قال تعالى((

لِلَّهِ مَا فِي ٱلسَّمَوَتِ وَٱلْأَرُضِ إِنَّ ٱللَّهَ هُو ٱلْغَنِيُّ ٱلْحَمِيدُ ﴿ وَلَوْ الْغَنِيُ ٱلْحَمِيدُ ﴿ وَلَوْ اللَّهَ اللَّهُ عَرِيهِ مَن شَجَرَةٍ أَقُلَدُمُ وَٱلْبَحُرُ يَمُدُّهُ مِنْ بَعَدِهِ مَسَعَةُ أَبُحُرٍ أَنَّمَا فِي ٱلْأَرْضِ مِن شَجَرَةٍ أَقُلَدُمُ وَٱلْبَحُرُ يَمُدُّهُ مِنْ بَعَدِهِ مَسَبْعَةُ أَبُحُرٍ مَا نَفِدَتُ كَلِمَتُ ٱللَّهِ إِنَّ ٱللَّهَ عَزِيزٌ حَكِيمٌ ﴿ هَا خَلْقُكُمُ وَلَا بَعَتُكُمُ مَا نَفِدَتُ كَلِمَتُ ٱللَّهِ إِنَّ ٱللَّهَ عَزِيزٌ حَكِيمٌ ﴿ هَا خَلْقُكُمُ وَلَا بَعَتُكُمُ وَلَا بَعَتُكُمُ وَلَا بَعَتُكُمُ وَلَا بَعَتُكُمُ وَلَا يَعَتُكُمُ وَلَا بَعَتُكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتَلُونُ وَالْمَرْضُ وَحِدَةً إِنَّ ٱللَّهَ سَمِيعٌ بَصِيرٌ ﴿ وَهِ عَلَيْ اللَّهُ عَنْ مِنْ فَا خَلُقُكُمُ وَلَا يَعْتُلُونُ إِنَّا اللَّهُ عَلِيمٌ وَحِدَةً إِنَّ ٱللَّهُ مَا عَنْهِ مِنْ فَعَلَا عُلَيْ مُنْ مَا عَلَيْ اللَّهُ مَا عَنْ عَلَا عَلَيْهُ وَاللَّهُ عَلَيْكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْقُولُوا اللّهُ عَرْيِنَا عَلِيمٌ وَاحِدَةً إِنَّا ٱللّهُ مَنْ عَلَيْ عَلَيْكُونُ وَلَا يَعْلَقُوا اللّهُ اللّهُ عَلَيْكُولُوا اللّهُ عَلَيْكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتُكُمُ وَلَا يَعْتُوا لِكُولُوا اللّهُ وَالْمُوا اللّهُ الللّهُ اللّهُ اللّهُ اللّهُ اللّهُ الللّهُ الللّهُ ا

(27)...

DEDICATION

I DEDICATE THIS THESIS
TO:-

MY PARENTS,

FAMILY

Specially to my son Mohamed

 \mathcal{U}

WHOM GIVE ME THIS HOPES

Acknowledgments

Here I would like to express my appreciation and gratitude to:-

my favour thanks to my supervisors Dr. Kasim, Dr. Yahia.

My grateful to Prof. Nafie Abd ALattief who gave me useful advices and helped me in many ways.

My thank extended to:-

- --- Laser institute staff.
- --- Dr. Adam Sam, Atomic Energy commission(SAEC).
- --- Mr. Siddeg Salah, Atomic Energy commission(SAEC).
 - --- Miss Amira Kasap, ELNeelain university.
 - And specially thanks to:-
- --- Mr. DW Chun, sam kyung ceramics co. ltd, KOREA.
- --- Mr. Seif Mohamed babiker, Atomic Energy commission(SAEC), who had been of great help and assistance to me through my studies.

My thank extend to Dr. abdalmonem. To Miss Sara Idris, to Miss Mayyada Tag El-sir.

My thanks to my colleagues in Airways engineering, Khartoum airport.

I would like to say many thanks to those who gave me their time, advice, support, and assistance with ideas which gave me constant encouragement to overcome the difficulties and finally lead to a successful completion of thesis.

Abstract

The main idea of this thesis is to design and fabricate an infra-red detector, specially the disk type of NTC thermistor. And to test it's operation and response to different levels of laser power .

The challenge of the fabrication arise from the chemical, physical and electronic thermistor features. In order to get perfect and good response, a certain semiconductor oxides ratio prepared and milled with special size and shape under tones of pressure. Then sintered above thousand of temperature degrees, and finally coated and attached with the legs to get the thermistor.

An electronic circuit consist of some amplifiers, comparator and reference voltage was used to test the disk thermistor operation.

Finally different levels of Nd:YAG laser power were used to test the fabricated thermistors. The results are very promising and the best ratios of the mixture could be easily determined.

V

•

.

ı

.

· _

.

ı

CONTENTS

Holy Quran		I
Dedication		II
Acknowledgments		
Abstract		IV
Arabi	ic abstract	V
Conte	ents	VI
Figures		VIII
Tables list		X
CI.		
_	oter one	1
	duction and basic concepts	1
1.1	Work organization	1
1.1.2	Introduction	2
1.2	Historical background	3
1.3	Optical detector	5
1.3.1	Optical detector characteristics	6
1.4	Noise consideration	11
1.5	Classes of optical detectors	14
1.5.1	Photon detectors	16
1.5.2	Photon detectors characteristics	17
1.5.3	Thermal detectors	17
1.5.4	Thermal detectors characteristics	19
1.5.5	Thermal detectors heat calculation	19
1.5.6	Thermal detectors types	20
1.6	Disk thermistor	26
1.6.1	Materials used	27
1.6.2	Preparation and fabrication	28
1.7	Crystal structure of NTC thermistor	32

1.7.1	Conduction mechanism of NTC thermistor	33		
1.8	Thermistor applications	37		
1.9	The aim of the work	37		
Chap	ter two			
Expe	perimental work			
2.1	Introduction	38		
2.2	Equipments and tools	39		
2.3	Materials preparation	40		
2.3.1	The fabrication trial	40		
2.4	Main electronic circuit	41		
2.4.1	Circuit overview	43		
2.4.2	The thermistor circuit	44		
2.4.3	Digital to analogue converter	45		
2.4.4	Comparator circuit	46		
2.4.5	Optional circuit	47		
2.4.6	Complete circuit diagram layout	47		
2.5	Nd:YAG Laser	49		
2.6	Testing procedure	50		
Chap	ter three			
Resul	ts and discussion	52		
3.1	Introduction	52		
3.2	Samples ratio comparison	52		
3.3	Responsivity of three groups	53		
3.3.1	Group one thermistor	53		
3.3.2	Group two thermistor	55		
3.3.3	Group three thermistor	57		
3.4	The responsivity of fabricated thermistors	59		

3.5	Conc	clusions	60
3.6	Future work		61
	REF	ERENCES	62
	Glos	sary	
		FIGURES	
Fig(1	l 1)	The electromagnetic spectrum	2
Fig(1		IR emission spectrum	3
Fig(1		A record of random noise voltage	11
Fig(1	•	Photon detector and thermal detector responsivity	
8(-		as a function of wave length	15
Fig(1	1.5)	The difference between normal light and laser light	
•		image object	18
Fig(1	1.6)	Example of typical thermistor	21
Fig(1	1.7)	Symbol of a thermistor	23
Fig(1	1.8)	Thermistor resistance / temperature curve	24
Fig(1	1.9)	Thermistor Circuit	24
Fig(1	1.10)	NTC thermistor types	25
Fig(1	1.11)	Disk thermistor layout	27
Fig(1	1.12)	Disk steps process	28
Fig(1	1.13)	Typical crystal structure	32
Fig(2	2.1)	Thermistor disk fabrication steps	39
Fig(2	2.2)	The three fabricated thermistors	42
Fig(2	2.3)	Circuit outline	43
Fig(2	2.4)	Main circuit elements	44
Fig(2	2.5)	DAC circuit elements	45

Fig(2.6)	Comparator elements	46
Fig(2.7)	MUX and ADC elements	47
Fig(2.8)	Complete circuit diagram	48
Fig(2.9)	The practical electronic circuit	48
Fig(2.10)	Experimental test room	50
Fig(2.11)	Test procedure	51
Fig(3.1)	The output voltage curve gained from irradiation	
	of group(1) as function of laser power	55
Fig(3.2)	The output voltage curve gained from irradiation	
	of group(2) as function of laser power	58
Fig(3.3)	The output voltage curve gained from irradiation	
	of group(3) as function of laser power	59

TABLES LIST

Table(1.1)	Some of thermistor applications	37
Table(2.1)	Thermistor resistance of the three samples	42
Table(3.1)	The thermistors groups	53
Table(3.2) T	The output voltage gained from irradiation of group(1)	
	as function of laser power	54
Table(3.3)	The output voltage gained from irradiation of group(2)	
	as function of laser power	56
Table(3.4)	The output voltage gained from irradiation of group(3	
	as function of laser power	58
Table(3.5)	Thermistor groups responsivity	60