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Abstract 

This study based on operator theory and joint similarity to operators on 

noncommutative varieties with strong deformation estimates deification and an 

excursion for the Berezin-Toeplitz quantization . The basic asymptotic expansion 

of the harmonic Berezin transform on the half-space and the determine Gauss 

hypergeometric function for a specific large constant are dealt with. The Berezin 

transform and perfect weighted reproducing Kernels with Toeplitz operators on 

harmonic Bergman spaces on the real ball  are definitely considered and also in addition 

the Berezin transforms on noncommutative varieties in Polydomains and of two arguments  

are construded and weighted explained . 
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 الخلاصة 

المشترك الي المؤثرات علي التشكيلات غير التبديلية مع هذه الدراسة أسست علي نظرية المؤثر والتشابه    

وك المقاربة تبوليتز. قمنا بالتعامل مع مفك-تقديرات التنبؤات القوية والتطابق والانحراف  لاجل تكميم بيرزين

الاساسية لتحويل بيرزين التوافقي علي نصف الفضاء وتجديد دالة جاوس الهندسية الفائقة لاجل الثابت الكبير 

لمحدد . قمنا بالاعتبار القطعي لتحويل بيرزين ونويات اعادة الانتاج المرجحة التامة مع مؤثرات تبوليتز ا

علي فضاءات بيرجمان التوافقية علي الكرة الحقيقة وايضا اضافة تحويلات بيرزين علي التشكيلات غير 

 سع التبديلية في مجالات متعددة وله حجتين وتم بناءه وله شرح علي نطاق وا
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Introduction 

                            
             We develop a dilation theory for row contractions T ∶=  [T1, . . . , Tn] subject to 

constraints such as p(T1, . . . , Tn)  =  0, p ∈  P, where P is a set of noncommutative 

polynomials. The model n-tuple is the universal row contraction [B1, . . . , Bn] satisfying the 

same constraints as T, which turns out to be, in a certain sense, the maximal constrained 

piece of the n-tuple [S1, . . . , Sn] of left creation operators on the full Fock space on n 

generators. The theory is based on a class of constrained Poisson kernels associated with T 

and representations of the C∗-algebra generated by B1, . . . , Bn and the identity. Under natural 

conditions on the constraints we have uniqueness for the minimal dilation. A characteristic 

function 𝛩𝑟 is associated with any (constrained) row contraction T and it is proved that 𝐼 −
 𝛩𝑇𝛩𝑇

∗  =  𝐾𝑇𝐾𝑇
∗  

where 𝐾𝑇 is the (constrained) Poisson kernel of T. Consequently, for pure constrained row 

contractions, we show that the characteristic function is a complete unitary invariant and 

provide a model.  

       Deformation estimates for the Berezin-Toeplitz quantization of 𝐶𝑛 are 

obtained. We give a complete identification of the deformation quantization which was 

obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kahler manifold. 

The deformation quantization with the opposite star-product proves to be a differential 

deformation quantization with separation of variables whose classifying form is explicitly 

calculated . 

      We present an introduction to the Berezin and Berezin-Toeplitz quantizations, starting 

from their historical origins and relationships with other quantization methods. We give a 

complete asymptotic expansion of the Berezin transform associated to the Bergman space of 

harmonic functions on the half-spacethat are square-integrable with respect to the measure 

𝑦𝛼  𝑑𝑥 𝑑𝑦 (𝛼 ≥  0) 𝑎𝑠 𝛼 →  ∞  
         We an attempt to unify the multivariable operator model theory for ball-like domains 

and commutative polydiscs, and extend it to a more general class of noncommutative 

polydomains. An important role in our study is played by noncommutative Berezin 

transforms associated with the elements of the polydomain. These transforms are used to 

prove that each such polydomain has a universal model consisting of weighted shifts acting 

on a tensor product of full Fock spaces. We introduce the noncommutative Hardy algebra as 

the weakly closed algebra generated by and the identity, and use it to provide a WOT-

continuous functional calculus for completely non-coisometric tuples, which are identified. It 

is shown that the Berezin transform is a completely isometric isomorphism between and the 

algebra of bounded free holomorphic functions on the radial part . A characterization of the 

Beurling type joint invariant subspaces under  is also provided. 

      We consider the Gauss hypergeometric function F (a, b + 1; c + 2; z) . We derive a 

convergent expansion of F (a, b + 1; c + 2; z) in terms of rational functions of a, b, c and z 

valid for |𝑏||𝑧|  <  |𝑐 −  𝑏𝑧| and |𝑐 −  𝑏||𝑧|  <  |𝑐 −  𝑏𝑧|.  
 

       For the standard weighted Bergman spaces on the complex unit 

ball, the Berezin transform of a bounded continuous function tends to this function pointwise 

as the weight parameter tends to infinity. We show that this remains valid also of harmonic 

Bergman spaces on the real unit ball of any dimension. We describe the asymptotic behavior 

of the Berezin transform of two arguments which generalizes the standard notion of the 

Berezin transform 
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Chapter 1 

Operator Noncommutative Varieties 

We show that the curvature invariant and Euler characteristic asssociated 

with a Hilbert module generated by an arbitrary (resp. commuting) row contraction T can be 

expressed only in terms of the (resp. constrained) characteristic function of T. We provide a 

commutant lifting theorem for pure constrained row contractions and obtain a Nevanlinna-Pick 

interpolation result. We use some of the results to provide Wold type decompositions and 

triangulations for n-tuples of operators in noncommutative varieties  𝑉𝑓,𝑝
1 (𝐻), which parallel the 

classical Sz.-Nagy–Foias triangulations for contractions but also provide new proofs. As 

consequences, we show the existence of joint invariant subspaces for certain classes of operators in 

𝑉𝑓,𝑝
1 (𝐻). 

Section (1.1): Operator Theory  

There has been exciting progress in multivariable dilation theory , in the attempt to extend the 

classical Nagy-Foias theory of contractions [38]. 

In the noncommutative case ,significant results were obtained in [14], [9],[20],[21],[22],[24], and 

recently in [10]. Some of these results were further extended by Muhly  and solel [17]to 

representations of tensor algebras   over C∗ −correspondences.   We develops a dilation theory for 

row contractions subject to constrains determined by sets of noncomutative polynomials .The theory 

includes ,in particular , the commutative (see[13],[30],and [4]) and q-commuative (see [2],[7]) cases 

,while the standard noncommuative dilation theory for row contractions serves as a ‘’universal  model 

‘’. An n-tuple T:=[T1 , … , Tn ]   of bounded  linear operators  acting on common Hilbert space 𝝜 is  

called row contraction if TT∗ = T1 T
∗
1 +⋯+ TnT

∗
n ≤ I . 

A distinguished role among row contractions is played by n-tuple  S:=[S1, … , Sn]of left creation 

operators on the full Fock space F2(Hn)  ,which satisfies the noncommutative von Neumann 

inequality [25] 

⃦ p(T1 , … , Tn  )   ⃦≤   ⃦ p(S1 , … , Sn )  ⃦ 
For any polynomial  P(X1 , … , Xn ) in n noncommuting indeterminates . for the classical von 

Neumann inequality [39] (case n=1) and a  nice survey , see [19]. 

Based on the left creation operators and their representations , a noncommutative dilation theory  and 

model theory for row contractions was developed in [14], [9], [20] ,[21], [22],[24] , ect . 

Assume  now that T is subject to the constraints  

                           TiTj = TjTi ,             i , j =1, . . ., n , 

In this commutative case , the noncomutative dilation theory can be applied but , in many respects , 

it is not satisfactory due to the fact that the models  shift S:=[S1, … , Sn] does not satisfy the same 

contraints as T . however , the universal commutative row contraction is a piece of S , namely  

        B:=[B1, … , Bn] , Bi ≔ PFs2Si⃒Fs
2  , i=1, . . ., n, 

WhereFs
2  ⊂  F2(Hn) is the symmetric Fock space . in this setting , the natural von Neumann 

inequality (see [13] ,[30] and [4] )is 

 ⃦ p(T1 , … , Tn  )   ⃦≤   ⃦ p(B1 , … , Bn )  ⃦ 
 

For any polynomial p(z1  , … , zn ) in n commuting indeterminates   . A dilation theory for commuting   

row contractions based on the model shift B:=[B1, … , Bn] and its representations was considered by 

drury [13] and [30] to a certain extent , and by Arveson [4] in greater details this  circle of ideas was 

extended to row contractions satisfying the constraints 

                                  TjTi = qij TiTj , 1≤ i < j ≤ n , 

Where qij  ∊ 𝕔. In this setting , a von  Neumann inequality was obtained by Arias and [2] . This was 

used further by B.V.R . Bhat and T . Bhattacharyya [7] to obtain a model theory for q-commuting 

row contractions . 
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we develop a dilation theory for row contractions T:=[T1 , … , Tn ]    subject to more general constrains 

such as  

                                                p(T1 , … , Tn ) =0, p ∊ P,   

Where p is a set of noncommuative polynomials  . If T is a pruerow contraction , then p can be any 

WOT-sided ideal of noncomutative analytic . Toeplitz algebra Fn
∞ . The model n-tuple is the universal 

row contraction [B1, … , Bn ] satisfying the same constraints as T , which  turns out to be , in a certain  

sense , the maximal constrained piece of the n-tuple  of left creation operators on the full Fock space 

with n generators . 

we provide basic results concerning the constrained shift [B1, … , Bn ] and the w∗-closed algebra 

generated by B1, … , Bn and the identity we obtain a Beurling type theorem characterizing the invariant 

subspace under each operator B1⊗ Iℋ , … , Bn⊗ Iℋand a characterizing of cyclic co- invariant 

subspaces under the same  operators .  We also  provide Wold type decompositions for non degenerate  

*representations of C∗ − algebra C∗(B1, … , Bn) and prove that two constrained shifts [B1⊗
Iℋ , … , Bn⊗ Iℋ ]and[ B1⊗ Ik, … , Bn⊗ Ik  ] are similar if and only if dim ℋ= dim 𝑘.  

We develop a dilation theory for constrained  row contractions . The theory is based on a class of 

constrained poission kernels ( see[30] ,[2],[35], and [6] for n=1 ) associated with T:=[T1 , … , Tn ]    and 

representations of the C∗ − algebra generated by B1, … , Bn and  the identity . In particular , if the set 

p consists of  homogenous polynomials , then we  show that there exists a Hilbert space kπ such that 

H can be identified with a subspace of �̌� :=(NJ  ⊗ ∆TH̅̅ ̅̅ ̅̅  ) ⊕ Kπ and  

Ti
∗ = Vi

∗ ⃒H , i = 1,… n, 
Where ∆T∶= ( I − T1T1

∗ −⋯− TnTn
∗  )1/2  , 

Vi ≔ [
Bi⊗ I∆TH̅̅ ̅̅ ̅̅ 0

0 π(Bi )
] , i=1, ..., n, 

And 𝜋 ∶ C∗(B1, … , Bn )is a *-representations which annihilates the compact operators and  

𝜋(𝐵1)𝜋(𝐵1 )
∗ + …+ 𝜋(𝐵𝑛)𝜋(𝐵𝑛)

∗ =IKπ 

Under certain natural conditions on the constrains , we have uniqueness for the minimal dilation of T 

. We introduce and evaluate the dilation  index , a numerical invariant for row contractions , and show 

that it does not depend on the constraints . 

we provide new properties for the standard characteristic function ϴT associated with an arbitrary 

row contraction T (see [22]), and introduce a new characteristic function associated  with  constrained 

row  contractions . the constrained characteristic function is a multi-analytic  operator ( with respect 

to the constrained shifs  B1 , … , Bn) 

ΘJ,T : NJ⊗DT∗ → NJ⊗DT 

Uniquely defined by the formel Fourier representation  

-INJ ⊗T+ (INJ  ⊗ ∆T )(INJ⊗H − ∑ Wi⊗Ti
∗ )n

i=1
−1 [W1⊗ IH , … ,Wn ⊗ IH](INJ⊗∆T∗) 

. we prove a factorization result for the constrained characteristic  function , namely  

I - ΘJ,TΘ
∗
J,T = KJ,TK

∗
J,T, 

Where KJ,T is the constrained Poisson kernel associated with T .  Consequently , for the class of prue 

constrained row  contractions , we show  that the characteristic  function is a complete  unitary 

invariant and provide a model . All the results apply , in particular , to commutative row contractions  

We obtain a commutant lifting theorem for pure contractions and a Nevanlinna –pick interpolation 

result in our setting . These results are based on the more general  non commutative commutant lifting 

theorem (see [21],[24]) and some results from previous . The above –mentioned factorization result 

for the characteristic  function has important consequences in multivariable operator theory . We 

point out some of them which are considered, Arveson introduced a notion of curvature and Euler 

characteristic for finite rank contractive Hilbert modules over [z1  , … , zn  ] the complex unital algebra  

of all polynomials in n commuting variables .  

The canonical operators T1 , … , Tn   is  associated with the 𝕔[z1  , … , zn  ]–module structure are 

commuting and T:=[T1 , … , Tn ]    is a row contraction with rank  ∆T< ∞  . Non commutative 

analogues of   these notions were introduced and studied [32] and , independendently , by D.Kribs 
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[15] . We show that the curvature and the Euler characteristic  ( in both the commutative and non 

commutative case ) depend only on the properties of the characteristic  function of T . 

For example , in the commutative case ,  if T:=[T1 , … , Tn ]   is a commuatative  row contraction with 

rank ∆ T < ∞ , 𝑎𝑛𝑑  K(T)  and 𝒳(T)denote Arveson’s curvature and Euler characteristic, 

respectively, then we prove that 

K( T) =∫
∂βn

lim
r→1

trace [ I − ΘJc,T(r 𝛏) ΘJc,T(r ξ)
∗]𝚍𝜎(𝛏) 

                = rank ∆T − (n-1)! lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒 [ΘJc,T  Θ
∗
Jc,T(Qm⊗IDT)]

𝑛𝑚
 , 

where Qm is the projection of Arveson’s space H2 onto the subspace of homogeneous polynomials   

of degree m, and 

                                (T)=n!  lim
𝑚→∞

𝑟𝑎𝑛𝑘[( 𝐼−θJc,T  θ
∗
Jc,T(Q≤m⊗IDT)

𝑚𝑛
 , 

where Q≤m is the projection of H2onto the subspace of all polynomials of degree ≤ m. Here, the 

operator θ.Jc,T  : H
2 ⊗DT∗ → H2 ⊗ DT stands for the constrained characteristic function associated 

with T, which, in this particular case, is a multiplier (multiplication operator) defined by its symbol 

(for which we use the same notation) 

   θJc,T(z):= −T + ∆T(I − z1T1
∗ −⋯− znTn

∗)−1(z1Iℋ , … , znIℋ]∆T∗ , z∊βn 

which is a bounded operator-valued analytic function on the open unit ball of 𝕔n. 

Constrained shifts: invariant subspaces and Wold decompositions 

we provide basic results concerning the constrained shift [B1, . . . ,Bn] associated with every WOT-

closed two-sided ideal J of the noncommutative analytic Toeplitz  algebra F∞ . We obtain a Beurling 

type theorem characterizing the invariant subspaces under each operator Bn ⊗ Iℋ, . . . ,Bn ⊗ Iℋ, and 

a characterization of cyclic co-invariant subspaces under the same operators. We also provide Wold 

type decompositions for the non degenerate ∗-representations of the Toeplitz C∗-algebra C∗(B1, . . . 

,Bn) generated by B1, . . . ,Bn  and the identity. The dilation theory developed in will be based on the 

constrained shift [B1, . . . ,Bn]. 

Let Hn be an n-dimensional complex Hilbert space with orthonormal basis e1, . . . ,en ,  where n∊{1,2, 

….} .we consider the full Fock space of Hn defined by  

                                                            F2(Hn) ≔⊕k≥0 Hn
⊗k ,  

Where Hn
⊗0

 := 𝕔1 and  Hn
⊗k

 is the (Hilbert) tensor product of k copies of Hn . Define the left creation 

operators Si : F
2(Hn )→  F2(Hn ) ,  i= 1, . . . , n, by 

                                             
S iφ :=ei⊕φ , φ ∊ F2(Hn ) . 

where n ∈ {1, 2, . . . }. We consider the full Fock space of Hn defined by 

The noncommutative analytic Toeplitz algebra  Fn
∞ and its norm closed version, the noncommutative 

disc algebra An , were introduced by [25], [26], [28] in connection with a multivariable 

noncommutative von Neumann inequality.  Fn
∞ is the algebra of left multipliers of the Fock space  

F2(Hn ) and can be identified with the weakly closed (or w∗-closed) algebra generated by the left 

creation operators S1 , … , Snacting on F2(Hn ) and the identity. The noncommutative disc algebra An 

is the norm closed algebra generated byS1 , … , Sn , and the identity. When n = 1, F1
∞ can be identified 

with H∞(𝔻), the algebra of bounded analytic functions on the open unit disc. The noncommutative 

analytic Toeplitz algebra  Fn
∞ can be viewed as a multivariable noncommutative analogue of H∞(𝔻). 

 There are many analogies with the invariant subspaces of the unilateral shift onH2(𝔻) , inner-outer 

factorizations, analytic operators, Toeplitz operators, H∞(𝔻)–functional calculus, bounded (resp. 

spectral) interpolation, etc . 

Let  Fn
+ be the unital free semigroup on n generators g1, . . . , gn, and the identity g0. The length of 

∝∈ Fn
+  is defined by |∝| := k if ∝ = gi1gi2 …gik  , and |∝| := 0 if ∝ = g0 .If T1, . . . , Tn ∈ B(ℋ), the 

algebra of all bounded operators on a Hilbert space ℋ, define T∝ := Ti1Ti2 … Tik if ∝= gi1gi2  …gik   

, and Tg0 := Iℋ. Similarly, we denote e∝ := ei1⊗· · ·⊗eik 
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and eg0 := 1. We need to recall from [22], [23], [25], [26], [27], and [33] a few facts concerning 

multianalytic operators on Fock spaces. We say that a bounded linear operator M acting from F2(Hn ) 
⊗ K to F2(Hn )⊗ K′ is multi analytic if M(Si ⊗ Ik) = (Si ⊗ IK′)M for any i= 1, . . . , n . 

Notice that M is uniquely determined by the “coefficients” θ(∝) ∈ B(K ,K′) given by  

〈θ(∝`)K , K′〉 :=〈𝑀(1⊗ 𝐾), 𝑒∝⊗𝐾′〉 , k∊ 𝓚 , k’∊ 𝓚’ ,∝∊ 𝕗𝑛
+ 

where ∝ ` is the reverse of ∝, i.e., ∝ ` = gik … gi1 if  ∝ =gi1 … gik. We can associate with M a unique 

formal Fourier expansion 

                                                M(R1 , … , Rn) :=∑ 𝑅∝⊗𝜃(∝)∝∊ 𝕗𝑛
+  , 

where Ri := U∗SiU , i = 1, . . . , n, are the right creation operators on F2(Hn ) 
and U is the (flipping) unitary operator on  F2(Hn ) mapping  ei1⊗· · ·⊗eik into eik⊗· · ·⊗ei1 . 

Since the operator M acts like its Fourier representation on “polynomials”, we will identify them for 

simplicity. Based on the noncommutative von Neumann inequality, we proved that 

M(R1 , … , Rn) = SOT − lim
 𝑟 →1

∑ ∑ 𝑟|∝| |∝|=𝑘
∞
𝑘=0 𝑅∝⊗𝜃(∝) 

where, for each r ∈ [0, 1), the series converges in the uniform norm. Moreover, the set of all multi-

analytic operators in B( F2(Hn )⊗ K , F2(Hn ) ⊗ K′) coincides with Rn
∞⊗B(K,K′), the WOT-closed 

operator space generated by the spatial tensor product, where Rn
∞ = U∗Fn

∞ U. A multi-analytic operator 

is called inner if it is an isometry. 

Let J  be a WOT-closed two-sided ideal of Fn
∞ such that J ≠ Fn

∞, and define the subspaces of the full 

Fock space  ( F2(Hn) by setting 

ℳ J:=J( F
2(Hn)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and 𝒩J:= ( F2(Hn) ⊖ℳ J . 

 

Notice that 

 

ℳ J = {φ(1): 𝜑 𝜖 J }̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and  𝒩J=⋂ 𝐾𝑒𝑟 𝜑∗𝜑𝜖𝐽 . 

 

Based on a Beurling type theorem [22] for the left creation operators S1, . . . , Sn, a characterization 

of all WOT-closed two-sided ideal of Fn
∞was obtained by Davidson and Pitts in [11]. One can easily 

obtain the following result. 

Lemma (1.1.1)[1]:  Let J be a WOT-closed two-sided ideal of Fn
∞ . 

(i) If f(0) = 0 for any f ∈ J, then 1 ∈ 𝒩J . 

(ii) If 𝒩J ≠ 0 and only if J ≠ Fn
∞, 

(iii) The subspaces 𝒩J and U 𝒩Jare invariant under S1
∗ , … , Sn 

∗ ,and R1
∗ , … , Rn 

∗ . 

Proof : The first part is obvious. The second part is a consequence of the fact (see [10], [12]) that, 

for any 𝜑 ∈ Fn
∞ d(𝜑, J) =‖𝑃𝒩Jφ(  S1, . . . , Sn)⃒ 𝒩J‖ . 

Part (iii) is straightforward.  

Define the constrained left (resp. right) creation operators by setting 

                    Bi ≔ P 𝒩J
Si⃒ 𝒩J , and  Wi ≔ P 𝒩J

Si⃒ 𝒩J , i = 1, . . . , n. 

Let W(B1, . . . ,Bn) be the w∗-closed algebra generated by B1, . . . ,Bnand the identity. We proved in 

[10] that W(B1, . . . ,Bn) has the 𝔸1(1) property and therefore the w∗and WOT  topologies coincide 

on this algebra. Moreover, we showed that 

W(B1, . . . ,Bn) = P 𝒩J
Fn
∞⃒ 𝒩J = {f(B1, . . . ,Bn) : f(S1, . . . , Sn) ∈ Fn

∞ }, 

 

where, according to the Fn
∞ -functional calculus for row contractions [26], 

                                

                                 f(B1, . . . ,Bn) = SOT- lim
𝑟→1

f(rB1, . . . , rBn) .  
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Note that if 𝜑 ∈ J, then 𝜑(B1, . . . ,Bn) = 0. Similar results hold for W(W1, . . . ,Wn) thew∗-closed 

algebra generated by W1, . . . ,Wn and the identity. Moreover, we proved in [12] that 

 

𝑊(B1, . . . , Bn)
′= W(W1, . . . ,Wn) and W(W1, . . . ,Wn)′ = W(B1, . . . , Bn), 

 

where ′ stands for the commutant . An operator M ∈ B( 𝒩J ⊗ K ,  𝒩J ⊗ K′) is called multianalytic 

with respect to B1, . . . , Bnthe constrained shifts if 

 

M(Bi ⊗ I𝒦) = (Bi ⊗ I𝒦′)M , i = 1, . . . , n. 

 

If in addition M is partially isometric, then we call it inner. We recall from [33] that the set of all 

multi-analytic operators with respect to B1, . . . , Bncoincides with 

 

W(W1, . . . ,Wn) ⊗̅̅̅B(𝓚, 𝓚′) = P 𝒩J ⊗𝒦′[Rn
∞ ⊗̅̅̅ B(𝓚, 𝓚′) ]⎹ 𝒩J ⊗ K , 

and a similar result holds for the algebra W(B1, . . . , Bn). 

The next result provides a Beurling type theorem characterizing the invariant subspaces under the 

constrained shifts  B1, . . . , Bn . 

Theorem (1.1.2) [1]: Let J ≠ 𝐹𝑛
∞ be a WOT-closed two-sided ideal of  𝐹𝑛

∞ and let be  B1, . . . , Bn  the 

corresponding constrained left creation operators on 𝒩J    . A subspace  ℳ ⫅𝒩J ⊗ K is  invariant 

under each operator Bi ⊗ I𝒦    ,  i = 1, . . . , n, if and only if there exists a Hilbert space G and an inner 

operator  

 

𝜃(W1, . . .,Wn) ∈  . W(W1, . . . ,Wn) ⊗̅̅̅ B(G, 𝓚) 

 

Such that  

𝓜 = 𝜃(W1, . . .,Wn)(𝒩𝐽⊗G) 

Proof : According to Lemma (1.1.1), the subspace 𝒩𝐽⊗K is invariant under each operator Si
∗⊗ I𝒦 , 

i = 1, . . . , n, and 

 

(Si
∗⊗ I𝒦)|𝒩J ⊗ K =,Bi

∗⊗ I𝒦 i = 1, . . . , n. 

Since the subspace [𝒩J ⊗ K] ⊖M is invariant under, Bi
∗⊗ I𝒦 i = 1, . . . , n, we deduce that it is also 

invariant under each operator, Si
∗⊗ I𝒦 i = 1, . . . , n. Therefore, the subspace 

 

                E := [F2(Hn )⊗ K] ⊖ {[𝒩J⊗𝓚] ⊖𝓜} = [ℳJ ⊗ K] ⊕𝓜                         (1) 

 

is invariant under Si⊗I𝒦 , i = 1, . . . , n, where ℳJ := F2(Hn )⊖𝒩J . Using the Beurling type 

characterization of the invariant subspaces under the left creation operators (see Theorem  2.2 from 

[22]) and the characterization of multi-analytic operators from [27] (see also [33]),we find a Hilbert 

space G and an inner multi-analytic operator 

𝜃(R1, . . .,Rn)∈ Rn
∞ ⊗̅̅̅B(G,K) 

 

such that 

 

𝜀= 𝜃(R1, . . .,Rn)[F
2(Hn ) ⊗ G], 

 

where 𝜃(R1, . . .,Rn)is essentially unique up to a unitary diagonal multi-analytic operator. Since 𝜃(R1, 

. . .,Rn) is an isometry, we have 

 

                                     Pε =  𝜃(R1,.,Rn)𝜃(R1, . . . , Rn)
∗,                                              (2) 
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where  Pε  is the orthogonal projection of F2(Hn )⊗ K onto 𝜀 . According to Lemma( 1.1.1), the 

subspace  𝒩J⊗K is invariant under the operators Ri
∗ ⊗I𝒦,  

i = 1, . . . , n. Moreover, using the remarks preceding the theorem we have 

𝜃(W1, . . .,Wn)= P𝒩J ⊗K𝜃(R1, . . .,Rn)|𝒩J ⊗ K. 

Hence, and compressing equation (2) to the subspace 𝒩J  ⊗ K, we obtain 

P𝒩J ⊗KPE | 𝒩J  ⊗K = 𝜃(W1, . . .,Wn)𝜃(W1, . . . ,Wn)
∗. 

Notice that, due to (1), the left hand side of this equality is equal to Pℳ , the orthogonal projection of 

𝒩J ⊗ K onto M. Hence, 

Pℳ  = 𝜃(W1, . . .,Wn)𝜃(W1, . . . ,Wn)
∗ 

and 𝜃(W1, . . .,Wn) is a partial isometry. Therefore, 

𝓜= 𝜃(W1, . . .,Wn)[ 𝒩J ⊗ G] 

and the proof is complete.  

We remark that in the particular case when the ideal J is generated by the polynomials   SiSj−SjSi , i, 

j = 1, . . . , n, then 𝒩J = Fs
2 , the symmetric Fock space, and Bi, i = 1, . . . , n ,are the creation operators 

on the symmetric Fock space. In this case Theorem (1.1.2) provides a Beurling type theorem for 

Arveson’s space H2 which was also obtained in [16] using different 

methods. From now on, throughout, we assume that J is a WOT-closed two-sided ideal of Fn
∞ such 

that 1 ∈ 𝒩J. 

Theorem( 1.1.3) [1]:  Let J be a WOT-closed two-sided ideal of 𝒩Jsuch that 1 ∈ 𝒩J . Then all the 

compact operators in B(𝒩J )are contained in the operator space 

𝑠𝑝𝑎𝑛 ̅̅ ̅̅ ̅̅ ̅{B∝B
∗
β: ∝ , 𝛽 ∈ 𝕗n

+ }. 

Moreover, the C∗-algebra C∗ (B1 , … , Bn) is irreducible. 

Proof : Since 𝒩J is an invariant subspace under each operator Si
∗, i = 1, . . . , n, and contains the 

constants, we have 

I𝒩J
− B1B1

∗ − · · · − BnBn
∗  = P𝒩J

 (I −S1S1
∗  − · · · −SnSn

∗  )| 𝒩J   

         

                                               =P𝒩J
 P𝕔  |𝒩J   

 

                                               = P𝕔
𝒩J  , 

where P𝕔
𝒩J

  is the orthogonal projection of 𝒩J   onto 𝕔. Let 

g(S1 , … , Sn) := ∑ 𝑎∝𝑆∝⎸∝ ⎸≤𝑚  

and 

 

𝜀 := ∑ 𝑏𝛽𝑒𝛽𝛽∈𝕗𝑛
+ ∈ 𝒩J ⊂F

2(Hn ) . 

 

Notice that 

P𝕔
𝒩Jg(B1 , … , Bn)

∗ 𝜀  =   ∑ 𝑃∝𝑎∝̅̅ ̅𝑆∝
∗

⎸∝⎸≤𝑚 𝜀 = ∑ 𝑎∝̅̅ ̅⎸∝⎸≤𝑚  𝑏∝    

 

                               〈𝜀 , ∑ 𝑎∝𝑒∝⎸∝⎸≤𝑚 〉=〈𝜀 , g(B1 , … , Bn)(1)〉 . 

Therfore, 

 

      f(B1 , … , Bn) P𝕔
𝒩J

g(B1 , … , Bn)
∗ 𝜀 =  〈𝜀 g(B1 , … , Bn) (1)〉 f(B1 , … , Bn) (1)    (3) 

 

for any polynomial    f(B1 , … , Bn) := ∑ 𝑐𝛾𝐵𝛾⎸𝛾⎸≤𝑝  

Hence, f(B1 , … , Bn) P𝕔
𝒩Jg(B1 , … , Bn)

∗is a rank one operator in B(𝒩J). Moreover, since P𝕔
𝒩J = I𝒩J

−

B1B1
∗ −⋯− BnBn

∗  , we deduce that the above operator is also in the operator space span̅̅ ̅̅ ̅̅ {BαBβ
∗ : 𝛼, 𝛽  

∈ 𝕗n
+}. 
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Since the polynomials∑ 𝑎𝛼𝑒𝛼⎸𝛼⎸≤𝑚  ,m ∈N, 𝑎𝛼∈ 𝕔, are dense in F2(Hn ) 

it is clear thatthe set 

L :={(∑ 𝑎𝛼𝐵𝛼⎸𝛼⎸≤𝑚 )(1):𝑚 ∈ 𝑁, 𝑎𝛼 ∈ 𝕔} 

dense in 𝒩J . Using this density and relation (3), we deduce that all compact operators 

in B(𝒩J) are included in the operator space span̅̅ ̅̅ ̅̅ {BαBβ
∗ : 𝛼, 𝛽  ∈ 𝕗n

+}. To prove the last part of this 

lemma , let 𝓜 be a nonzero subspace of  𝒩J which is jointly reducing for. B1 , … , BnTake f ∈  , f ≠0 

and assume that f = a0 +∑ 𝑎𝛼𝑒𝛼⎸𝛼⎸≥1  . If a β is a nonzero coefficient of f, then 

 

                                 Bβ
∗ f =P 𝒩J

Sβ
∗ f  = P 𝒩J

(aβ + ∑ 𝑎𝛽𝛾𝑒𝛼⎸𝛾⎸≥1 )                                       (4) 

Is in M. Since 1 ∈  𝒩J we have 〈P 𝒩J
eγ ,1〉 = 〈eγ, 1〉 = 0for any 𝛾 ∈ with |𝛾| ≥ 1. Hence, we deduce 

that 

P 𝒩J
1 = 1 and P𝕔P 𝒩J

(∑ 𝑎𝛽𝛾𝑒𝛼⎸𝛾⎸≥1 ) = 0 

Therefore, relation (4) implies P𝕔P 𝒩J
 f = aβ. 

              On the other hand, since P𝕔
𝒩J

=I𝒩J
− B1B1

∗ −⋯− BnBn
∗   and 𝓜is reducing for, B1 , … , Bn 

we infer that aβ ∈ 𝓜, so 1 ∈ 𝓜. Using again that 𝓜 is invariant under, B1 , … , Bnwe have 𝓛 ⊆M. 

Since 𝓛 is dense in   𝒩J, we deduce that  𝒩J  ⊂𝓜 and therefore  𝒩J  =𝓜. This completes the proof.  

              We say that two row contractions [ T1 , … , Tn], Ti ∈ B(ℋ), and [T1
′ , … , Tn

′] , Ti
′∈ B(ℋ′), are 

unitarily equivalent if there exists a unitary operator U : ℋ → ℋ′ such that Ti= U∗Ti
′U  for any i = 1, 

. . . , n. If [B1 , … , Bn] is a constrained shift as above, then [B1⊗Iℋ, . . . , BnIℋ⊗] is called constrained 

shift with multiplicity dim ℋ. 

Proposition (1.1.4) [1]:  Two constrained shifts are unitarily equivalent if and only if their multi-

plicities are equal.  

Proof : Let [B1⊗Iℋ, . . . , BnIℋ⊗] and [B1⊗Iℋ′, . . . , Bn⊗Iℋ′] be two constrained shifts and let U 

: 𝒩J⊗ ℋ →𝒩J⊗ ℋ ′ be a unitary operator such that 

U(Bi⊗Iℋ)  =( B1⊗Iℋ′)U, i = 1, . . . , n. 

Since U is unitary , we deduce that 

 

U(Bi
∗ ⊗Iℋ)  ) = (Bi

∗ ⊗Iℋ′ )U, i = 1, . . . , n. 

Since, according to Theorem (1.1.3), the C∗algebra C∗ (B1 , … , Bn) is irreducible, we infer that U = 

I𝒩J
⊗ W for some unitary operator W ∈ B(ℋ, ℋ′). Therefore, dim ℋ = dim ℋ′. The converse is 

obvious.  

We need a few more definitions. Let 𝒮⊆ B(𝒦) be a set of operators acting on the Hilbert space 𝒦. 

Denote by A(S) the non self a djoint algebra generated by 𝒮 and the identity, and let C∗ (𝒮) be the C∗-
algebra generated by and the identity. A subspace ℋ ⊆ 𝒦 is called 

∗-cyclic for 𝒮 if 

 

𝒦 =⋁{𝑋 ℎ ∶ 𝑋 ∈ C∗ (𝒮) , h ∈ ℋ}, 

i.e., 𝒦 is the smallest reducing sub pace for 𝒮 which contains ℋ. We call ℋ cyclic for 𝒮 if 

 

𝒦 =⋁{𝑋 ℎ ∶ 𝑋 ∈ A (𝒮) , h ∈ ℋ}, 

 

i.e., 𝒦 is the smallest invariant sub pace under 𝒮 which contains ℋ. Finally, a subspace ℋ ⊆ 𝒦 is 

called co-invariant under 𝒮 if X∗ℋ⊆  ℋ for any X ∈ 𝒮. 

Theorem (1.1.5) [1]: Let J be a WOT-closed two-sided ideal of Fn
∞such that 1 ∈ 𝒩J and let   be a 

Hilbert space. If 𝓜 ⊆  𝒩J  ⊗ 𝓓 is a co-invariant subspace under Bi ⊗ I𝒟, i = 1, . . . , n, then there 

exists a subspace 𝓔 ⊆ 𝓓 such that 

 

                               𝑆𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{(𝐵𝛼⊗ 𝐼𝒟)𝓜: 𝜶 𝝐 𝕗𝒏
+ } =  𝒩J  ⊗  𝓔.                                       (5) 
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Proof : Denote by P0 := P𝕔⊗I𝒟 the orthogonal projection of  𝒩J  ⊗ 𝓓  onto the subspace 1⊗𝓓 , 

which is identified with 𝓓. Define the subspace 𝓔 ⊂ 𝓓 by setting 𝓔:= P0𝓜 and let f be nonzero 

element of 𝓜 having the Fourier representation 

f =∑ 𝑒𝛼⊗ℎ𝛼𝛼𝜖𝕗𝒏
+   , hα ∈ 𝓓 

  Let 𝛽 ∈ 𝕗𝒏
+be such that hβ ≠ 0 and note that 

(Bβ
∗ ⊗ I𝒟)f = (P 𝒩J

  ⊗I𝒟 )( Sβ
∗ ⊗ I𝒟))f= (P 𝒩J

  ⊗I𝒟)(1⊗ ℎ𝛽 + ∑ 𝑒𝛾⊗ℎ𝛽𝛾⎸𝛾⎸≥1 ) (6) 

As in the proof of Theorem (1.1.3), since 1 ∈  𝒩J, we have P 𝒩J
 = 1 and  P𝕔P 𝒩J

 eγ= 0 for |𝛾| ≥ 1. Hence 

and using (6), we obtain P0(Bβ
∗ ⊗ I𝒟)f = hβ. Since   is a co-invariant subspace under Bi ⊗ I𝒟, i = 1, 

. . . , n, it is clear that h_ ∈ E. Using this and taking into 

account that 1 ∈ NJ, we deduce that 

 

(Bβ ⊗ I𝒟)(1 ⊗ hβ) =P 𝒩J
 eβ ⊗hβ  ∈ ⊗  𝒩J ⊗𝓔. 

 

Now, since f ∈𝓜⊆ 𝒩J   ⊗ 𝓓, we infer that 

 

f = (P 𝒩J
⊗ I𝒟)f = lim

𝐾→∞
P 𝒩J

eβ⊗ hβ 

  

is in 𝒩J ⊗𝓔 . This shows that 𝓜⊂ 𝒩J ⊗𝓔 and therefore 

𝒴 := span̅̅ ̅̅ ̅̅  {(𝐵𝛼⊗ 𝐼𝒟)𝓜: 𝜶 𝝐 𝕗𝒏
+ }  ⊂  𝒩J  ⊗  𝓔 

For the other inclusion, we prove first that 𝓔⊂  . If h0ϵ 𝓔 ∈ E, h0 ≠0, then there exists 

g ∈𝓜 such that g = 1 ⊗ h0 +∑ 𝑒𝛼⊗ℎ𝛼⎸𝛼⎸≥1 . Due to the first part of the proof, we have 

h0= P0g =(I-∑ ((Bi  ⊗ I𝒟)((Bi  ⊗ I𝒟)
∗𝑛

𝑖=1 ) g. 

Acoording to the proof of Theorem (1.1.3), we have P𝕔
𝒩J = I𝒩J

− ∑ BiBi
∗

i=1   =  

 . Using this and the fact that 𝓜 is co-invariant under Bi  ⊗ I𝒟 i = 1, . . . , n, we deduce that  h0∈ 𝒴 

for any h0 ∈ E, i.e., 𝓔 ⊂ 𝒴. The latter inclusion shows that (B𝜶  ⊗ I𝒟 (1 ⊗ 𝓔) ⊂ 𝒴 for any 𝜶 𝝐 𝕗𝒏
+  

,which implies 

 

                                                  P𝒩J
eα⊗ 𝓔⊂ 𝒴, 𝜶 𝝐 𝕗𝒏

+ .                                                (7) 

 

Let  𝜑∈ 𝒩J ⊗ 𝓔⊂ F2(Hn ) ⊗ 𝓔 be with Fourier representation  𝜑 =∑ 𝑒𝛼𝑘𝛼𝛼∈𝕗𝒏
+  , 𝑘𝛼∈ 𝓔. 

Using relation (7), we have 

 

𝜑 = (P 𝒩J
⊗ Iℰ) = lim

𝑘→∞
∑ P 𝒩J

 𝑒𝛼⊗𝑘𝛼⎸𝛼⎸=𝑘  ∈ 𝒴. 

 

Therefore, 𝒩J ⊗ 𝓔 ⊆ 𝒴, which completes the proof. _ 

Corollary (1.1.6) [1] : Let J be a WOT-closed two-sided ideal of  𝕗𝒏
∞such that 1 ∈𝒩J and let 𝓓be a 

Hilbert space. Let 𝓜⊆  𝒩J ⊗𝓓be a co-invariant subspace under Bi  ⊗ I𝒟, i = 1, . . . , n. 

Then the following statements are equivalent: 

(i) M is a cyclic subspace forBi  ⊗ I𝒟 , i = 1, . . . , n; 

(ii) P0𝓜=𝓓; 

(iii) ℳ⊥ ∩ 𝓓 = {0}. 

Proof:  The equivalence (i) ↔ (ii) is clear from Theorem (1.1.5) and the definition of cyclic  subspace. 

To prove that (ii) ↔ (iii), notice first that if there exists h ∈ ℳ⊥ ∩ 𝓓, h ≠ 0, then taking into account 

that iℳ⊥s invariant under Bi  ⊗ I𝒟, i = 1, . . . , n, we deduce that 𝒩J⊗ h ⊂.ℳ⊥ .This shows that h  

P0𝓜 which means that  is P0𝓜 not equal to 𝓓. Now, assume that there exists k ∈ D, k ≠ 0, such that 

k ⊥  P0𝓜 . Since 1 ∈  𝒩J ,we have k ⊥ M which shows that k ∈ 𝓓∩  ℳ⊥ . The proof is complete. _ 
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 Corollary (1.1.7) [1]: Let J be a WOT-closed two-sided ideal of Fn
∞ such that 1 ∈𝒩J and let 𝓓 be a 

Hilbert space. A subspace 𝓜 ⊆  𝒩J⊗𝓓 is reducing under each operator Bi  ⊗ I𝒟, i = 1, . . . , n, if 

and only if there exists a subspace 𝓔 ⊆ 𝓓 such that 

 

                                  𝓜= 𝒩J ⊗ 𝓔. 

The next result, is a Wold type decomposition for nondegenerate ∗-representations of the C∗-algebra 

C∗ (B1 , … , Bn) 

Theorem( 1.1.8) [1]: Let J be a WOT-closed two-sided ideal of Fn
∞ 

 such that 1 ∈ 𝒩J , and let 𝜋: C∗ (B1 , … , Bn) → B(K) be a non degenerate ∗-representation of C∗ 

(B1 , … , Bn) on a separable Hilbert space K. Then  𝜋 decomposes into a direct sum 

 

𝜋 = 𝜋0⊕π1on K = K0 ⊕ K1, 

where   𝜋0 , π1 are disjoint representations of C∗ (B1 , … , Bn) on the Hilbert spaces 

K0:= span̅̅ ̅̅ ̅̅ {𝜋(𝐵𝛼)(𝐼 − ∑ 𝜋(𝐵𝑖)𝜋(𝐵𝑖)
∗𝑛

𝑖=1 )𝐾: 𝛼 ∈ 𝕗𝑛
+} 

 

and K1 := K0
⊥  , respectively, such that, up to an isomorphism, 

 

       K0 ≃  𝒩J ⊗ G(X) = X ⊗ IG, X ∈ C∗ (B1 , … , Bn),                             (8) 

for some Hilbert space G with dim G = dim[𝑟𝑎𝑛𝑔𝑒 (𝐼 − ∑ 𝜋(𝐵𝑖)𝜋(𝐵𝑖)
∗𝑛

𝑖=1 )] , 
and π1 is a ∗-representation which annihilates the compact operators and 

π1 (B1) π1 (B1) 
∗ + · · · + π1( Bn) π1 (Bn) 

∗= IK1. 

Moreover, if 𝜋′ is another non degenerate ∗-representation of C∗ (B1 , … , Bn)  on a separable Hilbert 

space K′, then 𝜋 is unitarily equivalent to π′ if and only if dim G = dim G′ and π1 is unitarily 

equivalent to π 1′. 

Proof: Since the subspace 𝒩J  contains the constants, Theorem (1.1.3) implies that all the compact 

operators LC(𝒩J  ) in B(𝒩J  ) are contained in C∗ (B1 , … , Bn) according to the standard theory of 

representations of the C∗-algebras, the representation 𝜋 decomposes into a direct sum 𝜋  =   𝜋0   ⊕ 

π1 on K = K0 ⊕ K1, where K0 :=  span̅̅ ̅̅ ̅̅ ̅{ 𝜋 (X)K : X ∈ LC(𝒩J)}  and K1 := K0
⊥ , and the  

representations  π1: C∗ (B1 , … , Bn) → Kj are defined by πj(X) := 𝜋 (X)| Kj , j = 0, 1. Now, it is clear 

that   𝜋0 , π1 are disjoint representations of C∗ (B1 , … , Bn)   such that π1annihilates the compact 

operators in B(𝒩J  ), and    𝜋0 ,  is uniquely determined by the action of 𝜋 on the ideal LC(𝒩J)). Since 

every representation of LC(𝒩J)) is equivalent to a multiple of the identity representation (see [3]), we 

deduce (8). Now, we show that the space K0 

coincides with the one defined in the theorem. Using Theorem (1.1.3) and its proof, we deduce that 

K0:= span̅̅ ̅̅ ̅̅ ̅{ 𝜋 (X)K : X ∈ LC(𝒩J)} 

=  span̅̅ ̅̅ ̅̅ ̅{ 𝜋 (BαP𝕔
𝒩JBβ

∗  )K : 𝛼, 𝛽 ∈ 𝕗n
+} 

=  span̅̅ ̅̅ ̅̅ ̅{ 𝜋 (Bα)(𝐼 − ∑ 𝜋(𝐵𝑖)𝜋(𝐵𝑖)
∗𝑛

𝑖=1 )K : 𝛼 ∈ 𝕗n
+} . 

 

On the other hand, since  P𝕔
𝒩J

=( 𝐼 − ∑ 𝜋(𝐵𝑖)𝜋(𝐵𝑖)
∗𝑛

𝑖=1 ) is a rank one projection in C∗ (B1 , … , Bn) 

(see Theorem (1.1.3)), we deduce that 

 

                              ∑ π1(𝐵𝑖)π1(𝐵𝑖)
∗𝑛

𝑖=1  =IK1, and 

dim G = dim [range 𝜋 (P𝕔
𝒩J)] = dim[range(𝐼 − ∑ 𝜋(𝐵𝑖)𝜋(𝐵𝑖)

∗𝑛
𝑖=1 )]. 

 

To prove the uniqueness, note that according to the standard theory of representations of C∗-algebras, 

𝜋 and 𝜋 ′ are unitarily equivalent if and only if 𝜋0 and 𝜋0
′ (resp.  π1  and 𝜋1

′  ) are unitarily equivalent. 

Using Proposition (1.1.4),  

we deduce that dim G = dim G′ and complete the proof. _ 
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Corollary( 1.1.9) [1]: Under the hypotheses and notations of Theorem (1.1.8) and setting Vi:= 𝜋(𝐵𝑖)  
, i = 1, . . . , n, we have: 

(i) Q := IK –∑ 𝑉𝑖𝑉𝑖
∗𝑛

𝑖=1  is an orthogonal projection and QK =⋂ 𝑘𝑒𝑟𝑛
𝑖=1  𝑉𝑖

∗ ; 

 

(ii) K0 ={ k ∈ K: lim
𝑘→∞

∑ ∥ 𝑉𝛼
∗𝑘 ∥2= 0} ;⎸𝛼⎸=𝑘  

 

 (iii) K1 ={ k ∈ K∶ ∑ ∥ 𝑉𝛼
∗𝑘 ∥2=∥ 𝑘 ∥2 𝑓𝑜𝑟 any k =  1, 2, . . . } ;⎸𝛼⎸=𝑘  

 

(iv) SOT- lim
𝑘→∞

∑ 𝑉𝛼𝑉𝛼
∗

⎸𝛼⎸=𝑘 = 𝑃𝐾1; 

 

 (v)∑ ∑ 𝑉𝛼𝑉𝛼
∗

⎸𝛼⎸=𝑘
∞
𝑘=0 = 𝑃𝑘0 ; 

 

Proof: Since I𝒩J
 –∑ 𝐵𝑖𝐵𝑖

∗𝑛
𝑖=1  = P𝕔

𝒩J
  is an orthogonal projection (see the proof of Theorem (1.1.3), so 

is Q = 𝜋 (P𝕔
𝒩J

). Therefore, 

 

QK ={k ∈ K :(I-∑ 𝑉𝑖𝑉𝑖
∗𝑛

𝑖=1 )k = k } 

 

={k ∈ K : ∑ 𝑉𝑖𝑉𝑖
∗𝑛

𝑖=1  k = 0} 

 

= ⋂ ker𝑉𝑖
∗𝑛

𝑖=1  

which proves (i). Using Theorem (1.1.8), we have 

 

                                ∑ 𝑉𝛼𝑉𝛼
∗

⎸𝛼⎸=𝑘 = [
∑ 𝐵𝛼𝐵𝛼

∗
⎸𝛼⎸=𝑘 ⊗ 𝐼𝐺 0

0 𝐼𝑘1
] .                                 (9) 

Since  𝒩Jis co-invariant under S1, . . . , Sn, and Bi
∗ = Si

∗|𝒩J, i = 1, . . . , n, we have 

 

SOT- lim
𝑘→∞

∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑘 ⊗ 𝐼𝐺 = SOT- lim
𝑘→∞

[𝑃𝒩J
(∑ 𝑆𝛼𝑆𝛼

∗)⎸𝛼⎸=𝑘 ⎸𝒩J] ⊗ 𝐼𝐺 = 0. 

The latter equality holds due to the fact that [S1, . . . , Sn] is a pure contraction. Therefore, (iv) holds. 

Hence, and taking into account that 

∑ ∑ 𝑉𝛼𝑄𝑉𝛼
∗

⎸𝛼⎸=𝑘
𝑚
𝑖=1 = I −∑ 𝑉𝛼𝑉𝛼

∗
⎸𝛼⎸=𝑚+1 ∗ , 

we deduce (v). Now, let k ∈ K = K0 ⊕K1, k = k0+k1, with k0 ∈ K0 and  k1∈K1 . By (9),we have 

 

    ∑ ∥ 𝑉𝛼
∗𝑘 ∥2 = 〈(∑ 𝐵𝛼𝐵𝛼

∗
⎸𝛼⎸=𝑚 ⊗ 𝐼𝐺)k0, k0 〉 ⎸𝛼⎸=𝑚 +∥ k1 ∥

2, 𝑚 = 1,2, …       (10) 

 

Hence, lim
𝑚→∞

∑ ∥ 𝑉𝛼
∗𝑘 ∥2 = 0 ⎸𝛼⎸=𝑚 if and only if k1 = 0, i.e., k = k0 ∈ K0, which proves (ii).  

On the other hand, (10) shows that ∑ ∥ 𝑉𝛼
∗𝑘 ∥2 =∥ 𝑘 ∥2 ⎸𝛼⎸=𝑚 for any m = 1, 2, . . ., if and only 

if〈(∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑚 ⊗ 𝐼𝐺)k0, k0 〉 =∥ 𝑘0 ∥
2 for any m = 1, 2, . . .. Since [B1, . . . ,Bn] is a pure row 

contraction, SOT- lim
𝑚→∞

∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑚 = 0. Therefore , the above equality holds for any 

m = 1, 2, . . ., if and only if k0 = 0, which is equivalent to k = k1 ∈ K1. This completes the proof. _ 

Corollary (1.1.10) [1]: Let _ be a non degenerate ∗-representation of C∗(B1, . . . ,Bn) on a separable 

Hilbert space K, and let Vi :=𝜋(𝐵𝑖) , i = 1, . . . , n. Then the following statements are equivalent: 

(i) V := [V1, . . . ,Vn] is a constrained shift ; 

(ii) K =  span̅̅ ̅̅ ̅̅ ̅{ Vα(𝐼 − ∑ 𝑉𝑖𝑉𝑖
∗𝑛

𝑖=1 )K : 𝛼 ∈ 𝕗n
+}; 

(iii) SOT- lim
𝑘→∞

∑ 𝑉𝛼𝑉𝛼
∗

⎸𝛼⎸=𝑘 = 0. 

In this case, the multiplicity of V (denoted by mult (V )) satisfies the equality 

 

mult (V ) = dim(I − 𝑉1𝑉1
∗ − · · · − 𝑉𝑛𝑉𝑛

∗ )K,                                         (11) 
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 and it is also equal to the minimum dimension of a cyclic subspace for V1, . . . , Vn. 

Proof :  The above equivalences are consequences of Corollary (1.1.9), and relation (11) follows 

from Theorem (1.1.8.) We prove the last part of the corollary. According to (ii) and Corollary(1.1.9), 

L :=⋂ 𝑉𝑖
∗ =𝑛

𝑖=1 (I − 𝑉1𝑉1
∗ − · · · − 𝑉𝑛𝑉𝑛

∗ )K 

is a cyclic subspace for V1, . . . , Vn. Now, let 𝓔 be any cyclic subspace forV1, . . . , Vn., i.e., K 

=⋁ 𝑉𝛼ℰ𝛼 ∈ 𝕗n
+  , and denote A := PL|𝓔 ∈ B(𝓔,L), where PL is the orthogonal projection of K onto L. 

Assume that k ∈ L ⊖ T𝓔 and let h ∈ 𝓔. Notice that 
〈ℎ, 𝑘〉= 〈ℎ, PL𝑘〉 = 〈𝐴ℎ, 𝑘〉= 0. 

On the other hand, Vα
∗k = 0 for any k ∈ L, we have 〈𝑉𝛼ℎ, 𝑘〉= 0 for any 𝛼 ∈ 𝕗n  

+ with| 𝛼 | ≥ 1. Therefore, 

k ⊥𝑉𝛼ℰ  for any 𝛼 ∈ 𝕗n
+. Since 𝓔 is a cyclic sub space for V1, . . . , Vn, we deduce that k = 0, and 

therefore A𝓔 = L. This shows that A∗ ∈ B(L, 𝓔) is one-to-one and, consequently, dim L ≤ dim 𝓔. This 

completes the proof. _ 

An easy consequence of Corollary (1.1.10) and Proposition (1.1.4 )is the following. 

Proposition (1.1.11) [1]: Two constrained shifts are similar if and only if they are unitarily 

equivalent. 

Proof:  One implication is obvious. Let V := [ V1, . . . , Vn], Vi  ∈ B(K), and V ′ := [V1
′, . . . , Vn

′ ], Vi
′∈ 

B(K′), be two constrained shifts and let X : K → K′ be an invertible operator such that 

 

XVi =Vi
′ X, i = 1, . . . , n. 

If M is a cyclic subspaces for  V1, . . . , Vn, then 

K′ = XK = X(⋁ 𝑉𝛼𝛼 𝜖 𝕗n  
+ 𝓜) 

         

           ⊆⋁ 𝑋𝑉𝛼𝛼 𝜖 𝕗n  
+ 𝓜 = ⋁ 𝑉𝛼

′𝑋𝛼 𝜖 𝕗n  
+ 𝓜 ⊆ K′. 

 

Therefore , K′ =⋁ 𝑉𝛼
′𝑋𝛼 𝜖 𝕗n  

+ 𝓜, which shows that X 𝓜 is cyclic for V ′. Since X is invertible, dim 

𝓜 = dim X 𝓜. Hence an using Corollary (1.1.10), we conclude that the two constrained shifts have 

the same multiplicity. By Proposition (1.1.4), the result follows.  

we develop a dilation theory for row contractions T := [ T1, . . . , Tn] subject to constraints such as 

                         p( T1, . . . ,  Tn) = 0, p ∈ P, 

where P is a set of non commutative polynomials. The model n-tuple is the universal row contraction 

[B1, . . . ,Bn] satisfying the same constraints as T. The theory is based on a class of constrained Poisson 

kernels associated with T and representations of the C∗-algebra generated by B1, . . . ,Bn and the 

identity. Under natural conditions on the constraints we have uniqueness for the minimal dilation. 

We introduce and evaluate the dilation index, a numerical invariant for row contractions, and show 

that it does not depend on the constraints. These results are used in connection with characteristic 

functions and models for constrained row contractions. 

We need to recall from [30] a few facts about non commutative Poisson transforms associated with 

row contractions T := [ T1, . . . ,  Tn)], Ti ∈ B(ℋ). For each 0 < r ≤ 1, define the defect operator ∆T,r:= 

(I −  r2T1T1
∗ − · · ·  − r2TnTn

∗)1/2(The Poisson kernel associated with T is the family of operators 

 

KT,r: ℋ → F2(Hn ) ⊗ ∆T,r ℋ̅̅ ̅̅ ̅̅ ̅̅  , 0 < r ≤ 1, 

 

defined by 

 

KT,rh := ∑ ∑ 𝑒𝛼⊗ 𝑟⎸𝛼⎸∆T,r 𝑇𝛼
∗ℎ⎸𝛼⎸=𝑘

∞
𝑘=0    ,h, ∈ ℋ.                              (12) 

 

When r = 1, we denote ∆T := ∆T,1 and KT := KT,1The operators KT,rare isometries if 0 < r < 1, and 

 

KT
∗KT = I − SOT- lim

𝑘→∞
∑ TαTα

∗
⎸𝛼⎸=𝑘  . 
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This shows that KT is an isometry if and only if T is a pure row contraction ([21]), i.e., 

 

SOT- lim
𝑘→∞

∑ TαTα
∗

⎸𝛼⎸=𝑘 = 0. 

 

A key property of the Poisson kernel is that 

 

KT,r(𝑟
⎸𝛼⎸ 𝑇𝛼

∗ ) =(  𝑆𝛼
∗ ⊗ 𝐼)KT,rfor any 0 < r ≤ 1, 𝛼 𝜖 𝕗n  

+ .                         (13) 

 

     In [30], we introduced the Poisson transform associated with T := [ T1, . . . ,  Tn] as the unital 

completely contractive linear map φT : C∗( S1, . . . ,  Sn) → B(ℋ) defined by 

 φT (f) := lim 
𝑟→1

KT∗,r (f ⊗  I)KT,r 

 

where the limit exists in the norm topology of B(ℋ). Moreover, we have 

(Sα, Sβ 
∗ ) = Tα, Tβ    

∗ α, β ∈ 𝕗n  
+ . 

 

When T is a completely non-coisometric (c.n.c.) row-contraction, i.e., there is no h ∈ ℋ, h ≠ 0, such 

that  

                

                        ∑ ∥ 𝑇𝛼
∗ℎ ∥2⎸𝛼⎸=𝑘 =∥ ℎ ∥2  for any k = 1, 2, . . . , 

 

an Fn
∞-functional calculus was developed in [26]. We showed that if 

 

f =∑ 𝑎𝛼𝑆𝛼α∈𝕗n  
+ , is in Fn

∞, 

 

then 

TT (f) = f(T1, . . . , Tn) := SOT- lim
𝑟→1

∑ ∑ 𝑟⎸𝛼⎸𝑎𝛼𝑇𝛼⎸𝛼⎸=𝑘
∞
𝑘=0  

 

exists andTT  : Fn
∞-→ B(ℋ) is a WOT-continuous completely contractive homomorphism. 

More about noncommutative Poisson transforms on C∗-algebras generated by isometries can be found 

in [30], [2], [31], [32], and [34]. 

Let J ≠ Fn
∞-n be a WOT closed two-sided ideal of Fn

∞- generated by a family of polynomials PJ ⊂ Fn
∞ 

and let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a row contraction such that p(T1, . . . , Tn) = 0 for any p ∈ PJ  

Let D and K be Hilbert spaces and let Zi ∈ B(K) be bounded operators such that [T1, . . . , Tn] is a 

Cuntz row contraction, i.e., Z1Z1
∗+ · · · + ZnZn

∗= Ik. 

An n-tuple V := [V1, . . . , Vn] of operators with 

 

Vi :=[
𝐵𝑖⊗ 𝐼𝒟 0
0 𝑍𝑖

] , i = 1, . . . , n,                                       (14) 

where the n-tuple [B1, . . . , Bn] is the constrained shift associated with J, is called constrained (or J-

constrained) dilation of T if: 

(i) p(V1, . . . , Vn) = 0 for any p ∈ PJ ; 

(ii) ℋ can be identified with a co-invariant subspace under V1, . . . , Vnsuch that 

 

Ti= PℋVi|ℋ, i = 1, . . . , n. 

 

The dilation is minimal if ℋ is cyclic for V1, . . . , Vn, i.e., 

(𝒩J ⊗ 𝓓) ⊕ K =⋁ 𝑉𝛼ℋ𝛼𝜖𝕗n  
+ . 

We introduce the dilation index of T, denoted by dil-ind (T), to be the minimum dimension of 𝓓 such 

that V is a constrained dilation of T. 
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Our first dilation result for constrained row contractions is the following. 

Theorem (1.1.12) [1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of  generated by a family of 

polynomials PJ ⊂ Fn
∞ and let T := [T1, . . . ,Tn], Ti∈ B(ℋ), be a row contraction such that 

 

                                    p(T1, . . . ,Tn) = 0 for any p ∈ PJ .                                          (15) 

 

Then there exists a Hilbert space K and some operators Zi∈ B(K) with the properties 

 

Z1Z1
∗+ · · · + ZnZn

∗= Ik   and 

 

                         p(Z1. . . , Zn) = 0 for any p ∈PJ , 

such that: 

(i) ℋ can be identified with a co-invariant subspace of �̌� := (𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ) ⊕ K under the operators 

Vi := [
𝐵𝑖⊗ 𝐼∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ 0

0 𝑍𝑖
], i = 1, . . . , n; 

(ii)Ti
∗ = Vi

∗|ℋ, i = 1, . . . , n. 

Moreover, K = {0} if and only if [T1, . . . ,Tn] is a pure row contraction. 

Proof: Consider the subspace 

𝓜:= span̅̅ ̅̅ ̅̅   {Sαp (S1, . . . ,Sn)Sβ(1) : p ∈ PJ , 𝛼,𝛽  ∈ 𝕗n  
+ } . 

  

It is clear that 𝓜 ⊆ ℳJ . To prove that ℳJ⊆ 𝓜, it is enough to show thatℳ⊥ ⊆ ℳJ
⊥. 

Let  g ∈ F2(Hn ) be such that 

〈𝑔, φ(S1, . . . , Sn)p (S1, . . . , Sn)Sβ(1)〉= 0 for any p ∈ PJ , 𝛼,𝛽  ∈ 𝕗n  
+  . 

It is known (see [4], [12]) that for any φ(S1, . . . , Sn) ∈ Fn
∞ , there is a sequence of polynomials 

{qm(S1, . . . , Sn)}m=1 
∞  which is SOT-convergent to φ(S1, . . . , Sn) as m → ∞. Consequently 

 

〈𝑔, φ(S1, . . . , Sn)p (S1, . . . , Sn)Sβ(1)〉= 0  

for any φ(S1, . . . , Sn)  ∈ 𝕗n  
+ , p ∈ PJ ,and  𝛼,𝛽∈ 𝕗n  

+  , Hence, g ∈ ℳJ
⊥ . Therefore, ℳJ =𝓜. Now, using 

the properties of the Poisson kernel KT (see (13)) and that p(T1, . . . ,Tn) = 0 for any p ∈ PJ , we obtain 

〈𝐾𝑇𝑘Sαp (S1, . . . , Sn)Sβ(1) ⊗ h〉 = 〈𝑘, Tαp (T1, . . . , Tn)Sβ(1)Tβ∆Th〉 = 0 

for any k ∈ ℋ, h ∈ ∆𝑇ℋ̅̅ ̅̅ ̅̅ , and p ∈ PJ . Since ℳJ =𝓜, we infer that 

 

                     range KT ⊆  (ℳJ  ⊗ ∆𝑇ℋ )̅̅ ̅̅ ̅̅ ̅̅ ⊥ = 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ .                                         (16) 

 

Consider the constrained Poisson kernel KJ,T : ℋ→ 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅  defined by 

KJ,T  := (P𝒩J
 ⊗I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅)KT , 

 

where KT  is the Poisson kernel defined by (12). Using relations (13) and (16), we obtain 

 

KJ,T Tα
∗ = (Bα

∗ ⊗ IH)KJ,T αϵ 𝕗n  
+                                                (17) 

 

Define the contraction Q := SOT- lim
𝑘→∞

∑ TαTα
∗

⎸𝛼⎸=𝑘  

and the operator 

 

Y : ℋ →  K   𝑄1/2ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅:= Q1/2H by Y h := 𝑄1/2ℋ, h ∈ ℋ. 

 

For each i = 1, . . . , n, define Ai : 𝑄
1/2ℋ → K by setting 
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                   Ai Y h := Y Ti
∗h, h ∈ ℋ.                                                         (18) 

The operators Ai, i = 1, . . . , n, are well-defined since 

 

∑ ∥ Ai Y h ∥
2= 〈∑ 𝑇𝑖𝑄𝑇𝑖

∗ℎ, ℎ
𝑛

𝑖=1
〉 =∥ 𝑄

1
2ℎ ∥2

𝑛

𝑖=1

 

Therefore the operator Ai can be extended to a bounded operator on K, which will also be denoted by 

Ai. Now, setting Zi := Ai
∗, i = 1, . . . , n, relation            (18)implies 

 

           Y∗Zi= Ti Y
∗, i = 1, . . . , n.                                                  (19) 

 

Notice that 

 

 Y∗ (∑𝑍𝑖𝑍𝑖
∗

𝑛

𝑖=1

)𝑌 =∑𝑇𝑖𝑌
∗𝑌 𝑇𝑖

∗

𝑛

𝑖=1

 

                                                                               

                                                                          =∑ 𝑇𝑖𝑄 𝑇𝑖
∗𝑛

𝑖=1 = 𝑄 = 𝑌 𝑌∗ 
Hence,  

〈∑(𝑍𝑖  𝑍𝑖
∗)𝑌ℎ, 𝑌ℎ

𝑛

𝑖=1

〉 = (𝑌ℎ, 𝑌ℎ), 

 

which implies 

∑ 𝑍𝑖𝑍𝑖
∗𝑛

𝑖=1  = Ik. Using relations (19) and (15), we get 

Y∗p(Z1, . . . ,Zn) = p(T1, . . . , Tn) Y∗= 0, p ∈ PJ . 

Since Y∗is injective on K = Y H, we deduce that p(Z1, . . . ,Zn) = 0 for any p ∈ PJ . 

Define the operator V : ℋ → [𝒩J ⊗ ℋ] ⊕ K by setting 

 

V :=[
𝐾𝑇,𝐽
𝑌
] . 

 

Note that 

∥ Vh ∥2=∥ 𝐾𝑇,𝑌h ∥
2+∥ Yh ∥2 

 

= ∥ h ∥2 -SOT- lim
𝑘→∞

〈    ∑ TαTα
∗

⎸𝛼⎸=𝑘   〉 +∥ Yh ∥2 

 

=∥ h ∥2− 〈Qh, h〉 + 〈Qh, h〉 
 

=∥ h ∥2 
 

for any h ∈ ℋ. Therefore, V is an isometry. On the other hand, using relations (17) and(18), we 

deduce that 

 

V Ti
∗  =[

𝐾𝑇,𝐽
𝑌
]  Ti

∗  = 𝐾𝑇,𝐽Ti
∗  h ⊕ Y Ti

∗ h 

                             

                                    = (𝐵𝑖
∗⊗ 𝐼ℋ)𝐾𝑇,𝐽 h⊕  Zi

∗ Y h 

                                     

                                    =[
𝐵𝑖⊗ 𝐼∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ 0

0 𝑍𝑖
] 𝑉ℎ, 
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Since V is an isometry we can identify ℋ with V ℋ and complete the proof of (i) and (ii).The last 

part of the theorem is obvious. _ 

Corollary( 1.1.13) [1]: In the particular case when n = 1 and PJ= 0, we obtain the classical iso-metric 

dilation theorem for contractions obtained by SZ.-Nagy (see [38]) by different methods. 

Now we can evaluate the dilation index of a constrained row contraction and show that it does not 

depend on the constraints. We show that the dilation index coincides with rank ∆T , [10]. 

Corollary( 1.1.14) [1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of  generated by a family of 

polynomials PJ ⊂ Fn
∞ and let T := [T1, . . . ,Tn], Ti∈ B(ℋ), be a row contraction such that 

 

p(T1, . . . ,Tn) = 0 for any p ∈ PJ                                                

Then the dilation index of T satisfies the equation 

dil-ind (T) = rank ∆T . 

Proof : Let 𝓓 and K be Hilbert spaces and let Zi∈ B(K) be bounded operators such that 

Z1Z1
∗+ · · · + ZnZn

∗= Ik 

 

 Assume that the n-tuple V := [V1, . . . , Vn] given by 

 

                           Vi := [
𝐵𝑖⊗ 𝐼𝒟 0
0 𝑍𝑖

], i = 1, . . . , n  ;                                     (20) 

is a constrained dilation of T. Since ℋ is co-invariant under V1, . . . , Vn, and 𝒩J is co-invariant   under 

the left creation operators S1, . . . , Sn, we have 

 

                          Iℋ − ∑ TiTi
∗n

i=1 =Pℋ [
[P𝒩J

(I − ∑ SiSi
∗n

i=1 )⎸𝒩J] ⊗ I𝒟 0

0 0
] ⎸ℋ 

Hence, and taking into account that (I − ∑ SiSi
∗n

i=1 ) is a rank one operator, we deduce that 

rank ∆T ≤ rank [P𝒩J
(I − ∑ SiSi

∗n
i=1 )⎸𝒩J⊗ I𝒟]≤ dim . 

Now, using Theorem (1.1.12), we conclude that dil ind (T) = rank  ∆T. _ 

Theorem( 1.1.15) [1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of  generated by a family of 

polynomials PJ ⊂ Fn
∞ and let T := [T1, . . . ,Tn], Ti∈ B(ℋ), be a row contraction such that 

 

                                  p(T1, . . . ,Tn) = 0 for any p ∈ PJ.                                      (21) 

Then there exists a separable Hilbert space kπ and a ∗-representation  𝜋:  of C∗ (B1 , … , Bn) → B(kπ) 

which annihilates the compact operators and 

 

           𝜋(B1) 𝜋 (B1) 
∗ + · · · + 𝜋( Bn) 𝜋 (Bn) 

∗= Ikπ . 

 

such that: 

(i) ℋ can be identified with a co-invariant subspace of �̌� := (𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ) ⊕ K under the 

operators 

Vi := [
𝐵𝑖⊗ 𝐼∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ 0

0 𝑍𝑖
], i = 1, . . . , n; 

 

(ii)Ti
∗ = Vi

∗|ℋ, i = 1, . . . , n. 

 

Proof: According to [35], if PJ consists of homogeneous polynomials, then 

Range KT,r ⊆ 𝒩J ⊗ ℋ for any r ∈ (0, 1), the constrained Poisson kernel KJ,T,r:= (P𝒩J
⊗Iℋ) KT,r is an 

isometry, and there is a unique unital completely contractive linear map 

 

ΦJ,T: span̅̅ ̅̅ ̅̅ {BαBα 
∗ : α, βϵ𝕗n

+} 
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such that ΦJ,T(BαBβ 
∗ ) =  TαTβ 

∗ : α, βϵ𝕗n
+ . Applying Arveson extension theorem [2] to the map ΦJ,T , 

we obtain a unital completely positive linear map  

ΨJ,T: C∗(B1, . . . ,Bn) → B(ℋ). Let �̌� : C∗(B1, . . . ,Bn) → B(�̌�) be a minimal Stinespring dilation of 

 ΨJ,T: i.e., 

 ΨJ,T(X) = Pℋ�̌� (X)|ℋ, X ∈ C∗(B1, . . . ,Bn) 

 

and �̌� = span̅̅ ̅̅ ̅̅ {�̌� (X)h : h ∈ ℋ}. 

  

Notice that, for each i = 1, . . . , n, 

 

ΨJ,T(BiBi
∗)= TiTi

∗ = Pℋ�̌� (Bi)�̌�(Bi
∗)⎸ℋ 

 

=Pℋ�̌� (Bi)(Pℋ + Pℋ⊥     )�̌�(Bi
∗)⎸ℋ 

 

=ΨJ,T(BiBi
∗)+Pℋ�̌� (Bi)⎸ℋ⊥     )(Pℋ⊥   �̌�(Bi

∗)⎸ℋ) 

 

Hence, we infer that         Pℋ�̌� (Bi)⎸ℋ⊥      = 0 and 

 

ΨJ,T(BαX)= Pℋ(�̌� (Bα)�̌�(X))⎸ℋ 

 

           =(Pℋ�̌� (Bα)⎸ℋ)(Pℋ�̌�(X))⎸ℋ)                                            (22) 

 

                    =ΨJ,T(Bα) ΨJ,T(X) 

 

for any X ∈ C∗(B1, . . . ,Bn)and α ∈ 𝕗n
+. Note that the Hilbert space �̌� is separable and ℋ is   an 

invariant subspace under each �̌� (Bi)
∗ ,i = 1, . . . , n, due to the fact that Pℋ�̌� (Bi)⎸ℋ⊥      = 0. 

This means that 

 

         �̌� (Bi)
∗⎸ℋ =ΨJ,T(Bi

∗)=Ti
∗ , i = 1, . . . , n.                                        (23) 

 

Now, since the subspace 𝒩J contains the constants, we can apply Theorem (1.1.3) and deduce that all 

the compact operators LC(𝒩J )) in B(𝒩J) are contained in C∗(B1, . . . ,Bn). According to Theorem 

(1.1.8), the representation �̌� decomposes into a direct sum �̌�   = π0⊕ π on �̌�  = K0⊕Kπ, 

where π0, π are disjoint representations of C∗(B1, . . . ,Bn)on the Hilbert spaces K0and Kπ , 
respectively, such that 

 

                       K0≃ 𝒩J ⊗ G, π0 (X) = X ⊗ IG, X ∈ C∗(B1, . . . ,Bn)                                (24) 

for some Hilbert space G, and  is a representation such that π (LC(𝒩J )) = 0. Since 𝑃𝕔
𝒩J = I −

∑ BiBi
∗n

i=1  

is a rank one projection in C∗(B1, . . . ,Bn)we deduce that 

∑ π(Bi)π
n

i=1
(Bi)

∗ = Ikπ 

and 

dim G = dim(range �̌� (𝑃𝕔
𝒩J)). 

 

Using the minimality of the Stinespring representation �̌� and the proof of Theorem (1.1.3), we have 

 

range �̌� (𝑃𝕔
𝒩J) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {�̌� (𝑃𝕔

𝒩J)�̌� (𝑋)ℎ: X ∈ C∗(B1, . . . , Bn), h ∈  ℋ} 
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= 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {�̌� (𝑃𝕔
𝒩J)�̌� (𝑌)ℎ: Y ∈ C0, h ∈  ℋ} 

 

=𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {�̌� (𝑃𝕔
𝒩J)�̌� (𝐵𝛼𝑃𝕔

𝒩JBβ
∗)ℎ ∶ α, βϵ 𝕗n

+, h ∈  ℋ} 

=𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {�̌� (𝑃𝕔
𝒩J)�̌� (Bβ

∗)ℎ: βϵ 𝕗n
+, h ∈  ℋ} 

 

On the other hand, using relation (22), we have 

〈�̌�  (𝑃𝕔
𝒩J) �̌� (Bα

∗ )ℎ, �̌�  (𝑃𝕔
𝒩J) �̌� (Bβ

∗)𝑘〉 = 〈ℎ, 𝜋(𝐵𝛼)π (𝑃𝕔
𝒩J)𝜋 (Bβ

∗)ℎ〉 

                                                                        

                                                                    =〈ℎ, 𝑇𝛼(𝐼𝑘 − ∑ 𝑇𝑖𝑇𝑖
∗)𝑇𝛽

∗ℎ𝑛
𝑖=1 〉 

 

                                                                                   =〈∆𝑇𝑇𝛼
∗ℎ, ∆𝑇𝑇𝛽

∗𝑘〉 

for any h, k ∈ ℋ. This shows that one can define a unitary operator A : range �̌�  (𝑃𝕔
𝒩J) → ∆𝑇ℋ̅̅ ̅̅ ̅̅  by 

setting 

𝐴(�̌�  (𝑃𝕔
𝒩J) , �̌� (Bα

∗ )ℎ):= ∆𝑇𝑇𝛼
∗ ℎ ∈ H  , 

and extending it by linearity and continuity. Therefore, we have dim[range π (𝑃𝕔
𝒩J) ] =∆𝑇ℋ̅̅ ̅̅ ̅̅  = dim 

G. 

Hence, making the appropriate identification of G with ∆𝑇ℋ̅̅ ̅̅ ̅̅ and using relations (23) and(24), we 

obtain the required dilation. This completes the proof. _ 

Corollary( 1.1.16) [1]: Let V := [V1, . . . , Vn] be the dilation of Theorem (1.1.15). Then, 

(i) V is a constrained shift if and only if T is a pure constrained row contraction; 

(ii) V is a Cuntz type representation if and only if T is a constrained row contraction 

such that 

T1T1
∗ + · · · + TnTn

∗ = I. 

Proof: Notice that 

∑ 𝑇𝛼𝑇𝛼
∗

⎸𝛼⎸=𝑘 =Pℋ [
∑ 𝐵𝛼𝐵𝛼

∗
⎸𝛼⎸=𝑘 ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ 0

0 IKπ
] ⎸ℋ 

and therefore, 

SOT-∑ 𝑇𝛼𝑇𝛼
∗

⎸𝛼⎸=𝑘 = Pℋ [
0 0
0 IKπ

] ⎸ℋ. 

This shows that T is a pure row contraction if and only if PℋPKπ |ℋ = 0. The latter condition is 

equivalent to ℋ ⊥ (0 ⊕ Kπ), which implies ℋ ⊂ 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ . Now, since  𝒩J⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅  is reducing for 

each operator Vi, i = 1, . . . , n, and �̌� is the smallest reducing subspace for the same operators, which 

contains ℋ, we conclude that �̌� = 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ., which proves (i). 

Now assume that the dilation V is a Cuntz type representation, i.e., 

∑ 𝑉𝑖𝑉𝑖
∗

⎸𝛼⎸=𝑘 = 𝐼�̌�. Since 

 

∑ 𝑉𝛼𝑉𝛼
∗

⎸𝛼⎸=𝑘 =[
∑ 𝐵𝛼𝐵𝛼

∗
⎸𝛼⎸=𝑘 ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ 0

0 IKπ
] 

we deduce that 

∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑘

⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ = IK0 

for any k = 1, 2, . . .. Due to the fact that 

SOT- lim
𝑘→∞

∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑘  = 0, we must have K0= {0}. Using the proof of Theorem (1.1.15), we get G 

= {0}, which means ∆T = 0. The proof is complete. Under additional hypotheses, one can obtain the 

following remarkable particular case of Theorem( 1.1.15) where the dilation is unique up to a unitary 

equivalence. 
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Corollary( 1.1.17) [1]: If in addition to the hypotheses of Theorem (1.1.15) 

span̅̅ ̅̅ ̅̅ {BαBα 
∗ : α, βϵ𝕗n

+}= C∗(B1, . . . ,Bn),                                       (25) 

 

then the dilation of Theorem( 1.1.15) is minimal, i.e., �̌�=⋁ 𝑉𝛼ℋαϵ𝕗n
+  , and it is unique up to a unitary 

equivalence. 

Let T′ := [T1
′, . . . , Tn

′ ], Ti
′∈ B(ℋ′), be another row contraction subject to the same constraints as T 

and let V ′ := [V1
′, . . . , Vn

′ ] be the corresponding dilation. Then T and T′ are unitarily equivalent if 

and only if 

Dim  ∆𝑇ℋ̅̅ ̅̅ ̅̅  = dim  ∆T′ℋ′̅̅ ̅̅ ̅̅ ̅̅  and there are unitary operators A : 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ → 𝒩J ⊗ ∆T′ℋ′̅̅ ̅̅ ̅̅ ̅̅  and 𝛤 : Kπ 

→ Kπ′such that 

 

A (Bi ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ) = (Bi ⊗ ∆T′ℋ′̅̅ ̅̅ ̅̅ ̅̅ ′)A and Γπ(Bi) = π′ (Bi )𝛤 for i = 1, . . . , n, 

and  

[
𝐴 0
0 𝛤

]ℋ= ℋ′. 

 

Proof: A closer look at the proof of Theorem (1.1.15) reveals that, under condition (25), the map ΨJ,T  

is unique. Using the uniqueness of the minimal Stinespring representation (see [37], [4]), one can 

prove the uniqueness of the minimal dilation of Theorem( 1.1.12) .The last part of this corollary 

follows using standard arguments concerning representation theory of C∗- algebras 

[3] and the uniqueness of minimal completely positive dilations of completely positive maps of C∗-
algebras. In what follows we present several examples when the condition (25) is satisfied. 

Example (1.1.18) [1]: Let PJ ⊂ Fn
∞ by a set of polynomials and let PJ  be the WOT-closed two-sided 

ideal of  Fn
∞generated by PJ  . The condition (25) is satisfied in the following particular cases. 

(i) If PJ  := 0, then 𝒩J = F2(Hn ), Bi= Si, and therefore Sj
∗Si= δi,jI. In this case, Theorem (1.1.15) and 

Corollary( 1.1.17) imply the standard non commutative isometric dilation theorem for row 

contraction [21]. 

(ii) If PJ  := {SiSj− SjSi: I, j = 1, . . . , n}, then 𝒩J = Fs
2 , the symmetric Fock space, 

and Bi, i = 1, . . . , n, are the creation operators on the symmetric Fock space. We obtain in this case 

the dilation theorem for commuting g row contractions (see [13], [4], and [30]). 

(iii) If B1, . . . ,Bnare essentially normal. 

(iv) Let PJ be a set of homogenous polynomials in Fn
∞ . According to Lemma (1.1.1), U𝒩J is a 

subspace invariant under Si
∗ , i = 1, . . . , n. Using the characterization of the invariant subspace for 

the left creation operators [22], there exists an essentially unique sequence 

{φp(S1, … , Sn)}p=1
N  , N = 1, 2, . . . ,∞, of isometries with orthogonal ranges 

such that 

 

P𝒩J
= I – ∑ φp(S1, … , Sn)φp(S1, … , Sn)

∗𝑁
𝑝=1  

 

where the series is SOT-convergent if N = ∞. If the above sequence is finite (N < ∞)and 

φp(S1, … , Sn)p = 1, . . . ,N, are in the non commutative disc algebra A n, then condition (25) holds. 

Indeed, in this case we have 

Bi
∗Bj = P𝒩J

Si
∗(I – ∑φp(S1, … , Sn)φp(S1, … , Sn)

∗

𝑁

𝑝=1

)Sj ⎸𝒩J 

Since Si
∗ Sj  = δi,jI and 𝒩Jis invariant under Si

∗ , i = 1, . . . , n, we deduce that Bi
∗Bj is in 

span {𝐵𝛼𝐵𝛽
∗ : 𝛼 , 𝛽𝜖 𝕗𝑛

+}  
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(v) If PJ := {Sα: | α | = m}, then P𝒩J
 = I −∑ 𝑆𝛼𝑆𝛼

∗
⎸𝛼⎸=𝑚  .In this case, we have 

 

Bi
∗Bj= P𝒩J

Si
∗( I − ∑ 𝑆𝛼𝑆𝛼

∗
⎸𝛼⎸=𝑚  )Sj ⎸𝒩J 

 

and Bi
∗Bj is in span {𝐵𝛼𝐵𝛽

∗ : 𝛼 , 𝛽𝜖 𝕗𝑛
+}. 

 

(vi) If PJ := {Sα: | α | = m} ∪ {SiSj− SjSi: i, j = 1, . . . , n}. 

(vii) If PJ := SjSi − qjiSiSj: − i < j, i, j = 1, . . . , n} for some qji∈𝕔, then Bj Bj
∗= 0 

if i ≠ j and Bi
∗Bican be written as a linear combination of the identity and Bj Bj

∗ 

 ,j = 1, . . . , n. In this case we obtain the dilation result from [7]. 

Let T := [T1, . . . , Tn], Ti∈ B(ℋ), be a row contraction and let C ⊂ Fn
∞ . If T is a c.n.c. row contraction 

and 𝜑 ∈ C, then 𝜑 (T1, . . . , Tn) is defined by the Fn
∞ 

 -functional calculus for row contractions [26]. When T is an arbitrary row contraction, then we 

assume that C consists of polynomials. 

Denote by ℳc the closed span of all co-invariant spaces M ⊆ ℋ under T1, . . . , Tn such that 

𝜑(PℳT1⎸𝓜, . . . , PℳTn⎸𝓜) = 0 for any 𝜑 ∈ C. 

We call the row contraction 

 

[PℳC
T1⎸ℳC, . . . , PℳC

Tn⎸ℳC] 

 

the maximal C-constrained piece of [T1, . . . , Tn]. 

Lemma( 1.1.19) [1]: If V := [V1, . . . , Vn], Vi ∈ B(ℋ), is a row contraction then 

ℳC=𝑠𝑝𝑎𝑛 ̅̅ ̅̅ ̅̅ ̅

{𝑉𝛼𝜑(V1, . . . , Vn)ℋ:𝜑 ∈ 𝐶, 𝛼 ∈ 𝕗𝑛
+}

                                
= ⋂ 𝜑(V1, . . . , Vn)

∗𝑉𝛼
∗

𝜑∈𝐶,𝛼∈𝕗𝑛
+

⊥

 

Proof : Denote  := span{𝑉𝛼𝜑(V1, . . . , Vn)ℋ:𝜑 ∈ 𝐶, 𝛼 ∈ 𝕗𝑛
+} 

  

and note that ℰ⊥  is co-invariant under V1, . . . , Vn. If h ∈ ℰ⊥  and k ∈ ℋ, then 

 

0 = 〈𝜑(V1, . . . , Vn)𝑘, ℎ〉 = 〈𝑘, 𝜑(V1, . . . , Vn)
∗ℎ〉. 

 

Hence, we get 𝜑(𝑃ℰ⊥𝑉1⎸ℰ
⊥, … , 𝑃ℰ⊥𝑉𝑛⎸ℰ

⊥)= 0. Let M be a co-invariant subspace under V1, . . . , 

Vnsuch that 𝜑(𝑃ℳ𝑉1⎸ℳ,… , 𝑃ℳ𝑉𝑛⎸ℳ) = 0. For any h ∈ 𝓜 and ∈ 𝕗𝑛
+ , we have 𝑉𝛼

∗ℎ ∈ 𝓜, therefore 

𝜑(V1, . . . , Vn)
∗ 𝑉𝛼

∗ℎ = 0 This implies 〈ℎ, 𝜑(V1, . . . , Vn)𝑘〉= 0 for any k ∈ ℋ, which shows that M⊆ 

ℰ⊥and completes the proof.  

Using this lemma and the definition of the subspace 𝒩J, one can easily prove the following. 

Proposition( 1.1.20) [1]: Let: Let J ≠ Fn
∞ be an arbitrary WOT-closed two-sided ideal of Fn

∞ , S1, . . 
. , Sn be the left creation operators on the full Fock space 

F2(Hn ) , and Bi:= P𝒩J
Si| 𝒩J, i =1, . . . , n. Then [B1, . . . ,Bn] is the maximal J-constrained piece of 

[S1, . . . , Sn].We consider now the particular case when the row contraction T := [T1, . . . , Tn] is pure, 

i.e. SOT- lim
⎸𝑘⎸→∞

∑ 𝑇𝛼𝑇𝛼
∗

⎸𝛼⎸  = 0. In this case, the resultstion can be extended to a larger class of 

constrained row contractions. 

Theorem( 1.1.21) [1]:  Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of  generated by a family of 

polynomials PJ ⊂ Fn
∞ and let T := [T1, . . . ,Tn], Ti∈ B(ℋ), be a row contraction such that 

f(T1, . . . ,Tn) = 0 for any f ∈ J. 

Then the following statements hold: 

(i) The constrained Poisson kernel KJ,T: ℋ→ 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅  defined by setting 

 

                                KJ,T := (P𝒩J
 ⊗ I)KT 
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is an isometry , KJ,Tℋ is co-invariant under Bi ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅, i = 1, . . . , n, and 

 

  Ti = KT,J
∗ (Bi ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅) KJ,T, i = 1, . . . , n.                                    (26) 

 

(ii) dil-ind (T) = rank ∆T . 

(iii) If 1 ∈ 𝒩J   , then the dilation provided by (26) is minimal. 

If, in addition, 1 ∈ 𝒩J  and  

                             𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{BαBβ
∗  : α , 𝛽 ∈ 𝕗𝑛

+} = C∗(B1, . . . ,Bn),                                   (27) 

then we have: 

(iv) The minimal dilation provided by (26) is unique up to an isomorphism. 

(v) The minimal dilation is the maximal J-constrained piece of the standard non commutative 

isometric dilation of T. 

(vi) A pure constrained row contraction has rank ∆T = m, m = 1, 2, . . . ,∞, if and only if it is unitarily 

equivalent to one obtained by compressing [B1 ⊗ I𝕔m, . . . , Bn ⊗ I𝕔m] to a co-invariant subspace 

𝓜⊂ 𝒩J ⊗ 𝕔m under B1 ⊗ I𝕔m, . . . , Bn ⊗ I𝕔m, with the property that dim P0𝓜= m, where P0 is the 

orthogonal projection of 𝒩J ⊗ 𝕔m onto the subspace 1 ⊗ 𝕔m. 

Proof: Part (i) follows from [12]. To prove (ii), let D be a Hilbert space such that ℋ can be identified 

with a co-invariant subspace of 𝒩J ⊗ 𝓓 under Bi ⊗I𝒟, i = 1, . . . , n, and such that Ti = Pℋ(Bi ⊗I𝒟,)|ℋ 

for i = 1, . . . , n. Then 

Iℋ −∑TiTi
∗ = P

ℋ

𝒩J ⊗ 𝒟

n

i=1

[( I𝒩J
−∑BiBi

∗)

n

i=1

⊗ I𝒟] ⎸ℋ 

=P
ℋ

𝒩J ⊗ 𝒟[P𝒩J 
(I − ∑ SiSi

∗)n
i=1 )⎸𝒩J  ⊗ I𝒟]⎸ℋ 

 

= P
ℋ

𝒩J ⊗ 𝒟[P𝒩J P𝕔⎸𝒩J  ⊗ I𝒟]⎸ℋ 

 

Hence, rank ∆T ≤ dim𝓓. Using (i), we deduce that the dilation index of T is equal to rank ∆T . 

Assume now that 1 ∈ 𝒩J. As in the proof of Theorem (1.1.5), we obtain  P𝕔
𝒩J P𝒩J eα= 0 for any α 

∈ 𝕗n
+, |𝛼| ≥ 1. On the other hand, the definition of the constrained Poisson kernel KJ,T implies 

P0KJ,T h =   lim
𝑚→∞

∑ ∑  P𝕔
𝒩J P𝒩J eα⊗∆TTα

∗h  , h ∈ ℋ⎸𝛼⎸=𝑘
𝑚
𝑘=0  

 

where P0:= P𝕔
𝒩J ⊗I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅. Therefore, P0KJ,T ℋ = ∆𝑇ℋ̅̅ ̅̅ ̅̅ . Using Corollary (1.1.6) in the particular case 

when  := KJ,Tℋ and D := ∆𝑇ℋ̅̅ ̅̅ ̅̅ , we deduce that KJ,Tℋis cyclic for Bi⊗ I𝒟 , i = 1, . . . , n, which 

proves the minimality of the dilation (26), i.e., 

 

         𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ =⋁ (𝐵𝛼⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅)α ∈ 𝕗n
+ KJ,Tℋ                                    (28) 

 

Now we assume that 1 ∈ 𝒩J  and that relation (27) holds. Consider another minimal dilation of T, i.e., 

                Ti = V∗(Bi ⊗ I𝒟)V,                                                            (29) 

 

where V : ℋ→ 𝒩J  ⊗ 𝓓 is an isometry , V ℋ is co-invariant under Bi ⊗ I𝒟, i = 1, . . . , n, and 

 

      𝒩J ⊗𝓓 =⋁ (𝐵𝛼⊗ I𝒟)α ∈ 𝕗n
+ Vℋ.                                                    (30) 

 

We know (see [1]) that there exists a unital completely positive linear map 

 

𝛷: span{BαBα
∗ ∶ α, β ∈  𝕗n

+} → B(ℋ) 
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such that  𝛷(BαBα
∗  ) = TαTα

∗ , α, β ∈  𝕗n
+  . Due to (27), 𝛷 has a unique extension to C∗(B1, . . . ,Bn). 

Consider the ∗-representations 

π1 : C∗(B1, . . . ,Bn) → B(𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ), π1(X) := X  ⊗I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅  

π2 : C∗(B1, . . . ,Bn) → B(𝒩J ⊗𝓓), π2(X) := X ⊗ I𝒟. 

 

It is easy to see that due to relations (26), (29), (27), and the co-invariance of the subspaces KJ,Tℋand 

V ℋ, we have 

𝛷(X) = KJ,T
∗ π1(X) KJ,T= V∗π2((X)V, X ∈ C∗(B1, . . . ,Bn). 

 

Now, due to the minimality conditions (28) and (30), and relation (27), we deduce that π1and π2 are 

minimal Stinespring dilations . Since they are unique, there exists a unitary operator U : 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ → 

𝒩J ⊗ 𝓓 such that 

 

     U(𝐵𝑖⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅) = (𝐵𝑖⊗ I𝒟)U, i = 1, . . . , n.                                    (31) 

 

and UKJ,T = V . Hence, we also have 

 

U(𝐵𝑖
∗⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅)) = (𝐵𝑖

∗⊗ I𝒟)U, i = 1, . . . , n. 

 

By Theorem (1.1.3), C∗(B1, . . . ,Bn). is irreducible, so we must have U = I𝒩J
 ⊗ W, where W ∈ 

B(∆𝑇ℋ̅̅ ̅̅ ̅̅ ,𝓓) is a unitary operator. Therefore, dim ∆𝑇ℋ̅̅ ̅̅ ̅̅  = dim 𝓓 and UKJ,Tℋ= V ℋ, which proves that 

the two dilations are unitarily equivalent. 

In the particular case when J = {0}, part (iv) shows that 

 

S := [S1 ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅, . . . , Sn ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅] 

 

is a realization of the standard minimal isometric dilation of [T1, . . . , Tn]. Using Lemma( 1.1.19)and 

Proposition (1.1.20), one can easily see that the maximal J-constrained piece of S coincides with [B1 

⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅, . . . , Bn ⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅], which proves (v). Now, we prove (vi). The implication “ =⇒ ” follows 

from part (i). Conversely, assume that 

  
Ti = Pℋ(Bi ⊗ I𝕔m) |ℋ, i = 1, . . . , n, 

 

where ℋ ⊂ 𝒩J⊗𝕔
m is a co-invariant subspace under Bi ⊗ I𝕔m, i = 1, . . . , n, with dim P0ℋ = m(recall 

P0 := P𝕔
𝒩J 

  ⊗ I𝕔m). It is clear that T := [T1, . . . , Tn] is a pure J-constrained row contraction. Consider 

first the case when m < ∞. Since P0ℋ ⊆ 𝕔m and dimP0ℋ = m, we deduce that P0ℋ = 𝕔m. By Corollary 

(1.1.6), we have 

              ℋ⊥ ∩ 𝕔m = {0}.                                                            (32) 

 

On the other hand, since I𝒩J
−∑ 𝐵𝑖𝐵𝑖

∗𝑛
𝑖=1 =P𝕔

𝒩J 
   

, we obtain 

                                     rank ∆T= rank Pℋ[(I𝒩J
− ∑ 𝐵𝑖𝐵𝑖

∗) ⊗ 𝐼𝕔𝑚
𝑛
𝑖=1 ]⎸ℋ 

                               = rank PℋP0|H = dim PℋP0ℋ 

= dimPℋCm. 

If rank ∆T < m, then there exists a nonzero vector h ∈ 𝕔m with Pℋh = 0, which contradicts relation 

(32). Therefore, we must have rank ∆T  = m. 

Now, we consider the case m = ∞. According to Theorem (1.1.5), setting  := P0ℋ, we have 
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⋁ (Bi  ⊗ I𝕔m)ℋ𝛼∈𝕗𝑛
+ = 𝒩J ⊗ 𝓔, 

 

which is reducing for Bi ⊗ I𝕔m, i = 1, . . . , n. Therefore, 

   Ti = Pℋ ((Bi ⊗ Iℰ)|ℋ, i = 1, . . . , n. 

Using the uniqueness of the minimal dilation of T (see (iv)), we deduce that dim∆𝑇ℋ̅̅ ̅̅ ̅̅  = dim𝓔 = ∞. 

The proof is complete. _ 

Let J be a WOT-closed two-sided ideal of Fn
∞generated by a family PJ of homogeneous polynomials 

such that 1 ∈ 𝒩J and condition(5) holds. If [T1, . . . , Tn] is a arbitrary J-constrained row contraction, 

is it true that the minimal dilation provided by Theorem (1.1.15) is the maximal J-constrained piece 

of the standard non commutative isometric dilation of T ?We should mention that the answer to this 

question is positive in the commutative case, i.e., when PJ  := {SiSj −SjSi : i, j = 1, . . . , n} (see 

[8]).Under certain natural conditions on the ideal J, we can characterize the pure J-constrained row 

contractions of rank one. 

Corollary (1.1.22) [1]: Let J be a WOT-closed two-sided ideal of Fn
∞ such that 1 ∈ 𝒩J and condition 

(27) is satisfied. If M⊂ 𝒩J  is a co-invariant subspace under B1 , . . ., Bnthen the n-tuple T := [T1, . . . 

, Tn] Ti:= BℳBi|𝓜, i = 1, . . . , n, is a pure J-constrained row contraction such that rank ∆T = 1. 

If 𝓜′ is another co-invariant subspace for B1 , . . ., Bn, which gives rise to a row contraction T′, then 

T and T′ are unitarily equivalent if and only if 𝓜=𝓜′. 

Every pure constrained row contraction with rank  ∆T= 1 is unitarily equivalent to one obtained by 

compressing [B1 , . . ., Bn] to a co-invariant subspace for B1 , . . ., Bn. 

Proof: Since 𝓜⊂ 𝒩J is a co-invariant subspace under B1 , . . ., Bn, we have 

f(T1, . . . , Tn) = Pℳf(B1 , . . ., Bn)|𝓜= 0, f ∈ J, 

and Iℳ − ∑ TiTi
∗n

i=1 = Pℳ(I𝒩J
− ∑ 𝐵𝑖𝐵𝑖

∗)⎸ℳ𝑛
𝑖=1   

=PℳP𝕔
𝒩J⎸𝓜 . 

Hence, [T1, . . . , Tn] is a constrained row contraction with rank ∆T≤ 1. On the other hand, since 

 

∑ 𝑇𝛼𝑇𝛼
∗

⎸𝛼⎸=𝑘 = Pℳ(∑ 𝐵𝛼𝐵𝛼
∗

⎸𝛼⎸=𝑘  , k = 1, 2, . . . , 

and [B1, . . . ,Bn] is a pure row contraction, we deduce that [T1, . . . , Tn] is pure. This also implies 

that  ∆T≠0, so rank ∆T≥ 1. Consequently, we have rank ∆T= 1. 

To prove the second part of this corollary, notice that, as in the proof of Theorem( 1.1.21) part (iv), 

one can show that T and T′ are unitarily equivalent if and only if there exists a unitary operator A : 

𝒩J → 𝒩J such that ABi = BiA , for i = 1, . . . , n, and A𝓜=𝓜′. 

This implies that A commutes with C∗(B1 , . . ., Bn) which, due to Theorem( 1.1.3), is irreducible. 

Therefore, A must be a scalar multiple of the identity. Hence, we have 𝓜= A𝓜=𝓜′. 

Finally, the last part of this corollary follows from Theorem( 1.1.15) and Corollary (1.1.17).  The 

purpose is to provide new properties for the standard characteristic function associated with an 

arbitrary row contraction and show that I- ΘTΘT
∗ = KTKT

∗  , where KT is the Poisson kernel of T. 

Consequently, we will show that the curvature invariant and Euler characteristic asssociated with a 

Hilbert module over   𝕗n
+ generated by an arbitrary row contraction T can be expressed only in terms 

of the characteristic function of T. 

The characteristic function associated with an arbitrary row contraction T := [T1, . . . , Tn],Ti ∈ B(ℋ), 

was introduce in [22] (see [38] for the classical case n = 1) and it was proved to be a complete unitary 

invariant for completely non-coisometric (c.n.c.) row contractions. 

Using the characterization of multi-analytic operators on Fock spaces (see [27], [31]), one can easily 

see that the characteristic function of T is a multi-analytic operator 

 

ΘT (R1, . . . ,Rn) : F2(Hn) ⊗ DT∗ → F2(Hn )⊗ DT 

 

with the formal Fourier representation 

−IF2(Hn)⊗ T +(IF2(Hn)⊗ ∆T)(IF2(Hn)⊗ℋ − ∑ RiTi
∗n

i=1 )
−1
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[R1⊗ Iℋ , … , Rn⊗ Iℋ](IF2(Hn )⊗∆T∗), 

 

where R1, . . . ,Rn are the right creation operators on the full Fock space  

F2(Hn ) Here, we need to clarify some notations since some of them are different from those 

considered in [22]. The defect operators associated with a row contraction T := [T1, . . . , Tn] are 

 

 ∆T≔ (Iℋ − ∑ TiTi
∗n

i=1 )1/2 ∈ 𝐵(ℋ) 𝑎𝑛𝑑 ∆𝑇∗= (𝐼 − 𝑇
∗𝑇)1/2 ∈ 𝐵(ℋ(𝑛)), 

while the defect spaces are 𝒟T := ∆Tℋ̅̅ ̅̅ ̅̅  and 𝒟T∗ := ∆𝑇∗̅̅ ̅̅̅ℋ(𝑛), where ℋ(n) denotes the direct sum of n 

copies of H. In what follows we need the following result. 

Lemma( 1.1.23) [1]: If 𝛳(R1, . . . ,Rn) ∈ Rn
∞ ⊗̅̅̅B(ℋ,K), then 

SOT- lim
𝑟→1

Θ(rR1, . . . , rRn)
∗ = Θ(R1, . . . , Rn)

∗. 

Proof: We know that any multi-analytic operator (R1, . . . ,Rn) with formal Fourier representation 

(R1, . . . ,Rn)∼∑ ∑ 𝑅𝛼⊗𝛳(𝛼)⎸𝛼⎸=𝑘
∞
𝑘=0  , 𝛳(𝛼)∈ B(ℋ,K), 

has the property that 

 

(R1, . . . ,Rn)= SOT- lim
𝑟→1

∑ ∑ 𝑟⎸𝛼⎸𝑅𝛼⊗𝛳(𝛼)⎸𝛼⎸=𝑘
∞
𝑘=0  

where the series converges in the uniform norm for each r ∈ (0, 1). Now, note  

that for every𝛽 ∈ 𝕗n
+ , h ∈ ℋ, and g ∈ F2(Hn )⊗ K), we have 

 

〈ϴ(R1, . . . , Rn)
∗(𝑒𝛽⊗ℎ), 𝑔〉= 〈𝑒𝛽⊗ℎ ,ϴ(R1, . . . , Rn)g〉 

                

=〈𝑒𝛽⊗ℎ, (∑ 𝑅𝛼⊗𝛳(𝛼))𝑔𝛼∈𝕗𝑛
+⎸𝛼⎸≤⎸𝛽⎸ 〉 

 

=〈∑ 𝑅𝛼
∗ ⊗𝛳(𝛼)

∗
⎸𝛼∈𝕗𝑛

+⎸𝛼⎸≤⎸𝛽⎸ )(𝑒𝛽⊗ℎ), 𝑔〉 

 

Therefore, 

 

ϴ(R1, . . . , Rn)
∗(𝑒𝛽⊗ℎ) =( ∑ 𝑅𝛼

∗ ⊗𝛳(𝛼)
∗

⎸𝛼∈𝕗𝑛
+⎸𝛼⎸≤⎸𝛽⎸ )(𝑒𝛽⊗ℎ) 

 

Similarly, we have 

 

ϴ(rR1, . . . , rRn)
∗ (𝑒𝛽⊗ℎ) =( ∑ 𝑟⎸𝛼⎸𝑅𝛼

∗ ⊗𝛳(𝛼)
∗

⎸𝛼∈𝕗𝑛
+⎸𝛼⎸≤⎸𝛽⎸ )(𝑒𝛽⊗ℎ) 

 

Using the last two equalities, we obtain 

 

lim
𝑟→1

ϴ(rR1, . . . , rRn)
∗ (𝑒𝛽⊗ℎ) = ϴ(R1, . . . , Rn)

∗(𝑒𝛽⊗ℎ) 

for any 𝛽 ∈  𝕗𝑛 
+  ,and h ∈ ℋ. On the other hand, according to the noncommutative von Neumann 

inequality, 

∥ϴ(rR1, . . . , rRn)
∗∥≤ ∥ ϴ(R1, . . . , Rn)

∗∥ , for any r ∈ (0, 1). 

Hence, and due to the fact that the closed span of all vectors 𝑒𝛼⊗ℎ with 𝛽∈ 𝕗𝑛
+ , h ∈ H, coincides 

with F2(Hn )⊗ ℋ, we deduce (using standard arguments) that 

SOT- lim
𝑟→1

ϴ(rR1, . . . , rRn)
∗ = ϴ(R1, . . . , Rn)

∗. 

The proof is complete.  

The following factorization result will play an important role in our investigation. 

Theorem (1.1.24) [1]: Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a row contraction. Then 

 

I − ϴTϴT
∗ =KTKT

∗                                                          (33) 



24 
 

 

where ϴT is the characteristic function of T and KT is the corresponding Poisson kernel. 

 

Proof: Denoting  �̌� := [IF2(Hn )⊗T1, . . . , IF2(Hn )⊗Tn]and �̌� := [R1 ⊗ Iℋ, . . . ,Rn⊗ Iℋ], the 

characteristic function of T has the representation 

 ϴT (R1, . . . ,Rn) = SOT- lim
𝑟→1

[−�̌� + ∆�̌�(IF2(Hn )⊗ℋ − r�̌��̌�
∗)
−1
𝑟�̌�∆�̌�∗] (34) 

Define the operators 

A := �̌�∗B :=∆�̌�∗, C := ∆�̌�∗ , D := −�̌�, and Z := r�̌�, 0 < r < 1, . 

and notice that 

(
𝐴 𝐵
𝐶 𝐷

) = (
�̌�∗ ∆�̌�∗

∆�̌� −�̌�
) 

 

is a unitary operator. Therefore, 

 

AA∗ + BB∗ = I , CC∗ + DD∗ = I, and AC∗+ BD∗ = 0.                     (35) 

Define 

(Z) := D + C(I −  ZA)−1ZB 

 

and notice that using relation (35), we have 

I − (Z)(Z)∗= I − DD∗ − C(I −  ZA)−1ZBD∗− DB∗Z∗(I −  A∗Z∗)−1C∗ 
− C(I −  ZA)−1ZB B∗Z∗(I −  A∗Z∗)−1C∗ 
 

= CC∗ + C(I −  ZA)−1ZAC∗ + CA∗Z∗(I −  A∗Z∗)−1C∗ 
− (I −  ZA)−1ZZ∗(I −  A∗Z∗)−1C∗ 
+ C(I −  ZA)−1ZAA∗Z∗(I −  A∗Z∗)−1C∗ 
 

= C(I −  ZA)−1 [(I − ZA)(I − A∗Z∗) + ZA(I − A∗Z∗) 
+(I − ZA)A∗Z∗− ZZ∗ + ZAA∗Z∗](I −  A∗Z∗)−1C∗ 
 

= C(I −  ZA)−1 (I − ZZ∗)(I − A∗Z∗)−1C∗. 
Therefore, 

 

                     I − (Z)(Z)∗ = C(I −  ZA)−1 (I − ZZ∗)(I −  A∗Z∗)−1C∗∗.                 (36) 

 

Therefore, according to our notations, for any r ∈ (0, 1), the defect operator 

 

I −  ϴT (𝑟R1, . . . ,rRn) ϴT(rR1, . . . , rRn) 
∗ 

 

is equal to the product 

∆�̌� (I − rR ̌Ť∗)−1(I − r2R ̌Ř∗)(I − rT ̌Ř∗)−1∆�̌� 

 

= (I ⊗ ∆T )(I − r∑ Ri⊗Ti
∗n

i=1 )−1[(I − r2∑ RiRi
∗∗

i=1 ) ⊗ I](I − r∑ Ri
∗n

i=1 ⊗Ti)
−1(𝐼 ⊗ ∆𝑇) 

  

=(∑ ∑ 𝑟⎸𝛾⎸𝑅𝛾∆𝑇𝑇�̌�
∗)[[(I − r2∑ RiRi

∗n
i=1 ) ⊗ I]](∑ ∑ 𝑟⎸𝛽⎸𝑅𝛽

∗ ⊗𝑇�̌�∆𝑇⎸𝛽⎸=𝑝
∞
𝑝=0 )⎸𝛾⎸=𝑘

∞
𝑘=0  

 

=∑ ∑ 𝑟⎸𝛾⎸+⎸𝛽⎸𝑅𝛾⎸𝛽⎸=𝑝
∞
𝑘,𝑝=0⎸𝛾⎸=𝑘, (I − r2∑ RiRi

∗n
i=1 )𝑅𝛽

∗ ⊗∆𝑇𝑇�̌�
∗𝑇�̃�∆𝑇 

 

Now, for every 𝛼,∈ 𝕗n
+ , h ∈ 𝒟T , k ∈ 𝒟T , we have 

([I −  ϴT (𝑟R1, . . . ,rRn) ϴT(rR1, . . . , rRn) 
∗](eα⊗h), eω⊗k) 
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=∑ ∑ 〈𝑟⎸𝛾⎸+⎸𝛽⎸𝑅𝛾(I − r
2∑ RiRi

∗n
i=1 )𝑅𝛽

∗𝑒𝛼 , 𝑒𝜔〉⎸𝛽⎸≤⎸𝛼⎸𝛾∈𝕗n
+,⎸𝛾⎸≤⎸𝜔⎸ 〈∆𝑇𝑇�̌�

∗𝑇�̃�∆𝑇ℎ, 𝑘〉 

 

Using Lemma (1.1.23), we have 

SOT- lim
𝑟→1

ϴT(rR1, . . . , rRn) 
∗= ϴT(rR1, . . . , rRn) 

∗ 

 

Therefore, the above computations imply that 

〈𝐼 − ϴT (R1, . . . , Rn)ϴT(R1, . . . , Rn)
∗(eα⊗h), eω⊗k〉 

                         

=∑ ∑ 〈𝑅𝛾𝑅𝕔𝑅𝛽
∗𝑒𝛼 , 𝑒𝜔〉⎸𝛽⎸≤⎸𝛼𝛾∈𝕗n

+,⎸𝛾⎸≤⎸𝜔⎸ 〈∆𝑇𝑇�̌�
∗𝑇�̃�∆𝑇ℎ, 𝑘〉 

 

=∑ 〈𝑅𝛾(1), 𝑒𝜔〉〈∆𝑇𝑇�̌�
∗𝑇�̃�∆𝑇ℎ, 𝑘〉𝛾∈𝕗n

+,⎸𝛾⎸≤⎸𝜔  

 

=〈∆𝑇𝑇𝜔
∗𝑇𝛼∆𝑇ℎ, 𝑘〉  

 

Here, we used the fact that 𝑅𝕔𝑅𝛽
∗𝑒𝛼 ≠0 if and only if 𝛽= �̃� (recall that �̃�  is the reverse of  ), and that 

R(1) =  �̃� . On the other hand, using the definition of the Poisson kernel associated with a row 

contraction, we deduce that KT
∗ (eα⊗h) = Tα∆T 

 and 

〈𝐾𝑇𝐾𝑇
∗(eα⊗h), eω⊗k〉 = 〈𝐾𝑇𝑇𝛼∆𝑇ℎ, eω⊗k〉 

 

                                                                          =(∑ 𝑒𝛾⊗∆𝑇𝑇�̌�
∗𝑇𝛾∆𝑇ℎ, eω⊗k𝛾∈𝕗n

+ ) 

            

                                                   =(∆𝑇𝑇𝜔
∗𝑇𝛼∆𝑇ℎ, eω⊗ k) 

for any h, k ∈ 𝒟T and 𝛼, 𝜔 ∈ 𝕗n
+ . Summing up the above computations, we deduce that 

𝐼 − ϴT (R1, . . . , Rn)ϴT(R1, . . . , Rn)
∗= 𝐾𝑇𝐾𝑇

∗ , 

which completes the proof.  

We recall that the spectral radius of an n-tuple of operators X := [X1, . . . ,Xn] is definedby 

r(X) := lim
𝑘→∞

∥ ∑ 𝑋𝛼𝑋𝛼
∗ ∥⎸𝛼⎸

1/2𝑘
 

A closer look at the proof of Theorem (1.1.24) reveals the following factorization result. We  should 

add that the operator I − �̌�𝑇 ∗̌ is invertible because r(X) < 1. 

Corollary (1.1.25) [1]: Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a row contraction and let ϴT be its 

characteristic function. If X := [X1, . . . ,Xn], Xi ∈ B(K), is a row contraction with spectral radius r(X) 

< 1, then Ik⊗𝒟T− ϴT (X1, . . . , Xn)ϴT(X1, . . . , Xn)
∗ = ∆T̃(I − X ̂T

∗̂)
−1
(I − X ̂X∗̂)(I − T ̂X∗)̂−1∆T̃ 

 

where X ̂:= [X1⊗ Iℋ , . . . , Xn⊗ Iℋ] and the other notations are from the proof of Theorem (1.1.24). 

Let  be the complex free semi group algebra generated by the free semi group 𝕗n
+with generators 

g1, . . . , gn and neutral element g0. Any n-tuple T1, . . . , Tnof bounded operators on a Hilbert space ℋ 

gives rise to a Hilbert (left) module over 𝕔𝕗n
+in the natural way 

 

f · h := f(T1, . . . , Tn)h, f ∈ 𝕗n
+, h ∈ ℋ. 

 

We say that ℋ is a contractive 𝕔𝕗n
+-module if T := [T1, . . . , Tn] is a row contraction, which is equivalent 

to 

 

∥ g1h1 +⋯+ gnhn ∥
2≤ ∥ h1 ∥

2+⋯+∥ hn ∥
2, h1, . . . , hn∈ ℋ. 

 

We say that ℋ is of finite rank if rank (ℋ) := rank ∆T < ∞. The curvature invariant and Euler 

characteristic associated with an arbitrary row contraction T (or the Hilbert module ℋ associated with 

T) were introduced and studied in [32] and [15]. We recall that 
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curv (T) = lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[𝐼−𝛷𝑇
𝑚(𝐼)]

1+𝑛+⋯+𝑛𝑚−1
 

 

and 

 

(T)= lim
𝑚→∞

𝑟𝑎𝑛𝑘[𝐼−𝛷𝑇
𝑚(𝐼)]

1+𝑛+⋯+𝑛𝑚−1 
, 

where ΦT is the completely positive map associated with T, i.e., 

 

ΦT(X) :=∑ 𝑇𝑖𝑋𝑇𝑖
∗𝑛

𝑖=1  

 

Using Theorem (1.1.24) and some results from [32], we can show that the curvature and the Euler 

characteristic of a row contraction T can be expressed only in terms of the standard characteristic 

function ϴT. 

Theorem (1.1.26) [1]: Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a row contraction with rank ∆T < ∞, and 

let curv (T) and 𝜒(T) denote its curvature and Euler characteristic, respectively. Then 

 

curv (T) = rank∆T − lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[𝛳𝑇𝛳𝑇
∗ (𝑃𝑚⊗𝐼)]

𝑛𝑚
 

and 

(T) = lim
𝑚→∞

𝑟𝑎𝑛𝑘[𝐼−𝛳𝑇𝛳𝑇
∗ (𝑃≤𝑚⊗𝐼)]

1+𝑛+⋯+𝑛𝑚−1
 

where Pm (resp. 𝑃≤𝑚) is the orthogonal projection of the full Fock space  

F2(Hn)onto the subspace of all homogeneous polynomials of degree m (resp. polynomials of degree 

≤ m). 

Proof : According to Theorem (2.3) and Corollary 2.7 from [32], we have 

curv (T) = lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[𝐾𝑇𝐾𝑇
∗(𝑃𝑚⊗𝐼)]

𝑛𝑚
 . 

Using the factorization result of Theorem (1.1.24), the first result follows. 

Now, according to Theorem (4.1 )of [32], we have 

                                       (T) = lim
𝑚→∞

𝑟𝑎𝑛𝑘[𝐾𝑇
∗(𝑃≤𝑚⊗𝐼)𝐾𝑇]

1+𝑛+⋯+𝑛𝑚−1
                                         (37)  

 

Since 𝐾𝑇
∗(𝑃≤𝑚⊗ 𝐼)has finite rank, we have rank [(𝐾𝑇

∗(𝑃≤𝑚⊗ 𝐼)KT ] = rank [𝐾𝑇
∗(𝑃≤𝑚⊗ 𝐼)]. 

 

On the other hand, since KT  is one-to-one on the range of 𝐾𝑇
∗(𝑃≤𝑚⊗ 𝐼) ,we also have rank 

[𝐾𝑇
∗(𝑃≤𝑚⊗ 𝐼)] = rank [KT𝐾𝑇

∗(𝑃≤𝑚⊗ 𝐼)] 
Hence, using relation (37) and Theorem (1.1.24), we complete the proof. a constrained characteristic 

function is associated with any constrained row contraction. For pure constrained row contractions, 

we show that this characteristic function is a complete unitary invariant and provide a model in terms 

of it. We also show that Arveson’s curvature invariant and Euler characteristic asssociated with a 

Hilbert module over C[z1, . . . , zn] generated by a commuting row contraction T can be expressed 

only in terms of the constrained characteristic function of T. 

Let J be a WOT-closed two-sided ideal of the non commutative analytic Toeplitz algebra Fn
∞ 

generated by a family of polynomials PJ . We define the constrained characteristic function associated 

with a J-constrained row contraction T := [T1, . . . , Tn], Ti ∈ B(ℋ), to be the multi-analytic operator 

(with respect to the constrained shifts B1, . . . ,Bn) 

 

ΘJ,T (W1, . . . ,Wn) : 𝒩J ⊗ 𝒟T∗ → 𝒩J ⊗ 𝒟T 

 

defined by the formal Fourier representation 

−I𝒩J
 ⊗ T + (I𝒩J

 ⊗ ∆T)(I𝒩J⊗ℋ − ∑ WiTi
∗)n

i=1
−1
[W1⊗ Iℋ , … ,Wn⊗ Iℋ] (I𝒩J

 ⊗ ∆T∗) 
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Taking into account that 𝒩J is a co-invariant subspace under R1, . . . ,Rn , we can see that ΘJ,T is the 

maximal J-constrained piece of the standard characteristic function ΘT of the row contraction T. More 

precisely, we have 

 

ΘT(R1, . . . , Rn)
∗(𝒩J ⊗ 𝒟T) ⊆ 𝒩J ⊗ 𝒟T∗ and 

P𝒩J ⊗ 𝒟T ΘT (R1, . . . ,Rn)| 𝒩J ⊗ 𝒟T∗ = ΘJ,T (W1, . . . ,Wn)                        (38) 

We remark that the above definition of the constrained characteristic function makes sense (and has 

the same properties) when J is an arbitrary WOT-closed two-sided ideal o f Fn
∞ and T := [T1, . . . , Tn] 

is an arbitrary c.n.c. J-constrained row contraction. 

Theorem( 1.1.27[1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of Fn

∞ 

 generated by a family of polynomials P J . Let T := [T1, . . . , Tn]], Ti ∈ B(H), be a J-constrained row 

contraction. 

Then 

 

                                                        I𝒩J⊗𝒟𝑇 − ΘJ,TΘJ,T
∗  =KJ,TKJ,T

∗                                     (39)        

 

where ΘJ,T is the constrained characteristic function of T and KJ,T is the corresponding constrained 

Poisson kernel. 

Proof: The constrained Poisson kernel associated with T is KJ,T: ℋ → 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅   defined 

by 

                                                 KJ,T:= (P𝒩J
⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅) KT  ,                                        (40) 

where KT   is the standard Poisson kernel of T. According to the proof of Theorem (1.1.12) 

range KT ⊆𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅  . Using Theorem (1.1.24) and taking the compression of relation (33) to the 

subspace 𝒩J ⊗ 𝒟𝑇 ⊂ F
2(Hn )⊗ 𝒟𝑇 , we obtain 

I𝒩J⊗𝒟𝑇 − P𝒩J ⊗ 𝒟T  ΘT (R1, . . . , Rn) ΘT(R1, . . . , Rn)
∗(𝒩J ⊗ 𝒟T) ⎸𝒩J ⊗ 𝒟T = P𝒩J ⊗ 𝒟T  KTKT

∗  |𝒩J⊗

𝒟𝑇  . 
Taking into account relations (38), (40), and that Wi

∗= Ri
∗ |𝒩J , i = 1, . . . , n, we infer that 

 

I𝒩J⊗𝒟𝑇 − ΘJ,T (W1, . . . ,Wn)  ΘJ,T(W1, . . . ,Wn)
∗= KJ,TKJ,T

∗  . 

 

As in the proof of Theorem( 1.1.27), one can use Corollary (1.1.25) to obtain the following 

constrained version of it. 

Corollary (1.1.28) [1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of Fn

∞ 

 generated by a family of polynomials P J . Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a J-constrained row 

contraction. If X := [X1, . . . ,Xn], Xi ∈ B(K), is a J-constrained row contraction with spectral radius 

r(X) < 1, then 

Ik⊗𝒟𝑇− ΘJ,T (X1, . . . ,Xn)  ΘJ,T(X1, . . . , Xn)
∗= ∆T̃(I − X ̂T

∗̂)
−1
(I − X ̂X∗̂)(I − T ̂X∗)̂−1∆T̃ 

 

where X ̂:= [X1⊗ Iℋ , . . . , Xn⊗ Iℋ] and the other notations are from the proof of Theorem (1.1.24). 

Now we present a model for pure constrained row contractions in terms of characteristic functions. 

Theorem (1.1.29) [1]:Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of  Fn

∞ and T := [T1, . . . , Tn] be 

a pure J-constrained row contraction. Then the constrained characteristic function ΘJ,T ∈ W(W1, . . . 

,Wn)⊗̅̅̅ B(𝒟𝑇∗, 𝒟𝑇 ) is a partial isometry and T is unitarly equivalent to the row contraction 

 

                          PℍJ,T(B1 ⊗ I𝒟𝑇 )| ℍJ,T , . . . , PℍJ,T(Bn ⊗ I𝒟𝑇 )| ℍJ,T                           (41), 

 

where PℍJ,T is the orthogonal projection of 𝒩J ⊗ 𝒟𝑇 on the Hilbert space 
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ℍJ,T:= (𝒩J ⊗ 𝒟𝑇) ⊖ ΘJ,T(𝒩J ⊗ 𝒟𝑇∗). 

 

Proof :  According to Theorem (1.1.21), the constrained Poisson kernel KJ,T: ℋ → 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ is an 

isometry, KJ,Tℋis a co-invariant subspace under Bi ⊗ I ∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅, i = 1, . . . , n, and 

   Ti = KJ,T
∗ (Bi⊗ I∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅) KJ,T, i = 1, . . . , n.                                             (42) 

 

Consequently, KJ,TKJ,T
∗ is the orthogonal projection of 𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ onto KJ,Tℋ. According to Theorem( 

1.1.27), relation (39) shows that KJ,TKJ,T
∗  and ΘJ,TΘJ,T

∗  , are mutually orthogonal projections such that 

 

KJ,TKJ,T
∗ +ΘJ,TΘJ,T

∗ = I𝒩J ⊗ ∆𝑇ℋ̅̅ ̅̅ ̅̅ ̅ . 

Therefore, 

 

KJ,Tℋ= (𝒩J ⊗ 𝒟𝑇) ⊖ ΘJ,T(𝒩J ⊗ 𝒟𝑇∗) , 

 

Now, since  is KJ,T an isometry, we identify ℋ with ℍJ,T:= KJ,Tℋand, using (42), we deduce that T is 

unitarily equivalent to the row contraction given by (41). This completes  the proof. _ 

Let 𝛷 ∈ W(W1, . . . ,Wn)⊗̅̅̅B(𝒦1, 𝒦2) and Φ′ ∈ W(W1, . . . ,Wn)⊗̅̅̅B(𝒦1
′, 𝒦2

′) be two multianalytic 

operators with respect to B1, . . . ,Bn. We say that 𝛷 and Φ′oincide if there are two unitary multi-

analytic operators Uj : 𝒩J⊗ 𝒦j → 𝒩J⊗ 𝒦j
′ such that the diagram 

𝒩J⊗ 𝒦j  → 𝒩J⊗ 𝒦j 

 

𝒩J⊗ 𝒦j
′ →𝒩J⊗ 𝒦j

′  

is commutative, i.e., Φ′U1 =𝛷U2. Since 

 

Uj(Bi ⊗ I𝒦1) =  (Bi ⊗ I𝒦1′)Uj, i = 1, . . . , n, 

 

And Uj are unitary operators, we also deduce that 

Uj(Bi
∗⊗ I𝒦1)= (Bi

∗⊗ I𝒦1′)Uj, i = 1, . . . , n. 

Taking into account that C∗(B1, . . . ,Bn) is irreducible (see Theorem (1.1.3)), we conclude that 

Uj= I𝒩J
 ⊗ 𝒯j , j = 1, 2, 

for some unitary operators  𝒯j  ∈ B(𝒦j , 𝒦j
′  ). 

The next result shows that the constrained characteristic function is a complete unitary invariant for 

pure constrained row contractions. 

Theorem (1.1.30) [1]: Let J ≠ Fn
∞ be a WOT-closed two-sided ideal of Fn

∞ 

 And  Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), and T′ := [T1
′ , . . . , Tn

′ ], Ti
′ ∈ B(ℋ′), be two J-constrained 

pure row contractions .Then T and T′ are unitarily equivalent if and only if their constrained 

characteristic functions ΘJ,Tand ΘJ,T′  coincide. 

 

Proof : Assume that T and T′ are unitarily equivalent and let U : H → H′ be a unitary operator such 

that Ti  = U∗Ti
′Ufor any i = 1, . . . , n. Simple computations reveal that 

 

U∆T = ∆T′ U and (⊕i=1
n U)∆T∗ = ∆T′∗ (⊕i=1

n U) 
 

Define the unitary operators 𝒯and 𝒯 ′ by setting 

 

:= U|𝒟T : 𝒟T→ 𝒟T′  and 𝒯 ′ := (⊕i=1
n U)𝒟T∗ : 𝒟T∗→ 𝒟T′∗ . 

 

Taking into account the definition of the constrained characteristic function, it is easy to see that 
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(I𝒩J
 ⊗𝒯) ΘJ,T= ΘJ,T′ (I𝒩J

 ⊗𝒯′). 

Conversely, assume that the characteristic functions of T and T′ coincide. According to the remarks 

preceding the theorem, there exist unitary operators 𝒯: 𝒟T→ 𝒟T′  and 𝒯∗ :𝒟T∗→ 𝒟T′∗  such that the 

following diagram 

′ 

is commutative, i.e., 

 

                                      (I𝒩J
 ⊗𝒯) ΘJ,T= ΘJ,T′ (I𝒩J

 ⊗𝒯∗)                                            (43) 

 

Hence, we deduce that 

𝒯 := (I𝒩J
 ⊗𝒯)| ℍJ,T: ℍJ,T→ ℍJ,T′  

is a unitary operator, where ℍJ,Tand ℍJ,T′  are the model spaces for T and T′ , respectively(see 

Theorem (1.1.29)). Since   
 

(𝐵𝑖
∗⊗ 𝐼𝒟T)(I𝒩J

 ⊗𝒯*)=(I𝒩J
 ⊗𝒯*)(𝐵𝑖

∗⊗ 𝐼𝒟
T′ 

), i = 1, . . . , n, 

and ℍJ,T (resp. ℍJ,T′ is a co-invariant subspace under Bi⊗I𝒟T (resp. Bi⊗I𝒟
T′ 

 ), i = 1, . . . , n, 

we deduce that 

[(𝐵𝑖
∗⊗ 𝐼𝒟T)| ℍJ,T] Γ∗ = Γ∗(𝐵𝑖

∗⊗ 𝐼𝒟
T′ 

 )|ℍJ,T′  , i = 1, . . . , n. 

Hence, we obtain 

[PℍJ,T (Bi⊗I𝒟T) |ℍJ,T=[Pℍ
J,T′ 

 (Bi⊗I𝒟
T′ 
)|ℍJ,T′ ] , i = 1, . . . , n. 

Now, using Theorem (1.1.29), we conclude that T and T′ are unitarily equivalent. The proof is  

complete. _ 

Theorem (1.1.31) [1]: Let J be a WOT-closed two-sided ideal of Fn
∞ such that 1 ∈ 𝒩J and 

condition(25) is satisfied. If 𝓜⊆ 𝒩J is an invariant subspace under B1, . . . ,Bn, and T := [T1, . . . , 

Tn], Ti:= Pℳ⊥Bi|ℳ
⊥, i = 1, . . . , n, 

then 

𝓜= ΘJ,T(𝒩J ⊗ 𝒟𝑇∗), 

where ΘJ,Tis the constrained characteristic function of T. 

Proof:  According to Corollary (1.1.22), T is a pure J-constrained row contraction with rank ∆T =1. 

Therefore, we can identify the subspace 𝒟T with ℂ. Hence, and due to Theorem (1.1.29), we have 

ℍJ,T= 𝒩J ⊖ ΘJ,T(𝒩J ⊗ 𝒟𝑇∗) 

and T is unitarily equivalent to 

 

[PℍJ,TB1|ℍJ,T, . . . , PℍJ,TBn|ℍJ,T]. 

 

Using again Corollary (1.1.22), we deduce that ℍJ,T=ℳ⊥ and therefore 𝓜= ΘJ,T(𝒩J ⊗ 𝒟𝑇∗), 

This completes the proof. _ 

Theorem (1.1.32) [1]:Let T := [T1, . . . , Tn], Ti ∈ B(ℋ), be a commutative row contraction with rank 

∆T< ∞, and let K(T) and 𝜒(T) denote Arveson’s curvature and Euler characteristic, respectively. Then 

 

K(T) =⨜
𝜕𝔹n

lim
𝑟→1

𝑡𝑟𝑎𝑐𝑒[𝐼 −ΘJc ,T(r𝜉)ΘJc ,T(rξ)
∗]d𝜎(𝜉) 

  

= rank ∆T − (n − 1)! lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[ΘJc ,TΘJc ,T
∗ (Qm⊗I𝒟T )

𝑛𝑚
 

 

where Qm is the projection of H2 onto the subspace of homogeneous polynomials of degree m, and 

 

(T) = n! lim
𝑚→∞

𝑟𝑎𝑛𝑘[(I−ΘJc ,TΘJc ,T
∗ (Q≤m⊗I𝒟T )

𝑚𝑛
, 
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where Q≤mis the projection of H2 onto the subspace of all polynomials of degree ≤ m. 

Proof: Using the factorization result of Corollary (1.1.28) in our particular case, we obtain 

I −ΘJc ,T(z)ΘJc ,T(z)
∗ = (1 − |z|2)∆T(I − z1T1

∗− . . . − znTn
∗)−1(I − z1̅T1 −⋯− zn̅Tn)

−1∆T for any z 

∈ 𝔹n. 

The first formula follows from the definition of the curvature [5] and the above-mentioned 

factorization for the constrained characteristic function of T. and Corollary (2.8): from [32], we have 

 

K(T) = (n − 1)! lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[(Pm⊗I)KTKT
∗ (Pm⊗I)]

𝑚𝑛−1
,m→∞ 

 

where KT is the Poisson kernel of T and Pm is the orthogonal projection of  

F2(Hn ) onto the subspace of all homogeneous polynomials of degree m. Since T is a commutative 

row contraction, i.e., Jc-constrained, we have range KT ⊂Fs
2⊗𝒟T and the constrained Poisson kernel 

satisfies the equation KJc,T = (PFs2⊗ I) KT, where  Fs
2is the symmetric Fock space. 

Using the standard properties for the trace and the above relation, we deduce that 

                             K(T) = (n − 1)! lim
𝑚→∞

𝑡𝑟𝑎𝑐𝑒[KJc ,TKJc ,T
∗ (Qm⊗I )]

𝑚𝑛−1
                               (44)  

 

where Qm := PFs2Pm⎸Fs
2 is the projection of  Fs

2onto the subspace of homogeneous polynomials of 

degree m. According to Theorem (1.1.27), we have 

 

I − ΘJc ,TΘJc ,T
∗ = KJc ,TKJc ,T

∗                                                (45) 

. 

Taking onto account relations (44) and (45), we deduce the second formula for the curvarure. Here, 

of course, we used Arveson’s identification of the symmetric Fock space Fs
2 with his space H2. 

Arveson [5] showed that his Euler characteristic satisfies the equation 

(T) = n! lim
𝑚→∞

𝑟𝑎𝑛𝑘[I−ΦT
m(1)]

𝑚𝑛
 

where ΦT is the completely positive map associated with T. in [32] that 

                             (T) = n! lim
𝑚→∞

𝑟𝑎𝑛𝑘[KT
∗ (P≤m⊗I)KT]

𝑚𝑛
                                              (46)  

 

where P≤mis the orthogonal projection of F2(Hn ) on the subspace of all polynomials of degree ≤ m. 

Using again that range KT ⊂Fs
2⊗𝒟T  and the constrained Poisson kernel satisfies the equation KJc,T 

= (PFs2⊗ I) KT, we deduce that rank [KT
∗ (P≤m⊗ I)KT] = rank [KT

∗  (PFs2⊗ I)(P≤m⊗ I)(PFs2 ⊗  I) KT] 

 

= rank[KJc ,T
∗ (Q≤m⊗ I )KJc ,T]  

= rank[KJc ,T
∗ (Q≤m⊗ I )]  

=rank[KJc ,YKJc ,T
∗ (Q≤m⊗ I )] 

 

where Q≤m is the projection of Fs
2 onto the subspace of all polynomials of degree ≤ m. The last two 

equalities hold since the operatorKJc ,T
∗ (Q≤m⊗ I )  

has finite rank and KJc ,Tis oneto-one on the range of. KJc ,T
∗ (Q≤m⊗ I )Now, using relation (46), the 

above equalities, and the factorization (45), we obtain the last formula of the theorem. The proof is 

complete. _ 

we provide a Sarason [36] type commutant lifting theorem for pure constrained 

row contractions and obtain a Nevanlinna-Pick [18] interpolation result in our setting. Let [T1. . . , 

Tn], Ti∈ B(ℋ), be a pure row contraction, and let J be a WOT-closedtwo-sided ideal of Fn
∞such that 

                               (T1. . . , Tn) = 0 for any (S1. . . , Sn) ∈ J,                                     (47) 
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where 𝜑(T1. . . , Tn) is defined using the Fn
∞ -functional calculus for row contractions. any pure 

constrained row contraction is unitarily equivalent to the compression of [B1 ⊗ Ik, . . . ,Bn ⊗ Ik] to 

a co-invariant subspace 𝜀 under each operatorBi ⊗ Ik, i = 1, . . . , n. Therefore, we have 

Ti = Pε(Bi ⊗ Ik)|𝜺, i = 1, . . . , n. 

The following result is a commutant lifting theorem for pure constrained row contractions. 

Theorem(1.1.33) [1]: Let J ≠ Fn
∞be a WOT-closed two-sided ideal of the noncommutative analytic 

Toeplitz algebra Fn
∞ and let [B1, . . . ,Bn] and [W1, . . . ,Wn] be the corresponding constrained shifts 

acting on 𝒩J . For each j = 1, 2, let Kj be a Hilbert space and εj ⊆ 𝒩J ⊗ Kj be a co-invariant subspace 

under each operator Bi⊗ Ikj , i = 1, . . . , n. If X : ε1 → ε2 is a bounded operator such that 

       X[Pε1 (Bi⊗ Ik1)| ε1 ] = [Pε2 (Bi⊗ Ik2)]| ε2X, i = 1, . . . , n,                         (48) 

then there exists 

G(W1, . . . ,Wn) ∈ W(W1, . . . ,Wn)⊗̅̅̅B(k1,k2) 

such that G(W1, . . . , Wn)
∗ε2 ⊆ ε1, 

G(W1, . . . ,Wn)
∗| ε2 = X∗, and ∥G(W1, . . . ,Wn)∥ = ∥X ∥ . 

In particular, if  εj :=G ⊗Kj , where G is a co-invariant subspace under each operator Bi and Wi, i = 

1, . . . , n, then the above implication becomes an equivalence. 

Proof: According to Lemma (1.1.1), the subspace 𝒩J ⊗ Kj is invariant under each operator Si
∗ ⊗ I Kj 

, i = 1, . . . , n, and 

(Si
∗ ⊗ I Kj)| 𝒩J ⊗ Kj = Bi

∗ ⊗ I Kj, i = 1, . . . , n.*9 

Since εj ⊆ 𝒩J ⊗ Kjis invariant under Bi
∗ ⊗ I Kjit is also invariant under Si

∗ ⊗ I Kj and 

(Si
∗ ⊗ I Kj)|εj = (Bi

∗ ⊗ I Kj)|εj , i = 1, . . . , n. 

Hence, relation (48) implies 

                     XPε1 (Si ⊗ I K1)|ε1 = Pε2 (Si ⊗ I K2)|ε2X, i = 1, . . . , n.                     (49) 

For each j = 1, 2, the n-tuple [S1 ⊗ I Kj , . . . , Sn ⊗ I Kj]is an isometric dilation of the rowcontraction 

[Pεj (S1 ⊗ I Kj)|εj  , . . . , Pεj (Sn ⊗ I Kj)|εj] 

Applying the noncommutative commutant lifting theorem ([21], [24]), we find a multi-analytic 

operator 𝛷(R1, . . . ,Rn) ∈ Rn
∞ ⊗̅̅̅B(K1,K2) such that 𝛷(R1, . . . , Rn)

∗ε2 ⊆ ε1, 

                        Φ(R1, . . . , Rn)
∗|ε2 = X∗and ∥(R1, . . . , Rn)∥ = ∥ X ∥.                         (50) 

Let G(W1, . . . ,Wn) := P𝒩J⊗K2𝛷(R1, . . . , Rn)| 𝒩J⊗K1. According to the remarks preceding Theorem 

(1.1.2), we have 

G(W1, . . . ,Wn) ∈ [P𝒩J
Rn
∞ |𝒩J ] ⊗̅̅̅B(K1,K2)  = W(W1, . . . ,Wn) ⊗̅̅̅B(K1,K2). 

Since Φ(R1, . . . , Rn)
∗ (𝒩J⊗K2) ⊆ 𝒩J⊗K1and εj ⊆ 𝒩J⊗K2 , relation(50) implies 

G(W1, . . . ,Wn)
∗ε2 ⊆ε1and G(W1, . . . ,Wn)

∗|ε2 =X∗. 
Hence, and using again (50), we have 

∥X∥ ≤ ∥G(W1, . . . ,Wn)∥ ≤ ∥(R1, . . . , Rn)∥ = ∥X∥. 
Therefore, ∥G(W1, . . . ,Wn)∥ = ∥X∥. 
Now, let us prove the last part of the theorem. The implication “ =⇒ ” is clear from the first part of 

the theorem. For the converse, let X = PG⊗K2𝛹(W1, . . . ,Wn)|G ⊗ K1, where 𝛹(W1, . . . ,Wn) ∈ 

W(W1, . . . ,Wn) ⊗̅̅̅B(K1,K2) Since BiWj = WjBi for i, j = 1, . . . , n, we have 

(Bi
∗ ⊗ IK1)𝛹(W1, . . . ,Wn)

∗ = Ψ(W1, . . . ,Wn)
∗(Bi

∗ ⊗ IK2), i = 1, . . . , n. 

Now, taking into account that G is an invariant subspace under each of the operators Bi
∗ and Wi

∗ , i = 

1, . . . , n, we deduce (48). The proof is complete.  

Corollary( 1.1.34) [1]: Let J ≠ 𝐹𝑛
∞ be a WOT-closed two-sided ideal of the noncommutative analytic 

Toeplitz algebra 𝐹𝑛
∞ and let B1, . . . , Bnand W1, . . . , Wnbe the corresponding constrained shifts acting 

on 𝒩J . If K is a Hilbert space and G ⊆ 𝒩Jis an invariant subspace under each operator Bi
∗and Wi

∗ , i 

= 1, . . . , n, then {[PGW(B1, . . . , Bn)|G] ⊗ IK}′ = [PGW(W1, . . . ,Wn)|G]⊗̅̅̅ B(K). 

We remark can be extended to the following more general setting. The proof follows exactly the same 

lines so we shall omit it. For each j = 1, 2, let be a WOT-closed two-sided ideal of 𝐹𝑛
∞and let [B1

(j)
 , . 
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. . , Bn
(j)

]be the corresponding constrained shift acting on 𝒩Jj . Let εj ⊆ 𝒩Jj ⊗ Kj be an invariant 

subspace under each operator B1
(j)∗
⊗ IKj, i = 1, . . . , n, where Kj is a Hilbert space. If X : ε1 → ε2 is 

a bounded operator such that 

XPε1 (Bi
(1)
⊗ IK1)| ε1  = Pε2 (Bi

(2)
 ⊗ IK2)| ε2X, i = 1, . . . , n, then there exists G ∈ [P𝒩J2

Rn
∞ 

|𝒩J1] ⊗̅̅̅B(K1,K2) such that 

Pε2G|ε1 = X and ∥G∥ = ∥X∥. 

Now we can obtain the following Nevanlinna-Pick interpolation result in our setting. We only sketch 

the proof which is similar to that of Theorem 2.4 from [15] but uses Theorem (1.1.33), and point out 

what is new. 

Theorem (1.1.35) [1]: Let J be a WOT-closed two-sided ideal of 𝐹𝑛
∞ and let B1, . . . ,Bn be the 

corresponding constrained shifts acting on 𝒩J . Let λ1, . . . , λk be k distinct points in the zero set 

ZJ := {𝜆 ∈ 𝔹n : f(𝜆) = 0 for any f ∈ J}, 

and let A1, . . . ,AK ∈ B(K). Then there exists (B1, . . . ,Bn) ∈ W(B1, . . . ,Bn)¯⊗B(K) such that 

 

∥(B1, . . . ,Bn)∥≤ 1 and 𝛷(λj) = Aj , j = 1, . . . , k, 

if and only if the operator matrix 

                                                         

                                                             [
Ik−AiAj

∗

1−〈λi,λj〉
]
k×k

                                                           (51) 

 

is positive semi definite. 

Proof: Let λj:= (λj1, . . . , λjn) ∈ ℂn, j = 1, . . . , k, and denote λjα := λji1λji2. . . λjimif 𝛼 = gji1gji2 . . . 

gjim ∈ 𝕗n
∞ , and  λjg0 := 1. Define 

zλj  :=∑ 𝜆𝑗𝛼̅̅ ̅̅ 𝑒𝛼α ∈ 𝕗n
+  , j = 1, 2, . . . , k. 

 

Notice that, for any f ∈ J, 𝜆 ∈ ZJ , and 𝛼, 𝛽 ∈ 𝕗n
+, we have 

 

〈[𝑆𝛼𝑓(𝑆1, … , 𝑆𝑛)𝑆𝛽](1), 𝑧𝜆〉 = λαf(𝜆)λβ = 0, 

 

which implies  𝑧𝜆∈𝒩J for any 𝜆∈ ZJ . Note also that, since Bi
∗ = Si

∗ |𝒩J for i = 1, . . . , n, we have 

Bi
∗zλj = 𝜆𝑗𝑖̅̅ ̅ zλjfor i = 1, . . . , n, and j = 1, . . . , k. 

Define the subspace 

M:= span{zλj: j = 1, . . . , k} 

and the operators Xi∈ B(M ⊗ K) by setting Xi = BmBi|M ⊗ Ik, i = 1, . . . , n. Since zλ1, . . . , zλkare 

linearly independent, we can define an operator T ∈ B(M⊗ K) by setting 

T∗(zλj⊗ h) = zλj⊗Aj
∗h 

for any h ∈ K and j = 1, . . . , k. Notice that TXi = XiT for i = 1, . . . , n. 

Since 𝓜 is a co-invariant subspace under each operator Bi, i = 1, . . . , n, we can apply Theorem 

(1.1.33) and find 𝛷(W1, . . . ,Wn) ∈ W(W1, . . . ,Wn)⊗̅̅̅B(K) such that 

 𝛷(W1, . . . ,Wn)
∗𝓜⊂𝓜, 𝛷(W1, . . . ,Wn)

∗|𝓜= T∗                       (52), 
and ∥(W1, . . . ,Wn)∥ = ∥T∥. As in [15], one can prove that (λj) = Aj , j = 1, . . . , k, if and only if (52) 

holds. Moreover, ∥(W1, . . . ,Wn)∥ ≤ 1 if and only if TT∗ ≤ Iℳ, which is equivalent to the fact that the 

operator matrix (51) is positive semi definite. This completes the proof. _ 

We should remark that in the commutative case when J = Jc (see Example (1.1.18) part (ii)), we 

recover the result obtained in [12], [29], and [12]. 

Section (1.2): Joint Similarity  
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   For B(ℋ) denote the algebra of all bounded linear operators on a Hilbert space ℋ. Two operators 

A, B ∈  B(ℋ) are called similar if there is an invertible operator S ∈ B(ℋ) such that A = S−1BS. The 

problem of characterizing the operators similar to contractions, i.e., the operators in the unit ball 

[B(ℋ)]1 ∶=  {X ∈  B(ℋ) ∶  XX
∗  ≤  I}, 

or similar to special contractions such as parts of shifts, isometries, unitaries, etc., has been considered 

by many and has generated deep results in operator theory and operator algebras. We shall mention 

some of the classical results on similarity that strongly influenced us in writing. 

    In 1947, Sz.-Nagy [50] found necessary and sufficient conditions for an operator to be similar to a 

unitary operator. In particular, an operator T is similar to an isometry if and only if there are constants 

a, b >  0 such that 

𝑎‖h‖ ≤ ‖Tnh‖ ≤ b‖h‖,                h ∈ ℋ,   n ∈ ℕ. 
The fact that the unilateral shift on the Hardy space H2(𝕋) plays the role of universal model in B(ℋ) 
was discovered by Rota [49]. Rota’s model theorem asserts that any operator with spectral radius less 

than one is similar to a contraction, or more precisely, to a part of a backward unilateral shift. This 

result was refined furthermore by Foia¸s [49] and by de Branges and Rovnyak [46], who proved that 

every strongly stable contraction is unitarily equivalent to a part of a backward unilateral shift. 

   It is well-known that if T ∈ B(ℋ) is similar to a contraction then, due to the von Neumann 

inequality [43], it is polynomially bounded, i.e., there is a constant C >  0 such that, for any 

polynomial p, 
‖p(T)‖  ≤  C‖p‖∞, 

 where ‖p‖∞ ∶= sup
|z|=1

|p(z)|.  A remarkable result obtained by Paulsen [44] shows that similarity to a 

contraction is equivalent to complete polynomial boundedness. Halmos’ famous similarity problem 

[51] asked whether any polynomially bounded operator is similar to a contraction. This long standing 

problem was answered by Pisier [56] in a remarkable where he shows that there are polynomially 

bounded operators which are not similar to contractions. For more information on similarity problems 

and completely bounded maps see Pisier [57] and Paulsen [45]. In the noncommutative multivariable 

setting, joint similarity problems to row contractions, i.e., n −tuples of operators in the unit ball 
[B(ℋ)n]1 ∶=  {(X1, . . . , Xn)  ∈ B(ℋ)

n ∶  X1 X1
∗ + …+ XnXn

∗ ≤  I}, 
were considered by Bunce [43], (see [58], [52], [53], [56]), and recently by Douglas, Foia¸s, and 

Sarkar [48]. In this setting, the universal model for the unit ball [B(ℋ)n]1 is the n −tuple (S1, . . . , Sn) 
of left creation operators on the full Fock space with n generators. 

   Let 𝔽n
+ be the unital free semigroup on n generators g1, . . . , gn and the identity g0.  The length of 

α ∈ 𝔽n
+ is defined by |α|: =  0 if α =  g0 and |α| ∶=  k if α = gi1 …gik , where i1, . . . , ik ∈  {1, . . . , n}.

 If X:=  (X1, . . . , Xn) ∈ B(ℋ)
n we denote Xα: =  Xi1 …Xik  and Xg0 ∶=  Iℋ , the identity on 

ℋ.           

In [28] (case m = 1) and [25] (case m ≥  2), we studied more general noncommutative domains 

𝐃p
m(ℋ) ∶=  {X ∶=  (X1, . . . , Xn) ∈ B(ℋ)

n ∶  (id − Φp,X)
s
(I)  ≥  0  for s =  1, . . . , m} ,  

   

where id is the identity map on B(ℋ),  

Φp,X (Y):= ∑ aαXαY Xα
∗

|α|≥1

,              Y ∈ B(ℋ), 

and p = ∑ aαXα|α|≥1  is a positive regular noncommutative polynomial, i.e., its coefficients are 

positive scalars and aα >  0 if α ∈ 𝔽n
+ with |α| =  1. We remark that if q = X1 +⋯+ Xn and m ≥

1, then 𝐃q
m(ℋ)is a starlike domain which concides with the set of all row contractions (X1, . . . , Xn)  ∈

 [B(ℋ)n]1 satisfying the positivity condition  

∑(−1)k
m

k=0

(
m
k
) ∑ Xα Xα

∗

|α|=k

≥  0. 

The elements of the domain 𝐃q
m(ℋ) can be seen as multivariable noncommutative analogues of 

Agler’s m-hypercontractions [51]. The case n =  1 was recently studied by Olofsson ([52], [53]). 
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We showed ([58], [55]) that each domain 𝐃p
m(ℋ) has a universal model (W1, . . . ,Wn) of weighted 

left creation operators acting on the full Fock space with n generators. The study of the domain 

𝐃p
m(ℋ) and the dilation theory associated with it are close related to the study of the weighted shifts 

W1, . . . ,Wn, their joint invariant subspaces, and the representations of the algebras they generate: the 

domain algebra An(𝐃p
m), the Hardy algebra Fn

∞(𝐃p
m), and the C∗ −algebra C∗(W1, . . . , Wn). 

    We consider problems of4 e31`  joint similarity to classes of n −tuples of operators in 

noncommutative domains 𝐃p
m(ℋ),m ≥  1, and noncommutative varieties 

Vp,P
m (ℋ):= {(X1, . . . , Xn) ∈ 𝐃p

m(ℋ): q(X1, . . . , Xn) = 0   for any   q ∈ P}  , 

where P is a family of noncommutative polynomials in n indeterminates.   

expanding on ([55], [57], [58]) on noncommutative Berezin transforms, we introduce a new class of 

generalized Berezin transforms which will play an important role. Given  

A:= (A1, . . . , An) ∈ B(ℋ)
n, our similarity problems to n −tuples of operators in the noncommutative 

variety Vp,P
m (ℋ) are linked to the noncommutative cone C(p, A)+ of all positive operators D ∈  B(ℋ) 

such that 

(id − Φp,A)
s
(D) ≥  0,                   s =  1, . . . , m. 

For example, (A1, . . . , An) is jointly similar to an n −tuple of operators in Vp,P
m (ℋ) if and only if there 

is an invertible operator in C(p, A)+. Under natural conditions, we show that there is a one-to-one 

correspondence between the elements of the noncommutative cone C(p, A)+ and a class of 

generalized Berezin transforms, to be introduced. 

a pure version of the above-mentioned result is established, even in a more general setting. In 

particular, when m =  1 and T:= (T1, . . . , Tn) ∈ Vp,P
1 (ℋ) is pure, i.e., Φp,T

k  (I)  →  0 strongly, as k →

 ∞, we determine the noncommutative cone C(p, T)+ by showing that all its elements have the form 

PℋΨΨ
∗|ℋ , where Ψ is a multi-analytic operator with respect to the universal n −tuple (B1, . . . , Bn) 

associated with the variety Vp,P
1 (ℋ). More precisely, Ψ ∈ Rn

∞(Vp,P
1 ) ⊗̅̅̅ B(K, K′) for some Hilbert 

spaces K and K′, where  Rn
∞(Vp,P

1 ) is the commutant of the noncommutative Hardy algebra Fn
∞(Vp,P

1 ). 

We remark that in the particular case when n =  m =  1, p =  X, P =  {0}, and Φp,T(X) ∶=  T XT
∗ 

with ‖T‖ ≤  1, the corresponding cone C(p, T)+ was studied by Douglas in [47] and by Sz.-Nagy and 

Foias [42] in connection with T −Toeplitz operators (see also [44] and [45]). 

  we provide necessary and sufficient conditions for an n −tuple A ∶= (A1, . . . , An) ∈ B(ℋ)
n to be 

jointly similar to an n-tuple of operators T:= (T1, . . . , Tn) in the noncommutative variety Vp,P
m (ℋ) or 

the distinguished sets 

{X ∈ Vp,P
m (ℋ) ∶ (id − Φp,X)

m
(I) = 0}   and   {X ∈ Vp,P

m (ℋ) ∶ (id − Φp,X)
m
(I) > 0} , 

where P is a set of noncommutative polynomials. Given (A1, . . . , An) ∈ B(ℋ)
n, we find necessary 

and sufficient conditions for the existence of an invertible operator Y:ℋ → 𝒢 such that 

Ai
∗ = Y−1[(Bi

∗⊗ Iℋ)|𝒢]Y,                    i =  1, . . . , n 

where 𝒢 ⊆ 𝒩p  ⊗ℋ is an invariant subspace under each operator Bi
∗⊗ Iℋ  and (B1, . . . , Bn) is the 

universal model associated with the noncommutative variety Vf,P
m(ℋ). In particular, we obtain an 

analogue of Foia¸s [49] and de Branges–Rovnyak [46] model theorem, for pure n −tuples of operators 

in Vf,P
m(ℋ). We also obtain the following Rota type [29] model theorem for the noncommutative 

varietyVf,P
m(ℋ). If A ∶= (A1, . . . , An) ∈ B(ℋ)

n is such that q(A1, . . . , An) =  0 for q ∈  P and 

∑(
k +m− 1
m− 1

)

∞

k=0

Φp,A
k (I) ≤ bI 

for some constant b >  0, then the above-mentioned joint similarity holds. Moreover, we prove that 

the joint spectral radius 𝑟𝑝(A1, . . . , An) < 1 if and only if (A1, . . . , An)is jointly similar to an n −tuple 

T:= (T1, . . . , Tn) ∈ Vp,P
m (ℋ) with (id − Φp,T )

m
(I) >  0, i.e., positive invertible operator. 

    We also provide necessary and sufficient conditions for an n −tuple  
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A ∶= (A1, . . . , An) ∈ B(ℋ)
n to be jointly similar to an n −tuple of operators T:= (T1, . . . , Tn) ∈

Vp,P
m (ℋ) with (id − Φp,T )

m
(I) =  0. Our noncommutative analugue of Sz.-Nagy’s similarity result 

[30] asserts that there is an invertible operator Y ∈ B(ℋ) such that Ai = Y
−1TiY, i =  1, . . . , n, if and 

only if there exist positive constants 0 <  c ≤  d such that 

cI ≤ Φp,A
k (I) ≤  dI,          k ∈ ℕ. 

In particular, we obtain a multivariable analogue of Douglas’ similarity result [47]. 

   If (A1, . . . , An) ∈ B(ℋ)
n is jointly similar to an n −tuple of operators in a radial noncommutative 

variety Vp,P
m (ℋ), where P is a set of homogeneous noncommutative polynomials, then the polynomial 

calculus g(B1, . . . , Bn) ⟼ g(A1, . . . , An) can be extended to a completely bounded map on the 

noncommutative variety algebra An(Vp,P
m ), the norm closed algebra generated by B1, . . . , Bn and the 

identity. Using Paulsen’s similarity result [44], we can prove that the converse is true if m =  1, but 

remains an open problem if m ≥  2. 
We obtain Wold type decompositions and prove the existence of triangulations of type 

(
C0 0
∗ C1

)       and        (
Cc 0
∗ Ccnc

) 

for any n −tuple of operators in the noncommutative variety Vp,P
1 (ℋ), which parallel the Sz.-Nagy–

Foia¸s[31]  triangulations for contractions. The proofs seem to be new even in the classical case n =
 1, since they don’t involve, at least explicitly, the dilation space for contractions. As consequences, 

we prove the existence of joint invariant subspaces for certain classes of operators in Vp,P
1 (ℋ).          

   We should mention that the results are presented in a more general setting when the polynomials p 

in the definition of Vp,P
m (ℋ) is replaced by positive regular free holomorphic functions. 

we introduce a class of generalized Berezin transforms which will play an important We use them to 

study the noncommutative cone 𝐶(𝑓, 𝐴)+ of all positive solutions of the operator inequalities 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝑋) ≥  0,           𝑠 =  1, . . . , 𝑚. 

First, we recall ([45], [48]) the construction of the universal model associated with the 

noncommutative domain 𝐃𝑓
𝑚(ℋ),𝑚 ≥  1. Throughout, we assume that 𝑓 ∶= ∑ 𝑎𝛼𝑋𝛼𝛼∈𝔽𝑛

+ ,      𝑎𝛼 ∈

ℂ, is a positive regular free holomorphic function in 𝑛 variables 𝑋1, . . . , 𝑋𝑛. This means  

   

(i) lim sup
𝑘→∞

(∑ |𝑎𝛼|
2

|𝛼|=𝑘 )
1/2𝑘

<  ∞,   

(ii) 𝑎𝛼 >  0 for any 𝛼 ∈ 𝔽𝑛
+, 𝑎𝑔0 = 0,    and 𝑎𝑔𝑖 > 0 for 𝑖 =  1, . . . , 𝑛.  

Given 𝑚 ∈ ℕ ∶= {1, 2, . . . }and a positive regular free holomorphic function 𝑓 as above, we define the 

noncommutative domain 𝐃𝑓
𝑚  whose representation on a Hilbert space ℋ is  

𝐃𝑓
𝑚(ℋ) ∶=  {𝑋 ≔ (𝑋1, . . . , 𝑋𝑛) ∈ 𝐵(ℋ)

𝑛: (𝑖𝑑 − Φ𝑓,𝑋)
𝑠
(𝐼)  ≥  0  for 𝑠 =  1, . . . , 𝑚} , 

where Φ𝑓,𝑋: 𝐵(ℋ)  →  𝐵(ℋ) is given by        

Φ𝑓,𝑋(𝑌):=  ∑ ∑ 𝑎𝛼𝑋𝛼𝑌 𝑋𝛼
∗

|𝛼|=𝑘

∞

𝑘=1

,              𝑌 ∈ 𝐵(ℋ), 

 

and the convergence is in the weak operator topology. 𝐃𝑓
𝑚(ℋ) can be seen as a noncommutative 

Reinhardt domain, i.e., (𝑒𝑖𝜃1  𝑋1, . . . , 𝑒
𝑖𝜃𝑛𝑋𝑛) ∈ 𝐃𝑓

𝑚(ℋ) for any (𝑋1, . . . , 𝑋𝑛) ∈ 𝐃𝑓
𝑚(ℋ) and 

𝜃1, . . . , 𝜃𝑛 ∈ ℝ. 
   Let 𝐻𝑛 be an 𝑛 −dimensional complex Hilbert space with orthonormal basis 𝑒1, . . . , 𝑒𝑛, where 𝑛 ∈
ℕ or 𝑛 =  ∞. We consider the full Fock space of 𝐻𝑛 defined by 

𝐹2(𝐻𝑛) ≔
⨁𝐻𝑛

⊕𝑘

𝑘 ≥ 0
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where 𝐻𝑛
⊕0 ∶= ℂ1 and 𝐻𝑛

⊕𝑘
 is the (Hilbert) tensor product of 𝑘 copies of 𝐻𝑛. Set 𝑒𝛼: =  𝑒𝑖1 ⊗ 𝑒𝑖2⊗

 …⊗ 𝑒𝑖𝑘 if 𝛼 = 𝑔𝑖1  𝑔𝑖2 …𝑔𝑖𝑘 ∈ 𝔽𝑛
+ and 𝑒𝑔0 ∶=  1. It is clear that {𝑒𝛼: 𝛼 ∈ 𝔽𝑛

+} is an orthonormal basis 

of 𝐹2(𝐻𝑛). 
Define the left creation operators 𝑆𝑖: 𝐹

2(𝐻𝑛) → 𝐹2(𝐻𝑛),   𝑖 =  1, . . . , 𝑛, by 𝑆𝑖𝑓 ∶=  𝑒𝑖⊗  𝑓, 𝑓 ∈
 𝐹2(𝐻𝑛). 
   Let 𝐷𝑖: 𝐹

2(𝐻𝑛) → 𝐹2(𝐻𝑛), 𝑖 =  1, . . . , 𝑛, be the diagonal operators given by 

𝐷𝑖𝑒𝛼: = √
𝑏𝛼
(𝑚)

𝑏𝑔𝑖𝛼
(𝑚)
𝑒𝛼 ,                 𝛼 ∈ 𝔽𝑛

+ 

where  

    𝑏𝑔0
(𝑚) ∶=  1   and 𝑏𝛼

(𝑚) ∶= ∑ ∑ 𝑎𝛾1 …𝑎𝛾𝑗
𝛾1…𝛾𝑗=𝛼

|𝛾1|≥1,…,|𝛾𝑗|≥1

(
𝑗 + 𝑚 − 1
𝑚 − 1

)

|𝛼|

𝑗=1

  if  𝛼 ∈ 𝔽𝑛
+,

|𝛼| ≥ 1.                                                                                                 (53) 
 

We have   

‖𝐷𝑖‖ sup
𝛼∈𝔽𝑛

+
√
𝑏𝛼
(𝑚)

𝑏𝑔𝑖𝛼
(𝑚)

≤
1

√𝑎𝑔𝑖
,          𝑖 = 1, … , 𝑛 

Define the weighted left creation operators 𝑊𝑖: 𝐹
2(𝐻𝑛)  →  𝐹

2(𝐻𝑛), 𝑖 =  1, . . . , 𝑛, associated with the 

noncommutative domain 𝐃𝑓
𝑚 by setting 𝑊𝑖: =  𝑆𝑖𝐷𝑖 , where 𝑆1, . . . , 𝑆𝑛 are the left creation operators 

on the full Fock space 𝐹2(𝐻𝑛). Note that 

𝑊𝑖𝑒𝛼: =
√𝑏𝛼

(𝑚)

√𝑏𝑔𝑖𝛼
(𝑚)

𝑒𝑔𝑖𝛼,                 𝛼 ∈ 𝔽𝑛
+ 

One can easily see that 

                 𝑊𝛽𝑒𝛾 ≔

√𝑏𝛾
(𝑚)

√𝑏𝛽𝛾
(𝑚)
𝑒𝛽𝛾    and   𝑊𝛽

∗𝑒𝛼 ≔

{
 
 

 
 

 

√𝑏𝛾
(𝑚)

√𝑏𝛽𝛾
(𝑚)
𝑒𝛾

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

    if α = 𝛽𝛾        (54) 

 

for any 𝛼, 𝛽 ∈ 𝔽𝑛
+. According to Theorem 1.3 from [45], the weighted left creation operators 

𝑊1, . . . ,𝑊𝑛 associated with 𝐃𝑓
𝑚 have the following properties:   

 (i) ∑ ∑ 𝑎𝛽 𝑊𝛽 𝑊𝛽
∗

|𝛽|=𝑘
∞
𝑘=1 ≤  𝐼, where the convergence is in the strong operator topology; 

(ii) (𝑖𝑑 − Φ𝑓,𝑊)
𝑚
 (𝐼)  = 𝑃ℂ, where 𝑃ℂ is the orthogonal projection from 𝐹2(𝐻𝑛) onto ℂ1 ⊂ 𝐹

2(𝐻𝑛), 

and lim
𝑝→∞

Φ𝑓,𝑊
𝑝
(𝐼) =  0 in the strong operator topology. 

The 𝑛 −tuple (𝑊1, . . . , 𝑊𝑛) ∈ 𝐃𝑓
𝑚(𝐹2(𝐻𝑛)) plays the role of universal model for the noncommutative 

domain 𝐃𝑓
𝑚. The domain algebra 𝐴𝑛(𝐃𝑓

𝑚) associated with the noncommutative domain 𝐃𝑓
𝑚 is the 

norm closure of all polynomials in 𝑊1, . . . ,𝑊𝑛, and the identity, while the Hardy algebra 𝐹𝑛
∞(𝐃𝑓

𝑚) is 

the SOT-(WOT-, or 𝑤∗-) version. 

   We remark that, one can also define the weighted right creation operators 𝛬𝑖 ∶  𝐹
2(𝐻𝑛) → 𝐹2(𝐻𝑛) 

by setting 𝛬𝑖: = 𝑅𝑖𝐺𝑖 ,   𝑖 =  1, . . . , 𝑛, where 𝑅1, . . . , 𝑅𝑛 are the right creation operators on the full Fock 

space 𝐹2(𝐻𝑛) and each diagonal operator 𝐺𝑖 is defined by 

𝐺𝑖𝑒𝛼: = √
𝑏𝛼
(𝑚)

𝑏𝛼𝑔𝑖
(𝑚)
𝑒𝛼 ,     𝛼 ∈ 𝔽𝑛

+ 
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where the coefficients 𝑏𝛼
(𝑚)
, 𝛼 ∈ 𝔽𝑛

+, are given by relation (53). It turns out that (𝛬1, . . . , 𝛬𝑛) is in the 

noncommutative domain 𝐃�̃�
𝑚(𝐹2(𝐻𝑛)), where 𝑓 ∶= ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  and �̃� = 𝑔𝑖𝑘 …𝑔𝑖1  denotes the 

reverse of 𝛼 =  𝑔𝑖𝑘 …𝑔𝑖1 ∈ 𝔽𝑛
+. Moreover, 𝑊𝑖𝛬𝑗 = 𝛬𝑗𝑊𝑖 and  𝑈∗𝛬𝑖𝑈 =  𝑊𝑖 , 𝑖 =  1, . . . , 𝑛, where 

𝑈 ∈ 𝐵(𝐹2(𝐻𝑛)) 

is the unitary operator defined by equation 𝑈𝑒𝛼 ≔ 𝑒�̃� , 𝛼 ∈ 𝔽𝑛
+. Consequently, we have  

      

𝐹𝑛
∞(𝐃𝑓

𝑚)
′
= 𝑅𝑛

∞(𝐃𝑓
𝑚)       and       𝑅𝑛

∞(𝐃𝑓
𝑚)′ = 𝐹𝑛

∞(𝐃𝑓
𝑚), 

where ′ stands for the commutant and 𝑅𝑛
∞(𝐃𝑓

𝑚)is the SOT-(WOT-, or 𝑤∗-) closure of all polynomials 

in 𝛬1, . . . , 𝛬𝑛, and the identity. More on these noncommutative Hardy algebras can be found in [49], 

[55], and [68]. 

    We introduce a noncommutative Berezin kernel associated with any quadruple (𝑓,𝑚, 𝐴, 𝑅) 
satisfying the following compatibility conditions:   

 (i) 𝑓 ∶= ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  is a positive regular free holomorphic function and 𝑚 ∈ ℕ;  

(ii) 𝐴 ≔ (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛 is such that ∑ 𝑎𝛼𝐴𝛼|𝛼|≥1 𝐴𝛼

∗  is SOT-convergent;  

(iii) 𝑅 ∈ 𝐵(ℋ) is a positive operator such that       

∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅) ≤ 𝑏𝐼, 

for some constant 𝑏 >  0. 
The noncommutative Berezin kernel associated with the compatible quadruple (𝑓,𝑚, 𝐴, 𝑅) is the 

operator 𝐾𝑓,𝐴,𝑅
(𝑚)

: ℋ → 𝐹2(𝐻𝑛) ⊗ 𝑅1/2(ℋ) given by  

                         𝐾𝑓,𝐴,𝑅
(𝑚)

ℎ = ∑ √𝑏𝛼
(𝑚)
𝑒𝛼

𝛼∈𝔽𝑛
+

⊗ 𝑅
1
2𝐴𝛼

∗ ℎ,             ℎ ∈ ℋ.                            (55) 

Lemma (1.2.1)[41]: The noncommutative Berezin kernel 𝐾𝑓,𝐴,𝑅
(𝑚)

 associated with a compatible 

quadruple (𝑓,𝑚, 𝐴, 𝑅) is a bounded operator and 

𝐾𝑓,𝐴,𝑅
(𝑚)

𝐴𝑖
∗ = (𝑊𝑖

∗⊗ 𝐼ℛ)𝐾𝑓,𝐴,𝑅
(𝑚) ,            𝑖 =  1, . . . , 𝑛, 

where 𝑅 ∶= 𝑅1/2(ℋ) and (𝑊1, . . . ,𝑊𝑛) is the universal model associated with the noncommutative 

domain 𝐃𝑓
𝑚. Moreover, 

(𝐾𝑓,𝐴,𝑅
(𝑚) )

∗
𝐾𝑓,𝐴,𝑅
(𝑚)

=∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅) 

Proof. Since (𝑓,𝑚, 𝐴, 𝑅) is a compatible quadruple, 𝑅 ∈ 𝐵(ℋ) is a positive operator such that 

                                                 ∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅)  ≤ 𝑏𝐼                                    (56) 

for some constant 𝑏 >  0. Note that due to relations (53) and (55), we have 

‖𝐾𝑓,𝐴,𝑅
(𝑚) ℎ‖

2
= ∑ 𝑏𝛽

(𝑚)

𝛼∈𝔽𝑛
+

〈𝐴𝛽𝑅𝐴𝛽
∗ℎ, ℎ〉 = 〈𝑅ℎ, ℎ〉 + ∑ ∑ 〈𝑏𝛽

(𝑚)
𝐴𝛽𝑅𝐴𝛽

∗ℎ, ℎ〉

|𝛽|=𝑚

∞

𝑚=1

= 〈𝑅ℎ, ℎ〉 + ∑ ∑ 〈

(

 
 
∑(

𝑗 + 𝑚 − 1
𝑚 − 1

)

|𝛽|

𝑗=1

∑ 𝑎𝛾1 …𝑎𝛾𝑗
𝛾1…𝛾𝑗=𝛽

|𝛾1|≥1…|𝛾𝑗|≥1 )

 
 
𝐴𝛾1…𝛾𝑗𝑅𝐴𝛾1…𝛾𝑗

∗ ℎ, ℎ〉

|𝛽|=𝑚

∞

𝑚=1

= 〈𝑅ℎ, ℎ〉 + ∑ 〈(
𝑘 + 𝑚 − 1
𝑚 − 1

)Φ𝑓,𝐴
𝑘 (𝑅)ℎ, ℎ〉

∞

𝑚=1
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for any ℎ ∈ ℋ. Hence and due to relation (56), we deduce that 𝐾𝑓,𝐴,𝑅
(𝑚)

 is a well-defined bounded 

operator and         

(𝐾𝑓,𝐴,𝑅
(𝑚) )

∗
𝐾𝑓,𝐴,𝑅
(𝑚)

=∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅) 

On the other hand, due to relations (55) and (54), we have 

(𝑊𝑖
∗⊗ 𝐼ℛ)𝐾𝑓,𝐴,𝑅

(𝑚) ℎ = ∑ √𝑏𝛼
(𝑚)

𝛼∈𝔽𝑛
+

𝑊𝑖
∗𝑒𝛼⊗ 𝑅

1
2𝐴𝛼

∗ ℎ            

                              = ∑ √𝑏𝑔𝑖𝛾
(𝑚)

𝛾∈𝔽𝑛
+

𝑊𝑖
∗𝑒𝑔𝑖𝛾⊗ 𝑅

1
2𝐴𝑔𝑖𝛾

∗ ℎ 

                    = ∑ √𝑏𝛾
(𝑚)

𝛾∈𝔽𝑛
+

𝑒𝛾⊗ 𝑅
1
2𝐴𝛾

∗𝐴𝑖
∗ℎ 

                                                           = 𝐾𝑓,𝐴,𝑅
(𝑚)

𝐴𝑖
∗ℎ 

for any ℎ ∈ ℋ. Hence,   

𝐾𝑓,𝐴,𝑅
(𝑚)

𝐴𝑖
∗ = (𝑊𝑖

∗⊗ 𝐼ℛ)𝐾𝑓,𝐴,𝑅
(𝑚)

,          𝑖 =  1, . . . , 𝑛, 

and the proof is complete.         

Let 𝑓:=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic function and let 𝑊1, . . . ,𝑊𝑛  and 

𝛬1, . . . 𝛬𝑛  be the weighted left and right creation operators, respectively, associated with the 

noncommutative domain 𝐃𝑓
m. Let 𝑃 be a family of noncommutative polynomials and define the 

noncommutative variety 𝑉𝑓,𝑝
𝑚  whose representation on a Hilbert space ℋ is    

  

𝑉𝑓,𝑝
𝑚 (ℋ):= {(𝑋1, . . . , 𝑋𝑛) ∈ 𝐃𝑓

m(ℋ): 𝑝(𝑋1, . . . , 𝑋𝑛) = 0      for any   𝑝 ∈  𝑃}.   

We associate with 𝑉𝑓,𝑝
𝑚  the operators 𝐵1, . . . , 𝐵𝑛 defined as follows. Consider the subspaces 

           

𝑀𝑝 ∶=  span{𝑊𝛼𝑝(𝑊1, . . . ,𝑊𝑛)𝑊𝛽(1): 𝑝 ∈ 𝑃, 𝛼, 𝛽 ∈ 𝔽𝑛
+} 

and 𝒩𝑝 ∶= 𝐹
2(𝐻𝑛) ⊖𝑀𝑃. Throughout, unless otherwise specified, we assume that 𝒩𝑝 ≠ {0}. It is 

easy to see that 𝒩𝑝 is invariant under each operator 𝑊1
∗, . . . ,𝑊𝑛

∗ and 𝛬1
∗ , . . . , 𝛬𝑛

∗ . Define 

𝐵𝑖 ∶=  𝑃𝒩𝑝  𝑊𝑖|𝒩𝑝     and        𝐶𝑖 ∶= 𝑃𝒩𝑝  𝛬𝑖|𝒩𝑝 ,                  𝑖 =  1, . . . , 𝑛, 

Where 𝑃𝒩𝑝  is the orthogonal projection of 𝐹2(𝐻𝑛) onto 𝒩𝑝     

   The 𝑛 −tuple of operators 𝐵:= (𝐵1, . . . , 𝐵𝑛)  ∈ 𝑉𝑓,𝑝
𝑚 (𝒩𝑝) plays the role of universal model for the 

noncommutative variety 𝑉𝑓,𝑝
𝑚 . The noncommutative variety algebra 𝐴𝑛(𝑉𝑓,𝑝

𝑚 ) is the norm-closed 

algebra generated by 𝐵1, . . . , 𝐵𝑛 and the identity, while the Hardy algebra 𝐹𝑛
∞(𝑉𝑓,𝑝

𝑚 ) is the 𝑤∗-version. 

More on these Hardy algebras associated with noncommutative varieties can be found in [58] and 

[55]. 

    Let (𝑓,𝑚, 𝐴, 𝑅) be a compatible quadruple. Assume that the 𝑛 −tuple  

𝐴 ∶= (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛 has, in addition, the property that 𝑝(𝐴1, . . . , 𝐴𝑛) = 0, 𝑝 ∈ 𝑃. 

Under these conditions, the tuple 𝑞 ∶=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃) is called compatible. We define the 

(constrained) noncommutative Berezin kernel associated with the tuple 𝑞 to be the operator 𝐾𝑞: ℋ →

𝒩𝑝⊗𝑅1/2(ℋ)  given by 

𝐾𝑞: =  (𝑃𝒩𝑝⊗ 𝐼
𝑅
1
2(ℋ)

)𝐾𝑓,𝐴,𝑅
(𝑚)

, 

Where 𝐾𝑓,𝐴,𝑅
(𝑚)

 is the Berezin kernel associated with the quadruple (𝑓,𝑚, 𝐴, 𝑅) and defined by relation 

(55). 

Lemma (1.2.2) [41]: Let 𝐾𝑞 be the noncommutative Berezin kernel associated with a compatible 

tuple 𝑞 ∶=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃). Then 
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𝐾𝑞𝐴𝑖
∗ = (𝐵𝑖

∗⊗ 𝐼ℛ)𝐾𝑞 ,          𝑖 =  1, . . . , 𝑛, 

 

Where ℛ ∶= 𝑅1/2(ℋ) and (𝐵1, . . . , 𝐵𝑛) is the universal model associated with the noncommutative 

variety 𝑉𝑓,𝑝
𝑚 . Moreover, 

𝐾𝑞
∗𝐾𝑞 =∑(

𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅). 

Proof: Using Lemma (1.2.1) and the fact that 𝑝(𝐴1, . . . , 𝐴𝑛) =  0 for all 𝑝 ∈  𝑃, we obtain 

〈𝐾𝑓,𝐴,𝑅
(𝑚)

𝑥, [𝑊𝛼𝑝(𝑊1, . . . ,𝑊𝑛)𝑊𝛽(1)] ⊗  𝑦〉  = 〈𝑥, 𝐴𝛼𝑝(𝐴1, . . . , 𝐴𝑛)𝐴𝛽  (𝐾𝑓,𝐴,𝑅
(𝑚) )

∗
(1⊗ 𝑦)〉 =  0 

for any 𝑥 ∈ ℋ, 𝑦 ∈ 𝑅1/2(ℋ), and 𝑝 ∈  𝑃. Hence, we deduce that 

                                             range 𝐾𝑓,𝐴,𝑅
(𝑚)

⊆ 𝒩𝑝⊗𝑅
1

2(ℋ).                                           (57)  

Taking into account the definition of the constrained Berezin kernel 𝐾𝑞:ℋ → 𝒩𝑝⊗𝑅1/2(ℋ), one 

can use Lemma (1.2.1) and relation (57) to complete the proof. 

    We introduce now the noncommutative Berezin transform 𝐁𝑞 associated with the compatible tuple 

𝑞:=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃) to be the operator 𝐁𝑞: 𝐵(𝒩𝑝) → 𝐵(ℋ) given by 

𝐁𝑞[𝜒] ∶= 𝐾𝑞
∗[𝜒 ⊗ 𝐼ℛ]𝐾𝑞 ,               𝜒 ∈ 𝐵(𝒩𝑝). 

where ℛ ∶= 𝑅1/2(ℋ). This transform will play an important role. To justify the terminology, we shall 

consider the particular case when the 𝑛 −tuple 𝐴 ∶= (𝐴1, . . . , 𝐴𝑛) has the joint spectral radius 

   

𝑟𝑓(𝐴1, . . . , 𝐴𝑛) ∶= lim
𝑘→∞

‖Φ𝑓,𝐴
𝑘 (𝐼)‖

1/2𝑘
<  1. 

Then, as in the particular case considered in [55], one can show that 

    

〈𝐁𝑞[𝜒]𝑥, 𝑦〉 =  〈(𝐼 − ∑ 𝑎�̃�𝐶𝛼
∗  ⊗ 𝐴�̃�

|𝛼|≥1

)

−𝑚

(𝜒 ⊗  𝑅) (𝐼 − ∑ 𝑎�̃�𝐶𝛼⊗𝐴�̃�
∗

|𝛼|≥1

)

−𝑚

(1 ⊗ 𝑥),   1 ⊗ y〉 

for any 𝑥, 𝑦 ∈ ℋ, where 𝐶𝑖: = 𝑃𝒩𝑝𝛬𝑖|𝒩𝑝 for 𝑖 =  1, . . . , 𝑛 and �̃� is the reverse of 𝛼 ∈ 𝔽𝑛
+ . We present 

a sketch of the proof. First, one can show that 

𝑟 (𝐼 − ∑ 𝑎�̃�𝐶𝛼⊗𝐴�̃�
∗

|𝛼|≥1

) ≤  𝑟𝑓(𝐴1, . . . , 𝐴𝑛) < 1, 

where 𝑟(𝑌) is the usual spectral radius of a bounded operator Y . Hence, the operator 

(𝐼 − ∑ 𝑎�̃�𝐶𝛼⊗𝐴�̃�
∗

|𝛼|≥1

)

−1

=∑(𝐼 − ∑ 𝑎�̃�𝐶𝛼⊗𝐴�̃�
∗

|𝛼|≥1

)

𝑘∞

𝑘=0

 

is well-defined, where the convergence is in the operator norm topology. Consequently, using the 

definition of 𝛬1, . . . , 𝛬𝑛 and relation (55), we obtain 

𝐾𝑓,𝑇
(𝑚)
ℎ =  (𝐼𝐹2(𝐻𝑛)⊗𝑅

1
2)(𝐼 − ∑ 𝑎�̃�𝛬𝛼⊗𝑇�̃�

∗

|𝛼|≥1

)

−𝑚

(1 ⊗ ℎ),    ℎ ∈ ℋ. 

Combining the above-mentioned results with the fact that 𝐾𝑞: = (𝑃𝒩𝑝⊗ 𝐼
𝑅
1
2(ℋ)

)𝐾𝑓,𝐴,𝑅
(𝑚)

, one can 

complete the proof of our assertion. 

   We remark that in the particular case when: 𝑛 =  𝑚 =  1, 𝑓 = 𝑋, ℋ = ℂ, 𝐴 = 𝜆 ∈ 𝔻, 𝑅 =  𝐼, 
and 𝑃 =  {0}, we recover the Berezin transform [36] of a bounded operator on the Hardy space 

𝐻2(𝔻), i.e., 

𝐁𝜆[𝑔] = (1 − |𝜆|
2) 〈𝑔𝑘𝜆, 𝑘𝜆〉,           𝑔 ∈ 𝐵(𝐻

2(𝔻)), 

 where 𝑘𝜆(𝑧) ∶=  (1 − �̅�𝑧)
−1

 and 𝑧, 𝜆 ∈ 𝔻. 



40 
 

  The following technical lemma is a slight extension of Lemma 1.4 and 2.2 from [55], where the 

operator 𝐷 was positive. In our extension, 𝐷 is a self-adjoint operator and the condition (a) is new. 

However, since the proof is similar to those from [55], we shall omit it. A linear map 𝜑: 𝐵(ℋ) →
𝐵(ℋ) is called power bounded if there exists a constant 𝑀 >  0 such that ‖𝜑𝑘‖ ≤  𝑀 for any 𝑘 ∈ ℕ. 
Lemma (1.2.3) [41]: Let 𝜑: 𝐵(ℋ) → 𝐵(ℋ) be a positive linear map and let 𝐷 ∈ 𝐵(ℋ) be a self-

adjoint operator and 𝑚 ∈ ℕ. Then the following statements hold: 

(i) If 𝜑 is power bounded, then 
(𝑖𝑑 − 𝜑)𝑚(𝐷)  ≥  0   if and only if (𝑖𝑑 − 𝜑)𝑠(𝐷) ≥  0,   𝑠 =  1, 2, . . . , 𝑚. 

(ii) Under either one of the conditions: 

(a) (𝑖𝑑 − 𝜑)𝑠(𝐷)  ≥  0 for any 𝑠 =  1, . . . , 𝑚, or 

(b) 𝜑 is power bounded and (𝑖𝑑 − 𝜑)𝑚(𝐷)  ≥  0, the following limit exists and  

lim
k→∞

𝑘𝑑 〈𝜑𝑘(𝑖𝑑 − 𝜑)𝑑(𝐷)ℎ, ℎ〉  = {
lim
k→∞

𝑘𝑑 〈𝜑𝑘ℎ, ℎ〉          if  𝑑 = 0

0              if d = 1,2, … ,m − 1
 

for any  ℎ ∈ ℋ. 
In what follows we also need the following result. 

For information on completely bounded (resp. positive) maps, see [55] and [56]. 

Lemma (1.2.4) [41]: Let 𝑓 ∶= ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic function and let 

𝐴 ∶= (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛  be  an 𝑛 −tuple of operators such that  ∑ 𝑎𝛼𝐴𝛼𝐴𝛼

∗
|𝛼|≥1   is convergent in 

the weak operator topology. Then the map Φ𝑓,𝐴: 𝐵(ℋ) → 𝐵(ℋ), defined by   

Φ𝑓,𝐴(𝑋) = ∑ 𝑎𝛼𝐴𝛼𝑋 𝐴𝛼
∗

|𝛼|≥1

,         𝑋 ∈ 𝐵(ℋ), 

where the convergence is in the weak operator topology, is a completely positive linear map which 

is WOT-continuous on bounded sets. Moreover, if 0 <  𝑟 <  1, then 

Φ𝑓,𝐴(𝑋) =  WOT − lim
𝑟→1

Φ𝑓,𝑟𝐴(𝑋) ,            𝑋 ∈ 𝐵(ℋ). 

Proof: Note that, for any 𝑥, 𝑦 ∈ ℋ and any finite subset 𝛬 ⊂ {𝛼 ∈ 𝔽𝑛
+ ∶ |𝛼| ≥ 1}, we have  

∑|〈𝑎𝛼𝐴𝛼𝑋𝐴𝛼
∗ 𝑥, 𝑦〉|

𝛼∈𝛬

≤ ‖𝑋‖∑𝑎𝛼‖𝐴𝛼
∗ 𝑥‖‖𝐴𝛼

∗ 𝑦‖

𝛼∈𝛬

≤ ‖𝑋‖(∑𝑎𝛼‖𝐴𝛼
∗ 𝑥‖2

𝛼∈𝛬

)

1/2

(∑𝑎𝛼‖𝐴𝛼
∗ 𝑦‖2

𝛼∈𝛬

)

1/2

. 

Now, since ∑  𝑎𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1 is convergent in the weak operator topology it is easy to see that the series 

Φ𝑓,𝐴(𝑋) = ∑  𝑎𝛼𝐴𝛼𝑋𝐴𝛼
∗

|𝛼|≥1 convergence is in the weak operator topology.  Moreover, the above-

mentioned inequality is true for any subset 𝛬 in {𝛼 ∈ 𝔽𝑛
+ ∶ |𝛼| ≥ 1}. In particular, we deduce that 

|〈Φ𝑓,𝐴(𝑋)𝑥, 𝑦〉| ≤ ‖𝑋‖〈Φ𝑓,𝐴(𝐼)𝑥, 𝑥〉
1
2〈Φ𝑓,𝐴(𝐼)𝑦, 𝑦〉

1
2 ,         𝑥, 𝑦 ∈ ℋ. 

On the other hand, since the map Φ𝑓,𝐴
(𝑘)
∶= ∑ 𝑎𝛼𝐴𝛼𝑋𝐴𝛼

∗
1≤|𝛼|≤ , 𝑋 ∈  𝐵(ℋ), is completely positive for 

each 𝑘 ∈ ℕ and Φ𝑓,𝐴
 (𝑋) =  WOT − lim

𝑘→∞
Φ𝑓,𝐴
(𝑘) (𝑋), we deduce that Φ𝑓,𝐴 is a completely positive map 

on 𝐵(ℋ). Since ∑  𝑎𝛼𝐴𝛼𝑋𝐴𝛼
∗

|𝛼|≥1   

is convergent in the weak operator topology, for any 𝜖 >  0 and 𝑥, 𝑦 ∈ ℋ,  

there is 𝑁0 ∈ ℕ such that 

∑ 〈𝑎𝛼𝐴𝛼𝐴𝛼
∗ 𝑥, 𝑥〉

|𝛼|>𝑁0

< 𝜖       and         ∑ 〈𝑎𝛼𝐴𝛼𝐴𝛼
∗ 𝑦, 𝑦〉

|𝛼|>𝑁0

< 𝜖. 

Using the above-mentioned inequalities, we deduce that      

∑ |〈𝑎𝛼𝐴𝛼𝑋𝐴𝛼
∗ 𝑥, 𝑦〉|

|𝛼|>𝑁0

≤ 𝜖‖𝑋‖ 

Now, it is easy to see that Φ𝑓,𝐴 is WOT-continuous on bounded sets. On the other hand, we also have 

∑ |〈𝑎𝛼𝑟
|𝛼|𝐴𝛼𝑋𝐴𝛼

∗ 𝑥, 𝑦〉||𝛼|>𝑁0 ≤ 𝜖‖𝑋‖ for any 𝑟 ∈ [0, 1]. This can be used to show that 

Φ𝑓,𝐴(𝑋) = WOT − lim
𝑟→1

Φ𝑓,𝑟𝐴(𝑋) for any 𝑋 ∈ 𝐵(ℋ). The proof is complete.    



41 
 

   We remark that Lemma (1.2.4) remains true if {𝑎𝛼}𝛼≥1is just a sequence of positive numbers and

  𝐴 ∶= (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(𝐻)
𝑛  is an n-tuple of operators such that  ∑ 𝑎𝛼𝐴𝛼𝐴𝛼

∗
|𝛼|≥1  is convergent 

in the weak operator topology.    

   We denote by 𝐶(𝑓, 𝐴)+ the cone of all positive operators 𝐷 ∈ 𝐵(ℋ) such that 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐷) ≥  0       for        𝑠 =  1, . . . , 𝑚. 

We denote by 𝐶𝑟𝑎𝑑(𝑓, 𝐴)
+ the set of all operators 𝐷 ∈ 𝐶(𝑓, 𝐴)+ such that there is 𝛿 ∈ (0, 1) with the

 property that 𝐷 ∈ 𝐶(𝑓, 𝑟𝐴)+ for any 𝑟 ∈  (𝛿, 1].    

    A few examples are necessary. Note that if 𝑚 =  1 then we always have 𝐶(𝑓, 𝐴)+ = Crad(𝑓, 𝐴)
+ . 

We remark that if 𝑚 ≥  2 and 𝑝 = 𝑎1𝑋1 +⋯+ 𝑎𝑛𝑋𝑛, 𝑎𝑖 >  0, then we also have 𝐶(𝑝, 𝐴)+ =
 Crad(𝑝, 𝐴)

+. Indeed, it is enough to see that if 0 <  𝑟 ≤  1, then 

(𝑖𝑑 − Φ𝑝,𝑟𝐴)
𝑘
(𝐷)  =  [(𝑖𝑑 − Φ𝑝,𝐴) + (1 −  𝑟)Φ𝑝,𝐴]

𝑘
 (𝐷) 

                                                 = ∑(
𝑘
𝑗
)

𝑘

𝑗=0

(1 −  𝑟)𝑘−𝑗Φ𝑝,𝐴
𝑘−𝑗
 (𝑖𝑑 − Φ𝑝,𝐴)

𝑗
(𝐷) 

   

for any 𝑘 =  1, . . . , 𝑚. Since (𝑖𝑑 − Φ𝑝,𝐴)
𝑗
 (𝐷)  ≥  0 for 𝑗 =  1, . . . , 𝑚 and using the fact that Φ𝑝,𝐴

𝑗
 is 

a positive linear map, we deduce that (𝑖𝑑 − Φ𝑝,𝑟𝐴)
𝑘
(𝐷)  ≥  0 for 𝑘 =  1, . . . , 𝑚 and 𝑟 ∈  (0, 1], 

which proves our assertion. Note also that when 𝑚 ≥  1 and 𝑞 is any positive regular 

noncommutative polynomial so that, for each 𝑠 =  1, . . . , 𝑚, (𝑖𝑑 − Φ𝑞,𝐴)
𝑠
(𝐷) is a positive invertible 

operator, then  𝐷 ∈  Crad(𝑞, 𝐴)
+. 

    We say that 𝐃𝑓
𝑚(ℋ) is a radial domain if there exists 𝛿 ∈  (0, 1) such that (𝑟𝑊1, . . . , 𝑟𝑊𝑛) ∈

𝐃𝑓
𝑚(𝐹2(𝐻𝑛)) for any 𝑟 ∈  (𝛿, 1], where (𝑊1, . . . ,𝑊𝑛) is the universal model associated with 𝐃𝑓

𝑚. We 

remark that the notion of radial domain does not depend on the Hilbert space ℋ. Note that if 𝑚 =  1, 

then 𝐃𝑓
1(ℋ) is always a radial domain. This case was extensively studied in [58]. When 𝑚 ≥  2, we 

point out the particular case 𝑝:=  𝑎1𝑋1  + ⋯+ 𝑎𝑛𝑋𝑛, 𝑎𝑖 >  0, when 𝐃𝑓
𝑚(ℋ) is also a radial domain. 

   We show that, for radial domains 𝐃𝑓
𝑚(ℋ), the elements of the noncommutative cone Crad(𝑓, 𝐴)

+ 

are in one-to-one correspondence with the elements of a class of noncommutative Berezin transforms.

     

Theorem (1.2.5) [41]: Let 𝐃𝑓
𝑚(ℋ) be a radial domain, where 𝑓 ∶=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1   is a positive regular 

free holomorphic function and 𝑚 ≥ 1. Let 𝑃 be a family of noncommutative homogeneous 

polynomials and let 𝐵 ∶=  (𝐵1, . . . , 𝐵𝑛) be the universal model associated with the noncommutative 

variety 𝑉𝑓,𝑝
𝑚 . If 𝐴 ∶=  (𝐴1, . . . , 𝐴𝑛)  ∈  𝐵(ℋ)

𝑛 is such that  ∑ 𝑎𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1   is SOT-convergent and 

𝑝(𝐴1, . . . , 𝐴𝑛)  =  0, 𝑝 ∈  𝑃, then there is a bijection 𝑃      

Γ: 𝐶𝑃 (𝐴, 𝑉𝑓,𝑝
𝑚 ) →  Crad(𝑓, 𝐴)

+,             Γ(𝜑) ∶=  𝜑(𝐼), 

where 𝐶𝑃 (𝐴, 𝑉𝑓,𝑝
𝑚 ) is the set of all completely positive linear maps 𝜑: 𝑆𝑓,𝑝 → 𝐵(ℋ) such that  

𝜑(𝐵𝛼𝐵𝛽
∗) =  𝐴𝛼𝜑(𝐼)𝐴𝛽

∗  ,                             𝛼, 𝛽 ∈ 𝔽𝑛
+. 

where 𝑆𝑓,𝑝: =  span{𝐵𝛼𝐵𝛽
∗ ∶  𝛼, 𝛽 ∈ 𝔽𝑛

+}. Moreover, if 𝐷 ∈ Crad(𝑓, 𝐴)
+, then Γ−1(𝐷) coincides with 

the noncommutative Berezin transform associated with 𝑞 ∶=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃) and defined by 

𝐁𝑞[𝜒] ∶= lim
𝑟→1

𝐾𝑞𝑟
∗ (𝜒 ⊗ 𝐼)𝐾𝑞𝑟 ,               𝜒 ∈ 𝑆𝑓,𝑝, 

where 𝑞𝑟 ∶=  (𝑓,𝑚, 𝑟𝐴, 𝑅𝑟 , 𝑃) and 𝑅𝑟 ∶= (𝑖𝑑 − Φ𝑓,𝑟𝐴)
𝑚
(𝐷), 𝑟 ∈ [0, 1], and the limit exists in the 

operator norm topology. 

Proof: We recall that the subspace 𝒩𝑝 ≠ {0} is invariant under each operator 𝑊1
∗, . . . , 𝑊𝑛

∗ and 𝐵𝑖: =

𝑊𝑖|𝒩𝑝 , 𝑖 =  1, . . . , 𝑛. Setting 𝐵 ∶= (𝐵1, . . . , 𝐵𝑛) and taking into account that Φ
𝑓,𝑊
(𝐼) ≤ 𝐼, we deduce 

that Φ
𝑓,𝐵
 (𝐼)  ≤  𝐼 and, consequently, Φ

𝑓,𝑟𝐵
 (𝐼)  = ∑ ∑ 𝑎𝛼𝑟

|𝛼|𝐵𝛼𝐵𝛼
∗

|𝛼|=𝑘
∞
𝑘=1 ≤  𝐼, where the 

convergence is in the operator norm topology. This implies Φ
𝑓,𝑟𝐵

(𝐼) ∈ 𝑆𝑓,𝑝for any 𝑟 ∈ [0, 1). The 



42 
 

fact that 𝐃𝑓
𝑚 is radial domain implies (𝑟𝑊1, . . . , 𝑟𝑊𝑛) ∈ 𝐃𝑓

𝑚(𝐹2(𝐻𝑛)), 𝑟 ∈  (𝛿, 1), for some 𝛿 ∈

 (0, 1) and, consequently, (𝑖𝑑 − Φ𝑓,𝑟𝐵)
𝑠
(𝐼)  ≥  0 for 𝑠 =  1, . . . , 𝑚 and 𝑟 ∈  (𝛿, 1). Since 

Φ𝑓,𝑟𝐵
𝑗 (𝐼) = ∑ ∑ 𝑎𝛼𝑟

|𝛼|𝐵𝛼Φ𝑓,𝑟𝐵
𝑗−1

|𝛼|=𝑘

(𝐼)

∞

𝑘=1

 𝐵𝛼
∗ ,             𝑗 ∈ ℕ, 

and ‖Φ𝑓,𝑟𝐵
𝑘 (𝐼)‖ ≤  1 for any 𝑘 ∈ ℕ, it is clear that Φ

𝑓,𝑟𝐵
𝑗 (𝐼) ∈ 𝑆𝑓,𝑝. Taking into account that 

(𝑖𝑑 − Φ𝑓,𝑟𝐵)
𝑠
(𝐼) =∑(−1)𝑗

𝑠

𝑗=0

(
𝑠
𝑗)   Φ 𝑓,𝑟𝐵

𝑗 (𝐼),        𝑗 ∈ ℕ, 

we deduce that (𝑖𝑑 − Φ𝑓,𝑟𝐵)
𝑠
(𝐼) ∈ 𝑆𝑓,𝑝 completely positive linear map such that for 𝑠 =  1, . . . , 𝑚.  

Now, assume that 𝜑 ∶ 𝑆𝑓,𝑝 →  𝐵(ℋ) is a completely positive linear map such that 

𝜑(𝐵𝛼𝐵𝛽
∗) =  𝐴𝛼𝜑(𝐼)𝐴𝛽

∗  ,                             𝛼, 𝛽 ∈ 𝔽𝑛
+. 

Then, setting 𝐷:=  𝜑(𝐼), we deduce that 𝐷 ≥  0 and     

(𝑖𝑑 − Φ𝑓,𝑟𝐴)
𝑠
(𝐷) = 𝜑 ((𝑖𝑑 − Φ𝑓,𝑟𝐵)

𝑠
(𝐼)) ≥ 0,       𝑟 ∈ (𝛿, 1), 

for any 𝑠 =  1, . . . , 𝑚. Since the series ∑ 𝑎𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1  is SOT-convergent one can use 

Lemma (1.2.4) to deduce that Φ𝑓,𝐴
𝑘 (𝐷) = WOT − lim

𝑟→1
Φ𝑓,𝑟𝐴
𝑘 (𝐷) for 𝑘 ∈ ℕ and, moreover,  

       

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
 (𝐷) = WOT − lim

 𝑟→1
(𝑖𝑑 − Φ𝑓,𝑟𝐴)

𝑠
(𝐷) ≥ 0 

for any 𝑠 =  1, . . . , 𝑚. This shows that 𝐷 ∈ Crad(𝑓, 𝐴)
+ . To prove that Γ is one-to-let 𝜑1 and 𝜑2 

completely positive linear maps on 𝑆𝑓,𝑝 such that 𝜑𝑗(𝐵𝛼𝐵𝛽
∗) =  𝐴𝛼𝜑𝑖(𝐼)𝐴𝛽  , 𝛼, 𝛽 ∈ 𝔽𝑛

+, and assume 

that Γ(𝜑1)  = Γ (𝜑2), i.e., 𝜑1(𝐼) = 𝜑2(𝐼). Then we have 𝜑1(𝐵𝛼𝐵𝛽
∗) = 𝜑2(𝐵𝛼𝐵𝛽

∗) for 𝛼, 𝛽 ∈ 𝔽𝑛
+. 

Taking into account the continuity of ϕ1 and ϕ2 in the operator norm, we deduce that 𝜑1 = 𝜑2. 
   To prove surjectivity, fix 𝐷 ∈ Crad(𝑓, 𝐴)

+. Then 𝐷 ∈ 𝐵(ℋ) is a positive operator with the property 

that there is 𝛿 ∈ (0, 1) such that (𝑖𝑑 − Φ𝑓,𝑟𝐴)
𝑠
(𝐷) ≥ 0 for any 𝑠 =  1, . . . , 𝑚 and 𝑟 ∈ (𝛿, 1). Since 

the set 𝑃 consists of homogeneous noncommutative polynomials , we have 𝑝(𝑟𝐴1, . . . , 𝑟𝐴𝑛)  =  0 for 

any 𝑝 ∈  𝑃 and 𝑟 ∈ (𝛿, 1).  We show now that, for each 𝑟 ∈ (𝛿, 1), the tuple 𝑞𝑟: =

 (𝑓,𝑚, 𝑟𝐴, 𝑅𝑟 , 𝑃), where 𝑅𝑟: =  (𝑖𝑑 − Φ𝑓,𝑟𝐴)
𝑚
(𝐷), is compatible. Indeed, we can use the equality

  

(
𝑖 + 𝑗
𝑗
) − (

𝑖 + 𝑗 − 1
𝑗

) = (
𝑖 + 𝑗 − 1
𝑗 − 1

) ,          𝑖, 𝑗 ∈ ℕ 

and Lemma (1.2.3) to obtain 

∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝑟𝐴
𝑘 (𝑅𝑟) =  𝐷 −  𝑊𝑂𝑇 − lim

𝑘→∞ 
∑ (

𝑘 + 𝑗
𝑗
)Φ𝑓,𝑟𝐴

𝑘+1

𝑚−1

𝑗=0

(𝑖𝑑 − Φ𝑓,𝑟𝐴
 )

𝑗
(𝐷)

= 𝐷 −  𝑊𝑂𝑇 − lim
𝑘→∞ 

Φ𝑓,𝑟𝐴
𝑘 (𝐷). 

Since Φ𝑓,𝑟𝐴
𝑘 (𝐷)  ≤ 𝑟2𝑘Φ𝑓,𝐴

𝑘 (𝐷)  ≤ 𝑟2𝑘  𝐷, we have 𝐷 −  𝑊𝑂𝑇 − lim
𝑘→∞ 

Φ𝑓,𝑟𝐴
𝑘 (𝐷) = 0. Therefore, we 

deduce that  

                          ∑(
𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝑟𝐴
𝑘 (𝑅𝑟) =  𝐷,                  𝑟 ∈ (𝛿, 1).                        (58) 

According to Lemma (1.2.2), the constrained noncommutative Berezin kernel 

𝐾𝑞𝑟  , 𝑟 ∈  (𝛿, 1), associated with the compatible tuple 𝑞𝑟: =  (𝑓, 𝑟𝐴, 𝑅𝑟 , 𝑃), has the property that 

           

                                  𝐾𝑞𝑟  (𝑟𝐴𝑖
∗) =  (𝐵𝑖

∗⊗ 𝐼ℋ)𝐾𝑞𝑟  ,         𝑖 =  1, . . . , 𝑛,                              (59) 

where (𝐵1, . . . , 𝐵𝑛) is the 𝑛 −tuple of constrained weighted left creation operators associated with the 

noncommutative variety 𝑉𝑓,𝑝
𝑚  , and 
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𝐾𝑞𝑟
∗ 𝐾𝑞𝑟 =∑(

𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝑟𝐴
𝑘 (𝑅𝑟) =  𝐷,                  𝑟 ∈ (𝛿, 1). 

where 𝑅𝑟: =  (𝑖𝑑 − Φ𝑓,𝑟𝐴)
𝑚
(𝐷). Hence and using relation (58), we obtain 

                                                𝐾𝑞𝑟
∗ 𝐾𝑞𝑟 =  𝐷,            𝑟 ∈ (𝛿, 1).                                            (60) 

For each 𝑟 ∈  (𝛿, 1), define the operator 𝐁𝑞𝑟 ∶ 𝑆𝑓,𝑝 → 𝐵(ℋ) by setting  

                            𝐁𝑞𝑟(𝜒):= 𝐾𝑞𝑟
∗ (𝜒 ⊗ 𝐼ℋ)𝐾𝑞𝑟  ,         𝜒 ∈  𝑆𝑓,𝑝.                                       (61) 

Using relation (59) and (60), we have      

          𝐾𝑞𝑟
∗ (𝐵𝛼𝐵𝛽

∗  ⊗ 𝐼)𝐾𝑞𝑟 = 𝑟
|𝛼|+|𝛽| 𝐴𝛼𝐷𝐴𝛽

∗  ,       𝛼, 𝛽 ∈ 𝔽𝑛
+,     𝑟 ∈  (𝛿, 1).           (62) 

Hence, and using relations (60) and (61), we infer that 𝐁𝑞𝑟  is a completely positive linear map with 

𝐁𝑞𝑟(𝐼) = 𝐷   and  ‖𝐁𝑞𝑟‖ =  ‖𝐷‖ for  𝑟 ∈ (𝛿, 1). 

   Now, we show that lim
𝑟→1

𝐁𝑞𝑟 (𝜒) exists in the operator norm topology for each 𝜒 ∈  𝑆𝑓,𝑝. Given a

 polynomial 𝜑(𝐵1, . . . , 𝐵𝑛) ∶= ∑ 𝑎𝛼𝛽𝐵𝛼𝐵𝛽
∗

𝛼,𝛽∈𝔽𝑛
+  in the operator system 𝑆𝑓,𝑝, we define 

    

𝜑𝐷(𝐴1, . . . , 𝐴𝑛) ∶= ∑ 𝑎𝛼𝛽𝐴𝛼𝐷𝐴𝛽
∗

𝛼,𝛽∈𝔽𝑛
+

. 

The definition is correct since, according to relation (62), we have the following von Neumman type 

inequality 

                              ‖𝜑𝐷(𝐴1, . . . , 𝐴𝑛)‖ ≤ ‖𝐷‖‖𝜑(𝐵1, . . . , 𝐵𝑛)‖.                                          (63) 
Now, fix 𝜒 ∈  𝑆𝑓,𝑝 and let 𝜑(𝑘)(𝐵1, . . . , 𝐵𝑛) be a sequence of polynomials in 𝑆𝑓,𝑝 convergent to 𝜒, in 

the operator norm topology. Define the operator 

                                     𝜒𝐷(𝐴1, . . . , 𝐴𝑛) ∶= lim
𝑘→∞

𝜑𝐷
(𝑘)(𝐴1, . . . , 𝐴𝑛).                                    (64) 

Taking into account relation (63), it is clear that the operator 𝜒𝐷(𝐴1, . . . , 𝐴𝑛) is well-defined and 

‖𝜒𝐷(𝐴1, . . . , 𝐴𝑛)‖ ≤  ‖𝐷‖‖𝜒‖. 
According to relation (62), we have 

‖𝜑𝐷
(𝑘)(𝑟𝐴1, . . . , 𝑟𝐴𝑛)‖ ≤ ‖𝐷‖‖𝜑

(𝑘)(𝐵1, . . . , 𝐵𝑛)‖ 

for any 𝑟 ∈  (𝛿, 1). Taking into account that 𝐁𝑞𝑟 is a bounded linear operator and using again relation 

(62), we deduce that 

            lim
𝑘→∞

𝜑𝐷
(𝑘)(𝑟𝐴1, . . . , 𝑟𝐴𝑛) = lim

𝑘→∞
𝑘𝑞𝑟
∗ (𝜑 

(𝑘)(𝐵1, . . . , 𝐵𝑛) ⊗ 𝐼) 𝐾𝑞𝑟 = 𝐁𝑞𝑟[𝜒]      (65) 

for any 𝑟 ∈  (𝛿, 1). Using relations (64), (65), the fact that ‖𝜒 − 𝜑(𝑘)(𝐵1, . . . , 𝐵𝑛)‖ →  0 as 𝑘 →  ∞, 
and  

lim
𝑟→∞

𝜑𝐷
(𝑘)(𝑟𝐴1, . . . , 𝑟𝐴𝑛) = 𝜑𝐷

(𝑘)(𝐴1, . . . , 𝐴𝑛), 

we can deduce that 

lim
𝑟→1
𝐁𝑞𝑟[𝜒] =  𝜒𝐷(𝐴1, . . . , 𝐴𝑛) 

in the norm topology. Indeed, note that 

 

 

‖𝜒𝐷(𝐴1, . . . , 𝐴𝑛) − 𝐁𝑞𝑟[𝜒]‖ 

≤ ‖𝜒𝐷(𝐴1, . . . , 𝐴𝑛) − 𝜑𝐷
(𝑘)(𝐴1, . . . , 𝐴𝑛)‖ + ‖𝜑𝐷

(𝑘)(𝐴1, . . . , 𝐴𝑛) − 𝐁𝑞𝑟(𝜑
(𝑘))‖

+ ‖𝐁𝑞𝑟(𝜑
(𝑘)) − 𝐁𝑞𝑟(𝜒)‖ 

≤ ‖𝜒 − 𝜑(𝑘)(𝐵1, . . . , 𝐵𝑛)‖‖𝐷‖ + ‖𝜑𝐷
(𝑘)(𝐴1, . . . , 𝐴𝑛) − 𝜑𝐷

(𝑘)(𝑟𝐴1, . . . , 𝑟𝐴𝑛)‖ 

+‖𝜒 − 𝜑(𝑘)(𝐵1, . . . , 𝐵𝑛)‖‖𝐷‖. 

For any 𝑟 ∈  (𝛿, 1), 𝐁𝑞𝑟 is a completely positive linear map. Hence, and using relation (62), we infer 

that 

𝐁𝑞[𝜒] ≔ lim
 𝑟→1

𝐾𝑞𝑟
∗ (𝜒 ⊗ 𝐼)𝐾𝑞𝑟 ,                𝜒 ∈  𝑆𝑓,𝑝 
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is a completely positive map with 𝐁𝑞 (𝐼)  =  𝐷 and 𝐁𝑞(𝐵𝛼𝐵𝛽
∗) = 𝐴𝛼𝐁𝑞(𝐼)𝐴𝛽  , 𝛼, 𝛽 ∈ 𝔽𝑛

+.

 The proof is complete.  

   The following result is an extension of the noncommutative von Neumann inequality (see [53], 

[59], [51], [55]). 

Corollary (1.2.6): Under the hypotheses of Theorem (1.2.5), if 𝐷 ∈ Crad(𝑓, 𝐴)
+, then we have the 

following von Neumann type inequality: 

‖ ∑ 𝐴𝛼𝐷𝐴𝛽
∗ ⊗𝐶𝛼,𝛽

𝛼,𝛽∈𝛬

‖ ≤ ‖𝐷‖‖ ∑ 𝐵𝛼𝐵𝛽
∗ ⊗𝐶𝛼,𝛽

𝛼,𝛽∈𝛬

‖ 

for any finite set 𝛬 ⊂ 𝔽𝑛
+ and 𝐶𝛼,𝛽 ∈ 𝐵(ℰ), where ℰ is a Hilbert space. If, in addition, 𝐷 is an 

invertible operator, then the map 𝑢: 𝐴𝑛(𝑉𝑓,𝑝
𝑚 ) → 𝐵(ℋ) defined by 

𝑢(𝑝(𝐵1, . . . , 𝐵𝑛)) ∶=  𝑝(𝐴1, . . . , 𝐴𝑛) 

is completely bounded with ‖𝑢‖𝑐𝑏 ≤ ‖𝐷
−1/2‖‖𝐷1/2‖.      

Proof: Due to relation (62), we have          

(𝐾𝑞𝑟
∗ ⊗ 𝐼ℰ)(𝐵𝛼𝐵𝛽

∗  ⊗ 𝐼 ⊗ 𝐶𝛼,𝛽 )(𝐾𝑞𝑟⊗ 𝐼ℰ)  =  𝑟
|𝛼|+|𝛽|𝐴𝛼𝐷𝐴𝛽

∗ ⊗𝐶𝛼,𝛽 , 𝛼, 𝛽 ∈ 𝔽𝑛
+,         𝑟 ∈ (𝛿, 1). 

Since 𝐾𝑞𝑟
∗ 𝐾𝑞𝑟 =  𝐷 for 𝑟 ∈  (𝛿, 1), one can easily deduce the von Neumann type inequality. To prove 

the second part, note that, if 𝐷 is invertible, then the first part of this corollary implies 

‖𝑝(𝐴1, . . . , 𝐴𝑛)‖
2 ≤ ‖𝐷−

1
2‖
2

‖𝑝(𝐴1, . . . , 𝐴𝑛)𝐷
1/2‖

2
 

= ‖𝐷−
1
2‖
2

‖𝑝(𝐴1, . . . , 𝐴𝑛)𝐷𝑝(𝐴1, . . . , 𝐴𝑛)
∗‖ 

≤ ‖𝐷−
1
2‖
2

‖𝐷‖‖𝑝(𝐵1, . . . , 𝐵𝑛)𝑝(𝐵1, . . . , 𝐵𝑛)
∗‖ 

= ‖𝐷−
1
2‖
2

‖𝐷1/2‖
2
‖𝑝(𝐵1, . . . , 𝐵𝑛)‖

2 

for any noncommutative polynomial 𝑝. 𝐴 similar result holds if we pass to matrices. Therefore, we 

deduce that 𝑢 is completely bounded with ‖𝑢‖𝑐𝑏 ≤ ‖𝐷
−1/2‖‖𝐷1/2‖. The proof is complete. 

Example (1.2.7) [41]: (i) When 𝑚 =  1, 𝑓 =  𝑋1 +⋯+ 𝑋𝑛, and 𝐷 =  𝐼, we obtain the 

noncommutative Poisson transform introduced in [51] (case 𝑃 =  {0}) and [54] (case 𝑃 ≠ {0}). 
(ii) When 𝑚 =  1, 𝑓 = 𝑋1 +⋯+ 𝑋𝑛, 𝑃 =  {0}, and 𝐷 ≥  0 such that ∑ 𝐴𝑖𝐷𝐴𝑖

∗𝑛
𝑖=1  ≤  𝐷, we 

obtain the noncommutative Poisson transform from [52]. 

(iii) When 𝑚 ≥  1, 𝐷 =  𝐼, and 𝑓 is an arbitrary positive regular free holomorphic function, 

we obtain the noncommutative Berezin transforms associated with noncommutative 

domains 𝐃𝑓
𝑚 or noncommutative varieties V𝑓,𝑝

𝑚 , which were studied in [55] and [58]. 

We study the noncommutative cone Cpure (𝑓, 𝐴)
+ of all pure solutions of the operator inequalities 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
 (𝑋)  ≥  0, 𝑠 =  1, . . . , 𝑚. When 𝐴 is a pure 𝑛 −tuple of operators in the 

noncommutative variety 𝑉𝑓,𝑝
1 (ℋ), we obtain a complete description of the noncommutative cone 

𝐶(𝑓, 𝐴)+.  

     Let 𝐴 ∶=  (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛  be such that ∑ 𝑎𝛼𝐴𝛼𝐴𝛼

∗  |𝛼|≥1  is convergent in the weak operator

 topology and recall that  

Φ𝑓,𝐴(𝑋):= ∑ 𝑎𝛼𝐴𝛼𝐴𝛼
∗  

|𝛼|≥1

,           𝑋 ∈ 𝐵(ℋ), 

  where the convergence is in the weak operator topology. We assume that Φ𝑓,𝐴 is power bounded. A 

self-adjoint operator 𝐶 ∈ 𝐵(ℋ) is called pure solution of the inequality (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝑋)  ≥  0 if 

(𝑖𝑑 −  Φ𝑓,𝐴)
𝑚
(𝐶) ≥  0       and     SOT − lim

𝑘→∞
Φ𝑓,𝐴
𝑘 (𝐶) = 0 

Note that since Φ𝑓,𝐴 is power bounded, Lemma (1.2.3) implies Φ𝑓,𝐴(𝐶) ≤  𝐶. This can be used to 

show that a pure self-adjoint solution is always a positive operator. In what follows we present a 
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canonical decomposition for the self-adjoint solutions of the operator inequality (𝑖𝑑 −

 Φ𝑓,𝐴)
𝑚
(𝑋)  ≥  0. 

Theorem (1.2.8) [41]: Let 𝑓 ∶= ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic function and 

𝑚 ≥  1. Let  𝐴 ∶= (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛 be such that ∑ 𝑎𝛼𝐴𝛼𝐴𝛼

∗  |𝛼|≥1  is convergent in the weak 

operator topology and Φ𝑓,𝐴 is power bounded. If 𝑌 = 𝑌∗ ∈ 𝐵(ℋ) is such that (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝑌) ≥

 0, then there exist operators 𝐵, 𝐶 ∈ 𝐵(ℋ) with the following properties: 

(i) 𝑌 =  𝐵 +  𝐶; 
(ii) 𝐵 = 𝐵∗ and Φ𝑓,𝐴(𝐵)  =  𝐵; 

(iii) 𝐶 ≥  0, (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝐶)  ≥  0, and  SOT- lim

𝑘→∞
Φ𝑓,𝐴
𝑘 (𝐶) = 0. 

Moreover, the decomposition 𝑌 =  𝐵 +  𝐶 is unique with the above-mentioned properties and 

𝐵 = SOT − lim
𝑘→∞

Φ𝑓,𝐴
𝑘 (𝑌) = SOT − lim

𝑘→∞

1

𝑘
∑Φ𝑓,𝐴

𝑗

𝑘−1

𝑗=0

(𝑌) . 

Proof: Let 𝑌 = 𝑌∗ ∈ 𝐵(ℋ) be such that (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝑌) ≥  0. Since Φ𝑓,𝐴 is power bounded, 

Lemma (1.2.3) implies Φ𝑓,𝐴(𝑌) ≤ 𝑌. Consequently, the sequence of self-adjoint operators 

{Φ𝑓,𝐴
𝑘 (𝑌)}

𝑘=0

∞
 is bounded and decreasing. Thus it converges strongly to a selfadjoint operator 𝐵:=

SOT − lim
𝑘→∞

Φ𝑓,𝐴
𝑘 (𝑌).  Since Φ𝑓,𝐴 is a  

W OT -continuous map, we have Φ𝑓,𝐴(𝐵)  =  𝐵. Note that 𝐶 ∶=  𝑌 −  𝐵 ≥  0 satisfies the inequality 

Φ𝑓,𝐴(𝐶)  ≤  𝐶, and 

 (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝐶) = (𝑖𝑑 −  Φ𝑓,𝐴)

𝑚
(𝑌) ≥ 0. Moreover, Φ𝑓,𝐴

𝑘 (𝐶)  →  0 strongly, as 𝑘 →  ∞.  

    To prove the uniqueness of the decomposition, suppose 𝑌 = 𝐵1 + 𝐶1, where B1 and 𝐶1 have the 

same properties as 𝐵 and 𝐶, respectively. Then 

𝐵 − 𝐵1 = Φ𝑓,𝐴
𝑘 (𝐵 − 𝐵1) = Φ𝑓,𝐴

𝑘 (𝐶1 −  𝐶),         𝑘 ∈ ℕ. 

Taking 𝑘 →  ∞, we get 𝐵 = 𝐵1  and, consequently, 𝐶 = 𝐶1. Since 0 ≤ Φ𝑓,𝐴
𝑘 (𝐶) ≤  𝐶, 𝑘 ∈ ℕ, and 

SOT − lim
𝑘→∞

Φ𝑓,𝐴
𝑘 (𝐶) =  0, a standard argument shows that SOT − lim

𝑘→∞

1

𝑘
∑ Φ𝑓,𝐴

𝑗𝑘−1
𝑗=0 (𝐶) = 0. On the

 other hand, since 𝑌 =  𝐵 +  𝐶 and Φ𝑓,𝐴(𝐵) = 𝐵, we infer that    

   

1

𝑘
∑Φ𝑓,𝐴

𝑗

𝑘−1

𝑗=0

(𝑌) = 𝐵 +
1

𝑘
∑Φ𝑓,𝐴

𝑗

𝑘−1

𝑗=0

(𝐶). 

Hence, the result follows. The proof is complete.       

 We denote by C𝑝𝑢𝑟𝑒(𝑓, 𝐴)
+ the set of all operators 𝐷 ∈ 𝐵(ℋ) such that 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐷) ≥ 0,           𝑠 =  1, . . . , 𝑚, 

and Φ𝑓,𝐴
𝑘 (𝐷)  →  0 strongly, as 𝑘 →  ∞. Note that such an operator 𝐷 is always positive. 

Theorem (1.2.9) [41]: Let 𝑓:=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic function and 

𝑚 ≥  1. Let 𝑃 be a family of noncommutative polynomials with 𝒩𝑝 ≠ {0} and let 𝐵:= (𝐵1, . . . , 𝐵𝑛) 

be the universal model associated with the noncommutative variety 𝑉𝑓,𝑝
𝑚 . If 𝐴:=  (𝐴1, . . . , 𝐴𝑛) ∈

𝐵(ℋ)𝑛  is such that ∑ 𝑎𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1  is is SOT-convergent and 𝑝(𝐴1 , . . . , 𝐴𝑛)  =  0, 𝑝 ≠ 𝑃, then there 

is a bijection    

Γ: 𝐶𝑃𝑤
∗
(𝐴, 𝑉𝑓,𝑝

𝑚 ) → Cpure (𝑓, 𝐴)
+,            Γ(𝜑) ∶= 𝜑(1), 

where 𝐶𝑃𝑤
∗
(𝐴, 𝑉𝑓,𝑝

𝑚 ) is the set of all 𝑤∗-continuous completely positive linear maps 𝜑 ∶  𝑆𝑓,𝑝
𝑤∗ →

 𝐵(ℋ) such that 

𝜑(𝐵𝛼𝐵𝛽
∗  ) = 𝐴𝛼𝜑(𝐼)𝐴𝛽

∗  ,              𝛼, 𝛽 ∈ 𝔽𝑛
+, 

where 𝑆𝑓,𝑝
𝑤∗ ≔ span

𝑤∗
{𝐵𝛼𝐵𝛽

∗ ∶  𝛼, 𝛽 ∈ 𝔽𝑛
+}. In addition, if 𝐷 ∈ Cpure (𝑓, 𝐴)

+, then Γ−1(𝐷) coincides 

with the noncommutative Berezin transform associated with 𝑞:=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃) and defined by 
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𝐁𝑞[𝜒]:=  𝐾𝑞
∗(𝜒 ⊗ 𝐼)𝐾𝑞 ,         𝜒 ∈ 𝑆𝑓,𝑝

𝑤∗ , 

Where 𝑅 ∶=  (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝐷).   

   Moreover, an operator 𝐷 ∈ 𝐵(ℋ) is in Cpure (𝑓, 𝐴)
+ if and only if there is a Hilbert space 𝒟 and 

an operator 𝐾:ℋ → 𝒩𝑝⊗𝒟 such that    

𝐷 = 𝐾∗𝐾   and   𝐾𝐴𝑖
∗  = (𝐵𝑖

∗⊗ 𝐼𝒟)𝐾,       𝑖 =  1, . . . , 𝑛. 

Proof. Assume that 𝜑 ∶  𝑆𝑓,𝑝
𝑤∗ →  𝐵(ℋ) is a 𝑤∗-continuous completely positive linear map such that

  

𝜑(𝐵𝛼𝐵𝛽
∗  ) = 𝐴𝛼𝜑(𝐼)𝐴𝛽

∗  ,              𝛼, 𝛽 ∈ 𝔽𝑛
+. 

Then, setting 𝐷:= 𝜑(𝐼) and taking into account that Φ𝑓,𝐵 = ∑ 𝑎𝛼𝐵𝛼𝐵𝛼
∗  |𝛼|≥1  is SOT convergent, we 

deduce that    

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐷) = 𝜑 ((𝑖𝑑 − Φ𝑓,𝐵  )

𝑠
(𝐼)) ≥  0,    𝑠 =  1, . . . , 𝑚. 

On the other hand, recall that {Φ𝑓,𝐵
𝑘 (𝐼)}

𝑘=1

∞
  is a bounded decreasing sequence of positive operators 

which converges strongly to 0, as 𝑘 →  ∞. Since Φ𝑓,𝐴
𝑘 (𝐷) = 𝜑 (Φ𝑓,𝐵

𝑘 (𝐼)) for all 𝑘 ∈ ℕ, one can easily 

see that {Φ𝑓,𝐵
𝑘 (𝐷)}

𝑘=1

∞
 is a bounded decreasing sequence of positive operators which converges 

strongly, as 𝑘 →  ∞. Taking into account that 𝜑 is continuous in the 𝑤∗-topology, which coincides 

with the weak operator topology on bounded sets, we deduce that Φ𝑓,𝐴
𝑘 (𝐷) →  0 strongly, as 𝑘 →  ∞. 

Therefore, D ∈ Cpure(𝑓, 𝐴)
+. To prove that Γ is one-to-one, let 𝜑1 and 𝜑2 be 𝑤∗-continuous 

completely positive linear maps on 𝑆𝑓,𝑝
𝑤∗ such that 𝜑𝑗(𝐵𝛼𝐵𝛽

∗  ) = 𝐴𝛼𝜑𝑗(𝐼)𝐴𝛽
∗  , 𝛼, 𝛽 ∈ 𝔽𝑛

+,, and assume 

that Γ(𝜑1) = Γ(𝜑2), i.e., 𝜑1(𝐼) = 𝜑2(𝐼). Then we have 𝜑1(𝐵𝛼𝐵𝛽
∗  ) = 𝜑2(𝐵𝛼𝐵𝛽

∗  ) for 𝛼, 𝛽 ∈ 𝔽𝑛
+. 

Since 𝜙1 and 𝜙2 are w∗-continuous, we deduce that 𝜑1 = 𝜑2. 

    We prove now that is a surjective map. Let D ∈ Cpure(𝑓, 𝐴)
+ be fixed. According to Lemma 

(1.2.2), the constrained noncommutative Berezin kernel 𝐾𝑞 associated with the compatible tuple 𝑞 ∶

=  (𝑓,𝑚, 𝐴, 𝑅, 𝑃), has the property that 

                             𝐾𝑞𝐴𝑖
∗ = (𝐵𝑖

∗⊗ 𝐼ℋ)𝐾𝑞 ,           𝑖 =  1, . . . , 𝑛,                     (66) 

where (𝐵1, . . . , 𝐵𝑛) is the universal model associated with the noncommutative variety 𝑉𝑓,𝑝
𝑚 , and 

𝐾𝑞
∗𝐾𝑞 =∑(

𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅), 

where 𝑅:= (𝑖𝑑 − Φ𝑓,𝐴)
𝑚
(𝐷). As in the proof of Theorem (1.2.5), we can use Lemma (1.2.5) and the 

fact that WOT- lim
𝑘→∞

Φ𝑓,𝐴
𝑘 (𝐷) =  0, to obtain 

𝐾𝑞
∗𝐾𝑞 =∑(

𝑘 +𝑚 − 1
𝑚 − 1

)

∞

𝑘=0

Φ𝑓,𝐴
𝑘 (𝑅) = 𝐷 −WOT − lim

𝑘→∞
Φ𝑓,𝐴
𝑘 (𝐷) = 𝐷 

Define the operator 𝑩𝑞: 𝑆𝑓,𝑝
𝑤∗ →  𝐵(ℋ)by setting 

𝑩𝑞(𝜒):=  𝐾𝑞
∗(𝜒 ⊗ 𝐼ℋ)𝐾𝑞 ,            𝜒 ∈ 𝑆𝑓,𝑝

𝑤∗ . 

Now, due to relation (66) it is easy to see that 

𝑩𝑞(𝐵𝛼𝐵𝛽
∗  ) = 𝐾𝑞

∗(𝐵𝛼𝐵𝛽
∗  ⊗  𝐼)𝐾𝑞 = 𝐴𝛼𝐷𝐴𝛽

∗ ,         𝛼, 𝛽 ∈  𝔽𝑛
+. 

Consequently, 𝑩𝑞 ∈  𝐶𝑃
𝑤∗(𝐴, 𝑉𝑓,𝑝

𝑚 ) has the required properties. 

     To prove the last part of the theorem, note that the direct implication follows if we take 𝐾 to be 

the noncommutative Berezin kernel 𝐾𝑞. To prove the converse, assume that there is a Hilbert space 

𝒟 and an operator 𝐾 ∶ ℋ → 𝒩𝑝⊗𝒟 such that 

𝐷 = 𝐾∗𝐾       and       𝐾𝐴𝑖
∗ = (𝐵𝑖

∗  ⊗ 𝐼𝒟)𝐾,           𝑖 =  1, . . . , 𝑛. 
Then 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐷) =  𝐾∗[(𝑖𝑑 − Φ𝑓,𝐵)

𝑠
(𝐼) ⊗ 𝐼𝒟] 𝐾 ≥  0,    𝑠 =  1, . . . , 𝑚. 
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Since Φ𝑓,𝐴
𝑘 (𝐷) = 𝐾∗[Φ𝑓,𝐵

𝑘 (𝐼) ⊗ 𝐼𝒟]𝐾, ‖Φ𝑓,𝐵
𝑘 (𝐼)‖ ≤  1, and Φ𝑓,𝐵

𝑘 (𝐼) →  0 strongly, as 𝑘 →  0, we 

deduce that D ∈ Cpure(𝑓, 𝐴)
+. The proof is complete. 

   We remark that, in Theorem (1.2.9), the set P is of arbitrary noncommutative polynomials with 

𝒩𝑝 ≠ {0}, while, in Theorem (1.2.5), P consists of homogeneous polynomials. 

   The proof of the next result is similar to that of Corollary (1.2.6). 

Corollary (1.2.10) [41]: Under the hypotheses of Theorem (1.2.9), if D ∈ Cpure(𝑓, 𝐴)
+, then we have 

the following von Neumann type inequality: 

‖ ∑ 𝐴𝛼𝐷𝐴𝛽
∗ ⊗𝐶𝛼,𝛽

𝛼,𝛽∈𝛬

‖ ≤ ‖𝐷‖ ‖ ∑ 𝐵𝛼𝐵𝛽
∗ ⊗𝐶𝛼,𝛽

𝛼,𝛽∈𝛬

‖ 

 
for any finite set 𝛬 ⊂ 𝔽𝑛

+and 𝐶𝛼,𝛽 ∈ 𝐵(ℰ), where ℰ is a Hilbert space.    

    If, in addition, 𝐷 is an invertible operator, then the polynomial calculus 𝑝(𝐵1, . . . , 𝐵2) ⟼
𝑝(𝐴1 , . . . , 𝐴𝑛)extends to a completely bounded map  

𝑢: 𝐹𝑛
∞(𝑉𝑓,𝑝

𝑚 )  → 𝐵(ℋ) by setting  

𝑢(𝜑): =  𝐾𝑞
∗[𝜑 ⊗ 𝐼ℋ]𝐾𝑞𝐷

−1,          𝜑 ∈ 𝐹𝑛
∞(𝑉𝑓,𝑝

𝑚 ), 

where 𝐾𝑞 is the noncommutative Berezin kernel associated with the compatible tuple 𝑞 ∶=

 (𝑓,𝑚, 𝐴, 𝑅, 𝑃) and 𝑅 ∶=  (𝑖𝑑 − Φ𝑓,𝐴)𝑚(𝐷). Moreover, ‖𝑢‖𝑐𝑏 ≤ ‖𝐷
−1/2‖‖𝐷1/2‖. 

Theorem (1.2.11) [41]: Let 𝑓 ∶=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic function and 

𝑚 ≥  1. Let 𝑃 be a family of noncommutative polynomials and let 𝐴 ∶=  (𝐴1, . . . , 𝐴𝑛) ∈ 𝐵(ℋ)
𝑛 be 

such that ∑ 𝑎𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1  is SOT-convergent and 𝑝(𝐴1, . . . , 𝐴𝑛)  =  0 for 𝑝 ∈  𝑃. Then a positive 

operator 𝐺 ∈ 𝐵(ℋ) is in 𝐶(𝑓, 𝐴)+  

if and only if there exists an 𝑛 −tuple 𝑇 ∶= (𝑇1, . . . , 𝑇𝑛) ∈ 𝑉𝑓,𝑝
𝑚 (ℋ)     

  𝐴𝑖𝐺
1/2 = 𝐺1/2𝑇𝑖 ,       𝑖 =  1, . . . , 𝑛.      

In addition, 𝐺 ∈ Cpure(𝑓, 𝐴)
+ if and only if 𝐼ℋ ∈ Cpure(𝑓, 𝑇)

+.    

Proof: First, assume that 𝑇 ∶= (𝑇1, . . . , 𝑇𝑛) ∈ 𝑉𝑓,𝑝
𝑚 (ℋ) satisfies 𝐴𝑖𝐺

1/2 = 𝐺1/2𝑇𝑖, for any 𝑖 =

 1, . . . , 𝑛. Then we have 

(𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐺) =  𝐺

1
2[(𝑖𝑑 − Φ𝑓,𝑇)

𝑠
(𝐼)] 𝐺

1
2 ≥ 0,         𝑠 =  1, . . . , 𝑚. 

Taking into account that Φ𝑓,𝐴
𝑘 (𝐺)  =  𝐺

1

2Φ𝑓,𝑇
𝑘 (𝐼)𝐺1/2, 𝑘 ∈ ℕ, it is clear that if Φ𝑓,𝑇

𝑘 (𝐼)  →  0 strongly, 

as 𝑘 →  ∞, then 𝐺 ∈ Cpure(𝑓, 𝐴)
+. 

   To prove the converse, assume that 𝐺 ∈ 𝐵(ℋ) is in 𝐶(𝑓, 𝐴)+. Since 

∑‖𝐺1/2√𝑎𝛼𝐴𝛼
∗ 𝑥‖

2

|𝛼|≥1

= 〈Φ𝑓,𝐴(𝐺)𝑥, 𝑥〉 ≤ ‖𝐺
1/2𝑥‖

2
 

for any 𝑥 ∈ ℋ, we deduce that ‖𝐺1/2𝐴𝑖
∗𝑥‖

2
≤ ‖𝐺1/2𝑥‖

2
, for any 𝑥 ∈ ℋ. Recall that 𝑎𝑔𝑖 ≠ 0, so we 

can define the operator 𝛬𝑖: 𝐺
1

2(ℋ)  → 𝐺1/2(ℋ) by setting 

                                   𝛬𝑖𝐺
1/2𝑥 ∶=  𝐺1/2𝐴𝑖

∗𝑥,           𝑥 ∈ ℋ,                                        (67) 
for 𝑖 =  1, . . . , 𝑛. It is obvious that 𝛬𝑖 can be extended to a bounded operator (also denoted by 𝛬𝑖) on 

the subspace 𝑀 ∶= 𝐺1/2(ℋ). Set 𝑀𝑖: = 𝛬𝑖
∗,   𝑖 =  1, . . . , 𝑛, and note that 

𝐺1/2[(𝑖𝑑 − Φ𝑓,𝑀)
𝑠
(𝐼𝑀)]𝐺

1/2 = (𝑖𝑑 − Φ𝑓,𝐴)
𝑠
(𝐺) ≥  0,       𝑠 =  1, . . . , 𝑚. 

An approximation argument shows that 

(𝑖𝑑 − Φ𝑓,𝑀)
𝑠
(𝐼𝑀) ≥  0,             𝑠 =  1, . . . , 𝑚. 

Define 𝑇𝑖: = 𝑀𝑖⊕0,   𝑖 =  1, . . . , 𝑛, with respect to the decomposition 𝐻 = 𝑀⊕𝑀⊥, and note that 

(𝑖𝑑 − Φ𝑓,𝑇)
𝑠
(𝐼) ≥  0,   𝑠 =  1, . . . , 𝑚. Due to relation (67), if 𝑝 ∈  𝑃, then we have 

𝑝(𝑀1, . . . , 𝑀𝑛)
∗𝐺1/2 = 𝐺

1
2𝑝(𝐴1, . . . , 𝐴𝑛)

∗  =  0. 
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Hence, 𝑝(𝑀1, . . . , 𝑀𝑛)  =  0 and, consequently, 𝑝(𝑇1, . . . , 𝑇𝑛)  =  0 for all 𝑝 ∈  𝑃. Therefore, 

(𝑇1, . . . , 𝑇𝑛) ∈ 𝑉𝑓,𝑝
𝑚 (ℋ) and 𝐴𝑖𝐺

1/2 = 𝐺1/2𝑇𝑖 ,    𝑖 =  1, . . . , 𝑛. 

   Assume now that 𝐺 ∈ Cpure(𝑓, 𝐴)
+, i.e., Φ𝑓,𝐴

𝑘 (𝐺)  →  0 strongly, as 𝑘 →  ∞. Since   

〈Φ𝑓,𝑇
𝑘 (𝐼)𝐺1/2𝑥, 𝐺1/2𝑥〉 = 〈Φ𝑓,𝐴

𝑘 (𝐺)𝑥, 𝑥〉,           𝑥 ∈ ℋ, 

we have  SOT- lim
𝑘→∞

Φ𝑓,𝑇
𝑘 (𝐼)𝑦 =  0 for any 𝑦 ∈ range 𝐺. Taking into account that ‖Φ𝑓,𝑇

𝑘 (𝐼)‖ ≤ 𝑘 ∈ ℕ, 

an approximation argument shows that SOT- lim
𝑘→∞

Φ𝑓,𝑇
𝑘 (𝐼)𝑦 =  0 for any 𝑦 ∈ 𝐺1/2(ℋ). On the other 

hand, we have Φ𝑓,𝑇
𝑘 (𝐼)𝑧 =  0 for any 𝑧 ∈ 𝑀⊥. Consequently, 𝐼ℋ ∈ Cpure(𝑓, 𝑇)

+. This completes the 

proof.        

   We consider the case when 𝑚 =  1. Let 𝑓 ∶=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  be a positive regular free holomorphic 

function and let P be a family of noncommutative polynomials such that 𝒩𝑝 ≠ {0}. We have  

𝐃𝑓
1(ℋ) ∶=  {(𝑋1, . . . , 𝑋𝑛) ∈ 𝐵(ℋ)

𝑛 ∶ ∑ 𝑎𝛼𝑋𝛼𝑋𝛼
∗

|𝛼|≥1

 ≤  𝐼}. 

Let 𝐵 ∶= (𝐵1, . . . , 𝐵𝑛) be the universal model associated with the noncommutative variety 𝑉𝑓,𝑝
1  . We 

introduced in [48] the noncommutative Hardy algebra 𝐹𝑛
∞(𝑉𝑓,𝑝

1 ) to be the 𝑤∗-closed algebra generated 

by 𝐵1, . . . , 𝐵𝑛 and the identity. We also showed that 𝐹𝑛
∞(𝑉𝑓,𝑝

1 ) = 𝑃𝒩𝑝  𝐹𝑛
∞(𝐃𝑓

1)|𝒩𝑝  . Similar results hold 

for 𝑅𝑛
∞(𝑉𝑓,𝑝

1 ), the 𝑤∗-closed algebra generated by 𝐶1, . . . , 𝐶𝑛 and the identity, where 𝐶𝑖: = 𝑃𝒩𝑝  Λ𝑖|𝒩𝑝   

, and 𝛬1, . . . , 𝛬𝑛 are the weighted right creation operators associated with 𝐃𝑓
1. Moreover, we proved 

that 

𝐹𝑛
∞(𝑉𝑓,𝑝

1 )′ = 𝑅𝑛
∞(𝑉𝑓,𝑝

1 )    and     𝑅𝑛
∞(𝑉𝑓,𝑝

1 )′ = 𝐹𝑛
∞(𝑉𝑓,𝑝

1 ), 

where ′ stands for the commutant. An operator 𝑀 ∈ 𝐵(𝒩𝑝⊗𝐾,𝒩𝑝⊗  𝐾′) is called multi-analytic 

with respect to the constrained weighted shifts 𝐵1, . . . , 𝐵𝑛 if 

𝑀 (𝐵𝑖⊗ 𝐼𝐾) =  (𝐵𝑖⊗ 𝐼𝐾′)𝑀,         𝑖 =  1, . . . , 𝑛. 
According to [48], the set of all multi-analytic operators with respect to 𝐵1, . . . , 𝐵𝑛 coincides with  

𝑅𝑛
∞(𝑉𝑓,𝑝

1 ) ⊗̅̅̅ 𝐵(𝐾, 𝐾′) = 𝑃𝒩𝑝⊗𝐾′  [𝑅𝑛
∞(𝑉𝑓,𝑝

1 ) ⊗̅̅̅ 𝐵(𝐾, 𝐾′)]|𝒩𝑝⊗𝐾, 

and a similar result holds for the Hardy algebra 𝐹𝑛
∞(𝑉𝑓,𝑝

1 ). For more information on multi-analytic 

operators, see  [40] and [48]. 

Theorem (1.2.12) [41]: Let 𝑃 be a family of noncommutative polynomials with 𝒩𝑝 ≠ {0} and let 

𝐵 ∶= (𝐵1, . . . , 𝐵𝑛) be the universal model associated with the noncommutative variety 𝑉𝑓,𝑝
1 , where 𝑓 ∶

=  ∑ 𝑎𝛼𝑋𝛼|𝛼|≥1  is a positive regular free holomorphic function. If 𝑇:=  (𝑇1, . . . , 𝑇𝑛) is a pure 𝑛 −tuple 

of operators in the noncommutative variety 𝑉𝑓,𝑝
1 (ℋ), then 

𝐶(𝑓, 𝑇)+  = Cpure(𝑓, 𝑇)
+ 

and any operator in 𝐶(𝑓, 𝑇 )+ has the form 𝐺 = 𝑃ℋ𝛹𝛹
∗|ℋ , where Ψ is a multi-analytic operator with 

respect to 𝐵1, . . . , 𝐵𝑛. 

Proof: Assume that 𝑇:=  (𝑇1, . . . , 𝑇𝑛) is a pure 𝑛 −tuple of operators in the noncommutative variety 

𝑉𝑓,𝑝
1 (ℋ), i.e., Φ𝑓,𝑇

𝑘 (𝐼)  →  0 strongly, as 𝑘 →  ∞. If 𝐺 ∈ 𝐶(𝑓, 𝑇)+, then 𝐺 ≥ 0 and Φ𝑓,𝑇(𝐺)  ≤  𝐺. 

Since 

0 ≤ Φ𝑓,𝑇
𝑘 (𝐺) ≤ ‖𝐺‖Φ𝑓,𝑇

𝑘 (𝐼),       𝑘 =  1, 2, . . . , 

we infer that 𝐺 ∈ Cpure(𝑓, 𝑇)
+. Consequently, we have 𝐶(𝑓, 𝑇 )+  = Cpure(𝑓, 𝑇)

+. Now, fix an 

operator 𝐺 ∈ Cpure(𝑓, 𝑇)
+. Due to Theorem (1.2.11), we find 𝐷𝑖 ∈ 𝐵(ℋ) satisfying 

𝑇𝑖𝐺
1/2 = 𝐺1/2𝐷𝑖 ,       𝑖 =  1, . . . , 𝑛, 

where (𝐷1, . . . , 𝐷𝑛) ∈ 𝑉𝑓,𝑝
1 (ℋ) and Φ𝑓,𝐷

𝑘 (𝐼)  →  0 strongly, as 𝑘 →  0. According to Theorem 3.20 

from [48], there is a Hilbert space 𝑀1 so that (𝐵1⊗ 𝐼𝑀1  , . . . , 𝐵𝑛⊗ 𝐼𝑀1) is a dilation of (𝑇1, . . . , 𝑇𝑛) 

on the Hilbert space 𝐾1: = 𝒩𝑝⊗𝑀1 ⊇ ℋ, i.e., 𝑇𝑖 = 𝑃ℋ(𝐵𝑖⊗ 𝐼𝑀1)|ℋ , 𝑖 =  1, . . . , 𝑛, and ℋ is 

invariant under each operator 𝐵𝑖
∗  ⊗ 𝐼𝑀1  . Similarly, let (𝐵1⊗ 𝐼𝑀2 , . . . , 𝐵𝑛⊗ 𝐼𝑀2) be a dilation of 

(𝐷1, . . . , 𝐷𝑛) on a Hilbert space 𝐾2: = 𝒩𝑝⊗𝑀2 ⊇ ℋ. According to the noncommutative commutant 



49 
 

lifting theorem from [48] (see Theorem 4.2), there exists an operator �̂�: 𝐾2 → 𝐾1 such that 

�̂�∗(ℋ) ⊂ ℋ, �̂�∗|ℋ = 𝐺
1/2, ‖�̂�‖ = ‖𝐺1/2‖, and   

�̂�∗(𝐵𝑖
∗⊗ 𝐼𝑀1)  = (𝐵𝑖

∗⊗ 𝐼𝑀2)�̂�
∗ ,        𝑖 =  1, . . . , 𝑛. 

It is easy to see that  

Φ𝑓,𝐵⊗𝐼𝑀1(�̂��̂�
∗) =  �̂�Φ𝑓,𝐵⊗𝐼𝑀2(𝐼)�̂�

∗ ≤ �̂��̂�∗. 

Setting Q ∶= �̂��̂�∗, we have ‖𝑄‖ = ‖𝐺‖ ,       

𝐺 = 𝑃ℋ�̂�|ℋ = 𝑃ℋ�̂��̂�
∗|ℋ = 𝑃ℋ𝑄|ℋ 

Note also that 

Φ𝑓,𝐵⊗𝐼𝑀1
𝑘 (�̂��̂�∗) =  �̂�Φ𝑓,𝐵⊗𝐼𝑀2

𝑘 (𝐼)�̂�∗,       𝑘 ∈ ℕ.  

Since Φ𝑓,𝐵⊗𝐼𝑀2
𝑘 (𝐼) → 0 strongly, as 𝑘 → ∞, we deduce that Φ𝑓,𝐵⊗𝐼𝑀1

𝑘 (�̂��̂�∗) → 0 strongly. Therefore, 

Q ∈ Cpure(𝑓, 𝐵 ⊗ 𝐼𝑀1)
+

 and 𝐺 = 𝑃ℋ𝑄|ℋ. 

   Conversely, if Q ∈ Cpure(𝑓, 𝐵 ⊗ 𝐼𝑀1)
+

, then 

Φ𝑓,𝑇(𝑃ℋ𝑄|ℋ)  = ∑ 𝑎𝛼𝑇𝛼(𝑃ℋ𝑄|ℋ)𝑇𝛼
∗

|𝛼|≥1

 

                                    = 𝑃ℋ [Φ𝑓,𝑊⊗𝐼𝑀1
(𝑃ℋ𝑄|ℋ)] |ℋ 

                          = 𝑃ℋ [Φ𝑓,𝑊⊗𝐼𝑀1
(𝑄)] |ℋ 

≤ 𝑃ℋ𝑄|ℋ 
On the other hand, since 

0 ≤ Φ𝑓,𝑇
𝑘 (𝑃ℋ𝑄|ℋ) ≤ 𝑃ℋΦ𝑓,𝐵⊗𝐼𝑀1

𝑘  (𝑄)|ℋ →  0,         as   𝑘 →  ∞, 

it is clear that 𝐺:= 𝑃ℋ𝑄|ℋ is in Cpure(𝑓, 𝑇)
+. We have proved that 

Cpure(𝑓, 𝑇)
+  =  𝑃ℋ [Cpure(𝑓, 𝐵 ⊗ 𝐼𝑀1)

+
] |ℋ . 

    Now, we determine the set Cpure(𝑓, 𝐵 ⊗ 𝐼𝑀1)
+

. To this end, let Q ∈ Cpure(𝑓, 𝐵 ⊗ 𝐼𝑀1)
+

. 

According to Theorem (1.2.9), Q ∈ Cpure(f, B ⊗ IM1 )+ if and only if there is a Hilbert space 𝒟 and 

an operator 𝐾: 𝒩𝑝⊗𝑀1 → 𝒩𝑝⊗𝒟 such that Q = 𝐾∗𝐾 and 

(𝐵𝑖⊗ 𝐼𝑀1)𝐾
∗  = 𝐾∗(𝐵𝑖⊗ 𝐼𝒟),            𝑖 =  1, . . . , 𝑛, 

i.e., 𝐾∗ is a multi-analytic operator with respect to 𝐵1, . . . , 𝐵𝑛. The proof is complete.  
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Chapter 2 

Deformation Estimates and Identification 

We show that the estimate justify the description of CCR +ℋ as a first-order quantum deformation 

of 𝐴𝑃 + 𝐶0, where CCR is the usual C*-algebra of (Boson) canonical commutation relations, ℋ is 

the full algebra of compact operators, AP is the algebra of almost-periodic functions and 𝐶0 is the 

algebra of continuous functions which vanish at infinity. Its characteristic class (which classifies star-

products up to equivalence) is obtained. The proof is based on the microlocal description of the Szego 

kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjostrand. 

Section (2.1): Berezin-Toeplitz Quantization  
We consider the family of Gaussian probability measures 

dμr(𝓏) = (
r

π
)
n

e−r|𝓏|
2
dv(𝓏), r > 0 

for 𝓏=(𝓏1, … 𝓏n) in complex Euclidean space 𝕔n, dυ(z) ordinary Lebesgue 

measure,  |𝓏|2 = |𝓏1|
2 +⋯ |𝓏n|

n. The space of entire dμrsquare-integrable functions is denoted by 

H2(dμr) ≡ H
2(𝕔n, dμr). For g in L2(dμr), the Berezin-Toeplitz operator Tg

(r)
is defined on a dense 

linear subspace of H2(dμr) by 

 

(Tg
rh)(𝓏) = ∫ g(ω)h(ω)er𝓏.ωdμr(ω). 

 

Here . ω ≡ 𝓏1ω̃1 +⋯+ 𝓏1ω̃1 and er𝓏.ωis the Bergman reproducing kernel for 

H2(dμr) so that, for gh in L2(dμr), Tg
r(h) is in H2(dμr). 

The map g → Tg
(r)

 has been considered by Berezin [80] and others [81] as a "quantization" in which 

r plays the role of the reciprocal of Planck's constant. 

In this guise, with [A, B] = AB — BA, the "canonical commutation relations" are 

given by 

 

[T�̅�j
(r)
, T𝓏k
(r)
] =

1

r
δjkI, 

 

where 

𝛅𝐣𝐤 = {
𝟏   𝐣 = 𝐤
𝟎   𝐣 ≠ 𝐤

} 

While 

 

[T�̅�k
(r)
, T�̅�k
(r)
] = 0, [T𝓏ℐ

(r)
, T𝓏k
(r)
]=0 

 

There is an isometry Br: L
2(ℝn, dv) → H2(ℂn. dμr) due to Bargmann [82], so that 

for sufficiently smooth g, 

Br
−1Tg

(r)
Br 

 

is a Weyl pseudo-differential operator. 

We establish a first-order composition calculus for Tg
(r)
, Tg
(r)

 analogous to results of [84] for the Weyl 

calculus. To obtain such a calculus, it does not seem possible to simple apply conjugation by Br to 

the results or the related results of [76]. Instead, we proceed by a combination of direct calculation 

and an asymptotic analysis analogous to that. 

Our results are, in particular, sufficient to justify the description of CCR(ℂn) + 𝜘 

as a first-order quantum-deformation of AP(ℂn) + ℂ0(ℂ
n). Here, CCR(ℂn) is 

the standard simple ℂ∗-algebra generated by the canonical commutation relations 
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[77], 𝜘 is the full algebra of compact operators on a separable infinite dimensional Hubert space, 

AP(ℂn) is the supremum norm closed algebra of almost periodic functions, and ℂ0(ℂ
n) is the 

supremum norm closure of the compactly supported continuous functions. 

We write TP(ℂn) for the algebra of trigonometric polynomials on ℂn = ℝ2n. This algebra is generated 

by the characters χa(ω) = exp {i Im ω. a}. We let Cc
m(ℂn)be the algebra of m times 

continuously differentiable functions with compact support. We have 

For f,g in TP+Cc
2n+6, r > 0, 

 

‖Tf
(r)
Tg
(r)
− Tfg

(r)
+
1

r
T
∑ (∂ℐf)(∂̅ℐg)j

(r)
‖
(r)
≤ C(f, g)r−2 

 

holds for C(f, g) independent of r. 

We make use of the maps 

ta(𝓏) = 𝓏 − a, γa(𝓏) = a − 𝓏 

These maps determine unitary operators on H2(dμr) and L2(dμr) given by 

 

(Ua
rf)(𝓏) = ka

(r)
(𝓏)f(𝓏 − a), 

(Va
(r)
f)(𝓏) = ka

(r)(𝓏)f(a − 𝓏) 
Where 

ka
(r)(𝓏) = er.𝓏.a−r|a|

2 2⁄  

is the normalized reproducing kernel for (Va
(r)
)2 = I. Note that 

and 

𝐕𝐚
(𝐫)
𝐓𝐠
(𝐫)
𝐕𝐚
(𝐫)
= 𝐓𝐠𝐨𝛄𝐚

(𝐫)
 

We will need 

Lemma (2.1.1)[75]: For g bounded and uniformly continuous on ℂn and ε > 0 given, there is an R = 

R(ε), independent of w, so that 

∫|g(ω) − g(ω − 𝓏)|dμr(𝓏) < ε 

whenever r > R(ε). 

Proof: Note that 

∫ dμr(𝓏) ≤ ne
−rδ2 n⁄

 

|𝓏|>δ

 

By uniform continuity, there is a δ = δ(ε) so that |g(𝓏1) − g(𝓏2)| <
ε

2
whenever 

|𝓏1 − 𝓏2| < ε. For this δ, write 

 

∫|g(ω) − g(ω − 𝓏)|dμr(𝓏) = ∫ |g(ω) − g(ω − 𝓏)|dμr(𝓏)

 

|𝓏|<δ

+ ∫ |g(ω) − g(ω𝓏)|dμr(𝓏)

 

|𝓏|≥δ

<
ε

2
∫ dμr(𝓏) + 2‖g‖∞

 

|𝓏|<δ

∫ dμr(𝓏)

 

|𝓏|≥δ

<
ε

2
+ 2n‖g‖∞e

−rδ2 n⁄  

 

Thus, choosing 

R(ε) = −
n

δ2
ln [

ε

4n‖g‖∞
] 

completes the proof. 

We can now prove, similarly to [77] for the disc, that 

Theorem (2.1.2) [75]: For g bounded and uniformly continuous on ℂn, we have 

lim
r→∞

‖Tg
(r)
‖
(r)
= ‖g‖∞ 
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Proof: Write 

g(ω) =< Tgoγω
(r)

1,1 >(r)+∫[g(ω) − g(w − 𝓏)]dμr(𝓏) 

Thus, 

|g(ω)| ≤ ‖Tgoγω
(r) ‖

(r)
+∫|g(ω) − g(ω − 𝓏)|dμr(𝓏) 

 

Using Vω
(r)
Tg
(r)
Vω
(r)
= Tgoγω

(r)
, we have 

 

|g(ω)| ≤ ‖Tg
(r)‖

r
+∫|g(ω) − g(ω − 𝓏)|dμr(𝓏) 

 

and, by Lemma (2.1.1), 

|𝐠(𝛚)| < ‖𝐓𝐠
(𝐫)
‖
𝐫
+ 𝛆 

for r > R(ε). It follows that ‖g‖∞ − ε ≤ ‖Tg
(r)
‖
(r)

 . Since ‖Tg
(r)
‖
(r)
≤ ‖g‖∞ is trivial and ε is arbitrary, 

the proof is complete. 

We consider some differential identities which will be needed later. For f sufficiently smooth on ℂn, 

we write 

∂1
k1 …∂n

kn ∂̅1
ln … ∂̅n

lnf 

where ∂j ≡
∂

∂𝓏j
, ∂̅j ≡

∂

∂�̅�j
; kj, lj are non-negative integers. For φ in H2(dμr), we 

recall that 

(U−ω
(r)
φ)(a) = φ(a + ω)k−ω

(r)
(a) 

We have 

Lemma (2.1.3) [75]: For φ in H2(dμr), 
 

∂1
m1 …∂n

mn(U−ω
(r)φ)(0) = er|ω|

2 2⁄ ∂1
m1 …∂n

mn{φ(ω)e−r|ω|
2
}. 

 

Proof: Direct  calculation. 

Lemma (2.1.4) [75]: For φ in H2(dμr) and m = m1 +⋯+mn  

 

∂1
m1 …∂n

mnφ(0) = rm∫φ(ω)ω̅1
m1 …ω̅n

mn dμr(ω) 

Proof: Write 

φ(a) = ∫φ(ω)era.ω dμr(ω) 

 

and check that differentiation "under the integral" is permissible. 

Lemma (2.1.5) [75]: ∫|a|2k dμr(a) = b(k, n)r
−k. 

We will write BCm for the set of functions which are bounded 

and continuous, with all derivatives bounded and continuous up to order m. Clearly, Cc
m is contained 

in BCm. For g in BCm+1(ℂn), we will consider the Taylor series 

 

g(a + ω) = g(ω) + (∂1g)(ω)a1…+ (∂ng)(ω)an + (∂̅1g)(ω)a̅1 +⋯+ (∂̅1g)(ω)a̅n +⋯

+
1

m!
(∂̅n
mg)(ω)a̅n

m + gm+1(a, ω) 

Where 

gm+1(a, ω) =∑c(k1, … , ln)(∂1
k1 …∂n

kn ∂̅1
l1 … ∂̅n

lng)(ω∗)a1
k1 …an

kn a̅1
l1 … a̅n

ln 
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for k1 +⋯+ kn + l1 +⋯+ ln = m+ 1. For g in BCm+1 , the remainder term 

gm+1(a, ω) can be estimated by using 

Lemma (2.1.6) [75]: We have 

 

|gm+1(a, ω)| ≤∑c(k1, … , ln)‖∂1
k1 … ∂̅n

lng‖
∞
|a|m+1 

Theorem (2.1.7) [75]: Let f be in Cc
n+3(ℂn) with g in BC2n+6(ℂn). Then we have a constant 

C(f, g)so that 

‖Tf
(r)
Tg
(r)
− Tfg

(r)
+
1

r
T
∑ (∂ℐf)(∂̅jg)j

(r)
‖
(r)
≤ C(f, g)r−2 

for all r > 0. 

Proof: Borrowing from [84], we write for φ, ψ in H2(dμr) 
, 

〈TfTgφ,ψ〉 = ∫ f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅dμr(ω)∫e
rω.𝓏g(𝓏)φ(𝓏)dμr(𝓏)

=∫ f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅dμr(ω)∫e
rω.(a+ω) g(a + ω)φ(a + ω)dμr(a + ω)

= ∫ f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅er|ω|
2 2⁄ dμr(ω)∫ g(a + ω)(U−ω

(r)
φ)(a)dμr(a) 

 

Next, write 

g(a + ω) = {g(a + ω) − gm+1(a,ω) + gm+1(a, ω) 
 

Using Lemmas (2.1.5) and (2.1.6), we check that for m = n + 3, 

 

|∫ f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅ er|ω|
2 2⁄ dμr(ω)∫ gm+1(a, ω)( U−ω

(r)
φ)(a)dμr(a)|

≤ ‖φ‖r‖ψ‖rC(g)π
2b(m + 1, n)1 2⁄ {∫|f(ω)|2dv(ω)}

1 2⁄

r−2 

Thus, for m = n + 3, it remains to consider the expression 

 

(†)∫ f(ω)ψ)(ω)̅̅ ̅̅ ̅̅ ̅̅ er|ω|
2 2⁄ dμr(ω)∫{g(a + ω) − gm+1(a,ω)} (U−ω

(r)
φ)(a)dμr(a) 

 

For k = k1 +⋯+ kn, l = l1 +⋯+ ln and k + l < m the typical term in the 

Expansion of 

∫{g(a + ω) − gm+1(a, ω)} (U−ω
(r)
φ)(a)dμr(a) 

 

has the form 

 

(††)  a(k1, … l1)(∂1
k1 … ∂̅n

lng)(ω)∫ a̅1
l1 … a̅n

lna1
k1 …an

kn(U−ω
(r)
φ)(a)dμr(a) 

 

Applying Lemmas (2.1.3) and (2.1.4), we see that (††) = 0 unless3 

𝐥𝐣 ≥ 𝐤𝓘 

for all j . In this case, (††) is a sum of terms 

r−la′(k1, … , ln)e
r|ω|2 2⁄ (∂1

k1 … ∂̅n
lng)(ω) ∂1

t1 …∂n
tn{φ(ω)e−r|ω|

2
} 

with lj ≥ tj. 

It follows that (††)is a linear combination, with coefficients independent of r, of 

Terms 
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(†††)   r−l∫f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅(∂1
k1 …∂n

kn ∂̅1
l1 … ∂̅n

lng)(ω) × ∂1
t1 …∂n

tn{φ(ω)e−r|ω|
2
} (
r

π
)
n

dn(ω) 

Where 

lj ≥ kj,   lj ≥ tj,   m ≥ l + k 

Iterated application of Gauss' Theorem ("integration by parts") shows that (†††)is 

a linear combination, with coefficients independent of r, of terms 

r−l∫(∂1
u1 …∂n

unf)(ω)(∂1
k1+s1 …∂n

kn+sn ∂̅1
l1 … ∂̅n

lng)(ω)φ(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅dμr(ω) 

where 

tj ≥ uℐ ,   tj ≥ δℐ. 

Thus, for  l > 1, we have explicit estimates. 

It remains to consider the cases l = 0, l = 1. Going back to (†), (††), we see that 

the only l = 0 term is 

 

∫ f(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅er|ω|
2 2⁄ dμr(ω)∫g(ω)(U−ω

(r)
φ)(a)dμr(a) = ∫ f(ω)g(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅φ(ω)dμr(ω)

= 〈Tfg
(r)
φ,ψ〉(r) 

 

For l = 1, we can have, for some j with 1 ≤ j ≤ n 

{
lj = 1, lj′ = 0    j

′ ≠ j 

kj = 1, kj′ = 0    j
′ ≠ j

} 

Or 

{
lj = 1, lℐ′ = 0   j

′ ≠ j

kj = 0, kℐ′ = 0   j
′ ≠ j

} 

In either case, a(k1, … , ln) in (††). Direct calculation now shows that the sum 

of the l = 1 terms is 

−r−1∫φ(ω)ψ(ω)̅̅ ̅̅ ̅̅ ̅ {∑(∂ℐf)(∂̅ℐg)

j

}dμr(ω) 

This completes the proof! 

For each a in ℂn, we have the character 

 

χa(ω) = exp{i Im  ω. a} 
 

The algebra TP(ℂn) consists of finite linear combinations of characters. The supremum norm closure 

of TP(ℂn) is exactly AP(ℂn). We also consider the algebra TP + Cc
2n+6. Clearly, 

TP + Cc
2n+6 ⊂ BC2n+6. 

Lemma (2.1.8) [75]: For g in +Cc
2n+6 , the representation 

g = t + u 

with t in TP and u in Cc
2n+6 is unique. 

Proof: On TP + Cc
2n+6, we consider the functional 

 

m(g) = lim
T→∞

(2T)−2n ∫…

T

−T

∫g(x1, 𝓎1, x2, 𝓎2…)dx1d𝓎1…d𝓎n

T

−T

 

where 𝓏ℐ = xℐ + iyℐ , xℐ , 𝓎ℐreal. It is easy to check that 

m(u) = 0 

while, for 
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t = ∑ckχak, m{gχ̅ak}

r

k−1

= ck 

Uniqueness follows. 

Theorem (2.1.9) [75]: For f, g in TP + Cc
2n+6 there is a constant c(f, g)so that for all r >0, 

 

‖Tf
(r)
Tg
(r)
− Tfg

(r)
+
1

r
T
∑(∂ℐf)(∂̅ℐg)

(r)
‖
(r)
≤ C(f, g)r−2.                                     

 

Proof: For f = t1 + u1, g = t2 + u2with tℐ in TP and uj in Cc
2n+6, it will suffice to 

check that each of the pairs (t1, t2), (t1, u2), (u1, t2), (u1, u2) satisfy (*). 

The pairs (u1, t2), (u1, u2) are handled using Theorem(2.1.7). For (t1, u2), we note that 

TF
∗ = TF̅and ∂̅jF̅ = ∂jF̅̅ ̅̅  for F in BC2n+6so that 

 

(Tt1
(r)
Tu2
(r)
− Tt1u2

(r)
+
1

r
T
∑(∂ℐt1)(∂̅ℐu2)

(r)
)
∗

= Tu̅2
(r)
Tt̅1
(r)
− Tu̅2t̅1

(r)
+
1

r
T
∑(∂ju̅2)(∂̅ℐ t̅1)

(r)
  

 

Since ‖A∗‖(r) = ‖A‖r and (u̅2, t̅1) has been handled using Theorem(2.1.7), (*) holds 

automatically for (t1, u2). 
The proof is now reduced to checking (*) for (t1, t2). By linearity, this is, in turn, 

reduced to checking (*) in the case (χa, χb). Direct calculation shows that 

 

Tχa
(r)Tχb

(r) = exp{b. a 4r⁄ }Tχa+b
(r) , 

‖Tχa
(r)
‖
(r)
= exp{− |a|2 8r⁄ } 

 

It follows that 

 

‖Tχa
(r)
Tχb
(r)
− Tχaχb

(r)
+
1

r
T
∑ (∂ℐχa)(∂̅ℐχb)j

(r)
‖
(r)
= |eb.a 4r⁄ − 1 −

b. a

4r
|  exp|− |a + b|2 8r⁄ | 

 

and routine calculation now establishes (*). 

Forf, g in +Cc
2n+6 , 

 

‖[Tf
(r)
, Tg
(r)
] −

i

r
T{f,g}
(r)
‖
(r)
≤ 2C(f, g)r−2                                  (∗∗) 

Considering the above results and the correponding results of [78] for the 

hyperbolic disc, it is plausible that, in a very general framework involving Toeplitz 

operators on Bergman spaces, the appropriate generalization of (**) holds. 

Section (2.2): Berezin-Toeplitz Deformation Quantization  

In [91] Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer drew the attention of both physical 

and mathematical communities to a well posed mathematical problem of describing and classifying 

up to some natural equivalence the formal associative differential deformations of the algebra of 

smooth functions on a manifold. 

The deformed associative product is traditionally denoted ⋆ and called star-product. If the manifold 

carries a Poisson structure, or a symplectic structure (i.e. a nondegenerate Poisson structure) or even 

more specific if the manifold is a K¨ahler manifold with symplectic structure coming from the K¨ahler 

form one naturally asks for a deformation of the algebra of smooth functions in the “direction” of the 

given Poisson structure. According to [91] this deformation is treated as a quantization of the 

corresponding Poisson manifold .Due to work of De Wilde and  Lecomte  [94] , Fedosove [98] , and 

Omori, Maeda and Yoshioka [92] it is known that every symplectic manifold admits a deformation 
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quantizationin this sense. The deformation quantizations for a fixed symplectic structure can be 

classified up to equivalence by formal power series with coefficients in two-dimensional cohomology 

of the underlying manifold, see [95], [96], [97], [91], [90]. Kontsevich [97] showed that every Poisson 

manifold admits a deformation quantization and that the equivalence classes of deformation 

quantizations on a Poisson manifold can be parametrized by the formal deformations of the Poisson 

structure. 

Despite the general existence and classification theorems it is of importance to study deformation 

quantization for manifolds with additional geometric structure and ask for deformation quantizations 

respecting in a certain sense this additional structure. Examples of this additional structure are the 

structure of a complex manifold or symmetries of the manifold. 

Another natural question is how some naturally defined deformation quantizations fit into the 

classification of all deformation quantizations. 

 We will deal with Kähler manifolds. Quantization of Kähler manifolds via symbol algebras was 

considered by Berezin in the framework of his quantization program developed in [93],[94]. In this 

program Berezin considered symbol algebras with the symbol product depending on a small 

parameter ℏ which has a prescribed semiclassical behavior as ℏ → 0 . To this end he introduced the 

covariantand contravariant symbols on Kähler manifolds. However, in order to study quantization 

via symbol algebras on Kähler manifolds he, as well as most of his successors, was forced to consider 

Kähler manifolds which satisfy very restrictive analytic conditions. These conditions were shown to 

be met by certain classes of homogeneous Kähler manifolds, e.g., 𝕔𝑛, generalized flag manifolds, 

Hermitian symmetric domains etc. The deformation quantization obtained from the asymptotic 

expansion in ℏ as ℏ → 0 of the product of Berezin’s covariant symbols on these classes of Kähler 

manifolds was studied in a number by Moreno, Ortega-Navarro ([99], [90]); Cahen, Gutt, Rawnsley 

([101], [102], [103]); see also [105]. This deformation quantization is differential and respects the 

separation of variables into holomorphic and anti-holomorphic ones in the sense that left star-

multiplication (i.e. the multiplication with respect to the deformed product) with local holomorphic 

functions is pointwise multiplication, and right star-multiplication with local anti-holomorphic 

functions is also point-wise multiplication,for the precise definition. It was shown in [102] that such 

deformation quantizations ”with separation of variables” exist for every Kähler manifold. Moreover, 

a complete classification (not only up to equivalence) of all differential deformation quantizations 

with separation of variables was given. They are parameterized by formal closed forms of type (1, 1). 

The basic results are sketched below. Independently a similar existence theorem was proven by 

Bordemann and Waldmann [97] along the lines of Fedosov’s construction. The corresponding 

classifying (1,1)-form was calculated in [96]. Yet another construction was given by Reshetikhin and 

Takhtajan in [94]. They directly derive it from Berezin’s integral formulas which are treated formally, 

i.e., with the use of the formal method of stationary phase. The classifying form of deformation 

quantization from [94] can be easily obtained by the methods developed. 

In [96] Engliš obtained asymptotic expansion of Berezin transform on a quite general class of 

complex domains which do not satisfy the conditions imposed by Berezin. 

 For general compact Kähler manifolds (M, 𝜔−1) which are quantizable, i.e. admit a quantum line 

bundle L it was shown by Bordemann, Meinrenken and Schlichenmaier [96] that the correspondence 

between the Berezin-Toeplitz operators and their contravariant symbols associated to 𝐿𝑚 has the 

correct semi-classical behavior as m → ∞. Moreover, it was shown in [95],[96], [98] that it is possible 

to define a deformation quantization via this correspondence. For this purpose one can not use the 

product of contravariant symbols since in general it can not be correctly defined. 

The approach of [96] was based on the theory of generalized Toeplitz operators due to Boutet de 

Monvel and Guillemin [98], which was also used by Guillemin [99] in his proof of the existence of 

deformation quantizations on compact symplectic manifolds. The deformation quantization obtained 

in [95],[96], which we call the Berezin-Toeplitz deformation quantization, is defined in a natural way 

related to the complex structure. It fulfils the condition to be ‘null on constants’ (i.e. 

 1 ⋆g=g⋆1= g), it is self-adjoint (i.e. 𝑓 ∗ 𝑔̅̅ ̅̅ ̅̅ ̅ = �̅� ∗ 𝑓)̅, and admits a trace of certain type (see [98] . We 

will show that the Berezin-Toeplitz deformation quantization is differential and has the property of 
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separation of variables, though with the roles of holomorphic and antiholomorphic variables 

swapped. To comply with the conventions of [82] we consider the opposite to the Berezin-Toeplitz 

deformation quantization (i.e., the deformation quantization with the opposite star-product) which is 

a deformation quantization with separation of variables in the usual sense. 

We will show how the Berezin-Toeplitz deformation quantization fits into the classification scheme 

of [82]. Namely, we will show that the classifying formal (1,1)-form of its opposite deformation 

quantization is 

 

                                          ῶ = −
1

𝑣
𝜔−1𝜔𝑐𝑎𝑛                                                  (1) 

 

where ν is the formal parameter, 𝜔−1 is the Kähler form we started with and 𝜔𝑐𝑎𝑛 is the closed 

curvature (1,1)-form of the canonical line bundle of M with the Hermitian fibre metric determined by 

the symplectic volume. Using  [103] and (1) we will calculate the classifying cohomology class 

(classifying up to equivalence) of the Berezin-Toeplitz deformation quantization. This class was first 

calculated by E. Hawkins in [100] by Ktheoretic methods with the use of the index theorem for 

deformation quantization ([107], [101]). 

In deformation quantization with separation of variables an important role is played by the formal 

Berezin transform 𝑓 ↦ 𝐼(𝑓) (see [104]). we associate to a deformation quantization with separation 

of variables also a non-associative ”formal twisted product” (ƒ, g) ↦ Q(ƒ, g). Here the images are 

always in the formal power series over the space  𝐶∞(𝑀) . In the compact Kähler case by considering 

all tensor powers 𝐿𝑚 of the line bundle L and with the help of Berezin-Rawnsley’s coherent states 

[103], it is possible to introduce for every level m the Berezin transform  𝐿(𝑚) and also some ”twisted 

product” 𝑄(𝑚). The key result is that the analytic asymptotic expansions of 𝐼(𝑚), resp. of 𝑄(𝑚) define 

formal objects which coincide with I and Q for some deformation quantization with separation of 

variables whose classifying form ῶ is completely determined in terms of the form �̃� (Theorem 

(2.2.13)). To prove this we use the integral representation of the Szegӧ kernel on a strictly 

pseudoconvex domain obtained by Boutet de Monvel and Sjӧstrand in [109] and a theorem by 

Zelditch [101] based on[109]. 

We also use the method of stationary phase and introduce its formal counterpart which we call 

”formal integral”. 

Since the analytic Berezin transform  𝐼(𝑚) has the asymptotics given by the formal 

Berezin transform it follows also that the former has the expansion 

 

                                                      𝐼(𝑚) = 𝑖𝑑 +
1

𝑚
∆ + 𝑂 (

1

𝑚2
)                                      (2) 

 

where ∆ is the Laplace-Beltrami operator on M. 

The above formal form ω is the formal object corresponding to the asymptotic expansion of the 

pullback of the Fubini-Study form via Kodaira embedding of M into the projective space related to 

𝐿(𝑚)as m → +∞. This asymptotic expansion was obtained by Zelditch in [101] as a generalization of 

a theorem by Tian [109]. 

We recall the basic notions of deformation quantization and the construction of the deformation 

quantization with separation of variables given by a formal deformation of a (pseudo-)Kähler form. 

formal integrals are introduced. Certain basic properties, like uniqueness are shown. 

the covariant and contravariant symbols are introduced. Using Berezin-Toeplitz operators the 

transformation  𝐼(𝑚) and the twisted product 𝑄(𝑚) are introduced. Integral formulas for them using 2-

point, resp. cyclic 3-point functions defined via the scalar product of coherent states are given. 

contains the key result that  𝐼(𝑚) and 𝑄(𝑚)admit a well-defined asymptotic expansion and that the 

formal objects corresponding to these expansions are given by 𝐼 and 𝑄 respectively. Finally the 

Berezin-Toeplitz star product is identified with the help of the results obtained. 

Given a vector space V , we call the elements of the space of formal Laurent series 
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with a finite principal part V [𝑣−1, 𝑣]] formal vectors. In such a way we define formal functions, 

differential forms, differential operators, etc. However we shall often call these formal objects just 

functions, operators, and so on, omitting the word formal. Now assume that V is a Hausdorff 

topological vector space and 𝑣(𝑚),𝑚 ∈ ℝ  is a family of vectors in V which admits an asymptotic 

expansion as 𝑚→ ∞, 𝑣(𝑚)~∑ (1 𝑚𝑟⁄ )𝑣𝑟
 
𝑟≥𝑟0 , where 𝑟0 ∈ ℤ. In order to associate to such asymptotic 

families the corresponding formal vectors we use the ”formalizer” 𝔽: 𝑣(𝑚) ↦ ∑ 𝑣𝑟𝑣𝑟 ∈
 
𝑟≥𝑟0

𝑉[𝑣−1, 𝑣]]. 
Let (M, 𝜔−1) be a real symplectic manifold of dimension 2𝑛. For any open subset 

U ⊂ M denote by ℱ(𝑈) = 𝐶∞(𝑈)[𝑣−1, 𝑣]] the space of formal smooth complex-valued functions on 

U. Set ℱ = 𝓕(𝑴). Denote by 𝕂 = ℂ[𝑣−1, 𝑣]] the field of formal numbers. 

A deformation quantization on (𝑀,𝜔−1) is an associative 𝕂-algebra structure on 𝓕, with the product 

⋆ (named star-product) given for 𝑓 = ∑𝑣𝑗𝑓𝑗 , 𝑔 = ∑𝑣
𝑘𝑔𝑘 ∈ ℱ by the following formula: 

                                               𝑓 ∗ 𝑔 = ∑ 𝑣𝑟 ∑ 𝐶𝑖(𝑓𝑗 , 𝑔𝑘)𝑖+𝑗+𝑘=𝑟𝑟                                    (3)          

In (3) 𝐶𝑟, 𝑟 =  0, 1, . . ., is a sequence of bilinear mappings 𝐶𝑟: 𝐶
∞(𝑀) × 𝐶∞(𝑀) → 𝐶∞(𝑀) where 

𝐶0(𝜑, 𝜓) = 𝜑𝜓and 𝐶1(𝜑, 𝜓) − 𝐶1(𝜑, 𝜓) = 𝑖{𝜑, 𝜓}for 𝜑, 𝜓 ∈ 𝐶∞(𝑀)  and {·, ·} is the Poisson 

bracket corresponding to the form 𝜔−1. 
Two deformation quantizations (ℱ,∗1) and (ℱ,∗2) on (𝑀,𝜔−1) are called equivalent if there exists 

an isomorphism of algebras 𝐵: (ℱ,∗1) → (ℱ,∗2) of the form  𝐵 = 1 + 𝑣𝐵1 + 𝑣
2𝐵2 +⋯, where 𝐵𝑘 

are linear endomorphisms of 𝐶∞(𝑀). 
We shall consider only those deformation quantizations for which the unit constant 

1 is the unit in the algebra (ℱ,⋆).  

If all 𝐶𝑟 , 𝑟 ≥ 0, are local, i.e., bidifferential operators, then the deformation quantization is called 

differential. The equivalence classes of differential deformation quantizations on (𝑀,𝜔−1) are 

bijectively parametrized by the formal cohomology classes from (1 𝑖𝑣⁄ )[𝜔−1] + 𝐻
2(𝑀, ℂ[[𝑣]]). The 

formal cohomology class parametrizing a star-product ⋆ is called the characteristic class of this star-

product and denoted 𝑐𝑙(∗). 
A differential deformation quantization can be localized on any open subset 𝑈 ⊂  𝑀. 
The corresponding star-product on (𝑈) will be denoted also ⋆. 

For 𝑓, 𝑔 ∈ 𝓕denote by 𝐿𝑓 , 𝑅𝑔 the operators of left and right multiplication by 𝑓, 𝑔 

respectively in the algebra (ℱ,⋆), so that 𝐿𝑓𝑔 = 𝑓 ∗ 𝑔 = 𝑅𝑔𝑓. The associativity of the star-product ⋆ 

is equivalent to the fact that 𝐿𝑓 commutes with 𝑅𝑔for all 𝑓, 𝑔 ∈  ℱ. If a deformation quantization is 

differential then 𝐿𝑓 , 𝑅𝑔are formal differential operators. Now let (𝑀,𝜔−1) be pseudo-Kähler, i.e., a 

complex manifold such that the form 𝜔−1 is of type (1,1) with respect to the complex structure. We 

say that a differential deformation quantization (ℱ,⋆) is a deformation quantization with separation 

of variables if for any open subset 𝑈 ⊂  𝑀 and any holomorphic function a and antiholomorphic 

function 𝑏 on 𝑈 the operators 𝐿𝑎 and 𝑅𝑏 are the operators of point-wise multiplication by 𝑎 and 𝑏 

respectively, i.e., 𝐿𝑎 = 𝑎 and 𝑅𝑏 = 𝑏. 

A formal form 𝜔 = (1 𝑣⁄ )𝜔−1 + 𝜔0 + 𝑣𝜔1 +⋯ is called a formal deformation of the form 

(1 𝑣⁄ )𝜔−1 if the forms 𝜔𝑟 , 𝑟 ≥ 0, are closed but not necessarily  nondegenerate (1,1)-forms on M. 

It was shown in [102] that all deformation quantizations with separation of variables 

on a pseudo-Kähler manifold (𝑀,𝜔−1) are bijectively parametrized by the formal deformations of 

the form (1 𝑣⁄ )𝜔−1. 
Recall how the star-product with separation of variables ⋆ on M corresponding to the formal form  

𝜔 = (1 𝑣⁄ )𝜔−1 + 𝜔0 + 𝑣𝜔1 +⋯is constructed. For an arbitrary contractible coordinate chart 𝑈 ⊂
 𝑀 with holomorphic coordinates {𝒵𝑘}letɸ = (1 𝑣⁄ )ɸ−1 + ɸ0 + 𝑣ɸ1 +⋯ be a formal potential of 

the form 𝜔 on U, i.e., 𝜔 = −𝑖𝜕𝜕ɸ̅̅ ̅̅  (notice that in [102] - [106] a potential ɸ of a closed (1,1)-form 

𝜔 is defined via the formula  𝜔 = 𝑖𝜕�̅�ɸ). 

The star-product corresponding to the form 𝜔 is such that 𝐿𝜕ɸ/𝜕𝒵𝑘 = 𝜕ɸ 𝜕𝒵𝑘⁄ + 𝜕 𝜕𝒵𝑘⁄  and 

𝑅𝜕ɸ 𝜕𝒵−𝑙⁄ = 𝜕ɸ 𝜕𝒵−𝑙⁄ + 𝜕 𝜕𝒵−𝑙⁄  on 𝑈. The set ℒ(𝑈) of all left multiplication operators on 𝑈 is 

completely described as the set of all formal differential operators commuting with the point-wise 



59 
 

multiplication operators by antiholomorphic coordinates 𝑅𝒵−𝑙 = 𝒵
−𝑙 and the operators 𝑅𝜕ɸ 𝜕𝒵−𝑙⁄ =

𝜕ɸ 𝜕𝒵−𝑙⁄ + 𝜕 𝜕𝒵−𝑙⁄  . One can immediately reconstruct the star-product on 𝑈from the knowledge of  

ℒ(𝑈). The local star-products agree on the intersections of the charts and define the global star-

product ⋆ on 𝑀. 

One can express the characteristic class 𝑐𝑙(∗)of the star-product with separation 

of variables ⋆ parametrized by the formal form ω in terms of this form (see [103]). 

Unfortunately, there were wrong signs in the formula for 𝑐𝑙(∗) in [103] which should be read as 

follows: 

 

                                             𝑐𝑙(∗) = (1 𝑖⁄ )([𝜔] − 𝜀 2)⁄                                                 (4) 
where ε is the canonical class of the complex manifold 𝑀, i.e., the first Chern class of the canonical 

holomorphic line bundle on 𝑀. 

Given a deformation quantization with separation of variables (𝓕, ⋆) on the pseudo-Kähler manifold 

(𝑀,𝜔−1), one can introduce the formal Berezin transform 𝐼 as the unique formal differential operator 

on M such that for any open subset U ⊂ M, holomorphic function a and antiholomorphic function b 

on U the relation 𝐼(𝑎𝑏) = 𝑏 ∗ 𝑎 holds (see [104]). One can check that 𝐼 = 1 + 𝑣∆ +⋯, where∆ is 

the Laplace-Beltrami operator corresponding to the pseudo-Kähler metric on 𝑀. The dual star-

product ∗̃ on M defined for f, g ∈ 𝓕 by the formula 𝑓 ∗̃ 𝑔 = 𝐼−1(𝐼𝑔 ∗ 𝐼𝑓) is a star-product with 

separation of variables on the pseudo-Kähler manifold (𝑀,−𝜔−1). For this deformation quantization 

the formal Berezin transform equals 𝐼−1, and thus the dual to ∗̃ is again *. 

Denote by �̃� = −(1 𝑣⁄ )𝜔−1 + �̃�0 + 𝑣�̃�1+…the formal form parametrizing the star-product  ∗̃. The 

opposite to the dual star-product, ⋆′ = ∗̃𝑜𝑝op, given by the formula 𝑓⋆′ g =𝐼−1(𝐼𝑓 ∗ 𝐼𝑔), also defines 

a deformation quantization with separation of variables on 𝑀 but with the roles of holomorphic and 

antiholomorphic variables swapped. Differently said, (ℱ,⋆) is a deformation quantization with 

separation of variables on the pseudo- Kähler manifold (𝑀,𝜔−1) where M is the manifold M with the 

opposite complex structure. The formal Berezin transform I establishes an equivalence of 

deformation quantizations (𝓕, ⋆) and (𝓕, ⋆′). 

Introduce the following non-associative operation Q(·, ·) on 𝓕. For 𝑓, 𝑔 ∈ 𝓕 set 

𝑄(𝑓, 𝑔)𝐼𝑓 ∗ 𝐼𝑔 = 𝐼(𝑓 ∗́ 𝑔) = 𝐼(𝑔 ∗́ 𝑓). We shall call it formal twisted product. The 

importance of the formal twisted product will be revealed later. 

A trace density of a deformation quantization (𝓕, ⋆) on a symplectic manifold 𝑀 is 

a formal volume form μ on 𝑀 for which the functional қ(𝑓) = ∫ 𝑓𝜇
 

𝑀
, 𝑓 ∈ 𝓕, has the trace property, 

κ(f ⋆g) = κ(g ⋆f) for all 𝑓, 𝑔 ∈  ℱ where at least one of the functions 𝑓, g has compact support. It 

was shown in [104] that on a local holomorphic chart (𝑈, {𝒵𝑘}) any formal trace density μ can be 

represented in the form 𝑐(𝑣) exp(ɸ𝛹) 𝑑𝒵�̅�, where 𝑐(𝑣) ∈ 𝕂 is a formal constant, 𝑑𝒵𝑑�̅� =
𝑑𝒵1…𝑑𝒵𝑛𝑑𝒵−1…𝑑𝒵−𝑛 is the standard volume on 

U and ɸ = (1 𝑣⁄ )ɸ−1 +⋯ ,𝛹 = (1 𝑣⁄ )𝛹−1 +⋯are formal potentials of the forms ω, �̃� respectively 

such that the relations 

 

𝜕ɸ 𝜕𝒵𝑘⁄ = −𝐼(𝜕𝛹 𝜕𝒵𝑘), 𝜕ɸ 𝜕𝒵−𝑙⁄⁄ = −𝐼(𝜕 𝛹 𝜕𝒵−𝑙), 𝑎𝑛𝑑ɸ−1 + 𝛹−1 = 0⁄    (5) 
 

hold. Vice versa, any such form is a formal trace density. 

Let 𝛷 = (1 𝑣⁄ )𝛷−1 + 𝛷0 + 𝑣𝛷1 +⋯and 𝜇 = 𝜇0 + 𝑣𝜇1 +⋯be, respectively, a 

smooth complex-valued formal function and a smooth formal volume form on an open set U ⊂ ℝ𝑛. 

Assume that 𝑥 ∈ U is a nondegenerate critical point of the function 𝛷−1 and 𝜇0 does not vanish at 𝑥. 

We call a 𝕂-linear functional K on ℱ(𝑈) such that 

(a) 𝐾 = 𝐾0 + 𝑣𝐾1 +⋯ is a formal distribution supported at the point 𝑥; 

(b) 𝐾0 = 𝛿𝑥is the Dirac distribution at the point 𝑥; 

(c)𝐾(1) = 1 ( normalization condition); 

(d) for any vector field 𝜉 on 𝑈 and 𝑓 ∈ ℱ(𝑈)  𝐾(𝜉𝑓 + (𝜉𝛷 + 𝑑𝑖𝑣𝜇𝜉)𝑓) = 0, a (normalized) formal 

integral at the point 𝑥 associated to the pair (∅, μ). 
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It is clear from the definition that a formal integral at a point x is independent of a 

particular choice of the neighborhood 𝑈 and is actually associated to the germs of (∅, 𝜇) at 𝑥. Usually 

we shall consider a contractible neighborhood 𝑈 such that 𝜇0 vanishes nowhere on 𝑈. 

We shall prove that a formal integral at the point x associated to the pair (∅, 𝜇) is 

uniquely determined. One can also show the existence of such a formal integral, but this fact will 

neither be used nor proved in what follows. 

We call two pairs (∅, μ) and (∅́, μ′) equivalent if there exists a formal function 𝑢 = 𝑢0 + 𝑣𝑢1 +⋯ 

on 𝑈such that, ∅ ́ = ∅ − u, μ′ = 𝑒𝑢𝜇. 

Since the expression  𝜉∅ + 𝑑𝑖𝑣𝜇𝜉remains invariant if we replace the pair (∅, μ) by an equivalent one, 

a formal integral is actually associated to the equivalence class of the pair (∅, 𝜇). This means that a 

formal integral actually depends on the product 𝑒∅𝜇 which can be thought of as a part of the integrand 

of a ”formal oscillatory integral”. It will be shown that one can directly produce formal integrals from 

the method of stationary phase. 

Notice that if 𝐾 is a formal integral associated to a pair (∅, μ) it is then associated 

to any pair (∅, 𝑐(𝜈)𝜇), where 𝑐(𝜈) is a nonzero formal constant. 

It is easy to show that it is enough to check condition (d) for the coordinate vector 

fields 𝜕 𝜕𝑥𝑘⁄  on 𝑈. Moreover, if  𝑈 is contractible and such that 𝜇0 vanishes nowhere on it, one can 

choose an equivalent pair of the form (∅́, d𝑥), where 𝑑𝑥 = 𝑑𝑥1…𝑑𝑥𝑛 is the standard volume form. 

Proposition (2.2.1)[83]: A formal integral 𝐾 = 𝐾0 + 𝑣𝐾1 +⋯ at a point 𝑥, associated to a pair (𝛷 

= (1/ν)𝛷−1 + 𝛷0 + 𝑣𝛷1. . . , μ) is uniquely determined. 

Proof: We assume that K is defined on a coordinate chart (𝑈, {𝑥𝑘}), μ = d𝑥, and take 𝑓 ∈ 𝐶∞(𝑈). 
Since 𝑑𝑖𝑣𝑑𝑥(𝜕 𝜕𝑥𝑘⁄ ) = 0, the last condition of the definition of a formal integral takes the form 

 

                             𝐾(𝜕𝑓 𝜕𝑥𝑘⁄ + (𝜕𝛷 𝜕𝑥𝑘⁄ )𝑓) = 0                                                 (6). 
 

Equating to zero the coefficient at ,𝑣𝑟 r ≥ 0, of the l.h.s. of (6) we get 𝐾𝑟(𝜕𝑓 𝜕𝑥𝑘⁄ ) +
∑ 𝐾𝑠((𝜕𝛷𝑟−𝑠 𝜕𝑥

𝑘)𝑓) = 0⁄𝑟+1
𝑠=0 , which can be rewritten as a recurrent equation 

 

                          𝐾𝑟+1((𝜕𝛷−1 𝜕𝑥
𝑘)𝑓)⁄ = 𝑟. ℎ. 𝑠                                                     (7). 

 depending on 𝐾𝑗 , j ≤ r. 

Since 𝑥 is a nondegenerate critical point of 𝛷−1, the functions 𝜕𝛷−1 𝜕𝑥
𝑘⁄  generate the ideal of 

functions vanishing at x. Taking into account that 𝐾𝑟+1(1) = 0 for r ≥0 we see from (7) that 𝐾𝑟+1 is 

determined uniquely. Thus the proof proceeds by induction. 

Let V be an open subset of a complex manifold M and Z be a relatively closed subset of V . A function 

𝑓 ∈ 𝐶∞(𝑉) is called almost analytic at Z if �̅�f vanishes to infinite order there. Two functions 𝑓1, 𝑓2 ∈
𝐶∞(𝑉) are called equivalent at Z if 𝑓1 − 𝑓2 vanishes to infinite order there. 

Consider open subsets U ⊂ ℝ𝑛 and 𝑈 ⊂ 𝕔𝑛 such that 𝑈 = 𝑈 ∩ ℝ𝑛, and a function 

𝑓 ∈ 𝐶∞(𝑈). A function 𝑓 ∈ 𝐶∞(�̃�) is called an almost analytic extension of 𝑓if it is almost analytic 

at 𝑈and 𝑓 𝑈⁄  . 

It is well known that every 𝑓 ∈ 𝐶∞(𝑈) has an almost analytic extension uniquely 

determined up to equivalence. 

Fix a formal deformation 𝜔 = (1 𝑣⁄ )𝜔−1 + 𝜔0 + 𝑣𝜔1 +⋯ of the form (1 𝑣⁄ )𝜔−1 

on a pseudo-Kähler manifold (M, 𝜔−1). Consider the corresponding star-product with separation of 

variables ⋆, the formal Berezin transform I and the formal twisted product Q on 𝑀. We are going to 

show that for any point 𝑥 ∈ 𝑀 the functional 𝐾𝑥
1(𝑓) = (𝐼𝑓)(𝑥) on 𝓕 and the functional 𝐾𝑥

𝑄
on (M 

×M) such that 𝐾𝑥
𝑄

 (f ⊗ g) = Q(f, g)(x) can be represented as formal integrals. 

Let U ⊂ M be a contractible coordinate chart with holomorphic coordinates {𝒵𝑘}Given a smooth 

function 𝑓 = (𝓏, �̅�) on U, where U is considered as the diagonal of 𝑈 = 𝑈 × 𝑈, one can choose its 

almost analytic extension 𝑓(𝓏1, �̅�1, 𝓏2, �̅�2) on 𝑈, so that 𝑓(𝓏, �̅�, 𝓏, �̅�) = 𝑓(𝓏, �̅�) It is a substitute of 

the holomorphic function 𝑓(𝓏1, �̅�2) on 𝑈 which in general does not exist. 
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Let ɸ = (1 𝑣⁄ )ɸ−1 + ɸ0 + 𝑣ɸ1 +⋯ be a formal potential of the form ω on U 

and ɸ̃ its almost analytic extension on 𝑈 . In particular , ɸ̃(𝑥, 𝑥) = ɸ(𝑥) for𝑥 ∈ 𝑈 . Introduce an 

analogue of the Calabi diastatic function on U × U by the formula 

𝐷(𝑥,𝓎) = ɸ̃(𝑥, 𝓎) + ɸ̃(𝓎, 𝑥) − ɸ(𝑥) − ɸ(𝓎). We shall also use the notation  

𝐷𝑘(𝑥, 𝓎) = ɸ̃𝑘(𝑥, 𝓎) + ɸ̃𝑘(𝓎, 𝑥) − ɸ𝑘(𝑥) − ɸ𝑘(𝓎) so that 𝐷 = (1 𝑣⁄ )𝐷−1 + 𝐷0 + 𝑣𝐷1 
Let �̃� be the formal form corresponding to the dual star-product ∗̃ of the star-product ⋆. Choose a 

formal potential   of the form �̃� on U, satisfying equation (5), so that 𝜇𝑡𝑟 = 𝑒
ɸ+𝛹𝑑𝓏𝑑�̃�is a formal 

trace density of the star-product ⋆ on U. 

Theorem (2.2.2) [83]: For any point x ∈ U the functional 𝐾𝑥
1(𝑓) = (𝐼𝑓)(𝑥) on ℱ(𝑈)is the 

formal integral at 𝑥 associated to the pair (∅𝑥 , 𝜇𝑡𝑟), where ∅𝑥(𝓎) = 𝐷(𝑥, 𝓎). 
Lemma (2.2.3) [83]: For any vector field 𝜉on U and x ∈ U 𝐼(𝜉𝑥∅

𝑥)(𝑥) = 0, where ∅𝑥(𝓎) =
𝐷(𝑥, 𝓎). 
(𝜉𝑥∅

𝑥denotes differentiation of ∅𝑥 w.r.t. the parameter x.) 

Introduce a 3-point function T on U × U × U by the formula T(x, y, 𝓏) = �̃�(x, 𝓎) + 

�̃�(𝓎,𝓏 ) + �̃�(𝓏, x) −�̃� (x) − �̃�(𝓎) − �̃�(𝓏). 

Theorem (2.2.4) [83]: For any point x ∈ U the functional 𝐾𝑥
𝑄

 on ℱ(U ×U) such that 𝐾𝑥
𝑄(𝑓⨂𝑔) =

𝑄(𝑓, 𝑔)(𝑥)  is the formal integral at the point (𝑥, 𝑥)  ∈  𝑈 ×  𝑈 associated to the pair 

(𝜓𝑥 , 𝜇𝑡𝑟⨂𝜇𝑡𝑟), where𝜓𝑥(𝓎, 𝓏) = 𝑇(𝑥, 𝓎, 𝓏). 
Let (M, 𝜔−1) be a compact K�̈�hler manifold. Assume that there exists a quantum line bundle (L, h) 

on M, i.e., a holomorphic hermitian line bundle with fibre metric h such that the curvature of the 

canonical connection on L coincides with the k�̈�hler form 𝜔−1. 

Let m be a non-negative integer. The metric h induces the fibre metric ℎ𝑚 on the tensor power 𝐿𝑚 =
𝐿⨂𝑚. Denote by 𝐿𝑛(𝐿𝑚) the Hilbert space of square-integrable of 𝐿𝑚with respect to the norm ‖𝑠‖2 =

∫ℎ𝑚(𝑠)Ω, where  Ω = (1 𝑛!⁄ )(𝜔−1)
2 is the symplectic volume form on M. The Bergman projector 

𝐵𝑚 is the orthogonal projector in 𝐿2(𝐿𝑚) onto the space 𝐿𝑚 = 𝛤ℎ𝑜𝑙(𝐿
𝑚) of holomorphic 𝐿𝑚. 

Denote by k the metric on the dual line bundle 𝜏: 𝐿∗ → 𝑀induced by h. It is a 

well known fact that 𝐷 = {𝛼 ∈ 𝐿∗|𝑘(𝛼) < 1}is a strictly pseudoconvex domain in 𝐿∗.Its boundary 

𝑋 = {𝛼 ∈ 𝐿∗|𝑘(𝛼) = 1}is a 𝑠1-principal bundle. 

The of 𝐿𝑚 are identified with the m-homogeneous functions on 𝐿∗ by means of the mapping 𝛾𝑚: 𝑠 ↦
𝜓𝑠, where 𝜓𝑠(𝛼) = 〈𝛼

⨂𝑚, 𝑠(𝑥)〉 for 𝛼 ∈ 𝐿𝑥
∗ . Here 〈. , . 〉 denotes the bilinear pairing between (𝐿∗)𝑚 

and 𝐿𝑚. 

There exists a unique 𝑆1-invariant volume form Ω̃ on X such that for every 𝑓 ∈ 𝐶∞(𝑀) the 

equality∫ (𝜏 ∗ 𝑓)Ω̃ = ∫ 𝑓Ω
 

𝑀

 

𝑋
 hold 

The mapping 𝛾𝑚 maps 𝐿2(𝐿𝑚) isometrically onto the weight subspace of 𝐿2(𝑋, Ω̃) 
of weight m with respect to the 𝑆1-action. The Hardy space ℋ ⊂ 𝐿2(𝑋, Ω̃) of square integrable traces 

of holomorphic functions on 𝐿∗ splits up into weight spaces ℋ =⊕𝑚=0
∞ ℋ𝑚, where ℋ𝑚 = 𝛾𝑚(𝐻𝑚). 

Denote by S and �̂�𝑚 the Szeg�̈� and Bergman orthogonal projections in 𝐿2(𝑋, Ω̃) 
onto ℋ and ℋ𝑚 respectively. Thus = ∑ �̃�𝑚

∞
𝑚=0  . The Bergman projection �̂�𝑚 has a smooth integral 

kernel 𝐵𝑚 = 𝐵𝑚(𝛼, 𝛽) on X × X. 

For each 𝛼 ∈  𝐿∗ means the zero removed) one can define a coherent state  𝑒𝛼
(𝑚)

as the unique 

holomorphic of 𝐿𝑚 such that for each 𝑠 ∈ 𝐻𝑚〈𝑠, 𝑒𝛼
(𝑚)〉 = 𝜓𝑠(𝛼) where 〈. , . 〉 is the hermitian scalar 

product on 𝐿2(𝐿𝑚) antilinear in the second argument.  

Since the line bundle L is positive it is known that there exists a constant 𝑚0 such 

that for m > 𝑚0 dim 𝐻𝑚> 0 and all 𝑒𝛼
(𝑚)
, 𝛼 ∈ 𝐿∗ − 0, are nonzero vectors. From now on we assume 

that m > 𝑚0 unless otherwise specified. 

The coherent state 𝑒𝛼
(𝑚)

 is antiholomorphic in α and for a nonzero 𝑐 ∈ ℂ𝑒𝑐𝛼
(𝑚)

= 𝑐−𝑚𝑒𝛼
(𝑚)

 

Notice that in [100] coherent states are parametrized by the points of L − 0. 

For 𝑠 ∈ 𝐿2(𝐿𝑚)〈𝑠, 𝑒𝛼
(𝑚)〉 = 〈𝑠, 𝐵𝑚𝑒𝛼

(𝑚)〉 = 〈𝐵𝑚𝑠, 𝑒𝛼
(𝑚)〉 = 𝜓𝐵𝑚𝑠(𝛼) 

The mapping 𝛾𝑚intertwines the Bergman projectors 𝐵𝑚and �̂�𝑚, for𝑠 ∈ 𝐿2(𝐿𝑚)𝜓𝐵𝑚𝑠 = �̂�𝑚𝜓𝑠. Thus, 
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on the one hand 〈𝑠, 𝑒𝛼
(𝑚)〉 = �̂�𝑚𝜓𝑠(𝛼) = ∫ 𝐵𝑚(𝛼, 𝛽)𝜓𝑠(𝛽)Ω̃(𝛽)

 

𝑋
 

. On the other hand, 〈𝑠, 𝑒𝛼
(𝑚)〉 = 〈𝜓𝑠 , 𝜓𝑒𝛼(𝑚)〉 = ∫ 𝜓𝑠(𝛽)𝜓𝑒(𝑚)𝛼(𝛽)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅Ω̃(𝛽)
 

𝑋
 

Taking into account that 〈𝑒𝛽
(𝑚)
, 𝑒𝛼
(𝑚)〉 = 𝜓𝑒(𝑚)𝛽

(𝛼) = 𝜓𝑒(𝑚)𝛼(𝛽)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

we finally get that 〈𝑒𝛽
(𝑚)
, 𝑒𝛼
(𝑚)〉 = 𝜓𝑒𝛽(𝑚)

(𝛼) = 𝐵𝑚(𝛼, 𝛽). In particular, 

one can extend the kernel 𝐵𝑚(𝛼, 𝛽) from X × X to a holomorphic function on(𝐿∗ − 0) × (𝐿∗ − 0)̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

such that for nonzero c, d ∈ ℂ 
 

𝐵𝑚(𝑐𝛼, 𝑑𝛽) = (𝑐�̅�)
𝑚
𝐵𝑚(𝛼, 𝛽)                                                                                   (8) 

 
 For α, β ∈ 𝐿∗ − 0 the following inequality holds 

 

|𝐵𝑚(𝛼, 𝛽)| = |〈𝑒𝛼
(𝑚)
, 𝑒𝛽
(𝑚)〉| ≤ ‖𝑒𝛼

(𝑚)‖‖𝑒𝛽
(𝑚)‖ = (𝐵𝑚(𝛼, 𝛼)𝐵𝑚(𝛽, 𝛽))

1 2⁄  (9) 

 

The covariant symbol of an operator A in the space 𝐻𝑚is the function σ(A) on M 

such that 

𝜎(𝐴) =
〈𝐴𝑒𝛼

(𝑚)
, 𝑒𝛼
(𝑚)〉

〈𝑒𝛼
(𝑚)
, 𝑒𝛼
(𝑚)〉

 

for any α ∈ 𝐿𝑥
∗ − 0. 

Denote by Mf the multiplication operator by a function 𝑓 ∈ 𝐶∞(𝑀)  

𝐿𝑚. Define the Berezin-Toeplitz operator 𝑇𝑓
(𝑚)

= 𝐵𝑚𝑀𝑓𝐵𝑚 in 𝐻𝑚. If an operator in 𝐻𝑚 is represented 

in the form 𝑇𝑓
(𝑚)

 for some function f ∈ 𝐶∞(M) then the function f is called its contravariant symbol. 

With these symbols we associate two important operations on 𝐶∞(𝑀), the Berezin 

transform 𝐼(𝑚) and a non-associative binary operation 𝑄(𝑚)which we call twisted product, as follows. 

For 𝑓, 𝑔 ∈ 𝐶∞(𝑀)𝐼𝑚𝑓 = 𝜎(𝑇𝑓
(𝑚)
), 𝑄(𝑚)(𝑓, 𝑔) = 𝜎(𝑇𝑓

(𝑚)
𝑇𝑔
(𝑚)
) .We are going to show that both I(m) 

and Q(m) have asymptotic expansions in 1/m as m → +∞, such that if the asymptotic parameter 1/m 

in these expansions is replaced by the formal parameter ν then we get the formal Berezin transform I 

and the formal twisted product Q corresponding to some deformation quantization with separation of 

variables on (M, 𝜔−1) which can be completely identified. We shall mainly be interested in the 

opposite to its dual deformation quantization. We show that it coincides with the Berezin-Toeplitz 

deformation quantization obtained in [106],[108]. 

In order to obtain the asymptotic expansions of 𝐼(𝑚) and 𝑄(𝑚) we need their integral representations. 

To calculate them it is convenient to work on X rather than on M. 

We shall use the fact that for  𝑓 ∈ 𝐶∞(𝑀), 𝑠 ∈ 𝜞(𝑳𝒎),𝝍𝑴𝒇𝒔 = (𝓣 ∗ 𝒇).𝝍𝒔 for 𝒙 ∈ 𝑴denote by 𝑋𝑥 

the fibre of the bundle X over x, 𝑋𝑥 = 𝒯
−1(𝑥) ∩ 𝑋. For x, y, z ∈ M choose 𝛼 ∈ 𝑋𝑥 , 𝛽 ∈ 𝑋𝓎 , 𝛾 ∈

𝑋𝓏and set 

 

𝑢𝑚(𝑥) = 𝐵𝑚(𝛼, 𝛼), 𝑣𝑚(𝑥, ) = 𝐵𝑚(𝛼, 𝛽)𝐵𝑚(𝛽, 𝛼),𝓌𝑚(𝑥, ) =
𝐵𝑚(𝛼, 𝛽)𝐵𝑚(𝛽, 𝛾)𝐵𝑚(𝛾, 𝛼)                                                                                               (10). 
 

It follows from (8) that 𝑢𝑚(𝑥), 𝑣𝑚(𝑥, 𝓎),𝓌𝑚(𝑥, 𝓎, 𝓏) do not depend on the choice of α, β, γ and thus 

relations (10) correctly define functions 𝑢𝑚, 𝑣𝑚,𝓌𝑚. The function 𝓌𝑚 is the so called cyclic 3-point 

function studied in [102]. Notice that  

𝑢𝑚(𝑥) = 𝐵𝑚(𝛼, 𝛼) = ‖𝑒𝛼
(𝑚)
‖
2
≥ 0, 𝑣𝑚(𝑥, 𝓎) = 𝐵𝑚(𝛼, 𝛽)𝐵𝑚(𝛽, 𝛼) = |𝐵𝑚(𝛼, 𝛽)|

2 ≥ 0 and 

 

                           |𝓌𝑚(𝑥, 𝓎, 𝓏)|
2 = 𝑣𝑚(𝑥, 𝓎)𝑣𝑚(𝓎, 𝓏)𝑣𝑚(𝓏, 𝑥)                                  (11) 
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It follows from (9) that 

 

                                             𝑣𝑚(𝑥, 𝓎) ≤ 𝑣𝑚(𝑥)𝑣𝑚(𝓎)                                                   (12) 
 

For 𝛼 ∈ 𝑋𝑥 we have  

 

(𝐼(𝑚)𝑓)(𝑥) = 𝜎(𝑇𝑓
(𝑚)
)(𝑥) =

〈𝑇𝑓
(𝑚)
𝑒𝛼
(𝑚)
, 𝑒𝛼
(𝑚)〉

〈𝑒𝛼
(𝑚
, 𝑒𝛼
(𝑚)〉

=
〈𝐵𝑚𝑀𝑓𝐵𝑚𝑒𝛼

(𝑚)
, 𝑒𝛼
(𝑚)〉

𝐵𝑚(𝛼, 𝛼)
=
〈𝑀𝑓𝑒𝛼

(𝑚)
, 𝑒𝛼
(𝑚)〉

𝐵𝑚(𝛼, 𝛼)

=
〈(𝜏 ∗ 𝑓)𝜓𝑒𝛼(𝑚) , 𝜓𝑒𝛼(𝑚)〉

𝐵𝑚(𝛼, 𝛼)
=

1

𝐵𝑚(𝛼, 𝛼)
∫(𝜏 ∗ 𝑓)𝜓𝑒𝛼(𝑚)(𝛽)𝜓𝑒𝛼(𝑚)

(𝛽)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ Ω̃(𝛽)

 

𝑋

=
1

𝐵𝑚(𝛼, 𝛼)
∫𝐵𝑚(𝛼, 𝛽)𝐵𝑚(𝛽, 𝛼)(𝜏 ∗ 𝑓)(𝛽)Ω̃(𝛽)

 

𝑋

=
1

𝑣𝑚(𝑥)
∫𝑣𝑚(𝑥, 𝓎)𝑓(𝓎)Ω(𝓎)

 

𝑀

                                      (13) 

 

Similarly we obtain that 

 

𝑄𝑚(𝑓, 𝑔)(𝑥) =
1

𝐵𝑚(𝛼, 𝛼)
∫ 𝐵𝑚(𝛼, 𝛽)𝐵𝑚(𝛽, 𝛾)𝐵𝑚(𝛾, 𝛼)(𝜏 ∗ 𝑓)(𝛽)(𝜏 ∗ 𝑔)(𝛾)Ω̃(𝛽)Ω̃(𝛾)

 

𝑋×𝑋

=
1

𝑣𝑚(𝑥)
∫  

 

𝑀×𝑀

𝓌𝑚(𝑥, 𝓎, 𝓏)𝑓(𝓎)𝑔(𝓏)Ω(𝓎)Ω(𝓏) (14) 

 

In [109] a microlocal description of the integral kernel S of the Szeg�̈�  projection S 

was given. The results in [109] were obtained for a strictly pseudoconvex domain with a smooth 

boundary in 𝕔𝑛+1. However, according to [109], these results are still valid for the domain D in 𝐿∗ 
(see also [106], [101]). 

It was proved in [109] that the Szeg�̈� kernel S is a generalized function on X × X 

singular on the diagonal of X × X and smooth outside the diagonal. The Szeg�̈� kernel S can be 

expressed by the Bergman kernels 𝐵𝑚 as follows, 𝑺 = ∑ 𝐵𝑚𝑚≥0 , where the sum should be understood 

as a sum of generalized functions. 

For (𝛼, 𝛽)  ∈  𝑋 ×  𝑋 and θ ∈ ℝ set 𝑟𝜃(𝛼, 𝛽) = (𝑒
𝑖𝜃𝛼, 𝛽). Since each ℋ𝑚 is a weight 

space of the 𝑆1-action in the Hardy space ℋ, one can recover 𝐵𝑚from the Szeg�̈� kernel, 

                                         𝐵𝑚 =
1

2𝜋
∫ 𝑒−𝑖𝑚𝜃𝑟𝜃

∗𝑆𝑑𝜃
2𝜋

0
                                                         (15). 

 

This equality should be understood in the weak sense. 

Let 𝐸1, 𝐸2be closed disjoint subsets of M. Set 𝐹𝑖 = 𝜏
−1(𝐸𝑖) ∩ 𝑋, 𝑖 = 1,2. Thus 

𝐹1, 𝐹2 are closed disjoint subsets of X or, equivalently, 𝐹1 × 𝐹2 is a closed subset of 

X × X which does not intersect the diagonal. For S and 𝐵𝑚 considered as smooth 

functions outside the diagonal of X×X equality (15) holds in the ordinary sense, from whence it 

follows immediately that 

 

                                               |𝐵𝑚| = 𝑂 (
1

𝑚𝑁
)𝐹1×𝐹2

𝑠𝑢𝑝
                                                     (16) 

 

for any N ∈ ℕ. 

Now let E be a closed subset of M and x ∈ M \ E. Then (16) implies that 
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                                          𝑣𝑚(𝑥, 𝓎) = 𝑂 (
1

𝑚𝑁
)𝓎∈𝐸

𝑠𝑢𝑝
                                                        (17) 

 

for any N ∈ ℕ. 

In [101] Zelditch proved that the function 𝑢𝑚 on M expands in the asymptotic series 

𝑢𝑚~𝑚
𝑟 ∑ (1 𝑚𝑟⁄ )𝑏𝑟𝑟≥0  as m → +∞, where 𝑏0 = 1(𝑛 = (1 2⁄ ) 𝑑𝑖𝑚ℝ𝑀 . More precisely, he proved 

that for any k,N ∈ ℕ 
 
                                 |𝑢𝑚 − ∑ 𝑚𝑛−𝑟𝑏𝑟

𝑁−1
𝑟=0 |𝐶𝑘 = 𝑂(𝑚

𝑛−𝑁)                                               (18) 
 

Therefore 

 

                                           
1

𝑢𝑚
𝑀

𝑠𝑢𝑝
𝑂 (

1

𝑚𝑛
)                                                                         (19) 

 

Using (13),(17) and (19) it is easy to prove the following proposition. 

Proposition (2.2.5) [83]: Let 𝑓 ∈ 𝐶∞(𝑀) be a function vanishing in a neighborhood of a 

point x ∈ M. Then |(𝐼(𝑚)𝑓)(𝑥)| = 𝑂(1 𝑚𝑁⁄ )for any N ∈ ℕ, i.e., (𝐼(𝑚)𝑓)(𝑥) is rapidly decreasing as 

m → +∞. 

Thus for arbitrary 𝑓 ∈ 𝐶∞(𝑀) and x ∈ M the asymptotics of (𝐼(𝑚)𝑓)(𝑥)as 𝑚 →  +∞ 

depends only on the germ of the function f at the point x. 

Let E be a closed subset of M. Fix a point x ∈ M \ E. The function 𝓌𝑚(𝑥, 𝔂, 𝔃) 
with 𝓎 ∈ E can be estimated using (11) and (12) as follows. 

 

                 |𝓌𝑚(𝑥, 𝓎, 𝓏)|
2 ≤ 𝑣𝑚(𝑥, 𝓎)𝑢𝑚(𝑥)𝑢𝑚(𝓎)(𝑢𝑚(𝓏))

2
                                  (20). 

 

Using (17), (18) and (20) we obtain that for any N ∈ ℕ 
 

                                         |𝓌𝑚(𝑥, 𝓎, 𝓏)|𝓎∈𝐸,𝓏∈𝑀
𝑠𝑢𝑝

= 𝑂 (
1

𝑚𝑁
)                                   (21) 

 

Similarly, 

 

                               |𝓌𝑚(𝑥, 𝓎, 𝓏)| = 𝑂 (
1

𝑚𝑁
)𝓎∈𝐸,𝓏∈𝐸

𝑠𝑢𝑝
                                            (22) 

 

for any N ∈ ℕ. 

Using (14), (19), (21) and (22) one can readily prove the following proposition. 

Proposition (2.2.6) [83]: For x ∈ M and arbitrary functions 𝑓, 𝑔 ∈ 𝐶∞(𝑀) such that f or g 

vanishes in a neighborhood of x Q(m)(f, g)(x) is rapidly decreasing as m → +∞. 

This statement can be reformulated as follows. For arbitrary 𝑓, 𝑔 ∈ 𝐶∞(𝑀) and 

x ∈ M the asymptotics of 𝑄(𝑚)(𝑓, 𝑔)(𝑥) as m → +∞ depends only on the germs of the functions 𝑓, 𝑔 

at the point 𝑥. 

We are going to show how formal integrals can be obtained from the method of 

stationary phase. 

Let ∅ be a smooth function on an open subset U ⊂ M such that (i) Re ∅ ≤ 0; 

(ii) there is only one critical point 𝑥𝑐 ∈ U of the function ∅, which is moreover a 

nondegenerate critical point; (iii) ∅(𝑥𝑐) = 0. 

Consider a classical symbol 𝜌(𝑥,𝑚) ∈ 𝑆0(𝑈 × ℝ) (see [101] for definition and notation) which has 

an asymptotic expansion 𝜌~∑ (1 𝑚𝑟)𝜌𝑟(𝑥)⁄𝑟≥0  such that 𝜌0(𝑥𝑐) ≠ 0, and a smooth nonvanishing 

volume form dx on U. Set 𝜇(𝑚) = 𝜌(𝑚, 𝑥)𝑑𝑥. 

We can apply the method of stationary phase with a complex phase function (see 
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[101] and [108]) to the integral 

 

                                                  𝑆𝑚(𝑓) = ∫𝑒
𝑚∅𝑓𝜇(𝑚)

 

𝑈

                                          (23) 

 

Where 𝑓 ∈ 𝐶0
∞(𝑀). Notice that the phase function in (23) is (1 𝑖⁄ )∅ so that the condition ((1 𝑖⁄ )) ≥

0is satisfied. 

Taking into account that 𝑑𝑖𝑚ℝ𝑀 = 2𝑛and ∅(𝑥𝑐) = 0 we obtain that 𝑆𝑚(𝑓) expands to an asymptotic 

series𝑆𝑚(𝑓)~∑ (1 𝑚𝑛+𝑟⁄ )�̃�𝑟(𝑓)
∞
𝑟=0  as m → +∞. Here 𝐾𝑟 , 𝑟 ≥ 0 are distributions supported at 𝑥𝑐and 

𝐾0 = 𝑐𝑛𝛿𝑥𝑐 , where 𝑐𝑛 is a nonzero constant. Thus𝔽(𝑆𝑚(𝑓)) = 𝑣
𝑛�̃�(𝑓), where 𝔽 is the ”formalizer” 

introduced and 𝐾is the functional defined by the formula�̃� = ∑ 𝑣𝑟�̃�𝑟𝑟≥0 . Consider the normalized 

functional 𝐾(𝑓) = 𝐾 (𝑓) 𝐾(1)⁄ , so that K(1) = 1. Then𝔽(𝑆𝑚(𝑓)) = 𝑐(𝑣)𝐾(𝑓), where 𝑐(𝑣) =

𝑣𝑛𝑐𝑛 +⋯is a formal constant. 

Proposition (2.2.7) [83]: For 𝑓 ∈ 𝐶0
∞(𝑈) given by (23) expands in an asymptotic 

series in 1/𝑚 𝑎𝑠 𝑚 →  +∞. 𝔽(𝑆𝑚(𝑓)) = 𝑐(𝑣)𝐾(𝑓), where K is the formal integral at the point xc 

associated to the pair ((1/𝜈)∅, (𝜇)) 𝑎𝑛𝑑 𝑐(𝜈) is a nonzero formal constant. 

Proof: Conditions (a-c) of the definition of formal integral are satisfied. It remains to check condition 

(d). Let ξ be a vector field on U. Denote by 𝐿𝜉  the corresponding Lie derivative. We have 0 =

∫ 𝐿𝜉 (𝑒
𝑚∅𝑓𝜇(𝑚)) = ∫ 𝑒𝑚∅(𝜉𝑓 + (𝑚𝜉∅ + 𝑑𝑖𝑣𝜇𝜉)𝑓)𝜇(𝑚)

 

𝑈

 

𝑈
 

Applying 𝔽 we obtain that 0 = 𝔽(∫ 𝑒𝑚∅(𝜉𝑓 + (𝑚𝜉∅ + 𝑑𝑖𝑣𝜇𝜉
 

𝑈
)𝑓)𝜇(𝑚)) = 𝑐(𝑣)𝐾(𝜉𝑓 +

(𝜉((1 𝑣⁄ )∅) + 𝑑𝑖𝑣𝔽(𝜇)𝜉)𝑓), which concludes the proof. 

We get an asymptotic expansion of the Bergman kernel 𝐵𝑚 in a 

neighborhood of the diagonal of X × X as m → +∞. An asymptotic expansion of 

𝐵𝑚 on the diagonal of X × X was obtained in [101]. As in [111], we use the integral representation of 

the Szeg�̈� kernel S given by the following theorem. We denote 𝑛 = 𝑑𝑖𝑚ℂ𝑀. 

Theorem (2.2.8) [83]: Let S(α, β) be the Szeg�̈� kernel of the boundary X of the bounded strictly 

pseudoconvex domain D in the complex manifold 𝐿∗. There exists a classical symbol 𝑎 ∈ 𝑆𝑛(𝑋 × 𝑋 ×
ℝ+)which has an asymptotic expansion 

𝛼(𝛼, 𝛽, 𝑡)~∑𝑡𝑛−𝑘𝑎𝑘(𝛼, 𝛽)

∞

𝑘=0

 

so that 

 

                          𝑆(𝛼, 𝛽) = ∫ 𝑒𝑖𝑡𝜑(𝛼,𝛽)𝑎(𝛼, 𝛽, 𝑡)𝑑𝑡
∞

0
                                     (24), 

 

where the phase 𝜑(𝛼, 𝛽) ∈ 𝐶∞(𝐿∗ × 𝐿∗) is determined by the following properties: 

•𝜑(𝛼, 𝛼) = (1 𝑖⁄ )(𝑘(𝛼) − 1); 
• �̅�𝛼𝜑 and 𝜕𝛽𝜑 vanish to infinite order along the diagonal; 

•𝜑(𝛼, 𝛽) = −𝜑(𝛽, 𝛼)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

The phase function 𝜑 is thus almost analytic at the diagonal of 𝐿∗ × 𝐿∗̅. It is 

determined up to equivalence at the diagonal. 

Fix an arbitrary point 𝑥0 ∈ 𝑀. Let s be a local holomorphic frame of 𝐿∗ over a 

contractible open neighborhood U ⊂ M of the point 𝑥0 with local holomorphic coordinates {𝓏𝑘} . 

Then 𝛼(𝑥) = 𝑠(𝑥) √𝑘(𝑠(𝑥))⁄ is a smooth of X over U. Set 𝛷−1(𝑥) = log 𝑘(𝑠(𝑥)), so that 

 

                                               𝛼(𝑥) = 𝑒(−1 2⁄ )𝛷−1(𝑥)𝑠(𝑥)                                             (25) 
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It follows from the fact that L is a quantum line bundle (i.e., that 𝜔−1 is the curvature form of the 

Hermitian holomorphic line bundle L) that 𝛷−1 is a potential of the form 𝜔−1 on U. 

Let�̃�−1(𝑥, 𝓎) ∈ 𝐶
∞(𝑈 × 𝑈) be an almost analytic extension of the potential 𝛷−1 from the diagonal 

of U × 𝑈. Denote 𝐷−1(𝑥, 𝓎) ≔ �̃�−1(𝑥, 𝓎) + �̃�−1(𝓎, 𝑥) − 𝛷−1(𝑥) − 𝛷−1(𝓎), 
Since �̃�−1(𝑥, 𝑥) = 𝛷−1(𝑥), we have 𝐷−1(𝑥, 𝑥) = 0. In local coordinates 

 

                     𝐷−1(𝑥, 𝓎) = −𝑄𝑥0(𝑥 − 𝓎) − 𝑂(|𝑥 − 𝓎|
3)                                     (26) 

 

Where 

𝑄𝑥0(𝓏) =∑
𝜕2𝛷−1
𝜕𝓏𝑘𝜕𝓏−𝑙

(𝑥0)𝓏
𝑘𝓏−𝑙 

is a positive definite quadratic form (since 𝜔−1 is a K�̈�hler form). 

The following statement is an immediate consequence of (26). 

Lemma (2.2.9) [83]: There exists a neighborhood U′ ⊂ U of the point 𝑥0 such that for any two 

different points x, 𝓎∈ U′ one has Re𝐷−1 (x, 𝓎) < 0. 

Taking, if necessary, (1 2⁄ )(�̃�−1(𝑥, 𝓎) + �̃�−1(𝓎, 𝑥)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)instead of �̃�−1(𝑥, 𝓎) choose �̃�−1 such that 

�̃�−1(𝓎, 𝑥) = �̃�−1(𝑥, 𝓎)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Replace U by a smaller neighborhood (retaining for it the notation U) such 

that 𝑅𝑒𝐷−1(𝑥, 𝓎) < 0for any different x, 𝓎 from this neighborhood. 

For a point α in the restriction 𝐿∗ 𝑈⁄  of the line bundle 𝐿∗ to U represented in the 

form 𝛼 = 𝑣𝑠(𝑥) with v ∈ ℂ, x ∈ U one has 𝑘(𝛼) = |𝑣|2𝑘(𝑠(𝑥)). 
One can choose the phase function 𝜑(𝛼, 𝛽) in (24) of the form 

 

                               𝜑(𝛼, 𝛽) = (1 𝑖⁄ )(𝑣�̅�𝑒�̃�−1(𝑥,𝓎) − 1)                             (27) 

Where 𝑣 = 𝑣𝑠(𝑥), 𝛽 = 𝓌𝑠(𝓎) ∈ 𝐿
∗

𝑈⁄  

Denote(𝜒(𝑥, 𝓎) ≔ �̃�−1(𝑥, 𝓎) − (1 2⁄ )𝛷−1(𝑥) − (1 2⁄ )𝛷−1(𝓎). Notice that χ(x,x)= 0. 

The following theorem is a slight generalization of Theorem 1 from [101]. 

Theorem (2.2.10) [83]: There exists an asymptotic expansion of the Bergman kernel 𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) 
on U × U as m → +∞, of the form 

 

            𝐵𝑚(𝛼(𝑥), 𝛼(𝓎))~𝑚
𝑛𝑒𝑚𝜒(𝑥,𝓎)∑(1 𝑚𝑟⁄ )�̃�𝑟(𝑥, 𝓎)

𝑟≥0

                          (28) 

 

such that (i) for any compact E ⊂ U × U and N ∈ ℕ 
 

 ()∈𝐸
𝑠𝑢𝑝 |𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) − 𝑚

𝑛𝑒𝑚𝜒(𝑥,𝓎)∑(1 𝑚𝑛)�̃�𝑟(𝑥, 𝓎)⁄

𝑁−1

𝑟=0

| = 𝑂(𝑚𝑛−𝑁)           (29) 

 

 (ii)�̃�𝑟(𝑥, 𝓎) is an almost analytic extension of 𝑏𝑟(𝑥) from the diagonal of U×U, where 𝑏𝑟 , 𝑟 > 0, are 

given by (18); in particular, �̃�0(𝑥, 𝑥). 
Proof: Using integral representations (15) and (24) one gets for x, 𝓎 ∈ U 

 

𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) =

                        
1

2𝜋
∫  ∫ 𝑒−𝑖𝑚𝜃𝑒𝑖𝑡𝜑(𝑟𝜃𝛼(𝑥),𝛼(𝓎))𝑎(𝑟𝜃𝛼(𝑥), 𝛼(𝓎), 𝑡)𝑑𝜃𝑑𝑡                (30)

∞

0

2𝜋

0
. 

 

Changing variables 𝑡 ⟼ 𝑚𝑡 in (30) gives 

 

𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) =
𝑚

2𝜋
∫  ∫ 𝑒𝑖𝑚(𝑡𝜑(𝑟𝜃𝛼(𝑥),𝛼(𝓎))−𝜃)𝑎(𝑟𝜃𝛼(𝑥), 𝛼(𝓎),𝑚𝑡)𝑑𝜃𝑑𝑡

∞

0

2𝜋

0

 (31) 
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In order to apply the method of stationary phase to the integral in (31) the following preparations 

should be made. 

Using (27) and (25) express the phase function of the integral in (31) as follows: 

 

          𝑍(𝑡, 𝜃; 𝑥, 𝓎) ≔ 𝑡𝜑(𝑟𝜃𝛼(𝑥), 𝛼(𝓎)) − 𝜃 = (𝑡 𝑖⁄ )(𝑒
𝑖𝜃𝑒𝜒(𝑥,𝓎) − 1) − 𝜃       (32) 

 

In order to find the critical points of the phase Z (with respect to the variables (t,θ); 

the variables (x, 𝓎) are parameters) consider first the equation 

 

              𝜕𝑡𝑍(𝑡, 𝜃; 𝑥, ) = (1 𝑖⁄ )(𝑒𝑖𝜃𝑒𝜒(𝑥,𝓎) − 1) = 0                                                        (33)   
  

It follows from 𝛷−1(𝓎, 𝑥) = �̃�−1(𝑥, 𝓎)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ that 𝑅𝑒𝝌(𝒙, 𝔂) = (𝟏 𝟐⁄ )𝑫−𝟏(𝒙,𝔂). Since 𝐷−1(𝑥, 𝓎) < 0 

for 𝑥 ≠ 𝓎 one has |𝑒𝜒(𝑥,𝓎)| = 𝑒𝑅𝑒𝜒(𝑥,𝓎) < 1for 𝑥 ≠ 𝓎 whence it follows that (33) holds only if x = 

𝓎 and thus Z has critical points only if x = 𝓎. Since χ(x, x) = 0 one gets that 𝜕𝑡𝑍(𝑡, 𝜃; 𝑥, 𝑥) =
(1 𝑖⁄ )(𝑒𝑖𝜃 − 1) and𝜕𝜃𝑍(𝑡, 𝜃; 𝑥, 𝑥) = 𝑡𝑒

𝑖𝜃 − 1. As in the proof of Theorem 1 from [101], one shows 

that for each x ∈ U the only critical point of the phase function Z(t, θ; x, x) is (t = 1, θ = 0). It does 

not depend on x and, moreover, is nondegenerate. One has 𝐼𝑚𝑍(𝑡, 𝜃; 𝑥, 𝓎) =

𝐼𝑚 ((1 𝑖⁄ )(𝑒𝑖𝜃𝑒𝜒(𝑥,𝓎) − 1) − 𝜃) = 𝑡(1 − 𝑅𝑒(𝑒𝑖𝜃𝑒𝜒(𝑥,𝓎))) ≥ 0 since |𝑒𝜒(𝑥,𝓎)| ≤ 1. 

Finally, a simple calculation shows that the germs of the functions Z(t, θ; x, 𝓎) and 

(1/i)χ(x, 𝓎) at the point (t = 1, θ = 0, x = 𝑥0, 𝓎 = 𝑥0) are equal modulo the ideal 

generated by 𝜕𝑡𝑍 and 𝜕𝜃𝑍. 

Applying now the method of stationary phase to the integral in (31) one obtains the expansion (28) 

satisfying (29). 

It follows from (18) and (10) that �̃�𝑟(𝑥, 𝑥) = 𝑏𝑟and �̃�0(𝑥, 𝑥) = 𝑏0(𝑥) = 1. It remains to show that all 

�̃�𝑟 , 𝑟 ≥ 0, are almost analytic along the diagonal of U × �̅�. 

One has 

𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) = 𝑒
(−𝑚 2⁄ )(𝛷−1(𝑥)+𝛷−1(𝓎))𝐵𝑚(𝑠(𝑥), (𝑠(𝓎)) 

The function 𝐵𝑚(𝑠(𝑥), 𝑠(𝓎)) is holomorphic on U×𝑈. Let ξ and η be arbitrary holomorphic 

and ant holomorphic vector fields on U, respectively. Then 𝜉𝓎𝐵𝑚(𝑠(𝑥), 𝑠(𝓎)) 

and 𝜂𝑥𝐵𝑚(𝑠(𝑥), 𝑠(𝓎)) = 0 (the subscripts x, y show in which variable the vector field acts). Thus 

(𝜂𝑥 +
𝑚

2
𝜂𝑥𝛷−1(𝑥))𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) = 𝑒

(−𝑚 2⁄ )𝛷−1(𝑥)𝜂𝑥𝑒
(𝑚 2⁄ )𝛷−1(𝑥)𝐵𝑚(𝛼(𝑥), (𝓎)) = 0 

 

Analogously (𝜉𝓎 + (𝑚 2⁄ )𝜉𝓎𝛷−1(𝑥))𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) = 0.Let 𝐴𝑁 be a product of N derivations on 

U ×U. Then, using integral representation (31), expand 0 = 𝐴𝑁(𝜂𝑥 +
(𝑚 2⁄ )𝜂𝑥𝛷−1(𝑥))𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) 
 to the asymptotic series 

𝐴𝑁(𝜂𝑥 +
𝑚

𝑛
𝜂𝑥𝛷−1(𝑥))(𝑚

𝑛𝑒𝑚𝜒(𝑥,𝓎)∑(1 𝑚𝑟)�̃�𝑟(𝑥, 𝓎)) = 𝑒
𝑚𝜒(𝑥,𝓎)∑(1 𝑚𝑟)𝑐𝑟(𝑥, 𝓎)⁄

𝑟≥𝑟0

⁄

𝑟≥0

 (34) 

 

for some 𝑐𝑟 ∈ 𝐶
∞(𝑈 × 𝑈) and 𝑟0 ∈ ℤ, and with the norm estimate of the partial sums in the 𝑟. ℎ. 𝑠. 

term in (34) analogous to (29). Since χ(x, x) = 0 one gets that all𝑐𝑟(𝑥, 𝑥) = 0. From this fact one can 

prove by induction over N that 𝜂𝑥�̃�𝑟 vanishes to infinite order at the diagonal of U × U. Similarly,  

𝜉𝓎�̃�𝑟vanishes to infinite order at the diagonal. Thus �̃�𝑟 is almost analytic along the diagonal. 

Choose a symbol 𝑏(𝑥, 𝓎,𝑚) ∈ 𝑆0((𝑈 × 𝑈) × ℝ) such that it has the asymptotic 

Expansion 𝑏~∑ (1 𝑚𝑟)�̃�𝑟⁄∞
𝑟=0 . Then 𝐵𝑚(𝛼(𝑥), 𝛼(𝓎)) is asymptotically equivalent to 

𝑚𝑛𝑒𝑚𝜒(𝑥,𝓎)𝑏(𝑥, 𝓎,𝑚)on 𝑈 ×  𝑈. One 𝜒(𝑥, 𝓎) + 𝝌(𝔂, 𝒙) = �̃�−𝟏(𝒙,𝔂) + �̃�−𝟏(𝔂, 𝒙) − 𝜱−𝟏(𝒙) −
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𝜱−𝟏(𝔂) = 𝑫−𝟏(𝒙,𝔂) and 𝝌(𝒙,𝔂) + 𝝌(𝔂, 𝔃) + 𝝌(𝔃, 𝒙) = �̃�−𝟏(𝒙,𝔂) + �̃�−𝟏(𝔂, 𝔃) +
�̃�−𝟏(𝔃, 𝒙) − 𝜱−𝟏(𝒙) − 𝜱−𝟏(𝔂) − 𝜱−𝟏(𝔃) 
(the last equality is the definition of 𝑇−1). Thus the functions 

𝑣𝑚(𝑥, 𝓎) = 𝐵𝑚(𝛼(𝑥), 𝛼(𝓎))𝐵𝑚(𝛼(𝓎), 𝛼(𝑥))and  

𝓌𝑚(𝑥, 𝓎, 𝓏) = 𝐵𝑚(𝛼(𝑥), 𝛼(𝓎))𝐵𝑚(𝛼(𝓎), 𝛼(𝓏))𝐵𝑚(𝛼(𝓏), 𝛼(𝑥)) 
are asymptotically equivalent to 

𝑚2𝑛𝑒𝑚𝐷−1(𝑥,𝓎)𝑏(𝑥, 𝓎,𝑚)𝑏(𝓎, 𝑥,𝑚)and𝑚2𝑛𝑒𝑚𝑇−1(𝑥,𝓎,𝓏)𝑏(𝑥, 𝓎,𝑚)𝑏(𝓎, 𝓏,𝑚)𝑏(𝓏, 𝑥, 𝑚) 
respectively. It is easy to show that for the functions ∅−1

𝑥 (𝓎) = 𝐷−12(𝑥, 𝓎) 
and 𝜓−1

𝑥 (𝑥, 𝓎, 𝓏) = 𝑇−1(𝑥, 𝓎, 𝓏) the points 𝓎 = x and (𝓎,𝓏) = (x, x) respectively are nondegenerate 

critical ones. 

Since �̃�0(𝑥, 𝑥) = 0 one can take a smaller contractible neighborhood V ⋐ U of 𝑥0 such that�̃�0(𝑥, 𝓎) 
does not vanish on the closure of V ×V . One can choose V such that for any x ∈ V the only critical 

points of the functions ∅−1
𝑥 (𝓎) on V and ∅−1

𝑥 (𝓎, 𝓏) onV × V are 𝓎 = x and (𝓎,) = (x, x) respectively. 

The identity 𝑇−1(𝑥, 𝓎, 𝓏) = (1 2⁄ )(𝐷−1(𝑥, 𝓎) + 𝐷−1(𝓎, 𝓏) + 𝐷−1(𝓏, 𝑥))implies that 

𝑅𝑒𝑇−1(𝑥, 𝓎, 𝓏) ≤ 0for x, 𝓎,∈ V . 

The symbol b(x, 𝓎,m) does not vanish on V × V for sufficiently big values of m. It 

follows from (18) that 1 𝑢𝑚(𝑥)⁄ and (𝑚𝑛𝑏(𝑥, 𝑥, 𝑚))−1are asymptotically equivalent for x ∈ V . 

Denote 

 

𝜇𝑥(𝑚) =
𝑏(𝑥, 𝓎,𝑚)𝑏(𝓎, 𝑥,𝑚)

𝑏(𝑥, 𝑥, 𝑚)
Ω(𝓎), 𝜇𝑥(𝑚) =

𝑏(𝑥, 𝓎,𝑚)𝑏(𝓎, 𝓏,𝑚)

𝑏(𝑥, 𝑥, 𝑚)
Ω(𝓎)Ω(𝓏)  (35) 

 

Taking into account (13) we get for 𝑓, 𝑔 ∈ 𝐶0
∞(𝑉)and x ∈ V the following asymptotic equivalences, 

 

(𝐼𝑚𝑓)(𝑥)~𝑚𝑛 ∫ 𝑒𝑚∅−1
𝑥
𝑓𝜇𝑥(𝑚)

 

𝑉
and 

                             𝑄(𝑚)(𝑓, 𝑔)(𝑥)~𝑚2𝑛∫ 𝑒𝑚𝜓−1
𝑥
(𝑓⨂𝑔)𝜇𝑥(𝑚)

 

𝑉×𝑉

                           (36) 

 

(In(36) (𝑓⨂𝑔)(𝓎, 𝓏) = 𝑓(𝓎)𝑔(𝓏).) 

Applying Proposition (2.2.7) to the first integral in (36) we obtain that𝔽((𝐼𝑚𝑓)(𝑥)) = 𝑐(𝑣, 𝑥)𝐿𝑥
𝐼 (𝑓) 

, where the functional 𝐿𝑥
𝐼  on ℱ(V ) is the formal integral at the point x associated to the pair 

((1 𝑣⁄ )∅−1
𝑥 , 𝔽(𝜇𝑥))and c(ν, x) is a formal function. It is easy to show that c(ν, x) is smooth. 

Similarly we obtain from (36) that 𝔽(𝑄𝑚(𝑓, 𝑔)(𝑥)) = 𝑑(𝑣, 𝑥)𝐿𝑥
𝑄(𝑓⨂𝑔) where the functional 𝐿𝑥

𝑄
 on 

ℱ(V × V ) is the formal integral at the point (x, x) associated to the pair  ((1 𝑣⁄ )𝜓−1
𝑥 , 𝔽(𝜇𝑥))and d(ν, 

x) is a smooth formal function. 

Since the unit constant 1 is a contravariant symbol of the unit operator 1, 𝑇1
(𝑚)

= 1, and σ(1) = 1, we 

have𝐼(𝑚)1 = 1, 𝑄(𝑚)(1,1) = 1, and thus 𝔽(𝐼(𝑚)1) = 1 and 𝔽(𝑄(𝑚)(1,1)) = 1. Taking the functions 

f, g in (36) to be equal to 1 in a neighborhood of x and applying Proposition (2.2.5) and Proposition 

(2.2.6) we get that c(ν, x) = 1 and d(ν, x) = 1. Since 𝑏0(𝑥, 𝓎) does not vanish on V ×V we can find a 

formal function �̃�(𝑥, 𝓎) on V ×V such that𝔽(𝑏(𝑥, 𝓎,𝑚)) = 𝑒 �̃�(𝑥,𝓎). In these notations 

𝔽(𝜇𝑥) = exp (�̃�(𝑥, 𝓎) + �̃�(𝓎, 𝑥) − 𝑠(𝑥)Ω(𝓎).and 𝔽𝜇𝑥 = exp (�̃�(𝑥, 𝓎) + �̃�(𝓎, 𝓏) + �̃�(𝓏, 𝑥) −
𝑠(𝑥)Ω(𝓎)Ω(𝓏)                                                                         (37) 
It follows from Theorem (2.2.10) that �̃� is an almost analytic extension of the function s 

from the diagonal of V × V . According to (18),𝔽(𝑢𝑚) = (1 𝑣𝑛⁄ )𝑒𝑠 
Denote �̃� = (1 𝑣⁄ )�̃�−1 + �̃�, 𝛷 = (1 𝑣⁄ )𝛷−1 + 𝑠, 𝐷(𝑥, 𝓎) = �̃�(𝑥, 𝓎) + �̃�(𝓎𝑥) − 𝛷(𝑥) − 𝛷(𝓎) =
(1 𝑣⁄ )𝐷−1(𝑥, 𝓎) + (�̃�(𝑥, 𝓎) + �̃�(𝓎, 𝑥) − 𝑠(𝑥) − 𝑠(𝓎), 𝑇(𝑥, 𝓎, 𝓏) = �̃�(𝑥, 𝓎) + �̃�(𝓎, 𝓏) +
�̃�(𝓏, 𝑥) − 𝛷(𝑥) − 𝛷(𝓎) − 𝛷(𝓏) 
is then equivalent to the pair (∅𝑥 , 𝑒𝑠Ω), where ∅𝑥(𝓎) = 𝐷(𝑥, 𝓎). Similarly, the pair 

((1 𝑣⁄ )𝜓−1
𝑥 , 𝔽(𝜇𝑥))is equivalent to the pair (𝜓𝑥 , 𝑒𝑠Ω⨂𝑒𝑠Ω), where 

𝜓𝑥(𝓎, 𝓏) = 𝑇(𝑥, 𝓎, 𝓏). 
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Thus we arrive at the following proposition. 

Proposition (2.2.11) [83]: For 𝑓, 𝑔 ∈ 𝐶𝑂
∞(𝑉), x ∈ V, (𝐼𝑚𝑓)(𝑥) and 𝑄(𝑚)(𝑓, 𝑔)(𝑥) expand in 

asymptotic series in 1/m as m → +∞. 𝔽((𝐼(𝑚)𝑓)(𝑥) = 𝐿𝑥
𝐼 (𝑓)and 𝔽(𝑄(𝑚)(𝑓, 𝑔)(𝑥) = 𝐿𝑥

𝑄(𝑓⨂𝑔) 

where the functional 𝐿𝑥
𝐼  on ℱ(V ) is the formal integral at the point x associated to the pair (∅𝑥 , 𝑒𝑠Ω) 

and the functional 𝐿𝑥
𝑄

 

on ℱ(V ×V ) is the formal integral at the point (x, x) associated to the pair (𝜓𝑥 , 𝑒𝑠Ω⨂𝑒𝑠Ω).  
Now let ⋆ denote the star-product with separation of variables on (V, 𝜔−1) corresponding to the 

formal deformation 𝜔 = −𝑖𝜕�̅�∅ of the form (1/ν)𝜔−1, so that 𝜱 is a formal potential of ω. Let I be 

the corresponding formal Berezin transform, �̃� the formal form parametrizing the dual star-product 

∗̃ and Ѱ the solution of (5) so that𝜇𝑡𝑟 = 𝑒
𝛷+Ѱ𝑑𝓏𝑑�̅� is a formal trace density for the star-product ⋆. 

Choose a classical symbol 𝜌(𝑥,𝑚) ∈ 𝑆0(𝑉 × ℝ) which has an asymptotic 

expansion𝜌~∑ (1 𝑚𝑟)𝜌𝑟⁄𝑟≥0  such that 

 

                                  𝔽(𝜌)𝑒𝑠Ω = 𝜇𝑡𝑟                                            (38) 
 

Clearly, (38) determines (ρ) uniquely. 

For 𝑓 ∈ 𝐶0
∞(𝑉) and x ∈ V consider the following integral 

 

                                  (𝑃𝑚𝑓)(𝑥) = 𝑚
𝑛 ∫ 𝑒𝑚∅−1

𝑥
𝑓𝜌𝜇𝑥

 

𝑉
                                               (39), 

 

where∅−1
𝑥 (𝓎) = 𝐷−1(𝑥, 𝓎) and 𝜇𝑥 is given by (35). 

Proposition (2.2.12) [83]: For 𝑓 ∈ 𝐶0
∞(𝑉)and x ∈ V (𝑃𝑚𝑓)(𝑥) has an asymptotic expansion 

in 1/m as m → +∞. 𝔽((𝑃𝑚𝑓)(𝑥) = 𝑐(𝑣)(𝐼𝑓)(𝑥), where c(ν) is a nonzero formal 

constant. 

Proof: It was already shown that the phase function (1 𝑖⁄ )∅−1
𝑥  of integral (39) satisfies the conditions 

required in the method of stationary phase. Thus Proposition (2.2.7) 

can be applied to (39). We get that 𝔽((𝑃𝑚𝑓)(𝑥) = 𝑐(𝑣, 𝑥)𝐾𝑥(𝑓), where 𝐾𝑥 is a 

formal integral at the point x associated to the pair ((1 𝑣⁄ )∅−1
𝑥 , 𝔽(𝜌𝜇𝑥) and c(ν, x) is a nonvanishing 

formal function on V . It follows from (37) and (38) that 𝔽(𝜌𝜇𝑥) = 𝔽(𝜌)𝔽(𝜇𝑥) =

𝔽(𝜌)𝑒𝑥𝑝(�̃�(𝑥, 𝓎) + �̃�(𝑥, 𝓎) − 𝑠(𝑥))Ω(𝓎) = exp (�̃�(𝑥, 𝓎) + �̃�(𝑥, 𝓎) − 𝑠(𝑥) = 𝑠(𝓎)𝜇𝑡𝑟 =

exp(𝐷(𝑥, 𝓎) − (1 𝑣⁄ )𝐷−1(𝑥, 𝓎)) 𝜇𝑡𝑟 = exp (∅
𝑥 − (1 𝑣⁄ )∅−1

𝑥 ) 

where ∅𝑥(𝓎) = 𝐷(𝑥, 𝓎). The pair ((1 𝑣⁄ )∅−1
𝑥 , 𝔽(𝜌𝜇𝑥)) is thus equivalent to the pair (∅𝑥 , 𝜇𝑡𝑟). 

Applying 

Theorem (2.2.2) we get that 

 

                    𝔽((𝑃𝑚𝑓)(𝑥) = 𝑐(𝑣, 𝑥)(𝐼𝑓)(𝑥)                        (40) 
 

It remains to show that c(ν, x) is actually a formal constant. Let 𝑥1 be an arbitrary 

point of V . Choose a function 𝜖 ∈ 𝐶0
∞(𝑉) such that 𝜖 = 1 in a neighborhood W⊂V 

of 𝑥1. Let ξ be a vector field on V . Then, using (37), we obtain 

 
1

𝑣
𝜉𝑥∅−1

𝑥 (𝓎) + 𝔽 (
𝜉𝑥𝜇𝑥

𝜇𝑥
(𝓎)) =

1

𝑣
𝜉𝑥𝐷−1(𝑥, 𝓎) + 𝜉𝑥(�̃�(𝑥, 𝓎)) + �̃�(𝑥, 𝓎) − 𝑠(𝑥)) = 𝜉𝑥𝐷(𝑥,𝓎) =

𝜉𝑥∅
𝑥                                                                                              (41). 

 

On the one hand, taking into account (41) we get for x ∈ W that 
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𝔽((𝜉𝑃𝑚𝜖)(𝑥) = 𝔽(𝑚
𝑛𝜉 ∫ 𝑒𝑚∅−1

𝑥
𝜖𝜌𝜇𝑥

 

𝑉

) = 𝔽(𝑚𝑛∫𝑒𝑚∅−1
𝑥
(𝑚𝜉𝑥∅𝑥 +

𝜉𝑥𝜇𝑥
𝜇𝑥

) 𝜖𝜌𝜇𝑥

 

𝑉

)

= 𝑐(𝑣, 𝑥)𝐼 (
1

𝑣
𝜉𝑥∅−1

𝑥 (𝓎) + 𝔽(
𝜉𝑥𝜇𝑥
𝜇𝑥

(𝓎))) = 𝑐(𝑣, 𝑥)𝐼(𝜉𝑥∅
𝑥)

= 0                                                                                                          (42) 
The last equality in (42) follows from Lemma (2.2.3). On the other hand, for x ∈W we have from (40) 

that 𝔽((𝑃𝑚𝜖)(𝑥) = 𝑐(𝑣, 𝑥), from whence𝔽((𝑃𝑚𝜖)(𝑥) = 𝜉𝔽((𝑃𝑚𝜖)(𝑥) = 𝜉𝑐(𝑣, 𝑥). Thus we get from 

(42) that ξc(ν, x) = 0 on W for an 

arbitrary vector field ξ, from which the Proposition follows. 

It follows from (36) and (39) that for  𝑓 ∈ 𝐶0
∞(𝑉)(𝐼(𝑚)(𝑓𝜌))(𝑥)is asymptotically equivalent to 

(𝑃𝑚𝑓)(𝑥). Passing to formal asymptotic series we get from Proposition (2.2.11) 

and Proposition (2.2.12) that 𝑐(𝑣)(𝐼𝑓)(𝑥) = 𝔽((𝑃𝑚𝑓)(𝑥)) = 𝔽((𝐼
(𝑚)(𝑓𝜌)) (𝑥) = 𝐿𝑥

1 (𝑓𝔽(𝜌)) 

where 𝐿𝑥
𝐼  is the formal integral at the point x associated to the pair (∅𝑥 , 𝑒𝑠Ω). Thus 

 

𝑐(𝑣)(𝐼𝑓)(𝑥) = 𝐿𝑥
𝐼 (𝑓𝔽(𝜌))                           (43) 

 

The formal function (ρ) is invertible (see (38)). Setting f = 1/(ρ) in (43) we get 𝑐(𝑣)(𝐼(1 𝔽(𝜌⁄ )))(𝑥) =
𝐿𝑥
𝐼 (1) = 1for all x ∈ V . Since the formal Berezin transform is invertible and I(1) = 1, we finally 

obtain that 

 

                                                 𝔽(𝜌) = 𝑐(𝑣)                                  (44) 
 

Now (38) can be rewritten as follows, 

 

𝑐(𝑣)𝑒𝑠Ω = 𝑑𝜇𝑡𝑟 = 𝑒
𝛷+Ѱ𝑑𝓏𝑑�̅�                  (45) 

 

In local holomorphic coordinates the symplectic volume can be expressed as follows,Ω = 𝑒𝜃𝑑𝓏𝑑�̅� 

The closed (1,1)-form 𝜔𝑐𝑎𝑛 = −𝑖𝜕�̅�𝜃 does not depend on the choice of local holomorphic 

coordinates and is defined globally on M. The form 𝜔𝑐𝑎𝑛 is the curvature form of the canonical 

connection of the canonical holomorphic line bundle on M equipped with the Hermitian fibre metric 

determined by the volume form Ω. Its de Rham class ε = [𝜔𝑐𝑎𝑛] is the first Chern class of the canonical 

holomorphic line bundle on M and thus depends only on the complex structure on M. The class ε is 

called the canonical class of the complex manifold M. 

One can see from (45) that c(ν) = 𝑐0 + ν𝑐1 + . . . , where 𝑐0 ≠ 0. Thus there exists 

a formal constant d(ν) such that 𝑒𝑑(𝑣) = 𝑐(𝑣) and 𝑑(𝑣) + 𝑠 + 𝜃 = 𝛷 + 𝛹. Therefore the formal 

potential Ψ of the form �̃� is expressed explicitly, Ψ= 𝑑(𝑣) − (1 𝑣⁄ )𝛷−1 + 𝜃, from whence it follows 

that 

 

                                            �̃� = −(1 𝑣⁄ )𝜔−1 + 𝜔𝑐𝑎𝑛                                                         (46).  
Formula (46) defines �̃� globally on M. Thus the corresponding star-product ∗̃ and therefore its dual 

star-product ω are also globally defined. 

Theorem (2.2.2), Theorem (2.2.4), Proposition (2.2.5), Proposition (2.2.6) Proposition (2.2.11), 

formulas (43), (44) and (45) imply the following theorem, which is the central technical result . 

Theorem (2.2.13) [83]: For any 𝑓, 𝑔 ∈ 𝐶∞(𝑀) and x ∈ M (𝐼(𝑚)𝑓)(𝑥)and 𝑄(𝑚)(𝑓, 𝑔)(𝑥) 

expand to asymptotic series in 1/m as m → +∞. 𝔽((𝐼(𝑚)𝑓)(𝑥)) = (𝐼𝑓)(𝑥) and 

𝔽(𝑄(𝑚)(𝑓, 𝑔)(𝑥)) = 𝑄(𝑓, 𝑔)(𝑥), where I and Q are the formal Berezin transform and the formal 

twisted product corresponding to the star-product with separation of variables ⋆ on (M, 𝜔−1) whose 

dual star-product ∗̃ on (M,−𝜔−1) is parametrized by the formal form �̃� = −(1 𝑣⁄ )𝜔−1 + 𝜔𝑐𝑎𝑛. 
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Remark(2.2.14) [83]: As shown in [107] we have the following chain of inequalities 

 

                |𝐼(𝑚)(𝑓)|
∞
= |𝜎(𝑇𝑓

(𝑚)
)|
∞
≤ ‖𝑇𝑓

(𝑚)‖ ≤ |𝑓|∞                            (47) 

 

Here‖. . ‖| denotes the operator norm with respect to the norm of 𝐿𝑚 

and |. . |∞ the sup-norm on 𝐶∞(𝑀). Choose as 𝑥𝑒 ∈ M a point with |𝑓(𝑥𝑒)| = |𝑓|∞. From Theorem 

(2.2.13) and the fact that the formal Berezin transform has as leading term the identity it follows that 

|(𝐼(𝑚)𝑓)(𝑥𝑒) − 𝑓(𝑥𝑒)| ≤ 𝐴 𝑚⁄  with a suitable constant A. This implies ||𝑓(𝑥𝑒)| − |(𝐼
(𝑚)𝑓)(𝑥𝑒)|| ≤

𝐴 𝑚⁄  and hence 

 

|𝑓|∞ −
𝐴

𝑚
= |𝑓(𝑥𝑒)| −

𝐴

𝑚
≤ |(𝐼(𝑚)𝑓)(𝑥𝑒)| ≤ |(𝐼

(𝑚)𝑓)|
∞
            (48) 

 

Putting (47) and (48) together we obtain 

 

                                |𝑓|∞ −
𝐴

𝑚
≤ ‖𝑇𝑓

(𝑚)‖ ≤ |𝑓|∞                                           (49). 

 

This provides another proof of [106],. The identification of the Berezin-Toeplitz star-product will 

denote the star-product with separation of variables on (M, 𝜔−1) whose dual ∗̃ is the star-product with 

separation of variables on (M,−𝜔−1) parametrized by the formal form �̃� = −(1 𝑣⁄ )𝜔−1 + 𝜔𝑐𝑎𝑛. 

Let 𝐼 = 1 + 𝑣𝐼1 + 𝑣
2𝐼2 +⋯𝑎𝑛𝑑 𝑄 = 𝑄0 + 𝑣𝑄1 +⋯denote the formal Berezin 

transform and the formal twisted product corresponding to ⋆. Theorem (2.2.13) asserts 

that for given 𝑓, 𝑔 ∈ 𝐶∞(𝑀), 𝑟 ∈ 𝑁, 𝑥 ∈ 𝑀there exist constants A,B such that for 

sufficiently big values of m the following inequalities hold: 

|(𝐼(𝑚)𝑓)(𝑥) −∑
1

𝑚𝑖
𝐼𝑖(𝑓)(𝑥)

𝑟−1

𝑖=0

| ≤
𝐴

𝑚𝑟
                        (50) 

|𝑄(𝑚)(𝑓, 𝑔)(𝑥) −∑
1

𝑚𝑖
𝑄𝑖(𝑓, 𝑔)(𝑥)

𝑟−1

𝑖=0

| ≤
𝐵

𝑚𝑟
            (51) 

 

It was proved in [106],[108] that Berezin-Toeplitz quantization on a compact K�̈�hler 

manifold M gives rise to a star-product on M. This star-product ∗𝐵𝑇 is given by a sequence of bilinear 

operators {𝐶𝑘}, k ≥ 0, on 𝐶∞(𝑀) satisfying the following conditions. For 𝑓, 𝑔 ∈ 𝐶∞(𝑀) and any r ∈ 

N there exists a constant C such that 

 

‖𝑇𝑓
(𝑚)
𝑇𝑓
(𝑚)

− 𝑇𝑓∗[𝑟]𝑔
(𝑚)

‖ ≤ 𝐶 𝑚𝑟⁄                                       (52) 

 

Where 𝑓∗[𝑟]𝑔 = ∑ (1 𝑚𝑘)𝐶𝑘(𝑓, 𝑔)⁄𝑟−1
𝑘=0 . The conditions (52) determine the star-product ∗𝐵𝑇 uniquely. 

We call∗𝐵𝑇  the Berezin-Toeplitz star-product. 

Recall that 𝑓, 𝑔 ∈ 𝐶∞(𝑀)𝜎(𝑇𝑓
(𝑚)) = 𝐼(𝑚)(𝑓), 𝜎(𝑇𝑓

(𝑚)
𝑇𝑔
(𝑚)
) = 𝑄(𝑚)(𝑓, 𝑔)    

Passing from operators to their covariant symbols in (52) and using the inequality 

|𝜎(𝐴)| ≤ ‖𝐴‖we get that 

 

|𝑄(𝑚)(𝑓, 𝑔)(𝑥) − 𝐼(𝑚)(𝑓 ∗[𝑟] 𝑔)(𝑥)| ≤ 𝐶 𝑚𝑟                                     (53)⁄  

 

It follows from (50) that 
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|
1

𝑚𝑘
𝐼(𝑚)(𝐶𝑘(𝑓, 𝑔))(𝑥) − ∑

1

𝑚𝑖+𝑘
𝐼𝑖(𝐶𝑘(𝑓, 𝑔))(𝑥)

𝑟−𝑘−1

𝑖=0

| ≤
𝐴𝑘
𝑚𝑟
                        (54) 

Summing up inequalities (51) and (54) for k = 0, 1, . . . , r − 1, we obtain that 

 

|(𝑄(𝑚)(𝑓, 𝑔)(𝑥) − 𝐼(𝑚)(𝑓 ∗[𝑟] 𝑔)(𝑥)) −∑
1

𝑚𝑖
(𝑄𝑖(𝑓, 𝑔)(𝑥) − ∑ 𝐼𝑖(𝐶𝑘(𝑓, 𝑔)(𝑥))

𝑗+𝑘=𝑖

)

𝑟−1

𝑖=0

|

≤
𝐷

𝑚𝑟
                                                                            (55) 

 

for some constant D. It follows from (53) and (55) that 

∑
1

𝑚𝑖
(𝑄𝑖(𝑓, 𝑔)(𝑥) − ∑ 𝐼𝑖(𝐶𝑘(𝑓, 𝑔)(𝑥))

𝑗+𝑘=𝑖

)

𝑟−1

𝑖=0

≤
𝐸

𝑚𝑟
 

 

for some constant E, which infers that for i = 0, 1, . . . 

 

𝑄𝑖(𝑓, 𝑔) = ∑ 𝐼𝑖(𝐶𝑘(𝑓, 𝑔))                                  (56))

𝑗+𝑘=𝑖

 

 

Equalities (56) mean that 𝑄(𝑓, 𝑔) = 𝐼(𝑓 ∗𝐵𝑇 𝑔). Since I is invertible we immediately obtain that the 

star-products ⋆′ and ∗𝐵𝑇 coincide. Thus the Berezin-Toeplitz deformation quantization is completely 

identified as the deformation quantization with separation of variables on (�̅�, 𝜔−1) whose star-

product ∗𝐵𝑇 is opposite to . ∗̃ 
Using (4) we can calculate the characteristic class cl(∗𝐵𝑇 ) of the Berezin-Toeplitzstar-product  ∗𝐵𝑇 It 

follows from (4) and (46) that the characteristic class of the star-product ∗̃ equals to𝑐𝑙(∗̃) =
(1 𝑖⁄ )(−[(1 𝑣⁄ )𝜔−1] + 𝜀 2⁄ ). It is easy to show that the characteristic class of the opposite star-

product ⋆′ is equal to −cl(∗̃). Since ∗𝐵𝑇 = ⋆′, we finally get that the characteristic class of the Berezin-

Toeplitz deformation quantization is given  by the formula 

 𝑐𝑙(∗𝐵𝑇) = (1 𝑖⁄ )(−[(1 𝑣⁄ )𝜔−1] + 𝜀 2⁄ ). 
The characteristic class of the Berezin-Toeplitz deformation quantization was first 

calculated by Eli Hawkins in [100] by K-theoretic methods. 

As a concluding remark we would like to draw to the fact that 

the classifying form ω of the star-product ⋆ is the formal object corresponding to the asymptotic 

expansion as m → +∞ of the pullback 𝜔(𝑚) of the Fubini-Study form on the projective space 𝕡(𝐻𝑚
∗ ) 

via Kodaira embedding of M into 𝕡(𝐻𝑚
∗ )  Here (𝐻𝑚

∗ )  denotes the Hilbert space dual to 𝐻𝑚 =
𝛤ℎ𝑜𝑙(𝐿

𝑚). It was proved by Zelditch [106] that 𝜔(𝑚) admits a complete asymptotic expansion in 1/m 

as m → +∞. As an easy consequence of the results obtained one can show that (𝜔(𝑚)) = ω. 
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Chapter 3 

An Excursion Asymptotic Expansion  

We discuss various instructive examples like the Segal-Bargmann-Fock space, and culminating by 

highlights of proofs of the existence of these quantizations using both the Boutet de Monvel theory 

and the approach via Fefferman’s expansion and Forelli-Rudin construction . 

Section (3.1): Berezin-Toeplitz Quantization        
Quantization has traditionally been understood as a recipe in physics for passing from a classical 

system — which, loosely speaking, is something that concerns macroscopic objects and that we are 

familiar with from everyday’s life — to the “corresponding” quantum system, which pertains to 

microscopic objects where things are subject to more complicated rules. The latter should reduce to 

the former as the size of the objects gets large, that is, as the “Planck constant”, which, heuristically, 

corresponds to the magnitude where the quantum phenomena become relevant, tends to zero. (This is 

the so-called “correspondence principle”, or “classical limit”.)                                                                  

Over the time, it became apparent that such a concept is not totally appropriate, both mathematically 

and physically. From the point of view of physics, 

itismoreappropriatetounderstandquantizationjustasacorrespondencebetween classical and quantum 

systems; that is, there may be quantum systems which have no classical counterpart, as well as 

diff erent quantum systems corresponding to the same classical system. From the mathematical point 

of view, one even encounters obstacles of a diff erent kind — namely, various “no-go” theorems show 

that there can exist no mathematical recipe that would fulfill all the axioms required by the physical 

interpretation  As a result, nowadays we face the existence of many diff erent quantization theories, 

ranging from geometric quantization, deformation quantization and various related operator-theoretic 

quantizations to Feynman path integrals, asymptotic quantization, or stochastic quantization, to 

mention just a few. No one of the existing approaches solves the quantization problem completely; on 

the other hand, on the mathematics side all these have evolved into rich theories of their own right, 

and with results of great depth and beauty.                                               

We give a flavour of two of the approaches that belong to the list above, namely the Berezin and the 

Berezin-Toeplitz quantizations. Compared to other similar surveys like [161] or [160], we have tried 

to intersperse the exposition with simple examples that illustrate the main ideas, thus keeping it — we 

hope — accessible even to students or newcomers to the area.  organized as follows.we present in 

some more detail what has been mentioned in the first two paragraphs above, namely, the original 

aspirations of the quantization theory and the various ramifications that the subsequent developments 

have led to. discusses what turns out to be the simplest example of Berezin-Toeplitz quantization, 

namely the Toeplitz operators on the Fock space. The basic principles of the Berezin-Toeplitz and 

Berezin quantizations in curved (i.e. non-Euclidean) spaces and the necessary tools for them are 

discussed respectively, while the full account of these theories appears . contains miscellaneous 

additional comments, bibliographic remarks, and the like.      

The original concept of quantization, going back to Weyl, von Neumann, and Dirac, consists in 

assigning operators to functions:  𝑓 ↦ 𝑄𝑓 .                                                                                        

Here the functions 𝑓 are supposed to live on some manifold, called the classical phase space; for 

reasons going back to classical mechanics, the manifold is taken to be symplectic, meaning it is 

equipped with a diff erential form of a certain kind. (We will be more specific about this later.) The 

operators live on some fixed, separable  infinite-dimensional Hilbert space 𝐻, and are assumed to be 

selfadjoint if 𝑓 is real-valued. (They need not be bounded in general.) One calls the functions  

𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠 , while the corresponding operators 𝑄𝑓 are the associated 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒𝑠. The physical interpretation is that upon performing some experiment to 

measure a quantity (position, velocity, momentum, energy, ...) represented by 𝑓, the possible 

outcomes will have the probability distribution 〈∏(𝑄𝑓)〉, where ∏(𝑄𝑓) is the spectral measure of 

the operator 𝑄𝑓 , while 𝑢 ∈ 𝐻  is a unit vector characterizing the “state” of the given quantum 

system. In particular, if  𝑄𝑓 has pure point spectrum consisting of eigenvalues ⋋𝑗with eigenvectors 

 𝑢𝑗, ‖𝑢𝑗‖= 1, then the possible outcomes of measuring 𝑓 will be ⋋𝑗  with probability |〈𝑢, 𝑢𝑗〉|
2
; if 



74 
 

𝑢 = 𝑢𝑗 for some 𝑗 , the measurement will be deterministic and will always return ⋋𝑗 . 

Noncommutativity of operators corresponds to the impossibility of measuring simultaneously the 

corresponding observables. 

        The simplest example of a quantization rule as above is for 𝑀 = 𝐑2𝑛, the real 2𝑛-space, with 

elements written as (𝑝, 𝑞) ∈ 𝐑𝑛 × 𝐑𝑛; one thinks of 𝑞1, ⋯ , 𝑞𝑛 as the coordinates of a particle in 𝐑𝑛, 

and of 𝑝1, ⋯ , 𝑝𝑛 as the velocities (or, more precisely, momenta) of the particle; in other words  𝑀 ,  
is the 𝑝ℎ𝑎𝑠𝑒 𝑠𝑝𝑎𝑐𝑒 of a single particle moving in 𝐑𝑛 . We take  𝐻 = 𝐿2(𝐑𝑛)  for the Hilbert space, 

viewed as 𝐿2-functions in the position variables 𝑞; and define the quantum observables ,  𝑄𝑓 for 𝑓  

one of the coordinate functions on 𝐑2𝑛 , by  

                                            𝑄𝑞𝑗: 𝑓(𝑞) ↦ 𝑞𝑗𝑓(𝑞),                                                          

                                   𝑄𝑝𝑗: 𝑓(𝑞) ↦
ℎ

2𝜋𝑖

𝜕𝑓(𝑞)

𝜕𝑞𝑗
                                                                (1)                                                                                 

(𝑡ℎ𝑒 𝑆𝑐ℎ𝑟ö𝑑𝑖𝑛𝑔𝑒𝑟 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 ). These operators satisfy the 

𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠  (or just 𝐶𝐶𝑅 for short) 

[𝑄𝑞𝑗 , 𝑄𝑞𝑘] = [𝑄𝑝𝑗 , 𝑄𝑝𝑘] = 0,        ∀𝑗, 𝑘, 

  [𝑄𝑞𝑗 , 𝑄𝑝𝑘] = 0     𝑓𝑜𝑟 𝑗 ≠ 𝑘,                                            (2)                                        

                                                        [𝑄𝑞𝑗 , 𝑄𝑝𝑗] =
𝑖ℎ

2𝜋
𝐼, 

where [𝐴, 𝐵] ∶= 𝐴𝐵 − 𝐵𝐴  denotes the commutator of two operators. The parameter ℎ , on which this 

map 𝑄 also depends, is the 𝑃𝑙𝑎𝑛𝑐𝑘 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ; this should be thought of as a small positive number, 

and the 𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑙𝑖𝑚𝑖𝑡   ℎ ↘ 0  should somehow recover the classical system from the quantum one, 

as already mentioned.    

         Note that under the physical interpretation just explained, (1) implies , in particular, that it is 

possible to measure simultaneously the position variables 𝑞 (in fact, the joint spectral distribution of 

the 𝑄𝑞1 , ⋯ , 𝑄𝑞𝑛   is just the Lebesgue measure on 𝐑𝑛 , so the probability of finding the particle in a 

state given by 𝑢 ∈ 𝐿2(𝐑𝑛)   to be present in some set  Ω ⊂ 𝐑𝑛 in an experiment is equal to the integral 

of |𝑢|2 over Ω ), or the momentum variables 𝑝 , or even 𝑝𝑗 and 𝑞𝑘  for 𝑗 ≠ 𝑘 , but not𝑞𝑗  and 𝑝𝑗; the 

last is a reflection of the celebrated Heisenberg uncertainty principle.As ℎ  tends to zero,even the 

operators 𝑄𝑞𝑗and  𝑄𝑝𝑗 become commutative,  and the problems with simultaneous non-measurability 

thus disappear. 

        It remains to say how to assign the operators  𝑄𝑓   to more general functions 𝑓 than the coordinate 

functions. There are some requirements which such an assignment should satisfy, coming from the 

physical interpretation:  

(A1) The map 𝑓 ↦  𝑄𝑓 should be linear.                                                                                      (A2) 

(The 𝑣𝑜𝑛 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 𝑟𝑢𝑙𝑒.) For any polynomial  ∅: 𝑹 → 𝑹, we should have  

                                                           𝑄∅∘𝑓 = ∅(𝑄𝑓).  

        (In particular, 𝑄𝟏 = 𝐼.)                                                                                                                                        

 (A3) [𝑄𝑓 , 𝑄𝑔] = −
𝑖ℎ

2𝜋
𝑄{𝑓,𝑔}, where 

{𝑓, 𝑔} =∑(
𝜕𝑓

𝜕𝑝𝑗

𝜕𝑔

𝜕𝑞𝑗
−
𝜕𝑓

𝜕𝑞𝑗

𝜕𝑔

𝜕𝑝𝑗
)

𝑛

𝑗=1

 

         is the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 𝑜𝑓 𝑓 𝑎𝑛𝑑 𝑔. 

 Here the axiom (A2) just means that if our experiment yields ⋋ as an outcome for measuring 𝑓 with 

some probability, then it should yield ⋋2 with the same probability when measuring 𝑓2, or, more 

generally, 𝜙(⋋) with the same probability when measuring, 𝜙(𝑓)  . Similarly, the linearity axiom 

(A1) is quite natural. Finally, the last axiom (A3) has to do with the time evolution of the system, as 

described by the Hamiltonian formalism in classical mechanics. (The last axiom also extends in an 

obvious way to any other manifold 𝑀 on which we have an analogue of the Poisson bracket defined 

— these are precisely the symplectic manifolds that we have already hinted at.) Note that for 𝑓, 𝑔  the 
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coordinate functions on = 𝐑2𝑛 , the last axiom reduces precisely to the canonical commutation 

relations (2). 

       We are thus lead to the problem of extending the rules (1) in such a way that the axioms (A1)–

( A3) above are satisfied. So, what are the solutions to this extension problem? (And, more generally, 

what would be the solutions for some more general symplectic manifold 𝑀?) 

 Unfortunately, here bad news come. Namely, the above axioms are inconsistent (even in the simplest 

case of 𝑀 = 𝐑2𝑛  ).  

        To see that, denote for brevity  𝑃 = 𝑄𝑝1 , 𝑄 = 𝑄𝑞1 , 𝑝 = 𝑝1, 𝑞 = 𝑞1 ; then 

𝑝𝑞 =
(𝑝 + 𝑞)2 − 𝑝2 − 𝑞2

2
 

implies, using (A1) and (A2), that 

𝑄𝑝𝑞 =
(𝑃 + 𝑄)2 − 𝑃2 − 𝑄2

2
=
𝑃𝑄 + 𝑄𝑃

2
 

On the other hand, by (A2) 𝑄𝑞2 = 𝑄
2 and 𝑄𝑝2 = 𝑃

2 , so we can apply the same argument to 𝑝2, 𝑞2  

in the place of 𝑝 , 𝑞 : 

𝑝2𝑞2 =
(𝑝2 + 𝑞2)2 − 𝑝4 − 𝑞4

2
 

Implies , using (A1) and (A2) ,that 

𝑄𝑝2𝑞2 =
𝑃2𝑄2 + 𝑄2𝑃2

2
 

Finally, as 𝑝2𝑞2 = (𝑝𝑞)2 , (A2) requires that we should have 𝑄𝑝2𝑞2 = 𝑄𝑝𝑞
2  . However, an easy 

computation,using the canonical commutation relation for 𝑃 𝑎𝑛𝑑 𝑄,shows that 

𝑃2𝑄2 + 𝑄2𝑃2

2
≠ (

𝑃𝑄 + 𝑄𝑃

2
)
2

 

(the two sides diff er by a nonzero multiple of the identity). Thus we have arrived at a contradiction. 

         Note that our argument above used just (A1) and (A2), so even these two axioms alone are 

inconsistent. It was shown by Groenewold in 1946 (with an improvement by van Hove in 1951) that, 

likewise, (A1) and (A3) alone are inconsistent. Finally, noticed (much later) that also (A2) and (A3) 

by themselves lead to contradiction. In other words, not only the three axioms (A1)–( A3) all together 

— although quite innocuous and very natural from the point of view of physics — but even any two 

of them are already inconsistent! .The contradiction deduced above used polynomial classical 

observables 𝑓, i.e. very nice functions; if we allow some “wilder” functions 𝑓 as observables, then it 

can, in fact, be shown that already the von Neumann rule (A2) 𝑎𝑙𝑜𝑛𝑒 and the canonical commutation 

relations (2) lead to a contradiction. Namely, recall that there exists a continuous function 𝑓 (Peáno 

curve) which maps 𝐑 continuously and surjectively onto 𝐑2𝑛 . Let 𝑔 be a right inverse for 𝑓, so that  

𝑔: 𝐑2𝑛 → 𝐑  and 𝑓 ∘ 𝑔 =id ; such 𝑔 exists owing to the surjectivity of 𝑓, and can be chosen to be 

measurable and locally bounded. Denote, for brevity, 𝑇 = 𝑄𝑔 and consider the functions  ∅ = 𝑝1 ∘

𝑓, 𝜓 = 𝑞1 ∘ 𝑓. Then by the axiom (A2),  

                         ∅(𝑇) = 𝑄𝑝1∘𝑓∘𝑔 = 𝑄𝑝1,,            𝜓(𝑇) = 𝑄𝑞1∘𝑓∘𝑔 = 𝑄𝑞1,  

And 

0 = (∅𝜓 − 𝜓𝜙)(𝑇) = 𝜙(𝑇)𝜓(𝑇) − 𝜓(𝑇)𝜙(𝑇) = [𝑄𝑝1,, 𝑄𝑞1,] = −
𝑖ℎ

2𝜋
𝐼, 

 

 a contradiction.  

        What should we do to resolve this disappointing situation? First of all, we will work solely 

with continuous or, still better, smooth (infinitely diff erentiable) functions ; these are anyway the 

only ones that we really meet in the physical realm, and it rules out the pathologies we saw in the 

preceding paragraph. Next, we discard the von Neumann rule, except for 𝜙 = 𝟏, i.e. 

𝑄1 = 𝐼. 
The only discrepancy left there is thus the one between the linearity axiom (A1) and the Poisson 

brackets axiom (A3). There are two established approaches how to deal with that.  
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        The first approach is to actually insist on both axioms, but restrict even further the set of 

quantizable observables, i.e. the domain of the map 𝑓 ↦ 𝑄𝑓  (we have already restricted it to smooth 

functions a few lines above). For our quantization on  𝑀 = 𝐑2𝑛 , if we allow only functions 𝑓 at most 

linear in the momentum variables 𝑝𝑗, then the recipe 

𝑄𝑓 ∶ 𝜓 ⟼ −
𝑖ℎ

2𝜋
(∑

𝜕𝑓

𝜕𝑝𝑗

𝜕𝜓

𝜕𝑞𝑗
𝑗

) + (𝑓 −∑𝑝𝑖
𝜕𝑓

𝜕𝑝𝑗
𝑗

)𝜓, 

 where 𝜓 = 𝜓(𝑞) ∈ 𝐿2(𝐑𝑛), does the job we need: it extends the Schrödinger representation (1) and 

satisfies (A1) and (A3). (Note that the last makes sense, since the Poisson bracket of two functions at 

most linear in 𝑝 is again at most linear in 𝑝 .) In the case of a general symplectic manifold 𝑀 in the 

place of𝐑2𝑛 , one can similarly make things work by restricting, in an appropriate sense, to functions 

at most linear in “half of the variables”. In technical terms, choosing this “half of the variables” 

requires the concept of the so-called 𝑝𝑜𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠 of the manifold; by definition, a polarization is 

a smooth choice of subspaces of dimension 𝑛 in each fiber 𝑇𝑥𝑀, 𝑥 ∈ 𝑀 , of the tangent bundle 𝑇𝑀 

of 𝑀 . The whole approach leads to particularly appealing results of manifolds 𝑀 with nice group 

actions (symmetries), when methods of representation theory apply, and is known as the 

𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛  (Kostant [164], Souriau [161]).  

        The second approach ,on the other hand,starts by relaxing the Poisson brackets axiom (A3) to 

hold only asymptotically as ℎ → 0 : 
                          

[𝑄𝑓 , 𝑄𝑔] = −
𝑖ℎ

2𝜋
𝑄{𝑓,𝑔} + 𝑂(ℎ

2)                                                                (3)                                                                                                                   

                                                                                                                 

This is the basic idea behind the 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 . Before spelling out the precise 

definition of the latter in detail, let us look at a simple example on 𝐑2𝑛, which  

An “arbitrary” function 𝑓(𝑝, 𝑞) on 𝐑2𝑛 can be expanded into exponentials via the Fourier transform: 

𝑓(𝑝, 𝑞) = ∫ ∫ 𝑓(𝜉, 𝜂)𝑒2𝜋𝑖(𝜉.𝑝+𝜂.𝑞)𝑑𝜉𝑑𝜂
 

𝐑𝑛
 

𝐑𝑛
                                           (4) .                                   

 

 From the Schrödinger  representation (1) and the Taylor series for the exponential, is it easy to 

interpret the exponentials 𝑒2𝜋𝑖𝜉.𝑄𝑝 and 𝑒2𝜋𝑖𝜂.𝑄𝑞: 

𝑒2𝜋𝑖𝜉.𝑄𝑝𝑢(𝑞) = 𝑢(𝑞 + ℎ𝜉),          𝑒2𝜋𝑖𝜂𝑄𝑞.𝑢(𝑞) = 𝑒2𝜋𝑖𝜂.𝑞𝑢(𝑞). 
 

 With a bit of eff ort, one can also take a good guess what  𝑒2𝜋𝑖(𝜉.𝑄𝑝+𝜂.𝑄𝑞)  should be. Indeed, given 

an  𝑢 ∈ 𝐿2(𝐑𝑛) , the function 

𝑔(𝑞, 𝑡) = [  𝑒2𝜋𝑖𝑡(𝜉.𝑄𝑝+𝜂.𝑄𝑞)𝑢](𝑞),       𝑡 ∈ 𝐑, 
 

should be a solution to 𝜕𝑔 𝜕𝑡⁄ = 2𝜋𝑖(𝜉. 𝑄𝑝 + 𝜂. 𝑄𝑞)𝑔 subject to the initial condition 𝑔(𝑞, 0) = 𝑢(𝑞) ; 

in other words, 

𝜕𝑔

𝜕𝑡
−∑ℎ𝜉𝑗

𝜕𝑔

𝜕𝑞𝑗

𝑛

𝑗=1

= 2𝜋𝑖𝜂. 𝑞𝑔,          𝑔(𝑞, 0) = 𝑢(𝑞). 

Fixing 𝑞  for a moment and setting 𝐺(𝑡) = 𝑔(𝑞 − 𝑡ℎ𝜉, 𝑡), this becomes 

𝐺′(𝑡) = 2𝜋𝑖𝜂. (𝑞 − 𝑡ℎ𝜉)𝐺(𝑡),              𝐺(0) = 𝑢(𝑞), 
 

 with the solution 𝐺(𝑡) = 𝑒2𝜋𝑖𝑡𝜂.𝑞−𝜋𝑖𝑡
2ℎ𝜂.𝜉𝑢(𝑞). , or 

𝑔(𝑞, 𝑡) = 𝑒2𝜋𝑖𝑡𝜂.(𝑞+𝑡ℎ𝜉)−𝜋𝑖𝑡
2ℎ𝜂.𝜉𝑢(𝑞 + 𝑡ℎ𝜉) = 𝑒2𝜋𝑖𝑡𝜂.𝑞+𝜋𝑖𝑡

2ℎ𝜂.𝜉𝑢(𝑞 + 𝑡ℎ𝜉). 
 Taking  𝑡 = 1  we are thus lead to 

  𝑒2𝜋𝑖(𝜉.𝑄𝑝+𝜂.𝑄𝑞)𝑢(𝑞) = 𝑒2𝜋𝑖𝜂.𝑞−𝜋𝑖ℎ𝜂.𝜉𝑢(𝑞 + ℎ𝜉). 
Returning to (4), let us now postulate that 
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𝑄𝑓 = ∫ ∫ 𝑓(𝜉, 𝜂)𝑒2𝜋𝑖(𝜉.𝑄𝑝+𝜂.𝑄𝑞)𝑑𝜉𝑑𝜂
 

𝐑𝑛

 

𝐑𝑛
=:𝑊𝑓 . 

In other words, using the previous formula,  

𝑊𝑓𝑢(𝑞) = ∫ ∫ 𝑓(𝜉, 𝜂)𝑒2𝜋𝑖𝜂.𝑞+𝜋𝑖ℎ𝜂.𝜉𝑢(𝑞 + ℎ𝜉)𝑑𝜉 𝑑𝜂
 

𝐑𝑛

 

𝐑𝑛
 

                  = ℎ−𝑛∫ ∫ 𝑓 (
𝜉 − 𝑞

ℎ
, 𝜂) 𝑒𝜋𝑖𝜂.(𝑞+𝜉)𝑢(𝜉)𝑑𝜉 𝑑𝜂

 

𝐑𝑛

 

𝐑𝑛
 

                        = ℎ−𝑛∫ ∫ 𝑓 (𝑝,
𝑞 + 𝑦

2
) 𝑒2𝜋𝑖(𝑞−𝑦).𝑝 ℎ⁄ 𝑢(𝑦)𝑑𝑦 𝑑𝑝

 

𝐑𝑛

 

𝐑𝑛
 

by  Plancherel’s  theorem. This is the celebrated 𝑊𝑒𝑦𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 of pseudodiff erential operators 

Folland’s book [167]. It can be shown that, appropriately interpreted, 𝑊𝑓  makes sense even for any 

tempered distribution 𝑓 on 𝐑2𝑛 , being then a continuous operator from the Schwartz space 𝑆 (𝐑𝑛) 
into the tempered distributions 𝑆′(𝐑𝑛) on 𝐑𝑛. If 𝑓 is sufficiently nice — for instance, if 𝑓 ∈ 𝑆  (𝐑2𝑛) 
— then 𝑊𝑓  is continuous even from 𝑆  (𝐑𝑛)  into itself. For such 𝑓 and 𝑔, the product  𝑊𝑓𝑊𝑔  therefore 

makes sense, and it turns out that 

               𝑊𝑓𝑊𝑔 =   𝑊𝑓𝑔 + ℎ  𝑊𝐶1(𝑓,𝑔) + 𝑂(ℎ
2)                                                               (5) 

as ℎ ↘ 0 , where 

𝐶1(𝑓, 𝑔) =
𝑖

4𝜋
∑(

𝜕𝑓

𝜕𝑞𝑗

𝜕𝑔

𝜕𝑝𝑗
−
𝜕𝑓

𝜕𝑝𝑗

𝜕𝑔

𝜕𝑞𝑗
)

𝑛

𝑗=1

 

  

 

satisfies 

𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) = −
𝑖

2𝜋
{𝑓, 𝑔}. 

 Hence  

  [𝑊𝑓,   𝑊𝑔] = −
𝑖ℎ

2𝜋
  𝑊{𝑓,𝑔} + 𝑂(ℎ

2) 

and so that the Weyl calculus satisfies (3). 

       One can even do slightly better than that. Namely, the product formula (5) can even be 

improved to higher order: there exist 𝐶2, 𝐶3, ⋯such that 

 

  𝑊𝑓𝑊𝑔 =   𝑊𝑓𝑔 + ℎ  𝑊𝐶1(𝑓,𝑔) + ℎ
2𝑊𝐶2(𝑓,𝑔) + 𝑂(ℎ

3), 

  𝑊𝑓𝑊𝑔 =   𝑊𝑓𝑔 + ℎ  𝑊𝐶1(𝑓,𝑔) + ℎ
2𝑊𝐶2(𝑓,𝑔) + ℎ

3𝑊𝐶3(𝑓,𝑔) + 𝑂(ℎ
4), 

 and so on. Symbolically, 

                                                  𝑊𝑓𝑊𝑔 =   𝑊𝑓∗𝑔                                                                 (6) 

                                                  

where 

𝑓 ∗ 𝑔 ∶= 𝑓𝑔 +  ℎ𝐶1(𝑓, 𝑔)  + ℎ
2𝐶2(𝑓, 𝑔) + ℎ

3𝐶3(𝑓, 𝑔) + ⋯ 
  

The last expression should be viewed just as a formal power series in ℎ (no convergence is asserted!), 

and (6) should just be understood as above, i.e. 

𝑊𝑓𝑊𝑔 = ∑ℎ𝑗𝑊𝐶𝑗(𝑓,𝑔)
+ 𝑂(ℎ𝑁),

𝑁−1

𝑗=0

 

for any 𝑁 = 0,1,2, ….  

        Ultimately, one is even led to the idea that for the quantization it not really necessary to have 

the operators 𝑄𝑓, but it suffices to have a noncommutative product like ∗. This is the essence of the 

second approach to resolving the inconsistency of the axioms (A1)–( A3), called 

the 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 . 
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Given our manifold 𝑀, consider the ring 𝐶∞(𝑀)[[ℎ]]  of all formal power series in ℎ over 𝐶∞(𝑀) . 

That is, the elements of 𝐶∞(𝑀)[[ℎ]]   are formal power series 

                                                          𝑓 =∑ℎ𝑗𝑓𝑗(𝑥)                                                         (7)

∞

𝑗=0

 

with 𝑓𝑗 ∈ 𝐶
∞(𝑀) , and addition and multiplication defined in the usual way.  

        A 𝑠𝑡𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  is an associative 𝐂[[ℎ]]   -bilinear mapping ∗ such that 

                              𝑓 ∗ 𝑔 =∑ℎ𝑗𝐶𝑗(𝑓, 𝑔),              ∀𝑓, 𝑔 ∈ 𝐶
∞(𝑀),                            (8)

∞

𝑗=0

 

where the bilinear operators 𝐶𝑗  satisfy 

𝐶0(𝑓, 𝑔) = 𝑓𝑔,             𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) = −
𝑖

2𝜋
{𝑓, 𝑔}, 

                                      𝐶𝑗(𝑓, 𝟏) = 𝐶𝑗(𝟏, 𝑓) = 0                ∀𝑗 ≥ 1. 

 

(The 𝐂[[ℎ]]    -bilinearity means that 𝑓 ∗ 𝑔 is linear in each argument and (ℎ𝑓) ∗ 𝑔 = 𝑓 ∗ (ℎ𝑔) =
ℎ(𝑓 ∗ 𝑔) ; consequently, for any 𝑓, 𝑔 as in (7), 

(∑ℎ𝑗𝑓𝑗(𝑥)

∞

𝑗=0

) ∗ (∑ℎ𝑘𝑔𝑘(𝑥)

∞

𝑗=0

) = ∑ ℎ𝑗+𝑘+𝑚𝐶𝑚(𝑓𝑗 , 𝑔𝑘)(𝑥),

∞

𝑗,𝑘,𝑚=0

 

where the last sum should, be re-arranged by combining together the terms with the same 

powerℎ𝑗+𝑘+𝑚  of ℎ .) 
       We have seen at the end that the Weyl calculus, with the star product defined by (6), satisfies (8) 

(in fact, that is exactly how the Weyl star-product was defined). From (6) and the fact that 

multiplication of operators in associative, i.e. (𝑊𝑓𝑊𝑔)𝑊𝑘 = 𝑊𝑓(𝑊𝑔𝑊𝑘), it is also immediate that the 

Weyl star-product (6) is associative. Thus the Weyl calculus from is an example of deformation 

quantization on 𝐑2𝑛 . 

        The drawback of the Weyl quantization is, however, that it does not readily extend to more 

general phase spaces than 𝐑2𝑛. Indeed, its definition used heavily the Fourier transform, and the 

Fourier transform is something which is specific only for the Euclidean spaces and a few of other 

situations. 

        Although the definition of deformation quantization,together with its physics interpretation etc., 

goes back to 1977 (it was introduced by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer in 

[134]), its existence on a general symplectic manifolds was established only years later. The first 

proof was given by DeWilde and Lecomte in 1983  [167], followed by diff erent proofs by Fedosov 

in 1985  [135] and Omori, Maeda and Yoshioka in 1991 [138]; finally, in 1997 Kontsevich 

established its existence even on any Poisson (i.e. more general than symplectic) manifold [133]. 

These constructions also allow to describe all possible deformation quantizations of a given manifold, 

and it turns out that they can be bijectively classified, up to a natural “equivalence”, by the elements 

of the formal power series ring 𝐻2(Ω, 𝐑)[[ℎ]]  over the second cohomology group 𝐻2(Ω, 𝐑) . For 

wealth of further information on deformation quantization, see Gutt [129]. 

       One disadvantage of the deformation quantizationis that it works with formal power series: no 

convergence is assumed, nor — it turns out — can be guaranteed in general, which makes the whole 

thing somewhat awkward when it comes to performing some concrete calculations. It is therefore of 

interest to have deformation quantizations that would be induced by some operators behind, as was 

the case of the Weyl quantization and the formula (6), and it would be even nicer if these operators 

were somehow naturally related to the geometry and analysis on the manifold in question — as was, 

again, the case for the Weyl transform and its relationship to the Fourier transform. 

         We will discuss two instances of such deformation quantizations, which exist on domains in 𝐂𝑛 

(or, more generally, on nice Kähler manifolds). Before plunging into the formal definitions and 
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technicalities, let us show how things work in the simplest example when the domain in question is 

the entire complex space 𝐂𝑛. 

The  𝐹𝑜𝑐𝑘 , or 𝑆𝑒𝑔𝑎𝑙_𝐵𝑎𝑟𝑔𝑚𝑎𝑛𝑛 , space on 𝐂  is, by definition, 

ℱ(𝐂) = ℱ ≔ 𝐿ℎ𝑜𝑙
2 (𝐂, π−1𝑒−|𝑧|

2
 𝑑𝑧), 

 

 the  subspace  of  all  entire  functions in 𝐿 
2(𝐂, π−1𝑒−|𝑧|

2
 𝑑𝑧) . Given a function                 𝑓 ∈ ℱ, 

its Taylor series 𝑓(𝑧) = ∑ 𝑓𝑗𝑧
𝑗∞

𝑗=0  converges on all of 𝐂 , and uniformly on any compact subset. In 

particular, for any 𝑅 ∈ (0,+∞)  we have 

∫ |𝑓(𝑧)|2𝑒−|𝑧|
2 𝑑𝑧

𝜋
= ∫ ∑ 𝑓𝑗𝑧

𝑗𝑓𝑘𝑧
𝑘̅̅ ̅̅ ̅̅ 𝑒−|𝑧|

2 𝑑𝑧

𝜋

∞

𝑗,𝑘=0

 

|𝑧|<𝑅

 

|𝑧|<𝑅

 

                                                                   = ∫ ∫ ∑ 𝑓𝑗𝑓�̅�𝑟
𝑗+𝑘𝑒(𝑗−𝑘)𝑖𝜃𝑒−𝑟

2 𝑟𝑑𝑟𝑑𝜃

𝜋

∞

𝑗,𝑘=0

𝑅

0

2𝜋

0

 

                                                                   = ∑|𝑓𝑗|
2
∫ 𝑟2𝑗𝑒−𝑟

2
2𝑟 𝑑𝑟

𝑅

0

∞

𝑗=0

 

                                                                   = ∑|𝑓𝑗|
2
∫ 𝑡𝑗𝑒−𝑡𝑑𝑡
√𝑅

0

∞

𝑗=0

, 

 

where we have used the polar coordinates 𝑧 = 𝑟𝑒𝑖𝜃, and the interchange of integration and summation 

in the third equality is justified by the uniform convergence.                                                                                                                         

 

Letting 𝑅 → +∞ yields 

                     ‖𝑓‖2 =∑|𝑓𝑗|
2
∫ 𝑡𝑗𝑒−𝑡𝑑𝑡 =∑|𝑓𝑗|

2
𝑗!

∞

𝑗=0

∞

0

∞

𝑗=0

                                                 (9) 

 Thus an entire function 𝑓 belongs to ℱ if and only if its Taylor coefficients satisfy ∑ |𝑓𝑗|
2
𝑗! < ∞.𝑗  

        A similar computation (using the Cauchy-Schwarz inequality, Fubini’s theorem and (9) to justify 

some interchanges of integration and summation signs) gives a formula for the scalar product of two 

functions 𝑓, 𝑔 ∈ ℱ  in terms of their Taylor coefficients : 

                                                     〈𝑓, 𝑔〉 =∑𝑓𝑗𝑔�̅�𝑗! .                                                      (10)

∞

𝑗=0

 

 In particular, the monomials  𝑧𝑛, 𝑛 = 0,1,2,⋯, form an orthogonal basis of ℱ, and 

                                                    
𝑧𝑛

√𝑛!
,     𝑛 = 0,1,2,⋯,                                                    (11) 

 is an orthonormal basis.ℱ 

    For any 𝑧 ∈ 𝐂 we have, by the preceding computations, 

|𝑓(𝑧)| = |∑𝑓𝑗𝑧
𝑗

𝑗

| ≤∑|𝑓𝑗|

𝑗

|𝑧|𝑗 =∑|𝑓𝑗|√𝑗!
|𝑧|𝑗

√𝑗!
𝑗

 

             ≤ (∑|𝑓𝑗|
2
𝑗!

𝑗

)

1 2⁄

(∑
|𝑧|2𝑗

𝑗!
𝑗

)

1 2⁄

= ‖𝑓‖𝑒|𝑧|
2 2⁄ . 

Thus, first, 𝑓 ↦ 𝑓(𝑧) is a bounded linear functional on ℱ ; and second, it is in fact uniformly 

bounded for 𝑧 in a bounded set in 𝐂 .  

        The latter implies (since locally uniform limits of holomorphic functions are holomorphic) 

that ℱ  is a closed subspace in 𝐿 
2(𝐂, 𝑒−|𝑧|

2
 𝑑𝑧)  , hence a Hilbert space on its own right.  
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        The former implies that there exist 𝐾𝑧 ∈ ℱ such that 

𝑓(𝑧) = 〈𝑓, 𝐾𝑧〉         ∀𝑓 ∈ ℱ. 
In fact, it is not difficult to compute what 𝐾𝑧  is explicitly. Indeed, for any 𝑓 ∈ ℱ and 𝑧 ∈ 𝐂  ,  

𝑓(𝑧) =∑𝑓𝑗𝑧
𝑗 =∑𝑓𝑗

𝑧𝑗

𝑗!
𝑗! = 〈𝑓, 𝐾𝑧〉

𝑗𝑗

, 

by (10), where 

𝐾𝑧(𝑤) =∑
𝑧�̅�

𝑗!
𝑤𝑗 = 𝑒 �̅�𝑤

𝑗

. 

Thus  𝐾𝑧(𝑤) = 𝑒
�̅�𝑤. The function of two variables 

𝐾(𝑤, 𝑧) ≔ 𝐾𝑧(𝑤) = 𝑒
�̅�𝑤 

 is called the 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙  of ℱ , and will play an important role throughout.  

For 𝑓 ∈ 𝐿∞(𝐂), the 𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟  with 𝑠𝑦𝑚𝑏𝑜𝑙   𝑓  is, by definition, the operator 𝑇𝑓: ℱ → ℱ 

given by 

𝑇𝑓𝑢 = 𝑃(𝑓𝑢) 

 where  𝑃: 𝐿 
2(𝐂, π−1𝑒−|𝑧|

2
 𝑑𝑧) → ℱ  is the orthogonal projection. In other words,  

𝑇𝑓 = 𝑃𝑀𝑓|ℱ 

 where 𝑀𝑓: 𝑢 ↦ 𝑓𝑢 is the operator of “multiplication by𝑓 ”. There is still other way of expressing 𝑇𝑓 

, using the reproducing kernel:  

𝑇𝑓𝑢(𝑧) = 〈𝑇𝑓𝑢, 𝐾𝑧〉 = 〈𝑃(𝑓𝑢), 𝐾𝑧〉 = 〈𝑓𝑢, 𝑃𝐾𝑧〉 

                             = 〈𝑓𝑢, 𝐾𝑧〉                   (𝑠𝑖𝑛𝑐𝑒 𝐾𝑧 ∈ ℱ, 𝑠𝑜 𝑃𝐾𝑧 = 𝐾𝑧)     

= ∫ 𝑓(𝑤)𝑢(𝑤)𝐾(𝑧, 𝑤)𝑒−|𝑤|
2 𝑑𝑤

𝜋
,

 

𝐂𝑛
 

showing that 𝑇𝑓 is an integral operator with integral kernel equal to 𝑓(𝑤)𝐾(𝑧, 𝑤) (with respect to the 

weight 𝑒−|𝑧|
2
π−1  ).  

        Several  properties of Toeplitz operators  are immediate from their definition:                                                                                                                                           

• The map 𝑓 ↦ 𝑇𝑓 is linear.                                                                                                                                 

• ‖𝑇𝑓‖ ≤ ‖𝑀𝑓‖ = ‖𝑓‖∞; in particular, 𝑇𝑓 is bounded for 𝑓 ∈ 𝐿∞.                                                                                          

• 𝑇𝟏 = 𝐼, the identity operator on ℱ .                                                                                              • 

Toeplitz operators behave nicely under taking adjoints : 𝑇𝑓
∗ = 𝑇𝑓̅ . 

         It is frequently convenient to consider 𝑇𝑓 even for unbounded 𝑓, when it often makes sense as 

a densely defined operator. For instance, since a product of two holomorphic functions is again 

holomorphic, 

𝑇𝑧𝑢 = 𝑃(𝑧𝑢) = 𝑧𝑢 

 if 𝑧𝑢 ∈ 𝐿2; so 𝑇𝑧 is just “multiplication by 𝑧” on ℱ  (defined on the domain {𝑢 ∈ ℱ: 𝑧𝑢 ∈ ℱ} , which 

is dense in ℱ since it contains the basis elements (11)). Similarly,  𝑇𝑧𝑚  for any  𝑚 = 0,1,2,⋯, is  just 

the operator of “multiplication by    𝑧𝑚 ”, defined again on a dense domain in ℱ (containing the 

algebraic linear span of the basis elements (11), i.e. all polynomials).  

       More generally, for any 𝑓 ∈ 𝐿∞, 

𝑇𝑧𝑓𝑢 = 𝑃(𝑧𝑓𝑢) = 𝑃(𝑓𝑃(𝑧𝑢)) = 𝑇𝑓𝑇𝑧𝑢 

 if 𝑧𝑢 ∈ 𝐿
2 ;thus 𝑇𝑧𝑓  again makes sense as a densely defined operator, whose domain contains that of 

𝑇𝑧, and 𝑇𝑧𝑓 = 𝑇𝑓𝑇𝑧 on dom 𝑇𝑧. Similarly,  

                                                𝑇𝑧𝑚𝑓 = 𝑇𝑓𝑇𝑧𝑚 = 𝑇𝑓𝑧
𝑚                                                     (12) 

 for any  𝑚 = 0,1,2,⋯.   
  Taking  adjoints  gives : 

                                                        𝑇�̅�𝑚𝑓 = 𝑇�̅�𝑚𝑇𝑓 .                                                           (13) 

 (It is possible to give examples, however, that in general 𝑇𝑓𝑇𝑔 ≠ 𝑇𝑓𝑔.)  
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       We compute the adjoint  𝑇𝑧
∗ = 𝑇�̅� . By (10), the definition of the reproducing kernel, and (13), 

(𝑇𝑧
∗𝑧𝑚)(𝑤) = 〈𝑇𝑧

∗𝑧𝑚, 𝐾𝑤〉 = 〈𝑧
𝑚 , 𝑇𝑧𝐾𝑤〉 = 〈𝑧

𝑚 , 𝑧𝐾𝑤〉 

                                    = 〈𝑧𝑚, 𝑧∑𝑧𝑗
𝑤𝑗̅̅̅̅

𝑗!
𝑗

〉 

                                     = 〈𝑧𝑚 ,∑𝑧𝑗+1
𝑤𝑗̅̅̅̅

𝑗!
𝑗

〉 

                                                                        =
𝑤𝑚−1

(𝑚 − 1)!
〈𝑧𝑚 , 𝑧𝑚〉 =

𝑚!

(𝑚 − 1)!
𝑤𝑚−1 

                    = 𝑚𝑤𝑚−1. 
Thus  𝑇𝑧

∗𝑧𝑚 = 𝑚𝑧𝑚−1 , or 

𝑇𝑧
∗ =

𝜕

𝜕𝑧
≡ 𝜕. 

Similarly  𝑇𝑧𝑚
∗ = 𝜕𝑚. 

From these findings, we get the commutation relation 

[𝑇𝑧 , 𝑇�̅�]𝑢 = [𝑧, 𝜕]𝑢 = 𝑧𝜕𝑢 − 𝜕(𝑧𝑢) = −(𝜕𝑧𝑢) = −𝑢, 
or [𝑇𝑧 , 𝑇�̅�] = −𝐼  . Setting 𝑧 = 𝑝 + 𝑖𝑞 for the real and imaginary parts, this means 

[𝑇𝑝, 𝑇𝑞] =
1

2𝑖
𝐼, 

which agrees with the CCR for the Schrödinger representation, except for the constant factor of ℎ 2 ⁄ . 

        It is easy to make even this constant factor come out right. Let us replace the Gaussian 

weight  π−1𝑒−|𝑧|
2
 , which we have been using so far, by the scaled version: ℱ𝛼(𝐂) = ℱ𝛼

∶= 𝐿ℎ𝑜𝑙
2 (𝐂,

𝛼

𝜋
𝑒−𝛼|𝑧|

2
𝑑𝑧),  

where 𝛼 > 0 is a positive parameter. The same calculations as above reveal that an entire function 

𝑓(𝑧) = ∑ 𝑓𝑗𝑧
𝑗

𝑗  belongs to ℱ𝛼  if and only if 

∑|𝑓𝑗|
2 𝑗!

𝛼𝑗
< ∞,

∞

𝑗=0

 

 that the inner product of 𝑓, 𝑔 ∈ ℱ𝛼 is given in terms of their Taylor coefficients by  

〈𝑓, 𝑔〉ℱ𝛼 =∑
𝛼𝑗

𝑗!
𝑓𝑗𝑔�̅�

∞

𝑗=0

, 

and that ℱ𝛼 has the reproducing kernel 

𝐾𝛼(𝑧, 𝑤) = 𝑒
𝛼�̅�𝑧 . 

We have also the Toeplitz operators on ℱ𝛼, 

𝑇𝑓𝑢 = 𝑃𝛼(𝑓𝑢), 

where  𝑃𝛼: 𝐿 
2 (𝐂,

𝛼

𝜋
𝑒−𝛼|𝑧|

2
𝑑𝑧) → ℱ𝛼 is the orthogonal projection. (Thus 𝑇𝑓 now depends  also on the 

parameter 𝛼, although this is not reflected by the notation.) Finally, all the formulas from the end 

remain valid, except that a factor of 𝛼 appears in 𝑇𝑧
∗ : 

𝑇𝑧𝑓 = 𝑇𝑓𝑇𝑧 ,                 𝑇𝑧𝑚𝑢 = 𝑇𝑧
𝑚𝑢 = 𝑧𝑚𝑢, 

𝑇�̅�𝑓 = 𝑇�̅�𝑇𝑓 ,                𝑇�̅�𝑚 = 𝑇�̅�
𝑚 = 𝑇𝑧

∗𝑚, 

and 

𝑇𝑧
∗ =

1

𝛼
𝜕. 

All these reduce to our previous formulas for ℱ when 𝛼 = 1.  

        The commutation relations for 𝑇𝑝 , 𝑇𝑞 , 𝑧 = 𝑝 + 𝑖𝑞 ∈ 𝐂 ≅ 𝐑
2, now become 

[𝑇𝑞 , 𝑇𝑝] =
1

2𝛼𝑖
𝐼. 
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Taking 𝛼 = 𝜋 ℎ⁄  thus exactly recovers the CCR  for the Schrödinger representation                                                                                                                                 

(1) we have started with.      

    Let We explore what are the commutation relations for Toeplitz operators 𝑇𝑓 , 𝑇𝑔 when 𝑓, 𝑔 are 

polynomials in 𝑧 𝑎𝑛𝑑 �̅�  (or, equivalently, in  𝑎𝑛𝑑 𝑝 ).                        

 Recall 𝑇�̅� =
1

𝛼
𝜕. By the Leibniz rule, 

𝑇�̅�𝑧𝑚𝑢 = 𝑇�̅�𝑇𝑧𝑚𝑢 =
1

𝛼
𝜕(𝑧𝑚𝑢) =

𝑚𝑧𝑚−1

𝛼
𝑢 + 𝑧𝑚

1

𝛼
𝜕𝑢, 

or   𝑇�̅�𝑧𝑚 = 𝑇𝑧𝑚𝑇�̅� +
1

𝛼
𝑇𝑚𝑧𝑚−1 . Thus 

𝑇𝑧𝑚𝑇�̅� = 𝑇 [𝑧̅𝑧
𝑚 −

1

𝛼
(𝑧𝑚)′] = 𝑇 [(𝑧̅ −

1

𝛼
𝜕) 𝑧𝑚], 

where, for typographical reasons, we have started writing 𝑇[𝑓] instead of 𝑇𝑓 when needed. 

Multiplying both sides by 𝑇�̅�𝑘 from the left, and remembering that 𝑇�̅�𝑘𝑓 = 𝑇�̅�𝑘𝑇𝑓 for any 𝑓, while 𝜕 

commutes with 𝑧̅, we obtain 

𝑇�̅�𝑘𝑧𝑚𝑇�̅�  = 𝑇�̅�𝑘𝑇𝑧𝑚𝑇�̅�  = 𝑇�̅�𝑘𝑇 [(𝑧̅ −
1

𝛼
𝜕) 𝑧𝑚] = 𝑇 [𝑧̅𝑘 (𝑧̅ −

1

𝛼
𝜕) 𝑧𝑚] = 𝑇 [(𝑧̅ −

1

𝛼
𝜕) 𝑧̅𝑘𝑧𝑚]. 

It follows by linearity that 

𝑇𝑓𝑇�̅� = 𝑇 [(𝑧̅ −
1

𝛼
𝜕) 𝑓] 

 for any polynomial 𝑓 in 𝑧, 𝑧̅. 
       

 

         Iterating this 𝑚 times yields 

𝑇𝑓𝑇�̅�𝑚 = 𝑇 [(𝑧̅ −
1

𝛼
𝜕)

𝑚

𝑓], 

 which by the binomial theorem (note that 𝑧̅ and 𝜕 commute!) equals  

∑
𝑚!

𝑗! (𝑚 − 𝑗)!

(−1)𝑗

𝛼𝑗
𝑧̅𝑚−𝑗𝜕𝑗𝑓 =∑

(−1)𝑗

𝑗! 𝛼𝑗
𝑗

(�̅�𝑗𝑧̅𝑚)𝜕𝑗𝑓,

𝑚

𝑗=0

 

so  

𝑇𝑓𝑇�̅�𝑚 = 𝑇 [∑
(−1)𝑗

𝑗! 𝛼𝑗
𝑗

(�̅�𝑗𝑧̅𝑚)𝜕𝑗𝑓]. 

 Multiplying both sides by 𝑇𝑧𝑘 from the right, and remembering that   𝑇𝑓𝑇𝑧𝑘𝑇𝑧𝑘𝑓  for any 𝑓 , while �̅� 

commutes with 𝑧, we obtain 

𝑇𝑓𝑇�̅�𝑚𝑧𝑘 = 𝑇𝑓𝑇�̅�𝑚 𝑇𝑧𝑘 = 𝑇 [∑
(−1)𝑗

𝑗! 𝛼𝑗
𝑗

(�̅�𝑗𝑧̅𝑚)𝜕𝑗𝑓] 𝑇𝑧𝑘 

                                       = 𝑇 [∑
(−1)𝑗

𝑗! 𝛼𝑗
𝑧𝑘

𝑗

(�̅�𝑗𝑧̅𝑚)𝜕𝑗𝑓] 

                                      = 𝑇 [∑
(−1)𝑗

𝑗! 𝛼𝑗
𝑗

(�̅�𝑗𝑧̅𝑚𝑧𝑘)𝜕𝑗𝑓]. 

By linearity again, we thus get 

𝑇𝑓𝑇𝑔 = 𝑇 [∑
(−1)𝑗

𝑗! 𝛼𝑗
𝑗

(�̅�𝑗𝑔)𝜕𝑗𝑓] =∑𝛼−𝑗𝑇(−1)𝑗(�̅�𝑗𝑔)(𝜕𝑗𝑓) 𝑗!⁄
𝑗

 

for any polynomials 𝑓, 𝑔 in 𝑧, 𝑧̅. (Note that the sum has only finitely many nonzero terms.)  
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        The beginning of the last expansion reads 

𝑇𝑓𝑇𝑔 = 𝑇𝑓𝑔 −
1

𝛼
𝑇(𝜕𝑓)(�̅�𝑔) + 𝑂(𝛼

−2). 

Interchanging 𝑓, 𝑔 and subtracting, we thus arrive at 

[𝑇𝑓 , 𝑇𝑔] =
1

𝛼
𝑇(𝜕𝑔)(�̅�𝑓)−(𝜕𝑓)(�̅�𝑔) + 𝑂(𝛼

−2). 

For 𝛼 = 𝜋 ℎ⁄  , this becomes 

[𝑇𝑓 , 𝑇𝑔] =
ℎ

𝜋
𝑇(𝜕𝑔)(�̅�𝑓)−(𝜕𝑓)(�̅�𝑔) + 𝑂(𝛼

−2). 

Upon  passing from 𝑧, 𝑧̅ to the real and imaginary parts 𝑧 = 𝑝 + 𝑖𝑞 (and from the holomorphic and 

antiholomorphic derivatives 𝜕, �̅� to the real derivatives 𝜕 𝜕𝑝⁄ , 𝜕 𝜕𝑞) ⁄ , this turns out to exactly 

recover our Poisson bracket axiom (A3). 

         In conclusion, we see that the map  

𝑓 ↦ 𝑇𝑓       𝑜𝑛 ℱ𝛼 ,            𝛼 =
𝜋

ℎ
, 

 produces a deformation quantization on 𝐂 , with star-product given by the formula 

𝑓 ∗ 𝑔 =∑
(−1)𝑗ℎ𝑗

𝑗! 𝜋𝑗
𝑗

(�̅�𝑗𝑔)𝜕𝑗𝑓 

 (at least for 𝑓, 𝑔 polynomials in 𝑧, 𝑧̅ ). 
Everything we have done for the Fock space on 𝐂   extends also to the analogous spaces  

ℱ𝛼(𝐂
𝑛) ∶= 𝐿ℎ𝑜𝑙

2 (𝐂𝑛, 𝑒−𝛼‖𝑧‖
2
(𝛼 𝜋⁄ )𝑛𝑑𝑧) 

on any 𝐂𝑛, 𝑛 ≥ 1. Namely, the inner product in ℱ𝛼 is still given by the formula (10), except that now 

𝑗 ∈ 𝐍𝑛, 𝐍 = {0,1,2,⋯ }, is a multiindex. The reproducing kernel is  

𝐾𝛼(𝑧, 𝑤) = 𝑒
𝛼〈𝑧,𝑤〉, 

and the Toeplitz operators satisfy 

𝑇𝑧𝑗 = 𝑧𝑗 ,                      𝑇𝑧𝑗
∗ =

1

𝛼

𝜕

𝜕𝑧𝑗
≡
1

𝛼
𝜕𝑗 . 

The product of Toeplitz operators is given by the formula 

𝑇𝑓𝑇𝑔 = ∑
(−1)|𝑗|

𝑗! 𝛼|𝑗|
𝑇[(𝜕𝑗𝑓)(�̅�𝑗𝑔)],

𝑗  𝑚𝑢𝑙𝑡𝑖𝑖𝑛𝑑𝑒𝑥

 

at least for 𝑓, 𝑔  polynomials in 𝑧𝑗 , 𝑧�̅�, 𝑗 = 1,⋯ , 𝑛. Finally, setting 𝛼 = 𝜋 ℎ⁄ , we again arrive at a 

deformation quantization on 𝐂𝑛, with star-product 

𝑓 ∗ 𝑔 = ∑ ℎ𝑚𝐶𝑚(𝑓, 𝑔),

∞

𝑚=0

 

𝐶𝑚(𝑓, 𝑔) =
(−1)𝑚

𝜋𝑚
∑

1

𝑗!
𝑇[(𝜕𝑗𝑓)(𝜕𝑗̅̅ ̅𝑔)]

𝑗∈𝐍𝑛,|𝑗|=𝑚

 

(at least for 𝑓, 𝑔 polynomials in 𝑧, 𝑧̅). 
    We remark that there is actually an isomorphism, the 𝐵𝑎𝑟𝑔𝑚𝑎𝑛𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 , mapping 𝐿2(𝐑𝑛) 
unitarily onto ℱ𝛼(𝐂

𝑛). Transferring the Weyl operators 𝑊𝑓 , to ℱ𝛼  via this isomorphism, 𝑊𝑓 actually 

becomes precisely 𝑇𝑓 for 𝑓 a first degree polynomial in 𝑧𝑗 , 𝑧�̅� ; but this is no longer true for more 

general 𝑓 . Thus 𝑓 ↦ 𝑊𝑓 and 𝑓 ↦ 𝑇𝑓 are actually two 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 deformation quantizations of 𝐂𝑛.  

We will meet yet another quantization later on. 

        Even though our “Toeplitz quantization” on 𝐂𝑛 using Toeplitz operators on Fock spaces is 

simple and nice, as yet it has several shortcomings. First of all, the operators 𝑇𝑧 , 𝑇�̅� above are 

unbounded operators; although they have a common dense domain (the polynomials in ℱ𝛼 ), extra 

care would be needed to deal with all the computations above on a rigorous level. Furthermore, it is 

not completely apparent to what extent the formula   
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𝑇𝑓𝑇𝑔 = ∑
(−1)|𝑗|

𝑗! 𝛼|𝑗|
𝑇[(𝜕𝑗𝑓)(�̅�𝑗𝑔)]

𝑗  multiindex

 

remains valid when 𝑓, 𝑔 are not polynomials. Finally, we would need to see what to do to quantize 

other domains than 𝐂𝑛.                                                                              

There are tools to handle all this, which we now introduce. 

   Let Ω a bounded domain in 𝐂𝑛, and let us keep the notation 𝑑𝑧 for the Lebesgue measure on Ω. The 

subspace 𝐿hol
2 (Ω) of all holomorphic functions in 𝐿 

2(Ω, dz)   is known as the 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑠𝑝𝑎𝑐𝑒. By 

the mean-value property of holomorphic functions, if 𝑧 ∈ Ω and 𝑟 > 0 is such that the polydisc 𝐷𝑧,𝑟
∶= {𝑤 ∈ 𝐂𝑛: |𝑤𝑗 − 𝑧𝑗| < 𝑟  ∀𝑗 = 1,⋯ , 𝑛} lies wholly in Ω , then 

𝑓(𝑧) = (𝜋𝑟2)−𝑛 ∫𝑓(𝑤)𝑑𝑤,

 

𝐷𝑧,𝑟

 

so 

|𝑓(𝑧)| ≤ (𝜋𝑟2)−𝑛 ( ∫ 𝑑𝑤

 

𝐷𝑧,𝑟

)

1 2⁄

( ∫|𝑓(𝑤)|2𝑑𝑤,

 

𝐷𝑧,𝑟

)

1 2⁄

≤ (𝜋𝑟2)−𝑛 2⁄ ‖𝑓‖. 

Consequently, the evaluation functional 𝑓 ↦ 𝑓(𝑧) is bounded on 𝐿hol
2 (Ω)  , and uniformly for 𝑧 in 

compact subsets of Ω. From the latter it follows, first of all, that 𝐿hol
2   is a closed subspace of 𝐿 

2, hence 

a Hilbert space in its own right; while the former again implies that there exists a unique 𝐾𝑧 ∈ 𝐿hol
2 (Ω)  

such that 

𝑓(𝑧) = 〈𝑓, 𝐾𝑧〉        ∀𝑓 ∈ 𝐿hol
2 (Ω). 

 

 The function 

                        𝐾(𝑥, 𝑦) ≡ 𝐾𝑦(𝑥) = 〈𝐾𝑦 , 𝐾𝑥〉 = 𝐾(𝑦, 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅                                              (14) 

is thus the 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔  𝑘𝑒𝑟𝑛𝑒𝑙  of 𝐿hol
2 (Ω), called the 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙; note that from (14) it is 

immediate that it is holomorphic in 𝑥 and anti-holomorphic in 𝑦. Furthermore, since Ω was assumed 

to be bounded, hence of finite Lebesgue measure, the function constant on belongs to 𝐿hol
2 (Ω) , and, 

consequently,  

                                      1 = 𝟏(𝑥) = 〈𝟏, 𝐾𝑥〉 ≤ ‖𝟏‖‖𝐾𝑥‖,                                            (15) 
implying that ‖𝐾𝑥‖ > 0 for all 𝑥 ∈ Ω. 

While quantization is a recipe for associating operators to functions, here we come across an 

assignment going in the other direction, i.e. mapping operators on some Hilbert space into functions 

on some domain. These functions are commonly called the 𝑠𝑦𝑚𝑏𝑜𝑙 of the corresponding operator, 

and the whole process is often called a 𝑠𝑦𝑚𝑏𝑜𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠, or 𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛. (Similarly, 

quantization is sometimes called an 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 in various contexts.) Here is an instance of 

such process, which is characteristic for the Bergman spaces. 

        For an operator 𝑇 on the Bergman space 𝐿hol
2 (Ω) , the  𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑠𝑦𝑚𝑏𝑜𝑙 �̃�of 𝑇 is the function 

on Ω given by  

�̃�(𝑥) =
〈𝑇𝐾𝑥 , 𝐾𝑥〉

〈𝐾𝑥 , 𝐾𝑥〉
= 〈𝑇𝑘𝑥 , 𝑘𝑥〉,                𝑘𝑥 ∶=

𝐾𝑥
‖𝐾𝑥‖

. 

Note that this definition makes sense, since the denominator is positive by (15).      

        There are a number of properties of the symbol map 𝑇 ↦ �̃� immediate from its definition:  

• The mapping 𝑇 ↦ �̃�  is linear.                                                                                                 

  • 𝐼 = 𝟏, i.e. the symbol of the identity operator is the function constant one.       

           • 𝑇 ∗̃ = �̅̃�.                                                                                                                                           

• If 𝑇 is bounded, then �̃�  is a bounded function; in fact, ‖�̃�‖
∞
≤ ‖𝑇‖.  

Moreover, the functionse �̃� is smooth (in fact, even real-analytic), because it is the restriction to the 

diagonal 𝑥 = 𝑦 of the function of two variables  
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�̃�(𝑥, 𝑦) ∶=
〈𝑇𝐾𝑦 , 𝐾𝑥〉

〈𝐾𝑦 , 𝐾𝑥〉
=
〈𝑇𝐾𝑦 , 𝐾𝑥〉

𝐾(𝑥, 𝑦)
 

holomorphic in 𝑥, �̅� on the set where 𝐾(𝑥, 𝑦) ≠ 0. (Since we know that 𝐾(𝑥, 𝑥) = ‖𝐾𝑥‖
2 > 0 by 

(15), by continuity 𝐾(𝑥, 𝑦) is nonzero in some neighbourhood of the diagonal.) 

       However, the most important property of the symbol map is that  

                                                     𝑇 ↦ �̃�     is one-to-one.                                      (16) 

 

 Indeed, suppose �̃�(𝑥) = �̃�(𝑥, 𝑥) = 0 ∀𝑥. Setting 𝑥 = 𝑢 + 𝑖𝑣, �̅� = 𝑢 − 𝑖𝑣, it follows that 𝐺(𝑢, 𝑣)

∶= �̃�(𝑢 + 𝑖𝑣, �̅� + 𝑖�̅�) is a holomorphic function of 𝑢, 𝑣 which vanishes for all 𝑢, 𝑣 real. By uniqueness 

principle for holomorphic functions 𝐺,  must vanish identically, so �̃�(𝑥, 𝑦) = 0 ∀𝑥, 𝑦 , hence 

 〈𝑇𝐾𝑥 , 𝐾𝑦〉 = 𝑇𝐾𝑥(𝑦) = 0 ∀𝑥, 𝑦. However,  

�̃�∗𝑓(𝑥) = 〈𝑇∗𝑓, 𝐾𝑥〉 = 〈𝑓, 𝑇𝐾𝑥〉 = ∫𝑓(𝑦)𝑇𝐾𝑥(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑦,

 

Ω

 

so 𝑇∗𝑓(𝑥) = 0 for all 𝑓 and 𝑥. Hence, 𝑇∗ = 0 and 𝑇 = 0, proving the injectivity of the map 𝑇 ↦ �̃�. 

                                                                 As before, the Toeplitz operator on 𝐿hol
2 (Ω)  with symbol 

 𝜙 ∈ 𝐿 
∞(Ω)  is defined as  

𝑇𝜙𝑓 = 𝑃(𝜙𝑓) 

 where  𝑃:  𝐿 
2 → 𝐿hol

2  is the orthogonal projection (called the 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ).                                                                                                       
All the properties familiar from the Fock space setting remain in force here:                    

       • 𝑓 ↦ 𝑇𝑓 is linear;                                                                                                                               

•𝑇𝟏 = 𝐼;                                                                                                                                                     
•𝑇𝑓
∗ = 𝑇𝑓̅;                                                                                                                                           

•‖𝑇𝑓‖ ≤ ‖𝑓‖∞. 

 Furthermore, for 𝜙 bounded holomorphic, 𝑇𝜙 is just the operator of “multiplication by 𝜙” on the 

Bergman space; and for 𝜙 bounded holomorphic and 𝑓 arbitrary, 

𝑇𝑓𝜙 = 𝑇𝑓𝑇𝜙 ,       𝑇�̅�𝑓 = 𝑇�̅�𝑇𝑓 . 

The diff erence against the Fock space is that now, since Ω  is bounded, there are plenty of bounded 

holomorphic functions on Ω (not just the constants), e.g. all holomorphic polynomials.  

       We finally remark — although this is not needed, unlike the corresponding property of the 

Berezin symbol map, anywhere in the sequel — that the map 𝑓 ↦ 𝑇𝑓 is also one-to-one. Indeed, 

assume that 𝑇𝑓 = 0 ; then 〈𝑇𝑓𝑢, 𝑣〉 = 〈𝑓𝑢, 𝑣〉 = 0 for any holomorphic polynomials 𝑢, 𝑣, in particular, 

〈𝑓𝑧𝑗 , 𝑧𝑚〉 = 0, or  

∫𝑓(𝑧)𝑧𝑗𝑧̅𝑚𝑑𝑧 = 0

 

Ω

 

for any multiindices 𝑗, 𝑚. By the Stone-Weierstrass theorem, this implies that  

∫𝑓(𝑧)𝑔(𝑧)𝑑𝑧 = 0 

for any function 𝑔 continuous on the closure Ω̅ of Ω. By the Riesz representation theorem,this means 

that 𝑓(𝑧)𝑑𝑧 is the zero measure,and,consequently,that  𝑓 = 0 almost everywhere, as claimed. 

The Toeplitz correspondence assigns the operator 𝑇𝑓 to a function 𝑓, while the Berezin symbol map 

assigns the function �̃� to an operator 𝑇. The 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑡𝑟𝑎𝑛𝑠_ 𝑓𝑜𝑟𝑚 is the composition of these two 

maps; that is, it assigns to a function f on Ω  again a function on Ω, denoted 𝐵𝑓 or 𝑓, and given by  

𝐵𝑓 ∶= 𝑓 ∶= 𝑇�̃� . 

Chasing through the definitions shows that 𝐵 is in fact an integral operator: 

𝑓(𝑥) =
〈𝑓𝐾𝑥 , 𝐾𝑥〉

〈𝐾𝑥 , 𝐾𝑥〉
= ∫𝑓(𝑦)

|𝐾(𝑥, 𝑦)|2

𝐾(𝑥, 𝑥)
𝑑𝑦.

 

Ω

 

One also checks easily that 𝐵 has the following properties, which can either be derived from those 
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of the Toeplitz operators and the Berezin symbols, or verified directly.                                                                                                                                                 

• 𝑓 ↦ 𝐵𝑓 is  linear;                                                                                                                             

•𝐵𝟏 = 𝟏;                                                                                                                                               

•𝐵𝑓̅ = 𝐵𝑓̅̅̅̅ ;                                                                                                                                            

•‖𝐵𝑓‖∞ ≤ ‖𝑓‖∞..    Also, 𝐵𝑓 is always a real-analytic function on Ω , and the operator 𝐵 is one-to-

one. 

In an obvious manner, all the objects described generalize also to the case of weighted 𝐿2 

spaces.Namely,let 𝑤 > 0 be a positive continuous weight on Ω , integrable there with respect to the 

Lebesgue measure. The associated 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑠𝑝𝑎𝑐𝑒 on Ω with respect to 𝑤 is the 

subspace 𝐿ℎ𝑜𝑙
2 (Ω,𝑤)of all holomorphic functions in 𝐿 

2(Ω,𝑤). Using the mean-value property of 

harmonic functions, one again shows that the point evaluations 𝑓 ↦ 𝑓(𝑧) are continuous 

on 𝐿ℎ𝑜𝑙
2 (Ω,𝑤) , uniformly on compact subsets (the continuity and positivity of 𝑤 is needed here); 

implying as before that 𝐿ℎ𝑜𝑙
2 (Ω, 𝑤) is a closed subspace of 𝐿 

2(Ω, 𝑤) — hence a Hilbert space on its 

own — and that is possesses a reproducing kernel, the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑘𝑒𝑟𝑛𝑒𝑙 𝐾𝑤(𝑥, 𝑦) ≡
𝐾𝑤,𝑦(𝑥). The Berezin symbol �̃� of an operator 𝑇 on 𝐿ℎ𝑜𝑙

2 (Ω, 𝑤) is the function on Ω  

�̃�(𝑥) =
〈𝑇𝐾𝑤,𝑥 , 𝐾𝑤,𝑥〉

〈𝐾𝑤,𝑥 , 𝐾𝑤,𝑥〉
= 〈𝑇𝑘𝑤,𝑥 , 𝑘𝑤,𝑥〉,               𝑘𝑤,𝑥 ∶=

𝐾𝑤,𝑥

‖𝐾𝑤,𝑥‖
. 

(Naturally, �̃�  depends also on the weight 𝑤, although this is not reflected in the notation.) Here one 

needs that 𝐾𝑤(𝑥, 𝑥) = ‖𝐾𝑤,𝑥‖
2
> 0 for all 𝑥 ∈ Ω, which again follows as in (15) (and the hypothesis 

of the integrability of 𝑤 ensures that the function constant one belongs to 𝐿ℎ𝑜𝑙
2 (Ω, 𝑤)) Importantly, 

the Berezin symbol map 𝑇 ↦ �̃�  is still one-to-one (with the same proof as in the unweighted case).    

The Toeplitz operator on 𝐿ℎ𝑜𝑙
2 (Ω, 𝑤) with symbol 𝜙 ∈ 𝐿∞(Ω) is defined as 

𝑇𝜙𝑓 = 𝑃𝑤(𝜙𝑓) 

where  𝑃𝑤: 𝐿 
2(Ω,𝑤) → 𝐿ℎ𝑜𝑙

2 (Ω,𝑤) is the orthogonal projection 

(the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑒𝑟𝑔𝑚𝑎𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ). Finally, the 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 of a function 

f on Ω is another function on Ω, given by  

𝐵𝑤𝑓 ∶= 𝑓 ∶= 𝑇�̃� 

(again, the simpler notation 𝑓 ̃does not reflect that fact that 𝑓 ̃depends also on the weight 𝑤); and 𝐵𝑤 

is in fact an integral operator  

𝐵𝑤𝑓(𝑥) =
〈𝑓𝐾𝑤,𝑥 , 𝐾𝑤,𝑥〉

〈𝐾𝑤,𝑥 , 𝐾𝑤,𝑥〉
= ∫𝑓(𝑦)

|𝐾𝑤(𝑥, 𝑦)|
2

𝐾𝑤(𝑥, 𝑥)
𝑤(𝑦)𝑑𝑦.

 

Ω

 

We (at last!) describe how all these concepts can be utilized for the construction of the special 

deformation quantizations on Ω mentioned. 

For the Fock spaces ℱ𝛼, 𝛼 = 𝜋 ℎ⁄ , we have seen that the Toeplitz calculus assigning to a function f 

on 𝐂𝑛 the Toeplitz operator 𝑇𝑓 on ℱ𝛼 yields a deformation quantization of 𝐂𝑛 . The main idea 

of𝐵𝑒𝑟𝑒𝑧𝑖𝑛_𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧 quantization is to use the Toeplitz operators in the same way also on a general 

domain Ω. Of course, what is unclear is the right substitute for the Gaussian measures 𝑒−𝜋|𝑧|
2 ℎ⁄ on 𝐂𝑛.  

        The main problem in the Berezin-Toeplitz quantization is thus to find a family of 

weights 𝜌ℎ  , ℎ > 0, on the domain Ω such that the corresponding Toeplitz operators on 𝐿hol
2 (Ω, 𝜌ℎ) 

satisfy 

                                               𝑇𝑓𝑇𝑔 =∑ℎ𝑗𝑇[𝐶𝑗(𝑓, 𝑔)]                                                 (17)

∞

𝑗=0

 

in some sense, where 𝐶𝑗are some bidiff erential operators such that 𝐶0(𝑓, 𝑔) = 𝑓𝑔 and 

𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) =
𝑖

2𝜋
{𝑓, 𝑔} 

for some given Poisson bracket {. , . } on Ω . 
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         Recall that for Ω = 𝐂 and 𝜌ℎ(𝑧) = 𝑒
−𝜋|𝑧|2 ℎ⁄ ℎ−1𝑑𝑧, this was fulfilled with 𝐶𝑗(𝑓, 𝑔) =

1

𝑗!
(𝜕𝑗𝑓)(�̅�𝑗𝑔). (And similarly for 𝐂𝑛.)  

        The operators 𝐶𝑗 ≡ 𝐶𝑗
𝐵𝑇then define a star-product  

𝑓 ∗𝐵𝑇  𝑔 ∶=∑ℎ𝑗𝐶𝑗
𝐵𝑇(𝑓, 𝑔),              𝑓, 𝑔 ∈ 𝐶∞(Ω),

∞

𝑗=0

 

called 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 –𝑇𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑠𝑡𝑎𝑟 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (and denoted ∗𝐵𝑇to distinguish it from the various other 

star-products around). 

This method is not based on Toeplitz operators, but rather on the Berezin symbols.  

        Consider, quite generally, any weight 𝑤 on Ω of the kind discussed. Since the Berezin symbol 

map 𝑇 ↦ 𝑇 ̃is one-to-one, we can introduce a noncommutative product ∗𝑤on (some) functions on Ω 

by 

�̃� ∗𝑤 �̃� ∶= 𝑆�̃�. 
 The product 𝑓 ∗𝑤 𝑔 is thus defined only for 𝑓, 𝑔 in the set 

𝒜𝑤 ∶= {�̃�: 𝑇 is a bounded linear operator on 𝐿hol
2 (Ω,𝑤)} 

(which also depends on 𝑤). The product 𝑓 ∗𝑤 𝑔 then also belongs to 𝒜𝑤, and∗𝑤 is associative (since 

the multiplication of operators is).  

        The idea is to glue these non-commutative products ∗𝑤, as 𝑤 is let to vary with the Planck 

constant ℎ, into a star product.  

       More precisely,the 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 amounts to finding a family of weights 𝜌ℎ  , ℎ > 0, 

such that, first of all, the intersection 

𝒜 ∶=⋂𝒜𝜌ℎ

ℎ>0

 

is sufficiently large; and, second, that for 𝑓, 𝑔 ∈ 𝒜, 

𝑓 ∗𝜌ℎ 𝑔 =∑ℎ𝑗𝐶𝑗(𝑓, 𝑔)

∞

𝑗=0

 

asymptotically as ℎ ↘ 0 , where 𝐶𝑗are some bidiff erential operators such that 𝐶0(𝑓, 𝑔) = 𝑓𝑔 and  

𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) =
𝑖

2𝜋
{𝑓, 𝑔} 

 for a given Poisson bracket {. , . } on Ω.  

        Here “sufficiently large” means, basically, that 𝒜 should be so large that the bilinear operators 

𝐶𝑗(𝑓, 𝑔) are uniquely determined by their values on 𝑓, 𝑔 ∈ 𝒜. Since 𝐶𝑗 are diff erential operators in 

each argument, this will be the case, for instance, whenever for any point  𝑥 any finite set 𝐽 of 

multiindices, and any set of complex numbers 𝑐𝑗 , 𝑗 ∈ 𝐽, we can find an element 𝑓 ∈ 𝒜 such that 

𝜕𝑗𝑓(𝑥) = 𝑐𝑗 ∀𝑗 ∈ 𝐽.In particular, it is enough if 𝒜 contains all polynomials (in 𝑧 and z̅ ) on Ω.    

       The resulting bidiff erential operators 𝐶𝑗 ≡ 𝐶𝑗
𝐵then, of course, define the desired star-product  

𝑓 ∗𝐵  𝑔 ∶=∑ℎ𝑗𝐶𝑗
𝐵(𝑓, 𝑔),              𝑓, 𝑔 ∈ 𝐶∞(Ω),

∞

𝑗=0

 

 called the 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑠𝑡𝑎𝑟 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (and denoted ∗𝐵 to distinguish it from the BerezinToeplitz star-

product).  

       So far, we have not exhibited any example of the Berezin quantization, even on 𝐂𝑛 . We will do 

that by showing that it is in fact related to another problem, which has a very familiar answer on 𝐂𝑛. 
In fact, the problem described can be reduced to one concerning the asymptotic behaviour of the 

weighted Berezin transforms 𝐵𝑤 with the appropriate weights 𝑤. More precisely, the following holds.  

        Suppose we can find a family of weights 𝜌ℎ , ℎ > 0 on Ω, such that as ℎ → 0, the corresponding 

weighted Berezin transforms 𝐵𝜌ℎ ≡ 𝐵ℎ have an asymptotic expansion  

                                        𝐵ℎ = 𝑄0 + ℎ𝑄1 + ℎ
2𝑄2 +⋯,                                                (18) 
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with some diff erential operators 𝑄𝑗, where 𝑄0 = 𝐼. Let 𝑐𝑗𝛼𝛽 be the coefficients of𝑄𝑗, i.e.  

𝑄𝑗𝑓 =: ∑  𝑐𝑗𝛼𝛽𝜕
𝛼�̅�𝛽𝑓;

𝛼,𝛽 multiindices

 

and  

set  

𝑓 ∗𝐵𝑡  𝑔 ∶=∑ℎ𝑗𝐶𝑗
 (𝑓, 𝑔),              

∞

𝑗=0

 

where  

                     𝐶𝑗(𝑓, 𝑔) ≡ 𝐶𝑗
𝐵𝑡(𝑓, 𝑔) ∶=∑𝑐𝑗𝛼𝛽(�̅�

𝛽𝑓)(𝜕𝛼𝑔).                                     (19)

𝛼,𝛽

 

If it happens that  

𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) =
𝑖

2𝜋
{𝑓, 𝑔}, 

 then ∗𝐵𝑡 is a star product and 

                                           𝑓 ∗𝐵𝑡 𝑔 = 𝑓 ∗𝐵 𝑔          ∀𝑓, 𝑔,                                               (20) 
i.e. ∗𝐵𝑡 coincides with the Berezin star-product.  

        We devoted to the proof of this assertion. Once this has been done,the construction of the Berezin 

quantization reduces to constructing  a family of weights for which the associated Berezin transforms 

have the nice asymptotics (18); this will be done. Furthermore, the assertion also yields immediately 

an easy example of a Berezin quantization on 𝐂𝑛;  this, as well as some other examples, will be 

presented below.  

        So let us prove (20). Suppose we have a family of weights  𝜌ℎsuch that (18) holds. Denote, for 

brevity, by 𝑍𝑗 = 𝑇𝑧𝑗 , 𝑗 = 1,⋯ , 𝑛, the Toeplitz operator on 𝐿hol
2 (Ω, 𝜌ℎ) whose symbol is the coordinate 

function 𝑧𝑗; we have seen that 𝑍𝑗are actually just the multiplication operators  

𝑍𝑗: 𝑓(𝑧) ↦ 𝑧𝑗𝑓(𝑧). 

 Let 𝑍𝑗
∗ be the adjoint of 𝑍𝑗 on 𝐿hol

2 (Ω, 𝜌ℎ). (Thus 𝑍𝑗
∗ depends also on ℎ, although it is not visible in 

the notation.) For 𝑝(𝑧, 𝑧̅) = ∑ 𝑝𝛼𝛽𝑧
𝛼𝑧̅𝛽 𝛼,𝛽 a polynomial in 𝑧 and 𝑧̅, define the operators  

𝑉𝑝 ∶=∑𝑝𝛼𝛽𝑍
𝛼𝑍∗𝛽

𝛼,𝛽

 

on each 𝐿hol
2 (Ω, 𝜌ℎ), ℎ > 0 (where we are using the obvious multiindex conventions 𝑍𝛼 =

𝑍1
𝛼1⋯𝑍𝑛

𝛼𝑛etc.). Note that owing to the hypothesis that the domain Ω is bounded, 𝑍𝑗and, hence, 𝑉𝑝are 

bounded linear operators.  

         Recall now our notation 𝐾𝑦 = 𝐾𝜌ℎ(. , 𝑦) for the reproducing kernels, and the notation for the 

“two-variable Berezin symbol” of an operator 𝑇 on  𝐿hol
2 (Ω, 𝜌ℎ),  

�̃�(𝑥, 𝑦) ∶=
〈𝑇𝐾𝑦 , 𝐾𝑥〉

〈𝐾𝑦 , 𝐾𝑥〉
=
𝑇𝐾𝑦(𝑥)

𝐾(𝑥, 𝑦)
=
𝑇∗𝐾𝑥(𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐾(𝑥, 𝑦)
, 

 which is defined in some neighbourhood of the diagonal in Ω × Ω  (where 𝐾(𝑥, 𝑦) ≠ 0) and whose 

restriction to the diagonal 𝑥 = 𝑦 coincides with the Berezin symbol �̃�(𝑥) of 𝑇. Applying this in 

particular to the operator 𝑉𝑝, we get   

𝑉�̃�(𝑥, 𝑦) =
𝑉𝑝𝐾𝑦(𝑥)

𝐾(𝑥, 𝑦)
=
∑ 𝑝𝛼𝛽(𝑍

𝛼𝑍∗𝛽𝐾𝑦)(𝑥)𝛼,𝛽

𝐾(𝑥, 𝑦)
 

                                     =
∑ 𝑝𝛼𝛽𝑥

𝛼(𝑍∗𝛽𝐾𝑦)(𝑥)𝛼,𝛽

𝐾(𝑥, 𝑦)
=
∑ 𝑝𝛼𝛽𝑥

𝛼〈𝑍∗𝛽𝐾𝑦 , 𝐾𝑥〉𝛼,𝛽

𝐾(𝑥, 𝑦)
 

                             =
∑ 𝑝𝛼𝛽𝑥

𝛼〈𝐾𝑦 , 𝑍
𝛽𝐾𝑥〉𝛼,𝛽

𝐾(𝑥, 𝑦)
=
∑ 𝑝𝛼𝛽𝑥

𝛼𝑦𝛽𝐾𝑥(𝑦)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛼,𝛽

𝐾(𝑥, 𝑦)
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                    = ∑𝑝𝛼𝛽𝑥
𝛼�̅�𝛽

𝛼,𝛽

= 𝑝(𝑥, �̅�)          for any ℎ.     

 In particular 𝑉�̃�(𝑥) = 𝑉�̃�(𝑥, 𝑥) = 𝑝(𝑥, �̅�) for any ℎ. Consequently, 𝑝 ∈ 𝒜𝜌ℎ
for all ℎ, that is, 𝑝 ∈ 𝒜  ; 

thus 𝒜  contains all polynomials, settling the first requirement for the Berezin quantization. 

         Next, for any two operators 𝑇1, 𝑇2on  𝐿hol
2 (Ω, 𝜌ℎ), 

(𝑇1𝑇2̃)(𝑥, 𝑦) =
〈𝑇2𝐾𝑦 , 𝑇1

∗𝐾𝑥〉

〈𝐾𝑦 , 𝐾𝑥〉
=
∫𝑇2𝐾𝑦(𝑧)𝑇1

∗𝐾𝑥(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜌ℎ(𝑧)𝑑𝑧

〈𝐾𝑦 , 𝐾𝑥〉
 

                           = ∫
𝑇2̃(𝑧, 𝑦)𝐾ℎ(𝑧, 𝑦). 𝑇1̃(𝑥, 𝑧)𝐾ℎ(𝑥, 𝑧)

〈𝐾𝑦 , 𝐾𝑥〉
𝜌ℎ(𝑧)𝑑𝑧. 

In particular, 

(𝑇1𝑇2̃)(𝑥, 𝑥) = ∫𝑇1̃(𝑥, 𝑧)𝑇2̃(𝑧, 𝑥)
|𝐾ℎ(𝑥, 𝑧)|

2

𝐾ℎ(𝑥, 𝑥)
𝜌ℎ(𝑥)𝑑𝑥 

= (𝐵ℎ[𝑇1̃(𝑥, . )𝑇2̃(. , 𝑥)])(𝑥). 
Thus if (18) holds, i.e.  

𝐵ℎ =∑ℎ𝑗𝑄𝑗       𝑎𝑠 ℎ → 0,

∞

𝑗=0

 

with some diff erential operators 𝑄𝑗𝑓 = ∑ 𝑐𝑗𝛼𝛽𝜕
𝛼�̅�𝛽𝑓𝛼,𝛽 , and 𝐶𝑗are defined by 𝐶𝑗(𝑓, 𝑔)

∶= ∑ 𝑐𝑗𝛼𝛽(�̅�
𝛽𝑓)(𝜕𝛼𝑔)𝛼,𝛽 , then we get for ℎ → 0  

(𝑇1𝑇2̃)(𝑥, 𝑥) =∑ℎ𝑗𝑄𝑗[𝑇1̃(𝑥, . )𝑇2̃(. , 𝑥)](𝑥)

∞

𝑗=0

 

                                 = ∑ℎ𝑗𝑐𝑗𝛼𝛽�̅�
𝛽𝑇1̃(𝑥, . )𝜕

𝛼𝑇2̃(. , 𝑥)|𝑥
.

𝑗,𝛼,𝛽

 

Now since �̃�(𝑥) = �̃�(𝑥, 𝑥) and �̃�(𝑥, 𝑦) is holomorphic in 𝑥 and anti-holomorphic in𝑦 , we have  

�̅�𝛽�̃�1(𝑥, . )|𝑥 = �̅�
𝛽�̃�1(𝑥) 

 (the �̃� on the left-hand side is the �̃�(𝑥, 𝑦), and the �̃� on the right-hand side is the �̃�(𝑥)). Similarly,  

𝜕𝛼�̃�2(. , 𝑥)|𝑥 = 𝜕
𝛼�̃�2(𝑥). 

Thus  

𝑇1𝑇2̃ = ∑ ℎ𝑗𝑐𝑗𝛼𝛽(�̅�
𝛽𝑇1̃)(𝜕

𝛼𝑇2̃)

𝑗,𝛼,𝛽

 

               = ∑ℎ𝑗𝐶𝑗(�̃�1, �̃�2) = �̃�1 ∗𝐵𝑡 �̃�2,

𝑗

 

by the definition of ∗𝐵𝑡. On the other hand, 𝑇1𝑇2̃ = �̃�1 ∗𝜌ℎ �̃�2 , by the definition of ∗𝑤 (with 𝑤 = 𝜌ℎ) 

so  

�̃�1 ∗𝐵𝑡 �̃�2 = �̃�1 ∗𝜌ℎ �̃�2. 

Applying this to 𝑇1 = 𝑉𝑝, 𝑇2 = 𝑉𝑞 with some polynomials 𝑝, 𝑞 in 𝑧, 𝑧̅,and recalling that �̃�𝑝 = 𝑝, this 

means that  

𝑝 ∗𝐵𝑡 𝑞 = 𝑝 ∗𝜌ℎ 𝑞 

 for any polynomials 𝑝, 𝑞 in 𝑧, 𝑧̅. Since any 𝑓 ∈ 𝐶∞(Ω) can be approximated, at any given point,to 

any finite order by polynomials,and the 𝐶𝑗(. , . ) for both ∗𝐵𝑡 and ∗𝐵 are diff erential operators in each 

argument, necessarily 𝐶𝑗
𝐵𝑡(𝑓, 𝑔)(𝑥) = 𝐶𝑗

𝐵(𝑓, 𝑔)(𝑥) for all 𝑓, 𝑔 ∈ 𝐶∞(Ω) and 𝑥 ∈ Ω ; that is, ∗𝐵𝑡=∗𝐵 

, completing our proof. 

On a slightly more heuristic level, it is possible to derive not only the Berezin, but also the Berezin-

Toeplitz quantization from the asymptotics (18) of the Berezin transform; that is, to show that if (18) 

holds, then  
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                                                                [𝑇𝑓 , 𝑇𝑔] ≈ ℎ𝑇{𝑓,𝑔}                                               (21) 

as the Planck constant ℎ ↘ 0. While this will not be directly needed anywhere in the sequel, we 

believe it is worth mentioning here. 

        Assume first that 𝑓, �̅� are holomorphic. Then for any 𝜙 ∈ 𝐿hol
2  

〈𝑇𝑓𝜙,𝐾𝑥〉 = 〈𝑓𝜙, 𝐾𝑥〉 = 𝑓(𝑥)𝜙(𝑥) = 𝑓(𝑥)〈𝜙, 𝐾𝑥〉. 

It follows that 𝑇𝑓
∗𝐾𝑥 = 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝐾𝑥. Similarly 𝑇𝑔𝐾𝑥 = 𝑔(𝑥)𝐾𝑥. Hence 

𝑇𝑓𝑇�̃�(𝑥) =
〈𝑇𝑓𝑇𝑔𝐾𝑥 , 𝐾𝑥〉

〈𝐾𝑥 , 𝐾𝑥〉
=
〈𝑇𝑔𝐾𝑥 , 𝑇𝑓

∗𝐾𝑥〉

〈𝐾𝑥 , 𝐾𝑥〉
 

                     =
〈𝑔(𝑥)𝐾𝑥 , 𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝐾𝑥〉

〈𝐾𝑥 , 𝐾𝑥〉
= 𝑓(𝑥)𝑔(𝑥); 

that is, 𝑇𝑓𝑇�̃� = 𝑓𝑔.  

        On the other hand, by definition the Berezin transform and (18),  

�̃�𝑓𝑔 = 𝐵ℎ(𝑓𝑔) = 𝑓𝑔 + ℎ𝑄1(𝑓𝑔) + 𝑂(ℎ
2) 

Subtracting this from 𝑇𝑓𝑇�̃� = 𝑓𝑔  gives 

(𝑇𝑓𝑇𝑔 − 𝑇𝑓𝑔)
~ = −ℎ𝑄1(𝑓𝑔) + 𝑂(ℎ

2) 

                          = −ℎ𝑇𝑄1(𝑓𝑔)
̃ +𝑂(ℎ2). 

“Removing the tilde” (yes, this is the heuristic part) we get, for 𝑓, 𝑔 ̅holomorphic, 

                             𝑇𝑓𝑇𝑔 − 𝑇𝑓𝑔 = −ℎ𝑇𝐶1𝐵(𝑔,𝑓) + 𝑂
(ℎ2),                                               (22) 

Where 𝐶1
𝐵 is the 𝐶1

 from the Berezin quantization. Note that, as we have seen, 𝐶1
𝐵(𝑔, 𝑓) involves only 

holomorphic derivatives of f and anti-holomorphic derivatives of 𝑔 (i.e. only 𝜕𝛼𝑓 and �̅�𝛽𝑔). This also 

means, in particular, that for any holomorphic functions 𝑢, 𝑣, 
𝐶1
𝐵(𝑢𝑔, �̅�𝑓) = 𝑢𝐶1

𝐵(𝑔, 𝑓)�̅�. 
On the other hand, we have seen that for 𝑢, 𝑣, as above and arbitrary 𝐹 and 𝐺,  

𝑇𝐺𝑇𝑢 = 𝑇𝑢𝐺 ,                    𝑇�̅�𝑇𝐹 = 𝑇�̅�𝐹 . 
Multiplying (22) by 𝑇�̅� from the left and 𝑇𝑢 from the right, we therefore obtain  

𝑇�̅�𝑓𝑇𝑔𝑢 − 𝑇�̅�𝑓𝑔𝑢 = 𝑇�̅�[𝑇𝑓𝑇𝑔 − 𝑇𝑓𝑔]𝑇𝑢 

                                             = −ℎ𝑇�̅�𝑇𝐶1𝐵(𝑔,𝑓)𝑇𝑢 + 𝑂
(ℎ2) 

                                        = −ℎ𝑇�̅�𝐶1𝐵(𝑔,𝑓)𝑢 + 𝑂
(ℎ2) 

                                         = −ℎ𝑇𝐶1𝐵(𝑢𝑔,�̅�𝑓) + 𝑂
(ℎ2). 

That is, (22) holds not only for 𝑓, 𝑔 ̅holomorphic, but for any 𝑓, 𝑔 of the form 𝑢𝑣 ̅with 

holomorphic 𝑢, 𝑣. By the same approximation argument as in the end, we conclude that actually  

𝑇𝑓𝑇𝑔 − 𝑇𝑓𝑔 = −ℎ𝑇𝐶1𝐵(𝑔,𝑓) + 𝑂
(ℎ2) 

for any 𝑓, 𝑔 ∈ 𝐶∞(Ω). That is, we have obtained the first two terms  

𝑇𝑓𝑇𝑔 = 𝑇𝐶0𝐵𝑇(𝑓,𝑔) + ℎ𝑇𝐶1𝐵𝑇(𝑓,𝑔) + 𝑂
(ℎ2) 

of the Berezin-Toeplitz star-product (17), showing, incidentally, that 𝐶0
𝐵𝑇(𝑓, 𝑔) = 𝑓𝑔 and) 

                                         𝐶1
𝐵𝑇(𝑓, 𝑔) = −𝐶1

𝐵(𝑔, 𝑓).                                                        (23) 
It is clear how to continue this argument to obtain also the higher-order terms 𝐶𝑗

𝐵𝑇 and, hence, the 

entire Berezin-Toeplitz star-product. 

   The relationship (23) between the Berezin and the Berezin-Toeplitz operator 𝐶1can actually be put 

into a rather neat form.Recall that we have our three mappings  𝑓 ↦ 𝑇𝑓 (the Toeplitz operators), 𝑇 ↦

𝑇 ̃(the Berezin symbol), and their composition 𝑓 ↦ �̃�𝑓 = 𝐵ℎ𝑓 (the Berezin transform). In terms of 

these, the BerezinToeplitz star product was defined by  

                                                                  𝑇𝑓𝑇𝑔 = 𝑇𝑓∗𝐵𝑇𝑔,                                                (24) 

while the Berezin star product was, essentially, defined by  

�̃� ∗𝐵 �̃� = 𝑇�̃�. 
Applying the last formula to  𝑇 = 𝑇𝑓 , 𝑆 = 𝑇𝑔 , and using (24), gives  

�̃�𝑓 ∗𝐵 �̃�𝑔 = 𝑇𝑓𝑇�̃� = 𝑇𝑓∗𝐵𝑇𝑔
̃ , 
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 or  

𝐵𝑓 ∗𝐵 𝐵𝑔 = 𝐵(𝑓 ∗𝐵𝑇 𝑔). 
In other words, the Berezin and the Berezin-Toeplitz star-products are intertwined (conjugate) by the 

Berezin transform. From this, one easily gets also the higherorder analogues of the relation (23), i.e. 

involving  𝐶𝑗
𝐵  and 𝐶𝑗

𝐵𝑇  (and the operators  𝑄𝑗) for 𝑗 ≥ 1.  

We have already worked out the Berezin-Toeplitz quantization on 𝐂𝑛 in some detail; let us see how 

the other approaches discussed work out in this case.  

        Thus, let Ω = 𝐂𝑛 and  𝜌ℎ(𝑧) = 𝑒
−𝛼|𝑧|2(𝛼 𝜋⁄ )𝑛𝑑𝑧 , with 𝛼 = 𝜋 ℎ⁄ > 0; note that the “classical 

limit” ℎ ↘ 0 now corresponds to 𝛼 → +∞. Since we know the reproducing kernel to be given 

by  𝐾𝛼(𝑥, 𝑦) = 𝑒
𝛼〈𝑥,𝑦〉, the formula for the Berezin transform becomes  

𝐵𝛼𝑓(𝑥) = ∫𝑓(𝑦)
|𝐾ℎ(𝑥, 𝑦)|

2

𝐾ℎ(𝑥, 𝑥)
𝜌ℎ(𝑦)𝑑𝑦

 

𝐂𝑛

 

          = (
𝛼

𝜋
)
𝑛

∫𝑓(𝑦)𝑒−𝛼‖𝑥−𝑦‖
2
𝑑𝑦

 

𝐂𝑛

 

 

This is precisely the heat solution operator at the time 𝑡 = 1 4𝛼⁄ : 

𝐵𝛼𝑓 = 𝑒
∆ 4𝛼⁄ 𝑓. 

         In particular, as 𝛼 → +∞, we get 𝐵𝛼𝑓 → 𝑓, more precisely there is even an asymptotic 

expansion 

𝐵𝛼𝑓(𝑥) = 𝑒
∆ 4𝛼⁄ 𝑓(𝑥) = 𝑓(𝑥) +

∆𝑓(𝑥)

4𝛼
+
∆2𝑓(𝑥)

2! (4𝛼)2
+⋯, 

or more briefly 

𝐵𝛼 = 𝑒
∆ 4𝛼⁄ =∑𝛼−𝑗

∆𝑗

𝑗! 4𝑗
.

∞

𝑗=0

 

 We conclude that the Berezin quantization works for the above choice of weights  𝜌ℎon 𝐂𝑛, with  

𝐶𝑗(𝑓, 𝑔) = 𝐶𝑗
𝐵(𝑓, 𝑔) ∶=

1

𝑗!
∑ (�̅�𝛼𝑓)(𝜕𝛼𝑔).
|𝛼|=𝑗

 

This can be compared with the Berezin-Toeplitz quantization formula for the same choice of weights: 

𝐶𝑗(𝑓, 𝑔) = 𝐶𝑗
𝐵𝑇(𝑓, 𝑔) ∶=

(−1)𝑗

𝑗!
∑ (𝜕𝛼𝑓)(�̅�𝛼𝑔).
|𝛼|=𝑗

 

Both quantize the Euclidean Poisson bracket on 𝐂𝑛  (spelled out in the axiom (A3).  

        The second example which can be worked out explicitly to some level is the unit disc Ω = 𝐃

∶= {𝑧 ∈ 𝐂: |𝑧| < 1} in  𝐂 , with weights   𝜌ℎ(𝑧) =
𝛼+1

𝜋
(1 − |𝑧|2)𝛼 , 𝛼 > −1 ; the parameter 𝛼  again 

plays the role of the reciprocal of ℎ , so that ℎ ↘ 0 corresponds to 𝛼 → +∞. A standard calculation in 

polar coordinates, similar to the one we did for the Fock space, shows that the reproducing kernels 

are 

𝐾𝛼(𝑥, 𝑦) =
1

(1 − 𝑥�̅�)𝛼+2
. 

This gives the formula for the Berezin transform: 

𝐵𝛼𝑓(𝑥) =
𝛼 + 1

𝜋
∫ 𝑓(𝑦)

(1 − |𝑥|2)𝛼+2

(1 − 𝑥�̅�)2𝛼+4
(1 − |𝑦|2)𝛼𝑑𝑦

 

D

. 

With some work, it can again be shown that as 𝛼 → +∞,  

𝐵𝛼𝑓 = 𝑓 +
∆̃𝑓

4𝛼
+⋯ 

where  

∆̃𝑓 = (1 − |𝑧|2)2∆ 
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is the invariant Laplacian on 𝐃 . (The 𝑄𝑗for 𝑗 > 1 are already a bit complicated and involve Bernoulli 

numbers; an explicit expression for general 𝑗 is not known.) 

The results thus again tell us that the Berezin quantization on 𝐃 works for the above choice of weights, 

with  

𝐶0
𝐵(𝑓, 𝑔) = 𝑓𝑔,                    𝐶1

𝐵(𝑓, 𝑔) = (1 − |𝑧|2)�̅�𝑓𝜕𝑔. 
Similarly, the Berezin-Toeplitz quantization works, with  

𝐶0
𝐵𝑇(𝑓, 𝑔) = 𝑓𝑔,                    𝐶1

𝐵𝑇(𝑓, 𝑔) = −(1 − |𝑧|2)𝜕𝑓�̅�𝑔. 
 Explicit expressions for 𝐶𝑗

𝐵  and 𝐶𝑗
𝐵𝑇for general 𝑗 ≥ 2 are again unknown. 

         Both methods quantize the Poisson bracket  

{𝑓, 𝑔} = (1 − |𝑧|2)2(�̅�𝑓𝜕𝑔 − 𝜕𝑔�̅�𝑓) 
associated to the invariant (= Poincaré, Lobachevsky) metric on 𝐃.  

        Our third and final example concerns the unit ball Ω = 𝐁𝑛 ∶= {z ∈ 𝐂𝑛: |𝑧| < 1} in 𝐂𝑛, with 

weights  𝜌ℎ(𝑧) = 𝑐𝛼(1 − |𝑧|
2)𝛼, where 𝛼 = 1 ℎ⁄ → +∞ and 𝑐𝛼 is a normalizing constant making  𝜌ℎ 

to be of total mass 1. The reproducing kernel equals 

𝐾𝛼(𝑥, 𝑦) =
1

(1 − 〈𝑥, 𝑦〉)𝛼+𝑛+1
, 

 yielding the expression for the Berezin transform 

𝐵𝛼𝑓(𝑥) = 𝑐𝛼∫ 𝑓(𝑦)
(1 − |𝑥|2)𝛼+𝑛+1

(1 − 〈𝑥, 𝑦〉)2𝛼+2𝑛+2
(1 − |𝑦|2)𝛼𝑑𝑦

 

𝐁𝑛
. 

 Again,  

𝐵𝛼𝑓 = 𝑓 +
∆̃𝑓

4𝛼
+⋯ 

as 𝛼 → +∞ , with ∆̃ the invariant Laplacian on 𝐁𝑛. Both the Berezin and the Berezin-Toeplitz 

quantizations work for the above choice of weights, and their coefficients 𝐶𝑗  are given by formulas of 

a similar nature as for the disc. 

         For a later occasion, it is instructive to summarize some observations from these examples here. 

Looking at the weights and the corresponding reproducing kernels in the three cases, namely,  

𝜌𝛼(𝑧) = (
𝛼

𝜋
)
𝑛

𝑒−𝛼|𝑧|
2
,                     𝐾𝛼(𝑥, 𝑦) = 𝑒

𝛼〈𝑥,𝑦〉 

for the Fock space on  𝐂𝑛;  

𝜌𝛼(𝑧) =
𝛼 + 1

𝜋
(1 − |𝑧|2)𝛼 ,                         𝐾𝛼(𝑥, 𝑦) = (1 − 𝑥�̅�)

−𝛼−2 

for the disc; and  

𝜌𝛼(𝑧) = 𝑐𝛼(1 − |𝑧|
2)𝛼 ,                         𝐾𝛼(𝑥, 𝑦) = (1 − 〈𝑥, 𝑦〉)

−𝛼−𝑛−1 

 for the ball, we observe that 𝐾𝛼(𝑥, 𝑥) is just the reciprocal of the weight 𝜌ℎ(𝑥), up to the 

normalization constants and possibly a shift in the exponent 𝛼.  

     Furthermore, we have seen in all three cases that the Berezin transform 𝐵𝛼 is an approximate 

identity as 𝛼 → +∞ , more precisely  

𝐵𝛼 = 𝐼 +
𝑄1
𝛼
+
𝑄2
𝛼2
+⋯, 

where 𝑄1 is, up to a constant factor, some kind of “invariant Laplacian” on the domain in question.  

      We will later that both these observation, in fact, remain in force in a much more general setting. 

The main problem for carrying out both the Berezin and the Berezin-Toeplitz quantization is thus to 

find the weights 𝜌ℎ , ℎ > 0, on Ω so that (17) and (18) hold. There is a way to see what should be the 

right choice, which we now describe. 

        It is time we gave a precise definition of the object we wish to quantize, the 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑏𝑟𝑎𝑐𝑘𝑒𝑡 on 

our domain (or manifold) Ω . Quite generally, a 𝑠𝑦𝑚𝑝𝑙𝑒𝑐𝑡𝑖𝑐 𝑚𝑎𝑛𝑖𝑓𝑜𝑙𝑑 is a real manifold equipped 

with a 2-form 

𝜔 = ∑ 𝑔𝑗𝑘𝑑𝑥𝑗 ∧ 𝑑𝑥𝑘

𝑚

𝑗,𝑘=1
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which is non-degenerate (i.e.the matrix {𝑔𝑗𝑘}𝑗,𝑘=1
𝑚  is invertible) and closed (𝑑𝜔 = 0). Here 𝑚 is the 

real dimension of the manifold, which must necessarily be even. The Poisson bracket is then defined 

as  

{𝑓, 𝑔} = ∑ 𝑔𝑗𝑘
𝜕𝑓

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑥𝑘

𝑚

𝑗,𝑘=1

 

where {𝑔𝑗𝑘}𝑗,𝑘=1
𝑚   is the inverse matrix to {𝑔𝑗𝑘}𝑗,𝑘=1

𝑚 . For the case of complex manifolds that we have 

here, it is furthermore important that the symplectic form be compatible with the complex structure, 

and also it is more convenient to use the complex coordinates 𝑧𝑗 , 𝑧�̅�, 𝑗 = 1,⋯ , 𝑛 , rather than the real 

coordinates  𝑥𝑘, 𝑘 = 1,⋯ ,𝑚,𝑚 = 2𝑛 . On the level of the form 𝜔, this translates into the fact that 𝜔 

is 𝐾�̈�ℎ𝑙𝑒𝑟, meaning that (in local coordinates) 

𝜔 = ∑ 𝑔𝑗�̅�𝑑𝑧𝑗 ∧ 𝑑𝑧�̅�

𝑛

𝑗,𝑘=1

 

with some positive-definite matrix {𝑔𝑗�̅�}𝑗,𝑘=1
𝑛   satisfying   

                                   𝜕𝑙𝑔𝑗�̅� = 𝜕𝑗𝑔𝑙�̅�,        𝜕𝑙 ̅𝑔𝑗�̅� = 𝜕�̅�𝑔𝑗𝑙̅.                                            (25) 

The Poisson bracket is then given by 

                                {𝑓, 𝑔} = ∑ 𝑔�̅�𝑘(�̅�𝑗𝑓𝜕𝑘𝑔 − 𝜕𝑗𝑓�̅�𝑘𝑔),                                       (26)

𝑛

𝑗,𝑘=1

 

 where {𝑔�̅�𝑘}𝑗,𝑘=1
𝑛  is the inverse matrix to{𝑔𝑗�̅�} . Finally, the 2-form 𝜔 determines (both in the 

symplectic and in the Kähler case )also a nonvanishing volume element 𝜔𝑛on Ω .  
       To find the right choice of the weights 𝜌ℎ, we take guidance from group invariance. 

       Assume there is a group 𝐺 acting on Ω  by biholomorphic transformations preserving the form 𝜔 . 
Naturally, we would then want our quantizations to be   𝐺-invariant, i.e. to satisfy  

(𝑓 ∘ ∅) ∗ (𝑔 ∘ ∅) = (𝑓 ∗ 𝑔) ∘ ∅,                   ∀∅ ∈ 𝐺. 
On the level of the Berezin quantization, this means that the operators  𝑄𝑗  in (18), and, hence, 𝐵 itself, 

should commute with the action of 𝐺 . An examination of the formula defining the Berezin transform 

with respect to some weight 𝜌 shows that this happens if and only if  

|𝐾𝜌(𝑥, 𝑦)|
2

𝐾𝜌(𝑦, 𝑦)
𝜌(𝑥)𝑑𝑥 =

|𝐾𝜌(∅(𝑥), ∅(𝑦))|
2

𝐾𝜌(∅(𝑦), ∅(𝑦))
𝜌(∅(𝑥))𝑑∅(𝑥). 

In particular, the ratio 

𝜌(∅(𝑥))𝑑∅(𝑥)

𝜌(𝑥)𝑑𝑥
=
|𝐾𝜌(𝑥, 𝑦)|

2

𝐾𝜌(𝑦, 𝑦)

𝐾𝜌(∅(𝑦), ∅(𝑦))

|𝐾𝜌(∅(𝑥), ∅(𝑦))|
2 

has to be the squared modulus of a holomorphic function. Writing  

                                         𝜌(𝑧)𝑑𝑧 = 𝑤(𝑧). 𝜔𝑛(𝑧)                                                           (27) 
 with the (𝐺-invariant) volume element 𝜔𝑛 and some (positive) weight function 𝑤 , the last condition 

translates into  

𝑤(∅(𝑧)) = 𝑤(𝑧)|𝑓∅(𝑧)|
2 

for some holomorphic functions 𝑓∅ .In other words ,the form 𝜕�̅� log 𝑤 is    𝐺invariant.  

         But the simplest examples of 𝐺 -invariant 2-forms (and if 𝐺  is sufficiently “ample”, the only 

ones) are clearly the constant multiples of 𝜔. Thus we are led to  

𝜕�̅� log 𝑤 = −𝑐𝜔 

with some constant 𝑐. It follows that 

𝜔 = 𝜕�̅�Φ,                Φ ∶= −
1

𝑐
log𝑤, 

 i.e. that Φ = −
1

𝑐
 log𝑤 is a real-valued 𝐾�̈�ℎ𝑙𝑒𝑟 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 for 𝜔 . This gives for the volume element  

𝜔𝑛(𝑧) = det[∂ ∂̅Φ(𝑧)] 𝑑𝑧, 



94 
 

and (27) gives  

𝜌(z) = e−cΦ(𝑧) det[∂ ∂̅Φ(𝑧)] 𝑑𝑧. 
Returning the Planck constant dependence into play, we therefore see that the sought weights 

𝜌ℎ  should be of the form  

𝜌ℎ = 𝑒
−cΦ det[∂ ∂̅Φ], 

with some 𝑐 = 𝑐(ℎ) depending only on ℎ .  

         Note that the condition 𝜔 = 𝜕�̅�Φ means that  

𝑔𝑗�̅�(𝑧) =
𝜕2Φ(z)

𝜕𝑧𝑗𝜕𝑧�̅�
. 

The fact that this matrix is positive-definite, for each 𝑧 ∈ Ω, means precisely that the potential Φ  is 

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑝𝑙𝑢𝑟𝑖𝑠𝑢𝑏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 on Ω . We will usually abbreviate “strictly plurisubharmonic” to 

“strictly PSH”.  

         Finally, the condition  

                              𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) = −
𝑖

2𝜋
{𝑓, 𝑔}                                                  (28) 

in the Berezin quantization will be satisfied if the operator 𝑄1in (18) equals 

𝑄1 = ∑ 𝑔�̅�𝑘𝜕𝑘�̅�𝑗

𝑛

𝑗,𝑘=1

=:∆, 

the 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 − 𝐵𝑒𝑙𝑡𝑟𝑎𝑚𝑖 operator associated to 𝜔. Indeed, in that case we have by (19) 

𝐶1(𝑓, 𝑔) = ∑ 𝑔�̅�𝑘(�̅�𝑗𝑓)(𝜕𝑘𝑔),

𝑛

𝑗,𝑘=1

 

and (28) follows by (26).  

       We have thus arrived at a final recipe for the Berezin and Berezin-Toeplitz quantizations on a 

domain Ω ⊂ 𝐂𝑛 equipped with a Kähler form 𝜔 and the corresponding Poisson bracket. Namely: 

(i) . There must exist a Kähler potential Φ for 𝜔, i.e. a strictly PSH function Φ such that 𝜔 =
𝜕�̅�Φ .                                                                                                                                  

(ii) . We take the Bergman spaces 𝐿hol
2 (Ω, 𝑒−cΦ det[∂ ∂̅Φ]) where 𝑐 ∈ 𝐑 is a parameter. 

Denote by 𝐾𝑐(𝑥, 𝑦) the reproducing kernel of this space, by 𝐵𝑐 the associated Berezin 

transform, and by 𝑇𝑓
(𝑐)

 the Toeplitz operator on this space with symbol f.                                                                                                                                   

(iii) . See if 𝑐 = 𝑐(ℎ) can be chosen so that 

𝐵𝑐 = 𝐼 + ℎ∆ + ℎ
2𝑄2 + ℎ

3𝑄3 +⋯          𝑎𝑠 ℎ → 0  
with some differential operators 𝑄𝑗 , 𝑄0 = 𝐼, 𝑄1 = ∆ (for the Berezin quantization); and 

𝑇𝑓
(𝑐)
𝑇𝑔
(𝑐)
=∑ℎ𝑗𝑇𝐶𝑗(𝑓,𝑔)

(𝑐)
 

∞

𝑗=0

                      𝑎𝑠 ℎ ↘ 0 

in some sense,with 𝐶0(𝑓, 𝑔) = 𝑓𝑔 and 𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) = −
𝑖

2𝜋
{𝑓, 𝑔} (for the Berezin-Toeplitz 

quantization). 

It turns out that under suitable hypothesis on Ω and Φ , this recipe indeed works, with  

𝑐(ℎ) = 1 ℎ⁄ . 
 

For brevity, let us denote by 𝑑𝜇ℎthe corresponding measures  

𝑑𝜇ℎ(𝑧) ∶= 𝑒
−Φ(z) ℎ⁄ det[𝑔𝑘�̅�(𝑧)] d𝑧,              ℎ > 0, 

and by 𝐿hol,ℎ
2 = 𝐿hol

2 (Ω, 𝑑𝜇ℎ) the associated weighted Bergman spaces; also 𝐾𝑐 , 𝐵𝑐 and  𝑇𝑓
(𝑐)
 will be 

written as 𝐾ℎ , 𝐵ℎ and 𝑇𝑓
  , respectively. We will also sometimes use our earlier notation 𝛼 = 1 ℎ ⁄ for 

1

ℎ
 rather than 𝑐.  

       For simplicity, we have so far really discussed only the situation when Ω  is a domain in 𝐂𝑛. It 

turns out that the whole formalism works also on arbitrary Kähler  manifolds, just with some minor 
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technical adjustments. The most conspicuous of them is that instead of considering Bergman spaces 

of functions on Ω , one needs to consider, more generally, spaces of a holomorphic line bundle ℒ , 
equipped with a Hermitian metric (in the fibers) given locally by 𝑒−Φ the curvature form of this 

Hermitian metric should coincide with the given Kähler form 𝜔). For such ℒ to exist, it is necessary 

that the cohomology class of 𝜔 be integral. The role of the weighted Bergman spaces 𝐿hol
2 (Ω, 𝑑𝜇ℎ) is 

then played by the spaces of holomorphic 𝐿2 of the tensor powers ℒ⊗𝑚, 𝑚 = 1 ℎ⁄ = 1,2,⋯ ; in 

particular, the Planck constant can approach 0 only through a discrete set of values. However, the 

whole formalism — weighted Bergman kernels, Berezin symbols, Toeplitz operators, and Berezin 

transforms — still makes perfect sense, and so does the above recipe for Berezin and BerezinToeplitz 

quantizations. 

        Since both 𝐵ℎ  and 𝑇𝑓 are defined by formulas involving the weighted Bergman kernels 𝐾ℎ, the 

key to proving the viability of our recipe is obviously an understanding of the behaviour of 

𝐾ℎ(𝑥, 𝑦) as ℎ ↘ 0 . Historically, there are two approaches how to handle this problem, which both 

appeared independently around 1997 − 1998 . The first one was developed of compact manifolds by 

Zelditch [44], who gave, in our language, the asymptotics of the reproducing kernels 𝐾ℎ(𝑥, 𝑥) on the 

diagonal as ℎ → 0 ; this was subsequently extended also away from the diagonal by Catlin [133]. 

These did not consider 𝐵ℎ  and 𝑇𝑓, but rather were inspired by certain geometric applications going 

back to Tian in 1990  [143] (with a follow-up by Ruan [139]). The proofs rely on a theory, due to 

Boutet de Monvel and Guillemin [151], of Fourier integral operators of Hermite type, which was in 

exactly the same way used, in fact, already in 1994  by Bordemann, Meinrenken and Schlichenmaier 

[9] to establish the result about 𝑇𝑓 on compact manifolds directly without those for 𝐾ℎ and 𝐵ℎ (thus 

by passing the Berezin quantization).  

        The second approach, dealt with domains in 𝐂𝑛 not manifolds, and relied on somewhat simpler 

methods (Feff erman’s expansion and �̅�-techniques) to obtain the asymptotics on 𝐾ℎ and 𝐵ℎ [128] 

[129] [130]; naturally, some hypothesis on the behaviour of Φ at the boundary were needed. The 

result for 𝑇𝑓  can, however, be established in this case only for bounded domains, and one still has to 

resort to the more sophisticated machinery used by Bordemann, Meinrenken and Schlichenmaier 

[129].  

        Prior to these general results, Berezin and Berezin-Toeplitz quantizations had been established 

only ad hoc in some special cases, such as in dimension 𝑛 = 1 (i.e. for Riemann surfaces) with the 

Poincaré metric by Klimek and Lesniewski in 1991  [132] (using uniformization), for Ω = 𝐂𝑛 with 

the Euclidean metric by Coburn in 1993 [134], or for bounded symmetric domains with the invariant 

metric by Borthwick, Lesniewski and Upmeier in 1994 [130]. The basic idea, in any case, goes back 

— as the terminology rightly suggests — to Berezin in 1975 [136]. The equivalence of the Berezin 

quantization and the asymptotic expansion of the Berezin transform is due to Karabegov [131]. Some 

recent extensions and generalizations of the theory are discussed e.g. [137] by Ma and Marinescu, 

[137] by Berndtsson, Berman and Sjöstrand.  

         We will first handle the case of the Berezin quantization by the second of the above-mentioned 

approaches. Then we proceed to deal with the Berezin-Toeplitz quantization via the first approach, 

adapted to the context  to which we have also restricted ourselves hitherto domains in 𝐂𝑛 rather than 

compact manifolds. 

Recall that a smooth function  Φ:Ω → 𝐑  on a domain Ω in 𝐂𝑛 is called 

𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑝𝑙𝑢𝑟𝑖𝑠𝑢𝑏ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 (strictly-PSH) if for any 𝑧 ∈  Ω and 𝑣 ∈ 𝐂𝑛, the function of one 

complex variable  

𝑡 ↦ Φ(𝑧 + 𝑡𝑣),                    𝑡 ∈ 𝐂 

 is strictly subharmonic where defined. Equivalently, Φ is strictly- PSH if the matrix of mixed second 

derivatives  

[
𝜕2Φ

𝜕𝑧𝑗𝜕𝑧�̅�
]
𝑗,𝑘=1

𝑛

 

is positive definite. 
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       A bounded domain Ω ⊂ 𝐂𝑛 with smooth boundary is called strictly 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑝𝑠𝑒𝑢𝑑𝑜𝑐𝑜𝑛𝑣𝑒𝑥  if 
there exists a smooth function 𝑟 such that  

                            𝑟 > 0      on Ω ,           𝑟 = 0, ‖∇𝑟‖ > 0     on 𝜕Ω,  
                         −𝑟  is strictly- PSH in a neighbourhood of Ω̅.  

One calls 𝑟 a strictly- PSH defining function for Ω.  

        For completeness, we remark that there are also (not necessarily strictly) plurisubharmonic 

(PSH) functions, for which 𝑡 ↦ Φ(𝑧𝑡𝑣) is assumed to be only subharmonic (not necessarily strictly), 

or, equivalently, the matrix of mixed second-order derivatives is only positive semi-definite; and (not 

necessarily strictly) pseudoconvex domains, which can be defined as increasing unions of strictly 

pseudoconvex domains. (This is not the same thing as having a — not necessarily strictly — PSH 

defining function.)   

        Pseudoconvex domains are the natural domains in 𝐂𝑛 on which holomorphic functions live: if 

Ω is not pseudoconvex, then there exist a larger domain Ω′ such that every holomorphic function on 

Ω in fact extends holomorphically to Ω′.  
An example of non-pseudoconvex domain is the domain  Ω = {z ∈ 𝐂𝑛: 1 < |𝑧| < 2},  𝑛 > 1 , for 

which Ω′ = {z ∈ 𝐂𝑛: |𝑧| < 2} In dimension 𝑛 = 1 , as we all know from basic complex analysis, all 

domains are pseudoconvex. 

        Strictly pseudoconvex domains are those whose boundary is, additionally, in some sense “non-

degenerate”, which makes it possible to establish results which have as yet no known counterparts in 

the non-strictly pseudoconvex case. We will come across some of these results.  

        The upshot of all the above is that pseudoconvex domains are the ones on which it makes sense 

to study holomorphic functions; strictly pseudoconvex domains are the manageable ones. 

Let Ω ⊂ 𝐂nbe smoothly bounded and strictly pseudoconvex , and Φa strictly-PSH function on Ω such 

that 𝑒−𝛷 = 𝑟 is a defining function for  Ω. 

        Then for the weights 𝑤 = 𝑒−αΦ det[∂ ∂̅Φ] , we have as 𝛼 → +∞, 𝛼 ∈ 𝒁,  

𝐾𝛼(𝑥, 𝑥) ≈ 𝑒
αΦ(𝑥)

α𝑛

π𝑛
∑

𝑏𝑗(𝑥)

α𝑗

∞

𝑗=0

, 

with some functions 𝑏𝑗 ∈ 𝐶
∞(Ω), 𝑏0 = det[∂ ∂̅Φ] ; and  

𝐵𝛼𝑓 =∑
𝑄𝑗𝑓

𝛼𝑗

∞

𝑗=0

 

where 𝑄𝑗are some diff erential operators, in particular 𝑄0 = 𝐼 and 

𝑄1 = ∑ 𝑔�̅�𝑘
𝜕2

𝜕𝑧𝑘𝜕𝑧�̅�
=: ∆,

𝑛

𝑗,𝑘=1

 

the Laplace-Beltrami operator. Here 𝑔�̅�𝑘 is the inverse matrix to 𝑔𝑗�̅� ∶=
𝜕2Φ

𝜕𝑧𝑗𝜕�̅�𝑘
. 

         It follows, as explained ,that denoting by  𝑐𝑗𝛼𝛽the coefficients of theoperators 𝑄𝑗,  

𝑄𝑗𝑓 = ∑ 𝑐𝑗𝛼𝛽𝜕
𝛼�̅�𝛽𝑓,

𝛼,𝛽 multiindices

 

and setting  

𝑓 ∗𝐵𝑡 𝑔 ∶=∑ℎ𝑗𝐶𝑗(𝑓, 𝑔),

∞

𝑗=0

 

 where  

𝐶𝑗(𝑓, 𝑔) ∶=∑𝑐𝑗𝛼𝛽(�̅�
𝛽𝑓)(𝜕𝛼𝑔),

𝛼,𝛽

 

we obtain a Berezin quantization on the domain Ω with the Poisson bracket associated to the 

Kähler form 𝜔 = 𝜕�̅�Φ.  
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         It is instructive to see how Theorem B applies in the examples. For the unit ball Ω = 𝐁𝑛 (which 

includes Ω = 𝐃 for 𝑛 = 1), take 

Φ(z) = log
1

1 − |z|2
, 

which is a Kähler potential for the invariant metric on 𝐁𝑛. Then Φ is strictly-PSH,  

𝑒−Φ(z) = 1 − |𝑧|2 

is a strictly- PSH defining function for 𝐁𝑛, and 

𝑏0(𝑧) = det [
𝜕2Φ

𝜕𝑧𝑗𝜕𝑧�̅�
] =

1

(1 − |𝑧|2)𝑛+1
. 

 We thus recover the formulas (𝑏0 explains the “shift in the exponent 𝛼”).                                                                                                                                               

Also, we see that 𝑐𝛼~𝛼
𝑛.  

         For the Fock space on Ω = 𝐂𝑛, a Kähler potential for the Euclidean metric is Φ(z) = |z|2. In 

that case 𝑏0(𝑧) = det[𝛿𝑗𝑘] = 1 , so there is no “shift” this time, and again recovers the asymptotics 

of 𝐾𝛼and 𝐵𝛼 on the Fock space . 

       We need to review a few prerequisites before giving a proof of the theorem. 

For a domain Ω ⊂ 𝐂𝑛 and a real-valued smooth function ∅ on it, the 𝐻𝑎𝑟𝑡𝑜𝑔𝑠 𝑑𝑜𝑚𝑎𝑖𝑛  with base Ω 

and radius-function  𝑒−∅ is   

Ω̃ ∶= {(𝑧, 𝑡) ∈ Ω × 𝐂 ∶  |t|2 <  𝑒−∅(𝑧)}. 

 It can be shown that Ω̃ is pseudoconvex  if and only if Ω is pseudoconvex and ∅  is PSH ; and that 

Ω̃ is strictly pseudoconvex and smoothly bounded if Ω is strictly-pseudoconvex, ∅  is strictly- PSH 

and  𝑒−∅ = 𝑟  is a defining function for Ω. Furthermore,  

                              �̃�(𝑧, 𝑡) ∶= 𝑟(𝑧) − |𝑡|2 =  𝑒−∅(𝑧) − |𝑡|2                                           (29) 
is a defining function for Ω̃.  

         Thus the hypotheses guarantee precisely that taking for ∅  the Kähler potential Φ, the 

corresponding Hartogs domain Ω̃ over Ω will be smoothly bounded and strictly pseudoconvex, with 

a defining function given by (29).  

Continuing with the notations from the preceding paragraph, consider the compact manifold 

𝑋 ∶= 𝜕Ω̃ 
equipped with the measure  

                                                𝑑𝜎 ∶=
𝐽|�̃�|

‖𝜕�̃�‖
𝑑𝑆,                                                                 (30) 

where 𝑑𝑆 stands for the surface measure on 𝑋 and 𝐽[�̃�] for the 𝑀𝑜𝑛𝑔𝑒 − 𝐴𝑚𝑝�́�𝑟𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡    

𝐽[�̃�] = −det [ �̃� �̅��̃�
𝜕�̃� 𝜕�̅��̃�

] > 0. 

Let  𝐻2(𝑋) = 𝐻2 be the subspace in  𝐿2(𝑋, 𝑑𝜎) of functions whose Poisson extension into Ω̃ is 

holomorphic. (Alternatively, 𝐻2(𝑋) is the closure in 𝐿2(𝑋, 𝑑𝜎) of functions continuous on the closure 

Ω̅̃ of Ω̃ and holomorphic in its interior.)  

        One calls 𝐻2(𝑋)  the 𝐻𝑎𝑟𝑑𝑦 𝑠𝑝𝑎𝑐𝑒 on 𝑋 . 
        We remark that the measure (30) — which at first sight may look a bit artificial — is actually a 

familiar object in diff erential geometry. Namely, the restriction 𝑣 of the diff erential form Im 𝜕�̃� =
1

2𝑖
(𝜕�̃� − �̅��̃�)  to 𝑋 is a 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑜𝑟𝑚 on 𝑋 , meaning that 𝑣 ∧ (𝜕�̅�𝑣)𝑛 is a non-vanishing volume 

element on 𝑋. Up to a constant factor, this volume element is precisely (30).  

For each (𝑧, 𝑡) ∈ Ω̃ , the evaluation functional 𝑓 ↦ 𝑓(𝑧, 𝑡) on 𝐻2 turns out to be continuous, hence 

is given by the scalar product with a certain element 𝑘(𝑧,𝑡) ∈ 𝐻
2.                                                                                                                                   

The function  

𝐾Szegö((𝑥, 𝑡), (𝑦, 𝑠)) ∶= 〈𝑘(𝑦,𝑠), 𝑘(𝑥,𝑡)〉𝐻2 

on Ω̃ × Ω̃  is called the 𝑆𝑧𝑒𝑔�̈� 𝑘𝑒𝑟𝑛𝑒𝑙 .  
        In other words, 𝐾Szegö  is the reproducing kernel of the Hardy space 𝐻2(𝑋), viewed as a space 

of holomorphic functions on Ω̃ (rather than just their boundary values on 𝑋 ).  
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        There is a simple relationship between the Hardy space 𝐻2(𝑋) and the weighted Bergman spaces 

𝐿hol,ℎ
2  on the base Ω , as well as between the 𝑆𝑧𝑒𝑔�̈� kernel 𝐾Szegö  and the weighted Bergman kernels 

of  𝐿hol,ℎ
2  , which we now explain.  

The boundary 𝑋 of Ω̃ can be parameterized as  

𝑋 = {(𝑧, 𝑒𝑖𝜃𝑒−𝜙(𝑧) 2⁄ ): 𝑧 ∈ Ω, θ ∈ [0.2π]}. 

In these coordinates, and recalling our notations  𝑟(𝑧) = 𝑒−𝜙(𝑧), �̃�(𝑧, 𝑡) = 𝑟(𝑧) − |𝑡|2, easy 

computations show that  

𝑑𝑆 = √𝑟 + ‖𝜕𝑟‖2 𝑑𝑧 𝑑𝜃,            ‖𝜕�̃�‖ = √𝑟 + ‖𝜕𝑟‖2, 

                            𝐽[�̃�] = 𝐽[𝑟] = 𝑒−(𝑛+1)𝜙 det[𝜕�̅�𝜙],                                                   (31) 
so 

                  𝑑𝜎(𝑧, 𝑡) = 𝑒−(𝑛+1)𝜙 det[𝜕�̅�𝜙]  𝑑𝑧 𝑑𝜃.                                                     (32) 

       Consider now a holomorphic function 𝑓 on Ω̃ . Taking Taylor expansion in the fiber variable, we 

can write  

𝑓(𝑧, 𝑡) =∑𝑓𝑗(𝑧)𝑡
𝑗 ,

∞

𝑗=0

         (𝑧, 𝑡) ∈  Ω̃, 

with 𝑓𝑗 holomorphic on Ω . Expressing 𝑡 in polar coordinates, one also sees immediately that  

𝑓(𝑧)𝑡𝑗 ⊥ 𝑔(𝑧)𝑡𝑘         ∀𝑓, 𝑔 if 𝑘 ≠ 𝑗 
 (orthogonality is meant in 𝐻2). For the norm of 𝑓 in 𝐻2(𝑋) , we thus get, using (32),  

         ∫ |𝑓(𝑧, 𝑡)|2𝑑𝜎(𝑧, 𝑡)
 

𝑋
 

                    = ∑∫|𝑓𝑗(𝑧)|
2
(∫ |𝑒𝑖𝜃𝑒−𝜙(𝑧) 2⁄ |

2𝑗
𝑑𝜃

2𝜋

0

)
 

Ω

∞

𝑗=0

𝑒−(𝑛+1)𝜙(𝑧) det[𝜕�̅�𝜙(𝑧)]  𝑑𝑧 

=∑2𝜋∫ |𝑓𝑗|
2
𝑒−(𝑗+𝑛+1)𝜙

 

Ω

∞

𝑗=0

det[𝜕�̅�𝜙(𝑧)]  𝑑𝑧.                               

                                 

It follows that 

𝐻2(𝑋) =⊕𝑗=1
∞ 𝐿hol

2 (Ω, 2π𝑒−(𝑗+𝑛+1)𝜙 det[𝜕�̅�𝜙(𝑧)]) 𝑑𝑧, 

and 

𝐾Szegö((𝑥, 𝑡), (𝑦, 𝑠)) =
1

2𝜋
∑𝐾𝑒−(𝑗+𝑛+1)𝜙det[𝜕�̅�𝜙(𝑧)] (𝑥, 𝑦)(𝑡�̅�)

𝑗

∞

𝑘=0

. 

In other words, the weighted Bergman kernels of our spaces  𝐿hol,ℎ
2  are just the Taylor coefficients, 

with respect to the fiber variable, of the Szegö  kernel of  𝐻2(𝑋). This result is due to Ligocka [135]; 

the basic idea goes back to Forelli and Rudin [128]. 

This celebrated result of Feff erman [126] and Boutet de Monvel and Sjöstrand [132] describes the 

boundary behaviour of the Szegö kernel of an arbitrary (nice) domain in 𝐂𝑛, thus including, in 

particular, the kernel 𝐾Szegö of our Hartogs domain Ω̃ . Here is the result. 

         For 𝐷 ⊂ 𝐂𝑛 be a bounded strictly pseudoconvex domain with smooth bound-ary, and 𝑟 a 

defining function for 𝐷. As in the special case of 𝐷 = Ω̃  discussed before, one defines the Hardy 

space 𝐻2(𝜕𝐷) as the subspace in 𝐿2(𝜕𝐷, 𝑑𝜎) (with some non-vanishing volume element 𝜎 on 𝜕𝐷) of 

all functions whose Poisson extensions into 𝐷 are not only harmonic but holomorphic; and the Szegö 

kernel 𝐾Szegö(𝑧, 𝑤), 𝑧, 𝑤 ∈ 𝐷 , as the reproducing kernel of 𝐻2(𝜕𝐷), viewed as a space of functions 

on 𝐷  (not just of their boundary values on 𝜕𝐷 ).  
        

        Then there are functions 𝑎, 𝑏 ∈ 𝐶∞(𝐂𝑛) such that  (a) for 𝑥 ∈ 𝜕𝐷, 

                                           𝑎(𝑥) =
𝑛!

𝜋𝑛
𝐽[𝑟](𝑥) > 0;                                                          (33) 

(b) the Szegö kernel on the diagonal is given by the formula 



99 
 

𝐾Szegö(𝑥, 𝑥) =
𝑎(𝑥)

𝑟(𝑥)𝑛
+ 𝑏(𝑥)log𝑟(𝑥). 

    This formula also extends to 𝐾Szegö(𝑥, 𝑦) with 𝑥 ≠ 𝑦 , namely,  

𝐾Szegö(𝑥, 𝑦) =
𝑎(𝑥, 𝑦)

𝑟(𝑥, 𝑦)𝑛
+ 𝑏(𝑥, 𝑦) log 𝑟(𝑥, 𝑦), 

   where 𝑎(𝑥, 𝑦), 𝑏(𝑥, 𝑦)and 𝑟(𝑥, 𝑦) are    𝑎𝑙𝑚𝑜𝑠𝑡 − 𝑠𝑒𝑠𝑞𝑢𝑖ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 of 𝑎(𝑥) =
𝑎(𝑥, 𝑥), 𝑏(𝑥) = 𝑏(𝑥, 𝑥) and 𝑟(𝑥) = 𝑟(𝑥, 𝑥), respectively. The latter means that 𝜕𝑎(𝑥, 𝑦) 𝜕𝑦⁄  and 

𝜕𝑎(𝑥, 𝑦) 𝜕�̅� ⁄ both vanish to infinite order on the diagonal 𝑥 = 𝑦, and similarly for 𝑏(𝑥, 𝑦) and 𝑟(𝑥, 𝑦). 
Such extensions always exist, and it is a consequence of the strict pseudoconvexity that 𝑟(𝑥, 𝑦) can 

be chosen so that Re 𝑟(𝑥, 𝑦) > 0 for all 𝑥, 𝑦 ∈ 𝐷 , so that the logarithm can be defined as the principal 

branch.                                   

(c)  𝐾Szegö(𝑥, 𝑦)is smooth on Ω × Ω̅̅ ̅̅ ̅̅ ̅̅ ∖ 𝒰 ,for any neighbourhood 𝒰 of the boundary diagonal 

{(𝑥, 𝑥): 𝑥 ∈ 𝜕Ω}. 
Finally, there is a device for converting this description of the boundary behaviour into the description 

of the Taylor components from Ligocka’s formula. 

   Recall that the power series ∑ 𝑘𝑗𝑧𝑘∞
𝑘=0  converges on the unit disc 𝐃, and its sum equals 

∑𝑘𝑗𝑧𝑘 =
𝑗!

(1 − 𝑧)𝑗+1
+∑

𝑎𝑗𝑘

(1 − 𝑧)𝑘

𝑗

𝑘=1

∞

𝑘=0

, 

 with some constants 𝑎𝑗𝑘, if 𝑗 = 0,1,2,⋯ ; and  

∑𝑘𝑗𝑧𝑘
∞

𝑘=0

=
(−1)𝑗

𝑗!
(1 − 𝑧)𝑗 log(1 − 𝑧) + 𝐹𝑗(𝑧), 

with some 𝐹𝑗 ∈ 𝐶
−𝑗(�̅�) , if 𝑗 = −1,−2, −3,⋯ .Also, by the familiar Cauchy estimates, if a 

holomorphic function 𝑓(𝑧) = ∑ 𝑓𝑘𝑧
𝑘 

𝑘  on the disc belongs to𝐶𝑗(�̅�), then its Taylor coefficients satisfy  

𝑓𝑘 = 𝑂(𝑘
−𝑗)        as 𝑘 → +∞. 

         Now suppose that 𝑓(𝑧) = ∑ 𝑓𝑘𝑧
𝑘 

𝑘  is a holomorphic function on 𝐃 which satisfies  

𝑓(𝑧) =
𝑎(𝑧)

(1 − 𝑧)𝑛+1
+ 𝑏(𝑧)log (1 − 𝑧) 

for some 𝑎, 𝑏 ∈ 𝐶∞(𝐂). Taking the Taylor expansions of 𝑎, 𝑏 around 𝑧 = 1, this implies that there 

exist 𝛼1,⋯ 𝛼𝑛+1 and 𝛽0, 𝛽1, 𝛽2, ⋯, with 𝛼𝑛+1 = 𝑎(1), such that, for any 𝑀 = 0,1,2,⋯, 

𝑓(𝑧) = ∑
𝛼𝑗

(1 − 𝑧)𝑗

𝑛+1

𝑗=1

+∑𝛽𝑗(1 − 𝑧)
𝑗log (1 − 𝑧)

𝑀

𝑗=0

+ 𝐹𝑀(𝑧), 

with 𝐹𝑀 ∈ 𝐶
𝑀(�̅�). Combining this with the observations in the preceding paragraph, it transpires that  

𝑓𝑘 ≈ 𝑎𝑛𝑘
𝑛 + 𝑎𝑛−1𝑘

𝑛−1 +⋯+ 𝑎0 +
𝑎−1
𝑘
+ ⋯,             𝑎𝑛 =

𝑎(1)

𝑛!
,                      (34) 

 for some constants 𝑎𝑛, 𝑎𝑛−1, ⋯ , as 𝑘 → ∞. 
                                                                                                                                      As already 

mentioned, the hypotheses of the theorem guarantee that the Hartogs domain  

Ω̃ = {(𝑧, 𝑡) ∈ Ω × 𝐂 ∶  |𝑡|2 < 𝑒−Φ(𝑧)} 
is smoothly bounded, strictly pseudoconvex, and with a defining function  

�̃�(𝑧, 𝑡) ∶= 𝑒−Φ(𝑧) − |𝑡|2. 
Consider the Hardy space 𝐻2(𝑋) on the boundary  𝑋 = 𝜕Ω̃ . By Ligocka’s formula we have  

                                   𝐻2(𝑋) =⊕𝑘=𝑛+1
∞ 𝐿hol

2 (Ω, 𝑒−𝑘Φ det[𝜕�̅�Φ])                            (35) 

(where 𝑛 = dimΩ , so 𝑛 + 1 = dimΩ̃), and  

𝐾Szegö((𝑥, 𝑠), (𝑦, 𝑡)) =
1

2𝜋
∑𝐾𝑘+𝑛+1 (𝑥, 𝑦)(𝑠𝑡̅)

𝑘

∞

𝑘=0

, 

 where,for brevity, we are denoting the reproducing kernel of 𝐿hol
2 (Ω, 𝑒−𝑘Φ det[𝜕�̅�Φ]) by 𝐾𝑘(𝑥, 𝑦). 
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         Feff erman’s theorem for the Szegö kernel tells us that 

𝐾Szegö =
𝑎

�̃�𝑛+1
+ 𝑏 log  �̃�, 

in particular, 

1

2𝜋
∑𝐾𝑘+𝑛+1 (𝑥, 𝑥)𝑠

𝑘

∞

𝑘=0

= �̃�Szegö((𝑥, 𝑠), (𝑥, 1)) 

       =
𝑎(𝑥, 𝑠)

(𝑒−Φ(𝑥) − 𝑠)𝑛+1
+ 𝑏(𝑥, 𝑠)log (𝑒−Φ(𝑥) − 𝑠) 

                                     =
𝑎(𝑥, 𝑠)𝑒(𝑛+1)Φ(𝑥)

(1 − 𝑠𝑒Φ(𝑥)⏟  
=:𝑧

)𝑛+1
+ 𝑏(𝑥, 𝑠) log(1 − 𝑠𝑒Φ(𝑥)) − 𝑏(𝑥, 𝑠)Φ(𝑥) 

=
𝐴(𝑥, 𝑧)

(1 − 𝑧)𝑛+1
+ 𝐵(𝑥, 𝑧) log(1 − 𝑧),             

where 𝐴(𝑥, 𝑧) = 𝑎(𝑥, 𝑧𝑒−Φ(𝑥))𝑒(𝑛+1)Φ(𝑥) − 𝑏(𝑥, 𝑧𝑒−Φ(𝑥))Φ(𝑥)(1 − 𝑧)𝑛+1 and 𝐵(𝑥, 𝑧) =

𝑏(𝑥, 𝑧𝑒−Φ(𝑥)). So for each 𝑥 ∈ Ω ,  

∑𝑒−𝑘Φ(𝑥)𝐾𝑘+𝑛+1(𝑥, 𝑥)𝑧
𝑘

∞

𝑘=0

=
𝐴(𝑥, 𝑧)

(1 − 𝑧)𝑛+1
+ 𝐵(𝑥, 𝑧)log (1 − 𝑧) 

with functions 𝐴, 𝐵 ∈ 𝐶∞(Ω̅ × �̅�). Employing the resolution of singularities implies  

𝐾𝑘(𝑥, 𝑥) ≈
𝑘𝑛

𝜋𝑛
𝑒𝑘Φ(𝑥)∑

𝑏𝑗(𝑥)

𝑘𝑗

∞

𝑗=0

 

as 𝑘 → +∞, proving the first part. (The formula for 𝑏0 follows from (31), (33) and (34).)  

      With a bit of technicalities which we omit, the last result can be extended also to 𝑥 ≠ 𝑦: 

                                   𝐾𝑘(𝑥, 𝑦) ≈
𝑘𝑛

𝜋𝑛
𝑒𝑘Φ(𝑥,𝑦)∑

𝑏𝑗(𝑥, 𝑦)

𝑘𝑗

∞

𝑗=0

                                          (36) 

for (𝑥, 𝑦) near the diagonal, where Φ(𝑥, 𝑦), 𝑏𝑗(𝑥, 𝑦) are almost-sesquiholomorphic extensions of 

Φ(𝑥) = Φ(𝑥, 𝑥) and 𝑏𝑗(𝑥) = 𝑏𝑗(𝑥, 𝑥). (The technicalities involve an improved version of the 

resolution of singularities from, where 𝑓(𝑧), holomorphic in 𝑧 ∈ 𝐃, is replaced by 𝑓(𝑥, 𝑧), depending 

smoothly on 𝑥 and holomorphic in 𝑧 in the disc |𝑧| < 𝑟(𝑥), where the radius 𝑟(𝑥) also depends 

smoothly on 𝑥 ; see Lemma 7 in [130].)  

        The second part (concerning the asymptotics of the Berezin transform) is then proved by first 

showing that in the integral defining 𝐵𝛼 , 

𝐵𝛼𝑓(𝑥) = ∫ 𝑓(𝑦)
|𝐾𝛼(𝑥, 𝑦)|

2

𝐾𝛼(𝑥, 𝑥)
𝑒−𝛼𝛷(𝑦) det[𝜕�̅�𝛷(𝑦)] 𝑑𝑦

 

Ω

 

the main contribution, as 𝛼 → +∞ comes from a small neighbourhood of 𝑥.                  In that 

neighbourhood, one then replaces 𝐾𝛼(𝑥, 𝑦) by the asymptotic expansion (36). This reduces the 

problem to finding the asymptotics as 𝛼 → +∞ of integrals of the form  

∫ 𝐹(𝑦)𝑒𝛼(𝛷(𝑥,𝑦)+𝛷(𝑦,𝑥)−𝛷(𝑥)−𝛷(𝑦))𝑑𝑦,
 

neighbourhood of 𝑥

 

where  𝐹  is an expression involving  𝑓, det[𝜕�̅�𝛷] and the coefficient functions 𝑏𝑗  from (36). Finally, 

this kind of integrals is handled by the standard stationaryphase (Laplace, WJKB) method, yielding 

the result in the theorem.  

        The first two terms in the asymptotic expansion for 𝐵𝛼 can be evaluated explicitly, giving the 

desired outcomes 𝑄0 = 𝐼 and 𝑄1 = ∆ , and thus finishing completely the proof. 

For 𝑓 ∈ 𝐿∞(Ω) let us denote, for brevity, the Toeplitz operator with symbol 𝑓 on 

𝐿hol
2 (Ω, 𝑒−𝑚𝛷 det[𝜕�̅�𝛷]) by  𝑇𝑓

(𝑚)
. The main result on the Berezin-Toeplitz quantization then reads 

as follows. . Let Ω be a smoothly bounded strictly pseudoconvex domain in 𝐂𝑛, and 𝛷:Ω → 𝐑 a 
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smooth strictly-𝑃𝑆𝐻 function such that 𝑒−𝛷 =: 𝑟 is a defining function for Ω . Then there exist bilinear 

diff erential operators 𝐶𝑗(𝑗 = 0,1,2,⋯ ) such that for any 𝑓, 𝑔 ∈ 𝐶∞(Ω̅) and any 𝑀 = 0,1,2,⋯, 

‖𝑇𝑓
(𝑚)
𝑇𝑔
(𝑚)

−∑𝑚−𝑗𝑇𝐶𝑗(𝑓,𝑔)
(𝑚)

𝑀

𝑗=0

‖ = 𝑂(𝑚−𝑀−1)               𝑎𝑠 𝑚 → ∞. 

Furthermore,  

𝐶0(𝑓, 𝑔) = 𝑓𝑔,               𝐶1(𝑓, 𝑔) − 𝐶1(𝑔, 𝑓) =
𝑖

2𝜋
{𝑓, 𝑔}. 

Consequently, 𝑓 ∗ 𝑔 ∶= ∑ ℎ𝑗𝐶𝑗(𝑓, 𝑔) 
∞
𝑗=0 defines a star-product on Ω.  

       Observe that the theorem establishes the expansion for the product of two Toeplitz operators (17) 

in the strongest possible sense, namely, in the operator norm.  

        As already mentioned, the proof involves a sophisticated machinery, due to Boutet de Monvel 

and Guillemin, of Fourier integral operators of Hermite type — more specifically, of Toeplitz 

operators with pseudodiff erential symbols. It is not our intention to introduce all the necessary 

notions and technicalities here; we will, however, try to highlight at least the main ideas.  

       Consider again the Hartogs domain Ω̃,  

Ω̃ = {(𝑧, 𝑡) ∈ Ω × 𝐂 ∶  |𝑡|2 < 𝑒−𝛷(𝑧)}. 

 Again, the hypotheses guarantee that Ω̃ is smoothly bounded, strictly pseudoconvex, and admits  

�̃�(𝑧, 𝑡) ∶= 𝑒−𝛷(𝑧) − |𝑡|2 

as a defining function.  

        As before, consider the Szegö kernel on the compact manifold 𝑋 = 𝜕Ω̃ with respect to the 

measure  

𝑑𝜎 ∶=
𝐽[�̃�]

‖𝜕�̃�‖
𝑑𝑆. 

We have already seen that (Ligocka’s formula)  

𝐾Szegö(𝑥, 𝑠; 𝑦, 𝑡) =
1

2𝜋
∑𝐾𝑘+𝑛+1(𝑥, 𝑦)(𝑠𝑡̅)

𝑘,

∞

𝑘=0

 

                                      𝐻2(𝑋) =⊕𝑘=𝑛+1
∞ 𝐿hol

2 (Ω, 𝑒−𝑘Φ det[𝜕�̅�Φ]).                         (37) 

The space  𝐻2(𝑋) also admits its own “Hardy-space” Toeplitz operators: namely, if 𝐹 is a function 

in, say, 𝐶∞(𝑋), one defines the Toeplitz operator 𝑇𝐹  on   𝐻2(𝑋) with symbol 𝐹 as   

𝑇𝐹𝜓 ∶= 𝑃Szegö(𝐹𝜓),             𝜓 ∈ 𝐻
2(𝑋), 

  

where 𝑃Szegö: 𝐿
2(𝑋, 𝑑𝜎) →   𝐻2(𝑋) is the orthogonal projection (the 𝑆𝑧𝑒𝑔�̈� 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 ).  

         Now if 𝑓 is a smooth function on Ω̅, we can lift it to a function 𝐹 ∈ 𝐶∞(Ω̃)̅̅ ̅by composing with 

the projection on the first variable, i.e.  

𝐹(𝑥, 𝑡) ∶= 𝑓(𝑥). 
 An easy verification then reveals that under the orthogonal decomposition (37), the Toeplitz 

operators 𝑇𝑓
(𝑚)
 on 𝐿hol

2 (Ω, 𝑒−𝑚Φ det[𝜕�̅�Φ]). and the Toeplitz operator 𝑇𝐹 on  𝐻2(𝑋) are related by 

𝑇𝐹 =⊕𝑚=𝑛+1
∞ 𝑇𝑓

(𝑚)
 . 

        The main ingredient in the whole proof is that, following the ideas of Boutet de Monvel and 

Guillemin, we can define Toeplitz operators 𝑇𝑄  on  𝐻2(𝑋) by the same recipe not only for functions, 

but also for pseudodiff erential operators (ΨDO for short) 𝑄 on 𝑋 as symbols. That is, for a ΨDO  𝑄  

on 𝑋, we define  

𝑇𝑄𝜓 ∶= 𝑃Szegö 𝑄 𝜓. 

 For 𝑄 the operator of multiplication by a function 𝐹 ∈ 𝐶∞(𝑋) this recovers the Toeplitz operators 

𝑇𝐹 above as a particular case. Toeplitz operators on  𝐻2(𝑋) with ΨDO  symbols are often called 

generalized Toeplitz operators.  
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        One proceeds to define the order ord(𝑇𝑄) and the symbol 𝜎(𝑇𝑄) of 𝑇𝑄 as the order of 𝑄 and the 

restriction of the principal symbol 𝜎(𝑄) of 𝑄 to the symplectic submanifold  

∑∶= {(𝑥, 𝜉): 𝜉 = 𝑡(�̅��̃� − �̃�)𝑥 , 𝑡 > 0} 

of the cotangent bundle of 𝑋 , respectively. It can be shown that these two definitions are 

unambiguous: although it may happen that 𝑇𝑄 = 𝑇�́� for two diff erent ΨDOs  Q , Q ́  (which is peculiar 

for ΨDO symbols — it is never the case that 𝑇𝐹 = 𝑇�́�  𝑓𝑜𝑟 𝐹 ≠ �́�), in that case either𝑄, �́� have the 

same order and their symbols coincide on∑, or one of them — say, 𝑄 — has greater order then the 

other and its symbol vanishes on ∑ to order ord(𝑄)−ord(�́�). Also, the order and the symbol of 𝑇𝑄obey 

the usual rules one would expect, as well as some additional ones:  

(P1)  the generalized Toeplitz operators form an algebra under composition  (i.e.∀𝑄1, 𝑄2 ∃𝑄3 ∶
 𝑇𝑄1𝑇𝑄2 = 𝑇𝑄3);   

(P2)  ord(𝑇𝑄1𝑇𝑄2) = ord(𝑇𝑄1)+ord(𝑇𝑄2); 𝜎(𝑇𝑄1𝑇𝑄2) = 𝜎(𝑇𝑄1)𝜎(𝑇𝑄2);                                                                                 

(P3)  𝜎([𝑇𝑄1 , 𝑇𝑄2]) = {𝜎(𝑇𝑄1), 𝜎(𝑇𝑄2)}∑ ;    

(P4)  if ord(𝑇𝑄 ) = 0, then  𝑇𝑄 is bounded operator on   𝐻2;                                                 

 (P5) if ord(𝑇𝑄1) = ord(𝑇𝑄2) = 𝑘 and 𝜎(𝑇𝑄1) = 𝜎(𝑇𝑄2), then ord(𝑇𝑄1 − 𝑇𝑄2) ≤ 𝑘 − 1; 

 (P6) for 𝐹 ∈ 𝐶∞(𝑋) and (𝑥, 𝜉) ∈ ∑  ,  𝜎(𝑇𝐹)(𝑥, 𝜉) = 𝐹(𝑥). 
     Returning to the proof of Theorem BT, let 𝒯 be the subalgebra of all generalized Toeplitz operators 

on 𝐻2(𝑋)which commute with the rotations  

𝑈𝜃: 𝑓(𝑧, 𝑤) ↦ 𝑓(𝑧, 𝑒𝑖𝜃𝑤),      (𝑧, 𝑤) ∈ 𝑋,   𝜃 ∈ 𝐑, 

in the fiber variable. Clearly, the operators 𝑇𝐹 with 𝐹(𝑥, 𝑡) = 𝑓(𝑥)for some function 𝑓 ∈ 𝐶∞(Ω̅) (i.e. 

with 𝐹 constant along fibers) belong to 𝒯.  

        Denote by  𝐷 ∶  𝐻2(𝑋) → 𝐻2(𝑋)the infinitesimal generator of the semi-group 𝑈𝜃  . Then 𝐷 acts 

as multiplication by 𝑖𝑚 on the 𝑚-th summand in (37), for each 𝑚:  

𝐷 =⊕𝑚 𝑖𝑚𝐼; 
and also  

𝐷 = 𝑇𝜕 𝜕𝜃⁄  

is a generalized Toeplitz operator of order 1.  

        Using (P1)–( P6) it can be shown that if 𝑇 ∈  𝒯 is of order 0, then  

𝑇 = 𝑇𝐹 + 𝐷
−1𝑅 

 for some (uniquely determined) 𝐹 ∈ 𝐶∞(𝑋) which is constant along the fibers (hence, descends to a 

function on Ω), and 𝑅 ∈  𝒯 of order 0. Repeated application of this formula shows that, for each 𝑘 ≥
0, 

𝑇 =∑𝐷−𝑗𝑇𝐹𝑗 + 𝐷
−𝑘−1𝑅𝑘,

𝑘

𝑗=0

 

 with 𝐹𝑗(𝑥, 𝑡) = 𝑓𝑗(𝑥) for some 𝑓𝑗 ∈ 𝐶
∞(Ω̅) and 𝑅𝑘 ∈  𝒯 of order 0. Invoking the fact that zero order 

operators are bounded, it follows that  

𝐷𝑘+1(𝑇 −∑𝐷−𝑗𝑇𝐹𝑗

𝑘

𝑗=0

) = 𝑅𝑘 

is a bounded operator on 𝐻2.  

         In view of the decomposition 𝑇𝐹 =⊕𝑚 𝑇𝑓
(𝑚)
  , this means that  

‖𝑇| 𝐿 2(Ω,𝑒−𝑚Φ det[𝜕�̅�Φ]) −∑𝑚−𝑗𝑇𝑓𝑗
(𝑚)

𝑘

𝑗=0

‖ = 𝑂(𝑚−𝑘−1) 

as 𝑚 → +∞ . Taking for 𝑇 the product 𝑇𝐹𝑇𝐺  , with 𝐹(𝑥, 𝑡) = 𝑓(𝑥), 𝐺(𝑥, 𝑡) = 𝑔(𝑥) for some 𝑓, 𝑔 ∈

𝐶∞(Ω̅), and setting 𝐶𝑗(𝑓, 𝑔) ∶= 𝑓𝑗, we obtain the desired asymptotic expansion for 𝑇𝑓
(𝑚)
𝑇𝑔
(𝑚)
.  
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         Finally, the assertions concerning 𝐶0and 𝐶1 follow from the above properties (P2) and (P3) of 

the symbol by a routine calculation by no means intended as an exhaustive survey of quantization 

methods, or even of the Berezin and the Berezin-Toeplitz quantizations .From the many surveys and 

overviews of various quantization techniques, see  [131] for a somewhat more in-depth account of 

many (but not all) things discuss here, as well as for abundant references to other literature. Two good 

surveys of traditional deformation quantization (i.e. on the level of formal power series) are Gutt 

[129] and Sternheimer [142]; a very nice recent overview focused on the Berezin-Toeplitz 

quantization discussed here is Schlichenmaier [140]. Some more technical aspects of several points 

left out here can be found in the author’s article [121]. An excellent reading about the material 

discussed are several books by Folland, in particular [127].  

        It should, finally, be mentioned that the subject of Berezin and BerezinToeplitz quantization is 

still far from being understood completely, and there are many things waiting still to be resolved in a 

satisfactory way. For instance, in both Theorem B and Theorem BT the semiclassical limit 𝛼 =
1

ℎ
→

+∞ is taken only for 𝛼 ranging through the integers; this is of course natural if Ω is a compact 

manifold (as was the original context in [139]), but is only an artifact of the methods of proof for Ω a 

domain in 𝐂𝑛. Removing this restriction, i.e. extending the asymptotics of the reproducing kernels 

𝐾𝛼 , the Berezin transforms 𝐵𝛼, and the Toeplitz operators 𝑇𝑓
(𝛼)

 also to non-integer 𝛼 → +∞ would 

be most desirable.  

       Another highly active area concerns the generalizations of Feff erman’s theorem on the 

Szegö kernel from (and the analogous theorem of his for the Bergman kernel, which was not 

mentioned here) to domains which are only weakly (i.e. not necessarily strictly) pseudoconvex; at the 

moment, there are only some partial results for special types of domains (see e.g. [130]). Having a 

result of that kind would make it possible to extend Theorems B and BT to more general domains. 

Similarly, having a result of that kind for domains which are not necessarily smoothly bounded — 

more specifically, for Hartogs domains Ω̃ whose the radiusfunction 𝑒−∅has a logarithmic singularity 

at the boundary of Ω — would make it possible to quantize metrics whose Kähler potential behaves 

like that at the boundary; the latter includes, for instance, the important Cheng-Yau metric on Ω (the 

Kähler -Einstein metric; see [135] for more information on this). Carrying out the Berezin-Toeplitz 

quantization in the last case by the method described would also require an extension of the Boutet 

de Monvel and Guillemin theory of generalized Toeplitz operators to noncompact manifolds, which 

is another open problem at present.    

        Closely related ideas concern also the boundary behavior of weighted Bergman kernels with 

respect to weights having some kind of singularity at the boundary (e.g. involving the logarithm of 

the defining function); some results of the present author in that direction can be found in [122]. 

Interestingly, the same technique can also be used to establish that the weighted Bergman kernels 

𝐾𝛼(𝑥, 𝑦) appearing in the previous can be continued to meromorphic functions of α in the entire 

complex plane [124]; this is somewhat reminiscent of the resonances occuring in scattering theory, 

and is related to zeta functions of elliptic operators. A subject of a completely diff erent flavour is the 

extension of the Theorems B and BT above also to the setting of harmonic, rather than holomorphic, 

functions; although this seems not to have any direct relevance for quantization, the results are equally 

interesting, and, apparently, much more intriguing, than in the holomorphic case (see e.g. [123]).   

        There is also a variety of problems, though again not directly related to quantization, concerning 

the range of the Berezin symbol map 𝑇 ↦ �̃� (see e.g. Coburn [135] and Bommier-Hato [128]), while 

notable applications of Toeplitz operators and the Berezin transform appear in operator theory and in 

time-frequency analysis; let us mention at least [136], [136], [132], [133] and [145]. 

Section (3.2): Harmonic Berezin Transform on the Half-Space  

For ℋ𝛼 be the Hilbert space of all functions harmonic on the half-space                           

 𝐻:= {(𝑥, 𝑦) ∈ ℝ𝑛+1; 𝑥 ∈ ℝ𝑛, 𝑦 > 0} and square-   integrable with respect to the measure                                                                                                                                            

               𝑦𝛼𝑑𝑥𝑑𝑦,                                                                                                                                              
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where  𝑑𝑥 and 𝑑𝑦 are the standard 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒  measures onℝ𝑛 and  ℝ+, respectively, and α ≥ 0 is an 

arbitrary nonnegative real number. By the volume version of the mean-value property for harmonic 

functions, the (linear) functional 𝑒(𝑥,𝑦):ℋ𝛼 ∋ 𝑓 ↦ 𝑓(𝑥, 𝑦) ∈ ℂ is bounded for each fixed (𝑥, 𝑦)∈𝐻 

and therefore continuous.This is precisely the necessary and sufficient condition for the existence of 

the so called 𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑘𝑒𝑟𝑛𝑒𝑙, i.e.a mapping 𝐾𝛼: 𝐻 × 𝐻 → ℂ which satisfies  𝐾𝛼(. ; ℎ) ∈ ℋ𝛼 for 

every ℎ = (𝑥, 𝑦) ∈ 𝐻 and has the following  𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 : for all 𝑓 ∈ ℋ𝛼 and  (𝑥, 𝑦) ∈
𝐻,     
              𝑓(𝑥, 𝑦) = 〈𝑓, 𝐾𝛼(. ; 𝑥, 𝑦)〉𝐿2                                                                                                                           ≡

∫ ∫ 𝑓(𝑧, 𝑤)𝐾𝛼(𝑧, 𝑤; 𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∞

0

 

ℝ𝑛
𝑤𝛼𝑑𝑤 𝑑𝑧. 

It can be shown that 𝐾𝛼 is in fact real-valued and symmetric,i.e  𝐾𝛼(𝑧, 𝑤; 𝑥, 𝑦) = 𝐾𝛼(𝑧, 𝑤; 𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
  𝐾𝛼(𝑥, 𝑦; 𝑧, 𝑤); see[1] for more details on 𝐾𝛼 .Recall that for  𝑓 ∈ 𝐿∞(𝐻) there is the 

ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝐵𝛼𝑓,associated to the kernels  𝐾𝛼 ,and defined on 𝐻 by the formula                                                                                                   

              𝐵𝛼𝑓(𝑥, 𝑦) ≔
1

  𝐾𝛼(𝑥,𝑦;𝑥,𝑦)
∫ ∫ 𝑓(𝑧, 𝑤)|  𝐾𝛼(𝑥, 𝑦; 𝑧, 𝑤)|

2∞

0

 

ℝ𝑛
𝑤𝛼𝑑𝑤 𝑑𝑧         (40).                          

It is a well known fact that in the case of the spaces ℋ𝛼
ℎ𝑜𝑙 of functions that are ℎ𝑜𝑙𝑜𝑚𝑜𝑟𝑝ℎ𝑖𝑐  (rather 

than harmonic)on a given domain 𝛺 ⊂ ℂ𝑛 and square-integrable with respect to 𝑤𝛼  ,where 𝑤 is an 

appropriate (positive) weight function on 𝛺 , there are reproducing kernels Kα
ℎ𝑜𝑙(𝑥, 𝑦), 𝑥, 𝑦 ∈ 𝛺  (the 

so called weighted Bergman kernels), and that in these spaces one has the associated 

‘‘holomorphic’’Berezin transform                                                                                           

              𝐵𝛼
ℎ𝑜𝑙𝑓(𝑦) ≔

1

  𝐾𝛼(𝑦,𝑦)
∫ 𝑓(𝑥)|  𝐾𝛼(𝑥, 𝑦)|

2 

𝛺
𝑤(𝑥)𝛼𝑑𝑥,                                                 

first introduced by F.A.Berezin[173] for 𝛺  a bounded symmetric domain in ℂ𝑛and 𝑤 a certain natural 

weight on it.Berezin himself was able to show that                                                   

                                  𝐵𝛼
ℎ𝑜𝑙𝑓 = 𝑓 +

𝑄1𝑓

𝛼
+ 𝑜(𝛼−2)   𝑎𝑠 𝛼 → +∞                                  (41),                                                                     

where 𝑄1 was a kind of Laplace–Beltrami operator,and used this fact to construct a certain 

quantization procedure for phase space 𝛺 (nowadays known as the 𝐵𝑒𝑟𝑒𝑧𝑖𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛). Later, 

(41) was extended to the complete asymptotic expansion in negative powers of 𝛼,and the Berezin 

quantization became one of the first nontrivial examples of the so-called 

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 of Bayen,Flato,Fronsdal,Lichnerowitz and Sternheimer[172]. 

Subsequently,(complete) asymptotic expansions of this type have been extended to a much larger 

class of domains (and even manifolds) than symmetric spaces by Klimek and 

Lesniewski[170],Engliš[4,5],Karabegov and Schlichenmaier[179], and others,and in these days they 

serve as an indispensable tool in applications to quantization on Kähler manifolds (see[175]).                                                                                              

Having a complete asymptotic expansion analogous to (41) even for spaces of harmonic  functions  

would be of great interest from many aspects (for instance, it would eliminate the need for 

holomorphic structure,thus extending the whole theory also to real, instead of complex, domains and 

manifolds). Unfortunately, the problem turns out to be much harder than in the holomorphic case. 

The first result of this kind is due to C. Liu [181], who proved that for essentially bounded functions 

on the unit disc, and also for essentially bounded functions 𝑓 on the unit ball 𝐵𝑛 of ℝ𝑛, n > 1, that 

are radial (i.e. 𝑓(𝑥) depends only on∥𝑥∥), the Berezin transform 𝐵𝛼
𝑏𝑎𝑙𝑙 associated to the spaces ℋ𝛼

𝑏𝑎𝑙𝑙 

of all harmonic functions on 𝐵𝑛 square-integrable with respect to the weights (1 − ‖𝑥‖2)𝛼,−1 < 𝛼 <
∞, satisfies 𝐵𝛼

𝑏𝑎𝑙𝑙𝑓(𝑥) → 𝑓(𝑥)  for every 𝑥∈𝐵𝑛 as  𝛼→ +∞. The radiality assumption was then 

removed by Otáhalová [173]. Only quite recently, the case of harmonic functions on the entire space 

ℂ𝑛 ≅ ℝ2𝑛 square-integrable with respect to the Gaussian weightse 𝑒−𝛼‖𝑥‖
2
, 𝛼 > 0 was done by 

Engliš[176].There seem to be no similar results for any other domains.                                                                                                           

We show that a complete asymptotic expansion of the harmonic Berezin transform in negative powers 

of α is available for essentially bounded smooth functions defined on 𝐻.Thus our main result can be 

stated in the following way:                                                                                                                               

Theorem (3.2.1)[171]: For any 𝑓 ∈ 𝐿∞(𝐻) ∩ 𝐶∞(𝐻),                                                                       

              (𝐵𝛼𝑓)(𝑥, 𝑦) ≈ ∑
𝑅𝑗𝑓(𝑥,𝑦)

𝛼𝑗
∞
𝑗=0                                                                         
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𝑎𝑠 𝛼 → +∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 (𝑥, 𝑦) ∈ 𝐻 where 𝑅𝑗 are certain differential operators, with 𝑅0𝑓(𝑥, 𝑦) =

𝑓(𝑥, 𝑦) (𝑅0𝑡ℎ𝑢𝑠 𝑏𝑒𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) and        

               𝑅1𝑓(𝑥, 𝑦) = 𝑦
2 ∆𝑓(𝑥,𝑦)

𝑛
+ (1 − 𝑛)𝑦

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) + 𝑦2

𝜕2𝑓

𝜕𝑦2
(𝑥, 𝑦),                                                       

𝑤ℎ𝑒𝑟𝑒  ∆= ∑
𝜕2

𝜕𝑥𝑖
2

𝑛
𝑖=1  .          

 Here the notation  means ,of course,that for every 𝑁 =0,1,2,...,                    

              (𝐵𝛼𝑓)(𝑥, 𝑦) − ∑
𝑅𝑗𝑓(𝑥,𝑦)

𝛼𝑗
= 𝑜(𝛼−𝑁),𝑁−1

𝑗=0                   𝑎𝑠 𝛼 → +∞.                                                                                                                                    

The proof of Theorem (3.2.1) occupies the rest and is divided into several steps. we show first of all 

that it is enough to prove the theorem for (𝑥, 𝑦) = (0,1) .We then proceed to give an explicit 

expression for the kernel 𝐾𝛼 at this point by means of the Fourier transform; this is done. The proof 

is finally completed where we employ a little trick to reduce it to the case in which the classical 

multidimensional Laplace method for asymptotic expansion of integrals is directly applicable. 

We prove two technical lemmas owing to which our situation simplifies substantially.                                                                                                          

Lemma (3.2.2) [171]:  For every (𝑥, 𝑦)𝑎𝑛𝑑 (𝑎, 𝑏)𝑖𝑛 𝐻,                                                    

               𝐾𝛼(𝑎, 𝑏; 𝑥, 𝑦) = 𝑏
−𝑛−𝛼−1𝐾𝛼 (0,1;

𝑥−𝑎

𝑏
,
𝑦

𝑏
).                                                        

Proof: Let 𝑓 ∈ ℋ𝛼 . Clearly,the function 𝑓(𝑥 + 𝑎, 𝑦) is harmonic iff 𝑓(𝑥, 𝑦) is harmonic.Thus we can 

write                                                 

 ∫ ∫ 𝑓(𝑥, 𝑦)𝐾𝛼(𝑎, 𝑏; 𝑥, 𝑦)
∞

0

 

ℝ𝑛
𝑦𝛼𝑑𝑦 𝑑𝑥 = 𝑓(𝑎, 𝑏)                      

                                                                       = ∫ ∫ 𝑓(𝑥 + 𝑎, 𝑦)
∞

0

 

ℝ𝑛
𝐾𝛼(0, 𝑏; 𝑥, 𝑦)𝑦

𝛼𝑑𝑦𝑑𝑥 

                                                                     = ∫ ∫ 𝑓(𝑥, 𝑦)𝐾𝛼(0, 𝑏; 𝑥 − 𝑎, 𝑦)𝑦
𝛼𝑑𝑦 𝑑𝑥

∞

0

 

ℝ𝑛
   

where in the second and the third equality we used the reproducing property of the kernel 𝐾𝛼 and 

the change of variables 𝑥 ↦ 𝑥 − 𝑎 , respectively.Since 𝑓 ∈ℋ𝛼  was  arbitrary,this implies the 

equality 𝐾𝛼(𝑎, 𝑏; 𝑥, 𝑦) = 𝐾𝛼(0, 𝑏; 𝑥 − 𝑎, 𝑦).  Similarly  we can show that for all 𝑡 > 0  

𝐾𝛼(𝑡𝑎, 𝑡𝑏; 𝑥, 𝑦) = 𝑡
−𝑛−𝛼−1𝐾𝛼 (𝑎, 𝑏;

𝑥

𝑡
,
𝑦

𝑡
) in which case the proof runs as 

follows:                                                                                                                                                   

∫ ∫ 𝑓 (
𝑥

𝑡
,
𝑦

𝑡
)

∞

0

 

ℝ𝑛
𝐾𝛼 (𝑎, 𝑏;

𝑥

𝑡
,
𝑦

𝑡
) (

𝑦

𝑡
)𝛼

𝑑𝑦

𝑡
 
𝑑𝑥

𝑡𝑛
= ∫ ∫ 𝑓(𝑥, 𝑦)

∞

0

 

ℝ𝑛
𝐾𝛼(𝑎, 𝑏; 𝑥, 𝑦)𝑦

𝛼𝑑𝑦 𝑑𝑥   

                                                                      = 𝑓(𝑎, 𝑏)     

                                                                      = ∫ ∫ 𝑓 (
𝑥

𝑡
,
𝑦

𝑡
)

∞

0

 

ℝ𝑛
𝐾𝛼(𝑡𝑎, 𝑡𝑏; 𝑥, 𝑦)𝑦

𝛼𝑑𝑦 𝑑𝑥,         

 where again the reproducing property and the change of variables (𝑥, 𝑦) ↦ (
𝑥

𝑡
,
𝑦

𝑡
) were used.Taking 

both these results into account we see that the assertion of Lemma(3.2.2)is true.                                                                                                                   

Next,for any function 𝑓: 𝐻 → ℂ and for any 𝑎 ∈ ℝ𝑛 and 𝑏 ∈ ℝ+ we denote 𝑓𝑎,𝑏(𝑥, 𝑦) ≔ 𝑓(𝑏𝑥 +
𝑎, 𝑏𝑦).We then have the following                                             

Lemma(3.2.3) [171]: Let 𝑓 ∈ 𝐿∞(𝐻), 𝑎 ∈ ℝ𝑛 𝑎𝑛𝑑 𝑏 ∈ ℝ+ 𝑏𝑒 𝑔𝑖𝑣𝑒𝑛.𝑇ℎ𝑒𝑛                                     

(𝐵𝛼𝑓)(𝑎, 𝑏) = (𝐵𝛼𝑓
𝑎,𝑏)(0,1).                                                                                    

   Proof:                                  (𝐵𝛼𝑓)(𝑎, 𝑏) =
1

𝐾𝛼(𝑎,𝑏;𝑎,𝑏)
∫ ∫ 𝑓(𝑧, 𝑤)|𝐾𝛼(𝑎, 𝑏; 𝑧, 𝑤)|

2∞

0

 

ℝ𝑛
𝑤𝛼𝑑𝑤 𝑑𝑧                          

                       =
|𝑏−𝑛−𝛼−1|

2

𝑏−𝑛−𝛼−1𝐾𝛼(0,1;0,1)
∫ ∫ 𝑓(𝑧, 𝑤) |𝐾𝛼(0,1;

𝑧−𝑎

𝑏
,
𝑤

𝑏
)|
2∞

0

 

ℝ𝑛
𝑤𝛼𝑑𝑤 𝑑𝑧             

                        =
𝑏−𝛼−1−𝑛

𝐾𝛼(0,1;0,1)
∫ ∫ 𝑓(𝑏𝑥 + 𝑎, 𝑏𝑦)|𝐾𝛼(0,1; 𝑥, 𝑦)|

2∞

0

 

ℝ𝑛
(𝑏𝑦)𝛼 . 𝑏. |𝑏|𝑛𝑑𝑦𝑑𝑥         

                                                  =
𝑏−𝛼−1−𝑛

𝐾𝛼(0,1;0,1)
∫ ∫ 𝑓(𝑏𝑥 + 𝑎, 𝑏𝑦)|𝐾𝛼(0,1; 𝑥, 𝑦)|

2∞

0

 

ℝ𝑛
𝑏𝛼+1+𝑛𝑦𝛼𝑑𝑦𝑑𝑥             

                        =
1

𝐾𝛼(0,1;0,1)
∫ ∫ 𝑓(𝑏𝑥 + 𝑎, 𝑏𝑦)|𝐾𝛼(0,1; 𝑥, 𝑦)|

2∞

0

 

ℝ𝑛
𝑦𝛼𝑑𝑦𝑑𝑥                         

                        = (𝐵𝛼𝑓
𝑎,𝑏)(0,1),                                                                                    

 using the definition of 𝐵𝛼 ,Lemma(3.2.2) and the change of variable (
𝑧−𝑎

𝑏
,
𝑤

𝑏
) = (𝑥, 𝑦),respectively.                                                                                                                  

Corollary(3.2.4) [171]:  In proving Theorem (3.2.1) we can confine ourselves to the case (𝑥, 𝑦) =
(0,1).                                                                                                                          
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 Proof: Pick (𝑎, 𝑏) ∈ 𝐻 and suppose that (𝐵𝛼𝑓
𝑎,𝑏)(0,1) ≈ ∑

𝑄𝑘𝑓
𝑎,𝑏(0,1)

𝛼𝑘
∞
𝑘=0 . Then, because 

(𝐵𝛼𝑓
𝑎,𝑏)(0,1) = (𝐵𝛼𝑓)(𝑎, 𝑏) ,we see that                 

               (𝐵𝛼𝑓)(𝑎, 𝑏) ≈ ∑
𝑄𝑘𝑓(𝑎,𝑏)

𝛼𝑘
∞
𝑘=0  ,        𝛼 → +∞,                                                              

as desired,with 𝑄𝑘𝑓(𝑎, 𝑏) = 𝑄𝑘𝑓
𝑎,𝑏(0,1) .                                                                              

For brevity ,denote 𝐾𝛼(𝑥, 𝑦; 0,1) ≔ 𝐻𝛼(𝑥, 𝑦), 𝑓𝑦(𝑥) ≔ 𝑓(𝑥, 𝑦) and let 𝑓�̂�(𝜉) be the Fourier transform 

of 𝑓𝑦(𝑥) with respect to 𝑥:                 

              𝑓�̂�(𝜉) = (2𝜋)
−𝑛
2 ∫ 𝑓𝑦(𝑥)𝑒

−𝑖𝑥.𝜉𝑑𝑥.
 

ℝ𝑛
              

Lemma(3.2.5) [171]: For any 𝑓∈ℋ𝛼 ,                                                                                                              

                                                          𝑓�̂�(𝜉) = 𝑒
−|𝜉|𝑦𝑓0̂(𝜉),                                                  (42)                                                                                                                               

where 𝑓0̂(𝜉)  is a function defined on ℝ𝑛 such that 

                               Γ(𝛼 + 1) ∫ |𝑓0̂(𝜉)|
2
(2|𝜉|)−𝛼−1𝑑𝜉 < ∞.

 

ℝ𝑛
                                       (43)                                                       

Conversely, every such function 𝑓0̂corresponds to a function 𝑓 ∈ ℋ𝛼 . Moreover,for any two functions 

𝑓, 𝑔 ∈ ℋ𝛼             

∫ ∫ 𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅∞

0
𝑦𝛼𝑑𝑦𝑑𝑥 = Γ(𝛼 + 1) ∫ 𝑓0̂(𝜉)�̂�0(𝜉)

 

ℝ𝑛
 

ℝ𝑛
(2|𝜉|)−𝛼−1𝑑𝜉           (44)                                                                        

Proof: Harmonicity means that                                                                         

                                  
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2
+ ∑

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥𝑗
2

𝑛
𝑗=1 = 0                                                                                      and 

we have the following chain of equivalences (here ℱ𝑥𝑓𝑦(𝜉) = 𝑓�̂�(𝜉)):       

               
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2
+ ∑

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥𝑗
2

𝑛
𝑗=1 = 0                                                                                               

              ⟺ ℱ𝑥 (
𝜕2𝑓(𝑥,𝑦)

𝜕𝑦2
+ ∑

𝜕2𝑓(𝑥,𝑦)

𝜕𝑥𝑗
2

𝑛
𝑗=1 ) = 0                 

              ⇔
𝜕2�̂�𝑦(𝜉)

𝜕𝑦2
+ ∑ ℱ𝑥

𝜕

𝜕𝑥𝑗
(
𝜕𝑓𝑦(𝑥)

𝜕𝑥𝑗
) = 0𝑛

𝑗=1                                                                                   

              ⇔
𝜕2�̂�𝑦(𝜉)

𝜕𝑦2
+ ∑ (−𝑖𝜉𝑗

𝑛
𝑗=1 ). (−𝑖𝜉𝑗)𝑓𝑦(𝜉) = 0                                                                      

                                               ⇔
𝜕2�̂�𝑦(𝜉)

𝜕𝑦2
− ‖𝜉‖2𝑓𝑦(𝜉) = 0.                                               (45)                                                                                                                                                                    

The general solution of (45) is                                                                                                      

              𝑓𝑦(𝜉) = 𝐴(𝜉)𝑒
−|𝜉|𝑦 + 𝐵(𝜉)𝑒|𝜉|𝑦.                                                                                 

But the Plancherel formula                                                                                 

                                        ∫ |𝑓(𝑥, 𝑦)|2𝑑𝑥
 

ℝ𝑛
= ∫ |𝑓𝑦(𝜉)|

2 

ℝ𝑛
𝑑𝜉                                           (46)                                                                                                                                 

implies that                                     

                    ∫ ∫ |𝑓(𝑥, 𝑦)|2𝑦𝛼𝑑𝑦 𝑑𝑥
∞

0

 

ℝ𝑛
= ∫ ∫ |𝑓𝑦(𝜉)|

2
𝑦𝛼𝑑𝑦 𝑑𝜉

∞

0

 

ℝ𝑛
.                           (47)                                            

Since 𝑓 ∈ ℋ𝛼 ,it follows that 𝑓 is square-integrable on 𝐻 with respect to 𝑦𝛼  𝑑𝑦 𝑑𝑥. This means that 

the left-hand side in (47) is convergent hence  

              ∫ ∫ |𝑓𝑦(𝜉)|
2
𝑦𝛼𝑑𝑦 𝑑𝜉

∞

0

 

ℝ𝑛
< ∞                                                                                       

and so                                                                                                                                

    ∫ |𝑓𝑦(𝜉)|
2
𝑦𝛼𝑑𝑦 < ∞

∞

0
   for a.a. 𝜉                                                                            

But this implies that  𝐵(𝜉 )≡0.Putting 𝐴(𝜉) =: 𝑓0(𝜉) concludes the proof of (42).           

   To prove the second part, note first that    

                                     ∫ 𝑒−2|𝜉|𝑦
∞

0
𝑦𝛼𝑑𝑦 =

1

2|𝜉|
∫ 𝑒−𝑡
∞

0
(
𝑡

2|𝜉|
)
𝛼

𝑑𝑡                              (48)                                                       

                                             =
1

(2|𝜉|)𝛼+1
∫ 𝑒−𝑡𝑡𝛼
∞

0
𝑑𝑡    

                                                       = (2|𝜉|)−𝛼−1Γ(𝛼 + 1),                                          (49)                                                                                
where the change of variables 𝑡 := 2|𝜉|𝑦 was used in (48). It follows that                  



107 
 

        ∞ > ∫ ∫ |𝑓𝑦(𝜉)|
2
𝑦𝛼𝑑𝑦𝑑𝑥 = ∫ ∫ |𝑒−|𝜉|𝑦𝑓0(𝜉)|

2∞

0

 

ℝ𝑛
∞

0

 

ℝ𝑛
𝑦𝛼𝑑𝑦 𝑑𝜉        

               =∫ |𝑓0(𝜉)|
2 

ℝ𝑛
∫ 𝑒−2|𝜉|𝑦
∞

0
𝑦𝛼𝑑𝑦 𝑑𝜉                 

            
(49)
=
Γ(𝛼 + 1) ∫ |𝑓0(𝜉)|

2
(2|𝜉|)−𝛼−1𝑑𝜉

 

ℝ𝑛
            

and (43) is thus proven. Finally, (44) is a direct consequence of the Plancherel formula: for any 𝑓, 𝑔 ∈
𝐿2,                                                                   

              ∫ 𝑓(𝑥, 𝑦)𝑔(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅ 

ℝ𝑛
𝑑𝑥 = ∫ 𝑓𝑦(𝜉)�̂�𝑦(𝜉)̅̅ ̅̅ ̅̅ ̅ 𝑑𝜉,

 

ℝ𝑛
                                                   

and Fubini’s theorem.                                                                                               

Proposition (3.2.6) [171]: We have    

                                           �̂�𝛼,𝑦(𝜉) =
(2|𝜉|)𝛼+1𝑒−(1+𝑦)|𝜉|

(2𝜋)
𝑛
2Γ(𝛼+1)

                                                    (50) .                                                                              

Proof:  First note that,due to the reproducing property of 𝐾𝛼 once again, for 𝑓 ∈ ℋ𝛼 we can write  

        𝑓(0,1) = ∫ ∫ 𝑓(𝑥, 𝑦)𝐻𝛼(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅∞

0

 

ℝ𝑛
𝑦𝛼𝑑𝑥 𝑑𝑦    

                                    
(44)
=
Γ(𝛼 + 1) ∫ 𝑓0(𝜉)

 

ℝ𝑛
�̂�𝛼,0(𝜉)
̅̅ ̅̅ ̅̅ ̅̅ ̅(2|𝜉|)−𝛼−1𝑑𝜉.                         (51)                                         

On the other hand, by the Fourier inversion formula                                                

       𝑓(0,1) = 𝑓1(0) = (2𝜋)
−𝑛
2 ∫ 𝑓1(𝜉)𝑑𝜉 

(42)
=

 

ℝ𝑛
(2𝜋)−

𝑛
2 ∫ 𝑓0(𝜉)𝑒

−|𝜉|𝑑𝜉
 

ℝ𝑛
             (52).                                                      

Since the Eqs.(51) and (52) hold for any  𝑓 ∈ ℋ𝛼  we arrive at the formula  

        Γ(𝛼 + 1)�̂�𝛼,0(𝜉)(2|𝜉|)
−𝛼−1 = (2𝜋)−

𝑛
2 𝑒−|𝜉|                                                       

which is equivalent to                                                                                            

                                                �̂�𝛼,0(𝜉) =
(2|𝜉|)𝛼+1𝑒−|𝜉|

(2𝜋)
𝑛
2Γ(𝛼+1)

                                                      (53) .                                                                                                    

  Since by (42)                                                                                                                        

       �̂�𝛼,𝑦(𝜉) = 𝑒−|𝜉|𝑦�̂�𝛼,0(𝜉),                                                                                      

using  (53) we obtain                                                                                                        

       �̂�𝛼,𝑦(𝜉) =
(2|𝜉|)𝛼+1𝑒−(1+𝑦)|𝜉|

(2𝜋)
𝑛
2Γ(𝛼+1)

                                                                                          

 and the proof is complete.                                                                                          

     Employing the inverse Fourier transform ,the last proposition gives          

                  𝐻𝛼(𝑥, 𝑦) =
1

(2𝜋)𝑛Γ(𝛼+1)
∫ (2|𝜉|)𝛼+1𝑒−(𝑦+1)|𝜉|𝑒𝑖𝜉.𝑥𝑑𝜉
 

ℝ𝑛
                            (54).                                                    

 In the spherical coordinates 𝜉 = 𝑟𝜁, 𝑟 > 0, 𝜁 ∈ 𝑺𝑛−1, 𝑑𝜁 = 𝑟𝑛−1𝑑𝑟 𝑑𝜎(𝜁), the formula (54)becomes     

       𝐻𝛼(𝑥, 𝑦) =
2𝛼+1

(2𝜋)𝑛Γ(𝛼+1)
∫ ∫ 𝑟𝛼+𝑛𝑒−(𝑦+1)𝑟𝑒𝑖𝑟𝜁.𝑥𝑑𝜎(𝜁)𝑑𝑟

 

𝑺𝑛−1
∞

0
 .  

We make an additional change of variables  𝑟 ↦
𝑟

𝑦+1
 

       𝐻𝛼(𝑥, 𝑦) =
2𝛼+1

(2𝜋)𝑛Γ(𝛼+1)(𝑦+1)𝛼+𝑛+1
∫ ∫ 𝑟𝛼+𝑛𝑒−𝑟𝑒

𝑖𝑟𝜁.𝑥
𝑦+1𝑑𝜎(𝜁)𝑑𝑟

 

𝑺𝑛−1
∞

0
.  

Finally we make the change of variable 𝑟 ⟼ 𝛼𝑟 to obtain:            

          𝐻𝛼(𝑥, 𝑦) =
2𝛼+1𝛼𝛼+𝑛+1

(2𝜋)𝑛Γ(𝛼+1)(𝑦+1)𝛼+𝑛+1𝑒𝛼
∫ ∫ 𝑟𝛼+𝑛𝑒(1−𝑟)𝛼𝑒

𝑖𝑟𝛼𝜁.𝑥
𝑦+1 𝑑𝜎(𝜁)𝑑𝑟

 

𝑺𝑛−1
∞

0
.      (55)     

Note that  𝑟𝛼+𝑛𝑒(1−𝑟)𝛼 = 𝑟𝑛𝑒𝛼(ln 𝑟+1−𝑟) and 𝑙𝑛𝑟 + 1 − 𝑟 < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 ∈ (0,∞) ∖ {1}, so that the 

last integrand stays bounded as 𝛼 → +∞.                                      

 

First we employ the very definition of the Berezin transform with the kernel as given by (55) to obtain 

this rather huge formula:         𝐵𝛼𝑓(0,1) =       
1

𝐻𝛼(0,1)
(
2𝛼+1𝛼𝛼+𝑛+1

(2𝜋)𝑛Γ(𝛼+1)𝑒𝛼
)
2

∫ ∫ 𝑓(𝑧, 𝑤)
𝑤𝛼

(𝑤+1)2𝛼+2𝑛+2

 

𝑹𝑛
∞

0
× 

         ∫ ∫ ∫ ∫ 𝑟𝑛𝑠𝑛 (
𝑟

𝑒𝑟−1

𝑠

𝑒𝑠−1
)
𝛼

𝑒
𝑖𝛼(𝑟𝜁−𝑠𝜂).𝑧

𝑤+1 𝑑𝜎(𝜁)𝑑𝜎(𝜂)𝑑𝑠 𝑑𝑟 𝑑𝑧 𝑑𝑤
 

𝑺𝑛−1
 

𝑺𝑛−1
∞

0

∞

0
       (56).                   

At this point we would like to invoke some results from harmonic analysis. Consider the orthogonal 

group O(𝑛).It is a well known fact that O(𝑛)is a compact Lie group and that there is a normalized 
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left and right invariant Haar measure dg on O(𝑛) such that for every function 𝐹 that is continuous on 

𝑺𝑛−1 we have   

                              ∫ 𝐹(𝜁)𝑑𝜎(𝜁) = 𝜔𝑛 ∫ 𝐹(𝑔𝑒1)𝑑𝑔,
 

O(𝑛)

 

𝑺𝑛−1
                                          (57)                                                           

where  𝜔𝑛 =
2𝜋

𝑛
2

Γ(𝑛
2
)
  is the total volume of the sphere, g ∈O(𝑛) and𝑒1 = (1,0, … ,0) ∈ 𝑺

𝑛−1.                                                                                                                                              

Now  we can apply (57) to some of the integrals from (56),namely:              

          𝒿𝑜(𝛼, 𝑟, 𝑠, 𝑤) ∶= ∫ ∫ ∫ 𝑓(𝑧, 𝑤)𝑒
𝑖𝛼(𝑟𝜁−𝑠𝜂).𝑧

𝑤+1 𝑑𝜎(𝜁) 𝑑𝜎(𝜂) 𝑑𝑧
 

𝑺𝑛−1
 

𝑺𝑛−1
 

𝑹𝑛
 

                                 = 𝜔𝑛
2  ∫ ∫ ∫ 𝑓(𝑧, 𝑤)𝑒

𝑖𝛼(𝑟𝑔𝑒1−𝑠ℎ𝑒1).𝑧
𝑤+1 𝑑𝑧 𝑑𝑔 𝑑ℎ

 

𝑹𝑛
 

O(𝑛)

 

O(𝑛)
 

                                 = 𝜔𝑛
2  ∫ ∫ ∫ 𝑓(ℎ𝑧, 𝑤)𝑒

𝑖𝛼(𝑟ℎ𝑔𝑒1−𝑠ℎ𝑒1).ℎ𝑧
𝑤+1 𝑑𝑧 𝑑𝑔 𝑑ℎ

 

𝑹𝑛
 

O(𝑛)

 

O(𝑛)
 

                                 = 𝜔𝑛
2  ∫ ∫ ∫ 𝑓(ℎ𝑧, 𝑤)𝑒

𝑖𝛼(𝑟𝑔𝑒1−𝑠𝑒1).𝑧
𝑤+1 𝑑𝑧 𝑑𝑔 𝑑ℎ,

 

𝑹𝑛
 

O(𝑛)

 

O(𝑛)
 

 where in the third and fourth equality we respectively used the change of variables 𝑔 ↦ ℎ𝑔, 𝑧 ↦ ℎ𝑧  
and the fact that ℎ preserves the inner product on 𝑹𝑛. Denoting 

       𝑓∗(𝑡, 𝑤) ∶= ∫ 𝑓(ℎ𝑡𝑒1, 𝑤) 𝑑ℎ
 

O(𝑛)
=

1

𝜔𝑛
 ∫ 𝑓(𝑡𝜁, 𝑤) 𝑑𝜎(𝜁)
 

𝑺𝑛−1
  

we can turn the last integral into       

        𝒿𝑜(𝛼, 𝑟, 𝑠, 𝑤) = 𝜔𝑛
2  ∫ ∫ 𝑓∗(|𝑧|, 𝑤)𝑒

𝑖𝛼(𝑟𝑔𝑒1−𝑠𝑒1).𝑧
𝑤+1  𝑑𝑧 𝑑𝑔

 

𝑹𝑛
 

O(𝑛)
 .  

Using spherical coordinates 𝑧 = 𝑡𝜏   and (57) once more, we obtain  

        𝒿𝑜(𝛼, 𝑟, 𝑠, 𝑤) = 𝜔𝑛
2  ∫ ∫ ∫ 𝑓∗(𝑡, 𝑤)𝑡𝑛−1𝑒

𝑖𝛼(𝑟𝑔𝑒1−𝑠𝑒1).𝑡𝜏
𝑤+1  𝑑𝑔 𝑑𝜎(𝜏)𝑑𝑡

 

O(𝑛)

 

𝑺𝑛−1
∞

0
 

                                 = 𝜔𝑛
2  ∫ ∫ ∫ 𝑓∗(𝑡, 𝑤)𝑡𝑛−1𝑒

𝑖𝛼(𝑟𝜁−𝑠𝑒1).𝑡𝜏
𝑤+1  𝑑𝜎(𝜁)𝑑𝜎(𝜏)𝑑𝑡.

 

𝑺𝑛−1
 

𝑺𝑛−1
∞

0
   

 The next step is to insert this last expression for the integral  𝒿𝑜(𝛼, 𝑟, 𝑠, 𝑤) back into the formula (56) 

for 𝐵𝛼𝑓(0,1): 

       𝐵𝛼𝑓(0,1) =
𝜔𝑛
 

𝐻𝛼(0,1)
(
2𝛼+1𝛼𝛼+𝑛+1

(2𝜋)𝑛Γ(𝛼+1)𝑒𝛼
)
2

∫ ∫ ∫ ∫ ∫ ∫
𝑓∗(t,𝑤)tn−1rnsn

(𝑤+1)2n+2

 

𝑺𝑛−1
 

𝑺𝑛−1
∞

0

∞

0

∞

0

∞

0
×

                                  (
𝑤

(𝑤+1)2

𝑟

𝑒𝑟−1

𝑠

𝑒𝑠−1
𝑒
𝑖(𝑟𝜁−𝑠𝑒1).𝑡𝜏

𝑤+1 )
𝛼

𝑑𝜎(𝜁)𝑑𝜎(𝜏) 𝑑𝑡 𝑑𝑟 𝑑𝑠 𝑑𝑤.    

Finally, let us undo the polar coordinates , say, 𝑟𝜁 = 𝑦 and 𝑡𝜏 = 𝑧 to obtain  

        𝐵𝛼𝑓(0,1) =  
𝜔𝑛
 

𝐻𝛼(0,1)
(
2𝛼+1𝛼𝛼+𝑛+1

(2𝜋)𝑛Γ(𝛼+1)𝑒𝛼
)
2

∫ ∫ ∫ ∫
𝑓∗(|z|,𝑤)|y|sn

(𝑤+1)2n+2

 

𝑹𝑛
 

𝑹𝑛
∞

0

∞

0
 ×

                                 (
𝑤

(𝑤+1)2

|𝑤|

𝑒|𝑤|−1

𝑠

𝑒𝑠−1
𝑒
𝑖(𝑦−𝑠𝑒1).𝑧
𝑤+1 )

𝛼

 𝑑𝑦 𝑑𝑧 𝑑𝑠 𝑑𝑤                          (58) .                               

                                                                                                                                                                

 

But this is an integral of the form                                                                            

       𝒿𝑜(𝛼) = ∫ 𝐹(𝑥)𝑒
𝛼𝑠(𝑥)𝑑𝑥

 

𝛺
 ,  

to which the so called 𝑚𝑢𝑙𝑡𝑖𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑚𝑒𝑡ℎ𝑜𝑑 applies. Namely, under the conditions 

that:                                                                                                       

  (1) the function 𝐹(𝑥) is smooth in 𝛺 ,                                                                                    

 (2) there is a unique stationary nondegenerate point 𝑥0 ∈ 𝛺 of the function 𝑆(𝑥), (3) the integral 𝒿 (𝛼)  
exists for at least one 𝛼,                                                                     

  (4) the point 𝑥0 is the maximum point of Re𝑆(𝑥), and                                                                             

    (5) Re𝑆(𝑥) → −∞ as 𝑥 → 𝜕𝛺 or ∞,  

(see [177] or [178] for the details), there is the following asymptotic expansion:  

 𝒿 (𝛼) ≈                 (
2𝜋

𝛼
)

𝑑𝑖𝑚𝛺

2 𝑒𝛼𝑆(𝑥0)

|Hess S(𝑥0)|
1 2⁄
∑ (∑

1

𝑘!(𝑘−𝑗)!2𝑘
𝐿𝑠
𝑘(𝑆(𝑥, 𝑥0)

𝑘−𝑗𝐹(𝑥))|
𝑥=𝑥0

3𝑗
𝑘=𝑗 )𝛼−𝑗∞

𝑗=0 ,                                              

          
as → +∞ . Here Hess 𝑆(𝑥0) is the determinant of the matrix      
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                                    𝐴 = −(
𝜕2𝑆(𝑥0)

𝜕𝑥𝑗𝑥𝑘
)
𝑗,𝑘=1

𝑑𝑖𝑚𝛺

                                                                    (59)                                                                                              

𝐿𝑆 is the constant-coefficient differential operator on 𝛺 given by the formula    

         𝐿𝑆 = ∑ (𝐴−1)𝑗,𝑘
𝜕2

𝜕𝑥𝑗𝑥𝑘

𝑑𝑖𝑚𝛺
𝑗,𝑘=1  

where 𝐴−1 is the inverse of the matrix (59), and                                                            

        𝑆(𝑥, 𝑥0) ∶= 𝑆(𝑥) − 𝑆(𝑥0) +
1

2
〈𝐴(𝑥 − 𝑥0), 𝑥 − 𝑥0〉 .  

In the present case we may take 𝛺 ∶= 𝐑+ × 𝐑+ × 𝐑
𝑛 × (𝐑𝑛 ∖ {0}), 𝑥 = (𝑤, 𝑠, 𝑧, 𝑦) ∈ 𝛺,                                                                                                                      

       𝐹(𝑥) ∶=
𝑓∗(|z|,𝑤)|y|sn

(𝑤+1)2n+2
 

 

 and 

        𝑆(𝑥) ∶= ln
w

(w+1)2
+ (lns + 1 − s) +

i(w−se1).z

w+1
+ (ln|y| + 1 − |y|).  

It  is clear that 𝐹(𝑥) is a smooth function on  𝛺  (that is why we omitted the axis 𝑦 = 0 from 𝛺, which 

has no effect on the integral (58) since it is a set of measure zero) and it is also clear that the 

integral  𝒿 (𝛼) exists in fact even for any 𝛼 ≥ 0, since (1) does. It is also obvious that Re𝑆(𝑥) →
−∞ as 𝑥 → 𝜕𝛺 or ∞. Further,the point 𝑥0 = (𝑤𝑜,𝑠𝑜 , 𝑧𝑜 , 𝑦0) = (1,1,0, 𝑒1) is the only stationary point 

of the function 𝑆(𝑥),i.e. ∇𝑆(𝑥0) = 0,  and it is also a nondegenerate one since the matrix (59), which 

in this case reads as its inverse. Last but not least, the point 𝑥0 can also be easily verified to be the 

maximum point of the function Re𝑆(𝑥). Thus in the context of the integral (58) we obtain the 

asymptotic expansion 

        𝐵𝛼𝑓(0,1) ≈ 𝑐𝛼,𝑛   ∑ (∑
1

𝑘!(𝑘−𝑗)!2𝑘
𝐿𝑠
𝑘(𝑆(𝑥, 𝑥0)

𝑘−𝑗𝐹(𝑥))|
𝑥=𝑥0

3𝑗
𝑘=𝑗 )𝛼−𝑗∞

𝑗=0      (60)    

where   

        𝑐𝛼,𝑛 ∶=
𝜔𝑛
 

𝐻𝛼(0,1)
(
2𝛼+1𝛼𝛼+𝑛+1

(2𝜋)𝑛Γ(𝛼+1)𝑒𝛼
)
2

  (
2𝜋

𝛼
)
𝑛+1 𝑒𝛼𝑆(𝑥0)

|Hess S(𝑥0)|
1 2⁄

  

(here, we have in fact  𝑒𝛼𝑆(𝑥0) = 4−𝛼 and |Hess S(𝑥0)|
1 2⁄ = 1 2𝑛⁄ ) ,and            

       𝑆(𝑥, 𝑥0) ∶= ln
w

(w+1)2
+ (lns + 1 − s) +

i(w−se1).z

w+1
+ (ln|y| + 1 − |y|) + 2. ln2 +

1

4
(w − 1)2 +

1

2
(s − 1 +

1

2
iz1) (s − 1) + (

1

4
i(s − 1) −

1

4
i(y1 − 1)) 𝑧1 −

1

4
iy2z2 −⋯−

1

4
iynzn +

1

2
(y1 −

1

2
iz1 −

1) (y1 − 1) −
1

4
iz2y2 −⋯−

1

4
iznyn.      .  

The derivatives of 𝐹 implicit in (60) can be expressed in terms of those of 𝑓(𝑧, 𝑤) at  (𝑧, 𝑤) = (0,1). 
Namely,the Taylor expansion of the function 𝑓∗(𝑡, 𝑤) at the point (𝑡0, 𝑤0) = (0,1) is (see [176], 

formulas (34) , (35)) 

                         𝑓∗(𝑡, 𝑤) = ∑
(∆𝑧
𝑚𝜕𝑤

𝑗
𝑓)(0,1)

𝑗!𝑚!4𝑚(
𝑛

2
)
𝑚

𝑡2𝑚(𝑤 − 1)𝑗∞
𝑗,𝑚=0                                  (61)                                                      

where ∆𝑧 denotes the Laplace operator applied to 𝑓(𝑧, 𝑤)  with respect to the 𝑧 variable. In this way 

we arrive at an asymptotic expansion of 𝐵𝛼𝑓(0,1) in terms of certain differential operators 𝑀𝑗 on 𝛺 

,this time acting on 𝑓 and evaluated at (0,1): 

        𝐵𝛼𝑓(0,1) ≈ 𝑐𝛼,𝑛 ∑
𝑀𝑗𝑓(0,1)

𝛼𝑗
∞
𝑗=0  ,     as 𝛼 → +∞                                             (62 )                                                           

We pause to calculate 𝑀0𝑓(0,1) and 𝑀1𝑓(0,1) explicitly. To that end we adopt the following 

temporary notation that will play no role in the sequel:                            𝐿𝑗 =

∑
1

𝑘!(𝑘−𝑗)!2𝑘
𝐿𝑠
𝑘(𝑆(𝑥, 𝑥0)

𝑘−𝑗𝐹(𝑥))|
𝑥=𝑥0

3𝑗
𝑘=𝑗 , 

and 𝑎𝑖,𝑗 and 𝑎𝑖,𝑗 denote the entries in the 𝑖-th row and 𝑗-th column of the matrix 𝐴 and 𝐴−1, 

respectively. It can be readily seen that 𝐿0 is just 𝐹(𝑥0) whence we infer,due to (61), that 

                                                     𝑀0𝑓(0,1) =
𝑓∗(0,1)

22𝑛+2
=

𝑓 (0,1)

22𝑛+2
                                        (63) .                                                                                    

Now for something slightly more complicated, the coefficient 𝐿1 runs : 
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        𝐿1 = ∑
1

𝑘!(𝑘−1)!2𝑘
𝐿𝑠
𝑘(𝑆(𝑥, 𝑥0)

𝑘−1𝐹(𝑥))|
𝑥=𝑥0

3
𝑘=1 .  

           =
1

2
𝐿𝑆(𝐹(𝑥))|𝑥=𝑥0 +

1

8
𝐿𝑆
2(𝑆(𝑥, 𝑥0)𝐹(𝑥))|𝑥=𝑥0 +

1

96
𝐿𝑆
3(𝑆2(𝑥, 𝑥0)𝐹(𝑥))|𝑥=𝑥0 

           =
1

2
∑ 𝑎𝑗,𝑘

𝜕2𝐹(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑘
|
𝑥=𝑥0

2𝑛+2
𝑗,𝑘=1 +

1

8
∑ 𝑎𝑗,𝑘𝑎𝑙,𝑚

𝜕4(𝑆(𝑥,𝑥0)𝐹(𝑥))

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑙𝜕𝑥𝑚
|
𝑥=𝑥0

2𝑛+2
𝑗,𝑘,𝑙,𝑚=1  

+
1

96
∑ 𝑎𝑗,𝑘𝑎𝑙,𝑚𝑎𝑝,𝑞

𝜕6(𝑆2(𝑥,𝑥0)𝐹(𝑥))

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑙𝜕𝑥𝑚𝜕𝑥𝑝𝜕𝑥𝑞
|
𝑥=𝑥0

2𝑛+2
𝑗,𝑘,𝑙,𝑚,𝑝,𝑞=1                                                                    =

: 𝐿1,1 + 𝐿1,2 + 𝐿1,3 
 The matrix 𝐴−1 is quite sparse so it is enough to compute only those derivatives that correspond to 

such values of the indices (𝑗, 𝑘) , (𝑗, 𝑘, 𝑙, 𝑚) and (𝑗, 𝑘, 𝑙, 𝑚, 𝑝, 𝑞) for which the respective 

entries 𝑎𝑗,𝑘,  𝑎𝑙,𝑚  and   𝑎𝑝,𝑞of the matrix 𝐴−1 are nonzero . To a certain extent ,the fact that the matrix 

𝐴−1 and the corresponding derivatives are symmetric is helpful , too , since it makes , say , the upper 

diagonal entries 𝑎𝑖,𝑗, 𝑗 ≥ 𝑖 those that really matter and thus helps us have control over the situation 

by counting only their occurrences according to their ‘‘multiplicity’’: the 𝐿1,1-part of 𝐿1 is 

straightforward, the (𝑗, 𝑘) entries with 𝑗 = 𝑘 count once , the ones with 𝑗 ≠ 𝑘 twice.To count the 

multiplicities of the 𝐿1,2 –part and the 𝐿1,3-part of  𝐿1 we sort the 2-tuples (𝑗, 𝑘), (𝑙,𝑚) with the help 

of the following notation: (𝑗, 𝑘) ≅ (𝑙,𝑚) means that (𝑗, 𝑘) is equal to (𝑙, 𝑚) up to a permutation , 

while (𝑗, 𝑘) ≇ (𝑙, 𝑚) means that  (𝑗, 𝑘)  is not equal to (𝑙, 𝑚) nor to (𝑚, 𝑙).                   
 A moment’s  reflection now shows that in  𝐿1,2 the entries (𝑗, 𝑘), (𝑙,𝑚) with 𝑗 = 𝑘 = 𝑙 = 𝑚  count 

once, entries (𝑗, 𝑘), (𝑙,𝑚) with 𝑗 = 𝑘 and 𝑙 = 𝑚 but (𝑗, 𝑘) ≇ (𝑙,𝑚)  count twice , entries with 𝑗 = 𝑘 

, 𝑙 ≠ 𝑚 and (𝑗, 𝑘) ≇ (𝑙,𝑚) count four times ,entries with 𝑗 ≠ 𝑘, 𝑙 ≠ 𝑚 and (𝑗, 𝑘) ≇ (𝑙, 𝑚) eight times 

and entries with 𝑗 ≠ 𝑘, 𝑙 ≠ 𝑚 but(𝑗, 𝑘) ≅ (𝑙,𝑚) count four times. With 𝐿1,3 the situation gets already 

a little bit messy : of course , entries with 𝑗 = 𝑘 = 𝑙 = 𝑚 = 𝑝 = 𝑞  count once. Now, entries with 

𝑗 = 𝑘 = 𝑙 = 𝑚 and 𝑝 = 𝑞 but (𝑙,𝑚) ≇ (𝑝, 𝑞) count three times ,entries with 𝑗 = 𝑘 = 𝑙 = 𝑚 , 𝑝 ≠ 𝑞 

and (𝑙, 𝑚) ≇ (𝑝, 𝑞)  count six times , entries with 𝑗 = 𝑘 , 𝑙 = 𝑚 , 𝑝 = 𝑞 but (𝑗, 𝑘) ≇ (𝑙,𝑚) ≇ (𝑝, 𝑞) 
count six times , entries with 𝑗 = 𝑘 ,l 𝑙 ≠ 𝑚, 𝑝 ≠ 𝑞 and (𝑗, 𝑘) ≇ (𝑙,𝑚) ≇ (𝑝, 𝑞) count twenty-four 

times, entries with 𝑗 ≠ 𝑘, 𝑙 ≠ 𝑚, 𝑝 ≠ 𝑞  and (𝑗, 𝑘) ≇ (𝑙,𝑚) ≇ (𝑝, 𝑞)  count forty-eight times, entries 

with 𝑗 ≠ 𝑘, 𝑙 ≠ 𝑚, 𝑝 ≠ 𝑞  and  (𝑗, 𝑘) ≅ (𝑙,𝑚) ≅ (𝑝, 𝑞) count eight times,entries with 𝑗 = 𝑘, 𝑙 ≠
𝑚, 𝑝 ≠ 𝑞and (𝑗, 𝑘) ≇ (𝑙,𝑚) but (𝑙,𝑚) ≅ (𝑝, 𝑞) count twelve times, entries with 𝑗 = 𝑘 , 𝑙 = 𝑚, 𝑝 ≠
𝑞 and (𝑗, 𝑘) ≇ (𝑙,𝑚) ≇ (𝑝, 𝑞) count twelve times and, finally, entries with 𝑗 ≠ 𝑘, 𝑙 ≠ 𝑚, 𝑝 ≠ 𝑞 and 
(𝑗, 𝑘) ≅ (𝑙,𝑚) but (𝑙,𝑚) ≇ (𝑝, 𝑞) count twenty-four times. With these conventions , the only 

nonzero contributions to 𝐿1,1 occur for (𝑗, 𝑘) equal to (1,1), (2,2), (3,3), (2, 𝑛 + 3 ). Similarly the only 

nonzero contributions to 𝐿1,2 appear for (𝑗, 𝑘, 𝑙, 𝑚) equal to (1,1,1,1) , (1,1,2,3) , (1,1,𝛼,𝑛 + 𝛼) where  

𝛼 =3,..., 𝑛 +2,(2,2,2,2),(2,2,2,3),    (2,2,2, 𝑛 +3),  (2, 𝑛 +3, 𝑛 +3, 𝑛 +3), (3, 𝑛 +3, 𝑛 +3, 𝑛 +3) and                                       

(𝑛 +3, 𝑛 +3, 𝑛+3, 𝑛+3).Finally,the only nonzero contributions to 𝐿1,3 occur for (𝑗, 𝑘, 𝑙, 𝑚, 𝑝, 𝑞) equal 

to (1,1,1,1,1,1),(1,1,1,1,2,3),(1,1,1,1, 𝛼, 𝑛 + 𝛼),α =3,..., 𝑛 +2, (1, 1, 2, 2, 3, 3), (1, 1, 2, 3, 2, 3), 

(1,1,2,3, 𝛼, 𝑛 + 𝛼), 𝛼 = 3,..., 𝑛 + 𝛼,(1,1,2, 𝑛 +3,3,3), (1,1,3,3, 𝑛 +3,n+3), (1,1,3, 𝑛 + 3, 𝛼, 𝑛 + 𝛼), 𝛼 = 

3,..., 𝑛 + 2, (1,1, 𝛼, 𝑛 + 𝛼, 𝛼, 𝑛 + 𝛼), 𝛼 = 3,..., 𝑛 + 2, (1,1, 𝛼, 𝑛 + 𝛼, 𝛽, 𝑛 + 𝛽 ), 𝛼 = 4,..., 𝑛 +2, 𝛽= 𝛼 

+1,..., 𝑛 +2, (2,2,2,2,2,2), (2,2,2, 𝑛 +3, 𝑛 +3, 𝑛 +3),(2, 𝑛 +3,2, 𝑛 +3,2, 𝑛 +3) and                             (𝑛 

+3, 𝑛 +3, 𝑛 +3, 𝑛 +3, 𝑛 +3, 𝑛 +3).Taking everything into account we get after tedious but routine 

calculations 

        𝐿1,1 = ((2𝑛 + 2)(2𝑛 + 3)2
−2𝑛−4 + 𝑛(𝑛 − 1)2−2𝑛−4 + 𝑛2−2𝑛−3)𝑓(0,1) −                     (2𝑛 +

2)2−2𝑛−2𝜕𝑤𝑓(0,1) + 2
−2𝑛−2𝜕𝑤

2𝑓(0,1) + 2−2𝑛−2
∆𝑧𝑓

𝑛
(0,1),         𝐿1,2 = 2

−2𝑛−3((−2𝑛2 − 8𝑛 −

11)𝑓(0,1) + (2𝑛 + 6)𝜕𝑤𝑓(0,1)),                    

        𝐿1,3 =
2−2𝑛−3

6
(3𝑛2 + 21𝑛 + 50)𝑓(0,1), 

so that 
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        𝐿1 =  𝐿1,1 + 𝐿1,2 + 𝐿1,3 =
2−2𝑛−3

3
((3𝑛2 + 3𝑛 + 1)𝑓(0,1) − 6(𝑛 −     1)𝜕𝑤𝑓(0,1) +

12𝜕𝑤
2𝑓(0,1) + 6𝑛−1∆𝑧𝑓(0,1)). 

   Finally, we use the obvious fact that Bα𝟏 = 𝟏 for all  α (by the reproducing property of the kernel 

𝐾𝛼), so 

        1 ≈ 𝑐𝛼,𝑛 ∑
𝑀𝑗𝟏(0,1)

𝛼𝑗
∞
𝑗=0  .  

Since  𝑀0𝟏(0,1) = 2
−2n−2 ≠ 0 by (63), the formal power series on the right can be inverted: 

        𝑐𝛼,𝑛 ≈
1

∑ 𝛼−𝑗𝑀𝑗𝟏(0,1)
∞
𝑗=0

=:∑
𝑁𝑘

𝛼𝑘
∞
𝑘=0   ,  

where  𝑁𝑘 can be obtained from the recursion formula 

       ∑ 𝑀𝑗𝟏(0,1)𝑁𝑘𝑗+𝑘=𝑚 = {
1    if 𝑚 = 0,
 0    if 𝑚 > 0   

  

Dividing the two formal series corresponding to the respective asymptotic expansions of  Bα𝑓(0,1)  
and Bα𝟏(0,1) gets us rid of the 𝑐𝛼,𝑛-term in (62) and we arrive at the desired formula  

        Bα𝑓(0,1)  ≈ ∑
Rj𝑓(0,1)  

𝛼𝑗
∞
𝑗=0   , 

 as 𝛼 → ∞ , where Rj are differential operators that are given recursively by the standard formula for 

the product of formal power series : 

        Rj𝑓(0,1) = ∑ 𝑁j−𝑘M𝑘𝑓(0,1) 
j
𝑘=0 ,  

(see[132]) .Carrying out this procedure we see that 

       𝑅0𝑓(0,1) = 𝑓(0,1),  
so that 

       𝑅0𝑓(𝑥, 𝑦) = 𝑅0𝑓
𝑥,𝑦(0,1) = 𝑓𝑥,𝑦(0,1) = 𝑓(𝑥, 𝑦) 

 for arbitrary (𝑥, 𝑦) ∈ 𝐻, and that 

        𝑅1𝑓(0,1) =
(∆𝑥𝑓)(0,1)

𝑛
+ (1 − 𝑛)

𝜕𝑓

𝜕𝑦
(0,1) +

𝜕2𝑓

𝜕𝑦2
(0,1) , 

so that 

        𝑅1𝑓(𝑥, 𝑦) = 𝑅1𝑓
𝑥,𝑦(0,1) = 𝑦2

∆𝑓

𝑛
(𝑥, 𝑦) + (1 − 𝑛)𝑦

𝜕𝑓

𝜕𝑦
(𝑥, 𝑦) + 𝑦2

𝜕2𝑓

𝜕𝑦2
(𝑥, 𝑦) 

for arbitrary (𝑥, 𝑦) ∈ 𝐻  with ∆= ∑
𝜕2

𝜕𝑥𝑖
2

𝑛
𝑖=1  .This completes the proof of Theorem(3.2.1). 
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Chapter 4 

Noncommutative Polydomains and Berezin Transforms 

We show an open problem for quite some time to find significant classes of elements in the 

commutative polidisc for whicSh a theory of characteristic functions and model theory can be 

developed along the lines of the Sz.-Nagy–Foias theory of contractions. We give a positive answer 

to this question, in our more general setting, providing a characterization for the class of tuples of 

operators in  which admit characteristic functions. The characteristic function is constructed explicitly 

as an artifact of the noncommutative Berezin kernel associated with the polydomain, and it is proved 

to be a complete unitary invariant for the class of completely non-coisometric tuples. Using 

noncommutative Berezin transforms and 𝐶∗-algebras techniques, we develop a dilation theory on the 

noncommutative polydomain .  

Section (4.1): Noncommutative Polydomains  

    We denote by 𝐵(ℋ) the algebra of bounded linear operators on a Hilbert space 𝐻. A 

polynomial 𝑞 ∈ ℂ[𝑍1, . . . , 𝑍𝑛] in 𝑛 noncommuting indeterminates is called positive regular if all its 

coefficients are positive, the constant term is zero, and the coefficients of the linear terms 𝑍1, . . . , 𝑍𝑛 

are different from zero. If 𝑋 =  (𝑋1, . . . , 𝑋𝑛) ∈ 𝐵(ℋ)
𝑛 and 𝑞 = ∑ 𝑎𝛼𝑍𝛼𝛼 , we define the map Φ𝑞,𝑋 ∶

𝐵(ℋ)  →  𝐵(ℋ) by setting Φ𝑞,𝑋(𝑌) ∶= ∑ 𝑎𝛼𝑋𝛼𝛼 𝑌𝑋𝛼
∗ . 

      Given two 𝑘-tuples 𝐦 ∶=  (𝑚1, . . . , 𝑚𝑘) and 𝐧 ∶=  (𝑛1, . . . , 𝑛𝑘) with 𝑚𝑖 , 𝑛𝑖  ∈ ℕ ∶=  {1, 2, . . . }, 
and a 𝑘-tuple q =  (𝑞1, . . . , 𝑞𝑘) of positive regular polynomials 𝑞𝑖  ∈  𝐶[𝑍1, . . . , 𝑍𝑛𝑖], we associate 

with each element 𝐗 =  (𝑋1, . . . , 𝑋𝑘) ∈  𝐵(ℋ)
𝑛1 ×⋯ ×  𝐵(ℋ)𝑛𝑘  the defect mapping 

∆𝐪,𝐗
𝐦 : 𝐵(ℋ)  →  𝐵(ℋ) defined by 

∆𝐪,𝐗
𝐦 : =  (𝑖𝑑 − Φ𝑞1,𝑋1)

𝑚1
∘ ⋯ ∘ (𝑖𝑑 − Φ𝑞𝑘,𝑋𝑘)

𝑚𝑘
. 

We denote by 𝐵(ℋ)𝑛1 ×𝑐 ⋯ ×𝑐  𝐵(ℋ)
𝑛𝑘 the set of all tuples  =  (𝑋1, . . . , 𝑋𝑘)  ∈  𝐵(ℋ)

𝑛1 ×⋯ ×
 𝐵(ℋ)𝑛𝑘 , where 𝑋𝑖 ∶=  (𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖)  ∈  𝐵(ℋ)

𝑛𝑖  , 𝑖 ∈  {1, . . . , 𝑘}, with the property that, for any 

𝑝, 𝑞 ∈  {1, . . . , 𝑘}, 𝑝 ≠ 𝑞, the entries of 𝑋𝑝 are commuting with the entries of 𝑋𝑞. In this case we say 

that 𝑋𝑝 and 𝑋𝑞 are commuting tuples of operators. Note that the operators 𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖 are not 

necessarily commuting.  

We develop an operator model theory and a theory of free holomorphic functions on the 

noncommutative polydomains 

Dq
m(ℋ):= {X =  (𝑋1, . . . , 𝑋𝑘) ∈  𝐵(ℋ)

𝑛1 ×𝑐 ⋯ ×𝑐  𝐵(ℋ)
𝑛𝑘 ∶ ∆q,X

p (𝐼) ≥ 0 for 0 ≤  p ≤  m} . 

Our study is an attempt to unify the multivariable operator model theory for the ball-like domains 

and commutative polydiscs, and to extend it further to the above-mentioned polydomains. The main 

tool in our investigation is a Berezin [183] type transform associated with the abstract 

noncommutative domain 𝐃𝐪
𝐦 ∶=  {𝐃𝐪

𝐦(ℋ) ∶ ℋ is a Hilbert space}. 

      In the last sixty years, this type of polydomains has been studied in several particular cases. 

Most of all, we mention the study of the closed operator unit ball 

[𝐵(ℋ)]1
− ∶=  {𝑋 ∈  𝐵(ℋ) ∶  𝐼 −  𝑋𝑋∗  ≥  0} 

(which corresponds to the case 𝑘 =  𝑛1  =  𝑚1  =  1, and 𝑞1  =  𝑍) which has generated the 

celebrated Sz.-Nagy–Foias [154] theory of contractions on Hilbert spaces and has had profound 

implications in function theory, interpolation, and linear systems theory. When 𝑘 =  𝑛1  =
 1,𝑚1  ≥  2, and 𝑞1  =  𝑍, the corresponding domain coincides with the set of all 𝑚-

hypercontractions studied by Agler in [189], [192], and recently by Olofsson [185], [186]. 

       In several variables, the case when 𝑘 =  1, 𝑛1 ≥ 2,𝑚1  =  1, and 𝑞1 = 𝑍1 +⋯+ 𝑍𝑛, 

corresponds to the closed operator ball 

[𝐵(ℋ)𝑛]1
− ∶=  {(𝑋1, . . . , 𝑋𝑛)  ∈  𝐵(ℋ)

𝑛 ∶  𝐼 −  𝑋1𝑋1
∗  −  ⋯ − 𝑋𝑛𝑋𝑛

∗  ≥  0} 
and its study has generated a free analogue of Sz.-Nagy–Foias theory (see [187], [188]. The 

commutative case was considered by Drurry [181], extensively studied by Arveson [195], [196], 

and also in [188], [195], [192], and [190]. We should remark that, in recent years, many results 

concerning the theory of row contractions were extended by Muhly and Solel ([196], [197], [198]) 

to representations of tensor algebras over 𝐶∗-correspondences and Hardy algebras. We mention that 
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in the particular case when 𝑘 =  1 and 𝑞1 is a positive regular polynomial, the corresponding 

domain was studied in [196], if 𝑚1 =  1, and in [192], [198], [199], when 𝑚1 ≥  2. The 

commutative case when 𝑚1 ≥  2, 𝑛1  ≥  2, and 𝑞1 = 𝑍1 +⋯+ 𝑍𝑛, was studied by Athavale [197], 

Müller [194], Müller-Vasilescu [195], Vasilescu [186], and Curto-Vasilescu [196]. Some of these 

results were extended by S. Pott [191] when 𝑞1 is a positive regular polynomial in commuting 

indeterminates. 

       The commutative polydisc case, i.e, 𝑘 ≥  2, 𝑛1  =  ⋯  =  𝑛𝑘  =  1, and 𝑞 =  (𝑍1, . . . , 𝑍𝑘), was 

first considered by Brehmer [195] in connection with regular dilations. Motivated by Agler’s work 

[192] on weighted shifts as model operators, Curto and Vasilescu developed a theory of standard 

operator models in the polydisc in [197], [198]. Timotin [195] was able to obtain some of their 

results from Brehmer’s theorem. The polyball case, when 𝑘 ≥  2 and 𝑞𝑖  =  𝑍1  +  ⋯ + 𝑍𝑛𝑖  , 𝑖 ∈

 {1, . . . , 𝑘}, was considered in [198] and [191] for the noncommutative and commutative case, 

respectively. As far as we know, unlike the ball case, there is no theory of characteristic functions, 

analoguos to the Sz.-Nagy–Foias theory, for significant classes of operators in the polydisc (or 

polyball) case. 

We work out some basic properties of the noncommutative polydomains 𝐃𝐪
𝐦(ℋ). One of the main 

results, which plays an important role, states that any podydomain 𝐃𝐪
𝐦(ℋ) is radial, i.e., 𝑟𝐗 ∈

𝐃𝐪
𝐦(ℋ) whenever 𝐗 ∈ 𝐃𝐪

𝐦(ℋ) and 𝑟 ∈  [0, 1). This fact has also an important consequence in the 

particular case when 𝑘 =  1, namely, that all the results from [192], [198], [199], which were 

proved in the setting of the radial part of 𝐃𝐪𝟏
𝐦𝟏(ℋ), are true for any domain 𝐃𝐪𝟏

𝐦𝟏(ℋ). 

We introduce the noncommutative Berezin transform at 𝐓 ∈ 𝐃𝐪
𝐦(ℋ) to be the mapping 𝐁𝐓 ∶

 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛1))  →  𝐵(ℋ) defined by 

𝐁T[𝑔]:=  𝐊𝐪,𝐓
∗ (𝑔 ⊗ 𝐼ℋ)𝐊𝐪,𝐓,   𝑔 ∈  𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)), 

where 𝐹2(𝐻𝑛𝑖) is the full Fock space on ni generators and 

𝐊𝐪,𝐓 ∶ ℋ →  𝐹
2(𝐻𝑛𝑖)  ⊗ ⋯ ⊗ 𝐹2(𝐻𝑛𝑘)  ⊗ ∆𝐪,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the noncommutative Berezin kernel associated with T, which is defined in terms of the 

coefficients of the positive regular polynomials 𝑞1, . . . , 𝑞𝑘. We remark that in the particular case 

when ℋ =  ℂ, 𝑞 =  (𝑍1, . . . , 𝑍𝑘), 𝐓 =  𝜆 =  (𝜆1, . . . , 𝜆𝑘)  ∈  𝔻
𝑘, and 𝑚𝑖  =  𝑛𝑖  =  1 for any 𝑖 ∈

 {1, . . . , 𝑘}, we recover the Berezin transform of a bounded linear operator on the Hardy space 

𝐻2(𝔻𝑘), i.e., 

𝐁𝛌[𝑔]  =∏(1 − |𝜆𝑖|
2)〈𝑔𝑘𝜆, 𝑘𝜆〉

𝑘

𝑖=1

 , 𝑔 ∈  𝐵(𝐻2(𝔻𝑘)), 

where 𝑘𝜆(𝑧) ∶= ∏ (1 − 𝜆�̅�𝑧𝑖)
−1𝑘

𝑖=1  and 𝑧 =  (𝑧1, . . . , 𝑧𝑘)  ∈  𝔻
𝑘. 

       The noncommutative Berezin transforms are used to prove the main result of this (Theorem 

(4.1.11)) which shows that each polydomain 𝐃𝐪
𝐦(ℋ) has a universal model 𝐖 = {𝐖𝑖,𝑗} consisting 

of weighted shifts acting on a tensor product of full Fock spaces. We show that a tuple of operators 

X is in the noncommutative polydomain 𝐃𝐪
𝐦(ℋ) if and only if there exists a completely positive 

linear map Ψ ∶  𝐶∗(𝐖𝑖,𝑗)  →  𝐵(ℋ) such that 

Ψ(𝑝(𝐖)𝑟(𝐖)∗)  =  𝑝(𝑋)𝑟(𝑋)∗, 
for any 𝑝(𝐖), 𝑟(𝐖) polynomials in {𝐖𝑖,𝑗} and the identity. 

       We introduce the noncommutative Hardy algebra 𝐹∞(𝐃𝐪
𝐦) as the weakly closed algebra 

generated by {𝐖𝑖,𝑗} and the identity, and use it to provide a WOT-continuous functional calculus 

for completely non-coisometric tuples 𝐓 =  {𝑇𝑖,𝑗} in 𝐃𝐪
𝐦(ℋ), which are identified. We show that 

Φ(𝜑) ∶= SOT − lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗) , 𝜑 =  𝜑(𝐖𝑖,𝑗)  ∈  𝐹
∞(𝐃𝐪

𝐦), 

exists in the strong operator topology and defines a map Φ ∶  𝐹∞(𝐃𝐪
𝐦) →  𝐵(ℋ) with the property 

that Φ(𝜑) =  SOT-lim
𝑟→1
𝐁𝑟𝐓[𝜑], where 𝐁𝑟𝐓 is the noncommutative Berezin transform at 𝑟𝐓 ∈

𝐃𝐪
𝐦(ℋ). 
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Moreover, Φ is a unital completely contractive homomorphism, which is WOT-continuous (resp. 

SOT-continuous) on bounded sets. 

We introduce the algebra 𝐻𝑜𝑙(𝐃𝐪,rad
𝐦 ) of all free holomorphic functions on the abstract radial 

polydomain 𝐃𝐪,rad
𝐦 . We identify the polydomain algebra 𝐴(𝐃𝐪

𝐦) (the closed algebra generated by 

{𝐖𝑖,𝑗} and the identity) and the Hardy algebra 𝐹∞(𝐃𝐪
𝐦) with subalgebras of 𝐻𝑜𝑙(𝐃𝐪,rad

𝐦 ). For 

example, it is shown that the noncommutative Berezin transform is a completely isometric 

isomorphism between 𝐹∞(𝐃𝐪
𝐦) and the algebra of bounded free holomorphic functions on 𝐃𝐪,rad

𝐦 . 

We remark that there is an important connection between the theory of free holomorphic functions 

on abstract radial polydomains 𝐃𝐪,rad
𝐦 , and the theory of holomorphic functions on polydomains in 

ℂ𝑑 (see [193], [192]). Indeed, if ℋ = ℂ𝑝 and 𝑝 ∈  ℕ, then 𝐃𝐪
𝐦(ℂ𝑝) can be seen as a subset of 

ℂ(𝑛1 +⋯+𝑛𝑘 )𝑝
2
 with an arbitrary norm. Given a free holomorphic function 𝜑 on the abstract radial 

polydomain 𝐃𝐪,rad
𝐦 , we prove that its representation on ℂ𝑝, i.e., the map �̂� defined by 

ℂ(𝑛1 +⋯+𝑛𝑘 )𝑝
2
⊃ 𝐃𝐪,rad

𝐦 (ℂ𝑝)  ∋  (𝜆𝑖,𝑗) ↦ 𝜑(𝜆𝑖,𝑗)  ∈  ℂ
𝑝2 

is a holomorphic function on the interior of 𝐃𝐪
𝐦(ℂ𝑝). In addition, �̂� is bounded when 𝜑 ∈  𝐹∞(𝐃𝐪

𝐦), 

and it has continuous extension to 𝐃𝐪
𝐦(ℂ𝑝)) when 𝜑 ∈  𝒜(𝐃𝐪

𝐦).  

We obtain a characterization of the Beurling [192] type joint invariant subspaces under {𝐖𝑖,𝑗}. We 

prove that a subspace ℳ ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ℋ has the form ℳ = Ψ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  ℰ for 

some inner multi-analytic operator with respect to the universal model W, if and only if 

∆𝐪,𝐖⊗𝐈
𝐩 (𝑃ℳ) ≥  0 for any  𝒑 ∈ ℤ+

𝑘  , 𝐩 ≤  𝐦, 

where 𝑃ℳ  is the orthogonal projection of the Hilbert space ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ℋ onto ℳ. In the 

particular case when 𝑚 =  (1, . . . , 1), the latter condition is satisfied when 𝐖⊗ 𝐼|ℳ   is a doubly 

commuting tuple. We also characterize the reducing subspaces under {𝐖𝑖,𝑗} and present several 

results concerning the model theory for pure elements in the noncommutative polydomain 𝐃𝐪
𝐦(ℋ). 

We provide a characterization for the class of tuples of operators in 𝐃𝐪
𝐦(ℋ) which admit 

characteristic functions. We say that 𝐓 ∈  𝐃𝐪
𝐦(ℋ) has characteristic function if there is a multi-

analytic operator Ψ with respect to the universal model W such that 

𝐊𝐪,𝐓, 𝐊𝐪,𝐓
∗ +  ΨΨ∗  =  𝐼, 

where 𝐊𝐪,𝐓 is the noncommutative Berezin kernel associated with 𝐃𝐪
𝐦(ℋ). In this case, Ψ is 

essentially unique. We prove that 𝐓 ∈ 𝐃𝐪
𝐦(ℋ) has characteristic function if and only if 

∆𝐪,𝐖⊗𝐈
𝐩

(𝐼 − 𝐊𝐪,𝐓, 𝐊𝐪,𝐓
∗ ) ≥  0,for any 𝒑 ∈ ℤ+

𝑘  , 𝐩 ≤  𝐦 

The characteristic function is constructed explicitly and it is proved to be a complete unitary 

invariant for the class of completely non-coisometric tuples. We provide an operator model for this 

class of elements in 𝐃𝐪
𝐦(ℋ) in terms of their characteristic functions. 

Using several results from the previous and 𝐶∗-algebras techniques, we develop a dilation theory on 

the noncommutative polydomain 𝐃𝐪
𝐦(ℋ). The main result states that if 𝐓 =  {𝑇𝑖,𝑗} is a tuple in 

𝐃𝐪
𝐦(ℋ), then there exists a ∗-representation 𝜋 ∶  𝐶∗(𝐖𝑖,𝑗)  →  𝐵(𝒦𝜋) on a separable Hilbert space 

𝒦𝜋, which annihilates the compact operators and ∆𝐪,𝛑(𝐖)
𝐦 (𝐼𝒦𝜋)  =  0 such that ℋ can be identified 

with a ∗-cyclic co-invariant subspace of      

�̃� ∶= [(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ ∆𝐪,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] ⊕ 𝒦𝜋 

under each operator 

𝑉𝑖,𝑗: = [
𝐖𝑖,𝑗⊗ 𝐼 0

0 𝜋(𝐖𝑖,𝑗)
] 

and such that 𝑇𝑖,𝑗
∗ = 𝑉𝑖,𝑗

∗ |ℋ  for all 𝑖, 𝑗. Under a certain additional condition on the universal model W, 

the dilation above is minimal and unique up to unitary equivalence. We also obtain Wold type 

decompositions for non-degenerate ∗-representations of the 𝐶∗-algebra 𝐶∗(𝐖𝑖,𝑗). 

        We mention that the results are presented in a more general setting, when 𝑞 is replaced by a 𝑘-

tuple f = (𝑓1, . . . , 𝑓𝑘) of positive regular free holomorphic functions in a neighborhood of the origin. 
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Also, the results are used in [190] to develop an operator model theory for varieties in 

noncommutative polydomains. This includes various commutative cases which are presented in 

close connection with the theory of holomorphic functions in several complex variables. 

For each 𝑖 ∈  {1, . . . , 𝑘}, let 𝔽𝑛𝑖
+   be the unital free semigroup on 𝑛𝑖 generators 𝑔1

𝑖 , . . . , 𝑔𝑛𝑖
𝑖   and the 

identity 𝑔0
𝑖  . The length of 𝛼 ∈ 𝔽𝑛𝑖

+   is defined by |𝛼| ∶=  0 if 𝛼 =  𝑔0
𝑖  and |𝛼| ∶=  𝑝 if 𝛼 =

 𝑔𝑗1
𝑖 ⋯𝑔𝑗𝑝

𝑖 , where 𝑗1, . . . , 𝑗𝑝 ∈  {1, . . . , 𝑛𝑖}. If 𝑍1, . . . , 𝑍𝑛𝑖  are noncommuting indeterminates, we 

denote 𝑍𝛼: =  𝑍𝑗1⋯𝑍𝑗𝑝 and 𝑍𝑔0𝑖
: =  1.  Let 𝑓𝑖: = ∑ 𝑎𝑖,𝛼𝑍𝛼𝛼∈𝔽𝑛𝑖

+ , 𝑎𝑖,𝛼 ∈ ℂ, be a formal power series in 

𝑛𝑖  noncommuting indeterminates 𝑍1, . . . , 𝑍𝑛𝑖 . We say that 𝑓𝑖 is a positive regular free holomorphic 

function if the following conditions hold: 𝑎𝑖,𝛼 ≥  0 for any 𝛼 ∈ 𝔽𝑛𝑖
+ , 𝑎𝑖,𝑔0𝑖 =  0, 𝑎𝑖,𝑔𝑗

𝑖 >  0 for 𝑗 =

 1, . . . , 𝑛𝑖, and   

lim sup
𝑘→∞

(∑ |𝑎𝑖,𝛼|
2

|𝛼|=𝑘

)

1/2𝑘

<  ∞. 

Given 𝑋𝑖 ∶= (𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖)  ∈  𝐵(ℋ)
𝑛𝑖 , define the map Φ𝑓𝑖,𝑋𝑖 ∶ 𝐵(ℋ) → 𝐵(ℋ) by setting 

Φ𝑓𝑖,𝑋𝑖(𝑌):= ∑ ∑ 𝛼𝑖,𝛼𝑋𝑖,𝛼𝑌 𝑋𝑖,𝛼
∗

𝛼∈𝔽𝑛𝑖
+ ,|𝛼|=𝑘

∞

𝑘=1

,          𝑌 ∈  𝐵(ℋ), 

where the convergence is in the week operator topology. 

         Let n : = (𝑛1, . . . , 𝑛𝑘) and m : =  (𝑚1, . . . , 𝑚𝑘), where 𝑛𝑖  , 𝑚𝑖  ∈  ℕ ∶=  {1, 2, . . . } and 𝑖 ∈
 {1, . . . , 𝑘}, and let f : =  (𝑓1, . . . , 𝑓𝑘) be a 𝑘-tuple of positive regular free holomorphic functions. We 

introduce the noncommutative polydomain 𝐃f
m(ℋ) to be the set of all 𝑘-tuples 

𝐗:=  (𝑋1, . . . , 𝑋𝑘) ∈  𝐵(ℋ)
𝑛1 ×𝑐 ⋯×𝑐  𝐵(ℋ)

𝑛𝑘  
with the property that Φ𝑓𝑖,𝑋𝑖 (𝐼)  ≤  𝐼 and 

(𝑖𝑑 − Φ𝑓1,𝑋1)
𝜖1𝑚1

⋯(𝑖𝑑 − Φ𝑓𝑘,𝑋𝑘)
𝜖𝑘𝑚𝑘

 (𝐼)  ≥  0 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝜖𝑖 ∈  {0, 1}. We use the convention that (𝑖𝑑 − Φ𝑓𝑖,𝑋𝑖)
0
 =  𝑖𝑑. We 

remark that 𝐃f
m(ℋ) contains a polyball [𝐵(ℋ)𝑛𝑖]𝑟1

− ×𝑐 ⋯×𝑐 [𝐵(ℋ)
𝑛𝑘]𝑟𝑘

−  for some 𝑟1, . . . , 𝑟𝑘 > 0, 

where 

[𝐵(ℋ)𝑛𝑖]𝑟𝑖
− ∶=  {(𝑌1, . . . , 𝑌𝑛𝑖)  ∈  𝐵(ℋ)

𝑛𝑖 ∶  𝑌1𝑌1
∗  + ⋯+ 𝑌𝑛𝑖𝑌𝑛𝑖

∗ ≤ 𝑟𝑖
2}. 

We refer to 𝐃q
m ∶=  {𝐃q

m(ℋ) ∶  ℋ is a Hilbert space} as the abstract noncommu-tative polydomain, 

and 𝐃q
m(ℋ) as its representation on the Hilbert space ℋ. 

        A linear map 𝜑 ∶  𝐵(ℋ)  →  𝐵(ℋ) is called power bounded if there exists a constant 𝑀 >  0 

such that ‖𝜑𝑘‖ ≤  𝑀 for any 𝑘 ∈ ℕ. For information on completely bounded (resp. positive) maps, 

we refer to [191] and [192]. If p : =  (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  and q : =  (𝑞1, . . . , 𝑞𝑘)  ∈ ℤ+

𝑘 , we set 𝐩 ≤  𝐪 

iff 𝑝𝑖  ≤  𝑞𝑖 for all 𝑖 ∈  {1, . . . , 𝑘}, where ℤ+ ∶=  {0, 1, . . . }. 
Proposition (4.1.1)[186]: Let 𝜑𝑖 ∶  𝐵(ℋ)  →  𝐵(ℋ), 𝑖 ∈  {1, . . . , 𝑘}, be power bounded positive 

linear maps such that 

𝜑𝑖𝜑𝑗 = 𝜑𝑗𝜑𝑖                   𝑖, 𝑗 ∈  {1, . . . , 𝑘}. 

If 𝑌 ∈  𝐵(ℋ) is a self-adjoint operator and 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ+
𝑘  with 𝑝𝑖 ≥  1, then the 

following statements are equivalent. 

 (𝑖)(𝑖𝑑 − 𝜑1)
𝜖1𝑝1⋯(𝑖𝑑 − 𝜑𝑘)

𝜖𝑘𝑝𝑘(𝑌 )  ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜖𝑖 ∈  {0, 1} 𝑤𝑖𝑡ℎ 𝜖 ∶=  (𝜖1, . . . , 𝜖𝑘) ≠ 0 𝑎𝑛𝑑 𝑖 
∈  {1, . . . , 𝑘}. 

 
(𝑖𝑖)(𝑖𝑑 − 𝜑1)

𝑞1⋯(𝑖𝑑 − 𝜑𝑘)
𝑞𝑘(𝑌) ≥  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐪 ∶=  (𝑞1, . . . , 𝑞𝑘) ∈ ℤ+

𝑘𝑤𝑖𝑡ℎ 𝐪 ≤  𝐩 𝑎𝑛𝑑 𝑞 ≠ 0. 
Proof: Note that it is enough to prove that (𝑖𝑑 − 𝜑1)

𝑝1⋯(𝑖𝑑 − 𝜑𝑘)
𝑝𝑘(𝑌 )  ≥  0 if and only if 

(𝑖𝑑 − 𝜑1)
𝑞1⋯(𝑖𝑑 − 𝜑𝑘)

𝑞𝑘(𝑌) ≥  0 for all 𝐪 ∶=  (𝑞1, . . . , 𝑞𝑘)  ∈ ℤ+
𝑘  with 𝑞𝑖 ≤ 𝑝𝑖 and 𝑞𝑖 ≥  1.  We 

proceed by induction over 𝑘 ∈  ℕ.    Let 𝑘 =  1, and assume that (𝑖𝑑 − 𝜑1)
𝑝1(𝑌)  ≥  0 and 𝑝1 ≥ 2.  

Suppose that there is ℎ0 ∈ ℋ such that 〈(𝑖𝑑 − 𝜑1)
𝑝1−1(𝑌)ℎ0, ℎ0〉 <  0. Set 𝑦𝑗: =

𝜑1
𝑗〈(𝑖𝑑 − 𝜑1)

𝑝1−1(𝑌)ℎ0, ℎ0〉,  
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𝑗 =  0, 1, . . ., and note that {𝑦𝑗}𝑗=0
∞

 is a decreasing sequence with 𝑦𝑗  ≤  𝑦0  < 0. Consequently, We 

deduce that ∑ 𝑦𝑗
∞
𝑗=0 = −∞. On the other hand, we have   

|∑𝑦𝑗

∞

𝑗=0

| : = |〈(𝑖𝑑 − 𝜑1
𝑝+1
)(𝑖𝑑 − 𝜑1)

𝑝1−2(𝑌)ℎ0, ℎ0〉| 

≤ (1 + ‖𝜑1
𝑝+1(𝐼)‖)‖(𝑖𝑑 − 𝜑1)

𝑝1−2(𝑌)‖‖ℎ0‖. 

Since 𝜑1 is power bounded, we get a contradiction.  Therefore, we must have (𝑖𝑑 − 𝜑1)
𝑝1−1(𝑌) ≥

 0. Continuing this process, we show that (𝑖𝑑 − 𝜑)𝑝1(𝑌) ≥  0 if and only if (𝑖𝑑 − 𝜑)𝑠(𝑌)  ≥  0 for 

𝑠 =  1, 2, . . . , 𝑝1. 
Now, assume that 

(𝑖𝑑 − 𝜑1)
𝑝1⋯(𝑖𝑑 − 𝜑𝑘)

𝑝𝑘(𝑖𝑑 − 𝜑𝑘+1)
𝑝𝑘+1(𝑌)  ≥  0. 

Due to the fact that 𝜑𝑖𝜑𝑗 = 𝜑𝑗𝜑𝑖 for all 𝑖, 𝑗 ∈  {1, . . . , 𝑘}, we deduce that (𝑖𝑑 − 𝜑𝑘+1)
𝑝𝑘+1(𝑌𝑘) ≥

 0, where 𝑌𝑘 ∶= (𝑖𝑑 − 𝜑1)
𝑝1⋯(𝑖𝑑 − 𝜑𝑘)

𝑝𝑘(𝑌). On the other hand, due to the identity 

(𝑖𝑑 − 𝜑𝑘)
𝑝𝑘(𝑌) = ∑(−1)𝑝 (

𝑝𝑘
𝑝 )𝜑𝑘

𝑝
(𝑌)

𝑝𝑘

𝑝=0

, 

the operator (𝑖𝑑 − 𝜑𝑘)
𝑝𝑘(𝑌) is self-adjoint whenever 𝜑𝑘 is a positive linear map and 𝑌 is a self-

adjoint operator. Inductively, one can easily see that 𝑌𝑘 is a self-adjoint operator. Now, applying the 

case 𝑘 =  1, we deduce that (𝑖𝑑 − 𝜑𝑘+1)
𝑝𝑘+1(𝑌𝑘) ≥  0 if and only if (𝑖𝑑 − 𝜑𝑘+1)

𝑞𝑘+1(𝑌𝑘) ≥ 0 for 

all 𝑞𝑘+1 ∈  {0, 1, . . . , 𝑝𝑘+1}. Hence, 

(𝑖𝑑 − 𝜑1)
𝑝𝑘+1⋯(𝑖𝑑 − 𝜑𝑘)

𝑝𝑘(𝑖𝑑 − 𝜑𝑘+1)
𝑞𝑘+1  (𝑌 )  ≥  0. 

Due to the induction hypothesis, we deduce that  

(𝑖𝑑 − 𝜑1)
𝑞𝑘+1⋯(𝑖𝑑 − 𝜑𝑘)

𝑞𝑘(𝑖𝑑 − 𝜑𝑘+1)
𝑞𝑘+1  (𝑌 )  ≥  0. 

for all (𝑞1, . . . , 𝑞𝑘+1)  ∈ ℤ+
𝑘+1 with 𝑞𝑖  ≤  𝑝𝑖 and 𝑞𝑖 ≥  1. This completes the proof.  

       Let Φ =  (𝜑1, . . . , 𝜑𝑘) be a 𝑘-tuple of power bounded, positive linear maps on 𝐵(ℋ) such that 

𝜑𝑖𝜑𝑗 = 𝜑𝑗𝜑𝑖 , 𝑖, 𝑗 ∈  {1, . . . , 𝑘}. For each 𝐩 ∶= (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ+
𝑘 , we define the linear map

 ∆𝚽
𝒑
: 𝐵(ℋ) → 𝐵(ℋ) by setting  

∆𝚽
𝑝1,...,𝑝𝑘= ∆𝚽

𝒑
≔ (𝑖𝑑 − 𝜑1)

𝑝1⋯(𝑖𝑑 − 𝜑𝑘)
𝑝𝑘  

Lemma (4.1.2) [186]: Let 𝐦 ∈ ℕ𝑘  and let 𝑌 ∈  𝐵(ℋ) be a self-adjoint operator such that 

∆𝚽
𝒑
(𝑌) ≥  0 for all  𝑝 ∈  ℤ+

𝑘  with 𝐩 ≤  𝐦 and 𝐩 ≠ 0. If 𝐪 ∈ ℤ+
𝑘  with 𝐪 ≠ 0 and 

𝐪 ≤  𝐦, then     

∆𝚽
𝒎(𝑌 )  ≤ ∆𝚽

𝒒
(𝑌 ). 

Proof: Set 𝐦 ∶=  (𝑚1, . . . , 𝑚𝑘) ∈ ℕ
𝑘  and 𝑚′ ∶=  (𝑚1 − 1,𝑚2, . . . , 𝑚𝑘). Since ∆𝚽

𝒎′(𝑌 )  ≥  0 and 

𝜑1 is a  positive map, we deduce that      

∆𝚽
𝒎(𝑌 )  = ∆𝚽

𝐦′(𝑌 )  −  𝜑1(∆𝚽
𝐦′(𝑌 ))  ≤ ∆𝚽

𝐦′(𝑌 ) 
Using the fact that 𝜑𝑖𝜑𝑗 = 𝜑𝑗𝜑𝑖 for 𝑖, 𝑗 ∈  {1, . . . , 𝑘}, one can continue this process and complete 

the proof. 

Proposition (4.1.3) [186]: Let 𝑌 ∈  𝐵(ℋ) be a self-adjoint operator, 𝐦 ∈  ℤ+
𝑘 , 𝐦 ≠ 0, and let 

𝚽 =  (𝜑1, . . . , 𝜑𝑘) be a 𝑘-tuple of commuting, power bounded, positive linear maps on 𝐵(ℋ) such 

that 

       (𝑖)  ∆𝚽
𝐦(𝑌 )  ≥  0, and 

       (ii)   each 𝜑1 is pure, i.e., 𝜑𝑖
𝑝
(𝐼)  →  0 strongly as 𝑝 →  ∞. 

Then ∆𝚽
𝐪
(𝑌 )  ≥  0 for any 𝑞 ∈ ℤ+

𝑘  with 𝐪 ≤  𝐦. In particular, 𝑌 ≥  0. 

Proof: Set 𝐦′ ∶=  (𝑚1 − 1,𝑚2, . . . , 𝑚𝑘) and note that due to the fact that ∆𝚽
𝐦(𝑌) ≥ 0 and 𝜑1 is a 

positive linear map, we have 

0 ≤ ∆𝚽
𝐦(𝑌 )  =   ∆𝚽

𝐦′(𝑌 )  − 𝜑1(∆𝚽
𝐦′(𝑌)). 

Hence, we deduce that 𝜑1
𝑝
(∆𝚽
𝐦′(𝑌))  ≤ ∆𝚽

𝐦′(𝑌) for any 𝑝 ∈  ℕ. Since ∆𝚽
𝐦′(𝑌 ) is a self-adjoint 

operator, we have  

−‖∆𝚽
𝐦′(𝑌)‖𝜑1

𝑝(𝐼) ≤ 𝜑1
𝑝
(∆𝚽

𝐦′(𝑦))  ≤ ‖∆𝚽
𝐦′(𝑌)‖𝜑1

𝑝(𝐼) 
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Now, taking into account that 𝜑𝑖
𝑝(𝐼) →  0 strongly as 𝑝 →  ∞, we conclude that ∆𝚽

𝐦′(𝑌) ≥  0. 

Using the commutativity of 𝜑1, . . . , 𝜑𝑘, one can continue this process and complete the proof. 

   

        For each 𝑖 ∈  {1, . . . , 𝑘}, let 𝑓𝑖 ∶= ∑ 𝑎𝑖,𝛼𝑍𝛼𝛼𝑖∈𝔽𝑛𝑖
+  ,|𝛼|≥1  be a positive regular free holomorphic 

function in 𝑛𝑖 variables and let 𝐴 ∶=  (𝐴1, . . . , 𝐴𝑛) ∈  𝐵(ℋ)
𝑛𝑖 be an 𝑛𝑖-tuple of operators such that 

∑ 𝑎𝑖,𝛼𝐴𝛼𝐴𝛼
∗

|𝛼|≥1  is convergent in the weak operator topology. One can easily prove that the map 

Φ𝑓𝑖,𝐴: 𝐵(ℋ) → 𝐵(ℋ), defined by  

Φ𝑓𝑖,𝐴(𝑋) = ∑ 𝑎𝐴𝛼𝑋𝐴𝛼
∗

|𝛼|≥1

,            𝑋 ∈ 𝐵(ℋ), 

where the convergence is in the weak operator topology, is a completely positive linear map which 

is WOT-continuous on bounded sets. Moreover, if 0 <  𝑟 <  1, then  

Φ𝑓𝑖,𝐴(𝑋) =  WOT − lim𝑟→1
Φ𝑓𝑖,𝑟𝐴(𝑋) ,            𝑋 ∈  𝐵(𝐻). 

     These facts will be used in the proof of the next theorem. 

      Let  =  (𝑇1, . . . , 𝑇𝑘)  ∈   𝐵(ℋ)
𝑛1 ×𝑐 ⋯×𝑐  𝐵(ℋ)

𝑛𝑘 , where 𝑇𝑖 ∶=  (𝑇𝑖,1, . . . , 𝑇𝑖,𝑛1)  ∈  𝐵(ℋ)
𝑛𝑖  

for all 𝑖 =  1, . . . , 𝑘, be such that Φ𝑓𝑖,𝑇𝑖(𝐼) is well-defined in the weak operator topology. If 𝐩 ∶=

 (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ+
𝑘  and 𝐟 ∶=  (𝑓1, . . . , 𝑓𝑘), we define the defect mapping ∆𝐟,𝐓

𝐩
: 𝐵(ℋ) →  𝐵(ℋ) by 

setting  

∆𝐟,𝐓
𝐩
: =  (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑝1
⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑝𝑘
 . 

Given 𝑟 ≥  0, we set 𝑟𝐓 ∶=  (𝑟𝑇1, . . . , 𝑟𝑇𝑘) and 𝑟𝑇𝑖 ∶=  (𝑟𝑇𝑖,1, . . . , 𝑟𝑇𝑖,𝑛𝑖) for 𝑖 ∈  {1, . . . , 𝑘}. We say 

that the 𝑘-tuple T has the radial property with respect to 𝐃𝐟
𝐦(ℋ) if there exists 𝛿 ∈  (0, 1) such that 

𝑟𝐓 ∈ 𝐃𝐟
𝐦(ℋ) for any 𝑟 ∈  (𝛿, 1]. 

Theorem (4.1.4) [186]: Let 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈   𝐵(ℋ)
𝑛1 ×𝑐 ⋯×𝑐  𝐵(ℋ)

𝑛𝑘 be such that Φ𝑓𝑖,𝑇𝑖(𝐼) 

≤ I for any 𝑖 ∈  {1, . . . , 𝑘}, and let 𝐪 ∈  ℤ+
𝑘  be with 𝐪 ≠ 0. Then the following statements are 

equivalent: 

     (i) 𝐓 ∈  𝐃𝐟
𝐦(ℋ); 

    (ii) for any 𝑝𝑖 ∈ {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈  {1, . . . , 𝑘}, 

(𝑖𝑑 − Φ𝑓𝑖,𝑇𝑖)
𝑝1
⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑝𝑘
(𝐼)  ≥  0; 

   (iii) ∆𝐟,𝐫𝐓
𝐦 (𝐼)  ≥  0 for any 𝑟 ∈  [0, 1];    

   (iv) there exists 𝛿 ∈  (0, 1) such that ∆𝐟,𝐫𝐓
𝐦 (𝐼)  ≥  0 for any 𝑟 ∈  (𝛿, 1);  

    (v) T has the radial property with respect to 𝐃𝐟
𝐦(ℋ).  

Proof: The equivalence of (i) with (ii) is due to Proposition (4.1.1), when applied to 𝜑𝑖 = Φ𝑓𝑖,𝑇𝑖 . 

We prove that (ii) implies (iii). First, note that if 𝐷 ∈ 𝐵(ℋ), 𝐷 ≥  0, then, for each 𝑖 ∈  {1, . . . , 𝑘}, 

              (𝑖𝑑 − Φ𝑓𝑖,𝑇𝑖)(𝐷) ≥  0 ⟹ (𝑖𝑑 − Φ𝑓𝑖,𝑟𝑇𝑖)(𝐷) ≥  0,     𝑟 ∈  [0, 1].               (1) 

Indeed, if Φ𝑓𝑖,𝑇𝑖(𝐷)  ≤  𝐷, then Φ𝑓𝑖,𝑟𝑇𝑖(𝐷)  ≤  𝐷 for any 𝑟 ∈  [0, 1]. Now, assume that (ii) holds. If 

𝐩 ∈ ℤ+
𝑘  with 𝐩 ≥ 𝑒1: = (1, 0, . . . , 0) ∈ ℤ+

𝑘 , then (𝑖𝑑 − Φ𝑓1,𝑇1) (∆𝐟,𝐓
𝐩−𝑒1(𝐼))  ≥  0 for any 𝐩 ∈ ℤ+

𝑘  

with 𝑒1 ≤  𝐩 ≤  𝐦.  

Consequently, due to (1), we have 

                                             (𝑖𝑑 − Φ𝑓1,𝑟𝑇1)(∆𝐟,𝐓
𝐩−𝑒1(𝐼))  ≥  0                                              (2) 

for any 𝑟 ∈  [0, 1] and any 𝐩 ∈ ℤ+
𝑘  with 𝑒1 ≤  𝐩 ≤  𝐦. Due to the commutativity of 

Φ𝑓𝑖,𝑇𝑖 , . . . , Φ𝑓𝑘,𝑇𝑘, the latter inequality is equivalent to 

 (𝑖𝑑 − Φ𝑓1,𝑇1)(∆𝐟,𝐓
𝐩−2𝑒1(𝑖𝑑 − Φ𝑓1,𝑟𝑇1)(𝐼))  ≥  0 

for any 𝑟 ∈  [0, 1] and any 𝐩 ∈ ℤ+
𝑘  with 2𝑒1  ≤  𝐩 ≤  𝐦. Due to (2), we have ∆𝐟,𝐓

𝐩−2𝑒1(𝑖𝑑 −

 Φ𝑓1,𝑟𝑇1)(𝐼) and, applying again relation (1), we deduce that 

(𝑖𝑑 − Φ𝑓1,𝑇1)(∆𝐟,𝐓
𝐩−3𝑒1(𝑖𝑑 − Φ𝑓1,𝑟𝑇1)

2(𝐼))  ≥  0 

for any 𝑟 ∈  [0, 1] and any 𝐩 ∈ ℤ+
𝑘  with 3𝑒1  ≤  𝐩 ≤  𝐦. Continuing this process, we obtain the 

inequality 
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(𝑖𝑑 − Φ𝑓2,𝑇2)
𝑝2
⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑝𝑘(𝑖𝑑 − Φ𝑓1,𝑟𝑇1)
𝑝1(𝐼)  ≥  0 

for any 𝐩 ∈ ℤ+
𝑘  with 𝑒1  ≤  𝐩 ≤  𝐦, and any 𝑟 ∈  [0, 1].  Similar arguments lead to the inequality 

∆𝐟,𝐫𝐓
𝐦 (𝐼)  ≥  0 for any 𝑟 ∈  [0, 1]. Since the implications (iii) ⟹ (iv) and (v) ⟹ (i) are clear, it 

remains to prove that (iv) ⟹ (v). 

       To this end, assume that there exists 𝛿 ∈  (0, 1) such that ∆𝐟,𝐫𝐓
𝐦 (𝐼)  ≥  0 for any 𝑟 ∈  (𝛿, 1).  

Since Φ𝑓𝑖,𝑟𝑇𝑖 ≤  𝑟𝐼, it is clear that Φ𝑓𝑖,𝑟𝑇𝑖 is pure for each 𝑖 ∈

{1, . . . , 𝑘}.  Applying Proposition (4.1.3), we deduce that ∆𝐟,𝐫𝐓
𝐩
(𝐼)  ≥  0 for any 𝑟 ∈  (𝛿, 1) and any 

𝐩 ∈ ℤ+
𝑘  with 𝐩 ≤  𝐦. Note that ∆𝐟,𝐫𝐓

𝐩
(𝐼) is a linear combination of products of the form 

Φ𝑓1,𝑟𝑇1
𝑞1 ⋯Φ𝑓𝑘,𝑟𝑇𝑘

𝑞𝑘 (𝐼), where (𝑞1, . . . , 𝑞𝑘)  ∈ ℤ+
𝑘 . On the other hand 

Φ𝑓1,𝑟𝑇1
𝑞1 ⋯Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 (𝐼) = WOT − lim
𝑗→∞

∑ 𝑐𝛼1,…,𝛼𝑘𝑇1,𝛼1⋯𝑇𝑘,𝛼𝑘𝑇𝑘,𝛼𝑘
∗ ⋯𝑇1,𝛼1

∗

𝛼𝑖∈𝔽𝑛𝑖
+

|𝛼1|+⋯+|𝛼𝑘|≤𝑗

≤  𝐼 

for some positive constants 𝑐𝛼1,…,𝛼𝑘 ≥  0. Given 𝑥 ∈  ℋ and 𝜖 >  0, there is 𝑁0 ∈ ℕ such that  

∑ 𝑐𝛼1,…,𝛼𝑘𝑟
2(|𝛼1|+⋯+|𝛼𝑘|)〈𝑇1,𝛼1⋯𝑇𝑘,𝛼𝑘𝑇𝑘,𝛼𝑘

∗ ⋯𝑇1,𝛼1
∗ 𝑥, 𝑥〉

𝛼𝑖∈𝔽𝑛𝑖
+

|𝛼1|+⋯+|𝛼𝑘|≤𝑗

< 𝜖 

for any 𝑗 ≥  𝑁0 and 𝑟 ∈  (𝛿, 1). This can be used to show that    

Φ𝑓1,𝑇1
𝑞1 ⋯Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 (𝐼) = WOT − lim
𝑟→1

Φ𝑓1,𝑟𝑇1
𝑞1 ⋯Φ𝑓𝑘,𝑟𝑇𝑘

𝑞𝑘 (𝐼) 

Hence, we deduce that ∆𝐟,𝐓
𝐩
(𝐼) =  WOT − lim

𝑟→1
∆𝐟,𝐫𝐓
𝐩
(𝐼) ≥  0 for any 𝐩 ∈ ℤ+

𝑘  with 𝐩 ≤  𝐦. 

Consequently, 𝐓 ∈ 𝐃𝐟
𝐦(ℋ) and it has the radial property. This completes the proof.   

As expected, the domain 𝐃𝐟
𝐦(ℋ) is called radial if any 𝐓 ∈ 𝐃𝐟

𝐦(ℋ) has the radial property.  

Corollary (4.1.5) [186]: The noncommutative polydomain 𝐃𝐟
𝐦(ℋ) is radial. 

In the particular case when 𝑘 =  1, Theorem (4.1.4) shows that any noncommutative domain 

𝐃𝑓1
𝑚1(ℋ), 𝑚1 ∈ ℕ, is radial. An important consequence is the following 

Corollary (4.1.6) [186]: All the results from [192], [198], [199], which were proved in the setting 

of the radial part of 𝐃𝑓1
𝑚1(ℋ), are true for any domain 𝐃𝑓1

𝑚1(ℋ). 

       Another consequence is the following 

Corollary (4.1.7) [186]: 

The following statements hold: 

     (i) If 𝐟 =  (𝑓1, 𝑓2), and 𝐓 =  (𝑇1, 𝑇2)  ∈  𝐃𝑓1
𝑚1(ℋ) × 𝐃𝑓2

𝑚2(ℋ) with ∆𝐟,𝐓
𝐩
(𝐼)  ≥  0, then 𝐓 ∈

𝐃𝐟
𝐦(ℋ). 

    (ii) If 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈   𝐵(ℋ)
𝑛1 ×𝑐 ⋯×𝑐  𝐵(ℋ)

𝑛𝑘 and Φ𝑓𝑖,𝑇𝑖(𝐼)  =  𝐼, 𝑖 ∈  {1, . . . , 𝑘}, then T 

is in the polydomain 𝐃𝐟
𝐦(ℋ). 

We say that a 𝑘-tuple 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈ 𝐃𝐟
𝐦(ℋ) is pure if     

lim
𝐪=(𝑞1,...,𝑞𝑘)∈ℤ+

𝑘
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝐼)  =  𝐼. 

We remark that {(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼)}𝐪=(𝑞1,...,𝑞𝑘)∈ℤ+𝑘  is an increasing sequence of 

positive operators. Indeed, due to Theorem (4.1.4), (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)⋯ (𝑖𝑑 − Φ𝑓1,𝑇1)(𝐼) ≥  0. Taking 

into account that  

Φ𝑓1,𝑇1 , … ,Φ𝑓𝑘,𝑇𝑘 are commuting, we have        

(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼) = ∑ Φ𝑓𝑘,𝑇𝑘
𝑠

𝑞𝑘−1

𝑠=0

⋯ ∑ Φ𝑓1,𝑇1
𝑠 (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)⋯ (𝑖𝑑 − Φ𝑓1,𝑇1)(𝐼)

𝑞1−1

𝑠=0

, 

which proves our assertion. Note also that        

(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼) ≤ (𝑖𝑑 − Φ𝑓𝑘−1,𝑇𝑘−1
𝑞𝑘−1 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼) ≤ ⋯

≤ (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝐼) ≤ 𝐼. 

Hence, we can deduce the following result.        
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Proposition (4.1.8) [186]: A 𝑘-tuple 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈ 𝐃𝐟
𝐦(ℋ) is pure if and only if, for each 𝑖 ∈

 {1, . . . , 𝑘}, Φ𝑓𝑖,𝑇𝑖
𝑝
(𝐼)  →  0 strongly as 𝑝 →  ∞.  

A 𝑘-tuple 𝐓 ∈ 𝐃𝐟
𝐦(ℋ) is called doubly commuting if 𝑇𝑖,𝑝𝑇𝑗,𝑝

∗  = 𝑇𝑗,𝑞
∗ 𝑇𝑖,𝑝 for any 𝑖, 𝑗 ∈  {1, . . . , 𝑘} 

with 𝑖 ≠ 𝑗, and 𝑝 ∈  {1, . . . , 𝑛𝑖}, 𝑞 ∈  {1, . . . , 𝑛𝑗}. The next results provides some classes of elements 

in 𝐃𝐟
𝐦(ℋ). 

Proposition (4.1.9) [186]: Let 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈   𝐵(ℋ)
𝑛1 ×𝑐 ⋯×𝑐  𝐵(ℋ)

𝑛𝑘  be such that 

Φ𝑓𝑖,𝑇𝑖(𝐼)  ≤  𝐼 and let 𝑚 = (𝑚1, . . . , 𝑚𝑘) ∈ ℕ
𝑘. Then the following statements hold. 

    (i) If ∆𝐟,𝐓
𝐦 (𝐼)  ≥  0 and, for each 𝑖 ∈  {1, . . . , 𝑘}, Φ𝑓𝑖,𝑇𝑖

𝑝
(𝐼) →  0 strongly as 𝑝 → ∞, then 𝐓 ∈

𝐃𝐟
𝐦(ℋ). 

   (ii) If 𝐓 ∈ 𝐃f1
m1(ℋ) ×𝑐 ⋯×𝑐 𝐃fk

mk(ℋ) is doubly commuting, then 𝐓 ∈ 𝐃𝐟
𝐦(ℋ). 

  (iii) If 𝑚1Φ𝑓1,𝑇1(𝐼) + ⋯+𝑚𝑘Φ𝑓𝑘,𝑇𝑘(𝐼)  ≤  𝐼, then 𝐓 ∈ 𝐃𝐟
𝐦(ℋ). 

  (iv) If 𝐓 = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐃𝐟
𝐦(ℋ), then ∆𝐟,𝐓

𝐦 (𝐼) = 0 if and only if  

(𝑖𝑑 − Φ𝑓1,𝑇1)⋯ (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)(𝐼)  =  0. 

Proof: Applying Proposition (4.1.1) and Proposition (4.1.3), when Φ =  (Φ𝑓1,𝑇1  , . . . , Φ𝑓𝑘,𝑇𝑘  ), we 

deduce part (i). 

To prove part (ii), note that since 𝑇𝑖  ∈ 𝐃fi
mi(ℋ), we have (𝑖𝑑 − Φ𝑓𝑖,𝑇𝑖)

𝑝𝑖
(𝐼)  ≥  0 for any 𝑝𝑖  ∈

 {0, 1, . . . , 𝑚𝑖}. 
Using the fact that T is doubly commuting, we deduce that 

∆𝐟,𝐓
𝐩 (𝐼) = (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑝1
(𝐼)⋯ (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑘
(𝐼) ≥  0 

for any 𝐩 ∈ ℤ+
𝑘  with 𝐩 ≤  𝐦, which shows that 𝐓 ∈ 𝐃𝐟

𝐦(ℋ). 
Now, we prove part (iii). Let 𝑝 ∶=  𝑚1  +  ⋯+ 𝑚𝑘 and set 𝑖𝑗 ∶=  1 if 1 ≤  𝑗 ≤  𝑚1, 𝑖𝑗 ∶=  2 if 

𝑚1  +  1 ≤  𝑗 ≤  𝑚1 +𝑚2, . . ., and 𝑖𝑗 ∶=  𝑘 if 𝑚1  +  ⋯+ 𝑚𝑘−1 +  1 ≤  𝑗 ≤  𝑚1 +⋯+ 𝑚𝑘. Due 

to Theorem (4.1.4), to prove (iii) is equivalent to showing that if ∑ Φ𝑓𝑖𝑗 ,𝑇𝑖𝑗
(𝐼)

𝑝
𝑗=1  ≤  𝐼, then  

(𝑖𝑑 − Φ𝑓𝑖1 ,𝑇𝑖1  )⋯ (𝑖𝑑 − Φ𝑓𝑖𝑝 ,𝑇𝑖𝑝)(𝐼)  ≥  0. 

Set 𝑌𝑖0 = 𝐼 and 𝑌𝑖𝑗: =  (𝑖𝑑 − Φ𝑓𝑖𝑗 ,𝑇𝑖𝑗
)(𝑌𝑖𝑗−1) if 𝑗 ∈  {1, . . . , 𝑝}.  We proceed inductively.  Note that

  

𝐼 = 𝑌𝑖0 ≥ 𝑌𝑖1  =  (𝑖𝑑 − Φ𝑓𝑖1 ,𝑇𝑖1)(𝐼)  ≥  0. Let 𝑛 <  𝑝 and assume that 

𝐼 ≥ 𝑌𝑖𝑛 ≥ (𝑖𝑑 − Φ𝑓𝑖1 ,𝑇𝑖1 − ⋯− Φ𝑓𝑖𝑛 ,𝑇𝑖𝑛)(𝐼)  ≥  0. 

Hence, we deduce that 

𝐼 ≥ 𝑌𝑖𝑛 ≥ 𝑌𝑖𝑛+1   = 𝑌𝑖𝑛 − Φ𝑓𝑖𝑛+1 ,𝑇𝑖𝑛+1(𝑌𝑖𝑛) 

≥ (𝑖𝑑 − Φ𝑓𝑖1 ,𝑇𝑖1 −⋯−Φ𝑓𝑖𝑛 ,𝑇𝑖𝑛)(𝐼)  − Φ𝑓𝑖𝑛+1 ,𝑇𝑖𝑛+1(𝐼), 

which proves our assertion. 

Now, we prove part (iv). If 𝐓 = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐃𝐟
𝐦(ℋ), Theorem (4.1.4) implies that  

(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑝𝑘(𝐼) ≥  0 

for any 𝑝𝑖 ∈ {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈  {1, . . . , 𝑘}. Due to Lemma 6.2 from [192], if 𝜑 ∶  𝐵(ℋ)  →
 𝐵(ℋ) is a power bounded positive linear map such that 𝐷 ∈  𝐵(ℋ) is a positive operator with 

(𝑖𝑑 − 𝜑)(𝐷)  ≥  0, and 𝛾 ≥  1, then 
(𝑖𝑑 − 𝜑)𝛾(𝐷)  =  0 if and only if   (𝑖𝑑 − 𝜑)(𝐷)  =  0. 

Applying this result in our setting when 𝜑 = Φ𝑓1,𝑇1 , 𝛾 =  𝑚1, and 𝐷 =  (𝑖𝑑 − Φ𝑓2,𝑇2)
𝑚2
⋯(𝑖𝑑 −

Φ𝑓𝑘,𝑇𝑘)
𝑚𝑘
(𝐼)  ≥  0, we deduce that relation ∆𝐟,𝐓

𝐦 (𝐼)  =  0 is equivalent to (𝑖𝑑 − Φ𝑓1,𝑇1)(𝐷)  =  0. 

Due to the commutativity of Φ𝑓1,𝑇1⋯Φ𝑓𝑘,𝑇𝑘, the latter equality is equivalent to (𝑖𝑑 −

Φ𝑓2,𝑇2)
𝑚2
(Λ)  =  0, where Λ ∶=  (𝑖𝑑 − Φ𝑓3,𝑇3)

𝑚3⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)
𝑚𝑘  (𝑖𝑑 − Φ𝑓1,𝑇1)(𝐼)  ≥  0. 

Applying again the result mentioned above, we deduce that the latter equality is equivalent to 

(𝑖𝑑 − Φ𝑓2,𝑇2)(Λ)  =  0. Continuing this process, we can complete the proof of part (iv). 
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      𝐃𝐟
𝐦(ℋ) has a universal model 𝐖 =  {𝐖𝑖,𝑗} consisting of weighted shifts acting on a tensor 

product of full Fock spaces. 

        Let 𝐻𝑛𝑖 be an 𝑛𝑖-dimensional complex Hilbert space with orthonormal basis 𝑒1
𝑖 , . . . , 𝑒𝑛𝑖

𝑖 . We 

consider the full Fock space of 𝐻𝑛𝑖 defined by 

𝐹2(𝐻𝑛𝑖):=⨁𝐻𝑛𝑖
⊗𝑝

𝑝≥0

, 

where 𝐻𝑛𝑖
⊗𝑝
: =  ℂ1 and 𝐻𝑛𝑖

⊗𝑝
 is the (Hilbert) tensor product of 𝑝 copies of 𝐻𝑛𝑖 . Set 𝑒𝛼

𝑖 ∶= 𝑒𝑗1
𝑖 ⊗

⋯⊗ 𝑒𝑗𝑝
𝑖   if 𝛼 = 𝑔𝑗1

𝑖 ⋯𝑔𝑗𝑝
𝑖 ∈ 𝔽𝑛𝑖

+   and 𝑒
𝑔0
𝑖
𝑖 ∶=  1 ∈  ℂ. It is clear that {𝑒𝛼

𝑖 ∶  𝛼 ∈ 𝔽𝑛𝑖
+ } is an 

orthonormal basis of 𝐹2(𝐻𝑛𝑖). 

      Let 𝑚𝑖 , 𝑛𝑖 ∈  ℕ ∶=  {1, 2, . . . }, 𝑖 ∈  {1, . . . , 𝑘}, and 𝑗 ∈  {1, . . . , 𝑛𝑖}. We define the weighted left 

creation operators 𝑊𝑖,𝑗 ∶  𝐹
2(𝐻𝑛𝑖) → 𝐹2(𝐻𝑛𝑖), associated with the abstract noncommutative domain 

𝐃𝑓𝑖
𝑚𝑖 by setting 

                                        𝑊𝑖,𝑗𝑒𝛼
𝑖 ∶=

√𝑏
𝑖,𝛼

(𝑚𝑖)

√𝑏𝑖,𝑔𝑗𝛼
(𝑚𝑖)

𝑒𝑔𝑗𝛼
𝑖 ,            𝛼 ∈  𝔽𝑛𝑖

+  ,                              (3) 

where 

 

     𝑏𝑖,𝑔0
(𝑚𝑖) ∶=  1   𝑎𝑛𝑑   𝑏𝑖,𝛼

(𝑚𝑖) ∶= ∑ ∑ 𝑎𝑖,𝛾1⋯𝑎𝑖,𝛾𝑝
𝛾1,...,𝛾𝑝∈𝔽𝑛𝑖

+

𝛾1,...,𝛾𝑝=𝛼

|𝛾1|,...,|𝛾𝑝|≥1

|𝛼|

𝑝=1

(
𝑝 + 𝑚𝑖  −  1
𝑚𝑖  −  1

)         (4) 

for all 𝛼 ∈ 𝔽𝑛𝑖
+  with |𝛼|  ≥  1. 

Lemma (4.1.10) [186]: For each 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, we define the operator 𝐖𝑖,𝑗 

acting on the tensor Hilbert space 𝐹2(𝐻𝑛1) ⊗⋯⊗ 𝐹2(𝐻𝑛𝑘) by setting 

𝐖𝑖,𝑗 ∶=  𝐼 ⊗⋯⊗ 𝐼⏟      
𝑖 − 1 𝑡𝑖𝑚𝑒𝑠

 ⊗𝑊𝑖,𝑗⊗ 𝐼 ⊗⋯⊗ 𝐼⏟      
𝑘 − 𝑖 𝑡𝑖𝑚𝑒𝑠

, 

where the operators 𝑊𝑖,𝑗 are defined by relation (3).  If 𝐖𝑖,𝑗 ∶=  (𝐖𝑖,1, . . . ,𝐖𝑖,𝑛𝑖
), then the following 

statements hold.         

    (i) (𝑖𝑑 − Φ𝑓1,𝐖1)
𝑚1⋯(𝑖𝑑 − Φ𝑓𝑘,𝐖𝑘)

𝑚𝑘(𝐼)  =  𝐏ℂ, where 𝐏ℂ is 

the orthogonal projection from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛1) onto ℂ1 ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛1), where ℂ1 is identified 

with ℂ1⊗⋯⊗ ℂ1. 

   (ii) 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) is a pure 𝑘-tuple in the noncommutative 

polydomain 𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛1)). 

Proof: Note that, due to relation (3), for each 𝑖 ∈  {1, . . . , 𝑘} and 𝛽𝑖 ∈ 𝔽𝑛𝑖
+  , we have 

𝑊𝑖,𝛽𝑖
𝑊𝑖,𝛽𝑖

∗ 𝑒𝛼𝑖
𝑖 = {

𝑏𝑖,𝛾𝑖
(𝑚𝑖)

𝑏𝑖,𝛼𝑖
(𝑚𝑖)

𝑒𝛼𝑖
𝑖          if  𝛼𝑖 = 𝐵𝑖 , 𝛾𝑖 ,    𝛾𝑖 ∈ 𝔽𝑛𝑖

+

 0                    otherwise.                      

 

As in Lemma 1.2 from [192], straightforward computations reveal that (𝑖𝑑 − Φ𝑓𝑖,𝐖𝑖)
𝑚𝑖
(𝐼)  =  𝐼 ⊗

⋯⊗ 𝐼 ⊗ 𝑷ℂ⊗  𝐼 ⊗⋯⊗ 𝐼, where 𝑷ℂ is on the 𝑖𝑡ℎ position and denotes the orthogonal projection 

from 𝐹2(𝐻𝑛1) onto ℂ1 ⊂ 𝐹2(𝐻𝑛1). Since the 𝑘-tuple 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) is doubly commuting, we 

deduce that 

(𝑖𝑑 − Φ𝑓1,𝐖1)
𝑚1⋯(𝑖𝑑 − Φ𝑓𝑘,𝐖𝑘)

𝑚𝑘(𝐼)  = (𝑖𝑑 − Φ𝑓1,𝐖1)
𝑚1(𝐼)⋯ (𝑖𝑑 − Φ𝑓𝑘,𝐖𝑘)

𝑚𝑘(𝐼)  = 𝐏ℂ. 

which proves part (i). To prove part (ii), note first that relation (3) implies Φ𝑓𝑖,𝑊𝑖

𝑝
 (𝐼)𝑒𝛼

𝑖 =  0  if 

 𝑝 >  |𝛼|, 𝛼 ∈ 𝔽𝑛𝑖
+ . Since ‖Φ𝑓𝑖,𝐖𝑖

𝑝
(𝐼)‖  ≤  1 for any 𝑝 ∈  ℕ, we deduce that lim

𝑝→∞
Φ𝑓𝑖,𝐖𝑖
𝑝

(𝐼)  =  0 in 
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the strong operator topology. Taking into account that  ∆𝐟,𝐖
𝐦 (𝐼)  = 𝐏ℂ , we can use Proposition 

(4.1.3) to conclude that W is in the noncommutative polydomain 𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛1)). Moreover, 

due to Proposition (4.1.8), W is a pure 𝑘-tuple in 𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛1)). 

     We mention that one can define the weighted right creation operators Λ𝑖,𝑗 ∶  𝐹
2(𝐻𝑛1) → 𝐹2(𝐻𝑛1) 

by setting 

Λ𝑖,𝑗𝑒𝛼
𝑖 ∶=

√𝑏
𝑖,𝛼

(𝑚𝑖)

√𝑏𝑖,𝑔𝑗𝛼
(𝑚𝑖)

𝑒𝛼𝑔𝑗
𝑖 ,            𝛼 ∈  𝔽𝑛𝑖

+  

As in Lemma (4.1.10), it turns out that 𝚲 ∶=  (𝚲1, . . . , 𝚲𝑘) is a pure 𝑘-tuple in the noncommutative 

polydomain 𝐃f̃
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛1)), where f̃ =  (𝑓1, . . . , 𝑓𝑘) with 𝑓𝑖: = ∑ 𝑎𝑖,�̃�𝑍𝛼|𝛼|≥1   and �̃� =

 𝑔𝑗𝑝
𝑖 ⋯𝑔𝑗1

𝑖  denotes the reverse of 𝑔𝑗1
𝑖 ⋯𝑔𝑗𝑝

𝑖 ∈ 𝔽𝑛𝑖
+ . 

      Throughout, the 𝑘-tuple 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) of Lemma (4.1.10) will be called the universal 

model associated with the abstract noncommutative polydomain 𝐃𝐟
𝐦. We introduce the 

noncommutative Berezin kernel associated with any element 𝐓 =  {𝑇𝑖,𝑗} in the noncommutative 

polydomain 𝐃𝐟
𝐦(ℋ) as the operator 

𝐊𝐟 ,𝐓 ∶ ℋ →  𝐹
2(𝐻𝑛1)  ⊗ ⋯⊗ 𝐹2(𝐻𝑛𝑘) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

defined by          

   

𝐊𝐟 ,𝐓ℎ ∶= ∑ √𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗⋯⊗𝑒𝛽𝑘

𝑘 ∆𝐟,𝐓
𝐦 (𝐼)1/2𝑇1,𝛽1

∗ ⋯𝑇𝑘,𝛽𝑘
∗ ℎ

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,...,𝑘

, 

where the defect operator is defined by 

∆𝐟,𝐓
𝐦 (𝐼) ∶= (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑚1⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)
𝑚𝑘(𝐼), 

and the coefficients𝑏1,𝛽1
(𝑚1), . . . , 𝑏𝑘,𝛽𝑘

(𝑚𝑘)  are given by relation (4). The fact that 𝐊𝐟 ,𝐓 is a well-defined 

bounded operator will be proved in the next theorem. 

Theorem (4.1.11) [186]: The noncommutative Berezin kernel associated with a 𝑘-tuple 𝐓 =
 (𝑇1, . . . , 𝑇𝑘) in the noncommutative polydomain 𝐃𝐟

𝐦(ℋ) has the following properties. 

  (i) 𝐊𝐟 ,𝐓 is a contraction and 

𝐊𝐟 ,𝐓
∗ 𝐊𝐟 ,𝐓 = lim

𝑞𝑘 →∞
 . . . lim

𝑞1 →∞
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 ) (𝐼), 

where the limits are in the weak operator topology. 

(ii) If T is pure, then 

𝐊𝐟 ,𝐓
∗ 𝐊𝐟 ,𝐓 = 𝐼ℋ . 

 (iii) For any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, 
𝐊𝐟 ,𝐓𝑇𝑖,𝑗

∗  =  (𝐖𝑖,𝑗
∗  ⊗  𝐼)𝐊𝐟 ,𝐓. 

Proof: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be in the noncommutative polydomain 𝐃𝐟
𝐦(ℋ) and let 𝑋 ∈  𝐵(ℋ) be 

a positive operator such that 

∆𝐟,𝐓
𝐩
(𝑋) ∶=  (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)
𝑝𝑘(𝑋)  ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ+
𝑘  with 𝑝𝑖 ∈ {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈  {1, . . . , 𝑘}. Fix 𝑖 ∈  {1, . . . , 𝑘} and 

assume that 1 ≤  𝑝𝑖  ≤  𝑚𝑖. Then, due to the commutativity of Φ𝑓1,𝑇1 , … ,Φ𝑓𝑘,𝑇𝑘  , we have 

(𝑖𝑑 − Φ𝑓𝑖,𝑇𝑖)∆𝐟,𝐓
p−ei(𝑋) = ∆𝐟,𝐓

𝐩 (𝑋) ≥  0, 

where {𝑒𝑖}𝑖=1
𝑘  is the canonical basis in ℂ𝑘. Hence, and using Lemma (4.1.2), we have 

0 ≤ Φ𝑓𝑖,𝑇𝑖(∆𝐟,𝐓
p−ei(𝑋))  ≤ ∆𝐟,𝐓

p−ei(𝑋)  ≤  𝑋, 

which proves that {Φ𝑓𝑖,𝑇𝑖
𝑠 (∆𝐟,𝐓

p−ei(𝑋))}𝑠=0
∞  is a decreasing sequence of positive operators which is 

convergent in the weak operator topology. Since Φ𝑓𝑖,𝑇𝑖 is WOT-continuous on bounded sets and 

Φ𝑓1,𝑇1 , … ,Φ𝑓𝑘,𝑇𝑘 ,𝑇𝑘 are commuting, we deduce that 

                                 lim
𝑠→∞

Φ𝑓𝑖,𝑇𝑖
𝑠 (∆𝐟,𝐓

p−ei(𝑋)) = ∆𝐟,𝐓
p−ei(lim

𝑠→∞
Φ𝑓𝑖,𝑇𝑖
𝑠 (𝑋)).                          (5) 
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Then we have 

𝐷𝑖
(1)(∆𝐟,𝐓

p (𝑋)):= ∑Φ𝑓𝑖,𝑇𝑖
𝑠 (∆𝐟,𝐓

p (𝑋))

∞

𝑠=0

=∑Φ𝑓𝑖,𝑇𝑖
𝑠 [∆𝐟,𝐓

p−ei(𝑋) − Φ𝑓𝑖,𝑇𝑖(∆𝐟,𝐓
p−ei(𝑋))]

∞

𝑠=0

 

= ∆𝐟,𝐓
p−ei(𝑋) − lim

𝑞1→∞
Φ𝑓𝑖,𝑇𝑖
𝑞1 (∆𝐟,𝐓

p−ei(𝑋)) ≤ ∆𝐟,𝐓
p−ei(𝑋)  ≤  𝑋. 

Due to relation (5), we deduce that 

 0 ≤ 𝐷𝑖
(1)(∆𝐟,𝐓

p (𝑋)) = ∆𝐟,𝐓
p−ei (𝑋 − lim

𝑞1→∞
Φ𝑓𝑖,𝑇𝑖
𝑞1 (𝑋)) , 𝐩 ≤  𝐦, 1 ≤  𝑝𝑖 . 

Define 𝐷𝑖
(𝑗)(∆𝐟,𝐓

p (𝑋)) ∶= ∑ Φ𝑓𝑖,𝑇𝑖
𝑠 (𝐷𝑖

(𝑗−1)
(∆𝐟,𝐓
p (𝑋)))∞

𝑠=0 , where 𝑗 =  2, . . . 𝑝𝑖. Inductively, we can 

prove that 

   0 ≤ 𝐷𝑖
(𝑗)(∆𝐟,𝐓

p (𝑋)) ∶= ∆𝐟,𝐓
p−𝑗ei (𝑋 − lim

𝑞𝑗→∞
Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗 (𝑋)) ≤ ∆𝐟,𝐓
p−𝑗ei(𝑋) ≤ 𝑋,   𝑗 ≤ 𝑝𝑖 .    (6) 

Indeed, if 𝑗 ≤  𝑝𝑖  −  1 and setting 𝑌 ∶= 𝑋 − lim
𝑞𝑗→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗 (𝑋), relation (6) implies 

𝐷𝑖
(𝑗+1)(∆𝐟,𝐓

p (𝑋)) = lim
𝑞𝑗+1→∞

∑Φ𝑓𝑖,𝑇𝑖
𝑠 [∆𝐟,𝐓

p−𝑗ei(𝑌)]

𝑞𝑗+1

𝑠=0

 

= ∆𝐟,𝐓
p−(𝑗+1)ei [𝑌 − lim

𝑞𝑗+1→∞
Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1(𝑌)] 

= ∆𝐟,𝐓
p−(𝑗+1)ei(𝑌) − ∆𝐟,𝐓

p−(𝑗+1)ei ( lim
𝑞𝑗+1→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1(𝑌)) 

On the other hand, we have    

lim
𝑞𝑗+1→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1(𝑌) = lim
𝑞𝑗+1→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1 (𝑋 − lim
𝑞𝑗→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗 (𝑋)) 

= lim
𝑞𝑗+1→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1(𝑋) − lim
𝑞𝑗+1→∞

lim
𝑞𝑗→∞

Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗+1 (Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗 (𝑋)) = 0 

Combining these results, we obtain 

𝐷𝑖
(𝑗+1)(∆𝐟,𝐓

p (𝑋)) = ∆𝐟,𝐓
p−(𝑗+1)ei (𝑋 − lim

𝑞𝑗→∞
Φ
𝑓𝑖,𝑇𝑖

𝑞𝑗 (𝑋)) ≤ ∆𝐟,𝐓
p−(𝑗+1)ei(𝑋) ≤ X 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ+
𝑘  with 𝐩 ≤  𝐦 and 𝑝𝑖  ≥  1, which proves our assertion. When 𝑗 =

 𝑝𝑖, relation (6) becomes 

0 ≤  𝐷𝑖
(𝑝𝑖)(∆𝐟,𝐓

p (𝑋)) = ∆𝐟,𝐓
p−𝑝𝑖ei (𝑋 − lim

𝑞→∞
Φ𝑓𝑖,𝑇𝑖
𝑞 (𝑋)) ≤ 𝑋 

On the other hand, taking into account that we can rearrange WOT-convergent series of positive 

operators, we deduce that, for each 𝑑 ∈  ℕ, 

Φ𝑓𝑖,𝑇𝑖
𝑑 (∆𝐟,𝐓

p (𝑋)) = ∑ 𝑎𝑖,𝛼1𝑇𝑖,𝛼1
𝛼1∈𝔽𝑛1

+ ,|𝛼1|≥1

(⋯ ∑ 𝑎𝑖,𝛼𝑑𝑇𝑖,𝛼𝑑(∆𝐟,𝐓
p (𝑋))𝑇𝑖,𝛼𝑑

∗

𝛼𝑑∈𝔽𝑛1
+ ,|𝛼𝑑|≥1

⋯)𝑇𝑖,𝛼1
∗  

= ∑ ∑ 𝑎𝑖,𝛼1⋯𝑎𝑖,𝛼𝑑𝑇𝑖,𝛾∆𝐟,𝐓
p (𝑋)𝑇𝑖,𝛾

∗

𝛼1,…,𝛼𝑑∈𝔽𝑛1
+

𝛼1,…,𝛼𝑑=𝛾
|𝛼1|≥1,…,|𝛼𝑑|≥1

 

𝛾∈𝔽𝑛1
+ ,|𝛾|≥𝑑

 

and  
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𝐷𝑖
(1)(∆𝐟,𝐓

p (𝑋)) =∑Φ𝑓𝑖,𝑇𝑖
𝑠 (∆𝐟,𝐓

p (𝑋))

∞

𝑠=0

= ∆𝐟,𝐓
p (𝑋) + ∑

(

 
 ∑ ∑ 𝑎𝑖,𝛼1⋯𝑎𝑖,𝛼𝑑

𝛼1,…,𝛼𝑑∈𝔽𝑛𝑖
+

𝛼1,…,𝛼𝑑=𝛾
|𝛼1|≥1,…,|𝛼𝑑|≥1

|𝛾|

𝑑=1

)

 
 𝑇𝑖,𝛾∆𝐟,𝐓

p (𝑋)𝑇𝑖,𝛾
∗  

𝛾∈𝔽𝑛1
+ ,|𝛾|≥1

 

Since 𝐷𝑖
(𝑗)(∆𝐟,𝐓

p (𝑋)) ∶= ∑ Φ𝑓𝑖,𝑇𝑖
𝑠 (𝐷𝑖

(𝑗−1)
(∆𝐟,𝐓
p (𝑋)))∞

𝑠=0  for 𝑗 =  2, . . . , 𝑝𝑖, using a combinatorial 

argument and rearranging WOT-convergent series of positive operators, one can prove by induction 

over 𝑝𝑖 that  

𝐷𝑖
(𝑝𝑖)(∆𝐟,𝐓

p (𝑋)) = ∆𝐟,𝐓
p (𝑋) + ∑

(

 
 ∑ ∑ 𝑎𝑖,𝛾1⋯𝑎𝑖,𝛾𝑝 (

𝑝 + 𝑝𝑖 − 1
𝑝𝑖 − 1

)

𝛾1,…,𝛾𝑝∈𝔽𝑛𝑖
+

𝛾1,…,𝛾𝑝=𝛼

|𝛾1|≥1,…,|𝛾𝑝|≥1

|𝛼|

𝑝=1

)

 
 𝑇𝑖,𝛼∆𝐟,𝐓

p (𝑋)𝑇𝑖,𝛼
∗  

𝛼∈𝔽𝑛1
+ ,|𝛼|≥1

 

= ∑ 𝑏𝑖,𝛼
(𝑝𝑖)𝑇𝑖,𝛼∆𝐟,𝐓

p (𝑋)𝑇𝑖,𝛼
∗

𝛼∈𝔽𝑛𝑖
+

 

For each 𝑖 ∈  {1, . . . , 𝑘}, let Ω𝑖 ⊂  𝐵(ℋ) be the set of all 𝑌  ∈  𝐵(ℋ), 𝑌 ≥  0, such that the series 

∑ 𝑏𝑖,𝛽𝑖
(𝑚𝑖)𝑇𝑖,𝛽𝑖𝑌𝑇𝑖,𝛽𝑖

∗
𝛽𝑖∈𝔽𝑛𝑖

+  is convergent in the weak operator topology, where   

𝑏𝑖,𝑔0
(𝑚𝑖) ∶=  1   and  𝑏𝑖,𝛼

(𝑚𝑖) ∶= ∑ ∑ 𝑎𝑖,𝛾1⋯𝑎𝑖,𝛾𝑝 (
𝑝 + 𝑚𝑖 − 1
𝑚𝑖 − 1

)

𝛾1,…,𝛾𝑝∈𝔽𝑛𝑖
+

𝛾1,…,𝛾𝑝=𝛼

|𝛾1|≥1,…,|𝛾𝑝|≥1

|𝛼|

𝑝=1

 

for all 𝛼 ∈ 𝔽𝑛1
+  with |𝛼|  ≥  1. We define the map Ψ𝑖 ∶  Ω𝑖  →  𝐵(ℋ) by setting  

Ψ𝑖(𝑌):= ∑ 𝑏𝑖,𝛽𝑖
(𝑚𝑖)𝑇𝑖,𝛽𝑖𝑌𝑇𝑖,𝛽𝑖

∗

𝛽𝑖∈𝔽𝑛1
+

. 

Due to the results above, we have 

0 ≤  Ψ𝑖(∆𝐟,𝐓
p (𝑋)) = 𝐷𝑖

(𝑚𝑖)(∆𝐟,𝐓
p (𝑋)) 

                                             = ∆𝐟,𝐓
p−𝑚𝑖ei (𝑖𝑑 − lim

𝑞𝑖→∞
Φ𝑓𝑖,𝑇𝑖
𝑞𝑖 ) (𝑋)                                      (7) 

≤ ∆𝐟,𝐓
p−𝑚𝑖ei(𝑋) ≤ 𝑋, 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ+
𝑘  with 𝐩 ≤  𝐦 and 𝑝𝑖  ≥  𝑚𝑖. Since 𝐓 = (𝑇1, . . . , 𝑇𝑘) is in the 

noncommutative polydomain 𝐃𝐟
𝐦(ℋ), Theorem (4.1.4) implies 

∆𝐟,𝐓
p
(𝐼) ∶=  (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑝1
⋯(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)

𝑝𝑘
(𝐼)  ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ+
𝑘  with 𝑝𝑖  ∈ {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈  {1, . . . , 𝑘}. Applying relation (7) 

in the particular case when 𝑖 =  1, 𝑝1  =  𝑚1, and 𝑋 =  𝐼, we have 

0 ≤  Ψ1(∆𝐟,𝐓
p′
(𝐼))  =  𝐷1

(𝑚1)(∆𝐟,𝐓
p′
(𝐼))  = ∆𝐟,𝐓

p′−𝑚1e1(𝐼 − lim
𝑞1→∞

Φ𝑓1,𝑇1
𝑞1 (𝐼))   ≤ ∆𝐟,𝐓

p′−𝑚1e1(𝐼)  ≤  𝐼 

for any 𝐩′  =  (𝑚1, 𝑝2, . . . , 𝑝𝑘) with 𝐩′  ≤  𝐦. Hence and using again relation (7), when 𝑖 =
 2, 𝑝 = (0,𝑚2, 𝑝3 . . . , 𝑝𝑘), and lim

𝑞1→∞
(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼) ≥  0, we obtain 

0 ≤  Ψ2(Ψ1(∆𝐟,𝐓
p′′
(𝐼)))  =  Ψ2 (∆𝐟,𝐓

p′′−𝑚1e1 (𝐼 − lim
𝑞1→∞

Φ𝑓1,𝑇1
𝑞1 (𝐼))) 

= ∆𝐟,𝐓
p′′−𝑚1e1−𝑚2e2 lim

𝑞2→∞
 lim
𝑞1→∞

(𝑖𝑑 − Φ𝑓2,𝑇2
𝑞2 )(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼) 

≤ ∆𝐟,𝐓
p′′−𝑚1e1−𝑚2e2(𝐼) ≤ 𝐼 
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for any 𝐩′′  =  (𝑚1,𝑚2, 𝑝3, . . . , 𝑝𝑘). Continuing this process, a repeated application of (7), leads to 

the relation 

0 ≤  (Ψ𝑘 ∘ ⋯ ∘ Ψ1)(∆𝐟,𝐓
m (𝐼))  = lim

𝑞𝑘→∞
 lim
𝑞1→∞

(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝐼)  ≤  𝐼, 

where 𝐦 =  (𝑚1, . . . , 𝑚𝑘). To prove item (i), note that the results above imply 

‖𝐊𝐟 ,𝐓ℎ‖
2
= ∑ ⋯

𝛽𝑘∈𝔽𝑛𝑘

∑ 𝑏1,𝛽1
(𝑚1)⋯𝑏𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1

〈𝑇𝑘,𝛽𝑘⋯𝑇1,𝛽1∆𝐟,𝐓
m (𝐼)𝑇1,𝛽1

∗ ⋯𝑇𝑘,𝛽𝑘
∗ ℎ, ℎ〉 

= 〈(Ψ𝑘 ∘ ⋯ ∘ Ψ1)(∆𝐟,𝐓
m (𝐼))ℎ, ℎ〉 ≤ ‖ℎ‖2 

for any ℎ ∈ ℋ, and 

𝐊𝐟 ,𝐓
∗ 𝐊𝐟 ,𝐓 = lim

𝑞𝑘→∞
⋯ lim

𝑞1→∞
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 )⋯ (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝐼). 

Now, item (ii) is clear. To prove part (iii), note that 

                        𝑊𝑖,𝑗
∗ 𝑒𝛽𝑖

𝑖 =

{
 
 

 
 √𝑏𝑖,𝛾𝑖

(𝑚𝑖)

√𝑏𝑖,𝛼𝑖
(𝑚𝑖)

𝑒𝛾𝑖
𝑖          if  𝛽𝑖 = 𝑔𝑗

𝑖𝛾𝑖 ,    𝛾𝑖 ∈ 𝔽𝑛𝑖
+

 0                    otherwise.                      

                        (8) 

for any 𝛽𝑖 ∈ 𝔽𝑛𝑖
+  and 𝑗 ∈ {1,… , 𝑛𝑖}. Hence, and using the definition of the noncommutative Berezin

 kernel, we have        

(𝐖𝑖,𝑗
∗  ⊗  𝐼)𝐊𝐟 ,𝐓ℎ

= ∑ √𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽𝑝∈𝔽𝑛𝑝 ,𝑝∈{1,…,𝑘}

𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑖−1

𝑖−1 ⊗𝑊𝑖,𝑗
∗ 𝑒𝛽𝑖

𝑖 ⊗ 𝑒𝛽𝑖+1
𝑖+1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘

⊗∆𝐟,𝐓
m (𝐼)

1
2𝑇1,𝛽1

∗ ⋯𝑇𝑘,𝛽𝑘
∗ ℎ 

= ∑ √𝑏1,𝛽1
(𝑚1)⋯√𝑏𝑖,𝛾𝑖

(𝑚𝑖)⋯√𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽𝑝∈𝔽𝑛𝑝
+ ,𝑝∈{1,…,𝑘}{𝑖}

𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑖−1

𝑖−1 ⊗𝑒𝛾𝑖
𝑖 ⊗ 𝑒𝛽𝑖+1

𝑖+1 ⊗⋯⊗ 𝑒𝛽𝑘
𝑘

⊗∆𝐟,𝐓
m (𝐼)1 2⁄ 𝑇1,𝛽1

∗ ⋯𝑇𝑖−1,𝛽𝑖
∗ 𝑇

1,𝑔𝑗
𝑖𝛾𝑖

∗ 𝑇𝑖+1,𝛽𝑖+1
∗ ⋯𝑇𝑘,𝛽𝑘

∗ ℎ 

for any ℎ ∈  ℋ. Using the commutativity of the tuples 𝑇1, . . . , 𝑇𝑘 , we deduce that 

(𝐖𝑖,𝑗
∗  ⊗  𝐼)𝐊𝐟 ,𝐓 = 𝐊𝐟 ,𝐓𝑇𝑖,𝑗

∗  

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. The proof is complete.  

Theorem (4.1.12) [186]: Let 𝐓 =  {𝑇𝑖,𝑗} be in the noncommutative polydomain 𝐃𝐟
𝐦(ℋ) and let 

𝑆:=  span̅̅ ̅̅ ̅̅ {𝑝(𝐖𝑖,𝑗)𝑞(𝐖𝑖,𝑗)
∗ ∶  𝑝(𝐖𝑖,𝑗), 𝑞(𝐖𝑖,𝑗)  ∈  𝒫(𝐖)}, 

where the closure is in the operator norm. Then there is a unital completely contractive linear map 

𝚿𝐟 ,𝐓 ∶  𝑆 →  𝐵(ℋ) such that 

𝚿𝐟 ,𝐓(𝑔) = lim
𝑟→1

𝐁𝑟𝐓 [𝑔],        𝑔 ∈  𝑆, 

where the limit exists in the norm topology of 𝐵(ℋ), and   

𝚿𝐟 ,𝐓 (∑𝑝𝛾(𝐖𝑖,𝑗)𝑞𝛾(𝐖𝑖,𝑗)
∗

𝑠

𝛾=1

) =∑𝑝𝛾(𝑇𝑖,𝑗)𝑞𝛾(𝑇𝑖,𝑗)
∗

𝑠

𝛾=1

 

for any 𝑝𝛾(𝐖𝑖,𝑗)𝑞𝛾(𝐖𝑖,𝑗) ∈ 𝒫(𝐖) and 𝑠 ∈  ℕ. In particular, the restriction𝚿𝐟 ,𝐓 to the polydomain 

algebra 𝒜(𝐃𝐟
𝐦) is a completely contractive homomorphism. If, in addition, T is a pure 𝑘-tuple, then 

lim
𝑟→1

𝐁𝑟𝐓 [𝑔] = 𝐁𝐓[𝑔],        𝑔 ∈  𝑆, 

Proof:According to Theorem (4.1.4), 𝑟𝐓 =  (𝑟𝑇1, . . . , 𝑟𝑇𝑘)  ∈  𝐃𝐟
𝐦(ℋ) for any 𝑟 ∈ (0, 1).  Since we 

have Φ𝑓𝑖,𝑟𝑇𝑖
𝑛 (𝐼)  ≤  𝑟𝑛Φ𝑓𝑖,𝑇𝑖

𝑛 (𝐼)  ≤  𝑟𝑛𝐼 for any 𝑛 ∈  ℕ, Proposition (4.1.8) shows that 𝑟𝐓 is a pure 

𝑘-tuple in 𝐃𝐟
𝐦(ℋ). 

Using Theorem (4.1.11), we deduce that the noncommutative Berezin kernel 𝐊𝐟 ,𝑟𝐓 is an isometry 

and 
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𝐊𝐟 ,𝑟𝐓
∗  [𝑝(𝐖𝑖,𝑗)𝑞(𝐖𝑖,𝑗)

∗⊗ 𝐼ℋ]𝐊𝐟 ,𝑟𝐓  =  𝑝(𝑟𝑇𝑖,𝑗)𝑞(𝑟𝑇𝑖,𝑗)
∗
,      𝑝(𝐖𝑖,𝑗)𝑞(𝐖𝑖,𝑗)

∗

∈  𝒫(𝐖).                                                                                                             (9) 
Hence, we obtain the von Neumann [57] type inequality 

                         ‖∑𝑝𝛾(𝑟𝑇𝑖,𝑗)𝑞𝛾(𝑟𝑇𝑖,𝑗)
∗

𝑠

𝛾=1

‖ ≤ ‖∑𝑝𝛾(𝐖𝑖,𝑗)𝑞𝛾(𝐖𝑖,𝑗)
∗

𝑠

𝛾=1

‖                       (10) 

 

for any 𝑝𝛾(𝐖𝑖,𝑗), 𝑞𝛾(𝐖𝑖,𝑗) ∈  𝒫(𝐖), 𝑠 ∈  ℕ, and 𝑟 ∈  [0, 1]. Fix 𝑔 ∈  𝑆 and let 

{𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗
∗ )}𝑛=0

∞  be a sequence of operators in the span of 𝒫(𝐖)𝒫(𝐖)∗ which converges to 𝑔 in 

norm, as 𝑛 →  ∞. Define 𝚿𝐟 ,𝐓(𝑔) ∶= lim
𝑛→∞

𝜒𝑛(𝑇𝑖,𝑗 , 𝑇𝑖,𝑗
∗ ) . The inequality (10) shows that 𝚿𝐟 ,𝐓(𝑔) is 

well-defined and ‖𝚿𝐟 ,𝐓(𝑔)‖ ≤  ‖𝑔‖. Using the matrix version of (9), we deduce that 𝚿𝐟 ,𝐓 is a 

unital completely contractive 

linear map. Now we prove that 𝚿𝐟 ,𝐓(𝑔)  = lim
𝑟→1

𝐁𝑟𝐓 [𝑔]. Note that relation (9) implies 

𝜒𝑛(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗) = 𝐊𝐟 ,𝑟𝐓

∗ (𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗
∗ ) ⊗ 𝐼ℋ)𝐊𝐟 ,𝑟𝐓 = 𝐁𝑟𝐓[𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗

∗ )] 

for any 𝑛 ∈  ℕ and 𝑟 ∈  (0, 1). Using the fact that 𝚿𝐟 ,𝑟𝐓(𝑔) ∶ lim
𝑛→∞

𝜒𝑛(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗) exists in norm, we 

deduce that 

                           𝚿𝐟 ,𝑟𝐓(𝑔) = 𝐊𝐟 ,𝑟𝐓
∗ (𝑔 ⊗ 𝐼ℋ)𝐊𝐟 ,𝑟𝐓 = 𝐁𝑟𝐓[𝑔].                                    (11) 

Given 𝜖 >  0 let 𝑠 ∈  ℕ be such that ‖𝜒𝑠(𝑊𝑖 ,𝑊𝑖
∗) −  𝑔‖ <

𝜖

3
 . Due to the first part of the theorem, 

we have  

‖𝚿𝐟 ,𝑟𝐓(𝑔) − 𝜒𝑠(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗)‖ ≤ ‖𝑔 − 𝜒𝑠(𝐖𝑖 ,𝐖𝑖

∗)‖ <
𝜖

3
 

for any 𝑟 ∈  [0, 1]. On the other hand, since 𝜒𝑠(𝐖𝑖 ,𝐖𝑖
∗) has a finite number of terms, there exists 

𝛿 ∈  (0, 1) such that 

‖𝜒𝑠(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗) − 𝜒𝑠(𝑇𝑖 , 𝑇𝑖

∗)‖ <
𝜖

3
 

for any 𝑟 ∈  (𝛿, 1). Now, using these inequalities and relation (11), we deduce that  

‖𝚿𝐟 ,𝐓(𝑔) − 𝐁𝑟𝐓[𝑔]‖ = ‖𝚿𝐟 ,𝐓(𝑔) − 𝚿𝐟 ,𝑟𝐓(𝑔)‖ 

≤ ‖𝚿𝐟 ,𝐓(𝑔) − 𝜒𝑠(𝑇𝑖 , 𝑇𝑖
∗)‖ + ‖𝜒𝑠(𝑇𝑖 , 𝑇𝑖

∗) − 𝜒𝑠(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗)‖ 

+‖𝜒𝑠(𝑟𝑇𝑖 , 𝑟𝑇𝑖
∗) − 𝚿𝐟 ,𝑟𝐓(𝑔)‖ <  𝜖 

for any 𝑟 ∈  (𝛿, 1), which proves our assertion. Now, we assume that 𝐓 =  (𝑇1, . . . , 𝑇𝑘) is a pure 𝑘-

tuple in 𝐃𝐟
𝐦(ℋ). Due to Theorem (4.1.11), we have 

𝐁𝐓[𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗
∗ )] ∶= 𝐊𝐟 ,𝐓

∗ (𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗
∗ ) ⊗ 𝐼ℋ)𝐊𝐟 ,𝐓 = 𝜒𝑛(𝑇𝑖,𝑗 , 𝑇𝑖,𝑗

∗ ) 

Taking into account that {𝜒𝑛(𝐖𝑖,𝑗 ,𝐖𝑖,𝑗
∗ )}𝑛=0

∞  is a sequence of operators in the span of 𝒫(𝐖)𝒫(𝐖)∗ 

which converges to 𝑔 in norm, we conclude that 

𝐁𝐓[𝑔] = 𝚿𝐟 ,𝐓(𝑔) = lim
𝑟→1

𝐁𝑟𝐓 [𝑔], 𝑔 ∈  𝑆. 

This completes the proof.  

        We remark that Theorem (4.1.12) shows that the noncommutative polydomain algebra 𝒜(𝐃𝐟
𝐦) 

is the universal algebra generated by the identity and a doubly commuting 𝑘-tuple in the abstract 

polydomain domain 𝐃𝐟
𝐦. 

        We denote by 𝐶∗(𝐖𝑖,𝑗) the 𝐶∗-algebra generated by the operators 𝐖𝑖,𝑗, where 𝑖 ∈

 {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and the identity. 

Corollary (4.1.13) [186]: Let 𝑞 =  (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let 

𝐗:=  (𝑋1, . . . , 𝑋𝑘)  ∈  𝐵(ℋ)
𝑛1 ×⋯× 𝐵(ℋ)𝑛𝑘  . 

Then X is in the noncommutative polydomain 𝐃𝐪
𝐦(ℋ) if and only if there exists a unital completely 

positive linear map Ψ ∶ 𝐶∗(𝐖𝑖,𝑗)  →  𝐵(ℋ) such that 

Ψ𝐪,𝐓(𝑝(𝐖𝑖,𝑗)𝑟(𝐖𝑖,𝑗)
∗ ) =  𝑝(𝑋𝑖,𝑗)𝑟(𝑋𝑖,𝑗)

∗,   𝑝(𝐖𝑖,𝑗)𝑟(𝐖𝑖,𝑗) ∈  𝒫(𝐖), 
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where 𝐖 ∶=  {𝐖𝑖,𝑗} is the universal model associated with the abstract noncommutative 

polydomain 𝐃𝐪
𝐦. 

Proof: The direct implication is due to Theorem (4.1.12) and Arveson’s extension theorem [193]. 

For the converse, note that, due to Lemma (4.1.10), Proposition (4.1.8), and Proposition (4.1.3), we 

have 

 (𝐼 −  Φ𝑞1,𝑋1)
𝑝1
⋯(𝐼 − Φ𝑞𝑘,𝑋𝑘)

𝑝𝑘
(𝐼)  = Ψ𝐪,𝐓[(𝐼 − Φ𝑞1,𝐖1)

𝑝1
⋯(𝐼 − Φ𝑞𝑘,𝐖𝑘)

𝑝𝑘
(𝐼)]  ≥  0 

for any 𝑝𝑖  ∈  {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈  {1, . . . , 𝑘}. Using now Theorem (4.1.4) we can complete the 

proof. 

      We remark that under the condition 

span̅̅ ̅̅ ̅̅ {𝑝(𝐖𝑖,𝑗)𝑟(𝐖𝑖,𝑗)
∗ ∶  𝑝(𝐖𝑖,𝑗), 𝑟(𝐖𝑖,𝑗)  ∈  𝒫(𝐖)} =  𝐶

∗(𝐖𝑖,𝑗), 

Corollary (4.1.13) shows that 𝐶∗(𝐖𝑖,𝑗) is the universal 𝐶∗-algebra generated by the identity and a 

doubly commuting 𝑘-tuple in the abstract polydomain domain 𝐃𝐟
𝐦. We remark that the condition 

above holds, for example, if 𝐃𝐟
𝐦(ℋ) is the noncommutative polyball 

[𝐵(ℋ)𝑛1]1
− ×𝑐 ⋯×𝑐 [𝐵(ℋ)

𝑛𝑘]1
−. 

Hardy algebra 𝐹∞(𝐃𝐟
𝐦) and provide a WOT-continuous functional calculus for completely non-

coisometric tuples in in the noncommutative polydomain 𝐃𝐟
𝐦(ℋ).  

      Let 𝜑(𝐖𝑖,𝑗) = ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

be a formal sum with  

𝑐𝛽1,…,𝛽𝑘 ∈ ℂ and such that  

∑ |𝑐𝛽1,…,𝛽𝑘|
2

1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

<  ∞. 

We prove that 𝜑(𝐖𝑖,𝑗)(𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘 ) is in ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), for any 𝛾1 ∈ 𝔽𝑛1

+  , . . . , 𝛾𝑘 ∈ 𝔽𝑛𝑘
+  . 

Indeed, due to relation (3), we have 

∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

(𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘 ) 

= ∑ 𝑐𝛽1,…,𝛽𝑘√
𝑏1,𝛾1
(𝑚1)

𝑏1,𝛽1𝛾1
(𝑚1)

⋯√
𝑏𝑘,𝛾𝑘
(𝑚𝑘)

𝑏
𝑘,𝛽𝑘𝛾𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

𝑒𝛽1𝛾1
1 ⊗⋯⊗ 𝑒𝛽𝑘𝛾𝑘

𝑘  

Let 𝑖 ∈  {1, . . . , 𝑘} and 𝛼, 𝛽 ∈ 𝔽𝑛𝑖 be such that |𝛼| ≥  1 and |𝛽| ≥  1. Note that, for any 𝑗 ∈

 {1, . . . , |𝛼|} and 𝑘 ∈  {1, . . . , |𝛽|}, 

(
𝑗 + 𝑚𝑖  −  1
𝑚𝑖  −  1

) (
𝑘 + 𝑚𝑖  −  1
𝑚𝑖  −  1

) ≤  𝐶𝑖,|𝛽|
(𝑚𝑖) (

𝑗 + 𝑘 + 𝑚𝑖  −  1
𝑚𝑖  −  1

) , 

where 𝐶𝑖,|𝛽|
(𝑚𝑖): = (

|𝛽| + 𝑚𝑖  −  1
𝑚𝑖  −  1

) . Using relation (4) and comparing the product 

𝑏𝑖,𝛼
(𝑚𝑖)𝑏𝑖,𝛽

(𝑚𝑖) with 𝑏𝑖,𝛼𝛽
(𝑚𝑖) we deduce that         

                                                   𝑏𝑖,𝛼
(𝑚𝑖)𝑏𝑖,𝛽

(𝑚𝑖) ≤ 𝐶𝑖,|𝛽|
(𝑚𝑖)𝑏𝑖,𝛼𝛽

(𝑚𝑖)                                                 (12) and    

𝑏𝑖,𝛼
(𝑚𝑖)𝑏𝑖,𝛽

(𝑚𝑖) ≤ 𝐶𝑖,|𝛼|
(𝑚𝑖)𝑏𝑖,𝛼𝛽

(𝑚𝑖)   

for any 𝛼, 𝛽 ∈  𝔽𝑛𝑖
+ . Hence, we deduce that        

∑ |𝑐𝛽1,…,𝛽𝑘|
2
𝑏1,𝛾1
(𝑚1)

𝑏
1,𝛽1𝛾1

(𝑚1)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

⋯
𝑏𝑘,𝛾𝑘
(𝑚𝑘)

𝑏
𝑘,𝛽𝑘𝛾𝑘

(𝑚𝑘)
≤ 𝐶1,|𝛾1|

(𝑚𝑖) ⋯𝐶𝑘,|𝛾𝑘|
(𝑚𝑖) ∑ |𝑐𝛽1,…,𝛽𝑘|

2
1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

<  ∞, 
which proves our assertion. Let 𝒫 be the linear span of the vectors 𝑒𝛾1 ⊗⋯⊗ 𝑒𝛾𝑘 for 𝛾1 ∈

𝔽𝑛1
+ , … , 𝛾𝑘 ∈ 𝔽𝑛𝑘

+ . If 
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sup
𝑝∈𝒫,‖𝑝‖≤1

‖ ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

(𝑝)‖ <  ∞, 

then there is a unique bounded operator acting on 𝐹2(𝐻𝑛1) ⊗⋯⊗ 𝐹2(𝐻𝑛𝑘), which we denote by 

𝜑(𝐖𝑖,𝑗), such that 

𝜑(𝐖𝑖,𝑗)𝑝 = ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

(𝑝)  for any  𝑝 ∈  𝒫. 

The set of all operators 𝜑(𝐖𝑖,𝑗) ∈  𝐵(⊗𝑖=1
𝑘 𝐹 2(𝐻𝑛𝑖 )) satisfying the above-mentioned properties is 

denoted by 𝐹∞(𝐃𝐟
𝐦). One can prove that 𝐹∞(𝐃𝐟

𝐦) is a Banach algebra, which we call Hardy algebra 

associated with the noncommutative polydomain 𝐃𝐟
𝐦. 

       In a similar manner, one can define the Hardy algebra 𝑅∞(𝐃𝐟
𝐦). For each 𝑖 ∈  {1, . . . , 𝑘} and 

𝑗 ∈  {1, . . . , 𝑛𝑖}, we define the operator 𝚲𝑖,𝑗 acting on the Hilbert space 𝐹2(𝐻𝑛1) ⊗⋯⊗ 𝐹2(𝐻𝑛𝑘) 

by setting 

𝚲𝑖,𝑗 ∶=  𝐼 ⊗ ⋯⊗  𝐼⏟        
𝑖 − 1 times

⊗Λ𝑖,𝑗⊗ 𝐼 ⊗⋯⊗  𝐼⏟        
𝑘 − 1 times

 . 

Set 𝚲𝑖,𝑗: = (Λ𝑖,1, . . . , Λ𝑖,𝑛𝑖). As in Lemma (4.1.10), one can prove that, 𝚲 ∶=  (𝚲1, . . . , 𝚲𝐤) is in the 

noncommutative polydomain 𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖), where 𝐟  =  (𝑓1, . . . , 𝑓𝑘).    

        

      𝐿𝑒𝑡 𝜒(𝚲𝑖,𝑗)  = ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

be a formal sum with  

𝑐�̃�1,…,�̃�𝑘 ∈ ℂ and such that  

∑ |𝑐𝛽1,…,𝛽𝑘|
2

1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

<  ∞. 

And 

sup
𝑝∈𝒫,‖𝑝‖≤1

‖ ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

(𝑝)‖ <  ∞, 

Then there is a unique bounded operator acting on 𝐹2(𝐻𝑛1) ⊗⋯⊗ 𝐹2(𝐻𝑛𝑘), which we 

denote by 𝜒(𝚲𝑖,𝑗) such that         

𝜒(𝚲𝑖,𝑗)𝑝 = ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

(𝑝)    for any 𝑝 ∈ 𝒫. 

The set of all operators 𝜒(𝚲𝑖,𝑗) ∈  𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) satisfying the above-mentioned properties is a 

Banach algebra which is denoted by 𝑅∞(𝐃𝐟
𝐦). 

Proposition (4.1.14) [186]: The following statements hold: 

    (i) 𝐹∞(𝐃𝐟
𝐦)′ = 𝑅∞(𝐃𝐟

𝐦), where ′ stands for the commutant; 

   (ii) 𝐹∞(𝐃𝐟
𝐦)′′ = 𝐹∞(𝐃𝐟

𝐦); 

  (iii) 𝐹∞(𝐃𝐟
𝐦) is WOT-closed in 𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)). 

Proof: Let 𝑈 ∈ 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) be the unitary operator defined by equation 

𝑈 (𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘 ) ∶=  (𝑒�̃�1
1 ⊗⋯⊗ 𝑒�̃�𝑘

𝑘 ), 𝛾1 ∈ 𝔽𝑛1
+ , … , 𝛾𝑘 ∈ 𝔽𝑛𝑘

+ , 

and note that 𝑈∗𝚲𝑖,𝑗𝑈 = 𝐖𝑖,𝑗
�̃�

 for any 𝑖 =  1, . . . , 𝑘 and 𝑗 ∈  {1, . . . , 𝑛𝑖}, where 𝐖𝑖,𝑗
�̃�

 is the universal 

model associated with 𝐃𝐟
𝐦.  Consequently, we have 𝑈∗𝐹∞(𝐃𝐟

𝐦)𝑈  = 𝑅∞(𝐃𝐟
𝐦).  On the other hand, 

since 𝐖𝑖1,𝑗1𝚲𝑖2,𝑗2 = 𝚲𝑖2,𝑗2𝐖𝑖1,𝑗1  for any 𝑖1, 𝑖2 ∈ {1, . . . , 𝑘}, 𝑗1 ∈ {1, . . . , 𝑛𝑖1}, and 𝑗2 ∈ {1, . . . , 𝑛𝑖2}. We 

deduce that 𝑅∞(𝐃𝐟
𝐦) ⊆ 𝐹∞(𝐃𝐟

𝐦)′. Now, we prove the reverse inclusion. Let 𝐺 ∈  𝐹∞(𝐃𝐟
𝐦)′ and 

note that, since 𝐺(1)  ∈ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), we have  
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𝐺(1)  = ∑ 𝑐�̃�1,…,�̃�𝑘  
1

√𝑏
1,�̃�1

(𝑚1)
⋯

1

√𝑏
𝑘,�̃�𝑘

(𝑚𝑘)
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

𝑒�̃�1
1 ⊗⋯⊗ 𝑒�̃�𝑘

𝑘  

for some coefficients𝑐�̃�1,…,�̃�𝑘  ∈ ℂ with        

∑ |𝑐𝛽1,…,𝛽𝑘|
2  

1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

<  ∞. 

Taking into account that 𝐺𝐖𝑖,𝑗 = 𝐖𝑖,𝑗𝐺 for 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, relations (8) and its 

analogue for 𝚲𝑖,𝑗 imply 

𝐺(𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘 ) = √𝑏1,𝛼1
(𝑚1)⋯√𝑏𝑘,𝛼𝑘

(𝑚𝑘)𝐺𝑊1,𝛼1⋯𝑊𝑘,𝛼𝑘
(1) 

= √𝑏1,𝛼1
(𝑚1)⋯√𝑏𝑘,𝛼𝑘

(𝑚𝑘)𝑊1,𝛼1⋯𝑊𝑘,𝛼𝑘
𝐺(1) 

= ∑ 𝑐�̃�1,…,�̃�𝑘  
√𝑏1,𝛼1

(𝑚1)

√𝑏
1,𝛼1�̃�1

(𝑚1)
⋯
√𝑏𝑘,𝛼𝑘

(𝑚𝑘)

√𝑏
𝑘,𝛼𝑘�̃�𝑘

(𝑚𝑘)
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

𝑒𝛼1�̃�1
1 ⊗⋯⊗ 𝑒𝛼𝑘�̃�𝑘

𝑘  

= ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

(𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘 ) 

for any 𝛼1 ∈ 𝔽𝑛1
+ , … , 𝛼𝑘 ∈ 𝔽𝑛𝑘

+  . Therefore,        

𝐺(𝑝)  = ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

(𝑝) 

for any polynomial for any 𝑝 ∈ 𝒫. Since 𝐺 is a bounded operator,    

𝑔(𝚲𝑖,𝑗) ∶=  ∑ 𝑐�̃�1,…,�̃�𝑘  𝚲1,𝛽1⋯𝚲𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

 

is in 𝑅∞(𝐃𝐟
𝐦) and 𝐺 =  𝑔(𝚲𝑖,𝑗). Therefore, 𝑅∞(𝐃𝐟

𝐦) =  𝐹∞(𝐃𝐟
𝐦)′. The item (ii) follows easily 

applying part (i). Now, item (iii) is clear. This completes the proof.  

     Similarly to the proof of Proposition (4.1.14), one can prove that if 𝑆 ⊂  𝐵(𝒦) and 𝐼𝒦 ∈  𝑆, then 

(𝐹∞(𝐃𝐟
𝐦) ⊗ 𝑆)′ = 𝑅∞(𝐃𝐟

𝐦) ⊗̅̅̅ 𝑆′  𝑎𝑛𝑑     (𝑅∞(𝐃𝐟
𝐦) ⊗ 𝑆)′ = 𝐹∞(𝐃𝐟

𝐦) ⊗̅̅̅ 𝑆′, 

where 𝐹∞(𝐃𝐟
𝐦) ⊗̅̅̅ 𝑆′ is the WOT-closed algebra generated by the spatial tensor product of the two 

algebras. Moreover, for each 𝑖 ∈  {1, . . . , 𝑘}, the commutant of the set    

      

{𝑊𝑖,𝑗⊗ 𝐼ℋ ∶ 𝑗 ∈  {1, . . . , 𝑛𝑖}}  ∪  {𝐼𝐹2(𝐻𝑛𝑖
⊗  𝑌 ∶ 𝑌 ∈  𝑆} 

is equal to 𝑅∞(𝐃𝑓1
𝑚1) ⊗̅̅̅ 𝑆′. A repeated appplication of these results shows that, if f =  (𝑓1, . . . , 𝑓𝑘) 

and 𝑚 =  (𝑚1, . . . , 𝑚𝑘), then  

𝐹∞(𝐃𝐟
𝐦) ⊗̅̅̅ 𝐵(ℋ)  =  𝐹∞(𝐃𝑓1

𝑚1) ⊗̅̅̅ ⋯ ⊗̅̅̅ 𝐹∞(𝐃𝑓𝑘
𝑚𝑘) ⊗̅̅̅ 𝐵(ℋ) 

In the same manner, one can prove the corresponding result for 𝑅∞(𝐃𝐟
𝐦) ⊗̅̅̅ 𝐵(ℋ). Another 

consequence of the results above is the following Tomita-type theorem in our non-selfadjoint 

setting: if ℳ is a von Neumann algebra, then 

(𝐹∞(𝐃𝐟
𝐦) ⊗̅̅̅ ℳ)′′ = 𝐹∞(𝐃𝐟

𝐦) ⊗̅̅̅ ℳ. 
Proposition (4.1.15) [186]: The noncommutative Hardy algebra 𝐹∞(𝐃𝐟

𝐦) is the sequential SOT-

(resp. WOT-,𝑤∗-) closure of all polynomials in 𝑊𝑖,𝑗 and the identity, where 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈

 {1, . . . , 𝑛𝑘}.  

Proof: Let 𝑃𝑛, 𝑛 ≥  0, be the orthogonal projection of 𝐹2(𝐻𝑛1) ⊗⋯⊗ 𝐹2(𝐻𝑛𝑘) on the the 

subspace span {𝑒𝛼1⊗⋯⊗ 𝑒𝛼𝑘: |𝛼1|  +  ⋯ + |𝛼𝑘|  =  𝑛, 𝛼1 ∈  𝔽𝑛1
+ , … , 𝛼𝑘 ∈ 𝔽𝑛𝑘

+  }. Define the 

completely contractive projection Γ𝑗 ∶ 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) → 𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)), 𝑗 ∈  ℤ, by  
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Γ𝑗(𝐴) ∶= ∑ 𝑃𝑛𝐴𝑃𝑛+𝑗
𝑛≥𝑚𝑎𝑥{0,−𝑗}

 . 

The Cesaro operators on 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)), defined by  

𝜒𝑛(𝐴):= ∑ (1 −
|𝑗|

𝑛
) Γ𝑗(𝐴)

|𝑗|<𝑛

, 𝑛 ≥  1, 

are completely contractive and 𝜒𝑛(𝐴) converges to 𝐴 in the strong operator topology. Let 𝐴 ∈
 𝐹∞(𝐃𝐟

𝐦) have the Fourier representation ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+  .Taking into 

account the definition of the operators 𝑊𝑖,𝑗 , one can easily check that 

𝑃𝑛+𝑗𝐴𝑃𝑗  =

(

 
 

∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

|𝛽1|+⋯|𝛽𝑘|=𝑛

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+
)

 
 
𝑃𝑗  , 𝑛 ≥  0, 𝑗 ≥  0, 

and 𝑃𝑗𝐴𝑃𝑛+𝑗 =  0 if 𝑛 ≥  1 and 𝑗 ≥  0. Therefore, 

 

𝜒𝑘(𝐴)  = ∑ (1 −
𝑞

𝑛
)

0≤𝑞≤𝑛−1

(

 
 

∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

|𝛽1|+⋯|𝛽𝑘|=𝑞

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+
)

 
 

 

converges to 𝐴, as 𝑘 →  ∞, in the strong operator topology. The proof is complete. 

Lemma (4.1.16) [186]: Let 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the abstract 

noncommutative domain 𝐃𝐟
𝐦, where 𝐖𝑖 ∶=  (𝐖𝑖,1, . . . ,𝐖𝑖,𝑛𝑖

) for 𝑖 ∈  {1, . . . , 𝑘}. If 

𝜑(𝐖𝑖,𝑗)  = ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

 

is in the noncommutative Hardy algebra 𝐹∞(𝐃𝐟
𝐦), then the following statements hold.  

       (i) The series 

𝜑(𝑟𝐖𝑖,𝑗)  = ∑ ∑ 𝑟𝑞𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|=𝑞

∞

𝑞=0

 

converges in the operator norm topology for any 𝑟 ∈  [0, 1). 
(ii) The operator 𝜑(𝑟𝐖𝑖,𝑗) is in the noncommutative domain 

algebra 𝒜(𝐃𝐟
𝐦) and 

‖𝜑(𝑟𝐖𝑖,𝑗)‖ ≤  ‖𝜑(𝐖𝑖,𝑗)‖. 

(iii) 𝜑(𝐖𝑖,𝑗) = SOT- lim
𝑟→1

𝜑(𝑟𝐖𝑖,𝑗) and      

‖𝜑(𝐖𝑖,𝑗)‖ =  sup
0≤𝑟<1

‖𝜑(𝑟𝐖𝑖,𝑗)‖ = lim
𝑟→1
‖𝜑(𝑟𝐖𝑖,𝑗)‖ . 

Proof: First, we prove that        

∑ 𝑏1,𝛽1
(𝑚1)⋯𝑏𝑘,𝛽𝑘

(𝑚𝑘) 𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘
𝐖𝑘,𝛽𝑘
∗ ⋯𝐖1,𝛽1

∗

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘

 

                                     ≤ (
𝑝1 + 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 + 𝑚𝑘  −  1
𝑚𝑘  −  1

) 𝐼                         (13) 

According to relations (3) and (12), for each 𝑖 ∈  {1, . . . , 𝑘}, and 𝑝𝑖  ∈ ℕ, the operators 

{𝑊𝑖,𝛽𝑖
}
𝛽𝑖∈𝐹𝑛𝑖 ,|𝛽𝑖|=𝑝𝑖

 have orthogonal ranges and 
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‖𝑊𝑖,𝛽𝑖
𝑥‖  ≤

1

√𝑏
𝑖,𝛽𝑖

(𝑚𝑖)
(
|𝛽𝑖| + 𝑚𝑖 − 1
𝑚𝑖 − 1

)
1 2⁄

‖𝑥‖ , 𝑥 ∈  𝐹2(𝐻𝑛𝑖  ). 

Consequently, we deduce that 

∑ 𝑏𝑖,𝛽𝑖
(𝑚𝑖)𝑊𝑖,𝛽𝑖

𝑊𝑖,𝛽𝑖
∗

𝛽𝑖∈𝔽𝑛𝑖
+ ,|𝛽𝑖|=𝑝𝑖

≤ (
𝑝𝑖 +𝑚𝑖 − 1
𝑚𝑖 − 1

) 𝐼    for any   𝑝𝑖  ∈  ℕ. 

A repeated application of this inequality proves our assertion. Since 𝜑(𝐖𝑖,𝑗)  ∈  𝐹
∞(𝐃𝐟

𝐦), we have 

                             ∑ |𝑐𝛽1,…,𝛽𝑘|
2  

1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

<  ∞.                     (14) 

Hence, using relation (13) and Cauchy-Schwarz inequality, we deduce that, for 0 ≤  𝑟 <  1, 

∑𝑟𝑝
‖
‖

∑ ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘

 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

‖
‖

∞

𝑝=0

≤∑𝑟𝑝 ∑

(

 
 

∑ |𝑐𝛽1,…,𝛽𝑘|
2

1

𝑏1,𝛽1
(𝑚1)⋯𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘 )

 
 

1/2

 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞

𝑝=0

 

‖
‖

∑ 𝑏1,𝛽1
(𝑚1)⋯𝑏𝑘,𝛽𝑘

(𝑚𝑘) 𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘
𝐖𝑘,𝛽𝑘
∗ ⋯𝐖1,𝛽1

∗

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘

‖
‖

1
2

 

≤∑𝑟𝑝 ∑ (
𝑝1 + 𝑚1  −  1
𝑚1  −  1

)

1
2
⋯(

𝑝𝑘 + 𝑚𝑘  −  1
𝑚𝑘  −  1

)

1
2
 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞

𝑝=0

 

(

 
 

∑ |𝑐𝛽1,…,𝛽𝑘|
2

1

𝑏1,𝛽1
(𝑚1)⋯𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘 )

 
 

1/2

 

≤

(

 
 
∑𝑟2𝑝 ∑ (

𝑝1 − 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 − 𝑚𝑘  −  1
𝑚𝑘  −  1

) 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞

𝑝=0

)

 
 

1/2

 

( ∑ |𝑐𝛽1,…,𝛽𝑘|
2

1

𝑏1,𝛽1
(𝑚1)⋯𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

) 

 

Now, using relation (14) we obtain 

∑𝑟2𝑝 ∑ (
𝑝1 + 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 + 𝑚𝑘  −  1
𝑚𝑘  −  1

) 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞

𝑝=0

≤∑𝑟2𝑝(𝑝 + 𝑀)𝑀𝑘−𝑘(𝑝 + 1)𝑘
∞

𝑝=0

< ∞.                                             (15) 
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where 𝑀 ∶=  max{𝑚1, . . . , 𝑚𝑘}, and deduce that the series 

𝜑(𝑟𝐖𝑖,𝑗) = ∑ ∑ 𝑟𝑞𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|=𝑞

∞

𝑞=0

 

converges in the operator norm topology. Therefore 𝜑(𝑟𝐖𝑖,𝑗) is in the noncommutative domain 

algebra 𝒜(𝐃𝐟
𝐦). In what follows, we show that 

                                              𝜑(𝐖𝑖,𝑗) =  SOT − lim
𝑟→1

𝜑(𝑟𝐖𝑖,𝑗)                                        (16) 

for any 𝜑(𝐖𝑖,𝑗)  = ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+   in the noncommutative Hardy algebra 

𝐹∞(𝐃𝐟
𝐦).  

According to the first part of this lemma,    

                                             𝜑(𝑟𝐖𝑖,𝑗) =  SOT − lim
𝑛→∞

𝑝𝑛(𝑟𝐖𝑖,𝑗)                                   (17) 

 

where 𝑝𝑛(𝐖𝑖,𝑗):= ∑ ∑ 𝑐𝛽1,…,𝛽𝑘  𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|=𝑞

𝑛
𝑞=0  and the convergence is in the 

operator norm topology.  For each 𝑖 ∈  {1, . . . , 𝑘}, let 𝛾𝑖 , 𝜎𝑖 , 𝜖𝑖 ∈ 𝔽𝑛1
+  and set 𝑛 ∶= |𝛾1| + ⋯+ |𝛾𝑘|.  

Since 𝐖1,𝛽1
∗ ⋯𝐖𝑘,𝛽𝑘

∗ (𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘  )  =  0 for any 𝛽𝑖 ∈ 𝔽𝑛𝑖
+  with |𝛽1| + ⋯+ |𝛽𝑘|  >  𝑛, we have

  

𝜑(𝑟𝐖𝑖,𝑗)
∗
(𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘  ) = 𝑝𝑛(𝑟𝐖𝑖,𝑗)
∗
(𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘  ) 

for any 𝛼𝑖 ∈ 𝔽𝑛1
+   with |𝛼1|  + ⋯+ |𝛼𝑘|  ≤  𝑛 and any 𝑟 ∈  [0, 1). Due to Lemma (4.1.10) and 

Theorem (4.1.4), 𝑟𝐖 ∶=  (𝑟𝐖1, . . . , 𝑟𝐖𝑛) is a pure 𝑘-tuple in the noncommutative polydomain 

𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) for any 𝑟 ∈  [0, 1). Applying Theorem (4.1.11), we obtain 

𝐊𝐟 ,𝐫𝐖𝑝𝑛(𝑟𝐖𝑖,𝑗)
∗
= [𝑝𝑛(𝑟𝐖𝑖,𝑗)

∗
⊗ 𝐼(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))
]𝐊𝐟 ,𝐫𝐖 

for any 𝑟 ∈  [0, 1). Using all these facts and the definition of the noncommutative Berezin kernel, 

careful calculations reveal that 

〈𝐊𝐟 ,𝐫𝐖𝜑(𝑟𝐖𝑖,𝑗)
∗(𝑒𝛾1

1 ⊗⋯⊗ 𝑒𝛾𝑘
𝑘  ), (𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘  ) ⊗ (𝑒𝜖1

1 ⊗⋯⊗ 𝑒𝜖𝑘
𝑘  )〉 

= 〈𝐊𝐟 ,𝐫𝐖𝑝𝑛(𝑟𝐖𝑖,𝑗)
∗(𝑒𝛾1

1 ⊗⋯⊗ 𝑒𝛾𝑘
𝑘  ), (𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘  ) ⊗ (𝑒𝜖1

1 ⊗⋯⊗ 𝑒𝜖𝑘
𝑘  )〉 

= 〈[𝑝𝑛(𝑟𝐖𝑖,𝑗)
∗⊗ 𝐼(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))
]𝐊𝐟 ,𝐫𝐖(𝑒𝛾1

1 ⊗⋯⊗ 𝑒𝛾𝑘
𝑘  ), (𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘  )

⊗ (𝑒𝜖1
1 ⊗⋯⊗ 𝑒𝜖𝑘

𝑘  )〉 

= ∑ 𝑟|𝛽1|+⋯+|𝛽𝑘|√𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

〈𝑝𝑛(𝑟𝐖𝑖,𝑗)
∗(𝑒𝛽1

1 ⊗⋯⊗ 𝑒𝛽𝑘
𝑘  ), 𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘 〉 

× 〈𝐖1,𝛽1
∗ ⋯𝐖𝑘,𝛽𝑘

∗ (𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘  ), ∆𝐟,𝐫𝐖
𝐦 (𝑰)1/2(𝑒𝜖1

1 ⊗⋯⊗ 𝑒𝜖𝑘
𝑘  )〉 

= ∑ 𝑟|𝛽1|+⋯+|𝛽𝑘|√𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

〈𝜑(𝑟𝐖𝑖,𝑗)
∗(𝑒𝛽1

1 ⊗⋯⊗ 𝑒𝛽𝑘
𝑘  ), 𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘 〉 

× 〈𝐖1,𝛽1
∗ ⋯𝐖𝑘,𝛽𝑘

∗ (𝑒𝛾1
1 ⊗⋯⊗ 𝑒𝛾𝑘

𝑘  ), ∆𝐟,𝐫𝐖
𝐦 (𝑰)1/2(𝑒𝜖1

1 ⊗⋯⊗ 𝑒𝜖𝑘
𝑘  )〉 

= 〈[𝜑(𝑟𝐖𝑖,𝑗)
∗⊗ 𝐼(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))
]𝐊𝐟 ,𝐫𝐖(𝑒𝛾1

1 ⊗⋯⊗ 𝑒𝛾𝑘
𝑘  ), (𝑒𝜎1

1 ⊗⋯⊗ 𝑒𝜎𝑘
𝑘  )

⊗ (𝑒𝜖1
1 ⊗⋯⊗ 𝑒𝜖𝑘

𝑘  )〉 

for any 𝑟 ∈  [0, 1) and 𝛾𝑖 , 𝜎𝑖 , 𝜖𝑖 ∈ 𝔽𝑛1
+ , 𝑖 ∈  {1, . . . , 𝑘}. Hence, since 𝜑(𝑟𝐖𝑖,𝑗) and 𝜑(𝐖𝑖,𝑗) are 

bounded operators on (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)), we deduce that 

𝐊𝐟 ,𝐫𝐖𝜑(𝑟𝐖𝑖,𝑗)
∗ = [𝜑(𝐖𝑖,𝑗)

∗⊗ 𝐼(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))

]𝐊𝐟 ,𝐫𝐖 

for any 𝑟 ∈  [0, 1). Since 𝑟𝐖 ∶=  (𝑟𝐖1, . . . , 𝑟𝐖𝑛) is a pure 𝑘-tuple in the noncommutative 

polydomain 𝐃𝐟
𝐦(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) for any 𝑟 ∈  [0, 1), Theorem (4.1.11) shows that the Berezin kernel 

𝐊𝐟 ,𝐫𝐖 is an isometry and, therefore, the equality above implies 

                              ‖𝜑(𝑟𝐖𝑖,𝑗)‖  ≤ ‖𝜑(𝐖𝑖,𝑗)‖      for any 𝑟 ∈  [0, 1).                               (18) 
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Hence, and due to the fact that 𝜑(𝐖𝑖,𝑗)(𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘 ) = lim
𝑟→1

𝜑(𝑟𝐖𝑖,𝑗) (𝑒𝛼1
1 ⊗⋯⊗ 𝑒𝛼𝑘

𝑘 ) for 

any 𝛼𝑖 ∈ 𝔽𝑛𝑖
+ , 

an approximation argument implies relation (16). Note that if 0 <  𝑟1 < 𝑟2 < 1, then 

‖𝜑(𝑟1𝐖𝑖,𝑗)‖  ≤ ‖𝜑(𝑟2𝐖𝑖,𝑗)‖. 

Indeed, since 𝜑(𝑟2𝐖𝑖,𝑗) is in the polydomain algebra 𝒜(𝐃𝐟
𝐦), Theorem (4.1.12) implies 

‖𝜑(𝑟𝑟2𝐖𝑖,𝑗)‖ ≤ ‖𝜑(𝑟2𝐖𝑖,𝑗)‖ for any 𝑟 ∈  [0, 1). Taking ∶=
𝑟1

𝑟2
 , we prove our assertion. Now one 

can easily complete the proof of the theorem.   

Lemma (4.1.17) [186]: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be in the noncommutative polydomain 𝐃𝐟
𝐦(ℋ) and 

let 𝜑(𝐖𝑖,𝑗) be in the Hardy algebra 𝐹∞(𝐃𝐟
𝐦). Then the noncommutative Berezin kernel satisfies the 

relations 

𝜑(𝑟𝑇𝑖,𝑗)𝐊𝐟 ,𝐓
∗ = 𝐊𝐟 ,𝐓

∗ (𝜑(𝑟𝐖𝑖,𝑗) ⊗ 𝐼ℋ) 
and 

𝜑(𝑟𝑇𝑖,𝑗)𝐊𝐟 ,𝐫𝐓
∗ = 𝐊𝐟 ,𝐫𝐓

∗ (𝜑(𝐖𝑖,𝑗) ⊗ 𝐼ℋ) 

for any 𝑟 ∈  [0, 1). 
Proof: Due to Theorem (4.1.11), we have 

𝑇𝑖,𝑗𝐊𝐟 ,𝐓
∗ = 𝐊𝐟 ,𝐓

∗ (𝐖𝑖,𝑗⊗ 𝐼ℋ) 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. Hence, using Theorem (4.1.12) and part (i) of Lemma 

(4.1.16), we deduce that 

𝜑(𝑟𝑇𝑖,𝑗) = ∑ ∑ 𝑟𝑞𝑐𝛽1,…,𝛽𝑘  𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛽1|+⋯+|𝛽𝑘|=𝑞

∞

𝑞=0

 

converges in the operator norm topology and 𝜑(𝑟𝑇𝑖,𝑗)𝐊𝐟 ,𝐓
∗ = 𝐊𝐟 ,𝐓

∗ (𝜑(𝑟𝐖𝑖,𝑗) ⊗ 𝐼ℋ) for all 𝑟 ∈

 [0, 1). Now, we prove the second part of this lemma. Using again Theorem (4.1.11), we obtain 

                                       Kf ,rT
∗ [𝑝(W𝑖,𝑗) ⊗ 𝐼ℋ] = 𝑝(𝑟𝑇𝑖,𝑗)Kf ,rT

∗                                     (19) 

for any polynomial 𝑝(𝐖𝑖,𝑗) and 𝑟 ∈  [0, 1). Since 𝑟𝐓 ∶=  (𝑟𝑇1, . . . , 𝑟𝑇𝑛) ∈ 𝐷𝑓
𝑚(ℋ) (see Theorem 

(4.1.4)), relation (17) and Theorem (4.1.12) imply 

𝜑(𝑟𝑡𝑇𝑖,𝑗) = lim
𝑛→∞

∑ ∑ (𝑟𝑡)𝑞𝑐𝛽1,…,𝛽𝑘  𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛽1|+⋯+|𝛽𝑘|=𝑞

𝑛

𝑞=0

,         𝑟, 𝑡 ∈  [0, 1), 

where the convergence is in the operator norm topology. Consequently, an approximation argument 

shows that relation (19) implies 

                     𝐊𝐟 ,𝐫𝐓
∗ [𝜑(𝑡𝐖𝑖,𝑗) ⊗ 𝐼ℋ] = 𝜑(𝑟𝑡𝑇𝑖,𝑗)𝐊𝐟 ,𝐫𝐓

∗     for  𝑟, 𝑡 ∈  (0, 1).            (20) 

On the other hand, let us prove that 

                                                        lim
𝑡→1

𝜑(𝑟𝑡𝑇𝑖,𝑗) = 𝜑(𝑟𝑇𝑖,𝑗),                                          (21) 

where the convergence is in the operator norm topology.  Notice that, due to relation (15), if 𝜖 >  0, 

there is 𝑚0 ∈  ℕ such that ∑ 𝑟2𝑝 ∑ (
𝑝1 − 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 − 𝑚𝑘  −  1
𝑚𝑘  −  1

) 𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞
𝑝=0 <

𝜖2

4𝑘2
,where 𝐾 ≔ ‖𝜑(𝐖𝑖,𝑗)(1)‖ . Since ∶=  (𝑇1, . . . , 𝑇𝑛)  ∈  𝐃𝐟

𝐦(ℋ) , Theorem (4.1.12) and relation 

(13) imply 

∑ 𝑏1,𝛽1
(𝑚1)⋯𝑏𝑘,𝛽𝑘

(𝑚𝑘) 𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘𝑇𝑘,𝛽𝑘
∗ ⋯𝑇1,𝛽1

∗

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘

 

≤ (
𝑝1 − 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 − 𝑚𝑘  −  1
𝑚𝑘  −  1

) 𝐼 

Now, as in the proof of Lemma (4.1.16), we can deduce that 
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∑ 𝑟𝑝
‖
‖

∑ ∑ 𝑐𝛽1,…,𝛽𝑘  𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛽1|=𝑝1,⋯,|𝛽𝑘|=𝑝𝑘

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

‖
‖

∞

𝑝=𝑚0

 

≤

(

 
 
∑ 𝑟2𝑝 ∑ (

𝑝1 + 𝑚1  −  1
𝑚1  −  1

)⋯(
𝑝𝑘 + 𝑚𝑘  −  1
𝑚𝑘  −  1

) 

𝑝1,…,𝑝𝑘 ∈N∪{0}
𝑝1+⋯+𝑝𝑘=𝑝

∞

𝑝=𝑚0

)

 
 

1/2

‖𝜑(𝐖𝑖,𝑗)(1)‖ 

≤
𝜖

2
 . 

Consequently, setting 𝑇(𝛽) ∶= 𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘  , there exists 0 <  𝑑 <  1 such that 

‖
‖
∑ ∑ (𝑟𝑡)|𝛽1|+⋯+|𝛽𝑘|𝑐𝛽1,…,𝛽𝑘  𝑇(𝛽)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|=𝑝

∞

𝑝=0

−∑ ∑ 𝑟|𝛽1|+⋯+|𝛽𝑘|𝑐𝛽1,…,𝛽𝑘  𝑇(𝛽)
𝛽1∈𝔽𝑛1

+ ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛽1|+⋯+|𝛽𝑘|=𝑝

∞

𝑝=0
‖
‖

 

≤ 𝜖 +
‖
‖
∑ 𝑟𝑝(𝑡𝑝 − 1) ∑ 𝑐𝛽1,…,𝛽𝑘  𝑇(𝛽)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|=𝑝

𝑚0−1

𝑝=1
‖
‖
‖𝜑(𝐖𝑖,𝑗)(1)‖ 

≤ 2𝜖 

for any 𝑡 ∈  (𝑑, 1). Hence, we deduce relation (21). On the other hand, due to Lemma (4.1.16), we 

have 𝜑(𝐖𝑖,𝑗) = SOT-lim
𝑡→1

𝜑(𝑡𝐖𝑖,𝑗). Since the map 𝑌 ⟼ 𝑌⊗ 𝐼ℋ is SOT-continuous on bounded 

sets, we deduce that 

                                    [SOT − lim
𝑡→1
[𝜑(𝑡𝐖𝑖,𝑗) ⊗ 𝐼ℋ] = 𝜑(𝐖𝑖,𝑗) ⊗ 𝐼ℋ .                  (22) 

Consequently, using relation (21) and passing to limit in (20), as 𝑡 →  1, we complete the proof. 

In what follows we show that the restriction of the noncommutative Berezin transform to the Hardy 

algebra 𝐹∞(𝐃𝐟
𝐦) provides a functional calculus associated with each pure tuple of operators in the 

noncommutative domain 𝐃𝐟
𝐦(ℋ). Moreover, we obtain a Fatou type result. 

Theorem (4.1.18) [186]: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be a pure 𝑘-tuple in the noncommutative 

polydomain 𝐃𝐟
𝐦(ℋ) and define the map 

Ψ𝐓 ∶  𝐹
∞(𝐃𝐟

𝐦)  →  𝐵(ℋ) 𝑏𝑦 Ψ𝐓(𝜑) ∶=  𝐁𝐓[𝜑], 
 Where 𝐁𝐓 is the noncommutative Berezin transform at 𝐓 ∈ 𝐃𝐟

𝐦(ℋ). Then 

     (i) Ψ𝐓 is WOT-continuous (resp. SOT-continuous) on bounded sets; 

    (ii) Ψ𝐓 is a unital completely contractive homomorphism and 

Ψ𝐓(𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘
) =  𝑇1,𝛽1⋯𝑇𝑘,𝛽𝑘 ,           𝛽𝑖  ∈ 𝔽𝑛𝑖

+  , 𝑖 ∈  {1, . . . , 𝑘} 

(iii) for any 𝜑(𝐖𝑖,𝑗) ∈ 𝐹
∞(𝐃𝐟

𝐦), 

𝐁𝑟𝐓[𝜑(𝐖𝑖,𝑗)]  =  𝜑(𝑟𝑇𝑖,𝑗)  =  𝐁𝐓[𝜑(𝑟𝐖𝑖,𝑗)] 

and 

Ψ𝐓(𝜑(𝐖𝑖,𝑗)) =  SOT − lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗). 

Proof: Since   

         Ψ𝐓(𝜑(𝐖𝑖,𝑗)) =  𝐊𝐟,𝐓
∗ (𝜑(𝐖𝑖,𝑗)) ⊗ 𝐼ℋ)𝐊𝐟,𝐓,       𝜑(𝐖𝑖,𝑗) ∈ 𝐹

∞(𝐃𝐟
𝐦),         (23) 

using standard facts in functional analysis, we deduce part (i).  

     Now, we prove part (ii). Since T is pure, Theorem (4.1.11) shows that 𝐊𝐟,𝐓 is an isometry. 

Consequently, relation (23) implies 

‖[Ψ𝐓(𝜑𝑖,𝑗)]𝑘×𝑘
‖ ≤ ‖[𝜑𝑖,𝑗]𝑘×𝑘

‖ 
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for any operator-valued matrix [𝜑𝑖,𝑗]𝑘×𝑘
 in 𝑀𝑘×𝑘(𝐹

∞(𝐃𝐟
𝐦)), which proves that Ψ𝐓 is a unital 

completely contractive linear map. Due to Theorem (4.1.12), Ψ𝐓 is a homomorphism on the set 

𝒫(𝐖) of polynomials in {𝐖𝑖,𝑗}. By Proposition (4.1.15), the polynomials in 𝐖𝑖,𝑗 and the identity 

are sequentially WOT-dense in 𝐹∞(𝐃𝐟
𝐦). On the other hand, due to part (i), Ψ𝑇 is WOT- continuous 

on bounded sets. Using the principle of uniform boundedness we deduce that Ψ𝑇 is also a 

homomorphism on 𝐹∞(𝐃𝐟
𝐦). 

    Due to Lemma (4.1.17) and taking into account that 𝐊𝐟,𝐓 and 𝐊𝐟,r𝐓 are isometries, we have 

𝐁𝑟𝐓[𝜑(𝐖𝑖,𝑗)]  = 𝐊𝐟,r𝐓
∗ (𝜑(𝐖𝑖,𝑗))  ⊗  𝐼) 𝐊𝐟,r𝐓 

= 𝜑(𝑟𝑇𝑖,𝑗) = 𝐊𝐟,𝐓
∗ (𝜑(𝑟𝐖𝑖,𝑗))  ⊗  𝐼) 𝐊𝐟,𝐓 

= 𝐁𝐓[𝜑(𝑟𝐖𝑖,𝑗)]. 

Now, due to relation (22) we have 

SOT − lim
𝑡→1
[𝜑(𝑡𝐖𝑖,𝑗) ⊗ 𝐼ℋ] = 𝜑(𝐖𝑖,𝑗) ⊗ 𝐼ℋ 

Hence, and using the equalities above, we deduce that 
𝐁𝐓[𝜑(𝐖𝑖,𝑗)] ∶= 𝐊𝐟,𝐓

∗ (𝜑(𝐖𝑖,𝑗))  ⊗  𝐼) 𝐊𝐟,𝐓 

=  SOT − lim
𝑟→1

𝐊𝐟,𝐓
∗ (𝜑(𝑟𝐖𝑖,𝑗))  ⊗  𝐼) 𝐊𝐟,𝐓 

=  SOT − lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗) 

This completes the proof.  

We say that 𝐓 =  (𝑇1, . . . , 𝑇𝑘)  ∈  𝐷𝑓
𝑚(ℋ) is completely non-coisometric if there is no ℎ ∈ ℋ, ℎ ≠

0 such that 

〈(𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )⋯ (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 )(𝐼ℋ)ℎ, ℎ〉 =  0 

for any (𝑞1, . . . , 𝑞𝑘)  ∈  ℕ
𝑘 . This is equivalent to the condition   

lim
𝑞=(𝑞1,...,𝑞𝑘) ∈ ℕ

𝑘
〈(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )⋯ (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 )(𝐼ℋ)ℎ, ℎ〉 =  0. 

In what follows we present an 𝐹∞(𝐃𝐟
𝐦)-functional calculus for the completely non-coisometric part 

of the noncommutative polydomain 𝐃𝐟
𝐦(ℋ). 

Theorem (4.1.19) [186]: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be a completely non-coisometric k-tuple in the 

noncommutative polydomain 𝐃𝐟
𝐦(ℋ). Then 

Φ(𝜑) ∶= SOT − lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗) , 𝜑 =  𝜑(𝐖𝑖,𝑗)  ∈ 𝐹
∞(𝐃𝐟

𝐦), 

exists in the strong operator topology and defines a map Φ ∶  𝐹∞(𝐃𝐟
𝐦)  →  𝐵(ℋ) with the following 

properties: 

  (i) Φ(𝜑) ∶= SOT − lim
𝑟→1

𝐁𝑟𝐓[𝜑], where 𝐁𝑟𝐓 is the noncommutative Berezin transform at 𝑟𝐓 ∈

𝐃𝐟
𝐦(ℋ); 

 (ii) Φ is WOT-continuous (resp. SOT-continuous) on bounded sets; 

(iii) Φ is a unital completely contractive homomorphism. 

Proof: According to Theorem (4.1.4),  𝑟𝐓 ∈ 𝐃𝐟
𝐦(ℋ) and 𝑟𝐖 ∈ 𝐃𝐟

𝐦(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  for any 𝑟 ∈

 [0, 1). Due to relations (18) and (22), we have  
SOT − lim

𝑡→1
[𝜑(𝑡𝐖𝑖,𝑗) ⊗ 𝐼ℋ] = 𝜑(𝐖𝑖,𝑗) ⊗ 𝐼ℋ. Taking the limit in the first relation of Lemma 

(4.1.17), as 𝑟 →  1, we deduce that the map Λ ∶ range 𝐊𝐟,𝐓
∗ → ℋ given by Λ𝑦 ∶= lim

𝑟→1
𝜑(𝑡𝑇𝑖,𝑗) 𝑦,

𝑦 ∈ range 𝐊𝐟,𝐓
∗ , is well-defined, linear, and  

‖Λ𝐊𝐟,𝐓
∗ 𝑥‖ ≤ lim sup

𝑟→1
‖𝜑(𝑟𝑇𝑖,𝑗)‖‖𝐊𝐟,𝐓

∗ 𝑥‖ ≤ ‖𝜑(𝐖𝑖,𝑗)‖‖𝐊𝐟,𝐓
∗ 𝑥‖ 

for any 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ. 

Since 𝑇 =  (𝑇1, . . . , 𝑇𝑘) is completely non-coisometric, Theorem (4.1.11) implies that the 

noncommutative Berezin kernel 𝐊𝐟,𝐓 is one-to-one and, therefore, the range of 𝐊𝐟,𝐓
∗  is dense in ℋ. 

Consequently, the map Λ has a unique extension to a bounded linear operator on ℋ, denoted also 

by Λ, with ‖Λ‖  ≤ ‖𝜑(𝐖𝑖,𝑗)‖. We show that 

                                       lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗) ℎ =  Λℎ   for any  ℎ ∈  ℋ.                                (24) 
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Let ℎ ∈  ℋ and let {𝑦𝑘}𝑘=1
∞  be a sequence of vectors in the range of 𝐊𝐟,𝐓

∗ , which converges to ℎ. 

According to Theorem (4.1.12) and relations (17), (18), we have 

‖𝜑(𝑟𝑇𝑖,𝑗)‖ ≤ ‖𝜑(𝑟𝐖𝑖,𝑗)‖ ≤ ‖𝜑(𝐖𝑖,𝑗)‖ 

for any 𝑟 ∈  [0, 1). Note that 

‖Λℎ − 𝜑(𝑟𝑇𝑖,𝑗))‖ ≤ ‖Λℎ − Λ𝑦𝑘‖ + ‖Λ𝑦𝑘 − 𝜑(𝑟𝑇𝑖,𝑗))𝑦𝑘‖ + ‖𝜑(𝑟𝑇𝑖,𝑗))𝑦𝑘 − 𝜑(𝑟𝑇𝑖,𝑗))ℎ‖ 

≤ 2‖𝜑(𝐖𝑖,𝑗)‖‖ℎ − 𝑦𝑘‖ + ‖Λ𝑦𝑘 − 𝜑(𝑟𝑇𝑖,𝑗))𝑦𝑘‖. 

Consequently, since lim
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗) 𝑦𝑘 =  Λy𝑘, relation (24) follows. Due to Lemma (4.1.17), we have 

                                      𝜑(𝑟𝑇𝑖,𝑗) = 𝐊𝐟,𝑟𝐓
∗ [𝜑(𝐖𝑖,𝑗) ⊗ 𝐼ℋ]𝐊𝐟,𝑟𝐓,                                      (25) 

which together with relation (24) imply part (i) of the theorem. 

Now we prove part (ii). Since ‖𝜑(𝑟𝑇𝑖,𝑗)‖ ≤ ‖𝜑(𝐖𝑖,𝑗)‖ we deduce that ‖Φ(𝜑)‖ ≤ ‖𝜑‖ for 𝜑 ∈

𝐹∞(𝐃𝐟
𝐦). Taking 𝑟 →  1 in the first relation of Lemma (4.1.14) and using the first part of this 

theorem, we obtain 

                                        Φ(𝜑)𝐊𝐟,𝐓
∗ = 𝐊𝐟,𝐓

∗ (𝜑 ⊗  𝐼),    𝜑 ∈ 𝐹∞(𝐃𝐟
𝐦).                                (26) 

If {𝑔𝜄} be a bounded net in 𝐹∞(𝐃𝐟
𝐦) such that 𝑔𝜄  →  𝑔 ∈  𝐹∞(𝐃𝐟

𝐦) in the weak (resp. strong) 

operator topology, then 𝑔𝜄  ⊗  𝐼 converges to 𝑔 ⊗  𝐼 in the same topologies. By relation (26), we 

have Φ(𝑔𝜄)𝐊𝐟,𝐓
∗ = 𝐊𝐟,𝐓

∗ (𝑔𝜄⊗  𝐼). Since the range of 𝐊𝐟,𝐓
∗  is dense in ℋ and {Φ(𝑔𝜄)} is bounded, an 

approximation argument shows that Φ(𝑔𝜄)  →  Φ(𝑔) in the weak (resp. strong) operator topology. 

     Now, we prove (iii). Relation (25) and the fact that 𝐊𝐟,𝑟𝐓 is an isometry for 𝑟 ∈  [0, 1) imply 

‖[𝜑𝑠𝑡(𝑟𝑇𝑖,𝑗)]𝑘×𝑘‖ ≤ ‖[𝜑𝑠𝑡]𝑘×𝑘‖ 

for any operator-valued matrix [𝜑𝑠𝑡]𝑘×𝑘 ∈ 𝑀𝑘×𝑘𝐹
∞(𝐃𝐟

𝐦) and 𝑟 ∈  [0, 1).  Hence, and using the 

fact that Φ(𝜑𝑠𝑡) =  SOT − lim
𝑟→1

𝜑𝑠𝑡(𝑟𝑇𝑖,𝑗), we deduce that Φ is completely contractive map. Due to 

Theorem (4.1.12), Φ is a homomorphism on polynomials in 𝐖𝑖,𝑗 and the identity. Since, due to 

Proposition (4.1.15), these polynomials are sequentially WOT-dense in 𝐹∞(𝐃𝐟
𝐦) and Φ is WOT-

continuous on bounded sets, we deduce part (iii) of the theorem. The proof is complete. 

    We introduce the algebra 𝐻𝑜𝑙(𝐃𝐟,rad
𝐦 ) of all free holomorphic functions on the abstract radial 

poly-domain 𝐃𝐟,rad
𝐦 . We identify the polydomain algebra 𝒜(𝐃𝐟

𝐦) and the Hardy algebra 𝐹∞(𝐃𝐟
𝐦) 

with subalgebras of 𝐻𝑜𝑙(𝐃𝐟,rad
𝐦 ). 

For each 𝑖 ∈  {1, . . . , 𝑘}, let 𝑍𝑖 ∶=  (𝑍𝑖,1, . . . , 𝑍𝑖,𝑛𝑖) be an 𝑛𝑖-tuple of noncommuting indeterminates 

and assume that, for any 𝑝, 𝑞 ∈  {1, . . . , 𝑘}, 𝑝 ≠ 𝑞, the entries in 𝑍𝑝 are commuting with the entries 

in 𝑍𝑞. We set 𝑍𝑖,𝛼𝑖 ∶= 𝑍𝑖,𝑗1⋯𝑍𝑖,𝑗𝑝 if 𝛼𝑖  ∈ 𝔽𝑛𝑖
+  and 𝛼𝑖  =  𝑔𝑗1

𝑖 ⋯𝑔𝑗𝑝
𝑖  , and 𝑍𝑖,𝑔0𝑖

∶=  1, where 𝑔0
𝑖  is the 

identity in 𝔽𝑛𝑖
+  . We consider formal power series 

𝜑 = ∑ 𝑎𝛼1 ,...,𝛼𝑘𝑍1,𝛼1⋯𝑍𝑘,𝛼𝑘
𝛼1∈𝔽𝑛𝑖

+  ,...,𝛼𝑘∈𝔽𝑛𝑖
+

 ,         𝑎𝛼1 ,...,𝛼𝑘 ∈  ℂ, 

in ideterminates 𝑍𝑖,𝑗 .  Denoting (𝛼): = (𝑎𝛼1 ,...,𝛼𝑘) ∈ 𝔽𝑛1
+ ×⋯× 𝔽𝑛𝑘

+ , 𝑍(𝛼): =  𝑍1,𝛼1⋯𝑍𝑘,𝛼𝑘  , and 

(𝛼): = (𝑎𝛼1 ,...,𝛼𝑘), we can also use the abbreviation 𝜑 = ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼) . 

Given a Hilbert space ℋ, we introduce the radial polydomain 

𝐃𝐟,rad
𝐦 (ℋ) ∶= ⋃ 𝑟𝐃𝐟

𝐦(ℋ)

0≤𝑟<1

 ⊆  𝐃𝐟
𝐦(ℋ). 

A formal power series 𝜑, having the representation above, is called free holomorphic function on 

the abstract radial polydomain 𝐃𝐟,rad
𝐦 ∶=  {𝐃𝐟,rad

𝐦 (ℋ):ℋ is a Hilbert space} if the series 

𝜑(𝑋𝑖,𝑗) ∶= ∑ ∑ 𝑎(𝛼)𝑋(𝛼)
(𝛼)∈𝔽𝑛1

+ ×⋯×𝔽𝑛𝑘
+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞

𝑞=0

 

is convergent in the operator norm topology for any 𝑋 =  (𝑋𝑖,𝑗)  ∈ 𝐃𝐟,rad
𝐦 (ℋ) with 𝑖 ∈

 {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and any Hilbert space ℋ. We denote by 𝐻𝑜𝑙(𝐃𝐟,rad
𝐦 ) the set of all free 

holomorphic functions on the abstract radial polydomain 𝐃𝐟,rad
𝐦 . 
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Lemma (4.1.20) [186]: LetQ= ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+  be a formal power series and let 𝐖 =

 {𝐖𝑖,𝑗} be the universal model associated with the abstract noncommutative polydomain 𝐃𝐟
𝐦. Then 

the following statements are equivalent. 

     (i) 𝜑 is a free holomorphic function on the abstract radial polydomain 𝐃𝐟,rad
𝐦 . 

    (ii) For any 𝑟 ∈  [0, 1), the series 

𝜑(𝑟𝐖𝑖,𝑗):= ∑ ∑ 𝑎(𝛼)𝑟
|𝛼1|+⋯+|𝛼𝑘|𝐖(𝛼)

(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞

𝑞=0

 

           is convergent in the operator norm topology. 

   (iii) The inequality 

lim sup
𝑛→∞ ‖

‖
∑ 𝑎(𝛼)𝐖(𝛼)

(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑛

‖
‖

1/𝑛

≤ 1. 

Proof: The equivalence of (i) with (ii) is due to Theorem (4.1.12). Using standard arguments, one 

can easily prove that (ii) is equivalent to (iii). 

       We remark that the coefficients of a free holomorphic function are uniquely determined by its 

representation on an infinite dimensional Hilbert space. Indeed, under the above notations, let 0 <

 𝑟 <  1 and assume that 𝜑(𝑟𝐖𝑖,𝑗) = 0. Taking into account relation (8), we have 

〈𝜑(𝑟𝐖𝑖,𝑗)1,𝐖(𝛼)1 〉  = 𝑟
|𝛼1|+⋯+|𝛼𝑘|𝑎(𝛼)

1

𝑏1,𝛼1
(𝑚1)

⋯
1

𝑏𝑘,𝛼𝑘
(𝑚𝑘)

=  0 

for any (𝛼)  =  (𝛼1 , . . . , 𝛼𝑘)  ∈ 𝔽𝑛1
+ ⊗⋯⊗𝔽𝑛𝑘

+ . Therefore 𝑎(𝛼) = 0, which proves our assertion.

  

       Due to Lemma (4.1.20), if 𝜑 ∈ 𝐻𝑜𝑙(𝐃𝐟,rad
𝐦 ), then 𝜑(𝑟𝐖𝑖,𝑗) is in the domain algebra 𝒜(𝐃𝐟

𝐦) for 

any 𝑟 ∈  [0, 1). Using the results from the previous, one can see that 𝐻𝑜𝑙(𝐃𝐟,rad
𝐦 ) is an algebra. Let 

𝐻∞(𝐃𝐟,rad
𝐦 ) denote the set of all elements 𝜑 in 𝐻𝑜𝑙(𝐃𝐟,rad

𝐦 ) such that 

‖𝜑‖∞ ∶= sup‖𝜑(𝑋𝑖,𝑗)‖ <  ∞, 

where the supremum is taken over all (𝑋𝑖,𝑗) ∈ 𝐃𝐟,rad
𝐦 (ℋ) and any Hilbert space ℋ. One can show 

that 𝐻∞(𝐃𝐟,rad
𝐦 ) is a Banach algebra under pointwise multiplication and the norm ‖∙‖∞. For each 

𝑝 ∈  ℕ, we define the norms ‖∙‖𝑝 ∶  𝑀𝑝×𝑝 (𝐻∞(𝐃𝐟,rad
𝐦 )) →  [0,∞) by setting 

‖[𝜑𝑠𝑡]𝑝×𝑝‖ ≔ sup‖[𝜑𝑠𝑡(𝑋𝑖,𝑗)]𝑝×𝑝‖, 

where the supremum is taken over all (𝑋𝑖,𝑗) ∈ 𝐃𝐟,rad
𝐦 (ℋ) and any Hilbert space ℋ. It is easy to see 

that the norms ‖∙‖𝑝, 𝑝 ∈ ℕ, determine an operator space structure on 𝐻∞(𝐃𝐟,rad
𝐦 ), in the sense of 

Ruan ([31]). Let 𝜑 be a free holomorphic function on the abstract radial polydomain Dmf,rad. Note 

that if 0 <  𝑟1  <  𝑟2  <  1, then 𝑟1𝐃𝐟
𝐦(ℋ)  ⊂  𝑟2𝐃𝐟

𝐦(ℋ) ⊂ 𝐃𝐟
𝐦(ℋ). Since 𝜑(𝑟2𝑋𝑖,𝑗) is in the 

polydomain algebra 

𝒜(𝐃𝐟
𝐦), Theorem (4.1.12) implies ‖𝜑(𝑟𝑟2𝐖𝑖,𝑗)‖ ≤ ‖𝜑(𝑟2𝐖𝑖,𝑗)‖ for any 𝑟 ∈  [0, 1). Taking 𝑟 ∶=

𝑟1

𝑟2
, we deduce that 

‖𝜑(𝑟1𝐖𝑖,𝑗)‖ ≤ ‖𝜑(𝑟2𝐖𝑖,𝑗)‖. 

On the other hand, if 0 <  𝑟 <  1, then we can use again Theorem (4.1.12) to show that the 

mapping 𝑔: 𝑟𝐃𝐟
𝐦(ℋ)  →  𝐵(ℋ) defined by 

𝑔(𝑋𝑖,𝑗):= 𝜑(𝑋𝑖,𝑗),      (𝑋𝑖,𝑗)  ∈  𝑟𝐃𝐟
𝐦(ℋ), 

is continuous and ‖𝑔(𝑋𝑖,𝑗)‖  ≤  ‖𝑔(𝑟𝐖𝑖,𝑗)‖. Moreover, the series defining 𝑔 converges uniformly 

on 𝑟𝐃𝐟
𝐦(ℋ) in the operator norm topology. 
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Given 𝜑 ∈ 𝐹∞(𝐃𝐟
𝐦) and a Hilbert space ℋ, the noncommutative Berezin transform associated with 

the abstract noncommutative polydomain 𝐃𝐟
𝐦 generates a function whose representation on ℋ is 

𝐁[𝜑] ∶ 𝐃𝐟,rad
𝐦 (ℋ)  →  𝐵(ℋ) 

defined by 

𝐁[𝜑](𝑋𝑖,𝑗):=  𝐁𝑋  [𝜑],             𝑋 ∶=  (𝑋𝑖,𝑗)  ∈ 𝐃𝐟,rad
𝐦 (ℋ), 

where 𝐁𝑋 is the Berezin transform at 𝑋. We call 𝐁[𝜑] the Berezin transform of 𝜑. In what follows, 

we identify the noncommutative algebra 𝐹∞(𝐃𝐟
𝐦) with the Hardy subalgebra 𝐻∞(𝐃𝐟,rad

𝐦 ) of 

bounded free holomorphic functions on 𝐃𝐟,rad
𝐦 . 

Theorem (4.1.21) [186]: The map Φ ∶ 𝐻∞(𝐃𝐟,rad
𝐦 )  →  𝐹∞(𝐃𝐟

𝐦) defined by  

Φ(∑𝑎(𝛼)𝑍(𝛼)
(𝛼)

)  ∶= ∑𝑎(𝛼)𝐖(𝛼)

(𝛼)

 

is a completely isometric isomorphism of operator algebras. Moreover, if 𝑔 ∶=  ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)  is a 

free holomorphic function on the abstract radial polydomain 𝐃𝐟,rad
𝐦 , then the following statements 

are equivalent:  

     (i) 𝑔 ∈  𝐻∞(𝐃𝐟,rad
𝐦 );       

    

    (ii) sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ < ∞, where 𝑔(𝑟𝐖𝑖,𝑗):=

∑ ∑ 𝑟𝑞𝑎(𝛼)𝐖(𝛼)(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞
𝑞=0 ;       

   (iii) there exists 𝜑 ∈ 𝐹∞(𝐃𝐟
𝐦) with 𝑔 =  𝐁[𝜑], where B is the noncommutative Berezin 

transform associated with the abstract polydomain 𝐃𝐟
𝐦.     

In this case,          

   

Φ(𝑔) =  SOT − lim
𝑟→1

𝑔(𝑟𝐖𝑖,𝑗),    Φ
−1(𝜑)  =  𝐵[𝜑], 𝜑 ∈ 𝐹∞(𝐃𝐟

𝐦), 

and          

   

‖Φ(𝑔)‖  = sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ = lim
𝑟→1
‖𝑔(𝑟𝐖𝑖,𝑗)‖ 

Proof: To show that the map Φ is well-defined, let 𝑔 ∶= ∑ 𝑎(𝛽)𝑍(𝛽)(𝛽)  be in the Hardy algebra 

𝐻∞(𝐃𝐟,rad
𝐦 ).  

Since (𝑟𝐖𝑖,𝑗) ∈ 𝐃𝐟,rad
𝐦 (𝐹2(𝐻𝑛)), Lemma (4.1.20) shows that 𝑔(𝑟𝐖𝑖,𝑗) is well-defined for any 𝑟 ∈

 [0, 1) and sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ ≤ ‖𝑔‖∞ <  ∞. We need to show that 𝑔(𝐖𝑖,𝑗) ∶= ∑ 𝑎(𝛽)𝐖(𝛽)(𝛽)  is the 

Fourier representation of an element in 𝐹∞(𝐃𝐟
𝐦). Taking into account relation (8), we deduce that

    

∑ 𝑟|𝛽1|+⋯+|𝛽𝑘||𝑎𝛽1,…,𝛽𝑘|
2

1

𝑏1,𝛽1
(𝑚1)⋯𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+

= ‖𝑔(𝑟𝐖𝑖,𝑗)(1)‖ ≤ sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ <  ∞ 

for any 0 ≤  𝑟 <  1. Consequently, ∑ |𝑎𝛽1,…,𝛽𝑘|
2 1

𝑏
1,𝛽1

(𝑚1)⋯𝑏
𝑘,𝛽𝑘

(𝑚𝑘)𝛽1∈𝔽𝑛1
+ ,…,𝛽𝑘∈𝔽𝑛𝑘

+ < ∞ As in the latter 

relation implies that 𝑔(𝐖𝑖,𝑗)𝑝 is in the tensor product ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) for any polynomial 𝑝 ∈

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) Now assume that 𝑔(𝐖𝑖,𝑗) ∉ 𝐹

∞(𝐃𝐟
𝐦). According to the definition of 𝐹∞(𝐃𝐟

𝐦), for 

any fixed positive number 𝑀 , there exists a polynomial 𝑞 ∈⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) with ‖𝑞‖ = 1 such that 

‖𝑔(𝐖𝑖,𝑗)𝑞‖  >  𝑀. Since ‖𝑔(𝑟𝐖𝑖,𝑗)(1) − 𝑔(𝐖𝑖,𝑗)(1)‖ →  0 as 𝑟 →  1, we have ‖𝑔(𝐖𝑖,𝑗)𝑞 −

𝑔(𝑟𝐖𝑖,𝑗)𝑞‖ → 0, as 𝑟 →  1. Consequently, there is 𝑟0 ∈ (0, 1) such that ‖𝑔(𝑟0𝐖𝑖,𝑗)𝑞‖ >  𝑀 , 

which implies ‖𝑔(𝑟0𝐖𝑖,𝑗)‖ >  𝑀. This contradicts the fact that sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ <  ∞. Therefore, 

𝑔(𝐖𝑖,𝑗)  ∈ 𝐹
∞(𝐃𝐟

𝐦), which proves that the map Φ is well-defined. 
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       Moreover, due to Theorem (4.1.12) , we have ‖𝑔(𝑋𝑖,𝑗))‖ ≤ ‖𝑔(𝑟𝐖𝑖,𝑗)‖ for any (𝑋𝑖,𝑗) ∈

 𝑟𝐃𝐟
𝐦(ℋ). Using now Lemma (4.1.16), we deduce that 

‖𝑔(𝐖𝑖,𝑗)‖ = sup
0≤𝑟<1

‖𝑔(𝑟𝐖𝑖,𝑗)‖ = ‖𝑔‖∞ 

and 

Φ(𝑔) =  𝑔(𝐖𝑖,𝑗) =  SOT − lim
𝑟→1

𝑔(𝑟𝐖𝑖,𝑗) . 

Therefore, Φ is a well-defined isometric linear map. We show now that Φ is a surjective map. To 

this end, let 𝜑(𝐖𝑖,𝑗) ∶= ∑ 𝑎(𝛽)𝐖(𝛽)(𝛽)  be in 𝐹∞(𝐃𝐟
𝐦). Using Lemma (4.1.16) and Theorem 

(4.1.20), we deduce that 𝑔 ∶=  ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)  is a free holomorphic function on the noncommutative 

domain 𝐃𝐟,𝐫𝐚𝐝
𝐦  and 

‖𝑔(𝑋𝑖,𝑗)‖ ≤ ‖𝑔(𝑟𝐖𝑖,𝑗)‖ ≤  ‖𝑔(𝐖𝑖,𝑗)‖ 

for any (𝑋𝑖,𝑗)  ∈  𝑟𝐃𝐟
𝐦(ℋ) and 𝑟 ∈  [0, 1). Hence, we deduce that  

sup
(𝑋𝑖,𝑗)∈𝐃𝐟,𝐫𝐚𝐝

𝐦 (ℋ)
‖𝑔(𝑋𝑖,𝑗)‖ ≤ ‖𝑔(𝐖𝑖,𝑗)‖ <  ∞, 

which proves that 𝑔 ∈  𝐻∞(𝐃𝐟,𝐫𝐚𝐝
𝐦 ). This shows that the map Φ is surjective. Therefore, we have 

proved that Φ is an isometric isomorphism of operator algebras. Using the same techniques and 

passing to matrices, one can prove that Φ is a completely isometric isomorphism. Moreover, note 

that if 𝑋 ∶=  (𝑋𝑖,𝑗)  ∈  𝐃𝐟,𝐫𝐚𝐝
𝐦 , then there is 𝑟 ∈  (0, 1) such that 𝑋 =  𝑟𝑌 with 𝑌 =  (𝑌𝑖,𝑗)  ∈

𝐃𝐟
𝐦(ℋ). Applying Theorem (4.1.18) part (iii), we deduce that 𝜑(𝑋)  =  𝐁𝑋[𝜑]. Now, the 

equivalences mentioned in the theorem can be easily deduced from the considerations above. The 

proof is complete. 

      For the rest, we assume that 𝐃𝐟
𝐦(ℋ) is closed in the operator norm topology for any Hilbert 

space ℋ. Then we have 𝐃𝐟,𝐫𝐚𝐝
𝐦 (𝑯)− = 𝐃𝐟

𝐦(ℋ). Note that the interior of 𝐃𝐟
𝐦(ℋ), which we denote 

by 𝐼𝑛𝑡(𝐃𝐟
𝐦(ℋ)), is a subset of 𝐃𝐟,𝐫𝐚𝐝

𝐦 . We remark that if 𝑞 =  (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive 

regular noncommutative polynomials, then 𝐃𝐟
𝐦 is closed in the operator norm topology. 

    We denote by 𝐴(𝐃𝐟,𝐫𝐚𝐝
𝐦 ) the set of all elements 𝑔 in 𝐻𝑜𝑙(𝐃𝐟,𝐫𝐚𝐝

𝐦 ) such that the mapping  

𝐃𝐟,𝐫𝐚𝐝
𝐦 (ℋ) ∋  (𝑋𝑖,𝑗) ⟼ 𝑔(𝑋𝑖,𝑗)  ∈  𝐵(ℋ) 

has a continuous extension to [𝐃𝐟,𝐫𝐚𝐝
𝐦 (ℋ)]

−
 =  𝐃𝐟

𝐦(ℋ) for any Hilbert space ℋ. One can show 

that 𝐴(𝐃𝐟,𝐫𝐚𝐝
𝐦 (ℋ)) is a Banach algebra under pointwise multiplication and the norm ‖∙‖∞, and it has 

an operator space structure under the norms ‖∙‖𝑝, 𝑝 ∈ ℕ. Moreover, we can identify the 

polydomain algebra 𝐴(𝐃𝐟
𝐦) with the subalgebra 𝐴(𝐃𝐟,𝐫𝐚𝐝

𝐦 ). Using Theorem (4.1.12), Theorem 

(4.1.21), and an approximation argument, one can obtain the following result. 

Corollary (4.1.22) [186]: The map Φ ∶  𝐴(𝐃𝐟,𝐫𝐚𝐝
𝐦 )  →  𝒜(𝐃𝐟

𝐦) defined by  

Φ(∑𝑎(𝛼)𝑍(𝛼)
(𝛼)

) :=∑𝑎(𝛼)𝐖(𝛼)

(𝛼)

 

is a completely isometric isomorphism of operator algebras. Moreover, if 𝑔 ∶= ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)  is a 

free holomorphic function on the abstract radial polydomain 𝐃𝐟,𝐫𝐚𝐝
𝐦 , then the following statements 

are equivalent:  

     (i) 𝑔 ∈  𝐴(𝐃𝐟,𝐫𝐚𝐝
𝐦 ); 

    (ii) 𝑔(𝑟𝐖𝑖,𝑗):= ∑ ∑ 𝑟𝑞𝑎(𝛼)𝐖(𝛼)(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞
𝑞=0  is convergent in 

the norm  topology as 𝑟 →  1;  

   (iii) there exists 𝜑 ∈  𝐴(𝐃𝐟
𝐦) with 𝑔 =  𝐁[𝜑], where 𝐁 is the noncommutative  

           Berezin transform associated with the abstract polydomain 𝐃𝐟
𝐦. 

In this case, 

Φ(𝑔) = lim
𝑟→1

𝑔(𝑟𝐖𝑖,𝑗)     𝑎𝑛𝑑     Φ
−1(𝜑) =  𝐁[𝜑],   𝜑 ∈  𝒜(𝐃𝐟

𝐦). 

We remark that there is an important connection between the theory of free holomorphic functions 

on abstract radial polydomains 𝐃𝐟,𝐫𝐚𝐝
𝐦 , and the theory of holomorphic functions on polydomains in 
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ℂ𝑑. Indeed, consider the case when ℋ = ℂ𝑑 and 𝑝 =  1, 2 . . .. Then 𝐃𝐟
𝐦(ℂ𝑝) can be seen as a subset 

of ℂ(𝑛1+⋯+𝑛𝑘)𝑝
2
 with an arbitrary norm. We denote by 𝐼𝑛𝑡(𝐃𝐟

𝐦(ℂ𝑝)) the interior of the closed set 

𝐃𝐟
𝐦(ℂ𝑝). 

In the particular case when 𝑝 =  1, the interior 𝐼𝑛𝑡(𝐃𝐟
𝐦(ℂ𝑝)) is a Reinhardt domain, i.e., 

(𝜉𝑖,𝑗𝜆𝑖,𝑗)  ∈  𝐼𝑛𝑡(𝐃𝐟
𝐦(ℂ𝑝)) for any (𝜆𝑖,𝑗)  ∈  𝐼𝑛𝑡(𝐃𝐟

𝐦(ℂ)) and 𝜉𝑖,𝑗 ∈ 𝕋. Let 𝑀𝑝×𝑝(ℂ) denote the set 

of all 𝑝 ×  𝑝 matrices with entries in ℂ. 

Proposition (4.1.23) [186]: If 𝑝 ∈  ℕ and 𝜑 is a free holomorphic function on the abstract radial 

polydomain 𝐃𝐟,𝐫𝐚𝐝
𝐦 , then its representation on ℂ𝑝, i.e., the map �̂� defined by 

ℂ(𝑛1+⋯+𝑛𝑘)𝑝
2
⊃ 𝐃𝐟

𝐦(ℂ𝑝) ∋  (𝜆𝑖,𝑗) ⟼ 𝜑(𝜆𝑖,𝑗)  ∈ 𝑀𝑝×𝑝(ℂ) ⊂ ℂ
𝑝2  

is a holomorphic function on the interior of 𝐃𝐟
𝐦(ℂ𝑝). Moreover, the following statements hold: 

    (i) if 𝜑 ∈  𝐹∞(𝐃𝐟,𝐫𝐚𝐝
𝐦 ), then �̂� is bounded on the interior of 𝐃𝐟

𝐦(ℂ𝑝); 

   (ii) if 𝜑 ∈  𝐴(𝐃𝐟,𝐫𝐚𝐝
𝐦 ), then �̂� is continuous on 𝐃𝐟

𝐦(ℂ𝑝) and holomorphic on the  interior of 

𝐃𝐟
𝐦(ℂ𝑝). 

Proof: If 𝐾 is a compact subset in the interior of 𝐃𝐟
𝐦(ℂ𝑝), then there exists 𝑟 ∈  (0, 1) such that 

𝐾 ⊂ 𝑟𝐃𝐟
𝐦(ℂ𝑝). Indeed, if 𝜆 ∶=  (𝜆𝑖,𝑗)  ∈  𝐼𝑛𝑡(𝐃𝐟

𝐦(ℂ𝑝))  ⊂  ℂ(𝑛1+⋯+𝑛𝑘)𝑝
2
, then there exists 𝜖𝜆 >  0 

and 𝑟 ∈ (0, 1) such that 
1

𝑟𝜆
𝜇 ∈  𝐼𝑛𝑡(𝐃𝐟

𝐦(ℂ𝑝)) for any 𝜇 ∈  𝐵𝜖𝜆(𝜆) ∶=  {𝑧 ∈  ℂ
(𝑛1+⋯+𝑛𝑘)𝑝

2
: ‖𝜆 −

𝑧‖ < 𝜖𝜆}.  Since 𝐾 is a compact set and 𝐾 ⊂ ∪𝜆∈𝐾 𝐵𝜖𝜆(𝜆), there exists 𝜆1, . . . 𝜆𝑙 ∈ 𝐾 such that 𝐾 ⊂

 ∪𝑖=1
𝑙 𝐵𝜖𝜆𝑖

 (𝜆𝑖). 

Consequently, for any 𝜇 ∈  𝐾, we have 
1

𝑟𝜆𝑖
𝜇 ∈  𝐼𝑛𝑡(𝐃𝐟

𝐦(ℂ𝑝))  ⊂ 𝐃𝐟
𝐦(ℂ𝑝) for some 𝑖 ∈  {1, . . . , 𝑛}. 

Taking into account that 𝑟1𝐃𝐟
𝐦(ℂ𝑝) ⊂ 𝑟2𝐃𝐟

𝐦(ℂ𝑝) if 𝑟1, 𝑟2  ∈  (0, 1) and 𝑟1  ≤  𝑟2, we conclude that 

𝐾 ⊂  𝑟𝐃𝐟
𝐦(ℂ𝑝), where 𝑟 ∶= max{𝑟1, . . . , 𝑟𝑙}.   

       Note that if 𝜑 ∶= ∑ ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞
𝑞=0 , then     

‖
‖
𝜑(𝜆𝑖,𝑗) − ∑ 𝑎(𝛼)𝜆(𝛼)

(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|≤𝑛

‖
‖
≤ ∑

‖
‖

∑ 𝑟|𝛼1|+⋯+|𝛼𝑘|𝑎(𝛼)𝐖(𝛼)

(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑠

‖
‖

∞

𝑠=𝑛+1

 

for any (𝜆𝑖,𝑗)  ∈  𝐾.  Using, we deduce that ∑ 𝑎(𝛼)𝜆(𝛼)(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|≤𝑛

 

converges to 𝜑(𝜆𝑖,𝑗) uniformly on 𝐾, as 𝑛 → ∞.    Therefore, the map (𝜆𝑖,𝑗) ⟼ 𝜑(𝜆𝑖,𝑗) is 

holomorphic on the interior of 𝐃𝐟
𝐦(ℂ𝑝). Now, the items (i) and (ii) are consequences of Theorem 

(4.1.21) and Corollary (4.1.22). The proof is complete. 

       We remark that one can obtain versions of all the results in the setting of free holomorphic 

functions with operator-valued coefficients. Since the proofs are very similar we shall omit them. 

We also mention that, in the particular case when 𝑘 =  𝑚1  =  1 and 𝑓1  =  𝑍1 +⋯+ 𝑍𝑛, we 

recover some of the results concerning the free holomorphic functions on the unit ball of 𝐵(ℋ)𝑛 

(see [190], [205], [207]). 

      We obtain a Beurling type factorization and a characterization of the Beurling [212] type joint 

invariant subspaces under {𝑊𝑖,𝑗}. We also characterize the reducing subspaces under {𝑊𝑖,𝑗} and 

present several results concerning the model theory for pure elements in the noncommutative 

polydomain 𝐃𝐟
𝐦(ℋ). 

     We recall that a subspace ℋ ⊆  𝒦 is called co-invariant under 𝑆 ⊂  𝐵(𝒦) if 𝑋∗ℋ ⊆ ℋ for any 

𝑋 ∈  𝑆. 

Theorem (4.1.24) [186]: Let 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the abstract 

noncommutative domain 𝐃𝐟
𝐦. If 𝒦 be a Hilbert space and ℳ ⊆  (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒦 is a co-

invariant subspace under each operator 𝑊𝑖,𝑗⊗ 𝐼𝒦 for 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, then there 

exists a subspace ℰ ⊆ 𝒦 such that 
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span̅̅ ̅̅ ̅̅ {(𝐖1,𝛽1⋯𝐖𝑘,𝛽𝑘
⊗ 𝐼𝒦)ℳ ∶  𝛽1  ∈ 𝔽𝑛1

+ , . . . , 𝛽𝑘 ∈ 𝔽𝑛𝑘
+ } = (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ. 

Consequently, a subspace ℳ ⊆  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒦 is reducing under each operator 𝑊𝑖,𝑗⊗ 𝐼𝒦 

for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, if and only if there exists a subspace ℰ ⊆ 𝒦 such that  

ℳ = (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ. 

Proof: Define the subspace ℰ ⊆ 𝒦 by ℰ:= (𝐏ℂ⊗ 𝐼𝒦)ℳ, where 𝐏ℂ is the orthogonal projection 

from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖). Let 𝜑 be a nonzero element of ℳ with 

representation 

𝜑 = ∑ 𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘 ⊗ℎ𝛽1,...,𝛽1
𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+

, 

where ℎ𝛽1,...,𝛽1 ∈  𝒦 and ∑ ‖ℎ𝛽1,...,𝛽𝑘‖
2

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+ <  ∞.  Let 𝜎1 ∈ 𝔽𝑛1
+  , . . . , 𝜎𝑘 ∈ 𝔽𝑛𝑘

+  be such that 

ℎ𝜎1,...,𝜎𝑘 ≠ 0 and note that        

(𝐏ℂ⊗ 𝐼𝒦)(𝐖1,𝜎1
∗ ⋯𝐖𝑘,𝜎𝑘

∗ ⊗ 𝐼𝒦)𝜑 =  1 ⊗
1

√𝑏1,𝜎1
(𝑚1)

⋯
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

ℎ𝜎1,...,𝜎𝑘 . 

Consequently, since ℳ is a co-invariant subspace under 𝐖𝑖,𝑗⊗ 𝐼𝒦 for 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈

 {1, . . . , 𝑛𝑖}, we deduce that ℎ𝜎1,...,𝜎𝑘 ∈  ℰ. This implies    

(𝐖1,𝜎1⋯𝐖𝑘,𝜎𝑘
⊗ 𝐼𝒦)(1⊗ ℎ𝜎1,...,𝜎𝑘) =

1

√𝑏1,𝜎1
(𝑚1)

⋯
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

𝑒𝜎1
1 ⊗⋯⊗ 𝑒𝜎𝑘

𝑘 ⊗ℎ𝜎1,...,𝜎𝑘 . 

is a vector in ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ. Therefore,  

                              𝜑 = lim
𝑛→∞

∑ ∑ 𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘 ⊗ℎ𝛽1,...,𝛽1
𝛽1∈𝔽𝑛1

+  ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

𝑛

𝑞=0

            (27) 

is in ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ. Hence, ℳ ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ and     

𝒴 ∶= span̅̅ ̅̅ ̅̅ (𝐖1,𝜎1⋯𝐖𝑘,𝜎𝑘
⊗ 𝐼𝒦)ℳ ∶  𝜎1 ∈ 𝔽𝑛1

+ , … , 𝜎𝑘 ∈ 𝔽𝑛𝑘
+ ⊂ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ. 

To prove the  reverse inclusion, we show first that ℰ ⊂ 𝒴. If ℎ0 ∈  ℰ, ℎ0 ≠
0, then there exists 𝑔 ∈  ℳ ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ such that      

𝑔 = 1 ⊗ ℎ0  + ∑ 𝑒𝛽1
1 ⊗⋯⊗𝑒𝛽𝑘

𝑘 ⊗ℎ𝛽1,...,𝛽1
𝛽1∈𝔽𝑛1

+  ,…,𝛽𝑘∈𝔽𝑛𝑘
+

|𝛽1|+⋯+|𝛽𝑘|≥1

 

and 1 ⊗ ℎ0 = (𝐏ℂ⊗ 𝐼𝒦)𝑔. Consequently, due to Lemma (4.1.10), we have 

1 ⊗ ℎ0  =  (𝐏ℂ⊗ 𝐼𝒦)𝑔 =  (𝐼 −  Φ𝑞1 ,𝐖1⊗ 𝐼𝒦)
𝑚1
⋯(𝐼 − Φ𝑞𝑘 ,𝐖𝑘⊗ 𝐼𝒦)

𝑚𝑘
(𝐼)𝑔. 

Taking into account that ℳ is co-invariant under 𝐖𝑖,𝑗⊗ 𝐼𝒦 for 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, we 

deduce that ℎ0  ∈  𝒴 for any ℎ0  ∈ ℰ, i.e., ℰ ⊂ 𝒴. The latter inclusion shows that (𝐖1,𝜎1⋯𝐖𝑘,𝜎𝑘
⊗

𝐼𝒦)(1⊗ ℰ)  ⊂  𝒴, for any 𝜎1 ∈ 𝔽𝑛1
+ , … , 𝜎𝑘 ∈ 𝔽𝑛𝑘

+ , which implies 

1

√𝑏1,𝜎1
(𝑚1)

⋯
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

𝑒𝜎1
1 ⊗⋯⊗ 𝑒𝜎𝑘

𝑘 ⊗ℰ ⊂ 𝒴. 

Hence, if 𝜑 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗ ℰ has the representation (27), we deduce that 𝜑 ∈ 𝒴. Therefore, 

(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  ℰ ⊆ 𝒴. The last part of the theorem is now obvious. The proof is complete. 

  

      Let 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the abstract noncommutative 

domain 𝐃𝐟
𝐦. An operator 𝑀 ∶ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  ℋ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗𝒦 is called multi-

analytic with respect to 𝐖 if  

𝑀(𝐖𝑖,𝑗⊗ 𝐼ℋ)  =  (𝐖𝑖,𝑗⊗ 𝐼𝒦)𝑀 



141 
 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. In case 𝑀 is a partial isometry, we call it inner multi-

analytic operator. 

Theorem (4.1.25) [186]: Let 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the abstract 

noncommutative domain 𝐃𝐟
𝐦 and let 𝑊𝑖⊗ 𝐼ℋ ∶= (𝐖𝑖,1⊗ 𝐼ℋ , . . . ,𝐖𝑖,𝑛𝑖

⊗ 𝐼ℋ) for 𝑖 ∈ {1, . . . , 𝑘}, 

where ℋ is a Hilbert space. If 𝑌 ∈ 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ) then the following statements are 

equivalent. 

    (i) There is a multi-analytic operator 𝑀 ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ →  

(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  ℋ with respect to 𝐖, where ℰ is a Hilbert space, such that 

𝑌 = 𝑀𝑀∗. 
   (ii) For any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘) ∈ ℤ𝑘

+ such that 𝐩 ≤  𝐦, 𝐩 ≠ 0, 

(𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)
𝑝1
⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)

𝑝𝑘
(𝑌 )  ≥  0. 

Proof: Setting ∆𝐟 ,𝐖⊗ 𝐼ℋ∶=  (𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)
𝑝1
⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)

𝑝𝑘
, it is easy to see that if 

item (i) holds, then       

∆𝐟 ,𝐖⊗ 𝐼ℋ(𝑌) = 𝑀∆𝐟 ,𝐖⊗ 𝐼ℰ
𝐩 (𝐼)𝑀∗  ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘) ∈ ℤ𝑘
+ such that 𝐩 ≤  𝐦, 𝐩 ≠ 0.      

     To prove the converse, assume that (ii) holds.     In particular, we have 

Φ𝑓1 ,𝐖1⊗ 𝐼ℋ(∆𝐟 ,𝐖⊗ 𝐼ℋ
𝐦′ (𝑌))  ≤ ∆𝐟 ,𝐖⊗ 𝐼ℋ

𝐦′ (𝑌), where 𝑚′ =  (𝑚1 − 1,𝑚2, . . . , 𝑚𝑘). Consequently, 

Φ𝑓1 ,𝐖1⊗ 𝐼ℋ
𝑛 (∆𝐟 ,𝐖⊗ 𝐼ℋ

𝐦′ (𝑌)) ≤ ∆𝐟 ,𝐖⊗ 𝐼ℋ
𝐦′ (𝑌) for any 𝑛 ∈ ℕ. 

 Since 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) is a pure 𝑘-tuple, we have SOT- lim
𝑛→∞

Φ𝑓1 ,𝐖1⊗ 𝐼ℋ
𝑛 (∆𝐟 ,𝐖⊗ 𝐼ℋ

𝐦′ (𝑌)) = 0 , 

which implies ∆𝐟 ,𝐖⊗ 𝐼ℋ
𝐦′ (𝑌 )  ≥  0. Continuing this process, we deduce that 𝑌 ≥  0.  

   

Let ℳ ∶=  range 𝑌1/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and define        

          𝐴𝑖,𝑗(𝑌
1 2⁄ 𝑥): =  𝑌1 2⁄ (𝐖𝑖,𝑗

∗ ⊗ 𝐼ℋ)𝑥, 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ,          (28) 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. Since Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝑌)  ≤  𝑌 , we have  

∑ 𝑎𝑖,𝛼‖𝐴𝑖,�̅�𝑌
1 2⁄ 𝑥‖2

𝛼∈𝔽𝑛𝑖
+  ,|𝛼|≥1

= 〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝑌)𝑥, 𝑥〉 ≤  ‖𝑌
1 2⁄ 𝑥‖2𝑘2 

for any 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ. Consequently, we deduce that 𝑎

𝑖,𝑔𝑗
𝑖‖𝐴𝑖,𝑗𝑌

1 2⁄ 𝑥‖2  ≤ ‖𝑌1 2⁄ 𝑥‖2, 

for any 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ. Since 𝑎

𝑖,𝑔𝑗
𝑖 ≠ 0 each 𝐴𝑖,𝑗 can be uniquely be extended to a 

bounded operator (also denoted by 𝐴𝑖,𝑗) on the subspace 𝑀. Denoting 𝑋𝑖,𝑗 ≔ 𝐴𝑖,𝑗
∗  for 𝑖 ∈

 {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, an approximation argument shows that Φ𝑓𝑖 ,𝑋𝑖(𝐼ℳ) ≤ 𝐼ℳ and relation 

(28) implies 

𝑋𝑖,𝑗
∗ (𝑌1 2⁄ 𝑥) =  𝑌1 2⁄ (𝐖𝑖,𝑗

∗ ⊗ 𝐼ℋ)𝑥,    𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ, 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. This implies      

𝑌1 2⁄ ∆𝐟,𝐗
𝐩
(𝐼ℳ)𝑌

1 2⁄ = ∆𝐟,𝐖⊗𝐼ℋ
𝐩

 𝑌 )  ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ𝑘
+ such that 𝐩 ≤  𝐦, 𝐩 ≠ 0. On the other hand, we have  

〈Φ𝑓𝑖 ,𝑋𝑖(𝐼ℳ)𝑌
1/2𝑥, 𝑌1/2𝑥〉 = 〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ

𝑛 (𝑌 )𝑥, 𝑥〉 ≤ ‖𝑌‖〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ
𝑛 (𝐼)𝑥, 𝑥〉 

for any 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ and 𝑛 ∈ ℕ.  SOT- lim

𝑛→∞
Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ
𝑛 (𝐼) =  0, we have  SOT-

lim
𝑚→∞

Φ𝑓𝑖 ,𝑋𝑖
𝑛 (𝐼ℳ) =  0, which, due to Proposition (4.1.8) shows that 𝐗 ∶=  (𝑋1, . . . , 𝑋𝑘) is a pure 𝑘-

tuple in the noncommutative polydomain 𝐃𝐟
𝐦(ℳ). Set ℰ ∶= ∆𝐟 ,𝐗

𝐦 (𝐼ℳ)(ℳ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. According to Theorem 

(4.1.11), the noncommutative Berezin kernel 𝐊𝐟 ,𝐗 ∶ ℳ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ is an isometry with 

the property that 

𝑋𝑖,𝑗𝐊𝐟 ,𝐗
∗ = 𝐊𝐟 ,𝐗

∗ (𝐖𝑖,𝑗⊗ 𝐼ℰ) 

for any 𝑖 ∈  {1, . . . , 𝑘} and any 𝑗 ∈  {1, . . . , 𝑛𝑖}. Now, define the bounded linear operator 𝑀 ∶=

 𝑌1 2⁄ 𝐊𝐟 ,𝐗
∗ : (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋand note that 
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𝑀(𝐖𝑖,𝑗⊗ 𝐼ℰ) =  𝑌
1 2⁄ 𝐊𝐟 ,𝐗

∗ (𝐖𝑖,𝑗⊗ 𝐼ℰ) = 𝑌
1 2⁄ 𝑋𝑖,𝑗𝐊𝐟 ,𝐗

∗  

 = (𝐖𝑖,𝑗⊗ 𝐼ℋ)𝑌
1 2⁄ 𝐊𝐟 ,𝐗

∗ = (𝐖𝑖,𝑗⊗ 𝐼ℋ)𝑀 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, which proves that 𝑀 is a multi-analytic operator with 

respect to 𝐖𝑖,𝑗 . We also have 𝑀𝑀∗  = 𝑌1 2⁄ 𝐊𝐟 ,𝐗
∗ 𝐊𝐟 ,𝐗𝑌

1 2⁄ =  𝑌 . This completes the proof. 

We say that ℳ ⊂ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ is a Beurling type invariant subspace under the operators 

𝐖𝑖,𝑗⊗ 𝐼ℋ , 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, if there is an inner multi-analytic operator with respect to 

𝐖, 

Ψ ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ, 

such that ℳ = Ψ ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ) . 

Corollary (4.1.26) [186]: Let ℳ ⊂ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ be an invariant subspace under the 

operators 𝐖𝑖,𝑗⊗ 𝐼ℋ , 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}. Then ℳ is of Beurling type if and only if  

(𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)
𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)

𝑝𝑘(𝑃ℳ)  ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ𝑘
+ such that 𝐩 ≤  𝐦, where 𝑃ℳ  is the orthogonal projection of the 

Hilbert space (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ onto ℳ. In the particular case when 𝐦 =  (1, . . . , 1), the 

condition above is satisfied when 𝐖⊗ 𝐼ℋ|ℳ: =  (𝐖1⊗ 𝐼ℋ|ℳ , . . . ,𝐖𝑘⊗ 𝐼ℋ|ℳ) is doubly 

commuting. 

Proof: If Ψ ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ is a inner multianalytic operator and 

ℳ = Ψ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ), then 𝑃ℳ  =  ΨΨ

∗. Taking into account Lemma (4.1.10), we 

deduce that  

(𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)
𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)

𝑝𝑘(𝑃ℳ) = Ψ(𝑃𝐶⊗ 𝐼ℰ)Ψ
∗ ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ𝑘
+ such that 𝐩 ≤  𝐦. The converse is a consequence of Theorem 

(4.1.25), when we take 𝑌 =  𝑃ℳ. 

Now, we consider the case when 𝐦 =  (1, . . . , 1). Note that if ℳ is an invariant subspace under the 

operators 𝐖𝑖,𝑗⊗ 𝐼ℋ, then 𝐖⊗ 𝐼ℋ|ℳ is doubly commuting if and only if 𝑃ℳ(𝐖𝑖1,𝑗1 ⊗ 𝐼ℋ)𝑃ℳ 

commutes with 𝑃ℳ(𝐖𝑖2,𝑗2 ⊗ 𝐼ℋ)𝑃ℳ for any 𝑖1, 𝑖2 ∈  {1, . . . , 𝑘}, 𝑖1 ≠ 𝑖2, and any 𝑗1  ∈

 {1, . . . , 𝑛𝑖1}, 𝑗2 ∈ {1, . . . , 𝑛𝑖2}. The latter condition is equivalent to 

                                                𝑃ℳ(𝐖𝑖1,𝛼⊗ 𝐼ℋ)𝑃ℳ                                                      (29)   

  commutes with  𝑃ℳ(𝐖𝑖2,𝛽
∗ ⊗ 𝐼ℋ)𝑃ℳ 

for any 𝛼 ∈ 𝔽𝑛𝑖
+  and 𝛽 ∈ 𝔽𝑛𝑖

+ . Assume that ℳ is invariant subspace under the operators 𝐖𝑖,𝑗⊗ 𝐼ℋ 

and 𝐖⊗ 𝐼ℋ|ℳ is doubly commuting. Then, due to relation (29), for any 𝛼𝑖 ∈ 𝔽𝑛𝑖
+  , 𝑖 ∈  {1, . . . , 𝑘}, 

we have 

                (𝐖1,𝛼1⊗ 𝐼ℋ)⋯ (𝐖𝑘,𝛼𝑘
⊗ 𝐼ℋ)𝑃ℳ(𝐖𝑘,𝛼𝑘

⊗ 𝐼ℋ)⋯ (𝐖1,𝛼1⊗ 𝐼ℋ)           (30) 

=  (𝐖1,𝛼1 ⊗ 𝐼ℋ)𝑃ℳ(𝐖1,𝛼1
∗ ⊗ 𝐼ℋ)⋯ (𝐖𝑘,𝛼𝑘

⊗ 𝐼ℋ)𝑃ℳ(𝐖𝑘,𝛼𝑘
∗ ⊗ 𝐼ℋ). 

Consequently, we deduce that 
(𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)

𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)
𝑝𝑘(𝑃ℳ)

= (𝑃ℳ −Φ𝑓1 ,𝐖1⊗ 𝐼ℋ(𝑃ℳ))
𝑝1⋯(𝑃ℳ −Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ(𝑃ℳ))

𝑝𝑘 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ𝑘
+ such that 𝐩 ≤  (1, . . . , 1). Now, since 𝐖1, . . . ,𝐖𝑘 are commuting 

tuples, we deduce that 𝑃ℳ −Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝑃ℳ), 𝑖 ∈  {1, . . . , 𝑘}, are commuting operators. On the 

other hand, they are also positive operators. Indeed, let {𝑎𝑖,𝛼𝑖}𝛼∈𝔽𝑛𝑖
+  be the coefficients of the 

positive regular free holomorphic function 𝑓𝑖, and let 𝑥 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ have the 

representation 𝑥 = 𝑥1 + 𝑥2 with respect to the orthogonal decomposition ℳ⊕ℳ⊥. Note that 

〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝑃ℳ)𝑥, 𝑥〉 = 〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝑃ℳ)𝑥1, 𝑥1〉 = ∑ 𝑎𝑖,𝛼𝑖‖𝑃ℳ(𝐖𝑖,𝛼𝑖
⊗ 𝐼ℋ)𝑥1‖

2

|𝛼|≥1

 

≤ 〈Φ𝑓𝑖 ,𝐖𝑖⊗ 𝐼ℋ(𝐼)𝑥1, 𝑥1〉 ≤ ‖𝑥1‖
2 = 〈𝑃ℳ𝑥, 𝑥〉 , 

which proves our assertion. Therefore, we can deduce that 
(𝑖𝑑 − Φ𝑓1 ,𝐖1⊗ 𝐼ℋ)

𝑝1⋯(𝑖𝑑 − Φ𝑓𝑘 ,𝐖𝑘⊗ 𝐼ℋ)
𝑝𝑘(𝑃ℳ)  ≥  0 
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for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈  ℤ𝑘
+ such that 𝐩 ≤  (1, . . . , 1). Due to the first part of this corollary, we 

conclude that ℳ is a Beurling type invariant subspace under the operators 𝐖𝑖,𝑗⊗ 𝐼ℋ. The proof is 

complete. 

Let 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the abstract noncommutative domain 

𝐃𝐟
𝐦, and let Φ: (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒦 be a multi-analytic operator with 

respect to 𝐖, i.e., if Φ(𝐖𝑖,𝑗⊗ 𝐼ℋ)  =  (𝐖𝑖,𝑗⊗ 𝐼𝒦)Φ for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. 

We introduce the 

support of Φ as the smallest reducing subspace supp (Φ) ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ℋ under each 

operator 𝐖𝑖,𝑗, containing the co-invariant subspace ℳ ∶=  Φ∗((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Using 

Theorem (4.1.24) and its proof, we deduce that 

supp (Φ) = ⋁ (𝐖(𝛼)⊗ 𝐼ℋ)(ℳ)

(𝛼)∈𝔽𝑛𝑖
+ ×⋯×𝔽𝑛𝑘

+

= (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℒ, 

where ℒ ∶= (𝐏ℂ⊗ 𝐼ℋ)Φ
∗(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗𝒦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

    Assume that 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) is the universal model associated to the abstract 

noncommutative domain 𝐃𝐟
𝐦. We remark that if Ψ ∶ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ 

is an isometric multi-analytic operator and ℳ =  Ψ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ, then 𝐖⊗ 𝐼ℋ|ℳ is 

doubly commuting. Since this is a straightforward computation, we omit it. The converse of this 

implication holds true for the noncommutative polyball. 

Corollary(4.1.27) [186]: Let 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) be the universal model associated to the 

noncommutative polyball [𝐵(ℋ)𝑛1]1
− ×𝑐 ⋯×𝑐 [𝐵(ℋ)

𝑛𝑘]1
−, 𝑖. 𝑒. ,𝐦 =  (1, . . . , 1) and 𝑓𝑖 ∶=  𝑍𝑖,1 +

⋯+ 𝑍𝑖,𝑛𝑖 for 𝑖 ∈  {1, . . . , 𝑘}. If ℳ ⊂ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ is a nonzero invariant subspace under 

the operators 𝐖⊗ 𝐼ℋ, then 𝐖⊗ 𝐼ℋ|ℳ is doubly commuting if and only if there is a Hilbert space 

ℒ and an isometric multi-analytic operator Φ ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℒ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ such 

that ℳ =  Φ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℒ). 

Proof: Due to the remarks preceding this corollary, it remains to prove the direct implication. 

Assume that 𝐖⊗ 𝐼ℋ|ℳ is doubly commuting. Corollary (4.1.26) and Theorem (4.1.25) imply the 

existence of an inner multianalytic operator Ψ ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ 

such that ℳ =  Ψ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ). Since 𝐖𝑖,𝑗 are isometries, the initial space of Ψ, i.e., 

Ψ∗((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ)  =  {𝑥 ∈  (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ) ∶  ‖Ψ𝑥‖ = ‖𝑥‖} is reducing under 

each 𝐖𝑖,𝑗 . On the other hand, the support of Ψ is the the smallest 

reducing subspace supp (Ψ) ⊂ 𝐹2(𝐻𝑛𝑖) ⊗ℋ under each operator 𝐖𝑖,𝑗, containing the co-invariant 

subspace Ψ∗((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ). Therefore, we must have supp (Ψ) =

Ψ∗((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ). Note that Φ ∶= Ψ|supp (Ψ) is an isometric multi-analytic operator. 

Since supp (Ψ) =  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℒ, where 

ℒ ∶= (𝐏ℂ⊗ 𝐼ℰ)Ψ
∗((⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ℋ) and ℳ = Φ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℒ), the proof is 

complete. 

        We remark that in the particular case when 𝑛1 = ⋯ = 𝑛𝑘 =  1, Corollary (4.1.27) is a 

Beurling type result for the the Hardy space 𝐻2(𝔻𝑘) of the polydisc, which seems to be new if 𝑘 >
 2. 

We recall that 𝒫(𝐖) is the set of all polynomials 𝑝(𝐖𝑖,𝑗) in the operators 𝐖𝑖,𝑗 , 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈

 {1, . . . , 𝑛𝑖}, and the identity. 

Lemma (4.1.28) [186]: If 𝐖 ∶=  (𝐖1, . . . ,𝐖𝑘) is the universal model associated to the abstract 

noncommutative polydomain 𝐃𝐟
𝐦, then the 𝐶∗-algebra 𝐶∗(𝐖𝑖,𝑗) is irreducible. 

Proof: Let ℳ ≠ {0} be a subspace of ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), which is jointly reducing for each operator 

𝐖𝑖,𝑗 for all 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. Let 𝜑 ∈  ℳ,𝜑 ≠ 0, and assume that 
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𝜑 = ∑ 𝑎𝛽1,...,𝛽1𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘

𝛽1∈𝔽𝑛1
+  ,…,𝛽𝑘∈𝔽𝑛𝑘

+

. 

If 𝑎𝛽1,...,𝛽1  is a nonzero coefficient of 𝜑, then, using relation (8), we deduce that 

𝐏ℂ𝐖1,𝛽1
∗ ⋯𝐖𝑘,𝛽𝑘

∗ 𝜑 =
1

√𝑏
1,𝛽1

(𝑚1)
⋯

1

√𝑏
𝑘,𝛽𝑘

(𝑚𝑘)
𝑎𝛽1,...,𝛽1 . 

On the other hand, according to Lemma (4.1.10), (𝐼 −  Φ𝑞1,𝐖1)
𝑚1⋯(𝐼 − Φ𝑞𝑘,𝐖𝑘)

𝑚𝑘(𝐼)  = 𝐏ℂ, 

where 𝐏ℂ is the orthogonal projection from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂ ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖). Hence, and 

using the fact that ℳ is reducing for each 𝐖𝑖,𝑗 , we deduce that 𝑎𝛽1,...,𝛽1 ∈ ℳ, so 1 ∈ ℳ. Using 

again that ℳ is invariant 

under the operators 𝐖𝑖,𝑗 , we have ℳ = ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖). This completes the proof. 

       Let 𝐓 = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐃𝐟
𝐦(ℋ) and 𝐓′ = (𝑇1

′, . . . , 𝑇𝑘
′) ∈ 𝐃𝐟

𝐦(ℋ′) be 𝑘-tuples with 𝑇𝑖 ∶=
 (𝑇𝑖,1, . . . , 𝑇𝑖,𝑛𝑖) and 𝑇𝑖

′ ∶=  (𝑇𝑖,1
′ , . . . , 𝑇𝑖,𝑛𝑖

′ ). We say that T is unitarily equivalent to T′ if there is a 

unitary operator 𝑈:ℋ → ℋ′ such that 𝑇𝑖𝑗 = 𝑈
∗𝑇𝑖𝑗

′ 𝑈 for all 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. 

Theorem (4.1.29) [186]: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be a pure 𝑘-tuple in the noncommutative 

polydomain 𝐃𝐟
𝐦(ℋ) and let 

𝐊𝐟 ,𝐓 ∶  ℋ →  𝐹2(𝐻𝑛1)  ⊗ ⋯⊗ 𝐹2(𝐻𝑛𝑘) ⊗ ∆𝐟 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

be the noncommutative Berezin kernel. Then the subspace 𝐊𝐟 ,𝐓ℋ is co-invariant under each 

operator 𝐖𝑖,𝑗⊗ 𝐼∆𝐟 ,𝐓
𝐦 ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅ for any 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖} and the dilation provided by the 

relation  
𝑇(𝛼) = 𝐊𝐟 ,𝐓

∗ (𝐖(𝛼)⊗ 𝐼∆𝐟 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐊𝐟 ,𝐓,    (𝛼) ∈ 𝔽𝑛𝑖

+ ×⋯× 𝔽𝑛𝑘
+ , 

is minimal. If  𝐟 =  𝐪 =  (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular noncommutative polynomials 

and 

span̅̅ ̅̅ ̅̅ {𝐖(𝛼)𝐖(𝛽)) ∶  (𝛼), (𝛽)  ∈ 𝔽𝑛𝑖
+ ×⋯× 𝔽𝑛𝑘

+ }  = 𝐶∗(𝐖𝑖,𝑗), 

then the minimal dilation of T is unique up to an isomorphism.     

Proof: Due to Theorem (4.1.11), we have 𝐊𝐟 ,𝐓𝑇𝑖,𝑗
∗ = (𝐖𝑖,𝑗  ⊗ 𝐼)𝐊𝐟 ,𝐓 for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈

 {1, . . . , 𝑛𝑖}, where the noncommutative Berezin kernel 𝐊𝐟 ,𝐓 is an isometry. On the other hand, the 

definition of the Berezin kernel 𝐊𝐟 ,𝐓 implies 

 (𝐏ℂ⊗ 𝐼∆𝐟 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐊𝐟 ,𝐓ℋ = ∆𝐟 ,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

Using Theorem (4.1.24) in the particular case when ℳ ∶= 𝐊𝐟 ,𝐓ℋ and ℰ ∶= ∆𝐟 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , we deduce 

that the subspace 𝐊𝐟 ,𝐓ℋ is cyclic for 𝐖𝑖,𝑗⊗ 𝐼ℰ for 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, which 

proves the minimality of the dilation, i.e., 

 (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐟 ,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ⋁ (𝐖(𝛼)⊗ 𝐼∆𝐟 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐊𝐟 ,𝐓ℋ

(𝛼)∈𝔽𝑛𝑖
+ ×⋯×𝔽𝑛𝑘

+

.    (31)  

To prove the last part of the theorem, assume that 𝐟 =  𝐪 =  (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive 

regular noncommutative polynomials and that the relation in the theorem holds. Consider another 

minimal dilation of T, i.e., 

                   𝐓(𝛼) = 𝑉
∗(𝐖(𝛼)⊗ 𝐼𝒟)𝑉,                (𝛼) ∈ 𝔽𝑛𝑖

+ ×⋯× 𝔽𝑛𝑘
+ ,                    (32) 

where 𝑉 ∶  ℋ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟 is an isometry, 𝑉ℋ is co-invariant under each operator 

𝐖𝑖,𝑗⊗ 𝐼𝒟 , and 

                   (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗ 𝒟 = ⋁ (𝐖(𝛼)⊗ 𝐼𝒟)𝑉ℋ

(𝛼)∈𝔽𝑛𝑖
+ ×⋯×𝔽𝑛𝑘

+

.                     (33) 

Due to Theorem (4.1.12), there exists a unique unital completely positive linear map Ψ𝐪,𝐓 ∶

𝐶∗(𝐖𝑖,𝑗) → 𝐵(ℋ) such that 
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Ψ𝐪,𝐓 (∑𝑝𝛾(𝐖𝑖,𝑗)𝑞𝛾(𝐖𝑖,𝑗)
∗

𝑠

𝛾=1

) =∑𝑝𝛾(𝑇𝑖,𝑗)𝑞𝛾(𝑇𝑖,𝑗)
∗

𝑠

𝛾=1

 

for any 𝑝𝛾(𝐖𝑖,𝑗)𝑞𝛾(𝐖𝑖,𝑗)
∗
∈ 𝒫(𝐖) and 𝑠 ∈  ℕ. Consider the ∗-representations 

𝜋1 ∶ 𝐶
∗(𝐖𝑖,𝑗) → 𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐪 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝜋1(𝑋):= 𝑋 ⊗ 𝐼∆𝐪 ,𝐓𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

and          

    

𝜋2 ∶ 𝐶
∗(𝐖𝑖,𝑗) → 𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟, 𝜋2(𝑋):= 𝑋 ⊗ 𝐼𝒟. 

Since the subspaces 𝐊𝐪 ,𝐓ℋ and 𝑉ℋ are co-invariant for each operator 𝐖𝑖,𝑗⊗ 𝐼∆𝐪 ,𝐓𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , the 

relation (32) implies 

𝚿𝐪 ,𝐓(𝑋) = 𝐊𝐪 ,𝐓
∗ 𝜋1(𝑋)𝐊𝐪 ,𝐓 = 𝑉

∗𝜋2(𝑋)𝑉,           𝑋 ∈  𝐶
∗(𝐖𝑖,𝑗). 

Due to relations (31) and (33), we deduce that 𝜋1 and 𝜋2 are minimal Stinespring dilations of the 

completely positive linear map 𝚿𝐪 ,𝐓. Since these representations are unique up to an isomorphism, 

there exists a unitary operator 𝑈 ∶ 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐪 ,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟 such 

that  

𝑈(𝐖𝑖,𝑗⊗  𝐼 ∆𝐪 ,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  =  (𝐖𝑖,𝑗⊗ 𝐼𝒟)𝑈 

and 𝐊𝐪 ,𝐓 =  𝑉 . Taking into account that 𝑈 is unitary, we deduce that   

𝑈(𝐖𝑖,𝑗
∗ ⊗  𝐼 ∆𝐪 ,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  =  (𝐖𝑖,𝑗
∗ ⊗ 𝐼𝒟)𝑈 

Since 𝐶∗(𝐖𝑖,𝑗) is irreducible (see Lemma (4.1.28)), we must have 𝑈 =  𝐼 ⊗  𝑍, where 𝑍 ∈

𝐵(∆𝐪 ,𝐓
𝐦 (ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝒟) is a unitary operator. This implies that dim ∆𝐪 ,𝐓

𝐦 (ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = dim 𝒟 and 𝑈𝐊𝐪 ,𝐓ℋ = 𝑉ℋ, 

which proves that the two dilations are unitarily equivalent. The proof is complete.    

        Let 𝒟 be a Hilbert space such that the Hilbert space ℋ can be identified with a co-invariant 

subspace of (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟 under each operator 𝐖𝑖,𝑗⊗ 𝐼𝒟 for any 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈

 {1, . . . , 𝑛𝑖} and such that 𝐓(𝛼) = 𝑉
∗(𝐖(𝛼)⊗ 𝐼𝒟)𝑉  for (𝛼) ∈ 𝔽𝑛1

+ ×⋯× 𝔽𝑛𝑘
+  .  The dilation index of 

T is the minimum dimension of 𝒟 with the above mentioned property. We remark that the dilation 

index of T coincides with rank ∆𝐟 ,𝐓
𝐦 (𝐼). Indeed, since ∆𝐟 ,𝐖

𝐦 (𝐼) = 𝐏ℂ, where 𝐏ℂ is the orthogonal 

projection from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖), we deduce that ∆𝐟 ,𝐓
𝐦 (𝐼) = 𝑃ℋ  [𝐏ℂ⊗

𝐼𝒟]|ℋ. Hence, rank ∆𝐟 ,𝐓
𝐦 (𝐼) ≤ dim𝒟.  

Now, Theorem (4.1.29) implies that the dilation index of 𝑇 is equal to rank ∆𝐟 ,𝐓
𝐦 (𝐼).  

Proposition (4.1.30) [186]: Let 𝐪 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular noncommutative 

polynomials such that 

span̅̅ ̅̅ ̅̅ {𝐖(𝛼)𝐖(𝛽)
∗ ) ∶  (𝛼), (𝛽)  ∈  𝔽𝑛1

+ ×⋯× 𝔽𝑛𝑘
+ }  =  𝐶∗(𝐖𝑖,𝑗). 

A pure 𝑘-tuple 𝐓 = (𝑇1, . . . , 𝑇𝑘)  ∈  𝐷𝑞
𝑚(ℋ) has rank ∆𝐪 ,𝐓

𝐦 (𝐼) = 𝑛, 𝑛 = 1, 2, . . . , ∞, if and only if it 

is unitarily equivalent to one obtained by compressing (𝐖1⊗ 𝐼ℂ𝑛  , . . . ,𝐖𝑘⊗ 𝐼ℂ𝑛) to a co-invariant 

subspace ℳ ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℂ𝑛 under each operator 𝐖𝑖,𝑗⊗ 𝐼ℂ𝑛 , 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈

 {1, . . . , 𝑛𝑖}, with the property that dim[(𝐏ℂ⊗ 𝐼ℂ𝑛)ℳ] =  𝑛, where 𝐏ℂ is the orthogonal projection 

from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1. 

Proof: The direct implication is a consequence of Theorem (4.1.29). To prove the converse, assume 

that 

𝐓 =  𝑃ℋ(𝐖(𝛼)⊗ 𝐼ℂ𝑛)|ℋ ,            (𝛼) ∈ 𝔽𝑛1
+ ×⋯× 𝔽𝑛𝑘

+  

where 𝐻 ⊂  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ ℂ𝑛  is a co-invariant subspace under each operator 𝐖𝑖,𝑗⊗ 𝐼ℂ𝑛 for 

any 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖} , such that dim(𝐏ℂ⊗ 𝐼ℂ𝑛)ℋ = 𝑛. Note that T is a pure element 

in the noncommutative polydomain 𝐃𝐪
𝐦(ℋ). First, we consider the case when 𝑛 <  ∞. Since 

(𝐏ℂ⊗ 𝐼ℂ𝑛)ℋ ⊆ ℂ𝑛 and dim(𝐏ℂ⊗ 𝐼ℂ𝑛)ℋ =  𝑛, we deduce that dim(𝐏ℂ⊗ 𝐼ℂ𝑛)ℋ = ℂ𝑛. This 

condition is equivalent to the equality ℋ⊥ ∩ ℂ𝑛 = {0}. Since ∆𝐪,𝐖
𝐦 (𝐼)  = 𝐏ℂ, where 𝐏ℂ is the 

orthogonal projection from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖), we deduce that ∆𝐪,𝐖
𝐦 (𝐼) =
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𝑃ℋ[𝑃ℂ⊗ 𝐼ℂ𝑛]|ℋ = 𝑃ℋℂ
𝑛. Consequently, we have rank ∆𝐪,𝐓

𝐦 (𝐼) = dim𝑃ℋℂ
𝑛. If we assume that 

rank ∆𝐪,𝐓
𝐦 (𝐼) <  𝑛, then there exists ℎ ∈ ℂ𝑛, ℎ ≠ 0, with 𝑃ℋℎ =  0. This contradicts the fact that 

ℋ⊥  ∩ ℂ𝑛  =  {0}. Therefore, we must have rank ∆𝐪,𝐓
𝐦 (𝐼)  =  𝑛. 

     Now, we consider the case when n = ∞. According to Theorem (4.1.24) and its proof, we have 

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ = ⋁ (𝐖(𝛼)⊗ 𝐼ℂ𝑛)ℋ

(𝛼)∈𝔽𝑛1
+ ×⋯×𝔽𝑛𝑘

+

 

where ℰ ∶= (𝑃ℂ⊗ 𝐼ℂ𝑛)ℋ. Since ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ℰ is reducing for each operator 𝐖𝑖,𝑗⊗ 𝐼ℂ𝑚 , we 

deduce that 𝐓(𝜶) = 𝑃ℋ(𝐖(𝛼)⊗ 𝐼ℰ)|ℋ , (𝛼) ∈ 𝔽𝑛1
+ ×⋯× 𝔽𝑛𝑘

+ . The uniqueness of the minimal 

dilation of T (see Theorem (4.1.29)) implies dim∆𝐪 ,𝐓
𝐦 (𝐈)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = dim ℰ = ∞. This completes the 

proof.   

       We can characterize now the pure 𝑛-tuples of operators in the noncommutative polydomain 

𝐃𝐪 
𝐦(ℋ), having rank one, i.e., rank ∆𝐪 ,𝐓

𝐦 (𝐼) =  1. 

Corollary (4.1.31) [186]: Under the hypothesis of Proposition (4.1.30), the following statements 

hold. 

     (i) If ℳ ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) is a co-invariant subspace under each operator 𝐖𝑖,𝑗, where 𝑖 ∈

 {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, then  

𝐓:=  (𝑇1, . . . , 𝑇𝑘),   𝑇𝑖 ∶=  (𝑃ℳ𝐖𝑖,1|ℳ , . . . , 𝑃ℳ𝐖𝑖,𝑛𝑖
 |ℳ , 

is a pure 𝑘-tuple in 𝐃𝐪 
𝐦(ℳ) such that rank ∆𝐪 ,𝐓

𝐦 =  1. 

    (ii) If ℳ′ is another co-invariant subspace under each operator 𝐖𝑖,𝑗 , which  gives rise to an 

𝑘-tuple 𝐓′, then 𝐓 and 𝐓′ are unitarily equivalent if and only if      

         ℳ =ℳ′. 
Proof: Since ∆𝐪 ,𝐓

𝐦 (𝐼)  =  𝑃ℳ𝐏ℂ|ℳ  we have rank ∆𝐪 ,𝐓
𝐦 (𝐼)  ≤  1. On the other hand, it is clear that 𝐓 

is pure. This also implies that ∆𝐪 ,𝐓
𝐦 (𝐼) ≠ 0, so rank ∆𝐪 ,𝐓

𝐦 (𝐼)  ≥  1. Therefore, rank ∆𝐪 ,𝐓
𝐦 (𝐼) =

1. 

      To prove (ii), note that, as in the proof of Theorem (4.1.29), one can show that 𝐓 and 𝐓′ are 

unitarily equivalent if and only if there exists a unitary operator Λ ∶⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) →⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) 

such that Λ𝐖𝑖,𝑗 = 𝐖𝑖,𝑗Λ, 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and Λℳ =ℳ′. Hence Λ𝐖𝑖,𝑗
∗ = 𝐖𝑖,𝑗

∗ Λ. 

Since 𝐶∗(𝐖𝑖,𝑗) is irreducible, Λ must be a scalar multiple of the identity. Therefore, we have  ℳ =

Λℳ =  ℳ′.   We provide a characterization for the class of tuples of operators in 𝐃𝐟 
𝐦(ℋ) which 

admit characteristic functions. We prove that the characteristic function is a complete unitary 

invariant for the class of completely non-coisometric tuples and provide an operator model for this 

class of elements in terms of their characteristic functions. 
        Let 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) be the the universal model associated with the abstract 

noncommutative domain 𝐃𝐟 
𝐦. We say that two multi-analytic operator Φ ∶ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗

𝒦1 → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒦2 and Φ′ ∶ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒦1
′ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒦2
′ coincide 

if there are two unitary operators 𝜏𝑗 ∈ 𝐵(𝒦𝑗  ,𝒦𝑗
′) such that 

Φ′(𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗𝜏1)  =  (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝜏2)Φ. 

Lemma (4.1.32) [186]: Let Φ𝑠 ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ℋ𝑠 → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗𝒦, 𝑠 =  1, 2, be 

multi-analytic operators with respect to 𝐖 ∶= (𝐖1, . . . ,𝐖𝑘) such that Φ1Φ1
∗ = Φ2Φ2

∗ . Then there is 

a unique partial isometry 𝑉 ∶  ℋ1 → ℋ2 such that 

Φ1 = Φ2(𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗  𝑉 ), 

where (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗  𝑉 ) is an inner multi-analytic operator with initial space supp (Φ1) and final 

space supp (Φ2). In particular, the multi-analytic operators Φ1|supp (Φ1) and Φ2|supp (Φ1) coincide. 

Proof: Due to Lemma (4.1.10), (𝑖𝑑 − Φ𝑓1,𝐖1)
𝑚1
⋯(𝑖𝑑 − Φ𝑓𝑘,𝐖𝑘)

𝑚𝑘
(𝐼)  = 𝐏ℂ, where 𝐏ℂ is the 

orthogonal projection from ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂ ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖). Since Φ1, Ψ2 are multi-
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analytic operators with respect to 𝐖, we deduce that Φ1(𝐏ℂ⊗ 𝐼ℋ1)Φ1
∗  = Φ2(𝐏ℂ⊗ 𝐼ℋ2)Φ2

∗ . 

Consequently, we have 

‖(𝐏ℂ⊗ 𝐼ℋ1)Φ1
∗𝑥‖ = ‖(𝐏ℂ⊗ 𝐼ℋ2)Φ2

∗𝑥‖,   𝑥 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗𝒦. 

Set ℒ𝑠 ∶= (𝐏ℂ⊗ 𝐼ℋ𝑠)Φ𝑠
∗((⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗𝒦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑠 =  1, 2, and define the unitary operator 𝑈 ∶

 ℒ1 → ℒ2 by 

𝑈(𝐏ℂ⊗ 𝐼ℋ1)Φ1
∗𝑥 ∶=  (𝐏ℂ⊗ 𝐼ℋ2)Φ2

∗𝑥, 𝑥 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗𝒦. 

This implies that there is a unique partial isometry 𝑉 ∶ ℋ1  → ℋ2 with initial space ℒ1 and final 

space ℒ2, extending 𝑈 . Moreover, we have Φ1𝑉
∗  = Φ2|1⊗ℋ2. Since Φ1, Ψ2 are multi-analytic 

operators with respect to 𝐖, we deduce that Φ1(𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗𝑉∗)  = Φ2. Hence, the result 

follows. Now, the last part of the lemma is clear.  

        We say that 𝐓 =  (𝑇1, . . . , 𝑇𝑘)  ∈ 𝐃𝐟
𝐦(ℋ) has characteristic function if there is a Hilbert space 

ℰ and a multi-analytic operator Ψ ∶ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐟 ,𝐓
𝐦 (𝐼)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with 

respect to 𝐖𝒊,𝒋, 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, such that 

𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ +  ΨΨ∗  =  𝐼. 

According to Lemma (4.1.32), if there is a characteristic function for 𝐓 ∈ 𝐃𝐟
𝐦(ℋ), then it is 

essentially unique.  

        We give now an example of a class of elements 𝐓 ∈ 𝐃𝐟
𝐦(ℋ) which have characteristic 

function. Let Ψ: (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ → (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒢 be an inner multi-analytic operator 

with Ψ(0)  =  0 and consider the subspace ℳ ∶=  Ψ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ℰ). Note that 𝑀 is 

invariant under each operator 𝐖𝒊,𝒋 and define 𝑇𝑖,𝑗 ∶= 𝑃ℳ⊥(𝐖𝒊,𝒋⊗ 𝐼𝒢)|ℳ⊥ for 𝑖 ∈  {1, . . . , 𝑘} and 

𝑗 ∈  {1, . . . , 𝑛𝑖}. Set 𝐓:=  (𝑇1, . . . , 𝑇𝑘), where 𝑇𝑖  =  (𝑇𝑖,1, . . . , 𝑇𝑖,𝑗), and note that 

∆𝐟,𝐓
𝐦 (𝐼ℳ⊥)  = 𝑃ℳ⊥∆𝐟 ,𝐖⊗𝐼𝒢

𝐦 (𝐼𝒢)|ℳ⊥  = 𝑃ℳ⊥(𝐏ℂ⊗ 𝐼𝒢)|ℳ⊥  . 

Since Ψ(0)  =  0, we have 1 ⊗ 𝒢 ⊂ ℳ⊥ and, consequently, ∆𝐟,𝐓
𝐦 (𝐼ℳ⊥)1/2 = (𝐏ℂ⊗ 𝐼𝒢)|ℳ⊥ . 

Consider an arbitrary vector       

ℎ = ∑ 𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘 ⊗ ℎ𝛽1,...,𝛽𝑘
𝛽∈𝔽𝑛𝑖

+ ,𝑖=1,...,𝑘

 

in ℳ⊥ ⊂ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ 𝒢. Using the definition of the noncommutative Berezin kernel and 

relation (8), we obtain 

𝐊𝐟,𝐓ℎ ∶= ∑ √𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘 ⊗ 

𝛽∈𝔽𝑛𝑖
+ ,𝑖=1,...,𝑘

(𝐏ℂ⊗ 𝐼𝒢)(𝐖1,𝛽1
∗ ⋯𝐖1,𝛽1

∗ ⊗ 𝐼𝒢)
∗
ℎ 

= ∑ √𝑏1,𝛽1
(𝑚1)⋯√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗⋯⊗ 𝑒𝛽𝑘

𝑘 ⊗ 

𝛽∈𝔽𝑛𝑖
+ ,𝑖=1,...,𝑘

1

√𝑏1,𝛽1
(𝑚1)

⋯
1

√𝑏
𝑘,𝛽𝑘

(𝑚𝑘)
 (1 ⊗ ℎ𝛽1,...,𝛽𝑘) = ℎ 

Consequently, 𝐊𝐟,𝐓 can be identified with the injection of ℳ⊥ into (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ 𝒢, and 

𝐊𝐟,𝐓𝐊𝐟,𝐓
∗  can be identified with the orthogonal projection 𝑃ℳ⊥ . Therefore, 𝐊𝐟,𝐓𝐊𝐟,𝐓

∗ +ΨΨ∗  =  𝐼, 
which proves our assertion. 

        We also remark that in the particular case when 𝑘 =  1 and 𝑚1  =  1, all the elements in the 

noncom-mutative domain 𝐷𝑓1
1  have characteristic functions. 

Theorem (4.1.33) [186]: A 𝑘-tuple 𝐓 =  (𝑇1, . . . , 𝑇𝑘) in the noncommutative polydomain 𝐃𝐟
𝐦(ℋ) 

admits a char-acteristic function if and only if 

∆𝐟 ,𝐖⊗𝐼
𝐩

(𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ ) ≥  0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ𝑘
+ such that 𝐩 ≤  𝐦, where 𝐊𝐟,𝐓 is the noncommutative Berezin 

kernel associated with 𝐓. 

Proof: If T has characteristic function, then there is a multi-analytic operator Ψ with the property 

that 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ +ΨΨ∗  =  𝐼. Using the multi-analyticity of Ψ, we have 
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∆𝐟 ,𝐖⊗𝐼
𝐩

(𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ ) = Ψ∆𝐟 ,𝐖⊗𝐼

𝐩 (𝐼)Ψ∗ ≥ 0 

for any 𝐩 ∶=  (𝑝1, . . . , 𝑝𝑘)  ∈ ℤ𝑘
+ such that 𝐩 ≤  𝐦. For the converse, we apply Theorem (4.1.25) to 

the operator 𝑌 =  𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗  and complete the proof.   

       If T has characteristic function, the multi-analytic operator ℳ provided by the proof of 

Theorem (4.1.25) when 𝑌 =  𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ , which we denote by 𝚯𝐟 ,𝐓, is called the characteristic 

function of T. More precisely, 𝚯𝐟 ,𝐓 is the multi-analytic operator 

𝚯𝐟 ,𝐓 ∶  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐟,𝐌𝐓

𝐦 (𝐼)(ℳ𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

defined by 𝚯𝐟 ,𝐓 ∶=  (𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ )1/2𝐊𝐟,𝐌𝐓

∗  , where      

𝐊𝐟,𝐓 ∶ ℋ → 𝐹2(𝐻𝑛1)  ⊗ ⋯ ⊗ 𝐹2(𝐻𝑛𝑘) ⊗ ∆𝐟,𝐓
𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the noncommutative Berezin kernel associated with 𝐓 and     

𝐊𝐟,𝐌𝐓 ∶ ℋ → 𝐹2(𝐻𝑛1)  ⊗ ⋯ ⊗ 𝐹2(𝐻𝑛𝑘) ⊗ ∆𝐟,𝐌𝐓
𝐦 (𝐼)(ℳ𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

is the noncommutative Berezin kernel associated with 𝐌𝐓 ∈ 𝐃𝐟
𝐦(ℳ𝐓). Here, we have  

ℳ𝐓 ∶=  range (𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and 𝐌𝐓 ∶=  (𝑀1, . . . , 𝑀𝑘) is the 𝑘-tuple with 𝑀𝑖 ∶=  (𝑀𝑖,1, . . . , 𝑀𝑖,𝑛𝑖) and 𝑀𝑖,𝑗 ∈ 𝐵(ℳ𝐓) given by 

𝑀𝑖,𝑗 ∶= 𝐴𝑖,𝑗
∗  , where 𝐴𝑖,𝑗 ∈  𝐵(ℳ𝐓) is uniquely defined by 

𝐴𝑖,𝑗[(𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ )1 2⁄ 𝑥]   ∶=  (𝐼 − 𝐊𝐟,𝐓𝐊𝐟,𝐓

∗ )1 2⁄ (𝐖𝑖,𝑗⊗  𝐼)𝑥 

for any 𝑥 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . According to Theorem (4.1.25), we have 𝐊𝐟,𝐓𝐊𝐟,𝐓
∗ +

𝚯𝐟 ,𝐓𝚯𝐟 ,𝐓
∗  =  𝐼.  

Theorem (4.1.34) [186]: Let 𝐓 =  (𝑇1, . . . , 𝑇𝑘) be a 𝑘-tuple in 𝒞𝑓
𝑚(ℋ). Then T is pure if and only 

if the char-acteristic function 𝚯𝐟 ,𝐓 is an inner multi-analytic operator. Moreover, in this case 𝐓 =
(𝑇1, . . . , 𝑇𝑘) is unitarily equivalent to 𝐆 = (𝐺1, . . . , 𝐺𝑘), where 𝐺𝑖 ∶= (𝐺𝑖,1, . . . , 𝐺𝑖,𝑛𝑖) is defined by 

𝐺𝑖,𝑗 ∶= 𝑃𝐇𝐟 ,𝐓(𝐖𝑖𝑗⊗  𝐼)|𝐇𝐟 ,𝐓 

and 𝑃𝐇𝐟,𝐓 is the orthogonal projection of (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⨂ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ) onto  

𝐇f ,T = {(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⨂∆𝐟,𝐓

𝐦 (𝐼)(ℋ)} ⊖ range𝚯𝐟,𝐓. 

Proof: Assume that T is a pure k-tuple in 𝒞f
m (ℋ). Theorem (4.1.11) shows that the  

Non-commutative Berezin kernel associated with T, i.e.,  

𝐊f ,T ∶  ℋ →  𝐹2(𝐻𝑛1 ) ⊗ … ⊗  𝐹2(𝐻𝑛𝑘 )  ⊗  ∆𝐟,𝐓
𝐦 (𝐼)(ℋ) 

is an is ometry, the subspace 𝐊𝐟,𝐓ℋ is coinvariant under the operators 𝐖𝑖,𝑗  ⊗ 𝐼
∆𝐟,𝐓
𝐦 (𝐼)(ℋ)

, 𝑖 ∈

 {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and 𝑇i,j  = 𝐊f,T
∗ (𝐖𝑖,𝑗 ⊗ 𝐼

∆𝐟,𝐓
𝐦 (𝐼)(ℋ)

)𝐊𝐟 ,𝐓. Since 𝐊𝐟 ,𝐓 𝐊𝐟,𝐓
∗  is the orthogonal 

projection of (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ) onto 𝐊𝐟,𝐓ℋ and 𝐊𝐟 ,𝐓 𝐊𝐟,𝐓
∗  + 𝚯𝐟,𝐭𝚯𝐟,𝐓

∗ =  𝐼 , we deduce 

that 𝚯𝐟,𝐓 is a partial isometry and 𝐊𝐟 ,𝐓 ℋ = 𝐇𝐟 ,𝐓. Since 𝐊𝐟 ,𝐓  is an isometry, we can identify ℋ with 

𝐊𝐟 ,𝐓ℋ. Therefore, T = (𝑇1, . . . , 𝑇𝑘) is unitarily equivalent to 𝐆 =  (𝐺1, . . . , 𝐺𝑘). 

      Conversely, if we assume that 𝚯𝐟,𝐭 is inner, then it is a partial isometry. Due to the fact that 

𝐊𝐟 ,𝐓 𝐊𝐟,𝐓
∗ + 𝚯𝐟,𝐭𝚯𝐟,𝐓

∗  = 𝐼, the noncommutative Berezin kernel 𝐊𝐟 ,𝐓  is a partial isometry. On the 

other hand, since T is completely non-coisometric, 𝐊𝐟 ,𝐓   is a one-to-one partial isometry and, 

therefore, isometry. Due to Theorem (4.1.11), we have 

𝐊𝐟 ,𝐓 𝐊𝐟,𝐓
∗ = lim

𝐪=(𝑞1,…,𝑞𝑘)𝜖ℤ+
𝑘
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘 

𝑞𝑘 )… (𝑖𝑑 − Φ𝑓1,𝑇1 
𝑞1 )(𝐼) = 𝐼 

Consequently, T is a pure 𝑘-tuple. The proof is complete.    

We provide a model theorem for class of the completely non-coisometric k-tuple of operators in 𝓒𝐟
𝐦 

(ℋ). 

Theorem (4.1.35) [186]: Let T = (𝑇1, . . . , 𝑇k) be a completely non-coisometric k-tuple in 𝓒𝐟
𝐦 (ℋ) 

and let W := (𝑊1, . . . , 𝑊𝑘) be the universal model associated to the abstract noncommutative 

domain 𝐃𝐟
𝐦. Set         

  𝒟 ≔ ∆𝐟,𝐓
𝐦 (𝐼)(ℋ),           𝒟∗ ≔ ∆𝐟,𝐌𝐓

𝐦 (𝐼)(ℳ𝑇),   
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and  ∆Θf ,T≔ ( 𝐼 −  𝚯𝐟,𝐓
∗  𝚯𝐟 ,𝐓)

1 2⁄ , where 𝚯𝐟 ,𝐓 is the characteristic function of T. Then T is unitarily 

equivalent to ∶=  (𝕋1 , . . . , 𝕋𝑘 )  ∈  𝓒𝐦
𝐟  (ℍ𝐟,𝐓), where 𝕋𝑖  := (𝕋𝑖,1 , . . ., 𝕋𝑖,𝑛𝑖 ) and 𝕋𝑖,𝑗 is a bounded 

operator acting on the Hilbert space  

ℍ𝐟,𝐓 ∶=  [((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗ 𝒟)⊗ ∆Θf,T((⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟∗)] 

⊖ { Θf ,T𝜑⨁∆𝛩f ,T𝜑:  𝜑 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟∗} 

and is uniquely defined by the          

(𝑷
(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖
))⊗ 𝒟|ℍf ,T

 )  𝕋𝑖,𝑗
∗ 𝑥 =  (𝐖𝑖,𝑗

∗  ⊗ 𝐼𝒟 ) (𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
) 𝑥 

 

for any 𝑥 ∈  ℍ𝐟 ,𝐓  Here, 𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟  is the orthogonal projection of the Hilbert space  

 𝓚𝐟 ,𝐓 ∶= ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  𝒟)⊕

∆𝛩𝑓,𝑇((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟∗) 

onto the subspace (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒟.        

Proof: First, we show that there is a unique unitary operator  Γ ∶  ℋ →  ℍf,T such that        

Γ(𝐊𝐟,𝐓
∗ 𝑔) = 𝑃ℍ𝐟,𝐓(𝑔 ⨁0),        𝑔 ∈ (⨂ 𝑖=1

𝑘
𝐹2(𝐻𝑛𝑖))⨂𝒟                (34) 

where 𝑃ℍ𝐟,𝐓 the orthogonal projection of 𝓚𝐟,𝐓 onto the subspace ℍ𝐟,𝐓. Indeed, note that the operator 

 Φ ∶  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒟 →  𝓚𝐟,𝐓 defined by 

                      Φ𝜑 ∶=  Θf ,T𝜑⨁∆𝚯𝐟 ,𝐓𝜑,       𝜑 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟∗, 

is an isometry and 

                            Φ∗ (𝑔 ⨁0) = Θf ,T
∗ 𝑔,       𝑔

∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗ 𝒟∗                                                           (35) 

 

This leads to          

   ‖𝑔‖2 = ‖𝑃ℍ𝐟,𝐓(𝑔⨁0) ‖
2
+ ‖ΦΦ∗(𝑔⨁0)‖2 =

‖𝑃ℍ𝐟,𝐓(𝑔⨁0)‖
2
= ‖𝚯𝐟,𝐓

∗ 𝑔‖
2

 

for any 𝑔 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒟. Now, taking into account that    

‖𝐊𝐟,𝐓
∗ 𝑔‖

2
+ ‖𝚯𝐟,𝐓

∗ 𝑔‖
2
=  ‖𝑔‖2 , 𝑔 𝜖 ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗  𝒟 

we deduce that 

                          ‖K𝑓,𝑇𝑔
∗ ‖ =  ‖𝑃ℍ𝑓,𝑇(𝑔⨁0)‖ , 𝑔 𝜖 ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖 ))  ⊗  𝒟                   (36) 

Since the k-tuple T = (𝑇1, . . . , 𝑇𝑘) is completely non-coisometric, the noncommutative Berezin kernel 

𝐊f ,T   is a one-to-one operator and, consequently, range 𝐊 f ,T  
∗ is dense in ℋ . Now, let 𝑥 ∈  ℍ𝐟 ,𝐓and 

assume that 〈𝑥, 𝑃ℍ𝐟 ,𝐓  (𝑔 ⊕  0)〉 =  0 for any 𝑔(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒟. Using the definition of ℍf ,T and 

the fact that 𝓚𝐟,𝐓 coincides with the span of all vectors 𝑔 ⊕  0 for 𝑔 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗

𝒟 𝑎𝑛𝑑 𝚯𝐟,𝐓𝜑⊕ ∆𝚯𝐟,𝐓𝝋 for 𝜑 ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  𝒟, we deduce that 𝑥 =  0. This shows that 

ℍ𝐟 ,𝐓 = {𝑃ℍf ,T  ( 𝑔 ⊕  0) ∶  𝑔 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  𝒟} 

Using relation (36), we conclude that there is a unique unitary operator Γ satisfying relation (34). 

For each 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}, let 𝕋𝑖,𝑗 ∶  ℍ𝐟 ,𝐓  →  ℍ𝐟 ,𝐓  be defined by 

𝕋𝑖,𝑗 := Γ 𝑇𝑖,𝑗Γ
∗,     𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, 

In what follows, we prove that  

  (𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
)  𝕋𝑖,𝑗

∗ 𝑥 = (𝐖𝑖,𝑗
∗  ⊗

 𝐼𝒟  ) (𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
) 𝑥                                                                                      (37) 
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for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖},, and 𝑥 ∈  ℍ𝐟 ,𝐓. Using relations (34) and (35), and the 

fact that Φ is an isometry, we deduce that 

𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟Γ𝑲𝒇,𝑻𝑔 = 𝑷(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟𝑃ℍ𝐟 ,𝐓(𝑔 ⊕  0) =  

𝑔 − 𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟ΦΦ
∗(𝑔 ⊕  0) = 𝑔 − 𝚯𝐟,𝐓 𝚯𝐟,𝐓

∗ 𝑔 = 𝐊𝐟,𝐓 𝐊𝐟,𝐓
∗ 𝑔 

for any 𝑔 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  𝒟. That Taking into account that the range of 𝐊𝐟,𝐓

∗ 𝑔 is dense in 

ℋ, we deduce that 

                                                   𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟Γ =  𝐊𝐟,𝐓                                      (38) 

Hence, and using the fact that the noncommutative Berezin kernel 𝐊𝐟,𝐓  is one-to-one, we can see 

that 

𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
= 𝐊𝐟,𝐓 Γ

∗ 

is a one-to-one operator acting from ℍf ,T to (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗  𝒟. Relation (38) and Theorem 

(4.1.11) imply 

(𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
)𝕋𝑖,𝑗

∗  Γℎ =  (𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
)  Γ𝑇𝑖,𝑗

∗ ℎ = 𝐊𝐟,𝐓 𝑇𝑖,𝑗
∗ ℎ 

= (𝐖𝒊,𝒋
∗  ⊗ 𝐼𝒟 )𝐊𝐟,𝐓ℎ =  (𝐖𝒊,𝒋

∗  ⊗ 𝐼𝒟 ) (𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
)  Γℎ 

for any 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and ℎ ∈ ℋ. Now, we can deduce relation (37). Note that, 

since the operator 𝑃(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

))⊗ 𝒟|ℍ𝐟 ,𝐓
  is one-to-one, the relation (37) uniquely determines each 

operator 𝕋𝑖,𝑗
∗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, . . . , 𝑘}𝑎𝑛𝑑 𝑗{1, . . . , 𝑛𝑖}, this completes the proof . 

In what follows, we show that the characteristic function 𝚯𝐟 ,𝐓  is a complete unitary invariant for 

the completely non-coisometric part of the noncommutative domain 𝓒𝐟
𝐦. 

Theorem (4.1.36) [186]: Let T := (𝑇1, . . . , 𝑇𝑘) ∈ 𝓒𝐟
𝐦 (ℋ) and T′ := (𝑇1

′. . . , 𝑇𝑘
′) ∈ 𝓒𝐟

𝐦 (ℋ′) be two 

completely non-coisometric k-tuples. Then T and T′ are unitarily equivalent if and only if their 

characteristic functions 

𝚯𝐟 ,𝐓  and 𝚯𝐟 ,𝐓′ coincide .. 

Proof: Assume that the 𝑘-tuples T and T′ are unitarily equivalent and let 𝑈 : ℋ → ℋ′ be a unitary 

operator such that 𝑇i,j   = 𝑈∗ 𝑇𝑖,𝑗
′  U for any i ∈  {1, . . . , k} and 𝑗 ∈  {1, . . . , 𝑛𝑖}.  It is easy to see that 

𝑈∆𝐟,𝐓
𝐦 (𝐼) =  ∆𝐟,𝐓′

𝐦 (𝐼)𝑈 and, consequently 𝑈𝒟 = 𝒟′ where     

    𝒟:= ∆𝐟,𝐓
𝐦 (𝐼)(ℋ),           𝒟′:= 

∆𝐟,𝐓′
𝐦 (𝐼)(ℋ′), 

Using the definition of the noncommutative Berezin kernel associated with 𝐃𝐟
𝐦 one can easily 

check that ( 𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗  𝑈 )𝐊𝐟 ,𝐓𝐊𝐟 ,𝐓′𝑈 . This implies 

 (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗  𝑈 ) (𝐼 − 𝐊𝐟 ,𝐓, 𝐊𝐟 ,𝐓′
∗ ) (𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖
) ⊗  𝑈) =

 𝐼 −  𝑲 f ,T, 𝑲f ,T′
∗                                         (𝟑𝟗)  

and (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗  𝑈)ℳ𝑇  = ℳT′ , where ℳT := range (𝐼 − 𝐊𝐟 ,𝐓, 𝐊𝐟 ,𝐓
∗ ) and ℳ𝑇′   is defined 

similarly .Recall that 𝐌𝐓 := (𝑀1, . . . , 𝑀𝑘) is the 𝑘-tuple with 𝑀𝑖 := (𝑀𝑖,1, . . . , 𝑀1𝑖,𝑛𝑖) and 𝑀𝑖,j  ∈ 

B(ℳT′), and it is given by  𝑀𝑖,𝑗:= 𝐴𝑖,𝑗
∗ , where 𝐴𝑖,𝑗  ∈ B(ℳT) is uniquely defined by 

𝐴𝑖,𝑗[(𝐼 − 𝐊𝐟 ,𝐓, 𝐊𝐟 ,𝐓
∗ )1/2𝑥]  ∶=  (𝐼 − 𝐊𝐟 ,𝐓, 𝐊𝐟 ,𝐓

∗ )1/2(𝑊𝑖,𝑗  ⊗  𝐼)𝑥 

for any x ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ). Similarly, we define the 𝑘-tuple ℳT′and the operators 

𝐴𝑖,𝑗
′  ∈ B(ℳT′). Note that 

𝐴𝑖,𝑗  (𝐼 −  𝑲 f ,T, 𝑲f ,T 
∗

 
)1 2⁄ 𝑥 =  (𝐼

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝑈∗  ) 𝐴𝑖,𝑗
′ (𝐼 − 𝑲 f ,T′ , 𝑲f ,T′ 

∗ ) 1 2⁄ (𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ U∗  )𝑥

  

 

= (𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝑈∗  )𝐴𝑖,𝑗
′  (𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖
) ⊗ U )( 𝐼 −  𝐊𝐟 ,𝐓, 𝐊𝐟 ,𝐓

∗ )1 2⁄ 𝑥 

for any x ∈ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ ∆𝐟,𝐓

𝐦 (𝐼)(ℋ) Hence, we deduce that     
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𝐴𝑖,𝑗  = (𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝑈∗  ) 𝐴𝑖,𝑗
′  (𝐼

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝑈 ). 

Now, we can see that (𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ U )𝒟∗ = 𝒟∗
′
 
 , where 𝒟∗ := ∆𝐟,𝐦𝐓

𝐦 (𝐼)(ℳT) 𝑎𝑛𝑑 𝒟∗
′
 
is 

defined similarly. We introduce the unitary operators 𝜏 and τ′  by setting    

𝜏 ∶=  𝑈 |𝐷 ∶  𝒟 →  𝒟
′𝑎𝑛𝑑  𝜏∗ ∶=  (𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) 
⊗𝑈)|𝐷∗: 𝒟∗  →  𝒟∗

′
 
. 

Using the definition of the characteristic function, it is easy to show that 

(𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ τ  ) 𝚯𝐟 ,𝐓  = 𝚯𝐟 ,𝐓′  (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝜏∗). 

To prove the converse, assume that the characteristic functions of T and T′ coincide. Then there 

exist unitary operators τ : 𝒟 →  𝒟′ and τ∗
  : 𝒟∗ → 𝒟∗

′
 
 such that 

(𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝜏   ) 𝚯𝐟 ,𝐓  = 𝚯𝐟 ,𝐓′  (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝜏∗) 

It is clear that this relation implies 

∆𝚯𝐟 ,𝐓 = (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝜏∗)
∗

 ∆𝚯
𝐟 ,𝐓′ 

(𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗ 𝜏∗) 

and   

 (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗ 𝜏∗)∆𝚯𝐟 ,𝐓 ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ 𝒟∗) =

∆𝚯𝐟 ,𝐓′ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ 𝒟∗

′).  

Define now the unitary operator 𝑈 ∶ 𝓚 𝐟 ,𝐓 → 𝓚𝐟 ,𝐓′
 by setting    

𝑈 ≔ (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗  𝜏 ) ⊕ (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗ 𝜏∗). 

Note that the operator Φ ∶  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)  ⊗ 𝒟∗  →  𝓚 𝒇,𝑻, defined by 

Φ𝜑 ∶=  Θf,T𝜑,   𝜑 ⊕ ∆Θf ,T𝜑 𝜑 ∈  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)  ⊗ 𝒟∗, 

and the corresponding Φ′ satisfy the following relations: 

                                 𝑈Φ (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗ 𝜏∗
 )
∗

= Φ′                                          (40)   

   

and      

               (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗  𝜏) 𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝒟 

𝓚𝐟 ,𝐓 𝑈∗  =  𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝒟 
′
 

𝓚
𝐟 ,𝐓′

 

,          (41)  

where 𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝒟

𝒦𝑓,T
  is the orthogonal projection of 𝒦𝑓,T  onto (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) ⊗  𝒟 Note also 

that relation (40) implies 

                  𝑈ℍf ,T  = U 𝒦𝑓,T ⊖𝑈Φ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊗ 𝒟∗) 

                 = 𝒦𝑓,T′ ⊖ Φ′ (𝐼
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

⊗𝒯∗) ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) 

⊗𝒟∗)  

               = 𝒦𝑓,T′ ⊖ Φ′ ((⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗𝒟∗) . 

This shows that the operator 𝑈|ℍf ,T : ℍf ,T → ℍf ,T′  is unitary. Note also that  

     (𝐖𝑖,𝑗
∗ ⊗ 𝐼𝒟′  ) (𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) 
⊗𝒯 ) =

 (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

) ⊗ 𝒯 
) (𝐖𝑖,𝑗

∗ ⊗ 𝐼𝒟 )                                                                                           (42).  

Let 𝕋 := (𝕋1, . . . 𝕋𝑛) and 𝕋′  := (𝕋1
′ , . . . 𝕋𝑛

′ ) be the model operators provided by Theorem (4.1.35) 

for T and T′, respectively. Using the relation (37) for T′ and T, as well as (41) and (42), we have 

                  𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

′

𝒦
𝑓,T′ 𝕋𝑖,𝑗

′ ∗
𝑈𝒳 = (𝐖𝑖,𝑗

∗ ⊗ 𝐼𝒟′  )𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

 

𝒦f,T  𝑈𝒳 

= (𝐖𝑖,𝑗
∗ ⊗ 𝐼𝒟′  )( 𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)
⊗ 𝜏) 𝑃

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

𝒳 
𝒦f,T   
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                                             = ( 𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗𝜏) (𝐖𝑖,𝑗
∗ ⊗ 𝐼𝒟 ) 𝑃

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

𝒳 
𝒦f,T 

 

                                = ( 𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝜏) 𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

 

𝒦f,T 𝕋𝑖
∗𝒳   

       =  𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)⊗ 𝒟′
 

𝒦
𝑓,T′

 

𝑈𝕋𝑖,𝑗
∗ 𝒳   

for any 𝑖 =  {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, and 𝑥 ϵ ℍf ,T  𝑠𝑖𝑛𝑐𝑒 𝑃
⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)⊗ 𝒟

′ 

𝒦
f,T′  |ℍ

f ,T′ 
 is an one-to-one 

operator (see Theorem (4.1.35)), we obtain (𝑈|ℍf ,T ) = 𝕋𝑖,𝑗
∗  = (𝕋𝑖,𝑗

′ )∗ (𝑈|ℍf ,T ). Due to  

Theorem (4.1.35), we conclude that the 𝑘-tuples T and 𝐓′are unitarily equivalent. The proof is 

complete .           

Proposition (4.1.37) [186]: If T = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐃𝒇
𝒎(ℋ), then the following statements hold. 

(i) T is unitarily equivalent to (𝐖𝟏 ⊗ 𝐼𝒦, . . . , 𝐖𝒌 ⊗ 𝐼𝒦) for some Hilbert space 𝒦 if and 

only if T ∈ 𝓒𝐟
𝐦(ℋ) is completely non-coisometric and the characteristic function 𝚯𝐟 ,𝐓  = 

0. 

(ii) If T ∈ 𝓒𝐟
𝐦(ℋ), then 𝚯𝐟 ,𝐓  has dense range if and only if there is no nonzero vector ℎ ∈ ℋ 

such that  

lim
𝑞=(𝑞1,...,𝑞𝑘)𝜖ℕ

𝑘
〈(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )… (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝐼ℋ)ℎ, ℎ〉 =  ‖ℎ‖ 

Proof: Note that if T = (𝐖𝟏 ⊗ 𝐼𝒦, . . . , 𝐖𝒌 ⊗ 𝐼𝒦) for some Hilbert space 𝒦, then 𝐊f ,T  = I.  

Since 𝐊f ,T𝐊f ,T
∗

 
+ 
  𝚯𝐟 ,𝐓 , 𝚯f ,T

∗   = I , we deduce that 𝚯𝐟 ,𝐓   = 0.  Conversely, if T ∈ 𝓒𝐟
𝐦(ℋ) is 

completely non-coisometric and the characteristic function 𝚯𝐟 ,𝐓 = 0, then 𝐊f ,T𝐊f ,T
∗

  

 
= I. Using 

Theorem (4.1.35), the result follows. 

   Due to Theorem (4.1.11), the condition in item (ii) is equivalent to ker(𝐼 − 𝐊f ,T
∗  𝐊f ,T)  = {0}, 

which is equivalent to ker (I − 𝐊f ,T𝐊f ,T
∗

 
) = {0} and, therefore, to ker 𝚯𝐟 ,𝐓 , 𝚯f ,T

∗  =  {0}. Hence, the 

result follows. The proof is complete. 

        We develop a dilation theory on the noncommutative polydomain 𝐃𝐟
𝐦(ℋ) and obtain Wold 

type decompositions for non-degenerate ∗-representations of the 𝐶∗-algebra 𝐶∗(𝐖𝑖,𝑗). 

        We recall that 𝒫(𝐖) is the set of all polynomials 𝒫(𝐖i,j ) in the operators 𝐖𝑖,𝑗 , 𝑖 ∈

 {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}, and the identity. 

Lemma (4.1.38) [186]: Let 𝐪 =  (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let W = (𝐖1, . . . , 𝐖𝑘) be the universal model associated with the 

noncommutative polydomain  𝐃𝐟
𝐦. Then all the compact operators in B(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) are 

contained in the operator space 

𝒮:=  span {𝑝(𝐖𝑖,𝑗)𝑞(𝐖𝑖,𝑗)
∗ ∶  𝑝(𝐖𝑖,𝑗), 𝑞 (𝐖𝑖,𝑗)  ∈  𝒫(𝐖 )}, 

where the closure is in the operator norm. 

Proof: According to Lemma (4.1.10), we have     

                  (𝐼 −  Φ𝑞1 ,𝐖1)
𝑚1  … (𝐼 − Φ𝑞𝑘 ,𝐖𝒌)

𝑚𝑘  (𝐼) =  𝐏ℂ                         (43) 

where 𝐏ℂ is the orthogonal projection from (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1 ⊂ (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖). Fix 

𝑔(𝐖𝑖,𝑗):= ∑ 𝑑𝛽1,….𝛽𝑘𝐖1,𝛽1 …𝐖𝑘,𝛽𝑘

𝛽1∈𝔽𝑛1
+ ,….,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|≤𝑛

and  

𝜉 ∶ ∑ 𝑐𝛽1,….𝛽𝑘𝑒𝛽1
1 ⨂⋯⨂

𝛽1∈𝔽𝑛1
+ ,….,𝛽𝑘∈𝔽𝑛𝑘

+

𝑒𝛽𝑘
𝑘  

and note that 𝐏ℂ𝑔(𝐖𝑖,𝑗)
∗𝜉 =  〈𝜉, 𝑔(𝐖𝑖,𝑗)(1)〉 . Consequently, we have   

                 𝜒 (𝐖𝑖,𝑗)𝐏ℂ𝑔(𝐖𝑖,𝑗)
∗
𝜉 =  〈𝜉, 𝑔(𝐖𝑖,𝑗)(1)〉 𝜒(𝐖𝑖,𝑗)(1)                      (44) 
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for any polynomial χ(𝐖𝑖,𝑗). Using relation (43), we deduce that the operator 𝜒(𝐖𝑖,𝑗)𝐏ℂ𝑔(𝐖𝑖,𝑗)
∗ has 

rank one and it is in the operator space 𝑆. On the other hand, due to the fact that the set of all 

vectors of the form  

∑ 𝑑𝛽1,….𝛽𝑘𝐖1,𝛽1 …𝐖𝑘,𝛽𝑘𝛽1∈𝔽𝑛1
+ ,….,𝛽𝑘∈𝔽𝑛𝑘

+

|𝛽1|+⋯+|𝛽𝑘|≤𝑛

(1) with 𝑛 ∈  ℕ , 𝑑𝛽1,….𝛽𝑘 ∈ ℂ, is dense in 

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) , relation (44) implies that all the compact operators in B(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) are 

contained in 𝑆. This completes the proof. 

      Let 𝐶∗(Γ) be the 𝐶∗- algebra generated by a set of operators Γ ⊂ B(𝒦) and the identity. A 

subspace ℋ ⊂ 𝒦 is called ∗ - cyclic for Γ if 𝒦 =  span {𝑋ℎ, 𝑋 ∈  𝐶∗(Γ), ℎ ∈ ℋ}. The main result 

is the following dilation theorem for the elements of the noncommutative polydomain 𝐃𝐪
𝐦(ℋ). 

Theorem (4.1.39) [186]: Let 𝐪 =  (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let W= (𝐖𝟏, . . . ,𝐖𝑘) be the universal model associated with the abstract 

noncommutative polydomain 𝐃𝐪
𝐦. If T = (T1, . . . , T𝑘) is a 𝑘-tuple in  𝐃𝐪

𝐦 (ℋ), then there exists a ∗-

representation π : 𝐶∗(𝐖𝑖,𝑗) → B(𝒦𝜋 ) on a separable Hilbert space 𝒦𝜋 , which annihilates the 

compact operators and 

(𝐼 −  Φ𝑞1,(𝐖1) )… (𝐼 −  Φ𝑞𝑘 ,𝜋(𝐖𝑘 ))(𝐼𝐾𝜋  )  =  0, 

where (𝐖𝑖) ∶=  ( 𝜋 (𝐖𝑖,1), . . . , 𝜋(𝐖𝑖,𝑛𝑖 
)) , such that ℋ can be identified with a ∗-cyclic co-

invariant subspace of 

                      �̃� ∶= [( ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ ∆𝐪 ,𝐓

𝐦 (𝐼)(ℋ)] ⨁𝒦𝜋   

  

under each operator    

𝑉𝑖,𝑗 ∶=  [
𝐖𝑖,𝑗 ⊗ I

 

∆𝑞 ,𝑇 
𝑚 (ℋ)(𝐼)

0

0 𝜋(𝐖𝑖,𝑗)
] , 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖} 

where  ∆𝐪 ,𝐓 
𝐦 (𝐼):=  (𝑖𝑑 − Φ𝑞1 ,𝑇1 )

𝑚1
… (𝑖𝑑 − Φ𝑞𝑘 ,T𝑘)

𝑚𝑘  (𝐼), and 

such that  

𝑇𝑖,𝑗
∗ = 𝑉𝑖,𝑗

∗ |ℋ  for all 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. 

Proof: Applying Arveson extension theorem [193] to the map Ψ𝐪,𝐓  of Theorem (4.1.12), we find a 

unital com-pletely positive linear map Ψ𝐪,𝐓 : 𝐶
∗ (𝐖𝑖,𝑗 ) → 𝐵(ℋ) such that Ψ𝐪,𝐓 (𝐖(α) 𝐖(β) )

∗ = 

𝐓(α)𝐓(β)
∗ , where 𝐓(α) ∶=  𝑇1,𝛼1 …  𝑇𝑘,𝛼𝑘for (𝛼) ∶= (𝛼1 , . . . , 𝛼𝑘) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+

 
 , 𝑎𝑛𝑑 𝐖(𝛼) is 

defined similarly.  Let �̃�: 𝐶∗(𝐖𝑖,𝑗)  →  𝐵(�̃�)  be the minimal Stinespring dilation [193] of Ψ𝐪,𝐓 . 

Then we have  

Ψ𝐪,𝐓(𝑋)  =  𝑃ℋ�̃� (𝑋)|ℋ,           𝑋 ∈  𝐶
∗(𝐖𝑖,𝑗), 

and �̃� span{ �̃� (𝑋) ℎ ∶  𝑋 ∈  𝐶∗ (𝐖𝑖,𝑗), ℎ ∈  ℋ} Now, we prove that that 𝑃ℋ�̃� (𝐖(α))|ℋ⊥ =  0 for 

an (𝛼) ∶=  (𝛼1 , . . . , 𝛼𝑘)  ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+

 
. Indeed, we have 

Ψ𝐪,𝐓 (𝐖(𝛼) 𝐖(𝛼)
∗ )  =  𝐓(𝛼)𝐓(𝛼)

∗  =  𝑃ℋ�̃� (𝐖(𝛼)) �̃� (𝐖(𝛼)
∗ )|ℋ 

= 𝑃ℋ�̃� (𝐖(𝛼))( 𝑃ℋ  +  𝑃ℋ⊥  ) �̃�(𝐖(𝛼)
∗ )|ℋ 

= Ψ𝒒,𝑻  (𝐖(𝛼)𝐖(𝛼)
∗ )  +  (𝑃ℋ�̃� (𝐖(𝛼))|ℋ⊥  )( 𝑃ℋ�̃� (𝐖(𝛼))|ℋ⊥)∗. 

Consequently, we deduce that 𝑃ℋ�̃�(𝐖(α)) |ℋ⊥ =  0 and, therefore, ℋ is an invariant subspace 

under each operator �̃�(𝐖𝑖,𝑗)
∗ and 

                �̃�(𝐖𝑖,𝑗)
∗|ℋ  =  Ψ𝐪,𝐓 (𝐖𝑖,𝑗

∗ )  =  𝑇i,j
∗               (𝟒𝟓) 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖}. 

All the compact operators C(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) in B(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) are con-tained in the 𝐶∗- algebra 

𝐶∗ (𝐖𝑖,𝑗). Due to standard theory of  representations of 𝐶∗ -algebras [194], the representation �̃� 

decomposes into a direct sum  �̃� = 𝜋0⊕  𝜋 𝑜𝑛 �̃�  =  𝒦0⊕ 𝒦𝜋, where 𝜋0, 𝜋 are disjoint 

representations of 𝐶∗ (𝐖𝑖,𝑗) on the Hilbert spaces 
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 𝒦0 ∶=  span{�̃� (𝑋) �̃� ∶    𝑋 ∈  𝒞(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) } and   𝒦𝜋 ∶

=  𝒦0
⊥ , 

respectively, such that π annihilates the compact operators in B(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)), and 𝜋0 is uniquely 

determined by the action of �̃� on the ideal 𝒞(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) of compact operators. Since every 

representation of 𝒞 (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) is equivalent to a multiple of the identity representation, we 

deduce that . 

𝒦0 ≃ (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ 𝒢 ,  𝜋0 (𝑋) =  𝑋 ⊗ 𝐼𝒢 , 𝑋 ∈  𝐶

∗ (𝐖𝑖,𝑗),        (46) 

for some Hilbert space 𝒢. And its proof, one can easily see that  

𝒦0 ∶=  span { �̃� (𝑋) �̃� ∶    𝑋 ∈  𝒞(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) } 

       = span {�̃� (𝐖(𝛼)𝑷ℂ𝐖(β)
∗ )�̃� ∶ (𝛼), (𝛽) ∈  𝔽𝑛1

+ × …  × 𝔽𝑛𝑘
+

 
}     

= 𝑠𝑝𝑎𝑛 {�̃�(𝐖(𝛼))[(𝐼 −  Φ𝑞1,�̃�(𝐖1))
𝑚1
… (𝐼 − Φ𝑞𝑘,�̃�(𝐖𝑘))

𝑚𝑘
(𝐼�̃�)]�̃� ∶ (𝛼) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+

 
} 

Since (𝐼 −  Φ𝑞1 ,𝑾1)
𝑚1… ( I − Ф𝑞𝑘,𝐖𝑘

𝑚𝑘 )(𝐼) = 𝐏ℂ, is a projection of rank one in 𝐶∗ (𝐖𝑖,𝑗) we 

deduce that (𝐼 −  Φ𝑞1 ,π (𝐖1))
𝑚1… (𝐼 −  Φ𝑞𝑘 ,π (𝐖𝒌))

𝑚𝑘(I𝒦π) = 0 and dim 

𝒢 = dim [range �̃� (𝐏ℂ)] . On the other hand, since the Stinespring representation �̃� is minimal, we 

can use the proof to deduce that    

range �̃� (𝑷ℂ)  =  span {�̃� (𝑷ℂ)�̃�(𝐖(𝛽)
∗ ) ℎ ∶ (𝛽) ∈  𝔽𝑛1

+ × …  × 𝔽𝑛𝑘
+ , ℎ ∈ ℋ }. 

Indeed, we have      

range �̃� (𝑷ℂ)  =  span { �̃� (𝑷ℂ) �̃� (𝑋) ℎ ∶  𝑋 ∈  𝐶
∗ (𝐖𝑖,𝑗), ℎ ∈  ℋ } 

             =  span { �̃� (𝑷ℂ) �̃� (𝑌) ℎ ∶  𝑌 ∈  𝒞 (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)), ℎ ∈  ℋ }  

    =  span { �̃� (𝑷ℂ) �̃� (𝐖(𝛼)𝑷ℂ𝐖(𝛽)
∗ )ℎ ∶ (𝛼), (𝛽) ∈  𝔽𝑛1

+ × …  × 𝔽𝑛𝑘
+ , ℎ ∈  ℋ } 

                         =  span {�̃� (𝑷ℂ)�̃�(𝐖(𝛽)
∗ ) ℎ ∶ (𝛽) ∈  𝔽𝑛1

+ × …  × 𝔽𝑛𝑘
+ , ℎ ∈ ℋ } 

Now , using the fact that  

Ψ𝐪,𝐓 ( 𝐖(𝛼)𝑋)  =  𝑃ℋ(�̃�( 𝐖(𝛼))�̃�(𝑋))|ℋ 

      =  (𝑃ℋ�̃� 𝐖(𝛼))|ℋ)(𝑃ℋ�̃�(𝑋)|ℋ) 

= Ψ𝐪,𝐓 ( 𝐖(𝛼))Ψ𝐪,𝐓(𝑋) 

for any 𝑋 ∈  𝐶∗ (𝐖𝑖,𝑗) 𝑎𝑛𝑑 (𝛼)  ∈  𝔽𝑛1
+ × …  ×  𝔽𝑛𝑘

+ ,  , it is easy to see that 

〈�̃�(𝑷ℂ)�̃�(𝐖(α)
∗ )ℎ, �̃�(𝑷ℂ)�̃�(𝐖(β)

∗ )𝑘〉 =  〈ℎ, 𝐓(𝛼)[(𝑖𝑑 − Φ𝑞1 ,T1)
𝑚1
… (𝑖𝑑 −  Φ𝑞𝑘 ,T𝑘)

𝑚𝑘(𝐼ℋ)]𝐓(𝛽)
∗ ℎ]〉 

     = 〈∆𝐪,𝐓 
𝐦 (I)𝐓(α)

∗ ℎ, ∆𝐪,𝐓 
𝐦 (I)𝐓(β)

∗ 𝑘〉 

for any ℎ, 𝑘 ∈  ℋ 𝑎𝑛𝑑 (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × …  × 𝔽𝑛𝑘

+   . This implies the existence of a unitary 

operator , Λ ∶  range �̃�(𝑃ℂ)  → ∆𝐪,𝐓 
𝐦 (I)ℋ  defined by     

Λ[�̃�(𝑷ℂ)�̃�(𝐖(α)
∗ )ℎ] ∶= ∆𝐪,𝐓 

𝐦 (𝐼)𝐓(α)
∗ ℎ, ℎ ∈  ℋ, 𝛼 ∈ 𝔽𝑛

+. 

This shows that         

dim[𝑟𝑎𝑛𝑔𝑒 𝜋(𝑷ℂ)]  =  dim∆𝐪,𝐓 
𝐦 (𝐼)ℋ  =  dim 𝒢. 

Using relations (45) and (46), and identifying 𝒢 with ∆𝐪,𝐓 
𝐦 (𝐼)ℋ, we obtain the required dilation. On 

the other hand, due to the fact that (𝐼 −  Φ𝑞1 ,π (𝐖1))
𝑚1  … (𝐼 −  Φ𝑞𝑘 ,π (𝐖𝒌))

𝑚𝑘(𝐼𝒦𝜋) =  0, we can 

use Proposition(4.1.9) to deduce that (𝐼 − Φ𝑞1 ,π (𝐖1))⋯ (𝐼 − Φ𝑞𝑘 ,π (𝐖𝒌))(𝐼𝒦𝜋)  =  0. The proof is 

complete. 

   We remark that if we replace q = (𝑞1, . . . , 𝑞𝑘), in Theorem (4.1.39), by a 𝑘-tuple f := (𝑓1, . . . , 𝑓) 
of positive regular free holomorphic functions we obtain a dilation theorem for any T = (𝑇1, . . . , 

𝑇𝑘) in 𝐃𝐟
𝐦(ℋ) . More precisely, one can show that there is a ∗-representation 𝜋 ̃: 𝐶∗ (𝐖𝑖,𝑗) 

∗ →

𝐵(�̃�) such that ℋ is an invariant subspace under each operator �̃� (𝐖𝑖,𝑗) 
∗ and 𝑇𝑖,𝑗

∗  = 

�̃� (𝐖𝑖,𝑗)
∗
|ℋ  for any 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}. On the other hand , note that, using the proof of 

Theorem (4.1.39) and due to the standard theory of  representations of 𝐶∗-algebras, one can deduce 
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the following Wold type decomposition for non-degenerate ∗-representations of the 𝐶∗-algebra 

𝐶∗(𝐖𝑖,𝑗). 

Corollary (4.1.40) [186]: Let q = (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let W = (𝐖𝑖,𝑗) be the universal model associated with the abstract 

noncommutative polydomain 𝐃𝐟
𝐦. If 𝜋 ∶  𝐶∗ (𝐖𝑖,𝑗) → 𝐵(𝒦) is a nondegenerate ∗-representation of 

𝐶∗ (𝐖𝑖,𝑗) on a separable Hilbert space 𝒦, then 𝜋 decomposes into a direct sum  

𝜋 =  𝜋0  ⊕ 𝜋1  𝑜𝑛  𝒦 =  𝒦 0⊕ 𝒦1, 

where 𝜋0 and 𝜋1 are disjoint representations of 𝐶∗(𝐖𝑖,𝑗)  on the Hilbert spaces 

𝒦0 ≔ span̅̅ ̅̅ ̅̅ { 𝜋(𝐖(𝛼))[ (𝐼 − Ф𝑞1,𝜋(𝐖1)) 
𝑚1 …(𝐼 − Ф𝑞𝑘,𝜋(𝐖𝑘)) 

𝑚k(𝐼𝒦)] 

𝒦: (𝛼)𝜖 𝔽𝑛1
+  × …× 𝔽𝑛𝑘} 

And 𝒦1 ≔ 𝒦0
⊥, respectively, where 𝜋(𝐖𝑖) ∶= (𝜋(𝐖𝑖,1), … , 𝜋(𝐖𝑖,𝑛𝑖

)) Moreover, up to an 

isomorphism, 

𝒦0 ≃ (⊗𝑖=1
𝑘 𝐹2 (𝐻𝑛𝑖)) ⊗ 𝒢,  𝜋0 (X) = X ⊗ 𝐼𝒢 for any  X ∈ 𝐶∗(𝐖𝑖,𝑗), 

where 𝒢 is 𝑎 Hilbert space with          

dim 𝒢 = dim {range [(𝐼 −  Φ𝑞1 ,π(𝐖1) )
m1  … (𝐼 −  Φ𝑞𝑘 ,π(𝐖𝑘) )

mk  (𝐼𝒦) ]}, 

and 𝜋1 is a ∗-representation which annihilates the compact operators and   

(𝐼 −  Φ𝑞1 ,π(𝐖1) )… (𝐼 −  Φ𝑞𝑘 ,π(𝐖𝑘) )(𝐼𝒦1) =  0. 

If 𝜋′ is another nondegenerate ∗-representation of  𝐶∗(𝐖𝑖,𝑗) on a separable Hilbert space 𝒦′, then 𝜋 

is unitarily equivalent to π′ if and only if dim 𝒢 = dim 𝒢 ′ and 𝜋1 is unitarily equivalent to 𝜋1′. 

    Note that in the particular case when 𝐦 =  (1, . . . , 1), 𝑞𝑖 ∶=  𝑍𝑖,1  + ⋯ + 𝑍𝑖,𝑛𝑖   for 𝑖 ∈

 {1, . . . , 𝑘}, and 𝑉𝑖  =  (𝑉𝑖,1 . . . , 𝑉𝑖,𝑛𝑖  ) are row isometries such that V = (𝑉𝑖,𝑗 ) are doubly commuting, 

Corollary (4.1.40) provides a Wold type decomposition for 𝐕. We also remark that under the 

hypotheses and notations of Corollary (4.1.40), and setting 𝑉𝑖,𝑗 := π(𝐖𝑖,𝑗) for any 𝑖 ∈  {1, . . . , 𝑘} and 

𝑗 ∈  {1, . . . , 𝑛𝑖}, the following statements are equivalent: 

(i) 𝐕 =  (𝑉1 . . . , 𝑉𝑘 ) is a pure element in 𝐃𝐪
𝐦(𝒦) ; 

(ii) for each 𝑖 ∈  {1, . . . , 𝑘}, lim
p→∞

Φ𝑞𝑖 ,𝑉𝑖
𝑝

  (𝐼)  =  0 in the strong operator topology; 

(iii) 𝒦 := span̅̅ ̅̅ ̅̅  { V(α) [(I −  Φ𝑞𝑖 ,𝑉𝑖  )
m1
 …  (I −  Φ𝑞𝑘 ,𝑉𝑘)

mk
 (𝐼𝒦 )] (𝒦) ∶ (α) ∈ 𝔽𝑛1

+ × …  ×

 𝔽𝑛𝑘}.  

We mention that, under the additional condition that 

 span̅̅ ̅̅ ̅̅  { 𝐖(α)𝐖(β)
∗ : (𝛼)(𝛽) ∈  𝔽𝑛1

+ × …  ×  𝔽𝑛𝑘
+

 
} is equel to 𝐶∗(𝐖𝑖,𝑗) , (eg. for the polyball) the 

map Ψ𝐪,𝐓  in the proof of Theorem (4.1.39) is unique and the dilation of T is minimal, i.e., �̃� is the 

closed span of all V(α)ℋ (𝛼) ∈  𝔽𝑛1
+ × …  × 𝔽𝑛𝑘

+  Taking into account the uniqueness of the minimal 

Stinespring representation and the Wold type decomposition mentioned above, one can prove the 

uniqueness, up to unitary equivalence, of the minimal dilation provided by Theorem (4.1.39). 

Moreover, let T′ = (T1
′
  
, . . . , T𝑘

′ ) be another 𝑘-tuple in 𝐃𝐪
𝐦(ℋ′) and let 𝐕 ′ =  (𝑉1

′
  
, . . . , 𝑉𝑘

′) be the 

corresponding dilation. Using standard arguments concerning the representation theory of  𝐶∗-

algebras , one can prove that 𝐓 and 𝐓′ are unitarily equivalent if and only if dim ∆𝐪 ,𝐓
𝐦 (𝐼)(ℋ) = dim 

∆𝐪 ,𝐓′
𝐦 (𝐼)(ℋ′) and there are unitary operators  

𝑈 ∶ ( ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐪 ,𝐓

𝐦 (𝐼)(ℋ)  →  (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))⊗ ∆𝐪 ,𝐓′

𝐦 (𝐼)(ℋ′) 

Γ:𝒦π  →  𝒦π′   such that           

𝑈( 𝐖𝑖,𝑗𝐼
 

∆𝑞 ,𝑇 
𝑚 (𝐼)(ℋ)

 =  𝐖𝑖,𝑗  𝐼
 

∆𝒒 ,𝑻′
𝒎 (𝐼)(ℋ′)

 ) 𝑈, Γ𝜋( 𝐖𝑖,𝑗) =  𝜋
′( 𝐖𝑖,𝑗)Γ 

for any 𝑖 ∈  {1, . . . , 𝑘} and 𝑗 ∈  {1, . . . , 𝑛𝑖  }, and [
𝑈 0
0 𝑇

]ℋ =  ℋ′.    
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Corollary (4.1.41) [186]: Let V := (𝑉1 . . . , 𝑉𝑘) ∈ 𝐃𝐪
𝐦(�̃�)  be the dilation of T := (𝑇1 . . . , 𝑇𝑘) ∈ 

𝐃𝐪
𝐦(ℋ) given by Theorem (4.1.39). Then, 

(i) V is a pure element in 𝐃𝐪
𝐦(�̃�) if and only if T is a pure element in 𝐃𝐪

𝐦(ℋ) ;   

(ii) ( 𝐼 −  Ф𝑞1,𝑣1  )⋯ ( 𝐼 −  Ф𝑞𝑘,𝑉𝑘) (𝐼�̃�) = 0 if and only if  ( 𝐼 −  Ф𝑞1,𝑇1  )⋯ ( 𝐼 −

Ф𝑞𝑘,𝑇𝑘)(𝐼ℋ)  =  0      

Proof: According to Theorem (4.1.39) , we have 

( 𝑖𝑑 −  Ф𝑞𝑘,𝑇𝑘
𝑝𝑘  )⋯ ( 𝑖𝑑 − Ф𝑞1,𝑇1

𝑝1  ) (𝐼ℋ)  =  

𝑃ℋ [
( 𝑖𝑑 − Ф𝑞𝑘,𝐖𝑘

𝑝𝑘  )⋯ ( id −  Ф𝑞1,𝐖𝟏
𝑝1  )(𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖
)
)  ⊗ 𝐼

 

∆𝐪 ,𝐓 
𝐦 (ℋ)

0
   
0
0
] |ℋ. 

Hence, we deduce that  lim
𝐪=(q1,...,qk )∈ℤ+

𝑘
(𝑖𝑑 − Ф𝑞𝑘,𝑇𝑘

𝑝𝑘 )… ( id −  Ф𝑞1,𝑇1
𝑝1 )(𝐼ℋ)  =

I if and only if  𝑃ℋ [
𝐼 0
0 0

] |ℋ  =  𝐼 consequently , 𝐓 is pure if and only if ℋ ⊥ (0⊕

𝒦π ).  According to Theorem (4.1.39)  this is equivalent to ℋ ⊂ ( ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗

∆𝐪 ,𝐓
𝐦 (𝐼)(ℋ) On the other hand, since (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊗ ∆𝐪,𝐓 
𝐦 (𝐼)(ℋ)  is reducing for each 

𝑉𝑖,𝑗 , and �̃� is the smallest reducing subspace For 𝑉𝑖,𝑗 which contins ℋ , we must have �̃� =

 (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ ∆𝐪,𝐓 

𝐦 (𝐼)(ℋ) . Therefore, item (i) holds. 

       To prove part (ii), note that  

∆𝐪 ,𝐕 
𝐦 (𝐼�̃�) = [

∆ 𝐪,𝐖
𝐦 (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖))  ⊗ I
 

∆𝐪 ,𝐓 
𝐦 (ℋ)

0

0 0
]. 

Hence, we deduce that ∆𝐪 ,𝐕 
𝐦 (𝐼�̃�) = 0 if and only if  ∆ 𝒒,𝑾

𝒎  (𝐼⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖

)
) ⊗ 𝐼

 

∆𝐪 ,𝐓 
𝐦 (ℋ)

 On the other 

hand, we know that ∆ 𝐪,𝐖
𝐦  (𝐼⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖
)
) = 𝐏ℂ. Consequently, the relation above holds if and only if 

∆𝐪,𝐓 
𝐦 = 0. Now, using Proposition (4.1.9), we obtain the equivalence in part (ii). The proof is 

complete. 

       We remark that every pure k-tuple T ∈ 𝐃𝐪
𝐦, (ℋ) with rank ∆𝐪,𝐓 

𝐦 = 1 unitarily equivalent to one 

obtained by compressing (𝐖1, . . . , 𝐖𝑛) to a co-invariant subspace under 𝐖𝑖,𝑗 where 𝑖 ∈  {1, . . . , 𝑘} 

and 𝑗 ∈  {1, . . . , 𝑛𝑖}. Indeed , this follows from Theorem (4.1.39), Corollary (4.1.41), and the 

remarks preceding Corollary (4.1.41). 

Section (4.2): Noncommutative Varieties in Polydomains  

We denote by 𝐵(𝐻)𝑛1 ×𝑐· · ·×𝑐 𝐵(𝐻)
𝑛𝑘 the set of all tuples 𝑋:= (𝑋1, . . . , 𝑋𝑘) in 𝐵(𝐻)𝑛1 ×· · ·×

𝐵(𝐻)𝑛𝑘 with the property that the entries of 𝑋𝑠: = (𝑋𝑠,1, . . . , 𝑋𝑠,𝑛𝑠) are commuting with the entries of  

𝑋𝑡: = (𝑋𝑡,1, . . . , 𝑋𝑡,𝑛𝑡) for any 𝑠, 𝑡 ∈ {1, . . . , 𝑘}, 𝑠 ≠ 𝑡. In an attempt to unify the multivariable 

operator model theory for the ball-like domains and commutative polydiscs, we developed in [249] 

an operator model theory and a theory of free holomorphic functions on regular polydomains of the 

form 

𝐷𝑞
𝑚(𝐻): = {𝑋 = (𝑋1, . . . , 𝑋𝑘) ∈ 𝐵(𝐻)

𝑛1 ×𝑐 · · · ×𝑐 𝐵(𝐻)
𝑛𝑘: ∆𝑞,𝑋

𝑝
(𝐼) ≥ 0 𝑓𝑜𝑟 0 ≤ 𝑝 ≤ 𝑚}, 

where 𝑚:= (𝑚1, . . . , 𝑚𝑘) and 𝑛:= (𝑛1, . . . , 𝑛𝑘) are in ℕ𝑘, the defect mapping ∆𝑞,𝑋
𝑚 ∶ 𝐵(𝐻) → 𝐵(𝐻) 

is defined by 
∆𝑞,𝑋
𝑚 ∶= (𝑖𝑑 − Φ𝑞1,𝑋1)

𝑚1 ∘· · · ∘ (𝑖𝑑 − Φ𝑞𝑘,𝑋𝑘)
𝑚𝑘 , 

and 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular polynomials 𝑞𝑖 ∈ ℂ[𝑍𝑖,1, . . . , 𝑍𝑖,𝑛𝑖], i.e., all the 

coefficients of 𝑞𝑖 are positive, the constant term is zero, and the coefficients of the linear terms 

𝑍𝑖,1, . . . , 𝑍𝑖,𝑛𝑖 are different from zero. If the polynomial 𝑞𝑖 has the form 𝑞1 = ∑ 𝑎𝑖,𝛼𝑍𝑖,𝛼𝛼 , the 

completely positive linear 𝑚𝑎𝑝 Φ𝑞𝑖,𝑋𝑖: 𝐵(𝐻) → 𝐵(𝐻) is defined by setting Φ𝑞𝑖,𝑋𝑖(𝑌): =

∑ 𝑎𝑖,𝛼𝑋𝑖,𝛼𝑌 𝑋𝑖,𝛼
∗

𝛼  for 𝑌 ∈ 𝐵(𝐻). 

We study noncommutative varieties in the polydomain 𝐷𝑞
𝑚(𝐻), given by 
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𝑉𝑄(𝐻): = {𝑋 ∈ 𝐷𝑞
𝑚(𝐻):    𝑔(𝑋) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝑄}, 

where 𝑄 is a set of polynomials in noncommutative indeterminates 𝑍𝑖,𝑗, which generates a 

nontrivial ideal in ℂ[𝑍𝑖,𝑗]. We understand the structure of this noncommutative variety, determine 

its elements and classify them up to unitary equivalence, for large classes of sets 𝑄 ⊂ ℂ[𝑍𝑖,𝑗]. This 

study can be seen as an attempt to initiate noncommutative algebraic geometry in polydomains. 

Let 𝐻𝑛𝑖 be an 𝑛𝑖-dimensional complex Hilbert space. 

We consider the full Fock space of 𝐻𝑛𝑖 defined by 

𝐹2(𝐻𝑛𝑖):=⨁𝐻𝑛𝑖
⨂𝑝

𝑝≥0

, 

where 𝐻𝑛𝑖
⨂0: = ℂ1 and 𝐻𝑛1

⨂𝑝
 is the (Hilbert) tensor product of 𝑝 copies of 𝐻𝑛𝑖. Let 𝔽𝑛𝑖

+  be the unital 

free semigroup on 𝑛𝑖 generators 𝑔1
𝑖 , . . . , 𝑔𝑛𝑖

𝑖  and the identity 𝑔0
𝑖 . We use the notation 𝑍𝑖,𝛼𝑖: = 𝑍𝑖,𝑗1 · · ·

𝑍𝑖,𝑗𝑝 if 𝛼𝑖 ∈ 𝔽𝑛𝑖
+  and 𝛼𝑖 = 𝑔𝑗1

𝑖 · · ·  𝑔𝑗𝑝
𝑖  , and 𝑍𝑖,𝑔0𝑖 : = 1. If (𝛼): = (𝛼1, . . . , 𝛼𝑘) is in 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘
+ , 

we set 𝑍(𝛼):= 𝑍1,𝛼1 · · · 𝑍𝑘,𝛼𝑘. after setting up the notation and recalling some basic results from 

[183], we show that the abstract variety 𝑉𝑄: = {𝑉𝑄(𝐻): 𝐻 is a Hilbert space} has a universal model 

𝑆 = {𝑆𝑖,𝑗} such that 𝑔(𝑆) = 0, 𝑔 ∈ 𝑄, where each 𝑆𝑖,𝑗 is acting on a subspace 𝑁𝑄 of a tensor product 

of full Fock spaces. For each element 𝑇 ∈ 𝑉𝑄(𝐻) we introduce the constrained noncommutative 

Berezin transform at 𝑇 as the 𝑚𝑎𝑝 𝐵𝑇,𝑄: 𝐵(𝑁𝑄) → 𝐵(𝐻) defined by setting 

𝐵𝑇,𝑄[𝜑]:= 𝐾𝑞,𝑇,𝑄
∗ (𝜑 ⊗ 𝐼𝐻)𝐾𝑞,𝑇,𝑄 ,      𝜑 ∈ 𝐵(𝑁𝐽), 

where 𝐾𝑓,𝑇,𝑄 is the constrained Berezin kernel. This Berezin [189] type transform will play an 

important role. We show that the pure elements of the noncommutative variety 𝑉𝑄(𝐻) are detected 

by a class of completely positive linear maps. More precisely, given 𝑇 = {𝑇𝑖,𝑗} ∈ 𝐵(𝐻)
𝑛1 ×· · ·×

𝐵(𝐻)𝑛𝑘, we prove that 𝑇 is a pure element of 𝑉𝑄(𝐻) if and only if there is a unital completely 

positive and 𝑤∗-continuous linear map 

Ψ ∶ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅𝑤
∗
{𝑆(𝛼)𝑆(𝛽)

∗ : (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × · · · ×  𝔽𝑛𝑘

+ }  → 𝐵(𝐻) 

such that 

Ψ(𝑆(𝛼)𝑆(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽)

∗ , (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × · · · ×  𝔽𝑛𝑘

+ . 

Every map Ψ with the above-mentioned properties is the constrained Berezin transform 𝐵𝑇,𝑄at a 

pure element 𝑇 ∈ 𝑉𝑄(𝐻). A similar result (see Theorem (4.2.4)) characterizing the noncommutative 

variety 𝑉𝑄(𝐻) is provided under the condition that 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is a left ideal generated by 

homogeneous polynomials. 

We use the noncommutative Berezin transforms to show that a tuple 𝑇 = {𝑇𝑖,𝑗} in 𝐵(𝐻)𝑛1 × · · · ×

𝐵(𝐻)𝑛𝑘 is a pure element in 𝑉𝑄(𝐻) if and only if it is unitarily equivalent to the compression of a 

multiple of the universal model to a co-invariant subspace. In this case, we have 

𝑇(𝛼) = 𝐵𝑇,𝑄[𝑆(𝛼)⊗ 𝐼𝐷], (𝛼) ∈ 𝔽𝑛1
+ × · · · ×  𝔽𝑛𝑘

+ , 

the constrained Berezin kernel 𝐾𝑞,𝑇,𝑄 is an isometry, and the subspace 𝐾𝑞,𝑇,𝑄𝐻 is co-invariant under 

each operator 𝑆𝑖,𝑗⊗ 𝐼𝐷, where 𝐷 is the closure of the range of the defect operator  ∆𝑞,𝑇
𝑚 (𝐼). For a 

certain class of noncommutative varieties 𝑉𝑄(𝐻), this leads to a characterization of the pure 

elements 𝑇 ∈ 𝑉𝑄(𝐻) with 𝑑𝑖𝑚𝐷 = 𝑛 ∈ ℕ. In particular, we obtain the following description and 

classification of the pure elements 𝑇 ∈ 𝑉𝑄(𝐻) with 𝑑𝑖𝑚𝐷 = 1. We show that they have the form 

𝑇 = {𝑃𝑀𝑆𝑖,𝑗|𝑀}, where 𝑀 is a co-invariant subspace under each operator 𝑆𝑖,𝑗 . Moreover, if 𝑀′ is 

another co-invariant subspace under 𝑆𝑖𝑗, which gives rise to an element 𝑇′ ∈ 𝑉𝑄(𝐻), then 𝑇 and 𝑇′ 

are unitarily equivalent if and only if 𝑀 = 𝑀′. This extends a result of Douglas and Foias [249] for 

the Hardy space 𝐻2(𝔻𝑛) over the polydisc. 

We also obtain a characterization of the Beurling [240] type joint invariant subspaces under the 

universal model 𝑆 = {𝑆𝑖,𝑗}. We prove that a subspace 𝑀 ⊂ 𝑁𝑄⊗𝐻 has the form 𝑀 = 𝑀 (𝑁𝑄⊗
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ℰ) for some partially isometric multi-analytic operator 𝑀:𝑁𝑄⊗ℰ → 𝑁𝑄⊗𝐻 with respect to the 

universal model 𝑆, i.e., 𝑀(𝑆𝑖,𝑗⊗ 𝐼𝐻) = (𝑆𝑖.𝑗⊗ 𝐼𝐾)𝑀 for all 𝑖, 𝑗, if and only if 

∆𝑞,𝑆⊗𝐼𝐻
𝑝

(𝑃𝑀) ≥ 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ ℤ+
𝑘 , 𝑝 ≤ 𝑚, 

where 𝑃𝑀 is the orthogonal projection of the Hilbert space 𝑁𝑄⊗𝐻 onto 𝑀. 

There is a strong connection between the noncommutative varieties in polydomains, the theory of 

functions in several complex variables, and the classical complex algebraic geometry. Note that the 

representation of the abstract variety 𝑉𝑄 on the complex plane ℂ is the compact set 

𝑉𝑄(ℂ) = 𝐷𝑞(𝐶) ∩ {𝜆 ∈ ℂ
𝑛: 𝑔(𝜆) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔 ∈ 𝑄} 

and 𝐷𝑞
∘(ℂ) = {𝜆 ∈ ℂ𝑛: ∆𝑞,𝜆(1) > 0} is a Reinhardt domain in ℂ𝑛, where 𝑛 = 𝑛1 + · · ·  + 𝑛𝑘 is the 

number of indeterminates in 𝑞 = (𝑞1, . . . , 𝑞𝑘). 
We determine all the joint invariant subspaces of co-dimension one of the universal model 𝑆 =
{𝑆𝑖,𝑗}. We show that the joint eigenvectors for 𝑆𝑖,𝑗

∗  are precisely the noncommutative constrained 

Berezin kernels 𝐾𝑞,𝜆,𝑄, where 𝜆 ∈ 𝑉𝑄(ℂ)) ∩ 𝐷𝑞
∘(ℂ). We introduce the variety algebra 𝐴(𝑉𝑄) as the 

norm closed algebra generated by the 𝑆𝑖,𝑗 and the identity, and the Hardy algebra 𝐹∞(𝑉𝑄) as the 

WOT-closed version. We identify the 𝑤∗-continuous and multiplicative linear functionals of the 

Hardy algebra 𝐹∞(𝑉𝑄) as the maps, indexed by 𝜆 ∈ 𝑉𝑄(ℂ) ∩ 𝐷𝑞
∘(ℂ), defined by Φ𝜆(𝐴): = 𝐵𝜆,𝑄[𝐴] 

for 𝐴 ∈ 𝐹∞(𝑉𝑄). If 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is a left ideal generated by noncommutative homogenous 

polynomials, then we show that the right joint spectrum 𝜎𝑟(𝑆) coincides with 𝑉𝑄(ℂ). On the other 

hand, it turns out that the variety 𝑉𝑄(ℂ) is homeomorphic to the space 𝑀𝐴(𝑉𝑄) of all characters of 

the variety algebra 𝐴(𝑉𝑄), via the mapping 𝜆 ⟼ Φ𝜆, where Φ𝜆 is the evaluation functional. 

Special attention is given to the commutative case when 𝑄 = 𝑄𝑐, the left ideal generated by the 

commutators 𝑍𝑖,𝑗𝑍𝑠,𝑡 − 𝑍𝑠,𝑡𝑍𝑖,𝑗 of the indeterminates in ℂ[𝑍𝑖,𝑗]. In this case, the universal model 

associated with 𝑉𝑄𝑐, denoted by 𝐿 = {𝐿𝑖,𝑗}, is acting on the Hilbert space 𝑁𝑄𝑐 which coincides with 

the closed span of all vectors 𝐾𝑞,𝜆,𝑄𝑐  with 𝜆 ∈ 𝐷𝑞
∘(ℂ)}, and it is identified with a Hilbert space 

𝐻2(𝐷𝑞
∘(ℂ)) of holomorphic functions on 𝐷𝑞

∘(ℂ), namely, the reproducing kernel Hilbert space with 

kernel defined by 

𝜅𝑞
𝑐(𝜇, 𝜆): =

1

∏ (1 − 𝑞𝑖(𝜇𝑖�̅�𝑖))
𝑚𝑖

𝑘
𝑖=1

, 𝜇, 𝜆 ∈ 𝐷𝑞
∘(ℂ). 

We prove that the Hardy algebra 𝐹∞(𝑉𝑄𝑐) is reflexive and coincides with the multiplier algebra of 

the Hilbert space 𝐻2(𝐷𝑞
∘(ℂ)). Under this identification, 𝐿𝑖,𝑗 is the multiplier by the coordinate 

function 𝜆𝑖,𝑗. We remark that when 𝑛1 = · · · = 𝑛𝑘 and 𝑄𝑐𝑐 is the left ideal generated by 𝑄𝑐 and the 

polynomials 𝑍𝑖,𝑗 − 𝑍𝑝,𝑗, the universal model associated with 𝑉𝑄𝑐𝑐 is acting on the Hilbert space 𝑁𝑄𝑐𝑐  

which can be identified with the reproducing kernel Hilbert space with kernel 

𝜅𝑞
𝑐𝑐(𝜇, 𝑤):=

1

∏ (1 − 𝑞𝑖(𝑧�̅�))
𝑚𝑖𝑘

𝑖=1

, 𝑧, 𝑤 ∈⋂ 𝐷𝑞𝑖
∘ (ℂ)

𝑘

𝑖=1
. 

In the particular case when 𝑓1 = · · · = 𝑓𝑘 = 𝑍1 + · · ·  + 𝑍𝑛 and 𝑚1 = · · · = 𝑚𝑘 = 1, we obtain the 

reproducing kernel (𝑧, 𝑤) ⟼
1

(1−〈𝑧,𝑤〉)𝑘
 on the unit ball 𝔹𝑛. In this case, the reproducing kernel 

Hilbert spaces are the Hardy-Sobolev spaces (see [247]), which include the Drurry-Arveson space 

(see [250], [255], [248],[246]), the Hardy space of the ball and the Bergman space (see [255]). All 

the results are true in these commutative settings.  

We show that the isomorphism problem for the universal polydomain algebras is closed connected 

to the biholomorphic equivalence of Reinhardt domains in several complex variables. Let 𝑞 =
(𝑞1, . . . , 𝑞𝑘) and 𝑔 = (𝑔1, . . . , 𝑔𝑘′) be tuples of positive regular polynomials with 𝑛 and ℓ 

indeterminates, respectively, and let 𝑚 ∈ ℕ𝑘 and ∈ ℕ𝑘
′
 . We prove that if the polydomain algebras 

𝐴(𝐷𝑞
𝑚) and 𝐴(𝐷𝑔

𝑑) are unital completely contractive isomorphic, then the Reinhardt domains 𝐷𝑞
∘(ℂ) 

and 𝐷𝑔
∘(ℂ) are biholomorphic equivalent and 𝑛 = ℓ. 𝐴 similar result holds for the commutative 
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variety algebras 𝐴(𝑉𝑞,𝑄𝑐
𝑚 ) and 𝐴(𝑉𝑔,𝑄𝑐

𝑑 ). We remark that when 𝑞 = 𝑍1 +· · · +𝑍𝑛 and 𝑔 =

(𝑍1, . . . , 𝑍𝑛), the corresponding domain algebras are the universal algebra of a commuting row 

contraction 𝐴(𝑉𝑞,𝑄𝑐
1 ) and the commutative polydisc algebra 𝐴(𝑉𝑔,𝑄𝑐

1 ), respectively. Since 𝔹𝑛 and 𝔻𝑛 

are not biholomorphic equivalent domains in ℂ𝑛 if 𝑛 ≥ 2 (see [251]), our result implies that the two 

algebras are not isomorphic. The classification problem for polydomain algebras will be pursued. 

We develop a dilation theory for noncommutative varieties in polydomains. For the class of 

noncommutative varieties 𝑉𝑄(𝐻), where 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is an ideal generated by homogeneous 

polynomials,  the dilation theory is refined. We obtain Wold type decompositions for non-

degenerate ∗-representations of the 𝐶∗-algebra 𝐶∗(𝑉𝑄) generated by the universal model 𝑆𝑖,𝑗 and the 

identity, and coisometric dilations for the elements of 𝑉𝑄(𝐻). Under natural conditions, the dilation 

is unique up to unitary equivalence. In the particular case when 𝑘 = 𝑚 = 1, 𝑞 = 𝑍1 + · · · +𝑍𝑛, and 

𝑄 = 𝑄𝑐, we recover Arveson’s results [255] concerning the dilation theory for commuting row 

contractions. 

We provide a characterization for the class of tuples of operators in the noncommutative variety 

𝑉𝑄(𝐻) which admit constrained characteristic functions. The characteristic function is a complete 

unitary invariant for the completely non-coisometric tuples. We also provide operator models in 

terms of the constrained characteristic functions. These results extend the corresponding ones from 

[258], [255], [257], [258], [251], [252], [251], and [253], to varieties in noncommutative 

polydomains. 

We remark that the results are presented in a more general setting, when 𝑞 is replaced by a 𝑘-tuple 

𝑓 = (𝑓1, . . . , 𝑓𝑘) of positive regular free holomorphic functions in a neighborhood of the origin, and 

𝑄 is replaced by a WOT-closed left ideal of the Hardy algebra 𝐹∞(𝐷𝑓
𝑚). 

We mention that noncommutative varieties in ball-like domains were studied in several  (see [256], 

[257], [258], [259], [250], [251], [252], and the references there in). The commutative case when 

𝑚1 ≥ 2, 𝑛1 ≥ 2, and 𝑞1 = 𝑍1 +· · · +𝑍𝑛, was studied by Athavale [256], Muller [252], Muller-

Vasilescu [253], Vasilescu [250], and Curto-Vasilescu [255]. Some of these results were extended 

by 𝑆. Pott [254] when 𝑞1 is a positive regular polynomial in commuting indeterminates (see also 

[252]). The commutative polydisc case, i.e, 𝑘 ≥ 2, 𝑛1 = · · · = 𝑛𝑘 = 1, and 𝑞 = (𝑍1, . . . , 𝑍𝑛), was 

first considered by Brehmer [254] in connection with regular dilations. Motivated by Agler’s work 

[251] on weighted shifts as model operators, Curto and Vasilescu developed a theory of standard 

operator models in the polydisc in [256], [257]. Timotin [259] obtained some of their results from 

Brehmer’s theorem. The polyball case, when 𝑘 ≥ 2 and 𝑞𝑖 = 𝑍1 + · · ·  + 𝑍𝑛𝑖  , 𝑖 ∈ {1, . . . , 𝑘}, was 

considered in [256] and [258] for the noncommutative and commutative case, respectively. 

We consider noncommutative varieties 𝑉𝑓,𝐽
𝑚(𝐻) ⊂ 𝐷𝑓

𝑚(𝐻) determined by left ideals 𝐽 in either one 

of the following algebras: ℂ[𝑍𝑖,𝑗], ℂ[𝑊𝑖,𝑗], 𝐴(𝐷𝑓
𝑚), or 𝐹∞(𝐷𝑓

𝑚). We associate with each such a 

variety a universal model 𝑆 = (𝑆1, . . . , 𝑆𝑛) ∈ 𝑉𝑓,𝐽
𝑚(𝑁𝐽), where 𝑁𝐽 is an appropriate subspace of a 

tensor product of full Fock spaces. We introduce a constrained noncommutative Berezin transform 

and use it to characterize noncommutative varieties in polydomains. 

We begin by recalling from [253] some definitions and basic properties of the universal model 

associated with the abstract noncommutative polydomain 𝐷𝑓
𝑚 and of the associated Berezin kernel. 

For each 𝑖 ∈ {1, . . . , 𝑘}, let 𝔽𝑛𝑖
+  be the unital free semigroup on 𝑛𝑖 generators 𝑔1

𝑖 , . . . , 𝑔𝑛𝑖
𝑖  and the 

identity 𝑔0
𝑖 . The length of 𝛼 ∈ 𝔽𝑛𝑖

+  is defined by |𝛼|: = 0 𝑖𝑓 𝛼 = 𝑔0
𝑖  and |𝛼|: = 𝑝 𝑖𝑓 𝛼 = 𝑔𝑗1

𝑖 · · ·

 𝑔𝑗𝑝
𝑖 , where 𝑗1, . . . , 𝑗𝑝 ∈ {1, . . . , 𝑛𝑖}. If 𝑍𝑖,1, . . . , 𝑍𝑖,𝑛𝑖 are noncommuting indeterminates, we denote 

𝑍𝑖,𝛼: = 𝑍𝑖,𝑗1 · · · 𝑍𝑖,𝑗𝑝 and 𝑍𝑖,𝑔0𝑖
: = 1. Let 𝑓𝑖: = ∑ 𝑎𝑖,𝛼𝑍𝛼𝛼∈𝔽𝑛𝑖

+ , 𝑎𝑖,𝛼 ∈ ℂ, be a formal power series in ni 

noncommuting indeterminates 𝑍𝑖,1, . . . , 𝑍𝑖,𝑛𝑖 . We say that 𝑓𝑖 is a positive regular free holomorphic 

function if 𝑎𝑖,𝛼 ≥ 0 for any 𝛼 ∈ 𝔽𝑛𝑖
+ , 𝑎𝑖,𝑔0𝑖 = 0, 𝑎𝑖,𝑔𝑗

𝑖 > 0 for 𝑗 ∈ {1, . . . , 𝑛𝑖}, and 

lim sup 𝑘→∞(∑ |𝑎𝑖,𝛼|
2

|𝛼|=𝑘 )
1/2𝑘

<∞. We denote by 𝐵(𝐻) the algebra of bounded linear operators 

on a separable Hilbert space 𝐻.  
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Given 𝑋𝑖: = (𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖) ∈ 𝐵(𝐻)
𝑛𝑖 , define the map Φ𝑓𝑖,𝑋𝑖: 𝐵(𝐻) → 𝐵(𝐻) by setting 

Φ𝑓𝑖,𝑋𝑖(𝑌):= ∑ ∑ 𝑎𝑖,𝛼𝑋𝑖,𝛼𝑌 𝑋𝑖,𝛼
∗

𝛼∈𝔽𝑛𝑖
+ ,|𝛼|=𝑘

∞

𝑘=1

, 𝑌 ∈ 𝐵(𝐻), 

where the convergence is in the week operator topology. Let 𝑛:= (𝑛1, . . . , 𝑛𝑘) and 𝑚:=
(𝑚1, . . . , 𝑚𝑘), where 𝑛𝑖 , 𝑚𝑖 ∈ ℕ:= {1, 2, . . . } and 𝑖 ∈ {1, . . . , 𝑘}, and let 𝑓:= (𝑓1, . . . , 𝑓𝑘) be a 𝑘-tuple 

of positive regular free holomorphic functions. We associate with each element 𝑋 = (𝑋1, . . . , 𝑋𝑘) ∈
𝐵(𝐻)𝑛1 ×· · ·× 𝐵(𝐻)𝑛𝑘 and 𝑝 = (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+

𝑘  the defect mapping ∆𝑓,𝑋
𝑝
∶ 𝐵(𝐻) → 𝐵(𝐻) defined 

by 

∆𝑓,𝑋
𝑝
∶= (𝑖𝑑 − Φ𝑓1,𝑋1)

𝑝1 ∘ · · · ∘ (𝑖𝑑 − Φ𝑓𝑘,𝑋𝑘)
𝑝𝑘 . 

We use the convention that (𝑖𝑑 − Φ𝑓𝑖,𝑋𝑖)
0 = 𝑖𝑑. We denote by 𝐵(𝐻)𝑛1 ×𝑐 · · ·×𝑐 𝐵(𝐻)

𝑛𝑘 the set of 

all tuples 𝑋 = (𝑋1, . . . , 𝑋𝑘) ∈ 𝐵(𝐻)
𝑛1 × · · · × 𝐵(𝐻)𝑛𝑘, where 𝑋𝑖: = (𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖) ∈ 𝐵(𝐻)

𝑛𝑖 , 𝑖 ∈

{1, . . . , 𝑘}, with the property that, for any 𝑝, 𝑞 ∈ {1, . . . , 𝑘}, 𝑝 ≠ 𝑞, the entries of 𝑋𝑝 are commuting 

with the entries of 𝑋𝑞. In this case we say that 𝑋𝑝 and 𝑋𝑞 are commuting tuples of operators. Note 

that, for each 𝑖 ∈ {1, . . . , 𝑘}, the operators 𝑋𝑖,1, . . . , 𝑋𝑖,𝑛𝑖 are not necessarily commuting. 

In [273], we developed an operator model theory and a theory of free holomorphic functions on the 

noncommutative  polydomain 

𝐷𝑓
𝑚(𝐻): = {𝑋 = (𝑋1, . . . , 𝑋𝑘) ∈ 𝐵(𝐻)

𝑛1 ×𝑐 · · · ×𝑐 𝐵(𝐻)
𝑛𝑘: ∆𝑓,𝑋

𝑝
(𝐼) ≥ 0 𝑓𝑜𝑟 0 ≤ 𝑝 ≤ 𝑚}. 

We refer to 𝐷𝑓
𝑚: = {𝐷𝑓

𝑚(𝐻): 𝐻 is a Hilbert space} as the abstract noncommutative  polydomain, 

while 𝐷𝑓
𝑚(𝐻) is its representation on the Hilbert space 𝐻. 

Let 𝐻𝑛𝑖 be an 𝑛𝑖-dimensional complex Hilbert space with orthonormal basis 𝑒1
𝑖 , . . . , 𝑒𝑛𝑖

𝑖 . We 

consider the full Fock space of 𝐻𝑛𝑖 defined by 

𝐹2(𝐻𝑛𝑖):= ℂ1⊕⨁𝐻𝑛𝑖
⨂𝑝

𝑝≥1

, 

where 𝐻𝑛𝑖
⨂𝑝

 is the (Hilbert) tensor product of 𝑝 copies of 𝐻𝑛𝑖. Set 𝑒𝛼
𝑖 : = 𝑒𝑗1

𝑖 ⊗· · ·⊗ 𝑒𝑗𝑝
𝑖  if 𝛼 = 𝑔𝑗1

𝑖 · ·

 ·  𝑔𝑗𝑝
𝑖 ∈ 𝔽𝑛𝑖

+  and 𝑒
𝑔0
𝑖
𝑖 : = 1 ∈ ℂ. Note that {𝑒𝛼

𝑖 : 𝛼 ∈ 𝔽𝑛𝑖
+ } is an orthonormal basis of 𝐹2(𝐻𝑛𝑖). Let 

𝑚𝑖 , 𝑛𝑖 ∈ ℕ:= {1, 2, . . . }, 𝑖 ∈ {1, . . . , 𝑘}, and 𝑗 ∈ {1, . . . , 𝑛𝑖}. We define the weighted left creation 

operators 𝑊𝑖,𝑗: 𝐹
2(𝐻𝑛𝑖) → 𝐹2(𝐻𝑛𝑖), associated with the abstract noncommutative domain 𝐷𝑓𝑖

𝑚𝑖 by 

setting 

𝑊𝑖,𝑗𝑒𝛼
𝑖 : =

√𝑏
𝑖,𝛼

(𝑚𝑖)

√𝑏𝑖,𝑔𝑗𝛼
(𝑚𝑖)

𝑒𝑔𝑗𝛼
𝑖 , 𝛼 ∈ 𝔽𝑛𝑖

+ , 

where 

     𝑏𝑖,𝑔0
(𝑚𝑖): = 1 𝑎𝑛𝑑   𝑏𝑖,𝛼

(𝑚𝑖): = ∑ ∑ 𝑎𝑖,𝛾1  · · ·  𝑎𝑖,𝛾𝑝 (
𝑝 + 𝑚𝑖 − 1
𝑚𝑖 − 1

)𝛾1,...,𝛾𝑝∈𝔽𝑛𝑖
+

𝛾1···𝛾𝑝=𝛼

|𝛾1|≥1,...,|𝛾𝑝|≥1

|𝛼|
𝑝=1   (47) 

for all 𝛼 ∈ 𝔽𝑛𝑖
+  with |𝛼| ≥ 1. For each 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}, we define the operator 𝑊𝑖,𝑗 

acting on the tensor Hilbert space 𝐹2(𝐻𝑛𝑖) ⊗ · · · ⊗ 𝐹2(𝐻𝑛𝑘) by setting  

𝑊𝑖,𝑗: = 𝐼 ⊗ ··· ⊗ 𝐼⏟      
𝑖 − 1 𝑡𝑖𝑚𝑒𝑠

⊗𝑊𝑖,𝑗⊗ 𝐼 ⊗ ··· ⊗ 𝐼⏟      
𝑘 − 𝑖 𝑡𝑖𝑚𝑒𝑠

. 

The 𝑘-tuple 𝑊:=  (𝑊1, . . . ,𝑊𝑘), where 𝑊𝑖: = (𝑊𝑖,1, . . . ,𝑊𝑖,𝑛𝑖
), is an element in the 

noncommutative polydomain  𝐷𝑓
𝑚(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) and it is called the universal model associated 

with the abstract noncommutative polydomain  𝐷𝑓
𝑚 . We say that 𝑇 = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐷𝑓

𝑚(𝐻) is 

completely non-coisometric if there is no ℎ ∈ 𝐻, ℎ ≠ 0 such that 

〈(𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )  · · ·  (𝑖𝑑 − 𝛷𝑓𝑘,𝑇𝑘

𝑞𝑘 )(𝐼𝐻)ℎ, ℎ〉 = 0  
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for any (𝑞1, … , 𝑞𝑘) ∈ ℕ
𝑘. The 𝑘-tuple 𝑇 is called pure if 

lim
𝑞=(𝑞1,…,𝑞𝑘)∈𝑍+

𝑘
(𝑖𝑑 − 𝛷𝑓𝑘,𝑇𝑘

𝑞𝑘 )… (𝑖𝑑 − 𝛷𝑓1,𝑇1
𝑞1 )(𝐼) = 𝐼 . 

The noncommutative Berezin kernel associated with any element 𝑇 = {𝑇𝑖,𝑗} in the noncommutative 

polydomain 𝐷𝑡
𝑚(ℋ) is the operator 

𝐾𝑓,𝑇:ℋ → 𝐹2(𝐻𝑛1) ⊗ …⊗ 𝐹2(𝐻𝑛𝑘) ⊗ ∆𝑓,𝑇
𝑚 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

defined by 

𝐾𝑓,𝑇ℎ ≔ ∑ √𝑏1,𝛽1
(𝑚1)…√𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗…⊗ 𝑒𝛽𝑘

𝑘 ⊗∆𝑓,𝑇
𝑚 (𝐼)1∖2𝑇1,𝛽1

∗ …𝑇𝑘,𝛽𝑘
∗ ℎ

𝛽𝑖∈𝐹𝑛𝑖
+ ,𝑖=1,…,𝑘

, 

where the defect operator is defined by 

∆𝑓,𝑇
𝑚 (𝐼) ≔ (𝑖𝑑 − 𝛷𝑓1,𝑇1)

𝑚1
…(𝑖𝑑 − 𝛷𝑓𝑘,𝑇𝑘)

𝑚𝑘(𝐼), 

and the coefficients 𝑏1,𝛽1
(𝑚1), … , 𝑏𝑘,𝛽𝑘

(𝑚𝑘) are given by relation (47). The noncommutative Berezin kernel 

𝐾𝑓,𝑇 is a contraction and 

𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇 = lim

𝑞𝑘→∞
… lim (𝑖𝑑 − 𝛷𝑓𝑘,𝑇𝑘

𝑞𝑘 )
𝑞𝑘→∞

…(𝑖𝑑 − 𝛷𝑓1,𝑇1
𝑞1 )(𝐼),  

where the limits are in the weak operator topology. Moreover, for any 𝑖 ∈ {1, … , 𝑘} and 𝑗 ∈
{1, … , 𝑛𝑖}, 

𝐾𝑓,𝑇𝑇𝑖,𝑗
∗ = (𝑊𝑖,𝑗

∗ ⊗ 𝐼)𝐾𝑓,𝑇 . 

The noncommutative Berezin transform at 𝑇 ∈ 𝐷𝑓
𝑚(ℋ) is the mapping 𝐵𝑇: 𝐵(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖  )) →

𝐵(ℋ) given by 
𝐵𝑇[𝑔] ≔ 𝐾𝑓,𝑇

∗ (𝑔 ⊗ 𝐼ℋ)𝐾𝑓,𝑇 ,    𝑔 ∈ 𝐵(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)). 

The polydomain algebra 𝐴(𝐷𝑓
𝑚) is the norm closed algebra generated by 𝑊𝑖,𝑗 and the identity. Let 

𝑆 ≔ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑊(𝛼)𝑊(𝛽)
∗ : (𝛼), (𝛽) ∈ 𝐹𝑛1

+ × …× 𝐹𝑛𝑘
+ }, 

where the closure is in the operator norm. We proved in [273] that there is a unital completely 

contractive linear map Ψ𝑓,𝑇: 𝑆 → 𝐵(ℋ) such that 

𝛹𝑓,𝑇(𝑔) = lim
𝑟→1

𝐵𝑟𝑇[𝑔] , 𝑔 ∈ 𝑆, 

where the limit exists in the norm topology of  𝐵(ℋ),and 

𝛹𝑓,𝑇(𝑊(𝛼)𝑊(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽)

∗ ,    (𝛼), (𝛽) ∈ 𝐹𝑛1
+ × …× 𝐹𝑛𝑘

+ , 

where 𝑊(𝛼) ≔ 𝑊1,𝛼1 …𝑊𝑘,𝛼𝑘
 for (𝛼) ≔ (𝛼1, … , 𝛼𝑘). In particular, the restriction of 𝛹𝑓,𝑇 to the 

polydomain algebra 𝐴(𝐷𝑓
𝑚) is a completely contractive homomorphism. For information on 

completely bounded (resp. positive) maps, see [254]. 

The noncommutative Hardy algebra 𝐹∞(𝐷𝑓
𝑚 ) is the sequential SOT-(resp. WOT-, 𝑤∗ −) closure of 

all polynomials in 𝑊𝑖,𝑗 and the identity, where 𝑖 ∈  {1, … , 𝑘}, 𝑗 ∈ {1, … , 𝑛𝑘}. Each elemeny 𝜑(𝑊𝑖,𝑗) 

in 𝐹∞(𝐷𝑓
𝑚 )has a unique Fourier type representation 

𝜑(𝑊𝑖,𝑗) = ∑ 𝑐(𝛽)𝑊(𝛽),

(𝛽)∈𝐹𝑛1
+ ×…×𝐹𝑛𝑘

+

       𝑐(𝛽) ∈ ℂ,  

and  𝜑(𝑊𝑖,𝑗) = 𝑆𝑂𝑇 − Lim𝑟→1 𝜑(𝑟𝑊𝑖,𝑗), where 𝜑(𝑟𝑊𝑖,𝑗)is in the polydomain algebra 𝐴(𝐷𝑓
𝑚). We 

recall [253] the following result concerning the 𝐹∞(𝐷𝑓
𝑚 )–functional calculus for the completely 

non-coisometric part of the noncommutative polydomain 𝐷𝑓
𝑚(ℋ). Let 𝑇 = (𝑇1, … , 𝑇𝑘) be a 

completely non-coisometric 𝑘-tuple in the noncommutative polydomain 𝐷𝑓
𝑚(ℋ). Then 

Ψ𝑇 ≔ 𝑆𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗),     Ψ𝑇 = 𝜑(𝑊𝑖,𝑗) ∈ 𝐹
∞(𝐷𝑓

𝑚 ), 

exists in the strong operator topology and defines a map 𝛹𝑇: 𝐹
∞(𝐷𝑓

𝑚 ) → 𝐵(ℋ) with the following 

properties: 

(i)𝛹𝑇(𝜑) = 𝑆𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

𝐵𝑟𝑇[𝜑], where 𝐵𝑟𝑇 is the Berezin transform at 𝑟𝑇 ∈ 𝐷𝑓
𝑚(ℋ); 

(ii)𝛹𝑇 is WOT-continuous (resp. SOT-continuous) on bounded sets; 
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(iii)𝛹𝑇 is a unital completely contractive homomorphism and 

 𝛹𝑇(𝑊(𝛽)) = 𝑇(𝛽),        (𝛽) ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+  

If 𝑇 is a pure 𝑘-tuple, then 𝛹𝑇(𝜑) = 𝐵𝑇[𝜑]. 
For each 𝑖 ∈ {1, … , 𝑘}, let 𝑍𝑖 ≔ (𝑍𝑖,1, … , 𝑍𝑖,𝑛𝑖) be an 𝑛𝑖-tuple of noncommuting indeterminates and 

assume that, for any 𝑠, 𝑡 ∈ {1,… , 𝑘}, 𝑠 ≠ 𝑡, the entries in 𝑍𝑠 are commuting with the entries in 𝑍𝑡. 
The algebra of all polynomials in indeterminates 𝑍𝑖,𝑗 is denoted by ℂ[𝑍𝑖,𝑗]. 

Let 𝑊 ≔ {𝑊𝑖,𝑗} be the universal model associated with the abstract noncommutative polydomain 

𝐷𝑓
𝑚 . If 𝒬 is a left ideal of polynomials inℂ[𝑍𝑖,𝑗], we let 𝒬𝑊 ≔ {𝑞(𝑊𝑖,𝑗): 𝑞 ∈ 𝒬} be the 

corresponding ideal in the algebra ℂ[𝑊𝑖,𝑗]of all polynomials in 𝑊𝑖,𝑗and the identity. Using the 

𝐴(𝐷𝑓
𝑚)-functional calculus, one can easily show that the norm-closed left ideal generated by 𝒬𝑊 in 

the polydomain algebra 𝐴(𝐷𝑓
𝑚) coincides with the norm closure �̅�𝑊. Similarly, using the 

𝐹∞(𝐷𝑓
𝑚)–functional calculus, one can prove that the WOT-closed left ideal generated by 𝒬𝑊 in the 

Hardy algebra 𝐹∞(𝐷𝑓
𝑚) coincides with �̅�𝑊

𝑤𝑜𝑡 . If 𝐽 is a left ideal in ℂ[𝑊𝑖,𝑗], 𝐴(𝐷𝑓
𝑚), or 𝐹∞(𝐷𝑓

𝑚), we 

introduce the subspace 𝑀𝐽 to be the closed image of 𝐽 in ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), i.e., 𝑀𝐽 ≔

 𝐽(⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. We also introduce the space 

𝑁𝐽 ≔ [⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖  )] ⊖𝑀𝐽 . 

When 𝒬 is a left ideal of polynomials inℂ[𝑍𝑖,𝑗], we set 𝑀𝒬 ≔ 𝑀𝒬𝑊 and 𝑁𝒬 ≔ [⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)] ⊖

𝑀𝒬 . We remark that in this case we have 

𝑁𝒬 = 𝑁�̅�𝑊 = 𝑁�̅�𝑊𝑤𝑜𝑡 . 

We consider 𝐽 to denote a left ideal in either one of the following algebras: 

ℂ[𝑍𝑖,𝑗], ℂ[𝑊𝑖,𝑗] , 𝐴(𝐷𝑓
𝑚), or 𝐹∞(𝐷𝑓

𝑚). We always assume that 𝑁𝐽 ≠ {0}. It is easy to see that 𝑁𝐽 is 

invariant under each operator 𝑊𝑖,𝑗
∗  for 𝑖 ∈ {1, … , 𝑘}, 

𝑗 ∈ {1, … , 𝑛𝑖}. Define 𝑆𝑖,𝑗 ≔ 𝑃𝑁𝐽𝑊𝑖,𝑗|𝑁𝐽 , where 𝑃𝑁𝐽 is the orthogonal projection of  

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) onto 𝑁𝐽 . Using the properties of the universal model 𝑊 = {𝑊𝑖,𝑗} and the fact that 𝑁𝐽 

is invariant under each operator 𝑊𝑖,𝑗
∗  , one can obtain the following result. 

Lemma (4.2.1)[244]: Let 𝐽 be a left ideal in either one of the following algebras: 

ℂ[𝑍𝑖,𝑗], ℂ[𝑊𝑖,𝑗] , 𝐴(𝐷𝑓
𝑚), or 𝐹∞(𝐷𝑓

𝑚).  The 𝑘-tuple 𝑆 ≔ (𝑆1, … , 𝑆𝑘), where 𝑆𝑖 ≔ (𝑆𝑖,1… , 𝑆𝑖,𝑛𝑖) and 

𝑆𝑖,𝑗 ≔ 𝑃𝑁𝐽𝑊𝑖,𝑗|𝑁𝐽 has the following properties. 

(i) 𝑆 is a pure tuple in the polydomain 𝐷𝑓
𝑚(𝑁𝐽). 

(ii) Under the 𝐹∞(𝐷𝑓
𝑚)-functional calculus, 

𝑔(𝑆1, … , 𝑆𝑘) = 0, 𝑔 ∈ 𝐽�̅�𝑜𝑡 . 
(iii) If 𝑃ℂ denotes the orthogonal projection from ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) onto ℂ1, then 

(𝑖𝑑 − Φ𝑓1,𝑆1)
𝑚1 …(𝑖𝑑 − 𝛷𝑓𝑘,𝑠𝑘)

𝑚𝑘
(𝐼𝑁𝐽) = 𝑃𝑁𝐽𝑃ℂ|𝑁𝐽 . 

Proof: Since 𝑁𝐽 is invariant under each operator 𝑊𝑖,𝑗
∗ , we have Φ𝑓1,𝑆1

𝑞1 (𝐼) = 𝑃𝑁𝐽𝛷𝑓1,𝑆1
𝑞1 (𝐼) |𝑁𝐽. Taking 

into account that 𝑊 is a pure element in 𝐷𝑓
𝑚(⊗𝑖=1

𝑘 𝐹2(𝐻𝑛)), we deduce that SOT- lim
𝑞𝑖→∞

𝛷𝑓𝑖,𝑊𝑖

𝑞𝑖 (𝐼) =

0, which implies that 𝑆 is a pure tuple in the polydomain 𝐷𝑓
𝑚(𝑁𝐽). To prove part (ii), note that if 

𝑔(𝑊𝑖,𝑗) ∈ 𝐽
�̅�𝑜𝑡 , then the range of 𝑔(𝑊𝑖,𝑗) is in 𝑁𝐽 .Using the 𝐹∞(𝐷𝑓

𝑚)-functional calculus, we 

deduce that 

𝑔(𝑆1, … , 𝑆𝑘) = 𝑆𝑂𝑇 − lim
𝑟→1

𝑔(𝑟𝑆𝑖,𝑗) = 𝑆𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

𝑔(𝑟𝑊𝑖,𝑗) |𝑁𝐽
= 𝑃𝑁𝐽𝑔(𝑊𝑖,𝑗)|𝑁𝐽

 = 0. 

Part (iii) follows from the fact that ∆𝑓,𝑊
𝑚 (𝐼) = 𝑃𝐶  and 𝑁𝐽 is invariant under each operator 𝑊𝑖,𝑗

∗  . 

Indeed, we have ∆𝑓,𝑊
𝑚 (𝐼) = 𝑃𝑁𝐽∆𝑓,𝑊

𝑚 (𝐼)|
𝑁𝐽
= 𝑃𝑁𝐽𝑃𝐶|𝑁𝐽. 

We define the noncommutative variety 𝒱𝑓,𝐽
𝑚(ℋ) in the polydomain 𝐷𝑓

𝑚(ℋ) by setting 

𝒱𝑓,𝐽
𝑚(ℋ) ≔ {𝑋 = {𝑋𝑖,𝑗} ∈ 𝐷𝑓

𝑚(ℋ): 𝑔(𝑋) = 0 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑔 ∈ 𝐽}. 
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We remark that this variety is well-defined if 𝐽 is a left ideal in ℂ[𝑍𝑖,𝑗], ℂ[𝑊𝑖,𝑗], or 𝐴(𝐷𝑓
𝑚). In the 

case when 𝐽 is a 𝑊𝑂𝑇-closed left ideal in𝐹∞(𝐷𝑓
𝑚), we can use the 𝐹∞(𝐷𝑓

𝑚)–functional calculus to 

define the variety 𝒱𝑓,𝐽,𝑐𝑛𝑐
𝑚 (ℋ)of all completely non coisometric (𝑐. 𝑛. 𝑐. ) tuples 𝑋 ∈ 𝐷𝑓

𝑚(ℋ) 

satisfying the equation 𝑔(𝑋) = 0 for any 𝑔 ∈ 𝐽. 
According to Lemma (4.2.1), the 𝑘-tuple 𝑆 ≔ (𝑆1, … , 𝑆𝑘) is in the noncommutative 

variety𝒱𝑓,𝐽
𝑚(𝒩𝐽). We remark that 𝑆 will play the role of universal model for the abstract 

noncommutative variety 

𝒱𝑓,𝐽
𝑚 ≔ {𝒱𝑓,𝐽

𝑚(ℋ):ℋ 𝑖𝑠 𝑎 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒}. 

We introduce the constrained noncommutative Berezin kernel associated with 𝑇 ∈ 𝒱𝑓,𝐽
𝑚(ℋ) as the 

bounded operator 𝐾𝑓,𝑇,𝐽:ℋ → 𝒩𝐽⊗∆𝑓,𝑇
𝑚 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  defined by 

𝐾𝑓,𝑇,𝐽 ≔ (𝑃𝒩𝐽
⊗ 𝐼∆𝑓,𝑇

𝑚 (𝐼)(ℋ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐾𝑓,𝑇 , 

where 𝐾𝑓,𝑇 is the noncommutative Berezin kernel associated with 𝑇 ∈ 𝐷𝑓
𝑚(ℋ). The next result 

shows that the main properties of the noncommutative Berezin kernel remain true for the 

constrained Berezinkernel associated with the elements of the noncommutative variety𝒱𝑓,𝐽
𝑚(ℋ). 

Proposition (4.2.2) [244]: Let 𝑇 = (𝑇1, … , 𝑇𝐾), with 𝑇𝑖(𝑇𝑖,1, … , 𝑇𝑖,𝑛𝑖),be in the noncommutative 

variety𝒱𝑓,𝐽
𝑚(ℋ), where 𝐽 is a left ideal inℂ[𝑍𝑖,𝑗], ℂ[𝑊𝑖,𝑗], or 𝐴(𝐷𝑓

𝑚 ). The constrained 

noncommutative Berezin kernel associated with 𝑇 has the following properties. 

(i) 𝐾𝑓,𝑇,𝐽 is a contraction and 

𝐾𝑓,𝑇,𝐽
∗ 𝐾𝑓,𝑇,𝐽 = lim

𝑞𝑘
… lim

𝑞𝑘
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 )… (𝑖𝑑 − 𝛷𝑓1,𝑇1
𝑞1 )(𝐼), 

where the limits are in the weak operator topology. 

(ii) For any 𝑖 ∈ {1, … , 𝑘} and 𝑗 ∈ {1,… , 𝑛𝑖}, 

𝐾𝑓,𝑇,𝐽𝑇𝑓,𝐽
∗ = (𝑆𝑖,𝑗

∗ ⊗ 𝐼)𝐾𝑓,𝑇,𝐽 . 

(iii) If 𝑇 is pure, then 

𝐾𝑓,𝑇,𝐽
∗ 𝐾𝑓,𝑇,𝐽 = 𝐼ℋ . 

If 𝐽 is a WOT-closed left ideal in 𝐹∞(𝐷𝑓
𝑚) and 𝑇 ∈ 𝒱𝑓,𝐽,𝑐𝑛𝑐

𝑚 (ℋ), all the properties above remain 

true. 

Proof: Since 𝐾𝑓,𝑇𝑇𝑓,𝐽
∗ = (𝑊𝑖,𝑗

∗ ⊗ 𝐼)𝐾𝑓,𝑇 for any 𝑖 ∈ {1, … , 𝑘} and 𝑗 ∈ {1,… , 𝑛𝑖}, we deduce that 

          〈𝐾𝑓,𝑇𝑥, 𝑞(𝑊𝑖,𝑗)𝑊(𝛼)(1)⊗ 𝑦〉 = 〈𝑥, 𝑞(𝑇𝑖,𝑗)𝑇(𝛼)𝐾𝑓,𝑇
∗ (1 ⊗ 𝑦)〉 =

〈𝑥, 𝑞(𝑇𝑖,𝑗)𝑇(𝛼)∆𝑓
𝑚(𝐼)1/2𝑦〉                                                                                (48) 

for any 𝑥 ∈ ℋ, 𝑦 ∈ ∆𝑓,𝑇
𝑚 (𝐼)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , (𝛼) ∈ 𝔽𝑛1

+ ⊗…⊗𝔽𝑛𝑘
+ , and any polynomial 𝑞(𝑊𝑖,𝑗) ∈

ℂ[𝑊𝑖,𝑗].Consequently, if 𝐽 is a left ideal in ℂ[𝑍𝑖,𝑗] or ℂ[𝑊𝑖,𝑗], then 𝑞(𝑇𝑖,𝑗) = 0 for any 𝑞 ∈ 𝐽 and 

therefore 

                             𝑟𝑎𝑛𝑔𝑒𝐾𝑓,𝑇 ⊆ 𝑁𝐽⊗∆𝑓,𝑇
𝑚 (𝐼)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .                           (49) 

Assume that 𝐽 is a norm-closed left ideal of 𝐴(𝐷𝑓
𝑚 ) and let 𝑔(𝑊𝑖,𝑗) ∈ 𝐽. Choose a sequence of 

polynomials 𝑞𝑛(𝑊𝑖,𝑗) which converges in norm to 𝑔(𝑊𝑖,𝑗). This implies that 𝑞𝑛(𝑇𝑖,𝑗) converges in 

norm to 𝑔(𝑇𝑖,𝑗). 

Using equation (48), we deduce a similar one where 𝑞(𝑊𝑖,𝑗) is replaced by 𝑔(𝑊𝑖,𝑗). As above, we 

deduce that relation (49) remains true in this case. Now, we consider the case when 𝐽 is a 𝑊𝑂𝑇-

closed left ideal in 𝐹∞(𝐷𝑓
𝑚) and 𝑇 ∈ 𝒱𝑓,𝐽,𝑐𝑛𝑐

𝑚 (ℋ). Let 𝜑(𝑊𝑖,𝑗) be in 𝐽 ⊂ 𝐹∞(𝐷𝑓
𝑚) with Fourier 

representation 

𝜑(𝑊𝑖,𝑗) = ∑ 𝑐(𝛽)𝑊(𝛽)

(𝛽)∈𝔽𝑛1
+ ×…×𝔽𝑛𝑘

+

. 

Then 𝜑(𝑊𝑖,𝑗) =  𝑆𝑂𝑇 − lim
𝑟→1

𝜑(𝑟𝑊𝑖,𝑗), and 𝜑(𝑟𝑊𝑖,𝑗) is in the polydomain algebra 𝐴(𝐷𝑓
𝑚). Relation 

(48) implies  

〈𝐾𝑓,𝑇𝑥, 𝜑(𝑟𝑊𝑖,𝑗)𝑊(𝛼)(1)⊗ 𝑦〉 = 〈𝑥, 𝜑(𝑟𝑊𝑖,𝑗)𝑇(𝛼)∆𝑓
𝑚(𝐼)1/2𝑦〉 
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for any 𝑟 ∈ [0,1), 𝑥 ∈ ℋ, 𝑦 ∈ ∆𝑓,𝑇
𝑚 (𝐼)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ., and (𝛼) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+ . Due to the 𝐹∞(𝐷𝑓

𝑚)–functional 

calculus, we have 0 = 𝜑(𝑇𝑖,𝑗) = 𝑆𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

𝜑(𝑟𝑇𝑖,𝑗). Consequently.〈𝐾𝑓,𝑇𝑥, 𝜑(𝑊𝑖,𝑗)𝑊(𝛼)(1)⊗

𝑦〉 = 0 for any 𝜑(𝑊𝑖,𝑗) ∈ 𝐽, 𝑦 ∈ ∆𝑓,𝑇
𝑚 (𝐼)ℋ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , and(𝛼) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+ . Therefore, relation (49) holds 

also in 

this case. It is clear that due to relation (49), we have 𝐾𝑓,𝑇,𝐽
∗ 𝐾𝑓,𝑇,𝐽 = 𝐾𝑓,𝑇

∗ 𝐾𝑓,𝑇 . Now, one can easily 

complete the proof using the appropriate properties of the noncommutative Berezin kernel 𝐾𝑓,𝑇 and 

the definition of the constrained Berezin kernel. 

For each 𝑛-tuple 𝑇 ≔ {𝑇𝑖,𝑗} ∈ 𝒱𝑓,𝐽
𝑚(ℋ), we introduce the constrained noncommutative Berezin 

trans-form at 𝑇 as the map 𝐵𝑇,𝐽: 𝐵(𝑁𝐽) → 𝐵(ℋ) defined by setting 

𝐵𝑇,𝐽[𝑔] ≔ 𝐾𝑓,𝑇,𝐽
∗ (𝑔 ⊗ 𝐼ℋ)𝐾𝑓,𝑇,𝐽 , 𝑔 ∈ 𝐵(𝑁𝐽), 

where 𝐽 is a left ideal in ℂ[𝑍𝑖,𝑗] , ℂ[𝑊𝑖,𝑗] , 𝐴(𝐷𝑓
𝑚), or 𝐹∞(𝐷𝑓

𝑚). Note that 𝐵𝑇,𝐽is a completely 

contractive, completely positive, and 𝑤∗-continuous linear map. Consequently, 𝐵𝑇,𝐽 is 𝑊𝑂𝑇-

continuous (resp.𝑆𝑂𝑇-continuous) on bounded sets. Note that 𝑇 is pure if and only if 𝐵𝑇,𝐽(𝐼) = 𝐼. 

Theorem (4.2.3) [244]: Let 𝑇 = (𝑇1, … , 𝑇𝑘) ∈ 𝐵(ℋ)
𝑛1 × …× 𝐵(ℋ)𝑛𝑘 and let 𝐽 be a 𝑤∗-closed left 

ideal of𝐹∞(𝐷𝑓
𝑚). Then 𝑇 is a pure element of the noncommutative variety 𝒱𝑓,𝐽

𝑚(ℋ) if and only if 

there is a unital completely positive and 𝑤∗-continuous linear map 

Ψ: 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅𝑤
∗
{𝑆(𝛼)𝑆(𝛽)

∗ : (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+ } → 𝐵(ℋ) 

such that 

𝛹(𝑆(𝛼)𝑆(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽)

∗ , (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+ . 

Proof: Due to Proposition (4.2.2), if  𝑇 ≔ (𝑇1, … , 𝑇𝑘) is a pure tuple in the noncommutative variety 

𝒱𝑓,𝐽
𝑚(ℋ), then 𝐾𝑓,𝑇,𝐽 is an isometry and the constrained noncommutative Berezin transform is a 

unital completely contractive and 𝑤∗-continuos linear map such that 

𝐵𝑇,𝐽[𝑆(𝛼)𝑆(𝛽)
∗ ]  = 𝐾𝑓,𝑇,𝐽

∗ [𝑆(𝛼)𝑆(𝛽)
∗ ⊗ 𝐼ℋ]𝐾𝑓,𝑇,𝐽 = 𝑇𝛼𝑇𝛽

∗ 

for any (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+ . To prove the converse, assume that Ψ has the required 

properties. Since (𝑆1, … , 𝑆𝑘) is a commuting tuple and 𝛹 is a homomorphism when restricted to 

ℂ[𝑆𝑖,𝑗], we deduce that (𝑇1, … , 𝑇𝑘) is a commuting tuple. Taking into account that Φ𝑓𝑖,𝑆𝑖 is a 𝑤∗-

continuous map, and ∆𝑓,𝑆
𝑃  is a linear combination of products of the form 𝛷𝑓1,𝑆1

𝑞1 …𝛷𝑓𝑘,𝑆𝑘
𝑞𝑘 , where 

(𝑞1, … , 𝑞𝑘) ∈ ℤ+
𝑘 , we deduce that ∆𝑓,𝑆

𝑃 is a 𝑤∗-continuous map. Since 𝛹 is a completely positive 𝑤∗-

continuous linear map such that 𝛹(𝑆(𝛼)𝑆(𝛽)) = 𝑇(𝛼)𝑇(𝛽)
∗  for any (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+ , we 

obtain 

∆𝑓,𝑆
𝑃 (𝐼) = 𝛹(∆𝑓,𝑆

𝑃 (𝐼)) ≥ 0 

for any 𝑝 = (𝑝1, … , 𝑝𝑘) ∈ ℤ+
𝑘  with 𝑝 ≤ 𝑚. Therefore, ∈ 𝐷𝑓

𝑚(ℋ) . On the other hand, for each 𝑖 ∈

{1, … , 𝑘}, we have 

lim
𝑞𝑖→∞

Φ𝑓𝑖,𝑇𝑖
𝑞𝑖 (𝐼) = Ψ( lim 

𝑞𝑖→∞
Φ𝑓𝑖,𝑆𝑖
𝑞𝑖 (𝐼))  = Ψ(0) = 0, 

which shows that 𝑇 is a pure tuple in the polydomain 𝐷𝑓
𝑚(𝐻). To prove that 𝑇 is in the 

noncommutative variety 𝑉𝑓,𝐽
𝑚(𝐻), fix 𝑔 ∈ 𝐽 and recall that 𝑔(𝑊𝑖,𝑗) = 𝑆𝑂𝑇- lim

𝑟→1
𝑔(𝑟𝑊𝑖,𝑗), where 

𝑔(𝑟𝑊𝑖,𝑗) is in the polydomain algebra 𝐴(𝐷𝑓
𝑚), and ‖𝑔(𝑟𝑊𝑖,𝑗)‖ ≤ ‖𝑔(𝑊𝑖,𝑗)‖ for any 𝑟 ∈ [0, 1). 

Using the the 𝐹∞(𝐷𝑓
𝑚)–functional calculus for pure elements in 𝐷𝑓

𝑚(𝐻) and the fact that 𝑊𝑂𝑇 and 

𝑤∗-topology coincide on bounded sets, we deduce that 

𝑔(𝑇𝑖,𝑗) = 𝑊𝑂𝑇 − lim
𝑟→1

𝑔(𝑟𝑇𝑖,𝑗) = 𝑊𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

Ψ(𝑔(𝑟𝑆𝑖,𝑗)) 

= Ψ(𝑊𝑂𝑇 − 𝑙𝑖𝑚
𝑟→1

𝑔(𝑟𝑆𝑖,𝑗) = 𝛹 (𝑔(𝑆𝑖,𝑗)) = 𝛹(0) = 0. 

Therefore, 𝑇 is in the noncommutative variety𝒱𝑓,𝐽
𝑚(ℋ). The proof is complete. 

Theorem (4.2.4) [244]: Let 𝒬 ⊂ ℂ[𝑍𝑖,𝑗] be a left ideal generated by noncommutative homogenous 

polynomials and let 

𝑇 ≔ (𝑇1, … , 𝑇𝑘) ∈ 𝐵(ℋ)
𝑛1 × …× 𝐵 (ℋ)𝑛1 . 
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Then 𝑇 is in the noncommutative variety 𝒱𝑞,𝒬
𝑚 (ℋ), where 𝑞 = (𝑞1, … , 𝑞𝑘) is a 𝑘-tuple of positive 

regular noncommutative polynomials, if and only if there is a unital completely positive linear map 

𝛹: 𝑆̅ → 𝐵(ℋ), 
where 𝑆̅ ≔ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑆(𝛼)𝑆(𝛽)

∗ : (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × …× 𝔽𝑛𝑘

+ }, such that 

𝛹(𝑆(𝛼)𝑆(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽), (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × …× 𝔽𝑛𝑘
+ , 

where 𝑆:= {𝑆𝑖,𝑗} is the universal model associated with the abstract noncommutative variety 𝑉1,𝑄
𝑚 . 

Proof: Assume that 𝑇 ∈ 𝑉𝑞,𝑄
𝑚 (𝐻). Since 𝐷𝑞

𝑚(𝐻) is a radial domain [253], 𝑟𝑇 ∈ 𝐷𝑞,𝑄
𝑚 (𝐻) for any 𝑟 ∈

[0, 1). 
Note that, due to the fact that 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is a left ideal generated by noncommutative homogenous 

polynomials, if 𝑔 ∈ 𝑄, then 𝑔(𝑇𝑖,𝑗) = 0 and 𝑔(𝑟𝑇𝑖,𝑗) = 0. Thus 𝑟𝑇 ∈ 𝑉𝑞,𝑄
𝑚 (𝐻) and, as in the proof 

of Theorem (4.2.3), one can show that range 𝐾𝑞,𝑟𝑇 ⊆ 𝑁𝑄⊗𝐻 for any 𝑟 ∈ [0, 1), where 𝐾𝑞,𝑟𝑇 is the 

Berezin kernel associated with 𝑟𝑇 ∈ 𝐷𝑞
𝑚(𝐻). Moreover, 

𝐾𝑞,𝑟𝑇,𝑄(𝑟
|𝛼|+|𝛽|𝑇(𝛼)𝑇(𝛽)

∗ ) = (𝑆(𝛼)𝑆(𝛽)
∗ ⊗ 𝐼𝐻)𝐾𝑞,𝑟𝑇,𝑄 , (𝛼), (𝛽)  ∈ 𝔽𝑛1

+ × · · ·× 𝔽𝑛𝑘
+ . 

Since 𝑟𝑇 is pure, 𝐾𝑞,𝑟𝑇,𝑄 is an isometry. Consequently, for any 𝑛 × 𝑛 matrix with entries 𝜓𝑠𝑡(𝑆𝑖,𝑗) in 

the linear span 𝑆 of all products 𝑆(𝛼)𝑆(𝛽)
∗ , where (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × · · · × 𝐹𝑛𝑘
+ , we have the von 

Neumann type inequality  

‖[𝜓𝑠𝑡(𝑟𝑇𝑖,𝑗)]𝑛×𝑛‖ ≤ ‖[𝜓𝑠𝑡(𝑆𝑖,𝑗)]‖𝑛×𝑛, 𝑟 ∈ [0, 1). 

Taking 𝑟 → 1, we deduce that ‖[𝜓𝑠𝑡(𝑟𝑇𝑖,𝑗)]𝑛×𝑛‖ ≤ ‖[𝜓𝑠𝑡(𝑆𝑖,𝑗)]‖𝑛×𝑛. We define the unital 

completely contractive linear map Ψ𝑓,𝑞,𝑄: 𝑆 → 𝐵(𝐻) by setting Ψ𝑞,𝑇,𝑄(𝑆(𝛼)𝑆(𝛽)
∗ ):= 𝑇(𝛼)𝑇(𝛽)

∗ , for all 

(𝛼), (𝛽) in 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ . Now, it is clear that Ψ has a unique extension to a unital completely 

contractive linear map on 𝑆̅. 
To prove the converse, assume that Ψ has the required properties and note that, due to Lemma 

(4.2.1) and the fact that 1 ∈ 𝑁𝑄, we have 

(𝐼 − Φ𝑞1,𝑇1)
𝑝1 · · ·  (𝐼 − Φ𝑞𝑘,𝑇𝑘)

𝑝𝑘(𝐼)  = Ψ[(𝐼 − Φ𝑞1,𝑆1)
𝑝1 · · ·  (𝐼 − Φ𝑞𝑘,𝑆𝑘)

𝑝𝑘(𝐼𝑁𝑄)] ≥ 0 

for any 𝑝𝑖 ∈ {0, 1, . . . , 𝑚𝑖} and 𝑖 ∈ {1, . . . , 𝑘}. Since (𝑆1, . . . , 𝑆𝑘) is a commuting tuple and Ψ is a 

homomorphism when restricted to ℂ[𝑆𝑖,𝑗], we deduce that (𝑇1, . . . , 𝑇𝑘) is a commuting tuple. 

Therefore, 𝑇 ∈ 𝐷𝑓
𝑚(𝐻). On the other hand, since 𝑔(𝑆𝑖,𝑗) = 0 for any 𝑔 ∈ 𝑄, we have 𝑔(𝑇𝑖,𝑗) =

Ψ(𝑔(𝑆𝑖,𝑗)) = 0, which shows that 𝑇 ∈ 𝑉𝑞,𝑄
𝑚 (𝐻). The proof is complete.  

Proposition (4.2.5) [244]: Let 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] be a left ideal generated by noncommutative 

homogenous polynomials, and let 𝑇:= (𝑇1, . . . , 𝑇𝑛) be in the noncommutative variety 𝑉𝑓,𝑄
𝑚 (𝐻), 

where 𝑓 = (𝑓1, . . . , 𝑓𝑘) is a 𝑘-tuple of positive regular free holomorphic functions. Then there is a 

unital completely contractive linear map Ψ𝑓,𝑇,𝑄: 𝑆̅ → 𝐵(𝐻), where 𝑆̅: = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑆(𝛼)𝑆(𝛽)
∗ : (𝛼), (𝛽) ∈

𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ }, such that 

Ψ𝑓,𝑇,𝑄(𝑔) = lim
𝑟→1

𝐵𝑟𝑇,𝑄[𝑔] , 𝑔 ∈ 𝑆̅, 

where the limit exists in the norm topology of  𝐵(𝐻), and 

Ψ𝑓,𝑇,𝑄(𝑆(𝛼)𝑆(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽)

∗ , (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ . 

In particular, the restriction of  Ψ𝑓,𝑇,𝑄 to the variety algebra 𝐴(𝑉𝑓,𝑄
𝑚 ) is a unital completely 

contractive homomorphism. If, in addition, 𝑇 is a pure 𝑘-tuple of operators, then 

lim 
𝑟→1

𝐵𝑟𝑇,𝑄[𝑔] = 𝐵𝑇,𝑄[𝑔], 𝑔 ∈ 𝑆̅, 

where the limit exists in the norm topology of  𝐵(𝐻). 
Proof: Following the proof of the direct implication of Theorem (4.2.4), we can show that the 

linear map Ψ𝑓,𝑇,𝑄: 𝑆 → 𝐵(𝐻) defined by Ψ𝑓,𝑇,𝑄(𝑆(𝛼)𝑆(𝛽)
∗ ) ∶= 𝑇(𝛼)𝑇(𝛽)

∗ , for all (𝛼), (𝛽) ∈ 𝔽𝑛1
+ ×· · · ×

𝔽𝑛𝑘
+  , is unital and completely contractive. Given 𝑔 = 𝑔(𝑆𝑖,𝑗) ∈ 𝑆, we define Ψ𝑓,𝑇,𝑄(𝑔):=

lim
𝑛→∞

𝛹𝑓,𝑇,𝑄 (𝑔𝑛), where 𝑔𝑛 ∈ 𝑆 with ‖𝑔 − 𝑔𝑛‖ → 0, as 𝑛 →∞. Note that Ψ𝑓,𝑇,𝑄(𝑔) does not depend 

on the choice of the sequence {𝑔𝑛} and 
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‖Ψ𝑓,𝑇,𝑄(𝑔) − 𝐵𝑟𝑇,𝑄[𝑔]‖  

≤ ‖Ψ𝑓,𝑇,𝑄(𝑔) − Ψ𝑓,𝑇,𝑄(𝑔𝑛)‖ + ‖Ψ𝑓,𝑇,𝑄(𝑔𝑛) − 𝐵𝑟𝑇,𝑄[𝑔𝑛]‖  + ‖𝐵𝑟𝑇,𝑄[𝑔𝑛 − 𝑔]‖ 

≤ 2‖𝑔 − 𝑔𝑛‖ + ‖Ψ𝑓,𝑇,𝑄(𝑔𝑛) − 𝐵𝑟𝑇,𝑄[𝑔𝑛]‖. 

Hence, we deduce that Ψ𝑓,𝑇,𝑄(𝑔) = lim  
𝑟→1

𝐵𝑟𝑇,𝑄[𝑔] for any 𝑔 ∈ 𝑆̅. Now, we assume that 𝑇 is a pure 𝑘-

tuple in 𝑉𝑓,𝑄
𝑚 (𝐻). Since 

𝐵𝑇,𝑄[𝑔𝑛]: = 𝐾𝑓,𝑇,𝑄
∗ (𝑔𝑛⊗ 𝐼𝐻)𝐾𝑓,𝑇,𝑄 = 𝑔𝑛(𝑇𝑖,𝑗)  

and taking into account that 𝑔𝑛 ∈ 𝑆 with ‖𝑔 − 𝑔𝑛‖ → 0, as 𝑛 →∞, we conclude that 𝐵𝑇,𝑄[𝑔] =

Ψ𝑓,𝑇,𝑄(𝑔) for any 𝑔 ∈ 𝑆. This completes the proof.  

we obtain a characterization of the Beurling [250] type joint invariant subspaces under the universal 

model 𝑆 = {𝑆𝑖,𝑗} of 𝑉𝑓,𝐽
𝑚, and a characterization of the joint reducing subspaces of 𝑆 ⊗ 𝐼. We use 

noncommutative Berezin transforms to characterize the pure elements in noncommutative varieties 

𝑉𝑓,𝐽
𝑚 and obtain a classification result for the pure elements of rank one. 

Denote by 𝐶∗(𝑆𝑖,𝑗) the 𝐶∗-algebra generated by the operators 𝑆𝑖,𝑗, where 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈

{1, . . . , 𝑛𝑖}, and the identity. 

Theorem (4.2.6) [244]: Let 𝑞 = (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let 𝑆 = (𝑆1, . . . , 𝑆𝑘) be the universal model associated with the abstract 

noncommutative variety 𝑉𝑞,𝐽
𝑚 , where 𝐽 is a 𝑊𝑂𝑇-closed two sided ideal of 𝐹∞(𝐷𝑞

𝑚) such that 1 ∈

𝑁𝐽. Then all the compact operators in 𝐵(𝑁𝐽) are contained in the operator space 

𝑆̅: = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑆(𝛼)𝑆(𝛽)
∗ : (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘
+ }. 

Moreover, the 𝐶∗-algebra 𝐶∗(𝑆𝑖,𝑗) is irreducible. 

Proof: Since 1 ∈ 𝑁𝐽, Lemma (4.2.1) implies 

         (𝐼 − Φ𝑞1,𝑆1)
𝑚1 · · ·  (𝐼 − Φ𝑞𝑘,𝑆𝑘)

𝑚𝑘
(𝐼𝑁𝐽) = 𝑃𝑁𝐽𝑃ℂ|𝑁𝐽 = 𝑃ℂ

𝑁𝐽 ,       (50) 

where 𝑃
ℂ

𝑁𝐽
 is the orthogonal projection of 𝑁𝐽 onto ℂ. Fix a polynomial 𝑔(𝑊𝑖,𝑗):=

∑ 𝑑(𝛽)𝑊(𝛽)(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛽1|+···+|𝛽𝑘|≤𝑛

 and let 𝜉:= ∑ 𝑐(𝛽)𝑒(𝛽)(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+  be in 𝑁𝐽 ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), where we 

denote 𝑒(𝛽): = 𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 , if (𝛽): = (𝛽1, . . . , 𝛽𝑘). It is easy to see that 𝑃
ℂ

𝑁𝐽𝑔(𝑆𝑖,𝑗)
∗𝜉 =

〈𝜉, 𝑔(𝑆𝑖,𝑗)(1)〉 . Consequently, we have 

             𝜒(𝑆𝑖,𝑗)𝑃ℂ
𝑁𝐽𝑔(𝑆𝑖,𝑗)

∗
𝜉 = 〈𝜉, 𝑔(𝑆𝑖,𝑗)(1)〉 𝜒(𝑆𝑖,𝑗)(1)              (51) 

for any polynomial 𝜒(𝑆𝑖,𝑗). Employing relation (50), we deduce that the operator 𝜒(𝑆𝑖,𝑗)𝑃ℂ
𝑁𝐽𝑔(𝑆𝑖,𝑗)

∗ 

has rank one and it is in the operator space 𝑆̅. On the other hand, due to the fact that the set of all 

vectors of the form ∑ 𝑑(𝛽)𝑆(𝛽)(1)(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛽1|+···+|𝛽𝑘|≤𝑛

  with 𝑛 ∈ ℕ, 𝑑(𝛽) ∈ ℂ, is dense in 𝑁𝐽, relation (51) 

implies that all the compact operators in 𝐵(𝑁𝐽) are contained in 𝑆. 

To prove the last part of this theorem, let ℰ ≠ {0} be a subspace of 𝑁𝐽 ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), which is 

jointly reducing for the operators 𝑆𝑖,𝑗 , 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Let 𝜑 ∈ ℰ, 𝜑 ≠ 0, and 

assume that 𝜑 = ∑ 𝑎(𝛽)𝑒(𝛽)(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+ . If 𝑎(𝛽) is a nonzero coefficient of 𝜑, then we have 

𝑃ℂ𝑆1,𝛽1
∗ · · ·  𝑆𝑘,𝛽𝑘

∗ 𝜑 = 𝑃ℂ𝑊1,𝛽1
∗ · · · 𝑊𝑘,𝛽𝑘

∗ 𝜑 =
1

√𝑏1,𝛽1
(𝑚1)

· · ·
1

√𝑏
𝑘,𝛽𝑘

(𝑚𝑘)
𝑎(𝛽). 

Due to relation (50) and using the fact that ℰ is reducing for each 𝑆𝑖,𝑗, we deduce that 𝑎(𝛽) ∈ ℰ, so 

1 ∈ ℰ. Using again that ℰ is invariant under the operators 𝑆𝑖,𝑗, we deduce that ℰ = 𝑁𝐽. This 

completes the proof.  

Let 𝑇 = (𝑇1, . . . , 𝑇𝑘) ∈ 𝐷𝑓
𝑚(𝐻) and 𝑇′ = (𝑇1

′, . . . , 𝑇𝑘
′) ∈ 𝐷𝑓

𝑚(𝐻′) be 𝑘-tuples with 𝑇𝑖: =

(𝑇𝑖,1, . . . , 𝑇𝑖,𝑛𝑖) and 𝑇𝑖
′: = (𝑇𝑖,1

′ , . . . , 𝑇𝑖,𝑛𝑖
′ ). We say that 𝑇 is unitarily equivalent to 𝑇′ if there is a 

unitary operator 𝑈:𝐻 → 𝐻′ such that 𝑇𝑖,𝑗 = 𝑈
∗𝑇𝑖,𝑗

′ 𝑈 for all 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. 
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Corollary (4.2.7) [244]: Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract 

noncommutative variety 𝑉𝑞,𝐽
𝑚 , where 𝐽 is a 𝑊𝑂𝑇-closed left ideal of 𝐹∞(𝐷𝑞

𝑚) such that 1 ∈ 𝑁𝐽. If 

𝐻,𝐾 are Hilbert spaces, then {𝑆𝑖,𝑗⊗ 𝐼𝐻} is unitarily equivalent to {𝑆𝑖,𝑗⊗ 𝐼𝐾} if and only if 𝑑𝑖𝑚𝐻 =

𝑑𝑖𝑚𝐾.  

Proof: Let 𝑈: 𝑁𝐽⊗𝐻 → 𝑁𝐽⊗𝐾 be a unitary operator such that 𝑈(𝑆𝑖,𝑗⊗ 𝐼𝐻) = (𝑆𝑖,𝑗⊗ 𝐼𝐾)𝑈 for 

all 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Then 𝑈(𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐻) = (𝑆𝑖,𝑗

∗ ⊗ 𝐼𝑘)𝑈 and, due to the fact that the 

𝐶∗-algebra 𝐶∗(𝑆𝑖,𝑗) is irreducible, we must have 𝑈 = 𝐼𝑁𝐽⊗𝐴, where 𝐴 ∈ 𝐵(𝐻,𝐾) is a unitary 

operator. 

Therefore, 𝑑𝑖𝑚𝐻 = 𝑑𝑖𝑚𝐾. The proof is complete.  

We recall that a subspace 𝐻 ⊆ 𝐾 is called co-invariant under 𝐴 ⊂ 𝐵(𝐾) if 𝑋∗𝐻 ⊆ 𝐻 for any 𝑋 ∈ 𝐴. 

Theorem (4.2.8) [244]: Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a 𝑊𝑂𝑇-closed two sided ideal of 𝐹∞(𝐷𝑓

𝑚) such that 1 ∈ 𝑁𝐽 

. If 𝐾 be a Hilbert space and 𝑀 ⊆ 𝑁𝐽⊗𝐾 is a co-invariant subspace under each operator 𝑆𝑖,𝑗⊗ 𝐼𝑘 

for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, then there exists a subspace ℰ ⊆ 𝐾 such that 

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{(𝑆(𝛽)⊗ 𝐼𝑘)𝑀: (𝛽) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ } = 𝑁𝐽⊗ℰ. 

Proof: Set ℰ:= (𝑃ℂ⊗ 𝐼𝑘)𝑀 ⊆ 𝐾, where 𝑃ℂ is the orthogonal projection from 𝑁𝐽 onto ℂ1 ⊂ 𝑁𝐽 

and let 𝜑 be a nonzero element of 𝑀 with representation 

𝜑 = ∑ 𝑒(𝛽)⨂ℎ(𝛽)
(𝛽)∈𝔽𝑛1

+ ×···×𝔽𝑛𝑘
+

∈ 𝑀 ⊂ 𝑁𝐽 , 

where ℎ(𝛽) ∈ 𝐾 and ∑ ‖ℎ(𝛽) ‖
2

(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+ <∞. Assume that ℎ(𝜎) ≠ 0 for some 𝜎 = (𝜎1, . . . , 𝜎𝑘) 

in 𝔽𝑛1
+ ×···× 𝔽𝑛𝑘

+  and note that 

(𝑃ℂ⊗ 𝐼𝐾)(𝑆1,𝜎1
∗ · · · 𝑆𝑘,𝜎𝑘

∗ ⊗ 𝐼𝐾)𝜑 = (𝑃ℂ⊗ 𝐼𝐾)(𝑊1,𝜎1
∗ · · · 𝑊𝑘,𝜎𝑘

∗ ⊗ 𝐼𝐾)𝜑

= 1⊗
1

√𝑏1,𝜎1
(𝑚1)

· · ·
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

ℎ(𝜎). 

Consequently, since 𝑀 is a co-invariant subspace under each operator 𝑆𝑖,𝑗⊗ 𝐼𝐾, we must have 

ℎ(𝜎) ∈ ℰ. 

Since 1 ∈ 𝑁𝐽, we deduce that 

(𝑆1,𝜎1 · · · 𝑆𝑘,𝜎𝑘 ⊗ 𝐼𝐾)(1⊗ ℎ(𝜎))  =
1

√𝑏1,𝜎1
(𝑚1)

· · ·
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

𝑃𝑁𝐽(𝑒𝜎1
1 ⊗ · · · ⊗ 𝑒𝜎𝑘

𝑘 ) ⊗ ℎ(𝜎) 

is a vector in 𝑁𝐽⊗ℰ. Therefore, 

            𝜑 = lim
𝑛→∞

∑ ∑ 𝑃𝑁𝐽(𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 ) ⊗ ℎ(𝛽)(𝛽)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛽1|+···+|𝛽𝑘|=𝑞

𝑛
𝑞=0     (52) 

is in 𝑁𝐽⊗ℰ. Hence, 𝑀 ⊂ 𝑁𝐽⊗ℰ and 

𝑌:= 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{(𝑆(𝜎)⊗ 𝐼𝐾)𝑀: (𝜎) ∈ 𝔽𝑛1
+ ×···× 𝔽𝑛𝑘

+ } ⊂ 𝑁𝐽⊗ℰ. 

Now, we prove the reverse inclusion. If ℎ0 ∈ ℰ, ℎ0 ≠ 0, then there exists 𝜉 ∈ 𝑀 ⊂  𝑁𝐽⊗ℰ such 

that 

𝜉 = 1⊗ ℎ0 + ∑ 𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 ⊗ℎ(𝛽)
(𝛽)∈𝔽𝑛1

+ ×···×𝔽𝑛𝑘
+

|𝛽1|+···+|𝛽𝑘|≥1

 

and 1⊗ ℎ0 = (𝑃ℂ⊗ 𝐼𝑘)𝜉. Consequently, due to Lemma (4.2.1), we have 

1⊗ ℎ0 = (𝑃ℂ⊗ 𝐼𝐾)𝜉 = (𝑖𝑑 − Φ𝑓1,𝑆1⊗𝐼𝑘)
𝑚1 · · · (𝑖𝑑 − Φ𝑓𝑘,𝑆𝑘⊗𝐼𝑘)

𝑚𝑘  (𝐼𝑁𝐽⊗ 𝐼𝐾)𝜉. 

Taking into account that 𝑀 is co-invariant under each operator 𝑆𝑖,𝑗⊗ 𝐼𝐾, we deduce that ℎ0 ∈ 𝑌 for 

any ℎ0 ∈ ℰ. Therefore, ℰ ⊂ 𝑌. This inclusion shows that (𝑆(𝜎)⊗ 𝐼𝐾)(1 ⊗ ℰ) ⊂ 𝑌 for any (𝜎) ∈

𝔽𝑛1
+ ×···× 𝔽𝑛𝑘

+ , which implies 
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1

√𝑏1,𝜎1
(𝑚1)

· · ·
1

√𝑏𝑘,𝜎𝑘
(𝑚𝑘)

𝑃𝑁𝐽(𝑒𝜎1
1 ⊗ · · · ⊗ 𝑒𝜎𝑘

𝑘 ) ⊗ ℰ ⊂ 𝑌. 

Consequently, if 𝜑 ∈ 𝑁𝐽⊗ℰ has the representation (52), we conclude that 𝜑 ∈ 𝑌. Therefore, 𝑁𝐽⊗

ℰ ⊆ 𝑌. 

The proof is complete.  

Now, we can easily deduce the following result. 

Corollary (4.2.9) [244]: Let 𝑆:= (𝑆1, . . . , 𝑆𝑘) be the universal model associated to the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a 𝑊𝑂𝑇-closed two sided ideal of 𝐹∞(𝐷𝑓

𝑚) such that 1 ∈

𝑁𝐽. If 𝐾 is a Hilbert space, then a subspace 𝑀 ⊆ 𝑁𝐽⊗𝐾 is reducing under each operator 𝑆𝑖,𝑗⊗ 𝐼𝐾 

for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, if and only if there exists a subspace ℰ ⊆ 𝐾 such that 

𝑀 = 𝑁𝐽⊗ℰ. 

Let 𝑆:= {𝑆𝑖,𝑗} be the universal model associated to the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚. An 

operator 𝑀: 𝑁𝐽⊗𝐻 → 𝑁𝐽⊗𝐾 is called multi-analytic with respect to 𝑆 if 

𝑀(𝑆𝑖,𝑗⊗ 𝐼𝐻) = (𝑆𝑖,𝑗⊗ 𝐼𝐾)𝑀 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. In case 𝑀 is a partial isometry, we call it inner multi-

analytic operator. 

The next result is an extension of Theorem 5.2 from [253] to varieties in noncommutative 

polydomains. 

The constructions from the proof are needed in a forthcoming to define characteristic functions 

associated with noncommutative varieties. 

Theorem (4.2.10) [244]: Let 𝑆:= (𝑆1, . . . , 𝑆𝑘) be the universal model associated to the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚  and let 𝑆𝑖⊗ 𝐼𝐻: = (𝑆𝑖,1⊗ 𝐼𝐻 , . . . , 𝑆𝑖,𝑛𝑖 ⊗ 𝐼𝐻) for 𝑖 ∈ {1, . . . , 𝑘}, where 

𝐻 is a Hilbert space. 

If 𝐺 ∈ 𝐵(𝑁𝐽⊗𝐻) then the following statements are equivalent. 

(i) There is a multi-analytic operator Γ ∶ 𝑁𝐽⊗ℰ → 𝑁𝐽⊗𝐻 with respect to 𝑆, where ℰ is a Hilbert 

space, such that 

𝐺 = ΓΓ∗. 
(ii) For any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+

𝑘  such that 𝑝 ≤ 𝑚, 𝑝 ≠ 0, 

(∆𝑓,𝑆⊗𝐼𝐻
𝑝

(𝐺) ≥ 0. 

Proof:  Assume that item (i) holds. Then we have 

∆𝑓,𝑆⊗𝐼𝐻
𝑝

(𝐺) = (𝑖𝑑 − Φ𝑓1,𝑆1⊗𝐼𝐻)
𝑝1  · · ·  (𝑖𝑑 − Φ𝑓𝑘,𝑆𝑘⊗𝐼𝐻)

𝑝𝑘(𝐺)  = Γ∆𝑓,𝑆⊗𝐼ℰ
𝑝

(𝐼)Γ∗ ≥ 0 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  such that 𝑝 ≤ 𝑚, 𝑝 ≠ 0. 

Now, assume that (ii) holds. In particular, we have Φ𝑓1,𝑆1⊗𝐼𝐻(∆𝑓,𝑆⊗𝐼𝐻
𝑚′ (𝐺)) ≤ ∆𝑓,𝑆⊗𝐼𝐻

𝑚′ (𝐺), where 

𝑚′ = (𝑚1 − 1,𝑚2, . . . , 𝑚𝑘), which implies Φ𝑓1,𝑆1⊗𝐼𝐻
𝑛 (∆𝑓,𝑆⊗𝐼𝐻

𝑚′ (𝐺)) ≤ ∆𝑓,𝑆⊗𝐼𝐻
𝑚′ (𝐺) for any 𝑛 ∈ ℕ. 

Since 𝑆:= (𝑆1, . . . , 𝑆𝑘) is a pure 𝑘-tuple, we have SOT-lim 𝑛→∞Φ𝑓1,𝑆1⊗𝐼𝐻
𝑛 (∆𝑓,𝑆⊗𝐼𝐻

𝑚′ (𝐺)) = 0. 

Consequently, ∆𝑓,𝑆⊗𝐼𝐻
𝑚′ (𝐺) ≥ 0. Continuing this process, we deduce that 𝐺 ≥ 0. 

Let 𝐺:= 𝑟𝑎𝑛𝑔𝑒𝐺1/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and define 

                    𝐴𝑖,𝑗 (𝐺
1

2𝑥) := 𝐺
1

2(𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐻)𝑥

, 𝑥 ∈ 𝑁𝐽⊗𝐻,                           (53) 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Taking into account that Φ𝑓𝑖,𝑆𝑖⊗𝐼(𝐺) ≤  𝐺, we have 

∑ 𝑎𝑖,𝛼‖𝐴𝑖,�̃�𝐺
1/2𝑥‖

2

𝛼∈𝔽𝑛𝑖
+ ,|𝛼|≥1

= 〈Φ𝑓𝑖,𝑆𝑖⊗𝐼𝐻(𝐺)𝑥, 𝑥〉 ≤ ‖𝐺
1/2𝑥‖

2
 

for any 𝑥 ∈ 𝑁𝐽⊗𝐻, where �̅� = 𝑔𝑗𝑝
𝑖 · · ·  𝑔𝑗1

𝑖  denotes the reverse of 𝛼 = 𝑔𝑗1
𝑖 · · · 𝑔𝑗𝑝

𝑖 ∈ 𝔽𝑛𝑖
+  . 

Consequently, 𝑎
𝑖,𝑔𝑗

𝑖‖𝐴𝑖,𝑗𝐺
1/2𝑥‖

2
≤ ‖𝐺1/2𝑥‖

2
, for any 𝑥 ∈ 𝑁𝐽⊗𝐻. Since 𝑎

𝑖,𝑔𝑗
𝑖 ≠ 0 each 𝐴𝑖,𝑗 can 

be uniquely be extended to a bounded operator (also denoted by 𝐴𝑖,𝑗 ) on the subspace 𝒢. Set 𝑋𝑖,𝑗: =



169 
 

 𝐴𝑖,𝑗
∗  for 𝑖 ∈  {1, . . . , 𝑘}, 𝑗 ∈  {1, . . . , 𝑛𝑖}. An approximation argument shows that Φ𝑓𝑖,𝑋𝑖(𝐼𝒢) ≤ 𝐼𝒢 and 

relation (53) implies 

              𝑋𝑖,𝑗
∗ (𝐺

1

2𝑥) = 𝐺
1

2(𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐻)𝑥

, 𝑥 ∈ 𝑁𝐽⊗𝐻.                        (54) 

This implies 𝐺1/2∆𝑓,𝑋
𝑝
(𝐼𝑀)𝐺

1/2 = ∆𝑓,𝑆⊗𝐼𝐻
𝑝

(𝐺) ≥ 0 for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  such that 𝑝 ≤

𝑚, 𝑝 ≠ 0. Now, note that 

〈Φ𝑓𝑖,𝑋𝑖
𝑛 (𝐼𝒢)𝑌

1/2𝑥, 𝐺1/2𝑥〉 = 〈Φ𝑓𝑖,𝑆𝑖⊗𝐼𝐻
𝑛 (𝐺)𝑥, 𝑥〉 ≤ ‖𝐺‖〈Φ𝑓𝑖,𝑆𝑖⊗𝐼𝐻

𝑛 (𝐼)𝑥, 𝑥〉 

for any 𝑥 ∈ 𝑁𝐽⊗𝐻 and 𝑛 ∈ ℕ. Since SOT- lim  𝑛→∞Φ𝑓𝑖,𝑆𝑖⊗𝐼𝐻
𝑛 (𝐼) = 0, we have SOT- 

lim  𝑚→∞Φ𝑓𝑖,𝑋𝑖
𝑛  (𝐼𝒢) = 0. 

Therefore, 𝑋:= (𝑋1, . . . , 𝑋𝑘) is a pure 𝑘-tuple in the noncommutative variety 𝐷𝑓
𝑚(𝑀). Due to the 

𝐹∞(𝐷𝑓
𝑚)–functional calculus, relation (54) implies 

𝐺1/2𝑔(𝑋𝑖,𝑗) = 𝑔(𝑆𝑖,𝑗)𝐺
1/2 = 0, 𝑔 ∈ 𝐽. 

Consequently, 𝑔(𝑋𝑖,𝑗) = 0 for any 𝑔 ∈ 𝐽. This shows that 𝑋:= (𝑋1, . . . , 𝑋𝑘) is a pure 𝑘-tuple in the 

noncommutative variety 𝑉𝑓,𝐽
𝑚(𝒢). According to Proposition (4.2.2), the noncommutative Berezin 

kernel 𝐾𝑓,𝑋,𝐽: 𝐺 → 𝑁𝐽⊗ℰ is an isometry with the property that 𝑋𝑖,𝑗𝐾𝑓,𝑋,𝐽
∗ = 𝐾𝑓,𝑋,𝐽

∗ (𝑆𝑖,𝑗⊗ 𝐼ℰ). Set 

𝐸:= ∆𝑓,𝑋
𝑚 (𝐼𝒢)(𝒢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and define the bounded linear operator Γ:= 𝐺1/2𝐾𝑓,𝑋,𝐽

∗ : 𝑁𝐽⊗ℰ → 𝑁𝐽⊗𝐻. Note 

that 

Γ(𝑆𝑖,𝑗⊗ 𝐼ℰ) = 𝐺
1/2𝐾𝑓,𝑋,𝐽

∗ (𝑆𝑖,𝑗⊗ 𝐼ℰ) = 𝐺
1/2𝑋𝑖,𝑗𝐾𝑓,𝑋,𝐽

∗  

= (𝑆𝑖,𝑗⊗ 𝐼𝐻)𝐺
1/2𝐾𝑓,𝑋,𝐽

∗ = (𝑆𝑖,𝑗⊗ 𝐼𝐻)Γ 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}, which proves that Γ is a multi-analytic operator with 

respect to the universal model 𝑆 = {𝑆𝑖,𝑗}. Note that ΓΓ∗ = 𝐺1/2𝐾𝑓,𝑋,𝐽
∗ 𝐾𝑓,𝑋,𝐽𝐺

1/2 = 𝐺. The proof is 

complete.  

Following the classical case [260], we say that 𝑀 ⊂ 𝑁𝐽⊗𝐻 is a Beurling type invariant subspace 

under the operators 𝑆𝑖,𝑗⊗ 𝐼𝐻 for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, if there is an inner multi-analytic 

operator with respect to 𝑆 = {𝑆𝑖,𝑗}, 

Ψ:𝑁𝐽⊗ℰ → 𝑁𝐽⊗𝐻, 

such that 𝑀 = Ψ(𝑁𝐽⊗ℰ). 

Corollary (4.2.11) [244]: Let 𝑀 ⊂ 𝑁𝐽⊗𝐻 be an invariant subspace under the operators 𝑆𝑖,𝑗⊗ 𝐼𝐻 

for any 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. Then 𝑀 is Beurling type invariant subspace if and only if 

Δ𝑓,𝑆⊗𝐼𝐻
𝑃 (𝑃𝑀) ≥ 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝 ∈ ℤ+

𝑘 , 𝑝 ≤ 𝑚, 

where 𝑃𝑀 is the orthogonal projection of the Hilbert space 𝑁𝐽⊗𝐻 onto 𝑀. 

Proof: If 𝑀: 𝑁𝐽⊗ℰ → 𝑁𝐽⊗𝐻 is a inner multi-analytic operator and 𝑀 = 𝑀(𝑁𝐽⊗ℰ), then 𝑃𝑀 =

𝑀𝑀∗. Taking into account Lemma (4.2.1), we deduce that 

𝛥𝑓,𝑆⊗𝐼𝐻
𝑃 (𝑃𝑀) = Ψ(𝑃𝐶 ⊗ 𝐼ℰ)Ψ

∗  ≥ 0 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  such that 𝑝 ≤ 𝑚. The converse is a consequence of Theorem 

(4.2.10), when we take 𝐺 = 𝑃𝑀. The proof is complete.  

We remark that in the particular case when 𝑚 = (1, . . . , 1), the condition in Corollary (4.2.11) is 

satisfied when 𝑆 ⊗ 𝐼𝐻|𝑀: = {𝑆𝑖,𝑗⊗ 𝐼𝐻|𝑀} is doubly commuting. The proof is very similar to that of 

the corresponding result from [253]. 

Theorem (4.2.12) [244]:  Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a 𝑊𝑂𝑇-closed left ideal of 𝐹∞(𝐷𝑓

𝑚), and let 𝑇 = {𝑇𝑖,𝑗} be a 

pure element in the noncommutative variety 𝑉𝑓,𝐽
𝑚(𝐻). If 

𝐾𝑓,𝑇,𝐽: 𝐻 → 𝑁𝐽⊗∆𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the noncommutative constrained Berezin kernel, then the subspace 𝐾𝑓,𝑇,𝐽𝐻 is co-invariant under 

each operator 𝑆𝑖,𝑗⊗ 𝐼∆𝑓,𝑇
𝑚 𝐻̅̅ ̅̅ ̅̅ ̅̅  ,TH for any 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. If 1 ∈ 𝑁𝐽, then the dilation 

provided by the relation 

𝑇(𝛼) = 𝐾𝑓,𝑇,𝐽
∗ (𝑆(𝛼)⊗ 𝐼∆𝑓,𝑇

𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐾𝑓,𝑇,𝐽 , (𝛼) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ , 
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is minimal. If, in addition, 𝑓 = 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular noncommutative 

polynomials and 

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅ {𝑆(𝛼)𝑆(𝛽)
∗ ) ∶ (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘
+ } = 𝐶∗(𝑆𝑖,𝑗), 

then the minimal dilation of 𝑇 is unique up to an isomorphism.  

Proof:  According to Proposition (4.2.2), 

𝐾𝑓,𝑇,𝐽𝑇𝑖,𝑗
∗ = (𝑆𝑖,𝑗

∗ ⊗ 𝐼)𝐾𝑓,𝑇,𝐽 , 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, 

and the noncommutative Berezin kernel 𝐾𝑓,𝑇,𝐽 is an isometry. Due to the definition of the 

constrained Berezin kernel 𝐾𝑓,𝑇,𝐽, we obtain (𝑃𝐶 ⊗ 𝐼𝐷)𝐾𝑓,𝑇,𝐽𝐻 = 𝐷, where 𝐷:=  ∆𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Now, 

using Theorem (4.2.8) in the particular case when 𝑀:= 𝐾𝑓,𝑇,𝐽𝐻 and ℰ:= 𝐷, we deduce that the 

subspace 𝐾𝑓,𝑇,𝐽𝐻 is cyclic for the operators 𝑆𝑖,𝑗⊗ 𝐼ℰ, where 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. This 

implies the minimality of the dilation, i.e., 

          𝑁𝐽⊗𝐷 = ⋁ (𝑆(𝛼)⊗ 𝐼𝐷)𝐾𝑓,𝑇,𝐽𝐻(𝛼)∈𝔽𝑛1
+ × · · · ×𝔽𝑛𝑘

+ .                                    (55) 

Now, assume that 𝑓 = 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular noncommutative 

polynomials and that the relation in the theorem holds. Consider another minimal dilation of 𝑇, i.e., 

               𝑇(𝛼) = 𝑉
∗(𝑆(𝛼)⊗ 𝐼𝐷′)𝑉,     (𝛼) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘
+ ,                       (56) 

where 𝑉: 𝐻 → 𝑁𝐽⊗𝐷′ is an isometry, 𝑉𝐻 is co-invariant under each operator 𝑆𝑖,𝑗⊗ 𝐼𝐷′, and 

             𝑁𝐽⊗𝐷′ = ⋁ (𝑆(𝛼)⊗ 𝐼𝐷′)(𝛼)∈𝔽𝑛1
+ × · · · ×𝔽𝑛𝑘

+ 𝑉𝐻.                                 (57) 

According to Theorem (4.2.3), there exists a unique unital completely positive linear map 

Ψ:𝐶∗(𝑆𝑖,𝑗)  → 𝐵(𝐻) with the property that 

Ψ(𝑆(𝛼)𝑆(𝛽)
∗ ) = 𝑇(𝛼)𝑇(𝛽)

∗ , (𝛼), (𝛽) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+ . 

Now, we consider the ∗-representations 𝜋1: 𝐶
∗(𝑆𝑖,𝑗) → 𝐵(𝑁𝐽⊗𝐷), 𝜋1(𝑋):= 𝑋 ⊗ 𝐼𝐷, and 

𝜋2: 𝐶
∗(𝑆𝑖,𝑗) → 𝐵(𝑁𝐽) ⊗ 𝐷′), 𝜋2(𝑋):= 𝑋 ⊗ 𝐼𝐷′  . Since the subspaces 𝐾𝑞,𝑇,𝐽𝐻 and 𝑉𝐻 are co-

invariant for each operator 𝑆𝑖,𝑗⊗ 𝐼𝐷, relation (56) implies 

Ψ(𝑋) = 𝐾𝑞,𝑇,𝐽
∗ 𝜋1(𝑋)𝐾𝑞,𝑇,𝐽 = 𝑉

∗𝜋2(𝑋)𝑉, 𝑋 ∈ 𝐶∗(𝑆𝑖,𝑗). 

Relations (55) and (57) show that 𝜋1 and 𝜋2 are minimal Stinespring dilations of the completely 

positive linear map Ψ. Since these representations are unique up to an isomorphism, there exists a 

unitary operator 𝑈: 𝑁𝐽⊗𝐷 → 𝑁𝐽⊗𝐷′ such that 𝑈(𝑆𝑖,𝑗⊗ 𝐼𝐷) = (𝑆𝑖,𝑗⊗ 𝐼𝐷′)𝑈 for 𝑖 ∈

{1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, and 𝑈𝐾𝑞,𝑇,𝐽 = 𝑉. Taking into account that 𝑈 is unitary, we deduce that 

𝑈(𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐷) = (𝑆𝑖,𝑗

∗ ⊗ 𝐼𝐷′)𝑈. 

Since the 𝐶∗-algebra 𝐶∗(𝑆𝑖,𝑗) is irreducible, due to Theorem (4.2.6), we must have 𝑈 = 𝐼 ⊗𝑊, 

where 𝑊 ∈ 𝐵(𝐷,𝐷′) is a unitary operator. This implies that 𝑑𝑖𝑚𝐷 = 𝑑𝑖𝑚𝐷′ and 𝑈𝐾𝑞,𝑇,𝐽𝐻 = 𝑉𝐻. 

Consequently, the two dilations are unitarily equivalent. The proof is complete. 

Proposition (4.2.13) [244]: Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract 

noncommutative variety 𝑉𝑞,𝐽
𝑚 , where 𝐽 is a WOT-closed left ideal of 𝐹∞(𝐷𝑞

𝑚) such that 1 ∈ 𝑁𝐽, and 

𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive regular noncommutative polynomials such that  

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅  {𝑆(𝛼)𝑆(𝛽)
∗ ) ∶ (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘
+ } = 𝐶∗(𝑆𝑖,𝑗). 

A pure element 𝑇 = {𝑇𝑖,𝑗} ∈ 𝑉𝑞
𝑚(𝐻) has 

𝑟𝑎𝑛𝑘 ∆𝑞,𝑇
𝑚 (𝐼) = 𝑛, 𝑛 = 1, 2, . . . ,∞, 

if and only if it is unitarily equivalent to one obtained by compressing {𝑆𝑖,𝑗⊗ 𝐼ℂ𝑛} to a co-invariant 

subspace 𝑀 ⊂ 𝑁𝐽⊗ℂ𝑛 under each operator 𝑆𝑖,𝑗⊗ 𝐼ℂ𝑛 with the property that 𝑑𝑖𝑚[(𝑃ℂ⊗ 𝐼ℂ𝑛)𝑀] =

𝑛, where 𝑃ℂ is the orthogonal projection from 𝑁𝐽 onto ℂ1. 

Proof:  Note that the direct implication is a consequence of Theorem (4.2.12). We prove the 

converse. Assume that 

𝑇(𝛼) = 𝑃𝐻(𝑆(𝛼)⊗ 𝐼ℂ𝑛)|𝐻 , (𝛼) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+  

where 𝐻 ⊂ 𝑁𝐽⊗ℂ𝑛 is a co-invariant subspace under each operator 𝑆𝑖,𝑗⊗ 𝐼ℂ𝑛 such that 𝑑𝑖𝑚(𝑃ℂ⊗

𝐼ℂ𝑛)𝐻 = 𝑛. It is clear that 𝑇 is a pure element in the noncommutative variety 𝑉𝑞
𝑚(𝐻). First, we 

consider the case when 𝑛 <∞. Since (𝑃ℂ⊗ 𝐼ℂ𝑛)𝐻 ⊆ ℂ
𝑛 and 𝑑𝑖𝑚(𝑃ℂ⊗ 𝐼ℂ𝑛)𝐻 = 𝑛, we must have 
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(𝑃ℂ⊗ 𝐼ℂ𝑛)𝐻 = ℂ
𝑛. The later condition is equivalent to the equality 𝐻⊥ ∩ ℂ𝑛 = {0}. Since 

∆𝑞,𝑆
𝑚 (𝐼) =  𝑃ℂ, we have ∆𝑞,𝑇

𝑚 (𝐼) = 𝑃𝐻[𝑃ℂ⊗ 𝐼ℂ𝑛]|𝐻 = 𝑃𝐻ℂ
𝑛. Consequently, 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇

𝑚 (𝐼) =

𝑑𝑖𝑚 𝑃𝐻ℂ
𝑛. If we assume that 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇

𝑚 (𝐼) < 𝑛, then there exists ℎ ∈ ℂ𝑛, ℎ ≠ 0, with 𝑃𝐻ℎ = 0, 

which contradicts the relation 𝐻⊥ ∩ ℂ𝑛 = {0}. Therefore, we must have 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇
𝑚 (𝐼) = 𝑛. 

Now, assume that 𝑛 =∞. According to Theorem (4.2.8) and its proof, we have 

𝑁𝐽⊗ℰ = ⋁ (𝑆(𝛼)⊗ 𝐼ℂ𝑛)

(𝛼)∈𝔽𝑛1
+ × · · · ×𝔽𝑛𝑘

+

𝐻 

where ℰ:= (𝑃ℂ⊗ 𝐼ℂ𝑛)𝐻. Since 𝑁𝐽⊗ℰ is reducing for each operator 𝑆𝑖,𝑗⊗ 𝐼ℂ𝑚, we deduce that 

𝑇(𝛼) = 𝑃(𝛼)(𝑆(𝛼)⊗ 𝐼ℰ)|𝐻, for all (𝛼) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+  . Due to Theorem (4.2.12), the minimal 

dilation of 𝑇 is unique. Consequently, we have dim ∆𝑞,𝑇
𝑚 (𝐼)𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = dim ℰ =∞. This completes the 

proof.  

We characterize the pure elements of rank one in the noncommutative variety 𝑉𝑞,𝐽
𝑚 (𝐻) and obtain a 

classification result. 

Corollary (4.2.14) [244]: Under the hypothesis of Proposition (4.2.13), the following statements 

hold. 

(i) If 𝑀 ⊂ 𝑁𝐽 is a co-invariant subspace under each operator 𝑆𝑖,𝑗, then 𝑇:= {𝑃𝑀𝑆𝑖,𝑗|𝑀} is a pure 

element in the noncommutative variety 𝑉𝑞,𝐽
𝑚 (𝑀) and 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇

𝑚 = 1. 

(ii) If 𝑀′ is another co-invariant subspace under each operator 𝑆𝑖,𝑗, which gives rise to 𝑇′, then 𝑇 

and 𝑇′ are unitarily equivalent if and only if 𝑀 = 𝑀′. 

Proof: To prove (i), note that ∆𝑞,𝑇
𝑚 (𝐼) = 𝑃𝑀𝑃ℂ|𝑀 and, consequently, 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇

𝑚 (𝐼) ≤ 1. Since 𝑆 is 

pure (see Lemma (4.2.1)) and 𝑀 ⊂ 𝑁𝐽 is a co-invariant subspace under each operator 𝑆𝑖,𝑗, we 

deduce that 𝑇 is pure. Hence, ∆𝑞,𝑇
𝑚 (𝐼) ≠ 0, so 𝑟𝑎𝑛𝑘 ∆𝑞,𝑇

𝑚 (𝐼) ≥ 1. Therefore, 𝑟𝑎𝑛𝑘∆𝑞,𝑇
𝑚 (𝐼) = 1. 

To prove (ii), note that, as in the proof of Theorem (4.2.12), one can show that 𝑇 and 𝑇′ are 

unitarily equivalent if and only if there exists a unitary operator Λ: 𝑁𝐽 → 𝑁𝐽 such that Λ𝑆𝑖,𝑗 = 𝑆𝑖,𝑗Λ 

for all 𝑖, 𝑗, and Λ𝑀 = 𝑀′. Since Λ𝑆𝑖,𝑗
∗ = 𝑆𝑖,𝑗

∗ Λ and 𝐶∗(𝑆𝑖,𝑗) is irreducible, Λ must be a scalar multiple 

of the identity. Therefore, we must have 𝑀 = Λ𝑀 = 𝑀′. The proof is complete.  

we find all the joint eigenvectors for 𝑆𝑖,𝑗
∗  , where 𝑆 = {𝑆𝑖,𝑗} is the universal model associated with 

the noncommutative variety 𝑉𝑓,𝐽
𝑚 and 𝐽 is a WOT-closed left ideal of the Hardy space 𝐹∞(𝐷𝑓

𝑚). As 

consequences, we determine the joint right spectrum of 𝑆 and identify the character space of the 

noncommutative variety algebra 𝐴(𝑉𝑓,𝐽
𝑚). When 𝐽𝑐 is the commutator ideal of 𝐹∞(𝐷𝑓

𝑚), we show 

that the WOT-closed algebra 𝐹∞(𝑉𝑓,𝐽𝑐
𝑚 ) generated by 𝑆𝑖,𝑗 and the identity coincides with the 

multiplier algebra of a reproducing kernel Hilbert space of holomorphic functions on a certain 

polydomain in ℂ𝑛. 

The results show that there is a strong connection between the study of noncommutative varieties in 

polydomains and the analytic function theory in ℂ𝑛. 

Let 𝑓:= (𝑓1, . . . , 𝑓𝑘) be a 𝑘-tuple of positive regular free holomorphic functions and define the 

polydomain 

𝐷𝑓,>
𝑚 (ℂ): = {𝑧 = (𝑧1, . . . 𝑧𝑘) ∈ ℂ

𝑛1 × · · · × ℂ𝑛𝑘: ∆𝑓,𝑧
𝑚 (1) > 0}. 

Note that 𝐷𝑓,>
𝑚 (ℂ) = 𝐷𝑓1,>

1 (ℂ) × · · · × 𝐷𝑓𝑘,>
1 (ℂ), where 𝑓𝑖: = ∑ 𝑎𝑖,𝛼𝑍𝛼𝛼∈𝔽𝑛𝑖

+  and 

𝐷𝑓𝑖,>
1 (ℂ):= {𝑧𝑖 = (𝑧𝑖,1, . . . , 𝑧𝑖,𝑛𝑖) ∈ ℂ

𝑛𝑖: ∑ 𝑎𝑖,𝛼|𝑧𝑖,𝛼|
2

𝛼∈𝔽𝑛𝑖
+

< 1}. 

Let 𝐽 be a WOT-closed left ideal of the Hardy space 𝐹∞(𝐷𝑓
𝑚). We consider the set 

𝑉𝑓,𝐽,>
𝑚 (ℂ): = {𝑧 = (𝑧1, . . . 𝑧𝑘) ∈ 𝐷𝑓,>

𝑚 (ℂ): 𝑔(𝑧1, . . . , 𝑧𝑘) = 0 𝑓𝑜𝑟 𝑔 ∈ 𝐽} ⊂ ℂ
𝑛, 

where 𝑛 = 𝑛1 + · · ·  + 𝑛𝑘 is the number of indeterminates in 𝑓:= (𝑓1, . . . , 𝑓𝑘). 
Theorem (4.2.15) [244]:  Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a WOT-closed left ideal of the Hardy space 𝐹∞(𝐷𝑓

𝑚). The 

joint eigenvectors for 𝑆𝑖,𝑗
∗  are precisely the noncommutative constrained Berezin kernels 
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Γ𝜆: = Δ𝑓,𝜆
𝑚 (1)1/2 ∑ �̅�1,𝛽1 · · ·  �̅�𝑘,𝛽𝑘√𝑏1,𝛽1

(𝑚1) · · · √𝑏
𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

 

for 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ), where Δ𝑓,𝜆

𝑚 (1):= (1 − Φ𝑓1,𝜆1(1))
𝑚1 · · ·  (1 − Φ𝑓𝑘,𝜆𝑘(1))

𝑚𝑘 . They 

satisfy the equations 

𝑆𝑖,𝑗
∗ Γ𝜆 = �̅�𝑖,𝑗Γ𝜆     𝑓𝑜𝑟 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, 

where 𝜆𝑖 = (𝜆𝑖,1, . . . , 𝜆𝑖,𝑛𝑖). 

Proof: First, note that if 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ), then 𝜆 is a pure element. The noncommutative 

constrained Berezin kernel at 𝜆 is 𝐾𝑓,𝜆,𝐽: ℂ → 𝑁𝐽⊗ℂ defined by 

𝐾𝑓,𝜆,𝐽(𝑤) = Δ𝑓,𝜆
𝑚 (1)1/2 ∑ √𝑏1,𝛽1

(𝑚1) · · · √𝑏
𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 ⊗ �̅�1,𝛽1 ·· · �̅�𝑘,𝛽𝑘𝑤

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

,

𝑤 ∈ ℂ. 
According to Proposition (4.2.2), we have (𝑆𝑖,𝑗

∗ ⊗ 𝐼ℂ)𝐾𝑓,𝜆,𝐽 = 𝐾𝑓,𝜆,𝐽(�̅�𝑖,𝑗𝐼ℂ) for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈

{1, . . . , 𝑛𝑖}. 

Identifying 𝑁𝐽⊗ℂ with 𝑁𝐽, we have 𝐾𝑓,𝜆,𝐽 = Γ𝜆 and 𝑆𝑖.𝑗
∗ Γ𝜆 = �̅�𝑖,𝑗Γ𝜆. 

Conversely, let ℎ = 𝛽1 ∈ 𝔽𝑛1
+ , . . . , 𝛽𝑘 ∈ 𝔽𝑛𝑘

+  𝑐𝛽1, . . . , 𝛽𝑘𝑒𝛾1
1 ⊗ · · · ⊗ 𝑒𝛾𝑘

𝑘  be a non-zero vector in 

𝑁𝐽 ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) and assume that there exists (𝜆1, . . . , 𝜆𝑛) ∈  ℂ

𝑛𝑖 × · · · × ℂ𝑛𝑘, where 𝜆𝑖 =

(𝜆𝑖,1, . . . , 𝜆𝑖,𝑛𝑖), such that 𝑆𝑖,𝑗
∗ ℎ =  �̅�𝑖,𝑗ℎ for any 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. Since 𝑁𝐽 is invariant 

under 𝑊𝑖,𝑗
∗ , we also have 𝑊𝑖,𝑗

∗ ℎ = �̅�𝑖,𝑗ℎ. Using the definition of the operators 𝑊𝑖,𝑗, we deduce that 

𝑐𝛽1,...,𝛽𝑘 = 〈ℎ, 𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 〉 = 〈ℎ, √𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑊1,𝛽1  · · · 𝑊𝑘,𝛽𝑘
(1)〉 

= √𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)〈𝑊1,𝛽1
∗  · · · 𝑊𝑘,𝛽𝑘

∗ ℎ, 1〉 = √𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)�̅�1,𝛽1 · · ·  �̅�𝑘,𝛽𝑘〈ℎ, 1〉 

= 𝑐0√𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)�̅�1,𝛽1 · · ·  �̅�𝑘,𝛽𝑘  

for any 𝛽1 ∈ 𝔽𝑛1
+ , . . . , 𝛽𝑘 ∈ 𝔽𝑛𝑘

+  . Hence, we obtain 

ℎ = 𝑐0 ∑  �̅�1,𝛽1 ·· · �̅�𝑘,𝛽𝑘√𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

. 

Since ℎ ∈ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), we must have ∑ |𝜆1,𝛽1|

2 · · · |𝜆𝑘,𝛽𝑘|
2𝑏1,𝛽1

(𝑚1) · · ·  𝑏𝑘,𝛽𝑘
(𝑚1)

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+ <  ∞. 

On the other hand, relation (47) implies 

∏(∑(∑ 𝑎𝑖,𝛼𝑖|𝜆𝑖,𝛼𝑖|
2

|𝛼𝑖|≥1

)

𝑠𝑝𝑖

𝑠=0

)

𝑚𝑖
𝑘

𝑖=1

≤ ∑ |𝜆1,𝛽1|
2 · · · |𝜆𝑘,𝛽𝑘|

2𝑏1,𝛽1
(𝑚1) · · ·  𝑏𝑘,𝛽𝑘

(𝑚1)

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+

<∞ 

for any 𝑝1, . . . , 𝑝𝑘 ∈ ℕ. Letting 𝑝𝑖 →  ∞ in the relation above, we must have ∑ 𝑎𝑖,𝛼𝑖|𝜆𝑖,𝛼𝑖|
2

|𝛼𝑖|≥1
< 1, 

for each 𝑖 ∈ {1, . . . , 𝑘}. Therefore, 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ 𝐷𝑓,>
𝑚 (ℂ). On the other hand, if 𝑔 ∈ 𝐽, then 

relation 𝑆𝑖,𝑗
∗ ℎ = �̅�𝑖,𝑗ℎ and an approximation argument in the norm topology imply 

〈ℎ, 𝑔(𝑟𝑆𝑖,𝑗)ℎ〉 = 〈𝑔(𝑟𝑆𝑖,𝑗)
∗ℎ, ℎ〉 = 𝑔(𝑟𝜆𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ‖ℎ‖2. 

Using the 𝐹∞(𝐷𝑓
𝑚)-functional calculus for pure elements and taking the limit as 𝑟 → 1 in the 

relation above, we obtain 

〈ℎ, 𝑔(𝑆𝑖,𝑗)ℎ〉 = 𝑔(𝜆𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ‖ℎ‖2. 

Since, due to Lemma (4.2.1), 𝑔(𝑆𝑖,𝑗) = 0 and ℎ ≠ 0, we conclude that 𝑔(𝜆𝑖,𝑗) = 0, which shows 

that 𝜆 ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ). The proof is complete.   

Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the noncommutative variety 𝑉𝑓,𝐽
𝑚, where 𝐽 is a 

WOT-closed left ideal of the Hardy algebra 𝐹∞(𝐷𝑓
𝑚). We introduce the Hardy algebra 𝐹∞(𝑉𝑓,𝐽

𝑚) as 

the WOT-closed algebra generated by 𝑆𝑖,𝑗 and the identity. 
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Theorem (4.2.16) [244]: Let 𝐽 be a WOT-closed left ideal of the Hardy algebra 𝐹∞(𝐷𝑓
𝑚) such that 

1 ∈ 𝑁𝐽. Then Φ: 𝐹∞(𝑉𝑓,𝐽
𝑚) → ℂ is a 𝑤∗-continuous and multiplicative linear functional if and only if 

there exists 𝜆 ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ) such that 

Φ(𝐴) = 〈𝐴(1), 𝑢𝜆〉 , 𝐴 ∈ 𝐹∞(𝑉𝑓,𝐽
𝑚), 

where 𝑢𝜆: =
1

Δ𝑓,𝜆
𝑚 (1)1/2

Γ𝜆 and Γ𝜆 is given by Theorem (4.2.15). Moreover, in this case, 𝐴∗𝑢𝜆 =

Φ(𝐴)̅̅ ̅̅ ̅̅ ̅𝑢𝜆 and 

Φ(𝐴) = 〈𝐴Γ𝜆, Γ𝜆〉, 𝐴 ∈ 𝐹∞(𝑉𝑓,𝐽
𝑚). 

Proof: For each 𝜆 ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ), let Φ𝜆: 𝐹

∞(𝑉𝑓,𝐽
𝑚) → ℂ be given by Φ𝜆(𝐴) = 〈𝐴(1), 𝑢𝜆〉. It is clear that 

Φ𝜆 is 𝑤∗-continuous. To prove that Φ𝜆 is multiplicative, let 𝜑,𝜓 ∈ 𝐹∞(𝑉𝑓,𝐽
𝑚) and let {𝑝𝜄(𝑆𝑖,𝑗)} and 

{𝑞𝜅(𝑆𝑖,𝑗)} be nets of polynomials such that 𝑝𝜄(𝑆𝑖,𝑗) → 𝜑 and 𝑞𝜅(𝑆𝑖,𝑗) → 𝜓 in the weak operator 

topology. 

Note that, due to Theorem (4.2.15), we have 𝑝𝜄(𝜆) = 〈𝑝𝜄(𝑊𝑖,𝑗)1, 𝑢𝜆〉 = 〈𝑝𝜄(𝑆𝑖,𝑗)1, 𝑢𝜆〉 and, 

consequently, lim 𝜄 𝑝𝜄(𝜆) = 〈𝜑(1), 𝑢𝜆〉. Similarly, we obtain lim𝜅 𝑞𝜅(𝜆) = 〈𝜓(1), 𝑢𝜆〉. Hence, it is 

easy to see that 

Φ𝜆(𝜑𝜓) = 〈𝜓𝜓(1), 𝑢𝜆〉 = lim𝜅〈𝑞𝜅(1), 𝜑
∗(𝑢𝜆)〉 

= lim
𝜅
lim
𝜄
〈𝑝𝜄(𝑆𝑖,𝑗)𝑞𝜅(𝑆𝑖,𝑗)(1), 𝑢𝜆〉 = lim

𝜅
lim
𝜄
𝑝𝜄(𝜆)𝑞𝜅(𝜆) 

= 〈𝜑(1), 𝑢𝜆〉 lim
𝜅
𝑞𝜅(𝜆) = 〈𝜑(1), 𝑢𝜆〉 〈𝜓(1), 𝑢𝜆〉 = Φ𝜆(𝜑)Φ𝜆(𝜓). 

Note that, due to Theorem (4.2.15), we have 

𝑝𝜄(𝑆𝑖,𝑗)
∗𝑢𝜆 = 𝑝𝜄(𝜆)̅̅ ̅̅ ̅̅ ̅𝑢𝜆 = 〈𝑝𝜄(𝑆𝑖,𝑗)1, 𝑢𝜆〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑢𝜆. 

Since 𝑝𝜄(𝑆𝑖,𝑗) → 𝜑 in the weak operator topology, we deduce that 𝜑∗𝑢𝜆 = 〈𝜑(1), 𝑢𝜆〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑢𝜆. Hence, we 

deduce that 

〈𝜑Γ𝜆, Γ𝜆〉 = Δ𝑓,𝜆
𝑚 (1)〈𝑢𝜆, 𝜑

∗𝑢𝜆〉 = 𝜑(𝜆) = Φ𝜆(𝜑). 

Now, assume that Φ: 𝐹∞(𝑉𝑓,𝐽
𝑚) → ℂ is a 𝑤∗-continuous and multiplicative linear functional and let 

𝜒:= ker Φ. Then 𝜒 is a 𝑤∗-closed two-sided ideal of 𝐹∞(𝑉𝑓,𝐽
𝑚) of codimension one. We claim that 

𝑀𝜒: = 𝑋𝑁𝐽̅̅ ̅̅ ̅ is a subspace in 𝑁𝐽 of codimension one and 𝑀𝜒 + ℂ1 = 𝑁𝐽 . By contradiction, assume 

that there is a vector 𝑦 ∈ 𝑁𝐽 which is perpendicular to 𝑀𝑋 + ℂ1 and ‖𝑦‖ = 1. Since 

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑝(𝑊𝑖,𝑗)(1): 𝑝 ∈ ℂ[𝑍𝑖,𝑗]} = ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) 

and taking the projection onto 𝑁𝐽 , we deduce that 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑝(𝑆𝑖,𝑗)(1): 𝑝 ∈ ℂ[𝑍𝑖,𝑗]} = 𝑁𝐽. 

Consequently, we can choose a polynomial 𝑝(𝑆𝑖,𝑗) ∈ 𝐹
∞(𝑉𝑓,𝐽

𝑚) such that ‖𝑝(𝑆𝑖,𝑗)(1) − 𝑦‖ < 1. On 

the other hand, since 𝑝(𝑆𝑖,𝑗) − Φ(𝑝(𝑆𝑖,𝑗))𝐼𝑁𝐽 is in 𝑋 = ker Φ and 1 ∈ 𝑁𝐽, we have 𝑝(𝑆𝑖,𝑗)(1) −

Φ(𝑝(𝑆𝑖,𝑗)) ∈ 𝑀𝑋  . Taking into account that 𝑦 is perpendicular to 𝑀𝑋 + ℂ1, we have 

‖𝑦‖ = 〈𝑦 − Φ(𝑝(𝑆𝑖,𝑗)), 𝑦〉 

≤ |〈𝑦 − 𝑝(𝑆𝑖,𝑗)(1), 𝑦〉| + |〈𝑝(𝑆𝑖,𝑗)(1) − Φ(𝑝(𝑆𝑖,𝑗)), 𝑦〉| 

= |〈𝑦 − 𝑝(𝑆𝑖,𝑗)(1), 𝑦〉| ≤ ‖𝑦 − 𝑝(𝑆𝑖,𝑗)(1)‖‖𝑦‖ < 1, 

which contradicts the fact that ‖𝑦‖ = 1 and proves our assertion. Therefore, 𝑀𝑋 ⊂ 𝑁𝐽 has 

codimension one and it is invariant under each operator 𝑆𝑖,𝑗 for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. 

According to Theorem (4.2.15), there exists 𝜆 ∈ 𝑉𝑓,𝐽,>
𝑚 (ℂ) such that 𝑀𝑋 = {𝑢𝜆}

⊥. As shown in the 

first part of the proof, Φ𝜆 is a 𝑤∗-continuous and multiplicative linear functional. Note that, if 𝐴 ∈
𝑋:= ker Φ, then 𝐴(1) ∈ 𝑀𝑋 = {𝑢𝜆}

⊥, which implies 〈𝐴(1), 𝑢𝜆〉 = 0. Hence, 𝐴 ∈ ker Φ𝜆 and, 

therefore, ker Φ ⊂ ker Φ𝜆. Since ker Φ and ker Φ𝜆 are 𝑤∗-closed two sided maximal ideals of 

𝐹∞(𝑉𝑓,𝐽
𝑚) of codimension one, we must have ker Φ = ker Φ𝜆. Therefore, Φ = Φ𝜆. This completes 

the proof.  

We make a few remarks concerning the particular case when 𝐽 = {0}. First, we note that if 𝜆 =
(𝜆1, . . . , 𝜆𝑛) ∈ 𝐷𝑓,>

𝑚 (ℂ) and 𝜑(𝑊𝑖,𝑗) = ∑ 𝑐𝛽1,...,𝛽𝑘𝑊1,𝛽1 · · · 𝑊𝑘,𝛽𝑘𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+  is in the Hardy 
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algebra 𝐹∞(𝐷𝑓
𝑚), then ∑ |𝑐𝛽1,...,𝛽𝑘||𝜆1,𝛽1| · · · |𝜆𝑘,𝛽𝑘|𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+ <∞. Indeed, since 𝜑(𝑊𝑖,𝑗)(1) ∈

⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖), we have 

𝐾1: = ∑ |𝑐𝛽1,...,𝛽𝑘|
2 1

𝑏1,𝛽1
(𝑚1) · · ·  𝑏𝑘,𝛽𝑘

(𝑚1)

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+

<∞. 

On the other hand, since 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ 𝐷𝑓,>
𝑚 (ℂ), we deduce that 

𝐾2: = ∑ |𝜆1,𝛽1|
2 · · · |𝜆𝑘,𝛽𝑘|

2𝑏1,𝛽1
(𝑚1) · · ·  𝑏𝑘,𝛽𝑘

(𝑚1)

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+

<∞. 

Applying Cauchy’s inequality, we obtain 

∑ |𝑐𝛽1,...,𝛽𝑘||𝜆1,𝛽1| · · · |𝜆𝑘,𝛽𝑘|

𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+

≤ (𝐾1𝐾2)
1/2. 

We note that the 𝑤∗-continuous and multiplicative map Φ𝜆: 𝐹
∞(𝐷𝑓

𝑚) → ℂ satisfies the equation 

Φ𝜆(𝜑(𝑊𝑖,𝑗)):= 𝜑(𝜆). Indeed, in this case we have 

〈𝜑(𝑊𝑖,𝑗)1, 𝑢𝜆〉 = 〈 ∑ 𝑐𝛽1,...,𝛽𝑘
1

√𝑏1,𝛽1
(𝑚1)

· · ·
1

√𝑏𝑘,𝛽𝑘
(𝑚1)

𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 , 𝑢𝜆
𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+

〉 

= ∑ 𝑐𝛽1,...,𝛽𝑘𝜆1,𝛽1 · · ·  𝜆𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+

= 𝜑(𝜆). 

We recall that the joint right spectrum 𝜎𝑟(𝑇1, . . . , 𝑇𝑛) of an 𝑛-tuple (𝑇1, . . . , 𝑇𝑛) of operators in 𝐵(𝐻) 
is the set of all 𝑛-tuples (𝜇1, . . . , 𝜇𝑛) of complex numbers such that the right ideal of 𝐵(𝐻) 
generated by the operators 𝜇1𝐼 − 𝑇1, . . . , 𝜇𝑛𝐼 − 𝑇𝑛 does not contain the identity operator. We recall 

[250] that (𝜇1, . . . , 𝜇𝑛) ∉ 𝜎𝑟(𝑇1, . . . , 𝑇𝑛) if and only if there exists 𝛿 > 0 such that ∑ (𝜇𝑖𝐼 −
𝑛
𝑖=1

 𝑇𝑖)(𝜇�̅�𝐼 − 𝑇𝑖
∗) ≥ 𝛿𝐼. 

Proposition (4.2.17) [244]: Let 𝐽 be a WOT-closed left ideal of the Hardy space 𝐹∞(𝐷𝑓
𝑚) and let 

𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚. If the set 

𝑉𝑓,𝐽,>
𝑚 (ℂ) is dense in 𝑉𝑓,𝐽

𝑚(ℂ), then the right joint spectrum 𝜎𝑟(𝑆) coincide with 𝑉𝑓,𝐽
𝑚(ℂ). 

In particular, if 𝒬 ⊂ ℂ[𝑍𝑖,𝑗] is a left ideal generated by noncommutative homogenous polynomials, 

then the right joint spectrum 𝜎𝑟(𝑆) = 𝑉𝑓,𝒬
𝑚 (ℂ). 

Proof: Let 𝜆 = {𝜆𝑖,𝑗} ∈ 𝜎𝑟(𝑆). Since the left ideal of 𝐵(𝑁𝒬) generated by the operators 𝑆𝑖,𝑗
∗ − �̅�𝑖,𝑗𝐼 

does not contain the identity, there is a pure state 𝜑 on 𝐵(𝑁𝑄) such that 𝜑(𝑋(𝑆𝑖,𝑗
∗ − �̅�𝑖,𝑗𝐼)) = 0 for 

any 𝑋 ∈ 𝐵(𝑁𝑄) and 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. In particular, we have 𝜑(𝑆𝑖,𝑗) = 𝜆𝑖,𝑗 = 𝜑(𝑆𝑖,𝑗
∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and 

𝜑(𝑆(𝛼)𝑆(𝛼)
∗ ) = �̅�(𝛼)𝜑(𝑆(𝛼)) = |𝜆(𝛼)|

2
, (𝛼) = (𝛼1, . . . , 𝛼𝑘) ∈ 𝔽𝑛1

+ × · · · ×  𝔽𝑛𝑘
+ . 

Hence, we deduce that 

∑ 𝑎𝑖,𝛼|𝜆𝑖,𝛼|
2

𝛼∈𝔽𝑛𝑖
+ ,1≤|𝛼|≤𝑚

= 𝜑( ∑ 𝑎𝑖,𝛼𝑆𝑖,𝛼𝑆𝑖,𝛼
∗

𝛼∈𝔽𝑛𝑖
+ ,1≤|𝛼|≤𝑚

) ≤ ‖ ∑ 𝑎𝑖,𝛼𝑆𝑖,𝛼𝑆𝑖,𝛼
∗

𝛼∈𝔽𝑛𝑖
+ ,1≤|𝛼|≤𝑚

‖ ≤ 1 

for any 𝑛 ∈ ℕ. Therefore, ∑ 𝑎𝑖,𝛼|𝜆𝑖,𝛼|
2

𝛼∈𝔽𝑛𝑖
+ ≤ 1, which proves that (𝜆𝑖,1, . . . , 𝜆𝑖,𝑛𝑖) ∈ 𝐷𝑓𝑖

1 (ℂ). Hence, 

we deduce that 𝜆:= {𝜆𝑖,𝑗} ∈ 𝐷𝑓
𝑚(ℂ). On the other hand, if 𝑔 ∈ 𝑄, then 𝑔(𝑆𝑖,𝑗) = 0 and, 

consequently, we obtain 𝑔(𝜆𝑖,𝑗) = 𝜑(𝑔(𝑆𝑖,𝑗)) = 0. Therefore, 𝜆 ∈ 𝑉𝑓,𝑄
𝑚 (ℂ). Now, let 𝜇:= {𝜇𝑖,𝑗} ∈

𝑉𝑓,𝑄
𝑚 (ℂ) and assume that there is 𝛿 > 0 such that 

∑∑‖(𝑆𝑖,𝑗 − 𝜇𝑖,𝑗𝐼)
∗ℎ‖

2

𝑛𝑖

𝑗=1

𝑛

𝑖=1

≥ 𝛿‖ℎ‖2      𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ ∈ 𝑁𝑄 . 

Take 
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ℎ = Γ𝜆: = Δ𝑓,𝜆
𝑚 (1)1/2 ∑  �̅�1,𝛽1 ·· · �̅�𝑘,𝛽𝑘√𝑏1,𝛽1

(𝑚1) · · · √𝑏
𝑘,𝛽𝑘

(𝑚𝑘)𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘

𝛽𝑖∈𝔽𝑛𝑖
+ ,𝑖=1,…,𝑘

 

for 𝜆 ∈ 𝑉𝑓,𝑄,>
𝑚 (ℂ) in the inequality above. Due to Theorem (4.2.15), we have 𝑆𝑖,𝑗

∗ Γ𝜆 = �̅�𝑖,𝑗Γ𝜆 for any 

𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Consequently, we deduce that 

∑∑|𝜆𝑖,𝑗 − 𝜇𝑖,𝑗|
2

𝑛𝑖

𝑗=1

𝑘

𝑖=1

≥ 𝛿    𝑓𝑜𝑟 𝑎𝑙𝑙   𝜆 = {𝜆𝑖,𝑗} ∈ 𝑉𝑓,𝑄,>
𝑚 (ℂ). 

Since the set 𝑉𝑓,𝐽,>
𝑚 (ℂ) is dense in 𝑉𝑓,𝐽

𝑚(ℂ), this leads to a contradiction. 

Note that if 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is a left ideal generated by noncommutative homogenous polynomials, then 

{𝑟𝜇𝑖,𝑗} ∈ 𝑉𝑓,𝑄,>
𝑚 (ℂ) for any {𝜇𝑖,𝑗} ∈ 𝑉𝑓,𝑄

𝑚 (ℂ) and 𝑟 ∈ [0, 1). Consequently, 𝑉𝑓,𝑄,>
𝑚 (ℂ) is dense in 

𝑉𝑓,𝑄,>
𝑚 (ℂ). 

The proof is complete.  

Let 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] be a left ideal generated by noncommutative homogenous polynomials. We recall 

that the variety algebra 𝐴(𝑉𝑓,𝑄
𝑚 ) is the norm closed algebra generated by the 𝑆𝑖,𝑗 and the identity, and 

the Hardy algebra 𝐹∞(𝑉𝑓,𝑄
𝑚 ) is the WOT-closed version. We identify the characters of the 

noncommutative variety algebra 𝐴(𝑉𝑓,𝑄
𝑚 ). Due to Proposition (4.2.5), if 𝜆 ∈ 𝑉𝑓,𝑄

𝑚 (ℂ), then the 

evaluation functional 

Φ𝜆: 𝐴(𝑉𝑓,𝑄
𝑚 ) → ℂ, Φ𝜆(𝑝(𝑆𝑖.𝑗)) = 𝑝(𝜆𝑖,𝑗), 

is a character of 𝐴(𝑉𝑓,𝑄
𝑚 ). 

Theorem (4.2.18) [244]: Let 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] be a left ideal generated by noncommutative homogenous 

polynomials and let 𝑀𝐴(𝑉𝑓,𝑄
𝑚 ) be the set of all characters of 𝐴(𝑉𝑓,𝑄

𝑚 ). Then the map 

Ψ: 𝑉𝑓,𝑄
𝑚 (ℂ) → 𝑀

𝐴(𝑉𝑓,𝑄
𝑚 )
, Ψ(𝜆) = Φ𝜆, 

is a homeomorphism of 𝑉𝑓,𝑄
𝑚 (ℂ) onto 𝑀𝐴(𝑉𝑓,𝑄

𝑚 ). 

Proof: The injectivity of Ψ is clear. To prove that Ψ is surjective assume that Φ:𝐴(𝑉𝑓,𝑄
𝑚 ) → ℂ is a 

character. Setting 𝜆𝑖,𝑗: =  Φ(𝑆𝑖,𝑗) for 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, we deduce that Φ(𝑝(𝑆𝑖,𝑗)) =

𝑝(𝜆𝑖,𝑗) for any polynomial 𝑝(𝑆𝑖,𝑗) in 𝐴(𝑉𝑓,𝑄
𝑚 ). Since Φ is a character, it is completely contractive. 

Consequently, (𝜆𝑖,1, . . . , 𝜆𝑖,𝑛𝑖) ∈ 𝐷𝑓𝑖
1 (ℂ) for each 𝑖 ∈ {1, . . . , 𝑘}, which implies (𝜆𝑖,𝑗𝐼ℂ) ∈ 𝐷𝑓

𝑚(ℂ). On 

the other hand, if 𝑔 ∈ 𝑄, then 𝑔(𝑆𝑖,𝑗) = 0 and, consequently, 𝑔(𝜆𝑖,𝑗) = Φ(𝑔(𝑆𝑖,𝑗)) = 0. Therefore, 

{𝜆𝑖,𝑗} ∈ 𝑉𝑓,𝑄
𝑚 (ℂ). Since 

Φ(𝑝(𝑆𝑖,𝑗)) = 𝑝(𝜆𝑖,𝑗) = Φ𝜆(𝑝(𝑆𝑖,𝑗)) 

for any polynomial 𝑝(𝑆𝑖,𝑗) in 𝐴(𝑉𝑓,𝑄
𝑚 ), we must have Φ = Φ𝜆. To prove that Ψ is a 

homeomorphism, let 𝜆𝛼: = (𝜆𝑖,𝑗
𝛼 ), 𝛼 ∈ Λ, be a net in 𝑉𝑓,𝑄

𝑚 (ℂ) such that lim
𝛼∈𝛬

𝜆𝛼 = 𝜆:= (𝜆𝑖,𝑗). It is 

clear that 

lim
𝛼∈𝛬

Φ𝜆𝛼(𝑝(𝑆𝑖,𝑗)) = lim 
𝛼∈𝛬

𝑝(𝜆𝛼) =  𝑝(𝜆) = Φ𝜆(𝑝(𝑆𝑖,𝑗)). 

Since the set of all polynomials 𝑝(𝑆𝑖,𝑗) is dense in 𝐴(𝑉𝑓,𝑄
𝑚 ) and sup 𝛼∈𝛬‖Φ𝜆𝛼‖ ≤ 1, it follows that Ψ 

is continuous. On the other hand, since both 𝑉𝑓,𝑄
𝑚 (ℂ) and 𝑀𝐴(𝑉𝑓,𝑄

𝑚 ) are compact Hausdorff spaces and 

Ψ is a bijection, the result follows. The proof is complete.  

Let 𝑊 = {𝑊𝑖,𝑗} be the universal model associated with the abstract noncommutative polydomain 

𝐷𝑓
𝑚 and let 𝑄𝑐 be the left ideal generated by all polynomials of the form 

𝑍𝑖,𝑗1𝑍𝑖,𝑗2 − 𝑍𝑖,𝑗2𝑍𝑖,𝑗1 , 𝑖 ∈ {1, . . . , 𝑘} 𝑎𝑛𝑑 𝑗1, 𝑗2 ∈ {1, . . . , 𝑛𝑖}.  

The universal model associated with the abstract variety 𝑉𝑓,𝑄𝑐
𝑚  is the tuple 𝐿 = (𝐿1, . . . , 𝐿𝑘) with 

𝐿𝑖: = (𝐿𝑖,1, . . . , 𝐿𝑖,𝑛𝑖), where the operators 𝐿𝑖,𝑗 are defined on 𝑁𝑄𝑐  by setting 

𝐿𝑖,𝑗: = 𝑃𝑁𝑄𝑐𝑊𝑖,𝑗|𝑁𝑄𝑐 . 

We recall that 𝑁𝑄𝑐: = (⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖)) ⊖𝑀𝑄, where the subspace 𝑀𝑄𝑐  of ⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖) is defined 

by setting 
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𝑀𝑄𝑐 : = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑊(𝛼)𝑞(𝑊𝑖,𝑗)𝑊(𝛽)(1): (𝛼), (𝛽) ∈ 𝔽𝑛𝑖
+ × · · · × 𝔽𝑛𝑘

+ , 𝑞 ∈ 𝑄𝑐}. 

In what follows, we will identify the space 𝑁𝑄𝑐 with a reproducing kernel Hilbert space of 

holomorphic functions in several complex variables and the Hardy algebra 𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ) is identified 

with the corresponding multiplier algebra. 

Let 𝑓:= (𝑓1, . . . , 𝑓𝑘) be a 𝑘-tuple of positive regular free holomorphic functions with 𝑓𝑖: =
∑ 𝑎𝑖,𝛼𝑍𝛼𝛼∈𝔽𝑛𝑖

+ . 

For each 𝜆𝑖 = (𝜆𝑖,1, . . . , 𝜆𝑖,𝑛𝑖) ∈ ℂ
𝑛𝑖 and each 𝑛𝑖-tuple 𝑘𝑖: = (𝑘𝑖,1, . . . , 𝑘𝑖,𝑛𝑖) ∈ ℕ0

𝑛𝑖, where ℕ0: =

{0, 1, . . . }, let 𝜆𝑖
𝑘𝑖: = 𝜆

𝑖,1

𝑘𝑖,1 · · ·  𝜆𝑖,𝑛
𝑘𝑖,𝑛𝑖. If 𝑘𝑖 ∈ ℕ0

𝑛𝑖, we denote 

Λ𝑘𝑖: = {𝛼𝑖 ∈ 𝔽𝑛𝑖
+ : 𝜆𝑖,𝛼𝑖 = 𝜆𝑖

𝑘𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆𝑖 ∈ ℂ
𝑛𝑖} 

and define the vector 

𝑤𝑖
𝑘𝑖: =

1

𝛾𝑘𝑖
(𝑚𝑖)

∑ √𝑏𝑖,𝛼𝑖
(𝑚𝑖) 𝑒𝛼𝑖

𝑖

𝛼𝑖∈𝛬𝑘𝑖

∈  𝐹2(𝐻𝑛𝑖), 𝑤ℎ𝑒𝑟𝑒 𝛾𝑘𝑖
(𝑚𝑖): = ∑ 𝑏𝑖,𝛼𝑖

(𝑚𝑖)

𝛼𝑖∈𝛬𝑘𝑖

 

and the coefficients 𝑏𝑖,𝛼𝑖
(𝑚𝑖), 𝛼𝑖 ∈ 𝔽𝑛𝑖

+ , are defined by relation (47). It is easy to see that the set {𝑤1
𝑘1 ⊗

· · · ⊗ 𝑤𝑘
𝑘𝑘: 𝑘𝑖 ∈ ℕ0

𝑛𝑖 , 𝑖 ∈ {1, . . . , 𝑘}} consists of orthogonal vectors in ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) and 

‖𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘‖ =
1

√𝛾𝑘1
(𝑚1)

· · ·
1

√𝛾𝑘𝑘
(𝑚𝑘)

. 

Let 𝐹𝑠
2(𝐷𝑓

𝑚) be the closed span of these vectors. The Hilbert space 𝐹𝑠
2(𝐷𝑓

𝑚) ⊂ ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) is 

called the symmetric tensor product Fock space associated with the abstract noncommutative 

domain 𝐷𝑓
𝑚. 

For 𝑧 = (𝑧1, . . . , 𝑧𝑛) and 𝑤:= (𝑤1, . . . , 𝑤𝑛) in ℂ𝑛, we use the notation 𝑧�̅�: = (𝑧1�̅�1, . . . , 𝑧𝑛�̅�𝑛). 
Theorem (4.2.19) [244]: Let 𝑊 = {𝑊𝑖,𝑗} be the universal model associated with the 

noncommutative polydomain 𝐷𝑓
𝑚, and let 𝑄𝑐 be the left ideal generated by all polynomials of the 

form 

𝑍𝑖,𝑗1𝑍1,𝑗2 − 𝑍𝑖,𝑗2𝑍𝑖,𝑗1 , 𝑖 ∈ {1, . . . , 𝑘}𝑎𝑛𝑑 𝑗1, 𝑗2 ∈ {1, . . . , 𝑛𝑖}. 

Then the following statements hold. 

(i) 𝐹𝑠
2(𝐷𝑓

𝑚) = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{Γ𝜆 ∶ 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ)} = 𝑁𝑄𝑐: = (⊗𝑖=1

𝑘 𝐹2(𝐻𝑛𝑖)) ⊖𝑀𝑄𝑐. 

(ii) The space 𝐹𝑠
2(𝐷𝑓

𝑚) can be identified with the Hilbert space 𝐻2(𝐷𝑓,>
𝑚 (ℂ)) of all functions 

𝜑:𝐷𝑓,>
𝑚 (ℂ) → ℂ which admit a power series representation 

𝜑(𝜆𝑖,𝑗) = ∑ 𝑐𝑘1,…,𝑘𝑘𝜆1
𝑘1 · · ·  𝜆𝑘

𝑘𝑘

𝑘1∈ℕ0
𝑛1  ,...,𝑘𝑘∈ℕ0

𝑛𝑘

 

with 

‖𝜑‖2
2 = ∑ |𝑐𝑘1,…,𝑘𝑘|

2  
1

𝛾𝑘1
(𝑚1)

· · ·
1

𝛾𝑘1
(𝑚1)

𝑘1∈ℕ0
𝑛1  ,...,𝑘𝑘∈ℕ0

𝑛𝑘

<∞. 

More precisely, every element 𝜑 = ∑ 𝑐𝑘1,…,𝑘𝑘𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘
𝑘1∈ℕ0

𝑛1 ,...,𝑘𝑘∈ℕ0
𝑛𝑘  in 𝐹𝑠

2(𝐷𝑓
𝑚) has a 

functional representation on 𝐷𝑓,>
𝑚 (ℂ) given by 

𝜑(𝜆):= 〈𝜑, 𝑢𝜆〉 = ∑ 𝑐𝑘1,…,𝑘𝑘𝜆1
𝑘1 · · ·  𝜆𝑘

𝑘𝑘

𝑘1∈ℕ0
𝑛1  ,...,𝑘𝑘∈ℕ0

𝑛𝑘

 , 𝜆 = (𝜆1, . . . , 𝜆𝑘) ∈ 𝐷𝑓,>
𝑚 (ℂ), 

and 

|𝜑(𝜆)| ≤
‖𝜑‖2

√Δ𝑓,𝜆
𝑚 (1)

, 𝜆 = (𝜆1, . . . , 𝜆𝑘) ∈ 𝐷𝑓,>
𝑚 (ℂ),  

where Δ𝑓,𝜆
𝑚 (1) = (1 − Φ𝑓1,𝜆1(1))

𝑚1 · · ·  (1 − Φ𝑓𝑘,𝜆𝑘(1))
𝑚𝑘  and 𝑢𝜆: =

1

Δ𝑓,𝜆
𝑚 (1)1/2

Γ𝜆. 
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(iii) The mapping 𝜅𝑓
𝑐: 𝐷𝑓,>

𝑚 (ℂ) × 𝐷𝑓,>
𝑚 (ℂ) → ℂ defined by 

𝜅𝑓
𝑐(𝜇, 𝜆): =

1

∏ (1 − 𝑓𝑖(𝜇𝑖�̅�𝑖))
𝑚𝑖

𝑘
𝑖=1

 , 

where 𝜆 = (𝜆1, . . . , 𝜆𝑘) and 𝜇 = (𝜇1, . . . , 𝜇𝑘) are in 𝐷𝑓,>
𝑚 (ℂ), is positive definite and 

𝜅𝑓
𝑐(𝜇, 𝜆) = 〈𝑢𝜆, 𝑢𝜇〉. 

Proof: We prove that 

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{Γ𝜆: 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ)} ⊆ 𝐹𝑠

2(𝐷𝑓
𝑚) ⊆ 𝑁𝑄𝑐 . 

Note that the first inclusion is due to the fact that 

 𝑢𝜆 = ∑ 𝜆1
𝑘1 · · ·  𝜆𝑘

𝑘𝑘𝛾𝑘1
(𝑚1)⋯𝛾𝑘𝑘

(𝑚𝑘)𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘
𝑘1∈ℕ0

𝑛1 ,...,𝑘𝑘∈ℕ0
𝑛𝑘          (58) 

for 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ 𝐷𝑓,>
𝑚 (ℂ). To prove the second inclusion, note that, due to the definition of the 

universal model 𝑊 = {𝑊𝑖,𝑗} , we have 

〈𝑤𝑖
𝑘𝑖 ,𝑊𝑖,𝛾𝑖

(𝑊𝑖,𝑗1𝑊𝑖,𝑗2 −𝑊𝑖,𝑗2𝑊𝑖,𝑗1)𝑊𝑖,𝛽𝑖
(1)〉 

=
1

𝛾𝑘𝑖
(𝑚𝑖)

〈 ∑ √𝑏𝑖,𝛼𝑖
(𝑚𝑖) 𝑒𝛼𝑖

𝑖

𝛼𝑖∈𝛬𝑘𝑖

,
1

√𝑏𝑖,𝛾𝑖𝑔𝑗1𝑔𝑗2𝛽𝑖
(𝑚𝑖)

𝑒𝛾1𝑔𝑗1𝑔𝑗2𝛽𝑖
𝑖  −

1

√𝑏𝑖,𝛾𝑖𝑔𝑗2𝑔𝑗1𝛽𝑖
(𝑚𝑖)

𝑒𝛾𝑖𝑔𝑗2𝑔𝑗1𝛽𝑖
𝑖 〉 = 0 

for any 𝑘𝑖 ∈ ℕ0
𝑛𝑖 , 𝛾𝑖 , 𝛽𝑖 ∈ 𝔽𝑛𝑖

+ , 𝑖 ∈ {1, . . . , 𝑘}. This implies that 𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘 ∈ 𝑁𝑄𝑐  and proves 

our assertion. To complete the proof of part (i), it is enough to show that 
𝑁𝑄𝑐 ⊆ 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{Γ𝜆 ∶ 𝜆 ∈ 𝐷𝑓,>

𝑚 (ℂ)}. 

To this end, assume that there is a vector 𝑥:= ∑ 𝑐𝛽1,...,𝛽𝑘𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 ,𝛽1∈𝔽𝑛1
+  ,...,𝛽𝑘∈𝔽𝑛𝑘

+ ∈

𝑁𝑄𝑐  and 𝑥 ⊥ 𝑢𝜆 for all 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). Then, using relation (58), we obtain 

〈 ∑ 𝑐𝛽1,...,𝛽𝑘𝑒𝛽1
1 ⊗ · · · ⊗ 𝑒𝛽𝑘

𝑘 , 𝑢𝜆
𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+

〉 

= ∑ ( ∑ 𝑐𝛽1,…,𝛽𝑘√𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)

𝛽𝑖∈𝛬𝑘𝑖
,𝑖∈{1,…,𝑘}

)𝜆1
𝑘1 · · ·  𝜆𝑘

𝑘𝑘

𝑘1∈ℕ0
𝑛1 ,...,𝑘𝑘∈ℕ0

𝑛𝑘

=  0 

for any 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). Since 𝐷𝑓,>

𝑚 (ℂ) contains an open polydisc in ℂ𝑛1+⋯+𝑛𝑘, we deduce that 

 ∑ 𝑐𝛽1,…,𝛽𝑘√𝑏1,𝛽1
(𝑚1) · · · √𝑏

𝑘,𝛽𝑘

(𝑚𝑘)
𝛽𝑖∈𝛬𝑘𝑖 ,𝑖∈{1,…,𝑘}

= 0 for all 𝑘𝑖 ∈ ℕ0
𝑛𝑖 , 𝑖 ∈ {1, . . . , 𝑘}(59). 

For each 𝛾𝑖 ∈ 𝔽𝑛𝑖
+  and 𝑖 ∈ {1, . . . , 𝑘}, set Ω(𝛾1, . . . , 𝛾𝑘): =

𝑐𝛾1,…,𝛾𝑘

√𝑏
1,𝛽1

(𝑚1)· · ·√𝑏
𝑘,𝛽𝑘

(𝑚𝑘)

. Fix 𝛽𝑖
0 ∈ Λ𝑘𝑖 and let 𝛽𝑖 ∈

Λ𝑘𝑖 be such that 𝛽𝑖 is obtained from 𝛽𝑖
0 by transposing just two generators. We can assume that 

𝛽𝑖
0 = 𝛾𝑖𝑔𝑗1

𝑖 𝑔𝑗2
𝑖 𝜔𝑖  and 𝛽𝑖 = 𝛾𝑖𝑔𝑗2

𝑖 𝑔𝑗1
𝑖 𝜔𝑖 for some 𝛾𝑖 , 𝜔𝑖 ∈ 𝔽𝑛𝑖

+  and 𝑗1 ≠ 𝑗2, 𝑗1, 𝑗2 ∈ {1, . . . , 𝑛𝑖}. Since 

𝑥 ∈ 𝑁𝑄𝑐 = ⊗𝑖=1
𝑘 𝐹2(𝐻𝑛𝑖) ⊖𝑀𝑄𝑐 , we must have 

𝑥,⊗𝑖=1
𝑘 [𝑊𝑖,𝛾𝑖

(𝑊𝑖,𝑗1𝑊𝑖,𝑗2 −𝑊𝑖,𝑗2𝑊𝑖,𝑗1)𝑊𝑖,𝜔𝑖
(1)] = 0, 

which implies Ω(𝛽1
0, . . . , 𝛽𝑘

0) = Ω(𝛽1, . . . , 𝛽𝑘). 
Since any element 𝛾𝑖 ∈ Λ𝑘𝑖  can be obtained from 𝛽𝑖

0 by successive transpositions, repeating the 

above argument, we deduce that Ω(𝛽1
0, . . . , 𝛽𝑘

0) = Ω(𝛾1, . . . , 𝛾𝑘). Setting 𝑡: = (𝛽1
0 , . . . , 𝛽𝑘

0), we have 

𝑐𝛾1,…,𝛾𝑘 =  𝑡√𝑏1,𝛾1
(𝑚1) · · · √𝑏𝑘,𝛾𝑘

(𝑚𝑘), 𝛾𝑖 ∈ Λ𝑘𝑖  , and relation (59) implies 𝑡 = 0. Therefore, 𝑐𝛾1,…,𝛾𝑘 = 0 

for any 𝛾𝑖 ∈ 𝛬𝑘𝑖  and 𝑘𝑖 ∈ ℕ0
𝑛𝑖, which implies 𝑥 = 0. Therefore, we have 𝑁𝑄𝑐 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{Γ𝜆: 𝜆 ∈

𝐷𝑓,>
𝑚 (ℂ)}.  

Now, we prove part (𝑖𝑖) of the theorem. Any element 𝜑 ∈ 𝐹𝑠
2(𝐷𝑓

𝑚) has a unique representation 𝜑 =

∑ 𝑐𝑘1,…,𝑘𝑘𝑘1∈𝑁0
𝑛1 ,…,𝑘𝑘∈𝑁0

𝑛𝑘 𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘 with 
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‖𝜑‖2
2 = ∑ |𝑐𝑘1,…,𝑘𝑘|

2 1

𝛾𝑘1
(𝑚1)

…
1

𝛾𝑘𝑘
(𝑚𝑘)

𝑘1∈𝑁0
𝑛1 ,…,𝑘𝑘∈𝑁0

𝑛𝑘

< ∞. 

It is easy to see that 

〈𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘 , 𝑢𝜆〉 = 𝜆1
𝑘1 …𝜆𝑘

𝑘𝑘 

for any 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ) and𝑘𝑖 ∈ ℕ0

𝑛𝑖 , 𝑖 ∈ {1, … , 𝑘}. Consequently,𝜑 has a functional representation on 

𝐷𝑓,>
𝑚 (ℂ) given by 

𝜑(𝜆) ≔ (𝜑, 𝑢𝜆) = ∑ 𝑐𝑘1,…,𝑘𝑘𝜆1
𝑘1 …𝜆𝑘

𝑘𝑘 ,

𝑘1∈𝑁0
𝑛1,…,𝑘𝑘∈𝑁0

𝑛𝑘

     𝜆 = (𝜆1, … , 𝜆𝑛) ∈ 𝐷𝑓,>
𝑚 (ℂ), 

and 

|𝜑(𝜆)| ≤
‖𝜑‖2

√∆𝑓,𝜆
𝑚 (1)

. 

This shows that 𝐹𝑠
2(𝐷𝑓

𝑚) can be identified with 𝐻2(𝐷𝑓,>
𝑚 (ℂ)). Now, we prove part (iii). Note that if 

(𝜆1, … , 𝜆𝑛) and 𝜇 = (𝜇1, … , 𝜇𝑛) are in 𝐷𝑓,>
𝑚 (ℂ) then 

| ∑ 𝛼𝑖,𝛼𝑖𝜆𝑖,𝛼𝑖�̅�𝑖,𝛼𝑖
𝛼∈𝐹𝑛𝑖

+

| ≤ ( ∑ 𝛼𝑖,𝛼𝑖|𝜆𝑖,𝛼𝑖|
2

𝛼∈𝐹𝑛𝑖
+

)

1
2

( ∑ 𝛼𝑖,𝛼𝑖|𝜇𝑖,𝛼𝑖|
2

𝛼∈𝐹𝑛𝑖
+

)

1
2

< 1. 

Using relation (47), we deduce that 

𝑘𝑓
𝑐(𝜇, 𝜆) =∏(1 − 𝑓𝑖(𝜇𝑖�̅�𝑖))

−𝑚
𝑘

𝑖=1

=∏(1 − ∑ 𝛼𝑖,𝛼𝑖𝜆𝑖,𝛼𝑖�̅�𝑖,𝛼𝑖
𝛼∈𝐹𝑛𝑖

+

)

−𝑚𝑖𝑘

𝑖=1

 

= ∑ 𝑏1,𝛽1
(𝑚1) · · ·  𝑏𝑘,𝛽𝑘

(𝑚1)𝜆1,𝛽1 …𝜆𝑘,𝛽𝑘�̅�1,𝛽1 … �̅�𝑘,𝛽𝑘
𝛽1∈𝔽𝑛1

+  ,...,𝛽𝑘∈𝔽𝑛𝑘
+

 

= 〈𝑢𝜆, 𝑢𝜇〉. 

The proof is complete. 

Theorem (4.2.20) [244]: The Hardy algebra 𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ) coincides with the algebra 𝐻∞(𝐷𝑓,>

𝑚 (ℂ)) of 

all multipliers of the Hilbert space 𝐻2(𝐷𝑓,>
𝑚 (ℂ)). 

Proof: Let 𝜑(𝑊𝑖,𝑗) ∈ 𝐹𝑛
∞(𝐷𝑓

𝑚) and set 𝑀𝜑 ≔ 𝑃
𝐹𝑠
2(𝐷𝑓

𝑚)
𝜑(𝑊𝑖,𝑗)|𝐹𝑠2(𝐷𝑓

𝑚)
. According to Theorem 

(4.2.15),Proposition (4.2.17), and Theorem (4.2.19), we have 𝐹𝑠
2(𝐷𝑓

𝑚) = 𝑁𝒬𝑐 , the vector Γ𝜆 is in 

𝐹𝑠
2(𝐷𝑓

𝑚) for 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ), and 𝜑(𝑊𝑖,𝑗)

∗
𝛤𝜆 = 𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝛤𝜆. Consequently, we obtain 

[𝑀𝜑𝜓](𝜆) = 〈𝑀𝜑𝜓, 𝑢𝜆〉 = 〈𝜑(𝑊𝑖,𝑗)𝜓, 𝑢𝜆〉 

= 〈𝜓, 𝜑(𝑊𝑖,𝑗)
∗
𝑢𝜆〉 = 〈𝜓, 𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝑢𝜆〉 = 𝜑(𝜆)𝜓(𝜆) 

for any 𝜓 ∈ 𝐹𝑠
2(𝐷𝑓

𝑚) and 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). Therefore, 𝑀𝜑 is a multiplier of 𝐹𝑠

2(𝐷𝑓
𝑚). In particular, the 

operator 𝐿𝑖,𝑗 is the multiplier by the coordinate function 𝜆𝑖,𝑗.Now, we show that 𝐻∞(𝐷𝑓,>
𝑚 (ℂ))is 

included in 𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ), the weakly closed algebra generated by the operators 𝐿𝑖,𝑗 and the identity. 

Suppose that 𝑔 = ∑ 𝑐𝑘1,…,𝑘𝑘𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘
𝑘1∈ℕ0

𝑛1  ,...,𝑘𝑘∈ℕ0
𝑛𝑘  is a bounded multiplier, i.e., 𝑀𝑔 ∈

𝐵 (𝐹𝑠
2(𝐷𝑓

𝑚)). As in [253], using Cesaro means, one can find a sequence 𝑝𝑛 of polynomials in 

𝑤1
𝑘1 ⊗ · · · ⊗ 𝑤𝑘

𝑘𝑘 where 𝑘1 ∈ ℕ0
𝑛1  , . . . , 𝑘𝑘 ∈ ℕ0

𝑛𝑘 

, such that 𝑀𝑝𝑛 converges to 𝑀𝑔 in the strong operator topology and,consequently, in the 𝑊𝑂𝑇 -

topology. Since 𝑀𝑝𝑛 is a polynomial in 𝐿𝑖,𝑗 and the identity, our assertion follows. 

Conversely, assume that the operator 𝑌 ∈ 𝐵 (𝐹𝑠
2(𝐷𝑓

𝑚)) is in 𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ). Then 𝑌 leaves invariant all 

the invariant subspaces under each operator 𝐿𝑖,𝑗. Due to Theorem (4.2.15), we have 𝐿𝑖,𝑗
∗ 𝑢𝜆 = �̅�𝑖,𝑗𝑢𝜆 
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for any 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ).Therefore, the vector 𝑢𝜆 must be an eigenvector for 𝑌∗. Consequently, there is a 

function 𝜑:𝐷𝑓,>
𝑚 (ℂ) → ℂ such that 𝑌∗𝑢𝜆 = 𝜑(𝜆)̅̅ ̅̅ ̅̅ 𝑢𝜆 for any 𝜆 ∈ 𝐷𝑓,>

𝑚 (ℂ). Note that, if 𝑓 ∈ 𝐹𝑠
2(𝐷𝑓

𝑚), 

then, due to Theorem (4.2.19), 𝑌 𝑓 has the functional representation 
(𝑌𝑓)(𝜆) = 〈𝑌𝑓, 𝑢𝜆〉 = 〈𝑓, 𝑌

∗𝑢𝜆〉 = 𝜑(𝜆)𝑓(𝜆), 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). 

In particular, if 𝑓 = 1, then the the functional representation of 𝑌(1) coincide with 𝜑. 

Consequently, 𝜑 admits a power series representation on 𝐷𝑓,>
𝑚 (ℂ) and can be identified with 𝑌(1) ∈

𝐹𝑠
2(𝐷𝑓

𝑚). Moreover, the equality above shows that 𝜑𝑓 ∈ 𝐻2(𝐷𝑓,>
𝑚 (ℂ)) for any 𝑓 ∈ 𝐹𝑠

2(𝐷𝑓
𝑚). The 

proof is complete. 

We need to recall some definitions. The set of all invariant subspaces of 𝐴 ∈ 𝐵(𝐻) is denoted by 

Lat 𝐴. Given 𝑈 ⊂ 𝐵(𝐻), we define Lat 𝑈 = 𝑇𝐴∈𝑈 Lat 𝐴. If 𝑆 is any collection of subspaces of 𝐻, 

then we define 𝐴𝑙𝑔 𝐴  by setting 𝐴𝑙𝑔 𝑆 ≔ {𝐴 ∈ 𝐵(𝐻): 𝑆 ⊂ 𝐿𝑎𝑡 𝐴}. The algebra 𝑈 ⊂ 𝐵(𝐻) is called 

reflexive if 𝑈 = 𝐴𝑙𝑔 𝐿𝑎𝑡 𝑈. 
A closser look at the proof of Theorem (4.2.20) reveals the following result. 

Corollary (4.2.21) [244]: The Hardy algebra 𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ) is reflexive. 

Now, we make a few remarks in the particular case when 𝑛1 = ⋯ = 𝑛𝑘 = 𝑛. Let 𝒬𝑐𝑐 be the left 

ideal of ℂ[𝑍𝑖,𝑗] generated by the polynomials 𝑍𝑖,𝑗1𝑍𝑖,𝑗2 − 𝑍𝑖,𝑗2𝑍𝑖,𝑗1 and 𝑍𝑖,𝑗 − 𝑍𝑝,𝑗 , where 𝑖, 𝑝 ∈

{1, … , 𝑘} and 𝑗1, 𝑗2, 𝑗 ∈ {1, … , 𝑛}. The universal model associated with the variety 𝑉𝑓,𝑄𝑐𝑐
𝑚  is the 𝑛 

tuple 𝐶 = (𝐶1, … , 𝐶𝑛), where 𝐶𝑗 ≔ 𝑃𝑁𝑄𝑐𝑐𝑊1,𝑗|𝑁𝑄𝑐𝑐
 for 𝑗 ∈ {1,… , 𝑛}. Note that, in this case, we have 

𝑉𝑓,𝑄𝑐𝑐,>
𝑚 (ℂ) = ⋂ 𝐷𝑓𝑖,>

1 (ℂ)𝑘
𝑖=1  . Similarly to Theorem (4.2.19), one can show that the space 𝑁𝑄𝑐𝑐can be 

identified with a reproducing kernel Hilbert space with kernel 

𝑘𝑓
𝑐𝑐(𝑧, 𝑤) ≔

1

∏ (1 − 𝑓𝑖(𝑧�̅�))
𝑚𝑖𝑘

𝑖=1

, 

where 𝑧 = (𝑧1, … , 𝑧𝑛), 𝑤 = (𝑤1, … , 𝑤𝑛) are in the set 𝑉𝑓,𝑄𝑐𝑐,>
𝑚 (ℂ) ⊂ ℂ𝑛. We remark that in the 

particular case when 𝑓1 = ⋯ = 𝑓𝑘 = 𝑍1 +⋯+ 𝑍𝑛 and 𝑚1 = ⋯ = 𝑚𝑘 = 1, we obtain the 

reproducing kernel (𝑧, 𝑤) ↦
1

(1−(𝑧,𝑤))
𝑘 on the unit ball 𝔹𝑛. In this case, the reproducing kernel 

Hilbert spaces are the Hardy-Sobolev spaces (see [267]). The case when 𝑘 = 𝑛 corresponds to the 

Hardy space of the ball, and the case when 𝑘 = 𝑛 + 1 corresponds to the Bergman space. 

we show that the isomorphism problem for the universal polydomain algebras is closed related to to 

the biholomorphic equivalence of Reinhardt domains in several complex variables. Our results also 

show that there are many non-isomorphic polydomain algebras. 

Given a Hilbert space H, the radial polydomain associated with the abstract 𝐷𝑓
𝑚 is the set 

𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻) ≔ ⋃ 𝑟𝐷𝑓

𝑚(𝐻) ⊆ 𝐷𝑓
𝑚(𝐻)

0≤𝑟<1

. 

A formal power series 𝜑 = ∑ 𝑎(𝛼)𝑍(𝛼), 𝑎(𝛼) ∈ ℂ(𝛼)∈𝔽𝑛1
+ ×…×𝔽𝑛𝑘

+ , in ideterminates 𝑍𝑖,𝑗 is called free 

holomorphic function on the abstract radial polydomain 𝐷𝑓,𝑟𝑎𝑑
𝑚 ≔

{𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻):𝐻 𝑖𝑠 𝑎 𝐻𝑖𝑙𝑏𝑒𝑟𝑡 𝑠𝑝𝑎𝑐𝑒} if the series 

𝜑(𝑋𝑖,𝑗) ≔∑ ∑ 𝑎(𝛼)𝑋(𝛼)
(𝛼)∈𝔽𝑛1

+ ×…×𝔽𝑛𝑘
+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞

𝑞=0

 

is convergent in the operator norm topology for any 𝑋 = {𝑋𝑖,𝑗} ∈ 𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻) and any Hilbert space 

𝐻. We denote by 𝐻 𝑜𝑙(𝐷𝑓,𝑟𝑎𝑑
𝑚 ) the set of all free holomorphic functions on the abstract radial 

polydomain 𝐷𝑓,𝑟𝑎𝑑
𝑚   Let 𝐻∞(𝐷𝑓,𝑟𝑎𝑑

𝑚 )  denote the set of all elements 𝜑 in 𝐻 𝑜𝑙(𝐷𝑓,𝑟𝑎𝑑
𝑚 )  such that 

‖𝜑‖∞ ≔ sup‖𝜑(𝑋𝑖,𝑗)‖ < ∞, 
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where the supremum is taken over all {𝑋𝑖,𝑗}} ∈ 𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻) and any Hilbert space 𝐻. One can show 

that 𝐻∞(𝐷𝑓,𝑟𝑎𝑑
𝑚 ) is a Banach algebra under pointwise multiplication and the norm ‖∙‖∞. For each 

𝑝 ∈ 𝑁, we define the norms ‖∙‖𝑝:𝑀𝑝×𝑝(𝐻
∞(𝐷𝑓,𝑟𝑎𝑑

𝑚 )) → [0,∞) by setting 

‖[𝜑𝑠𝑡]𝑝×𝑝‖𝑝 ≔ sup‖[𝜑𝑠𝑡(𝑋)]𝑝×𝑝‖, 

where the supremum is taken over all 𝑋 ≔ {𝑋𝑖,𝑗} ∈ 𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻) and any Hilbert space 𝐻. The norms 

‖∙‖𝑝, 𝑝 ∈ ℕ, determine an operator space structure on 𝐻∞(𝐷𝑓,𝑟𝑎𝑑
𝑚 ), in the sense of Ruan ([248]). 

Throughout, we assume that 𝐷𝑓
𝑚(𝐻) is closed in the operator norm topology for any Hilbert space 

𝐻. Then we have 𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻)− = 𝐷𝑓

𝑚(𝐻) . Note that the interior of 𝐷𝑓
𝑚(𝐻) , which we denote by 

𝐼𝑛𝑡(𝐷𝑓
𝑚(𝐻) ), is a subset of 𝐷𝑓,𝑟𝑎𝑑

𝑚 (𝐻). We remark that if 𝑞 = (𝑞1, … , 𝑞𝑘) is a 𝑘-tuple of positive 

regular noncommutative polynomials, then 𝐷𝑞
𝑚(𝐻) is closed in the operator norm topology. 

We denote by 𝐴(𝐷𝑓,𝑟𝑎𝑑
𝑚 ) the set of all elements g in 𝐻 𝑜𝑙(𝐷𝑓,𝑟𝑎𝑑

𝑚 )  such that the mapping 

𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻) ∋ 𝑋 ↦ 𝑔(𝑋) ∈ 𝐵(𝐻) 

has a continuous extension to [𝐷𝑓,𝑟𝑎𝑑
𝑚 (𝐻)]

−
= 𝐷𝑓

𝑚(𝐻) for any Hilbert space 𝐻. We remark that 

𝐴(𝐷𝑓,𝑟𝑎𝑑
𝑚 ) is a Banach algebra under pointwise multiplication and the norm ‖∙‖∞ and it has an 

operator space structure under the norms ‖∙‖𝑝, 𝑝 ∈ ℕ. Moreover, we can identify the polydomain 

algebra 𝐴(𝐷𝑓
𝑚) with the subalgebra 

𝐴(𝐷𝑓,𝑟𝑎𝑑
𝑚 ), as follows. The map Φ:𝐴(𝐷𝑓,𝑟𝑎𝑑

𝑚 ) → 𝐴(𝐷𝑓
𝑚) defined by 

Φ(∑𝑎(𝛼)𝑍(𝛼)
(𝛼)

) ≔∑𝑎(𝛼)𝑊(𝛼)

(𝛼)

 

is a completely isometric isomorphism of operator algebras. If 𝑔 ≔ ∑ 𝑎(𝛼)𝑍(𝛼)(𝛼)  

is a free holomorphic function on the abstract radial polydomain 𝐷𝑓,𝑟𝑎𝑑
𝑚 , then 𝑔 ∈ 𝐴(𝐷𝑓,𝑟𝑎𝑑

𝑚 ) if and 

only if 𝑔(𝑟𝑊𝑖,𝑗) ≔ ∑ ∑ 𝑟𝑞𝑎(𝛼)𝑊(𝛼)(𝛼)∈𝔽𝑛1
+ ×…×𝔽𝑛𝑘

+

|𝛼1|+⋯+|𝛼𝑘|=𝑞

∞
𝑞=0  

is convergent in the norm topology as 𝑟 → 1. In this case, there exists 

a unique 𝜑 ∈ 𝐴(𝐷𝑓
𝑚) with 𝑔 = 𝐵[𝜑], where 𝐵 is the noncommutative Berezin transform associated 

with the abstract polydomain 𝐷𝑓
𝑚  , with the properties 

                Φ(𝑔) = lim
𝑟→1

𝑔(𝑟𝑊𝑖,𝑗) and Φ−1(𝜑) = 𝐵[𝜑],   𝜑 ∈ 𝐴(𝐷𝑓
𝑚). 

We proved in [253](see Proposition 4.4) that if 𝑝 ∈ ℕ and 𝜑 is a free holomorphic function on the 

abstract radial polydomain 𝐷𝑓,𝑟𝑎𝑑
𝑚  then its representation on ℂ𝑝, i.e., the map �̂� defined by 

ℂ(𝑛1+⋯+𝑛𝑘)𝑝
2
⊃ 𝐷𝑓,𝑟𝑎𝑑

𝑚 (ℂ𝑝) ∋ 𝐴 ⟼ 𝜑(𝐴) ∈ 𝑀𝑝×𝑝(ℂ) ⊂ ℂ
𝑝2 

is a holomorphic function on the interior of 𝐷𝑓
𝑚(ℂ𝑝). Moreover, if 𝜑 ∈ 𝐴(𝐷𝑓,𝑟𝑎𝑑

𝑚 ), then its 

representation on ℂ𝑝 has a continuous extension to𝐷𝑓
𝑚(ℂ𝑝) and it is holomorphic on the interior of 

𝐷𝑓
𝑚(ℂ𝑝). The continuous extension is defined by �̂�(𝐴) ≔ lim

𝑟→1
𝐵𝑟𝐴[𝜑] for 𝐴 ∈ 𝐷𝑓

𝑚(ℂ𝑝). 

Let Ω1, Ω2 be domains (open and connected sets) in ℂ𝑑. If there exist holomorphic maps 𝜁: 𝛺1 → 𝛺2 

and 𝜓 ∶ 𝛺2 → 𝛺1 such that 𝜁 ° 𝜓 = 𝑖𝑑𝛺2and °𝜁 = 𝑖𝑑𝛺1 , then 𝛺1and 𝛺2 are called biholomorphic 

equivalent and 𝜑 and 𝜓 are called biholomorphic maps. 

Theorem (4.2.22) [244]: Let 𝑓 = (𝑓1, … , 𝑓𝑘) and 𝑔 = (𝑔1, … , 𝑔𝑘′) be tuples of positive regular 

free holomorphic functions with 𝑛 and ℓ indeterminates, respectively, and let 𝑚 ∶= (𝑚1, … ,𝑚𝑘) ∈

ℕ𝑘 and 𝑑 ∶= (𝑑1, … , 𝑑𝑘′) ∈ ℕ
𝑘′ . If Ψ̅: 𝐴(𝐷𝑓

𝑚) → 𝐴(𝐷𝑔
𝑑) is a unital completely contractive 

isomorphism, then the map 𝜑:𝐷𝑔
𝑑(ℂ) → 𝐷𝑓

𝑚(ℂ) 

defined by 

𝜑(𝜆) ≔ [lim
𝑟→1

𝐵𝑔,𝑟𝜆 [�̅�(𝑊𝑖,𝑗
(𝑓)
)] : 𝑖 ∈ {1, … , 𝑘} , 𝑗 ∈ {1, … , 𝑛𝑖}] , 𝜆 ∈ 𝐷𝑔

𝑑(ℂ), 
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where 𝑊(𝑓) ≔ {𝑊𝑖,𝑗
(𝑓)
} is the universal model of the abstract polydomain 𝐷𝑓

𝑚 and 𝐵𝑔,𝑟𝜆 is the 

Berezin transform at 𝑟𝜆 ∈ 𝐷𝑔,>
𝑑 (ℂ), is a homeomorphism which is a biholomorphic function from 

𝐼𝑛𝑡 (𝐷𝑔
𝑑(ℂ)) onto 𝐼𝑛𝑡 (𝐷𝑓

𝑚(ℂ))and 𝑛 = ℓ. 

Proof:  Denote 

                 �̅�𝑖,𝑗 ≔ �̅�(𝑊𝑖,𝑗
(𝑓)
) ∈ 𝐴(𝐷𝑔

𝑑),               𝑖 ∈ {1, … , 𝑘}, 𝑗 ∈ {1, … , 𝑛𝑖},   (60) 

where 𝑊(𝑓) ∶= {𝑊𝑖,𝑗
(𝑓)
} is the universal model of the abstract polydomain 𝐷𝑓

𝑚. Assume that 𝑓𝑖 has 

the representation 𝑓𝑖 ≔ ∑ 𝑎𝑖,𝛼𝑍𝑖,𝛼(𝛼)∈𝔽𝑛𝑖
+ . Taking into account that 0 ≤ Φ

𝑓𝑖,𝑊𝑖
(𝑓)(𝐼) ≤ 𝐼, we deduce 

that 0 ≤ ∑ 𝑎𝑖,𝛼𝑊𝑖,𝛼
(𝑓)
(𝑊𝑖,𝛼

(𝑓)
)
∗

(𝛼)∈𝔽𝑛𝑖
+ ,|𝛼|≤𝑁 ≤ 𝐼 

for any 𝑁 ∈ ℕ. Using the fact that 𝑎𝑖,𝛼 ≥ 0 and �̅� is a completely contractive homomorphism, one 

can easily see that 0 ≤ Φ𝑓𝑖,�̅�𝑖(𝐼) ≤  𝐼, where �̅�𝑖 ≔ (�̅�𝑖,1, … , �̅�𝑖,𝑛𝑖) and�̅� ≔ (�̅�1, … , �̅�𝑘). Due to the 

remarks preceding the theorem, for each 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}, the map 𝜑𝑖,𝑗: 𝐷𝑔
𝑑(ℂ) → ℂ 

given by 

𝜑𝑖,𝑗(𝜆) ≔ lim
𝑟→1

𝐵𝑔,𝑟𝜆[�̅�𝑖,𝑗] 

is continuous on 𝐷𝑔
𝑑(ℂ) and holomorphic on 𝐼𝑛𝑡 (𝐷𝑔

𝑑(ℂ)) Now, we define the function 𝜑:𝐷𝑔
𝑑(ℂ) →

ℂℓ by setting 𝜑(𝜆) ≔ (𝜑1(𝜆), … , 𝜑𝑘(𝜆)) where 𝜑𝑖(𝜆) ≔ (𝜑𝑖,1(𝜆), … , 𝜑𝑖,𝑛𝑖(𝜆)) for all 𝜆 ∈ 𝐷𝑔
𝑑(ℂ). 

Since 0 ≤ 𝛷𝑓𝑖,�̅�𝑖(𝐼) ≤ 𝐼 we have 0 ≤ ∑ 𝑎𝑖,𝛼�̅�𝑖,𝛼�̅�𝑖,𝛼
∗

(𝛼)∈𝔽𝑛𝑖
+ ,|𝛼|≤𝑁 ≤ 𝐼 for all N ∈ N. Apply the 

Berezin transform at 𝑟𝜆 ∈ 𝐷𝑔,>
𝑑 (ℂ), 𝑟 ∈ [0, 1), we obtain  

0 ≤ ∑ 𝑎𝑖,𝛼𝜑𝑖,𝛼(𝑟𝜆)𝜑𝑖,𝛼(𝑟𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝛼∈𝔽𝑛𝑖
+ ,|𝛼|≤𝑁

≤  1, 𝑁 ∈ ℕ. 

Taking 𝑟 → 1 and 𝑁 →∞, we deduce that 0 ≤ Φ𝑓𝑖,𝜑𝑖(𝜆)(1) ≤ 1. Consequently, 𝜑(𝜆) ∈ 𝐷𝑓
𝑚(ℂ) for 

all 𝜆 ∈ 𝐷𝑔
𝑑(ℂ). Moreover, the map 𝜑:𝐷𝑔

𝑑(ℂ) → 𝐷𝑓
𝑚(ℂ) is continuous on 𝐷𝑔

𝑑(ℂ) and holomorphic on 

𝐼𝑛𝑡(𝐷𝑔
𝑑(ℂ)). Now, we set 

 𝜉�̅�,𝑗: = Ψ̂
−1(𝑊𝑖,𝑗

(𝑔)
) ∈ 𝐴(𝐷𝑓

𝑚),     𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖},                     (61) 

where 𝑊(𝑔): = {𝑊𝑖,𝑗
(𝑔)
} is the universal model of the abstract polydomain 𝐷𝑔

𝑑. Since 0 ≤

Φ
𝑔𝑖,𝑊𝑖

(𝑔)(𝐼) ≤ 𝐼 and Ψ̂−1 is a completely contractive homomorphism, we deduce that 0 ≤

Φ𝑔𝑖,�̅�𝑖(𝐼) ≤ 𝐼, where we set 𝜉�̅�: = (𝜉�̅�,1, . . . , 𝜉�̅�,ℓ𝑖) and 𝜉̅: = (𝜉1̅, . . . , 𝜉�̅�′). As above, for each 𝑖 ∈

{1, . . . , 𝑘′} and 𝑗 ∈ {1, . . . , ℓ𝑖}, the map 𝜉𝑖,𝑗: 𝐷𝑓
𝑚(ℂ) → ℂ, given by 

𝜉𝑖,𝑗(𝜇): = lim
𝑟→1

𝐵𝑓,𝑟𝜇[𝜉�̅�,𝑗] 

is continuous on 𝐷𝑔
𝑚(ℂ) and holomorphic on 𝐼𝑛𝑡(𝐷𝑓

𝑚(ℂ)). Set 𝜉(𝜇):= (𝜉1(𝜇), . . . , 𝜉𝑘′(𝜇)) and 

𝜉𝑖(𝜇): = (𝜉𝑖,1(𝜇), . . . , 𝜉𝑖,ℓ𝑖(𝜇)) for all 𝜇 ∈ 𝐷𝑓
𝑚(ℂ). Since 0 ≤ Φ𝑔𝑖,�̅�𝑖(𝐼) ≤ 𝐼, we can show that 0 ≤

Φ𝑔𝑖,𝜉𝑖(𝜇)(1) ≤ 1. 

Hence, we deduce that 𝜉(𝜇) ∈ 𝐷𝑔
𝑑(ℂ) for all 𝜇 ∈ 𝐷𝑓

𝑚(ℂ). Therefore, the map 𝜉: 𝐷𝑓
𝑚(ℂ) → 𝐷𝑔

𝑑(ℂ) is 

continuous on 𝐷𝑓
𝑚(ℂ) and holomorphic on 𝐼𝑛𝑡(𝐷𝑓

𝑚(ℂ)). 

Now, each 𝜉�̅�,𝑗 ∈ 𝐴(𝐷𝑓
𝑚), 𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖}, has a unique Fourier representation 

∑ 𝑎(𝛼)𝑊(𝛼)
(𝑓)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+  such that 

𝜉�̅�,𝑗 = lim
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)𝑊(𝛼)
(𝑓)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

, 

where the limit is in the operator norm topology. Hence, using the continuity of Ψ̂ in the operator 

norm, and relations (61) and (60), we obtain 
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𝑊𝑖,𝑗
(𝑔)
= Ψ̂(𝜉�̅�,𝑗) = Ψ̂

(

 
 
lim 
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)𝑊(𝛼)
(𝑓)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

)

 
 

 

= lim 
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)Ψ̂(𝑊(𝛼)
(𝑓)
)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

= lim 
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)�̅�(𝛼)
(𝛼)∈𝔽𝑛1

+ ×···×𝔽𝑛𝑘
+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

. 

Consequently, using the continuity in the operator norm of the noncommutative Berezin transform 

at 𝜆 ∈ 𝐷𝑔,>
𝑑 (ℂ) on the polydomain algebra 𝐴(𝐷𝑔

𝑑), and relations 𝜑𝑖,𝑗(𝜆): = 𝐵𝑔,𝜆[�̅�𝑖,𝑗] for all 𝜆 ∈

𝐷𝑔,>
𝑑 (ℂ), and 𝜉𝑖,𝑗(𝜇) ≔ lim 

𝑟→1
𝐵𝑓,𝑟𝜇[𝜉�̅�,𝑗] for 𝜇 ∈ 𝐷𝑓

𝑚(ℂ), we have 

𝜆𝑖,𝑗 = 𝐵𝑔,𝜆[𝑊𝑖,𝑗
(𝑔)
] = 𝐵𝑔,𝜆

[
 
 
 
 

lim  
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)�̅�(𝛼)
(𝛼)∈𝔽𝑛1

+ ×···×𝔽𝑛𝑘
+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

]
 
 
 
 

 

= lim  
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)𝐵𝑔,𝜆[�̅�(𝛼)]

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

= lim  
𝑟→1

∑ ∑ 𝑟𝑞𝑎(𝛼)𝜑(𝛼)(𝜆)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+

|𝛼1|+···+|𝛼𝑘|=𝑞

∞

𝑞=0

 

= lim  
𝑟→1

𝐵𝑓,𝑟𝜑(𝜆)[𝜉�̅�,𝑗] = 𝜉𝑖,𝑗(𝜑(𝜆)) 

for each 𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖}, and any 𝜆 ∈ 𝐷𝑔,>
𝑑 (ℂ). Hence (𝜉 ∘ 𝜑)(𝜆)  = 𝜆 for all 𝜆 ∈

𝐷𝑔,>
𝑑 (ℂ). 

Now, using the fact that the functions 𝜑: 𝐷𝑔
𝑑(ℂ) → 𝐷𝑓

𝑚(ℂ) and 𝜉: 𝐷𝑓
𝑚(ℂ) → 𝐷𝑔

𝑑(ℂ) are continuous, 

and 𝐷𝑔,>
𝑑 (ℂ) is dense in 𝐷𝑔

𝑑(ℂ), we conclude that (𝜉 ∘ 𝜑)(𝜆) = 𝜆 for all 𝜆 ∈ 𝐷𝑔𝑔
𝑑(ℂ). Similarly, one 

can prove that (𝜑 ∘ 𝜉)(𝜇) = 𝜇 for 𝜇 ∈ 𝐷𝑓
𝑚(ℂ). Therefore, the map 𝜑:𝐷𝑔

𝑑(ℂ) → 𝐷𝑓
𝑚(ℂ) is a 

homeomorphism such that 𝜑 and 𝜑−1: = 𝜉 are holomorphic functions on 𝐼𝑛𝑡(𝐷𝑔
𝑑(ℂ)) and 

𝐼𝑛𝑡(𝐷𝑓
𝑚(ℂ)), respectively. Now, a standard argument using Brouwer’s invariance of domain 

theorem [253] shows that 𝜑 is a biholomorphic function from 𝐼𝑛𝑡(𝐷𝑔
𝑑(ℂ)) onto 𝐼𝑛𝑡(𝐷𝑓

𝑚(ℂ)) and 

𝑛 = ℓ. The proof is complete. 

Corollary (4.2.23) [244]: Let 𝑓 = (𝑓1, . . . , 𝑓𝑘) and 𝑔 = (𝑔1, . . . , 𝑔𝑘′) be tuples of positive regular 

free holomorphic functions with 𝑛 and ℓ indeterminates, respectively, and let 𝑚 ∈ ℕ𝑘 and 𝑑 ∈ ℕ𝑘
′
. 

If the domain algebras 𝐴(𝐷𝑓
𝑚) and 𝐴(𝐷𝑔

𝑑) are unital completely contractive isomorphic, then 𝑛 = ℓ 

and there exists a permutation 𝜎 of the set {1, . . . , 𝑛} and scalars 𝑡1, . . . , 𝑡𝑛 > 0 such that the map  

𝐼𝑛𝑡(𝐷𝑓
𝑚(ℂ)) ∋ (𝑧1, . . . , 𝑧𝑛) ⟼ (𝑡1𝑧𝜎(1), . . . , 𝑡𝑛𝑧𝜎(𝑛))  ∈  𝐼𝑛𝑡(𝐷𝑔

𝑑(ℂ)) 

is a biholomorphic map. 

Proof: Note that the sets 𝐼𝑛𝑡(𝐷𝑓
𝑚(ℂ)) ⊂ ℂ𝑛 and 𝐼𝑛𝑡(𝐷𝑔

𝑑(ℂ)) ⊂ ℂℓ are Reinhardt domains which 

contain 0. Due to Theorem (4.2.22), there is a biholomorphic function from 𝐼𝑛𝑡(𝐷𝑔
𝑑(ℂ)) onto 

𝐼𝑛𝑡(𝐷𝑓
𝑚(ℂ)) and 𝑛 = ℓ. 

Using Sunada’s result [257], we complete the proof.  

Proposition (4.2.24) [244]: Let 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] be a left ideal generated by noncommutative 

homogenous polynomials and let 𝐴(𝑉𝑓,𝑄
𝑚 ) be the corresponding noncommutative variety algebra. If 

𝜑 ∈ 𝐴(𝑉𝑓,𝑄
𝑚 ), then the map �̌�: 𝑉𝑓,𝑄

𝑚 (𝐻) → 𝐵(𝐻) defined by 

�̌�(𝑌): = lim
𝑟→1

𝐵𝑟𝑌,𝑄[𝜑] , 𝑌 ∈ 𝑉𝑓,𝑄
𝑚 (𝐻), 

is continuous, where the convergence is in the operator norm topology and 𝐵𝑓,𝑟𝑌,𝑄 is the constrained 

noncommutative Berezin tranform. 
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Proof: First, note that the map �̌� is well-defined due to Proposition (4.2.5). Let 𝑝𝑛(𝑆𝑖,𝑗) be a 

sequence of polynomials in the variety algebra 𝐴(𝑉𝑓,𝑄
𝑚 ) such that 𝑝𝑛(𝑆𝑖,𝑗) → 𝜑 in the operator norm. 

Given 𝜖 > 0, let 𝑁 ∈ ℕ be such that ‖𝜑 − 𝑝𝑁(𝑆𝑖,𝑗)‖ <
𝜖

4
. Fix 𝐴 ∈ 𝑉𝑓,𝑄

𝑚 (𝐻) and and choose 𝛿 > 0 

such that ‖𝑝𝑁(𝑌) − 𝑝𝑁(𝐴)‖ <
𝜖

2
, whenever 𝑌 ∈ 𝑉𝑓,𝑄

𝑚 (𝐻) and ‖𝑌 − 𝐴‖ < 𝛿. Now, using again 

Proposition (4.2.5), we have 

‖�̌�(𝑌) − �̌�(𝐴)‖ ≤ lim
𝑟→∞

sup ‖𝐵𝑟𝑌,𝑄[𝜑] − 𝐵𝑟𝐴,𝑄[𝜑]‖ 

= lim 
𝑟→∞

sup  {‖𝐵𝑟𝑌,𝑄[𝜑−𝑝𝑁(𝑆𝑖,𝑗)]‖ + ‖𝐵𝑟𝑌,𝑄[𝑝𝑁(𝑆𝑖,𝑗)] − 𝐵𝑟𝐴,𝑄[𝑝𝑁(𝑆𝑖,𝑗)]‖ 

+‖𝐵𝑟𝐴,𝑄[𝑝𝑁(𝑆𝑖,𝑗)−𝜑]‖} 

≤ 2‖𝜑 − 𝑝𝑁(𝑆𝑖,𝑗)‖ + lim  
𝑟→1

sup   ‖𝑝𝑁(𝑟𝑌) − 𝑝𝑁(𝑟𝐴)‖ 

≤ 2‖𝜑 − 𝑝𝑁(𝑆𝑖,𝑗)‖ + ‖𝑝𝑁(𝑌) − 𝑝𝑁(𝐴)‖ ≤ 𝜖  

for any 𝑌 ∈ 𝑉𝑓,𝑄
𝑚 (𝐻) with ‖𝑌 − 𝐴‖ < 𝛿. The proof is complete 

Consider the particular case when 𝑄 = 𝑄𝑐. According to Theorem (4.2.20), the Hardy algebra 

𝐹∞(𝑉𝑓,𝑄𝑐
𝑚 ) coincides with the algebra 𝐻∞(𝐷𝑓,>

𝑚 (ℂ)) of all multipliers of the Hilbert space 

𝐻2(𝐷𝑓,>
𝑚 (ℂ)). We remark that each 𝜑 ∈ 𝐴(𝑉𝑓,𝑄𝑐

𝑚 ) can be identified with a multiplier 𝜉 of 

𝐻2(𝐷𝑓,>
𝑚 (ℂ)) which admits a continuous extension to 𝐷𝑓

𝑚(ℂ). Moreover, 

𝜉(𝜆) = lim 
𝑟→1

𝐵𝑟𝜆,𝑄𝑐[𝜑] , 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). 

Indeed, due to Theorem (4.2.20), 𝜑 can be identified with a multiplier 𝜉 which is given by the 

relation 𝜉(𝜆) = 〈𝜑(1), 𝑢𝜆〉 for all 𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ). On the other hand, due to Proposition (4.2.24), the 

map �̌�: 𝑉𝑓,𝑄
𝑚 (ℂ) → ℂ defined by �̌�(𝜆): = lim  

𝑟→1
𝐵𝑟𝜆,𝑄[𝜑] is continuous on 𝑉𝑓,𝑄

𝑚 (ℂ) = 𝐷𝑓
𝑚(ℂ). According 

to Theorem (4.2.16) and the remarks that follow, we deduce that 𝜉(𝜆) = 〈𝜑(1), 𝑢𝜆〉 = �̌�(𝜆) for all 

𝜆 ∈ 𝐷𝑓,>
𝑚 (ℂ), which proves our assertion. 

Theorem (4.2.25) [244]: Let 𝑓 = (𝑓1, . . . , 𝑓𝑘) and 𝑔 = (𝑔1, . . . , 𝑔𝑘′) be tuples of positive regular 

free holomorphic functions with 𝑛 and ℓ indeterminates, respectively, let 𝑚:= (𝑚1, . . . , 𝑚𝑘) ∈ ℕ
𝑘 

and 𝑑:= (𝑑1, . . . , 𝑑𝑘′) ∈ ℕ
𝑘′ , and let 𝑄 be a left ideal generated by homogenous polynomials in 

ℂ[𝑍𝑖,𝑗]. If Ψ̂: 𝐴(𝑉𝑓,𝑄
𝑚 ) → 𝐴(𝑉𝑔,𝑄

𝑑 ) is a unital completely contractive isomorphism, then the map 

𝜑: 𝑉𝑔,𝑄
𝑑 (ℂ) → 𝑉𝑓,𝑄

𝑚 (ℂ) defined by 

𝜑(𝜆):= [lim   
𝑟→1

𝐵
𝑔,𝑟𝜆,𝑄[Ψ̂𝑆𝑖,𝑗

(𝑓)
]
: 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}] , 𝜆 ∈ 𝑉𝑔,𝑄

𝑑 (ℂ), 

where 𝑆(𝑓): = {𝑆𝑖,𝑗
(𝑓)
} is the universal model of the abstract variety 𝑉𝑓,𝑄

𝑚  and 𝐵𝑔,𝑟𝜆,𝑄 is the constrained 

Berezin transform at 𝑟𝜆, is a homeomorphism of 𝑉𝑔,𝑄
𝑑 (ℂ) onto 𝑉𝑓,𝑄

𝑚 (ℂ). 

In the particular case when 𝑄 = 𝑄𝑐, the map 𝜑 is, in addition, a biholomorphic function from 

𝐼𝑛𝑡(𝑉𝑔,𝑄𝑐
𝑑 (ℂ)) onto 𝐼𝑛𝑡(𝑉𝑓,𝑄𝑐

𝑚 (ℂ)) and 𝑛 = ℓ. 

Proof:  We only sketch the proof, since it is very similar to that of Theorem (4.2.22), and point out 

the differences. Denote 

 �̅�𝑖,𝑗: = Ψ̂(𝑆𝑖,𝑗
(𝑓)
) ∈ 𝐴(𝑉𝑔,𝑄

𝑑 ), 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖},                      (62) 

where 𝑆(𝑓): = {𝑆𝑖.𝑗
(𝑓)
} is the universal model of the abstract variety 𝑉𝑓,𝑄

𝑚 . Due to Proposition (4.2.24), 

the map 𝜑𝑖,𝑗: 𝑉𝑔,𝑄
𝑑 (ℂ) → ℂ, given by 

𝜑𝑖,𝑗(𝜆):= lim  
𝑟→1

𝐵𝑔,𝑟𝜆,𝑄[�̅�𝑖,𝑗] 

is well-defined and continuous. Consider the function 𝜑: 𝑉𝑔,𝑄
𝑑 (ℂ) → ℂℓ given by 𝜑(𝜆):=

(𝜑1(𝜆), . . . , 𝜑𝑘(𝜆)), where 𝜑𝑖(𝜆):= (𝜑𝑖,1(𝜆), . . . , 𝜑𝑖,𝑛𝑖(𝜆)) for all 𝜆 ∈ 𝑉𝑔,𝑄
𝑑 (ℂ) and note that 𝜑(𝜆) ∈

𝐷𝑓
𝑚(ℂ) for all 𝑉𝑔,𝑄

𝑑 (ℂ). 

On the other hand, since 𝑞(𝑆(𝑓)) = 0 for any 𝑞 ∈ 𝑄, and Ψ̂ is a homomorphism, one can deduce 

that 𝑞(�̅�) = 0. Applying the constrained Berezin transform 𝐵𝑔,𝑟𝜆,𝑄 and taking the limit as 𝑟 → 1, 
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we obtain that 𝑞(𝜑(𝜆)) = 0 for any 𝑞 ∈ 𝑄. Therefore 𝜑(𝜆) ∈ 𝑉𝑓,𝑄
𝑚 (ℂ) and the map 𝜑: 𝑉𝑔,𝑄

𝑚 (ℂ) →

𝑉𝑓,𝑄
𝑚 (ℂ) is continuous. Similarly, setting 

 𝜉�̅�,𝑗: = Ψ̂
−1(𝑆𝑖,𝑗

(𝑔)
) ∈ 𝐴(𝑉𝑓,𝑄

𝑚 ), 𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖},                        (63) 

where 𝑆(𝑔): = {𝑆𝑖,𝑗
(𝑔)
} is the universal model of the abstract variety 𝑉𝑔,𝑄

𝑑 , Proposition (4.2.24) shows 

that the map 𝜉𝑖,𝑗: 𝑉𝑓,𝑄
𝑚 (ℂ) → ℂ given by 𝜉𝑖,𝑗(𝜇):= lim   

𝑟→1
𝐵𝑓,𝑟𝜇,𝑄[�̅�𝑖,𝑗] is well-defined and continuous. 

Now, one can prove that the map 𝜉: 𝑉𝑓,𝑄
𝑚 (ℂ) → 𝑉𝑔,𝑄

𝑑 (ℂ) defined by 𝜉(𝜇): = (𝜉1(𝜇), . . . , 𝜉𝑘′(𝜇)), 

where 𝜉𝑖(𝜇): = (𝜉𝑖,1(𝜇), . . . , 𝜉𝑖,ℓ𝑖(𝜇)), is continuous. 

For each 𝜉�̅�,𝑗 ∈ 𝐴(𝑉𝑓,𝑄
𝑚 ), 𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖}, let 𝑝𝑠(𝑆

(𝑓)) = ∑ 𝑎(𝛼)
(𝑠)
𝑆(𝛼)
(𝑓)

(𝛼)∈𝔽𝑛1
+ ×···×𝔽𝑛𝑘

+ , 𝑠 ∈

ℕ, be a sequence of polynomials such that 𝜉�̅�,𝑗 = lim
𝑠→∞

𝑝𝑠(𝑆
(𝑓)) where the convergence is in the 

operator norm. Using the continuity of Ψ̂  in the operator norm, and relations (63) and (62), we 

obtain 

𝑆𝑖,𝑗
(𝑔)
= Ψ̂(𝜉�̅�,𝑗) = Ψ̂ ( lim 

𝑠→∞
𝑝𝑠(𝑆

(𝑓))) = lim 
𝑠→∞

𝑝𝑠(�̅�).  

Consequently, using the continuity in the operator norm of the constrained noncommutative 

Berezin transform at 𝜆 ∈ 𝑉𝑔,𝑄,>
𝑑 (ℂ) on the variety algebra 𝐴(𝑉𝑔,𝑄

𝑑 ) and the relations above, we obtain 

𝜆𝑖,𝑗 = 𝐵𝑔,𝜆,𝑄[𝑆𝑖,𝑗
(𝑔)
] = 𝐵𝑔,𝜆,𝑄 [ lim  

𝑠→∞
𝑝𝑠(�̅�)] 

= lim  
𝑠→∞

𝑝𝑠(𝜑(𝜆)) = lim  
𝑠→∞

𝐵𝑓,𝜑(𝜆),𝑄[𝑝𝑠(𝑆
(𝑓))]  

= 𝜉𝑖,𝑗(𝜑(𝜆)) 

for each 𝑖 ∈ {1, . . . , 𝑘′}, 𝑗 ∈ {1, . . . , ℓ𝑖}, and any 𝜆 ∈ 𝑉𝑔,𝑄,>
𝑑 (ℂ). Hence (𝜉 ∘ 𝜑)(𝜆) = 𝜆 for all 𝜆 ∈

𝑉𝑔,𝑄,>
𝑑 (ℂ). 

Now, using the fact that the functions 𝜑: 𝑉𝑔,𝑄
𝑑 (ℂ) → 𝑉𝑓,𝑄

𝑚 (ℂ) and 𝜉: 𝑉𝑓,𝑄
𝑚 (ℂ) → 𝑉𝑔,𝑄

𝑑 (ℂ) are 

continuous, and 𝑉𝑔,𝑄,>
𝑑 (ℂ) is dense in 𝑉𝑔,𝑄

𝑑 (ℂ), we conclude that (𝜉 ∘ 𝜑)(𝜆) = 𝜆 for all 𝜆 ∈ 𝑉𝑔,𝑄
𝑑 (ℂ). 

Similarly, one can prove that (𝜑 ∘ 𝜉)(𝜇) = 𝜇 for 𝜇 ∈ 𝑉𝑓,𝑄
𝑚 (ℂ). Therefore, the map 𝜑 is a 

homeomorphism. Note that in the particular case when 𝑄 = 𝑄𝑐, we have 𝑉𝑓,𝑄𝑐
𝑚 (ℂ) = 𝐷𝑓

𝑚(ℂ) and 

𝑉𝑔,𝑄𝑐
𝑑 (ℂ) = 𝐷𝑔

𝑑(ℂ). Using Theorem (4.2.22), one can complete the proof.  

We remark that a result similar to Corollary (4.2.23) holds in the commutative setting. Therefore, if 

the variety algebras 𝐴(𝑉𝑓,𝑄𝑐
𝑚 ) and 𝐴(𝑉𝑔,𝑄𝑐

𝑑 ) are unital completely contractive isomorphic, then 𝑛 = ℓ 

and there exists a permutation 𝜎 of the set {1, . . . , 𝑛} and scalars 𝑡1, . . . , 𝑡𝑛 > 0 such that the map 

𝐼𝑛𝑡(𝑉𝑓,𝑄𝑐
𝑚 (ℂ)) ∋ (𝑧1, . . . , 𝑧𝑛) ⟼ (𝑡1𝑧𝜎(1), . . . , 𝑡𝑛𝑧𝜎(𝑛)) ∈ 𝐼𝑛𝑡(𝑉𝑔,𝑄𝑐

𝑑 (ℂ)) 

is a biholomorphic map. 

The results show that there are many non-isomorphic polydomain algebras. We consider the 

following particular case. If 𝑓 = 𝑍1 +· · · +𝑍𝑛, then 𝐴(𝑉𝑓,𝑄𝑐
1 ) is the universal algebra of commuting 

row contractions, and 𝐼𝑛𝑡(𝑉𝑓,𝑄𝑐
1 (ℂ) = 𝔹𝑛, the open unit ball of ℂ𝑛. When 𝑔 = (𝑍1, . . . , 𝑍𝑛), then 

𝐴(𝑉𝑔,𝑄𝑐
1 ) is the commutative polydisc algeba. In this case, we have 𝐼𝑛𝑡(𝑉𝑓,𝑄𝑐

1 (ℂ) = 𝔻𝑛. Since 𝔹𝑛 

and 𝔻𝑛 are not biholomorphic domains in ℂ𝑛 if 𝑛 ≥ 2, Theorem (4.2.25) shows that the universal 

algebras 𝐴(𝑉𝑓,𝑄𝑐
1 ) and 𝐴(𝑉𝑔,𝑄𝑐

1 ) are not isomorphic. 

We develop a dilation theory on abstract noncommutative varieties 𝑉𝑓,𝐽
𝑚, where 𝐽 is a norm-closed 

two sided ideal of the noncommutative polydomain algebra 𝐴(𝐷𝑓
𝑚) such that 𝑁𝐽 ≠ {0}. 

The dilation theory can be refined for the class of noncommutative varieties 𝑉𝑞,𝑄
𝑚 , where 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] 

is an ideal generated by homogeneous polynomials and 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-tuple of positive 

regular noncommutative polynomials. we also obtain Wold type decompositions for non-degenerate 

∗-representations of the 𝐶∗-algebra 𝐶∗(𝑆𝑖,𝑗) generated by the universal model. 

Lemma (4.2.26) [244]: Let 𝑇 = (𝑇1, . . . , 𝑇𝑘) be in the noncommutative polydomain 𝐷𝑓
𝑚(𝐻) and let 

𝑋 ∈ 𝐵(𝐻) be a positive operator such that Δ𝑓,𝑇
𝑝
(𝑋) ≥ 0 for any 𝑝:=  (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+

𝑘  with 𝑝 ≤ 𝑚. 

Then 
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0 ≤ lim
𝑞𝑘→∞

⋯ lim 
𝑞1→∞

(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 ) · · · (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝑋) ≤ 𝑋. 

Proof: For each 𝑖 ∈ {1, . . . , 𝑘}, let Ω𝑖 ⊂ 𝐵(𝐻) be the set of all 𝑌 ∈ 𝐵(𝐻), 𝑌 ≥ 0, such that the series 

∑ 𝑏𝑖,𝛽𝑖
(𝑚𝑖)𝑇𝑖,𝛽𝑖𝑌𝑇𝑖,𝛽𝑖

∗
𝛽𝑖∈𝔽𝑛𝑖

+  is convergent in the weak operator topology, where 

𝑏𝑖,𝑔0
(𝑚𝑖) ∶= 1 𝑎𝑛𝑑 𝑏𝑖,𝛼𝑖

(𝑚𝑖): = ∑ ∑ 𝑎𝑖,𝛾1  · · ·  𝑎𝑖,𝛾𝑝 (
𝑝 + 𝑚𝑖 − 1
𝑚𝑖 − 1

)

𝛾1,...,𝛾𝑝∈𝔽𝑛𝑖
+

𝛾1···𝛾𝑝=𝛼

|𝛾1|≥1,...,|𝛾𝑝|≥1

|𝛼|

𝑝=1

 

for all 𝛼 ∈ 𝔽𝑛𝑖
+  with |𝛼| ≥ 1. We define the map Ψ𝑖: Ω𝑖 → 𝐵(𝐻) by setting 

Ψ𝑖(𝑌) ∶= ∑ 𝑏𝑖,𝛽𝑖
(𝑚𝑖)𝑇𝑖,𝛽𝑖𝑌𝑇𝑖,𝛽𝑖

∗

𝛽𝑖∈𝔽𝑛𝑖
+

.  

Fix 𝑖 ∈ {1, . . . , 𝑘} and assume that 1 ≤ 𝑝𝑖 = 𝑚𝑖. In [253] (see the proof of Theorem 2.2), we proved 

that 

0 ≤ Ψ𝑖(Δ𝑓,𝑇
𝑝
(𝑋)) = Δ𝑓,𝑇

𝑝−𝑚𝑖𝑒𝑖 (𝑖𝑑 − lim
𝑞𝑖→∞

Φ𝑓𝑖,𝑇𝑖
𝑞𝑖 ) (𝑋) 

                          ≤ Δ𝑓,𝑇
𝑝−𝑚𝑖𝑒𝑖(𝑋) ≤ 𝑋,                                               (64) 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  with 𝑝 ≤ 𝑚 and 𝑝𝑖 = 𝑚𝑖. A repeated application of (64), leads to the 

relation 

0 ≤ (Ψ𝑘 ∘· · · ∘ Ψ1)(Δ𝑓,𝑇
𝑚 (𝑋)) = lim 

𝑞𝑘→∞
⋯ lim  

𝑞1→∞
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 ) · · · (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝑋) ≤ 𝑋. 

The proof is complete.  

Lemma (4.2.27) [244]: Let 𝑇 = (𝑇1, . . . , 𝑇𝑘) be in the noncommutative polydomain 𝐷𝑓
𝑚(𝐻) and let 

𝐾𝑓,𝑇 be the associated Berezin kernel. Then 

Δ𝑓,𝑇
𝑝
(𝐾𝑓,𝑇

∗ 𝐾𝑓,𝑇) ≤ Δ𝑓,𝑇
𝑝
(𝐼) 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  with 𝑝 ≤ 𝑚. The equality occurs if 𝑝 ≥ (1, . . . , 1). 

Proof: Let 𝑠 ∈ {1, . . . , 𝑘} and let 𝑌 ≥ 0 be such that (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)  · · ·  (𝑖𝑑 − Φ𝑓1𝑇1)(𝑌) ≥ 0. Note 

that {(𝑖𝑑 − Φ𝑓𝑠,𝑇𝑘
𝑞𝑠 )  · · ·  (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝑌)}𝑞=(𝑞1,...,𝑞𝑠)∈ℤ+𝑠  is an increasing sequence of positive 

operators. Indeed, since Φ𝑓1,𝑇1 , . . . , Φ𝑓𝑘,𝑇𝑘 are commuting, we have 

0 ≤ (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑘
𝑞𝑠 )  · · ·  (𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )(𝑌)

= ∑ Φ𝑓𝑠,𝑇𝑠
𝑡 ⋯

𝑞𝑠−1

𝑡=0

∑ Φ𝑓1,𝑇1
𝑡 (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)  · · ·  (𝑖𝑑 − Φ𝑓1𝑇1)(𝑌)

𝑞1−1

𝑡=0

, 

which proves our assertion. If 𝑝 = 0, the inequality in the lemma is due to the fact that 𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇 ≤ 𝐼. 

Assume that 𝑝 ≠ 0. Without loss of generality, we can assume that 𝑝𝑗 ≥ 1 for any 𝑗 ∈ {1, . . . , 𝑠} for 

some 𝑠 ∈ {1, . . . , 𝑘}, and 𝑝𝑗 = 0 for any 𝑗 ∈ {𝑠 + 1, . . . , 𝑘} if 𝑠 < 𝑘. Since 

𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇 = lim  

𝑞𝑘→∞
⋯ lim   

𝑞1→∞
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 ) · · · (𝑖𝑑 − Φ𝑓1,𝑇1
𝑞1 )(𝐼), 

and taking into account that the maps Φ𝑓𝑖,𝑇𝑖 are WOT-continuous and commuting, we deduce that 

(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇) 

= lim    
𝑞
(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘

𝑞𝑘 ) · · · (𝑖𝑑 − Φ𝑓𝑠+1,𝑇𝑠+1
𝑞𝑠+1 )[(𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠(𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠
𝑞𝑠 )] · · 

· [(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )](𝐼) 

Now, let 𝑗 ∈ {1, . . . , 𝑠} and let 𝑌 ≥ 0 be such that (𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗)(𝑌) ≥ 0. Due to the remark at the 

beginning of the proof, WOT- lim
𝑞𝑗→∞

(𝑖𝑑 − Φ
𝑓𝑗,𝑇𝑗

𝑞𝑗
)(𝑌) exists and, since Φ𝑓𝑖,𝑇𝑖 is WOT-continuous, 

we have 

lim 
𝑞𝑗→∞

(𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗)
𝑝𝑗(𝑖𝑑 − Φ

𝑓𝑗,𝑇𝑗

𝑞𝑗
)(𝑌) = (𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗)

𝑝𝑗 lim  
𝑞𝑗→∞

(𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗)(𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗
𝑞𝑗

)(𝑌)

=  (𝑖𝑑 − Φ𝑓𝑗,𝑇𝑗)
𝑝𝑗(𝑌). 
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Applying this result repeatedly, when 𝑗 = 1 and 𝑌 = 𝐼, when 𝑗 = 2 and 𝑌 = (𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1(𝐼), 

and so on, when 𝑗 = 𝑠 and 𝑌 = (𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐼), we obtain 

lim   
𝑞𝑠→∞

⋯ lim    
𝑞1→∞

[(𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)
𝑝𝑠(𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠

𝑞𝑠 )] · · · [(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 )](𝐼) 

= (𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐼) 

Summing up the results above and using Lemma (4.2.26), we deduce that 

(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇) 

= lim     
(𝑞𝑠+1,...,𝑞𝑘)

(𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 ) · · · (𝑖𝑑 − Φ𝑓𝑠+1,𝑇𝑠+1

𝑞𝑠+1 )(𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐼) 

≤ (𝑖𝑑 − Φ𝑓1,𝑇1)
𝑝1 · · ·  (𝑖𝑑 − Φ𝑓𝑠,𝑇𝑠)

𝑝𝑠  (𝐼). 

The last part of this lemma is now obvious. The proof is complete. 

Let 𝑓 = (𝑓1, . . . , 𝑓𝑘) be a 𝑘-tuple of positive regular free holomorphic functions and let 𝑆 =
(𝑆1, . . . , 𝑆𝑛) with 𝑆𝑖 = (𝑆𝑖,1, … , 𝑆𝑖,𝑛𝑖) be the universal model associated with the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a norm-closed two sided ideal of the noncommutative 

domain algebra 𝐴(𝐷𝑓
𝑚) such that 𝑁𝐽 ≠ {0}. Let 𝑈 = {𝑈𝑖,𝑗} ∈ 𝑉𝑓,𝐽

𝑚(𝐾) be such that 

(𝑖𝑑 − Φ𝑓𝑘,𝑈𝑘)… (𝑖𝑑 − 𝛷𝑓1,𝑈1)(𝐼) = 0, 

where 𝑈𝑖 = (𝑈𝑖,1, … , 𝑈𝑖,𝑛𝑖). A tuple 𝑉 ∶= {𝑉𝑖,𝑗} having the matrix representation 

               𝑉𝑖,𝑗 ≔ [
𝑆𝑖,𝑗⨂𝐼𝐷 0

0 𝑈𝑖,𝑗
] ,   𝑖 ∈ {1, … , 𝑘}, 𝑗 ∈ {1, … , 𝑛𝑖},                         (65) 

is called constrained (or J-constrained) dilation of 𝑇 = {𝑇𝑖,𝑗} ∈ 𝑉𝑓,𝐽
𝑚(𝐻) if 𝐻 can be identified with a 

𝑐𝑜-invariant subspace under each operator 𝑉𝑖,𝑗 such that 

𝑇(𝛼)
∗ = 𝑉(𝛼)

∗ |𝐻,      (𝛼) ∈ 𝔽𝑛1
+ ×···× 𝔽𝑛𝑘

+ . 
The dilation is called minimal if 

(𝑁𝐽⊗𝐷)⊕ 𝐾 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑉(𝛼)𝐻: (𝛼) ∈ 𝔽𝑛1
+ ×···× 𝔽𝑛𝑘

+ }. 

The dilation index of 𝑇 is the minimum dimension of 𝐷 such that 𝑉 is a constrained dilation of 𝑇. 

Our first dilation result on the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚 is the following. 

Theorem (4.2.28) [244]: Let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract 

noncommutative variety 𝑉𝑓,𝐽
𝑚 , where 𝐽 is a norm-closed two sided ideal of the noncommutative 

polydomain algebra 𝐴(𝐷𝑓
𝑚). If 𝑇 ∶=  {𝑇𝑖,𝑗} is an element in the noncommutative variety 𝑉𝑓,𝐽

𝑚(𝐻), 

then there exists a Hilbert space 𝐾 and 𝑈 = {𝑈𝑖,𝑗} ∈ 𝑉𝑓,𝐽
𝑚(𝐾) with 

(𝑖𝑑 − Φ𝑓𝑘,𝑈𝑘)… (𝑖𝑑 − Φ𝑓1,𝑈1)(𝐼) = 0 

and such that 𝐻 can be identified with a 𝑐𝑜-invariant subspace of 𝐾:= [𝑁𝐽⊗Δ𝑓,𝑇
𝑚 (𝐼)𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] ⊕ 𝐾 under 

each operator 

𝑉𝑖,𝑗: = [
𝑆𝑖,𝑗⊗ 𝐼𝛥𝑓,𝑇

𝑚 (𝐼)𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  0

0 𝑈𝑖,𝑗
] , 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, 

where Δ𝑓,𝑇
𝑚 (𝐼):= (𝑖𝑑 − Φ𝑓1,𝑇1)

𝑚1 · · ·  (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘)
𝑚𝑘(𝐼), and 

𝑇𝑖,𝑗
∗ = 𝑉𝑖,𝑗

∗ |𝐻 , 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. 

Moreover, the following statements hold. 

(i) The dilation index of 𝑇 coincides with rankΔ𝑓,𝑇
𝑚 (𝐼). 

(ii) 𝑇 is a pure element in 𝑉𝑓,𝐽
𝑚(𝐻) if and only if the dilation 𝑉:= {𝑉𝑖,𝑗} is pure. 

Proof: We recall that the constrained noncommutative Berezin kernel associated with the 𝑇 ∈

𝑉𝑓,𝐽
𝑚(𝐻) is the bounded operator 𝐾𝑓,𝑇,𝐽: 𝐻 → 𝑁𝐽⊗𝛥𝑓,𝑇

𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  defined by 

𝐾𝑓,𝑇,𝐽: = (𝑃𝑁𝐽⊗ 𝐼𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)𝐾𝑓,𝑇 , 

where 𝐾𝑓,𝑇 is the noncommutative Berezin kernel associated with 𝑇 ∈ 𝐷𝑓
𝑚(𝐻). Taking into account 

the properties of the Berezin kernel and the fact that range 𝐾𝑓,𝑇 ⊆ 𝑁𝐽⊗𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , we have 

       𝐾𝑓,𝑇,𝐽𝑇(𝛼)
∗ = (𝑆(𝛼)

∗ ⊗ 𝐼𝐻)𝐾𝑓,𝑇,𝐽 ,     (𝛼) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘

+                     (66) 
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and 𝐾𝑓,𝑇,𝐽
∗ 𝐾𝑓,𝑇,𝐽 = 𝐾𝑓,𝑇

∗ 𝐾𝑓,𝑇. We consider the Hilbert space 𝐾:= (𝐼 − 𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇)𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and denote 𝑌:=

𝐼 − 𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇. For each 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, define the operator 𝐿𝑖,𝑗: 𝐾 → 𝐾 by setting 

𝐿𝑖,𝑗𝑌
1/2ℎ:= 𝑌1/2𝑇𝑖,𝑗

∗ ℎ, ℎ ∈ 𝐻. 

Note that each 𝐿𝑖,𝑗 is well-defined. Indeed, due to Lemma (4.2.27), we have Δ𝑓,𝑇
(1,...,1)

(𝐾𝑓,𝑇
∗ 𝐾𝑓,𝑇) ≤

𝛥𝑓,𝑇
(1,...,1)

(𝐼). Hence, we deduce that Φ𝑓𝑖,𝑇𝑖(𝑌) ≤ 𝑌 . Therefore, 

∑ 𝑎𝑖,𝛼‖𝐿𝑖,�̃�𝑌
1/2ℎ‖

2

𝛼∈𝔽𝑛𝑖
+ ,|𝛼|≥1

= 〈Φ𝑓𝑖,𝑇𝑖(𝑌)ℎ, ℎ〉 ≤ ‖𝑌
1/2ℎ‖

2
  

for any ℎ ∈ 𝐻, where �̃� is the reverse of 𝛼. Consequently, we have 𝑎
𝑖,𝑔𝑗

𝑖‖𝐿𝑖,𝑗𝑌
1/2𝑥‖

2
≤ ‖𝑌1/2𝑥‖

2
, 

for any 𝑥 ∈ 𝑁𝐽⊗𝐻. Since 𝑎
𝑖,𝑔𝑗

𝑖 ≠ 0 each 𝐿𝑖,𝑗 can be uniquely be extended to a bounded operator 

(also denoted by 𝐿𝑖,𝑗) on the subspace 𝐾. Denoting 𝑈𝑖,𝑗: = 𝐿𝑖,𝑗
∗  and setting 𝑈 = (𝑈1, . . . , 𝑈𝑘) with 

𝑈𝑖 = (𝑈𝑖,1, . . . , 𝑈𝑖,𝑛𝑖), an approximation argument shows that Φ𝑓𝑖,𝑈𝑖(𝐼𝑀) ≤ 𝐼𝑀 for 𝑖 ∈ {1, . . . , 𝑘} and 

𝑗 ∈ {1, . . . , 𝑛𝑖}. The definition of 𝐿𝑖,𝑗 implies 

                 𝑈𝑖,𝑗
∗ (𝑌1/2ℎ) = 𝑌1/2𝑇𝑖,𝑗

∗ ℎ,           ℎ ∈ 𝐻,                                                (67) 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Hence, and using again Lemma (4.2.27), we deduce that 

𝑌1/2Δ𝑓,𝑈
𝑃 (𝐼𝐾)𝑌

1/2 = Δ𝑓,𝑇
𝑃 (𝐼 − 𝐾𝑓,𝑇

∗ 𝐾𝑓,𝑇) ≥ 0 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  such that 𝑝 ≤ 𝑚, 𝑝 ≠ 0, and 𝑌1/2(𝑖𝑑 − Φ𝑓𝑘,𝑈𝑘) · · · (𝑖𝑑 −

Φ𝑓1,𝑈1)(𝐼)𝑌
1/2 = 0. 

Since 𝑌1/2 is injective on 𝐾 = 𝑌𝐻̅̅ ̅̅ , we conclude that 𝑈 = (𝑈1, . . . , 𝑈𝑘) ∈ 𝑉𝑓,𝐽
𝑚(𝐾) and 

(𝑖𝑑 − Φ𝑓𝑘,𝑈𝑘) · · · (𝑖𝑑 − Φ𝑓1,𝑈1)(𝐼) = 0. 

On the other hand, relation (67) implies 

𝑌1/2𝑞(𝑈) = 𝑞(𝑇)𝑌1/2 = 0, 𝑞 ∈ ℂ[𝑍𝑖,𝑗]. 

Using the von Neumann type inequality for the elements in the abstract noncommutative 

polydomain 𝐷𝑓
𝑚 and the fact that the polynomials in 𝑊𝑖,𝑗 and the identity are dense in the 

noncommutative polydomain algebra 𝐴(𝐷𝑓
𝑚), an approximation argument shows that 𝑌∗𝑔(𝑈) = 0 

for any 𝑔 ∈ 𝐽. Once again, since 𝑌1/2 is injective on 𝐾 = 𝑌𝐻̅̅ ̅̅ , we have 𝑔(𝑈) = 0 for any 𝑞 ∈ 𝐽. Let 

𝑉: 𝐻 →  [𝑁𝐽⊗𝐻]⊕ 𝐾 be defined by 

𝑉:= [
𝐾𝑓,𝑇,𝐽
𝑌
] . 

Note that 

‖𝑉ℎ‖2 = ‖𝐾𝑓,𝑇,𝐽ℎ‖
2
+ ‖(𝐼 − 𝐾𝑓,𝑇,𝐽

∗ 𝐾𝑓,𝑇,𝐽)
1/2ℎ‖

2
= ‖ℎ‖2 

for any ℎ ∈ 𝐻. Therefore, 𝑉 is an isometry. Using relations (66) and (67), we obtain 

𝑉𝑇𝑖,𝑗
∗ = [

𝐾𝑓,𝑇,𝐽
𝑌
]𝑇𝑖,𝑗

∗ ℎ = 𝐾𝑓,𝑇,𝐽𝑇𝑖,𝑗
∗ ℎ ⊕ 𝑌𝑇𝑖,𝑗

∗ ℎ 

= (𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐻)𝐾𝑓,𝑇,𝐽ℎ⊕ 𝑈𝑖,𝑗

∗ 𝑌ℎ 

= [
𝑆𝑖,𝑗
∗ ⊗ 𝐼𝛥𝑓,𝑇

𝑚 𝐻̅̅ ̅̅ ̅̅ ̅̅  0

0 𝑈𝑖,𝑗
∗
] 𝑉ℎ. 

Identifying 𝐻 with 𝑉𝐻, we deduce that 𝑇𝑖,𝑗
∗ = 𝑉𝑖,𝑗

∗ |𝐻 for 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. 

Now, we prove the second part of the theorem. Assume that 𝑇 has the dilation 𝑉 given by relation 

(65). Since Δ𝑓,𝑈
𝑚 (𝐼) = 0 and Δ𝑓,𝑆

𝑚 (𝐼) = 𝑃ℂ, where 𝑃ℂ is the orthogonal projection from 𝑁𝐽 onto ℂ1 ⊂

𝑁𝐽, we deduce that Δ𝑓,𝑇
𝑚 (𝐼) = 𝑃𝐻[𝑃ℂ⊗ 𝐼𝐷]|𝐻. Hence, rank Δ𝑓,𝑇

𝑚 (𝐼) ≤ 𝑑𝑖𝑚𝐷. The reverse inequality 

is due to the first part of the theorem. To prove item (ii), note that if 𝑇 is pure then 𝐾𝑓,𝑇 is an 

isometry and, consequently, 𝐾 = {0}. This implies 𝑉 = 𝑆, which is pure. Conversely, if we assume 

that 𝑉 is pure, we must have 

lim
𝑞=(𝑞1,...,𝑞𝑘)∈ℕ

𝑘
(𝑖𝑑 − Φ𝑓1,𝑉1

𝑞1 )  · · ·  (𝑖𝑑 − Φ𝑓𝑘,𝑉𝑘
𝑞𝑘 )(𝐼�̃�) = 𝐼�̃� . 

Taking into account the matrix representation of each operator 𝑉𝑖,𝑗 and the fact that 
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lim 
𝑞=(𝑞1,...,𝑞𝑘)∈ℕ

𝑘
(𝑖𝑑 − Φ𝑓1,𝑈1

𝑞1 )  · · ·  (𝑖𝑑 − Φ𝑓𝑘,𝑈𝑘
𝑞𝑘 )(𝐼𝐾) = 0, 

we deduce that 𝐾 = {0}. This shows that the noncommutative Berezin kernel 𝐾𝑓,𝑇 is an isometry, 

which is equivalent to the fact that 𝑇 is pure. The proof is complete.  

We provide a Wold type decomposition for non-degenerate ∗-representations of the 𝐶∗-algebra 

𝐶∗(𝑆𝑖,𝑗).  

Theorem (4.2.29) [244]: Let 𝑞 = (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let 𝑆 = (𝑆1, . . . , 𝑆𝑘) be the universal model associated with the abstract 

noncommutative variety 𝑉𝑞,𝐽
𝑚 , where 𝐽 is a WOT-closed two sided ideal of 𝐹∞(𝐷𝑞

𝑚) such that 1 ∈

𝑁𝐽 . If 𝜋: 𝐶
∗(𝑆𝑖,𝑗) → 𝐵(𝐾) is a nondegenerate ∗-representation of 𝐶∗(𝑆𝑖,𝑗) on a separable Hilbert 

space 𝐾, then 𝜋 decomposes into a direct sum 

𝜋 = 𝜋0⊕𝜋1 𝑜𝑛 𝐾 = 𝐾0⊕𝐾1, 
where 𝜋0 and 𝜋1 are disjoint representations of 𝐶∗(𝑆𝑖,𝑗) on the Hilbert spaces 

𝐾0: = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝜋(𝑆(𝛼))∆𝑞,𝜋(𝑆)
𝑚 (𝐼𝐾)𝐾: (𝛼) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘} 

and 𝐾1 ≔ 𝐾0
⊥ , respectively, where 𝜋(𝑆): = (𝜋(𝑆1), . . . , 𝜋(𝑆𝑘)) and 𝜋(𝑆𝑖): = (𝜋(𝑆𝑖,1), . . . , 𝜋(𝑆𝑖,𝑛𝑖)). 

More-over, up to an isomorphism, 

𝐾0 ≃ 𝑁𝐽⊗𝒢, 𝜋0(𝑋) = 𝑋 ⊗ 𝐼𝒢 𝑓𝑜𝑟 𝑎𝑛𝑦   𝑋 ∈ 𝐶
∗(𝑆𝑖,𝑗), 

where 𝒢 is a Hilbert space with 

𝑑𝑖𝑚 𝒢 = dim{𝑟𝑎𝑛𝑔𝑒∆𝑞,𝜋(𝑆)
𝑚 (𝐼𝐾)} , 

and 𝜋1 is a ∗-representation which annihilates the compact operators and 

(𝐼 − Φ𝑞1,𝜋1(𝑆1))  · · ·  (𝐼 − Φ𝑞1,𝜋1(𝑆1))(𝐼𝐾1) = 0. 

If 𝜋′ is another nondegenerate ∗-representation of 𝐶∗(𝑆𝑖,𝑗) on a separable Hilbert space 𝐾′, then 𝜋 is 

unitarily equivalent to 𝜋′ if and only if 𝑑𝑖𝑚𝒢 = 𝑑𝑖𝑚 𝒢′ and 𝜋1 is unitarily equivalent to 𝜋1
′ . 

Proof: Note that, due to Theorem (4.2.6), the ideal 𝐶(𝑁𝐽) of compact operators in 𝐵(𝑁𝐽) is 

contained in the 𝐶∗-algebra 𝐶∗(𝑆𝑖,𝑗). Due to standard theory of representations of the 𝐶∗-algebras 

[254], the representation 𝜋 decomposes into a direct sum 𝜋 = 𝜋0⊕𝜋1 on 𝐾 = 𝐾0⊕𝐾1, where 

𝐾0 ∶= 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝜋(𝑋)𝐾: 𝑋 ∈ 𝐶(𝑁𝐽)}  𝑎𝑛𝑑   𝐾1 ∶= 𝐾0
⊥, 

and the representations 𝜋𝐽: 𝐶
∗(𝑆𝑖,𝑗) → 𝐵(𝐾𝑗) are defined by 𝜋𝑗(𝑋) ∶= 𝜋(𝑋)|�̃�𝑗 for 𝑗 = 0, 1. We 

remark that 𝜋0, 𝜋1 are disjoint representations of 𝐶∗(𝑆𝑖,𝑗) such that 𝜋1 annihilates the compact 

operators in 𝐵(𝑁𝐽), and 𝜋0 is uniquely determined by the action of 𝜋 on the ideal 𝐶(𝑁𝐽) of compact 

operators. Since every representation of 𝐶(𝑁𝐽) is equivalent to a multiple of the identity 

representation, we deduce that 

𝐾0 ≃ 𝑁𝐽⨂ 𝒢, 𝜋0(𝑋) = 𝑋⨂𝐼𝒢 , for any 𝑋 ∈ 𝐶∗(𝑆𝑖,𝑗), where 𝒢 is a Hilbert space. Using Theorem 

(4.2.6) and its proof, one can show that the space 𝐾0 coincides with the space 𝐾0. Taking into 

account that (𝐼 − Φ𝑞1,𝑆1))
𝑚1  · · ·  (𝐼 − Φ𝑞𝑘,𝑆𝑘)

𝑚𝑘(𝐼) = 𝑃ℂ is a projection of rank one in 𝐶∗(𝑆𝑖,𝑗), we 

deduce that (𝐼 − Φ𝑞1,𝜋(𝑆1))
𝑚1 · · ·  (𝐼 − Φ𝑞𝑘,𝜋(𝑆𝑘))

𝑚𝑘
(𝐼𝐾𝜋) = 0 and 𝑑𝑖𝑚 𝒢 = 𝑑𝑖𝑚 [𝑟𝑎𝑛𝑔𝑒 𝜋(𝑃ℂ)] . 

The uniqueness of the decomposition is due to standard theory of representations of 𝐶∗-algebras.  

We remark that under the hypotheses and notations of Theorem (4.2.29), and setting 𝑉𝑖,𝑗: = 𝜋(𝑆𝑖,𝑗) 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}, one can see that 𝑉:= {𝑉𝑖,𝑗} is a pure element in 𝑉𝑞,𝐽
𝑚 (𝐾) if 

and only if 𝐾 ∶= 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑉(𝛼)Δ𝑞,𝑉
𝑚 (𝐼𝐾)(𝐾): (𝛼) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘. 

We can obtain a more refined dilation theorem for the class of noncommutative varieties 𝑉𝑞,𝐽
𝑚 (𝐻), 

where 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is an ideal generated by homogeneous polynomials and 𝑞 = (𝑞1, . . . , 𝑞𝑘) is a 𝑘-

tuple of positive regular noncommutative polynomials. 

Let 𝐶∗(Γ) be the 𝐶∗-algebra generated by a set of operators Γ ⊂ 𝐵(𝐾) and the identity. A subspace 

𝐻 ⊂ 𝐾 is called ∗-cyclic for Γ if 𝐾 = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑋ℎ, 𝑋 ∈ 𝐶∗(Γ), ℎ ∈ 𝐻}. 
Theorem (4.2.30) [244]: Let 𝑞 = (𝑞1, . . . , 𝑞𝑘) be a 𝑘-tuple of positive regular noncommutative 

polynomials and let 𝑆 = {𝑆𝑖,𝑗} be the universal model associated with the abstract noncommutative 

variety 𝑉𝑞,𝑄
𝑚 , where 𝑄 ⊂ ℂ[𝑍𝑖,𝑗] is an ideal generated by homogeneous polynomials. If 𝑇 = {𝑇𝑖,𝑗} is 
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in 𝑉𝑞,𝑄
𝑚 (𝐻), then there exists a ∗-representation 𝜋: 𝐶∗(𝑆𝑖,𝑗) → 𝐵(𝐾𝜋) on a separable Hilbert space 

𝐾𝜋, which annihilates the compact operators and 

(𝐼 − Φ𝑞1,𝜋(𝑆1))  · · ·  (𝐼 − Φ𝑞𝑘,𝜋(𝑆𝑘))(𝐼𝐾𝜋) = 0,  

where 𝜋(𝑆):= (𝜋(𝑆1), . . . , 𝜋(𝑆𝑘)) and 𝜋(𝑆𝑖): = (𝜋(𝑆𝑖,1), . . . , 𝜋(𝑆𝑖,𝑛𝑖)), such that 𝐻 can be identified 

with a ∗-cyclic co-invariant subspace of 

𝐾:= [𝑁𝑄⊗𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] ⊕ 𝐾𝜋  

under each operator 

𝑉𝑖,𝑗: = [
𝑆𝑖,𝑗⊗ 𝐼𝛥𝑓,𝑇

𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 0

0 𝜋(𝑆𝑖,𝑗)
] , 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}, 

where Δ𝑞,𝑇
𝑚 (𝐼): = (𝑖𝑑 − Φ𝑞1,𝑇1)

𝑚1 · · ·  (𝑖𝑑 − Φ𝑞𝑘,𝑇𝑘)
𝑚𝑘(𝐼), and such that 

𝑇𝑖,𝑗
∗ = 𝑉𝑖,𝑗

∗ |𝐻 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ∈ {1, . . . , 𝑘}, 𝑗 ∈ {1, . . . , 𝑛𝑖}. 

Proof: Applying Arveson extension theorem [253] to the map Ψ of Theorem (4.2.4), we find a 

unital completely positive linear map Ψ ∶ 𝐶∗(𝑆𝑖,𝑗) → 𝐵(𝐻) such that Ψ(𝑆(𝛼)𝑆(𝛽))
∗ = 𝑇(𝛼)𝑇(𝛽)

∗  for all 

(𝛼), (𝛽) 𝑖𝑛𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘. Let �̃�: 𝐶∗(𝑆𝑖,𝑗) → 𝐵(𝐾) be the minimal Stinespring dilation [36] of Ψ. 

Then we have 

Ψ(𝑋) = 𝑃𝐻�̃�(𝑋)|𝐻, 𝑋 ∈ 𝐶∗(𝑆𝑖,𝑗), 

and �̃� = 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{�̃�(𝑋)ℎ: 𝑋 ∈ 𝐶∗(𝑆𝑖,𝑗), ℎ ∈ 𝐻}. Now, one can show that that that 𝑃𝐻�̃�(𝑆(𝛼))|𝐻⊥ = 0 

for any (𝛼) ∈ 𝔽𝑛1
+ × · · · × 𝔽𝑛𝑘  . Consequently, 𝐻 is an invariant subspace under each operator 

�̃�(𝑆𝑖,𝑗)
∗ and 

�̃�(𝑆𝑖,𝑗)
∗|𝐻 = Ψ(𝑆𝑖,𝑗

∗ ) = 𝑇𝑖,𝑗
∗  

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. Applying the Wold decomposition of Theorem (4.2.29) to 

the Stinespring representation �̃�, one can complete the proof of the theorem. We omit the details 

since the proof is now very similar to the corresponding result from [253].  

Let 𝑉 be the dilation of 𝑇 given by Theorem (4.2.30). One can easily prove that 𝑉 is a pure element 

in 𝑉𝑞
𝑚(𝐾) if and only if 𝑇 is a pure element in 𝑉𝑞

𝑚(𝐻), and (𝐼 − Φ𝑞1,𝑉1)  · · ·  (𝐼 − Φ𝑞𝑘,𝑉𝑘)(𝐼�̃�) = 0 

if and only if (𝐼 − Φ𝑞1,𝑇1)  · · ·  (𝐼 − Φ𝑞𝑘,𝑇𝑘)(𝐼𝐻) = 0. We remark that under the additional condition 

that 

𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅{𝑆(𝛼)𝑆(𝛽)
∗ : (𝛼), (𝛽) ∈ 𝔽𝑛1

+ × · · · × 𝔽𝑛𝑘} = 𝐶
∗(𝑆𝑖,𝑗), 

which holds, for example, for the polyballs (commutative or noncommutative), one can show that 

the dilation provided by Theorem (4.2.30) is minimal. Taking into account the uniqueness of the 

minimal Stinespring representation and the Wold type decomposition of Theorem (4.2.29), we can 

prove that the dilation is unique up to unitary equivalence. 

We provide a characterization for the class of elements in the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚 

which admit constrained characteristic functions. The characteristic function is a complete unitary 

invariant for completely non-coisometric tuples. We obtain operator models in terms of the 

constrained characteristic functions. 

Let 𝑆:= {𝑆𝑖,𝑗} be the universal model associated to the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚 and let 

Φ: 𝑁𝐽⊗𝐻 → 𝑁𝐽⊗𝐾 be a multi-analytic operator with respect to 𝑆, i.e., 

Φ(𝑆𝑖,𝑗⊗ 𝐼𝐻) = (𝑆𝑖,𝑗⊗ 𝐼𝐾)Φ 

for any 𝑖 ∈ {1, . . . , 𝑘} and 𝑗 ∈ {1, . . . , 𝑛𝑖}. The support of Φ is the smallest reducing subspace 

𝑠𝑢𝑝𝑝(Φ) of 𝑁𝐽⊗𝐻 under each operator 𝑆𝑖,𝑗 containing the co-invariant subspace 𝑀:=

Φ∗(𝑁𝐽⊗𝐾)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Using Theorem (4.2.8) and its proof, we deduce that if 1 ∈ 𝑁𝐽, then 

sup 𝑝 (Φ) = ⋁ (𝑆(𝛼)⊗ 𝐼𝐾)(𝑀)

(𝛼)∈𝔽𝑛1
+ × · · · ×𝔽𝑛𝑘

= 𝑁𝐽⊗ℒ,  

where ℒ:= (𝑃ℂ⊗ 𝐼𝐻)Φ
∗(𝑁𝐽⊗𝐾)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . We say that two multi-analytic operator Φ:𝑁𝐽⊗𝐾1 → 𝑁𝐽⊗

𝐾2 and Φ: 𝑁𝐽⊗𝐾1
′ → 𝑁𝐽⊗𝐾2

′ coincide if there are two unitary operators 𝜏𝑗 ∈ 𝐵(𝐾𝑗 , 𝐾𝑗
′) such that 

Φ′(𝐼𝑁𝐽⊗ 𝜏1) = (𝐼𝑁𝐽⊗ 𝜏2)Φ. 
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As in [33], one can prove that if Φ𝑠: 𝑁𝐽⊗𝐻𝑠 → 𝑁𝐽⊗𝐾, 𝑠 = 1, 2, are multi-analytic operators 

with respect to 𝑆:= {𝑆𝑖,𝑗} such that Φ1Φ1
∗ = Φ2Φ2

∗ , then there is a unique partial isometry 𝑉:𝐻1 →

𝐻2 such that Φ1 = Φ2(𝐼𝑁𝐽⊗𝑉), where (𝐼𝑁𝐽⊗𝑉) is a inner multi-analytic operator with initial 

space sup 𝑝 (Φ1) and final space sup 𝑝 (Φ2). In particular, the multi-analytic operators 

Φ1|𝑠𝑢𝑝 𝑝 (Φ1) and Φ1|𝑠𝑢𝑝 𝑝 (Φ1) coincide. 

Definition (4.2.31) [244]: A 𝑘-tuple 𝑇 ∈ 𝑉𝑓,𝐽
𝑚(𝐻) is said to have constrained characteristic function 

if there is a Hilbert space ℰ and a multi-analytic operator Ψ:𝑁𝐽⊗ℰ → 𝑁𝐽⊗Δ𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  with 

respect to 𝑆 = {𝑆𝑖,𝑗} such that 

𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ +ΨΨ∗ = 𝐼, 

where 𝐾𝑓,𝑇,𝐽 is the constrained noncommutative Berezin kernel associated with 𝑇 ∈ 𝑉𝑓,𝐽
𝑚(𝐻). 

According to the remarks above, if 1 ∈ 𝑁𝐽 and there is a constrained characteristic function for 𝑇 ∈

𝑉𝑓,𝐽
𝑚(𝐻), then it is essentially unique. We also remark that in the particular case when 𝑘 = 1 and 

𝑚1 = 1, all the elements in the noncommutative variety 𝑉𝑓1
1 have constrained characteristic 

functions. 

Using Theorem (4.2.10), one can deduce the following result. 

Theorem (4.2.32) [244]: An element 𝑇 = {𝑇𝑖,𝑗} in the noncommutative variety 𝑉𝑓,𝐽
𝑚(𝐻) admits a 

constrained characteristic function if and only if 

Δ𝑓,𝑆⊗𝐼
𝑝

(𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ ) ≥ 0 

for any 𝑝:= (𝑝1, . . . , 𝑝𝑘) ∈ ℤ+
𝑘  such that 𝑝 ≤ 𝑚, where 𝐾𝑓,𝑇,𝐽 is the constrained Berezin kernel 

associated with 𝑇 and 𝑆:= {𝑆𝑖,𝑗} is the universal model of 𝑉𝑓,𝐽
𝑚. 

If 𝑇 has characteristic function, the multi-analytic operator Γ provided by the proof of Theorem 

(4.2.10) when 𝐺 = 𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗  , which we denote by Θ𝑓,𝑇,𝐽, is called the constrained 

characteristic function of 𝑇. More precisely, Θ𝑓,𝑇,𝐽 is the multi-analytic operator 

Θ𝑓,𝑇,𝐽: 𝑁𝐽⊗𝛥𝑓,𝑀𝑇
𝑚 (𝐼)(𝑀𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ → 𝑁𝐽⊗𝛥𝑓,𝑇

𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

defined by 𝛩𝑓,𝑇,𝐽 ∶= (𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ )1/2𝐾𝑓,𝑇,𝐽

∗ , where 

𝐾𝑓,𝑇,𝐽: 𝐻 → 𝑁𝐽⊗𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is the constrained noncommutative Berezin kernel associated with 𝑇 and 

𝐾𝑓,𝑀𝑇,𝐽: 𝐻 → 𝑁𝐽⊗𝛥𝑓,𝑀𝑇
𝑚 (𝐼)(𝑀𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

is the constrained noncommutative Berezin kernel associated with 𝑀𝑇 ∈ 𝑉𝑓
𝑚(𝑀𝑇). Here, we have 

𝑀𝑇: = 𝑟𝑎𝑛𝑔𝑒 (𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

and 𝑀𝑇: = {𝑀𝑖,𝑗}, where 𝑀𝑖,𝑗 ∈ 𝐵(𝑀𝑇) is given by 𝑀𝑖,𝑗: = 𝐴𝑖,𝑗
∗  and 𝐴𝑖,𝑗 ∈ 𝐵(𝑀𝑇) is uniquely 

defined by 

𝐴𝑖,𝑗[(𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ )1/2𝑥]: = (𝐼 − 𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽

∗ )1/2(𝑆𝑖,𝑗⊗ 𝐼)𝑥 

for any 𝑥 ∈ 𝑁𝐽⊗Δ𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . According to Theorem (4.2.10), we have 

𝐾𝑓,𝑇,𝐽𝐾𝑓,𝑇,𝐽
∗ + Θ𝑓,𝑇,𝐽Θ𝑓,𝑇,𝐽

∗ = 𝐼. 

We denote by 𝐶𝑓,𝐽
𝑚 (𝐻) the set of all 𝑇 = {𝑇𝑖,𝑗} ∈ 𝑉𝑓,𝐽

𝑚(𝐻) which admit constrained characteristic 

functions. W provide a model theorem for class of the completely non-coisometric elements in 

𝐶𝑓,𝐽
𝑚 (𝐻). Due to the results obtained the proof is now similar to that of Theorem 6.4 from [253].  

Theorem (4.2.33) [244]: Let 𝑇 = {𝑇𝑖,𝑗} be a completely non-coisometric element in 𝐶𝑓,𝐽
𝑚 (𝐻) and let 

𝑆:= {𝑆𝑖,𝑗} be the universal model associated to the abstract noncommutative variety 𝑉𝑓,𝐽
𝑚. Set 

𝐷:= 𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝐷∗: = 𝛥𝑓,𝑀𝑇

𝑚 (𝐼)(𝑀𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

and Δ𝛩𝑓,𝑇,𝐽: = (𝐼 − Θ𝑓,𝑇,𝐽
∗ Θ𝑓,𝑇,𝐽)

1/2
, where Θ𝑓,𝑇,𝐽 is the characteristic function of 𝑇. Then 𝑇 is 

unitarily equivalent to 𝕋:= {𝑇𝑖,𝑗} ∈ 𝐶𝑓
𝑚(ℍ𝑓,𝑇,𝐽), where 𝕋𝑖,𝑗 is a bounded operator acting on the 

Hilbert space 

ℍ𝑓,𝑇,𝐽: = [(𝑁𝐽⊗𝐷)⊕ Δ𝛩𝑓,𝑇,𝐽(𝑁𝐽⊗𝐷∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] 
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⊖ {Θ𝑓,𝑇,𝐽𝜑⊕ 𝛥Θ𝑓,𝑇,𝐽𝜑: 𝜑 ∈ 𝑁𝐽⊗𝐷∗} 

and is uniquely defined by the relation  

(𝑃𝑁𝐽⊗𝐷|ℍ𝑓,𝑇,𝐽
)𝕋𝑖,𝑗

∗ 𝑥 = (𝑆𝑖,𝑗
∗ ⊗ 𝐼𝐷) (𝑃𝑁𝐽⊗𝐷|ℍ𝑓,𝑇,𝐽

) 𝑥 

for any 𝑥 ∈ ℍ𝑓,𝑇,𝐽. Here, 𝑃𝑁𝐽⊗𝐷 is the orthogonal projection of the Hilbert space 

𝐾𝑓,𝑇,𝐽: = (𝑁𝐽⊗𝐷)⊕ 𝛥𝛩𝑓,𝑇,𝐽(𝑁𝐽⊗𝐷∗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

onto the subspace 𝑁𝐽⊗𝐷. 

Corollary (4.2.34) [244]: Let 𝑇 = {𝑇𝑖,𝑗} be an element in 𝐶𝑓,𝐽
𝑚 (𝐻). Then 𝑇 is pure if and only if the 

constrained characteristic function Θ𝑓,𝑇,𝐽 is an inner multi-analytic operator with respect to 𝑆:=

{𝑆𝑖,𝑗}. Moreover, in this case 𝑇 = {𝑇𝑖,𝑗} is unitarily equivalent to 𝐺 = {𝐺𝑖,𝑗}, where 

𝐺𝑖,𝑗: = 𝑃𝐻𝑓,𝑇,𝐽(𝑆𝑖,𝑗⊗ 𝐼)|𝐻𝑓,𝑇,𝐽 

and 𝑃𝐻𝑓,𝑇,𝐽 is the orthogonal projection of 𝑁𝐽⊗𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  onto 

𝐻𝑓,𝑇,𝐽: = {𝑁𝐽⊗𝛥𝑓,𝑇
𝑚 (𝐼)(𝐻)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ } ⊖ 𝑟𝑎𝑛𝑔𝑒Θ𝑓,𝑇,𝐽 . 

As consequences of the results above, we can easily show that if 𝑇 = {𝑇𝑖,𝑗} ∈ 𝑉𝑓,𝐽
𝑚(𝐻), then 𝑇 is 

unitarily equivalent to {𝑆𝑖,𝑗⊗ 𝐼𝐾} for some Hilbert space 𝐾 if and only if 𝑇 ∈ 𝐶𝑓,𝐽
𝑚  is completely 

noncoisometric and the characteristic function Θ𝑓,𝑇,𝐽 = 0. On the other hand, if 𝑇 ∈ 𝐶𝑓,𝐽
𝑚  , then Θ𝑓,𝑇,𝐽 

has dense range if and only if there is no nonzero vector ℎ ∈ 𝐻 such that 

lim  
𝑞=(𝑞1,...,𝑞𝑘)∈ℕ

𝑘
〈(𝑖𝑑 − Φ𝑓1,𝑇1

𝑞1 ) · · ·  (𝑖𝑑 − Φ𝑓𝑘,𝑇𝑘
𝑞𝑘 ) (𝐼𝐻)ℎ, ℎ〉 = ‖ℎ‖, 

where 𝑇𝑖: = (𝑇𝑖,𝑗 , . . . , 𝑇𝑖,𝑛𝑖) for any 𝑖 ∈ {1, . . . , 𝑘}. 

An important consequence of Theorem (4.2.33) is that the constrained characteristic function Θ𝑓,𝑇,𝐽 

is a complete unitary invariant for the completely non-coisometric part of the noncommutative 

domain 𝐶𝑓,𝐽
𝑚 . 

The proof is similar to that of Theorem 6.5 from [253]. 

Theorem (4.2.35) [244]: Let 𝑇 = {𝑇𝑖,𝑗} ∈ 𝐶𝑓,𝐽
𝑚 (𝐻) and 𝑇′ = {𝑇𝑖,𝑗

′ } ∈ 𝐶𝑓,𝐽
𝑚 (𝐻′) be two completely 

non-coisometric elements. Then 𝑇 and 𝑇′ are unitarily equivalent if and only if their constrained 

characteristic functions Θ𝑓,𝑇,𝐽 and Θ𝑓,𝑇′,𝐽 coincide.  
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Chapter 5 

 Berezin  Transform  on  Harmonic  Bergman  Spaces 

We show that an expansion has the additional property of being asymptotic for large c with fixed a 

uniformly in b and z (with bounded b/c). Moreover, the asymptotic character of the expansion holds 

for a larger set of b, c and z specified below. We provide the full asymptotic expansion of the harmonic 

Berezin transform on the unit ball in 𝑅𝑛 purely by means of transformations of hypergeometric 

functions and function’s “hypergeometrization”. 

Section (5.1): Gauss Hypergeometric Function 

 

The asymptotic behaviour of the Gauss hypergeometric function F(a, b; c; z) when different 

combinations of a, b, c and z are large is a subject of recent interest [286]. The hypergeometric 

function is defined by the power series 

 

F(a, b; c; 𝓏) = ∑
(a)n(b)n
(c)nn!

𝓏n, |𝓏| < 1, c ≠ 0, −1,−2

∞

n=0

, …            (1) 

 

This is an asymptotic expansion of F(a, b;  c;  z) for z →  0 and/or c → ∞. The condition |z| < 1 may 

be relaxed still keeping the asymptotic character of the expansion for large c [291]. A translation 

formula for F(a, b;  c;  z) [288, p. 113, Eq. (5.11)], can be used to obtain an asymptotic representation 

of F(a, b;  c;  z) for large values of z with | arg(−z)| < π [288, p. 127]: 

 

F(a, b; c; 𝓏) =
Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−𝓏)−a∑

(a)n(1 − c + a)n
(1 − b + a)nn!

1

𝓏n

∞

n=0

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−𝓏)−b∑

(b)n(1 − c + b)n
(1 − a + b)nn!

1

𝓏n

∞

n=0

 

 

But when one or several of the parameters a, b, c or z are large (except when only c or z are large), 

the asymptotic study is more difficult. Some have obtained asymptotic expansions of F(a, b;  c;  z) 
with certain restrictions on the parameters. Wagner provides in [282] an asymptotic expansion of 

F(a, b;  c;  z) when c → ∞with a2 = O(c) and b2 = O(c). This result is obtained from an integral 

representation of F(a, b;  c;  z) followed by contour deformations and series expansions. 

Several have focused their attention on the asymptotic behaviour of 

 

F(a + e1λ, b + e2λ; c + e3λ; 𝓏), ej = 0,±1, λ → ∞                 (2) 

 

In [293],Watson obtained an asymptotic expansion of F(a + 𝛌, 𝐛 + 𝛌; 𝐜 + 𝟐𝛌; 𝔃), 𝐅(𝐚 + 𝛌, 𝐛 −
𝛌; 𝐜; 𝔃) and𝐅(𝐚, 𝐛; 𝐜 + 𝛌; 𝔃)in terms of inverse powers of 𝛌 by contour integrals and the steepest 

descent method, see also [287, Chapter 5,Section 9]. However, these expansions are only valid in 

small regions of z. In [284], Jones obtains a uniform asymptotic expansion of F(a + 𝛌, 𝐛 −
𝛌; 𝐜; 𝟏 𝟐⁄ − 𝟏 𝟐⁄ 𝔃)when λ → ∞ with | arg z| < π in terms of Bessel functions. Jones uses for his 

analysis Olver’s method [287], which is based on the linear second order differential equation 

satisfied by F(a, b;  c;  z). Olde Daalhuis has obtained an asymptotic expansion of F(a, b − λ;  c +
λ;−𝓏) in terms of parabolic cylinder functions and of F(a +  λ, b +  2λ;  c; −𝓏) in terms of Airy 

functions [286]. These expansions hold for fixed values of a, b and c, and are uniformly valid for z 
with |arg 𝓏|<π. Olde Daalhuis uses Bleinstein’s method applied on a contour 

integral representation of F(a, b;  c;  z) in which a saddle point and a branch point coalesce. In [289], 

Temme has shown that the set of 26 possible cases in (2) can be reduced to only four cases: 

 

(A)e1 = e2 = 0, e3 = 1    , (B)e1 = 1, e2 = −1, e3 = 0 
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(C)e1 = 0, e2 = −1, e3 = 1, (D)e1 = 1, e2 = 2, e3 = 0 
 

For case (A), Temme obtains the uniform asymptotic expansion 

 

F(a, b; c + λ; 𝓏~
Γ(c + λ)ξb−a

Γ(c + λ − b)
∑𝗀s(𝓏)(b)sξ

sU(b + s, b − a + 1 + s, ξλ)

∞

s=0

(3) 

where U is the confluent hypergeometric function, ξ = ln[(𝓏 − 1)/𝓏] and  𝗀sare the coefficients of 

the Taylor expansion  𝗀(t) = (t + ξ)a[(et − 1) t⁄ ]b−1e(1−c)t(1 − 𝓏 + 𝓏e−t)−aat t = 0: 𝗀(t) =
∑ 𝗀s(𝓏)t

s∞
s=0  . Formula (3) is an asymptotic expansion when λ → ∞, uniformly with respect to 

bounded values of ξ(𝓏 bounded away from the origin). We are concerned with a generalization of 

cases (A) and (C). We study asymptotic expansions of F(a, b;  c;  z) for large values of c uniformly 

in b with bounded b/c. In [288] we used a modification of the steepest descent method (see [283]) to 

derive uniform asymptotic expansions of the incomplete gamma functions Γ(a, 𝓏) and γ(a, 𝓏) for 

large values of a and z in terms of elementary functions. We apply here the same idea to derive a 

uniform asymptotic expansion of F(a, b;  c;  z) for large b and c using the integral representation (4) 

of F(a, b;  c;  z) given below. The approach consists of: (i) a factorization of the integrand in that 

integral in an exponential factor times 

another factor and (ii) an expansion of this second factor at the asymptotically relevant point of the 

exponential factor. The main benefit of this procedure is the derivation of easy asymptotic expansions 

(in terms of elementary functions) with easily computable coefficients. 

We derive a convergent expansion of F(a, b +  1;  c +  2;  𝓏) valid under the restrictions |b||𝓏| <
|c −  b𝓏| and |c − b||𝓏| < |c − b𝓏| which has also an asymptotic character for large c uniformly in 

b and z with bounded b/c. This expansion is not new, it was already obtained by N∅rlund in [285, 

Eq. (1.21)], although with more restrictive conditions for the convergence and without mention to its 

asymptotic properties. we show that the expansion obtained in the previous keeps its asymptotic 

character for large c (uniformly in b and z with bounded b/c) even if the restrictions |b||𝓏| < |c −
b𝓏| and |c − b||𝓏| < |c − b𝓏| do not hold. We consider a, b, c ∈  𝕔, c ≠  −2, −3,−4, . . . and 

| arg(1 −  𝓏)| < π. 
The Gauss hypergeometric function may be written in the form [288, p. 110, Eq. (5.4)] 

F(a, b; c; 𝓏) =
Γ(c)

Γ(b)Γ(c − b)
∫ t b−1(1 − t)c−b−1(1 − t𝓏)−adt,ℜa > ℜb > 0

1

0
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For convenience, we consider a shift in the parameters b and c and write the hypergeometric function 

in the form 

F(a, b + 1; c + 2; 𝓏) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ec

f(t)

1

0

𝗀(t)dt             (4) 

With 

 

f(t) ≡
b

c
log t + (1 −

b

c
) log(1 − t), 𝗀(t) ≡ (1 − t𝓏)−a, ℜc + 1 > ℜb > −1  (5) 

 

The unique saddle point of f (t) is located at t = b/c .We replace the function g(t) in (5) by its Taylor 

expansion at t = b/c with convergence radius |1/𝓏 − b/c| [283] 

𝗀(t) =∑
(a)k𝓏

k

k! (1 − (b c⁄ )𝓏)k+a
(t −

b

c
)
k

, |t −
b

c
| < |

1

𝓏
−
b

c
|                            (6)

∞

k=0

 

 

This expansion converges uniformly with respect to t ∈ [0, 1] when the following conditions hold: 

 

|b||z| < |c −  bz| and |c −  b||z| < |c −  bz|.                  (7) 
 

Several possible z-regions are illustrated in Fig. 1. 

For the values of z, b and c verifying (7), we can introduce (6) in (4) to obtain, after interchanging 

summation and integration, 

 

F(a, b + 1; c + 2; 𝓏) =∑
(a)k𝓏

k

k! (1 − (b c⁄ )𝓏)k+a
Φk(b, c)

∞

k=0

,             (8) 

 

where the functions Φk(b, c) are defined by 

 

Φk(b, c) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ec

f(t)
(t −

b

c
)
k

dt             (9)

1

0

 

 

Using again the integral representation (4) we see that Φk(b, c) is a very simple hypergeometric 

function which is also a rational function of b and c: 

 

Φk(b, c) = (−
b

c
)
k

F (−k, b + 1; c + 2;
c

b
) =∑(

k
j
) (−

b

c
)
k−jk

j=0

(b + 1)j

(c + 2)j
   (10) 

 

The first few functions Φk(b, c) are detailed in Table 1. 

We have derived the above expansion under the restrictionsℜc + 1 > ℜb > −1, |b||𝓏| < |c −
b𝓏| and |c − b||𝓏| < |c − b𝓏|. But the restriction ℜc +  1 > ℜb >  − 1 is superfluous: for large 

values of k we have that [290] 

F(−k, b; c; 𝓏) =
Γ(c)

Γ(c − b)
(k𝓏)−b[1 + o(1)] +

Γ(c)

Γ(b)
e±πi(b−c)(1 − 𝓏)c−b+k(k𝓏)b−c[1 + o(1)] 
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Table 1[285]: 

First few functions Φk(b, c) defined in (9) and used in (8) 

    k                                               Φk(b, c) 
0 1 

1 
c−2b

c(c+2)
 

2 
(2+b)c2−b(6+b)c+6b2

c2(c+2)(c+3)
 

3 
(6+5b)c3−3b(8+5b)c2+2b2(18+5b)c−24b3

c3(c+2)(c+3)(c+4)
 

 

when k → ∞with b and c fixed complex numbers, c ≠  0, −1,−2, . . . , z ≠  0 and |arg(1 −  z)| < π. 

Therefore, Φk(b, c) = ϑ(γ(k)α
k)when k→∞ 

with γ(k) ≡ Max{k−b−1, kb−c−1} and α≡ Max{|(b/c)|, |1 − (b/c)|}. 

Then, the terms of the series (8) verify 
(a)k𝓏

k

k!(1−(b c⁄ )𝓏)k+a
Φk(b, c) = ϑ(k

a−1γ(k)βk)when k→∞, 

With 

β  ≡ Max{|
b𝓏

c−b𝓏
| , |

(c−b)𝓏

c−b𝓏
|} < 1 

 Therefore, expansion (8) has almost a power rate of convergence under the restrictions |b||𝓏|<|c − b𝓏| 

and |c −b||𝓏|<|c − b𝓏| (and the restrictions 𝕽c + 1>𝕽b>−1 are not necessary). 

On the other hand, from [291, Eq. (15.2.10)] we find the recurrence 

 

Gk(b, c) =
1

c + k + 1
[k (1 − 2

b

c
) + (k − 1)

b

c
(1 −

b

c
)Gk−1

−1 (b, c), k ≥ 2] (11) 

 

Where 

Gk(b, c) ≡
Φk(b, c)

Φk−1(b, c)
, k = 1,2,3, … 

 

From the explicit values of Φ0 and Φ1 given in Table 1 we see that G1(b, c) = ϑ(c
−1) and G2(b, c) =

ϑ(b c⁄ ) when |b| + |c| → ∞with bounded b/c and b ≠ 0. 

From this behaviour of G1 and G2 and the above recurrence, it may be shown by induction that, for b 

≠ 0, 

Gk(b, c) = ϑ(b c⁄ ) when |b|  +  |c|  →  ∞ with bounded b/c and even k. 

Gk(b, c) = ϑ(c
−1) when |b|  +  |c|  →  ∞ with bounded b/c and odd k. 

Therefore, for b ≠  0, 

 

Φk(b, c) = ϑ (
b1−k mod2

c
Φk−1(b, c))when |b|  +  |c|  →  ∞ with bounded b/c. (12) 

 

The asymptotic properties of the expansion (8) improve when the saddle point t=b/c of (4) coalesces 

with an end point of the contour of integration t =  0 or t =  1, that is, when b = 0 or b = c. In these 

cases, from the recurrence (11) 

we have that 

Φk(b, c) = (−1)
kΦk(c, c) =

k!

(c + 2)k
                             (13) 

Table 2 [285]: 

A numerical experiment about the relative error in the approximation of F(−i,b+1;c+2;−5−3i) for 

several values of b and c by using (8) with n terms 

 b+1            c+2             n=1               n=3              n=5              n=7          n=9     

10eiπ 4⁄       20eiπ 6⁄        0.015019     0.001762     0.000234     0.000039  7.814(-6) 
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50e−iπ 3⁄     100e−iπ 4⁄   0.006754    0.000072     1.682(-6)     6.055(-8)   2.886(-9) 

100-30i       200+2i        0.003617   0.000019     2.255(-7)     3.987(-9)   9.308(-11) 

200eiπ 18⁄     400e−iπ 18⁄  0.001036   2.672(-6)    1.359(-8)     1.065(-10)  5.651(-12) 

10-500i         40-300i      0.003759   0.000010    5.701(-8)     4.285(-10)  2.930(-12) 

 

Then, (8) is an asymptotic expansion for large c with fixed a uniformly in b and z with bounded b/c. 

Table 2 contains some numerical experiments which show the accuracy achieved by expansion (8). 

The expansion (8)was already obtained by N∅rlund in [295, Eq. (1.21)], although without any 

mention to the asymptotic properties of the expansion. Also, the conditions for the convergence of 

(8) given there are more restrictive: (|b| + |c|)|𝓏| < |c −  b𝓏|. 
We have shown that expansion (8) is convergent and asymptotic for large c (uniformly in b and 𝓏with 

bounded b/c) if b, c and 𝓏 satisfy (7). we will show that the expansion (8) keeps that asymptotic 

character if 0<b/c<1 (even if conditions (7) do not hold). In the remaining we consider 0<b/c<1 and 

−1<𝕽b<𝕽c + 1. 

Expansion (6) is not uniformly convergent for t ∈ [0, 1] if conditions (7) do not hold. We can 

approximate the integral (4) by replacing the function g(t) by its Taylor expansion at the point t = b/c: 

𝗀(t) = ∑
(a)k𝓏

k

k! (1 − (b c⁄ )𝓏k+a
(t −

b

c
)
k

+ 𝗀n(t)                        (14)

n−1

k=0

 

with 𝗀n(t) = ϑ((t − b c⁄ )n) when t → b/c. Introducing (14) in (4) and interchanging summation and 

integration we obtain 

 

F(a, b + 1; c + 2; 𝓏) = ∑
(a)k𝓏

k

k! (1 − (b c⁄ )𝓏)k+a
Φk(b, c) + Rn(a, b; c; 𝓏)   

n−1

k=0

(15) 

 

where the functions Φk(b, c) are given in (9) or (10) and 

 

Rn(a, b; c; 𝓏) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ ec

f(t)
𝗀n(t)dt

1

0

                                      (16) 

The key point here is to use the idea given in [293]: the critical point b/c ∈ (0, 1). Then, the Laplace 

method can be applied to the integrals (9) to obtain their asymptotic behaviour for large c (or large b 

and c with bounded b/c) [293]: 

Φk(b, c) = ϑ(c
−(n+1) 2⁄ )when |b| + |c| → ∞ with bounded b/c. (17) 

On the other hand, we can also apply the Laplace’s method to the remainder Rn(a,b; c; z) in (16) to 

obtain [293]: 

Rn(a, b; c; 𝓏) = ϑ(c
−(n+1) 2⁄ )when |b| + |c| → ∞ with bounded b/c. (18) 

Thus, from (12) or (13) and (18), we see that (15) is an asymptotic expansion of F(a, b + 1; c + 2; z) 

for large c (uniformly in b with bounded b/c). Moreover, from the Lagrange form for the Taylor 

remainder we have 

 

𝗀n(t) =
(a)n(t − b c⁄ )n

n! (1 𝓏⁄ − ξ)n+a
, ξ ∈ (t, b c⁄ ) ⊂ [0,1] 

Table 3[285]: 

A numerical experiment about the relative error in the approximation of F(4, b + 1; c + 2;−12) for 

different values of b and c by using (8) with n terms 

b+1     c+2      n=1             n=3                n=5               n=7               n=9 

20       50         0.1675        0.025198       0.003424       0.000256       0.000084 

50       100       0.07295      0.005519       0.0000468     0.0000444     4.769(-6) 

100     200      0.036612    0.001398       0.000060       2.972(-6)       1.640(-7) 
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250     500      0.014674    0.000225       3.947(-6)       7.886(-8)       1.780(-9) 

500     1000    0.007342    0.000056       4.965(-7)       4.988(-9)       5.673(-11) 

 

Conditions (7) do not hold for these values of b, c and z. 

Then, 

|𝗀n(t)| ≤
1

n!
|
(a)n
𝓏a
| Λ(𝓏, a, n)eπ|𝔍a| |t −

b

c
|
n

 

With 

Λ(𝓏, a, n) ≡ {

|𝔍(𝓏−1)|−n−ℜa   if 0 < ℜ𝓏−1 < 1 and  ℜa + n > 0      

Max {|𝓏|n+ℜa, |
𝓏

1 − 𝓏
|
n+ℜa

}  in the remainingcases
} 

 

Then, for real b and c and even n we have 

|Rn(a, b, c, 𝓏)| ≤
1

n!
|
(a)n
𝓏a
| 𝚲(𝔃, 𝐚, 𝐧)𝐞𝛑|𝕵𝐚|𝚽𝐧(𝐛, 𝐜) 

We remark that the asymptotic properties of the sequence {Φk(b, c)}k obtained in (12) or (13) making 

use of (11) are slightly better than those derived from the Laplace’s method in (17).  

Table 3 shows a numerical experiment which illustrates the approximation supplied by (8) for large 

positive real values of b and c with c>b>0 when (7) does not hold. 

Write t=x+iy and b/c=u+iv, with x, y, u, v ∈ ℝ. Consider a contour Γ defined as (see Fig. 2): Γ ≡
Γ1 ∪ Γ2 ∪ Γ3 
With 

Γ1 = {(−√v
2 4⁄ − (y − v 2⁄ )2, y) ; 0 < y < v} 

Γ2 ≡ {(x, v); 0 < x < 1} 

Γ3 = {(1 + √v
2 4⁄ − (y − v 2⁄ )2, y) ; 0 < y < v} 

Consider the domain  bounded by Γ∪ [0, 1] and defined by 

Ω ≡ {t ∈ 𝕔, −√(𝔍t) (𝔍
b

c
− 𝔍t) ≤ ℜt ≤ 1 + √(𝔍t) (𝔍

b

c
− 𝔍t)}  (19) 

we extend the results of the previous  to the case b ∈ C with 0<𝕽b<c and 𝓏−1 ∈ 𝕔 Ω⁄ . In the remaining 

of we consider 0<𝕽b<c and  𝓏−1 ∈ 𝕔 Ω⁄ and use the ideas of the modified saddle point method 

introduced in [293]. 

The integrand in (4) is an analytic function of t ∈ 𝕔 with branch cuts at (−∞, 0], [1,∞) and, if a ∉ℤ, 

also at [1/z,∞). Then, if 𝓏−1 ∉ Ω , the integrand in (4) is an analytic function of t in the interior of  

(see Fig. 2). 
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Using the Cauchy’s Residue Theorem, we deform the integration contour [0, 1] in (4) to the contour 

Γ: 

 

F(a, b + 1; c + 2; 𝓏) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ ecf(t)𝗀(t)dt          (20)

 

Γ

 

 

The real part of the function f (t) in the exponent of the integrand in (20) reads 

 

ℜ(f(t)) = h(x, t)

= u log√x2 + y2 + (1

− u) log √(1 − x)2 + y2 + v tan−1[y (x − 1)⁄ ] − v tan−1(y x⁄ )          (21) 
 

and verifies the following properties: 

(i) For x ∈ [0, 1], the function h(x, v) has an absolute maximum at x = u. It is a strictly increasing 

function of x for x ∈ [0, u) and strictly decreasing for x ∈ (u, 1]. That is, it has an absolute maximum 

at x = u over Γ2. 

(ii) The function  h(−√v2 4⁄ − (y − v 2⁄ )2, y)is an strictly increasing function of y for y ∈ [0, v]. 

That is, it is strictly increasing overΓ1 . 

(iii) The function h(1 + √v2 4⁄ − (y − v 2⁄ )2, y) is an strictly increasing function of y for y ∈ (0, v). 

That is, it is strictly decreasing overΓ3 . 

Taking into account (i)–(iii) we conclude that, over the path Γ, (f (t)) has an absolute maximum at t = 

b/c. 

We divide the path _ in two pieces: = ΓS ∪ ΓT , where  is that part of  ΓScontained inside a circle of 

center b/c and radius r ≡ |1/z − b/c|, and ΓT = Γ ΓS⁄  (see Fig. 3). 

Then, 

F(a, b + 1; c + 2; z) =ΓS (a, b; c; z) + ΓT (a, b; c; z), (22) 

With 

FS(a, b; c; 𝓏) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ecf(t)𝗀(t)dt          

 

ΓS

 

 

And 

FT(a, b; c; 𝓏) =
Γ(c + 2)

Γ(b + 1)Γ(c − b + 1)
∫ ecf(t)𝗀(t)dt          

 

ΓT
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On the one hand, (f (t)) has an absolute maximum at t =b/c and increases from t=0 up to t =b/c and 

decreases from t = b/c up to t = 1 following the path Γ. On the other hand, g(t) is bounded on Γ. Then 

 

∫ecf(t)𝗀(t)dt = ϑ(ecf(t0) + ecf(t1))                   when c → ∞

 

ΓT

  (23) 

where t0 and t1 are the points of the path Γ located at a distance r from b/c (see Fig. 2). 

On the other hand, because of the expansion (6) is uniformly convergent for t inside the circle of 

radius r and center b/c, we can repeat the reasoning to conclude that 

 

FS(a, b; c; 𝓏) = ∑
(a)k𝓏

k

k!(1−(b c⁄ )𝓏)k+a
Φk
(S)(b, c)                       (24)∞

k=0   

 

where the functions Φk
(S)(b, c) are defined by 

 

Φk
(S)(b, c) =

Γ(c + 2)

Γ(c + 1)Γ(c − b + 1)
∫ ecf(t)

 

ΓS

(t −
b

c
)
k

dt 

 

Using again that (f (t)) has an absolute maximum over Γ at t = b/c we have that 

 

Φk
(S)(b, c) =

Γ(c + 2)

Γ(c + 1)Γ(c − b + 1)
{∫ ecf(t)

 

Γ 

(t −
b

c
)
k

dt + ϑ(ecf(t0)

+ ecf(t1))}                                                                                    (25) 

when c→∞. Using that ec
f(t)
(t − (b c⁄ ))k is an analytic function of t ∈ C with branch cuts at (−∞, 0] 

and [1,∞) 

we deform the integration contour Γ above back to [0, 1]: Γ→ [0, 1]. Then, using the results we have: 

 

Φk
(S)(b, c) = Φk(b, c) +

Γ(c+2)

Γ(c+1)Γ(c−b+1)
ϑ(ecf(t0) + ecf(t1)when c→∞,                   (26) 

 

where Φk(b, c) are defined in (9), calculated in (10) and verify the recurrence (11). 
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Therefore, joining (22)–(24) and (26) we have that, even if the right-hand side of (8) is not convergent, 

it is an asymptotic expansion of F(a, b + 1; c + 2; z) for large c and fixed a uniformly in b and z (with 

bounded b/c,0<𝕽b<c and 𝓏−1∉Ω ). Tables 4 and 5 show numerical experiments which illustrates the 

approximation supplied by (24) for large values of b and c with b complex and c>0 when (7) does 

not hold. 

Table 4 [285]: 

A numerical experiment about the relative error in the approximation of F(6−5i, b +1; c +2;−4+3i) 

for several values of b and c by using (24) with n terms 

b+1               c+2       n=1                n=3                 n=5             n=7            n=9 

50+27i         160       0.138447       0.006438        0.000817    0.000281     0.000055 

115+16i        290      0.074796       0.003316        0.000104    2.185(-6)     2.910(-7) 

155+2i          375      0.059992       0.002348        0.000079    2.632(-6)     5.259(-8) 

 

Conditions (7) do not hold for these values of b, c and z. 

Table 5[285]: 

A numerical experiment about the relative error in the approximation of F(−4 + 7i, b + 1; c + 2;−7 − 

3i) for several values of b and c by using (24) with n terms 

b+1            c+2      n=1               n=3              n=5              n=7              n=9 

60-2i         140      0.177146      0.013372      0.000620     0.000023     9.267(-7) 

130-30i      240     0.134019      0.005836      0.000034     8.676(-6)      6.385(-7) 

150-7i        345     0.068925      0.001922       0.000031     4.468(-7)     7.242(-9) 

 

Conditions (7) do not hold for these values of b, c and z. 

We can resume the analysis of the previous the following theorems. 

Theorem (5.1.1)[285]: For a, b, c ∈ 𝕔, c ≠ −2,−3,−4, . . . , | arg(1 − 𝓏)|<π, |b||𝓏|<|c − b𝓏| and |c − 

b||𝓏|<|c − b𝓏|, 

F(a, b; c + 2; 𝓏) =∑
(a)k𝓏

k

k! (1 − (b c⁄ )𝓏)k+a
Φk(b, c)

∞

k=0

 

Where 

Φk(b, c) = (−
b

c
)
k

F (−k, b + 1; c + 2;
c

b
)                                     (27) 

 

Φk(b, c) = ϑ((b
1−k mod2 c⁄ )Φk−1(b, c)when |b| + |c| → ∞ uniformly in b(≠ 0) with bounded b/c and 

verify the recurrence 

Φk(b, c) =
1

c + k + 1
[k (1 − 2

b

c
)Φk−1(b, c) + (k − 1)

b

c
(1 −

b

2
)Φk−2(b, c)] , k ≥ 2 

For the particular cases b = 0 or b = c we have 

Φk(0, c) = (−1)
kΦk(c, c) =

k!

(c + 2)k
 

Theorem (5.1.2) [285]: For fixed a ∈ 𝕔, | arg(1 − 𝓏)|<π, −1<𝕽b<𝕽c + 1 and 

(i) 0 < b/c < 1 or 
(ii) 0 < ℜb < c, bounded b/c and 𝓏−1 ∈ 𝕔 Ω⁄  

F(a, b + 1; c + 2; 𝓏)~∑
(a)k𝓏

k

k!(1−(b c⁄ )𝓏)k+a
Φk(b, c)

∞
k=0 when c → ∞ 

uniformly in b and z. The functions  givΦk(b, c)are given in (27) and  is defined in (19). 

Section (5.2): Harmonic  Bergman  Spaces on  the real Ball  

Consider the harmonic Bergman space 𝐿ℎ𝑎𝑟𝑚
2  (𝔹𝑛, 𝑑𝜇𝛼

𝑛) on the unit ball 𝔹𝑛in ℝ𝑛, consisting of all 

functions that are harmonic and square integrable with respect to the measure 

𝑑𝜇𝛼
𝑛(𝑦):= 𝑐𝛼(1 − |𝑦|

2)𝛼𝑑𝑛𝑦, 𝛼 > −1, 
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where 𝑑𝑛𝑦 is the usual 𝑛-dimensional Lebesgue measure and the coefficient 𝑐𝛼 is chosen so that 𝔹𝑛 

has measure 1. Specifically, 

𝑐𝛼 =
Γ(𝛼 +

𝑛
2
+ 1)

𝜋𝑛/2𝛤(𝛼 +  1)
. 

It is known that such a space possesses so-called “Bergman kernel”, i.e. there exists a function 

𝑅𝛼: 𝔹
𝑛 × 𝔹𝑛 → ℝ harmonic and square integrable in both arguments satisfying the reproducing 

property 

   ∫ 𝑓(𝑦)𝑅𝛼(𝑥, 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛
= 𝑓(𝑥)   ∀𝑓 ∈ 𝐿ℎ𝑎𝑟𝑚

2 (𝔹𝑛, 𝑑𝜇𝛼
𝑛), ∀𝑥 ∈ 𝔹𝑛.          (28) 

Consider now the integral transform 

                             (B𝛼f)(x): = ∫ 𝑓(𝑦)
𝑅𝛼
2(𝑥,𝑦)

𝑅𝛼(𝑥,𝑥)𝔹𝑛
𝑑𝜇𝛼

𝑛(𝑦),                                        (29) 

which is an example of the 𝑠𝑜-called Berezin transform appearing in the Berezin-Toeplitz 

quantization with many applications in mathematical physics (quantization on Kahler manifolds, 

see [304], [302], [303], [306], 

[309]). The parameter 𝛼 represents essentially the reciprocal value of the Planck constant. 

It was shown by 𝐶. 𝐿𝑖𝑢 in 2007 [310] that if 𝑛 = 2 then for 𝑓 ∈ 𝐶(𝔹2̅̅ ̅̅ ), 
B𝛼f → f uniformly as 𝛼 → ∞, 

i.e. classical physics is recovered when the Planck constant goes to zero – or equivalently, as the 

observer’s perspective gets larger and larger. 

Subsequently, 𝑅. Otahalova in 2008 [313] generalized this result to an arbitrary dimension 𝑛 ≥ 2. 

Meanwhile, M. Engliš [307] was able to prove a similar a result for the Berezin transform of 

functions on ℂ𝑛 providing moreover a full asymptotic expansion, with an occurrence of interesting 

Stokes phenomenon – asymptotic behavior changes abruptly for 𝑥 = 0. 

We provide the full asymptotic expansion of the Berezin transform (29) as 𝛼 → ∞ generalizing thus 

the work of Otahalova and with the same occurrence of the Stokes phenomenon as in [317]. 

We have  main result is the following theorem. 

Theorem (5.2.1)[299]: For 𝑥 ∈ 𝔹𝑛, 𝑥 ≠  0, 𝑛 > 1, and 𝑓 ∈ 𝐶∞(𝔹𝑛),there exist differential 

operators 𝑄𝑖: = 𝑄𝑖(𝛥, 𝑥 ∙ 𝛻, |𝑥|
2), involving only the Laplace operator 𝛥, the directional derivative 

𝑥 ∙ 𝛻 and the quantity |𝑥|2, such that 

(𝐵𝛼𝑓)(𝑥): = ∫𝑓(𝑦)
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝔹𝑛

𝑑𝜇𝛼
𝑛(𝑦) ≈∑

(𝑄𝑖𝑓)(𝑥)

𝛼𝑖

∞

𝑖=0

 (𝛼 → ∞), 

where 𝑄0 = 1 and 

𝑄1 =
𝑛 − 2

2

1 − |𝑥|2

|𝑥|2
𝑥 ∙ 𝛻 +

(𝑛 − 2)(1 − |𝑥|2)2

4(𝑛 − 1)|𝑥|2
(𝑥 ∙ 𝛻)2 +

1

4(𝑛 − 1)
(1 − |𝑥|2)2𝛥. 

Finally, for 𝑥 = 0 it holds 

(𝐵𝛼𝑓)(0) ≈∑
(∆𝑖𝑓)(0)

∆𝑖 (𝛼 +
𝑛
2
+ 1)

𝑖

∞

𝑖=0

       (𝛼 → ∞). 

The symbol ≈ stands for the usual Poincaré asymptotic expansion, i. e. 𝑓(𝛼) ≈ ∑ 𝐶𝑖𝛼
−𝑖∞

𝑖=0  if and 

only if for all 𝑁 = 0,1, … we have 𝑓(𝛼) − ∑ 𝑐𝑖𝛼
−𝑖𝑁−1

𝑖=0 = 𝑂(𝛼−𝑁) as 𝛼 → ∞. 

The method used to prove this theorem differs substantially from methods used, [313] and [307]. 

Notably, Otahalova’s approach gives no hope to achieve this, on the other hand it does not look 

entirely impossible to exploit the tools of the [307] to obtain our result but only for even 

dimensions. 

based on representing the Berezin transform in terms of generalized hypergeometric functions and 

then make use of their many known properties (notably due to [301], [311]) including asymptotic 

expansions for large parameters in some cases. Interestingly, the distinction between odd and even 

dimension, which burdens heavily [313] and [307], does not prove itself as important in this setting. 



202 
 

The definition of generalized hypergeometric functions as well as some of their properties will be 

shown. we exhibit a connection between the Berezin transform of a polynomial and a linear 

combination of functions 
𝐹5
 
4

𝐹2
 
1
 with some parameters. 

This is then used to prove Finally, along the way we prove Theorem (5.2.2) which bears some 

significance of its own, since it provides means of computing the Bergman projection (28) of more 

general functions than just harmonic ones: 

Theorem (5.2.2) [299]: For ∀𝑝 ∈ ℕ0, 𝛽 ≥ 𝛼 and 𝑓 ∈ 𝐶𝑝(𝔹𝑛): 𝛥𝑓 = 0 it holds: 

∫𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)(𝑥 ∙ 𝑦)
𝑝

𝔹𝑛

𝑑𝜇𝛼
𝑛(𝑦) 

=
𝑝!

2𝑝
∑

|𝑥|2(𝑗+𝑙)(�̃�)𝑗(2𝑏)𝑗

𝑗!𝑚! 𝑙! (�̃�)
𝑗+𝑚+𝑙

(𝑏)𝑗
 3((𝑥 ∙ ∇)

𝑚𝑓)3 (
�̃� + 𝑗 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 𝑙 + 𝑚 𝑏 + 𝑗 2𝑏
; 𝑥)

𝑗+2𝐼+𝑚=𝑝

, 

where 𝑏:=
𝑛

2
− 1 and �̃�: = 𝑥 + 

𝑛

2
+ 1. The “hypergeometrization”  𝑚𝑓𝑛of a function 𝑓, which is a 

special case of a Hadamard product and which appears naturally in this setting, will be introduced. 

Remember that the generalized hypergeometric function is defined by the series 

𝐹𝑞𝐹
 (

𝑎1…𝑎𝑝
𝑐1…𝑐𝑞

; 𝑥) =∑
(𝑎1)𝑘 …(𝑎𝑝)𝑘𝑥

𝑘

(𝑐1)𝑘 …(𝑐𝑝)𝑘𝑘!

∞

𝑘=0

, 

where (𝑎)𝑘 is the Pochhammer symbol (𝑎)𝑘: = 𝑎(𝑎 + 1)… (𝑎 + 𝑘 − 1) =
𝛤(𝑎+𝑘)

Γ(𝑎)
. Obviously, the 

definition makes no sense when some lower parameter 𝑐𝑖 is a negative integer or zero. 
In the case 𝑝 = 𝑞 + 1, which we will be most interested in, the series converges for |𝑥| < 1 and can 

be analytically continued to ℂ\ [1,∞). 
The asymptotic expansions of these functions for large argument x are known [311], the asymptotic 

expansion for large parameters can be worked out in many cases. The simplest one is when more of 

the lower parameters are large than the upper ones. In that case the asymptotic expansion is simply 

the Taylor series. More precisely, for 𝑟 < 𝑠, 𝑥 ∉ [1,∞): 
 

𝐹𝑞𝑝
 (

𝑎1 + 𝛼…𝑎𝑟 + 𝛼 𝑎𝑟+1 + 1…𝑎𝑝
𝑐1 + 𝛼…𝑐𝑠 + 𝛼 𝑐𝑠+1 + 1…𝑐𝑞

; 𝑥)

≈∑
(𝑎1 + 𝛼)𝑘 …(𝑎𝑟 + 𝛼)𝑘(𝑎𝑟+1)𝑘 …(𝑎𝑝)𝑘
(𝑐1 + 𝛼)𝑘 …(𝑐𝑠 + 𝛼)𝑘(𝑐𝑠+1)𝑘 …(𝑐𝑞)𝑘

𝑥𝑘

𝑘!

∞

𝑘=0

, (𝛼 → +∞). (30) 

(see [311] §7.3, [317]). Much less is known when some parameter is large and negative even in the 

case of a lower parameter. Notice that for them the problem is even somewhat ill-posed, because 

the lower parameter 𝑐𝑖 cannot be a negative integer. least in case of the Gauss hypergeometric 

function the above result still remains in force [318], [316]: 

For 𝑎, 𝑏, 𝑧 fixed and 𝑅𝑒(𝑧) <
1

2
, −𝑐 ∉ ℕ0 it holds for every 𝑚 ∈ ℕ 

             𝐹12
 (𝑎 𝑏

𝑐
; 𝑧) = ∑

(𝑎)𝑘(𝑏)𝑘

(𝑐)𝑘

𝑧𝑘

𝑘!

𝑚−1
𝑘=1 + 𝑂(𝑐−𝑚)             (|𝑐| → ∞),       (31) 

Some other cases can be worked out by the aid of transformations which hold for hypergeometric 

functions. For example there is the Pfaff transformation 

             𝐹12
 (𝑎 𝑏

𝑐
; 𝑥) = (1 − 𝑥)−𝑏 𝐹12

 (𝑐 − 𝑎 𝑏
𝑐

;
𝑥

𝑥−1
),              (32) 

which effectively solves the asymptotic expansion of the type 

𝐹12
 (

𝑎 + 𝛼 𝑏
𝑐 + 𝛼

; 𝑥) ≈ (1 − 𝑥)−𝑏 𝐹12
 (

𝑐 − 𝑎 𝑏
𝑐 + 𝛼

;
𝑥

𝑥 − 1
)     (𝛼 → +∞). 

The transformation 

           𝐹12
 (𝑎 𝑏

𝑐
; 𝑥) =

Γ(𝑐)Γ(𝑏−𝑎)

𝛤(𝑏)𝛤(𝑐−𝑎)
(−𝑥)−𝑎 𝐹12

 (
𝑎 1 + 𝑎 − 𝑐
1 + 𝑎 − 𝑏

;
1

𝑥
)                  (33) 

                 +
𝛤(𝑐)𝛤(𝑎−𝑏)

𝛤(𝑎)𝛤(𝑐−𝑏)
(−𝑥)−𝑏 𝐹12

 (𝑏 1 + 𝑏 − 𝑐
1 + 𝑏 − 𝑎

;
1

𝑥
)                      (34) 
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which holds for 𝑥 < 0, 𝑎 − 𝑏 ∉  ℤ can be used to determine the asymptotic expansion when a is 

large and so on. 

Our task will be to handle the case  

𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥), 

for large 𝛼. 

Unfortunately, there are not as many transformation available for the function 𝐹45
  as for the 𝐹12

  or 

analogous transformations as for example (32) could be established but the final result is not 

expressible in terms of 𝐹45
  functions, but rather in terms of their certain multi-variable 

generalizations. 

Still, the following result holds. 

Lemma (5.2.3) [299]: Let 𝑏1, 𝑏2, 𝑏3 > 0 be positive real numbers, one of them strictly less than the 

other two. Let 𝛼 − 𝑎 − 𝛾 ∉ ℤ,−𝑐𝑖 ∉ ℕ0 and 𝑥 ∈ (0,1). Then we have 

𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥) ≈∏
Γ(𝑐𝑖)

Γ(𝑏𝑖)

(𝛼𝑥)−𝛾

(1 − 𝑥)𝛼−𝛾−𝑎

3

𝑖=1

(1 +∑
𝑑𝑘
𝛼𝑘

∞

𝑘=1

) (𝛼 → +∞) 

where 𝛾 = ∑ (𝑐𝑗 − 𝑏𝑗)
3
𝑗=1  and 𝑑𝑘 are constants independent of 𝛼. 

Proof: Using the integral representation 

𝐹𝑞+1𝑝+1
 (

𝑏1…𝑏𝑝 𝑏
𝑐1…𝑐𝑞 𝑐; 𝑥) =

Γ(𝑐)

Γ(𝑏)Γ(𝑐 − 𝑏)
∫ 𝑡𝑏−1(1 − 𝑡)𝑐−𝑏−1

1

0

𝐹𝑞𝑝
 (

𝑏1…𝑏𝑝
𝑐1…𝑐𝑞

; 𝑥𝑡) 𝑑𝑡, 

which is valid for 𝑐 > 𝑏 > 0, in turn three times on pairs of parameters (𝑐1, 𝑏1), (𝑐2, 𝑏2), (𝑐3, 𝑏3),we 

get 

𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥) 

=∏
𝛤(𝑐𝑖)

𝛤(𝑏𝑖)Γ(𝑐𝑖 − 𝑏𝑖)

3

𝑖=1

∫∫∫∏𝑡𝑖
𝑏𝑖−1(1 − 𝑡𝑖)

𝑐𝑖−𝑏𝑖−1

3

𝑖=1

1

0

1

0

1

0

𝐹12
 (

𝛼 𝛼
𝛼 + 𝑎

; 𝑥𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3. 

Double application of the transformation (32) gives us the Euler transform 

𝐹12
 (𝑎 𝑏

𝑐
; 𝑥) = (1 − 𝑥)𝑐−𝑎−𝑏 𝐹12

 (𝑐 − 𝑎 𝑐 − 𝑏
𝑐

; 𝑥), 

which leaves us with 

∏
𝛤(𝑐𝑖)

𝛤(𝑏𝑖)𝛤(𝑐𝑖 − 𝑏𝑖)

3

𝑖=1

∫∫∫∏𝑡𝑖
𝑏𝑖−1(1 − 𝑡𝑖)

𝑐𝑖−𝑏𝑖−1

3

𝑖=1

1

0

1

0

1

0

(1

− 𝑥𝑡1𝑡2𝑡3)
𝑎−𝛼 𝐹12

 (
𝑎 𝑎
𝛼 + 𝑎

; 𝑥𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3. 

A triple integral of this kind can be rearranged in the following way: 

                       ∫ ∫ ∫ 𝜑(𝑡1, 𝑡2, 𝑡3)𝐺(𝑡1𝑡2𝑡3)𝑑𝑡1𝑑𝑡2𝑑𝑡3 
1

0

1

0

1

0
                  (35) 

= ∫𝐺(1 − 𝑟3)

1

0

∫∫𝜑(1 − 𝑟1𝑟2𝑟3,
1 − 𝑟2𝑟3
1 − 𝑟1𝑟2𝑟3

,
1 − 𝑟3
1 − 𝑟2𝑟3

)

1

0

1

0

𝑟2𝑟3
2

(1 − 𝑟1𝑟2𝑟3)(1 − 𝑟2𝑟3)
𝑑𝑟1𝑑𝑟2𝑑𝑟3. 

 (This is nothing more than a series of changes of variables. Firstly, let 𝑠1 = 𝑡1, 𝑠2 = 𝑡1𝑡2, 𝑠3 =
𝑡1𝑡2𝑡3. 

Jacobian is 
1

𝑠1𝑠2
 and the integral becomes: 

                              ∫ ∫ ∫ 𝜑 (𝑠1,
𝑠2

𝑠1
,
𝑠3

𝑠2
)𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠3𝑑𝑠2𝑑𝑠1.

𝑠2

0

𝑠1

0

1

0
                    (36) 

Now we swap the order of integration: 

∫∫ ∫ 𝜑 (𝑠1,
𝑠2
𝑠1
,
𝑠3
𝑠2
)𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠3𝑑𝑠2𝑑𝑠1

𝑠2

0

𝑠1

0

1

0

= ∫ ∫ ∫𝜑 (𝑠1,
𝑠2
𝑠1
,
𝑠3
𝑠2
) 𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠1𝑑𝑠2𝑑𝑠3

1

𝑠2

1

𝑠3

1

0
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and finally three changes of variable are performed: firstly 1 − 𝑠1 = 𝑟1(1 − 𝑠2), then 1 − 𝑠2 =
𝑟2(1 − 𝑠3) and lastly 1 − 𝑠3 = 𝑟3. ) 
Applying this to our original triple integral we get: 

∫(1 − 𝑥 + 𝑥𝑟3)
𝑎−𝛼

1

0

𝐹12
 (

𝑎 𝑎
𝛼 + 𝑎

; 𝑥(1 − 𝑟3)) 

∫∫∏𝑟𝑖
𝛾𝑖−1(1 − 𝑟1)

𝑐2−𝑏2−1(1 − 𝑟2)
𝑐3−𝑏3−1

3

𝑖=1

1

0

1

0

(1 − 𝑟3)
𝑏3−1(1 − 𝑟2𝑟3)

𝑏2−𝑐3(1

− 𝑟1𝑟2𝑟3)
𝑏1−𝑐2𝑑𝑟1𝑑𝑟2𝑑𝑟3, 

where 𝛾𝑖 = ∑ (𝑐𝑘 − 𝑏𝑘)
𝑖
𝑘=1 .  

After a small manipulation this gives 

           ∫ ∫ ∫ ∏ 𝑡𝑖
𝑏𝑖−1(1 − 𝑡𝑖)

𝑐𝑖−𝑏𝑖−13
𝑖=1

1

0

1

0

1

0
(1 − 𝑥𝑡1𝑡2𝑡3)

𝑎−𝛼 𝐹12
 (

𝑎 𝑎
𝛼 + 𝑎

; 𝑥𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 (37) 

= (1 − 𝑥)𝑎−𝛼∫𝑡𝛾3−1(1 − 𝑡)𝑏3−1𝐹(𝑡) 𝐹12
 (

𝑎 𝑎
𝛼 + 𝑎

; 𝑥(1 − 𝑡)) (1 −
𝑥

𝑥 − 1
𝑡)
𝑎−𝛼

𝑑𝑡,

1

0

 

where 

𝐹(𝑡)∫ 𝑟2
𝛾2−1(1 − 𝑟2)

𝑐3−𝑏3−1(1 − 𝑟2𝑡)
𝑏2−𝑐3

1

0

∫𝑟1
𝛾1−1(1 − 𝑟1)

𝑐2−𝑏2−1(1 − 𝑟1𝑟2𝑡)
𝑏1−𝑐2𝑑𝑟1𝑑𝑟2

1

0

 

=
Γ(𝛾1)Γ(𝑐2 − 𝑏2)

Γ(𝛾2)
∫ 𝑟2

𝛾2−1(1 − 𝑟2)
𝑐3−𝑏3−1(1 − 𝑟2𝑡)

𝑏2−𝑐3

1

0

𝐹12
 (

𝑐2 − 𝑏1 𝛾1
𝛾2

; 𝑟2𝑡) 𝑑𝑟2. 

We expand the hypergeometric function into Taylor series to get the form 

F(t) =
𝛤(𝑐1 − 𝑏1)𝛤(𝑐2 − 𝑏2)𝛤(𝑐3 − 𝑏3)

𝛤(𝛾3)
∑

(𝑐2 − 𝑏1)𝑗(𝛾1)𝑗
(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑐3 − 𝑏2
𝛾3 + 𝑗

; 𝑡) . 

We should talk about the convergence of the integral on the right hand side of the equation (37). 

For that it is necessary to understand the behavior of the function 𝐹(𝑡) at the end points of the 

interval of integration, notably in the neighborhood of 𝑡 = 1 (the behavior near 𝑡 = 0 is evident). 

It is well known that 

𝐹12
 (𝑎 𝑏

𝑐
; 1) =

Γ(𝑐)Γ(𝑐 − 𝑏 − 𝑎)

Γ(𝑐 − 𝑏)Γ(𝑐 − 𝑎)
 

for 𝑐 > 𝑎 + 𝑏. That means that the hypergeometric function in the infinite series is left-continuous 

at 𝑡 = 1 if 𝛾3 + 𝑗 > 𝛾2 + 𝑗 + 𝑐3 − 𝑏2 or equivalently 𝑏2 > 𝑏3. In such case the infinite series for 

𝑡 = 1 takes the form: 

𝛤(𝛾3)𝛤(𝑏2 − 𝑏3)

Γ(𝑐2 + 𝑐1 − 𝑏1 − 𝑏3)
∑

(𝑐2 − 𝑏1)𝑗(𝛾1)𝑗
(𝑐2 + 𝑐1 − 𝑏1 − 𝑏3)𝑗𝑗!

∞

𝑗=0

, 

which is a convergent series for 𝑐2 + 𝑐1 − 𝑏1 − 𝑏3 > 𝑐2 − 𝑏1 + 𝛾1, i.e. 𝑏1 > 𝑏3. (Indeed, the series 

is actually equal to 

𝐹12
 (

𝑐2 − 𝑏1 𝛾1
𝑐2 + 𝑐1 − 𝑏1 − 𝑏3

; 1) 

and the formula above can be used.) 

This can be summarized by saying 

𝐹(𝑡) = 𝑂(1)         (𝑡 ↗ 1), 
which holds for 𝑏1 > 𝑏3, 𝑏2 > 𝑏3 and the integral on the right hand side of the equation (37) 

converges under the conditions 𝑏3 > 0, 𝑏1 > 𝑏3, 𝑏2 > 𝑏3, 𝛾3 > 0. Those are significantly less 

restraining conditions than in the triple integral on the left hand side of the same equation, which 

converges for 𝑐𝑖 > 𝑏𝑖 > 0∀𝑖. 
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It is an example, therefore, of an analytic continuation. Furthermore, since hypergeometric 

functions are symmetric with respect to permutation of the parameters 𝑏𝑖, we can choose 𝑏3 to be 

the smallest one. 

We can summarize now that for 𝑥 < 1, 𝛾3 > 0, 𝑏1 > 𝑏3 > 0, 𝑏2 > 𝑏3 it holds 

𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥)

=
(1 − 𝑥)𝑎−𝛼

Γ(𝛾3)
∏

𝛤(𝑐𝑖)

𝛤(𝑏𝑖)

3

𝑖=1

∫𝑡𝛾3−1(1 − 𝑡)𝑏3−1

1

0

𝐹𝛼(𝑡) (1 −
𝑥

𝑥 − 1
𝑡)
𝑎−𝛼

𝑑𝑡, 

where 

𝐹𝛼(𝑡) = 𝐹12
 (

𝑎 𝑎
𝛼 + 𝑎

; 𝑥(1 − 𝑡))∑
(𝑐2 − 𝑏1)𝑗(𝛾1)𝑗

(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑐3 − 𝑏2
𝛾3 + 𝑗

; 𝑡), 

and 𝛾𝑖 = ∑ 𝑐𝑗 − 𝑏𝑗
𝑖
𝑗=1 . As a next step we replace the function 𝐹𝛼(𝑡) by its Taylor series expansion: 

𝐹𝛼(𝑡) = ∑
𝐹𝛼
(𝑘)(0)

𝑘!
𝑡𝑘 +

𝑁−1

𝑘=0

𝐹𝛼
(𝑁)(𝜉)

𝑁!
𝑡𝑁 , 

where 0 < 𝜉 < 𝑡. 
Substituting this we get 

                            𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥)                    (38) 

=
(1 − 𝑥)𝑎−𝛼

𝛤(𝛾3)
∏

𝛤(𝑐𝑖)

𝛤(𝑏𝑖)

3

𝑖=1

∑
𝐹𝛼
(𝑘)(0)

𝑘!

Γ(𝛾3 + 𝑘)Γ(𝑏3)

Γ(𝛾3 + 𝑏3 + 𝑘)

𝑁−1

𝑘=0

𝐹12
 (

𝛼 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑏3 + 𝑘

;
𝑥

𝑥 − 1
) 

+
(1 − 𝑥)𝑎−𝛼

𝛤(𝛾3)
∏

𝛤(𝑐𝑖)

𝛤(𝑏𝑖)

3

𝑖=1

∫𝑡𝛾3+𝑁−1(1 − 𝑡)𝑏3−1

1

0

𝐹𝛼
(𝑁)(𝜉)

𝑁!
(1 −

𝑥

𝑥 − 1
𝑡)
𝑎−𝛼

𝑑𝑡. 

Notice that the term 𝐹𝛼
(𝑁)(𝜉) in the above line still remains 𝑂(1) for 𝑡 ↗ 1 because it can be written 

as 

                           𝐹𝛼
(𝑁)(𝜉) = 𝑁! 𝑡−𝑁 (𝐹𝛼(𝑡) − ∑

𝐹𝛼
(𝑘)(0)

𝑘!
𝑡𝑘𝑁−1

𝑘=0 ).                        (39) 

Therefore, the integral in the same line converges under conditions 𝛾3 + 𝑁 > 0 and 𝑏3 > 0. The 

first of these is fulfilled for sufficiently large 𝑁, hence for the right hand side of the equation to be 

meaningful it is only required that 𝑏3 > 0. This is the largest analytic continuation as we can get. 

From the form of the remainder term (39) we also see that 𝐹(𝑁)(𝜉) is a continuous function on [0, 

1]. 

We can therefore estimate it by its maximum on this interval, which will in general depend on 𝛼, 

but the asymptotic behavior of 𝐹𝛼
(𝑁)(𝜉) for 𝛼 → ∞ is 𝐹𝛼

(𝑁)(𝜉) = 𝑂(1) uniformly for all 𝑡 ∈ [0,1]. 
(This can be seen again from the form of the remainder term (39) – the 𝐹12

  in the 𝐹𝛼 which contains 

the parameter 𝛼 has this uniform behavior due to the (30) and terms 𝐹𝛼
(𝑘)(0) are just some linear  

combinations of the same 𝐹12
  function, only possibly with parameters shifted due to the 

differentiations. In such case even additional negative powers of 𝛼 appear.) 

Hence 

|∫ 𝑡𝛾3+𝑁−1(1 − 𝑡)𝑏3−1

1

0

𝐹(𝑁)(𝜉)

𝑁!
(1 −

𝑥

𝑥 − 1
𝑡)
𝑎−𝛼

𝑑𝑡|

≤ 𝐶 ∫ 𝑡𝛾3+𝑁−1(1 − 𝑡)𝑏3−1 (1 −
𝑥

𝑥 − 1
𝑡)
𝑎−𝛼

𝑑𝑡

1

0
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= 𝑂 ( 𝐹12
 (

𝛼 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑏3 + 𝑘

;
𝑥

𝑥 − 1
))      (𝛼 → ∞). 

The problem of finding an asymptotic expansion of the function 𝐹45
  for large 𝛼 is now effectively 

reduced to the problem of finding an expansion for the functions of the form: 

(1 − 𝑥)𝑎−𝛼 𝐹12
 (

𝛼 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑏3 + 𝑘

;
𝑥

𝑥 − 1
). 

The large parameter cases for 𝐹12
  function has been studied by several authors (see [315, 318]). The 

logic goes as follows: Combining the transformations (32) and (33), we can see that 

𝐹12
 (𝑎 𝑏

𝑐
; 𝑥) =

𝛤(𝑐)𝛤(𝑏 − 𝑎)

𝛤(𝑏)𝛤(𝑐 − 𝑎)
(−𝑥)𝑏−𝑐(1 − 𝑥)𝑐−𝑏−𝑎 𝐹12

 (1 − 𝑏 𝑐 − 𝑏
1 + 𝑎 − 𝑏

;
1

𝑥
) 

+
𝛤(𝑐)𝛤(𝑎 − 𝑏)

𝛤(𝑎)𝛤(𝑐 − 𝑏)
(−𝑥)−𝑏 𝐹12

 (
𝑏 1 + 𝑏 − 𝑐
1 + 𝑏 − 𝑎

;
1

𝑥
), 

for 𝑥 < 0, 𝑎 − 𝑏 ∉ ℤ. Applying this we get 

(1 − 𝑥)𝑎−𝛼 𝐹12
 (

𝛼 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑏3 + 𝑘

;
𝑥

𝑥 − 1
) 

=
Γ(𝛾3 + 𝑏3 + 𝑘)Γ(𝛾3 + 𝑘 − 𝛼 + 𝑎)

𝛤(𝛾3 + 𝑘)𝛤(𝛾3 + 𝑏3 + 𝑘 − 𝛼 + 𝑎)
𝑥−𝑏3 𝐹12

 (
1 − 𝛾3 − 𝑘 𝑏3

1 + 𝛼 − 𝑎 − 𝛾3 − 𝑘
; 1 −

1

𝑥
) 

+
𝛤(𝛾3 + 𝑏3 + 𝑘)Γ(𝛼 − 𝑎 − 𝛾3 − 𝑘)

Γ(𝛼 − 𝑎)Γ(𝑏3)

𝑥−𝛾3−𝑘

(1 − 𝑥)𝛼−𝑎−𝛾3−𝑘
𝐹12
 (

𝛾3 + 𝑘 1 − 𝑏3
1 + 𝛾3 + 𝑘 − 𝛼 + 𝑎

; 1 −
1

𝑥
), 

for 𝛼 − 𝑎 − 𝛾3 ∉ ℤ (we can always run the limit through such 𝛼 so that this condition is fulfilled). 

But in the light of (30) and (31) we can deduce that the first term is negligible with respect to the 

second term, because it displays only polynomial growth and does not contain the exponentially 

large term(1 − 𝑥)−𝛼 (remember 𝑥 ∈ (0,1)). Asymptotic behavior is, therefore, dictated by the 

second term, which is𝑂((1 − 𝑥)−𝛼𝛼−𝛾3−𝑘) as 𝛼 → ∞. 
Substituting into the equation (38) we get: 

𝐹45
 (

𝛼 𝛼 𝑏1 𝑏2 𝑏3
𝛼 + 𝑎 𝑐1 𝑐2 𝑐3

; 𝑥) 

=∏
𝛤(𝑐𝑖)

𝛤(𝑏𝑖)

3

𝑖=1

∑
𝐹𝛼
(𝑘)(0)

𝑘!

(𝛾3)𝑘Γ(𝛼 − 𝑎 − 𝛾3 − 𝑘)𝑥
−𝛾3−𝑘

𝛤(𝛼 − 𝑎)(1 − 𝑥)𝛼−𝑎−𝛾3−𝑘

𝑁−1

𝑘=0

𝐹12
 (

𝛾3 + 𝑘 1 − 𝑏3
1 + 𝛾3 + 𝑘 − 𝛼 + 𝑎

; 1 −
1

𝑥
)

+ 𝑂((1 − 𝑥)−𝛼𝛼−𝛾3−𝑁). 
It only remains to combine known asymptotic expansions of terms: 

𝛤(𝛼 − 𝑎 − 𝛾3 − 𝑘)

𝛤(𝛼 − 𝑎)
≈ 𝛼−𝛾3−𝑘 (1 +

𝑐1
𝛼
+⋯) 

𝐹12
 (

𝛾3 + 𝑘 1 − 𝑏3
1 + 𝛾3 + 𝑘 − 𝛼 + 𝑎

; 1 −
1

𝑥
) ≈ 1 +

(𝛾3 + 𝑘)(1 − 𝑏3)

1 + 𝛾3 + 𝑘 − 𝛼 + 𝑎

𝑥 − 1

𝑥
+⋯ 

𝐹𝛼
(𝑘)(0) ≈ 𝐹(𝑘)(0) +

𝑑1
𝛼
+⋯, 

where 

𝐹(𝑡) =∑
(𝑐2 − 𝑏1)𝑗(𝛾1)𝑗

(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑐3 − 𝑏2
𝛾3 + 𝑗

; 𝑡), 

and rearrange the terms.  

For 𝑝 ∈ ℕ0, 𝛽 ≥ 𝛼 and 𝑓 ∈ 𝐶𝑝(𝔹𝑛): 𝛥𝑓 = 0 it holds: 

∫𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)(𝑥 ∙ 𝑦)
𝑝𝑑𝜇𝛽

𝑛(𝑦)

𝔹𝑛

 

=
𝑝!

2𝑝
∑

|𝑥|2(𝑗+1)(�̃�)𝑗(2𝑏)𝑗

𝑗!𝑚! 𝑙! (�̃�)
𝑗+𝑚+𝑙

(𝑏)𝑗
((𝑥 ∙ ∇)𝑚𝑓)33
 (

�̃� + 𝑗 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 𝑙 + 𝑚 𝑏 + 𝑗 2𝑏
; 𝑥) .

𝑗+2𝑙+𝑚=𝑝

 

Theorem (5.2.2) deserves a bit of a clarification. From now on we set 
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𝑏:=
𝑛

2
− 1,     �̃� ≔ 𝑥 +

𝑛

2
+ 1. 

For a real (or complex) function f of a real argument we define its hypergeometrization by the series 

𝑓𝑞𝑝
 (

𝑎1…𝑎𝑝
𝑐1…𝑐𝑞

; 𝑡) ≔ ∑
𝑡𝑚𝑓(𝑚)(0)

𝑚!

(𝑎1)𝑚…(𝑎𝑝)𝑚
(𝑐1)𝑚…(𝑐𝑞)𝑚

∞

𝑚=0

, 

whenever this defines some analytic function in a neiqhbourhood of zero – i.e. the radius of 

convergence 𝑅 is strictly greater than zero and none of the lower parameters 𝑐𝑖 is a non-positive 

integer. 

This can be also understand as a Hadamard product (or convolution) 

𝑓𝑞𝑝
 (

𝑎1…𝑎𝑝
𝑐1…𝑐𝑞

; 𝑡) = 𝐹𝑞𝑝+1
 (

𝑎1…𝑎𝑝 1

𝑐1…𝑐𝑞
; 𝑡) ⋆ 𝑓(𝑡), 

where the Hadamard product of the two formal power series 𝑔(𝑡) = ∑ 𝑔𝑘𝑡
𝑘

𝑘≥0 , ℎ(𝑡) = ∑ ℎ𝑘𝑡
𝑘

𝑘≥0  

is defined 

𝑔(𝑡) ⋆ ℎ(𝑡) ≔∑𝑔𝑘

∞

𝑘=0

ℎ𝑘𝑡
𝑘. 

A linear operator which brings a function to its Hadamard product with some hypergeometric 

function (i.e. to its hypergeometrization) appear in [305] and elsewhere. But Hadamard product is a 

fairly general operation. Hadamard product with hypergeometric functions – deserves its own 

name, mainly since it possesses many properties the general Hadamard product does not have. 

Some of them are listed bellow. 

But first notice that although the function 𝑓 is supposed to be of a real argument, once the 

hypergeometrization is performed and the radius of convergence is strictly positive, the result can 

be always treated unambiguously as a function of a complex argument and its domain can be 

extended, if possible, by means of analytic continuation. In that sense, this generalizes the notion of 

classical hypergeometric functions 𝑓𝑞𝑝
 , which – in our setting – should be written as 𝑒𝑥𝑝𝑞𝑝

   but we 

keep the historical notation, i.e. F instead of 𝑒𝑥𝑝. 

For a real function 𝑓(𝑥) of a vector argument, 𝑥 ∈ ℝ𝑛, 𝑛 > 1 we define 

𝑓𝑞𝑝
 (

𝑎1…𝑎𝑝
𝑐1…𝑐𝑞

; 𝑥) ≔ 𝑓𝑞𝑝
 (

𝑎1…𝑎𝑝
𝑐1…𝑐𝑞

; 𝑡𝑥)|
𝑡=1

= 𝐹𝑞𝑝+1
 (

𝑎1…𝑎𝑝 1

𝑐1…𝑐𝑞
; 𝑡) ⋆ 𝑓(𝑡𝑥)|

𝑡=1

, 

that is the hypergeometrization is performed on the real function 𝑓(𝑡𝑥) of the real argument 𝑡 and if 

the corresponding radius of convergence is strictly grater than 1 then the function is evaluated at the 

point 𝑡 = 1. 

 (i) For 𝑝 = 𝑞 hypergeometrization does not change the radius of convergence. (Indeed, lets assume 

that the Taylor series of the function 𝑓(𝑥) converges for ‖𝑥‖ < 𝑟 in some norm, then the Taylor 

series of the function 𝑓(𝑡𝑥) converges for ‖𝑡𝑥‖ = |𝑡|‖𝑥‖ < 𝑟, in other words |𝑡| <
𝑟

‖𝑥‖
, so theradius 

of convergence is 
𝑟

‖𝑥‖
> 1 for any 𝑥 such that ‖𝑥‖ < 𝑟 and we can evaluate 𝑡 = 1. The region of 

convergence is also unchanged by the presence of the Pochhammer symbols since there are same 

number of them in the numerator as in the denominator.) 

(ii) If the function depends on more than one 𝑛-tuple and is symmetric with respect to them in a 

sense that 𝐹(𝑡𝑥, 𝑦) = 𝐹(𝑥, 𝑡𝑦) ∀𝑡, (for example the Bergman kernel 𝑅𝛼(𝑥, 𝑦) has this property) so 

it does not matter with respect to which variable the hypergeometrization is performed, we will use 

the simplified notation: 

𝐹11
 (

𝑎
𝑐
; 𝑥, 𝑦) ≔ (𝐹(∙, 𝑦))

𝑡1

 
(
𝑎
𝑐
; 𝑥) = (𝐹(𝑥,∙))

𝑡1

 
(
𝑎
𝑐
; 𝑥). 

Specially, the conditions are fulfilled for functions of the form 𝐹(𝑥, 𝑦) = 𝑓(𝑥 ∙ 𝑦, |𝑥|2|𝑦|2). 
Some properties of the hypergeometrization will be important later on. 

(i) Obviously, 𝑓11
 (

𝑎
𝑎
; 𝑥) = 𝑓(𝑥).  

(ii) For 𝑅𝑒𝑐 > 𝑅𝑒𝑎 > 0: 
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𝑓11
 (

𝑎
𝑐
; 𝑥) =

𝛤(𝑐)

𝛤(𝑎)𝛤(𝑐 − 𝑎)
∫ 𝑡𝑎−1(1 − 𝑡)𝑐−𝑎−1𝑓(𝑡𝑥)𝑑𝑡

1

0

. 

(iii) When 𝑎 ≠ 0: 

𝑓11
 (

𝑎 + 1
𝑐
; 𝑥) =

1

𝑎
(𝑎 + 𝑥 ∙ ∇𝑥) 𝑓11

 (
𝑎
𝑐
; 𝑥) =

1

𝑎
(𝑎 + 𝑡𝜕𝑡) 𝑓11

 (
𝑎
𝑐
; 𝑡𝑥)|

𝑡=1
 

The statements can be proved easily via Taylor series expansion. 

For the proof of Theorem (5.2.2) it is useful to get acquainted with some representations of the 

Bergman kernel. It is shown of Otahalova [313] (and elsewhere) that (although in different 

notation) 

𝑅𝛼(𝑥, 𝑦) = 𝑃11
 (

�̃�
𝑏 + 1

; 𝑥, 𝑦), 

where 𝑃(𝑥, 𝑦) is the Poisson kernel, the generating function of the zonal harmonics: 

𝑃(𝑥, 𝑦) =
1 − |𝑥|2|𝑦|2

(1 − 2𝑥 ∙ 𝑦 + |𝑥|2|𝑦|2)
𝑛
2

= ∑ 𝑍𝑚

∞

𝑚=0

(𝑥, 𝑦). 

The Bergman kernel can also be represent in terms of the Appell 𝐹1 function 

𝐹1 (
𝑎
𝑐
;
𝑏1 𝑏2
−

; 𝑥, 𝑦) ≔ ∑
(𝑎)𝑗+𝑘(𝑏1)𝑗(𝑏2)𝑘
(𝑐)𝑗+𝑘𝑗! 𝑘!

𝑥𝑗𝑦𝑘
∞

𝑗,𝑘=0

, 

as 

                              𝑅𝛼(𝑥, 𝑦) = 𝐹1 (
�̃�
𝑏
; 𝑏 𝑏
−
; 𝑧, �̃�),                     (40) 

where 𝑧 = 𝑥 ∙ 𝑦 + 𝑖√|𝑥|2|𝑦|2 − (𝑥 ∙ 𝑦)2 

Indeed, notice that 

𝑃(𝑥, 𝑦) =
1 − |𝑧|2

|1 − 𝑧|2𝑏+2
= 𝐹1 (

𝑏 + 1
𝑏
; 𝑏 𝑏
−
; 𝑧, �̃�) . 

The last equality is a direct consequence of the known transformation rule for the Appell 𝐹1 

function 

𝐹1 (
𝑎
𝑐
;
𝑏1 𝑏2
−

; 𝑥, 𝑦) = (1 − 𝑥)−𝑏1(1 − 𝑦)−𝑏2𝐹1 (
𝑐 − 𝑎
𝑐
;
𝑏1 𝑏2
−

;
𝑥

𝑥 − 1
,
𝑦

𝑦 − 1
) 

and the fact that 

𝐹1 (
−1
𝑐
;
𝑏1 𝑏2
−

; 𝑥, 𝑦) = 1 −
𝑏1
𝑐
𝑥 −

𝑏2
𝑐
𝑦. 

So what we need to do is only the hypergeometrization 

𝑅𝛼(𝑥, 𝑦) = 𝑃11
 (

�̃�
𝑏 + 1

; 𝑥, 𝑦) (𝐹1)11
 (

𝑏 + 1 �̃�
𝑏 𝑏 + 1

;
𝑏1 𝑏2
−

; 𝑧, 𝑧̅) = 𝐹1 (
�̃�
𝑏
; 𝑏 𝑏
−
; 𝑧, 𝑧̅). 

From this representation we can see that the Bergman kernel (as a function of y) is an analytic 

function with radius of convergence|𝑥|−1, because it is known that 𝐹1 is a holomorphic function in 

its arguments with singularity at the point 1 and because of the inequality 

|𝑧| = |𝑥||𝑦| < |𝑥|, 
For 𝑦 ∈ 𝔹𝑛. 
From known properties of the Appell function it is also clear that when 𝑦 = 𝑥 

𝑅𝛼(𝑥, 𝑥) = 𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2). 

For the proof of Theorem (5.2.2) we also need two lemmas. 

Lemma (5.2.4) [299]: For𝑓 ∈ 𝐶1(𝔹𝑛̅̅ ̅̅ ):  

∫𝑧 ∙ 𝑦𝑓(𝑦)𝑑𝜇𝛾
𝑛(𝑦) =

𝔹𝑛

1

2�̃�
∫ 𝑧 ∙ ∇𝑓(𝑦)𝑑𝜇𝛾+1

𝑛 (𝑦)

𝔹𝑛

 

Proof: By the Stokes theorem, 
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∫𝑧 ∙ ∇𝑓(𝑦)(1 − |𝑦|2)𝛾+1𝑐𝛾+1𝑑
𝑛𝑦

𝔹𝑛

= ∫ 𝑓(𝑦) (1 − |𝑦|2)𝛾+1⏟        
=0𝜕𝔹𝑛

𝑐𝛾+1𝑧 ∙ 𝑦𝑑𝜎(𝑦) 

+
2𝑐𝛾+1(𝛾 + 1)

𝑐𝛾
∫𝑧 ∙ 𝑦𝑓(𝑦)(1 − |𝑦|2)𝛾𝑐𝛾𝑑

𝑛𝑦

𝔹𝑛

 

= 2�̃� ∫ 𝑧 ∙ 𝑦𝑓(𝑦)𝑑𝜇𝛾
𝑛(𝑦)

𝔹𝑛

, 

since 𝑐𝛾 =
Γ(�̃�)

𝜋
𝑛
2Γ(𝛾+1)

. 

Lemma (5.2.5) [299]: 

𝑥 ∙ 𝛻𝑦𝑅𝛼(𝑥, 𝑦) =
�̃�|𝑥|2

𝑏
(2𝑏 + 𝑥 ∙ 𝛻𝑥) (𝑅𝛼+1)11

 (
𝑏

𝑏 + 1
; 𝑥, 𝑦). 

Proof:  Recall that 

𝑅𝛼(𝑥, 𝑦) = 𝐹1 (
�̃�
𝑏
; 𝑏 𝑏
−
; 𝑧, 𝑧̅), 

where𝑧 = 𝑥 ∙ 𝑦 + 𝑖√|𝑥|2|𝑦|2 − (𝑥 ∙ 𝑦)2. From that we can see 

(𝑅𝛼+1)11
 (

𝑏
𝑏 + 1

; 𝑥, 𝑦) = 𝐹1 (
�̃� + 1
𝑏 + 1

; 𝑏 𝑏
−
; 𝑧, 𝑧̅). 

Next, 

𝑥 ∙ 𝛻𝑦𝑧 = 𝑥 ∙ 𝛻𝑦�̃� = |𝑥|
2,          𝑥 ∙ 𝛻𝑥𝑧

𝑗 = 𝑗𝑧𝑗 ,        𝑥 ∙ 𝛻𝑥𝑧̅
𝑘 = 𝑘𝑧̅𝑘 , 

and 

𝑥 ∙ 𝛻𝑦𝐹1 (
�̃�
𝑏
; 𝑏 𝑏
−
; 𝑧, 𝑧̅) = |𝑥|2�̃� (𝐹1 (

�̃� + 1
𝑏 + 1

; 𝑏 + 1 𝑏
−

; 𝑧, 𝑧̅) + 𝐹1 (
�̃� + 1
𝑏 + 1

; 𝑏 𝑏 + 1
−

; 𝑧, 𝑧̅)) 

= �̃�|𝑥|2 ∑
(�̃� + 1)𝑗+𝑘
(𝑏 + 1)𝑗+𝑘

𝑧𝑗𝑧̅𝑘

𝑗! 𝑘!
((𝑏 + 1)𝑗(𝑏)𝑘 + (𝑏)𝑗(𝑏 + 1)𝑘)

∞

𝑗,𝑘=0

 

=
�̃�|𝑥|2

𝑏
∑

(�̃� + 1)𝑗+𝑘
(𝑏 + 1)𝑗+𝑘

𝑧𝑗𝑧̅𝑘

𝑗! 𝑘!
(𝑏)𝑗(𝑏)𝑘(2𝑏 + 𝑗 + 𝑘)

∞

𝑗,𝑘=0

 

=
�̃�|𝑥|2

𝑏
(2𝑏 + 𝑥∇𝑥)𝐹1 (

�̃� + 1
𝑏 + 1

; 𝑏 𝑏
−
; 𝑧, 𝑧̅). 

Proof: The proof of Theorem (5.2.2) will be done by induction on 𝑝. 

𝑝 = 0. For 𝛽 > 𝛼 (�̃� is always positive from the assumption 𝛼 > −1) we get: 

𝑅𝛼(𝑥, 𝑦) = (𝑅𝛽)11

 
(
�̃�
�̃�
; 𝑥, 𝑦) 

=
Γ(�̃�)

Γ(�̃�)Γ(�̃� − �̃�)
∫ 𝑡�̃�−1(1 − 𝑡)�̃�−�̃�−1

1

0

𝑅𝛽(𝑡𝑥, 𝑦)𝑑𝑡. 

We substitute this into the integral and swap the order of integration: 

∫𝑓(𝑦)𝑅𝛼(𝑥, 𝑦)𝑑𝜇𝛽
𝑛(𝑦)

𝔹𝑛

=
𝛤(�̃�)

𝛤(�̃�)𝛤(�̃� − �̃�)
∫ 𝑡�̃�−1(1 − 𝑡)�̃�−�̃�−1

1

0

∫𝑓(𝑦)𝑅𝛽(𝑡𝑥, 𝑦)𝑑𝜇𝛽
𝑛(𝑦)𝑑𝑡

𝔹𝑛

 

=
𝛤(�̃�)

𝛤(�̃�)𝛤(�̃� − �̃�)
∫ 𝑡�̃�−1(1 − 𝑡)�̃�−�̃�−1𝑓(𝑡𝑥)𝑑𝑡

1

0

= 𝑓11
 (

�̃�
�̃�
; 𝑥). 

When𝛽 = 𝛼, this is just the reproducing property of the Bergman kernel. 

𝑝 = 𝑝 + 1. We can see that the function 𝑔(𝑦):= 𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)(𝑥 ∙ 𝑦)
𝑝 meets the condition of 

Lemma (5.2.4), hence: 

∫𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)(𝑥 ∙ 𝑦)
𝑝+1

𝔹𝑛

𝑑𝜇𝛽
𝑛(𝑦) =

1

2�̃�
∫ 𝑥 ∙ ∇𝑦(𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)(𝑥 ∙ 𝑦)

𝑝)𝑑𝜇𝛽+1
𝑛 (𝑦)

𝔹𝑛

, 
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which divides the proof into three parts: 

                   =
1

2�̃�
∫ (𝑥 ∙ 𝛻𝑦𝑅𝛼(𝑥, 𝑦))𝑓(𝑦)(𝑥 ∙ 𝑦)

𝑝𝑑𝜇𝛽+1
𝑛 (𝑦)

𝔹𝑛
                     (41) 

                    +
1

2�̃�
∫ 𝑅𝛼(𝑥, 𝑦)(𝑥 ∙ 𝛻𝑦𝑓(𝑦))(𝑥 ∙ 𝑦)

𝑝𝑑𝜇𝛽+1
𝑛 (𝑦)

𝔹𝑛
                   (42) 

                    +
1

2�̃�
∫ 𝑅𝛼(𝑥, 𝑦)𝑓(𝑦)𝑝(𝑥 ∙ 𝑦)

𝑝−1|𝑥|2𝑑𝜇𝛽+1
𝑛 (𝑦)

𝔹𝑛
.                  (43) 

Notice that for a general series of the form 
𝑝!

2𝑝
∑

𝐴(𝑗, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝

 

the transition 𝑝 → 𝑝 + 1 also divides this series into the three parts, namely: 

                        
(𝑝+1)!

2𝑝+1
∑

𝐴(𝑗,𝑙,𝑚)

𝑗!𝑙!𝑚!𝑗+2𝑙+𝑚=𝑝+1 =
𝑝!

2𝑝+1
∑

𝐴(𝑗+1,𝑙,𝑚)

𝑗!𝑙!𝑚!𝑗+2𝑙+𝑚=𝑝         (44)  

  +
𝑝!

2𝑝+1
∑

𝐴(𝑗,𝑙,𝑚+1)

𝑗!𝑙!𝑚!𝑗+2𝑙+𝑚=𝑝               (45) 

  
𝑝!

2𝑝
∑

𝐴(𝑗,𝑙+1,𝑚)

𝑗!𝑙!𝑚!𝑗+2𝑙+𝑚=𝑝−1 .           (46) 

(The logic is as follows: 

∑
𝐴(𝑗, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝+1

= ∑
𝜕𝑡
𝑝+1

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚

𝐴(𝑗, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

 

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
(𝑗 + 2𝑙 + 𝑚)𝑡𝑗+2𝑙+𝑚−1

𝐴(𝑗, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚−1

𝐴(𝑗, 𝑙, 𝑚)

(𝑗 − 1)! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

+⋯ 

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

+⋯ =
1

𝑝 + 1
∑

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!

∞

𝑗+2𝑙+𝑚=𝑝

+⋯, 

where the dots represent the other two terms, where the procedure is analogous.) 

We will show that the corresponding parts are equal to each other, i.e. (41)=(44), (42)=(45) and 

(43)=(46) when 

𝐴(𝑗, 𝑙, 𝑚) =
|𝑥|2(𝑗+1)(�̃�)𝑗(2𝑏)𝑗

(�̃�)
𝑗+𝑚+𝑙

(𝑏)𝑗
((𝑥 ∙ ∇)𝑚𝑓)33
 (

�̃� + 𝑗 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 𝑙 + 𝑚 𝑏 + 𝑗 2𝑏
; 𝑥) . 

The equalities (42)=(45) and (43)=(46) are trivial. It remains only to prove the equality (41)=(44), 

1

2�̃�
∫(𝑥 ∙ 𝛻𝑦𝑅𝛼(𝑥, 𝑦))𝑓(𝑦)(𝑥 ∙ 𝑦)

𝑝𝑑𝜇𝛽+1
𝑛 (𝑦)

𝔹𝑛

=
𝑝!

2𝑝+1
∑

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!

∞

𝑗+2𝑙+𝑚=𝑝

. 

In the integral we use Lemma (5.2.5) to obtain: 

1

2�̃�
∫(𝑥 ∙ 𝑦)𝑝

�̃�|𝑥|2

𝑏
(2𝑏 + 𝑥 ∙ ∇𝑥) (𝑅𝛼+1)11

 (
𝑏

𝑏 + 1
; 𝑥, 𝑦) 𝑓(𝑦)𝑑𝜇𝛽+1

𝑛 (𝑦)

𝔹𝑛

, 

which according to the Leibniz rule equals 

�̃�|𝑥|2

2�̃�𝑏
(2𝑏 + 𝑥 ∙ 𝛻𝑥 − 𝑝) ∫(𝑥 ∙ 𝑦)

𝑝 (𝑅𝛼+1)11
 

𝔹𝑛

(
𝑏

𝑏 + 1
; 𝑥, 𝑦) 𝑓(𝑦)𝑑𝜇𝛽+1

𝑛 (𝑦). 

Using the integral form of hypergeometrization 

(𝑅𝛼+1)11
 (

𝑏
𝑏 + 1

; 𝑥, 𝑦) = 𝑏∫ 𝑡𝑏−1𝑅𝛼+1(𝑡𝑥, 𝑦)𝑑𝑡

1

0

 

we get: 
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�̃�|𝑥|2

2�̃�
(2𝑏 + 𝑥 ∙ 𝛻𝑥 − 𝑝)∫ 𝑡

𝑏−1−𝑝

1

0

∫(𝑡𝑥 ∙ 𝑦)𝑝𝑅𝛼+1(𝑡𝑥, 𝑦)𝑓(𝑦)𝑑𝜇𝛽+1
𝑛 (𝑦)𝑑𝑡

𝔹𝑛

. 

By the induction hypothesis, this is equal to 

�̃�|𝑥|2

2�̃�
(2𝑏 + 𝑥 ∙ 𝛻𝑥 − 𝑝)∫ 𝑡

𝑏−1−𝑝

1

0

 

 
𝑝!

2𝑝
∑

𝑡2𝑗+2𝑙+𝑚|𝑥|2(𝑗+1)(�̃�+1)𝑗(2𝑏)𝑗

𝑗!𝑚!𝑙!(�̃�+1)
𝑗+𝑚+𝑙

(𝑏)𝑗
𝑗+2𝑙+𝑚=𝑝 ((𝑥 ∙ 𝛻)𝑚𝑓)33

 (
�̃� + 𝑗 + 1 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 1 + 𝑙 + 𝑚 𝑏 + 𝑗 2𝑏
; 𝑡𝑥) 𝑑𝑡, 

From the knowledge that 

∫𝑡𝑏+𝑗−1𝑔(𝑡𝑥)𝑑𝑡

1

0

=
1

𝑏 + 𝑗
𝑔11
 (

𝑏 + 𝑗
𝑏 + 𝑗 + 1

; 𝑥) 

we obtain 

|𝑥|2(2𝑏 + 𝑥 ∙ 𝛻𝑥 − 𝑝) 

       
𝑝!

2𝑝+1
∑

|𝑥|2(𝑗+1)(�̃�)𝑗+1(2𝑏)𝑗

𝑗!𝑚!𝑙!(�̃�)
𝑗+1+𝑚+𝑙

(𝑏)𝑗+1
((𝑥 ∙ 𝛻)𝑚𝑓)33
 (

�̃� + 𝑗 + 1 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 1 + 𝑙 + 𝑚 𝑏 + 𝑗 + 1 2𝑏
; 𝑥)𝑗+2𝑙+𝑚=𝑝 . 

By the Leibniz rule and some manipulation we finally arrive at: 

𝑝!

2𝑝+1
∑

|𝑥|2(𝑗+1+𝑙)(�̃�)𝑗+1(2𝑏)𝑗+1

𝑗!𝑚! 𝑙! (�̃�)
𝑗+1+𝑚+𝑙

(𝑏)𝑗+1𝑗+2𝑙+𝑚=𝑝

 

2𝑏 + 𝑥 ∙ 𝛻𝑥 + 𝑗 − 𝑚

2𝑏 + 𝑗
((𝑥 ∙ 𝛻)𝑚𝑓)33
 (

�̃� + 𝑗 + 1 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 1 + 𝑙 + 𝑚 𝑏 + 𝑗 + 1 2𝑏
; 𝑥). 

To finish the proof it now only remains to show that the last formula is equal to 

((𝑥 ∙ 𝛻)𝑚𝑓)33
 (

�̃� + 𝑗 + 1 2𝑏 + 𝑗 + 1 𝑏

�̃� + 𝑗 + 1 + 𝑙 + 𝑚 𝑏 + 𝑗 + 1 2𝑏
; 𝑥), 

but from the property of hypergeometrization it follows generally that 

((𝑥 ∙ 𝛻)𝑚𝑔)11
 (

𝑎 + 1
𝑐
; 𝑥) =

1

𝑎
(𝑎 + 𝑡𝜕𝑡) ((𝑥 ∙ 𝛻)

𝑚𝑔)11
 (

𝑎
𝑐
; 𝑡𝑥)|

𝑡=1
 

=
1

𝑎
(𝑎 + 𝑡𝜕𝑡)𝑡

−𝑚 ((𝑡𝑥 ∙ 𝛻)𝑚𝑔)11
  (

𝑎
𝑐
; 𝑡𝑥)|

𝑡=1
=
1

𝑎
(𝑎 − 𝑚 + 𝑡𝜕𝑡) ((𝑡𝑥 ∙ 𝛻)

𝑚𝑔)1 (
𝑎
𝑐
; 𝑡𝑥)|

𝑡=1
1
  

=
1

𝑎
(𝑎 − 𝑚 + 𝑥 ∙ 𝛻𝑥) ((𝑥 ∙ 𝛻)

𝑚𝑔)11
 (

𝑎
𝑐
; 𝑥). 

Set 𝑎 = 2𝑏 + 𝑗and we are done. 

Corollary (5.2.6) [299]: For 𝑝 ∈ ℕ0 and 𝛽 ≥ 𝛼 > −1, 

∫(𝑥 ∙ 𝑦)𝑝𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛽

𝑛(𝑦)

𝔹𝑛

 

 
𝑝!

2𝑝
∑

|𝑥|2(𝑗+𝑙+𝑚)(�̃�)𝑗(�̃�)𝑚(2𝑏)𝑗(2𝑏)𝑚

(�̃�)
𝑗+𝑚+𝑙

(𝑏)𝑗(𝑏)𝑚𝑗!𝑚!𝑙!
𝑗+2𝑙+𝑚=𝑝 𝐹45

 (
�̃� + 𝑗 �̃� + 𝑚 2𝑏 + 𝑗 2𝑏 + 𝑚

�̃� + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗 𝑏 + 𝑚
    
𝑏
2𝑏
; |𝑥|2). 

Proof: We use Theorem (5.2.2) with 𝑓(𝑦) = 𝑅𝛼(𝑥, 𝑦): 

∫𝑅𝛼
2(𝑥, 𝑦)(𝑥・𝑦)𝑝𝑑𝜇𝛽

𝑛(𝑦)

𝔹𝑛

 

𝑝!

2𝑝
∑

|𝑥|2(𝑗+𝑙)(�̃�)𝑗(2𝑏)𝑗

𝑗!𝑚! 𝑙! (�̃�)
𝑗+𝑚+𝑙

(𝑏)𝑗
𝑓33
 (

�̃� + 𝑗 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 𝑙 + 𝑚 𝑏 + 𝑗 2𝑏
; 𝑥)

𝑗+2𝑙+𝑚=𝑝

, 

where 𝑓(𝑦):= (𝑥 ∙ 𝛻𝑦)
𝑚𝑅𝛼(𝑥, 𝑦). From the fact 𝑥 ∙ 𝛻𝑦𝑧 = 𝑥 ∙ 𝛻𝑦𝑧̅  = |𝑥|

2 we have 

𝑓(𝑦) = (𝑥 ∙ 𝛻𝑦)
𝑚
𝑅𝛼(𝑥, 𝑦) = |𝑥|

2𝑚(𝜕𝑧 + 𝜕𝑧)
𝑚𝐹1 (

�̃�
𝑏
; 𝑏 𝑏
−
; 𝑧, 𝑧̅) 
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= |𝑥|2𝑚
(�̃�)𝑚
(𝑏)𝑚

∑(
𝑚
𝑘
) (𝑏)𝑚−𝑘(𝑏)𝑘𝐹1 (

�̃� + 𝑚
𝑏 +𝑚

;
𝑏 + 𝑚 − 𝑘 𝑏 + 𝑘

−
; 𝑧, 𝑧̅)

𝑚

𝑘=0

. 

Performing hypergeometrization (notice that 𝑧 and.𝑧̅ are homogeneous of the degree 1) we get 

𝑓33
 (

�̃� + 𝑗 2𝑏 + 𝑗 𝑏

�̃� + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗 2𝑏
; 𝑥) 

= |𝑥|2𝑚
(�̃�)𝑚
(𝑏)𝑚

 

∑(
𝑚
𝑘
) (𝑏)𝑚−𝑘(𝑏)𝑘𝐹1 (

�̃� + 𝑚 �̃� + 𝑗

𝑏 + 𝑚 �̃� + 𝑗 + 𝑚 + 𝑙
 
2𝑏 + 𝑗 𝑏
𝑏 + 𝑗 2𝑏

; 𝑏 + 𝑚 − 𝑘 𝑏 + 𝑘
−

; |𝑥|2, |𝑥|2)

𝑚

𝑘=0

 

= |𝑥|2𝑚
(�̃�)𝑚
(𝑏)𝑚

∑(
𝑚
𝑘
) (𝑏)𝑚−𝑘(𝑏)𝑘 𝐹45

 (
�̃� + 𝑚 �̃� + 𝑗 2𝑏 + 𝑗

𝑏 + 𝑚 �̃� + 𝑗 + 𝑚 + 𝑙

𝑏 2𝑏 + 𝑚
𝑏 + 𝑗 2𝑏

; |𝑥|2)

𝑚

𝑘=0

. 

Here, by the Appell function with more parameters we mean the Kampé de Fériet function (see 

[314]) 

𝐹1 (
𝑎1…𝑎4
𝑐1…𝑐4

;
𝑏1 𝑏2
−

; 𝑥, 𝑦) ≔ 𝐹4:0;0
4:1;1 (

𝑎1…𝑎4
𝑐1…𝑐4

: 𝑏1; 𝑏2
: −. −;

; 𝑥, 𝑦)

= ∑
(𝑎1)𝑘+𝑗 …(𝑎4)𝑘+𝑗
(𝑐1)𝑘+𝑗 …(𝑐4)𝑘+𝑗

(𝑏1)𝑗(𝑏2)𝑘

𝑗! 𝑘!
𝑥𝑗𝑦𝑘

∞

𝑗,𝑘=0

, 

and the last equality was obtained using the similar reduction formula like in the case of Appell 𝐹1 

function of the same argument 

𝐹1 (
𝑎1…𝑎4
𝑐1…𝑐4

;
𝑏1 𝑏2
−

; 𝑥, 𝑥) = 𝐹45
 (

𝑎1…𝑎4 𝑏1 + 𝑏2
𝑐1…𝑐4

; 𝑥). 

To complete the proof it is only necessary to become conscious of the fact that 

∑(
𝑚
𝑘
) (𝑏)𝑚−𝑘(𝑏)𝑘

𝑚

𝑘=0

= (2𝑏)𝑚 

and substitute everything into the series at the beginning. 

Corollary (5.2.7) [299]: As 𝛼 → ∞, 

𝐹45
 (

�̃� �̃� 2𝑏 2𝑏 𝑏
�̃� + 𝑐1 𝑏 + 𝑐2 𝑏 + 𝑐3 2𝑏 + 𝑐4

; |𝑥|2)

𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2)

≈ (1 − |𝑥|2)𝑐1 (
1 − |𝑥|2

𝛼|𝑥|2
)

𝑐2+𝑐3+𝑐4

(𝑏)𝑐2(𝑏)𝑐3(2𝑏)𝑐4 (1 +∑
𝑑𝑘
𝛼𝑘

∞

𝑘=1

), 

where 𝑑𝑘 are some constants independent of 𝛼. 

Theorem (5.2.8) [299]: For 𝑀,𝑁 ∈ ℕ0, 

∫(𝑦 ∙ 𝑥 − |𝑥|2)𝑀(|𝑥|2 − |𝑦|2)𝑁𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

 

= ∑
|𝑥|2(𝑀−1)𝑀! (−1)𝑀(−𝑁)𝑞(𝑏 + 1)𝑞(𝑏)𝑘1(−𝑏)𝑘2(−𝑏)𝑘3(𝑟 + 𝑙 + 𝑘4)𝑘5
2𝑀(𝑀 − 2𝑙)! (�̃�)𝑞(�̃�)𝑟+𝑙+𝑘4+𝑘5(2𝑏)𝑘1(𝑏)𝑘2(𝑏)𝑘3𝑙! 𝑟! 𝑞! 𝑘1! 𝑘2! 𝑘3! 𝑘4! 𝑘5!

∞

𝑙,𝑟,𝑞
𝑘1…𝑘5

 

𝐶(|𝑥|2) 𝐹45
 (

�̃� �̃� 2𝑏 2𝑏 𝑏
�̃� + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑏 + 𝑘3 𝑏 + 𝑘2 2𝑏 + 𝑘1

; |𝑥|2), 

where 

𝐶(|𝑥|2) ≔ (−𝜕𝑡1)
𝑘1
…(−𝜕𝑡5)

𝑘5
𝜕𝑡6
𝑘4𝜕𝑡7

𝑟 (−𝜕𝑡0)
𝑟
 

𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1(𝑡0 − |𝑥|
2𝑡1−7)

𝑞(|𝑥|2(1 − 𝑡1−7) + 𝑡0 − 1)
𝑁−𝑞(2 − 𝑡6735 − 𝑡724)

𝑀−2𝑙|𝑡0…𝑡7=1 
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Here 𝑡1−7 ∶= 𝑡1𝑡2… 𝑡7, 𝑡6735: = 𝑡6𝑡7𝑡3𝑡5and so on. The summation indices are bound by the 

following inequalities 

𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁 

2𝑙 ≤ 𝑀 

𝑞, 𝑘1, 𝑟 ≤ 𝑁 

𝑘2, 𝑘3, 𝑘4, 𝑘5, 1 + 𝑙 ≤ 𝑁 +𝑀 
Proof: We expand the parentheses in the integral into binomial series 

(𝑦 ∙ 𝑥 − |𝑥|2)𝑀 =∑(
𝑀
𝑃
) (−|𝑥|2)𝑀−𝑝(𝑦 ∙ 𝑥)𝑝

∞

𝑝=0

, 

(|𝑥|2 − |𝑦|2)𝑁 =∑(
𝑁
𝑞
) (|𝑥|2 − 1)𝑁−𝑞(1 − |𝑦|2)𝑞

∞

𝑞=0

, 

to get 

∑ (
𝑀
𝑃
) (
𝑁
𝑞
) (−|𝑥|2)𝑀−𝑝(|𝑥|2 − 1)𝑁−𝑞

𝑐𝛼
𝑐𝛼+𝑞

∞

𝑝,𝑞=0

∫(𝑥 ∙ 𝑦)𝑝𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼+𝑞

𝑛 (𝑦)

𝔹𝑛

, 

Where 𝑐𝛾 =
Γ(�̃�)

𝜋
𝑛
2Γ(𝛾+1)

. By Corollary (5.2.6), this equals 

∑ (
𝑀
𝑃
) (
𝑁
𝑞
) (−|𝑥|2)𝑀−𝑝(|𝑥|2 − 1)𝑁−𝑞

(𝛼 + 1)𝑞
(�̃�)𝑞

𝑝!

2𝑝

∞

𝑝,𝑞=0

∑
|𝑥|2(𝑗+𝑙+𝑚)(�̃�)𝑗(�̃�)𝑚(2𝑏)𝑗(2𝑏)𝑚
(�̃� + 𝑞)𝑗+𝑚+𝑙(𝑏)𝑗(𝑏)𝑚𝑗! 𝑙!𝑚!

𝑗+2𝑙+𝑚=𝑝

 

𝐹45
 (

�̃� + 𝑗 �̃� + 𝑚 2𝑏 + 𝑗
�̃� + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗

   
2𝑏 + 𝑚 𝑏
𝑏 +𝑚 2𝑏

; |𝑥|2). 

Now we sum over 𝑝 by the procedure: 

∑(
𝑀
𝑃
)𝑥𝑀−𝑝

𝑝!

2𝑝

∞

𝑝=0

∑ 𝐴𝑗𝑙𝑚
𝑗+2𝑙+𝑚=𝑝

=∑(
𝑀
𝑃
)𝑥𝑀−𝑝

𝑝!

2𝑝

∞

𝑝=0

∑
𝜕𝑡
𝑝

𝑝!
𝑡𝑗+2𝑙+𝑚

∞

𝑗,𝑙,𝑚=0

𝐴𝑗𝑙𝑚|𝑡=0 

= ∑ ∑(
𝑀
𝑃
)𝑥𝑀−𝑝

∞

𝑝=0

∞

𝑗,𝑙,𝑚=0

𝜕𝑡
𝑝

𝑝!
𝑡𝑗+2𝑙+𝑚𝐴𝑗𝑙𝑚|𝑡=0 =

∑ (
𝑀

𝑗 + 2𝑙 + 𝑚
)
𝑥𝑀−𝑗−2𝑙−𝑚(𝑗 + 2𝑙 + 𝑚)!

2𝑗+𝑚4𝑙
𝐴𝑗𝑙𝑚

∞

𝑗,𝑙,𝑚=0

. 

This yields 

     ∑ (
𝑁
𝑞
) (|𝑥|2 − 1)𝑁−𝑞

(𝛼+1)𝑞

(�̃�)𝑞

∞
𝑞=0 ∑

|𝑥|2(𝑀−𝑙)𝑀!(−1)𝑀+𝑗+𝑚(�̃�)𝑗(�̃�)𝑚(2𝑏)𝑗(2𝑏)𝑚

(𝑀−2𝑙−𝑗−𝑚)!4𝑙2𝑗+𝑚(�̃�+𝑞)𝑗+𝑚+𝑙(𝑏)𝑗(𝑏)𝑚𝑗!𝑙!𝑚!

∞
𝑗,𝑙,𝑚=0      (47) 

𝐹45
 (

�̃� + 𝑗 �̃� + 𝑚 2𝑏 + 𝑗
�̃� + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗

   
2𝑏 + 𝑚 𝑏
𝑏 +𝑚 2𝑏

; |𝑥|2). 

We would like to sum over 𝑞 as well but we are unable to do that since the index is present also in 

the hypergeometric function. To remove this difficulty we make use of the following lemma 

Lemma (5.2.9) [299]: For  𝑟 ∈ ℕ0, 

∆𝛽
𝑟
1

(𝛽)𝑘
𝑓11
 (

𝛾
𝛽 + 𝑘; 𝑥) =

(−1)𝑟(𝑘)𝑟∑
(−1)𝑗(−𝑟)𝑗

𝑗! (𝑘)𝑗(𝛽)𝑘+𝑟
𝑥𝑗𝜕𝑥

𝑗
𝑓11
 (

𝛾
𝛽 + 𝑘 + 𝑟; 𝑥)

∞

𝑗=0

, 

Where  ∆𝛽𝑔(𝛽):= 𝑔(𝛽 + 1) − 𝑔(𝛽). 

The proof could be easily done by induction, but our approach will be much more direct.  

Proof:  Firstly 

∆𝛽
1

(𝛽)𝑘
𝑓11
 (

𝛾
𝛽 + 𝑘; 𝑥) =∑∆𝛽

𝑓(𝑗)(0)(𝛾)𝑗

𝑗! (𝛽)𝑘+𝑗
𝑥𝑗

∞

𝑗=0

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!
𝑥𝑗 (

1

(𝛽 + 1)𝑘+𝑗
−

1

(𝛽)𝑘+𝑗
)

∞

𝑗=0

 

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!
𝑥𝑗

−𝑘 − 𝑗

(𝛽)𝑘+𝑗+1

∞

𝑗=0

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!

−𝑘 − 𝑥𝜕𝑥
(𝛽)𝑘+𝑗+1

𝑥𝑗
∞

𝑗=0

= −
𝑘 + 𝑥𝜕𝑥
(𝛽)𝑘+1

𝑓11
 (

𝛾
𝛽 + 𝑘 + 1; 𝑥). 

Hence obviously 
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∆𝛽
𝑟
1

(𝛽)𝑘
𝑓11
 (

𝛾
𝛽 + 𝑘; 𝑥) =

(−1)𝑟(𝑘 + 𝑥𝜕𝑥)𝑟
1

(𝛽)𝑘+𝑟
𝑓11
 (

𝛾
𝛽 + 𝑘 + 𝑟; 𝑥) 

We claim that 

(𝑘 + 𝑥𝜕𝑥)𝑟 =∑
(−1)𝑗(−𝑟)𝑗(𝑘)𝑟

𝑗! (𝑘)𝑗
𝑥𝑗𝜕𝑥

𝑗

𝑟

𝑗=0

. 

It is enough to check this equation on monomials 𝑥𝑚 since the expressions on both sides are linear 

combinations of operators  𝑥𝑙𝜕𝑥
𝑙 . Since 𝑥𝜕𝑥𝑥

𝑚 = 𝑚𝑥𝑚this reduces the problem to verifying the 

equality 

(𝑘 + 𝑚)𝑟 =∑
(−1)𝑗(−𝑟)𝑗(𝑘)𝑟

𝑗! (𝑘)𝑗

𝑚!

(𝑚 − 𝑗)!

𝑟

𝑗=0

. 

But this can be rewritten as 

(𝑘)𝑟𝑚! (
𝑟 + 𝑘 − 1 +𝑚

𝑚
) = (𝑘)𝑟𝑚!∑(

𝑟
𝑗) (

𝑘 − 1 +𝑚
𝑚 − 𝑗

)

𝑟

𝑗=0

, 

which is (aside the factor (𝑘)𝑟𝑚!) the so-called 𝐶ℎ𝑢-Vandermonde identity. 

We will use this lemma in the following way. Obviously 

1

(𝛽 + 𝑞)𝑘
𝑓11
 (

𝛾
𝛽 + 𝑞 + 𝑘; 𝑥) =∑(

𝑞
𝑟
)∆𝛽

𝑟
1

(𝛽)𝑘
𝑓11
 (

𝛾
𝛽 + 𝑘; 𝑥)

∞

𝑟=0

. 

By the lemma with 

𝑓(|𝑥|2) ≔ 𝐹34
 (

�̃� + 𝑚 2𝑏 + 𝑗 2𝑏 + 𝑚 𝑏
𝑏 + 𝑗 𝑏 + 𝑚 2𝑏

; |𝑥|2), 

𝛾 ≔ �̃� + 𝑗, 𝛽 ≔ �̃� and 𝑘 ≔ 𝑗 + 𝑙 + 𝑚 we get 
1

(�̃� + 𝑞)𝑗+𝑙+𝑚
𝐹45
 (

�̃� + 𝑗 �̃� + 𝑚 2𝑏 + 𝑗
�̃� + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗

   
2𝑏 + 𝑚 𝑏
𝑏 +𝑚 2𝑏

; |𝑥|2) 

=∑(
𝑞
𝑟
) (−1)𝑟(𝑗 + 𝑙

∞

𝑟=0

+𝑚)𝑟∑
(−1)𝑠(−𝑟)𝑠|𝑥|

2𝑠𝜕|𝑥|2
𝑠

𝑠! (𝑗 + 𝑙 + 𝑚)𝑠(�̃�)𝑗+𝑚+𝑙+𝑟

∞

𝑠=0

𝐹45
 (

�̃� + 𝑗 �̃� + 𝑚 2𝑏 + 𝑗
�̃� + 𝑟 + 𝑗 + 𝑚 + 𝑙 𝑏 + 𝑗

   
2𝑏 + 𝑚 𝑏
𝑏 +𝑚 2𝑏

; |𝑥|2) 

∑(
𝑞
𝑟
) (−1)𝑟(𝑗 + 𝑙 + 𝑚)𝑟

∞

𝑟=0

∑
(−1)𝑠(−𝑟)𝑠|𝑥|

2𝑠

𝑠! (𝑗 + 𝑙 + 𝑚)𝑠

(�̃� + 𝑗)𝑠(�̃� + 𝑚)𝑠(2𝑏 + 𝑗)𝑠(2𝑏 + 𝑚)𝑠(𝑏)𝑠
(�̃�)𝑗+𝑚+𝑙+𝑟+𝑠(𝑏 + 𝑗)𝑠(𝑏 + 𝑚)𝑠(2𝑏)𝑠

∞

𝑠=0

 

𝐹45
 (

�̃� + 𝑗 + 𝑠 �̃� + 𝑚 + 𝑠 2𝑏 + 𝑗 + 𝑠
�̃� + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 𝑠 𝑏 + 𝑗 + 𝑠

   
2𝑏 + 𝑚 + 𝑠 𝑏 + 𝑠
𝑏 + 𝑚 + 𝑠 2𝑏 + 𝑠

; |𝑥|2). 

Substituting this into (47), with some manipulations and performing a transformation of the 

summation index 𝑟 → 𝑟 + 𝑠 we get 

                                   ∑ (
𝑁
𝑞
) (|𝑥|2 − 1)𝑁−𝑞

(𝛼+1)𝑞

(�̃�)𝑞

∞
𝑞=0                     (48) 

 ∑
|𝑥|2(𝑀−𝑙+𝑠)𝑀!(−1)𝑀+𝑗+𝑚(�̃�)𝑗+𝑠(�̃�)𝑚+𝑠(2𝑏)𝑗+𝑠(2𝑏)𝑚+𝑠(𝑏)𝑠(−𝑞)𝑟+𝑠(𝑗+𝑙+𝑚)𝑟+𝑠

(𝑀−2𝑙−𝑗−𝑚)!4𝑙2𝑗+𝑚(𝑏)𝑗+𝑠(𝑏)𝑚+𝑠(2𝑏)𝑠(�̃�)𝑗+𝑚+𝑙+𝑟+2𝑠𝑗!𝑙!𝑚!𝑟!𝑠!(𝑗+𝑙+𝑚)𝑠

∞
𝑗,𝑙,𝑚,𝑟,𝑠=0  

𝐹45
 (

�̃� + 𝑗 + 𝑠 �̃� + 𝑚 + 𝑠 2𝑏 + 𝑗 + 𝑠
�̃� + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠 𝑏 + 𝑗 + 𝑠

   
2𝑏 + 𝑚 + 𝑠 𝑏 + 𝑠
𝑏 + 𝑚 + 𝑠 2𝑏 + 𝑠

; |𝑥|2) 

We can sum over q now. The series in question is 

∑(
𝑁
𝑞
) (|𝑥|2 − 1)𝑁−𝑞

(𝛼 + 1)𝑞
(�̃�)𝑞

(−𝑞)𝑟+𝑠

∞

𝑞=0

. 
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By the representation (−𝑞)𝑟+𝑠 = (−𝜕𝑡)
𝑟+𝑠𝑡𝑞|𝑡=1(from now on every parameter that contains the 

letter 𝑡– 𝑡, 𝑡1, and so on – will be understood to be evaluated at 1; we will not explicitly mention 

this) we get 

(−𝜕𝑡)
𝑟+𝑠(|𝑥|2 − 1)𝑁 𝐹12

 (
−𝑁 𝛼 + 1

�̃�
;

𝑡

1 − |𝑥|2
). 

The known transformation 

𝐹12
 (𝑎 𝑏

𝑐
; 𝑥) = (1 − 𝑥)−𝑎 𝐹12

 (𝑎 𝑐 − 𝑏
𝑐

;
𝑥

𝑥 − 1
) 

enables us to write this as 

(−𝜕𝑡)
𝑟+𝑠(|𝑥|2 − 1)𝑁 𝐹12

 (−𝑁 𝑏 + 1
�̃�

;
𝑡

|𝑥|2 − 1 + 𝑡
)

=∑
(−𝑁)𝑞(𝑏 + 1)𝑞

(�̃�)𝑞𝑞!

∞

𝑞=0

(−𝜕𝑡)
𝑟+𝑠𝑡𝑞(|𝑥|2 − 1 + 𝑡)𝑁−𝑞 . 

We did not manage to sum the series explicitly but this will do. Substituting this result into (48) we 

get the second intermediate result: 

 ∑
|𝑥|2(𝑀−𝑙+𝑠)𝑀!(−1)𝑀+𝑗+𝑚(−𝑁)𝑞(𝑏+1)𝑞(�̃�)𝑗+𝑠(�̃�)𝑚+𝑠(2𝑏)𝑗+𝑠(2𝑏)𝑚+𝑠(𝑏)𝑠(𝑗+𝑙+𝑚)𝑟+𝑠

(𝑀−2𝑙−𝑗−𝑚)!4𝑙2𝑗+𝑚(𝑏)𝑗+𝑠(𝑏)𝑚+𝑠(2𝑏)𝑠(�̃�)𝑞(�̃�)𝑗+𝑚+𝑙+𝑟+2𝑠𝑗!𝑙!𝑚!𝑟!𝑠!𝑞!(𝑗+𝑙+𝑚)𝑠

∞
𝑗,𝑙,𝑚
𝑟,𝑠,𝑞

 

               𝐶𝑟,𝑠(|𝑥|
2) 𝐹45

 (
�̃� + 𝑗 + 𝑠 �̃� + 𝑚 + 𝑠 2𝑏 + 𝑗 + 𝑠
�̃� + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠 𝑏 + 𝑗 + 𝑠

   
2𝑏 + 𝑚 + 𝑠 𝑏 + 𝑠
𝑏 + 𝑚 + 𝑠 2𝑏 + 𝑠

; |𝑥|2) , (49) 

Where  𝐶𝑟,𝑠(|𝑥|
2) = (−𝜕𝑡)

𝑟+𝑠𝑡𝑞(|𝑥|2 − 1 + 𝑡)𝑁−𝑞 . 
Sadly, this form is not of much use to us. As it is clear from Lemma (5.2.3) all functions 𝐹45

  with 

these parameters have the same principal asymptotic behavior as 𝛼 → ∞. To get a more effective 

form we exploit the known relation between contiguous hypergeometric functions 

𝐹 (
𝑎 + 1
𝑐 + 1

) =
𝑐

𝑎
(𝐹 (

𝑎
𝑐
) −

𝑐 − 𝑎

𝑐
𝐹 (

𝑎
𝑐 + 1

)), 

which holds for any hypergeometric function with at least one upper and one lower parameter. 

By iteration we get: 

𝐹 (
𝑎 + 𝑚
𝑐 +𝑚

) =
(𝑐)𝑚
(𝑎)𝑚

∑
(−𝑚)𝑗(𝑐 − 𝑎)𝑗

(𝑐)𝑗𝑗!
𝐹 (

𝑎
𝑐 + 𝑗)

∞

𝑗=0

. 

We apply this to the function 

                     𝐹45
 

(

 
 
�̃� + 𝑗 + 𝑠⏞      

𝑘5

�̃� + 𝑚 + 𝑠⏞      
𝑘4

�̃� + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠⏟              
𝑘4𝑘5

2𝑏 + 𝑗 + 𝑠
𝑏 + 𝑗 + 𝑠⏟      

𝑘3

2𝑏 + 𝑚 + 𝑠
𝑏 + 𝑚 + 𝑠⏟      

𝑘2

𝑏 + 𝑠
2𝑏 + 𝑠⏟  
𝑘1

; |𝑥|2

)

 
 
     (50) 

as indicated, five times in total. That will get us 5 new series with 5 new summation indices, which 

we name 𝑘1…𝑘5. The role of 𝑚 will be played in turn by the parameters 𝑠,𝑚 + 𝑠, 𝑗 + 𝑠,𝑚 + 𝑠 and 

𝑗 + 𝑠. The lower indices 𝑐 will be in this 2𝑏, 𝑏, 𝑏, �̃� + 𝑟 + 𝑗 + 𝑠 + 𝑙 and�̃� + 𝑟 + 𝑙 + 𝑘4. 

This way the expression (50) will change form to: 

∑
(2𝑏)𝑠(𝑏)𝑚+𝑠(𝑏)𝑗+𝑠(�̃� + 𝑟 + 𝑗 + 𝑠 + 𝑙)𝑚+𝑠(�̃� + 𝑟 + 𝑙 + 𝑘4)𝑗+𝑠

(𝑏)𝑠(2𝑏)𝑚+𝑠(2𝑏)𝑗+𝑠(�̃�)𝑚+𝑠(�̃�)𝑗+𝑠
𝑘1…𝑘5

 

 
(−𝑠)𝑘1(−𝑚−𝑠)𝑘2(−𝑗−𝑠)𝑘3(−𝑚−𝑠)𝑘4(−𝑗−𝑠)𝑘5(𝑏)𝑘1(−𝑏)𝑘2(−𝑏)𝑘3(𝑟+𝑗+𝑠+𝑙)𝑘4(𝑟+𝑙+𝑘4)𝑘5

(2𝑏)𝑘1(𝑏)𝑘2(𝑏)𝑘3(�̃�+𝑟+𝑗+𝑠+𝑙)𝑘4(�̃�+𝑟+𝑙+𝑘4)𝑘5𝑘1!𝑘2!𝑘3!𝑘4!𝑘5!
 

𝐹45
 (

�̃� �̃� 2𝑏 2𝑏 𝑏
�̃� + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑏 + 𝑘3 𝑏 + 𝑘2 2𝑏 + 𝑘1

; |𝑥|2). 

Substituting this into (49) will fortunately reduce the number of terms, for many of them will cancel 

out each other. It can be checked by an easy calculation, for example, that the terms containing 𝛼 

but not 𝑞 will squeeze to a single expression1/(�̃�)𝑟+𝑙+𝑘4+𝑘5. We end up with this much more 
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tolerable expression:          

∑
|𝑥|2(𝑀−𝑙+𝑠)𝑀!(−1)𝑀+𝑗+𝑚(−𝑁)𝑞(𝑏+1)𝑞(𝑗+𝑙+𝑚+𝑠)𝑟

(𝑀−2𝑙−𝑗−𝑚)!4𝑙2𝑗+𝑚(�̃�)𝑞(�̃�)𝑟+𝑙+𝑘4+𝑘5𝑗!𝑙!𝑚!𝑟!𝑠!𝑞!𝑘1!𝑘2!𝑘3!𝑘4!𝑘5!

∞
𝑗𝑙𝑚𝑟𝑠𝑞
𝑘1…𝑘5

             (51) 

 
(−𝑠)𝑘1(−𝑚−𝑠)𝑘2(−𝑗−𝑠)𝑘3(−𝑚−𝑠)𝑘4(−𝑗−𝑠)𝑘5(𝑏)𝑘1(−𝑏)𝑘2(−𝑏)𝑘3(𝑟+𝑗+𝑠+𝑙)𝑘4(𝑟+𝑙+𝑘4)𝑘5

(2𝑏)𝑘1(𝑏)𝑘2(𝑏)𝑘3
 

𝐶𝑟,𝑠(|𝑥|
2) 𝐹45

 (
�̃� �̃� 2𝑏 2𝑏 𝑏

�̃� + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑏 + 𝑘3 𝑏 + 𝑘2 2𝑏 + 𝑘1
; |𝑥|2). 

We can reduce the complexity of this formula further by summing over all indices which do not 

appear in the hypergeometric function or depend on �̃�, i.e. over indices 𝑗, 𝑚, 𝑠. This gives 

                 ∑
|𝑥|2(𝑀−𝑙)𝑀!(−1)𝑀(−𝑁)𝑞(𝑏+1)𝑞(𝑏)𝑘1(−𝑏)𝑘2(−𝑏)𝑘3(𝑟+𝑙+𝑘4)𝑘5

4𝑙(�̃�)𝑞(�̃�)𝑟+𝑙+𝑘4+𝑘5(2𝑏)𝑘1(𝑏)𝑘2(𝑏)𝑘3𝑙!𝑟!𝑞!𝑘1!𝑘2!𝑘3!𝑘4!𝑘5!

∞
𝑙,𝑟,𝑞
𝑘1…𝑘5

                    (52) 

𝐶(|𝑥|2) 𝐹45
 (

�̃� �̃� 2𝑏 2𝑏 𝑏
�̃� + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑏 + 𝑘3 𝑏 + 𝑘2 2𝑏 + 𝑘1

; |𝑥|2), 

where 

𝐶(|𝑥|2) ≔ 

 ∑
|𝑥|2𝑠(−1)𝑗+𝑚(𝑗+𝑙+𝑚+𝑠)𝑟(−𝑠)𝑘1(−𝑚−𝑠)𝑘2(−𝑗−𝑠)𝑘3(−𝑚−𝑠)𝑘4(−𝑗−𝑠)𝑘5(𝑟+𝑗+𝑠+𝑙)𝑘4

(𝑀−2𝑙−𝑗−𝑚)!2𝑗+𝑚𝑗!𝑚!𝑠!

∞
𝑗,𝑚,𝑠  

(−𝜕𝑡)
𝑟+𝑠𝑡𝑞(|𝑥|2 − 1 + 𝑡)𝑁−𝑞 . 

We must deal now with the coefficient 𝐶(|𝑥|2). For that purpose we represent each Pochhammer 

symbol in the series by (−𝑎)𝑘 = (−𝜕𝑡)
𝑘𝑡𝑎 whenever the argument is negative and by (𝑎)𝑘 =

𝜕𝑡
𝑘𝑡𝑎+𝑘−1in the opposite case (again, the default understanding is that every parameter 𝑡𝑖 is to be 

evaluated, without 

explicitly saying so, at the point 1). Thus we get 

𝐶(|𝑥|2) = (−𝜕𝑡1)
𝑘1 …(−𝜕𝑡5)

𝑘5𝜕𝑡6
𝑘4𝜕𝑡7

𝑟 (−𝜕𝑡)
𝑟 

∑
|𝑥|2𝑠(−1)𝑗+𝑚𝑡1−7

𝑠 𝑡6735
𝑗

𝑡724
𝑚 (−𝜕𝑡)

𝑠

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 2𝑗+𝑚𝑗!𝑚! 𝑠!
𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1𝑡𝑞(|𝑥|2 − 1 + 𝑡)𝑁−𝑞
∞

𝑗,𝑚,𝑠

, 

where 𝑡1−7 ≔ 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7, 𝑡6735 = 𝑡6𝑡7𝑡3𝑡5 and so on. The sum over 𝑠 is essentially the Taylor 

series. 

As for the other two indices, it is clear that 

∑
𝐴𝑗𝐵𝑚

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 𝑗!𝑚!

∞

𝑗,𝑚

=
1

(𝑀 − 2𝑙)!
(1 + 𝐴 + 𝐵)𝑀−2𝑙 . 

We thus finally get 

𝐶(|𝑥|2) = (−𝜕𝑡1)
𝑘1 …(−𝜕𝑡5)

𝑘5𝜕𝑡6
𝑘4𝜕𝑡7

𝑟 (−𝜕𝑡)
𝑟 

1

(𝑀 − 2𝑙)!
𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1(𝑡 − |𝑥|2𝑡1−7)
𝑞(|𝑥|2(1 − 𝑡1−7) + 𝑡 − 1)

𝑁−𝑞 (1 −
1

2
𝑡6735 −

1

2
𝑡724)

𝑀−2𝑙

 

Many things can be learnt from this form. Firstly: the last two parentheses are equal to zero when 

all 𝑡 − 𝑠 are evaluated at the point 1. To avoid this we must differentiate them out. For that at least 

𝑁 − 𝑞 +𝑀 − 2𝑙 differentiations are needed. Available to us are 𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 of 

them. Hence: 
𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁. 

Secondly: from the perspective of the parameter t we differentiate 𝑟-times a polynomial of degree 

𝑁. In order for the factor 𝐶�̃�   not to be zero it must hold 𝑟 ≤ 𝑁. Analogously, the degree of 𝑡7 is 𝑟 −
𝑙 − 1 + 𝑁 +𝑀 and this tells us that 1 + 𝑙 ≤ 𝑁 +𝑀. The same reasoning can be applied to any 

parameter 𝑡𝑖. From those and other facts, such as that in the formula (52) there appears the term 

(−𝑁)𝑞 , or from the presence of the term 1/(𝑀 − 2𝑙)!, we can easily compute upper bounds on 

summation indices. They are: 

𝑟 ≤ 𝑁 
2𝑙 ≤ 𝑀       ∧        1 + 𝑙 ≤ 𝑁 +𝑀 

𝑞 ≤ 𝑁 
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𝑘1 ≤ 𝑁 
𝑘𝑖 ≤ 𝑁 +𝑀          ∀𝑖= 2…5. 

Corollary (5.2.10) [299]: For 𝑀,𝑁 ∈ ℕ0 and 𝑥 ≠ 0: 

∫(𝑦 ∙ 𝑥 − |𝑥|2)𝑀(|𝑥|2 − |𝑦|2)𝑁
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= 𝑂 (𝛼−⌈
𝑁+𝑀
2

⌉)       (𝛼 → ∞). 

Proof:  From the fact 

𝑅𝛼(𝑥, 𝑥) = 𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2), 

from Corollary (5.2.7) and from the presence of the factor (�̃�)𝑞(�̃�)𝑙+𝑟+𝑘4+𝑘5in the denominator in 

Theorem (5.2.8) it follows that for 𝑥 ≠ 0 

∫(𝑦 ∙ 𝑥 − |𝑥|2)𝑀(|𝑥|2 − |𝑦|2)𝑁
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= ∑ 𝑂(𝛼−(𝑟+𝑙+𝑞+𝑘1+⋯+𝑘5))

𝑟𝑙𝑞𝑘1…𝑘5

     (𝛼 → ∞).   

That is the speed of asymptotic decay grows with each summation index 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑟, 𝑞, 𝑙 as 

𝛼 → ∞. The slowest decay (and therefore the leading term) we get for the lowest possible values of 

these parameters. But since 𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁, lowest values are 

achieved for 2𝑘4 + 2𝑟 + 2𝑙 = 𝑀 + 𝑁and 𝑘1 = ⋯ = 𝑘5 = 0 if this is possible, i.e. if 𝑀 +𝑁 is an 

even number; if  𝑀 +𝑁 is odd, the decay is one negative power of alpha faster. Hence the leading 

order term is 

𝑂 (𝛼−⌈
𝑁+𝑀
2

⌉)       (𝛼 → ∞). 

Corollary (5.2.11) [299]: For 𝑀 ∈ ℕ0 and 𝑥 ≠ 0 

∫|𝑦 − 𝑥|2𝑀
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= 𝑂 (𝛼−⌈
𝑀
2
⌉)       (𝛼 → ∞). 

Proof: The statement follows directly from the representation 

|𝑦 − 𝑥|2𝑀 = (|𝑦|2 − 2𝑦 ∙ 𝑥 + |𝑥|2)𝑀 = (|𝑦|2 − |𝑥|2 − 2(𝑦 ∙ 𝑥 − |𝑥|2))𝑀 

= (−2)𝑀∑(
𝑀
𝑁
) (𝑦 ∙ 𝑥 − |𝑥|2)𝑀−𝑁(|𝑥|2 − |𝑦|2)𝑁

∞

𝑁=0

. 

The integral is therefore a series of terms, whose behavior is by Corollary (5.2.10): 

𝑂 (𝛼−⌈
𝑀−𝑁+𝑁

2
⌉)       (𝛼 → ∞). 

Lemma (5.2.12) [299]: For 𝑚 ∈ ℕ0, 𝑥 ≠ 0 and 𝑛 > 1: 

∫(𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

 

=∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(𝑧 ∙ 𝑥)𝑚−2𝑘𝑣𝑧,𝑥

2𝑘

(𝑏 +
1
2
)
𝑘
𝑘! |𝑥|2𝑚

∞

𝑘=0

∫(𝑥 ∙ 𝑦 − |𝑥|2)𝑚−2𝑘𝑣𝑦,𝑥
2𝑘𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

 

where 𝑣𝑢1,𝑢2
2 = |𝑢1|

2|𝑢2|
2 − (𝑢1 ∙ 𝑢2)

2. 

Proof: The integral 

∫(𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

 

is unchanged upon replacing 𝑥, 𝑦, 𝑧 by 𝑈𝑥, 𝑈𝑦, 𝑈𝑧 for any orthogonal transformation 𝑈. Without 

loss of generality, we can thus assume that 𝑥 = (|𝑥|,0,0, … ) and 𝑧 = (𝑧1, 𝑧2, 0,0, … ) with 𝑧2 ≥ 0. 

Then 𝑥 ∙ 𝑦 = |𝑥|𝑦1, 𝑧1 =
𝑧∙𝑥

|𝑥|
, 𝑧2 =

𝑣𝑥,𝑥

|𝑥|
 and 

𝑧 ∙ 𝑥 =
𝑧 ∙ 𝑥

|𝑥|
𝑦1 + 𝑣𝑧,𝑥

𝑦2
|𝑥|
. 

We now change variables to hyper-spherical coordinates 

𝑦1 = 𝑟 𝑐𝑜𝑠 𝜑 
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𝑦2 = 𝑟 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜓 
… 

𝑦𝑛−1 = 𝑟 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃1…  𝑠𝑖𝑛 𝜃𝑛−4𝑐𝑜𝑠 𝜃𝑛−3 
𝑦𝑛 = 𝑟 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃1…𝑠𝑖𝑛 𝜃𝑛−4 𝑠𝑖𝑛 𝜃𝑛−3 

𝑑𝜇𝛼
𝑛 =

(𝛼 + 𝑛\2)!

𝜋𝑛\2Γ(𝛼 + 1)
(1 − 𝑟2)𝛼𝑟𝑛−1 𝑠𝑖𝑛𝑛−2𝜑 𝑠𝑖𝑛𝑛−3𝜓…𝑠𝑖𝑛 𝜃𝑛−4𝑑𝑟𝑑𝜑𝑑𝜓…𝑑𝜃𝑛−3. 

The integration bounds are: 𝑟 ∈ [0,1], 𝜑 ∈  [0, 𝜋], 𝜓 ∈ [0, 𝜋], 𝜃1 ∈ [0, 𝜋], … , 𝜃𝑛−4 ∈ [0, 𝜋], 𝜃𝑛−3 ∈
[0,2𝜋]. 
For the sake of brevity put 𝑑2Φ ≔ (1 − 𝑟2)𝛼𝑟𝑛−1 𝑠𝑖𝑛𝑛−2𝜑𝑑𝑟𝑑𝜑. 
Integration over all 𝜃𝑖 will give us some constant 𝐶 since the integrand does not depend on them. 

For the rest we have 

      𝐶 ∫ ∫ ∫ (
𝑧∙𝑥

|𝑥|
𝑟 cos 𝜑 + 𝑣𝑧,𝑥

𝑟 sin𝜑 cos𝜓

|𝑥|
− 𝑧. 𝑥)

𝑚

𝑓(𝑟, |𝑥|𝑟 cos 𝜑)𝑑2Φsin𝑛−3𝜓𝑑𝜓
𝜋

0

𝜋

0

1

0
 (53) 

= 𝐶∑(
𝑚
𝑙
)

∞

𝑙=0

∫∫(
𝑧 ∙ 𝑥

|𝑥|
𝑟 𝑐𝑜𝑠 𝜑

𝜋

0

1

0

− 𝑧. 𝑥)
𝑚−𝑙

(𝑣𝑧,𝑥
𝑟 𝑠𝑖𝑛 𝜑

|𝑥|
)
𝑙

𝑓(𝑟, |𝑥|𝑟 𝑐𝑜𝑠 𝜑)𝑑2Φ∫ cos𝑙 𝜓

𝜋

0

𝑠𝑖𝑛𝑛−3𝜓𝑑𝜓. 

Here and in the rest of the proof we assume 𝑛 > 3 otherwise (in the case 𝑛 = 3) integration over 

the interval [0,2𝜋] would rest with the parameter 𝜓 and in the case 𝑛 = 2 𝜓 would not be present at 

all. 

These cases would however require only minor changes in the proof which continues as follows. 

Let 

𝐴 ≔
𝑧 ∙ 𝑥

|𝑥|
𝑟 𝑐𝑜𝑠 𝜑 − 𝑧. 𝑥,          𝐵 ≔ 𝑣𝑧,𝑥

𝑟 𝑠𝑖𝑛 𝜑

|𝑥|
. 

By an easy computation we have: 

∫𝑐𝑜𝑠𝑙 𝜓

𝜋

0

𝑠𝑖𝑛𝑛−3𝜓𝑑𝜓 =

{
 
 

 
 
√𝜋Γ(𝑏)

Γ (𝑏 +
1
2
)

(
1
2
)
𝑘

(𝑏 +
1
2
)
𝑘

0

𝑙 = 2𝑘,
𝑙 ≠ 2𝑘.

 

Together with fact that  

(
𝑚
2𝑘
) =

(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(
1
2
)
𝑘
𝑘!

 

we obtain that (53) equals 

𝐶∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(𝑏 +
1
2
)
𝑘
𝑘!

∞

𝑘=0

∫∫𝐴𝑚−2𝑘𝐵2𝑘𝑓(𝑟, |𝑥|𝑟 𝑐𝑜𝑠 𝜑)𝑑2Φ

𝜋

0

1

0

. 

Now we take hyper-spherical coordinates back. First we had 𝑥. 𝑦 = |𝑥|𝑦1 = |𝑥|𝑟 cos 𝜑and |𝑦| = 𝑟, 
so our result can be again interpreted as an integral over the unit ball in ℝ𝑛 if we replace 

𝑟 cos 𝜑 by 
𝑥.𝑦

|𝑥|
and put 𝑟 = |𝑦|. Therefore 

𝐴 =
𝑧 ∙ 𝑥

|𝑥|
𝑟 𝑐𝑜𝑠 𝜑 − 𝑧. 𝑥 =  

𝑧. 𝑥

|𝑥|
 
𝑥. 𝑦

|𝑥|
− 𝑧. 𝑥 =

𝑧. 𝑥(𝑥. 𝑦 − |𝑥|2)

|𝑥|2
, 

𝐵2 = 𝑣𝑧,𝑥
2
𝑟2 𝑠𝑖𝑛2 𝜑

|𝑥|2
= 𝑣𝑧,𝑥

2
𝑟2(1 − cos2 𝜑)

|𝑥|2
= 𝑣𝑧,𝑥

2

(|𝑦|2 − (
𝑥. 𝑦
|𝑥|
)
2

)

|𝑥|2
=
𝑣𝑧,𝑥
2 𝑣𝑦.𝑥

2

|𝑥|4
. 

Altogether we have 
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𝐶∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(𝑏 +
1
2
)
𝑘
𝑘! |𝑥|2𝑚

∞

𝑘=0

∫(𝑧 ∙ 𝑥(𝑥. 𝑦 − |𝑥|2))𝑚−2𝑘𝑣𝑧,𝑥
2𝑘𝑣𝑦,𝑥

2𝑘𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

 

The result, if necessary, can be easily checked by performing change of variables into the hyper-

spherical coordinates. 

Lastly, we must determine the constant 𝐶 into which we have collected all unimportant constants. 

But comparing our original integral with the result for 𝑚 = 0 gives us the equality 

∫𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

= 𝐶 ∫𝑓(|𝑦|, 𝑥 ∙ 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

, 

hence 𝐶 = 1. 
Corollary (5.2.13) [299]: For 𝑚 ∈ ℕ0 

∫(𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

 

= ∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(−1)𝑘(𝑧 ∙ 𝑥)𝑚−2𝑘𝑣𝑧,𝑥

2𝑘2𝑝

(𝑏 +
1
2
)
𝑘
(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝! |𝑥|2(𝑚−𝑝−𝑗)

∞

𝑘,𝑗,𝑝=0

∫(𝑥 ∙ 𝑦

𝔹𝑛

− |𝑥|2)𝑚−2𝑗−𝑝(|𝑥|2 − |𝑦|2)𝑗
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦). 

Proof: The Bergman kernel depends only on |𝑦|2|𝑥|2 and 𝑥 ∙ 𝑦– 𝑎 fact easily seen from the 

representation in terms of the Appell function (40). We can therefore apply Lemma (5.2.12). 

Notice that the factor 𝑣𝑦,𝑥
2𝑘  can be written as follows 

𝑣𝑦,𝑥
2𝑘 = (|𝑦|2|𝑥|2 − (𝑥 ∙ 𝑦)2)𝑘 = (|𝑦|2|𝑥|2 − (𝑥 ∙ 𝑦 − |𝑥|2)2 − 2|𝑥|2(𝑥 ∙ 𝑦 − |𝑥|2) − |𝑥|4)𝑘, 

so we can expand it into a finite combination of terms(𝑥 ∙ 𝑦 − |𝑥|2), (|𝑥|2 − |𝑦|2).Specifically, 

𝑣𝑦,𝑥
2𝑘 = (−1)𝑘 ∑

𝑘!2𝑝|𝑥|2(𝑝+𝑗)

(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝!
(𝑥 ∙ 𝑦 − |𝑥|2)2𝑘−2𝑗−𝑝(|𝑥|2 − |𝑦|2)𝑗

∞

𝑗,𝑝=0

. 

Substituting this into the expression in Lemma (5.2.12) and performing some manipulations we get 

the required result. 

Corollary (5.2.14) [299]: For 𝑚 ∈ ℕ0 and 𝑥 ≠ 0: 

∫(𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= 𝑂 (𝛼−⌈
𝑚
4
⌉)     (𝛼 → ∞). 

Proof:  According to Corollary (5.2.13) and Corollary (5.2.10) we get for 𝑥 ≠ 0 

∫(𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

 

∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(−1)𝑘(𝑧 ∙ 𝑥)𝑚−2𝑘𝑣𝑧,𝑥

2𝑘2𝑝

(𝑏 +
1
2
)
𝑘
(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝! |𝑥|2(𝑚−𝑝−𝑗)

∞

𝑘,𝑗,𝑝=0

𝑂 (𝛼−⌈
𝑚−𝑗−𝑝

2
⌉). 

Since 𝑗 + 𝑝 ≤ 𝑘 and 2𝑘 ≤ 𝑚 the principal term is at most 

𝑂(𝛼
−⌈
𝑚−⌈

𝑚
2
⌉

2
⌉

) = 𝑂 (𝛼−⌈
𝑚
4
⌉). 

We are now ready to prove the main result. We repeat the statement: 

For 𝑥 ∈ 𝔹𝑛, 𝑥 ≠ 0, 𝑛 > 1, and 𝑓 ∈ 𝐶∞(𝔹𝑛), there exist differential operators 𝑄𝑖 ≔ 𝑄𝑖(∆, 𝑥, ∇, |𝑥|
2), 

involving only the Laplace operator 𝛥, the directional derivative 𝑥 ∙ 𝛻 and the quantity |𝑥|2, such 

that 
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(𝐵𝛼𝑓)(𝑥) ≔ ∫𝑓(𝑦)
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

≈∑
𝑄𝑖𝑓(𝑥)

𝛼𝑖

∞

𝑖=0

    (𝛼 → ∞), 

where 𝑄0 = 1 and 

𝑄1 =
𝑛 − 2

2

1 − |𝑥|2

|𝑥|2
𝑥 ∙ ∇ +

(𝑛 − 2)(1 − |𝑥|2)2

4(𝑛 − 1)|𝑥|2
(𝑥 ∙ ∇)2 +

1

4(𝑛 − 1)
(1 − |𝑥|2)2∆. 

Finally, for 𝑥 = 0 it holds 

(𝐵𝛼𝑓)(0) ≈∑
∆𝑖𝑓(0)

4𝑖 (𝛼 +
𝑛
2
+ 1)

𝑖

∞

𝑖=0

    (𝛼 → ∞). 

Proof: Let us deal with the simpler case 𝑥 = 0 first on which the general approach will be 

demonstrated. 

The problem is to determine the asymptotic expansion of the integral 

𝐼𝛼𝑓 ≔ ∫𝑓(𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

. 

Remember that 

𝑑𝜇𝛼
𝑛(𝑦) ≔ 𝑐𝛼(1 − |𝑦|

2)𝛼𝑑𝑛𝑦,        𝑐𝛼 =
Γ(�̃�)

𝜋𝑛\2Γ(𝛼 + 1)
. 

We expand the function 𝑓(𝑦) into its Taylor series 

𝑓(𝑦) = ∑
(𝑦 ∙ ∇)𝑘𝑓(0)

𝑘!
+ 𝐻2𝑀(𝑦)

2𝑀−1

𝑘=0

, 

and plug in to get 

𝐼𝛼𝑓 = ∑
1

(2𝑘)!

𝑀−1

𝑘=0

∫(𝑦 ∙ 𝛻)2𝑘𝑓(0)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

+ ∫𝐻2𝑀(𝑦)𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

. 

Notice that only the terms of even degree in the first integral survived. We can estimate the 

remainder term 𝐻2𝑀(𝑦) by the Taylor theorem as follows 

| 𝐻2𝑀(𝑦)| ≤ 𝐶 max
|𝛾|−2𝑀

max
𝑦∈𝔹𝑛̅̅ ̅̅

|𝜕𝛾𝑓(𝑦)||𝑦𝛾| ≤ 𝐶|𝑦|2𝑀 . 

So 

∫𝐻2𝑀𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

≤ 𝐶 ∫|𝑦|2𝑀𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

= 𝐶 ∫(|𝑦|2 − 1 + 1)𝑀𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

= 𝐶∑(
𝑀
𝑘
) (−1)𝑘

𝑀

𝑘=0

∫𝑑𝜇𝛼+𝑘
𝑛 (𝑦)

𝑐𝛼
𝑐𝛼+𝑘

𝔹𝑛

 

𝐶∑(
𝑀
𝑘
) (−1)𝑘

(𝛼 + 1)𝑘
(�̃�)𝑘

𝑀

𝑘=0

= 𝐶2𝐹1 (
−𝑀 𝛼 + 1

�̃�
; 1) = 𝐶

Γ(�̃�)Γ(𝑏 + 𝑀)

Γ(�̃� + 𝑀)Γ(𝑏)
= 𝐶

(𝑏)𝑀
(�̃�)𝑀

= 𝑂(𝛼−𝑀). 

This stems again from the identity 

𝐹12
 (

𝑎1 𝑎2
𝑐

; 1) =
Γ(𝑐)Γ(𝑐 − 𝑎1 − 𝑎2)

Γ(𝑐 − 𝑎1)𝛤(𝑐 − 𝑎2)
, 

which is true for 𝑐 > 𝑎1 + 𝑎2. 

It remains to deal with integrals 

∫(𝑦 ∙ 𝛻)2𝑘𝑑𝜇𝛼
𝑛(𝑦)𝑓(0)

𝔹𝑛

. 

Now, we argue that the operator 𝛻can be treated as an ordinary vector, i.e. it suffices to compute the 

expression  

∫(𝑦 ∙ 𝑧)2𝑘𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛
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and then in the result replace every occurrence of 𝑧𝑗 by 𝜕𝑗. To conclude the first part of this proof it 

therefore suffices to show that 

∫(𝑦 ∙ 𝑧)2𝑘𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

=
(2𝑘)!

𝑘! 4𝑘(�̃�)𝑘
|𝑧|2𝑘 . 

This could be, of course, computed directly but Corollary (5.2.6) can also be used in the light of the 

following representation 

∫(𝑦 ∙ 𝑧)2𝑘𝑑𝜇𝛼
𝑛(𝑦)

𝔹𝑛

= lim 
𝑡→0

𝑡−2𝑘 ∫(𝑦 ∙ 𝑡𝑧)2𝑘𝑅𝛼
2(𝑡𝑧, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

, 

i.e. apply Corollary (5.2.6) to 𝑥 = 𝑡𝑧 then divide by 𝑡2𝑘 and let 𝑡 → 0. 

In the case 𝑥 ≠ 0 the approach is almost identical. First we expand the function 𝑓 into Taylor series 

around 𝑥 

𝑓(𝑦) = ∑
((𝑦 − 𝑥) ∙ 𝛻)

𝑘
𝑓(𝑥)

𝑘!
+ 𝐻2𝑀,𝑥(𝑦)

2𝑀−1

𝑘=0

. 

We have 

(𝐵𝛼𝑓)(𝑥) = ∑
1

𝑘!
(𝐵𝛼 (((𝑦 − 𝑥) ∙ ∇)

𝑘
𝑓(𝑥))) (𝑥)

⏟                    
=:𝑐𝑘

+ (𝐵𝛼𝐻2𝑀,𝑥)(𝑥)

2𝑀−1

𝑘=0

. 

The remainder term can be estimated using the Taylor theorem: 

| 𝐻2𝑀,𝑥(𝑦)| ≤ 𝐶 𝑚𝑎𝑥
|𝛾|=2𝑀

𝑚𝑎𝑥
𝑦∈𝔹𝑛̅̅ ̅̅

|𝜕𝛾𝑓(𝑦)||(𝑦 − 𝑥)𝛾| ≤ 𝐶|𝑦 − 𝑥|2𝑀 

for some constant 𝐶, whence 

(𝐵𝛼𝐻2𝑀,𝑥)(𝑥) = 𝑂(𝐵𝛼(|𝑦 − 𝑥|
2𝑚)(𝑥)) = 𝑂 (𝛼−⌈

𝑀
2
⌉)     (𝛼 → ∞), 

where the last equality holds by Corollary (5.2.11). 

Thus again, we have to deal only with the terms 𝑐𝑘 and they can further be modified by replacing 𝛻 

by𝑧: 

𝑐𝑘 ≔
1

𝑘!
𝐵𝛼 (((𝑦 − 𝑥) ∙ 𝑧)

𝑘
) (𝑥). 

So we must only be able to determine asymptotic behavior of the Berezin transform of a 

polynomial. 

The fact that in this case there exists an asymptotic expansion in negative powers of 𝛼 follows from 

Corollary (5.2.6) and Lemma(5.2.12), from where it is clear that terms 𝑐𝑖 can be written as finite 

combinations of functions 
𝐹45
 

𝐹12
  whose asymptotic expansions are of this type. From that 

representation it is also possible to see the Stokes phenomenon, since for 𝑥 = 0 the ratio equals 1 

but for 0 < |𝑥| < 1 it decays in a way described in Corollary (5.2.7). 

Dependence of differential operators 𝑄𝑖 on 𝛥, 𝑥 ∙ 𝛻 and |𝑥|2 only (that means on |𝑧|2, 𝑥 ∙ 𝑧 and |𝑥|2) 
is a direct consequence . That 𝑄0 = 1 stems from the fact that 𝑐0 = 1 and 𝑐1 is, according to 

Corollary(5.2.14)  , 𝑂(𝛼−1). 
To compute 𝑄1 much more work is needed. We are dealing with the expression 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 –

the term 𝑐5 is according to Corollary (5.2.14) already 𝑂(𝛼−2). Application of Corollary (5.2.13) 

to𝑐1 + 𝑐2 + 𝑐3 + 𝑐4, in general, leaves us with 19 terms. Fortunately many of them are negligible 

according to Corollary (5.2.10) (those for which 𝑚 − 𝑗 − 𝑝 > 2) and collecting expressions 

involving the same integral will reduce the number to 5 terms: 

        ∫ ∑
1

𝑚!

4
𝑚=1 (𝑧 ∙ 𝑦 − 𝑧 ∙ 𝑥)𝑚

𝑅𝛼
2(𝑥,𝑦)

𝑅𝛼(𝑥,𝑥)
𝑑𝜇𝛼

𝑛(𝑦)
𝔹𝑛

=                         (54) 

(
𝑥 ∙ 𝑧

|𝑥|2
−

𝑣𝑧,𝑥
2

(2𝑏 + 1)|𝑥|2
)  ∫(𝑦 ∙ 𝑥 − |𝑥|2)

𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛
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−
𝑣𝑧,𝑥
2

(2𝑏 + 1)|𝑥|2
   ∫(|𝑥|2 − |𝑦|2)

𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

 

+(
𝑣𝑧,𝑥
2 𝑥 ∙ 𝑧

(2𝑏 + 1)|𝑥|4
+

𝑣𝑧,𝑥
4

(2𝑏 + 1)(2𝑏 + 3)|𝑥|8
)   ∫(𝑦 ∙ 𝑥 − |𝑥|2)

𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

  

+(
(𝑥 ∙ 𝑧)2

2|𝑥|4
−
𝑣𝑧,𝑥
2 (1 + 2𝑧 ∙ 𝑥)

2(2𝑏 + 1)|𝑥|4
+

𝑣𝑧,𝑥
4

2(2𝑏 + 1)(2𝑏 + 3)|𝑥|4
)   ∫(𝑦 ∙ 𝑥 − |𝑥|2)2

𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

  

+
𝑣𝑧,𝑥
4

8(2𝑏 + 1)(2𝑏 + 3)|𝑥|4
  ∫(|𝑥|2 − |𝑦|2)2

𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

+ 𝑂(𝛼−2).  

Each integral is by Theorem (5.2.8) (if we for a moment put aside the factor 1/𝑅𝛼(𝑥, 𝑥)) a sum of 

functions 𝐹45
 . Numbers of terms in these sums are, in general, again very high (in the case 𝑁 =

2,𝑀 = 0 even as high as 108), however since we are interested only in principal terms and the 

order of asymptotic decay grows with summation indices 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑟, 𝑞, 𝑙, as can be seen 

from the proof of Theorem (5.2.8), it is enough to consider only those summands for which 

𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 𝑟 + 𝑞 + 𝑙 = 1. 
This together with the condition 

 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁 
substantially reduces the number of terms. For the above-mentioned case 𝑁 = 2,𝑀 = 0 we will be 

left with only 2 terms, both of which in addition contain the same hypergeometric function, so they 

can be combined together. Let us work this case out with more details, so we can demonstrate the 

approach. From Theorem (5.2.8) we see that when 𝑀 = 0 then𝑙 = 0. We substitute 𝑘1 + 𝑘2 + 𝑘3 +
𝑘4 + 𝑘5 + 𝑟 + 𝑞 = 1 into the inequality to get 

𝑟 + 𝑘4 ≥ 1, 
but it also must be the case that 𝑟 ≤ 1 and 𝑘4 ≤ 1. This is only possible in two cases: 𝑟 = 1 or 𝑘4 =
1 (with all other indices equal to zero). We find 

∫(|𝑥|2 − |𝑦|2)2𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= 2
|𝑥|2

�̃�
(1 − |𝑥|2) 𝐹23

 (�̃� �̃� 2𝑏
�̃� + 1 𝑏

; |𝑥|2) + 𝑂2. 

where 𝑂2 denotes a term of order 𝑂 (𝛼−2 𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2)). 

Similar considerations in the other cases give us: 

∫(𝑦 ∙ 𝑥 − |𝑥|2)2𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

=
1

2

|𝑥|2

�̃�
(1 − |𝑥|2) 𝐹23

 (�̃� �̃� 2𝑏
�̃� + 1 𝑏

; |𝑥|2) + 𝑂2, 

∫(𝑦 ∙ 𝑥 − |𝑥|2)(|𝑥|2 − |𝑦|2)𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= −
|𝑥|2

�̃�
(1 − |𝑥|2) 𝐹23

 (�̃� �̃� 2𝑏
�̃� + 1 𝑏

; |𝑥|2) + 𝑂2, 

∫(𝑦 ∙ 𝑥 − |𝑥|2)𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

= |𝑥|2 𝐹12
 (�̃� 2𝑏

𝑏 + 1
; |𝑥|2) + 𝑂2, 

∫(|𝑥|2 − |𝑦|2)𝑅𝛼
2(𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

=
|𝑥|2

2
𝐹23
 (�̃� 2𝑏 2𝑏

𝑏 2𝑏 + 1
; |𝑥|2) −

𝑏 + 1

�̃�
(1 − |𝑥|2) 

𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2) − 2|𝑥|2 𝐹12

 (�̃� 2𝑏
𝑏 + 1

; |𝑥|2) 

+
|𝑥|2

�̃�
𝐹23
 (�̃� �̃� 2𝑏

�̃� + 1 𝑏
; |𝑥|2) + 𝑂2. 

Substituting this into (54) and performing some manipulations we obtain 

∫∑
1

𝑚!

4

𝑚=1

(𝑦 ∙ 𝑧 − 𝑥 ∙ 𝑧)𝑚
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

𝑛(𝑦)

𝔹𝑛

=
1

2

𝑣𝑥,𝑥
2 (𝑏 + 1)(1 − |𝑥|2)

(2𝑏 + 1)|𝑥|2�̃�
+ 𝑧 ∙ 𝑥

𝐹12
 (�̃� 2𝑏

𝑏 + 1
; |𝑥|2)

𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2)
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+
1

4

2(𝑧 ∙ 𝑥)2(1 + 𝑏(1 − |𝑥|2)) − |𝑧|2|𝑥|2(1 + |𝑥|2)

|𝑥|2(2𝑏 + 1)�̃�

𝐹12
 (�̃� �̃� 2𝑏

�̃� + 1 𝑏
; |𝑥|2)

𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2)

 

−
1

4

𝑣𝑧,𝑥
2

2𝑏 + 1

𝐹23
 (�̃� 2𝑏 2𝑏

𝑏 2𝑏 + 1
; |𝑥|2)

𝐹12
 (�̃� 2𝑏

𝑏
; |𝑥|2)

+ 𝑂(𝛼−2). 

We complete the proof by using Corollary (5.2.7), replacing 𝑣𝑥,𝑥
2 = |𝑧|2|𝑥|2 − (𝑧 ∙ 𝑥)2 and 𝑧𝑗 →

𝜕𝑗and remembering that 𝑏 =
𝑛

2
− 1. 

 

Corollary (5.2.15) [349]. Let 𝑎1 + 𝜀, 𝑎2 + 𝜀, 𝑎3 + 𝜀 > 0 be positive real numbers, one of them 

strictly less than the other two. Let 𝜀 − 1 − 𝑎 − 𝛾 ∉ ℤ,−(𝑎 + 2𝜀)𝑖 ∉ ℕ0 and 𝑥𝑟 ∈ (0,1). Then we 

have 

𝐹45
 (

𝜀 − 1 𝑎1 + 𝜀 𝑎2 + 𝜀 𝑎3 + 𝜀

𝜀 − 1 + 𝑎 𝑎1 + 2𝜀 𝑎2 + 2𝜀 𝑎3 + 2𝜀
; 𝑥𝑟)

≈∏
Γ((𝑎 + 2𝜀)𝑖)

Γ((𝑎 + 𝜀)𝑖)

(𝜀 − 1𝑥𝑟)
−𝛾

(1 − 𝑥𝑟)
𝜀−1−𝛾−𝑎

3

𝑖=1

(1 +∑
𝑑𝑘

𝜀 − 1𝑘

∞

𝑘=1

) (𝜀 → +∞) 

where 𝛾 = ∑ ((𝑎 + 2𝜀)𝑗 − (𝑎 + 𝜀)𝑗)
3
𝑗=1  and 𝑑𝑘 are constants independent of 𝜀 − 1. 

Proof. Using the integral representation 

𝐹𝑞+1𝑝+1
 (

𝑎1 + 𝜀…𝑎𝑝 + 𝜀 𝑎 + 𝜀

𝑎1 + 2𝜀 …𝑎𝑞 + 2𝜀 𝑎 + 2𝜀 
; 𝑥𝑟)

=
Γ(𝑎 + 2𝜀)

Γ(𝑎 + 𝜀)Γ(𝜀)
∫ 𝑡𝑎+𝜀−1(1 − 𝑡)𝜀−1
1

0

𝐹𝑞𝑝
 (

𝑎1 + 𝜀…𝑎𝑝 + 𝜀

𝑎1 + 2𝜀…𝑎𝑞 + 2𝜀
; 𝑥𝑟𝑡) 𝑑𝑡, 

which is valid for 𝑎 + 2𝜀 > 𝑎 + 𝜀 > 0, in turn three times on pairs of parameters (𝑎1 + 2𝜀, 𝑎1 +
𝜀), (𝑎2 + 2𝜀, 𝑎2 + 𝜀), (𝑎3 + 2𝜀, 𝑎3 + 𝜀),we get 

𝐹45
 (

𝜀 − 1 𝜀 − 1 𝑎1 + 𝜀 𝑎2 + 𝜀 𝑎3 + 𝜀

𝜀 − 1 + 𝑎 𝑎1 + 2𝜀 𝑎2 + 2𝜀 𝑎3 + 2𝜀
; 𝑥𝑟) 

=∏
𝛤((𝑎 + 2𝜀)𝑖 )

𝛤((𝑎 + 𝜀)𝑖)Γ((𝑎 + 2𝜀)𝑖 − (𝑎 + 𝜀)𝑖)

3

𝑖=1

∫∫∫∏𝑡𝑖
(𝑎+𝜀)𝑖−1(1

3

𝑖=1

1

0

1

0

1

0

− 𝑡𝑖)
(𝑎+2𝜀)𝑖−(𝑎+𝜀)𝑖−1 𝐹12

 (
𝜀 − 1 𝜀 − 1
𝜀 − 1 + 𝑎

; 𝑥𝑟𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3. 

Double application of the transformation (5) gives us the Euler transform 

𝐹12
 (

𝑎 𝑎 + 𝜀
𝑎 + 2𝜀

; 𝑥𝑟) = (1 − 𝑥𝑟)
𝑎+3𝜀 𝐹12

 (
2𝜀 3𝜀
𝑎 + 2𝜀

; 𝑥𝑟), 

which leaves us with 

∏
𝛤((𝑎 + 2𝜀)𝑖)

𝛤((𝑎 + 𝜀)𝑖)𝛤((𝑎 + 2𝜀)𝑖 − (𝑎 + 𝜀)𝑖)

3

𝑖=1

∫∫∫∏𝑡𝑖
(𝑎+𝜀)𝑖−1(1 − 𝑡𝑖)

(𝑎+2𝜀)𝑖−(𝑎+𝜀)𝑖−1

3

𝑖=1

1

0

1

0

1

0

(1

− 𝑥𝑟𝑡1𝑡2𝑡3)
𝑎−𝜀−1 𝐹12

 (
𝑎 𝑎

𝜀 − 1 + 𝑎
; 𝑥𝑟𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3. 

A triple integral of this kind can be rearranged in the following way: 
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∫∫∫𝜑(𝑡1, 𝑡2, 𝑡3)𝐺(𝑡1𝑡2𝑡3)𝑑𝑡1𝑑𝑡2𝑑𝑡3

1

0

1

0

1

0

                                       

= ∫𝐺(1

1

0

− 𝑟3)∫∫𝜑 (1 − 𝑟1𝑟2𝑟3,
1 − 𝑟2𝑟3
1 − 𝑟1𝑟2𝑟3

,
1 − 𝑟3
1 − 𝑟2𝑟3

)

1

0

1

0

𝑟2𝑟3
2

(1 − 𝑟1𝑟2𝑟3)(1 − 𝑟2𝑟3)
𝑑𝑟1𝑑𝑟2𝑑𝑟3. 

 (This is nothing more than a series of changes of variables. Firstly, let 𝑠1 = 𝑡1, 𝑠2 = 𝑡1𝑡2, 𝑠3 =
𝑡1𝑡2𝑡3. 

Jacobian is 
1

𝑠1𝑠2
 and the integral becomes: 

∫∫ ∫ 𝜑 (𝑠1,
𝑠2
𝑠1
,
𝑠3
𝑠2
) 𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠3𝑑𝑠2𝑑𝑠1.

𝑠2

0

𝑠1

0

1

0

                              

Now we swap the order of integration: 

∫∫ ∫ 𝜑 (𝑠1,
𝑠2
𝑠1
,
𝑠3
𝑠2
)𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠3𝑑𝑠2𝑑𝑠1

𝑠2

0

𝑠1

0

1

0

= ∫ ∫ ∫𝜑 (𝑠1,
𝑠2
𝑠1
,
𝑠3
𝑠2
) 𝐺(𝑠3)

1

𝑠1𝑠2
𝑑𝑠1𝑑𝑠2𝑑𝑠3

1

𝑠2

1

𝑠3

1

0

 

and finally three changes of variable are performed: firstly 1 − 𝑠1 = 𝑟1(1 − 𝑠2), then 1 − 𝑠2 =
𝑟2(1 − 𝑠3) and lastly 1 − 𝑠3 = 𝑟3. ) 
Applying this to our original triple integral we get: 

∫(1 − 𝑥𝑟 + 𝑥𝑟𝑟3)
𝑎−𝜀−1

1

0

𝐹12
 (

𝑎 𝑎
𝜀 − 1 + 𝑎

; 𝑥𝑟(1 − 𝑟3)) 

 

∫∫∏𝑟𝑖
𝛾𝑖−1(1 − 𝑟1)

3𝜀−1(1 − 𝑟2)
3𝜀−1(1 − 𝑟3)

𝑎3+𝜀−1

3

𝑖=1

1

0

1

0

(1 − 𝑟2𝑟3)
𝑎2+3𝜀−𝑎3(1

− 𝑟1𝑟2𝑟3)
𝑎1+3𝜀−𝑎2  𝑑𝑟1𝑑𝑟2𝑑𝑟3 

 

where 𝛾𝑖 = ∑ (𝑎𝑘 + 2𝜀 − (𝑎𝑘 + 𝜀))
𝑖
𝑘=1 .  

After a small manipulation this gives 

∫∫∫∏𝑡𝑖
(𝑎+𝜀)𝑖−1(1 − 𝑡𝑖)

(𝑎+2𝜀)𝑖−(𝑎+𝜀)𝑖−1

3

𝑖=1

1

0

1

0

1

0

(1

− 𝑥𝑟𝑡1𝑡2𝑡3)
𝑎−𝜀−1 𝐹12

 (
𝑎 𝑎

𝜀 − 1 + 𝑎
; 𝑥𝑟𝑡1𝑡2𝑡3) 𝑑𝑡1𝑑𝑡2𝑑𝑡3 

= (1 − 𝑥𝑟)
𝑎−𝜀−1∫𝑡𝛾3−1(1 − 𝑡)𝑎3+𝜀−1𝐹(𝑡) 𝐹12

 (
𝑎 𝑎

𝜀 − 1 + 𝑎
; 𝑥𝑟(1 − 𝑡)) (1

1

0

−
𝑥𝑟

𝑥𝑟 − 1
𝑡)
𝑎−𝜀−1

𝑑𝑡, (10) 

where 

𝐹(𝑡) = ∫𝑟2
𝛾2−1(1 − 𝑟2)

3𝜀−1(1 − 𝑟2𝑡)
𝑎2+3𝜀−𝑎3

1

0

∫𝑟1
𝛾1−1(1 − 𝑟1)

3𝜀−1(1 − 𝑟1𝑟2𝑡)
𝑎1+3𝜀−𝑎2𝑑𝑟1𝑑𝑟2

1

0

 

=
Γ(𝛾1)Γ(𝜀)

Γ(𝛾2)
∫ 𝑟2

𝛾2−1(1 − 𝑟2)
𝜀−1(1 − 𝑟2𝑡)

𝑎2+𝜀−𝑎3

1

0

𝐹12
 (

𝑎2 + 𝜀 − 𝑎1 𝛾1
𝛾2

; 𝑟2𝑡) 𝑑𝑟2. 



225 
 

We expand the hypergeometric function into Taylor series to get the form 

F(t) =
3𝛤(𝜀)

𝛤(𝛾3)
∑

(𝑎2 + 𝜀 − 𝑎1)𝑗(𝛾1)𝑗
(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑎3 + 𝜀 − 𝑎2
𝛾3 + 𝑗

; 𝑡) . 

We should talk about the convergence of the integral on the right hand side of the equation (10). 

For that it is necessary to understand the behavior of the function 𝐹(𝑡) at the end points of the 

interval of integration, notably in the neighborhood of 𝑡 = 1 (the behavior near 𝑡 = 0 is evident). It 

is well known that 

𝐹12
 (

𝑎 𝑎 + 𝜀
𝑎 + 2𝜀

; 1) =
Γ(𝑎 + 2𝜀)Γ(𝑎 + 𝜀)

Γ(𝜀)Γ(2𝜀)
 

for 𝜀 > 𝑎. That means that the hypergeometric function in the infinite series is left-continuous at 

𝑡 = 1 if 𝛾3 + 𝑗 > 𝛾2 + 𝑗 + 𝑎3 + 3𝜀 − 𝑎2) or equivalently 𝑎2 > 𝑎3. In such case the infinite series 

for 𝑡 = 1 takes the form: 

𝛤(𝛾3)𝛤(𝑎2 + 2𝜀 − 𝑎3)

Γ(𝑎2 + 3𝜀 − 𝑎3)
∑

(𝑎2 + 𝜀 − 𝑎1)𝑗(𝛾1)𝑗
(𝑎2 + 3𝜀 + 𝑎3)𝑗𝑗!

∞

𝑗=0

, 

which is a convergent series for 𝜀 − 𝑎3 > +𝑎1 + 𝛾1, i.e. 𝑎1 > 𝑎3. (Indeed, the series is actually 

equal to 

𝐹12
 (

𝑎2 + 𝜀 − 𝑎1 𝛾1
𝑎2 + 2𝜀 − 𝑎3

; 1) 

and the formula above can be used.) 

This can be summarized by saying 

𝐹(𝑡) = 𝑂(1)         (𝑡 ↗ 1), 
which holds for 𝑎1 > 𝑎3, 𝑎2 > 𝑎3 and the integral on the right hand side of the equation (10) 

converges under the conditions 𝑎3 > 0, 𝑎1 > 𝑎3, 𝑎2 > 𝑎3, 𝛾3 > 0. Those are significantly less 

restraining conditions than in the triple integral on the left hand side of the same equation, which 

converges for (𝑎 + 2𝜀)𝑖 > (𝑎 + 𝜀)𝑖 > 0∀𝑖. 
It is an example, therefore, of an analytic continuation. Furthermore, since hypergeometric 

functions are symmetric with respect to permutation of the parameters (𝑎 + 𝜀)𝑖, we can choose 

𝑎3 + 𝜀 to be the smallest one. 

We can summarize now that for 𝑥𝑟 < 1, 𝛾3 > 0, 𝑎1 + 𝜀 > 𝑎3 + 𝜀 > 0, 𝑎2 > 𝑎3 it holds 

𝐹45
 (

𝜀 − 1 𝜀 − 1 𝑎1 + 𝜀 𝑎2 + 𝜀 𝑎3 + 𝜀

𝜀 − 1 + 𝑎 𝑎1 + 2𝜀 𝑎2 + 2𝜀 𝑎3 + 2𝜀
; 𝑥𝑟)

=
(1 − 𝑥𝑟)

𝑎−𝜀−1

Γ(𝛾3)
∏

𝛤((𝑎 + 2𝜀)𝑖)

𝛤((𝑎 + 𝜀)𝑖)

3

𝑖=1

∫𝑡𝛾3−1(1 − 𝑡)𝑎3+𝜀−1
1

0

𝐹𝜀−1(𝑡) (1

−
𝑥𝑟

𝑥𝑟 − 1
𝑡)
𝑎−𝜀−1

𝑑𝑡, 

where 

𝐹𝜀−1(𝑡) = 𝐹12
 (

𝑎 𝑎
𝜀 − 1 + 𝑎

; 𝑥𝑟(1 − 𝑡))∑
(𝑎2 + 𝜀 − 𝑎1)𝑗(𝛾1)𝑗

(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑎3 + 𝜀 − 𝑎2)
𝛾3 + 𝑗

; 𝑡), 

and 𝛾𝑖 = ∑ (𝑎 + 2𝜀)𝑗 − (𝑎 + 𝜀)𝑗
𝑖
𝑗=1 . As a next step we replace the function 𝐹𝜀+1(𝑡) by its Taylor 

series expansion: 

𝐹𝜀−1(𝑡) = ∑
𝐹𝜀−1
(𝑘)(0)

𝑘!
𝑡𝑘 +

𝑁−1

𝑘=0

𝐹𝜀−1
(𝑁)(𝜉)

𝑁!
𝑡𝑁 , 

where 0 < 𝜉 < 𝑡. 
Substituting this we get 

                             𝐹45
 (

𝜀 − 1 𝜀 − 1 𝑎1 + 𝜀 𝑎2 + 𝜀 𝑎3 + 𝜀

𝜀 − 1 + 𝑎 𝑎1 + 2𝜀 𝑎2 + 2𝜀 𝑎3 + 2𝜀
; 𝑥𝑟)                                     
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=
(1 − 𝑥𝑟)

𝑎−𝜀−1

𝛤(𝛾3)
∏

𝛤((𝑎 + 2𝜀)𝑖)

𝛤((𝑎 + 𝜀)𝑖)

3

𝑖=1

∑
𝐹𝜀−1
(𝑘)(0)

𝑘!

Γ(𝛾3 + 𝑘)Γ(𝑎3 + 𝜀)

Γ(𝛾3 + 𝑎3 + 𝜀 + 𝑘)

𝑁−1

𝑘=0

𝐹12
 (

𝜀 − 1 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑎3 + 𝜀 + 𝑘

;
𝑥𝑟

𝑥𝑟 − 1
) 

+
(1 − 𝑥𝑟)

𝑎−𝜀−1

𝛤(𝛾3)
∏

𝛤((𝑎 + 2𝜀)𝑖)

𝛤((𝑎 + 𝜀)𝑖)

3

𝑖=1

∫𝑡𝛾3+𝑁−1(1 − 𝑡)𝑎3+𝜀−1

1

0

𝐹𝜀−1
(𝑁)(𝜉)

𝑁!
(1 −

𝑥𝑟
𝑥𝑟 − 1

𝑡)
𝑎−𝜀−1

𝑑𝑡. 

Notice that the term 𝐹𝜀−1
(𝑁)(𝜉) in the above line still remains 𝑂(1) for 𝑡 ↗ 1 because it can be written 

as 

𝐹𝜀−1
(𝑁)(𝜉) = 𝑁! 𝑡−𝑁 (𝐹𝜀−1(𝑡) −∑

𝐹𝜀−1
(𝑘)(0)

𝑘!
𝑡𝑘

𝑁−1

𝑘=0

)                                      

Therefore, the integral in the same line converges under conditions 𝛾3 + 𝑁 > 0 and 𝑎3 + 𝜀 > 0. 

The first of these is fulfilled for sufficiently large 𝑁, hence for the right hand side of the equation to 

be meaningful it is only required that 𝑎3 + 𝜀 > 0. This is the largest analytic continuation as we can 

get. 

From the form of the remainder term (12) we also see that 𝐹(𝑁)(𝜉) is a continuous function on [0, 

1]. 

We can therefore estimate it by its maximum on this interval, which will in general depend on 𝜀 −

1, but the asymptotic behavior of 𝐹𝜀−1
(𝑁)(𝜉) for 𝜀 → ∞ is 𝐹𝜀−1

(𝑁)(𝜉) = 𝑂(1) uniformly for all 𝑡 ∈ [0,1]. 
(This can be seen again from the form of the remainder term (12) – the 𝐹12

  in the 𝐹𝜀−1 which 

contains the parameter 𝜀 + 1 has this uniform behavior due to the (3) and terms 𝐹𝜀−1
(𝑘)(0) are just 

some linear  combinations of the same 𝐹12
  function, only possibly with parameters shifted due to 

the differentiations. In such case even additional negative powers of 𝜀 − 1 appear.) 

Hence 

|∫ 𝑡𝛾3+𝑁−1(1 − 𝑡)𝑎3+𝜀−1
1

0

𝐹(𝑁)(𝜉)

𝑁!
(1 −

𝑥𝑟
𝑥𝑟 − 1

𝑡)
𝑎−𝜀+1

𝑑𝑡|

≤ 𝐶 ∫ 𝑡𝛾3+𝑁−1(1 − 𝑡)𝑎3+𝜀−1 (1 −
𝑥𝑟

𝑥𝑟 − 1
𝑡)
𝑎−2𝜀−1

𝑑𝑡

1

0

 

= 𝑂( 𝐹12
 (

𝜀 − 1 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑎3 + 𝜀 + 𝑘

;
𝑥𝑟

𝑥𝑟 − 1
))      (𝜀 → ∞). 

The problem of finding an asymptotic expansion of the function 𝐹45
  for large𝜀 + 1 is now 

effectively reduced to the problem of finding an expansion for the functions of the form: 

(1 − 𝑥𝑟)
𝑎−𝜀−1 𝐹12

 (
𝜀 − 1 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑎3 + 𝜀 + 𝑘

;
𝑥𝑟

𝑥𝑟 − 1
). 

The large parameter cases for 𝐹12
  function has been studied by several authors (see [15, 8]). The 

logic goes as follows: Combining the transformations (5) and (6), we can see that 

𝐹12
 (

𝑎    𝑎 + 𝜀
𝑎 + 2𝜀

; 𝑥𝑟) =
𝛤(𝑎 + 2𝜀)𝛤(𝜀)

𝛤(𝑎 + 𝜀)𝛤(2𝜀)
(−𝑥𝑟)

−2𝜀(1 − 𝑥𝑟)
𝜀−𝑎 𝐹12

 (
1 − (𝑎 + 𝜀) 𝜀

1 + 𝜀
;
1

𝑥𝑟
) 

+
𝛤(𝑎 + 2𝜀)

𝛤(𝑎)
(−𝑥𝑟)

−(𝑎+𝜀) 𝐹12
 (

𝑎 + 𝜀 1 − 𝜀)
1 + 𝜀

;
1

𝑥𝑟
), 

for 𝑥𝑟 < 0, 𝜀 ∉ ℤ. Applying this we get 

(1 − 𝑥𝑟)
𝑎−𝜀−1 𝐹12

 (
𝜀 − 1 − 𝑎 𝛾3 + 𝑘
𝛾3 + 𝑎3 + 𝜀 + 𝑘

;
𝑥𝑟

𝑥𝑟 − 1
) 

=
Γ(𝛾3 + 𝑎3 + 𝜀 + 𝑘)Γ(𝛾3 + 𝑘 − 𝜀 − 1 + 𝑎)

𝛤(𝛾3 + 𝑘)𝛤(𝛾3 + 𝑎3 + 𝑘 + 1 + 𝑎)
𝑥𝑟
−(𝑎3+𝜀) 𝐹12

 (
1 − 𝛾3 − 𝑘 𝑎3 + 𝜀
𝜀 − 𝑎 − 𝛾3 − 𝑘

; 1 −
1

𝑥𝑟
) 

+
𝛤(𝛾3 + 𝑎3 + 𝜀 + 𝑘)Γ(𝜀 − 1 − 𝑎 − 𝛾3 − 𝑘)

Γ(𝜀 − 1 − 𝑎)Γ(𝑎3 + 𝜀)

𝑥𝑟
−𝛾3−𝑘

(1 − 𝑥)𝜀−1−𝑎−𝛾3−𝑘
𝐹12
 (

𝛾3 + 𝑘 1 − 𝑎3 + 𝜀
𝛾3 + 𝑘 − 𝜀 + 𝑎

; 1 −
1

𝑥𝑟
), 
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for 𝜀 + 1 − 𝑎 − 𝛾3 ∉ ℤ (we can always run the limit through such 𝜀 − 1 so that this condition is 

fulfilled). But in the light of (3) and (4) we can deduce that the first term is negligible with respect 

to the second term, because it displays only polynomial growth and does not contain the 

exponentially large term(1 − 𝑥𝑟)
−𝜀+1 (remember 𝑥𝑟 ∈ (0,1)). Asymptotic behavior is, therefore, 

dictated by the second term, which is𝑂((1 − 𝑥𝑟)
−(𝜀+1)𝜀 + 1−𝛾3−𝑘) as 𝜀 → ∞. 

Substituting into the equation (11) we get: 

𝐹45
 (

𝜀 − 1 𝑎1 + 𝜀 𝑎2 + 𝜀 𝑎3 + 𝜀

𝜀 − 1 + 𝑎 𝑎1 + 2𝜀 𝑎2 + 2𝜀 𝑎3 + 2𝜀
; 𝑥𝑟) 

=∏
𝛤(𝑎𝑖 + 2𝜀)

𝛤(𝑎𝑖 + 𝜀)

3

𝑖=1

∑
𝐹𝜀+1
(𝑘)(0)

𝑘!

(𝛾3)𝑘Γ(𝜀 − 1 − 𝑎 − 𝛾3 − 𝑘)𝑥𝑟
−𝛾3−𝑘

𝛤(𝛼 − 𝑎)(1 − 𝑥)𝛼−𝑎−𝛾3−𝑘

𝑁−1

𝑘=0

𝐹12
 (

𝛾3 + 𝑘 1 − (𝑎3 + 𝜀)
1 + 𝛾3 + 𝑘 − 𝛼 + 𝑎

; 1

−
1

𝑥𝑟
) + 𝑂((1 − 𝑥𝑟)

−𝜀−1(𝜀 − 1)−𝛾3−𝑁). 

It only remains to combine known asymptotic expansions of terms: 

𝛤(𝜀 − 1 − 𝑎 − 𝛾3 − 𝑘)

𝛤(𝜀 − 1 − 𝑎)
≈ (𝜀 − 1)−𝛾3−𝑘 (1 +

𝑎1 + 2𝜀

𝜀 − 1
+⋯) 

𝐹12
 (

𝛾3 + 𝑘 1 − 𝑎3 + 𝜀
𝛾3 + 𝑘 − 𝜀 + 𝑎

; 1 −
1

𝑥𝑟
) ≈ 1 +

(𝛾3 + 𝑘)(1 − 𝑎3 + 𝜀)

𝛾3 + 𝑘 − 𝜀 + 𝑎

𝑥𝑟 − 1

𝑥𝑟
+⋯ 

𝐹𝜀−1
(𝑘)(0) ≈ 𝐹(𝑘)(0) +

𝑑1
𝜀 − 1

+⋯, 

where 

𝐹(𝑡) =∑
(𝑎2 + 𝜀 − 𝑎1))𝑗(𝛾1)𝑗

(𝛾3)𝑗

𝑡𝑗

𝑗!

∞

𝑗=0

𝐹12
 (

𝛾2 + 𝑗 𝑎3 − 𝑎2)
𝛾3 + 𝑗

; 𝑡), 

and rearrange the terms.  

 

Corollary (5.2.16) [349]:  For𝑓 ∈ 𝐶1(𝔹1+𝜀̅̅ ̅̅ ̅̅ ):  

∫ 𝑧𝑟 ∙ 𝑦𝑟𝑓(𝑦)𝑑𝜇𝛾
1+𝜀(𝑦𝑟) =

𝔹1+𝜀

1

2�̃�
∫ 𝑧𝑟 ∙ ∇𝑓(𝑦𝑟)𝑑𝜇𝛾+1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

Proof. By the Stokes theorem, 

∫ 𝑧𝑟 ∙ ∇𝑓(𝑦𝑟)(1 − |𝑦𝑟|
2)𝛾+1(𝑎 + 2𝜀)𝛾+1𝑑

1+𝜀𝑦𝑟
𝔹1+𝜀

= ∫ 𝑓(𝑦𝑟) (1 − |𝑦𝑟|
2)𝛾+1⏟        

=0𝜕𝔹1+𝜀

(𝑎 + 2𝜀)𝛾+1𝑧𝑟 ∙ 𝑦𝑟𝑑𝜎(𝑦𝑟) 

+
2((𝑎 + 2𝜀)𝛾+1)(𝛾 + 1)

(𝑎 + 2𝜀)𝛾
∫ 𝑧𝑟 ∙ 𝑦𝑟𝑓(𝑦𝑟)(1 − |𝑦𝑟|

2)𝛾(𝑎 + 2𝜀)𝛾𝑑
1+𝜀𝑦𝑟

𝔹1+𝜀

 

= 2�̃� ∫ 𝑧𝑟 ∙ 𝑦𝑟𝑓(𝑦𝑟)𝑑𝜇𝛾
1+𝜀(𝑦𝑟)

𝔹1+𝜀

, 

since (𝑎 + 2𝜀)𝛾 =
Γ(�̃�)

𝜋
1+𝜀
2 Γ(𝛾+1)

. 

 

Corollary(5.2.17)[349]:  

𝑥𝑟 ∙ 𝛻𝑦𝑟𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟) =
𝜀 − 1̃|𝑥𝑟|

2

𝑎 + 𝜀
(2𝑎 + 2𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟) (𝑅𝜀)11

 (
𝑎 + 𝜀

𝑎 + 𝜀 + 1
; 𝑥𝑟 , 𝑦𝑟). 

Proof. Recall that 

𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟) = 𝐹1 (
(𝜀 − 1)̃

𝑎 + 𝜀
;
𝑎 + 𝜀 𝑎 + 𝜀

−
; 𝑧𝑟 , 𝑧�̅�), 

Where 𝑧𝑟 = 𝑥𝑟 ∙ 𝑦𝑟 + 𝑖√|𝑥𝑟|
2|𝑦𝑟|

2 − (𝑥𝑟 ∙ 𝑦𝑟)
2. From that we can see 
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(𝑅𝜀)11
 (

𝑎 + 𝜀
𝑎 + 𝜀 + 1

; 𝑥𝑟 , 𝑦𝑟) = 𝐹1 (
𝜀 − 1̃ + 1
𝑎 + 𝜀 + 1

;
𝑎 + 𝜀 𝑎 + 𝜀

−
; 𝑧𝑟 , 𝑧�̅�). 

Next, 

𝑥𝑟 ∙ 𝛻𝑦𝑟𝑧𝑟  = 𝑥𝑟 ∙ 𝛻𝑦𝑟
�̃�𝑟 = |𝑥𝑟|

2,          𝑥𝑟 ∙ 𝛻𝑥𝑟(𝑧𝑟)
𝑗 = 𝑗(𝑧𝑟) 

𝑗 ,        𝑥𝑟 ∙ 𝛻𝑥𝑟𝑧�̅�
𝑘 = 𝑘𝑧�̅�

𝑘, 

and 

𝑥𝑟 ∙ 𝛻𝑦𝑟𝐹1 (
(𝜀 − 1)̃

𝑎 + 𝜀
;
𝑎 + 𝜀  𝑎 + 𝜀  

−
; 𝑧𝑟 , 𝑧�̅�)

= |𝑥𝑟|
22𝜀 − 1̃ (𝐹1 (

(𝜀 − 1)̃ +1
𝑎 + 𝜀 + 1

;
𝑎 + 𝜀 + 1 𝑎 + 𝜀

−
; 𝑧𝑟 , 𝑧�̅�)

+ 𝐹1 (
(𝜀 − 1)̃ +1
𝑎 + 𝜀 + 1

;
𝑎 + 𝜀 𝑎 + 𝜀 + 1

−
; 𝑧𝑟 , 𝑧�̅�)) 

= (𝜀 − 1)̃ |𝑥𝑟|
2 ∑

((𝜀 − 1)̃ +1)
𝑗+𝑘

(𝑎 + 𝜀 + 1)𝑗+𝑘

𝑧𝑟  
𝑗𝑧�̅�

𝑘

𝑗! 𝑘!
((𝑎 + 𝜀 + 1)𝑗(𝑎 + 𝜀)𝑘 + (𝑎 + 𝜀)𝑗(𝑎 + 𝜀 + 1)𝑘)

∞

𝑗,𝑘=0

 

=
(𝜀 − 1)̃ |𝑥𝑟|

2

𝑎 + 𝜀
∑

(𝜀)𝑗+𝑘
(𝑎 + 𝜀 + 1)𝑗+𝑘

𝑧𝑟  
𝑗𝑧�̅�

𝑘

𝑗! 𝑘!
(𝑎 + 𝜀)𝑗(𝑎 + 𝜀)𝑘(2𝑎 + 2𝜀 + 𝑗 + 𝑘)

∞

𝑗,𝑘=0

 

=
(𝜀 − 1)̃ |𝑥𝑟|

2

𝑎 + 𝜀
(2𝑎 + 2𝜀 + 𝑥𝑟∇𝑥𝑟)𝐹1 (

(𝜀 − 1)̃ +1
𝑎 + 𝜀 + 1

;
𝑎 + 𝜀 𝑎 + 𝜀

−
; 𝑧𝑟 , 𝑧�̅�). 

Bold  the proof will be done by induction on 𝑝. 

𝑝 = 0. For 𝜀 > 0, ((𝜀 − 1)̃  is always positive from the assumption 𝜀 > 0) we get: 

𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟) = (𝑅2𝜀−1)11
 (

(𝜀 − 1)̃

2𝜀 − 1̃
;𝑥𝑟 , 𝑦𝑟) 

=
Γ(2𝜀 − 1̃ )

Γ(𝜀 − 1̃)Γ(3�̃� − 3)
∫ 𝑡𝜀−1 ̃−1(1 − 𝑡)�̃�−𝜀−1̃−1

1

0

𝑅2𝜀−1(𝑡𝑥𝑟 , 𝑦𝑟)𝑑𝑡. 

We substitute this into the integral and swap the order of integration: 

∫ 𝑓(𝑦𝑟)𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟)𝑑𝜇2𝜀−1
1+𝜀 (𝑦𝑟)

𝔹1+𝜀

=
𝛤(2𝜀 − 1̃ )

𝛤(𝜀 − 1̃)𝛤(3𝜀 − 1)
∫ 𝑡 �̃�(1 − 𝑡)(𝜀−1)

̃

1

0

∫ 𝑓(𝑦𝑟)𝑅2𝜀−1(𝑡𝑥𝑟 , 𝑦𝑟)𝑑𝜇2𝜀−1
1+𝜀 (𝑦𝑟)𝑑𝑡

𝔹1+𝜀

 

=
𝛤(2𝜀 − 1̃ )

𝛤(𝜀 − 1̃)𝛤(3𝜀 − 3̃ )
∫𝑡2𝜀−2(1 − 𝑡)𝜀−2𝑓(𝑡𝑥𝑟)𝑑𝑡

1

0

= 𝑓11
 ( 𝜀 − 1̃

2𝜀 − 1̃
;𝑥𝑟). 

When 𝜀 = 0, this is just the reproducing property of the Bergman kernel. 

𝑝 = 𝑝 + 1. We can see that the function 𝑔(𝑦𝑟):= 𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟)𝑓(𝑦𝑟)(𝑥𝑟 ∙ 𝑦𝑟)
𝑝 meets the condition 

of Lemma 2, hence: 

∫ 𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟)𝑓(𝑦𝑟)(𝑥𝑟 ∙ 𝑦𝑟)
𝑝+1

𝔹1+𝜀

𝑑𝜇2𝜀−1
1+𝜀 (𝑦𝑟)

=
1

2�̃�
∫ 𝑥𝑟 ∙ ∇𝑦𝑟(𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟)𝑓(𝑦𝑟)(𝑥𝑟 ∙ 𝑦𝑟)

𝑝)𝑑𝜇2𝜀
1+𝜀(𝑦𝑟)

𝔹1+𝜀

, 

which divides the proof into three parts: 

=
1

4𝜀 − 2
∫ (𝑥𝑟 ∙ 𝛻𝑦𝑟  𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟)) 𝑓(𝑦𝑟)(𝑥𝑟 ∙ 𝑦𝑟)

𝑝𝑑𝜇2𝜀
1+𝜀(𝑦𝑟)

𝔹1+𝜀

                                       

+
1

4𝜀 − 2̃
∫ 𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟) (𝑥𝑟 ∙ 𝛻𝑦𝑟𝑓(𝑦𝑟)) (𝑥𝑟 ∙ 𝑦𝑟)

𝑝𝑑𝜇2𝜀
1+𝜀(𝑦𝑟)

𝔹1+𝜀
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+
1

4𝜀 − 2̃
∫ 𝑅(𝜀−1)(𝑥𝑟 , 𝑦𝑟)𝑓(𝑦𝑟)𝑝(𝑥𝑟 ∙ 𝑦𝑟)

𝑝−1|𝑥𝑟|
2𝑑𝜇2𝜀

1+𝜀(𝑦𝑟)

𝔹1+𝜀

                                    

Notice that for a general series of the form 
𝑝!

2𝑝
∑

𝐴(𝑗, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝

 

the transition 𝑝 → 𝑝 + 1 also divides this series into the three parts, namely: 
(𝑝 + 1)!

2𝑝+1
∑

𝐴(𝑗, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝+1

=
𝑝!

2𝑝+1
∑

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝

                                    

+
𝑝!

2𝑝+1
∑

𝐴(𝑗, 𝑙,𝑚 + 1)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝

                                                                       

𝑝!

2𝑝
∑

𝐴(𝑗, 𝑙 + 1,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝−1

                                                                       

(The logic is as follows: 

∑
𝐴(𝑗, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
𝑗+2𝑙+𝑚=𝑝+1

= ∑
𝜕𝑡
𝑝+1

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚

𝐴(𝑗, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

 

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
(𝑗 + 2𝑙 + 𝑚)𝑡𝑗+2𝑙+𝑚−1

𝐴(𝑗, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚−1

𝐴(𝑗, 𝑙, 𝑚)

(𝑗 − 1)! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

+⋯ 

= ∑
𝜕𝑡
𝑝

(𝑝 + 1)!
𝑡𝑗+2𝑙+𝑚

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!
|
𝑡=0

∞

𝑗,𝑙,𝑚=0

+⋯ =
1

𝑝 + 1
∑

𝐴(𝑗 + 1, 𝑙,𝑚)

𝑗! 𝑙!𝑚!

∞

𝑗+2𝑙+𝑚=𝑝

+⋯, 

where the dots represent the other two terms, where the procedure is analogous.) 

We will show that the corresponding parts are equal to each other, i.e. (14)=(17), (15)=(18) and 

(16)=(19) when 

𝐴(𝑗, 𝑙, 𝑚)

=
|𝑥𝑟|

2(𝑗+1)(𝜀 − 1̃)
𝑗
(2𝑎 + 2𝜀)𝑗

(2𝜀 − 1)𝑗+𝑚+𝑙(𝑎 + 𝜀)𝑗
((𝑥𝑟 ∙ ∇)

𝑚𝑓)33
 (

𝜀 − 1̃ + 𝑗 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀

2𝜀 − 1̃ + 𝑗 + 𝑙 + 𝑚 𝑎 + 𝜀 + 𝑗 2𝑎 + 2𝜀
; 𝑥𝑟) . 

The equalities (15)=(18) and (16)=(19) are trivial. It remains only to prove the equality (14)=(17), 

1

4𝜀 − 2̃
∫ (𝑥𝑟 ∙ 𝛻𝑦𝑟𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟)) 𝑓(𝑦𝑟)(𝑥𝑟 ∙ 𝑦𝑟)

𝑝𝑑𝜇2𝜀
1+𝜀(𝑦𝑟)

𝔹1+𝜀

=
𝑝!

2𝑝+1
∑

𝐴(𝑗 + 1, 𝑙, 𝑚)

𝑗! 𝑙!𝑚!

∞

𝑗+2𝑙+𝑚=𝑝

. 

In the integral we use to obtain: 

1

4𝜀 − 2̃
∫ (𝑥𝑟 ∙ 𝑦𝑟)

𝑝
𝜀 − 1̃|𝑥𝑟|

2

𝑎 + 𝜀
(2𝑎 + 2𝜀 + 𝑥𝑟 ∙ ∇𝑥𝑟) (𝑅𝜀)11

 (
𝑎 + 𝜀

𝑎 + 𝜀 + 1
; 𝑥𝑟 , 𝑦𝑟) 𝑓(𝑦𝑟)𝑑𝜇2𝜀

1+𝜀(𝑦𝑟)

𝔹1+𝜀

, 

which according to the Leibniz rule equals 

? (𝜀 − 1)̃ |𝑥𝑟|
2

5𝜀 − 2𝑎
(2𝑎 + 𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟 − 𝑝) ∫ (𝑥𝑟 ∙ 𝑦𝑟)

𝑝 (𝑅𝜀)11
 

𝔹1+𝜀

(
𝑎 + 𝜀

𝑎 + 𝜀 + 1
; 𝑥𝑟 , 𝑦𝑟) 𝑓(𝑦𝑟)𝑑𝜇2𝜀

1+𝜀(𝑦𝑟). 

Using the integral form of hypergeometrization 

(𝑅𝜀)11
 (

𝑎 + 𝜀
𝑎 + 𝜀 + 1

; 𝑥𝑟 , 𝑦𝑟) = 𝑎 + 𝜀∫ 𝑡
𝑎+𝜀−1𝑅𝜀(𝑡𝑥𝑟 , 𝑦𝑟)𝑑𝑡

1

0

 

we get: 
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(𝜀 − 1)̃ |𝑥𝑟|
2

4𝜀 − 2
(2𝑎 + 2𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟 − 𝑝)∫ 𝑡

𝑎+𝜀−1−𝑝

1

0

∫ (𝑡𝑥𝑟 ∙ 𝑦𝑟)
𝑝𝑅𝜀(𝑡𝑥𝑟 , 𝑦𝑟)𝑓(𝑦𝑟)𝑑𝜇𝜀

1+𝜀(𝑦𝑟)𝑑𝑡

𝔹1+𝜀

. 

By the induction hypothesis, this is equal to 

(𝜀 − 1)̃ |𝑥𝑟|
2

4𝜀 − 2
(2𝑎 + 2𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟 − 𝑝)∫ 𝑡

𝑎+𝜀−1−𝑝

1

0

 

𝑝!

2𝑝
∑

𝑡2𝑗+2𝑙+𝑚|𝑥𝑟|
2(𝑗+1)(𝜀 − 1̃ + 1)

𝑗
(2𝑎 + 2𝜀)𝑗

𝑗!𝑚! 𝑙! (4𝜀 − 1)𝑗+𝑚+𝑙(𝑎 + 𝜀)𝑗
𝑗+2𝑙+𝑚=𝑝

((𝑥𝑟 ∙ 𝛻)
𝑚𝑓)33

 (
𝜀 − 1̃ + 𝑗 + 1 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀

2𝜀 − 1̃ + 𝑗 + 1 + 𝑙 +𝑚 𝑎 + 𝜀 + 𝑗 2𝑎 + 𝜀
; 𝑡𝑥)𝑑𝑡, 

From the knowledge that 

∫𝑡𝑎+𝜀+𝑗−1𝑔(𝑡𝑥𝑟)𝑑𝑡

1

0

=
1

𝑎 + 𝜀 + 𝑗
𝑔11
 (

𝑎 + 𝜀 + 𝑗
𝑎 + 𝜀 + 𝑗 + 1

; 𝑥𝑟) 

we obtain 

|𝑥𝑟|
2(2𝑎 + 𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟 − 𝑝) 

       

𝑝!

2𝑝+1
∑

|𝑥|2(𝑗+1)(𝜀−1̃)𝑗+1(2𝑎+2𝜀)𝑗

𝑗!𝑚!𝑙!(2𝜀−1)𝑗+1+𝑚+𝑙(𝑎+𝜀)𝑗+1
((𝑥𝑟 ∙ 𝛻)

𝑚𝑓)33
 (

𝜀 + 𝑗 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀

2𝜀 − 1̃ + 𝑗 + 1 + 𝑙 + 𝑚 𝑎 + 𝜀 + 𝑗 + 1 2𝑎 + 𝜀
; 𝑥𝑟)𝑗+2𝑙+𝑚=𝑝 . 

By the Leibniz rule and some manipulation we finally arrive at: 

𝑝!

2𝑝+1
∑

|𝑥𝑟|
2(𝑗+1+𝑙)(𝜀 − 1̃)

𝑗+1
(2𝑎 + 2𝜀)𝑗+1

𝑗!𝑚! 𝑙! (2𝜀 − 1̃ )
𝑗+1+𝑚+𝑙

(𝑎 + 𝜀)𝑗+1𝑗+2𝑙+𝑚=𝑝

 

2𝑎 + 2𝜀 + 𝑥𝑟 ∙ 𝛻𝑥𝑟 + 𝑗 − 𝑚

2𝑎 + 2𝜀 + 𝑗
((𝑥𝑟 ∙ 𝛻)

𝑚𝑓)33
 (

(𝜀 − 1)̃ + 𝑗 + 1 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀
2𝜀 + 𝑗 + 𝑙 + 𝑚 𝑎 + 𝜀 + 𝑗 + 1 2𝑎 + 2𝜀

; 𝑥𝑟). 

To finish the proof it now only remains to show that the last formula is equal to 

((𝑥𝑟 ∙ 𝛻)
𝑚𝑓)33

 (
𝜀 − 1̃ + 𝑗 + 1 2𝑎 + 2𝜀 + 𝑗 + 1 𝑎 + 𝜀
2𝜀 + 𝑗 + 𝑙 + 𝑚 𝑎 + 𝜀 + 𝑗 + 1 2𝑎 + 2𝜀

; 𝑥𝑟), 

but from the property of hypergeometrization it follows generally that 

((𝑥𝑟 ∙ 𝛻)
𝑚𝑔)11

 (
𝑎 + 1
𝑎 + 2𝜀

; 𝑥𝑟) =
1

𝑎
(𝑎 + 𝑡𝜕𝑡) ((𝑥𝑟 ∙ 𝛻)

𝑚𝑔)11
 (

𝑎
𝑎 + 2𝜀

; 𝑡𝑥𝑟)|
𝑡=1

 

=
1

𝑎
(𝑎 + 𝑡𝜕𝑡)𝑡

−𝑚 ((𝑡𝑥𝑟 ∙ 𝛻)
𝑚𝑔)11

  (
𝑎

𝑎 + 2𝜀
; 𝑡𝑥𝑟)|

𝑡=1

=
1

𝑎
(𝑎 − 𝑚 + 𝑡𝜕𝑡) ((𝑡𝑥𝑟 ∙ 𝛻)

𝑚𝑔)1 (
𝑎

𝑎 + 2𝜀
; 𝑡𝑥𝑟)|

𝑡=1
1
  

=
1

𝑎
(𝑎 − 𝑚 + 𝑥𝑟 ∙ 𝛻𝑥𝑟) ((𝑥𝑟 ∙ 𝛻)

𝑚𝑔)11
 (

𝑎
𝑎 + 2𝜀

; 𝑥𝑟). 

Set 𝑎 = 2𝜀 + 𝑗 and we are done. 

Corollary (5.2.18) [349]: For 𝑝 ∈ ℕ0 and 𝜀 ≥ 0, 

∫ (𝑥𝑟 ∙ 𝑦𝑟)
𝑝𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇2𝜀−1
1+𝜀 (𝑦𝑟)

𝔹1+𝜀

 

  

= 
𝑝!

2𝑝
∑

|𝑥𝑟|
2(𝑗+𝑙+𝑚)(𝜀−1̃)𝑗(𝜀−1̃)𝑚(2(𝑎+𝜀))𝑗(2

(𝑎+𝜀))
𝑚

(2𝜀−1)𝑗+𝑚+𝑙(𝑎+𝜀)𝑗(𝑎+𝜀)𝑚𝑗!𝑚!𝑙!
𝑗+2𝑙+𝑚=𝑝 𝐹4 5

  

(
𝜀 − 1̃ + 𝑗 𝜀 − 1 +𝑚 2𝑎 + 𝜀 + 𝑗 2(𝑎 + 𝜀) + 𝑚

2𝜀 − 1̃ + 𝑗 +𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗 𝑎 + 𝜀 + 𝑚
    
𝑎 + 𝜀
2𝑎 + 𝜀

; |𝑥𝑟|
2). 

Proof. We use with 𝑓(𝑦𝑟) = 𝑅𝜀−1(𝑥𝑟 , 𝑦𝑟): 

∫ 𝑅(𝜀−1)
2 (𝑥𝑟 , 𝑦𝑟)(𝑥𝑟・𝑦𝑟)

𝑝𝑑𝜇(2𝜀−1)
1+𝜀 (𝑦𝑟)

𝔹1+𝜀
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𝑝!

2𝑝
∑

|𝑥𝑟|
2(𝑗+𝑙)(𝜀 − 1̃)

𝑗
(2𝑎 + 𝜀)𝑗

𝑗!𝑚! 𝑙! (2𝜀 − 1̃ )
𝑗+𝑚+𝑙

(𝑎 + 𝜀)𝑗
𝑓33
 (

(𝜀 − 1)̃ + 𝑗 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀

2𝜀 − 1̃ + 𝑗 + 𝑙 + 𝑚 𝑎 + 𝜀 + 𝑗 2𝑎 + 2𝜀
; 𝑥𝑟)

𝑗+2𝑙+𝑚=𝑝

, 

where 𝑓(𝑦𝑟): = (𝑥𝑟 ∙ 𝛻𝑦𝑟)
𝑚
𝑅2𝜀−1(𝑥𝑟 , 𝑦𝑟). From the fact 𝑥𝑟 ∙ 𝛻𝑦𝑟𝑧𝑟 = 𝑥𝑟 ∙ 𝛻𝑦𝑟𝑧�̅�  = |𝑥𝑟|

2 we have  

𝑓(𝑦𝑟) = (𝑥𝑟 ∙ 𝛻𝑦𝑟)
𝑚
𝑅𝜀−1(𝑥𝑟---, 𝑦𝑟) = |𝑥𝑟|

2𝑚(2𝜕𝑧𝑟)
𝑚
𝐹1 (

(𝜀 − 1)̃

𝑎 + 𝜀
;
𝑎 + 𝜀 𝑎 + 𝜀

−
; 𝑧𝑟 , 𝑧�̅�) 

= |𝑥𝑟|
2𝑚
(𝜀 − 1)𝑚
(𝑎 + 𝜀)𝑚

∑(
𝑚
𝑘
) (𝑎 + 𝜀)𝑚−𝑘(𝑎

𝑚

𝑘=0

+ 𝜀)𝑘𝐹1 (
𝜀 − 1̃ + 𝑚
𝑎 + 𝜀 + 𝑚

; 𝑎 + 𝜀 + 𝑚 − 𝑘 𝑎 + 𝜀 + 𝑘
−

; 𝑧𝑟 , 𝑧�̅�). 

Performing hypergeometrization (notice that 𝑧 and.𝑧̅ are homogeneous of the degree 1) we get 

𝑓33
 (

𝜀 − 1 + 𝑗 2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀

2𝜀 − 1̃ + 𝑗 +𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗 2𝑎 + 2𝜀
; 𝑥𝑟) 

= |𝑥𝑟|
2𝑚
(𝜀 − 1)𝑚
(𝑎 + 𝜀)𝑚

 

∑(
𝑚
𝑘
) (𝑎 + 𝜀)𝑚−𝑘(𝑎

𝑚

𝑘=0

+ 𝜀)𝑘𝐹1 (
𝜀 − 1 +𝑚 𝜀 − 1 + 𝑗

𝑎 + 𝜀 + 𝑚 �̃� + 𝑗 + 𝑚 + 𝑙
 
2𝑎 + 2𝜀 + 𝑗 𝑎 + 𝜀
𝑎 + 𝜀 + 𝑗 2𝑎 + 2𝜀

; 𝑎 + 𝜀 + 𝑚 − 𝑘 𝑎 + 𝜀 + 𝑘
−

; |𝑥𝑟|
2, |𝑥𝑟|

2) 

= |𝑥𝑟|
2𝑚
(𝜀 − 1̃)

𝑚

(𝑎 + 𝜀)𝑚
∑(

𝑚
𝑘
) (𝑎 + 𝜀)𝑚−𝑘(𝑎

𝑚

𝑘=0

+ 𝜀)𝑘 𝐹45
 (

𝜀 − 1 +𝑚 𝜀 − 1 + 𝑗 2𝑎 + 2𝜀 + 𝑗
𝑎 + 𝜀 + 𝑚 2𝜀 − 1 + 𝑗 + 𝑚 + 𝑙

𝑎 + 𝜀 2𝑎 + 2𝜀 + 𝑚
𝑎 + 𝜀 + 𝑗 2𝑎 + 2𝜀

; |𝑥𝑟|
2). 

Here, by the Appell function with more parameters we mean the Kampé de Fériet function (see [14]) 

𝐹1 (
𝑎1…𝑎4

𝑎1 + 2𝜀…𝑎4 + 2𝜀
;
𝑎1 + 𝜀 𝑎2 + 𝜀

−
; 𝑥𝑟 , 𝑦𝑟)

≔ 𝐹4:0;0
4:1;1 (

𝑎1…𝑎4
𝑎1 + 2𝜀 …𝑎4 + 2𝜀

: 𝑎1 + 𝜀; 𝑎2 + 𝜀
:−.−;

; 𝑥𝑟 , 𝑦𝑟)

= ∑
(𝑎1)𝑘+𝑗 …(𝑎4)𝑘+𝑗

(𝑎1 + 2𝜀)𝑘+𝑗 …(𝑎4 + 2𝜀)𝑘+𝑗

(𝑎1 + 𝜀)𝑗(𝑎2 + 𝜀)𝑘

𝑗! 𝑘!
𝑥𝑟  

𝑗𝑦𝑟  
𝑘

∞

𝑗,𝑘=0

, 

and the last equality was obtained using the similar reduction formula like in the case of Appell 𝐹1 

function of the same argument 

𝐹1 (
𝑎1…𝑎4

𝑎1 + 2𝜀 …𝑎4 + 2𝜀
;
𝑎1 + 𝜀 𝑎2 + 𝜀

−
; 𝑥𝑟 , 𝑥𝑟) = 𝐹45

 (
𝑎1…𝑎4 𝑎1 + 𝜀 + 𝑎2 + 𝜀

𝑎1 + 2𝜀 …𝑎4 + 2𝜀
; 𝑥𝑟). 

To complete the proof it is only necessary to become conscious of the fact that 

∑(
𝑚
𝑘
) (𝑎 + 𝜀)𝑚−𝑘(𝑎 + 𝜀)𝑘

𝑚

𝑘=0

= (2𝑎 + 2𝜀)𝑚 

and substitute everything into the series at the beginning. As 𝜀 → ∞, 

𝐹45
 (

(𝜀 − 1) (𝜀 − 1)̃ 2𝑎 + 2𝜀 2𝑎 + 2𝜀 𝑎 + 𝜀

𝜀 − 1̃ + 𝑎1 + 2𝜀 𝑎 + 𝑎2 + 3𝜀 𝑎 + 3𝜀 + 𝑎3 2𝑎 + 4𝜀 + 𝑎4
; |𝑥𝑟|

2)

𝐹12
 (𝜀 − 1̃ 2𝑎 + 2𝜀

𝑎 + 𝜀
; |𝑥𝑟|

2)

≈ (1 − |𝑥𝑟|
2)𝑎1+2𝜀 (

1 − |𝑥𝑟|
2

𝛼|𝑥𝑟|
2
)

𝑎2+6𝜀+𝑎3+𝑎4

(𝑎 + 𝜀)𝑎2+2𝜀(𝑎 + 𝜀)𝑎3+2𝜀(2𝑎

+ 2𝜀)𝑎4+2𝜀 (1 +∑
𝑑𝑘

(𝜀 − 1)𝑘

∞

𝑘=1

), 
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where 𝑑𝑘 are some constants independent of 𝜀 − 1. 

Corollary (5.2.19) [349]: . For 𝑀,𝑁 ∈ ℕ0, 

∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)𝑀(|𝑥𝑟|

2 − |𝑦𝑟|
2)𝑁𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

= ∑
|𝑥𝑟|

2(𝑀−1)𝑀! (−1)𝑀(−𝑁)𝑞(𝑎 + 𝜀 + 1)𝑞(𝑎 + 𝜀)𝑘1(−(𝑎 + 𝜀)𝑘2(−(𝑎 + 𝜀)𝑘3(𝑟 + 𝑙 + 𝑘4)𝑘5
2𝑀(𝑀 − 2𝑙)! (𝜀 − 1̃)

𝑞
(𝜀 − 1̃)

𝑟+𝑙+𝑘4+𝑘5
(2𝑎 + 2𝜀)𝑘1(𝑎 + 𝜀)𝑘2(𝑎 + 𝜀)𝑘3𝑙! 𝑟! 𝑞! 𝑘1! 𝑘2! 𝑘3! 𝑘4! 𝑘5!

∞

𝑙,𝑟,𝑞
𝑘1…𝑘5

 

𝐶(|𝑥𝑟|
2) 𝐹45

 (
𝜀 − 1̃ 𝜀 − 1̃ 2𝑎 + 2𝜀 2𝑎 + 2𝜀 𝑎 + 𝜀

𝜀 − 1̃ + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑎 + 𝜀 + 𝑘3 𝑎 + 𝜀 + 𝑘2 2𝑎 + 2𝜀 + 𝑘1
; |𝑥𝑟|

2), 

where 

𝐶(|𝑥𝑟|
2) ≔ (−𝜕𝑡1)

𝑘1
…(−𝜕𝑡5)

𝑘5
𝜕𝑡6
𝑘4𝜕𝑡7

𝑟 (−𝜕𝑡0)
𝑟
 

𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1(𝑡0 − |𝑥𝑟|
2𝑡1−7)

𝑞(|𝑥𝑟|
2(1 − 𝑡1−7) + 𝑡0 − 1)

𝑁−𝑞(2 − 𝑡6735 − 𝑡724)
𝑀−2𝑙|𝑡0…𝑡7=1 

Here 𝑡1−7 ∶= 𝑡1𝑡2… 𝑡7, 𝑡6735: = 𝑡6𝑡7𝑡3𝑡5and so on. The summation indices are bound by the 

following inequalities 

𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁 

2𝑙 ≤ 𝑀 

𝑞, 𝑘1, 𝑟 ≤ 𝑁 

𝑘2, 𝑘3, 𝑘4, 𝑘5, 1 + 𝑙 ≤ 𝑁 +𝑀 
Proof. We expand the parentheses in the integral into binomial series 

(𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)𝑀 =∑(

𝑀
𝑃
) (−|𝑥𝑟|

2)𝑀−𝑝(𝑦𝑟 ∙ 𝑥𝑟)
𝑝

∞

𝑝=0

, 

(|𝑥𝑟|
2 − |𝑦𝑟|

2)𝑁 =∑(
𝑁
𝑞
) (|𝑥𝑟|

2 − 1)𝑁−𝑞(1 − |𝑦𝑟|
2)𝑞

∞

𝑞=0

, 

to get 

∑ (
𝑀
𝑃
) (
𝑁
𝑞
) (−|𝑥𝑟|

2)𝑀−𝑝(|𝑥𝑟|
2 − 1)𝑁−𝑞

(𝑎 + 2𝜀)𝜀−1
(𝑎 + 2𝜀)𝜀−1+𝑞

∞

𝑝,𝑞=0

∫ (𝑥𝑟 ∙ 𝑦𝑟)
𝑝𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1+𝑞
1+𝜀 (𝑦𝑟)

𝔹1+𝜀

, 

Where (𝑎 + 2𝜀)𝛾 =
Γ(�̃�)

𝜋
1+𝜀
2 Γ(𝛾+1)

. By Corollary 1, this equals 

∑ (
𝑀
𝑃
) (
𝑁
𝑞
) (−|𝑥𝑟|

2)𝑀−𝑝(|𝑥𝑟|
2

∞

𝑝,𝑞=0

− 1)𝑁−𝑞
(𝜀)𝑞

(𝜀 − 1)𝑞

𝑝!

2𝑝
∑

|𝑥𝑟|
2(𝑗+𝑙+𝑚)(𝜀 − 1)𝑗(𝜀 − 1)𝑚(2𝑎 + 2𝜀)𝑗(2𝑎 + 2𝜀)𝑚
(𝜀 − 1 + 𝑞)𝑗+𝑚+𝑙(𝑎 + 𝜀)𝑗(𝑎 + 𝜀)𝑚𝑗! 𝑙!𝑚!

𝑗+2𝑙+𝑚=𝑝

 

𝐹45
 (

𝜀 − 1 + 𝑗 𝜀 − 1 +𝑚 2𝑎 + 2𝜀 + 𝑗
�̃� + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗

   
2𝑎 + 2𝜀 + 𝑚 𝑎 + 𝜀
𝑎 + 𝜀 + 𝑚 2𝑎 + 2𝜀

; |𝑥𝑟|
2). 

Now we sum over 𝑝 by the procedure: 

∑(
𝑀
𝑃
)𝑥𝑟

𝑀−𝑝
𝑝!

2𝑝

∞

𝑝=0

∑ 𝐴𝑗𝑙𝑚
𝑗+2𝑙+𝑚=𝑝

=∑(
𝑀
𝑃
)𝑥𝑟  

𝑀−𝑝
𝑝!

2𝑝

∞

𝑝=0

∑
𝜕𝑡
𝑝

𝑝!
𝑡𝑗+2𝑙+𝑚

∞

𝑗,𝑙,𝑚=0

𝐴𝑗𝑙𝑚|𝑡=0 

= ∑ ∑(
𝑀
𝑃
)  𝑀−𝑝

∞

𝑝=0

∞

𝑗,𝑙,𝑚=0

𝜕𝑡
𝑝

𝑝!
𝑡𝑗+2𝑙+𝑚𝐴𝑗𝑙𝑚|𝑡=0

= ∑ (
𝑀

𝑗 + 2𝑙 + 𝑚
)
(𝑥𝑟)

𝑀−𝑗−2𝑙−𝑚(𝑗 + 2𝑙 + 𝑚)!

2𝑗+𝑚4𝑙
𝐴𝑗𝑙𝑚

∞

𝑗,𝑙,𝑚=0

. 

This yields 
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∑(
𝑁
𝑞
) (|𝑥𝑟|

2

∞

𝑞=0

− 1)𝑁−𝑞
(𝜀 + 2)𝑞

(𝜀 − 1̃)
𝑞

∑
|𝑥𝑟|

2(𝑀−𝑙)𝑀! (−1)𝑀+𝑗+𝑚(𝜀 − 1̃)
𝑗
(𝜀 − 1̃)

𝑚
(2𝑎 + 2𝜀)𝑗(2𝑎 + 2𝜀)𝑚

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 4𝑙2𝑗+𝑚(𝜀 − 1 + 𝑞)𝑗+𝑚+𝑙(𝑎 + 𝜀)𝑗(𝑎 + 𝜀)𝑚𝑗! 𝑙!𝑚!

∞

𝑗,𝑙,𝑚=0

(20) 

𝐹45
 (

𝜀 − 1̃ + 𝑗 𝜀 − 1̃ + 𝑚 2𝑎 + 2𝜀 + 𝑗

𝜀 − 1̃ + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗
   
2𝑎 + 2𝜀 + 𝑚 𝑎 + 𝜀
𝑎 + 𝜀 + 𝑚 2𝑎 + 2𝜀

; |𝑥𝑟|
2). 

We would like to sum over 𝑞 as well but we are unable to do that since the index is present also in 

the hypergeometric function. To remove this difficulty we make use of the following lemma( 

see[289]) 

For  𝑟 ∈ ℕ0, 

∆2𝜀−1
𝑟

1

(2𝜀 − 1)𝑘
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘

; 𝑥𝑟)

= (−1)𝑟(𝑘)𝑟∑
(−1)𝑗(−𝑟)𝑗

𝑗! (𝑘)𝑗(2𝜀 − 1)𝑘+𝑟
(𝑥𝑟)

𝑗𝜕𝑥𝑟
𝑗
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘 + 𝑟

; 𝑥𝑟)

∞

𝑗=0

, 

Where  ∆2𝜀−1𝑔(2𝜀 − 1): = 𝑔(2𝜀) − 𝑔(2𝜀 − 1). 
The proof could be easily done by induction, but our approach will be much more direct. 

 

 Proof. Firstly 

∆2𝜀−1
1

(2𝜀 − 1)𝑘
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘

; 𝑥𝑟) =∑∆2𝜀−1
𝑓(𝑗)(0)(𝛾)𝑗

𝑗! (2𝜀 − 1)𝑘+𝑗
𝑥𝑟  

𝑗

∞

𝑗=0

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!
(

1

(2𝜀)𝑘+𝑗
−

1

(2𝜀 − 1)𝑘+𝑗
)

∞

𝑗=0

 

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!

−𝑘 − 𝑗

(2𝜀 − 1)𝑘+𝑗+1

∞

𝑗=0

=∑
𝑓(𝑗)(0)(𝛾)𝑗

𝑗!

−𝑘 − 𝑥𝑟𝜕𝑥𝑟
(𝛽)𝑘+𝑗+1

∞

𝑗=0

= −
𝑘 + 𝑥𝜕𝑥𝑟
(2𝜀 − 1)𝑘+1

𝑓11
 (

𝛾
𝛽 + 𝑘 + 1; 𝑥𝑟). 

Hence obviously 

∆2𝜀−1
𝑟

1

(2𝜀 − 1)𝑘
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘

; 𝑥𝑟) = (−1)
𝑟(𝑘 + 𝑥𝑟𝜕𝑥𝑟)𝑟

1

(2𝜀 − 1)𝑘+𝑟
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘 + 𝑟

; 𝑥𝑟) 

We claim that 

(𝑘 + 𝑥𝑟𝜕𝑥𝑟)𝑟 =
∑

(−1)𝑗(−𝑟)𝑗(𝑘)𝑟

𝑗! (𝑘)𝑗
(𝑥𝑟  )

𝑗𝜕𝑥𝑟
𝑗

𝑟

𝑗=0

. 

It is enough to check this equation on monomials (𝑥𝑟)
𝑚 since the expressions on both sides are linear 

combinations of operators  (𝑥𝑟)
𝑙𝜕𝑥𝑟
𝑙 . Since 𝑥𝑟𝜕𝑥𝑟(𝑥𝑟)

𝑚 = 𝑚(𝑥𝑟)
𝑚this reduces the problem to 

verifying the equality 

(𝑘 + 𝑚)𝑟 =∑
(−1)𝑗(−𝑟)𝑗(𝑘)𝑟

𝑗! (𝑘)𝑗

𝑚!

(𝑚 − 𝑗)!

𝑟

𝑗=0

. 

But this can be rewritten as 

(𝑘)𝑟𝑚! (
𝑟 + 𝑘 − 1 +𝑚

𝑚
) = (𝑘)𝑟𝑚!∑(

𝑟
𝑗) (

𝑘 − 1 +𝑚
𝑚 − 𝑗

)

𝑟

𝑗=0

, 

which is (aside the factor (𝑘)𝑟𝑚!) the so-called 𝐶ℎ𝑢-Vandermonde identity. 

We will use this lemma in the following way. Obviously 
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1

(2𝜀 − 1 + 𝑞)𝑘
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑞 + 𝑘; 𝑥𝑟) =∑(

𝑞
𝑟
)∆2𝜀−1

𝑟
1

(2𝜀 − 1)𝑘
𝑓11
 (

𝛾
2𝜀 − 1 + 𝑘

; 𝑥𝑟)

∞

𝑟=0

. 

By the lemma with 

𝑓(|𝑥𝑟|
2) ≔ 𝐹34

 (
𝜀 − 1 +𝑚 2𝑎 + 2𝜀 + 𝑗 2𝑎 + 2𝜀 + 𝑚 𝑎 + 𝜀

𝑎 + 𝜀 + 𝑗 𝑎 + 𝜀 + 𝑚 2𝑎 + 2𝜀
; |𝑥𝑟|

2), 

𝛾 ≔ (𝜀 − 1)̃ + 𝑗, 2𝜀 − 1 ≔ (𝜀 − 1)̌  and 𝑘 ≔ 𝑗 + 𝑙 + 𝑚 we get 
1

(𝜀 − 1 + 𝑞)𝑗+𝑙+𝑚
𝐹45
 (

𝜀 − 1 + 𝑗 𝜀 − 1 +𝑚 2𝑎 + 2𝜀 + 𝑗
𝜀 − 1 + 𝑞 + 𝑗 + 𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗

   
2𝑎 + 2𝜀 + 𝑚 𝑎 + 𝜀
𝑎 + 𝜀 + 𝑚 2𝑎 + 2𝜀

; |𝑥𝑟|
2) 

=∑(
𝑞
𝑟
) (−1)𝑟(𝑗 + 𝑙

∞

𝑟=0

+𝑚)𝑟∑
(−1)𝑠(−𝑟)𝑠|𝑥𝑟|

2𝑠𝜕|𝑥|2
𝑠

𝑠! (𝑗 + 𝑙 + 𝑚)𝑠(𝜀 − 1)𝑗+𝑚+𝑙+𝑟

∞

𝑠=0

𝐹45
 (

𝜀 − 1̃ + 𝑗 𝜀 − 1̃ + 𝑚 2𝑎 + 2𝜀 + 𝑗

𝜀 − 1̃ + 𝑟 + 𝑗 + 𝑚 + 𝑙 𝑎 + 𝜀 + 𝑗
   
2𝑎 + 2𝜀 +𝑚 𝑎 + 𝜀
𝑎 + 𝜀 +𝑚 2𝑎 + 2𝜀

; |𝑥𝑟|
2) 

∑(
𝑞
𝑟
) (−1)𝑟(𝑗 + 𝑙

∞

𝑟=0

+𝑚)𝑟∑
(−1)𝑠(−𝑟)𝑠|𝑥𝑟|

2𝑠

𝑠! (𝑗 + 𝑙 + 𝑚)𝑠

(𝜀 − 1̃ + 𝑗)
𝑠
(𝜀 − 1̃ + 𝑚)

𝑠
(2𝑎 + 2𝜀 + 𝑗)𝑠(2𝑎 + 2𝜀 + 𝑚)𝑠(𝑎 + 𝜀)𝑠

(𝜀 − 1̃)
𝑗+𝑚+𝑙+𝑟+𝑠

(𝑎 + 𝜀 + 𝑗)𝑠(𝑎 + 𝜀 + 𝑚)𝑠(2𝑎 + 2𝜀)𝑠

∞

𝑠=0

 

𝐹45
 (

𝜀 − 1̃ + 𝑗 + 𝑠 𝜀 − 1 +𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑗 + 𝑠

𝜀 − 1̃ + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 𝑠 𝑎 + 𝜀 + 𝑗 + 𝑠
   
2𝑎 + 2𝜀 + 𝑚 + 𝑠 𝑎 + 𝜀 + 𝑠
𝑎 + 𝜀 + 𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑠

; |𝑥𝑟|
2). 

Substituting this into (20), with some manipulations and performing a transformation of the 

summation index 𝑟 → 𝑟 + 𝑠 we get 

∑(
𝑁
𝑞
) (|𝑥𝑟|

2 − 1)𝑁−𝑞
(𝜀 − 1 + 1)𝑞
(𝜀 − 1)𝑞

∞

𝑞=0

                                    

∑
|𝑥|2(𝑀−𝑙+𝑠)𝑀! (−1)𝑀+𝑗+𝑚(𝜀 − 1̃)

𝑗+𝑠
(𝜀 − 1̃)

𝑚+𝑠
(2𝑎 + 2𝜀)𝑗+𝑠(2𝑎 + 2𝜀)𝑚+𝑠(𝑎 + 𝜀)𝑠(−𝑞)𝑟+𝑠(𝑗 + 𝑙 + 𝑚)𝑟+𝑠

(𝑀 − 2𝑙 − 𝑗 −𝑚)! 4𝑙2𝑗+𝑚(𝑎 + 𝜀)𝑗+𝑠(𝑎 + 𝜀)𝑚+𝑠(2𝑎 + 2𝜀)𝑠(𝜀 − 1̃)𝑗+𝑚+𝑙+𝑟+2𝑠𝑗! 𝑙!𝑚! 𝑟! 𝑠!
(𝑗 + 𝑙 +𝑚)𝑠

∞

𝑗,𝑙,𝑚,𝑟,𝑠=0

 

𝐹45
 (

𝜀 − 1̃ + 𝑗 + 𝑠 𝜀 − 1̃ + 𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑗 + 𝑠

𝜀 − 1̃ + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠 𝑎 + 𝜀 + 𝑗 + 𝑠
   
2𝑎 + 2𝜀 + 𝑚 + 𝑠 𝑎 + 𝜀 + 𝑠
𝑎 + 𝜀 + 𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑠

; |𝑥𝑟|
2) 

We can sum over q now. The series in question is 

∑(
𝑁
𝑞
) (|𝑥𝑟|

2 − 1)𝑁−𝑞
(𝜀)𝑞

(𝜀 − 1)𝑞
(−𝑞)𝑟+𝑠

∞

𝑞=0

. 

By the representation (−𝑞)𝑟+𝑠 = (−𝜕𝑡)
𝑟+𝑠𝑡𝑞|𝑡=1(from now on every parameter that contains the 

letter 𝑡– 𝑡, 𝑡1, and so on – will be understood to be evaluated at 1; we will not explicitly mention this) 

we get 

(−𝜕𝑡)
𝑟+𝑠(|𝑥𝑟|

2 − 1)𝑁 𝐹12
 (

−𝑁 𝜀 + 2
𝜀 − 1

;
𝑡

1 − |𝑥𝑟|
2
). 

The known transformation 

𝐹12
 (

𝑎 𝑎 + 𝜀
𝑎 + 2𝜀

; 𝑥𝑟) = (1 − 𝑥𝑟)
−𝑎 𝐹12

 (
𝑎 𝜀
𝑎 + 2𝜀

;
𝑥𝑟

𝑥𝑟 − 1
) 

enables us to write this as 

(−𝜕𝑡)
𝑟+𝑠(|𝑥𝑟|

2 − 1)𝑁 𝐹12
 (

−𝑁 𝑎 + 𝜀 + 1
𝜀 − 1

;
𝑡

|𝑥𝑟|
2 − 1 + 𝑡

)

=∑
(−𝑁)𝑞(𝑎 + 𝜀 + 1)𝑞

(𝜀 − 1)𝑞𝑞!

∞

𝑞=0

(−𝜕𝑡)
𝑟+𝑠𝑡𝑞(|𝑥𝑟  |

2 − 1 + 𝑡)𝑁−𝑞 . 

We did not manage to sum the series explicitly but this will do. Substituting this result into (21) we 

get the second intermediate result: 
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∑
|𝑥𝑟|

2(𝑀−𝑙+𝑠)𝑀! (−1)𝑀+𝑗+𝑚(−𝑁)𝑞(𝑎 + 𝜀 + 1)𝑞(𝜀 − 1)𝑗+𝑠(𝜀 − 1)𝑚+𝑠(2𝑎 + 2𝜀)𝑗+𝑠(2𝑎 + 2𝜀)𝑚+𝑠(𝑎 + 𝜀)𝑠(𝑗 + 𝑙 + 𝑚)𝑟+𝑠
(𝑀 − 2𝑙 − 𝑗 −𝑚)! 4𝑙2𝑗+𝑚(𝑎 + 𝜀)𝑗+𝑠(𝑎 + 𝜀)𝑚+𝑠(2𝑎 + 2𝜀)𝑠(𝜀 − 1)𝑞(𝜀 − 1)𝑗+𝑚+𝑙+𝑟+2𝑠𝑗! 𝑙! 𝑚! 𝑟! 𝑠! 𝑞! (𝑗 + 𝑙 + 𝑚)𝑠

∞

𝑗,𝑙,𝑚
𝑟,𝑠,𝑞

 

              

𝐶𝑟,𝑠(|𝑥|
2) 𝐹45

 (
𝜀 − 1 + 𝑗 + 𝑠 𝜀 − 1 +𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑗 + 𝑠

𝜀 − 1̃ + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠 𝑎 + 𝜀 + 𝑗 + 𝑠
   
2𝑎 + 2𝜀 + 𝑚 + 𝑠 𝑎 + 𝜀 + 𝑠
𝑎 + 𝜀 + 𝑚 + 𝑠 2𝑎 + 2𝜀 + 𝑠

; |𝑥𝑟|
2) (22), 

Where  𝐶𝑟,𝑠(|𝑥𝑟|
2) = (−𝜕𝑡)

𝑟+𝑠𝑡𝑞(|𝑥𝑟|
2 − 1 + 𝑡)𝑁−𝑞 . 

As it is clear from Lemma 1 all functions 𝐹45
  with these parameters have the same principal 

asymptotic behavior as 𝜀 → ∞. To get a more effective form we exploit the known relation between 

contiguous hypergeometric functions 

𝐹 (
𝑎 + 1

𝑎 + 2𝜀 + 1
) =

𝑎 + 2𝜀

𝑎
(𝐹 (

𝑎
𝑎 + 2𝜀

) −
2𝜀

𝑎 + 2𝜀
𝐹 (

𝑎
𝑎 + 2𝜀 + 1

)), 

which holds for any hypergeometric function with at least one upper and one lower parameter. 

By iteration we get: 

𝐹 (
𝑎 + 𝑚

𝑎 + 2𝜀 + 𝑚
) =

(𝑎 + 2𝜀)𝑚
(𝑎)𝑚

∑
(−𝑚)𝑗(2𝜀)𝑗
(𝑎 + 2𝜀)𝑗𝑗!

𝐹 (
𝑎

𝑎 + 2𝜀 + 𝑗)

∞

𝑗=0

. 

We apply this to the function 

                      

𝐹45
 

(

 
 
𝜀 − 1 + 𝑗 + 𝑠⏞        

𝑘5

𝜀 − 1̃ + 𝑚 + 𝑠⏞        
𝑘4

𝜀 − 1 + 𝑟 + 𝑗 + 𝑚 + 𝑙 + 2𝑠⏟                  
𝑘4𝑘5

2𝑎 + 2𝜀 + 𝑗 + 𝑠
𝑎 + 𝜀 + 𝑗 + 𝑠⏟          

𝑘3

2𝑎 + 𝜀 + 𝑚 + 𝑠
𝑎 + 𝜀 + 𝑚 + 𝑠⏟          

𝑘2

𝑎 + 𝜀 + 𝑠
2𝑎 + 2𝜀 + 𝑠⏟        

𝑘1

; |𝑥𝑟|
2

)

 
 
         

as indicated, five times in total. That will get us 5 new series with 5 new summation indices, which 

we name 𝑘1…𝑘5. The role of 𝑚 will be played in turn by the parameters 𝑠,𝑚 + 𝑠, 𝑗 + 𝑠,𝑚 + 𝑠 and 

𝑗 + 𝑠. The lower indices 𝑎 + 2𝜀 will be in this 2𝑎 + 2𝜀, 𝑎 + 𝜀, , �̃� + 𝑟 + 𝑗 + 𝑠 + 𝑙 and 𝜀 − 1̃ + 𝑟 +
𝑙 + 𝑘4. 
This way the expression (23) will change form to: 

∑
(2𝑎 + 2𝜀)𝑠(𝑎 + 𝜀)𝑚+𝑠(𝑎 + 𝜀)𝑗+𝑠(𝜀 − 1 + 𝑟 + 𝑗 + 𝑠 + 𝑙)𝑚+𝑠(𝜀 − 1 + 𝑟 + 𝑙 + 𝑘4)𝑗+𝑠

(𝑎 + 𝜀)𝑠(2𝑎 + 2𝜀)𝑚+𝑠(2𝑎 + 2𝜀)𝑗+𝑠(𝜀 − 1)𝑚+𝑠(𝜀 − 1)𝑗+𝑠
𝑘1…𝑘5

 

(−𝑠)𝑘1(−𝑚 − 𝑠)𝑘2(−𝑗 − 𝑠)𝑘3(−𝑚 − 𝑠)𝑘4(−𝑗 − 𝑠)𝑘5(𝑎 + 𝜀)𝑘1(−𝑎 + 𝜀)𝑘2(−𝑎 + 𝜀)𝑘3(𝑟 + 𝑗 + 𝑠 + 𝑙)𝑘4(𝑟 + 𝑙 + 𝑘4)𝑘5
(2𝑎 + 2𝜀)𝑘1(𝑎 + 𝜀)𝑘2(𝑎 + 𝜀)𝑘3(𝜀 − 1 + 𝑟 + 𝑗 + 𝑠 + 𝑙)𝑘4(𝜀 − 1 + 𝑟 + 𝑙 + 𝑘4)𝑘5𝑘1! 𝑘2! 𝑘3! 𝑘4! 𝑘5!

 

𝐹45
 (

𝜀 − 1 𝜀 − 1 2𝑎 + 2𝜀 2𝑎 + 2𝜀 𝑎 + 𝜀
𝜀 − 1̃ + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑎 + 𝜀 + 𝑘3 𝑎 + 𝜀 + 𝑘2 2𝑎 + 2𝜀 + 𝑘1

; |𝑥𝑟|
2). 

Substituting this into (22) will fortunately reduce the number of terms, for many of them will cancel 

out each other. It can be checked by an easy calculation, for example, that the terms containing 𝜀 − 1 

but not 𝑞 will squeeze to a single expression1/(𝜀 − 1̃)𝑟+𝑙+𝑘4+𝑘5. We end up with this much more 

tolerable expression: 

∑
|𝑥|2(𝑀−𝑙+𝑠)𝑀! (−1)𝑀+𝑗+𝑚(−𝑁)𝑞(𝑎 + 𝜀 + 1)𝑞(𝑗 + 𝑙 + 𝑚 + 𝑠)𝑟

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 4𝑙2𝑗+𝑚(𝜀 − 1̃)
𝑞
(𝜀 − 1)𝑟+𝑙+𝑘4+𝑘5𝑗! 𝑙!𝑚! 𝑟! 𝑠! 𝑞! 𝑘1! 𝑘2! 𝑘3! 𝑘4! 𝑘5!

∞

𝑗𝑙𝑚𝑟𝑠𝑞
𝑘1…𝑘5

   

(−𝑠)𝑘1(−𝑚 − 𝑠)𝑘2(−𝑗 − 𝑠)𝑘3(−𝑚− 𝑠)𝑘4(−𝑗 − 𝑠)𝑘5(𝑎 + 𝜀)𝑘1(−𝑎 − 𝜀)𝑘2(−𝑎 − 𝜀)𝑘3(𝑟 + 𝑗 + 𝑠 + 𝑙)𝑘4(𝑟 + 𝑙 + 𝑘4)𝑘5
(2𝑎 + 2𝜀)𝑘1(𝑎 + 𝜀)𝑘2(𝑎 + 𝜀)𝑘3

 

𝐶𝑟,𝑠(|𝑥𝑟|
2) 𝐹45

 (
𝜀 − 1 𝜀 − 1̃ 2(𝑎 + 𝜀) 2(𝑎 + 𝜀) 𝑎 + 𝜀

𝜀 − 1̃ + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑎 + 𝜀 + 𝑘3 𝑎 + 𝜀 + 𝑘2 2(𝑎 + 𝜀) + 𝑘1
; |𝑥𝑟|

2). 

We can reduce the complexity of this formula further by summing over all indices which do not 

appear in the hypergeometric function or depend on �̃�, i.e. over indices 𝑗, 𝑚, 𝑠. This gives 
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∑
|𝑥𝑟|

2(𝑀−𝑙)𝑀! (−1)𝑀(−𝑁)𝑞(𝑎 + 𝜀 + 1)𝑞(𝑎 + 𝜀)𝑘1(−𝑎 − 𝜀)𝑘2(−𝑎 − 𝜀)𝑘3(𝑟 + 𝑙 + 𝑘4)𝑘5
4𝑙(𝜀 − 1)𝑞(𝜀 − 1̃)𝑟+𝑙+𝑘4+𝑘5

(2𝑎 + 2𝜀)𝑘1(𝑎 + 𝜀)𝑘2(𝑎 + 𝜀)𝑘3𝑙! 𝑟! 𝑞! 𝑘1! 𝑘2! 𝑘3! 𝑘4! 𝑘5!

∞

𝑙,𝑟,𝑞
𝑘1…𝑘5

     

𝐶(|𝑥𝑟|
2) 𝐹45

 (
𝜀 − 1 𝜀 − 1̃ 2𝑎 + 2𝜀 2𝑎 + 2𝜀 𝑎 + 𝜀

𝜀 − 1 + 𝑙 + 𝑟 + 𝑘4 + 𝑘5 𝑎 + 𝜀 + 𝑘3 𝑎 + 𝜀 + 𝑘2 2𝑎 + 2𝜀 + 𝑘1
; |𝑥𝑟|

2), 

where 

𝐶(|𝑥𝑟|
2) ≔ 

 ∑
|𝑥𝑟|

2𝑠(−1)𝑗+𝑚(𝑗+𝑙+𝑚+𝑠)𝑟(−𝑠)𝑘1(−𝑚−𝑠)𝑘2(−𝑗−𝑠)𝑘3(−𝑚−𝑠)𝑘4(−𝑗−𝑠)𝑘5(𝑟+𝑗+𝑠+𝑙)𝑘4

(𝑀−2𝑙−𝑗−𝑚)!2𝑗+𝑚𝑗!𝑚!𝑠!

∞
𝑗,𝑚,𝑠  

(−𝜕𝑡)
𝑟+𝑠𝑡𝑞(|𝑥𝑟|

2 − 1 + 𝑡)𝑁−𝑞 . 
We must deal now with the coefficient 𝐶(|𝑥𝑟|

2). For that purpose we represent each Pochhammer 

symbol in the series by (−𝑎)𝑘 = (−𝜕𝑡)
𝑘𝑡𝑎 whenever the argument is negative and by (𝑎)𝑘 =

𝜕𝑡
𝑘𝑡𝑎+𝑘−1in the opposite case (again, the default understanding is that every parameter 𝑡𝑖 is to be 

evaluated, without explicitly saying so, at the point 1). Thus we get 

𝐶(|𝑥𝑟|
2) = (−𝜕𝑡1)

𝑘1 …(−𝜕𝑡5)
𝑘5𝜕𝑡6

𝑘4𝜕𝑡7
𝑟 (−𝜕𝑡)

𝑟 

∑
|𝑥𝑟|

2𝑠(−1)𝑗+𝑚𝑡1−7
𝑠 𝑡6735

𝑗
𝑡724
𝑚 (−𝜕𝑡)

𝑠

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 2𝑗+𝑚𝑗!𝑚! 𝑠!
𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1𝑡𝑞(|𝑥𝑟|
2 − 1 + 𝑡)𝑁−𝑞

∞

𝑗,𝑚,𝑠

, 

where 𝑡1−7 ≔ 𝑡1𝑡2𝑡3𝑡4𝑡5𝑡6𝑡7, 𝑡6735 = 𝑡6𝑡7𝑡3𝑡5 and so on. The sum over 𝑠 is essentially the Taylor 

series. 

As for the other two indices, it is clear that 

∑
𝐴𝑗𝐵𝑚

(𝑀 − 2𝑙 − 𝑗 − 𝑚)! 𝑗!𝑚!

∞

𝑗,𝑚

=
1

(𝑀 − 2𝑙)!
(1 + 𝐴 + 𝐵)𝑀−2𝑙 . 

We thus finally get 

𝐶(|𝑥𝑟|
2) = (−𝜕𝑡1)

𝑘1 …(−𝜕𝑡5)
𝑘5𝜕𝑡6

𝑘4𝜕𝑡7
𝑟 (−𝜕𝑡)

𝑟 

1

(𝑀 − 2𝑙)!
𝑡6
𝑟+𝑙+𝑘4−1𝑡7

𝑙+𝑟−1(𝑡 − |𝑥𝑟|
2𝑡1−7)

𝑞(|𝑥𝑟|
2(1 − 𝑡1−7) + 𝑡 − 1)

𝑁−𝑞 (1 −
1

2
𝑡6735

−
1

2
𝑡724)

𝑀−2𝑙

 

Many things can be learnt from this form. Firstly: the last two parentheses are equal to zero when all 

𝑡 − 𝑠 are evaluated at the point 1. To avoid this we must differentiate them out. For that at least 𝑁 −
𝑞 +𝑀 − 2𝑙 differentiations are needed. Available to us are 𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 of them. 

Hence: 
𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁. 

Secondly: from the perspective of the parameter t we differentiate 𝑟-times a polynomial of degree 𝑁. 

In order for the factor 𝐶𝜀−1  not to be zero it must hold 𝑟 ≤ 𝑁. Analogously, the degree of 𝑡7 is 𝑟 −
𝑙 − 1 + 𝑁 +𝑀 and this tells us that 1 + 𝑙 ≤ 𝑁 +𝑀. The same reasoning can be applied to any 

parameter 𝑡𝑖. From those and other facts, such as that in the formula (25) there appears the term 

(−𝑁)𝑞 , or from the presence of the term 1/(𝑀 − 2𝑙)!, we can easily compute upper bounds on 

summation indices. (see[19]).They are: 

𝑟 ≤ 𝑁 
2𝑙 ≤ 𝑀       ∧        1 + 𝑙 ≤ 𝑁 +𝑀 

𝑞 ≤ 𝑁 
𝑘1 ≤ 𝑁 

𝑘𝑖 ≤ 𝑁 +𝑀          ∀𝑖= 2…5. 
Corollary (5.2.20) [349]:  For 𝑀,𝑁 ∈ ℕ0 and 𝑥𝑟 ≠ 0: 

∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)𝑀(|𝑥𝑟|

2 − |𝑦𝑟|
2)𝑁

𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝑂 (𝜀 − 1−⌈
𝑁+𝑀
2

⌉)       (𝜀 → ∞). 
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Proof. From the fact 

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟) = 𝐹12
 (

𝜀 − 1 2𝑎 + 2𝜀
𝑎 + 𝜀

; |𝑥𝑟|
2), 

from and from the presence of the factor (𝜀 − 1̃)𝑞(𝜀 − 1)𝑙+𝑟+𝑘4+𝑘5in the denominator it follows that 

for 𝑥𝑟 ≠ 0 

∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)𝑀(|𝑥𝑟|

2 − |𝑦𝑟|
2)𝑁

𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= ∑ 𝑂(𝜀 − 1−(𝑟+𝑙+𝑞+𝑘1+⋯+𝑘5))

𝑟𝑙𝑞𝑘1…𝑘5

     (𝜀 → ∞).   

That is the speed of asymptotic decay grows with each summation index 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑟, 𝑞, 𝑙 as 

𝜀 → ∞. The slowest decay (and therefore the leading term) we get for the lowest possible values of 

these parameters. But since 𝑘1 + 𝑘2 + 𝑘3 + 2𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁, lowest values are 

achieved for 2𝑘4 + 2𝑟 + 2𝑙 = 𝑀 + 𝑁and 𝑘1 = ⋯ = 𝑘5 = 0 if this is possible, i.e. if 𝑀 +𝑁 is an 

even number; if  𝑀 +𝑁 is odd, the decay is one negative power of alpha faster. Hence the leading 

order term is 

𝑂 ((𝜀 − 1)−⌈
𝑁+𝑀
2

⌉)       (𝜀 → ∞). 

Corollary (5.2.21) [349]. For 𝑀 ∈ ℕ0 and 𝑥𝑟 ≠ 0 

∫ |𝑦𝑟 − 𝑥𝑟|
2𝑀
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝑂 ((𝜀 − 1)−⌈
𝑀
2
⌉)       (𝜀 → ∞). 

Proof. The statement follows directly from the representation 

|𝑦𝑟 − 𝑥𝑟|
2𝑀 = (|𝑦𝑟|

2 − 2𝑦𝑟 ∙ 𝑥𝑟 + |𝑥𝑟|
2)𝑀 = (|𝑦𝑟|

2 − |𝑥𝑟|
2 − 2(𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|

2))𝑀 

= (−2)𝑀∑(
𝑀
𝑁
) (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|

2)𝑀−𝑁(|𝑥𝑟|
2 − |𝑦𝑟|

2)𝑁
∞

𝑁=0

. 

The integral is therefore a series of terms, whose behavior: 

𝑂 ((𝜀 − 1)−⌈
𝑀−𝑁+𝑁

2
⌉)       (𝜀 → ∞). 

Corollary (5.2.22) [349]. For 𝑚 ∈ ℕ0, 𝑥𝑟 ≠ 0 and 𝜀 > 0: 

∫ (𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

=∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(𝑧 ∙ 𝑥)𝑚−2𝑘𝑣𝑧𝑟,𝑥𝑟

2𝑘

(𝑎 + 𝜀 +
1
2
)
𝑘
𝑘! |𝑥|2𝑚

∞

𝑘=0

∫ (𝑥𝑟 ∙ 𝑦𝑟 − |𝑥𝑟|
2)𝑚−2𝑘𝑣𝑦𝑟,𝑥𝑟

2𝑘 𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

where 𝑣𝑢1,𝑢2
2 = |𝑢1|

2|𝑢2|
2 − (𝑢1 ∙ 𝑢2)

2. 

Proof. The integral 

∫ (𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

is unchanged upon replacing 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟  by 𝑈𝑥𝑟 , 𝑈𝑦𝑟 , 𝑈𝑧𝑟  for any orthogonal transformation 𝑈. 

Without loss of generality, we can thus assume that 𝑥𝑟 = (|𝑥𝑟|,0,0, … ) and 𝑧𝑟 =

((𝑧𝑟)1, (𝑧𝑟)2, 0,0, … ) with (𝑧𝑟)2 ≥ 0. Then 𝑥𝑟 ∙ 𝑦𝑟 = |𝑥𝑟|(𝑦𝑟)1, (𝑧𝑟)1 =
𝑧𝑟∙𝑥𝑟

|𝑥𝑟|
, (𝑧𝑟)2 =

𝑣𝑥𝑟 ,𝑥𝑟

|𝑥𝑟|
 and 

𝑧𝑟 ∙ 𝑥𝑟 =
𝑧𝑟 ∙ 𝑥𝑟
|𝑥𝑟|

𝑦1 + 𝑣𝑧𝑟,𝑥𝑟

(𝑦𝑟)2
|𝑥𝑟|

. 

We now change variables to hyper-spherical coordinates 

(𝑦𝑟)1 = 𝑟 𝑐𝑜𝑠 𝜑 
(𝑦𝑟)2 = 𝑟 𝑠𝑖𝑛 𝜑 𝑐𝑜𝑠 𝜓 

… 
(𝑦𝑟)𝜀−1 = 𝑟 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃1…  𝑠𝑖𝑛 𝜃𝜀−3𝑐𝑜𝑠 𝜃𝜀−2 
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(𝑦𝑟)𝜀+1 = 𝑟 𝑠𝑖𝑛 𝜑 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃1…𝑠𝑖𝑛 𝜃𝜀−3 𝑠𝑖𝑛 𝜃𝜀−2 

𝑑𝜇𝜀−1
𝜀+1 =

(𝜀 − 1 + (𝜀 + 1)\2)!

𝜋(𝜀+1)\2Γ(𝜀)
(1 − 𝑟2)𝜀−1𝑟𝜀  𝑠𝑖𝑛𝜀−1𝜑 𝑠𝑖𝑛𝜀−2𝜓…𝑠𝑖𝑛 𝜃𝜀−3𝑑𝑟𝑑𝜑𝑑𝜓…𝑑𝜃𝜀−2. 

The integration bounds are: 𝑟 ∈ [0,1], 𝜑 ∈  [0, 𝜋], 𝜓 ∈ [0, 𝜋], 𝜃1 ∈ [0, 𝜋], … , 𝜃𝜀−3 ∈ [0, 𝜋], 𝜃𝜀−2 ∈
[0,2𝜋]. 
For the sake of brevity put 𝑑2Φ ≔ (1 − 𝑟2)𝜀−1𝑟𝜀  𝑠𝑖𝑛𝜀−1𝜑𝑑𝑟𝑑𝜑. 
Integration over all 𝜃𝑖 will give us some constant 𝐶 since the integrand does not depend on them. For 

the rest we have 

𝐶∫∫∫(
𝑧𝑟 ∙ 𝑥𝑟
|𝑥𝑟|

𝑟 cos 𝜑 + 𝑣𝑧𝑟,𝑥𝑟
𝑟 sin 𝜑 cos𝜓

|𝑥𝑟|

𝜋

0

𝜋

0

1

0

− 𝑧𝑟 . 𝑥𝑟)
𝑚

𝑓(𝑟, |𝑥𝑟|𝑟 cos 𝜑)𝑑
2Φsin𝜀−2𝜓𝑑𝜓                  

= 𝐶∑(
𝑚
𝑙
)

∞

𝑙=0

∫∫(
𝑧𝑟 ∙ 𝑥𝑟
|𝑥𝑟|

𝑟 𝑐𝑜𝑠 𝜑

𝜋

0

1

0

− 𝑧𝑟 . 𝑥𝑟)
𝑚−𝑙

(𝑣𝑧𝑟,𝑥𝑟
𝑟 𝑠𝑖𝑛 𝜑

|𝑥𝑟|
)
𝑙

𝑓(𝑟, |𝑥𝑟|𝑟 𝑐𝑜𝑠 𝜑)𝑑
2Φ∫ cos𝑙 𝜓

𝜋

0

𝑠𝑖𝑛𝜀−2𝜓𝑑𝜓. 

Here and in the rest of the proof we assume 𝜀 > 0 otherwise (in the case 𝜀 = 0) integration over the 

interval [0,2𝜋] would rest with the parameter 𝜓 and in the case 3 + 𝜀 = 2 𝜓 would not be present at 

all. 

These cases would however require only minor changes in the proof which continues as follows. 

Let 

𝐴 ≔
𝑧𝑟 ∙ 𝑥𝑟
|𝑥𝑟|

𝑟 𝑐𝑜𝑠 𝜑 − 𝑧𝑟 . 𝑥𝑟 ,          𝐵 ≔ 𝑣𝑧𝑟,𝑥𝑟
𝑟 𝑠𝑖𝑛 𝜑

|𝑥𝑟|
. 

By an easy computation we have: 

∫𝑐𝑜𝑠𝑙 𝜓

𝜋

0

𝑠𝑖𝑛𝜀 𝜓𝑑𝜓 =

{
 
 

 
 
√𝜋Γ(𝑎 + 𝜀)

Γ (𝑎 + 𝜀 +
1
2
)

(
1
2
)
𝑘

(𝑎 + 𝜀 +
1
2
)
𝑘

0

𝑙 = 2𝑘,
𝑙 ≠ 2𝑘.

 

Together with fact that  

(
𝑚
2𝑘
) =

(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(
1
2
)
𝑘
𝑘!

 

we obtain that (26) equals 

𝐶∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(𝑎 + 𝜀 +
1
2
)
𝑘
𝑘!

∞

𝑘=0

∫∫𝐴𝑚−2𝑘𝐵2𝑘𝑓(𝑟, |𝑥𝑟|𝑟 𝑐𝑜𝑠 𝜑)𝑑
2Φ

𝜋

0

1

0

. 

Now we take hyper-spherical coordinates back. First we had 𝑥𝑟 . 𝑦𝑟 = |𝑥𝑟|(𝑦𝑟)1 = |𝑥𝑟|𝑟 cos 𝜑and 

|𝑦𝑟| = 𝑟, so our result can be again interpreted as an integral over the unit ball in ℝ3+𝜀 if we replace 

𝑟 cos 𝜑 by 
𝑥𝑟.𝑦𝑟

|𝑥𝑟|
and put 𝑟 = |𝑦𝑟|. Therefore 

𝐴 =
𝑧𝑟 ∙ 𝑥𝑟
|𝑥𝑟|

𝑟 𝑐𝑜𝑠 𝜑 − 𝑧𝑟 . 𝑥𝑟 = 
𝑧𝑟 . 𝑥𝑟
|𝑥𝑟|

 
𝑥𝑟 . 𝑦𝑟
|𝑥𝑟|

− 𝑧𝑟 . 𝑥𝑟 =
𝑧𝑟 . 𝑥𝑟(𝑥𝑟 . 𝑦𝑟 − |𝑥𝑟|

2)

|𝑥𝑟|
2

, 

𝐵2 = 𝑣𝑧𝑟,𝑥𝑟
2

𝑟2 𝑠𝑖𝑛2 𝜑

|𝑥𝑟|
2

= 𝑣𝑧𝑟,𝑥𝑟
2

𝑟2(1 − cos2 𝜑)

|𝑥𝑟|
2

= 𝑣𝑧𝑟,𝑥𝑟
2

(|𝑦𝑟|
2 − (

𝑥𝑟 . 𝑦𝑟
|𝑥𝑟|

)
2

)

|𝑥𝑟|
2

=
𝑣𝑧𝑟,𝑥𝑟
2 𝑣𝑦𝑟.𝑥𝑟

2

|𝑥𝑟|
4

. 

Altogether we have 
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𝐶∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘

(𝑎 + 𝜀 +
1
2
)
𝑘
𝑘! |𝑥𝑟|

2𝑚

∞

𝑘=0

∫ (𝑧𝑟 ∙ 𝑥𝑟(𝑥𝑟 . 𝑦𝑟 − |𝑥𝑟|
2))𝑚−2𝑘𝑣𝑧𝑟,𝑥𝑟

2𝑘 𝑣𝑦𝑟,𝑥𝑟
2𝑘 𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1

3+𝜀(𝑦𝑟)

𝔹3+𝜀

 

The result, if necessary, can be easily checked by performing change of variables into the hyper-

spherical coordinates. 

Lastly, we must determine the constant 𝐶 into which we have collected all unimportant constants. 

But comparing our original integral with the result for 𝑚 = 0 gives us the equality 

∫ 𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝐶 ∫ 𝑓(|𝑦𝑟|, 𝑥𝑟 ∙ 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

, 

hence 𝐶 = 1. 
 

Corollary (5.2.23) [349]: For 𝑚 ∈ ℕ0 

∫ (𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

= ∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(−1)𝑘(𝑧𝑟 ∙ 𝑥𝑟)

𝑚−2𝑘𝑣𝑧𝑟,𝑥𝑟
2𝑘 2𝑝

(𝑎 + 𝜀 +
1
2
)
𝑘
(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝! |𝑥𝑟|

2(𝑚−𝑝−𝑗)

∞

𝑘,𝑗,𝑝=0

∫ (𝑥𝑟 ∙ 𝑦𝑟
𝔹1+𝜀

− |𝑥𝑟|
2)𝑚−2𝑗−𝑝(|𝑥𝑟|

2 − |𝑦𝑟|
2)𝑗
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟). 

Proof. The Bergman kernel depends only on |𝑦𝑟|
2|𝑥𝑟|

2 and 𝑥𝑟 ∙ 𝑦𝑟– 𝑎 fact easily seen from the 

representation in terms of the Appell function (13). We can therefore apply. 

Notice that the factor 𝑣𝑦𝑟,𝑥𝑟
2𝑘  can be written as follows 

𝑣𝑦𝑟,𝑥𝑟
2𝑘 = (|𝑦𝑟|

2|𝑥𝑟|
2 − (𝑥𝑟 ∙ 𝑦𝑟)

2)𝑘

= (|𝑦𝑟|
2|𝑥𝑟|

2 − (𝑥𝑟 ∙ 𝑦𝑟 − |𝑥𝑟|
2)2 − 2|𝑥𝑟|

2(𝑥𝑟 ∙ 𝑦𝑟 − |𝑥𝑟|
2) − |𝑥𝑟|

4)𝑘, 
so we can expand it into a finite combination of terms(𝑥𝑟 ∙ 𝑦𝑟 − |𝑥𝑟|

2), (|𝑥𝑟|
2 − |𝑦𝑟|

2).Specifically, 

𝑣𝑦𝑟,𝑥𝑟
2𝑘 = (−1)𝑘 ∑

𝑘!2𝑝|𝑥𝑟|
2(𝑝+𝑗)

(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝!
(𝑥𝑟 ∙ 𝑦𝑟 − |𝑥𝑟|

2)2𝑘−2𝑗−𝑝(|𝑥𝑟|
2 − |𝑦𝑟|

2)𝑗
∞

𝑗,𝑝=0

. 

Substituting this into the expression and performing some manipulations we get the required result. 

Corollary (5.2.24) [349]:  For 𝑚 ∈ ℕ0 and 𝑥𝑟 ≠ 0: 

∫ (𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟  )
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝑂 ((𝜀 − 1)−⌈
𝑚
4
⌉)     (𝜀 → ∞). 

Proof. According we get for 𝑥𝑟 ≠ 0 

∫ (𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

∑
(−
𝑚
2
)
𝑘
(
1 − 𝑚
2

)
𝑘
(−1)𝑘(𝑧𝑟 ∙ 𝑥𝑟)

𝑚−2𝑘𝑣𝑧𝑟,𝑥𝑟
2𝑘 2𝑝

(𝑎 + 𝜀 +
1
2
)
𝑘
(𝑘 − 𝑗 − 𝑝)! 𝑗! 𝑝! |𝑥𝑟|

2(𝑚−𝑝−𝑗)

∞

𝑘,𝑗,𝑝=0

𝑂 ((𝜀 − 1)−⌈
𝑚−𝑗−𝑝

2
⌉). 

Since 𝑗 + 𝑝 ≤ 𝑘 and 2𝑘 ≤ 𝑚 the principal term is at most 

𝑂((𝜀 − 1)
−⌈
𝑚−⌈

𝑚
2
⌉

2
⌉

) = 𝑂 ((𝜀 − 1)−⌈
𝑚
4
⌉). 

Corollary (5.2.25) [349]:  For 𝑥𝑟 ∈ 𝔹
1+𝜀 , 𝑥𝑟 ≠ 0, 𝜀 > 0, and 𝑓 ∈ 𝐶∞(𝔹1+𝜀), there exist differential 

operators 𝑄𝑖 ≔ 𝑄𝑖(∆, 𝑥𝑟 , ∇, |𝑥𝑟|
2), involving only the Laplace operator 𝛥, the directional derivative 

𝑥𝑟 ∙ 𝛻 and the quantity |𝑥𝑟|
2, such that 
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(𝐵𝜀−1𝑓)(𝑥𝑟) ≔ ∫ 𝑓(𝑦𝑟)
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

≈∑
𝑄𝑖𝑓(𝑥𝑟)

(𝜀 − 1)𝑖

∞

𝑖=0

    (𝜀 → ∞), 

where 𝑄0 = 1 and 

𝑄1 =
𝜀 − 1

2

1 − |𝑥𝑟|
2

|𝑥𝑟|
2

𝑥𝑟 ∙ ∇ +
(𝜀 − 1)(1 − |𝑥𝑟|

2)2

4(𝜀)|𝑥𝑟|
2

(𝑥𝑟 ∙ ∇)
2 +

1

4(𝜀)
(1 − |𝑥𝑟|

2)2∆. 

Finally, for 𝑥𝑟 = 0 it holds 

(𝐵𝜀−1𝑓)(0) ≈∑
∆𝑖𝑓(0)

4𝑖 (𝜀 − 1 +
(1 + 𝜀)
2

+ 1)
𝑖

∞

𝑖=0

    (𝜀 → ∞). 

Proof. Let us deal with the simpler case 𝑥𝑟 = 0 first on which the general approach will be 

demonstrated. 

The problem is to determine the asymptotic expansion of the integral 

𝐼𝜀−1𝑓 ≔ ∫ 𝑓(𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

. 

Remember that 

𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟) ≔ (𝑎 + 2𝜀)𝜀−1(1 − |𝑦𝑟|

2)𝜀−1𝑑1+𝜀𝑦𝑟 ,        (𝑎 + 2𝜀)𝜀−1 =
Γ(𝜀 − 1̃)

𝜋(1+𝜀)\2Γ(𝜀)
. 

We expand the function 𝑓(𝑦𝑟) into its Taylor series 

𝑓(𝑦𝑟) = ∑
(𝑦𝑟 ∙ ∇)

𝑘𝑓(0)

𝑘!
+ 𝐻2𝑀(𝑦𝑟)

2𝑀−1

𝑘=0

, 

and plug in to get 

𝐼𝜀−1𝑓 = ∑
1

(2𝑘)!

𝑀−1

𝑘=0

∫ (𝑦𝑟 ∙ 𝛻)
2𝑘𝑓(0)𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

+ ∫ 𝐻2𝑀(𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

. 

Notice that only the terms of even degree in the first integral survived. We can estimate the remainder 

term 𝐻2𝑀(𝑦𝑟) by the Taylor theorem as follows 

|𝐻2𝑀(𝑦𝑟)| ≤ 𝐶 max
|𝛾|−2𝑀

max
𝑦∈𝔹1+𝜀̅̅ ̅̅ ̅̅ ̅

|𝜕𝛾𝑓(𝑦𝑟)||𝑦𝑟  
𝛾| ≤ 𝐶|𝑦𝑟|

2𝑀 . 

So 

∫ 𝐻2𝑀𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

≤ 𝐶 ∫ |𝑦𝑟|
2𝑀𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝐶 ∫ (|𝑦𝑟|
2)𝑀𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 𝐶∑(
𝑀
𝑘
) (−1)𝑘

𝑀

𝑘=0

∫ 𝑑𝜇𝜀−1+𝑘
1+𝜀 (𝑦𝑟)

(𝑎 + 2𝜀)𝜀−1
(𝑎 + 2𝜀)𝜀−1+𝑘

𝔹1+𝜀

 

𝐶∑(
𝑀
𝑘
) (−1)𝑘

(𝜀)𝑘

(𝜀 − 1̃)
𝑘

𝑀

𝑘=0

= 𝐶2𝐹1 (
−𝑀 𝜀
(𝜀 − 1)̃ ;1) = 𝐶

Γ(𝜀 − 1̃)Γ(𝑎 + 𝜀 + 𝑀)

Γ(𝜀 − 1̃ + 𝑀)Γ(𝑎 + 𝜀)
= 𝐶

(𝑎 + 𝜀)𝑀

(𝜀 − 1̃)
𝑀

= 𝑂((𝜀 − 1)−𝑀). 
This stems again from the identity 

𝐹12
 (

𝑎1 𝑎2
𝑎 + 2𝜀

; 1) =
Γ(𝑎 + 2𝜀)Γ(𝑎 + 2𝜀 − 𝑎1 − 𝑎2)

Γ(𝑎 + 2𝜀 − 𝑎1)𝛤(𝑎 + 2𝜀 − 𝑎2)
, 

which is true for 𝑎 + 2𝜀 > 𝑎1 + 𝑎2. 

It remains to deal with integrals 

∫ (𝑦𝑟 ∙ 𝛻)
2𝑘𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)𝑓(0)

𝔹1+𝜀

. 

Now, we argue that the operator 𝛻can be treated as an ordinary vector, i.e. it suffices to compute the 

expression  
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∫ (𝑦𝑟 ∙ 𝑧𝑟)
2𝑘𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

and then in the result replace every occurrence of( 𝑧𝑟)𝑗 by 𝜕𝑗. To conclude the first part of this proof 

it therefore suffices to show that 

∫ (𝑦𝑟 ∙ 𝑧𝑟)
2𝑘𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

=
(2𝑘)!

𝑘! 4𝑘(𝜀 − 1)𝑘
|𝑧𝑟|

2𝑘. 

This could be, of course, computed directly can also be used in the light of the following 

representation 

∫ (𝑦𝑟 ∙ 𝑧𝑟)
2𝑘𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= lim 
𝑡→0

𝑡−2𝑘 ∫ (𝑦𝑟 ∙ 𝑡𝑧𝑟)
2𝑘𝑅𝜀−1

2 (𝑡𝑧𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

, 

i.e. apply to 𝑥𝑟 = 𝑡𝑧𝑟  then divide by 𝑡2𝑘 and let 𝑡 → 0. 

In the case 𝑥𝑟 ≠ 0 the approach is almost identical. First we expand the function 𝑓 into Taylor series 

around 𝑥𝑟 

𝑓(𝑦𝑟) = ∑
((𝑦𝑟 − 𝑥𝑟) ∙ 𝛻)

𝑘
𝑓(𝑥𝑟)

𝑘!
+ 𝐻2𝑀,𝑥𝑟(𝑦𝑟)

2𝑀−1

𝑘=0

. 

We have 

(𝐵𝜀−1𝑓)(𝑥𝑟) = ∑
1

𝑘!
(𝐵𝜀−1 (((𝑦𝑟 − 𝑥𝑟  ) ∙ ∇)

𝑘
𝑓(𝑥𝑟))) (𝑥𝑟)

⏟                        
=:(𝑎+2𝜀)𝑘

+ (𝐵𝜀−1𝐻2𝑀,𝑥𝑟)(𝑥𝑟)

2𝑀−1

𝑘=0

. 

The remainder term can be estimated using the Taylor theorem: 

|𝐻2𝑀,𝑥(𝑦𝑟)| ≤ 𝐶 𝑚𝑎𝑥
|𝛾|=2𝑀

𝑚𝑎𝑥
𝑦𝑟∈𝔹

1+𝜀̅̅ ̅̅ ̅̅ ̅
|𝜕𝛾𝑓(𝑦)||(𝑦𝑟 − 𝑥𝑟)

𝛾| ≤ 𝐶|𝑦𝑟 − 𝑥𝑟|
2𝑀 

for some constant 𝐶, whence 

(𝐵𝜀−1𝐻2𝑀,𝑥𝑟)(𝑥𝑟) = 𝑂(𝐵𝜀−1(|𝑦𝑟 − 𝑥𝑟|
2𝑚)(𝑥𝑟)) = 𝑂 ((𝜀 − 1)

−⌈
𝑀
2
⌉)     (𝜀 → ∞), 

where the last equality. 

Thus again, we have to deal only with the terms (𝑎 + 2𝜀)𝑘 and they can further be modified by 

replacing 𝛻 by 𝑧𝑟: 

(𝑎 + 2𝜀)𝑘 ≔
1

𝑘!
𝐵𝜀−1 (((𝑦𝑟 − 𝑥𝑟) ∙ 𝑧𝑟)

𝑘
) (𝑥𝑟). 

So we must only be able to determine asymptotic behavior of the Berezin transform of a polynomial. 

The fact that in this case there exists an asymptotic expansion in negative powers of 𝜀 + 1 follows 

from, from where it is clear that terms (𝑎 + 2𝜀)𝑖 can be written as finite combinations of functions 
𝐹45
 

𝐹12
  whose asymptotic expansions are of this type. From that representation it is also possible to see 

the Stokes phenomenon, since for 𝑥𝑟 = 0 the ratio equals 1 but for 0 < |𝑥𝑟| < 1 it decays in a way 

described . 

Dependence of differential operators 𝑄𝑖 on 𝛥, 𝑥𝑟 ∙ 𝛻 and |𝑥|2 only (that means on |𝑧𝑟|
2, 𝑥𝑟 ∙ 𝑧𝑟  and 

|𝑥𝑟|
2) is a direct consequence 5. That 𝑄0 = 1 stems from the fact that 𝑎0 + 2𝜀 = 1 and 𝑎1 + 2𝜀 is, 

according to Corollary6, 𝑂((𝜀 − 1)−1). 
To compute 𝑄1 much more work is needed. We are dealing with the expression 𝑎1 + 2𝜀 + 𝑎2 + 𝑎3 +
𝑎4 + 6𝜀 –the term 𝑎5 + 2𝜀 is according already 𝑂((𝜀 − 1)−2). Application to 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 +
6𝜀, in general, leaves us with 19 terms. Fortunately many of them are negligible according (those for 

which 𝑚 − 𝑗 − 𝑝 > 2) and collecting expressions involving the same integral will reduce the number 

to 5 terms: 

∫ ∑
1

𝑚!

4

𝑚=1

(𝑧𝑟 ∙ 𝑦𝑟 − 𝑧𝑟 ∙ 𝑥𝑟)
𝑚
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

=                                
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(
𝑥𝑟 ∙ 𝑧𝑟
|𝑥𝑟|

2
−

𝑣𝑧𝑟,𝑥𝑟
2

(2𝑎 + 2𝜀 + 1)|𝑥𝑟|
2
)  ∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|

2)
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

  

−
𝑣𝑧𝑟,𝑥𝑟
2

(2𝑎 + 2𝜀 + 1)|𝑥𝑟|
2
   ∫ (|𝑥𝑟|

2 − |𝑦𝑟|
2)
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

 

+(
𝑣𝑧𝑟,𝑥
2

𝑟
𝑥 ∙ 𝑧𝑟

(2𝑎 + 2𝜀 + 1)|𝑥𝑟|
4

+
𝑣𝑧𝑟,𝑥𝑟
4

(2𝑎 + 2𝜀 + 1)(2𝑎 + 2𝜀 + 3)|𝑥𝑟|
8
)   ∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥|

2)
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

  

+(
(𝑥𝑟 ∙ 𝑧𝑟)

2

2|𝑥|4
−
𝑣𝑧𝑟,𝑥𝑟
2 (1 + 2𝑧𝑟 ∙ 𝑥𝑟)

2(2𝑎 + 2𝜀 + 1)|𝑥𝑟|
4

+
𝑣𝑧𝑟,𝑥𝑟
4

2(2𝑎 + 2𝜀 + 1)(2𝑎 + 2𝜀 + 3)|𝑥𝑟|
4
)   ∫ (𝑦𝑟 ∙ 𝑥𝑟

𝔹1+𝜀

− |𝑥𝑟|
2)2

𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)  

+
𝑣𝑧𝑟,𝑥𝑟
4

8(2𝑎 + 2𝜀 + 1)(2𝑎 + 2𝜀 + 3)|𝑥𝑟|
4
  ∫ (|𝑥𝑟|

2 − |𝑦𝑟|
2)2

𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

+ 𝑂((𝜀 − 1)−2).  
Each integral (if we for a moment put aside the factor 1/𝑅𝜀+1(𝑥𝑟 , 𝑥𝑟)) a sum of functions 𝐹45

 . 

Numbers of terms in these sums are, in general, again very high (in the case 𝑁 = 2,𝑀 = 0 even as 

high as 108), however since we are interested only in principal terms and the order of asymptotic 

decay grows with summation indices 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑟, 𝑞, 𝑙, as can be seen from the proof , it is 

enough to consider only those summands for which 

𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 𝑟 + 𝑞 + 𝑙 = 1. 
This together with the condition 

 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 2𝑟 + 𝑞 + 2𝑙 ≥ 𝑀 + 𝑁 
substantially reduces the number of terms. For the above-mentioned case 𝑁 = 2,𝑀 = 0 we will be 

left with only 2 terms, both of which in addition contain the same hypergeometric function, so they 

can be combined together. Let us work this case out with more details, so we can demonstrate the 

approach. From we see that when 𝑀 = 0 then𝑙 = 0. We substitute 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑘5 + 𝑟 +
𝑞 = 1 into the inequality to get 

𝑟 + 𝑘4 ≥ 1, 
but it also must be the case that 𝑟 ≤ 1 and 𝑘4 ≤ 1. This is only possible in two cases: 𝑟 = 1 or 𝑘4 =
1 (with all other indices equal to zero). We find 

∫ (|𝑥𝑟|
2 − |𝑦𝑟|

2)2𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

= 2
|𝑥𝑟|

2

𝜀 − 1̃
(1 − |𝑥𝑟|

2) 𝐹23
 (

𝜀 − 1̃ 𝜀 − 1̃ 2𝑎 + 2𝜀

(𝜀 − 1)̃ +1 𝑎 + 𝜀
; |𝑥𝑟|

2) + 𝑂2. 

where 𝑂2 denotes a term of order 𝑂 ((𝜀 − 1)−2 𝐹12
 (𝜀 − 1̃ 2𝑎 + 2𝜀

𝑎 + 𝜀
; |𝑥𝑟|

2)). 

Similar considerations in the other cases give us: 

∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)2𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

=
1

2

|𝑥𝑟|
2

𝜀 − 1̃
(1 − |𝑥𝑟|

2) 𝐹23
 (𝜀 − 1̃ 𝜀 − 1̃ 2𝑎 + 2𝜀

𝜀 − 1 𝑎 + 𝜀
; |𝑥𝑟|

2) + 𝑂2, 
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∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)(|𝑥𝑟|

2 − |𝑦𝑟|
2)𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

= −
|𝑥𝑟|

2

𝜀 − 1
(1 − |𝑥𝑟|

2) 𝐹23
 (𝜀 − 1 𝜀 − 1̃ 2(𝑎 + 𝜀)

�̃� + 1 𝑎 + 𝜀
; |𝑥𝑟|

2) + 𝑂2, 

∫ (𝑦𝑟 ∙ 𝑥𝑟 − |𝑥𝑟|
2)𝑅𝜀−1

2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1
1+𝜀(𝑦𝑟)

𝔹1+𝜀

= |𝑥𝑟|
2 𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀 + 1
; |𝑥|2) + 𝑂2, 

∫ (|𝑥𝑟|
2 − |𝑦𝑟|

2)𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

=
|𝑥𝑟|

2

2
𝐹23
 (

𝜀 − 1̃ 2(𝑎 + 𝜀) 2(𝑎 + 𝜀)

𝑎 + 𝜀 2(𝑎 + 𝜀) + 1
; |𝑥𝑟|

2) −
𝑎 + 𝜀 + 1

𝜀 − 1
(1 − |𝑥𝑟|

2) 

𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀
; |𝑥𝑟|

2) − 2|𝑥|2 𝐹12
 (

𝜀 − 1 2(𝑎 + 𝜀)
𝑎 + 𝜀 + 1

; |𝑥𝑟|
2) 

+
|𝑥𝑟|

2

𝜀 − 1
𝐹23
 (𝜀 − 1̃ 𝜀 − 1̃ 2(𝑎 + 𝜀)

𝜀 − 1 𝑎 + 𝜀
; |𝑥𝑟|

2) + 𝑂2. 

Substituting this into (27) and performing some manipulations we obtain 

∫ ∑
1

𝑚!

4

𝑚=1

(𝑦𝑟 ∙ 𝑧𝑟 − 𝑥𝑟 ∙ 𝑧𝑟)
𝑚
𝑅𝜀−1
2 (𝑥𝑟 , 𝑦𝑟)

𝑅𝜀−1(𝑥𝑟 , 𝑥𝑟)
𝑑𝜇𝜀−1

1+𝜀(𝑦𝑟)

𝔹1+𝜀

=
1

2

𝑣𝑥𝑟,𝑥
2

𝑟
(𝑎 + 𝜀 + 1)(1 − |𝑥𝑟|

2)

(2(𝑎 + 𝜀) + 1)|𝑥𝑟|
2𝜀 − 1

+ 𝑧𝑟 ∙ 𝑥𝑟

𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀 + 1
; |𝑥𝑟|

2)

𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀
; |𝑥𝑟|

2)
 

+
1

4

2(𝑧𝑟 ∙ 𝑥𝑟)
2(1 + 𝑎 + 𝜀)(1 − |𝑥𝑟|

2)) − |𝑧𝑟|
2|𝑥𝑟|

2(1 + |𝑥𝑟|
2)

|𝑥𝑟|
2(2(𝑎 + 𝜀) + 1)𝜀 − 1

𝐹12
 (𝜀 − 1̃ 𝜀 − 1̃ 2(𝑎 + 𝜀)

𝜀 − 1̃ + 1 𝑎 + 𝜀
; |𝑥𝑟|

2)

𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀
; |𝑥𝑟|

2)
 

−
1

4

𝑣𝑧𝑟,𝑥𝑟
2

2𝑏 + 1

𝐹23
 (

𝜀 − 1̃ 2(𝑎 + 𝜀) 2(𝑎 + 𝜀)

𝑎 + 𝜀 2(𝑎 + 𝜀) + 1
; |𝑥𝑟|

2)

𝐹12
 (𝜀 − 1̃ 2(𝑎 + 𝜀)

𝑎 + 𝜀
; |𝑥𝑟|

2)
+ 𝑂((𝜀 − 1)−2). 

We complete the proof by using, replacing 𝑣𝑥𝑟,𝑥𝑟
2 = |𝑧𝑟|

2|𝑥𝑟|
2 − (𝑧𝑟 ∙ 𝑥𝑟)

2 and (𝑧𝑟)𝑗 → 𝜕𝑗and 

remembering that 𝑎 = −(
1+𝜀

2
). 

 

 

 

 

 

 

 

 

 

 

 



244 
 

Chapter 6 

Weighted Reproducing and Berezin  Transform 

We generalize the recent result of C. Liu for the unit disc, as well as the original assertion concerning 

the holomorphic case. We also obtain a formula for the corresponding weighted harmonic Bergman 

kernels. We give is in the setting of the holomorphic and the harmonic Fock spaces, respectively. 

Section (6.1): Weighted Reproducing Kernels and Toeplitz Operators on Harmonic Bergman 

Spaces on the Real Ball  

For 𝔹𝑛  be the ball in ℝ𝑛, 𝑛 ≥  2, and 𝑑𝑧 the Lebesgue measure on 𝔹𝑛. For 𝛼 >  −1, consider the 

measure 

𝑑𝐴𝛼(𝑧) ∶=  𝑐𝛼(1 − |𝑧|
2)𝛼𝑑𝑧, 

where 

𝑐𝛼 =
𝛤 (𝛼 +

𝑛
2
+ 1)

𝜋
𝑛
2𝛤(𝛼 + 1)

 

is chosen so as to make 𝑑𝐴𝛼 a probability measure. For simplicity, we will usually assume that 𝛼 is 

an integer. 

The harmonic Bergman space 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) consists, by definition, of all harmonic functions in 

𝐿2(𝔹𝑛, 𝑑𝐴𝛼). It is known that point evaluation functionals are continuous on the harmonic Bergman 

space, so it possesses a reproducing kernel; i.e., there exists a function 𝑅𝛼(𝑥, 𝑦) on 𝔹
𝑛 × 𝔹𝑛, 

harmonic in each variable, such that 

𝑓(𝑥) = ∫𝑓(𝑦)𝑅𝛼(𝑥, 𝑦)𝑑𝐴𝛼(𝑦)

 

𝔹𝑛

 

for each 𝑓 ∈ 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) and for each 𝑥 ∈ 𝔹𝑛. 

The Berezin transform of a bounded linear operator 𝑇 on 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) is the 

function �̃�𝛼(𝑧) on 𝔹𝑛defined by 

�̃�𝛼(𝑧)  =
〈𝑇(𝛼)𝑅𝛼𝑧 , 𝑅𝛼𝑧〉

〈𝑅𝛼𝑧 , 𝑅𝛼𝑧〉
=
𝑇(𝛼)𝑅𝛼𝑧(𝑧)

𝑅𝛼(𝑧, 𝑧)
, 

where, for the sake of brevity, we have denoted 𝑅𝛼𝑧(𝑤) ∶=  𝑅𝛼(𝑧, 𝑤). 

Finally, for 𝑓 ∈ 𝐿∞(𝔹𝑛), the Toeplitz operator 𝑇𝑓 with symbol 𝑓 is the operator on 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) 

defined by 

𝑇𝑓𝑔 = 𝑄𝛼(𝑓𝑔), 

Where 𝑄𝛼: 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) → 𝐿harm

2 (𝔹𝑛, 𝑑𝐴𝛼) is the orthogonal projection. That 

is, 

𝑇𝑓𝑔(𝑧)  = ∫𝑔(𝑥)𝑓(𝑥)𝑅𝛼(𝑧, 𝑥)𝑑𝐴𝛼(𝑥)

 

𝔹𝑛

. 



245 
 

It was shown by C. Liu [327] that if 𝑛 = 2 (so that 𝔹2 is just the unit disc in the complex plane ℂ), 

then for 𝑓 ∈ 𝐶(𝔹𝑛), 

                                           �̃�𝑓
(𝛼)
→   𝑓                                                                                       (1) 

uniformly, and 

                                     ‖𝑇𝑓
(𝛼)‖ → ‖𝑓‖∞                                                                             (2) 

as 𝛼 →  ∞. 
This extends the same result known previously for Toeplitz operators on Bergman spaces of 

holomorphic functions, which finds important applications in mathematical physics (quantization 

on K¨ahler manifolds; see e.g. [324]). generalize Liu’s result also to 𝑛 ≥ 3. We first establish a 

(reasonably) explicit formula for the kernels 𝑅𝛼(𝑥, 𝑦); this is done. Our main result (the 

generalization of (1) and (2)) is proved. We remark that we actually obtain a somewhat stronger 

result than (1); namely, we show that for any 𝑓 ∈ 𝐵𝐶(𝔹𝑛) ∶= 𝐶(𝔹𝑛) ∩ 𝐿∞(𝔹𝑛) we also have 

�̃�𝑓
(𝛼)(𝑧)  →  𝑓 (𝑧) 

as 𝛼 →  ∞ for all 𝑧 ∈ 𝔹𝑛. This gives a new piece of information even for the original case 𝑛 = 2. 

In this part we will find an explicit formula for the reproducing kernel of the space 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼) 

of all harmonic functions on the unit ball in ℝ𝑛 square-integrable with respect to the measure 

𝑑𝐴𝛼(𝑦), when α is an integer. Let ℋ𝑚(ℝ
𝑛) denote the space of the harmonic polynomials on ℝ𝑛 

that are homogeneous of degree 𝑚. 

For each 𝑥 ∈ ℝ, there exists a unique function Ƶ𝑚(∙, 𝑥) ∈ ℋ𝑚(𝑆) such that 

                                               𝑝(𝑥) = ∫𝑝(𝜉)Ƶ𝑚(𝜉, 𝑥)

 

𝑆

𝑑𝜎(𝜉),                (3) 

for all 𝑝 ∈ ℋ𝑚(𝑆). The polynomial Ƶ𝑚(∙, 𝑥) is called the zonal harmonic of degree 𝑚 and pole 𝑥. 
See e.g. [323, p. 94]. It extends to a function on ℝ𝑛 × ℝ𝑛 by setting 

Ƶ𝑚(𝑥, 𝑦) = |𝑥|
𝑚|𝑦|𝑚Ƶ𝑚(𝑥/|𝑥|, 𝑦/|𝑦|) 

for 𝑚 > 0, and for 𝑚 = 0, Ƶ0 =  1. 

Passing to polar coordinates 𝑧 =  𝑟𝜉 (𝑟 >  0, 𝜉 ∈  𝑆), the Lebesgue measure becomes 

𝑑𝑧 =
2𝜋

𝑛
2

𝛤 (
𝑛
2
)
  𝑟𝑛−1 𝑑𝑟 𝑑𝜎(𝜉). 

From (3), we have therefore for any 𝑝 ∈ ℋ𝑚, 

∫  𝑝(𝑦)Ƶ𝑚(𝑥, 𝑦)𝑑𝐴𝛼(𝑦)

 

𝔹𝑛

− 𝑆𝑍 
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=
2𝛤 (

𝑛
2
+ 𝛼 + 1)

𝛼! 𝛤 (
𝑛
2
)

∫𝑟𝑛−1(1 − 𝑟2)𝛼

1

0

∫𝑝(𝑟𝜉)Ƶ𝑚(𝑥, 𝑟𝜉)𝑑𝜎(𝜉)

 

𝑆

𝑑𝑟

=
2𝛤 (

𝑛
2
+ 𝛼 + 1)

𝛼! 𝛤 (
𝑛
2
)

∫𝑟𝑛+2𝑚−1(1 − 𝑟2)𝛼
1

0

(∫𝑝(𝜉)Ƶ𝑚(𝑥, 𝜉)𝑑𝜎(𝜉)

 

𝑆

)𝑑𝑟

=
2𝛤 (

𝑛
2
+ 𝛼 + 1)

𝛼! 𝛤 (
𝑛
2
)

𝑝(𝑥)∫𝑟𝑛+2𝑚−1(1 − 𝑟2)𝛼

1

0

𝑑𝑟 

                     =
2𝛤 (

𝑛
2
+ 𝛼 + 1)𝛼! (𝑚 +

𝑛
2
− 1) !

𝛼! 𝛤 (
𝑛
2
) (𝛼 + 𝑚 +

𝑛
2
) !

𝑝(𝑥)                                 (4) 

for each 𝑥 ∈ ℝ𝑛. 

Now recall that for any orthonormal basis {𝜑𝑗} of 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼), the reproducing kernel 𝑅𝛼 is 

given by 

𝑅𝛼(𝑥, 𝑦) =∑𝜑𝑗(𝑥)𝜑𝑗(𝑦)

∞

𝑗=1

. 

(See e.g. [332].) Now each ℋ𝑚 is a closed subspace of 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼), the spaces ℋ𝑚 and ℋ𝑘 are 

orthogonal if 𝑚 ≠ 𝑘, and the span of all ℋ𝑚 , 𝑚 ≥  0, is the whole 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼); in other words, 

∞

⨁ℋ𝑚

𝑚 = 1

=  𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼). 

Thus if we choose a basis {𝜑𝑚𝑗}𝑗=1
dimℋ𝑚 in each ℋ𝑚 so that 

∑ 𝜑𝑗(𝑥)𝜑𝑗(𝑦)

dimℋ𝑚

𝑗=1

≔ 𝐾𝑚(𝑥, 𝑦) 

is the reproducing kernel of ℋ𝑚, then ⋃ {𝜑𝑚𝑗}𝑗=1
dimℋ𝑚∞

𝑚=0  is a basis for the whole 𝐿harm
2 (𝔹𝑛, 𝑑𝐴𝛼); 

consequently, 

 

                                           𝐾(𝑥, 𝑦) =∑𝐾𝑚(𝑥, 𝑦)

∞

𝑚

.                                   (5) 

On the other hand, from (4) we get 

𝐾𝑚(𝑥, 𝑦) =
𝛤 (
𝑛
2
) (𝛼 + 𝑚 +

𝑛
2
) !

𝛤 (
𝑛
2
+ 𝛼 + 1) (𝑚 +

𝑛
2
− 1) !

Ƶ𝑚(𝑥, 𝑦). 

Thus we arrive at the following result. 

Proposition (6.1.1)[318]: 



247 
 

1𝑅𝛼(𝑥, 𝑦)  = ∑
𝛤(
𝑛

2
)(𝛼+𝑚+

𝑛

2
)!

𝛤(
𝑛

2
+𝛼+1)(𝑚+

𝑛

2
−1)!

Ƶ𝑚(𝑥, 𝑦).
∞
𝑚=0  

It should be noted that this result is definitely not new, see e.g. [325, p. 32 (1)], or [326, Section 2], 

or [329, Proposition 3], but it is convenient to recall it here. 

For 𝛼 an integer, the last sum can be summed explicitly. Recall [323, p. 178] that the usual Poisson 

kernel 

 

𝑃 (𝑥, 𝑦)  =
1 − |𝑥|2|𝑦|2

(1 − 2𝑥 ∙ 𝑦 + |𝑥|2|𝑦|2)
𝑛
2

 

is equal to 

𝑃(𝑥, 𝑦)  = ∑ Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

for 𝑥, 𝑦 ∈ 𝐵. Hence, for 𝛼 an integer (𝛼 =  0, 1, 2, . .. ) we have 

 

(𝑡
𝑑

𝑑𝑡
+ 𝛼)𝑃(𝑡𝑥, 𝑦) = ∑ (𝑡

𝑑

𝑑𝑡
+ 𝛼) Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

= ∑ (𝑡
𝑑

𝑑𝑡
+ 𝛼) 𝑡𝑚Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

= ∑(𝑚 + 𝛼)𝑡𝑚Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

By iteration it follows that 

(𝑡
𝑑

𝑑𝑡
+
𝑛

2
)⋯(𝑡

𝑑

𝑑𝑡
+
𝑛

2
+ 𝛼)𝑃(𝑡𝑥, 𝑦) = ∑ (𝑚 +

𝑛

2
)⋯(𝑚 +

𝑛

2
+ 𝛼) 𝑡𝑚Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

Consequently, 

(𝑡
𝑑

𝑑𝑡
+
𝑛

2
)⋯(𝑡

𝑑

𝑑𝑡
+
𝑛

2
+ 𝛼)𝑃(𝑡𝑥, 𝑦)|𝑡=1 = ∑ (𝑚 +

𝑛

2
)⋯(𝑚 +

𝑛

2
+ 𝛼) 𝑡𝑚Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

= ∑
(𝑚 +

𝑛
2
+ 𝛼) !

(𝑚 +
𝑛
2
− 1) !

Ƶ𝑚(𝑥, 𝑦)

∞

𝑚=0

 

=
2Γ (

𝑛
2
+ 𝛼 + 1) !

𝛼! Γ (
𝑛
2
) !

𝛼! 𝑅𝛼(𝑥, 𝑦) 

so we get the following formula. 
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Proposition (6.1.2) [318]: Let 𝑥, 𝑦 ∈  𝐵. Then 

                                   𝑅𝛼(𝑥, 𝑦) =
Γ (
𝑛
2
)

2Γ (
𝑛
2
+ 𝛼 + 1)

𝒟𝛼+1𝑃(𝑡𝑥, 𝑦)|𝑡=1                       (6) 

 

where 

𝒟𝛼+1 = (𝑡
𝑑

𝑑𝑡
+
𝑛

2
) (𝑡

𝑑

𝑑𝑡
+
𝑛

2
+ 1)⋯(𝑡

𝑑

𝑑𝑡
+
𝑛

2
+ 𝛼) 

Recall that the Mobius transformation 𝜑𝑧 is the smooth map of 𝔹𝑛 onto itself defined for each 𝑧 ∈
𝔹𝑛  by 

𝜑𝑧(𝑤) =
|𝑤 − 𝑧|2𝑧 − (1 − |𝑧|2)(𝑤 − 𝑧)

1 −  2 〈𝑤, 𝑧〉 + |𝑤|2|𝑧|2
 

Where 〈𝑤, 𝑧〉 ∶= 𝑤1𝑧1 +⋯+𝑤𝑛𝑧𝑛 denotes the usual scalar product in ℝ𝑛. In the next lemma, we 

summarize the properties of the mapping 𝜑𝑧. The proofs can be found e.g. in [331]. 

Lemma (6.1.3) [318]: For every 𝑧 ∈ 𝔹𝑛, 𝜑𝑧  has the following properties: 

(i) 𝜑𝑧(0) =  𝑧 and 𝜑𝑧(𝑧)  =  0, 

(ii) 𝜑𝑧 is an involution, i.e. 𝜑𝑧 ∘ 𝜑𝑧 =  𝑖𝑑, the identity mapping, 

(iii) the identity 

1 − |𝜑𝑧(𝑤)|
2 =

(1 − |𝑧|2)(1 − |𝑤|2)

1 −  2 〈𝑤, 𝑧〉 + |𝑤|2|𝑧|2
 

holds for every 𝑧, 𝑤 ∈ 𝔹𝑛, 

(iv) the identity 

|𝜑𝑧
′(𝑤)| =

1 − |𝑧|2

1 −  2 〈𝑤, 𝑧〉 + |𝑤|2|𝑧|2
 

holds for every 𝑧, 𝑤 ∈ 𝔹𝑛. 

Theorem (6.1.4) [318]: If 𝑓 ∈ 𝐵𝐶(𝔹𝑛), the space of all bounded continuous functions on 𝔹𝑛, then 

for each 𝑧 ∈ 𝔹𝑛, 

�̃�𝑓
(𝛼)
(𝑧)  →  𝑓 (𝑧) 

as 𝛼 →  ∞ through the integers. 

For 𝑓 ∈ 𝐶(𝔹𝑛), the convergence is even uniform on 𝔹𝑛. 

Proof: By the definitions, 

�̃�𝑓
(𝛼)(𝑧) =

〈𝑇𝑓
𝛼𝑅𝛼𝑧 , 𝑅𝛼𝑧〉

𝑅𝛼(𝑧, 𝑧)
=
〈𝒬𝛼𝑓𝑅𝛼𝑧 , 𝑅𝛼𝑧〉

𝑅𝛼(𝑧, 𝑧)
=
〈𝑓𝑅𝛼𝑧 , 𝑅𝛼𝑧〉

𝑅𝛼(𝑧, 𝑧)
= ∫

𝑓(𝑤)𝑅𝛼𝑧(𝑤)𝑅𝛼𝑧(𝑤)

𝑅𝛼(𝑧, 𝑧)

 

𝔹𝑛

𝑑𝐴𝛼(𝑤) 
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= ∫𝑓(𝑤)
|𝑅𝛼(𝑧, 𝑤)|

2

𝑅𝛼(𝑧, 𝑧)

 

𝔹𝑛

𝑑𝐴𝛼(𝑤) 

Also, by reproducing property, 

∫𝑓(𝑧)
|𝑅𝛼(𝑧, 𝑤)|

2

𝑅𝛼(𝑧, 𝑧)

 

𝔹𝑛

𝑑𝐴𝛼(𝑤) = 𝑓(𝑧)
〈𝑅𝛼𝑧, 𝑅𝛼𝑧〉

𝑅𝛼(𝑧, 𝑧)
= 𝑓(𝑧) 

Hence 

�̃�𝑓
(𝛼)(𝑧) − 𝑓(𝑧) = ∫(𝑓(𝑤) − 𝑓(𝑧))

|𝑅𝛼(𝑧, 𝑤)|
2

𝑅𝛼(𝑧, 𝑧)

 

𝔹𝑛

𝑑𝐴𝛼(𝑤) ∫ + ∫ ,

 

|𝜑𝑧(𝑤)|>𝛿

 

|𝜑𝑧(𝑤)|≤𝛿

 

for any 0 < 𝛿 < 1. 

By the continuity of 𝑓, we may, for each fixed 𝑧 and 𝜀 > 0, choose 𝛿 > 0 so small that 

                                         |𝑓(𝑤) − 𝑓(𝑧)| < 𝜀                                     (7) 

Whenever |𝜑𝑧(𝑤)|  <  𝛿. Then 

∫ ≤ 𝜀

 

|𝜑𝑧(𝑤)|≤𝛿

∫
|𝑅𝛼(𝑧, 𝑤)|

2

𝑅𝛼(𝑧, 𝑧)
𝑑𝐴𝛼(𝑤)

⏟              
1

= 𝜀 

To estimate the second integral we use the following lemma: 

Lemma (6.1.5) [318]: There exist constants 𝑐 and 𝐶, depending only on 𝛼 and 𝑛, such that for all 

𝑧, 𝑤 ∈ 𝔹𝑛, 

                                                    |𝑅𝛼(𝑧, 𝑤)| ≤
𝐶

[𝑧, 𝑤]
𝑛+𝛼
2

                            (8) 

and 

                               
𝑐

[𝑧, 𝑧]
𝑛+𝛼
2

≤ 𝑅𝛼(𝑧, 𝑧) ≤
𝐶

[𝑧, 𝑧]
𝑛+𝛼
2

                               (9) 

Here, for the sake of brevity, we have introduced the notation 

[𝑧, 𝑤] = 1 − 2 〈𝑧, 𝑤〉 + |𝑧|2|𝑤|2. 

Postponing the proof of the lemma for a moment, using (8) and (9) we can estimate the integral 

over |𝜑𝑧(𝑤)|  ≥  𝛿 by 

∫ ≤ 2‖𝑓‖∞

 

|𝜑𝑧(𝑤)|>𝛿

∫
|𝑅𝛼(𝑧, 𝑤)|

2

𝑅𝛼(𝑧, 𝑧)
𝑑𝐴𝛼(𝑤)

 

|𝜑𝑧(𝑤)|>𝛿

≤ 2‖𝑓‖∞
𝐶2

𝑐
∫

(1 − |𝑧|2)𝑛+𝛼

[𝑧, 𝑤]𝑛+𝛼
𝑑𝐴𝛼(𝑤)

 

|𝜑𝑧(𝑤)|>𝛿

≤ 2‖𝑓‖∞
𝐶2

𝑐
𝑐𝛼 ∫

(1 − |𝑧|2)𝑛+𝛼(1 − |𝑤|2)𝑛+𝛼

[𝑧, 𝑤]𝑛+𝛼

 

|𝜑𝑧(𝑤)|>𝛿

𝑑𝑤

(1 − |𝑤|2)𝑛

≤ 2‖𝑓‖∞
𝐶2

𝑐
𝑐𝛼 ∫ (1 − |𝜑𝑧(𝑤)|

2)𝑛+𝛼

 

|𝜑𝑧(𝑤)|>𝛿

𝑑𝑤

(1 − |𝑤|2)𝑛
 



250 
 

Note that the measure 

𝑑𝜆(𝑥) =
𝑑𝑥

(1 − |𝑥|2)𝑛
 

is invariant on 𝔹𝑛, in the sense that 

𝑑𝜆(𝜑𝑎(𝑥)) =
|𝜑𝑎(𝑥)|

𝑛𝑑𝑥

(1 − |𝜑𝑎(𝑤)|
2)𝑛+𝛼

=  𝑑𝜆(𝑥), 

by Lemma (6.1.3), parts (3) and (4). 

Hence, making the change of variable 𝜑𝑧(𝑤)  =  𝑥, we can continue with 

∫ ≤ 2‖𝑓‖∞

 

|𝜑𝑧(𝑤)|>𝛿

𝐶2

𝑐
𝑐𝛼 ∫ (1 − |𝑥|2)𝑛+𝛼𝑑𝜆(𝑥)

 

|𝑥|>𝛿

= 2‖𝑓‖∞
𝐶2

𝑐
𝑐𝛼 ∫ (1 − |𝑥|2)𝛼𝑑𝑥

 

|𝑥|>𝛿

 

≤ 2‖𝑓‖∞
𝐶2

𝑐
𝑐𝛼(1 − 𝛿

2)𝛼 

Since 𝑐𝛼 ∼ 𝛼
𝑛/2 as 𝛼 →  ∞, the right-hand side tends to zero as 𝛼 → ∞. 

Hence 

lim
𝛼→∞

( ∫ + ∫  

 

|𝜑𝑧(𝑤)|>𝛿

 

|𝜑𝑧(𝑤)|≤𝛿

) ≤  𝜀. 

If 𝑓 is not only bounded and continuous on the ball but even continuous on its closure, then for each 

𝜀 >  0 we can choose 𝛿 >  0 so that (7) holds for all 𝑧 ∈ 𝔹𝑛 simultaneously, by uniform 

continuity. This completes the proof of Theorem (6.1.4). 

The proof of (8) actually occurs in [328, Lemma 3.1] taking 𝑡 =  0, 𝑠 =  𝛼 in the operator Q𝑠,𝑡 
there. For |𝑦| = 1, see also [326, Lemma 2.7]. A simple proof of (9) can be found in [329, 

Proposition 4.1]. For 𝛼 an integer, it is possible to give another proof using the formula (2). Since 

this might be useful for other applications we include it for completeness. 

Consider the sets of functions 

𝐴𝛽,𝑟 ≔ {
𝑝(𝑡, 𝑧, 𝑤)

[𝑡𝑧, 𝑤]
𝛽
2

(
1 − 𝑡2|𝑧|2|𝑤|2

[𝑡𝑧, 𝑤]
1
2

)

𝑟

: 𝑝 𝑎 polynomial}, 

𝐴𝛽: = {
𝑝(𝑡, 𝑧, 𝑤)

[𝑡𝑧, 𝑤]
𝛽
2

𝑞 (
1 − 𝑡2|𝑧|2|𝑤|2

[𝑡𝑧, 𝑤]
1
2

)

𝑟

: 𝑝, 𝑞 𝑎 polynomial} , 

Differentiation yields 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,𝑟 = 𝑡

𝑑

𝑑𝑡
(
𝑝(𝑡, 𝑧, 𝑤)(1 − 𝑡2|𝑧|2|𝑤|2)𝑟

[𝑡𝑧, 𝑤]
𝛽+𝑟
2

) 
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             =
𝑡
𝜕𝑝
𝜕𝑡
(𝑡, 𝑧, 𝑤) ∙ (1 − 𝑡2|𝑧|2|𝑤|2)𝑟

[𝑡𝑧, 𝑤]
𝛽+𝑟
2

∙ (1 − 𝑡2|𝑧|2|𝑤|2)𝑟−1

+
𝑡 ∙ 𝑟 ∙ 𝑝(𝑡, 𝑧, 𝑤) ∙ (−2𝑡2|𝑧|2|𝑤|2)

[𝑡𝑧, 𝑤]
𝛽+𝑟
2

∙ (1 − 𝑡2|𝑧|2|𝑤|2)𝑟−1

−

𝛽 + 𝑟
2

∙ 𝑝(𝑡, 𝑧, 𝑤)(1 − 𝑡2|𝑧|2|𝑤|2)𝑟 ∙ 𝑡 ∙ (−2〈𝑧, 𝑤〉 + 2𝑡|𝑧|2|𝑤|2)

[𝑡𝑧, 𝑤]
𝛽+𝑟
2
+1

     (10) 

Since 

−2〈𝑧, 𝑤〉 + 2𝑡2|𝑧|2|𝑤|2 = [𝑡𝑧, 𝑤] − 1 − 𝑡2|𝑧|2|𝑤|2 + 2𝑡2|𝑧|2|𝑤|2 = [𝑡𝑧, 𝑤] − 1 + 𝑡2|𝑧|2|𝑤|2

= −(1 − 𝑡2|𝑧|2|𝑤|2) + [𝑡𝑧, 𝑤] 

The last term in (10) can be rewritten as 

−

𝛽 + 𝑟
2

∙ 𝑝(𝑡, 𝑧, 𝑤) ∙ (1 − 𝑡2|𝑧|2|𝑤|2)

[𝑡𝑧, 𝑤]
𝛽 + 𝑟
2

∙ (1 − 𝑡2|𝑧|2|𝑤|2)𝑟−1 

+

𝛽 + 𝑟
2

∙ 𝑝(𝑡, 𝑧, 𝑤) ∙ (1 − 𝑡2|𝑧|2|𝑤|2)𝑟+1

[𝑡𝑧, 𝑤]
𝛽 + 𝑟 + 2

2

 

 [𝑡𝑧, 𝑤]𝛽 + 𝑟 + 2 

Thus we get 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,𝑟 ∈ 𝐴𝛽+1,𝑟−1 + 𝐴𝛽+1,𝑟+1,                    𝑟 >  0, 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,0 ∈ 𝐴𝛽+1,0 + 𝐴𝛽+1,1,                     𝑟 =  0. 

For arbitrary 𝑐 ∈ ℝ we thus get 

(𝑡
𝑑

𝑑𝑡
+ 𝑐) 𝐴𝛽,𝑟 ∈ 𝐴𝛽 + 𝐴𝛽+1 

and 

𝒟𝛼+1𝐴𝛽,𝑟 ∈ 𝐴𝛽 +⋯+ 𝐴𝛽+𝛼+1. 

Applying this to 
1−𝑡2|𝑧|2|𝑤|2

[𝑡𝑧,𝑤]𝑛/2
∈ 𝐴𝑛−1,1 we thus obtain by (22) 

                              𝑅𝛼(𝑧, 𝑤) ∈ 𝐴𝑛−1  + ⋯+ 𝐴𝑛+𝛼|𝑡=1.                       (11)    

Now 

[𝑧, 𝑤] =  1 −  2 〈𝑧, 𝑤〉  + |𝑧|2|𝑤|2 ≥  1 −  2|𝑧||𝑤|  + |𝑧|2|𝑤|2 

=   (1 − |𝑧||𝑤|)2 >  0 
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And 

[𝑧, 𝑤]  ≤  1 +  2|𝑧||𝑤|  + |𝑧|2|𝑤|2 = (1 + |𝑧||𝑤|)2  ≤  22, 

so 

0 ≤
1 − |𝑧|2|𝑤|2

[𝑧, 𝑤]
1
2

≤
1 − |𝑧|2|𝑤|2

1 − |𝑧||𝑤|
=  1 + |𝑧||𝑤| ≤ 2, 

and thus every function from 𝐴𝛽  has for 𝑡 =  1 the form 

something bounded on 𝔹𝑛

[𝑧, 𝑤]𝛽/2
. 

From (11) we thus get 

𝑅𝛼(𝑧, 𝑧) =
something bounded on 𝔹𝑛

[𝑧, 𝑤](𝑛+𝛼)/2
 

which proves (8). 

To prove the second half of the lemma, note that for 𝑧 =  𝑤, 

𝑅𝛼(𝑧, 𝑧) = (𝑡
𝑑

𝑑𝑡
+ 𝑛 )… (𝑡

𝑑

𝑑𝑡
+ 𝑛 + 𝛼)

1 − 𝑡2|𝑧|4

(1 − 𝑡|𝑧|2)𝑛

= (𝑡
𝑑

𝑑𝑡
+ 𝑛 )… (𝑡

𝑑

𝑑𝑡
+ 𝑛 + 𝛼)

1 − 𝑡2|𝑧|4

(1 − 𝑡|𝑧|2)𝑛−1
 

Now again, for any polynomial 𝑝, 

(𝑡 
𝑑

𝑑𝑡
+ 𝑐)

𝑝(𝑡, |𝑧|2)

(1 − 𝑡|𝑧|2)𝛽
= 𝑐

𝑝(𝑡, |𝑧|2)

(1 − 𝑡|𝑧|2)𝛽
+
𝑡
𝜕
𝜕𝑡
𝑝(𝑡, |𝑧|2)

(1 − 𝑡|𝑧|2)𝛽
+
𝑡𝑝(𝑡, |𝑧|2)𝛽|𝑧|2

(1 − 𝑡|𝑧|2)𝛽+1

=

(𝑐𝑝(𝑡, |𝑧|2) + 𝑡
𝜕
𝜕𝑡
𝑝(𝑡, |𝑧|2)) (1 − 𝑡|𝑧|2)

(1 − 𝑡|𝑧|2)𝛽+1
+
𝑡𝑝(𝑡, |𝑧|2)𝛽|𝑧|2

(1 − 𝑡|𝑧|2)𝛽+1
=

𝑝∗(𝑡, |𝑧|2)

(1 − 𝑡|𝑧|2)𝛽+1
, 

where 𝑝∗ is also a polynomial, which further satisfies 𝑝∗(1, 1)  =  𝛽𝑝(1, 1). By iteration and taking 

|𝑧|  =  1, 𝑡 =  1, we get 

𝑅𝛼(𝑧, 𝑧)  =
𝑝(|𝑧|2)

(1 − |𝑧|2)𝑛+𝛼
, 

where 𝑃 is a polynomial satisfying 

                                            𝑃(1) =  2
(𝑛 + 𝛼 −  1)!

(𝑛 − 2)!
.                        (12) 

Thus 𝑅𝛼(𝑧, 𝑧)(1 − |𝑧|
2)𝑛+𝛼 is a positive function inside 𝔹𝑛, which has a nonzero finite limit (12) at 

the boundary. Consequently, it has positive and finite lower and upper bounds 𝑐 and 𝐶, respectively. 

This concludes the proof of Lemma (6.1.5). 

Corollary (6.1.6) [318]: For any 𝑓 ∈ 𝐶(𝔹𝑛), 

‖𝑇𝑓
(𝛼)‖ →  ‖𝑓‖∞                     𝑎𝑠 𝛼 →  ∞. 
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Proof: From the Schwarz inequality we get 

|�̃�𝑓
(𝛼)
(𝑧)| =

|〈𝑇𝑓
(𝛼)𝑅𝛼𝑧, 𝑅𝛼𝑧〉|

𝑅𝛼(𝑧, 𝑧)
=
|〈𝑓𝑅𝛼𝑧 , 𝑅𝛼𝑧〉|

𝑅𝛼(𝑧, 𝑧)
=
‖𝑓𝑅𝛼𝑧‖𝐿2

 ‖𝑅𝛼𝑧‖𝐿2
 

‖𝑅𝛼𝑧‖𝐿2
2 ≤

‖𝑓‖∞‖𝑅𝛼𝑧‖𝐿2
2 

‖𝑅𝛼𝑧‖𝐿2
2 = ‖𝑓‖∞ 

Taking the supremum over all 𝑧 gives 

                                                            ‖�̃�𝑓
(𝛼)‖

∞
≤ ‖𝑓‖∞.           (13) 

On the other hand, by Theorem (6.1.4), 

�̃�𝑓
(𝛼)(𝑧) → 𝑓(𝑧), 

for all 𝑧 ∈ 𝔹𝑛. As ‖�̃�𝑓
(𝛼)‖

∞
≥ |�̃�𝑓

(𝛼)(𝑧)|and |�̃�𝑓
(𝛼)
(𝑧)| →  |𝑓(𝑧)|, thus 

lim
𝛼→∞

inf‖�̃�𝑓
(𝛼)‖ ≥ |𝑓(𝑧)| 

Taking again the supremum over all 𝑧 ∈ 𝔹𝑛 yields 

                                    lim
𝛼→∞

inf‖�̃�𝑓
(𝛼)‖

∞
≥ sup

𝑧∈𝔹𝑛
|𝑓(𝑧)| = ‖𝑓‖∞.      (14) 

From (13) and (14) we therefore have 

lim
𝛼→∞

‖�̃�𝑓
(𝛼)‖ = ‖𝑓‖∞ , 

Which proves the “deformation estimate” (2). 

Corollary (6.1.7) [349]: 𝑅𝑗(𝜀−1)(𝑥𝑛, 𝑦𝑛)  = ∑
𝛤(
2+𝜀

2
)(𝑚+

3𝜀

2
)!

𝛤(
3𝜀

2
+1)(𝑚+

𝜀

2
)!
Ƶ𝑚
𝑗
(𝑥𝑛, 𝑦𝑛).

∞
𝑚=0 

It should be noted that this result is definitely not new, see e.g. [355,p. 32 (1)], or [356, Section 2], 

or [359, Proposition 3], but it is convenient to recall it here. For( 𝜀 − 1) an integer, the last sum can 

be summed explicitly. Recall [353,p. 178] that the usual Poisson kernel 

 

𝑃(𝑥𝑛, 𝑦𝑛)  =
1 − |𝑥𝑛|

2|𝑦𝑛|
2

(1 − 2𝑥𝑛 ∙ 𝑦𝑛 + |𝑥𝑛|
2|𝑦𝑛|

2)
𝜀+2
2

 

is equal to 

𝑃(𝑥𝑛, 𝑦𝑛)  = ∑ Ƶ𝑚
𝑗
(𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

 

for 𝑥𝑛, 𝑦𝑛 ∈ 𝐵. Hence, for (𝜀-1) an integer (𝜀 − 1 =  0, 1, 2, . .. ) we have 

 

(𝑡
𝑑

𝑑𝑡
+ 𝜀 − 1)𝑃(𝑡𝑥𝑛, 𝑦𝑛) = ∑ (𝑡

𝑑

𝑑𝑡
+ 𝜀 − 1) Ƶ𝑚

𝑗 (𝑥𝑛, 𝑦𝑛)

∞

𝑚=0
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= ∑ (𝑡
𝑑

𝑑𝑡
+ 𝜀 − 1) 𝑡𝑚Ƶ𝑚

𝑗 (𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

 

= ∑(𝑚 + 𝜀 − 1)𝑡𝑚Ƶ𝑚
𝑗
(𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

 

By iteration it follows that 

(𝑡
𝑑

𝑑𝑡
+
2 + 𝜀

2
)⋯(𝑡

𝑑

𝑑𝑡
+
𝜀

2
+ 𝜀) 𝑃(𝑡𝑥𝑛, 𝑦𝑛) = ∑ (𝑚 +

2 + 𝜀

2
)⋯(𝑚 +

𝜀

2
+ 𝜀) 𝑡𝑚Ƶ𝑚

𝑗 (𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

 

Consequently, 

(𝑡
𝑑

𝑑𝑡
+
2 + 𝜀

2
)⋯(𝑡

𝑑

𝑑𝑡
+
3𝜀

2
)𝑃(𝑡𝑥𝑛, 𝑦𝑛)|𝑡=1 = ∑ (𝑚 +

2 + 𝜀

2
)⋯(𝑚 +

3𝜀

2
) 𝑡𝑚Ƶ𝑚

𝑗 (𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

= ∑
(𝑚 +

3𝜀
2
) !

(𝑚 +
𝜀
2
) !
Ƶ𝑚
𝑗 (𝑥𝑛, 𝑦𝑛)

∞

𝑚=0

 

=
2Γ (

3𝜀
2
+ 1) !

Γ (
2 + 𝜀
2
) !

𝑅𝑗(𝜀−1)(𝑥𝑛, 𝑦𝑛) 

Corollary (6.1.8) [349]:  Let 𝑥𝑛, 𝑦𝑛  ∈  𝐵. Then 

                                  𝑅𝑗(𝜀−1)(𝑥𝑛, 𝑦𝑛) =
Γ (
2 + 𝜀
2
)

2Γ (1 +
3𝜀
2
)
𝒟𝜀𝑃(𝑡𝑥𝑛, 𝑦𝑛)|𝑡=1                                           

 

where 

𝒟𝜀 = (𝑡
𝑑

𝑑𝑡
+
2 + 𝜀

2
) (𝑡

𝑑

𝑑𝑡
+
𝜀

2
+ 2)⋯(𝑡

𝑑

𝑑𝑡
+
3𝜀

2
) 

Remark. The formula (6) has apparently also appeared in [355,p. 32 (1)], though in the somewhat 

different form 

𝑅𝑗(𝜀−1)(𝑥𝑛, 𝑦𝑛) = [𝜌
−(1+𝜀) (

𝜕

𝜕𝜌
)
𝜀

 𝜌1+2𝜀𝑃(𝑥𝑛, 𝜌
2𝑦𝑛

′)]
𝜌=√|𝑦𝑛|

. 

 

Recall that the Mobius transformation 𝜑𝑧𝑛 is the smooth map of 𝔹2+𝜀 onto itself defined for each 

𝑧𝑛 ∈ 𝔹
2+𝜀   

  

                            𝜑𝑧𝑛(𝑤𝑛) =
|𝑤𝑛 − 𝑧𝑛|

2𝑧𝑛 − (1 − |𝑧𝑛|
2)(𝑤𝑛 − 𝑧𝑛)

1 −  2 〈𝑤𝑛, 𝑧𝑛〉 + |𝑤𝑛|
2|𝑧𝑛|

2
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Where 〈𝑤𝑛, 𝑧𝑛〉 ∶= (𝑤𝑛)1(𝑧𝑛)1 +⋯+ (𝑤𝑛)(2+𝜀)(𝑧𝑛)(2+𝜀) denotes the usual scalar product in ℝ2+𝜀.  

For every 𝑧𝑛 ∈ 𝔹
2+𝜀 , 𝜑𝑧𝑛  has the following properties: 

(i) 𝜑𝑧𝑛(0) = 𝑧𝑛 and 𝜑𝑧𝑛(𝑧𝑛)  =  0, 

(ii) 𝜑𝑧𝑛 is an involution, i.e. 𝜑𝑧𝑛 ∘ 𝜑𝑧𝑛 =  𝑖𝑑, the identity mapping, 

(iii) the identity 

1 − |𝜑𝑧𝑛(𝑤𝑛)|
2
=

(1 − |𝑧𝑛|
2)(1 − |𝑤𝑛|

2)

1 −  2 〈𝑤𝑛, 𝑧𝑛〉 + |𝑤𝑛|
2|𝑧𝑛|

2
 

holds for every 𝑧𝑛, 𝑤𝑛 ∈ 𝔹
2+𝜀 , 

(iv) the identity 

|𝜑𝑧𝑛
′ (𝑤𝑛)| =

1 − |𝑧𝑛|
2

1 −  2 〈𝑤𝑛, 𝑧𝑛〉 + |𝑤𝑛|
2|𝑧𝑛|

2
 

holds for every 𝑧𝑛 , 𝑤𝑛 ∈ 𝔹
2+𝜀 . 𝑁𝑜𝑤 𝑤𝑒 ℎ𝑎𝑣𝑒(𝑠𝑒𝑒[350]). 

Corollary (6.1.9) [349]:. If ∑𝑓𝑗 ∈ 𝐵𝐶(𝔹
2+𝜀), the space of all bounded continuous functions on 

𝔹2+𝜀, then for each 𝑧𝑛 ∈ 𝔹
2+𝜀 , 

∑�̃�𝑓𝑗 
(𝜀−1)

(𝑧𝑛)  →  ∑𝑓𝑗 (𝑧𝑛) 

as 𝜀 →  ∞ through the integers. 

For ∑𝑓
𝑗
∈ 𝐶(𝔹2+𝜀), the convergence is even uniform on 𝔹2+𝜀. 

Bold. By the definitions, 

∑�̃�𝑓𝑗
(𝜀−1)

(𝑧𝑛) =∑
〈𝑇𝑓𝑗
(𝜀−1)

𝑅𝑗(𝜀−1)𝑧𝑛 , 𝑅
𝑗
(𝜀−1)𝑧𝑛

〉

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
=∑

〈𝒬(𝜀−1)𝑓𝑗𝑅
𝑗
(𝜀−1)𝑧𝑛

, 𝑅𝑗(𝜀−1)𝑧𝑛〉

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
=

= ∫ ∑
𝑓𝑗(𝑤𝑛)𝑅

𝑗
(𝜀−1)𝑧𝑛

(𝑤𝑛)𝑅𝑗(𝜀−1)𝑧𝑛(𝑤𝑛)

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
 

 

𝔹2+𝜀

𝑑𝐴(𝜀−1)(𝑧𝑛) 

= ∫ ∑𝑓𝑗(𝑤𝑛)
|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)|

2

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)

 

𝔹2+𝜀

𝑑𝐴(𝜀−1)(𝑤𝑛) 

Also, by reproducing property, 

∫ ∑𝑓𝑗 (𝑧𝑛)
|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)|

2

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)

 

𝔹2+𝜀

𝑑𝐴(𝜀−1)(𝑤𝑛) =∑𝑓𝑗 (𝑧𝑛)
〈𝑅𝑗(𝜀−1)𝑧𝑛 , 𝑅

𝑗
(𝜀−1)𝑧𝑛

〉

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
=∑𝑓𝑗 (𝑧𝑛) 

Hence 
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�̃�∑𝑓𝑗
(𝜀−1)(𝑧𝑛) −∑𝑓𝑗 (𝑧𝑛)

= ∫ (∑𝑓𝑗 (𝑤𝑛)

 

𝔹2+𝜀

−∑𝑓𝑗 (𝑧𝑛))
|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)|

2

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
𝑑𝐴(𝜀−1)(𝑤𝑛) ∫ + ∫ ,

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

 

|𝜑𝑧𝑛(𝑤𝑛)|≤𝛿

 

for any 0 < 𝛿 < 1. 

By the continuity of ∑𝑓𝑗 , we may, for each fixed 𝑧𝑛 and 𝜀 > 0, choose 𝛿 > 0 so small that 

                                         |∑𝑓𝑗 (𝑤𝑛) −∑𝑓𝑗 (𝑧𝑛)| < 𝜀                                                           

Whenever |𝜑𝑧𝑛(𝑤𝑛)|  <  𝛿. Then 

∫ ≤ 𝜀

 

|𝜑𝑧𝑛(𝑤𝑛)|≤𝛿

∫
|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)|

2

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
𝑑𝐴(𝜀−1)(𝑤𝑛)

⏟                    
1

= 𝜀 

Corollary (6.1.10) [349]:. There exist constants 𝑐 and 𝐶, depending only on( 𝜀 − 1) and (2 + 𝜀), 
such that for all 𝑧𝑛, 𝑤𝑛  ∈ 𝔹

2+𝜀              

|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)| ≤
𝐶

[𝑧𝑛, 𝑤𝑛]
2𝜀+1    
2

                                                             

And 

𝑐

[𝑧𝑛, 𝑧𝑛]
2𝜀+1
2

≤ 𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛) ≤
𝐶

[𝑧𝑛 , 𝑧𝑛]
2𝜀+1
2

                                                           

Here, for the sake of brevity, we have introduced the notation 

[𝑧𝑛, 𝑤𝑛] = 1 − 2 〈𝑧𝑛, 𝑤𝑛〉 + |𝑧𝑛|
2|𝑤𝑛|

2. 

Postponing the proof of the lemma for a moment, using (9) and (10) we can estimate the integral 

over |𝜑𝑧𝑛(𝑤𝑛)|  ≥  𝛿 by 

∫ ≤ 2‖∑𝑓𝑗‖
∞

 

|𝜑𝑧𝑛(𝑧𝑛)|>𝛿

∫
|𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛)|

2

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)
𝑑𝐴(𝜀−1)(𝑤𝑛)

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

≤ 2‖∑𝑓𝑗‖
∞

𝐶2

𝑐
∫

(1 − |𝑧𝑛|
2)2𝜀+1

[𝑧𝑛, 𝑤𝑛]
2𝜀+1

𝑑𝐴(𝜀−1)(𝑤𝑛)

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

≤ 2‖∑𝑓𝑗‖
∞

𝐶2

𝑐
𝑐(𝜀−1) ∫

(1 − |𝑧𝑛|
2)2𝜀+1(1 − |𝑤𝑛|

2)2𝜀+1

[𝑧𝑛, 𝑤𝑛]
2𝜀+1

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

𝑑𝑤𝑛
(1 − |𝑤𝑛|

2)2+𝜀

≤ 2‖∑𝑓𝑗‖
∞

𝐶2

𝑐
𝑐(𝜀−1) ∫ (1 − |𝜑𝑧𝑛(𝑤𝑛)|

2
)
2𝜀+1

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

  
𝑑𝑤𝑛

(1 − |𝑤𝑛|
2)2+𝜀
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Note that the measure 

𝑑𝜆(𝑥𝑛) =
𝑑𝑥𝑛

(1 − |𝑥𝑛|
2)2+𝜀

 

is invariant on 𝔹2+𝜀, in the sense that 

𝑑𝜆(𝜑𝑎(𝑥𝑛)) =
|𝜑𝑎

′ (𝑥𝑛)|
2+𝜀𝑑𝑥𝑛

(1 − |𝜑𝑎(𝑥𝑛)|
2)2𝜀+1

=  𝑑𝜆(𝑥𝑛), 

Hence, making the change of variable 𝜑𝑧𝑛(𝑤𝑛)  = 𝑥𝑛, we can continue with 

∫ ≤ 2∑‖𝑓𝑗‖∞

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

𝐶2

𝑐
𝑐(𝜀−1) ∫ (1 − |𝑥𝑛|

2)2𝜀+1𝑑𝜆(𝑥𝑛)

 

|𝑥𝑛|>𝛿

= 2∑‖𝑓𝑗‖∞

𝐶2

𝑐
𝑐(𝜀−1) ∫ (1 − |𝑥𝑛|

2)(𝜀−1)𝑑𝑥𝑛

 

|𝑥|>𝛿

 

≤ 2∑‖𝑓𝑗‖∞

𝐶2

𝑐
𝑐(𝜀−1)(1 − 𝛿

2)(𝜀−1) 

Since 𝑐(𝜀−1) ∼ (𝜀 − 1)
2+𝜀/2 as 𝜀 →  ∞, the right-hand side tends to zero as 𝜀 → ∞. 

Hence 

lim
𝜀→∞

( ∫ + ∫  

 

|𝜑𝑧𝑛(𝑤𝑛)|>𝛿

 

|𝜑𝑧𝑛(𝑤𝑛)|≤𝛿

) ≤  𝜀                                                         

If 𝑓𝑗 is not only bounded and continuous on the ball but even continuous on its closure, then for 

each 𝜀 >  0 we can choose 𝛿 >  0 so that (8) holds for all 𝑧𝑛 ∈ 𝔹
2+𝜀 simultaneously, by uniform 

continuity. This completes the proof. The proof of (9) actually occurs in [328, Lemma 3.1] taking 

𝑡 =  0, 𝑠 = ( 𝜀-1) in the operator Q𝑠,𝑡 there. For |𝑦𝑛| = 1, see also [356, Lemma 2.7]. A simple 

proof of (10) can be found in [359, Proposition 4.1]. For (𝜀-1) an integer, it is possible to give 

another proof using the formula. Since this might be useful for other applications we include it for 

completeness. 

𝐴𝛽,𝑟 ≔ {
𝑝𝑗(𝑡, 𝑧𝑛, 𝑤𝑛)

[𝑡𝑧𝑛 , 𝑤𝑛]
𝛽
2

(
1 − 𝑡2|𝑧𝑛|

2|𝑤𝑛|
2

[𝑡𝑧𝑛, 𝑤𝑛]
1
2

)

𝑟

: 𝑝𝑗  𝑎 polynomial}, 

𝐴𝛽: = {
𝑝𝑗(𝑡, 𝑧𝑛, 𝑤𝑛)

[𝑡𝑧𝑛, 𝑤𝑛]
𝛽
2

𝑞𝑗 (
1 − 𝑡2|𝑧𝑛|

2|𝑤𝑛|
2

[𝑡𝑧𝑛, 𝑤𝑛]
1
2

)

𝑟

: 𝑝𝑗 , 𝑞𝑗  𝑎 polynomial} , 

Differentiation yields 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,𝑟 = 𝑡

𝑑

𝑑𝑡
(
𝑝𝑗(𝑡,𝑧𝑛,𝑤𝑛)(1−𝑡

2|𝑧𝑛|
2|𝑤𝑛|

2)
𝑟

[𝑡𝑧𝑛,𝑤𝑛]
𝛽+𝑟
2

)   
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=
𝑡
𝜕𝑝𝑗
𝜕𝑡
(𝑡, 𝑧𝑛, 𝑤𝑛) ∙ (1 − 𝑡

2|𝑧𝑛|
2|𝑤𝑛|

2)𝑟

[𝑡𝑧𝑛, 𝑤𝑛]
𝛽+𝑟
2

∙ (1 − 𝑡2|𝑧𝑛|
2|𝑤𝑛|

2)𝑟−1

+
𝑡 ∙ 𝑟 ∙ 𝑝𝑗(𝑡, 𝑧𝑛, 𝑤𝑛) ∙ (−2𝑡

2|𝑧𝑛|
2|𝑤𝑛|

2)

[𝑡𝑧𝑛, 𝑤𝑛]
𝛽+𝑟
2

∙ (1 − 𝑡2|𝑧𝑛|
2|𝑤𝑛|

2)𝑟−1

−

𝛽 + 𝑟
2

∙ 𝑝𝑗(𝑡, 𝑧𝑛 , 𝑤𝑛)(1 − 𝑡
2|𝑧𝑛|

2|𝑤𝑛|
2)𝑟 ∙ 𝑡 ∙ (−2〈𝑧𝑛, 𝑤𝑛〉 + 2𝑡|𝑧𝑛|

2|𝑤𝑛|
2)

[𝑡𝑧𝑛 , 𝑤𝑛]
𝛽+𝑟
2
+1

      

Since 

−2〈𝑧𝑛, 𝑤𝑛〉 + 2𝑡
2|𝑧𝑛|

2|𝑤𝑛|
2 = [𝑡𝑧𝑛, 𝑤𝑛] − 1 − 𝑡

2|𝑧𝑛|
2|𝑤𝑛|

2 + 2𝑡2|𝑧𝑛|
2|𝑤𝑛|

2

= [𝑡𝑧𝑛, 𝑤𝑛] − 1 + 𝑡
2|𝑧𝑛|

2|𝑤𝑛|
2 = −(1 − 𝑡2|𝑧𝑛|

2|𝑤𝑛|
2) + [𝑡𝑧𝑛, 𝑤𝑛] 

The last term in (12) can be rewritten as 

−

𝛽 + 𝑟
2

∙ 𝑝𝑗(𝑡, 𝑧𝑛, 𝑤𝑛) ∙ (1 − 𝑡
2|𝑧𝑛|

2|𝑤𝑛|
2)

[𝑡𝑧𝑛, 𝑤𝑛]
𝛽 + 𝑟
2

∙ (1 − 𝑡2|𝑧𝑛|
2|𝑤𝑛|

2)𝑟−1 

+

𝛽 + 𝑟
2

∙ 𝑝𝑗(𝑡, 𝑧𝑛 , 𝑤𝑛) ∙ (1 − 𝑡
2|𝑧𝑛|

2|𝑤𝑛|
2)𝑟+1

[𝑡𝑧𝑛, 𝑤𝑛]
𝛽 + 𝑟 + 2

2

 

 [𝑡𝑧, 𝑤]𝛽 + 𝑟 + 2 

Thus we get 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,𝑟 ∈ 𝐴𝛽+1,𝑟−1 + 𝐴𝛽+1,𝑟+1,                    𝑟 >  0, 

𝑡
𝑑

𝑑𝑡
𝐴𝛽,0 ∈ 𝐴𝛽+1,0 + 𝐴𝛽+1,1,                     𝑟 =  0. 

For arbitrary 𝑐 ∈ ℝ we thus get 

(𝑡
𝑑

𝑑𝑡
+ 𝑐) 𝐴𝛽,𝑟 ∈ 𝐴𝛽 + 𝐴𝛽+1 

and 

𝒟𝜀𝐴𝛽,𝑟 ∈ 𝐴𝛽 +⋯+ 𝐴𝛽+𝜀 . 

Applying this to 
1−𝑡2|𝑧𝑛|

2|𝑤𝑛|
2

[𝑡𝑧𝑛,𝑤𝑛]
(2+𝜀)/2

∈ 𝐴(1+𝜀),1 we thus obtain by (2.2) 

                             𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑤𝑛) ∈ 𝐴(1+𝜀)  + ⋯+ 𝐴(2𝜀+1)|𝑡=1
 .                                                     

   

Now 

[𝑧𝑛 , 𝑤𝑛] =  1 −  2 〈𝑧𝑛, 𝑤𝑛〉  + |𝑧𝑛|
2|𝑤𝑛|

2 ≥  1 −  2|𝑧𝑛||𝑤𝑛|  + |𝑧𝑛|
2|𝑤𝑛|

2 

=   (1 − |𝑧𝑛||𝑤𝑛|)
2 >  0 
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And 

[𝑧𝑛, 𝑤𝑛]  ≤  1 +  2|𝑧𝑛||𝑤𝑛|  + |𝑧𝑛|
2|𝑤𝑛|

2 = (1 + |𝑧𝑛||𝑤𝑛|)
2  ≤  22, 

so 

0 ≤
1 − |𝑧𝑛|

2|𝑤𝑛|
2

[𝑧𝑛, 𝑤𝑛]
1
2

≤
1 − |𝑧𝑛|

2|𝑤𝑛|
2

1 − |𝑧𝑛||𝑤𝑛|
=  1 + |𝑧𝑛||𝑤𝑛| ≤ 2, 

and thus every function from 𝐴𝛽  has for 𝑡 =  1 the form 

something bounded on 𝔹2+𝜀

[𝑧𝑛, 𝑤𝑛]
𝛽/2

. 

From (13) we thus get 

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛) =
something bounded on 𝔹2+𝜀

[𝑧𝑛, 𝑤𝑛]
(2𝜀+1)/2

 

which proves (9). 

To prove the second half of the lemma, note that for 𝜀 = 0, 

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛) = (𝑡
𝑑

𝑑𝑡
+ 2 + 𝜀 )… (𝑡

𝑑

𝑑𝑡
+ 2𝜀 + 1)

1 − 𝑡2|𝑧𝑛|
4

(1 − 𝑡|𝑧𝑛|
2)2+𝜀

= (𝑡
𝑑

𝑑𝑡
+ 2 + 𝜀 )… (𝑡

𝑑

𝑑𝑡
+ 2𝜀 + 1)

1 − 𝑡2|𝑧𝑛|
4

(1 − 𝑡|𝑧𝑛|
2)1+𝜀

 

Now again, for any polynomial 𝑝𝑗 , 

(𝑡 
𝑑

𝑑𝑡
+ 𝑐)

𝑝𝑗(𝑡, |𝑧𝑛|
2)

(1 − 𝑡|𝑧𝑛|
2)𝛽

= 𝑐
𝑝𝑗(𝑡, |𝑧𝑛|

2)

(1 − 𝑡|𝑧𝑛|
2)𝛽

+
𝑡
𝜕
𝜕𝑡
𝑝𝑗(𝑡, |𝑧𝑛|

2)

(1 − 𝑡|𝑧𝑛|
2)𝛽

+
𝑡𝑝𝑗(𝑡, |𝑧𝑛|

2)𝛽|𝑧𝑛|
2

(1 − 𝑡|𝑧𝑛|
2)𝛽+1

=

(𝑐𝑝𝑗(𝑡, |𝑧𝑛|
2) + 𝑡

𝜕
𝜕𝑡
𝑝𝑗(𝑡, |𝑧𝑛|

2)) (1 − 𝑡|𝑧𝑛|
2)

(1 − 𝑡|𝑧𝑛|
2)𝛽+1

+
𝑡𝑝𝑗(𝑡, |𝑧𝑛|

2)𝛽|𝑧𝑛|
2

(1 − 𝑡|𝑧𝑛|
2)𝛽+1

=
(𝑝𝑗)

∗(𝑡, |𝑧𝑛|
2)

(1 − 𝑡|𝑧𝑛|
2)𝛽+1

, 

 

where (𝑝𝑗)
∗ is also a polynomial, which further satisfies (𝑝𝑗)

∗(1, 1)  =  𝛽𝑝𝑗(1, 1). By iteration and 

taking |𝑧𝑛|  =  1, 𝑡 =  1, we get 

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)  =
𝑝𝑗(|𝑧𝑛|

2)

(1 − |𝑧𝑛|
2)2𝜀+1

, 

where 𝑃 is a polynomial satisfying 

                                           𝑃(1) =  4.                                                            
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Thus 𝑅(𝜀−1)
𝑗

 (𝑧𝑛, 𝑧𝑛)(1 − |𝑧𝑛|
2)2𝜀+1 is a positive function inside 𝔹2+𝜀, which has a nonzero finite 

limit (14) at the boundary. Consequently, it has positive and finite lower and upper bounds 𝑐 and 𝐶, 
respectively. This concludes the proof. 

Corollary (6.1.11) [349]:. For any ∑𝑓𝑗 ∈ 𝐶(𝔹
2+𝜀), 

∑‖𝑇𝑓𝑗
(𝜀−1)‖ → ∑‖𝑓𝑗‖∞                      𝑎𝑠 𝜀 →  ∞. 

Proof. From the Schwarz inequality we get 

∑|�̃�𝑓𝑗
(𝜀−1)(𝑧𝑛)| =∑

|〈𝑇𝑓𝑗
(𝜀−1)

𝑅𝑗(𝜀−1)𝑧𝑛 , 𝑅
𝑗
(𝜀−1)𝑧𝑛

〉|

𝑅𝑗𝜀−1(𝑧𝑛, 𝑧𝑛)
=∑

|〈𝑓𝑗𝑅
𝑗
(𝜀−1)𝑧𝑛

, 𝑅𝑗(𝜀−1)𝑧𝑛〉|

𝑅𝑗(𝜀−1)(𝑧𝑛, 𝑧𝑛)

=∑
‖𝑓𝑗𝑅

𝑗
(𝜀−1)𝑧𝑛

‖
𝐿2

 
‖𝑅𝑗(𝜀−1)𝑧𝑛‖𝐿2

 

‖𝑅𝑗(𝜀−1)𝑧𝑛‖𝐿2
2 ≤∑

‖𝑓𝑗‖∞
‖𝑅𝑗(𝜀−1)𝑧𝑛‖𝐿2

2 

‖𝑅𝑗(𝜀−1)𝑧𝑛‖𝐿2
2 =∑‖𝑓𝑗‖∞ 

Taking the supremum over all 𝑧𝑛  gives 

                                             ∑‖�̃�𝑓𝑗
(𝜀−1)

‖
∞
≤ ∑‖𝑓𝑗‖∞                                         

On the other hand,  

∑�̃�𝑓𝑗
(𝜀−1)(𝑧𝑛) →∑𝑓𝑗 (𝑧𝑛), 

for all 𝑧𝑛 ∈ 𝔹
2+𝜀 . As ∑‖�̃�𝑓𝑗

(𝜀−1)
‖
∞
≥ ∑ |�̃�𝑓𝑗

(𝜀−1)(𝑧𝑛)| and ∑ |�̃�𝑓𝑗
(𝜀−1)(𝑧𝑛)| →  ∑|𝑓𝑗(𝑧𝑛)| , thus 

lim
𝜀→∞

inf∑‖�̃�𝑓𝑗
(𝜀−1)

‖ ≥∑|𝑓𝑗(𝑧𝑛)| 

Taking again the supremum over all 𝑧𝑛 ∈ 𝔹
2+𝜀  yields 

 

lim
𝜀→∞

inf  ∑‖�̃�𝑓𝑗
(𝜀−1)

‖
∞
≥ sup

𝑧∈𝔹2+𝜀
∑|𝑓𝑗(𝑧𝑛)| =∑‖𝑓𝑗‖∞

.   (16) 

From (15) and (16) we therefore have 

lim
𝜀→∞

∑‖�̃�𝑓𝑗
(𝜀−1)

‖ = ‖∑𝑓𝑗‖
∞
, 

Which proves the “deformation estimate” (2). 

Section (6.2); Berezin  Transform of Two Arguments  

For the weighted Bergman space 𝐿ℎ𝑜𝑙
2 (𝛺, 𝑤𝛼) of holomorphic and square-integrable functions on a 

smoothly bounded strictly pseudoconvex domain 𝛺 ⊂ ℂ𝑛, the Berezin transform  

                       𝐵𝛼𝑓(𝑥) =
〈𝑓𝐾𝛼,𝑥,𝐾𝛼,𝑥〉

〈𝐾𝛼,𝑥,𝐾𝛼,𝑥〉
= ∫ 𝑓(𝑦)

|𝐾𝛼(𝑥,𝑦)|
2

𝐾𝛼(𝑥,𝑥)
𝑤(𝑦)𝛼𝑑𝑦

Ω
,                                  (15)                                  

where 𝑤 is a weight satisfying some mild technical hypotheses, 𝐾𝛼,𝑦: = 𝐾𝛼(·, 𝑦) is the reproducing 

kernel of 𝐿ℎ𝑜𝑙
2 (𝛺, 𝑤𝛼), and 𝑓 is a bounded smooth function on 𝛺, has the following asymptotic 

behavior:  

                                    𝐵𝛼𝑓 ∼ ∑
𝑄𝑗𝑓

𝛼𝑗
∞
𝑗=0 ,     𝑎𝑠 𝛼 → ∞, 𝛼 ∈ ℤ,                                             (16)                                           
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where 𝑄𝑗 are certain differential operators with 𝑄0 = 𝐼, the identity operator and 𝑄1 = 𝛥, the 

Laplace–Beltrami operator associated to 𝑤 (see e.g.[326]). This result can be accordingly exploited 

to define certain star-product that coincides with the so-called Berezin star-product going back to 

Berezin [335]yielding what is known as the Berezin deformation quantization on 𝛺. With some little 

expenditure of time and effort, this can be further extended, asthe titles of some of the references 

already correctly suggest, even to general Kähler manifolds. For detailed information on this theme, 

[331] or [331]. Also, the “intertwined” sibling of the Berezin quantization, the so-called Berezin–

Toeplitz deformation quantization , represents a quite well established area of interest in the realm of 

Kähler manifolds as witnessed for example in [333]. Yet another field where Berezin transform 

makes appearance is representation theory of semisimple Lie groups, notably in decompositions of 

tensor product of representations. 

Interestingly enough, results similar to the expansion (16), albeit without any apparent direct 

applications to quantization procedures or to representation theory, have been recently shown to be 

true even in the case of harmonic Bergman spaces (though only for the unit ball [335], the half-

space[342], and the whole of ℝ𝑛 with 𝑛 even[330]). 

Note that (15) actually represents the Berezin transform 𝐵𝛼𝑓(𝑥) as the restriction to the diagonal 𝑥 =
𝑧 of a function of two variables  

𝐵𝛼
2𝑓(𝑥, 𝑧) =

〈𝑓𝐾𝛼,𝑧, 𝐾𝛼,𝑥〉

〈𝐾𝛼,𝑧 , 𝐾𝛼,𝑥〉
= ∫ 𝑓(𝑦)

𝐾𝛼(𝑥, 𝑦)𝐾𝛼(𝑦, 𝑧)

𝐾𝛼(𝑥, 𝑧)
𝑤(𝑦)𝛼𝑑𝑦

Ω

, 

holomorphic in 𝑥 and conjugate-holomorphic in 𝑧; ofcourse, theright-hand side is only defined when 

𝐾𝛼(𝑥, 𝑧) ≠ 0. Infact, byaclassical result from complex function theory, 𝐵𝛼
2𝑓 is uniquely determined 

by 𝐵𝛼𝑓. Now in view of (16), it is very natural to ask – albeit this has no direct relevance whatsoever 

either for the quantization or for the applications in representation theory mentioned above – what is 

the asymptotic behavior of 𝐵𝛼
2𝑓 as 𝛼 → ∞. Plainly, from 𝐵𝛼𝑓 → 𝑄0𝑓 = 𝑓one would (heuristically) 

expect 𝐵𝛼
2𝑓 to tend to some “sesqui-holomorphic extension” 𝑓(𝑥, 𝑧) of 𝑓 holomorphic in 𝑥, 𝑧̅ and 

satisfying 𝑓(𝑥, 𝑥) = 𝑓(𝑥); clearly this fails to exist for general 𝑓(e.g.when 𝑓 is not real-analytic), and 

accordingly we will thus deal for the most part only with 𝑓(𝑧) a polynomial in 𝑧 and 𝑧̅. 
Furthermore, all the above makes perfect sense also of harmonic (rather than holomorphic) Bergman 

spaces, where actually the situation becomes even more complicated since 𝐵𝛼
2𝑓 is then no longer 

uniquely determined by its restriction 𝐵𝛼𝑓 to the diagonal. 

We  is to investigate the asymptotic behavior of 𝐵𝛼
2 in the case of the Fock spaces of holomorphic 

functions on ℂ𝑛 (the “easy part”), and of the Bergman spaces of harmonic functions on ℝ𝑛(the “hard 

part”), although only for polynomial symbols 𝑓. 

Consider the Segal–Bargmann or Fock space ℱ𝛼of all entire functions in ℂ𝑛 that are square-integrable 

with respect to the measure  

𝑑𝜇𝛼
2𝑛(𝑦, �̅�): = (

𝛼

𝜋
)
𝑛

𝑒−𝛼|𝑦|
2
𝑑𝜆(𝑦), 

where 𝑑𝜆(𝑦) is the usual 2𝑛-dimensional Lebesgue volume measure with the factor (𝛼/𝜋)𝑛chosen 

so that the whole space is of measure one. 

The function 𝐾𝛼(𝑥, 𝑦) = 𝑒
𝛼𝑥·�̅� = 𝑒𝛼(𝑥1�̅�1+···+𝑥𝑛�̅�𝑛) is the corresponding Bergman kernel, i.e. a 

mapping 𝐾𝛼: ℂ
𝑛 × ℂ𝑛 → ℂ which is holomorphic in the first argument and anti-holomorphic in the 

second, skew-symmetric: 𝐾𝛼(𝑥, 𝑦) = 𝐾𝛼(𝑦, 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, and satisfies the reproducing property  

(𝑃𝛼𝑓)(𝑥):= ∫ 𝑓(𝑦)𝐾𝛼(𝑥, 𝑦)𝑑𝜇𝛼
2𝑛(𝑦, �̅�)

ℂ𝑛
=  𝑓(𝑥), ∀𝑓 ∈ ℱ𝛼 . 

The associated Berezin transform  

(𝐵𝛼𝑓)(𝑥):= ∫ 𝑓(𝑦)
𝐾𝛼(𝑥, 𝑦)𝐾𝛼(𝑥, 𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐾𝛼(𝑥, 𝑥)
𝑑𝜇𝛼

2𝑛(𝑦, �̅�)
ℂ𝑛

, 

then behaves asymptotically as 𝛼 → ∞ like the identity. it follows from the standard asymptotic 

analysis of the Gaussian integral (the result appears also in [330]) that, as 𝛼 → ∞,  

(𝐵𝛼𝑓)(𝑥) → 𝑓(𝑥)         ∀𝑓 ∈ 𝐿∞(𝐶𝑛), 
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and, whenever 𝑓 is smooth in the neighborhood of 𝑥, there is in addition the full asymp-totic 

expansion of the type(16), namely  

                           (𝐵𝛼𝑓)(𝑥) ∼ 𝑓(𝑥) +
𝜕𝑥�̅�𝑥𝑓(𝑥)

𝛼
+
(𝜕𝑥�̅�𝑥)

2
𝑓(𝑥)

2!𝛼2
+⋯                                 (17)                              

We  establish the asymptotic behavior of a modified Berezin transform – the Berezin transform of 

two arguments, with one of the 𝑥’s replaced by a new vector 𝑧:  

(𝐵𝛼
2𝑓)(𝑥, 𝑧) ∶= ∫ 𝑓(𝑦)

𝐾𝛼(𝑥, 𝑦)𝐾𝛼(𝑦, 𝑧)

𝐾𝛼(𝑥, 𝑧)
𝑑𝜇𝛼

2𝑛(𝑦, �̅�)
ℂ𝑛

.  

Note that the transformed function is of two variable 𝑥 and 𝑧 even though the original 𝑓 is of one 

(vector) variable. For the purpose of iteration it is convenient to define the function (𝐵𝛼
2𝑓)(𝑥, 𝑧)for 𝑓 

depending on two variables as follows  

(𝐵𝛼
2𝑓)(𝑥, 𝑧) ∶= ∫ 𝑓(𝑦, �̅�)

𝐾𝛼(𝑥, 𝑦)𝐾𝛼(𝑦, 𝑧)

𝐾𝛼(𝑥, 𝑧)
𝑑𝜇𝛼

2𝑛(𝑦, �̅�)
ℂ𝑛

. 

We will show that the principal term of the asymptotic expansion behaves still like an identity of a 

kind and that there is also an asymptotic expansion strikingly similar to that in (17). More explicitly, 

we will prove the following: 

Theorem (6.2.1)[329]: Let 𝑓 be a polynomial on ℂ𝑛 × ℂ𝑛. Then, as 𝛼 → ∞,  

(𝐵𝛼
2𝑓)(𝑥, 𝑧) ∼ 𝑓(𝑥, 𝑧̅) +

𝜕𝑥�̅�𝑧𝑓(𝑥, 𝑧̅)

𝛼
+
(𝜕𝑥�̅�𝑧)

2
𝑓(𝑥, 𝑧̅)

𝛼22!
+ ⋯ 

Remark (6.2.2) [329]: Note that when 𝑧 = 𝑥 the result is exactly the same as in(17). 

It will also be clear from the proof that in this case the Berezin transform of two arguments is nothing 

more than a special case of the Bergman projection, namely:  

(𝐵𝛼
2𝑓)(𝑥, 𝑧) = (𝑃𝛼𝑓𝑧)(𝑥 − 𝑧), 𝑓𝑧(𝑦, �̅�): = 𝑓(𝑦 + 𝑧, �̅� + 𝑧̅), 

hence it does not bring anything new to the subject. This example shows what a nice behavior the 

Berezin transform of two arguments can act . We now move our attention , the case of harmonic Fock 

space, where much more interesting behavior occurs. 

Consider the harmonic Fock space 𝐹𝛼
ℎ𝑎𝑟𝑚 of all harmonic functions in ℝ𝑛 that are square-integrable 

with respect to the measure  

𝑑𝜇𝛼
𝑛(𝑦):= 𝑐𝛼𝑒

−𝛼|𝑦|2𝑑𝑛𝑦, 

where the factor 𝑐𝛼: = (
𝛼

𝜋
)

𝑛

2
is again chosen so that the whole space is of measure one. 

The Bergman kernel for this space, 𝑅𝛼(𝑥, 𝑦), i.e. a function with the following properties:  

                             𝑅𝛼(𝑥, 𝑦) = 𝑅𝛼(𝑦, 𝑥)         ∀𝑥, 𝑦 ∈ ℝ
𝑛,                                                   (18)                                   

                          𝛥𝑥𝑅𝛼(𝑥, 𝑦) = 𝛥𝑦𝑅𝛼(𝑥, 𝑦) = 0     ∀𝑥, 𝑦 ∈ ℝ
𝑛 ,                                        (19)                         

         (𝑃𝛼𝑓)(𝑥): = ∫ 𝑓(𝑦)𝑅𝛼(𝑥, 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
= 𝑓(𝑥)∀𝑓 ∈ ℱ𝛼

ℎ𝑎𝑟𝑚, ∀𝑥 ∈ ℝ𝑛,                (20)    

is not of such a pleasing form as in the complex case; however, it is known that [10]:  

                                 𝑅𝛼(𝑥, 𝑦) = Φ2 (
−
𝑏;
𝑏   𝑏
−
 ; 𝛼𝑢𝑥,𝑦 , 𝛼�̅�𝑥,𝑦),                                          (21)                                   

where 𝑏:=
𝑛

2
− 1, 𝑢𝑥,𝑦 = 𝑥 · 𝑦 + 𝑖√|𝑥|

2|𝑦|2 − (𝑥 · 𝑦)2 and Φ2 is a hypergeometric function of two 

variables from Horn’s list [332], defined1by means of the series:  

              Φ2 (
−
𝑐 ;
𝑏1   𝑏2
−

;𝑥, 𝑦) = ∑
(𝑏1)𝑗(𝑏2)𝑘

(𝑐)𝑗+𝑘

𝑥𝑗𝑦𝑘

𝑗!𝑘!

∞
𝑗,𝑘=0 ,       ∀𝑥, 𝑦 ∈ ℂ .                           (22)                

In the same [340], it has also been shown that the Berezin transform  

(𝐵𝛼𝑓)(𝑥): = ∫ 𝑓(𝑦)
𝑅𝛼
2(𝑥, 𝑦)

𝑅𝛼(𝑥, 𝑦)
𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

 

again displays an asymptotic behavior similar to that in the complex case(17). Inparticular, for every 

𝑓 ∈ 𝐿∞(ℝ2𝑛), smooth in a neighborhoodof 𝑥 ≠ 0, wehave, as 𝛼 → ∞,  

(𝐵𝛼𝑓)(𝑥) ∼ 𝑓(𝑥) +
1

𝛼
(
𝑛 − 2

2

1

|𝑥|2
𝑥 · 𝛻  

                           +
(𝑛−2)

4(𝑛−1)|𝑥|2
(𝑥 · 𝛻)2 +

1

4(𝑛−1)
𝛥) 𝑓(𝑥)+ . . . ,                                           (23)                                    
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with the additional feature that for 𝑥 = 0, in which case the terms in the asymptotic series(23)are 

singular, the behavior changes abruptly2:  

(𝐵𝛼𝑓)(0) ∼ 𝑓(0) +
1

4𝛼
𝛥𝑓(0)+ . . ., 𝛼 → ∞. 

This is an interesting manifestation of a kind of the so-called Stokes phenomenon. Wewill show that 

in case of the Berezin transform of two arguments  

                  (𝐵𝛼
2𝑓)(𝑥, 𝑧):= ∫ 𝑓(𝑦)

𝑅𝛼(𝑥,𝑦)𝑅𝛼(𝑧,𝑦)

𝑅𝛼(𝑥,𝑧)
𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

= (𝐵𝛼
2𝑓)(𝑧, 𝑥),                     (24)             

the Stokes phenomenon appears multiple times – the asymptotic behavior is different for 𝑥, 𝑧 not 

collinear, for 𝑥 = 𝜉𝑧, for 𝑥 = −𝜉𝑧 where 𝜉 > 0 and for 𝑥 = 0.  

In the latter case the Berezin transform of two arguments actually collapses into the Bergman 

projection  

(𝐵𝛼
2𝑓)(0, 𝑧) = (𝑃𝛼𝑓)(𝑧), 

which is (contrary to the complex case) the only relationship between the two. 

The main question is addressing is what is the limit behavior of 𝐵𝛼
2 and, most importantly, whether 

there exists a point 𝑣 such that, by analogy with the single argument Berezin transform,  

                                      (𝐵𝛼
2𝑓)(𝑥, 𝑧) → 𝑓(𝑣),     𝛼 → ∞.                                                 (25)                                  

The answer we give is affirmative, on condition that the limit is taken through complex values of 𝛼 

and that 𝑥, 𝑧 are not collinear. For the real values of 𝛼 (and 𝑥, 𝑧 real as well), there is in general no 

such 𝑣 and the limit even does not exist for any polynomial except the constant ones. For 𝑥, 𝑧 collinear 

the limit does exist (mostly) but it does not behave like the identity – except , when 𝑧 = 𝑥 − the case 

of the usual Berezin transform. 

The results can be summarized in the following two theorems: 

Theorem (6.2.3) [329]: Let 𝑝 be a polynomial on ℝ𝑛, 𝑥, 𝑧 ∈ ℝ𝑛 not collinear. Then for 𝛼 ∈ ℂ such 

that (𝛼𝑢𝑥,𝑧) > 𝑅𝑒(𝛼�̅�𝑥,𝑧), 𝑅𝑒(𝛼𝑢𝑥,𝑧) > 0, 𝑅𝑒(𝛼) > 0 , 3 we have  

(𝐵𝛼
2𝑝)(𝑥, 𝑧) → 𝑝(𝑣), |𝛼| → ∞, 

where  

𝑣 = 𝑣𝑥,𝑧: = 𝑥 
𝑢𝑥,𝑧 − |𝑧|

2

𝑢𝑥,𝑧 − �̅�𝑥,𝑧
+ 𝑧

𝑢𝑥,𝑧 − |𝑥|
2

𝑢𝑥,𝑧 − �̅�𝑥,𝑧
, 𝑢𝑥,𝑧: = 𝑥 · 𝑧 + 𝑖√|𝑥|

2|𝑧|2 − (𝑥 · 𝑧)2, 

and the point 𝑣 ∈ ℂ𝑛 moreover satisfies the following relations: 

𝑅𝑒 𝑣 =
𝑥 + 𝑧

2
, 𝑣 · �̅� = |𝑥 + 𝑧|2 + |𝑥 − 𝑧|2, 𝑣 · 𝑣 = 𝑢𝑥,𝑧 , 𝑥 · 𝑣 =

|𝑥|2 + 𝑢𝑥,𝑧
2

, 

(𝑥 · 𝑣)(𝑥 · 𝑣̅̅ ̅̅ ̅̅ ) =
|𝑥|2|𝑥 + 𝑧|2

4
 , �̅�𝑥,𝑧(𝑥 · 𝑣) = |𝑥|

2(𝑧 · 𝑣̅̅ ̅̅ ̅̅ ), 

(𝑥 · 𝑣)(𝑧 · 𝑣) =
𝑢𝑥,𝑧|𝑥 + 𝑧|

2

4
.    

For 𝛼 ∈ ℝ and 𝛻𝑝 ≠ 0, the limit does not exist.  

In the collinear case, the behavior is the following: 

Theorem (6.2.4) [329]: Let 𝑝 be a polynomial on ℝ𝑛, 𝜉, 𝛼 > 0, 𝑢𝑥,𝑡 as above. Then 

(i)For 𝑧 = 𝜉𝑥,  

(𝐵𝛼
2𝑝)(𝑥, 𝜉𝑥) → 𝑝(𝛻𝑡)𝑒

𝑥∙𝑡Φ2 (
−

𝑛 − 2; 
𝑛

2
− 1   

𝑛

2
−  1

−
 ; 
𝜉 − 1

2
𝑢𝑥,𝑡 ,

𝜉 − 1

2
�̅�𝑥,𝑡)|

𝑡=0

, 

 𝛼 →  ∞. 
(ii)For 𝑧 = 0,  

(𝐵𝛼
2𝑝)(𝑥, 0) → 𝑝(𝛻𝑡)Φ2 (

−
𝑛

2
− 1; 

𝑛

2
− 1   

𝑛

2
−  1

−
 ; 
1

2
𝑢𝑥,𝑡 ,

1

2
�̅�𝑥,𝑡)|

𝑡=0

, 

 𝛼 →  ∞. 
(iii)For 𝑧 = −𝜉𝑥 and 𝑝(𝑦) = 𝑝1(𝑦, |𝑦|

2), where 𝑝1 is a linear function in the first argument and a 

polynomial in the other, wehave  
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(𝐵𝛼
2𝑝)(𝑥, −𝜉𝑥) → 𝑝1 (𝑥

1 − 𝜉

2
 , −𝜉 |𝑥|2) , 𝑛 > 3 𝑒𝑣𝑒𝑛, 

(𝐵𝛼
2𝑝)(𝑥, −𝜉𝑥) → 𝑝(0), 𝑛 > 1 𝑜𝑑𝑑, 

|(𝐵𝛼
2(𝑦1𝑦2))(𝑥, −𝜉𝑥)| → ∞, 𝑎𝑙𝑙 𝑛 > 2. 

The polynomial 𝑦1𝑦2 above serves only as an example of a divergent behavior of 𝐵𝛼
2 in the case 𝑧 =

−𝜉𝑥. It is not clear to the authors, what is the general behavior in this case, but we strongly suspect 

that there are no other polynomials for which 𝐵𝛼
2 would converge (for 𝑛 > 2) other than 𝑝1. 

Collecting the exponentials from the Bergman kernels and from the measure 𝑑𝜇𝛼
2𝑛 we obtain  

(𝐵𝛼
2𝑓)(𝑥, 𝑧) = ∫ 𝑓(𝑦, �̅�)𝑒−𝛼(𝑦−𝑥)·(�̅�−�̅�) (

𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

. 

After the change of variables 𝑦 ⟼ 𝑦 + 𝑧 we get  

∫ 𝑓(𝑦 + 𝑧, �̅� + 𝑧̅)𝑒𝛼(𝑥−𝑧)·�̅�𝑒−𝛼|𝑦|
2
(
𝛼

𝜋
) 𝑑𝜆(𝑦)

ℂ𝑛
= (𝑃𝛼𝑓𝑧)(𝑥 − 𝑧), 

(𝑓𝑧(𝑦, �̅�): = 𝑓(𝑦 + 𝑧, �̅� + 𝑧̅)). 
Thus the Berezin transform of two arguments can be reduced to a computation of the Bergman 

projection. Since any Bergman projection is a function from the Fock space, that is entire and square-

integrable, we must have    

(𝑃𝛼𝑓𝑧)(𝑥 − 𝑧) =∑
((𝑥 − 𝑧) · 𝜕𝑡)

𝑘

𝑘!

∞

𝑘=0

(𝑃𝛼𝑓𝑧)(𝑡)|𝑡=0, 

where 𝜕𝑡: = (
1

2
(
𝜕

𝜕𝑡1
1 − 𝑖

𝜕

𝜕𝑡2
1) , . . . ,

1

2
(
𝜕

𝜕𝑡1
𝑛 − 𝑖

𝜕

𝜕𝑡2
𝑛)) and the series converges absolutely for any 𝑥 − 𝑧. 

But  

(𝑥 − 𝑧) · 𝜕𝑡(𝑃𝛼𝑓𝑧)(𝑡) = ∫ 𝑓𝑧(𝑦, �̅�)(𝑥 − 𝑧) · 𝜕𝑡𝑒
𝛼𝑡·�̅�𝑑𝜇𝛼

2𝑛(𝑦, �̅�)
ℂ𝑛

  

= ∫ 𝑓𝑧(𝑦, �̅�)𝛼(𝑥 − 𝑧) · �̅�𝑒
𝛼𝑡·�̅�𝑒−𝛼𝑦·�̅� (

𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

 

 = ∫ 𝑓𝑧(𝑦, �̅�)(−(𝑥 − 𝑧) · 𝜕𝑦)𝑒
𝛼𝑡·�̅�𝑒−𝛼𝑦·�̅� (

𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

 

 = ∫ ((𝑥 − 𝑧) · 𝜕𝑦𝑓𝑧) (𝑦, �̅�)𝑒
𝛼𝑡·�̅�𝑒−𝛼𝑦·�̅� (

𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

 

 = (𝑃𝛼(𝑥 − 𝑧) · 𝜕1𝑓𝑧) (𝑡), 
the penultimate equality follows from Stokes’ theorem (the boundary term being obviously zero) and 

𝜕1 stands for the (holomorphic) derivative with respect to the first argument. By repeated application 

of this procedure we get  

(𝑃𝛼𝑓𝑧)(𝑥 − 𝑧) =∑(𝑃𝛼
((𝑥 − 𝑧) · 𝜕1)

𝑘

𝑘!
𝑓𝑧)

∞

𝑘=0

(0) = (𝑃𝛼∑
((𝑥 − 𝑧) · 𝜕1)

𝑘

𝑘!
𝑓𝑧

∞

𝑘=0

) (0). 

We can switch the order of both operations since the sums are in fact finite. Wethus obtain  

∫ ∑
((𝑥 − 𝑧) · 𝜕1)

𝑘

𝑘!
𝑓𝑧

∞

𝑘=0

(𝑦, �̅�)𝑒−𝛼𝑦·�̅� (
𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

  

= ∫ 𝑓(𝑦 + 𝑥, �̅� + 𝑧̅)𝑒−𝛼𝑦·�̅� (
𝛼

𝜋
)
𝑛

𝑑𝜆(𝑦)
ℂ𝑛

. 

Finally, the last integral is nothing else than (𝐵𝛼𝑓𝑥,𝑧)(0), i.e. the (usual) Berezin trans-form of the 

function 𝑓𝑥,𝑧(𝑦, �̅�): = 𝑓(𝑥 + 𝑦, 𝑧̅ + �̅�) at the point 0, whose asymptotic expansion is known to be of 

the form(17).   

It is quite difficult to guess in advance, what the point 𝑣 that should be the limit of 𝐵𝛼
2 as 𝛼 → ∞ looks 

like, even though it is fairly straightforward to compute it, since if the property (25) is to hold, wemust 

have  
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𝑡 · 𝑣 = lim
𝛼→∞

(𝐵𝛼
2(𝑡 · 𝑦))(𝑥, 𝑧) = lim

𝛼→∞
∫ 𝑡 · 𝑦

𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦)

𝑅𝛼(𝑥, 𝑧)
𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

. 

Applying Stokes’ theorem gives  

∫ (𝑡 · 𝑦)𝑔(𝑦)𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
=
1

2𝛼
 ∫ 𝑡 · 𝛻𝑔(𝑦) 𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

, 

so that  

∫ 𝑡 · 𝑦
𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦)

𝑅𝛼(𝑥, 𝑧)
𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

=
1

2𝛼
∫ 𝑡 · ∇

𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦)

𝑅𝛼(𝑥, 𝑧)
𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

 

=
1

2𝛼

1

𝑅𝛼(𝑥, 𝑧)
∫ (𝑅𝛼(𝑧, 𝑦)𝑡 · 𝛻𝑦𝑅𝛼(𝑥, 𝑦) + 𝑅𝛼(𝑥, 𝑦)𝑡 · 𝛻𝑦𝑅𝛼(𝑧, 𝑦)) 𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

. 

Since 𝛥𝑅𝛼 = 0, the last expression is, due to the reproducing property, equal to  
1

2𝛼

𝑡 · 𝛻𝑧𝑅𝛼(𝑥, 𝑧) + 𝑡 · 𝛻𝑥𝑅𝛼(𝑧, 𝑥)

𝑅𝛼(𝑥, 𝑧)
. 

Thus, representing the Bergman kernel by the hypergeometric function (21), we have  

(𝐵𝛼
2(𝑡 · 𝑦))(𝑥, 𝑧)  =

Φ2 (
−

𝑏 + 1;
𝑏 + 1    𝑏

−
 ;  𝛼𝑢, 𝛼�̅�)

Φ2 (
−
𝑏; 
𝑏    𝑏
−
; 𝛼𝑢, 𝛼�̅�)

𝑡 · 𝛻𝑥 + 𝑡 · 𝛻𝑧
2

𝑢  

                                     +
Φ2(

−
𝑏+1;

𝑏    𝑏+1
−

 ; 𝛼𝑢,𝛼�̅�)

Φ2(
−
𝑏; 
𝑏    𝑏
−
;𝛼𝑢,𝛼�̅�)

𝑡·𝛻𝑥+𝑡·𝛻𝑧

2
�̅�.                                       (26)                                 

Therefore it is clear that, to get any further, we need to understand the limiting behavior of the Φ2 

function. 

In even dimensions (that is when 𝑏 ∈ ℕ0) this is not difficult, since applying the famous 

transformation formula for the Φ2 function   

Φ2 (
−
𝑐 ;
𝑏1   𝑏2
−

; 𝑥, 𝑦) = 𝑒𝑥Φ2 (
−
𝑐 ;
𝑐 − 𝑏1 − 𝑏2    𝑏2

−
;−𝑥, 𝑦 − 𝑥) , 

we can represent Φ2 as a linear combination of 𝐹1
 
1 as follows  

Φ2 (
−
𝑏; 
𝑏    𝑏
−
; 𝛼𝑢, 𝛼�̅�) = 𝑒𝛼𝑢Φ2 (

−
𝑏; 
−𝑏    𝑏
−

;−𝛼𝑢, 𝛼(�̅� − 𝑢))  

= 𝑒𝛼𝑢 ∑
(−𝑏)𝑗(𝑏)𝑘

(𝑏)𝑗+𝑘

 (−𝛼𝑢)𝑗(𝛼(�̅� − 𝑢))𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

  

= 𝑒𝛼𝑢∑
(−𝑏)𝑗
(𝑏)𝑗

(−𝛼𝑢)𝑗

𝑗!

𝑏

𝑗=0

𝐹1
 
1 (

𝑏
𝑏 + 𝑗

; 𝛼(�̅� − 𝑢)) , 

where  

𝐹1
 
1 (
𝑎
𝑐
;  𝑥) ∶= ∑

(𝑎)𝑘
(𝑐)𝑘

𝑥𝑘

𝑘!

∞

𝑘=0

 

is the confluent hypergeometric function whose asymptotic behavior for large argument is known to 

be[335]:  

                      𝐹1
 
1 (
𝑎
𝑐
;  𝑥) ∼ 𝑒𝑥

𝛤(𝑐)

𝛤(𝑎)
𝑥𝑎−𝑏 + (−𝑥)−𝑎

𝛤(𝑐)

𝛤(𝑐−𝑎)
     (|𝑥| → ∞).                    (27)              

Hence, as𝛼 → ∞ for 𝑢 ∉ ℝ,  

Φ2 (
−
𝑏; 
𝑏    𝑏
−
; 𝛼𝑢, 𝛼�̅�) 

∼ 𝑒𝛼𝑢∑
(−𝑏)𝑗
(𝑏)𝑗

(−𝛼𝑢)𝑗

𝑗!

𝑏

𝑗=0

(𝑒𝛼(�̅�−𝑢)
𝛤(𝑏 + 𝑗)

𝛤(𝑏)
(𝛼(�̅� − 𝑢))

−𝑗
+ (𝛼(𝑢 − �̅�))

−𝑏 𝛤(𝑏 + 𝑗)

Γ(𝑗)
) 

∼ 𝑒𝛼�̅�∑
(−𝑏)𝑗

𝑗!
(
𝑢

𝑢 − �̅�
)
𝑗

𝑏

𝑗=0

+ 𝑒𝛼𝑢
(−𝑏)𝑏
(𝑏)𝑏

(−𝛼𝑢)𝑏

𝑏!
(𝛼(𝑢 − �̅�))−𝑏

𝛤(2𝑏)

𝛤(𝑏)
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 = 𝑒𝛼�̅��̅�𝑏(�̅� − 𝑢)−𝑏 + 𝑒𝛼𝑢𝑢𝑏(𝑢 − �̅�)−𝑏. 
With the same technique it is easy to see that   

 Φ2 (
−

𝑏 + 1; 
𝑏 + 1    𝑏

−
; 𝛼𝑢, 𝛼�̅�) ∼ 𝑒𝛼�̅�𝑏𝛼−1�̅�𝑏(�̅� − 𝑢)−𝑏−1 + 𝑒𝛼𝑢𝑢𝑏(𝑢 − �̅�)−𝑏 , 

          (𝛼 → ∞),  
and therefore  

Φ2 (
−

𝑏 + 1; 
𝑏 + 1    𝑏

−
; 𝛼𝑢, 𝛼�̅�)

Φ2 (
−
𝑏; 
𝑏   𝑏
−
; 𝛼𝑢, 𝛼�̅�)

∼
𝑒𝛼�̅�𝑏𝛼−1�̅�𝑏(�̅� − 𝑢)−𝑏−1 + 𝑒𝛼𝑢𝑢𝑏(𝑢 − �̅�)−𝑏

𝑒𝛼�̅��̅�𝑏(�̅� − 𝑢)−𝑏 + 𝑒𝛼𝑢𝑢𝑏(𝑢 − �̅�)−𝑏
, 

                                                                     (𝛼 → ∞).                                                       (28)                                                                                          
Clearly, the limit as 𝛼 → ∞ does not exist since the fraction oscillates. This means that there is no 

such point 𝑣 at least in even dimensions and one cannot hold high hopes for the odd-dimensional case 

either, since, usually, it is the more complicated one. 

Fortunately, this analysis is valid only for 𝛼 ∈ ℝ. Nothing, however, prevents us from considering 

the complex values of 𝛼. The Berezin transform of two arguments (24) of a polynomial 𝑝, that is 

(𝐵𝛼
2𝑝)(𝑥, 𝑧), is always defined in the half-plane 𝑅𝑒 𝛼 > 0 except for zeros of 𝑅𝛼(𝑥, 𝑧), where it has 

poles – the Bergman kernel (as a function of 𝛼) is an entire function (as seen from the representation 

by the Φ2 function which is entire in both arguments). 

Consider therefore 𝛼 ∈ ℂ satisfying 𝑅𝑒(𝛼𝑢) > 𝑅𝑒(𝛼�̅�), 𝑅𝑒(𝛼𝑢) > 0, thus forcing the factor 𝑒𝛼𝑢 to 

dominate. We claim that this is possible for any fixed non-collinear 𝑥, 𝑧. Indeed, let  

𝛼 = |𝛼|𝑒𝑖𝜃 , 𝑐𝑜𝑠(𝜃) > 0, 𝑢 = |𝑥| |𝑧| 𝑒𝑖𝜑 , 𝑠𝑖𝑛𝜑 > 0. 
The condition 𝑐𝑜𝑠𝜃 > 0 is necessary for the integral (10) to converge. The assumption 𝑠𝑖𝑛𝜑 > 0 

holds by the definition of 𝑢 = 𝑥 ∙ 𝑧 + 𝑖√|𝑥|2|𝑧|2 − (𝑥 ∙ 𝑧)2, where the positive sign of √· is taken. 

Thus, we get  

𝑅𝑒(𝛼𝑢) > 𝑅𝑒(𝛼�̅�)          𝑅𝑒(𝛼𝑢) > 0  
𝑐𝑜𝑠(𝜃 + 𝜑) > 𝑐𝑜𝑠(𝜃 − 𝜑)        𝑐𝑜𝑠(𝜃 + 𝜑) > 0  

𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠𝜑 − 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜑 > 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠𝜑 + 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛 𝜑     𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜑 > 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛𝜑  
2 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜑 < 0  

            for  𝑠𝑖𝑛𝜑 > 0         𝑠𝑖𝑛𝜃 < 0             𝑡𝑎𝑛𝜃 < 𝑐𝑜𝑡𝑔𝜑.  
The inequality 𝑠𝑖𝑛𝜃 < 0 can always be satisfied and implies that we can make the factor 𝑡𝑎𝑛𝜃 

arbitrary large and negative letting 𝑐𝑜𝑠𝜃 closer and closer to 0. So for any finite value of the quantity 

𝑐𝑜𝑡𝑔𝜑 (that is for 𝑠𝑖𝑛𝜑 ≠ 0, i.e. for 𝑥, 𝑧 non-collinear), the inequality 𝑡𝑎𝑛𝜃 < 𝑐𝑜𝑡𝑔𝜑 can be 

satisfied.  

Using(28)with 𝑅𝑒(𝛼𝑢) > 𝑅𝑒(𝛼�̅�), 𝑅𝑒(𝛼𝑢) > 0, wetherefore have (in even dimen-sions):  

Φ2 (
−

𝑏 + 1; 
𝑏 + 1    𝑏

−
; 𝛼𝑢, 𝛼�̅�)

Φ2 (
−
𝑏; 
𝑏   𝑏
−
; 𝛼𝑢, 𝛼�̅�)

→ 1, |𝛼| → ∞, 

and  

Φ2 (
−

𝑏 + 1; 
𝑏    𝑏 + 1

−
; 𝛼𝑢, 𝛼�̅�)

Φ2 (
−
𝑏; 
𝑏   𝑏
−
; 𝛼𝑢, 𝛼�̅�)

→ 0, |𝛼| → ∞. 

Substituting this into (26) we finally obtain  

𝑡 · 𝑣 =  lim
|𝛼|→∞

(𝐵𝛼
2𝑡 · 𝑦)(𝑥, 𝑧) =

𝑡 · 𝛻𝑥 + 𝑡 · 𝛻𝑧
2

𝑢 = 𝑡 · 𝑥
𝑢 − |𝑧|2

𝑢 − �̅�
+ 𝑡 · 𝑧 

𝑢 − |𝑥|2

𝑢 − �̅�
. 

In other words,  

                                               𝑣 = 𝑥
𝑢−|𝑧|2

𝑢−�̅�
+ 𝑧 

𝑢−|𝑥|2

𝑢−�̅�
.                                                      (29)                                     

Straightforward computations also reveal a few interesting properties of the point 𝑣: 
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{
 
 

 
 𝑅𝑒 𝑣 =

𝑥+𝑧

2
,             𝑣 · �̅� = |𝑥 + 𝑧|2 + |𝑥 − 𝑧|2,             𝑣 · 𝑣 = 𝑢𝑥,𝑧 ,

𝑥 · 𝑣 =
|𝑥|2+𝑢𝑥,𝑧

2
,   (𝑥 · 𝑣)(𝑥 · 𝑣̅̅ ̅̅ ̅̅ ) =

|𝑥|2|𝑥+𝑧|2

4
,   �̅�𝑥,𝑧(𝑥 · 𝑣) = |𝑥|

2(𝑧 · 𝑣̅̅ ̅̅ ̅̅ ),

(𝑥 · 𝑣)(𝑧 · 𝑣) =
𝑢𝑥,𝑧|𝑥+𝑧|

2

4
,        �̅�𝑥,𝑣 = |𝑥|

2,                 𝑢𝑥,𝑣 = 𝑢𝑥,𝑧 = 𝑢𝑣,𝑣.

                 (30)          

Obviously, the vector 𝑣  (like the number 𝑢𝑥,𝑧) is symmetric with respect to inter-changing 𝑥 and 𝑧, 

so that to every property in (30)there is its corresponding mirror counterpart with 𝑥 and 𝑧 replaced. 

We prove that the point 𝑣 in(29)is the desired point – that is the property (25) is valid for a reasonably 

general set of admissible functions 𝑓 in all dimension 𝑛 > 1. However, since the point 𝑣 is a complex 

vector, a necessary condition for the property (25) to hold is that the expression 𝑓(𝑣) makes sense, 

i.e.we must be able to evaluate the function 𝑓 on complex numbers which in turn means that the 

function 𝑓 must be analytic. Since the modulus of the point 𝑣 can assume arbitrarily large values (due 

to(30)), the associated radius of convergence must be +∞ and the function 𝑓 must be entire. We 

should therefore consider entire functions. For this reason, aswe have already pointed out above, we 

restrict ourselves to polynomials. 

Aside from the function (22), we will actually make use of its slightly more general variant that will 

be needed:  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;  𝑥, 𝑦) := ∑
(𝑎)𝑗+𝑘(𝑏1)𝑗(𝑏2)𝑘
(𝑐1)𝑘+1(𝑐2)𝑗+𝑘

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

, 

defined for every 𝑥, 𝑦 ∈ ℂ (here we will use the symbol Φ2 for both functions – this can result in no 

serious confusion). Both functions are in fact special instances of the generalized Kampé de Fériet 

function: 𝐹1:0;0
0:1;1(𝑥, 𝑦) and 𝐹2:0;0

1:1;1(𝑥, 𝑦), respectively (see[336]). 

The following integral representation, then, is close to standard: 

Lemma (6.2.5) [329]: For any 𝑏1 > 0, 𝑏2 > 0, 𝑎 > 0 and 𝛾:= 𝑐1 + 𝑐2 − 𝑏1 − 𝑏2 − 𝑎 > 0,  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;  𝑥, 𝑦) =
𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)𝛤(𝛾)
 

 ∬ 𝑡𝑏1−1𝑠𝑏2−1(1 − 𝑡 − 𝑠)𝛾−1 𝐹2
 
1 (
𝑐1 − 𝑎 𝑐2 −  𝑎

𝛾 ; 1 − 𝑡 − 𝑠) 𝑒𝑡𝑥+𝑠𝑦𝑑𝑡𝑑𝑠

𝑡,𝑠≥0
𝑡+𝑠≤1

 

. 

Proof: Expanding the exponential in the integrand into the Taylor series we get  

𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)𝛤(𝛾)
∑

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

∫  ∫ 𝑡𝑏1+𝑗−1𝑠𝑏2+𝑘−1(1 − 𝑡 − 𝑠)𝛾−1 𝐹2
 
1 (
𝑐1 − 𝑎 𝑐2 −  𝑎

𝛾 ; 1 − 𝑡

1−𝑠

0

1

0

− 𝑠) 𝑑𝑡 𝑑𝑠 . 

Performing a series of changes of variables 𝑡 ⟼ (1 − 𝑠)𝑡, 𝑠 ⟼ 1 – 𝑠 and 𝑡 ⟼ 1 − 𝑡 brings us to  

𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)𝛤(𝛾)
∑

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

∫  ∫ 𝑡𝛾−1(1 − 𝑡)𝑏1+𝑗−1𝑠𝑏1+𝑗+𝛾+1(1

1

0

1

0

− 𝑠)𝑏2+𝑘−1 𝐹2
 
1 (
𝑐1 − 𝑎 𝑐2 −  𝑎

𝛾 ; 𝑡𝑠) 𝑑𝑡 𝑑𝑠. 

Finally, by repeated application of the known integral representation for the 𝐹3
 
2 function that holds 

for any 𝐵1, 𝐵2, 𝐶1, and for 𝐶 > 𝐴 > 0: 

∫ 𝑡𝐴−1(1 − 𝑡)𝐶−𝐴−1 𝐹2
 
1 (
𝐵1 𝐵2
𝐶1

; 𝑡𝑥) 𝑑𝑡
1

0

 =
𝛤(𝐶 − 𝐴)𝛤(𝐴)

𝛤(𝐶)
𝐹3
 
2 (
𝐴    𝐵1  𝐵2
𝐶    𝐶1

; 𝑥) , 

first with respect to 𝑡 and then with respect to 𝑠, we obtain after some cancellations  

𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)
∑

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

 
𝛤(𝑏1 + 𝑗)𝛤(𝑏2 + 𝑘)

𝛤(𝑏2 + 𝑘 + 𝑏1 + 𝑗 + 𝛾)
𝐹2
 
1 (

𝑐1 − 𝑎    𝑐2 − 𝑎 
𝑏2 + 𝑘 + 𝑏1 + 𝑗 + 𝛾

; 1) . 

This can be simplified, due to the famous summation formula for Gauss’s hypergeometric function  
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𝐹2
 
1 (
𝐴    𝐵
𝐶
; 1) =

𝛤(𝐶)𝛤(𝐶 − 𝐵 − 𝐴)

𝛤(𝐶 − 𝐵)𝛤(𝐶 − 𝐴)
, 

valid for 𝐶 > 𝐴 + 𝐵, 𝐶 ≠ 0, −1,−2,… , to the form (remember that 𝛾 = 𝑐1 + 𝑐2 − 𝑎 − 𝑏1 − 𝑏2)  

𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)
∑

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

 
𝛤(𝑏1 + 𝑗)𝛤(𝑏2 + 𝑘)Γ(𝑎 + 𝑗 + 𝑘)

𝛤(𝑐2 + 𝑗 + 𝑘)Γ(𝑐2 + 𝑗 + 𝑘)
= ∑

𝑥𝑗𝑦𝑘

𝑗! 𝑘!

∞

𝑗,𝑘=0

 
(𝑎)𝑗+𝑘(𝑏1)𝑗(𝑏2)𝑘

(𝑐1)𝑗+𝑘(𝑐2)𝑗+𝑘
, 

which concludes the proof.  

The integral representation as it stands would be, however, of little use in our case, since in Eq.(26)we 

have 𝛾 = −𝑏 which is never positive. Fortunately, wecan exploit the known contiguous relations 

between hypergeometric functions to fix that problem by raising one of the lower indices as follows  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;𝑥, 𝑦) =
𝑐1 + 𝑡𝜕𝑡
𝑐1

Φ2 (
𝑎

𝑐1 + 1    𝑐2
;  
𝑏1   𝑏2
−

; 𝑡𝑥, 𝑡𝑦)|
𝑡=1

 

or, generally for 𝑘 ∈ ℕ,  

  Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

; 𝑥, 𝑦) =
(𝑐1+𝑡𝜕𝑡)𝑘

(𝑐1)𝑘
Φ2 (

𝑎
𝑐1 + 𝑘    𝑐2

;  
𝑏1   𝑏2
−

; 𝑡𝑥, 𝑡𝑦)|
𝑡=1
.        (31)        

The validity of this claim can be checked easily by expanding the Φ2 function into its Taylor series 

and noticing that the operator (𝑐1 + 𝑡𝜕𝑡)𝑘 acts on powers of 𝑡, its eigenfunctions actually, inthe 

following  

way:  

(𝑐1 + 𝑡𝜕𝑡)𝑘
(𝑐1)𝑘

𝑡𝑗

(𝑐1 + 𝑘)𝑗
=
(𝑐1 + 𝑗)𝑘
(𝑐1)𝑘+𝑗

𝑡𝑗 =
𝑡𝑗

(𝑐1)𝑗
, ∀𝑗 ∈ ℤ, 

which is what is needed. (Here we use the fact that to the Pochhammer symbol, the relation (𝑐)𝑗+𝑘 =

(𝑐)𝑗(𝑐 + 𝑗)𝑘 applies.) Using the Newton series expansion of polynomials we can bring the operator 

into the form  

(𝑐1 + 𝑡𝜕𝑡)𝑘
(𝑐1)𝑘

= ∑𝛥𝑥
𝑙
(𝑐1 + 𝑥)𝑘
(𝑐1)𝑘

|
𝑥=0

𝑘

𝑙=0

(
𝑡𝜕𝑡
𝑙
) =∑

𝛥𝑥
𝑙

𝑙!

(𝑐1 + 𝑥)𝑘
(𝑐1)𝑘

|

𝑥=0

𝑘

𝑙=0

𝑡𝑙𝜕𝑡
𝑙 , 

where 𝛥𝑥 is the forward difference operator 𝛥𝑥𝑓(𝑥):= 𝑓(𝑥 + 1) − 𝑓(𝑥) (not to be confused with the 

Laplace operator 𝛥). Substituting this into (31) and writing the Φ2 function in the integral form we 

arrive at 

Lemma (6.2.6) [329]: For 𝑘 ∈ ℕ, 𝛾: = 𝑐1 + 𝑐2 − 𝑏1 − 𝑏2 − 𝑎 with 𝑘 > −𝛾, and 𝑏1 > 0, 𝑏2 > 0, 𝑎 >
0,  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;𝑥, 𝑦)

=∑
𝛥𝜉
𝑙

𝑙!

(𝑐1 + 𝜉)𝑘
(𝑐1)𝑘

|

𝜉=0

𝑘

𝑙=0

 
𝛤(𝑐1 + 𝑘)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)𝛤(𝛾 + 𝑘)
 ∬ 𝑡𝑏1−1𝑠𝑏2−1(1 − 𝑡

𝑡,𝑠≥0
𝑡+𝑠≤1

 

− 𝑠)𝛾+𝑘−1 𝐹2
 
1 (
𝑐1 + 𝑘 − 𝑎 𝑐2 −  𝑎

𝛾 + 𝑘
; 1 − 𝑡 − 𝑠) (𝑡𝑥 + 𝑠𝑦)𝑙𝑒𝑡𝑥+𝑠𝑦𝑑𝑡𝑑𝑠. 

Wedeals with the asymptotic behavior of the previously defined Φ2 functions which will ultimately 

prove helpful in due course as suggested by the fore-going discussion. First of all, we shall prove one 

auxiliary result treating the asymptotic behavior of certain integrals of the Laplace-type: 

Lemma (6.2.7) [329]: Let 𝛺 ⊂ ℝ2 be the set {(𝑢, 𝑣) ∈ ℝ2: 𝑢, 𝑣 ≥ 0;  𝑢 + 𝑣 ≤ 1} and 𝑓 be 𝐶∞ near 

(𝑢, 𝑣) = 𝟎. Suppose that 𝛼 > 0, 𝑥, 𝑦 ∈ ℂ with 𝑅𝑒𝑥 > 0 and 𝑅𝑒𝑦 > 0. Then for every 𝑛 ∈ ℤ, 𝑛 ≥ 0, 

and every 𝑏1, 𝑏2 ∈ ℂ with 𝑅𝑒𝑏1 > 0 and 𝑅𝑒𝑏2 > 0 such that 𝑢𝑏1−1𝑣𝑏2−1𝑓(𝑢, 𝑣) ∈ 𝐿1(𝛺) we have  

∬ 𝑢𝑏1−1𝑣𝑏2−1𝑓(𝑢, 𝑣)𝑒−𝛼(𝑥𝑢+𝑦𝑣)𝑑𝑢𝑑𝑣𝑢,𝑣≥0
𝑢+𝑣≤1

 
=

𝐷(𝑗,𝑘)𝑓(𝟎)

𝑗!𝑘!

𝛤(𝑏1+𝑗)

(𝛼𝑥)𝑏1+𝑗

𝛤(𝑏2+𝑘)

(𝛼𝑦)𝑏2+𝑘
+

𝑂 (
1

𝛼𝑏1+𝑏2+𝑛+1
),                                                                            (32)                                                                           

as 𝛼 → ∞.   

Proof: Fix an arbitrary 𝛿 > 0 and put 𝑐 ≔ min (𝑅𝑒𝑥, 𝑅𝑒𝑦). Then  
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|∬  𝑢𝑏1−1𝑣𝑏2−1𝑓(𝑢, 𝑣)𝑒−𝛼(𝑥𝑢+𝑦𝑣)𝑑𝑣 𝑑𝑢𝑢,𝑣≥0
𝛿≤𝑢+𝑣≤1

| ≤ 𝑀𝑒−𝛼𝑐𝛿 = 𝑜(𝛼−𝑛), ∀𝑛 ∈ ℕ,      (33)            

as 𝛼 → ∞. Expand the function 𝑓(𝑢, 𝑣) into its Taylor series:  

                               𝑓(𝑢, 𝑣) = ∑
𝐷(𝑗,𝑘)𝑓(𝟎)

𝑗!𝑘!
𝑢𝑗𝑣𝑘𝑛

𝑗+𝑘=0 + 𝑟𝑛(𝑢, 𝑣),                                    (34)                            

where 𝑟𝑛(𝑢, 𝑣) = 𝑂(‖(𝑢, 𝑣)‖
𝑛+1), (𝑢, 𝑣) → 𝟎 (here we take ‖(𝑢, 𝑣)‖:= |𝑢| + |𝑣|). Then 

 || ∬  𝑢𝑏1−1𝑣𝑏2−1𝑟𝑛(𝑢, 𝑣)𝑒
−𝛼(𝑥𝑢+𝑦𝑣)𝑑𝑣 𝑑𝑢

𝑢,𝑣≥0
𝑢+𝑣≤𝛿

|| 

≤ 𝑀 · ∬  𝑢𝑅𝑒 𝑏1−1𝑣𝑅𝑒 𝑏2−1(𝑢, 𝑣)𝑛+1𝑒−𝛼𝑐(𝑢+𝑣)𝑑𝑣 𝑑𝑢

𝑢,𝑣≥0
𝑢+𝑣≤𝛿

 

                   ≤ 𝑀 ·∬  𝑢𝑅𝑒 𝑏1−1𝑣𝑅𝑒 𝑏2−1(𝑢, 𝑣)𝑛+1𝑒−𝛼𝑐(𝑢+𝑣)𝑑𝑣 𝑑𝑢
𝑢,𝑣≥0

.                          (35)            

Using the binomial theorem shows that the last integral in (35) is 𝑂(𝛼−𝑏1−𝑏2−𝑛−1). Finally, upon 

splitting the domain of integration in the integral  

                              ∬  𝑢𝑏1−1+𝑗𝑣𝑏2−1+𝑘𝑒−𝛼(𝑥𝑢+𝑦𝑣)𝑑𝑣 𝑑𝑢𝑢,𝑣≥0
𝑢+𝑣≥𝛿

                                          (36)                          

into three parts 𝛺1, 𝛺2 and 𝛺3 defined respectively by the conditions 𝛺1 = {(𝑢, 𝑣) ∈ ℝ
2: 𝑢 ≥ 0;  𝑣 ≥

𝛿}, 𝛺2 = {(𝑢, 𝑣) ∈ ℝ
2: 𝑢 ≥ 𝛿; 0 ≤ 𝑣 ≤ 𝛿}, 𝛺3 = {(𝑢, 𝑣) ∈ ℝ

2: 0 ≤ 𝑢 ≤ 𝛿; 𝛿 − 𝑢 ≤ 𝑣 ≤ 𝛿} and 

estimating the three resulting integrals separately in an obvious manner, itis readily seen that(36)is 

𝑜(𝛼−𝑛) for every 𝑛 ∈ ℕ as 𝛼 → ∞. Since  

∬  𝑢𝑝−1𝑣𝑞−1𝑒−𝛼(𝑥𝑢+𝑦𝑣)𝑑𝑣 𝑑𝑢

𝑢,𝑣≥0

=
𝛤(𝑝)𝛤(𝑞)

(𝛼𝑥)𝑝(𝛼𝑦)𝑞
 , 

the proof is complete.  

We are now ready to prove the following result treating the asymptotic behavior of the generalized 

Φ2 function: 

Lemma (6.2.8) [329]: For 𝑥, 𝑦 ∈ ℂ, 𝑥 ≠ 𝑦, and for αsuch that 𝑅𝑒(𝛼𝑥) > 𝑅𝑒(𝛼𝑦), 𝑅𝑒(𝛼𝑥) > 0, the 

following asymptotic expansion holds uniformly for 𝑎, 𝑏1, 𝑏2, 𝑐1, 𝑐2 ∈ [𝜀1, 𝜀2], for every 0 < 𝜀1 < 𝜀2:  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;𝛼𝑥, 𝛼𝑦)  

=
𝛤(𝑐1)𝛤(𝑐2)𝑒

𝛼𝑥

𝛤(𝑏1)𝛤(𝑎)
𝑥𝑎+𝑏1+𝑏2−𝑐1−𝑐2(𝑥 − 𝑦)−𝑏2𝛼𝑎+𝑏1+𝑏2−𝑐1−𝑐2(1 + 𝑂(𝛼 − 1)), 

as |𝛼| → ∞. 

Proof: Making the change of variables ((1 − 𝑠 − 𝑡), 𝑠) =: (𝑢, 𝑣) in the integral representation from 

Lemma(6.2.6) we have  

Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;𝛼𝑥, 𝛼𝑦) =∑
𝛥𝜉
𝑙

𝑙!

(𝑐1 + 𝜉)𝑘
(𝑐1)𝑘

|

𝜉=0

𝑘

𝑙=0

 
𝛤(𝑐1 + 𝑘)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)𝛤(𝑎)𝛤(𝛾 + 𝑘)
 𝛼𝑙𝑒𝛼𝑥 

∬ (1 − 𝑢 − 𝑣)𝑏1−1𝑣𝑏2−1𝑢𝛾+𝑘−1 𝐹2
 
1 (
𝑐1 + 𝑘 − 𝑎 𝑐2 −  𝑎

𝛾 + 𝑘
; 𝑢)

𝑢,𝑣≥0
𝑢+𝑣≤1

 

 

 ((1 − 𝑢 − 𝑣)𝑥 + 𝑣𝑦)𝑙𝑒−𝑣𝛼(𝑥−𝑦)−𝑢𝛼𝑥𝑑𝑢 𝑑𝑣, 
where 𝛾:= 𝑐1 + 𝑐2 − 𝑎 − 𝑏1 − 𝑏2 and 𝑘 is an integer such that 𝛾 + 𝑘 > 0. We can use with 

𝑓(𝑢, 𝑣): = (1 − 𝑢 − 𝑣)𝑏1−1 𝐹2
 
1 (
𝑐1 + 𝑘 − 𝑎 𝑐2 −  𝑎

𝛾 + 𝑘
; 𝑢) ((1 − 𝑢 − 𝑣)𝑥 + 𝑣𝑦)𝑙. Since 𝛼 is a complex 

number, the limit in the lemma is taken through |𝛼|. The 𝑒𝑖𝜃part of 𝛼 is added to the numbers 𝑥 and 

𝑥 − 𝑦. The condition of Lemma(6.2.7): 𝑅𝑒𝑥 > 0 and 𝑅𝑒𝑦 > 0 reads exactly 𝑅𝑒(𝛼𝑥) >
𝑅𝑒(𝛼𝑦), 𝑅𝑒(𝛼𝑥) > 0. Noting that the 𝑓00 coefficient in the Taylor expansion 𝑓(𝑢, 𝑣) =
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∑ 𝑓𝑗𝑘𝑢
𝑗𝑣𝑘𝑗,𝑘 is equal to 𝑥𝑙, and that the principal behavior is obtained when 𝑙 = 𝑘, the result follows. 

The uniformity of the expansion on the compact interval [𝜀1, 𝜀2] is obvious. 

Finally, it is an easy exercise to prove that in case the arguments of the second Φ2 function are the 

same, the function itself collapses into the 𝐹2
 
2function,  

                              Φ2 (
𝑎

𝑐1  𝑐2
;  
𝑏1   𝑏2
−

;𝑥, 𝑥) = 𝐹2
 
2 (
𝑎   𝑏1 + 𝑏2
𝑐1    𝑐2

  ; 𝑥),                          (37)                               

whose asymptotic behavior for large values of the argument 𝑥 ∈ ℝ is well-known, (see[17,14]):    

   Lemma (6.2.9) [329]: For 𝑥 > 0, we have  

𝐹2
 
2 (
 𝑏1   𝑏2
𝑐1    𝑐2

 ; 𝑥)  =
𝛤(𝑐1)𝛤(𝑐2)

𝛤(𝑏1)𝛤(𝑏2)
𝑥𝑏1+𝑏2−𝑐1−𝑐2𝑒𝑥(1 + 𝑂(𝑥−1)), 

as 𝑥 → ∞. 

Direct calculations of the Bergman projection or, even worse, the Berezin transform even of a 

polynomial produce formulas of such length that it would be difficult not only to write them down 

but it would also overwhelm the reader with details that are unessential to the main argument. We 

will, therefore, represent our result by an operator calculus devised to simplify matters substantially 

while keeping the full rigor at the same time. 

We define a function of an operator standardly by means of Taylor series representations. From now 

on, to avoid any convergence related questions, we will have to limit ourselves to the case of 

polynomials, i.e. we shall consider only expressions of the form  

𝑝(𝛻𝑥)𝑓(𝑥): = ∑
(𝛻𝑥𝛻𝑡)

𝑘

𝑘!
𝑝(𝑡)𝑓(𝑥)|

𝑡=0

𝑚

𝑘=0

, 

where 𝑝 is a polynomial of degree 𝑚 and 𝑓 is a smooth function. 

Or, dually,  

𝑓(𝛻𝑥)𝑝(𝑥): = ∑
(𝛻𝑥𝛻𝑡)

𝑘

𝑘!
𝑝(𝑥)𝑓(𝑡)|

𝑡=0

𝑚

𝑘=0

, 

where 𝑝, 𝑓 are as above. That is, a smooth function acting on a polynomial produces only finitely 

many terms. 

The sort of duality alluded to above is spelled out in the following obvious relationship:  

                                 𝑝(𝛻𝑥)𝑓(𝑥)|𝑥=0 = 𝑓(𝛻𝑥)𝑝(𝑥)|𝑥=0.                                                    (38)                                   
An important case is when 𝑓(𝑦) = 𝑒𝑡·𝑦. The corresponding operator is obviously acting like a 

translation  

                                       𝑒𝑡·𝛻𝑥𝑝(𝑥) = 𝑝(𝑥 + 𝑡).                                                                 (39)                                                
On the other hand,  

                                     𝑝(𝛻𝑥)𝑒
𝑡·𝑥𝑓(𝑥) = 𝑒𝑡·𝑥𝑝(𝑡 + 𝛻𝑥)𝑓(𝑥),                                        (40)                             

which is a direct consequence of the Leibniz rule. It can be proved as follows:  

𝑝(𝛻𝑥)𝑒
𝑡·𝑥𝑓(𝑥) = 𝑒𝑡·𝑥𝑒−𝑡·𝑥𝑝(𝛻𝑥)𝑒

𝑡·𝑥𝑓(𝑥) = 𝑒𝑡·𝑥𝑝(𝑒−𝑡·𝑥𝛻𝑥𝑒
𝑡·𝑥)𝑓(𝑥) 

= 𝑒𝑡·𝑥𝑝(𝑡 + 𝛻𝑥)𝑓(𝑥). 
Notice also that in order to compute the expression  

𝑒𝑡·𝛻𝑥𝑝(𝑥), 
we do not need the full Taylor series expansion of the exponential, only finitely many terms suffice. 

More specifically, if the polynomial is of degree 𝑚, then only the first 𝑚 + 1terms are needed. To 

stress this fact we define  

                                           𝑒𝑚
𝑥 : = ∑

𝑥𝑘

𝑘!

𝑚
𝑘=0  .                                                                         (41)                                               

Obviously, it holds  

𝑒𝑚
𝑡·𝛻𝑥𝑝(𝑥) = 𝑝(𝑥 + 𝑡)         𝑑𝑒𝑔𝑝 ≤ 𝑚. 

Nor in the dual view is the full expansion of the exponential needed. Thus in the equality  

                                    𝑝(𝛻𝑡)𝑒
𝑡·𝑥|𝑡=0 = 𝑝(𝑥),                                                                     (42)                                         

only the truncation 𝑒𝑚
𝑥  will in fact do:  

𝑝(𝛻𝑡)𝑒𝑚
𝑡·𝑥|𝑡=0 = 𝑝(𝑥)          𝑑𝑒𝑔𝑝 ≤ 𝑚. 
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In all these cases we are thus dealing with polynomial operators acting on polynomials and no 

convergence related questions arise. 

With the aid of the polynomial 𝑒𝑚
𝑥  we can also represent Taylor series truncations of other functions 

than just exponentials by means of the following equality  

𝑒𝑚
𝜕𝑠𝑓(𝑠𝑥)|

𝑠=0
=∑

(𝑥 · 𝛻)𝑗

𝑗!
𝑓(0)

𝑚

𝑗=0

. 

To proceed any further, wehave to formulate the following important lemma: 

Lemma (6.2.10) [329]: Let 𝑞𝑀(𝑠) be a polynomial of degree 𝑀, 𝑝(𝑠) an analytic function with the 

radius of convergence strictly greater than 1and let 𝑝𝑚(𝑠) be its Taylor series truncation  

𝑝𝑚(𝑠):= ∑
𝑝(𝑘)(0)

𝑘!
𝑠𝑘

𝑚

𝑘=0

.  

Then, as 𝑚 → ∞,  

𝑒𝑚
𝜕𝑠𝑞𝑀(𝑠)𝑝𝑚(𝑠)|𝑠=0 → 𝑞𝑀(1)𝑝(1). 

Proof: The claim stems from the fact that for 𝑚 > 𝑘 it holds  

𝑒𝑚
𝜕𝑠𝑠𝑘𝑝𝑚(𝑠)|𝑠=0 = 𝑝𝑚−𝑘(1). 

Thus  

𝑒𝑚
𝜕𝑠𝑞𝑀(𝑠)𝑝𝑚(𝑠)|𝑠=0 =∑𝑞𝑘𝑒𝑚

𝜕𝑠𝑠𝑘𝑝𝑚(𝑠)|𝑠=0

𝑀

𝑘=0

=∑𝑞𝑘𝑝𝑚−𝑘(1)

𝑀

𝑘=0

→∑𝑞𝑘𝑝(1)

𝑀

𝑘=0

 

= 𝑞𝑀(1)𝑝(1). 
It is important to understand that the polynomial 𝑒𝑚

𝑥  behaves much like the ordinary exponential 

function 𝑒𝑥 if we dispense with any concern about terms of order higher than 𝑚. For example it is an 

easy exercise to prove that  

                                        𝑒𝑚
𝑥+𝑦

= 𝑒𝑚
𝑥 𝑒𝑚

𝑦
− ∑

𝑥𝑗𝑦𝑘

𝑗!𝑘!
𝑗+𝑘>𝑚
𝑗,𝑘≤𝑚

 .                                                   (43)                                               

The operator case is exactly the one when no concerns about higher order terms are raised and we 

have  

𝑒𝑚
𝑥·𝛻𝑦+𝑡·𝛻𝑦

𝑝(𝑦) = 𝑒𝑚
𝑥·𝛻𝑦

𝑒𝑚
𝑡·𝛻𝑦
 𝑝(𝑦)          𝑑𝑒𝑔𝑝 ≤ 𝑚, 

since  

  ∑
(𝑥 · 𝛻𝑦)𝑗(𝑡 · 𝛻𝑦)

𝑘

𝑗! 𝑘!
 𝑝(𝑦)

𝑗+𝑘>𝑚
𝑗,𝑘≤𝑚

=  0. 

Also dually,  

𝑝(𝛻𝑡)𝑒𝑚
𝑥·𝑡+𝑦·𝑡

|
𝑡=0

= 𝑝(𝛻𝑡)𝑒𝑚
𝑥·𝑡𝑒𝑚

𝑦·𝑡
|
𝑡=0
. 

Another property that closely resembles one of the properties of the exponential function is the 

formula for the derivative 

(𝑒𝑚
𝑎𝑥)′ = 𝑎𝑒𝑚−1

𝑎𝑥 . 
(It is worth mentioning that the notation is slightly abused here, because 𝑒𝑚

𝑥  is no power of anything. 

But it is convenient for our purposes and not quite an unprecedented usage since the usual exponential 

function in complex domain is also written as a power although it is defined by infinite series.) 

The second operator we will use enables us to deal with the so-called Pochhammer symbols  

(𝑎)𝑘: = 𝑎(𝑎 + 1)(𝑎 + 2) . . . (𝑎 + 𝑘 − 1) =
𝛤(𝑎 + 𝑘)

𝛤(𝑎)
. 

The following representation obviously holds:  

(𝑎)𝑘 = (𝑎𝜏𝑎)
𝑘1,

1

(𝑎)𝑘
= (

1

𝑎
𝜏𝑎)

𝑘

1      ∀𝑘 ∈ ℕ0: = ℕ ∪ {0}, 

where 𝜏𝑎 is the translation operator of 𝑎 by 1:  

𝜏𝑎𝑓(𝑎): = 𝑓(𝑎 + 1). 
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This gives us a useful tool for recovering some of the properties of the Pochhammer symbols. For 

example:  

(𝑎)𝑘+𝑙 = (𝑎𝜏𝑎)
𝑘+𝑙1 = (𝑎𝜏𝑎)

𝑘(𝑎𝜏𝑎)
𝑙1 = (𝑎)𝑘𝜏𝑎

𝑘(𝑎)𝑙𝜏𝑎
𝑙 1 = (𝑎)𝑘(𝑎 + 𝑘)𝑙 , 

or 

(𝑎)𝑘 = (𝑎𝜏𝑎)
𝑘1 = (

𝛤(𝑎 + 1)

𝛤(𝑎)
𝜏𝑎)

𝑘

1 = (
1

𝛤(𝑎)
𝜏𝑎𝛤(𝑎))

𝑘

1 =
1

𝛤(𝑎)
𝜏𝑎
𝑘𝛤(𝑎)  =

𝛤(𝑎 + 𝑘)

𝛤(𝑎)
. 

Again, we will consider mainly polynomials of such operators, i.e. expressions of the form  

𝑝(𝑎𝜏𝑎𝑥)1 =∑
(𝑎)𝑘
𝑘!

(𝑥 · 𝛻)𝑘𝑝(0)

𝑚

𝑘=0

, 𝑝 (
1

𝑎
𝜏𝑎𝑥) 1 =∑

1

(𝑎)𝑘𝑘!
(𝑥 · 𝛻)𝑘𝑝(0)

𝑚

𝑘=0

, 

that can be written, inlight of the preceding equality, as  

𝑝(𝑎𝜏𝑎𝑥)1 =
1

𝛤(𝑎)
𝑝(𝑥𝜏𝑎)𝛤(𝑎), 𝑝 (

1

𝑎
𝜏𝑎𝑥) 1 = 𝛤(𝑎)𝑝(𝑥𝜏𝑎) 

1

𝛤(𝑎)
, 

a fact that will be important later on. 

Notice that the two operator calculi can be combined. It is not hard to see, for example, that the 

translation operator combined with the operator for the Pochhammer symbol still pretty much 

behaves like the translation operator, only turning the polynomial on which it acts into an operator 

itself. The following formula is true: 

                                𝑒𝑚
𝑎𝜏𝑎𝑡·𝛻𝑥𝑝(𝑥) = 𝑝(𝑥 + 𝑎𝜏𝑎𝑡)1,         𝑑𝑒𝑔 𝑝 ≤ 𝑚.                                 (44)                  

To prove this equality amounts only to writing the corresponding Taylor series around 0 and 𝑥 for 

the left hand side and the right hand side, respectively, and observe that they are indeed the same. 

We start by computing the Bergman projection of a polynomial. The equality (42) tells us that any 

polynomial can be obtained by differentiation of the generating function 𝑒𝑡·𝑦. Hence it is sufficient 

to compute the Bergman projection of the exponential function. 

Lemma (6.2.11) [329]:  The generating function of the harmonic Bergman projection is given by the 

formula  

                     (𝑃𝑎𝑒
𝑡·𝑦)(𝑥): = 𝑅𝛼(𝑥, 𝑦)𝑒

𝑡·𝑦𝑑𝜇𝛼
𝑛(𝑦) = 𝑒

|𝑡|2

4𝛼𝑅1
2

(𝑥, 𝑡).                                       (45)                      

Proof:  Recall that  

𝑑𝜇𝛼
𝑛(𝑦) = 𝑒−𝛼|𝑦|

2
𝑐𝛼𝑑

𝑛𝑦. 
Completing the square in the integral we get  

(𝑃𝛼𝑒
𝑡·𝑦)(𝑥) = 𝑒

|𝑡|2

4𝛼 ∫ 𝑅𝛼(𝑥, 𝑦)𝑒
−𝛼|𝑦−

𝑡
2𝛼
|
2

𝑐𝛼𝑑
𝑛𝑦

ℝ𝑛
, 

which upon the change of variables 𝑦 → 𝑦 +
𝑡

2𝛼
 gets the form  

𝑒
|𝑡|2

4𝛼 ∫ 𝑅𝛼 (𝑥, 𝑦 +
𝑡

2𝛼
)𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

. 

By the mean value property of harmonic functions this can be further simplified to  

𝑒
|𝑡|2

4𝛼 𝑅𝛼 (𝑥,
𝑡

2𝛼
) , 

which is what we want, since 

𝑅𝛼 (𝑥,
𝑡

2𝛼
) = 𝑅1

2
(𝑥, 𝑡). 

The Bergman projection of any polynomial can now be obtained by differentiation under the integral 

sign as follows:  

(𝑃𝛼𝑝)(𝑥) = ∫ 𝑅𝛼(𝑥, 𝑦)𝑝(𝑦)𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
= ∫ 𝑅𝛼(𝑥, 𝑦)𝑝(𝛻𝑡)𝑒

𝑡·𝑦|𝑡=0𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
  

= 𝑝(𝛻𝑡)∫ 𝑅𝛼(𝑥, 𝑦)𝑒
𝑡·𝑦𝑑𝜇𝛼

𝑛(𝑦)|𝑡=0
ℝ𝑛

= 𝑝(𝛻𝑡)𝑒
|𝑡|2

4𝛼 𝑅1
2
(𝑥, 𝑡)|𝑡=0. 

Or equivalently: 
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𝑒
𝛥
4𝛼𝑅1

2
(𝑥, 𝛻)𝑝(𝑡)|𝑡=0, 

as it is clear from the duality property(38). Asalready before, neither in this case do we need the full 

Taylor series expansion to compute the last expression and we can write  

(𝑃𝛼𝑝)(𝑥) = 𝑒
𝛥
4𝛼𝑅1

2

𝑚(𝑥, 𝛻)𝑝(𝑡)|𝑡=0, 𝑚 ≥ 𝑑𝑒𝑔 𝑝, 

where  

                  𝑅𝛼
𝑚(𝑥, 𝑦): = ∑

(𝑏)𝑗(𝑏)𝑘

(𝑏)𝑗+𝑘
𝑗+𝑘≤𝑚

(𝛼𝑢𝑥,𝑦)
𝑗
(𝛼�̅�𝑥,𝑦)

𝑘

 𝑗!𝑘!
 ,                                         (46)                                   

and 𝑒𝑚
𝑥  is the truncated exponential (41). This formula indeed covers the terms of the Bergman kernel 

up to order 𝑚 since  

𝑅𝛼(𝑥, 𝑦) = Φ2 (
−
𝑏; 
𝑏   𝑏
−
; 𝛼𝑢𝑥𝑦 , 𝛼�̅�𝑥,𝑦) : = ∑

(𝑏)𝑗(𝑏)𝑘
(𝑏)𝑗+𝑘

∞

𝑗+𝑘=0

(𝛼𝑢𝑥,𝑦)
𝑗(𝛼�̅�𝑥,𝑦)

𝑘

 𝑗! 𝑘!
, 

and 𝑢, �̅� are homogeneous of degree 1. 

To understand the action of the Bergman projection more clearly we have to find a more useful 

representation of the Bergman kernel. We achieve this by means of the following general lemma: 

Lemma (6.2.12) [329]: Let 𝛽, 𝛾 be non-negative integers, then  

𝑒𝑚
𝜕𝑠𝑒𝑚

2𝑠𝛼𝑥·𝑦𝐵𝐶′−𝑠2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2
1|𝑠=0  = Φ2

𝑚 (
−

𝑏 + 𝛾 ;
𝑏 + 𝛽   𝑏 + 𝛽

−
; 𝛼𝑢𝑥𝑦 , 𝛼�̅�𝑥,𝑦) , 

where  

Φ2
𝑚 (

−
𝑏 + 𝛾 ;

𝑏 + 𝛽   𝑏 + 𝛽
−

; 𝛼𝑢𝑥𝑦 , 𝛼�̅�𝑥,𝑦) ∶= ∑
(𝑏 + 𝛽)𝑗(𝑏 + 𝛽)𝑘
(𝑏 + 𝛾)𝑗+𝑘

𝑗+𝑘≤𝑚

(𝛼𝑢𝑥,𝑦)
𝑗(𝛼�̅�𝑥,𝑦)

𝑘

 𝑗! 𝑘!
 

and 𝐵 and 𝐶′ are operators defined by the relations 

𝐵:= (𝑏 + 𝛽)𝜏𝛽, 𝐶′: =
1

𝑏 + 𝛾
𝜏𝛾. 

Proof: By definition  

𝑒𝑚
2𝑠𝛼𝑥·𝑦𝐵𝐶′−𝑠2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2

1 =∑
1

𝑗!
(2𝑠𝛼𝑥 · 𝑦𝐵𝐶′ − 𝑠2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2)𝑗1

𝑚

𝑗=0

 

∑
(𝑏 + 𝛽)𝑗

𝑗!
(2𝑠𝛼𝑥 · 𝑦𝐶′ − 𝑠2𝛼2|𝑥|2|𝑦|2𝐶′2)𝑗1

𝑚

𝑗=0

, 

expanding the parenthesis in the sum we get 

∑
(𝑏 + 𝛽)𝑗
(𝑗 − 𝑘)! 𝑘!

(2𝑥 ∙ 𝑦)𝑗−𝑘(−|𝑥|2|𝑦|2)𝑘𝑠𝑗+𝑘𝛼𝑗+𝑘𝐶′𝑗+𝑘1

𝑘≤𝑗≤𝑚

 

= ∑
(𝑏 + 𝛽)𝑗

(𝑏 + 𝛾)𝑗+𝑘(𝑗 − 𝑘)! 𝑘!
(2𝑥 ∙ 𝑦)𝑗−𝑘(−|𝑥|2|𝑦|2)𝑘𝑠𝑗+𝑘𝛼𝑗+𝑘

𝑘≤𝑗≤𝑚

. 

This is the same as  

∑
(𝑏 + 𝛽)𝑗+𝑘

(𝑏 + 𝛾)𝑗+2𝑘𝑗! 𝑘!
(2𝑥 ∙ 𝑦)𝑗(−|𝑥|2|𝑦|2)𝑘𝑠𝑗+2𝑘𝛼𝑗+2𝑘

𝑗+𝑘≤𝑚

. 

Applying the operator 𝑒𝑚
𝜕𝑠|

𝑠=0
will reduce the number of terms from 𝑗 + 𝑘 ≤ 𝑚 to 𝑗 + 2𝑘 ≤ 𝑚: 

∑
(𝑏 + 𝛽)𝑗+𝑘

(𝑏 + 𝛾)𝑗+2𝑘𝑗! 𝑘!
(2𝑥 ∙ 𝑦)𝑗(−|𝑥|2|𝑦|2)𝑘𝛼𝑗+2𝑘

𝑗+2𝑘≤𝑚

. 

Using now the fact that 2𝑥 · 𝑦 = 𝑢 + �̅� and |𝑥|2|𝑦|2 = 𝑢�̅� (here we use uinstead of 𝑢𝑥,𝑦 for the sake 

of brevity), we get 
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∑
(𝑏 + 𝛽)𝑗+𝑘

(𝑏 + 𝛾)𝑗+2𝑘𝑗! 𝑘!
(𝑢 + �̅�)𝑗(−𝑢�̅�)𝑘𝛼𝑗+2𝑘

𝑗+2𝑘≤𝑚

. 

Expanding the term (𝑢 + �̅�)𝑗 leaves us with  

            ∑ ∑
(𝑏+𝛽)𝑗+𝑘

(𝑏+𝛾)𝑗+2𝑘(𝑗−𝑙)!𝑘!𝑙!
(𝛼𝑢)𝑗−𝑙+𝑘(𝛼�̅�)𝑙+𝑘(−1)𝑘

𝑗
𝑙=0𝑗+2𝑘≤𝑚                                  (47)                    

            = ∑
𝐵(𝑚−𝑗−2𝑘)(𝑏+𝛽)𝑗+𝑘

(𝑏+𝛾)𝑗+2𝑘(𝑗−𝑙)!𝑘!𝑙!
(𝛼𝑢)𝑗−𝑙+𝑘(𝛼�̅�)𝑙+𝑘(−1)𝑘∞

𝑗,𝑘,𝑙=0 .                                    (48)                       

The last series (48) is the same as the next to the last one (47), even if written in slightly different 

notation: the bounds on the summation indices, written explicitly in the latter, are only implicit in the 

former, corresponding to those values of  𝑗, 𝑘, 𝑙 for which the summand function is non-zero. The fact 

that this is the case for only finitely many indices is ensured by the presence of factors such as 
1

(𝑗−𝑙)!
 

which is equal to 0 for 𝑗 < 𝑙, since the reciprocal value of the factorial is defined to be 0 on negative 

integers, and the factor 𝐻(𝑚 − 𝑗 − 2𝑘)which is just the Heaviside step function defined as 𝐻(𝑡) =
1for 𝑡 ≥ 0 and 𝐻(𝑡) = 0 otherwise. 
In this form it is easier to handle changes of variables, since we do not have to worry about explicit 

bounds on the indices (formally they are still the same) while focusing on the change of the summands 

only. We let 𝑗 ↣ 𝑗 + 𝑙 − 𝑘 in(34)and then 𝑙 ↣ 𝑙 − 𝑘 to get 

∑
𝐻(𝑚 − 𝑗 − 𝑙)(𝑏 + 𝛽)𝑗+𝑙−𝑘
(𝑏 + 𝛾)𝑗+𝑙(𝑗 − 𝑘)! 𝑘! (𝑙 − 𝑘)!

(𝛼𝑢)𝑗(𝛼�̅�)𝑙(−1)𝑘
∞

𝑗,𝑘,𝑙=0

 

                              = ∑
(𝑏+𝛽)𝑗+𝑙

(𝑏+𝛾)𝑗+𝑙𝑗!𝑙!
(𝛼𝑢)𝑗(𝛼�̅�)𝑙𝑗+𝑙≤𝑚 ∑

(𝑏+𝛽+𝑗+𝑙)−𝑘𝑗!𝑙!(−1)
𝑘

(𝑗−𝑘)!𝑘!(𝑙−𝑘)!

∞
𝑘=0 .              (49)         

Since  

(𝑏 + 𝛽 + 𝑗 + 𝑙)−𝑘 =
(−1)𝑘

(1 − 𝑏 − 𝛽 − 𝑗 − 𝑙)𝑘
,         

𝑗! 𝑙!

(𝑗 − 𝑘)! (𝑙 − 𝑘)!
= (−𝑗)𝑘(−𝑙)𝑘 

the second series in (49) can be rewritten as  

∑
(−𝑗)𝑘(−𝑙)𝑘

(1 − 𝑏 − 𝛽 − 𝑗 − 𝑙)𝑘𝑘!

∞

𝑘=0

= 𝐹12
 (

−𝑗 −𝑙
1 − 𝑏 − 𝛽 − 𝑗 − 𝑙

; 1) =
(1 − 𝑏 − 𝛽 − 𝑗)𝑗

(1 − 𝑏 − 𝛽 − 𝑗 − 𝑙)𝑗
 

=
(𝑏 + 𝛽)𝑙

(𝑏 + 𝛽 + 𝑗)𝑙
. 

In the last line above we have used the so-called Chu–Vandermonde identity for the Gauss 

hypergeometric function  

𝐹12
 (−𝑛 𝑏

𝑐
; 1) =

(𝑐 − 𝑏)𝑛
(𝑐)𝑛

, 

valid for all 𝑛 = 0,1,2, …[348]. Substituting this result into (49) and taking into account that 

(𝑏 + 𝛽)𝑗+𝑙 = (𝑏 + 𝛽)𝑗(𝑏 + 𝛽 + 𝑗)𝑙 completes the proof. 

The preceding lemma applies to the Bergman kernel as a special case with 𝛽, 𝛾 = 0: 

                   𝑅𝛼
𝑚(𝑥, 𝑦) = 𝑒𝑚

𝜕𝑠𝑒𝑚
2𝑠𝛼𝑥·𝑦𝐵𝐶′−𝑠2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2

1|𝑠,𝛾,𝛽=0,                                  (50)                 

so that the operator  
𝑅1
2

𝑚(𝑥, 𝛻𝑦)𝑝(𝑦),     deg 𝑝 = 𝑚, 

can be understood as follows  

𝑅1
2

𝑚(𝑥, 𝛻𝑦)𝑝(𝑦) = 𝑅1
2

2𝑚(𝑥, 𝛻𝑦)𝑝(𝑦) = 𝑒2𝑚
𝜕𝑠 𝑒2𝑚

𝑠𝑥∙∇𝑦𝐵𝐶
′−𝑠2

1

4
|𝑥|2∆𝑦𝐵𝐶

′2

𝑝(𝑦)|𝑠,𝛾,𝛽=0.         (51)    

Now the second 𝑒2𝑚-term in (51) may be replaced by 𝑒𝑚, since, due to the presence of the operator 

𝛻𝑦, no more than 𝑚 derivatives is needed:  

𝑒2𝑚
𝜕𝑠 𝑒𝑚

𝑠𝑥∙𝛻𝑦𝐵𝐶
′−𝑠2

1
4
|𝑥|2∆𝑦𝐵𝐶

′2

𝑝(𝑦)|𝑠,𝛾,𝛽=0. 
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But then the first 𝑒2𝑚-term is acting like a translation since the polynomial on the right (in 𝑠) is of 

order 2𝑚, hence we get just  

𝑅1
2

𝑚(𝑥, 𝛻𝑦)𝑝(𝑦) = 𝑒𝑚
𝑥∙𝛻𝑦𝐵𝐶

′−
1
4
|𝑥|2∆𝑦𝐵𝐶

′2

𝑝(𝑦)|𝛾,𝛽=0. 

We shall summarize the obtained results in the following lemma: 

Lemma (6.2.13) [329]: (Harmonic Bergman projection formula). The Bergman projection of a poly-

nomial takes the form  

(𝑃𝛼𝑝)(𝑥) = 𝑒𝑚

∆𝑦
4𝛼𝑒𝑚

𝑥∙𝛻𝑦𝐵𝐶
′−
1
4
|𝑥|2∆𝑦𝐵𝐶

′2

𝑝(𝑦)|𝑦,𝛾,𝛽=0,         𝑚 ≥ deg 𝑝, 

where  

𝐵 ≔ (𝑏 + 𝛽)𝜏𝛽      𝐶
′ ≔

1

𝑏 + 𝛾
𝜏𝛾. 

For example, when the polynomial 𝑝(𝑦) happens to be harmonic, all 𝛥𝑦 ’𝑠 naturally vanish and we 

are left with  

(𝑃𝛼𝑝)(𝑥) = 𝑒𝑚
𝑥∙𝛻𝑦𝐵𝐶

′

𝑝(𝑦)|𝑦,𝛾,𝛽=0 = 𝑒
𝑥∙𝛻𝑦𝑝(𝑦)|𝑦=0 = 𝑝(𝑦 + 𝑥)|𝑦=0 = 𝑝(𝑥), 

(𝛻𝑦𝑝 = 0), 

thus recovering the reproducing property. The second equality is due to the fact that (𝐵𝐶′)𝑘|𝛽,𝛾=0 =
(𝑏)𝑘

(𝑏)𝑘
𝜏𝛽
𝑘𝜏𝛾
𝑘|
𝛽,𝛾=0

= 𝜏𝛽
𝑘𝜏𝛾
𝑘|
𝛽,𝛾=0

 for every 𝑘 and since nothing on the right of these operators depends on 

𝛽 or 𝛾, their action produces no difference and 𝐵𝐶′ can thus be viewed to be equal to 1, i.e. 𝐵𝐶′ = 1. 

If so, no truncation of the exponential function is needed and the resulting operator is acting like a 

translation by (39).  
One corollary of  Lemma (6.2.12) that will be important in the collinear case is the following 

Corollary (6.2.14) [329]: For every 𝑚 ∈ ℕ it holds  

𝐵𝛼
𝑚(𝑥, 𝑦 + 𝜎𝑥) = 𝑒𝑚

𝜕𝑠𝑒𝑚
2𝑠𝛼𝑥·𝑦𝐵𝐶′−𝑠2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2

𝐹1
𝑚

1
 (

2𝑏 + 𝛾
𝑏 + 𝛾

; 𝛼𝑠𝜎|𝑥|2) |
𝑠,𝛽,𝛾=0

, 

where 𝐵 and 𝐶′ are operators defined as  

𝐵 ≔ (𝑏 + 𝛽)𝜏𝛽 ,           𝐶
′ ≔

1

𝑏 + 𝛾
𝜏𝛾, 

and  

𝐹1
𝑚

1
 (

𝑎
𝑐
; 𝑥) ≔∑

(𝑎)𝑘
(𝑐)𝑘

𝑥𝑘

𝑘!

𝑚

𝑘=0

. 

Proof: From the definition of the Bergman kernel we have  

𝐵𝛼
𝑚(𝑥, 𝑦 + 𝜎𝑥) = Φ2

𝑚 (
−
𝑏;
𝑏 𝑏
−
; 𝛼𝑢𝑥,𝑦+𝜎𝑥 , 𝛼�̅�𝑥,𝑦+𝜎𝑥), 

where as usual 𝑢𝑥,𝑦 ≔ 𝑥 ∙ 𝑦 + 𝑖√|𝑥|2|𝑦|2 − (𝑥 ∙ 𝑦)2. It is an easy computation to show that  

𝑢𝑥,𝑦+𝜎𝑥 = 𝑢𝑥,𝑦 + 𝜎|𝑥|
2, 

so that we obtain  

𝛷2
𝑚 (
−
𝑏;
𝑏 𝑏
−
; 𝛼𝑢𝑥,𝑦 + 𝛼𝜎|𝑥|

2, 𝛼�̅�𝑥,𝑦 + 𝛼𝜎|𝑥|
2) 

𝑒𝑚
𝜕𝑠𝛷2 (

−
𝑏;
𝑏 𝑏
−
; 𝑠𝛼𝑢𝑥,𝑦 + 𝑠𝛼𝜎|𝑥|

2, 𝑠𝛼�̅�𝑥,𝑦 + 𝑠𝛼𝜎|𝑥|
2) |

𝑠=0
. 

Now we expand the 𝛷2function into its Taylor series around the point (𝑠𝛼𝜎|𝑥|2, 𝑠𝛼𝜎|𝑥|2):  

𝑒𝑚
𝜕𝑠𝛷2 (

−
𝑏;
𝑏 𝑏
−
; 𝑠𝛼𝑢𝑥,𝑦 + 𝑠𝛼𝜎|𝑥|

2, 𝑠𝛼�̅�𝑥,𝑦 + 𝑠𝛼𝜎|𝑥|
2) |

𝑠=0
 

𝑒𝑚
𝜕𝑠∑

(𝑏)𝑗(𝑏)𝑘
(𝑏)𝑗+𝑘

(𝛼𝑢𝑠)𝑗(𝛼�̅�𝑠)𝑘

𝑗! 𝑘!
𝑗,𝑘

𝛷2 (
−

𝑏 + 𝑗 + 𝑘;
𝑏 + 𝑗 𝑏 + 𝑘

−
; 𝑠𝛼𝜎|𝑥|2, 𝑠𝛼𝜎|𝑥|2) |

𝑠=0
 

= 𝑒𝑚
𝜕𝑠∑

(𝑏)𝑗(𝑏)𝑘
(𝑏)𝑗+𝑘

(𝛼𝑢𝑠)𝑗(𝛼�̅�𝑠)𝑘

𝑗! 𝑘!
𝑗,𝑘

𝐹11
 (

2𝑏 + 𝑗 + 𝑘
𝑏 + 𝑗 + 𝑘

; 𝑠𝛼𝜎|𝑥|2) |
𝑠=0
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= 𝑒𝑚
𝜕𝑠 ∑

(𝑏)𝑗(𝑏)𝑘
(𝑏)𝑗+𝑘

(𝛼𝑢𝑠)𝑗(𝛼�̅�𝑠)𝑘

𝑗! 𝑘!
𝑗+𝑘≤𝑚

𝐹1
𝑚

1
 (

2𝑏 + 𝑗 + 𝑘
𝑏 + 𝑗 + 𝑘

; 𝑠𝛼𝜎|𝑥|2) |
𝑠=0

 

= 𝑒𝑚
𝜕𝑠𝛷2 (

−
𝑏;
𝑏 𝑏
−
; 𝑠𝛼𝑢𝜏𝜀 , 𝑠𝛼�̅�𝜏𝜀) 𝐹1

𝑚
1
 (

2𝑏 + 𝜀
𝑏 + 𝜀

; 𝑠𝛼𝜎|𝑥|2) |
𝑠,𝜀=0

. 

We represent 𝛷2
𝑚 as in Lemma (6.2.12) and get  

𝑒𝑚
𝜕𝑠𝑒𝑚

𝜕𝑠2𝑒𝑚
2𝑠𝑠2𝑥·𝑦𝐵𝐶

′𝜏𝜀−𝑠
2𝑠2
2𝛼2|𝑥|2|𝑦|2𝐵𝐶′2𝜏𝜀

2

𝐹1
𝑚

1
 (

2𝑏 + 𝜀
𝑏 + 𝜀

; 𝑠𝛼𝜎|𝑥|2) |
𝑠,𝑠2,𝜀,𝛽,𝛾=0

. 

This almost looks like what we need except for the additional variables 𝜀 and 𝑠2. However, both of 

them can be discarded due to the following analysis: from the perspective of the variables 𝑠, 𝑠2, weare 

dealing with the expression  

𝑒𝑚
𝜕𝑠𝑒𝑚

𝜕𝑠2𝑓(𝑠𝑠2, 𝑠) |𝑠,𝑠2=0, 

where 𝑓(𝑥, 𝑦) is a polynomial in both arguments. It is clear that the expression  

𝑒𝑚
𝜕𝑠𝑓(𝑠𝑠2, 𝑠) |𝑠=0 

alone is a polynomial in 𝑠2 of order not exceeding m(since the order of that expression as a polynomial 

in sis at most 𝑚 and 𝑠2 appears only as a multiple of 𝑠), so that the operator 𝑒𝑚
𝜕𝑠2  is acting like a 

translation and the variable 𝑠2 can indeed be cast away. 

Along similar lines we can get rid of the variable 𝜀, since in the operator 𝐶′ there is the operator 𝜏𝛾 

which appears in the same order as 𝜏𝜀 and can thus replace the action of 𝜏𝜀. Fom the perspective of 

variables 𝛾, 𝜀, weare dealing with  

                              𝑓 (
1

𝑏+𝛾
𝜏𝛾𝜏𝜀) 𝐹1

𝑚
1
 (

2𝑏 + 𝜀
𝑏 + 𝜀

; 𝑠𝛼𝜎|𝑥|2) |
𝑠,𝛾=0

,                                          (52)                    

where, again, 𝑓 is a polynomial whose exact form is unimportant. Clearly the expression in (52) is 

the same as 

𝑓 (
1

𝑏 + 𝛾
𝜏𝛾) 𝐹1

𝑚
1
 (

2𝑏 + 𝛾
𝑏 + 𝛾

; 𝑠𝛼𝜎|𝑥|2) |
𝛾=0

. 

The main objective is the proof of the following theorem that will become central to the proof of the 

two main theorems (Theorem(6.2.3)and Theorem(6.2.4)). 

Theorem (6.2.15) [329]: Let 𝑝𝑀 be a polynomial of degree 𝑀. If 𝑥 and 𝑧 are non-collinear, then the 

integral  

                                    ∫ 𝑝𝑀(𝑦)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦) 𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
                                          (53)                                

admits the following representation:  

∫ 𝑝𝑀(𝑦)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦) 𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
  

= 𝑒
𝛥𝑡
4𝛼  𝑒𝑥·𝛻𝑡𝐵𝐶

′−
1
4
|𝑥|2𝛥𝑡𝐵𝐶

′2   

𝑒
𝛼𝑧·𝛻𝑡(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−𝛼2|𝑧|2(
𝛥𝑡
4
(
1
𝛼
−|𝑥|2𝐵𝐶′2)

2
+𝛻𝑡·𝑥(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵𝐶′)𝐵2𝐶2

′2

𝑝𝑀(𝑡) 

      Φ2 ( 
𝑏 + 𝛽

𝑏 + 𝛾   𝑏 + 𝛾2
;  
𝑏 + 𝛽2   𝑏 + 𝛽2

−
; 𝛼𝑢𝑧,𝑥 , 𝛼�̅�𝑧,𝑥)|

𝑡,𝛽,𝛽2,𝛾,𝛾2=0

.                             (54)                   

In case 𝑧 = 𝜉𝑥, there is the representation  

∫ 𝑝𝑀(𝑦)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(𝑧, 𝑦) 𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
  

= 𝑒
𝛥𝑡
4𝛼  𝑒𝑥·𝛻𝑡𝐵𝐶

′−
1
4
|𝑥|2𝛥𝑡𝐵𝐶

′2   

𝑒𝛼𝜉𝑥·𝛻𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−
1
4
𝛼2𝜉2|𝑥|2𝛻𝑡(

1
𝛼
−|𝑥|2𝐵𝐶′2)

2
𝐵2𝐶2

′2

𝑝𝑀(𝑡) 

                                    F2
 
2 ( 
2𝑏 + 𝛾2     𝑏 + 𝛽
𝑏 + 𝛾2   𝑏 + 𝛾

; 𝛼𝜉|𝑥|2)|
𝑡,𝛽,𝛽2,𝛾,𝛾2=0

, 

where 𝑢𝑧,𝑥 = 𝑧 · 𝑥 + 𝑖√|𝑧|
2|𝑥|2 − (𝑧 · 𝑥)2and the operators 𝐵, 𝐵2, 𝐶

′, 𝐶2
′  are defined as 
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𝐵 = (𝑏 + 𝛽)𝜏𝛽, 𝐵2 = (𝑏 + 𝛽2)𝜏𝛽2 , 𝐶′ =
1

𝑏 + 𝛾
𝜏𝛾, 𝐶2

′ =
1

𝑏 + 𝛾2
𝜏𝛾2 .  

Proof: At first we will compute a slightly different integral with one of the Bergman kernels, say 

𝑅𝛼(𝑧, 𝑦), replaced by its truncated Taylor series:  

                                ∫ 𝑝𝑀(𝑦)𝑅𝛼(𝑥, 𝑦)𝑅𝛼
𝑚(𝑧, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)  
ℝ𝑛

                                               (55)                         

At the end of the day we let 𝑚 → ∞. This will be the only limiting process involved. Everything else 

is done by purely algebraic means. 

Since the expression (55) can be understood as the Bergman projection of a polynomial of degree 

𝑚 +𝑀, we can apply Lemma (6.2.13) to obtain  

𝑒𝑚+𝑀

𝛥𝑦
4𝛼  𝑒𝑚+𝑀

𝑥·𝛻𝑦𝐵𝐶
′−
1
4
|𝑥|2𝛥𝑦𝐵𝐶

′2

𝑅𝛼
𝑚(𝑧, 𝑦)𝑝𝑀(𝑦)|𝑦,𝛽,𝛾=0. 

Now we replace the polynomial by the standard representation  

𝑝𝑀(𝑦) = 𝑝𝑀(𝛻𝑡)𝑒
𝑡·𝑦|𝑡=0, 

from which we get  

𝑝𝑀(𝛻𝑡)𝑒𝑚+𝑀

𝛥𝑦
4𝛼  𝑒𝑚+𝑀

𝑥·𝛻𝑦𝐵𝐶
′−
1
4
|𝑥|2𝛥𝑦𝐵𝐶

′2

𝑒𝑡∙𝑦𝑅𝛼
𝑚(𝑧, 𝑦)|𝑦,𝑡,𝛽,𝛾=0. 

The property of differential operators (40) enables us to rewrite this last expression into the following 

form (remember that 𝛥𝑦 = |𝛻𝑦|
2):  

𝑝𝑀(𝛻𝑡)𝑒𝑚+𝑀

|𝑡+𝛻𝑦|
2

4𝛼 𝑒𝑚+𝑀
𝑥·(𝛻𝑦+𝑡)𝐵𝐶

′−
1
4
|𝑥|2|𝑡+𝛥𝑦|

2
𝐵𝐶′2

𝑅𝛼
𝑚(𝑧, 𝑦)|𝑦,𝑡,𝛽,𝛾=0. 

Now, the truncated Bergman kernel is a harmonic polynomial – from the definition (46) we have 

𝑅𝛼
𝑚(𝑧, 𝑦) = 𝑒𝑚

𝜕𝑠𝑅𝛼(𝑠𝑧, 𝑦)|𝑠=0and 𝑅𝛼(𝑠𝑧, 𝑦)is a harmonic function. Therefore all the 𝛥’s again vanish, 

leaving us with  

    𝑝𝑀(𝛻𝑡)𝑒𝑚+𝑀

|𝑡|2+2𝑡·𝛻𝑦

4𝛼 𝑒𝑚+𝑀
𝑥·(𝛻𝑦+𝑡)𝐵𝐶

′−
1

4
|𝑥|2(|𝑡|2+2𝑡·𝛻𝑦)𝐵𝐶

′2

𝑅𝛼
𝑚(𝑧, 𝑦)|𝑦,𝑡,𝛽,𝛾=0.                     (56)                  

Now we split the operators in (56) into two parts – the one that contains 𝛻𝑦 and the other one that 

does not – as follows:  

𝑝𝑀(𝛻𝑡)𝑒𝑚+𝑀

|𝑡|2

4𝛼 𝑒𝑚+𝑀
𝑥·𝑡𝐵𝐶′−

1

4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑒𝑚+𝑀

𝑡·𝛻𝑦

4𝛼 𝑒𝑚+𝑀
𝑥·∇𝑦𝐵𝐶

′−
1

2
|𝑥|2𝑡∙∇𝑦𝐵𝐶

′2

 𝑅𝛼
𝑚(𝑧, 𝑦)|𝑦,𝑡,𝛽,𝛾=0.  (57)    

The last step is justified by the fact that terms (in 𝑡) of order higher than 𝑀 (let alone 𝑀 +𝑚) are 

killed by the factor 𝑝𝑀(𝛻𝑡)|𝑡=0 and terms (in 𝛻𝑦) of order higher than mdisappear when acting on 

𝑅𝛼
𝑚(𝑧, 𝑦).  

Observing that the exponential terms in (57) containing 𝛻𝑦 act like translation operators (see(44)), 

weget the expression(57)transformed into  

𝑝𝑀(𝛻𝑡)𝑒𝑚+𝑀

|𝑡|2

4𝛼 𝑒𝑚+𝑀
𝑥·𝑡𝐵𝐶′−

1

4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑅𝛼
𝑚 (𝑧,

𝑡

2𝛼
+ 𝑥𝐵𝐶′ −

1

2
|𝑥|2𝑡𝐵𝐶′2) 1|

𝑡,𝛽,𝛾=0
.          (58)    

We also note that having the exponential terms truncated up at order 𝑚 +𝑀 is in fact superfluous 

and that their order being 𝑀 is completely sufficient since the factor 𝑝𝑀(𝛻𝑡)|𝑡=0 makes all terms of 

order higher than 𝑀 disappear, so that(58) is in fact equal to:  

𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1

4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑅𝛼
𝑚 (𝑧,

𝑡

2𝛼
+ 𝑥𝐵𝐶′ −

1

2
|𝑥|2𝑡𝐵𝐶′2) 1|

𝑡,𝛽,𝛾=0
.            (59)      

The expression in (58)no longer depends on 𝑦 which suggests that we are almost done. To finish the 

proof we have to distinguish two cases in this place, depending on whether we are dealing with the 

collinear or the non-collinear case. 

Case 1. In the non-collinear case we use the representation(50):  

𝑅𝛼
𝑚 (𝑧,

𝑡

2
(
1

𝛼
− |𝑥|2𝐵𝐶′2) + 𝑥𝐵𝐶′)1  

= 𝑒𝑚
𝜕𝑠𝑒𝑚

2𝑠𝛼𝑧·(
𝑡

2
(
1

𝛼
−|𝑥|2𝐵𝐶′2)+𝑥𝐵𝐶′)𝐵2𝐶2

′−𝑠2𝛼2|𝑧|2|
𝑡

2
(
1

𝛼
−|𝑥|2𝐵𝐶′2)+𝑥𝐵𝐶′|

2
𝐵2𝐶2

′2

1|
𝑠,𝛽2,𝛾2=0

,    (60)   

where 𝐵2, 𝐶2
′  are operators defined as usual:  
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𝐵2: = (𝑏 + 𝛽2)𝜏𝛽2 , 𝐶2
′: =

1

𝑏 + 𝛾2
𝜏𝛾2 . 

Splitting again the terms in (60) into those that contain tand those that do not results in turning (60) 

into the form  

𝑒𝑚
𝜕𝑠𝑒𝑚

𝛼𝑠𝑧·𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−𝑠2𝛼2|𝑧|2(
|𝑡|2

4
(
1
𝛼
−|𝑥|2𝐵𝐶′2)

2
+𝑡·𝑥(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵𝐶′)𝐵2𝐶2

′ 2

  

             𝑒𝑚
2𝑠𝛼𝑧·𝑥𝐵𝐶′𝐵2𝐶2

′−𝑠2𝛼2|𝑧|2|𝑥|2(𝐵𝐶′)2𝐵2𝐶2
′2

1|
𝑠,𝛽2,𝛾2=0

.           (61)                                       

Once again, all terms in 𝑠 of order higher than 𝑚 are killed due to the presence of 𝑒𝑚
𝜕𝑠|𝑠=0. In addition, 

the factor 𝑝𝑀(𝛻𝑡)|𝑡=0 kills all terms in 𝑡 of order higher than 𝑀, so that we can truncate the 

exponential terms containing 𝑡 at order 𝑀 instead of 𝑚. Finally, although the 𝑒𝑚-term in (61) is a 

polynomial in 𝑠 of degree at most 2𝑚 (since it contains 𝑠2), noterms of higher power than 𝑚 are 

necessary. Introducing a new auxiliary variable 𝑠2, we can therefore further restrict the expression in 

(61) to be equal to  

  𝑒𝑚
𝜕𝑠2 𝑒𝑚

2𝑠𝑠2𝛼𝑧·𝑥𝐵𝐶
′𝐵2𝐶2

′−𝑠2
2𝑠2𝛼2|𝑧|2|𝑥|2(𝐵𝐶′)2𝐵2𝐶2

′2

|
𝑠2=0

     (𝑚𝑜𝑑 𝑠𝑘, 𝑘 > 𝑚).          (62)          

To (62), Lemma (6.2.12) can now be applied with 𝑠𝑥𝐵𝐶′instead of 𝑥, yielding  

𝑒𝑚
𝜕𝑠2 𝑒𝑚

2𝑠𝑠2𝛼𝑧·𝑥𝐵𝐶
′𝐵2𝐶2

′−𝑠2
2𝑠2𝛼2|𝑧|2|𝑥|2(𝐵𝐶′)2𝐵2𝐶2

′2

|
𝑠2=0

     (𝑚𝑜𝑑 𝑠𝑘 , 𝑘 > 𝑚) 

= Φ2
𝑚 (

−
𝑏 + 𝛾2

;  
𝑏 + 𝛽2  𝑏 + 𝛽2

−
;  𝑠𝛼𝐵𝐶′𝑢𝑥,𝑦 , 𝑠𝛼𝐵𝐶

′�̅�𝑥,𝑦) 1  

= Φ2
𝑚 (

𝑏 + 𝛽
𝑏 + 𝛾   𝑏 + 𝛾2

 ;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝑠𝛼𝑢𝑧,𝑥 , 𝑠𝛼�̅�𝑧,𝑥) , 

where  

Φ2
𝑚 (

𝑎
𝑐1 𝑐2

;
𝑏1  𝑏2
−

;𝑥, 𝑦) = ∑
(𝑎)𝑗+𝑘

(𝑐1)𝑗+𝑘(𝑐2)𝑗+𝑘

(𝑏1)𝑗(𝑏2)𝑘

𝑗! 𝑘!
 𝑥𝑗𝑦𝑘

𝑗+𝑘≤𝑚

, 

the second Φ2 function defined truncated at order 𝑚.  

So, finally, we have  

𝑅𝛼
𝑚 (𝑧,

𝑡

2
(
1

𝛼
− |𝑥|2𝐵𝐶′2) + 𝑥𝐵𝐶′)1  

= 𝑒𝑚
𝜕𝑠𝑒𝑀

𝛼𝑠𝑧·𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−𝑠2𝛼2|𝑧|2(
|𝑡|2

4
(
1
𝛼
−|𝑥|2𝐵𝐶′2)

2
+𝑡·𝑥(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵𝐶′)𝐵2𝐶2

′ 2

  

           Φ2
𝑚 (

𝑏 + 𝛽
𝑏 + 𝛾   𝑏 + 𝛾2

;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝑠𝛼𝑢𝑧,𝑥 , 𝑠𝛼�̅�𝑧,𝑥)|

𝑠,𝛽2,𝛾2=0

.           (63)                  

Substituting(63)into(59)we obtain  

𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑅𝛼
𝑚 (𝑧,

𝑡

2𝛼
+ 𝑥𝐵𝐶′ −

1

2
|𝑥|2𝑡𝐵𝐶′2) 1|

𝑡,𝛽,𝛾=0
 

= 𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

 

𝑒𝑚
𝜕𝑠𝑒𝑀

𝑠𝛼𝑧·𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−𝑠2𝛼2|𝑧|2(
|𝑡|2

4
(
1
𝛼
−|𝑥|2𝐵𝐶′2)

2
+𝑡·𝑥(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵𝐶′)𝐵2𝐶2

′ 2

 

         Φ2
𝑚 (

𝑏 + 𝛽
𝑏 + 𝛾   𝑏 + 𝛾2

;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝑠𝛼𝑢𝑧,𝑥 , 𝑠𝛼�̅�𝑧,𝑥)|

𝑠,𝑡,𝛽,𝛾,𝛽2,𝛾2=0

.           (64)             

Now we can apply Lemma (6.2.10) (the radius of convergence being +∞ in this case) to compute the 

limit of (64) as 𝑚 → ∞. It is equal to  

= 𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

 

𝑒𝑀

𝛼𝑧·𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−𝛼2|𝑧|2(
|𝑡|2

4
(
1
𝛼
−|𝑥|2𝐵𝐶′2)

2
+𝑡·𝑥(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵𝐶′)𝐵2𝐶2

′ 2
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             Φ2 (
𝑏 + 𝛽

𝑏 + 𝛾   𝑏 + 𝛾2
;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝛼𝑢𝑧,𝑥 , 𝛼�̅�𝑧,𝑥)|

𝑡,𝛽,𝛾,𝛽2,𝛾2=0

. 

Using the duality property (38) and dispensing with the constraints on the exponential terms 

containing 𝑡 concludes the proof of Case1. 

Case 2. We start again with the expression (59) with 𝑧 = 𝜉𝑥, this time expressing the Bergman kernel 

by means of Corollary(6.2.14), which gives  

𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑅𝛼
𝑚 (𝜉, 𝑥,

𝑡

2𝛼
+ 𝑥𝐵𝐶′ −

1

2
|𝑥|2𝑡𝐵𝐶′2) 1|

𝑡,𝛽,𝛾=0
 

= 𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

 

𝑒𝑚
𝜕𝑠𝑒𝑚

𝑠𝛼𝜉𝑥·𝑡(
1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−
1
4
𝑠2𝛼2𝜉2|𝑥|2|𝑡|2(

1
𝛼
−|𝑥|2𝐵𝐶′2)

2
𝐵2𝐶2

′ 2

 

                   F1
 
1
𝑚 (
2𝑏 + 𝛾2
 𝑏 + 𝛾2

; 𝛼𝑠𝜉𝐵𝐶′|𝑥|2) 1|
𝑠,𝑡,𝛽,𝛽2,𝛾,𝛾2=0

,                     (65)                                   

where the operators 𝐵2, 𝐶2
′  are defined as above. Notice that the 𝑒𝑚-term to the right of the operator 

𝑒𝑚
𝜕𝑠 in (65) can be truncated to 𝑒𝑀 since it contains vector 𝑡 and all terms of order higher than 𝑀 are 

killed by 𝑝𝑀(𝛻𝑡)|𝑡=0. Also the action of the operator 𝐵𝐶′ in the 𝐹1
 
1
𝑚 function can be computed in the 

following manner  

𝐹1
 
1
𝑚 (
𝑎
𝑐
; 𝐵𝐶′𝑥) 1 = 2𝐹2

𝑚 (
𝑎 𝑏 +  𝛽
𝑐 𝑏 +  𝛾

 ; 𝑥) . 

So that eventually we see that(65)is equal to  

= 𝑝𝑀(𝛻𝑡)𝑒𝑀

|𝑡|2

4𝛼 𝑒𝑀
𝑥·𝑡𝐵𝐶′−

1
4
|𝑥|2|𝑡|2𝐵𝐶′2

𝑒𝑚
𝜕𝑠  

𝑒𝑀
𝑠𝛼𝜉𝑥·𝑡(

1
𝛼
−|𝑥|2𝐵𝐶′2)𝐵2𝐶2

′−
1
4
𝑠2𝛼2𝜉2|𝑥|2|𝑡|2(

1
𝛼
−|𝑥|2𝐵𝐶′2)

2
𝐵2𝐶2

′ 2

 

                   F2
 
2
𝑚 (

2𝑏 + 𝛾2  𝑏 + 𝛽
 𝑏 + 𝛾2     𝑏 + 𝛾

; 𝑠𝛼𝜉|𝑥|2)|
𝑠,𝑡,𝛽,𝛽2,𝛾,𝛾2=0

. 

Applying finally Lemma(6.2.10), using the duality property (38)and disregarding any constraints we 

get the needed result.  

We are now ready to prove Theorem(6.2.3): 

According to Theorem(6.2.15), the Berezin transform of a polynomial can be written as  

𝑅𝛼(𝑥, 𝑧)(𝐵𝛼
2𝑝)(𝑥, 𝑧) 

 = 𝑞 (
1

4𝛼
,
1

𝛼
𝐵,
1

𝛼
𝐵2, 𝛼𝐶

′, 𝛼𝐶2
′)  

                   Φ2 (
𝑏 + 𝛽

𝑏 + 𝛾   𝑏 + 𝛾2
;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝛼𝑢, 𝛼�̅�)|

𝛽,𝛽2,𝛾,𝛾2=0

,             (66)                  

where 𝑞 is a polynomial in all arguments, more explicitly  

𝑞(𝑙, 𝑏1, 𝑏2, 𝑐1, 𝑐2)  

= 𝑒𝑀
𝛥𝑡𝑙+𝑥·𝛻𝑡𝑏1𝑐1−|𝑥|

2𝛥𝑡𝑙𝑏1𝑐1
2

  

𝑒𝑀
𝑧·𝛻𝑡(1−|𝑥|

2𝑏1𝑐1
2)𝑏2𝑐2−|𝑧|

2(𝛥𝑡𝑙(1−|𝑥|
2𝑏1𝑐1

2)+𝛻𝑡·𝑥(1−|𝑥|
2𝑏1𝑐1

2)𝑏1𝑐1)𝑏2𝑐2
2

𝑝𝑀(𝑡) |𝑡=0,        (67)  

𝑢 = 𝑥 · 𝑧 + 𝑖√|𝑥|2|𝑧|2 − (𝑥 · 𝑧)2 and  

𝐵 = (𝑏 + 𝛽)𝜏𝛽, 𝐵2 = (𝑏 + 𝛽2)𝜏𝛽2 , 𝐶′ =
1

𝑏 + 𝛾
𝜏𝛾, 𝐶2

′ =
1

𝑏 + 𝛾2
𝜏𝛾2 .   

Due to Lemma(6.2.8), we know that for 𝛼 ∈ ℂ such that 𝑅𝑒(𝛼𝑢) > 𝑅𝑒(𝛼�̅�) and 𝑅𝑒(𝛼𝑢) > 0, we 

have  

Φ2 (
𝑏 + 𝛽

𝑏 + 𝛾   𝑏 + 𝛾2
;
𝑏 + 𝛽2 𝑏 + 𝛽2

−
;  𝛼𝑢, 𝛼�̅�)  

=
𝛤(𝑏 + 𝛾)𝛤(𝑏 + 𝛾2)

𝛤(𝑏 + 𝛽)𝛤(𝑏 + 𝛽2)
𝛼𝛽+𝛽2−𝛾−𝛾2𝑢𝑏+2𝛽2+𝛽−𝛾−𝛾2(𝑢 − �̅�)−𝑏−𝛽2𝑒𝛼𝑢(1 + 𝑂(𝛼−1)), 
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uniformly in 𝛽, 𝛽2, 𝛾, 𝛾2 as |𝛼| → ∞. Denote  

             Φ:=
𝛤(𝑏+𝛾)𝛤(𝑏+𝛾2)

𝛤(𝑏+𝛽)𝛤(𝑏+𝛽2)
𝛼𝛽+𝛽2−𝛾−𝛾2𝑢𝑏+2𝛽2+𝛽−𝛾−𝛾2(𝑢 − �̅�)−𝑏−𝛽2𝑒𝛼𝑢        (68)        

Substituting (68) into (66) we get  

𝑅𝛼(𝑥, 𝑧)(𝐵𝛼
2𝑝)(𝑥, 𝑧)  

= 𝑞 (
1

4𝛼
,
1

𝛼
𝐵,
1

𝛼
𝐵2, 𝛼𝐶

′, 𝛼𝐶2
′)Φ(1 + 𝑂(𝛼−1)) |

𝛽,𝛽2𝛾,𝛾2=0
  

  = Φq (
1

4𝛼
,
1

𝛼

1

Φ
𝐵Φ,

1

𝛼

1

Φ
𝐵2Φ, 𝛼

1

Φ
𝐶′Φ,𝛼

1

Φ
𝐶2
′Φ) (1 + 𝑂(𝛼−1)) |

𝛽,𝛽2𝛾,𝛾2=0
.       (69)     

It is an easy exercise to establish the relations  
1

Φ
𝐵Φ = 𝛼𝑢𝜏𝛽, 

1

Φ
𝐵2Φ = 𝛼

𝑢2

𝑢 − �̅�
𝜏𝛽2 , 

1

Φ
𝐶′Φ =

1

𝛼𝑢
𝜏𝛾, 

1

Φ
𝐶2
′Φ =

1

𝛼𝑢
𝜏𝛾2 . 

Applying the latter to (69) results in the equation  

𝑅𝛼(𝑥, 𝑧)(𝐵𝛼
2𝑝)(𝑥, 𝑧)  

= (
𝑢

𝑢 − �̅�
)
𝑏

𝑒𝛼𝑢𝑞 (
1

4𝛼
, 𝑢𝜏𝛽,

𝑢2

𝑢 − �̅�
𝜏𝛽2 ,

1

𝑢
𝜏𝛾,
1

𝑢
𝜏𝛾2) (1 + 𝑂(𝛼

−1))|
𝛽,𝛽2,𝛾,𝛾2=0

, 

hence  

𝑅𝛼(𝑥, 𝑧)(𝐵𝛼
2𝑝)(𝑥, 𝑧) ∼ (

𝑢

𝑢 − �̅�
)
𝑏

𝑒𝛼𝑢𝑞 (0, 𝑢,
𝑢2

𝑢 − �̅�
,
1

𝑢
,
1

𝑢
) . 

Since 𝑝 ≡ 1 implies 𝑞 ≡ 1, we have 

𝑅𝛼(𝑥, 𝑧) = 𝑅𝛼(𝑥, 𝑧)(𝐵𝛼
21)(𝑥, 𝑧) ∼ (

𝑢

𝑢 − �̅�
) 𝑒𝛼𝑢,  

whence the relation  

(𝐵𝛼
2𝑝)(𝑥, 𝑧) ⟶ 𝑞 (0, 𝑢,

𝑢2

𝑢 − �̅�
,
1

𝑢
,
1

𝑢
) 

                 = 𝑒𝑥·𝛻𝑡𝑒
𝑧·𝛻𝑡(1−|𝑥|

21

𝑢
)
𝑢

𝑢−�̅�
−|𝑧|2(𝛻𝑡·𝑥(1−|𝑥|

21

𝑢
))

1

𝑢−�̅�𝑝𝑀(𝑡)|
𝑡=0
         (70)                        

follows. It is now a matter of a minor manipulation to bring the last expression in (70) into the form 

𝑒
(𝑥
𝑢−|𝑧|2

𝑢−�̅�
+𝑧
𝑢−|𝑥|2

𝑢−�̅�
)·𝛻𝑡𝑝𝑀(𝑡)|

𝑡=0

 = 𝑝𝑀 (𝑥
𝑢 − |𝑧|2

𝑢 − �̅�
+ 𝑧

𝑢 − |𝑥|2

𝑢 − �̅�
) . 

This concludes the proof. The properties of the point 𝑣 = 𝑥
𝑢−|𝑧|2

𝑢−�̅�
+ 𝑧

𝑢−|𝑥|2

𝑢−�̅�
 are easy to establish and 

they are listed in (30). 

We  having to be divided into two cases: 

 

Case 1. 𝑧 = 𝜉𝑥, where 𝜉 > 0. Weapply the second part of Theorem(6.2.15)to get   

𝑅𝛼(𝑥, 𝜉𝑥)(𝐵𝛼
2𝑝)(𝑥, 𝜉𝑥)  

= 𝑞2 (
1

4𝛼
, 𝐵𝐶′, 𝛼𝐵𝐶′2, 𝐵2𝐶2

′ , 𝐵2𝐶2
′2) 𝐹2

 
2 (
2𝑏 + 𝛾2 𝑏 + 𝛽
𝑏 + 𝛾2 𝑏 + 𝛾

;  𝛼𝜉 |𝑥|2)|
𝑡,𝛽,𝛽2,𝛾,𝛾2=0

, (71)                                                                        

where 𝑞2 is a polynomial in all arguments, more specifically  

𝑞2(𝑙, 𝑞1, 𝑞2, 𝑞3, 𝑞4)  

   = 𝑒𝑀
𝑙𝛥𝑡  𝑒𝑀

𝑥·𝛻𝑡𝑞1−|𝑥|
2𝑙𝛥𝑡𝑞2  𝑒𝑀

𝜉𝑥·𝛻𝑡(1−|𝑥|
2𝑞2)𝑞3−

1

4
 𝜉2|𝑥|2𝛥𝑡(1−|𝑥|

2𝑞2)
2𝑞4
 𝑝𝑀(𝑡)|𝑡=0.           (72)       

Using Lemma(6.2.9)yields   
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𝐹2
 
2 (
2𝑏 + 𝛾2 𝑏 + 𝛽
𝑏 + 𝛾2 𝑏 + 𝛾

;  𝛼𝜉 |𝑥|2) 

=
𝛤(𝑏 + 𝛾)𝛤(𝑏 + 𝛾2)

𝛤(𝑏 + 𝛽)𝛤(2𝑏 + 𝛾2)
(𝛼𝜉|𝑥|2)𝑏+𝛽−𝛾𝑒𝛼𝜉|𝑥|

2
(1 + 𝑂(𝛼−1)) , 

for 𝛼 > 0, so that  

𝑅𝛼(𝑥, 𝜉𝑥)(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥)  

= 𝑞2 (
1

4𝛼
,
1

𝛼
𝐵,
1

𝛼
𝐵2, 𝛼𝐶

′, 𝛼𝐶2
′)
𝛤(𝑏 + 𝛾)𝛤(𝑏 + 𝛾2)

𝛤(𝑏 + 𝛽)𝛤(2𝑏 + 𝛾2)
 

(𝛼𝜉|𝑥|2)𝑏+𝛽−𝛾𝑒𝛼𝜉|𝑥|
2
(1 + 𝑂(𝛼−1))|

𝛽,𝛽2,𝛾,𝛾2=0
. 

Put once again  

Φ ∶=
𝛤(𝑏 + 𝛾)𝛤(𝑏 + 𝛾2)

𝛤(𝑏 + 𝛽)𝛤(2𝑏 + 𝛾2)
(𝛼𝜉|𝑥|2)𝑏+𝛽−𝛾𝑒𝛼𝜉|𝑥|

2
, 

and upon performing manipulations similar to those used in the course of the proof of Theorem(6.2.3) 

we obtain  

𝑅𝛼(𝑥, 𝜉𝑥)(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥)  

= Φ𝑞2 (
1

4𝛼
,
1

Φ
𝐵𝐶′Φ,𝛼

1

Φ
𝐵Φ,

1

Φ
𝐵2𝐶2

′Φ,
1

Φ
𝐵2𝐶2

′2Φ) (1 + 𝑂(𝛼−1)), 

where  
1

Φ
𝐵Φ = 𝛼𝜉|𝑥|2𝜏𝛽, 

1

Φ
𝐵2Φ = 𝐵2, 

1

Φ
𝐶′Φ =

1

𝛼𝜉|𝑥|2
𝜏𝛾, 

1

Φ
𝐶2
′Φ =

1

2𝑏 + 𝛾2
𝜏𝛾2 =: 𝐶3

′ , 

so that  
1

Φ
𝐵𝐶′Φ = 𝜏𝛽𝜏𝛾, 

1

Φ
𝐵𝐶′2Φ =

1

𝛼𝜉|𝑥|2
𝜏𝛽𝜏𝛾

2, 

1

Φ
𝐵2𝐶2

′Φ = 𝐵2𝐶3
′ ,  

1

Φ
𝐵2𝐶2

′2Φ = 𝐵2𝐶3
′2 .  

Therefore we have  

𝑅𝛼(𝑥, 𝜉𝑥)(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥)

∼
𝛤(𝑏)

𝛤(2𝑏)
(𝛼𝜉|𝑥|2)𝑏𝑒𝛼𝜉|𝑥|

2
𝑞2 (

1

4𝛼
, 𝜏𝛽𝜏𝛾,

1

𝜉|𝑥|2
𝜏𝛽𝜏𝛾

2, 𝐵2𝐶3
′ , 𝐵2𝐶3

′2) (1 

+ 𝑂(𝛼−1))|
𝛾,𝛾2,𝛽,𝛽2=0

, 

as 𝛼 → ∞, whence we infer that  

𝑅𝛼(𝑥, 𝜉𝑥)(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥) ∼

𝛤(𝑏)

𝛤(2𝑏)
(𝛼𝜉|𝑥|2)𝑏𝑒𝛼𝜉|𝑥|

2
𝑞2 (0,1,

1

𝜉|𝑥|2
, 𝐵2𝐶3

′ , 𝐵2𝐶3
′2) 1|𝛾2,𝛽2=0. 

Consequently,  

𝑅𝛼(𝑥, 𝜉𝑥) ∼
𝛤(𝑏)

𝛤(2𝑏)
(𝛼𝜉|𝑥|2)𝑏𝑒𝛼𝜉|𝑥|

2
,       𝛼 → ∞, 

and, as𝛼 → ∞, 

(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥) → 𝑞2 (0,1,

1

𝜉|𝑥|2
, 𝐵2𝐶3

′ , 𝐵2𝐶3
′2) 1|𝛾2,𝛽2=0.  

Using (72) we get  



282 
 

𝑞2 (0,1,
1

𝜉|𝑥|2
, 𝐵2𝐶3

′ , 𝐵2𝐶3
′2) 1|𝛾2,𝛽2=0 

= 𝑒𝑀
𝑥·𝛻𝑡  𝑒𝑀

𝑥·𝛻𝑡(𝜉−1)𝐵2𝐶2
′−
1
4
|𝑥|2𝛥𝑡(𝜉−1)

2𝐵2𝐶2
′2

 𝑝𝑀(𝑡)|𝛾2,𝛽2,𝑡=0, 

or, equivalently,  

𝑞2 (0,1,
1

𝜉|𝑥|2
, 𝐵2𝐶3

′ , 𝐵2𝐶3
′2) 1|𝛾2,𝛽2=0 

= 𝑝𝑀(∇𝑡)𝑒
𝑥·𝑡 𝑒𝑀

𝜕𝑠𝑒𝑀
𝑠𝑥·𝑡(𝜉−1)𝐵2𝐶2

′−𝑠2
1
4
|𝑥|2|𝑡|2(𝜉−1)2𝐵2𝐶2

′2

1|𝑡,𝑠,𝛽2,𝛾2=0. 

Obviously, no harm can be done by introducing a new variable 𝑠 since the only effect it has is that it 

cancels all terms in 𝑡 of order higher than 𝑀 (they would be canceled anyway by the factor 

𝑝𝑀(𝛻𝑡)|𝑡=0). Applying Lemma (6.2.12) and casting aside all the constraints on the exponential terms 

we get the final result 

(𝐵𝛼
2𝑝𝑀)(𝑥, 𝜉𝑥) → 𝑝𝑀(𝛻𝑡)𝑒

𝑥·𝑡Φ2 (
−
2𝑏;

𝑏   𝑏
−
;
𝜉 − 1

2
𝑢𝑥,𝑡 ,

𝜉 − 1

2
 �̅�𝑥,𝑡)|

𝑡=0
, 

                                       𝛼 → ∞.                                                                                         (73)                                                                      
Notice that for the usual Berezin transform (𝜉 = 1) we have only reproduced the already known 

result  

(𝐵𝛼
2𝑝𝑀)(𝑥, 𝑥) → 𝑝𝑀(𝛻𝑡)𝑒

𝑥·𝑡|𝑡=0 = 𝑝𝑀(𝑥). 
Case 2. 𝑧 = 0. In this case we have  

(𝐵𝛼
2𝑝𝑀)(𝑥, 0) = (𝑃𝛼𝑝𝑀)(𝑥), 

which is, according to Lemma (6.2.13), equal to  

𝑒
𝛥𝑡
4𝛼𝑅1

2
(𝛻𝑡 , 𝑥)𝑝𝑀(𝑡)|𝑡=0. 

Passing to the limit 𝛼 → ∞ we therefore obtain  

𝑅1
2
(𝛻𝑡 , 𝑥)𝑝𝑀(𝑡)|𝑡=0, 

or equivalently  

𝑝𝑀(𝛻𝑡)𝑅1
2

(𝑥, 𝑡)|𝑡=0 = 𝑝𝑀(𝛻𝑡)Φ2 (
−
𝑏;
𝑏    𝑏
−
;
1

2
𝑢𝑥,𝑡 ,

1

2
�̅�𝑥,𝑡)|

𝑡=0
, 

completing the proof of this case. Note that the last expression can also be written as  

𝑒𝑀
𝑥·𝛻𝑡𝐵𝐶

′−
1
4
|𝑥|2𝛥𝑡𝐵𝐶

′2 
𝑝𝑀(𝑡)|𝑡=0. 

Case 3. 𝑧 = −𝜉𝑥, where 𝜉 > 0. Westart by calculating the Berezin transform of two arguments for 

the function 𝑓 of the form 𝑓𝑠,𝜔: = 𝑒
𝑠|𝑦|2(𝜔 · 𝑦 + 𝜔0). Surely, any polynomial of the form 𝑝1(𝑦, |𝑦|

2), 
where 𝑑𝑒𝑔𝑝1 ≤ 1 in the first argument, can be obtained by appropriate differentiation of the function 

𝑓𝑠,𝜔 with respect to the variables 𝑠 and 𝜔. Now, the following equality holds:  

∫ 𝑒𝑠|𝑦|
2
(𝜔 · 𝑦 + 𝜔0)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(−𝜉𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

 

 = ∫ (𝜔 · 𝑦 + 𝜔0)𝑅𝛼−𝑠 (
𝛼

𝛼 − 𝑠
𝑥, 𝑦) 𝑅𝛼−𝑠 (−𝜉

𝛼

𝛼 − 𝑠
𝑥, 𝑦) 𝑑𝜇𝛼−𝑠

𝑛 (𝑦)
ℝ𝑛

(
𝛼

𝛼 − 𝑠
)

𝑛
2
,  

since  

𝑑𝜇𝛼
𝑛(𝑦) = 𝑒−𝛼|𝑦|

2
(
𝛼

𝜋
)

𝑛
2
𝑑𝑛𝑦, 𝑎𝑛𝑑    𝑅𝛼(𝑥, 𝑦) = 𝑅𝛼−𝑠 (

𝛼

𝛼 − 𝑠
𝑥, 𝑦) . 

Application of the second part of Theorem(6.2.15) is easy because many terms cancel out since the 

polynomial 𝑝𝑀 is in this case linear and we end up with the expression  

𝐼: = (
𝛼

𝛼 − 𝑠
)
−
𝑛
2
∫ 𝑒𝑠|𝑦|

2
(𝜔 · 𝑦 + 𝜔0)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(−𝜉𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

  

= 𝐹1
 
1 (
2𝑏
𝑏
;−

𝛼2

𝛼 − 𝑠
𝜉 |𝑥|2) (

𝛼

𝛼 − 𝑠
𝑥 · 𝜔 + 𝜔0)  
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− 𝐹1
 
1 (
2𝑏 + 1
𝑏 + 1

;−
𝛼2

𝛼 − 𝑠
𝜉|𝑥|2)

𝛼𝜉

𝛼 − 𝑠
𝜔 · 𝑥  

+ 𝐹1
 
1 (
2𝑏 + 1
𝑏 + 2

;−
𝛼2

𝛼 − 𝑠
𝜉|𝑥|2)

𝛼3𝜉|𝑥|2

(𝑏 + 1)(𝛼 − 𝑠)2
𝜔 · 𝑥. 

The asymptotic behavior of the confluent hypergeometric function 𝐹1
 
1in this case depends on whether 

the dimension is odd or even. For even dimensions, we can use the transformation formula  

𝐹1
 
1 (
𝑎
𝑐
; 𝑥) = 𝑒𝑥 𝐹1

 
1 (
𝑐 − 𝑎
𝑐
;−𝑥) , 

to get  

𝐼 = 𝑒−
𝛼2

𝛼−𝑠
𝜉|𝑥|2 𝐹1

 
1 (
−𝑏
𝑏
;
𝛼2

𝛼 − 𝑠
𝜉|𝑥|2) (

𝛼

𝛼 − 𝑠
𝑥 · 𝜔 + 𝜔0)  

− 𝑒−
𝛼2

𝛼−𝑠
𝜉|𝑥|2 𝐹1

 
1 (

−𝑏
𝑏 + 1

;
𝛼2

𝛼 − 𝑠
𝜉|𝑥|2)

𝛼𝜉

𝛼 − 𝑠
𝜔 · 𝑥  

+𝑒−
𝛼2

𝛼−𝑠
𝜉|𝑥|2 𝐹1

 
1 (
−𝑏 + 1
𝑏 + 2

;
𝛼2

𝛼 − 𝑠
𝜉|𝑥|2) 

𝛼3𝜉|𝑥|2

(𝑏 + 1)(𝛼 − 𝑠)2
 𝜔 · 𝑥, 

and all the 𝐹1
 
1 functions are now polynomials (except when 𝑏 = 0, i.e. 𝑛 = 2) since 𝑏 =

𝑛

2
− 1 is a 

positive integer in even dimensions. Assuch, their asymptotic behavior is governed by the highest 

order term. Thus we get as 𝛼 → ∞, 

∫ 𝑒𝑠|𝑦|
2
(𝜔 · 𝑦 + 𝜔0)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(−𝜉𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

 

~𝑒−
𝛼2

𝛼−𝑠
𝜉|𝑥|2 𝛤(𝑏)

𝛤(2𝑏)
 (−𝛼𝜉|𝑥|2)𝑏 (𝑥 · 𝜔 

1 − 𝜉

2
+ 𝜔0) . 

Consequently,  

𝑅𝛼(𝑥, −𝜉𝑥) ∼ 𝑒
−𝛼𝜉|𝑥|2

𝛤(𝑏)

𝛤(2𝑏)
 (−𝛼𝜉|𝑥|2)𝑏 , (𝛼 → ∞). 

and therefore for even dimensions (except 𝑛 = 2) we have  

𝐵𝛼
2(𝑒𝑠|𝑦|

2
(𝑦 · 𝜔 + 𝜔0))(𝑥, −𝜉𝑥) → 𝑒−𝑠𝜉|𝑥|

2
(𝑥 · 𝜔

1 − 𝜉

2
+ 𝜔0) , (𝛼 → ∞). 

(Incidentally, this result is exactly the same that we would get had we used the first part of Theorem 

(6.2.4) for negative 𝜉. This is because the asymptotic behavior of 𝐹1
 
1is governed by the same 

(exponential) term.) 

For odd dimensions we apply the formula (27) to 𝐼 to get  

∫ 𝑒𝑠|𝑦|
2
(𝜔 · 𝑦 + 𝜔0)𝑅𝛼(𝑥, 𝑦)𝑅𝛼(−𝜉𝑥, 𝑦)𝑑𝜇𝛼

𝑛(𝑦)
ℝ𝑛

~
𝛤(𝑏)

𝛤(−𝑏)
 (𝛼𝜉|𝑥|2)𝑏𝜔0, (𝛼 → ∞), 

hence we arrive at  

𝐵𝛼
2(𝑒𝑠|𝑦|

2
(𝑦 · 𝜔 + 𝜔0))(𝑥, −𝜉𝑥) → 𝜔0, (𝛼 → ∞). 

It remains to show that (𝐵𝛼
2(𝑦1𝑦2))(𝑥, −𝜉𝑥) diverges as 𝛼 → ∞. We can again use the second part of 

Theorem(6.2.15)directly since the polynomial 𝑦1𝑦2is quite nice (even harmonic) to get the expression  

∫ 𝑦1𝑦2𝑅𝛼(𝑥, 𝑦)𝑅𝛼(−𝜉𝑥, 𝑦)𝑑𝜇𝛼
𝑛(𝑦)

ℝ𝑛
 

= 𝑥1𝑥2 𝐹1
 
1 (
2𝑏
𝑏
;−𝛼𝜉|𝑥|2) − 2𝜉𝑥1𝑥2 𝐹1

 
1 (
2𝑏 + 1
𝑏 + 1

;−𝛼𝜉|𝑥|2)  

+𝑥1𝑥2
2𝛼𝜉

𝑏 + 2
𝐹2
 
2 (
2𝑏 + 1  𝑏 + 2
𝑏 + 3   𝑏 + 1

;−𝛼𝜉|𝑥|2) + 𝑥1𝑥2𝜉
2 𝐹1
 
1 (
2𝑏 + 2
𝑏 + 2

;−𝛼𝜉|𝑥|2) 

− 𝑥1𝑥2
𝛼𝜉2|𝑥|2

𝑏 + 1
𝐹2
 
2 (
2𝑏 + 2  𝑏 + 1
𝑏 + 2   𝑏 + 2

;−𝛼𝜉|𝑥|2)  

                             +𝑥1𝑥2
𝛼2𝜉2|𝑥|4

(𝑏+2)(𝑏+3)
𝐹1
 
1 (
2𝑏 + 2
𝑏 + 4

;−𝛼𝜉|𝑥|2).                                       (74)                              
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It is easy to understand from (27) that any of these 𝐹1
 
1functions cannot produce a divergent term 

when divided by 𝑅𝛼(𝑥, −𝜉𝑥) which, being itself an 𝐹1
 
1function, has exactly the same asymptotic 

behavior. Wecan rewrite the first 𝐹2
 
2 term in (74) as a linear combination of 𝐹1

 
1’s:  

𝐹2
 
2 (
2𝑏 + 1  𝑏 + 2
𝑏 + 3   𝑏 + 1

;−𝛼𝜉|𝑥|2) + 𝐹1
 
1 (
2𝑏 + 1
𝑏 + 3

;−𝛼𝜉|𝑥|2) 

−
𝛼𝜉|𝑥|2(2𝑏 + 1)

(𝑏 + 1)(𝑏 + 3)
𝐹1
 
1 (
2𝑏 + 2
𝑏 + 4

;−𝛼𝜉|𝑥|2) , 

by rising its second lower parameter. The logic is the same as in (31). So the only interesting term 

here, capable of producing a divergent term, is  

𝐹2
 
2 (
2𝑏 + 2  𝑏 + 1
𝑏 + 2   𝑏 + 2

;−𝛼𝜉|𝑥|2), 

which is a genuine 𝐹2
 
2function (when 𝑏 ≠ 0, i.e. 𝑛 > 2). 

Applying the asymptotic formula from [14,17] we get  

𝐹2
 
2 (
2𝑏 + 2  𝑏 + 1
𝑏 + 2   𝑏 + 2

;−𝛼𝜉|𝑥|2)~
𝛤(𝑏 + 1)Γ(𝑏 + 2)2

𝛤(2𝑏 + 2)
(−𝛼𝜉|𝑥|2)−𝑏−1, (𝛼 → ∞). 

But the function 𝑅𝛼(𝑥, −𝜉𝑥) = 𝐹1
 
1 (
2𝑏
𝑏
;−𝛼𝜉|𝑥|2) behaves at best (that is in odd dimensions) as 

𝛼−2𝑏and it is therefore clear that the fraction of these two will grow without bound (for 𝑛 > 2). It is 

easy to see why this is happening. There are only two ways in which the 𝐹1
 
1 can behave in 

𝛼(exponentially or polynomially). On the other hand, there are three ways in which the 𝐹2
 
2 function 

can behave. And it is just this third mode of behavior of the 𝐹2
 
2– that one which the 𝐹1

 
1 function 

cannot mimic – that is dominant in the region where the argument is large and negative.  
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List of Symbols 

 

 

 

 

 

 

Symbol  The Symbols Page  

𝐹2 Fock space  1 

WOT Weak operator Topology  2 

⊗ Tensor product  2 

dim Dimension  2 

𝐻2 Arveson space  3 

𝐹∞ Toeplitz algebra  3 

⨁ Orthogonal sum 3 

𝐻∞ Algebra of bounded Analytic functions  3 

SOT Strong operator topology   4 

⊖ Direct difference  4 

Ker Kernel  4 

Mult Multiplicity  11 

C.n.c Completely non-coisometric  12 

Dil.ind Dilation index  12 

𝐹𝑛
∞ Toeplitz algebra  27 

𝐻2 Hardy space  28 

Rad Radial  34 

𝐾𝑞 Berezin kernel  35 

Ap Almost –periodic  42 

𝐿2 Hilbert space  48 

Tp Trigonometric polynomial  52 

Im Imaginary  53 

can Canonical  53 

cl class 59 

tr trace 61 

hol Holomorphic  63 

re Real  63 

𝐿∞ Essential lebesgue space 67 

Bt Berezin lebesgue space  83 

det Determinant  91 

PSH Plurisub harmonic  97 

ord Order  105 

Hess hessian 105 

max Maximum  113 

int Interior  135 

supp Support  142 

arg Argument  147 

giv Give  184 

Harm Harmonic  197 

𝐹𝛼
ℎ𝑎𝑟𝑚 Fock space of all harmonic function  205 

min Minimum  206 

deg Degree  268 

mod Modulo  275 
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