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ABSTRACT- The least squares estimation method is commonly used to process measurements. In practice, 

redundant measurements are carried out to ensure quality control and to check for errors that could affect the 

results. Therefore, an insurance of the quality of these measurements is an important issue. Measurement errors 

of collected data have different levels of influence due to their number, measured accuracy and redundancy. 

The aim of this paper is to examine the detection of gross error capabilities in vertical control networks using 

three methods; Global Test, Data Snooping and Tau Test to compare the effectiveness of these three methods. 

With the least squares’ method, if there are gross errors in the observations, the sizes of the corresponding 

residuals may not always be larger than for other residuals that do not have gross errors. This makes it difficult 

to find (detect) it. Therefore, it is not certain that serious errors should be detected by just examining the 

magnitudes of the residuals alone. These methods are used in conjunction with developed programs to calculate 

critical values for the distributions (in real time) rather than look for these in statistical tables. The main 

conclusion reached is that the tau (τ) statistic is the most sensitive to the presence gross error detection; 

therefore, it is the one recommended to be used in gross error detection. 

 

Key words: gross error, statistical test, data snooping, redundancy, quality control. 

 

تقدير    - المستخلص  التربيعاتتسُتخدم طريقة  يتم إجراء    أقل  العملية ،  قياسات زائدة عن الحاجة  بشكل شائع لمعالجة القياسات. في الممارسة 

وبالتالي ، يصبح تأمين جودة هذه الأرصاد مهمة. أخطاء القياس للبيانات   التي قد تؤثر على النتائج.  لضمان مراقبة الجودة وللتحقق من الأخطاء 

الكشف    إمكانيات  الورقة هو فحصالهدف من هذه  ثير كنتاج لعددها ، دقة قياسها والأرصاد الزائدة.  المراد جمعها لها مستويات مختلفة من التـأ

هذه الطرق   فعالية ؛ اختبار عالمي ، تطفل على البيانات واختبار تاو لمقارنة    طرقعن الخطأ الجسيم في شبكات التحكم الرأسية باستخدام ثلاثة  

دائمًا أكبر من القيم    الأخطاء المتبقية، فقد لا تكون أحجام    الأرصاد، إذا كانت هناك أخطاء جسيمة في    تأقل التربيعاالثلاث. باستخدام طريقة  

  المتبقية الأخرى التي لا تحتوي على أخطاء جسيمة. هذا يجعل من الصعب العثور عليها )اكتشافها(. لذلك ، ليس من المؤكد أنه يجب اكتشاف 

ذي تم تطويره لإيجاد القيم مج الحاسوب الوربطها ببرنا  استخدامهاالطرق تم    هذه   وحدها.  الأخطاء المتبقيةر  الأخطاء الجسيمة بمجرد فحص مقادي 

من جداول الإحصاء. من النتائج المستخلصة وجد أن المعلمة تاو هي   استنباطهاالحرجة ، في الزمن الفعلي ، للتوزيعات المستخدمة بدلاً من  

 . في كشف الأخطاء الجسيمة  استخدامهاجسيمة وبالتالي يفضل الأكثر حساسية تجاه الأخطاء ال 

 

1. INTRODUCTION 

Surveying is the art of making appropriate 

measurements in horizontal or vertical planes. The 

basic measurements in engineering surveying are 

horizontal distance and vertical distance (height) as 

well as horizontal, vertical and zenith angles, as 

shown in Figure 1. Various techniques are used to 

measure these quantities and different tools and 

methods have been developed for this. Surveying is 

the process of making observations and 
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measurements using various electronic, optical and 

mechanical devices, some of which are very 

complex. However, if only the best equipment and 

methods were used, it is impossible to take notes 

completely free of small differences caused by 

errors. These errors are sourced from instruments 

(Systematic Errors), environmental (Random 

Errors) and human operator (Gross Errors). 

 

 

Figure 1: Surveying measurements 

 

Systematic errors behave according to a certain 

system or physical law of nature which may or may 

not be known. 

If the law of occurrence is known, systematic errors 

can be calculated and eliminated - they always 

appear with the same sign and magnitude and are 

therefore often referred to as constant error.  

The following systematic errors corrections are 

applied to taped distances, height differences (∆ℎ), 

and angles in order to improve their precision: slope, 

standardization, tension, temperature, sag, combined 

curvature and refraction, and atmospheric refraction. 

As well as US standard accuracy required for 

measuring length, height differences and angles, as 

shown in Table 1. In the table the symbols are 

defined as:  ∆ℎ: the height difference, L: measured 

length, lB: length of baseline, lF: length of field tape 

along baseline, TF: tension applied to the tape (N), TS: 

standard tension (N), A: cross-sectional area of the 

tape (mm2), E: modulus of elasticity for the tape 

material (N mm-2), W: the weight of the tape per 

meter length (N m-2), a: the coefficient of expansion 

of the tape material, tf: mean field temperature (°C), 

ts: temperature of standardization (20°C), r: 

refraction ( l/7), c: curvature in meters, D: sighting 

distance in kilometers, S: distance between the 

stations. P: barometric pressure (m bar), T: 

atmospheric temperature in Kelvin (273.15 + t °C), t: 

atmospheric temperature in °C, k: length of leveling 

line in kilometers, n: number of angles. 

 

TABLE 1: SYSTEMATIC ERRORS CORRECTIONS AND US STANDARD ACURACY OF THE MEASUREMENTS 

Measurements 

(Observations) 
Systematic error Correction Orders of accuracy Max closures 

 Length 

Slope < 10% −∆ℎ2 2𝐿⁄  First Order (1:M) 1:100 000 

Standardization ±𝐿(𝑙𝐵 − 𝑙𝐹) 𝑙𝐵⁄  Second Or. Class I 1:50 000 

Tension ±𝐿(𝑇𝐹 − 𝑇𝑆) 𝐴𝐸⁄  Second Or. Class II 1:20 000 

Temperature ±𝛼𝐿(𝑡𝑓 − 𝑡𝑠) Third Or. Class I 1:10 000 

Sag (Catenary) −𝑊2𝐿 24𝑇𝐹
2⁄  Third Or. Class II 1:5000 

 ∆ℎ 

Curvature of the earth 

(c) 
−0.0785𝐷2 

First Or. Class I ±4√𝑘 mm 

First Or. Class II ±5√𝑘 mm 

Combined curvature and 

refraction (c + r) 
−0.0673 𝐷2 

Second Or. Class I ±6√𝑘 mm 

Second Or. Class II ±8√𝑘 mm 

If 𝐷 = 0.120 𝑘𝑚, then 𝑐 + 𝑟 = −0.001 𝑚 , and 

neglected if 𝐷 < 0.120 𝑘𝑚 

Third Order ±12√𝑘 mm 

Water way (Small ponds) ±20√𝑘 mm 

 

Angles 

Atmospheric Refraction 

(𝑑𝛿) 
−

8𝑃𝑆

𝑇2

𝜕𝑡

𝜕𝑦
 𝑠𝑒𝑐 

First Order ±1.7√𝑛 sec 

Second Or. Class I ±3√𝑛 sec 

Second Or. Class II ±4√𝑛 sec 

applied as corrections to the raw data before use in 

network adjustment 

Third Or. Class I ±10√𝑛 sec 

Third Or. Class II ±12√𝑛 sec 

Water way (Small ponds) ±60√𝑛 sec 

  V
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TABLE 2: ERRORS OF CLOSURE (EC) 

Measurements 

(Observations) 
Calculation of (EC) Accuracy required to correct the (EC) 

Length 
From difference between two independent 

measurements: EC = AB - BA 

Relative accuracy (1: L/EC) compare with US 

standard accuracy (1:M) i.e., second order 

class I, M = 50000 

∆ℎ 

From height differences: 

EC = Δhgiven – Δhobserve EC compare with US standard Accuracy ( 

±𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡√𝑘 mm) i.e., second order class I 

= ±6√𝑘 mm 

From level traverses:   

EC  =   BS -  FS  =  Rise -  Fall 

= Last RL - First RL 

Angles 

From interior angles: 

EC = (n-2)×180o -  (obs. angles) 
EC compare with US standard Accuracy 

(±𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡√𝑛 sec) i.e., second order class I 

= ±3√𝑛 sec 
From exterior angles: 

EC = (n+2)×180o -  (obs. angles) 

 

The corrections shown in Table 1 are applied to the 

measurements (raw data) before any modification is 

made to them. Then the closing errors are calculated 

for the measurements, and their quality is determined 

according to the conditions of accuracy required for 

them as shown in Table 2. 

Random errors are occasional errors that result from 

limitations or defects in the tool used, either due to 

manufacturing defects or improper parts fit. It is also 

due to the inability of the tools used to determine the 

values. Random errors occur according to the laws of 

chance. Can reduce by making repeated 

measurements. The accidental error in the final result 

varies with the square root of the number of 

individual measurements. 

Gross errors are the result of a malfunctioning of 

either the instrument or the surveyor [1-2]. Typical 

examples are the incorrect reading or incorrect 

recording of results and failure of the instrument due 

to weak power supply or extreme environmental 

conditions. At least theoretically gross errors can be 

avoided by due care or they can be detected by 

carefully designed observation schemes [3]. 

For high-precision applications, such as strain 

control, it is necessary to detect and locate serious 

errors prior to strain analysis. Whenever possible, 

gross errors should be tackled before Least Squares 

Estimation (LSE), by means of screening and 

independent checks [4-5-6]. 

 

 

2. RESEARCH OBJECTIVES 

The main objective of this paper is to see the 

sensitive method to the gross errors’ detection in the 

vertical control networks, and study the effect of the 

magnitudes of them on the three statistics methods 

and on the variance factor. 
 

3. MATERIALS AND METHODS 

3.1 Least squares Estimation (LSE) 

The least squares method is one of the estimation 

techniques used in the survey. It has been widely 

used in most practical applications due to its 

simplicity and also because statistical information is 

widely available. In addition, it gives estimated 

values which are statistically equal to their true 

values (Unbiasedness). Also, it gives variances 

which are smaller than the variance resulting from 

any other estimation method. For these last two 

reasons, LSE is considered to be the most efficient 

method of estimation.  

We need to have some method of analyzing the 

results of a least squares computation to determine 

whether or not any of the observations are outliers. 

These methods depend on the analysis of residuals 

after an estimation process has been carried out. If 

we assume that the observed quantities are normally 

distributed which are generally so, then the residuals 

of these observations are also normally distributed 

with zero mean because the least squares method 

tends to minimize the weighted sum of residuals. 

→+++ 22

2

2

1 nvvv   minimum                     (1) 



SUST Journal of Engineering and Computer Sciences (JECS), Vol 22, No 1 (2021) 

 

50 
 

The relationship between the true values of the 

observed quantities (𝑙)̅ and the true parameters (�̅�) is 

the basic mathematical model and is expressed as a 

general vector function 

0),( =lxF                                    (2) 

And the coefficient matrix (A) of the unknowns will 

simply obtained by partial differential of ),( lxF  with 

respect to the parameters ( x1, x2, … , xm) hence 

𝐴 =  [ 
𝜕𝑓1/𝜕�̅�1 ⋯ 𝜕𝑓1/𝜕�̅�𝑚

⋮ ⋱ ⋮
𝜕𝑓𝑛/𝜕�̅�1 ⋯ 𝜕𝑓𝑛/𝜕�̅�𝑚

 ]                 (3) 

The main equations for LSE using observation 

equations method are shown here without further 

derivation. More details are found extensively in 

surveying literature for example (Cross[7]). The 

fundamental Equations for LSE with n observations, 

m parameters and redundancy r are as follows: 

WbAWAAx TT 1)(ˆ −=                      (4) 

bxAv −= ˆˆ                    (5) 

rvWvT /ˆˆˆ 2

0 =                 (6) 

TT

v AWAAAWC 11

ˆ )( −− −=                (7) 

TT

l
AWAAAC 1

ˆ )( −=                          (8) 

mnr −=                           (9) 

where: 𝑣: Vector of estimated residuals, 𝑥: estimated 

parameters, 𝐶�̂�: Covariance matrix of the residuals, 

W: weight matrix, and obtained from the following: 

𝑊 = 

[
 
 
 

 

1 𝑆11
2⁄ 0 … 0

0 1/𝑆22
2 0 ⋮

⋮ 0 ⋱ 0
0 ⋯ 0 1/𝑆𝑛𝑛

2

 

]
 
 
 

            (10) 

The variances (𝑆11
2  , 𝑆22

2  , … , 𝑆𝑛𝑛
2 ) are measures of 

precisions of the observations (ℓ1, ℓ2, …, ℓn), 

respectively. b: vector of the difference between 

observed values (li) and corresponding computed 

values using approximate value (x0) for the 

parameters.  

𝑏 =  [
𝑙1 − 𝑓1(𝑥

0, 𝑙)
⋮

𝑙𝑛 − 𝑓𝑛(𝑥0, 𝑙)
]                      (11) 

 

 

3.2 Methods of Gross Error Detection 

In recent years the detection of gross errors and the 

reliability of observations has been one of the main 

research directions in surveying. 

A gross error in one observation usually affects 

residuals in other observations. If an observation fails 

a statistical test, it does not mean that there is a 

serious error in that observation. Therefore, a 

statistical test should be used to detect errors or 

significant errors. The methods used in this paper to 

identify gross errors include global tests, data 

snooping (ω), and tau tests.  

3.2.1 Global Test 

It is the first test to be applied to the post-variance 

factor �̂�0
2 after any estimation process, when there is 

prior knowledge about the accuracy of the 

observations, that is, when the pre-variance factor 𝜎0
2 

is assumed to be known. Otherwise, the test has no 

meaning.  

Under the null hypothesis H0 the statistic �̂�0
2/𝜎0

2  

follows the Fr, ∞ - distribution. It is to be remembered 

that 𝐹𝑟,∞ = 𝜒𝑟
2/𝑟. The decision for this 

comprehensive test (one-tailed or two-tailed) 

depends on the purpose of the test determined by the 

null hypothesis H0.  

The two- tailed test takes the form: 
2

0

2

00
ˆ:  =H  

2

0

2

0
ˆ:  aH  

Where, 𝜎0
2 represents the variance factor and �̂�0

2  is 

its estimated value; this gives the following 100(1 −

𝛼)% confidence interval for the variance factor 𝜎0
2: 













−=













−

1
ˆˆ

2

2/,

2

02

02

2/1,

2

0

rr

rr
P

               (12) 

When the global test is used for the detection of gross 

errors it is normally expected that �̂�0
2 will be greater 

than 𝜎0
2. Therefore, a one-tailed test is recommended 

which takes the form: 

2

0

2

0

2

0

2

00

ˆ:

ˆ:









aH

H  

and the one-tailed, right hand, test is recommended: 

i.e. 

 r,;-12

0

2

0 F~
ˆ




                    (13) 
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Since 2

0

2

0

2

0 /ˆˆ/ˆ  rvWvT= , equation (13) can be written 

as: 

𝑣𝑇𝑊𝑣/𝑟𝜎0
2~𝐹1−𝛼;𝑟,∞                    (14) 

Since 
𝜒1−𝛼,𝑟

2

𝑟
= 𝐹1−𝛼,𝑟,∞ , 𝑡ℎ𝑒𝑛

 
 

.~/ˆˆ 22

0 r ;-1 
vWvT          (15) 

If the data contains gross errors, the above quadratic 

model will increase and the test may or may not fail 

depending on the magnitude of the gross errors and 

how they are reflected in the residual values. If this 

test equation (14) fails, then H0 is rejected. 

Unfortunately, there may be more than one reason for 

rejection [8-9-10]. for example: 

i. Weights were estimated incorrectly. 

ii. The mathematical model is incorrect. 

iii. The observations contain gross errors. 

The above-mentioned reasons are not known which 

one failed the test, and also the test does not provide 

any additional information. Therefore, the source 

must be studied, whatever the reason, and not 

ignored. If we restrict ourselves to the third possible 

reason for the rejection, namely, the gross errors in 

the observations, an alternative hypothesis  Ha can be 

presented, see (Van Mierlo[9]) 

3.2.2 Data Snooping (ω - Test) 

The theory of this technique is developed and 

introduced by (Baarda[1]) for use in geodetic control 

networks. Assuming residual values indicate a linear 

function of observations, so it can be used for 

evaluation. 

The statistic �̂�0
2/𝜎0

2 is used first to test the global 

model as described previously. If this statistic is 

below the threshold, then the global model is 

considered correct, that is, there are no major errors 

in the observations, in other words, no errors in the 

observations. The threshold value is obtained from 

the 𝐹1−𝛼,𝑟,∞ distribution with the commonly applied 

significance level α, i.e. probability of 100(1-α)%. 

At Baarda's suggestion, the global test (14) is used to 

detect gross errors and the "Data Snooping" test (16) 

is used to localize it. Decisions from both tests must 

be consistent, i.e., the same boundary values must be 

found whether the global or single, ω, test is taken [8-

9-10]. 

The residual values and α should be standardized to 

obtain standard ωi, and standardized residues α0 and 

used to detect each individual observation separately, 

as follows: 

.F~
ˆ

 1,;-1

ˆ
0 = 




iv

i
i

v                   (16a) 

Which follows a standardized normal distribution (N 

(0,1)) i.e 

2/1

ˆ
0

~
ˆ




 −= N
v

iv

i
i

                 (16b) 

nn /)1(1 /1

0  −−=                      (17) 

where: 
iv̂  is the posterior standard deviation given 

by the square root of the ith diagonal element of 

matrix 𝐶�̂� in (7). The test can be applied as follows: 

i.The least squares estimation is used to estimate 𝑣  

and  𝐶�̂� from (5) and (7) respectively. 

ii.The level of significance   is determined and 

standardized to 𝛼0 using (17). 

iii.The critical value  ωc  is determined from the 

available program written for this purpose using 

the level of significance 𝛼0. 

iv.The statistic  ωi  is computed for each observation 

using (16) a. 

v.The computed value,  ωi , is compared with the 

critical value,  ωc   

vi.Check if the maximum standardized residual does 

not reflect the presence of any gross error. i.e if 

𝜔𝑖 ≤ 𝜔𝐶 Otherwise remove the observation 

containing a gross error and repeat until all data is 

screened. 

Baarda’s method [1], assumes that 𝜎0
2  is known a 

priori, and employs a multi-dimensional test. In the 

actual implementation of Baarda’s method, both 

Type I and Type II errors should be taken into 

account. 

3.2.3 Tau Test 

The variance in unit weight σ0
2 is assumed to be 

known as shown in the null hypothesis of previous 
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tests, which means that all variances are measured 

correctly. However, if σ0
2 is not sufficiently known, 

or no one wish to rely on a priori estimates, then a 

posteriori estimate �̂�0
2 is available from LSE. In this 

case, global testing of variance is not performed and 

the data snooping method must be modified. The new 

test statistic, suggested by Pope, is the one to use, 

which takes the form given below [8-9-10]. 

0ˆ0
ˆˆ

ˆ






 i

v

i
i

i

v
==                    (18) 

This statistic follows the so-called tau distribution. 

Since the residuals are used for the estimation of τ 

statistic through �̂�0
2, Pope’s, or Tau, method assumes 

�̂�0
2 as unknown and applies its LSE to estimate it in 

computing the normalized residuals. The test statistic 

is one dimensional i.e. 

 
rn

v

i
i

i

v
,;1

ˆ0

~
ˆ

ˆ



 −=             (19) 

where:  

 𝛼 = 𝑛𝛼0%                             (20) 

It should be noted that this test is a one-tailed, left 

hand, test. That is H0 is accepted if: 

rni ,;1  −                   (21) 

Otherwise H0  is rejected, and the corresponding 

observation is suspected of having a gross error, 

provided the mathematical model is correct and the 

weights are correctly determined. The test does not 

take into account the probability of Type II error.  

The Tau test can be setup using least squares results 

as follows: 

i.The least squares estimation is used to estimate  v̂  

and  𝐶�̂� from (5) and (7) respectively. 

ii.The level of significance   is determined and 

standardized to 𝛼0 using (16). 

iii.The critical value τc , is determined from the 

developed program using the level of significance 

𝑛𝛼0%. 

iv.The statistic τi is computed for each observation 

using (18). 

v.The computed value, τi , is compared with the 

critical value, τc .  

vi.Check whether H0 is accepted or not; if not 

accepted, that indicates the presence of a gross 

error in that observation, otherwise it is not. 

vii.Remove the observation having a gross error and 

repeat the test for the remaining observations until 

all data is screened. 

 

4. RESULTS AND DISCUSSION 

The following example illustrates the application of 

the three different gross error detection methods [8-9-

10]. A vertical control network as shown in Figure 2, 

below with measurements as shown in Table 3, was 

used. 

 

Figure 2: The vertical network 

 

TABLE 3: VERTICAL CONTROL NETWORK 

OBSERVATIONS 

Obs From To 

Difference 

in elevations 

(meters) 

Weights 

(W) 

1 B.M1 A 5.100 3 

2 A B.M2 2.340 4 

3 B.M2 C -1.250 6 

4 C B.M1 -6.130 4 

5 A B -6.800 6 

6 B.M2 B -3.000 6 

7 B C 1.700 6 

 

From Table 3 and equations 3, 10, and 11, we can 

obtain: 

𝐴 =  

[
 
 
 
 
 
 

 

1 0 0
−1 0 0
0 0 1
0 0 −1 

−1 1 0
0 1 0
0 −1 1 ]
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𝑊 = 

[
 
 
 
 
 
 

 

3 0 0 0 0 0 0
0 4 0 0 0 0 0
0 0 6 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 6 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 6

 

]
 
 
 
 
 
 

 𝑏 =  

[
 
 
 
 
 
 

 

105.10
−105.16
106.25

−106.13 
−0.68
104.50
1.70 ]

 
 
 
 
 
 

 

The LSE solution resulted in: 

 0.008 0.011,- 0.019, 0.067,- 0.053,- 0.01, 0.05,ˆ =Tv

 99,0.2722,0.26,0.2,0.306,0.40.49,0.396ˆ =T

v

011.0ˆ 2

0 =  

The following values are used in all tests carried out: 

𝜎0
2 = 1, 𝛼 = 0.05, and 𝑟 = 7 − 3 = 4 

4.1 The Global Test 

The hypotheses are set as follows: 

CFH 
2

0

2

0
0

ˆ
:



  , 
Ca FH 

2

0

2

0
ˆ

:


  

The critical value of 𝐹0.95,4,∞ , (FC) as determined 

from the program is 2.364. With these values, 

011.0
1

011.0ˆ
2

0

2

0 ==


 , Therefore, H0 is accepted; 

hence no ω test is required. 

4.2 The Tau Test 

The critical value of τ determined using the 

developed program resulted in: 

𝜏1−𝛼;𝑛,𝑟 = 𝜏0.95;7,4 =  1.932 

From equation (17), the test statistic τi computed for 

the seven observations resulted in the following: 

 .336,0.27491,0.675,0,1.612,1.40.96,0.226=T   

These are compared with τc . Since none of the values 

exceeds τc, no gross error is present. The same figure 

with the same seven observations was used for the 

comparing tests. The least squares result of the four 

tests are as shown in Table 4. 

TABLE 4: LSE OF THE RESIDUALS 

v̂  
Size of gross error (m) 

0.54 0.55 1.90 2.20 

�̂�1 -0.338 -0.346 -1.318 -1.534 

�̂�2 -0.142 -0.144 -0.522 -0.606 

�̂�3 -0.031 -0.031 0.023 0.035 

�̂�4 -0.089 -0.089 -0.143 -0.155 

�̂�5 -0.075 -0.077 -0.311 -0.363 

�̂�6 0.047 0.048 0.192 0.224 

�̂�7 -0.028 -0.029 -0.119 -0.139 

 

Observation (1) is assumed to have gross errors of 

magnitudes 0.54, 0.55, 1.90, 2.20 m. Tests are carried 

out using the new observations having gross errors of 

magnitudes mentioned above. With significant level, 

 , of 0.05, r = 4, and 𝜎0
2 = 1. The results of 

calculated statistics are shown in Table 5.

 

TABLE 5: TEST RESULTS 

Size of 

gross error 

(m) 
�̂�𝟎

𝟐 

Global test 

CFFH max0 :  

364.2=CF  

ω – test 

CH  max0 :  

683.2=C  

τ – test 

CH  max0 :  

932.1=C  

0 0.011 

Fmax = 0.011

 

H0: Accept 

(No gross error) 

Not needed 

173.0max =  

H0: Accept 

(No gross error) 

0.54 0.128 

Fmax = 0.128

 

H0: Accept 

(No gross error) 

Not needed 

930.1max =  

H0: Accept 

(No gross error) 

0.55 0.133 

Fmax = 0.133

 

H0: Accept 

(No gross error) 

Not needed 

935.1max =  

H0: Reject 

(gross error 

present = 0.69σ) 

1.90 1.817 

Fmax = 1.817

 

H0: Accept 

(No gross error) 

690.2max =  

H0: Reject 

(gross error 

present = 2.5σ) 

995.1max =  

H0: Reject 

(gross error 

present) 

2.20 2.459 

Fmax = 2.459

 

H0: Reject 

(gross error 

present = 2.8σ) 

130.3max =  

H0: Reject 

(gross error 

present) 

997.1max =  

H0: Reject 

(gross error 

present) 
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5. DISCUSSION 

It can be seen from Table (5) that in the presence 

of a gross error, the variance factor increases with 

an increase in the size of that gross error. It 

increased from 0.011 to 2.459 when the size of a 

gross error increased from 0 (no gross error) to 

2.20 meters. The size of the calculated F 

distribution increases by the same amount (𝝈𝟎
𝟐 =

𝟏). When the size of a gross error is increased, the 

ratio of the aposteriori variance factor to its 

apriori value (Fmax) also increased. However, the 

Fmax value increases more rapidly than the 

increase in the size of a gross error. This can be 

seen clearly from the Table. An increase of, 

approximately, four times the size of a gross error 

(0.55 to 2.2 m) resulted in an increase in the Fmax 

value of 19 times the size of a gross error (0.128 

to 2.459). 

All three statistics, associated with the three 

methods also increase with an increase of the size 

of a gross error. However, the ratio with which the 

statistic associated with the three methods 

increase at different rates. The global method’s 

test statistic (Fmax) increases more rapidly than the 

other two methods. For the other two methods, the 

statistic associated with Pope’s method (τ 

statistic) increase with a considerably slower rate 

than Baarda’s method of data snooping test 

statistic (ω). An increase of 0.3 meters in the size 

of a gross error lead to an increase of 0.642, 0.440, 

and 0.002 for the three statistic’s related to the 

three methods of gross error detection: Fmax , ωmax , 

and τmax respectively. This is an indication that 

points to the fact that the τ statistic is the most 

sensitive to gross errors compared to the other two 

statistics. Very small errors can be reflected in the 

τ statistic and can, therefore be detected. 

Comparing the size of a gross error that any 

method can detect, with a probability of 0.95 

(significance level of 0.05) is approximately 2.8σ, 

2.5σ, and 0.7σ meters for global, Baarda’s data 

snooping (ω), and Pope’s method (τ) respectively. 

This result conforms to the foregoing result 

discussed in the previous paragraph. Namely, the 

τ statistic is the most sensitive of the three 

statistics and is, therefore, the one recommended 

to be used in gross error detection. It can detect 

gross errors as small as 0.7σ meters (in the test σ 

= 0.769 meters). 

  

6. Conclusions 

The variance factor increases in size with an 

increase in the size of a gross error. Its size reflects 

whether there is a gross error or not. The τ (tau) 

statistic is the most sensitive to gross errors 

compared to the other two statistics (F and ω). 

Errors as small as 0.7σ meters can be detect using 

the τ statistic. The ω statistic is better than the 

global test in gross error detection. 
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