𝑝(−𝑓) is log concave; 

                             𝑀 ≥  (2𝐴)−1,                              (49)        if 𝐹 is log convex.                  

 

Proof: Setting 𝛼 =  2 in Theorem (2.1.10) leads to 𝑀 ≤  (2𝐴)−1 

resp. 𝑀 ≥  (2𝐴)−1.The stronger inequality (49) is obtained from 

Theorem (2.1.6) by taking ℎ(𝑥)  =  (𝜙, 𝑥) and replacing the weight 𝐹(𝑥) y 

𝑒𝑥𝑝[−(𝑥, 𝐴𝑥)] 𝐹(𝑥).                                                                                   Q.E.D. 

Consider the diffusion equation in 𝑅𝑛 

                                                                 𝜕𝜓 𝜕𝑡⁄ = −𝐻𝐴𝜓                                                 (50)                                                  
with the Hamiltonian 

                                   (𝐻𝐴𝜓)(𝑥) =  − 
1

2
(⊿𝜓)(𝑥) +  𝑉(𝑥) 𝜓(𝑥),                                (51)                           

defined on an open, connected region 𝐴 𝐶 𝑅𝑛, with zero boundary conditions. The potential 

𝑉(𝑥) is assumed to be convex; in particular, 𝑉(𝑥) may be ∞ outside a convex set 𝐷. 
Further we assume the region 𝐴 to be such that 

 

                                    ∫ 𝑒𝑥𝑝[−𝑡𝑉(𝑥)]𝑑𝑥 < ∞,               ∀𝑡 >  0.
 

𝐴
                          (52)                        

 

 (This means that 𝐴 is bounded in the directions, for which 𝑉(𝑥) does not go to ∞ as  |𝑥| →
 ∞. ) 
The fundamental solution 𝐺𝐴(𝑥, 𝑦;  𝑡) of Eq. (50) is defined by 

((𝜕 𝜕𝑡) − 𝐻𝐴,𝑥⁄ )𝐺𝐴(𝑥, 𝑦; 𝑡) = 0, 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐷, 𝑡 > 𝑂; 
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𝐺𝐴(𝑥, 𝑦; 𝑡)  =  𝛿(𝑥 − 𝑦), 𝑥, 𝑦 ∈ 𝐴 ∩ 𝐷; 
𝐺𝐴(𝑥, 𝑦; 𝑡) = 0, 𝑥 ∈ 𝜕(𝐴 ∩  𝐷); 

𝐺𝐴(𝑥, 𝑦; 𝑡) = 0, 𝑥 ∉ 𝐴 ∩ 𝐷 𝑜𝑟 𝑦 ∉ 𝐴 ∩ 𝐷. 
We could, of course, replace 𝐴 by 𝐴 ∩ 𝐷 without changing 𝐺𝐴 , but 

the point is that in Theorem (2.1.15) we want to vary 𝐴 while keeping 𝐷 fixed. 

Using the Trotter product formula, we can write 

𝐺𝐴(𝑥, 𝑦;  𝑡)  =  lim
𝑀→∞

(
2𝜋𝑡

𝑀
)
−𝑛𝑚 2⁄

∫ 𝑑𝑥1⋯∫𝑑𝑥𝑀−1

 

𝐴

 

𝐴

   

                             𝑥 ∏ 𝑓𝑖𝑀
𝑗=1  𝑒𝑥𝑝 [− 

𝑀

2𝑡
(𝑥𝑖 − 𝑥𝑗−1)

2
−

𝑡

𝑀
 𝑉(𝑥𝑗)],                 (53)              

where 𝑥0 = 𝑥,  𝑥𝑀 =  𝑦. 
Define the partition function by 

                                       𝑍𝐴(𝑡) =  𝑇𝑟 𝑒𝑥𝑝(−𝑡𝐻𝐴) =  ∫ 𝐺𝐴(𝑥, 𝑥;  𝑡)𝑑𝑥.
 

𝐴
                   (54)                    

Then Eq. (52) guarantees, that 𝑍𝐴(𝑡)  <  ∞ for all 𝑡 >  0, so that 

HA has a pure point spectrum. In fact, Hölder’s inequality applied to Eqs. (53, 54) gives 

that 

𝑍𝐴(𝑡)  ≤  ∫𝐶
0(𝑥, 𝑥;  𝑡) 𝑒𝑥𝑝[−𝑡𝑉(𝑥)] 𝑑𝑥

 

𝐴

  

= (2𝜋𝑡)
−𝑛 2⁄ ∫𝑒𝑥𝑝[−𝑡𝑉(𝑥)] 𝑑𝑥,

 

𝐴

  

where 𝐺0 is the fundamental solution of Eq. (50) with 𝑉(𝑥)  =  0. Moreover the ground 

state is nondegenerate and the corresponding 

eigenfunction is nonnegative [69]. 

 

Theorem (2.1.14) [63]: Let 𝐴 =  𝑅𝑛, and let the potential be of the form 

                                𝑉(𝑥) = 1

2
𝑤2𝑥2 +  𝑊(𝑥),                   𝑤 ≥  0,                            (55)                            

with a convex function W(x). Then the ground state wave function 𝜓0(𝑥) is of the form 

𝜓0(𝑥) = 𝑒𝑥𝑝 (−
1

2
𝑤𝑥2)𝜓(𝑥), 

where 𝜙(𝑥) is log concave. 

Proof: Let 𝐺𝑤(𝑥, 𝑦;  𝑡) be the fundamental solution of Eq. (50) for 𝑉(𝑥)  =  1
2
 𝑤2𝑥2. Then 

the fundamental solution for the potential 

(55) is of the form 

𝐺(𝑥, 𝑦;  𝑡) =  𝐺𝑤(𝑥, 𝑦;  𝑡) 𝐻(𝑥, 𝑦;  𝑡), 
where 𝐻(𝑥, 𝑦;  𝑡) is log concave in (𝑥, 𝑦) for all t. This follows directly from Theorem 

(2.1.9) applied to Eq. (53). 

If 𝜖 is the ground state energy, 

𝜓0(𝑥)𝜓0(𝑦) = lim
𝑡→∞

𝐺(𝑥, 𝑦; 𝑡) exp (𝜖𝑡) 

 

Since the pointwise Iimit of log concave functions is log concave, the theorem follows.                                                                                         
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Theorem (2.1.15) [63]: Let 𝐴 and 𝐵 be open, connected regions, let 𝐶 = 𝜆𝐴 + (1 −
 𝜆)𝐵, and let 𝑉(𝑥) be convex. Then 

                                                  𝑍𝑐(𝑡) ≥ 𝑍𝐴(𝑡)
𝜆𝑍𝐵(𝑡)

1−𝜆;                                            (56)                                     
                                                    𝜖𝐶  ≤  𝜆𝜖𝐴 + (1 − 𝜆)𝜖𝐵 ,                                          (57)                                       

where 𝜖𝐴(𝜖𝐵 , 𝜖𝐶) 𝑖𝑆 the ground State energy of 𝐻𝐴, (𝐻𝐵  , 𝐻𝐶). 
Proof:  Equations (53, 54) together give an expression for the partition function. We note, 

that we can apply Corollary (2.1.4) to the sets 𝐴𝑀, 𝐵𝑀, and 𝐶𝑀. This proves Eq. (56). 

Further 

𝜖𝐴 = − lim
𝑡→∞

𝑡−1  𝑙𝑜𝑔 𝑍𝐴(𝑡), 

which gives Eq. (57).                                                                                      Q.E.D. 

Theorem (2.1.16) [63]: For measurable sets 𝐴 and 𝐵 ∈  𝑅𝑛, dejne the essential sum 𝐶 =
 𝑒𝑠𝑠{𝐴 +  𝐵} as in Eq. (8). Then C is open, and 

                                          𝜇𝑛(𝐶)
1 𝑛⁄ ≥ 𝜇𝑛(𝐴)

1 𝑛⁄  +  𝜇𝑛(𝐵)
1 𝑛⁄ .                                 (58)                          

Theorem (2.1.17) [63]: For nonnegative, measurable functions 𝑓(𝑥) and 𝑔(𝑥) on 𝑅𝑛, 
dejke 

                  𝐻𝛼(𝑥  |𝑓, 𝑔)  =  𝑒𝑠𝑠𝑦∈𝑅𝑛 𝑠𝑢𝑝{𝑓(𝑥 −  𝑦)
𝛼  ⊕ 𝑔(𝑦)𝛼}1 𝛼⁄                      (59)                        

cf. 𝐸𝑞𝑠. (5-7). Then 𝐻𝛼(𝑥) 𝐼𝑆 ower semicontinuous in x for all 𝛼, 
All the above facts are based on the following observation: For an arbitrary measurable set 

𝐴 𝐶 𝑅𝑛,define 

                       𝐴∗  =  (𝑥 ∈  𝑅𝑛|𝜇𝑛[𝐴 ∩ 𝑉(𝜖, 𝑥) ] 𝑊𝑛(𝜖) → 1⁄   𝑓𝑜𝑟 𝜖 ↓ 0},            (60)         
where 𝑉(𝑐, 𝑥) is the open ball of radius 𝜖 centered at 𝑥, and 𝑊𝑛(𝜖) is its volume. Then 𝐴∗ 
is measurable and 𝜇𝑛(𝐴

∗⊿𝐴)  =  0, where ⊿ means symmetric difference [65, Theorem 

2.9.111]. Hence 

                                               𝑒𝑠𝑠(𝐴 +  𝐵) =  𝑒𝑠𝑠(𝐴∗  +  𝐵∗),                                    (61)                                   
and it is sufficient to prove the theorem when 𝐴 and 𝐵 are replaced by 𝐴∗and 𝐵∗. 
Let 𝑥 ∈  𝐴∗  +  𝐵∗, i.e., there is a point 𝑦 ∈  𝐴∗ ∩ (𝑥 − 𝐵∗). Notice, that 𝐴∗∗ = 𝐴∗; thus 

for some 𝜖 >  0, 

𝜇𝑛[𝐴
∗ ∩ 𝑉(𝜖, 𝑦)] ≥

3

4
 𝑊𝑛(𝜖); 

𝜇𝑛[𝑥 − 𝐵
∗) ∩ 𝑉(𝜖, 𝑦)] ≥

3

4
 𝑊𝑛(𝜖). 

Hence, 𝜇𝑛[𝐴
∗ ∩ (𝑣, 𝐵∗)] >  0 for all 𝑣 in some neighborhood 

𝑉(𝛿, 𝑥), which implies that 𝐴∗ + 𝐵∗ is open, and that 

                                                 𝐴∗ + 𝐵∗  =  𝑒𝑠𝑠(𝐴∗ + 𝐵∗).                                             (62)                                  
Equation (58) now follows from 𝐸𝑞𝑠. (61, 62) and the Brunn- 

Minkowski theorem, Eq. (1).                                                                        

For a nonnegative, measurable function 𝑓, let 

                                𝐴𝑓  =  {(𝑥, 𝑧) ∈  𝑅
𝑛+1|𝑂  <  𝑧 < 𝑓(𝑥)}.                                 (63)                       

Define 𝐴𝑓 ∗ as in (60). If (𝑥, 𝑥) ∈ 𝐴𝑓 ∗, (𝑥, 𝑡)  ∈  𝐴𝑓 ∗ for all 𝑡, 0 <  𝑡 <  𝑧. Thus it makes 

sense to define 

                                                     𝑓∗(𝑥) = sup{𝑧 |(𝑥, 𝑦)  ∈ 𝐴𝑓 ∗}.                               (64)                            
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The supremum over the empty set is taken to be zero. Given 𝑓∗, define 𝐴𝑓∗ according to 

definition (63). Clearly 𝐴𝑓 , 𝐴𝑓∗ and 𝑓∗ are all measurable. By (63) and (64), 𝐴𝑓∗
  ⊃ 𝐴𝑓∗

 . 

Since 

𝐴𝑓∗
 \𝐴𝑓∗

 ⊂  𝐺 ≡  {(𝑥, 𝑓∗(𝑥))  |𝑥 ∈ 𝑅𝑥}, 

and since 𝜇𝑛+1(𝐺)  =  0, it follows that 𝜇𝑛+1(𝐴𝑓
 ∗\𝐴𝑓∗

 ) = 0. 

∫𝑝 = 𝜇𝑛+1(𝐴𝑝
 )Therefore 

 

∫𝑠 |𝑓∗ −  𝑓|𝑑𝑥 = 𝜇𝑛+1(𝐴𝑓∗
 ⊿𝐴𝑓 

 ) 

                                                = 𝜇𝑛+1(𝐴𝑓
 ∗ ⊿𝐴𝑓 

 ) =  0.                                             (65)                     

As a consequence of (65), 

                                                      𝐻𝛼(𝑓, 𝑔) =  𝐻𝛼(𝑓
∗, 𝑔∗).                                        (66)                                

Now consider the function 

                                  𝐻𝛼(𝑥 |𝑓, 𝑔)  =  𝑦∈𝑅𝑛
𝑆𝑈𝑃 {𝑓(𝑥 − 𝑦)𝛼 ⨁𝑔(𝑦)𝛼}1 𝛼⁄ .                     (67)                       

  

Note that generally 𝐾𝛼(𝑥) ≥ 𝐾𝛼(𝑥). Let 

                                 𝐷(𝑧) = {𝑥 ∈ 𝑅𝑛|𝐾𝛼(𝑥 |𝑓
∗, 𝑔∗) > 𝑧}    𝑧 ≥ 0            (68).                           

Choose 𝑧 ≥ 0, 𝑥 ∈ 𝐷(𝑧). By definitions (67) and (68), there is 𝑦 ∈ 𝑅𝑛, and numbers 

𝑏, 𝑐 >  0 such that 

𝑧 ≤ (𝑏𝛼 , 𝑐𝛼)1 𝛼⁄ , 

𝑓∗(𝑥 − 𝑦) > 𝑏, 𝑔∗(𝑦) > 𝑐. 
In other words 

𝛽 ≡ (𝑥 −  𝑦, 𝑏) ∈ 𝐴, ., 𝑦 ≡ (𝑦, 𝑐)  ∈  𝐴,. . 
Then for all 𝛿 >  0 there exist balls 𝑉(𝜖, 𝛽) and 𝑉(𝜖, 𝛾)in 𝑅𝑛+1  such that, in the notation 

of (60), 

𝜇𝑛+1(𝐴𝐽∗ ∩ 𝑉(𝜖, 𝛽)) ≥ (1 − 𝛿)𝑊𝑛+1(𝜖), 

𝜇𝑛+1(𝐴𝑔∗ ∩ 𝑉(𝜖, 𝛾)) ≥ (1 − 𝛿)𝑊𝑛+1(𝜖), 

If 𝛿 is small enough, it follows that the sets 

{𝑣 ∈  𝑉(𝜖, 𝑥 −  𝑦)|𝑓∗(𝑣)  >  𝑏}, 
{𝑤 ∈  𝑉(𝜖, 𝑦)|𝑔∗(𝑤)  >  𝑐}, 

 

have measure at least equal to 
3

4
𝑊𝑛(𝜖). This implies (1) that 𝐻𝛼(𝑥 |𝑓

∗, 𝑔∗) > 𝑧 , so that in 

fact 

                                                  𝐻𝛼(𝑓
∗, 𝑔∗) = 𝐾𝛼(𝑓

∗, 𝑔∗),                                           (69)                                         
and (2) that 𝐷(𝑧) contains a neighborhood of 𝑥, such that 𝐷(𝑧) is open. Hence 𝐾𝛼(𝑓

∗, 𝑔∗) 
is lower semicontinuous. By Eqs. (66,69), so is 𝐻𝛼(𝑓, 𝑔).  
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Section (2.2): Maps with Convex Potentials  

     

    To recapitulate the existence theory of [74] given Ω1, Ω2 bounded domains, with|𝜕Ω𝑖|  =
 0, and non-negative functions 𝑓, 𝑔 defined in Ω1 (resp. Ω2) and bounded away from zero 

and infinity, with 𝑓Ω1  𝑓 = 𝑓Ω2  𝑔 one may construct convex potentials 𝜓,𝜑 such that 

∇𝜓: Ω1 → Ω2 and ∇𝜑: Ω2 → Ω1 (in an a.e. sense) and satisfying 

𝑔 ( ∇𝜓) 𝑑𝑒𝑡 𝐷𝑖,𝑗𝜓 =  𝑓(𝑥) 

in the integral sense 

 ∫ 𝜂(𝑌)𝑔(𝑌)𝑑𝑌
 

Ω2

= ∫ 𝜂(∇𝜓)𝑓(𝑋)𝑑𝑋
 

Ω1

 

for any continuous 𝜂.  

    A similar equation holds for 𝜑 since in fact 𝜓 and 𝜑 are constructed among those pairs of 

continuous  simultaneously by minimizing 

∫ 𝜓(𝑋)𝑓(𝑋)𝑑𝑋
 

Ω1

+∫ 𝜑(Y)𝑔(𝑌)𝑑𝑌
 

Ω2

 

among those pairs of continuous functions 𝜓, 𝜑 such that 

𝜓(𝑋) + 𝜑(Y) ≧  (𝑋, 𝑌 ) 
For any 𝑋 ∈ Ω1, and 𝑌 ∈ Ω2. (This approach, slightly different than Brenier's ,was proposed 

by Varadhan.) 

   It is easy to see that 𝜓, 𝜑 can be taken Lipschitz and bounded (up to a normalization 

constant), since given the pair 𝜓, 𝜑 one may substitute 𝜓 by 

𝜓∗(𝑋) = sup
𝑌∈Ω2̅̅ ̅̅

〈𝑋, 𝑌〉 −𝜑(Y). 

    If we note that for a Lipschitz convex function points of Lebesgue differentiability for 𝛁𝝍 

must actually be points of continuity (see [74]), one can see that 𝝍, 𝝋 are unique, inverse to 

each other, and satisfy the weak equation. 

Without entering into the details of the proof, the weak equation is obtained as the Euler 

equation by making a variation 𝝋𝜺  =  𝝋 + 𝜀𝜂 and 

𝝋𝜺(𝑿) = 𝒊𝒏𝒇〈𝑋, 𝑌〉 − 𝝋𝜺(𝒀) 
And computing 

lim
𝜺→𝟎

1

𝜺
[𝝋𝜺(𝑿) − 𝝍(𝑋)]𝑓(𝑋)𝑑𝑋 

at the differentiability points of 𝛁𝝍 ( 𝑋 ) . 
 That 𝛁𝝋 is the inverse of 𝛁𝝍 has to be given careful interpretation at this point. 

By the minimization property, given 𝑋0 in 𝛀𝟏 , there exists a 𝑌0  in �̅�𝟏 such that 

𝝍(𝑋0 ) + 𝝋(𝑌0 ) = 〈𝑋0 , 𝑌0 〉. 
By symmetry 𝑌0  is the slope of a supporting plane to 𝝍 at 𝑋0  and vice versa. 

Uniqueness is seen by noting that if 𝝍, 𝝋  and �̅̅̅�, �̅�  are minimizing pairs, so does any 

convex combination. 

Hence, if 𝑋0  is a point of joint differentiability for 𝝍 and �̅�, then 𝛁𝝍 and 

𝛁 �̅̅̅� must be the same. 
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(If not 
1

2
(𝝍 +  �̅̅̅�)(𝑋0 ) +

1

2
(𝝋 + �̅�)(𝑌) > 〈𝑋0 , 𝑌〉 

for any 𝑌 in �̅�𝟐.) 

    The regularity results of [74] are as follows: If 𝛀𝟐 is convex, 𝝍 can be extended to a global 

(𝑹𝒏)viscosity solution of 𝐶1𝑥𝛀𝟏 ≦  𝑑𝑒𝑡 𝑫𝒊,𝒋𝝍 ≦ 𝐶2𝑥𝛀𝟐. Further, 𝝍 is strictly convex on 𝛀𝟏. 

   This puts us under the framework of the local regularity theory developed in [75] and hence 

it follows that 𝝍 is locally 𝑪𝟏,𝜶. 

    From the discussion above, now 𝛁𝝋 is continuous in the image of 𝛀𝟏by 𝛁𝝍 and 

𝛁𝝋(𝛁𝝍) = 𝑰𝒅 

as continuous functions. If further 𝑓 and 𝒈 are 𝑪𝜶 functions, 𝝍 is locally a 𝑪𝟐,𝜶classical 

solution. 

    Let us point out that the problem being compact on  𝛀𝒊, 𝑓 , 𝒈 , the estimates remain 

uniform on those parameters as long as they remain in a closed family. 

If now we assume both 𝛀𝟏, 𝛀𝟐 to be convex, both 𝝍 and 𝝋, are locally 𝑪𝟏,𝜶 for some 𝛼 >
 0, and 𝛁𝝍, 𝛁𝝋, are Hölder continuous inverses of each other. 

    If further 𝑓 , 𝒈 are Hölder continuous,  , 𝝋 are locally 𝑪𝟐,𝜶 and hence 𝛁𝝍, 𝛁𝝋, become 

Hölder differentiable maps. 

We now pass to study the boundary regularity of 𝝋, 𝝍. 

     The main theorem is the following. 

Theorem(2.2.1)[73]: If both 𝛀𝒊 are convex and 𝑓, 𝑔 bounded away from zero and infinity, 

then 𝝋, 𝝍 are 𝑪𝟏,𝜶 up to𝛛𝛀𝒊   for some 𝛼 >  0𝑠. Both a and ‖𝝍‖𝑪𝟏,𝜶, ‖𝝋‖𝑪𝟏,𝜶 depend only 

on the maximum and minimum diameter of 𝛀𝒊 ,and the bounds on 𝑓, 𝑔. 

The proof of the theorem is based on an iteration of a strict convexity property of functions 

𝝍 that satisfy an equation of the form 

det𝑫𝒊,𝒋𝝍 = 𝒅𝝁 

on suitable points for 𝒅𝝁. 

We start by constructing adequate of such a 𝝍. 

Let 𝝍 define a global convex graph (𝝍:𝑹𝒏  +  (�̅�)). 
Assume that: 

(a) 𝝍 is finite in a neighborhood of zero, 

(b) 𝝍 is non-negative and 𝝍( 0) =  0 . 

Then, the set of slopes of all supporting planes, 𝑺 =  { 𝑌: (𝒀,𝑿)  +  𝜆, is a supporting plane 

to 𝝍} is convex, and it has nonempty interior if and only if graph 𝝍 contains no lines. 

Consider now, for any 𝒀 in 𝑺,  

∑ = {𝑿: 𝝋(𝑿)  ≦ 〈 𝑿 , 𝑌〉  +  1} 𝑌 . 

Then, we prove 

Lemma (2.2.2) [73]:  If 𝑺 has nonempty interior, there exists a 𝑌 in 𝑆0 such that 

the center of mass of ∑  𝑌  is zero. 

    We call such a 𝚺𝒀 the centered at zero. If we replace 〈𝑿 , 𝑌〉 +  1 by 〈𝑿 , 𝑌〉 + 𝜀 , we call 

it the entered at zero. 
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   In order to do that we start with a lemma of independent interest, a simple variant of some 

theorems of Fritz John. 

Lemma(2.2.3) [73]: Let 𝛀 be a bounded convex set in 𝑹𝒏 with the origin for center of mass. 

Let 𝑬 be the symmetric ellipsoid of minimum volume containing 𝛀. Then, there exists 𝑎 𝝀, 

depending only on dimension, such that 𝝀𝑬 is contained in 𝛀. 

Proof: By a linear transformation, we may assume that 𝑬 is the unit ball. Then, if 𝜎𝑒1 is the 

closest point to the origin, we must show that  𝝈 ≧ 𝝀(𝑛). 
We first point out that 𝛀 is contained between two hyperplanes −𝑐𝜎 ≦ 〈 𝑿 , 𝑒1 〉 ≦ 𝜎. 

Indeed, the inequality on the right is just the definition of 𝜎. 

If 𝑆  𝑆 =  { 𝑌 ∶  〈𝑌, 𝑒1〉 = 𝑂} ∩ 𝛀 

and 𝑋 satisfies 

〈𝑋, 𝑒1〉  < 0 

the cone generated by 𝑋 and 𝑺 is contained in 𝛀 “to the left” of 𝑺 (i.e., for 

〈𝒀, 𝑒1〉  <  0) and contains 𝛀 to the right of 𝑺. 
  If  〈𝑋 , 𝑒1〉  =  −𝝁, this allows us to estimate the 𝑒1 component of the center of mass as 

 𝐶(𝑒1) ≦
|𝑆|

|𝛀|
∫ 𝑡 [

𝑡 + 𝝁

𝝁
]
𝑛−1

𝑑𝑡 ,
𝜎

−𝝁

 

a negative quantity for 𝜎/𝝁 small. 

Hence, we must have 𝝁 ≦  𝑪𝜎 and if 𝜎 <<  1 since 

𝛀 ⊂ 𝐵1 ∩ { 𝑋 ∶ |〈𝑿, 𝒆𝟏〉| ≦ 𝑪𝜎 } 
we may cover 𝛀 by an ellipsoid �̃� with 

|�̃� | < |𝐵1| 
contradicting the definition of 𝑩𝟏 .Let us now go back to the proof of Lemma (2.2.2). 
For any 𝒀 in 𝑆0, the ∑ 𝒀 is bounded, since ∑ ⊂ { 𝑋 ∶  

𝑌 〈𝒀 , 𝑿〉  +  1 ≧  𝑳} 
for any supporting plane 𝑳, and such a family of 𝑳’𝒔 contains as slopes a neighborhood of 𝒀 

. 

Hence, the functions “center of mass” 𝒄 (𝒀 ) = 𝒄(∑ 𝒀 ) and momentum 

𝒎( 𝒀 )  =  𝑐(𝑌)|∑ 𝒀 | are well defined for 𝑌 ∈  𝑆0. Assume first that 𝑺 is bounded, i.e., 

𝜓 is globally Lipschitz. 

We shall prove that 𝒄( 𝒀 ) is locally Lipschitz in 𝑆0, goes to infinity when 𝒚 goes to 𝜕𝑆, and 

has a local “transversality” property that forces, for 𝒎 the momentum of ∑ 𝒀  

min
𝑠
|𝒎( 𝒀)| =  0 

   . 

Note first that when 𝒀𝒏 converges to Y∈ 𝜕𝑆, the ∑ 𝒀𝒏  and its center of mass cannot remain 

bounded.  

If not ∑ 𝒀 would be bounded, 𝜓would be transversal to 𝑳𝒀 = 〈𝑿, 𝒀 〉 +  1 on 𝝏∑ 𝒀  ,and 

hence 𝒀 would be interior to 𝑺. 

But, then if 𝑐(𝑌𝑛) remains bounded, from Lemma (𝟐. 𝟐. 𝟑) we would have a sequence of 

ellipsoids 𝐸𝑛(𝑐( 𝑌𝑛) ) centered on 𝑐( 𝑌𝑛) with maximum diameter going to infinity and 

contained in ∑ . 𝑌𝑛  

  It follows that graph 𝜓 contains a line, a contradiction. Hence 
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lim
𝑌→𝜕𝑆

|𝑐(𝑌)| = +∞
  

And 

lim
𝑌→𝜕𝑆

|𝑚(𝑌)|  =  +∞ 

since |∑  𝑌 |  >  
𝟏

𝟐
|𝑩𝝆|, for 𝑩𝝆(𝒐) a small ball satisfying 𝜓 |𝐵𝑝 < 1 . 

The second observation is that, arguing as above, if 𝑌 remains in a compact subset of 𝑆0  
both 𝑐( 𝑌 ) and diam (∑  𝑌 ) remain uniformly bounded. 

  In particular, 𝜓 and 𝐿𝑌 = 〈𝑋 , 𝑌〉 +  1, remain uniformly transversal along 

𝜕∑  𝑌 (i.e., (𝝍 − 𝐿𝑌)(𝑥)  ≧  𝑪 dist (𝑋, ∑  𝑌 ) with 𝑪 independent of 𝑌. It follows 

that if 𝑌1, 𝑌2 ,  are both in such a compact subset, the Hausdorf distance  

𝑑 (∑  
 

𝑌1

,∑  
 

𝑌2

) 

Satisfies  

𝑑 (∑  
 

𝑌1

,∑  
 

𝑌2

) ≦ 𝐶|𝑌1 − 𝑌2| 

and 

|𝑐(𝑌1) − 𝑐( 𝑌2)| ≦  𝐶 |𝑌1 − 𝑌2| 
|𝑚(𝑌1) − 𝑚( 𝑌2)| ≦  𝐶 |𝑌1 − 𝑌2|. 

The third and final observation is that, always for 𝑌 in a compact subset of 𝑆0, 

〈𝑚(𝑌 +  𝜺𝒆) −  𝑚(𝑌), 𝑒〉 ≧  𝑲𝜺 . 
   Indeed, if we look at both half spaces 𝑯+ = {〈𝑋 , 𝑒〉 >  𝑶} and 𝑯− = 

{〈𝑿 , 𝒆 〉 <  0 }, 
Σ𝑌+𝜺𝒆 ∩𝑯

+ ⊃ 𝚺𝒀 ∩𝑯
+  

And vice versa 

𝚺𝒀  ∩  𝑯
− Σ𝑌+𝜺𝒆 ⋂𝑯

−   , 
There fore 

〈𝑚(𝑌 + 𝜺𝒆 ), 𝒆〉 ≧  〈𝑚(𝑋), 𝒆〉 . 
To see that there is effectively a gain of order 𝜀, we recall first that 𝜓 is Lipschitz (with norm 

A) and hence if 𝑋 ∈ Σ𝑌 ∩ +𝑯
+ , then 𝑋 +

𝜀

Λ
〈𝑋, 𝑒〉𝑒 ∈ Σ𝑌+𝜺𝒆  

for 𝜇 small enough (if 𝜓(𝑋)  ≦  〈𝑋 , 𝑌  〉 +  1 

𝜓 (𝑋 +
𝜀

Λ
〈𝑋, 𝑒〉𝑒 ) ≦  〈𝑋 , 𝑌〉 

+𝜺 〈𝑿, 𝒆 〉 ≦ 𝐿𝑌+𝜺𝒆 
and hence, since for bounded 𝑌 , 𝚺𝒀 contains a fixed neighborhood of zero, say 𝑩�̃�, 

(𝚺𝒀 + 𝒆𝜺\ 𝚺 𝒀 ) ∩ {〈𝑿, 𝒆 〉 ≧  �̃� / 𝟐 } 
has measure of order 𝑪 ( �̃� , 𝚲 ) 𝜺. 

    With these three remarks, it now follows (always for 𝝍 Lipschitz) that 

min
𝑌∈𝑆0

|𝑚(𝑌)|2 = 0 . 

Indeed, if not, let 𝑌0  be the point where such a minimum is attained. 

Let 𝑒 = 𝑚(𝑌) ∕ |𝑚(𝑌)|  and compute 
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|𝑚(𝑌 − 𝒆𝜺)| 2 = 〈𝒎 (𝑌 − 𝒆𝜺) , 𝒆 〉𝟐 + 〈𝑚 (𝑌 − 𝒆𝜺, 𝝉〉2, 
for some unit vector 𝜏, with ( 𝝉 , 𝒆 )  =  0. 

   Adding and subtracting 𝑚( 𝒀 ) to each term we get 

|𝑚(𝑌) − 𝒆𝜺|2 ≦ (|𝑚(𝑌)| − 𝐶1𝜀)
2 + 𝐶1𝜀

2 < |𝑚(𝑌)|2 
for 𝜀 small.  

     This completes the proof of the lemma for 𝝍 Lipschitz. 

For a general graph 𝝍, as in the hypothesis of the lemma, consider the increasing family of 

Lipschitz functions 

𝜓𝑀 = sup  𝐿𝑌 

 with 𝑳𝒀  a supporting plane for 𝝍 with 𝑌 =  𝛁𝑳 satisfying |𝑌| ≦ 𝑴. For 𝑀 

large enough 𝑺𝝍  ∩ 𝑀 has nonempty interior and hence we may find a centered 

𝚺𝒀𝑴 , 𝑜𝑓 𝝍𝑴 . 

   We show that for 𝑀 going to infinity: 

   (a) |𝒀𝑴| remains bounded. Indeed 𝝍 was finite (and hence 𝝍 <  1/2) in a neighborhood 

𝑩𝝆 of zero. Recall from Lemma (2.2.3) that 𝚺𝒀𝑴 is equivalent to a centered ellipsoid. Hence, 

since for any 𝜺, (−𝒀𝐌 − 𝜺) / ( |𝒀𝐌| 
𝟐) ∉ 𝚺𝒀𝑴    ( because 

𝝍𝑴 ≧  𝟎), we get that 𝚲( 𝒀𝐌 +  𝜺) /| 𝒀𝐌|
𝟐 ∉ 𝚺𝒀𝑴   either for 𝚲 large (𝚲 >  1 / 𝜆 as in 

Lemma (2.2.3)). That is 

𝝍𝑴 (Λ
𝒀𝐌

| 𝒀𝐌|
𝟐) ≧ 〈𝒀𝐌 ,

Λ𝒀𝐌

| 𝒀𝐌|
𝟐
〉 + 1 ≧ Λ + 1, 

a contradiction if |𝒀𝐌| >  𝚲/ 𝝆. 
   (𝑏) The minimum and maximum diameters of 𝚺𝒀𝑴 (understood as those of the equivalent 

ellipsoid) are bounded away from zero (since 𝝍 is close to zero near zero) and infinity (if 

not graph 𝝍 would contain a line). 

    (c) For an appropriate subsequence 𝚺𝒀𝑴 converges in Hausdorff metric t 𝚺𝒀 of 𝜓 with 

𝑐( 𝑌 )  =  0. 
    Indeed, choose 𝚺𝒀 converging to  , and 𝚺𝒀𝑴 converging to Σ̅ in Hausdorf 

metric. Since 𝜓𝑀 is increasing, 

𝚺𝒀 (𝝍) ⊂ 𝑰𝒊𝒎 𝚺𝒀𝑴(𝝍𝑴) ⊂  Σ̅. 

On the other hand, since |Y𝑀 |a nd diam 𝚺𝒀𝑴   remain bounded, 𝝍𝑴 remain uniformly 

bounded in 𝚺𝒀𝑴 and uniformly transversal, that is 

(𝝍𝑴(𝑿) − [〈𝑿, Y𝑀 〉 + 𝟏]) ≦ −𝑪𝒅(𝑿, 𝝏𝚺𝒀𝑴). 

        (Note that 𝑔𝑀 − 1 is an upper barrier for 

𝝍𝑴 − [〈𝑿, Y𝑀 〉 + 𝟏] , 
with 𝑔𝑀 the function, homogeneous of degree one, satisfying 

𝑔𝑀(0) = 0 

And 

𝑔𝑀|𝝏𝚺𝒀𝑴
= 1 . ) 

         Hence, if  𝑋 ∈ (Σ̅)0, we have for 𝑀 large that 

𝑑(𝑋, 𝝏𝚺𝒀𝑴)  >  𝛿 
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 and hence 

𝜓(𝑋)  =  lim
 
𝝍𝑴 ( 𝑋 )  ≦   〈𝑋 , 𝑌 〉 +  1 −  𝐶𝛿 .  

Hence Σ̅ ⊂ Σ𝑌(𝝍). 
The proof of the lemma is now complete. 

The following lemma can be found in [75]. 

Lemma (2.2.4) [73]:      Let 𝑢 be a convex solution of 

det𝐷𝑖𝑗 𝑢 = 𝑑𝜇 

in the convex domain Ω in the Alexandrov sense with 𝐵1 ⊂ Ω  𝐵𝑘 and 𝑢 ≡ 0 on 𝜕Ω. Assume 

that for some 𝜆 <  1 

𝜇(𝜆 Ω) ≧ 𝜃𝜇(Ω). 
Then for 𝐶𝑖  =  𝐶𝑖(𝜃 , 𝜆 , 𝐾 ) 
                                𝐶1|inf 𝑢| ≦ 𝜇(Ω) ≦ 𝐶2|inf 𝑢| .  

Further, for some 𝜆‘, with 𝜆 <   𝜆’ < 1 and 

𝐶𝑖  =  𝐶𝑖(𝜆 , 𝜆’, 𝜃, 𝐾 ) 
𝐵𝐶1𝜇(Ω)1/𝑛 ⊂ ∇𝑢(𝜆’Ω) ⊂ 𝐵𝐶2𝜇(Ω)1/𝑛. 

Proof: From the classic Alexandrov estimate 

|𝑢(𝑥)|𝑛  ≦  𝐶 𝑣𝑜𝑙(∇𝑢(Ω)) ⋅  𝑑 ( 𝑋 , 𝜕Ω ) 
=  𝐶𝜇(Ω) 𝑑 ( 𝑋 , 𝜕Ω) . 

On the other hand, for any 𝜆 <   𝜆’ < 1 

|∇𝑢|𝜆Ω ≦ 𝐶(𝜆, 𝜆’)| 𝜆’Ω
inf𝑢|. 

That is 

∇𝑢(𝜆Ω) ⊂ 𝐵𝐶(𝜆,𝜆’)|inf𝜆’Ω𝑢|
 

and hence 

𝜇(𝜆Ω) ≦ 𝐶(𝜆, 𝜆’)| 𝜆’Ω
inf𝑢|

𝑛
. 

In our case, since we are assuming 

𝜃𝜇(Ω) ≦ 𝜇(𝜆Ω) , 
the first set of inequalities is proven. 

To complete the second set of inequalities, we note that, from the Alexandrov estimate 

above, for 𝜆’ close enough to one. 

| 𝜕𝜆’Ω
inf𝑢| ≦

1

2
| 𝜆’Ω
inf𝑢| 

 And therefore any linear function 𝐿 with slope 𝑠(𝐿) smaller than 𝐶 inf 𝑢 is a supporting 

plane for 𝑢 in 𝜆’Ω .  
The proof of the lemma is now complete. 

    We are now ready to prove strict convexity of 𝜓 up to 𝜕Ω. This is due to the fact that 

𝑑𝜇 =  𝑑𝑒𝑡 𝐷𝑖𝑗𝜓 satisfies the hypothesis of the previous lemma for any centered at a point 

of Ω .We may as well consider such a class of measure 𝜇, that is Let Γ = Γ(𝜃, 𝜆) be the class 

of non-negative measures 𝜇 with convex support Ω(𝜇), such that for any convex set 𝑆 with 

center of mass 0 in Ω(𝜇), satisfies 𝜇(𝜆𝑆) ≧ 𝜃𝜇(𝑆). 
Then we may prove the following lemma. 
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         Lemma (2.2.5) [73]: Let 𝑢 be a solution in 𝑆 of 

det𝐷𝑖𝑗 𝑢 = 𝑑𝜇 

with 𝜇 in Γ. 

    Assume that 𝑆 is centered (ie., 𝐶(𝑆)  =  0), that 𝐵1 ⊂  𝑆 ⊂  𝐵𝐾 , and that �̅� ∈ Ω(𝜇) ∩
1

2
𝑆 . 

    Extend 𝑢 to ℓ𝑆 𝑎𝑠 + ∞ , and normalize 𝜇 so that 𝜇(𝑆)  =  1. Then there is 

𝑎𝛿 <  1 so that the 𝛿 −centered of 𝑢 at �̅� (i.e.,  

Σ(𝛿)  =  { 𝑋: 〈𝑋 − �̅� , 𝑌〉 + 𝛿 > 𝑢 ( 𝑋 ) − 𝑢( �̅� ) } , that has �̅� as center of mass) is strictIy 

contained in 𝜆’𝑆 (for some ‘(𝜆, 𝜃 <  1 ) . 
    Further, if �̃�  ∈ 𝜕𝜆′ ∩ Ω, then (∇𝑢(�̃�)  − ∇ 𝑢 ( �̅� ) , �̃�   −  �̅�)  > 𝜏0  >  0. 

Proof: From Lemma (2.2.4), 𝑢 and ∇𝑢 are bounded in 𝜆𝑆, and such exists. Assume that 

there is a sequence of fucntions 𝑢𝑘 for which Σ( 1/𝑘) always reaches 𝜕𝜆′𝑆. Then, taking 

limits in the subsequence of solutions 𝑢𝑘 the centers Σ𝐾 and the corresponding linear 

functions 〈𝑋, 𝑌𝑘〉that define the, we find that the convex contact set 𝐷 (we take from now on 

𝑋0 = lim
 
�̅�𝑘 as center of coordinates) 

𝐷 =  { 𝑋: 𝑢 ( 𝑋 ) −  𝑢(𝑋0) = 〈𝑋, 𝑌∞〉} 
has the following properties: 

(a) There is a segment, [−𝛼𝑋1, 𝑋1 ]in 𝐷 with 𝑋1 ∈ 𝜕𝜆𝑆 and 𝛼~1 (since the ellipsoids Σ are 

centered and they all touch 𝜕𝜆′𝑆. Therefore 

(b) |min𝐷 𝑢| ≧ (1 + 𝑡)|𝑢(0)| since |𝑢(0)| ∼ 1 and, 𝑋1 being in 𝜕𝜆′𝑆, 

|𝑢(𝑋1)| ≦
1

2
|𝑢(0)|(for this, 𝜆′ must be close to one). 

(c) If Ω̃ = limΩ𝑘(the support of μ𝑘) then the extremal points of 𝐷 in 

𝑆0 are contained in (the convex set) Ω̃. 

Indeed (see, for instance, [76]), given the convex contact set 𝐾 = {𝑢 =  𝐿} of any convex 

function 𝑢 with a supporting plane 𝐿, and 𝑋 an extremal point 

of  , one may find { 𝑌: 𝑢( 𝑌 )  <  �̃�} of diameter as small as one wishes containing 𝑋. 

    Therefore the approximating functions 𝑢𝑘 have nontrivial of small diameter as close as 

we want to 𝑋 and hence 𝑋 ∈ Ω̃. 

It follows from (a), (b), and (c) that both 𝑋0 and the set D̃ =  {𝑋 ∈ 𝐷 𝑢(𝑋) = min
𝑌∈𝐷

𝑢(𝑌)⁄ } 

are in Ω̃, 𝑋0 by hypothesis, and D̃ because the extremal points of D̃ are extremal points of 𝐷, 

obviously in 𝑆0. Hence its convex envelope is also in Ω̃. Let now 𝑋2 be the closest point in 

D̃ to the origin, 𝑋1 = 𝜇𝑋2 with 𝜇 <  1 to be chosen and Σ the 𝜀 of 𝑢 at 𝑋1 (i.e., 𝑋1 the center 

of mass of Σ), and 𝑢(𝑋1) − 𝐿 =  −𝜀 for 𝐿 the linear function defining Σ. 

    We first point out that for 𝜇 close to one and 𝜀 close to zero, Σ must be strictly contained 

in 𝑆. This is because, once more Σ being centered at 𝑋1 it is equivalent to a centered ellipsoid 

(Lemma (2.2.3)) and therefore if it has a segment joining 𝑋1with 𝜕𝑆1 (note that 𝑑(D̃, 𝜕𝑆1) is 

strictly positive from Lemma (2.2.4)), it has a segment in the opposite direction. 

Taking limits 𝜇 going to 1 and 𝜀 going to zero, we find that the graph of 𝑢 has a nontrivial 

segment through 𝑋2,_along which 𝑢 is linear and nonconstant, a contradiction to the 

definition of �̃�. 
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    Now fix 𝜇 close to one. Then Σ(𝜀) contains a segment [𝛼𝑋2, 𝛽𝑋2] through 

𝑋1 = 𝜇𝑋2 and since 𝑢 is linear between 0 and 𝑋2, we must have 𝛼 <  0 or𝛽 >  1. If 𝜇 is 

close enough to one, 𝛽 <  1 will contradict the fact that Σ is centered since the segment 

[0, 𝑋1]is much larger than [𝑋1, 𝑋2] .Thus, 𝛽 >  1 and we must have lim
𝜀→0

 𝛽  =  1 in order not 

to contradict the definition of �̃�. This makes 𝛼 >  0 since Σ is centered at 𝑋1. 

At this point we fix 𝜀, so that 𝛽 is very close to one, in order to make 
𝛽 − 1

(𝛽 − 𝜇)
 

  very small. We point out that, if 𝐿 defines Σ 

(𝐿 −  𝑈)(𝑋1)  <  (𝐿 −  𝑢)(𝑋2) , since 𝐿 −  𝑢 is a linear function in [𝑂, 𝑋2], positive at 𝑋2, 

and zero at 𝛼𝑋2 (recall that 𝛼 >  0). 

Let us now normalize 𝑢 to the situation of Lemma (2.2.4), that is, by an affine transformation 

we transform Σ into Σ∗, 𝑋1 into 𝑋1
∗  =  0, and 𝑋2 into 𝑋2

∗ with 

𝐵1 ⊂ Σ
∗ ⊂ 𝐵𝐾

 . 

Since ratios along a ray are preserved by linear transformations and 𝐵𝑋2
∗ ∈ ∂Σ∗ we get that 

𝑋2
∗ is as close as we want to ∂Σ∗ (recall that (𝛽 −  1)/(𝛽 − 𝜇) was as small as we wished 

and hence 
|𝛽𝑋0

∗−𝑋0
∗|

|𝛽𝑋0
∗−𝑋1

∗|
 =

𝛽−1

𝛽−𝜇
 

is small). Then 𝑢 −  𝐿 gets renormalized to a function 𝑢 
∗and we would complete the proof 

of the lemma if we could say that 

𝑢 
∗(𝑂)  =  (𝐿 −  𝑢 ) ( 𝑋1)~ inf 𝑢 

∗ , and 

𝑢 
∗(𝑋2

∗)  =  (𝐿 −  𝑈)(𝑋2
 )~ inf 𝑢 

∗𝑑(𝑋2
∗, ∂Σ∗), 

but this follows from the fact that 𝑢 
∗ is on Σ∗ the uniform limit of 𝑢𝑘

∗  (the renormalization of 

𝐿 − 𝑢𝑘
 ) and 0 = 𝑋1

∗ being in Ω̃∗ (the renormalization of Ω̃). 
(Notice that the elements 𝜇 of Γ(𝜆, 𝜃) are invariant under affine transformations. 

This proves (i).) The second assertion follows similar lines (we again find a segment in Ω̅ 

where 𝑢 is linear). 

It is now easy to prove Theorem (2.2.1). 

Let 𝜓 be a global solution of det𝑫𝒊,𝒋𝝍 = 𝒅𝝁 −, with 

𝜇 in Γ and 0 in Ω𝜇. Let Σ𝑘 be the 𝜀𝑘 centered at zero (𝑘 an integer). 

The size of Σ0 (i.e., maximum and minimum diameters) is, by compactness, 

controlled by the maximum and minimum diameters of Ω𝑖. By iteration of 

(i) in the previous lemma we have that 

Σ𝑘 ⊂ λ
′𝑘Σ0, 

and from part (ii) (and Lemma (2.2.4)), it follows that if  𝑋0 ∈  Σ𝑘  \ Σ𝑘+1 ∩ Ω, 

|∇𝜓(𝑋0) − ∇𝜓(0)| ≧ 𝐶|𝑋0|
𝑀  

for some 𝑀. 

This implies the Holder continuity of ∇φ. The proof of the theorem is thus complete. 
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Chapter 3 

From Brunn Minkowski to Brascamp Lieb 

We deduce similarly the logarithmic Sobolev inequality for uniformly convex potentials for 

which we deal more generally with arbitrary norms and obtain some new results. 

Applications to transportation cost and to concentration on uniformly convex bodies 

complete the exposition. We present a simple direct proof of the classical Sobolev inequality 

in 𝑅𝑛  with best constant from the geometric Brunn–Minkowski–Lusternik inequality. 

Section (3.1): Logarithmic Sobolev Inequalities  

After the first complete proof of the classical isoperimetric inequality was found, Minkowski 

proved the following inequality: 

                        𝑉 ((1 − 𝜆)𝐾 + 𝜆𝐿)1 𝑛⁄  ≥ (1 − 𝜆)𝑉(𝐾)1 𝑛⁄ + 𝜆𝑉(𝐿)1 𝑛⁄ .                (1)                
Here 𝐾 and 𝐿 are convex bodies (compact convex sets with nonempty interiors) in ℝ𝑛, 0 <
𝜆 < 1, 𝑉 denotes volume, and + denotes vector or Minkowski sum. The inequality (1) had 

been proved for 𝑛 = 3 earlier by Brunn, and now it is known as the Brunn-Minkowski 

inequality. It is a sharp inequality, equality holding if and only if 𝐾 and 𝐿 are homothetic. 

The Brunn-Minkowski inequality was inspired by issues around the isoperimetric problem, 

and was for a long time considered to belong to geometry, where its significance is widely 

recognized. It implies, but is much stronger than, the intuitively clear fact that the function 

that gives the volumes of parallel hyperplane of a convex body is unimodal. It can be proved 

on a single , yet it quickly yields the classical isoperimetric inequality (21) for convex bodies 

and other important classes of sets. The fundamental geometric content of the Brunn-

Minkowski inequality makes it a cornerstone of the Brunn-Minkowski theory, a beautiful 

and powerful apparatus for conquering all sorts of problems involving metric quantities such 

as volume, surface area, and mean width. 

By the mid-twentieth century, however, when Lusternik, Hadwiger and Ohmann, and 

Henstock and Macbeath had established a satisfactory generalization of (1) and its equality 

conditions to Lebesgue measurable sets, the inequality had begun its move into the realm of 

analysis. The last twenty years have seen the Brunn Minkowski inequality consolidate its 

role as an analytical tool,  and a compelling picture (see Figure 1) has emerged of its relations 

to other analytical inequalities. In an integral version of the Brunn-Minkowski inequality 

often called the Pr�̀�kopa -Leindler inequality (12), a reverse form of Hölder 's inequality, the 

geometry seems to have evaporated. Largely through the efforts of Brascamp and Lieb, this 

can be viewed as a special case of a sharp reverse form (32) of Young's inequality for 

convolution norms. A remarkable sharp inequality (36) proved by Barthe, closely related to 

(32), takes us up to the present time. The modern viewpoint entails an interaction between 

analysis and convex geometry so potent that whole conferences and books are devoted to 

“analytical convex geometry" or “convex geometric analysis." The main development of this 

includes historical remarks and several detailed proofs that amplify the previous paragraph 

and show that even the latest developments are accessible to graduate students. Several 

applications are also discussed at some length. Extensions of the Pr�̀�kopa-Leindler 

inequality can be used to obtain concavity properties of probability measures generated by 
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densities of well-known distributions. Such results are related to Anderson's theorem on 

multivariate unimodality, an application of the Brunn-Minkowski inequality that in turn is 

useful in statistics. The entropy power inequality (48) of information theory has a form 

similar to that of the Brunn-Minkowski inequality. To some extent this is explained by Lieb's 

proof that the entropy power inequality is a special case of a sharp form of Young's inequality 

(31). This is given in detail along with some brief comments on the role of Fisher information 

and applications to physics. We come full circle with consequences of the later inequalities 

in convex geometry. Ball started these rolling with his elegant application of the Brascamp-

Lieb inequality (35) to the volume of central of the cube and to a reverse isoperimetric 

inequality (45). 

The whole story extends far beyond Figure 1 and the previous paragraph. The final is a 

survey of the many other extensions, analogues, variants, and applications of the Brunn-

Minkowski inequality. Essentially the strongest inequality for compact convex sets in the 

direction of the Brunn-Minkowski inequality is the Aleksandrov-Fenchel inequality (51). 

Here there is a remarkable link with algebraic geometry: Khovanskii and Teissier 

independently discovered that the Aleksandrov-Fenchel inequality can be deduced from the 

Hodge index theorem. Analogues and variants of the Brunn-Minkowski inequality include 

Borell's inequality (57) for capacity, employed in the recent solution of the Minkowski 

problem for capacity; Milman's reverse Brunn-Minkowski inequality (64), which features 

prominently in the local theory of Banach spaces; a discrete Brunn-Minkowski inequality 

(65) due to Gronchi, closely related to a rich area of discrete mathematics, combinatorics, 

and graph theory concerning discrete isoperimetric inequalities; and inequalities (67), (68) 

originating in Busemann's theorem, motivated by his theory of area in Finsler spaces and 

used in Minkowski geometry and geometric tomography. Around the corner from the Brunn-

Minkowski inequality lies a slew of related affine isoperimetric inequalities, such as the Petty 

projection inequality (62) and Zhang's affine Sobolev inequality (63), much more powerful 

than the isoperimetric inequality and the classical Sobolev inequality (24), respectively. 

There are versions of the Brunn-Minkowski inequality in the sphere, hyperbolic space, 

Minkowski spacetime, and Gauss space, and there is a Riemannian version of the Pr�̀�kopa -

Leindler inequality, obtained very recently by Cordero-Erausquin, McCann, and 

Schmuckensch lÄager. Finally, pointers are given to other applications of the Brunn-

Minkowski inequality. Worthy of special mention here is the derivation of logarithmic 

Sobolev inequalities from the Prekopa-Leindler inequality by Bobkov and Ledoux, and work 

of Brascamp and Lieb, Borell, McCann, and others on diffusion equations. Measure-

preserving convex gradients and transportation of mass, utlilized by McCann  in applications 

to shapes of crystals and interacting gases, were also employed by Barthe in the proof of his 

inequality. 

In a sea of mathematics, the Brunn-Minkowski inequality appears like an octopus, tentacles 

reaching far and wide, its shape and color changing as it roams from one area to the next. It 

is quite clear that research opportunities abound. For example, what is the relationship 

between the Aleksandrov-Fenchel inequality and Barthe's inequality? Do even stronger 

inequalities await discovery in the region above Figure 1? Are there any hidden links 
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between the various inequalities in? Perhaps, as more connections and relations are 

discovered, an underlying comprehensive theory will surface, one in which the classical 

Brunn-Minkowski theory represents just one particularly attractive piece of coral in a whole 

reef. Within geometry, the work of Lutwak and others in developing the dual Brunn-

Minkowski and 𝐿𝑝-Brunn-Minkowski theories strongly suggests that this might well be the 

case. 

We show the following easy result (for definitions and notation). 

Theorem (3.1.1)[78]: (Brunn-Minkowski inequality in ℝ.) Let 0 < 𝜆 < 1 and let 𝑋 and 𝑌 

be nonempty bounded measurable sets in ℝ such that (1 − 𝜆)𝑋 + 𝜆𝑌 is also measurable. 

Then 

                                    𝑉1((1 − 𝜆)𝑋 + 𝜆𝑌) ≥ (1 − 𝜆)𝑉1(𝑋) + 𝜆𝑉1(𝑌).                (2)              
Proof: Suppose that 𝑋 and 𝑌 are compact sets. It is straightforward to prove that 𝑋 + 𝑌 is 

also compact. Since the measures do not change, we can translate 𝑋 and 𝑌 so that 𝑋 ∩ 𝑌 =
{𝑜}, 𝑋 ⊂ {𝑥 ∶ 𝑥 ≤ 0}, and 𝑌 ⊂ {𝑥 ∶ 𝑥 ≤ 0}. Then +𝑌 ⊃  𝑋 ∪ 𝑌 , so 

𝑉1(𝑋 + 𝑌 ) ≥ 𝑉1(𝑋 ∪ 𝑌) = 𝑉1(𝑋) + 𝑉1(𝑌 ). 
If we replace 𝑋 by (1 − 𝜆)𝑋 and 𝑌 by 𝜆𝑌 , we obtain (2) for compact 𝑋 and 𝑌. The general 

case follows easily by approximation from within by compact sets.  

Simple though it is, Theorem (3.1.1) already raises two important matters. 

Firstly, observe that it was enough to prove the theorem when the factors (1 − 𝜆) and 𝜆 are 

omitted. This is due to the positive homogeneity (of degree 1) of Lebesgue measure in ℝ: 

𝑉1(𝑟𝑋) = 𝑟𝑉1(𝑋) for 𝑟 ≥ 0. In fact, this property allows these factors to be replaced by 

arbitrary nonnegative real numbers. For reasons that will become clear, it will be convenient 

for most to incorporate the factors (1 − 𝜆) and 𝜆. 

Secondly, the set (1 − 𝜆)𝑋 + 𝜆𝑌 may not be measurable, even when 𝑋 and 𝑌 are 

measurable. We discuss this point in more detail. 

The assumption in Theorem (3.1.1) and its n-dimensional forms, Theorem (3.1.4) and 

Corollary (3.1.6) below, that the sets are bounded is easily removed and is retained simply 

for convenience. 
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Figure 1[78]: Relations between inequalities.  

We denote the origin, unit sphere, and closed unit ball in 𝑛-dimensional Euclidean space ℝ𝑛 

by 𝑜, 𝑆𝑛−1, and 𝐵, respectively. The Euclidean scalar product of 𝑥 and 𝑦 will be written 𝑥 ∙
𝑦, and ‖𝑥‖ denotes the Euclidean norm of 𝑥. If 𝑢 ∈ 𝑆𝑛−1, then 𝑢⊥ is the hyperplane 

containing 𝑜 and orthogonal to 𝑢. 

Lebesgue 𝑘-dimensional measure 𝑉𝑘 in ℝ𝑛 , 𝑘 = 1,… , 𝑛, can be identified with 𝑘-

dimensional Hausdorff measure in ℝ𝑛. Then spherical Lebesgue measure in 𝑆𝑛−1 can be 

identified with 𝑉𝑛−1 in 𝑆𝑛−1. 𝑑𝑥 will denote integration with respect to 𝑉𝑘 for the appropriate 

𝑘 and integration over 𝑆𝑛−1 with respect to 𝑉𝑛−1 will be denoted by 𝑑𝑢. 

The term “measurable" applied to a set in ℝ𝑛 will mean 𝑉𝑛-measurable unless stated 

otherwise. If 𝑋 is a compact set in ℝ𝑛 with nonempty interior, we often write 𝑉(𝑋) = 𝑉𝑛(𝑋) 
for its volume. We shall do this in particular when 𝑋 is a convex body, a compact convex 

set with nonempty interior. We also write 𝜅𝑛 = 𝑉 (𝐵). In geometry, it is customary to use 

the term volume, more generally, to mean the 𝑘-dimensional Lebesgue measure of a 𝑘-

dimensional compact body 𝑋 (equal to the closure of its relative interior), i.e. to write 

𝑉(𝑋) = 𝑉𝑘(𝑋) in this case. 

Let 𝑋 and 𝑌 be sets in ℝ𝑛. We define their vector or Minkowski sum by 
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𝑋 + 𝑌 = {𝑥 + 𝑦: 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. 
If 𝑟 ∈ ℝ, let 

𝑟𝑋 = {𝑟𝑥: 𝑥 ∈ 𝑋}. 
If 𝑟 > 0, then 𝑟𝑋 is the dilatation of 𝑋 with factor 𝑟, and if 𝑟 < 0, it is the reflection of this 

dilatation in the origin. If 0 < 𝜆 < 1, the set (1 − 𝜆)𝑋 + 𝜆𝑌 is called a convex combination 

of 𝑋 and 𝑌. 

Minkowski's definition of the surface area 𝑆(𝑀) of a suitable set 𝑀 in ℝ𝑛 is 

                                           𝑆(𝑀) = lim
𝜀→0+

𝑉𝑛(𝑀+𝜀𝐵)−𝑉𝑛(𝑀)

𝜀
.                                    (3)                                     

we will use this definition when 𝑀 is a convex body or a compact domain with piecewise 

𝐶1 boundary. 

A function 𝑓 on ℝ𝑛 is concave on a convex set 𝐶 if 

𝑓 ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦), 
for all 𝑥, 𝑦 ∈ 𝐶 and 0 < 𝜆 < 1, and a function 𝑓 is convex if −𝑓 is concave. A nonnegative 

function 𝑓 is log concave if 𝑙𝑜𝑔 𝑓 is concave. Since the latter condition is equivalent to 

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑓(𝑥)1−𝜆𝑓(𝑦)𝜆. 
the arithmetic-geometric mean inequality implies that each concave function is log concave. 

If 𝑓 is a nonnegative measurable function on ℝ𝑛 and 𝑡 ≥ 0, the level set 𝐿(𝑓, 𝑡) is defined 

by 

                                                         𝐿(𝑓, 𝑡) = {𝑥: 𝑓(𝑥) ≥ 𝑡}.                                       (4)                                            
By Fubini's theorem, 

∫ 𝑓(𝑥) 𝑑𝑥
ℝ𝑛

= ∫ ∫ 1 𝑑𝑡
𝑓(𝑥)

0
 𝑑𝑥 

ℝ𝑛
= ∫ ∫ 1𝑑𝑥

𝐿(𝑓,𝑡)
𝑑𝑡

∞

0
= ∫ 𝑉𝑛(𝐿(𝑓, 𝑡))𝑑𝑡

∞

0
.       (5)     

If 𝐸 is a set, 1𝐸 denotes the characteristic function of 𝐸. The formula 

                                               𝑓(𝑥) = ∫ 1𝐿(𝑓,𝑡)(𝑥)𝑑𝑡
∞

0
                                              (6)                                  

follows easily from 𝑓(𝑥) = ∫  𝑑𝑡
𝑓(𝑥)

0
. In [79, Theorem 1.13], equation (6) is called the layer 

cake representation of 𝑓. 

Theorem (3.1.2) [78]: (Pr�̀�kopa -Leindler inequality in ℝ.) Let 0 < 𝜆 < 1 and let 𝑓, 𝑔, and 

ℎ be nonnegative integrable functions on ℝ satisfying 

                                 ℎ ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥  𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆,                                      (7)                         
for all 𝑥, 𝑦 ∈ ℝ. Then 

∫ℎ(𝑥) 𝑑𝑥
ℝ

≥ (∫𝑓(𝑥)𝑑𝑥
ℝ

)

1−𝜆

 (∫𝑔(𝑥)𝑑𝑥
ℝ

)

𝜆

. 

Two proofs of this fundamental result will be presented after a comment about the strange-

looking assumption (7) that ensures ℎ is not too small. Fix a 𝑧 ∈ ℝ and choose 0 < 𝜆 < 1 

and any 𝑥, 𝑦 ∈ ℝ such that 𝑧 = (1 − 𝜆)𝑥 + 𝜆𝑦. Then the value of ℎ at 𝑧 must be at least the 

weighted geometric mean (it is the geometric mean if 𝜆 = 1/2) of the values of 𝑓 at 𝑥 and 

𝑔 at 𝑦. Note also that the logarithm of (7) yields the equivalent condition 

𝑙𝑜𝑔ℎ ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ (1 − 𝜆)𝑙𝑜𝑔 𝑓(𝑥) + 𝜆 𝑙𝑜𝑔 𝑔(𝑦). 
If 𝑓 = 𝑔 =  ℎ, we would have 
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𝑙𝑜𝑔 𝑓 ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ (1 − 𝜆)𝑙𝑜𝑔 𝑓(𝑥) + 𝜆 𝑙𝑜𝑔 𝑓(𝑦), 
which just says that 𝑓 is log concave. Of course, the previous theorem does not say anything 

when  𝑓 = 𝑔 = ℎ. 

First proof: We can assume without loss of generality that 𝑓 and 𝑔 are bounded with 

𝑠𝑢𝑝𝑥∈ℝ𝑓(𝑥) =  𝑠𝑢𝑝𝑥∈ℝ𝑔(𝑥) = 1. 
If 𝑡 ≥ 0, 𝑓(𝑥) ≥ 𝑡, and 𝑔(𝑦) ≥ 𝑡, then by (7), ℎ ((1 − 𝜆)𝑥 + 𝜆𝑦)  ≥ 𝑡. With the notation 

(4) for level sets, 

𝐿(ℎ, 𝑡) ⊃ (1 − 𝜆)𝐿(𝑓, 𝑡) + 𝜆𝐿(𝑔, 𝑡),  
for 0 ≤ 𝑡 < 1. The sets on the right-hand side are nonempty, so by (5), the Brunn Minkowski 

inequality (2) in ℝ, and the arithmetic-geometric mean inequality, we obtain 

∫ℎ(𝑥)𝑑𝑥
ℝ

≥ ∫ 𝑉1(𝐿(ℎ, 𝑡)) 𝑑𝑡
1

0

 

≥ ∫ 𝑉1((1 − 𝜆)𝐿(𝑓, 𝑡) + 𝜆𝐿(𝑔, 𝑡)) 𝑑𝑡
1

0

 

≥ (1 − 𝜆)∫ 𝑉1(𝐿(𝑓, 𝑡))𝑑𝑡
1

0

+ 𝜆∫ 𝑉1(𝐿(𝑔, 𝑡)) 𝑑𝑡
∞

0

 

= (1 − 𝜆)∫𝑓(𝑥) 𝑑𝑥 
ℝ

+ 𝜆∫𝑔(𝑥) 𝑑𝑥
ℝ

 

≥ (∫𝑓(𝑥) 𝑑𝑥
ℝ

)

1−𝜆

(∫𝑔(𝑥) 𝑑𝑥
ℝ

)

𝜆

. 

Second proof. We can assume without loss of generality that 

∫𝑓(𝑥) 𝑑𝑥
ℝ

= 𝐹 > 0 𝑎𝑛𝑑  ∫𝑔(𝑥) 𝑑𝑥
ℝ

= 𝐺 > 0. 

Define 𝑢, 𝑣: [0,1]  → ℝ such that 𝑢(𝑡) and 𝑣(𝑡) are the smallest numbers satisfying 

                            
1

𝐹
∫ 𝑓(𝑥) 𝑑𝑥 
 𝑢(𝑡)

−∞
=
1

𝐺
∫ 𝑔(𝑥)𝑑𝑥 
𝑣(𝑡)

−∞
= 𝑡.                                        (8)                                

Then 𝑢 and 𝑣 may be discontinuous, but they are strictly increasing functions and so are 

differentiable almost everywhere. Let 

𝑤(𝑡) = (1 − 𝜆)𝑢(𝑡) + 𝜆𝑣(𝑡). 
Take the derivative of (8) with respect to 𝑡 to obtain 

𝑓(𝑢(𝑡))𝑢′(𝑡)

𝐹
=
 𝑔(𝑣(𝑡)) 𝑣′(𝑡)

𝐺
=  1. 

Using this and the arithmetic-geometric mean inequality, we obtain (when 𝑓 (𝑢(𝑡)) ≠ 0 and 

𝑔(𝑢(𝑡)) ≠ 0) 
𝑤′(𝑡) = (1 − 𝜆)𝑢′(𝑡) + 𝜆𝑣′(𝑡) 

≥ 𝑢′(𝑡)1−𝜆𝑣′(𝑡) 

= (
𝐹

𝑓 (𝑢(𝑡))
)
1−𝜆

 (
𝐺

𝑔(𝑣(𝑡))
)
𝜆

. 

Therefore 
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∫ℎ(𝑥)𝑑𝑥
ℝ

≥ ∫ ℎ (𝑤(𝑡))𝑤′(𝑡) 𝑑𝑡
1

0

 

                          ≥ 𝑓(𝑢(𝑡))1−𝜆 𝑔(𝑣(𝑡))𝜆 (
𝐹

𝑓(𝑢(𝑡))
)
1−𝜆

(
𝐺

𝑔 (𝑣(𝑡))
)
𝜆
𝑑𝑡 = 𝐹1−𝜆𝐺𝜆.  

There are two basic ingredients in the second proof of Theorem (3.1.2): the introduction in 

(8) of the volume parameter 𝑡, and use of the arithmetic-geometric mean inequality in 

estimating 𝑤′(𝑡). 
The same ingredients appear in the first proof, though the parametrization is somewhat 

disguised in the use of the level sets. 

Theorem (3.1.3) [78]: (Pr�̀�kopa -Leindler inequality in ℝ𝑛.) Let 0 < 𝜆 < 1 and let 𝑓, 𝑔, and 

ℎ be nonnegative integrable functions on ℝ𝑛 satisfying 

                                            ℎ((1 − 𝜆)𝑥 + 𝜆𝑦)  ≥ 𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆,                           (9)                       

for all 𝑥, 𝑦 ∈ ℝ𝑛. Then 

∫ ℎ(𝑥) 𝑑𝑥
ℝ𝑛

≥ (∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

)

1−𝜆

(∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

)

𝜆

. 

Proof: The proof is by induction on 𝑛. It is true for 𝑛 = 1, by Theorem (3.1.2). Suppose that 

it is true for all natural numbers less than 𝑛. 

For each 𝑠 ∈ ℝ, define a nonnegative function ℎ𝑠on ℝ𝑛−1 by ℎ𝑠(𝑧) = ℎ(𝑧, 𝑠) for 𝑧 ∈ ℝ𝑛−1, 
and define 𝑓𝑠 and 𝑔𝑠 analogously. Let 𝑥, 𝑦 ∈ ℝ𝑛−1, let 𝑎, 𝑏 ∈ ℝ, and let 𝑐 = (1 − 𝜆)𝑎 + 𝜆𝑏. 
Then 

ℎ𝑐  ((1 − 𝜆)𝑥 + 𝜆𝑦) = ℎ((1 − 𝜆)𝑥 + 𝜆𝑦, (1 − 𝜆)𝑎 + 𝜆𝑏) 
= ℎ((1 − 𝜆)(𝑥, 𝑎) + 𝜆(𝑦, 𝑏)) 

𝑓(𝑥, 𝑎)1−𝜆𝑔(𝑦, 𝑏)𝜆 
= 𝑓𝑎(𝑥)

1−𝜆𝑔𝑏(𝑦)
𝜆. 

By the inductive hypothesis, 

∫ ℎ𝑐(𝑥) 𝑑𝑥
ℝ𝑛−1

 ≥ (∫ 𝑓𝑎(𝑥)𝑑𝑥
ℝ𝑛−1

)

1−𝜆

(∫ 𝑔𝑏(𝑥)
ℝ𝑛−1

𝑑𝑥)

𝜆

. 

Let 

𝐻(𝑐) = ∫ ℎ𝑐(𝑥)𝑑𝑥
ℝ𝑛−1

, 𝐹(𝑎) = ∫ 𝑓𝑎(𝑥)𝑑𝑥
ℝ𝑛−1

, 𝑎𝑛𝑑  𝐺(𝑏) = ∫ 𝑔𝑏(𝑥)𝑑𝑥
ℝ𝑛−1

. 

Then 

𝐻(𝑐) = 𝐻 ((1 − 𝜆)𝑎 + 𝜆𝑏) ≥ 𝐹(𝑎)1−𝜆𝐺(𝑏)𝜆 
So, by Fubini's theorem and Theorem (3.1.2), 

∫ ℎ(𝑥)𝑑𝑥
ℝ𝑛

= ∫ ∫ ℎ𝑐(𝑧) 𝑑𝑧
ℝ𝑛−1

 𝑑𝑐
ℝ

 

= ∫𝐻(𝑐) 𝑑𝑐
ℝ

 

≥ (∫𝐹(𝑎) 𝑑𝑎
ℝ

)

1−𝜆

(∫𝐺(𝑏) 𝑑𝑏
ℝ

)

𝜆
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= (∫ 𝑓(𝑥) 𝑑𝑥
ℝ𝑛

)

1−𝜆

(∫ 𝑔(𝑥) 𝑑𝑥
ℝ𝑛

)

𝜆

. 

Suppose that 𝑓𝑖 ∈ 𝐿
𝑝𝑖(ℝ𝑛), 𝑝𝑖  ≥ 1, 𝑖 = 1,… ,𝑚 are nonnegative functions, where 

                                                                  
1

𝑝1
+⋯+

1

𝑝𝑚
= 1.                                       (10)                                                     

Holder's inequality in ℝ𝑛 states that 

             ∫ ∏ 𝑓𝑖(𝑥) 𝑑𝑥
𝑚
𝑖=1ℝ𝑛

≤ ∏ ‖𝑓𝑖‖𝑝𝑖
𝑚
𝑖=1 = 𝑚𝑌𝑖 = ∏ (∫ 𝑓𝑖(𝑥)

𝑝𝑖  𝑑𝑥
ℝ𝑛

)
𝑝𝑖𝑚

𝑖=1 .     (11)       

Let 0 < 𝜆 < 1. If 𝑚 = 2, 1/𝑝1 = 1 − 𝜆, 1/𝑝2 =  𝜆, and we let 𝑓 = 𝑓1
𝑝1  and 𝑔 = 𝑓2

𝑝2, we get 

                  ∫ 𝑓(𝑥)1−𝜆𝑔(𝑥)𝜆 𝑑𝑥
ℝ𝑛

≤ (∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

)
1−𝜆
(∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

)
𝜆
,          

The Prekopa-Leindler inequality in ℝ𝑛 can be written in the form          

                  ∫  
ℝ𝑛
̅̅ ̅̅ ̅ sup{𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆: (1 − 𝜆)𝑥 + 𝜆𝑦 = 𝑧} 𝑑𝑧 ≥

                  (∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

)
1−𝜆
(∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

)
𝜆
                                                                (12),                              

because we can use the supremum for ℎ in (9). A straightforward generalization is 

                 ∫  
ℝ𝑛
̅̅ ̅̅ ̅ 𝑠𝑢𝑝 {∏ 𝑓𝑖(𝑥𝑖)

𝑚
𝑖=1 : ∑

𝑥𝑖

𝑝𝑖

𝑚
𝑖=1 = 𝑧}𝑑𝑧 ≥ ∏ ‖𝑓𝑖‖𝑝𝑖

𝑚
𝑖=1  ,                        (13)                   

where 𝑝𝑖 ≥ 1 for each 𝑖 and (10) holds. So we see that the Pr�̀�kopa -Leindler inequality is a 

reverse form of Hölder's inequality and that some condition such as (7) is therefore necessary 

for it to hold. 

Notice that the upper Lebesgue integral is used on the left in (12) and (13). This is because 

the integrands there are generally not measurable. We shall return to this point the Brunn-

Minkowski inequality is derived from the Prekopa-Leindler inequality. 

A different and self-contained short proof can be found. 

Theorem (3.1.4) [78]: (General Brunn-Minkowski inequality in ℝ𝑛, first form.) Let 0 <
𝜆 < 1 and let 𝑋 and 𝑌 be bounded measurable sets in ℝ𝑛 such that (1 − 𝜆)𝑋 + 𝜆𝑌 is also 

measurable. Then 

                     𝑉𝑛((1 − 𝜆)𝑋 + 𝜆𝑌 ) ≥  𝑉𝑛(𝑋)
1−𝜆𝑉𝑛(𝑌)

𝜆.                                            (14)                                      
Theorem (3.1.5) [78]: The Pr�̀�kopa -Leindler inequality in ℝ𝑛 implies the general Brunn-

Minkowski inequality in ℝ𝑛. 

Proof: Let ℎ = 1(1−𝜆)𝑋+𝜆𝑌, 𝑓 = 1𝑋, and 𝑔 = 1𝑌 . If 𝑥, 𝑦 ∈ ℝ𝑛, then 𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆 > 0 (and 

in fact equals 1) if and only if 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . The latter implies (1 − 𝜆)𝑥 + 𝜆𝑦 ∈ (1 −
𝜆)𝑋 + 𝜆𝑌 , which is true if and only if ℎ((1 − 𝜆)𝑥 + 𝜆𝑦) = 1. Therefore (9) holds. We 

conclude by Theorem (3.1.3) that 

𝑉𝑛((1 − 𝜆)𝑋 + 𝜆𝑌 ) = 1(1−𝜆)𝑋+𝜆𝑌(𝑥)𝑑𝑥 

≥ (∫ 1𝑋(𝑥) 𝑑𝑥
ℝ𝑛

)

1−𝜆

 (∫ 1𝑌(𝑥) 𝑑𝑥
ℝ𝑛

)

𝜆

= 𝑉𝑛(𝑋)
1−𝜆𝑉𝑛(𝑌)

𝜆.  

Corollary (3.1.6) [78]: (General Brunn-Minkowski inequality in ℝ𝑛, standard form.) Let 

0 < 𝜆 < 1 and let 𝑋 and 𝑌 be nonempty bounded measurable sets in ℝ𝑛 such that (1 −
𝜆)𝑋 + 𝜆𝑌 is also measurable. Then 

                𝑉𝑛 ((1 − 𝜆)𝑋 + 𝜆𝑌 )
1 𝑛⁄ ≥ (1 − 𝜆)𝑉𝑛(𝑋)

1 𝑛⁄ + 𝜆𝑉𝑛(𝑌)
1 𝑛⁄ .                  (15)                 
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Proof: Let 

𝜆′ =
𝑉𝑛(𝑌)

1 𝑛⁄

𝑉𝑛(𝑋)
1 𝑛⁄ + 𝑉𝑛(𝑌)

1 𝑛⁄
 

and let 𝑋′ =  𝑉𝑛(𝑋)
−1 𝑛⁄ 𝑋 and 𝑌′ = 𝑉𝑛(𝑌)

−1 𝑛⁄ 𝑌 . Then 

1 − 𝜆′ =
𝑉𝑛(𝑋)

1 𝑛⁄

𝑉𝑛(𝑋)
1 𝑛⁄ + 𝑉𝑛(𝑌)

1 𝑛⁄
 

and 𝑉𝑛(𝑋′) = 𝑉𝑛(𝑌′) = 1, by the positive homogeneity (of degree 𝑛) of Lebesgue measure 

in ℝ𝑛 (𝑉𝑛(𝑟𝐴) = 𝑟
𝑛𝑉𝑛(𝐴) for 𝑟 ≥ 0). Therefore (14), applied to 𝑋, 𝑌′,  and 𝜆′, yields 

𝑉𝑛((1 − 𝜆)𝑋
′ + 𝜆′𝑌′) ≥ 1. 

But 

𝑉𝑛((1 − 𝜆)𝑋′ + 𝜆′𝑌′) =  𝑉𝑛 (
𝑋 + 𝑌

𝑉𝑛(𝑋)
1 𝑛⁄ + 𝑉𝑛(𝑌)

1 𝑛⁄
) =

𝑉𝑛(𝑋 + 𝑌 )

(𝑉𝑛(𝑋)
1 𝑛⁄ + 𝑉𝑛(𝑌)

1 𝑛⁄ )𝑛
. 

This gives 

𝑉𝑛(𝑋 + 𝑌)
1 𝑛⁄ ≥ 𝑉𝑛(𝑋)

1 𝑛⁄ + 𝑉𝑛(𝑌)
1 𝑛⁄ . 

To obtain (15), just replace 𝑋 and 𝑌 by (1 − 𝜆)𝑋 and  𝜆𝑌, respectively.  

Remark (3.1.7) [78]: Using the homogeneity of volume, it follows that for all 𝑠, 𝑡 > 0, 

                        𝑉𝑛(𝑠𝑋 + 𝑡𝑌 )
1 𝑛⁄  ≥ 𝑠𝑉𝑛(𝑋)

1 𝑛⁄ + 𝑡𝑉𝑛(𝑌)
1 𝑛⁄ .                                    (16)                                      

Note the advantages of the first form (14) of the general Brunn-Minkowski inequality. One 

need not assume that 𝑋 and 𝑌 are nonempty, and the inequality is independent of the 

dimension 𝑛. The two forms are equivalent, however; to get from the standard to the first 

form, just use Jensen's inequality for means (see (28) below with 𝑝 = 0 and 𝑞 = 1/𝑛). 

For detailed remarks and references concerning the early history of the Brunn-Minkowski 

inequality for convex bodies, see [80, p. 314]. Briefly, the inequality for convex bodies in 

ℝ𝑛 was discovered by Brunn around 1887. Minkowski pointed out an error in the proof, 

which Brunn corrected, and found a different proof himself. Both Brunn and Minkowski 

showed that equality holds if and only if 𝐾 and 𝐿 are homothetic (i.e., 𝐾 and 𝐿 are equal up 

to translation and dilatation). The proof presented in [80, Section 6.1], due to Kneser and 

Suss in 1932, is very similar to the proof we gave above of the Pr�̀�kopa -Leindler inequality, 

restricted to characteristic functions of convex bodies; note that the case 𝑛 = 1 is trivial, and 

the equality condition vacuous, in this case. This is perhaps the simplest approach for the 

equality conditions for convex bodies.  

Another quite different proof, due to Blaschke in 1917, is worth mentioning. This uses 

Steiner symmetrization. Let 𝐾 be a convex body in ℝ𝑛 and let 𝑢 ∈ 𝑆𝑛−1. The Steiner 

symmetral 𝑆𝑢𝐾 of 𝐾 in the direction u is the convex body obtained from K by sliding each 

of its chords parallel to 𝑢 so that they are bisected by the hyperplane 𝑢⊥, and taking the union 

of the resulting chords. Then 𝑉(𝑆𝑢𝐾) = 𝑉(𝐾) by Cavalieri's principle, and it is not hard to 

show that if 𝐾 and 𝐿 are convex bodies in ℝ𝑛, then 

                                             𝑆𝑢(𝐾 + 𝐿) ⊃ 𝑆𝑢𝐾 + 𝑆𝑢𝐿.                                             (17)                                    
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One can also prove that there is a sequence of directions 𝑢𝑚 ∈ 𝑆
𝑛−1 such that if 𝐾 is any 

convex body and 𝐾𝑚 = 𝑆𝑢𝑚𝐾𝑚−1, then 𝐾𝑚 → 𝑟𝐾𝐵 as 𝑚 → ∞, where 𝑟𝐾 is the constant such 

that 𝑉(𝐾) = 𝑉(𝑟𝐾𝐵). Repeated application of (17) now gives 

𝑉(𝐾 + 𝐿)1 𝑛⁄  ≥ 𝑉(𝑟𝑘𝐵 + 𝑟𝐿𝐵)
1 𝑛⁄ = (𝑟𝑅 + 𝑟𝐿)𝑉(𝐵)

1 𝑛⁄  

= 𝑉(𝑟𝐾𝐵)
1 𝑛⁄ + 𝑉(𝑟𝐿𝐵)

1 𝑛⁄ = 𝑉(𝐾)1 𝑛⁄ + 𝑉(𝐿)1 𝑛⁄ . 
See [81, Chapter 5, Section 5] or [150, pp. 310{314]. 

The general Brunn-Minkowski inequality and its equality conditions were first proved by 

Lusternik [82]. The equality conditions he gave were corrected by Henstock and Macbeath 

[79], who basically used the method in the second proof of Theorem (3.1.2) to derive the 

inequality. Another method, found by Hadwiger and Ohmann [79], is so beautiful that we 

cannot resist reproducing it in full (see also [95, Section 8], [93, Section 6.6], [58, Theorem 

3.2.41], or [96, Section 6.5]). 

The idea is to prove the result first for boxes, rectangular parallelepipeds whose sides are 

parallel to the coordinate hyperplanes. If 𝑋 and 𝑌 are boxes with sides of length 𝑥𝑖 and 𝑦𝑖 , 
respectively, in the 𝑖th coordinate directions, then 

𝑉(𝑋) =∏𝑥𝑖

𝑛

𝑖=1

, 𝑉(𝑌) =∏𝑦𝑖

𝑛

𝑖=1

, 𝑎𝑛𝑑 𝑉(𝑋 + 𝑌 ) =∏(𝑥𝑖 + 𝑦𝑖)

𝑛

𝑖=1

. 

Now 

(
𝑥𝑖

𝑥𝑖 + 𝑦𝑖
)
1 𝑛⁄

+ (
𝑦𝑖

𝑥𝑖 + 𝑦𝑖
)
1 𝑛⁄

≤
1

𝑛
∑

𝑥𝑖
𝑥𝑖 + 𝑦𝑖

𝑛

𝑖=1

+
1

𝑛
∑

𝑦𝑖
𝑥𝑖 + 𝑦𝑖

𝑛

𝑖=1

= 1, 

by the arithmetic-geometric mean inequality. This gives the Brunn-Minkowski inequality 

for boxes. One then uses a trick sometimes called a Hadwiger-Ohmann cut to obtain the 

inequality for finite unions 𝑋 and 𝑌 of boxes, as follows. By translating 𝑋, if necessary, we 

can assume that a coordinate hyperplane, {𝑥𝑛 =  0} say, separates two boxes in 𝑋. Let 𝑋+ (or 

𝑋−) denote the union of the boxes formed by intersecting the boxes in 𝑋 with {𝑥𝑛  ≥ 0} 
(or {𝑥𝑛 ≤ 0}, respectively). Now translate 𝑌 so that 

                                                        
𝑉(𝑋±)

𝑉(𝑋)
=
𝑉(𝑌±)

𝑉(𝑌) 
  ,                                                    (18)                                                         

where 𝑌+ and 𝑌− are defined analogously to 𝑋+ and 𝑋−. Note that 𝑋+ + 𝑌++ ⊂
{𝑥𝑛  ≥ 0}, 𝑋− + 𝑌−  ⊂ {𝑥𝑛 ≤ 0}, and that the numbers of boxes in 𝑋+ ∪ 𝑌+ and 𝑋− ∪ 𝑌− are 

both smaller  than the number of boxes in 𝑋 ∪ 𝑌 . By induction on the latter number and 

(18), we have 

𝑉(𝑋 + 𝑌)  ≥ 𝑉(𝑋+ + 𝑌+)  + 𝑉(𝑋− + 𝑌−) 

≥ (𝑉(𝑋+)
1 𝑛⁄ + 𝑉(𝑌+)

1 𝑛⁄ )
𝑛
+ (𝑉(𝑋−)

1 𝑛⁄ + 𝑉(𝑌−)
1 𝑛⁄ )

𝑛
 

= 𝑉(𝑋+) (1 +
𝑉(𝑌)1 𝑛⁄

𝑉(𝑋)1 𝑛⁄
)

𝑛

+ 𝑉(𝑋−) (1 +
𝑉(𝑌 )1 𝑛⁄

𝑉(𝑋)1 𝑛⁄
)

𝑛

 

= 𝑉(𝑋)(1 +
𝑉(𝑌 )1 𝑛⁄

𝑉(𝑋)1 𝑛⁄
)

𝑛

= (𝑉(𝑋)1 𝑛⁄ + 𝑉(𝑌)1 𝑛⁄ )
𝑛
. 



60 
 

Now that the inequality is established for finite unions of boxes, the proof is completed by 

using them to approximate bounded measurable sets. A careful examination of this proof 

allows one to conclude that if 𝑉𝑛(𝑋)𝑉𝑛(𝑌) > 0, equality holds only when 

𝑉𝑛((𝑐𝑜𝑛𝑣 𝑋)\𝑋) = 𝑉𝑛((𝑐𝑜𝑛𝑣 𝑌 )\𝑌) = 0, 
where 𝑐𝑜𝑛𝑣𝑋 denotes the convex hull of 𝑋. Putting the equality conditions above together, 

we see that if 𝑉𝑛(𝑋)𝑉𝑛(𝑌) > 0, equality holds in the general Brunn-Minkowski inequality if 

and only if 𝑋 and 𝑌 are homothetic convex bodies from which sets of measure zero have 

been removed. See [37, Section 8] and [150, Section 6.5] for more details and further 

comments about the case when 𝑋 or 𝑌 has measure zero. 

Since Holder's inequality (11) in its discrete form implies the arithmetic geometric mean 

inequality, there is a sense in which Hölder's inequality implies the Brunn-Minkowski 

inequality. 

by 

                                      𝑛𝑉1(𝐾, 𝐿) = lim
𝜀→0+

𝑉(𝐾+𝜀𝐿)−𝑉(𝐾)

𝜀
.                                   (19)                               

Note that if 𝐿 = 𝐵, then 𝑆(𝐾) = 𝑛𝑉1(𝐾, 𝐵); it is this relationship that will quickly lead us to 

the isoperimetric inequality and its equality condition. An even shorter path (see [80, 

Theorem B.2.1]) yields the inequality but without the equality condition. 

The quantity 𝑉1(𝐾, 𝐿) is a special mixed volume, and its existence requires just a little of the 

theory of mixed volumes to establish; see [80, Section 6.4]. In fact, Minkowski showed that 

if 𝐾1, … , 𝐾𝑚 are compact convex sets in ℝ𝑛, and 𝑡1, … , 𝑡𝑚  ≥ 0, the volume 𝑉(∑{𝑡𝑖𝐾𝑖: 𝑖 =
1,… ,𝑚}) is a polynomial of degree 𝑛 in the variables 𝑡1, … , 𝑡𝑚. The coefficient 

𝑉(𝐾𝑗1 , … , 𝐾𝑗𝑛) of 𝑡𝑗1 ∙∙∙ 𝑡𝑗𝑛 in this polynomial is called a mixed volume. Then 𝑉1(𝐾, 𝐿) =

𝑉(𝐾, 𝑛 − 1, 𝐿), where the notation means that 𝐾 appears (𝑛 − 1) times and 𝐿 appears once. 

See [81, Appendix A] for a gentle introduction to mixed volumes. 
Theorem (3.1.8) [78]: (Minkowski's first inequality for convex bodies in ℝ𝑛.) Let 𝐾 and 𝐿 

be convex bodies in ℝ𝑛. Then 

                                 𝑉1(𝐾, 𝐿) ≥ 𝑉(𝐾)
(𝑛−1)

𝑛 𝑉(𝐿)1 𝑛⁄ ,                                                   (20)                                               
with equality if and only if 𝐾 and 𝐿 are homothetic. 

Minkowski's first inequality plays a role in the solution of Shephard's problem: If the 

projection of a centrally symmetric (i.e., −𝐾 is a translate of 𝐾) convex body onto any given 

hyperplane is always smaller in volume than that of another such body, is its volume also 

smaller? The answer is no in general in three or more dimensions; see [87, Chapter 4] and 

[99, p. 255]. 

Theorem (3.1.9) [78]: The Brunn-Minkowski inequality for convex bodies in ℝ𝑛 (and its 

equality condition) implies Minkowski's first inequality for convex bodies in ℝ𝑛 (and its 

equality condition). 

Proof: Substituting  𝜀 = 𝑡/(1 − 𝑡) in (19) and using the homogeneity of volume, we obtain 

𝑛𝑉1(𝐾, 𝐿) = 𝑙𝑖𝑚
𝜀→0+

𝑉(𝐾 + 𝜀𝐿) − 𝑉(𝐾)

𝜀
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= 𝑙𝑖𝑚𝑡→0+
𝑉((1 − 𝑡)𝐾 + 𝑡𝐿) − (1 − 𝑡)𝑛𝑉(𝐾)

𝑡(1 − 𝑡)𝑛−1
 

= 𝑙𝑖𝑚𝑡→0+
𝑉((1 − 𝑡)𝐾 + 𝑡𝐿) − 𝑉(𝐾)

𝑡
+ 𝑙𝑖𝑚𝑡→0+

(1 − (1 − 𝑡)𝑛))𝑉(𝐾)

𝑡
 

= 𝑙𝑖𝑚𝑡→0+
𝑉((1 − 𝑡)𝐾 + 𝑡𝐿) − 𝑉(𝐾)

𝑡
+ 𝑛𝑉(𝐾). 

Using this new expression for 𝑉1(𝐾, 𝐿) (see [107, p. 7]) and letting 𝑓(𝑡) =

 𝑉((1 − 𝑡)𝐾 + 𝑡𝐿)1 𝑛⁄ , for 0 ≤ 𝑡 ≤ 1, we see that 

𝑓′(0) =
𝑉1(𝐾, 𝐿) − 𝑉(𝐾)

𝑉(𝐾)(𝑛−1) 𝑛⁄
. 

Therefore (20) is equivalent to 𝑓′(0) ≥ 𝑓(1) − 𝑓(0). Since the Brunn-Minkowski 

inequality says that f is concave, Minkowski's first inequality follows.  

Suppose that equality holds in (20). Then 𝑓′(0) = 𝑓(1) − 𝑓(0). Since 𝑓 is concave, we have 
𝑓(𝑡) −  𝑓(0)

𝑡
= 𝑓(1) − 𝑓(0) 

for 0 < 𝑡 ≤ 1, and this is just equality in the Brunn-Minkowski inequality. The equality 

condition for (20) follows immediately.  

The following corollary is obtained by taking 𝐿 = 𝐵 in Theorem (3.1.8). 

Corollary (3.1.10) [78]:  (Isoperimetric inequality for convex bodies in ℝ𝑛.) Let 𝐾 be a 

convex body in ℝ𝑛. Then 

                                       (
𝑉(𝐾)

𝑉(𝐵)
)
1 𝑛⁄

≤ (
𝑆(𝐾)

𝑆(𝐵)
)
1 (𝑛−1)⁄

,                                                (21)                                          

with equality if and only if 𝐾 is a ball. 

It can be shown (see [85]) that if 𝑀 is a compact domain in ℝ𝑛 with piecewise 𝐶1 boundary 

and 𝐿 is a convex body in ℝ𝑛, the quantity 𝑉1(𝑀, 𝐿) defined by (19) with 𝐾 replaced by 𝑀 

exists. 

From the Brunn-Minkowski inequality for compact domains in ℝ𝑛 with piecewise 𝐶1 
boundary and the above argument, one obtains Minkowski's first inequality when the convex 

body 𝐾 is replaced by such a domain. Taking 𝐿 = 𝐵, this immediately gives the isoperimetric 

inequality for compact domains in ℝ𝑛 with piecewise 𝐶1 boundary. 

Essentially the most general class of sets for which the isoperimetric inequality in ℝ𝑛 is 

known to hold comprises the sets of finite perimeter; see, for example, the book of Evans 

and Gariepy [87, p. 190], where the rather technical setting, sometimes called the 𝐵𝑉 theory, 

is expounded. It is still possible to base the proof on the Brunn-Minkowski  

                                      𝑉1(𝑀, 𝐿) =
1

𝑛
∫ ℎ𝐿(𝑢𝑋)𝑑𝑥𝜕𝑀

,                                                (22)                                                      

where ℎ𝐿 is the support function of 𝐿 and 𝑢𝑥 is the outer unit normal vector to 𝜕𝑀 at 𝑥. (If 

we replace ℎ𝐿 by an arbitrary function 𝑓 on 𝑆𝑛−1, then up to a constant, this integral 

represents the surface energy of a crystal with shape 𝑀, where 𝑓 is the surface tensionWhen 

𝑀 = 𝐾 is a sufficiently smooth convex body, (22) can be written 

                                        𝑉1(𝐾, 𝐿) =
1

𝑛
∫ ℎ𝐿(𝑢)𝑓𝐾(𝑢)𝑑𝑢𝑆𝑛−1

,                                    (23)                                          
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where 𝑓𝐾 is the reciprocal of the Gauss curvature of 𝐾 at the point on 𝜕𝐾 where the outer 

unit normal is 𝑢; for general convex bodies, 𝑓𝐾(𝑢)𝑑𝑢 must be replaced by 𝑑𝑆(𝐾, 𝑢), where 

𝑆(𝐾,∙) is the surface area measure of 𝐾. Minkowski's existence theorem gives necessary and 

sufficient  conditions for a measure 𝜇 in 𝑆𝑛−1 to be the surface area measure of some convex 

body. Now (20) and (23) imply that if 𝑆(𝐾,∙) =  𝜇, then 𝐾 minimizes the functional 

𝐿 → ∫ ℎ𝐿(𝑢)𝑑𝜇
𝑆𝑛−1

 

under the condition that 𝑉(𝐿) = 1, and this fact motivates the proof of Minkowski's 

existence theorem. See [96, Section 7.1], where pointers can also be found to the vast 

literature surrounding the so-called Minkowski problem, which deals with existence, 

uniqueness, regularity, and stability of a closed convex hypersurface whose Gauss curvature 

is prescribed as a function of its outer normals. 

Theorem (3.1.11) [78]:  (Sobolev inequality.) Let 𝑓 be a 𝐶1 function on ℝ𝑛 with compact 

support. Then 

                                        ∫ ‖∇𝑓(𝑥)‖𝑑𝑥
ℝ𝑛

≥ 𝑛𝜅𝑛
1 𝑛⁄ ‖𝑓‖𝑛 (𝑛−1)⁄ .                              (24)                           

The previous inequality is only one of a family, all called Sobolev inequalities. See [91, 

Chapter 8], where it is pointed out that such inequalities bound averages of gradients from 

below by weighted averages of the function, and can thus be considered as uncertainty 

principles. 

Theorem (3.1.12) [78]: The Sobolev inequality is equivalent to the isoperimetric inequality 

for compact domains with 𝐶1 boundaries. 

Proof: Suppose that the isoperimetric inequality holds, and let 𝑓 be a 𝐶1 function on ℝ𝑛 with 

compact support. The coarea formula (a sort of curvilinear Fubini theorem; see [85, p. 112]) 

implies that 

∫ ‖∇𝑓(𝑥)‖𝑑𝑥
ℝ𝑛

= ∫𝑉𝑛−1(𝑓
−1{𝑡}) 𝑑𝑡

ℝ

 

= ∫ 𝑆(𝐿(|𝑓|, 𝑡))𝑑𝑡
∞

0

, 

where 𝐿(|𝑓|, 𝑡) is a level set of |𝑓|, as in (4). Applying the the isoperimetric inequality for 

compact domains with 𝐶1 boundaries to these level sets, we obtain 

∫ ‖𝛻𝑓(𝑥)‖𝑑𝑥
ℝ𝑛

≥ 𝑛𝜅𝑛
1 𝑛⁄ ∫ 𝑉(𝐿(|𝑓|, 𝑡))

(𝑛−1) 𝑛⁄
𝑑𝑡

∞

0

. 

On the other hand, by (6) and Minkowski's inequality for integrals (see [77, (6.13.9), p. 

148]), we have 

(∫ |𝑓(𝑥)|𝑛 (𝑛−1)⁄ 𝑑𝑥
ℝ𝑛

)

(𝑛−1) 𝑛⁄

= (∫ (∫ 1𝐿(|𝑓|,𝑡)(𝑥)𝑑𝑡
∞

0

)

𝑛 (𝑛−1)⁄

𝑑𝑥
ℝ𝑛

)

(𝑛−1) 𝑛⁄

 

≤ ∫ (∫ 1𝐿(|𝑓|,𝑡)(𝑥)
𝑛 (𝑛−1)⁄ 𝑑𝑥

ℝ𝑛
)

(𝑛−1) 𝑛⁄∞

0

𝑑𝑡 

                                             = 𝑉(𝐿(|𝑓|, 𝑡))(𝑛−1) 𝑛⁄  𝑑𝑡. 
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Therefore (24) is true. 

Suppose that (24) holds, let 𝑀 be a compact domain in ℝ𝑛 with 𝐶1 boundary 𝜕𝑀, and let 

𝜀 > 0. Define 𝑓𝜀(𝑥) = 1 if 𝑥 ∈ 𝑀, 𝑓𝜀(𝑥) = 0 if 𝑥 ∉ 𝑀 + 𝜀𝐵, and 𝑓𝜀(𝑥) = 1 − 𝑑(𝑥,𝑀)/𝜀 if 
𝑥 ∈ (𝑀 + 𝜀𝐵)\𝑀, where 𝑑(𝑥,𝑀) is the distance from 𝑥 to 𝑀. Since 𝑓𝜀 can be approximated 

by 𝐶1 functions on ℝ𝑛 with compact support, we can assume that (24) holds for 𝑓𝜀. Note that 

𝑓𝜀 → 1𝑀 as 𝜀 → 0. Also, ‖∇𝑓𝜀(𝑥)‖ = 1/𝜀 𝑖𝑓 𝑥 ∈ (𝑀 + 𝜀𝐵)\𝑀 and is zero otherwise. 

Therefore, by (3), 

𝑆(𝑀) = 𝑙𝑖𝑚𝜀→0+
𝑉(𝑀 + 𝜀𝐵) − 𝑉(𝑀)

𝜀
= 𝑙𝑖𝑚𝜀→0+‖∇𝑓𝜀(𝑥)‖𝑑𝑥 

≥ lim
𝜀→0+

𝑛𝜅𝑛
1 𝑛⁄
(∫ |𝑓𝜀(𝑥)|

𝑛 (𝑛−1)⁄ 𝑑𝑥
ℝ𝑛

)

(𝑛−1) 𝑛⁄

 

= 𝑛𝜅𝑛
1 𝑛⁄
(∫ 1𝑀(𝑥)𝑑𝑥
ℝ𝑛

)

(𝑛−1) 𝑛⁄

 

= 𝑛𝜅𝑛
1 𝑛⁄  𝑉(𝑀)(𝑛−1) 𝑛⁄ , 

which is just a reorganization of the isoperimetric inequality (21) .  

As for the isoperimetric inequality, there is a more general version of the Sobolev inequality 

in the 𝐵𝑉 theory. This is called the Gagliardo-Nirenberg-Sobolev inequality and it is 

equivalent to the isoperimetric inequality for sets of finite perimeter; see [87, pp. 138 and 

192]. 

If 𝑋 and 𝑌 are Borel sets, then (1 − 𝜆)𝑋 + 𝜆𝑌 , being a continuous image of their product, 

is analytic and hence measurable. (Erdos and Stone [89] proved that this set need not itself 

be Borel.) However, an old example of Sierpinski [96] shows that the set (1 − 𝜆)𝑋 + 𝜆𝑌 

may not be measurable when 𝑋 and 𝑌 are measurable. 

There are a couple of ways around the measurability problem. One can simply replace the 

measure on the left of the Brunn-Minkowski inequality by inner Lebesgue measure 𝑉𝑛∗, the 

supremum of the measures of compact subsets, thus: 

𝑉𝑛∗((1 − 𝜆)𝑋 + 𝜆𝑌)
1 𝑛⁄ ≥ (1 − 𝜆)𝑉𝑛(𝑋)

1 𝑛⁄ + 𝜆𝑉𝑛(𝑌)
1 𝑛⁄ . 

A better solution is to obtain a slightly improved version of the Pr�̀�kopa -Leindler inequality, 

and then deduce a corresponding improved Brunn-Minkowski inequality, as follows. 

Recall that the essential supremum of a measurable function 𝑓 on ℝ𝑛 is defined by 

𝑒𝑠𝑠 𝑠𝑢𝑝𝑥∈ℝ𝑛𝑓(𝑥) = inf{𝑡: 𝑓(𝑥) ≤ 𝑡 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝑥 ∈ ℝ
𝑛} . 

Brascamp and Lieb [95] proved the following result. (According to Uhrin [146], the idea of 

using the essential supremum in connection with our topic occurred independently to S. 

Dancs.)   

Theorem (3.1.13) [78]:  (Prekopa-Leindler inequality in ℝ𝑛, essential form.) Let 0 < 𝜆 < 1 

and let 𝑓, 𝑔 ∈ 𝐿1(ℝ𝑛) be nonnegative. Let 

                            𝑠(𝑥) = 𝑒𝑠𝑠 𝑠𝑢𝑝𝑦𝑓 (
𝑥−𝑦

1−𝜆
)
1−𝜆

𝑔 (
𝑦

𝜆
)
𝜆
.                                           (25)                                    

Then s is measurable and 

‖𝑠‖1 ≥ ‖𝑓‖1
1−𝜆‖𝑔‖1

𝜆. 
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Proof: First note that s is measurable. Indeed, 

𝑠(𝑥) = 𝑠𝑢𝑝𝜙∈𝐷∫ 𝑓 (
𝑥 − 𝑦

1 − 𝜆
)
1−𝜆

𝑔 (
𝑦

𝜆
)
𝜆

𝜙(𝑦)𝑑𝑦
ℝ𝑛

, 

where 𝐷 is a countable dense subset of the unit ball of 𝐿1(ℝ𝑛). Therefore s is the supremum 

of a countable family of measurable functions. 

With the measurability of 𝑠 in hand, the proof follows that of the usual Pr�̀�kopa -Leindler 

inequality presented.  

The essential form of the Pr�̀�kopa -Leindler inequality in ℝ𝑛 implies the usual form, 

Theorem (3.1.3). 

To see this, replace 𝑥 by 𝑧 and 𝑦 by 𝜆𝑦′ in (25) and then let 𝑥 = (𝑧 − 𝜆𝑦′)/(1 − 𝜆) to obtain 

𝑠(𝑧) = 𝑒𝑠𝑠 𝑠𝑢𝑝𝑦′𝑓 (
𝑧 − 𝜆𝑦′

1 − 𝜆
)

1−𝜆

𝑔(𝑦′)𝜆 

= 𝑒𝑠𝑠 sup{𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆: 𝑧 = (1 − 𝜆)𝑥 + 𝜆𝑦} . 
Now if ℎ is any integrable function satisfying 

ℎ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑓(𝑥)1−𝜆𝑔(𝑦)𝜆, 
we must have ℎ ≥ 𝑠 almost everywhere. It follows from Theorem (3.1.13) that 

‖ℎ‖1 ≥ ‖𝑠‖1  ≥ ‖𝑓‖1
1−𝜆‖𝑔‖1

𝜆. 
The corresponding improvement of the Brunn-Minkowski inequality requires one new 

concept. Note that the usual Minkowski sum of 𝑋 and 𝑌 can be written 

𝑋 + 𝑌 = {𝑧: 𝑋 ∩ (𝑧 − 𝑌 )} ≠ ∅. 
Adjust this by defining the essential sum of 𝑋 and 𝑌 by 

𝑋 + 𝑌𝑒
 = {𝑧: 𝑉𝑛(𝑋 ∩ (𝑧 − 𝑌 )) > 0}. 

While 

1𝑋+𝑌 (𝑧) = 𝑠𝑢𝑝𝑥∈ℝ𝑛1𝑋(𝑥)1𝑌 (𝑧 − 𝑥), 
it is easy to see that 

                   1𝑋 + 𝑌𝑒
 (𝑧) = 𝑒𝑠𝑠 𝑠𝑢𝑝𝑥∈ℝ𝑛1𝑋(𝑥)1𝑌(𝑧 − 𝑥).                                       (26)                               

Theorem (3.1.14) [78]:  (General Brunn-Minkowski inequality in ℝ𝑛, essential form.) Let 

0 < 𝜆 < 1 and let 𝑋 and 𝑌 be nonempty bounded measurable sets in ℝ𝑛. Then 

                    𝑉𝑛((1 − 𝜆)𝑋 + 𝜆𝑒
 𝑌)1 𝑛⁄ ≥ (1 − 𝜆)𝑉𝑛(𝑋)

1 𝑛⁄ + 𝜆𝑉𝑛(𝑌)
1 𝑛⁄ .             (27)          

Proof: In Theorem (3.1.13), let 𝑓 = 1(1−𝜆)𝑋 and 𝑔 = 1𝜆𝑌 . Then, by (26), 

1(1−𝜆)𝑋+ 𝜆𝑒
 𝑌(𝑧) = 𝑒𝑠𝑠 𝑠𝑢𝑝𝑥∈ℝ𝑛1(1−𝜆)𝑋(𝑥)1𝜆𝑌(𝑧 − 𝑥) 

= 𝑒𝑠𝑠 𝑠𝑢𝑝𝑥∈ℝ𝑛1𝑋 (
𝑥

1 − 𝜆
)1𝑌 (

𝑧 − 𝑥

𝜆
) 

= 𝑒𝑠𝑠 𝑠𝑢𝑝𝑦∈ℝ𝑛1𝑋 (
𝑧 − 𝑦

1 − 𝜆
)1𝑌  (

𝑦

𝜆
) = 𝑠(𝑧). 

The inequality 

𝑉𝑛((1 − 𝜆)𝑋 + 𝜆𝑒
 𝑌 ) ≥ 𝑉𝑛(𝑋)

1−𝜆𝑉𝑛(𝑌)
𝜆, 

and hence (27), now follow exactly.  
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A direct proof of the previous theorem is given in [95, Appendix]. Here is a sketch. One first 

shows that 𝑋 + 𝑌𝑒
  is measurable (indeed, open). This is proved using the set 𝐴∗ of density 

points of a measurable set 𝐴, that is, 

𝐴∗ = {𝑥 ∈ ℝ𝑛: 𝑙𝑖𝑚𝜀→0+
𝑉𝑛(𝐴 ∩ 𝐵(𝑥, 𝜀))

𝑉𝑛(𝐵(𝑥, 𝜀))
= 1} , 

where 𝐵(𝑥, 𝜀) is a ball with center at 𝑥 and radius 𝜀. Then 𝑉𝑛(𝐴∆𝐴
∗) = 0, where ∆ denotes 

symmetric difference, and this implies that 

𝑋 + 𝑌𝑒
 = 𝑋∗ + 𝑌∗𝑒

 . 
Now it can be shown that 𝑋∗ + 𝑌∗𝑒

  is open and 

𝑋∗ + 𝑌∗𝑒
 = 𝑋∗ + 𝑌∗. 

The Brunn-Minkowski inequality (15) in ℝ𝑛 then implies (27). 

If 𝑓 is a nonnegative integrable function defined on a measurable subset 𝐴 of ℝ𝑛, and 𝜇 is 

defined by 

𝜇(𝑋) = ∫ 𝑓(𝑥)𝑑𝑥
𝐴∩𝑋

, 

for all measurable subsets 𝑋 of ℝ𝑛, we say that 𝜇 is generated by 𝑓 and 𝐴. 

The Prekopa-Leindler inequality implies that if 𝑓 is log concave and 𝐶 is an open convex 

subset of its support, then the measure 𝜇 generated by 𝑓 and 𝐶 is also log concave. Indeed, 

if 0 < 𝜆 < 1, 𝑋 and 𝑌 are measurable sets, and 𝑧 = (1 − 𝜆)𝑥 +  𝜆𝑦, then the log concavity 

of 𝑓 implies 

                          𝑓(𝑧)1𝐶∩((1−𝜆)𝑋+𝜆𝑌)(𝑧) ≥ (𝑓(𝑥)1𝐶∩𝑋(𝑥))
1−𝜆
(𝑓(𝑦)1𝐶∩𝑌(𝑦))

𝜆
, 

so we can apply Theorem (3.1.3) to obtain 

𝜇((1 − 𝜆)𝑋 + 𝜆𝑌 ) = ∫ 𝑓(𝑧)𝑑𝑧
𝐶∩((1−𝜆)𝑋+𝜆𝑌)

 

= ∫ 𝑓(𝑧)1𝐶∩((1−𝜆)𝑋+𝜆𝑌)(𝑧) 𝑑𝑧
ℝ𝑛

 

≥ (∫ 𝑓(𝑥)1𝐶∩𝑋(𝑥)𝑑𝑥
ℝ𝑛

)

1−𝜆

(∫ 𝑓(𝑥)1𝐶∩𝑌(𝑥)𝑑𝑥
ℝ𝑛

)

𝜆

 

= (∫ 𝑓(𝑥)𝑑𝑥
𝐶∩𝑋

)

1−𝜆

(∫ 𝑓(𝑥)𝑑𝑥
𝐶∩𝑌

)

𝜆

 

= 𝜇(𝑋)1−𝜆𝜇(𝑌)𝜆. 
This observation has been generalized considerably, as follows. If 0 < 𝜆 < 1 and 𝑝 ≠ 0, 

we define 

𝑀𝑝(𝑎, 𝑏, 𝜆) = ((1 − 𝜆)𝑎
𝑝 + 𝜆𝑏𝑝)1 𝑝⁄  

if 𝑎𝑏 ≠ 0 and 𝑀𝑝(𝑎, 𝑏, 𝜆) = 0 if 𝑎𝑏 = 0; we also define 

𝑀0(𝑎, 𝑏, 𝜆) = 𝑎
1−𝜆𝑏𝜆, 

𝑀−∞(𝑎, 𝑏, 𝜆) = 𝑚𝑖𝑛{𝑎, 𝑏}, and 𝑀∞(𝑎, 𝑏, 𝜆) = 𝑚𝑎𝑥{𝑎, 𝑏}. These quantities and their natural 

generalizations for more than two numbers are called 𝑝th means. The classic text of Hardy, 

Littlewood, and Polya [97] is still the best general reference. (Note, however, the different 
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convention here when 𝑝 > 0 and 𝑎𝑏 = 0.) Jensen's inequality for means (see [97, Section 

2.9]) implies that if −∞ ≤ 𝑝 < 𝑞 ≤ ∞, then 

                                                 𝑀𝑝(𝑎, 𝑏, 𝜆) ≤ 𝑀𝑞(𝑎, 𝑏, 𝜆),                                         (28)                                               

with equality if and only if 𝑎 = 𝑏 or 𝑎𝑏 = 0. 

A nonnegative function 𝑓 on ℝ𝑛 is called 𝑝-concave on a convex set 𝐶 if 

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑀𝑝(𝑓(𝑥), 𝑓(𝑦), 𝜆), 

for all 𝑥, 𝑦 ∈ 𝐶 and 0 < 𝜆 < 1. Analogously, we say that a finite (nonnegative) measure 𝜇 

defined on (Lebesgue) measurable subsets of ℝ𝑛 is 𝑝-concave if 

𝜇((1 − 𝜆)𝑋 + 𝜆𝑌) ≥ 𝑀𝑝(𝜇(𝑋), 𝜇(𝑌), 𝜆), 

for all measurable sets 𝑋 and 𝑌 in ℝ𝑛 and 0 < 𝜆 < 1. 

Thus 1-concave is just concave in the usual sense and 0-concave is log concave. The term 

quasiconcave is sometimes used for −∞-concave. Also, if 𝑝 > 0 (or 𝑝 < 0), then 𝑓 is 𝑝-

concave if and only if 𝑓𝑝 is concave (or convex, respectively). It follows from Jensen's 

inequality (28) that a 𝑝-concave function or measure is 𝑞-concave for all 𝑞 ≤ 𝑝. 

Probability density functions of some important probability distributions are 𝑝-concave for 

some 𝑝. Consider, for example, the multivariate normal distribution on ℝ𝑛 with mean 𝑚 ∈
ℝ𝑛 and 𝑛 × 𝑛 positive definite symmetric covariance matrix 𝐴. This has probability density 

                                          𝑓(𝑥) = 𝑐 𝑒𝑥𝑝 (−
(𝑥−𝑚) ∙𝐴−1(𝑥−𝑚)

2
),    

where 𝑐 = (2𝜋)−𝑛 2⁄ (𝑑𝑒𝑡𝐴)−1 2⁄ . Since 𝐴 is positive definite, the function (𝑥 − 𝑚) ∙
 𝐴−1(𝑥 − 𝑚) is convex and so 𝑓 is log concave. The probability density functions of the 

Wishart, multivariate 𝛽, and Dirichlet distributions are also log concave; see [82]. The 

argument above then shows that the corresponding probability measures are log concave. 

Prekopa [183] explains how a problem from stochastic programming motivates this result. 

However, Borell [88] noted that the density functions of the multivariate Pareto (the Cauchy 

distribution is a special case), 𝑡, and 𝐹 distributions are not log concave, but are 𝑝-concave 

for some 𝑝 < 0. To obtain similar concavity conditions for the corresponding probability 

measures, a technical lemma is required. 

Lemma (3.1.15) [78]: Let 0 < 𝜆 < 1 and let 𝑎, 𝑏, 𝑐, and 𝑑 be nonnegative real numbers. If 

𝑝 + 𝑞 ≥ 0, then 
𝑀𝑝(𝑎, 𝑏, 𝜆)𝑀𝑞(𝑐, 𝑑, 𝜆) ≥ 𝑀𝑠(𝑎𝑐, 𝑏𝑑, 𝜆), 

where 𝑠 = 𝑝𝑞/(𝑝 + 𝑞) if 𝑝 and 𝑞 are not both zero, and 𝑠 = 0 if 𝑝 = 𝑞 = 0. 

Proof: 𝐴 general form of Holder's inequality (see [97, p. 24]) states that when 0 < 𝜆 < 1, 
𝑝1, 𝑝2, 𝑟 > 0 with 1/𝑝1 + 1/𝑝2 = 1, and 𝑎, 𝑏, 𝑐, and 𝑑 are nonnegative real numbers, then 

𝑀𝑟(𝑎𝑐, 𝑏𝑑, 𝜆) ≤ 𝑀𝑟𝑝1(𝑎, 𝑏, 𝜆)𝑀𝑟𝑝2(𝑐, 𝑑, 𝜆), 

and that the inequality reverses when 𝑟 < 0. Suppose that 𝑝 + 𝑞 > 0. If 𝑝, 𝑞 > 0, we can let 

𝑟 = 𝑠, 𝑝1 = 𝑝/𝑠, and 𝑝2 = 𝑞/𝑠, and the desired inequality follows immediately. If 𝑝 < 0, 
then 𝑞 > 0 and we let 𝑟 = 𝑝, 𝑝1 = 𝑠/𝑝, and 𝑝2 = −𝑞/𝑝; then replace 𝑎, 𝑏, 𝑐, and 𝑑, by 

𝑎𝑐, 𝑏𝑑, 1/𝑐, and 1/𝑑, respectively. The remaining cases follow by continuity.  
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The following theorem generalizes the Prekopa-Leindler inequality in ℝ𝑛, which is just the 

case 𝑝 = 0. The number 𝑝/(𝑛𝑝 + 1) is interpreted in the obvious way; it is equal to 

−∞ when 𝑝 =  −1/𝑛 and to 1/𝑛 when 𝑝 = ∞. 
Theorem (3.1.16) [78]:  (Borell-Brascamp-Lieb inequality.) Let 0 < 𝜆 < 1, let −1/𝑛 ≤
𝑝 ≤ ∞, and let 𝑓, 𝑔, and ℎ be nonnegative integrable functions on ℝ𝑛 satisfying 

ℎ((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑀𝑝(𝑓(𝑥), 𝑔(𝑦), 𝜆), 

for all 𝑥, 𝑦 ∈ ℝ𝑛. Then 

∫ ℎ(𝑥)𝑑𝑥
ℝ𝑛

≥ 𝑀𝑝 (𝑛𝑝+1)⁄ (∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

, ∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

, 𝜆) . 

Proof: This is very similar to the proof of the Prekopa-Leindler inequality. To deal with the 

case 𝑛 = 1, follow the second proof of Theorem (3.1.2), defining 𝐹, 𝐺, 𝑢, 𝑣, and 𝑤 as in that 

theorem. 

Then, by Lemma (3.1.15) with 𝑞 = 1, 

∫ℎ(𝑥)𝑑𝑥
ℝ

≥ ∫ ℎ(𝑤(𝑡))𝑤′(𝑡) 𝑑𝑡
1

0

 

≥ ∫ 𝑀𝑝(𝑓(𝑢(𝑡)), 𝑔(𝑣(𝑡)), 𝜆)𝑀1 (
𝐹

𝑓(𝑢(𝑡))
 ,

𝐺

𝑔(𝑣(𝑡))
, 𝜆)𝑑𝑡

1

0

 

𝑀𝑝 (𝑝+1)⁄ (𝐹, 𝐺, 𝜆)𝑑𝑡 = 𝑀𝑝 (𝑝+1)⁄ (𝐹, 𝐺, 𝜆). 

The general case follows as in Theorem (3.1.3) by induction on 𝑛.  

Theorem (3.1.16) was proved (in slightly modified form) for 𝑝 > 0 by Henstock and In 

calling Theorem (3.1.16) the Borell-Brascamp-Lieb inequality we are following the authors 

of [92] (who also generalize it to a Riemannian manifold setting; see Section 19.13) and 

placing the emphasis on the negative values of 𝑝. In fact, the proof of [92, Corollary 1.1] 

shows that the strongest inequality in this family is that for = −1/𝑛 ; that is, Theorem 

(3.1.16) for 𝑝 = −1/𝑛 implies  

Theorem (3.1.16) for all  𝑝 > −1/𝑛. This follows from a suitable rescaling of the functions 

𝑓, 𝑔, and ℎ, Lemma (3.1.15) with 𝑞 = −𝑝/(𝑛𝑝 + 1), and the observation that 

𝑀𝑝(𝑎, 𝑏, 𝜆)
−1 = 𝑀−𝑝(1/𝑎, 1/𝑏, 𝜆). 

The approach of  Brascamp and Lieb [95], incidentally, was to observe that Theorem (3.1.16) 

also holds for 𝑛 = 1 and 𝑝 = −∞ (the argument is contained in the first proof of Theorem 

(3.1.2)), and then to derive Theorem (3.1.16) for 𝑛 = 1 and 𝑝 ≥ −1 from this and Lemma 

(3.1.15). 

Corollary (3.1.17) [78]: Let −1/𝑛 ≤ 𝑝 ≤ 1 and let 𝑓 be an integrable function that is 𝑝-

concave on an open convex set 𝐶 in ℝ𝑛 contained in its support. Then the measure generated 

by 𝑓 and 𝐶 is 𝑝/(𝑛𝑝 + 1)-concave. 

Proof: This follows from Theorem (3.1.16) in exactly the same way as the special case 𝑝 =
0 follows from the Prekopa-Leindler inequality (see the beginning of this section).  

The Brunn-Minkowski inequality says that Lebesgue measure in ℝ𝑛 is 1/𝑛-concave, and 

Theorem (3.1.16) supplies plenty of measures that are 𝑝-concave for −1/𝑛 ≤ 𝑝 ≤ ∞. 

Borell [88] (see also [79, Theorem 3.17]) proves a sort of converse to Corollary (3.1.17): 
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Given −∞ ≤ 𝑝 ≤ 1/𝑛 and a 𝑝-concave measure 𝜇 with 𝑛-dimensional support 𝑆, there is a 

𝑝/(1 − 𝑛𝑝)-concave function on 𝑆 that generates 𝜇. Borell also observed that when 𝑝 >
1/𝑛, no nontrivial 𝑝-concave measures exist in ℝ𝑛, and that any 1/𝑛-concave measure is a 

multiple of Lebesgue measure; see [89, Theorem 3.14]. Dancs and Uhrin [944, Theorem 3.4] 

find a generalization of Theorem (3.1.16) in which Lebesgue measure is replaced by a 𝑞-

concave measure for some −∞ ≤ 𝑞 ≤ 1/𝑛. 

It is convenient to mention here a sharpening of the Brunn-Minkowski theorem proved by 

Bonnesen in 1929 (see [94] and [84, p. 314]). If 𝑋 is a bounded measurable set in ℝ𝑛, the 

inner  function 𝑚𝑋 of 𝑋 is defined by 

𝑚𝑋(𝑢) = 𝑠𝑢𝑝𝑡∈ℝ𝑉𝑛−1(𝑋 ∩ (𝑢
⊥ + 𝑡𝑢)), 

for 𝑢 ∈ 𝑆𝑛−1. (In 1926, Bonnesen asked if this function determines a convex body in 

ℝ𝑛, 𝑛 ≥ 3, up to translation and re°ection in the origin, a question that remains unanswered; 

see [97, Problem 8.10].)  Bonnesen proved that if 0 < 𝜆 < 1 and 𝑢 ∈ 𝑆𝑛−1, then 

𝑉𝑛((1 − 𝜆)𝑋 + 𝜆𝑌) ≥ 𝑀1 (𝑛−1)⁄ (𝑚𝑋(𝑢),𝑚𝑌(𝑢), 𝜆) ((1 − 𝜆)
𝑉𝑛(𝑋)

𝑚𝑋(𝑢)
+ 𝜆

𝑉𝑛(𝑌)

𝑚𝑌(𝑢)
).      (29) 

Lemma (3.1.15) with 𝑝 = 1/(𝑛 − 1) and 𝑞 = 1 shows that this is indeed stronger than (15). 

As Dancs and Uhrin [94, Theorem 3.2] show, an integral version of (29), in a general form 

similar to 

Theorem (3.1.16), can be constructed from the ideas already presented here. 

At present the most general results in this direction are contained in the papers of Uhrin; see 

[196], [97]. In particular, Uhrin states in [87, p. 306] that all previous results of this type are 

contained in [97, (3.42)]. The latter inequality has as an ingredient a “curvilinear Minkowski 

addition,” and its proof reintroduces geometrical methods. 

The convolution of measurable functions 𝑓 and 𝑔 on ℝ𝑛 is 

𝑓 ∗ 𝑔(𝑥) = ∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦
ℝ𝑛

. 

The next two theorems, on concavity of products of functions, are useful in obtaining a result 

on the concavity of convolutions. 

Theorem(3.1.18) [78]:  Let 𝑝1 + 𝑝2 ≥ 0, and let 𝑝 = 𝑝1𝑝2/(𝑝1 + 𝑝2) if 𝑝1 and 𝑝2 are not 

both zero, and 𝑝 = 0 if 𝑝1 = 𝑝2 = 0. For 𝑖 = 1,2, let 𝑓𝑖 be a 𝑝𝑖-concave function on a convex 

set 𝐶𝑖 in ℝ𝑛. Then the function 𝑓(𝑥, 𝑦) = 𝑓1(𝑥)𝑓2(𝑦) is 𝑝-concave on 𝐶1 × 𝐶2. 

Proof: Suppose that 0 < 𝜆 < 1, and let 𝑥𝑖 ∈ 𝐶1 and 𝑦𝑖 ∈ 𝐶2 for 𝑖 = 0, 1. By Lemma (3.1.15), 

𝑓((1 − 𝜆)(𝑥0, 𝑦0) + 𝜆(𝑥1, 𝑦1)) = 𝑓1((1 − 𝜆)𝑥0 + 𝜆𝑥1)𝑓2((1 − 𝜆)𝑦0 + 𝜆𝑦1) 
≥ 𝑀𝑝1(𝑓1(𝑥0), 𝑓1(𝑥1), 𝜆 )𝑀𝑝2(𝑓2(𝑦0), 𝑓2(𝑦1), 𝜆) 

≥ 𝑀𝑝(𝑓1(𝑥0)𝑓2(𝑦0), 𝑓1(𝑥1)𝑓2(𝑦1), 𝜆) 

= 𝑀𝑝(𝑓(𝑥0, 𝑦0), 𝑓(𝑥1, 𝑦1), 𝜆). 

Theorem (3.1.19) [78]: Let 𝑝 ≥ −1/𝑛 and let 𝑓 be an integrable 𝑝-concave function on an 

open convex set 𝐶 in ℝ𝑚+𝑛. For each 𝑥 in the projection 𝐶|ℝ𝑚 of 𝐶 onto ℝ𝑚, let 𝐶(𝑥) =
{𝑦 ∈ ℝ𝑛: (𝑥, 𝑦) ∈ 𝐶}. Then 
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𝐹(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦
𝐶(𝑥)

 

is 𝑝/(𝑛𝑝 + 1)-concave on 𝐶|ℝ𝑚. 

Proof: For 𝑖 = 0, 1, let 𝑥𝑖 ∈ 𝐶|ℝ
𝑚 and let 𝑔𝑖(𝑦) = 𝑓(𝑥𝑖 , 𝑦) for 𝑦 ∈ 𝐶(𝑥𝑖). Suppose that 0 <

𝜆 < 1 and that 𝑥 = (1 − 𝜆)𝑥0 + 𝜆𝑥1, and let 𝑔(𝑦) = 𝑓(𝑥, 𝑦) for 𝑦 ∈ 𝐶(𝑥). The 𝑝-concavity 

of 𝑓 implies that 

𝑔((1 − 𝜆)𝑦0 + 𝜆𝑦1) ≥ 𝑀𝑝(𝑔0(𝑦0), 𝑔1(𝑦1), 𝜆) 

whenever 𝑦𝑖 ∈ 𝐶(𝑥𝑖), 𝑖 = 0, 1. Also, 

                                       𝐶(𝑥) ⊃ (1 − 𝜆)𝐶(𝑥0) + 𝜆𝐶(𝑥1).  
Then Theorem(3.1.16) yields 

∫ 𝑔(𝑦)𝑑𝑦
𝐶(𝑥)

≥ 𝑀𝑝 (𝑛𝑝+1)⁄ (∫ 𝑔0(𝑦)𝑑𝑦
𝐶(𝑥0)

, ∫ 𝑔1(𝑦)𝑑𝑦
𝐶(𝑥1)

, 𝜆) . 

This shows that 𝐹 is 𝑝/(𝑛𝑝 + 1)-concave on 𝐶|ℝ𝑚.  

If we apply the previous theorem with 𝑛 = 1 and 𝑓 = 1𝐶  when 𝐶 is the interior of a convex 

body 𝐾 in ℝ𝑚+1, and let 𝑝 → ∞, we see that the function giving volumes of parallel 

hyperplane of 𝐾 is 1/𝑛-concave. This statement is equivalent to the Brunn-Minkowski 

inequality for convex bodies. 

Theorem (3.1.20) [78]: Let 𝑝1 + 𝑝2 ≥ 0, and let 𝑝 = 𝑝1𝑝2/(𝑝1 + 𝑝2) if 𝑝1 and 𝑝2 are not 

both zero, and 𝑝 = 0 if 𝑝1 = 𝑝2 = 0. Suppose further that 𝑝 ≥ −1/𝑛. For 𝑖 =  1, 2, let 𝑓𝑖 be 

an integrable 𝑝𝑖-concave function on an open convex set 𝐶𝑖 in ℝ𝑛. Then 𝑓1 ∗ 𝑓2 is 𝑝/(𝑛𝑝 +
1)-concave on 𝐶1 + 𝐶2. 

Proof: By Theorem (3.1.18), the function 𝑓1(𝑥 − 𝑦)𝑓2(𝑦) is 𝑝-concave for (𝑥 − 𝑦, 𝑦) ∈ 𝐶1 ×
𝐶2 ⊂ ℝ

2𝑛, that is, for 𝑥 ∈ 𝐶1 + 𝐶2. The result follows from Theorem (3.1.19).  

For extensions to measures and some examples that limit the possibility of weakening the 

conditions on 𝑝1, 𝑝2, and 𝑝 in Theorem (3.1.20), see [99, Section 3.3], whose general 

approach we have followed in. Theorem (3.1.19) can be found in [98] and [95]. The early 

history of 

Theorem (3.1.20) (when 𝑝 = 0, this says that the convolution of two log concave functions 

is also log concave) is discussed by Das Gupta [47, p. 313]. 

12. The covariogram 

Theorem (3.1.21) [78]: Let 𝐾 and 𝐿 be convex bodies in ℝ𝑛. Then the function 

𝑔𝐾,𝐿(𝑥) = 𝑉(𝐾 ∩ (𝐿 + 𝑥))
1 𝑛⁄
, 

for 𝑥 ∈ ℝ𝑛, is concave on its support. 

Proof: For 𝑥, 𝑦 ∈ ℝ𝑛 and 0 < 𝜆 < 1, we have 

𝐾 ∩ (𝐿 + (1 − 𝜆)𝑥 + 𝜆𝑦) = 𝐾 ∩ ((1 − 𝜆)(𝐿 + 𝑥) + 𝜆(𝐿 + 𝑦)) 

⊃ (1 − 𝜆)(𝐾 ∩ (𝐿 + 𝑥)) + 𝜆(𝐾 ∩ (𝐿 + 𝑦)) ∶ 
Using the Brunn-Minkowski inequality (15), we obtain 

𝑔𝐾,𝐿((1 − 𝜆)𝑥 + 𝜆𝑦) ≥ 𝑉((1 − 𝜆)(𝐾 ∩ (𝐿 + 𝑥)) + (𝐾 ∩ (𝐿 + 𝑦)))
1 𝑛⁄  

≥ (1 − 𝜆)𝑉(𝐾 ∩ (𝐿 + 𝑥))1 𝑛⁄ + 𝜆𝑉(𝐾 ∩ (𝐿 + 𝑦))1 𝑛⁄  
= (1 − 𝜆)𝑔𝐾,𝐿(𝑥) + 𝜆𝑔𝐾,𝐿(𝑦), 
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as required.  

As a corollary, we conclude that the covariogram 𝑔𝐾 of a convex body 𝐾 in ℝ𝑛, defined for 

𝑥 ∈ ℝ𝑛 by 

                                          𝑔𝐾(𝑥) = 𝑉(𝐾 ∩ (𝐾 + 𝑥)),   
is 1/𝑛-concave (and hence log concave) on its support, which, it is easy to check, is the 

difference body 𝐷𝐾 = 𝐾 + (−𝐾) of 𝐾. Obviously 𝑔𝐾 is unchanged when 𝐾 is translated or 

replaced by its reflection −𝐾 in the origin. Note that 

𝑔𝐾(𝑥) = ∫ 1𝐾∩(𝐾+𝑥)(𝑦) 𝑑𝑦
ℝ𝑛

 

= ∫ 1𝐾(𝑦)1𝐾+𝑥(𝑦)𝑑𝑦
ℝ𝑛

 

= 1𝐾(𝑦)1𝐾(𝑦 − 𝑥)𝑑𝑦 = 1−𝐾 ∗ 1𝐾(𝑥). 
The name “covariogram” stems from the theory of random sets, where the covariance is 

defined for 𝑥 ∈ ℝ𝑛 as the probability that both 𝑜 and 𝑥 lie in the random set. The 

covariogram is also useful in mathematical morphology. See [95, Chapter 9]) and [90, 

Section 6.2]. In 1986, 𝐺. Matheron (see [92]) asked if the covariogram determines convex 

bodies, up to translation and reflection in the origin. Remarkably, this question is open even 

for 𝑛 = 2! Nagel [91] proved that the answer is affirmative when 𝐾 and 𝐿 are convex 

polygons in the plane. Bianchi [93] has shown that the answer is affirmative for much larger 

class of planar convex bodies. He has also found pairs of convex polyhedra that represent 

counterexamples in ℝ4, but these are still reflections of each other in a plane. See also [96, 

Section 6], and the references given in connection with chord-power integrals in [99, p. 267]. 

Anderson [102] used the Brunn-Minkowski theorem in his work on multivariate 

unimodality. He began with the following simple observation. If 𝑓 is a (i) symmetric 

(𝑓(𝑥) = 𝑓(−𝑥)) and (ii) unimodal (𝑓(𝑐𝑥) ≥ 𝑓(𝑥) for 0 ≤ 𝑐 ≤ 1) function on ℝ, and 𝐼 is 

an interval centered at the origin, then 

∫ 𝑓(𝑥) 𝑑𝑥
𝐼+𝑦

 

is maximized when 𝑦 = 0. In probability language, if a random variable 𝑋 has probability 

density 𝑓 and 𝑌 is an independent random variable, then 

                                       𝑃𝑟𝑜𝑏 {𝑋 ∈ 𝐼} ≥ 𝑃𝑟𝑜𝑏{𝑋 + 𝑌 ∈ 𝐼}.  
To see this, recall that if 𝑔 is the probability density of  , then 𝑓 ∗ 𝑔 is the probability density 

of 𝑋 + 𝑌 ; see [82, Section 11.5]. So, by Fubini's theorem, 

𝑃𝑟𝑜𝑏 {𝑋 + 𝑌 ∈ 𝐼} = ∫∫𝑓(𝑧 − 𝑦)𝑔(𝑦) 𝑑𝑦 𝑑𝑧
ℝ𝐼

 

= ∫ ∫𝑓(𝑧 − 𝑦)𝑔(𝑦)𝑑𝑧 𝑑𝑦
𝐼ℝ

 

= ∫ ∫ 𝑓(𝑥)𝑔(𝑦)𝑑𝑥𝑑𝑦
𝐼−𝑦ℝ
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≤ ∫ ∫𝑓(𝑥)𝑔(𝑦)𝑑𝑥 𝑑𝑦
𝐼ℝ

 

= ∫𝑓(𝑥)𝑑𝑥
𝐼

= 𝑃𝑟𝑜𝑏 {𝑋 ∈ 𝐼}. 

Anderson generalized this, as follows. If 𝑓 is a nonnegative function on ℝ𝑛, call 𝑓 unimodal 

if the level sets 𝐿(𝑓, 𝑡) (see (24)) are convex for each 𝑡 ≥ 0. Note that every quasiconcave 

function and hence all 𝑝-concave functions are unimodal. 

Theorem (3.1.22) [78] : (Anderson's  theorem.) Let 𝐾 be an origin-symmetric (i.e., 𝐾 =
−𝐾) convex body in ℝ𝑛 and let 𝑓 be a nonnegative, symmetric, and unimodal function 

integrable on ℝ𝑛. Then 

∫𝑓(𝑥 + 𝑐𝑦)𝑑𝑥
𝐾

≥ ∫𝑓(𝑥 + 𝑦)𝑑𝑥
𝐾

, 

for 0 ≤ 𝑐 ≤ 1 and 𝑦 ∈ ℝ𝑛. 

Proof: Suppose initially that 𝑓(𝑥) = 1𝐿(𝑥), where 𝐿 is an origin-symmetric convex body in 

ℝ𝑛. Then 𝑓(𝑥 + 𝑦) = 1𝐿(𝑥 + 𝑦) = 1𝐿−𝑦(𝑥) and 

∫𝑓(𝑥 + 𝑦)𝑑𝑥
𝐾

= ∫1𝐿−𝑦(𝑥)𝑑𝑥
𝐾

= 𝑉(𝐾 ∩ (𝐿 − 𝑦)) = 𝑔𝐾,𝐿(−𝑦) = 𝑔𝐾,𝐿(𝑦). 

Theorem (3.1.21) implies that 𝑔𝐾,𝐿 is log concave. Let 𝜆 = (1 − 𝑐)/2. Since 

𝑔𝐾,𝐿(𝑐𝑦) = 𝑔𝐾,𝐿((1 − 2𝜆)𝑦) 
= 𝑔𝐾,𝐿((1 − 𝜆)𝑦 + 𝜆(−𝑦)) 

≥ 𝑔𝐾,𝐿(𝑦)
1−𝜆𝑔𝐾,𝐿(−𝑦)

𝜆 

= 𝑔𝐾,𝐿(𝑦)
1−𝜆𝑔𝐾,𝐿(𝑦)

𝜆 = 𝑔𝐾,𝐿(𝑦),  
the theorem follows. In the general case, 𝐿(𝑓, 𝑡) is an origin-symmetric convex body, so by 

(6), Fubini's theorem, and the special case just proved, 

∫𝑓(𝑥 + 𝑐𝑦)𝑑𝑥 
𝐾

= ∫ ∫ 1𝐿(𝑓,𝑡)(𝑥 + 𝑐𝑦)𝑑𝑡
∞

0

 𝑑𝑥
𝐾

 

= ∫ ∫1𝐿(𝑓,𝑡)(𝑥 + 𝑐𝑦) 𝑑𝑥
𝐾

 𝑑𝑡
∞

0

 

≥ ∫ ∫1𝐿(𝑓,𝑡)(𝑥 + 𝑦) 𝑑𝑥
𝐾

 𝑑𝑡
∞

0

 

= ∫𝑓(𝑥 + 𝑦)𝑑𝑥
𝐾

. 

Anderson's theorem says that the integral of a symmetric unimodal function 𝑓 over an 𝑛-

dimensional centrally symmetric convex body 𝐾 does not decrease when 𝐾 is translated 

towards the origin. Since the graph of 𝑓 forms a hill whose peak is over the origin, this is 

intuitively clear. 

However, it is no longer obvious, as it was in the 1-dimensional case! There may be points 

𝑥 ∈ 𝐾 at which the value of 𝑓 is larger than it is at the corresponding translate of 𝑥. 
As above, we can conclude from Anderson's theorem that if a random variable 𝑋 has 

probability density 𝑓 on ℝ𝑛 and 𝑌 is an independent random variable, then 
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𝑃𝑟𝑜𝑏 {𝑋 ∈ 𝐾} ≥ 𝑃𝑟𝑜𝑏{𝑋 + 𝑌 ∈ 𝐾}, 
where 𝐾 is any origin-symmetric convex body in ℝ𝑛. We noted above that density functions 

of some well-known probability distributions are 𝑝-concave for some p, and hence unimodal. 

If they are also symmetric, Anderson's theorem applies. 

Suppose 𝐾 is a convex body in ℝ𝑛, 𝑦 ∈ ℝ𝑛, 𝑝 ≥ −1/𝑛, and 𝑓 is an integrable 𝑝-concave 

function on ℝ𝑛. Corollary (3.1.17) implies that the measure 𝜇 generated by 𝑓 and ℝ𝑛 is 

𝑝/(𝑛𝑝 + 1)-concave on ℝ𝑛. Let 

ℎ(𝑦) = 𝜇(𝐾 − 𝑦) = ∫ 𝑓(𝑥)𝑑𝑥
𝐾−𝑦

 = ∫𝑓(𝑥 + 𝑦)𝑑𝑥
𝐾

. 

Since 

𝐾 − (1 − 𝜆)𝑦0 − 𝜆𝑦1 = (1 − 𝜆)(𝐾 − 𝑦0) + 𝜆(𝐾 − 𝑦1), 
we have 

ℎ((1 − 𝜆)𝑦0 + 𝜆𝑦1) = 𝜇(𝐾 − (1 − 𝜆)𝑦0 − 𝜆𝑦1) 
= 𝜇((1 − 𝜆)(𝐾 − 𝑦0) + 𝜆(𝐾 − 𝑦1)) 
≥ 𝑀𝑝/(𝑛𝑝+1) (𝜇(𝐾 − 𝑦0), 𝜇(𝐾 − 𝑦1), 𝜆) 

= 𝑀𝑝/(𝑛𝑝+1) (ℎ(𝑦0), ℎ(𝑦1), 𝜆). 

Therefore ℎ is 𝑝/(𝑛𝑝 + 1)-concave on ℝ𝑛 and hence unimodal. In particular, ℎ(𝑐𝑦) is 

unimodal in 𝑐 for a fixed 𝑦. This shows that Corollary (3.1.17) and Anderson's theorem are 

related. Anderson's theorem replaces the restriction 𝑝 ≥ −1/𝑛 with a much weaker 

condition, but requires in exchange the symmetry of 𝑓 and 𝐾. 

Anderson's theorem has many applications in probability and statistics, where, for example, 

it can be applied to show that certain statistical tests are unbiased. See [102], [106], [99], and 

[100].  

We saw in the previous how the Brunn-Minkowski inequality and convolutions come 

together naturally. The next theorem provides two convolution inequalities with sharp 

constants, the first proved independently by Beckner [101] and Brascamp and Lieb [104], 

and the second by Brascamp and Lieb [104]. We shall soon see that the second inequality 

actually implies the Brunn-Minkowski inequality. 

Theorem (3.1.23) [78]:  Let 0 < 𝑝, 𝑞, 𝑟 satisfy 

                                               
1

𝑝
+
1

𝑞
= 1 +

1

𝑟
,                                                               (30)                                                         

and let 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and 𝑔 ∈ 𝐿𝑞(ℝ𝑛) be nonnegative. Then 

(Young’s inequality)       ‖𝑓 ∗ 𝑔‖𝑟 ≤ 𝐶
𝑛‖𝑓‖𝑝‖𝑔‖𝑞 ,    𝑓𝑜𝑟 𝑝, 𝑞, 𝑟 ≥ 1,                (31)           

and 

(Reverse Young inequality) ‖𝑓 ∗ 𝑔‖𝑟 ≥ 𝐶
𝑛‖𝑓‖𝑝‖𝑔‖𝑞 ,    𝑓𝑜𝑟 𝑝, 𝑞, 𝑟 ≤ 1.          (32)        

Here 𝐶 = 𝐶𝑝𝐶𝑞/𝐶𝑟, where 

                                                      𝐶𝑠
2 =

|𝑠|1 𝑠⁄

|𝑠′|1 𝑠′⁄
                                                            (33)                                                        

for 1/𝑠 + 1/𝑠′ = 1 (that is, 𝑠 and 𝑠′ are Hölder conjugates). 

The inequality (31), when expanded, reads as follows: 
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(∫ (∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦)𝑑𝑦
ℝ𝑛

)

𝑟

𝑑𝑥
ℝ𝑛

)

1 𝑟⁄

≤ 𝐶𝑛 (∫ 𝑓(𝑥)𝑝𝑑𝑥
ℝ𝑛

)

1 𝑝⁄

(∫ 𝑔(𝑥)𝑞𝑑𝑥
ℝ𝑛

)

1 𝑞⁄

. 

Inequalities (31) and (32) together show that equality holds in both when 𝑝 = 𝑞 =  𝑟 = 1. 

In fact, since 𝐶𝑝 → 1 as 𝑝 → 1, when 𝑝 = 𝑞 = 𝑟 = 1 we have 𝐶 = 1, and substituting 𝑢 =

𝑥 − 𝑦, 𝑣 = 𝑦 in the left-hand side of (31), we obtain 

∫ ∫ 𝑓(𝑢)𝑔(𝑣) 𝑑𝑣
ℝ𝑛

𝑑𝑢
ℝ𝑛

≤ ∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

. 

But equality holds here and therefore also in (31), and similarly in (32). 

Theorem (3.1.24) [78]: The limiting case 𝑟 → 0 of the reverse Young inequality is the 

essential form of the Prekopa-Leindler inequality in ℝ𝑛 (Theorem (3.1.13)). 

Proof: Let 𝑓𝑚 and 𝑔𝑚 be sequences of bounded measurable functions with compact support 

converging in 𝐿1(ℝ𝑛) to 𝑓 and 𝑔, respectively, as 𝑚 → ∞ and satisfying 𝑓𝑚 ≤ 𝑓 and 𝑔𝑚  ≤
𝑔. Let 

                        𝑠𝑚(𝑥) = 𝑒𝑠𝑠 𝑠𝑢𝑝𝑦𝑓𝑚 (
𝑥−𝑦

1−𝜆
)
1−𝜆

𝑔𝑚 (
𝑦

𝜆
)
𝜆
                                         (34)                                  

Let 𝑠(𝑥) be defined by replacing 𝑓𝑚 by 𝑓 and 𝑔𝑚 by 𝑔 in (34). As in the proof of Theorem 

(3.1.13). 𝑠 and each 𝑠𝑚 is measurable. Also, ‖𝑠‖1 ≥ ‖𝑠𝑚‖1, so if 

‖𝑠𝑚‖1 ≥ ‖𝑓𝑚‖1
1−𝜆‖𝑔𝑚‖1

𝜆  
for each 𝑚 we have 

‖𝑠‖1 ≥ ‖𝑓‖1
1−𝜆‖𝑔‖1

𝜆. 
Therefore it suffices to prove the theorem when 𝑓 and g are bounded measurable functions 

with compact support. 

Assuming this, note that 𝑠(𝑥) = 𝑙𝑖𝑚𝑚→∞𝑆𝑚(𝑥), where 

𝑆𝑚(𝑥) = (∫ 𝑓 (
𝑥 − 𝑦

1 − 𝜆
)
(1−𝜆)𝑚

𝑔 (
𝑦

𝜆
)
𝜆𝑚

𝑑𝑦
ℝ𝑛

)

1 (𝑚−1)⁄

. 

(If we replaced the exponent, 1/(𝑚 − 1) by 1/𝑚, this would follow from the fact that the 

𝑚th mean tends to the supremum as 𝑚 → ∞; compare [97, 𝑝. 143]. But this replacement is 

irrelevant in the limit.) Note also that ‖𝑠𝑚‖1 = 𝑙𝑖𝑚𝑚→∞‖𝑆𝑚‖1 (we can interchange the limit 

and integral because the 𝑆𝑚’s are uniformly bounded and have supports lying in some 

common compact set). 

Applying the reverse Young inequality to 𝑆𝑚 with 𝑚 > max{(1 − 𝜆)−1, 𝜆−1} , 𝑝 = 1/((1 −
𝜆)𝑚), 𝑞 = 1 = (𝜆𝑚), and 𝑟 = 1/(𝑚 − 1), we obtain 

‖𝑆𝑚‖1 = ∫ 𝑆𝑚(𝑥)𝑑𝑥
ℝ𝑛

 

= ∫ (∫ 𝑓 (
𝑥 − 𝑦

1 − 𝜆
)
(1−𝜆)𝑚

𝑔 (
𝑦

𝜆
)
𝜆𝑚

𝑑𝑦
ℝ𝑛

)

1 (𝑚−1)⁄

𝑑𝑥
ℝ𝑛

 

≥ (𝐶𝑛 (∫ 𝑓 (
𝑥 − 𝑦

1 − 𝜆
) 𝑑𝑥 

ℝ𝑛
)

(1−𝜆𝑚)

 (∫ 𝑔 (
𝑦

𝜆
)
𝜆𝑚

𝑑𝑦
ℝ𝑛

)

𝜆𝑚

)

1 (𝑚−1)⁄
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= 𝐶𝑛/(𝑚−1) ((1 − 𝜆)𝑛‖𝑓‖1)
(1−𝜆)𝑚/(𝑚−1) (𝜆𝑛‖𝑔‖1)

𝜆𝑚/(𝑚−1) . 
Therefore 

‖𝑠‖1 = 𝑙𝑖𝑚𝑚→∞‖𝑆𝑚‖1 ≥ ((1 − 𝜆)
1−𝜆𝜆𝜆 𝑙𝑖𝑚𝑚→∞𝐶

1/(𝑚−1))
𝑛
‖𝑓‖1

1−𝜆‖𝑔‖1
𝜆. 

It remains only to check that 

lim
𝑚→∞

𝐶1 (𝑚−1)⁄ = (1 − 𝜆)−(1−𝜆)𝜆−𝜆. 

The inequalities presented approach the most general known in the direction of Young's 

inequality and its reverse form, and represent a research frontier that can be expected to move 

before too long. 

Each 𝑚 × 𝑛 matrix 𝐴 defines a linear transformation from ℝ𝑛 to ℝ𝑚, and this linear map 

can also be denoted by 𝐴. The Euclidean adjoint 𝐴∗ of 𝐴 is then an 𝑛 ×𝑚 matrix or linear 

transformation from ℝ𝑚 to ℝ𝑛 satisfying 𝐴𝑥 ∙ 𝑦 = 𝑥 ∙ 𝐴∗𝑦 for each 𝑦 ∈ ℝ𝑚 and 𝑥 ∈ ℝ𝑛. 

Theorem (3.1.25) [78]: Let 𝑐𝑖 > 0 and 𝑛𝑖 ∈ ℕ, 𝑖 = 1,… ,𝑚, with ∑ 𝑐𝑖𝑛𝑖𝑖 = 𝑛. Let  𝑓𝑖 ∈
𝐿1(ℝ𝑛𝑖) be nonnegative and let 𝐵𝑖: ℝ

𝑛 → ℝ𝑛𝑖 be a linear surjection, 𝑖 = 1,… ,𝑚. Then  

 (Brascamp-Lieb inequality) 

                        ∫ ∏ 𝑓𝑖(𝐵𝑖𝑥)
𝑐𝑖𝑚

𝑖=1  𝑑𝑥 
ℝ𝑛

≤ 𝐷−1 2⁄ ∏ (∫ 𝑓𝑖(𝑥)𝑑𝑥ℝ𝑛𝑖
)
𝑐𝑖𝑚

𝑖=1                 (35)                

and 

(Barthe's inequality) 

                      ∫ 𝑠𝑢𝑝{∏ 𝑓𝑖(𝑧𝑖)
𝑐𝑖𝑚

𝑖=1 : 𝑥 = ∑ 𝑐𝑖𝐵𝑖
∗𝑧𝑖𝑖 , 𝑧𝑖 ∈ ℝ

𝑛𝑖}𝑑𝑥
ℝ𝑛 

     ̅̅̅̅
≥

                     𝐷1 2⁄ ∏ (∫ 𝑓𝑖(𝑥)𝑑𝑥ℝ𝑛𝑖
)
𝑐𝑖𝑚

𝑖=1                                                                               (36)                                                 

where 

𝐷 = 𝑖𝑛𝑓 {
𝑑𝑒𝑡(∑ 𝑐𝑖𝐵𝑖

∗𝐴𝑖𝐵𝑖
𝑚
𝑖=1 )

∏ (𝑑𝑒𝑡𝐴𝑖)
𝑐𝑖𝑚

𝑖=1

∶ 𝐴𝑖  𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑖 × 𝑛𝑖  𝑚𝑎𝑡𝑟𝑖𝑥}            (37)     

For comments on equality conditions and ideas of proof, including a proof of an important 

special case of (36),. 

We can begin to understand (35) by taking 𝑛𝑖 = 𝑛, 𝐵𝑖 = 𝐼𝑛, the identity map on ℝ𝑛, 

replacing 𝑓𝑖 by 𝑓𝑖
1/𝑐𝑖  , and letting 𝑐𝑖 = 1/𝑝𝑖 , 𝑖 = 1,… ,𝑚. Then  ∑ 1/𝑝𝑖𝑖 = 1 and the log 

concavity of the determinant of a positive definite matrix (see, for example, [80, p. 63]) 

yields 𝐷 = 1. Therefore 

∫ ∏𝑓𝑖(𝑥)

𝑚

𝑖=1

𝑑𝑥
ℝ𝑛

≤∏‖𝑓𝑖‖𝑝𝑖

𝑚

𝑖=1

, 

Holder's inequality in ℝ𝑛. 

Next, take 𝑚 = 2, 𝑛1 = 𝑛2 = 𝑛,𝐵1 = 𝐵2 = 𝐼𝑛, 𝑐1 = 1 − 𝜆, and 𝑐2 = 𝜆 in (36). Again we 

have 𝐷 = 1, so 

∫ 𝑠𝑢𝑝{𝑓1(𝑧1)
1−𝜆𝑓2(𝑧2)

𝜆: 𝑥 = (1 − 𝜆)𝑧1 + 𝑧2}𝑑𝑥
ℝ𝑛 

       ̅̅ ̅̅ ̅

≥ (∫ 𝑓1(𝑥)𝑑𝑥
ℝ𝑛

)

1−𝜆

 (∫ 𝑓2(𝑥)𝑑𝑥
ℝ𝑛

)

𝜆

, 

the Pr�̀�kopa -Leindler inequality (12) in ℝ𝑛. 
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Theorem (3.1.26) [78]: (Young's inequality in ℝ𝑛, second form.) Let 0 < 𝑝, 𝑞, 𝑟 satisfy 
1

𝑝
+
1

𝑞
+
1

𝑟
=  2, 

and let 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑔 ∈ 𝐿𝑞(ℝ𝑛), and ℎ ∈ 𝐿𝑟(ℝ𝑛) be nonnegative. Then 

                ∫ ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑦)ℎ(𝑦)𝑑𝑦
ℝ𝑛

 𝑑𝑥
ℝ𝑛

≤ 𝐶̅𝑛‖𝑓‖𝑝‖𝑔‖𝑞‖ℎ‖𝑟 ,                      (38)                  

where 𝐶̅ = 𝐶𝑝𝐶𝑞𝐶𝑟 is defined using (33). 

Theorem (3.1.27) [78]: The second form of Young's inequality in ℝ𝑛 is equivalent to the 

first (31).  

Proof: Let 𝑝, 𝑞, 𝑟 ≥ 1 satisfy (30). By Holder's inequality (11), 

𝑠𝑢𝑝 {
‖𝑓 ∗ 𝑔‖𝑟
‖𝑓‖𝑝‖𝑔‖𝑞

: 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑔 ∈ 𝐿𝑞(ℝ𝑛)} = 

= 𝑠𝑢𝑝 {
∫ (𝑓 ∗ 𝑔)(𝑥)ℎ(𝑥) 𝑑𝑥
ℝ𝑛

‖𝑓‖𝑝‖𝑔‖𝑞‖ℎ‖𝑟′
:  𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑔 ∈ 𝐿𝑞(ℝ𝑛), ℎ ∈ 𝐿𝑟

′
(ℝ𝑛)} 

=  𝑠𝑢𝑝 {
∫ ∫ 𝑓(𝑥 − 𝑦)𝑔(𝑦)ℎ(𝑥)𝑑𝑥

ℝ𝑛
𝑑𝑦

ℝ𝑛

‖𝑓‖𝑝‖𝑔‖𝑞‖ℎ‖𝑟′
: 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑔 ∈ 𝐿𝑞(ℝ𝑛), ℎ ∈ 𝐿𝑟

′
(ℝ𝑛)} 

= 𝑠𝑢𝑝 {
∫ ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑦)ℎ(𝑥)𝑑𝑦

ℝ𝑛
𝑑𝑥

ℝ𝑛

‖𝑓‖�̅�‖𝑔‖�̅�‖ℎ‖�̅�
: 𝑓 ∈ 𝐿�̅�(ℝ𝑛), 𝑔 ∈ 𝐿�̅�(ℝ𝑛), ℎ ∈ 𝐿�̅�(ℝ𝑛)} 

where the last equality is obtained by replacing 𝑓, 𝑔, ℎ, 𝑝, 𝑞, and 𝑟′, by 𝑔, ℎ, 𝑓, �̅�, �̅�, and �̅�, 

respectively, so that 
1

𝑝
+
1

𝑞
+
1

𝑟
= 2. 

Theorem (3.1.28) [78]: The Brascamp-Lieb inequality (35) implies Young's inequality in 

ℝ𝑛. 

Proof: In (35), let 𝑚 = 3, 𝑛1 = 𝑛2 = 𝑛3 = 𝑛, and let 𝐵𝑖: ℝ
2𝑛 → ℝ𝑛, 𝑖 = 1,2,3 be the linear 

maps taking (𝑧1, … , 𝑧2𝑛) to (𝑧1, … , 𝑧𝑛), (𝑧1 − 𝑧𝑛+1, … , 𝑧𝑛 − 𝑧2𝑛), and (𝑧𝑛+1, … , 𝑧2𝑛), 

respectively; then replace 𝑓𝑖 by 𝑓𝑖
1 𝑐𝑖⁄  , 𝑖 = 1, 2, 3 and let 𝑐1 = 1/𝑝, 𝑐2 = 1/𝑞, and 𝑐3 = 1/𝑟. 

In this case 𝐷 = 𝐶−2, where 𝐶 is as in Theorem (3.1.23); see [34, Theorem 5]. This gives 

∫ ∫ 𝑓1(𝑥)𝑓2(𝑥 − 𝑦)𝑓3(𝑦)𝑑𝑦
ℝ𝑛

 𝑑𝑥
ℝ𝑛

≤ 𝐶‖𝑓1‖𝑝‖𝑓2‖𝑞‖𝑓3‖𝑟 , 

which is (38).  

As a side remark, we note that there is a version of Young's inequality in its second form 

(38), called the weak Young inequality, which only requires that 𝑔 ∈ 𝐿𝑤
𝑞
(ℝ𝑛), the weak 𝐿𝑞 

space. See [91, Section 4.3] for details. This allows one to conclude in particular that under 

the (slightly weakened) hypotheses of Theorem (3.1.26), with 𝑞 = 𝑛/𝜆, 

                       ∫ ∫ 𝑓(𝑥)‖𝑥 − 𝑦‖−𝜆ℎ(𝑦)𝑑𝑦
ℝ𝑛

 𝑑𝑥
ℝ𝑛

≤ 𝑘(𝑛, 𝜆, 𝑝)‖𝑓‖𝑝‖ℎ‖𝑟 .         (39)       

This was proved in Lieb [89] with a sharp constant 𝑘(𝑛, 𝜆, 𝑝). The classical form without the 

sharp constant is called the Hardy-Littlewood-Sobolev inequality. The case 𝜆 = 𝑛 − 2 is of 

particular interest in potential theory, as is explained in [91, Chapter 9]. 
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As Ball [103] remarks, some geometry comes back into view if we replace 𝑓(𝑥) in Young's 

inequality (38) by 𝑓(−𝑥): 
                     ∫ ∫ 𝑓(−𝑥1)𝑔(𝑥1 − 𝑥2)ℎ(𝑥2)𝑑𝑥2ℝ𝑛

𝑑𝑥1ℝ𝑛
≤ 𝐶̅‖𝑓‖𝑝‖𝑔‖𝑞‖ℎ‖𝑟 .    (40)     

 Define 𝜙: ℝ2 → ℝ3 by 𝜙(𝑥1, 𝑥2) = 𝑧 = (𝑧1, 𝑧2, 𝑧3), where 𝑧1 = −𝑥1, 𝑧2 = 𝑥1 − 𝑥2, and 

𝑧3 = 𝑥2. 

Then 𝜙(ℝ2) = 𝑆, where 𝑆 is the plane {(𝑧1, 𝑧2, 𝑧3): 𝑧1 + 𝑧2 + 𝑧3 = 0} through the origin. 

Let 𝑓 = 𝑔 = ℎ = 1[−1,1] and 𝐶0 = [−1,1]
3. By (40), 

𝑉2(𝐶0 ∩ 𝑆) = ∫1𝐶0(𝑧) 𝑑𝑧
𝑆

 

= ∫𝑓(𝑧1)𝑔(𝑧2)ℎ(𝑧3)𝑑𝑧
𝑆

 

= 𝐽(𝜙)−1𝑓(−𝑥1)𝑔(𝑥1 − 𝑥2)ℎ(𝑥2)𝑑𝑥2 𝑑𝑥1, 
where 𝐽(𝜙) is the Jacobian of 𝜙. So Young's inequality might be used to provide upper 

bounds for volumes of central of cubes. In fact, Ball [109] used the following special case 

of the Brascamp-Lieb inequality to do just this. 

Suppose that 𝑐𝑖 > 0 and 𝑢𝑖𝑆
𝑛−1, 𝑖 = 1,… ,𝑚 satisfy 

𝑥 =∑𝑐𝑖(𝑥 ∙ 𝑢𝑖)𝑢𝑖

𝑚

𝑖=1

, 

for all 𝑥 ∈ ℝ𝑛. This says that the 𝑢𝑖 's are acting like an orthonormal basis for ℝ𝑛. The 

condition is often written 

                                            ∑ 𝑐𝑖𝑢𝑖⊗𝑢𝑖
𝑚
𝑖=1 = 𝐼𝑛,                                                      (41)                                              

where 𝑢 ⊗ 𝑢 denotes the rank one orthogonal projection onto the span of 𝑢, the map that 

sends 𝑥 to (𝑥 ∙ 𝑢)𝑢. Taking traces in (41), we see that 

                                                   ∑ 𝑐𝑖
𝑚
𝑖=1 =  𝑛.                                                             (42)                                                    

Theorem (3.1.29) [78]:  Let 𝑐𝑖 > 0 and 𝑢𝑖 ∈ 𝑆
𝑛−1, 𝑖 = 1,… ,𝑚 be such that (41) and hence 

(42) holds. 

If 𝑓𝑖 ∈ 𝐿
1(ℝ) is nonnegative, 𝑖 =  1,… ,𝑚, then 

(Geometric Brascamp-Lieb inequality) 

                  ∫ ∏ 𝑓𝑖(𝑥 ∙ 𝑢𝑖)
𝑐𝑖𝑚

𝑖=1 𝑑𝑥
ℝ𝑛

≤ ∏ (∫ 𝑓𝑖(𝑥)𝑑𝑥ℝ
)
𝑐𝑖𝑚

𝑖=1                                      (43)                            

and 

(Geometric Barthe inequality) 

∫ 𝑠𝑢𝑝{∏ 𝑓𝑖(𝑧𝑖)
𝑐𝑖𝑚

𝑖=1 : 𝑥 = ∑ 𝑐𝑖𝑧𝑖𝑢𝑖𝑖 , 𝑧𝑖 ∈ ℝ}𝑑𝑥ℝ𝑛 

     ̅̅̅̅
≥ ∏ (∫ 𝑓𝑖(𝑥)𝑑𝑥ℝ

)
𝑐𝑖𝑚

𝑖=1 .       (44)   

Proof: Let 𝑛𝑖 = 1 and for 𝑥 ∈ ℝ𝑛, let 𝐵𝑖𝑥 = 𝑥 ∙ 𝑢𝑖 , 𝑖 =  1,… ,𝑚. Then 𝐵𝑖
∗𝑧𝑖 = 𝑧𝑖𝑢𝑖 ∈

ℝ𝑛 for 𝑧𝑖 ∈ ℝ. The inequalities (35) and (36) become (43) and (44), respectively, because 

the hypotheses of the theorem and (37) imply that 𝐷 = 1 (see [107, Proposition 9] for the 

details).  

Note that the geometric Barthe inequality (44) still implies the Prekopa-Leindler inequality 

in ℝ, with the geometric consequences explained above. 

Ball [109] used (43) to obtain the best-possible upper bound 



77 
 

𝑉𝑘(𝐶0 ∩ 𝑆) ≤ (√2)
𝑛−𝑘

 
for of the cube 𝐶0 = [−1,1]

𝑛 by 𝑘-dimensional subspaces 𝑆, 1 ≤ 𝑘 ≤  𝑛 − 1, when 2𝑘 ≥ 𝑛. 

(For smaller values of 𝑘, the best-possible bound is not known except for some special cases; 

see [109].) He also showed that (43) provides best-possible upper bounds for the volume 

ratio 𝑣𝑟(𝐾) of a convex body 𝐾 in ℝ𝑛, defined by 

𝑣𝑟(𝐾) = (
𝑉(𝐾)

𝑉(𝐸)
)

1 𝑛⁄

, 

where 𝐸 is the ellipsoid of maximal volume contained in 𝐾. The ellipsoid 𝐸 is called the 

John ellipsoid of 𝐾. The following theorem is a refinement of Ball [102] of a theorem proved 

by Fritz John. 

Theorem (3.1.30) [78]: The John ellipsoid of a convex body 𝐾 in ℝ𝑛 is 𝐵 if and only if 𝐵 ⊂
𝐾 and there is an 𝑚 ≥ 𝑛, 𝑐𝑖 > 0 and 𝑢𝑖 ∈ 𝑆

𝑛−1  ∩ 𝜕𝐾, 𝑖 = 1,… ,𝑚 such that (41) holds and 
∑ 𝑐𝑖𝑢𝑖𝑖 = 𝑜. 

Ball's argument is as follows. Let 𝐾 be a convex body in ℝ𝑛. Since 𝑣𝑟(𝐾) is affine invariant, 

we may assume that the John ellipsoid of 𝐾 is 𝐵. If we can show that 𝑉(𝐾) ≤ 2𝑛, then 

𝑣𝑟(𝐾) ≤ 𝑣𝑟(𝐶0), where 𝐶0 = [−1,1]
𝑛. Let 𝑐𝑖 and 𝑢𝑖 be as in John's theorem, and note that 

the points 𝑢𝑖 are contact points, points where the boundaries of 𝐾 and 𝐵 meet. If 𝐾 is origin-

symmetric and 𝑢𝑖 is a contact point, then so is −𝑢𝑖; therefore 𝐾 ⊂ 𝐿, where 

𝐿 = {𝑥 ∈ ℝ𝑛: |𝑥 ⋅ 𝑢𝑖| ≤ 1, 𝑖 = 1,… ,𝑚} 
is the closed slab bounded by the hyperplanes {𝑥: 𝑥 ∙ 𝑢𝑖 = ±1}. Also, if 𝑓𝑖 = 1[−1,1], then 

1𝐿(𝑥) =∏𝑓𝑖(𝑥 ∙ 𝑢𝑖)
𝑐𝑖

𝑚

𝑖=1

. 

By (43) and (42), 

𝑉(𝐾) ≤ 𝑉(𝐿) = ∫ ∏𝑓𝑖(𝑥 ∙ 𝑢𝑖)
𝑐𝑖

𝑚

𝑖=1

 𝑑𝑥
ℝ𝑛

 

≤∏(∫𝑓𝑖(𝑥)𝑑𝑥
ℝ

)

𝑐𝑖𝑚

𝑖=1

=∏2𝑐𝑖

𝑚

𝑖=1

= 2𝑛. 

This argument shows that 𝑣𝑟(𝐾) is maximal for centrally symmetric 𝐾 when 𝐾 is a 

parallelotope. 

One consequence of this estimate is the following result of Ball [101] (Behrend [102] proved 

the result for 𝑛 = 2). 

Theorem (3.1.31) [78]: (Reverse isoperimetric inequality for centrally symmetric convex 

bodies in ℝ𝑛.) Let 𝐾 be a centrally symmetric convex body in ℝ𝑛 and let 𝐶0 = [−1,1]
𝑛. 

There is an affine 

transformation 𝜙 such that 

                                         (
𝑆(𝜙𝐾)

𝑆(𝐶0)
)
1 (𝑛−1)⁄

≤ (
𝑉(𝜙𝐾)

𝑉(𝐶0)
)
1 𝑛⁄

.                                         (45)                                  
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Proof: Choose 𝜙 so that the John ellipsoid of 𝜙𝐾 is 𝐵. The above argument shows that 

𝑉(𝜙𝐾) ≤ 2𝑛. Since 𝐵 ⊂ 𝜙𝐾, we have, by (3), 

𝑆(𝜙𝐾) = 𝑙𝑖𝑚𝜀→0+
𝑉(𝜙𝐾 + 𝜀𝐵) − 𝑉(𝜙𝐾)

𝜀
 

≤ 𝑙𝑖𝑚𝜀→0+
𝑉(𝜙𝐾 + 𝜀𝜙𝐾) − 𝑉(𝜙𝐾)

𝜀
 

= 𝑉(𝜙𝐾) 𝑙𝑖𝑚𝜀→0+
(1 +  𝜀)𝑛−1

𝜀
 

= 𝑛𝑉(𝜙𝐾) = 𝑛𝑉(𝜙𝐾)(𝑛−1) 𝑛⁄ 𝑉(𝜙𝐾)1 𝑛⁄ ≤ 2𝑛𝑉 (𝜙𝐾)(𝑛−1) 𝑛⁄ . 
This is equivalent to (45).  

One cannot expect a reverse isoperimetric inequality without use of an affine trans-

formation, since we can find convex bodies of any prescribed volume that are very flat and 

so have large surface area. 

In [101], Ball used the same methods to show that for arbitrary convex bodies, the volume 

ratio is maximal for simplices, and to obtain a corresponding reverse isoperimetric 

inequality. The fact that the volume ratio is only maximal for parallelotopes (in the centrally 

symmetric case) or simplices was shown by Barthe [107] as a corollary of his study of the 

equality conditions in the Brascamp-Lieb inequality. 

For other results of this type that employ Theorem (3.1.29), see [100], [106], and [103]. 

Barthe [107] states a multidimensional generalization of Theorem (3.1.29), also derived 

from Theorem (3.1.25), that leads to a multidimensional Brunn-Minkowski-type theorem. 

The classical Young inequality is 

‖𝑓 ∗ 𝑔‖𝑟 ≤ ‖𝑓‖𝑝‖𝑔‖𝑞 , 𝑓𝑜𝑟 𝑝, 𝑞, 𝑟 ≥ 1, 

that is, (31) with the better constant 𝐶𝑛 there replaced by 1, under the same assumptions. 

This can be proved in a few lines using Holder's inequality (11); see [91, p. 99]. It was proved 

by 𝑊.𝐻. Young in 1912-13 (see [107, Sections 8.3 and 8.4]), and is related to the classical 

Hausdorff-Young inequality: If 1 ≤ 𝑝 ≤ 2 and 𝑓 ∈ 𝐿𝑝(ℝ𝑛), then 

                                             ‖𝑓‖
𝑝′
≤ ‖𝑓‖𝑝,                                                               (46)                                                      

where 𝑓 denotes the Fourier transform 

                                      𝑓(𝑥) = ∫ 𝑓(𝑦)𝑒2𝜋𝑖𝑥∙𝑦 𝑑𝑦
ℝ𝑛

  

of 𝑓, and 𝑝 and 𝑝′ are Holder conjugates. This was proved by Hausdorff and Young for 

Fourier series, and extended to integrals by Titchmarsh in 1924. Beckner [21], improving 

earlier partial results of Babenko, showed that when 1 ≤ 𝑝 ≤ 2, 

                                              ‖𝑓‖
𝑝′
≤ 𝐶𝑝

𝑛‖𝑓‖𝑝,                                                         (47)                                                     

where 𝐶𝑝 is given by (33). (Lieb [90] proved that equality holds only for Gaussians.) This 

improvement on (46) is related to Young's inequality (31); in fact, the classical Young 

inequality was motivated by (46). To see the connection, suppose that (47) holds, 𝑛 = 1, and 

1 ≤ 𝑝, 𝑞, 𝑟′ ≤  2. If 𝑝, 𝑞, 𝑟 satisfy (30), then their Holder conjugates satisfy 1/𝑝′ + 1/𝑞′ =
1/𝑟′. Using this and Holder's inequality (11), we obtain 

‖𝑓 ∗ 𝑔‖𝑟 ≤ 𝐶𝑟′‖𝑓�̂�‖𝑟′  
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≤ 𝐶𝑟′  ‖𝑓‖𝑝′
‖�̂�‖𝑞′ 

≤ 𝐶𝑟′(𝐶𝑝‖𝑓‖𝑝)(𝐶𝑞‖𝑔‖𝑞) = 𝐶‖𝑓‖𝑝‖𝑔‖𝑞 . 
A similarly easy argument (see [92, pp.169-70]) shows that Young's inequality (31) yields 

(46) when 𝑝′ is an even integer. 

Young's inequality in the sharp form (31) was proved independently by Beckner [92] and 

Bras-camp and Lieb [104]. The reverse Young inequality without the sharp constant (that is, 

with 𝐶 replaced by 1) is due to Leindler [87]; the sharp version was obtained by Brascamp 

and Lieb [94]. The latter also found the connection to the Prekopa-Leindler inequality, 

Theorem (3.1.24), and established the following equality conditions: When 𝑛 = 1 and 𝑝, 𝑞 ≠
1, equality holds in (31) or (32) if and only if 𝑓 and g are Gaussians: 

𝑓(𝑥) = 𝑎𝑒−𝑐|𝑝
′|(𝑥−𝛼)2 , 𝑔(𝑥) = 𝑏𝑒−𝑐|𝑞

′|(𝑥−𝛽)2 , 
for some 𝑎, 𝑏, 𝑐, 𝛼, 𝛽  with 𝑎, 𝑏 ≥ 0 and 𝑐 > 0. 

The simplest known proof of Young's inequality and its reverse form, with the above equality 

conditions, was found by Barthe [98]. 

The Brascamp-Lieb inequality in the general form (35), with equality conditions, was proved 

by Lieb [90]. The special case 𝑛𝑖 = 1 and 𝐵𝑖𝑥 = 𝑥 ∙ 𝑣𝑖 , where 𝑥 ∈ ℝ𝑛 and 𝑣𝑖 ∈ ℝ
𝑛, 𝑖 =

1,… ,𝑚 is the main result of Brascamp and Lieb [94]. 

Let 𝐴 be an 𝑛 × 𝑛 positive definite symmetric matrix, and let 

𝐺𝐴(𝑥) = 𝑒𝑥𝑝(−𝐴𝑥 ∙ 𝑥), 
for 𝑥 ∈ ℝ𝑛. The function 𝐺𝐴 is called a centered Gaussian. Lieb [90] proved that the 

supremum of the left-hand side of (35) for functions 𝑓𝑖 of norm one is the same as the 

supremum of the left-hand side of (35) for centered Gaussians of norm one; in other words, 

the constant 𝐷 can be computed using centered Gaussians. 

There is also a version of (35) in which a fixed centered Gaussian appears in the integral on 

the left-hand side and the constant is again determined by taking the functions 𝑓𝑖 to be 

Gaussians; see [94, Theorem 6], where an application to statistical mechanics is given, and 

[90, Theorem 6.2]. 

Barthe [97] proved (36), giving at the same time a simpler approach to (35) and its equality 

conditions.  

The fact that the constant 𝐷 in the geometric Brascamp-Lieb inequality (43) becomes 1 was 

observed by Ball [99]. Inequality (44) was first proved by Barthe [94]. As in the general 

case, equality holds in (43) and (44) for centered Gaussians. 

The main idea behind Barthe's approach is the use of a familiar construction from measure 

theory. Let 𝜇 be a finite Borel measure in ℝ𝑛 and 𝑇:ℝ𝑛 → ℝ𝑛 a Borel-measurable map 

defined 𝜇-almost everywhere. For Borel sets 𝑀 in ℝ𝑛, let 

𝑣(𝑀) = (𝑇𝜇)(𝑀) = 𝜇(𝑇−1(𝑀)). 
The Borel measure 𝑣 = 𝑇𝜇 is sometimes called the push-forward of 𝜇 by 𝑇, and T is said to 

push forward or transport the measure 𝜇 to 𝑣. Suppose for simplicity that 𝜇 and 𝑣 are 

absolutely continuous with respect to Lebesgue measure, so that 

𝜇(𝑀) = ∫ 𝑓(𝑥)𝑑𝑥
𝑀

𝑎𝑛𝑑 𝑣(𝑀) = ∫ 𝑔(𝑥) 𝑑𝑥
𝑀
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for Borel sets 𝑀 in ℝ𝑛, and 𝑇 is a differentiable bijection. Then 

𝑓(𝑥) = 𝑔(𝑇(𝑥))𝐽(𝑇)(𝑥), 
where 𝐽(𝑇) is the Jacobian of 𝑇, and we can talk of 𝑇 transporting 𝑓 to 𝑔. If 𝜇 and 𝑣 are 

measures on ℝ, absolutely continuous with respect to Lebesgue measure and with 𝜇(ℝ) =
𝑣(ℝ), then we can always find a 𝑇 that transports 𝜇 to 𝑣, by defining 𝑇(𝑡) to be the smallest 

number such that 

∫ 𝑓(𝑥)𝑑𝑥 
𝑡

−∞

= ∫ 𝑔(𝑥) 𝑑𝑥
𝑇(𝑡)

−∞

. 

Moreover, if 𝑓 and 𝑔 are continuous and positive, then 𝑇 is strictly increasing and 𝐶1, and 

𝑓(𝑥) = 𝑔(𝑇(𝑥))𝑇′(𝑥). 
In fact, the same parametrization was used in proving the Prekopa-Leindler inequality in ℝ. 

To see this, replace the functions 𝑓 and 𝑔 in the second proof of Theorem (3.1.2) with 𝑔1 

and 𝑔2, respectively. If 𝑓𝑖 = 𝐹𝑖1[0,1], 𝑖 = 1,2, then 

1

𝐺𝑖
∫ 𝑔𝑖(𝑥) 𝑑𝑥
𝑇𝑖(𝑡)

−∞

= ∫ 1[0,1](𝑥)𝑑𝑥
𝑡

−∞

= 𝑡, 

so the functions 𝑢 and 𝑣 in the second proof of Theorem (3.1.2) are just 𝑇1 and 𝑇2, 

respectively. In other words, 𝑢 and 𝑣 transport a suitable multiple of the characteristic 

function of the unit interval to 𝑔1 and 𝑔2, respectively. 

Barthe saw that this is all that is needed to prove (35) and (36) simultaneously in the special 

case 𝑛𝑖 = 1 and 𝐵𝑖𝑥 = 𝑥 ∙ 𝑣𝑖, where 𝑥 ∈ ℝ𝑛 and 𝑣𝑖 ∈ ℝ
𝑛, 𝑖 = 1,… ,𝑚. To see this, let 𝑐𝑖 >

0 satisfy ∑ 𝑐𝑖𝑖 = 𝑛 and let 𝑓𝑖 and 𝑔𝑖 be nonnegative functions in 𝐿1(ℝ) with 

∫𝑓𝑖(𝑥) 𝑑𝑥
ℝ

= 𝐹𝑖  𝑎𝑛𝑑  ∫𝑔𝑖(𝑥) 𝑑𝑥
ℝ

= 𝐺𝑖 , 

for 𝑖 = 1,… ,𝑚. Standard approximation arguments show that there is no loss of generality 

in assuming 𝑓𝑖 and 𝑔𝑖 are positive and continuous. Define strictly increasing maps 𝑇𝑖 as 

above, so that 

                                           
1

𝐹𝑖
∫ 𝑓𝑖(𝑥)𝑑𝑥
𝑡

−∞
=

1

𝐺𝑖
∫ 𝑔𝑖(𝑥) 𝑑𝑥
𝑇𝑖(𝑡)

−∞
  

and hence 
𝑓𝑖(𝑥)

𝐹𝑖
= 𝑔(𝑇𝑖(𝑥))𝑇0𝑖 (𝑥)𝐺𝑖; 

for 𝑖 = 1,… ,𝑚. For 𝑥 ∈ ℝ𝑛, let 

𝑉(𝑥) =∑𝑐𝑖𝑇𝑖(𝑥 ∙ 𝑣𝑖)𝑣𝑖

𝑚

𝑖=1

, 

so that 

𝑑𝑉(𝑥) =∑𝑐𝑖𝑇𝑖
′

𝑚

𝑖=1

(𝑥 ∙ 𝑣𝑖)(𝑣𝑖⨂𝑣𝑖)(𝑑𝑥). 

Finally, note that if 𝐵𝑖𝑥 = 𝑥 ⋅ 𝑣𝑖  for 𝑥 ∈ ℝ, then 𝐵𝑖
∗ = 𝑥𝑣𝑖, so 𝐵𝑖

∗𝐵𝑥 = 𝑣𝑖⨂𝑣𝑖(𝑥), and the 

constant 𝐷 in (37) becomes 
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𝐷 = 𝑖𝑛𝑓 {
𝑑𝑒𝑡 (∑ 𝑐𝑖𝑎𝑖𝑣𝑖⨂𝑣𝑖

𝑚
𝑖=1 )

∏ 𝑎𝑖
𝑐𝑖𝑚

𝑖=1

∶ 𝑎𝑖 > 0} . 

In the following, we can assume that 𝐷 ≠ 0. Using the expression for 𝐷 with 𝑎𝑖 =
𝑇𝑖
′(𝑥 ⋅ 𝑣𝑖), 𝑖 = 1,… ,𝑚 to provide a lower bound for the Jacobian of the injective map  , we 

obtain 

𝐷(∏(
𝐺𝑖
𝐹𝑖
)
𝑐𝑖

𝑚

𝑖=1

)∫ ∏𝑓𝑖(𝑥 ⋅ 𝑣𝑖)
𝑐𝑖

𝑚

𝑖=1

𝑑𝑥 
ℝ𝑛

= 𝐷∫ ∏(𝑔𝑖(𝑇𝑖(𝑥 ∙ 𝑣𝑖))𝑇𝑖
′(𝑥 ∙ 𝑣𝑖))

𝑐𝑖

𝑚

𝑖=1

 𝑑𝑥
ℝ𝑛

 

≤ ∫ ∏𝑔𝑖(𝑇𝑖(𝑥 ∙ 𝑣𝑖))
𝑐𝑖

𝑚

𝑖=1

 𝑑𝑒𝑡 (∑𝑐𝑖𝑇𝑖
′ (𝑥 ∙ 𝑣𝑖)(𝑣𝑖⨂𝑣𝑖)

𝑚

𝑖=1

)𝑑𝑥
ℝ𝑛

 

≤ ∫ 𝑠𝑢𝑝 {∏(𝑔𝑖(𝑧𝑖)
𝑐𝑖

𝑚

𝑖=1

∶ 𝑉 =∑𝑐𝑖𝑧𝑖𝑣𝑖, 𝑧𝑖
𝑖

∈ ℝ)} 𝑑𝑉
ℝ𝑛

 

     ̅̅̅̅

 

≤ ∫ 𝑠𝑢𝑝 {∏(𝑔𝑖(𝑧𝑖)
𝑐𝑖

𝑚

𝑖=1

∶ 𝑥 =∑𝑐𝑖𝑧𝑖𝑣𝑖, 𝑧𝑖
𝑖

∈ ℝ)} 𝑑𝑥
ℝ𝑛

 

     ̅̅̅̅

. 

To see how centered Gaussians play a role in the equality conditions, note that if 𝑓𝑖(𝑥) =
𝑒𝑥𝑝(−𝑎𝑖𝑥

2), then since  ∑ 𝑐𝑖𝑖 = 𝑛, 

∏(∫𝑓𝑖(𝑥)𝑑𝑥
ℝ

)

𝑐𝑖𝑚

𝑖=1

=∏(∫𝑒−𝑎,𝑥
2
𝑑𝑥

ℝ

)

𝑐𝑖𝑚

𝑖=1

 

=∏𝑎𝑖
−𝑐𝑖 2⁄

𝑚

𝑖=1

(∫𝑒−𝑥
2
𝑑𝑥

ℝ

)

𝑐𝑖

 

=∏(
𝜋

𝑎𝑖
)
𝑐𝑖 2⁄

𝑚

𝑖=1

= (
𝜋𝑛

∏ 𝑎𝑖
𝑐𝑖𝑚

𝑖=1

)

1 2⁄

, 

while 

∫ ∏𝑓𝑖(𝑥 ∙ 𝑣𝑖)
𝑐𝑖

𝑚

𝑖=1

𝑑𝑥 
ℝ𝑛

= ∫ ∏(𝑒−𝑎𝑖(𝑥𝑣𝑖)
2
)
𝑐𝑖

𝑚

𝑖=1

𝑑𝑥
ℝ𝑛

 

= ∫ 𝑒−(∑ 𝑐𝑖𝑎𝑖(𝑥∙𝑣𝑖)𝑣𝑖
𝑚
𝑖=1 )∙𝑥

ℝ𝑛
 𝑑𝑥 

= (
𝜋𝑛

𝑑𝑒𝑡(∑ 𝑐𝑖𝑎𝑖𝑣𝑖⨂𝑣𝑖
𝑚
𝑖=1 )

)

1 2⁄

. 

(The last equality follows from 

∫ 𝑒−𝐴𝑥⋅𝑥 𝑑𝑥
ℝ𝑛

= (
𝜋𝑛

𝑑𝑒𝑡𝐴
)

1 2⁄

, 

where 𝐴 is a positive definite symmetric 𝑛 × 𝑛 matrix.) 
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To summarize, we have shown that in the special case under consideration, the left-hand side 

of (36) is greater than or equal to the left-hand side of (35), and that equality holds in (35) 

for centered Gaussians. This is already enough to prove (36). One more computation is 

needed to prove (35), but we shall omit it, since it needs some (quite basic) tools of geometry, 

see [104]. 

If one wants to apply the same sort of argument in the general situation of Theorem (3.1.25), 

one needs an answer to the following question: If 𝜇 and 𝑣 are measures on ℝ𝑛, absolutely 

continuous with respect to Lebesgue measure and with 𝜇(ℝ𝑛) =  𝑣(ℝ𝑛), can we find a 𝑇 

with some suitable monotonicity property that transports 𝜇 to 𝑣? It turns out that an ideal 

answer has recently been found, called the Brenier map: Providing 𝜇 vanishes on Borel sets 

of ℝ𝑛 with Hausdorff dimension 𝑛 − 1, there is a convex map 𝜓 ∶ ℝ𝑛 → ℝ such that if 𝑇 =
∇𝜓, then 𝑇 transports 𝜇 to 𝑣. See [107]. It is appropriate to highlight the contribution of 

McCann, whose 1994 PhD thesis [113] shows the relevance of measure-preserving convex 

gradients to geometric inequalities and helped attract the attention of the convex geometry 

community to Brenier's result. In [113] and [114], the Brenier map is exploited as a 

localization technique to derive new global convexity inequalities which imply the Brunn-

Minkowski and Pr�̀�kopa -Leindler inequalities as special cases. 

Barthe [115, Section 2.4] also discovered a generalization of Young's inequality in ℝ𝑛 that 

contains the geometric Brascamp-Lieb and geometric Barthe inequalities as limiting cases. 

Suppose that 𝑋 is a discrete random variable taking possible values 𝑥1, … , 𝑥𝑚 with 

probabilities 𝑝1, … , 𝑝𝑚, respectively, where  ∑ 𝑝𝑖𝑖 = 1. Shannon [136] introduced a measure 

of the average uncertainty removed by revealing the value of 𝑋. This quantity, 

𝐻𝑚(𝑝1, … , 𝑝𝑚) = −∑𝑝𝑖  𝑙𝑜𝑔 𝑝𝑖

𝑚

𝑖=1

, 

is called the entropy of 𝑋. It can also be regarded as a measure of the missing information; 

indeed, the function 𝐻𝑚 is concave and achieves its maximum when 𝑝1 = ⋯ = 𝑝𝑚 = 1/𝑚, 

that is, when all outcomes are equally likely. The words “uncertainty” and “information” 

already suggest a  connection with physics, and a derivation of the function 𝐻𝑚 from a few 

natural assumptions can be found in textbooks on statistical mechanics; see, for example, 

[106, Chapter 3]. 

If 𝑋 is a random vector in ℝ𝑛 with probability density 𝑓, the entropy ℎ1(𝑋) of 𝑋 is defined 

analogously: 

ℎ1(𝑋) = ℎ1(𝑓) = −∫ 𝑓(𝑥) log 𝑓(𝑥) 𝑑𝑥
ℝ𝑛

. 

The notation we use is convenient when ℎ1(𝑋) is regarded as a limit as 𝑝 → 1 of the 𝑝th 

𝑅enyi entropy ℎ𝑝(𝑋) of 𝑋, defined for 𝑝 > 1 by 

ℎ𝑝(𝑋) = ℎ𝑝(𝑓) =
𝑝

1 − 𝑝
𝑙𝑜𝑔 ‖𝑓‖𝑝. 

The entropy of 𝑋 may not be well defined. However, if 𝑓 ∈ 𝐿1(ℝ𝑛)  ∩ 𝐿𝑝(ℝ𝑛) for some 𝑝 >
1, then ℎ1(𝑋) = ℎ1(𝑓) is well defined, though its value may be +∞. 
The entropy power 𝑁(𝑋) of 𝑋 is 
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𝑁(𝑋) =
1

2𝜋𝑒
𝑒𝑥𝑝 (

2

𝑛
ℎ1(𝑋)) . 

Theorem (3.1.32) [78]: (Entropy power inequality.) Let 𝑋 and 𝑌 be independent random 

vectors in ℝ𝑛 with probability densities in 𝐿𝑝(ℝ𝑛) for some 𝑝 > 1. Then 

                                 𝑁(𝑋 + 𝑌 ) ≥ 𝑁(𝑋) + 𝑁(𝑌 ).                                                   (48)                                           
The entropy power inequality was proved by Shannon [136, Theorem 15 and Appendix 6] 

and applied by him to obtain a lower bound [136, Theorem 18] for the capacity of a 

channel.  

Lemma (3.1.33) [78]: Let 𝑓 and 𝑔 be nonnegative functions in 𝐿𝑠(ℝ𝑛) for some 𝑠 > 1, such 

that 

∫ 𝑓(𝑥)𝑑𝑥
ℝ𝑛

= ∫ 𝑔(𝑥)𝑑𝑥
ℝ𝑛

= 1. 

Then for 0 < 𝜆 < 1, 

 ℎ1(𝑓 ∗ 𝑔) − (1 − 𝜆)ℎ1(𝑓) − 𝜆ℎ1(𝑔) ≥ −
𝑛

2
((1 − 𝜆)𝑙𝑜𝑔(1 − 𝜆) + 𝜆𝑙𝑜𝑔𝜆).     (49)     

Proof: For 𝑟 ≥ 1, let 

                       𝑝 = 𝑝(𝑟) =
𝑟

(1−𝜆)+𝜆𝑟
𝑎𝑛𝑑 𝑞 = 𝑞(𝑟) =

𝑟

𝜆+(1−𝜆)𝑟
.                            (50)                           

Then 𝑝, 𝑞 ≥ 1, 
1

𝑝
+
1

𝑞
= 1 +

1

𝑟
, 

and 𝑝(1) = 𝑞(1) = 1. If 𝑟 < 𝑠 is close to 1, then 𝑝, 𝑞 < 𝑠, and since 𝑓, 𝑔 ∈  𝐿1(ℝ𝑛) ∩
𝐿𝑠(ℝ𝑛), we have 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and 𝑔 ∈ 𝐿𝑞(ℝ𝑛). Let 

𝐹(𝑟) =
‖𝑓 ∗ 𝑔‖𝑟
‖𝑓‖𝑝‖𝑔‖𝑞

𝑎𝑛𝑑 𝐺(𝑟) = 𝐶𝑛, 

where 𝐶 is as Theorem (3.1.23). By Young's inequality (31), 𝑓 ∗ 𝑔 ∈ 𝐿1(ℝ𝑛) ∩ 𝐿𝑟(ℝ𝑛) and 

𝐹(𝑟) ≤ 𝐺(𝑟) for 𝑟 close to 1. As we noted after Theorem (3.1.23), the equation 𝐹(1) =
𝐺(1+) holds. Therefore 

𝐹(𝑟) − 𝐹(1)

𝑟 − 1
≤
𝐺(𝑟) − 𝐺(1 +)

𝑟 − 1
, 

for 𝑟 close to 1, which implies that 𝐹′(1+) ≤ 𝐺′(1+). We can assume that ℎ1(𝑓 ∗ 𝑔) <
1 and therefore that ℎ1(𝑓) < ∞ and ℎ1(𝑔) < 1. Now if 𝜙 ∈ 𝐿𝑟(ℝ𝑛), ‖𝜙‖1 = 1, and 

ℎ1(𝜙) < ∞, then 
𝑑

𝑑𝑟
‖𝜙‖𝑟 =

1

𝑟
‖𝜙‖1−𝑟

𝑑

𝑑𝑟
∫ 𝜙(𝑥)𝑟  𝑑𝑥
ℝ𝑛

 

=
1

𝑟
‖𝜙‖1−𝑟∫ 𝜙(𝑥)𝑟  𝑙𝑜𝑔 𝜙(𝑥)𝑑𝑥

ℝ𝑛
 

→ ∫ 𝜙(𝑥)𝑙𝑜𝑔 𝜙(𝑥)𝑑𝑥
ℝ𝑛

= −ℎ1(𝜙) 

as 𝑟 → 1. Using this and (50), we see that 

𝐹′(1 +) = −ℎ1(𝑓 ∗ 𝑔) + (1 − 𝜆)ℎ1(𝑓) + 𝜆ℎ1(𝑔). 
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A calculation, helped by the fact that 𝑝′ = 𝑟′/(1 − 𝜆) and 𝑞′ = 𝑟′/𝜆, where 𝑝′, 𝑞′, 𝑟′ denote 

as usual the Holder conjugates of 𝑝, 𝑞, 𝑟, respectively, shows that 

𝐺′(1 +) =
𝑛

2
((1 − 𝜆)𝑙𝑜𝑔(1 − 𝜆) + 𝜆𝑙𝑜𝑔𝜆). 

Finally, (49) follows from the inequality 𝐹′(1+) ≤ 𝐺′(1+).  
Corollary (3.1.34) [78]: Young's inequality (31) implies the entropy power inequality (48). 

Proof. In (49), put 

𝜆 =
𝑁(𝑌)

𝑁(𝑋) + 𝑁(𝑌)
 . 

Simplification of the resulting inequality leads directly to (48).  

Presumably Lieb, via his [104] and [88], first saw the connection between the entropy power 

inequality (48) and the Brunn-Minkowski inequality (15), the former being a limiting case 

of Young's inequality (31) as 𝑟 → 1 and the latter a limiting case of the reverse Young 

inequality (32) as 𝑟 → 0. Later, Costa and Cover [103] specifically drew attention to the 

analogy between the two inequalities, apparently unaware of the work of Brascamp and Lieb. 

Dembo, Cover, and Thomas [108] explore further connections with other inequalities. These 

include some involving Fisher information and various uncertainty inequalities. 

Fisher information was employed by Stam [108] in his proof of (48). Named after the 

statistician 𝑅. 𝐴. Fisher, Fisher information is claimed in [104] by Frieden to be at the heart 

of  a unifying principle for all of physics! If 𝑋 is a random variable with probability density 

𝑓 on ℝ, the Fisher information 𝐼(𝑋) of 𝑋 is 

𝐼(𝑋) = 𝐼(𝑓) = −∫𝑓(𝑥)(log 𝑓(𝑥))′′𝑑𝑥
ℝ

 = ∫
𝑓′(𝑥)2

𝑓(𝑥)
𝑑𝑥

ℝ

, 

assuming these integrals exist. The multivariable form of 𝐼 is a matrix, the natural extension 

of this definition. The quantity 𝐼 is another measure of the “sharpness” of 𝑓 or the missing 

information in 𝑋; see [64, Section 1.3] for a comparison of 𝐼 and ℎ1. Stam  

Theorem (3.1.35) [78]:  (Aleksandrov-Fenchel inequality.) Let 𝐾1, … , 𝐾𝑛 be compact 

convex sets in ℝ𝑛 and let 1 ≤  𝑖 ≤ 𝑛. Then 

                        𝑉(𝐾1, 𝐾2, … , 𝐾𝑛)
𝑖  ≥ ∏ 𝑉(𝐾𝑗 , 𝑖; 𝐾𝑖+1, … , 𝐾𝑛)

𝑖
𝑗=1  .                         (51)                        

See [107, p. 143] and [114, (6.8.7)]. The quantities 𝑉(𝐾1, 𝐾2, … , 𝐾𝑛) and 

𝑉(𝐾𝑗  , 𝑖; 𝐾𝑖+1, … , 𝐾𝑛) (where the notation means that 𝐾𝑗 appears 𝑖 times) are mixed volumes, 

like the quantity 𝑉1(𝐾, 𝐿) we met. In fact, if we put 𝑖 = 𝑛 in (51) and then let 𝐾1 = 𝐿 and 

𝐾2 = ⋯ = 𝐾𝑛 = 𝐾, we retrieve Minkowski's first inequality (20) for compact convex sets. 

Therefore the Aleksandrov-Fenchel inequality implies the Brunn-Minkowski inequality for 

compact convex sets. In fact, there is a more general version of the latter that is equivalent 

to (51): 

Theorem (3.1.36) [78]:  (Generalized Brunn-Minkowski inequality for compact convex 

sets.) Let 𝐾1, … , 𝐾𝑛 be compact convex sets in ℝ𝑛 and let 1 ≤ 𝑖 ≤ 𝑛. For 0 ≤ 𝜆 ≤ 1, let 

𝑓(𝜆) = 𝑉((1 − 𝜆)𝐾0 + 𝜆𝐾1, 𝑖; 𝐾𝑖+1, … , 𝐾𝑛)
1 𝑖⁄
. 

Then 𝑓 is a concave function on [0,1]. 
Using the above observations, this can be translated into 
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𝑉(𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)
2  ≥ 𝑉(𝑃1𝑃1, 𝑃3, … , 𝑃𝑛)𝑉(𝑃2, 𝑃2 , 𝑃3, … , 𝑃𝑛). 

The case 𝑖 = 2 of (19.1) (and hence, by induction, (19.1) itself) can be shown to follow by 

approximation by polytopes with rational coordinates. See [85, Section 27] for many more 

details and also [82] and [123] for more recent advances in this direction. 

Alesker, Dar, and Milman [91] are able to use the Brenier map (see the end of Section 17) 

to prove some of the inequalities that follow from the Aleksandrov-Fenchel inequality, but 

the method does not seem to yield a new proof of (51) itself. 

In contrast to the Brunn-Minkowski inequality, the Aleksandrov-Fenchel inequality and 

some of its weaker forms, and indeed mixed volumes themselves, have only partially  

ℝ𝑛 closed under Minkowski addition and dilatation is called Minkowski concave if 

                                     𝜙((1 − 𝜆)𝑋 + 𝜆𝑌 ) ≥ (1 − 𝜆)𝜙(𝑋) + 𝜆𝜙(𝑌 ),              (52)              
for 0 < 𝜆 < 1 and sets 𝑋, 𝑌 in the class. For example, the Brunn-Minkowski inequality 

implies that 𝑉𝑛
1 𝑛⁄

 is Minkowski concave on the class of convex bodies. When Hadwiger 

published his extraordinary book [79] in 1957, many other Minkowski-concave functions 

had already been found, and several more have been discovered since. We shall present some 

of these; all the functions have the required degree of positive homogeneity to allow the 

coefficients (1 − 𝜆) and ¸ to be deleted in (52). Other examples can be found in [79, Section 

6.4] and in Lutwak's [96] and [102]. 

Knothe [83] gave a proof of the Brunn-Minkowski inequality for convex bodies, sketched 

in [104, pp. 312-314], and the following generalization. For each convex body 𝐾 in ℝ𝑛, let 

𝐹(𝐾, 𝑥), 𝑥 ∈ 𝐾, be a nonnegative real-valued function continuous in 𝐾 and 𝑥. Suppose also 

that for some 𝑚 > 0, 

𝐹(𝜆𝐾 + 𝑎, 𝜆𝑥 + 𝑎 ) = 𝜆𝑚𝐹(𝐾, 𝑥) 
for all 𝜆 > 0 and 𝑎 ∈ ℝ𝑛, and that 

𝑙𝑜𝑔 𝐹((1 − 𝜆)𝐾 + 𝜆𝐿, (1 − 𝜆)𝑥 + 𝜆𝑦) ≥ (1 − 𝜆)𝑙𝑜𝑔 𝐹(𝐾, 𝑥) + 𝜆𝑙𝑜𝑔 𝐹(𝐿, 𝑦) 
whenever 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿, and 0 ≤ 𝜆 ≤ 1. For each convex body 𝐾 in ℝ𝑛, define 

𝐺(𝐾) = ∫𝐹(𝐾, 𝑥)𝑑𝑥
𝐾

. 

Then 

                                𝐺(𝐾 + 𝐿)1 (𝑛+𝑚)⁄ ≥ 𝐺(𝐾)1 (𝑛+𝑚)⁄ + 𝐺(𝐿)1 (𝑛+𝑚)⁄ ,              (53)           
for all convex bodies 𝐾 and 𝐿 in ℝ𝑛 and 0 < 𝜆 < 1. This is a consequence of the Prekopa-

Leindler inequality. Indeed, taking 𝑓 = 𝐹((1 − 𝜆)𝐾 + 𝜆𝐿,∙), 𝑔 =  𝐹(𝐾,∙), and ℎ = 𝐹(𝐿,∙), 
Theorem (3.1.3) implies that 𝐺 is log concave. The method can then be used to derive the 

1/(𝑛 +𝑚)-concavity (53) of 𝐺 from its log concavity. The Brunn-Minkowski inequality for 

convex bodies is obtained by taking 𝐹(𝐾, 𝑥) = 1 for 𝑥 ∈ 𝐾. Dinghas [80] found further 

results of this type. 

Let 0 ≤ 𝑖 ≤ 𝑛. The mixed volume 𝑉(𝐾, 𝑛 − 𝑖, 𝐵, 𝑖) is denoted by 𝑊𝑖(𝐾), and called the 𝑖th 

quermassintegral of a compact convex set 𝐾 in ℝ𝑛. Then 𝑊0(𝐾) =  𝑉𝑛(𝐾). It can be shown 

(see [134, (5.3.27), p. 295]) that if 𝐾 is a convex body and 1 ≤ 𝑖 ≤ 𝑛 − 1, then 

                                   𝑊𝑖(𝐾) =
𝜅𝑛

𝜅𝑛−𝑖
∫ 𝑉(𝐾|𝑆)𝑑𝑆
𝐺(𝑛,𝑛−𝑖)

,                                        (54)                                     
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where 𝑑𝑆 denotes integration with respect to the usual rotation-invariant probability measure 

on the Grassmannian 𝐺(𝑛, 𝑛 − 𝑖) of (𝑛 − 𝑖)-dimensional subspaces of ℝ𝑛. Thus the 

quermassintegrals are averages of volumes of projections on subspaces. 

Letting 𝐾𝑖+1 = ⋯ = 𝐾𝑛 = 𝐵 in Theorem (3.1.36) yields: 

Theorem (3.1.37) [78]: (Brunn-Minkowski inequality for quermassintegrals.) Let 𝐾 and 𝐿 

be convex bodies in ℝ𝑛 and let 0 ≤ 𝑖 ≤ 𝑛 − 1. Then 

                              𝑊𝑖(𝐾 + 𝐿)
1 (𝑛−𝑖)⁄ ≥ 𝑊𝑖(𝐾)

1 (𝑛−𝑖)⁄ +𝑊𝑖(𝐿)
1 (𝑛−𝑖)⁄ ,               (55)            

with equality for 0 < 𝑖 < 𝑛 − 1 if and only if 𝐾 and 𝐿 are homothetic. 

See [104, (6.8.10), p. 385]. The special case 𝑖 = 0 is the usual Brunn-Minkowski inequality 

for convex bodies. The quermassintegral 𝑊1(𝐾) equals the surface area 𝑆(𝐾), up to a 

constant, so the case 𝑖 = 1 of (55) is a Brunn-Minkowski-type inequality for surface area. 

When 𝑖 = 𝑛 − 1, (55) becomes an identity. The equality conditions for 0 < 𝑖 < 𝑛 − 1 

follow from those known for the corresponding special case of Theorem (3.1.36).  

Let 𝐾 be a convex body in ℝ𝑛, define �̂�0(𝐾) = 𝑉(𝐾) and for 1 ≤ 𝑖 ≤ 𝑛 − 1, define 

�̂�𝑖(𝐾) =
𝜅𝑛
𝜅𝑛−𝑖

(∫ 𝑉 (𝐾|𝑆)−𝑛 𝑑𝑆
𝐺(𝑛,𝑛−𝑖)

)

−1 𝑛⁄

, 

the 𝑖th harmonic quermassintegral of 𝐾. Similarly, define Φ0(𝐾) = 𝑉(𝐾) and for 1 ≤ 𝑖 ≤
𝑛 − 1, define 

Φ𝑖(𝐾) =  
𝜅𝑛
𝜅𝑛−𝑖

(∫ 𝑉 (𝐾|𝑆)−𝑛 𝑑𝑆
𝐺(𝑛,𝑛−𝑖)

)

−1 𝑛⁄

, 

the 𝑖th affine quermassintegral of 𝐾. Note the similarity to (54); the ordinary mean has been 

replaced by the −1- and −𝑛-means, respectively. As its name suggests, Φ𝑖(𝐾) is invariant 

under volume-preserving affine transformations. Hadwiger [79, p. 268] proved the following 

inequality. 

Theorem (3.1.38) [78]: (Hadwiger's inequality for harmonic quermassintegrals.) If 𝐾 and 𝐿 

are convex bodies in ℝ𝑛 and 0 ≤ 𝑖 ≤ 𝑛 − 1, then 

�̂�𝑖(𝐾 + 𝐿)
1 (𝑛−𝑖)⁄ ≥ �̂�𝑖(𝐾)

1 (𝑛−𝑖)⁄ + �̂�𝑖(𝐿)
1 (𝑛−𝑖)⁄ . 

Lutwak [97] showed that the same inequality holds for affine quermassintegrals. 

Theorem (3.1.39) [78]: (Lutwak's inequality for affine quermassintegrals.) If 𝐾 and 𝐿 are 

convex bodies in ℝ𝑛 and 0 ≤ 𝑖 ≤ 𝑛 − 1, then 

                       Φ𝑖(𝐾 + 𝐿)
1 (𝑛−𝑖)⁄ ≥ Φ𝑖(𝐾)

1 (𝑛−𝑖)⁄ +Φ𝑖(𝐿)
1 (𝑛−𝑖)⁄ .                       (56)                      

Let 𝐾 be a convex body in ℝ𝑛, 𝑛 ≥ 3. The capacity 𝐶𝑎𝑝(𝐾) of 𝐾 is defined by 

𝐶𝑎𝑝(𝐾) = 𝑖𝑛𝑓 {∫ ‖∇𝑓‖2𝑑𝑥
ℝ𝑛

∶  𝑓 ∈ 𝐶𝑐
∞(ℝ𝑛), 𝑓 ≥ 1𝐾} , 

where 𝐶𝑐
∞(ℝ𝑛) denotes the infinitely differentiable functions on ℝ𝑛 with compact support. 

Here we are following Evans and Gariepy [57, p. 147], where 𝐶𝑎𝑝(𝐾) =  𝐶𝑎𝑝𝑛−2(𝐾) in 

their notation. 

Several definitions are possible; see [79] and [111, pp. 110-116]. The notion of capacity has 

its roots in electrostatics and is fundamental in potential theory. Note that capacity is an outer 



87 
 

measure but is not a Borel measure, though it enjoys some convenient properties listed in 

[97, p. 151]. 

Borell [99] proved the following theorem. 

Theorem (3.1.40) [78]: (Borell's inequality for capacity.) If 𝐾 and 𝐿 are convex bodies in 

ℝ𝑛, 𝑛 ≥ 3, then 

                     𝐶𝑎𝑝(𝐾 + 𝐿)1 (𝑛−2)⁄ ≥ 𝐶𝑎𝑝(𝐾)1 (𝑛−2)⁄ + 𝐶𝑎𝑝(𝐿)1 (𝑛−2)⁄ .              (57) 

Caffarelli, Jerison, and Lieb [39] showed that equality holds if and only if 𝐾 and 𝐿 are 

homothetic. Jerison [79] employed the inequality and its equality conditions in solving the 

corresponding Minkowski problem.  

If 𝐾 and 𝐿 are convex bodies in ℝ𝑛, then there is a convex body 𝐾 ∔ 𝐿 such that 

𝑆(𝐾 ∔ 𝐿,∙) = 𝑆(𝐾,∙) +  𝑆(𝐿,∙), 
where 𝑆(𝐾,∙) denotes the surface area measure of 𝐾. This is a consequence of Minkowski's 

existence theorem; see [97, Theorem A.3.2] or [104, Section 7.1]. The operation ∔ is called 

Blaschke addition. 

Theorem (3.1.41) [78]: (Kneser-Suss inequality.) If 𝐾 and 𝐿 are convex bodies in ℝ𝑛, then 

                              𝑉 (𝐾 ∔ 𝐿)(𝑛−1) 𝑛⁄ ≥ 𝑉(𝐾)(𝑛−1) 𝑛⁄ + 𝑉(𝐿)(𝑛−1) 𝑛⁄ ,               (58)               
with equality if and only if 𝐾 and 𝐿 are homothetic. 

See [104, Theorem 7.1.3] for a proof. 

Using Blaschke addition, a convex body called a mixed body can be defined from (𝑛 − 1) 
other convex bodies in ℝ𝑛. Lutwak [98, Theorem 4.2] exploits this idea, due to Blaschke 

and Firey, to produce another strengthening of the Brunn-Minkowski inequality for convex 

bodies. 

For convex bodies 𝐾 and 𝐿 in ℝ𝑛, Minkowski addition can be defined by 

ℎ𝐾+𝐿(𝑢) = ℎ𝐾(𝑢) + ℎ𝐿(𝑢), 
for 𝑢 ∈ 𝑆𝑛−1, where ℎ𝐾 denotes the support function of 𝐾. If 𝑝 ≥ 1 and 𝐾 and 𝐿 contain the 

origin in their interiors, a convex body 𝐾 + 𝐿𝑝
  can be defined by 

ℎ𝐾 + (𝑢)𝑝𝐿𝑝
 
  =  ℎ𝐾(𝑢)

𝑝 + ℎ𝐿(𝑢)
𝑝, 

for 𝑢 ∈ 𝑆𝑛−1. The operation +𝑝 is called 𝑝-Minkowski addition. Firey [60] proved the 

following inequality. (Both the definition of 𝑝-Minkowski addition and the case 𝑖 = 0 of 

Firey's inequality are extended to nonconvex sets by Lutwak, Yang, and Zhang [105].) 

Theorem (3.1.42) [78]: (Firey's inequality.) If 𝐾 and 𝐿 are convex bodies in ℝ𝑛 containing 

the origin in their interiors, 0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑝 ≤ 1, then 

                        𝑊𝑖(𝐾+𝑝𝐿)
𝑝 (𝑛−𝑖)⁄ ≥ 𝑊𝑖(𝐾)

𝑝 (𝑛−𝑖)⁄ +𝑊𝑖(𝐿)
𝑝 (𝑛−𝑖)⁄ ,                    (59)                  

with equality when 𝑝 > 1 if and only if 𝐾 and 𝐿 are equivalent by dilatation. 

The Brunn-Minkowski inequality for quermassintegrals (55) is the case 𝑝 = 1. Note that 

translation invariance is lost for 𝑝 > 1. 

Firey's ideas were transformed into a remarkable extension of the Brunn-Minkowski theory 

by Lutwak [101], [104], who also calls it the Brunn-Minkowski-Firey theory. Lutwak found 

the appropriate 𝑝-analog 𝑆𝑝(𝐾,∙), 𝑝 ≥ 1, of the surface area measure of a convex body 𝐾 in 

ℝ𝑛 containing the origin in its interior. In [101], Lutwak generalized Firey's inequality (59). 
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He also generalized Minkowski's existence theorem, deduced the existence of a convex body 

𝐾 ∔𝑝 𝐿 for which 

𝑆𝑝(𝐾 ∔𝑝 𝐿 ,∙) =  𝑆𝑝(𝐾,∙) + 𝑆𝑝(𝐿,⋅) 

(when 𝐾 and 𝐿 are origin-symmetric convex bodies), and proved the following result.  

Theorem (3.1.43) [78]: (Lutwak's p-surface area measure inequality.) If 𝐾 and 𝐿 are origin-

symmetric convex bodies in ℝ𝑛 and 𝑛 ≠ 𝑝 ≥ 1, then 

𝑉 (𝐾 ∔𝑝 𝐿)
(𝑛−𝑝) 𝑛⁄ ≥ 𝑉(𝐾)(𝑛−𝑝) 𝑛⁄ + 𝑉(𝐿)(𝑛−𝑝) 𝑛⁄ , 

with equality when 𝑝 > 1 if and only if 𝐾 and 𝐿 are equivalent by dilatation. 

Note that the Kneser-Suss inequality (58) corresponds to 𝑝 = 1. 

Lutwak, Yang, and Zhang [107] study the 𝐿𝑝 version of the Minkowski problem . A version 

corresponding to 𝑝 = 0 is treated by Stancu [109]. 

Let 𝜒 be a random set in ℝ𝑛, that is, a Borel measurable map from a probability space Ω to 

the space of nonempty compact sets in ℝ𝑛 with the Hausdorff metric. A random vector 

𝑋: Ω → ℝ𝑛 is called a selection of 𝜒 if 𝑃𝑟𝑜𝑏 (𝑋 ∈ 𝜒) = 1. If 𝐶 is a nonempty compact set 

in ℝ𝑛, let ‖𝐶‖ =  max {‖𝑥‖: 𝑥 ∈ 𝐶}. Then the expectation 𝐸𝜒 of 𝑋 is defined by 

𝐸𝜒 = {𝐸𝑋 ∶ 𝑋 𝑖𝑠 𝑎 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜒 𝑎𝑛𝑑 𝐸‖𝑋‖ < ∞}. 
It turns out that if 𝐸‖𝜒‖ < ∞, then 𝐸𝜒 is a nonempty compact set. 

Theorem (3.1.44) [78]: (Vitale's random Brunn-Minkowski inequality.) Let 𝜒 be a random 

set in ℝ𝑛 with 𝐸‖𝜒‖ < ∞. Then 

                                        𝑉𝑛(𝐸𝜒)
1 𝑛⁄ ≥ 𝐸𝑉𝑛(𝜒)

1 𝑛⁄ .                                                   (60)                                           
See [108] (and [109] for a stronger version). By taking 𝜒 to be a random set that realizes 

values (nonempty compact sets) 𝐾 and 𝐿 with probabilities (1 − 𝜆) and 𝜆¸ respectively, we 

see that Theorem (3.1.44) generalizes the Brunn-Minkowski inequality for compact sets. 

A version of (60) for intrinsic volumes (weighted quermassintegrals) of random convex 

bodies, and applications to stationary random hyperplane processes, are given by Mecke and 

Schwella [107]. 

Earlier integral forms of the Brunn-Minkowski inequality, using a Riemann approach to pass 

from a Minkowski sum to a “Minkowski integral,” were formulated by 𝐴. Dinghas;  

                                𝑉(𝐾 + 𝐿)1 𝑛⁄ ≥ 𝑚1 𝑛⁄ + (
𝑉(𝐾)𝑉(𝐿)

𝑚
)
1 𝑛⁄

.                                (61)                              

He shows that (61) implies the Brunn-Minkowski inequality for convex bodies and proves 

that it holds in some special cases.  

A wide variety of fascinating inequalities lie (for the present) one step removed from the 

Brunn-Minkowski inequality. The survey [114] of Osserman indicates connections between 

the isoperimetric inequality and inequalities of Bonnesen, Poincare, and Wirtinger, and since 

then many other inequalities have been found that lie in a complicated web around the 

Brunn-Minkowski inequality. 

Some of these related inequalities are affine inequalities in the sense that they are unchanged 

under a volume-preserving linear transformation. The Brunn-Minkowski and Prekopa-

Leindler inequalities are clearly affine inequalities. Young's inequality and its reverse are 

affine inequalities, since if 𝜙 ∈ 𝑆𝐿(𝑛), we have 
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𝜙(𝑓 ∗ 𝑔) = (𝜙𝑓) ∗ (𝜙𝑔)𝑎𝑛𝑑 ‖𝜙𝑓‖𝑝 = ‖𝑓‖𝑝. 
The Brascamp-Lieb and Barthe inequalities are also affine inequalities. 

The sharp Hardy-Littlewood-Sobolev inequality (39) is not affine invariant, but it is invariant 

under conformal transformations; see [91, Theorem 4.5]. The isoperimetric inequality is also 

not an affine inequality (if it were, the equality for balls would imply that equality also held 

for ellipsoids), and neither is the Sobolev inequality (24). 

There is a remarkable affine inequality that is much stronger than the isoperimetric inequality 

for convex bodies. The Petty projection inequality states that 

                                      𝑉(𝐾)𝑛−1𝑉(Π ∗ 𝐾) ≤ (
𝜅𝑛

𝜅𝑛−1
)
𝑛
,                                            (62)                                    

where 𝐾 is a convex body in ℝ𝑛, and Π ∗ 𝐾 denotes the polar body of the projection body 

Π𝐾 of 𝐾. (The support function of Π𝐾 at 𝑢 ∈ 𝑆𝑛−1 equals 𝑉(𝐾|𝑢⊥). ) Equality holds if and 

only if 𝐾 is an ellipsoid. See [67, Chapter 9] for background information, a proof, several 

other related inequalities, and a reverse form due to Zhang. Zhang [102] has also recently 

found an astounding affine Sobolev inequality, a common generalization of the Sobolev 

inequality (24) and the Petty projection inequality (62): If 𝑓 ∈ 𝐶1(ℝ𝑛) has compact support, 

then 

                           (∫ ‖𝐷𝑢𝑓‖1
−𝑛𝑑𝑢

𝑆𝑛−1
)
−1 𝑛⁄

≥
2𝜅𝑛−1

𝑛1 𝑛⁄ 𝜅𝑛
‖𝑓‖𝑛 (𝑛−1)⁄ ,                            (63)                     

where 𝐷𝑢𝑓 is the directional derivative of 𝑓 in the direction 𝑢. 

This is only a taste of a banquet of known affine isoperimetric inequalities. Lutwak [103] 

wrote an excellent survey. For still more recent progress, can do no better than consult the 

work of Lutwak, Yang, and Zhang, for example, [109] and [110]. 

Let 𝑋 and 𝑌 be measurable sets in ℝ𝑛, and let 𝐸 be a measurable subset of 𝑋 × 𝑌 . Define 

the restricted Minkowski sum of 𝑋 and 𝑌 by 

𝑋 + 𝑌𝐸
 = {𝑥 + 𝑦: (𝑥, 𝑦) ∈ 𝐸}. 

Theorem (3.1.45) [78]: (Restricted Brunn-Minkowski inequality.) There is a 𝑐 > 0 such 

that if 𝑋 and 𝑌 are nonempty measurable subsets of ℝ𝑛, 0 < 𝑡 < 1, 

𝑡 ≤ (
𝑉𝑛(𝑋)

𝑉𝑛(𝑌)
)

1 𝑛⁄

≤
1

𝑡
, 𝑎𝑛𝑑 

𝑉𝑛(𝐸)

𝑉𝑛(𝑋)𝑉𝑛(𝑌)
≥  1 − 𝑐min{𝑡√𝑛, 1} , 

then 

                                     𝑉𝑛(𝑋 + 𝑌𝐸
 )2 𝑛⁄ ≥ 𝑉𝑛(𝑋)

2 𝑛⁄ + 𝑉𝑛(𝑌)
2 𝑛⁄ .  

Szarek and Voiculescu [112] proved Theorem (3.1.45) in the course of establishing an 

analog of the entropy power inequality in Voiculescu's free probability theory. (Voiculescu 

has also found analogs of Fisher information within this noncommutative probability theory 

with applications to physics.) Barthe [109] also gives a proof via restricted versions of 

Young's inequality and the Prekopa-Leindler inequality. 

𝐴𝑡 first such an inequality seems impossible, since if 𝐾 and 𝐿 are convex bodies in ℝ𝑛 of 

volume 1, the volume of 𝐾 + 𝐿 can be arbitrarily large. As with the reverse isoperimetric 

inequality (45), however, linear transformations come to the rescue. 
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Theorem (3.1.46) [78]: (Milman's reverse Brunn-Minkowski inequality.) There is a 

constant 𝑐 independent of 𝑛 such that if 𝐾 and 𝐿 are centrally symmetric convex bodies in 

ℝ𝑛, there are volume-preserving linear transformations 𝜙 and 𝜓 for which 

                          𝑉(𝜙𝐾 + 𝜓𝐿)1 𝑛⁄ ≤  𝑐(𝑉(𝜙𝐾)1 𝑛⁄ + 𝑉(𝜓𝐿)1 𝑛⁄ ).                        (64)                       

First proved by 𝑉. Milman in 1986, this result is important in the local theory of Banach 

spaces. See [92, Section 4.3] and [127, Chapter 7]. The Cauchy-Davenport theorem, proved 

by Cauchy in 1813 and rediscovered by Davenport in 1935, states that if 𝑝 is prime and 𝑋 

and 𝑌 are nonempty finite subsets of ℤ/𝑝ℤ, then 

|𝑋 + 𝑌| ≥ min{𝑝, |𝑋| + |𝑌| − 1} . 
Here |𝑋| is the cardinality of 𝑋. Many generalizations of this result, including Kneser's 

extension to Abelian groups, are surveyed in [102]. The lower bound for a vector sum is in 

the spirit of the Brunn-Minkowski inequality. We now describe a closer analog. 

Let 𝑌 be a finite subset of ℤ𝑛 with |𝑌| ≥ 𝑛 + 1. For 𝑥 = (𝑥1, … , 𝑥𝑛) ∈ ℤ
𝑛, let 

𝑤𝑌(𝑥) =
𝑥1

|𝑌| − 𝑛
+∑𝑥𝑖

𝑛

𝑖=2

. 

Define the 𝑌 -order on ℤ𝑛 by setting 𝑥 <𝑌 𝑦 if either 𝑤𝑌(𝑥) < 𝑤𝑌(𝑦) or 𝑤𝑌(𝑥) =  𝑤𝑌(𝑦) 
and for some 𝑗 we have 𝑥𝑗 > 𝑦𝑗 and 𝑥𝑖 = 𝑦𝑖  for all 𝑖 < 𝑗. For 𝑚 ∈ ℕ, let 𝐷𝑚

𝑌  be the union 

of the first 𝑚 points in ℤ+
𝑛   (the points in ℤ𝑛 with nonnegative coordinates) in the 𝑌 -order. 

The set 𝐷𝑚
𝑌  is called a 𝑌 -initial segment. The points of 𝐷|𝑌|

𝑌  are 

𝑜 <𝑌 𝑒1 <𝑌 2𝑒1 <𝑌 ⋯ <𝑌 (|𝑌| − 𝑛)𝑒1 <𝑌 𝑒2 <𝑌 ⋯ <𝑌 𝑒𝑛, 
where 𝑒1, … , 𝑒𝑛 is the standard orthonormal basis for ℝ𝑛. Note that the convex hull of 𝐷|𝑌|

𝑌  

is a simplex. Roughly speaking, 𝑌 -initial segments are as close as possible to being the set 

of points in ℤ+
𝑛  that are contained in a dilatate of this simplex. 

Theorem (3.1.47) [78]: (Brunn-Minkowski inequality for the integer lattice.) Let 𝑋 and 𝑌 

be finite subsets of ℤ𝑛 with 𝑑𝑖𝑚 𝑌 = 𝑛. Then 

                                          |𝑋 + 𝑌| ≥ |𝐷|𝑋|
𝑌 + 𝐷|𝑌|

𝑌  |.                                                  (65)                                             

See [68], and also [26] for a similar result in finite subgrids of ℤ𝑛. That (65) is indeed a 

Brunn-Minkowski-type inequality is clear by comparing 

𝑉(𝐾 + 𝐿) ≥ 𝑉(𝑟𝐾𝐵 + 𝑟𝐿𝐵), 
the consequence of (17) given above. Indeed, (65) is proved by means of a discrete version, 

called compression, of an anti-symmetrization process related to Steiner symmetrization. 

Let 𝑀 be a body in ℝ𝑛 containing the origin in its interior and star-shaped with respect to 

the origin. The radial function of 𝑀 is defined by 

𝜌𝑀(𝑢) = max{𝑐: 𝑐𝑢 ∈ 𝑀} , 
for 𝑢 ∈ 𝑆𝑛−1. Call 𝑀 a star body if 𝜌𝑀 is positive and continuous on 𝑆𝑛−1. 

Let 𝑀 and 𝑁 be star bodies in ℝ𝑛, let 𝑝 ≠ 0, and define a star body 𝑀+̃𝑝𝑁 by 

𝜌𝑀+̃𝑝𝑁(𝑢)
𝑝 = 𝜌𝑀(𝑢)

𝑝 + 𝜌𝑁(𝑢)
𝑝. 

The operation +̃𝑝 is called 𝑝-radial addition. 
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Theorem (3.1.48) [78]: (𝑝-dual Brunn-Minkowski inequality.) If 𝑀 and 𝑁 are star bodies 

in ℝ𝑛, and 0 < 𝑝 ≤ 𝑛, then 

                                  𝑉(𝑀+̃𝑝𝑁)
𝑝 𝑛⁄ ≤ 𝑉(𝑀)𝑝 𝑛⁄ + 𝑉(𝑁)𝑝 𝑛⁄ .                                (66)                            

The reverse inequality holds when 𝑝 > 𝑛 or when 𝑝 < 0. Equality holds when 𝑝 ≠ 𝑛 if and 

only if 𝑀 and 𝑁 are equivalent by dilatation. 

The inequality (66) follows from the polar coordinate formula for volume and Minkowski's 

integral inequality (see [97, Section 6.13]). It was found by Firey [99] for convex bodies and 

𝑝 ≤ −1. The general inequality forms part of Lutwak's highly successful dual Brunn-

Minkowski theory, in which the intersections of star bodies with subspaces replace the 

projections of convex bodies onto subspaces in the classical theory; see, for example, [97]. 

The cases 𝑝 = 1 and 𝑝 = 𝑛 − 1 are called the dual Brunn-Minkowski inequality and dual 

Kneser-Suss inequality, respectively. 𝐴 renormalized version of the case 𝑝 = 𝑛 + 1 of (66) 

was used by Lutwak [100] in his work on centroid bodies (see also [97, Section 9.1]). 

There is an inequality equivalent to the dual Brunn-Minkowski inequality called the dual 

Minkowski inequality, the analog of Minkowski's first inequality (20); see [97, p. 373]. This 

plays a role in the solution of the Busemann-Petty problem (the analog of Shephard's 

problem mentioned after Theorem (3.1.8)): If the intersection of an origin-symmetric convex 

body with any given hyperplane containing the origin is always smaller in volume than that 

of another such body, is its volume also smaller? The answer is no in general in five or more 

dimensions, but yes in less than five dimensions.  

Lutwak [95] also discovered that integrals over 𝑆𝑛−1 of products of radial functions behave 

like mixed volumes, and called them dual mixed volumes. He showed that a suitable version 

of Holder's inequality in 𝑆𝑛−1 then becomes a dual form of the Aleksandrov-Fenchel 

inequality (51), in which mixed volumes are replaced by dual mixed volumes (and the 

inequality is reversed). Special cases of dual mixed volumes analogous to the 

quermassintegrals are called dual quermassintegrals, and it can be shown that an expression 

similar to (54) holds for these; instead of averaging volumes of projections, this involves 

averaging volumes of intersections  with subspaces. Dual affine quermassintegrals can also 

be defined (see [97, p. 332]), but apparently an inequality for these corresponding to (56) is 

not known. 

Let 𝑆 be an (𝑛 − 2)-dimensional subspace of ℝ𝑛, let 𝑢 ∈ 𝑆𝑛−1  ∩ 𝑆⊥, and let 𝑆𝑢 denote the 

closed (𝑛 − 1)-dimensional half-subspace containing 𝑢 and with 𝑆 as boundary. Let 𝑢, 𝑣 ∈
𝑆𝑛−1 ∩ 𝑆⊥, and let 𝑋 and 𝑌 be subsets of 𝑆𝑢 and 𝑆𝑣, respectively. If 0 < 𝜆 < 1, let 𝑢(𝜆) be 

the unit vector in the direction (1 − 𝜆)𝑢 + 𝜆𝑣, and let (1 − 𝜆)𝑋+ℎ 𝜆𝑌 be the set of points in 

𝑆𝑢(𝜆) lying on a line segment with one endpoint in 𝑋 and the other in 𝑌 . We call the operation 

+ℎ harmonic addition. 

Theorem (3.1.48) [78]: (Busemann-Barthel-Franz inequality.) In the notation introduced 

above, let 𝑋 and 𝑌 be compact subsets of 𝑆𝑢 and 𝑆𝑣, respectively, of positive 𝑉𝑛−1 −measure. 

If 0 < 𝜆 < 1, then 

                     
𝑉𝑛−1 ((1−𝜆)𝑋+ℎ𝜆𝑌)

‖𝑢(𝜆)‖
≥ 𝑀−1(𝑉𝑛−1(𝑋), 𝑉𝑛−1(𝑌), 𝜆).                               (67)                            
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Though Theorem (3.1.49) looks strange, it has the following nice geometrical consequence 

called Busemann's theorem. If 𝐾 is a convex body in ℝ𝑛 containing the origin in its interior 

and 𝑆 is an (𝑛 − 2)-dimensional subspace, the curve 𝑟 = 𝑟(𝜃) in 𝑆⊥ such that 𝑟(𝜃) is the 

(𝑛 − 1)-dimensional volume of the intersection of 𝐾 with the half-space 𝑆𝜃 forms the 

boundary of a convex body in 𝑆⊥. Proved in this form by H. Busemann in 1949 and 

motivated by his theory of area in Finsler spaces, it is also important in geometric 

tomography (see [97, Theorem 8.1.10]). As stated, Theorem (3.1.49) and precise equality 

conditions were proved by 𝑊. Barthel and G. Franz in 1961; see [97, Note 8.1] Milman and 

Pajor [119, Theorem 3.9] found a proof of Busemann's theorem similar to the second proof 

of Theorem (3.1.2) given above. Generalizations along the lines of Theorem (3.1.16) are 

possible, such as the following (stated and proved in [105, p. 9]). 

Theorem (3.1.50) [78]: Let 0 < 𝜆 < 1, let 𝑝 > 0, and let 𝑓, 𝑔, and ℎ be nonnegative 

integrable functions on [0, 𝜆) satisfying 

                  ℎ (𝑀−𝑝(𝑥, 𝑦, 𝜆)) ≥  𝑓(𝑥)
(1−𝜆)𝑦𝑝

(1−𝜆)𝑦𝑝+𝜆𝑥𝑝𝑔(𝑦)
𝜆𝑥𝑝

(1−𝜆)𝑦𝑝+𝜆𝑥𝑝 ,                             (68)                         

for all nonnegative 𝑥, 𝑦 ∈ ℝ. Then 

∫ ℎ(𝑥)𝑑𝑥
∞

0

≥ 𝑀−𝑝 (∫ 𝑓(𝑥)𝑑𝑥
∞

0

, ∫ 𝑔(𝑥)𝑑𝑥
∞

0

, 𝜆) . 

The previous inequality is very closely related to one found earlier by Ball [108]. For other 

associated inequalities, see [90, Theorem 4.1] and [118, Lemma 1]. 

Let 𝑋 be a measurable subset of ℝ𝑛 and let 𝑟𝑋 be the radius of a ball of the same volume 

as 𝑋. If 𝜀 > 0, the Brunn-Minkowski inequality (16) implies that 

                      𝑉𝑛(𝑋 + 𝜀𝐵) ≥ (𝑉𝑛(𝑋)
1 𝑛⁄ + 𝜀𝑉𝑛(𝐵)

1 𝑛⁄ )
𝑛
= (𝑉𝑛(𝑟𝑋𝐵)

1 𝑛⁄ +

                               𝜀𝑉𝑛(𝐵)
1 𝑛⁄ )

𝑛
= 𝑉𝑛(𝑟𝑋𝐵 + 𝜀𝐵).                                                        (69)                                            

For any set 𝐴, write 

                                        𝐴𝜀 = 𝐴 + 𝜀𝐵 = {𝑥: 𝑑(𝑥, 𝐴) ≤ 𝜀}.                                   (70)                            
Then we can rewrite (69) as 

                                       𝑉𝑛(𝑋𝜀) ≥ 𝑉𝑛((𝑟𝑋𝐵)𝜀).                                                        (71)                                              
Notice that (71), by virtue of (70), is now free of the addition and involves only a measure 

and a metric. 

With the appropriate measure and metric replacing 𝑉𝑛 and the Euclidean metric, (71) remains 

true in the sphere 𝑆𝑛−1 and hyperbolic space, equality holding if and only if 𝑋 is a ball of 

radius 𝑟𝑋. (Of course, in these spaces, the ball 𝐵(𝑥, 𝑟) centered at 𝑥 and with radius 𝑟 > 0 is 

the set of all points whose distance from 𝑥 is at most 𝑟. In 𝑆𝑛−1, balls are just spherical caps.) 

Though in ℝ𝑛 (71) is only a special case of (16), in 𝑆𝑛−1 and hyperbolic Perhaps more 

significant than (71) for recent developments is a surprising result that holds in 𝑆𝑛−1, 𝑛 ≥ 3, 

with the chordal metric. It can be shown that if 𝑉𝑛−1(𝑋)/𝑉𝑛−1(𝐵) ≥ 1/2 and 0 < 𝜀 < 1, 

then 

                                            
𝑉𝑛−1(𝑋𝜀)

𝑉𝑛−1(𝐵)
≥ 1 − (

𝜋

8
)
1 2⁄

𝑒−
(𝑛−2)𝜀2

2 .                                      (72)                                          
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Results of the form (72) are called approximate isoperimetric inequalities, and can be derived 

from the general Brunn-Minkowski inequality in ℝ𝑛, as in [84, Theorem 2]. In particular, 

by taking 𝑋 to be a hemisphere, we see that for large 𝑛, almost all the measure is concentrated 

near the equator! This result, which again goes back to 𝑃. Levy, is proved in  

𝑑𝛾𝑛(𝑥) = (2𝜋)
−𝑛 2⁄ 𝑒−‖𝑥‖

2/2 𝑑𝑥. 
Indeed, for bounded Lebesgue measurable sets 𝑋 and 𝑌 in ℝ𝑛 for which (1 − 𝜆)𝑋 + 𝜆𝑌 is 

Lebesgue measurable, we have the inequality 

                                 𝛾𝑛((1 − 𝜆)𝑋 + 𝜆𝑌 ) ≥ 𝛾𝑛(𝑋)
1−𝜆𝛾𝑛(𝑌)

𝜆                               (73)                           
corresponding to (14). This follows from the Prekopa-Leindler inequality (because the             

Φ−1 (𝛾𝑛((1 − 𝜆)𝐾 + 𝜆𝐿)) ≥ (1 − 𝜆)Φ
−1(𝛾𝑛(𝐾)) + 𝜆Φ

−1(𝛾𝑛(𝐿))     (74)     

While (74) is stronger than (73) for convex bodies, it is unknown whether it holds for Borel 

sets; see [84] and [86, Problem 1]. An approximate isoperimetric inequality similar to (72) 

also holds in Gauss space; Maurey [112] (see also see [113, Theorem 8.1]) found a simple 

proof employing the Prekopa-Leindler inequality. As in 𝑆𝑛−1, there is a concentration of 

measure in Gauss space, this time in spherical shells of thickness approximately 1 and radius 

approximately √𝑛. Closelyrelated work on logarithmic Sobolev inequalities is outlined . 

Bahn and Ehrlich [115] find an inequality that can be interpreted as a reversed form of the 

Brunn-Minkowski inequality in Minkowski spacetime, that is, ℝ𝑛+1 with a scalar product 

of index 1. 

Cordero-Erausquin [111] utilizes results of 𝑅. McCann to prove a version of the Prekopa-

Leindler inequality on the sphere, remarking that a similar version can be obtained for 

hyperbolic space. These results are generalized in a remarkable [82] by Cordero-Erausquin, 

McCann, and Schmuckenschlager, who establish a beautiful Riemannian version of 

Theorem (3.1.16). 

A crystal in contact with its melt (or a liquid in contact with its vapor) is modeled by a 

bounded Borel subset 𝑀 of ℝ𝑛 of finite surface area and fixed volume. (We shall ignore 

measure-theoretic subtleties in this description.) The surface energy is given by 

𝐹(𝑀) = ∫ 𝑓(𝑢𝑥)𝑑𝑥,
𝜕𝑀

 

where 𝑢𝑥 is the outer unit normal to 𝑀 at 𝑥 and 𝑓 is a nonnegative function on 𝑆𝑛−1 

representing the surface tension, assumed known by experiment or theory. By the Gibbs-

Curie principle, the equilibrium shape of such a crystal minimizes this surface energy among 

all sets of the same volume. This shape is called the Wulff shape. For a soapy liquid drop in 

air, 𝑓 is a constant (we are neglecting external potentials such as gravity) and the Wulff shape 

is a ball, by the isoperimetric inequality. For crystals, however, 𝑓 will generally reflect 

certain preferred directions. In 1901, Wulff gave a construction of the Wulff shape 𝑊: 

𝑊 =∩𝑢∈𝑆𝑛−1 {𝑥 ∈ ℝ
𝑛 ∶ 𝑥 ∙  𝑢 ≤ 𝑓(𝑢)}, 

each set in the intersection is a half-space containing the origin with bounding hyperplane 

orthogonal to 𝑢 and containing the point 𝑓(𝑢)𝑢 at distance 𝑓(𝑢) from the origin. The Brunn-

Minkowski inequality can be used to prove that, up to translation, 𝑊 is the unique shape 

among all with the same volume for which 𝐹 is minimum; see, for example, [113, Theorem 
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1.1]. This was done first by A. Dinghas in 1943 for convex polygons and polyhedra and then 

by various people in greater generality. In particular, Busemann [118] solved the problem 

when 𝑓 is continuous, and Fonseca [62] and Fonseca and Muller [113] extend the results to 

include sets 𝑀 of finite perimeter in ℝ𝑛. Good introductions are provided by Taylor [113] 

and McCann [115]. 

In fact, McCann [115] also proves more general results that incorporate a convex external 

potential, by a technique developed [114] on interacting gases. A gas of particles in ℝ𝑛 is 

modeled by a nonnegative mass density 𝜌(𝑥) of total integral 1, that is, a probability  density 

on ℝ𝑛, or, equivalently, by an absolutely continuous probability measure in ℝ𝑛. To each 

state corresponds an energy 

𝐸(𝜌) = 𝑈(𝜌) +
𝐺(𝜌)

2
 

= ∫ 𝐴(𝜌(𝑥)) 𝑑𝑥
ℝ𝑛

 +
1

2
∫ ∫ 𝑉(𝑥 − 𝑦) 𝑑𝜌(𝑥)

ℝ𝑛
 𝑑𝜌(𝑦)

ℝ𝑛
. 

Here 𝑈 represents the internal energy with 𝐴 a convex function defied in terms of the 

pressure, and 𝐺(𝜌)/2 is the potential energy defined by a strictly convex interaction potential  

. The problem is that 𝐸(𝜌) is not generally convex, making it nontrivial to prove the 

uniqueness of an energy minimizer. McCann gets around this by defining for each pair 

𝜌, 𝜌′ of probability densities on ℝ𝑛 and 0 < 𝑡 < 1 an interpolant probability density 𝜌𝑡 such 

that 

                               𝑈(𝜌𝑡) ≤ (1 − 𝑡)𝑈(𝜌) + 𝑡𝑈(𝜌
′)                                                 (75)                                            

(and similarly for 𝐺 and hence for 𝐸). McCann calls (75) the displacement convexity of 

𝑈; 𝜌𝑡 is not (1 − 𝑡)𝜌 + 𝑡𝜌′, but rather is defined in the natural way by means of the Brenier 

map that transports 𝜌 to 𝜌′ (see the last paragraph). McCann is also able to recover the Brunn-

Minkowski inequality from (75) by taking 𝐴(𝜌) = −𝜌(𝑛−1) 𝑛⁄  and 𝜌 and 𝜌′ to be the densities 

corresponding to the uniform probability measures on the two sets. 

Next we turn to applications to diffusion equations. Let 𝑉 be a nonnegative continuous 

potential defined on a convex domain 𝐶 in ℝ𝑛 and consider the diffusion equation 

                                         
𝜕𝜓

𝜕𝑡
=
1

2
∆𝜓 − 𝑉(𝑥)𝜓(𝑥, 𝑡)                                                (76)                                           

with zero Dirichlet boundary condition (i.e., 𝜓 tends to zero as 𝑥 approaches the boundary 

of 𝐶 for each fixed 𝑡). Denote by 𝑓(𝑡, 𝑥, 𝑦) the fundamental solution of (76); that is,𝜓(𝑡, 𝑥) =
𝑓(𝑡, 𝑥, 𝑦) satisfies (76) and its boundary condition, and 

𝑙𝑖𝑚𝑡→0+𝑓(𝑡, 𝑥, 𝑦) = 𝛿(𝑥 − 𝑦). 

For example, if 𝑉 = 0 and 𝐶 = ℝ𝑛, then 

𝑓(𝑡, 𝑥, 𝑦) = (2𝜋𝑡)−𝑛/2𝑒−|𝑥−𝑦|
2/2𝑡 . 

Brascamp and Lieb [115] proved that if 𝑉 is convex, then 𝑓(𝑡, 𝑥, 𝑦) is log concave on 𝐶2. 

This is an application of the Prekopa-Leindler inequality, via Theorem (3.1.20)with 𝑝 = 0; 

basically, it is shown that 𝑓 is given as a pointwise limit of convolutions of log concave 

functions (Gaussians or 𝑒𝑥𝑝(−𝑡𝑉(𝑥))). Borell [30] uses a version of Theorem (3.1.16) to 

show that the stronger assumption that 𝑉 is −1/2-concave implies 
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that 𝑡𝑙𝑜𝑔(𝑡𝑛𝑓(𝑡2, 𝑥, 𝑦)) is concave on ℝ+ × 𝐶
2. In a further study, Borell [112] generalizes 

all of these results (and the Prekopa-Leindler inequality) by considering potentials 𝑉(𝜎, 𝑥) 
that depend also on a parameter 𝜎. 

Another rich area of applications surrounds the logarithmic Sobolev inequality proved by 

Gross [113]: 

                                                𝐸𝑛𝑡𝛾𝑛(𝑓) ≤
1

2
𝐼𝛾𝑛(𝑓),                                                (77)                                          

where 𝑓 is a suitably smooth nonnegative function on ℝ𝑛, 𝛾𝑛 is the Gauss measure defined 

in the previous, 

𝐸𝑛𝑡𝛾𝑛(𝑓) = ∫ 𝑓 𝑙𝑜𝑔 𝑓 𝑑𝛾𝑛
ℝ𝑛

− (∫ 𝑓 𝑑𝛾𝑛
ℝ𝑛

)(∫ 𝑙𝑜𝑔𝑓𝛾𝑛
ℝ𝑛

) , 

and 

𝐼𝛾𝑛(𝑓) = ∫
‖∇𝑓‖2

𝑓
𝑑𝛾𝑛

ℝ𝑛
. 

Note that 𝐸𝑛𝑡𝛾𝑛(𝑓) and 𝐼𝛾𝑛(𝑓) are essentially the negative entropy −ℎ1(𝑓) and Fisher 

information, respectively, of 𝑓, defined with respect to Gauss measure. McCann's 

displacement convexity (75) plays an essential role in very recent work involving several of 

the above topics. Otto [120] observed that various diffusion equations can be viewed as 

gradient flows in the space of probability measures with the Wasserstein metric (formally, 

at least, an infinite-dimensional Riemannian structure). McCann's interpolation using the 

Brenier map gives the geodesics in this space, and Otto uses the displacement convexity to 

derive rates of convergence to equilibrium. The same ideas are utilized by Otto and Villani 

[116], who find a new proof of an inequality of Talagrand for the Wasserstein distance 

between two probability measures in an 𝑛-dimensional Riemannian manifold, and show that 

Talagrand's inequality is very closely related to the logarithmic Sobolev inequality (77). See  

also consult Ledoux's survey [85]. 

 

          Section (3.2): Sharp Sobolev Inequalities  

The classical Sobolev inequality in ℝ𝑛, 𝑛 ≥ 3, indicates that there is a constant 𝐶𝑛 > 0 such 

that for all smooth enough (locally Lipschitz) functions 𝑓:ℝ𝑛 → ℝ vanishing at infinity, 

                                                 ‖𝑓‖𝑞 ≤ 𝐶𝑛‖𝛻𝑓 ‖2                                                     (78)                                              

where 
1

𝑞
=
1

2
−
1

𝑛
. Here ‖𝑓‖𝑞 denotes the usual 𝐿𝑞-norm of 𝑓 with respect to Lebesgue 

measure on ℝ𝑛, and, for 𝑝 ≥ 1, 

‖𝛻𝑓‖𝑝 = (∫ |𝛻𝑓|𝑝𝑑𝑥
ℝ𝑛

)

1 𝑝⁄

 

where |𝛻𝑓| is the Euclidean norm of the gradient 𝛻𝑓 of 𝑓. 

Inequality (78) goes back to Sobolev [131], as a consequence of a Riesz type rearrangement 

inequality and the Hardy–Littlewood–Sobolev fractional-integral convolution inequality. 

Other approaches, including the elementary Gagliardo–Nirenberg argument [130,135], are 

discussed in classical textbooks (cf. e.g. [123] . . .). The best possible constant in the Sobolev 
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inequality (78) was established independently by Aubin [124] and Talenti [142] in 1976 

using symmetrization methods of isoperimetric flavor, together with the study of the one-

dimensional extremal problem. Rearrangements arguments have been developed extensively 

in (cf. [151,129] . . .). The optimal constant 𝐶𝑛 is achieved on the extremal functions 𝑓(𝑥) =
(𝜎 + |𝑥|2)(2−𝑛)/2, 𝑥 ∈ ℝ𝑛, 𝜎 > 0. Building on early ideas by Rosen [128], Lieb [128] 

determined the best constant and the extremal functions in dimension 3. According to [129], 

the result seems to have been known before, at least back to the early sixties, in unpublished 

notes by Rodemich. 

The geometric Brunn–Minkowski inequality, and its isoperimetric consequence, is a well-

known argument to reach Sobolev type inequalities. It states that for every non-empty Borel 

measurable bounded sets 𝐴, 𝐵 in ℝ𝑛, 

                           𝑣𝑜𝑙𝑛(𝐴 + 𝐵)
1 𝑛⁄ ≥ 𝑣𝑜𝑙𝑛(𝐴)

1 𝑛⁄ + 𝑣𝑜𝑙𝑛(𝐵)
1 𝑛⁄                             (79)                         

where 𝑣𝑜𝑙𝑛(·) denotes Euclidean volume. The Brunn–Minkowski inequality classically 

implies the isoperimetric inequality in ℝ𝑛. Choose namely for 𝐵 a ball with radius 𝜀 > 0 

and let then 𝜀 → 0 to get that for any bounded measurable set 𝐴 in ℝ𝑛, 

𝑣𝑜𝑙𝑛−1(𝜕𝐴) ≥ 𝑛𝜔𝑛
1 𝑛⁄  𝑣𝑜𝑙𝑛(𝐴)

(𝑛−1)/𝑛 
where 𝑣𝑜𝑙𝑛−1(𝜕𝐴) is understood as the outer-Minkowski content of the boundary of 𝐴 and 

𝜔𝑛 is the volume of the Euclidean unit ball in ℝ𝑛. Bymeans of the co-area formula [129,133], 

the isoperimetric inequality may then be stated equivalently on functions as the 𝐿1-Sobolev 

inequality 

                                               ‖𝑓‖𝑞 ≤
1

𝑛𝜔𝑛
1 𝑛⁄ ‖𝛻𝑓 ‖1                                                (80)                                          

where 
1

𝑞
= 1 −

1

𝑛
. Changing 𝑓 ≥ 0 into 𝑓𝑟 for some suitable 𝑟 and applying Hölder’s 

inequality yields the 𝐿2- Sobolev inequality (78), however not with its best constant. In the 

same way, the argument describes the full scale of Sobolev inequalities 

                                            ‖𝑓‖𝑞 ≤ 𝐶𝑛(𝑝)‖𝛻𝑓‖𝑝,                                                     (81)                                            

1 ≤ 𝑝 < 𝑛,
1

𝑞
=
1

𝑝
−
1

𝑛
, 𝑓: ℝ𝑛 → ℝ smooth and vanishing at infinity. According to Gromov 

[34], the 𝐿1-case of the Sobolev inequality appears in Brunn’s work from 1887. 

We  show that the Brunn–Minkowski inequality may actually be used to also reach the 

optimal constants in the Sobolev inequalities (78) and (81). This new approach thus 

completely bridges the geometric Brunn–Minkowski inequalities and the functional Sobolev 

inequalities. 

Inequality (79) was first proved by Brunn in 1887 for convex sets in dimension 3, then 

extended byMinkowski (cf. [130]). Lusternik [130] generalized the result in 1935 to arbitrary 

measurable sets. Lusternik’s proof was further analyzed and extended in the works of  

Hadwiger and Ohmann [24] and Henstock and Macbeath [125] in the fifties. Note in 

particular that the one-dimensional case is immediate: assume that 𝐴 and 𝐵 are non-empty 

compact sets in ℝ, and after a suitable shift, that 𝑠𝑢𝑝𝐴 = 0 = 𝑖𝑛𝑓 𝐵. Then 𝐴 ∩ 𝐵 = {0} and 

𝐴 + 𝐵 ⊃ 𝐴 ∪ 𝐵. 
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Starting with the contribution [125], integral inequalities have been developed throughout 

the last century in the investigation of the geometric Brunn–Minkowski–Lusternik theorem. 

The idea of the following elementary, but fundamental, lemma goes back to Bonnesen’s 

proof of the Brunn–Minkowski inequality (cf. [130]) and may be found already by Henstock 

and Macbeath [125]. The result appears in this form independently in the works of Dancs 

and Uhrin [124] and Das Gupta [125].We enclose a proof for completeness. As a result, the 

proof below only relies on the one-dimensional Brunn–Minkowski–Lusternik inequality, 

which is the only basic ingredient in the argument. All the further developments and 

applications to Sobolev inequalities are consequences of this elementary lemma. 

Lemma(3.2.1)[121]: Let 𝜃 ∈ [0, 1] and 𝑢, 𝑣, 𝑤 be non-negative measurable functions on ℝ 

such that for all 𝑥, 𝑦 ∈ ℝ, 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ min (𝑢(𝑥), 𝑣(𝑦)). 
Then, if 𝑠𝑢𝑝𝑥∈ℝ 𝑢(𝑥) = 𝑠𝑢𝑝𝑥∈ℝ 𝑣(𝑥) = 1, 

∫𝑤𝑑𝑥 ≥ 𝜃∫𝑢𝑑𝑥 + (1 − 𝜃)∫𝑣𝑑𝑥 . 

Proof: Define, for 𝑡 > 0, 𝐸𝑢(𝑡) = {𝑥 ∈ ℝ;  𝑢(𝑥) > 𝑡} and similarly 𝐸𝑣(𝑡), 𝐸𝑤(𝑡). Since 

𝑠𝑢𝑝𝑥∈ℝ 𝑢(𝑥) = 𝑠𝑢𝑝𝑥∈ℝ 𝑣(𝑥) = 1, for 0 < 𝑡 < 1, both 𝐸𝑢(𝑡) and 𝐸𝑣(𝑡) are non-empty, and 

𝐸𝑤(𝑡) ⊃ 𝜃𝐸𝑢(𝑡) + (1 − 𝜃)𝐸𝑣(𝑡). By the one-dimensional Brunn–Minkowski–Lusternik 

inequality (79), for every 0 < 𝑡 < 1, 
𝜆(𝐸𝑤(𝑡)) ≥ 𝜃𝜆(𝐸𝑢(𝑡)) + (1 − 𝜃)𝜆(𝐸𝑣(𝑡)) 

where 𝜆 denotes Lebesgue measure on ℝ. Hence, 

∫𝑤𝑑𝑥 ≥ ∫ 𝜆(𝐸𝑤(𝑡))𝑑𝑡
1

0

 

≥ 𝜃∫ 𝜆(𝐸𝑢(𝑡))𝑑𝑡
1

0

 + (1 −  𝜃)∫ 𝜆𝐸𝑣(𝑡)𝑑𝑡
1

0

 

= 𝜃∫𝑢𝑑𝑥 + (1 − 𝜃)∫𝑣𝑑𝑥 

which is the conclusion. 

As discussed in [124], the preceding lemma may be extended tomore general means by 

elementary changes of variables. For 𝛼 ∈ [−∞,+∞], denote by 𝑀𝛼
(𝜃)
(𝑎, 𝑏) the 𝛼-mean of 

the non-negative numbers 𝑎, 𝑏 with weights 𝜃, 1 − 𝜃 ∈  [0, 1] defined as 

𝑀𝛼
(𝜃)
(𝑎, 𝑏) = (𝜃𝑎𝛼 + (1 − 𝜃)𝑏𝛼)1 𝛼⁄  

(with the convention that 𝑀𝛼
(𝜃)
(𝑎, 𝑏) = 𝑚𝑎𝑥(𝑎, 𝑏) if 𝛼 = +∞,𝑀𝛼

(𝜃)
(𝑎, 𝑏) =  𝑚𝑖𝑛(𝑎, 𝑏) if 

𝛼 = −∞ and 𝑀𝛼
(𝜃)
(𝑎, 𝑏) = 𝑎𝜃𝑏1−𝜃 if 𝛼 = 0) if 𝑎𝑏 > 0, and 𝑀𝛼

(𝜃)
(𝑎, 𝑏) = 0 if 𝑎𝑏 = 0. 

Note the extension of the usual arithmetic-geometric mean inequality as 

                        𝑀𝛼1
(𝜃)(𝑎1, 𝑏1)𝑀𝛼2

(𝜃)(𝑎2, 𝑏2) ≥ 𝑀𝛼
(𝜃)(𝑎1𝑎2, 𝑏1𝑏2)                              (82)                         

if 
1

𝛼
=

1

𝛼1
+

1

𝛼2
, 𝛼1 + 𝛼2 > 0. 

Corollary (3.2.2) [121]: Let −∞ ≤ 𝛼 ≤ +∞,𝜃 ∈ [0, 1] and 𝑢, 𝑣, 𝑤 be non-negative 

measurable functions on ℝ such that for all 𝑥, 𝑦 ∈ ℝ, 
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𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)(𝑢(𝑥), 𝑣(𝑦)). 

Then, if 𝑎 = 𝑠𝑢𝑝𝑥∈ℝ 𝑢(𝑥) < ∞, 𝑏 = 𝑠𝑢𝑝𝑥∈ℝ 𝑣(𝑥) < ∞, 

∫𝑤𝑑𝑥 ≥ 𝑀𝛼
(𝜃)
(𝑎, 𝑏)𝑀1

(𝜃)
(
1

𝑎
∫𝑢𝑑𝑥 ,

1

𝑏
∫𝑣𝑑𝑥) . 

The statement still holds if 𝑎 or 𝑏 = +∞ with the convention that 0 × ∞ = 0. 

Proof:  Assume first that −∞ < 𝛼 < +∞. For 𝜌 = 𝑀𝛼
(𝜃)
(𝑎, 𝑏) > 0, set 

                          𝑈(𝑥) =
1

𝑎
𝑢 (

𝑎𝛼𝑥

𝜌𝛼
)           and 𝑉(𝑦) =

1

𝑏
𝑣 (

𝑏𝛼𝑦

𝜌𝛼
). 

Then, if 𝜂 = 𝜃𝑎𝛼/𝜌𝛼(∈  [0, 1]), 

𝑤(𝜂𝑥 + (1 − 𝜂)𝑦) ≥ 𝑀𝛼
(𝜃)
(𝑎, 𝑏) 𝑚𝑖𝑛(𝑈(𝑥), 𝑉(𝑦)) 

for all 𝑥, 𝑦 ∈ ℝ. Since 𝑠𝑢𝑝𝑥∈ℝ𝑈(𝑥) = 𝑠𝑢𝑝𝑥∈ℝ𝑉(𝑥) = 1, by the lemma, 

∫𝑤𝑑𝑥  ≥ 𝑀𝛼
(𝜃)
 (𝑎, 𝑏) (𝜂∫𝑈𝑑𝑥 + (1 −  𝜂)∫𝑉𝑑𝑥) 

= 𝑀𝛼
(𝜃)
 (𝑎, 𝑏) (

𝜃

𝑎
∫𝑢𝑑𝑥 +

1 −  𝜃

𝑏
∫𝑣𝑑𝑥) 

by definition of 𝜂. The cases 𝛼 = −∞ and 𝛼 = +∞ may be proved by standard limit 

considerations. The corollary is thus established.  

By the Hölder inequality (82), the preceding corollary implies the more classical Prékopa–

Leindler theorem [127,36,37], as well as its generalized form put forward by Borell [128] 

and Brascamp and Lieb [129], in which the supremum norms of 𝑢 and 𝑣 do not appear. 

Namely, under the assumption of Corollary (3.2.2) and provided that −1 ≤ 𝛼 ≤ +∞, 

∫𝑤𝑑𝑥 ≥ 𝑀𝛼
(𝜃)
(𝑎, 𝑏)𝑀1

(𝜃)
(
1

𝑎
∫𝑢𝑑𝑥 ,

1

𝑏
∫𝑣𝑑𝑥) 

≥ 𝑀𝛽
(𝜃)
(∫𝑢𝑑𝑥 ,∫𝑣𝑑𝑥) 

where 𝛽 = 𝛼/(1 + 𝛼). 
The preceding generalized Prékopa–Leindler theorem is easily tensorisable in ℝ𝑛 by 

induction on the dimension to yield that whenever −
1

𝑛
≤ 𝛼 ≤ +∞, 𝜃 ∈ [0, 1] and 

𝑢, 𝑣, 𝑤: ℝ𝑛 → ℝ+ are measurable such that 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)(𝑢(𝑥), 𝑣(𝑦)) 

for all 𝑥, 𝑦 ∈ ℝ𝑛, then 

∫𝑤𝑑𝑥 ≥ 𝑀𝛽
(𝜃)
(∫𝑢𝑑𝑥 ,∫𝑣𝑑𝑥) 

where 𝛽 = 𝛼/(1 + 𝛼𝑛). Namely, assuming the result in dimension 𝑛 − 1, for 𝑥1, 𝑦1, 𝑧1 =
𝜃𝑥1 + (1 −  𝜃)𝑦1 ∈ ℝ fixed, 

∫ 𝑤(𝑧1, 𝑡)𝑑𝑡
ℝ𝑛−1

≥ 𝑀𝛼/(1+𝛼(𝑛−1))
(𝜃)

(∫ 𝑢(𝑥1, 𝑡)𝑑𝑡
ℝ𝑛−1

, ∫ 𝑣(𝑦1, 𝑡)𝑑𝑡
ℝ𝑛−1

) . 

Since 𝛼 ≥ −
1

𝑛
 implies that �̃� = 𝛼/(1 + 𝛼(𝑛 − 1)) ≥ −1, the one-dimensional result 

applied to ∫ 𝑢(𝑥1, 𝑡)𝑑𝑡ℝ𝑛−1
, ∫ 𝑣(𝑦1, 𝑡)𝑑𝑡ℝ𝑛−1

, ∫ 𝑤(𝑧1, 𝑡)𝑑𝑡ℝ𝑛−1
  yields the conclusion since 

�̃�/(1 + �̃�) = 𝛽. The case 𝛼 = 0 corresponds to the Prékopa–Leindler theorem. When 
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applied to the characteristic functions 𝑢 = 𝜒𝐴, 𝑣 = 𝜒𝐵of the bounded non-empty sets 𝐴, 𝐵 in 

ℝ𝑛 with 𝛼 = +∞, we immediately recover the Brunn–Minkowski–Lusternik inequality 

(79). 

Most of the proofs of the preceding integral inequalities rely in one way or another on 

integral parametrizations. They may be proved either first in dimension one together with 

induction on the dimension as above, or by suitable versions of the parametrizations by 

multidimensional measure transportation. See  [132] for complete accounts on these various 

approaches and precise historical developments. 

As presented in [124], Corollary (3.2.2) may also be turned in dimension n, as a consequence 

of the generalized Pr�̀�kopa –Leindler theorem. The resulting statement will be the essential 

step in the proof of the sharp Sobolev inequalities. In particular, the possibility to use 𝛼 up 

to −
1

𝑛−1
 will turn out to be crucial. 

For a non-negative function 𝑓: ℝ𝑛 → ℝ, and 𝑖 = 1, . . . , 𝑛, set 

𝑚𝑖(𝑓) = 𝑠𝑢𝑝𝑥𝑖∈ℝ∫ 𝑓 (𝑥)𝑑𝑥1  · · ·  𝑑𝑥𝑖−1𝑑𝑥𝑖+1  · · ·  𝑑𝑥𝑛
ℝ𝑛−1

. 

Corollary (3.2.3) [121]: Let −
1

𝑛−1
≤ 𝛼 ≤ +∞,𝜃 ∈ [0, 1] and 𝑢, 𝑣, 𝑤 be non-negative 

measurable functions on ℝ𝑛−1 such that for all 𝑥, 𝑦 ∈ ℝ𝑛, 

𝑤(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝑀𝛼
(𝜃)(𝑢(𝑥), 𝑣(𝑦)). 

If, for some 𝑖 = 1, . . . , 𝑛,𝑚𝑖(𝑢) = 𝑚𝑖(𝑣) < ∞, then 

∫𝑤𝑑𝑥 ≥  𝜃∫𝑢𝑑𝑥 + (1 − 𝜃)∫𝑣𝑑𝑥 . 

Proof: Apply the generalized Prékopa–Leindler theorem in ℝ𝑛−1 (thus with −
1

𝑛−1
≤ 𝛼 ≤

+∞) to the functions 𝑢(𝑥), 𝑣(𝑦), 𝑤(𝑧) with 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 = 𝜃𝑥𝑖 + (1 −  𝜃)𝑦𝑖 fixed, and 

conclude with the lemma applied to �̃�(𝑥𝑖)  = ∫ 𝑢(𝑥)𝑑𝑥1  · · ·  𝑑𝑥𝑖−1𝑑𝑥𝑖+1  · · ·ℝ𝑛−1

 𝑑𝑥𝑛 , �̃�(𝑦𝑖) and �̃�(𝑧𝑖) being defined similarly. 
Under the assumption 𝑚𝑖(𝑢)  =  𝑚𝑖(𝑣), the conclusion of Corollary (3.2.3) does not depend 

on 𝛼 and is thus sharpest for 𝛼 = −
1

𝑛−1
 (the statement for − 

1

𝑛−1
< 𝛼 ≤ +∞ being actually 

a consequence of this case). Following the proof of Corollary (3.2.2), the complete form of 

Corollary (3.2.3) actually states that (cf. [124]), for every 𝑖 =  1, . . . , 𝑛, 

∫𝑤𝑑𝑥 ≥ 𝑀𝛽
(𝜃)(𝑚𝑖(𝑢),𝑚𝑖(𝑣))𝑀1

(𝜃)
(
1

𝑚𝑖(𝑢)
∫𝑢𝑑𝑥 ,

1

𝑚𝑖(𝑣)
∫𝑣𝑑𝑥) 

with 𝛽 = 𝛼/(1 + 𝛼(𝑛 − 1)). 
Recently, mass transportation arguments have been developed to simultaneously reach the 

Brunn–Minkowski–Lusternik inequality and the sharp Sobolev inequalities (cf. [122] [125] 

. . .). In particular, Cordero-Erausquin et al. [126] provide a complete treatment of the 

classical Sobolev inequalities with their best constants by this tool (see also [132]). Their 

approach covers in the same way the family of Gagliardo– Nirenberg inequalities put 

forward by Del Pino and Dolbeault [136] in the context of non-linear diffusion equations 
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(see also [127]). More precisely, by means of Hölder’s inequality, the Sobolev inequality 

(78) implies the family of so-called Gagliardo–Nirenberg inequalities [135], 

                                           ‖𝑓‖𝑟 ≤ 𝐶‖𝛻𝑓 ‖2
𝜆‖𝑓‖𝑠

1−𝜆                                              (83)                                         
for some constant 𝐶 > 0 and all smooth enough functions 𝑓: ℝ𝑛 → ℝ where 𝑟, 𝑠 > 0 and 
1

𝑟
=
𝜆

𝑞
+
1−𝜆

𝑠
 , 𝜆 ∈ [0, 1]. The optimal constants are not preserved through Hölder’s 

inequality. However, it was shown by Del Pino and Dolbeault [126] that optimal constants 

and extremal functions may be described for a sub-family of Gagliardo–Nirenberg 

inequalities, namely the one for which 𝑟 = 2(𝑠 − 1) when 𝑟, 𝑠 > 2 and 𝑠 = 2(𝑟 − 1) when 

𝑟, 𝑠 < 2. The extremal functions turn out to be of the form 𝑓(𝑥) = (𝜎 + |𝑥|2)2/(2−𝑟) in the 

first case, whereas in the second case they are given by 𝑓(𝑥) = ([𝜎 − |𝑥|2]+)
1/(2−𝑟) (being 

thus compactly supported). The limiting case 𝑟, 𝑠 →  2 gives rise to the logarithmic Sobolev 

inequality (in its Euclidean formulation) with the Gaussian kernels as extremals. 

While mass transport arguments may be offered to directly reach the 𝑛-dimensional 

Prékopa–Leindler theorem (cf. [127] . . .), we do not know if Corollary (3.2.3) admits an 𝑛-

dimensional optimal transportation proof. 

On the other hand, the Prékopa–Leindler theorem was shown in [127], following the early 

ideas by Maurey [131] (cf. [126]), to imply the logarithmic Sobolev inequality for Gaussian 

measures [123] which, in its Euclidean version [132], corresponds to the limiting case 𝑟, 𝑠 →
2 in the scale ofGagliardo–Nirenberg inequalities. We demonstrate that the extended 

Prékopa–Leindler theorem in the form of Corollary (3.2.3) above may be used to prove in a 

simple direct way the classical Sobolev inequality (78) with sharp constant. The argument 

only relies on a suitable choice of functions 𝑢, 𝑣, 𝑤. The varying parameter 𝛼 in Corollary 

(3.2.3) allows us to cover in the same way precisely the preceding sub-family of Gagliardo–

Nirenberg inequalities with optimal constants, justifying thus this particular subset of 

functional inequalities. As in [133], we may deal as simply with the 𝐿𝑝-versions of the 

Sobolev and Gagliardo–Nirenberg inequalities (cf. (81)), and even replace the Euclidean 

norm on ℝ𝑛 by some arbitrary norm. The extension of the Sobolev inequalities to arbitrary 

norms on ℝ𝑛 was known previously [133] by symmetrization methods. With respect to 

earlier developments (notably the recent [133], which provides a new and complete 

treatment in this respect), the approach presented here does not provide any type of 

characterization of extremal functions and their uniqueness, which have to be hinted in the 

choice of the functions 𝑢, 𝑣, 𝑤. 
The presents an outline of the direct proof of the sharp Sobolev inequality (78) from 

Corollary (3.2.3). We then discuss variations on the basic principle which lead to the sharp 

Sobolev and Gagliardo–Nirenberg inequalities (81) and (83).  

The describes, with standard technical arguments, the rigorous and detailed proof of the 

Sobolev inequality. 

We follow the strategy put forward in [137] (see also [132]) on the basis of Corollary (3.2.3) 

rather than the more classical Prékopa–Leindler theorem. For 𝑔:ℝ𝑛 → ℝ and 𝑡 > 0, recall 

the infimum-convolution of 𝑔 with the quadratic cost defined by 
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𝑄𝑡𝑔(𝑥) = 𝑖𝑛𝑓𝑦∈ℝ {𝑔(𝑦) +
1

2𝑡
|𝑥 − 𝑦|2} , 𝑥 ∈ ℝ𝑛 

(with 𝑄0𝑔 = 𝑔). It is a standard fact (cf. e.g. [128] . . .) that, for suitable 𝐶1 functions 𝑔, 

                                          𝜕𝑡𝑄𝑡𝑔|𝑡=0 = −
1

2
|𝛻𝑔|2.                                                    (84)                                            

Actually, if 𝑔 is Lipschitz continuous, the family 𝜌 = 𝜌(𝑥, 𝑡) = 𝑄𝑡𝑔(𝑥), 𝑡 >  0, 𝑥 ∈ ℝ
𝑛, 

represents the solution of the Hamilton–Jacobi initial value problem 𝜕𝑡𝜌 +
1

2
|𝛻𝜌|2 = 0 in 

ℝ𝑛 × (0,∞), 𝜌 = 𝑔 on ℝ𝑛 × {𝑡 = 0}.  
For 𝜎 > 0, set 

𝑣𝜎(𝑥) =  𝜎 +
|𝑥|2

2
, 𝑥 ∈ ℝ𝑛. 

Let 𝜎 > 0 to be determined and let 𝑔: ℝ𝑛 → ℝ+ be smooth and such that 𝑚1(𝑔
1−𝑛) < ∞. 

In order not to obscure the main idea, we refer for a precise description of the class of 

functions 𝑔 that should be considered in order to justify the technical differential arguments 

freely used below. 

By definition of the infimum-convolution operator, we may apply Corollary (3.2.3) with 𝛼 =

−
1

𝑛−1
 to the set of (positive) functions 

𝑢(𝑥) = 𝑔(𝜃𝑥)1−𝑛, 

𝑣(𝑦) = 𝑣𝜎(√𝜃 𝑦)
1−𝑛
, 

𝑤(𝑧) = [(1 −  𝜃)𝜎 + 𝜃𝑄1−𝜃 𝑔(𝑧)]
1−𝑛. 

Note that𝑚1(𝑢) = 𝜃
1−𝑛𝑚1(𝑔

1−𝑛) and 𝑚1(𝑣) = (𝜎 𝜃)
(1−𝑛)/2𝑚1(𝑣1

1−𝑛) < ∞.Choose thus 

𝜎 = 𝜅 𝜃 > 0 such that 𝑚1(𝑢) = 𝑚1(𝑣) where 𝜅 = 𝜅(𝑛, 𝑔) =  (𝑚1(𝑣1
1−𝑛)/

𝑚1(𝑔
1−𝑛))2/(𝑛−1). 

Set 𝑠 = 1 − 𝜃 ∈ (0, 1). Hence, by Corollary (3.2.3), for every 𝑠 ∈ (0, 1), 

∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛𝑑𝑥 ≥ ∫𝑔1−𝑛𝑑𝑥 + 𝑠 𝜅(2−𝑛)/2∫𝑣1

1−𝑛 𝑑𝑥 . 

Taking the derivative at 𝑠 = 0 yields, by (84), 

                      (1 − 𝑛) ∫𝑔−𝑛 (𝜅 −
1

2
|𝛻𝑔|2)𝑑𝑥 ≥ 𝜅

2−𝑛

2 ∫𝑣1
1−𝑛 𝑑𝑥 .                         (85)                       

Set 𝑔 = 𝑓2/(2−𝑛) so that 
2

(𝑛 − 2)2
∫ |𝛻𝑓|2𝑑𝑥 ≥ 𝜅∫𝑓𝑞𝑑𝑥 +

1

(𝑛 −  1)𝜅(𝑛−2)/2
∫𝑣1

1−𝑛𝑑𝑥  

where we recall that 𝑞 = 2𝑛/(𝑛 − 2). In particular, 

          ∫ |𝛻𝑓|2𝑑𝑥 ≥ 𝑖𝑛𝑓𝜅>0
(𝑛−2)2

2
(𝜅 ∫𝑓𝑞𝑑𝑥 +

1

(𝑛−1)𝜅
𝑛−2
2

∫𝑣1
1−𝑛𝑑𝑥 . )                (86)           

This infimum is precisely 𝐶𝑛
−2‖𝑓 ‖𝑞

2  where 𝐶𝑛 is the optimal constant in the Sobolev 

inequality (78). Actually, if (𝑥) = 𝑣1(𝑥) = 1 +
|𝑥|2

2
 , the preceding argument develops with 

equalities at each step with 𝜅 = 𝜅(𝑛, 𝑔) = 1. Moreover, the infimum on the right-hand side 

of (86) is attained at 𝜅 = 1 if and only if 
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∫𝑓𝑞𝑑𝑥 = ∫𝑣1
−𝑛𝑑𝑥 =

𝑛 − 2

2(𝑛 − 1)
∫𝑣1

1−𝑛𝑑𝑥 

which is easily checked by elementary calculus. Thus (86) is an equality in this case and the 

conclusion follows. 

As emphasized, the same proof, with the varying parameter 𝛼 in Corollary (3.2.3), yields the 

sub-family of Gagliardo–Nirenberg inequalities recently put forward in [136]. Let us briefly 

emphasize the modifications in the argument. (It is somewhat surprising that these optimal 

Gagliardo–Nirenberg inequalities follow from Corollary (3.2.3) with −
1

𝑛−1
< 𝛼 ≤

+∞which is a consequence of the 𝛼 = −
1

𝑛−1
 case, whereas they are not direct consequences 

of the sharp Sobolev inequality.) 

For −
1

𝑛−1
≤ 𝛼 < 0, apply Corollary (3.2.3) to 

𝑢(𝑥) = 𝑔(𝜃𝑥)1 𝛼⁄ , 

𝑣(𝑦) = 𝑣𝜎(√𝜃 𝑦)
1 𝛼⁄
, 

𝑤(𝑧) = [(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃 𝑔(𝑧)]
1 𝛼⁄  

to get that for all 𝑠 ∈ (0, 1), 

∫[𝜅𝑠(1 − 𝑠)𝑎 + (1 − 𝑠)𝑄𝑠𝑔]
1 𝛼⁄ 𝑑𝑥 

≥ (1 − 𝑠)1−𝑛∫𝑔1/𝛼𝑑𝑥 + 𝜅𝑐𝑠(1 − 𝑠)𝑏∫𝑣1
1 𝛼⁄ 𝑑𝑥. 

Here 𝑎 >  0, 𝑏, 𝑐 < 0, 𝜅 > 0 depending on 𝑛 and 𝛼 (and 𝑔), are such that 𝑚1(𝑢) =  𝑚1(𝑣) 
for some suitable choice of 𝜎. Taking the derivative at 𝑠 = 0, 

1

𝛼
∫𝑔(1/𝛼)−1 (𝜅 − 𝑔 −

1

2
|𝛻𝑔|2) 𝑑𝑥 ≥ (𝑛 −  1)∫𝑔1/𝛼𝑑𝑥 + 𝜅𝑐∫𝑣1

1/𝛼
 𝑑𝑥 . 

Set 𝑓 = 𝑔𝑝, 2𝑝 − 2 =
1

𝛼
− 1, so that 

−
1

2𝛼𝑝2
∫|𝛻𝑓|2𝑑𝑥 − [(𝑛 − 1) +

1

𝛼
]∫𝑓𝑟𝑑𝑥 ≥ −

𝜅

𝛼
∫𝑓𝑠𝑑𝑥 + 𝜅𝑐𝑣1

1/𝛼
𝑑𝑥 

where 𝑟 = 2(1 − 𝛼)/(1 + 𝛼) and 𝑠 = 2/(1 + 𝛼). Note that 𝑟, 𝑠 > 2, 𝑟 =  2(𝑠 − 1). Take 

the infimum over 𝜅 > 0 on the right-hand side, and rewrite then the inequality by 

homogeneity to get the Gagliardo–Nirenberg inequality 

‖𝑓‖𝑟 ≤ 𝐶‖𝛻𝑓‖2
𝜆‖𝑓‖𝑠

1−𝜆, 
1

𝑟
=
𝜆

𝑞
+
1−𝜆

𝑠
 , with optimal constant 𝐶. 

To reach the sub-family 𝑟, 𝑠 < 2, 𝑠 =  2(𝑟 − 1), work now with 0 < 𝛼 < +∞ and replace 

𝑣𝜎 by the compactly supported function [𝜎 −
|𝑥|2

2
]+, |𝑥| < √2𝜎. Actually, only the values 

0 < 𝛼 < 1 are concerned in the argument. We do not know what type of functional 

information is contained in the interval 𝛼 ≥ 1. The case 𝛼 = 0 leading to the logarithmic 

Sobolev inequality has been studied in [127] and follows here as a limiting case. 
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We can work more generally with the 𝐿𝑝-Sobolev inequalities (81), 1 < 𝑝 < 𝑛, and similarly 

with the corresponding sub-family of Gagliardo–Nirenberg inequalities. It is also possible 

to equip ℝ𝑛 with an arbitrary norm ‖· ‖ instead of the Euclidean one | · |, and to consider 

‖𝛻𝑓‖𝑝
𝑝
= ‖𝛻𝑓(𝑥)‖∗

𝑝
𝑑𝑥 

where ‖· ‖∗ is the dual norm to ‖· ‖. To these tasks, consider as in [124], 

𝑄𝑡𝑔(𝑥) = 𝑖𝑛𝑓𝑦∈ℝ𝑛 {𝑔(𝑦) + 𝑡 𝑉
∗ (
𝑥 − 𝑦

𝑡
)} , 𝑡 > 0, 𝑥 ∈ ℝ𝑛, 

where 𝑉∗(𝑥) =
1

𝑝∗
 ‖𝑥‖𝑝

∗
 with 𝑝∗ is the Hölder conjugate of 𝑝, i.e. (1/𝑝) + (1/𝑝∗) = 1. 

Then 𝜌 = 𝜌(𝑥, 𝑡) = 𝑄𝑡𝑔(𝑥) is the solution of the Hamilton–Jacobi equation 𝜕𝑡𝜌 + 𝑉(𝛻𝜌) =

0 with initial condition 𝑔, where 𝑉(𝑥) =
1

𝑝
‖𝑥‖∗

𝑝
 is the Legendre transform of 𝑉∗ (cf. [18]). 

The proof then follows along the same lines as before . The general statement obtained in 

this way is the following (cf. [124,125]). For 1 < 𝑝 < 𝑛,
1

𝑞
=
1

𝑝
−
1

𝑛
, 𝑠 < 𝑟 ≤ 𝑞, 𝜆 ∈ [0, 1], 

‖𝑓‖𝑟 ≤ 𝐶𝑛(𝑝, 𝑟)‖𝛻𝑓‖𝑝
𝜆 ‖𝑓‖𝑠

1−𝜆 

with 
1

𝑟
=
𝜆

𝑞
+
1−𝜆

𝑠
, 𝑝(𝑠 − 1) = 𝑟(𝑝 − 1) if 𝑟, 𝑠 > 𝑝, 𝑝(𝑟 − 1) = 𝑠(𝑝 − 1) if 𝑟, 𝑠 < 𝑝, and the 

optimal constant 𝐶𝑛(𝑟, 𝑝) is achieved on the extremal functions (𝜎 + ‖𝑥‖𝑝
∗
)𝑝/(𝑝−𝑟), 𝑥 ∈

ℝ𝑛, 𝜎 > 0, in the first case and ([𝜎 − ‖𝑥‖𝑝
∗
]+)

(𝑝−1)/(𝑝−𝑟), 𝑥 ∈ ℝ𝑛, 𝜎 > 0, in the second 

case. The optimal Sobolev inequality (81) corresponds to the limiting case 𝜆 → 1, 𝑟 → 𝑞, 𝑠 →
𝑟. 
We collect the technical details necessary to fully justify the proof of the Sobolev inequality 

outlined. Although the case 𝑝 = 2 is a bitmore simple, we can actually easily handle in the 

same way the more general case of 1 < 𝑝 < 𝑛 and of an arbitrary norm ‖· ‖ on ℝ𝑛. The 

arguments are easily modified so to deal similarly with the Gagliardo–Nirenberg inequalities 

discussed. 

Consider thus on ℝ𝑛 the Sobolev inequality 
                                                 ‖𝑓‖𝑞 ≤ 𝐶𝑛(𝑝)‖𝛻𝑓‖𝑝                                                 (87)                                         

in the class of all locally Lipschitz functions 𝑓 vanishing at infinity, with parameters 

𝑝, 𝑞 satisfying 1 < 𝑝 < 𝑛,
1

𝑞
=
1

𝑝
−
1

𝑛
 . The right-hand side in (87) is understood with  

respect to the given norm ‖· ‖ on ℝ𝑛. More precisely, 

‖𝛻𝑓‖𝑝
𝑝
 = ∫ ‖𝛻𝑓(𝑥)‖∗

𝑝
 𝑑𝑥

ℝ𝑛
 

where ‖· ‖∗ is the dual norm of ‖· ‖. We show that the best constant 𝐶𝑛(𝑝) in (87) 

corresponds to the family of extremal functions 

𝑓(𝑥) = (𝜎 + ‖𝑥‖𝑝
∗
)
(𝑝−𝑛)/𝑝

, 𝑥 ∈ ℝ𝑛, 𝜎 > 0, 
where 𝑝∗ is the conjugate of 𝑝.We may assume that the norm 𝑥 ⟼ ‖𝑥‖ is continuously 

differentiable in the region 𝑥 ≠ 0. In this case, ‖𝛻‖𝑥‖ ‖∗ = 1 for all 𝑥 ⟼ 0, and all the 

extremal functions belong to the class 𝐶1(ℝ𝑛). 
The associated infimum-convolution operator is constructed for the cost function 
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𝑉∗(𝑥) =
1

𝑝∗
‖𝑥‖𝑝

∗
, that is, 

𝑄𝑡𝑔(𝑥) = 𝑖𝑛𝑓𝑦∈ℝ𝑛𝑔(𝑦) + 𝑡 𝑉
∗ (
𝑥 − 𝑦

𝑡
) , 𝑡 > 0, 𝑥 ∈ ℝ𝑛. 

The dual (Legendre transform) of 𝑉∗ is 𝑉(𝑥) = 𝑠𝑢𝑝𝑦∈ℝ𝑛  [〈𝑥, 𝑦〉 − 𝑉
∗(𝑦)] =

1

𝑝
‖𝑥‖∗

𝑝
 (and 

conversely). 

See [128] for general facts about infimum-convolution operators and solutions to Hamilton–

Jacobi equations, and only concentrate below on the aspects relevant to the proof of the 

Sobolev inequality. 

What follows is certainly classical. 

Lemma (3.2.4) [121]: If 𝑎 function 𝑔 on ℝ𝑛 is bounded from below and is differentiable at 

the 

point 𝑥 ∈ ℝ𝑛, then 

lim
𝑡→0

1

𝑡
 [𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] = −𝑉𝛻𝑔(𝑥) = −

1

𝑝
‖𝛻𝑔(𝑥)‖∗

𝑝
. 

Proof: Fix 𝑥 ∈ ℝ𝑛. By Taylor’s expansion, 𝑔(𝑥 − ℎ) = 𝑔(𝑥) − 〈𝛻𝑔(𝑥), ℎ〉 + |ℎ|𝜀(ℎ) with 

𝜀(ℎ) = 𝜀𝑥(ℎ) → 0 as |h| → 0. Hence, for vectors ℎ𝑡 = 𝑡ℎ with fixed ℎ ∈ ℝ𝑛, 

lim
𝑡→0

1

𝑡
[𝑔(𝑥 − ℎ𝑡) − 𝑔(𝑥)] =  −〈𝛻𝑔(𝑥), ℎ〉. 

Since we always have 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥 − ℎ𝑡) + 𝑡𝑉
∗(ℎ), 

lim
𝑡→0

𝑠𝑢𝑝
1

𝑡
 [𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≤ lim

𝑡→0

1

𝑡
[𝑔(𝑥 − ℎ𝑡) − 𝑔(𝑥)] + 𝑉

∗(ℎ) 

= −〈𝛻𝑔(𝑥), ℎ〉 + 𝑉∗(ℎ). 
The left-hand side of the preceding does not depend on ℎ. Hence, taking the infimum on the 

right-hand side over all ℎ ∈ ℝ𝑛, we get 

lim
𝑡→0

𝑠𝑢𝑝
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≤ −(𝑉𝛻𝑔(𝑥)). 

Now, we need an opposite inequality for the liminf. Assume without loss of generality 

that 𝑔 ≥ 0. Since 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥), it is easy to see that for any 𝑡 > 0, 

𝑄𝑡𝑔(𝑥) = 𝑖𝑛𝑓𝑡𝑉∗(ℎ)≤𝑔(𝑥){𝑔(𝑥 − ℎ𝑡) + 𝑡𝑉
∗(ℎ)}.  

Hence, recalling Taylor’s expansion, 

      
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] = 𝑖𝑛𝑓𝑡𝑉∗(ℎ)≤𝑔(𝑥){−〈𝛻𝑔(𝑥), ℎ〉 + |ℎ|𝜀(𝑡ℎ) + 𝑉

∗(ℎ)}.     (88) 

Note first that the argument in 𝜀(·) = 𝜀𝑥(·) is small uniformly over all admissible ℎ since, 

as is immediate, 

sup{𝑡|ℎ|;  𝑡𝑉∗(ℎ) ≤ 𝑔(𝑥)} → 0    𝑎𝑠   𝑡 →  0. 
Thus removing the condition 𝑡𝑉∗(ℎ) ≤ 𝑔(𝑥) in (88), we get that, given 𝜂 > 0, for all 𝑡 small 

enough, 

                      
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≥ 𝑖𝑛𝑓ℎ{−〈 𝛻𝑔(𝑥), ℎ〉 − |ℎ|𝜂 + 𝑉

∗(ℎ)}.           (89)         

Now, to get rid of 𝜂 on the right-hand side for 𝑡 approaching zero, note that the infimum in 

(89) may be restricted to the ball |ℎ| ≤ 𝑟 for some large 𝑟. Indeed, the left-hand side in (89) 

is non-positive. But if |ℎ| is large enough and 0 < 𝜂 < 1, the quantity for which we take the 
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infimum will be positive for 𝑉∗(ℎ ≥ 𝐶|ℎ| > 〈𝛻𝑔(𝑥), ℎ〉 + |ℎ|𝜂 with 𝐶 taken in advance to 

be as large as we want. Finally, restricting the infimum to |ℎ| ≤ 𝑟, we get that 
1

𝑡
[𝑄𝑡𝑔(𝑥) − 𝑔(𝑥)] ≥ 𝑖𝑛𝑓|ℎ|≤𝑟{−〈𝛻𝑔(𝑥), ℎ〉 + 𝑉

∗(ℎ)} − 𝑟𝜂 = −𝑉(𝛻𝑔(𝑥)) −  𝑟𝜂. 

It remains to take the liminf on the left for 𝑡 → 0, and then to send 𝜂 to 0. The proof of 

Lemma (3.2.4) is complete. 

Our next step is to complement the above convergence with a bound on |𝑄𝑡𝑔(𝑥) −
 𝑔(𝑥)|/𝑡 in terms of ‖𝛻𝑔(𝑦)‖∗ with vectors y that are not far from 𝑥. So, given a 𝐶1 function 

𝑔 on ℝ𝑛, for every point 𝑥 ∈ ℝ𝑛 and 𝑟 > 0, define 𝐷𝑔(𝑥, 𝑟) = 𝑠𝑢𝑝‖𝑥−𝑦‖≤𝑟‖𝛻𝑔(𝑦)‖∗. Note 

that 𝐷𝑔(𝑥, 𝑟) → ‖𝛻𝑔(𝑥)‖∗ as 𝑟 → 0. Assume 𝑔 ≥ 0 and write once more 

𝑄𝑡𝑔(𝑥) = 𝑖𝑛𝑓ℎ∈ℝ𝑛𝑔(𝑥 − ℎ) +
‖ℎ‖𝑝

∗

𝑝∗𝑡𝑝∗−1
,   𝑡 > 0. 

Again, since 𝑄𝑡𝑔(𝑥) ≤ 𝑔(𝑥), the infimum may be restricted to the ball (‖ℎ‖𝑝
∗
/𝑝∗𝑡𝑝∗−1) ≤

𝑔(𝑥). Hence, replacing ℎ with 𝑡ℎ and applying the Taylor formula in integral form, we get 

that with 𝑟 = (𝑝∗𝑔(𝑥))1 𝑝
∗⁄ , for any 𝑡 > 0, 

1

𝑡
[𝑔(𝑥) − 𝑄𝑡𝑔(𝑥)] ≤ 𝑠𝑢𝑝𝑡‖ℎ‖≤𝑟 {

1

𝑡
[𝑔(𝑥) − 𝑔(𝑥 −  𝑡ℎ)] − (‖ℎ‖𝑝

∗
/𝑝∗)} 

≤ 𝑠𝑢𝑝𝑡‖ℎ‖≤𝑟{𝐷𝑔(𝑥, 𝑡‖ℎ‖)‖ℎ‖ − (‖ℎ‖
𝑝∗/𝑝∗)} 

≤ 𝑠𝑢𝑝ℎ{𝐷𝑔(𝑥, 𝑟)‖ℎ‖ − (‖ℎ‖
𝑝∗/𝑝∗)} 

                                                  =
1

𝑝
𝐷𝑔(𝑥, 𝑟)𝑝   .                                                        (90)                                                

In applications, we need to work with functions 𝑔(𝑥) = 𝑂(|𝑥|𝑝
∗
) as |𝑥| → ∞. So, let us 

define the class 𝐹𝑝∗  , 𝑝
∗ > 1, of all 𝐶1 functions 𝑔 on ℝ𝑛 such that 

lim
|𝑥|→∞

𝑠𝑢𝑝
|𝛻𝑔(𝑥)|

|𝑥|𝑝
∗−1

< ∞.  

If ∈ ℱ𝑝∗ , then, for some 𝐶, |𝛻𝑔(𝑥)| ≤ 𝐶|𝑥|𝑝
∗−1 as long as |𝑥| is large enough, and hence 

|𝑔(𝑥)|1 𝑝
∗⁄ ≤  𝐶′|𝑥| for |𝑥| large. It easily follows that 𝐷𝑔(𝑥, (𝑝∗𝑔(𝑥))

1 𝑝∗⁄
) ≤ 𝐶′′(1 +

|𝑥|𝑝
∗−1) for all 𝑥.As a consequence of (90), we may conclude that for any 𝑔 ≥ 0 in 

ℱ𝑝∗  , 𝑝
∗ > 1, there is a constant 𝐶 > 0 such that 

              𝑠𝑢𝑝𝑡>0
1

𝑡
[𝑔(𝑥) − 𝑄𝑡𝑔(𝑥)] ≤ 𝐶(1 + |𝑥|

𝑝∗) ,      𝑥 ∈ ℝ𝑛.                        (91)                     

We may now start the proof of the Sobolev inequality according to the scheme outlined in 

Given a parameter 𝜎 > 0, define 

𝑣𝜎(𝑥) = 𝜎 +
‖𝑥‖𝑝

∗

𝑝∗
 , 𝑥 ∈ ℝ𝑛. 

For a positive 𝐶1 function 𝑔 on ℝ𝑛, and 𝜃 ∈ (0, 1), define the three (positive, continuous) 

functions 

𝑢(𝑥) = 𝑔(𝜃𝑥)1−𝑛, 

𝑣(𝑦) = 𝑣𝜎(𝜃
1 𝑝∗⁄ 𝑦)1−𝑛, 

𝑤(𝑧) = [(1 − 𝜃)𝜎 +  𝜃𝑄1−𝜃 𝑔(𝑧)]
1−𝑛. 
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The function 𝑤 is chosen as the optimal one satisfying 

𝑤(𝜃𝑥 + (1 −  𝜃)𝑦)𝛼 ≤ 𝜃𝑢(𝑥)𝛼 + (1 − 𝜃)𝑣(𝑦)𝛼 

for 𝛼 = −
1

𝑛−1
 and all 𝑥, 𝑦 ∈ ℝ𝑛. Assume that 

𝑚1(𝑔
1−𝑛) = 𝑠𝑢𝑝𝑥1∈ℝ∫ 𝑔(𝑥1, 𝑥2,· · · , 𝑥𝑛)

1−𝑛 𝑑𝑥2 . . . 𝑑𝑥𝑛
ℝ𝑛−1

< ∞. 

By homogeneity, 𝑚1(𝑢) = 𝜃
1−𝑛𝑚1(𝑔

1−𝑛) and 𝑚1(𝑣) = 𝜃
(1−𝑛)/𝑝∗𝜎(1−𝑛)/𝑝 𝑚1(𝑣1

1−𝑛 ). 
Note that 𝑚1(𝑣1

1−𝑛) < ∞. Hence, we may choose 𝜎 such that 𝑚1(𝑢) = 𝑚1(𝑣), that is, 

                    𝜎 = 𝜅 𝜃, where 𝜅 = 𝜅(𝑛, 𝑔) = (
𝑚1(𝑣1

1−𝑛 )

𝑚1(𝑔
1−𝑛)

)
𝑝/(𝑛−1)

. 

By Corollary (3.2.3) (with = −
1

𝑛−1
 ), we have ∫𝑤𝑑𝑥 ≥ 𝜃 ∫𝑢𝑑𝑥 + (1 − 𝜃) ∫ 𝑣𝑑𝑥, that is, 

∫[(1 − 𝜃)𝜎 + 𝜃𝑄1−𝜃 𝑔(𝑥)]
1−𝑛𝑑𝑥  ≥ 𝜃∫𝑔(𝜃𝑥)1−𝑛𝑑𝑥 + (1 − 𝜃)∫𝑣𝜎(𝜃

1 𝑝∗⁄ 𝑥)
1−𝑛
𝑑𝑥 . 

After a change of variable in the last two integrals, and since 𝜎 = 𝜅 𝜃, we get, setting 𝑠 =
1 − 𝜃, 

              ∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛𝑑𝑥 ≥ ∫𝑔1−𝑛𝑑𝑥 + 𝑠 𝜅

𝑝−𝑛

𝑝 ∫𝑣1
1−𝑛 𝑑𝑥 .                             (92)                     

Inequality (92) holds true for all 0 < 𝑠 < 1, and formally there is equality at 𝑠 = 0. 

The next step is to compare the derivatives of both sides at this point. To do this, assume 

𝑔 ∈ ℱ𝑝∗ and 

                                                   𝑔(𝑥) ≥ 𝑐1 + ‖𝑥‖𝑝
∗
                                               (93)                                           

for some constant 𝑐 > 0. (Recall that the functions in ℱ𝑝∗ satisfy an opposite bound 𝑔(𝑥) ≤

𝐶(1 + ‖𝑥‖𝑝
∗
) which will not be used.) Due to (93), 𝑄𝑠𝑔(𝑥) ≥ 𝑐′(1 + ‖𝑥‖

𝑝∗)  
(where 𝑐′ > 0 is independent of 𝑠). In particular, 𝑚1(𝑔

1−𝑛) < ∞, and the first and 

second integrals in (92) are finite and uniformly bounded over all 𝑠 ∈ (0, 1). Rewrite (92) 

as 

                 𝜅(𝑝−𝑛)/𝑝 ∫𝑣1
1−𝑛 𝑑𝑥 ≤ ∫

1

𝑠
[(𝜅𝑠 + 𝑄𝑠𝑔)

1−𝑛  −  𝑔1−𝑛]𝑑𝑥 .                     (94)                

Now we can use a general inequality 

|𝑎1−𝑛 − 𝑏1−𝑛| ≤ (𝑛 − 1)|𝑎 − 𝑏|(𝑎−𝑛 + 𝑏−𝑛), 𝑎, 𝑏 >  0, 
to see that, uniformly in 𝑠, 
1

𝑠
[(𝜅𝑠 + 𝑄𝑠𝑔)

1−𝑛 − 𝑔1−𝑛] ≤ 2(𝑛 − 1) (𝜅 +
1

𝑠
[𝑔 − 𝑄𝑠𝑔]) (𝑄𝑠𝑔)

−𝑛 ≤ 𝐶′(1 + ‖𝑥‖𝑝
∗
)
1−𝑛

 

for some constant 𝐶′ > 0.Onthe last step, we used that𝑄𝑠𝑔(𝑥) ≥ 𝑐(1 + ‖𝑥‖
𝑝∗) together with 

the bound (91) for functions from the class ℱ𝑝∗  . Since the function (1 + ‖𝑥‖𝑝
∗
)1−𝑛 is 

integrable (for 𝑝 < 𝑛), we can apply the Lebesgue dominated convergence theorem in order 

to insert the limit lim 𝑠 → 0 inside the integral in (94), and to thus get together with Lemma 

(3.2.4), 

𝜅(𝑝−𝑛)/𝑝∫𝑣1
1−𝑛 𝑑𝑥 ≤ (1 − 𝑛)∫𝑔−𝑛 (𝜅 −

‖𝛻𝑔‖∗
𝑝

𝑝
)𝑑𝑥 , 

or equivalently, 
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1

𝑝
∫𝑔−𝑛‖𝛻𝑔‖∗

𝑝
𝑑𝑥 ≥ 𝜅 ∫𝑔−𝑛𝑑𝑥  +

1

(𝑛 − 1)𝜅
𝑛−𝑝
𝑝
∫𝑣1

1𝑛 𝑑𝑥 .                    (95)                 

Now, let us take a non-negative, compactly supported 𝐶1 function 𝑓 on ℝ𝑛, and for 𝜀 > 0, 

define 𝐶1 functions 

𝑔𝜀(𝑥) = (𝑓(𝑥) + 𝜀𝜑(𝑥))
𝑝/(𝑝−𝑛) + 𝜀(1 + ‖𝑥‖𝑝

∗
) 

where 𝜑(𝑥) = (1 + ‖𝑥‖𝑝
∗
)(𝑝−𝑛)/𝑝. Clearly, all 𝑔𝜀 satisfy (93). The first partial derivatives 

of 𝑓 are continuous and vanishing for large values of |𝑥|. More precisely, 𝑔𝜀(𝑥) = 𝑐𝜀(1 +
‖𝑥‖𝑝

∗
) for |𝑥| large enough, so all 𝑔𝜀 belong to the class ℱ𝑝∗  . Thus, we can apply (95) to 

get 

            
1

𝑝
∫𝑔𝜀

−𝑛‖𝛻𝑔𝜀‖∗
𝑝
𝑑𝑥 ≥ 𝜅 ∫𝑔𝜀

−𝑛𝑑𝑥 +
1

(𝑛 − 1)𝜅
𝑛−𝑝
𝑝

 ∫ 𝑣1
1−𝑛 𝑑𝑥.                       (96)                

Note that 𝑔𝜀
−𝑛 ≤ (𝑓 + 𝜀𝜑)𝑞 and ∫𝜑𝑞𝑑𝑥 < ∞ (where we recall that 𝑞 = 𝑝𝑛/(𝑛 −  𝑝)). 

Hence, by the Lebesgue dominated convergence theorem again, ∫𝑔𝜀
−𝑛𝑑𝑥 is convergent, 

as 𝜀 → 0, to ∫𝑓𝑞𝑑𝑥.By a similar argument, recalling that ‖𝛻‖𝑥‖ 𝑝
∗
‖
∗
= 𝑝∗‖𝑥‖𝑝

∗−1, 𝑥 ∈ ℝ𝑛, 

we see that there is a finite limit for the left integral in (96). As a result, we arrive at 

              
𝑝𝑝−1

(𝑛−𝑝)𝑝
∫‖𝛻𝑓‖∗

𝑝
 𝑑𝑥 ≥ 𝜅 ∫𝑓𝑞𝑑𝑥 +

1

(𝑛−1)𝜅
𝑛−𝑝
𝑝
∫𝑣1

1𝑛𝑑𝑥,                             (97)                    

which implies 

           
𝑝𝑝−1

(𝑛−𝑝)𝑝
∫‖𝛻𝑓‖∗

𝑝
𝑑𝑥 ≥ 𝑖𝑛𝑓𝜅>0𝜅 ∫𝑓

𝑞𝑑𝑥 +
1

(𝑛−1)𝜅
𝑛−𝑝
𝑝
∫𝑣1

1−𝑛𝑑𝑥.                    (98)          

As we will see with the case of equality below, this is precisely the desired Sobolev 

inequality (87) with optimal constant. It is now easy to remove the assumption on the 

compact support of 𝑓 and thus to extend (98) to all 𝐶1 and furthermore locally Lipschitz 

functions 𝑓 (≥ 0) on ℝ𝑛 vanishing at infinity. To conclude the argument, we investigate the 

case of equality. To this task, let us return to the beginning of the argument and check the 

steps where equality holds true. Take 𝑔 = 𝑣1 so that 𝜅 = 𝜅(𝑛, 𝑔) = 1 and 𝜎 = 𝜃. In 

addition, the right-hand side of (92) automatically turns into (1 + 𝑠)𝑣1
1−𝑛𝑑𝑥. By direct 

computation, 

𝑄𝑠𝑣1(𝑥) = 1 +
‖𝑥‖𝑝

∗

𝑝∗(1 + 𝑠)𝑝
∗−1
, 

so the left-hand side of (92) is 

∫(𝜅𝑠 + 𝑄𝑠𝑔)
1−𝑛𝑑𝑥 = ∫((1 + 𝑠) +

‖𝑥‖𝑝
∗

𝑝∗(1 + 𝑠)𝑝
∗−1
)

1−𝑛

𝑑𝑥 

= (1 + 𝑠)∫(1 +
‖𝑦‖𝑝

∗

𝑝∗
)

1−𝑛

𝑑𝑦 

= (1 + 𝑠)∫𝑣1
1−𝑛𝑑𝑦 

where we used the change of the variable 𝑥 = (1 + 𝑠)𝑦. Thus, for 𝑔 = 𝑣1 there is equality 

in (92), and hence in (95) and (97) as well. 
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As for (98), first note that, given parameters 𝐴, 𝐵 > 0, the function 𝐴𝜅 + 𝐵𝜅(𝑝𝑛)/𝑝, 𝜅 > 0, 

attains its minimum on the positive half-axis at 𝜅 = 1 if and only if 𝐴 = 𝐵(𝑛 − 𝑝)/𝑝. In the 

situation of the particular functions 𝑔 = 𝑣1, 𝑓
𝑞 = 𝑔−𝑛 = 𝑣1

−𝑛 , we have 

𝐴 = ∫𝑣1
−𝑛 𝑑𝑥 , 𝐵 =

1

𝑛 − 1
∫𝑣1

1−𝑛 𝑑𝑥 . 

Hence, the infimum in (97) is attained at 𝜅 = 1 if and only if 

∫𝑣1
−𝑛𝑑𝑥 =

𝑛 − 𝑝

𝑝(𝑛 − 1)
∫𝑣1

1−𝑛𝑑𝑥 . 

But this equality is easily checked by elementary calculus. 

We may thus summarize our conclusions. In the class of all locally Lipschitz functions 𝑓 on 

ℝ𝑛, vanishing at infinity and such that 0 < ‖𝑓‖𝑞 < ∞, the quantity 

‖𝛻𝑓‖𝑝
‖𝑓‖𝑞

, 

1 < 𝑝 < 𝑛,
1

𝑞
=
1

𝑝
−
1

𝑛
, is minimized for the functions 

𝑓(𝑥) = (𝜎 + ‖𝑥‖𝑝
∗
)
(𝑝−𝑛)/𝑝

, 𝑥 ∈ ℝ𝑛, 𝜎 > 0. 

Here 
1

𝑝
+

1

𝑝∗
= 1 and ‖· ‖ is a given norm on ℝ𝑛, and 

‖𝛻𝑓‖𝑝
𝑝
= ∫ ‖𝛻𝑓(𝑥)‖∗

𝑝
𝑑𝑥

ℝ𝑛
 

where ‖· ‖∗ is the dual norm to ‖· ‖. 
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Chapter 4 

Centroid Bodies and Slicing Inequalities with Estimates for Measures 

We present some new bounds on the volume of 𝐿𝑝-centroid bodies and yet another 

equivalent formulation of Bourgain’s hyperplane conjecture. The method is a combination 

of the 𝐿𝑝-centroid body technique of Paouris and the logarithmic Laplace transform 

technique . We show  that if Kis a convex body in 𝑅𝑛 with 0 ∈int(K)and μis a measure on 

Rnwith a locally integrable non-negative density g on 𝑅𝑛. 

           Section (4.1): Logarithmic Laplace Transform  

We combine two recent techniques in the study of volumes of high dimensional convex 

bodies. The first technique is due to Paouris [176], and it relies on properties of the 𝐿𝑝-

centroid bodies. The second technique was developed by [174], and it uses the logarithmic 

Laplace transform. 

Suppose that 𝜇 is a Borel probability measure on ℝ𝑛 endowed with a Euclidean structure  

| · | = √〈·,·〉. We say that 𝜇 is a 𝜓𝛼-measure (𝛼 > 0) with constant 𝑏𝛼if: 

       (∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜇(𝑥)
ℝ𝑛

)
1

𝑝 ≤ 𝑏𝛼𝑝
1

𝛼(∫ |〈𝑥, 𝜃〉|2𝑑𝜇(𝑥)
ℝ𝑛

)
1

2,    ∀𝑝 ≥ 2, ∀𝜃 ∈ ℝ𝑛.      (1)    

It is well known that the uniform probability measure 𝜇𝐾 on any convex body 𝐾 ⊂ ℝ𝑛 is a 

𝜓1-measure with constant 𝐶, where 𝐶 > 0 is a universal constant (this follows from 

Berwald’s inequality [173], see also [171]). Here, as usual, a convex body in ℝ𝑛 means a 

compact, convex set with a non-empty interior. The isotropic constant 𝐿𝐾 of a convex body 

𝐾 ⊂ ℝ𝑛 is the following affine invariant parameter: 

𝐿𝐾: = 𝑉𝑜𝑙𝑛(𝐾)
−
1
𝑛(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝐾))

1
2𝑛 , 

where 𝑉𝑜𝑙𝑛 denotes the Lebesgue measure and 𝐶𝑜𝑣(𝜇𝑘) denotes the covariance matrix of 

𝜇𝐾. The next theorem unifies and slightly improves several known bounds on the isotropic 

constant. 

Theorem (4.1.1)[168]: Let 𝐾 ⊂ ℝ𝑛 denote a convex body whose barycenter lies at the 

origin, and suppose that 𝜇𝐾 is a 𝜓𝛼-measure (1 ≤ 𝛼 ≤ 2) with constant 𝑏𝛼. Then: 

𝐿𝐾 ≤ 𝐶√𝑏𝛼
𝛼𝑛1−𝛼/2, 

where 𝐶 > 0 is a universal constant. 

A central question raised by Bourgain [169] is whether 𝐿𝐾 ≤ 𝐶 for some universal constant 

𝐶 > 0, for any convex body 𝐾 ⊂ ℝ𝑛 (it is well known that 𝐿𝐾 ≤ 𝑐 for a universal constant 

𝑐 > 0). This question is usually referred to as the slicing problem or hyperplane conjecture, 

see Milman and Pajor [181] for many of its equivalent formulations. Plugging 𝛼 = 1 in 

Theorem (4.1.1), we match the best known bound on the isotropic constant, which is 𝐿𝐾 ≤

𝐶𝑛1 4⁄  for any convex body 𝐾 ⊂ ℝ𝑛 (see Bourgain [178] and Klartag [174]). In the case 𝛼 =
2, Theorem (4.1.1) yields 𝐿𝐾 ≤ 𝐶𝑏2. This slightly improves upon the previously known 

bound, which is: 

                                                 𝐿𝐾 ≤ 𝐶𝑏2√𝑙𝑜𝑔 𝑏2,                                                        (2)                                                    
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due to Dafnis and Paouris [171] in the precise form (2) and to Bourgain [179] (with a 

different power of the logarithmic factor). Here, as elsewhere, we use the letters 𝑐, �̃�, 𝐶, �̃�, 𝐶̅ , 
etc. to denote positive universal constants, whose value may not necessarily be the same in 

different occurrences. 
We proceed by recalling the definition of the 𝐿𝑝-centroid bodies 𝑍𝑝(𝜇), originally introduced 

by Lutwak and Zhang in [179] (under different normalization), which lie at the heart of 

Paouris’ remarkable work [176]. Given a Borel probability measure 𝜇 on ℝ𝑛 and 𝑝 ≥ 1, 

denote: 

ℎ𝑍𝑝(𝜇)(𝜃) = (∫ |〈𝑥, 𝜃〉|𝑝𝑑𝜇(𝑥)
ℝ𝑛

)

1
𝑝

, 𝜃 ∈ ℝ𝑛.  

The function ℎ𝑍𝑝(𝜇) is a norm on ℝ𝑛, and it is the supporting functional of a convex body 

𝑍𝑝(𝜇) ⊆ ℝ
𝑛 (see e.g. Schneider [171] for information on supporting functionals). Clearly 

𝑍𝑝(𝜇) ⊆ 𝑍𝑞(𝜇) for 𝑝 ≤ 𝑞. 

Now suppose that 𝐾 ⊂ ℝ𝑛 is a convex body whose barycenter lies at the origin, and denote 

𝑍𝑝(𝐾) = 𝑍𝑝(𝜇𝐾), where 𝜇𝐾  is as before the uniform probability measure on 𝐾. As realized 

by Paouris, obtaining volumetric and other information on 𝑍𝑝(𝐾) is very useful for 

understanding the volumetric properties of 𝐾 itself. For instance, note that: 

                                        𝑉. 𝑅𝑎𝑑. (𝑍2(𝐾)) = (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝐾))
1

2𝑛 ,                               (3)                        
where the volume-radius of a compact set 𝑇 ⊂ ℝ𝑛 is defined as: 

𝑉. 𝑅𝑎𝑑. (𝑇) = (
𝑉𝑜𝑙𝑛(𝑇)

𝑉𝑜𝑙𝑛(𝐵𝑛)
)

1
𝑛

, 

measuring the radius of the Euclidean ball whose volume equals the volume of 𝑇. Here, 

𝐵𝑛 = {𝑥 ∈ ℝ
𝑛; |𝑥| ≤ 1}; note that 𝑐𝑛−

1

2 ≤ 𝑉𝑜𝑙𝑛(𝐵𝑛)
1

𝑛 ≤ 𝐶𝑛−
1

2, as verified by a direct 

calculation. Furthermore, it is known (e.g. [178, Lemma 3.6]) that: 

                             𝑐 ·  𝑍∞(𝐾) ⊆ 𝑍𝑛(𝐾) ⊆ 𝑍∞(𝐾) ≔ 𝑐𝑜𝑛𝑣(𝐾,−𝐾),                      (4)               
where 𝑐𝑜𝑛𝑣(𝐾,−𝐾) denotes the convex hull of 𝐾 and −𝐾. 

A sharp lower bound on the volume of 𝑍𝑝(𝐾) due to Lutwak, Yang and Zhang [18] states 

that ellipsoids minimize 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾))/𝑉. 𝑅𝑎𝑑. (𝐾) among all convex bodies 𝐾 ⊂ ℝ𝑛, 

for all 𝑝 ≥ 1. An elementary calculation yields: 

                            𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾)) ≥ 𝑐√
𝑝

𝑛
𝑉. 𝑅𝑎𝑑. (𝐾)𝑓𝑜𝑟 1 ≤ 𝑝 ≤ 𝑛,                  (5)          

which is the best possible bound (up to the value of the constant 𝑐 > 0) in terms of 𝑉𝑜𝑙𝑛(𝐾). 
However, in view of the slicing problem and (3), one may try to strengthen (5) by replacing 

its right-hand side by 𝑐√𝑝𝑉. 𝑅𝑎𝑑. (𝑍2(𝐾)). The next two theorems are a step in this 

direction. 

It was realized by Ball [172] that many questions regarding the volume of convex bodies are 

better formulated in the broader class of logarithmically-concave measures. A function 

𝜌:ℝ𝑛 → [0,∞) is called log-concave if −𝑙𝑜𝑔 𝜌:ℝ𝑛 → ℝ ∪ {∞} is a convex function. A 
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probability measure on ℝ𝑛 is log-concave if its density is log-concave. For example, the 

uniform probability measure on a convex body and its marginals are all log-concave 

measures (see Borell [175] for a characterization). 

Theorem (4.1.2) [168]: Let 𝜇 be a log-concave probability measure on ℝ𝑛 with barycenter 

at the origin. Let 1 ≤ 𝛼 ≤ 2, and assume that 𝜇 is a 𝜓𝛼-measure with constant 𝑏𝛼. Then: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐√𝑝𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇)), 

for all 2 ≤ 𝑝 ≤ 𝐶𝑛𝛼/2/𝑏𝛼
𝛼. Here 𝑐, 𝐶 > 0 denote universal constants.  

Theorem (4.1.1) follows immediately from Theorem (4.1.2). Indeed, simply observe that for 

𝑝 in the specified range: 

𝑐√𝑝 ≤
𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾))

𝑉. 𝑅𝑎𝑑. (𝑍2(𝐾))
≤  
𝑉. 𝑅𝑎𝑑. (𝑐𝑜𝑛𝑣(𝐾,−𝐾))

𝑉. 𝑅𝑎𝑑. (𝑍2(𝐾)
 ≤ 𝐶√𝑛

𝑉𝑜𝑙𝑛(𝐾)
1 𝑛⁄

𝑉. 𝑅𝑎𝑑. (𝑍2(𝐾))
=
𝐶√𝑛

𝐿𝐾
, 

where the last inequality follows from the Rogers–Shephard inequality [180]. This 

completes the proof of Theorem (4.1.1), reducing it to that of Theorem (4.1.2). We remark 

here that the proof (of both theorems) only requires that the 𝜓𝛼 condition (1) holds in an 

average sense. 

Our next theorem contains an additional lower bound on the volume of 𝑍𝑝(𝜇) which 

complements that of Theorem (4.1.2) in some sense. A Borel probability measure 𝜇 on 

(ℝ𝑛, | · |) is called isotropic when its barycenter lies at the origin, and its covariance matrix 

equals the identity matrix (i.e. 𝑍2(𝜇) = 𝐵𝑛). Any measure with finite second moments and 

full-dimensional support may be brought into isotropic “position” by means of an affine 

transformation. 

Theorem (4.1.3) [168]: Let 𝜇 be an isotropic log-concave probability measure on ℝ𝑛. Then: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐√𝑝, 

for all 𝑝 ≥ 2 for which: 

                                     𝑑𝑖𝑎𝑚(𝑍𝑝(𝜇))√𝑙𝑜𝑔𝑝 ≤ 𝐶√𝑛.                                                 (6)                                        

Here, 𝑑𝑖𝑎𝑚 (𝑇 ) = 𝑠𝑢𝑝𝑥,𝑦∈𝑇|𝑥 − 𝑦| stands for the diameter of 𝑇 ⊂ ℝ𝑛, and 𝑐, 𝐶 > 0 are 

universal constants. 

Note that the 𝜓𝛼-condition (1) is precisely the requirement that 𝑍𝑝(𝜇) ⊆  𝑏𝛼𝑝
1

𝛼 𝑍2(𝜇) for all 

𝑝 ≤ 2, and so the conclusion of Theorem (4.1.3) agrees with that of Theorem (4.1.2), up to 

the logarithmic factor in (6). This discrepancy is explained by the fact that in Theorem 

(4.1.2), we actually make full use of the growth of 𝑑𝑖𝑎𝑚(𝑍𝑝(𝜇)) for all 𝑝 ≥ 2, whereas in 

Theorem (4.1.3) we only assumed this control for the end value of 𝑝. We emphasize that this 

constitutes a genuine difference in assumptions, and that the logarithmic factor in (6) is not 

just a technical artifact of the proof: we show that removing this logarithmic factor is actually 

equivalent to Bourgain’s original hyperplane conjecture. 

We find condition (6) quite interesting from other respects as well. It is very much related to 

Paouris’ parameter 𝑞∗(𝜇), to be discussed. In fact, we show there that the parameter: 

𝑞#(𝜇):= sup {𝑞 ≥ 1; 𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤ 𝑐
#√𝑛(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛}, 
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for a small-enough universal constant 𝑐# > 0, is essentially equivalent to and has the same 

functionality as Paouris’ 𝑞∗(𝜇) parameter, in addition to being rather convenient to work 

with. The lower bounds in Theorem (4.1.2) and Theorem (4.1.3) compare with the matching 

upper bounds on 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)), obtained by Paouris [186, Theorem 6.2], which are valid 

for all 2 ≤ 𝑝 ≤ 𝑛: 

                               𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≤ 𝐶√𝑝𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇)).                                   (7)                            

This implies that the lower bounds in both theorems above are sharp, up to constants, and so 

the only pertinent question is the optimality of the range of 𝑝’𝑠 for which their conclusion is 

valid. In this direction, Paouris obtained a partial converse to (7) in the following range of 

𝑝’𝑠: 

                       𝑊(𝑍𝑝(𝜇)) ≥ 𝑐√𝑝𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇)),    ∀2 ≤ 𝑝 ≤ 𝑞
#(𝜇).             (8)           

Here 𝑊(𝐾) =  ∫ ℎ𝐾(𝜃)𝑑𝜎(𝜃)𝑆𝑛−1
 denotes half the mean width of 𝐾, 𝜎 is the Haar 

probability measure on the Euclidean unit sphere 𝑆𝑛−1, and ℎ𝐾(𝜃) = 𝑠𝑢𝑝𝑥∈𝐾  〈𝑥, 𝜃〉 is the 

supporting functional of 𝐾. Note that according to the Urysohn inequality, 𝑊(𝐾) ≥
𝑉. 𝑅𝑎𝑑. (𝐾) (see e.g. [172]), and so Theorem (4.1.3) should be thought of as a formal 

strengthening of (8), if it were not for the logarithmic factor in (6). 
We deduce a new formula for 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) involving the “tilts” of the measure 𝜇 from 

[174,175], and we relate between the 𝑍𝑝-bodies of the original measure and its tilts. we 

deviate from our discussion to review Paouris’ 𝑞∗-parameter, and compare it with 𝑞#; may 

be read independently. we use projections and the 𝑞#-parameter to relate between the 

determinant of the covariance matrix of 𝜇 and its tilts, and conclude the proofs of Theorems 

(4.1.2) (in fact, a more general version) and (4.1.3)., we show that removing the log-factor 

from Theorem (4.1.3) is equivalent to the slicing problem. 

Given 1 ≤ 𝑘 ≤ 𝑛, the Grassmann manifold of all 𝑘-dimensional linear subspaces of ℝ𝑛 is 

denoted by 𝐺𝑛,𝑘. Given 𝐸 ∈ 𝐺𝑛, 𝑘 , the orthogonal projection onto 𝐸 is denoted by 𝑃𝑟𝑜𝑗𝐸, 

and given a Borel probability measure 𝜇 on ℝ𝑛, we denote by 𝜋𝐸𝜇: =  (𝑃𝑟𝑜𝑗𝐸)∗(𝜇) the push-

forward of 𝜇 via 𝑃𝑟𝑜𝑗𝐸. For a convex body 𝐾 ⊂ ℝ𝑛 containing the origin in its interior, its 

polar body is denoted by: 

𝐾° = {𝑥 ∈ ℝ𝑛;  〈𝑥, 𝑦〉 ≤ 1, ∀𝑦 ∈  𝐾}. 
Finally, we denote by 𝛻 and Hess the gradient and Hessian, respectively, of a sufficiently 

differentiable function. 

Throughout, 𝑥 ≃ 𝑦 is an abbreviation for 𝑐𝑥 ≤ 𝑦 ≤ 𝐶𝑥 for universal constants 𝑐, 𝐶 >  0. 

Similarly, we write 𝑥 ≲ 𝑦(𝑥 ≳ 𝑦) when 𝑥 ≤ 𝐶𝑦 (𝑥 ≥ 𝑐𝑦). Additionally, for two convex sets 

𝐾, 𝑇 ⊂ ℝ𝑛 we write 𝐾 ≃ 𝑇 when: 

𝑐𝐾 ⊆ 𝑇 ⊆ 𝐶𝐾 
for universal constants 𝑐, 𝐶 > 0. 

We first recall the well-known extension of the slicing problem from the class of convex 

bodies to the class of all log-concave measures, due to Ball [172]. Given a log-concave 

probability measure 𝜇 on ℝ𝑛, define its isotropic constant 𝐿𝜇  by: 



113 
 

                                        𝐿𝜇 ≔ ‖𝜇‖𝐿∞

1

𝑛 (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1

2𝑛 ,                                               (9)                                                 

where ‖𝜇‖𝐿∞ ∶=  𝑠𝑢𝑝𝑥∈ℝ𝑛 𝜌(𝑥) and 𝜌 is the log-concave density of 𝜇. It was shown by Ball 

[172] that given 𝑛 ≥ 1: 

𝑠𝑢𝑝𝜇𝐿𝜇 ≤ 𝐶 𝑠𝑢𝑝𝐾𝐿𝐾 , 

where the suprema are taken over all log-concave probability measures 𝜇 and convex bodies 

𝐾 in ℝ𝑛, respectively (see e.g. [174] for the non-even case). The following theorem slightly 

generalizes Theorem (4.1.1): 

Theorem (4.1.4) [168]: Let 𝜇 denote a log-concave probability measure on ℝ𝑛 with 

barycenter at the origin. Suppose that 𝜇 is in addition a 𝜓𝛼-measure (1 ≤ 𝛼 ≤ 2) with 

constant 𝑏𝛼. Then: 

𝐿𝜇 ≤ 𝐶√𝑏𝛼
𝛼𝑛1−𝛼/2. 

As was the case with Theorem (4.1.1), deducing Theorem (4.1.4) from Theorem (4.1.2) is 

equally elementary. We only require the following additional well-known lemma, which will 

come in handy in other instances in this work as well. This lemma serves as an extension of 

(4) to the class of log-concave measures. 

Lemma (4.1.5) [168]: Let 𝜇 denote a log-concave probability measure on ℝ𝑛 with 

barycenter at the origin. Then: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑛(𝜇)) ≃
√𝑛

‖𝜇‖𝐿∞

1
𝑛

. 

Given Lemma (4.1.5), the reduction of Theorem (4.1.4) to Theorem (4.1.2) is indeed 

immediate, since for 𝑝 ≤ 𝑛 in the range specified in the latter: 

𝑐√𝑝 ≤
𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇))

𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇))
≤
𝑉. 𝑅𝑎𝑑. (𝑍𝑛(𝜇))

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1
2𝑛

≃
√𝑛

‖𝜇‖𝐿∞

1
𝑛 (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛

=
√𝑛

𝐿𝜇
. 

Proof: Denote by 𝜌 the log-concave density of 𝜇. According to [178, Proposition 3.7] 

(compare with [185, Lemma 2.8] and Lemma (4.1.7) below): 

𝑉. 𝑅𝑎𝑑. (𝑍𝑛(𝜇)) ≃
√𝑛

𝜌(0)
1
𝑛

. 

However, according to Fradelizi [172]: 

𝑒−𝑛𝑀 ≤ 𝜌(0) ≤ 𝑀, 𝑀 ∶= ‖𝜇‖𝐿∞ =  𝑠𝑢𝑝𝑥∈ℝ𝑛𝜌(𝑥), 

and so the assertion immediately follows.  

Now suppose that 𝜇 is an arbitrary Borel probability measure on ℝ𝑛. Its logarithmic Laplace 

transform is defined as: 

𝛬𝜇(𝜉 ):= 𝑙𝑜𝑔∫ 𝑒𝑥𝑝(〈𝜉, 𝑥〉)𝑑𝜇(𝑥)
ℝ𝑛

, 𝜉 ∈ ℝ𝑛 . 
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The function 𝛬𝜇 is always convex (e.g. by Hölder’s inequality), and clearly 𝛬𝜇(0) = 0. If in 

addition the barycenter of 𝜇 lies at the origin, then 𝛬𝜇 is non-negative (by Jensen’s 

inequality). In this case, for any 𝑡 ≥ 0 and 𝛼 ≥ 1: 

                              
1

𝛼
{𝛬𝜇 ≤ 𝛼𝑡} ⊆  {𝛬𝜇 ≤ 𝑡} ⊆ {𝛬𝜇 ≤ 𝛼𝑡},                                     (10)                           

where we abbreviate {𝛬𝜇 ≤ 𝑡} = {𝜉 ∈ ℝ
𝑛;  𝛬𝜇(𝜉) ≤ 𝑡}. When 𝜇 is log-concave, the convex 

function 𝛬𝜇 possesses several additional regularity properties. For instance {𝛬𝜇 < ∞} is an 

open set, and 𝛬𝜇 is 𝐶∞-smooth and strictly-convex in this open set (see, e.g., [185, Section 

2]). 

The following lemma describes a certain equivalence, known to specialists, between the 𝐿𝑝-

centroid bodies and the level-sets of the logarithmic Laplace Transform 𝛬𝜇. See Latała and 

Wojtaszczyk [186, Section 3] for a proof of a dual version in the symmetric case (i.e., when 

𝜇(𝐴) = 𝜇(−𝐴) for all Borel subsets 𝐴 ⊂ ℝ𝑛). 

Definition(4.1.6) [168]: The 𝛬𝑝-body associated to 𝜇, for 𝑝 ≥ 0, is defined as: 

𝛬𝑝(𝜇):= {𝛬𝜇 ≤ 𝑝} ∩ −{𝛬𝜇 ≤ 𝑝}. 

Lemma (4.1.7): Suppose 𝜇 is a log-concave probability measure on ℝ𝑛 whose barycenter 

lies at the origin. Then for any 𝑝 ≥ 1: 

𝛬𝑝(𝜇) ≃ 𝑝𝑍𝑝(𝜇)
∘. 

These two equivalent points of view turn out to complement each other well, and play 

asynergetic role. Before providing a proof, we illustrate this in the following naïve example. 

Given a log-concave probability measure 𝜇, a well-known consequence of Berwald’s 

inequality (see e.g. [171]) is that: 

                         𝑞 ≥ 𝑝 ≥ 1    ⇒  𝑍𝑝(𝜇) ⊂ 𝑍𝑞(𝜇) ⊂ 𝐶
𝑞

𝑝
𝑍𝑝(𝜇).                             (11)                           

In view of Lemma (4.1.7), note that this is nothing else but a reformulation (up to constants) 

of the trivial set of inclusions in (10). 

Proof : First, suppose that 𝜉 ∈ 𝛬𝑝(𝜇). Then: 

∫ 𝑒𝑥𝑝|〈𝜉, 𝑥〉|𝑑𝜇(𝑥)
ℝ𝑛

≤ ∫ 𝑒𝑥𝑝(〈𝜉, 𝑥〉)𝑑𝜇(𝑥)
ℝ𝑛

+ 𝑒𝑥𝑝(−〈𝜉, 𝑥〉)𝑑𝜇(𝑥) ≤ 2𝑒𝑝.  

Using the inequality (𝑒𝑡/𝑝)𝑝 ≤ 𝑒𝑡 , valid for any 𝑡 ≥ 0, we see that: 

ℎ𝑍𝑝(𝜇)(𝜉) = (∫ |〈𝜉, 𝑥〉|𝑝𝑑𝜇(𝑥)
ℝ𝑛

)

1
𝑝

≤ (2𝑝𝑝)
1
𝑝 ≤ 2𝑝. 

Since 𝜉 ∈ 𝛬𝑝(𝜇) was arbitrary, this amounts to 𝛬𝑝(𝜇) ⊆ 2𝑝𝑍𝑝(𝜇)
°, the first desired 

inclusion. For the other inclusion, suppose 𝜉 ∈ ℝ𝑛 is such that ℎ𝑍𝑝(𝜇)(𝜉) ≤ 𝑝, that is: 

                                              (∫ |〈𝜉, 𝑥〉|𝑝𝑑𝜇(𝑥)
ℝ𝑛

)
1 𝑝⁄

≤ 𝑝.                                      (12)                                  

Write 𝑋 for the random vector in ℝ𝑛 that is distributed according to 𝜇. Then the function: 

𝜙(𝑡) = ℙ(〈𝑋, 𝜉〉 ≥  𝑡), 𝑡 ∈ ℝ, 
is log-concave, according to the Prékopa–Leindler inequality (see, e.g., the first pages of 

[179]). Furthermore, since the barycenter of 𝜇 lies at the origin, we have 1/𝑒 ≤ 𝜑(0) ≤ 1 −
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 1/𝑒 by Grünbaum’s inequality (see e.g. [174, Lemma 3.3]). Using Markov’s inequality, 

(12) implies that: 

𝜑(3𝑒𝑝) ≤ (3𝑒)−𝑝. 
Since 𝜑 is log-concave, then: 

𝕡(〈𝑋, 𝜉〉 ≥ 𝑡) = 𝜑(𝑡) ≤ 𝜑(0) (
𝜑(3𝑒𝑃)

𝜑(0)
)

1
3𝑒𝑃

≤ 𝐶 𝑒𝑥𝑝(−𝑡/(3𝑒)), ∀𝑡 ≥ 3𝑒𝑝. 

An identical bound holds for 𝕡(〈𝑋, 𝜉〉 ≤ −𝑡), and combining the two, we obtain: 

𝕡(|〈𝑋, 𝜉〉| ≥ 𝑡) ≤ 𝐶 𝑒𝑥𝑝(−𝑡/(3𝑒)), ∀𝑡 ≥ 3𝑒𝑝. 
Therefore: 

𝔼𝑒𝑥𝑝 (
|〈𝜉, 𝑋〉|

6𝑒
) =

1

6𝑒
𝑒𝑥𝑝 (

𝑡

6𝑒
)ℙ(|〈𝑋, 𝜉〉| ≥ 𝑡)𝑑𝑡 

≤
1

6𝑒
∫ 𝑒𝑥𝑝 (

𝑡

6𝑒
)𝑑𝑡

3𝑒𝑃

0

+ 𝐶∫ 𝑒𝑥𝑝(−𝑡/(6𝑒))𝑑𝑡
∞

3𝑒𝑃

≤ 𝑒𝑥𝑝(�̃�𝑝). 

Consequently: 

𝑚𝑎𝑥𝛬𝜇 (
1

6𝑒
𝜉) , 𝛬𝜇 (−

1

6𝑒
𝜉) ≤ 𝑙𝑜𝑔𝔼𝑒𝑥𝑝(

|〈𝜉, 𝑋〉|

6𝑒
) ≤ 𝐶𝑝,  

for some 𝐶 ≥ 1, and using (10), this implies: 

𝑚𝑎𝑥 {𝛬𝜇 (
1

6𝑒𝐶
𝜉) , 𝛬𝜇 (−

1

6𝑒𝐶
𝜉) } ≤ 𝑝, 

for any 𝜉 ∈ ℝ𝑛 with ℎ𝑍𝑝(𝜇)(𝜉) ≤ 𝑝. This is precisely the second desired inclusion 𝑝𝑍𝑝(𝜇)
° ⊆

𝐶′𝛬𝑝(𝜇), and the assertion follows. 

The last topic we would like to review pertains to some properties of level sets of convex 

functions and their gradient images. The possibility to use the gradient image of 𝛬𝜇 as in 

[174] is one of the main reasons for additionally employing the logarithmic Laplace 

transform, rather than working exclusively with the 𝐿𝑝-centroid bodies. 

Lemma (4.1.8) [168]: Let 𝐹:ℝ𝑛  → ℝ ∪ {∞} be a non-negative convex function, which is 

𝐶1-smooth in {𝐹 < ∞}. Let 𝑞, 𝑟 ≥ 0. Then: 

〈𝑧, 𝛻𝐹(𝑥)〉 ≤ 𝑞 + 𝑟   𝑓𝑜𝑟 𝑎𝑛𝑦   𝑧 ∈ {𝐹 ≤ 𝑟}, 𝑥 ∈
1

2
{𝐹 ≤ 𝑞}. 

In other words: 

𝛻𝐹 (
1

2
{𝐹 ≤ 𝑞}) ⊂ (𝑞 + 𝑟){𝐹 ≤ 𝑟}°. 

Proof: Since 𝐹 is non-negative and its graph lies above any tangent hyperplane, then: 

〈𝛻𝐹(𝑥),
𝑧

2
〉 ≤ 𝐹(𝑥) + 〈𝛻𝐹(𝑥),

𝑧

2
〉 ≤ 𝐹(𝑥 + 𝑧/2) ≤

𝐹(2𝑥) + 𝐹(𝑧)

2
≤
𝑞 + 𝑟

2
. 

The following lemma was proved in [175, Lemma 2.3] for an even function 𝐹. 

Lemma (4.1.9) [168]: Let 𝐹:ℝ𝑛 → ℝ∪ {∞} be a non-negative convex function, 𝐶2-smooth 

and strictlyconvex in {𝐹 < ∞}, with 𝐹(0) = 0. Let 𝑝 > 0, and set: 

𝐹𝑝: = {𝐹 ≤ 𝑝} ∩ −{𝐹 ≤ 𝑝}. 
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Assume that: 

𝛹𝑝: = (
1

𝑉𝑜𝑙𝑛 (
1
2
𝐹𝑝)

∫ 𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝐹(𝑥)𝑑𝑥
1
2
𝐹𝑝

)

1
𝑛

> 0. 

Then: 

𝑉. 𝑅𝑎𝑑. (𝐹𝑝) ≤ 2
√𝑝

√𝛹𝑝
. 

Proof: Applying Lemma (4.1.8) with 𝑞 = 𝑟 = 𝑝, and using the change of variables 𝑥 =
𝛻𝐹(𝑦), we obtain: 

𝑉𝑜𝑙𝑛(2𝑝(𝐹𝑝)
°) ≥ 𝑉𝑜𝑙𝑛 (𝛻𝐹 (

1

2
𝐹𝑝)) = ∫ 𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝐹(𝑦)𝑑𝑦

1
2
𝐹𝑝

= 𝑉𝑜𝑙𝑛 (
1

2
𝐹𝑝)𝛹𝑝

𝑛. 

Equivalently, we obtain: 

𝑉𝑜𝑙𝑛((𝐹𝑝)
°) ≥ (

𝛹𝑝
4𝑝
)
𝑛

𝑉𝑜𝑙𝑛(𝐹𝑝). 

Note that 𝐹𝑝 is a centrally-symmetric convex body, i.e., 𝐹𝑝 = −𝐹𝑝. The Blaschke–Santaló 

inequality (see, e.g., [181]) for a centrally-symmetric convex body 𝐾 asserts that: 

𝑉. 𝑅𝑎𝑑. (𝐾°)𝑉. 𝑅𝑎𝑑. (𝐾)  ≤ 1. 
Combining the last two estimates with 𝐾 = 𝐹𝑝, the result immediately follows.  

Let 𝜇 denote a log-concave probability measure on ℝ𝑛 with density 𝜌, and let 𝜉 ∈ {𝛬𝜇 <

∞}. 
We denote by 𝜇𝜉  the “tilt” of 𝜇 by  , defined via the following procedure. First, define the 

probability density: 

𝜌𝜉(𝑥):=
1

𝑍𝜉
 𝜌(𝑥)𝑒𝑥𝑝(〈𝜉, 𝑥〉)       𝑓𝑜𝑟 𝑥 ∈ ℝ𝑛, 

where 𝑍𝜉 > 0 is a normalizing factor. Denoting by 𝑏𝜉 ∈ ℝ
𝑛 the barycenter of 𝜌𝜉 , we set 𝜇𝜉  

to be the probability measure with density 𝜌𝜉(·  − 𝑏𝜉). Note that 𝜇𝜉  is a log-concave 

probability measure, having the origin as its barycenter. Furthermore, as verified in [175, 

Section 2], we have: 

                                       𝑏𝜉 = 𝛻𝛬𝜉(𝜉 ),       𝐶𝑜𝑣(𝜇𝜉) = 𝐻𝑒𝑠𝑠𝛬𝜇(𝜉 )                    (13).                   

The following proposition is one of the main results: 

Proposition (4.1.10) [168]: Let 𝜇 denote a log-concave probability measure on ℝ𝑛 whose 

barycenter lies at the origin. Then, for all 1 ≤ 𝑝 ≤ 𝑛: 

                        𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≃ √𝑃    𝑖𝑛𝑓𝑥∈1
2
𝛬𝑝(𝜇)

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥))
1

2𝑛 .                (14)           

In the proofs of the theorems stated, we will not use the full force of Proposition (4.1.10), 

but rather only the lower bound for 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)). This lower bound has a short proof, as 

will see below. However, the observation that we actually obtain an equivalence seems 

interesting, hence we provide the arguments for both directions. Before going into the proof, 
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as a testament of its usefulness, we state the following immediate corollary of Proposition 

(4.1.10):  

Corollary (4.1.11) [168]: Let 𝜇 be a log-concave probability measure on ℝ𝑛 whose 

barycenter lies at the origin. Then: 

1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛 ⇒
𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇))

√𝑝
≥ 𝑐

𝑉. 𝑅𝑎𝑑. (𝑍𝑞(𝜇))

√𝑞
. 

Remark (4.1.12) [168]: Using 𝑞 = 𝑛 above and the fact that 𝑉. 𝑅𝑎𝑑. (𝑍𝑛(𝐾))  ≃
𝑉. 𝑅𝑎𝑑. (𝐾) for a convex body 𝐾 whose barycenter lies at the origin, which follows from (4) 

as in the Introduction, we immediately verify that: 

                                  ∀ 1 ≤ 𝑝 ≤ 𝑛,      𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾)) ≥ 𝑐√
𝑝

𝑛
𝑉. 𝑅𝑎𝑑. (𝐾).          (15)         

This recovers up to a constant the lower bound of Lutwak, Yang and Zhang (5). Moreover, 

recalling that 𝑉. 𝑅𝑎𝑑. (𝑍𝑛(𝜇)) ≃ √𝑛/‖𝜇‖𝐿∞

1

𝑛  by Lemma (4.1.5) and the definition (9) of 𝐿𝜇 , 

the same argument yields the following analog of (15): 

∀1 ≤ 𝑝 ≤ 𝑛, 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐
√𝑝

𝐿𝜇
(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛 = 𝑐

√𝑝

𝐿𝜇
𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇)). 

This may also be deduced by only employing the lower-bound in (14). 

We now turn to the proof of Proposition (4.1.10), and begin with the lower bound for 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)). In fact, we show a formally stronger statement: 

Lemma (4.1.13) [168]: Let 𝜇 denote a log-concave probability measure on ℝ𝑛 whose 

barycenter lies at the origin. Then, for all 1 ≤ 𝑝 ≤ 𝑛, 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐√𝑝√𝛹𝑝, 

where 𝑐 > 0 is a universal constant and: 

𝛹𝑝: =

(

 
 1

𝑉𝑜𝑙𝑛 (
1
2
𝛬𝑝(𝜇))

∫ 𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥)𝑑𝑥1
2
𝛬𝑝(𝜇)

)

 
 

1
𝑛

. 

Proof: Apply Lemma (4.1.9) with 𝐹 = 𝛬𝜇. Since 𝑑𝑒𝑡 𝐻𝑒𝑠𝑠𝛬𝜇(𝑥) = 𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥) according 

to (13), we deduce that: 

                                         𝑉. 𝑅𝑎𝑑. (𝛬𝑝(𝜇)) ≤ 2
√𝑝

√𝛹𝑝
.                                                (16)                                      

Applying Lemma (4.1.7) in order to pass from 𝛬𝑝(𝜇) to 𝑍𝑝(𝜇), and the Bourgain–Milman 

inequality (see, e.g., [179]) for a centrally-symmetric convex set 𝐾 ⊂ ℝ𝑛: 

𝑉. 𝑅𝑎𝑑. (𝐾°)𝑉. 𝑅𝑎𝑑. (𝐾) ≥ 𝑐,  
we deduce from (16) that: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≃ 𝑝𝑉. 𝑅𝑎𝑑. (𝛬𝑝(𝜇)
∘) ≳  𝑝𝑉. 𝑅𝑎𝑑. (𝛬𝑝(𝜇))

−1
≳ √𝑝√𝛹𝑝. 

In order to deduce the upper bound of Proposition (4.1.10), and of crucial importance to the 

main results, is the following elementary observation: 
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Proposition (4.1.14) [168]: Let 𝜇 denote a log-concave probability measure in ℝ𝑛 with 

barycenter at the origin. Then: 

∀𝑥 ∈
1

2
𝛬𝑝(𝜇), 𝛬𝑝(𝜇𝑥) ≃ 𝛬𝑝(𝜇). 

Indeed, it is clear that the logarithmic Laplace transform should interact nicely with the tilt 

operation, and the following identity is verified by a direct calculation: 

                             𝛬𝜇𝑥(𝑧) = 𝛬𝜇(𝑧 + 𝑥) − 𝛬𝜇(𝑥) − 〈𝑧, 𝑏𝑥〉, 𝑏𝑥 = 𝛻𝛬𝜇(𝑥).         (17)        

Geometrically, this means that the graph of 𝛬𝜇𝑥 is obtained from that of 𝛬𝜇 by subtracting 

the tangent plane at 𝑥 (given by the linear function 𝑧 ⟼ 𝛬𝜇(𝑥) + 〈𝑧 − 𝑥, 𝛻𝛬𝜇(𝑥)〉), and 

translating everything by −𝑥 (so that 𝑥 gets mapped to the origin). In particular, we verify 

that 𝛬𝜇𝑥(0) = 0 and that 𝛬𝜇𝑥 ≥ 0, as required from the logarithmic Laplace transform of a 

probability measure with barycenter at the origin. 

It remains to manipulate level sets of convex functions, once again. We require the 

following: 

Lemma (4.1.15) [168]: Let 𝐹 be as in Lemma (4.1.8), and let 𝑦 ∈ ℝ𝑛 and 𝐷, 𝑝 > 0. Define 

a function 𝐺 by: 

𝐺(𝑧):= 𝐹(𝑧 + 𝑦) − 𝐹(𝑦 − 〈𝑧, 𝛻𝐹(𝑦)〉. 
Then: 

𝑦 ∈
1

2
{𝐹 ≤ 𝐷𝑃}, 𝑧 ∈ {𝐹 ≤ 𝑝} ∩ −{𝐹 ≤ 𝑝} ⟹  𝑧 ∈ 2{𝐺 ≤ (𝐷 + 1)𝑝}. 

Proof: We apply Lemma (4.1.8) with 𝑞 = 𝐷𝑃 and 𝑟 = 𝑃. Since −𝑧 ∈ {𝐹 ≤ 𝑝} and 𝑦 ∈
1

2
{𝐹 ≤ 𝐷𝑃}, then by the conclusion of that lemma, 〈−𝑧, 𝛻𝐹(𝑦)〉 ≤ (𝐷 + 1)𝑝. Since 𝐹 is non-

negative and convex, we deduce that: 

𝐺(𝑧/2) ≤ 𝐹(𝑧/2 + 𝑦) +
𝐷 + 1

2
𝑝 ≤  

𝐹(𝑧) + 𝐹(2𝑦)

2
+
𝐷 + 1

2
𝑝 ≤ (𝐷 + 1)𝑝. 

 (i) If 𝑧 ∈ 𝛬𝑝(𝜇), we apply Lemma (4.1.15) with 𝐷 = 1 and 𝑦 = 𝑥 to 𝐹 = 𝛬𝜇 . By (17), we 

deduce that 𝛬𝜇𝑥(𝑧/2) = 𝐺(𝑧/2) ≤ 2𝑝. Using (10), we conclude that 𝛬𝜇𝑥(𝑧/4) ≤ 𝑝. The 

same argument applies to −𝑧 by the symmetry of our assumptions, and so we conclude that 

𝑧 ∈ 4𝛬𝑝(𝜇𝑥).  

(ii) If 𝑧 ∈ 𝛬𝑝(𝜇𝑥), we would like to apply Lemma (4.1.15) with 𝑦 = −𝑥 to 𝐹 = 𝛬𝜇𝑥 , since 

tilting 𝜇𝑥 by −x gives back 𝜇. To this end, we must verify that 𝛬𝜇𝑥(−2𝑥) ≤ 𝐷𝑃 for some 

𝐷 > 0. According to (17): 

𝛬𝜇𝑥(−2𝑥) =  𝛬𝜇(−𝑥) − 𝛬𝜇(𝑥) + 2〈𝑥, 𝛻𝛬𝜇(𝑥)〉. 

By Lemma (4.1.8), we know that 〈𝑥, 𝛻𝛬𝜇(𝑥)〉 ≤ 2𝑝, and using that 𝛬𝜇 is non-negative, 

convex and vanishes at the origin, we obtain: 

𝛬𝜇𝑥(−2𝑥) ≤
1

2
𝛬𝜇(−2𝑥) + 4𝑝 ≤ 4.5𝑝. 

We conclude that we may use 𝐷 = 4.5 above, and so Lemma (4.1.15) finally implies that 

𝛬𝜇(𝑧/2) = 𝐺(𝑧/2) ≤ 5.5𝑝. As in the first part of the proof, we deduce that 𝜇(𝑧/11) ≤ 𝑝. 
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The same argument applies to −𝑧 by the symmetry of our assumptions, and so we conclude 

that 𝑧 ∈ 11𝛬𝑝(𝜇). 

Using Lemma (4.1.7), we equivalently reformulate Proposition (4.1.14) as: 

Proposition (4.1.16) [168]: Let 𝜇 denote a log-concave probability measure in ℝ𝑛 with 

barycenter at the origin. Then: 

∀𝑥 ∈
1

2
𝛬𝑝(𝜇), 𝑍𝑝(𝜇𝑥) ≃  𝑍𝑝(𝜇). 

To complete the proof of Proposition (4.1.10), we state again Paouris’ upper bound (7) on 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜈)): 

Theorem (4.1.17) [168]: (Paouris). For any log-concave probability measure 𝜈 with 

barycenter at the origin, and 2 ≤ 𝑝 ≤ 𝑛: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜈)) ≤ 𝐶√𝑝𝑉. 𝑅𝑎𝑑. (𝑍2(𝜈)). 

Proof:The statement is invariant under linear transformations, so we may assume that 𝜈 is 

isotropic. The claim is then the content of [176, Theorem 6.2]. 

Lemma (4.1.13) implies the lower bound: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐√𝑝 𝑖𝑛𝑓𝑥∈1
2
𝛬𝑝(𝜇)

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥))
1
2𝑛 . 

Since (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥))
1

2𝑛 = 𝑉. 𝑅𝑎𝑑. (𝑍2(𝜇𝑥)), then applying Theorem (4.1.17), we obtain: 

            𝑖𝑛𝑓
𝑥∈

1

2
𝛬𝑝(𝜇)

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇𝑥)) ≤ 𝐶√𝑝 𝑖𝑛𝑓𝑥∈1
2
𝛬𝑝(𝜇)

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥))
1

2𝑛 .      (18)       

But by Proposition (4.1.16), 𝑍𝑝(𝜇𝑥) ≃ 𝑍𝑝(𝜇) for all 𝑥 ∈
1

2
𝛬𝑝(𝜇), and hence the left-hand 

side in (18) is equivalent to 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)), completing the proof. 

Given a centrally-symmetric convex body 𝐾 ⊂ ℝ𝑛, its “(dual) Dvoretzky-dimension” 𝑘∗(𝐾) 
was defined by Milman and Schechtman [173] as the largest positive integer 𝑘 ≤ 𝑛 so that: 

𝜎𝑛,𝑘 {𝐸 ∈ 𝐺𝑛,𝑘;
1

2
𝑊(𝐾)𝐵𝐸 ⊂ 𝑃𝑟𝑜𝑗𝐸𝐾 ⊂ 2𝑊(𝐾)𝐵𝐸}

𝑛

𝑛 + 𝑘
, 

where 𝜎𝑛,𝑘 denotes the Haar probability measure on 𝐺𝑛,𝑘 and 𝐵𝐸  denotes the Euclidean unit 

ball in the subspace E. It was shown in [173], following Milman’s seminal work [174], that: 

                                              𝑘∗(𝐾) ≃ 𝑛 (
𝑊(𝐾)

𝑑𝑖𝑎𝑚(𝐾)
)
2

.                                                (19)                                         

Define 𝑊𝑞(𝐾) = (∫ ℎ𝐾(𝜃)
𝑞 𝑑𝜎(𝜃)

𝑆𝑛−1
)
1

𝑞 , the 𝑞-th moment of the supporting functional of 

𝐾. According to Litvak, Milman and Schechtman [177]: 

                                   𝑐1𝑊𝑞(𝐾) ≤ max {𝑊(𝐾),√
𝑞

𝑛
 𝑑𝑖𝑎𝑚(𝐾)} ≤ 𝑐2𝑊𝑞(𝐾).      (20)  

The quantity 𝑊𝑞(𝑍𝑞(𝜇)) has a simple equivalent description: a direct calculation as in [174] 

confirms that for any Borel probability measure 𝜇 on ℝ𝑛 and 𝑞 ≥ 1: 

                       (𝑊𝑞𝑍𝑞(𝜇)) ≃ √
𝑞

𝑛+𝑞
 𝐼𝑞(𝜇),     𝐼𝑞(𝜇):= (∫ |𝑥|𝑞𝑑𝜇(𝑥)

ℝ𝑛
)
1

𝑞.             (21)        

Finally, observe that when the barycenter of 𝜇 is at the origin, then 𝐼2(𝜇)
2 = 𝑡𝑟𝑎𝑐𝑒𝐶𝑜𝑣(𝜇).  
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In [186] (see also [185]), Paouris defines 𝑞∗(𝜇) as follows: 

𝑞∗(𝜇):= 𝑠𝑢𝑝{𝑞 ∈ ℕ; 𝑘∗(𝑍𝑞(𝜇)) ≥ 𝑞}. 

It is straightforward to check that all of Paouris’ results involving 𝑞∗(𝜇) from [178] remain 

valid when replacing it with 𝑞𝑐
∗(𝜇) when 𝑐 > 0 is a fixed universal constant, where 𝑞𝛿

∗  is 

defined as follows (see [177]): 

𝑞𝛿
∗(𝜇):= sup {𝑞 ≥ 1; 𝑘∗ (𝑍𝑝(𝜇)) ≤ 𝛿

−2𝑞}. 

Although the particular value of 𝑐 > 0 seems insignificant for the results of [188], the 

definition we require is essentially that of 𝑞𝑐
∗ for some small enough universal constant 𝑐 >

0. Our preference to work with a variant of 𝑞𝑐
∗ is motivated by Lemma (4.1.18) below and 

the subsequent remarks. 

We proceed as follows. Given a log-concave probability measure 𝜇 on ℝ𝑛, 𝑞 ≥ 1 and 𝛿 >
0, consider the following four related properties: 

(i) 𝑃1(𝛿) is the property that 𝑘∗(𝑍𝑞(𝜇)) ≥ 𝛿
−2𝑞. 

(ii) 𝑃1
′(𝛿) is the property that 𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤ 𝛿√𝑛

𝑊(𝑍𝑞(𝜇))

√𝑞
 . 

(iii) 𝑃2(𝛿) is the property that 𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤ 𝛿√𝑛(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1

2𝑛. 

(iv) 𝑃𝑊 is the property that 𝑊(𝑍𝑞(𝜇)) ≥ 𝑐√𝑞(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1

2𝑛 , for some specific, 

appropriately small universal constant 𝑐 > 0, as in the proof of Lemma (4.1.18) below. 

According to (19), we have: 

                                             𝑃1(𝛿) ⇒ 𝑃1
′(𝐶1𝛿) ⇒ 𝑃1(𝐶2𝛿),                                     (22)                            

for all 𝛿 > 0, where 𝐶1, 𝐶2 > 1 are universal constants. The next lemma relates between the 

other properties above (compare with [177, Section 2]): 

Lemma (4.1.18) [168]: Suppose 𝜇 is a log-concave probability measure in ℝ𝑛 whose 

barycenter lies at the origin. Let 𝑞 ∈ [1, 𝑛] and 𝛿 ∈ (0, 1]. Then: 

(i) If 𝜇 is isotropic and 𝑃1(𝛿) holds, then 𝑃2(𝐶3𝛿) holds. 

(i) (a) If 𝑃1(𝛿) holds, then so does 𝑃𝑊. 

(ii) Suppose 𝛿 < 𝛿0 for a certain appropriately small universal constant 𝛿0 > 0. If 𝑃2(𝛿) 
holds, then so does 𝑃𝑊. 

(iii) If 𝑃2(𝛿) and 𝑃𝑊 hold, then so does 𝑃1
′(𝐶4𝛿). 

Proof: 

(i) Clearly 𝑃1(𝛿) implies 𝑃1(1). Using (21), Paouris’s main result [176, Theorem 8.1] and 

the isotropicity of 𝜇, we know that: 

𝑊𝑞(𝑍𝑞(𝜇)) ≃
√𝑞

√𝑛
𝐼𝑞(𝜇) ≃

√𝑞

√𝑛
𝐼2(𝜇) =

√𝑞

√𝑛
(𝑡𝑟𝑎𝑐𝑒𝐶𝑜𝑣(𝜇))

1
2 = 𝑞.  

In particular, 𝑊(𝑍𝑞(𝜇)) ≤ 𝑊𝑞(𝑍𝑞(𝜇)) ≤ 𝐶√𝑞. Since 𝑃1(𝛿) implies 𝑃1
′(𝐶1𝛿), then: 

𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤ 𝐶1𝛿√𝑛
𝑊(𝑍𝑞(𝜇))

√𝑞
≤ 𝐶𝐶1𝛿√𝑛 = 𝐶3𝛿√𝑛(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛 , 

and 𝑃2(𝐶3𝛿) holds true. 



121 
 

(ii) Since all properties are invariant under scaling, we may assume that 𝑑𝑒𝑡𝐶𝑜𝑣(𝜇) = 1. 

Using (21) and the arithmetic-geometric mean inequality: 
1

𝑛
𝐼2(𝜇)

2 =
1

𝑛
𝑡𝑟𝑎𝑐𝑒𝐶𝑜𝑣(𝜇) ≥ (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
𝑛 , 

we see that: 

                        𝑊𝑞(𝑍𝑞(𝜇)) ≥ 𝑐0
√𝑞

√𝑛
 𝐼𝑞(𝜇) ≥ 𝑐0

√𝑞

√𝑛
𝐼2(𝜇) ≥ 𝑐0√𝑞.                         (23)                 

(i) Assuming 𝑃1
′(𝛿), (20) implies that 𝑊(𝑍𝑞(𝜇)) ≥ 𝑐1𝑊𝑞(𝑍𝑞(𝜇)), and together with (23), 

𝑃𝑊 follows. 

(ii) Set 𝛿0 = 𝑐0𝑐1, where 𝑐0 is the constant from (23) and 𝑐1 is the constant from (20). Using 

(23), the property 𝑃2(𝛿) with 0 < 𝛿 < 𝛿0 implies: 

√ 

√𝑞

√𝑛
𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤ 𝛿√𝑞 < 𝑐0𝑐1√𝑞  ≤ 𝑐1𝑊𝑞(𝑍𝑞(𝜇)). 

Therefore by (20), 𝑊(𝑍𝑞(𝜇)) ≥ 𝑐1𝑊𝑞(𝑍𝑞(𝜇)) ≥ 𝑐0𝑐1√𝑞, and 𝑃𝑊 follows. 

(iii) This is immediate by plugging the estimates on 𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) and 𝑊(𝑍𝑞(𝜇)) into the 

definition of 𝑃1
′(𝛿). 

Lemma (4.1.19) [168]: We may choose the numeric constant 𝑐 > 0 small enough so that: 

(i) 𝑞#(𝜇) ≤ 𝑛. 

(ii) 1 ≤ 𝑞 ≤ 𝑞#(𝜇) implies 𝑘∗(𝑍𝑞(𝜇)) ≥ 𝑞 and 𝑊(𝑍𝑞(𝜇)) ≥ 𝑐√𝑞(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1

2𝑛 . 

Proof: Assume first that 𝑞#(𝜇) > 1. The second point follows immediately from Lemma 

(4.1.18) and (22). The first point follows from (21), since: 

𝑛 · (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1
𝑛 ≤ 𝑡𝑟𝑎𝑐𝑒𝐶𝑜𝑣(𝜇)  = 𝐼2(𝜇)

2  ≤ 𝐼𝑛(𝜇)
2 ≃ 𝑊𝑛(𝑍𝑛(𝜇))

2 ≤ 𝑑𝑖𝑎𝑚(𝑍𝑛(𝜇))
2. 

It remains to deal with the degenerate case 𝑞#(𝜇) = 1. By definition, 𝑘∗(𝑍1(𝜇)) ≥ 1, and 

e.g. by (19): 

𝑊(𝑍1(𝜇)) ≥ 𝑐
𝑑𝑖𝑎𝑚(𝑍1(𝜇))

√𝑛
≥ 𝑐𝑐#(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛 , 

as required.  

Consequently ⌊𝑞#(𝜇)⌋ ≤ 𝑞∗(𝜇), and all of Paouris’ results for 𝑞 ≤ 𝑞∗(𝜇) continue to hold 

for 𝑞 ≤ 𝑞#(𝜇). Similarly, by Lemma (4.1.18), if 𝜇 is isotropic then 𝑞𝑐
∗(𝜇) ≤ 𝑞#(𝜇) for some 

small constant 𝑐 > 0. To conclude, we reiterate the stability of 𝑞#(𝜇) under projections in 

the following corollary, which is one of the key ingredients in the proof of Theorem (4.1.3): 

Corollary (4.1.20) [168]: Let 𝜇 denote an isotropic log-concave probability measure in ℝ𝑛, 

let 1 ≤ 𝑘 ≤ 𝑛 and 𝑞 ≥ 1. Then for all 𝐸 ∈ 𝐺𝑛,𝑘  with 𝑘 ≥ (𝑐#)−2𝑑𝑖𝑎𝑚2(𝑍𝑞(𝜇)), we have 

𝑞#(𝜋𝐸𝜇) ≥ 𝑞. In particular 𝑘∗(𝑃𝑟𝑜𝑗𝐸𝑍𝑞(𝜇))  ≥ 𝑞 and 𝑊(𝑃𝑟𝑜𝑗𝐸𝑍𝑞(𝜇)) ≥ 𝑐√𝑞. 

Proof: Since 𝜋𝐸𝜇 remains isotropic, 𝑍𝑞(𝜋𝐸𝜇) = 𝑃𝑟𝑜𝑗𝐸𝑍𝑞(𝜇) and 𝑑𝑖𝑎𝑚(𝑃𝑟𝑜𝑗𝐸𝑍𝑞(𝜇))  ≤

𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)) ≤  𝑐
#√𝑘, the assertion follows by definition of 𝑞#(𝜋𝐸𝜇) and Lemma (4.1.19). 
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In view of Proposition (4.1.10), our goal now is to bound from below (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇𝑥))
1

2𝑛 for 

the tilted measures 𝜇𝑥 , where 𝑥 ∈
1

2
𝛬𝑝(𝜇). Our only available information is provided by 

Proposition (4.1.16), stating that 𝑍𝑝(𝜇𝑥) ≃ 𝑍𝑝(𝜇), where 𝜇 itself is assumed isotropic.  

Suppose 𝜈 is a log-concave probability measure on ℝ𝑛 whose barycenter lies at the origin. 

Recall that its isotropic constant is defined as: 

                                   𝐿𝑣: = ‖𝜈‖𝐿∞

1

𝑛 (𝑑𝑒𝑡𝐶𝑜𝑣(𝜈))
1

2𝑛 .                                                  (24)                                        

Since the isotropic constant 𝐿𝑣 satisfies 𝐿𝑣 ≥ 𝑐 > 0 (see e.g. [178]), then according to 

Lemma (4.1.5): 

                           (𝑑𝑒𝑡𝐶𝑜𝑣(𝜈))
1

2𝑛  ≳
1

‖𝑣‖𝐿∞

1
𝑛

≃
𝑉.𝑅𝑎𝑑.(𝑍𝑛(𝜈))

√𝑛
.                                      (25)                           

Lemma (4.1.21) [168]: Let 𝜈 denote a log-concave probability measure in ℝ𝑛 with 

barycenter at the origin, and let 𝑘 denote an integer between 1 and n. Then: 

        ∃𝜃 ∈ 𝑆𝑛−1√∫ 〈𝑥, 𝜃〉2 𝑑𝜈(𝑥)
ℝ𝑛

 ≥
𝑐

√𝑘
𝑠𝑢𝑝𝐸∈𝐺𝑛,𝑘𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜈)).                 (26)        

Proof: Given 𝐸 ∈ 𝐺𝑛,𝑘  , apply (25) to 𝜋𝐸𝜈. We get that 

                       (𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝜈))
1

2𝑘 ≳ 
𝑉.𝑅𝑎𝑑.(𝑍𝑘(𝜋𝐸𝜈))

√𝑘
                                                 (27).                                         

Note that (𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝜈))1 𝑘⁄  is the geometric average of the eigenvalues of the symmetric, 

positive semi-definite matrix 𝐶𝑜𝑣(𝜋𝐸𝜈). Let 𝜃 ∈ 𝑆𝑛−1 ∩ 𝐸 be the eigenvector 

corresponding to the largest eigenvalue of 𝐶𝑜𝑣(𝜋𝐸𝜈). From (27) we thus see that 

√∫ 〈𝑥, 𝜃〉2𝑑𝜈(𝑥)
ℝ𝑛

= √〈𝐶𝑜𝑣(𝜋𝐸𝜈)𝜃, 𝜃〉 ≥ (𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝜈))
1
2𝑘 ≳

𝑉. 𝑅𝑎𝑑. (𝑍𝑘(𝜋𝐸𝜈))

√𝑘
. 

Noting that 𝑍𝑘(𝜋𝐸𝜈) = 𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜈), we obtain (26). 

 The idea now is to compare 𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇𝑥)) with 𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇)). Note that 

if 𝑍𝑝(𝜈) ≃ 𝑍𝑝(𝜇), then by (11): 

1 ≤ 𝑞 ≤ 𝑝 ⇒          𝑐
𝑞

𝑝
𝑍𝑞(𝜇) ⊂ 𝑍𝑞(𝜈) ⊂ 𝐶

𝑝

𝑞
𝑍𝑞(𝜇). 

Therefore, when 𝑍𝑝(𝜈) ≃  𝑍𝑝(𝜇) and 𝑘 ≤ 𝑝, 

                        𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜈)) ≥ 𝑐
𝑘

𝑝
𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇))                      (28)                  

for all 𝐸 ∈ 𝐺𝑛,𝑘 . To control 𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇)), we have: 

Lemma (4.1.22) [168]: Let 𝜇 denote a log-concave probability measure in ℝ𝑛 with 

barycenter at the origin, and let 1 ≤ 𝑘 ≤ 𝑞#(𝜇). Then: 

∃𝐸 ∈ 𝐺𝑛,𝑘  𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇)) ≥ 𝑐√𝑘(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1
2𝑛 . 

Proof: Lemma (4.1.19) asserts that 1 ≤ 𝑘 ≤ 𝑞#(𝜇) implies that 𝑘∗(𝑍𝑘(𝜇)) ≥ 𝑘. 

Consequently, there exists at least one (in fact, many) 𝐸 ∈ 𝐺𝑛,𝑘  so that: 
1

2
𝑊(𝑍𝑘(𝜇))𝐵𝐸 ⊂ 𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇) ⊂ 2𝑊(𝑍𝑘(𝜇))𝐵𝐸 , 
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and hence 𝑉. 𝑅𝑎𝑑. (𝑃𝑟𝑜𝑗𝐸𝑍𝑘(𝜇)) ≥
1

2
𝑊(𝑍𝑘(𝜇)). It remains to appeal to Lemma (4.1.19) 

again and deduce from 1 ≤ 𝑘 ≤ 𝑞#(𝜇) that 𝑊(𝑍𝑘(𝜇)) ≥ 𝑐√𝑘(𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))
1

2𝑛.  

We summarize the preceding discussion with the following fundamental: 

Proposition (4.1.23) [168]: Let 𝜈, 𝜇 denote two log-concave probability measures in ℝ𝑛with 

barycenters at the origin, and let 1 ≤ 𝑝 ≤ 𝑛. Assume that 𝑍𝑝(𝜈) ≃ 𝑍𝑝(𝜇). Then: 

∃𝜃 ∈ 𝑆𝑛−1       √∫ 〈𝑥, 𝜃〉2𝑑𝜈(𝑥)
ℝ𝑛

 ≥ 𝑐 𝑚𝑖𝑛 {1,
𝑞#(𝜇)

𝑝
} (𝑑𝑒𝑡𝐶𝑜𝑣(𝜇))

1
2𝑛 . 

Proof: Combine Lemma (4.1.21), Lemma (4.1.22) and (28) for 𝑘 = 𝑚𝑖𝑛{𝑝, ⌊𝑞#(𝜇)⌋}. 
We can now proceed to control the entire 𝑑𝑒𝑡𝐶𝑜𝑣(𝜈) by projecting onto the flag of subspaces 

spanned by the eigenvectors of 𝐶𝑜𝑣(𝜈). To apply Proposition (4.1.23), we require good 

control over 𝑞#(𝜋𝐸𝜇). One way to obtain such control is to make a definition: 

The Hereditary-𝑞# constant of a log-concave probability measure 𝜇 on ℝ𝑛, denoted 𝑞𝐻
#(𝜇), 

is defined as: 

𝑞𝐻
#(𝜇):=  𝑛 𝑖𝑛𝑓𝑘𝑖𝑛𝑓𝐸∈𝐺𝑛,𝑘

𝑞#(𝜋𝐸𝜇)

𝑘
. 

Remark (4.1.24) [168]: It is useful to note the following alternative formula for 𝑞𝐻
#(𝜇), valid 

only for an isotropic, log-concave probability measure 𝜇 on ℝ𝑛. Recalling the definitions of 

𝑞#(𝜈), ∆𝑣(𝑞) = 𝑑𝑖𝑎𝑚(𝑍𝑞(𝜈)), and using 𝑠𝑢𝑝𝐸 ∈ 𝐺𝑛,𝑘𝑑𝑖𝑎𝑚(𝑃𝑟𝑜𝑗𝐸𝑍𝑞(𝜇)) =

𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇)), we obtain: 

               𝑞𝐻
𝑞(𝜇) = 𝑛 𝑖𝑛𝑓1≤𝑘≤𝑛

∆𝜇
−1(𝑐#√𝑘)

𝑘
≃ 𝑛 𝑖𝑛𝑓1≤𝑞≤𝑞#(𝜇)

𝑞

𝑑𝑖𝑎𝑚(𝑍𝑞(𝜇))
2 ,              (29)            

where we use (11) and the definition of 𝑞#(𝜈) to justify the last equivalence. 

Proposition (4.1.25) [168]: Let 𝜈, 𝜇 denote two log-concave probability measures in ℝ𝑛 

with barycenters at the origin, and assume that 𝜇 is isotropic. Let 1 ≤ 𝑝 ≤ 𝐴𝑞𝐻
#(𝜇) with 𝐴 ≥

1, and assume that 𝑍𝑝(𝜈) ≃ 𝑍𝑝(𝜇). Then: 

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜈))
1
2𝑛 ≥

𝑐

𝐴
, 

where 𝑐 > 0 denotes a universal constant. 

Proof: Let 0 < 𝜆1 ≤ 𝜆2 ≤· · ·≤ 𝜆𝑛 denote the eigenvalues of 𝐶𝑜𝑣(𝜈), and let 𝐸𝑘 ∈ 𝐺𝑛,𝑘 

denote the subspace spanned by the eigenvectors corresponding to 𝜆1, . . . , 𝜆𝑘 . Since 

𝑃𝑟𝑜𝑗𝐸𝑘𝑍𝑝(𝜈) ≃ 𝑃𝑟𝑜𝑗𝐸𝑘𝑍𝑝(𝜇), Proposition (4.1.23) applied to 𝜋𝐸𝑘𝜈 and 𝜋𝐸𝑘𝜇 implies that: 

 √𝜆𝑘 ≥ 𝑐 𝑚𝑖𝑛 (1,
𝑞#(𝜋𝐸𝑘𝜇)

𝑝
) ≥ 𝑐 𝑚𝑖𝑛 (1,

𝑞𝐻
# (𝜇)

𝑝

𝑘

𝑛
) ≥

𝑐

𝐴

𝑘

𝑛
. 

Taking geometric average over the 𝜆𝑘 ’s, the assertion immediately follows. 

Remark (4.1.26) [168]: It is clear from the proof that we may actually replace in the 

definition of 𝑞𝐻
#(𝜇) the infimum over 𝑘 with a geometric-average over the terms. We denote 

this variant by 𝑞𝐺𝐻
# (𝜇), and as in Remark (4.1.24), obtain the following expression for it 

when 𝜇 is in addition isotropic: 



124 
 

                       𝑞𝐺𝐻
# (𝜇) = 𝑛 (∏

∆𝜇
−1 (𝑐#√𝑘)

𝑘

𝑛
𝑘=1 )

1

𝑛

≃ (∏ ∆𝜇
−1(𝑐#√𝑘)𝑛

𝑘=1 )
1

𝑛.              (30)            

Another way to obtain some (partial) control over 𝑞#(𝜋𝐸𝜇) is to invoke Corollary (4.1.20): 

Proposition (4.1.27) [168]: Let 𝜈, 𝜇 denote two log-concave probability measures in ℝ𝑛 

with barycenters at the origin, and assume that 𝜇 is isotropic. Let 1 ≤ 𝑝 ≤ 𝑛 and 𝐴 ≥ 1. 

Assume that 𝑍𝑝(𝜈) ≃ 𝑍𝑝(𝜇) and that: 

                                           𝑑𝑖𝑎𝑚(𝑍𝑝(𝜇))√𝑙𝑜𝑔(𝑝)  ≤ 𝐴√𝑛.                                   (31)                           
Then: 

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜈))
1
2𝑛 ≥  𝑒𝑥𝑝(−𝐶𝐴2). 

Proof: We employ the same notation as in the previous proof. Setting: 

𝑘0 ∶= ⌈(𝑐
#)−2 𝑑𝑖𝑎𝑚2𝑍𝑝(𝜇)⌉, 

Corollary (4.1.20) states that 𝑞#(𝜋𝐸𝑘0𝜇) ≥ 𝑝. Consequently, applying Proposition (4.1.23) 

to 𝜋𝐸𝑘0𝜈 and 𝜋𝐸𝑘0𝜇, we obtain that 𝜆𝑘0 ≥ 𝑐 > 0, and hence the largest 𝑛 − 𝑘0 + 1 

eigenvalues of 𝐶𝑜𝑣(𝜈) are bounded below by the same 𝑐 > 0. To bound the contribution of 

the other eigenvalues, we use (11) to obtain the following trivial bound (which may be 

improved, but ultimately only results in better numeric constants): 

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝑘0𝜈))

1
2𝑘0  = 𝑉. 𝑅𝑎𝑑. (𝑍2(𝜋𝐸𝑘0𝜈)) ≳

1

𝑝
𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜋𝐸𝑘0𝜈)) 

≃
1

𝑝
𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜋𝐸𝑘0𝜇)) ≥

1

𝑝
𝑉. 𝑅𝑎𝑑. (𝑍2 (𝜋𝐸𝑘0𝜇)) =

1

𝑝
. 

Using our estimates separately on 𝐸𝑘0 and 𝐸𝑘0
⊥ , we obtain: 

(𝑑𝑒𝑡𝐶𝑜𝑣(𝜈))
1
2𝑛 = (𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝑘0𝜈))  𝑑𝑒𝑡𝐶𝑜𝑣(𝜋𝐸𝑘0

⊥ 𝜈) ≥ 𝑐 (
1

𝑝
)

𝑘0
𝑛
. 

Our assumption (31) precisely ensures that 𝑘0 𝑙𝑜𝑔(𝑝) ≤ 𝐶 · 𝐴
2𝑛, and the assertion follows. 

Theorem (4.1.3) now follows immediately from Proposition ((4.1.27), combined with 

Propositions (4.1.10) and (4.1.16). Similarly, Proposition (4.1.25) and Remark (4.1.26), 

combined with Propositions (4.1.10) and (4.1.16), yield: 

Theorem (4.1.28) [168]: Let 𝜇 denote an isotropic log-concave probability measure in ℝ𝑛. 

Then: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝜇)) ≥ 𝑐√𝑝, ∀2 ≤ 𝑝 ≤ 𝐶𝑞𝐻
#(𝜇). 

Moreover, the same bound remains valid for 2 ≤ 𝑝 ≤ 𝐶𝑞𝐺𝐻
# (𝜇). 

Now if 𝜇 is a log-concave isotropic measure on ℝ𝑛 which is in addition a 𝜓𝛼-measure with 

constant 𝑏𝛼(𝑓𝑜𝑟 𝛼 ∈ [1, 2]), by definition: 

𝑑𝑖𝑎𝑚(𝑍𝑝(𝜇)) ≤ 2𝑏𝛼𝑝
1
𝛼 . 

It therefore follows immediately from (29) that: 

𝑞𝐻
#(𝜇) ≥

𝑐

𝑏𝛼
𝛼 𝑛

𝛼 2⁄ , 

and thus Theorem (4.1.2) follows from Theorem (4.1.28). 
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Lastly, it may be worthwhile to record the following generalization of Theorems (4.1.1) and 

(4.1.4), which follows immediately , from Theorem (4.1.28) and (30): 

Theorem (4.1.29) [168]: Let 𝜇 denote a log-concave probability measure in ℝ𝑛 with 

barycenter at the origin. Then: 

𝐿𝜇 ≤ 𝐶 (∏
𝑘

∆𝜇
−1(𝑐#√𝑘)

𝑛

𝑘=1

)

1
2𝑛

. 

Observe that in this formulation, we only require an on-average control over the growth of 

∆𝜇(𝑝) = 𝑑𝑖𝑎𝑚(𝑍𝑝(𝜇)), as opposed to all previously mentioned bounds on 𝐿𝜇. 

Denote: 

                                              𝐿𝑛: = 𝑠𝑢𝑝𝐾⊆ℝ𝑛𝐿𝐾 ,                                                        (32)                                              
where the supremum runs over all convex bodies 𝐾 ⊂ ℝ𝑛. Recall that 𝐾 is called isotropic 

if 𝜇𝐾, the uniform measure on 𝐾, is isotropic. Recall also that 𝑍𝑝(𝐾) =  𝑍𝑝(𝜇𝐾). In this, we 

observe that removing the logarithmic factor in Theorem (4.1.3) is in fact equivalent to 

Bourgain’s hyperplane conjecture.    

Theorem (4.1.30) [168]: The following statements are equivalent: 

(i) There exists 𝐴 > 0 so that 𝐿𝑛 ≤ 𝐴 for any 𝑛 ≥ 1. 

(ii) There exists 𝐵 > 0 so that for any 𝑛 ≥ 1 and an isotropic convex body 𝐾 ⊂ ℝ𝑛, we 

have: 

                                       𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾)) ≥
√𝑝

𝐵
, ∀1 ≤ 𝑝 ≤

𝑞#(𝜇𝐾)

𝐵
.                     (33)      

The proof is based on the following construction from Bourgain, Klartag and Milman [170]. 

Given 𝑚 ≥ 1, let 𝐾𝑚 denote an isotropic convex body with 𝐿𝐾𝑚 ≥ 𝑐𝐿𝑚. Choosing 𝑐 > 0 

appropriately, it is well-known (see, e.g., the last remark in [173]) that we may assume that 

𝐾𝑚 is centrally-symmetric and satisfies 𝐾𝑚 ⊂ √𝑚𝐵𝑚. We also set 𝐷𝑚: = √𝑚 + 2𝐵𝑚, and 

note that 𝐷𝑚 is isotropic. Given 1/𝑛 ≤ 𝜆 < 1, consider the Cartesian product: 

𝑇𝜆 = 𝐾⌊𝜆𝑛⌋ × 𝐷⌊(1−𝜆)𝑛⌋ ⊆ ℝ
𝑛. 

Clearly, 𝑇𝜆 is a centrally-symmetric isotropic convex body, and since 𝐿𝐷𝑚 ≃ 1, it follows 

that: 

                                               𝐿𝑇𝜆 ≃ 𝐿⌊𝜆𝑛⌋

⌊𝜆𝑛⌋

𝑛 ≃ 𝐿⌊𝜆𝑛⌋
𝜆 .                                                    (34)                                        

Lemma (4.1.31) [168]: For any pair of centrally-symmetric convex bodies 𝐾1 ⊂ ℝ
𝑛1 , 𝐾2 ⊂

 ℝ𝑛2 and 𝑝 ≥ 1, we have: 
1

2
(𝑍𝑝(𝐾1) × 𝑍𝑝(𝐾2)) ⊂ 𝑍𝑝(𝐾1 × 𝐾2) ⊂ 𝑍𝑝(𝐾1) × 𝑍𝑝(𝐾2). 

Proof: Denote 𝐸1: = ℝ
𝑛1 × {0} and 𝐸2: = {0} × ℝ

𝑛2  . By definition, 𝑍𝑝(𝐾1 × 𝐾2) ∩ 𝐸1 =

𝑍𝑝(𝐾1) × {0} and 𝑍𝑝(𝐾1 × 𝐾2) ∩ 𝐸2 = {0} × 𝑍𝑝(𝐾2). By the symmetries of 𝐾1, 𝐾2 and the 

convexity of 𝑍𝑝(𝐾1 × 𝐾2), it follows that: 

𝑍𝑝(𝐾1 × 𝐾2) ⊆ 𝑍𝑝(𝐾1) × 𝑍𝑝(𝐾2). 

On the other hand, an elementary argument ensures that: 
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𝑍𝑝(𝐾1 × 𝐾2  ⊇ 𝑐𝑜𝑛𝑣 (𝑍𝑝(𝐾1) × {0}, {0} × 𝑍𝑝(𝐾2)) ⊇
1

2
(𝑍𝑝(𝐾1) × 𝑍𝑝(𝐾2)). 

Corollary(4.1.32) [168]: For any 1/𝑛 ≤ 𝜆 ≤ 1/2: 

𝑑𝑖𝑎𝑚𝑍𝜆𝑛(𝑇𝜆) ≤ 𝐶√𝜆𝑛. 
Proof: By Lemma (4.1.31) we see that: 

𝑑𝑖𝑎𝑚(𝑍𝜆𝑛(𝑇𝜆)) ≤ 𝑑𝑖𝑎𝑚(𝑍𝜆𝑛(𝐾⌊𝜆𝑛⌋)) + 𝑑𝑖𝑎𝑚𝑍𝜆𝑛(𝐷⌈(1−𝜆)𝑛⌉). 

Observe that 𝑑𝑖𝑎𝑚(𝑍𝜆𝑛(𝐾⌊𝜆𝑛⌋)) ≤ 𝑑𝑖𝑎𝑚(𝐾⌊𝜆𝑛⌋) ≤ 20√𝜆𝑛. As for the other summand, a 

straightforward computation reveals that when 1/𝑛 ≤ 𝜆 ≤ 1/2: 

𝑍𝜆𝑛(𝐷⌈(1−𝜆)𝑛⌉) ≃ √𝜆√𝑛𝐵⌈(1−𝜆)𝑛⌉. 

The assertion now follows.  

Recall that for any isotropic convex body 𝐾 ⊂ ℝ𝑛: 

                  𝑞#(𝐾) = 𝑞#(𝜇𝐾):= sup {𝑞 ≥ 1;  𝑑𝑖𝑎𝑚 (𝑍𝑞(𝐾)) ≤ 𝑐
#√𝑛},             (35)             

where 𝑐# > 0 is an appropriate universal constant. 

Corollary (4.1.33) [168]: For any 𝑛 ≥ 1, there exists a centrally-symmetric isotropic convex 

body 𝐾 ⊂ ℝ𝑛, such that: 

(a) 𝑞#(𝐾) ≥ 𝑐𝑛; and 

(b) 𝑙𝑜𝑔𝐿𝐾 ≥ 𝑐 𝑙𝑜𝑔𝐿𝑛, 

where 𝑐 > 0 is a universal constant. 

Proof: Take 𝜆0: = 𝑚𝑖𝑛{(𝑐
#/𝐶)2, 1/2}, where 𝐶 is the constant from Corollary (4.1.32). 

Then 𝐾 = 𝑇𝜆0satisfies the first assertion in view of the choice of 𝜆0, and by (34): 

𝐿𝐾 ≃ 𝐿⌊𝜆0𝑛⌋
𝜆0 ≳ 𝐿𝑛

𝜆0  , 

where the inequality 𝐿⌊𝜆𝑛⌋ ≳ 𝐿𝑛 for any 0 < 𝑐 ≤ 𝜆 ≤ 1 follows from the techniques in 

[170,Section 3]. Since 𝐿𝐾 ≥ 𝑐 > 0, the second assertion follows.  

If 𝐿𝑛 ≤ 𝐴, then 𝑉𝑜𝑙𝑛(𝐾)
1

𝑛 ≥ 1/𝐴 for any isotropic convex body 𝐾 ⊂ ℝ𝑛. Consequently, by 

the Lutwak–Yang–Zhang lower-bound (5), we even have: 

𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾)) ≥
𝑐

𝐴
√𝑝, ∀1 ≤ 𝑝 ≤ 𝑛. 

For the other direction, apply our assumption (33) to the isotropic convex body 𝐾 ⊂ ℝ𝑛 from 

Corollary (4.1.33), and obtain: 

√𝑝

𝐵
≤ 𝑉. 𝑅𝑎𝑑. (𝑍𝑝(𝐾)) ≤ 𝑉. 𝑅𝑎𝑑. (𝐾) ≃

√𝑛

𝐿𝐾
, ∀1 ≤ 𝑝 ≤ 𝑞#(𝐾)/𝐵. 

Corollary (4.1.33) then implies that: 

𝐿𝑛 ≤ (𝐿𝐾)
𝐶 ≤ (𝐶′𝐵

3
2√

𝑛

𝑞#(𝐾)
)

𝐶

≤ 𝐶1𝐵
𝐶2  , 

as required.  

  

Section (4.2):   Slicing Inequalities for Measures of Convex Bodies  
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The slicing problem [204,205,201,232], a major open problem in convex geometry, asks 

whether there exists an absolute constant 𝐶so that for any origin-symmetric convex body 

𝐾in ℝ𝑛of volume 1 there is a hyperplane of 𝐾whose (𝑛 − 1)-dimensional volume is greater 

than 1/𝐶. In other words, does there exist a constant 𝐶so that for any 𝑛 ∈ 𝑁 and any origin-

symmetric convex body 𝐾in ℝ𝑛  

                                  |𝐾|
𝑛−1

𝑛 ≤ 𝐶 max
𝜉∈𝑆𝑛−1

|𝐾 ∩ 𝜉⊥| ,                                           (36)                                       

where 𝜉⊥ is the central hyperplane in 𝑅𝑛 perpendicular to 𝜉, and |𝐾| stands for volume of 

proper dimension? The best current result 𝐶 ≤ 𝑂(𝑛1/4) is due to Klartag [213], who 

removed the logarithmic term from an earlier estimate of Bourgain [206]. see [208]for the 

history and partial results. 

For certain classes of bodies the question has been answered in affirmative. These classes 

include unconditional convex bodies (as initially observed by Bour-gain; see also 

[232,212,203,208]), unit balls of subspaces of 𝐿𝑝[209], intersection bodies 

[209,Theorem9.4.11], zonoids, duals of bodies with bounded volume ratio [232], the 

Schatten classes [226], 𝑘-intersection bodies [223,220]. 

Iterating (36) one gets the lower dimensional slicing problem asking whether the inequality  

                                  |𝐾|
𝑛−𝑘

𝑛 ≤ 𝐶𝑘 max
𝐻∈𝐺𝑟𝑛−𝑘

|𝐾 ∩ 𝐻|                                         (37)                                     

holds with an absolute constant 𝐶 where 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝐺𝑟𝑛−𝑘is the Grassmanian of 

(𝑛 − 𝑘)-dimensional subspaces of ℝ𝑛. 

We prove (37) in the case where 𝑘 ≥ 𝜆𝑛, 0 < 𝜆 < 1, with the constant 𝐶 = 𝐶(𝜆) dependent 

only on 𝜆. Moreover, we prove this result in a more general setting of arbitrary measures in 

place of volume. We consider the following generalization of the slicing problem. 

Problem (4.2.1)[200]: Does there exist an absolute constant 𝐶 so that for every 𝑛 ∈ ℕ, every 

integer 1 ≤ 𝑘 < 𝑛, every origin-symmetric convex body 𝐿 in ℝ𝑛, and every measure 𝜇 with 

non-negative even continuous density 𝑓 in ℝ𝑛,  

                      𝜇(𝐿) ≤ 𝐶𝑘  max
𝐻∈𝐺𝑟𝑛−𝑘

𝜇(𝐿 ∩ 𝐻)|𝐿|
𝑘

𝑛  .                                             (38)                                     

Here 𝜇(𝐵) = ∫ 𝑓
𝐵

for every compact set 𝐵in ℝ𝑛, and 𝜇(𝐵 ∩ 𝐻) = ∫ 𝑓
𝐵∩𝐻

 is the result of 

integration of the restriction of 𝑓 to 𝐻 with respect to Lebesgue measure in 𝐻. 

In many cases we will write (38) in an equivalent form  

                    𝜇(𝐿) ≤ 𝐶𝑘
𝑛

𝑛−𝑘
  𝑐𝑛,𝑘   𝑚𝑎𝑥

𝐻∈𝐺𝑟𝑛−𝑘
𝜇(𝐿 ∩ 𝐻)|𝐿|

𝑘

𝑛 ,                              (39)                     

where 𝑐𝑛,𝑘 = |𝐵2
𝑛|
𝑛−𝑘

𝑛 /|𝐵2
𝑛−𝑘|, and 𝐵2

𝑛 is the unit Euclidean ball in ℝ𝑛. Note that 𝑐𝑛,𝑘 ∈

(𝑒−𝑘/2, 1) (see for example [221, Lemma 2.1]), and 

                                      1 ≤
𝑛

𝑛−𝑘
≤ 𝑒

𝑘

𝑛−𝑘 ≤ 𝑒𝑘, 

so these constants can be incorporated in the constant 𝐶. 

It appears that some results on the original slicing problem can be extended to the case of 

arbitrary measures. The first result of this kind was established in [217], namely, when 𝐿 is 
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an intersection body and 𝑘 = 1, inequality (39)holds with the best possible constant 𝐶 = 1. 

This result was later proved for arbitrary 𝑘 in [222]. For arbitrary origin-symmetric convex 

bodies, inequality (39) was proved with 𝐶 = √𝑛 in [218]and [219], for 𝑘 = 1 and for 

arbitrary 𝑘, respectively. When 𝐿 is the unit ball of a subspace of 𝐿𝑝, 𝑝 ≥ 2, the constant 𝐶 

can be improved to 𝑛
1

2
−
1

𝑝; see [220]. In [220], (38) was also proved for the unit balls of 

normed spaces that embed in 𝐿𝑝, −∞ < 𝑝 ≤ 2 with 𝐶 depending only on 𝑝. In the case 

where 𝑘 = 1 and the measure 𝜇 is log-concave, (38)holds for any origin-symmetric convex 

body with 𝐶 ≤ 𝑂(𝑛1 4⁄ ), as shown in [225]using the estimate of Klartag [213]mentioned 

above and the technique of Ball [201]relating log-concave measures to convex bodies. 

We prove inequality (38)for unconditional convex bodies and duals of bodies with finite 

volume ratio, with an absolute constant 𝐶. We also prove that for every 𝜆 ∈ (0, 1) there 

exists a constant 𝐶 = 𝐶(𝜆) so that inequality (38)holds for every 𝑛 ∈ ℕ, arbitrary origin-

symmetric convex body 𝐿, every measure 𝜇 with continuous density and every codimension 

𝑘 satisfying 𝜆𝑛 ≤ 𝑘 < 𝑛. 

we show that the properties of the minimal measures may be different from the case of 

volume. We prove that for every 𝑛 ≥ 5 there exist a symmetric convex body 𝐿 in ℝ𝑛and a 

measure 𝜇 with continuous density so that  

𝜇(𝐿) <  
𝑛

𝑛 − 1
𝑐𝑛,1  min

𝜉∈𝑆𝑛−1
𝜇(𝐿 ∩ 𝜉⊥) |𝐿|1/𝑛. 

Note that in the case of volume  

∫ |𝐾 ∩ 𝜉⊥|𝑑𝜎(𝜉)
𝑆𝑛−1

≤ 𝑐𝑛,1|𝐾|
𝑛−1
𝑛 , 

where 𝜎 is the normalized uniform measure on the sphere; see [228]. 

The approach to suggested is based on the concept of an inter-section body. We reduce the 

problem to computing the outer volume ratio distance from an origin-symmetric convex 

body to the class of generalized intersection bodies.  

We need several definitions and facts. 𝐴 closed bounded set 𝐾in ℝ𝑛 is called a star body if 

every straight line passing through the origin crosses the boundary of 𝐾at exactly two points 

different from the origin, the origin is an interior point of 𝐾, and the Minkowski functional 

of 𝐾 defined by  

‖𝑥‖𝐾 =  min {𝑎 ≥ 0 ∶ 𝑥 ∈ 𝑎𝐾} 
is a continuous function on ℝ𝑛. 

The radial function of a star body 𝐾 is defined by  

𝜌𝐾(𝑥) = ‖𝑥‖𝐾
−1,   𝑥 ∈ ℝ𝑛, 𝑥 ≠ 0. 

If 𝑥 ∈ 𝑆𝑛−1 then 𝜌𝐾(𝑥) is the radius of 𝐾in the direction of 𝑥. 

We use the polar formula for volume of a star body 

                                              |𝐾| =
1

𝑛
 ∫ ‖𝜃‖𝐾

−𝑛𝑑𝜃
𝑆𝑛−1

.                                              (40)                                          

The class of intersection bodies was introduced by Lutwak [229]. Let 𝐾, 𝐿 be origin-

symmetric star bodies in ℝ𝑛. We say that 𝐾is the intersection body of 𝐿if the radius of 𝐾in 
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every direction is equal to the (𝑛 − 1)-dimensional volumeof 𝐿by the central hyperplane 

orthogonal to this direction, i.e. for every 𝜉 ∈ 𝑆𝑛−1,  
𝜌𝐾(𝜉) = ‖𝜉‖𝐾

−1 = |𝐿 ∩ 𝜉⊥| 

=
1

𝑛 − 1
 ∫ ‖𝜃‖𝐿

−𝑛+1 𝑑𝜃
𝑆𝑛−1∩𝜉⊥

 =
1

𝑛 − 1
𝑅 ‖·‖𝐿

−𝑛+1(𝜉), 

where 𝑅: 𝐶(𝑆𝑛−1) → 𝐶(𝑆𝑛−1)is the spherical Radon transform 

 𝑅𝑓(𝜉) =   ∫ 𝑓(𝑥)𝑑𝑥
𝑆𝑛−1∩𝜉⊥

, ∀𝑓 ∈ 𝐶(𝑆𝑛−1). 

All bodies 𝐾 that appear as intersection bodies of different star bodies form the class of 

intersection bodies of star bodies. 𝐴 more general class of intersection bodiesis defined as 

follows. If 𝜇 is a finite Borel measure on 𝑆𝑛−1, then the spherical Radon transform 𝑅𝜇 of 𝜇 

is defined as a functional on 𝐶(𝑆𝑛−1)acting by  

(𝑅𝜇, 𝑓) = (𝜇, 𝑅𝑓) = ∫ 𝑅𝑓(𝑥)𝑑𝜇(𝑥)
𝑆𝑛−1

, ∀𝑓 ∈ 𝐶(𝑆𝑛−1). 

𝐴 star body 𝐾in ℝ𝑛is called an intersection body if ‖·‖𝐾
−1 = 𝑅𝜇 for some measure 𝜇, as 

functionals on 𝐶(𝑆𝑛−1), i.e. 

∫ ‖𝑥‖𝐾
−1 𝑓(𝑥)𝑑𝑥

𝑆𝑛−1
 = ∫ 𝑅𝑓(𝑥)𝑑𝜇(𝑥)

𝑆𝑛−1
, ∀𝑓 ∈ 𝐶(𝑆𝑛−1). 

 Intersection bodies played a crucial role in the solution of the Busemann–Petty problem and 

its generalizations; see [216, Chapter 5]. 

𝐴 generalization of the concept of an intersection body was introduced by Zhang [234]in 

connection with the lower dimensional Busemann–Petty problem. For 1 ≤ 𝑘 ≤ 𝑛 − 1, the 

(𝑛 − 𝑘)-dimensional spherical Radon transform 𝑅𝑛−𝑘: 𝐶(𝑆
𝑛−1)  → 𝐶(𝐺𝑟𝑛−𝑘) is a linear 

operator defined by  

𝑅𝑛−𝑘𝑔(𝐻) = ∫  𝑔(𝑥) 𝑑𝑥
𝑆𝑛−1∩𝐻

, ∀𝐻 ∈ 𝐺𝑟𝑛−𝑘  

for every function 𝑔 ∈ 𝐶(𝑆𝑛−1). 
We say that an origin symmetric star body 𝐾in ℝ𝑛is a generalized 𝑘-intersection body, and 

write 𝐾 ∈ 𝐵𝑃𝑘
𝑛, if there exists a finite Borel non-negative measure 𝜇 on 𝐺𝑟𝑛−𝑘so that for 

every 𝑔 ∈ 𝐶(𝑆𝑛−1) 
                ∫ ‖𝑥‖𝐾

−𝑘 𝑓(𝑥)𝑑𝑥
𝑆𝑛−1

 = ∫ 𝑅𝑛−𝑘𝑔(𝐻)𝑑𝜇(𝑥)𝐺𝑟𝑛−𝑘
(𝐻).                             (41)                           

When 𝑘 = 1 we get the class of intersection bodies. It was proved by Grinberg and Zhang 

[210, Lemma 6.1]that every intersection body in ℝ𝑛is a generalized 𝑘-intersection body for 

every 𝑘 < 𝑛. More generally, as proved later by 𝐸. Milman [231], if 𝑚 dividesk, then every 

generalized 𝑚-intersection body is a generalized 𝑘-intersection body. Note that in 

[234,210]generalized 𝑘-intersection bodies are called “𝑘-intersection bodies”. 

We need a stability result for generalized 𝑘-intersection bodies proved in [219, 

Theorem1](see also [217,222]for similar results). Here we present a slightly simpler version. 

Theorem (4.2.2) [200]: Suppose that 1 ≤ 𝑘 ≤ 𝑛 − 1,𝐾is a generalized 𝑘-intersection body 

in ℝ𝑛, 𝑓 is an even continuous non-negative function on 𝐾, and 𝜀 > 0. If  
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 ∫ 𝑓 ≤ 𝜀
𝐾∩𝐻

, ∀𝐻 ∈ 𝐺𝑟𝑛−𝑘 , 

then 

                                         ∫ 𝑓
𝐾

≤
𝑛

𝑛−𝑘
 𝑐𝑛,𝑘  |𝐾|

𝑘/𝑛𝜀. 

Recall that 𝑐𝑛,𝑘 ∈ (𝑒
−𝑘/2, 1).    

Proof: Writing integrals in spherical coordinates we get  

∫𝑓
𝐾

= ∫ (∫ 𝑟𝑛−1𝑓(𝑟𝜃) 𝑑𝑟
‖𝜃‖𝐾

−1

0

)𝑑𝜃
𝑆𝑛−1

, 

and  

 ∫ 𝑓
𝐾∩𝐻

= ∫ (∫ 𝑟𝑛−𝑘−1𝑓(𝑟𝜃) 𝑑𝑟
‖𝜃‖𝐾

−1

0

)𝑑𝜃
𝑆𝑛−1∩𝐻

 

= 𝑅𝑛−𝑘   (∫ 𝑟𝑛−𝑘−1𝑓(𝑟 ·) 𝑑𝑟
‖∙‖𝐾

−1

0

) (𝐻), 

so the condition of the theorem can be written as 

 𝑅𝑛−𝑘   (∫ 𝑟𝑛−𝑘−1𝑓(𝑟 ·)𝑑𝑟
‖∙‖𝐾

−1

0

) (𝐻) ≤ 𝜀, ∀𝐻 ∈ 𝐺𝑟𝑛−𝑘 . 

Integrate both sides with respect to the measure 𝜇 on 𝐺𝑟𝑛−𝑘that corresponds to 𝐾as a 

generalized 𝑘-intersection body by (41). We get  

 ∫ ‖𝜃‖𝐾
−1 (∫ 𝑟𝑛−𝑘−1𝑓(𝑟𝜃) 𝑑𝑟

‖𝜃‖𝐾
−1

0

)𝑑𝜃
𝑆𝑛−1

≤  𝜀𝜇(𝐺𝑟𝑛−𝑘). 

Estimate the integral in the left-hand side from below using 𝑓 ≥ 0:  

∫ ‖𝜃‖𝐾
−1 (∫ 𝑟𝑛−𝑘−1𝑓(𝑟𝜃) 𝑑𝑟

‖𝜃‖𝐾
−1

0

)𝑑𝜃
𝑆𝑛−1

 

 = ∫ (∫ 𝑟𝑛−1𝑓(𝑟𝜃) 𝑑𝑟
‖𝜃‖𝐾

−1

0

)𝑑𝜃
𝑆𝑛−1

 

+∫ (∫ (‖𝜃‖𝐾
−𝑘 − 𝑟𝑘)𝑟𝑛−𝑘−1𝑓(𝑟𝜃) 𝑑𝑟

‖𝜃‖𝐾
−1

0

)𝑑𝜃
𝑆𝑛−1

 

                                    ≥ ∫ (∫ 𝑟𝑛−1𝑓(𝑟𝜃)𝑑𝑟
‖𝜃‖𝐾

−1

0
)𝑑𝜃

𝑆𝑛−1
= ∫ 𝑓

𝐾
. 

Now we estimate 𝜇(𝐺𝑟𝑛−𝑘)from above. We use 1 = 𝑅𝑛−𝑘1(𝐻)/|𝑆
𝑛−𝑘−1|for every 𝐻 ∈

𝐺𝑟𝑛−𝑘, definition (41), Hölder’s inequality and the fact that 𝑛|𝐵2
𝑛  = |𝑆𝑛−1|: 

𝜇(𝐺𝑟𝑛−𝑘) =
1

|𝑆𝑛−𝑘−1|
∫ 𝑅𝑛−𝑘1(𝐻)𝑑𝜇(𝐻) 
𝐺𝑟𝑛−𝑘

  

=
1

|𝑆𝑛−𝑘−1|
 |𝑆𝑛−1|  ∫ ‖𝜃‖𝐾

−𝑛𝑑𝜃
𝑆𝑛−1

 



131 
 

≤
1

|𝑆𝑛−𝑘−1|
 |𝑆𝑛−1|

𝑛−𝑘
𝑛  (∫ ‖𝜃‖𝐾

−𝑛𝑑𝜃
𝑆𝑛−1

)

𝑘
𝑛

 

=
1

|𝑆𝑛−𝑘−1|
|𝑆𝑛−1|

𝑛−𝑘
𝑛  𝑛𝑘/𝑛|𝐾|𝑘 𝑛⁄ =

𝑛

𝑛 − 𝑘
 𝑐𝑛,𝑘|𝐾|

𝑘 𝑛⁄ . 

Combining the estimates, 

                                                    ∫ 𝑓
𝐾

≤
𝑛

𝑛−𝑘
 𝑐𝑛,𝑘|𝐾|

𝑘 𝑛⁄ 𝜀. 

For a convex body 𝐿 in ℝ𝑛 and 1 ≤ 𝑘 < 𝑛, denote by 

                                𝑜. 𝑣. 𝑟. (𝐿, 𝐵𝑃𝑘
𝑛) =  𝑖𝑛𝑓 {(

|𝐾|

|𝐿|
)
1 𝑛⁄

∶  𝐿 ⊂ 𝐾,𝐾 ∈ 𝐵𝑃𝑘
𝑛} 

the outer volume ratio distance from a body 𝐿 to the class 𝐵𝑃𝑘
𝑛. 

Corollary (4.2.3) [200]: Let 𝐿 be an origin-symmetric star body in ℝ𝑛. Then for any measure 

𝜇 with even continuous density on 𝐿we have  

𝜇(𝐿) ≤ (𝑜. 𝑣. 𝑟. (𝐿, 𝐵𝑃𝑘
𝑛))

𝑘
 
𝑛

𝑛 − 𝑘
𝑐𝑛,𝑘  max

𝐻∈𝐺𝑟𝑛−𝑘 
𝜇(𝐿 ∩ 𝐻)|𝐿|𝑘 𝑛⁄ . 

Proof:  Let 𝐶 > 𝑜. 𝑣. 𝑟. (𝐿, 𝐵𝑃𝑘
𝑛), then there exists a body 𝐾 in 𝐵𝑃𝑘

𝑛such that 𝐿 ⊂ 𝐾 and 

|𝐾|1/𝑛 ≤ 𝐶|𝐿|1/𝑛. 
Let 𝑔 be the density of the measure 𝜇, and define a function fon 𝐾by 𝑓 = 𝑔𝜒𝐿, where 𝜒𝐿is 

the indicator function of 𝐿. Clearly, 𝑓 ≥ 0everywhere on 𝐾. Put  

𝜀 = max
𝐻∈𝐺𝑟𝑛−𝑘

∫ 𝑓
𝐾∩𝐻

= 𝑚𝑎𝑥
𝐻∈𝐺𝑟𝑛−𝑘

∫ 𝑔
𝐿∩𝐻

= max
𝐻∈𝐺𝑟𝑛−𝑘

𝜇(𝐿 ∩  𝐻) , 

and apply Theorem(4.2.1) to 𝑓, 𝐾, 𝜀(fis not continuous, but we can do an easy approxi-

mation). We have 

𝜇(𝐿) = ∫𝑔
𝐿

 = ∫𝑓
𝐾

≤
𝑛

𝑛 − 𝑘
𝑐𝑛,𝑘|𝐾|

𝑘 𝑛⁄  𝑚𝑎𝑥
𝐻∈𝐺𝑟𝑛−𝑘

𝜇(𝐿 ∩  𝐻) 

 ≤ 𝐶𝑘
𝑛

𝑛 − 𝑘
𝑐𝑛,𝑘|𝐿|

𝑘 𝑛⁄ 𝑚𝑎𝑥
𝐻∈𝐺𝑟𝑛−𝑘

𝜇(𝐿 ∩  𝐻) . 

The result follows by sending 𝐶 to 𝑜. 𝑣. 𝑟. (𝐿, 𝐵𝑃𝑘
𝑛). 

  

Let 𝑒𝑖 , 1 ≤ 𝑖 ≤ 𝑛, be the standard basis of ℝ𝑛. 𝐴 star body 𝐾in ℝ𝑛is called unconditional if 

for every choice of real numbers 𝑥𝑖 and 𝛿𝑖 = ±1, 1 ≤ 𝑖 ≤ 𝑛 we have  

‖∑𝛿𝑖𝑥𝑖𝑒𝑖

𝑛

𝑖=1

‖𝐾 = ‖∑𝑥𝑖𝑒𝑖

𝑛

𝑖=1

‖𝐾. 

Theorem (4.2.4) [200]: For every 𝑛 ∈ ℕ, every 1 ≤ 𝑘 < 𝑛, every unconditional convex 

body 𝐿 in ℝ𝑛 and every measure 𝜇 with even continuous non-negative density on 𝐿  

                         𝜇(𝐿) ≤ 𝑒𝑘  
𝑛

𝑛−𝑘
𝑐𝑛,𝑘 𝑚𝑎𝑥

𝐻∈𝐺𝑟𝑛−𝑘
𝜇(𝐿 ∩  𝐻) |𝐿|𝑘 𝑛⁄ .                     (42)                   

Proof: By a result of Lozanovskii [207](see the proof in [233, Corollary 3.4]), there exists a 

linear operator 𝑇:ℝ𝑛 → ℝ𝑛 so that 

                                            𝑇(𝐵∞
𝑛 ) ⊂ 𝐿 ⊂ 𝑛𝑇(𝐵1

𝑛), 
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where 𝐵1
𝑛 and 𝐵∞

𝑛  are the unit balls of the spaces ℓ1
𝑛 and ℓ∞

𝑛 , respectively. Let 𝐾 = 𝑛𝑇(𝐵1
𝑛). 

By [214, Theorem 3] and the fact that a linear transformation of an intersection body is an 

intersection body (see [229] or [214, Theorem 1]), the body 𝐾 is an intersection body in ℝ𝑛. 

By a result of Grinberg and Zhang [210, Lemma 6.1], 𝐾 is a generalized 𝑘-intersection body 

for every 1 ≤ 𝑘 < 𝑛. 

Since |𝐵1
𝑛| = 2𝑛/𝑛! (see for example [216, Lemma 2.19]), we have |𝐾|1 𝑛⁄ ≤ 2𝑒| 𝑑𝑒𝑡𝑇|1 𝑛⁄ . 

On the other hand, |𝑇(𝐵∞
𝑛 )| = 2𝑛| 𝑑𝑒𝑡𝑇|, and 𝑇(𝐵∞

𝑛 ) ⊂ 𝐿, so |𝐾|1 𝑛⁄ ≤ 𝑒 |𝐿|1 𝑛⁄ . Therefore, 

𝑜. 𝑣. 𝑟(𝐿, 𝐵𝑃𝑘
𝑛) ≤ 𝑒. Now (42)follows from Corollary(4.2.3).  

The volume ratio of a convex body 𝐾 in ℝ𝑛 is defined by 

                           𝑣. 𝑟. (𝐾) = 𝑖𝑛𝑓𝐸   {(
|𝐾|

|𝐸|
)
1 𝑛⁄

∶ 𝐸 ⊂ 𝐾, 𝐸 –  𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑} . 

The following argument is standard and first appeared in [207] and [232]. Let 𝐾°and 𝐸° be 

polar bodies of 𝐾 and 𝐸, respectively. If 𝐸 is an ellipsoid, then     

|𝐸||𝐸°| = |𝐵2
𝑛|2. 

 By the reverse Santalo inequality of Bourgain and Milman [207], there exists an absolute 

constant 𝑐 > 0 such that 

                                                           (|𝐾||𝐾°|)1 𝑛⁄ ≥
𝑐

𝑛
 . 

Combining these and using the asymptotics of 𝐵2
𝑛 we get that there exists an absolute 

constant 𝐶 such that  

(
|𝐸°|

|𝐾°|
)

1 𝑛⁄

≤ 𝐶 (
|𝐾|

|𝐸|
)

𝑘 𝑛⁄

. 

Theorem (4.2.5) [200]: There exists an absolute constant 𝐶 such that for every 𝑛 ∈ ℕ, every 

1 ≤ 𝑘 < 𝑛, every origin-symmetric convex body 𝐿 in ℝ𝑛 and every measure 𝜇 with even 

continuous non-negative density on 𝐿 

𝜇(𝐿) ≤  (𝐶 𝑣. 𝑟(𝐿°))𝑘  
𝑛

𝑛 − 𝑘
𝑐𝑛,𝑘 𝑚𝑎𝑥

𝐻∈𝐺𝑟𝑛−𝑘
𝜇(𝐿 ∩  𝐻) |𝐿|𝑘 𝑛⁄ . 

Proof: If 𝐸 is an ellipsoid, 𝐸 ⊂ 𝐿°, then the ellipsoid 𝐸° contains 𝐿. Also every ellipsoid is 

an intersection body as a linear image of the Euclidean ball, so it is also a generalized 𝑘-

intersection body for every 𝑘. By the argument before the statement of the theorem, 

                                            𝑜. 𝑣. 𝑟(𝐿, 𝐵𝑃𝑛
𝑘) ≤ 𝐶 𝑣. 𝑟. (𝐿°). 

The result follows from Corollary(4.2.3). 

The outer volume ratio distance from a general convex body to the class of generalized 𝑘-

intersection bodies was estimated in [224]. 

Proposition (4.2.6) [200]: (See [224, Theorem 1.1].)Let 𝐿 be an origin-symmetric convex 

body in ℝ𝑛, and let 1 ≤ 𝑘 ≤ 𝑛 − 1. Then  

𝑜. 𝑣. 𝑟. (𝐿, 𝐵𝑃𝑘
𝑛) ≤ 𝐶0√

𝑛

𝑘
 (𝑙𝑜𝑔 (

𝑒𝑛

𝑘
))

3 2⁄

 , 

where 𝐶0 is an absolute constant. 

Theorem (4.2.7) [200]: (See [233, p. 120].)For every 𝛼 ∈ (0, 2) and every origin-symmetric 

convex body 𝐾 in ℝ𝑛, there exists a linear image 𝐾𝛼of 𝐾such that 



133 
 

                             max {𝑁(𝐾𝛼, 𝑡𝐵2
𝑛), 𝑁(𝐵2

𝑛, 𝑡𝐾𝛼)} ≤  𝑒𝑥𝑝 (
𝑐𝑛

𝑡𝛼(2−𝛼)
) , 

for every 𝑡 ≥ 1, where 𝑐 is an absolute constant. 

Theorem(4.2.7) implies a generalization of 𝑉. Milman’s reverse Brunn–Minkowski 

inequality; one can find this in [233]as a combination of several results. We present a proof 

for the sake of completeness. 

Corollary (4.2.8) [200]: Let 𝛼 ∈ [1, 2), let 𝐾 be an origin-symmetric convex body in ℝ𝑛, 

and let 𝐾𝛼 be the position of 𝐾 established in Theorem(4.2.7). Then for every 𝑡 ≥ 1, 

                            |𝐾𝛼 + 𝑡𝐵2
𝑛|1 𝑛⁄ ≤  2𝑒𝑐 𝑡|𝐾𝛼|

1 𝑛⁄ 1

2− 𝛼
 𝑒𝑥𝑝 (

𝑐

𝑡𝛼(2−𝛼)
) , 

where 𝑐 is the same absolute constant as in Theorem(4.2.7). 

Proof: We first use the part of Theorem (4.2.7) estimating 𝑁(𝐵2
𝑛, 𝑡𝐾𝛼). Put 𝑡 = (2 − 𝛼)−1 𝛼⁄  

in Theorem(4.2.7). Then  

|𝐵2
𝑛|1 𝑛⁄ ≤ 𝑡|𝐾𝛼|

1 𝑛⁄  (𝑁(𝐵2
𝑛, 𝑡𝐾𝛼))

1 𝑛⁄   

≤ (2 − 𝛼)−1 𝛼⁄ 𝑒𝑐|𝐾𝛼|
1 𝑛⁄ ≤

𝑒𝑐

2 − 𝛼
|𝐾𝛼|

1 𝑛⁄ . 

Now for every 𝑡 ≥ 1we use the estimate for 𝑁(𝐾𝛼, 𝑡𝐵2
𝑛) from Theorem(4.2.7). We have                            

 
|𝐾𝛼+𝑡𝐵2

𝑛|1 𝑛⁄

2𝑡|𝐾𝛼|
1 𝑛⁄

≤
𝑒𝑐

2−𝛼

|𝐾𝛼+𝑡𝐵2
𝑛|1 𝑛⁄

2𝑡|𝐵2
𝑛|1 𝑛⁄

 

                                                ≤
𝑒𝑐

2−𝛼
 (𝑁(𝐾𝛼 + 𝑡𝐵2

𝑛, 2𝑡𝐵2
𝑛))1 𝑛⁄   

≤
𝑒𝑐

2 − 𝛼
(𝑁(𝐾𝛼 , 𝑡𝐵2

𝑛))1 𝑛⁄ ≤
𝑒𝑐

2 − 𝛼
 𝑒𝑥𝑝 (

𝑐

𝑡𝛼(2 − 𝛼)
 ).   

In the proof of Theorem 1.1in [204, p. 2705], we have 𝛼 = 2 −
1

𝑙𝑜𝑔𝑒
𝑛

𝑘

 and 𝑡𝛼(2 − 𝛼) =
𝑛

𝑘
, so 

𝑡 ∼ √
𝑛

𝑘
𝑙𝑜𝑔(

𝑒𝑛

𝑘
). Then Corollary(4.2.8)implies 

                                        |𝐾𝛼 + 𝑡𝐵2
𝑛|1 𝑛⁄ ≤ 𝑐

′√
𝑛

𝑘
(𝑙𝑜𝑔(

𝑒𝑛

𝑘
))
3 2⁄

|𝐾𝛼|
1 𝑛⁄

,  
where 𝑐′ is an absolute constant. Using this estimate in place of Corollary 3.2 in 

[224,p.2705], we get Proposition(4.2.6). 

Proposition(4.2.6) in conjunction with Corollary(4.2.3)implies the following slicing 

inequality. 

Theorem(4.2.9) [200]: There exists an absolute constant 𝐶0 such that for every 𝑛 ∈ ℕ, every 

1 ≤ 𝑘 < 𝑛, every origin-symmetric convex body 𝐿in ℝ𝑛 and every measure 𝜇 with even 

continuous non-negative density on 𝐿 

         𝜇(𝐿) ≤ 𝐶0
𝑘 (√

𝑛

𝑘
 (𝑙𝑜𝑔 (

𝑒𝑛

𝑘
))
3 2⁄

)

𝑘
𝑛

𝑛−𝑘
𝑐𝑛,𝑘  max

𝐻∈𝐺𝑟𝑛−𝑘
𝜇(𝐿 ∩ 𝐻) |𝐿|1 𝑛⁄ . 

Corollary (4.2.10) [200]: If the codimension 𝑘 satisfies 𝜆𝑛 ≤ 𝑘 < 𝑛, for some 𝜆 ∈ (0, 1), 
then for every origin-symmetric convex body 𝐿 in ℝ𝑛−1and every measure 𝜇 with 

continuous non-negative density in ℝ𝑛,  
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𝜇(𝐿) ≤ 𝐶0
𝑘 (√

(1 − 𝑙𝑜𝑔𝜆)3

𝜆
 )

𝑘

𝑛

𝑛 − 𝑘
𝑐𝑛,𝑘  max

𝐻∈𝐺𝑟𝑛−𝑘
𝜇(𝐿 ∩ 𝐻) |𝐿|1 𝑛⁄  

where 𝐶0is an absolute constant. 

We consider Schwartz distributions, i.e. continuous functionals on the space 𝑆(ℝ𝑛) of 

rapidly decreasing infinitely differentiable functions on ℝ𝑛. The Fourier transform of a 

distribution 𝑓 is defined by 〈𝑓, 𝜙〉 = 〈𝑓, �̂�〉 for every test function 𝜙 ∈ 𝑆(ℝ𝑛). For any even 

distribution 𝑓, we have (𝑓)^ = (2𝜋)𝑛𝑓. 

Throughout the bodies 𝐾and 𝐿 are origin-symmetric. If 𝐾is a convex body and 0 < 𝑝 < 𝑛, 

then ‖·‖𝐾
−𝑝

 is a locally integrable function on 𝑅𝑛 and represents a distribution acting by 

integration. Suppose that 𝐾is infinitely smooth, i.e. ‖·‖𝐾 ∈ 𝐶
∞(𝑆𝑛−1) is an infinitely 

differentiable function on the sphere. Then by [216,Lemma3.16], the Fourier transform of 

‖·‖𝐾
−𝑝

is an extension of some func-tion 𝑔 ∈ 𝐶∞(𝑆𝑛−1) to a homogeneous function of degree 

−𝑛 + 𝑝 on ℝ𝑛. When we write (‖·‖𝐾
−𝑝
)
^
(𝜉), we mean 𝑔(𝜉), 𝜉 ∈ 𝑆𝑛−1. 

For 𝑓 ∈ 𝐶∞(𝑆𝑛−1) and 0 < 𝑝 < 𝑛, we denote by   

                                     (𝑓 · 𝑟−𝑝)(𝑥) = 𝑓(𝑥/|𝑥|2)|𝑥|2
−𝑝
  

the extension of 𝑓 to a homogeneous function of degree – 𝑝 on ℝ𝑛. Again by 

[216,Lemma3.16], there exists 𝑔 ∈ 𝐶∞(𝑆𝑛−1) such that 

                                          (𝑓 ·  𝑟−𝑝)^ =  𝑔 · 𝑟−𝑛+𝑝. 
If 𝐾, 𝐿 are infinitely smooth convex bodies, the following spherical version of Parseval’s 

formula was proved in [218](see also [216, Lemma 3.22]): for any 𝑝 ∈ (−𝑛, 0) 

           ∫ (‖ · ‖𝐾
−𝑝
)
^
(𝜉) ‖· ‖𝐿

−𝑛+𝑝
(𝜉)

𝑆𝑛−1
= (2𝜋)𝑛 ∫ ‖𝑥‖𝐾

−𝑝‖𝑥‖𝐿
−𝑛+𝑝

𝑑𝑥
𝑆𝑛−1

.         (43)          

It was proved in [214, Theorem 1]that an origin-symmetric convex body 𝐾in ℝ𝑛 is an 

intersection body if and only if the function  ‖·‖𝐾
−1represents a positive definite distribution. 

If 𝐾is infinitely smooth, this means that the function ( ‖·‖𝐾
−1)^ is non-negative on the sphere. 

We also need a result from [215](see also [216, Theorem 3.8]) expressing volume of central 

hyperplane in terms of the Fourier transform. For any origin-symmetric star body 𝐾in ℝ𝑛, 

the distribution (‖ ·‖𝐾
−𝑛+1)^ is a continuous function on the sphere extended to a 

homogeneous function of degree −1on the whole of ℝ𝑛, and for every 𝜉 ∈ 𝑆𝑛−1,  

                                |𝐾 ∩ 𝜉⊥| =
1

𝜋(𝑛−1)
 (‖·‖𝐾

−𝑛+1)𝜉 .                                                 (44)                                

In particular, if 𝐾 = 𝐵2
𝑛 and | · |2is the Euclidean norm, then for every 𝜉 ∈ 𝑆𝑛−1 

                                  (|·|2
−𝑛+1)𝜉 = 𝜋(𝑛 − 1)|𝐵2

𝑛−1|.                                                (45)                         
Lemma (4.2.11) [200]: Let 𝐾be an origin-symmetric infinitely smooth convex body in ℝ𝑛. 

Then 

∫ (‖ · ‖𝐾
−1)^(𝜉)𝑑𝜉

𝑆𝑛−1
≤

(2𝜋)𝑛

𝜋(𝑛 − 1)
 𝑐𝑛,1|𝐾|

1 𝑛⁄ . 

Proof:  By (45), Parseval’s formula, Hölder’s inequality, polar formula for volume (40)and 

|𝑆𝑛−1| = 𝑛|𝐵2
𝑛|, we get  
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∫ (‖ · ‖𝐾
−1)^(𝜉)𝑑𝜉

𝑆𝑛−1
 

=
1

𝜋(𝑛 − 1)|𝐵𝑛
𝑛−1|

∫ (‖ · ‖𝐾
−1)^(𝜉)

𝑆𝑛−1
 (| · |2

−𝑛+1)^(𝜉) 

                                               =
(2𝜋)𝑛

𝜋(𝑛−1)|𝐵2
𝑛−1|
 ∫ ‖𝜃‖𝐾

−1 𝑑𝜃
𝑆𝑛−1

  

≤
(2𝜋)𝑛

𝜋(𝑛 − 1)|𝐵2
𝑛−1|

 |𝑆𝑛−1|
𝑛−1
𝑛  (∫ ‖𝜃‖𝐾

−𝑛 𝐾 𝑑𝜃
𝑆𝑛−1

)

1
𝑛

 

 =
(2𝜋)𝑛

𝜋(𝑛 − 1)|𝐵2
𝑛−1|

 |𝑆𝑛−1|
𝑛−1
𝑛 𝑛1 𝑛⁄ |𝐾|1 𝑛⁄ =

(2𝜋)𝑛𝑛

𝜋(𝑛 − 1)
 𝑐𝑛,1|𝐾|

1 𝑛⁄ . 

The following theorem provides examples where the minimal measure behaves in a different 

way from the case of volume. Note that every non-intersection body can be approximated in 

the radial metric by infinitely smooth non-intersection bodies with strictly positive curvature; 

see [216, Lemma 4.10]. Different examples of convex bodies that are not intersection bodies 

(in dimensions five and higher, as in dimensions up to four such examples do not exist) can 

be found in [216, Chapter 4]. In particular, the unit balls of the spaces ℓ𝑞
𝑛, 𝑞 > 2, 𝑛 ≥ 5 are 

not intersection bodies. 

Theorem (4.2.12) [200]: Suppose that 𝐿 is an infinitely smooth origin-symmetric convex 

body in ℝ𝑛 with strictly positive curvature that is not an intersection body. Then for small 

enough 𝜀 > 0 there exists an origin-symmetric convex body 𝐾 in ℝ𝑛, 𝐾 ⊂ 𝐿, such that 

 |𝐾 ∩ 𝜉⊥| ≤ |𝐿 ∩ 𝜉⊥| − 𝜀, ∀𝜉 ∈ 𝑆𝑛−1, 
but 

                                        |𝐾|
𝑛−1

𝑛 > |𝐿|
𝑛−1

𝑛 − 𝑐𝑛,1𝜀. 

Note that 𝑐𝑛,1 ∈ (
1

√𝑒
, 1). 

Proof: Since 𝐿 is infinitely smooth, the Fourier transform of ‖·‖𝐿
−1is a continuous function 

on the sphere 𝑆𝑛−1. Also, 𝐿 is not an intersection body, so (‖·‖𝐿
−1)^ < 0 on an open set 𝛺 ⊂

𝑆𝑛−1. Let 𝜙 ∈ 𝐶∞(𝑆𝑛−1) be an even non-negative, not identically zero, infinitely smooth 

function on 𝑆𝑛−1 with support in 𝛺 ∪ −𝛺. Extend 𝜙 to an even homogeneous of degree 

−1function 𝜙 · 𝑟−1 on ℝ𝑛\{0}. The Fourier transform of this function in the sense of 

distributions is 𝜓 · 𝑟−𝑛+1 where 𝜓 is an infinitely smooth function on the sphere. 

Let 𝜀 be a number such that |𝐵2
𝑛−1|‖𝜃‖𝐿

−𝑛+1 > 𝜀 > 0 for every 𝜃 ∈ 𝑆𝑛−1. Define a star body 

𝐾by 

             ‖𝜃‖𝐾
−𝑛+1 = ‖𝜃‖𝐿

−𝑛+1 −  𝛿𝜓(𝜃) −
𝜀

|𝐵2
𝑛−1|
 ,        ∀𝜃 ∈ 𝑆𝑛−1,                       (46)                  

where 𝛿 > 0 is small enough so that for every 𝜃   

                                    |𝛿𝜓(𝜃)| < 𝑚𝑖𝑛 {‖𝜃‖𝐿
−𝑛+1 −

𝜀

|𝐵2
𝑛−2|
 ,

𝜀

|𝐵2
𝑛−2|
}.  

The latter condition implies that 𝐾 ⊂ 𝐿. Since 𝐿 has strictly positive curvature, by an 

argument from [216, p. 96], we can make 𝜀, 𝛿 smaller (if necessary) to ensure that the body 

𝐾is convex. 
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Now we extend the functions in (46) from the sphere to ℝ𝑛\{0} as homogeneous functions 

of degree −𝑛 + 1 and apply the Fourier transform. We get that for every 𝜉 ∈ 𝑆𝑛−1 

            (‖∙‖𝐾
−𝑛+1)𝜉 = (‖∙‖𝐾

−𝑛+1)𝜉 − (2𝜋)𝑛𝛿𝜙(𝜉) − 𝜋(𝑛 − 1)𝜀.                           (47)             
Here, we used (45) to compute the last term. By (47), (44) and the fact that the function 𝜙 is 

non-negative,  

                 |𝐾 ∩ 𝜉⊥| = |𝐿 ∩ 𝜉⊥| −
(2𝜋)𝑛

𝜋(𝑛−1)
 𝛿𝜙(𝜉) −  𝜀 ≤ |𝐿 ∩ 𝜉⊥| − 𝜀.                (48)              

Multiplying both sides of (47)by (‖∙‖𝐿
−1)^(𝜉), integrating over 𝑆𝑛−1 and using Parseval’s 

formula on the sphere, we get 

(2𝜋)𝑛  ∫ ‖𝜃‖𝐿
−1‖𝜃‖𝐾

−𝑛+1𝑑𝜃
𝑆𝑛−1

 

= (2𝜋)𝑛𝑛|𝐿| − (2𝜋)𝑛𝛿 ∫ 𝜙(𝜃)(‖∙‖𝐿
−1)^(𝜃)𝑑𝜃

𝑆𝑛−1
 

                                            − 𝜋(𝑛 − 1)𝜀 ∫ (‖∙‖𝐿
−1)^(𝜃)𝑑𝜃

𝑆𝑛−1
. 

Since 𝜑 is a non-negative function supported in 𝛺, where (‖∙‖𝐿
−1)^ is negative, the latter 

equality implies  

(2𝜋)𝑛𝑛|𝐿| − 𝜋(𝑛 − 1)𝜀 ∫ (‖∙‖𝐿
−1)^(𝜃)𝑑𝜃

𝑆𝑛−1
 

 < (2𝜋)𝑛  ∫ ‖𝜃‖𝐿
−1‖𝜃‖𝐾

−𝑛+1𝑑𝜃
𝑆𝑛−1

 

≤ (2𝜋)𝑛 (∫ ‖𝜃‖𝐿
−𝑛𝑑𝜃

𝑆𝑛−1
)

𝑛−1
𝑛

 (∫ ‖𝜃‖𝐿
−𝑛𝑑𝜃

𝑆𝑛−1
)

1
𝑛

 

 = (2𝜋)𝑛𝑛|𝐿|
1
𝑛|𝐾|

𝑛−1
𝑛  . 

Combining the latter inequality with the estimate of Lemma(4.2.11), we get the result.    

Corollary (4.2.13) [200]: Suppose that 𝐿is an infinitely smooth origin-symmetric convex 

body in ℝ𝑛 with strictly positive curvature that is not an intersection body. Then there exists 

an even continuous function 𝑔 ≥ 0 on 𝐿 so that 

                              ∫ 𝑔
𝐿
<

𝑛

𝑛−1
𝑐𝑛,1|𝐿|

1 𝑛⁄  min
𝜉∈𝑆𝑛−1

∫ 𝑔
𝐿∩𝜉⊥

.                                 (49)                                

Proof: By Theorem6there exist 𝜀 > 0 and an origin-symmetric convex body 𝐾 ⊂ 𝐿 such 

that  

𝜀 = min
𝜉∈𝑆𝑛−1

(|𝐿 ∩ 𝜉⊥|  − |𝐾 ∩ 𝜉⊥|) , 

but 

                                                |𝐿|
𝑛−1

𝑛 − |𝐾|
𝑛−1

𝑛 < 𝑐𝑛,1𝜀. 
Note that the expression for 𝜀 follows from (48)and the fact that the function 𝜙 is non-

negative and equal to zero outside of 𝛺. 

Combining these and applying the Mean Value Theorem to the function 𝑡 → 𝑡
𝑛−1

𝑛
 

 𝑐𝑛,1  min
𝜉∈𝑆𝑛−1

(|𝐿 ∩ 𝜉⊥|  − |𝐾 ∩ 𝜉⊥|) > |𝐿|
𝑛−1
𝑛 − |𝐾|

𝑛−1
𝑛   
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≥
𝑛 −  1

𝑛
 |𝐿|−1 𝑛⁄  (|𝐿| − |𝐾|) .    

The latter shows that 𝑔0 = 𝜒𝐿\𝐾, the indicator function of the set 𝐿 \𝐾, satisfies (49). By 

simple approximation one can get (49)with a continuous function 𝑔. 

  
        Section (4.3):   Lower Dimensional Sections of Convex Bodies  

We discuss lower dimensional versions of the slicing problem and of the Busemann–Petty 

problem, both in the classical setting and in the generalized setting of arbitrary measures in 

place of volume, which was put forward by Koldobsky for the slicing problem and by 

Zvavitch for the Busemann–Petty problem. We introduce an alternative approach which is 

based on the generalized Blaschke–Petkantschin formula and on asymptotic estimates for 

the dual affine quermassintegrals. 

     The classical slicing problem asks if there exists an absolute constant 𝐶1 > 0 such that 

for every 𝑛 ≥ 1 and every convex body 𝐾 in 𝑅𝑛 with  center of mass at the origin (we call 

these convex bodies centered) one has 

                                   |𝐾|
𝑛−1
𝑛 ≤ 𝐶1 max

𝜃∈𝑆𝑛−1
|𝐾 ∩ 𝜃⟘|                                                  (50) 

     It is well-known that this problem is equivalent to the question if there exists an absolute 

constant 𝐶2 > 0such that 

                              𝐿𝑛 ≔ 𝑚𝑎𝑥{𝐿𝑘: 𝐾 𝑖𝑠 𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐 𝑖𝑛 𝑅
𝑛} ≤ 𝐶2                           (51) 

for all 𝑛 ≥ 1(see for background information on isotropic convex bodies and log-concave 

probability measures). Bourgain proved in [242] that 𝐿𝑛 ≤ 𝑐√𝑛
4
log 𝑛, and 𝐾lartag [241] 

improved this bound to 𝐿𝑛 ≤ 𝑐√𝑛
4

. A second proof of Klartag’s bound appears in [242]. From 

the equivalence of the two questions it follows that 

                   |𝐾|
𝑛−1
𝑛 ≤ 𝑐1𝐿𝑛 max

𝜃∈𝑆𝑛−1
|𝐾 ∩ 𝜃⟘| ≤ 𝑐2√𝑛

4
max
𝜃∈𝑆𝑛−1

|𝐾 ∩ 𝜃⟘|                 (52) 

for every centered convex body 𝐾 in 𝑅𝑛. 

    The natural generalization, the lower dimensional slicing problem, is the following 

question: Let 1 ≤ 𝑘 ≤ 𝑛 − 1 and let 𝛼𝑛,𝑘 be the smallest positive constant 𝛼 > 0 with the 

following property: For every centered convex body 𝐾 in 𝑅𝑛 one has 

                                  |𝐾|
𝑛−𝑘
𝑛 ≤ 𝛼𝑘 max

𝐹∈𝐺𝑛,𝑛−𝑘
|𝐾 ∩ 𝐹|                                                 (53) 

    Is it true that there exists an absolute constant 𝐶3 > 0 such that 𝛼𝑛,𝑘 ≤ 𝐶3 for all 𝑛 and 𝑘? 

    From (52) we have 𝛼𝑛,1 ≤ 𝑐𝐿𝑛 for an absolute constant 𝑐 > 0. We also restrict the 

question to the class of symmetric convex bodies and denote the corresponding constant by 

𝛼𝑛,𝑘
(𝑠)

. 
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    The problem can be posed for a general measure in place of volume. Let 𝑔 be a locally 

integrable non-negative function on 𝑅𝑛. For every Borel subset 𝐵 ⊆ 𝑅𝑛 we define 

                                              𝜇(𝐵) = ∫ 𝑔(𝑥)𝑑𝑥,

𝐵

                                                       (54) 

    Where, if 𝐵 ⊆ 𝐹 for some subspace 𝐹 ∈ 𝐺𝑛,𝑠, 1 ≤ 𝑠 ≤ 𝑛 − 1, integration is understood 

with respect to the s-dimensional Lebesgue measure on 𝐹. Then, for any 1 ≤ 𝑘 ≤ 𝑛 − 1one 

may define 𝛼𝑛,𝑘(𝜇)as the smallest constant 𝛼 > 0 with the following property: For every 

centered convex body 𝐾 in 𝑅𝑛 one has 

                             𝜇(𝐾) ≤ 𝛼𝑘 max
𝐹∈𝐺𝑛,𝑛−𝑘

𝜇(𝐾 ∩ 𝐹) |𝐾|
𝑘
𝑛                                            (55) 

    Koldobsky proved in [245] that if 𝐾 is a symmetric convex body in 𝑅𝑛 and if 𝑔 is even 

and continuous on 𝐾 then 

                            𝜇(𝐾) ≤ 𝛾𝑛,1
𝑛

𝑛 − 1
√𝑛 max

𝜃∈𝑠𝑛−1
𝜇(𝐾 ∩ 𝜃⟘ )|𝐾|

1
𝑛                   (56) 

    Where, more generally, 𝛾𝑛,𝑘 = |𝐵2
𝑛|
𝑛−𝑘

𝑛 |𝐵2
𝑛−𝑘|⁄ ≤ 1 for all 1 ≤ 𝑘 ≤ 𝑛 − 1. In other 

words, for the symmetric (both with respect to 𝜇 and 𝐾) analogue 𝛼𝑛,1
(𝑠)

 of  𝛼𝑛,1 one has 

                               sup
𝜇
𝛼𝑛,1
(𝑠)(𝜇) ≤ 𝐶3√𝑛                                                                    (57) 

    In[236], Koldobsky obtained estimates for the lower dimensional: if 𝐾 is a sym-metric 

convex body in 𝑅𝑛 and if 𝑔 is even and continuous on 𝐾 then 

                         𝜇(𝐾) ≤ 𝛾𝑛,𝑘
𝑛

𝑛 − 𝑘
 (√𝑛)

𝑘
max

𝐹∈𝐺𝑛,𝑛−𝑘
𝜇(𝐾 ∩ 𝐹)|𝐾|

𝑘
𝑛                      (58) 

for every 1 ≤ 𝑘 ≤ 𝑛 − 1. In other words, for the symmetric analogue 𝛼𝑛.𝑘
(𝑠)

 of 𝛼𝑛,𝑘one has 

                               sup
𝜇
𝛼𝑛,𝑘
(𝑠)(𝜇) ≤ 𝐶4√𝑛                                                                    (59) 

     We provide a different proof of this fact; our method allows us to drop the symmetry and 

continuity assumptions. 

    Theorem (4.3.1)[235]: Let 𝐾 be a convex body in 𝑅𝑛 with0 ∈ 𝑖𝑛𝑡(𝐾). Let 𝑔 be a 

bounded non-negative measurable function on 𝑅𝑛 and let 𝜇 be the measure on 𝑅𝑛 with 

density 𝑔. For every1 ≤ 𝑘 ≤ 𝑛 − 1, 

                         𝜇(𝐾) ≤  (𝑐5√𝑛 − 𝑘)
𝑘
max

𝐹∈𝐺𝑛,𝑛−𝑘
𝜇(𝐾 ∩ 𝐹). |𝐾|

𝑘
𝑛                            (60) 



139 
 

    Where 𝑐5 > 0 is an absolute constant. In particular,𝛼𝑛,𝑘(𝜇)  ≤ 𝑐5√𝑛 − 𝑘 In fact, the proof 

of Theorem(4.3.1) leads to the stronger estimate 

            𝜇(𝐾) ≤ (𝑐5√𝑛 − 𝑘)
𝑘
( ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1
𝑛

|𝐾|
𝑘
𝑛              (61) 

     The classical Busemann–Petty problem is the following question. Let 

 

 

 𝐾 and 𝐷 be two origin-symmetric convex bodies in 𝑅𝑛 such that 

                                       |𝐾 ∩ 𝜃⟘| ≤ |𝐷 ∩ 𝜃⟘|
𝐺𝑛,𝑛−𝑘

                                                (62) 

for all 𝜃 ∈ 𝑆𝑛−1. Does it follow that|𝐾|  ≤ |𝐷|? The answer is affirmative if 𝑛 ≤ 4 and 

negative if 𝑛 ≥ 5, see Koldobsky’s monograph[243]). The isomorphic version of the 

Busemann–Petty problem asks if there exists an absolute constant 𝐶4 > 0 such that 

whenever 𝐾 and 𝐷 satisfy (62) we have|𝐾| ≤ 𝐶4|𝐷|. This question is equivalent to the 

slicing problem and to the isotropic constant conjecture (asking if {𝐿𝑛}is a bounded 

sequence). It is known that if 𝐾 and 𝐷 are two centered convex bodies in 𝑅𝑛 such that (62) 

holds true for all 𝜃 ∈ 𝑆𝑛−1, then 

                               |𝐾|
𝑛−1
𝑛 ≤ 𝑐6𝐿𝑛|𝐷|

𝑛−1
𝑛                                                                 (63) 

Where 𝑐6 > 0 is an absolute constant. 

The natural generalization, the lower dimensional Busemann–Petty problem, is the 

following question: Let 1 ≤ 𝑘 ≤ 𝑛 − 1 and let 𝛽𝑛,𝑘 be the smallest constant 𝛽 > 0 with the 

following property: For every pair of centered convex bodies 𝐾 and D in 𝑅𝑛 that satisfy  

                                        |𝐾 ∩ 𝐹| ≤ |𝐷 ∩ 𝐹|                                                               (64) 
for all 𝐹 ∈ 𝐺𝑛,𝑛−𝑘, one has 

                                   |𝐾|
𝑛−𝑘
𝑛 ≤ 𝛽𝑘|𝐷|

𝑛−𝑘
𝑛                                                              (65) 

     Is it true that there exists an absolute constant 𝐶5 > 0 such that 𝛽𝑛,𝑘 ≤ 𝑐5 for all 𝑛 and 𝑘? 

      From (63) we have 𝛽𝑛,1 ≤ 𝑐6𝐿𝑛 ≤ 𝑐7√𝑛
4

 for some absolute constant 𝑐7 > 0. We also 

consider the same question for the class of symmetric convex bodies and we denote the 

corresponding constant by 𝛽𝑛,𝐾
(𝑠)

 . 

     As in the case of the slicing problem, the same question can be posed for a general 

measure in place of volume. For any 1 ≤ 𝑘 ≤ 𝑛 − 1and any measure 𝜇 on 𝑅𝑛 with a locally 

integrable non-negative density gone may define 𝛽𝑛,𝑘(𝜇)as the smallest constant 𝛽 > 0 with 

the following property: For every pair of centered convex bodies 𝐾 and 𝐷 in 𝑅𝑛 that satisfy 

𝜇(𝐾 ∩ 𝐹)  ≤ 𝜇(𝐷 ∩ 𝐹) for every𝐹 ∈ 𝐺𝑛,𝑛−𝑘, one has 

                                                 𝜇(𝐾) ≤ (𝛽)𝑘𝜇(𝐷)                                                     (66) 
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     Similarly, one may define the “symmetric” constant 𝛽𝑛,𝑘
(𝑠)(𝜇) Koldobsky and Zvavitch 

[241] proved that 𝛽𝑛,1
(𝑠)
≤ √𝑛 for every measure 𝜇 with an even continuous non-negative 

density. In fact, the study of these questions in the setting of general measures was initiated 

by Zvavitch in [240], where he proved that the classical Busemann–Petty problem for 

general measures has an affirmative answer if 𝑛 ≤ 4 and a negative one if 𝑛 ≥ 5. We study 

the lower dimensional question and provide a general estimate in the case where 𝜇 has an 

even log-concave density. 

    Theorem (𝟒. 𝟑. 𝟐)[𝟐𝟑𝟓]: Let 𝜇 be a measure on 𝑅𝑛 with an even log-concave density 𝑔 

and let 1 ≤ 𝑘 ≤ 𝑛 − 1. Let 𝐾 be a symmetric convex body in 𝑅𝑛 and let 𝐷 be a compact 

subset of 𝑅𝑛 such that 

                                             𝜇(𝐾 ∩ 𝐹) ≤ 𝜇(𝐷 ∩ 𝐹)                                               (67) 

for all 𝐹 ∈ 𝐺𝑛,𝑛−𝑘. Then, 

                                          𝜇(𝐾) ≤ (𝑐8𝐾𝐿𝑛−𝑘)
𝑘𝜇(𝐷)                                              (68) 

Where 𝑐8 > 0 is an absolute constant. 

     Comparing Theorem (4.3.2) with the estimate 𝛽𝑛−1
(𝑠) (𝜇)  ≤ √𝑛 of Koldobsky and 

Zvavitch, note that the estimate in [241] is true for an arbitrary measure 𝜇, i.e. the log-

concavity of 𝜇 is not required; on the other hand, Theorem (4.3.2) is valid for any 

codimension 𝑘 < 𝑛 and the convexity of the second body 𝐷 is not required. 

     We prove Theorem(4.3.1)and Theorem (4.3.2). The main tools are the gen-eralized 

Blaschke–Petkantschin formula and the Busemann–Straus–Grinberg inequality for the dual 

affine quermassintegrals of a convex body. For the proof of Theorem(4.3.2) we also use a 

functional version of the latter inequality, recently obtained by Dann , Paouris and ≤   In we 

collect some facts for the case of volume; we obtain the following bounds for the constants 

𝛼𝑛,𝑘 and 𝛽𝑛,𝑘. 

Theorem (𝟒. 𝟑. 𝟑)[𝟐𝟑𝟓]: For every 1 ≤ 𝑘 ≤ 𝑛 − 1we have 

                                                        𝛼𝑛,𝑘 ≤ 𝛽𝑛,𝑘                                                          (69) 

Moreover, 

                                     𝛽𝑛,𝑘 ≤ 𝑐1̅𝐿𝑛                                                                            (70) 

     Where 𝑐1 > 0 is an absolute constant. Finally, for codimensions 𝑘 which are proportional 

to 𝑛 we have the stronger bound 

                                    𝛽𝑛,𝑘 ≤ 𝑐2̅√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))
3
2 ⁄                                       (71) 

where 𝑐2̅ > 0 is an absolute constant 
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     Most of the estimates in Theorem(4.3.3) are probably known to specialists; we just point 

out alternative ways to justify them. In particular, Koldobsky has proved in [218] that 

                                       𝛽𝑛,𝑘
(𝑠)
≤ 𝑐4̅√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))

3
2⁄                                        (72) 

for all 1 ≤ 𝑘 ≤ 𝑛 − 1, where 𝑐4 > 0 is an absolute constant; this is the symmetric analogue 

of (71). 
     We close this article with a general stability estimate in the spirit of Koldobsky’s stability 

theorem (see Theorem(4.3.17)). 
     Theorem (𝟒. 𝟑. 𝟒)[𝟐𝟑𝟓]: Let 1 ≤ 𝑘 ≤ 𝑛 − 1 and let 𝐾 be a compact set in 𝑅𝑛. If 𝑔 is a 

locally integrable non-negative function on 𝑅𝑛 such that 

                          ∫ ( ∫ 𝑔(𝑥)𝑑𝑥

𝐾∩𝐹

)

𝑛

𝑑𝑣𝑛,𝑛−𝑘
𝐺𝑛,𝑛−𝑘

(𝐹) ≤ 𝜀𝑛                                    (73) 

for some 𝜀 > 0, then 

                              ∫𝑔(𝑥)𝑑𝑥 ≤ (𝑐0√𝑛 − 𝑘)
𝑘
|𝐾|

𝑘
𝑛𝜀                                              (74)

  

𝑘

   

Where 𝑐0 > 0 is an absolute constant. 

      We work in 𝑅𝑛, which is equipped with a Euclidean structure〈. , . 〉.We denote the 

corresponding Euclidean norm by‖ . ‖2 ,and write 𝐵2
𝑛 for the Euclidean unit ball, and 𝑆𝑛−1 

for the unit sphere. Volume is denoted invariant probability measure on𝑆𝑛−1. We also denote 

the Haar measure on𝑂(𝑛) by 𝜈. The Grassmann manifold 𝐺𝑛,𝑘of k-dimensional subspaces 

of 𝑅𝑛 is equipped with the Haar probability measure𝜈𝑛,𝑘. Let 𝑘 ≤ 𝑛 and 𝐹 ∈ 𝐺𝑛,𝑘. We will 

denote the orthogonal projection from 𝑅𝑛 onto 𝐹 by 𝑃𝐹. We also define 𝐵𝐹 = 𝐵2
𝑛 ∩ 𝐹 

and𝑆𝐹 = 𝑆
𝑛−1 ∩ 𝐹. 

     The letters𝑐,�́�,𝑐1,𝑐2etc. denote absolute positive constants whose value may change from 

line to line. Whenever we write 𝑎 ≃ 𝑏, we mean that there exist absolute constants 𝑐1, 𝑐2 >
0such that 𝑐1𝑎 ≤ 𝑏 ≤ 𝑐2𝑎. Also if K, 𝐿 ⊆ 𝑅𝑛 we will write 𝐾 ≃ 𝐿 if there exist absolute 

constants 𝑐1, 𝑐2 > 0 such that 𝑐1𝐾 ⊆ 𝐿 ⊆ 𝑐2𝐾. 

A convex body in𝑅𝑛 is a compact convex subset 𝐾 of 𝑅𝑛 with nonempty interior. We say 

that 𝐾 is symmetric if 𝐾 = −𝐾. We say that 𝐾 is centered if the center of mass of 𝐾 is at the 

origin, i.e. ∫ 〈𝑥, 𝜃〉
𝑘

𝑑𝑥 = 0 for every 𝜃 ∈ 𝑆𝑛−1. 

      The volume radius of 𝐾 is the quantity vard(𝐾)  = (|𝐾| |𝐵2
𝑛|⁄ )1 𝑛⁄ . Integration in polar 

coordinates shows that if the origin is an interior point of 𝐾 then the volume radius of 𝐾 can 

be expressed as 
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                       vrad(𝐾) = ( ∫ ‖𝜃‖𝑘
−𝑛𝑑𝜎(𝜃)

𝑠𝑛−1

)

1 𝑛⁄

                                               (75) 

where‖𝜃‖𝐾 = 𝑚𝑖𝑛{𝑡 > 0 ∶ 𝜃 ∈ 𝑡𝐾}. The radial function of 𝐾 is defined by𝜌𝐾(𝜃)  =
𝑚𝑎𝑥{𝑡 > 0 ∶ 𝑡𝜃 ∈ 𝐾},𝜃 ∈ 𝑆𝑛−1.The support function of 𝐾 is defined by ℎ𝐾(𝑦) ∶=
𝑚𝑎𝑥{〈𝑥, 𝑦〉 ∶ 𝑥 ∈ 𝐾} and the mean width of 𝐾 is the average 

                                𝜔(𝐾) ≔ ∫ ℎ𝐾(𝜃)𝑑𝜎(𝜃)
1 𝑛⁄

𝑆𝑛−1

                                                 (76) 

 

of ℎ𝐾 on 𝑆𝑛−1. The radius 𝑅(𝐾)of 𝐾 is the smallest 𝑅 > 0 such that 𝐾 ⊆ 𝑅𝐵2
𝑛. For notational 

convenience we write 𝐾 for the homothetic image of volume 1of a convex body𝐾 ⊆ 𝑅𝑛, i.e. 

�̅�:= |𝐾|−1 𝑛⁄ 𝐾. 

    The polar body 𝐾𝜊of a convex body 𝐾 in 𝑅𝑛 with 0 ∈ int(𝐾) is defined by 

                               𝐾𝜊 ≔ {𝑦 ∈ 𝑅𝑛: 〈𝑥, 𝑦〉 ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝐾}                 (77)            The 

Blaschke–Santaló inequality states that if 𝐾 is centered then|𝐾||𝐾𝜊|  ≤ |𝐵2
𝑛|2, with equality 

if and only if 𝐾 is an ellipsoid. The reverse Santaló inequality of Bourgain and𝑉. Milman 

states that there exists an absolute constant 𝑐 > 0 such that, conversely, 

                                                (|𝐾||𝐾𝜊|)1 𝑛⁄ ≥ 𝑐 𝑛⁄                                               (78) 

whenever 0 ∈ int(𝐾). A convex body 𝐾 in 𝑅𝑛is called isotropic if it has volume 1, it is 

centered, and if its inertia matrix is a multiple of the identity matrix: there exists a constant 

𝐿𝐾 > 0 such t 

                                       ∫〈𝑥, 𝜃〉2𝑑𝑥 = 𝐿𝐾
2

𝐾

                                                                (79) 

for every 𝜃 in the Euclidean unit sphere 𝑆𝑛−1. For every centered convex body 𝐾 in 𝑅𝑛 there 

exists an invertible linear transformation 𝑇 ∈ 𝐺𝐿(𝑛) such that 𝑇(𝐾) is isotropic. This 

isotropic image of 𝐾 is uniquely determined up to orthogonal transformations. 

For basic facts from the Brunn–Minkowski theory and the asymptotic theory of convex 

bodies see [247] and [241]. 
We denote by 𝑝𝑛 the class of all Borel probability measures on 𝑅𝑛which are absolutely 

continuous with  respect to the Lebesgue measure. The density of μ ∈Pnis denoted by fμ. 

We say that μ ∈𝑃𝑛 is centered and we write bar(μ) =0if, for all θ∈𝑆𝑛−1, 
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                         ∫〈𝑥, 𝜃〉𝑑𝜇(𝑥) =

𝑅𝑛

∫〈𝑥, 𝜃〉𝑓𝜇(𝑥)𝑑𝑥

𝑅𝑛

= 0                                       (80)  

A measure 𝜇 on 𝑅𝑛 is called log-concave if 𝜇(𝜆𝐴 + (1 − 𝜆)𝐵)  ≥ 𝜇(𝐴)𝜆𝜇(𝐵)1−𝜆 for any 

compact subsets 𝐴 and 𝐵 of 𝑅𝑛 and any 𝜆 ∈ (0, 1). A function𝑓: 𝑅𝑛 → [0,∞) is called log-

concave if its support {𝑓 > 0} is a convex set and the restriction oflog 𝑓 to it is concave. It 

is known that if a probability measure 𝜇 is log-concave and 𝜇(𝐻)  < 1 for every hyperplane 

𝐻, then 𝜇 ∈ 𝑝𝑛 and its density 𝑓𝜇 is log-concave. Note that if 𝐾 is a convex body in 𝑅𝑛 then 

the Brunn–Minkowski inequality implies that the indicator function 𝟏𝑲 of 𝐾 is the density 

of a log-concave measure. 

If 𝜇 is a log-concave measure on𝑅𝑛 with density 𝑓𝜇, we define the isotropic constant of 𝜇 by 

                        𝐿𝜇 = (
sup𝑥∈𝑅𝑛 𝑓𝜇(𝑥)

∫ 𝑓𝜇(𝑥)𝑑𝑥𝑅𝑛

)

1
𝑛

[det Cov(𝜇)]
1
2𝑛                                       (81) 

WhereCov(𝜇)) is the covariance matrix of 𝜇 with entries 

             Cov(𝜇)𝑖𝑗 =
∫ 𝑥𝑖𝑥𝑗𝑓𝜇(𝑥)𝑑𝑥𝑅𝑛

∫ 𝑓𝜇(𝑥)𝑑𝑥𝑅𝑛

−
∫ 𝑥𝑖𝑓𝜇(𝑥)𝑑𝑥 ∫ 𝑥𝑗𝑓𝜇(𝑥)𝑑𝑥𝑅𝑛𝑅𝑛

∫ 𝑓𝜇(𝑥) ∫ 𝑓𝜇(𝑥)𝑑𝑥𝑅𝑛𝑅𝑛

             (82) 

We say that a log-concave probability measure 𝜇 on𝑅𝑛 is isotropic if bar(𝜇)  = 0 and 

Cov(𝜇)is the identity matrix and we write ℒ𝐿𝑛 for the class of isotropic log-concave 

probability measures on 𝑅𝑛 Note that a centered convex body 𝐾 of volume 1 in 𝑅𝑛 is 

isotropic, i.e.it satisfies (79), if and only if the log-concave probability measure 𝜇𝐾 with 

density 𝑥 ⟼
𝐿𝐾
𝑛 1𝐾

𝐿𝐾
⁄ (𝑥)is isotropic. We shall use the fact that for every log-concave 

measure 𝜇 on 𝑅𝑛 one has 

                                                    𝐿𝜇 ≤ 𝐾𝐿𝑛                                                                 (83) 

    Where 𝜅 > 0 is an absolute constant (a proof can be found in 

[243, 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 2.5.12]). 
     Let 𝜇 ∈ 𝑝𝑛. For every 1 ≤ 𝑘 ≤ 𝑛 − 1 and every 𝐸 ∈ 𝐺𝑛,𝑘, the marginal of 𝜇 with 

respect to 𝐸 is the probability measure 𝜋𝐸(𝜇) with density 

                                           𝑓𝜋𝐸(𝜇)(𝑥) = ∫ 𝑓𝜇(𝑦)𝑑𝑦

𝑥+𝐸⊥

                                             (84) 
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It is easily checked that if 𝜇 is centered, isotropic or log-concave, then 𝜋𝐸(𝜇) is also centered, 

isotropic or log-concave, respectively. 

If 𝜇 is a measure on𝑅𝑛 which is absolutely continuous with respect to the Lebesgue measure, 

and if 𝑓𝜇 is the density of 𝜇 and 𝑓𝜇(0)  > 0, then for every 𝑝 > 0 we define 

                        𝐾𝑝(𝜇) ≔ 𝐾𝑝(𝑓𝜇) = {𝑥:∫ 𝑟
𝑝−1𝑓𝜇(𝑟𝑥) ≥

𝑓𝜇(0)

𝑝

∞

0

}                       (85) 

                              𝜌𝐾𝑝(𝜇)(𝑥) = (
1

𝑓𝜇(0)
∫ 𝑝𝑟𝑝−1𝑓𝜇(𝑟𝑥)𝑑𝑥

∞

0

)

1
𝑝⁄

                        (86) 

for 𝑥 ≠ 0. The bodies 𝐾𝑝(𝜇) were introduced by𝐾. Ball who showed that if 𝜇 is log-concave 

then, for every𝑝 > 0, 𝐾(𝜇)𝑃 is a convex body. 

For more information on isotropic convex bodies and log-concave measures see [243]. 
Our approach is based on the following generalized Blaschke–Petkantschin formula (see 

[248, Chapter 7.2]and [249, Lemma 5.1] for the particular case that we need): 

Lemma (4.3.5) [235]: Let 1 ≤ 𝑠 ≤ 𝑛 − 1. There exists a constant 𝑝(𝑛, 𝑠)  > 0 such that, 

for every non-negative bounded Borel  

                                                 ∫ … ∫(𝑥1, … , 𝑥𝑠)𝑑𝑥1…𝑑𝑥𝑠
𝑅𝑛𝑅𝑛

                                     (87) 

 

                     = 𝑝(𝑛, 𝑠) ∫ ∫ …∫ 𝑓(𝑥1, … , 𝑥𝑠)|Conv(0, 𝑥1, … , 𝑥𝑠)|
𝑛−𝑠

𝐹𝐹𝐺𝑛,𝑠

 

𝑑𝑥1…𝑑𝑥𝑠𝑑𝑣𝑛,𝑠(𝐹) 
The exact value of the constant 𝑝(𝑛, 𝑠) is 

                               𝑝(𝑛, 𝑠) =
(𝑠!)𝑛−𝑠(𝑛𝑤𝑛)… (( 𝑛 − 𝑠 +)𝑤𝑛−𝑠+1)

(𝑆𝑤𝑛)… (𝑆𝑤𝑛)𝑤1
                   (88) 

     We will use some basic facts about Sylvester-type functionals. Let 𝐷 be a convex body 

in 𝑅𝑚. For every 𝑝 > 0 we consider the normalized p-th moment of the expected volume 

of the random simplex conv(0, 𝑥1, … . 𝑥2), the convex hull of the origin and 𝑚 points from𝐷, 

defined by 

                𝑆𝑝(𝐷) = (
1

|𝐷|𝑚+𝑝
∫ ∫|Conv(0, 𝑥1, … , 𝑥𝑠)|

𝑝𝑑𝑥1…𝑑𝑥𝑚
𝐷𝐷

)

1
𝑝⁄

        (89) 

Also, for any Borel probability measure 𝜈 on 𝑅𝑚 we define 



145 
 

                     𝑆𝑝(𝑣) = ( ∫ ∫|Conv(0, 𝑥1, … , 𝑥𝑠)|
𝑝𝑑(𝑥1)…𝑑(𝑥𝑚)

𝑅𝑚𝑅𝑚

)

1
𝑝⁄

        (90) 

      Note that 𝑆𝑝(𝑣) is invariant under invertible linear transformations: 𝑆𝑝(𝐷)  = 𝑆𝑝(𝑇(𝐷)) 

for every𝑇 ∈ 𝐺𝐿(𝑛). The next fact is well-known and goes back to Blaschke (see e.g. [243, 

Proposition3.5.5]). 

Lemma(𝟒. 𝟑. 𝟔)[𝟐𝟑𝟓]: Let 𝜈 be a centered Borel probability measure on 𝑅   
𝑛. Then, 

                                         𝑚! 𝑆2
2(𝐷) = det(Cov(𝑣))                                                (91) 

In particular, if 𝐷 is centered then 

                                                    𝑆2
2(𝐷) =

𝐿𝐷
2𝑚

𝑚!
                                                           (92) 

     Hölder’s inequality shows that the function 𝑝 ⟼ 𝑆𝑝(𝐷) is increasing on (0,∞).We will 

need the next reverse Hölder inequality. 

Lemma (𝟒. 𝟑. 𝟕)[𝟐𝟑𝟓]: There exists an absolute constant 𝛿 > 0 such that, for every log-

concave probability measure 𝜈 on 𝑅𝑚 and every 𝑝 > 1. 

                                        𝑆𝑝(𝑣) ≤ 𝛿𝑝
𝑚𝑆1(𝑣)                                                          (93) 

In particular, for every convex body 𝐷 in 𝑅𝑚 and every𝑝 > 1, 

                                      𝑆𝑝(𝐷) ≤ 𝛿𝑝
𝑚𝑆1(𝐷)                                                          (94) 

Proof:  We use the fact that there exists an absolute constant 𝛿 > 0 with the following 

property: if 𝜈 ∈ 𝑝𝑚 is a log-concave probability measure then, for any seminorm 𝑢 ∶ 𝑅𝑚 →
𝑅 and any𝑞 > 𝑝 ≥ 1, 

 

 

                        ( ∫|𝑢(𝑥)|𝑞𝑑𝑣(𝑥)

𝑅𝑚

)

1
𝑞⁄

≤
𝛿𝑞

𝑝
( ∫|𝑢(𝑥)|𝑞

𝑝
𝑑𝑣(𝑥)

𝑅𝑚

)

1
𝑝⁄

            (95) 

     This is a consequence of Borel’slemma (see e.g. [243, Theorem 2.4.6]). Next, recall that 

                              |Conv(0, 𝑥1, … , 𝑥𝑚)| =
1

𝑚!
|det(𝑥1, . . , 𝑥𝑚)|                        (96) 

    The function 𝑢𝑖: 𝑅
𝑚 → 𝑅 defined by 𝑥𝑖 ⟼ |det(𝑥1, . . , 𝑥𝑛)| for fixed 𝑥𝑗 in 𝑅𝑚, 𝑗 ≠ 𝑖, is a 

seminorm, as is the function 𝑣𝑖: 𝑅
𝑚 → 𝑅 defined by 

                               𝑥𝑖 ⟼ ∫ … ∫|det(𝑥1, . . , 𝑥𝑚)|𝑑𝑥𝑖+1…𝑑𝑥𝑚
𝑅𝑚𝑅𝑚

                         (97) 

for fixed 𝑥𝑗(1 ≤ 𝑗 < 𝑖) in 𝑅𝑚. By consecutive applications of Fubini’s theorem and of (95) 

we obtain(93).  
     The next lemma gives upper bounds for the constants 𝑝(𝑛, 𝑛 − 𝑘) and 𝛾𝑛,𝑘 =

|𝐵2
𝑛|
𝑛−𝑘

𝑛 |𝐵2
𝑛|⁄ ; both constants appear frequently. 

Lemma(𝟒. 𝟑. 𝟖)[𝟐𝟑𝟓]: For every 1 ≤ k ≤ n − 1we have 
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                      𝑒−𝑘 2⁄ < 𝛾𝑛,𝑘 < 1  𝑎𝑛𝑑 [𝛾𝑛,𝑘
−𝑛𝑝(𝑛, 𝑛 − 𝑘)]

1
𝑘(𝑛−𝑘) ≃ √𝑛 − 𝑘         (98) 

Proof: Recall that 

                                                           𝛾𝑛,𝑘 ≔ 𝜔𝑛

𝑛−𝑘
𝑛 𝜔𝑛−𝑘⁄                                          (99) 

    Using the log-convexity of the Gamma function one can check that𝑒−𝑘 2⁄ < 𝛾𝑛,𝑘 < 1. 

Aproof appears in [249, Lemma2.1]. 

In order to give an upper bound for 𝑝(𝑛, 𝑛 − 𝑘) we start from the fact that 𝜔𝑠 =

𝜋
𝑠

2 Γ (
𝑠

2
+ 1)⁄  and use Stirling’s approximation. Recall that 

 

 

 

               𝑃(𝑛, 𝑛 − 𝑘) = ((𝑛 − 𝑘)!)
𝑘 (𝑛𝜔𝑛)… ((𝑘 + 1)𝜔𝑘+1)

((𝑛 − 𝑘)𝜔𝑛−𝑘)… (2𝜔2)𝜔1
            (100) 

= ((𝑛 − 𝑘)!)
𝑘
(
𝑛

𝑘
)

∏
𝜋𝑠 2⁄

Γ (
𝑠
2
+ 1)

𝑛
𝑠=𝑘+1

∏
𝜋𝑠 2⁄

Γ (
𝑠
2
+ 1)

𝑛−𝑘
𝑠=1

 

              = ((𝑛 − 𝑘)!)
𝑘
(
𝑛

𝑘
)𝜋

𝑘(𝑛−𝑘)
2

∏ Γ(
𝑠
2
+ 1)𝑛−𝑘

𝑠=1

∏ Γ(
𝑠
2 + 1)

𝑛
𝑠=𝑘+1

 

Where we have used the identity 

1

2
∑ 𝑠 −

1

2
∑ 𝑠

𝑛−𝑘

𝑠=1

𝑛

𝑠=𝑘+1

=
1

4
(𝑛(𝑛 + 1) − 𝑘(𝑘 + 1) − (𝑛 − 𝑘)(𝑛 − 𝑘 + 1))

=
1

2
𝑘(𝑛 − 𝑘)                                                                                      (101) 

Using the estimate 

            (
𝑠

2𝑒
)

𝑠
2
√2𝜋𝑠 ≤ Γ (

𝑠

2
+ 1) ≤ (

𝑠

2𝑒
)

𝑠
2
√2𝜋𝑠𝑒

1
6𝑠 ≤ (

𝑠

2𝑒
)

𝑠
2
√2𝜋𝑠𝑒

1
6        (102) 

We get 

 𝑃(𝑛, 𝑛 − 𝑘) ≤ ((𝑛 − 𝑘)!)
𝑘
(2𝜋𝑒)

𝑘(𝑛−𝑘)
2 𝑒

𝑛−𝑘
6 (

𝑛

𝑘
)
1 2⁄ ∏ 𝑠

𝑠
2𝑘

𝑠=1 ∏ 𝑠
𝑠
2𝑛−𝑘

𝑠=1

∏ 𝑠
𝑠
2𝑛

𝑠=1

             (103) 

Let 

                                              𝑡𝑚 = 1. 2
2. 33… .𝑚𝑚                                         (104) 

It is known that 

                                              𝑡𝑚~𝐴𝑚
𝑚2

2
+
𝑚
2
+
1
12𝑒

−𝑚2

4                                          (105)  
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as 𝑚 → ∞, where 𝐴 > 0 is an absolute constant (the Glaisher–Kinkelin constant, see e.g. 

[248]). Note that 

 

 

          𝛾𝑛,𝑘
−𝑛 =

𝜔𝑛−𝑘
𝑛

𝜔𝑛
𝑛−𝑘 =

Γ(
𝑛
2
+ 1)

𝑛−𝑘

Γ (
𝑛 − 𝑘
2

+ 1)
n ≤ (

𝑛

𝑛 − 𝑘
)

𝑛(𝑛−𝑘)
2 (𝜋𝑛)

𝑛−𝑘
2 𝑒

𝑛−𝑘
6

(𝜋(𝑛 − 𝑘))
𝑛
2

       (106)

≤ 𝑒
𝑛−𝑘
6 (

𝑛

𝑛 − 𝑘
)

(𝑛+1)(𝑛−𝑘)
2

 

Using the fact that 𝑛2 = 𝑘2 + (𝑛 − 𝑘)2 + 2𝑘(𝑛 − 𝑘) we get 

𝛾
𝑛,𝑘

−𝑛
𝑘(𝑛−𝑘)

(
𝑡𝑘𝑡𝑛−𝑘
𝑡𝑛

)

1
2𝑘(𝑛−𝑘)

≤
𝑐1

√𝑛
(
𝑘

𝑛
)

𝑘+1
4(𝑛−𝑘)

(
𝑛 − 𝑘

𝑛
)

𝑛−𝑘+1
4𝑘

(
𝑛

𝑛 − 𝑘
)

𝑛+1
2𝑘
    

≤
𝑐1

√𝑛
(
𝑘

𝑛
)

𝑘+1
4(𝑛−𝑘)

(
𝑛

𝑛 − 𝑘
)

𝑛−𝑘+1
4𝑘

                                       (107)  

≤
𝑐1

√𝑛
(
𝑘

𝑛
)

𝑘+1
4(𝑛−𝑘)

(
𝑛

𝑛 − 𝑘
)

𝑛−𝑘
2𝑘
(
𝑛

𝑛 − 𝑘
)

2𝑘+1
4𝑘

 

𝑐1

√𝑛
.
√𝑛

√𝑛 − 𝑘
=

𝑐2

√𝑛 − 𝑘
  . 

Since 

                [((𝑛 − 𝑘)!)
𝑘
(2𝜋𝑒)

𝑘(𝑛−𝑘)
2 𝑒

𝑛−𝑘
6 (

𝑛

𝑘
)
1
2⁄

]

1
𝑘(𝑛−𝑘)

≤ 𝑐3(𝑛 − 𝑘)           (108) 

We see that 

                                          ⌈𝛾𝑛,𝑘
−𝑛𝑝(𝑛, 𝑛 − 𝑘)⌉

1
𝑘(𝑛−𝑘) ≤ 𝑐3√𝑛 − 𝑘                         (109) 

    For every1 ≤ 𝑘 ≤ 𝑛 − 1, where 𝑐0 > 0 is an absolute constant. The reverse inequality 

can be obtained from similar computations, but we will not need it in the sequel.  

Remark(𝟒. 𝟑. 𝟗)[𝟐𝟑𝟓]: An alternative way to give an upper bound for 𝑝(𝑛, 𝑛 − 𝑘) is to 

start by rewriting in the form 

         |𝐾|𝑛−𝑘 = 𝑝(𝑛, 𝑛 − 𝑘) ∫ |𝐾 ∩ 𝐹|𝑛[𝑆𝑘(𝐾 ∩ 𝐹)]
𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

        (110) 

 

In particular, setting 𝐾 = 𝐵2
𝑛 we see that if 𝑘 ≥ 2 then 

𝜔𝑛
𝑛−𝑘 = 𝑝(𝑛, 𝑛 − 𝑘)𝜔𝑛−𝑘

𝑛 [𝑆𝑘𝐵2
𝑛−𝑘]

𝑘
 

≥ 𝑝(𝑛, 𝑛 − 𝑘)𝜔𝑛−𝑘
𝑛 [𝑆2𝐵2

𝑛−𝑘]
𝑘
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≥ 𝑝(𝑛, 𝑛 − 𝑘)𝜔𝑛−𝑘
𝑛 (

𝐿𝐵2𝑛−𝑘

√𝑛 − 𝑘
)

𝑘(𝑛−𝑘)

 

≥ 𝑝(𝑛, 𝑛 − 𝑘)𝜔𝑛−𝑘
𝑛 (

𝑐1

√𝑛 − 𝑘
)
𝑘(𝑛−𝑘)

 

Where 𝑐1 > 0 is an absolute constant, which implies that 

                                         𝑝(𝑛, 𝑛 − 𝑘) ≤ 𝛾𝑛,𝑘
𝑛 (𝑐0√𝑛 − 𝑘)

𝑘(𝑛−𝑘)
                          (111) 

Where𝑐0 = 𝑐1
−1. For the case 𝑘 = 1 we can use the fact that 𝑆1(𝐾 ∩ 𝐹)  ≥ 𝛿

−(𝑛−1)𝑆2(𝐾 ∩
𝐹)for every𝐹 ∈ 𝐺𝑛,𝑛−1, and then continue as above. The final estimate is exactly the same 

as in Lemma(4.3.8): 

                                            [𝛾𝑛,𝑘
−𝑛𝑝(𝑛, 𝑛 − 𝑘)]

1
𝑘(𝑛−𝑘) ≤ 𝑐0√𝑛 − 𝑘  ,                    (112) 

and this is what we use. However, the proof of Lemma(4.3.8) shows that this estimate is 

tight for all 𝑛 and 𝑘; one cannot expect something better. 

     For the proof of Theorem(4.3.2) we will additionally use the next theorem of  𝐷 an 𝑛, 

Paouris and Pivovarov from [247]. 

Theorem(𝟒. 𝟑. 𝟏𝟎)[𝟐𝟑𝟓]: (Dann–Paouris–Pivovarov). Let 𝑢 be a bounded integrable non-

negative function on 𝑅𝑛 with𝑢1 > 0 . For every 1 ≤ 𝑘 ≤ 𝑛 − 1 we have 

∫

1

‖𝑢|𝑓‖∞
𝑘 (∫ 𝑢(𝑥)𝑑𝑥

𝑓

)

𝑛

𝑑𝑣𝑛,𝑛−𝑘(𝐹)                                                      (113) 

≤ 𝛾𝑛,𝑘
−𝑛 ( ∫ 𝑢(𝑥)𝑑𝑥

𝑅𝑛

)

𝑛−𝑘

 
𝐺𝑛,𝑛−𝑘

    

 

                   

 

     The proof of this fact combines Blaschke–Petkantschin formulas with rearrangement 

inequalities, and develops ideas that started in[245]. 
    Finally, we use the Busemann–Straus–Grinberg inequality for the dual affine quer-

massintegrals (introduced by Lutwak, see [243] and [244]) of a convex body 𝐾 in 𝑅𝑛 We 

use the normalization of [246]: we assume that the volume of 𝐾 is equal to 1and we set 

                             Φ̃[k](𝐾) = ( ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1
2𝑛

                         (114) 

     For every 1 ≤ 𝑘 ≤ 𝑛 − 1. One can extend the definition to bounded Borel subsets of 𝑅𝑛. 

The following inequality was proved by Busemann and Straus[244], and independently by 

Grinberg [240]. 
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Theorem(𝟒. 𝟑. 𝟏𝟏)[𝟐𝟑𝟓]: (Busemann–Straus, Grinberg). Let K be a compact set of volume 

1in 𝑅𝑛. For any 1 ≤ 𝑘 ≤ 𝑛 − 1 and 𝑇 ∈ 𝑆𝐿(𝑛) we have 

                                               Φ̃[k](𝐾) = Φ̃[k](𝑇(𝐾))                                             (115) 
Moreover, 

                                        Φ̃[k](𝐾) ≤ Φ̃[k](�̅�2
𝑛)                                                        (116) 

Where 𝐵2
𝑛 is the Euclidean ball of volume1. 

     We can use Theorem(4.3.11) for compact sets; this can be seen by inspection of 

Grinberg’s argument (for this more general form see also [249, Section 7]). Direct 

computation and Lemma(4.3.8) show that 

                             Φ̃[k](�̅�2
𝑛) = (

𝜔𝑛−𝑘
𝑛

𝜔𝑘
𝑛−𝑘)

1
𝑘𝑛

= 𝛾𝑛,𝑘
−1 𝑘⁄ ≤ √𝑒                                   (117) 

 

The Busemann–Straus–Grinberg inequality has been also used by Paouris and Valet-tas in 

[246] where it is proved that if 𝜇 is an isotropic log-concave probability measure on 𝑅𝑛 then, 

for every 1 ≤ 𝑘 ≤ √𝑛 and any 𝜀 > 0 one has that, for all k-dimensional subspaces 𝐹 in an 

ε-net of the Grassmannian 𝐺𝑛,𝑘, 

                                                      𝐿𝜋𝐹(𝐹) ≤
𝐶

𝜀
                                                          (118)  

We prove Theorem(4.3.1) and Theorem(4.3.2). 
Let 𝜇 be a Borel measure with a bounded non-negative density 𝑔 on𝑅𝑛. We consider a 

convex body 𝐾 in 𝑅𝑛with 0 ∈ 𝑖𝑛𝑡(𝐾), and fix 1 ≤ 𝑘 ≤ 𝑛 − 1. Applying 

Lemma(4.3.5)with s = 𝑛 − 𝑘for the function 𝑓(𝑥1, . . . , 𝑥𝑛−𝑘)  = ∏ 𝑔(𝑥𝑖)1𝐾(𝑥𝑖)
𝑛−𝑘
𝑖=1  we get 

𝜇(𝐾)𝑛−𝑘 =∏∫ 𝑔(𝑥𝑖)𝑑𝑥

𝑘

𝑛−𝑘

𝑖=1

= ∫ … ∫ 𝑓(𝑥𝑖,…,𝑥𝑛−𝑘)𝑑𝑥1…𝑑𝑥𝑛−𝑘
𝑅𝑛𝑅𝑛

  

= 𝑝(𝑛, 𝑛 − 𝑘) ∫ ∫ … ∫ 𝑔(𝑥1)…𝑔(𝑥𝑛−𝑘)

𝐾∩𝐹𝐾∩𝐹𝐺𝑛,𝑛−𝑘

 

× |conv(0, 𝑥1, … , 𝑥𝑛−𝑘)|
𝑘𝑑𝑥1…𝑑𝑥𝑛−𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹) 

≤ |𝐾 ∩ 𝐹|𝑘𝑑𝑥1…𝑑𝑥𝑛−𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹)                          

         = 𝑝(𝑛, 𝑛 − 𝑘) ∫ |𝐾 ∩ 𝐹|𝑘𝜇(𝐾 ∩ 𝐹)𝑛−𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

 

≤ 𝑝(𝑛, 𝑛 − 𝑘)( ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑛−𝑘
𝑛
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× ( ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑘
𝑛

 

In order to estimate the last integral, note that if �̅� = |𝐾|−
1

𝑛𝐾 then 

         ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

= |𝐾|𝑛−𝑘 ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

         (119) 

 

≤ |𝐾|𝑛−𝑘 ∫ |𝐵2
−𝑛 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

 

= 𝛾𝑛,𝑘
−𝑛|𝐾|𝑛−𝑘 

By Theorem(4.3.11) and (117). Taking into account Lemma(4.3.8) we see that 

𝜇(𝐾)𝑛−𝑘 ≤ (𝑐0√𝑛 − 𝑘)
𝑘(𝑛−𝑘)

( ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑛−𝑘
𝑛

 

 

                                                        |𝐾|
𝑘(𝑛−𝑘)
𝑛                                                                    (120) 

This proves (61) and the result follows.  

    We pass to the proof of Theorem(4.3.2). Let 𝜇 be a measure on 𝑅𝑛 with a bounded density 

g. For any 1 ≤ 𝑘 ≤ 𝑛 − 1 and any convex body 𝐾 in 𝑅𝑛 we would like to give upper and 

lower bounds for 𝜇(𝐾) in terms of the measures𝜇(𝐾 ∩ 𝐹) ,   𝐹 ∈ 𝐺𝑛,𝑛−𝑘. Alower bound can 

be given without any further assumption on g. At this point we use Theorem(4.3.10). 
Proposition (𝟒. 𝟑. 𝟏𝟐)[𝟐𝟑𝟓]: Let 𝑔 be a bounded non-negative measurable function on 𝑅𝑛 

and let 𝜇 be the measure on 𝑅𝑛 with density g. For every compact 

 

 

 

set 𝐷 in 𝑅𝑛 we have 

                        ∫ 𝜇(𝐷 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹) ≤ 𝛾𝑛,𝑘
−𝑛‖𝑔‖∞

𝑘 𝜇(𝐷)𝑛−𝑘

𝐺𝑛,𝑛−𝑘

                   (121) 

Proof: We apply Theorem(4.3.10) to the function 𝑢 = 𝑔 · 𝟏𝐷. We simply observe that 

‖𝑢|𝑓‖∞ = ‖𝑔|𝐷 ∩ 𝑓‖∞ ≤ ‖𝑔‖∞ for all𝐹 ∈ 𝐺𝑛,𝑛−𝑘. Also, 

                         ∫ 𝑢(𝑥)𝑑𝑥

𝐹

= 𝜇(𝐷 ∩ 𝐹) 𝑎𝑛𝑑 ∫ 𝑢(𝑥)𝑑𝑥

𝑅𝑛

= 𝜇(𝐷)                       (122) 
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Then, the proposition follows from (113).  
      We can give an upper bound if we assume that 𝑔 is an even log-concave function and 𝐾 

is a symmetric convex body. 

  Proposition (𝟒. 𝟑. 𝟏𝟑)[𝟐𝟑𝟓]: Let 𝜇 be a measure on 𝑅𝑛 with an even log-concave density 

g. For every symmetric convex body 𝐾 in 𝑅𝑛 and any 1 ≤ 𝑘 ≤ 𝑛 − 1we have 

𝜇(𝐾)𝑛−𝑘 ≤ 𝑝(𝑛, 𝑛 − 𝑘)
(𝜅𝛿𝑘𝐿𝑛−𝑘)

𝑘(𝑛−𝑘)

[(𝑛 − 𝑘)!]
𝑘
2

 
1

‖𝑔‖∞
𝑘

 

                                           ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

                                      (123) 

   Where 𝜅 > 0 is the absolute constant in (83) and 𝛿 > 0 is the absolute constant in 

Lemma (4.3.7). 
Proof: We start by writing 

𝜇(𝐾)𝑛−𝑘 =∏∫ 𝑔(𝑥𝑖)𝑑𝑥

𝑘

𝑛−𝑘

𝑖=1

 

= 𝑝(𝑛, 𝑛 − 𝑘) ∫ ∫ … ∫|conv(0, 𝑥1, … , 𝑥𝑛−𝑘)|
𝑘

𝐾∩𝐹𝐾∩𝐹𝐺𝑛,𝑛−𝑘

 

×∏𝑔(𝑥𝑖)𝑑𝑥1…𝑑𝑥𝑛,𝑛−𝑘(𝐹)

𝑛−𝑘

𝑖=1

 

                = 𝑝(𝑛, 𝑛 − 𝑘) ∫ 𝜇(𝐾 ∩ 𝐹)𝑛−𝑘[𝑆𝑘(𝜇𝐾 ∩ 𝐹)]
𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

, 

   Where 𝜇𝐾 ∩ 𝐹 is the even log-concave probability measure with density𝑔𝐾 ∩ 𝐹:=
1

𝜇(𝐾∩𝐹)
𝑔 · 𝟏𝐾 ∩ 𝐹. From Lemma(4.3.7) and Lemma(4.3.6)  we have 

[𝑆𝑘(𝜇𝐾 ∩ 𝐹)]
𝑘 ≤ (𝛿𝑘)𝑘(𝑛−𝑘)[𝑆𝑘(𝜇𝐾 ∩ 𝐹)]

𝑘 = (𝛿𝑘)𝑘(𝑛−𝑘) 

                                                      (
det(Cov(𝜇𝐾 ∩ 𝐹))

(𝑛 − 𝑘)!
)                                             (124) 

Now, since 𝑔 is even and log-concave we have 

                                          ‖𝑔𝐾 ∩ 𝐹‖∞ =
𝑔(0)

𝜇(𝐾 ∩ 𝐹)
=

‖𝑔‖∞
𝜇(𝐾 ∩ 𝐹)

                      (125) 

Therefore, (81) implies that 

             det(Cov(𝜇𝐾 ∩ 𝐹)) =
𝐿𝜇𝐾∩𝐹
2(𝑛−𝑘)

‖𝑔𝐾 ∩ 𝐹‖∞
2
≤ 𝜇(𝐾 ∩ 𝐹)2

(𝜅𝐿𝑛−𝑘)
2

‖𝑔‖∞
𝑘

              (126) 

Where 𝜅 > 0 is the absolute constant in (83). It follows that 
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                        [𝑆𝑘(𝜇𝐾 ∩ 𝐹)]
𝑘 ≤

(𝜅𝛿𝑘𝐿𝑛−𝑘)
𝑘(𝑛−𝑘)

[(𝑛 − 𝑘)!]
𝑘
2

 
𝜇(𝐾 ∩ 𝐹)𝑘

‖𝑔‖∞
𝑘

                  (127) 

  

Combining Proposition(4.3.12) and Proposition(4.3.13) we see that 

 

 

 

                         𝜇(𝑘)𝑛−𝑘 ≤ 𝑝(𝑛, 𝑛 − 𝑘)
(𝜅𝛿𝑘𝐿𝑛−𝑘)

𝑘(𝑛−𝑘)

[(𝑛 − 𝑘)!]
𝑘
2

 
1

‖𝑔‖∞
𝑘
                    (128) 

         ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

≤ 𝑝(𝑛, 𝑛 − 𝑘)
(𝜅𝛿𝑘𝐿𝑛−𝑘)

𝑘(𝑛−𝑘)

[(𝑛 − 𝑘)!]
𝑘
2

 
1

‖𝑔‖∞
𝑘

 

       ∫ 𝜇(𝐾 ∩ 𝐹)𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

≤ 𝑝(𝑛, 𝑛 − 𝑘)
(𝜅𝛿𝑘𝐿𝑛−𝑘)

𝑘(𝑛−𝑘)

[(𝑛 − 𝑘)!]
𝑘
2

 
1

‖𝑔‖∞
𝑘

 

𝛾𝑛,𝑘
−𝑛‖𝑔‖∞

𝑘 𝜇(𝐷)𝑛−𝑘 ≤ (𝑐8𝜅𝐿𝑛−𝑘)
𝑘(𝑛−𝑘)𝜇(𝐷)𝑛−𝑘 

     For some absolute constant 𝑐8 > 0, where in the last step we have used the estimate 

                                     𝑝(𝑛, 𝑛 − 𝑘) ≤ 𝛾𝑛,𝑘
𝑛 (𝑐0√𝑛 − 𝑘)

𝑘(𝑛−𝑘)
                        (129) 

From Lemma (4.3.8) This completes the proof.  

We collect some estimates for the volume version of the slicing problem and of the 

Busemann–Petty problem. The first observation is that any upper bound for 𝛽𝑛 ,kimplies an 

upper bound for the lower dimensional slicing problem. 

Proposition(𝟒. 𝟑. 𝟏𝟒)[𝟐𝟑𝟓]: There exists an absolute constant 𝑐 > 0 such that 

                                                  𝛼𝑛,𝑘 ≤ 𝛽𝑛,𝑘                                                              (130) 
For all 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛 − 1.  

Proof: Consider a centered convex body 𝐾 in 𝑅𝑛, fix 1 ≤ 𝑘 ≤ 𝑛 − 1 and choose 𝑟 >
0 such that 

                                               max
𝐹∈𝐺𝑛,𝑛−𝑘

|𝐾 ∩ 𝐹| = 𝜔𝑛−𝑘𝑟
𝑛−𝑘                                 (131) 

    If we set 𝐵(𝑟)  = 𝑟𝐵2
𝑛 then we have |𝐾 ∩ 𝐹|  ≤ |𝐵(𝑟) ∩ 𝐹| for all𝐹 ∈ 𝐺𝑛,𝑛−𝑘, therefore 

 

 

                     |𝐾|
𝑛−𝑘
𝑛 ≤ (𝛽𝑛,𝑘)

𝑘
|𝐵(𝑟)|

𝑛−𝑘
𝑛 = (𝛽𝑛,𝑘)

𝑘
𝜔𝑛

𝑛−𝑘
𝑛 𝑟𝑛−𝑘                      (132) 

It follows that 

                                |𝐾|
𝑛−𝑘
𝑛 ≤ 𝛾𝑛,𝑘(𝛽𝑛,𝑘)

𝑘
max

𝐹∈𝐺𝑛,𝑛−𝑘
|𝐾 ∩ 𝐹|                            (133) 

   Sinceγn,k < 1 we get the result .  
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Next, we give two upper bounds for 𝛽𝑛,𝑘 these are essentially contained in the works of 

Dafnis and Paouris [245] and[246]. 
Proposition(𝟒. 𝟑. 𝟏𝟓)[𝟐𝟑𝟓]: Let 𝐾 be a convex body and 𝐷 be a compact set in 𝑅𝑛 that 

satisfy 

                                  |𝐾 ∩ 𝐹| ≤ |𝐷 ∩ 𝐹|                                                                (134) 
For all 𝐹 ∈ 𝐺𝑛,𝑛−𝑘 . Then, 

                                  |𝐾|
𝑛−𝑘
𝑛 ≤ |𝑐1̅𝐿𝑘|

𝑘|𝐷|
𝑛−𝑘
𝑛                                                      (135) 

Where 𝑐1 > 0 is an absolute constant. In particular, 

                                             𝛽𝑛,𝑘 = 𝑐√𝑛
4
,                                                                 (136) 

Where 𝑐 > 0 is an absolute constant. 

Proof: Recall that �̅� = |𝐴|−1 𝑛⁄ 𝐴. Using (134) and the definition ofΦ̃[k](𝐴)we write 

                  |𝐾|𝑛−𝑘[Φ̃[k](�̅�)]
𝑘𝑛
= ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

                        (137) 

         ≤ ∫ |𝐷 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

 

                      = |𝐷|𝑛−𝑘[Φ̃[k](�̅�)]
𝑘𝑛
≤ 𝑒

𝑘𝑛
2 |𝐷|𝑛−𝑘 

    By the affine invariance of ˜Φ̃[k](𝐴), if �̃� is an isotropic image of 𝐾 we have 

 

 

                                              Φ̃[k](�̃�) = Φ̃[k](�̅�)                                                 (138) 

    Now, we use some standard facts from the theory of isotropic convex bodies (see [243, 

Chapter5]). For every 1 ≤ 𝑘 ≤ 𝑛 − 1 and𝐹 ∈ 𝐺𝑛,𝑛−𝑘,, the body 𝐾𝑘+1̅̅ ̅̅ ̅̅ (𝜋𝐹⊥(𝜇�̃�)) satisfies 

                                          (�̃� ∩ 𝐹)
1 𝑘⁄

≥ 𝑐1
𝐿𝐾𝑘+1̅̅ ̅̅ ̅̅ ̅(𝜋𝐹⊥(𝜇�̃�))

𝐿𝑘
 ,                          (139) 

Where 𝑐1 > 0 is an absolute constant. It follows that 

           Φ̃[k](�̃�)𝐿𝑘 ≥ ( ∫ (𝑐1𝐿𝐾𝑘+1̅̅ ̅̅ ̅̅ ̅(𝜋𝐹⊥(𝜇�̃�)))
𝑘𝑛
𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1
𝑘𝑛⁄

      (140) 

     Since 𝐿𝐾𝑘+1̅̅ ̅̅ ̅̅ ̅(𝜋𝐹⊥(𝜇�̃�)) ≥ 𝑐2 for every 𝐹 ∈ 𝐺𝑛,𝑛−𝑘where 𝑐2 > 0 is an absolute constant, 

we get 

        Φ̃[k](�̅�)𝐿𝑘 ( ∫ (𝑐1𝐿𝐾𝑘+1̅̅ ̅̅ ̅̅ ̅(𝜋𝐹(𝜇�̃�)))
𝑘𝑛
𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1
𝑘𝑛⁄

≥ 𝑐3,        (141) 
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     Where c3 = c1c2 Combining the above we obtain (135). The second claim of the propo-

sition follows from Klartag’s general upper bound for Ln. The next proposition provides a 

better bound in the case where the codimension k is “large”. 

Proposition (𝟒. 𝟑. 𝟏𝟔)[𝟐𝟑𝟓]: Let K be a convex body and 𝐷 be a compact set in 𝑅𝑛 that 

satisfy 

                                        |𝐾 ∩ 𝐹| ≤ |𝐷 ∩ 𝐹|                                                            (142) 
For all 𝐹 ∈ 𝐺𝑛,𝑛−𝑘then, 

                             |𝐾|
𝑛−𝑘
𝑛 ≤ (𝑐2̅√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))

3
2)
𝑘

|𝐷|
𝑛−𝑘
𝑛                       (143) 

Where 𝑐2 > 0 is an absolute constant. In particular, 

                           𝛽𝑛,𝑘 ≤ 𝑐2̅√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))
3
2                                         (144) 

Proof: We may assume that the volume of 𝐾 is equal to 1. We consider the quantities 

                                �̃�[𝑘](𝐾) = ( ∫ |𝐾 ∩ 𝐹|𝑑𝑣𝑛,𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

1
𝑘

                             (145) 

And 

                             𝐼−𝑘(𝐾) = (∫‖𝑥‖2
−𝑘𝑑𝑥

𝑘

)

−
1
𝑘

                                                   (146) 

Integration in polar coordinates shows that 

                �̃�[𝑘](𝐾)𝐼−𝑘(𝐾) = (
(𝑛 − 𝑘)𝜔𝑛−𝑘

𝑛𝜔𝑛
)

1 𝑘⁄

= �̃�[𝑘](�̅�2
𝑛)𝐼−𝑘(�̅�2

𝑛)         (147) 

     And that(
(𝑛−𝑘)𝜔𝑛−𝑘

𝑛𝜔𝑛
)
1 𝑘⁄

≃ √𝑛 . It was proved in [245] that there exists 𝑇 ∈ 𝑆𝐿(𝑛)such 

that the body𝐾2 = 𝑇(𝐾)satisfies 

                             𝐼−𝑘(𝐾2) ≤ 𝑐1√𝑛√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))
3
2                                    (148) 

By the affine invariance of Φ̃[k](𝐾)and by Hölder’s inequality we have 

Φ̃[k](𝐾) = Φ̃[k](𝐾2) ≥ �̃�[𝑘](𝐾2) ≥
𝑐2√𝑛

 𝐼−𝑘(𝐾2)
                

≥
𝑐3

√𝑛 𝑘⁄ (log(𝑒𝑛 𝑘⁄ ))
3
2

                                                                 (149) 

    On the other hand, in the proof of Proposition(4.3.15) we checked that if 𝐾 and Dsatisfy 

(142) then 

                              |𝐾|𝑛−𝑘[Φ̃[k](�̅�)]
𝑘𝑛
≤ 𝑒

𝑛𝑘
2 |𝐷|𝑛−𝑘                                           (150) 

    Inserting the lower bound of (149) into (150) we conclude the proof.  

Theorem(4.3.3) clearly summarizes the results. 
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   Theorem(𝟒. 𝟑. 𝟏𝟕)[𝟐𝟑𝟓]: (Koldobsky). Let 1 ≤ 𝑘 ≤ 𝑛 − 1 and let 𝐾 be a generalized 

k-intersection body in 𝑅𝑛 . If 𝑓 is an even continuous non-negative function on 𝐾 such that 

                                                    ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝜀 

𝐾∩𝐹

                                                   (151) 

For some 𝜀 > 0 and for all 𝐹 ∈ 𝐺𝑛,𝑛−𝑘, then 

                                        ∫ 𝑓(𝑥)𝑑𝑥 ≤ 𝛾𝑛,𝑘
𝑛

𝑛 − 𝑘
|𝐾|

𝑘
𝑛 𝜀

𝐾

                                     (152) 

   The next theorem is a byproduct of our methods and provides a general stability estimate 

in the spirit of Theorem(4.3.17). 
Theorem (4.3.18) [235]: Let 1 ≤ 𝑘 ≤ 𝑛 − 1 and let 𝐾 be a compact set in 𝑅𝑛. If 𝑔 is a 

locally integrable non-negative function on 𝑅𝑛 such that 

                                    ∫ ( ∫ 𝑔(𝑥)𝑑𝑥

𝐾∩𝐹

)

𝑛

𝑑𝑣𝑛,𝑛−𝑘(𝑓) ≤ 𝜀
𝑛 

𝐺𝑛,𝑛−𝑘

                       (153) 

For some 𝜀 > 0 and for all𝐹 ∈ 𝐺𝑛,𝑛−𝑘, then 

                                    ∫ 𝑔(𝑥)𝑑𝑥

𝐾

≤ (𝑐0√𝑛 − 𝑘)
𝑘
|𝐾|

𝑘
𝑛 𝜀                                     (154) 

Note. Our assumption (153)is weaker than the assumption (151)in Theorem (4.3.17). 
Proof: Applying Lemma(4.3.5) with 𝑠 = 𝑛 – 𝑘 for the function  

 

 

𝑓(𝑥1, … , 𝑥𝑛−𝑘) = ∏ 𝑔(𝑥𝑖)1𝑘(𝑥𝑖)
𝑛−𝑘
𝑖=1  we get 

                          ∏∫ 𝑔(𝑥𝑖)𝑑(𝑥𝑖)

𝐾

≤ 𝑝(𝑛, 𝑛 − 𝑘) ∫ |𝐾 ∩ 𝐹|𝑘

𝐺𝑛,𝑛−𝑘

𝑛−𝑘

𝑖=1

                    (155) 

                              × ∫ … ∫ 𝑔(𝑥𝑖)…𝑔(𝑥𝑛−𝑘)𝑑𝑥1…𝑑𝑥𝑛−𝑘𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐾∩𝐹𝐾∩𝐹

  

                       ≤ 𝑝(𝑛, 𝑛 − 𝑘) ∫ |𝐾 ∩ 𝐹|𝑘 ( ∫ 𝑔(𝑥)𝑑𝑥

𝐾∩𝐹

)

𝑛−𝑘

𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

 

From Hölder’s inequality it follows that 

        (∫ 𝑔(𝑥)𝑑𝑥

𝐾

)

𝑛−𝑘

≤ 𝑝(𝑛, 𝑛 − 𝑘)( ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑘
𝑛

        (156) 
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                      × ( ∫ ( ∫ 𝑔(𝑥)𝑑𝑥

𝐾∩𝐹

)

𝑛

𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑛−𝑘
𝑛

 

                           ≤ 𝑝(𝑛, 𝑛 − 𝑘)𝜀𝑛−𝑘 ( ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

)

𝑘
𝑛

 

≤ 𝛾𝑛,𝑘
−𝑘𝑝(𝑛, 𝑛 − 𝑘)𝜀𝑛−𝑘|𝐾|

𝑘(𝑛−𝑘)
𝑛  

     ≤ (𝑐0√𝑛 − 𝑘)
𝑘(𝑛−𝑘)

𝜀𝑛−𝑘|𝐾|
𝑘(𝑛−𝑘)
𝑛  , 

Using the assumption (153) and the bound 

                                ∫ |𝐾 ∩ 𝐹|𝑛𝑑𝑣𝑛,𝑛−𝑘(𝐹)

𝐺𝑛,𝑛−𝑘

≤ 𝛾𝑛,𝑘
−𝑘|𝐾|𝑛−𝑘                            (157)  

As well as Lemma(4.3.8) . This shows that 

 

 

  (∫ 𝑔(𝑥)𝑑𝑥

𝐾

)

𝑛−𝑘

=∏
∫ 𝑔(𝑥𝑖)𝑑𝑥

𝐾

≤ (𝑐0√𝑛 − 𝑘)
𝑘(𝑛−𝑘)

𝜀𝑛−𝑘|𝐾|
𝑘(𝑛−𝑘)
𝑛   

                           (158)

𝑛−𝑘

𝑖=1

 

  And the result follows.  

Recall that the class 𝐵𝑝𝑘
𝑛 of generalized k-intersection bodies in 𝑅𝑛, introduced by Zhang 

in[249], is the closure in the radial metric of radial k-sums of finite collections of origin 

symmetric ellipsoids. If we define 

                          ovr(𝐾, 𝐵𝑝𝑘
𝑛) = inf {(

|𝐷|

|𝐾|
)

1 𝑛⁄

: 𝐾 ⊆ 𝐷,𝐷 ∈ 𝐵𝑝𝑘
𝑛} ,                (159) 

Then Theorem (4.3.17) directly implies the estimate 

                  𝜇(𝐾) ≤ ovr(𝐾, 𝐵𝑝𝑘
𝑛)𝑘

𝑛

𝑛 − 𝑘
𝛾𝑛,𝑘 max

𝐹∈𝐺𝑛,𝑛−𝑘
𝜇(𝐾 ∩ 𝐹)|𝐾|

𝑘
𝑛             (160) 

For any measure 𝜇 with an even continuous density . Using (154) and bounds for the 

quantities 

                                                sup
𝐾∈𝑐𝑛

ovr(𝐾, 𝐵𝑝𝑘
𝑛),                                                     (161) 

    Koldobsky (in some cases with Zvavitch) has obtained sharper estimates on the lower 

dimensional slicing problem for various classes 𝐶 𝑛of symmetric convex bodies in𝑅𝑛: 

(i)If 𝑘 ≥ 𝜆𝑛for some 𝜆 ∈ (0.1) then one has (55) for all symmetric convex bodies 𝐾 and 

all even measures 𝜇, with a constant 𝛼 depending only on 𝜆 (see [247]; this result employs 

an estimate of Koldobsky, Paouris and Zymonopoulou for over(𝐾, 𝐵𝑝𝑛,𝑘)from [242]). 
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(ii) If 𝐾 is an intersection body then one has (55) for all even measures μ, with an absolute 

constant𝛼; this was proved by Koldobsky in [244] for𝑘 = 1, and by Koldobsky and Ma in 

[240]for all 𝑘. 
 (iii) If 𝐾 is the unit ball of an n-dimensional subspace of 𝐿𝑝, 𝑝 > 2 then one has (55) for 

all even measures μ, with a constant α≤ 𝑐𝑛
1

2
−
1

𝑝 (see [246]). 
(iv) If 𝐾 is the unit ball of an n-dimensional normed space that embeds in 𝐿𝑝, 𝑝 ∈ (−𝑛, 2] 

then one has (55) for all even measures 𝜇, with a constant depending only on p(see [247]).  
(v)If 𝐾 has bounded outer volume ratio then one has (55) for all even measures 𝜇, with an 

absolute constant 𝛼 (see [247]). It would be interesting to see if our method can be used for 

the study of special classes of convex bodies. 

Our proof of Theorem(4.3.2) makes essential use of the log-concavity of the measure𝜇. It 

was mentioned that Koldobsky and Zvavitch [241] have obtained the bound 𝛽 𝑛,1
(𝑠)(𝜇) ≤ √𝑛 

for every measure 𝜇 with an even continuous non-negative density. It would be interesting 

to see if our method can provide this estimate, and possibly be extended to higher 

codimensions 𝑘, for more general classes of measures. It would be also interesting to see if 

the symmetry assumptions on both 𝐾 and 𝜇 are necessary. 

 

    Corollary (4.3.19) [388]:Let 𝐾 be a convex body in ℝ𝑛 with 0 ∈ 𝑖𝑛𝑡(𝐾). Let 𝑔 be a 

bounded non-negative measurable function on 𝑅𝑛 and let 𝜇 be the measure on 𝑅𝑛 with 

density 𝑔. For every 0 ≤ 𝜀 ≤ ∞, 

        𝜇(𝐾) ≤  (𝑐5√4𝜀 + 1)
1+𝜀

max
𝐹∈𝐺3+𝜀,2

𝜇(𝐾 ∩ 𝐹). |𝐾|
1+𝜀
3+𝜀                            

    Where 𝑐5 > 0 is an absolute constant. In particular,𝛼3+𝜀,1+𝜀(𝜇)  ≤ 𝑐5√4𝜀 + 1 In fact, the 

proof of leads to the stronger estimate 

𝜇(𝐾) ≤ (𝑐5√4𝜀 + 1)
1+𝜀
(∫ 𝜇(𝐾 ∩ 𝐹)3+𝜀𝑑𝑣3+𝜀,2(𝐹)𝐺3+𝜀,2

)

1

𝑛
|𝐾|

1+𝜀

3+𝜀            

The classical Busemann–Petty problem is the following question. Let 

𝐾 and 𝐷 be two origin-symmetric convex bodies in ℝ𝑛 such that 

                  |𝐾 ∩ 𝜃⟘| ≤ |𝐷 ∩ 𝜃⟘|
𝐺3+𝜀,2

                                                

for all 𝜃 ∈ 𝑆2+𝜀. Does it follow that|𝐾|  ≤ |𝐷|? The answer is affirmative if 𝜀 ≥ 0 and 

negative if 𝜀 ≥ 0, see Koldobsky’s monograph[238]). The isomorphic version of the 

Busemann–Petty problem asks if there exists an absolute constant 𝐶4 > 0 such that 

whenever 𝐾 and 𝐷 satisfy  we have|𝐾| ≤ 𝐶4|𝐷|. This question is equivalent to the slicing 

problem and to the isotropic constant conjecture (asking if {𝐿3+𝜀}is a bounded sequence). It 

is known that if 𝐾 and 𝐷 are two centered convex bodies in ℝ𝑛 such that(66) holds true for 

all 𝜃 ∈ 𝑆2+𝜀, then 

                 |𝐾|
4𝜀+1
3+𝜀 ≤ 𝑐6𝐿3+𝜀|𝐷|

4𝜀+1
3+𝜀                                                                 

Where 𝑐6 > 0 is an absolute constant. 
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The natural generalization, and the lower dimensional Busemann–Petty problem, is the 

following question: For 0 ≤ 𝜀 ≤ ∞ let 𝛽3+𝜀,1+𝜀 be the smallest constant 𝛽 > 0 with the 

following property: For every pair of centered convex bodies 𝐾 and D in ℝ𝑛 that satisfy  

                    |𝐾 ∩ 𝐹| ≤ |𝐷 ∩ 𝐹|                                                                
for all 𝐹 ∈ 𝐺3+𝜀,2, one has 

                   |𝐾|
2
3+𝜀 ≤ 𝛽1+𝜀|𝐷|

2
3+𝜀                                                               

     Is it true that there exists an absolute constant 𝐶5 > 0 such that 𝛽3+𝜀,1+𝜀 ≤ 𝑐5 for all 3 + 𝜀 
and 1 + 𝜀? 

      From (68) we have 𝛽3+𝜀,1 ≤ 𝑐6𝐿3+𝜀 ≤ 𝑐7√3 + 𝜀
4

 for some absolute constant 𝑐7 > 0. We 

also consider the same question for the class of symmetric convex bodies and we denote the 

corresponding constant by 

 

𝛽3+𝜀,𝐾
(1+𝜀)

 . 

     As in the case of the slicing problem, the same question can be posed for a general 

measure in place of volume. For any 0 ≤ 𝜀 ≤ ∞ and any measure 𝜇 on ℝ𝑛 with a locally 

integrable non-negative density 𝑔 one may define 𝛽3+𝜀,1+𝜀(𝜇)as the smallest constant 𝛽 >
0 with the following property: For every pair of centered convex bodies 𝐾 and 𝐷 in ℝ𝑛 that 

satisfy 𝜇(𝐾 ∩ 𝐹)  ≤ 𝜇(𝐷 ∩ 𝐹) for every𝐹 ∈ 𝐺3+𝜀,2, one has 

                  𝜇(𝐾) ≤ (𝛽)1+𝜀𝜇(𝐷)                                                      

     Similarly, one may define the “symmetric” constant 𝛽3+𝜀,1+𝜀
(1+𝜀) (𝜇) Koldobsky and Zvavitch 

[239] proved that 𝛽3+𝜀,1
(1+𝜀)

≤ √3 + 𝜀 for every measure 𝜇 with an even continuous non-

negative density. In fact, the study of these questions in the setting of general measures was 

initiated by Zvavitch in [240], where he proved that the classical Busemann–Petty problem 

for general measures has an affirmative answer if 𝜀 ≥ 0 and a negative one if 𝜀 ≥ 0. We 

study the lower dimensional question and provide a general estimate in the case where 𝜇 has 

an even log-concave density (see [241]). 

Corollary (4.3.20) [388]:Let 𝜇 be a measure on ℝ𝑛 with an even log-concave density 𝑔 and 

let 10 ≤ 𝜀 ≤ ∞. Let 𝐾 be a symmetric convex body in ℝ𝑛 and let 𝐷 be a compact subset of 

ℝ𝑛 such that 

                              𝜇(𝐾 ∩ 𝐹) ≤ 𝜇(𝐷 ∩ 𝐹)                                               

for all 𝐹 ∈ 𝐺3+𝜀,2. Then, 

                      𝜇(𝐾) ≤ (𝑐8𝐾𝐿2)
1+𝜀𝜇(𝐷)                                              

Where 𝑐8 > 0 is an absolute constant. 
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     Comparing with the estimate 𝛽2+𝜀
(1+𝜀)(𝜇)  ≤ √3 + 𝜀 of Koldobsky and Zvavitch, note that 

the estimate in [241] is true for an arbitrary measure 𝜇, i.e. the log-concavity of 𝜇 is not 

required; on the other hand, is valid for any codimension 𝜀 ≥ 0 and the convexity of the 

second body 𝐷 is not required. 

     We prove. Our main tools are the generalized Blaschke–Petkantschin formula and the 

Busemann–Straus–Grinberg inequality for the dual affine quermassintegrals of a convex 

body. For the proof of Theorem(4.3.1) we also use a functional version of the latter 

inequality, recently obtained by Dann , Paouris . We collect some facts for the case of 

volume; we obtain the following bounds for the constants 𝛼3+𝜀,1+𝜀 and 𝛽3+𝜀,1+𝜀. (see [341]). 

Corollary (4.3.21) [388]:. For every 0 ≤ 𝜀 ≤ ∞ we have 

                                       𝛼3+𝜀,1+𝜀 ≤ 𝛽3+𝜀,1+𝜀                                                           

Moreover, 

             𝛽3+𝜀,1+𝜀 ≤ 𝑐1̅𝐿3+𝜀                                                                              

     Where 𝑐1 > 0 is an absolute constant. Finally, for codimensions 1 + 𝜀 which are 

proportional to 3 + 𝜀 we have the stronger bound 

                       𝛽3+𝜀,1+𝜀 ≤ 𝑐2̅√(3 + 𝜀) (1 + 𝜀)⁄ (log(𝑒 (3 + 𝜀) (1 + 𝜀)⁄ ))
3
2 ⁄          

where 𝑐2̅ > 0 is an absolute constant 

     The estimates are probably known; we just point out alternative ways to justify them. In 

particular, Koldobsky has proved in [228] that 

                         𝛽3+𝜀,1+𝜀
(1+𝜀)

≤ 𝑐4̅√3 + 𝜀 1 + 𝜀⁄ (log(𝑒(3 + 𝜀) (1 + 𝜀)⁄ ))
3
2⁄             

for all 0 ≤ 𝜀 ≤ ∞, where 𝑐4 > 0 is an absolute constant; this is the symmetric analogue     

We finish with a general stability estimate in the spirit of Koldobsky’s stability theorem. (see 

[241]). 

     Corollary (4.3.22) [388]:Let 0 ≤ 𝜀 ≤ ∞ and let 𝐾 be a compact set in ℝ𝑛. If 𝑔 is a locally 

integrable non-negative function on ℝ𝑛 such that 

        ∫ ( ∫ 𝑔(𝑥)𝑑𝑥

𝐾∩𝐹

)

3+𝜀

𝑑𝑣3+𝜀,2
𝐺3+𝜀,3

(𝐹) ≤ 𝜀3+𝜀                                      

for some 𝜀 > 0, then 

                    ∫𝑔(𝑥)𝑑𝑥 ≤ (𝑐0√4𝜀 + 1)
1+𝜀
|𝐾|

1+𝜀
3+𝜀𝜀                                       

  

𝐾
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Where 𝑐0 > 0 is an absolute constant. 

Corollary (4.3.23) [388]:There exists an absolute constant 𝛿 > 0 such that, for every log-

concave probability measure 𝜈 on ℝ𝑚 and every 𝑝 > 1. 

                            𝑆𝑝(𝑣) ≤ 𝛿𝑝
𝑚𝑆1(𝑣)                                                        

In particular, for every convex body 𝐷 in ℝ𝑚 and every𝑝 > 1, 

                            𝑆𝑝(𝐷) ≤ 𝛿𝑝
𝑚𝑆1(𝐷)                                                           

Proof.  We use the fact that there exists an absolute constant 𝛿 > 0 with the following 

property:  

if 𝜈 ∈ 𝑝𝑚 is a log-concave probability measure then, for any seminorm 𝑢 ∶ ℝ𝑚 → ℝ and 

any𝑞 > 𝑝 ≥ 1, 

 

 

         ( ∫|𝑢(𝑥)|𝑞𝑑𝑣(𝑥)

ℝ𝑚

)

1
𝑞⁄

≤
𝛿𝑞

𝑝
( ∫|𝑢(𝑥)|𝑞

𝑝
𝑑𝑣(𝑥)

ℝ𝑚

)

1
𝑝⁄

          

     This is a consequence of Borel’slemma (see e.g. [243, Theorem 2.4.6]). Next, recall that 

               |Conv(0, 𝑥1, … , 𝑥𝑚)| =
1

𝑚!
|det(𝑥1, . . , 𝑥𝑚)|                         

    The function 𝑢𝑖: ℝ
𝑚 → ℝ defined by 𝑥𝑖 ⟼ |det(𝑥1, . . , 𝑥𝑛)| for fixed 𝑥𝑗 in ℝ𝑚, 𝑗 ≠ 𝑖, is 

a seminorm, as is the function 𝑣𝑖: ℝ
𝑚 → ℝ defined by 

                    𝑥𝑖 ⟼ ∫ … ∫|det(𝑥1, . . , 𝑥𝑚)|𝑑𝑥𝑖+1…𝑑𝑥𝑚
ℝ𝑚ℝ𝑚

                 

for fixed 𝑥𝑗(1 ≤ 𝑗 < 𝑖) in 𝑅𝑚. By consecutive applications of Fubini’s theorem and ,we 

obtain  

     The next lemma gives upper bounds for the constants 𝑝(3 + 𝜀, 2) and 𝛾3+𝜀,1+𝜀 =

|𝐵2
𝑛|

2

3+𝜀 |𝐵2
3+𝜀|⁄ ; both constants appear frequently in the next sections (see [241]). 
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Chapter 5 

Monotonicity Properties with Rigidity and Stability 

As an application we obtain the Fortuin, Kasteleyn, Ginibre correlation inequalities as well 

as some generalizations of the Brascamp–Lieb momentum inequalities.  We show that if a 

1-log-concave measure has almost the same Poincar´e constant as the Gaussian measure, 

then it almost splits off a Gaussian factor. 

 

          Section (5.1): Optimal Transportation and the FKG and Related Inequalities  

We give some background on optimal transportation and the FKG inequalities.  We are 

given two probability densities 𝑓(𝑋),𝑔(𝑌),and we want to transport the(variable 𝑋 

with)density 𝑓 onto the(variable 𝑌 with)density 𝑔 in a way that minimizes transportation 

costs, say for simplicity, 𝐶(𝑌 − 𝑋). Let us first say what we mean by transporting 𝑓 to 𝑔. 
A smooth map 𝑌(𝑋) transports 𝑓 to 𝑔 if 

𝑔(𝑌(𝑋))𝑑𝑒𝑡 𝐷𝑋𝑌 =  𝑓(𝑋). 
That is, a small differential of volume 

𝑔(𝑌)𝑑𝑦 

is pulled back to 

𝑓(𝑋)𝑑𝑥 

by the map 𝑌(𝑋). 
A weak formulation is the following: 

Definition (5.1.1)[266]: A (weak) transport is a measurable map 𝑌(𝑋), such that for any 

𝐶0 function ℎ(𝑌) the following (“change of variable”) formula is valid: 

∫ℎ(𝑌)𝑔(𝑌)𝑑𝑌 =∫ℎ(𝑌(𝑋))𝑓(𝑋)𝑑𝑋. 

 

Now, given the cost function 𝐶(𝑋), we define 

The (weak) transportation 𝑌(𝑋) is optimal if it minimizes 

𝐽(𝑌) = ∫𝐶(𝑌(𝑋)) − 𝑋)𝑓(𝑋)𝑑𝑥 

among all weak transportation. 

Existence and regularity of such an optimal transportation has been studied in detail. 

(See [267] and [268].) We will discuss (and use) the particular case where 

𝐶(𝑋 − 𝑌) = 1

2
|𝑋 − 𝑌|2. 

The correlation inequalities holds true for more general cost functions, still convex and 

with the appropriate symmetries, but the proofs are technically involved and we will 

present it elsewhere. 

The second derivative estimates for the Monge-Ampere like equations corresponding to 

non-quadratic cost functions, is a completely open matter. In the quadratic case, there is a 

rather complete existence and regularity theory ([268]). We will be interested in the 

following results. 
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Theorem (5.1.2) [266]: 𝐿𝑒𝑡 Ω1, Ω2 be two open domains in ℝ𝑛, 𝑓(𝑋), 𝑔(𝑌) two strictly 

positive bounded, measurable functions in 𝛀𝒊, with 

∫ 𝑓(𝑋)𝑑𝑋 =
 

𝛀𝟏
∫ 𝑔(𝑌)𝑑𝑌 =
 

𝛀𝟐
1. 

Then, 

(i) There exists a unique optimal transportation map 𝑌(𝑋). 
(ii) The optimal transportation 𝑌(𝑋) (and its inverse 𝑋(𝑌)) are obtained from the 

following minimization process:𝑏1) Among all pairs of continuous functions 𝜑(𝑋), 𝜓(𝑌) 
satisfying the constraint 

 𝜑(𝑋) +  𝜓(𝑌) ≥ 〈𝑋, 𝑌〉  

minimize 

𝐽(𝜑, 𝜓) = ∫ 𝜑(𝑋)𝑓(𝑋)𝑑𝑋 +∫ 𝜓(𝑌)𝑔(𝑌)𝑑𝑌
 

𝛀𝟐

 

𝛀𝟏

. 

(𝑏2) 𝜑 and 𝜓 are unique and convex and 𝑌(𝑋) is defined as the (possibly multiple 

valued) map 𝑌 ∈  𝑌(𝑋) if 
𝜑(𝑋) +  𝜓(𝑌) = 〈𝑌, 𝑋〉.  

Theorem (5.1.3) [266]: Hypothesis as before, assume further that   𝛀𝟏, 𝛀𝟐are convex. 

Then 

(i) If 0 < 𝜆 ≤ 𝑓, 𝑔 ≤ Λ, the map 𝑌(𝑋) and its inverse 𝑋(𝑌) are single valued, of class 𝐶𝛼in 𝛀𝒊 
for some 𝛼. 

(ii) If 𝑓, 𝑔 are Hölder continuous, with exponent 𝛽 for some 𝛽 then 𝑌(𝑋), 𝑋(𝑌) are of 

class 𝐶1,𝛽 . 
(iii) In both cases, (𝑎) and 𝑏)), there exists a pair of convex potentials 𝜑(𝑋), 𝜓(𝑌) such 

that 

𝑌(𝑋)  = 𝛻𝜑(𝑋), 𝑋(𝑌)  = 𝛻𝜓( 𝑌 ). 
(iv) 𝜑 satisfies the Monge–Ampére equation 

𝑑𝑒𝑡𝐷2𝜑(𝑋) =
𝑓(𝑋)

𝑔(∇𝜑(𝑋))
 

in case 𝑎) in the Alexandrov weak sense, in case 𝑏) in the classical sense. 

(Note that 𝜑 ∈  𝐶2,𝛽 .) By approximation, we will develop all our discussion for 𝑓, 𝑔 of 

class 𝐶𝛼 , so we will always talk of “classical” solutions. 

From the variational construction of 𝑌, we also have a stability theorem. 

Theorem (5.1.4) [266]: Let 𝑓𝑗 , 𝑔𝑗  be uniformly bounded, measurable and supported in a 

bounded domain 𝐵𝑅 . Assume that𝑓𝑗  →  𝑓 in 𝐿1, 𝑔𝑗  →  𝑔 in 𝐿1. Then 𝜑𝑗  →  𝜑, 𝜓𝑗  →  𝜓 

uniformly in 𝐵𝑅. In particular if 𝜑𝑗 , 𝜓𝑗  are uniformly 𝐶1,𝛼, then ∇𝜑𝑗 , ∇𝜓𝑗   also converge 

uniformly to ∇𝜑 , ∇𝜓 . 
We complete the discussion with the following interpretation (see [270]). 

If we think of 𝑓(𝑋), 𝑔(𝑌) as probability densities, we may think of the map 𝑌(𝑋) as a 

joint probability distribution: 𝑣0(𝑋, 𝑌)inΩ1 × Ω2, sitting on the graph 𝑋, 𝑌(𝑋) with the 

property that the marginals μ1(𝑋), μ2(𝑌) of 𝑣0 are exactly 𝑓(𝑋)𝑑𝑥 and 𝑔(𝑌)dy. In fact 𝑣0 

has the following minimizing property: 
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Among all probability measures 𝜈(𝑋, 𝑌) with marginals 𝑓(𝑋)𝑑𝑋 and 𝑔(𝑌)𝑑𝑌, 𝑌(𝑋) 
minimizes 

𝐸(𝑣) = ∫|𝑋 − 𝑌|2𝑑𝑣(𝑋, 𝑌). 

We are interested in a theorem of Holley [269] from which the inequalities follow. 

Holley’s Theorem establishes a monotonicity condition for probability measures μ1, μ2 

defined on a finite lattice, Λ . 

We discuss briefly his two main theorems. We consider a finite lattice Λ(that wewill 

think of as embedded in the set 𝑃 of vertices of the unit cube of ℝ𝑁  for some 𝑁 (i.e., the set 

of all 𝑁 −tuples, 𝑋 =  (𝑥1, . . . , 𝑥𝑁) with 𝑥𝑖 = 0 𝑜𝑟 1. 𝑂𝑛 Λ, we have two non-vanishing 

probability measures μ1(𝑋), μ2(𝑋) with the “monotonicity property”: 

Given 𝑋, 𝑌 𝑖𝑛 Λ, 

μ2(𝑋 ∨  𝑌)μ1(𝑋 ∧  𝑌)  ≥  μ2(𝑋)μ1( 𝑌 ). 
(As usual ∨ denotes taking max in each entry, ∧ min.) Then 

Theorem (5.1.5) [266]: ([270]). There exists a joint measure 

𝜈( 𝑋, 𝑌 ) 
with marginals μ1(𝑋), μ2(𝑌) such that 

𝜈(𝑋, 𝑌)  ≠  0 ⇒  𝑋 ≤  𝑌. 
As a corollary, he obtains 

Corollary (5.1.6) [266]: If ℎ is an increasing function of 𝑋, then  

∫ℎ(𝑋)𝑑μ1(𝑋) ≤
 

Λ

∫ℎ(𝑋)𝑑μ2(𝑋)
 

 

 

 

(that is μ2 is “concentrated more to the right” than μ1). 

We study the relation between optimal transportation and the FKG inequalities, in 

particular to show: 

(i) In the continuous case, the optimal transportation from the unit cube of ℝ𝑛into itself 

(μ1  =  𝑓(𝑋), μ2  =  𝑔(𝑌)) has the proper monotonicity properties (𝑌(𝑋)  ≥  𝑋) of 

Holley’s joint probability density provided that 𝑓, 𝑔 do). 

(ii) If we “spread” the measures μ𝑖  from the vertices of the unit cube to half cubes, the densities 

𝑓, 𝑔 so obtained satisfy these properties, recuperating from this approach Holley’s 

theorem, for the lattice formed by all vertices of the cube. 

(iii) For a general sublattice, one can extend the “spread” measure to all of the half cubes 

recuperating in full the theorem of Holley. 

(iv) In fact the discrete optimal transportation satisfies 𝑌(𝑋)  ≥  𝑋. 
The proof is based  on the fact that first derivatives of solutions of the Monge–Ampére 

equation satisfy an equation themselves. But it is also known that second derivatives are 

subsolutions of an elliptic equation. 

we explore what the implications of that fact are in terms of correlation inequalities. 

We want to stress that in the continuous case the optimal transport map 𝑌(𝑋) interpreted 

as a joint probability measure 
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𝜈(𝑋, 𝑌)  =  𝛿𝑋,𝑌(𝑋)(𝑋, 𝑌)𝑓(𝑋)𝑑𝑋 =  𝛿𝑋,𝑌(𝑋)( 𝑋, 𝑌)𝑔(𝑌)𝑑𝑌 

is not just a joint distribution but a “change of variables”, i.e., a one to one map that carries 

one density to the other, and it is further the gradient of a convex potential, giving the map 

(or the measure 𝜈(𝑋, 𝑌)) a lot of stability. 

We start this with a reflection property of optimal transportation maps. Given 𝑋 ∈ ℝ𝑛we 

denote by 𝑋 its reflection with respect to 𝑥1, 𝑖. 𝑒., if 𝑋 =  (𝑥1, 𝑥2, . . . , 𝑥𝑛) then 𝑋  =
 (−𝑥1, 𝑥2, . . . , 𝑥𝑛). 
Lemma (5.1.7) [266]: Assume that 

(i) Ω1, Ω2 are symmetric with respect to𝑥1, 𝑖. 𝑒. 𝑋 ∈ Ω𝑖 ⟺ 𝑋 ∈ Ω𝑖 , 
(ii) 𝑓, 𝑔 are also symmetric, i.e., 

𝑓(𝑋)  =  𝑓(𝑋), 𝑔(𝑋)  =  𝑔(𝑋). 
Then the optimal transportation is also symmetric, i.e., 

(i) 𝜑(𝑋) =  𝜑(𝑋),     𝜓(𝑌)  =  𝜓(𝑌), 

(ii) 𝑌(𝑋) = 𝑌(𝑋). 
Proof: By Brenier [270] 𝜑,𝜓 are the unique minimizing pair of 

∫𝜑(𝑋)𝑓(𝑋)𝑑𝑋 +∫𝜓(𝑌)𝑓(𝑌)𝑑𝑌 

under the constraint  

𝜑(𝑋) + 𝜓(𝑌) ≥ 〈𝑋, 𝑌〉.  
By uniqueness, then, 

𝜑(𝑋) =  𝜑(𝑋), 𝜓(𝑌)  =  𝜓(𝑌) 

since 𝜑(𝑋) , 𝜓(𝑌) are a competing pair with the same energy.  

Corollary (5.1.8) [266]: Under the hypothesis and with the notation of the lemma, if 𝑌+ is 

the optimal transportation from Ω1
+ 𝑡𝑜 Ω2

+ then 𝑌+ = 𝑌|Ω1+ , where 𝑌 is again 𝜑(𝑋), 𝜓( 𝑌 ) 

restricted to 𝑋, 𝑌 in (ℝ𝑛)+ = {𝑋 ∶  𝑥1 >  0} must be the minimizing pair. 

We apply the previous lemma and corollary to densities 𝑓(𝑋) and 𝑔(𝑌) in the unit cube 

of ℝ𝑛.Let 𝑓, 𝑔 be densities in the unit cube of ℝ𝑛, 𝑄1  = {𝑋: 0 ≤  𝑥𝑖  ≤  1} and 𝑌 be the 

optimal transportation. 

Let us write 𝑌 =  𝑋 + 𝑉 and respectively 

𝜑(𝑋) =
1

2
|𝑋|2 + 𝑢(𝑋) 

(that is 𝑉 = ∇𝑢). Then 

Theorem (5.1.9) [266]: If we extend 𝑓, 𝑔 to 𝑓∗, 𝑔∗ on a larger cube 𝑄 by even reflections, 

then 𝑢(𝑋) also extends periodically to 𝑢∗, to the same cube 𝑄∗ by even reflection and 𝑌(𝑋) 
to the optimal transportation map 

𝑌∗  =  𝑋 + ∇𝑢∗( 𝑋 ) 
from 𝑄∗ to 𝑄∗. 
Corollary (5.1.10) [266]: If 𝑓, 𝑔 are strictly positive and 𝐶𝛼  in the unit cube 𝑄1

 , then 𝑌(𝑋) 
maps each face of the cube to itself and both 𝑌(𝑋), 𝑋(𝑌) have a 𝐶1,𝛼  extension across 𝜕𝑄. 
Proof: It follows from the interior regularity theory (the above theorem) since each face of 

𝑄 becomes interior after a reflection. 
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We start with a heuristic discussion. Recall that the Holley condition on μ2, μ1 was that 

μ2(𝐴 ∨  𝐵)μ1(𝐴 ∧  𝐵)  ≥  μ2(𝐴)μ1( 𝐵 ). 
Logarithmically 

logμ2(𝐴 ∨  𝐵)  − logμ2(𝐴)  ≥ logμ1(𝐵)  − logμ1(𝐴 ∧  𝐵). 
Let us now think on smooth densities 𝑓(𝑋), 𝑔(𝑌) on the unit cube, and assume we are 

trying to prove, by a continuity argument that 𝑌(𝑋) is monotone, that is 𝑌(𝑋)  ≥  𝑋.  So 

we are looking at a continuous family of densities 𝑓𝑡 , 𝑔𝑡  for which 𝑌(𝑋)  >  𝑋 and we find 

a first time t0 and a point 𝑋0, for which 𝑌(𝑋0)  ≯  𝑋0, that is some coordinate, say 

𝑦1(𝑋0)  =  𝑥1(𝑋0). That means that 𝑦1(𝑋)  − 𝑥1(𝑋) has a local minimum, zero, at 𝑋0. 

But it is well known that 𝑦1  =  𝐷1𝜑, satisfies an elliptic equation, obtained by 

differentiating the equation for 𝜑.From 

𝑙𝑜𝑔𝑑𝑒𝑡 𝐷2𝜑 =  𝑙𝑜𝑔𝑓(𝑋)  −  𝑙𝑜𝑔𝑔(∇𝜑) 
we get 

𝑀𝑖𝑗𝐷𝑖𝑗(𝐷1𝜑)  =  (𝑙𝑜𝑔𝑓(𝑋))1 − (𝑙𝑜𝑔𝑔(∇𝜑))𝑖𝐷𝑖1𝜑. 

. Since 𝜑1  −  𝑥1 has a minimum, zero, at 𝑋0, 
𝐷𝑖1𝜑 =  𝛿𝑖1, 

and we get at 𝑋0, 𝑌(𝑋0), 
𝑀𝑖𝑗𝐷𝑖𝑗[𝑦1 − 𝑥1] =  (𝑙𝑜𝑔𝑓)1(𝑋)  − (𝑙𝑜𝑔𝑔)1( 𝑌 ). 

Since 𝑀𝑖𝑗  is a strictly positive matrix for 𝜑 strictly convex and 𝑦1 − 𝑥1 has a minimum, the 

left-hand side must be non-negative. 

If we impose the right-hand to be non-positive we have a contradiction. About the 

right-hand side, we know that 𝑌 >  𝑋 and that 

〈𝑌 − 𝑋, 𝑒1〉 = 0, 
so the natural hypothesis we want to impose on 𝑓, 𝑔 is that 

If 𝑌 ≥  𝑋 and 〈𝑌 − 𝑋, 𝑒𝑖〉 = 0 , then 

𝐷𝑖(𝑙𝑜𝑔𝑔)(𝑌)  ≥  𝐷𝑖(𝑙𝑜𝑔𝑓)(𝑋). 
Note. If we think of 𝐴 =  𝑌 and 𝐵 =  𝑋 + 𝑡𝑒𝑖  we can argue that heuristically 𝐵 ∨  𝐴 =
𝑌 + 𝑡𝑒𝑖   and 𝐵 ∧  𝐴 =  𝑋, so 

𝑙𝑜𝑔𝑔(𝑌 + 𝑡𝑒𝑖  )  −  𝑙𝑜𝑔𝑔(𝑌) ≥ 𝑙𝑜𝑔𝑓(𝑋 + 𝑡𝑒𝑖  )  −  𝑙𝑜𝑔𝑓(𝑋) 
becomes Holley’s condition. We will show in fact later how to associate to a discrete 

“Holley” pair a continuous one satisfying our hypothesis. 

But first we prove the main comparison theorem. 

Theorem (5.1.11) [266]: Let 𝑓, 𝑔 be 𝐶1,𝛼 , strictly positive probability densities in the unit 

cube 𝑄 of ℝ𝑛. Assume that given any 𝑋, 𝑌, 𝑒𝑗  with 𝑋 ≤  𝑌, and 〈𝑋 − 𝑌, 𝑒𝑗〉 = 0 (𝑖. 𝑒. , 𝑦𝑗  −

𝑥𝑗 =  0) 

(𝐷𝑗  𝑙𝑜𝑔𝑓)(𝑋)  ≤  (𝐷𝑗  𝑙𝑜𝑔𝑔)(𝑌), 

and let 𝑌(𝑋) be the optimal transportation map. Then for any 𝑋 in 𝑄, 
𝑌(𝑋)  ≥  𝑋. 

Proof: As we pointed out before, we know that the potentials 𝜑(𝑋), 𝜓(𝑌) are of class 𝐶2,𝛼  

across 𝜕𝑄𝑗  and the 𝐶1,𝛼optimal transportations 𝑌(𝑋), 𝑋(𝑌) map each face of the cube into 

itself in a 𝐶1,𝛼  fashion. 
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In particular, classical regularity theory for fully non linear equations applies to 𝜑 in the 

interior of the cube. More precisely, 𝜑 satisfies 

det𝐷𝑖𝑗𝜑 =
𝑓(𝑋)

𝑔(∇𝜑)
 

(see [271]) and 𝑓, 𝑔 being 𝐶1,𝛼 (this is not kept by reflection along the faces), we have that: 

𝜑 is of class 𝐶3,𝛼( 𝑄 ). 
We now study directional derivatives along the boundary of 𝑄𝑗 . 

Consider 𝐷1𝜑 outside the faces 𝑥1 =  0, 𝑥1  =  1.Then, across the remaining boundary of 

𝑄1, 𝑦1(𝑋)  =  𝐷1𝜑 satisfies 

𝑀𝑖𝑗𝐷𝑖𝑗(𝐷1𝜑) =  𝐷1 𝑙𝑜𝑔𝑓(𝑋)  − 𝐷ℓ(𝑙𝑜𝑔𝑔)𝐷ℓ1𝜑. 

Both 𝑀𝑖𝑗  and the right-hand side are of class 𝐶𝛼  (since 𝐷1 log𝑓 is tangential to the face). 

Hence 𝑦1(𝑋) is of class 𝐶2,𝛼 across that part of the boundary and the equation is satisfied 

in the classical sense. 

In order to make the 𝑓, 𝑔 relation strict we change 𝑔 to 𝑔𝜀  by defining 

1𝑜𝑔𝑔𝜀(𝑌) = 1𝑜𝑔𝑔 +∑𝜀𝑦𝑖 + 𝐶𝜀 , 

where the constant 𝐶𝜀  is chosen so that 

∫𝑔𝜀(𝑌) = 1. 

Then from the condition 

𝐷𝑗  𝑙𝑜𝑔𝑓(𝑋)  ≤  𝐷𝑗  𝑙𝑜𝑔𝑔(𝑌) 

for 𝑦𝑗 − 𝑥𝑗  =  0, we now have for 0 <  𝛾 <  𝛿(𝜀) small enough: 

𝐷𝑗  𝑙𝑜𝑔𝑓(𝑋)  ≤  𝐷𝑗  𝑙𝑜𝑔𝑔𝜀(𝑌)  −  𝛿 

if |𝑦𝑗0  −  𝑥𝑗0|  <  𝛾 for some 𝑗0 and 𝑦𝑗 − 𝑥𝑗  >  −𝛾 for the remaining 𝑗.   

We now look at the continuous family of densities 𝑓𝑡 , 𝑔𝑡 defined by 

𝑙𝑜𝑔𝑓𝑡  =  𝑡 𝑙𝑜𝑔𝑓 +  𝐶(𝑡), 
𝑙𝑜𝑔𝑔𝑡  =  𝑡 𝑙𝑜𝑔𝑔𝜀 +  𝐷(𝑡), 

where 𝐶(𝑡), 𝐷(𝑡) are chosen to keep∫𝑓𝑡 = ∫𝑔𝑡 = 1and we show 

Lemma (5.1.12) [266]: For any 0 <  𝑡 <  1 the corresponding (continuous in t) family of 

optimal transports 𝑌𝑡(𝑋), satisfies 

𝑦𝑗
𝑡 ≥ 𝑥𝑗

𝑡 −
1

2
𝛾. 

Proof: For 𝑡 =  0, 𝑌(𝑋) is the identity map, and thus the inequality is satisfied for t small. 

As usual, suppose there exists a first value 𝑡0 > 0, for which the inequality is not satisfied. 

Thus, there exists 𝑋0 and a 𝑗 (say 𝑗 =  1) such that 

𝑦1(𝑋0) = 𝑥1(𝑋0) −
1

2
𝛾 

and still𝑦1(𝑋 ) = 𝑥1(𝑋 ) −
1

2
𝛾  everywhere else. 

We first note that 𝑥1(𝑋0)  ≠  0,1 because, if not 

𝑦1(𝑋0) = 𝑥1(𝑋0). 
But everywhere else we have 

0 ≤  𝑀𝑖𝑗𝐷𝑖𝑗𝑦1(𝑋0) 
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(since 𝑦1 − 𝑥1has a minimum at 𝑋0)and 

𝐷1 𝑙𝑜𝑔𝑓(𝑋0)  ≤  𝐷1 𝑙𝑜𝑔𝑔(𝑌(𝑋0))  −  𝑡𝛿 

(since |𝑦1 − 𝑥1| =  𝛾/2 and 𝑦𝑗 ≥ 𝑥𝑗  −  𝛾/2 for the remaining 𝑗). 

This is a  contradiction  that completes the proof of the lemma and the theorem.   

Corollary (5.1.13) [266]: Let 0 < 𝜆 ≤ 𝑓, 𝑔 ≤ Λ be measurable. Suppose that 𝑙𝑜𝑔𝑓, 𝑙𝑜𝑔𝑔 

satisfies the hypothesis of the theorem in the sense of distributions. Then, the theorem still 

holds, i.e., 

𝑌(𝑋)  ≥  𝑋. 
Proof: Mollify 𝑙𝑜𝑔𝑓, 𝑙𝑜𝑔𝑔 𝑡𝑜 𝑙𝑜𝑔𝑓𝜀 , 𝑙𝑜𝑔𝑔𝜀  with a standard (radially symmetric, 

nonnegative, compactly supported) mollifier 𝜑𝜀 .Then the hypothesis of Theorem (5.1.11) 
is satisfied as long as 𝑋, 𝑌 stay at distance 𝜀 from 𝜕𝑄1. 

Take as center of coordinates the center of the cube:𝑋 = (1
2
, 1
2
 , ⋯ , 1

2
 ) and make a 2𝜀-

dilation. The new 𝑓𝜀 , 𝑔𝜀  satisfy the hypothesis of Theorem (5.1.11) when restricted to the 

unit cube. Thus Theorem (5.1.2) holds for them. By passing to the limit on the maps, the 

theorem holds for 𝑓, 𝑔.  
Given a vertex 𝑋 ∈  𝑃, we will denote by 𝑄𝑋  the subcube of 𝑄𝑗 , of side 1/2 that has 𝑋 as a 

vertex 

𝑄𝑋  = {𝑍 ∶ |𝑍 −  𝑋|𝐿∞ ≤ 1/2}. 
We prove the following theorem. 

Theorem (5.1.14) [266]: Let 𝑓, 𝑔 be step functions 

𝑓 = ∑𝜇1
𝑋∈𝑃

(𝑋)𝜒𝑄𝑋 , 

𝑔 = ∑𝜇2
𝑋∈𝑃

(𝑋)𝜒𝑄𝑋 . 

Assume that given vertices 𝑋, 𝑌, 𝑋 + 𝑒𝑗 , 𝑌 + 𝑒𝑗  with 𝑌 ≥  𝑋 and 〈𝑌, 𝑒𝑗〉 = 〈𝑋, 𝑒𝑗〉 =  0 we 

have 

1𝑜𝑔 𝜇2(𝑌 + 𝑒𝑗) − 1𝑜𝑔 𝜇2(𝑌) ≥ 1𝑜𝑔 𝜇1(𝑋 + 𝑒𝑗) − 1𝑜𝑔 𝜇1(𝑋). 

Then 𝑌(𝑋) ≥ 𝑋. 
Proof: As a distribution 𝐷𝑖  𝑙𝑜𝑔𝑓 (resp. 𝐷𝑖   𝑙𝑜𝑔𝑔) is the jump function 

𝑙𝑜𝑔μ𝑖(𝑋 + 𝑒𝑗)  −  𝑙𝑜𝑔μ1( 𝑋 ) 

supported on the face of 𝑄𝑋  laying in the plane 𝑥𝑖  =  1/2.  
Corollary (5.1.15) [266]: Let 𝑍1, 𝑍2 ∈ 𝑃. Define 

𝜈(𝑍1, 𝑍2)  =  μ1(𝑍1)/|𝑄1/2||{𝑋 ∈  𝑄𝑍1/𝑌(𝑋)  ∈  𝑄𝑍2} | 

= μ2(𝑍2)/|𝑄1/2||{𝑌 ∈  𝑄𝑍2/𝑋(𝑌)  ∈  𝑄𝑍1} |. 

Then 

a) 𝜈 is a probability measure with marginals μ1(𝑍1), μ2(𝑍2), 
b) 𝜈(𝑍1, 𝑍2) ≠ 0 ⇒ 𝑍2 ≥ 𝑍1. 
Given a lattice Λ ⊂ 𝑃, and two measures μ1, μ2 satisfying the Holley condition we want to 

extend μ1, μ2 to small perturbations𝜇1
∗, 𝜇2

∗  in all of 𝑃 keeping the inequalities. 

Usually, μ1, μ2 are extended by zero. We state the following presentation of Λ. 
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Lemma (5.1.16) [266]: There is a partition of 

ℝ𝑁  = ℝ𝑘1⊗ℝ𝑘2⊗···⊗ ℝ𝑘ℓ  

and a family of elements 𝑤𝑖
𝑗
(1 ≤ 𝑗 ≤ ℓ, 1 ≤ 𝑖 ≤ 𝑘𝑗) such that any non zero element 𝑋 ∈ Λ 

is the max of 𝑤𝑖
𝑗
 , 

𝑥 = ⋁ 𝑤𝑖
𝑗

𝑖,𝑗∈𝐼𝑋

 

and 

𝑤𝑖
𝑗
= 𝑒𝑖

𝑗
+ 𝑣 

with the coordinates𝑣𝑖
𝑠 = 0 ∀ 𝑠 ≥ 𝑗. (More precisely 𝑤𝑖

1 = 𝑒𝑖
1, 𝑤𝑖

2 = 𝑒𝑖
2 + 𝑣, with 

𝑣 ∈ ℝ𝑘1 , 𝑤𝑖
3 = 𝑒𝑖

3 + 𝑣 with 𝑣 ∈ ℝ𝑘1+𝑘2  and so on. 

 

Proof: The decomposition is by first choosing the minimal elements 𝑒1, 𝑒2, . . . , 𝑒𝑘1  and 

contracting the ones in them to only one position. Next we choose minimal elements 

among those not in ℝ𝑘1  and so on. 

We now extend the lattice and the measure. Let Λ be the following extension of Λ: 

Λ = Λ ∪ Λ0, where 𝑤 ∈ Λ0 ⇔𝑚𝑎𝑥(𝑤, 𝑒1) ∈ Λ 

(that is, we add to all those elements with a 1 as first coordinates, those with a zero). 

Given 𝑤 in Λ  define 

𝑤+ =  𝑤 ∨  𝑒1, 
𝑤− = 𝑤+ − 𝑒1 (i.e., 𝑤 with a zero in the position 𝑒1). 

Define 

 𝜇∗(𝑤) = {
𝜇 (𝑤) 𝑖𝑓 𝑤 ∈ Λ

𝜇 (𝑤+) 𝑀⁄ otherwise (M large)
. 

Theorem (5.1.17) [266]: Λ is a lattice and 𝜇1
∗, 𝜇2

∗  still satisfy 

𝑙𝑜𝑔 𝜇2
∗(𝑣1 ⋁  𝑣2) − 𝑙𝑜𝑔 𝜇2

∗(𝑣2) ≥ 𝑙𝑜𝑔 𝜇1
∗(𝑣1) − 𝑙𝑜𝑔 𝜇1

∗(𝑣1 ∧  𝑣2).  

Proof: Elements in Λ 𝑎𝑟𝑒 𝑤+𝑎𝑛𝑑 𝑤− of elements in Λ(𝑤+ is always in Λ since 𝑒1  ∈  𝜆). 

Then 

𝑣1  ∧  𝑣2  =  𝑤1
±  ∧ 𝑤2

± 

for 𝑤 ∈ Λ. 

If one of the signs is 𝑎 −, 
𝑣1  ∧ 𝑣2  =  (𝑤1  ∧  𝑤2)

−. 
If not 

𝑣1  ∧ 𝑣2  =  𝑤1  ∧  𝑤2
 . 

Also 

𝑣1⋁𝑣2  =  𝑤1
±⋁𝑤2

±. 
If one of the signs is a + (since 𝑤+ ∈ Λ), 

𝑣1  ∨ 𝑣2  =  𝑤1  ∨  𝑤2
 . 

If not 

𝑣1  ∨ 𝑣2  =  (𝑤1  ∨  𝑤2)
−. 
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About the measures𝜇1
∗, 𝜇2

∗ ,, let us verify the proper inequalities. For that purpose we 

choose 𝑀 ≫ μ𝑖(𝑋) for any 𝑋. There are several cases to consider 

a) 𝑤1, 𝑤2 ∈ Λ, then𝑤1 ∧ 𝑤2, 𝑤1 ∨ 𝑤2 ∈ Λ and everything is as before. 

( b)  𝑤1 ∈ Λ,𝑤2 ∉ Λ(𝑡ℎ𝑢𝑠 𝑤2 = 𝑤2
−). 

b1) If 𝑤1  = 𝑤1
−, we have that 𝑤1 ∧ 𝑤2 ∈ Λ and 𝑤1 ∨ 𝑤2 ∉ Λ and the factor 𝑙𝑜𝑔𝑀 

cancels in 𝜇2
∗  the expression. 

b2) If𝑤1 = 𝑤1
+,  𝑤1 ∨ 𝑤2 ∈ Λ. IF  𝑤1 ∧ 𝑤2 ∈ Λ the eXtra factor log M in 

the 𝜇2
∗  expression controls everything e1se (we choose 𝑙𝑜𝑔𝑀≫ sup |𝑙𝑜𝑔 𝜇𝑖|. 𝐼𝑓 𝑤1 ∧

𝑤2 ∉ Λ, 𝜇1
∗(𝑤1 ∧ 𝑤2) = 𝜇1(𝑤1 ∧ 𝑤2

+ ) 𝑀⁄ ,and 𝜇∗(𝑤2) = 𝜇(𝑤2
+ ) 𝑀⁄ , 

thus each term has an extra 𝑙𝑜𝑔𝑀 factor that cancels. 

c) 𝑤2 ∈ Λ,𝑤1 ∉ Λ. 

c1) If 𝑤2 = 𝑤2
+, then 𝑤1 ∨ 𝑤2 ∈ Λ.IF𝑤1 ∧ 𝑤2 ∈ Λ. the extra term −𝑙𝑜𝑔𝑀 in the 𝜇1 

expression controls everything. If 𝑤1 ∧ 𝑤2 ∉ Λ.  then 

𝜇1
∗(𝑤1 ∧ 𝑤2) = 𝜇(𝑤1

+ ∧ 𝑤2 ) 𝑀,⁄  

𝜇1
∗(𝑤1) = 𝜇(𝑤1

+ ) 𝑀,⁄  

and we have 𝑙𝑜𝑔𝑀 cancellation. 

c2) If 𝑤2 = 𝑤2
−, then𝑤1 ∧ 𝑤2 ∈ Λ. IF 𝑤1 ∨ 𝑤2 ∉ Λ, and we have 

𝜇2
∗(𝑤1 ∧ 𝑤2) = 𝜇2(𝑤1

+ ∨ 𝑤2 ) 𝑀,⁄  

𝜇1
∗(𝑤1) ∗ = 𝜇1(𝑤1

+ ) 𝑀,⁄  

and there is a 𝑙𝑜𝑔𝑀 factor cancellation. 

d) If 𝑤1 ∉ Λ,𝑤2 ∉ Λ,then 𝑤1 ∨ 𝑤2 ∉ Λ. IF 𝑤1 ∧ 𝑤2 ∉ Λ,, the factors 

𝑙𝑜𝑔𝑀 cancel. 

If not, the extra factor 𝑙𝑜𝑔𝑀 in the𝜇1
∗ expression controls everything else. 

The proof of the theorem is complete.  

Theorem (5.1.18) [266]: We are givenΛ ⊂ 𝑃𝑎𝑛𝑑 𝜇1, 𝜇2. As before, let f,g be the step 

functions 

𝑓 = ∑ 𝜇1
𝑤𝑖∈Λ

(𝑤𝑖)𝜒𝑄𝑤𝑖
, 

𝑔 = ∑ 𝜇2
𝑤𝑖∈Λ

(𝑤𝑖)𝜒𝑄𝑤𝑖
. 

Then, the optimal transportation map 𝑌(𝑋) is monotone. 

Proof: If we start with 𝑀 =  𝑀0 and we repeat the extension process (𝑀1 ≫ 𝑀0, 𝑀2 ≥
𝑀1and so on) we exhaust 𝑃. Note that once we have extended through 𝑒1

1, . . . , 𝑒𝑘1
1 , the 

elements 𝑒1
2, . . . , 𝑒𝑘2

2 belong now to the lattice and are minimal, so we can keep extending. 

As 𝑀0 goes to infinity the measures𝜇𝑖
∗ converge to𝜇𝑖

 . 
We complete this work by showing that, actually, the discrete optimal transportation 

map is monotone. In this case the map is in general multi-valued. That is the mass 𝜇1
 ( 𝑤 ) 

may have to be spread through several points 𝑣. Still, for all those 𝑣’𝑠, 𝑣(𝑤)  ≥  𝑤. 
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Theorem (5.1.19) [266]: 𝑳𝒆𝒕 𝚲 be a sublattice of 𝑃, the set of vertices of the unit cube on 

ℝ𝑛,and let 𝜇1
 , 𝜇2

 
 be positive measures in  satisfying the usual monotonicity condition. Let 

𝜈(𝑋, 𝑌) be the (discrete) optimal transportation. Then 𝜈(𝑋, 𝑌) ≠  0 ⇒  𝑌 ≥  𝑋. 
Proof: From the previous theorem we may assume that 𝜇𝑖

 
 is defined and positive in all  of 

𝑃. We will approximate it by bounded densities 𝑓, 𝑔 that satisfy the hypothesis of Theorem 

(5.1.11). We define them as follows. 

Let 1 be the vector 1 = (1,1, . . . ,1). In the strip𝑆𝑤
𝜀 = {𝜀𝑤 < 𝑋 ≤ 𝑤 + 𝜀1},let 𝑁(𝑋,𝜔) be 

the number of coordinates, 𝑗, for which 𝑤𝑗 − 𝑥𝑗  >  𝜀 and we define there, for 𝛿 ≪  𝜀, 

𝑓(𝑋)  =  μ1(𝜔)𝛿
𝑁 . 

Note that𝑆𝑤
𝜀 cover 𝑄1  disjointly (given 𝑋 we determine 𝑤 by those coordinates 𝑥𝑗 > 𝜀). 

Same definition for 𝑔. 
Of course, we have to multiply as usual by a normalization constant to make

 ∫𝑓 =∫𝑔 =1, but this does not affect the logarithmic inequality. Also if 𝛿 goes to 

zero much faster than 𝜀, (say like 𝜀2𝑁) 𝑓 and g converge to μ1 and μ2, since most of the 

mass concentrates in the cube 𝑄𝜀(𝜔)  = {|𝑥𝑖 − 𝜔𝑖|  <  𝜀}. 
About 𝐷𝑖  𝑙𝑜𝑔𝑓, 𝐷𝑖  𝑙𝑜𝑔𝑔, they are jump functions concentrated on the planes 𝑥𝑗  =  𝜀 or 

1 −  𝜀 so we have to check that the jump inequalities are satisfied. We also may disregard 

plane intersections since they will not affect 𝐷𝑖𝑓 in the distributional sense.  

So we check that 

a) For 𝑋 ≤  𝑌 and 𝑥𝑖  =  𝑦𝑖 =  𝜀 we have Jump(𝑙𝑜𝑔𝑔)  ≥ Jump(𝑙𝑜𝑔𝑓). Indeed when 𝑥𝑖 , 𝑦𝑖  
go through 𝜀 we change from evaluating the measures at 𝑤1, (resp. 𝑤2) to 𝑤1  +  𝑒𝑖 , 𝑤2 

+ 𝑒𝑖 , and both 𝑁(𝑋),𝑁(𝑌) increase by one, so the jump relation holds (they are the lattice 

relations plus a factor 𝑙𝑜𝑔𝛿. 
b) When 𝑥𝑖 , 𝑦𝑖  go through (1 − 𝜀), 𝑤1 and 𝑤2 remain unchanged and 𝑁(𝑋),𝑁(𝑌) both 

decrease by one. 

Also here the jump relation holds (both jumps are just 𝑙𝑜𝑔𝛿). 

This completes the proof.  

we explore what the implications are of the fact that second derivatives of solutions to 

Monge–Ampére equations are subsolutions of an elliptic equation. 

First an heuristic discussion: Let us take a second pure derivative of the equation 

𝑙𝑜𝑔𝑑𝑒𝑡 𝐷𝑖𝑗𝜑 =  𝑙𝑜𝑔𝑓(𝑥)  −  𝑙𝑜𝑔𝑔(∇𝜑). 

We get 

𝑀𝑖𝑗𝐷𝑖𝑗𝜑𝛼𝛼  +  𝑀𝑖𝑗,𝑘ℓ𝐷𝑖𝑗𝛼𝜑𝐷𝑖𝑗𝛽𝜑  
 =  𝐷𝛼𝛼  𝑙𝑜𝑔𝑓 − (1𝑜𝑔𝑔)𝑖𝑗𝜑𝑖𝛼𝜑𝑗𝛼  − (𝑙𝑜𝑔𝑔) 𝑖𝜑𝛼𝛼𝑖 . 

From the concavity of 𝑙𝑜𝑔 det the second term on the left is negative. If 𝜑𝛼𝛼  reaches at 𝑋0 

the maximum value among all pure second derivatives, then the right-hand side must be 

negative. Let us look at the explicit case in which up to a constant, 𝑓 =  𝑒−𝑄(𝑋) and 𝑔 =
 𝑒−(𝑄(𝑌)+𝐹(𝑌)), where 𝑄 is a nonnegative quadratic polynomial, 𝑎𝑖𝑗𝑥𝑖𝑥𝑗  ( for instance ,near 

neighborhood or other “Dirichlet Integral ”like interactions in field theory). 

We may assume that 𝛼 =  𝑒1. Then, we must compute 

𝐷11(−𝑄(𝑋) +  𝑄(∇𝜑)  +  𝐹(∇𝜑) , 
we have 



171 
 

𝐷11(−𝑄)(𝑋) = −𝑎11, 
𝐷11𝑄(∇𝜑) = 𝑎𝑖𝑗𝜑𝑖1𝜑𝑗1 + 𝑎𝑖𝑗𝜑𝑖11𝜑𝑗 . 

But since 𝜑11(𝑋0) is the maximum among all pure second derivatives, 𝜑11𝑖 =  0 for all 𝑖, 
and 𝜑1𝑖 =  0 for 𝑖 ≠ 1. So 𝐷11𝑄(∇𝜑(𝑋0))  =  𝑎11(𝜑11)

2. Finally, if 𝐹 is convex 

𝐷11𝐹(∇𝜑) =  𝐹𝑖𝑗𝜑𝑖1𝜑𝑗1 + 𝐹𝑖𝜑𝑖11 

is non-negative. 

Therefore 𝐷11(𝑅. 𝐻. 𝑆. )  ≥  𝑎11((𝜑11)
2 − 1). We get a contradiction if 𝜑11  >  1. That 

is  

Theorem (5.1.20) [266]: Let, up to a multiplicative constant, 

𝑓(𝑋) = 𝑒−𝑄(𝑋), 

𝑔(𝑌) = 𝑒−(𝑄(𝑌)+𝐹(𝑌)) 
with 𝐹 convex. Then the potential 𝜑 of the optimal transportation satisfies 

0 ≤  𝜑𝛼𝛼  ≤  1. 
In particular  

                                   𝑌 =  𝑋 + ∇𝑢(𝑋), 
where 

𝑢 = 𝜑 −
1

2
|𝑋|2 

is concave and 

−1 ≤  𝑢𝛼𝛼  ≤  0 

(independently of dimension). 

Proof: To make the previous theorem valid we have to take care of what happens when 𝑋 

goes to infinity. 

Again by approximation we may assume that the convex function 𝐹(𝑋) is + ∞ outside 

the ball 𝐵𝑅  (that is 𝑔 is supported in the ball of radius 𝑅, and smooth bounded away from 

zero and infinity inside it. 

We will replace the second derivative by an incremental quotient, and show that it still 

satisfies a maximum principle and goes to zero at infinity. Let 

(𝛿𝜑𝑒)(𝑋)  =  𝜑(𝑋 +  ℎ𝑒)  +  𝜑(𝑋 −  ℎ𝑒)  −  2𝜑( 𝑋 ). 
We fix h, and study what happens if 𝛿𝜑  = 𝛿𝜑𝑒1 attains a local maximum at 𝑋0, for all 

possible e. From the concavity of 𝑙𝑜𝑔 det, we still have that, for the linearization 

coefficients 𝑀𝑖𝑗 , of 𝑙𝑜𝑔 det at 𝑋0, 

𝑀𝑖𝑗𝛿𝜑 (𝑋0)  ≤  𝛿(log 𝑓  − log 𝑔)  =  𝛿(−𝑄(𝑋))  +  𝑄(∇𝜑)  +  𝐹(∇𝜑). 

From the fact that 𝛿𝜑𝑒1  realizes a maximum among 𝑋 and e, we obtain 

 a)  ∇𝛿𝜑 = ∇𝜑(𝑋0 + h𝑒1) + ∇𝜑(𝑋0 − h𝑒1) − 2∇𝜑(𝑋0) = 0  

and 

b) for any 𝜏 ⊥  𝑒1, 
𝐷𝜏𝛿𝜑 =  𝜏 ·  (∇𝜑(𝑋0 + ℎ𝑒1)  − ∇𝜑(𝑋0 − ℎ𝑒1)  =  0. 

Therefore 

∇𝜑(𝑋 ± ℎ𝑒1)  = ∇𝜑(𝑋) ± 𝜆𝑒1 
and 𝛿𝜑 =  2𝜆 (𝜆 positive). Then, from the convexity of 𝐹, 
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𝛿𝐹(∇𝜑(𝑋0))  ≥  0. 
If we write 𝑄(𝑋) as a bilinear form 𝑄(𝑋)  =  𝐵(𝑋, 𝑋), 

𝛿𝑄(∇𝜑)  =  𝐵(∇𝜑(𝑋0)  + 𝜆𝑒1, ∇𝜑(𝑋0)  + 𝜆𝑒1) 
+ 𝐵(∇𝜑(𝑋0)  − 𝜆𝑒1, ∇𝜑(𝑋0)  − 𝜆𝑒1) 

− 2𝐵(∇𝜑(𝑋0), ∇𝜑(𝑋0)) 
= 𝜆2𝐵(𝑒1, 𝑒1). 

Similarly 𝛿𝑄(𝑋)  = ℎ2𝐵(𝑒1, 𝑒1) so we get: If 𝛿𝜑 has an interior maximum at 𝑋0, then it 

must hold: 

∇𝜑(𝑋0  ±  ℎ𝑒1)  = ∇𝜑(𝑋0)  ± 𝜆𝑒1 
with 𝜆 <  ℎ. 

But, since 𝜑 is convex 

𝜑(𝑋0 ± ℎ𝑒1) − 𝜑(𝑋0) ≤ 〈∇𝜑(𝑋0  ±  ℎ𝑒1) − ∇𝜑(𝑋0) ± ℎ𝑒1〉 = 𝜆ℎ ≤ ℎ
2. . 

Thus, 

𝛿𝜑 ≤  2ℎ2, 
the desired inequality.  

To complete the proof of the theorem it would be enough to show that 𝛿𝜑 goes to zero 

(for fixed 𝛿) when 𝑋 goes to infinity. We show that: 

Lemma (5.1.21) [266]: As 𝑋 goes to infinity 𝑌 converges uniformly to 𝑅
𝑋

|𝑋|
.  

Proof: Let 𝑋0 = 𝜆𝑒1 for 𝜆 large and 𝑌0 its image. Let 𝜈 be a unit vector with 

𝑎𝑛𝑔𝑙𝑒 (𝑣, 𝑒1) ≤
𝜋

2
− 𝜀.  

From the monotonicity of the map, any point on 𝐵𝑅  of the form 

𝑌′ =  𝑌0  +  𝑡𝜈 

must come from a vector 

𝑋′ =  𝑋0  +  𝑠μ, 
with 〈𝜇, 𝑣〉 ≥ 0. 

In particular, we must have 

𝑎𝑛𝑔𝑙𝑒(μ, 𝑒1)  ≤  (𝜋 −  𝜀). 
In other words if in 𝑌 space we consider the cone, 

Γ = {𝑌′ =  𝑋0  +  𝑡𝜈, with 𝑡 >  0, angle(𝑣, 𝑒1) ≥
𝜋

2
− 𝜀, 

its intersection with 𝐵𝑅  must be covered by the image of the (concave) cone 
 
Γ  = {𝑋′ =  𝑋0  +  𝑠𝜇, with 𝑠 >  0 and 𝑎𝑛𝑔𝑙𝑒(μ, 𝑒1)  ≤  𝜋 −  𝜀}. 

 

But Γ has very small 𝑓 measure 
 

μ𝑓 (Γ ) ≤  (𝜀𝜆)
𝑛𝑒−(𝜀𝜆)

2
, 𝜀𝜆 >  𝜆1 2⁄ , 

since the ball of radius 𝜀𝜆 is not contained in Γ. 
On the other hand, 𝑔 is strictly positive in 𝐵𝑅  , so 

μ𝑔(Γ ∩ 𝐵𝑅)  ∼ |Γ ∩ 𝐵𝑅| ≤  μ𝑓 (Γ ). 

This forces the exponential convergence of 𝑌 to 𝑅𝑒1. 
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This completes the proof of the lemma and the theorem, since the uniform convergence 

of ∇𝜑 to 
𝑋

|𝑋|
makes 𝛿𝜑 go to zero (for any fixed, positive ℎ).   

We state three corollaries of this last inequality. The first two are a generalization of the 

classic Brascamp–Lieb moment inequality and the third an eigenvalue inequality. 

Corollary (5.1.22) [266]: Let 𝑓(𝑋)  =  𝑒−𝑄(𝑋), 𝑔(𝐻)  =  𝑒−[𝑄(𝑌)+𝐹(𝑌)] with 𝑄 quadratic 

and 𝐹 convex, and let Γ be a convex function of one variable (|𝑥1|
𝛼  in [𝐵 − 𝐿]). Then 

𝐸𝑔( Γ(𝑦1 − 𝐸𝑔(𝑦1))  ≤  𝐸𝑓 ( Γ(𝑥1)). 

Proof: It follows from [𝐵 − 𝐿] that it is enough to prove it in the one dimensional case (see 

Theorem 5.1 of [𝐵 − 𝐿]). We can also assume by a translation that 𝐸𝑔(𝑦1)  =  0.  

By the change of variable formula that means 

∫𝑦(𝑥)𝑓(𝑥)𝑑𝑥 = 0. 

Also 

𝐸𝑔(Γ(𝑦1)) = ∫Γ(𝑦1(𝑥)𝑓(𝑥)𝑑𝑥. 

But 𝑦(𝑥)  =  𝑥 +  𝑢(𝑥), where𝑦 =  𝜑′(𝑥), 𝜑 convex and 𝑢 = 𝜓′(𝑥),𝜓 concave. Thus 𝑦 

is increasing, and 𝑢 is decreasing and changes sign, since 

∫𝑢(𝑥)𝑓(𝑥)𝑑𝑥 =∫𝑦(𝑥)𝑓(𝑥)𝑑𝑥 = 0. 

Say 𝑢(𝑥0)  =  0. Then, we write 

∫Γ(𝑦(𝑥))𝑓(𝑥) ≤∫[Γ(𝑥) + Γ′(𝑦(𝑥))(𝑦 − 𝑥)]𝑓(𝑥). 

Since Γ is convex, 

≤ 𝐸𝑓(Γ(𝑥)) + ∫[Γ′(y(𝑥)) − Γ
′(𝑥0)](𝑦 − 𝑥)𝑓(𝑥). 

But at 𝑥0, = Γ′(𝑦(𝑥0))  = Γ′(𝑥0) and 𝑦(𝑥0)  = 𝑥0, and further Γ′is increasing, while 𝑦 −
𝑥 =  𝑢 is decreasing, thus the last integrand is negative, and this completes the proof. 

If we want to repeat the argument above for functions Γ that depend on more than one 

variable, and we want to prove that 

𝐸𝑔(Γ(𝑌 − 𝐸𝑔(𝑌))  ≤  𝐸𝑓 (Γ(𝑋)) , 

we may as before assume that 𝐸𝑔(𝑌)  =  0. 

That means, with 𝑌 =  𝑋 + 𝑈,that 𝑈(𝑋0)  =  0 for some 𝑋0 (i.e., the concave function −𝜓 

has a maximum). The same computation then gives us 

𝐸𝑔(Γ(𝑌)) ≤ 𝐸𝑓(Γ(𝑋)) + ∫(∇Γ(𝑌) − ∇(Γ(𝑋0))(−∇𝜓(𝑌)𝑓(𝑋)𝑑𝑥, 

 

where𝜓and Γ − 〈∇Γ(𝑋0), 𝑋 − 𝑋0〉 are both convex with a minimum at 𝑋0, so there is some 

hope that the integrand be negative.  

For instance, if we are looking at statistics of 𝑘 −variables we have the following 

corollary. 
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Corollary (5.1.23) [266]: Assume that 𝑄(𝑋), 𝐹(𝑋) in the definition of 𝑓(𝑋), 𝑔(𝑌) are 

symmetric with respect to (𝑥1, . . . , 𝑥𝑘) and that Γ(𝑥1, . . . , 𝑥𝑘) is convex and symmetric. 

Then 

𝐸𝑔(Γ(𝑌))  ≤  𝐸𝑓 (Γ(𝑋)). 

Proof: As before we may assume the problem is 𝑘 −dimensional ([275], Theorem 4.3). 

Since 𝑄 and 𝐹 are symmetric, the potentials 𝜑(𝑋), 𝜓(𝑋) are symmetric. Therefore 

∇𝜑, ∇𝜓, ∇Γ = 0 𝑓𝑜𝑟 𝑋 =  0 and further, 

𝑠𝑖𝑔𝑛  𝜑𝑖(𝑋) =  𝑠𝑖𝑔𝑛 𝜓𝑖(𝑋)  = 𝑠𝑖𝑔𝑛 Γ𝑖(𝑋)  = 𝑠𝑖𝑔𝑛 𝑥𝑖 = 𝑠𝑖𝑔𝑛 𝑦𝑖 . 
From the computation above it suffices to show that for all 𝑌, 

∇Γ · ∇𝜓 ≥  0. 
That follows since Γ𝑖 · 𝜓𝑖 ≥  0 for all 𝑖.   

A final consequence of the estimate 𝜑𝛼𝛼  ≤  1 for log concave perturbations of the 

Gaussian is that any Raleigh-like quotient (log Sobolev inequality, isoperimetric 

inequality, Poincaré inequality) that involves a quotient between first derivatives and the 

function themselves is smaller for the perturbation than for the Gaussian. 

For instance, let 𝐹(𝑡), 𝐺(𝑡), 𝐻(𝑡), 𝐾(𝑡) be non-negative, non-decreasing functions of 𝑡 ∈
[0,∞), then we have the 

Corollary (5.1.24) [266]: Let 𝑓, 𝑔 be densities as inTheorem (5.1.20) (i.e., a Gaussian and 

its log concave perturbation) then consider the “Raleigh” quotient 

𝜆𝑓 = inf
𝐹(∫𝐺(|∇𝑢|)𝑓(𝑋)𝑑𝑋)

𝐻(∫𝐾(|𝑢|)𝑓(𝑋)𝑑𝑋)
. 

Then 𝜆𝑔  ≥  𝜆𝑓 . 

Proof: If we apply the change of variable formula to any function 𝑢(𝑌), we get 

∫𝐾(|𝑢(𝑌)|)𝑔(𝑌)𝑑𝑌 = ∫𝐾(|𝑢(𝑋)|)𝑓(𝑋)𝑑𝑋, 

while ∇𝑋𝑢(𝑌(𝑋))  =  𝐷𝑋(𝑌)∇𝑌𝑢(𝑋). But 𝐷𝑋𝑌 is a symmetric matrix with all eigenvalues 

less than one, so |∇𝑋𝑢(𝑌(𝑋))| ≤ |𝐷𝑌𝑢(𝑌)| which proves the corollary.   

 

     Section (5.2): Caffarelli Log-Concave Perturbation Theorem  

 

Let 𝛾𝑛  denote the centered Gaussian measure in ℝ𝑛, i.e., 𝛾𝑛 = (2𝜋)
−𝑛 2⁄ 𝑒−|𝑥|

2 2⁄ 𝑑𝑥, and 

let μ be a probability measure on ℝ𝑛. By a classical theorem of Brenier [280], there exists a 

convex function 𝜑 ∶  ℝ𝑛  → ℝ such that 𝑇 = 𝛻𝜑 ∶ ℝ
𝑛  → ℝ𝑛  transports 𝛾𝑛  onto μ, i.e., 

𝑇♯  𝛾𝑛 =  μ, or equivalently 

∫ ℎ ∘  𝑇 𝑑𝛾𝑛  = ∫ ℎ𝑑μ
 

 

 

  
 for all continuous and bounded functions ℎ ∈  𝐶𝑏(ℝ

𝑛) . 

In the sequel we will refer to 𝑇 as the Brenier map from 𝛾𝑛  to μ. 

In [284,285] Caffarelli proved that if μ is “more log-concave” than 𝛾𝑛, then 𝑇 is 1-

Lipschitz, that is, all the eigenvalues of 𝐷2𝜑 are bounded from above by 1. Here is the 

exact statement: 
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Theorem (5.2.1)[279]: (Caffarelli). Let 𝛾𝑛  be the Gaussian measure in ℝ𝑛, and let μ =
 𝑒−𝑉  𝑑𝑥 be a probability measure satisfying 𝐷2𝑉 ≥  𝐼𝑑𝑛. Consider the Brenier map 𝑇 = 

𝛻𝜑  from 𝛾𝑛to μ. Then 𝑇 is 1-Lipschitz. Equivalently, 0 ≤  𝐷2𝜑(𝑥)  ≤ 𝐼𝑑𝑛  for a.e. x. 

This theorem allows one to show that optimal constants in several functional inequalities 

are extremized by the Gaussian measure. More precisely, let 𝐹, 𝐺,𝐻, 𝐿, 𝐽 be continuous 

functions on ℝ and assume that 𝐹, 𝐺, 𝐻, 𝐽 are nonnegative, and that 𝐻 and 𝐽 are increasing. 

For ℓ ∈ ℝ+ let 

    𝜆(μ, ℓ):= inf {
𝐻(∫ 𝐽(|𝛻𝑢|)𝑑µ)

𝐹(∫𝐺(𝑢)𝑑µ)
∶ 𝑢 ∈ 𝐿𝑖𝑝(ℝ𝑛), ∫ 𝐿(𝑢) 𝑑μ = ℓ}         (1).  

 

Then 

      𝜆( 𝛾𝑛, ℓ) ≤  𝜆(μ, ℓ).         (2)                                
Indeed, given a function 𝑢 admissible in the variational formulation for μ, we set 𝑣 : =  𝑢 ∘
 𝑇 and note that, since 𝑇♯  𝛾𝑛 =  μ, 

∫𝐾(𝑢)𝑑 𝛾𝑛 = ∫𝐾(𝑢 ∘  𝑇) 𝑑 𝛾𝑛 = ∫𝐾(𝑢)𝑑μ  for  𝐾 = 𝐺, 𝐿 . 
In particular, this implies that 𝑣 is admissible in the variational formulation for  𝛾𝑛. Also, 

thanks to Caffarelli’s Theorem, 

|𝛻𝑣| ≤ |𝛻𝑢| ∘  𝑇 |𝛻𝑇| ≤ |𝛻𝑢| ∘  𝑇, 

therefore 

𝐻(∫ 𝐽(|𝛻𝑣|)𝑑 𝛾𝑛)  ≤  𝐻(∫ 𝐽(|𝛻𝑣|) ∘ 𝑇𝑑 𝛾𝑛) =  𝐻(∫ 𝐽(|𝛻𝑣|)𝑑μ) . 
Thanks to these formulas, (2) follows easily. 

Note that the classical Poincar´e and Log-Sobolev inequalities fall in the above general 

framework. For instance, choosing 𝐻(𝑡)  =  𝐹(𝑡)  =  𝐿(𝑡)  =  𝑡, ℓ =  0, and 𝐽(𝑡)  =
 𝐹(𝑡)  =  |𝑡|𝑝  with 𝑝 ≥  1, we deduce that  

inf {
∫|𝛻𝑢|

𝑝𝑑µ

∫|𝑢|𝑝𝑑µ
∶ 𝑢 ∈ 𝐿𝑖𝑝(ℝ𝑛), ∫ 𝑢 𝑑μ = 0} ≥ inf {

∫|𝛻𝑢|
𝑝 𝑑𝛾𝑛

∫|𝑢|𝑝 𝑑𝛾𝑛
∶ 𝑢 ∈ 𝐿𝑖𝑝(ℝ𝑛), ∫ 𝑢 𝑑 𝛾𝑛 =

0}                (3) . 

Two questions that naturally arise from the above considerations are: 

– Rigidity: What can be said about μ when 𝜆(μ, ℓ)  =  𝜆( 𝛾𝑛, ℓ) ? 
– Stability: What can be said about μ when 𝜆(μ, ℓ)  ≈  𝜆( 𝛾𝑛, ℓ) ? 
Looking at the above proof, these two questions can usually be reduced to the study of the 

corresponding ones concerning the optimal map 𝑇 in Theorem (5.2.1) (here |𝐴| denotes the 

operator norm of a matrix 𝐴): 

– Rigidity: What can be said about μ when |𝛻𝑇(𝑥)|  =  1 for a.e. 𝑥? 
– Stability: What can be said about μ when |𝛻𝑇(𝑥)| ≈  1 (in suitable sense)? 

Our first main result states that if |𝛻𝑇(𝑥)|  =  1 for a.e. 𝑥 then μ “splits off” a Gaussian 

factor. More precisely, it splits off as many Gaussian factors as the number of eigenvalues 

of 𝛻𝑇 = 𝐷2𝜑 that are equal to 1. In the following statement and in the sequel, given 𝑝 ∈
ℝ𝑘  we denote by  𝛾𝑝,𝑘the Gaussian measure in ℝ𝑘  with barycenter 𝑝, that is,  𝛾𝑝,𝑘 =

 (2𝜋)−𝑘/2𝑒−|𝑥−𝑝|
2/2𝑑𝑥. 
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Theorem (5.2.2) [279]: (Rigidity). Let  𝛾𝑛  be the Gaussian measure in ℝ𝑛, and let μ =
 𝑒−𝑉𝑑𝑥 be a probability measure with 𝐷2𝑉 ≥  𝐼𝑑𝑛. Consider the Brenier map 𝑇 =  𝛻𝜑 

from 𝛾𝑛to μ, and let 

0 ≤  𝜆1(𝐷
2𝜑(𝑥))  ≤···≤  𝜆𝑛(𝐷

2𝜑(𝑥))  ≤  1 

be the eigenvalues of the matrix 𝐷2𝜑(𝑥). If 𝜆𝑛−𝑘+1(𝐷
2𝜑(𝑥))  =  1 for a.e. x then μ =

  𝛾𝑝,𝑘⊗ 𝑒
−𝑊(𝑥′)𝑑𝑥′, where 𝑊 ∶  ℝ𝑛−𝑘  → ℝ satisfies 𝐷2𝑊 ≥  𝐼𝑑𝑛−𝑘. 

Our second main result is a quantitative version of the above theorem. Before stating it let 

us recall that, given two probability measures μ, 𝜈 ∈ 𝑃(ℝ𝑛), the 1-Wasserstein distance 

between them is defined as 

𝑊1(μ, 𝜈):= inf{∫ |𝑥 −  𝑦|𝑑𝜎(𝑥, 𝑦) ∶  𝜎 ∈ 𝑃(ℝ
𝑛 ×ℝ𝑛)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑝𝑟1)♯ 𝜎 =

μ, (𝑝𝑟2)♯ 𝜎 =  𝜈} , 
where 𝑝𝑟1 (resp. 𝑝𝑟2) is the projection of ℝ𝑛 × ℝ𝑛  onto the first (resp. second) factor. Our 

stability result is formulated in terms of the 𝑊1 −distance between probability measures as 

this distance naturally comes out from our strategy of proof. Our result could also be 

proved with other notions of distances meterizing the weak topology (for instance, any 

Wasserstein distance 𝑊𝑝), as well as stronger notion of distances (such as the total 

variation), but we shall not investigate this here. 

Theorem (5.2.3) [279]: (Stability). Let  𝛾𝑛  be the Gaussian measure in ℝ𝑛  and let μ =
 𝑒−𝑉dx be a probability measure with 𝐷2𝑉 ≥  𝐼𝑑𝑛. Consider the Brenier map 𝑇 =  𝛻𝜑 

from  𝛾𝑛to μ, and let 

0 ≤  𝜆1(𝐷
2𝜑(𝑥))  ≤···≤  𝜆𝑛(𝐷

2𝜑(𝑥))  ≤  1 

be the eigenvalues of 𝐷2𝜑(𝑥). Let 𝜀 ∈  (0,1) and assume that 

1 −  𝜀 ≤  ∫ 𝜆𝑛−𝑘+1(𝐷
2𝜑(𝑥))𝑑 𝛾𝑛(𝑥)  ≤  1               (4).                 

Then there exists a probability measure 𝜈 =   𝛾𝑝,𝑘⊗ 𝑒
−𝑊(𝑥′)𝑑𝑥′,  with 𝑊 ∶  ℝ𝑛−𝑘  →

ℝ satisfying 𝐷2𝑊 ≥  𝐼𝑑𝑛−𝑘, such that 

𝑊1(μ, 𝜈) ≾
1

|log 𝜀|1 4⁄             (5).                           

 

In the above statement, we are employing the following notation: 

𝑋 ≾ 𝑌𝛽_ 
Analogously, 

if 𝑋 ≤  𝐶(𝑛, 𝛼)𝑌𝛼for all 

𝛼 < 𝛽. 

𝑋 ≿ 𝑌𝛽_ if 𝐶(𝑛, 𝛼)𝑋 ≥ 𝑌𝛼  for all 

𝛼 <  𝛽. 

Remark (5.2.4) [279]: We do not expect the stability estimate in the previous theorem to 

be sharp. In particular, in dimension 1 an elementary argument (but completely specific to 

the one dimensional case) gives a linear control in 𝜀. Indeed, assuming (up to translating μ) 

that 

 

∫𝑥𝑑μ =  0   (6),                                     

set 𝜓(𝑥) ∶=  𝑥2/2 −  𝜑(𝑥). Then, since 𝜓′′ = (𝑥 −  𝑇)′ > 0, our assumption can be 

rewritten as 
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∫|(𝑥 −  𝑇)′|𝑑𝛾1  = 𝜓′′ 𝑑𝛾1  ≤  𝜀. 

Also, since 𝑇#𝛾1  =  μ, (6) yields 

∫𝑇(𝑥)𝑑𝛾1  =  0 = ∫𝑥𝑑𝛾1. 

Hence, by the 𝐿1 −Poincar´e inequality for the Gaussian measure we obtain 

𝑊1(μ, 𝛾1) ≤ ∫|𝑥 −  𝑦|𝑑𝜎𝑇(𝑥, 𝑦) =∫|𝑥 −  𝑇(𝑥)|𝑑𝛾1 ≤ 𝐶 ∫|(𝑥 −  𝑇)′|𝑑𝛾1 ≤ 𝐶𝜀, 
where 𝜎𝑇 ∶=  (𝐼𝑑 × 𝑇)#𝛾1. 

As explained above, Theorems (5.2.2) and (5.2.3) can be applied to study the structure of 

1-log-concave measures (i.e., measures of the form 𝑒−𝑉𝑑𝑥 with 𝐷2𝑉 ≥  𝐼𝑑𝑛) that almost 

achieve equality in (2). To simplify the presentation and emphasize the main ideas, we 

limit ourselves to a particular instance of (1), namely the optimal constant in the 

𝐿2 −Poincar´e inequality for μ: 

𝜆𝜇 ≔ inf {
∫|𝛻𝑢|

2𝑑µ

∫𝑢2𝑑µ
∶ 𝑢 ∈ 𝐿𝑖𝑝(ℝ𝑛), ∫ 𝑢 𝑑μ = 0}. 

It is well-known that 𝜆𝛾𝑛 =  1 and that {𝑢𝑖(𝑥)  = 𝑥𝑖}1≤𝑖≤𝑛 are the corresponding 

minimizers. In particular it follows by (3) that, for every 1-log-concave measure μ, 

∫𝑢2𝑑μ  ≤ ∫ |𝛻𝑢|2𝑑μ for all 𝑢 ∈  𝐿𝑖𝑝(ℝ𝑛) with ∫ 𝑢 𝑑μ = 0(7).  
As a consequence of Theorems (5.2.2) and (5.2.3) we have: 

Theorem (5.2.5) [279]: Let μ =  𝑒−𝑉𝑑𝑥 be a probability measure with 𝐷2𝑉 ≥  𝐼𝑑𝑛, and 

assume there exist 𝑘 functions {𝑢𝑖}1≤𝑖≤𝑘 ⊂ 𝑊
1,2(ℝ𝑛, μ), 𝑘 ≤  𝑛, such that 

∫𝑢𝑖 𝑑μ = 0, ∫ 𝑢𝑖
2
 
𝑑μ = 1, · 𝛻𝑢𝑗  𝑑μ =  0 ∀𝑖 ≠  𝑗, 

and  

∫|𝛻𝑢𝑖|
2 𝑑μ ≤  1 +  𝜀 

for some 𝜀 >  0. Then there exists a probability measure 𝜈 =   𝛾𝑝,𝑘⊗ 𝑒
−𝑊(𝑥′)𝑑𝑥′,  with 

𝑊 ∶  ℝ𝑛−𝑘  → ℝ satisfying 𝐷2𝑊 ≥  𝐼𝑑𝑛−𝑘, such that 

𝑊1(μ, 𝜈) ≾
1

|log 𝜀|1 4_⁄ . 

In particular, if there exist n orthogonal functions {𝑢𝑖}1≤𝑖≤𝑛 that attain the equality in (7) 

then μ =   𝛾𝑛,𝑝. 

We conclude recalling that the rigidity version of the above theorem (i.e., the case 𝜀 =
 0) has already been proved by Cheng and Zho in [286, Theorem 2] with completely 

different techniques. 

To prove Theorem (5.2.2), we first recall the following classical estimate due to 

Alexandrov (see for instance [288, Theorem 2.2.4 and Example 2.1.2(1)] for a proof): 

Lemma (5.2.6) [279]: Let Ω be an open bounded convex set, and let 𝑢 ∶  Ω → ℝ  be a𝐶1,1 
convex function such that 𝑢 =  0 on 𝜕Ω. Then there exists a dimensional constant 𝐶𝑛  >  0 

such that  

|𝑢(𝑥)|𝑛 ≤ 𝐶𝑛 𝑑𝑖𝑎𝑚(Ω)𝑛
−1 𝑑𝑖𝑠𝑡(𝑥, 𝜕Ω) ∫ 𝑑𝑒𝑡𝐷2𝑢∀𝑥 ∈

 

Ω
. 
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Set 𝜓(𝑥) ∶=  |𝑥|2/2 − 𝜑(𝑥) and note that, as a consequence of Theorem (5.2.1), 𝜓 ∶
ℝ𝑛  → ℝ  is a 𝐶1,1convex function with 0 ≤ 𝐷2𝜓 ≤  𝐼𝑑. Also, our assumption implies 

that 

 𝜆1(𝐷
2𝜓(𝑥)) =···=  𝜆𝑘(𝐷

2𝜓(𝑥)) = 0 for a.e. 𝑥 ∈ ℝ𝑑                                 (8).  
We are going to show that 𝜓 depends only on 𝑛 − 𝑘 variables. As we shall show later, this 

will immediately imply the desired conclusion. In order to prove the above claim, we note 

it is enough to prove it for  =  1 , since then one can argue recursively on ℝ𝑛−1and so on. 

Note that (8) implies that 

𝑑𝑒𝑡𝐷2𝜓 ≡  0 (9). 
Up to translate μ we can subtract a linear function to 𝜓 and assume without loss of 

generality that 𝜓(𝑥)  ≥  𝜓(0)  =  0. 

Consider the convex set 𝛴 ∶=  {𝜓 =  0}. We claim that 𝛴 contains a line. Indeed, if not, 

this set would contain an exposed point �̅�. 𝑈𝑝 to a rotation, we can assume that �̅� = 𝑎𝑒1 

with 𝑎 ≥  0. Also, since �̅� is an exposed point, 

𝛴 ⊂ {𝑥1 ≤  𝑎} 𝑎𝑛𝑑 𝛴 ∩ {𝑥1  =  𝑎}  =  {�̅�}. 
Hence, by convexity of 𝛴, the set 𝛴 ∩ {𝑥1 ≥ −1} is compact. 

Consider the affine function 

ℓ𝜂(𝑥) ∶=  𝜂(𝑥1  +  1), 𝜂 >  0 small, 

and define 𝛴𝜂 ∶=  {𝜓 ≤ ℓ𝜂}. Note that, as 𝜂 →  0, the sets 𝛴𝜂  converge in the Hausdorff 

distance to the compact set 𝛴 ∩ {𝑥1 ≥ −1}. In particular, this implies that 𝛴𝜂  is bounded 

for 𝜂 sufficiently small. 

We now apply Lemma (5.2.6) to the convex function 𝜓 − ℓ𝜂  inside 𝛴𝜂, and it follows by 

(9) that (note that 𝐷2ℓ𝜂  ≡  0) 

|𝜓(𝑥) − ℓ𝜂(𝑥)|
𝑛
≤ 𝐶𝑛 diam (𝛴𝜂))

𝑛 ∫ 𝑑𝑒𝑡
 

𝛴𝜂
𝐷 2𝜓 ∈ 0 ∀𝑥 ∈ 𝛴𝜂  . 

In particular this implies that 𝜓(0)  = ℓ𝜂(0)  = 𝜂, a contradiction to the fact that 𝜓(0)  =

 0. 

Hence, we proved that {𝜓 =  0} contains a line, say ℝ𝑒1. Consider now a point 𝑥 ∈ ℝ𝑛. 
Then, by convexity of 𝜓, 

𝜓(𝑥)  +  𝛻𝜓(𝑥)  ·  (𝑠𝑒1  −  𝑥)  ≤  𝜓(𝑠𝑒1)  =  0 ∀𝑠 ∈ ℝ, 
and by letting 𝑠 → ±∞ we deduce that 𝜕1𝜓(𝑥)  =  𝛻𝜓(𝑥)  ·  𝑒 1 =  0. Since 𝑥 was 

arbitrary, this means that 𝜕1𝜓 ≡  0, hence 𝜓(𝑥)  =  𝜓(0, 𝑥′), 𝑥′ ∈ ℝ𝑛−1. 
Going back to 𝜑, this proves that  

𝑇(𝑥)  =  (𝑥1, 𝑥′ − 𝛻𝜓(𝑥′)), 
and because μ =  𝑇#𝛾𝑛 we immediately deduce that μ =  𝛾 1⊗ μ1 where μ1 ∶= 

(𝐼𝑑𝑛−1 − 𝛻𝜓)#𝛾𝑛−1. 
Finally, to deduce that μ1 = 𝑒 

−𝑊𝑑𝑥′ with 𝐷2 𝑊 ≥  𝐼𝑑𝑛−1we observe that μ1 = (𝜋′)#μ 

where 𝜋′ ∶  ℝ𝑛 

→ ℝ𝑛−1is the projection given by 𝜋′(𝑥1, 𝑥′) ∶=  𝑥
′. Hence, the result is a consequence of 

the fact that 
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1-log-concavity is preserved when taking marginals, see [281, Theorem 4.3] or [289, 

Theorem 3.8].  

we first recall a basic properties of convex sets (see for instance [283, Lemma 2] for a 

proof). 

Lemma (5.2.7) [279]: Given 𝑆 an open bounded convex set in ℝ𝑛with barycenter at 0, let 

𝜀 denote an ellipsoid of minimal volume with center 0 and containing 𝑆. Then there exists 

a dimensional constant 𝜅 𝑛 >  0 such that 𝜅𝑛𝜀 ⊂  𝑆. 

We can prove the following simple geometric lemma: 

Lemma (5.2.8) [279]: Let 𝜅𝑛  be as in Lemma (5.2.7), set 𝑐𝑛 ∶=  𝜅𝑛/2, and consider 𝑆 ⊂
 ℝ𝑛  an open convex set with barycenter at 0. Assume that 𝑆 ⊂  𝐵𝑅 and 𝜕𝑆 ∩  𝜕𝐵𝑅 ̸ ≠  ∅. 
Then there exists a unit vector 𝑣 ∈ 𝕊𝑛−1 such that ±𝑐𝑛𝑅𝑣 ∈  𝑆. 
Proof: By scaling we can assume that 𝑅 =  1. 

Let 𝑣 ∈  𝜕𝑆 ∩  𝜕𝐵1, and consider the ellipsoid E provided by Lemma (5.2.7). Since 𝑣 ∈ ℰ̅ 
and ℰ is symmetric 

with respect to the origin, also −𝑣 ∈ ℰ̅ . Hence 

±𝑐𝑛𝑣 ∈  𝑐𝑛ℰ̅ ⊂  𝜅𝑛ℰ ⊂  𝑆, 
as desired.  

In order to complete the proof of Theorem (5.2.3) we recall the following geometric result, 

see [283, Lemma 1]. 

Lemma (5.2.9) [279]: Let 𝜓 ∶  ℝ𝑛  → ℝ ∪ {+∞} be a nonnegative convex function with 

(0) =  0. Assume that ψ is finite in a neighborhood of  0 and that the graph of 𝜓 does not 

contain lines. Then there exists 𝑝 ∈ ℝ𝑛such that the open convex set 

𝑆1: =  {𝑥 ∶  𝜓(𝑥)  ≤  𝑝 ·  𝑥 +  1} 
is nonempty, bounded, and with barycenter at 0. 

As in the proof of Theorem (5.2.2) we set 𝜓 ∶=  |𝑥|2 /2 −  𝜑. Then, inequality (4) gives 

∫𝜆𝑘(𝐷
2𝜓)𝑑𝛾𝑛 ≤  𝜀.                         (10) 

Up to subtract a linear function (i.e., substituting µ with one of its translation, which does 

not affect the conclusion of the theorem) we can assume that 𝜓(𝑥)  ≥  𝜓(0)  =  0, 
therefore 𝛻𝜓(0)  =  𝛻𝜙(0)  =  0. Since (𝛻𝜑)#𝛾𝑛  =  μ and ∥ 𝐷2𝜑 ∥∞ ≤  1, these 

conditions imply that 

∫|𝑥|𝑑μ(𝑥)  = ∫ |𝛻𝜑(𝑥)|𝑑𝛾𝑛(𝑥)   =  ∫ |𝛻𝜑(𝑥)  − 𝛻𝜑(0)|𝑑𝛾𝑛(𝑥)  ≤  ∫ |𝑥|𝑑𝛾𝑛(𝑥) 

≤  𝐶𝑛. 
In particular 

𝑊1(μ, 𝛾)  ≤  𝑊1(μ, 𝛿0)  + 𝑊1(𝛿0, 𝛾)  ≤  𝐶𝑛. 
This proves that (5) holds true with 𝜈 =  𝛾𝑛 and with a constant 𝐶 ≈ |𝑙𝑜𝑔𝜀0|

1/4 whenever 

𝜀 ≥  𝜀0. Hence, when showing the validity of (5), we can safely assume that 𝜀 ≤
 𝜀0(𝑛)  ≪  1. Furthermore, we can assume that the graph of 𝜓 does not contain lines 

(otherwise, by the proof of Theorem (5.2.2), we would deduce that μ splits a Gaussian 

factor, and we could simply repeat the argument in ℝ𝑛−1).  
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Thus we can apply Lemma (5.2.9) to deduce the existence of a slope 𝑝 ∈ ℝ𝑛such that 

𝑆1 = {𝑥 ∈ ℝ
𝑛 ∶  𝜓(𝑥) <  𝑝 ·  𝑥 +  1} 

is nonempty, bounded, and with barycenter at 0. Applying Lemma (5.2.6) to the convex 

function �̃�(𝑥) ∶=  𝜓(𝑥)  −  𝑝 ·  𝑥 −  1 inside the set 𝑆1, we get (note that 𝐷 2�̃�  =  𝐷 2𝜓) 

1 ≤  ( 𝑆1
−𝑚𝑖𝑛�̃�

)
𝑛

  ≤  𝐶𝑛 (𝑑𝑖𝑎𝑚(𝑆1))
𝑛  ∫ det  𝐷 2𝜓

 

𝑆1

.        (11) 

 

Consider now the smallest radius 𝑅 >  0 such that 𝑆1  ⊂  𝐵𝑅  (note that 𝑅 <  +∞ since 𝑆1 

is bounded). Since 𝛾𝑁 ≥ 𝑐𝑁𝑒 − 𝑅
2 /2 in 𝐵𝑅 and 𝜆𝑛(𝐷 𝑛𝜓)  ≤  1 for all 𝑖 = 1, . . . , 𝑛, (10) 

implies that 

∫ 𝑑𝑒𝑡𝐷2𝜓 ≤  𝐶𝑛𝑒
𝑅2/2 𝜀

 

𝐵𝑅
. 

 

Hence, using (11), since diam(𝑆1)  ≤  2𝑅 we get 

1 ≤  𝐶𝑛𝑅
𝑛𝑒𝑅

2/2 𝜀 
which yields 

𝑅 ≳ |𝑙𝑜𝑔𝜀|
1

2
+.            (12)   

Now, up to a rotation and by Lemma (5.2.8), we can assume that 

±𝑐𝑛𝑅𝑒1  ∈  𝑆1. 

Consider 1 ≪  𝜌 ≪  𝑅1/2 to be chosen. Since 𝑆1 ⊂ 𝐵𝑅  and 𝜓 ≥  0 we get that |𝑝| ≤ 1/𝑅, 
therefore 𝜓 ≤  2 on 

𝑆1  ⊂  𝐵 𝑅 . Hence  

2 ≥  𝜓(𝑧)  ≥  𝜓(𝑥)  + ⟨𝛻𝜓(𝑥), 𝑧 −  𝑥⟩ ≥ ⟨𝛻𝜓(𝑥), 𝑧 −  𝑥⟩ ∀𝑧 
∈  𝑆1, 𝑥 ∈  𝐵𝜌. 

Thus, since |𝛻𝜓| ≤  𝜌 𝑖𝑛 𝐵𝜌 (𝑏𝑦 ∥ 𝐷 2𝜓 ∥ 𝐿∞(ℝ𝑛)  ≤  1 𝑎𝑛𝑑 |𝛻𝜓(0)|  =  0), choosing 

𝑧 =  ±𝑐𝑛𝑅𝑒1 we get 

|𝜕1𝜓| ≤  
𝐶𝑛 𝜌

2

ℛ
 inside 𝐵𝜌   (13).   

Consider now �̅� 1 ∈  [−1,1] (to be fixed later) and define 𝜓1(𝑥′) ∶=  𝜓(�̅� 1, 𝑥′) with 𝑥′ ∈
ℝ𝑛−1. Integrating (13) with respect to 𝑥1 inside 𝐵𝜌/2, we get 

|𝜓 − 𝜓1| ≤  𝐶𝑛
𝜌3

𝑅
𝑖𝑛𝑠𝑖𝑑𝑒 𝐵𝜌/2.  

Thus, using the interpolation inequality 

‖𝛻𝜓 − 𝛻𝜓1‖𝐿∞(𝐵𝜌/  )
2 ≤ 𝐶𝑛‖𝛻𝜓 − 𝛻𝜓1‖𝐿∞(𝐵𝜌/2  )

 ‖𝐷2𝜓 − 𝐷2𝜓1‖𝐿∞(𝐵𝜌/2  ) 

and recalling that ∥ 𝐷2𝜓 ∥𝐿∞(ℝ𝑛) ≤  1 (hence ∥ 𝐷2𝜓1 ∥𝐿∞(ℝ𝑛−1)≤  1), we get 

|𝛻𝜓 − 𝛻𝜓1| ≤  𝐶𝑛  
𝑅3/2 

𝑅1/2
 inside 𝐵𝜌/4. 

If 𝑘 =  1 we stop here, otherwise we notice that (10) implies that 
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∫𝑑𝛾1(𝑥1)
 

ℝ

∫ 𝑑𝑒𝑡
 

ℝ𝑛−1
𝐷𝑥′,𝑥′
2 𝜓(𝑥1, 𝑥′)𝑑𝛾𝑛−1(𝑥′)

≤ ∫𝑑𝛾1(𝑥1)
 

ℝ

∫ 𝜆2(𝐷 
2𝜓)(𝑥1, 𝑥′)𝑑𝛾𝑛−1(𝑥′) ≤

 

ℝ𝑛−1
 𝜀, 

where we used that1 

and that (since 0 ≤
 𝐷 
2𝜓 ≤ 𝐼𝑑𝑛) 

𝜆1(𝐷 
2𝜓| {0}×ℝ𝑛−1)

≤ (𝐷 
2𝜓) 

𝑑𝑟𝑡 𝐷𝑥′,𝑥′
2 𝜓(𝑥1, 𝑥′) ≤ 𝜆1(𝐷 

2𝜓| {0}×ℝ𝑛−1). 

Hence, by Fubini’s Theorem, there exists �̅�1  ∈  [−1,1] such that 𝜓1(𝑥′)  =
 𝜓(�̅�1, 𝑥′) satisfies 

 ∫ 𝑑𝑒𝑡  𝐷 
2𝜓1𝑑𝛾𝑛−1

 

ℝ𝑛−1
(𝑥) ≤

𝐶𝑛𝜀. 
This allows us to repeat the argument above in ℝ𝑛−1 with 

�̅�1(𝑥′) ∶=  𝜓1(𝑥′)  − 𝛻𝑥′𝜓1(0)  ·  𝑥′ − 𝜓1(0) 
 

1 This inequality follows from the general fact that, given 𝐴 ∈  ℝ𝑛×𝑛 × 𝑛 symmetric 

matrix and 𝑊 ⊂ ℝ𝑛 a k-dimensional vector 

space, 

𝜆1(𝐴|𝑊) = min
𝑣∈𝑊

|𝐴𝑣.𝑣

|𝑣|2
≤ max
𝑣∈𝑤′ ⊂ℝ𝑛 

𝑤′ 𝑘−𝑑𝑖𝑚

min
𝑤′

|𝐴𝑣.𝑣

|𝑣|2
= 𝜆𝑛−𝑘+1(A). 

 

in place of 𝜓, and up to a rotation we deduce that 

|𝛻𝜓1̃  − 𝛻𝜓2| ≤  𝐶𝑛  
𝑅3/2 

𝑅1/2
 𝑅 𝑖𝑛𝑠𝑖𝑑𝑒 𝐵𝜌/4 

 

where 𝜓2(𝑥′′) ∶=  𝜓1(�̅�2, 𝑥′′), where �̅�2  ∈  [−1,1] is arbitrary. By triangle inequality, this 

yields 

|𝛻𝜓 + 𝑝′ − 𝛻𝜓2| ≤  𝐶𝑛  
𝑅3/2 

𝑅1/2
𝑅  inside 𝐵𝜌/4, 

where 𝑝′ =  −(0, 𝛻𝑥′𝜓(𝑥1̅̅̅, 0)). Note that, since |𝑥1̅̅̅|  ≤  1, 𝛻𝜓(0)  =  0, and ∥ 𝐷2𝜓∥∞ ≤
 1, we have |𝑝|  ≤  1. 

Iterating this argument 𝑘 times, we conclude that 

|𝛻𝜓 + �̅� − 𝛻𝜓𝑘| ≤  𝐶𝑛  
𝑅3/2 

𝑅1/2
  inside 𝐵𝜌/4, 

Where �̅�  =  (𝑝, 𝑝′′)  ∈ ℝ𝑘  × ℝ𝑛−𝑘 = ℝ𝑛  with |�̅�| ≤  𝐶𝑛, 

𝜓𝑘(𝑦) ≔ 𝜓(𝑥1̅̅̅, … , 𝑥𝑘̅̅ ̅, 𝑦), 𝑦 ∈ ℝ
𝑛−𝑘, 

and 𝑥�̅� ∈  [−1,1]. Recalling that 𝛻𝜑 =  𝑥 − 𝛻𝜓, we have proved that 

𝑇(𝑥) = 𝛻𝜑(𝑥) = (𝑥1  +  𝑝1, . . . , 𝑥𝑘  + 𝑝𝑘 , 𝑆(𝑦)  +  𝑝′′)  +  𝑄(𝑥), 
where 𝑄 ∶=  −(𝛻𝜓 − 𝛻𝜓𝑘  +  �̅�) satisfies 

‖𝑄‖𝐿∞(𝐵𝜌) ≤ 𝐶𝑛  
𝜌3/2 

𝑅1/2
 and |𝑄(𝑥)| ≤ 𝐶𝑛(1 + |𝑥|) 
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(in the second bound we used that 𝑇(0)  =  𝛻𝜑(0)  =  0, |𝑝| ≤ 𝐶𝑛, and 𝑇 is 1-Lipschitz). 

Hence, if we set 𝜈 ∶=  (𝑆 +  𝑝′′)#𝛾𝑛−𝑘, we have 

𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣) ≤ ∫|𝑄|𝑑𝛾𝑛 ≤ 𝐶𝑛  
𝜌
3
2 

𝑅
1
2

+ ∫ |𝑥|𝑑𝛾𝑛 = 𝐶𝑛  
𝜌
3
2 

𝑅
1
2

+ 𝐶𝑛𝜌
𝑛𝑒−𝜌

2 2⁄ 

ℝ𝑛\𝐵𝜌
, 

so, by choosing 𝜌 ∶=  (𝑙𝑜𝑔𝑅)1/2, we get 

𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣) ≾
1

𝑅1 2_⁄
  . 

Consider now 𝜋𝑘 ∶ ℝ
𝑛  → ℝ𝑛  and �̅�𝑛−𝑘 ∶ ℝ

𝑛  → ℝ𝑛−𝑘  the orthogonal projection onto the 

first 𝑘 and the last 𝑛 − 𝑘 coordinates, respectively. Define μ1 ∶=  (𝜋𝑘)#(𝑒
−𝑉𝑑𝑥), μ2 ∶=

(�̅�𝑛−𝑘)#(𝑒
−𝑉𝑑𝑥), and note that these are 1-log-concave measures in ℝ𝑘   and ℝ𝑛−𝑘  

respectively (see [281, Theorem 4.3] or [289, Theorem 3.8]). In particular μ2 = 𝑒
−𝑊  with 

𝐷2𝑊 ≥ 𝐼𝑑𝑛−𝑘. Moreover, since 𝑊1  decreases under orthogonal projection, 

𝑊1(μ2, 𝑣) = 𝑊1((�̅�𝑛−𝑘)#μ, (�̅�𝑛−𝑘)#(𝛾𝑝,𝑘⨂𝑣) ≤

𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣) ≾
1

𝑅1 2_⁄
, 

thus 

𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝜇2)  ≤ 𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣) +𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣, 𝛾𝑝,𝑘⨂𝜇2) 

≤ 𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣)  + 𝑊1(𝑣, 𝜇2) ≾
1

𝑅1 2_⁄
 

where we used the elementary fact that 𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝑣, 𝛾𝑝,𝑘⨂𝜇2) ≤ 𝑊1(𝑣, 𝜇2). Recalling 

(12), this proves that 

𝑊1(𝜇, 𝛾𝑝,𝑘⨂𝜇2) ≾
1

|log 𝜀|1 4_⁄ , 

concluding the proof.  

As in the proof of Theorem (5.2.3), it is enough to prove the result when 𝜀 ≤  𝜀0 ≪  1. 

Let {𝑢𝑖}1≤𝑖≤𝑘  be as in the statement, and set 𝑢𝑖 ∶=  𝑢𝑖 ∘  𝑇, where 𝑇 =  𝛻𝜑 ∶  ℝ𝑛 → ℝ𝑛 is 

the Brenier map from 𝛾𝑛  to µ. Note that since 𝑇#𝛾𝑛  =  μ, 

∫𝑢𝑖𝑑𝛾𝑛 = ∫𝑢𝑖 ∘  𝑇𝑑𝛾𝑛 = ∫𝑢𝑖𝑑μ  =  0. 

Also, since |𝛻𝑇| ≤  1 and by our assumption on 𝑢𝑖, 

∫|𝛻𝑢𝑖|
2𝑑𝛾𝑛  ≤ ∫ |𝛻𝑢𝑖|

2 ∘  𝑇𝑑𝛾𝑛  =  ∫ |𝛻𝑢𝑖|
2𝑑μ 

≤ (1 +  𝜀) ∫𝑢𝑖
2
 
𝑑μ =  (1 +  𝜀) ∫𝑢𝑖

2
 
𝑑𝛾𝑛 ≤ (1 +  𝜀) ∫ |𝛻𝑢𝑖|

2𝑑𝛾𝑛, 

where the last inequality follows from the Poincar´e inequality for 𝛾𝑛  applied to 𝑢𝑖. Since 

 

∫ |𝛻𝑢𝑖|
2𝑑μ  ≤  1 +  𝜀, 

this proves that 

 

0 ≤ ∫(|𝛻𝑢𝑖|
2 ∘  𝑇 − |𝛻𝑢𝑖|

2)𝑑𝛾𝑛  ≤  𝜀 ∫|𝛻𝑢𝑖|
2𝑑μ  ≤ 𝜀(1 +

 𝜀)                                                                                                                (14)    . 
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Moreover, by Theorem (5.2.1), 𝛻𝑇 =  𝐷2𝜑 is a symmetric matrix   0 ≤
𝛻𝑇 ≤ 𝐼𝑑𝑛 therefore (𝐼𝑑 − 𝛻𝑇)2 ≤  𝐼𝑑 − (𝛻𝑇)2. Hence, since 𝛻𝑢𝑖 = 

𝛻𝑇 · 𝛻𝑢𝑖 ∘  𝑇, it follows by (14) that 

∫|𝛻𝑢𝑖 ∘  𝑇 − 𝛻𝑢𝑖|
2𝑑𝛾𝑛 =∫|𝛻𝑢𝑖 ∘  𝑇 − 𝛻𝑢𝑖|

2𝑑𝛾𝑛 = 

= ∫(𝐼𝑑𝑛 − (𝛻𝑇)
 )2[𝛻𝑢𝑖 ∘  𝑇, 𝛻𝑢𝑖 ∘  𝑇]𝑑𝛾𝑛 

≤ ∫(𝐼𝑑𝑛 − (𝛻𝑇)
2 ) [𝛻𝑢𝑖 ∘  𝑇, 𝛻𝑢𝑖 ∘  𝑇]𝑑𝛾𝑛   

 

Satisfying , 
  

                        = ∫(|𝛻𝑢𝑖|
2 ∘  𝑇 − |𝛻𝑢𝑖|

2)𝑑𝛾𝑛 ≤ 2𝜀              (15)  

where, given a matrix 𝐴 and a vector 𝑣, we have used the notation 𝐴[𝑣, 𝑣] for 𝐴𝑣 · 𝑣. In 

particular, recalling the orthogonality constraint ∫𝛻𝑢𝑖 . 𝛻𝑢𝑗 𝑑μ =  0, we deduce that 

 

                                         ∫ 𝛻𝑢𝑖 . 𝛻𝑢𝑗 𝑑𝛾𝑛 =  𝑂(√ 𝜀)                                         (16). 

In addition, if we set 

𝑓𝑖(𝑥) ≔
𝛻𝑢𝑖 ∘  𝑇(𝑥)

|𝛻𝑢𝑖 ∘  𝑇(𝑥)|
 

then, using again that |𝛻𝑇| ≤  1 , 

 

 

 

∫|𝛻(𝑢𝑖 ∘  𝑇)|
2 (1 − |𝛻𝑇 ·  𝑓𝑖|

2 𝑑𝛾 ≤ ∫(|𝛻𝑢𝑖|
2 ∘  𝑇 − (1 − |𝛻𝑇. 𝑓𝑖|

2) 𝑑𝛾𝑛

≤ 2𝜀 ·                                                                                           (17) 
 

Now, for 𝑗 ∈ ℕ, let 𝐻𝐽 ∶ ℝ → ℝ be the one dimensional Hermite polynomial of degree 𝑗: 

𝐻𝐽(𝑡) =
(−1)𝑗

√𝑗!
𝑒𝑡

2 2⁄ (
𝑑

𝑑𝑡
)𝑗𝑒−𝑡

2 2⁄  

see [287, Section 9.2]. It is well known (see for instance [287, Theorem 9.7]) that for 𝐽 = 

(𝑗1, . . . , 𝑗𝑛)  ∈ ℕ
𝑛  the functions 

𝐻𝐽(𝑥1, . . . , 𝑥𝑛) ∶= 𝐻𝑗1(𝑥1)𝐻𝑗2(𝑥2). . . . . 𝐻𝑗𝑛(𝑥𝑛) 

form a Hilbert basis of 𝐿2(ℝ𝑛, 𝛾𝑛). Hence, since  𝛼0
𝑖 = ∫𝑢𝑖

 
 
𝑑𝛾𝑛 = 0, we can write 

𝑢𝑖
 = ∑ 𝛼𝑗

𝑖
𝐽∈ℕ𝑛\{0} 𝐻𝐽. 

By elementary computations (see for instance [287, Proposition 9.3]), we get 

1 = ∫𝑢𝑖
 2
 
𝑑𝛾𝑛 = ∑ (𝛼𝑗

𝑖)2𝐽∈ℕ𝑛\{0} , ∫(|𝛻𝑢𝑖|
2 𝑑𝛾𝑛 = ∑ |𝐽|(𝛼𝑗

𝑖)2𝐽∈ℕ𝑛\{0} , 

where |𝐽| = ∑ 𝑗𝑚
𝑛
𝑚=1 . Hence,   combining the above equations with the bound  

∫(|𝛻𝑢𝑖|
2 𝑑𝛾𝑛 ≤ (1 +  𝜀), 

𝜀 ≥ ∫|𝛻𝑢𝑖|
2 𝑑𝛾𝑛 − ∫𝑢𝑖

 2 𝑑𝛾𝑛 = ∑ (|𝐽| − 1)(𝛼𝑗
𝑖)2 ≥

1

2𝐽∈ℕ𝑛,|𝐽|≥2 ∑ |𝐽|(𝛼𝑗
𝑖)2𝐽∈ℕ𝑛,|𝐽|≥2  . 

Recalling that the first Hermite polynomials are just linear functions (since 𝐻1(𝑡)  =  𝑡), 
using the notation 

𝛼𝑗
𝑖 ≔ 𝛼𝐽

𝑖  with 𝐽 =  𝑒𝑗 ∈ ℕ
𝑛 
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we deduce that 

𝑢𝑖(𝑥)  = ∑ 𝛼𝑗
𝑖𝑥𝑗

𝑛
𝑗=1 +  𝑧(𝑥), with‖𝑧‖ 𝑊1,2(ℝ𝑛,𝛾𝑛)

2
=  𝑂(𝜀). 

 In particular, if we define the vector 

𝑉𝑖: = ∑ 𝛼𝑗
𝑖𝑒𝑗

𝑛
𝑗=1 ∈ ℝ𝑛, 

and we recall that ∫|𝛻𝑢𝑖|
2 𝑑𝛾𝑛  =  1 +  𝑂(𝜀) and the almost orthogonality relation (16), 

we infer that |𝑉𝑖|  =  1 +  𝑂(𝜀) and |𝑉𝑖  ·  𝑉𝑙|  =  𝑂( √𝜀) for all 𝑖 ≠ 𝑙 ∈ {1, . . . , 𝑘}. 

Hence, up to a rotation, we can assume that |𝑉𝑖 − 𝑒𝑖|  =  𝑂( √𝜀) for all 𝑖 =  1, . . . , 𝑘, 

and (15) yields 

 

∫|𝛻(𝑢𝑖 ∘  𝑇) − 𝑒𝑖|
2𝑑𝛾𝑛  ≤  𝐶 𝜀             (18).              

Since 0 ≤ 1 − |𝛻𝑇 ·  𝑓𝑖|
2 ≤  1, it follows by (17) and (18) that 

∫(1 − |𝛻𝑇 ·  𝑓𝑖|
2) 𝑑𝛾𝑛 ≤ 2∫(|𝛻(𝑢𝑖 ∘  𝑇)|

2 + |𝛻(𝑢𝑖 ∘  𝑇) − 𝑒𝑖|
2 )(1 − |𝛻𝑇 ·  𝑓𝑖|

2)𝑑𝛾𝑛 ≤
𝐶 𝜀   (19)                        

Set 𝑤𝑖: = 𝛻𝑢𝑖 ∘  𝑇 so that 𝑓𝑖  =
𝑤𝑖

|𝑤𝑖|
. We note that, since all the eigenvalues of 𝛻𝑇 = 𝐷2𝜑 

are bounded by 1 , given 𝛿 ≪  1 the following holds: whenever 

|𝛻𝑇 · 𝑤𝑖 − 𝑒𝑖| ≤  𝛿 and |𝛻𝑇 · 𝑓𝑖| ≥  1 −  𝛿 

then |𝑤𝑖|  =  1 +  𝑂(𝛿). In particular, 

|𝛻𝑇 · 𝑓𝑖 − 𝑒𝑖| ≤  𝐶𝛿. 

Hence, if 𝛿 ≤  𝛿0 where 𝛿0 is a small geometric constant, this implies that the vectors 𝑓𝑖  are 

a basis of ℝ𝑘, and 

𝛻𝑇|𝑠𝑝𝑎𝑛(𝑓1,...,𝑓𝑘)  ≥  (1 − 𝐶0𝛿) 𝐼𝑑𝑘 

for some dimensional constant 𝐶0. Defining 𝜓(𝑥) ∶=  |𝑥|2/2 −  𝜑(𝑥), this proves that 

{𝑥: ∑ [|𝛻𝑇(𝑥). 𝑤𝑖(𝑥) − 𝑒𝑖| + (1 − |𝛻𝑇(𝑥). 𝑓𝑖(𝑥)|)]
𝑘
𝑖=1 } ≤ 𝛿 ⊂ {𝑥: 𝜆𝑛−𝑘+1(𝐷

2𝜓(𝑥)) ≤

𝐶0𝛿}(20)
                           

for all 0 <  𝛿 ≤  𝛿0. Hence, by the layer-cake formula, (18), and (19), 

∫ 𝜆𝑛−𝑘+1(𝐷2𝜓)𝑑𝛾𝑛 = 𝐶0∫ 𝛾𝑛({𝜆𝑛−𝑘+1(𝐷2𝜓)>𝐶0𝑠})

𝛿0

0

 

{𝜆𝑛−𝑘+1(𝐷2𝜓)≤𝐶0𝛿0
}

𝑑𝑠 

≤ 𝐶0∫ 𝛾𝑛 ({∑[|𝛻𝑇(𝑥).𝑤𝑖(𝑥) − 𝑒𝑖| + (1 − |𝛻𝑇(𝑥). 𝑓𝑖(𝑥)|)]

𝑘

𝑖=1

> 𝑠})𝑑𝑠

𝛿0

0

 

≤ 𝐶0∑ ∫(|𝛻𝑇. 𝑤𝑖 − 𝑒𝑖| + (1 − |𝛻𝑇. 𝑓𝑖|))𝑑𝛾𝑛 ≤ 𝐶 √𝜀
𝑘
𝑖=1     (21) . 

 

On the other hand, it follows by (20) that 

{𝑥: 𝜆𝑛−𝑘+1(𝐷
2𝜓(𝑥)) > 𝐶0𝛿} ⊂ ⋃ [{𝑥: |𝛻𝑇(𝑥).𝑤𝑖(𝑥) − 𝑒𝑖| >

𝛿

2𝑘
} ∪𝑘

𝑖=1

{𝑥: (1 − |𝛻𝑇(𝑥). 𝑓𝑖(𝑥)|) >
𝛿

2𝑘
}]  . 

Thus, (18), (19), and Chebyshev’s inequality yield 
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𝛾𝑛({𝜆𝑛−𝑘+1(𝐷
2𝜓(𝑥) > 𝐶0𝛿0) ≤ ∑ 𝛾𝑛 ({|𝛻𝑇. 𝑤𝑖 − 𝑒𝑖| >

𝛿0

2𝑘
})𝑘

𝑖=1 +

∑ 𝛾𝑛 ({1 − |𝛻𝑇. 𝑓𝑖| >
𝛿0

2𝑘
})𝑘

𝑖=1 ≤ 𝐶
𝜀

𝛿0
2    (22)     .                         

 

Hence, since 𝛿0 is a small but fixed geometric constant, combining (21) and (22), and 

recalling that 𝜆𝑛−𝑘+1(𝐷
2𝜓) ≤  1, we obtain 

∫ 𝜆𝑛−𝑘+1(𝐷
2𝜓)𝑑𝛾𝑛 ≤ 𝐶 √𝜀. 

This implies that (4) holds with 𝐶 √𝜀 in place of 𝜀, and the result follows by Theorem 

(5.2.3).  
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Chapter 6 

Brunn-Minkowski Inequalities 

           Throughout the study attention is paid to precise equality conditions and conditions 

on the coefficients of dilatation. Interesting links are found to the S-inequality and the (B) 

conjecture. An example is given to show that convexity is needed in the (B) conjecture.  It 

is shown that these two families of inequalities are “equivalent” in that once either of these 

inequalities is established, the other must follow as a consequence. All of the conjectured 

inequalities are established for plane convex bodies. We establish the stability near a 

Euclidean ball of two conjectured inequalities: the dimensional Brunn–Minkowski 

inequality for radially symmetric log-concave measures in 𝑅𝑛, and of the log-Brunn–

Minkowski inequality. 

         Section (6.1): Gaussian Brunn-Minkowski Inequalities  

 

This focuses on two fundamental ingredients of mathematics: Gauss measure, the most 

important probability measure in ℝ𝑛, and the Brunn-Minkowski inequality, one of the most 

powerful inequalities in analysis and geometry. 

The Brunn-Minkowski inequality for convex bodies 𝐾 and 𝐿 in ℝ𝑛 states that 

                                     𝑉𝑛(𝐾 + 𝐿)
1 𝑛⁄ ≥ 𝑉𝑛(𝐾)

1 𝑛⁄ + 𝑉𝑛(𝐿)
1 𝑛⁄ ,                                (1) 

where 𝐾 + 𝐿 is the Minkowski or vector sum of 𝐾 and 𝐿, 𝑉𝑛 denotes 𝑛-dimensional Lebesgue 

measure, and equality holds if and only if 𝐾 is homothetic to 𝐿. By the homogeneity of 𝑉𝑛, 

this is equivalent to 

                              𝑉𝑛(𝑠𝐾 + 𝑡𝐿)
1 𝑛⁄ ≥  𝑠𝑉𝑛(𝐾)

1 𝑛⁄ + 𝑡𝑉𝑛(𝐿)
1 𝑛⁄ ,                               (2) 

where 𝑠, 𝑡 ≥ 0. 

It is known that (1) and (2) still hold when the sets concerned are Lebesgue measurable, and 

indeed the Brunn-Minkowski inequality reaches far beyond geometry. No less than three 

recent surveys cover its extensive generalizations, variations, connections, and applications 

in probability and statistics, information theory, Banach space theory, algebraic geometry, 

geometric tomography, interacting gases, and crystallography; see [290], [294], and [298]. 

The Brunn-Minkowski inequality (1) is a cornerstone of the vast Brunn-Minkowski theory, 

expounded in [299]. This harbors the tools, such as Minkowksi sum, for metrical problems 

on convex bodies and their projections onto subspaces. Around 1975, Lutwak [297] 

observed that when the Minkowski sum of two sets is replaced by an operation he called 

radial sum, in which only sums of parallel vectors are taken into account, a theory arises that 

is ideal for treating metrical problems about sets star-shaped with respect to the origin, and 

their intersections with subspaces. This newer theory, now called the dual Brunn-Minkowski 

theory, has attracted much attention and counts among its successes the solution of the 1956 

Busemann-Petty problem on volumes of central of 𝑜-symmetric convex bodies; see [295]. 

Corresponding in the dual theory to the Brunn-Minkowski inequality (1) is the dual Brunn-

Minkowski inequality for bounded Borel star sets 𝐶 and 𝐷 in ℝ𝑛, which states that 

                               𝑉𝑛(𝐶 ∓ 𝐷)
1 𝑛⁄ ≤ 𝑉𝑛(𝐶)

1 𝑛⁄ + 𝑉𝑛(𝐷)
1 𝑛⁄ ,                                      (3) 
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where ∓ denotes radial sum, with equality if and only if 𝐶 is a dilatate of 𝐷. See, for example, 

[293, (B.30)] and [298, Section 3]. This is equivalent to 

                              𝑉𝑛(𝑠𝐶 ∓ 𝑡𝐷)
1 𝑛⁄ ≤ 𝑠𝑉𝑛(𝐶)

1 𝑛⁄ + 𝑡𝑉𝑛(𝐷)
1 𝑛⁄ ,                               (4) 

where 𝑠, 𝑡 ≥ 0. The reversal of the inequality sign in the passage from (1) to (3) is a standard, 

but not yet fully understood, feature of the duality at play. Here we are interested in 

inequalities of the Brunn-Minkowski type for Gauss measure 𝛾𝑛 in ℝ𝑛. Despite the fact that 

𝛾𝑛 is not translation invariant, such inequalities have been found. The most powerful, due to 

Ehrhard [391], [392], states that for 0 < 𝑡 < 1 and closed convex sets 𝐾 and 𝐿 in ℝ𝑛, we 

have 

               𝛷−1 (𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)) ≥ (1 − 𝑡)𝛷
−1 (𝛾𝑛(𝐾)) + 𝑡𝛷

−1(𝛾𝑛(𝐿)),     (5) 

where 𝛷(𝑥) = 𝛾1((−∞, 𝑥)). By [292, p. 154], equality holds when 𝛾𝑛(𝐾)𝛾𝑛(𝐿) > 0 if and 

only if 𝐾 = ℝ𝑛, 𝐿 = ℝ𝑛, 𝐾 = 𝐿, or both 𝐾 and 𝐿 are half-spaces, one contained in the other. 

Since the function 𝛷 is (strictly) log concave (i.e., 𝑙𝑜𝑔𝛷 is (strictly) concave), Ehrhard’s 

inequality and its equality condition imply that for 0 < 𝑡 < 1 and closed convex sets 𝐾 and 

𝐿 in ℝ𝑛, 

                  𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿) ≥ 𝛾𝑛(𝐾)
1−𝑡𝛾𝑛(𝐿)

𝑡 ,                                                     (6) 
with equality when 𝛾𝑛(𝐾)𝛾𝑛(𝐿) > 0 if and only if 𝐾 = 𝐿. Inequality (6), proved 

independently by Borell [293], [294] and Brascamp and Lieb [299], is also an easy 

consequence of the Prekopa-Leindler inequality and the fact that the density function of 𝛾𝑛 

is log concave, and moreover (6) holds when the sets concerned are Borel sets (see, for 

example, [294, p. 378]). On the other hand it was only recently that Borell [296] proved that 

(5) also holds for Borel sets. (Note that what Borell in [295] calls the Brunn-Minkowski 

inequality for Gauss measure is none of the above inequalities but is rather an isoperimetric 

inequality that follows from (5); see [292].) 

One of the main results, is the following new inequality for Borel star sets 𝐶 and 𝐷 in ℝ𝑛 

and 𝑠, 𝑡 ≥ 1: 

𝛾𝑛(𝑠𝐶 ∓ 𝑡𝐷)
1 𝑛⁄ ≤ 𝑠𝛾𝑛(𝐶)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐷)
1 𝑛⁄ . 

See Theorem (6.1.2), which also gives precise equality conditions. What is remarkable about 

this Gaussian dual Brunn-Minkowski inequality (compare (4)) is not its proof, which does 

not require innovative techniques, but that it exists. The discussion after Theorem (6.1.2) 

shows that the inequality is the best possible from several points of view. In particular, the 

restriction 𝑠, 𝑡 ≥ 1 on the coefficients of dilatation is necessary. This may seem strange at 

first, since (4) has no such restriction. However, 𝛾𝑛 is not homogeneous, and the restriction 

𝑠, 𝑡 ≥ 1 becomes natural when we see that it also applies to (4) when the exponent 1/𝑛 is 

replaced by 0 < 𝑝 < 1/𝑛. 

where we examine the role of the coefficients of dilatation in several inequalities, including, 

for the first time as far as we know, those for (6). 

Also we find that when the exponent 1/𝑛 in (4) is replaced by 𝑝 > 1/𝑛, the appropriate 

condition on the coefficients is 𝑠 + 𝑡 ≤ 1, which includes the important special case of the 

convex combination where 𝑠 = 1 − 𝑡. This raises the question (see Question (6.1.6)) as to 

whether there is a Gaussian dual Brunn -Minkowski inequality that holds when 𝑠 + 𝑡 ≤ 1. 
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Our investigation turns up an interesting connection with the so-called S-inequality of Latala 

and Oleszkiewicz [294], but our results suggest that there may be no satisfactory answer to 

this question. 

In the course of our detailed investigation into Gaussian dual Brunn-Minkowski inequalities, 

we were led to the following intriguing question (see Question (6.1.7)): If 0 < 𝑡 < 1 and 𝐾 

and 𝐿 are closed convex sets containing the origin in ℝ𝑛, is it true that 

𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)
1 𝑛⁄ ≥ (1 − 𝑡)𝛾𝑛(𝐾)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)
1 𝑛⁄ ? 

we note that the restriction on the position of 𝐾 and 𝐿 is necessary, but in view of the direct 

analogy with (2), it is amazing that the inequality seems to have been overlooked. It does not 

follow from Ehrhard’s inequality (5), and if true it would be stronger than (6) when 𝐾 and 𝐿 

contain the origin. We provide evidence in its favor by showing that it is true when 𝐾 and 𝐿 

are coordinate boxes, when either 𝐾 or 𝐿 is a slab, and when 𝐾 and 𝐿 are both dilatates of 

the same 𝑜-symmetric closed convex set. Even the latter special case is not at all easy. We 

establish it by means of a fascinating link (see Theorem (6.1.12)) with Banaszczyk’s 

conjecture—the (B) conjecture—that 𝛾𝑛(𝑒
𝑡𝐾0) is log concave in 𝑡 when 𝐾0 is an 𝑜-

symmetric convex body, recently proved by Cordero-Erasquin, Fradelizi, and Maurey [290]. 

It is not known if the symmetry is necessary for the truth of the (B) conjecture, but we give 

an example to show that the convexity is necessary. In Theorem (6.1.14) we prove a 

Gaussian Prekopa-Leindler inequality that follows from earlier results. 

We are very grateful to Franck Barthe for his helpful suggestions and comments, in particular 

the contribution given in detail at the end. 

As usual, 𝑆𝑛−1 denotes the unit sphere, 𝐵 the unit ball, 𝑜 the origin, and ‖・‖ the norm in 

Euclidean 𝑛-space ℝ𝑛. If 𝑥, 𝑦 ∈ ℝ𝑛, then 𝑥・𝑦 is the inner product of 𝑥 and 𝑦 and 

[𝑥, 𝑦] denotes the line segment with endpoints 𝑥 and 𝑦. 

If 𝑋 is a set, 𝑑𝑖𝑚𝑋 is its dimension, that is, the dimension of its affine hull, and 𝜕𝑋 is its 

boundary. A set is 𝑜-symmetric if it is centrally symmetric, with center at the origin. If 𝑟 ∈
ℝ, the set 𝑟𝑋 = {𝑟𝑥 ∶ 𝑥 ∈ 𝑋} is called a dilatate of 𝑋. If 𝑋 and 𝑌 are sets in ℝ𝑛, then 

𝑋 + 𝑌 = {𝑥 + 𝑦 ∶ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 } 
is the Minkowski or vector sum of 𝑋 and 𝑌. 

A body is a compact set equal to the closure of its interior. 

We write 𝑉𝑘 for 𝑘-dimensional Lebesgue measure in ℝ𝑛, where 𝑘 = 1, . . . , 𝑛 and where we 

identify 𝑉𝑘 with 𝑘-dimensional Hausdorff measure. If 𝐾 is a 𝑘 –dimensional body in ℝ𝑛, 

then we refer to 𝑉𝑘(𝐾) as its volume. Define 𝜅𝑛 = 𝑉𝑛(𝐵). The notation 𝑑𝑧 will always mean 

𝑑𝑉𝑘(𝑧) for the appropriate 𝑘 = 1, . . . , 𝑛. 

A set in ℝ𝑛is called a convex body if it is convex and compact with nonempty interior. The 

treatise of Schneider [299] is an excellent general reference for convex sets. 

A (possibly unbounded) set 𝐶 is star shaped at the origin if every line through the origin that 

meets 𝐶 does so in a (possibly degenerate) closed line segment, a closed half-infinite ray, or 

in the line itself. If 𝐶 is a set that is star shaped at the origin, its radial function 𝜌𝐶 is defined, 

for all 𝑢 ∈ 𝑆𝑛−1 such that the line through the origin parallel to 𝑢 intersects 𝐶, by 

𝜌𝐶(𝑢) = 𝑠𝑢𝑝{𝑐 ∈ ℝ ∶ 𝑐𝑢 ∈ 𝐶} . 
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Note that 𝐶 may not contain the origin and that 𝜌𝐶 may take negative or infinite values. A 

Borel star set is a Borel set that contains the origin and is star shaped at the origin. 

By a star body in ℝ𝑛 we mean a body 𝐿 star shaped at the origin such that 𝜌𝐿, restricted to 

its support, is continuous. This definition, introduced in [299] (see also [293, Section 0.7]), 

allows bodies not containing the origin, unlike previous definitions; in particular, every 

convex body is a star body in this sense. 

If 𝑥, 𝑦 ∈ ℝ𝑛, then the radial sum 𝑥 ∓ 𝑦 of 𝑥 and 𝑦 is defined to be the usual vector 𝑠𝑢𝑚𝑥 +
𝑦 if 𝑥 and 𝑦 are contained in a line through 𝑜, and 𝑜 otherwise. If 𝐶 and 𝐷 are Borel star sets 

in ℝ𝑛 and 𝑠, 𝑡 ∈ ℝ, then 

𝑠𝐶 ∓ 𝑡𝐷 = {𝑠𝑥 ∓ 𝑡𝑦: 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷} 
and 

                                          𝜌𝑠𝐶∓𝑡𝐷 = 𝑠𝜌𝐶 + 𝑡𝜌𝐷 .                                                           (7) 
The standard Gauss measure 𝛾𝑛 is defined for measurable subsets 𝐸 of ℝ𝑛 by 

                                     𝛾𝑛(𝐸) =  𝑐𝑛𝑒
−‖𝑥‖2 2⁄ 𝑑𝑥,                                                           (8) 

where 𝑑𝑥 denotes integration with respect to 𝑉𝑛 and 

                                        𝑐𝑛 = (2𝜋)
−𝑛/2.                                                                       (9) 

For 𝑛 ∈ ℕ and 𝑟 ∈ ℝ, define 

                                         𝛹𝑛(𝑟) = 𝛾𝑛(𝑟𝐵).                                                                 (10) 
From (8) it follows by substitution that if 𝐸 is a measurable subset of ℝ𝑛, then 

  𝛾𝑛(𝑠𝐸)
1 𝑛⁄ ≥ 𝑠𝛾𝑛(𝐸)

1 𝑛⁄ 𝑖𝑓 0 ≤ 𝑠 ≤ 1 𝑎𝑛𝑑 𝛾𝑛(𝑠𝐸)
1 𝑛⁄ ≤ 𝑠𝛾𝑛(𝐸)

1 𝑛⁄  𝑖𝑓 𝑠 ≥ 1. (11) 

Equality holds in each inequality if and only if 𝑠 = 1 or 𝛾𝑛(𝐸) = 0. 
Let 

                             𝛷(𝑥) =
1

√2𝜋
∫ 𝑒−

𝑡2

2  
𝑥

−∞
𝑑𝑡,                                                                (12) 

and note that 𝛷(𝑥) = 𝛾1((−∞, 𝑥)). 
It will be convenient to define, for 𝑎 ≥ 0, 

                                 𝜙𝑛(𝑎) = (∫ 𝑒−
𝑡2

2 𝑡𝑛−1 𝑑𝑡
𝑎

0
)
1 𝑛⁄

.                                               (13) 

Then if 𝐶 is a Borel star set in ℝ𝑛, 𝑛 ≥ 2, a change to polar coordinates yields 

      𝛾𝑛(𝐶) = 𝑐𝑛 ∫ ∫ 𝑒−
𝑟2

2 𝑟𝑛−1𝑑𝑟
𝜌𝐶(𝑢)

0
𝑑𝑢

𝑆𝑛−1
= 𝑐𝑛 ∫ 𝜙𝑛(𝜌𝐶(𝑢))

𝑛
𝑑𝑢

𝑆𝑛−1
,             (14) 

where 𝑐𝑛 is given by (9), an analog of the familiar polar coordinate expression for the 𝑉𝑛-

measure of a Borel star set. 

If 𝐶 is a Borel set contained in the ball 𝜀𝐵 for 𝜀 > 0, it follows from (8) that 

                  𝑐𝑛𝑒−
𝜀2

2 𝑉𝑛(𝐶) ≤ 𝛾𝑛(𝐶) ≤ 𝑐𝑛𝑉𝑛(𝐶).                                                            (15) 
Since 𝛾𝑛 is not homogeneous, it makes sense to carefully examine the precise conditions on 

the coefficients of dilatation in inequalities involving Gauss measure. 

In [297] (see also [292]), Borell resolved this issue for Ehrhard’s inequality (5) by showing 

that 

𝛷−1(𝛾𝑛(𝑠𝐾 + 𝑡𝐿)) ≥ 𝑠𝛷
−1(𝛾𝑛(𝐾)) 𝑡𝛷

−1(𝛾𝑛(𝐿)) , 
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where 𝛷 is defined by (12), holds for 𝑠, 𝑡 ≥ 0, even for Borel sets, when 𝑠 + 𝑡 ≥ 1 and |𝑠 −
𝑡| ≤ 1, and not generally unless these conditions are satisfied. In [298], Borell shows that, 

remarkably, the corresponding condition for convex 𝐾 and 𝐿 is different; here only 𝑠 + 𝑡 ≥
1 is required. 

The corresponding analysis for the weaker inequality (6) does not appear. We claim that the 

inequality 

                                   𝛾𝑛(𝑠𝐾 + 𝑡𝐿) ≥ 𝛾𝑛(𝐾)
𝑠𝛾𝑛(𝐿)

𝑡                                                (16) 
holds generally for Borel star sets 𝐾 and 𝐿 and 𝑠, 𝑡 ≥ 0 if and only if 𝑠 + 𝑡 ≥ 1. To see this, 

note first that if 𝑠 + 𝑡 < 1 and 𝐾 = 𝐿, (16) implies that 

𝛾𝑛(𝐾) > 𝛾𝑛((𝑠 + 𝑡)𝐾) ≥ 𝛾𝑛(𝐾)
𝑠+𝑡 , 

a contradiction since 𝛾𝑛(𝐾) ≤ 1. Suppose, then, that 𝑠 + 𝑡 ≥ 1. Let 

𝑓(𝑠, 𝑡) = 𝑙𝑜𝑔(𝛾𝑛(𝑠𝐾 + 𝑡𝐿)) − 𝑠 𝑙𝑜𝑔(𝛾𝑛(𝐾)) − 𝑡 𝑙𝑜𝑔(𝛾𝑛(𝐿)) . 
Clearly 𝛾𝑛(𝑠𝐾 + 𝑡𝐿) increases with 𝑠 and 𝑡, 𝑙𝑜𝑔(𝛾𝑛(𝐾)) ≤ 0, and 𝑙𝑜𝑔(𝛾𝑛(𝐿)) ≤  0, so 

𝜕𝑓/𝜕𝑠 ≥ 0 and 𝜕𝑓/𝜕𝑡 ≥ 0. If 𝑠, 𝑡 ≥ 1, this yields 𝑓(𝑠, 𝑡) ≥ 𝑓(0, 1) = 0, as required. On 

the other hand if 𝑡 < 1, say, then 𝑓(𝑠, 𝑡) ≥ 𝑓(1 −  𝑡, 𝑡) ≥ 0 by (6), completing the proof of 

the claim. 

Note, however, that for convex 𝐾 and 𝐿, (16) holds generally for 𝑠, 𝑡 ≥ 0 if and only if 𝑠 =
1 − 𝑡. In view of the previous paragraph, we need only consider the case when 𝑠 + 𝑡 > 1. 

Let 𝑛 = 1, let 𝐾 = 𝐿 = [𝑥, 𝑥 + 1], 𝑥 > 0, and let 𝑠 + 𝑡 = 𝑎 > 1. 

Then (16) and crude estimates give 

𝑎

√2𝜋
𝑒−(𝑎𝑥)

2/2 > 𝛾1([𝑎𝑥, 𝑎𝑥 + 𝑎]) ≥ 𝛾1([𝑥, 𝑥 + 1])
𝑎 > (

1

√2𝜋
𝑒−(𝑥+1)

2/2)
𝑎

 

or 
𝑎

√2𝜋
𝑒−𝑎

2𝑥2/2 >
1

(2𝜋)𝑎 2⁄
 𝑒−𝑎(𝑥+1)

2/2. 

Since 𝑎2 > 𝑎, this is clearly false for sufficiently large 𝑥. 

In view of the connection (15) between Gauss and Lebesgue measure, we revisit the classical 

and dual Brunn-Minkowski inequality for exponents 𝑝 > 0. 

To deal with this, first note that if 𝑝 > 0 and 𝑎, 𝑏, 𝑠, 𝑡 ≥ 0, the weighted 𝑝th means 

(𝑠𝑎𝑝 + 𝑡𝑏𝑝)1 𝑝⁄  increase with 𝑝 for all 𝑎, 𝑏 ≥ 0 if and only if 𝑠 + 𝑡 ≤ 1 and  decrease with 

𝑝 for all 𝑎, 𝑏 ≥ 0 if and only if 𝑠, 𝑡 ≥ 1. (The cases 𝑠 = 1 − 𝑡 and 𝑠 = 𝑡 = 1 are usually 

called the 𝑝th mean and 𝑝th sum of 𝑎 and 𝑏, respectively.) See [290, (2.10.4) and (2.10.5), 

p. 29]. In particular, the inequality 

                                 (𝑠𝑎 + 𝑡𝑏)𝑝 ≥ 𝑠𝑎𝑝 + 𝑡𝑏𝑝                                                           (17) 
is true for all 𝑎, 𝑏 ≥ 0 when 𝑝 = 1, when 𝑝 < 1 and 𝑠 + 𝑡 ≤ 1, and when 𝑝 > 1 and 𝑠, 𝑡 ≥
1, and it is false for all 𝑎, 𝑏 > 0 when 𝑝 > 1 and 𝑠 + 𝑡 ≤ 1, and when 𝑝 < 1 and 𝑠, 𝑡 ≥ 1. 

Moreover, it does not generally hold otherwise. To see this, it suffices to check that when 

𝑠 < 1 and 𝑡 > 1, (17) is false for 𝑝 < 1 and sufficiently small 𝑎 and for 𝑝 > 1 and 

sufficiently small 𝑏. 

The above monotonicity properties of the weighted means and (2) imply that 

                               𝑉𝑛(𝑠𝐾 + 𝑡𝐿)
𝑝 ≥ 𝑠𝑉𝑛(𝐾)

𝑝 + 𝑡𝑉𝑛(𝐿)
𝑝                                        (18) 
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holds for 𝑠, 𝑡 ≥ 0 and all convex bodies 𝐾 and 𝐿 in ℝ𝑛 when 𝑝 = 1/𝑛, when 0 < 𝑝 < 1/𝑛 

and 𝑠 + 𝑡 ≤ 1, and when 𝑝 > 1/𝑛 and 𝑠, 𝑡 ≥ 1. By using the homogeneity of volume and 

the remarks above concerning the inequality (17), we see that (18) is otherwise generally 

false for 𝐾 = 𝑎𝐵, 𝐿 = 𝑏𝐵 and small 𝑎, 𝑏 ≥ 0, and it is always false for 𝐾 = 𝑎𝐵, 𝐿 =
 𝑏𝐵, 𝑎, 𝑏 > 0, when 𝑝 > 1/𝑛 and 𝑠 + 𝑡 ≤ 1, and when 0 < 𝑝 < 1/𝑛 and 𝑠, 𝑡 ≥ 1. 

In a similar fashion, it can be seen that 

                                  𝑉𝑛(𝑠𝐶 ∓ 𝑡𝐷)
𝑝 ≤ 𝑠𝑉𝑛(𝐶)

𝑝 + 𝑡𝑉𝑛(𝐷)
𝑝                                    (19) 

holds for 𝑠, 𝑡 ≥ 0 and all bounded Borel star sets 𝐶 and 𝐷 in ℝ𝑛 when 𝑝 = 1/𝑛, when 𝑝 >
1/𝑛 and 𝑠 + 𝑡 ≤ 1, and when 0 < 𝑝 < 1/𝑛 and 𝑠, 𝑡 ≥ 1. It is otherwise generally false for 

𝐶 = 𝑎𝐵, 𝐷 = 𝑏𝐵 and small 𝑎, 𝑏 ≥ 0, and it is always false for 𝐶 = 𝑎𝐵, 𝐷 = 𝑏𝐵, 𝑎, 𝑏 > 0, 
when 0 < 𝑝 < 1/𝑛 and 𝑠 + 𝑡 ≤ 1, and when 𝑝 > 1/𝑛  and 𝑠, 𝑡 ≥ 1. 
Lemma (6.1.1)[289]: The function 𝜙𝑛 defined by (13) is sublinear, i.e., 

𝜙𝑛(𝑎 + 𝑏) ≤ 𝜙𝑛(𝑎) + 𝜙𝑛(𝑏), 
for 𝑎, 𝑏 ≥ 0, with equality if and only if 𝑎 = 0 or 𝑏 = 0. 

Proof: For fixed 𝑏 > 0 and all 𝑎 ≥ 0, define 

𝑓(𝑎) = 𝜙𝑛(𝑎 + 𝑏) − 𝜙𝑛(𝑎) − 𝜙𝑛(𝑏). 
Then 𝑓(0) = 0, and it suffices to show that 𝑓′(𝑎) < 0 for all 𝑎 ≥ 0. In view of (13), we 

have 

𝑛𝑓′(𝑎) = (𝑎 + 𝑏)𝑛−1𝑒−(𝑎+𝑏)
2/2𝜙𝑛(𝑎 + 𝑏)

1−𝑛 − 𝑎𝑛−1𝑒−𝑎
2/2𝜙𝑛(𝑎)

1−𝑛. 
If 𝑛 = 1, it is clear from this that 𝑓′(𝑎) < 0 for 𝑎 ≥ 0. Suppose that 𝑛 ≥ 2. Using (13) again, 

we see that 𝑓′(𝑎) < 0 is equivalent to 

(𝑎 +  𝑏)−𝑛𝑒𝑛(𝑎+𝑏)
2/(2(𝑛−1))  ∫ 𝑒−𝑡

2/2𝑡𝑛−1𝑑𝑡
𝑎+𝑏

0

 > 𝑎−𝑛𝑒𝑛𝑎
2/(2(𝑛−1))∫ 𝑒−𝑡

2/2𝑡𝑛−1𝑑𝑡
𝑎

0

 

or 

𝑒𝑛(𝑎+𝑏)
2/(2(𝑛−1))∫ 𝑒−(𝑠(𝑎+𝑏))

2/2𝑠𝑛−1𝑑𝑠
1

0

 > 𝑒𝑛𝑎
2/(2(𝑛−1))∫ 𝑒−(𝑠𝑎)

2/2𝑠𝑛−1𝑑𝑠
1

0

.  

Rearranging, we obtain 

∫ 𝑒(𝑛/(𝑛−1)−𝑠
2)(𝑎+𝑏)2/2𝑠𝑛−1𝑑𝑠

1

0

> ∫ 𝑒(𝑛/(𝑛−1)−𝑠
2)𝑎2/2𝑠𝑛−1𝑑𝑠

1

0

. 

The previous inequality holds since 𝑠2 ≤ 1 < 𝑛/(𝑛 − 1), and this proves the lemma. 

Theorem (6.1.2) [289]: Let 𝐶 and 𝐷 be Borel star sets in ℝ𝑛, and let 𝑠, 𝑡 ≥ 1. Then 

                             𝛾𝑛(𝑠𝐶 ∓ 𝑡𝐷)
1 𝑛⁄ ≤ 𝑠𝛾𝑛(𝐶)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐷)
1 𝑛⁄ .                             (20) 

Suppose that 𝐶 and 𝐷 are properly contained in ℝ𝑛. Equality holds when 𝑠 = 𝑡 = 1 if and 

only if 𝛾𝑛(𝐶) = 0, 𝛾𝑛(𝐷) = 0, or 𝑛 = 1 and both 𝐶 and 𝐷 are (possibly degenerate or 

infinite) intervals with one endpoint at the origin, each on opposite sides of the origin. 

Equality holds when 𝑠 > 1 and 𝑡 = 1 (or 𝑠 = 1 and 𝑡 > 1, or 𝑠 > 1 and 𝑡 > 1) if and only 

if 𝛾𝑛(𝐶) = 0 (or if and only if 𝛾𝑛(𝐷) = 0, or if and only if 𝛾𝑛(𝐶) = 0 and 𝛾𝑛(𝐷) = 0, 
respectively). 

Proof: Suppose first that 𝑠 = 𝑡 = 1. 
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If 𝑛 = 1 and 𝐶 and 𝐷 are bounded, then 𝐶 = [−𝑎1, 𝑏1] and 𝐷 = [−𝑎2, 𝑏2] for nonnegative 

𝑎1, 𝑎2, 𝑏1, and 𝑏2, and (20) is equivalent to 

𝜙1(𝑎1 + 𝑎2) + 𝜙1(𝑏1 + 𝑏2) ≤ (𝜙1(𝑎1) + 𝜙1(𝑏1)) + (𝜙1(𝑎2) + 𝜙1(𝑏2)) . 
This follows immediately from Lemma (6.1.1), and its equality condition shows that either 

𝑎1 = 0 𝑜𝑟 𝑎2 = 0 and either 𝑏1 = 0 or 𝑏2 = 0. The same conclusion is reached if 𝐶 or 𝐷 is 

unbounded. This yields the required equality condition when 𝑛 = 1. 

Suppose that 𝑛 ≥ 2. By (14), (7), Lemma (6.1.1), and Minkowski’s inequality for integrals, 

we have 

𝛾𝑛(𝐶 ∓ 𝐷)
1 𝑛⁄ = (𝑐𝑛∫ 𝜙𝑛(𝜌𝐶 ∓ 𝐷(𝑢))

𝑛𝑑𝑢
𝑆𝑛−1

)

1 𝑛⁄

 

= (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐶(𝑢) + 𝜌𝐷(𝑢))
𝑛 𝑑𝑢

𝑆𝑛−1
)

1 𝑛⁄

 

≤ (𝑐𝑛∫ (𝜙𝑛(𝜌𝐶(𝑢)) + 𝜙𝑛(𝜌𝐷(𝑢)))
𝑛𝑑𝑢

𝑆𝑛−1
)

1 𝑛⁄

 

≤ (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐶(𝑢))
𝑛 𝑑𝑢

𝑆𝑛−1
)

1 𝑛⁄

+ (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐷(𝑢))
𝑛 𝑑𝑢

𝑆𝑛−1
)

1 𝑛⁄

 

= 𝛾𝑛(𝐶)
1 𝑛⁄ + 𝛾𝑛(𝐷)

1 𝑛⁄ . 
Suppose, in addition to our assumption that 𝑠 = 𝑡 = 1, that equality holds in (20). Then for 

almost all 𝑢 ∈ 𝑆𝑛−1, equality holds in Lemma (6.1.1) when 𝑎 = 𝜌𝐶(𝑢) and 𝑏 = 𝜌𝐷(𝑢), and 

hence for almost all 𝑢 ∈ 𝑆𝑛−1 we have either 𝜌𝐶(𝑢) = 0 or 𝜌𝐷(𝑢) = 0. But equality also 

holds in Minkowski’s inequality for integrals, so there is a constant 𝑐 such that 𝜙𝑛(𝜌𝐶(𝑢)) =
 𝑐𝜙𝑛(𝜌𝐷(𝑢)) for almost all 𝑢 ∈ 𝑆𝑛−1. It follows that either 𝜌𝐶(𝑢) = 0 for almost all 𝑢 ∈
𝑆𝑛−1 or 𝜌𝐷(𝑢) = 0 for almost all 𝑢 ∈ 𝑆𝑛−1, and therefore either 𝛾𝑛(𝐶) = 0 or 𝛾𝑛(𝐷) = 0.  
We have proved (20) and its equality conditions when 𝑠 = 𝑡 = 1. Using this and (11), for 

general 𝑠, 𝑡 ≥ 1 we obtain 

𝛾𝑛(𝑠𝐶 ∓ 𝑡𝐷)
1 𝑛⁄ ≤ 𝛾𝑛(𝑠𝐶)

1 𝑛⁄ + 𝛾𝑛(𝑡𝐷)
1 𝑛⁄ ≤  𝑠𝛾𝑛(𝐶)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐷)
1 𝑛⁄ , 

as required. The equality conditions for 𝑠 > 1 or 𝑡 > 1 follow from those of (11). 

Inequality (20) does not hold generally when either 𝑠 < 1 or 𝑡 < 1. Indeed, if 𝑠 < 1, (20) is 

false when 𝐷 = 𝜀𝐵 and 𝜀 > 0 is sufficiently small, in view of (11). Inequality (20) is false 

for arbitrary Borel sets star shaped at the origin. To see this, let 𝑠 = 𝑡 = 1, and for each 𝑚 ∈
ℕ, let 𝐶𝑚 = {(𝑟, 𝜃) ∈ ℝ

𝑛 ∶ 𝑚 ≤ 𝑟 ≤ 𝑚 + 1, 0 ≤ 𝜃 ≤ 𝜋/2} and 𝐷𝑚 = −𝐶𝑚. Then 𝐶𝑚 ∓
𝐷𝑚 = 𝐶0 ∪ (−𝐶0), so 𝛾2(𝐶𝑚 ∓ 𝐷𝑚) is positive and independent of 𝑚 while 𝛾2(𝐶𝑚) =
𝛾2(𝐷𝑚) → 0 as 𝑚 → ∞. Note that 𝐶𝑚 and 𝐷𝑚 are actually star bodies. 

The monotonicity properties of the weighted 𝑝th means (𝑠𝑎𝑝 + 𝑡𝑏𝑝)1 𝑝⁄  summarized at the 

end imply that Theorem (6.1.2) holds for 𝑠, 𝑡 ≥ 1 and 0 < 𝑝 ≤ 1/𝑛. 

However, the exponent 1/𝑛 in (20) is the best possible; it does not hold when 1/𝑛 is replaced 

by 𝑝 > 1/𝑛, as can be seen by taking 𝐶 = 𝑎𝐵 and 𝐷 = 𝑏𝐵 for sufficiently small positive 𝑎 

and 𝑏, and using (15) and the remarks concerning (19). Similarly, using the remarks 
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concerning (18) instead, we see that it is also not true that (20) holds when 1/𝑛 is replaced 

by 𝑝 > 1/𝑛 and the inequality is reversed. 

When 𝐶 and 𝐷 are convex bodies containing the origin, we have 𝑠𝐶 ∓ 𝑡𝐷 ⊂ 𝑠𝐶 + 𝑡𝐷, so in 

this case the inequality 𝛾𝑛(𝑠𝐶 + 𝑡𝐷)
1 𝑛⁄ ≤ 𝑠𝛾𝑛(𝐶)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐷)
1 𝑛⁄  would be stronger than 

(20). However, by (2), its equality condition, and (15), this is false in general when 𝐶 and 𝐷 

are sufficiently small nonhomothetic convex bodies containing the origin. 
We consider the possibility that 

                  ⊝𝑛
−1 𝛾𝑛𝑠𝐶+̃𝑡𝐷 ≤  𝑠 ⊝𝑛

−1 (𝛾𝑛(𝐶)) + 𝑡 ⊝𝑛
−1 (𝛾𝑛(𝐷))                          (21) 

holds for Borel star sets 𝐶 and 𝐷 in ℝ𝑛 and 𝑠, 𝑡 ≥ 1, where ⊝𝑛 is some standard function 

related to Gauss measure. Certainly (21) is not generally true when 𝑠 = 𝑡 = 1 and ⊝𝑛= 𝛹𝑛, 

the function defined by (10). To see this, let 𝐶 and 𝐷 be half-spaces in ℝ𝑛 bounded by a 

common hyperplane through the origin, so that 𝐶+̃𝐷 = ℝ𝑛 and 𝛾𝑛(𝐶) = 𝛾𝑛(𝐷) = 1/2. 

Then the left-hand side of (21) with 𝑠 = 𝑡 = 1 and ⊝𝑛= 𝛹𝑛 is infinite, while the right-hand 

side is bounded. Of course the same argument shows that (21) is not generally true when 

⊝𝑛= 𝛹1 𝑜𝑟 ⊝𝑛= 𝛷 (defined by (12)). 

In view of Theorem (6.1.2) and the dual Brunn-Minkowski inequality in the form (19), it is 

natural to ask whether there is a 𝑝 > 0 such that 

                               𝛾𝑛(𝑠𝐶+̃𝑡𝐷)
𝑝 ≤ 𝑠𝛾𝑛(𝐶)

𝑝 + 𝑡𝛾𝑛(𝐷)
𝑝                                         (22) 

holds for 𝑠, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 1, and Borel star sets 𝐶 and 𝐷 in ℝ𝑛. We shall see that the answer 

is negative for 𝑠, 𝑡 > 0, even for 𝑜-symmetric balls. To this end, the following lemma will 

be useful. 

Lemma (6.1.3) [289]: The function 

                           𝐹𝑛(𝑟) = (∫ 𝑒−
𝑡2

2 𝑡𝑛−1 𝑑𝑡
𝑟

0
)
𝑝

                                                             (23)  

is strictly concave when (i) 0 < 𝑝 < 1 and 𝑟 ≥ √𝑛 − 1, (ii) 𝑝 ≥ 1 and 𝑟 > √𝑛𝑝 −  1, and 

(iii) 0 < 𝑝 ≤ 1/𝑛 and 𝑟 > 0. 

Proof: Let 

                                               𝐼𝑛(𝑟) = 𝑒
−
𝑡2

2 𝑡𝑛−1 𝑑𝑡,                                                      (24) 
so that 𝐹𝑛(𝑟) = 𝐼𝑛(𝑟)

𝑝. A straightforward calculation yields 

     𝐹𝑛
′′(𝑟) = 𝑝𝐼𝑛(𝑟)

𝑝−2𝑒−
𝑟2

2 𝑟𝑛−2 ((𝑝 − 1)𝑒−
𝑟2

2 𝑟𝑛 + 𝐼𝑛(𝑟)(𝑛 − 1 − 𝑟
2)).         (25) 

Note that a trivial estimate gives 𝐼𝑛(𝑟) > 𝑒
−𝑟2/2𝑟𝑛/𝑛 for 𝑟 > 0, so if 𝑟 ≥ √𝑛 − 1, we obtain 

𝐹𝑛
′′(𝑟) = 𝑝𝐼𝑛(𝑟)

𝑝−2𝑒−𝑟
2/2𝑟2𝑛−2(𝑛𝑝 − 1 − 𝑟2)/𝑛. Fromthiswe see that 𝐹𝑛

′′(𝑟) < 0 when, in 

addition, 𝑝 < 1, establishing (i), and (ii) also follows immediately. 

In proving (iii) we may suppose that 𝑝 = 1/𝑛, since 𝑝th means increase with 𝑝. Substituting 

𝑝 = 1/𝑛 into (25), we see that it suffices to show that 

𝐺𝑛(𝑟) = −(𝑛 − 1)𝑒
−𝑟2 2⁄ 𝑟𝑛 + 𝑛𝐼𝑛(𝑟)(𝑛 − 1 − 𝑟

2) < 0 
for 𝑟 > 0. Now 𝐺𝑛(0) = 0, and 

𝐺𝑛
′ (𝑟) = 𝑒−𝑟

2 2⁄ 𝑟𝑛+1 − 2𝑛𝑟𝐼(𝑟) < 0 
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for 𝑟 > 0. It follows that 𝐺𝑛(𝑟) < 0 for 𝑟 > 0, as required. 

No attempt was made to obtain best possible estimates in cases (i) and (ii) of the previous 

lemma, since those found are sufficient for our purposes. Case (iii) of the previous lemma is 

equivalent to the concavity of 𝜙𝑛(𝑟) for 𝑟 > 0, and this is also implied by a result of Koenig 

and Tomczak-Jaegermann [291, p. 1218]. 

Corollary (6.1.4) [289]: Let 𝑠, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 1, and let 𝐶 and 𝐷 be 𝑜-symmetric balls in 

ℝ𝑛. Then 

                                       𝛾𝑛(𝑠𝐶+̃𝑡𝐷)
𝑝 ≥ 𝑠𝛾𝑛(𝐶)

𝑝 + 𝑡𝛾𝑛(𝐷)
𝑝                                   (26) 

holds for 0 < 𝑝 ≤ 1/𝑛. Equality holds for 𝑠, 𝑡 > 0 if and only if 𝐶 = 𝐷. 

Proof: Note that when 𝑛 = 1, 𝛾1(𝑟𝐵) = 𝛾1([−𝑟, 𝑟]) = 2𝑐1𝐼1(𝑟), where 𝐼𝑛(𝑟) is given by 

(24). If 𝑛 ≥ 2, by (14), we have 

𝛾𝑛(𝑟𝐵) = 𝑐𝑛∫ 𝜙𝑛(𝑟)
𝑛𝑑𝑢

𝑆𝑛−1
 = 𝑛𝜅𝑛𝑐𝑛𝐼𝑛(𝑟) 

for 𝑟 > 0. Thus if the function 𝐹𝑛(𝑟) given by (23) is concave for 0 < 𝑎 < 𝑟 < 𝑏, then 

                      𝛾𝑛((1 − 𝑡)𝐶+̃𝑡𝐷)
𝑝 ≥ (1 − 𝑡)𝛾𝑛(𝐶)

𝑝 + 𝑡𝛾𝑛(𝐷)
𝑝                             (27) 

holds when 𝐶 = 𝑟0𝐵,𝐷 = 𝑟1𝐵, and 0 < 𝑎 < 𝑟0, 𝑟1 < 𝑏. By Lemma (6.1.3)(iii), 𝐹𝑛(𝑟) is 

actually strictly concave for 0 < 𝑝 ≤ 1/𝑛, and this yields the corollary together with the 

equality condition when 𝑠 = 1 − 𝑡. 
For general 𝑠, 𝑡 ≥ 0 with 𝑠 + 𝑡 ≤ 1, let 𝛼 = 𝑠/(1 − 𝑡) ≤ 1 and note that by (27) and (11), 

for 0 < 𝑝 ≤ 1/𝑛, we have 

𝛾𝑛(𝑠𝐶+̃𝑡𝐷)
𝑝 = 𝛾𝑛((1 − 𝑡)(𝛼𝐶)+̃𝑡𝐷)

𝑝 ≥ (1 − 𝑡)𝛾𝑛(𝛼𝐶)
𝑝 + 𝑡𝛾𝑛(𝐷)

𝑝 
≥ (1 − 𝑡)𝛼𝑝𝑛𝛾𝑛(𝐶)

𝑝 + 𝑡𝛾𝑛(𝐷)
𝑝 

≥ (1 − 𝑡)𝛼𝛾𝑛(𝐶)
𝑝 + 𝑡𝛾𝑛(𝐷)

𝑝 
= 𝑠𝛾𝑛(𝐶)

𝑝 + 𝑡𝛾𝑛(𝐷)
𝑝,  

as required. If equality holds, then equality holds in (11), implying that 𝛼 = 1, and then 𝐶 =
𝐷 from the equality condition for (27). 

Corollary (6.1.5) [289]: For given 𝑠, 𝑡 > 0, 𝑠 + 𝑡 ≤ 1, and 𝑝 > 0, inequality (22) is false in 

general, even for 𝑜-symmetric balls. 

Proof. Corollary (6.1.4) and its equality condition yield the result for 0 < 𝑝 ≤ 1/𝑛. 

Suppose that 𝑝 > 1/𝑛. By Lemma (6.1.3)(i) and (ii) we can choose the radii of 𝑜-symmetric 

balls 𝐶 and 𝐷 in ℝ𝑛 so that with 𝑠 = 1 − 𝑡, 
                            𝛾𝑛(𝑠𝐶+̃𝑡𝐷)

𝑝 > 𝑠𝛾𝑛(𝐶)
𝑝 + 𝑡𝛾𝑛(𝐷)

𝑝,                                            (28) 
and therefore so that (22) is false. It remains to consider the case when 𝑠 + 𝑡 < 1. 

Let 𝐶 = 𝑎𝐵 and 𝐷 = 𝑎𝐵 for 𝑎 > 0. Then (28) is equivalent to 

𝛾𝑛((𝑠 + 𝑡)𝑎𝐵)
𝑝 > (𝑠 + 𝑡)𝛾𝑛(𝑎𝐵)

𝑝. 
As 𝑎 → ∞, the left-hand side approaches 1, while the right-hand side approaches 𝑠 + 𝑡 < 1. 

It follows that (28) holds for sufficiently large 𝑎. 

Note that Corollary (6.1.4) holds even for 𝑝 < 0, at least when 𝑠 = 1 − 𝑡. This is because 

𝑝th means increase with real 𝑝; see [290, Section 2.9]. Consequently Corollary (6.1.5) also 

holds when 𝑠 = 1 − 𝑡 and 𝑝 < 0. 
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Corollary (6.1.4) does not hold in general, even when both 𝐶 and 𝐷 are dilatates of a fixed 

𝑜-symmetric Borel star set 𝐸. To see this, let 𝐸1 = {(𝑥, 𝑦) ∈ ℝ
2: 𝑥, 𝑦 ≥ 0}, 𝐸2(𝑎) =

{(𝑟, 𝜃) ∈ ℝ2: 0 ≤ 𝑟 ≤ 𝑎, 𝜋/2 ≤ 𝜃 ≤ 𝜋}, and let 𝐸(𝑎) = 𝐸1 ∪ (−𝐸1) ∪ 𝐸2(𝑎) ∪ (−𝐸2(𝑎)). 
Letting 

𝑓(𝑡) = 𝛾2(𝑡𝐸(𝑎))
1 2⁄

= (
1

2
+
1

2
(1 − 𝑒−𝑡

2𝑎2/2))

1 2⁄

= 𝐼(𝑡)1 2⁄ , 

say, we obtain 

𝑓′′(𝑡) =
𝑎2𝑒−𝑡

2𝑎2/2

16𝐼(𝑡)3 2⁄
(−𝑡2𝑎2𝑒−𝑡

2𝑎2/2 + 4𝐼(𝑡)(1 − 𝑡2𝑎2)). 

Using the inequalities 1 − 𝑥 ≤ 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2/2 for 𝑥 ≥ 0, we have 

−𝑡2𝑎2𝑒−𝑡
2𝑎2/2 + 4𝐼(𝑡)(1 − 𝑡2𝑎2)  = 4 − 4𝑡2𝑎2 − 2𝑒−𝑡

2𝑎2/2 + 𝑡2𝑎2𝑒−𝑡
2𝑎2/2 

≥
1

4
(8 −  8𝑡2𝑎2 − 3𝑡4𝑎4). 

The latter quantity is positive for 0 ≤ 𝑡 ≤ 1, and hence 𝑓(𝑡) is convex there, when 𝑎 ≤ 𝑎0 =

((2√10 − 4)/3)1 2⁄ = 0.8802 . . .. It follows that if 0 < 𝑎1 < 𝑎3 < 𝑎0, 𝐶 = 𝐸(𝑎1), and 

𝐷 = 𝐸(𝑎2), then (26) is false for 0 < 𝑠 = 1 − 𝑡 < 1 when 𝑛 = 2 and 𝑝 = 1/2. By replacing 

𝐸1 with 𝐸1
′ = {(𝑟, 𝜃) ∈ ℝ2: 0 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝜃 ≤ 𝜋/2} for sufficiently large 𝑏 and then 

approximating, we can clearly also find sets 𝐶 and 𝐷 in ℝ𝑛, each dilatates of a fixed 𝑜-

symmetric star body, such that (26) is false for 0 < 𝑠 = 1 − 𝑡 < 1 when 𝑛 = 2 and 𝑝 = 1/2. 

The results of the previous  and the existence of Ehrhard’s inequality (5) raise the following 

question.  

Question (6.1.6) [289]: Let 𝑛 ∈ ℕ. Is there a natural nonconstant function 𝛩𝑛 such that for 

0 < 𝑡 < 1 and Borel star sets 𝐶 and 𝐷 in ℝ𝑛, 

       𝛩𝑛
−1(𝛾𝑛((1 − 𝑡)𝐶+̃𝑡𝐷)) ≤ (1 − 𝑡)𝛩𝑛

−1 (𝛾𝑛(𝐶)) + 𝑡𝛩𝑛
−1(𝛾𝑛(𝐷))?              (29) 

For 𝑛 = 1, we can take 𝛩1 = 1 − 𝛷, for then, noting that 1 − 𝛷(𝑥) = 𝛷(−𝑥), we have 

𝛩−1 = −𝛷−1, and since the radial sum equals the Minkowski sum when 𝑛 = 1, (29) 

becomes Ehrhard’s inequality (5)! However, we cannot take 𝛩𝑛 = 1 − 𝛷 when 𝑛 ≥ 2. To 

see this, note that this would imply that Ehrhard’s inequality (5) is true when 𝑛 ≥  2, 𝐾 and 

𝐿 are Borel star sets, and the Minkowski sum is replaced by the radial sum. But this is false. 

Indeed, recall that since 𝛷 is log concave, this would imply that (6) also holds when 𝑛 ≥
2,𝐾 and 𝐿 are Borel star sets, and the Minkowski sum is replaced by the radial sum. 

Moreover, from the equality conditions for (5) we can conclude that the radial sum version 

of (6) would hold with strict inequality when 𝐾 and 𝐿 are dilatates with 𝐾 ≠  𝐿. By (15), we 

would then have 

𝑉𝑛((1 − 𝑡)𝐾+̃𝑡𝐿) > 𝑉𝑛(𝐾)
1−𝑡𝑉𝑛(𝐿)

𝑡 
for sufficiently small nonequal dilatates 𝐾 and 𝐿. By a standard argument (see, for example, 

[294, p. 362]), this would contradict (4). 

Any 𝛩𝑛 for which (29) holds for o-symmetric Borel star sets must be decreasing. To see this, 

let 𝐶 and 𝐷 be 𝑜-symmetric infinite double cones such that 𝐶 ∩ 𝐷 = {𝑜}. 
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Then (1 − 𝑡)𝐶 = 𝐶, 𝑡𝐷 = 𝐷, and (1 − 𝑡)𝐶+̃𝑡𝐷 = 𝐶 ∪ 𝐷. If 𝛾𝑛(𝐶) = 𝑎 and 𝛾𝑛(𝐷) = 𝑏, then 

(29) yields 

𝛩𝑛
−1 (𝑎 + 𝑏) ≤ (1 − 𝑡)𝛩𝑛

−1(𝑎) + 𝑡𝛩𝑛
−1 (𝑏). 

As 𝑡 → 0, we obtain 𝛩𝑛
−1(𝑎 + 𝑏) ≤ 𝛩𝑛

−1(𝑎). Therefore 𝛩𝑛
−1 is decreasing on [0, 1] and 

hence 𝛩𝑛 is also decreasing. In particular, we cannot take 𝛩𝑛 = 𝛷,𝛹1, or 𝛹𝑛  (see (10)). 
Despite all this, we claim that for all 𝑛 ∈ ℕ, (29) is true when 𝛩𝑛 = 𝛹1, 𝐶 = {𝑜}, and 𝐷 is 𝑜-

symmetric and convex. To see this, let 0 < 𝑡 < 1 and consider an 𝑜-symmetric slab (the 

closed region between two parallel hyperplanes) 𝑃 of half-width 𝑎, and note that 𝛾𝑛(𝑃) =
𝛾1([−𝑎, 𝑎]) = 𝛹1(𝑎), 𝑜𝑟 𝑎 = 𝛹1

−1 (𝛾𝑛(𝑃)). Suppose that 𝑃 is chosen so that 𝛾𝑛(𝑃) =
𝛾𝑛(𝐷). Then 𝑃 has half-width 𝛹1

−1(𝛾𝑛(𝐷)), so 𝑡𝑝 has half-width 

𝑡𝛹1
−1(𝛾𝑛(𝐷)) 𝑎𝑛𝑑 𝛾𝑛(𝑡𝑃) = 𝛹1(𝑡𝛹1

−1(𝛾𝑛(𝐷))).  By the so-called 𝑆-inequality (see [292] 

and [294]), we have 

𝛾𝑛(𝑡𝐷) ≤ 𝛾𝑛(𝑡𝑃) = 𝛹1(𝑡𝛹1
−1(𝛾𝑛(𝐷))), 

which is (29) for the special case under consideration. 

The previous observation suggests that Question (6.1.6) should be revisited under the 

restriction that the sets 𝐶 and 𝐷 are o-symmetric closed convex sets. In fact, it turns out that 

we still cannot take 𝛩𝑛 = 𝛷,𝛹1, 𝑜𝑟 𝛹2, but different arguments are required. 

To see that it is still not possible to take 𝛩𝑛 = 𝛷, let 𝐶 and 𝐷 be different parallel 𝑜-

symmetric slabs. Then (1 − 𝑡)𝐶+̃𝑡𝐷 = (1 − 𝑡)𝐶 + 𝑡𝐷, so (29) with 𝛩𝑛 = 𝛷 would 

contradict (5) and its equality conditions. 

Next, note that if Question (6.1.6) has a positive answer for 𝑜-symmetric closed convex sets, 

then 𝛩𝑛
−1(𝛹1(𝑥)) must be convex. Indeed, let 𝐶 and 𝐷 be parallel 𝑜-symmetric slabs of half-

widths x and y, respectively, so that (1 − 𝑡)𝐶+̃𝑡𝐷 is an 𝑜-symmetric slab of half-width (1 −
𝑡)𝑥 + 𝑡𝑦. Then 𝛾𝑛(𝐶) = 𝛹1(𝑥), 𝛾𝑛(𝐷) =  𝛹1(𝑦),  and 𝛾𝑛((1 − 𝑡)𝐶+̃𝑡𝐷) = 𝛹1((1 − 𝑡)𝑥 +
𝑡𝑦), so (29) becomes 

𝛩𝑛
−1(𝛹1((1 − 𝑡)𝑥 + 𝑡𝑦)) ≤ (1 − 𝑡)𝛩𝑛

−1(𝛹1(𝑥)) + 𝑡𝛩𝑛
−1(𝛹1(𝑦)), 

which holds for all 𝑥, 𝑦 ≥ 0 if and only if 𝛩𝑛
−1(𝛹1(𝑥)) is convex. 

Let 𝑓(𝑥) = 𝛹𝑛
−1(𝛹1(𝑥)), 𝑛 ≥ 2. Using (14) and differentiating 𝛹𝑛(𝑓(𝑥)) = 𝛹1(𝑥) with 

respect to 𝑥, we obtain 

𝑐𝑛𝑛𝜅𝑛𝑒
−𝑓(𝑥)2/2𝑓(𝑥)𝑛−1𝑓′(𝑥) = √

2

𝜋
𝑒−𝑥

2/2 

or 

𝑓′(𝑥) = 𝑑𝑛
𝑒(𝑓

2(𝑥)−𝑥2)/2

𝑓(𝑥)𝑛−1
, 

for some constant 𝑑𝑛. It follows that 

𝑓′′(𝑥) = −𝑑𝑛
𝑒(𝑓

2(𝑥)−𝑥2)/2

𝑓(𝑥)𝑛
(𝑥𝑓(𝑥) + (𝑛 − 1 − 𝑓(𝑥)2)𝑓′(𝑥). 

As 𝑥 → 0+, we have 𝑓(𝑥) → 0 and 𝑓′(𝑥) → ∞. Therefore 𝑓′′(𝑥) must be negative for small 

𝑥, so 𝑓(𝑥) is not convex. By the previous paragraph, we still cannot take 𝛩𝑛 = 𝛹𝑛 for 𝑛 ≥
2. 



197 
 

The previous argument does not eliminate the possibility 𝛩𝑛 = 𝛹1. To deal with this we first 

observe by taking 𝐶 and 𝐷 to be 𝑜-symmetric balls of radius 𝑥 and 𝑦, respectively, that if 

Question (6.1.6) has a positive answer for 𝑜-symmetric closed convex sets, then 𝛩𝑛
−1(𝛹𝑛(𝑥)) 

must be convex. We shall show that 𝑔(𝑥) = 𝛹1
−1 (𝛹𝑛(𝑥)) is not convex for 𝑛 = 2. 

To this end, note first that 𝛹2(𝑥) = 1 − 𝑒
−𝑥2/2, 𝛹2

′(𝑥) = 𝑥𝑒−𝑥
2/2, and 𝛹1

′(𝑥) =

√2/𝜋 𝑒−𝑥
2/2. By differentiating 𝛹1(𝑔(𝑥)) = 𝛹2(𝑥), we obtain 

𝑔′(𝑥) = √
𝜋

2
𝑥𝑒(𝑔

2−𝑥2)/2, 

and hence 

𝑔′′(𝑥) = √
𝜋

2
𝑒(𝑔

2−𝑥2)/2(1 + 𝑥(𝑔′𝑔 − 𝑥)) . 

So it suffices to study the sign of 

        ℎ(𝑥) = 1 + 𝑥(𝑔′𝑔 − 𝑥) = 1 + 𝑥 (√
𝜋

2
𝑥𝑒

𝑔2−𝑥2

2 − 𝑥).                                      (30) 

From 𝛹1(𝑔(𝑥)) = 𝛹2(𝑥) we also obtain 

√
2

𝜋
∫ 𝑒−𝑡

2/2𝑑𝑡
𝑔

0

= 1 − 𝑒−𝑥
2/2,  

which yields 

√
𝜋

2
𝑒−𝑥

2/2 = ∫ (1/𝑡)𝑡𝑒−𝑡
2/2𝑑𝑡

∞

𝑔

 

                               =
1

𝑔
𝑒−𝑔

2/2 − ∫
1

𝑡2
 𝑒−

𝑡2

2 𝑑𝑡
∞

𝑔
                                                         (31) 

                   =
1

𝑔
𝑒−𝑔

2/2 − 
1

𝑔3
𝑒−

𝑔2

2 +  3∫
1

𝑡4
𝑒−

𝑡2

2 𝑑𝑡
∞

𝑔
                                                (32) 

<
1

𝑔
𝑒−𝑔

2/2 − 
1

𝑔3
𝑒−𝑔

2/2 +  3∫
𝑡

𝑔5
𝑒−𝑡

2/2𝑑𝑡
∞

𝑔

 

 

                               = 𝑒−𝑔
2 2⁄ (

1

𝑔
−

1

𝑔3
+

3

𝑔5
).                                                             (33) 

From (30) and (33), we have 

                           ℎ(𝑥) <
1

𝑔2
(𝑔2 − 𝑥2 +

3𝑥2

𝑔2
).                                                            (34) 

Now (31) gives  

√
𝜋

2
𝑒(𝑔

2−𝑥2)/2 <
1

𝑔
, 

and hence 

                                      (𝑔2 − 𝑥2) <  −𝑙𝑛 (
𝜋𝑔2

2
).                                                  (35) 

Similarly (32) yields 

                                      (𝑔2 − 𝑥2) >  −𝑙𝑛 (
𝜋𝑔6

2(𝑔2−1)2
).                                          (36) 
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By (34), (35), and (36), we conclude that 

ℎ(𝑥) <
1

𝑔2
(−𝑙𝑛(𝜋𝑔2/2) + 3 +

3

𝑔2
𝑙𝑛 (

𝜋𝑔6

2(𝑔2 − 1)2
)) , 

which is negative for sufficiently large 𝑥, since 𝑔(𝑥) → ∞ as 𝑥 → ∞. 

Question (6.1.7) [289]: Let 0 < 𝑡 < 1 and let 𝐾 and 𝐿 be closed convex sets containing the 

origin in ℝ𝑛. Is it true that 

                       𝛾𝑛 ((1 − 𝑡)𝐾 + 𝑡𝐿)
1 𝑛⁄ ≥ (1 − 𝑡)𝛾𝑛(𝐾)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)
1 𝑛⁄ ?           (37) 

The exponent 1/𝑛 is the best possible. Indeed, by the relation (15) and the remarks after (18) 

concerning the classical Brunn-Minkowski inequality with exponent 𝑝, we see that (37) does 

not hold in general when 1/𝑛 is replaced by 𝑝 > 1/𝑛. On the other hand, if (37) is true, then 

the remarks about the weighted 𝑝th means ensure that (37) remains true when 1/𝑛 is replaced 

by 0 < 𝑝 ≤ 1/𝑛. 

A positive answer to Question(6.1.7) would imply that (37) remains true when (1 − 𝑡) is 

replaced by 𝑠 > 0, under the condition 𝑠 + 𝑡 ≤  1, as can be verified by the same argument 

used at the end of the proof of Corollary (6.1.2). 

We gave an example after Corollary (6.1.5) showing that the stronger inequality 

 𝛾𝑛 ((1 − 𝑡)𝐾+̃𝑡𝐿)
1 𝑛⁄ ≥ (1 − 𝑡)𝛾𝑛(𝐾)

1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)
1 𝑛⁄  

is false in general for 𝐾 and 𝐿 which are both dilatates of the same 𝑜-symmetric star body. 

It is also false for sufficiently small star bodies 𝐾 and 𝐿 containing the origin that are not 

dilatates, by (4), its equality condition, and (15). 

Some restriction on the position of the sets is necessary. To see this, let 0 < 𝑡 < 1,𝐾 = 𝐵, 
and 𝐿 = 𝐵 + 𝑥1𝑒1, where 𝑥1 >  0 and 𝑒1 is a unit vector in the direction of the positive first 

coordinate axis. Then (1 − 𝑡)𝐾 + 𝑡𝐿 = 𝐵 + 𝑡𝑥1𝑒1, so the left-hand side of (37) approaches 

zero as 𝑥1 → ∞, while the right-hand side remains bounded away from zero. 

If it is true, (37) would be stronger than (6) for closed convex sets containing the origin, and 

it does not follow from Ehrhard’s inequality (5). Indeed, we claim that this is even the case 

when 𝐾 and 𝐿 are 𝑜-symmetric balls. To prove this, for fixed 0 < 𝑡 < 1 and 𝑟0 > 0, consider 

the function 

𝑓(𝑟) = 𝛷(1 − 𝑡)𝛷−1 (𝛾𝑛(𝑟0𝐵)) + 𝑡𝛷
−1 (𝛾𝑛(𝑟𝐵)) 

−((1 −  𝑡)𝛾𝑛(𝑟0𝐵)
1 𝑛⁄ + 𝑡𝛾𝑛(𝑟𝐵)

1 𝑛⁄ ). 

If 𝑟0 is chosen so that 𝛾𝑛(𝑟0𝐵) = 1/2, then 𝛷−1(𝛾𝑛(𝑟0𝐵)) = 0 and we have 𝑓(𝑟) < 0 if and 

only if 

𝛷(𝑡𝛷−1(𝛾𝑛(𝑟𝐵))) < ((1 − 𝑡)2
−1 𝑛⁄ + 𝑡𝛾𝑛(𝑟𝐵)

1 𝑛⁄ )
𝑛

 
Or 

𝑡𝛷−1 (𝛾𝑛(𝑟𝐵)) < 𝛷
−1 ((1 − 𝑡)2−1 𝑛⁄ + 𝑡𝛾𝑛(𝑟𝐵)

1 𝑛⁄ )
𝑛
. 

Now as 𝑟 →  0+, the left-hand side of the previous inequality approaches −∞, while the 

right-hand approaches 𝛷−1((1 −  𝑡)𝑛/2). Therefore 𝑓(𝑟) < 0 for sufficiently small 𝑟 > 0, 
proving the claim. 

Corollary (6.1.4) shows that the answer to Question (6.1.4) is positive if 𝐾 and 𝐿 are 𝑜-

symmetric balls, since in this case the radial sum and Minkowski sum coincide. 
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Theorem (6.1.8) [289]: Question (6.1.7) has a positive answer when 𝑛 = 1. 
Proof: Let 0 < 𝑡 < 1 and let 𝐾 = [−𝑎, 𝑏] and 𝐿 = [−𝑐, 𝑑] for nonnegative reals 𝑎, 𝑏, 𝑐, and 

𝑑. Note that since 𝑛 =  1, radial and Minkowski addition coincide. Then, by the first 

statement of Corollary (6.1.4) with 𝑛 =  1, we have 

𝛾1 ((1 − 𝑡)𝐾 + 𝑡𝐿) = 𝛾1 ((1 − 𝑡)[−𝑎, 𝑏] + 𝑡[−𝑐, 𝑑]) 
= 𝛾1([−(1 −  𝑡)𝑎 −  𝑡𝑐, 0]) + 𝛾1([0, (1 −  𝑡)𝑏 + 𝑡𝑑]) 

=
1

2
𝛾1 ((1 −  𝑡)[−𝑎, 𝑎]  +  𝑡[−𝑐, 𝑐]) 

+
1

2
𝛾1 ((1 −  𝑡)[−𝑏, 𝑏]  +  𝑡[−𝑑, 𝑑]) 

≥
1

2
((1 − 𝑡)𝛾1([−𝑎, 𝑎]) + 𝑡𝛾1([−𝑐, 𝑐])) 

+
1

2
((1 −  𝑡)𝛾1([−𝑏, 𝑏]) + 𝑡𝛾1([−𝑑, 𝑑])) 

= (1 − 𝑡)𝛾1([−𝑎, 0])  +  𝑡𝛾1 ([−𝑐, 0]) 
+(1 − 𝑡)𝛾1([0, 𝑏]) + 𝑡𝛾1 ([0, 𝑑]) 

= (1 − 𝑡)𝛾1([−𝑎, 𝑏]) + 𝑡𝛾1([−𝑐, 𝑑]) 
= (1 − 𝑡)𝛾1(𝐾) + 𝑡𝛾1(𝐿),  

as required. The argument still applies if one or both of 𝐾 and 𝐿 is an infinite interval.  

The following theorem generalizes the previous result. A different generalization is given in 

Theorem (6.1.15). 

Theorem (6.1.9) [289]: Question (6.1.7) has a positive answer when 𝐾 and 𝐿 are coordinate 

boxes containing the origin in ℝ𝑛. 

Proof: Let 0 < 𝑡 < 1, and let 𝐾 = ∏ 𝐼𝑖
𝑛
𝑖=1  and 𝐿 =  ∏ 𝐽𝑖

𝑛
𝑖=1  for closed (possibly unbounded) 

intervals 𝐼𝑖 and 𝐽𝑖 in ℝ containing the origin, 1 ≤ 𝑖 ≤ 𝑛. Then 

(1 − 𝑡)𝐾 + 𝑡𝐿 =∏((1 − 𝑡)𝐼𝑖 + 𝑡𝐽𝑖)

𝑛

𝑖=1

. 

An inequality of Minkowski (see [290, (2.13.8), p. 35]) states that for nonnegative reals 𝑥𝑖 
and 𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 

                    (∏ (𝑥𝑖 + 𝑦𝑖)
𝑛
𝑖=1 )1 𝑛⁄ ≥ (∏ 𝑥𝑖

𝑛
𝑖=1 )1 𝑛⁄ + (∏ 𝑦𝑖

𝑛
𝑖=1 )1 𝑛⁄ .                         (38) 

Using the fact that Gauss measure is a product measure, Theorem (6.1.8), and (38), we obtain 

𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)
1 𝑛⁄ = (∏𝛾1((1 − 𝑡)𝐼𝑖 + 𝑡𝐽𝑖)

𝑛

𝑖=1

)

1 𝑛⁄

 

≥ (∏((1 − 𝑡)𝛾1(𝐼𝑖) + 𝑡𝛾1(𝐽𝑖))

𝑛

𝑖=1

)

1 𝑛⁄

 

≥ (∏((1 − 𝑡)𝛾1(𝐼𝑖))

𝑛

𝑖=1

)

1 𝑛⁄

+ (∏(𝑡𝛾1(𝐽𝑖))

𝑛

𝑖=1

)

1 𝑛⁄

 

= (1 − 𝑡)𝛾𝑛(𝐾)
1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)

1 𝑛⁄ . 
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Corollary (6.1.10) [289]: Question (6.1.7) has a positive answer when one set is a slab 

containing the origin in ℝ𝑛. 

Proof: Without loss of generality, let 𝐿 = [−𝑎, 𝑏] × ℝ𝑛−1, 𝑎, 𝑏 ≥ 0, be a slab, and let 𝐾𝑆 =
[−𝑐, 𝑑] × ℝ𝑛−1, 𝑐, 𝑑 ≥ 0, be a parallel slab such that the hyperplanes 𝑥1 = −𝑐 and 𝑥1 =
𝑑 support 𝐾. Then 𝐾 ⊂ 𝐾𝑆 and (1 − 𝑡)𝐾 + 𝑡𝐿 = (1 − 𝑡)𝐾𝑆 + 𝑡𝐿. Therefore, by Theorem 

(6.1.9), 

𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)
1 𝑛⁄ = 𝛾𝑛((1 − 𝑡)𝐾𝑆 + 𝑡𝐿)

1 𝑛⁄  

≥ (1 − 𝑡)𝛾𝑛(𝐾𝑆)
1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)

1 𝑛⁄  

≥ (1 − 𝑡)𝛾𝑛(𝐾)
1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)

1 𝑛⁄ . 
Our next result is related to the so-called (B) conjecture proposed by 𝑊. Banaszczyk, which 

asks whether the function 𝛾𝑛(𝑒
𝑡𝐾) is log concave in 𝑡 when 𝐾 is an 𝑜-symmetric closed 

convex set in ℝ𝑛. This was proved by Cordero-Erasquin, Fradelizi, and Maurey [290]. The 

following lemma merely rephrases the log concavity and is essentially part of the proof in 

[290] (see inequality (4) in that paper).  

Lemma (6.1.11) [289]: Let 𝐾 be a closed convex set in ℝ𝑛 such that 𝛾𝑛(𝐾) > 0. Then 

𝛾𝑛(𝑒
𝑡𝐾) is log concave in t if and only if 

            
∫ ‖𝑥‖4𝑒−‖𝑥‖

2 2⁄  𝑑𝑥
𝐾

𝛾𝑛(𝐾)
− (

∫ ‖𝑥‖2𝑒−‖𝑥‖
2 2⁄  𝑑𝑥

𝐾

𝛾𝑛(𝐾)
)

2

− 2
∫ ‖𝑥‖2𝑒−‖𝑥‖

2 2⁄  𝑑𝑥
𝐾

𝛾𝑛(𝐾)
≤ 0.             (39) 

Theorem (6.1.12) [289]: Let 𝐾0 be a closed convex set containing the origin in ℝ𝑛 such that 

𝛾𝑛(𝐾0) > 0, and suppose that 𝛾𝑛(𝑒
𝑡𝐾0) is log concave in t. Then Question (6.1.7) has a 

positive answer when 𝐾 and 𝐿 are both dilatates of 𝐾0. 
Proof: Let 𝐾0 satisfy the hypotheses of the theorem and define 

𝑓(𝑡) = 𝑐𝑛
−1 𝑛⁄  𝛾𝑛(𝑡𝐾0)

1 𝑛⁄ . 
For 𝑚 = 0, 1, 2, . . ., let 

𝐼𝐾0,𝑚(𝑡) = ∫ ‖𝑥‖𝑚𝑒−𝑡
2‖𝑥‖2/2 𝑑𝑥

𝐾0

= 𝑡−(𝑚+𝑛)∫ ‖𝑥‖𝑚𝑒−‖𝑥‖
2/2𝑑𝑥

𝑡𝐾0

= 𝑡−(𝑚+𝑛)𝐼𝐿,𝑚(1), 

where 𝐿 = 𝑡𝐾0. Then 

𝑓(𝑡) = (∫ 𝑒−‖𝑥‖
2/2𝑑𝑥

𝑡𝐾0

)

1 𝑛⁄

= 𝑡𝐼𝐾0,0(𝑡)
1 𝑛⁄ . 

Note that 

                              𝐼𝐾0,𝑚
′ (𝑡) = −𝑡𝐼𝐾0,𝑚+2(𝑡).                                                              (40) 

To prove the theorem, it suffices to show that 𝑓(𝑡) is concave for 0 < 𝑡 < 1. By direct 

calculation, using (40), we find 

𝑓′(𝑡) =
𝐼𝐾0,0(𝑡)

1 𝑛⁄

𝑛
(𝑛 − 𝑡2  

𝐼𝐾0,2(𝑡)

𝐼𝐾0,0(𝑡)
) 

and 

𝑓′′(𝑡) =
𝑡𝐼𝐾0,0(𝑡)

1 𝑛⁄

𝑛2
(𝑡2 (𝑛

𝐼𝐾0,4(𝑡)

𝐼𝐾0,0(𝑡)
− (𝑛 − 1)(

𝐼𝐾0,2(𝑡)

𝐼𝐾0,0(𝑡)
)

2

) − 3𝑛
𝐼𝐾0,2(𝑡)

𝐼𝐾0,0(𝑡)
) 
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=
𝐼𝐿,0(1)

1 𝑛⁄

𝑛2𝑡2
(𝑛
𝐼𝐿,4(1)

𝐼𝐿,0(1)
− (𝑛 − 1)(

𝐼𝐿,2(1)

𝐼𝐿,0(1)
)

2

−  3𝑛
𝐼𝐿,2(1)

𝐼𝐿,0(1)
) 

            =
𝐼𝐿,0(1)

1 𝑛⁄

𝑛2𝑡2
(𝑛𝐽𝐿 + (

𝐼𝐿,2(1)

𝐼𝐿,0(1)
2) (𝐼𝐿,2(1) − 𝑛𝐼𝐿,0(1))),                                   (41) 

where 

𝐽𝐿 =
𝐼𝐿,4(1)

𝐼𝐿,0(1)
− (

𝐼𝐿,2(1)

𝐼𝐿,0(1)
)

2

− 2
𝐼𝐿,2(1)

𝐼𝐿,0(1)
.  

Now 

𝐼𝐿,2(1) = ∫‖𝑥‖
2𝑒−‖𝑥‖

2/2𝑑𝑥
𝐿

 

= −∫ ∫ 𝑒−𝑟
2/2𝑟𝑛+1 𝑑𝑟

𝜌𝐿(𝑢)

0

𝑑𝑢
𝑆𝑛−1

 

= −𝜌𝐿(𝑢)
𝑛𝑒−𝜌𝐿(𝑢)

2/2𝑑𝑢 + 𝑛∫ ∫ 𝑒−𝑟
2/2𝑟𝑛−1𝑑𝑟

𝜌𝐿(𝑢)

0

𝑑𝑢
𝑆𝑛−1

 

                  ≤ 𝑛 ∫ ∫ 𝑒−
𝑟2

2 𝑟𝑛−1𝑑𝑟
𝜌𝐿(𝑢)

0
𝑑𝑢

𝑆𝑛−1
= 𝑛𝐼𝐿,0(1).                                         (42) 

By (41) and (42), it suffices to show that 𝐽𝐿 ≤ 0. But this is precisely (39) with 𝐾 replaced 

by 𝐿 = 𝑡𝐾0. Our assumption that 𝑔(𝑡) = 𝑙𝑜𝑔 𝛾𝑛(𝑒
𝑡𝐾0) concave in 𝑡 implies that for any 𝑠 >

0, 𝑔(𝑡 + 𝑙𝑜𝑔𝑠) = 𝑙𝑜𝑔 𝛾𝑛(𝑒
𝑡(𝑠𝐾0)) is concave, so (39) also holds when 𝐾 is replaced by any 

dilatate of 𝐾0. This completes the proof. 

As was mentioned above, the (𝐵) conjecture was proved by Cordero-Erasquin, Fradelizi, 

and Maurey [290]. The same authors state that they do not know if the 𝑜-symmetry is needed, 

and they show that in some cases it is not. Specifically, they define 𝐺(𝐾) to be the group of 

isometries 𝜙 of ℝ𝑛 such that 𝜙𝐾 = 𝐾, and they define 

𝐹𝑖𝑥(𝐾) = {𝑥 ∈ ℝ𝑛: 𝜙𝑥 = 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜙 ∈ 𝐺(𝐾)}. 
Then, in [290, Section 3], it is proved that 𝛾𝑛(𝑒

𝑡𝐾) is log concave in 𝑡 when 𝐹𝑖𝑥(𝐾) = {𝑜}; 
for example, when 𝐾 is a regular simplex with centroid at the origin. 

Corollary (6.1.13) [289]: Question (6.1.7) has a positive answer when 𝐾 and 𝐿 are both 

dilatates of the same 𝑜-symmetric closed convex set, or more generally, of the same closed 

convex set 𝐾0 with 𝐹𝑖𝑥(𝐾0) = {𝑜}. 
We remark that calculations very similar to those in the example given just before Question 

(6.1.6) show that the function 𝛾𝑛(𝑒
𝑡𝐾) is not log concave in general when 𝐾 is an 𝑜-

symmetric star body. Indeed, let 𝐸1 = {(𝑥, 𝑦) ∈ ℝ
2 ∶ 𝑥, 𝑦 ≥ 0}, 𝐸2(𝑎) = {(𝑟, 𝜃) ∈ ℝ

2: 0 ≤
𝑟 ≤ 𝑎, 𝜋/2 ≤ 𝜃 ≤ 𝜋}, and 𝐸(𝑎) = 𝐸1 ∪ (−𝐸1) ∪ 𝐸2(𝑎) ∪ (𝐸2(𝑎)). Define 

𝑓(𝑡) = 𝑙𝑜𝑔 (𝛾2(𝑒
𝑡𝐸(𝑎))) = 𝑙𝑜𝑔 (

1

2
 +
1

2
(1 − 𝑒−𝑒

2𝑡𝑎2/2)) = 𝑙𝑜𝑔𝐼(𝑡), 

say. Then 

𝑓′′(𝑡) =
𝑒2𝑡𝑎2𝑒−𝑒

2𝑡𝑎2/2

2𝐼(𝑡)2
(2 − 𝑒2𝑡𝑎2 − 𝑒−𝑒

2𝑡𝑎2/2). 
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Using the inequality 𝑒−𝑥 ≤ 1 − 𝑥 + 𝑥2/2 𝑓𝑜𝑟 𝑥 = 𝑒2𝑡𝑎2/2 ≥ 0, we have 

2 − 𝑒2𝑡𝑎2 − 𝑒−𝑒
2𝑡𝑎2/2 ≥

1

8
 (8 −  4𝑒2𝑡𝑎2 − 𝑒4𝑡𝑎4). 

The latter quantity is positive for 0 ≤ 𝑡 ≤ 1, and hence 𝑓(𝑡) is convex there, when 

𝑎 ≤ 𝑎0 = (2√3 − 2)
1 2⁄ 𝑒−1 = 0.4451 . . . . 

If we replace 𝐸1 with 𝐸1
′ = {(𝑟, 𝜃) ∈ ℝ2 ∶ 0 ≤ 𝑟 ≤ 𝑏, 0 ≤ 𝜃 ≤ 𝜋/2} for sufficiently large 𝑏 

and approximate, we can find an 𝑜-symmetric star body 𝐸 such that 𝛾𝑛(𝑒
𝑡𝐸) is not log 

concave.  

For some time we considered the possibility that if 0 < 𝑡 < 1 and 𝐾 and 𝐿 are 𝑜-symmetric 

closed convex sets in ℝ𝑛, then 

         𝛹𝑛
−1 (𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)) ≥ (1 − 𝑡)𝛹𝑛

−1(𝛾𝑛(𝐾)) + 𝑡𝛹𝑛
−1(𝛾𝑛(𝐿)),          (43) 

where 𝛹𝑛 is defined by (10), with equality if and only if 𝐾 and 𝐿 are 𝑜-symmetric balls. The 

motivation was the fact that for arbitrary convex sets 𝐾 and 𝐿, (43) implies (37). Indeed, 

using (43) and the fact that by the first statement of Corollary (6.1.4) the function 𝛹𝑛(𝑟)
1 𝑛⁄  

is concave for 𝑟 > 0, we obtain 

𝛾𝑛((1 − 𝑡)𝐾 + 𝑡𝐿)
1 𝑛⁄

≥ 𝛹𝑛(1 − 𝑡)𝛹𝑛
−1(𝛾𝑛(𝐾)) + 𝑡𝛹𝑛

−1(𝛾𝑛(𝐿))
1 𝑛⁄  

≥ (1 − 𝑡)𝛹𝑛(𝛹𝑛
−1(𝛾𝑛(𝐾)))

1 𝑛⁄ + 𝑡𝛹𝑛(𝛹𝑛
−1(𝛾𝑛(𝐿)))

1 𝑛⁄  

= (1 − 𝑡)𝛾𝑛(𝐾)
1 𝑛⁄ + 𝑡𝛾𝑛(𝐿)

1 𝑛⁄ , 
which is (37). 

However, inequality (43) is false in general for arbitrary 𝑜-symmetric convex sets. We are 

grateful to Franck Barthe for the following proof of this fact. (A similar argument is used by 

Latala [292, p. 816].) 

Let 𝐾 and 𝐿 be 𝑜-symmetric convex sets in ℝ𝑛, let 0 < 𝑡 < 1, and let ℎ > 0. 
In (43), replace 𝐾 by (1 − 𝑡)−1𝐾 and let 𝐿 = (ℎ/𝑡)𝐵. Then, on letting 𝑡 → 0, we obtain 

from (43) the inequality 

                    𝛹𝑛
−1 (𝛾𝑛(𝐾 + ℎ𝐵)) ≥ 𝛹𝑛

−1(𝛾𝑛(𝐾)) + ℎ.                                              (44) 
Choose 𝑟 > 0 so that 𝛾𝑛(𝑟𝐵) = 𝛾𝑛(𝐾). Then (44) yields 

𝛾𝑛(𝐾 + ℎ𝐵) ≥ 𝛹𝑛(𝛹𝑛
−1(𝛾𝑛(𝑟𝐵)) + ℎ) = 𝛹𝑛(𝑟 + ℎ) = 𝛾𝑛(𝑟𝐵 + ℎ𝐵). 

Therefore 

lim
ℎ→0+

𝛾𝑛(𝐾 + ℎ𝐵) − 𝛾𝑛(𝐾)

ℎ
≥  𝑙𝑖𝑚

ℎ→0+

𝛾𝑛(𝑟𝐵 + ℎ𝐵) − 𝛾𝑛(𝑟𝐵)

ℎ
. 

However, by [295, Lemma 3], the previous inequality is false when 𝑛 = 2,𝐾 = {(𝑥, 𝑦) ∈
ℝ2 ∶ 𝑦 ∈ [−𝑎, 𝑎]} is a slab, and 𝑎 > 0 is sufficiently large. 

Indeed, it can be seen by direct calculation that (43) is false when 𝐾 = {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑦 ∈
[−1/(1 − 𝑡), 1/(1 −  𝑡)]}, 𝐿 = (1/𝑡)𝐵, and 0 < 𝑡 < 0.04. It is interesting to note that by 

Corollary (6.1.10), sets of this form cannot supply a negative answer to Question (6.1.7). 

If 𝑓 is a nonnegative measurable function on ℝ𝑛 and 𝑠 ≥ 0, the superlevel set 𝐿(𝑓, 𝑠) is 

defined by 

𝐿(𝑓, 𝑠) = {𝑥: 𝑓(𝑥) ≥ 𝑠}. 
Note that 
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𝑐𝑛∫ 𝑓(𝑥)𝑒−‖𝑥‖
2/2 𝑑𝑥

ℝ𝑛
= 𝑐𝑛∫ ∫ 𝑒−‖𝑥‖

2/2𝑑𝑠
𝑓(𝑥)

0

𝑑𝑥
ℝ𝑛

 

                             = 𝑐𝑛 ∫ ∫ 𝑒−‖𝑥‖
2/2𝑑𝑥

𝐿(𝑓,𝑠)
𝑑𝑠

∞

0
= ∫ 𝛾𝑛(𝐿(𝑓, 𝑠)) 𝑑𝑠

∞

0
.          (45) 

The standard Prekopa-Leindler inequality (see, for example, [294, Theorem 7.1]) holds when 

Lebesgue measure is replaced by any log concave measure, in particular,  

by 𝛾𝑛. Theorem (6.1.8) yields the following stronger inequality when 𝑛 = 1, for a restricted 

class of functions. 

Theorem (6.1.14) [289]: Let 0 < 𝑡 < 1 and let 𝑓, 𝑔, and ℎ be nonnegative integrable 

functions on ℝ such that superlevel sets of 𝑓 and 𝑔 are either empty or intervals containing 

the origin. If 

ℎ((1 − 𝑡)𝑥 + 𝑡𝑦) ≥ (1 − 𝑡)𝑓(𝑥) + 𝑡𝑔(𝑦), 
for all 𝑥, 𝑦 ∈ ℝ, then 

∫ℎ(𝑥)𝑒−‖𝑥‖
2/2𝑑𝑥

ℝ

≥ (1 − 𝑡)∫𝑓(𝑥)𝑒−‖𝑥‖
2/2𝑑𝑥

ℝ

+ 𝑡∫𝑔(𝑥)𝑒−‖𝑥‖
2/2𝑑𝑥

ℝ

. 

Proof. If 𝑠 ≥ 0, 𝑓(𝑥) ≥ 𝑠, and 𝑔(𝑦) ≥ 𝑠, then ℎ((1 − 𝑡)𝑥 + 𝑡𝑦) ≥ 𝑠. Therefore, 

𝐿(ℎ, 𝑠) ⊇ (1 − 𝑡)𝐿(𝑓, 𝑠) + 𝑡𝐿(𝑔, 𝑠). 
Then, by (45), the fact that 𝐿(𝑓, 𝑠) and 𝐿(𝑔, 𝑠) are intervals containing the origin, and 

Theorem (6.1.8), we obtain 

∫ℎ(𝑥)𝑒−‖𝑥‖
2/2𝑑𝑥

ℝ

=
1

𝑐1
∫ 𝛾1(𝐿(ℎ, 𝑠)) 𝑑𝑠
∞

0

 

≥
1

𝑐1
∫ 𝛾1((1 − 𝑡)𝐿(𝑓, 𝑠) + 𝑡𝐿(𝑔, 𝑠)) 𝑑𝑠
∞

0

 

≥
1 − 𝑡

𝑐1
∫ 𝛾1(𝐿(𝑓, 𝑠)) 𝑑𝑠
∞

0

+
𝑡

𝑐1
∫ 𝛾1(𝐿(𝑔, 𝑠)) 𝑑𝑠
∞

0

 

= (1 − 𝑡)∫𝑓(𝑥)𝑒−‖𝑥‖
2/2𝑑𝑥

ℝ

+ 𝑡𝑔(𝑥)𝑒−‖𝑥‖
2/2 𝑑𝑥. 

We do not know whether the assumption on the superlevel sets of 𝑓 and 𝑔 is necessary. It 

could be removed if Theorem (6.1.8) holds when 𝐾 and 𝐿 are arbitrary Borel sets containing 

the origin. We have the following generalization of Theorem (6.1.8), inspired by work of 

Latala [293]. 

Theorem (6.1.15) [289]: Question (6.1.7) has a positive answer when 𝑛 = 1,𝐾 is an interval 

containing the origin, and 𝐿 is any Borel set containing the origin. 

Proof: Let 𝐾 = [𝑎, 𝑏] and 𝐿 = ⋃ [𝑥𝑖 , 𝑦𝑖]
𝑛
𝑖=−𝑚 , where 

𝑥−𝑚 ≤ 𝑦−𝑚 < 𝑥−𝑚−1 ≤ 𝑦−𝑚−1 < ⋯ < 𝑥𝑛 ≤ 𝑦𝑛, 
𝑜 ∈ [𝑎, 𝑏], and 𝑜 ∈ [𝑥0, 𝑦0]. Then 

(1 − 𝑡)𝐾 + 𝑡𝐿 = ⋃ [(1 − 𝑡)𝑎 + 𝑡𝑥𝑖 , (1 − 𝑡)𝑏 + 𝑡𝑦𝑖]

𝑛

𝑖=−𝑚

. 

We claim that we may assume that the intervals in this union are disjoint. Otherwise, for 

some −𝑚 ≤ 𝑖 ≤ 𝑛, since 𝑥𝑖 < 𝑥𝑖+1 and 𝑦𝑖 < 𝑦𝑖+1, we have 
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∅ ≠ [(1 − 𝑡)𝑎 + 𝑡𝑥𝑖 , (1 − 𝑡)𝑏 + 𝑡𝑦𝑖] ∩ [(1 − 𝑡)𝑎 + 𝑡𝑥𝑖+1, (1 − 𝑡)𝑏 + 𝑡𝑦𝑖+1] 
= [(1 − 𝑡)𝑎 + 𝑡𝑥𝑖 , (1 − 𝑡)𝑏 + 𝑡𝑦𝑖+1] = (1 − 𝑡)[𝑎, 𝑏] + 𝑡[𝑥𝑖 , 𝑦𝑖+1]. 

Let 

𝐿′ = ⋃ [𝑥𝑘 , 𝑦𝑘] ∪ [𝑥𝑖 , 𝑦𝑖+1]

𝑛

𝑘=−𝑚,𝑘≠𝑖,𝑖+1

.  

Then (1 − 𝑡)𝐾 + 𝑡𝐿 = (1 − 𝑡)𝐾 + 𝑡𝐿′ and 𝛾1(𝐿′) ≥ 𝛾1(𝐿), the set 𝐿′ consists of fewer 

intervals than 𝐿, and 𝑜 ∈ 𝐿′. So we may replace 𝐿 by 𝐿′. We can repeat the argument, if 

necessary, until all the intervals in the union are disjoint. 

Since 𝑜 ∈ [𝑎, 𝑏], we have 

⋃ [(1 − 𝑡)𝑎 + 𝑡𝑥𝑖 , (1 − 𝑡)𝑏 + 𝑡𝑦𝑖]

𝑛

𝑖=−𝑚

⊇ [(1 − 𝑡)𝑎 + 𝑡𝑥0, (1 − 𝑡)𝑏 + 𝑡𝑦0] ∪ ⋃ [𝑡𝑥𝑖 , 𝑡𝑦𝑖]

𝑛

𝑖=−𝑚,𝑖≠0

. 

Now we can use Theorem (6.1.8) and (11) to obtain 

𝛾1((1 − 𝑡)𝐾 + 𝑡𝐿) ≥ 𝛾1 ([(1 − 𝑡)𝑎 + 𝑡𝑥0, (1 − 𝑡)𝑏 + 𝑡𝑦0] ∪ ⋃ [𝑡𝑥𝑖 , 𝑡𝑦𝑖]

𝑛

𝑖=−𝑚,𝑖≠0

) 

= 𝛾1([(1 − 𝑡)𝑎 + 𝑡𝑥0, (1 − 𝑡)𝑏 + 𝑡𝑦0]) + ∑ 𝛾1(𝑡[𝑥𝑖 , 𝑦𝑖])

𝑛

𝑖=−𝑚,𝑖≠0

 

≥ (1 − 𝑡)𝛾1(𝐾) + 𝑡𝛾1([𝑥0, 𝑦0]) + 𝑡 ∑ 𝛾1([𝑥𝑖 , 𝑦𝑖])

𝑛

𝑖=−𝑚,𝑖≠0

 

= (1 −  𝑡)𝛾1(𝐾) + 𝑡𝛾1(𝐿). 
Therefore the result holds when 𝐿 is a finite union of intervals, and the theorem is then proved 

by a standard approximation argument.  

The previous result allows the assumptions in Theorem (6.1.14) to be weakened.  

 

Corollary (6.1.16) [388]:  The function 𝜙𝑛 defined by (13) is sublinear, i.e., 

𝜙𝑛(2𝑎 + 𝜖) ≤ 𝜙𝑛(𝑎) + 𝜙𝑛(𝑎 + 𝜖), 
for 𝜖 ≥ 0, with equality if and only if 𝑎 = 0 or 𝜖 = 𝑎. 

Proof. For fixed 𝜖 > 0 and all 𝑎 ≥ 0, define 

𝑓(𝑎) = 𝜙𝑛(2𝑎 + 𝜖) − 𝜙𝑛(𝑎) − 𝜙𝑛(𝑎 + 𝜖). 
Then 𝑓(0) = 0, and it suffices to show that 𝑓′(𝑎) < 0 for all 𝑎 ≥ 0. In view of (13), we 

have 

𝑛𝑓′(𝑎) = (2𝑎 + 𝜖)𝑛−1𝑒−(𝑎+𝑎+𝜖)
2/2𝜙𝑛(2𝑎 + 𝜖)

1−𝑛 − 𝑎𝑛−1𝑒−𝑎
2/2𝜙𝑛(𝑎)

1−𝑛. 
If 𝑛 = 1, it is clear from this that 𝑓′(𝑎) < 0 for 𝑎 ≥ 0. Suppose that 𝑛 ≥ 2. Using (13) again, 

we see that 𝑓′(𝑎) < 0 is equivalent to 
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(2𝑎 + 𝜖)−𝑛𝑒𝑛(2𝑎+𝜖)
2/(2(𝑛−1))  ∫ 𝑒−(1+𝜖)

2/2(1 + 𝜖)𝑛−1𝑑𝜖
2𝑎+𝜖

0

 

> 𝑎−𝑛𝑒𝑛𝑎
2/(2(𝑛−1))∫ 𝑒−(1+𝜖)

2/2(1 + 𝜖)𝑛−1𝑑𝜖
𝑎

0

 

or 

𝑒𝑛(2𝑎+𝜖)
2/(2(𝑛−1))∫ 𝑒−((1+2𝜖)(2𝑎+𝜖))

2/2(1 + 2𝜖)𝑛−1𝑑𝜖
1

0

 

> 𝑒𝑛𝑎
2/(2(𝑛−1))∫ 𝑒−((1+2𝜖)𝑎)

2/2(1 + 2𝜖)𝑛−1𝑑𝜖
1

0

.  

Rearranging, we obtain 

∫ 𝑒(𝑛/(𝑛−1)−(1+2𝜖)
2)(2𝑎+𝜖)2/2(1 + 2𝜖)𝑛−1𝑑𝜖

1

0

> ∫ 𝑒(𝑛/(𝑛−1)−(1+2𝜖)
2)𝑎2/2(1 + 2𝜖)𝑛−1𝑑𝜖

1

0

. 

The previous inequality holds since (1 + 2𝜖)2 ≤ 1 < 𝑛/(𝑛 − 1), and this proves the lemma. 

Corollary (6.1.17) [388]:  𝐶𝑚 and 𝐷𝑚 be Borel star sets in ℝ𝑛, and let 𝜖 ≥ 0. Then 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚 ∓ (1 + 𝜖)𝐷𝑚)

1 𝑛⁄
≤ (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1 𝑛⁄ + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1 𝑛⁄ . 

Suppose that 𝐶𝑚 and 𝐷𝑚 are properly contained in ℝ𝑛. Equality holds when 𝜖 = 1 if and 

only if 𝛾𝑛(𝐶
𝑚) = 0, 𝛾𝑛(𝐷

𝑚) = 0, or 𝑛 = 1 and both 𝐶𝑚 and 𝐷𝑚 are (possibly degenerate 

or infinite) intervals with one endpoint at the origin, each on opposite sides of the origin. 

Equality holds when 𝜖 ≥ 0 and 𝜖 = 1 (or 𝜖 = 1 and 𝜖 ≥ 0, or 𝜖 > 1 and 𝜖 > 1) if and only 

if 𝛾𝑛(𝐶
𝑚) = 0 (or if and only if 𝛾𝑛(𝐷

𝑚) = 0, or if and only if 𝛾𝑛(𝐶
𝑚) = 0 and 𝛾𝑛(𝐷

𝑚) =
0, respectively). 

Proof. Suppose first that 𝜖 = 1. 

If 𝑛 = 1 and 𝐶𝑚 and 𝐷𝑚 are bounded, then 𝐶𝑚 = [−𝑎1, (𝑎 + 𝜖)1] and 𝐷𝑚 =
[−𝑎2, (𝑎 + 𝜖)2] for nonnegative 𝑎1, 𝑎2, (𝑎 + 𝜖)1, and (𝑎 + 𝜖)2, and (20) is equivalent to 

𝜙1(𝑎1 + 𝑎2) + 𝜙1(𝑏1 + 𝑏2) ≤ (𝜙1(𝑎1) + 𝜙1(𝑏1)) + (𝜙1(𝑎2) + 𝜙1(𝑏2)) . 
This follows immediately from Lemma 4.1, and its equality condition shows that either 𝑎1 =
0 𝑜𝑟 𝑎2 = 0 and either (𝑎 + 𝜖) = 0 or (𝑎 + 𝜖)2 = 0. The same conclusion is reached if 𝐶𝑚 

or 𝐷𝑚 is unbounded. This yields the required equality condition when 𝑛 = 1. 

Suppose that 𝑛 ≥ 2. By (14), (7), , and Minkowski’s inequality for integrals, we have 

𝛾𝑛(𝐶
𝑚 ∓ 𝐷𝑚)1 𝑛⁄ = (𝑐𝑛∫ 𝜙𝑛(𝜌𝐶𝑚 ∓ 𝐷

𝑚(𝑢𝑚))
𝑛𝑑𝑢𝑚

𝑆𝑛−1
)

1 𝑛⁄

 

= (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐶𝑚(𝑢𝑚) + 𝜌𝐷𝑚(𝑢𝑚))
𝑛 𝑑𝑢𝑚

𝑆𝑛−1
)

1 𝑛⁄

 

≤ (𝑐𝑛∫ (𝜙𝑛(𝜌𝐶𝑚(𝑢𝑚)) + 𝜙𝑛(𝜌𝐷𝑚(𝑢𝑚)))
𝑛𝑑𝑢𝑚

𝑆𝑛−1
)

1 𝑛⁄

 

≤ (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐶𝑚(𝑢𝑚))
𝑛 𝑑𝑢𝑚

𝑆𝑛−1
)

1 𝑛⁄

+ (𝑐𝑛∫ 𝜙𝑛 (𝜌𝐷𝑚(𝑢𝑚))
𝑛 𝑑𝑢𝑚

𝑆𝑛−1
)

1 𝑛⁄
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= 𝛾𝑛(𝐶
𝑚)1 𝑛⁄ + 𝛾𝑛(𝐷

𝑚)1 𝑛⁄ . 
Suppose, in addition to our assumption that 𝜖 ≥ 0, that equality holds in (20). Then for 

almost all 𝑢𝑚 ∈ 𝑆
𝑛−1, equality holds when 𝑎 = 𝜌𝐶𝑚(𝑢𝑚) and 𝑎 + 𝜖 = 𝜌𝐷𝑚(𝑢𝑚), and hence 

for almost all 𝑢𝑚 ∈ 𝑆
𝑛−1 we have either 𝜌𝐶𝑚(𝑢𝑚) = 0 or 𝜌𝐷𝑚(𝑢𝑚) = 0. But equality also 

holds in Minkowski’s inequality for integrals, so there is a constant 𝑐 such that 

𝜙𝑛(𝜌𝐶𝑚(𝑢𝑚)) =  𝑐𝜙𝑛(𝜌𝐷𝑚(𝑢𝑚)) for almost all 𝑢𝑚 ∈ 𝑆
𝑛−1. It follows that 

either 𝜌𝐶𝑚(𝑢𝑚) = 0 for almost all 𝑢𝑚 ∈ 𝑆
𝑛−1 or 𝜌𝐷𝑚(𝑢𝑚) = 0 for almost all 𝑢𝑚 ∈ 𝑆

𝑛−1, 

and therefore either 𝛾𝑛(𝐶
𝑚) = 0 or 𝛾𝑛(𝐷

𝑚) = 0.  
We have proved (20) and its equality conditions when 𝜖 ≥ 0. Using this and (11), for general 

𝜖 ≥ 0 we obtain 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚 ∓ (1 + 𝜖)𝐷𝑚)

1 𝑛⁄
≤ 𝛾𝑛((1 + 2𝜖)𝐶

𝑚)
1 𝑛⁄

+ 𝛾𝑛((1 + 𝜖)𝐷
𝑚)

1 𝑛⁄

≤ (1 + 2𝜖)𝛾𝑛(𝐶
𝑚)1 𝑛⁄ + (1 + 𝜖)𝛾𝑛(𝐷

𝑚)1 𝑛⁄ , 
as required. The equality conditions for 𝜖 ≥ 0 follow from those of (11). 

Inequality (20) does not hold generally when either 𝜖 ≥ 0. Indeed, if 𝜖 < 1, (20) is false 

when 𝐷𝑚 = 𝜀𝐵 and 𝜀 > 0 is sufficiently small, in view of (11). Inequality (20) is false for 

arbitrary Borel sets star shaped at the origin. To see this, let 𝜖 ≥ 0, and for each 𝑚 ∈ ℕ, let 

𝐶𝑚
𝑚 = {(𝑟, 𝜃) ∈ ℝ𝑛 ∶ 𝑚 ≤ 𝑟 ≤ 𝑚 + 1, 0 ≤ 𝜃 ≤ 𝜋/2} and 𝐷𝑚

𝑚 = −𝐶𝑚
𝑚. Then 𝐶𝑚

𝑚 ∓ 𝐷𝑚
𝑚 =

𝐶0
𝑚 ∪ (−𝐶0

𝑚), so 𝛾2(𝐶𝑚
𝑚 ∓ 𝐷𝑚

𝑚) is positive and independent of 𝑚 while 𝛾2(𝐶𝑚
𝑚) =

𝛾2(𝐷𝑚
𝑚) → 0 as 𝑚 → ∞. Note that 𝐶𝑚

𝑚 and 𝐷𝑚
𝑚 are actually star bodies. 

The monotonicity properties of the weighted (1 + 𝜖)th means ((1 + 2𝜖)𝑎1+𝜖 + (1 +

𝜖)(𝑎 + 𝜖)1+𝜖)1 1+𝜖⁄  summarized at the end of Section 2 imply that Theorem 4.2 holds for 

𝜖 ≥ 0 and 1 + 𝜖 ≤ 1/𝑛. 

However, the exponent 1/𝑛 in (20) is the best possible; it does not hold when 1/𝑛 is replaced 

by 𝜖 ≥ 0, as can be seen by taking 𝐶𝑚 = 𝑎𝐵 and 𝐷𝑚 = (𝑎 + 𝜖)𝐵 for sufficiently small 

positive 𝑎 and 𝑎 + 𝜖, and using (15) and the remarks concerning (19). Similarly, using the 

remarks concerning (18) instead, we see that it is also not true that (20) holds when 1/𝑛 is 

replaced by 𝜖 ≥ 0 and the inequality is reversed. 

When 𝐶𝑚 and 𝐷𝑚 are convex bodies containing the origin, we have (1 + 2𝜖)𝐶𝑚 ∓
(1 + 𝜖)𝐷𝑚 ⊂ (1 + 2𝜖)𝐶𝑚 + (1 + 𝜖)𝐷𝑚, so in this case the inequality 𝛾𝑛((1 + 2𝜖)𝐶

𝑚 +
(1 + 𝜖)𝐷𝑚)1 𝑛⁄ ≤ (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1 𝑛⁄ + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1 𝑛⁄  would be stronger than (20). 

However, by (2), its equality condition, and (15), this is false in general when 𝐶𝑚 and 𝐷𝑚 

are sufficiently small nonhomothetic convex bodies containing the origin. 
As a final remark, we consider the possibility that 

                  ⊝𝑛
−1 𝛾𝑛(1 + 2𝜖)𝐶

𝑚+̃(1 + 𝜖)𝐷𝑚 ≤ (1 + 2𝜖)⊝𝑛
−1 (𝛾𝑛(𝐶

𝑚)) + (1 +
𝜖)⊝𝑛

−1 (𝛾𝑛(𝐷
𝑚)) 

holds for sequences of Borel star sets 𝐶𝑚 and 𝐷𝑚 in ℝ𝑛 and 𝜖 ≥ 0, where ⊝𝑛 is some 

standard function related to Gauss measure. Certainly (21) is not generally true when 𝜖 ≥ 0 

and ⊝𝑛= 𝛹𝑛, the function defined by (10). To see this, let 𝐶𝑚 and 𝐷𝑚 be half-spaces in ℝ𝑛 

bounded by a common hyperplane through the origin, so that 𝐶𝑚+̃𝐷𝑚 = ℝ𝑛 and 𝛾𝑛(𝐶
𝑚) =

𝛾𝑛(𝐷
𝑚) = 1/2. Then the left-hand side of (21) with 𝜖 ≥ 0 and ⊝𝑛= 𝛹𝑛 is infinite, while 
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the right-hand side is bounded. Of course the same argument shows that (21) is not generally 

true when ⊝𝑛= 𝛹1 𝑜𝑟 ⊝𝑛= 𝛷 (defined by (12)). 

In view and the dual Brunn-Minkowski inequality in the form (19), it is natural to ask 

whether there is a 𝜖 ≥ 0 such that 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚+̃(1 + 𝜖)𝐷𝑚)

1+𝜖
≤ (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1+𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1+𝜖  

holds for 𝜖 ≥ 0, 𝜖 ≤ 1, and sequences of Borel star sets 𝐶𝑚 and 𝐷𝑚 in ℝ𝑛. We shall see that 

the answer is negative for 𝜖 ≥ 0, even for 𝑜-symmetric balls. To this end, the following will 

be useful(see[325]). 

Corollary (6.1.18) [388]:  The function 

𝐹𝑛(𝑟) = (∫ 𝑒−(1+𝜖)
2/2(1 + 𝜖)𝑛−1 𝑑𝜖

𝑟

0

)

1+𝜖

  

is strictly concave when (i) 0 < 𝜖 < 1 and 𝑟 ≥ √𝑛 − 1, (ii) 𝜖 ≥ 0 and 𝑟 > √𝑛(1 + 𝜖) −  1, 
and (iii) 1 + 𝜖 ≤ 1/𝑛 and 𝑟 > 0. 

Proof. Let 

                      𝐼𝑛(𝑟) = 𝑒
−(1+𝜖)2/2(1 + 𝜖)𝑛−1 𝑑𝜖, 

so that 𝐹𝑛(𝑟) = 𝐼𝑛(𝑟)
1−𝜖. A straightforward calculation yields 

𝐹𝑛
′′(𝑟) = 𝑝𝐼𝑛(𝑟)

−𝜖−1𝑒−𝑟
2/2𝑟𝑛−2((𝜖)𝑒−𝑟

2/2𝑟𝑛 + 𝐼𝑛(𝑟)(𝑛 − 1 − 𝑟
2)). 

Note that a trivial estimate gives 𝐼𝑛(𝑟) > 𝑒
−𝑟2/2𝑟𝑛/𝑛 for 𝑟 > 0, so if 𝑟 ≥ √𝑛 − 1, we obtain 

𝐹𝑛
′′(𝑟) = 𝑝𝐼𝑛(𝑟)

−𝜖−1𝑒−
𝑟2

2 𝑟2𝑛−2(𝑛(1 − 𝜖) − 1 − 𝑟2)/𝑛. From this we see that 𝐹𝑛
′′(𝑟) < 0 

when, in addition, 𝜖 ≤ 0, establishing (i), and (ii) also follows immediately. 

In proving (iii) we may suppose that 1 − 𝜖 = 1/𝑛, since (1 + 𝜀)th means increase with 1 −
𝜖. Substituting 1 − 𝜖 = 1/𝑛 into (25), we see that it suffices to show that 

𝐺𝑛(𝑟) = −(𝑛 − 1)𝑒
−𝑟2 2⁄ 𝑟𝑛 + 𝑛𝐼𝑛(𝑟)(𝑛 − 1 − 𝑟

2) < 0 
for 𝑟 > 0. Now 𝐺𝑛(0) = 0, and 

𝐺𝑛
′ (𝑟) = 𝑒−𝑟

2 2⁄ 𝑟𝑛+1 − 2𝑛𝑟𝐼(𝑟) < 0 
for 𝑟 > 0. It follows that 𝐺𝑛(𝑟) < 0 for 𝑟 > 0, as required. 

No attempt was made to obtain best possible estimates in cases (i) and (ii) of the previous 

lemma(6.1.3), since those found are sufficient for our purposes. Case (iii) of the previous 

lemma (6.1.3)is equivalent to the concavity of 𝜙𝑛(𝑟) for 𝑟 > 0, and this is also implied by a 

result of Koenig and Tomczak-Jaegermann [326, p. 1218]. 

Corollary (6.1.19) [388]:  Let 𝜖 ≥ 0, 𝜖 ≤ 1, and let 𝐶𝑚 and 𝐷𝑚 be 𝑜-symmetric balls in ℝ𝑛. 

Then 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚+̃(1 + 𝜖)𝐷𝑚)

1−𝜖
≥ (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1−𝜖 

holds for 1 − 𝜖 ≤ 1/𝑛. Equality holds for 𝜖 ≥ 0 if and only if 𝐶𝑚 = 𝐷𝑚. 

Proof. Note that when 𝑛 = 1, 𝛾1(𝑟𝐵) = 𝛾1([−𝑟, 𝑟]) = 2𝑐1𝐼1(𝑟), where 𝐼𝑛(𝑟) is given by 

(24). If 𝑛 ≥ 2, by (14), we have 

𝛾𝑛(𝑟𝐵) = 𝑐𝑛∫ 𝜙𝑛(𝑟)
𝑛𝑑𝑢𝑚

𝑆𝑛−1
 = 𝑛𝜅𝑛𝑐𝑛𝐼𝑛(𝑟) 

for 𝑟 > 0. Thus if the function 𝐹𝑛(𝑟) given by (23) is concave for 0 < 𝑎 < 𝑟 < 𝑎 + 𝜖, then 
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𝛾𝑛(−𝜖𝐶
𝑚+̃(1 + 𝜖)𝐷𝑚)1−𝜖 ≥ −𝜖𝛾𝑛(𝐶

𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1−𝜖 

holds when 𝐶𝑚 = 𝑟0𝐵,𝐷
𝑚 = 𝑟1𝐵, and 0 < 𝑎 < 𝑟0, 𝑟1 < 𝑎 + 𝜖. By Lemma (6.1.3)(iii), 

𝐹𝑛(𝑟) is actually strictly concave for 1 − 𝜖 ≤ 1/𝑛, and this yields the corollary together with 

the equality condition when 𝜖 ≥ 0. 

For general 𝜖 ≥ 0 with 𝜖 ≤ 1, let 𝛼 =
1+2𝜖

−𝜖
≤ 1 and note that by (27) and (11), for 1 − 𝜖 ≤

1/𝑛, we have 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚+̃(1 + 𝜖)𝐷𝑚)

1−𝜖
= 𝛾𝑛(−𝜖(𝛼𝐶

𝑚)+̃(1 + 𝜖)𝐷𝑚)1−𝜖

≥ −𝜖𝛾𝑛(𝛼𝐶
𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷

𝑚)1−𝜖  
≥ −𝜖𝛼𝑛𝛾𝑛(𝐶

𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1−𝜖 

≥ −𝜖𝛼𝛾𝑛(𝐶
𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷

𝑚)1−𝜖 
= (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1−𝜖 ,  

as required. If equality holds, then equality holds in (11), implying that 𝛼 = 1, and then 

𝐶𝑚 = 𝐷𝑚 from the equality condition for (27). 

Corollary (6.1.20) [388]:  For given 𝜖 > 0, 𝜖 ≤ 1, and 𝜖 ≥ 0, inequality (22) is false in 

general, even for 𝑜-symmetric balls. 

Proof. and its equality condition yield the result for 1 − 𝜖 ≤ 1/𝑛. 

Suppose that 1 − 𝜖 > 1/𝑛. By Lemma 5.1(i) and (ii) we can choose the radii of 𝑜-symmetric 

balls 𝐶𝑚 and 𝐷𝑚 in ℝ𝑛 so that with 𝑠 = 1 − 𝑡, 

𝛾𝑛((1 + 2𝜖)𝐶
𝑚+̃(1 + 𝜖)𝐷𝑚)

1−𝜖
> (1 + 2𝜖)𝛾𝑛(𝐶

𝑚)1−𝜖 + (1 + 𝜖)𝛾𝑛(𝐷
𝑚)1−𝜖 , 

and therefore so that (22) is false. It remains to consider the case when 𝜖 ≤ 1. 

Let 𝐶𝑚 = 𝑎𝐵 and 𝐷𝑚 = 𝑎𝐵 for 𝑎 > 0. Then (28) is equivalent to 

𝛾𝑛((2 + 3𝜖)𝑎𝐵)
1−𝜖 > (2 + 3𝜖)𝛾𝑛(𝑎𝐵)

1−𝜖 . 
As 𝑎 → ∞, the left-hand side approaches 1, while the right-hand side approaches 𝜖 ≤ 1. It 

follows that  holds for sufficiently large 𝑎. 

Note that holds even for 𝜖 ≤ 0, at least when 𝜖 ≥ 0. This is because (1 + 𝜖)th means 

increase with real 1 − 𝜖; see [320, Section 2.9]. Consequently Corollary (6.1.13) also holds  

when 𝜖 ≥ 0  and 𝜖 ≤ 0. 

 

 

       Section (6.2): Log-Brunn-Minkowski Inequality  

The fundamental Brunn-Minkowski inequality states that for convex bodies 𝐾, 𝐿 in 

Euclidean nspace, ℝ𝑛, the volume of the bodies and of their Minkowski sum 𝐾 + 𝐿 =
{𝑥 + 𝑦: 𝑥 ∈ 𝐾 𝑎𝑛𝑑 𝑦 ∈ 𝐿}, are related by 

𝑉(𝐾 + 𝐿)
1
𝑛 ≥ 𝑉(𝐾)

1
𝑛 + 𝑉(𝐿)

1
𝑛, 

with equality if and only if 𝐾 and 𝐿 are homothetic. As the first milestone of the Brunn-

Minkowski theory, the Brunn-Minkowski inequality is a far-reaching generalization of the 

isoperimetric inequality. The Brunn-Minkowski inequality exposes the crucial log-

concavity property of the volume functional because the Brunn-Minkowski inequality has 

an equivalent formulation as: for all real 𝜆 ∈  [0, 1], 
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                                  𝑉((1 − 𝜆)𝐾 + 𝜆𝐿) ≥ 𝑉(𝐾)1−𝜆𝑉(𝐿)𝜆,                                  (46) 
and for 𝜆 ∈ (0, 1), there is equality if and only if 𝐾 and 𝐿 are translates. A big part of the 

classical Brunn-Minkowski theory is concerned with establishing generalizations and 

analogues of the Brunn-Minkowski inequality for other geometric invariants. The excellent 

survey article of Gardner [326] gives a comprehensive account of various aspects and 

consequences of the Brunn- Minkowski inequality. 

If ℎ𝐾 and ℎ𝐿 are the support functions (see (60) for the definition) of 𝐾 and 𝐿, the 

Minkowski combination (1 − 𝜆)𝐾 + 𝜆𝐿 is given by an intersection of half-spaces, 

(1 − 𝜆)𝐾 + 𝜆𝐿 = ⋂ {𝑥 ∈ ℝ𝑛: 𝑥 · 𝑢 ≤ (1 − 𝜆)ℎ𝐾(𝑢) + 𝜆ℎ𝐿(𝑢)}

𝑢∈𝑆𝑛−1

, 

where 𝑥 · 𝑢 denotes the standard inner product of 𝑥 and 𝑢 in ℝ𝑛. Assume that 𝐾 and 𝐿 are 

convex bodies that contain the origin in their interiors, then the geometric Minkowski 

combination, (1 − 𝜆) · 𝐾+∘𝜆 · 𝐿, is defined by 

        (1 − 𝜆) · 𝐾+𝜊𝜆 · 𝐿 = ⋂ {𝑥 ∈ ℝ𝑛: 𝑥 · 𝑢 ≤ ℎ𝐾(𝑢)
1−𝜆 + ℎ𝐿(𝑢)

𝜆}𝑢∈𝑆𝑛−1 .      (47) 
The arithmetic-geometric-mean inequality shows that for convex bodies 𝐾, 𝐿 and 𝜆 ∈
[0, 1], 
                            (1 − 𝜆) · 𝐾+𝜊  𝜆 · 𝐿 ⊆ (1 − 𝜆)𝐾 + 𝜆𝐿.                                       (48) 
What makes the geometric Minkowski combinations difficult to work with is that while the 

convex body (1 − 𝜆)𝐾 + 𝜆𝐿 has (1 − 𝜆)ℎ𝐾 + 𝜆ℎ𝐿 as its support function, the convex body 

(1 − 𝜆) · 𝐾+𝜊 𝜆 · 𝐿 is the Wulff shape of the function ℎ𝐾
1−𝜆ℎ𝐿

𝜆. 

The authors conjecture that for origin-symmetric bodies (i.e., unit balls of finite 

dimensional Banach spaces), there is a stronger inequality than the Brunn-Minkowski 

inequality (46), the log-Brunn-Minkowski inequality: 

Problem (6.2.1)[321]: Show that if 𝐾 and 𝐿 are origin-symmetric convex bodies in ℝ𝑛, 

then for all 𝜆 ∈ [0, 1], 

                                𝑉((1 − 𝜆) · 𝐾+𝜊 𝜆 · 𝐿) ≥ 𝑉(𝐾)
1−𝜆𝑉(𝐿)𝜆.                             (49) 

That the log-Brunn-Minkowski inequality (49) is stronger than its classical counterpart 

(46) can be seen from the arithmetic-geometric mean inequality (48). Simple examples 

(e.g. an origincentered cube and one of its translates) shows that (49) cannot hold for all 

convex bodies. 

As is well known, the classical Brunn-Minkowski inequality (46) has as a consequence an 

inequality of fundamental importance: the Minkowski mixed-volume inequality. One of 

the aims is to show that the log-Brunn-Minkowski inequality (49) also has an important 

consequence, the log-Minkowski inequality: 

Problem (6.2.2) [321]: Show that if 𝐾 and 𝐿 are origin-symmetric convex bodies in ℝ𝑛, 

then 

                       ∫ 𝑙𝑜𝑔
ℎ𝐿

ℎ𝐾
𝑑�̅�𝐾𝑆𝑛−1

 ≥
1

𝑛
𝑙𝑜𝑔

𝑉(𝐿)

𝑉(𝐾)
.                                                           (50) 

Here �̅�𝐾 is the cone-volume probability measure of 𝐾 (see definitions (64), (65), (67)). 
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Just as the log-Brunn-Minkowski inequality (49) is stronger than its classical counterpart 

(46), the log-Minkowski inequality (50) turns out to be stronger than its classical 

counterpart. 

The classical Minkowski mixed-volume inequality and the classical Brunn-Minkowski 

inequality are “equivalent” in that once either of these inequalities has been established, 

then the other can be obtained as a simple consequence. One of the aims is to demonstrate 

that the log-Brunn-Minkowski inequality (49) and the log-Minkowski inequality (50) are 

“equivalent” in that once either of these inequalities has been established, then the other 

can be obtained as a simple consequence. 

Even in the plane the above problems are non-trivial and unsolved. Establish the plane log-

Brunn-Minkowski inequality along with its equality conditions: 

Theorem (6.2.3) [321]: If 𝐾 and 𝐿 are origin-symmetric convex bodies in the plane, then 

for all 𝜆 ∈ [0, 1], 

                                 𝑉((1 − 𝜆) · 𝐾+𝜊 𝜆 · 𝐿) ≥ 𝑉(𝐾)
1−𝜆𝑉(𝐿)𝜆.                            (51) 

When 𝜆 ∈ (0, 1), equality in the inequality holds if and only if 𝐾 and 𝐿 are dilates or 𝐾 and 

𝐿 are parallelograms with parallel sides. 

In addition, in the plane, we will establish the log-Minkowski inequality along with its 

equality conditions: 

Theorem (6.2.4) [321]: If 𝐾 and 𝐿 are origin-symmetric convex bodies in the plane, then, 

                          ∫ 𝑙𝑜𝑔
ℎ𝐿

ℎ𝐾
𝑑�̅�𝐾𝑆1

≥
1

2
𝑙𝑜𝑔

𝑉(𝐿)

𝑉(𝐾)
,                                                              (52) 

with equality if and only if, either 𝐾 and 𝐿 are dilates or 𝐾 and 𝐿 are parallelograms with 

parallel sides. 

The above Minkowski combinations and problems are merely two (important) frames of a 

long film. In the early 1960’s, Firey (see e.g. Schneider [324, p. 383]) defined for each 𝑝 ≥
1, what have become known as Minkowski-Firey 𝐿𝑝-combinations (or simply 𝐿𝑝-

combinations) of convex bodies. 

If 𝐾 and 𝐿 are convex bodies that contain the origin in their interiors and 0 ≤ 𝜆 ≤ 1 then 

the Minkowski-Firey 𝐿𝑝-combination, (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿, is defined by 

 (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿 = ⋂ {𝑥 ∈ ℝ𝑛: 𝑥 · 𝑢 ≤ ((1 − 𝜆)ℎ𝐾(𝑢)
𝑝 +𝑢∈𝑆𝑛−1

                                       𝜆ℎ𝐿(𝑢)
𝑝)1 𝑝⁄ }.                                        (53) 

Firey also established the 𝐿𝑝-Brunn-Minkowski inequality (also known as the Brunn-

Minkowski-Firey inequality): If 𝑝 > 1, then 

               𝑉 ((1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿) ≥ 𝑉(𝐾)
1−𝜆𝑉(𝐿)𝜆,                                             (54) 

with equality for 𝜆 ∈ (0, 1) if and only if 𝐾 = 𝐿. In the mid 1990’s, it was shown in [325, 

36], that a study of the volume of Minkowski-Firey 𝐿𝑝-combinations leads to an 

embryonic 𝐿𝑝-Brunn-Minkowski theory. This theory has expanded rapidly. (See e.g. 

[324].) 

Note that definition (53) makes sense for all 𝑝 > 0. The case where 𝑝 = 0 is the limiting 

case given by (47). The crucial difference between the cases where 0 < 𝑝 < 1 and the 

cases where 𝑝 ≥ 1 is that the function ((1 − 𝜆)ℎ𝐾
𝑝
+ 𝜆ℎ𝐿

𝑝
)1 𝑝⁄  is the support function of 
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(1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿 when 𝑝 ≥ 1, but it is not whenever 0 < 𝑝 < 1. When 0 < 𝑝 < 1, the 

convex body (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿 is the Wulff shape of ((1 − 𝜆)ℎ𝐾
𝑝
+ 𝜆ℎ𝐿

𝑝
)1 𝑝⁄ . 

Unfortunately, progress in the 𝐿𝑝-Brunn Minkowski theory for 𝑝 < 1 has been slow. The 

present work is a step in that direction. 

It is easily seen from definition (53) that for fixed convex bodies 𝐾, 𝐿 and fixed 𝜆 ∈ [0, 1], 
the 𝐿𝑝-Minkowski-Firey combination (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿 is increasing with respect to set 

inclusion, as 𝑝 increases; i.e., if 0 ≤ 𝑝 ≤ 𝑞, 

                           (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿 ⊆ (1 − 𝜆) · 𝐾+𝑞  𝜆 · 𝐿.                                  (55) 

From (55) one sees that the classical Brunn-Minkowski inequality (46) (i.e. the case 𝑝 = 1 

of (54)) immediately yields Firey’s 𝐿𝑝-Brunn-Minkowski inequality (54) for each 𝑝 > 1. 

The difficult situation arises when 𝑝 ∈ [0, 1) because now we are seeking inequalities that 

are stronger than the classical Brunn-Minkowski inequality. 

The 𝐿𝑝-Brunn-Minkowski inequality (54) cannot be established for all convex bodies that 

contain the origins in their interiors, for any fixed 𝑝 < 1. Even an origin-centered cube and 

one of its translates show that. However, the following problem is of fundamental 

importance in the 𝐿𝑝-Brunn-Minkowski theory: 

Problem (6.2.5) [321]: Suppose 0 < 𝑝 < 1. Show that if 𝐾 and 𝐿 are origin-symmetric 

convex bodies in ℝ𝑛, then for all 𝜆 ∈ [0, 1], 

                    𝑉 ((1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿) ≥ 𝑉(𝐾)
1−𝜆𝑉(𝐿)𝜆.                                         (56) 

From the monotonicity of the 𝐿𝑝-Minkowski combination (55), it is clear that the log-

Brunn-Minkowski inequality implies the 𝐿𝑝-Brunn-Minkowski inequalities for each 𝑝 > 0. 

We note that there are easy examples that show that the 𝐿𝑝-Brunn-Minkowski inequality 

(56) fails to hold for any 𝑝 < 0 — even if attention were restricted to simple origin 

symmetric bodies. 

We show that the 𝐿𝑝-Brunn-Minkowski inequality (50) can be formulated equivalently as 

the 𝐿𝑝-Minkowski inequality:   

Problem (6.2.6) [321]: Suppose 0 < 𝑝 < 1. Show that if 𝐾 and 𝐿 are origin-symmetric 

convex bodies in ℝ𝑛, then 

                   (∫ (
ℎ𝐿

ℎ𝐾
)
𝑝
𝑑�̅�𝐾𝑆𝑛−1

)

1

𝑝
≥ (

𝑉(𝐿)

𝑉(𝐾)
)

1

𝑛
.                                                         (57) 

For each 𝑝 ≥ 1, the inequalities (56) and (57) are well known to hold for all convex bodies 

(that contain the origin in their interior) and are also well known to be equivalent, in that 

given one, the other is an easy consequence. 

From Jensen’s inequality it can be seen that the 𝐿𝑝-Minkowski inequality (57) for the case 

𝑝 = 0, the log-Minkowski inequality (50), is the strongest of the 𝐿𝑝-Minkowski 

inequalities (57). The 𝐿𝑝-Minkowski inequality for the case 𝑝 = 1, the classical 

Minkowski mixed-volume inequality, is weaker than all the cases of (57) where 𝑝 ∈ (0, 1). 
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Even in the plane the above problems are non-trivial and unsolved. One of the aims of this 

is to solve the problems in the plane. Solutions in higher dimensions would be highly 

desirable. 

We will prove the following theorems. 

Theorem (6.2.7) [321]: Suppose 0 < 𝑝 < 1. If 𝐾 and 𝐿 are origin-symmetric convex 

bodies in the plane, then for all 𝜆 ∈ [0, 1], 

                     𝑉 ((1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿) ≥ 𝑉(𝐾)
1−𝜆𝑉(𝐿)𝜆.                                        (58) 

When 𝜆 ∈ (0, 1), equality in the inequality holds if and only if 𝐾 = 𝐿. 

Observe that the equality conditions here are different than those of Theorem (6.2.3). 

Theorem (6.2.8) [321]: Suppose 0 < 𝑝 < 1. If 𝐾 and 𝐿 are origin-symmetric convex 

bodies in the plane, then, 

                            (∫ (
h𝐿

h𝐾
)
𝑝
𝑑�̅�𝐾𝑆1

)

1

𝑝
≥ (

𝑉(𝐿)

𝑉(𝐾)
)

1

2
,                                                        (59) 

with equality if and only if 𝐾 and 𝐿 are dilates. 

Observe that the equality conditions here are different than those of Theorem (6.2.4). 

The approach used to establish the geometric inequalities of these theorems is new. 

Good general references for the theory of convex bodies are provided by the books of 

Gardner [325], Gruber [327], Schneider [324], and Thompson [328]. 

The support function ℎ𝐾: ℝ
𝑛 → ℝ, of a compact, convex set 𝐾 ⊂ ℝ𝑛 is defined, for 𝑥 ∈

ℝ𝑛, by 

                                  ℎ𝐾(𝑥) = max{𝑥 · 𝑦 ∶ 𝑦 ∈ 𝐾},                                                  (60) 
and uniquely determines the convex set. Obviously, for a pair 𝐾, 𝐿 ⊂ ℝ𝑛 of compact, 

convex sets, we have 

                           ℎ𝑘 ≤ ℎ𝐿, 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓, 𝐾 ⊆ 𝐿.                                                    (61) 
Note that support functions are positively homogeneous of degree one and subadditive. 

A convex body is a compact convex subset of ℝ𝑛 with non-empty interior. A boundary 

point 𝑥 ∈ 𝜕𝐾 of the convex body 𝐾 is said to have 𝑢 ∈ 𝑆𝑛−1 as one of its outer unit 

normals provided 𝑥 · 𝑢 = ℎ𝐾(𝑢). A boundary point is said to be singular if it has more than 

one unit normal vector. It is well known (see, e.g., [324]) that the set of singular boundary 

points of a convex body has (𝑛 − 1)-dimensional Hausdorff measure ℋ𝑛−1 equal to 0. 

Let 𝐾 be a convex body in ℝ𝑛 and 𝑣𝐾: 𝜕𝐾 → 𝑆
𝑛−1 the generalized Gauss map. For 

arbitrary convex bodies, the generalized Gauss map is properly defined as a map into 

subsets of 𝑆𝑛−1. 

However, ℋ𝑛−1-almost everywhere on 𝜕𝐾 it can be defined as a map into 𝑆𝑛−1. For each 

Borel set𝜔 ⊂ 𝑆𝑛−1, the inverse spherical image 𝑣𝐾
−1(𝜔) of 𝜔 is the set of all boundary 

points of 𝐾 which have an outer unit normal belonging to the set 𝜔. Associated with each 

convex body 𝐾 in ℝ𝑛 is a Borel measure 𝑆𝐾 on 𝑆𝑛−1 called the Aleksandrov-Fenchel-

Jessen surface area measure of 𝐾, defined by 

                                       𝑆𝐾(𝜔) =  ℋ
𝑛−1(𝑣𝐾

−1(𝜔)),                                                 (62) 

for each Borel set 𝜔 ⊆ 𝑆𝑛−1; i.e., 𝑆𝐾(𝜔) is the (𝑛 − 1)-dimensional Hausdorff measure of 

the set of all points on 𝜕𝐾 that have a unit normal that lies in 𝜔. 
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The set of convex bodies will be viewed as equipped with the Hausdorff metric and thus a 

sequence of convex bodies, 𝐾𝑖, is said to converge to a body 𝐾, i.e., 

lim
𝑖→∞

𝐾𝑖 = 𝐾, 

provided that their support functions converge in 𝐶(𝑆𝑛−1), with respect to the max-norm, 

i.e., 

‖ℎ𝐾𝑖 − ℎ𝐾‖∞
→ 0. 

We shall make use of the weak continuity of surface area measures; i.e., if 𝐾 is a convex 

body and 𝐾𝑖 is a sequence of convex bodies then 

                        𝑙𝑖𝑚
𝑖→∞

𝐾𝑖 = 𝐾 ⟹ lim
𝑖⟶∞

𝑆𝐾𝑖 = 𝑆𝐾 ,                                               (63)  

weakly. 

Let 𝐾 be a convex body in ℝ𝑛 that contains the origin in its interior. The cone-volume 

measure 𝑉𝐾 of 𝐾 is a Borel measure on the unit sphere 𝑆𝑛−1 defined for a Borel 𝜔 ⊆ 𝑆𝑛−1 

by 

                            𝑉𝐾(𝜔) =
1

𝑛
∫ 𝑥 · 𝑣𝐾(𝑥)𝑑ℋ

𝑛−1(𝑥)
𝑥∈𝑣𝐾

−1(𝜔)
,                                   (64) 

and thus 

                                                 𝑑𝑉𝐾 =
1

𝑛
ℎ𝐾  𝑑𝑆𝐾 .                                                           (65) 

Since, 

                                         𝑉(𝐾) =
1

𝑛
∫ ℎ𝐾(𝑢)𝑑𝑆𝐾(𝑢)𝑢∈𝑆𝑛−1

,                                     (66) 

we can turn the cone-volume measure into a probability measure on the unit sphere by 

normalizing it by the volume of the body. The cone-volume probability measure  �̅�𝐾 of 𝐾 

is defined 

                                                  �̅�𝐾 =
1

𝑉(𝐾)
𝑉𝐾 .                                                               (67) 

Suppose 𝐾, 𝐿 are convex bodies in ℝ𝑛 that contain the origin in their interiors. For 𝑝 ≠ 0, 

the 𝐿𝑝-mixed volume 𝑉𝑝(𝐾, 𝐿) can be defined as 

                                             𝑉𝑝(𝐾, 𝐿) = ∫ (
ℎ𝐿

ℎ𝐾
)
𝑝
𝑑𝑉𝐾𝑆𝑛−1

.                                         (68) 

We need the normalized 𝐿𝑝-mixed volume  �̅�𝑝(𝐾, 𝐿), which was first defined in [43], 

�̅�𝑝(𝐾, 𝐿) = (
𝑉𝑝(𝐾, 𝐿)

𝑉(𝐾)
)

1
𝑝

= (∫ (
ℎ𝐿
ℎ𝐾
)
𝑝

𝑑�̅�𝐾
𝑆𝑛−1

)

1
𝑝

.   

Letting 𝑝 → 0 gives 

�̅�0(𝐾, 𝐿) = 𝑒𝑥𝑝 (∫ 𝑙𝑜𝑔
ℎ𝐿
ℎ𝐾
𝑑�̅�𝐾

𝑆𝑛−1
) , 

which is the normalized log-mixed volume of 𝐾 and 𝐿. Obviously, from Jensen’s 

inequality we know that 𝑝 ⟼ �̅�𝑝(𝐾, 𝐿) is strictly monotone increasing, unless ℎ𝐿/ℎ𝐾  is 

constant on sup 𝑝 𝑆𝐾. 

Suppose that the function 𝑘𝑡(𝑢) = 𝑘(𝑡, 𝑢): 𝐼 × 𝑆
𝑛−1 → (0,1) is continuous, where 𝐼 ⊂ ℝ 

is an interval. For fixed 𝑡 ∈ 𝐼, let 
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𝐾𝑡 = ⋂ {𝑥 ∈ ℝ𝑛: 𝑥 · 𝑢 ≤ 𝑘(𝑡, 𝑢)}

𝑢∈𝑆𝑛−1

 

be the Wulff shape (or Aleksandrov body) associated with the function 𝑘𝑡. We shall make 

use of the well-known fact that 

                         ℎ𝐾𝑡 ≤ 𝑘𝑡      𝑎𝑛𝑑     ℎ𝐾𝑡 = 𝑘𝑡 , 𝑎. 𝑒. 𝑤. 𝑟. 𝑡. 𝑆𝐾𝑡  ,                                 (69) 

for each 𝑡 ∈ 𝐼. If kt happens to be the support function of a convex body then ℎ𝐾𝑡 = 𝑘𝑡, 

everywhere. 

The following lemma (proved in e.g. [323]) will be needed. 

Lemma (6.2.9) [321]: Suppose 𝑘(𝑡, 𝑢): 𝐼 × 𝑆𝑛−1 → (0,1) is continuous, where 𝐼 ⊂ ℝ is an 

open interval. Suppose also that the convergence in 
𝜕𝑘(𝑡, 𝑢)

𝜕𝑡
= lim
𝑠→0

𝑘(𝑡 + 𝑠, 𝑢) − 𝑘(𝑡, 𝑢)

𝑠
 

is uniform on 𝑆𝑛−1. If {𝐾𝑡}𝑡∈𝐼 is the family of Wulff shapes associated with 𝑘𝑡, then 
𝑑𝑉(𝐾𝑡)

𝑑𝑡
= ∫

𝜕𝑘(𝑡, 𝑢)

𝜕𝑡
𝑑𝑆𝐾𝑡(𝑢)

𝑆𝑛−1
. 

Suppose 𝐾, 𝐿 are convex bodies in ℝ𝑛. The inradius 𝑟(𝐾, 𝐿) and outradius 𝑅(𝐾, 𝐿) of 𝐾 

with respect to 𝐿 are defined by 

𝑟(𝐾, 𝐿) = sup {𝑡 > 0 ∶ 𝑥 + 𝑡𝐿 ⊂  𝐾 𝑎𝑛𝑑 𝑥 ∈ ℝ𝑛}, 
𝑅(𝐾, 𝐿) =  inf {𝑡 > 0 ∶ 𝑥 + 𝑡𝐿 . 𝐾 𝑎𝑛𝑑 𝑥 ∈ ℝ𝑛}. 

If 𝐿 is the unit ball, then 𝑟(𝐾, 𝐿) and 𝑅(𝐾, 𝐿) are the radii of maximal inscribable and 

minimal circumscribable balls of 𝐾, respectively. Obviously from the definition, it follows 

that 

                                                           𝑟(𝐾, 𝐿) =
1

𝑅(𝐿,𝐾)
.                                                (70) 

If 𝐾, 𝐿 happen to be origin-symmetric convex bodies, then obviously 

            𝑟(𝐾, 𝐿) = lim
𝑢∈𝑆𝑛−1

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
 𝑎𝑛𝑑 𝑅(𝐾, 𝐿) = max

𝑢∈𝑆𝑛−1

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
.                    (71) 

It will be convenient to always translate 𝐾 so that for 0 ≤ 𝑡 < 𝑟 = 𝑟(𝐾, 𝐿), the function 

𝑘𝑡 = ℎ𝐾 − 𝑡ℎ𝐿 is strictly positive. Let 𝐾𝑡 denote the Wulff shape associated with the 

function 𝑘𝑡; i.e., let 𝐾𝑡 be the convex body given by 

             𝐾𝑡 = {𝑥 ∈ ℝ
𝑛: 𝑥 · 𝑢 ≤ ℎ𝐾(𝑢) − 𝑡ℎ𝐿(𝑢)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑆

𝑛−1}.                    (72) 
Note that 𝐾0 = 𝐾, and that obviously 

lim
𝑡→0

𝐾𝑡 = 𝐾0 =  𝐾. 

From definition (72) and (61) we immediately have 

                                            𝐾𝑡 = {𝑥 ∈ ℝ
𝑛: 𝑥 + 𝑡𝐿 ⊆ 𝐾}.                                           (73)  

Using (73) we can extend the definition of 𝐾𝑡 for the case where 𝑡 = 𝑟 =  𝑟(𝐾, 𝐿): 
𝐾𝑟 = {𝑥 ∈ ℝ

𝑛: 𝑥 + 𝑟𝐿 ⊆ 𝐾}. 
It is not hard to show (see e.g. the proof of (6.5.11) in [334]) that 𝐾𝑟 is a degenerate convex 

set (i.e. has empty interior) and that 

                                      lim
𝑡→𝑟

𝑉(𝐾𝑡) = 𝑉(𝐾𝑟) = 0.                                                  (74) 
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From Lemma (6.2.9) and (68), we obtain the well-known fact that for 0 < 𝑡 < 𝑟 =
𝑟(𝐾, 𝐿), 

                                         
𝑑

𝑑𝑡
𝑉(𝐾𝑡) = −𝑛𝑉1(𝐾𝑡 , 𝐿).                                                     (75) 

Integrating both sides of (75), and using (74), gives 

Lemma (6.2.10) [321]: Suppose 𝐾 and 𝐿 are convex bodies, and for 0 ≤ 𝑡 < 𝑟 = 𝑟(𝐾, 𝐿), 
the body 𝐾𝑡 is the Wulff shape associated with the positive function 𝑘𝑡 = ℎ𝐾 − 𝑡ℎ𝐿. Then, 

for 0 ≤ 𝑡 ≤ 𝑟 = 𝑟(𝐾, 𝐿), 

                                    𝑉(𝐾) − 𝑉(𝐾𝑡) = 𝑛 ∫ 𝑉1(𝐾𝑠, 𝐿)𝑑𝑠
𝑡

0
,                                       (76) 

where 𝐾𝑟 = {𝑥 ∈ ℝ
𝑛: 𝑥 + 𝑟𝐿 ⊆ 𝐾}. 

we show that for each fixed 𝑝 ≥ 0 the 𝐿𝑝-Brunn-Minkowski inequality and the 𝐿𝑝-

Minkowski inequality are equivalent in that one is an easy consequence of the other. In 

particular, the log-Brunn-Minkowski inequality and the log-Minkowski inequality are 

equivalent. 

Suppose 𝑝 >  0. If 𝐾 and 𝐿 are convex bodies that contain the origin and 𝑠, 𝑡 ≥ 0 (not both 

zero) the 𝐿𝑝-Minkowski combination 𝑠 · 𝐾+𝑝 𝑡 · 𝐿, is defined by 

𝑠 · 𝐾+𝑝 𝑡 · 𝐿 = {𝑥 ∈ ℝ
𝑛 ∶ 𝑥 · 𝑢 ≤ (𝑠ℎ𝐾(𝑢)

𝑝 + 𝑡ℎ𝐿(𝑢)
𝑝)1 𝑝⁄  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑆𝑛−1}. 

We see that for a convex body 𝐾 and real 𝑠 ≥  0 the relationship between the 𝐿𝑝-scalar 

multiplication, 𝑠 · 𝐾, and Minkowski scalar multiplication 𝑠𝐾 is given by: 

𝑠 · 𝐾 = 𝑠
1
𝑝𝐾. 

Suppose 𝑝 > 0 is fixed and suppose the following “weak” 𝐿𝑝-BrunnMinkowski inequality 

holds for all origin-symmetric convex bodies 𝐾 and 𝐿 in ℝ𝑛 such that 𝑉(𝐾) = 1 = 𝑉(𝐿): 

                                    𝑉 ((1 − 𝜆) · 𝐾+𝑝 𝜆 · �̅�) ≥ 1,                                             (77) 

for all 𝜆 ∈ (0, 1). We claim that from this it follows that the following seemingly 

“stronger” 

𝐿𝑝-Brunn-Minkowski inequality holds: If 𝐾 and 𝐿 are origin-symmetric convex bodies in 

ℝ𝑛, then 

                          𝑉(𝑠 · 𝐾+𝑝 𝑡 · 𝐿)
𝑝

𝑛 ≥ 𝑠𝑉(𝐾)
𝑝

𝑛 + 𝑡𝑉(𝐿)
𝑝

𝑛,                                          (78) 

for all 𝑠, 𝑡 ≥ 0. To see this assume that the “weak” 𝐿𝑝-Brunn-Minkowski inequality (77) 

holds and that 𝐾 and 𝐿 are arbitrary origin-symmetric convex bodies. Let �̅� =

𝑉(𝐾)−
1

𝑛𝐾 and �̅� = 𝑉(𝐿)−
1

𝑛𝐿. Then (77) gives 

                               𝑉 ((1 − 𝜆) · �̅� +𝑝 𝜆 · �̅�) ≥ 1.                                                     (79) 

Let 𝜆 =
𝑉(𝐿)

𝑝
𝑛

𝑉(𝐾)
𝑝
𝑛+𝑉(𝐿)

𝑝
𝑛

 . Then 

(1 − 𝜆) · �̅�+𝑝 𝜆 · �̅� =
1

(𝑉(𝐾)
𝑝
𝑛 + 𝑉(𝐿)

𝑝
𝑛)

1
𝑝

(𝐾+𝑝 𝐿). 

Therefore, from (79), we get 
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𝑉(𝐾+𝑝 𝐿)
𝑝
𝑛 ≥ 𝑉(𝐾)

𝑝
𝑛 + 𝑉(𝐿)

𝑝
𝑛. 

If we now replace 𝐾 by 𝑠 · 𝐾 and 𝐿 by 𝑡 · 𝐿 and note that 𝑉(𝑠 · 𝐾)
𝑝

𝑛 = 𝑠𝑉 (𝐾)
𝑝

𝑛 , we obtain 

the desired “stronger” 𝐿𝑝-Brunn-Minkowski inequality (78). 

Lemma (6.2.11) [321]:Suppose 𝑝 > 0. For origin symmetric convex bodies in ℝ𝑛, the 𝐿𝑝-

Brunn-Minkowski inequality (56) and the 𝐿𝑝-Minkowski inequality (57) are equivalent. 

Proof: Suppose 𝐾 and 𝐿 are fixed origin-symmetric convex bodies in ℝ𝑛. For 0 ≤ 𝜆 ≤ 1, 

let 

𝑄𝜆 = (1 − 𝜆) · 𝐾+𝑝 𝜆 · 𝐿; 

i.e., 𝑄𝜆 is the Wulff shape associated with the function 𝑞𝜆 = ((1 − 𝜆)ℎ𝐾
𝑝
+ 𝜆ℎ𝐿

𝑝
)
1

𝑝. It will 

be convenient to consider 𝑞𝜆 as being defined for 𝜆 in the open interval (−𝜖𝜊, 1 + 𝜖𝜊), 
where 𝜖𝜊 > 0 is chosen so that for 𝜆 ∈ (−𝜖𝜊, 1 + 𝜖𝜊), the function 𝑞𝜆 is strictly positive. 

We first assume that the 𝐿𝑝-Minkowski inequality (57) holds. From (66), the fact that 

ℎ𝑄𝜆 = ((1 − 𝜆)ℎ𝐾
𝑝
+ 𝜆ℎ𝐿

𝑝
)
1

𝑝 𝑎. 𝑒. with respect to the surface area measure 𝑆𝑄𝜆, (65) and 

(68), and finally the 𝐿𝑝-Minkowski inequality (57), we have 

𝑉(𝑄𝜆) =
1

𝑛
∫ ℎ𝑄𝜆𝑑𝑆𝑄𝜆
𝑆𝑛−1

 

=
1

𝑛
∫ ((1 − 𝜆)ℎ𝐾

𝑝
+ 𝜆ℎ𝐿

𝑝
)ℎ𝑄𝜆
1−𝑝
𝑑𝑆𝑄𝜆

𝑆𝑛−1
 

= (1 − 𝜆)𝑉𝑝(𝑄𝜆, 𝐾) + 𝜆𝑉𝑝(𝑄𝜆, 𝐿) 

            ≥ (1 − 𝜆)𝑉(𝑄𝜆)
𝑛−𝑝

𝑛 𝑉(𝐾)
𝑝

𝑛 + 𝜆𝑉(𝑄𝜆)
𝑛−𝑝

𝑛  𝑉(𝐿)
𝑝

𝑛 .                                         (80) 
This gives, 

                𝑉(𝑄𝜆) ≥ ((1 − 𝜆)𝑉(𝐾)
𝑝

𝑛 +  𝜆𝑉(𝐿)
𝑝

𝑛)

𝑛 𝑝⁄

≥ 𝑉(𝐾)1−𝜆𝑉(𝐿)𝜆,              (81) 

which is the 𝐿𝑝-Brunn-Minkowski inequality (56). 

Now assume that the 𝐿𝑝-Brunn-Minkowski inequality (56) holds. As was seen at the 

beginning, this inequality (in fact a seemingly weaker one) implies the seemingly stronger 

𝐿𝑝-Brunn-Minkowski inequality (78). But this inequality tells us that the function 

𝑓: [0, 1]  → (0,∞), given by 𝑓(𝜆) = 𝑉(𝑄𝜆)
𝑝

𝑛 for 𝜆 ∈ [0, 1], is concave. 

The convex body 𝑄𝜆 is the Wulff shape of the function 𝑞𝜆 = ((1 − 𝜆)ℎ𝐾
𝑝
+  𝜆ℎ𝐿

𝑝
)1 𝑝⁄ . Now, 

the convergence as𝜆 → 0 in 

𝑞𝜆 − 𝑞0
𝜆

⟶
ℎ𝐾
1−𝑝

𝑝
(ℎ𝐿
𝑝
− ℎ𝐾

𝑝
) =

ℎ𝐾
1−𝑝
ℎ𝐿
𝑝
− ℎ𝐾

𝑝
, 

is uniform on 𝑆𝑛−1. By Lemma (6.2.9), (65) and (68), and (66), 

𝑑𝑉(𝑄𝜆)

𝑑𝜆
|
𝜆=0

= ∫
ℎ𝐾
1−𝑝
ℎ𝐿
𝑝
− ℎ𝐾

𝑝
𝑑𝑆𝐾

𝑆𝑛−1
=
𝑛

𝑝
[𝑉𝑝(𝐾, 𝐿) − 𝑉(𝐾)]. 

Therefore, the concavity of 𝑓 yields 
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𝑉(𝐾)
𝑝−𝑛
𝑛 (𝑉𝑝(𝐾, 𝐿) − 𝑉(𝐾)) = 𝑓′(0) ≥ 𝑓(1) − 𝑓(0) = 𝑉(𝐿)

𝑝
𝑛 −  𝑉(𝐾)

𝑝
𝑛, 

which gives the 𝐿𝑝-Minkowski inequality (57). 

Lemma (6.2.12) [321]: For origin symmetric convex bodies in ℝ𝑛, the log-Brunn-

Minkowski inequality (49) and the log-Minkowski inequality (50) are equivalent. 

Proof: Suppose 𝐾 and 𝐿 are fixed origin-symmetric convex bodies in ℝ𝑛. For 0 ≤ 𝜆 ≤ 1, 

let 

𝑄𝜆 = (1 − 𝜆) · 𝐾+𝜊 𝜆 · 𝐿; 
i.e., 𝑄𝜆 is the Wulff shape associated with the function 𝑞𝜆 = ℎ𝐾

1−𝜆ℎ𝐿
𝜆. It will be convenient 

to consider 𝑞𝜆 as being defined for all 𝜆 in the open interval (−𝜖𝜊, 1 + 𝜖𝜊), for some 

sufficiently small 𝜖𝜊 > 0 and let 𝑄𝜆 be the Wulff shape associated with the function 𝑞𝜆. 

Observe that since 𝑞0 and 𝑞1 are the support functions of convex bodies, 𝑄0 = 𝐾 and 𝑄1 =
𝐿. 

First suppose that we have the log-Minkowski inequality (50) for 𝐾 and 𝐿. Now ℎ𝑄𝜆 =

ℎ𝐾
1−𝜆ℎ𝐿

𝜆 a.e. with respect to 𝑆𝑄𝜆, and thus, 

0 =
1

𝑛𝑉(𝑄𝜆)
∫ ℎ𝑄𝜆𝑙𝑜𝑔

ℎ𝐾
1−𝜆ℎ𝐿

𝜆

ℎ𝑄𝜆
𝑑𝑆𝑄𝜆

𝑆𝑛−1
 

= (1 − 𝜆)
1

𝑛𝑉(𝑄𝜆)
∫ ℎ𝑄𝜆𝑙𝑜𝑔

ℎ𝐾
ℎ𝑄𝜆

𝑑𝑆𝑄𝜆
𝑆𝑛−1

+ 𝜆
1

𝑛𝑉(𝑄𝜆)
∫ ℎ𝑄𝜆𝑙𝑜𝑔

ℎ𝐿
ℎ𝑄𝜆

𝑑𝑆𝑄𝜆
𝑆𝑛−1

 

             ≥ (1 − 𝜆)
1

𝑛
𝑙𝑜𝑔

𝑉(𝐾)

𝑉(𝑄𝜆)
+ 𝜆

1

𝑛
𝑙𝑜𝑔

𝑉(𝐿)

𝑉(𝑄𝜆)
                                                           (82) 

=
1

𝑛
𝑙𝑜𝑔

𝑉(𝐾)1−𝜆𝑉(𝐿)𝜆

𝑉(𝑄𝜆)
. 

This gives the log-Brunn-Minkowski inequality (49) . 

Suppose now that we have the log-Brunn-Minkowski inequality (49) for 𝐾 and 𝐿. The 

body 𝑄𝜆 is the Wulff shape associated wit the function 𝑞𝜆 = ℎ𝐾
1−𝜆ℎ𝐿

𝜆, and the convergence 

as 𝜆 → 0 in 
𝑞𝜆 − 𝑞0
𝜆

⟶ ℎ𝐾  𝑙𝑜𝑔
ℎ𝐿
ℎ𝐾
, 

is uniform on 𝑆𝑛−1. By Lemma (6.2.9), 

                                     
𝑑𝑉(𝑄𝜆)

𝑑𝜆
|
𝜆=0

= ∫ ℎ𝐾  𝑙𝑜𝑔
ℎ𝐿

ℎ𝐾
𝑑𝑆𝐾𝑆𝑛−1

                                          (83) 

But the log-Brunn-Minkowski inequality (49) tells us that 𝜆 ⟼ 𝑙𝑜𝑔𝑉(𝑄𝜆) is a concave 

function, and thus 

          
1

𝑉(𝑄0)

𝑑𝑉(𝑄𝜆)

𝑑𝜆
|
𝜆=0

≥ 𝑉(𝑄1) − 𝑉(𝑄0) = 𝑙𝑜𝑔 𝑉(𝐿) − 𝑙𝑜𝑔𝑉(𝐾).                      (84) 

When (83) and (84) are combined the result is the log-Minkowski inequality (50). 

We shall work exclusively in the Euclidean plane. We will make use of the properties of 

mixed-volumes of compact convex sets, some of which might possibly be degenerate (i.e. 

lower-dimensional).  
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Suppose 𝐾, 𝐿 are plane compact convex sets. Of fundamental importance is the fact that for 

real 𝑠, 𝑡 ≥ 0, the area, 𝑉(𝑠𝐾 + 𝑡𝐿), of the Minkowski linear combination 𝑠𝐾 + 𝑡𝐿 = {𝑠𝑥 +
𝑡𝑦 ∶ 𝑥 ∈ 𝐾 𝑎𝑛𝑑 𝑦 ∈ 𝐿} is a homogeneous polynomial of degree 2 in 𝑠 and 𝑡: 
                          𝑉(𝑠𝐾 + 𝑡𝐿) = 𝑠2𝑉(𝐾) + 2𝑠𝑡𝑉(𝐾, 𝐿) + 𝑡2𝑉(𝐿).                         (85) 
The coefficient 𝑉(𝐾, 𝐿), the mixed area of 𝐾 and 𝐿, is uniquely defined by (85) if we 

require (as we always will) it to be symmetric in its arguments; i.e. 

                                     𝑉(𝐾, 𝐿) = 𝑉(𝐿, 𝐾).                                                                 (86)  
From its definition, we see that the mixed area functional 𝑉 (· ,·) is obviously invariant 

under independent translations of its arguments. Obviously, for each 𝐾, 

                                        𝑉(𝐾,𝐾) = 𝑉(𝐾).                                                                 (87) 
The mixed area of 𝐾, 𝐿 is just the mixed volume 𝑉1(𝐾, 𝐿) in the plane and thus (from (68) 

we see) it has the integral representation 

                         𝑉(𝐾, 𝐿) =
1

2
∫ ℎ𝐿(𝑢)𝑑𝑆𝐾(𝑢)𝑆1

.                                                          (88) 

If 𝐾 is degenerate with 𝐾 = {𝑠𝑢:−𝑐 ≤ 𝑠 ≤ 𝑐}, where 𝑢 ∈ 𝑆1 and 𝑐 > 0, then 𝑆𝐾 is an even 

measure concentrated on the two point set {±𝑢⊥} with total mass 4𝑐. 
From (85), or from (88), we see that for plane compact convex 𝐾, 𝐿, 𝐿′ and real 𝑠, 𝑠′ ≥ 0, 
                           𝑉(𝐾, 𝑠𝐿 + 𝑠′𝐿′) = 𝑠𝑉(𝐾, 𝐿) + 𝑠′𝑉(𝐾, 𝐿′).                                   (89) 
But this, together with (86), shows that the mixed area functional 𝑉(· ,·) is linear with 

respect to Minkowski linear combinations in both arguments. 

From (88) we see that for plane compact convex 𝐾, 𝐿, 𝐿′, we have 

𝐿 ⊆ 𝐿′ ⟹ 𝑉(𝐾, 𝐿) ≤ 𝑉(𝐾, 𝐿′), 
                  with equality if and only if ℎ𝐿 = ℎ𝐿′ a.e. w.r.t. 𝑆𝐾                                 (90) 
The basic inequality, inequality (91), is Blaschke’s extension of the Bonnesen inequality. It 

was proved using integral geometric techniques. It has been a valuable tool used to 

establish various isoperimetric inequalities, see e.g., [325], [326], Since the equality 

conditions of inequality (91) are one of the critical ingredients in the proof of the log-

Brunn-Minkowski inequality, we present a complete proof of inequality (91), with its 

equality conditions. 

Theorem (6.2.13) [321]: If 𝐾, 𝐿 are plane convex bodies, then for 𝑟(𝐾, 𝐿) ≤ 𝑡 ≤ 𝑅(𝐾, 𝐿), 
                           𝑉(𝐾) − 2𝑡𝑉(𝐾, 𝐿) + 𝑡2𝑉(𝐿) ≤ 0.                                        (91) 
The inequality is strict whenever 𝑟(𝐾, 𝐿) < 𝑡 < 𝑅(𝐾, 𝐿). When 𝑡 = 𝑟(𝐾, 𝐿), equality will 

occur in (91) if and only if 𝐾 is the Minkowski sum of a dilation of 𝐿 and a line segment. 

When 𝑡 = 𝑅(𝐾, 𝐿), equality will occur in (91) if and only if 𝐿 is the Minkowski sum of a 

dilation of 𝐾 and a line segment. 

Proof: Let 𝑟 = 𝑟(𝐾, 𝐿) and suppose 𝑡 ∈ [0, 𝑟]. Recall from (72) that 

𝐾𝑡 = {𝑥 ∈ ℝ
𝑛: 𝑥 · 𝑢 ≤ ℎ𝐾(𝑢) − 𝑡ℎ𝐿(𝑢) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑆

𝑛−1}, 
and that from (73), we have 

                                        𝐾𝑡 + 𝑡𝐿 ⊆ 𝐾.                                                                         (92) 
But (92), together with the monotonicity (90), linearity (89), and symmetry (86) of mixed 

volumes, together with (87) gives 

                      𝑉(𝐾, 𝐿) ≥ 𝑉(𝐾𝑡 + 𝑡𝐿, 𝐿) = 𝑉(𝐾𝑡 , 𝐿) + 𝑡𝑉(𝐿).                                 (93) 
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Now Lemma (6.2.10) and (93) gives, 

𝑉(𝐾) − 𝑉(𝐾𝑡) = 2∫ 𝑉(𝐾𝑠, 𝐿)𝑑𝑠
𝑡

0

 

                                        ≤ 2∫ (𝑉(𝐾, 𝐿) − 𝑠𝑉 (𝐿))𝑑𝑠
𝑡

0
                                           (94) 

= 2𝑡𝑉(𝐾, 𝐿) − 𝑡2𝑉(𝐿).  
Thus, 

                       𝑉(𝐾) − 2𝑡𝑉(𝐾, 𝐿) + 𝑡2𝑉(𝐿) ≤ 𝑉(𝐾𝑡).                                             (95) 
From (93) and (94) we see that equality holds in (95) if and only if, 

                  𝑉(𝐾, 𝐿) = 𝑉(𝐾𝑠 + 𝑠𝐿, 𝐿),     for all 𝑠 ∈ [0, 𝑡]                                       (96),  
which, from (92) and (90), gives 

                                        ℎ𝐾 = ℎ𝐾𝑠 + 𝑠ℎ𝐿 ,       𝑎. 𝑒. 𝑤. 𝑟. 𝑡. 𝑆𝐿 

for all 𝑠 ∈ [0, 𝑡]. 
By (74) we know 𝑉(𝐾𝑟) = 0 and thus 𝐾𝑟 is a line segment, possibly a single point. 

Therefore, from (95) we have 

                         𝑉(𝐾) − 2𝑟𝑉(𝐾, 𝐿) + 𝑟2𝑉(𝐿) ≤ 0.                                                   (97) 
We will now establish the equality conditions in (97). To that end, suppose: 

                         𝑉(𝐾) − 2𝑟𝑉(𝐾, 𝐿) + 𝑟2𝑉(𝐿) = 0.                                                   (98) 
Then by (96) we have, 

𝑉(𝐾, 𝐿) = 𝑉(𝐾𝑟 + 𝑟𝐿, 𝐿). 
But this in (98) gives: 

𝑉(𝐾) − 2𝑟𝑉(𝐾𝑟 + 𝑟𝐿, 𝐿) + 𝑟
2𝑉(𝐿) = 0, 

which, using (89), can be rewritten as 

𝑉(𝐾) − 2𝑟𝑉 (𝐾𝑟 , 𝐿) − 𝑟
2𝑉(𝐿) = 0, 

and since 𝑉(𝐾𝑟) = 0 can be written, using (89), as 

𝑉(𝐾) − 𝑉(𝐾𝑟 + 𝑟𝐿) = 0. 
Since 𝐾𝑟 + 𝑟𝐿 ⊆ 𝐾, the equality of their volumes forces us to conclude that in fact 𝐾𝑟 +
𝑟𝐿 = 𝐾. 
Therefore, 𝐾 is the Minkowski sum of a dilation of 𝐿 and the line segment 𝐾𝑟 (which may 

be a point). 

Since 1/𝑅(𝐾, 𝐿) = 𝑟(𝐿, 𝐾) from (71), from inequality (97), and its established equality 

conditions, we get 

              𝑉(𝐿) − 2𝑟′𝑉 (𝐿, 𝐾) + 𝑟′2𝑉 (𝐾) ≤ 0,      where 𝑟′ = 𝑟(𝐿, 𝐾) = 1/𝑅(𝐾, 𝐿), 
with equality if and only if 𝐿 is the Minkowski sum of a dilation of 𝐾 and a line segment. 

But, using the symmetry of mixd volumes (86), this means that 

           𝑉(𝐾) − 2𝑅𝑉(𝐾, 𝐿) + 𝑅2𝑉(𝐿) ≤ 0, where 𝑅 = 𝑅(𝐾, 𝐿),                           (99) 
with equality if and only if 𝐿 is the Minkowski sum of a dilation of 𝐾 and a line segment. 

Finally, inequalities (97) and (99) together with the well-known properties of quadratic 

functions show that 

                    𝑉(𝐾) − 2𝑡𝑉(𝐾, 𝐿) + 𝑡2𝑉(𝐿) < 0, whenever 𝑟(𝐾, 𝐿) < 𝑡 < 𝑅(𝐾, 𝐿). 
Given a finite Borel measure on the unit sphere, under what necessary and sufficient 

conditions is the measure the cone-volume measure of a convex body? This is the unsolved 
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log-Minkowski problem. It requires solving a Monge-Ampere equation and is connected 

with some important curvature flows (see e.g. [233], [334], [336]). Uniqueness for the log-

Minkowski problem is more difficult than existence. Even in the plane, the uniqueness of 

cone volume measure has not been settled. If the cone-volume measure is that of a smooth 

origin-symmetric convex body that has positive curvature, uniqueness for plane convex 

bodies was established by Gage [334] and in the case of even, discrete, measures in the 

plane is treated by Stancu [336]. 

We shall establish the uniqueness of cone-volume measure for arbitrary symmetric plane 

convex bodies. For non-symmetric plane convex bodies the problem remains both open 

and important. 

The uniqueness of cone-volume measure is related to Firey’s worn stone problem. In 

determining the ultimate shape of a worn stone, Firey [331] showed that if the cone-

volume measure of a smooth origin-symmetric convex body in ℝ𝑛 is a constant multiple of 

the Lebesgue measure (on 𝑆𝑛−1), then the convex body must be a ball. This established 

uniqueness for the worn stone problem for the symmetric case. In ℝ3, Andrews [332] 

established the uniqueness of solutions to the worn stone problem by showing that a 

smooth (not necessarily symmetric) convex body in ℝ3 must be a ball if its cone volume 

measure is a constant multiple of Lebesgue measure on 𝑆2. 

The following inequality (100) was established by Gage [14] when the convex bodies are 

smooth and of positive curvature. A limit process gives the general case, but the equality 

conditions do not follow. As will be seen, the equality conditions are critical for 

establishing the uniqueness of cone-volume measures in the plane. 

Lemma (6.2.14) [321]: If 𝐾, 𝐿 are origin-symmetric plane convex bodies, then 

                               ∫
ℎ𝐾
2

ℎ𝐿
𝑑𝑆𝐾𝑆1

≤
𝑉(𝐾)

𝑉(𝐿)
∫ ℎ𝐿 𝑑𝑆𝐾𝑆1

,                                                    (100) 

with equality if and only if 𝐾 and 𝐿 are dilates, or 𝐾 and 𝐿 are parallelograms with parallel 

sides. 

Proof: Since 𝐾 and 𝐿 are origin symmetric, from (71) we have 

𝑟(𝐾, 𝐿) ≤
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
 ≤ 𝑅(𝐾, 𝐿), 

for all 𝑢 ∈ 𝑆1. Thus, from Theorem (6.2.13) we get 

𝑉(𝐾) − 2
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑉(𝐾, 𝐿) + (

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
)

2

𝑉(𝐿) ≤ 0. 

Integrating both sides of this, with respect to the measure ℎ𝐿𝑑𝑆𝐾, and using (88) and (66), 

gives 

0 ≥ ∫ (𝑉(𝐾) − 2
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑉(𝐾, 𝐿) + (

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
)

2

𝑉(𝐿))ℎ𝐿(𝑢)𝑑𝑆𝐾(𝑢)
𝑆1

 

= −2𝑉(𝐾)𝑉(𝐾, 𝐿) + 𝑉(𝐿)∫
ℎ𝐾(𝑢)

2

ℎ𝐿(𝑢)
𝑑𝑆𝐾(𝑢)

𝑆1
. 

This yields the desired inequality (100). 
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Suppose there is equality in (100). Thus, 

         𝑉(𝐾) − 2
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑉(𝐾, 𝐿) + (

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
)
2

𝑉(𝐿) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢 ∈ 𝑠𝑢𝑝𝑝 𝑆𝐾 .      (101) 

If 𝐾 and 𝐿 are dilates, we’re done. So assume that 𝐾 and 𝐿 are not dilates. But 𝐾 ≠ 𝐿 

implies that 𝑟(𝐾, 𝐿) <  𝑅(𝐾, 𝐿). From Theorem (6.2.13), we know that when 

𝑟(𝐾, 𝐿) <
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
< 𝑅(𝐾, 𝐿), 

it follows that 

𝑉(𝐾) − 2
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑉(𝐾, 𝐿) + (

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
)

2

𝑉(𝐿) < 0, 

and thus we conclude that 

                      ℎ𝐾(𝑢)/ℎ𝐿(𝑢) ∈ {𝑟(𝐾, 𝐿), 𝑅(𝐾, 𝐿)} for all 𝑢 ∈ 𝑠𝑢𝑝𝑝 𝑆𝐾              (102). 
Note that since 𝐾 is origin symmetric 𝑠𝑢𝑝𝑝 𝑆𝐾 is origin symmetric as well. Either there 

exists 𝑢′ ∈ 𝑠𝑢𝑝𝑝 𝑆𝐾 so that ℎ𝐾(𝑢0)/ℎ𝐿(𝑢0) = 𝑟(𝐾, 𝐿) or ℎ𝐾(𝑢0)/ℎ𝐿(𝑢0)  = 𝑅(𝐾, 𝐿). 
Suppose that ℎ𝐾(𝑢0)/ℎ𝐿(𝑢0) = 𝑟(𝐾, 𝐿). Then from (101) and the equality conditions of 

Theorem (6.2.13) we know that 𝐾 must be a dilation of the Minkowski sum of 𝐿 and a line 

segment. But 𝐾 and 𝐿 are not dilaltes, so there exists an 𝑥0 ≠ 0 so that 

ℎ𝐾(𝑢) = |𝑥0 · 𝑢| + 𝑟(𝐾, 𝐿)ℎ𝐿(𝑢), 
for all unit vectors 𝑢.This together with ℎ𝐾(𝑢0)/ℎ𝐿(𝑢0) = 𝑟(𝐾, 𝐿) shows that 𝑥0 is 

orthogonal to 𝑢0 and that the only unit vectors at which ℎ𝐾/ℎ𝐿 = 𝑟(𝐾, 𝐿) are 𝑢0 and −𝑢0. 

But 𝑠𝑢𝑝𝑝 𝑆𝐾 must contain at least one unit vector 𝑢1 ∈ 𝑠𝑢𝑝𝑝 𝑆𝐾 other than ±𝑢0. From 

(102), and the fact that the only unit vectors at which ℎ𝐾/ℎ𝐿 = 𝑟(𝐾, 𝐿) are 𝑢0 and −𝑢0, we 

conclude ℎ𝐾(𝑢1)/ℎ𝐿(𝑢1) = 𝑅(𝐾, 𝐿) and by the same argument we conclude that the only 

unit vectors at which ℎ𝐾/ℎ𝐿 = 𝑅(𝐾, 𝐿) are 𝑢1 and −𝑢1. Now (102) allows us to conclude 

that 

𝑠𝑢𝑝𝑝 𝑆𝐾 = {±𝑢0, ±𝑢1}. 
This implies that 𝐾 is a parallelogram. Since 𝐾 is the Minkowski sum of a dilate of 𝐿 and a 

line segment, 𝐿 must be a parallelogram with sides parallel to those of 𝐾. If we had 

assumed that ℎ𝐾(𝑢0)/ℎ𝐿(𝑢0) = 𝑅(𝐾, 𝐿), rather than 𝑟(𝐾, 𝐿), the same argument would 

lead to the same conclusion. 

It is easily seen that the equality holds in (100) if 𝐾 and 𝐿 are dilates. A trivial calculation 

shows that equality holds in (100) if 𝐾 and 𝐿 are parallelograms with parallel sides. 

The following theorem was established by Gage [325] when the convex bodies are smooth 

and have positive curvature. When the convex bodies are polytopes it is due to Stancu 

[326]. 

Theorem (6.2.15) [321]: If 𝐾 and 𝐿 are plane origin-symmetric convex bodies that have 

the same conevolume measure, then either 𝐾 = 𝐿 or else 𝐾 and 𝐿 are parallelograms with 

parallel sides. 

Proof:  Assume that 𝐾 ≠ 𝐿. Since 

𝑉𝐾 = 𝑉𝐿 , 
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it follows that 𝑉(𝐾) = 𝑉(𝐿). Thus, since 𝐾 ≠ 𝐿, the bodies cannot be dilates. Thus 

inequality (100) becomes 

                ∫
ℎ𝐿

ℎ𝐾
𝑑𝑉𝐾𝑆1

≥ ∫
ℎ𝐾

ℎ𝐿
𝑑𝑉𝐾𝑆1

 𝑎𝑛𝑑   ∫
ℎ𝐾

ℎ𝐿
𝑑𝑉𝐿𝑆1

≥ ∫
ℎ𝐿

ℎ𝐾
𝑑𝑉𝐿𝑆1

,                     (103) 

with equality, in either inequality, if and only if 𝐾 and 𝐿 are parallelograms with parallel 

sides. Using (103) and the fact that 𝑉𝐾 = 𝑉𝐿, both twice, we get 

∫
ℎ𝐿(𝑢)

ℎ𝐾(𝑢)
𝑑𝑉𝐾(𝑢)

𝑆1
≥ ∫

ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑑𝑉𝐾(𝑢)

𝑆1
 

= ∫
ℎ𝐾(𝑢)

ℎ𝐿(𝑢)
𝑑𝑉𝐿(𝑢)

𝑆1
 

≥ ∫
ℎ𝐿(𝑢)

ℎ𝐾(𝑢)
𝑑𝑉𝑙(𝑢)

𝑆1
 

= ∫
ℎ𝐿(𝑢)

ℎ𝐾(𝑢)
𝑑𝑉𝐾(𝑢)

𝑆1
. 

Thus, we have equality in both inequalities of (103) and from the equality conditions of 

(103) we conclude that 𝐾 and 𝐿 are parallelograms with parallel sides.  

Lemma (6.2.16) [321]: Suppose 𝐾 is a plane origin-symmetric convex body, with 𝑉(𝐾) =
1, that is not a parallelogram. Suppose also that 𝑃𝑘 is an unbounded sequence of origin-

symmetric parallelograms all of which have orthogonal diagonals, and such that 𝑉(𝑃𝑘) ≥
2. Then, the sequence 

𝑙𝑜𝑔 ℎ𝑃𝑘(𝑢) 𝑑𝑉𝐾(𝑢) 

is not bounded from above. 

Proof: Let 𝑢1,𝑘 , 𝑢2,𝑘 be orthogonal unit vectors along the diagonals of 𝑃𝑘. Denote the 

vertices of 𝑃𝑘 by ±ℎ1,𝑘𝑢1,𝑘, ±ℎ2,𝑘𝑢2,𝑘 . Without loss of generality, assume that 0 < ℎ1,𝑘 ≤
ℎ2,𝑘. The condition 𝑉(𝑃𝑘) ≥ 2 is equivalent to ℎ1,𝑘ℎ2,𝑘 ≥ 1. The support function of 𝑃𝑘 is 

given by 

                        ℎ𝑃𝑘(𝑢) = max{ℎ1,𝑘|𝑢 · 𝑢1,𝑘|, ℎ2,𝑘|𝑢 · 𝑢2,𝑘|},                                (104) 

for 𝑢 ∈ 𝑆1. Since 𝑆1 is compact, the sequences 𝑢1, 𝑘 and 𝑢2, 𝑘 have convergent 

subsequences. Again, without loss of generality, we may assume that the sequences 𝑢1, 𝑘 

and 𝑢1, 𝑘 are themselves convergent with 

                    lim
𝑘→∞

𝑢1,𝑘 = 𝑢1 and         lim
𝑘→∞

𝑢2,𝑘 = 𝑢2, 

where 𝑢1 and 𝑢2 are orthogonal. 

It is easy to see that if the cone-volume measure, 𝑉𝐾({±𝑢1}), of the two-point set {±𝑢1} is 

positive, then 𝐾 contains a parallelogram whose area is 2𝑉𝐾({±𝑢1}). Since 𝐾 itself is not a 

parallelogram and 𝑉(𝐾) = 1, it must be the case that 

                                                         𝑉𝐾({±𝑢1}) <
1

2
.                                                (105) 

For 𝛿 ∈ (0,
1

3
 ), consider the neighborhood, 𝑈𝛿 , of {±𝑢1}, on 𝑆1, 

𝑈𝛿 = {𝑢 ∈ 𝑆
1: |𝑢 ·  𝑢1| > 1 − 𝛿}. 

Since 𝑉𝐾(𝑆
1) = 𝑉(𝐾) = 1, we see that for all or 𝛿 ∈ (0,

1

3
) 
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                                          𝑉𝐾(𝑈𝛿) + 𝑉𝐾(𝑈𝛿
𝑐) = 1,                                                   (106) 

where 𝑈𝛿
𝑐 is the complement of 𝑈𝛿. 

Since the 𝑈𝛿 are decreasing (with respect to set inclusion) in 𝛿 and have a limit of {±𝑢1}, 
lim
𝛿→0+

𝑉𝐾(𝑈𝛿) = 𝑉𝐾({±𝑢1}). 

This together with (105), shows the existence of a 𝛿° > 0 such that 

𝑉𝐾(𝑈𝛿𝜊) <
1

2
. 

But this implies that there is a small 𝜖𝜊 ∈ (0,
1

2
) so that 

                                       𝜏𝜊 = 𝑉𝐾(𝑈𝛿𝜊) −
1

2
+ 𝜖𝜊 < 0.                                            (107) 

This together with (106) gives 

                 𝑉𝐾(𝑈𝛿𝜊) =
1

2
− 𝜖𝜊 + 𝜏𝜊       and       𝑉𝐾(𝑈𝛿𝜊

𝑐 ) =
1

2
+ 𝜖𝜊 − 𝜏𝜊.           (108) 

Since 𝑢𝑖𝑘 converge to 𝑢𝑖, we have, |𝑢𝑖𝑘 − 𝑢𝑖| < 𝛿𝜊 whenever 𝑘 is sufficiently large (for 

both 𝑘 = 1 and 𝑘 = 2). Then for 𝑢 ∈ 𝑈𝛿𝜊 and 𝑘 sufficiently large, we have 

|𝑢 · 𝑢1,𝑘| ≥ |𝑢 · 𝑢1| − |𝑢 · (𝑢1,𝑘 − 𝑢1)| 
≥ |𝑢 · 𝑢1| − |𝑢1,𝑘 − 𝑢1| 

≥ 1 − 𝛿𝜊 − 𝛿𝜊 
≥ 𝛿𝜊 , 

where the last inequality follows from the fact that 𝛿𝜊 <
1

3
 . For all 𝑢 ∈ 𝑆1, we know that 

|𝑢 · 𝑢1|
2 + |𝑢 · 𝑢2|

2  = 1. Thus, for ∈ 𝑈𝛿𝜊
𝑐  , we have |𝑢 · 𝑢2| > (1 − (1 − 𝛿𝜊)

2)
1

2 > 2𝛿𝜊, 

which shows that when 𝑘 is sufficiently large, 

|𝑢 · 𝑢2,𝑘| ≥ |𝑢 · 𝑢2| − |𝑢 · (𝑢2,𝑘 − 𝑢2)| 
≥ |𝑢 · 𝑢2| − |𝑢2,𝑘 − 𝑢2| 

≥ 2𝛿𝜊 − 𝛿𝜊 
= 𝛿𝜊 . 

From the last paragraph and (104) it follows that when 𝑘 is sufficiently large, 

                               ℎ𝑃𝑘(𝑢) ≥ {
𝛿𝜊ℎ1,𝑘                     𝑖𝑓 𝑢 ∈ 𝑈𝛿𝜊 ,

𝛿𝜊ℎ2,𝑘                       𝑖𝑓 ∈ 𝑈𝛿𝜊
𝑐 .
                       (109) 

By (109) and (106), (108), the fact that 0 < ℎ1,𝑘 ≤ ℎ2,𝑘 together with (107), and finally the 

fact that ℎ1,𝑘ℎ2,𝑘 ≥ 1 together with 𝜖𝜊 ∈ (0,
1

3
 ), we see that for sufficiently large 𝑘, 

∫ 𝑙𝑜𝑔 ℎ𝑃𝑘𝑑𝑉𝐾
𝑆1

= ∫ 𝑙𝑜𝑔 ℎ𝑃𝑘  𝑑𝑉𝐾
𝑈𝛿𝜊

+∫ 𝑙𝑜𝑔 ℎ𝑃𝑘𝑑𝑉𝐾
𝑈𝛿𝜊
𝑐

 

≥ 𝑙𝑜𝑔 𝛿𝜊 + 𝑉𝐾(𝑈𝛿𝜊) 𝑙𝑜𝑔 ℎ1,𝑘 + 𝑉𝐾(𝑈𝛿𝜊
𝑐 ) 𝑙𝑜𝑔 ℎ2,𝑘 

= 𝑙𝑜𝑔𝛿𝜊 + (
1

2
+ 𝜏𝜊 − 𝜖𝜊) 𝑙𝑜𝑔 ℎ1,𝑘 + (

1

2
− 𝜏𝜊 + 𝜖𝜊) 𝑙𝑜𝑔 ℎ2,𝑘  

= 𝑙𝑜𝑔𝛿𝜊 +  2𝜖𝜊𝑙𝑜𝑔 ℎ2,𝑘 + (
1

2
 − 𝜖𝜊) 𝑙𝑜𝑔(ℎ1,𝑘ℎ2,𝑘) + 𝜏𝜊(𝑙𝑜𝑔 ℎ1,𝑘 − 𝑙𝑜𝑔 ℎ2,𝑘) 

≥ 𝑙𝑜𝑔𝛿𝜊 + 2𝜖𝜊 𝑙𝑜𝑔 ℎ2,𝑘 . 
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Since 𝑃𝑘 is not bounded, the sequence ℎ2,𝑘 is not bounded from above. Thus, the sequence 

∫ 𝑙𝑜𝑔 ℎ𝑃𝑘𝑑𝑉𝐾
𝑆1

 

is not bounded from above.  

Lemma (6.2.17) [321]: If 𝐾 is a plane origin-symmetric convex body that is not a 

parallelogram, then there exists a plane origin-symmetric convex body 𝐾0 so that 𝑉(𝐾0) =
1 and 

𝑙𝑜𝑔 ℎ𝑄 𝑑𝑉𝐾 ≥ 𝑙𝑜𝑔 ℎ𝐾0  𝑑𝑉𝐾  

for every plane origin-symmetric convex body 𝑄 with 𝑉(𝑄) = 1. 

Proof: Obviously, we may assume that 𝑉(𝐾) = 1. Consider the minimization problem, 

𝑖𝑛𝑓∫ 𝑙𝑜𝑔 ℎ𝑄 𝑑𝑉𝐾
𝑆1

 

where the infimum is taken over all plane origin-symmetric convex bodies 𝑄 with 𝑉(𝑄) =
1. Suppose that 𝑄𝑘 is a minimizing sequence; i.e., 𝑄𝑘 is a sequence of origin-symmetric 

convex bodies with 𝑉(𝑄𝑘) = 1 and such that  ∫ 𝑙𝑜𝑔 ℎ𝑄𝑘  𝑑𝑉𝑘𝑆1
 tends to the infimum (which 

may be −∞). 

We shall show that the sequence 𝑄𝑘 is bounded and the infimum is finite. 

By John’s Theorem, there exist ellipses 𝐸𝑘 centered at the origin so that 

                                             𝐸𝑘 ⊂ 𝑄𝑘 ⊂ √2𝐸𝑘.                                                        (110) 
Let 𝑢1,𝑘 , 𝑢2,𝑘, be the principal directions of 𝐸𝑘 so that 

ℎ1,𝑘 ≤ ℎ2,𝑘 ,    𝑤ℎ𝑒𝑟𝑒    ℎ1,𝑘 = ℎ𝐸𝑘(𝑢1, 𝑘)     𝑎𝑛𝑑 ℎ2,𝑘 = ℎ𝐸𝑘(𝑢2, 𝑘). 

Let 𝑃𝑘 be the origin-centered parallelogram that has vertices {±ℎ1,𝑘𝑢1,𝑘, ±ℎ2,𝑘𝑢2,𝑘}. 
(Observe that by the Principal Axis Theorem the diagonals of 𝑃𝑘 are perpendicular.) 

Because of 𝐸𝑘 ⊂ √2𝑃𝑘, it follows from (110) that 

                                         𝑃𝑘 ⊂ 𝑄𝑘 ⊂ 2𝑃𝑘.                                                                (111) 

From this and 𝑉(𝑄𝑘) = 1, we see that 𝑉(𝑃𝑘) ≥
1

4
. 

Assume that 𝑄𝑘 is not bounded. Then 𝑃𝑘 is not bounded. Applying Lemma (6.2.16) to 

√8𝑃𝑘 shows that the sequence  ∫ 𝑙𝑜𝑔 ℎ𝑃𝑘𝑑𝑉𝑘𝑆1
 is not bounded from above. Therefore, from 

(111) we see that the sequence  ∫ 𝑙𝑜𝑔 ℎ𝑄𝑘𝑑𝑉𝑘𝑆1
 cannot be bounded from above. But this is 

impossible because 𝑄𝑘 was chosen to be a minimizing sequence. 

We conclude that 𝑄𝑘 is bounded. By the Blaschke Selection Theorem, 𝑄𝑘 has a convergent 

subsequence that converges to an origin-symmetric convex body 𝐾0, with 𝑉(𝐾0) = 1. It 
follows that  ∫ 𝑙𝑜𝑔 ℎ𝐾0  𝑑𝑉𝐾𝑆1

 is the desired infimum.  

We repeat the statement of Theorem (6.2.4): 

Theorem (6.2.18) [321]: If 𝐾 and 𝐿 are plane origin-symmetric convex bodies, then 

∫ 𝑙𝑜𝑔
ℎ𝐿
ℎ𝐾
𝑑 �̅�𝐾

𝑆1
≥
1

2
𝑙𝑜𝑔

𝑉(𝐿)

𝑉(𝐾)
, 

with equality if and only if either 𝐾 and 𝐿 are dilates or when 𝐾 and 𝐿 are parallelograms 

with parallel sides. 
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Proof: Without loss of generality, we can assume that 𝑉(𝐾) = 𝑉(𝐿) = 1. We shall 

establish the theorem by proving  

𝑙𝑜𝑔 ℎ𝐿 𝑑𝑉𝐾  ≥ 𝑙𝑜𝑔 ℎ𝐾  𝑑𝑉𝐾 , 
with equality if and only if either 𝐾 and 𝐿 are dilates or if they are parallelograms with 

parallel sides. 

First, assume that 𝐾 is not a parallelogram. Consider the minimization problem 

𝑚𝑖𝑛∫ 𝑙𝑜𝑔 ℎ𝑄𝑑𝑉𝐾
𝑆1

, 

taken over all plane origin-symmetric convex bodies 𝑄 with 𝑉(𝑄) = 1. Let 𝐾0 denote a 

solution, whose existence is guaranteed by Lemma (6.2.17). (Our aim is to prove that 𝐾0 =
𝐾 and thereby demonstrate that 𝐾 itself can be the only solution to this minimization 

problem.) 

Suppose 𝑓 is an arbitrary but fixed even continuous function. For some sufficiently small 

𝛿𝜊 > 0, consider the deformation of ℎ𝐾0 , defined on (−𝛿𝜊, 𝛿𝜊) × 𝑆
1, by 

𝑞𝑡(𝑢) = 𝑞(𝑡, 𝑢) = ℎ𝐾0(𝑢)𝑒
𝑡𝑓(𝑢). 

Let 𝑄𝑡 be the Wulff shape associated with 𝑞𝑡. Observe that 𝑄𝑡 is an origin symmetric 

convex body and that since 𝑞0 is the support function of the convex body 𝐾0, we have 

𝑄0 = 𝐾0. 
Since 𝐾0 is an assumed solution of the minimization problem, the function defined on 

(−𝛿𝜊, 𝛿𝜊) by 

𝑡 ⟼ 𝑉(𝑄𝑡)
−
1
2 exp {∫ 𝑙𝑜𝑔 ℎ𝑄𝑡𝑑𝑉𝐾

𝑆1
} , 

attains a minimal value at 𝑡 = 0. Since ℎ𝑄𝑡 ≤ 𝑞𝑡 this function is dominated by the 

differentiable function defined on (−𝛿𝜊, 𝛿𝜊) by 

𝑡 ⟼ 𝑉(𝑄𝑡)
−
1
2 𝑒𝑥𝑝 {∫ 𝑙𝑜𝑔 𝑞𝑡𝑑𝑉𝐾

𝑆1
} . 

But clearly both functions have the same value at 0 and thus the latter function attains a 

local minimum at 0. Thus, differentiating the latter function at 𝑡 = 0, by using Lemma 

(6.2.9), and recalling that 𝑉(𝑄0) = 𝑉(𝐾0) = 1, shows that 

−
1

2
∫ ℎ𝐾0(𝑢)𝑓(𝑢) 𝑑𝑆𝐾0(𝑢)
𝑆1

 + ∫ 𝑓(𝑢) 𝑑𝑉𝐾(𝑢)
𝑆1

= 0. 

Thus, since 𝑓 was an arbitrary even function, we conclude that 

∫ 𝑓(𝑢) 𝑑𝑉𝐾0(𝑢)
𝑆1

= 𝑓(𝑢) 𝑑𝑉𝐾(𝑢) 

for every even continuous 𝑓, and therefore, 

𝑉𝐾 = 𝑉𝐾0 . 

By Theorem (6.2.15), and the assumption that 𝐾 is not a parallelogram, we conclude that 

𝐾0 = 𝐾. 

Thus, for each 𝐿 such that 𝑉(𝐿) = 1, 
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∫ 𝑙𝑜𝑔 ℎ𝐿 𝑑𝑉𝐾
𝑆1

≥ ∫ 𝑙𝑜𝑔 ℎ𝐾  𝑑𝑉𝐾
𝑆1

, 

with equality if and only if 𝐾 = 𝐿. This is the desired result when 𝐾 is not a parallelogram. 

If 𝐾 is a parallelogram the proof is trivial, but for the sake of completeness we shall 

include it. 

Assume that 𝐾 is the parallelogram whose support function, for 𝑢 ∈ 𝑆1, is given by 

ℎ𝐾(𝑢) = 𝑎1|𝑣1  ·  𝑢| + 𝑎2|𝑣2 · 𝑢|, 
where 𝑣1, 𝑣2 ∈ 𝑆

1 and 𝑎1, 𝑎2 > 0. Then 𝑠𝑢𝑝𝑝𝑆𝐾 = {±𝑣1
⊥ , ±𝑣2

⊥ }, while 𝑉𝐾({±𝑣𝑖
⊥ }) =

2𝑎1𝑎2|𝑣1 ·  𝑣2
⊥|, and |𝑣1 · 𝑣2

⊥ | = |𝑣2  · 𝑣1
⊥ |. It is easily seen that 𝑉(𝐾) = 4𝑎1𝑎2|𝑣1 · 𝑣2| =

1, and that 

                            𝑒𝑥𝑝 ∫ 𝑙𝑜𝑔 ℎ𝐿 𝑑𝑉𝐾𝑆1
= √ℎ𝐿(𝑣1

⊥)ℎ𝐿(𝑣2
⊥).                                  (112)  

Recall that 𝑉(𝐿) = 1. The parallelogram circumscribed about 𝐿 with sides parallel to those 

of 𝐾 has volume 

4ℎ𝐿(𝑣1
⊥)ℎ𝐿(𝑣2

⊥)|𝑣1 ·  𝑣2
⊥|−1 = 16𝑎1𝑎2ℎ𝐿(𝑣1

⊥)ℎ𝐿(𝑣2
⊥), 

and thus, 16𝑎1𝑎2ℎ𝐿(𝑣1
⊥)ℎ𝐿(𝑣2

⊥) ≥ 𝑉(𝐿) = 1, or equivalently 

ℎ𝐿(𝑣1
⊥)ℎ𝐿(𝑣2

⊥) ≥
1

16𝑎1𝑎2
, 

with equality if and only if 𝐿 itself is a parallelogram with sides parallel to those of 𝐾. 

Thus, by (112), the functional ∫ 𝑙𝑜𝑔 ℎ𝐿𝑑𝑉𝐾𝑆1
 attains its minimal value if and only if 

ℎ𝐿(𝑣1
⊥)ℎ𝐿(𝑣2

⊥) =
1

16𝑎1𝑎2
; 

i.e., if and only if 𝐿 is a parallelogram with sides parallel to those of 𝐾. 

Lemma (6.2.12) shows that the log-Minkowski inequality of Theorem (6.2.18) yields the 

log-Brunn-Minkowski inequality (51) of Theorem (6.2.3). To obtain the equality 

conditions of the log-Brunn-Minkowski inequality (51), we need to analyze the equality 

conditions of the inequality (82) in the proof of Lemma (6.2.12). The equality conditions 

for the log-Minkowski inequality of 

Theorem (6.2.18) show that equality in inequality (82) would imply that either 𝐾, 𝐿 and 𝑄𝜆 

are dilates or that 𝐾, 𝐿 and 𝑄𝜆 are parallelograms with parallel sides. This establishes the 

equality conditions of Theorem (6.2.3). 

Jensen’s inequality (along with its equality conditions), shows that the 𝐿𝑝-Minkowski 

inequality, for 𝑝 > 0, of Theorem (6.2.8) follows from the 𝐿0-Minkowski inequality of 

Theorem (6.2.18). 

Lemma (6.2.11) shows that the 𝐿𝑝-Minkowski inequality of Theorem (6.2.8) yields the 𝐿𝑝-

Brunn-Minkowski inequality of Theorem (6.2.7). 

To obtain the equality conditions of the 𝐿𝑝-Brunn-Minkowski inequality (58) of Theorem 

(6.2.7) we need to analyze the equality conditions of inequalities (80) and (81) of Lemma 

(6.2.11) which were used to derive the 𝐿𝑝-Brunn-Minkowski inequality of Theorem (6.2.7) 

from the 𝐿𝑝-Minkowski inequality of Theorem (6.2.8). 
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From the equality conditions of Theorem (6.2.8), we know that equality in inequality (80) 

implies that 𝐾 and 𝐿 are dilates. But inequality (81) is a direct consequence of the 

concavity of the log function and this concavity is strict. Hence, equality in inequality (81) 

implies that 𝑉(𝐾) = 𝑉(𝐿). 
Thus we conclude that equality in the 𝐿𝑝-Brunn-Minkowski inequality (58) of Theorem 

(6.2.7) implies that 𝐾 = 𝐿.  

 

        Section (6.3):   Stability of Brunn–Minkowski Type Inequalities  

The classical Brunn–Minkowski inequality states that for 𝜆 ∈ [0, 1] and for Borel 

measurable sets 𝐴 and 𝐵 in ℝ𝑛, such that (1 − 𝜆)𝐴 + 𝜆𝐵 is measurable as well, 

                                |𝜆𝐴 + (1 − 𝜆)𝐵|
1

𝑛 ≥ 𝜆|𝐴|
1

𝑛 + (1 − 𝜆)|𝐵|
1

𝑛 .                         (113)                           
Here | · | denotes the Lebesgue measure, the addition between sets is the standard vector 

addition, and multiplication of sets by non-negative reals is the usual dilation. 

This inequality has found many important applications in Geometry and Analysis (see 

𝑒. 𝑔.Gardner [372]for an exhaustive survey on this subject). For example, the classical 

isoperimetric inequality can be deduced in a few lines from (113). Also, Maurey 

[373]deduced from this inequality the Poincaré inequality for the Gaussian measure and 

Gaussian concentration properties. Based on Maurey’s results, Bobkov and Ledoux proved 

that the Brunn–Minkowski inequality implies Brascamp–Lieb and log-Sobolev inequalities 

[372]; they also deduced sharp Sobolev and Gagliardo–Nirenberg inequalities [373]. A 

different argument was developed by [374]to deduce Poincaré type inequalities on the 

boundary of convex bodies from the Brunn–Minkowski inequality. 

Recall that a convex body is a convex compact set with non-empty interior. The family of 

convex bodies of ℝ𝑛will be denoted by 𝒦𝑛. For the theory of convex bodies see Ball [371], 

Bonnesen, Fenchel [374], Koldobsky [374], Milman and Schechtman [379], Schneider [375] 

and others. A measure 𝛾 on ℝ𝑛 is called log-concave if for any pair of sets 𝐴 and 𝐵 and for 

any scalar 𝜆 ∈ [0, 1],  

                                      𝛾(𝜆𝐴 + (1 − 𝜆)𝐵) ≥ 𝛾(𝐴)𝜆𝛾(𝐵)1−𝜆.                             (114)                          
Borell showed [375] that a measure is log-concave if it has a density (with respect to the 

Lebesgue measure) which is log-concave (see also Prékopa [376], Leindler [377]). In 

particular, the Lebesgue measure on ℝ𝑛 is log-concave: 

                                       |𝜆𝐴 + (1 − 𝜆)𝐵| ≥ |𝐴|𝜆|𝐵|1−𝜆.                                      (115)                                  
Inequality (113)implies (115)by the arithmetic–geometric mean inequality. Conversely, a 

simple argument based on the homogeneity of Lebesgue measure shows that (115) implies 

(113) (see [372]). In general, a property analogous to (113) may not hold for log-concave 

measures which are not homogeneous. The transposition of (113) to a measure 𝛾, 

         𝛾(𝜆𝐴 + (1 − 𝜆)𝐵)
1

𝑛 ≥ 𝜆𝛾(𝐴)
1

𝑛 + (1 − 𝜆)𝛾(𝐵)
1

𝑛 ,    ∀ 𝜆 ∈  [0, 1],             (116)              
as 𝐴 and 𝐵 vary in some class of sets, will be called. If 𝛾 is the Gaussian measure, 𝐴 =
{𝑝}, 𝑝 ∈ ℝ𝑛, and 𝐵 is measurable set with positive measure, then the set 𝐴 + 𝐵 is the translate 

of 𝐵 by 𝑝. Hence, letting |𝑝| → ∞, and keeping 𝐵 fixed, (116) fails. Moreover, Nayar and 

Tkocz [380] constructed an example in which (116) fails for the Gaussian measure while 



228 
 

both 𝐴 and 𝐵 contain the origin. Gardner and Zvavitch [373] proved that, for the Gaussian 

measure, (116) holds if the sets 𝐴 and 𝐵are convex symmetric dilates of each other. They 

also proposed a conjecture for the Gaussian measure, that we state it in a more general form.  

Conjecture (6.3.1)[362]: (Gardner, Zvavitch – generalized). Let 𝑛 ≥ 2. Let 𝛾 be a log-

concave symmetric measure (i.e. 𝛾(𝐴) = 𝛾(−𝐴)for every measurable set 𝐴) on ℝ𝑛. Let 

𝐾and 𝐿 be symmetric convex bodies in ℝ𝑛. Then  

                              𝛾(𝜆𝐾 + (1 − 𝜆)𝐿)
1

𝑛 ≥ 𝜆𝛾(𝐾)
1

𝑛 + (1 − 𝜆)𝛾(𝐿)
1

𝑛                   (117).                  
Next, we pass to describe the log-Brunn–Minkowski inequality. For a scalar 𝜆 ∈ [0, 1] and 

for convex bodies 𝐾and 𝐿 containing the origin in their interior, with support functions ℎ𝐾 

and ℎ𝐿, respectively (for the definition), define their geometric average as follows:  

           𝐾𝜆𝐿1−𝜆 ∶= {𝑥 ∈ ℝ𝑛 ∶ 〈𝑥, 𝑢〉 ≤ ℎ𝐾
𝜆 (𝑢)ℎ𝐿

1−𝜆 (𝑢)∀𝑢 ∈ 𝕊𝑛−1},                    (118)                     
where 〈·,·〉 is the standard scalar product in ℝ𝑛. This set is again a convex body, whose 

support function is, in general, smaller than the geometric mean of the support functions of 

𝐾 and 𝐿. The following is widely known as log-Brunn–Minkowski conjecture (see [6]). 

Conjecture (6.3.2) [362]: (Böröczky, Lutwak, Yang, Zhang). Let 𝑛 ≥ 2 be an integer. Let 

𝐾 and 𝐿 be symmetric convex bodies in ℝ𝑛. Then  

                                           |𝐾𝜆𝐿1−𝜆| ≥ |𝐾|𝜆|𝐿|1−𝜆.                                               (119)                                            
Important applications and motivations for Conjecture(6.3.2)can be found in [378].  

It is not difficult to see that the condition of symmetry is necessary , Böröczky, Lutwak, 

Yang and Zhang showed that this conjecture holds for 𝑛 = 2. Saroglou [373] and Cordero, 

Fradelizi, Maurey [371]proved that (119) is true when the sets 𝐾and 𝐿 are unconditional (i.e. 

they are symmetric with respect to every coordinate hyperplane). Rotem [372]showed that 

log-Brunn–Minkowski conjecture holds for complex convex bodies. Saroglou showed 

[374]that the validity of Conjecture(6.3.2)would imply the same statement for every log-

concave symmetric measure 𝛾 on ℝ𝑛: for every symmetric 𝐾, 𝐿 ∈ 𝒦𝑛 and for every 𝜆 ∈
[0, 1],  

                                           𝛾(𝐾𝜆𝐿1−𝜆) ≥ 𝛾(𝐾)𝜆𝛾(𝐿)1−𝜆.                                       (120)                                              
Note that the straightforward inclusion  

𝐾𝜆𝐿1−𝜆 ⊂ 𝜆𝐾 + (1 − 𝜆)𝐿  
tells us that (120)is stronger than (114), for every measure. 

In [376] Nayar and Zvavitch showed that (120) implies (117) for every ray-decreasing 

measure 𝛾 on ℝ𝑛and for every pair of convex sets 𝐾 and 𝐿. Therefore, 

Conjecture(6.3.1)holds on the plane and for unconditional sets. 

The main results are the two theorems below.  

Theorem (6.3.3) [362]: (The dimensional Brunn–Minkowski inequality near 𝑎 ball). Let 𝛾 

be a rotation invariant log-concave measure on ℝ𝑛. Let 𝑅 ∈ (0,∞). Let 𝜓 ∈ 𝐶2(𝑆𝑛−1). Then 

there exists a sufficiently small 𝑎 > 0 such that for every 𝜖1, 𝜖2 ∈ (0, 𝑎) and for every 𝜆 ∈
[0, 1], one has 

𝛾(𝜆𝐾1 + (1 − 𝜆)𝐾2)
1
𝑛 ≥ 𝜆𝛾(𝐾1)

1
𝑛 + (1 − 𝜆)𝛾(𝐾2)

1
𝑛, 
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where 𝐾1 is the convex set with the support function ℎ1 = 𝑅 + 𝜖1𝜓 and 𝐾2 is the convex set 

with the support function ℎ2 = 𝑅 + 𝜖2𝜓. 

Theorem (6.3.4) [362]: (The log-Brunn–Minkowski inequality near a ball). Let 𝛾 be a 

rotation invariant log-concave measure on ℝ𝑛. Let 𝑅 ∈ (0,∞). Let 𝜑 ∈ 𝐶2(𝕊𝑛−1) be even 

and strictly positive. Then there exists a sufficiently small 𝑎 > 0 such that for every 𝜖1, 𝜖2 ∈
(0, 𝑎) and for every 𝜆 ∈ [0, 1], one has  

𝛾(𝐾1
𝜆𝐾2

1−𝜆) ≥ 𝛾(𝐾1)
𝜆𝛾(𝐾2)

1−𝜆, 
where 𝐾1 is the convex set with the support function ℎ1 = 𝑅𝜑

𝜖1 and 𝐾2 is the convex set 

with the support function ℎ2 = 𝑅𝜑
𝜖2. 

Theorem(6.3.4) can be used to obtain a local uniqueness result for log-Minkowski problem 

(see Böröczky, Lutwak, Yang, Zhang [367]), and the corresponding investigation shall be 

carried out in a separate manuscript. 

We work in the 𝑛-dimensional Euclidean space ℝ𝑛 with norm | · | and scalar product 〈·,·〉. 
We set 𝐵2

𝑛: = {𝑥 ∈ ℝ𝑛: |𝑥| ≤ 1}𝑎𝑛𝑑 𝕊𝑛−1: = {𝑥 ∈ ℝ𝑛: |𝑥| = 1}, to denote the unit ball and 

the unit sphere, respectively. We shall denote the Lebesgue measure (the volume) in ℝ𝑛 by 

| · |.  
We say that a set 𝐴 ⊂ ℝ𝑛 is symmetric if for every 𝑥 ∈ 𝐴one has −𝑥 ∈ 𝐴. All measures 

under consideration will be tacitly assumed to be Radon measures, and all sets will be 

assumed to be measurable. A measure 𝛾 on ℝ𝑛is called symmetric if for every set 𝑆 ⊂
ℝ𝑛, 𝛾(𝑆) = 𝛾(−𝑆). If the measure has a density then it is symmetric whenever the density 

is an even function. 

A measure 𝛾 on ℝ𝑛 is said to be rotation invariant if for every set 𝐴 ⊂ ℝ𝑛, and for every 

rotation 𝑇, 𝛾(𝐴)  = 𝛾(𝑇𝐴). If a rotation invariant measure 𝛾 has a density 𝐹, we may write 

𝐹 in the form: 

𝐹(𝑥) = 𝑓(|𝑥|), 
for a suitable 𝑓: [0,∞) → [0,∞). 
For 𝐾 ∈ 𝒦𝑛, the support function of 𝐾, ℎ𝐾: 𝕊

𝑛−1 → ℝ, is defined as  

ℎ𝐾(𝑢) = 𝑠𝑢𝑝𝑥∈𝐾〈𝑥, 𝑢〉. 
By the geometric viewpoint, ℎ𝐾(𝑢) represents the (signed) distance from the origin of the 

supporting hyperplane to 𝐾with outer unit normal 𝑢. We shall use the notation 𝐻𝐾(𝑥) for 

the 1-homogenous extension of ℎ𝐾, that is,  

𝐻𝐾(𝑥) = {
|𝑥|ℎ𝐾   (

𝑥 

|𝑥|
)      𝑖𝑓 𝑥 ≠ 0,

0                           𝑖𝑓 𝑥 =  0.
  

The function 𝐻𝐾 is convex in ℝ𝑛, for every 𝐾 ∈ 𝒦𝑛. Vice versa, for every continuous 1-

homogeneous convex function 𝐻on ℝ𝑛, there exists a unique convex body 𝐾such that 𝐻 =
𝐻𝐾. 

Note that 𝐾 ∈ 𝒦𝑛contains the origin (resp., in its interior) if and only if ℎ𝐾 ≥ 0(𝑟𝑒𝑠𝑝. ℎ𝐾 >
0) on 𝕊𝑛−1. For convex bodies 𝐾 and 𝐿, and for 𝛼, 𝛽 ≥ 0, we have: 

                                           ℎ𝛼𝐾+𝛽𝐿(𝑢) =  𝛼ℎ𝐾(𝑢) + 𝛽ℎ𝐿(𝑢).                             (120)                           
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We say that a convex body 𝐾 is 𝐶2,+ if 𝜕𝐾 is of class 𝐶2 and the Gauss curvature is strictly 

positive at every 𝑥 ∈ 𝜕𝐾. In particular, if 𝐾 is 𝐶2,+then it admits outer unit normal 𝜈𝐾(𝑥) at 

every boundary point 𝑥. Recall that the Gauss map 𝜈𝐾: 𝜕𝐾 → 𝕊
𝑛−1is the map assigning the 

unit normal to each point of 𝜕𝐾. 

𝐶2,+ convex bodies can be characterized through their support function. We recall that an 

orthonormal frame on the sphere is a map which associates a collection of 𝑛 − 1orthonormal 

vectors to every point of 𝕊𝑛−1. Let 𝜓 ∈ 𝐶2(𝕊𝑛−1). We denote by 𝜓𝑖(𝑢) and 𝜓𝑖𝑗(𝑢), 𝑖, 𝑗 ∈

{1, . . . , 𝑛 − 1}, the first and second covariant derivatives of 𝜓 at 𝑢 ∈ 𝕊𝑛−1, with respect to a 

fixed local orthonormal frame on an open subset of 𝕊𝑛−1. We define the matrix  

        𝑄(𝜓; 𝑢) = (𝑞𝑖𝑗)𝑖,𝑗=1,...,𝑛−1 = (𝜓𝑖𝑗
(𝑢) + 𝜓(𝑢)𝛿𝑖𝑗)𝑖,𝑗=1,...,𝑛−1 ,                    (122)                    

 where the 𝛿𝑖𝑗’s are the usual Kronecker symbols. On an occasion, instead of 𝑄(𝜓; 𝑢) we 

write 𝑄(𝜓). Note that 𝑄(𝜓; 𝑢) is symmetric by standard properties of covariant derivatives. 

The meaning of this matrix becomes particularly important when 𝜓 is the support function 

of a convex body 𝐾. In this case we shall call it curvature matrixof 𝐾. The proof of the 

following proposition can be deduced from Schneider [375, Section 2.5]. 

Proposition (6.3.5) [362]: Let 𝐾 ∈ 𝒦𝑛 and let ℎ be its support function. Then 𝐾is of class 

𝐶2,+ if and only if ℎ ∈ 𝐶2(𝕊𝑛−1) and 

𝑄(ℎ; 𝑢) > 0   ∀ 𝑢 ∈ 𝕊𝑛−1. 
In view of the previous results it is convenient to introduce the following set of functions 

                              𝐶2,+(𝕊𝑛−1) = {ℎ ∈ 𝐶2(𝕊𝑛−1): 𝑄(ℎ; 𝑢) > 0 ∀ 𝑢 ∈ 𝕊𝑛−1}. 
Hence 𝐶2,+(𝕊𝑛−1)is the set of support functions of convex bodies of class 𝐶2,+. 
Remark (6.3.6) [362]: Let 𝜓 ∈ 𝐶1(𝕊𝑛−1). The notation 𝛻𝜎𝜓 stands for the spherical gradient 

of 𝜓, i.e. the vector (𝜓1, . . . , 𝜓𝑛−1), where 𝜓𝑖are the covariant derivatives of 𝜓 with respect 

to the 𝑖-th element of a fixed orthonormal system on 𝕊𝑛−1. Let 𝛷 be the 1-homogeneous 

extension of 𝜓 to ℝ𝑛. Then we have  

                                         |𝛻𝛷(𝑢)|2 = 𝜓2(𝑢) + |𝛻𝜎𝜓(𝑢)|
2
                                  (123)                              

for every 𝑢 ∈ 𝕊𝑛−1. 

We denote the family of centrally symmetric convex bodies by 𝐾𝑠
𝑛. The notation 

𝐶𝑒
2,+(𝕊𝑛−1)will stand for the set of support functions of centrally symmetric 𝐶2,+ convex 

bodies, i.e. functions from 𝐶2,+(𝕊𝑛−1) which are additionally even. 

Let ℎ be the support function of a 𝐶2,+ convex body 𝐾, and let 𝜓 ∈ 𝐶2,+(𝕊𝑛−1); then, by 

Proposition(6.3.5), 

                                            ℎ𝑠: = ℎ + 𝑠𝜓 ∈ 𝐶
2,+(𝕊𝑛−1)                                       (124)                                    

if 𝑠 is sufficiently small, say |𝑠| ≤ 𝑎 for some appropriate 𝑎 > 0. Hence for every 𝑠 in this 

range there exists a unique 𝐶2,+ convex body 𝐾𝑠 with the support function ℎ𝑠. For an interval 

𝐼, we define the one-parameter family of convex bodies: 

𝑲(ℎ, 𝜓, 𝐼) ∶= {𝐾𝑠 ∶ ℎ𝐾𝑠 = ℎ + 𝑠𝜓, 𝑠 ∈ 𝐼}. 

Lemma (6.3.7) [362]: Assume that 𝛾 is a symmetric log-concave measure with continuously 

differentiable density. Conjecture(6.3.1)holds for 𝛾 if and only if for every one-parameter 

family 𝑲(ℎ, 𝜓, 𝐼), with even ℎ and 𝜓, 
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𝑑2

𝑑𝑠2
[𝛾(𝐾𝑠)]|𝑠=0 ·  𝛾(𝐾0) ≤

𝑛−1

𝑛
(
𝑑

𝑑𝑠
[𝛾(𝐾𝑠)]|

𝑠=0
)
2
                            (125).                            

In particular, if (125) holds for 𝐾𝑠in a fixed family 𝑲(ℎ, 𝜓, 𝐼), then Conjecture(6.3.1)holds 

for all sets 𝐾𝑠 in that family. 

Proof: Assume first that 𝛾 satisfies (117)on the system 𝑲(ℎ,𝜓, 𝐼). Then the equality ℎ𝐾𝑠 =

ℎ + 𝑠𝜓,   𝑠 ∈ 𝐼, and the linearity of support function with respect to Minkowski addition, 

imply that for every 𝑠, 𝑡 ∈ 𝐼 and for every 𝜆 ∈ [0, 1]  
𝐾𝜆𝑠+(1−𝜆)𝑡 = 𝜆𝐾𝑠 + (1 − 𝜆)𝐾𝑡 . 

By (117),  

𝛾(𝐾𝜆𝑠+(1−𝜆)𝑡)
1
𝑛 = 𝛾(𝜆𝐾𝑠 + (1 − 𝜆)𝐾𝑡)

1
𝑛 ≥ 𝜆𝛾(𝐾𝑠)

1
𝑛 + (1 − 𝜆)𝛾(𝐾𝑡)

1
𝑛 , 

which means that the function 𝛾(𝐾𝑠)
1

𝑛is concave on 𝐼. Inequality (125) follows.  

Conversely, suppose that for every system 𝑲(ℎ, 𝜓, 𝐼) the function 𝛾(𝐾𝑠)
1

𝑛 has non-positive 

second derivative at 0, i.e. (125) holds. We observe that this implies concavity of 𝛾(𝐾𝑠)
1

𝑛 on 

the entire interval 𝐼. Indeed, given s0in the interior of 𝐼, consider ℎ̃ = ℎ + 𝑠0𝜓, and define 

a new system �̃�(ℎ̃, 𝜓, 𝐽), where 𝐽 is a new interval such that ℎ̃ + 𝑠𝜓 = ℎ + (𝑠 + 𝑠0)𝜓 ∈

𝐶2,+for every 𝑠 ∈ 𝐽. Then the second derivative of 𝛾(𝐾𝑠)
1

𝑛 at 𝑠 = 𝑠0 is negative, as it is equal 

to the second derivative of 𝛾(�̃�𝑠)
1

𝑛 at 𝑠 = 0. On the other hand, the concavity 𝛾(𝐾𝑠)
1

𝑛 on the 

family 𝑲(ℎ, 𝜓, 𝐼) is equivalent to the validity of (117)on this family.  

A similar approach can be used for the log-Brunn–Minkowski inequality. In order to do this 

we introduce a corresponding type of one-parameter families of convex bodies. In this case, 

additive perturbations are replaced by multiplicative perturbations. 

Let ℎ ∈ 𝐶2,+(𝕊𝑛−1) and 𝜑 ∈ 𝐶2(𝕊𝑛−1), with 𝜑 > 0 on 𝕊𝑛−1. Then there exists 𝑎 > 0 such 

that 

ℎ𝑠 ≔ ℎ𝜑𝑠 ∈ 𝐶2,+(𝕊𝑛−1)       ∀𝑠 ∈ [−𝑎, 𝑎]. 
In particular, by Proposition(6.3.5), for every 𝑠 ∈ [−𝑎, 𝑎]there exists a 𝐶2,+convex body 

𝑄𝑠whose support function is ℎ𝑠. 
We introduce the corresponding 1-dimensional systems. 

                                  𝑸(ℎ, 𝜑, 𝐼): =  𝑄𝑠 ∈ 𝐾
𝑛: ℎ𝑄𝑠 = ℎ𝜑𝑠 , 𝑠 ∈ 𝐼}. 

Lemma (6.3.8) [362]: Let 𝛾 be a symmetric log-concave measure with continuously 

differentiable density. Assume that Conjecture(6.3.2) holds for a measure 𝛾, i.e. (120)is valid 

for every pair of symmetric convex sets 𝐾and 𝐿 and for every 𝜆 ∈ [0, 1]. Then for every one-

parameter family 𝑄𝑠 ∈ 𝑸(ℎ, 𝜑, 𝐼), with ℎ and 𝜑 even, 

                                           
𝑑2

𝑑𝑠2
 𝑙𝑜𝑔(𝛾(𝑄𝑠))|

𝑠=0
≤ 0.                                           (126)                                         

The converse is true locally: if (126) holds for all 𝑄𝑠in a fixed family 𝑸(ℎ, 𝜑, 𝐼), then 

Conjecture(6.3.2) holds for all sets 𝑄𝑠 in 𝑸(ℎ, 𝜑, [0, 𝜖])for a small enough interval [0, 𝜖] ⊂
𝐼. 
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Proof: Let ℎ ∈ 𝐶2,+(𝕊𝑛−1) and 𝜑 ∈ 𝐶2(𝕊𝑛−1) be strictly positive even functions on 𝕊𝑛−1; 

there exists 𝑎 > 0 such that ℎ𝑠: = ℎ𝜑𝑠 is the support function of a convex body 𝑄𝑠for all 𝑠 ∈

[−𝑎, 𝑎]. Note that for 𝑠, 𝑡 ∈ [−𝑎, 𝑎] we get  

ℎ𝜆𝑠+(1−𝜆)𝑡 = ℎ𝑠
𝜆ℎ𝑡
1−𝜆, 

and thus 

 𝑄𝜆𝑠+(1−𝜆)𝑡 = 𝑄𝑠
𝜆𝑄𝑡

1−𝜆 .  

If the Conjecture(6.3.2)is true, then 

𝛾(𝑄𝜆𝑠+(1−𝜆)𝑡) = 𝛾(𝑄𝑠
𝜆𝑄𝑡

1−𝜆 ) ≥ 𝛾(𝑄𝑠)
𝜆𝛾(𝑄𝑡)

1−𝜆, 

which means that 𝛾(𝑄𝑠) is log-concave in [−𝑎, 𝑎]. 
The following Lemma is the key step in proving Theorem(6.3.3). To prove it, we express a 

measure of a convex set in terms of its support function and run a long and technical 

computation, involving integration by parts; the complete proof is outlined. 

Lemma (6.3.9) [362]: Let 𝑅 > 0. Let 𝛾 be a rotation invariant measure with density 𝑓(|𝑥|), 

and let 𝐴 = ∫ 𝑡𝑛−1𝑓(𝑅𝑡)𝑑𝑡
1

0
. In the case ℎ𝐾 = 𝑅, (125)is equivalent to the validity of the 

following inequality for every 𝜓 ∈ 𝐶2(𝕊𝑛−1):  
𝐴𝑓(𝑅)

|𝕊𝑛−1|
((𝑛 − 1) ∫ 𝜓2𝑑𝑢

𝕊𝑛−1
 − ∫  |𝛻𝜎𝜓 |

2𝑑𝑢
𝕊𝑛−1

) +
𝐴𝑅𝑓′(𝑅)

|𝕊𝑛−1|
  ∫ 𝜓2𝑑𝑢 
𝕊𝑛−1

≤

 
𝑛−1

𝑛
𝑓(𝑅)2  (

1

|𝕊𝑛−1|
 ∫ 𝜓𝑑𝑢
𝕊𝑛−1

)
2
.                                                                                    (127)                                

By Lemma(6.3.7), to prove the Theorem, it suffices to show the validity of (127). Let us 

denote the quadratic operators appearing in the left-hand side and in the right-hand side of 

the inequality (127) by 𝐵1(𝜓) and 𝐵2(𝜓), correspondingly. That is, 

 𝐵1(𝜓) =
𝐴𝑓(𝑅)

|𝕊𝑛−1|
((𝑛 − 1)∫ 𝜓2𝑑𝑢

𝕊𝑛−1
 − ∫  |𝛻𝜎𝜓 |

2𝑑𝑢
𝕊𝑛−1

) +
𝐴𝑅𝑓′(𝑅)

|𝕊𝑛−1|
  ∫ 𝜓2𝑑𝑢 
𝕊𝑛−1

, 

and 

 𝐵2(𝜓) =  
𝑛 − 1

𝑛
𝑓(𝑅)2  (

1

|𝕊𝑛−1|
 ∫ 𝜓𝑑𝑢
𝕊𝑛−1

)

2

. 

The next step is to decompose 𝜓 as the sum of a constant function and a function which is 

orthogonal to constant functions. Let us write 

𝜓 = 𝜓0 + 𝜓1 

where  

                         𝜓0 =
1

|𝕊𝑛−1|
 ∫ 𝜓𝑑𝑢
𝕊𝑛−1

  and  ∫ 𝜓1𝑑𝑢𝕊𝑛−1
= 0. 

 Note that  

 ∫ 𝜓2𝑑𝜎
𝕊𝑛−1

= ∫ 𝜓0
2𝑑𝜎

𝕊𝑛−1
+ ∫ 𝜓1

2𝑑𝜎
𝕊𝑛−1

. 

Therefore,  

𝐵1(𝜓) = 𝐵1(𝜓0) + 𝐵1(𝜓1), 
as well as 

                                            𝐵2(𝜓) = 𝐵2(𝜓0) + 𝐵2(𝜓1). 
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Since 𝛾 is radially symmetric, one has 𝑓′ ≤ 0. Moreover, by the standard Poincaré inequality 

on the unit sphere, 

                           (𝑛 − 1)∫ 𝜓2𝑑𝑢
𝕊𝑛−1

− ∫ |𝛻𝜎𝜓|
2𝑑𝑢 

𝕊𝑛−1
≤ 0,                              (128)                          

for every 𝜓 such that 

                                              ∫ 𝜓𝑑𝑢
𝕊𝑛−1

= 0.                                                            (129)                                                     

Thus  

𝐵1(𝜓1) ≤ 0 = 𝐵2(𝜓1). 
To prove (127) it remains to show that 

                                               𝐵1(𝜓0) ≤ 𝐵2(𝜓0).                                                    (130)                                               
This condition is equivalent to 

        𝛾(𝜆𝑟1𝐵2
𝑛 + (1 − 𝜆)𝑟2𝐵2

𝑛)
1

𝑛 ≥ 𝜆𝛾(𝑟1𝐵2
𝑛)

1

𝑛 + (1 − 𝜆)𝛾(𝑟2𝐵2
𝑛)

1

𝑛 ,                 (131)                 

for some 𝑟1, 𝑟2 ∈ [𝑅, 𝑅 + 𝜖]. As was shown in [366] (see also [377]), this statement follows 

from log-Brunn–Minkowski conjecture in the case of log-concave spherically invariant 

measures and when 𝐾and 𝐿 are Euclidean balls. The latter is indeed true: it follows from the 

results of [371] and [363].   

As before, we start with a Lemma, which shall be rigorously proved. 

Lemma (6.3.10) [362]: Let 𝑅 > 0. Let 𝛾 be a rotation invariant measure with density 𝑓(|𝑥|), 

and let 𝐴 = ∫ 𝑡𝑛−1𝑓(𝑅𝑡)𝑑𝑡
1

0
. In the case ℎ𝐾 = 𝑅, (126)is equivalent to the following 

inequality:  

𝐴[𝑛𝑓(𝑅) + 𝑅𝑓′(𝑅)]
1

|𝕊𝑛−1|
  ∫ 𝜓2𝑑𝑢
𝕊𝑛−1

− 𝐴𝑓(𝑅)
1

|𝕊𝑛−1|
 |𝛻𝜎𝜓|

2𝑑𝑢 ≤

 𝑓(𝑅)2 (
1

|𝕊𝑛−1|
 ∫ 𝜓𝑑𝜎
𝕊𝑛−1

)
2
 ,                                                                                    (132)                                      

for every even 𝜓 ∈ 𝐶2(𝕊2). 
We follow the argument of the previous and split the proof into two cases. 

Case 1.Consider an even 𝜓 ∈ 𝐶2(𝕊𝑛−1) such that ∫𝜓 = 0. Here we use some basic facts 

from the theory of spherical harmonics, which can be found, for instance in [375, Appendix], 

where will find hints to the corresponding literature. We denote by ∆𝜎the spherical Laplace 

operator (or Laplace–Beltrami operator), on 𝕊𝑛−1. The first eigenvalue of 𝛥𝜎 is 0, and the 

corresponding eigenspace if formed by constant functions. Hence the zero-mean condition 

on 𝜓 implies that 𝜓 is orthogonal to such eigenspace. The second eigenvalue of 𝛥𝜎 is 𝑛 − 1, 

and the corresponding eigenspace is formed by the restrictions of linear functions of ℝ𝑛to 

𝕊𝑛−1. As each of them is odd and 𝜓 is even, 𝜓 is orthogonal to this eigenspace as well. 

Finally, the third eigenvalue is 2𝑛. Then the inequality (132) amounts to  

                   
1

|𝕊𝑛−1|
  ∫ 𝜓2𝑑𝑢
𝕊𝑛−1

 ≤
𝑓(𝑅)

𝑛𝑓(𝑅)+𝑅𝑓′(𝑅)
 

1

|𝕊𝑛−1|
 |𝛻𝜎𝜓|

2𝑑𝑢.                         (133)                          

Hence  

                        
1

|𝕊𝑛−1|
  ∫ 𝜓2𝑑𝑢
𝕊𝑛−1

 ≤
1

2𝑛
 

1

|𝕊𝑛−1|
 |𝛻𝜎𝜓|

2𝑑𝑢.                                     (134)                                    

Since 𝑓 is decreasing, we have 𝑓′(𝑅) ≤ 0, and hence  

                                               
𝑓(𝑅)

𝑛𝑓(𝑅)+𝑅𝑓′(𝑅)
≥
1

𝑛
>

1

2𝑛
.                                             (135)                                        



234 
 

The inequalities (134)and (135)imply (133).  

Case 2.Let 𝜓 be a constant function. The inequality (132) holds for constant functions 

because, once again, the log-Brunn–Minkowski inequality holds in the case of spherically 

invariant measures and Euclidean balls. 

To summarize, we established (132) separately for constant functions and centered 

functions. A polarization argument analogous to the one presented in the proof of The-

orem(6.3.3)finishes the proof. 

A formula expressing a measure of a convex set in terms of its support function 

Let 𝛾 be a probability measure on ℝ𝑛; we assume that 𝛾 has a density 𝐹 with respect to the 

Lebesgue measure, and that 𝐹 is sufficiently regular (𝑒. 𝑔.continuous).  

Lemma (6.3.11) [362]: Let 𝐾 be a 𝐶2,+convex body; let hand 𝐻 be the support function of 

𝐾 and its homogenous extension, respectively. Assume that the origin is in the interior of 𝐾. 

Then 

                        𝛾(𝐾) = ∫ ℎ(𝑦)𝑑𝑒𝑡𝑄(ℎ;  𝑦)
𝕊𝑛−1

∫ 𝑡𝑛−1𝐹 (𝑡𝛻𝐻(𝑦))𝑑𝑡𝑑𝑦
1

0
.        (136)        

The cofactor matrix and related notions 

Let 𝑀 = (𝑚𝑖𝑗) be an 𝑁 × 𝑁 symmetric matrix, 𝑁 ∈ ℕ. We define 𝐶[𝑀], the cofactor matrix 

of 𝑀, as follows 

𝐶[𝑀] = (𝑐𝑖𝑗  [𝑀])𝑖,𝑗=1,...,𝑁 𝑤ℎ𝑒𝑟𝑒 𝑐𝑖𝑗[𝑀] =
𝜕𝑑𝑒𝑡

𝜕𝑚𝑖𝑗
(𝑀) 𝑖, 𝑗 =  1, . . . , 𝑁. 

𝐶[𝑀] is an 𝑁 ×𝑁 symmetric matrix. Using the homogeneity of the determinant we get 

                                     ∑ 𝑐𝑖𝑗  [𝑀]𝑚𝑖𝑗
𝑁
𝑖,𝑗=1 = 𝑁 𝑑𝑒𝑡(𝑀).                                         (137)                                   

We shall also consider the second derivatives of the determinant of a matrix with respect to 

its entries: 

𝑐𝑖𝑗,𝑘𝑙[𝑀] =
𝜕2𝑑𝑒𝑡

𝜕𝑚𝑖𝑗𝜕𝑚𝑘𝑙
(𝑀).  

By homogeneity we have that, for every 𝑖, 𝑗 = 1, . . . , 𝑁 

                                 ∑ 𝑐𝑖𝑗,𝑘𝑙 [𝑀]𝑚𝑘𝑙
𝑁
𝑖,𝑗=1 = (𝑁 − 1)𝑐𝑖𝑗  [𝑀].                               (138)                          

 

Let ℎ ∈ 𝐶2,+(𝕊𝑛−1), and assume additionally that ℎ ∈ 𝐶3(𝕊𝑛−1). Consider the cofactor 

matrix 𝑦 → 𝐶[𝑄(ℎ;  𝑦)]. This is a matrix of functions on 𝕊𝑛−1. The lemma of Cheng and 

Yau asserts that each column of this matrix is divergence-free. 

Lemma (6.3.12) [362]: (Cheng–Yau). Let ℎ ∈ 𝐶2,+(𝕊𝑛−1) ∩ 𝐶3(𝕊𝑛−1). Then, for every 

index 𝑗 ∈ {1, . . . , 𝑛 − 1} and for every 𝑦 ∈ 𝕊𝑛−1, 

∑(𝑐𝑖𝑗  [𝑄(ℎ;  𝑦)])𝑖

𝑛−1

𝑖=1

= 0, 

where the sub-script idenotes the derivative with respect to the 𝑖-th element of an 

orthonormal frame on 𝕊𝑛−1. 

We shall often write 𝐶(ℎ), 𝑐𝑖𝑗(ℎ) and 𝑐𝑖𝑗,𝑘𝑙(ℎ) in place of 𝐶[𝑄(ℎ)], 𝑐𝑖𝑗[𝑄(ℎ)] and 

𝑐𝑖𝑗,𝑘𝑙[𝑄(ℎ)] respectively. 
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As a corollary of the previous result we have the following integration by parts formula. If 

ℎ ∈ 𝐶2,+(𝕊𝑛−1) ∩ 𝐶3(𝕊𝑛−1) and 𝜓, 𝜙 ∈ 𝐶2(𝕊𝑛−1), then 

                  ∫ 𝜙𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 + 𝜓 𝛿𝑖𝑗)𝑑𝑦𝕊𝑛−1
 = ∫ 𝜓 𝑐𝑖𝑗(ℎ)(𝜑𝑖𝑗 + 𝜑𝛿𝑖𝑗)𝑑𝑦𝕊𝑛−1

.  (139)       

The Lemma of Cheng and Yau admits the following extension (see by the first-named 

author, Hug and Saorin-Gomez [370]). 

Lemma (6.3.13) [362]: Let 𝜓 ∈ 𝐶2(𝕊𝑛−1) and ℎ ∈ 𝐶2,+(𝕊𝑛−1) ∩ 𝐶3(𝕊𝑛−1). Then, for 

every 𝑘 ∈ {1, . . . , 𝑛 − 1} and for every 𝑦 ∈ 𝕊𝑛−1 

∑(𝑐𝑖𝑗,𝑘𝑙[𝑄(ℎ;  𝑦)](𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗))𝑙

𝑛−1

𝑖=1

= 0. 

Correspondingly we have, for every ℎ ∈ 𝐶2,+(𝕊𝑛−1) ∩ 𝐶3(𝕊𝑛−1), 𝜓, 𝜙, 𝜑 ∈ 𝐶2(𝕊𝑛−1) and 

𝑖, 𝑗 ∈ {1, . . . , 𝑛 − 1} 

∫ 𝜓 𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜑𝑖𝑗 + 𝜑𝛿𝑖𝑗)((𝜙)𝑘𝑙 + 𝜙𝛿𝑘𝑙)𝑑𝑦
𝕊𝑛−1

  

                        = ∫ 𝜙𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜑𝑖𝑗 + 𝜑𝛿𝑖𝑗)((𝜓)𝑘𝑙 + 𝜓𝛿𝑘𝑙)𝑑𝑦𝕊𝑛−1
.                    (140)                    

As usual, 𝛾 is a radially symmetric log-concave measure on ℝ𝑛, with density 𝐹 with respect 

to Lebesgue measure; in particular, we write 𝐹in the form: 

                                                   𝐹(𝑥) = 𝑓(|𝑥|). 
We will assume that 𝑓 is smooth, more precisely 𝑓 ∈ 𝐶2([0,∞)). Let us fix ℎ ∈ 𝐶2,+(𝕊𝑛−1) 
and let 𝐾 be a convex body with support function ℎ. Let 𝜓 ∈ 𝐶2(𝕊𝑛−1) and consider the 

one-parameter system of convex bodies 𝑲(ℎ,𝜓, [−𝑎, 𝑎]) for a suitably small 𝑎 > 0. In 

particular for every 𝑠 ∈ [−𝑎, 𝑎] there exists a convex body 𝐾𝑠 such that ℎ𝐾𝑠 = ℎ𝑠. Hence we 

may consider the function  

𝑔: [−𝑎, 𝑎] → ℝ, 𝑔(𝑠) = 𝛾(𝐾𝑠). 
The aim of this subsection is to derive formulas for the first and second derivative of 𝑔(𝑠) 
at 𝑠 = 0. We start from the expression: 

 𝑔(𝑠) = ∫ ℎ𝑠(𝑢) 𝑑𝑒𝑡(𝑄(ℎ𝑠; 𝑢))𝕊𝑛−1
∫  𝑡𝑛−1𝑓(𝑡√ℎ𝑠

2(𝑢) + |𝛻𝜎ℎ𝑠(𝑢)|
2)𝑑𝑡𝑑𝑢

1

0
, 

where we used Lemma(6.3.11), the rotation invariance of 𝛾, and Remark(6.3.6). To simplify 

notations we set 

𝑄𝑠 = 𝑄(ℎ𝑠;  𝑢), 𝑄 = 𝑄0;   𝐷𝑠 = [ℎ𝑠
2(𝑢) + |𝛻𝜎ℎ𝑠(𝑢)|

2]1 2⁄ , 𝐷 = 𝐷0;  

           𝐴𝑠 = ∫ 𝑡𝑛−1𝑓(𝑡𝐷𝑠)𝑑𝑡
1

0
, 𝐴 = 𝐴0;    𝐵𝑠 = ∫ 𝑡𝑛𝑓′(𝑡𝐷𝑠)𝑑𝑡

1

0
, 𝐵 = 𝐵0;  

                                       𝐶𝑠 = ∫ 𝑡𝑛+1𝑓′′(𝑡𝐷𝑠)𝑑𝑡
1

0
 , 𝐶 = 𝐶0. 

Then  

𝑔′(𝑠) = ∫ 𝜓det(𝑄𝑠) 𝐴𝑠𝑑𝑢 
𝕊𝑛−1

+∫ ℎ𝑠𝑐𝑖𝑗(ℎ𝑠)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)𝐴𝑠𝑑𝑢
𝕊𝑛−1

 

                               +∫ ℎ𝑠 𝑑𝑒𝑡(𝑄𝑠)𝐵𝑠  
ℎ𝑠𝜓+〈𝛻𝜎ℎ𝑠,𝛻𝜎𝜓 〉

𝐷𝑠
𝑑𝑢

𝕊𝑛−1
.                               (141)                            

Passing to the second derivative (for 𝑠 = 0) we get  

𝑔′′(0) = 2∫ 𝜓𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)𝐴𝑑𝑢
𝕊𝑛−1
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+ 2∫ 𝜓 𝑑𝑒𝑡(𝑄)𝐵
ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉

𝐷
 𝑑𝑢

𝕊𝑛−1
  

+ 2∫ ℎ𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)𝐵
ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉

𝐷
 𝑑𝑢

𝕊𝑛−1
 

+∫ 𝐴ℎ𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 +  𝜓𝛿𝑖𝑗)(𝜓𝑘𝑙 + 𝜓𝛿𝑘𝑙)𝑑𝑢
𝕊𝑛−1

 

+ ∫ ℎ 𝑑𝑒𝑡(𝑄)𝐶 [
ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉

𝐷
 ]

2

𝑑𝑢
𝕊𝑛−1

 

+∫ ℎ 𝑑𝑒𝑡(𝑄)𝐵 [𝐷(ℎ2 + |𝛻𝜎𝜓|
2) −

[ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉]
2

𝐷
]
1

𝐷2
𝑑𝑢

𝕊𝑛−1
.          (142) 

We now focus on the fourth summand of the last expression. Applying formulas (140)and 

(138)we get 

                                   ∫ 𝐴ℎ𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 +  𝜓𝛿𝑖𝑗)(𝜓𝑘𝑙 + 𝜓𝛿𝑘𝑙)𝑑𝑢𝕊𝑛−1
 

                              = ∫  𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 +  𝜓𝛿𝑖𝑗)((𝐴ℎ)𝑘𝑙 + 𝐴ℎ𝛿𝑘𝑙)𝑑𝑢 𝕊𝑛−1
 

                        = ∫ 𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)(𝐴(ℎ𝑘𝑙 + ℎ𝛿𝑘𝑙) + 2𝐴𝑘ℎ𝑙 + ℎ𝐴𝑘𝑙)𝑑𝑢𝕊𝑛−1
 

 =  ∫ 𝐴𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 +  𝜓𝛿𝑖𝑗)(ℎ𝑘𝑙 + ℎ𝛿𝑘𝑙)𝑑𝑢
𝕊𝑛−1

  

+∫ 𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)(2𝐴𝑘ℎ𝑙 + ℎ𝐴𝑘𝑙)𝑑𝑢
𝕊𝑛−1

 

                            = (𝑛 − 2) ∫ 𝐴𝜓𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 +  𝜓𝛿𝑖𝑗)𝑑𝑢𝕊𝑛−1
  

+∫ 𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)(2𝐴𝑘ℎ𝑙 + ℎ𝐴𝑘𝑙)𝑑𝑢
𝕊𝑛−1

 

Hence 

 𝑔′′(0) = 𝑛 ∫ 𝜓𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)𝐴𝑑𝑢𝕊𝑛−1
+ 2∫ 𝜓 𝑑𝑒𝑡(𝑄)𝐵

ℎ𝜓+〈𝛻𝜎ℎ,𝛻𝜎𝜓〉

𝐷
 𝑑𝑢

𝕊𝑛−1
  

+ 2∫ ℎ𝑐𝑖𝑗(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)𝐵
ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉

𝐷
 𝑑𝑢

𝕊𝑛−1
 

+∫ 𝜓𝑐𝑖𝑗,𝑘𝑙(ℎ)(𝜓𝑖𝑗 + 𝜓𝛿𝑖𝑗)(2𝐴𝑘ℎ𝑙 + ℎ𝐴𝑘𝑙)𝑑𝑢
𝕊𝑛−1

 

+ ∫ ℎ 𝑑𝑒𝑡(𝑄)𝐶 [
ℎ𝜓 + 〈𝛻𝜎ℎ, 𝛻𝜎𝜓〉

𝐷
 ]

2

𝑑𝑢
𝕊𝑛−1

 

                    +∫ ℎ 𝑑𝑒𝑡(𝑄)𝐵 [𝐷(𝜓2 + |𝛻𝜎𝜓|
2) −

[ℎ𝜓+〈𝛻𝜎ℎ,𝛻𝜎𝜓〉]
2

𝐷
]
1

𝐷2
𝑑𝑢

𝕊𝑛−1
.    (143)       

Let ℎ ≡ 𝑅, 𝑅 > 0. This choice considerably simplifies the situation as:  

𝑄 = 𝑅𝐼𝑛−1;    𝛻𝜎 ≡ 𝑅;      𝐷 ≡ 𝑅;    𝑐𝑖𝑗(ℎ) ≡ ℝ
𝑛−1𝛿𝑖𝑗; 

𝐴 =  ∫ 𝑡𝑛−1𝑓(𝑅𝑡)𝑑𝑡
1

0

, 𝐵 = ∫ 𝑡𝑛𝑓′(𝑅𝑡)𝑑𝑡
1

0

, 𝐶 = ∫ 𝑡𝑛+1𝑓′′(𝑅𝑡)𝑑𝑡
1

0

. 

Here 𝐼𝑛−1 denotes the (𝑛 − 1) × (𝑛 − 1) identity matrix. In particular 𝐴 does not depend on 

the point 𝑢 on 𝕊𝑛−1, so that 
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𝐴𝑖 ≡ 𝐴𝑖𝑗 ≡ 0          𝑜𝑛𝕊
𝑛−1. 

Hence 𝑔(0) = |𝕊𝑛−1|𝑅𝑛𝐴, and 

𝑔′(0) = 𝑅𝑛−1𝐴∫  𝜓𝑑𝑢
𝕊𝑛−1

+ 𝑅𝑛−1𝐴∫ (𝛥𝜎𝜓 + (𝑛 − 1)𝜓)𝑑𝑢
𝕊𝑛−1

+ 𝑅𝑛𝐵∫  𝜓𝑑𝑢
𝕊𝑛−1

  

                                    = 𝑅𝑛−1(𝑛𝐴 + 𝑅𝐵)∫  𝜓𝑑𝑢
𝕊𝑛−1

.                                          (144)                                       

Here we used the fact that, by the divergence theorem on 𝕊𝑛−1,  

∫ 𝛥𝜎𝜓𝑑𝑢
𝕊𝑛−1

 = 0. 

As for the second derivative, we haveg   

          𝑔′′(0) = 𝑛𝑅𝑛−2𝐴∫ 𝜓(𝛥𝜎𝜓 + (𝑛 − 1)𝜓)𝑑𝑢𝕊𝑛−1
+ 2𝑅𝑛−1𝐵 ∫ 𝜓2𝑑𝑢

𝕊𝑛−1
  

               +2𝑅𝑛−1𝐵 ∫ 𝜓(𝛥𝜎𝜓 + (𝑛 − 1)𝜓))𝑑𝑢𝕊𝑛−1
+ 𝑅𝑛𝐶 ∫ 𝜓2𝑑𝑢

𝕊𝑛−1
  

+ 𝑅𝑛−1𝐵 ∫ |𝛻𝜎𝜓|
2𝑑𝑢

𝕊𝑛−1
. 

 By the divergence theorem, 

                                         ∫ 𝜓𝛥𝜎𝜓𝑑𝑢𝕊𝑛−1
= −∫ |𝛻𝜎𝜓|

2𝑑𝑢
𝕊𝑛−1

, 

and thus  

𝑔′′(0) = 𝑅𝑛−2(𝐴𝑛(𝑛 − 1) + 2𝑛𝑅𝐵 + 𝑅
2𝐶)∫ 𝜓2𝑑𝑢

𝕊𝑛−1
− 𝑅𝑛−2(𝑛𝐴 +

𝑅𝐵)∫ |𝛻𝜎𝜓|
2𝑑𝑢

𝕊𝑛−1
.                                                                                                             (145)                              

Integrating by parts in 𝑡, we get 

𝑓(𝑅) = 𝑛𝐴 + 𝑅𝐵, 
and 

𝑓′(𝑅) = (𝑛 + 1)𝐵 + 𝑅𝐶. 
Thus we obtain 

                                         𝑔′(0) = 𝑅𝑛−1𝑓(𝑅) ∫ 𝜓𝑑𝑢
𝕊𝑛−1

,                                     (146)                                   

and 

𝑔′′(0) = 𝑅𝑛−2[(𝑛 − 1)𝑓(𝑅) + 𝑅𝑓′(𝑅)] ∫ 𝜓2𝑑𝑢
𝕊𝑛−1

− 𝑅𝑛−2𝑓(𝑅)∫ |𝛻𝜎𝜓|
2𝑑𝑢

𝕊𝑛−1
 

= 𝑅𝑛−2𝑓(𝑅) ((𝑛 − 1)∫ 𝜓2𝑑𝑢
𝕊𝑛−1

− ∫ |𝛻𝜎𝜓|
2𝑑𝑢

𝕊𝑛−1
) +

 𝑅𝑛−1𝑓′(𝑅) ∫ 𝜓2𝑑𝑢
𝕊𝑛−1

.                                                                                                (147)   

This concludes the proof of Lemma(6.3.9).  

Proof of the Lemma(6.3.10) 

Firstly, we state the following. 

Lemma (6.3.14) [362]: Let 𝑛 ≥ 2. Let 𝛾 be a measure on ℝ𝑛. Fix ℎ ∈ 𝐶2,+(𝕊𝑛−1), 𝜑 ∈
𝐶2(𝕊𝑛−1), 𝜑 > 0 and set 𝜓 = ℎ 𝑙𝑜𝑔𝜑. Let 𝑲(ℎ, 𝜓, 𝐼), with 𝐼 = [−𝑎, 𝑎] and 𝑎 > 0, be the 

corresponding one-parameter family. Consider the function 𝑓(𝑠) = 𝛾(𝐾𝑠). Introduce the 

additional notation for the operator 𝐹(ℎ, 𝜓):= 𝑓′(0). Set 

                                           𝐴(ℎ, 𝜓):=
𝑑𝐹(ℎ,

ℎ+𝑠𝜓

ℎ
𝜓)

𝑑𝑠
|
𝑠=0

 .                                        (148)                                      
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Consider the one-parameter family 𝑸(ℎ, 𝜙, [−𝑎, 𝑎]), i.e. the collection of sets with support 

functions ℎ𝑠 = ℎ𝜑
𝑠, 𝑠 ∈ [−𝑎, 𝑎]. Let 𝑔(𝑠) = 𝛾(𝑄𝑠). Then 

•𝑔(0) = 𝑓(0); 
•𝑔′(0) = 𝑓′(0); 
•𝑔′′(0) = 𝑓′′(0) + 𝐴(ℎ, 𝜓). 
The proof of the Lemma immediately follows from the fact that 

                                           ℎ𝜑𝑠 = ℎ + 𝑠ℎ 𝑙𝑜𝑔 𝜑 + 𝑜(𝑠),            𝑎𝑠 𝑠 → 0, 
with the selection 𝜓 = ℎ 𝑙𝑜𝑔𝜑. When ℎ ≡ 𝑅 > 0, the additional term introduced in 

Lemma(6.3.14)can be written as follows: 

𝐴(ℎ, 𝜓) = 𝑓(𝑅)∫  𝜓2𝑑𝑢
𝕊𝑛−1

. 

That, together with Lemma(6.3.9), implies Lemma(6.3.10). 

Finally, we note that Lemma(6.3.14)implies the following result. 

Theorem (6.3.15) [362]: (Infinitesimal form of Log-Brunn–Minkowski conjecture). Let 

𝑛 ≥ 2 be an integer. If Conjecture(6.3.2)is true, then for every ℎ ∈ 𝐶𝑒
2,+(𝕊𝑛−1), 𝜓 ∈

𝐶2(𝕊𝑛−1), 𝜓 even and strictly positive,  

 ∫ 𝜓2
1+𝑡𝑟(𝑄−1(ℎ))ℎ

ℎ2
𝑑�̅�ℎ−𝑛𝕊𝑛

 (∫
𝜓

ℎ
𝑑�̅�ℎ𝕊𝑛−1

)
2
≤ ∫

1

ℎ
〈𝑄−1(ℎ)𝛻𝜓, 𝛻𝜓〉𝑑�̅�ℎ𝕊𝑛−1

.  (149)   

Here ℎ is the support function of 𝐾,𝑄(ℎ) is the curvature matrix of 𝐾 and 

𝑑�̅�ℎ =
1

|𝐾|

1

𝑛
ℎ𝐾(𝑢) 𝑑𝑒𝑡𝑄(ℎ𝐾(𝑢))𝑑𝑢  

is the normalized cone measure of the convex body 𝐾. 

A corresponding infinitesimal Brunn–Minkowski inequality for Lebesgue measure was 

obtained by [379]and reads as:  

∫ 𝜓2
𝑡𝑟(𝑄−1(ℎ))

ℎ
𝑑�̅�ℎ𝕊𝑛−1

− (𝑛 − 1) (∫
𝜓

ℎ
𝑑�̅�ℎ𝕊𝑛−1

)
2
≤

∫
1

ℎ
〈𝑄−1(ℎ)𝛻𝜓, 𝛻𝜓〉𝑑�̅�ℎ𝕊𝑛−1

.                                                                                     (150)  

Note that by the Cauchy–Schwarz inequality,  

∫
𝜓2

ℎ2
𝑑�̅�ℎ

𝕊𝑛−1
≥ (∫

𝜓

ℎ
𝑑�̅�ℎ

𝕊𝑛−1
)

2

. 

Hence, (149) is indeed a strengthening of (150). 

In particular, letting 𝜑 ≡ 1we arrive to the following corollary of Theorem(6.3.15). 

Corollary (6.3.16) [362]: (𝐴 strengthening of Minkowski’s second inequality. ). Let 𝐾 be a 

convex symmetric set in the plane, or a convex unconditional set in ℝ𝑛. Then, 

               𝑉𝑛(𝐾) (𝑉𝑛−2(𝐾) + ∫
1

〈𝑦,𝜈𝐾(𝑦)〉
𝑑𝜎(𝑦)

𝜕𝐾
) ≤ 𝑉𝑛−1(𝐾)

2,                           (151)                           

where 𝑉𝑛−𝑖 are the intrinsic volumes of 𝐾, 𝜈𝐾(𝑦)stands for the unit normal at 𝑦 ∈ 𝜕𝐾and 

𝑑𝜎(𝑦) is the surface area measure on 𝜕𝐾. 

Minkowski’s second inequality, which states that for every convex set 𝐾 ⊂ ℝ𝑛 one has 

 𝑉𝑛(𝐾)𝑉𝑛−2(𝐾) ≤
𝑛 − 1

𝑛
𝑉𝑛−1(𝐾)

2, 
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is deduced from (151)by using the Cauchy–Schwarz inequality. For a more general version 

of this inequality see, for example, Schneider [375, Chapter 4] . 
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