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ABSTRACT- In this paper, numerical methods (finite differences methods for explicit and implicit)
has been applied, to solve nonlinear partial differential equations. In methodology, the beam was
divided into very smaller squares, then the study discussed three partial differential equations generating
from model. The first equation called longitudinal vibrations of a beam, second equation known as
transverse vibrations of a beam and then the third equation considered the extensible beam. The
equation of extensible beam was defined by Woiniwsky- Krieger as a model for transverse deflection
of an extensible beam of natural length. The study discussed the stability of these models (longitudinal
vibrations, transverse vibrations and extensible beams). The stability solution has been counted and
considered unconditionally for implicit method, but it's conditional for an explicit method. Obtaining
the stability and convergent solution for longitudinal vibrations of a beam if width divisions is less than
length divisions (R < 2), and for transverse vibrations of a beam if width divisions less than the square
length divisions (R < 0.25), as well as for extensible beam if width divisions less than the square length
divisions, the study recommended to use an implicit method. But in case of using an explicit method,
the divisions must be adhered for a stable and convergent solution.

Keywords: Partial Differential Equations, Finite Differences, Beam, MATLAB Programming.
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INTRODUCTION

Beams are the most common type of structural
component, particularly in Civil and Mechanical
Engineering ™. A beam is a bar-like structural
member whose primary function is to support
transverse loading and carry it to the supports, this
equation describes the motion of a beam initially
located on the x-axis which is vibrating
transversely "perpendicular to the x-direction”, in
this case u(x, t) is the transverse displacement or
deflection at any time ¢ of any points x [,

In the recent literature the behavior of a clamped
free non-linear inextensible Euler Elastic
introduced in Euler P! | see Luongo and Zulli 2,
Eugster™, Steigmann and Faulkner ©®2 for
general reference works, has been mathematically
investigated under distributed load (2016) . In
particular, the set of stable equilibrium
configurations has been completely characterized
in Della Corte et al (2019) I,

Today we get the numerical solution is very
important especial for nonlinear models, because
the traditional methods for solving nonlinear
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models is very difficult and sometime is
impossible to applicable.

In this paper, we discuss two methods, explicit
finite difference method and implicit finite
difference method.

The objective of this research is to estimation of
stability of longitudinal vibrations of a beam
equation, transverse vibrations of a beam equation
and extensible beam equation.

The stability of problems is very important,
because give optimal option to choose the
parameters to obtain best approximate solution.
The Model

Consider an extensible beam whose ends are held
atx — 0 and x — L, let H be the axial force set up
in the beam when it is constrained to lie along the
x —axis. The model of deflection u(x,t), which

we discuss, is
0%u N o*u N |6u 2\ 0%2u _o0 a
gz Vo PV gl Ja2 =0 @D

where a« = El/p, B = EA/pL and y = EA/2pL,
where E is young's modulus, I is the cross
sectional of second moment area, p is density and
A is the cross sectional area. Consider the
boundary conditions at both ends [,
Equation (1) was proposed by Woiniwsky-
Krieger as a model for transverse deflection of an
extensible beam of natural length whose ends are
held a fixed distance apart. If we assume
i. a=0&y=0,equation (1), is called
longitudinal vibrations of a beam.

au(xi, t]) _ u(xH_l, t]) - U(Xi_l, tj)

ii. B =08&y = 0,equation (1), is called
transverse vibrations of a beam.
Consider the initial- boundary value problem at
both ends. Consider the boundary conditions:
u(0,t) =4, u(l,t) =8B,
u,(0,t) =C &u,(L,t) =D
Initial conditions:

u(x,0) = f(x)

TABLE 1: IMPORTANT PARAMETERS

& ut(x' 0) = g(X)

Parameters Mining
Is ratio between young's modulus
a multiply by cross sectional of second

moment area and density

Is ratio between young's modulus
B multiply by cross sectional area and
density multiply by length

Is ratio between young's modulus
Y multiply by cross sectional area and
density multiply by tow length

MATERIALS AND METHODS

In this paper, we use finite differences methods
(Explicit Method & Implicit Method), the finite
differences approximations for derivatives are one
of the simplest and of the oldest methods to solve
differential equations. L. Euler knew it, in this
paper, we using the explicit method to
approximate the derivatives for central operator
difference [,

+ 0(h?) (2)

dx
azu(xl-, tj) _ U(XH_l, t]) — ZU(XL', tj) + u(xi_l, t])

+ 0(h?) 3)

2

dx
aZU.(Xi, t]) _ u(xl-, tj+1) - Zu(xl-, t]) + u(xl-, tj—l)

+ 0(k?) (€))

ot?2

64'U.(Xi, tj) _ u(xi+2, t]) - 4U(Xi+1, t]) + 6U(Xi, tj) - 4-u(xl-_1, tj) + U(Xi_z, t])

+ 0(h?) (5)

ox*

h4

Note: the implicit method we defined the derivative of x-axis at point (x;, tj1)

STABILITY ANALYSIS

The stability analysis is giving optimal option to choose the parameters to obtain best approximate

solution.
Stability of explicit method for longitudinal vibrations of a beam equation.
0°u 0%u 0 .
s ) Py B+ >
u',.—l_ u.’. u.,. 1 u 1,.— u.,. u—l,
(Hasmt =2y ) (s = 2y F o) 4 o @
The local truncation error for this equation is
k% 0*u(x;,n; h? 0*u(&;, t;
tij = EM — _M = O(kz) + O(hz) (8)

ot* 12

Ox*

Upjpr = TUgq; + (2 — 20w + 71U — U jq €©)
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2
where 7 = /%, R is ratio between square of step length of time (k) and step length of a beam to power
four (h) multiply by £.
Let us: ui_j = (_1)lA] or u‘i,j — /‘ljeinAXQ

DV = (=D + 2 - 2r) (DX + r(-1)7V — (=1)IA L (10)
Multiply both sides by, (—1)~¢A7/, we obtain
A=—-r+Q-2r)—r—-r—2a1 (11)
A+ t=2-2r (12)
A2+1
= = 2—="2r (13)

Suppose w=1—-1r = A12-2wl+1=0

= l,=wiyw?-1 (14)
Now since 4; and A, are roots of this quadratic equation, we may conclude that 2,1, = 1. However,
for stability of solutions we require
|4;] < 1 and |A,| < 1. Given the constraint 1,4, = 1, the only possibility if the solution to be stable
is |A;] = |4,] = 1, thus 2 must fall on the unit disk, which implies [,

Bk? 5 _ 2h?
wl=1-r<1 = |r-1|<1, = r<2, r=?<2 = k <7
The stability of explicit method is conditionally.
Stability of implicit method for longitudinal vibrations of a beam equation.
0%u ’u 0 s
4 T B o
Ujj—1 = U T Ujji Uity j+1 — EUjj1 T Ui—1,j41
( ij k;] i,j+ )—ﬂ( i+1,j+ ;li+ i-1,j+ ): 0(k2) + 0(h?) (16)
The local truncation error for this equation is
k2 64u(xi,nj) h2 64u(fi, tj+1) 2 2
2uij = —TUjpq 1 + (L4 20U g — TU—g a1 T U j—1 (18)
2
where r = % R is ratio between square of step length of time (k) and step length of a beam to power
four (h) multiply by .
Letus: ;= (-1 or wu;; =Menixb
2DV = —r(=D)" VT + (1 + 2r) (- D)V —r (=)W + (D)L (19)
Multiply both sides by, (—1)~¢A7/, we obtain
2=rA+ (1 +2r)A+ri+2t (20)
1+4r)A +2171=2 (21)
1+4rA%2+1
— =2 (22)
Suppose w = —- Z=2wl+w=0,= 2A,=witVvw2-—w (23)

Now since A, and A, are roots of this quadratic equation. However, for stability of solutions we require
|21] < 1 and |A,| < 1. The only possibility, if the solution to be stable is |1,| = [1,] = 1, thus A must
fall on the unit disk, which implies [,

|w|=| Llc1 = |144r]>1 , = r>0, r
1+4r

The stability of implicit method is unconditionally.

_ BK?
=

>0 => k>0

Stability of explicit method for transvers vibrations of a beam equation.

0%u 0*u

W-I_QW:O (24)
Ujj—q — 2+ Ujjyq Uiy —dUjpq; H 60U — AU+ U5
< L] k;] L]+ )+C2( 1+2,] 1+1,j h;] L J 1 ]):0(k2)+0(h2) (25)

The local truncation error for this equation is
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k2 64u(xi, 7’]]) th aBU(fl’,tj)
= —— T - > J 2 2
tij =13 s ey Epe 0(k?) +0(h*) (26)

ui_j+1 = _Tui+2,j + 4rui+1’j + 2(1 - 3r)ui_]- + 4rui_1']- - rui_z_j - ui‘j_l (27)
2
where r = '% R is ratio between square of step length of time (k) and step length of a beam to

power four (h) muItipIy by a. o
Letus: ;= (-1 or u;; =Memixb
(D = —r (D)2 + 4r(—1)V + 2(1 = 3r) (- D)V + 4r (=)W —r(-1)2W

— (—1)ip1 (28)
Multiply both sides by, (—1)~¢A7/, we obtain
A=—r—4r+2(1-3r)—4r—r—2"1 (29)
A+ 1=2—16r (30)
22 +1
—=2-16r (31)
Suppose w=1—-8r = A2-2wi+1=0, = XA,=wtVw?-1 (32)

Now since 4; and A, are roots of this quadratic equation, we may conclude that 1,1, = 1. However,
for stability of solutions we require |[A;] < 1 and |A,| < 1. Given the constraint 1,4, = 1, the only

possibility if the solution to be stable is |A1;| = |1,| = 1, thus A must fall on the unit disk, which implies
[6]

1 ak? 1 2 _ ht
wl=]1-8r|<1 = |8r—-1|<1 , = r<or=-s;<; = k <
The stability of explicit method is conditionally.
Stability of implicit method for transvers vibrations of a beam equation.
AR (33)
—_— aA— =
ot? ox*
(ui,j+1 - 2:;',1' + ui,j—i) 42 (ui+2,j+1 —4Ujyqg i1 t 6”;'1,i+1 —4u_q 41t ui—z,j+1> = 0(k?) + 0(h?) (34)

The local truncation error for this equation is
k?0*u(x,ny)  2h% 0%u($y, tit1)
R P b o7 7 e vl 2 2
tij 2 o g 950 0(k*)+0(h*) (35)
20 = TUjpp 1 — AT Ujpq jer + (A 61U g — 47U g T U juq + Uy g (36)
2
where r = ‘% R is ratio between square of step length of time (k) and step length of a beam to power
four (h) multiply by «a.
Letus: ;= (-1 or wu;; =Menixb
2(=DIV = r(=1)F2VUH — 4 (1)U + (1 + 6r) (1) — 4r (=D)AL +

r(=1)2U+ + (=) ? (37)
Multiply both sides by, (—1)~¢A~/, we obtain
2=rA+4r+ (A +6r)A+4rdl+ri+ 2171 (38)
(1+16r)A+ 11 =2 (39)
(1+16mA%2 +1
- =2 (40)
Suppose w = —— Z=2wl+w=0,= A,=witVvw?—w (41)

Now since A, and A, are roots of this quadratic equation. However, for stability of solutions we require
|A4;] < 1 and |1,| < 1. The only possibility, if the solution to be stable is |A,| = |A,| = 1, thus 2 must

fall on the unit disk, which implies [,
2
wi=|7z|<1 = n+16r1>1, = r>07r=22>0 = k>0
1+16r h

The stability of implicit method is unconditionally.

Stability of explicit method for extensible beam equation.
0%u N 0*u 0%u |(')u 292y — o »
o Tt P TV |axl a2 T (42)
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(ui,j+1 —2u;; + ui,j—l) ta (ui+2,j — AU+ 06U — U+ ui—z,j)

k2 h#
Uiy1,j — 2Ujj +Ujqj Uip1,j — Wim1j\|% (Wit — 2Uij + Ui-1j
_ﬁ< h? >_V|( ) ( n2 )
=0 (43)
ui,]-+1 = —rui+2,]- + 4rui+1']- + (2 - 6r)ui_]- + 4rui_1‘j - rui_z_j

ph?

+ —a (Tui+1’j - Zrui’j + rui_l’j)
Y 2
oo (i =) (ruign j = 2rug; +rg ) — i (44)

where r = “h—"f R is ratio between square of step length of time (k) and step length of a beam to power
four (h) multiply by a.
Letus: ;= (-1 or u;; =Memixb
(DA = —r(=1D)F2V + 4r (1) + 2 - 6r)(—D'V + 4r(=1) 7V —r(=1)21
+B—( (=D = 2r(=1D)'V +r(=1)" 1/1])
+ @ (r(—l)”llf —r(-D" 1/1]) (r(—l)”l/lf —2r(=D)'V +r(-1D)WV)

— (=Diy1 (45)
Multiply both sides by, (—1)~A~/, we obtain

4Bh? _

A=—-r—4r+Q2—6r)—4r—r— " r—At (46)

) 4BR2
A+A11=2—-16r— T 47

2+1 4812
3 =2-16r— T (48)

2

Suppose w=1-8r -1 = 2-2wi+1=0,= A,=wEVwIi- (49)

Now since 4; and A, are roots of this quadratic equation, we may conclude that 1,4, = 1. However,
for stability of solutions we require |A;] < 1 and |A;| < 1. Given the constraint 1,4, = 1, the only

possibility if the solution to be stable is |[A,| = |1,| = 1, thus A must fall on the unit disk, which implies
[61

2Bh? /; h? 1
lw|=|[1-8r-— rl<1 = [(8+ r—-1<1 = r<——— Bh
a 4+
ak? - 1 12 < h*
= —t B
TR B (4a + Bh?)
a
The stability of explicit method is conditionally.
Stability of implicit method for extensible beam equation.
0%u N 0*u 8 0%u oul® 0%u —0 (50
a _ D _
otz " %axt Paxz Vloxl 9x2
(ui,j+1 - 2u;; + ui,j—l) ta (ui+2,j+1 =AUy 1+ OU g — AU g T ui—z,j+1>
k2 h*
_p (ui+1,j+1 —2U; 1 + ui—l,j+1)
h2
_y |(ui+1,j+12_hui—1,j+1)|2 <ui+1,j+1 - Zu;'l,é'n + ui—l,j+1> —0 (51)
20 j = TUjyg 1 — A Uigq jer + (L + 67U g — ATUg jyq + TU—2 j41
Bh?

- (Fiprjer = 2ty jen + TUg j41)

2
12 (P jer = TUi—1 jo1) (MUirnjon = 27U g + U jur) Uy (52)
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2
where r = % R is ratio between square of step length of time (k) and step length of a beam to
power four (h) multiply by a. Letus:  u;; = (—1)'A/ or u;; = Aenix?

2(=1D)A = r(=1)H2UH — 4 (DU + (1 + 6r) (= D)VF — 4r(=1)17 1+

o h? L . .
4+ T(_1)1—2/11+1 _ 'BT (T(—l)l+1/1]+1 _ 27”(—1)1/1]"'1 + r(_1)1—1/1]+1)
_ I_a (r(—1)*1 7+ — r(_l)i—llj+1)2(T.(_l)i+1/1j+1 — 2r(—1)ip*1
+r(-D)TV) + (DT (53)
Multiply both sides by, (—1)~*A~/, we obtain
2
2=1rA+4rA+ (A +6r)A+4ri+ri+ rA+ A7t (54)
4Bh? _
1+ 167+ r|A+A =2 (55)
4Bh?
(1+16r+ . A2 +1=22 (56)
Suppose W:+th = 2-2wi+w=0,= A,=wtVwi-w (57)

1+167r+-——r1
Now since A, and A, are roots of this quadratic equation. However, for stability of solutions we require
|A4;] < 1 and [1,| < 1. The only possibility, if the solution to be stable is |A,| = |A,| = 1, thus A must
fall on the unit disk, which implies ©1.
4Bh? ak?
<1 = |1+(16+ p rI>1 = r>0,r=F>0

lw| =

2
1+16r+%r

= k>0
The stability of implicit method is unconditionally.

Algorithm and Numerical Results
Algorithm of equation (1) for applied explicit method
To obtain the numerical solution of equation 1.
Input: endpoint L; maximum time T; constants a, 8, y; integers n and m
Output: approximations u(xi, tj), foreachi=0,1,....,m and j=0,1,....,n
Step 1: h=L/n
k=T/m
r=a *k"2/hN4
p=7v *k"2/(2*h)"2
Step 2: fori=0,1,.....m
forj=01,......n

Do step 3 and step 4
Step 3: u(xy,tj) =A
u(xn, tj) =B

Step 4 u(x;, ty) = f(x;)
Step 5: fori=1,.....,n-1
forj=1,...... ,m-1
u(xl-, tj+1) = —ru(xH_z, tj) + 4ru(xl-+1, tj) +2(1 - 3r)u(xl-, tj) + 4ru(xl-_1, tj) -

ru(x;_p, t;) —u(x;, tioq) + (ﬁkz +p (u(xl-“, t;) —u(xi1, tj))z) « (u(xp, t7) — 2u(xg, ) +

u(xi—1,t;))/h?
Step 6: output ugg, Ugq, Ugz, v+ Umn
Step 7: Stop (the producer is complete)

Algorithm of equation (1) for applied implicit method
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To obtain the numerical solution of equation 1.
Input: endpoint [; maximum time T; constantsa, 3, y, integers n and m
Output: approximationsu(xi, tj ), foreachi=01,...,m and j=0,1,...,n
Step 1: h=L/n

k=T/m

r=a *k"2/h"4

p=y *k'2/(2")"2
Step 2: fori=0,1,....,m

forj=0,1,.....,.n

Do step 3 and step 4
Step 3: u(x,t;) = A
u(xn, tj) =B

Step 4 u(x;, to) = f(x;)
Step 5: for i=1,....,n-1

forj=1,......m-1

ru(xip2 tie1) — 4ru(xips, tier) + (L + 6r)u(xg, tipr) — 4ru(xi—g, tjq) +
2 U(Xjt1,ti41)—2u(Xj, 41 ) FU(Xi—1,t;

ru(xi_z,tj.H) + (ﬁkZ + P (u(xiﬂ, tj+1) — u(xi_l, tj+1)) ) * ( +1 ]+1) (h2]+1) ( 1 J+1) —
Zu(xi, t]) + u(xi, tj—l)
Step 6: outputugyg, Ugq, Uz, - - Umn
Step 7: Stop (the producer is complete)

Example 1: Consider length of x-axis equal 10 and width equal 5. n=6, m=6, (x) = sin(x), g(x) =
x,A=1,B=3,C=0,D=0&p = 0.5. Inlongitudinal vibrations of a beam.

TABLE 2: APPROXIMATE SOLUTION BY USING EXPLICIT METHOD

X t=0.000 1=0.8333 | t=1.6667 | t=2.5000 | t=3.3333 | t=4.1667 t=5.000
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6667 0.9954 4.2549 7.1801 9.6746 11.7530 13.5285 15.1707
3.3333 -0.1906 4.8355 9.9145 15.0203 20.0831 24.9907 29.6056
5.0000 -0.9589 5.8391 12.8638 20.0216 27.1717 34.1115 40.5378
6.6667 0.3742 8.6562 16.8776 24.9621 32.5768 39.1247 43.8851
8.3333 0.8873 10.9873 19.7975 26.1430 29.4480 29.8381 28.0343
10.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

TABLE 3: APPROXIMATE SOLUTION BY USING IMPLICIT METHOD

X t=0.000 t=0.8333 | t=1.6667 | t=2.5000 | t=3.3333 | t=4.1667 t=5.000
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6667 0.9954 7.2035 12.0082 15.3947 17.6556 19.2424 20.6113
3.3333 -0.1906 5.5527 11.7895 18.4439 25.3062 32.0917 38.4798
5.0000 -0.9589 6.9284 15.5191 24.8334 34.6200 44,3271 53.1692
6.6667 0.3742 12.4075 24.8759 37.0110 47.7129 55.9261 60.9392
8.3333 0.8873 22.2715 37.7122 46.5234 49.3390 47.6162 43.1087
10.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

TABLE 4: ERROR ESTIMATION FOR LONGITUDINAL VIBRATIONS OF A BEAM

Explicit Method Implicit Method
R=2.000 R=0.125 R=2.000 | R=0.125
1.0e+003*0.0000 0.0000 0.0000 0.0000
1.6477 1.6422 1.7672 1.3689
3.8304 4.6149 3.0251 6.3881
6.0236 6.4263 3.3392 8.8422
6.6218 4.7604 2.6466 5.0132
4.4476 1.8038 1.3533 4.5075
0.0000 0.0000 0.0000 0.0000

Error=|uf+t — uk|
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Figure 1: Graphical Representation of longitudinal vibrations of a beam equation by using implicit

Figure 2: Graphical Representation of longitudinal vibrations of a beam equation by using implicit
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TABLE 5: APPROXIMATE SOLUTION BY USING EXPLICIT METHOD

X 1=0.000 1=0.8333 | t=1.6667 | t=2.5000 | t=3.3333 | t=4.1667 1=5.000
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6667 0.9954 2.3218 3.4727 4.4396 5.2584 5.9882 6.6826
3.3333 -0.1906 2.5853 5.3707 8.1630 10.9290 13.6497 16.3972
5.0000 -0.9589 3.3114 7.7355 12.3045 17.1430 22.4569 28.3601
6.6667 0.3742 5.8095 11.4556 17.5807 24.0409 30.2844 35.5885
8.3333 0.8873 7.9697 14.2020 18.7187 21.1971 21.9133 21.5585
10.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

TABLE 6: APPROXIMATION SOLUTION BY USING IMPLICIT METHOD

X t=0.000 t=0.8333 | t=1.6667 | t=2.5000 | t=3.3333 | t=4.1667 t=5.000
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6667 0.9954 2.3157 3.56509 4.7631 6.0049 7.3019 8.6418
3.3333 -0.1906 2.6153 5.4710 8.3565 11.2285 14.0129 16.6015
5.0000 -0.9589 3.3305 7.7607 12.1701 16.3523 20.0756 23.1096
6.6667 0.3742 5.8642 11.0936 15.8294 19.7933 22.7383 24,5131
8.3333 0.8873 7.4274 12.4961 15.8322 17.5160 17.8539 17.2489
10.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

TABLE 7: ERROR ESTIMATE FOR TRANSVERSE OF VIBRATIONS OF A BEAM

Explicit Method Implicit Method
R=2.000 R=0.125 R=2.000 R=0.125
0.0000 0.0000 0.0000 0.0000
99.8310 0.6944 1.1442 1.3399
161.1570 2.7476 2.0841 2.5885
178.0735 5.9032 2.4935 3.0341
153.6377 5.3041 2.1296 1.7749
97.9247 0.3548 1.1387 0.6050
0.0000 0.0000 0.0000 0.0000

Error=[u**t — u¥|
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alpha=4 & R=0.360 alpha=0.5 & R=0.045

150
100

50

Solution
Solution
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Figure 3: Graphical Representation of transverse vibrations of a beam equation is unstable when R >
0.25 and is stable at R < 0.25

alpha=4 & R=0.360 alpha=0.5 & R=0.045

Solution
Solution

a 10

5

t-axis o (o] x-axis t-axis o o xX-axis
Figure 4: Graphical Representation of longitudinal vibrations of a beam equation by using implicit
method

h*/(a+(beta/alpha)*h?)= 1.1384 & R=0.180ch"/(4+(beta/alpha)*h?)=0.8075 & R=0.0009

10

Solution
Solution

oON o N M O ®

t-axis 0 o x-axis t-axis 0 o x-axis
Figure 5: Graphical Representation of extensible beam equation is unstable when R = 0.1800 and is
stable at R =0.0009.

TABLE 8: APPROXIMATE SOLUTION BY USING EXPLICIT METHOD

X t=0.000 | t=0.8333 | t=1.6667 | t=2.5000 | t=3.3333 | t=4.1667 | t=5.000
0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.6667 0.9954 2.3791 3.7381 5.0561 6.3092 7.4624 8.4678
3.3333 -0.1906 1.2005 2.5950 3.9928 5.3937 6.7967 8.2005
5.0000 -0.9589 0.4396 1.8585 3.3003 4.7645 6.2495 7.7518
6.6667 0.3742 1.7589 3.1342 4.4583 5.7042 6.8328 7.7915
8.3333 0.8873 2.2867 3.6892 5.0805 6.4443 7.7575 8.9880
10.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

Table 4, shown the error is smaller in stability Example 2: Consider length of x-axis equal 10
case. Figure 1, shown the solution is convergent and width equal 5. n=6, m=6, f(x) =
in stability case, but is divergent in instability sin(x),g(x) =x,A=1,B=3,(=0,D =
case, from figure 2 we get a solution is convergent 0 & « = 0.5. In Transverse of vibrations of a
at all case. beam.
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Table 7, shown the error is smaller in stability
case. Figure 3, shown the solution is convergent
in stability case, but is divergent in instability
case, from figure 4 we get a solution is convergent
at all case.

Example 3: Consider length of x-axis equal 10
and width equal 5. n=6, m=6, f(x)=
sin(x),g(x) =x,A=1,B=3,C=0,D =
0, =0.01, $=0.02 & y=0.03.
extensible beam.

Table 9, shown the error is smaller in stability
case. Figure 5, shown the solution is convergent
in stability case, but in instability case, the
solution is divergent.

In

TABLE 9: ERROR ESTIMATION FOR EXTENSIBLE

BEAM
R=0.1800 R=0.0009
1.0e+019* 0.0000 0.0000
0.1533 1.0055
4.6940 1.4038
0.9630 1.5023
8.1515 0.9586
7.1266 1.2305
0.0000 0.0000

Error=[u**1 — uk|

CONCLUSIONS

In this paper, the study discussed solutions of
extensible beam linear or/and nonlinear partial
differential equation dependent for parametery,
by using finite difference methods also we discuss
the stability we get i) The stability of implicit
method unconditionally but the stability of
explicit method is conditionally, ii) The explicit
method of longitudinal vibrations of a beam
equation is stable if R < 2 and unstable when R >
2, iii) The explicit method of Transverse
vibrations of a beam equation is stable if R <0.25
and unstable when R > 0.25, iv) The explicit
method of extensible beam equation is stable if

a a
R < Garpn?) and unstable when R > Gaipnd)

v) The implicit method of longitudinal vibrations
of a beam equation, Transverse vibrations of a
beam equation and extensible beam equation are
stable for any value of R, vi) From tables 4, 7 & 9
we get the error is very small when we applied
implicit method, but in explicit method to make
small error use stability case, vii) From figures 1,
2 & 3, at stability case for explicit method and
implicit method the figures is similar and uniform,
but in instability case the figures in not similar and
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differences, viii) Future work, we hop the research
applied the implicit method for solving, but
sometime the implicit method for nonlinear model
is very difficult to compute solution in this case
applied the explicit method and choose the
parameters to give stability.
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