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Abstract 

This study aims at dealing with ContinuoustimeMarkov chain Model 

application on fault time of two machines (Mill troup &Boiler) an 

important machines in Asalaya Sugar Factory on season (January/2019–

December/2019), which affiliated to Sudanese Sugar Company. The study 

conduces that failure time of machines follows Exponential distribution 

estimation fault distribution. Failure time represent transition matrix in the 

ContinuoustimeMarkov chain. The probability of  machine in operating 

state is greater than probability of machine in a fail state. The high 

probability of the machine in operating state and the mean time of a 

machine stay an estimated by 4 hours in state (1) (operating state) 

meanwhile the machine stay in state (0) (fail state) estimated by one hour 

which indicates the efficiency of the maintenance unit, it is clear that, the  

probability  of  available  time  to  repair  machines when  it  fault  

approximately (0.80),  this  indicates  that  the machines has high 

availability.  

Through estimating the failure rate and repair rate andthe transition 

probabilitiesfrom operational state to another , it was found thatfailure rate 

of the machine(Mill troup) is greater than the failure rate of the machine 

(Boiler),the probability of both machines in working condition is high 

,probability of machines (Mill troup) expose more failure, which 

requiresmore effort in maintenance than machine (Boiler).The probability 

of the overall failure rate of the machines is negligible probability for the 

machines,which isa good indicator as it is unlikely that both machines will 

fail at the same time. That means maintenance work should take place 

immediately for the machine that suffers a malfunction. 

 

 



v 

 ملخص الدراسة:

ل الفشالمستمر على زمن ذات الزمن تهدف هذه الدراسة إلى تطبيق نموذج سلسلة ماركوف 
ماكينات في مصنع سكر عسلاية من أهم ال وهي (Mill troup &Boiler) للماكنتين )العطل(

 :الدراسة ت(. توصل9102ديسمبر /  - 9102)يناير /  للموسم التابعة لشركة السكر السودانية
فوفة مص )العطل( الفشل زمنيتبع التوزيع الأسي. ويمثل  الماكينات زمن )العطل(إلى أن وقت 

ل أكبر في حالة التشغي الماكينةحتمالية وجود إالمستمر. ذات الزمن نتقالية في سلسلة ماركوف إ
. لفي حالة التشغي للماكينةويبقى الاحتمال الكبير  عطل،في حالة  الماكينةمن احتمال وجود 

( 1في الحالة ) الماكينةبقاء  .و ساعات 4بـ  ( )حالة التشغيل( 0في الحالة ) الماكينة وجود يقدرو 
ومن الواضح  الصيانة في المصنع،مما يدل على كفاءة وحدة ،( مقدرة بساعة واحدة عطل)حالة 

وهذا يشير  (،01%) ا يقدرعند حدوث عطل تقريب الماكيناتالمتاح لإصلاح  الزمنأن احتمال 
 عالية. للماكينات إتاحيةإلى أن 

ن وتكوي ومعدل الإصلاح واحتمالات  )العطل(تقدير معدل الفشلدالة الموثوقية ل من خلال    
( Mill troup) )عطل( الماكينةوجد أن معدل فشل أخرى،الانتقال من حالة تشغيلية إلى مصفوقة 

عمل )حالة في حالة  الماكينتين وجودحتمالية ا  و  (،Boiler) الماكينةأكبر من معدل فشل 
الأمر الذي يتطلب مجهودًا  لعطل كبير،( Mill troup) الماكينةواحتمال تعرض  تشغلية(عالية،

هو  للماكيناتالكلي  )العطل( حتمال معدل الفشلا  و  (،Mill troup) للماكينةأكبر في الصيانة 
. الزمن في نفس الماكينتينكلا  تتعطلوهو مؤشر جيد لأن من غير المحتمل أن  ،ال ضئيل احتم

 .عطلالمن  للماكينةالتي تعاني إجراء الصيانة على الفور  تتموهذا يعني 
 الكلية الصيانة طريق عن للماكينات التشغيلية الكفاءة أهم ما أوصت به الدراسة: تحسين   

ماركوف ذات الزمن المستمر فهي تقدم  سلسلة التي تقدمها نموذج النتائج اعتماداعًلى. أوالجزئية
حيث أن  .مقياس اأكثر دقة للحالة التشغيلية للماكينات،الاهتمام العالي بالتسجيل الحقيقي للاعطال

جميع الأساليب الكمية والرياضية التي تستخدم في مجال الصيانة ، تعتمد بصفة خاصة على مدى 
 يانات.دقة تسجيل الب
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1.1: Introduction: 

The concept of maintenance refers to a group of activities aimed at 

increasing the actual use of machines. The productivity of a machine is 

defined by how it is operated and maintained throughout its life cycle, 

proper preparation and installation as well as regular maintenance, 

inspection and replacement of spare parts contribute to increasing working 

time and improving performance. the machines of the industrial plant are 

subject to many faults with the passage of time and a failure is defined as 

the loss of the machine's ability to perform an operation or set of operations 

that are necessary for the machine to provide a specific service (Lotfi, 

2011,p5). The faults are also known as repairing, preventing and avoiding 

damage resulting from use (xioaun &Lifeng, p.294).Successful 

maintenance operations require the manufacturing facility to create plans 

and effective measures that support implementation processes, one of 

which is the use of mathematical methods that can provide an indication 

characterized by a high degree of accuracy about the operational condition 

of the machines. One of these methods is the use of a Markov chain to 

measure the total failure rate of production line machines and the transition 

probabilities   form state to another. The research aims to apply one of the 

models of stochastic operations, which is the Markov chains model which 

can be used to calculate the failure rates and repair  rates of machines and 

the transition probabilities   the machines from one operational state to 

another. In order to ascertain the operating condition of the machines. 

.     
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0.2: The Research Problem: 

The machines operate via two ways while functioning broken down. when 

machine breakdown it can be fixed and gets again as new well-functioning 

as it was before .the adaption and the use of markers continuous –time 

chain model in dealing with machine that happen to have default help in 

the predication regarding the machines age and default. The adaption and 

application of this model lead to a clear improvement in service system and 

in producing a machine data base for decision makers.  

0.3 :The Importance of the  Research: 

The importance of this present study lies in the fact that Continuous –time 

Markov chain Model is one stochastic models that contribute in the study 

of default rates through limited durations. These models are used in 

working out solutions to the problem of the increasing via indorsing clear 

decisive policies to determine the running cost of the used and changeable 

derives.       

1.4: Research Objectives: 

This research aims to achieve the following objectives: 

  Application of Continuous –Time Markov Chain in repairable 

machine in Asalaya Sugar Factory. 

 Construct Markov chain transitions matrix of machines. 

 Estimate availability of  the machines in Asalaya Sugar Factory . 

 Identifying the time durations of machine default . 

 Calculating Over all failure rate for machines is negligible 

probability. 

 Predict the remain age of running machines. 
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0.5: Research Hypotheses: 

1.The failure time of machines follows Exponential distribution.  

 2.The observed transition matrix is embeddable in the continuous-time 

Markov chain 

3.The machines  have high availability  

4. Markov chain can be applied in Asalaya Sugar Company to calculate 

probabilities transmission of machines from one operational state to 

another. 

5. Over all failure rate for  machines is negligible probability. 

0.6 :Research Methodology: 

In this research I will use the analytical method, which studies the 

continuous –time markov chain and its use in the formation continuous –

time markov chain model in the machines Asalaya Sugar Factory for the 

purpose of forecasting. Also I will use the descriptive approach to present 

the applied study data with some descriptive measures and graphs to 

identify the general characteristics of the study data. 

0.7 :Research limits: 

Spatial limits: Asalaya Sugar Factory. 

Temporal limits: faults time of machines for season (2019). 

1.8: The Research Data: 

The research is based on data for number of failures and time repair 

during 12  consecutive months for the year (2019) for machines  depended 

on mechanical faults and the use of the data to Construct continuous –time 

Markov chain model .The system under study consists of two machines 
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(Mill troup) related to mill Suger cane and machine (Boiler) related to boil 

cane juice. The system performs the required function if both machines are 

in operating condition or that one of them is valid for work because one of 

them has a fault that does not affect the function of the second machine, it 

is possible to continue operating until the repair of the faulty machine is 

completed. 

0.9 : Previous Studies: 

1. Study of Boualem  Rabta, Bart van den Boom and Vasco Molini 

entitled (Continuous-time Markov Chain Approach for Modeling of 

Poverty Dynamics: Application to Mozambique) 2016 .This paper 

explores the use of continuous-time Markov chain theory to describe 

poverty dynamics. It is shown how poverty measures can be derived 

beyond the commonly reported headcounts and transition probabilities. 

The added measures include the stationary situation, the mean sojourn time 

in a given poverty state and an index for mobility. Probit regression is 

employed to identify the most influential factors on the transition 

probabilities. Moreover, sensitivity analysis shows that the results are 

robust against perturbations of the transition matrix. We illustrate the 

approach with pseudo-panel data constructed from a repeated cross-section 

survey in Mozambique, using a pairwise matching method to connect 

households in the 2003 sample to similar households in 2009. Results 

reflect high and persistent poverty levels with considerable movements 

into and out of poverty. An estimated 57 percent of the poor in the first 

wave remained poor in the second wave and 43 percent moved out. 

Likewise, 64 percent remained non-poor and 36 percent moved in. The 

corresponding stationary poverty head counties 45 percent with respective 
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mean sojourn time of 6.9 years in poverty and 8.4 years out of poverty. 

Conditioning the Markov chain on covariates identified by probit 

regressions indicates that poverty dynamics are responsive to household 

characteristic and livelihoods 

2. Study of Hassan Abdul Hadi Hassan entitled (Calculating The Overall 

Failure Rate And The Transition Operational Status Probabilities For 

machines Using Markov Chains) 2016. The concept of maintenance refers 

to several activities that aim to increase the efficient usage of the equipment 

and industrial machines, in order to achieve high productivity levels. And 

enhance the quality of products. The maintenance aims to ensure that the 

machines and production equipment are kept in optimal operating 

condition. So it’s a very important to stand on the actual operational status 

for that machines. There are many quantitative models can help the 

industrial facility to achieve this goal.The research aims to apply one of 

operations research models, which is called Markov chains to measure the 

overall machines failure rate. And the probability transmission from one 

operational condition to another. The Ibn Majid  Grneral Company had 

been chosen as a research field, to apply the Markov chains model, on the 

rolling and the dish-end machine which were selected from the tanks 

workshop. The research found that the overall failure rate is (0.15018). And 

the probability that the two machines are in operating (0.62445). And the 

probability that the rolling machine is fault and the dish-end machine is 

operating (0.18590). And the probability that the rolling machine is 

operating and the dish-end machine is fault (0.18964) is fault (0.18964). 

3. Study of Tamás Jónás , Noémi Kalló , Zsuzsanna Eszter Tóth 

entitled (Application of Markov Chains for Modeling and 

Managing Industrial Electronic Repair Processes) 2014. This paper 

presents a research of Markov chain based modeling possibilities of 
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electronic repair processes provided by electronics manufacturing service 

(EMS) companies. These stochastic processes are considered as business-

like, industrialized activities that are typically complex with a high number 

of process states and many possible paths from the start state to the 

absorbing end states. Two models based on absorbing and acyclic 

absorbing Markov chains are introduced in order to model these processes. 

The presented method provides a quick tool for determining the most 

important operational and statistical parameters of the process and 

mapping the paths that contribute the most to the total load of the process. 

These results support several managerial applications concerning e.g. 

process improvement, quality control and resource allocation. The 

proposed model is illustrated with an industrial application. 

4. Study of Mohammad Saber Fallahnezhad ,Alie Ranjbar, Faeze 

Zahmatkesh Sredorahi entitled (A Markov Model for Production 

and Maintenance Decision) 2020. In this paper, we consider a 

production machine which may fail and it inecessary to repair the machine 

after each failure and there are two statusesfor each repair; in one case, we 

should replace the machine because of catastrophic failure and in the other 

case, only small repairs are neededTimes. 

1.10 Compare between the  research and Previous Studies :  

We find most of the studies that dealt with of application of Continuous-

Time Markov Chain poverty, while they were not interested in building 

Continuous-Time Markov Chain models to forecast faults of machines or 

repairable machines. 
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0.11 :Structure of Research: 

This research contains five chapters; the first chapter includes an 

introduction, a problem, the importance, objectives, hypothesis, 

limitations, data and the methodology of the research. 

Chapter two: contains Maintenance and Availability, which includes an 

introduction, Types of machine maintenance, Condition-based 

maintenance , Four ways to improve machine maintenance , important of 

machine maintenance, Purpose of Maintenance , Failure Modes Effects 

Analysis and Availability. 

chapter four: contains the application of the research, in which data of the 

study described and the model continuous –time markov chain. 

Chapter three: contains Continuous-Time Markov Chain Model, 

Introduction, Markov processes, Markov Property, Reliability Function, 

Markov Modules in Complex Systems, Markov Analysis in Fault Tree 

Analysis, Laplace Transforms, The Exponential Distribution, The 

Generator Matrix, Steady-state probabilities. 

Chapter five: contains the results that have been findings and the proposed 

recommendations.  
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2.1 Introduction: 

   Machine maintenance is the work that keeps mechanical assets running 

with minimal downtime. Machine maintenance can include regularly 

scheduled service, routine checks, and both scheduled and emergency 

repairs. It also includes replacement or realignment of parts that are worn, 

damaged, or misaligned. Machine maintenance can be done either in 

advance of failure or after failure occurs. Machine maintenance is critical 

at any plant or facility that uses mechanical assets. It helps organizations 

meet production schedules, minimize costly downtime, and lower the risk 

of workplace accidents and injuries.  

2.2 Types of machine maintenance 

   There are nine types of machine maintenance. Each one has its pros and 

cons (except reactive maintenance, which is all cons), and can be mixed 

and matched with assets to create a balanced maintenance program.  

2.2.1 Reactive maintenance  

   Reactive maintenance refers to repairs done when a machine has already 

reached failure. Since it’s unexpected, unplanned, and usually leads to 

rushed, emergency repairs, It’s often called “fighting fires.” 

2.2.2 Run to fail maintenance 

  Run to fail maintenance is very similar to reactive maintenance. It 

involves letting a piece of equipment run until it breaks down. However, 

run to fail is a deliberate choice, whereas reactive maintenance is not. A 

plan is in place to ensure parts and labour are available to get the asset up 

and running, or replaced, as soon as possible. 

 

https://www.fiixsoftware.com/blog/7-ways-to-reduce-downtime-with-maintenance-technology/
https://www.fiixsoftware.com/blog/essential-guide-to-comparing-types-of-maintenance-strategies/
https://www.fiixsoftware.com/maintenance-strategies/reactive-maintenance/
https://www.fiixsoftware.com/run-to-failure-maintenance/
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2.2.3 Routine maintenance  

Routine maintenance consists of basic maintenance tasks, such as 

checking, testing, lubricating, and replacing worn or damaged parts on a 

planned and ongoing basis 

2.2.4 Corrective maintenance 

 Corrective maintenance is any work that gets assets back into proper 

working order, although it’s most commonly associated with smaller, non-

invasive tasks that fix a problem before a complete failure occurs. For 

example, realigning a part during a routine inspection. 

2.2.5 Preventive maintenance  

    Preventive maintenance refers to any regularly scheduled machine 

maintenance intended to identify problems and repair them before failure 

occurs. Preventive maintenance can be split up into two predominant types: 

Time-based preventive maintenance and usage-based preventive 

maintenance. Time-based preventive maintenance are tasks scheduled at a 

certain time interval, such as the last day of every month or every 10 days. 

Usage-based preventive maintenance is when work is scheduled based on 

the operation of equipment, such as after 500 miles or 15 production cycles. 

2.3: Condition-based maintenance  

Condition-based maintenance depends on monitoring the actual condition 

of assets in order to perform maintenance when there is evidence of 

decreased performance or upcoming failure. This evidence can be obtained 

through inspection, performance data, or scheduled tests, and it can be 

gathered either on a regular basis or continuously, through the use of 

internal sensors 

https://www.fiixsoftware.com/routine-maintenance/
https://www.fiixsoftware.com/corrective-maintenance/
https://www.fiixsoftware.com/maintenance-strategies/preventative-maintenance/
https://www.fiixsoftware.com/condition-based-maintenance/
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2.4: Four ways to improve machine maintenance 

There are four main areas to focus on when aiming to improve machine 

maintenance at your facility: Planning, precision, protection, and 

measurement. 

1. Planning 

     Having a machine maintenance plan in place will ensure that parts, 

equipment, and labour are available when they’re needed, and that there is 

a strategy in place to use those resources effectively. Many maintenance 

plans will include both planned and scheduled maintenance, which will 

identify problems before failure occurs, and planned unscheduled 

maintenance, which ensures that failures are repaired, and assets are 

returned to working order as quickly as possible. 

2. Precision 

Establishing a precision maintenance strategy will ensure that maintenance 

tasks are performed consistently, accurately, and according to industry best 

practices. 

In order for precision maintenance to be effective, you must ensure you 

have these four elements:  

 Workers must have the training and skills to perform maintenance 

tasks quickly and accurately 

 Tools and equipment that are needed to perform maintenance tasks 

must be available 

 All maintenance materials, such as lubricants and spare parts, must 

be high quality and free from contamination 

https://www.fiixsoftware.com/planned-maintenance/
https://www.fiixsoftware.com/precision-maintenance/
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 Maintenance plans and workflows must be accessible and easy to 

follow 

3. Protection 

A key part of improving maintenance involves keeping workers safe. 

Workers must have adequate personal protective equipment (PPE) and be 

trained in how to use it correctly. There are a few important tasks to keep 

on top of when you’re looking to improve safety:  

 Frequent checks to ensure guards or barriers are in use and are not 

damaged 

 Inspections of electrical equipment, power cords and switches to 

identify exposed wires 

 Regular workplace safety training for every employee 

4. Measurement 

The final piece of the machine maintenance puzzle is measuring asset 

performance. Without data, condition-based, predictive, and prescriptive 

maintenance plans will not work. Accurate data about how your machinery 

performs lets you choose the right maintenance strategy, which will lead 

to better, more reliable performance. 

2.5: Important of Machine Maintenance  

  The importance of an effective maintenance program cannot be 

overlooked because it plays such an important role in the effectiveness of 

Lean manufacturing. As in personal health care insurance, maintenance 

may be considered the heath care of our manufacturing machines and 

equipment. It is required to effectively reduce waste and run an efficient, 

continuous manufacturing operation, business, or service operation. The 

https://www.fiixsoftware.com/blog/establish-an-effective-health-and-safety-program-with-your-cmms/
https://www.fiixsoftware.com/resource-center/maintenance-metrics/
https://www.fiixsoftware.com/resource-center/maintenance-metrics/
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cost of regular maintenance is very small when it is compared to the cost 

of a major breakdown at which time there is no production. 

2.6: Purpose of Maintenance   

   Purpose of Maintenance The main purpose of regular maintenance is to 

ensure that all equipment required for production is operating at 100% 

efficiency at all times. Through short daily inspections, cleaning, 

lubricating, and making minor adjustments, minor problems can be 

detected and corrected before they become a major problem that can shut 

down a production line. A good maintenance program requires company-

wide participation and support by everyone ranging. 

2.6.1: Breakdowns  

    A machine’s breakdown true cost is sometimes difficult to measure. A 

recent survey showed that the cost for a machine breakdown is more than 

just the maintenance labor and materials to make the repair. A recent 

survey showed the actual cost for a breakdown between four to fifteen 

times the maintenance costs. When the breakdown causes production to 

stop, the costs are very high because no parts are being produced.For years, 

maintenance has been treated as a dirty, boring and often overlooked job. 

It is very important to get the best productivity from a company’s 

equipment but it is not recognized as a part of the operation that produces 

revenue. The simple question is often, "Why do we need to maintain things 

regularly?" The answer is, "To keep things as reliable as possible. 

2.6.2: General Maintenance 

The challenge for reliability is dealing with data from the past. Failure is 

modeled, analyzed and, to some extent, predicted. Unfortunately, the 

prediction does not take into account users or working environment-related 
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restrictions, and often the results are not those useful. Machine conditions 

are monitored at the machine level, one machine at a time. It is a "Fail and 

Fix approach." Troubleshooting is the primary purpose. 

2.6.3: Autonomous Maintenance  

The purpose of autonomous maintenance is to develop operators to be able 

to take care of small maintenance jobs on the equipment they use so skilled 

maintenance people can concentrate on value-added activity and technical 

repairs. 

 2.6.4: The Maintenance World of Tomorrow 

 With modern computing and information technologies, more products and 

machines are equipped with sensors on critical parts of machines to warn 

of potential failures long before they may fail so they can be corrected 

before they stop production.  

2.6.5: Intelligent Maintenance  

     Systems Intelligent maintenance systems (IMS) Predict and Forecast 

equipment performance so "near-zero breakdown" status is possible. Near-

zero downtime focuses on machine performance techniques to minimize 

failures. Data comes from two sources: sensors (mounted on the machines) 

and the entire enterprise system (including quality data, past history and 

trending). By looking at data from these sources (current and historical), it 

can predict future performance. 

2.7:  Failure Modes Effects Analysis 

     Failure Modes and Effects Analysis (FMEA) is methodology for 

analyzing potential reliability problems early in the development cycle 

where it is easier to take actions to overcome these issues, thereby 
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enhancing reliability through design. FMEA is used to identify potential 

failure modes, determine their effect on the operation of the product, and 

identify actions to mitigate the failures. A crucial step is anticipating what 

might go wrong with a product. Failure Modes and Effects Analysis 

(FMEA) is applied to each system, subsystem, and component identified 

in the boundary definition. For every function identified, there can be 

multiple failure modes. The FMEA addresses each system function, all 

possible failures, and the dominant failure modes associated with each 

failure. The FMEA then examines the consequences of failure to determine 

what effect failure has on the mission or operation, on the system, and on 

the machine. Even though there are multiple failure modes, often the 

effects of failure are the same or very similar in nature. From a system 

function perspective, the outcome of any component failure may result in 

the system function being degraded. Similar systems and machines will 

often have the same failure modes, but the system use will determine the 

failure consequences. Other term that is used in this area is FMECA Failure 

Mode Critically Analysis. The most important contribution of FMECA 

with respect to FMEA that is focusing mainly on Criticality of the 

identified failures therefore sometimes, called single point failure mode 

.However in many texts and sources, the terms FMEA and FMECA are 

used to explain the same methodology and usually both include the 

criticality analysis. FMECA is an essential tool when Reliability Centered 

Maintenance (RCM) approach is adopted. It is used to identify what are 

the most critical components, their failure modes and to rank them 

according with the consequences they might have on the system The 

FMECA procedure is divided into the following steps:  

Identifying all potential failure modes and their causes. 

 Evaluation of the effects on the system of each failure mode.  
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Identifying failure detection methods.  

Identifying corrective measures for failure modes.  

Assessing the frequency and severity of important failures for criticality 

analysis. 

2.7.1:  Failure Effects 

 The effects of the failure for each failure mode are to be listed as follows:  

The Local Effect: is to describe the initial change in the equipment item 

or component operation when the failure mode occurs; failure detection 

methods, if any, are to be identified and availability of standby 

system/equipment to provide the same function. 

 The Functional Failure is to describe the effect of the failure mode on the 

system or functional group; such as potential physical damage to the 

system/equipment item; or potential secondary damage to either other 

equipment items in the system or unrelated equipment items in the vicinity.  

The End Effect is to describe the overall effect on the vessel addressing 

propulsion, directional control, environment, fire and/or explosion. For 

offshore drilling units and offshore oil and gas production facilities, the 

End Effects would address drilling, 

2.8: Failure Rate 

     A fault is defined as the loss of the machine's ability to perform an 

operation or set of operations that are necessary for the machine to provide 

a specific service (Lotfi, 2011,p.5) 

    faulty behavior can be described by a number of mathematical functions 

and quantitative methods, which differ in complexity according to the 
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nature of the machines system (Dhillo, 2002, p.191), The commonly used 

mathematical function to calculate fault rate in an exponential distribution 

is:  

 

)(

)(

tR

tf


…………..………………….. (2.1) 

 

Where 𝑓(𝑡) probability density function (pdf) of fault and  R(t) Reliability  

function 

2.8.1: Mean time to failure (MTTF) 

    One of basic measures of reliability is mean time to failure (MTTF) .This 

statistical value is defined as the average time expected until the first failure 

of machine. MTTF can calculated by the failure rate inverse,  /1 . 

Assuming failure rate 

2.8.2: Mean time between failures (MTBF) 

The basic measure of reliability is mean time between failures (MTBF) for 

repairable equipment. MTBF can be expressed as the time passed before a 

component, assembly, or system breakdowns, under the condition of a 

constant failure rate. On the other hand, MTBF of repairable systems is the 

predicted value of time between two successive failures. It is a commonly 

used variable in reliability and maintainability analyses. MTBF can be 

calculated as the inverse of the failure rate,  , for constant failure rate 

systems. For example, for a component with a failure rateof 2 failures per 

million hours, the MTBF would be the inverse of that failure rate  , or: 
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MTBF =
1

𝜆
 ……………………………………(2.2) 

  

2.8.3: Mean time to repair (MTTR) 

   Mean time to repair (MTTR) can described as the total time that spent to 

perform all corrective or preventative maintenance repairs divided by the 

total of repair numbers. It is the anticipated time period from a failure (or 

shut down) to the repair or maintenance fulfillment. This is a term that 

typically only used in repairable systems. 

2.9: Failure types 

Failures generally be grouped into three basic types, though there may be 

more than one cause for a particular case. The three types included: early 

failures, random failures and wear-out 

2.9.1: Failure Analysis and Prevention Failures. 

In the early life stage, failures as infant mortality often due to defects that 

escape the manufacturing process. In general, when the defective parts fail 

leaving a group of defect free products, the number of failures caused by 

manufacture problems decrease. Consequently the early stage failure rate 

decreases with age. During the useful life, failures may related to freak 

accidents and mishandling that subject the product to unexpected stress 

conditions. Suppose the failure rate over the useful life is generally very 

low and constant. As the equipment reaches to the wear-out stage, the 

degradation of equipment is related to repetitious or constant stress 

conditions. The failure rate during the wear-out stage increases 

dramatically as more and more occurs failure in equipment that caused by 

wear-out failures.  



21 
 

2.9.2: Early life period 

   To ensure the integrity of design, we used many methods. Some of the 

design techniques include: burn-in (to stress devices under constant 

operating conditions); power cycling (to stress devices under the surges of 

turn-on and turn-off); temperature cycling (to mechanically and electrically 

stress devices over the temperature extremes); vibration; testing at the 

thermal destruct limits; highly accelerated stress and life testing; etc. 

Despite usage of all these design tools and manufacturing tools such as six 

sigma and quality improvement techniques, there will still be some early 

failures because we will not able to control processes at the molecular level. 

There is always the risk that, although the most up to date techniques are 

used in design and manufacture, early breakdowns will happen. In order to 

remove these risks — especially in newer product consumes some of the 

early useful life of a module via stress screening.The start of operating life 

in initial peak represents the highest risk of failure. 

2.10: MTBF vs. useful life 

  Sometimes MTBF is Mistakenly used instead of component’s useful life. 

Consider, the useful life of a battery is 10 hours and the measure of MTBF 

is 100,000 hours. This means that in a set of 100,000 batteries, there will 

be about one battery failure every 1 hour during their useful lives. 

Sometimes these numbers are so much high, it is related to the basis 

calculations of failure rate in usefulness period of component, and we 

suppose that the component will remain in this stage for a long period of 

time. In the above example, wear-out period decreases the component life, 

and the usefulness period becomes much smaller than its MTBF so there 

is not necessarily direct correlation between these two. Consider another 

example, there are 15,000 18-year-old humans in the sample. Our 
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investigation is related to 1 year. During this period, the death rate became 

15/15,000 = 0.1%/year. The inverse of the failure rate or MTBF is 1/0.001 

= 1000. This example represents that high MTBF values is different from 

the life expectancy. As people become older, more deaths occur, so the best 

way to calculate MTBF would be monitor the sample to reach their end of 

life. Then, the average of these life spans are computed. Then we approach 

to the order of 75–80 which would be very realistic. 

2.11: Wear-Out Period 

As fatigue or wear-out occurs in components, failure rates increasing high. 

Power wear-out supplies is usually due to the electrical components 

breakdown that are subject to physical wear and electrical and thermal 

stress. Furthermore, the MTBFs or FIT rates calculated in the useful life 

period no longer apply in this area of the graph. A product with a MTBF 

of 10 years 

can still exhibit wear-out in 2 years. The wear-out time of components 

cannot predict by parts count method. Electronics in general, and Vicar 

power supplies in particular, are designed so that the useful life extends 

past the design life. This way wear-out should never occur during the useful 

life of a module. 

2.12: Failure sources 

  There are two major categories for system outages: 1. Unplanned outages 

(failure) and 2.Planned outages (maintenance) that both conducted to 

downtime. In terms of cost, unplanned and planned outages are compared 

but use the redundant components maybe mitigate it. The planned outage 

usually has a sustainable impact on the system availability, if their 

schematization be appropriate. They are mostly happen due to 

maintenance. Some causes included periodic backup, changes in 



22 
 

configuration, software upgrades and patches can caused by planned 

downtime. According to prior research studies 44% of downtime in service 

providers is unscheduled. This downtime period can spent lots of money. 

Another categorization can be: 

• Internal outage 

• External outage 

     Specification and design flaws, manufacturing defects and wear-out 

categorized as internal factors. The radiation, electromagnetic interference, 

operator error and natural disasters can considered as external factors. 

However, a well-designed system or the components are highly reliable, 

the failures are unavoidable, but their impact mitigation on the system is 

possible. 

2.13: Failure Rate Data 

The most common ways that failure rate data can be obtained as following: 

• Historical data about the device or system under consideration. 

Many organizations register the failure information of the equipment or 

systems that they produce, in which calculation of failure rates can be used 

for those devices or systems. For equipment or systems that produce 

recently, the historical data of similar equipment or systems can serve as a 

useful estimate. 

• Government and commercial failure rate data. 

The available handbooks of failure rate data for various equipment can be 

obtained from government and commercial sources. MIL-HDBK-217F, 

reliability prediction of electrical equipment, is a military standard that 

provides failure rate data for many military electronic components. Several 
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failure rate data sources are available commercially that focus on 

commercial components, including some non-electronic components. 

• Testing 

The most accurate source of data is to test samples of the actual devices or 

systems in order to generate failure data. This is often prohibitively 

expensive or impractical, so that the previous data sources are often used 

instead. 

2.14 Reliability Model 

We recall the definition of the most common stochastic models 

which are used to of repairable system the model is reliability models, 

homogenous Poisson process and non-homogenous process and families 

of life time distribution. 

2.14.1: Measures of Reliability  

  The probability of fault is continued for a time can be defined as follows 

( ) ( )P t t F t  …, 0t  …………………(2.3) 

Where : t is random variable indicates the time of fault i.e. ( )F t denoted to 

probability machine in time t and is called follow non  reliability. 

    If we define reliability the possibility of machine work successfully 

through time t , can be written follow reliability as follows:   

 ( ) 1 ( ) ( )R t F t P t t    ………………(2.4) 

If we denoted to follow density random variable for fault with ( )f t  can be 

expression for follow reliability as follows: 
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( ) 1 ( ) 1 ( ) ( )

t

t

R t F t f t dt f t dt





     
…………(2.5) 

If the time of fault described with exponentional density the follow density 

it: 

1
( )

t

f t e 






…………………., 0t  , 0  ………..(2.6) 

So it can be rewritten the follow reliability form: 

                   

1
( )

t t

t

R t e dt e 




 

 
..…………, 0t  ……………….(2.7)       

 

2.14.2: Fault Rate:  

  The possibility of fault machine in specific time period 1t , 2t  can be 

expressed with follow non reliability.   

2

1 1 2

1 2( ) ( ) ( ) ( ) ( )

t

t t t

f t dt f t dt f t dt R t R t

 

     
 

The called the at which get faults in specific time period 1t , 2t , with  rate 

faults throught period .denoted with 1t  for the not get fault at the beginning 

of the period and equation of the faults as  : 

  
2

2 1 1

( ) ( )

( )

R t R t

t t R t




…………………………..(2.8)       

And not the faults rate for time .if we denoted for the period 2t  with: 

 t t 
,be equation (6.3). 
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( ) ( )

. ( )

R t R t t

t R t

  

 …………………………(2.9) 

And means with rate it number of faults in each unit time. 

2.14.3: Hazard Rate  

   Define as limits of rate of faults for a period of near-zero equation can be 

written in the form:  

0

( ) ( ) 1 ( )
( ) lim

. ( ) ( )t

R t R t t dR t
h t

t R t R t dt 

    
       

 

( )
( )

( )

f t
h t

R t


…………………………….(2.10) 

To find out possibility of fault machine it have age t in time period  ,t t t 

written as: 

 
( ).posf h t dt

………………………………(2.11) 

    The hazard rate refer to change in rate fault through age of machine. To 

find out hazard rate for the sample machines N  (machine consisting of n 

element). We will assume ( )sN t is random variable denotes to number of 

machines working successfully at time t  thus, the ( )sN t is binomial 

distribution.   

     ( ) ( ) 1 ( )
.( )

n N n

s

N
P N t n R t R t

N N n


   

  

0,1,...,n N  

The expected value for ( )sN t : 

   ( ) . ( ) ( )sE N t N R t N t 
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( ( )) ( )
( ) sE N t N t

R t
N N

 
……………………….(2.12) 

And reliability in time t, it is arithmetic mean for rate success in t thus: 

( ) ( )
( ) 1 ( ) 1

N t N N t
F t R t

N N


    

……………….(2.13) 

And rate density fall equal 

( ) 1 ( )
( ) .

dF t dN t
F t

dt N dt
  

 

2.15: Availability: 

Availability is an important metric used to assess the performance of 

repairable systems, accounting for both the reliability and maintainability 

properties of a component or system. 

2.15.1: Availability Classifications 

The classification of availability is somewhat flexible and is largely based 

on the types of downtimes used in the computation and on the relationship 

with time (i.e., the span of time to which the availability refers). As a result, 

there are a number of different classifications of availability, including: 

 Instantaneous (or Point) Availability 

 Average Uptime Availability (or Mean Availability) 

 Steady State Availability 

 Inherent Availability 

 Achieved Availability 

 Operational Availability 
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2.15.1.1: Instantaneous or Point Availability, A(t) 

   Instantaneous (or point) availability is the probability that a system (or 

component) will be operational (up and running) at a specific time, t. This 

classification is typically used in the military, as it is sometimes necessary 

to estimate the availability of a system at a specific time of interest (e.g., 

when a certain mission is to happen). The point availability is very similar 

to the reliability function in that it gives a probability that a system will 

function at the give time, t. Unlike reliability, however, the instantaneous 

availability measure incorporates maintainability information. At a given 

time, t, the system will be operational if one of the following conditions is 

met .(Elsayed, E.,1996). 

The system functioned properly since the last repair at time u, 0 < u < t. 

The probability of this condition is: 

 

t

duumutR
0

)()(

…………………..……….(2.14) 

with m(u) being the renewal density function of the system. Consequently, 

the point availability is the summation of the above two probabilities, or: 

 

t

duumutRtRtA
0

)()()()(

…………..……….(2.15) 

2.15.1.2: Average Uptime Availability (or Mean Availability)  

The mean availability is the proportion of time during a mission nor time 

period that the system is available for use. It represents the mean value of 

the instantaneous availability function over the period (0, T] and is given 

by: 
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
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duuA
t

tA
0

)(
1

)(

……………...……….(2.16) 

2.15.1.2: Steady State Availability  

   The steady state availability of the system is the limit of the availability 

function as time tends to infinity. Steady state availability is also called the 

long-run or asymptotic availability. A common equation for the steady 

state availability found in literature is: 

)()( lim tAA
t 


…………...……….(2.17) 

However, it must be noted that the steady state also applies to mean 

availability. The next figure illustrates the steady state availability 

graphically: 

 

 

Figure (2.1) Illustration of point availability approaching steady 

state. 

 For practical considerations, the availability function will start 

approaching the steady state availability value after a time period of 

approximately four times the average time-to-failure. This varies 



29 
 

depending on the maintainability issues and complexity of the system. In 

other words, you can think of the steady state availability as a stabilizing 

point where the system's availability is roughly a constant value. 

2.15.1.3: Inherent Availability 

Inherent availability is the steady state availability when considering only 

the corrective maintenance (CM) downtime of the system. This 

classification is what is sometimes referred to as the availability as seen by 

maintenance personnel. This classification excludes preventive 

maintenance downtime, logistic delays, supply delays and administrative 

delays. Since these other causes of delay can be minimized or eliminated, 

an availability value that considers only the corrective downtime is the 

inherent or intrinsic property of the system. Many times, this is the type of 

availability that companies use to report the availability of their products 

(e.g., computer servers) because they see downtime other than actual repair 

time as out of their control and too unpredictable. 

        The corrective downtime reflects the efficiency and speed of the 

maintenance personnel, as well as their expertise and training level. It also 

reflects characteristics that should be of importance to the engineers who 

design the system, such as the complexity of necessary repairs, ergonomics 

factors and whether ease of repair (maintainability) was adequately 

considered in the design .For a single component, the inherent availability 

can be computed by: 

 MTTR+MTBF

MTBF
AI 

……..............……….(2.18) 

Where: 

MTBF = Uptime / Number of System Failures 
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MTTR = CM Downtime / Number of System Failures 

2.15.1.4:Achieved Availability 

Achieved availability is very similar to inherent availability with the 

exception that preventive maintenance (PM) downtimes are also included. 

Specifically, it is the steady state availability when considering corrective 

and preventive downtime of the system. The achieved availability is 

sometimes referred to as the availability seen by the maintenance 

department (includes both corrective and preventive maintenance but does 

not include logistic delays, supply delays or administrative 

delays).Achieved availability can be computed by looking at the mean time 

between maintenance actions, MTBM, and the mean maintenance 

downtime, : 

 M+MTBM

MTBM
AA 

……..............……….(2.19) 

2.15.1.5:Operational Availability 

Operational availability is a measure of the "real" average availability over 

a period of time and includes all experienced sources of downtime, such as 

administrative downtime, logistic downtime, etc. The operational 

availability is the availability that the customer actually experiences. It is 

essentially the posterior availability based on actual events that happened 

to the system. The previously discussed availability classifications are a 

priori estimates based on models of the system failure and downtime 

distributions. In many cases, operational availability cannot be controlled 

by the manufacturer due to variation in location, resources and other factors 

that are the sole province of the end user of the product. 

Operational availability is the ratio of the system uptime to total time. 

Mathematically, it is given by: 
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     Cycle Operating
0

UPtime
A 

……..............……….(2.20) 

where the operating cycle is the overall time period of operation being 

investigated and uptime is the total time the system was functioning during 

the operating cycle. (Note: The operational availability is a function of 

time, t, or operating cycle.) 
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3.1 Introduction: 

The models in the first six chapters are all based on the assumption that the 

components and the systems can be in one out of two possible states: 

functioning state or a failed state. We have also seen that the models are 

rather static and not well suited for analysis of repairable systems.In this 

chapter we will intro- duce a special type of stochastic processes, called 

Markov’ chains, to model systems with several states and the transitions 

between the states. A Markov chain is a stochas- tic process )0),(( ttx  that 

possesses the Markov property. (We will define the Markov property 

clearly later.) The random variable X (t) denotes the stute of the process at 

time t. The collection of all possible states is called the state space, and we 

will denote it by X. The state space X is either finite or countable infinite.   

In most of our applications the state space will be finite and the states will 

correspond to real states of a system (see Example 8.1). Unless stated 

otherwise, we take X to be {O, 1,2, . . . , r), such that X contains r + 1 

different states. The time may be discrete, taking values in (0, 1, 2, . . .}, or 

continuous.  When the time is discrete, we have a discrete-time Markov 

chain; and when the time is continuous, we have a continuous- time 

Markov chain. A continuous-time Markov chain is also called a 

Markovprocess. When the time is discrete, we denote the time by n and the 

discrete-time Markov chain by (X,l,n = 0, I, 2, ...) 
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Table 3.1 

State Component 1 Component 2 

3 Functioning Functioning 

2 Functioning Failed 

1 Failed Functioning 

0 Failed Failed 

 

The presentation of the theoretical basis of the Markov chains is rather brief 

and limited. The reader should consult a textbook on stochastic processes 

for more details. An excellent introduction to Markov chains may be found 

in, for example, Ross (1996). A very good description of continuous-time 

Markov chains and their application in reliability engineering is given by 

(Cocozza-Thivent (1997). The main focus in this book is on continuous-

time Markov chains and how these chains can be used to model the 

reliability and availability of a system. In the follow- ing, a continuous-

time Markov chain will be called a Markov process. In this chapter, we 

start by defining the Markov property and Markov processes. A set of 

linear, first order differential equations, called the Kolmogorov  equations, 

are established to de- termine the probability distribution

        tptptptp rIo ,....,,  of the Markov process at time t, where Pi (t) is the 

probability that the process (the system) is in state i at time t. We then show 

that P(t), under specific conditions, will approach a limit P when t . This 

limit is called the steady-state distribution of the process (the system). 

Several system performance measures - like state visit frequency, system 

availability, and mean time to first system failure - are introduced. The 
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steady-state distribution and the system performance measures are then 

determined for some sim- ple systems like series and parallel systems, 

systems with dependent components, and various types of standby 

systems. Some approaches to analysis of complex sys- tems are discussed.  

The time-dependent solution of the Kolmogorov equations is briefly 

discussed. The chapter ends by a brief discussion of semi-Markov 

processes, a generalization of the Markov processes. 

3.2 Markov Processes: 

With 100% capacity, 80% capacity, and so on. In other applications it is 

important to distinguish the various failure modes of an item, and we may 

define the failure modes as states. For a complex system, the number of 

states may hence be overwhelming, and we may need to simplify the 

system model, and separately consider modules of the system. 

3.3 Markov Property 

Consider a stochastic process ( )(tx 0t ) with continuous time and state 

space X = (0, 1,2, . . . , r). Assume that the state of the process at time s is 

X (s) = i. The conditional probability that the process will be in state j at 

time   t + s is Pr(X (t + s) = j I X(s) = i, X (u) = ( uux 0),( s < ) 

Where (x (u), 0   u < s} denotes the “history” of the process up to, but not 

including, time s. The process is said to have the Markov property if: 

          

 Pr (X (t + s) = j 1 X(t) = i, X(u) = x(u), 0   u < s) 

= Pr(X(t + s) = j I X(s) = i)…………………………….(3.1) 

 F   or all possible x (u), 0   u < s 
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In other words, when the present state of the process is known, the future 

development of the process is independent of anything that has happened 

in the past. A stochastic process satisfying the Markov property (8.1) is 

called a Markov pro- cess (or a continuous-time Markov chain). We will 

further assume that the Markov process for all i, j in X fulfills. 

Pr (X (t + s) = j 1 X(s) = i) = Pr(X (t) = j I X(0) = i) for all s, t   0 

which says that the probability of a transition from state i to state j does not 

depend on  the  global time  and only  depends on the time  interval 

available for  the transi- tion. A process with this property is known as a 

process with stationary  transition probabilities, or as a time-homogeneous 

process. From now on we will only consider Markov processes (i.e., 

processes fulfilling the Markov property) that have stationary transition 

probabilities. A consequence of this assumption is that a Markov process 

cannot be used to model a system where the transition probabilities are 

influenced by long-term trends and/or seasonal variations. To use a 

Markov process, we have to assume that the environmental and operational 

conditions for the system are relatively stable as a function of time. 

       Consider a Markov process (X (t), t 0) with state space X = (0, 1,2, . . 

. , r} and stationary transition probabilities. The transition probabilities of 

the Markov process Pij (t) = Pr(X (t) = j I X (0) = i) for all i, j X 

may be arranged as a matrix 
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Since all entries in P(t) are probabilities, we have that 

x j i, 10, f allfor 1)(,0  tpj  

When a process is in state i at time 0, it must either be in state i at time t or 

have made a transition to a different state. We must therefore have  

1)(
0




tpij
r

j  For all i x  

The sum of each row in the matrix P is therefore equal to 1. Note that the 

entries in row i represent the transitions out of state i (for j  i), and that the 

entries in column j represent the transition into state j (for i   j). 

 Let 0 = So  S1   S2  . . . be the times at  which  transitions  occur, and 

let iii ssT  1  the it intercurrence  time, or sojourn time, for i = 1,2, . . .. A 

possible “path” of a Markov process is illustrated in Fig. 8.1. The path is 

sometimes called the trajectory of the process. We define Sj such that 

transition i takes place immediately before Si, in which case the trajectory 

of the process is continuous from the right. The Markov process in Fig. 8.1 

starts out at time t = 0 in state 6, and stays in this state a time TI. At time 

 S1 = TI the process has a transition to state 0 where it stays a time T2. At 

time S2 = TI + T2 the process has a transition to state 4, and so on. 

Consider a Markov process that enters state i at time 0, such that X(0) = i. 

Let i


be the sojourn time in state i. [Note that Ti denotes the i th 

interoccurrence time, 

  We may now (Ross, 1996, p. 232) construct a Markov process as a 

stochastic process having the properties that each time it enters a state i:  

1. The amount of time z. the process spends in state i before making a 

transition into a different state is exponentially distributed with rate, say i
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. 2. When the process leaves state i, it will next enter state j with some 

probability Pij, where 






r

ij
j

ijp
0

1

. 

The mean sojourn time in state i is therefore 

i

itE


1
)( 



 

If i , state i is called an instantaneous state, since the mean sojourn time 

in such a state is zero. When the Markov process enters such a state, the 

state is instantaneously left. In this book, we will assume that the Markov 

process has no instantaneous states, and that 0  i for all i. If 0i , 

then state i is called absorbing since once entered it is never left.  In 

Sections 8.2 and 8.3 we will assume that there are no absorbing states. 

Absorbing states are further discussed in Section 8.5. 

We may therefore consider a Markov process as a stochastic process that 

moves from state to state in accordance with a discrete-time Markov chain.  

The amount of time it spends in each state, before going to the next state, 

is exponentially distributed. 

       Let 𝑇𝑖𝑗 be the time the process spends in state i before entering into 

state (j  i). The time 𝑇𝑖𝑗 is exponentially distributed with rate aij.  

Consider a short time interval at. Since Tij and iT
~

are exponentially 

distributed, we have that 

ttTptp i

t

irij
i 
 

1)
~

()( 
 

ttTptp ij

t

irij
i 
 1)

~
()(
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when t is “small”. We therefore have that  

i
ir

t
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t t
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lim

)(
lim

00 for i j  

For a formal proof, see Ross (1996, p. 239), 

Since we, from (8.4) and (8.5), can deduce i and Pij when we know aij for 

all i, j in X, we  may equally well define a Markov process by specifying 

(i) the  state space X and (ii) the transition rates aij for all i  j in X. The 

second definition is often more natural and will be our main approach in 

the following. We may arrange the transition rates aij as a matrix 

 

                             




























rrrr

r

r

aaa

aaa

aaa

A

...

......

......

......

...

...

10

11110

00100

………………….(3.3) 

 

Where we have introduced the following notation for the diagonal elements 






r

ij
j

ijiii
0



 

We will call A the transition rate matrix of the Markov process. Some 

authors refer to the matrix A as the infinitesimal generator of the process. 

Observe that the entries of row i are the transition rates out of state i (for j 
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 i). We will call them departure rates from state i. According to (8.5) 

ii    is the sum of the departure rates from state i, and hence the total 

departure rate from state i. The entries of column i are transition rates into 

state i (for j  i). Notice that the sum of the entries in row i is equal to 0, 

for all i X 

Procedure to Establish the Transition Rate Matrix to establish the transition 

rate matrix A, we have to: 

1. List and describe all relevant system states. Non-relevant states should 

be removed, and identical states should be merged (e.g, see Example 8.3). 

Each of the remaining states must be given a unique identification. In this 

book we use the integers from 0 up to r. We let r denote the best functioning 

state of the system and 0 denote the worst state.  The state space of the 

system is thus X = (0, 1 . . . r]. Any other sequence of numbers, or letters 

may, however, also be used.  

2. Specify the transition rates aij for all i   j and i, j X. Each transition 

will usually involve a failure or a repair. The transition rates will therefore 

be failure rates and repair rates, and combinations of these.  

3. Arrange the transition rates aij for i  j as a matrix, similar to the matrix 

(8.8). (Leave the diagonal entries aij open.)  

4. Fill in the diagonal elements 𝑎𝑖𝑖 such that the sum of all entries in each 

row is equal to zero, or by using (8.9) 

A Markov process may be represented graphically by a state transition 

diagram that records the 𝑎𝑖𝑗  of the possible transitions of the Markov 

process. The state transition diagram is also known as a Markov diagram. 

In the state transition diagram, circles are used to represent states, and 
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directed arcs are used to represent transitions between the states. An 

example of a state transition diagram is given in Fig. 8.2. 

Transition rate to state 2 is a32 = 2 , and the transition rate to state 1 is a31 =

1 . The sojourn time in state 3 is therefore 
3 = min ( 31 , 32 ], where Tij is 

the time to the first transition from state i to state j. T3 has an exponential 

distribution with rate a31 + a32 = 1 + 2 , and the mean sojourn time in state 

3 is l/( 1 + 2 ). 

 When the system is in state 2, the next transition may either be to state 3 

(with rate a23 = p2) or to state 0 (with rate a20 = 1 ). The probability that the 

transition is to state 3 is 2 /( 2  + 1 ), and the probability that it goes to state 

0 is 1 /( 2  + 1 ). The memoryless property of the exponential distribution 

ensures that component 1 is as good as new when the system enters state 

2. In this example we assume that component 1 has the same failure rate).I 

in state 3, where both components are functioning, as it has in state 2, where 

only component 1 is functioning. The failure rate a20 of component 1 in 

state 2 may, however, easily be changed to a failure rate 1
 that is different 

from (e.g., higher than) 1 . 

 When the system is in state 0, both components are in a failed state and 

two independent repair crews are working to bring the components back to 

a functioning state. The repair times To1 and To2 are independent and 

exponentially distributed with repair rates p1 and p2, respectively. The 

sojourn time To in state 0, min {Tol, To2 is exponentially distributed with 

rat ( 1  + 2  ), and the mean downtime (MDT) of the system is therefore 1/ 

( 1  + 2  ). When the system enters state 0, one of the components will 

already have failed and be under repair when the other component fails. 
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The memoryless property of the exponential distribution ensures, however, 

that the time to complete the repair is independent of how long the 

component has been under repair 

The transition rate matrix of the system is thus: 


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

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A

......................(3.4) 

3.4 Chapman-Kolmogorov Equations 

 By using the Markov property and the law of total probability, we realize 

that 





r

k

kjikij sptpstp
0

)()()(

for all ji, 0,,  stx ………………………..(3.5) 

known as the Chapman-Kolmogorov equations. The equations may, by 

using (8.2), be written in matrix terms as 

)().()( sptpstp  ……………………….(3.6) 

Notice that P (0) = II is the identity matrix.  Notice also that if t is an integer, 

it follows that P (t) = [P (1)] t. It can be shown that this also holds when t 

is not an integer. 

Kolmogorov Differential Equations 

 We will try to establish a set of differential equations that may be used to 

find Pij (t), and therefore start by considering the Chapman-Kolmogorov 

equations 



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r

k

kjikij tptpttp
0

)()()(

………………………….(3.7) 
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Note that we here split the interval ( tt ,0 ) in two parts.  First, we consider 

a transition from state i to state k in the small interval ( t,0 ), and thereafter 

a transition from state k to state j in the rest of the interval. We now 

consider 

)()](1[)()()()(
0

tptptptptpttp ijii

r

ik
k

kjikijij  



…………………..(3.8) 

By dividing by t  and then taking the limit as t 0 , we obtain 
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……………(3.9) 

Since the summing index is finite, we may interchange the limit and 

summation on the right-hand side of (8.12) and obtain, using (8.6) and 

(8.7), 
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ikij 
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 

………………(3.10) 

Where aii = i , and the following notation for the time derivative is 

introduced: 

)()( tp
d

d
tp ij

t

ij 

 

The differential equations (8.13) are known as the Kolmogorov backward 

equations. They are called backward equations because we start with a 

transition back by the start of the interval. 

The Kolmogorov backward equations may also be written in matrix format 

as 

                              )(.)( tpAtp   
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We may also start with the following equation: 

                    

)()()(
0

tptpttp kj

r

k

ikij  


……………………(3.11) 

Here we split the time interval ( tt ,0 ) into two parts. We consider a 

transition from i to k in the interval (0, t), and then a transition from k to j 

in the small interval ( ttt , ). We consider 
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Named after the Russian mathematician Andrey N. Kolmogorov (1903-

1987).  

By dividing by t and then taking the limit as 0t  we obtain 
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Since the summation index is finite, we may interchange limit with 

summation and obtain 
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Where, as before, ajj = j
. The differential equations (8.15) are known as 

the Kolmogorov forward equations. The interchange of the limit and the 

sum above does not hold in all cases but is always valid when the state 
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space is finite. The Kolmogorov forward equations may be written in 

matrix terms as 

                         Atptp ).()(~   

For the Markov processes we are studying in this book the backward and 

the forward equations have the same unique solution P (t), where

1)(
0




tpij

r

k

 for all i in X. In the following, we will mainly use the forward 

equations. 

3.4.1 State Equations: 

 Let us assume that we know that the Markov process has state i at time 0, 

that is, X (0) = i. This can be expressed as 

                                   1))0(()0(  ixpp ri  

                                             0))0(()0(  kxpp rk  

Since we know the state at time 0, we may simplify the notation by writing 

Pij (t) as Pj (t). The vector P(t) = [Po(t). P1 (t). . . Pr (t)] then denotes the 

distribution of the Markov process at time t, when we know that the process 

started in state i at time 0. As in (8.3) we know that
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. 

The distribution P (t) may be found from the Kolmogorov forward 

equations (8.15) 
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Where, as before, ajj = j
. In matrix terms, this may be written 
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or in a more compact form as 

                                               )(~).( tpAtp   

Equations (8.19) are called the state equations for the Markov process. 

Remark: Some authors prefer to present the state equations as the 

transpose of that is AT. P (t) T =
Ttp )(~
. In this case the vectors will be column 

vectors, and equations (8.18) can be written in a more compact form as             
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In this format the indexes do not follow standard matrix notation. The 

entries in column i represent the departure rates from state i, and the sum 

of all the entries in a column will be 0. The reader may choose in which 

format he wants to present the state equations. Both formats will give the 

same result. In this book, we will, however, present the state equations in 

the format of (8.18) and (8.19). Since the sum of the entries in each row in 

A is equal to 0, the determinant of A is 0 and the matrix is singular. 
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Consequently, equations (8.19) do not have a unique solution. However, 

by using that 

                                      





r

j

j tp
0

1)(

……………(3.15) 

 

and the known initial state [Pi (0) = 1], we are often able to compute the 

probabilities Pj (t) for j = 0, 1,2, . . . , r . [Conditions for existence and 

uniqueness of the solutions are discussed, for example, by Cox and Miller 

(1965).The mean sojourn time in state 1 is the mean time to failure, MTTF 

= 

1

, and the mean sojourn time in state 0 is the mean downtime, MDT =



1

. The mean downtime is sometimes called the mean time to repair 

(MTTR). The state transition diagram for the single component is 

illustrated in Fig. 8.5. The state equations are. 

 )(~),(~),(),( 1010 tptptptp 












……………(3.16) 

 

The component is assumed to be functioning at time t = 0 

                                     ,1)0(1 p  0)0(0 p  

Since the two equations we get from (8.20) are linearly dependent, we use 

only one of them, for example 

                           )(~)()( 10 tptptp    

and combine this equation with Po(t) + PI (t) = 1. The solution is 
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For a detailed solution of the differential equation, see Ross (1996, p. 243). 

The availability of the component PI (t) denotes the probability that the 

component is functioning at time t, that is, the limiting availability 


1
1 limp
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The limiting availability may therefore be written as the well-known 

formula 

                                                     MDTMTTF

MTTF
p


1

  ……………(3.19)  

When there is no repair ( 0 ), the availability is 
ttp  )(1 which 

coincides with the survivor function of the component. The availability 

)(1 tp   . 

 In many applications only the long-run (steady-state) probabilities are of 

interest, that is, the values of Pj (t) when t . In Example 8.5 the state 

probabilities Pj (t) (j = 0, 1) approached a steady-state Pj when t . The 

same steady-state value would have been found irrespective of whether the 

system started in the operating state or in the failed state. 

 Convergence toward steady-state probabilities is assumed of the Markov 

processes we are studying in this chapter. The process is said to be 
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irreducible if every state is reachable from every other state (see Ross 

1996). For an irreducible Markov process, it can be shown that the limits 

                        
jj

t
ptp 


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 For rj ....,2,1,0  

Always exist and are independent of the initial state of the process (at time 

t = 0). For a proof, see Ross (1996, p. 25 1). Hence a process that has been 

running for a long time has lost its dependency of its initial state X (0). The 

process will converge to a process where the probability of being in state j 

is 
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3.5 Steady-state probabilities:  

The steady-state probabilities P = [Po. P1. . . Pr] must therefore satisfy the 

matrix equation: 

  ]0,....,0,0[

...

......

......

......

...

...

,...,,

10

11110

00100

10 



























rrrr

r

r

r

aaa

aaa

aaa

ppp

……………(3.20) 

Which may be abbreviated to 

A.p=0 

where as before 
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To calculate the steady-state probabilities, PO, P1. . . Pr, of such a process, 

we use r of the r + 1 linear algebraic equation from the matrix equation 

(8.25) and in addition the fact that the sum of the state probabilities is 

always equal to I. The initial state of the process has no influence on the 

steady-state probabilities. Note that P, also may be interpreted as the 

average, long-run proportion of time the system spends in state j  

Matrix is 
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A

……(3.21) 

We can use (8.26) to find the steady-state probabilities Pj for j = 0, 1, 2, 3, 

and we get the following equations: 
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Note that we use three of the steady-state equations from () and in addition 

the fact that Po + P1 + P2 + P3 = 1. Note also that we may choose any three 

of the four steady-state equations, and get the same solution.  

The solution i      
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Now for i=1, 2 let 
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where 1/1 iMDT is  the mean downtime required to  repair component i, 

and 1/1 iMTTF   is the mean time to failure of component i  (i = 1,2). Thus 

qi denotes the average, or limiting, unavailability of component i, while pi 

denotes the average (limiting) availability of component i (i = 1, 2). The 

steady-state probabilities may thus be written as 

                                  210 qqp   

                                            211 pqp   

                                            212 qpp       

                                            213 ppp   

In this simple example, the components fail and are repaired independently 

of each other. We may therefore use direct reasoning to obtain the results 

in (8.28) 

Po = Pr (component 1 is failed). Pr (component 2 is failed) = q1q2 

 P1 = Pr (component 1 is failed). Pr (component 2 is functioning) = q1p2 
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P2 = Pr (component 1 is functioning). Pr (component 2 is failed) = p1q2 

 P3= Pr (component 1 is functioning). Pr (component 2 is functioning) = 

p1p2 

Note: In this simple example, where all failures and repairs are independent 

events, we do not need to use Markov methods to find the steady-state 

probabilities.  The steady-state probabilities may easily be found by using 

standard probability rules for independent events. Please notice that this 

only applies for systems with independent failures and repairs. 

3.6: System Performance Characteristics: 

 Several system performance measures that may be used in the steady-state 

situation are introduced in this section.  

 Visit Frequency the Kolmogorov forward equation () was 
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When we let it , then jij ptp )(
, and 0)(* tp ij  since the summation 

index in (8.15) is finite, we may interchange the limit and the sum and get, 

as t , 
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The (unconditional) probability of a departure from state j in the time 

interval ),( ttt   is 
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, and the steady-state 

frequency of departures from state j is, with the same argument as we used 

to derive equation (), 

                             
jj

r

jk
k

jjk

t

dop

j p
t

ptp

v 












0

0

).(

lim
………………(3.24) 

The left-hand side of (8.29) is hence the steady-state frequency of 

departures from state j. The frequency of departures from state j is seen to 

be the proportion of time Pj spent in state j times the transition rate a, out 

of state j. Similarly, the frequency of transitions from state k into state j is 

Pk akj. The total frequency of arrivals into state j is therefore 
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Equation (8.29) says that the frequency of departures from state j is equal 

to the frequency of arrivals into state j, for j = 0, 1, . . . , r, and is therefore 

sometimes referred to as the balance equations. In the steady-state 

situation, we define the visit frequency to state j as 






r

jk
k

jkkjjj ppv
0



…………………………(3.25) 

and the mean time between visits to state j is l/vj. 
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 Mean Duration of a Visit When the process arrives at state j, the system 

will stay in this state 5 times? j until the process departs from that stase, j 

= 0, 1, . . . , r. We have called j


the sojourn time in state j and shown that 

j


is exponentially distributed with rate j
. The mean sojourn time, or mean 

duration of a visit, is hence 

                  j

jj T



1

)
~

( 

 for  j =0,1,2,…,r………….…(3.26)                         

The mean proportion of time, Pi, the system is spending in state j is thus 

equal to the visit frequency to state j multiplied by the mean duration of a 

visit in state j for j=0,l, ..., r 

3.7 System Availability : 

     Let X = (0, 1, . . . , r} be the set of all possible states of a system. Some 

of these states represent system functioning according to some specified 

criteria.  Let B denote the subset of states in which the system is 

functioning, and let F = X - B denote the states in which the system is 

failed. The average or long-term availability of the system is the mean 

proportion of time when the system is functioning; that is, its state is a 

member of B. The average system availability A, is thus defined as 

                         


Bj js pA
…………………..……(3.27) 

In the following we will omit the term average and call As the system 

availability. The system unavailability (1 - As) is then 

                          


Fj js pA1
 

The unavailability (1 - As) of the system is the mean proportion of time 

when the system is in a failed state. 
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 Frequency of System Failures The frequency WF of system failures is the 

steady-state frequency of transitions from a functioning state (in B) to a 

failed state (in F): 

                           


Bj Fk jkjF p  .
 

3.8 Mean Duration of a System Failure  

The mean duration F of a system failure is defined as the mean time from 

when the system enters into a failed state (F) until it is repaired estored and 

brought back into a functioning state (B). 

 Analogous with (8.32) it is obvious that the system unavailability (1 - As) 

is equal to the frequency of system failures multiplied by the mean duration 

of a system failure.  Hence 

                               FFsA  .1   

 3.9 Mean Time between System Failures  

The mean time between system failures, MTBFs, is the mean time between 

consecutive transitions from a functioning state (B) into a failed state (F). 

The MTBFs   may be computed from the frequency of system failures by 

                              F

sMTBF


1


………(3.28) 

3.10 Reliability Function 

 As discussed on page 321, the set of states X of a system may be grouped 

in a set B of functioning states and a set F = X - B of failed states. In the 

present section we will assume that the failed states are absorbing states. 

Consider a system that is in a specified functioning state at time t = 0. The 

survivor function R (t) determines the probability that a system does not 
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leave the set B of functioning states during the time interval (0, t]. The 

survivor function is thus 

                    




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j tptR )()(

………………….…(3.29) 

The Laplace transform of the survivor function is 
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Mean Time to System Failure   

The mean time to system failure, MTTFs, may according to Section 2.6 be 

determined by 





0

)( dttRMTTFs

………………………..…(3.30) 

The Laplace transform of R (t) is given by 





0

* )()( dttRsR st

………………………(3.31) 

The MTTFs of the system may thus be determined from (8.76) by inserting 

s = 0. Thus 

sMTTFdttRR  


0

* )()0(

…………….…(3.32) 

3.11 Markov Modules in Complex Systems 

 In Chapters 3 and 4 we discussed how to model complex systems by 

reliability block diagrams and by fault trees. We found that these 

approaches were suitable for rather static systems but were not able to 

account for dynamic features like complex maintenance and complex 

switching systems.   Most systems will, however, have some modules that 
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are rather static and other modules that have dynamic features. A possible 

approach is then to isolate the dynamic effects in as small modules as 

possible and treat these modules by Markov analysis. As far as possible, 

these modules should be defined in such a way that they are independent 

of each other. Thereafter, we may introduce these modules as  

supercomponents into a reliability block diagram (or the  fault tree),  as 

illustrated in the  reliability block  diagram in  Fig. 8.20, and do the  system 

calculations according to the approach we presented in Chapter  4. 

Dependencies between the various items in the reliability block diagram 

that we are not able to model explicitly, may be analyzed by the methods 

described in Chapter 6 

The supercomponents 3 and 5 in Fig. 8.20 will normally comprise several 

compo- nents. When we establish a Markov model for the 

supercomponents, we will usually define several states for each of them 

and find the steady-state probability for each state. 

 To find the system reliability by the methods we presented in Chapter 4, 

we have to define two states for each item in the reliability block diagram. 

The states, resulting from the Markov analysis, must therefore be merged 

into a functioning state (1) and a failed state (0). By this merging we will 

loose a lot of information that might be useful. 

3.7.1 Independent Modules 

 In some cases we may be able to split a complex system into manageable 

modules that may be regarded as independent. If  we are able to establish 

Markov models for each module and calculate the steady-state 

probabilities, we may use standard probability rules to find the system 

steady-state probabilities. This approach is analogous to what we did in 

Example 8.6 for a simple parallel system. When we have a large number 
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of independent modules with several states for each module, the total 

number of possible system states may be overwhelming. An alternative 

approach is Kronecker4 sums and products (see Appendix C). We will 

illustrate this approach by a simple example. Which we recognize as the 

transition rate matrix for the parallel system in Example 8.6. The 

Kronecker sum of the transition rate matrices for the two independent 

modules 0 is therefore equal to the transition rate matrix for the whole 

system 

4Named after the German mathematician Leopold Kronecker (1 823-1891) 

It has been shown that the result in Example 8.10 also is valid in the general 

case. If a system comprises n independent modules with transition rate 

matrices A1, A2. An, then the transition rate matrix A of the system may be 

written as 

                           
i

n

j
n AAAAA

1
21 ...




 

For details, see Amoia and Santomauro (1977). 

 If we are able to split the system into manageable and independent 

modules and establish transition rate matrices for the various modules, the 

Kronecker sum may then be used to establish the total system transition 

rate matrix. Several of the most popular mathematical programs have 

specific subroutines that may be used to find the system transition rate 

matrix. 

 The Kronecker product is very efficient when it comes to solving linear 

equations. Let hi denote the transition rate matrix of module i, and let P (;) 

= [Pi'), . . . , Pri ] denote the steady-state probabilities of module i. We 

know from (8.26) that PCi). 0A . Let us now assume that  we have a 

system  with  two independent modules with transition rate matrices A1 and 
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A2 and steady-state probabilities P(l) and P(2), respectively. We know from 

(8.96) that the transition rate matrix for the system is given by 21 AAA  . 

The system steady-state probabilities P must fulfill 

                                  0).(. 21  AApAp  

The question is then: Will it be possible to find P from P (1) and P (2)? 

Before we answer this question, we look at an example 

1. Split the complex system into a set of n manageable and coherent 

modules. The various modules must be independent. Components within a 

module may, however, be dependent. Dependent components must belong 

to the same mod- ule. 

 2. Find the transition rate matrix Ai and the corresponding steady-state 

probability- ties P(i) for each module i = 1,2, . . . , n. (It might be wise to 

build a “library” of standard modules) 

 3. If of interest, the transition rate matrix for the system may be determined 

by nAAA  ...21 . 

 4. Determine the steady-state probabilities for the system by 

)()2()1( ... npppp    

In practice, it might be a problem to keep track of the indexes in P, that is, 

to realize which system state corresponds to a specific index.   It is therefore 

important to be very systematic when defining the indexes for each 

module. The Kronecker product approach has been applied to protective 

relays in trans- former stations by Svendsen (2002).  Application of the 

Kronecker product to depen- dent modules was discussed by Lesanovskgd 

(1988). 
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3.12 Markov Analysis in Fault Tree Analysis 

 We will now illustrate how results from Markov analysis can be used in 

fault tree analysis.  Assume that a fault tree has been established with 

respect .to a TOP event (a system failure or accident) in a specific system. 

The fault tree has n basic events (components) and k minimal cut sets K1, 

K2, . . . , Kk. The probability of the fault tree TOP event may be 

approximated by the upper bound approximation (4.50) 
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Let us assume that the TOP event is a system failure, such that )(0 tQ is the 

system unavailability. The average (limiting) system unavailability is thus 

approximately 
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Where jQ
~

denotes the average unavailability of the minimal cut parallel 

structure corresponding to the minimal cut set Kj, j = 1.2, . . . , k. In the rest 

of this section we will assume that component i has constant failure rate 

A;, mean downtime to repair iMDT , and constant repair rate MDTii /1  for 

i = 1,2, . . . , n. Furthermore, we assume that ii    for all i = 1,2, . . . , n. 

The average unavailability iq  of component i is )/( iii   , which may be 

approximated by I . iMDT , such that 
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The TOP event probability (system unavailability) is thus approximately 
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Cut Set Information Consider a specific minimal cut parallel structure Kj, 

for j = 1,2, . . . , k. As before we assume that the components fail and are 

repaired independent of each other. When all the components of the cut set 

Kj are in a failed state, we have a cut set failure. The mean duration of a 

failure of cut set Kj is from () 
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The expected frequency of cut set failures j
is from (8.48) 
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and, the mean time between failures (MTBF) of cut set Kj is 

                             k

jMTBF


1


……………………….……(3.35) 

Note that jMTBF
 also includes the mean downtime of the cut parallel 

structure. The downtime is, however, usually negligible compared to the 

uptime. System information the system may be considered as a series 

structure of its k minimal cut parallel structures. If the cut parallel 

structures  
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3.13 Laplace Transforms: 

 An alternative approach is to use Laplace transforms. An introduction to 

Laplace transforms is given in Appendix B. Again, assume that we know 

P (0), the distribution of the Markov process at time 0. The state equations 

(8.19) for the Markov process at time t are seen to be a set of linear, first 

order differential equations. The easiest and most widely used method to 

solve such equations is by Laplace transforms. The Laplace transform of 

the state probability Pj (t) is denoted by
)(* sp j , and the Laplace transform of 

the time derivative of Pj (t) is, according to Appendix B, 

                    
  )0()()( **

jjj pssptp 
 For j=0,1,2,…,r……………(3.35) 

The Laplace transform of the state equations () is thus in matrix terms 

)0()().( ** psspAsp  …………………..………(3.36) 

By introducing the Laplace transforms, we have reduced the differential 

equations to a set of linear equations. The Laplace transforms PT (s) may 

now be computed from (8.108). Afterwards the state probabilities Pj (t) 

may be determined from the inverse Laplace transforms 

3.14 Semi-Markov Processes: 

In Section 8.2 we defined a Markov process as a stochastic process having 

the prop- erties that each time it enters a state i: 

1. The amount of time the process spends in state i before making a 

transition into a different state is exponentially distributed with rate, 

say i  
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2.  When the process leaves state i, it will next enter state j with some 

probability ijp
,where 



 

r

ij
j ijp0 1

 

An obvious extension to this definition is to allow the time the process 

spends in state i (the sojourn time in state i) to have a general “life” 

distribution, and also to let this distribution be dependent on the state to 

which the process will go. Ross (1996, p. 213) therefore defines a semi-

Marko process as a stochastic process { 0),( ttx } with state space X = (0, 

1,2, . . . , r) such that whenever the process enters state i 

1. The next state it will enter is state j with probability Pij, for i, j in X. 

 2. Given that the next state to be entered is state j, the time until the 

transition from i to j (OCCUTS) has distribution Fij . 

The skeleton of the semi-Markov process is defined in the same way as for 

the Markov process (see Section 8.2), and will be a discrete-time Markov 

chain. The semi-Markov process is said to be irreducible if the skeleton is 

irreducible. The distribution of the sojourn time iT


in state i is 
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…………………..(3.37) 

The mean sojourn time in state i is 
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 ……….. ………(3.38) 

We notice that if
t

ij
itF

1)(
, the semi-Markov process is an ordinary 

Markov process. Let ci denote the time between successive transitions into 

state i, and let )( iiii T  the visits to state i will now be a renewal process, 

and we may use the theory of renewal processes described in Chapter 7.  
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 If we let Ni (t) denote the number of times in [0, r] that the process is in 

state i, the family of vectors is called a Markov renewal process. 

                     )(),...,(),( 10 tNtNtN r  For 0t  

If the semi-Markov process is irreducible and if 7’ii has a nonlattice 

distribution with finite mean, then 
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exists and is independent of the initial state. Furthermore 
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…………………………….……(3.39) 

For proof, see Ross (1996, p. 214). Pi is the proportion of transitions into 

state i and is also equal to the long-run proportion of time the process is in 

state i . 

When the skeleton (the embedded process) is irreducible and positive 

recurrent, we may find the stationary distribution of the skeleton 

 r ,...,, 10  as the unique solution of 
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where  
i j 1

 and 
)(lim jxpr n

n
j 




 [since we assume that the Markov 

process is aperiodic].  Since the nj is the proportion of transitions that are 

into state j, and p, is the mean time spent in state j per transition, it seems 

intuitive that the limiting probabilities should be proportional to jj
 . In 

fact 
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For a proof, see Ross (1996, p. 215). Semi-Markov processes are not 

discussed any further in this book.  Details about semi-Markov processes 

may be found in Ross (1996), Cocozza-Thivent (1997), and Limnios and 

Oprisan (2001) 

3.15: Continuous-Time Markov Chain 

   This section begins our study of Markov processes in continuous time 

and with discrete state spaces. Recall that a Markov process with a discrete 

state space is called a Markov chain, so we are studying continuous-time 

Markov chains. It will be helpful if you review the section on general 

Markov processes, at least briefly, to become familiar with the basic 

notation and concepts. Also, discrete-time chains plays a fundamental role, 

so you will need review this topic also. We will study continuous-time 

Markov chains from different points of view. Our point of view in this 

section, involving holding times and the embedded discrete-time chain, is 

the most intuitive from a probabilistic point of view, and so is the best place 

to start. In the next section, we study the transition probability matrices in 

continuous time. This point of view is somewhat less intuitive, but is 

closest to how other types of Markov processes are treated. Finally, in the 

third introductory section we study the Markov chain from the view point 

of potential matrices. This is the least intuitive approach, but analytically 

one of the best. Naturally, the interconnections between the various 

approaches are particularly important. Continuous-time. Markov Chain 

model use to represent and calculate the transition probabilities of the 

machine from being in operating to being down at specific points in time. 

In addition to calculating the long run (stationary) probability for machine 
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to be state operating / state down, the mean sojourn time in state operating 

/ state down. 

     A continuous-time Markov chain X(t) is defined by two components: a 

jump chain, and a set of holding time parameters λi. The jump chain 

consists of a countable set of states S⊂{0,1,2,… } along with transition 

probabilities pij. We assume 0iip , for all non-absorbing states i∈S. We 

assume 

1. if X(t)=i, the time until the state changes has Exponential(λi) 

distribution; 

2. if X(t)=i, the next state will be j with probability pij. 

The process satisfies the Markov property. That is, for all 0≤ t1< t2< ⋯ < 

tn < tn+1, we have 

             itXjtXPitXitXitXjtXP nnnnnn   /,/ 1,...,111 .(3.42) 

let’s define the transition probability Pij(t) as 

         iXjtXPisXjstXtP  0//)( …………………(3.43) 

 

For   ,0,ts  

We can then define the transition matrix, P(t). Assuming the states are 1, 

2, ⋯, r, then the state transition matrix for any t≥0 is given by 

   
   











tPtP

tPtP
tP

1110

0100
)(

 ………………….……………     (3.44) 
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Where P(t) are probabilities 
1)(0  tPij , we have 

    iXjtXPij  0/
  for all  0t xji ,  is the probability for a machine 

to move from  state  i to state  j at time . The sum of each row in the matrix 

P is therefore equal to 1: 





1

0

1)(
j

ij tP

 ………………………………………………(3.45) 

3.16: The Exponential Distribution : 

A random variable t has the exponential distribution with rate parameter

  ,0  if t has a continuous distribution on  ,0 with probability density 

function f given by: 

 

  tetf     for   ,0t       ..            ………                           (3.45) 

Equivalently, the right distribution function F is given by: 

 

    tetTPtF    for   ,0t         ……….                        (3.46)   

The mean of the distribution is 
1

and the variance is 
2

1
 .The exponential 

distribution has an amazing number of characterizations. One important is 

the memoryless property which states that a random variable t with values 

in  ,0 has an exponential distribution if and only if the conditional 

distribution of st   given St  is the same as the distribution of τ itself, for 

every   ,0S . It's easy to see that the memoryless property is equivalent 

to the law of exponents for right distribution function F, namely 
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    )(tFsFtsF   for   ,0,ts . Since F is right continuous, the only 

solutions are exponential functions. 

2.17 The Generator Matrix 

    The generator matrix, usually shown by Q, gives us an alternative way 

of analyzing continuous-time Markov chains. Consider a continuous-time 

Markov chain  tX  .Assume   iX 0 . The chain will jump to the next state 

at time 1T , where 1T ∼Exponential (λ). In particular, for a very small t>0, we 

can write: 

teTP   1)( 1     tt   11        ……                               (3.47) 

Thus, in a short interval of length δ, the probability of leaving state i is 

approximately For this reason, λ is often called the transition rate out of 

state I, we compute positive constants   and  . The generator matrix for 

the continuous Markov chain: 

     

















Q

                         …..                                     (3.48) 

We use generator matrix (6)  to estimate the transition probability (Ross 

1996, p.243) we get. 

                  

 tetP 







 





)(00

                                        (3.49) 

          

 tetP 







 





)(01

                                             (3.50) 

               

 tetP 







 





)(10

                                              (3.51)   

 tetP 







 





)(10

                                              (3.52) 
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3.18 Steady-State Probabilities 

The steady-state probabilities machine stays in the long run in state 0 (non 

working) and state 1(working) equal to: 






0V

                                                                       (3.53) 

                    




1V

                                                             (3.55) 

 

The stationary vector: 

     



















,V

                                                                (3.56) 

The mean sojourn time in state 1 is the mean time to failure, MTTF = 

1

, 

and the mean sojourn time in state 0 is the mean downtime, MDT = 

1

.  
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Chapter four 

Application 

4.1: Introduction 

 4.2: Description of Failure Times 

4.3: Results of machine (Mill troup) 

   4.3.1: Test of failure time distribution 

    4.3.2: Estimate Continuous-Time Markov Chain for 

Machine (Mill troup 

4.4: Results of machine (Boiler): 

   4.4.1: Test of failure time distribution 

   4.4.2 Estimate continuous-time Markov chain for machine 

(Boiler) . 

4.5 Results of  both machines  

    4.5.1: Test of failure time distribution 

   4.5.2 Estimate continuous-time Markov chain for machine 

(both) 

4.6 Estimating failure rate and repairs. 

   4.6.1 :Failure rate and repairs rate of machine (Mill 

troup): 

 4.6.2: Failure rate and repairs rate of machine (Boiler) 

4.7: Estimate Markov chain for both machine:  

4.8: Overall failure rate of machines: 

4.9: The steady-state probability of Machines: 
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Introduction: 4.1 

Transition probabilities of machines from state0 to 1 are estimated from 

failure time of machines  described  data by using some descriptive 

measures. Test the distribution of data used Exponential distribution; we 

compute the generator matrix of the underlying continuous-time Markov 

chain after checking an conditions. It was applied to each machine 

separately, then the two machines.The system under study consists of two 

machines (Mill troup) related to mill Suger cane and machine (Boiler) 

related to boil cane juice. The system performs the required function if both 

machines are in operating condition or that one of them is valid for work 

because one of them has a fault that does not affect the function of the 

second machine, it is possible to continue operating until the repair of the 

faulty machine is completed. The probabilities of the system will be one of 

the following four states: 

State (0): Both machines working. 

State (1): Machine (Mill troup) working - machine (Boiler) non-working. 

. 

State (2): Machine (Boiler) working - machines (Mill troup) non-

working. 

State (3): Both machines non – working. 
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4.2: Description of Failure Times: 

.  

Table (4.1) 

Ratesoffailure times for Both machine 

Machine Total 

failure 

no  

 

Total 

failure 

time  

Mean 

(hr) 

Std. 

(hr) 

95% C.I. for 

Mean 

Lower 

Bound 

Upper 

Bound 

Machine 

(Mill troup) 

61  

 

52.900  

 

4.4083 2.0725 3.0915 5.7252 

Machine 

(Boiler) 

51  

 

48.800  

 

4.0667 2.5296 2.4594 5.6937 

 Both  

machines 

112 101.7 4.2376 2.2683 3.2779 5.1953 

Source: The researcher from applied study, SPSS Package, 2021 

 

Source: The researcher from applied study, Excel Package, 2021 

 

Figure (4.1): Shows meanoffailure times for bothmachines 
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From above  table  and figuer, it has shown that according to the mean 

values for the each machines ,There is a convergence between the mean 

failure of the two machines, as the mean failure of machine (Mill troup) is 

(4.4083) hours, while the mean failure of machine (Boiler) is (4.0667) 

during the year. 

 

4.3: Results of machine (Mill troup): 

4.3.1: Test of failure time distribution: 

     Here we test the following hypothesis: 

Ho: The failure time follows Exponential  distribution 

H1: The failure data follows Exponential  distribution 

 

Table (4.2) 

Kolmogorov-Smirnov test for failure time distributionof 

machine (Mill troup) 

 

Source: The researcher from applied study, Easyfit Package, 2021 

 

 

Sample Size 

Statistic 

P-Value 

Rank 

  

12 

0.2956 

0.2003 

54 

0.2268 

  0.2 0.1 0.05 0.02 0.01 

Critical Value 0.2958 0.3382 0.3754 0.4192 0.4491 

Reject? No No No No No 
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Source: The researcher from applied study, Easy fit Package, 2021             

Figure (4.2): Shows meanoffailure times for machine Mill troup 

 

From above table, it shows the p-value of Kolmogorov-Smirnov test of 

machine (Mill troup) is greater than significant level (0.05) that mean the 

failures time follows Exponential  

and repair rate  0.8721. 
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4.3.2: Estimate Continuous-Time Markov Chain for Machine (Mill 

troup) 

Table (4.3) 

Estimate continuous-time Markov chain for machine (Mill troup) 

Failure time  1/2019–12/2019                                                                                                          

Machine (Mill troup) 

Generator matrix 













2268.02268.0

8721.08721.0
Q  

Transition matrix                                                          











8624.01376.0

5292.04708.0
p  

Stationary vecto                                                             

 7936.02064.0TV  

Mean sojourn time in state 1 (hour)                                  4.4091 4  

hours 

Mean sojourn time in state 0 (hour)                                  1.1467 1  

hour 

Availability                                                                           0.7935 

%79.0  

Source: The researcher from applied study, Mathcad2000 Package, 2021             

The results in Table 2 show , the transition probability of machine in state 

0 is (0.4708) means 47% of operating time a machine  in a failed state, 

transition probability from state 0 to state1 is (0.5292) means 53% 

operating time a machine under repaired, transition probability form state1 

to state 0 is (0.1376) that means 14% the operating time a machinefails 

state , transition probability of machine in state 1(0.8624) which indicates 

a machine is operating state. The stationary probabilities of the continuous-

time Markov chain indicate that in the long run around 21% the available 

operating time machine in state 0 (fail)  and 79% of time in state 1 

(operating), On average, a machine stays an estimated 4 hours in state 
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1(operating),while the machine stays in state 0 one hour. The availability 

percent of the machine 80%. 

4.4 : Results of machine (Boiler): 

4.4.1: Test of failure time distribution: 

Here we test the following hypothesis: 

Ho: The failure time follows Exponential  distribution 

H1: The failure data follows Exponential  distribution 

Table(4.4) 

Kolmogorov-Smirnov test for failure time of machine (Boiler) 

 

            Source: The researcher from applied study, Easyfit Package, 2021 

 

 

                Source: The researcher from applied study, Easyfit Package, 2021 

Figure (4.3): Shows meanof failure times for machine Boiler 

Probability Density Function

Histogram Exponential

x

9.68.887.26.45.64.843.22.41.6

f(
x)

0.52

0.48

0.44

0.4

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

Sample Size 

Statistic 

P-Value 

Rank 

  

12 

0.27432 

0.27351 

49 

0.2459 

  0.2 0.1 0.05 0.02 0.01 

Critical Value 0.2958 0.3382 0.3754 0.4192 0.4491 

Reject? No No No No No 
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From above table, it shows the p-value of Kolmogorov-Smirnov test of 

machine (Boiler) is greater than significant level (0.05) that mean the 

failures time follows Exponential  

and repair rate   0.968.    

4.4.2 Estimate continuous-time Markov chain for machine 

(Boiler) . 

Table (4.5) 

Estimate continuous-time Markov chain for machine 

(Boiler) : 

Failure time  1/2019–12/2019Machine (Boiler) 

Q-Matrices 













0.24590.2459

0.96870.9687
Q  

Transition matrix                                                           











8576.01424.0

5608.04392.0
p  

Stationary vector                                                              

 7975.02025.0V   

Mean sojourn time in state 1 (hour)                                 4.0667 4  

hours 

Mean sojourn time in state 0 (hour)                                     1.0323 1  

hour  

Availability                                                                              0.7975 

%80.0   

Source: The researcher from applied study, Mathcad2000 Package, 2021             

    The results in Table (3) show , the transition probability of machine in 

state (0)  is (0.4392) means 43% of time a machine  in a failed state, 

transition probability from state 0 to state1 is (0.5608) means 56% of time 

a machine under repaired, transition probability form state(1)  to state (0)  
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is (0.1424) that means 14% of time a machine isfails, transition probability 

of machine in state (1)  (0.7975) which indicates 80% of time a machine in 

operating state. The stationary probabilities of the continuous-time Markov 

chain indicate that in the long run around 20% the available operating time 

machine in state (0)   (fail)  and 80% of time in state (1)   (operating), On 

average, a machine stays an estimated 4 hours in state 1(operating),while 

the machine stays in state (0)  one hour. The availability percent of the 

machine 80%. 

4.5 Results of both machines  

4.5.1: Test of failure time distribution: 

Here we test the following hypothesis: 

Ho: The failure time follows Exponential  distribution 

H1: The failure data follows Exponential  distribution 

Table (4.6) 

Kolmogorov-Smirnov test for failure time both machines 

 

Source: The researcher from applied study, Easyfit Package, 2021 

Sample Size 

Statistic 

P-Value 

Rank 

  

24 

0.26275 

0.05962 

54 

0.2360 

  0.2 0.1 0.05 0.02 0.01 

Critical Value 0.2958 0.3382 0.3754 0.4192 0.4491 

Reject? No No No No No 
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Source: The researcher from applied study, Easyfit Package, 2021 

Figure (4.4): Shows meanof failure times for  both machines 

From above table, it shows the p-value of Kolmogorov-Smirnov test of 

machine (Boiler) is greater than significant level (0.05) that mean the 

failures time follows Exponential  

and repair rate   0.9417. 
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4.5.2 Estimate continuous-time Markov chain for machine 

(both) . 

Table (4.7) 

Estimate continuous-time Markov chain for  both machine  : 

Failure time  1/2019–12/2019                                                                                                                    Bo th  

machines  

Q-Matrices 













0.23600.2360

0.94170.9147
Q  

Transition matrix                                                           











8613.01387.0

5533.04467.0
p  

Stationary vector                                                            

 7975.02025.0TV   

Mean sojourn time in state 1 (hour)                                      4.2373 4  

hours 

Mean sojourn time in state 0 (hour)                                    1.0619 1  

hour 

Availability                                                                                0.7996 

%80.0  

Source: The researcher from applied study, Mathcad2000 Package, 2021             

     The results in Table 5 show , the transition probability of bothmachines 

in state (0)  is (0.4467) means 45% of time a both machines  area failed 

state, transition probability from state (0) to state (1) is (0.5533) means 

55% of time a bothmachines under repaired, transition probability form 

state (1)  to state (0)  is (0.1387) that means 14% of time a bothmachines 

arefails, transition probability of bothmachines in state (1)  (0.7975) which 

indicates 80% of time a machine in operating state. The stationary 

probabilities of the continuous-time Markov chain indicate that in the long 

run around 20% the available operating time both machine in state (0)   
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(fail)  and 80% of time in state (1)   (operating), On average, a both machine 

stay an estimated 4 hours in state 1 (operating),while the both machine stay 

in state (0)  one hour. The availability percent of the both machine 80%. 

4.6 Estimating failure rate and repairs. 

For the purpose of applying the Markov chain model in maintenance, data 

for number of failures and time repair during 12  consecutive months for 

the year (2019) for machines  depended on mechanical faults. The tabular 

method was used to calculate the density function and the Reliability 

function (Adolfo,2007,p.51) .The failure rate and repair were calculated 

for each machine as follows 

4.6.1 Failure rate and repairs rateof machine (Mill troup): 

Table(4.8) 

Calculate failure rate and repair rate for machine (Mill troup) 

Month Failure no 

 

Repair 

time 

 

PDF 

)(ˆ tf  

Reliability 

function 

)(ˆ tR  

Failure rate 

)1(

)(ˆ



tR

tf


 

1 3 2.1 0.05 0.95 0.05 

2 6 4.8 0.10 0.85 0.11 

3 9 5.7 0.15 0.70 0.18 

4 6 6.3 0.10 0.61 0.14 

5 9 8.5 0.21 0.39 0.34 

6 6 3.9 0.10 0.30 0.26 
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7 2 3.5 0.03 0.26 0.10 

8 2 2.3 0.03 0.23 0.12 

9 5 5.5 0.08 0.15 0.35 

10 1 5.8 0.02 0.13 0.13 

11 2 1.3 0.03 0.11 0.23 

12 6 3.2 0.10 0.01 1 

Total 61 52.9   3.01 

Source: The researcher from applied study, Mathcad2000 Package, 2021             

From above table : 

1.Failure rate for machine (Mill troup): 

12

ˆ
12

1
1


 i

i


= 12

01.3

= 0.2508 

2.Repairrate for machine (Mill troup): 

no Failure

eRepair tim
1 

= 61

9.52

=0.8721 

3.The mean time to failure: 

1

1
MTTF




= 2508.0

1

= 3.9872   4 month 

3.The mean downtime: 

1

1
MDF




= 0.8721

1

= 1.1467   1 hour 
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Figure (4.5) : Markov Chain Model diagram for a machine (Mill troup). 

From table. no (1) and figure. no (2),  the  number of failures of 

machine(Mill troup) is (61) failure with failure rate (0.25) and repairrate 

(0.87). The mean time to failure is (4 ) month and mean downtime (1) hour. 

  

0 1 

0.25 

0.87 
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4.6.2 Failure rate and repairs rateof machine (Boiler): 

Table(4.9) 

Calculate failure rate and repair rate for machine (Boiler) 

Month Failure 

no 

 

Repair 

time 

 

PDF 

)(ˆ tf  

Reliability 

function 

)(ˆ tR  

Failure 

rate 

)1(

)(ˆ



tR

tf


 

1 2 2.8 0.04 0.96 0.04 

2 3 4.2 0.06 0.90 0.06 

3 6 9.7 0.12 0.78 0.13 

4 5 4.8 0.10 0.68 0.13 

5 4 5.1 0.08 0.61 0.12 

6 5 3.9 0.10 0.51 0.16 

7 3 1.8 0.06 0.45 0.12 

8 2 1.2 0.04 0.41 0.09 

9 3 2.8 0.06 0.35 0.15 

10 4 1.8 0.08 0.27 0.23 

11 8 7.8 0.16 0.12 0.59 

12 6 2.9 0.12 0.00 1 

Total 51 48.8   2.82 

Source: The researcher from applied study, Mathcad2000 Package, 2021             
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From above table : 

1.Failure rate for machine (Boiler): 

12

ˆ

ˆ

12

1
2


 i

i


= 12

82.2

= 0.2350 

2.Repairrate for machine (Boiler): 

no Failure

eRepair tim
ˆ

2 
= 51

8.48

=0.9687 

3.The mean time to failure: 

 

2

1
MTTF




= 0.2350

1

= 4.2553   4 month 

4.The mean downtime: 

2

1
MDF




= 0.9687

1

= 1.0323   1 hour 

 

Figure (4.6): Markov Chain Model diagram for a machine (Boiler). 

From table. no (1) and figure. no (3),  the  Number of failures of 

machine(Boiler) is (51) failure with failure rate (0.24) and repairrate 

0 1 

0.24 

0.97 
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(0.96).The mean time to failure is (4 ) month and mean downtime (1) hour. 

The four states of system according to the failure rate and repair rate in 

following figure: 

 

Figure (4.7): Markov Chain Model diagram for  two machines.  

From above figure ,It is clear that The failure rate of failures of machine 

(Mill troup) is greater than the failure rate of the machine(Boiler).That 

explains length of the repair time of machine (Mill troup). 

4.7: Estimate Markov chain for both machine:  

1.State (0): Both machines are working. 

21

2

12

1
0

1

1















P

= 9687.02508.0

2350.0

8721.02350.0

2508.0
1

1







=0.7046 

 

2. State (1): Machine (Mill troup) down - machine (Boiler) up. . 

0

12

1
1 PP








=
0.7046

8721.02350.0

2508.0

    =0.1596 

 

 

 

  

0 1 

 

 

2 3 
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3. State (2): Machine (Boiler) up- machines (Mill troup) down. 

0

21

2
2 PP








=
0.7046

9687.02508.0

2350.0

 = 0.1358 

 

The initial condition equation 210 PPP  = 1  

as: 

0.13580.15960.7046  = 1 

4.8: Overall failure rate of machines: 

 2112 PPsys       1358.02508.01596.02350.0  =    0340.00375.0   

= 0.0715 0  

Through above results: 

 Probability  of both machines are working is (0.7046).that means 

%70of the available operating time of the both machine are in 

working condition. 

 Probability of Machine (Mill troup) non- working - machine (Boiler) 

workingis (0.1596). that means %16of the available operating time 

machine (Mill troup) non- working and machine (Boiler) working. 

 Probability  of Machine (Boiler) working - machines (Mill troup) 

non- workingis (0.1358). that means %14of the available operating 

time machine (Boiler) working and machine (Mill troup) non- 

working. 

 The probability of the overall failure rate of the machines (0.0715) 

is negligible probability for the machines which is a good indicator 
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as it is unlikely that both machines will fail at the same time. That 

means a maintenance work is taking place immediately for the 

machine that suffers a malfunction 

Table(4.10) : 

Compare between machine (Mill troup) and machine 

(Boiler) in rate failure and repair 

Rate Type of machine 

Mill troup Boiler 

Failure rate ( ) 0.2508 0.2350 

Repairrate ( ) 0.8721 0.9687 

The mean time to failure (

MTTF ) 

3.9872   4 month 1.2553   4 month 

The mean downtime ( MDF) 1.1467   1 hours 1.0323   1 hours 

Source: The researcher from applied study, Mathcad2000 Package, 2021             

 

From the above table : The failure probability for both machines is close, 

but the failure probability of machines (Mill troup) (0.2508)  is greater than 

the failure probability of machine (Boiler) ( 0.2350). The mean time to 

failure and  The mean downtime of two machines are equal. 
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4.9: The steady-state probability of Machines: 

 

1. State (0): 

  2211

21
0






P

    =

  
  9687.02350.08721.02508.0

2350.02508.0

    =  3516.1

0589.0

= 0.0436  

year 

Mean hours in state (0) per year:  0.0436*8760  =381.934   382  

hour/year  

In the long run the machines will stay in state (0) approximately 382 hours 

per year 

3. State (1): 

  2211

21
1






P

    =

  
  9687.02350.08721.02508.0

9687.02508.0

    =  3516.1

2429.0

= 0.1797   

Mean hours in state (1)  per year:  0.1797*8760  =1574.172   1574  

hour/year 

In the long run the machines will stay in state (1) approximately 1574 hours 

per year. 

4. State (2): 

     2211

12
2






P

    =

  
  9687.02350.08721.02508.0

8721.02350.0

    =  3516.1

2049.0

= 

0.1516   

Mean hours in state (2)  per year:  0.1516*8760  =1328.016   1328  

hour/year  
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In the long run the machines will stay in state (2) approximately 1328 hours 

per year. 

4. State (3): 

  2211

21
2






P

    =

  
  9687.02350.08721.02508.0

8721.02350.0

    =  3516.1

8448.0

= 0.6250   

Mean hours in state (3)  per year:  0.6250*8760  =5475.000  5475  

hour/year in the long run the machines will stay in state (3) approximately 

5475  hours per year.  


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Chapter five 

 

Results& Recommendations 

 

 Results: 5.1 

5.2: Recommendations 
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5.1 Results 

 

1. The failure time of machines follows Exponential distribution. 

2. The diagonal elements of the transition matrix P are bigger than the 

off-diagonal ones which indicates that the observed transition matrix 

is embeddable in the continuous-time Markov chain. 

3. The transition probability from state (1) to state (0)  andand 

transition probability from state (0) to state (1)  for machine (Mill 

troup) ,machine (Boiler) and both machines was very close. 

4. The mean sojourn time in state the a both machine stay an estimated 

4 hours in state 1 (operating), while the both machine stay in state 

(0)  one hour. 

5. The  probability  of  available  time  to  repair  machines when  it  

fault  approximately(0.80). 

6. Markov chains machines conducted for the failure time of two 

machines in Asalaya Sugar Company. 

7. The probability of both machines in working condition is high. 

8. failure rate and repair,  probability of machines (Mill troup) has more 

failure which requiresmore effort in maintenance than  machine 

(Boiler). 

9. The mean amount of time the machine operates to failure is 4 hours 

for both machines and the mean time to return a non-working 

machine to its working condition is 1 hour, which indicates the 

efficiency of the factory maintenance unit. 
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10. The probability of the overall failure rate of the machines (0.0715) 

is negligible probability for the machines which is a good indicator 

as it is unlikely that both machines will fail at the same time. That 

means a maintenance work is taking place immediately for the 

machine that suffers a malfunction. 

5.2 Recommendations: 

 

1. Improving the operational efficiency of the machines through total 

or partial maintenance. Depending on the results provided by the 

Continuous Time Markov Chain Model, it provides a more accurate 

measure of the operating state of the machines.. 

2. Improving the operational efficiency of the machines through total 

maintenance based on the results obtained by the CTMC model, it 

provides a more accurate measure of the condition of machines. 

3. High interest in true registration of faults. As all quantitative and 

mathematical methods made they are used in the field of 

maintenance, depending in particular on the accuracy of recording 

that data. 

4. Work and prepare for the faults that occurred to machines. As well 

as creating a database that includes the names of the machines for 

their repair times. 

5. Some data on failure rates may include data on some faults that are 

not due to operating performance. This affects the accuracy of the 

failure rate calculations and the repair rates, so it is necessary to 

mark these faults in the database.  
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Appendix 

 

Month Machine 

Mill troup Boiler 

Repair no 

 

Failure 

time 

 

Repair 

no 

 

Failure 

time 

 

1 3 2.1 2 2.8 

2 6 4.8 3 4.2 

3 9 5.7 6 9.7 

4 6 6.3 5 4.8 

5 9 8.5 4 5.1 

6 6 3.9 5 3.9 

7 2 3.5 3 1.8 

8 2 2.3 2 1.2 

9 5 5.5 3 2.8 

10 1 5.8 4 1.8 

11 2 1.3 8 7.8 

12 6 3.2 6 2.9 

 Source: Sudanese Sugar Company,2019 


