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Abstract

This study based on operator theory and joint similarity to operators on
noncommutative varieties with strong deformation estimates deification and an
excursion for the Berezin-Toeplitz quantization . The basic asymptotic expansion
of the harmonic Berezin transform on the half-space and the determine Gauss
hypergeometric function for a specific large constant are dealt with. The Berezin
transform and perfect weighted reproducing Kernels with Toeplitz operators on
harmonic Bergman spaces on the real ball are definitely considered and also in addition

the Berezin transforms on noncommutative varieties in Polydomains and of two arguments
are construded and weighted explained .
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Introduction

We develop a dilation theory for row contractions T := [T, ..., T, ] subject to
constraints such as p(Ty,...,T,) = 0,p € P, where P is a set of noncommutative
polynomials. The model n-tuple is the universal row contraction [B4, ..., B,] satisfying the
same constraints as T, which turns out to be, in a certain sense, the maximal constrained
piece of the n-tuple [S;,...,S,] of left creation operators on the full Fock space on n
generators. The theory is based on a class of constrained Poisson kernels associated with T
and representations of the C*-algebra generated by B.,..., B, and the identity. Under natural
conditions on the constraints we have uniqueness for the minimal dilation. A characteristic
function @, is associated with any (constrained) row contraction T and it is proved that I —
007 = KrK7
where K is the (constrained) Poisson kernel of T. Consequently, for pure constrained row
contractions, we show that the characteristic function is a complete unitary invariant and
provide a model.

Deformation estimates for the Berezin-Toeplitz quantization of C™ are
obtained. We give a complete identification of the deformation quantization which was
obtained from the Berezin-Toeplitz quantization on an arbitrary compact Kahler manifold.
The deformation quantization with the opposite star-product proves to be a differential
deformation quantization with separation of variables whose classifying form is explicitly
calculated .

We present an introduction to the Berezin and Berezin-Toeplitz quantizations, starting
from their historical origins and relationships with other quantization methods. We give a
complete asymptotic expansion of the Berezin transform associated to the Bergman space of
harmonic functions on the half-spacethat are square-integrable with respect to the measure
y¥dxdy(a = 0)asa — oo

We an attempt to unify the multivariable operator model theory for ball-like domains
and commutative polydiscs, and extend it to a more general class of noncommutative
polydomains. An important role in our study is played by noncommutative Berezin
transforms associated with the elements of the polydomain. These transforms are used to
prove that each such polydomain has a universal model consisting of weighted shifts acting
on a tensor product of full Fock spaces. We introduce the noncommutative Hardy algebra as
the weakly closed algebra generated by and the identity, and use it to provide a WOT-
continuous functional calculus for completely non-coisometric tuples, which are identified. It
Is shown that the Berezin transform is a completely isometric isomorphism between and the
algebra of bounded free holomorphic functions on the radial part . A characterization of the
Beurling type joint invariant subspaces under is also provided.

We consider the Gauss hypergeometric function F (a, b + 1; ¢ + 2; z) . We derive a
convergent expansion of F (a, b + 1; ¢ + 2; z) in terms of rational functions of a, b, c and z
valid for |b||z| < |c — bz|and |c — b||z| < |c — bz]|.

For the standard weighted Bergman spaces on the complex unit
ball, the Berezin transform of a bounded continuous function tends to this function pointwise
as the weight parameter tends to infinity. We show that this remains valid also of harmonic
Bergman spaces on the real unit ball of any dimension. We describe the asymptotic behavior
of the Berezin transform of two arguments which generalizes the standard notion of the
Berezin transform
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Chapter 1
Operator Noncommutative Varieties
We show that the curvature invariant and Euler characteristic  asssociated
with a Hilbert module generated by an arbitrary (resp. commuting) row contraction T can be
expressed only in terms of the (resp. constrained) characteristic function of T. We provide a
commutant lifting theorem for pure constrained row contractions and obtain a Nevanlinna-Pick
interpolation result. We use some of the results to provide Wold type decompositions and
triangulations for n-tuples of operators in noncommutative varieties Vf{p(H), which parallel the
classical Sz.-Nagy-Foias triangulations for contractions but also provide new proofs. As
consequences, we show the existence of joint invariant subspaces for certain classes of operators in
Vfl,p(H)'
Section (1.1): Operator Theory
There has been exciting progress in multivariable dilation theory , in the attempt to extend the
classical Nagy-Foias theory of contractions [38].
In the noncommutative case ,significant results were obtained in [14], [9],[20],[21],[22].[24], and
recently in [10]. Some of these results were further extended by Muhly and solel [17]to
representations of tensor algebras over C* —correspondences. We develops a dilation theory for
row contractions subject to constrains determined by sets of noncomutative polynomials .The theory
includes ,in particular , the commutative (see[13],[30],and [4]) and q-commuative (see [2],[7]) cases
,while the standard noncommuative dilation theory for row contractions serves as a ‘’universal model
. An n-tuple T:=[T,, ..., T, ] of bounded linear operators acting on common Hilbert space H is
called row contraction if TT* =T, T*; + --- + T,T*, <.
A distinguished role among row contractions is played by n-tuple S:=[S,,...,S,]of left creation
operators on the full Fock space F2(H,) ,which satisfies the noncommutative von Neumann
inequality [25]
” p(Tl 4 ""Tn )” = ” p(Sl y oy Sn )”
For any polynomial P(X;,...,X,)in n noncommuting indeterminates . for the classical von
Neumann inequality [39] (case n=1) and a nice survey, see [19].
Based on the left creation operators and their representations , a noncommutative dilation theory and
model theory for row contractions was developed in [14], [9], [20] ,[21], [22].,[24] , ect .
Assume now that T is subject to the constraints
TiTj:T]'Ti’ i,j:l,...,n,
In this commutative case , the noncomutative dilation theory can be applied but , in many respects ,
it is not satisfactory due to the fact that the models shift S:=[S,, ..., S,] does not satisfy the same
contraints as T . however , the universal commutative row contraction is a piece of S, namely

B:=[By, ..., By] . Bi := Pg2S; |F§ i=1,...n,
WhereF2 c F2(H,) is the symmetric Fock space . in this setting , the natural von Neumann
inequality (see [13],[30] and [4] )is
I P(Ty, oo, Ty DI S P(By s e, By )|

For any polynomial p(z; , ... , z, ) in n commuting indeterminates . A dilation theory for commuting
row contractions based on the model shift B:=[B,, ..., B,] and its representations was considered by
drury [13] and [30] to a certain extent , and by Arveson [4] in greater details this circle of ideas was
extended to row contractions satisfying the constraints
TTi = q; TiTj, ISi<j<n,

Where g;; € c. In this setting , a von Neumann inequality was obtained by Arias and [2] . This was
used further by B.V.R . Bhat and T . Bhattacharyya [7] to obtain a model theory for g-commuting
row contractions .



we develop a dilation theory for row contractions T:=[T, , ..., T, ] subject to more general constrains
such as

p(Ty, ..., Ty ) =0,p€P,
Where p is a set of noncommuative polynomials . If T is a pruerow contraction , then p can be any
WOT-sided ideal of noncomutative analytic . Toeplitz algebra F;° . The model n-tuple is the universal
row contraction [B,, ..., By, ] satisfying the same constraints as T , which turns out to be , in a certain
sense , the maximal constrained piece of the n-tuple of left creation operators on the full Fock space
with n generators .
we provide basic results concerning the constrained shift [B4, ..., B, ] and the w*-closed algebra
generated by B4, ..., B,, and the identity we obtain a Beurling type theorem characterizing the invariant
subspace under each operator B; ® Iy, ... ,B, & I;-and a characterizing of cyclic co- invariant
subspaces under the same operators. We also provide Wold type decompositions for non degenerate
*representations of C* — algebra C*(B4,...,B,) and prove that two constrained shifts [B; @
I3, oo , By @ Iy Jand[ B; ® Iy, ... , By & I ] are similar if and only if dim H'=dim k.
We develop a dilation theory for constrained row contractions . The theory is based on a class of
constrained poission kernels ( see[30],[2],[35], and [6] for n=1) associated with T:=[T, , ..., T, ] and
representations of the C* — algebra generated by B, ..., B,, and the identity . In particular , if the set
p consists of homogenous polynomials , then we show that there exists a Hilbert space k,; such that
H can be identified with a subspace of K :=(N; ® AtH ) @ K and

T, =V’ |H,i=1,..n,
Where Ap:= (1 =T, Ty — - — T, Ty )2,
T e SR
0 m(B;)
And m : C*(By, ..., B, )is a *-representations which annihilates the compact operators and
n(B)m(By )" + ..+ m(By)m(By)" =l
Under certain natural conditions on the constrains , we have uniqueness for the minimal dilation of T
. We introduce and evaluate the dilation index , a numerical invariant for row contractions , and show
that it does not depend on the constraints .
we provide new properties for the standard characteristic function ©¢ associated with an arbitrary
row contraction T (see [22]), and introduce a new characteristic function associated with constrained
row contractions . the constrained characteristic function is a multi-analytic operator ( with respect
to the constrained shifs By, ..., B,)
O;r:N; ® Dr- » Ny ® Dy,
Uniquely defined by the formel Fourier representation
Ty ® T+ (Iy, ® Ar )(yyen — Sy W @ T ) 7 W, ® Iy, oo, Wy ® I](Iy, ® Ar)
. We prove a factorization result for the constrained characteristic function , namely
| -0;10%r = KjrK* 1,
Where K; 1 is the constrained Poisson kernel associated with T . Consequently , for the class of prue
constrained row contractions , we show that the characteristic function is a complete unitary
invariant and provide a model . All the results apply, in particular , to commutative row contractions
We obtain a commutant lifting theorem for pure contractions and a Nevanlinna —pick interpolation
result in our setting . These results are based on the more general non commutative commutant lifting
theorem (see [21],[24]) and some results from previous . The above —mentioned factorization result
for the characteristic function has important consequences in multivariable operator theory . We
point out some of them which are considered, Arveson introduced a notion of curvature and Euler
characteristic for finite rank contractive Hilbert modules over [z, , ...,z, ] the complex unital algebra
of all polynomials in n commuting variables .
The canonical operators T;,...,T, is associated with the c[z, ,...,z, ]-module structure are
commuting and T:=[T,..., T, | IS a row contraction with rank Ap< oo . Non commutative
analogues of these notions were introduced and studied [32] and , independendently , by D.Kribs
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[15] . We show that the curvature and the Euler characteristic ( in both the commutative and non
commutative case ) depend only on the properties of the characteristic function of T .

For example , in the commutative case, if T:=[T;, ..., T, ] isacommuatative row contraction with
rank A t < oo, and K(T) and X(T)denote Arveson’s curvature and Euler characteristic,
respectively, then we prove that

K(T) :faBn lrl_I}} trace [ [ — 0y 1(r &) 0y r(r §)*1do(§)
trace [G)]C:T e*]c'T(Qm®IDT)]

nm !

=rank At — (n-1)! lim

m-—-0oo

where Q,, is the projection of Arveson’s space H? onto the subspace of homogeneous polynomials
of degree m, and

m—0o
where Q. is the projection of H?onto the subspace of all polynomials of degree < m. Here, the
operator 0 _r : H? @D~ — H? @ D stands for the constrained characteristic function associated
with T, which, in this particular case, is a multiplier (multiplication operator) defined by its symbol
(for which we use the same notation)
0, 1(@):=-T+Ar(I =2, T; — = 2, T) " (Z1]yr, oo, Znly ] Are , ZEBy
which is a bounded operator-valued analytic function on the open unit ball of c".
Constrained shifts: invariant subspaces and Wold decompositions
we provide basic results concerning the constrained shift [B4, . . . ,B,] associated with every WOT-
closed two-sided ideal J of the noncommutative analytic Toeplitz algebra F* . We obtain a Beurling
type theorem characterizing the invariant subspaces under each operator B, @ I, ...,B, & I, and
a characterization of cyclic co-invariant subspaces under the same operators. We also provide Wold
type decompositions for the non degenerate *-representations of the Toeplitz C*-algebra C*(B4, . . .
,B,) generated by B4, . .. ,B, and the identity. The dilation theory developed in will be based on the
constrained shift [B,, . .. ,B,].
Let H, be an n-dimensional complex Hilbert space with orthonormal basis e, .. .,e,, where ne{1,2,
....} .we consider the full Fock space of H,, defined by
F2(Hy) =@ye0 HY",
Where H®? := ¢, and H®* is the (Hilbert) tensor product of k copies of H,, . Define the left creation
operators S; : F*(H, )— F?(H,), i=1,...,n,by

Sip =i D@, peF(H,).

where n € {1, 2, . . . }. We consider the full Fock space of Hn defined by

The noncommutative analytic Toeplitz algebra Fz’ and its norm closed version, the noncommutative
disc algebra A, , were introduced by [25], [26], [28] in connection with a multivariable
noncommutative von Neumann inequality. Fy’ is the algebra of left multipliers of the Fock space
F2(H, ) and can be identified with the weakly closed (or w*-closed) algebra generated by the left
creation operators S, , ..., S,acting on F2(H,, ) and the identity. The noncommutative disc algebra A,
is the norm closed algebra generated bysS; , ..., S, , and the identity. When n = 1, F{* can be identified
with H* (D), the algebra of bounded analytic functions on the open unit disc. The noncommutative
analytic Toeplitz algebra F;° can be viewed as a multivariable noncommutative analogue of H* (D).
There are many analogies with the invariant subspaces of the unilateral shift onH?(ID) , inner-outer
factorizations, analytic operators, Toeplitz operators, H* (ID)—functional calculus, bounded (resp.
spectral) interpolation, etc .

Let F; be the unital free semigroup on n generators g,, . . ., g,, and the identity g,. The length of
x€ Fy is defined by || =k ifoc=g; g; ...g; ,and|x|:=0ifx =gy IfTy,..., T, € B(H), the
algebra of all bounded operators on a Hilbert space 3¢, define T := Ty, Ty, ... Ty, if <= g; g;, ...8i,
, and Tyo = I. Similarly, we denote e, == e;, ®- - -&e;,



and ego := 1. We need to recall from [22], [23], [25], [26], [27], and [33] a few facts concerning
multianalytic operators on Fock spaces. We say that a bounded linear operator M acting from F2(H,, )
® Kto F2(H, )® K’ is multi analytic if M(S; ® 1) = (S; ® Ix,)M foranyi=1,...,n.
Notice that M is uniquely determined by the “coefficients” 8, € B(K ,K") given by
(0 K, K) =M1 ® K),ex ® K') , ke K, k’e K ,xe [}
where o " is the reverse of o, i.e., < " =g; ... g; if oc=g; ...g; . We can associate with M a unique
formal Fourier expansion

M(Rl ’ Rn) ::Zoce 3 R« ® 9(0() )
where R; :=U*S;U,i=1,...,n, are the right creation operators on F2(H,, )
and U is the (flipping) unitary operator on F?(H, ) mapping e; ®- - Qe into e, X - Qe .
Since the operator M acts like its Fourier representation on “polynomials”, we will identify them for
simplicity. Based on the noncommutative von Neumann inequality, we proved that
M(R; ,...,Rp) = SOT ~ lim Yoo L=k 7™ R ® 6
where, for each r € [0, 1), the series converges in the uniform norm. Moreover, the set of all multi-
analytic operators in B( F?(H,, )® K, F2(H,, ) ® K’) coincides with RY ® B(K,K"), the WOT-closed
operator space generated by the spatial tensor product, where Ry’ = U*F;” U. A multi-analytic operator
is called inner if it is an isometry.
LetJ be a WOT-closed two-sided ideal of F;° such that J # Fy’, and define the subspaces of the full
Fock space ( F2(H,) by setting
My:=J(F2(H,) and V= (F2(H,) ©M.

Notice that
M;={e1):pe]}and NM=N, Ker ¢*.

Based on a Beurling type theorem [22] for the left creation operators S, . . ., S,, a characterization
of all WOT-closed two-sided ideal of F;°was obtained by Davidson and Pitts in [11]. One can easily
obtain the following result.

Lemma (1.1.1)[1]: LetJbe a WOT-closed two-sided ideal of F7’ .

(i) If f(0) =0 forany f € J, then 1 € V] .

(i) If v; # 0 and only if J # Fp,

(iii) The subspaces V; and U Vare invariant under Sj, ..., Sy ,and Ry, ... ,Rj,.

Proof : The first part is obvious. The second part is a consequence of the fact (see [10], [12]) that,

for any ¢ € F d(g, J) :”PNW( Si..)S) | J\f]” |

Part (iii) is straightforward.
Define the constrained left (resp. right) creation operators by setting

Bi:: PN]Si|N,and Wi:: PN]Si|N,i:1,...,n.
Let W(B,, . ..,B,) be the wx-closed algebra generated by B,, . . . ,B,and the identity. We proved in

[10] that W(B,, . . . ,B,,) has the A, (1) property and therefore the w*and WOT topologies coincide
on this algebra. Moreover, we showed that

W(B,, ... By) = Py F | 3= {f(By, ... By) (S, ..., S) €FC },
where, according to the Fy* -functional calculus for row contractions [26],

f(B4, ...,By) = SOT- lirrll f(rB4,...,rBy) .
r—



Note that if ¢ € J, then @(B4, ... ,B,) = 0. Similar results hold for W(W,, . .. ,W,) thewx*-closed
algebra generated by Wy, . . . ,W, and the identity. Moreover, we proved in [12] that

W(By,...,B)' = W(W,, ... W,)and W(W,, ... ,W,) =W(B,,...,B,),

where ' stands for the commutant . An operator M € B(V; ® K, V& K') is called multianalytic
with respect to B4, ..., B,the constrained shifts if

M(B1®I%):(B1®IK’)M,|:1,,n

If in addition M is partially isometric, then we call it inner. We recall from [33] that the set of all
multi-analytic operators with respect to B, ..., B,coincides with

W(W, ... W) ®B(XK, K') = Py, gss[Ry & B(I, K] [V Q@ K,

and a similar result holds for the algebra W(B,,...,B,).

The next result provides a Beurling type theorem characterizing the invariant subspaces under the
constrained shifts B,,...,B, .

Theorem (1.1.2) [1]: LetJ # F;° be a WOT-closed two-sided ideal of F,” and letbe B,,...,B, the
corresponding constrained left creation operators on V; . A subspace M & NV ® K is invariant
under each operator B; @ I , i=1,...,n,ifand only if there exists a Hilbert space G and an inner
operator

(W, ... . W,) € .W(W,, ... W,)® B(G, X)

Such that

M = H(Wli v ’Wn)(]\/} ® G)
Proof : According to Lemma (1.1.1), the subspace V; ®K is invariant under each operator S; & Iy,
i=1,...,nand

STRLNV OK=B{ ®Iyi=1...,n
Since the subspace [V; ® K] ©M is invariant under, Bf ® I5 i=1, ..., n, we deduce that it is also

invariant under each operator, S ® I, 1 =1, ..., n. Therefore, the subspace
E:=[F*(H, )® K] © {[VQ@K] &M} = [M; Q K] M 1)
is invariant under S;®Iy , i =1,...,n, where M; := F*(H,, )©J, . Using the Beurling type

characterization of the invariant subspaces under the left creation operators (see Theorem 2.2 from
[22]) and the characterization of multi-analytic operators from [27] (see also [33]),we find a Hilbert
space G and an inner multi-analytic operator

(R4, .. .R,)E R® ®B(G,K)

such that
e=0(Ry, .. R)[F*(H,) ® G],

where 8(R4, .. .,R,)is essentially unique up to a unitary diagonal multi-analytic operator. Since (R4,
. »wRy) is an isometry, we have

Ps = Q(leRn)g(Rl:--'»Rn)*! (2)



where P, is the orthogonal projection of F(H, )® K onto & . According to Lemma( 1.1.1), the
subspace NV;®K is invariant under the operators R} &I,
i=1,...,n. Moreover, using the remarks preceding the theorem we have
O(Wy, .. W)= Py, @kf(Ry, - - »Rp)I V] ® K.
Hence, and compressing equation (2) to the subspace »V; & K, we obtain
Py, @k Pe | V) @K =0(Wy, .. ,\W)O(Wy, ..., Wy)".
Notice that, due to (1), the left hand side of this equality is equal to P, the orthogonal projection of
N ® Konto M. Hence,

Py = O(Wy, .. . W)OW,,...,W,)*
and 8(W,, ...,W,) is a partial isometry. Therefore,

M= H(Wl’ T ’Wn)[]\/i ® G]

and the proof is complete.
We remark that in the particular case when the ideal J is generated by the polynomials  §;S;=S;S; , i,
j=1,...,n,then 2V = FZ , the symmetric Fock space, and B;, i=1, ..., n are the creation operators
on the symmetric Fock space. In this case Theorem (1.1.2) provides a Beurling type theorem for
Arveson’s space H? which was also obtained in [16] using different
methods. From now on, throughout, we assume that J is a WOT-closed two-sided ideal of F;° such
that 1 € V].
Theorem( 1.1.3) [1]: LetJ be a WOT-closed two-sided ideal of )Vjsuch that 1 € V; . Then all the
compact operators in B(JV; )are contained in the operator space
span {B«B*g: <, € f} }.
Moreover, the C*-algebra C* (B4, ..., B,) is irreducible.

Proof : Since V] is an invariant subspace under each operator S, i =1, ..., n, and contains the
constants, we have
Iy~ BiBi = - =~ BuBj =Py (1-8,8] — - =8,S5)| V]

=Py, P |

= P(CN] ,

where PCN I is the orthogonal projection of N; onto c. Let

g(Sl VRIEY) Sn) = Z\ «| sm ao<So<
and

€= Ygert bpeg € Ny cF?(H, ) .

Notice that
N . _ R -
P(c ]g(Bl yre Bn) € = 2\ o« <sm Py Sx € = Z| of sm Ao b«

(5 ;Z| o« <m aoceoc>:<5 ’ 8(31 ALY Bn)(1)> .
Therfore,

f(By, ..., By) P.'g(By , ..., Bn)" €= (£g(By, .., Bn) (1)) (B, .., Bn) (1) (3)

for any polynomial (B, ...,By) == % <p &/ By
Hence, f(B; , ..., B,) P(C]\f’g(B1 , . »Bp)is arank one operator in B(V;). Moreover, since P(CNI = Iy —

B;Bi — ---— BBy, , we deduce that the above operator is also in the operator space span{B,Bg: a,
€ ft}.




Since the polynomialsy 4 <, age, .M €EN, a, € c, are dense in F2(H,)
it is clear thatthe set

L ::{(Z| o <m a,B,)(1):m € N,a, € c}
dense in JV; . Using this density and relation (3), we deduce that all compact operators
in B(JV)) are included in the operator space span{B.Bg: a, f € f{}. To prove the last part of this
lemma, let M be a nonzero subspace of V; which is jointly reducing for. By, ...,B,Take f € , f #0
and assume that f = a, +%, 4 »1 aqe, . If a g is a nonzero coefficient of f, then

Byt =Py, Spf = P, (ap + 3y 51 a5, €0 ) (4)
Is in M. Since 1 € V; we have <PNlev ,1) = (e,, 1) = Ofor any y € with |y| > 1. Hence, we deduce
that

Py,1=1and PPy (%) 51 a5, €q) = 0
Therefore, relation (4) implies PeP oy, f=ag.
On the other hand, since Pg\r’:IN] — B,B; —---— B,B;, and M:is reducing for, B, , ..., B,
we infer that ag E M,s01€M. Using again that M is invariant under, B, , ..., B,we have £ M.
Since L is dense in v}, we deduce that V; cM and therefore JV; =M. This completes the proof.
We say that two row contractions [ Ty , ..., T,], T; € B(H), and [T, ..., Ta] , T, € B(H"), are
unitarily equivalent if there exists a unitary operator U : ¥ — H' such that T;= U*T,U foranyi =1,
..., n.If[By, ..., B,] is aconstrained shift as above, then [B; ®I,, . . ., B,13,&] is called constrained
shift with multiplicity dim H.
Proposition (1.1.4) [1]: Two constrained shifts are unitarily equivalent if and only if their multi-
plicities are equal.
Proof : Let [B;®ly, ..., Byly&®] and [B;®1,, . . ., B,&®I,] be two constrained shifts and let U
 VJ® H —N;® H ' be a unitary operator such that
UB;i®Isy) =(B;®I;)U,i=1,...,n.
Since U is unitary , we deduce that

U(B{ ®ly) )= (Bf ®lyr )U,i1=1,...,n.

Since, according to Theorem (1.1.3), the C*algebra C* (B, , ..., By) is irreducible, we infer that U =
Iy, ® W for some unitary operator W € B(#, H"). Therefore, dim H = dim H'. The converse is
obvious.

We need a few more definitions. Let SS B(X) be a set of operators acting on the Hilbert space K.
Denote by A(S) the non self a djoint algebra generated by § and the identity, and let C* (S) be the C*-
algebra generated by and the identity. A subspace H < X is called

x-cyclic for § if

K=V{Xh:XeC (S),heH},
i.e., K is the smallest reducing sub pace for § which contains H. We call H cyclic for § if

K=V{Xh:XeA(S),heH}

i.e., K is the smallest invariant sub pace under § which contains . Finally, a subspace H < X is
called co-invariant under S if X*H'S H for any X € S.

Theorem (1.1.5) [1]: Let J be a WOT-closed two-sided ideal of F’such that 1 € V; and let be a
Hilbert space. If M S N, ® D is a co-invariant subspace under B; ® Ip, i =1, ..., n, then there
exists a subspace € € D such that

Span{(B, @ Ip)M:aef)}= N ® E. (5)
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Proof : Denote by P, := P.®Iy the orthogonal projection of V; &@ D onto the subspace 1QD ,
which is identified with D. Define the subspace € c D by setting £:= P, M and let f be nonzero
element of M having the Fourier representation

f:Zaéﬁ:{ ea ® hO_’ y hO( € D
Let B € f,,be such that hg # 0 and note that

(B ® Ip)f = (Py; ®lp)(Sj ® Ip))f= (P, ®lo)(1® hy +3 151, ® hyg, ) (6)
As in the proof of Theorem (1.1.3), since 1 € JVj, we have Py, =1and PPy, e,=0for|y|>1. Hence
and using (6), we obtain P, (B & Ip)f = hg. Since is a co-invariant subspace under B; & Ip, i = 1,
..., N, itisclear that h_ € E. Using this and taking into
account that 1 € NJ, we deduce that

(Bp @ Ip)(1 & hg) =Py, eg @hg € @ N QE.
Now, since f eEM'CS JV; & D, we infer that
f= (PN]® ID)f = ;1_1;1;10 PN] eB® hB

is in V; ®E . This shows that M'c V; ®€E and therefore
Y:=span {(B, @ Ip)M:aefi} c N ® &
For the other inclusion, we prove first that Ec . If hye € € E, hy #0, then there exists
g EM suchthatg=1@Q hy +Y o »1 €4 ® h,. Due to the first part of the proof, we have
ho=Pog =(I-XiZ1((B; ® Ip)((Bi & Ip)™) 9.
Acoording to the proof of Theorem (1.1.3), we have PCN’ = Iy, — Xi=1 BiB; =
. Using this and the fact that M is co-invariantunder B; @ I i=1,...,n, we deduce that hye Y

for any hy € E, i.e., € c Y. The latter inclusion shows that (B, ® I, (1 ® &) c Y for any a € f;,
,which implies

Pyve.® ECY, aefy . (7)

Let pe V; @ Ec F?(H, ) @ & be with Fourier representation ¢ :Zaeﬁ; eaky s ku€ E.
Using relation (7), we have

¢ =Py Q& I) = Ili_)n(}oz a =kPnyea @ ks €Y.

Therefore, V; ® € < Y, which completes the proof. _

Corollary (1.1.6) [1] : Let J be a WOT-closed two-sided ideal of f;’such that 1 €V} and let Dbe a
Hilbert space. Let M'S V; ®Dbe a co-invariant subspace under B; @ Ip,i=1,...,n.

Then the following statements are equivalent:

(i) M is acyclic subspace forB; ® Ip,1=1,...,n;

(ii) PyM=D;

(iii) M+ n D = {0}.

Proof: The equivalence (i) « (ii) is clear from Theorem (1.1.5) and the definition of cyclic subspace.
To prove that (ii) < (iii), notice first that if there exists h € M+ n D, h # 0, then taking into account
that iM *s invariant under B; ® Ip,i=1,...,n, we deduce that /@ h c.M* .This shows that h
P, M which means that is P,M not equal to D. Now, assume that there exists k € D, k # 0, such that
k L P,M .Since 1€ I ,we have k L M which shows thatk € Dn M . The proof is complete. _



Corollary (1.1.7) [1]: Let J be a WOT-closed two-sided ideal of F” such that 1 €V} and let D be a
Hilbert space. A subspace M S N @D is reducing under each operator B; & Ip, i=1,...,n,if
and only if there exists a subspace € € D such that

M=NQ E.
The next result, is a Wold type decomposition for nondegenerate x-representations of the C*-algebra
C*(By,...,Bp)
Theorem( 1.1.8) [1]: Let J be a WOT-closed two-sided ideal of F°
such that 1 € V; , and letm: C* (B,, ..., B,) — B(K) be a non degenerate *-representation of C*
(B4, ..., B,) on a separable Hilbert space K. Then m decomposes into a direct sum

7T=7T0@T[10HK:KO @Kl’
where 1, ,m, are disjoint representations of C* (B, , ..., B,) on the Hilbert spaces
Ko:=span{r(B)(I — XiL; m(B)m(B;))K: a € 1}

and K, := Kg , respectively, such that, up to an isomorphism,

Ko~ M ®GX)=X®IG, X€eC"(By,..,By), (8)
for some Hilbert space G with dim G = dim[range (I — Y], n(B)7(B;)")],
and T, is a =-representation which annihilates the compact operators and
T (By) M1 (By) "+ - - + 1 (By) My (By) "= Ik,
Moreover, if ' is another non degenerate *-representation of C* (B, ..., B,) on a separable Hilbert
space K', then m is unitarily equivalent to m' if and only if dim G = dim G’ and m, is unitarily
equivalent to m,".
Proof: Since the subspace JV; contains the constants, Theorem (1.1.3) implies that all the compact
operators LC(V; ) in B(JV; ) are contained in C* (B, ..., B,) according to the standard theory of
representations of the Cx-algebras, the representation = decomposes into a direct summ = m, @
™, on K = K, @ K;, where K, := Span{nm (X)K : X € LC())} and K; = Kg , and the
representations ;: C* (By, ..., By) — K; are defined by m;(X) := w (X)| K| , j = 0, 1. Now, it is clear
that m,, m; are disjoint representations of C* (B;,...,B,) such that m;annihilates the compact
operators in B(%V; ),and m,, is uniquely determined by the action of = on the ideal LC(JV})). Since
every representation of LC(JV})) is equivalent to a multiple of the identity representation (see [3]), we
deduce (8). Now, we show that the space K,
coincides with the one defined in the theorem. Using Theorem (1.1.3) and its proof, we deduce that
Ko:="span{ m (X)K : X € LC(V))}
=span{ 7 (B,P. B} K : a, B € i}
= span{ m (B)(I — XL, m(B)m(B)IK : a € £} .

On the other hand, since PCN':(I — > m(B)m(B;)*) is a rank one projection in C* (B, , ..., By)
(see Theorem (1.1.3)), we deduce that

Z?:l“l(Bi)TH(Bi)* :IK1’ and
dim G =dim [range T (PCN])] = dim[range(] — Z?:ln-(Bi)T[(Bi)*)].

To prove the uniqueness, note that according to the standard theory of representations of C*-algebras,
m and 7 " are unitarily equivalent if and only if m, and my(resp. m; and m; ) are unitarily equivalent.
Using Proposition (1.1.4),

we deduce that dim G = dim G’ and complete the proof. _



Corollary( 1.1.9) [1]: Under the hypotheses and notations of Theorem (1.1.8) and setting V;:= 7 (B;)
,1=1,...,n,we have:
(i) Q :=Ix =2, V;V;" is an orthogonal projection and Qg =N~ ker V" ;

(i) K, ={ k € K: ]11_1)10102| a =k | VZk I17=0};
(i) Ky ={ K€ K: ¥ g =i N Sk IP=1 k II* for any k = 1,2,...};

(IV) SOT' ,llm Z| C(| =k I/CZVC(* = PKl;
(V)2k=o Z\ al =k VoV = Py

Proof: Since Iy, = r BB} = PCN’ is an orthogonal projection (see the proof of Theorem (1.1.3), so
isQ=m (PCN’). Therefore,

QK ={k € K :(I-X™, V;V )k =k }
={k e K: Y™, V,V; k=0}

=Nx, kerV;
which proves (i). Using Theorem (1.1.8), we have

[Za=kBsBi®Iz O
Z| a =k VaVa = & 8.’0! I, . (9)

1

Since MVjis co-invariantunder Sy, ..., Sy, and Bf = §{|V}, i=1,...,n, we have

SOT'IP_)I?O Z\ o =k BB, @ I = SOT- Ili_)r{.lo[PN] (Z| o =kSang)| M] QI =0.

The latter equality holds due to the fact that [S1, . . ., Sn] is a pure contraction. Therefore, (iv) holds.
Hence, and taking into account that

Z?il Z\ al =k VaQVa*: I _Z\ al =m+1 VaVa** )
we deduce (v). Now, let k € K = K, @K;, k = k,+k,, with k, € K, and k,€K; . By (9),we have

Z\ al =m [ Va*k ”2 = ((Z| al =mBo:B; X IG)kO' k0 ) +li kl ”2:m =12, .. (10)

Hence, liir(}o Yo =m | V7k I =0ifand only if k; =0, i.e., k =k, € Ko, which proves (ii).

On the rgther hand, (10) shows that ¥ o = Il o'k I =1l k II> for any m = 1, 2, . . ., if and only
if((Y) & =m BaBa ® I¢)ko, ko ) =l ko II? forany m =1, 2, . . .. Since [By, . . . ,B,] is a pure row
contraction, SOT- lim ¥ o -, B, By = 0. Therefore , the above equality holds for any

m—oo
m=1,2,... ifand only if k, = 0, which is equivalent to k = k; € K;. This completes the proof. _
Corollary (1.1.10) [1]: Let _ be a non degenerate *-representation of C*(B4, . . . ,B,) on a separable
Hilbert space K, and let V; :=m(B;) ,i=1, ..., n. Then the following statements are equivalent:
MV :=[V4,...,V,]isaconstrained shift ;

(i) K=Tspan{ V,(I = X, V;V)K:a € f}};

(iii) SOT- ’lg?o Yo =k VeV = 0.

In this case, the multiplicity of V (denoted by mult (V )) satisfies the equality

mult (V) =dim(l = V,V; — - - - = V1)K, (11)
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and it is also equal to the minimum dimension of a cyclic subspace for V,, ..., V,.

Proof : The above equivalences are consequences of Corollary (1.1.9), and relation (11) follows
from Theorem (1.1.8.) We prove the last part of the corollary. According to (ii) and Corollary(1.1.9),
L=N, Vo =(1-VV - =LK

is a cyclic subspace forV;, . .., V,. Now, let € be any cyclic subspace forV,, ..., V,., ie, K
=Ve et Vo€ , and denote A := P |€ € B(E L), where P is the orthogonal projection of K onto L.

Assume thatk e L © TE and let h € €. Notice that

(h, k)= (h,P k) = (Ah, k)= 0.

On the other hand, V;k = 0 for any k € L, we have (V, h, k)= 0 for any a € f} with| « | > 1. Therefore,
k LV,E for any a € f. Since & is a cyclic sub space for Vy, ..., V,, we deduce that k = 0, and
therefore AE = L. This shows that A* € B(L, &) is one-to-one and, consequently, dim L <dim €. This
completes the proof. _

An easy consequence of Corollary (1.1.10) and Proposition (1.1.4 )is the following.

Proposition (1.1.11) [1]: Two constrained shifts are similar if and only if they are unitarily
equivalent.

Proof: One implication is obvious. LetV :=[V,,...,V,],V; € B(K),and V" :=[V{,..., Vi], /€
B(K"), be two constrained shifts and let X : K — K’ be an invertible operator such that

XV, =V X;i=1,...,n.
If M is a cyclic subspaces for V;, ..., V,, then
K'= XK = X(Vg e gt Vo M)

SVyept XV M=V gt ViXM SK'.

Therefore , K' =V, e ;X M, which shows that X M is cyclic for V '. Since X is invertible, dim

M =dim X M. Hence an using Corollary (1.1.10), we conclude that the two constrained shifts have
the same multiplicity. By Proposition (1.1.4), the result follows.
we develop a dilation theory for row contractions T :=[ Ty, . . ., T,] subject to constraints such as
p(Ty, ..., T,)=0,p€P,
where P is a set of non commutative polynomials. The model n-tuple is the universal row contraction
[B, .. .,By] satisfying the same constraints as T. The theory is based on a class of constrained Poisson
kernels associated with T and representations of the C*-algebra generated by B,, . . . ,B,, and the
identity. Under natural conditions on the constraints we have uniqueness for the minimal dilation.
We introduce and evaluate the dilation index, a numerical invariant for row contractions, and show
that it does not depend on the constraints. These results are used in connection with characteristic
functions and models for constrained row contractions.
We need to recall from [30] a few facts about non commutative Poisson transforms associated with
row contractions T := [Ty, ..., Ty)], T; € B(H). For each 0 <r < 1, define the defect operator Ay ,:=
(I — r?T, Ty —--- —r2T,T;)Y/?(The Poisson kernel associated with T is the family of operators

Kppo 3 — F2(H,)) @ Ap H ,0<r<1,
defined by
Kreh =200 Y o ckea @71 ¥ A Ty b, €A (12)
When r = 1, we denote Ay := At and Kt := K ; The operators Ky .are isometries if 0 <r <1, and
KK = 1= SOT- lim 3 ¢ = ToTs -
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This shows that K is an isometry if and only if T is a pure row contraction ([21]), i.e.,

SOT- lllm Z‘ al =k TOLT;: 0.

A key property of the Poisson kernel is that

Kr (¥ T;)=( S; ® DKy, forany0<r<1, aef;. (13)
In [30], we introduced the Poisson transform associated with T := [Ty, .. ., T,] as the unital
completely contractive linear map @1 : C+(S,, ..., S,) — B(H) defined by

or () := lrl_r}} Krer (f @ DKr,

where the limit exists in the norm topology of B(H). Moreover, we have
(S Sp) =T Tg o, B E .

When T is a completely non-coisometric (c.n.c.) row-contraction, i.e., there isno h € #, h # 0, such
that

Yia =k I Toh 12 =Ilh1I? foranyk=1,2,...,
an F;’-functional calculus was developed in [26]. We showed that if
f=Xaert AaSar iSinFY,

then
Tp (f) = f(Ty, ..., Ty) 1= SOT-Im B0 ) o k7! ¥ 2o T
r—

exists andT : F’-— B(H) is a WOT-continuous completely contractive homomorphism.

More about noncommutative Poisson transforms on C*-algebras generated by isometries can be found
in [30], [2], [31], [32], and [34].

LetJ # F°-n be a WOT closed two-sided ideal of F;’- generated by a family of polynomials P, € F?
andletT:=[T,, ..., T,], T; € B(H), be a row contraction such that p(T,, ..., T,) =0 foranyp € PJ
Let D and K be Hilbert spaces and let Z; € B(K) be bounded operators such that [T, ..., T,] is a
Cuntz row contraction, i.e., Z,Zi+ - - - + Z,Z}= 1.

An n-tuple V :=[V,, ..., V,] of operators with

v, ::[Bi%”D ;i],izl,...,n, (14)

where the n-tuple [B4, . . ., B,] is the constrained shift associated with J, is called constrained (or J-
constrained) dilation of T if:

(i) p(Vy, ..., V) =0foranyp e B ;

(if) H can be identified with a co-invariant subspace under V, . . ., V,such that

Ti: P}[Vllj{’ i :1, L., N

The dilation is minimal if H is cyclic for vy, ..., V,, i.e.,
('Ni ® D) d K :Vaeﬁﬁ VoIt
We introduce the dilation index of T, denoted by dil-ind (T), to be the minimum dimension of D such
that V is a constrained dilation of T.
12



Our first dilation result for constrained row contractions is the following.
Theorem (1.1.12) [1]: Let J #+ F7° be a WOT-closed two-sided ideal of generated by a family of
polynomials P, € F* and let T :=[T;, ..., T,], T;€ B(%), be a row contraction such that

p(Ty, ..., T,)=0foranyp € P . (15)
Then there exists a Hilbert space K and some operators Z;e B(K) with the properties
7,23+ - - -+ Z,7;= 1 and

P(Z,...,Z,)=0foranyp €p,
such that:
(i) 7 can be identified with a co-invariant subspace of k := (V; ® ArH) @ K under the operators
BiQlz7 O
Vi::[ l®OAT}[ Z, i=1,...,n
(DT =ViH,i=1,...,n.
Moreover, K = {0} if and only if [Ty, . .. ,T,] is a pure row contraction.
Proof: Consider the subspace
M:=5pan {Syp (S1,....S4)Sp(1):p€P,ap €1} }.

It is clear that M* < M; . To prove that M;S M, it is enough to show thatM'+ € M;*.

Let g € F2(H,,) be such that

(9,9(S1,---,S0)P (S1,-..,S,)Sg(1))=0foranyp € B, a,f €1 .

It is known (see [4], [12]) that for any @(S,,...,S,) € F; , there is a sequence of polynomials
{dm(S1, ..., Sn)}m=1 Which is SOT-convergent to @(S,,...,S,) as m — oo. Consequently

(9, 0(S1,.--,Sn)p (S1,..-,50)Se(1))=0
forany @(Sy,...,S,) €f,p€P and a,B€ ] , Hence, g € M;* . Therefore, Mj =M. Now, using
the properties of the Poisson kernel Kt (see (13)) and that p(Ty, . .. ,T,) = 0 for any p € B, we obtain

(KrkSqp (S1,...,580)Sp(1) ® h) = (k, Tap (T4, ..., Ty)Sp(1) Tga h) =0
forany k € H, h € A;H, and p € B . Since M; =M, we infer that

range Kt € (M @ ArH )T =N Q A+H. (16)

Consider the constrained Poisson kernel K;: H— N @ ApH defined by
Kjr = (PN] Qlz-7r)Kr

where Ky is the Poisson kernel defined by (12). Using relations (13) and (16), we obtain
Ky Ta = (Bg ® InKj 1 ae 17)

Define the contraction Q := SOT- ’lim Yo =k TaTq
and the operator

Y:H > K QYV2H:=Q1/2Hby Y h:=QY?H, he H.

Foreachi=1,...,n, define A, : Q*/2H — K by setting
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A;Yh:=YT'h heH. (18)
The operators A;, i =1, ..., n, are well-defined since
n
Z IAYh IP= () TQT A k) = Qzh |12

Therefore the operator A; can be extended to a bounded operator on K, which will also be denoted by
A;. Now, setting Z; := A’{, i=1,...,n, relation (18)implies

Y*Zi: Ti Y*, = 1, o, N (19)

Notice that

n n
Y* (Z zizg‘> Y = Z T,Y'Y T}
i=1 i=1

=t QT =Q=YY"

Hence,

<2(zi Z)Yh, Yh) = (Yh, YR),

which implies
1 ZZ; = 1. Using relations (19) and (15), we get
Y'p(Zy, ... Zy)=p(Ty, ..., T,))Y'=0,p€EPR.
Since Y~is injective on K =Y H, we deduce that p(Z,, ... ,Z,) =0foranyp € B .
Define the operator V : H — [V} @ H] @D K by setting

Vv ::[K;J] .

Note that
I Vh I2=Il K7yh 1241l Yh ||?

= h|?-SOT- lim (%) o =k TaTe )+l Yh 112
=l h 1= {Qh, h) + (Qh, h)
=|| h |2

for any h € H. Therefore, V is an isometry. On the other hand, using relations (17) and(18), we
deduce that

VT :[K;J | T =KkryT h@ YT N

= (B ® Is)Kr; h® Zi Y h

:[Bi X Is;z O

; 2] 7P
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Since V is an isometry we can identify H with V H and complete the proof of (i) and (ii).The last
part of the theorem is obvious. _

Corollary(1.1.13) [1]: In the particular case when n =1 and P;= 0, we obtain the classical iso-metric
dilation theorem for contractions obtained by S,.-Nagy (see [38]) by different methods.

Now we can evaluate the dilation index of a constrained row contraction and show that it does not
depend on the constraints. We show that the dilation index coincides with rank A, [10].
Corollary( 1.1.14) [1]: Let J # F;° be a WOT-closed two-sided ideal of generated by a family of
polynomials P, ¢ F° and let T := [Ty, . .., T,], Ti€ B(H), be a row contraction such that

P(Ty, ..., Ty)=0foranyp € B
Then the dilation index of T satisfies the equation
dil-ind (T) = rank Ay .
Proof : Let D and K be Hilbert spaces and let Z;e B(K) be bounded operators such that
i3+ -+ LI = Iy

Assume that the n-tuple V := [V, ..., V,] given by

_[Bi®Ip 0] - .

Vi.—[ 0 Zi,l—l,...,n, (20)
is a constrained dilation of T. Since #{ is co-invariant under V, . . ., V;,, and JVj is co-invariant under
the left creation operators S, . . ., S, we have

—_yn ggrx
I — Xit1 VT =Py [[PNI(I =1 SiS;)| ]\G] ® Ip O]| H
0 0

Hence, and taking into account that (I — XL, S;S;) is a rank one operator, we deduce that

rank Ap <rank [Py, (I = Xi; 5iS) V) ® Ip]< dim.

Now, using Theorem (1.1.12), we conclude that dil ind (T) = rank Ar.

Theorem( 1.1.15) [1]: Let J # F7° be a WOT-closed two-sided ideal of generated by a family of
polynomials P, € F* and let T := [T;, ..., T,], ;€ B(¥), be a row contraction such that

p(Ty, ..., T,) =0foranyp € B,. (21)
Then there exists a separable Hilbert space k. and a *-representation n: of C* (B,, ..., B,) = B(k;)
which annihilates the compact operators and

n(By)m (By) "+ - - -+ m(By)  (Bn) "= Iig,, -

such that:
(i) 3¢ can be identified with a co-invariant subspace of k := (Vv ® ArH) D K under the

Operators
_[Bi®lzgzmz 07 ._ .
Vi-_[ 0 Zi,l—l,...,n,

()T = V|, i=1,...,n.

Proof: According to [35], if P consists of homogeneous polynomials, then
Range K, € V; ® H forany r € (0, 1), the constrained Poisson kernel Kj .= (PN]®IH) Ky isan
isometry, and there is a unique unital completely contractive linear map

@, r:Span{B,By : o, Bef} }
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such that CDLT(BQBE) = TyTg: o, Bef . Applying Arveson extension theorem [2] to the map @ ,
we obtain a unital completely positive linear map
Wr: C*(By, ... ,By) — B(H). Letit : C*(By, ... ,By) — B(K) be a minimal Stinespring dilation of
Wt ie,
W) 1(X) = Pyt (X)|H, X € C*(By, ... ,By)

and K = span{st (X)h: h € H}.
Notice that, foreachi=1,...,n,
lP],T(BiBik): TiTy = Pyt (Bi)ﬁ(Bi")| H
=Py 7t (B) (P + Pyer IE(BY)| H
=W 1 (BiBi)+Py 7t (By)| 501 )(Pyrr 7(B)| H)
Hence, we infer that Py7t (Bj)| 5+ =0and
W1 (BaX)= Py (7 (B (X)) H
=(Py7t (Bl H) (Pt (X))| ) (22)
:lP],T(Ba) lP],T(X)

for any X € C*(By, . . . ,Bp)and o € f. Note that the Hilbert space K is separable and 7 is an
invariant subspace under each 7 (B;)*,i=1, ..., n, due to the fact that P,;7 (B;)| 4, =0.
This means that

# (B H =W, r(BD=T; ,i=1,...,n. (23)

Now, since the subspace JV; contains the constants, we can apply Theorem (1.1.3) and deduce that all
the compact operators LC(JV;] )) in B(JV;) are contained in C*(By, . . . ,B,). According to Theorem

(1.1.8), the representation 7 decomposes into a direct sum 7 =m,@® mon K = K,®K,,
where m,, m are disjoint representations of C*(B;, . . . ,By)on the Hilbert spaces Kyand K,
respectively, such that

Ko= N ® G, 1, (X) =X ® Ig, X € C*(By, . . . ,By) (24)

for some Hilbert space G, and is a representation such that w (LC(%V; )) = 0. Since PCNI =1-
i=1 BiB{
is a rank one projection in C*(B4, . .. ,B,)we deduce that
n

P COLICO

and
dim G = dim(range 7 (PCN')).

Using the minimality of the Stinespring representation 7 and the proof of Theorem (1.1.3), we have
~ VN _ = 3 (pV IV .
range 77 (P, °) = span {it (P, *)it (X)h: X € C*(By,...,By),h € H}
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= span {it (P )i (Y)h:Y € Co,h € 7}

=span (i (P, ) (B4P. 'By)h : a,Be i, h € H)
=span {i (P."")¥% (B;)h: Be £}, h € #}

On the other hand, using relation (22), we have
Ny Ny Ny

@ (B) 7 Bn (B)# (By)k) = (h,m(B)m (B ) m (Bj)h)
=(h, Ty (I = Xi=1 TiT{)Tgh)

=(ArTyh, ArT;k)
for any h, k € H. This shows that one can define a unitary operator A : range 7 (PCN’) — AH by
setting
g (B

C

), 7% (Be)h):= AT, hEH

and extending it by linearity and continuity. Therefore, we have dim[range (PCN’) 1 =A;7 =dim
G.
Hence, making the appropriate identification of G with A;F and using relations (23) and(24), we
obtain the required dilation. This completes the proof. _
Corollary( 1.1.16) [1]: LetV :=[Vy, ..., V,] be the dilation of Theorem (1.1.15). Then,
(1) V is a constrained shift if and only if T is a pure constrained row contraction;
(i) V is a Cuntz type representation if and only if T is a constrained row contraction
such that
T,Ty +-- -+ T, Ty = I
Proof: Notice that

p |2 ad=kBeBa @lizze 0
Z| a| =kTaTa:P_‘]{[ ‘a‘ (ZO(Z T

and therefore,
. 0 0

This shows that T is a pure row contraction if and only if P,Px_[H = 0. The latter condition is
equivalentto € L (0 @ Ky), which implies H c V; ® A;H. Now, since N;® A7 is reducing for
each operator V;,i=1,...,n,and K is the smallest reducing subspace for the same operators, which
contains #, we conclude that K = V; ® A;F., which proves (i).

Now assume that the dilation V is a Cuntz type representation, i.e.,

2l of =k ViV;" = Ig. Since

o_|2 @ =k BaBe @ lzzze 0
Z\a\:kVaVa: “ 06006 ’ Ix

we deduce that
Z B.By @ lzrw = Ik,
| af =k
forany k=1, 2, .. .. Due to the fact that
SOT-%im Yl of =k BaBe = 0, we must have K,= {0}. Using the proof of Theorem (1.1.15), we get G

= {0}, which means A = 0. The proof is complete. Under additional hypotheses, one can obtain the
following remarkable particular case of Theorem( 1.1.15) where the dilation is unique up to a unitary
equivalence.
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Corollary( 1.1.17) [1]: If in addition to the hypotheses of Theorem (1.1.15)
span{B,B; : a, Bef{}= C*(B4, . .. ,By), (25)

then the dilation of Theorem( 1.1.15) is minimal, i.e., R/:Vaeﬁ'{ V,H , and it is unique up to a unitary
equivalence.

Let T":=[T{, ..., Ta], T, € B(H"), be another row contraction subject to the same constraints as T
and let vV ' :=[V], ..., V.] be the corresponding dilation. Then T and T’ are unitarily equivalent if
and only if

Dim A;H =dim ApH' and there are unitary operators A : V] @ A;H— N @ ApH'and I' : K,
— K, rsuch that

AB; ® A;H)=(B; ® ApH")Aand Iy(B) == (B; ) fori=1,...,n,
and

A 0 ,

A r] H= 9.
Proof: A closer look at the proof of Theorem (1.1.15) reveals that, under condition (25), the map ¥, 1
IS unique. Using the uniqueness of the minimal Stinespring representation (see [37], [4]), one can
prove the uniqueness of the minimal dilation of Theorem( 1.1.12) .The last part of this corollary
follows using standard arguments concerning representation theory of C*- algebras
[3] and the uniqueness of minimal completely positive dilations of completely positive maps of C*-
algebras. In what follows we present several examples when the condition (25) is satisfied.
Example (1.1.18) [1]: Let B, c Fy’ by a set of polynomials and let P, be the WOT-closed two-sided
ideal of Fy’generated by P, . The condition (25) is satisfied in the following particular cases.
(i) If B :=0, then ] = F2(H,, ), B;= S;, and therefore S; Si= 8;;41. In this case, Theorem (1.1.15) and
Corollary( 1.1.17) imply the standard non commutative isometric dilation theorem for row
contraction [21].
(i) If B ={S;S;—S;Si: I,j=1,...,n}, then V] = F¢ , the symmetric Fock space,
and B;, i=1,...,n, are the creation operators on the symmetric Fock space. We obtain in this case
the dilation theorem for commuting g row contractions (see [13], [4], and [30]).
(iii) If By, . . . ,B,are essentially normal.
(iv) Let B be a set of homogenous polynomials in Fy* . According to Lemma (1.1.1), UJ; is a

subspace invariant under S; , i =1, ..., n. Using the characterization of the invariant subspace for
the left creation operators [22], there exists an essentially unique sequence

{@p(S1, -, Sp)Ip=1, N =1,2, ... 00, of isometries with orthogonal ranges

such that

Py, = 1 = Zp=1 ®p(Sy, -+, Sn)@p(Sy, e, Sn)”
where the series is SOT-convergent if N = oo. If the above sequence is finite (N < oo)and

@p(S1, ..., Sp)p =1, ... N, are in the non commutative disc algebra A ,, then condition (25) holds.
Indeed, in this case we have

N
BB, = Py S; I—Z(pp(sl,...,Sn)(pp(sl,...,sn)* ;|
p=1

Since S; S; = 6;;1 and JVjis invariant under S , i =1, ..., n, we deduce that B{B; is in
span {B,Bj: a , fe 1}
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(V) If By = {Sq: [ | = m}, then Py, = | 2| o =m SaSq <IN this case, we have
Bi*Bj: PN]Si*( I - Z| a =mSaSa )Sj| ‘Ni
and B{B; is in span {B,B;: a, e 7 }.

(Vi) If B :={Sq: | a|=m} U {S;S;—§;S;:0,j=1,...,n}.

(vii) If B :=§;S; — q;iS;S;: —i <, i,] =1, ..., n} for some g;;€c, then B; B;=0

if i # j and B{B;can be written as a linear combination of the identity and B; B;

J=1,...,n.Inthis case we obtain the dilation result from [7].

LetT:=[Ty,..., T,], T;€ B(H), be a row contraction and let C c F;° . If T is a c.n.c. row contraction
and ¢ € C, then ¢ (Ty, ..., T,) is defined by the F®

-functional calculus for row contractions [26]. When T is an arbitrary row contraction, then we
assume that C consists of polynomials.

Denote by M. the closed span of all co-invariant spaces M € H under Ty, . . ., T, such that
Py Ty M, ..., PyT, M)=0forany ¢ €C.

We call the row contraction

[P]V[CT1| MC’ ot P]V[CTD| MC]

the maximal C-constrained piece of [Ty, . . ., T,].
Lemma( 1.1.19) [1]: IfV = [V, ..., V,], V; € B(H), is a row contraction then
WVo(Vy,....V)H: 9 € C,a € 1}
M-=span.
= Ngecaerr @ (V1o Vo) Wy
Proof : Denote :=span{V,o(V,,...,V,)H: ¢ € C,a € £}

and note that £ is co-invariant under V, ..., V,. Ifh € & and k € 7, then
0=(p(Vy,..., Vi )k, h) =k, o(Vy,..., V) h).

Hence, we get @(Pc1 V| €4, ..., PciV,] €1)=0. Let M be a co-invariant subspace under V, . . .,
V,such that @ (P Vi| M, ... , Py V| M) =0. Forany h e M and € ff; , we have Vh € M, therefore
oV, ..., V)" V'h = 0 This implies (h, ¢ (V4,...,V,)k)= 0 for any k € #, which shows that Mc
E+and completes the proof.

Using this lemma and the definition of the subspace V;, one can easily prove the following.
Proposition( 1.1.20) [1]: Let: Let J # F;° be an arbitrary WOT-closed two-sided ideal of F;° , S4, . .
., S, be the left creation operators on the full Fock space

F2(H,) , and B;:= PN]Si| N, i=1,...,n. Then[B4,...,B,]is the maximal J-constrained piece of
[S1, ..., S,]-We consider now the particular case when the row contraction T := [Ty, ..., T,] is pure,
i.e. SOT- lim ¥ 4 T,T; = 0. In this case, the resultstion can be extended to a larger class of

| K| —co
constrained row contractions.
Theorem( 1.1.21) [1]: LetJ # F; be a WOT-closed two-sided ideal of generated by a family of
polynomials P, € F* and let T :=[T;, ..., T,], T,€ B(F), be a row contraction such that
f(Ty,...,T,) =0foranyfeJ.
Then the following statements hold:
(i) The constrained Poisson kernel K;r: H— V] @ A3 defined by setting

K],T = (PN] ® I)KT
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is an isometry , K; r3 is co-invariant under B; @ Iz, 1=1,...,n, and
T; = K1y(B; ® Igrz) Ky i =1, ..., n. (26)

(ii) dil-ind (T) = rank A .
(iii) If 1 € Jv , then the dilation provided by (26) is minimal.
If, in addition, 1 € V; and

span{B,Bg : a, f € f5}=C"(By, ... ,Byp), (27)
then we have:
(iv) The minimal dilation provided by (26) is unique up to an isomorphism.
(v) The minimal dilation is the maximal J-constrained piece of the standard non commutative
isometric dilation of T.
(vi) A pure constrained row contraction has rank Ay =m, m=1, 2, ... o, if and only if it is unitarily
equivalent to one obtained by compressing [B; @ Im, ..., B, & I.m] to a co-invariant subspace
Mc N, ® c™ under B; ® Iem, ..., B, @ I, with the property that dim P, M= m, where P, is the
orthogonal projection of V; @ c™ onto the subspace 1 & c™.
Proof: Part (i) follows from [12]. To prove (ii), let D be a Hilbert space such that A can be identified
with a co-invariant subspace of V; ® D under B; ®Ip,i=1,...,n,and such that T; = P+ (B; QIp,)|H
fori=1,...,n. Then

L — ZTT p 1 ©P

Py, (1 — 1SS M ® I #¢

(L, - ZBB)@ IDII%
_PN](X)D[

N]@D

=B, [Py, By ) @ 1] 7

Hence, rank At < dimD. Using (i), we deduce that the dilation index of T is equal to rank A .
Assume now that 1 € JVj. As in the proof of Theorem (1.1.5), we obtain P(CNI Py eq=0 for any o
€ f};, |a| > 1. On the other hand, the definition of the constrained Poisson kernel K; r implies

. N .
POK],T h= nlllirgo ZZLO Z‘ al =k P(L‘ J PN] €q ® ATTOLh ’ heH

where P,:= PCN’ Qlz7¢. Therefore, oK+ 3 = Az . Using Corollary (1.1.6) in the particular case
when = K;tH and D := A;H, we deduce that K;tHis cyclic for B; ® I , i =1, ..., n, which
proves the minimality of the dilation (26), i.e.,

N QArH=Vye ffg(Ba Q Iar7c) KyrH (28)

Now we assume that 1 € Vj and that relation (27) holds. Consider another minimal dilation of T, i.e.,
Ti = V*(Bl ® ID)V, (29)

where V: H— N, @ D is anisometry, V H is co-invariant under B; ® Ip,i=1,...,n, and
N @D =V, e 5 (By ® Ip) VH. (30)
We know (see [1]) that there exists a unital completely positive linear map

@: span{B.B; : o, B € f} - B(H)
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such that ®(B,B;) = T,T;,a, B € ff} . Due to (27), @ has a unique extension to C*(B4, . . . ,B,).
Consider the *-representations

LSt : C*(Bli e 1Bn) - B(]Vi ® A’I'—j{)’ T[l(x) =X ®IAT—7—[

M, . C*(By, ... ,By) — B(V; ®D), mp(X) =X Q Ip.

It is easy to see that due to relations (26), (29), (27), and the co-invariance of the subspaces K; rH and
V H, we have
?(X) = Ky (X) Ky p= Vi (X)V, X € C*(By, . . . ,By).

Now, due to the minimality conditions (28) and (30), and relation (27), we deduce that m,and 1, are
minimal Stinespring dilations . Since they are unique, there exists a unitary operator U : V; @ Ay H —
N; ® D such that

UB; ® Iz7) =(B; ® Ip)U,i=1,...,n. (31)
and UK r =V . Hence, we also have
UB; ® ;7)) =(B; ®Ip)U,i=1,...,n

By Theorem (1.1.3),C*(B4, . . . ,By). is irreducible, so we must have U = Iy, ® W, where W €

B(ArJ,D) is a unitary operator. Therefore, dim Ay H = dim D and UK =V H, which proves that
the two dilations are unitarily equivalent.
In the particular case when J = {0}, part (iv) shows that

S:[Sl®IAT—{]{1!Sn®IAT—7—[]

is a realization of the standard minimal isometric dilation of [Ty, . .., T,]. Using Lemma( 1.1.19)and
Proposition (1.1.20), one can easily see that the maximal J-constrained piece of S coincides with [B,
& Izz7 - - - » Bn & Igzz], which proves (v). Now, we prove (vi). The implication “ == * follows
from part (i). Conversely, assume that

Ti:P}[(Bi®I¢m)|}[,i:1,...,n,

where H < V;@c™ is a co-invariant subspace under B; @ Iem, i=1, ..., n, with dim P,7£ = m(recall

P, = PCN‘ & Iem). Itisclearthat T := [Ty, ..., T,] is a pure J-constrained row contraction. Consider
first the case when m < co. Since P,H € ¢™ and dimP,H = m, we deduce that P,H = c™. By Corollary
(1.1.6), we have

H+ N c™={0}. (32)

On the other hand, since I, —X1, B;B;=p)"
, We obtain
rank Ap= rank PH[(IN] —>1BB)H X Icm]| H
= rank Py Py|H = dim Py Py H
= dimP,Cm.
If rank A+ < m, then there exists a nonzero vector h € c™ with P;-h = 0, which contradicts relation

(32). Therefore, we must have rank Ax =m.
Now, we consider the case m = . According to Theorem (1.1.5), setting := Py, we have
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Vaeﬁﬁ(Bi X I@m)f]{:]\/} X &,

which is reducing for B; @ I.m,i=1, ..., n. Therefore,

T;=Py (B Q I)|H,i=1,...,n. L
Using the uniqueness of the minimal dilation of T (see (iv)), we deduce that dimA;H = dim€ = .
The proof is complete.
Let J be a WOT-closed two-sided ideal of F;’generated by a family P, of homogeneous polynomials
such that 1 € v and condition(5) holds. If [T;, . .., T,] is a arbitrary J-constrained row contraction,
is it true that the minimal dilation provided by Theorem (1.1.15) is the maximal J-constrained piece
of the standard non commutative isometric dilation of T ?We should mention that the answer to this
question is positive in the commutative case, i.e., when B := {S;S; =S;S; 1 i, =1, ..., n} (see
[8]).Under certain natural conditions on the ideal J, we can characterize the pure J-constrained row
contractions of rank one.
Corollary (1.1.22) [1]: Let J be a WOT-closed two-sided ideal of F7’ such that 1 € JV; and condition
(27) is satisfied. If Mc JV; is a co-invariant subspace under By, . . ., Bythen the n-tuple T := [Ty, . ..
, To] Ti:= ByeBy|M, 1 =1, ..., n,isapure J-constrained row contraction such that rank A = 1.
If M’ is another co-invariant subspace for B, , . . ., B,, which gives rise to a row contraction T’, then
T and T’ are unitarily equivalent if and only if M=M".
Every pure constrained row contraction with rank A= 1 is unitarily equivalent to one obtained by
compressing [B,, . . ., B,] to a co-invariant subspace for By, . . ., B,,.
Proof: Since M'c JV, is a co-invariant subspace under By, . . ., B, we have
f(Ty, ..., T,) =Pyf(B,,...,By)M=0,f€e],
and Iy — Xy Ty = Pac (I, — X35y BB M

=p, P M.
Hence, [Ty, . . ., T,] is a constrained row contraction with rank A< 1. On the other hand, since

Z\ al =kTaT; = P]V[(Z| a =kBaB(; k=1,2,...,
and [B4, . .. ,B,] is a pure row contraction, we deduce that [Ty, . . ., T,] is pure. This also implies
that Ar#0, so rank Ar> 1. Consequently, we have rank Ar= 1.
To prove the second part of this corollary, notice that, as in the proof of Theorem( 1.1.21) part (iv),
one can show that T and T’ are unitarily equivalent if and only if there exists a unitary operator A :
N; — NV, such that AB; = B;A , fori=1,...,n, and AM=M".
This implies that A commutes with C*(B;, . . ., B,) which, due to Theorem( 1.1.3), is irreducible.
Therefore, A must be a scalar multiple of the identity. Hence, we have M= AM=M".
Finally, the last part of this corollary follows from Theorem( 1.1.15) and Corollary (1.1.17). The
purpose is to provide new properties for the standard characteristic function associated with an
arbitrary row contraction and show that I- 001 = K;K% , where K is the Poisson kernel of T.
Consequently, we will show that the curvature invariant and Euler characteristic asssociated with a
Hilbert module over f generated by an arbitrary row contraction T can be expressed only in terms
of the characteristic function of T.
The characteristic function associated with an arbitrary row contraction T := [Ty, ..., T,],T; € B(H),
was introduce in [22] (see [38] for the classical case n = 1) and it was proved to be a complete unitary
invariant for completely non-coisometric (c.n.c.) row contractions.
Using the characterization of multi-analytic operators on Fock spaces (see [27], [31]), one can easily
see that the characteristic function of T is a multi-analytic operator

Or Ry, ... Ry) : F*(Hy) @ Dy — F(H, )® Dy

with the formal Fourier representation

-1
ez i) @ T +(lr2a1y @ A1) (le2 @z — iea RiTy)
22



[R1 b3y Ige, o Ry b3y I}[](IFZ(Hn) by AT*)'

where Ry, . .. ,R, are the right creation operators on the full Fock space
F2(H, ) Here, we need to clarify some notations since some of them are different from those
considered in [22]. The defect operators associated with a row contraction T := [T, ..., T,] are

A= (I — XL, TT)Y? € B(H) and Ap= (I — T*T)Y/? € B(H™),

while the defect spaces are Dy := A;H and Dy := Ap-H ™, where #(n) denotes the direct sum of n
copies of H. In what follows we need the following result.

Lemma( 1.1.23) [1]: If 6(R4, . . . ,R,)) € R® ®B(# ,K), then

SOT- lri£r11 O(rR4,...,rR))* = 0(R4,...,R))".

Proof: We know that any multi-analytic operator (R4, . . . ,R,) with formal Fourier representation
(Rli SRR ’Rn)'\'Z?:O Z\ al =k R, X 9(0() ' Q(a)e B(}[!K)1
has the property that

(R, ... ,Ry)=SOT-lim 320 ¥ of = %Ry ® Oy
where the series converges in the uniform norm for each r € (0, 1). Now, note
that for everyp € ff , h € 7, and g € F2(H,, )® K), we have

(ORy,...,R)* (e ® h),g)=(eg @ h,O(Ry,...,Ry)g)
=(eg @ h, Laert| o < g Ra ® 6(0))g)
:(Z| acf}| of < Bl R, ® Q;a))(eﬁ ® h), g)
Therefore,
ORy,..-,Ry)" (e @ 1) =( weryi o < o Ra ® Oo) (e ® h)
Similarly, we have
O(Ry,...,TRy)" (€3 ® 1) =( X aerty i« o 7 “ Rae ® 0o (e ® h)

Using the last two equalities, we obtain

limO(rRy, ..., TRy)" (e ® h) =O(R,,...,R)"(es ® h)
for any p € f} ,and h € 7. On the other hand, according to the noncommutative von Neumann
inequality,
IO(rR,,...,TR)*IS I O(R4,..., R, foranyr € (0, 1).
Hence, and due to the fact that the closed span of all vectors e, ® h with € f} , h € H, coincides
with F2(H,, )® #, we deduce (using standard arguments) that
SOT- lriirll O(rRy4,...,TR)* = O(R4,...,Ry)".
The proof is complete.
The following factorization result will play an important role in our investigation.
Theorem (1.1.24) [1]: Let T := [Ty, ..., T], T; € B(H), be a row contraction. Then

| — 0;0%5=K K% (33)
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where Oq is the characteristic function of T and K+ is the corresponding Poisson kernel.

Proof: Denoting T := [lpzy, y @ Ty, - - ., Ipzgy, ) @ Tpland R := [Ry @ Iy, . . . Ry ® Iy], the
characteristic function of T has the representation

r—
Define the operators
A:=T*B:=A7,C:=A7,D:=-T,and Z:=rR,0<r<1,.

and notice that
(A B) _ (T Ap
C D Ay -T

IS a unitary operator. Therefore,

AA*+BB*=1,CC"+DD*=1,and AC*+ BD* = 0. (35)
Define

(2):=D+C( — ZA)"'ZB

and notice that using relation (35), we have
| - (2)(Z)*=1—-DD* - C(I — ZA)~'ZBD*- DB*Z*(I — A*Z*)'C*
- C{ — ZA)™1ZzBB*Z*(1 — A*Z")~IC*
=CC*+C(I — ZA)"1ZAC* + CA*Z*(1 — A*Z")~1C*
- = ZA)™'Z2Z*(1 — A*Z9)7'C*
+C(I — ZA)™1ZAA'Z*(1 — A*ZH)71C*

=C( — ZA)™L[(1 - ZA)Y(I — A*Z") + ZA(I - A*ZY)
+(1 - ZA)A*Z*— ZZ* + ZAA'Z*](1 — A'Z)IC”

=C(I — ZA) ' (1-z2Z2H(1 - A*Z")~ 1.
Therefore,

|- (2)(Z)*=C( — ZA)™* (1 - ZZ") (1 — A*Z*)"1C*=, (36)
Therefore, according to our notations, for any r € (0, 1), the defect operator
|- Ot (rRq, ... ,rR,) O¢(rRy,...,TR,) *

is equal to the product
Ay (1— rRT9)~1(1 - PR R (1 — rTR) A5

=1 QA ) I-rYL RQT)MI-r* YRR QINUI-rYL, RIQT) IR Ar)
=0y =k MR ATH[[A -2 T, RRD @ (B0 Xy g =p 7' A Ry ® TAr)
=iep=o v =, 2 fl=pT 1 AR, (1= r* T RRDR; @ ArTy TAr

Now, for every a,€ ff ,h € Dy, k € D, we have
([1 = ©r (rRy, ... ,rRy) O1(rRy, ..., 1Ry) *](eq ® h), e, ® k)
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=Y et € o 2 g <o TR, (=12 T, RRDRgeq, €,) (ArT; TgArh, k)

Using Lemma (1.1.23), we have
SOT- lin} Or(rRy,...,TR,) "= O (rR4,...,TRy) *
r—

Therefore, the above computations imply that
(I =61 (Ry,...,R)O1(Ry,...,Ry) (e, ® h), e, R k)

=Xyett) vl < ol 2 Al < ol RyReRpeq, eq) (Ar Ty TArh, k)
=Y ert) v < w(Ry (1), €, ATy T3Arh, k)
=(ArT;ToArh, k)

Here, we used the fact that R Rze, #0 if and only if f= @ (recall that @ is the reverse of ), and that

R(1) = 7 . On the other hand, using the definition of the Poisson kernel associated with a row
contraction, we deduce that K1(e, @ h) = T, Ay
and

(KrKr(eq ® h), e, @ k) = (K;T,Arh, e, ® k)
=(X,err ey ® ATy T, Arh e, ® K)

=(A;T;T,Arh, e, @ K)
forany h, k € Dr and a, w € ff}t . Summing up the above computations, we deduce that
I —O1 (Ry,...,R)O7(R4,...,R)"= K K7,
which completes the proof.
We recall that the spectral radius of an n-tuple of operators X :=[X;, ... ,X,] is definedby
r(X) := lim 1| 5 o X X5 17"
A closer look at the proof of Theorem (1.1.24) reveals the following factorization result. We should
add that the operator | — XT* is invertible because r(X) < 1.
Corollary (1.1.25) [1]: Let T := [Ty, . .., T,], T; € B(H), be a row contraction and let O be its
characteristic function. If X := [X4, ... ,X,], X; € B(K), is a row contraction with spectral radius r(X)

<1, then Iygp,— Or Xy, .., Xp)Or Xy, .., X)) = Az (I — )?'T‘\*)_l(l —XXF)(1-TX) A5

where X := [X; ® Iy, ..., X, ® I;:] and the other notations are from the proof of Theorem (1.1.24).
Let be the complex free semi group algebra generated by the free semi group ffwith generators
g1, ..., 8n and neutral element g,. Any n-tuple T,,..., T,of bounded operators on a Hilbert space H
gives rise to a Hilbert (left) module over cfin the natural way

foh:=f(T,..., T,)h fEF heH.

We say that # is a contractive cff-module if T :=[Ty,..., T,] is a row contraction, which is equivalent
to

I glhl + et gnhn "25 I h1 ”2+ | hn ||2,h1,...,hnE H.

We say that H is of finite rank if rank (H) := rank At < co. The curvature invariant and Euler
characteristic associated with an arbitrary row contraction T (or the Hilbert module 7 associated with
T) were introduced and studied in [32] and [15]. We recall that
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_ 4. trace[l-®F (D]
curv (T) - r}llirc}o 1+n+--+nm-1

and

_ 1. rank[I-®TH(D)]
()= nlqlféo 1+n+--4+nm-1’

where @ is the completely positive map associated with T, i.e.,
Pr(X) =X, T XT]

Using Theorem (1.1.24) and some results from [32], we can show that the curvature and the Euler
characteristic of a row contraction T can be expressed only in terms of the standard characteristic
function Or.

Theorem (1.1.26) [1]: Let T := [Ty, ..., T,], T, € B(H), be a row contraction with rank A < oo, and
let curv (T) and y(T) denote its curvature and Euler characteristic, respectively. Then

trace[0701(Pn®I)]
nm

curv (T) = rankAr — lim
m

and
(T) = lim rank[I-0707(P<m®I)]

m-oo 1+n+--+nm-1
where P, (resp. P.,,) is the orthogonal projection of the full Fock space
F2(H,)onto the subspace of all homogeneous polynomials of degree m (resp. polynomials of degree
<m).
Proof : According to Theorem (2.3) and Corollary 2.7 from [32], we have
trace[KTK1(Ppn®I)]

nm '

curv (T) = lim

m—oo
Using the factorization result of Theorem (1.1.24), the first result follows.
Now, according to Theorem (4.1 )of [32], we have

. k[KT(P<mn QDK
(T) = lim ZentIKE Can @i
m—oo 1+n+--+nm-1

(37)

Since K7 (P.,,, ® I)has finite rank, we have rank [(K;(Pep, @ DKy ] =rank [K7(Pey, @ 1]

On the other hand, since Ky is one-to-one on the range of K7 (P, ® I) ,we also have rank
[K7 (Pa @ D] = rank [KpK7 (Pep, ® 1)]

Hence, using relation (37) and Theorem (1.1.24), we complete the proof. a constrained characteristic
function is associated with any constrained row contraction. For pure constrained row contractions,
we show that this characteristic function is a complete unitary invariant and provide a model in terms
of it. We also show that Arveson’s curvature invariant and Euler characteristic asssociated with a
Hilbert module over C[z,, . . ., z,] generated by a commuting row contraction T can be expressed
only in terms of the constrained characteristic function of T.

Let J be a WOT-closed two-sided ideal of the non commutative analytic Toeplitz algebra Fy
generated by a family of polynomials P, . We define the constrained characteristic function associated
with a J-constrained row contraction T := [Ty, ..., T,], T; € B(#), to be the multi-analytic operator
(with respect to the constrained shifts B,, ... ,B,)

Opr (Wi, ... W) 1V @ D+ > N Q Dy

defined by the formal Fourier representation
Iy, @ T+ (Iy; @ Ar)(vy@a — Zits WIT) ™ [Wy ® Lyg, ooe s Wiy ® Iy] (I, @ Ar+)
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Taking into account that JV; is a co-invariant subspace under Ry, . .. R, , we can see that O, is the

maximal J-constrained piece of the standard characteristic function © of the row contraction T. More
precisely, we have

G)T(Rl" ey Rn)*(]\/i ® DT) g ]\G ® DT* and

PN}@DT G)T (Rl’ SR ’Rn)| ]\[j ® 2)T* = OI,T (Wll s !Wn) (38)
We remark that the above definition of the constrained characteristic function makes sense (and has
the same properties) when J is an arbitrary WOT-closed two-sided ideal o f F° and T := [Ty, ..., T,]

is an arbitrary c.n.c. J-constrained row contraction.
Theorem( 1.1.27[1]: Let J # F° be a WOT-closed two-sided ideal of F°
generated by a family of polynomials Py . Let T := [Ty, ..., T,]], T; € B(H), be a J-constrained row

contraction.
Then

IN]®DT — 0y105 1 =Ky rKj 1 (39)

where 0 is the constrained characteristic function of T and Kt is the corresponding constrained
Poisson kernel.
Proof: The constrained Poisson kernel associated with T is K;r: H — NV ® A+ defined
by

Kjr:= (Py; @ Ig;7) Kt (40)
where K is the standard Poisson kernel of T. According to the proof of Theorem (1.1.12)
range Kr €V, ® A . Using Theorem (1.1.24) and taking the compression of relation (33) to the
subspace V] ® Dr c F?(H, )® Dr , we obtain
Lv@or ~ Pvy@or O1(Ry-- Ry) O0(Ry,..., Ry (V) ® D) [ V] @ Dr = Py, g KrKT [V ®
Dy .
Taking into account relations (38), (40), and that W;"= R} |V ,i=1, ..., n, we infer that

IN]®DT — Oy (Wi, ...\ W) Oy r(Wy,..., W)= K],TKf,T .

As in the proof of Theorem( 1.1.27), one can use Corollary (1.1.25) to obtain the following
constrained version of it.
Corollary (1.1.28) [1]: Let J # F;° be a WOT-closed two-sided ideal of Fy’
generated by a family of polynomials P; . Let T := [Ty, ..., T,], T; € B(H), be a J-constrained row
contraction. If X :=[Xy, ... ,X,]l, X; € B(K), is a J-constrained row contraction with spectral radius
r(X) <1, then

- gL o' T~
ooy~ O Xy -+ Xn) OprXy, ., X)) =0:(1-XTF) (1-XX7)(I - TX) A5
where X := [X; ® Iy, ..., X, ® I, ] and the other notations are from the proof of Theorem (1.1.24).
Now we present a model for pure constrained row contractions in terms of characteristic functions.

Theorem (1.1.29) [1]:Let J # F; be a WOT-closed two-sided ideal of F> and T := [Ty, ..., T,] be
a pure J-constrained row contraction. Then the constrained characteristic function ©;r € W(Wy, . ..

W,)® B(D;+, Dy ) is a partial isometry and T is unitarly equivalent to the row contraction
P]HI]'T(Bl ® IDT )| IHI],T U P]HI]_T(BI’I ® IDT )| H],T (41)7

where Py, 1 is the orthogonal projection of V; ® Dy on the Hilbert space
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Hj 1= (V; ® Dr) © 0y1(NV; ® Dr+).

Proof : According to Theorem (1.1.21), the constrained Poisson kernel Kjr: H — N @ ArHis an
isometry, K; +Fis a co-invariant subspace under B; @ Iz-7,i=1,...,n,and
Ti = K;T(Bl ® IAT—H) KLT’ = 1, oL, N (42)

Consequently, K; tKjris the orthogonal projection of V; @ ArHonto K; +H'. According to Theorem(
1.1.27), relation (39) shows that K; rKjt and ©;10; , are mutually orthogonal projections such that

K],TK;T"'@]'T@;T = I]\f] ®AT—7{ .
Therefore,

KjrH= (N ® Dr) © 0)1(V; ® Dr+) ,

Now, since is Kt an isometry, we identify H with Hjr:= K; rHand, using (42), we deduce that T is
unitarily equivalent to the row contraction given by (41). This completes the proof. _

Let ® € W(W,, ..., W)RB(X;, X,) and &' € W(W,, ... ,W,)®B(X;, K,) be two multianalytic
operators with respect to By, . . . ,B,. We say that @ and ®'oincide if there are two unitary multi-
analytic operators U; : V@ X — N ® K such that the diagram

N® 1 > M K

N® K >N ® X
is commutative, i.e., ®'U; =@U,. Since

U](Bl ® I_«K‘l) = (Bl ® Ij({)U]’ = 1, ..., N,

And Uj are unitary operators, we also deduce that

Ui(Bi ® Iy, )= (B{® Iye)Uj, i=1,...,n.
Taking into account that C*(B,, . . . ,B,) is irreducible (see Theorem (1.1.3)), we conclude that

U=y, ®7,j=12,

for some unitary operators J; € B(X , X ).
The next result shows that the constrained characteristic function is a complete unitary invariant for
pure constrained row contractions.
Theorem (1.1.30) [1]: Let J # Fy° be a WOT-closed two-sided ideal of F°
And LetT:=[Ty,..., T, T€B®),and T':= [T, ..., T], T{ € B(H"), be two J-constrained
pure row contractions .Then T and T’ are unitarily equivalent if and only if their constrained
characteristic functions ©;tand ©;r, coincide.

Proof : Assume that T and T’ are unitarily equivalent and let U : H — H’ be a unitary operator such
that T, = U*T{Uforanyi=1, ..., n. Simple computations reveal that

UAr = A Uand (@iL; U)Ar- = Apr (BiZ, U)
Define the unitary operators Tand T ' by setting
=U|[Dr : Dr— Dy and T ' := (B2, U)Dr+: Dpr— Doprs.

Taking into account the definition of the constrained characteristic function, it is easy to see that
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(In; ®@T) Oy 7= Oy 1, (In; ®T).
Conversely, assume that the characteristic functions of T and T’ coincide. According to the remarks
preceding the theorem, there exist unitary operators 7: Dr— D and T, :Dr«— Dy« such that the
following diagram

!

IS commutative, i.e.,
(Iny ®T) 051= 01/ (Iyv; ®T.) (43)

Hence, we deduce that

T = (Iyy @) Hyp: Hyp— Hy o
is a unitary operator, where Hjrand M/ are the model spaces for T and T’, respectively(see
Theorem (1.1.29)). Since

(B; ® Ing)(In; ®T*)=(Iy, ®T*)(B; @ Ip,),i=1,...,n,
and Hj 1 (resp. Hj 1+ is a co-invariant subspace under B; ®Ip,. (resp. Bi®IDT, ), i=1,...,n,
we deduce that
[(Bi ® Ip )| Hyr] T*=T"(B; ® IDT, JIHy i=1,...,n.
Hence, we obtain
[P]H[],T (Bi®Ip,) |H],T:[PH-HLT, (Bi®IDT, ], 1=1,...,n.
Now, using Theorem (1.1.29), we conclude that T and T’ are unitarily equivalent. The proof is

complete. _
Theorem (1.1.31) [1]: Let J be a WOT-closed two-sided ideal of Fy° such that 1 € 2V} and

condition(25) is satisfied. If M'S JVj is an invariant subspace under By, . .. By, and T := [Ty, . . .,
Tn], Ti:: PM_LBi|MJ', i= 1, ..., N
then

M= @],T(M & Dr+),
where 0 ris the constrained characteristic function of T.
Proof: According to Corollary (1.1.22), T is a pure J-constrained row contraction with rank At =1.
Therefore, we can identify the subspace D with C. Hence, and due to Theorem (1.1.29), we have

H; =N © 0;1r(V; ® Dr+)
and T is unitarily equivalent to

[Py, BalHy 7, .. . , Pyg, Byl H r].

Using again Corollary (1.1.22), we deduce that H; =M * and therefore M= 0; (N ® Dr-),

This completes the proof. _

Theorem (1.1.32) [1]:Let T := [Ty, ..., T,l, T € B(H), be a commutative row contraction with rank
A< oo, and let K(T) and y(T) denote Arveson’s curvature and Euler characteristic, respectively. Then

K(T) :i OB, }‘I—I}} trace[l — 0;_ 1 (r§)0;_r(r) 1do(§)

trace[0. 10j. T(Qm®lpy)
nm

=rank Ay — (n—1)! lim

m-—oo

where Q,,, is the projection of H? onto the subspace of homogeneous polynomials of degree m, and

rank[(1-0;, 10], 1(Qzm®Ipy)

mn

(M) =n! lim
m-—oo
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where Q_,is the projection of H? onto the subspace of all polynomials of degree < m.

Proof: Using the factorization result of Corollary (1.1.28) in our particular case, we obtain

I _G)]C,T(Z)G)]C,T(Z)* = (1 - |Z|2)AT(I - ZlTl*_ el T ZnT;;)_l(I - Z_]_Tl — e Z_nTn)_lAT for any z
€ B,

The first formula follows from the definition of the curvature [5] and the above-mentioned
factorization for the constrained characteristic function of T. and Corollary (2.8): from [32], we have

trace[(Pm ®@DKTKT(Pm ®1)]
mn-1

K(T)=(n—-1)! lim ,M—o0
m-0oo

where K is the Poisson kernel of T and P, is the orthogonal projection of

F2(H,, ) onto the subspace of all homogeneous polynomials of degree m. Since T is a commutative

row contraction, i.e., J.-constrained, we have range K; cF2®D and the constrained Poisson kernel

satisfies the equation K;_r = (Prz® 1) K, where FZis the symmetric Fock space.

Using the standard properties for the trace and the above relation, we deduce that
K(T) = (n _ 1)| lim tTac@[K]c,TK]C _T(Qm®l )] (44)
m—oo

mTll

where Q,, := Pngm| F2 is the projection of FZ2onto the subspace of homogeneous polynomials of
degree m. According to Theorem (1.1.27), we have

=0, 105, v =Ky K], 1 (45)

Taking onto account relations (44) and (45), we deduce the second formula for the curvarure. Here,
of course, we used Arveson’s identification of the symmetric Fock space F2 with his space H?.
Arveson [5] showed that his Euler characteristic satisfies the equation
(T)=n! lim rank[I-®F(1)]
m—oo mn
where @ is the completely positive map associated with T. in [32] that
(T) =n! lim rank[K'}:flm®l)KT]
m—0o

(46)

where P_,,,is the orthogonal projection of FZ(H,, ) on the subspace of all polynomials of degree < m.
Using again that range Ky cFZ®Dr and the constrained Poisson kernel satisfies the equation K;_r

= (Ppz® I) K, we deduce that rank [K1(P<y, ® DKp] = rank [Kt (Ppz® 1)(Pepy ® D(Prz ® 1) K]

= rank[Kj. 1(Q<m ® DK 1]
= rank[Kj, 1(Qem ® 1]
:rank[K]C,YKfc ,T(QSm ® I )]

where Q_,, is the projection of FZ onto the subspace of all polynomials of degree < m. The last two

equalities hold since the operatorKj_ +(Q<m ® 1)

has finite rank and K;_ris oneto-one on the range of. Kj_ +(Q.m ® I)Now, using relation (46), the

above equalities, and the factorization (45), we obtain the last formula of the theorem. The proof is

complete. _

we provide a Sarason [36] type commutant lifting theorem for pure constrained

row contractions and obtain a Nevanlinna-Pick [18] interpolation result in our setting. Let [T;. . .,

T,l, Ti€ B(H), be a pure row contraction, and let J be a WOT-closedtwo-sided ideal of F;’such that
(Ty..., T,)=0forany (S;...,S,) €J, 47)
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where ¢(Ty. . ., T,) is defined using the Fy’ -functional calculus for row contractions. any pure
constrained row contraction is unitarily equivalent to the compression of [B; @ Iy, ... ,B, ® I ] to
a co-invariant subspace € under each operatorB; @ I, i =1, ..., n. Therefore, we have

Ti = PS(Bi ® Ik)|£! = 1, .o, N

The following result is a commutant lifting theorem for pure constrained row contractions.
Theorem(1.1.33) [1]: Let J # F’be a WOT-closed two-sided ideal of the noncommutative analytic
Toeplitz algebra F® and let [B4, . . . ,B,] and [W,, . . . ,W,] be the corresponding constrained shifts
acting on JV; . For each j = 1, 2, let K; be a Hilbert space and g; € V; ® K; be a co-invariant subspace

under each operator B;® I » i=1,...,nIf X: g — &, isabounded operator such that
X[Pe, (Bi® Iy, )l €11 =[P, (Bi® I, )l &2X, i=1,...,n, (48)
then there exists o
G(W,,...,.W,) e WW,, ... W,)®B(k,,k;)
such that G(W,,...,W,)"e, € g,
G(Wy,...,W)*| &, = X*, and IG(W,, ... , W)l = IX]l.
In particular, if g :=G ®K;, where G is a co-invariant subspace under each operator B; and W;, i =

1,...,n, then the above implication becomes an equivalence.
Proof: According to Lemma (1.1.1), the subspace JV; ® K; is invariant under each operator S; & Ik,
,1=1,...,nand

Si®Ig)N ®K;j=Bf @Ik, i=1...,n*9
Since g; € V; ® K;is invariant under Bf & IK].it is also invariant under S ® Ik, and
(5{ ® IKj)|s]- =B ® IK].)|e]- Ji=1,...,n.
Hence, relation (48) implies

XP, (Si ® I )ler =P, (S ® Ig,)lex X, i=1,...,n. (49)
Foreachj=1, 2, the n-tuple [S; & I v Sn X IK].]is an isometric dilation of the rowcontraction
[st (Sl X IKj)|€j 1t st (Sn 02 IK]-)|£j]
Applying the noncommutative commutant lifting theorem ([21], [24]), we find a multi-analytic
operator (R4, . .. ,R,) € R® ®B(K,,K,) such that ®(R4,...,R,)*e, € &,

®(Ry,...,Ry)"e; = X*and IRy, ..., R )N =11 X (50)

Let G(W,,...,W,) = PN]®KZCD(R1, ...,Ry)| V) ® K;. According to the remarks preceding Theorem
(1.1.2), we have
G(Wy,..., W) € [PN]REO |V 1 ®B(K1.Kz) = W(W, ..., Wy,) ®B(Ky.Ky).
Since ®(Ry,...,Rp)" (V] ® K;) € V; ® Kyand g5 € V; ® K, relation(50) implies
G(Wy,...,W)"s, Ce;and G(Wy, ..., W) e, =X".
Hence, and using again (50), we have
XN < NIG(Wy, ..., W)l < NI(Ry, ..., Rp)Il = 11X
Therefore, IG(W4,..., W)l = lIXII.
Now, let us prove the last part of the theorem. The implication “ == ” is clear from the first part of
the theorem. For the converse, let X = Pogk, P (Wy,...,Wy)IG ® K1, where ¥(W,,...,W,) €
W(W;, ..., W,) ®B(K; K,) Since B{W; = W;B; fori,j=1,...,n, we have
(Bf @ Ig )PWy,..., W) =W(Wy,...,W)*"(Bf ® Ig,), i=1,...,n
Now, taking into account that G is an invariant subspace under each of the operators B; and W;" , i =
1,...,n,we deduce (48). The proof is complete.
Corollary(1.1.34) [1]: LetJ # F,;” be a WOT-closed two-sided ideal of the noncommutative analytic
Toeplitz algebra F,;” and let By, ..., B,and Wy, ..., W,be the corresponding constrained shifts acting
on JV; . If Kis a Hilbert space and G € MVjis an invariant subspace under each operator Bfand W;" , i
=1,...,n,then {{[PGW(By,...,B,)|G] ® Ik} = [PcW(W,,...,W,)|G]® B(K).
We remark can be extended to the following more general setting. The proof follows exactly the same
lines so we shall omit it. For each j = 1, 2, let be a WOT-closed two-sided ideal of E;°and let [Bg) .
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.. ,BS)]be the corresponding constrained shift acting on N, . Let g € WV, & K; be an invariant

subspace under each operator BY ® Ik, i=1,...,n where K; is a Hilbert space. If X : &; — &, is
a bounded operator such that
XP., (B{V® Ix,)le; = P, B ® Ig,)le;X, i =1, ..., n, then there exists G € [Py, RY

IV, 1 ®B(K;.K;) such that

P;,Gle; = Xand IGIl = IX].

Now we can obtain the following Nevanlinna-Pick interpolation result in our setting. We only sketch
the proof which is similar to that of Theorem 2.4 from [15] but uses Theorem (1.1.33), and point out
what is new.

Theorem (1.1.35) [1]: Let J be a WOT-closed two-sided ideal of F;* and let B, . . . ,B, be the
corresponding constrained shifts acting on v . Let 4, . .., A, be k distinct points in the zero set

Zy ={A1€ B, :f(2) =0forany f € J},

and let A, ... Ak € B(K). Then there exists (B4, . .. ,B,) € W(By, . .. ,B,) ®B(K) such that

I(By, ... .Byli<land @(X) =4, j=1,...,Kk,
if and only if the operator matrix

[Ik—AiA;

| (51)
kxk

IS positive semi definite.

Proof: Let }\]‘:: (}\]‘1, ey }\]n) € (Cn,j = 1, ey k, and denote )\]O( = }\jil}\jiz. . }\]lmlf a = gji1gji2' .
gii,, €, and Ajgo := 1. Define

Z =Daertbaa J=1,2,... k.

Notice that, forany f € J, A € Z; , and a, 8 € f}, we have

<[Saf(51! rSn)Sﬁ](l)rZ/l) = }\af(l))\ﬁ = 01

which implies z, €, for any A€ Z; . Note also that, since B = S;" |V fori=1,...,n, we have
Biz), :A_ﬂz;\jforizl, ...,nandj=1,..., k
Define the subspace

M:= span{z;\].:j =1,...,k}
and the operators X;€ B(M & K) by setting X; = B,Bi[M ® I, i=1,...,n.Since zy , ...,z are
linearly independent, we can define an operator T € B(M® K) by setting

T"(z),® h) = 73, ®Ajh

foranyhe Kandj=1,..., k. Noticethat TX; =X;Tfori=1,...,n.
Since M is a co-invariant subspace under each operator B;, i =1, ..., n, we can apply Theorem
(1.1.33) and find ®(Wj, ..., W,) € W(W,, ... ,W,)®B(K) such that
O(Wy,..., W) MM, d(W,,...,W,)*|M=T* (52),
and [I[(Wy, ...,Wy)ll = IITIl. As in [15], one can prove that (A;) = A;,j=1,...,k, ifand only if (52)
holds. Moreover, (W, ... ,Wy)Il <1ifandonlyif TT* <I,,, which is equivalent to the fact that the
operator matrix (51) is positive semi definite. This completes the proof. _
We should remark that in the commutative case when J = J. (see Example (1.1.18) part (ii)), we
recover the result obtained in [12], [29], and [12].
Section (1.2): Joint Similarity
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For B(H) denote the algebra of all bounded linear operators on a Hilbert space H'. Two operators
A,B € B(#) are called similar if there is an invertible operator S € B(H) such that A = S™'BS. The
problem of characterizing the operators similar to contractions, i.e., the operators in the unit ball

[B(H)]; := {X€ B(H): XX* < I},
or similar to special contractions such as parts of shifts, isometries, unitaries, etc., has been considered
by many and has generated deep results in operator theory and operator algebras. We shall mention
some of the classical results on similarity that strongly influenced us in writing.

In 1947, Sz.-Nagy [50] found necessary and sufficient conditions for an operator to be similar to a
unitary operator. In particular, an operator T is similar to an isometry if and only if there are constants
a,b > 0 such that

al|lh]l < ||T™h]|| < b|h]|, heH, neN.
The fact that the unilateral shift on the Hardy space H?(T) plays the role of universal model in B(#)
was discovered by Rota [49]. Rota’s model theorem asserts that any operator with spectral radius less
than one is similar to a contraction, or more precisely, to a part of a backward unilateral shift. This
result was refined furthermore by Foia,s [49] and by de Branges and Rovnyak [46], who proved that
every strongly stable contraction is unitarily equivalent to a part of a backward unilateral shift.

It is well-known that if T € B(H) is similar to a contraction then, due to the von Neumann
inequality [43], it is polynomially bounded, i.e., there is a constant C > 0 such that, for any
polynomial p,

Ip(DIl < Cllplle,
where [|pll := sup |p(z)|. A remarkable result obtained by Paulsen [44] shows that similarity to a

|z|=1
contraction is equivalent to complete polynomial boundedness. Halmos’ famous similarity problem
[51] asked whether any polynomially bounded operator is similar to a contraction. This long standing
problem was answered by Pisier [56] in a remarkable where he shows that there are polynomially
bounded operators which are not similar to contractions. For more information on similarity problems
and completely bounded maps see Pisier [57] and Paulsen [45]. In the noncommutative multivariable
setting, joint similarity problems to row contractions, i.e., n —tuples of operators in the unit ball
[B(H),l1 = {Xy,..., X)) €EBEH)™ : X, X+ .+ X, X5 < 13,
were considered by Bunce [43], (see [58], [52], [53], [56]), and recently by Douglas, Foia,s, and
Sarkar [48]. In this setting, the universal model for the unit ball [B(#)"], is the n —tuple (S,,...,S,)
of left creation operators on the full Fock space with n generators.
Let F; be the unital free semigroup on n generators g;,..., g, and the identity g,. The length of
o € FFy is defined by |al: = Oifa = g and |af := kifa =g; ..gj,wherei;,...,ix € {1,...,n}.
IfX:= (Xq,...,Xp) €EB(H)"  wedenote X,: = X, ..X;, and Xy, := Iy, the identity on
H.
In [28] (case m = 1) and [25] (case m = 2), we studied more general noncommutative domains

DI(H) = {X:= (Xy,...,Xy) € BFH)": (id—dpx) (1) = 0 fors = 1,...,m},

where id is the identity map on B(#),
O, x (Y):= Z a Xy Y X5, Y € B(H),

|la|=1
and p = Y jq=212Xe IS @ positive regular noncommutative polynomial, i.e., its coefficients are
positive scalarsand a, > 0 if a € F} with |a] = 1. Weremarkthatifq=X; + -+ X,andm >
1, then Dg' (3{)is a starlike domain which concides with the set of all row contractions (Xj,...,X,) €

[B(H)™], satisfying the positivity condition

kZ;(—nk (%) Z X, X5 = 0.

|la|=k
The elements of the domain Dg'(3) can be seen as multivariable noncommutative analogues of
Agler’s m-hypercontractions [51]. The case n = 1 was recently studied by Olofsson ([52], [53]).
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We showed ([58], [55]) that each domain D'(#) has a universal model (Wy,..., W,) of weighted
left creation operators acting on the full Fock space with n generators. The study of the domain
Dy’ (#) and the dilation theory associated with it are close related to the study of the weighted shifts
W, ..., W, their joint invariant subspaces, and the representations of the algebras they generate: the
domain algebra A, (Dy'), the Hardy algebra F° (Dy"), and the C* —algebra C*(Wy, ..., Wy).
We consider problems of4 e31" joint similarity to classes of n —tuples of operators in
noncommutative domains D' (%), m = 1, and noncommutative varieties
op(H):= {Xy,...,Xp) € DY (H):q(Xy,...,X,) =0 forany q€ P},
where P is a family of noncommutative polynomials in n indeterminates.
expanding on ([55], [57], [58]) on noncommutative Berezin transforms, we introduce a new class of
generalized Berezin transforms which will play an important role. Given
A:=(Aq,...,A,) € B(H)™, our similarity problems to n —tuples of operators in the noncommutative
variety Vs () are linked to the noncommutative cone C(p, A)* of all positive operators D € B(H)
such that
(id — @,,)°(D) = 0, s=1,..,m
For example, (A4, ..., Ay) is jointly similar to an n —tuple of operators in V% () if and only if there
is an invertible operator in C(p, A)*. Under natural conditions, we show that there is a one-to-one
correspondence between the elements of the noncommutative cone C(p,A)* and a class of
generalized Berezin transforms, to be introduced.
a pure version of the above-mentioned result is established, even in a more general setting. In
particular, whenm = landT:= (Ty,...,T,) € VS,PU{) IS pure, i.e., CDIS,T () — Ostrongly,ask -
oo, we determine the noncommutative cone C(p, T)* by showing that all its elements have the form
P WW* |4, where W is a multi-analytic operator with respect to the universal n —tuple (B4, ...,B,)
associated with the variety VS,P(}[ ). More precisely, ¥ € R‘;f(VI}'P) ® B(K,K") for some Hilbert
spaces K and K’, where Ry (VS,P) is the commutant of the noncommutative Hardy algebra Fy’ (VS,P)'
We remark that in the particular case whenn = m = 1,p = X,P = {0}, and &1 (X) := TXT"
with || T|| < 1, the corresponding cone C(p, T)* was studied by Douglas in [47] and by Sz.-Nagy and
Foias [42] in connection with T —Toeplitz operators (see also [44] and [45]).
we provide necessary and sufficient conditions for an n —tuple A := (A4,...,A,) € B(H)" to be
jointly similar to an n-tuple of operators T: = (Ty, ..., T,) in the noncommutative variety Vp’p () or
the distinguished sets
(Xevi@) : (id— @,%)" (1) =0} and {X€ VIH(H): (id— @,%)" (1) >0},
where P is a set of noncommutative polynomials. Given (A4,...,A,) € B(H)", we find necessary
and sufficient conditions for the existence of an invertible operator Y: H — G such that
A} = YY(B; @ L)lglY, i=1,...,n
where G € V,, ® J is an invariant subspace under each operator B & I;; and (B,,...,By) is the
universal model associated with the noncommutative variety Vip(3). In particular, we obtain an
analogue of Foia,s [49] and de Branges—Rovnyak [46] model theorem, for pure n —tuples of operators
in Vip (). We also obtain the following Rota type [29] model theorem for the noncommutative
varietyVip (#). If A := (A4,...,A,) € B(®)" is such that q(A4,...,A,) = 0forq € Pand

k+m-1 k
Z( F D) @k, () < bi
k=0
for some constant b > 0, then the above-mentioned joint similarity holds. Moreover, we prove that
the joint spectral radius r,,(A, ..., A,) < Lifand only if (A4, ..., Ay)is jointly similar to an n —tuple
T:= (Ty,..., Ty) € VIb(H) with (id — @, )" (1) > 0, i.e., positive invertible operator.
We also provide necessary and sufficient conditions for an n —tuple
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A:=(A...,A,)) € B(H)" to be jointly similar to an n —tuple of operators T:= (T,,...,T,) €
Vop (3) with (id — Dy )m(l) = (. Our noncommutative analugue of Sz.-Nagy’s similarity result
[30] asserts that there is an invertible operator Y € B(H) such that A; = Y™'T,Y, i = 1,...,n,ifand
only if there exist positive constants 0 < c¢ < d such that

cl <of, (D) < dl, k € N.
In particular, we obtain a multivariable analogue of Douglas’ similarity result [47].

If (A4,...,A,) € B(#)" is jointly similar to an n —tuple of operators in a radial noncommutative
variety Vs (1), where P is a set of homogeneous noncommutative polynomials, then the polynomial
calculus g(By,...,B,) — g(A4,...,A,) can be extended to a completely bounded map on the
noncommutative variety algebra A, (V;p), the norm closed algebra generated by By,..., B, and the

identity. Using Paulsen’s similarity result [44], we can prove that the converse is true if m = 1, but
remains an open problem if m > 2.
We obtain Wold type decompositions and prove the existence of triangulations of type

C, O C 0
( *0 Cl) and ( *C Ccnc)
for any n —tuple of operators in the noncommutative variety V;,p (H), which parallel the Sz.-Nagy—
Foia,s[31] triangulations for contractions. The proofs seem to be new even in the classical case n =
1, since they don’t involve, at least explicitly, the dilation space for contractions. As consequences,
we prove the existence of joint invariant subspaces for certain classes of operators in V}j},P (H).

We should mention that the results are presented in a more general setting when the polynomials p
in the definition of V', (3() is replaced by positive regular free holomorphic functions.
we introduce a class of generalized Berezin transforms which will play an important We use them to
study the noncommutative cone C(f, A)™ of all positive solutions of the operator inequalities

(id —®,)X)=20, s=1,.,m
First, we recall ([45], [48]) the construction of the universal model associated with the
noncommutative domain D¢*(30), m = 1. Throughout, we assume that f := Zaem a,X,, Q€
C, is a positive regular free holomorphic function in n variables X;, ..., X,,. This means
() timsup(Sigioilag?) ™ < o
(i) a,> Oforanya € F;,a,, =0, anda,, >0fori = 1,...,n.
Givenm € N := {1, 2,... }and a positive regular free holomorphic function f as above, we define the
noncommutative domain D¢* whose representation on a Hilbert space 7 is
DF(H) = (X = (Xy,...,X,) € BA)™: (id — @;x) (1) = 0 fors = 1,...,m},

where ®¢ y: B(H) — B(H) is given by

;4 (V): = z z a XY X5, Y € B(30),
k=1 |a|=k

and the convergence is in the weak operator topology. D¢*(3{) can be seen as a noncommutative
Reinhardt domain, ie., (e"1X,,...,e"%X,)€eDP(H) for any (Xi,...,X,) € DF*(H) and
04,...,0, €ER.

Let H,, be an n —dimensional complex Hilbert space with orthonormal basis e,,..., e, where n €
N orn = oco. We consider the full Fock space of H,, defined by

Fan = D

k>0

35



where HleO := C1 and HfP" is the (Hilbert) tensor product of k copies of H,,. Sete,: = ¢;, ® e;, ®
Qe ifa=g; gi..9;, €Fyande, := 1. ltisclearthat {e,: a € F;} isan orthonormal basis
of F2(H,,).
Define the left creation operators S;: F2(H,) —» F*(H,), i = 1,...,n, by S;f := ¢, ® f,f €
F2(Hy).

Let D;: F2(H,) » F?(H,),i = 1,...,n, be the diagonal operators given by

b(m)
Die,:= b(m) €y a € F}
Jia
where
|| '
b(m) 1 and b™ := Z Z Ay, Gy, (] + "i; 1) if « € F,
=1 nevi=a
ly1lz1,...|v =1
la| = 1. (53)
We have
b(m) 1 ,
|D; || sup i=1,..,n

(ZE]F;'{ \/ gl

Define the weighted left creation operatorsW F?(H,) - F?(H,),i = 1,...,n,associated with the
noncommutative domain Df* by setting W;: = §;D;, where S;,..., S, are the left creation operators

on the full Fock space F2(H,,). Note that
b(m)
a € F

One can easily see that

) bﬁm)

14
W,Bey p— eBy and Wﬁ*ea = { = €y ifa = .By (54)
pm bﬁy
By k

0 otherwise

for any a,p € FF;. According to Theorem 1.3 from [45], the weighted left creation operators
Wi, ..., W, associated with D¢* have the following properties:

(1) Xk=1281=k ag Wz Wz < I, where the convergence is in the strong operator topology;
(i) (id CDfW)m (I) = P, where P is the orthogonal projection from F2(H,,) onto C, ¢ F?(H,),
and lim CDPW(I) = 0 in the strong operator topology.

Thez;l —tuple (Wy,..., W,) € Df*(F?(H,)) plays the role of universal model for the noncommutative
domain Df*. The domain algebra A4, (D¢") associated with the noncommutative domain D" is the
norm closure of all polynomials in W;,..., W, and the identity, while the Hardy algebra F;°(D¢") is
the SOT-(WOT-, or w*-) version.

We remark that, one can also define the weighted right creation operators A; : F?(H,) — F*(H,)
by setting A;: = R;G;, i = 1,...,n,whereR;,..., R, are the right creation operators on the full Fock
space F2(H,,) and each diagonal operator G; is defined by

b(m)

Gie,:= b(m) e, a €T

agi
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where the coefficients bém), a € [}, are given by relation (53). It turns out that (4,,...,4,,) is in the
noncommutative domain D}”(FZ(Hn)), where f := Y451 a,X, and & = gy ... g;; denotes the
reverse of a = gy ...gi1 € F;. Moreover, W;A; = A,W; and U"A,U = Wi = 1,...,n, where
U € B(F*(H,))

is the unitary operator defined by equation Ue, := e, a € [F;;. Consequently, we have

FP(Df) =R7(DF) and  RY(DF) =Er(DP),
where ' stands for the commutant and R;’ (D}”)is the SOT-(WOT-, or w*-) closure of all polynomials
in 4,,...,4,, and the identity. More on these noncommutative Hardy algebras can be found in [49],
[55], and [68].
We introduce a noncommutative Berezin kernel associated with any quadruple (f,m, A, R)

satisfying the following compatibility conditions:
(i) f 1= Xjaj>1 Ao X, is a positive regular free holomorphic function and m € N;
(i) A= (44,...,4,) € B(H)™ issuch that },,4>1 a4, Ay  is SOT-convergent,
(iii) R € B(H) is a positive operator such that

Z (¥ FmDeg,m <l

k=0
for some constant b > 0.
The noncommutative Berezin kernel associated with the compatible quadruple (f,m, A, R) is the

operator K™ : 7 - F2(H,,) ® RY2(H) given by

f,AR"
(m) (m) 1
K™k = z [b{™e, ® R24%h, he . (55)
aEF}

Lemma (1.2.1)[41]: The noncommutative Berezin kernel Kf(ﬁ)R associated with a compatible

quadruple (f,m, A, R) is a bounded operator and

Kp Al = (W @ 1)K 3, i=1,..,n
where R := RY2(H) and (W,,..., W,) is the universal model associated with the noncommutative
domain D}”. Moreover,

o]

* k+m-—1
K) K= > (T Nek®

m
k=0
Proof. Since (f,m, 4, R) is a compatible quadruple, R € B(H) is a positive operator such that
k+m-—-1 k
Z( Fm ok () < bl (56)

k=0
for some constant b > 0. Note that due to relations (53) and (55), we have

IR = > b (AgRAGR, kY = (R, By + Y " (b AgRAh, h)
a€F;; m=1|B|=m

1B

= (Rh,h) + i > /Z (rmh > e, ---ay,> Ay, RA3, b)Y

, m—1
m=1 |ﬂ|=m j:l ]/ly]=ﬁ

|y1|21...|yj|21

= Riry+ Y (KD ok, (R )
m=1
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for any h € H. Hence and due to relation (56), we deduce that Kf(% is a well-defined bounded
operator and

(o]

(m) \*,(m) _ k+m-—1
(Kf,ATTl,R) KfZl,R - Z ( m—1 )q)/]‘{'A(R)
k=0
On the other hand, due to relations (55) and (54), we have

1
Wy @ IKixh = Z b Wre, ® R2ALR

aEF;;
_ O Lo
- Z by Wiegy ® RzAg,h
yEF;,
1
=) 6™ e, @ RZA;Ah
YEFS
— (m) 4«
= Kf,A,RAih

for any h € H'. Hence,
K;ﬁi%[@;:: W ® LR)fggza, i =1,...,n,
and the proof is complete.
Let f:= X|a>1a4X, b€ @ positive regular free holomorphic function and let W;,...,W, and

Aq,...A, be the weighted left and right creation operators, respectively, associated with the
noncommutative domain D*. Let P be a family of noncommutative polynomials and define the

noncommutative variety V¢, whose representation on a Hilbert space 3¢ is

V()= {(Xy, ..., X,) €DP(H): p(Xy,...,X,) =0 forany p € P}
We associate with  V/", the operators By, ..., B, defined as follows. Consider the subspaces

M, := span{W,p(W,,..., W,)Ws(1):p € P,a, B € F}
and V,, := F?(H,) © Mp. Throughout, unless otherwise specified, we assume that N, # {0}. It is
easy to see that JV,, is invariant under each operator W7',..., W, and A3, ..., Ay. Define
B; := Py, D®Q|A% and C; = IﬁVbldiLN% , i =1,...,n,
Where Py, is the orthogonal projection of F>(H,)  onto IV,

The n —tuple of operators B: = (By,..., B,) € V/7,()V,) plays the role of universal model for the
noncommutative variety V¢%,. The noncommutative variety algebra An(Vf’,’;) is the norm-closed
algebra generated by B4, ..., B,, and the identity, while the Hardy algebra E,* (Vf’;‘,) is the w*-version.
More on these Hardy algebras associated with noncommutative varieties can be found in [58] and
[55].

Let (f,m, A, R) be a compatible quadruple. Assume that the n —tuple
A:=(44,...,4;) € B(H)™ has, in addition, the property that p(4,,...,4,) =0, p € P.

Under these conditions, the tuple q := (f,m,A,R,P) is called compatible. We define the
(constrained) noncommutative Berezin kernel associated with the tuple g to be the operator K,: H —

N, @ RY2(H) given by

- (m)
K= (PNp Q I= )Kf'A‘R,
R2(H)

Where Kf(% is the Berezin kernel associated with the quadruple (f, m, 4, R) and defined by relation
(55).

Lemma (1.2.2) [41]: Let K, be the noncommutative Berezin kernel associated with a compatible
tuple g := (f,m,A,R,P). Then
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KA = (B ® I)K,, i =1,...,n,

Where R := RY/2(H) and (B,...,B,) is the universal model associated with the noncommutative
variety V¢7,. Moreover,
k + m
Z q:}ﬁA (R).
k=0

Proof: Using Lemma (1.2.1) and the fact that p(Al,... A,) = Oforallp € P,we obtain
(K, [Wep (Wi, .., WO W (D] ® ¥) = (6, Agp(Ay,..., A Ag (KTT) (1 ® »)) =
foranyx e H, y € Rl/z(}[) and p € P.Hence, we deduce that

range K;A)R SN ® RZ(}[) (57)

Taking into account the definition of the constrained Berezin kernel K,: H — N, @ RY/2(H), one
can use Lemma (1.2.1) and relation (57) to complete the proof.
We introduce now the noncommutative Berezin transform B, associated with the compatible tuple
q:= (f,m,A,R,P) to be the operator B,: B(]\fp) — B(H) given by
B,lx] := K;[x ® IzlK,, x € B(W,).
where R := RY/2(H). This transform will play an important role. To justify the terminology, we shall
consider the particular case when the n —tuple 4 := (4,,..., A,,) has the joint spectral radius

(A, Ag) = Jim [0k, (0] < 1.

Then, as in the particular case considered in [55], one can show that

(B, [x]x,y) = ((1 _ Z azCe ®Aa> x® R) (1 _ Z a5C, ®A§> 1®x), 1Qy)

la|z1 la|z1

forany x,y € H, where C;: = Py, Ail, fori = 1,...,nand @ is the reverse of a € FF; . We present
a sketch of the proof. First, one can show that

r(l — Z ayC, ®A§> < 1(4y,...,4,) <1,
|a|=1

where r(Y) is the usual spectral radius of a bounded operator Y . Hence, the operator

(1 - z a;C, ®A§>_1 = i (1 — Z a;C, ®Af‘d>k

|a|=1 k=0 |la|=1
is well-defined, where the convergence is in the operator norm topology. Consequently, using the
definition of A,,..., 4,, and relation (55), we obtain
-m
K™h = (1 R7)( 1 Ay @ T} 1®h), h
pr = \Ir2q,) @ - azle ®Tz | (1Q®h), heXH.

|la|=z1

Combining the above-mentioned results with the fact that K,: = (PN & I )Kf(% one can

R2(30)
complete the proof of our assertion.

We remark that in the particular case when:n = m = 1, f =X, H =C, A=1€D,R = |,
and P = {0}, we recover the Berezin transform [36] of a bounded operator on the Hardy space
H?*(DD), i.e.,

Bilgl = (1 — 1A1>)(gka kz), g € B(H*(D)),
where k; (z) := (1 - /Tz)_1 and z, 1 € D.
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The following technical lemma is a slight extension of Lemma 1.4 and 2.2 from [55], where the
operator D was positive. In our extension, D is a self-adjoint operator and the condition (a) is new.
However, since the proof is similar to those from [55], we shall omit it. A linear map ¢: B(H) —
B () is called power bounded if there exists a constant M > 0 such that ||@*|| < M forany k € N.
Lemma (1.2.3) [41]: Let ¢: B(H) — B(H) be a positive linear map and let D € B(H) be a self-
adjoint operator and m € N. Then the following statements hold:

Q) If ¢ is power bounded, then
(id — )™(D) = 0 ifandonlyif (id—@)(D)=10, s = 1,2,...,m.
(i) Under either one of the conditions:
(@ (id —@)*(D) = O0foranys = 1,...,m,or
(b) ¢ is power bounded and (id — ¢)™(D) = 0, the following limit exists and
_ _ lim k% (@*h, h) if d=0
d (,k _ N\d — J koo
g KR = 9D ) {0 ifd=12,..,m—1
forany h e H.
In what follows we also need the following result.
For information on completely bounded (resp. positive) maps, see [55] and [56].
Lemma (1.2.4) [41]: Let f := }},4)21 ao X, be a positive regular free holomorphic function and let
A:=(Ayq,...,Ay) € B(H)™ be ann —tuple of operators such that Y ,>1 a,A,Ay is convergent in
the weak operator topology. Then the map & 4: B(H) — B(H), defined by
D, () = Z a A X A, X € B(H),
|la]z1
where the convergence is in the weak operator topology, is a completely positive linear map which

iIs WOT-continuous on bounded sets. Moreover, if 0 < r < 1, then
dr4(X) = WOT — lriir} D 4(X), X € B(H).

Proof: Note that, for any x, y € 7 and any finite subset A c {a € F;, : |a| = 1}, we have

1/2 1/2
> KagAeX A, )l < 1KY aglldzllidzyl < X1 (Z aa||A;x||2> (Z aa||A;y||2> .

a€A €A a€AN a€A
Now, since ¥ 4>1 azAqAzis convergent in the weak operator topology it is easy to see that the series

Dr 4 (X) = Xja21 @cAoXAzCONVErgence is in the weak operator topology. Moreover, the above-
mentioned inequality is true for any subset A in {a € F} : |a| = 1}. In particular, we deduce that

(@74 (0%, )] < IXI@A (D% 02D 4 (DY, )7, X,y EH.
On the other hand, since the map CDIE';? = Yi<ja|c @A XAy, X € B(H), is completely positive for
each k € Nand &, ,(X) = WOT — Ill—r}c;lo d)}kj (X), we deduce that & , is a completely positive map
on B(F). Since X g1 agAa XAy

is convergent in the weak operator topology, forany e > 0and x,y € H,
there is N, € N such that

Z (a, A Anx,x) <€ and Z (a, A ALY, V) < €.

|la|>No lal>No
Using the above-mentioned inequalities, we deduce that

[{aqAaXAzx, y)| < €l X]|

|a|>Ng
Now, it is easy to see that ®, , is WOT-continuous on bounded sets. On the other hand, we also have
Y asn,|{aaT @A, XAz x, y)| < €llX|| forany r € [0, 1]. This can be used to show that

®; 4(X) = WOT — llirll @ 4(X) forany X € B(H). The proof is complete.
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We remark that Lemma (1.2.4) remains true if {a,},>;iS just a sequence of positive numbers and
A:=(A4,...,A,) € B(H)" isann-tuple of operators such that },,>1 a4, Ay is convergent
in the weak operator topology.
We denote by C(f, A)* the cone of all positive operators D € B(H) such that
(id —®7,)’ (D)= 0 for s =1,...,m.
We denote by C,.,4(f,A)* the set of all operators D € C(f,A)* such that there is § € (0, 1) with the
property that D € C(f,rA)* forany r € (§,1].
A few examples are necessary. Note that if m = 1 then we always have C(f,A)* = C..q(f,A)*.
We remark that if m > 2 and p = a; X, + -+ + a,X,, a; > 0, then we also have C(p,A)* =
Craa(p,A)*. Indeed, it isenough to see that if 0 < r < 1, then

(id — @,,,) (D) = [(id—®,,)+ (1 — P, ,]" (D)
k

= (B - et (-0, @)

j=0

forany k = 1,...,m. Since (id — <I>p,A)j (D) = 0forj = 1,...,mand using the fact that CD;;,A IS

a positive linear map, we deduce that (id — <I>p,rA)k(D) >0fork =1,...mand r € (0,1],
which proves our assertion. Note also that when m > 1 and g is any positive regular
noncommutative polynomial so that, foreachs = 1,...,m, (id - CDQ,A)S(D) IS a positive invertible
operator, then D € C,,4(q,A)*.

We say that Df* (%) is a radial domain if there exists 6 € (0,1) such that (rW;,...,7W,) €
Df*(F*(H,)) forany r € (§,1], where (W;,...,W,) is the universal model associated with Df*. We
remark that the notion of radial domain does not depend on the Hilbert space /. Note thatif m = 1,
then D¢ (H) is always a radial domain. This case was extensively studied in [58]. When m > 2, we
point out the particular case p: = a;X; + -+ a,Xp,a; > 0, when D*(%) is also a radial domain.

We show that, for radial domains D}”(}[), the elements of the noncommutative cone C,,q(f,4)"
are in one-to-one correspondence with the elements of a class of noncommutative Berezin transforms.

Theorem (1.2.5) [41]: Let D{*(#) be a radial domain, where f := 4151 @o X, is a positive regular
free holomorphic function and m > 1. Let P be a family of noncommutative homogeneous
polynomials and let B := (By, ..., B,) be the universal model associated with the noncommutative
variety Vi If A := (Ay,...,A,) € B(H)™ is such that ¥,,>1 agA4,4; is SOT-convergent and
p(44,...,4,) = 0, p € P, thenthere is a bijection P

I: CP (A, Vfr’r;) - Crad(f;A)+l F(Qo) = (p(l),
where CP (A, Vf’f;,) is the set of all completely positive linear maps ¢: S¢,, — B(H) such that
¢(BaBy) = Aap(DAg, a, B € F.

where Sy ,,: = span{B,B; : a,f € F;}. Moreover, if D € C,,q(f, A)*, then I™*(D) coincides with
the noncommutative Berezin transform associated with q := (f,m, 4, R, P) and defined by

B, Lx] := lim Kgr (r ® DKy, X € St
where g, := (f,m,74,R,,P) and R, := (id — CDf,TA)m(D), r € [0,1], and the limit exists in the

operator norm topology.
Proof:We recall that the subspace 2V,, # {0} is invariant under each operator W7,..., W, and B;: =

Wilp,i = 1,...,1n. Setting B := (B,, ..., B,) and taking into account that ® f'W(I) < I, we deduce
that & .. (I) < and, consequently, ® . . (I) = Yot Ylaj=k AT B,B; < I, where the

convergence is in the operator norm topology. This implies & frB (1) € S¢pforany r € [0,1). The
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fact that D}" is radial domain implies (rWy,...,vW,) € D*(F?(H,)), r € (6,1), for some & €
(0,1) and, consequently, (id — CDf,rB)S(I) > 0fors = 1,...,mandr € (8,1). Since

INOE Z Z o\*1B, @15 (1) B, jEN,

k=1 |a|=k
and ||®f,5(D|| < 1forany k € N, itis clear that & /(1) € Sy, Taking into account that
, S i ,
(id = @7,5)° () = Z(—l)f () @ fw®. JeN,
j=0

we deduce that (id — ;) (I) € Sy, completely positive linear map such that for s = 1,...,m.
Now, assume that ¢ : Sy, » B(J) is a completely positive linear map such that
¢(BoBs) = Aap(DAg, a, B € F;.
Then, setting D: = ¢(I), we deduce that D > 0 and
(id = @70) (D) = ¢ ((id — @;,5)’ (D) 20, re@D,
forany s = 1,...,m.Since the series X411 Ao A A% is SOT-convergent one can use
Lemma (1.2.4) to deduce that ®f ,(D) = WOT — lim ®f,., (D) for k € N and, moreover,

(id — ®;4)° (D) = WOT — lim (id — ®rrq) (D) =0
for any s = 1,...,m. This shows that D € C.,4(f,A)* . To prove that I' is one-to-let ¢, and ¢,
completely positive linear maps on Sy, such that @;(B,Bg) = Aq@;(DAg , a, € Fy, and assume
that T'(p1) =T (¢y), i.e., p1(I) = @,(I). Then we have ¢,(B,B;) = ¢,(B,Bj) for a,p € Fj.
Taking into account the continuity of ¢1 and ¢2 in the operator norm, we deduce that ¢, = @,.
To prove surjectivity, fix D € C..q4(f,A)*. Then D € B(H) is a positive operator with the property

that there is & € (0, 1) such that (id — ®;,,) (D) = 0 forany s = 1,...,mand r € (6, 1). Since
the set P consists of homogeneous noncommutative polynomials , we have p(r4,,...,r4,) = 0 for
any p € P and re(6,1). We show now that, for each r € (§,1), the tuple gq,:=

(f, m,TA,R,, P), where R,:= (id — <Df,m)m(D), is compatible. Indeed, we can use the equality

()-(7=(323Y), e
J j j—1
and Lemma (1.2.3) to obtain

it m-1
k -1 . k +
Z( ;Tﬁ 1 )q)/}‘c,rA(Rr) =D — WOT — lim Z ( ]) ofrh (id — @ pa) (D)

k=0 j=0
=D — WOT — lim Df 4 (D).
Since ®f,,(D) <r¥*®f,(D) <r* D,wehave D — WOT — Jim ®f .4 (D) = 0. Therefore, we
deduce that

(o]

k+m-—1 k _
; :( m—1 )be,rA(Rr) = D, r € (5,1). (58)
=0
According to Lemma (1.2.2), the constrained noncommutative Berezin kernel

K, ,v € (6,1), associated with the compatible tuple g,: = (f, 74, R,, P), has the property that

K, rA) = (B @ L)K,., i=1,...,n, (59)

where (B4, ..., By,) is the n —tuple of constrained weighted left creation operators associated with the
noncommutative variety V¢, , and
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o]

. k -1
KQrKQr = Z ( o )CD}CIA(RT) = D, re (6t 1)

m-—1
k=0
where R,: = (id — ®;,4)" (D). Hence and using relation (58), we obtain
K; K, = D, r e (6,1). (60)
Foreachr € (6, 1), define the operator B,,_: Sy, = B(H) by setting
B, (0):=K;,(x @ Ii)Kg,, X € Spp. (61)
Using relation (59) and (60), we have
K; (B.Bp ® I)K,, = r'“*Pl A, DA,,  a,BeF;, 1€ (51). (62)

Hence, and using relations (60) and (61), we infer that B, is a completely positive linear map with
B, (I)=D and |B,| = IID|l for r € (5, 1).
Now, we show that lriLI} B, (x) exists in the operator norm topology for each y € S;,,. Given a
polynomial ¢(B,,...,B,) = Za,ﬁem aqpBqBg in the operator system S, we define

op(Aq,...,4,) = z AqpAaDAg.
a,BEF
The definition is correct since, according to relation (62), we have the following von Neumman type
inequality
Now, fix y € S;, and let 9 (B,,..., B,) be a sequence of polynomials in Sy ,, convergent to y, in
the operator norm topology. Define the operator
2o (A, Ag) = Jim 92 (4y,..., An). (64)
Taking into account relation (63), it is clear that the operator y,(A4,,...,4,,) is well-defined and

lxp(Ay, -, ADI < NI x]I-
According to relation (62), we have

los? Ay, ..., rAD| < IDIl@ By, B
foranyr € (§,1). Taking into account that B, _is a bounded linear operator and using again relation
(62), we deduce that
lim 0 (ra,,...,TA,) = lim kg (9% (By,..., B) @ 1) Ky, = By, [x]  (65)
forany r € (§,1). Using relations (64), (65), the fact that ||y — " (By,...,B,)|| > 0ask — o,
and
lim gol()k)(rAl, ..., TA,) = (pgc)(Al, Ay,

T—00

we can deduce that
}E}}qu Xl = xp(Ay,..., An)
in the norm topology. Indeed, note that

”XD (Ay,...,4,) — qu [X]”
<oy A — 0P Ay, A || + 0S4y, ..., Ap) — B, (0®))]
+ [[Bq, (0®) = B, (||
<lx =@ By.... BHNIDI + [l9p”(As,..., An) = 937 (A, ..., A
+lx —®(By,.... BYIIDII.
Foranyr € (4,1), B, isacompletely positive linear map. Hence, and using relation (62), we infer
that

B Ll = limK;, @ DK, X € Spp
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is a completely positive map with B, (I) = D and B,(B,B;) = A,B;(DAg, a,p € Fy.
The proof is complete.
The following result is an extension of the noncommutative von Neumann inequality (see [53],
[59], [51], [55]).
Corollary (1.2.6): Under the hypotheses of Theorem (1.2.5), if D € C,,4(f,A)*, then we have the
following von Neumann type inequality:

Y 4uDA; @ Capl| < IDI|| DY BuB} ® Ca

a,fen a,BeEA
for any finite set A c IF;; and C, s € B(E), where € is a Hilbert space. If, in addition, D is an
invertible operator, then the map u: A, (V%) - B(3{) defined by

u(p(By,...,By)) == p(Ay,..., Ay)

is completely bounded with [[ull, < ||[D=*2||||D*?]|.
Proof: Due to relation (62), we have
(K;, ®I)(BeBy ®1Q Cop )(Ky, @1Ic) = rHFIA DA, ® Cop,a, B €Fy, 7€ (S,1).
Since K4 K, = D forr € (§,1),one can easily deduce the von Neumann type inequality. To prove
the second part, note that, if D is invertible, then the first part of this corollary implies

1112
Py, 401 < |72 llpCay, ..., 4002

2

1
= ||D_E ”p(Al;;An)Dp(Al;;An)*”

2
”D ” “p(Blr e Bn)p(Bli Tt Bn)* ”
1112 2
o L I R RIS T
for any noncommutative polynomial p. A similar result holds if we pass to matrices. Therefore, we
deduce that u is completely bounded with [lull., < ||D~Y/2|||[D*/?||. The proof is complete.
Example (1.2.7) [41]: (i) When m = 1,f = X; +--+X,, and D = I, we obtain the
noncommutative Poisson transform introduced in [51] (case P = {0}) and [54] (case P # {0}).
@iy Whenm = 1,f =X, +--+X,,P = {0},and D > 0 such that ~,A,DA; < D, we
obtain the noncommutative Poisson transform from [52].
(i) Whenm = 1,D = I, and f is an arbitrary positive regular free holomorphic function,
we obtain the noncommutative Berezin transforms associated with noncommutative
domains Df* or noncommutative varieties V¢, which were studied in [55] and [58].

We study the noncommutative cone Cpy (f,4)™ of all pure solutions of the operator inequalities
(id - CDf,A)S X)) =20s =1,....m. When A is a pure n—tuple of operators in the
noncommutative variety Vfl,p(}[ ), we obtain a complete description of the noncommutative cone

C(f,A)".
Let A := (Ay,...,A,) € B(H)™ besuch that },,>; a,A4,4; is convergent in the weak operator

topology and recall that
Ppa00:i= ) aghady, X €BEH),
|x|=1

where the convergence is in the weak operator topology. We assume that @, , is power bounded. A

self-adjoint operator C € B(H) is called pure solution of the inequality (id - CDf,A)m(X) > 0if
(id — ®;4)" (€)= 0 and SOT~ lim ®f,(C) =0

Note that since @, , is power bounded, Lemma (1.2.3) implies ®; ,(C) < C. This can be used to

show that a pure self-adjoint solution is always a positive operator. In what follows we present a

1
<||p=2
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canonical decomposition for the self-adjoint solutions of the operator inequality (id —
®r4)" (X) = 0.
Theorem (1.2.8) [41]: Let f := X421 ae X, b€ a positive regular free holomorphic function and
m > 1.Let A:=(4,...,4,) € B(¥)™ be such that ¥, a,A,A4; is convergent in the weak
operator topology and ® , is power bounded. If Y = Y™ € B(H) is such that (id — CIJf,A)m(Y) >
0, then there exist operators B, C € B(H) with the following properties:

i Y=B+CC;

(i) B =B"and ®;,(B) = B;

(i) € = 0,(id — ®;,)"(C) = 0,and SOT-lim ®f,(C) = 0.

Moreover, the decomposition Y = B + C is unique with the above-mentioned properties and
k-1

1 .
B = SOT — Ilijlgo df,(Y) = SOT — Ili_)nc}o Ez CD;'A (Y).
j=0

Proof: Let Y = Y* € B() be such that (id — ®;,)" (Y) = 0. Since @, is power bounded,
Lemma (1.2.3) implies @ ,(Y) <Y. Consequently, the sequence of self-adjoint operators
{CD}‘,A(Y)}::O Is bounded and decreasing. Thus it converges strongly to a selfadjoint operator B: =
SOT — lli_r)go df,(Y). Since dy 4 isa
W OT -continuous map, we have ®¢ ,(B) = B.NotethatC := Y — B = 0 satisfies the inequality
@, 4(C) = C,and
(id — @;,)"(C) = (id — ®;,)" (¥) = 0. Moreover, ®F,(C) - Ostrongly, ask — oo.

To prove the uniqueness of the decomposition, suppose Y = B; + C;, where B1 and C; have the
same properties as B and C, respectively. Then

B —B; = ®f,(B— By) = ®f ,(C; — (), k € N.
Taking k — oo, we get B = B; and, consequently, C = C,. Since 0 < d)}‘,A(C) < C,keN, and
SOT — lll—l;go ®f,(C) = 0, a standard argument shows that SOT — mizy;g dJJ{"A (C) = 0. On the
other hand, sinceY = B + C and ®; ,(B) = B, we infer that

k-1 k-1
1 j 1 j
;Z o, (V)= B+ Ez !, ().
j=0 j=0
Hence, the result follows. The proof is complete.
We denote by C,,,..(f, A)* the set of all operators D € B(#) such that
(id —®;,)°'(D) =0, s =1,...,m,
and CIJ}"A (D) - 0strongly, as k — oo. Note that such an operator D is always positive.
Theorem (1.2.9) [41]: Let f:= X421 aaX, b€ @ positive regular free holomorphic function and
m = 1. Let P be a family of noncommutative polynomials with V,, # {0} and let B: = (B, ..., B,)
be the universal model associated with the noncommutative variety V7. If A:= (Ay,...,4,) €
B(H)™ issuchthat ) 451 agA,Ay isis SOT-convergentand p(4,,...,4,) = 0, p # P, thenthere
is a bijection
[:CPY (A V) = Coure (LAY, T(@) = 0(1),
where CP""(A4,V/%) is the set of all w*-continuous completely positive linear maps ¢ : Sy, —
B(H) such that
¢(BoBg ) = Aap(DAg, a,p €F},
where S = mw*{BaBE : a,f € Fi}. Inaddition, if D € Cpyre (f,4)*, then T1(D) coincides
with the noncommutative Berezin transform associated with q: = (f, m, 4, R, P) and defined by
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B,[xl:= K;,(x ® DK,,  x €S},
Where R := (id — @;,4)" (D).
Moreover, an operator D € B(H) is in C,yre (f, A)™ if and only if there is a Hilbert space D and
an operator K: H —» N, ® D such that
D=K'K and KA; = (B QIpK, i=1,...,n
Proof. Assume that ¢ : S}{’; - B(H) is a w*-continuous completely positive linear map such that

@(BaBj ) = Aap (DA}, a,f €F;.
Then, setting D: = ¢(I) and taking into account that ®; p = ¥’4|>1 a;B, B, is SOT convergent, we
deduce that

(id = @74)’ D) = ¢ ((id —0p5)° D)2 0, s =1,...,m.
On the other hand, recall that {CD}‘,B (I)}:)=1 is a bounded decreasing sequence of positive operators

which converges stronglyto 0,as k — oo. Since CD}‘,A (D) =9 (d)}‘,B (I)) forall k € N, one can easily

see that {CID}"B(D)}:):l Is a bounded decreasing sequence of positive operators which converges
strongly, as k — oo. Taking into account that ¢ is continuous in the w*-topology, which coincides
with the weak operator topology on bounded sets, we deduce that CD}"A (D) - Ostrongly,ask — oo.
Therefore, D € Cpyo(f,A)*. To prove that T' is one-to-one, let ¢; and ¢, be w*-continuous

completely positive linear maps on SIZ,V; such that ¢; (BaB; ) = A.9;(DA; ,a, B € Fy,, and assume

that T'(¢p,) = T'(¢y), i.e., p:(I) = @, (I). Then we have ¢, (B,B; ) = ¢,(B,B; ) for a,p € F;.
Since ¢, and ¢, are wx-continuous, we deduce that ¢, = ¢,.

We prove now that is a surjective map. Let D € Cp.(f,A)* be fixed. According to Lemma
(1.2.2), the constrained noncommutative Berezin kernel K, associated with the compatible tuple q :
= (f,m, A, R, P), has the property that

K,A; = (B} @ I)K,, i=1,..,n, (66)
where (By, ..., By) is the universal model associated with the noncommutative variety V/7,, and

v k+m-—-1
KqKq = Z ( m—1 )(D}{,A(R);
k=0
where R: = (id - CDf,A)m(D). As in the proof of Theorem (1.2.5), we can use Lemma (1.2.5) and the
fact that WOT- lim ®f,(D) = 0, to obtain

KK, = kZO (k :;l’f ) 1) P 4(R) = D —WOT — lim ®f ,(D) = D
Define the operator B,,: S}, — B(#)by setting
B,(0):= K;(x ® Ky, X €SP
Now, due to relation (66) it is easy to see that
B,(B.B; ) =K;(B,B; ® 1)K, = A.DA;,  a,B € F;.
Consequently, B, € CPY (4, ;%) has the required properties.

To prove the last part of the theorem, note that the direct implication follows if we take K to be
the noncommutative Berezin kernel K. To prove the converse, assume that there is a Hilbert space
D and an operator K : 7 — N, ® D such that

D=K'K and KA} = (B QIpkK, i=1,...,n
Then
(id = @)’ (D) = K*[(id — @;5) D) @ Ip] K = 0, s=1,...,m.
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Since ®f (D) = K*[®f (D) @ Ip|K, ||®F (D] < 1, and ®F;(1) - 0 strongly, as k — 0, we
deduce that D € Cpye(f, A)*. The proof is complete.

We remark that, in Theorem (1.2.9), the set P is of arbitrary noncommutative polynomials with
N, # {0}, while, in Theorem (1.2.5), P consists of homogeneous polynomials.

The proof of the next result is similar to that of Corollary (1.2.6).
Corollary (1.2.10) [41]: Under the hypotheses of Theorem (1.2.9), if D € Cp, (f, A), then we have
the following von Neumann type inequality:

D 4D ® Cagl| <IDII || ) BB} @ Cog

a,fEA a,feEA

for any finite set A c [Fjand C, 5 € B(E), where € is a Hilbert space.

If, in addition, D is an invertible operator, then the polynomial calculus p(Bj,...,B;) —
p(4,,...,A,)extends to a completely bounded map
w: B2 (V%) — B(3{) by setting

u(@):= K;lo ® I(]K,D™Y, @ e E2(Vy),
where K, is the noncommutative Berezin kernel associated with the compatible tuple g :=
(f,m A R,P)and R := (id — ®; ,)m(D). Moreover, |[ull, < |[D~2/2|||D*/2|].
Theorem (1.2.11) [41]: Let f := X421 Ao X, be a positive regular free holomorphic function and
m > 1. Let P be a family of noncommutative polynomials and let A := (A,,...,4,) € B(H)™ be
such that Y 41>1 ag A, Ay is SOT-convergent and p(4y,...,A,) = 0 for p € P. Then a positive
operator G € B(#) isin C(f,A)*
if and only if there exists ann —tuple T := (Ty,...,T,) € V3,(3)
A;GY? =GY2T, i =1,..,n
In addition, G € Cpyr.(f,A)* ifand only if I;; € Cpyre (f, T)*.
Proof: First, assume that T := (Ty,...,T,) € V/5(H) satisfies A,G'/? = G'/*T;, for any i =
1,...,n. Then we have
(id — @) (6) = G%[(id —®s7) (D] 6220, s=1..,m

Taking into account that ®f , (G) = G%CD}‘,T(I)GUZ, k € N, itis clear that if (1) — 0 strongly,
ask — oo,then G € Cpyre(f, A)™.

To prove the converse, assume that G € B(#) isin C(f, A)™. Since

16Y/2 Jagdix|” = (@;.4(6)x, x) < ||642x|?
|a|=1
for any x € 7, we deduce that ||G*/2A;x
can define the operator A;: G%(}[) — GY2(H) by setting
A,GY?%x := GY?%A;x, x €EH, (67)
fori = 1,...,n.Itis obvious that A; can be extended to a bounded operator (also denoted by A;) on
the subspace M := (;1/2—(}[) Set M;: = A;, i = 1,...,n, and note that
G12[(id — ®pp) )]GV? = (id — D;,) ()= 0, s =1,...,m.
An approximation argument shows that
(id — ®pp) Uy) = 0, s=1,...,m

Define T;:= M; @ 0, i = 1,...,n, with respect to the decomposition H = M @ M+, and note that
(id - CDf,T)S(I) > 0, s = 1,...,m.Duetorelation (67), if p € P, then we have

1
p(My,...,M,))*G'? = Gzp(4,,...,A,)* = 0.

|” < [|6¥/2x||", for any x € 3. Recall that a,, # 0, S0 we
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Hence, p(M,,...,M,) = 0 and, consequently, p(Ty,...,T,,) = 0 for all p € P. Therefore,
(T, ..., T) €V (H) and A,GY2 = G'?T;, i = 1,...,n.
Assume now that G € Cp,(f,A)7, ie., d)l’{A(G) — 0 strongly, as k — oo. Since
(@KL (DGV?x,GY?x) = (@K, (G)x,x),  xEXH,
we have SOT-lim ®f,(1)y = 0 forany y € range G. Taking into account that [| @£, (D|| < k € N,

an approximation argument shows that SOT-gim CID}‘IT(I)y = 0 forany y € GY2(H). On the other

hand, we have QD}(’TU)Z = 0 forany z € M*. Consequently, Iy € Cpu(f, T)*. This completes the
proof.

We consider the case when m = 1. Let f := },451 @, X, be a positive regular free holomorphic
function and let P be a family of noncommutative polynomials such that v, # {0}. We have

D(H) = {(Xy,...,Xy) € B(H)" : z a X X, < I},
|la|=1
Let B := (By,..., B,) be the universal model associated with the noncommutative variety Vfl,p . We
introduced in [48] the noncommutative Hardy algebra F,;” (Vfl,p) to be the w*-closed algebra generated
by B, ..., B, and the identity. We also showed that F* (V) = Py, B> (D) |y, - Similar results hold
for R;Y (Vfl,p), the w*-closed algebra generated by C,,..., C, and the identity, where C;: = Py, Al-|]\,~p
,and A,,..., A, are the weighted right creation operators associated with D}. Moreover, we proved
that
Er° (Vfl,p)’ = Ry (Vfl,p) and Ry’ (Vfl,p)’ = k" (Vfl,p)'
where ' stands for the commutant. An operator M € B(V, ® K, NV, ® K") is called multi-analytic
with respect to the constrained weighted shifts B, ..., B, if
MBQ® Iy)= B, I, )M, i=1,...,n.
According to [48], the set of all multi-analytic operators with respect to By, ..., B,, coincides with
Ry (VA,) ® B(K,K") = Py g [Ry (Vi) ® BUK, K))]n, 00
and a similar result holds for the Hardy algebra F,;” (Vfl,p). For more information on multi-analytic
operators, see [40] and [48].
Theorem (1.2.12) [41]: Let P be a family of noncommutative polynomials with v, # {0} and let
B := (By,..., B,) be the universal model associated with the noncommutative variety Vfllp, where f :
= Y|a|>1 Ao X, IS a positive regular free holomorphic function. If T: = (Ty,...,T,,) isa pure n —tuple
of operators in the noncommutative variety Vfl'p (#), then
C(fr T)+ = Cpure(fr T)+
and any operator in C(f, T )* has the form G = P;,;¥¥*|4;, where ¥ is a multi-analytic operator with
respect to B, ..., B,,.
Proof: Assume that T: = (Ty,...,T,) is a pure n —tuple of operators in the noncommutative variety
Vi, (30), ie, ®F (1) — 0 strongly, as k — oo. If G € C(f,T)*, then G = 0 and @;7(G) < G.
Since
0 < @f.(6) < IGllf (D, k =1,2,...,
we infer that G € Cp,y(f,T)". Consequently, we have C(f,T )" = Cpyre(f,T)*. Now, fix an
operator G € Cpyre(f, T)*. Due to Theorem (1.2.11), we find D; € B(%{) satisfying
T,GY? = GY%D;, i =1,...,n,
where (Dy,...,D,) € VA, (#) and ®f ,(I) — 0 strongly, as k — 0. According to Theorem 3.20
from [48], there is a Hilbert space M; so that (B; ® Iy, ,..., B, & Iy, ) is a dilation of (T},...,T,)
on the Hilbert space K;:= N, @ My 2 K, e, T; = Py(B; ® Iy, )3, i = 1,...,n, and I is
invariant under each operator B; & I, . Similarly, let (B; @ Iy,,..., B, ® Iy,) be a dilation of
(Dy,...,Dy) ona Hilbert space K,: = NV, ® M, 2 H. According to the noncommutative commutant
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lifting theorem from [48] (see Theorem 4.2), there exists an operator G: K, — K; such that
G*(H) € 3,6l = 612, ||G]| = [|6*/2]), and
G'(Bf ®1ly,) =(Bf ®1y,)G*, i=1..n
It is easy to see that
Prpeny, (GG = GO e, (DG < GG,
Setting Q := GG*, we have ||Q|| = ||G]l,
G = P}[Gl}[ = PHGG*lﬂ = Py Qly
Note also that
cls}ﬁB@,Ml(G”é*) = GPfsgr,, (DG, k EN.
Since ®f 5, (I) — 0'strongly, as k — oo, we deduce that CD}‘,B®,M1(GAG*) — 0 strongly. Therefore,

Q € Cpure(f,B® Iy,)" and G = P Q3.
Conversely, if Q € Cpure(f, B ® Iy,)", then
Drr(PyQly) = Z Ao Ty (P Ql3:)T,

|a|=1

= Py [(Df,W(X)IMl (PJ{Ql}[)] |3¢

= Py [‘Df,w®1M1 (Q)] | ¢

< PyQly
On the other hand, since

0 < Ofr(PyQlsc) < Pu®fpen,, (@l = 0, as k - o,
it is clear that G: = P Q|s is in Cpyre (f, T) ™. We have proved that

Cpure(f» T)+ = Py [Cpure(f!B b IM1)+] |-

Now, we determine the set Cpyre(f,B ® IM1)+. To this end, let Q € Cpyre(f, B ® IM1)+.
According to Theorem (1.2.9), Q € Cpure(f, B @ IM1 )+ if and only if there is a Hilbert space D and
an operator K: V,, ® M; —» N,, ® D such that Q = K*K and

(B; ® Iy, )K* =K*(B; ® Ip), i=1,...,n
i.e., K* is a multi-analytic operator with respect to B,,..., B,. The proof is complete.
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Chapter 2

Deformation Estimates and Identification
We show that the estimate justify the description of CCR +X as a first-order quantum deformation
of AP + C,, where CCR is the usual C*-algebra of (Boson) canonical commutation relations, H is
the full algebra of compact operators, AP is the algebra of almost-periodic functions and C, is the
algebra of continuous functions which vanish at infinity. Its characteristic class (which classifies star-
products up to equivalence) is obtained. The proof is based on the microlocal description of the Szego
kernel of a strictly pseudoconvex domain given by Boutet de Monvel and Sjostrand.
Section (2.1): Berezin-Toeplitz Quantization
We consider the family of Gaussian probability measures

r n
di(2) = () e dav(z),r > 0
for z=(z4, ... Z,) in complex Euclidean space c", dv(z) ordinary Lebesgue
measure, |z]|? = |z,|? + - |3,|". The space of entire du,square-integrable functions is denoted by
H?(dp,) = H?(c", dp,). For g in L?2(dy,), the Berezin-Toeplitz operator Tg(r)is defined on a dense
linear subspace of H?(dy,) by

(TEh) (@) = [ gle)h(w)e=  dp, ().

Here .w = 3,®; + - + 3,®, and e"**is the Bergman reproducing kernel for
H?(dy,) so that, for gh in L?(dy,), Tz (h) is in H*(dy,).
The map g - Tér) has been considered by Berezin [80] and others [81] as a "quantization™ in which

r plays the role of the reciprocal of Planck's constant.
In this guise, with [A, B] = AB — BA, the "canonical commutation relations" are
given by

10,19 = —sjkl,

) zk

where

1=k
Sm_{Oiik}

27 ? "2k

While

There is an isometry B,: L?(R", dv) —» H2(C". dp,) due to Bargmann [82], so that
for sufficiently smooth g,

BT "B,

is a Weyl pseudo-differential operator.

We establish a first-order composition calculus for T, analogous to results of [84] for the Weyl
calculus. To obtain such a calculus, it does not seem possible to simple apply conjugation by B, to
the results or the related results of [76]. Instead, we proceed by a combination of direct calculation
and an asymptotic analysis analogous to that.

Our results are, in particular, sufficient to justify the description of CCR(C") + »

as a first-order quantum-deformation of AP(C") + C,(C™). Here, CCR(C") is

the standard simple C*-algebra generated by the canonical commutation relations

() ()
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[77], » is the full algebra of compact operators on a separable infinite dimensional Hubert space,
AP(C™) is the supremum norm closed algebra of almost periodic functions, and C,(C") is the
supremum norm closure of the compactly supported continuous functions.

We write TP(C™) for the algebra of trigonometric polynomials on C* = R?". This algebra is generated
by the characters x,(w) = exp{i Im w.a}. We let C*(C")be the algebra of m times

continuously differentiable functions with compact support. We have

For f,g in TP+C2"*6 r >0,

1
”Tf(r)Tg(r) — Ty + =T = C(Egyr

r X2j@50(058)

| )

holds for C(f, g) independent of r.
We make use of the maps

t.(z) =z—-av.(z) =a—3
These maps determine unitary operators on H?(dp,) and L?(dp,) given by

U0 (2) = kK (2)f(z — ),
(V70 (z) = kP (2)f(a — 2)
Where
kgr) (z) = er.z.a—r|a|2/2
is the normalized reproducing kernel for (Vafr))2 = [. Note that
and
WO =,
We will need

Lemma (2.1.1)[75]: For g bounded and uniformly continuous on C* and & > 0 given, there is an R =
R(¢), independent of w, so that

] 18() — g0 — 2)|die(2) <

whenever r > R(g).
Proof: Note that

dyr(z) < ne ™8/
|z]>8
By uniform continuity, there is a 8 = 8(¢) so that |g(z,) — g(z,)] < Ewhenever

|z, — 2,| < €. For this 8, write

Jlg(w) —glw — 2)|dp.(3) = f lg(w) — g(w — z)|dp,(2) + f lg(w) — g(wz)|du.(2)

|z]<8 |z]=8

€ S
< [ @2l | auis) <5+ mlgloe s/

|z]<8 |z]=8

Thus, choosing

n €
R(e) = —=1In ]
62 lnllglle
completes the proof.

We can now prove, similarly to [77] for the disc, that
Theorem (2.1.2) [75]: For g bounded and uniformly continuous on C", we have

lim 77 = liglle
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Proof: Write

B() =< Ty, 11 >+ | [8(0) = 80w = 2)]die(2)
Thus,

8] = 15l + [ 186) — 80 = 2l (2)

Using v Tér)vg) = Tg,)y(o, we have

gl < [ITg”] + flg(w) ~ g(w — 2)ldu ()

and, by Lemma (2.1.1),

g < [T+
for r > R(g). It follows that ||g||., — & < ||Tér)||(r) . Since ||Tg(r)||(r) < |lgll is trivial and € is arbitrary,
the proof is complete.

We consider some differential identities which will be needed later. For f sufficiently smooth on C",
we write

0t ..o g . Anf
a

where 9; = a%_, 5]- = k;j, 1; are non-negative integers. For ¢ in H?(dp,), we
) ]
recall that
(U 0)@ = ¢(a+ k") (a)
We have

Lemma (2.1.3) [75]: For ¢ in H?(dy,),
97! ...anm“(U(_rz)(p)(O) = erlol?/2 i ...arrfl“{(p(w)e_”“”z}.

Proof: Direct calculation.
Lemma (2.1.4) [75]: For ¢ in H?(dy,) and m = m; + -+ + m,

97t .05 @(0) =™ j (W)@ ... @y dp(w)
Proof: Write

p(a) = f @(w)e™ dp,(w)

and check that differentiation "under the integral” is permissible.

Lemma (2.1.5) [75]: []a|?* dp.(a) = bk, n)r k.

We will write BC™ for the set of functions which are bounded

and continuous, with all derivatives bounded and continuous up to order m. Clearly, CZ is contained
in BC™. For g in BC™*1(C™), we will consider the Taylor series

gla+ w) = g(w) + (3:8)(w)ay ... + (Bp)(w)a, + (318)(w)a; + -+ + (0,8)(w)a, + -

1 _
+— (0mg) (@)ay + gm+1(a, w)
Where

gm+1(@w) = Z c(kq, ...,1n)(a‘1‘1 ...a‘;n 5111 ...al{‘g)(w*)alfl ...alr(l“ﬁlf ...511{‘
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fork,; + -+ k, +1; +--+1, =m+ 1. For g in BC™*! , the remainder term
gm+1(a, w) can be estimated by using
Lemma (2.1.6) [75]: We have

gmes (@0 < D ey, )05 . Fg]]_Jal™

Theorem (2.1.7) [75]: Let f be in C2+3(C™) with g in BC2"*6(C™). Then we have a constant
C(f, g)so that
1
@) () ™, —p® 2
||Tf Ty —Tg + . TZ,(ayf)(a,g)”( , < C( gr
for all r > 0.
Proof: Borrowing from [84], we write for ¢, Y in H?(dp,)

(T{Typ, ) = j (@) Pl@)di (@) j e"7g(2) (2) it (2)
- j (@) D0 dity () j e @ g3 + ) p(a + w)dp(a + ©)

= ff(w)ll)(m)e”‘”'z/z dur(oo)fg(a+oo)(U(r) @) (a)du.(a)

Next, write
gla+w) ={gla+ w) —gni1(@ ®) + gns1(a w)

Using Lemmas (2.1.5) and (2.1.6), we check that form =n + 3,

|| H@)T@ /241, 0) [ s (3.0 (U 0) @)

1/2
< llgll Il c@mbem + 1,02 { [ IK@Pav@)} 12
Thus, for m = n + 3, it remains to consider the expression

@ ] F(w) P @)e" /2 dyty (o) ] (82 + ©) — g (@ )} (UD0) @ du ()

Fork=k; +--+k,1=1 +--+1, and k + | <m the typical term in the
Expansion of

j (8@ + ©) — g (3 0} (UD0) @du, ()

has the form

(+1) alky, .. 1) (05" ... 07g) (@) f adart..ay (U e) (@) du(a)

Applying Lemmas (2.1.3) and (2.1.4), we see that (+1) = 0 unless3
l; = ky
for all j . In this case, (1) is a sum of terms
rla’(ky, ..., 1)em /(95 | Fng) (w) 8% ... i {@(w)er1o")
with I; > t;.
It follows that (1)is a linear combination, with coefficients independent of r, of
Terms
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- _ _ n
(+t1) ! j f(w)P(@) (0% ...a5 3l . 3Mng) (w) x 3% ... {@(w)eTIoF) (%) dn(w)
Where
>k, =t, m>1+k
Iterated application of Gauss' Theorem (“integration by parts™) shows that (+11)is
a linear combination, with coefficients independent of r, of terms

[ @8 oD@ @ ok B ) (@) p ()P ()
where
t] = Uy, t] = 67.
Thus, for 1> 1, we have explicit estimates.

It remains to consider the cases 1 = 0,1 = 1. Going back to (1), (11), we see that
the only 1 = 0 term is

j f(0) P (w)e®l/2 dy, (w) f g(@)(U0)(@)du,(a) = f f(0)g(w) P(0) o (0)dp, (w)
= (T9 @, W)

For1 =1, we can have, forsome jwith1 <j<n

Or
L=1L1y=0j#j
{k]- =0,ky =0 j # j}
In either case, a(ky, ..., 1,) in (t1). Direct calculation now shows that the sum
ofthel =1 terms is

—r? f e(@)W(w) Z(agf)(?gg) dp, (w)
,-

This completes the proof!
For each a in C®, we have the character

Xa(w) = expf{i Im w.a}

The algebra TP(C™) consists of finite linear combinations of characters. The supremum norm closure
of TP(C™) is exactly AP(C™). We also consider the algebra TP + CZ"*6. Clearly,
TP + C§n+6 c Bc2n+6.
Lemma (2.1.8) [75]: For g in +C2"*® | the representation
g=t+u
with tin TP and u in C2"*© is unique.
Proof: On TP + C2"*®, we consider the functional

T T
m(g) = %EIJO(ZT)_Zn f fg(xl,yl,xz,yz ~)dx,dyy .. dyy
-T =T
where z; = x4 + iyy, Xq, ¢5real. It is easy to check that
m(u) =0
while, for
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r
t= Z CiXak M{gXak} = Ck
k-1
Uniqueness follows.
Theorem (2.1.9) [75]: For f,g in TP + C2"*© there is a constant c(f, g)so that for all r >0,

D@ @ 1@
”Tf T — T + T3 0,000

< C(f g)r 2.
o (f,8)

Proof: For f = t; + uy, g = t, + u,with t; in TP and u; in CZ"*®, it will suffice to
check that each of the pairs (t,, t,), (t;,u,), (uy, t;), (uy, uy) satisfy (*).

The pairs (u4, t;), (ug, uy) are handled using Theorem(2.1.7). For (t;, u,), we note that
Ty = Trand 0;F = ,F for F in BC***4s0 that

Or® _n@ L 1o® Y @@ @ 1a®
(Ttl Tu2 Tt1u2 + rTZ(aytl)(ajuz)) o Tﬁz T'El Tﬁzfl t rTZ(ajﬁz)(ayfl)
Since [[A*|| ) = ||All. and (1, t;) has been handled using Theorem(2.1.7), (*) holds
automatically for (t,,u,).

The proof is now reduced to checking (*) for (t,,t,). By linearity, this is, in turn,
reduced to checking (*) in the case (x,, X3, ). Direct calculation shows that

T)g)Tg) = exp{b.a/ 4r}T(r)

Xa+b’

(r) _ _
Il = exp{=lal*/8r}
It follows that

1 b.a
@@ _ p@ — () _ |abas4ar _ 14 _ _ 2
||TXa T, —T +-T = |e a/ar _ 1 e exp|— |a + b|*/8r]|

XaXb r Zj(aJXa)(EJXb)

()
and routine calculation now establishes (*).
Forf, g in +CZ"*®
® +07_ Lo _
|11 = L] < 2ccer ()

Considering the above results and the correponding results of [78] for the
hyperbolic disc, it is plausible that, in a very general framework involving Toeplitz
operators on Bergman spaces, the appropriate generalization of (**) holds.

Section (2.2): Berezin-Toeplitz Deformation Quantization

In [91] Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer drew the attention of both physical
and mathematical communities to a well posed mathematical problem of describing and classifying
up to some natural equivalence the formal associative differential deformations of the algebra of
smooth functions on a manifold.

The deformed associative product is traditionally denoted x and called star-product. If the manifold
carries a Poisson structure, or a symplectic structure (i.e. a nondegenerate Poisson structure) or even
more specific if the manifold is a K ahler manifold with symplectic structure coming from the K ahler
form one naturally asks for a deformation of the algebra of smooth functions in the “direction” of the
given Poisson structure. According to [91] this deformation is treated as a quantization of the
corresponding Poisson manifold .Due to work of De Wilde and Lecomte [94] , Fedosove [98], and
Omori, Maeda and Yoshioka [92] it is known that every symplectic manifold admits a deformation
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quantizationin this sense. The deformation quantizations for a fixed symplectic structure can be
classified up to equivalence by formal power series with coefficients in two-dimensional cohnomology
of the underlying manifold, see [95], [96], [97], [91], [90]. Kontsevich [97] showed that every Poisson
manifold admits a deformation quantization and that the equivalence classes of deformation
quantizations on a Poisson manifold can be parametrized by the formal deformations of the Poisson
structure.

Despite the general existence and classification theorems it is of importance to study deformation
quantization for manifolds with additional geometric structure and ask for deformation quantizations
respecting in a certain sense this additional structure. Examples of this additional structure are the
structure of a complex manifold or symmetries of the manifold.

Another natural question is how some naturally defined deformation quantizations fit into the
classification of all deformation quantizations.

We will deal with Kéhler manifolds. Quantization of K&hler manifolds via symbol algebras was
considered by Berezin in the framework of his quantization program developed in [93],[94]. In this
program Berezin considered symbol algebras with the symbol product depending on a small
parameter A which has a prescribed semiclassical behavior as A — 0 . To this end he introduced the
covariantand contravariant symbols on K&hler manifolds. However, in order to study quantization
via symbol algebras on K&hler manifolds he, as well as most of his successors, was forced to consider
Ké&hler manifolds which satisfy very restrictive analytic conditions. These conditions were shown to
be met by certain classes of homogeneous Ké&hler manifolds, e.g., c", generalized flag manifolds,
Hermitian symmetric domains etc. The deformation quantization obtained from the asymptotic
expansion in i as A — 0 of the product of Berezin’s covariant symbols on these classes of Kahler
manifolds was studied in a number by Moreno, Ortega-Navarro ([99], [90]); Cahen, Gutt, Rawnsley
([101], [202], [103]); see also [105]. This deformation quantization is differential and respects the
separation of variables into holomorphic and anti-holomorphic ones in the sense that left star-
multiplication (i.e. the multiplication with respect to the deformed product) with local holomorphic
functions is pointwise multiplication, and right star-multiplication with local anti-holomorphic
functions is also point-wise multiplication,for the precise definition. It was shown in [102] that such
deformation quantizations ’with separation of variables” exist for every Kédhler manifold. Moreover,
a complete classification (not only up to equivalence) of all differential deformation quantizations
with separation of variables was given. They are parameterized by formal closed forms of type (1, 1).
The basic results are sketched below. Independently a similar existence theorem was proven by
Bordemann and Waldmann [97] along the lines of Fedosov’s construction. The corresponding
classifying (1,1)-form was calculated in [96]. Yet another construction was given by Reshetikhin and
Takhtajan in [94]. They directly derive it from Berezin’s integral formulas which are treated formally,
i.e., with the use of the formal method of stationary phase. The classifying form of deformation
quantization from [94] can be easily obtained by the methods developed.

In [96] Englis obtained asymptotic expansion of Berezin transform on a quite general class of
complex domains which do not satisfy the conditions imposed by Berezin.

For general compact Kahler manifolds (M, w_;) which are quantizable, i.e. admit a quantum line
bundle L it was shown by Bordemann, Meinrenken and Schlichenmaier [96] that the correspondence
between the Berezin-Toeplitz operators and their contravariant symbols associated to L™ has the
correct semi-classical behavior as m — o. Moreover, it was shown in [95],[96], [98] that it is possible
to define a deformation quantization via this correspondence. For this purpose one can not use the
product of contravariant symbols since in general it can not be correctly defined.

The approach of [96] was based on the theory of generalized Toeplitz operators due to Boutet de

Monvel and Guillemin [98], which was also used by Guillemin [99] in his proof of the existence of
deformation quantizations on compact symplectic manifolds. The deformation quantization obtained
in [95],[96], which we call the Berezin-Toeplitz deformation quantization, is defined in a natural way
related to the complex structure. It fulfils the condition to be ‘null on constants’ (i.e.

1 xg=g*1= q), it is self-adjoint (i.e. f * g = g * f), and admits a trace of certain type (see [98] . We
will show that the Berezin-Toeplitz deformation quantization is differential and has the property of
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separation of variables, though with the roles of holomorphic and antiholomorphic variables
swapped. To comply with the conventions of [82] we consider the opposite to the Berezin-Toeplitz
deformation gquantization (i.e., the deformation quantization with the opposite star-product) which is
a deformation quantization with separation of variables in the usual sense.

We will show how the Berezin-Toeplitz deformation quantization fits into the classification scheme
of [82]. Namely, we will show that the classifying formal (1,1)-form of its opposite deformation
guantization is

1
D= ——w_ 1
w Uw 1wcan ()

where v is the formal parameter, w_; is the K&hler form we started with and w,,, is the closed
curvature (1,1)-form of the canonical line bundle of M with the Hermitian fibre metric determined by
the symplectic volume. Using [103] and (1) we will calculate the classifying cohomology class
(classifying up to equivalence) of the Berezin-Toeplitz deformation quantization. This class was first
calculated by E. Hawkins in [100] by Ktheoretic methods with the use of the index theorem for
deformation quantization ([107], [101]).

In deformation quantization with separation of variables an important role is played by the formal
Berezin transform f — I(f) (see [104]). we associate to a deformation quantization with separation
of variables also a non-associative ”formal twisted product” (f, g) — Q(f, g). Here the images are
always in the formal power series over the space C* (M) . In the compact K&hler case by considering
all tensor powers L™ of the line bundle L and with the help of Berezin-Rawnsley’s coherent states
[103], it is possible to introduce for every level m the Berezin transform L™ and also some "twisted
product” Q™. The key result is that the analytic asymptotic expansions of 1™, resp. of Q™ define
formal objects which coincide with | and Q for some deformation quantization with separation of
variables whose classifying form & is completely determined in terms of the form @ (Theorem
(2.2.13)). To prove this we use the integral representation of the Szegd kernel on a strictly
pseudoconvex domain obtained by Boutet de Monvel and Sjostrand in [109] and a theorem by
Zelditch [101] based on[109].

We also use the method of stationary phase and introduce its formal counterpart which we call
”formal integral”.

Since the analytic Berezin transform 1™ has the asymptotics given by the formal

Berezin transform it follows also that the former has the expansion

. 1 1
1™ =id+=A+0(=) )

where A is the Laplace-Beltrami operator on M.

The above formal form ® is the formal object corresponding to the asymptotic expansion of the
pullback of the Fubini-Study form via Kodaira embedding of M into the projective space related to
L(™as m — +oo0. This asymptotic expansion was obtained by Zelditch in [101] as a generalization of
a theorem by Tian [109].

We recall the basic notions of deformation quantization and the construction of the deformation
quantization with separation of variables given by a formal deformation of a (pseudo-)Ké&hler form.

formal integrals are introduced. Certain basic properties, like uniqueness are shown.

the covariant and contravariant symbols are introduced. Using Berezin-Toeplitz operators the
transformation 7™ and the twisted product Q™ are introduced. Integral formulas for them using 2-
point, resp. cyclic 3-point functions defined via the scalar product of coherent states are given.
contains the key result that 1™ and Q™ admit a well-defined asymptotic expansion and that the
formal objects corresponding to these expansions are given by I and Q respectively. Finally the
Berezin-Toeplitz star product is identified with the help of the results obtained.

Given a vector space V , we call the elements of the space of formal Laurent series
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with a finite principal part V [v_, v]] formal vectors. In such a way we define formal functions,

differential forms, differential operators, etc. However we shall often call these formal objects just

functions, operators, and so on, omitting the word formal. Now assume that V is a Hausdorff

topological vector space and v(m),m € R is a family of vectors in V which admits an asymptotic

expansion as m— oo, v(m)~ ¥,», (1/m")v,, where r, € Z. In order to associate to such asymptotic

families the corresponding formal vectors we use the “formalizer” F:v(m) » X, V'V, €

Vvt v]].

Let (M, w_,) be a real symplectic manifold of dimension 2n. For any open subset

U c M denote by F(U) = C*(U)[v?, v]] the space of formal smooth complex-valued functions on

U. Set F = F(M). Denote by K = C[v~?, v]] the field of formal numbers.

A deformation quantization on (M, w_,) is an associative K-algebra structure on F, with the product

* (named star-product) given for f = Y, v/f;, g = ¥ v* g, € F by the following formula:
frxg=Xv" Zi+j+k=r Ci(fjrgk) 3)

In(3) C,.,r = 0,1,..., is a sequence of bilinear mappings C,: C*(M) x C*(M) - C®(M) where

Co(p, ) = pyand C,(p, ) — C,(p,¥) = i{p, P}for ¢, € C*(M) and {-, -} is the Poisson

bracket corresponding to the form w_;.

Two deformation quantizations (¥,*;) and (F,*,) on (M, w_,) are called equivalent if there exists

an isomorphism of algebras B: (F,*;) — (F,*,) of the form B =1+ vB, + v?B, + ---, where B,

are linear endomorphisms of C*(M).

We shall consider only those deformation quantizations for which the unit constant

1 is the unit in the algebra (F,*).

If all C,,r = 0, are local, i.e., bidifferential operators, then the deformation quantization is called

differential. The equivalence classes of differential deformation quantizations on (M, w_,) are

bijectively parametrized by the formal cohomology classes from (1/iv)[w_,] + H?(M, C[[v]]). The

formal cohomology class parametrizing a star-product x is called the characteristic class of this star-

product and denoted cl(*).

A differential deformation quantization can be localized on any open subset U c M.

The corresponding star-product on (U) will be denoted also x.

For f, g € Fdenote by L¢, R, the operators of left and right multiplication by f, g

respectively in the algebra (F,x), so that L;g = f * g = R, f. The associativity of the star-product *

is equivalent to the fact that L, commutes with R for all f,g € F. If a deformation quantization is

differential then L¢, R,are formal differential operators. Now let (M, w_;) be pseudo-Kahler, i.e., a

complex manifold such that the form w_, is of type (1,1) with respect to the complex structure. We

say that a differential deformation quantization (F,*) is a deformation quantization with separation

of variables if for any open subset U < M and any holomorphic function a and antiholomorphic

function b on U the operators L, and R,, are the operators of point-wise multiplication by a and b

respectively, i.e., L, = a and R, = b.

A formal form w = (1/v)w_; + wg + vw,; + -+ is called a formal deformation of the form

(1/v)w_, if the forms w,,r = 0, are closed but not necessarily nondegenerate (1,1)-forms on M.

It was shown in [102] that all deformation quantizations with separation of variables

on a pseudo-Kahler manifold (M, w_,) are bijectively parametrized by the formal deformations of

the form (1/v)w_;.

Recall how the star-product with separation of variables x on M corresponding to the formal form

w=1/v)w_; + wy, + vw, + ---is constructed. For an arbitrary contractible coordinate chart U c

M with holomorphic coordinates {Z*}letd = (1/v)P_; + do + vP, + -+ be a formal potential of

the form w on U, i.e., w = —idd¢ (notice that in [102] - [106] a potential ¢ of a closed (1,1)-form

w is defined via the formula w = idd).

The star-product corresponding to the form w is such that L,y 5% = od/0Z% + /92" and

Ryy/az-1 = 00/0Z71+0/0Z 7" on U. The set L(U) of all left multiplication operators on U is

completely described as the set of all formal differential operators commuting with the point-wise
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multiplication operators by antiholomorphic coordinates R,-: = Z~* and the operators Ropjaz-t =

0¢/0Z7 '+ /02t . One can immediately reconstruct the star-product on Ufrom the knowledge of
L(U). The local star-products agree on the intersections of the charts and define the global star-
product x on M.

One can express the characteristic class cl(*)of the star-product with separation

of variables x parametrized by the formal form  in terms of this form (see [103]).

Unfortunately, there were wrong signs in the formula for cl(*) in [103] which should be read as
follows:

cl(») = (1/D)(lw] — €/2) (4)
where ¢ is the canonical class of the complex manifold M, i.e., the first Chern class of the canonical
holomorphic line bundle on M.
Given a deformation quantization with separation of variables (F, x) on the pseudo-Ké&hler manifold
(M, w_,), one can introduce the formal Berezin transform [ as the unique formal differential operator
on M such that for any open subset U ¢ M, holomorphic function a and antiholomorphic function b
on U the relation I(ab) = b * a holds (see [104]). One can check that I = 1 + vA + ---, whereA is
the Laplace-Beltrami operator corresponding to the pseudo-Kahler metric on M. The dual star-
product ¥ on M defined for f, g € F by the formula f ¥ g = I"*(Ig = If) is a star-product with
separation of variables on the pseudo-Kahler manifold (M, —w_,). For this deformation quantization
the formal Berezin transform equals 171, and thus the dual to % is again *.
Denote by @ = —(1/v)w_, + @y + v, +...the formal form parametrizing the star-product %. The
opposite to the dual star-product, =" = ¥°Pop, given by the formula f*' g =I"*(If * Ig), also defines
a deformation quantization with separation of variables on M but with the roles of holomorphic and
antiholomorphic variables swapped. Differently said, (F,*) is a deformation quantization with
separation of variables on the pseudo- K&hler manifold (M, w_,) where M is the manifold M with the
opposite complex structure. The formal Berezin transform | establishes an equivalence of
deformation quantizations (F, x) and (F, ).
Introduce the following non-associative operation Q(:, -) on F. For f, g € F set
QUf,gIf x1g =1(f *g) =1(g * f). We shall call it formal twisted product. The
importance of the formal twisted product will be revealed later.
A trace density of a deformation quantization (F, x) on a symplectic manifold M is
a formal volume form p on M for which the functional x(f) = fM fu,f €F, has the trace property,

k(f *xg) = (g *f) for all f, g € F where at least one of the functions f, g has compact support. It
was shown in [104] that on a local holomorphic chart (U, {Z*}) any formal trace density p can be
represented in the form c(v) exp(¢p¥W)dZZ, where c(v) € K is a formal constant, dZdZ =
dz'..dz"dz~'..dZ ™" is the standard volume on

Uandp = (1/v)d_; + -+, ¥ = (1/v)¥_, + ---are formal potentials of the forms w, @ respectively
such that the relations

dd/0Z* = —1(0¥/0Z%),0d/0Z " = —1(0W/Z7),andd_, +¥_, =0 (5)

hold. Vice versa, any such form is a formal trace density.
Let® = (1/v)P_; + @y + v®P; + ---and u = u, + vy, + ---be, respectively, a
smooth complex-valued formal function and a smooth formal volume form on an open set U ¢ R™.
Assume that x € U is a nondegenerate critical point of the function @_; and p, does not vanish at x.
We call a K-linear functional K on F(U) such that
(@) K = K, + vK; + --- is a formal distribution supported at the point x;
(b) K, = 6,1s the Dirac distribution at the point x;
(¢)K(1) = 1 ( normalization condition);
(d) for any vector field & on U and f € F(U) K(&f + (@ + div,§)f) = 0, a (normalized) formal
integral at the point x associated to the pair (@, p).
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It is clear from the definition that a formal integral at a point x is independent of a

particular choice of the neighborhood U and is actually associated to the germs of (@, i) at x. Usually
we shall consider a contractible neighborhood U such that u, vanishes nowhere on U.

We shall prove that a formal integral at the point x associated to the pair (@, u) is

uniquely determined. One can also show the existence of such a formal integral, but this fact will
neither be used nor proved in what follows.

We call two pairs (@, ) and (@, w') equivalent if there exists a formal function u = u, + vu, + -
on Usuch that, @ =@ —u, p’' = e*p.

Since the expression ¢@ + div,éremains invariant if we replace the pair (@, u) by an equivalent one,
a formal integral is actually associated to the equivalence class of the pair (@, ). This means that a
formal integral actually depends on the product e®u which can be thought of as a part of the integrand
of a ”’formal oscillatory integral”. It will be shown that one can directly produce formal integrals from
the method of stationary phase.

Notice that if K is a formal integral associated to a pair (@, p) it is then associated

to any pair (@, c(v)u), where c(v) is a nonzero formal constant.

It is easy to show that it is enough to check condition (d) for the coordinate vector

fields 9/0x* on U. Moreover, if U is contractible and such that yu, vanishes nowhere on it, one can
choose an equivalent pair of the form (@, dx), where dx = dx? ... dx™ is the standard volume form.
Proposition (2.2.1)[83]: A formal integral K = K, + vK; + --- at a point x, associated to a pair (¢
= (ANV)D_q + Dy + vP,. .., w) is uniquely determined.

Proof: We assume that K is defined on a coordinate chart (U, {x*}), u = dx, and take f € C*(U).
Since div,, (0/9x*) = 0, the last condition of the definition of a formal integral takes the form

K(0f/dxk + (00 /3x*)f) = 0 (6).

Equating to zero the coefficient at ,v” r > 0, of the Lhs. of (6) we get K,.(9f/9x*) +

K ((0D,_s/0x*)f) = 0, which can be rewritten as a recurrent equation

Kr41((09_1/0x")f) =7.h.s (7).
dependingon K; , j<r.
Since x is a nondegenerate critical point of ®_;, the functions 0d®_,/dx* generate the ideal of
functions vanishing at x. Taking into account that K., (1) = 0 for r >0 we see from (7) that K, is
determined uniquely. Thus the proof proceeds by induction.
Let V be an open subset of a complex manifold M and Z be a relatively closed subset of V. A function
f € C*(V) is called almost analytic at Z if df vanishes to infinite order there. Two functions f,, f, €
C= (V) are called equivalent at Z if f; — f, vanishes to infinite order there.
Consider open subsets U € R™ and U < ¢” such that U = U n R™, and a function
f € C*(U). Afunction f € C* (D) is called an almost analytic extension of fif it is almost analytic
at Uand /U .
It is well known that every f € C*(U) has an almost analytic extension uniquely
determined up to equivalence.
Fix a formal deformation w = (1/v)w_; + wy + vw, + -+ of the form (1/v)w_,
on a pseudo-Kahler manifold (M, w_,). Consider the corresponding star-product with separation of
variables *, the formal Berezin transform | and the formal twisted product Q on M. We are going to
show that for any point x € M the functional KX(f) = (If)(x) on F and the functional K2on (M
xM) such that KJ? (f ® g) = Q(f, g)(x) can be represented as formal integrals.
Let U € M be a contractible coordinate chart with holomorphic coordinates {Z*}Given a smooth
function f = (z, %) on U, where U is considered as the diagonal of U = U x U, one can choose its
almost analytic extension f (3, 31,32, 3,) on U, so that f(z,5,3,3) = f(z,%) It is a substitute of
the holomorphic function f(z4, 5,) on U which in general does not exist.
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Letd = (1/v)d_; + &y + v, + -+ be a formal potential of the form » on U

and ¢ its almost analytic extension on U . In particular , $(x,x) = d(x) forx € U . Introduce an
analogue of the Calabi diastatic function on U x U by the formula

D(x,4) = d(x,4) + (g, x) — d(x) — d(»). We shall also use the notation

Dy (x,9) = dr(x, 1) + i (9, x) — & (x) — di(y) sothat D = (1/v)D_y + Do + vDy

Let @ be the formal form corresponding to the dual star-product % of the star-product x. Choose a
formal potential of the form @ on U, satisfying equation (5), so that u,, = e®*¥dzdZis a formal
trace density of the star-product x on U.

Theorem (2.2.2) [83]: For any point x € U the functional K1(f) = (If)(x) on F(U)is the

formal integral at x associated to the pair (@%, u;,-), where *(¢) = D(x,4).

Lemma (2.2.3) [83]: For any vector field éon U and x € U I(¢,0%)(x) = 0, where §*(¢) =
D(x,y).

(¢, ©*denotes differentiation of @* w.r.t. the parameter x.)

Introduce a 3-point function T on U x U x U by the formula T(x, y, 5) = ®(x, ) +

D(z,2) + P(5 X) —P (x) — D(z) — P(2).

Theorem (2.2.4) [83]: For any point x € U the functional K,? on AU xU) such that K,? (f®g) =
Q(f,g)(x) isthe formal integral at the point (x,x) € U X U associated to the pair

(lpx, Htr®.utr)’ Wherel/)x(y" Z) = T(X, Y, Z)'

Let (M, w_,) be a compact Kdhler manifold. Assume that there exists a quantum line bundle (L, h)
on M, i.e., a holomorphic hermitian line bundle with fibre metric h such that the curvature of the
canonical connection on L coincides with the kdhler form w_;.

Let m be a non-negative integer. The metric h induces the fibre metric A™ on the tensor power L™ =
L®™, Denote by L™ (L™) the Hilbert space of square-integrable of L™with respect to the norm ||s||? =
[ h™(s)Q, where Q = (1/n!)(w_,)? is the symplectic volume form on M. The Bergman projector
B,, is the orthogonal projector in L?(L™) onto the space L,, = I},,;(L™) of holomorphic L™.

Denote by k the metric on the dual line bundle z: L* — Minduced by h. Itis a

well known fact that D = {a € L*|k(a) < 1}is a strictly pseudoconvex domain in L*.Its boundary
X = {a € L*|k(a) = 1}is a st-principal bundle.

The of L™ are identified with the m-homogeneous functions on L* by means of the mapping y,,,: s =
Y5, Where Y (a) = (a®™, s(x)) for a € LY. Here (.,.) denotes the bilinear pairing between (L*)™
and L™.

There exists a unique S*-invariant volume form Q on X such that for every f € C*°(M) the
equality [, (z * )01 = [ fQ hold

The mapping y,,, maps L?(L™) isometrically onto the weight subspace of L?(X, )

of weight m with respect to the S*-action. The Hardy space H c L?(X, Q) of square integrable traces
of holomorphic functions on L* splits up into weight spaces H =@ —o H.n, Where H,, = v, (Hy).
Denote by S and B,,, the Szegé and Bergman orthogonal projections in L? (X, Q)

onto  and %, respectively. Thus = Y.%_, B,, . The Bergman projection B,, has a smooth integral
kernel B,, = B,(a, ) on X x X.

For each ¢ € L* means the zero removed) one can define a coherent state eém)as the unique

holomorphic of L™ such that for each s € H,,(s, eém)) = 1, (a) where (.,.) is the hermitian scalar
product on L?(L™) antilinear in the second argument.

Since the line bundle L is positive it is known that there exists a constant m, such

that for m > m, dim H,,,> 0 and all eém), a € L* — 0, are nonzero vectors. From now on we assume
that m > m,, unless otherwise specified.

The coherent state e{™ is antiholomorphic in « and for a nonzero ¢ € Ce{™ = ¢=me(™

Notice that in [100] coherent states are parametrized by the points of L — 0.
For s € LZ(L™)(s, eém)) = (s, Bmeém)) = (B,,s, eém)) = YB,,.(a)
The mapping y,,intertwines the Bergman projectors B,,and B,,, fors € L? L™ g, = B, .. Thus,
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on the one hand (s, e{™) = B,hs(@) = [, B (a, B)¥s(B)A(B)
.On the other hand, (s, e™) = (W, e, (M) = [, Y5 (B) o, (BID(B)
Taking into account that (e,f,m), e™) = Yo (@) = Yo, (B)

we finally get that <e[§"‘>, el™y = P 0m (a) = B,,(a, B). In particular,

one can extend the kernel B,,(a, ) from X x X to a holomorphic function on(L* — 0) X (L* — 0)
such that for nonzeroc,d € €

By (ca,dB) = (cd)" By (e, B) (8)

For a, f € L* — 0 the following inequality holds

B )] = [(e&™, e5™)| < lle&™ les™ || = (Bu(a @)Bn (8, £)2 (9)

The covariant symbol of an operator A in the space H,,is the function ¢(A) on M
such that

(m) _(m)
(Ae,™,e]™)

a
(m)
a

o(4) =
(eém), e

forany a € L}, — 0.
Denote by Mf the multiplication operator by a function f € C* (M)

L™. Define the Berezin-Toeplitz operator Tf(m) = B,,M¢B,, in Hp,. If an operator in H,,, is represented

in the form Tf(m) for some function f € C* (M) then the function f is called its contravariant symbol.

With these symbols we associate two important operations on C (M), the Berezin

transform 7™ and a non-associative binary operation Q™ which we call twisted product, as follows.
For f,g € C*(M)I™f = a(Tf(m)),Q(m)(f,g) = a(Tf(m)Tg(m)) We are going to show that both I(m)
and Q(m) have asymptotic expansions in 1/m as m — +oo, such that if the asymptotic parameter 1/m
in these expansions is replaced by the formal parameter v then we get the formal Berezin transform |
and the formal twisted product Q corresponding to some deformation quantization with separation of
variables on (M, w_;) which can be completely identified. We shall mainly be interested in the
opposite to its dual deformation quantization. We show that it coincides with the Berezin-Toeplitz
deformation quantization obtained in [106],[108].

In order to obtain the asymptotic expansions of 1™ and Q™ we need their integral representations.
To calculate them it is convenient to work on X rather than on M.

We shall use the fact that for f € C*(M),s € I‘(Lm),tprs = (T = ).y, for x € Mdenote by X,

the fibre of the bundle X over x, X, =7 '(x)nX. Forx,y,z €M choose a € X,, BEX,, ¥V €
X and set

um(x) = Bm(ar a)r vm(x:) = Bm(ar ,B)Bm(.g! a):wm(x:) =
B (a, B)Bn(B,v)Bn(y, @) (10).

It follows from (8) that w,,, (x), v,,, (x, ), ws,, (x, 4, ) do not depend on the choice of a, B, y and thus

relations (10) correctly define functions w,,, v,,, w,. The function w, is the so called cyclic 3-point
function studied in [102]. Notice that

U () = Br(@, @) = [|e™|” = 0, vm(x, %) = B(@, B)Bm(B, @) = 1By (e, B)I> = 0 and

| (X, 4, 2)|? = V3 (X, ) Vi (1, 2) U (3, %) (11)
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It follows from (9) that

U (X, 4) < V3 (0 v, (1) (12)

For a € X, we have

(T(m)ec(lm) (m)) <BmeBmec(zm)' eo(lm)> (Mfec(zm)» eém))
( (m)) B, (a,a) B, (a,a)

(I™F) ) = o(T™) () =
m(a @) j(‘[ f)lpea(m)(ﬁ)wea(m) (ﬁ)ﬂ(ﬂ)

@ e o e m)

B (a,a)

1
= W}(f B (e, B)Brn (B, @) (z * £)(BYQ(B)

1
e j U e ) f () U5) (13)

Similarly we obtain that

1 ~ =~
Q" (f,9)(x) = m f By (a, BBy (B, V) B (v, @) (T * £)(B) (T * g) (¥ )Q(BI(Y)

j W (6,1 2)f ()9 (2) Q) Az) (14)

MXM

" U (x)

In [109] a microlocal description of the integral kernel S of the Szegé projection S

was given. The results in [109] were obtained for a strictly pseudoconvex domain with a smooth
boundary in c™**1. However, according to [109], these results are still valid for the domain D in L*
(see also [106], [101]).

It was proved in [109] that the Szego kernel S is a generalized function on X x X

singular on the diagonal of X x X and smooth outside the diagonal. The Szegé kernel S can be
expressed by the Bergman kernels B,, as follows, S = }.,,,>0 B, Where the sum should be understood
as a sum of generalized functions.

For (o, ) € X x Xand 0 € Rsetry(a, B) = (e®a, B). Since each H,, is a weight

space of the S*-action in the Hardy space , one can recover B,,from the Szegé kernel,

1 271' _ %
= = 7" oM S (15).

This equality should be understood in the weak sense.

Let E,, E,be closed disjoint subsets of M. Set F; = t71(E;) N X,i = 1,2. Thus

F,, F, are closed disjoint subsets of X or, equivalently, F; X F, is a closed subset of

X x X which does not intersect the diagonal. For S and B,,, considered as smooth

functions outside the diagonal of XxX equality (15) holds in the ordinary sense, from whence it
follows immediately that

1
ror 1Bl = 0 (=) (16)

forany N € A.
Now let E be a closed subset of M and x € M \ E. Then (16) implies that
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1

S () = 0 (=) (17)

forany N € A.

In [101] Zelditch proved that the function u,,, on M expands in the asymptotic series

Up~m" Y 50(1/m™)b, as m — +oo, Where by, = 1(n = (1/2) dimxM . More precisely, he proved
that for any k,N € &

[t — XNg m™ by ke = 0(m™N) (18)
Therefore
1 1
=0 () (19)

Using (13),(17) and (19) it is easy to prove the following proposition.

Proposition (2.2.5) [83]: Let f € C* (M) be a function vanishing in a neighborhood of a

point x € M. Then |(I™ f)(x)| = 0(1/mM)for any N € &, i.e., (1™ f)(x) is rapidly decreasing as
m — oo,

Thus for arbitrary f € C®(M) and x €M the asymptotics of (/™ f)(x)asm — +o

depends only on the germ of the function f at the point x.

Let E be a closed subset of M. Fix a point x € M \ E. The function w,,, (x, %, 3)

with ¢ € E can be estimated using (11) and (12) as follows.

10 (X, 1 2) 12 < Uy (X, )1y ()11, () (U (2)) (20).

Using (17), (18) and (20) we obtain that forany N € &/

yebaem [ Wm (6, 9,2)| =0 (%) 21)
Similarly,
yebaer W (X, 4,2) =0 (%) (22)
forany N € A.

Using (14), (19), (21) and (22) one can readily prove the following proposition.

Proposition (2.2.6) [83]: For x €M and arbitrary functions f,g € C* (M) such that f or g
vanishes in a neighborhood of x Q(m)(f, g)(x) is rapidly decreasing as m — +co.

This statement can be reformulated as follows. For arbitrary f,g € C*(M) and

x €M the asymptotics of Q™ (£, g)(x) as m — +oo depends only on the germs of the functions £, g
at the point x.

We are going to show how formal integrals can be obtained from the method of

stationary phase.

Let @ be a smooth function on an open subset U < M such that (i) Re @ <0;

(i1) there is only one critical point x. € U of the function @, which is moreover a

nondegenerate critical point; (iii) @(x.) = 0.

Consider a classical symbol p(x,m) € S°(U x R) (see [101] for definition and notation) which has
an asymptotic expansion p~ Y.,.-o(1/m")p,(x) such that p,(x.) # 0, and a smooth nonvanishing
volume form dx on U. Set u(m) = p(m, x)dx.

We can apply the method of stationary phase with a complex phase function (see
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[101] and [108]) to the integral

Sm(f) = j e fuu(m) 23)

U

Where f € C;°(M). Notice that the phase function in (23) is (1/i)® so that the condition ((1/i)) =
Ois satisfied.

Taking into account that dimyxM = 2nand @(x.) = 0 we obtain that S,,, (f) expands to an asymptotic
serlesSm(f) >& o(1/m™K,.(f) as m — +oo. Here K,., 7 > 0 are distributions supported at x.and
Ky = cp 0, , Where ¢, is a nonzero constant. ThusF(S,,(f)) = v™K(f), where F is the formalizer”

introduced and Kis the functional defined by the formulaK = ¥.,., v"K,. Consider the normalized
functional K(f) = K (f)/K(1), so that K(1) = 1. ThenF(S,,(f)) = c(w)K(f), where c(v) =
v"c, + ---is a formal constant.

Proposition (2.2.7) [83]: For f € C,°(U) given by (23) expands in an asymptotic

series in 1/masm — +.F(S,,(f)) = c(W)K(f), where K is the formal integral at the point xc
associated to the pair ((1/v)®, (1)) and c(v) is a nonzero formal constant.

Proof: Conditions (a-c) of the definition of formal integral are satisfied. It remains to check condition
(d). Let & be a vector field on U. Denote by L; the corresponding Lie derivative. We have 0 =

fy Le (emfu(m)) = J, €™ Ef + (mE® + div,€) Hu(m)

Applying F we obtain that 0=F([,e™(f + méD + div,&)Hu(m)) = c(WIK(Ef +
(E(/v)®) + divgy€)f), which concludes the proof.

We get an asymptotic expansion of the Bergman kernel B,, in a

neighborhood of the diagonal of X x X as m — +co. An asymptotic expansion of

B,,, on the diagonal of X x X was obtained in [101]. As in [111], we use the integral representation of
the Szego kernel S given by the following theorem. We denote n = dim¢M.

Theorem (2.2.8) [83]: Let S(a, ) be the Szego kernel of the boundary X of the bounded strictly
pseudoconvex domain D in the complex manifold L*. There exists a classical symbol a € S™*(X X X X
R*)which has an asymptotic expansion

e}

a(a, B, t)~ z t" *a,(a, B)
k=0
so that

S(a,p) = fooo et?@Pq(a, B, t)dt (24),

where the phase ¢ (a, ) € C*(L* x L") is determined by the following properties:

“p(a,@) = (1/)(k(a) - 1);

* d, and dg¢ vanish to infinite order along the diagonal;

‘o(a,p) = —¢(B a). B

The phase function ¢ is thus almost analytic at the diagonal of L* x L*. It is

determined up to equivalence at the diagonal.

Fix an arbitrary point x, € M. Let s be a local holomorphic frame of L* over a

contractible open neighborhood U < M of the point x, with local holomorphic coordinates {z*} .

Then a(x) = s(x)//k(s(x))is a smooth of X over U. Set &_, (x) = log k(s(x)), so that

a(x) = eCV/DP-1(X) g (x) (25)
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It follows from the fact that L is a quantum line bundle (i.e., that w_; is the curvature form of the
Hermitian holomorphic line bundle L) that @_, is a potential of the form w_, on U.

Letd_,(x,4) € C*(U x U) be an almost analytic extension of the potential ¢_, from the diagonal
of U x U. Denote D_; (x,4) = ®_,(x,4) + D_;(y,x) — ®_;(x) — D_, (%),

Since @_; (x,x) = ®_,(x), we have D_; (x, x) = 0. In local coordinates

D_;(x,4) = —Qx,(x — 1) — 0(lx — y|*) (26)
Where
Qx, (2) _Za kc’) _l (x0)z%z7"

IS a positive definite quadratic form (since w_, is a Kdahler form).

The following statement is an immediate consequence of (26).

Lemma (2.2.9) [83]: There exists a neighborhood U’ < U of the point x, such that for any two
different points x, z€ U’ one has ReD_, (X, z) <O.

Taking, if necessary, (1/2)(®_,(x,4) + ®_,(y, x))instead of &_,(x,4) choose &_; such that
d_,(y,x) = d_,(x,4). Replace U by a smaller neighborhood (retaining for it the notation U) such
that ReD_,(x, ) < Ofor any different x, ¢ from this neighborhood.

For a point « in the restriction L*/U of the line bundle L* to U represented in the

form a = vs(x) withv € €, x €U one has k(a) = |v|?k(s(x)).

One can choose the phase function ¢(a, B) in (24) of the form

o(a,B) = (1/)(vize®-10:%) — 1) (27)
Where v = vs(x), 8 = ws(y) € L*/U

Denote(x(x, ) = ®_,(x,4) — (1/2)P_,(x) — (1/2)P_, (). Notice that y(x,x)= 0.

The following theorem is a slight generalization of Theorem 1 from [101].

Theorem (2.2.10) [83]: There exists an asymptotic expansion of the Bergman kernel B,,, (a(x), a(¢))
on U x U as m — +oo, of the form

By (@), &)~ ™) Y (1/mN)B, (1, ) 28)

r=0

such that (i) for any compactE cU xUand N e ¥

0(mn) (29)

oep [Bm(a(), aly)) — m"e’"ﬂ"WZ(l/m“)b (o y)| =

(i)b, (x, 1) is an almost analytic extension of b, (x) from the diagonal of UxU, where b,,r > 0, are
given by (18); in particular, by (x, x).
Proof: Using integral representations (15) and (24) one gets for x, z €U

Bn(a(x),a(y)) =
if()zﬂ fooo e_imBeitfp(rea(x),a(?/’))a(rea(x), a(y), t)dodt (30).

Changing variables t — mt in (30) gives

2T 00
Bu(aG0,a() = 5= [ [ emolroto) 0y, (), mddar (31)
0 0
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In order to apply the method of stationary phase to the integral in (31) the following preparations
should be made.
Using (27) and (25) express the phase function of the integral in (31) as follows:

Z(t,0;x,9) = to(rga(x), aly)) — 0 = (t/D(eex™¥) —1) -0  (32)

In order to find the critical points of the phase Z (with respect to the variables (z,0);
the variables (x, ) are parameters) consider first the equation

0.Z(t,0;x,) = (1/i)(e®ex*¥) —1) =0 (33)

It follows from @_,(y,x) = ®_,(x,») that Rey(x,4) = (1/2)D_4(x,4). Since D_;(x,4) < 0
for x # 4 one has [eX*%)| = eRex(®%) < 1for x # ¢ whence it follows that (33) holds only if x =
2 and thus Z has critical points only if x = . Since x(x, x) = 0 one gets that 9,Z(t,8; x,x) =
(1/1) (e — 1) anddgZ (¢, 0; x, x) = te'® — 1. As in the proof of Theorem 1 from [101], one shows
that for each x € U the only critical point of the phase function Z(z, 9; x, X) is (t =1, 8 = 0). It does
not depend on Xx and, moreover, is nondegenerate. One has ImZ(t,0;x,4) =
Im ((l/i)(eiee)f(x'”f”f’) -1) - 6) = t(1 — Re(e@ex™*%))) > 0 since |eX™#)| < 1.

Finally, a simple calculation shows that the germs of the functions Z(z, 0; X, #) and

(L/i)x(x, z) atthe point (t=1, 8 =0, X = x4, % = X,) are equal modulo the ideal

generated by 9,7 and dgZ.

Applying now the method of stationary phase to the integral in (31) one obtains the expansion (28)
satisfying (29).

It follows from (18) and (10) that b, (x, x) = b,and by(x, x) = by(x) = 1. It remains to show that all

b,,r = 0, are almost analytic along the diagonal of U x U.
One has

Bm(a(x), a(y)) = e(—m/2)(<1>_1(x)+¢_1(y))3m(s(x), (s(y))
The function B,,,(s(x), s(¢)) is holomorphic on UxU. Let & and # be arbitrary holomorphic
and ant holomorphic vector fields on U, respectively. Then &, B,, (s(x), s(%))
and 1,.By, (s(x), s(¢)) = 0 (the subscripts X, y show in which variable the vector field acts). Thus

m
(nx + 7nx<p_1(x)> Bn(a(x), a(y)) = e8P0y, o (/2210 (a(x), (y)) = 0

Analogously (&, + (m/2)&,®_1(x))B,(a(x), a(y)) = 0.Let Ay be a product of N derivations on
U xU. Then, using integral representation (32), expand 0=Ay(m, +

(m/2)n,®_1(x)) By (a(x), a(y))
to the asymptotic series

A, + 21, @, () (m"e™ ) S (1 /m7)b(x,4)) = emKED Y (1/m7 e, (x, ) (34)

r=0 279

for some ¢, € C*(U x U) and r, € Z, and with the norm estimate of the partial sums in the r. h.s.
term in (34) analogous to (29). Since y(x, X) = 0 one gets that allc,.(x, x) = 0. From this fact one can
prove by induction over N that n,.b, vanishes to infinite order at the diagonal of U x U. Similarly,
@Ervanishes to infinite order at the diagonal. Thus b, is almost analytic along the diagonal.

Choose a symbol b(x,4¢, m) € S°((U x U) x R) such that it has the asymptotic

Expansion b~Y%,(1/m")b,. Then B, (a(x),a(y)) is asymptotically equivalent to
mte™ W p(x,y,m)on U x U. One y(x,4) + x(4,x) = D_;(x, ) + P_;(¢,x) — D_;(x) —
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?_,(y)=D_1(x,9) and xx9) +x(4,2) + x(3,%) = P_1(x,4) + P_1(y,2) +
P_1(z,%) - P_1(x) —P_1(y) — P_41(3)
(the last equality is the definition of T_,). Thus the functions
U (%, ¢) = B (a(x), a(y)) By (a(y), a(x))and

win (X, 4, 3) = By (a(x), a(y)) By (a(y), a(2)) By (a(z), a(x))
are asymptotically equivalent to
m2nemP-1&9)p(x, 45, m)b(y, x, m)andm?e™ -1 %2 p(x, 45, m)b(y, 2, )b (3, x, M)
respectively. It is easy to show that for the functions @*, (¢) = D_1,(x, %)
and Y*, (x,4,2) = T_1(x, 4, 3) the points z = x and (#,2) = (x, X) respectively are nondegenerate
critical ones.
Since by (x,x) = 0 one can take a smaller contractible neighborhood V € U of x, such thatb, (x, )
does not vanish on the closure of V xV . One can choose V such that for any x €V the only critical
points of the functions @*, () on V and 0%, (¢, 3) onV x V are z= x and (z,) = (X, X) respectively.
The identity T_1(x,4,2) = (1/2)(D_1(x,4) + D_, (¢, 2) + D_,(z, x))implies that
ReT_i(x,4,2z) < 0forx, #,€V.
The symbol b(x, z,m) does not vanish on V x V for sufficiently big values of m. It
follows from (18) that 1/u,,(x)and (m"b(x,x, m)) tare asymptotically equivalent for x € V .
Denote

b(x, 4, m)b(y, x, m) (), i (m) = b(x, 4, m)b(y, z,m)
b(x,x,m) Y i) = b(x,x, m)

e (m) = Q(¢)(z) (35)

Taking into account (13) we get for f, g € C;°(V)and x €V the following asymptotic equivalences,

U™ x)~m™ [, e™®=1 fu, (m)and
QM (f, 9)(x)~m? | e™=1(f@g)iL,(m) (36)

VXV

(In36) (f®9) (%, 2) = f(4)g(2).)

Applying Proposition (2.2.7) to the first integral in (36) we obtain thatF((I™f)(x)) = c(v, x)LL(f)
, where the functional L, on AV ) is the formal integral at the point x associated to the pair
((1/v)0*,, F(u,))and c(v, x) is a formal function. It is easy to show that c(v, x) is smooth.
Similarly we obtain from (36) that F(Q™(f, 9)(x)) = d (v, x)L%(f®g) where the functional L2 on
AV x V) is the formal integral at the point (x, X) associated to the pair ((1/v)y?*,, F(i,))and d(v,
X) is a smooth formal function.

Since the unit constant 1 is a contravariant symbol of the unit operator 1, Tl(m) =1,ando(1) = 1, we
havel ™1 = 1,Q™(1,1) = 1, and thus F(1(™1) = 1 and F(Q™(1,1)) = 1. Taking the functions
f, g in (36) to be equal to 1 in a neighborhood of x and applying Proposition (2.2.5) and Proposition
(2.2.6) we get that c(v, x) = 1 and d(v, x) = 1. Since b,(x, %) does not vanish on V xV we can find a
formal function §(x, ) on V xV such thatF(b(x, ¢, m)) = e*®#%), In these notations

F(uy) = exp(3(x,4) + 3(%,x) —s(x)Q(y).and Fii, = exp(8(x,¢) + §(y,2) +35(z,%) —
s()Q(y)Q(z) (37)

It follows from Theorem (2.2.10) that § is an almost analytic extension of the function s

from the diagonal of V x V . According to (18),F(u,,) = (1/v™)e®

Denote @ = (1/v)P_, +5§® = (1/v)P_; +5,D(x,4) = P(x,4) + P(yx) — ®(x) — (y) =
(1/v)D_1 (e, ) + (30, 9) + 3(y, %) — s(x) —s(9), T(x, 4,2) = P(x,4) + P(y,2) +

P(z,x) — P(x) — P(y) — 2(2)

is then equivalent to the pair (0% e°Q), where @*(y¢) = D(x,¢). Similarly, the pair
((1/v)yYZ,, F(f,))is equivalent to the pair (%, eSQ®e*Q), where

l/}x(y’r z) = T(x, 4, 2).
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Thus we arrive at the following proposition.

Proposition (2.2.11) [83]: For f,g € CZ(V), x €V, (I™f)(x) and Q™ (£, g)(x) expand in
asymptotic series in 1/m as m — +oo. F((I™f)(x) = LL(f)and F(Q™(f, 9)(x) = L2(f®g)
where the functional L%, on AV ) is the formal integral at the point x associated to the pair (¢*, e5Q)
and the functional L%

on AV xV ) is the formal integral at the point (x, X) associated to the pair (¥*, e*Q®e*Q).

Now let * denote the star-product with separation of variables on (V, w_,) corresponding to the
formal deformation w = —idd® of the form (LA»)w_,, so that @ is a formal potential of w. Let | be
the corresponding formal Berezin transform, @ the formal form parametrizing the dual star-product
% and ¥ the solution of (5) so thatu,, = e®*¥dzdz is a formal trace density for the star-product *.
Choose a classical symbol p(x,m)€ S°(VxR) which has an asymptotic
expansionp~ Y.,..,(1/m")p, such that

F(p)eSQ = py, (38)

Clearly, (38) determines (p) uniquely.
For f € C;°(V) and x €V consider the following integral

(Puf)(x) =m™ [, e™=1fpp, (39),

where@*, (¢) = D_;(x,#) and u, is given by (35).

Proposition (2.2.12) [83]: For f € C;°(V)and x €V (B, f)(x) has an asymptotic expansion

in 1/mas m — +o. F((P,.f)(x) = c(v)(If)(x), where c(v) is a nonzero formal

constant.

Proof: It was already shown that the phase function (1/i)@*, of integral (39) satisfies the conditions
required in the method of stationary phase. Thus Proposition (2.2.7)

can be applied to (39). We get that F((B,.f)(x) = c(v, x)K,.(f), where K, is a

formal integral at the point x associated to the pair ((1/v)@*,, F(pu,) and c(v, x) is a nonvanishing
formal function on V . It follows from (37) and (38) that F(pu,) = F(p)F(u,) =
F(p)exp(3(x, ) + 3(x, 4) — s(x))Q(y) = exp(3(x, ) + 5(x,4) — s(x) = s(g)ptyr =
exp(D(x,4) — (1/v)D_;(x, %)) er = exp(@* — (1/v)0%,)

where @*(y¢) = D(x,4). The pair ((1/v)0*,,F(pu,)) is thus equivalent to the pair (@%, us,.).
Applying

Theorem (2.2.2) we get that

F((Prnf)(x) = c(w, x)(If)(x) (40)
It remains to show that c(v, x) is actually a formal constant. Let x, be an arbitrary

point of V . Choose a function € € C,° (V) such that e = 1 in a neighborhood WcV
of x;. Let £ be a vector field on V. Then, using (37), we obtain

L6051 () +F (B () = 25D, (6 9) + &(5(u ) + 50 9) — s(0) = £D(x,9) =
£.07 (41).

On the one hand, taking into account (41) we get for x €W that
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F((€8u0)(0) = | me [ em¥iepp, | = B[ m [ emots (mex¢x+€;“ ) epu,
|74 vV x

= c(v,x)I %Ex(b’_‘l(y) + F(iﬂ (%)) = c(v, 0)I(§,0%)

=0 (42)
The last equality in (42) follows from Lemma (2.2.3). On the other hand, for x €W we have from (40)
that F((B,€)(x) = c(v,x), from whenceF((B,€)(x) = éF((B,€)(x) = &c(v, x). Thus we get from
(42) that &e(v, x) = 0on W for an
arbitrary vector field &, from which the Proposition follows.
It follows from (36) and (39) that for f € C>(V)(I™ (fp))(x)is asymptotically equivalent to
(P,.f)(x). Passing to formal asymptotic series we get from Proposition (2.2.11)

and Proposition (2.2.12) that c() (If) (x) = F((P)(x)) = F((I™(fp)) () = LL(FF(p))
where LY is the formal integral at the point x associated to the pair (%, e$Q). Thus

cW)UN) ) = LL(fF(p)) (43)

The formal function (p) is invertible (see (38)). Setting f = 1/(p) in (43) we get c(v) (I (1/F(p)))(x) =
LL.(1) = 1for all x € V . Since the formal Berezin transform is invertible and I(1) = 1, we finally
obtain that

F(p) = c(v) (44)

Now (38) can be rewritten as follows,
c(w)e*Q =du,, = e®tVdzdz (45)

In local holomorphic coordinates the symplectic volume can be expressed as follows,Q = e?dzdz
The closed (1,1)-form w4, = —i0d6 does not depend on the choice of local holomorphic
coordinates and is defined globally on M. The form w,,, is the curvature form of the canonical
connection of the canonical holomorphic line bundle on M equipped with the Hermitian fibre metric
determined by the volume form Q. Its de Rham class € = [w,,,,] IS the first Chern class of the canonical
holomorphic line bundle on M and thus depends only on the complex structure on M. The class ¢ is
called the canonical class of the complex manifold M.

One can see from (45) that c(v) = ¢, + vey + ..., where ¢, # 0. Thus there exists

a formal constant d(v) such that e¢™ = ¢(v) and d(v) + s + 8 = @ + ¥. Therefore the formal
potential W of the form @ is expressed explicitly, ¥= d(v) — (1/v)®_; + 6, from whence it follows
that

w=—1/v)w_1+ wegn (46).
Formula (46) defines @ globally on M. Thus the corresponding star-product ¥ and therefore its dual
star-product o are also globally defined.
Theorem (2.2.2), Theorem (2.2.4), Proposition (2.2.5), Proposition (2.2.6) Proposition (2.2.11),
formulas (43), (44) and (45) imply the following theorem, which is the central technical result .
Theorem (2.2.13) [83]: For any f,g € C*(M) and x €M (I™ f)(x)and Q™ (f, g)(x)
expand to asymptotic series in 1/m as m — +oo. F((I™f)(x)) = (If)(x) and
IF(Q(’”) (f, g)(x)) = Q(f,g)(x), where | and Q are the formal Berezin transform and the formal
twisted product corresponding to the star-product with separation of variables x on (M, w_,) whose
dual star-product ¥ on (M,—w_,) is parametrized by the formal form @ = —(1/v)w_; + Wegn-
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Remark(2.2.14) [83]: As shown in [107] we have the following chain of inequalities
1P, = o™ < T < Ifle (47)

Here||.. ||| denotes the operator norm with respect to the norm of L™
and |.. |, the sup-norm on C*(M). Choose as x, € M a point with |[f(x.)| = |f|e. From Theorem
(2.2.13) and the fact that the formal Berezin transform has as leading term the identity it follows that

|(I™ F) () — f(xe)| < A/m with a suitable constant A. This implies ||f(xe)| - |(1(m)f)(xe)|| <
A/m and hence

fle =2 = If G = 2 < | (PN < [(97)], (48)
Putting (47) and (48) together we obtain

fleo == < 17| < If 1 (49).

This provides another proof of [106],. The identification of the Berezin-Toeplitz star-product will
denote the star-product with separation of variables on (M, w_,) whose dual % is the star-product with
separation of variables on (M,—w_,) parametrized by the formal form @ = —(1/v)w_; + Weqn-
Let] =1+ vl + v, + ---and Q = Q, + vQ, + ---denote the formal Berezin

transform and the formal twisted product corresponding to . Theorem (2.2.13) asserts

that for given f,g € C*(M),r € N,x € Mthere exist constants A,B such that for

sufficiently big values of m the following inequalities hold:

(1) =Y ehNE)| < s (50
r—1 1
GOICED Y- TITIIC| Er= NG

It was proved in [106],[108] that Berezin-Toeplitz quantization on a compact Kdhler

manifold M gives rise to a star-product on M. This star-product =57 is given by a sequence of bilinear
operators {C, }, k>0, on C* (M) satisfying the following conditions. For f,g € C*(M) andanyr €
N there exists a constant C such that

(m)m(m) _ n(m)

| < c/m” (52)

Where f*[r]g = Yr_L(1/m*)C,(f, g). The conditions (52) determine the star-product «27 uniquely.
We call«BT the Berezin-Toeplitz star-product.

Recall that f, g € C=(M)a(T™) = 1™ (£), o (T T™) = QU (£, 9)

Passing from operators to their covariant symbols in (52) and using the inequality

la(A)| < ||Al|we get that

Q™ (f, 9)(x) = 1TV (f 1y ()| < C/m" (53)

It follows from (50) that
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r—k—-1

1 1
W](m)(ck(f,g))(x)— Z W’i(ck(f:g))(x)

=0
Summing up inequalities (51) and (54) fork =0, 1, ..., r— 1, we obtain that

Ak
<— (54)

r—1

1
QM (£, D@ = 1™ 2y D) = ) —| @F. D@~ ) LG, @)
i=0 j+k=1
< b 5;
< (55)

for some constant D. It follows from (53) and (55) that

r—1 1 E
P CIOIOR Z LGF ) | < —
i=0 j+k=i

for some constant E, which infers that fori =0, 1, . ..
0(f.9) = ) L(Cl(f.9) (56))

j+k=i

Equalities (56) mean that Q(f, g) = I(f =BT g). Since | is invertible we immediately obtain that the
star-products =" and =57 coincide. Thus the Berezin-Toeplitz deformation quantization is completely
identified as the deformation quantization with separation of variables on (M, w_;) whose star-
product =57 is opposite to . %

Using (4) we can calculate the characteristic class cl(x27 ) of the Berezin-Toeplitzstar-product =57 It
follows from (4) and (46) that the characteristic class of the star-product % equals tocl(¥) =
(1/D)(—[(1/v)w_1] + €/2). It is easy to show that the characteristic class of the opposite star-
product ' is equal to —cl(¥). Since BT = ', we finally get that the characteristic class of the Berezin-
Toeplitz deformation quantization is given by the formula

cl(+BT) = (/D) (—-[(1/v)w_1] + £/2).

The characteristic class of the Berezin-Toeplitz deformation quantization was first

calculated by Eli Hawkins in [100] by K-theoretic methods.

As a concluding remark we would like to draw to the fact that

the classifying form o of the star-product = is the formal object corresponding to the asymptotic
expansion as m — +co of the pullback w ™ of the Fubini-Study form on the projective space p(H;,)
via Kodaira embedding of M into p(H,,) Here (H,,) denotes the Hilbert space dual to H,, =
0, (L™). 1t was proved by Zelditch [106] that w ™ admits a complete asymptotic expansion in 1/m
as m — +oo, As an easy consequence of the results obtained one can show that (w ™) = .
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Chapter 3

An Excursion Asymptotic Expansion
We discuss various instructive examples like the Segal-Bargmann-Fock space, and culminating by
highlights of proofs of the existence of these quantizations using both the Boutet de Monvel theory
and the approach via Fefferman’s expansion and Forelli-Rudin construction .
Section (3.1): Berezin-Toeplitz Quantization
Quantization has traditionally been understood as a recipe in physics for passing from a classical
system — which, loosely speaking, is something that concerns macroscopic objects and that we are
familiar with from everyday’s life — to the “corresponding” quantum system, which pertains to
microscopic objects where things are subject to more complicated rules. The latter should reduce to
the former as the size of the objects gets large, that is, as the “Planck constant”, which, heuristically,
corresponds to the magnitude where the quantum phenomena become relevant, tends to zero. (This is
the so-called “correspondence principle”, or “classical limit”.)
Over the time, it became apparent that such a concept is not totally appropriate, both mathematically
and physically. From the point of view of physics,
itismoreappropriatetounderstandquantizationjustasacorrespondencebetween classical and quantum
systems; that is, there may be quantum systems which have no classical counterpart, as well as
diff erent quantum systems corresponding to the same classical system. From the mathematical point
of view, one even encounters obstacles of a diff erent kind — namely, various “no-go” theorems show
that there can exist no mathematical recipe that would fulfill all the axioms required by the physical
interpretation As a result, nowadays we face the existence of many diff erent quantization theories,
ranging from geometric quantization, deformation quantization and various related operator-theoretic
guantizations to Feynman path integrals, asymptotic quantization, or stochastic quantization, to
mention just a few. No one of the existing approaches solves the quantization problem completely; on
the other hand, on the mathematics side all these have evolved into rich theories of their own right,
and with results of great depth and beauty.
We give a flavour of two of the approaches that belong to the list above, namely the Berezin and the
Berezin-Toeplitz quantizations. Compared to other similar surveys like [161] or [160], we have tried
to intersperse the exposition with simple examples that illustrate the main ideas, thus keeping it — we
hope — accessible even to students or newcomers to the area. organized as follows.we present in
some more detail what has been mentioned in the first two paragraphs above, namely, the original
aspirations of the quantization theory and the various ramifications that the subsequent developments
have led to. discusses what turns out to be the simplest example of Berezin-Toeplitz quantization,
namely the Toeplitz operators on the Fock space. The basic principles of the Berezin-Toeplitz and
Berezin quantizations in curved (i.e. non-Euclidean) spaces and the necessary tools for them are
discussed respectively, while the full account of these theories appears . contains miscellaneous
additional comments, bibliographic remarks, and the like.
The original concept of quantization, going back to Weyl, von Neumann, and Dirac, consists in
assigning operators to functions: f - Qg .
Here the functions f are supposed to live on some manifold, called the classical phase space; for
reasons going back to classical mechanics, the manifold is taken to be symplectic, meaning it is
equipped with a diff erential form of a certain kind. (We will be more specific about this later.) The
operators live on some fixed, separable infinite-dimensional Hilbert space H, and are assumed to be
selfadjoint if f is real-valued. (They need not be bounded in general.) One calls the functions
classical observables , while the corresponding operators @, are the associated
quantum observables. The physical interpretation is that upon performing some experiment to
measure a quantity (position, velocity, momentum, energy, ...) represented by f, the possible
outcomes will have the probability distribution ([[(Qf)), where [1(Qf) is the spectral measure of
the operator @, , while u € H is a unit vector characterizing the “state” of the given quantum

system. In particular, if Q@ has pure point spectrum consisting of eigenvalues x ;with eigenvectors
u;, |[||= 1. then the possible outcomes of measuring £ will be »; with probability |(u, u;)|’; if
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u = u; for some j , the measurement will be deterministic and will always return x; .
Noncommutativity of operators corresponds to the impossibility of measuring simultaneously the
corresponding observables.

The simplest example of a quantization rule as above is for M = R?", the real 2n-space, with
elements written as (p, g) € R™ x R™; one thinks of g4, -+, q,, as the coordinates of a particle in R",
and of p,, -+, p,, as the velocities (or, more precisely, momenta) of the particle; in other words M ,
is the phase space of a single particle moving in R® . We take H = L*(R™) for the Hilbert space,
viewed as L?-functions in the position variables q; and define the quantum observables , Q, for f
one of the coordinate functions on R?" | by

Qq;: f(@) = q;f (@),
Qp,: f(q) > =L@ 1)

2mi aqj
(the Schrodinger representation ). These operators satisfy the
canonical commutation relations (or just CCR for short)

[qu’Q‘Yk] = [ij’ka] =0, Vj, k,

(04 Qu | =0 forj=k @
[qu’ij] - %I’

where [4, B] := AB — BA denotes the commutator of two operators. The parameter h , on which this
map Q also depends, is the Planck constant ; this should be thought of as a small positive number,
and the classical limit h ~ 0 should somehow recover the classical system from the quantum one,
as already mentioned.

Note that under the physical interpretation just explained, (1) implies , in particular, that it is
possible to measure simultaneously the position variables g (in fact, the joint spectral distribution of
the Qq,, -, Qq,, is just the Lebesgue measure on R™ , so the probability of finding the particle in a
state given by u € L*(R™) to be present in some set ¢ R™ in an experiment is equal to the integral
of |u|? over Q), or the momentum variables p , or even p; and g, for j # k , but notq; and p;; the
last is a reflection of the celebrated Heisenberg uncertainty principle.As h tends to zero,even the
operators Qq].and Qp; become commutative, and the problems with simultaneous non-measurability
thus disappear.

It remains to say how to assign the operators @, to more general functions f than the coordinate

functions. There are some requirements which such an assignment should satisfy, coming from the
physical interpretation:

(A1) The map f ~ Qf should be linear. (A2)
(The von Neumann rule.) For any polynomial @: R — R, we should have
Qpor = Q(Qf)-
(In particular, Q; =1.) '

(A3) 07, Q4] = _%Q{f,g}’ where

=~ (9f dg Of dg

{f,g}=z<a 5
= p;0q; qjop;

is the Poisson bracket of f and g.

Here the axiom (A2) just means that if our experiment yields X as an outcome for measuring f with
some probability, then it should yield x? with the same probability when measuring f?2, or, more
generally, ¢ (x) with the same probability when measuring, ¢(f) . Similarly, the linearity axiom
(A1) is quite natural. Finally, the last axiom (A3) has to do with the time evolution of the system, as
described by the Hamiltonian formalism in classical mechanics. (The last axiom also extends in an
obvious way to any other manifold M on which we have an analogue of the Poisson bracket defined
— these are precisely the symplectic manifolds that we have already hinted at.) Note that for f, g the
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coordinate functions on = R?" | the last axiom reduces precisely to the canonical commutation
relations (2).

We are thus lead to the problem of extending the rules (1) in such a way that the axioms (A1)—
(A3) above are satisfied. So, what are the solutions to this extension problem? (And, more generally,
what would be the solutions for some more general symplectic manifold M?)

Unfortunately, here bad news come. Namely, the above axioms are inconsistent (even in the simplest
case of M = R?" ),

To see that, denote for brevity P = Q,,,Q = Qq,,» = P1,q9 = q1 ; then

_(p+?-p*—4q°
1= 2

implies, using (A1) and (A2), that
_(P+Q)*—-P?—Q* PQ+QP

qu

2 2
On the other hand, by (A2) Q,2 = Q* and Q,2 = P?, so we can apply the same argument to p?, g*
in the place of p,q :

, . _ @ +4") —p*—¢*
p’q* = 5

Implies , using (A1) and (A2) ,that

PZQZ + QZPZ
Qp2qz = >
Finally, as p*q® = (pq)?* , (A2) requires that we should have Q2,2 = @7, . However, an easy
computation,using the canonical commutation relation for P and Q,shows that
P2Q? + Q?P?  (PQ + QP\*
(=)

(the two sides diff er by a nonzero multiple of the identity). Thus we have arrived at a contradiction.

Note that our argument above used just (A1) and (A2), so even these two axioms alone are
inconsistent. It was shown by Groenewold in 1946 (with an improvement by van Hove in 1951) that,
likewise, (A1) and (A3) alone are inconsistent. Finally, noticed (much later) that also (A2) and (A3)
by themselves lead to contradiction. In other words, not only the three axioms (A1)—( A3) all together
— although quite innocuous and very natural from the point of view of physics — but even any two
of them are already inconsistent! .The contradiction deduced above used polynomial classical
observables f, i.e. very nice functions; if we allow some “wilder” functions f as observables, then it
can, in fact, be shown that already the von Neumann rule (A2) alone and the canonical commutation
relations (2) lead to a contradiction. Namely, recall that there exists a continuous function f (Peano
curve) which maps R continuously and surjectively onto R?™ . Let g be a right inverse for f, so that
g:R*™ > R and f o g =id ; such g exists owing to the surjectivity of f, and can be chosen to be
measurable and locally bounded. Denote, for brevity, T = Q, and consider the functions @ = p, °
f,¥ = q4 © f. Then by the axiom (A2),

@(T) = QP1°f°.9 = Qpl,! I/)(T) = quofog = qu,

And

ih
0= (@Y — YP)(T) = ¢(MY(T) —P(TMP(T) = [Qp,, Q. ] = — ;_n I

a contradiction.

What should we do to resolve this disappointing situation? First of all, we will work solely
with continuous or, still better, smooth (infinitely diff erentiable) functions ; these are anyway the
only ones that we really meet in the physical realm, and it rules out the pathologies we saw in the
preceding paragraph. Next, we discard the von Neumann rule, except for ¢ = 1, i.e.

Q=1
The only discrepancy left there is thus the one between the linearity axiom (A1) and the Poisson
brackets axiom (A3). There are two established approaches how to deal with that.
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The first approach is to actually insist on both axioms, but restrict even further the set of
quantizable observables, i.e. the domain of the map f — Q@ (we have already restricted it to smooth
functions a few lines above). For our quantization on M = R?" , if we allow only functions f at most

linear in the momentum variables Dj, then the recipe
ih of oy of
e Nl B WPl 1)
! 21 dp; dq; f — " 0p;

where ¥ = (q) € L?>(R™), does the job we need: it extends the Schrodinger representation (1) and
satisfies (A1) and (A3). (Note that the last makes sense, since the Poisson bracket of two functions at
most linear in p is again at most linear in p .) In the case of a general symplectic manifold M in the
place ofR?" , one can similarly make things work by restricting, in an appropriate sense, to functions
at most linear in “half of the variables”. In technical terms, choosing this “half of the variables”
requires the concept of the so-called polarizations of the manifold; by definition, a polarization is
a smooth choice of subspaces of dimension n in each fiber T,M, x € M , of the tangent bundle TM
of M . The whole approach leads to particularly appealing results of manifolds M with nice group
actions (symmetries), when methods of representation theory apply, and is known as the
geometric quantization (Kostant [164], Souriau [161]).

The second approach ,on the other hand,starts by relaxing the Poisson brackets axiom (A3) to
hold only asymptotically as h—-0:

[Q7,Qy] = == Qupy + O(h2) 3)

This is the basic idea behind the deformation quantization . Before spelling out the precise
definition of the latter in detail, let us look at a simple example on R?™, which
An “arbitrary” function f (p, q¢) on R?"™ can be expanded into exponentials via the Fourier transform:

f@,@) = fon Jgn f (& me*™EPH1Ddgdn (4).

From the Schrodinger representation (1) and the Taylor series for the exponential, is it easy to
interpret the exponentials e2™%% and e?™Ca:
e?™%u(q) = u(q +hg),  e¥™MCru(q) = e*™Mu(q).

With a bit of effort, one can also take a good guess what e?™¢-@*1-2) should be. Indeed, given
an u € L?(R™) , the function

g(q,t) = [ ezmt(é’.me.Qq)u] (@), tER,

should be a solution to ag/at = 2mi(é. Q, + 1. Qq)g subject to the initial condition g(q, 0) = u(q) ;
in other words,

n

ag a9 .

— = E h&; — = 2min.qg, 9(q,0) = u(q).
]:

Fixing g for a moment and setting G(t) = g(q — thé, t), this becomes
G'(¢) = 2min. (q — th)G (o), G(0) = u(q),

with the solution G (¢t) = e?™itna-mit*hnsy (g)  or
g(q, t) = eZnitn.(q+th€)—nit2hn.€u(q + thf) — letitn.q+nit2hn.€u(q + thf)
Taking t = 1 we are thus lead to
eZni(E.Qp+n.Qq)u(q) — eZnin.q—nihn.€u(q + h{:)
Returning to (4), let us now postulate that
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o= [ [ fememcomeagay =,
R JRM
In other words, using the previous formula,
Wyu(a) = | | f(emernasmimsu(q + he)d dn
R JRM

=h" fRn fRnf (5%,17) e™ A Oy(&)dE dn

+ .
= h—nj j f (p’qz_y> e?mi@=p/hy(y)dy dp
Rn JRN

by Plancherel’s theorem. This is the celebrated Weyl calculus of pseudodiff erential operators
Folland’s book [167]. It can be shown that, appropriately interpreted, W, makes sense even for any
tempered distribution f on R?" , being then a continuous operator from the Schwartz space S (R™)
into the tempered distributions S’ (R™) on R™. If f is sufficiently nice — for instance, if f € S (R*")
— then W, is continuous even from S (R™) into itself. For such f and g, the product W;W, therefore
makes sense, and it turns out that

Wf% = ng + h WC1(f,g) + O(hz) (5)

ash N 0, where
n
i af dg daf dg
(.9 =y (220
471},:1 dq;dp; O0p;dq;

satisfies

i
C1(f;g) - C1(g;f) = _E{fyg}
Hence
ih 5
Wy, Wyl = —5— Wirgy +0(R)
and so that the Weyl calculus satisfies (3).

One can even do slightly better than that. Namely, the product formula (5) can even be
improved to higher order: there exist C,, C5, ---such that

wag - ng + h Wcl(f%g) + hZWCZ(f’ég) + 0(h3), \
wag = ng + h WC1(f,g) + h WCz(f,g) + h WC3(f,g) + O(h ),
and so on. Symbolically,
Willy = Wr.g (6)

where
f*g:=fg+ hC,(f,g) +h%C,(f,g) +h3C5(f,g) + -

The last expression should be viewed just as a formal power series in h (no convergence is asserted!),
and (6) should just be understood as above, i.e.
N-1
Wf% = z hJWCj(f,g) + O(hN),
j=0
forany N = 0,1,2, ....

Ultimately, one is even led to the idea that for the quantization it not really necessary to have
the operators Q, but it suffices to have a noncommutative product like . This is the essence of the
second approach to resolving the inconsistency of the axioms (A1)—( A3), called
the deformation quantization .
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Given our manifold M, consider the ring C*(M)[[h]] of all formal power series in h over C*(M) .
That is, the elements of C*(M)[[h]] are formal power series

f=) W )
j=0
with f; € C*(M) , and addition and multiplication defined in the usual way.
A star product is an associative C[[h]] -bilinear mapping * such that
frg=) WG9,  Vfgecomm, (®)
j=0

where the bilinear operators C; satisfy

Co(f.9) =fg, Ci(f,g) —Ci(g.f) = —i{f,g},

C(f,1)=C(,f)=0 Vj > 1.
(The C[[h]] -bilinearity means that f * g is linear in each argument and (hf) * g = f * (hg) =
h(f xg); consequently, for any f.g as in (7),
YW@ | D gt | = D WG (.90 @),
j=0 j=0 Jj,k;m=0

where the last sum should, be re-arranged by combining together the terms with the same
powerh/tk+tm of b )

We have seen at the end that the Weyl calculus, with the star product defined by (6), satisfies (8)
(in fact, that is exactly how the Weyl star-product was defined). From (6) and the fact that
multiplication of operators in associative, i.e. (W W,)W, = Wr(W,W,), itis also immediate that the
Weyl star-product (6) is associative. Thus the Weyl calculus from is an example of deformation
quantization on R?™ .

The drawback of the Weyl quantization is, however, that it does not readily extend to more
general phase spaces than R?". Indeed, its definition used heavily the Fourier transform, and the
Fourier transform is something which is specific only for the Euclidean spaces and a few of other
situations.

Although the definition of deformation quantization,together with its physics interpretation etc.,
goes back to 1977 (it was introduced by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer in
[134]), its existence on a general symplectic manifolds was established only years later. The first
proof was given by DeWilde and Lecomte in 1983 [167], followed by diff erent proofs by Fedosov
in 1985 [135] and Omori, Maeda and Yoshioka in 1991 [138]; finally, in 1997 Kontsevich
established its existence even on any Poisson (i.e. more general than symplectic) manifold [133].
These constructions also allow to describe all possible deformation quantizations of a given manifold,
and it turns out that they can be bijectively classified, up to a natural “equivalence”, by the elements
of the formal power series ring H2(, R)[[h]] over the second cohomology group H?(Q,R) . For
wealth of further information on deformation quantization, see Gutt [129].

One disadvantage of the deformation quantizationis that it works with formal power series: no
convergence is assumed, nor — it turns out — can be guaranteed in general, which makes the whole
thing somewhat awkward when it comes to performing some concrete calculations. It is therefore of
interest to have deformation quantizations that would be induced by some operators behind, as was
the case of the Weyl quantization and the formula (6), and it would be even nicer if these operators
were somehow naturally related to the geometry and analysis on the manifold in question — as was,
again, the case for the Weyl transform and its relationship to the Fourier transform.

We will discuss two instances of such deformation quantizations, which exist on domains in C™
(or, more generally, on nice Kihler manifolds). Before plunging into the formal definitions and
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technicalities, let us show how things work in the simplest example when the domain in question is
the entire complex space C".
The Fock ,or Segal_Bargmann , space on C is, by definition,

F(C) =F = 12,(Cn e’ dz),

the subspace of all entire functions in L2(C,m~'e~#I* dz) . Given a function fEF,
its Taylor series f(z) = j‘;oszf converges on all of C, and uniformly on any compact subset. In
particular, for any R € (0, +c0) we have

flzl<R|f(z>|2 = fll Z fifeke i

]kO

on _ . o drdf
_ otk (i-k)i6 ,—r2 TATAY
f f ijfkr e e =
z|f]| j - 0r dr
=Z|f,-|2 j tett,
j=0 0

where we have used the polar coordinates z = re'?, and the interchange of integration and summation
in the third equality is justified by the uniform convergence.

Letting R - 400 yields

e = Y [ vetar = Sl ©
J=0 0 j=0

Thus an entire function f belongs to F if and only if its Taylor coefficients satisfy Z]-|fj|2j! < oo,
A similar computation (using the Cauchy-Schwarz inequality, Fubini’s theorem and (9) to justify
some interchanges of integration and summation signs) gives a formula for the scalar product of two

functions f,g € F in terms of their Taylor coefficients
(f.9)= ) g (10)

In particular, the monomials z"'n=0,1,2,--, form an orthogonal basis of F, and
Z‘)’l
—, n=012,--, 11
N (11)

is an orthonormal basis.F
For any z € C we have, by the preceding computations,

)] = Zf,zf <Z|f,|lz|1—2|f]|\/_\/_

1/2 1/2
2, |Z|2] 2
<( D.I5l =) =,
j i

Thus, first, f = f(2) is a bounded linear functional on F ; and second, it is in fact uniformly
bounded for z in a bounded setin C .
The latter implies (since locally uniform limits of holomorphic functions are holomorphic)

that F is a closed subspace in L2(C, e~#I° dz) , hence a Hilbert space on its own right.
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The former implies that there exist K, € F such that

f2) ={f.K;) VfEeF.

In fact, it is not difficult to compute what K, is explicitly Indeed, forany f € Fandz € C

f) = Zf]z—ZfJ—ﬂ (F Ko,

z . _
K,(w) = Zj—|w1 = eV,

J
Thus K,(w) = e?". The function of two variables
Kw,z) =K,(w) = e?¥
is called the reproducing kernel of F , and will play an important role throughout.
For f € L*(C), the Toeplitz operator with symbol f is, by definition, the operator Tp: F — F
given by

by (10), where

Tru = P(fu)
where P:12(C,m'e~1?" dz) — F is the orthogonal projection. In other words,
Tr = PMf|T

where M¢:u = fu is the operator of “multiplication byf . There is still other way of expressing T
, using the reproducing kernel:
Tru(z) = (Tru, K,) = (P(fu), K;) = (fu, PK,)
=(fu, K,) (since K, € F,so PK, = K,)
dw
fwWuw)K (z, wye ™" —,
CTL
showing that T is an integral operator with integral kernel equal to f(w)K (z, w) (with respect to the
weight e~ 12" r=1 ),
Several properties of Toeplitz operators are immediate from their definition:
e The map f + Ty is linear.
| < [|M¢|| = lIflle; in particular, T; is bounded for f € L*.
» T, = I, the identity operator on F . .
Toeplitz operators behave nicely under taking adjoints : Ty = Ty .
It is frequently convenient to consider Ty even for unbounded f, when it often makes sense as

a densely defined operator. For instance, since a product of two holomorphic functions is again
holomorphic,

T,u = P(zu) = zu
if zu € L?; s0 T, is just “multiplication by z” on F (defined on the domain {u € F:z, € F}, which
is dense in F since it contains the basis elements (11)). Similarly, T,m forany m = 0,1,2,---,is just
the operator of “multiplication by  z™ ”, defined again on a dense domain in F (containing the
algebraic linear span of the basis elements (11), i.e. all polynomials).
More generally, for any f € L,

T,ru = P(zfu) = P(fP(Zu)) =T T,u
if z, € L? ;thus T,; again makes sense as a densely defined operator, whose domain contains that of
T,,and T,; = T¢T, on dom T,. Similarly,
forany m =0,1,2, -
Taking adjoints gives :

Tym; = TymTy. (13)

(Itis possible to give examples, however, that in general T, T, # T¢,.)
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We compute the adjoint T = T . By (10), the definition of the reproducing kernel, and (13),
(Tyz™ (W) = (T; 2™ K,,) = (2™, T,K,,) = (2™, 2K,,)

m . w/
=(z ,ZZZ’.—,>
].

j —

Coowd
=(z™, Z z/*—)
j J:
wmn-1 m!
NG

=mwm 1

Thus T;z™ = mz™"1, or

2.

T, = g
7 0z
Similarly T,m = d™.
From these findings, we get the commutation relation
[T,, T;lu = [z,dlu = zou — d(zu) = —(0zu) = —u,
or[T,,T;,] =—1 . Setting z=p+iq for the real and imaginary parts, this means
1
[Tp'Tq] = ZI'

which agrees with the CCR for the Schrodinger representation, except for the constant factor of h/2 .

It is easy to make even this constant factor come out right. Let us replace the Gaussian
weight Tt 2e~12* | which we have been using so far, by the scaled version: F,(C) = %,
=12, (C,%e‘“|2|2dz),
where a > 0 is a positive parameter. The same calculations as above reveal that an entire function
f(2) =%, f;z’ belongs to F, if and only if

2 J!
DI S <o,
j=0

that the inner product of f, g € F, is given in terms of their Taylor coefficients by
(f;g)f}:a = E ._|f}'g];
=

and that F, has the reproducing kernel
K,(z,w) = e™Z,
We have also the Toeplitz operators on F,,
Tru = By (fu),
where P,: L2 (C,%e‘“mzdz) - F, is the orthogonal projection. (Thus Tr now depends also on the

parameter a, although this is not reflected by the notation.) Finally, all the formulas from the end
remain valid, except that a factor of « appears in T, :

Ty =TT, T,mu = T]"u = z™u,
Tzr = T;T, Tom =T =T,;™,
and
.1
TZ —_ Ea.

All these reduce to our previous formulas for F when a = 1.
The commutation relations for T, T, z = p + iq € C = R?, now become

1
[T, T,] = T

81



Taking a =m/h thus exactly recovers the CCR for the Schroédinger representation
(1) we have started with.

Let We explore what are the commutation relations for Toeplitz operators T¢ , T, when f, g are
polynomials in z andz (or, equivalently, in and p ).
Recall T; = ia. By the Leibniz rule,

mz™ 1

1 1
Tyymu = T;T,mu = E@(Zmu) = u+zm Eau,

Of Tzpm = TymTy + = Tpyum-r . Thus
1 1
T,mT, =T [z‘zm — (zm)’] =T [(Z — 6) Zm],
where, for typographical reasons, we have started writing T[f] instead of T, when needed.

Multiplying both sides by T ,« from the left, and remembering that T« = T ;« Ty for any f, while 0
commutes with z, we obtain

1 (. 1 I R
Tok,mTy = TokTymTy = T kT [(z — 56) zm] =T [zk (z - 0) zm] =T [(z - EG) zkzm].

It follows by linearity that
1
17, =|(7-0)1]

for any polynomial f in z, Z.

Iterating this m times yields
1 m

which by the binomial theorem (note that Z and d commute!) equals

m m! (—1)/ i (—1)/ o
12=(:)1|(m_])' al “ ]a]f=Zj!aj (a]Z )a]f;

SO

jla

TeTym =T lz (__1)1.1 (3izm)aif].
7

Multiplying both sides by T« from the right, and remembering that T;T,«T,x, forany f, while ]
commutes with z, we obtain

(-1

] al

TeTymgk = TeTym Tye =T (af Z™)3If| T

By linearity again, we thus get

(— )
TiTy =T 9)o’f \ Z“ T ni@gein
7

for any polynomials f, g in z, Z. (Note that the sum has only finitely many nonzero terms.)
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The beginning of the last expansion reads
1 _
TiTy = Trg =~ Tp@g) + 0@
Interchanging f, g and subtracting, we thus arrive at

1
— _ _ -2
[Tf' Tg] - ET(ag)(af)—(af)(ag) +0(a™).
For « = m/h , this becomes

h
177, To] = —Teg@n-en@s + 0@,
Upon passing from z, z to the real and imaginary parts z = p + iq (and from the holomorphic and
antiholomorphic derivatives 9,0 to the real derivatives d/dp,d/dq) , this turns out to exactly
recover our Poisson bracket axiom (A3).

In conclusion, we see that the map
T
frTr onk, a=E,

produces a deformation quantization on C , with star-product given by the formula

-0

frg= z i (979)o'f
(at least for f, g polynomialsin z, 7).
Everything we have done for the Fock space on C extends also to the analogous spaces

Fo (€M) = L3, (C™, e~ (@ /m)"dz)
onany C", n > 1. Namely, the inner product in F, is still given by the formula (10), except that now
j€N",N={0,1,2,--}, isamultiindex. The reproducing kernel is
K,(z,w) = e*&w),

and the Toeplitz operators satisfy

0;.

TZ]. =z ;

'jr

QRImF

Zj a aZ] h
The product of Toeplitz operators is given by the formula

—1)\l
NT,= ) (] (@13 g)],

Jj multiindex
at least for f,g polynomials in z;,z,j = 1,---,n. Finally, setting a = m/h, we again arrive at a

deformation guantization on C™, with star-product

frg= Z W™ Co(f, 9)

1 m" —
= WL CRICH)

JENT |jl=m

Cn(f.9) =

(at least for f, g polynomials in z, 7).

We remark that there is actually an isomorphism, the Bargmann transform , mapping L*(R")
unitarily onto F, (C™). Transferring the Weyl operators W, , to F, via this isomorphism, W} actually
becomes precisely T, for f a first degree polynomial in z;, Z, ; but this is no longer true for more
general f . Thus f = W, and f ~ Ty are actually two dif ferent deformation quantizations of C".
We will meet yet another quantization later on.

Even though our “Toeplitz quantization” on C™ using Toeplitz operators on Fock spaces is
simple and nice, as yet it has several shortcomings. First of all, the operators T,, T, above are
unbounded operators; although they have a common dense domain (the polynomials in F, ), extra
care would be needed to deal with all the computations above on a rigorous level. Furthermore, it is
not completely apparent to what extent the formula
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—1)ll ' o
= Y Sartl@n@o)
j multiindex

remains valid when f, g are not polynomials. Finally, we would need to see what to do to quantize
other domains than C™.
There are tools to handle all this, which we now introduce.

Let Q a bounded domain in C", and let us keep the notation dz for the Lebesgue measure on Q. The
subspace L% ;(Q) of all holomorphic functions in L2(Q,dz) is known as the Bergman space. By
the mean-value property of holomorphic functions, if z € Q and r > 0 is such that the polydisc D, ,.

:={w € C™: |Wj - zj| <r Vj=1,--,n}lieswhollyin Q, then
F@ =@ [ fonaw,
Dzr

SO
1/2 1/2

r@ls | [aw)] | [iroraw ) <@
Dz Dz
Consequently, the evaluation functional f ~ f(z) is bounded on L% ,(€) , and uniformly for z in
compact subsets of Q. From the latter it follows, first of all, that L, is a closed subspace of L?, hence
a Hilbert space in its own right; while the former again implies that there exists a unique K, € L2,(Q)
such that

f(Z) = (fr KZ) Vf € L%IOI(Q)'

The function
K(x,y) = K,(x) = (K, Ky) = K(y,x) (14)
is thus the reproducing kernel of L, (), called the Bergman kernel; note that from (14) it is
immediate that it is holomorphic in x and anti-holomorphic in y. Furthermore, since  was assumed
to be bounded, hence of finite Lebesgue measure, the function constant on belongs to L% ,(Q) , and,
consequently,
1=1(x) = (1K) < Il (15)

implying that ||K, || > 0 for all x € Q.
While quantization is a recipe for associating operators to functions, here we come across an
assignment going in the other direction, i.e. mapping operators on some Hilbert space into functions
on some domain. These functions are commonly called the symbol of the corresponding operator,
and the whole process is often called a symbol calculus,or dequantization. (Similarly,
quantization is sometimes called an operator calculus in various contexts.) Here is an instance of
such process, which is characteristic for the Bergman spaces.

For an operator T on the Bergman space L%,,(Q) , the Berezin symbol Tof T is the function
on Q given by
TR KD _ g 1y, Ky im X
(K Ky) 1K |l
Note that this definition makes sense, since the denominator is positive by (15).

There are a number of properties of the symbol map T = T immediate from its definition:
 The mapping T = T is linear.

« I =1, i.e. the symbol of the identity operator is the function constant one.
T =T,

« If T is bounded, then T is a bounded function; in fact, ||T|| < |IT]l.
Moreover, the functionse T is smooth (in fact, even real-analytic), because it is the restriction to the
diagonal x = y of the function of two variables

T(x) =
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(TKyJ Kx) _ <TKy1 Kx)

(Ky,Ky)  K(x,y)
holomorphic in x,y on the set where K(x,y) # 0. (Since we know that K(x,x) = [|K,||* > 0 by
(15), by continuity K (x, y) is nonzero in some neighbourhood of the diagonal.)
However, the most important property of the symbol map is that
Tw—T is one-to-one. (16)

T(x,y):=

Indeed, suppose T(x) = T(x,x) = 0 Vx. Setting x = u + iv,y = u — iv, it follows that G(u, v)
:=T(u + iv,u + iv) isaholomorphic function of u, v which vanishes for all u, v real. By uniqueness
principle for holomorphic functions G, must vanish identically, so T(x,y) = 0 Vx,y , hence
(TK,,K,) = TK,(y) = 0 Vx,y. However,

Tv@o=cwﬁxn=<ﬁTm>=ff@nwuw¢w

Q

so T*f(x) = 0 forall f and x. Hence, T* = 0 and T = 0, proving the injectivity of the map T - T.

As before, the Toeplitz operator on Lf;(Q) with symbol
¢ € L”(Q) is defined as

Tof = P(f)
where P: L? > L%, is the orthogonal projection (called the Bergman projection).
All the properties familiar from the Fock space setting remain in force here:
cfTf is linear;

°T1 = I,
Ty =T
| < flle:

Furthermore, for ¢ bounded holomorphic, Ty is just the operator of “multiplication by ¢ on the
Bergman space; and for ¢ bounded holomorphic and f arbitrary,
Trp = TyTy,  Top =TgTy.
The diff erence against the Fock space is that now, since Q is bounded, there are plenty of bounded
holomorphic functions on Q (not just the constants), e.g. all holomorphic polynomials.
We finally remark — although this is not needed, unlike the corresponding property of the
Berezin symbol map, anywhere in the sequel — that the map f +~ T is also one-to-one. Indeed,

assume that Ty = 0 ; then (Tyu, v) = (fu, v) = 0 for any holomorphic polynomials u, v, in particular,
(fzj,zm) =0,or

ff(z)zjz_mdz =0

Q
for any multiindices j, m. By the Stone-Weierstrass theorem, this implies that

fﬂnm@w=o

for any function g continuous on the closure Q of Q. By the Riesz representation theorem,this means
that f(z)dz is the zero measure,and,consequently,that f = 0 almost everywhere, as claimed.
The Toeplitz correspondence assigns the operator Tr to a function f, while the Berezin symbol map

assigns the function T to an operator T. The Berezin trans_ form is the composition of these two
maps; that is, it assigns to a function f on Q again a function on Q, denoted Bf or £, and given by

Bf :=f:=T.
Chasing through the definitions shows that B is in fact an integral operator:
. (f Ky, Ky) K (x, y)l2
Fy = Loxx! f()
(K., K,) K(x, x)
One also checks easily that B has the following propertles which can either be derived from those
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of the Toeplitz operators and the Berezin symbols, or verified directly.

* f ~ B is linear;

By =1;

*Bf = Bf;

*||Bflle < llfll-- Also, Bf is always a real-analytic function on Q , and the operator B is one-to-
one.

In an obvious manner, all the objects described generalize also to the case of weighted L?
spaces.Namely,let w > 0 be a positive continuous weight on Q , integrable there with respect to the
Lebesgue measure. The associated weighted Bergman space on £ with respect to w is the
subspace L, (€, w)of all holomorphic functions in L?(Q,w). Using the mean-value property of
harmonic functions, one again shows that the point evaluations f -~ f(z) are continuous
on L%,;(Q,w) , uniformly on compact subsets (the continuity and positivity of w is needed here);
implying as before that L%, (€, w) is a closed subspace of L2(Q, w) — hence a Hilbert space on its
own — and that is possesses a reproducing kernel, the weighted Bergman kernel K,,(x,y) =
K.,y (x). The Berezin symbol T of an operator T on L%, (€, w) is the function on Q

~ <TKW X7 Kw x> wa
T(x) =—"——=(Tky . k) k,yi=—-.
<Kw,x» Kw,x) W v ”KW.X ”

(Naturally, T depends also on the weight w, although this is not reflected in the notation.) Here one

needs that K, (x, x) = ||1K’W,x||2 > 0 for all x € Q, which again follows as in (15) (and the hypothesis
of the integrability of w ensures that the function constant one belongs to L3,,(Q, w)) Importantly,
the Berezin symbol map T = T is still one-to-one (with the same proof as in the unweighted case).
The Toeplitz operator on L5,,(Qw) with symbol ¢ €L®(Q)is defined as
Tof = Pu(of)
where P,:L*(Q,w) - L2,,(Q,w) is the orthogonal projection
(the weighted Bergman projection ). Finally, the weighted Berezin transform of a function
f on Q is another function on Q, given by
Bwf :=f = Tf

(again, the simpler notation f does not reflect that fact that f depends also on the weight w); and B,,

is in fact an integral operator
KWX' w,xX K 2
B f(x) = Ko K x) ) ff( )I w (X, y))l

We (at last!) describe how all these concepts can be utlllzed for the construction of the special
deformation guantizations on  mentioned.
For the Fock spaces F,, @ = /h, we have seen that the Toeplitz calculus assigning to a function f
on C" the Toeplitz operator T, on F, yields a deformation quantization of C* . The main idea
ofBerezin_Toeplitz quantization is to use the Toeplitz operators in the same way also on a general
domain Q. Of course, what is unclear is the right substitute for the Gaussian measures e~mlzl*/hop Cn,
The main problem in the Berezin-Toeplitz quantization is thus to find a family of
weights p,, , h > 0, on the domain Q such that the corresponding Toeplitz operators on L%, (€, pr)
satisfy

w(y)dy.

(Koo Koz

1T, = ) TG, 9)] (17)
in some sense, where Cjare some bidifferential operators such that C,(f,g) = fg and

G 9) = 6. ) = 5= {£.9)

for some given Poisson bracket {.,.} on Q.
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Recall that for Q= C and p,(z) = e ™**/"h~1dz, this was fulfilled with C;(f,g) =
%(ai £)(7 g). (And similarly for ™))
The operators C; = C/"then define a star-product

fror gi=) WCT(fg),  f.geCm(@),
j=0
called Berezin - Toeplitz star — product (and denoted = to distinguish it from the various other
star-products around).
This method is not based on Toeplitz operators, but rather on the Berezin symbols.
Consider, quite generally, any weight w on Q of the kind discussed. Since the Berezin symbol
map T ~ T is one-to-one, we can introduce a noncommutative product *,,0n (some) functions on Q
by
S, T :=ST.
The product f *,, g is thus defined only for f, g in the set
A, :={T:T is abounded linear operator on L2 ,(Q, w)}
(which also depends on w). The product f *,, g then also belongs to A,,, andx,, is associative (since
the multiplication of operators is).
The idea is to glue these non-commutative products *,,, as w is let to vary with the Planck
constant h, into a star product.
More precisely,the Berezin quantization amounts to finding a family of weights p;, ,h > 0,
such that, first of all, the intersection
A= ﬂ Ap,

h>0
is sufficiently large; and, second, that for f, g € A,

f g =) WC(f.9)
j=0
asymptotically as h N 0, where C;are some bidifferential operators such that C,(f, g) = fg and
[
G(f,9) -Gl f) =519}

for a given Poisson bracket {.,.} on Q.

Here “sufficiently large” means, basically, that A should be so large that the bilinear operators
C;(f, g) are uniquely determined by their values on f, g € A. Since (; are diff erential operators in
each argument, this will be the case, for instance, whenever for any point x any finite set / of
multiindices, and any set of complex numbers ¢;,j € J, we can find an element f € A such that
07 f(x) = ¢; Vj € J.In particular, it is enough if A contains all polynomials (in z and Z ) on Q.

The resulting bidiff erential operators C; = CjBthen, of course, define the desired star-product

frog=) WE(f.),  fgecm(@,
j=0

called the Berezin star — product (and denoted * to distinguish it from the BerezinToeplitz star-
product).

So far, we have not exhibited any example of the Berezin quantization, even on C™ . We will do
that by showing that it is in fact related to another problem, which has a very familiar answer on C™.
In fact, the problem described can be reduced to one concerning the asymptotic behaviour of the
weighted Berezin transforms B,, with the appropriate weights w. More precisely, the following holds.

Suppose we can find a family of weights p;, , h > 0 on Q, such that as h — 0, the corresponding
weighted Berezin transforms B,, = B, have an asymptotic expansion

By = Qo+hQ1+h2Q2 + - (18)

87



with some diff erential operators Q;, where @, = I. Let ¢,z be the coefficients ofQ;, i.e.
Qf = Z Gapd“ 0P f;

a, multiindices

and
set
frse 9= ) WG9,
j=0
where
G(f.9) = CPCF.0) = ) Giap(3°F)@%9). (19)
a:ﬁ
If it happens that

l
Cl(frg) - Cl(g!f) = %{frg};
then 5, is a star product and
f*seg=f*9  Vf.g (20)
I.e. xg; coincides with the Berezin star-product.

We devoted to the proof of this assertion. Once this has been done,the construction of the Berezin
guantization reduces to constructing a family of weights for which the associated Berezin transforms
have the nice asymptotics (18); this will be done. Furthermore, the assertion also yields immediately
an easy example of a Berezin quantization on C"; this, as well as some other examples, will be
presented below.

So let us prove (20). Suppose we have a family of weights p;such that (18) holds. Denote, for
brevity, by Z; = Tppj=1,-,m, the Toeplitz operator on L2 ,(Q, p,) whose symbol is the coordinate
function z;; we have seen that Z;are actually just the multiplication operators

Zi: f(z) » zif (2).
Let Z; be the adjoint of Z; on L%, (Q, pp). (Thus Z; depends also on h, although it is not visible in
the notation.) For p(z,2) = Y, g papz®z* a polynomial in z and Z, define the operators

V1= ) pap?®Z"
ap

on each L2 ,(Q,pp),h >0 (where we are using the obvious multiindex conventions Z% =
Z; -+ Z"etc.). Note that owing to the hypothesis that the domain Q is bounded, Z;and, hence, V,are
bounded linear operators.

Recall now our notation K,, = K, (.,y) for the reproducing kernels, and the notation for the
“two-variable Berezin symbol” of an operator T on L2 ,(Q, pp),

Txy) e (TKy,Kx) _ TK,(x) _ T*Kx(y),
Ky, Ky)  K(xy) K(xy)

which is defined in some neighbourhood of the diagonal in 0 X Q0 (where K(x,y) # 0) and whose

restriction to the diagonal x = y coincides with the Berezin symbol T(x) of T. Applying this in
particular to the operator V,, we get

VoKy(x) o pap(Z°ZFK,)(x)

~

WD =Y ST K@y
i Za,ﬁ paﬁxa(Z*ﬁKy)(x) . Za,ﬁ paﬁxa(Z*BKy: Kx)
B K (x,y) B K(x,y)
_ ap Papx®(K,, ZPK,) _ 2apPapXx yYPK(¥)
B K (x,y) B K (x,y)
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= Z paﬁx“yﬁ =p(x,y) for any h.

In particular V,(x) = ¥, (x,x) = p(x, %) for any h. Consequently, p € A, forall h, thatis, p € A ;
thus A contains all polynomials, settling the first requirement for the Berezin quantization.
Next, for any two operators T;, T,on L% ,(Q, pp),

__ _ (TzKy,Tl*Kx) 3 fTZKy(Z)mph(z)dz
(AT2)Ce ) = Ky K (K, K.,)
_ jﬁ(Z, WK, (z,y).Ty(x, 2)K;, (x, 2)

(Ky, Ky)

pr(z)dz.

In particular,

~  Kkenr
(MT2) () = f T, DT (2, x)%

= (Bu[Ti(x, DT, 0)]) ().

pr(x)dx

Thus if (18) holds, i.e.
B, =zthj ash - 0,

with some differential operators Q;f = Y, 3 Cjapd®0ff, and Cjare defined by C;(f,g)
:= Y5 Gap (0P f)(0%g), then we get for h - 0

(T75) (e, %) = Z W Q[T (e, )T (0] ()

Z W g0 T, (x,. )05 (., )] .
5 _ _ jap
Now since T (x) = T(x, x) and T (x, y) is holomorphic in x and anti-holomorphic iny , we have

0T, (x, )|, = 0PTi (%)

(the T on the left-hand side is the T'(x, y), and the T on the right-hand side is the T'(x)). Similarly,
0°T, (., 0)| = 0°T,(x).

Thus

T = ) W (3°T5)0°T;)
j.aB
= Z hJC](Tl, Tz) = Tl *Bt Tz,

]
by the definition of *z,. On the other hand, T, T, = T; *,, Ty , by the definition of *,, (withw = p;)
SO
T1 *Bt Tz = T1 *on Tz- ~
Applying this to T; =V}, T, = V, with some polynomials p, q in z, z,and recalling that V, = p, this
means that
P*se d =D *p, 4
for any polynomials p, g in z, z. Since any f € C*(Q) can be approximated, at any given point,to
any finite order by polynomials,and the C;(.,.) for both «5, and * are diff erential operators in each
argument, necessarily C7*(f, g)(x) = C?(f,g)(x) forall f, g € C*(Q) and x € Q; that is, *p, =+
, completing our proof.
On a slightly more heuristic level, it is possible to derive not only the Berezin, but also the Berezin-
Toeplitz quantization from the asymptotics (18) of the Berezin transform; that is, to show that if (18)
holds, then
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[T, Ty] = hTyr (21)
as the Planck constant A N 0. While this will not be directly needed anywhere in the sequel, we
believe it is worth mentioning here.
Assume first that f, g are holomorphic. Then for any ¢ € L%,
(Tf¢: K,) = (fd): K,) = f(x)d)(x) = f(X)((;b, K).
It follows that Tf K, = f(x)K,. Similarly T;K, = g(x)K,. Hence
(TrTyKy Ky  (TyKy, TF K

Tl == kY~ (KK
_{gOIK,, fFOK,) _
BT A SR A A

thatis, T T, = fg.
On the other hand, by definition the Berezin transform and (18),
ng = By(fg) = fg + hQ.(fg) + 0(h*)
Subtracting this from T, T, = fg gives
(Tng - ng)~ = —hQ,(fg) + O(hz)
= —hTy,(rg) + O(h®).
“Removing the tilde” (yes, this is the heuristic part) we get, for f, gholomorphic,
TeTy = Trg = —hTpg oy + 0(h?), (22)
Where Cf is the C,from the Berezin quantization. Note that, as we have seen, CE (g, f) involves only
holomorphic derivatives of f and anti-holomorphic derivatives of g (i.e. only d*f and 87 g). This also
means, in particular, that for any holomorphic functions u, v,
CP(ug, of) = uCl (g, ).
On the other hand, we have seen that for u, v, as above and arbitrary F and G,
TeTy = Tug, T5Tr = Typ-
Multiplying (22) by T; from the left and T,, from the right, we therefore obtain
ToTgu — Topgu = To [Tng - ng]Tu
= _hTT?TclB(g,f)Tu + 0(h?)
= _hTTJ(JlB(g,f)u + 0(h?)
= _hTClB(ug,Tﬂf) + 0(h?).
That is, (22) holds not only for f,gholomorphic, but for any f,gof the form wuv with
holomorphic u, v. By the same approximation argument as in the end, we conclude that actually
TeTy — Trg = —hTcp(, 5y + O(R?)
forany f, g € C*(Q). That is, we have obtained the first two terms
T T, = TC(?T(f,g) + hTCfT(f,g) + 0(h?)
of the Berezin-Toeplitz star-product (17), showing, incidentally, that CZ7 (f, g) = fg and)
cf'(f,9) = —CL (g, ) (23)
It is clear how to continue this argument to obtain also the higher-order terms C]-BT and, hence, the
entire Berezin-Toeplitz star-product.

The relationship (23) between the Berezin and the Berezin-Toeplitz operator C,can actually be put
into a rather neat form.Recall that we have our three mappings f +~ T (the Toeplitz operators), T
T (the Berezin symbol), and their composition f Tf = B, f (the Berezin transform). In terms of
these, the BerezinToeplitz star product was defined by

Tng = Tf*BTg’ (24)
while the Berezin star product was, essentially, defined by
T‘ *p S~ = 7—73‘

Applying the last formulato T = Tr,S = T, , and using (24), gives
Trxp Ty = T5Ty = Truprys
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or
Bf *g Bg = B(f *pr 9)-

In other words, the Berezin and the Berezin-Toeplitz star-products are intertwined (conjugate) by the
Berezin transform. From this, one easily gets also the higherorder analogues of the relation (23), i.e.
involving C7 and CP" (and the operators Q;) for j > 1.
We have already worked out the Berezin-Toeplitz quantization on C™ in some detail; let us see how
the other approaches discussed work out in this case.

Thus, let Q@ = C" and p,,(2) = e~42° (a/m)"dz , with @ = /h > 0; note that the “classical
limit” A N 0 now corresponds to a — +oo. Since we know the reproducing kernel to be given
by K,(x,y) = e®*¥) the formula for the Berezin transform becomes

B = [ 10 yIEDE ) )y

K (x, %)
C’n.

a\"
=(— f(y)e -y’ g
) cll yJe y

This is precisely the heat solution operator at the time t = 1/4a:
B.f = et/*f.
In particular, as @ —» +o, we getB,f — f, more precisely there is even an asymptotic
expansion
f(x) ViGN
2 (4a)2

o A
— oA 4a _ —J
B, =e Z a Ik

j=0
We conclude that the Berezin quantization works for the above choice of weights p,on C*, with

6(F,.9) = ¢ (f.9) = ). (3)0).
Ial =]
This can be compared with the Berezin-Toeplitz quantlzatlon formula for the same choice of weights:

)
G(f.9) = G (f.9) == ) (0°)(39).
lerl=j
Both quantize the Euclidean Poisson bracket on C* (spelled out in the axiom (A3).
The second example which can be worked out explicitly to some level is the unit disc Q = D

:={z € C:|z| < 1}in C, with weights p,(z) = “T“(l —|z|*)%, & > —1 ; the parameter a again
plays the role of the reciprocal of h , so that A \ 0 corresponds to ¢ — +oo. A standard calculation in

polar coordinates, similar to the one we did for the Fock space, shows that the reproducing kernels
are

B.f(x) = e®*af(x) = f(x) +

or more briefly

1

K (x,y) = W
This gives the formula for the Berezin transform:
(1 — |x|?)**?
uf ) = = [ £O0) st (1= Iy,

With some work, it can again be shown that as @ — +oo,
B.f =f+ Af +

where
Af = (1—|z[*)%A
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is the invariant Laplacian on D . (The Q;for j > 1 are already a bit complicated and involve Bernoulli
numbers; an explicit expression for general j is not known.)

The results thus again tell us that the Berezin quantization on D works for the above choice of weights,
with

C3(f.9) = fg, CE(f,9) = (1 —|z|>)ofag.
Similarly, the Berezin-Toeplitz quantization works, with )
Co'(f,9) = fg, Cf"(f,9) = —(1 - |z|*)dfdg.

Explicit expressions for C” and C/" for general j > 2 are again unknown.

Both methods quantize the Poisson bracket

{f.g} = (1 —|z1*)*(0fdg — dgaf)
associated to the invariant (= Poincaré, Lobachevsky) metric on D.

Our third and final example concerns the unit ball Q = B™ :={z € C™:|z| < 1} in C", with
weights pp,(z) = ¢, (1 — |z|?)%, where a« = 1/h - + and ¢, is a normalizing constant making pj,
to be of total mass 1. The reproducing kernel equals

1

Ko (x,y) = (1= (x, y))a+n+?
yielding the expression for the Berezin transform

~ (1 _ |x|2)a+n+1
B,f(x) =c, an(}’) (1 — (x, y))2a+ant2

(1 - lylI»H*dy.

Again,
Af
Bof =f4
as a — +oo, with Athe invariant Laplacian on B™. Both the Berezin and the Berezin-Toeplitz
gquantizations work for the above choice of weights, and their coefficients C; are given by formulas of

a similar nature as for the disc.
For a later occasion, it is instructive to summarize some observations from these examples here.
Looking at the weights and the corresponding reproducing kernels in the three cases, namely,

a n
pa(@) = (=) e, Ko(e,y) = exte)
for the Fock space on C";

a+1
Pa(2) = — — (1= Iz)", Ko (x,y) = (1 — x3)"
for the disc; and
pa(z) = C(l(l - |Z|2)a! Ka’(x; y) = (1 - <x! y))_a'—n—l

for the ball, we observe that K,(x,x) is just the reciprocal of the weight p;(x), up to the
normalization constants and possibly a shift in the exponent «a.
Furthermore, we have seen in all three cases that the Berezin transform B, is an approximate
identity as @ — +oo, more precisely
B, =I+&+Q—§+---,
a a
where Q, is, up to a constant factor, some kind of “invariant Laplacian” on the domain in question.
We will later that both these observation, in fact, remain in force in a much more general setting.
The main problem for carrying out both the Berezin and the Berezin-Toeplitz quantization is thus to
find the weights p,, h > 0, on Q so that (17) and (18) hold. There is a way to see what should be the
right choice, which we now describe.
It is time we gave a precise definition of the object we wish to quantize, the Poisson bracket on
our domain (or manifold) . Quite generally, a symplectic manifold is a real manifold equipped
with a 2-form

m
w = Z gjkdx; A dxy
k=1
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which is non-degenerate (i.e.the matrix {g;}7%-, is invertible) and closed (dw = 0). Here m is the
real dimension of the manifold, which must necessarily be even. The Poisson bracket is then defined

as
— If 0
{f,g}= E ng_f_g

0x; 0x
jk=1 J 2Tk

where {g/*}7}_; is the inverse matrix to {g;}7,. For the case of complex manifolds that we have
here, it is furthermore important that the symplectic form be compatible with the complex structure,
and also it is more convenient to use the complex coordinates z;,z,,j = 1,---,n, rather than the real
coordinates x,k = 1,---,m,m = 2n . On the level of the form w, this translates into the fact that w
is Kdhler, meaning that (in local coordinates)

n

w = Z gjxdzj N dz,

jlke=1
with some positive-definite matrix {g;z}7 =, satisfying
09k = 0j9ix»  019;% = OrgjI- (25)
The Poisson bracket is then given by
n
(f.9t= ) g™(f0ug - 3f39), (26)
j k=1

where {gf"}}szl is the inverse matrix to{g;z} . Finally, the 2-form w determines (both in the
symplectic and in the Kahler case )also a nonvanishing volume element w™on Q .

To find the right choice of the weights p;, we take guidance from group invariance.

Assume there isa group G acting on Q by biholomorphic transformations preserving the form w .
Naturally, we would then want our quantizations to be G-invariant, i.e. to satisfy

(fo@)x(ge®) =(f*g)e0, Vo € G.

On the level of the Berezin quantization, this means that the operators Q; in (18), and, hence, B itself,
should commute with the action of G . An examination of the formula defining the Berezin transform
with respect to some weight p shows that this happens if and only if

1K, x, y)|2p(x)dx K, @), 00))|°

K,(y,¥) - K,0(),0())
In particular, the ratio

p(@B(x))dP(x).

p(0())do(x)  |K, x| K,@0(),0())

p(Mdx  K,(»y) K, (2(x), oo))|°
has to be the squared modulus of a holomorphic function. Writing
p(z)dz = w(z).w"(z) (27)

with the (G-invariant) volume element w™ and some (positive) weight function w , the last condition
translates into
w(0(2)) = w(@)Ify(2)I?
for some holomorphic functions f; .In other words ,the form dd logw is  Ginvariant.
But the simplest examples of G -invariant 2-forms (and if G is sufficiently “ample”, the only
ones) are clearly the constant multiples of w. Thus we are led to

ddlogw = —cw
with some constant c. It follows that
_ 1
w = 00D, CI>:=—ElogW,
i.e.that ® = —% logw is areal-valued Kdhler potential for w . This gives for the volume element

w"(z) = det[a 5CI>(Z)] dz,

93



and (27) gives
p(z) = e @ det[d dd(2)] dz.
Returning the Planck constant dependence into play, we therefore see that the sought weights
pp, should be of the form
pr, = e *®det[d 09|,
with some ¢ = c(h) depending only on h .
Note that the condition w = dd® means that
9’d(z)
9je(2) = az,azk
The fact that this matrix is positive-definite, for each z € Q, means precisely that the potential ® is
strictly plurisubharmonic on Q) . We will usually abbreviate “strictly plurisubharmonic” to
“strictly PSH”.
Finally, the condition

69~ G N) =~ f.9) (29)

in the Berezin quantization will be satisfied if the operator Q,in (18) equals

ngkaa_A

the Laplace — Beltrami operator assomated to w. Indeed, in that case we have by (19)
n

C.(f,9) = 2 g’%(0;£)(0,9),
jk=1
and (28) follows by (26).
We have thus arrived at a final recipe for the Berezin and Berezin-Toeplitz quantizations on a
domain Q c C™ equipped with a Kidhler form w and the corresponding Poisson bracket. Namely:
Q) . There must exist a Kahler potential @ for w, i.e. a strictly PSH function & such that w =
30D .
(i) . We take the Bergman spaces L%, (Q, e °® det[d d®]) where c € R is a parameter.
Denote by K.(x,y) the reproducing kernel of this space, by B, the associated Berezin

transform, and by Tf(c) the Toeplitz operator on this space with symbol f.

(i) . See if ¢ = c(h) can be chosen S0 that
B. =1+ hA+ h?Q, + h3Q; + - ash -0
with some differential operators Q;, @, = I, @, = A (for the Berezin quantization); and
(©)mp(c) _ ©
T T, —ZhJTC](fg) ash N0

in some sense,with Co(f,g) = fg and C,(f,g) — C,(g,f) = —i{f, g} (for the Berezin-Toeplitz

guantization).
It turns out that under suitable hypothesis on Q and @ , this recipe indeed works, with
c(h) = 1/h.

For brevity, let us denote by du;the corresponding measures

dun(z) := e~ ®*@/" det| g, ;(2)] dz, h>0,
and by Lj, , = L01(Q, dpy) the associated weighted Bergman spaces; also K., B, and Tf(c) will be
written as K, B, and T , respectively. We will also sometimes use our earlier notation a = 1/h for
= rather than c.

For simplicity, we have so far really discussed only the situation when Q is a domain in C™. It
turns out that the whole formalism works also on arbitrary Kahler manifolds, just with some minor
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technical adjustments. The most conspicuous of them is that instead of considering Bergman spaces
of functions on Q , one needs to consider, more generally, spaces of a holomorphic line bundle £,
equipped with a Hermitian metric (in the fibers) given locally by e~® the curvature form of this
Hermitian metric should coincide with the given Kahler form w). For such £ to exist, it is necessary
that the cohomology class of w be integral. The role of the weighted Bergman spaces L%, (Q, duy,) is
then played by the spaces of holomorphic L? of the tensor powers L™ m =1/h = 1,2,---;in
particular, the Planck constant can approach 0 only through a discrete set of values. However, the
whole formalism — weighted Bergman kernels, Berezin symbols, Toeplitz operators, and Berezin
transforms — still makes perfect sense, and so does the above recipe for Berezin and BerezinToeplitz
guantizations.

Since both By, and T are defined by formulas involving the weighted Bergman kernels K}, the
key to proving the viability of our recipe is obviously an understanding of the behaviour of
K, (x,y) as h N 0. Historically, there are two approaches how to handle this problem, which both
appeared independently around 1997 — 1998 . The first one was developed of compact manifolds by
Zelditch [44], who gave, in our language, the asymptotics of the reproducing kernels K;, (x, x) on the
diagonal as h — 0 ; this was subsequently extended also away from the diagonal by Catlin [133].
These did not consider By, and Ty, but rather were inspired by certain geometric applications going
back to Tian in 1990 [143] (with a follow-up by Ruan [139]). The proofs rely on a theory, due to
Boutet de Monvel and Guillemin [151], of Fourier integral operators of Hermite type, which was in
exactly the same way used, in fact, already in 1994 by Bordemann, Meinrenken and Schlichenmaier
[9] to establish the result about T on compact manifolds directly without those for K}, and B, (thus
by passing the Berezin quantization).

The second approach, dealt with domains in C™ not manifolds, and relied on somewhat simpler
methods (Feff erman’s expansion and d-techniques) to obtain the asymptotics on K, and B;, [128]
[129] [130]; naturally, some hypothesis on the behaviour of @ at the boundary were needed. The
result for T, can, however, be established in this case only for bounded domains, and one still has to
resort to the more sophisticated machinery used by Bordemann, Meinrenken and Schlichenmaier
[129].

Prior to these general results, Berezin and Berezin-Toeplitz quantizations had been established
only ad hoc in some special cases, such as in dimension n = 1 (i.e. for Riemann surfaces) with the
Poincaré metric by Klimek and Lesniewski in 1991 [132] (using uniformization), for Q = C™ with
the Euclidean metric by Coburn in 1993 [134], or for bounded symmetric domains with the invariant
metric by Borthwick, Lesniewski and Upmeier in 1994 [130]. The basic idea, in any case, goes back
— as the terminology rightly suggests — to Berezin in 1975 [136]. The equivalence of the Berezin
guantization and the asymptotic expansion of the Berezin transform is due to Karabegov [131]. Some
recent extensions and generalizations of the theory are discussed e.g. [137] by Ma and Marinescu,
[137] by Berndtsson, Berman and Sjostrand.

We will first handle the case of the Berezin quantization by the second of the above-mentioned
approaches. Then we proceed to deal with the Berezin-Toeplitz quantization via the first approach,
adapted to the context to which we have also restricted ourselves hitherto domains in C™ rather than
compact manifolds.

Recall that a smooth function d: Q- R on a domain Q in C™ is called
strictly plurisubharmonic (strictly-PSH) if for any z € Q and v € C", the function of one
complex variable

tH O(z+ tv), tecC
is strictly subharmonic where defined. Equivalently, & is strictly- PSH if the matrix of mixed second

derivatives
[ . ]n
aZjaZ_k k=1
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A bounded domain Q < C™ with smooth boundary is called strictly strictly pseudoconvex if
there exists a smooth function r such that
r>0 onQ, r=20, ||[Vr]| >0 onoaqQ,
—r is strictly- PSH in a neighbourhood of Q.
One calls r a strictly- PSH defining function for Q.

For completeness, we remark that there are also (not necessarily strictly) plurisubharmonic
(PSH) functions, for which t — ®(z,v) is assumed to be only subharmonic (not necessarily strictly),
or, equivalently, the matrix of mixed second-order derivatives is only positive semi-definite; and (not
necessarily strictly) pseudoconvex domains, which can be defined as increasing unions of strictly
pseudoconvex domains. (This is not the same thing as having a — not necessarily strictly — PSH
defining function.)

Pseudoconvex domains are the natural domains in C™ on which holomorphic functions live: if
Q is not pseudoconvex, then there exist a larger domain ' such that every holomorphic function on
Q in fact extends holomorphically to Q'.

An example of non-pseudoconvex domain is the domain Q={zeC™:1<|z| <2}, n>1, for
which Q' = {z € C™:|z| < 2} In dimensionn = 1, as we all know from basic complex analysis, all
domains are pseudoconvex.

Strictly pseudoconvex domains are those whose boundary is, additionally, in some sense “non-
degenerate”, which makes it possible to establish results which have as yet no known counterparts in
the non-strictly pseudoconvex case. We will come across some of these results.

The upshot of all the above is that pseudoconvex domains are the ones on which it makes sense
to study holomorphic functions; strictly pseudoconvex domains are the manageable ones.

Let Q < C™be smoothly bounded and strictly pseudoconvex , and da strictly-PSH function on Q such
that e~® = r is a defining function for Q.
Then for the weights w = e~*® det[d d®] , we have as @ — +m,a € Z,

n e h.
Ko(x,x) ~ ™ a_z b (X),

" oJ

Jj=0

with some functions b; € C*(Q), b, = det[d ] ; and

A%
=0

where Q;are some di/ferential operators, in particular @, = I and

n i az
Q1= z g’ =:4,

= aZkaZj

the Laplace-Beltrami operator. Here g’¥ is the inverse matrix to g,z :=

R
0z;0z)
It follows, as explained ,that denoting by c;,gthe coefficients of theoperators Q;,
Q;f = Z Ciap0®0Ff,
a,f multiindices
and setting

f *Be 9= zhj(fj(f,g),
j=0

where

G(f.9) 1= ) 6ap(3°)0%9),
a.p
we obtain a Berezin quantization on the domain Q with the Poisson bracket associated to the

Kihler form w = 90 ®.
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It is instructive to see how Theorem B applies in the examples. For the unit ball Q = B™ (which
includes Q = D forn = 1), take

d(z) = log1 P

which is a Kihler potential for the invariant metric on B™. Then & is strictly-PSH,
e—CIJ(z) =1— |Z|2
is a strictly- PSH defining function for B", and
020 1
by(z) = det lazjaz"k] = A=z
We thus recover the formulas (b, explains the “shift in the exponent a”).
Also, we see that c,~a™.

For the Fock space on Q0 = C™", a Kahler potential for the Euclidean metric is ®(z) = |z|?. In
that case by (z) = det[Sjk] = 1, so there is no “shift” this time, and again recovers the asymptotics
of K,and B, on the Fock space .

We need to review a few prerequisites before giving a proof of the theorem.
For a domain Q0 < C™ and a real-valued smooth function @ on it, the Hartogs domain with base Q
and radius-function e=? is

Q:= {(z, t)eEQXC: |t]2 < e‘“’(z)}.

It can be shown that £ is pseudoconvex if and only if Q is pseudoconvex and @ is PSH ; and that
Q is strictly pseudoconvex and smoothly bounded if Q is strictly-pseudoconvex, @ is strictly- PSH
and e~® = r is a defining function for Q. Furthermore,

#(z,t) :==7(2) — |t]* = 7 —|t|? (29)
is a defining function for Q.

Thus the hypotheses guarantee precisely that taking for @ the Kahler potential @, the
corresponding Hartogs domain { over Q will be smoothly bounded and strictly pseudoconvex, with
a defining function given by (29).

Continuing with the notations from the preceding paragraph, consider the compact manifold

X:=0Q

equipped with the measure

il ds (30)
loF|l
where dS stands for the surface measure on X and J[#] for the Monge — Ampére determinant
5 7 orF
J[7] = —det [617 657’] > 0.

Let H?(X) = H? be the subspace in L?(X,do) of functions whose Poisson extension into Q is
holomorphic. (Alternatively, H2(X) is the closure in L? (X, do) of functions continuous on the closure
Q of { and holomorphic in its interior.)

One calls H2(X) the Hardy space on X .

We remark that the measure (30) — which at first sight may look a bit artificial — is actually a
familiar object in diff erential geometry. Namely, the restriction v of the diff erential form Im o7 =
%(67’ — 57’) to X is a contact form on X , meaning that v A (8dv)™ is a non-vanishing volume

element on X. Up to a constant factor, this volume element is precisely (30).

For each (z,t) € O, the evaluation functional f = f(z,t) on H? turns out to be continuous, hence
is given by the scalar product with a certain element k, ., € H>.

The function

do

KSzegﬁ((x: t), (y: S)) = (k(y,s)» k(x,i:))H2
on Q x Q is called the Szegd kernel .
In other words, Ks,egs is the reproducing kernel of the Hardy space H*(X), viewed as a space

of holomorphic functions on Q (rather than just their boundary values on X).
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There is a simple relationship between the Hardy space H?(X) and the weighted Bergman spaces
L} o1, ON the base Q, as well as between the Szegd kernel Ks;eqs and the weighted Bergman kernels
of Li,, , Which we now explain.
The boundary X of {1 can be parameterized as
X ={(z,e%e*®/?):z € 0,0 € [0.2n]}.
In these coordinates, and recalling our notations r(z) =e=?@, #(z,t) = r(2) — |t|?, easy
computations show that
dS =./r +||or||?> dz d6, 07| = /7 + |lor]|?,
JIF] = J[r] = e~ D% det|0d ], (31)
SO
do(z,t) = e~ D% det[dd | dz de. (32)
Consider now a holomorphic function f on {1 . Taking Taylor expansion in the fiber variable, we
can write

fa=) [0, @oed
j=0

with f; holomorphic on Q . Expressing t in polar coordinates, one also sees immediately that
f@t) Lgth  vf,gifk+j
(orthogonality is meant in H?). For the norm of f in H%(X) , we thus get, using (32),
[f(zO)do(z,t)
2
.

= ZJ |fj(Z)|2 (j eiee‘¢(z)/2|2jd9>e‘(”“)d’(z) det[dd¢p(z)] dz
j=0 "%

= z an Ifi|“e=U+n+ D9 det[0d¢(2)] daz.
j=o %

It follows that
H2(X) =@, L341(Q, 2me~Um+ D% det[0d ¢ (2)]) dz,
and

1< N
KSzegé((x' t), (y; S)) = gz Ke—(j+n+1)¢ det[09¢(2)] (x, y) (t5)/.
k=0

In other words, the weighted Bergman kernels of our spaces L, , are just the Taylor coefficients,
with respect to the fiber variable, of the Szego kernel of H?(X). This result is due to Ligocka [135];
the basic idea goes back to Forelli and Rudin [128].

This celebrated result of Fefferman [126] and Boutet de Monvel and Sjostrand [132] describes the
boundary behaviour of the Szego kernel of an arbitrary (nice) domain in C", thus including, in
particular, the kernel Ks, g5 Of our Hartogs domain Q . Here is the result.

For D < C™ be a bounded strictly pseudoconvex domain with smooth bound-ary, and r a
defining function for D. As in the special case of D = Q discussed before, one defines the Hardy
space H?(dD) as the subspace in L?(dD, do) (with some non-vanishing volume element o on D) of
all functions whose Poisson extensions into D are not only harmonic but holomorphic; and the Szego
kernel Kg,eq5(2z, W), z,w € D, as the reproducing kernel of H?(dD), viewed as a space of functions
on D (not just of their boundary values on dD ).

Then there are functions a, b € C*(C™) such that (a) for x € aD,

n!
a(x) =—Jlr](x) > 0; (33)
(b) the Szego kernel on the diagonal is given by the formula
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(x)
()"

This formula also extends to Kg,eqs(x, y) With x # y, namely,

a(x,y)
KSzegb(x; Y) = r(x y)n + b(x; y) logr(x, Y),

Kszegs (x, ) = + b(x)logr(x).

where a(x,y),b(x,y)and r(x,y) are  almost — sesquiholomorphic extensions of a(x) =
a(x,x),b(x) = b(x,x) and r(x) = r(x, x), respectively. The latter means that da(x,y)/dy and
da(x,y)/0dx both vanish to infinite order on the diagonal x = y, and similarly for b(x, y) and r(x, y).
Such extensions always exist, and it is a consequence of the strict pseudoconvexity that r(x, y) can
be chosen so that Re r(x,y) > 0 forall x,y € D, so that the logarithm can be defined as the principal
branch.
(C)  Kszegs(x,y)is smooth on Q x Q\ U ,for any neighbourhood U of the boundary diagonal
{(x,x):x € 00}.
Finally, there is a device for converting this description of the boundary behaviour into the description
of the Taylor components from Ligocka’s formula.

Recall that the power series Y7, k/z* converges on the unit disc D, and its sum equals

Z Kzt = z)1+1 * 2 1- z)k'

with some constants aj, if j ] = 0 1,2,---;and

—1)J

Zkfz (]) (1—2)log(1 —z) + F;(2),

k=0
with some F; € c7/(D), if j=-1,-2,-3,-- .Also, by the familiar Cauchy estimates, if a
holomorphic function £(z) = Y, fi,.z* on the disc belongs toC’ (D), then its Taylor coefficients satisfy

fi =0k7) ask - +oo.
Now suppose that f(z) = X, f,.z* is a holomorphic function on D which satisfies
a(z)

f(Z) = m + b(Z)lOg(l - Z)
for some a, b € C*(C). Taking the Taylor expansions of a, b around z = 1, this implies that there
exist ay, -+ a4 and By, By, Bo, -+, With a,,.; = a(1), such that, forany M = 0,1,2, ---,

M

n+1

£ = ]Z ot ;ﬁ,ﬂ - 2)/10g(1 - 2) + Fy (),

with F,, € ¢ (D). Combining this with the observations in the preceding paragraph, it transpires that

n n—-1 a—l _ a(l)
fk zank +Cln_1k +'“+Cl0 +T+"', an—T, (34)

for some constants a,,, a,,_1,:*+,as k - oo.
As already
mentioned, the hypotheses of the theorem guarantee that the Hartogs domain
O={(zt) EQAXC: [t|? <e *®}
is smoothly bounded, strictly pseudoconvex, and with a defining function
7(z,t) :=e~®@ — |¢]2

Consider the Hardy space H?(X) on the boundary X = 08 . By Ligocka’s formula we have

H2(X) =@ 41 Lo (Q, e7*® det[0d D)) (35)
(where n = dimQ, son + 1 = dim{}), and

1 (o8]
Ksaego((6,5), 0,00) = 52 D Ko (1,)(sD)"
k=0

where,for brevity, we are denoting the reproducing kernel of L2, (Q, e 7%® det[dd®]) by K, (x, y).
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Feff erman’s theorem for the Szego kernel tells us that
a
KSZegt’) = m +b log r,
in particular,

1% i
%Z Kicni1 (%, x)s* = kSZegé((x: s), (x,1))
k=0

a(x,s) )
= 0w — gymri T b log(e™ =)
a(x,s)e@DO

= _ D(x)\n+1
(1 —se®¥)

+ b(x,s) log(1 — se®™) — b(x, s)P(x)

_Alx, z)

= A=
where  A(x,z) = a(x, ze @) DO — p(x, e @)D (x)(1 — 2)"**  and  B(x,z) =
b(x, ze~*™)). So for each x € Q,

z : _ A(x,z)
e kcp(x)Kk+n+1(x:x)Zk )
£ (1-2)

with functions 4, B € C*(Q2 x D). Employing the resolutlon of singularities implies

Ky (x,x) = — "‘D(X)E b(x)

as k = +oo, proving the first part. (The formula for b, fOIIOWS from (31), (33) and (34).)
With a bit of technicalities which we omit, the Iast result can be extended also to x # y:

Ky (x,y) = —e"‘“”) Z b (x 2 (36)

for (x,y) near the diagonal, where ®(x, y), b; (x, y) are almost-sesquiholomorphic extensions of
d(x) = (x,x) and b;(x) = b;(x,x). (The technicalities involve an improved version of the
resolution of singularities from, where f(z), holomorphic in z € D, is replaced by f (x, z), depending
smoothly on x and holomorphic in z in the disc |z| < r(x), where the radius r(x) also depends
smoothly on x ; see Lemma 7 in [130].)

The second part (concerning the asymptotics of the Berezin transform) is then proved by first
showing that in the integral defining B,

| Ko Ct, 9)?

BfG) = | FO S

the main contribution, as @ — +oco comes from a small neighbourhood of x. In that
neighbourhood, one then replaces K,(x,y) by the asymptotic expansion (36). This reduces the
problem to finding the asymptotics as @ — +oo of integrals of the form

+ B(x,z)log(1 — 2),

+ B(x, z)log(1 — z)

o—a®() det[65¢(Y)] dy

j F(y)e®@+eyx)-2x)-2()) gy,
neighbourhood of x
where F is an expression involving f, det[aécb] and the coefficient functions b; from (36). Finally,
this kind of integrals is handled by the standard stationaryphase (Laplace, WJKB) method, yielding
the result in the theorem.

The first two terms in the asymptotic expansion for B, can be evaluated explicitly, giving the
desired outcomes Q, = I and Q; = A, and thus finishing completely the proof.
For feL”(Q)let us denote, for brevity, the Toeplitz operator with symbol f on

L2,1(©,e7™ det[0d@]) by T,™. The main result on the Berezin-Toeplitz quantization then reads
as follows. . Let Q be a smoothly bounded strictly pseudoconvex domain in C"*, and ¢:Q - R a
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smooth strictly-PSH function such that e~® =:r is a defining function for Q . Then there exist bilinear
differential operators C;(j = 0,1,2,-++) such that for any f, g € c*°(@)andanyM =0,1,2, -,

M
Tf(m)Tg(m) — Z m‘jTC(;'g}‘g) =0(mM1) asm — oo.
=0

Furthermore,

Co(f.9) =fg, Ci(f,9) —Ci(g,f) = i{f,g}-

Consequently, f * g := X520 b/ C;(f, g) defines a star-product on Q.

Observe that the theorem establishes the expansion for the product of two Toeplitz operators (17)
in the strongest possible sense, namely, in the operator norm.

As already mentioned, the proof involves a sophisticated machinery, due to Boutet de Monvel
and Guillemin, of Fourier integral operators of Hermite type — more specifically, of Toeplitz
operators with pseudodifferential symbols. It is not our intention to introduce all the necessary
notions and technicalities here; we will, however, try to highlight at least the main ideas.

Consider again the Hartogs domain (,

Q= {(z, HHEQAXC: |t]? < e“p(z)}.
Again, the hypotheses guarantee that £ is smoothly bounded, strictly pseudoconvex, and admits
7(z,t) := e~ @ — |t|2
as a defining function.

As before, consider the Szegd kernel on the compact manifold X = 9Q with respect to the

measure

JI7]
=6 ds.
We have already seen that (Ligocka’s formula)

1 (00]
Ksaego(5,5:9,8) = 5= ) Kicomsa (6, ) (5D
k=0

H2(X) =@ 41 Lo (Q, e7¥® det[ad D). (37)
The space H?(X) also admits its own “Hardy-space” Toeplitz operators: namely, if F is a function
in, say, C*(X), one defines the Toeplitz operator Tr on H?(X) with symbol F as
TFl,b = PSzegb(Fl/J): Y e HZ(X):

do

where Ps,eq5: L (X, do) —» H?(X) is the orthogonal projection (the Szegd projection ).

Now if f is a smooth function on Q, we can lift it to a function F € Cw(ﬁ_)by composing with
the projection on the first variable, i.e.

F(x,t) := f(x).

An easy verification then reveals that under the orthogonal decomposition (37), the Toeplitz
operators Tf(m) on L% ,(Q, e ™m® det[65®]). and the Toeplitz operator T on H?(X) are related by

Tr =@menst Ty -

The main ingredient in the whole proof is that, following the ideas of Boutet de Monvel and
Guillemin, we can define Toeplitz operators T, on H*(X) by the same recipe not only for functions,
but also for pseudodifferential operators (¥DO for short) Q@ on X as symbols. That is, fora WDO Q
on X, we define

Tle = PSzegb QY.
For Q the operator of multiplication by a function F € C*(X) this recovers the Toeplitz operators
T- above as a particular case. Toeplitz operators on H?(X) with ¥DO symbols are often called
generalized Toeplitz operators.
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One proceeds to define the order ord(Ty,) and the symbol o (Ty,) of T, as the order of @ and the

restriction of the principal symbol ¢(Q) of Q to the symplectic submanifold
D= {9 § = t(FF ~ Pyt > 0)
of the cotangent bundle of X, respectively. It can be shown that these two definitions are
unambiguous: although it may happen that T, = T'; for two different ¥DOs Q, Q (which is peculiar
for DO symbols — it is never the case that T = Ty for F # F), in that case eitherQ, Q have the
same order and their symbols coincide on)’, or one of them — say, Q — has greater order then the
other and its symbol vanishes on ¥’ to order ord(Q)—ord(Q). Also, the order and the symbol of T,0bey
the usual rules one would expect, as well as some additional ones:
(P1) the generalized Toeplitz operators form an algebra under composition (i.e.vQ,, Q, 3Q5 :
TQ1TQ2 = TQ3);
(PZ) Ord(TQ1TQ2) = Ord(TQ1)+Ord(TQ2); O-(TQ1TQ2) = O-(TQ1)O-(TQ2)'.
(P3) 0-([TQ1’TQ2]) = {O-(TQ1)'O-(TQ2)}Z ;
(P4) if ord(T,) = 0, then T, is bounded operator on H?;
(P5) if ord(T,,) = ord(Ty,) = k and o(T,, ) = o(T,,), then ord(T,, — Ty,) < k — 1;
(P6) for F € C*(X) and (x,¢é) € )., o(Tr)(x, &) = F(x).
Returning to the proof of Theorem BT, let 7" be the subalgebra of all generalized Toeplitz operators
on H?(X)which commute with the rotations
Ug: f(z,w) — f(z,eiew), (z,zw) €X, O €ER,

in the fiber variable. Clearly, the operators T With F(x,t) = f(x)for some function f € C*(Q) (i.e.
with F constant along fibers) belong to 7.

Denote by D : H?(X) — H?(X)the infinitesimal generator of the semi-group U, . Then D acts
as multiplication by im on the m-th summand in (37), for each m:

D =@®,, iml;
and also
D =Ty/90

is a generalized Toeplitz operator of order 1.

Using (P1)—( P6) it can be shown that if T € T is of order O, then

T =T:+D7'R

for some (uniquely determined) F € C* (X) which is constant along the fibers (hence, descends to a
function on Q), and R € T of order 0. Repeated application of this formula shows that, for each k >
0,

k
T = Z DTy, + DR,
j=0
with F;(x, t) = f;(x) for some f; € C*°(Q) and R, € T of order 0. Invoking the fact that zero order
operators are bounded, it follows that

k
DKL T — z D‘fTFj =R,
j=0

is a bounded operator on H?.
In view of the decomposition T =, Tf(m) , this means that

k
—jimmM)|| _ —k—
Tl sgemme aeiozoly = ) mOT|[ = 0Gm~1)
j=0

asm — +oo . Taking for T the product T T, , with F(x,t) = f(x),G(x,t) = g(x) for some f,g €
C>(Q), and setting C;(f, g) := f;, we obtain the desired asymptotic expansion for Tf(m)Tg(m).
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Finally, the assertions concerning Cyand C; follow from the above properties (P2) and (P3) of
the symbol by a routine calculation by no means intended as an exhaustive survey of quantization
methods, or even of the Berezin and the Berezin-Toeplitz quantizations .From the many surveys and
overviews of various quantization techniques, see [131] for a somewhat more in-depth account of
many (but not all) things discuss here, as well as for abundant references to other literature. Two good
surveys of traditional deformation quantization (i.e. on the level of formal power series) are Gutt
[129] and Sternheimer [142]; a very nice recent overview focused on the Berezin-Toeplitz
quantization discussed here is Schlichenmaier [140]. Some more technical aspects of several points
left out here can be found in the author’s article [121]. An excellent reading about the material
discussed are several books by Folland, in particular [127].

It should, finally, be mentioned that the subject of Berezin and BerezinToeplitz quantization is
still far from being understood completely, and there are many things waiting still to be resolved in a

satisfactory way. For instance, in both Theorem B and Theorem BT the semiclassical limit a = % -

+oo is taken only for a ranging through the integers; this is of course natural if Q is a compact
manifold (as was the original context in [139]), but is only an artifact of the methods of proof for Q a
domain in C™. Removing this restriction, i.e. extending the asymptotics of the reproducing kernels

K,, the Berezin transforms B,, and the Toeplitz operators Tf(“) also to non-integer ¢ — +oo would

be most desirable.

Another highly active area concerns the generalizations of Fefferman’s theorem on the
Szego kernel from (and the analogous theorem of his for the Bergman kernel, which was not
mentioned here) to domains which are only weakly (i.e. not necessarily strictly) pseudoconvex; at the
moment, there are only some partial results for special types of domains (see e.g. [130]). Having a
result of that kind would make it possible to extend Theorems B and BT to more general domains.
Similarly, having a result of that kind for domains which are not necessarily smoothly bounded —
more specifically, for Hartogs domains { whose the radiusfunction e~®has a logarithmic singularity
at the boundary of Q — would make it possible to quantize metrics whose Kahler potential behaves
like that at the boundary; the latter includes, for instance, the important Cheng-Yau metric on Q (the
Kahler -Einstein metric; see [135] for more information on this). Carrying out the Berezin-Toeplitz
quantization in the last case by the method described would also require an extension of the Boutet
de Monvel and Guillemin theory of generalized Toeplitz operators to noncompact manifolds, which
is another open problem at present.

Closely related ideas concern also the boundary behavior of weighted Bergman kernels with
respect to weights having some kind of singularity at the boundary (e.g. involving the logarithm of
the defining function); some results of the present author in that direction can be found in [122].
Interestingly, the same technique can also be used to establish that the weighted Bergman kernels
K, (x,y) appearing in the previous can be continued to meromorphic functions of a in the entire
complex plane [124]; this is somewhat reminiscent of the resonances occuring in scattering theory,
and is related to zeta functions of elliptic operators. A subject of a completely diff erent flavour is the
extension of the Theorems B and BT above also to the setting of harmonic, rather than holomorphic,
functions; although this seems not to have any direct relevance for quantization, the results are equally
interesting, and, apparently, much more intriguing, than in the holomorphic case (see e.g. [123]).

There is also a variety of problems, though again not directly related to quantization, concerning
the range of the Berezin symbol map T + T (see e.g. Coburn [135] and Bommier-Hato [128]), while
notable applications of Toeplitz operators and the Berezin transform appear in operator theory and in
time-frequency analysis; let us mention at least [136], [136], [132], [133] and [145].

Section (3.2): Harmonic Berezin Transform on the Half-Space

For H, be the Hilbert space of all functions harmonic on the half-space
H:={(x,y) € R";x € R", y > 0} and square- integrable with respect to the measure
y*dxdy,
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where dx and dy are the standard Lebesgue measures onR™ and R, respectively, and o> 0 is an
arbitrary nonnegative real number. By the volume version of the mean-value property for harmonic
functions, the (linear) functional e, ,y: H, 3 f = f(x,y) € Cis bounded for each fixed (x,y)EH
and therefore continuous.This is precisely the necessary and sufficient condition for the existence of
the so called reproducing kernel, i.e.a mapping K,: H X H — C which satisfies K,(.; h) € H, for
every h = (x,y) € H and has the following reproducing property : forall f € H, and (x,y) €
H,
f(x;y)=<f;Ka(-;x;y))L2 =
Jan fooof(z, WK, (z,w; x,y) w¥dw dz.
It can be shown that K, is in fact real-valued and symmetric,i.e K,(z,w;x,y) = K,(z,w; x,y) =
K,(x,y;z,w); see[l] for more details on K, .Recall that for f € L*®(H) there is the
harmonic Berezin transform B, f,associated to the kernels K, ,and defined on H by the formula

1 oo
Bof (x,y) = WIR" Jy F@wW)l Ko(x,y;zw)|?w*dwdz  (40).

It is a well known fact that in the case of the spaces H*°! of functions that are holomorphic (rather
than harmonic)on a given domain 2 < C™ and square-integrable with respect to w* ,where w is an
appropriate (positive) weight function on £2 , there are reproducing kernels K*!(x,y),x,y € 2 (the
so called weighted Bergman kernels), and that in these spaces one has the associated
‘‘holomorphic’’Berezin transform

B ) = iz Jo S Ko, y) 1P w(0)%dx,

first introduced by F.A.Berezin[173] for 2 a bounded symmetric domain in C"*and w a certain natural
weight on it.Berezin himself was able to show that

BIolf = f + % +o0(a™?) asa - +» (41),
where Q, was a kind of Laplace—Beltrami operator,and used this fact to construct a certain
quantization procedure for phase space 2 (nowadays known as the Berezin quantization). Later,
(41) was extended to the complete asymptotic expansion in negative powers of a,and the Berezin
guantization became one of the first nontrivial examples of the so-called
deformation quantization of  Bayen,Flato,Fronsdal,Lichnerowitz and  Sternheimer[172].
Subsequently,(complete) asymptotic expansions of this type have been extended to a much larger
class of domains (and even manifolds) than symmetric spaces by Klimek and
Lesniewski[170],Englis[4,5],Karabegov and Schlichenmaier[179], and others,and in these days they
serve as an indispensable tool in applications to quantization on Kahler manifolds (see[175]).
Having a complete asymptotic expansion analogous to (41) even for spaces of harmonic functions
would be of great interest from many aspects (for instance, it would eliminate the need for
holomorphic structure,thus extending the whole theory also to real, instead of complex, domains and
manifolds). Unfortunately, the problem turns out to be much harder than in the holomorphic case.
The first result of this kind is due to C. Liu [181], who proved that for essentially bounded functions
on the unit disc, and also for essentially bounded functions f on the unit ball B™ of R", n > 1, that
are radial (i.e. f(x) depends only onlix|l), the Berezin transform B2#! associated to the spaces F 24
of all harmonic functions on B™ square-integrable with respect to the weights (1 — ||x||?)% -1 < a <
oo, satisfies B2 f(x) — f(x) for every x€B™ as a— +oo. The radiality assumption was then
removed by Otéhalova [173]. Only quite recently, the case of harmonic functions on the entire space
C" = R2" square-integrable with respect to the Gaussian weightse e~*1*I* ¢ > 0 was done by
Engli§[176].There seem to be no similar results for any other domains.
We show that a complete asymptotic expansion of the harmonic Berezin transform in negative powers
of a is available for essentially bounded smooth functions defined on H.Thus our main result can be
stated in the following way:
Theorem (3.2.1)[171]: Forany f € L”(H) n C*(H),

[oe) Rf(x,y)
(Baf)(X,}I) ~ Lj=0 :

al
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as a —» +oo for every (x,y) € H where R; are certain differential operators, with Ryf(x,y) =
f(x,y) (Rothus being the identity operator) and

1f(xy)=y2@+(l n)y L (xy)+y (xy)

92

where A= YT 1527
Here the notation means ,of course,that for every N =0,1,2,...,
Bof)(x,y) = B T2 = o(a ), as a - +oo.

The proof of Theorem (3.2.1) occuples the rest and is divided into several steps. we show first of all
that it is enough to prove the theorem for (x,y) = (0,1) .We then proceed to give an explicit
expression for the kernel K, at this point by means of the Fourier transform; this is done. The proof
is finally completed where we employ a little trick to reduce it to the case in which the classical
multidimensional Laplace method for asymptotic expansion of integrals is directly applicable.

We prove two technical lemmas owing to which our situation simplifies substantially.

Lemma (3.2.2) [171]: For every (x,y)and (a, b)in H,

K, (a,b;x,y) = b "% 1K, (O 1; u %)
Proof: Let f € H,,. Clearly,the function f(x + a, y) is harmonic iff f (x, y) is harmonic.Thus we can

write
Jon I £ G0, 9)K o (a, b; x,y) y*dy dx = f(a,b)
= fRn fooof(x + ayy) Ka(or b; X;Y)yadydx

= fRn fooof(x, y)K,(0,b; x —a,y)y*dy dx
where in the second and the third equality we used the reproducing property of the kernel K, and
the change of variables x —» x — a , respectively.Since f €H, was arbitrary,this implies the
equality K, (a, b; x,y) = K,(0,b; x — a,y). Similarly we can show that for all t > 0

K,(ta, th;x,y) = t " 1K (a, b; fj—t’) in which case the proof runs as
follows:
[o] dy d o)
Jan Iy FEE) Ka (0552 92 S = [0 fy £Goy) Kala by x, )y dy dx
= f(a,b)
= fan foof(E X)K (ta,tb; x,y)y%*dy dx,
where again the reproducing property and the change of variables (x,y) - (? —) were used.Taking
both these results into account we see that the assertion of Lemma(3.2.2)is true.
Next,for any function f:H — Cand for any a € R" and b € R, we denote f%?(x,y) := f(bx +

a, by).We then have the following
Lemma(3.2.3) [171]: Let f € L®(H),a € R" and b € R, be given.Then

(Baf)(a; b) = (B(xfa’b)(oil)'

Proof: (B.f)(a,b) = fRnf f(z,wW)|K,(a,b; z,w)|> w*dw dz

) ¢ (abab)
I
T pnma-ig, (0101)f1R§”f f(z,w) |Ke(0,1;==

baln

= [ Jy f(bx + a,by)|K (0,1, y)l2 (by)®.b.|b|"dydx

Kq(0,1;0,1)

zZ—a w

)| wedw dz

b—a—l—n

=" [ [ f(bx + a,by)|K,(0,1; x,)|> b** 1 *"y%dydx

Kq(0,1;0,1)

~ Ka (0101) fRnf f(bx + a,by)|K,(0,1; x,y)|* y*dydx

= (B.f*")(0,1),

using the definition of B, ,Lemma(3.2.2) and the change of variable (?%) = (x, y),respectively.

Corollary(3.2.4) [171]: In proving Theorem (3.2.1) we can confine ourselves to the case (x,y) =
(0,1).
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a,b
Proof: Pick (a,b) € H and suppose that (Bafa'b)(O,l)zZiZow. Then, because

(B,f%*")(0,1) = (B,f)(a, b) ,we see that
(B,f)(a,b) ~ ¥, Qk/;(;l.b) ’ a = +oo,
as desired,with Q. f (a,b) = Q,f*?(0,1) .
For brevity ,denote K, (x,y;0,1) :== H,(x,y), f,(x) = f(x,y) and let f;(f) be the Fourier transform
of f, (x) with respect to x:

£ = @m)7% [ f, (e " dx.
Lemma(3.2.5) [171]: For any fEH, ,

£, (&) = e (&), (42)
where £, (&) is a function defined on R™ such that
M@+ 1) [LA®] @D 1ds < w. (43)

Conversely, every such function f,corresponds to a function f € . Moreover,for any two functions
f19 € He L
Jandy FY)g06y) ydydx = T(a + 1) [gn fo(©)Go(©) (21N 1d¢ (44)
Proof: Harmonicity means that
S 3y P
we have the following chain of equivalences (here F, £, (§) = £, ()):
0%f (%) n %fxy) _ 0

and

ay? J=1 ax?
o 7, (S 4y, ) =
=S B (57) =
o ZBO 4 s (-ig). (~i£),©) = 0
N PAGEY 45)

The general solution of (45) is
£ (&) = A©)e ¥ + B(§)elV.
But the Plancherel formula
PN 2
Janl fCoW)Pdx = L] £, dE (46)
implies that
o o] A 2
Jan I 1f e Pydy dx = [ [, 1f, O] y*dy d8. (47)
Since f € H, ,it follows that f is square-integrable on H with respect to y* dy dx. This means that
the left-hand side in (47) is convergent hence
0] A 2
Jen Sy 1 y*dy d§ < oo
and so
0] A 2
J, 1@ yody < o foraa.é

But this implies that B (& )=0.Putting A(¢) =: f,(&) concludes the proof of (42).
To prove the second part, note first that

© p=2ély yagy = 2 (-t (L)
J, e y dy_zlfl - (ZIEI) dt (48)
1 w _
= (2|§|)“+1 fO e tta dt
= QED™* (e + 1), (49)

where the change of variables t := 2|&|y was used in (48). It follows that
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00 > [y 1O yidydx = [ [} 1e ¥ Ao (O] yady dg
= [l o (O J €26 yedy dg
UNra + 1) flf@) @lED o 2dg
and (43) is thus proven. Finally, (44) is a direct consequence of the Plancherel formula: forany f, g €
L?,
Jen FO GG y) dx = [0 £,(8) 3y (E) dE,

and Fubini’s theorem.
Proposition (3.2.6) [171]: We have

~ (2|&])atle=-A+MIS]
Ha,y (E) = n
(2m)2T(a+1)

Proof: First note that,due to the reproducing property of K, once again, for f € H, we can write
fOD = fonfy OV HL(x,y) y*dx dy
D0 (@ + 1) [0 /o (O Ao @ 21ED 2. 1)
On the other hand, by the Fourier inversion formula
FO.D = £00) = 207 [ fi©de 2 2n) 2 [ f@©@eKlag  (52).
Since the Egs.(51) and (52) hold for any f € H, we arrive at the formula

[(ar+ 1), 0(§)21EN ™ = (2m) 2 e ¥
which is equivalent to

(50) .

_ (2len*tielél

Heo(8) = (53) .

n
(2m)2r(a+1)

Since by (42)

H“J’(E) = e_myHa,O(f),
using (53) we obtain

~ a+1,-(1+y)I§]

(&) = edi1)) e

(2m)2T(a+1)

and the proof is complete.

Employing the inverse Fourier transform ,the last proposition gives

Ho(6,y) = ————— [ (2]§])@* e~ O+ Dl 2 gg (54).

(2m)"T(a+1)
In the spherical coordinates &€ = r{,7 > 0, € S*1,d{ = r"* 1dr do({), the formula (54)becomes
_ 2041 o a+n ,—(y+)r jirl.x
H,(x,y) = D) Jo Jnar®tTe e"*da({)dr .

We make an additional change of variables r ﬁ

2a+1

.r{.x
— o a+n -7 557
H“(x’ y) T (2m)"T(a+1)(y+1)a+n+l fo fsn-lr e € y+1da({)dr.
Finally we make the change of variable r — ar to obtain:
H S i it § atng(1-Na o S 4g(O)dr. (55
a’(x’ y) - @m)"T(a+1)(y+1)¥tntlea f() fsn—lr e e O-(() r. ( )

Note that r**me(1="a = ynea(nr+1=7) and Inyr + 1 —r < 0 for all r € (0,00) \ {1}, so that the
last integrand stays bounded as & — +oo.

First we employ the very definition of the Berezin transform with the kernel as given by (55) to obtain
a+l a+n
this rather huge formula: B,f(0,1) = 1 ( 20t igatntt

2 oo w
Hg(0,1) (271)"F(a+1)e“) fO fRnf(Z’ w) (w+1)2a+2n+2 X
®© (00 @ ia(r{—sn).z
I8 fnos Jgnas™ (552) € vt do(()do(n)ds dr dzdw  (S6).
At this point we would like to invoke some results from harmonic analysis. Consider the orthogonal
group O(n).lt is a well known fact that O(n)is a compact Lie group and that there is a normalized
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left and right invariant Haar measure dg on O(n) such that for every function F that is continuous on
$™1 we have

Jsnr F(©)do(Q) = wn [y, F(ger)dg, (57)

where  w, =i(i,i is the total volume of the sphere, g €0(n) ande; = (1,0,...,0) € S L.
2

Now we can apply (57) to some of the integrals from (56),namely:
o (@75, W) = fgn s fyns 2 W)E™ Wi 0 (2) do(n) dz
= 1 Jowy Jom Jan F (2 whe W dz dg dh
= wn fo(n) f0(n) Jgn f (hz,w)e R dg dh

ia(rgeq1—seq).z

= w? fO(n) fO(n) Jan f(hz,w)e™ " wit——dzdg dh,
where in the third and fourth equality we respectively used the change of variables g » hg,z » hz
and the fact that h preserves the inner product on R™. Denoting

[ w) i= fo o f(hter, w) dh = — [o, f(t,w) do())

we can turn the last integral into

ia(rge1—seq).z

jola,1,5,Ww) = w? f0(n) Jen f7(zl,w)e™ "wit " dzdg .
Using spherical coordinates z = tt and (57) once more, we obtain

ia(rgeq—seq).tt
Gola s, W) = 3 [ [ois fo o £1(EWIET 1™ WG dg do()at

ia(r{—seq).tt

= w2 [7 fonos fnoa & WEV e T do({)do(r)dt.
The next step is to insert this last expression for the integral 4,(a, r, s, w) back into the formula (56)

for B, f(0,1):
20+l a+n+l 2 0,00 (00 o0 Fr(tw)th—1rngn
B.f(0,1) = Ha(Ol) ((27:)"F(a+1)e“) fO fO fO fO fsn_l fsn_l (w+1)2n+2 %
i(ri—seq).tt\ &
(Grmamame 1 ) do(@do(x) dedrds dw.

Finally, let us undo the polar coordinates , say, r{ = y and tT = z to obtain

2a+lga+tn+l \2 o o £ (lzlw)lyls™
“f(o D= Ha(O 1) ((27r)"I‘(a+1)e“) fO fO fRn fRn (w+1)2n+2 %
( w wl s iy-sepz\%

D emiig1€ WH ) dy dz ds dw (58) .

But this is an integral of the form
do(@) = [, F(x)e®Mdx

to which the so called multidimensional Laplace method applies. Namely, under the conditions
that:

(1) the function F(x) is smooth in (2,

(2) there is a unique stationary nondegenerate point x,, € 12 of the function S(x), (3) the integral 7 (a)
exists for at least one «,

(4) the point x, is the maximum point of ReS(x), and

(5) ReS(x) » —oasx — 90 or «,

(see [177] or [178] for the details), there is the following asymptotic expansion:

dimQ

i (a) = (Z_E)TLXO) (Zk ]WLk(S(x x0)* T F(x))

a |Hess S(xg)|1/2

a/,
X=Xo

as — +oo . Here Hess S(x,) is the determinant of the matrix
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dimn
A= — (M) (59)
jk=1

ax Xy,
Lg is the constant- coefficient differential operator on 12 given by the formula
Lg = Z?,il:n{f(/l 1)]k dxjxk
where A~1 is the inverse of the matrix (59), and
S(x, %) 1= S(x) = S(x0) + 5 (ACx — %), x — xo) .

In the present case we may take 2:=R,XR, XR"x(R"\{0}),x=(w,s,z7vy) €N,
F(x) := £ (zlw)lyls"”

(w+1)2n+2

and
S(x) := ln >+ (ns+1-5)+ + (Inly| + 1 — |y]).

It is clear that F(x) |s a smooth function on !2 (that Is why we omitted the axis y = 0 from £2, which
has no effect on the integral (58) since it is a set of measure zero) and it is also clear that the
integral 7 (a) exists in fact even for any a > 0, since (1) does. It is also obvious that ReS(x) —
—oo as x — 412 or oo, Further,the point x, = (W,,S,, Z,, ¥o) = (1,1,0, ;) is the only stationary point
of the function S(x),i.e. VS(x,) = 0, and it is also a nondegenerate one since the matrix (59), which
in this case reads as its inverse. Last but not least, the point x, can also be easily verified to be the
maximum point of the function ReS(x). Thus in the context of the integral (58) we obtain the
asymptotic expansion

Baf(oxl) = Ca,n (Zk JWLR(S('X X0

where

1(w sel) zZ

i )a‘j (60)

wn 2a+1a+n+1 2 2 n+1 2@S(xp)
Can *= Hn(0,1) ((Zn)nF(a+1)e“) (7) |Hess S(xq)|1/2
(here, we have in fact e®(0) = 4~ gnd |Hess S(x,)|/? = 1/2™) ,and

SCx,x0) 1= In = LESD2 4 (nlyl + 1 — Iyl + 2.n2 +5 (w— 1)2 +
1 1.
E(S -1 +5121) (s — 1) + (ZI(S - 1) —Zl(y1 — 1))21 —Zlyzz2 — "'_ZIYHZn +5(y1 —5121 —
1, 1,
1) (yi—1) - 2122Y2 =~ 7 1ZnYn:

The derivatives of F implicit in (60) can be expressed in terms of those of f(z,w) at (z,w) = (0,1).
Namely,the Taylor expansion of the function f*(t,w) at the point (to,, w,) = (0,1) is (see [176],
formulas (34) , (35))

(AF)OD o,

frtw) =X - OW (w—1)/ (61)

where A, denotes the Laplace operator applied to f(z, w) with respect to the z variable. In this way
we arrive at an asymptotic expansion of B, f(0,1) in terms of certain differential operators M; on 2

,this time acting on f and evaluated at (0,1):
M;f(0,1)

Bof(0,1) = Con Xi2o— o5 —» asa =+ (62)
We pause to calculate Mof(O,l) and M, f(0,1) explicitly. To that end we adopt the following
temporary notation that will play no role in the sequel: L; =

LE(S(x, %) F (x))

)
X=X

and a;; and a denote the entries in the i-th row and j-th column of the matrix 4 and A~1,

respectively. It can be readily seen that L, is just F (x,) whence we infer,due to (61), that
[y _ f01
MOf(O 1) 22n+2 ~ p2n+2 (63) :

Now for something slightly more complicated, the coefficient L, runs :
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LE(S(x, x0)*7F (x))

Zk 1k|(k 1)|2k x=x0

= S Lo(Flor, + ;L (S F(laery + 5 A7 (61D,

_ 1gon+2 jk 92F(0) 41 Zzn+2 ik glm SEE@xF ()

2 “Jk=1 dxjoxy|, _ %o klm=1 0xjOx}0x10%Xm _—
+ 1 Zgn+2 alkglmgpa 06(S2(x,x0)F (x)) _
96 “J.k.Lmp,q=1 0xj0x0x10xmxp0xg|,_

tLig+ Lo+ L3
The matrix A~1 is quite sparse so it is enough to compute only those derivatives that correspond to
such values of the indices (j,k),(,k,I,m) and (j,k,I,m,p,q) for which the respective
entries a’*, ab™ and aP9of the matrix A~* are nonzero . To a certain extent ,the fact that the matrix
A~1 and the corresponding derivatives are symmetric is helpful , too , since it makes , say , the upper
diagonal entries a®/, j > i those that really matter and thus helps us have control over the situation
by counting only their occurrences according to their ‘‘multiplicity’’: the L,q-part of L, is
straightforward, the (j, k) entries with j = k count once , the ones with j # k twice.To count the
multiplicities of the L, , —part and the L, ;-part of L; we sort the 2-tuples (j, k), (I, m) with the help
of the following notation: (j, k) = (I, m) means that (j, k) is equal to (I, m) up to a permutation ,
while (j, k) % (I, m) means that (j, k) is not equal to (I, m) nor to (m, 1).
A moment’s reflection now shows that in L, , the entries (j, k), (I, m) with j = k = [ = m count
once, entries (j, k), (I, m) with j = kand [ = m but (j, k) % (I, m) count twice , entries with j = k
,L=mand (j, k)  (I,m) count four times ,entries with j # k,l = mand (j, k) % (I, m) eight times
and entries with j # k, [ # m but(j, k) = (I, m) count four times. With L, 5 the situation gets already
a little bit messy : of course , entries with j = k =1 =m = p = q count once. Now, entries with
j=k=1l=mandp =qbut (I,m) £ (p,q) count three times ,entrieswithj =k =1l=m ,p # q
and (I,m) # (p,q) count six times , entrieswithj =k ,l=m,p =q but (j,k) 2 (,m) % (p,q)
count six times , entries withj =k Il #m, p # qand (j, k) Z (I, m) # (p, q) count twenty-four
times, entries with j # k,l = m,p # q and (j, k) % (I, m) % (p,q) count forty-eight times, entries
withj #k,l+m,p+q and (j, k) = (,m) = (p,q) count eight times,entries withj =k, #
m,p # qand (j, k) % (I,m) but (I, m) = (p, q) count twelve times, entries with j = k,l = m,p #
q and (j, k) # (I, m) # (p, q) count twelve times and, finally, entries with j # k,l # m,p # q and
(j, k) = (I,m) but (I,m) £ (p,q) count twenty-four times. With these conventions , the only
nonzero contributions to L, ; occur for (j, k) equal to (1,1), (2,2), (3,3), (2, n + 3 ). Similarly the only
nonzero contributions to L, , appear for (j, k, I, m) equal to (1,1,1,1) , (1,1,2,3) , (1,1,a,n + a) where
=3,...,n +2,(2,2,2,2),(2,2,2,3), (2,2,2,n +3), (2,n +3,n +3,n +3), (3,n +3,n +3,n +3) and
(n +3, n +3, n+3, n+3).Finally,the only nonzero contributions to L, ; occur for (j, k, [, m, p, ) equal
to (1,1,1,1,1,1),(1,1,1,1,2,3),(1,1,1,1, &, n + a),a =3,..,n +2, (1, 1, 2, 2, 3, 3), (1, 1, 2, 3, 2, 3),
1123, an+a),a=3,..,n+a,l,12 n+333),(1,1,3,3,n+3,n+3), (1,1,3,n+ 3, a,n + a), a =
3,..n+2, QLlLanta,a,n+a),a=3,..,n+2,1LlLanta pB,n+p),a=4,..,n+2, =«
+1,...,n+2, (2,2,2,2,2,2), (2,2,2, n +3, n +3, n +3),(2, n +3,2, n +3,2, n +3) and (n
+3,n +3,n +3,n +3,n +3, n +3).Taking everything into account we get after tedious but routine
calculations

L, =(@n+2)2n+3)272"* + n(n — 1)272* + n27273)£(0,1) — (2n +
2)272"29, £(0,1) + 272292 £(0,1) 4 2722 % (0,1), L, =2"273((-2n% — 8n —

11)£(0,1) + 2n + 6)8,,f(0,1)),
Lis =2 (3n2 + 21n + 50)£(0,1),
so that
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2—2n—3

Ly = Ly +Lip,+Li3=
1202£(0,1) + 6n=1A,£(0,1)).
Finally, we use the obvious fact that B,1 = 1 for all o (by the reproducing property of the kernel
K,), so

1= Ca,n Z?:O al

Since My1(0,1) = 2722 % 0 by (63), the formal power series on the right can be inverted:
1 o Nk

Can = =, aTM;1(0,1) = Zk=0§ .
where N, can be obtained from the recursion formula

S ke Mi1(0,1)N,, = { 1 ifm=0,

JHe=m TP IR0 ifm >0

Dividing the two formal series corresponding to the respective asymptotic expansions of B, f(0,1)
and B,1(0,1) gets us rid of the c, ,-term in (62) and we arrive at the desired formula

oo R'f(O,l)
Bof(0,1) ~ X7~
as a — o, where R; are differential operators that are given recursively by the standard formula for
the product of formal power series :
Rif(0,1) =X}, _o Nk M, f(0,1) ,
(see[132]) .Carrying out this procedure we see that

ROf(OI]-) = f(OI]-)a

so that

Rof(x,¥) = Rof*¥(0,1) = f*¥(0,1) = f(x,¥)
for arbitrary (x,y) € H, and that

Axf)(O, 0 92
Rif(0,1) = *DED 4+ (1 —n) L0 + £ (0.1),

((3n% +3n+1)f(0,1) —6(n— 1)d,f(0,1) +

3

M;1(0,1)

2

so that
— x,y _ 2 Af of 2 o*f
RifCo,y) = Rif*(0,1) = y* - (0, ) + (A =n)y - (6, y) +y* 5 (%)

2
n 0%
i=1,.2

6xl-

for arbitrary (x,y) € H with A=}, .This completes the proof of Theorem(3.2.1).
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Chapter 4
Noncommutative Polydomains and Berezin Transforms
We show an open problem for quite some time to find significant classes of elements in the
commutative polidisc for whicSh a theory of characteristic functions and model theory can be
developed along the lines of the Sz.-Nagy—Foias theory of contractions. We give a positive answer
to this question, in our more general setting, providing a characterization for the class of tuples of
operators in which admit characteristic functions. The characteristic function is constructed explicitly
as an artifact of the noncommutative Berezin kernel associated with the polydomain, and it is proved
to be a complete unitary invariant for the class of completely non-coisometric tuples. Using
noncommutative Berezin transforms and C*-algebras techniques, we develop a dilation theory on the
noncommutative polydomain .
Section (4.1): Noncommutative Polydomains
We denote by B(H) the algebra of bounded linear operators on a Hilbert space H. A

polynomial q € C[Z,,...,Z,] in n noncommuting indeterminates is called positive regular if all its
coefficients are positive, the constant term is zero, and the coefficients of the linear terms Z,,...,Z,
are different from zero. If X = (X;,...,X,) € B(H)"and q = X, a,Z,, we define the map @ y :
B(#) — B(H) by setting @, x (V) := X, a,X, Y X,.

Given two k-tuplesm := (m4,...,my) and n := (nq,...,n,) withm;,n; € N:= {1,2,...},
and a k-tuple g = (q, ..., q) of positive regular polynomials q; € C[Z;,...,Z,,], we associate
with each element X = (X;,...,X;) € B(H)™ x -+ X B(H )™ the defect mapping
Agx: B(H) — B(3) defined by

m m
$X: = (id - CDQLXl) Toro (id - (DCIerk) -
We denote by B(H)™ X, -+ X, B(H)™ the set of all tuples = (X;,...,X;) € B(H)™ X -+ X
B(H)™ , where X; := (X;1,...,Xin,) € B(H)™,i € {1,..., k}, with the property that, for any
p,q € {1,...,k},p # q, the entries of X;, are commuting with the entries of X,. In this case we say
that X, and X, are commuting tuples of operators. Note that the operators X; ;,..., X; ,,, are not
necessarily commuting.
We develop an operator model theory and a theory of free holomorphic functions on the
noncommutative polydomains
DF(H):={X= (X;,...,Xx) € B(H)™ X, - X B(H)™ : A}y (I) = 0for0 < p < mj.

Our study is an attempt to unify the multivariable operator model theory for the ball-like domains
and commutative polydiscs, and to extend it further to the above-mentioned polydomains. The main
tool in our investigation is a Berezin [183] type transform associated with the abstract
noncommutative domain D' := {Dg'(#) : H is a Hilbert space}.

In the last sixty years, this type of polydomains has been studied in several particular cases.
Most of all, we mention the study of the closed operator unit ball

[B(H)]7 := {X € B(H): I — XX* = 0}

(which corresponds to the case k = n;, = m; = 1,and g, = Z) which has generated the
celebrated Sz.-Nagy—Foias [154] theory of contractions on Hilbert spaces and has had profound
implications in function theory, interpolation, and linear systems theory. When k = n, =
1,m; = 2,and q, = Z, the corresponding domain coincides with the set of all m-
hypercontractions studied by Agler in [189], [192], and recently by Olofsson [185], [186].

In several variables, the case whenk = 1,n, >2,m; = l,andgq, =Z; + -+ Z,,
corresponds to the closed operator ball

[BEFO™M; = {(Xy,..., X)) € BEO™: [ — X,X{ — -+ — X, Xp = 0}

and its study has generated a free analogue of Sz.-Nagy—Foias theory (see [187], [188]. The
commutative case was considered by Drurry [181], extensively studied by Arveson [195], [196],
and also in [188], [195], [192], and [190]. We should remark that, in recent years, many results
concerning the theory of row contractions were extended by Muhly and Solel ([196], [197], [198])
to representations of tensor algebras over C*-correspondences and Hardy algebras. We mention that
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in the particular case when k = 1 and g, is a positive regular polynomial, the corresponding
domain was studied in [196], if m; = 1, and in [192], [198], [199], when m; = 2. The
commutative case whenm; > 2,n, = 2,and q; = Z; + --- + Z,,, was studied by Athavale [197],
Miiller [194], Miiller-Vasilescu [195], Vasilescu [186], and Curto-Vasilescu [196]. Some of these
results were extended by S. Pott [191] when g, is a positive regular polynomial in commuting
indeterminates.

The commutative polydisc case, i.e, k = 2,n;, = - = n, = l,andq = (Z,,...,Z;), was
first considered by Brehmer [195] in connection with regular dilations. Motivated by Agler’s work
[192] on weighted shifts as model operators, Curto and Vasilescu developed a theory of standard
operator models in the polydisc in [197], [198]. Timotin [195] was able to obtain some of their
results from Brehmer’s theorem. The polyball case, when k = 2andq; = Z; + - + Z,,,i €
{1,..., k}, was considered in [198] and [191] for the noncommutative and commutative case,
respectively. As far as we know, unlike the ball case, there is no theory of characteristic functions,
analoguos to the Sz.-Nagy—Foias theory, for significant classes of operators in the polydisc (or
polyball) case.

We work out some basic properties of the noncommutative polydomains Dg'(3{). One of the main
results, which plays an important role, states that any podydomain Dg'(#) is radial, i.e., 7YX €
Dg' (#) whenever X € Dg'(3) and r € [0, 1). This fact has also an important consequence in the
particular case when k = 1, namely, that all the results from [192], [198], [199], which were
proved in the setting of the radial part of Dg‘ll (H), are true for any domain Dg‘l1 (H).
We introduce the noncommutative Berezin transform at T € Dg'(H) to be the mapping By :
B(®{, F*(Hy,)) — B(#) defined by

Brlgl:= Kir(g ® Li)Kyr, g € B(Q, F*(Hp)),
where F?(H,,) is the full Fock space on ni generators and

Kor: 37 - F2(Hy) ® -+ Q@ F?(Hy,) ® Agr(D)(3)
is the noncommutative Berezin kernel associated with T, which is defined in terms of the
coefficients of the positive regular polynomials q,..., q,. We remark that in the particular case
whenH = C,q= (Z,...,Z), T = 2 = (A4,...,4) € D¥,andm; = n; = 1foranyi €
{1,..., k}, we recover the Berezin transform of a bounded linear operator on the Hardy space
H?(D%), i.e.,

k
Balgl = | [ - gk ) g € BUZDR),

where k; (z) :=[1,(1 — Zzi)_l andz = (zy,...,z,) € D

The noncommutative Berezin transforms are used to prove the main result of this (Theorem
(4.1.11)) which shows that each polydomain Dg'(H") has a universal model W = {W; ;} consisting
of weighted shifts acting on a tensor product of full Fock spaces. We show that a tuple of operators
Xis in the noncommutative polydomain Dg'(#) if and only if there exists a completely positive
linear map ¥ : C*(W;;) — B(J{) such that

YEW)r(W)1) = p(X)r(x)",

for any p(W), (W) polynomials in {W; ;} and the identity.

We introduce the noncommutative Hardy algebra F* (Dg") as the weakly closed algebra
generated by {W; ;} and the identity, and use it to provide a WOT-continuous functional calculus
for completely non-coisometric tuples T = {T;;} in Dg'(3), which are identified. We show that

®(p) :=S0T —lim(rT;;), ¢ = @(W;;) € F*(DY),
exists in the strong operator topology and defines a map @ : F°°(Dg‘) — B(H) with the property
that ®(p) = SOT'liLI}BrT [@], where B,.t is the noncommutative Berezin transform at rT €
Dy (30).
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Moreover, @ is a unital completely contractive homomorphism, which is WOT-continuous (resp.
SOT-continuous) on bounded sets.
We introduce the algebra Hol(Dg',4) of all free holomorphic functions on the abstract radial

polydomain Dg'.,4. We identify the polydomain algebra A(Dg') (the closed algebra generated by
{W, ;} and the identity) and the Hardy algebra F*(Dg') with subalgebras of Hol(quad) For

example, it is shown that the noncommutative Berezin transform is a completely isometric
isomorphism between F* (Dg") and the algebra of bounded free holomorphic functions on Dg,.. 4.

We remark that there is an important connection between the theory of free holomorphic functions
on abstract radial polydomains Dg',,4, and the theory of holomorphic functions on polydomains in
C® (see [193], [192]). Indeed, if 7 = CP andp € N, then Dg'(CP) can be seen as a subset of
€ +-+1P* \wiith an arbitrary norm. Given a free holomorphic function ¢ on the abstract radial
polydomain Dgl,,q, We prove that its representation on CP, i.e., the map ¢ defined by
Crat4mOP S DR (CP) 3 (i) = @A) € €
is a holomorphic function on the interior of Dg'(C?). In addition, ¢ is bounded when ¢ € F*(Dg)),
and it has continuous extension to Dg'(C?)) when ¢ € A(Dg).
We obtain a characterization of the Beurling [192] type joint invariant subspaces under {Wi, j}. We
prove that a subspace M' ¢ @, F?(H,,) ® ¥ hasthe form M =W (®X, F?(H,,)) @ & for
some inner multi-analytic operator with respect to the universal model W, if and only if
W®1(PM) > O0forany p € Z¥ ,p <
where P, is the orthogonal projection of the Hilbert space ®¥_; F? (Hnl.) &® H onto M. In the
particular case when m = (1,...,1), the latter condition is satisfied when W @ I|,, is a doubly
commuting tuple. We also characterize the reducing subspaces under {Wl-,j} and present several
results concerning the model theory for pure elements in the noncommutative polydomain Dg' (#).
We provide a characterization for the class of tuples of operators in Dg'(#’) which admit
characteristic functions. We say that T € Dg' (%) has characteristic function if there is a multi-
analytic operator ¥ with respect to the universal model W such that
Ko Kir + P9 = [,
where K r is the noncommutative Berezin kernel associated with Dg'(#{). In this case, ¥ is
essentially unique. We prove that T € Dg'(#) has characteristic function if and only if
Agwer( —Kqr. Kgp) = Oforanyp €Z{,p < m
The characteristic function is constructed explicitly and it is proved to be a complete unitary
invariant for the class of completely non-coisometric tuples. We provide an operator model for this
class of elements in D' () in terms of their characteristic functions.

Using several results from the previous and C*-algebras techniques, we develop a dilation theory on
the noncommutative polydomain Dg'(3). The main result states that if T = {T; ;} is a tuple in
Dy (31), then there exists a =-representation = : C*(W;;) — B(X) on a separable Hilbert space
¥, which annihilates the compact operators and Ag'rwy(Ix,,) = 0 such that A can be identified
with a x-cyclic co-invariant subspace of
R = [(®f, F2(Hy)) ® bgr(DFH)] K
under each operator
W, ®I 0
=l o row)

and such that T;; = V7|4 for all i, j.Under a certain additional condition on the universal model W,
the dilation above is minimal and unique up to unitary equivalence. We also obtain Wold type
decompositions for non-degenerate =-representations of the C*-algebra C*(W, ;).

We mention that the results are presented in a more general setting, when q is replaced by ak-

tuple f = (f1,..., fi) of positive regular free holomorphic functions in a neighborhood of the origin.
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Also, the results are used in [190] to develop an operator model theory for varieties in
noncommutative polydomains. This includes various commutative cases which are presented in
close connection with the theory of holomorphic functions in several complex variables.

Foreachi € {1,...,k}, let F;, be the unital free semigroup on n; generators gi,.. .,g,ill. and the
identity g§ . The length of @ € F;;, is defined by |a| := 0ifa = g{and |a|:= pifa =

g5 ---gj-p,wherejl,.. Jp € {1,...,n;}. If Zy,..., Z,,, are noncommuting indeterminates, we
denote Z,:= Z; - 7, and Zyi: = 1. Let f;: = Zaemi aialg,a;q € C, be aformal power series in

n; nhoncommuting mdetermlnates Zy,...,Zyn,. We say that f; is a positive regular free holomorphic
function if the following conditions hold: a; , = 0 forany a € F; ,a; i = 0, a; i> 0 forj =
]

9o
1/2k
. 2
hmsup<z |ai,a| ) < oo,
lal=k

1,...,n; and

k—o0

Given X; := (Xi1,...,Xin,) € B(}[)"i define the map @y, : B(H) — B(H) by setting

chLXL(Y) —z Z alaXlaYXLar Y € B(}[)'
1aelF+ lal=k
where the convergence is in the week operator topology.

Letn:=(n4,...,np)andm:= (my,...,my), wheren;, m; € N:= {1,2,...}andi €
{1,...,k},and letf:= (f,..., fx) be a k-tuple of positive regular free holomorphic functions. We
introduce the noncommutative polydomain D" (H') to be the set of all k-tuples

X:= (Xy,...,X) € B(H)™ X, -+ X, B(H)™
with the property that @, . (I) < I and
(id = Dpp,)™"" o (id = g, ) (1) 2 0
foranyi € {1,...,k}and ¢; € {0, 1}. We use the convention that (id — CDfi,Xi)o = id. We
remark that D¢ (3) contains a polyball [B(H)™];, X, -+ X [B(H)™];, forsomery,...,7 > 0,
where
[B(HOM];, := {(Yy,...,Yn,) € BEO™M: VY + -+ Y, Vi <1}
We refer to Dg' := {Dg'(#) : H is a Hilbert space} as the abstract noncommu-tative polydomain,
and Dg' () as its representation on the Hilbert space 7{.

Alinear map ¢ : B(H) — B(H) is called power bounded if there exists a constant M > 0
such that ||@*|| < M for any k € N. For information on completely bounded (resp. positive) maps,
we refer to [191] and [192]. If p:= (py,...,px) EZ¥ and g := (qq,...,qx) EZX, wesetp < q
iff p; < q;foralli € {1,...,k}, whereZ, := {0,1,...}.

Proposition (4.1.1)[186]: Let ¢, : B(H) — B(H),i € {1,...,k}, be power bounded positive
linear maps such that
PiP; = P;jP; Lje {1,...,k}.
If Y € B(H) is a self-adjoint operator and p := (p4,...,p,) € Z¥ with p;
following statements are equivalent.
() (id — @)tP1 - (id — @ )kPk(Y) = 0 for all€; € {0,1} with e := (€,...,€;) # 0and i
€ {1,...,k}.

(@) (d — @)% - (id — ¢,)*(Y) = 0 forall q := (qy,...,qx) € Zwithq < pand q # 0.
Proof: Note that it is enough to prove that (id — ¢,)Pt -+ (id — @, )Pk(Y ) = 0if and only if
(id — @)% -+ (id — @)% (Y) = 0 forallq := (qq,...,q,) € Z¥ withg; < p;andq; = 1. We
proceed by induction over k € N. Letk = 1, and assume that (id — ¢,)P1(Y) = Oandp, = 2.
Suppose that there is hy € F such that ((id — ¢,)P1"1(Y)hg, ho) < O. Sety;: =

@l((id — )P~ (Y)hg, ho),

> 1, then the
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j = 0,1,... and note that {yf};io is a decreasing sequence with y; < y, < 0. Consequently, We
deduce that .72, y; = —oo. On the other hand, we have

[}

>yl = K(id - )i = ) (Vg o)
j=0
< (1+[le? DDA = p)P=2WI I I-
Since ¢, is power bounded, we get a contradiction. Therefore, we must have (id — ¢,)P11(Y) >
0. Continuing this process, we show that (id — ¢)P1(Y) = 0 if and only if (id — ¢)S(Y) = 0 for
s =12,...,p;.
Now, assume that
(id — @)P1 - (id — @i )PR(id — @p4)PF+1(Y) = 0.

Due to the fact that @;¢; = @;¢; forall i,j € {1,...,k}, we deduce that (id — @p41)P*+1(Yy) =
0, where Y, := (id — @ )P1 -+ (id — @4 )Pk(Y). On the other hand, due to the identity

(id = @ Pe(Y) = 2( 07 () ek ),

the operator (id — ¢, )Pk(Y) is self-adjoint whenever @y is a positive linear map and Y is a self-
adjoint operator. Inductively, one can easily see that Y}, is a self-adjoint operator. Now, applying the
case k = 1, we deduce that (id — @ 4+1)P*+1(Y,) = 0ifand only if (id — @y 41) ¥+ (Y;) = 0 for
all gi+1 € {0,1,...,pr+1} Hence,
(id — @ )Pkt (id — @)P*(id — Qpy)¥*1 (Y) =2 0
Due to the induction hypothesis, we deduce that
(id — @)W+ (id — @) (id — Qge)¥+1 (Y) = 0.
forall (qq,...,qr+1) € ZX** with q; < p; and q; = 1. This completes the proof.
Letd = (¢4,..., ) be a k-tuple of power bounded, positive linear maps on B(H) such that
©i9; = @je;,i,j € {1,...,k}. Foreachp := (py,...,px) € Z* , we define the linear map
AR B(3) > B(3{) by setting
Ay "= Mgi= (id — @y)Pt - (id — @i)P
Lemma (4.1.2) [186]: Letm € N* and letY € B(%) be a self-adjoint operator such that
AR (Y) = 0 forall p € ZK withp < mandp # 0. If q € Zk with q # 0 and
q < m, then
d(Y) < AGY).
Proof: Setm := (m,,...,m;) € N¥ andm’ := (m; — 1,m,,...,my). Since A®'(Y) > 0 and
@, 1sa positive map, we deduce that
e(V) =A8'(Y) — o1 (AF'(Y)) <AF'(Y)

Using the fact that ¢, ¢; = @;¢; fori,j € {1,..., k}, one can continue this process and complete
the proof.
Proposition (4.1.3) [186]: Let Y € B(H) be a self-adjoint operator, m € ZX, m # 0, and let

= (¢4,.--, @) be a k-tuple of commuting, power bounded, positive linear maps on B(H) such
that

(i) AR(Y) = 0,and

(i) each ¢, ispure, i.e., ' (I) > Ostronglyasp — oo.
Then A?I,(Y) > 0 forany g € ZX withq < m. In particular, Y > 0.
Proof: Setm' := (m, — 1,m,,...,m;) and note that due to the fact that Ap(Y) = 0 and ¢, isa
positive linear map, we have

0 SAR(Y) = AB'(Y) — @i (AR (V).
Hence, we deduce that ¢? (AR’ (Y)) < AR'(Y) foranyp € N. Since AR'(Y) is a self-adjoint
operator, we have
—[[a8' Ml (D) < o 1§ D)) < (|2 M |lof (D
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Now, taking into account that @7 (I) - 0 strongly asp — oo, we conclude that AR (Y) > 0.
Using the commutativity of ¢, ..., @,, one can continue this process and complete the proof.

Foreachi € {1,...,k}, letf; := Zaiem,lalﬂ a; Z, be a positive regular free holomorphic
function in n; variables and let A := (4,,...,4,) € B(H)™ be an n;-tuple of operators such that
Yialz1 QoA Ay 1S convergent in the weak operator topology. One can easily prove that the map
®; 4:B(H) — B(H), defined by

Oy (X) = Z aA XA, X €B(%H),
al=1
where the convergence is in the weak o;l)elrator topology, is a completely positive linear map which
is WOT-continuous on bounded sets. Moreover, if 0 < r < 1, then
d; 4(X) = WOT — lim Py, .y X), X € B(H).
These facts will be used in the proof of the next theorem.
Let = (Ty,...,Tx) € B(H)™ XX, B(H)™ ,where T; := (T;,,...,T;,,) € B(H)™
foralli = 1,...,k, be such that @, . (I) is well-defined in the weak operator topology. If p :=
(1. pk) € Z¥ and f:= (fy,..., fir), we define the defect mapping Af;: B(#) » B(H) by
setting
Appi= (id = @pp)" - (id = g )™
Givenr > 0,wesetrT := (rTy,...,rT}) and rT; := (rTiq,-. o rTip,) fori € {1,...,k}. We say
that the k-tuple T has the radial property with respect to Df* (H) if there exists § € (0, 1) such that
rT € D' () forany r € (6,1].
Theorem (4.1.4) [186]: Let T = (T},...,T) € B(H)™ X, -+ X, B(H)™ be such that @, r (1)
<Iforanyi € {1,...,k},and let @ € Z* be with q # 0. Then the following statements are
equivalent:
(i) T € DF*(3);
(i) foranyp; € {0,1,...,m;}andi € {1,...,k},
(id - (Dfi,Ti)pl (id - Cka'Tk)pk(I) = 0;
(iii) Aflr(I) = Oforanyr € [0,1],
(iv) there exists § € (0,1) such that Afi,(I) = 0foranyr € (6,1);
(v) T has the radial property with respect to D{* (H).
Proof: The equivalence of (i) with (ii) is due to Proposition (4.1.1), when applied to ¢; = @, 7, .
We prove that (ii) implies (iii). First, note that if D € B(H),D = 0, then, foreachi € {1,...,k},
(id — @;,7,)(D) = 0= (id — &/, )(D) = 0, r € [0,1]. €))
Indeed, if ®¢ (D) < D,then @ ... (D) < D foranyr € [0,1]. Now, assume that (ii) holds. If
p € Z§ withp > e;:=(1,0,...,0) € ZX, then (id — @y, ) (A (1)) = Oforany p € Z¥
withe; < p < m.
Consequently, due to (1), we have
(id — ®p 7 )(AF:7 (D) = 0 2)
forany r € [0,1] and any p € ZX withe; < p < m. Due to the commutativity of
@ re- 0 Pr, 1, the latter inequality is equivalent to

(id = Pp,r)(Afy (id = @p,,7,)(1)) = 0
forany r € [0,1] and any p € Z¥ with 2e; < p < m. Due to (2), we have AE;Zel(id -
@, »r,) (1) and, applying again relation (1), we deduce that
(id — @p, 1) (AFy " (id — p,47,)*(D) = 0
forany r € [0,1] and any p € Z¥ with 3e; < p < m. Continuing this process, we obtain the
inequality
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(id - Cl)fznTz)p2 (ld - q)fk:Tk)pk(id - cbflﬂ‘Tl)pl(l) = 0

forany p € Zk withe;, < p < m,andanyr € [0,1]. Similar arguments lead to the inequality
Afyr(I) = Oforany r € [0, 1]. Since the implications (iif) = (iv) and (v) = (i) are clear, it
remains to prove that (iv) = (v).

To this end, assume that there exists § € (0, 1) such that Afl.(I) = 0foranyr € (6,1).
Since @, r, < 7, itis clear that ®f, ,.r, is pure foreach i €
{1,..., k}. Applying Proposition (4.1.3), we deduce that AEFT(I) > 0 foranyr € (6,1) and any
p € Z¥ with p < m. Note that AErT(I) is a linear combination of products of the form

o -k L (1), where (qy,...,q;) € ZE. On the other hand
CD}Ill,rTl CD}]:’T,{ (1) = WOT — Jh_)rg Z Cal,...,ale,al Tk,akTI:,ak Tl*,al =1

aiE[in
|y [+ +lagl<)
for some positive constants ¢, o, = 0.Givenx € 3 and e > 0, there is N, € N such that

z Cal,...,akrz(lalI+m+|ak|)(T1,a1 Tk,akTI:,ak Tl*,alx; x)<e
aiE[Fﬁi
||+ +lagl<j
foranyj = Nyandr € (6,1). This can be used to show that
a1 .. 59k — _ 1 q1 ik
q)f1»T1 (ka;Tk (1) = WOt 1}_{1} (Dfl:rTl chk'TTk (N
Hence, we deduce that A (1) = WOT — lim Afyr (D) = Oforany p € Z withp < m.

Consequently, T € D" () and it has the radial property. This completes the proof.
As expected, the domain D{* () is called radial if any T € D{*(#) has the radial property.
Corollary (4.1.5) [186]: The noncommutative polydomain D" () is radial.
In the particular case when k = 1, Theorem (4.1.4) shows that any noncommutative domain
D}Tl(}[), m, € N, is radial. An important consequence is the following
Corollary (4.1.6) [186]: All the results from [192], [198], [199], which were proved in the setting
of the radial part of D}'lll (H), are true for any domain D}'lll (7).

Another consequence is the following

Corollary (4.1.7) [186]:
The following statements hold:

() Iff = (f,£2),and T = (T, T;) € D" (H) x DL (H) with Af(D) = 0,thenT €
D{ (7).

ii = (Ty,...,T}) € 1 X, o X, kan o = I,i € {1,...,k}, then

i) IfFT = (T T B(H)" B(3)™ and ®;, (1 Ii € {1,...,k},then T
is in the polydomain Df* (H).
We say that a k-tuple T = (Ty,...,Ty) € Df*(H) is pure if

; ; qk ; q _
q=(q11,}zlk)ez’i(ld — q)fk,rk)"'(ld - chf,Tl)U) = I.
We remark that {(id — CD}]:,T,() < (id — q’?ll,n)(1)}q=(q1....,qk)eZ’i is an increasing sequence of
positive operators. Indeed, due to Theorem (4.1.4), (id — ®¢, r,) -+ (id — P, r)(I) = 0. Taking
into account that
Dp 1y, Py, ArE commuting, we have
qr—1 q1-1

(id = ®fy ) (d = O ID = ) Df g ) B, (id = By, ) (id = D)D),
s=0 s=0

which proves our assertion. Note also that
(id = @i ) (id — @)D < (d —dft . e (id — &))< -
< (id — qaj?lle)(I) <I.
Hence, we can deduce the following result.
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Proposition (4.1.8) [186]: A k-tuple T = (T,...,T,) € Df*(#) is pure if and only if, foreach i €
{1,...,k}, ®7 ;. (I) - Ostronglyasp — oo.
A k-tuple T € D{* () is called doubly commuting if T; , T, = T/, T;, forany i,j € {1,...,k}
withi # j,andp € {1,...,n;},q € {1,...,n;}. The next results provides some classes of elements
in D" ().
Proposition (4.1.9) [186]: Let T = (T,...,Ty) € B(H)™ X, - X, B(H)™ be such that
@ (1) < Tandletm = (my,...,my) € N*. Then the following statements hold.

(i) If Afr(I) = Oand, foreachi € {1,...,k},® . (I) > Ostronglyasp — oo, then T €
D{*(H).

(i) If T € D" (3) X -+ X, DE“(}[) is doubly commuting, then T € D*(#).

(iii)) If my®@p 7. (1) + -+ myPp, 7, (1) < I, then T € DF*(H).

(iv) If T = (Ty,...,Ty) € Df*(H), then Afr(I) = 0 if and only if

(id — ®p ) (id —®p 7 )U) = 0.
Proof: Applying Proposition (4.1.1) and Proposition (4.1.3), when ® = (®f, 1 ..., Pf, 1, ), We
deduce part (i).
To prove part (i), note that since T; € D (%), we have (id — @) (1) = 0foranyp; €
{0,1,...,m;}.
Using the fact that T is doubly commuting, we deduce that
AR (D) = (id — )" (D) (id = Pp7) (1) = 0

for any p € ZX with p < m, which shows that T € D"(%().
Now, we prove part (iii). Let p := my; + .-+ mypandseti;:= 1if1 < j < my,i;:= 21if
m +1<j<m+my,.,andi:=kifm; + -+ m_;+1=<j<m+--+ my. Due
to Theorem (4.1.4), to prove (iii) is equivalent to showing that if 257:1 ‘Dfij,Tij () < I,then

(ld - q)fil'Til ) R (ld - q)fipJTip)(I) 2 0
SetY;, =TI and Y= (id — <I>fi_,Ti_)(Yij_1) ifj € {1,...,p}. We proceed inductively. Note that
] 7]
I=Y,2Y, = (@(d - 1)) =2 0.Letn <p and assume that
12 Yin 2 (ld - q)filfTil e q)fin'Tin)(I) 2 0
Hence, we deduce that
I= Yin = Yin+1 =Y, — fing1Tings
= (id - Pri oy T q)fin:Tin)(I) — &y
which proves our assertion.
Now, we prove part (iv). If T = (Ty,...,T;) € Df*(H), Theorem (4.1.4) implies that
(id — ®p 7 )P (id — Pp, 7 IPR() = 0
forany p; € {0,1,...,m;}andi € {1,...,k}. Dueto Lemma 6.2 from [192],if ¢ : B(H) -
B(#H) is a power bounded positive linear map such that D € B(H) is a positive operator with
(id —¢@)(D) = 0,andy = 1, then
(id —)Y(D) =0 ifand only if (id — ¢)(D) = 0.
Applying this result in our setting when ¢ = @, 7.,y = my,and D = (id — ®p,7.)"" - (id —
Cka,Tk)mk(I) > 0, we deduce that relation Af:(I) = 0 isequivalentto (id — @, r)(D) = 0.
Due to the commutativity of @, . --- &, 1, the latter equality is equivalent to (id —
@ 7)) S (A) = 0,where A= (id — @p 7)™ (id — Pp, 7)™ (id — Pp 7 )(I) = 0.
Applying again the result mentioned above, we deduce that the latter equality is equivalent to
(id — @, r,)(A) = 0. Continuing this process, we can complete the proof of part (iv).

(Yi,)

int1Tingr

D),
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Df'(H) has a universal model W = {W, ;} consisting of weighted shifts acting on a tensor
product of full Fock spaces.
Let H,,, be an n;-dimensional complex Hilbert space with orthonormal basis eb,..., e,ili. We
consider the full Fock space of H,,, defined by

F2(Hp,):= @ HEP,

p=0
where HEP: = €1 and H2 is the (Hilbert) tensor product of p copies of Hy, . Set e, := el ®
- Q e]p Ifa = g]1 g]p € IF};, and egb := 1 € C.Itisclearthat {e} : «a E IF5.} is an
orthonormal basis of F2(H,,).

Letm;,n; € N:= {1,2,...},i € {1,...,k},andj € {1,...,n;}. We define the weighted left
creation operators W; ; : F?(H,,) - F?(H,,), associated with the abstract noncommutative domain
D by setting

b

. La .
Wi,jeé( = ?e!‘”a, a € ]F:l_l , (3)
blg]

where

[

(mz) (ml) p+m —1
b, =1 and b; Z Z Ay, alyp( m, — 1 ) (4)

Y1, Vp=Qa
Valelyplz1
forall a € Fy, with [a] > 1.

Lemma (4.1.10) [186]: Foreachi € {1,...,k}andj € {1,...,n;}, we define the operator W, ;
acting on the tensor Hilbert space F?(H,,) ® ‘- ® F*(H,,) by setting
W, =1Q QI QW;;Q I® I,

i—1times k —itimes

where the operators W; ; are defined by relation (3). If W; ; := (W, 4,..., W;,), then the following
statements hold.

Q) (id — ®p w,)™ - (id — Pp w, )™ () = Pc, where P¢ is
the orthogonal projection from ®}_; F*(H,,) onto C1 c®}_; F*(H,,), where C1 is identified
with C1 @ - ® C1.

(i) W := (W,,...,W,) isapure k-tuple in the noncommutative
polydomain D*(®}_; F*(Hy,)).

Proof: Note that, due to relation (3), foreach i € {1,...,k} and g; € FF}}, , we have
b(ml)
LYi
Wi ﬁlW Bi ea = bi(:';il)
0 otherwise.
As in Lemma 1.2 from [192], straightforward computations reveal that (id — @;,w.)" (I) =

~QRIQP: QR IQ®--® I, where P¢ is on the it" position and denotes the orthogonal projection
from F?(H,, ) onto C1 c F?(H, ). Since the k-tuple W := (W, ..., W,,) is doubly commuting, we
deduce that

(id — @pw, )™ - (id — Dp W, )™ () = (id — Ppw )™ U) (id — Pp w )™ (1) = Pe.
which proves part (i). To prove part (ii), note first that relation (3) implies q’fc’i,wi (Del = 0 if
p > |al,a €F;.Since ||®f \ (DIl < 1foranyp € N, we deduce that zl)l_l)lc}o P W, (D) = 0in

€q, if a; =By;,vi, Vi€ Fy,
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the strong operator topology. Taking into account that Afy,(I) = P¢, we can use Proposition
(4.1.3) to conclude that W is in the noncommutative polydomain D*(®¥_, F? (Hy,)). Moreover,
due to Proposition (4.1.8), W is a pure k-tuple in D*(®¥%_, F? (Hyp,)).

We mention that one can define the weighted right creation operators A; ; : F?(H,,) = F*(Hy,)

by setting
e

(m;)
Lgja
As in Lemma (4.1.10), it turns out that A := (A4,...,Ay) is a pure k-tuple in the noncommutative
polydomain D{* (®%; F2(H,,)), where f = (f;,..., fi) with fi: = X421 @152, and @ =
g]i-p - g}, denotes the reverse of g - g]i-p € F;..

Throughout, the k-tuple W := (W,,..., W,) of Lemma (4.1.10) will be called the universal
model associated with the abstract noncommutative polydomain Df". We introduce the
noncommutative Berezin kernel associated with any element T = {T; ;} in the noncommutative
polydomain D{* (H) as the operator

Kip:H - F(Hp,) ® @ F?(Hp,) ® A (D(FH)

A i +
Ai'jea = eagj, a e IFTli

defined by

Kighi= 0 [0 bk, © - @ ef AR 2Ty, - Tigh,
BielF;;i,i=1,...,k
where the defect operator is defined by
I?T(I) = (ld - q)fl,Tl)ml (ld - q)fk,Tk)mk(I)'

and the coefﬁclentsbfgl), e b,(c"g") are given by relation (4). The fact that K; 1 is a well-defined
Pk ’

bounded operator will be proved in the next theorem.

Theorem (4.1.11) [186]: The noncommutative Berezin kernel associated with a k-tuple T =

(Ty, ..., Ty) in the noncommutative polydomain D" () has the following properties.

(i) K¢ 1 is a contraction and

Ki K¢ pr = lim ... lim (id — &/ ) (id - ol ) (D),

qg = q1 —®© Tk
where the limits are in the weak operator topology.
(i) If T is pure, then
Kt 1Ks r = Iy
(iii) Foranyi € {1 ., k}andj € {1,...,n;},
KenTi; = (Wi ® DKg .

Proof: Let T = (Ty,...,T;) be in the noncommutatlve polydomain D{* () and let X € B(H) be
a positive operator such that
AP (X) := (id — @p 7, )P1 -+ (id — Dp, 7, )PK(X) = 0
forany p := (py,...,pr) € ZK withp; € {0,1,...,m;}andi € {1,...,k}. Fixi € {1,...,k} and
assume that 1 < p; < m;. Then, due to the commutativity of ¢, r., ..., ¢, r, , We have
(id — @7 )0 (0 = AL, (X) = 0,
where {e;}¥_, is the canonical basis in C*. Hence, and using Lemma (4 1.2), we have
0 < D, (AP (X)) SAPT(X) <
which proves that {®7 1. (Ap “1(X))}2, is a decreasing sequence of posnive operators which is
convergent in the weak operator topology. Since @, r, is WOT-continuous on bounded sets and
Dp 1y, Prpr T Ar€ commutigg we deduci that
lim @F . (Afr (X)) = Af ‘(hm ®F . (X)). (5)
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Then we have

DO@EC0):= ) 0, (A2 00) = D @f, 1 [A7100 — by, (877 (0]
s=0 0

= A (X) — qlliinoo ol (Aslf”,_;ei (X)) <457 (X) < X.
Due to relation (5), we deduce that
0 <DV (ARL (X)) = APL® (X = lim cb]?i{Ti(X)) p<ml<op,.
Define Di(j)(AET(X)) =Y, d)jfi,Ti(Dl.(""l)(AET(X))), where j = 2,...p;. Inductively, we can
prove that
0= DP(F () = 877" (X = Jim @, (0) S AP0 <X, j<pe (6

: q; . . .
_ qulinoo CDfi'Ti(X), relation (6) implies

Indeed, if j < p; — 1andsettingY :=X
dj+1

DIV (RL(X) = lim Zq’ﬁ.rﬁ[AE;ei(y)]
=0

qj+12®

= AE;”“)‘“ [Y— lim cb‘“*?(y)]

qjer—o0 ST

qjr1~o0 T0Ti

— AE;(}+1)€'1(Y) _ AE;(j+1)ei< lim (qu+1(Y)>
On the other hand, we have

lim @Y (Y) = lim oY (X— lim &Y (X))

q]-+1_>oo filTl q]-+1—)oo fi'Tl q]—>oo fi'Ti

= lim ®/}(X) - lim lim &} (qnji’jTi(x))zo

qjer—oo ST qjs1-00q o0 SiTi
Combining these results, we obtain

qj—o fiTi

DIV (88, (X)) = AU (X - lim o’ <X)> < ap 00 <X

forany p := (py,...,px) € Z§ withp < mandp; > 1, which proves our assertion. When j =
p;, relation (6) becomes

0 < Di(pi)(A?T(X)) = A?;piei <X — lim CI)}I_T_(X)> <X
) , q— il

On the other hand, taking into account that we can rearrange WOT-convergent series of positive
operators, we deduce that, for eachd € N,

q);li,Ti (Alf),T (X)) = Z ai,a1 Ti,a1 Z ai,adTi,ad (AET (X))T:ad Ti’fal

a; €FF |21 ag€Ff lag|=1

= Z Z Ay Qg Ty Dpp GOTE,

YEF$1,|Y|Zd al,...,ade[F;gl

a1, Ag=yY
|a1]21,...|aglz1

and
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PP (0) = ) 77,88, ()
s=0

Iyl \
= Afr(X) + /2 Z Apg, " Ay IT yDE L COTS,

yEIF+ |y|>1 = adEIF+
0(1 “ad=Y
la1]21,...|aglz1

Since Di(j)(AET(X)) =Y, d)jfi,Ti(Di(j"l)(AET(X))) forj = 2,...,p;, using a combinatorial
argument and rearranging WOT-convergent series of positive operators, one can prove by induction
over p; that

||

Di(m) (A?,T(X)) — AET(X) + E E E Aiyy = Qi (p p-p—l 1 ) Ti,aA?,T(X)Ti'a
2

a€Ff lalz1| p=1 YpEIFnl
]/1 SYp=«&
[v1l21,...1lypl21

( i) *
= Z b 2UT; o Af 1 (X)T,
aE[F,*{i
Foreachi € {1,...,k}, letQ; ¢ B(H) bethesetofallY € B(H),Y = 0, such that the series
2B,eFE, bf"gi)Ti,ﬁiYTifﬁi Is convergent in the weak operator topology, where

|l

-1
b(mz) = 1 and b(mt) z z ai,)/l ”'ai,yp (p ;l_njrll 1 )
p=1

YpE]FnL
Yl SYp=a
[v1l21,..lypl21

forall a € IF;, with |a| = 1. We define the map W; : Q; — B(¥) by setting
W, (Y): = z b Ty g YT,

Bi€Fs,
Due to the results above, we have

0 < Wi(Af, (X)) = D™ (A, (X))
= Ag;miei <id — qliiirgo(l)?:ji) X) (7)
< AR < X,

forany p := (py,...,px) €ZX withp < mandp; > m;.Since T = (Ty,...,T,) is in the
noncommutative polydomain D{* (H), Theorem (4.1.4) implies

. p . p
APr(D) = (id = @p )" - (id = Ppr,) (1) 2 0
forany p := (py,...,pr) € ZX withp; €{0,1,...,m;}andi € {1,...,k}. Applying relation (7)
in the particular case wheni = 1, Py = my, and X = I, we have
0 < W (AP (D) = DM (@PL(D) = APy ™ (I — lim &%, (D) < APy ™) <
4 q1—>OO

forany p’ = (my,p,,...,px) Withp’ < m. Hence and using again relation (7), when i =

p = (0,my,ps...,p), and lim (id — @', )(I) = 0, we obtain

q1—>00

0 < Lpz(qﬁ(A T(I))) (Ap mlel( o qulT (I)>>

ql—)OO
= AP T Jim im (id — 0%, )(id — DT ) (1)

q2—>oo qi—o® fuTy
S AET—mlel mzez(l) S I
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forany p”’ = (mq,m,, ps,..., ). Continuing this process, a repeated application of (7), leads to
the relation

0 < (Weoro W)@ARMD) = lim lim (id - ol Yer (id — L)1) < 1,

—00 ql—)OO

where m = (m4,...,m). To prove item (i), note that the results above imply
2 * *
K xh]|” = Z Z biip by (Tig Top S (DTy g, T g, 1)

BkE[Fnk BlE[Fnl
= ((Wy o o YDA (DA h) < IR
forany h € H, and

K oKpp = lim - lim (id — &, ) (id — 8, (D).

qk—>oo ql—)OO

Now, item (ii) is clear. To prove part (iii), note that

(Jeim

. i el if B; = gty;, v; € Ff
VVi,jeﬁl?i — \/W Yi ﬁl g]yl Vi n; (8)
ia;
0 otherwise.

forany g; € Fy, and j € {1, ...,n;}. Hence, and using the definition of the noncommutative Berezin
kernel, we have
(W;; ® I)K¢rh

_ (my) (mg) 1 i—1 * i i+1
=D e e @@ @ wieh @
BpE]an,pE{l,...,k}

1
& Afr(D2T g, -+ Ty g 1

_ (my) (my) (my) 1 i-1 i i+1 k
= z \/bl,ﬁi '"\/bi,yi "'\[bk,ﬁk es, ®"'®eﬁi-1®ell’i®eﬁi+1®"'®eﬁk
BpelF;;p,pe{l,...,k}{i}

® A?T(I)1/2T1i31 Titl,ﬁiT:,g}yiTi:‘lﬁiﬂ T’:ﬁkh

forany h € H. Using the commutativity of the tuples Ty, ..., Ty, we deduce that
(W ® DK¢r=Ke T/
foranyi € {1,...,k}andj € {1,...,n;}. The proof is complete.
Theorem (4.1.12) [186]: Let T = {T;;} be in the noncommutative polydomain D{" (3) and let
S:= span{p(W; ) )g(W; ;)" : p(W;;),q(W;;) € P(W)},
where the closure is in the operator norm. Then there is a unital completely contractive linear map
Y 1: S — B(H) such that

R e/’)fk

¥ r(g) = 1r1£r11 B.rlgl, g €S,
where the limit exists in the norm topology of B(H), and

S S
Wt T z py(Wij)q, (W)™ | = z Py (T;1)a, (Tij)
y=1 y=1

for any p,(W;;)q,(W;;) € P(W) and s € N. In particular, the restriction®; r to the polydomain

algebra A (D{") is a completely contractive homomorphism. If, in addition, T is a pure k-tuple, then
limB,r[g] =Brlgl, g €S,

Proof:According to Theorem (4.1.4), rT = (rTy,...,rTy) € DF(H) forany r € (0,1). Since we

have ®F .. (I) < r"®f . (I) < r"lforanyn € N, Proposition (4.1.8) shows that T is a pure

k-tuple in D ().

Using Theorem (4.1.11), we deduce that the noncommutative Berezin kernel K¢ .1 is an isometry

and
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K§ 1 [P(Wi,j)Q(Wi,j)* ® Iy |Ks,r = P(rTi,j)Q(TTi,j)*» p(W; ;) )qg(W; ;)"

e P(W). 9)
Hence, we obtain the von Neumann [57] type inequality
S S
Z py(rTi;)a, T ) || < Z Py (Wi ay (W)’ (10)
y=1 y=1

forany p,(W;;),q,(W;;) € P(W),s € N,andr € [0,1].Fix g € Sand let

{xn (Wl-,j, W{jj)};f;o be a sequence of operators in the span of 2 (W)P(W)* which convergesto g in

norm,asn — oo. Define W 1(g) := lim x,(T;;, T;;) - The inequality (10) shows that W r(g) is
n—-oo

well-defined and ||®; +(9)|| < llgll. Using the matrix version of (9), we deduce that ¥  is a

unital completely contractive
linear map. Now we prove that W¢ t(g) = 1irr% B,r [g]. Note that relation (9) implies
T

n (T rT) = K opOn (Wi j W) ® LK pr = Brp[xn (W j, Wi
foranyn € Nandr € (0,1). Using the fact that W ,.t(g) : lim x,, (rT;, rT;") exists in norm, we
n—-oo

deduce that
le,rT(g) = K;,rT(g 03¢ I}[)Kf,rT = BrT[g]- (11)
Givene > 0lets € N be such that ||y,(W;, W;") — gll < § . Due to the first part of the theorem,

we have
* * €
”‘Pf,r'r(g) — xs T, T < llg — xs(W;, W)l < 3
forany r € [0, 1]. On the other hand, since y,(W;, W;") has a finite number of terms, there exists
6 € (0,1) such that

* * E

”Xs(rTirrTi ) - Xs(TirTi )” < §

forany r € (6,1). Now, using these inequalities and relation (11), we deduce that
”q"f,T(g) - BrT[g]” = ”q’f,T(g) - le,rT(g)”
< ”‘Pf,T(g) — Xs(Ti, TH|| + x5 (Ti, T) — xs Ty, v TH

+Hxs T 7T — W (9| < €
forany r € (§,1), which proves our assertion. Now, we assume that T = (Ty,...,T}) is apure k-
tuple in D{* (7). Due to Theorem (4.1.11), we have

Br[x,(W; ;, W/;)] := K;,T(Xn(wi,j'wifj) Q Li)Ker = xu(Ty), T7 )
Taking into account that {y,,(W; i W{fj)};‘{;o is a sequence of operators in the span of P(W)P(W)*
which converges to g in norm, we conclude that
Brlgl = Wrr(g) =limB,r[gl.g € S.

This completes the proof.

We remark that Theorem (4.1.12) shows that the noncommutative polydomain algebra A (Df")
is the universal algebra generated by the identity and a doubly commuting k-tuple in the abstract
polydomain domain D§".

We denote by C*(W; ;) the C*-algebra generated by the operators W;
{1,...,k},j € {1,...,n;}, and the identity.

Corollary (4.1.13) [186]: Letq = (q4,---,qx) be a k-tuple of positive regular noncommutative
polynomials and let

j»Wherei €

X:= (X,...,Xy) € B(H)™ X -+ X B(H)™ .
Then Xis in the noncommutative polydomain Dg'(3() if and only if there exists a unital completely
positive linear map ¥ : C*(W; ;) — B(H) such that
qu,T(p(Wi,j)r(wi,j)*) = p(Xi,j)T(Xi,j)*: p(wi,j)r(wi,j) € P(W),

125



where W := {W; ;} is the universal model associated with the abstract noncommutative
polydomain Dg'.
Proof: The direct implication is due to Theorem (4.1.12) and Arveson’s extension theorem [193].
For the converse, note that, due to Lemma (4.1.10), Proposition (4.1.8), and Proposition (4.1.3), we
have

(I - q)qul)pl (I - q)CIk:Xk)pk(I) = lPq.T[(I - ¢q1.W1)p1 (I - chk.Wk)pk D] =0
foranyp; € {0,1,...,m;}andi € {1,...,k}. Using now Theorem (4.1.4) we can complete the
proof.

We remark that under the condition

span{p(W; )r(W; ;)" : p(W;;),7(W;;) € P(W)} = C"(W;)),

Corollary (4.1.13) shows that C*(W; ;) is the universal C*-algebra generated by the identity and a
doubly commuting k-tuple in the abstract polydomain domain Df*. We remark that the condition
above holds, for example, if D{"(#) is the noncommutative polyball
[B(H)™ 1L X+ X [B(H)™ ]
Hardy algebra F*(D{") and provide a WOT-continuous functional calculus for completely non-
coisometric tuples in in the noncommutative polydomain Df* (H).

Let <p(Wl-J-) = Z CBy,..8 Wi, Wi p, be a formal sum with

ﬁlelFﬁl,...,ﬁkengk

Cs,,..5, € Cand such that

1
2
Z |Cﬁ1""'ﬂk| b(ml) e b(mk) < -

ﬁlelFﬁl,...,BkE]sz 1rﬁ1 ker
We prove that o(W; ) (ey, @ - @ ef,) isin @, F2(Hy,), foranyy, € Fy ,...,yx € Fy .
Indeed, due to relation (3), we have

k
Cﬁl:---:ﬁk Wl,ﬁ’l wk,ﬁk (61}1 ® ® e)/k)

+ +
BrEFY, . BKEFS,

O L .
By, Br b(ml) b(mk) €171 ®-® €Brevi
B1EFR ... BkEFT,, 18171 k.BiYk
Leti € {1,...,k}and a,f € FF, besuchthat |a| = 1and || = 1. Note that, forany j €
{1,....lal}and k € {1,...,|B1},

<j+ml- — 1)(k+ml- — 1>S C(mi)(j+k+mi — 1),

m; — 1 m; — 1 LBl m; — 1
; +m; — 1 . . .
where Cffg]): = (lﬁlm ' 1 ) . Using relation (4) and comparing the product
, g
bl.(,Z“')bi('gi) with bl.(Z‘[";) we deduce that
(my) ; (my) (my) ; (m;)
bio " big” = Cip biag (12) and
(my) , (m;) (my) ; (m;)
bi,al bi,ﬁl = Ci,lall bi,a[l?
forany a, 8 € IF;;.. Hence, we deduce that
(my) (my) 1
2 _kYk (my)  ~(my) 2
|Cﬂlrrﬂk| b(ml) b(mk) S ClrlYll Ck.|)’k| Z |Cﬁ1"ﬁk| b(ml) e b(mk)
ﬁlelFﬁl,...,ﬁkelFﬁk 18171 k.Brvk ﬁleﬂ?,ﬁl,...,ﬁkeﬂ?,ﬁk 1B k,Bxk

< o,
which proves our assertion. Let P be the linear span of the vectorse,, ® - ® e, fory; €
]le’ v Vi € ]F:l-k If

126



Sup z CBaeb Wiy " Wieg (0[] < 0,
pelplls1 . .
ﬁlE[Fnlr---uBkE[Fnk
then there is a unique bounded operator acting on FZ(Hnl) Q- F? (Hn, ), which we denote by
(p(Wl-,j), such that

(p(Wi’j)p = Z e Wip, = Wi g, (p) forany p € P,

B1€FS, ... BKEFq,
The set of all operators @ (W; ;) € B(®¥_, F 2(Hni)) satisfying the above-mentioned properties is
denoted by F* (Df"). One can prove that F*(D{") is a Banach algebra, which we call Hardy algebra
associated with the noncommutative polydomain D{".

In a similar manner, one can define the Hardy algebra R* (Df"). Foreachi € {1,...,k}and

j € {1,...,n;}, we define the operator A, ; acting on the Hilbert space F?(H,,) ® -+ ® F*(H,,)
by setting

Aj=1Q-QIQN QIR Q.

i — 1 times k — 1 times

SetA;j:= (Aiq,..., Aiy,)- Asiin Lemma (4.1.10), one can prove that, A := (A4,...,Ay) isinthe
noncommutative polydomain Dm(® . F?(H, s where f = (fi,..., fi).

Let (A ;) = Z ¢z, 5 Mg, -+ Ak g, be a formal sum with

B1€FF ... Bk EF7,,
¢z,...5, € Cand such that

1
2
s, ey oo <
Blengl,...,ﬁkE]sz 1!.81 krﬁk
And
Sup z CB1Bre A1’31 Ak;ﬁk @[ < oo,

PE?,|Ipli=1
Blengl,...,ﬁkelek

Then there is a unique bounded operator acting on F?(H,,) ® -+ ® F*(H,,), which we
denote by x (A, ;) such that

)((Ai'j)p = Z BB Mgy Ak gy (p) foranyp € P.
B1€F3, ... BKEF7,
The set of all operators )((Al-, j) € B(®F, F? (Hy,)) satisfying the above-mentioned properties is a
Banach algebra which is denoted by R (Df").
Proposition (4.1.14) [186]: The following statements hold:

Q) Fe(Df")" = R®(Df"), where ' stands for the commutant;
(i) F2(DM)" = F*(DfM);
(iii) F* (D) is WOT-closed in B(®_; F2(Hy,,)).

Proof: Let U € B(®X, FZ(Hnl.)) be the unitary operator defined by equation
U(ey, @ @ ef):= (e)%1 Qe ). v EFL .. vk EFL,
and note that U*A; ;U = Wf foranyi = 1,...,kandj € {1,...,n;}, where W{] is the universal

model associated Wlth D}, Consequently, we have U*F*(Df")U = R®(D{). On the other hand,
since W, ; A, ;, = A, szml forany iy, i, € {1,...,k},j; €{1,...,n;, },and j, € {1,...,n;,}. We

deduce that R (Df") < F°°(Dm) Now, we prove the reverselnclusmn LetG € F°°(Dm) and
note that, since G(1) € ®, F2(H,,), we have
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1 1

B s T
B1€F5 .. BrEFq, \/b1,Ei \/bk.ﬁ’k

GQ1) = e;, ® ~Qeg,

for some coefficientscz 3 € C with
Blr"'rﬁk 1

,..l” Sy om0 <
3161F$1,---'3k€1F$k 1,81 k,Bx

Taking into account that GW; ; = W; ;G fori € {1,...,k}andj € {1,...,n;}, relations (8) and its
analogue for A; ; imply

Glet, @ +® ely) = [ [BIIGW, 0, W, (1)

= \/bSZi) \/bl(cle;)wl,al Wk,akG(l)

/ (mq) ’ (mg)
bl,ai bk,ak

= BurBre (i)
ﬁlelF}"ll,...,ﬁkE[F}'{k \/bllaiﬁl \/bk,akﬁk

= = R ek
- Z BB Ay, Akrﬁk (60161 R eak)
B1€F7 .. BkEFF,,
forany a; € F;, , ..., ay € 5, . Therefore,

G(p) = Z Cﬁl,...,ﬁk Al'ﬁl o Ak'ﬁk (p)
B1EF}, . BKEFF,,
for any polynomial for any p € . Since G is a bounded operator,

g(Ayj) = Z CB1,Br Ayp, Dy,
B1€FR ... BkEFF,
isin R*(Df") and G = g(A; ;). Therefore, R*(Df") = F*(D{")". The item (ii) follows easily
applying part (i). Now, item (iii) is clear. This completes the proof.
Similarly to the proof of Proposition (4.1.14), one can prove that if S ¢ B(X) and I4 € S, then
(FP(MDf) ®S) =R*(DM) QS and (R(Df) ®S)' =F*(Df) ® S,
where F* (D) ® S’ is the WOT-closed algebra generated by the spatial tensor product of the two
algebras. Moreover, foreach i € {1,..., k}, the commutant of the set

k .

1 k
ea1ﬁ1 ® ® €

kP

W, ® Iy:j €{1,....,n}} U {IFZ(Hni® Y:Y € S}
is equal to R°°(D}'1‘1) ® S’. A repeated appplication of these results shows that, if f = (f1,..., fi)
and m = (my,...,my), then
F*(DM Q@ B(H) = F*(D}") ® - ® F*(D}*) ® B(¥H)
In the same manner, one can prove the corresponding result for R* (D) ® B(H). Another
consequence of the results above is the following Tomita-type theorem in our non-selfadjoint
setting: if M is a von Neumann algebra, then
(F*(Df) ® M)" = F* (D) ® M.
Proposition (4.1.15) [186]: The noncommutative Hardy algebra F* (Df") is the sequential SOT-
(resp. WOT-,w*-) closure of all polynomials in W; ; and the identity, where i € {1,...,k},j €
{1,...,n.}.
Proof: Let B,,n > 0, be the orthogonal projection of F?(H, ) ® - ® F?(H,,) on the the
subspace span {e,, @ -+ @ eq,: la;| + - + || = n,a; € Fy , ..., ) € F;, }. Define the
completely contractive projection I; : B(®{-; F*(H,,)) = B(®i~; F*(H,)),j € Z,by
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[(4) = z PPy, .
nzmax{0,—j}

The Cesaro operators on B(®¥_, F? (Hy,)), defined by

n(A):= Z (1 —%)D(A), n = 1,

ljl<n
are completely contractive and y,,(A) converges to A in the strong operator topology. Let A €
F*(Df") have the Fourier representation ZﬁleFﬁl,--uﬁkeFﬁk gy, Wip, = Wi g, -Taking into

account the definition of the operators W ; , one can easily check that

PryjAP; = z By,pe Wi, Wip [F, 120 20,
By 1+ TBil=n
BrEFY, .. BiERS,

and PjAP,.j = 0ifn = landj = 0. Therefore,

q
x(4) = 2 (1 - E) Z Bt Wip, = Wi gy
0=qsn-1 |B1l+-1Bkl=a

B1€FR ... BkEFF,
converges to A, as k — oo, in the strong operator topology. The proof is complete.
Lemma (4.1.16) [186]: Let W := (W,,..., W) be the universal model associated to the abstract
noncommutative domain D¢*, where W; := (W;,,...,W;, ) fori € {1,...,k}. If

p(W;;) = Z By, Wi, " Wi g
B1EFF ... BkEFT,
is in the noncommutative Hardy algebra F* (Df"), then the following statements hold.
(i) The series

o(rW;;) = z Z ricg, .8 Wi, = Wip,

q=0 1€y, ... BREFY,,
|B1l+-++|Bk|=q
converges in the operator norm topology for any r € [0, 1).

(i) The operator ¢ (rW; ;) is in the noncommutative domain
algebra A (Df") and
leGrwe)ll < llo (W)l
(iii) ¢ (W; ;) = SOT- lim @(rW;;) and
Tr—
le (W)l = OS<21<31||‘P(TWL;')|| = lim||o(rw; ;)| -

r-—1

Proof: First, we prove that
(myq) (mg) X *
E, bigy  bige Wip, = Wis Wi g, - Wip,

+ +
BrEF},, - BrEFY,,

|B11=p1, | Bk|=DK
pr+m — 1 P+ m — 1

(T
m; — 1 m, — 1
According to relations (3) and (12), foreachi € {1,...,k}, and p; € N, the operators

W 5. have orthogonal ranges and
{ l"Bl}ﬁiEFniJBH:Pi J J
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1 |+ m; — 1\
W, pxll < : )(lﬁllm._ll ) xIl,x € F2(H,,).
b '
i.B;

Consequently, we deduce that

; . pi+m;—1
Z bi(,z)wiﬁiwi.ﬁi S( lmi 1 )I forany p; € N.

Bi€F3,.| Bil=p;
A repeated application of this inequality proves our assertion. Since (W, ;) € F*(Df"), we have

1

2
1%s,..p5] COENCH
1.8

B1E€FR - BrEFs, k.Bk
Hence, using relation (13) and Cauchy-Schwarz inequality, we deduce that, for0 < r < 1,

(ee)
p
Z r z z CBl!"'!Bk wliﬁl Wk;ﬁk
p=0 PPk ENU{O} B1€FY ... BkEFs,

0, (14)

p1t+tPE=D |B1|=p1,"v|ﬁk|=pk
1/2
*© 1
P 2
< Z r Z z I<gy....] pima) ., plme)
P=0 P10k ENUIO} | BreFy,, o preFs, LB kB
LTI\ |By |=pa Bel=pi L
2
b(ml)"'b(mk)w ___w w* ...W*
1'ﬁ1 kin 1,[;1 k,ﬁk k,ﬁk 1!E1
BrE€FR - BLEFT,
|B1|=p1""llﬁk|=pk
% 1 :
D GAIL Rt
—_ ml —_ 1 mk - 1
p=0 D1,---Pk ENU{0}
( 1/2
1 \
2
Z |Cﬁll"'lﬁk| b(ml) . b(mk)
\B1€]F$1:--»ﬁk€“7$k 1,61 k,ﬁk/
|B11=p1, | Bk|=PK
1/2

(o]

I RN
- m; — 1 m, — 1

p=0 D1,--Pk ENU{0}

1+ +PK=Dp
5 1
Z |C,31:-"'ﬂk| b(ml) L b(mk)
ﬁleFﬁl,...,ﬂkEsz 1:ﬁ1 k'ﬁk

Now, using relation (14) we obtain

Zrzzo Z <P1 + my — 1)___(Pk + my — 1) SZTZp(p+M)Mk—k(p+ 1)k
p=0  p

m; — 1 m, — 1
1Pk ENU{0} p=0
P1+-+Pk=p
< 00, (15)
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where M := max{m,,..., m;}, and deduce that the series

p(rW;;) = Z z ricg, .5 Wi, = Wip,

4=0 B1€F},, ... BREFR,
|B1l++1Brl=a
converges in the operator norm topology. Therefore ¢ (rW; ;) is in the noncommutative domain

algebra A (D{"). In what follows, we show that

9(W;;) = SOT - lim p(rW; ;) (16)
forany o(W;;) = Zﬁle%.....ﬁkemk gy Wig, - Wi,g, I the noncommutative Hardy algebra
F* (D).
According to the first part of this lemma,

¢(rW;;) = SOT — lim p,(rW, ) (17)

where p,, (W; ;): = Xa-o ZﬁleIFﬁl,---,ﬁkEIFﬁk ... 5. Wip, =+ Wi, and the convergence is in the

|B1]+:+|Bk|=q
operator norm topology. Foreachi € {1,...,k}, lety;, 0;,¢; € Fyy andsetn := |yy| + -+ |yl

Since Wy 5 Wy s (ey, ® -+ ® ey, ) = Oforany B; € F} with |B;| + -+ |B,| > n, we have

o(rW,;) (es, ® - ® ek, ) = pu(rW;;) (ez, ® ~ ® ek,)
forany a; € IF;; with |a;| +-+ |ag| < nandanyr € [0,1). Due to Lemma (4.1.10) and
Theorem (4.1.4), rW := (rW,,...,rW,)) is a pure k-tuple in the noncommutative polydomain
DI"(®k, FZ(Hni)) forany r € [0,1). Applying Theorem (4.1.11), we obtain
K¢ ,ern(rWi,j) = [pn(rwi,j) 03¢ I(®§‘=1F2(Hni))]Kf W

forany r € [0, 1). Using all these facts and the definition of the noncommutative Berezin kernel,
careful calculations reveal that

(Kf,rWQU(TWi,j)*(e]}l R e]’fk ), (9(}1 R €§k ) (eél QR eé‘k )
= (K¢ rwPn "W ;)" (ey, ® Q@ e, ) (es, @ ® ef, ) ® (ef, @ ® ef))
= ([P ("W, ;)" ® I(®§=1F2(Hni))]Kf,rw(e)}1 R e )l @ ek )

® (el @ Q® ef))

=) e \[b;’;;;)--- Jb,gfg;an(rwi,,-)*(eél®---®eé‘kleél@---@elm

,BielF;i,i=1,...,k

X (Wi, - Wi, (ef, ® -~ ® el ), Ay (D2 (el, @~ ® ely)
— Z rlﬁll+-~~+lﬁkl\/bg’gi) \/b,(("l;i) ((p(rWl-J-)*(eé1 K& e};‘k )es, Q@ ef,)

Bi€FR,i=1,...k
X (wl*»ﬁ1 mw’:ﬁk(el}l ® & e)’/(k )’Agi‘w(l)l/z(eé ® & eé(k )
= ([(p(rwl,])* ® I(®§(:1F2(Hni))]Kf,rW(e]}1 ® ot ® e]’fk )l (eal'l ® o ® eg'k )
® (ef, @ ® ek ))
foranyr € [0,1)andy;, 0,6 € Fy i € {1,...,k}. Hence, since (W, ;) and ¢ (W, ;) are
bounded operators on (®%_, F?(H,,)), we deduce that
Keowp (W)™ = [0(Wi )" ® [k pa,, 5)]Ksrw

foranyr € [0,1). Since rW := (rW;,...,vrW,) is a pure k-tuple in the noncommutative
polydomain D* (®%_, F?(H,,) forany r € [0, 1), Theorem (4.1.11) shows that the Berezin kernel
K¢ .w Is an isometry and, therefore, the equality above implies

||<p(rWi,j)|| < ||<p(WL-J-)|| foranyr € [0, 1). (18)
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Hence, and due to the fact that o (W; ) (es, ® - ® ek, ) = lim o (rW; ) (et ® - ® ek ) for
¥ d

any a; € Fy,

an approximation argument implies relation (16). Note that if 0 < r, < r, < 1, then

||<P(T1Wi,j)|| = ”(P(Tzwi,j)”-
Indeed, since ¢ (r, W; ;) is in the polydomain algebra A (Df"), Theorem (4.1.12) implies

|l Grr,W, )| < |le(2W, ;|| for any r € [0,1). Taking := =, we prove our assertion. Now one

T2

can easily complete the proof of the theorem.
Lemma (4.1.17) [186]: Let T = (T4, ..., Ty) be in the noncommutative polydomain Df*(H’) and
let o (W; ;) be in the Hardy algebra F* (D{"). Then the noncommutative Berezin kernel satisfies the
relations

(p(TTi,j)K;,T = KF,T(‘P(TWLJ’) Q Is)
and

o (T Ks pr = Kg pp(@(W; ;) ® I3)
foranyr € [0, 1).
Proof: Due to Theorem (4.1.11), we have

TijKir = Ke 1 (Wi ; & Iy)

foranyi € {1,...,k}andj € {1,...,n;}. Hence, using Theorem (4.1.12) and part (i) of Lemma
(4.1.16), we deduce that

o(rTi ) = Z z 9, Ty Thep
q=0 3161F;;1,...,ﬁkel}7;;k
|B1l+-+|Bkl=q
converges in the operator norm topology and ¢ (rT; ;)K¢ + = Ki 1 (@(*W; ;) ® I;;) forall r €
[0,1). Now, we prove the second part of this lemma. Using again Theorem (4.1.11), we obtain
Ki cr[p(W; ) @ Inc] = p(rT; DKF o (19)
for any polynomial p(W; ;) andr € [0,1). Since 7T := (rTy,...,rT,) € D{"(H) (see Theorem
(4.1.4)), relation (17) and Theorem (4.1.12) imply
n

o) =Tim > N (), Tig, < Teg T € [0,

q=0 ﬁlengl,...,ﬁkelF;k
|B1l++|Brl=q
where the convergence is in the operator norm topology. Consequently, an approximation argument
shows that relation (19) implies

Ki r|o(tW; ) ® Ip;| = o(rtT; DK ¢ for r, ¢ € (0,1). (20)
On the other hand, let us prove that
limp(rtT;;) = p(rTy)), (21)

where the convergence is in the operator norm topology. Notice that, due to relation (15), if e > 0,
p1— my — 1)___(pk_ my — 1) <

there is my, € N such that 3., (L Y ENU{0}< m 1 m 1
1 kK =

1t +PE=p
2
:?,Where K = |loW; D) . Since := (Ty,...,T,) € DP(%), Theorem (4.1.12) and relation
(13) imply
(mq) (my) " ¥
z bl:ﬁi “.bk,ﬁ’; Tl;ﬁl .”Tk'ﬁkarﬁk .”Tl,ﬁl

BrEF}, - BrEFY,
|B11=p1,|Bil =i

S(pl_ my; — 1).“(pk_ my — 1)1
m; — 1 m, — 1
Now, as in the proof of Lemma (4.1.16), we can deduce that
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p
z r Z Z CBy,Bic 1181 " T
p=mg P1--Pk ENU{O} B1€FF ... BkEFT,

PI¥ PP g |=py o | Bl =D )
1/2
/ 2 p1+m1—1 pk+mk—1
<| reP m, — 1 )( m, — 1 | ”(P(wi,j)(l)”
p=mg P1,.--Pr ENU{0}
p1++DPE=D
€
<-.
2

Consequently, setting T(z) := Ty 5, - Ty g, » there exists 0 < d < 1 such that

P=0 B1€FF, ... 0KEF7, P=0 pi€F}; .. preF,
|B11+-++|Brl=p |B1]+++| Brl=p
mo—1
=€t Z re(e? = 1) Z g Tpy || lo W DD
p=1 ﬁleIF;“ll,...,BkeIF;“lk
|B1l++|Brl=p
< 2Ze

forany t € (d,1). Hence, we deduce relation (21). On the other hand, due to Lemma (4.1.16), we
have ¢(W; ;) = SOT'ltifll @(tW; ;). Sincethemap Y — Y @ I is SOT-continuous on bounded
sets, we deduce that
[SOT - y_{rllkp(twi,j) 03y If]-[] = o(W;;) ® Iy. (22)
Consequently, using relation (21) and passing to limitin (20),ast — 1, we complete the proof.
In what follows we show that the restriction of the noncommutative Berezin transform to the Hardy
algebra F°(D{") provides a functional calculus associated with each pure tuple of operators in the
noncommutative domain D{* (). Moreover, we obtain a Fatou type result.
Theorem (4.1.18) [186]: Let T = (T4,...,Ty) be a pure k-tuple in the noncommutative
polydomain D{* (K" and define the map
WYr: F®(Df") = B(H) by ¥r(p) := Br[y],

Where By is the noncommutative Berezin transformat T € D{"(#). Then

(i) W is WOT-continuous (resp. SOT-continuous) on bounded sets;

(i) Wy is a unital completely contractive homomorphism and

Wr(Wyp, - Wig) = Tup, - Tipp B €F i € {1,...,k}
(iii)  forany @(W;;) € F* (D),
B, r[o(W; ;)] = o(T;;) = Br[e(W, ;)]
and
Wr(p(W;;)) = SOT — lT1£r11 @(rT ;).
Proof: Since
Yr(eW; ;) = Kir(@(W; ;) ® LKy, @(W;;) € F*(Df"), (23)

using standard facts in functional analysis, we deduce part (i).

Now, we prove part (ii). Since T is pure, Theorem (4.1.11) shows that Ky 1 is an isometry.
Consequently, relation (23) implies

” [‘PT(fpi,j)]

= [
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for any operator-valued matrix [goi'j]kxk in My, (F*(Df")), which proves that Wy is a unital
completely contractive linear map. Due to Theorem (4.1.12), W¢ is a homomorphism on the set
P (W) of polynomials in {W; ;}. By Proposition (4.1.15), the polynomials in W; ; and the identity
are sequentially WOT-dense in F* (Df"). On the other hand, due to part (i), ¥y is WOT- continuous
on bounded sets. Using the principle of uniform boundedness we deduce that W, is also a
homomorphism on F* (Df").
Due to Lemma (4.1.17) and taking into account that K¢ and K¢ .1 are isometries, we have
B r[o(W; )] =Kirr(9(Wij)) & D) Kgpr
= @(rTi;) = Kip(e(W))) ® 1) Kiy
= Br[p(rW;;)].
Now, due to relation (22) we have
SOT — lti_I}}[q)(twi,j) R Iy] =W, ;)) ® I

Hence, and using the equalities above, we deduce that

Br[o(W; ;)] := Kir(@(W;;)) & I) K¢y

= SOT — lrl_f:f} K;,T((p(rwi,j)) Q K¢y

= SOT — lrl_r)rll o(rT;;)
This completes the proof.
Wesay that T = (Ty,...,T) € Df*(3) is completely non-coisometric if there isno h € H, h #
0 such that
((id — @ft ) (id = ) Y(I)h, h) = 0

forany (q,,...,q,) € N¥.Thisis equivalent to the condition

i ] U y...(id — Pk _
g im (i = ) (id = O ) (Ih,h) = 0.
In what follows we present an F* (Df")-functional calculus for the completely non-coisometric part

of the noncommutative polydomain D§" (#).
Theorem (4.1.19) [186]: Let T = (Ty,...,T;) be a completely non-coisometric k-tuple in the
noncommutative polydomain D{* (). Then

®(p) :=SOT = lim o (rT;;), ¢ = 9(W;;) € F*(Df"),
exists in the strong operator topology and definesamap ® : F*(Df") — B(H) with the following
properties:

(i) @(¢) := SOT — lirr} B,r[@], where B, is the noncommutative Berezin transform at rT €

Tr—
Dy (30);
(i1) @ is WOT-continuous (resp. SOT-continuous) on bounded sets;
(iii) @ is a unital completely contractive homomorphism.
Proof: According to Theorem (4.1.4), *T € D*(H) and rW € D*(®F_, F? (Hy;)) foranyr €
[0,1). Due to relations (18) and (22), we have
SOT — ltin}[ga(twi,j) ® I3] = ¢(W; ;) ® I5. Taking the limit in the first relation of Lemma
(4.1.17),as v — 1, we deduce that the map A : range K¢y — H given by Ay := lirrll otT:;)y,

T
y € range K, is well-defined, linear, and
|AKE x| < lim supllo (T, D|[[Kex]| < [lo (W, )| KE2x]
Vi

forany x € (®, F*(Hy)) @ H.
SinceT = (Ty,...,T}) is completely non-coisometric, Theorem (4.1.11) implies that the
noncommutative Berezin kernel K¢y is one-to-one and, therefore, the range of K¢y is dense in .
Consequently, the map A has a unique extension to a bounded linear operator on ', denoted also
by A, with [|All < [|@(W;)]|. We show that

lri_r)r} @(@T;;)h = Ah forany h € H. (24)
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Leth € H and let {y,};-, be a sequence of vectors in the range of K¢, which converges to h.
According to Theorem (4.1.12) and relations (17), (18), we have
leGT DI < oW, D < [low, )l
forany r € [0,1). Note that
”Ah - (P(TTi,j))” < ||Ah — Ay, |l + ”A}’k - ‘P(TTi,j))J’k” + ”‘P(TTi,j)))’k - (P(rTi,j))h“
< 2]lowW; DllIR = yill + [[Ayi — oG T, ) vicll
Consequently, since lil’rll @(T;;) yr = Ayy, relation (24) follows. Due to Lemma (4.1.17), we have
Tr—

p(rT;;) = K;,rT[q)(wi,j) X I}[]Kf,rT: (25)
which together with relation (24) imply part (i) of the theorem.
Now we prove part (ii). Since [|o (rT; ))|| < || (W ;)| we deduce that [|® (@)l < ll@ll for ¢ €
F=(Df"). Taking r — 1 in the first relation of Lemma (4.1.14) and using the first part of this
theorem, we obtain
P(@)Kir = Kir(o ® 1), ¢ € F*(Df). (26)

If {g,} be a bounded net in F*(Df*) such that g, — g € F*(Df") in the weak (resp. strong)
operator topology, then g, @ I convergesto g & I inthe same topologies. By relation (26), we
have ®(g,)K¢r = Kt (g, ® I). Since the range of K¢ 1 is dense in H and {®(g,)} is bounded, an
approximation argument shows that ®(g,) — ®(g) in the weak (resp. strong) operator topology.

Now, we prove (iii). Relation (25) and the fact that K¢t is an isometry for r € [0, 1) imply

”[(pst(rTi,j)]kxk” < ”[(Pst]kxk”

for any operator-valued matriX [@g:lixk € Myxi F*(Df) and r € [0,1). Hence, and using the
fact that ®(¢ ) = SOT — lri_r)rll @5 (rT; ), we deduce that @ is completely contractive map. Due to

Theorem (4.1.12), @ is a homomorphism on polynomials in W; ; and the identity. Since, due to

Proposition (4.1.15), these polynomials are sequentially WOT-dense in F*°(D{*) and & is WOT-
continuous on bounded sets, we deduce part (iii) of the theorem. The proof is complete.
We introduce the algebra Hol(Dg}.,4) of all free holomorphic functions on the abstract radial

poly-domain Df}., 4. We identify the polydomain algebra A (Df{") and the Hardy algebra F* (D{")
with subalgebras of Hol(Df}.,q4).

Foreachi € {1,...,k}, letZ; := (Z;4,...,Z;y,) be an n;-tuple of noncommuting indeterminates
and assume that, forany p,q € {1,...,k}, p # q, the entries in Z,, are commuting with the entries
inZ, WesetZyq, :=Zj,~ Zy, ifa; €Ff anda; = gj, - gj ,and Z, ;i := 1, where gg is the
identity in ;. . We consider formal power series

¢ = Z Ay ,anlias ** Lroay » Agya € G
alngi ..... akngi
in ideterminates Z; ; . Denoting (a): = (aq,,.q,) € Fi, X X Fy ,Z(gy:= Z14, " Ziq, »and
(a): = (aq, ,.q,), We can also use the abbreviation ¢ = Y. 4) (@) Z(qa) -
Given a Hilbert space H', we introduce the radial polydomain
DPa(0) = | | rDp@n e ppeo.

0=r<1
A formal power series ¢, having the representation above, is called free holomorphic function on

the abstract radial polydomain DfY.,4 := {Dfy.q(3): H is a Hilbert space} if the series

o(X;j) = Z Z U)X ()

a=0 (a)€Fy, x-xFp,
lag|+--+lakl=q
is convergent in the operator norm topology forany X = (X;;) € Dfy,q(3) with i €
{1,...,k},j € {1,...,n;}, and any Hilbert space . We denote by Hol(Df},4) the set of all free
holomorphic functions on the abstract radial polydomain D).
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Lemma (4.1.20) [186]: LetQ= Z(Q)E%X,,,xmk aq)Z o) be a formal power series and let W =

{W, ;} be the universal model associated with the abstract noncommutative polydomain D{*. Then
the following statements are equivalent.

(i) ¢ is afree holomorphic function on the abstract radial polydomain D{}.. .

(if) Foranyr € [0, 1), the series

[00]

(p(TWi,j)! = 2 Z a(a)‘f‘la1|+"'+|ak|w(a)

q=0 (a)eIFﬁlx-uxIFﬁk
_ _ leeg|+--+lakl=q
is convergent in the operator norm topology.
(iii) The inequality

1/n

lim sup z a(a)W(a) <1
nee (a)elF;;1><~~xIF;flk
lag|+:+lagl=n
Proof: The equivalence of (i) with (ii) is due to Theorem (4.1.12). Using standard arguments, one
can easily prove that (ii) is equivalent to (iii).

We remark that the coefficients of a free holomorphic function are uniquely determined by its
representation on an infinite dimensional Hilbert space. Indeed, under the above notations, let 0 <

r < 1 and assume that (p(rWl-, j) = (. Taking into account relation (8), we have

1 1
((p(TWi,j)lrw(aﬂ) = r|“1|+~-+|“k|a(a) Ty T = 0
bla bk
U1 'ak

forany (@) = (ai,...,a;) € F; ® - ® Fy, . Therefore ai,y = 0, which proves our assertion.

Due to Lemma (4.1.20), if ¢ € Hol(Df,q), then ¢ (rW; ;) is in the domain algebra A (D{") for
any r € [0,1). Using the results from the previous, one can see that Hol(Df}.4) is an algebra. Let
H” (Df}.q) denote the set of all elements ¢ in Hol(Df).,4) such that

llglle := supllo(X; )| < oo,

where the supremum is taken over all (X; ;) € Df}.4(3) and any Hilbert space #'. One can show
that H* (Df}.,4) is a Banach algebra under pointwise multiplication and the norm ||-]|,. For each
p € N, we define the norms |||, : My, (H*(Dfrq)) = [0, ) by setting

| [(pst]pxp” = Sup” [(pSt(Xi,j)]pxp”;
where the supremum is taken over all (X; ;) € Dff},4(3) and any Hilbert space 7. It is easy to see
that the norms |||[,,, p € N, determine an operator space structure on H °°(D}f‘rad), in the sense of
Ruan ([31]). Let ¢ be a free holomorphic function on the abstract radial polydomain Dmf,rad. Note
thatif 0 < r, < 1, < 1,thenr,D{'(H) < r,D{"(H) c Df*(H). Since ¢ (1, X; ;) is in the
polydomain algebra
A (D), Theorem (4.1.12) implies ||o(rr,W; ) || < |l (W, ) || for any r € [0,1). Taking r :=
2 we deduce that

2

le: W)l < llotW |-
On the other hand, if 0 < r < 1, then we can use again Theorem (4.1.12) to show that the
mapping g: rDf*(H) — B(H) defined by
9gXij):=ooX;;), (X;) € rDf'(H),
is continuous and ||g(X; || < |lg(rW;;)||. Moreover, the series defining g converges uniformly
on rD{* () in the operator norm topology.
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Given ¢ € F*(D{") and a Hilbert space H', the noncommutative Berezin transform associated with
the abstract noncommutative polydomain Df" generates a function whose representation on # is

B[¢] : Dft.q () — B(%)
defined by
Blo](X;):= Bx o], X:= (X;;) €Dfraa(30),
where By is the Berezin transform at X. We call B[¢] the Berezin transform of ¢. In what follows,
we identify the noncommutative algebra F* (Df") with the Hardy subalgebra H* (Df}.,4) of
bounded free holomorphic functions on Df}...
Theorem (4.1.21) [186]: The map & : H*(Df},q) — F*(Df") defined by

P Z Uaylia) | = Z (@) Wia)
(@) (@)
is a completely isometric isomorphism of operator algebras. Moreover, if g := ¥ ) Q) Z(a) IS @
free holomorphic function on the abstract radial polydomain Df%.,4, then the following statements
are equivalent:

(i) g € H®(Dfraa);

(i) sup ||g(rWi,j)|| < oo, where g(rW ;): =
0=<r<1

Lg=0 Z(@ery, x-xrh, T Uy Wia) ;
lerg[+-- +Iakl q
(iii) there exists ¢ € F*(Df") with g = B[¢], where B is the noncommutative Berezin
transform  associated with the abstract polydomain Df".
In this case,

®(g) = SOT -~ limg(rW;;), ®7'(¢) = Blol,¢ € F*(DP),
and

9@ = sup [lg(rWe, )| = lim|lg (W )|
sr
Proof: To show that the map & is well-defined, let g := ¥z a(s)Z(s) be in the Hardy algebra
Hoo(Df rad
Since (rwu) € D4 (F?(H,)), Lemma (4.1.20) shows that g(rW; ;) is well-defined for any r €
[0,1) and sup ||g(rW;;)|| < llglle < 0. We need to show that g(W; ;) := Xz acs Wp) is the
0=r<1

Fourier representation of an element in F*(Df"). Taking into account relation (8), we deduce that

1
Y el P o = 19w )N < sup [l(rw )] < e

BlelFﬁl,...,ﬁkeIFﬁk 1,81 k.Bxk
1

forany 0 < r < 1. Consequently, Zﬁ1EF+ BrREFh lag, . p.|° W< oo As in the latter
1,61 k
relation implies that g(Wl-J-)p is in the tensor product ®%_; FZ(Hni) for any polynomial p €

®L | F*(H,,) Now assume that g(W; ;) & F*(Df™). According to the definition of F*(D{"), for

any fixed positive number M , there exists a polynomial ¢ €®¥_, F? (Hy,) with [[q]| = 1 such that

lg(W;;)q|l > M. Since ||g(W;;)(1) — g(W;;)(D)|| - Oasr - 1, we have ||g(W;,)q —

g(rW; )q|| — 0,as 7 > 1. Consequently, there is 1, € (0,1) such that ||g(roW;;)ql|| > M,

which implies ||g(roW;;)|| > M. This contradicts the fact that sup ||g(rW; ;)|| < oo. Therefore,
0=r<1

g(W;;) € F”(Dg"), which proves that the map ® is well-defined.
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Moreover, due to Theorem (4.1.12) , we have ||g(X; )| < ||g(rWy;)|| for any (X, ;) €

rDf* (H). Using now Lemma (4.1.16), we deduce that

lg(Wi)ll = sup [|g(rw;;)[| = llgll.,

0=<r<1
and
®(g) = g(W;;) = SOT —lim g(rW,).

Therefore, @ is a well-defined isometric linear map. We show now that @ is a surjective map. To
this end, let o(W; ;) := X () az)Wip) be in F*(D{"). Using Lemma (4.1.16) and Theorem
(4.1.20), we deduce that g := X(4) a(e)Z (o) IS @ free holomorphic function on the noncommutative
domain Df},4 and

lgxipll < llgGwi Dl < [lg(w; |
forany (X;;) € rDf*(H) andr € [0,1). Hence, we deduce that

Sup ”g(Xi,j)” = ”g(wi,j)” < 0o,
(Xi,))EDF 12 (F0)

which proves that g € H®(Df}.,q). This shows that the map @ is surjective. Therefore, we have
proved that @ is an isometric isomorphism of operator algebras. Using the same techniques and
passing to matrices, one can prove that @ is a completely isometric isomorphism. Moreover, note
thatif X := (X;;) € Df}.q thenthereisr € (0,1)suchthatX = rY withY = (V;;) €

D{* (). Applying Theorem (4.1.18) part (iii), we deduce that ¢ (X) = By[¢]. Now, the
equivalences mentioned in the theorem can be easily deduced from the considerations above. The
proof is complete.

For the rest, we assume that D" () is closed in the operator norm topology for any Hilbert
space H'. Then we have Df}..q(H)~ = Df*(H). Note that the interior of D{" (H'), which we denote
by Int(Df"(#)), is a subset of Df}..4. We remark that if g = (qy,...,qy) is a k-tuple of positive
regular noncommutative polynomials, then Df" is closed in the operator norm topology.

We denote by A(D?}ad) the set of all elements g in Hol(Df}.,q) such that the mapping

fraa(H) 3 (X;;) — g(X;;) € B(H)

has a continuous extension to [D}f‘rad(}[)]_ = D{*(#) for any Hilbert space 7. One can show
that A(Df}.q(7)) is a Banach algebra under pointwise multiplication and the norm ||-||,, and it has
an operator space structure under the norms ||-||,,,p € N. Moreover, we can identify the
polydomain algebra A(Df") with the subalgebra A(Df}.,q). Using Theorem (4.1.12), Theorem
(4.1.21), and an approximation argument, one can obtain the following result.
Corollary (4.1.22) [186]: The map ® : A(Df}.q) — A(Df") defined by

@ (Z a(a)Z(a)> L= Z Ay Wia)

() (@)
is a completely isometric isomorphism of operator algebras. Moreover, if g := Y.y a()Z(a) IS @
free holomorphic function on the abstract radial polydomain Df%.,4, then the following statements
are equivalent:
(i) g € A(Dfraq);
(i) garW; ;)= Yo", Z(“)EF%X'"XF??,( rla,) Wy is convergent in
laq |+ +lakl=q
the norm topology asr — 1;
(iii) there exists ¢ € A(D{") with g = B[¢], where B is the noncommutative
Berezin transform associated with the abstract polydomain Df".
In this case,
®(g) =limg(rW;;) and @7(p) = Blg]l, ¢ € A(DF).
We remark that there is an important connection between the theory of free holomorphic functions
on abstract radial polydomains Df}..4, and the theory of holomorphic functions on polydomains in
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€. Indeed, consider the case when 7 = C% and p = 1,2.... Then D{*(CP) can be seen as a subset
of Clra++mP* with an arbitrary norm. We denote by Int(Df"(CP)) the interior of the closed set
D{*(CP).
In the particular case when p = 1, the interior Int(D{*(CP)) is a Reinhardt domain, i.e.,
(ijAi;) € Int(D{"(CP)) forany (1;;) € Int(Df'(C)) and¢; ; € T. Let M, (C) denote the set
of all p X p matrices with entries in C.
Proposition (4.1.23) [186]: If p € N and ¢ is a free holomorphic function on the abstract radial
polydomain Df7.,4, then its representation on CP, i.e., the map ¢ defined by
Cmt+m0P® 5 DB(CP) 3 (A;) — @(Ayj) € Mpy, (C) © €

is a holomorphic function on the interior of Df*(CP). Moreover, the following statements hold:

(i) ifp € F*(Df,q), then ¢ is bounded on the interior of D{*(CP);

(i) ifo € A(DfL.q). then @ is continuous on D{"(CP) and holomorphic on the interior of
D{*(CP).
Proof: If K is a compact subset in the interior of D{*(CP), then there exists r € (0, 1) such that
K c rDP(CP). Indeed, if 1 := (1;;) € Int(DP(CP)) c Cha++mIP” then there exists €; > 0
and r € (0,1) such thatriu € Int(Df'(CP)) forany u € B, (1) := {z € Clat-+mp®. || 1 —

A

z|| < €;}. Since K is acompact setand K < Uyek Be, (1), there exists A;,...4; € K suchthat K <
Uy Be,, (A1),

Consequently, for any u € K, we have riy € Int(Df"(C?)) c Df*(CP) forsomei € {1,...,n}.
A

Taking into account that r, D" (CP) < r,Df*(CP) if r;,, € (0,1) and r; < 7, we conclude that
K < rDf"(CP), where r := max{ry,...,n}.
Note that if Q= Z(O;;O Z(Q)EFEX“'XF;R a(a)Z(a), then

lag|+-+lakl=q

[0¢]

@(li,j)_ Z a(a)ﬂ(a) < Z Z T.Ia1|+---+|ak|a(a)w(a)

(a)€Fs, x-xFy, s=n+1 || (a)eFs, x-xF,
laq |+ +lak|sn lag |+ +|akl=s
forany (4;;) € K. Using, we deduce that Z(a)elFilx-"fo%k A A(a)
lag|+--+|aglsn
converges to ¢(4; ;) uniformly on K, asn — co.  Therefore, the map (1) — ¢(4;;) is
holomorphic on the interior of D" (CP). Now, the items (i) and (ii) are consequences of Theorem
(4.1.21) and Corollary (4.1.22). The proof is complete.

We remark that one can obtain versions of all the results in the setting of free holomorphic
functions with operator-valued coefficients. Since the proofs are very similar we shall omit them.
We also mention that, in the particular case whenk = m; = landf; = Z; + -+ Z,, we
recover some of the results concerning the free holomorphic functions on the unit ball of B(H)™
(see [190], [205], [207]).

We obtain a Beurling type factorization and a characterization of the Beurling [212] type joint
invariant subspaces under {W; ;}. We also characterize the reducing subspaces under {W; ;} and
present several results concerning the model theory for pure elements in the noncommutative
polydomain D" (H).

We recall that a subspace H < XK is called co-invariant under S ¢ B(X) if X*H < H for any
X € S.

Theorem (4.1.24) [186]: Let W := (W;,,..., W,) be the universal model associated to the abstract
noncommutative domain D{. If K be a Hilbert space and M € (®F, F? (Hy)) ® X isaco-
invariant subspace under each operator W; ; ® I, fori € {1,...,k},j € {1,...,n;}, then there
exists a subspace € < K such that
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span{(Wy, = Wig, ® Ii)M : By €FF,.... B € Fy} = (@, FP(H,) ® €.
Consequently, a subspace M € (®F , FZ(Hni)) ® X is reducing under each operator W; ; & Iy
fori €{1,...,k},j € {1,...,n;}, if and only if there exists a subspace £ € K such that
M = (®; F*(Hy)) ® &
Proof: Define the subspace £ € K by £: = (P¢ @ I3)M, where P is the orthogonal projection
from ®_, F*(H,,) onto C1 c®;_, F*(H,,). Let ¢ be a nonzero element of M with
representation

— 1 k
¢= Z eg, & B ep Qhp, p,,
B1EFF, - BREFR,
st Ihg,. g II* < oo, Letay € B, ..., 0, € F}, be such that

..........

he,,..s, # 0 and note that

(P ® i) (Wig, = Wio, @ ) = 1 &

1 1

\/b(ml) \/b(mk) 01,0k
1,09 k,0k

Consequently, since M is a co-invariant subspace under W; ; & Iy fori € {1,...,k},j €
{1,...,n;}, we deduce that h, , € &.This implies

(m ) my
\/bl 011 \/bk %

@ = lim Z ez, @ ® eé‘k X hg, .8, (27)

o a=0 B1€FF, ,..BkEFR,
lag|+--+lakl=q
isin ®, F2(Hy,,) ® €. Hence, M c®}, F*(H,,) ® € and
Y :=span(W,,, Wy, ® Ii)M : 0, €EF}i,...,0, € Fi < (QF, F2(H,)) ® €.
To prove the reverse inclusion, we show firstthat E ¢ Y. Ifhy € & hy #
0, then there exists g € M c®}_; F*(H,,) ® & such that

g=1Q® hy + z e, @ Qes Qhg g
31611—';1 ""'ﬁkE[F k

|B1l+-++|Br |21
and1 ® hy, = (Pc ® Iy)g. Consequently, due to Lemma (4.1.10), we have

m m
1 ® hO = (P(C® I?C)g = (I - chl,W1®Ij() 1(1 - CDqk,Wk®Ij() k(l)g
Taking into account that M is co-invariant under W; ; ® Iy fori € {1,...,k},j € {1,...,n;}, we
deduce that h, € Y forany h, € &, i.e., € c Y. The latter inclusion shows that (WLC,1 Wi g &
Ix)1® &) c Y, forany oy € Fy, ..., 0 € Ff, , which implies

1 1
e, @R el ®E .

.....

(W1,0'1 Wk,crk ® I?C)(l ® hol,...,crk

IS a vector in ®§‘:1 F? (Hy,) ® E. Therefore,
n

(my) (my)
bl : bk Ok

Hence, if ¢ € (®{-‘=1 F? (Hni)) ® & has the representation (27), we deduce that ¢ € Y. Therefore,
(®F, F?(H,)) ® € €Y. The last part of the theorem is now obvious. The proof is complete.

Let W := (W,,..., W,) be the universal model associated to the abstract noncommutative
domain D{". An operator M : (®K, F?(H,,)) ® H - (®K, F*(H,,)) ® X is called multi-
analytic with respect to W if

M(Wi,j Q Iy) = (Wi,j & Iyx)M
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foranyi € {1,...,k}andj € {1,...,n;}. Incase M is a partial isometry, we call it inner multi-
analytic operator.

Theorem (4.1.25) [186]: Let W := (W,,..., W,) be the universal model associated to the abstract
noncommutative domain Dg* and let W; & Iy, := (W1 & Iy,..., Wi, @ Iy) fori € {1,...,k},
where  is a Hilbert space. If Y € B(®[-, F*(H,,)) ® #) then the following statements are
equivalent.

(i) There is a multi-analytic operator M : (®¥_, F2(H,)) ® € -
(®F, F2(H,)) ® H with respect to W, where £ is a Hilbert space, such that
Y =MM".
(i) Forany p := (py,...,bPx) € Zf suchthatp < m,p # 0,

. P1 . Pk
(id— @ won) ~(d— P wen) ¥) =0
Proof: Setting A wg 1= (id — @, ,w1®,g{)p1 - (id — @, ,wk®,}[)p", it is easy to see that if
item (i) holds, then
Afwe 1 (V) = MAY o, (DM* = 0
forany p := (py,...,px) € Zf suchthatp < m,p # 0.
To prove the converse, assume that (ii) holds.  In particular, we have
Qr w01, Afwe 1, (V) < Afwe 1, (Y), where m' = (m; — 1,m,,...,my). Consequently,

DL w.e 1, Afwe 1, (V) < Af'we 1, (Y) forany n € N.
Since W := (W,,..., W,) is a pure k-tuple, we have SOT-lim ®¢ o ;. (Af'wg 1, (Y)) =0,

n—->oo

which implies A}‘f",v® 1,,(Y) = 0. Continuing this process, we deduce that Y = 0.

Let M := range Y/2 and define
A (YYV2x)= YV2(WS Q@ Iy )x,  x € (QK, FA(H, ) @ H,  (28)
foranyi € {1,...,k}andj € {1,...,n;}. Since @, w.g 1, (Y) < Y, we have

z ai,a”Ai,&Yl/lelz = (q)fl W, Q Ij.[(Y)x! x) < “Yl/zx“Zkz

aElF;'ll. Ja|=z1

forany x € (®K, F?(H,,)) ® . Consequently, we deduce that al.gi_||Al-,jY1/2x||2 < ||YYV2x||?,
]
forany x € (®; F*(Hy,)) @ H. Since a; ;i # 0 each A; ; can be uniquely be extended to a
]

bounded operator (also denoted by A; ;) on the subspace M. Denoting X; ; := A;; fori €
{1,...,k},j € {1,...,m;}, an approximation argument shows that @, y.(I5;) < I, and relation
(28) implies
X;(YY2x) = YV2(W); @ Ii)x, x € (Qf, F*(H,,) @ H,
foranyi € {1,...,k}andj € {1,...,n;}. This implies
YYV2 A (he)YY? = Mwer,, YD) 2 0

forany p := (py,...,pr) € Zf suchthatp < m,p # 0. On the other hand, we have

(D, x, ()Y 22, Y 2x) = (DF w1, (Y X, %) S Y IKDPF, w1, (DX, %)
forany x € (®;, F*(Hp)) ® H andn € N. SOT- lim O} w.e (1) = 0, we have SOT-

lim ®¢ y (I) = 0, which, due to Proposition (4.1.8) shows that X := (Xj,..., X)) is a pure k-
m—oo

tuple in the noncommutative polydomain Dg*(M). Set € := Ay (I5¢) (M'). According to Theorem
(4.1.11), the noncommutative Berezin kernel K¢ x : M — (®1=; F?(H,,)) ® & is an isometry with
the property that

X jKs x = K x(W; @ I¢)
foranyi € {1,...,k}andany;j € {1,...,n;}. Now, define the bounded linear operator M :=
YY2K; : (QK, F2(H,) ® € - (®K, F2(H,,)) ® Hand note that
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M(W;; ® Ic) = YY2K; x(W;; ® I) = YV/2X, ;K]
= (W, @ I;)YV2K; x = (W, @ I;;)M
foranyi € {1,...,k}andj € {1,...,n;}, which proves that M is a multi-analytic operator with
respect to W; ; . We also have MM* = Y/2K; 4K xY'/2 = Y . This completes the proof,
We say that M c (®%_, F? (H,,)) ® H is a Beurling type invariant subspace under the operators
W, ®I,i € {1,...,k},j € {1,...,n;}, if there is an inner multi-analytic operator with respect to
w,
¥ (QL, F2(Hy)) ® € - (®L, F*(Hy)) Q H,

suchthat M = ¥ ((®, F2(H,)) @ &) .
Corollary (4.1.26) [186]: Let M c (QF_, F? (Hn,)) ® H be an invariant subspace under the
operators W; ; ® Iy, i € {1,...,k},j € {1,...,n;}. Then M is of Beurling type if and only if

(id — &p w,@ 1, )P (id — f, w1, )P (Pac) = 0
forany p := (py,...,px) € Zj suchthat p < m, where P, is the orthogonal projection of the
Hilbert space (®]-; F*(H,,)) ® H onto M. In the particular case whenm = (1,...,1), the

condition above is satisfied when W @ I+ |pri= (W @ Iyr|ag -0 Wr @ I¢|a) IS doubly
commuting.

Proof: If ¥ : (®{_, F2(H,,)) ® € = (®f-, F*(H,,)) ® H is ainner multianalytic operator and
M =¥Y((®f, F*(Hy)) ® E), then P,y = WW*. Taking into account Lemma (4.1.10), we
deduce that
(id — Pf wy@ 1 )P (1d — Pf W@ 1, )PF(Prr) = PP ® [P = 0
forany p := (py,...,pr) € Zjf suchthat p < m. The converse is a consequence of Theorem
(4.1.25), when we take Y = Py,.
Now, we consider the case when m = (1,...,1). Note that if M is an invariant subspace under the
operators W; ; & Iy, then W & I3[, is doubly commuting if and only if Py, (W;, ;. & I5; )Py
commutes with Py (Wy, j, & I3)Py forany iy, i, € {1,...,k},i; # i, andany j; €
{1,...,ny},j> € {1,...,n;,}. The latter condition is equivalent to
Pre(Wipa ® I3)Pac (29)
commutes with Py (W, 5 @ I3:) Py

forany a € F; and § € IF;;,.. Assume that M is invariant subspace under the operators W; ; ® I,
and W & I, is doubly commuting. Then, due to relation (29), forany a; € Fy ,i € {1,...,k},
we have

(Wie, ® Ie) = (Wi, ® Ie)Pac (Wi, @ Ine) + (Whe, ® ) (30)

= (Wl,a1 ® I?{)PM(wl*,al ® 17{) (wk,ak ® IH)PM(w;,ak ® I}[)-
Consequently, we deduce that
(id — @ w0 1,07+ ((d — Prp we® 1,07 (Por)
= (Poc = @p, w0 15 (Pre))Pt -+ (Poc = Py wie@ 15 (Pac))P*

forany p := (py,...,px) € Zf suchthatp < (1,...,1). Now, since W, ..., W, are commuting
tuples, we deduce that Pyy — ®f, w, 1,,(Px),t € {1,..., k}, are commuting operators. On the
other hand, they are also positive operators. Indeed, let {ai,ai}aeﬂi be the coefficients of the

positive regular free holomorphic function f;, and let x € (®%_, F? (Hp,)) ® H have the
representation x = x; + x, with respect to the orthogonal decomposition M @ M*. Note that
<q)fi ,Wi®1}[(PM)x:x) = <bei W;® IH(PM)X1:9C1) = Z ai,ai”PM(wi,ai b I}f)x1||2
|a|=1
< (bei,wi@l}[(l)xpxﬁ < |11 = (Ppex, x),
which proves our assertion. Therefore, we can deduce that
(ld - (Dfl 'W1® Ij_[)pl °e (ld - q)fk ,Wk® I}[)pk(PM) 2 0
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forany p := (py,...,px) € Zi suchthatp < (1,...,1). Due to the first part of this corollary, we
conclude that M is a Beurling type invariant subspace under the operators W; ; & I5.. The proof is
complete.

Let W := (W,,..., W,) be the universal model associated to the abstract noncommutative domain
D", and let @: (R, F2(H,,)) @ H - (®f=, F*(Hp,)) ® K be a multi-analytic operator with
respectto W, i.e,, if ®(W;; @ Ir) = (W;; @ Irr)® foranyi € {1,...,k}andj € {1,...,n;}.
We introduce the

support of @ as the smallest reducing subspace supp (®) c ¥, FZ(Hni) & H under each
operator W; ;, containing the co-invariant subspace M := O ((RF, F? (Hy,)) ® X). Using
Theorem (4.1.24) and its proof, we deduce that

supp (@) = \/ (W(a) X I}[)(M) = (®§<=1 F? (Hni)) K L,
(a)eIFﬁix-anF,*;k
where £ := (P¢ @ I;)P* (@, F2(Hy,)) ® X).

Assume that W := (W, ..., W) is the universal model associated to the abstract
noncommutative domain Df*. We remark that if ¥ : (®_; F2(H,,)) ® € - (®f, F*(H,)) ® H
is an isometric multi-analytic operator and M = ¥ (®1-; F?(H,,)) ® &, then W @ Iy |5 is
doubly commuting. Since this is a straightforward computation, we omit it. The converse of this
implication holds true for the noncommutative polyball.

Corollary(4.1.27) [186]: Let W := (W,,..., W) be the universal model associated to the
noncommutative polyball [B(H)™]; X, -+ X, [B(H)™]7,i.e., m = (1,...,1)and f; := Z;; +
ot Zig fori € {1,...,k}. If M c (®F, F2(Hy,)) ® H is anonzero invariant subspace under
the operators W @ Iy, then W @ I |5, is doubly commuting if and only if there is a Hilbert space
L and an isometric multi-analytic operator @ : (- F*(Hp,)) ® £ = (-, F2(Hp,)) ® H such
that M = @((®; F?(Hy,)) ® L).

Proof: Due to the remarks preceding this corollary, it remains to prove the direct implication.
Assume that W @ I | is doubly commuting. Corollary (4.1.26) and Theorem (4.1.25) imply the
existence of an inner multianalytic operator ¥ : (®-; F*(H,)) ® € = (R, F2(Hp)) @ H
such that M = ¥ (®, F2(Hy,)) ® £). Since W, ; are isometries, the initial space of ¥, i.e.,
(R, F2(H,)) @ H) = {x € (®K, F2(H,)) ® €) : [|Wxl| = [lx|1} is reducing under
each W; ; . On the other hand, the support of ¥ is the the smallest

reducing subspace supp (W) c F?(H,,) ® H under each operator W; ;, containing the co-invariant
subspace W* ((®i-, F2(H,,)) ® H). Therefore, we must have supp (¥) =

P ((QK, F?(H,,)) ® H). Note that @ := W, () is an isometric multi-analytic operator.
Since supp (W) = (®%, F(H,,)) ® L, where

L= P Q@ IV ((QFL, F2(Hp)) @ H) and M = ¢((Rf, F*(Hp,)) ® L), the proof is
complete.

We remark that in the particular case when n, = --- = n, = 1, Corollary (4.1.27) is a
Beurling type result for the the Hardy space H?(ID¥) of the polydisc, which seems to be new if k >
2.

We recall that P(W) is the set of all polynomials p(W; ;) in the operators W; ;,i € {1,...,k},j €
{1,...,ni}, and the identity.

Lemma (4.1.28) [186]: If W := (W, ..., W,) is the universal model associated to the abstract
noncommutative polydomain Dg*, then the C*-algebra C* (W, ;) is irreducible.

Proof: Let M # {0} be a subspace of ®%_, F? (Hy,), which is jointly reducing for each operator
W;;foralli € {1,...,k}andj € {1,...,n;}. Let ¢ € M, ¢ # 0, and assume that
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— 1 k
B1EFS, ,...,ﬁkellﬁk
If ag, g, isanonzero coefficient of ¢, then, using relation (8) we deduce that

a

L1, B1-
b(ml) (Mo et
1,81 k.Bx

On the other hand, according to Lemma (4.1.10), (I — @, w, )™ - (I — @4 w )" () = Pg,
where P is the orthogonal projection from ®_, F?(H,,) onto C1 c @, F?(H,,). Hence, and
using the fact that M is reducing for each W; ; , we deduce that az _z € M,s01 € M. Using
again that M is invariant

under the operators W; ; , we have M = K, F?(H,,). This completes the proof.

LetT = (Ty,...,T) €EDFF(H)and T' = (T4,...,Tx) € D (H") be k-tuples with T; :=
Ty Tin) and T; := (Tj4, ..., T{,,). We say that T is unitarily equivalent to T" if there is a
unitary operator U: 3 - H'such that T;; = U*T;;U foralli € {1,...,k}andj € {1,...,n;}.
Theorem (4.1.29) [186]: Let T = (Ty,...,Ty) be a pure k-tuple in the noncommutative
polydomain D{* () and let

Ker: 3 > F2(Hy) @+ @ F2(Hy,) ® A (D)
be the noncommutative Berezin kernel. Then the subspace K¢ t# is co-invariant under each
operator W; ; ® IAm foranyi € {1,...,k},j € {1,...,n;} and the dilation provided by the

relation

PcWig, - Wy g, @

l]’

Ty = Kt t(Wiy ® IW)Kf,T' (a) € Iin - X IF;"lk,
isminimal. If f = q = (q4,...,qyx) is a k-tuple of positive regular noncommutative polynomials
and

span{W» W) : (@), (B) € Fy, X - X Fp } = C°(Wy)),
then the minimal dilation of T is unique up to an isomorphism.
Proof: Due to Theorem (4.1.11), we have K¢ 1T;; = (W;; @ K¢ r foranyi € {1,...,k}andj €
{1,...,n;}, where the noncommutative Berezin kernel Kf 1 is an isometry. On the other hand, the
definition of the Berezin kernel K¢ 1 implies

(P(C ® IAm (D(}[))Kf T}[ A T(I)(}[)

Using Theorem (4.1.24) in the particular case when M := K¢ 1 and € := AP (I)(#), we deduce
that the subspace K¢ 17 is cyclic for W; ; ® I fori € {1,...,k}andj € {1,...,n;}, which
proves the minimality of the dilation, i.e.,

(@ ) @B DOD = \[ W ® Iy Kea?. (31)

(@)eF x-xFh, '
To prove the last part of the theorem, assume that f = q = (qy,...,qx) IS a k-tuple of positive
regular noncommutative polynomials and that the relation in the theorem holds. Consider another
minimal dilation of T, i.e.,

Ty = V(W ®Ip)V, (a) € Ffy x - x F, (32)
where V : H - (QF, F?(H,,)) ® D is an isometry, VH is co-invariant under each operator
W;; ® Ip , and

(et ) ®n= \/  We®LV. (33)
(a)e]Fﬁix-uxIng
Due to Theorem (4.1.12), there exists a unique unital completely positive linear map ¥,
C*(W; ;) - B(3) such that
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N N
For z Py (Wi)a, (W) | = Z Py (T)ay (Ti)
y=1 y=1

for any p, (W, )q,(W;;)" € P(W) and s € N. Consider the «-representations
1y C* (W) = By F*(Hy,)) ® A (D), m (X): = X ® Iy iy
and

m, : C*(W;;) » B(QK, F2(H,)) ® D, m,(X):=X Q Ip.
Since the subspaces K 13 and VH are co-invariant for each operator W; ; & IW’ the
relation (32) implies
Y, r(X) =K 11 (OKg 1 = V', (X)V, X € C*(W,)).
Due to relations (31) and (33), we deduce that r; and m, are minimal Stinespring dilations of the
completely positive linear map W, 1. Since these representations are unique up to an isomorphism,
there exists a unitary operator U : B(®}_; F*(H,,)) ® AP+ (D (H) - (®1, F?(H,,)) ® D such
that
UW,; ® I W) = (W, ® Ip)U
and Ky 7 = V. Taking into account that U is unitary, we deduce that
UW; ® I gm iyeo) = Wiy ® Ip)U
Since C*(W; ;) is irreducible (see Lemma (4.1.28)), we musthave U = I ® Z, where Z €
B(Ag (%), D) is a unitary operator. This implies that dim AF' (%) = dim D and UK 3 = VH,
which proves that the two dilations are unitarily equivalent. The proof is complete.

Let D be a Hilbert space such that the Hilbert space H can be identified with a co-invariant
subspace of (R¥_, FZ(Hni)) & D under each operator W; ; ® I, forany i € {1,...,k},j €
{1,...,n;} and such that T(,y = V* (W) ® Ip)V for (@) € F;; X - x F;, . The dilation index of
T is the minimum dimension of D with the above mentioned property. We remark that the dilation
index of T coincides with rank Ag'(I). Indeed, since A"y, (I) = P¢, where P is the orthogonal
projection from ®;_, F2(H,,) onto C1 c®}, F2(H,,), we deduce that Af't(I) = Py [Pc @
Ip]|3. Hence, rank Af'w(I) < dim D.

Now, Theorem (4.1.29) implies that the dilation index of T is equal to rank A+ (7).
Proposition (4.1.30) [186]: Let q = (q4,...,qx) is @ k-tuple of positive regular noncommutative
polynomials such that

span{WW(s)) ¢ (@), (B) € Fy, x--x Ty} = C*(W;)).
A pure k-tuple T = (Ty,...,T,) € Dg*(3{) has rank A{I",T(I) =nn=1,2,...,00, ifand only if it
is unitarily equivalent to one obtained by compressing (W; & I¢n ..., W, & Icn) to a co-invariant
subspace M c ®{-‘=1 FZ(Hnl.) & C™ under each operator W; ; @ I¢n, i € {1,...,k}andj €
{1,...,n;}, with the property that dim[(Pc @ Icn)M] = n, where P is the orthogonal projection
from ®}-, F2(H,,) onto C1.
Proof: The direct implication is a consequence of Theorem (4.1.29). To prove the converse, assume
that

T = Py(Wiy ® Ien) s, (@) € F, X X F}

where H c (®F_, F? (Hy)) ® C" isa co-invariant subspace under each operator W; ; ® I¢n for
anyi€ {1,...,k},j € {1,...,n;}, such that dim(P¢ @ Icn)H = n. Note that T is a pure element
in the noncommutative polydomain Dg'(H). First, we consider the case when n < oo. Since
(Pc ® Icn)H < C* and dim(Pe ® Icn)H = n, we deduce that dim(Pe & Icn)H = C™. This
condition is equivalent to the equality 7+ n C* = {0}. Since Af'y (I) = P¢, where P is the
orthogonal projection from @, F2(H,,) onto C1 c®}_; F*(H,,), we deduce that Agw() =
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Py [Pc & Icn]lz = Py C™. Consequently, we have rank Ag'y(I) = dim P C". If we assume that
rank Ag'r(I) < m, then there exists h € C", h # 0, with P,:h = 0. This contradicts the fact that
H+L nC* = {0}. Therefore, we must have rank Agr(D) = n.

Now, we consider the case when n = co. According to Theorem (4.1.24) and its proof, we have

LPEH)®E = \[ W ® I
(a)€EFs, x-xF,
where € := (P ® I¢n)H. Since @, F2(H,,) ® & is reducing for each operator W; ; @ I¢m , we
deduce that Teyy = Py (Wio) ® I¢) s, (@) € Fyy, X -+ X Fy . The uniqueness of the minimal
dilation of T (see Theorem (4.1.29)) implies dim AF'y (DH = dim € = co. This completes the
proof.
We can characterize now the pure n-tuples of operators in the noncommutative polydomain
Dg'(#), having rank one, i.e., rank Ag't (1) = 1.
Corollary (4.1.31) [186]: Under the hypothesis of Proposition (4.1.30), the following statements
hold.
(i) M c®F, F? (Hy,) is a co-invariant subspace under each operator W;
{1,...,k}andj € {1,...,n;}, then
T:= (Ty,....Te), Tii= (PueWialae, - Pae Wi, [0

is a pure k-tuple in Dg'(M) such that rank Ag'r= 1.

(i) If M is another co-invariant subspace under each operator W; ; ,
k-tuple T’, then T and T’ are unitarily equivalent if and only if

M =M

Proof: Since Ag'x(I) = PycPcla We have rank Ag'r (1) < 1. On the other hand, it is clear that T
is pure. This also implies that qr() # 0,s0rank Ag'r(I) = 1. Therefore, rank Ag'r(I) =
1.

To prove (ii), note that, as in the proof of Theorem (4.1.29), one can show that T and T' are
unitarily equivalent if and only if there exists a unitary operator A : @i, F*(H,,) »®, F?(H,,)
such that AW; ; = W; ;A i € {1,...,k},j € {1,...,n;}, and AM = M. Hence AW;; = W ;A.
Since C* (W, ;) is irreducible, A must be a scalar multiple of the identity. Therefore, we have M =
AM = M'. We provide a characterization for the class of tuples of operators in Df* (%) which
admit characteristic functions. We prove that the characteristic function is a complete unitary
invariant for the class of completely non-coisometric tuples and provide an operator model for this
class of elements in terms of their characteristic functions.

Let W := (W,,..., W) be the the universal model associated with the abstract
noncommutative domain D{". We say that two multi-analytic operator & : (®%_, F? (Hy)) ®
¥, - (@, F2(H,)) @ K, and @' : (R, F*(H,)) @ K = (L, F2(H,,)) ® X coincide
if there are two unitary operators 7; € B(X; , %) such that
'k r2,) @1 = Ugk rem,) ® T2)P.
Lemma (4.1.32) [186]: Let &, : (QF F?(H,)) Q@ Hs — (®F, F?(H,)) ® K,s = 1,2, be
multi-analytic operators with respect to W := (W, ..., W,) such that &, ®] = &, d3. Then there is
a unique partial isometry V : H; — H, such that
¢, = (Dz(I@lic:le(Hni) K V),

') &® V) is an inner multi-analytic operator with initial space supp (®,) and final

j»Where i €

which gives rise to an

where (1®k_1F2(Hn
space supp (@,). In particular, the multi-analytic operators @ |sypp (0,) ANd P |sypp (@,) COINCide.
Proof: Due to Lemma (4.1.10), (id — @y, w,) - (id — ®;,_w,)" “(I) = Pc, where P is the

orthogonal projection from @, F2(H,,) onto C1 c ®}_; F*(H,,). Since ®,, ¥, are multi-
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analytic operators with respect to W, we deduce that @, (P¢ ® Iy, )®; = ®,(P¢ ® Iy, ) 3.
Consequently, we have

|(Pe ® Iy, ® Iy, , x €(®L, F*(H,)) QK.
Set L := (Pe ® Iy, )P:((QL, F2(H,)) ® X),s = 1,2, and define the unitary operator U :
Ly - L, by

U(Pe @ Iy, )Pix = (Pe ® Iy, )P3x,  x € (Rl F2(Hy,)) ® XK.
This implies that there is a unique partial isometry V : H, — H, with initial space £, and final
space L,, extending U . Moreover, we have ®,V* = ®,|;g4,. Since ®,, ¥, are multi-analytic
operators with respect to W, we deduce that ¢1(1®5‘:1F2(Hni) Q V*) = ®,. Hence, the result

follows. Now, the last part of the lemma is clear.

Wesaythat T = (Ty,...,T,) € Df*(H) has characteristic function if there is a Hilbert space
€ and a multi-analytic operator ¥ : (=, F2(H,,)) ® € = (QF, F*(H,)) @ AP (1)}[ with
respectto W;;,i € {1,...,k},j € {1,...,n;}, such that

KerKip + W9* = 1.
According to Lemma (4.1.32), if there is a characteristic function for T € Df*(H), then it is
essentially unique.

We give now an example of a class of elements T € D{" (") which have characteristic
function. Let ¥: (®/2; F*(H,,)) ® € = (®2; F*(Hy,,)) ® G be an inner multi-analytic operator
with ¥(0) = 0 and consider the subspace M := W((®{-, F2(Hp,)) ® &). Note that M is
invariant under each operator W; ; and define T; ; := Py, . (W;; & Ig) |1 fori € {1,...,k} and
j €A{1,...,n;}. SetT:= (Ty,...,Ty), where T; = (T;4,...,T;;), and note that

Aft(Iper) = PMJ-A}nW@Ig(Ig)'MJ- = P (Pc @ Ig) 5L -
Since ¥(0) = 0, wehave 1 ® G € M+ and, consequently, AP (I5,2)"? = (Pc ® Ig) e -
Consider an arbitrary vector

— 1 k
h = Z e, ® - Qeg, @ hp,,.py
BEFR, i=1,..k
inM*c (QF, F? (Hp,)) ® G. Using the definition of the noncommutative Berezin kernel and
relation (8), we obtain

(mq) | (mg) w* *
KfTh = Z \[b my \/bkrgi eﬁl ® ® eﬁk ® (P(C ® Ig)(wl B 1,31 ® Ig) h
ﬂE]F i

.....

1 1
_ (mq) (myp) 1 _
= E , \/ big, J bege ep, ® @ el ® — " T— (1Qhg,,.p)=h
BEF} i=1,.k \/b1 51 b, B

Consequently, K¢ ¢ can be identified with the injection of M+ into (®/~; F*(H,,)) ® G, and
K rK§ 1 can be identified with the orthogonal projection P,,. . Therefore, K¢ 1K¢p + PW* = I,
which proves our assertion.

We also remark that in the particular case when k = 1and m; = 1, all the elements in the
noncom-mutative domain D7 have characteristic functions.
Theorem (4.1.33) [186]: A k-tuple T = (Ty,...,Ty) in the noncommutative polydomain D" ()
admits a char-acteristic function if and onIy if

Ag W®1(1 KerKer) = 0

forany p := (p1,...,px) € Zjy suchthatp < m, where Ky is the noncommutative Berezin
kernel associated with T.
Proof: If T has characteristic function, then there is a multi-analytic operator W with the property
that K¢ rK¢p + WW* = 1. Using the multi-analyticity of ¥, we have
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A wer(I = KerKip) = WAL o (DW= 0
forany p := (py,...,pr) € Zj suchthat p < m. For the converse, we apply Theorem (4.1.25) to
the operator Y = I — K¢1K§y and complete the proof.

If T has characteristic function, the multi-analytic operator M provided by the proof of
Theorem (4.1.25) when Y = I — K¢ 1K, which we denote by O r, is called the characteristic
function of T. More precisely, O 1 is the multi-analytic operator

Op 1 (®L; F2(Hp)) ® A, (D(Mr) = (R, F2(Hn)) ® APy (D(H)
defined by O¢ 1 := (I — K¢rKiq)Y 2KfM , Where
Ker : 7 - F?(Hy) ® - & F?(Hp,) ® APy (D(H)
is the noncommutative Berezin kernel associated with T and
Kimp 2 7 = F2(Hp,) ® -+ @ F?(Hp,) & Afy, (D(Mr)
is the noncommutative Berezin kernel associated with My € Dm(]v[T). Here, we have
My := range (I — K¢rKgr)
and MT = (My,...,My) is the k-tuple with M; := (M, 4,...,M;, ) and M, ; € B(Mr) given by
M;; := A;; ,where A; ; € B(My) is uniquely defined by
l][(I KfTKfT)l/2 ] = (1 - KfTK;T)l/Z(WLJ 02y I)x
forany x € (QF, F? (Hy)) ® Af (1) (). According to Theorem (4.1.25), we have K¢ rK¢y +
G)f,T@;,T = I
Theorem (4.1.34) [186]: Let T = (Ty,...,Ty) be a k-tuple in C}"(J{). Then T is pure if and only
if the char-acteristic function @ t is an inner multi-analytic operator. Moreover, in this case T =
(T4, ..., Ty) is unitarily equivalent to G = (Gy, ..., Gi), Where G; := (G;4,..., G;5,) is defined by
Gyj = Py, T(wij 02 I)|HfT
and Py, is the orthogonal projection of (®F., F?2(H, D AfT (1) (3) onto
Her = {(®, F?(H,,))®AF, (1)(%)} O range@yy.

Proof: Assume that T is a pure k-tuple in Cf* (H). Theorem (4.1.11) shows that the
Non-commutative Berezin kernel associated with T, i.e.,

Ker: H - FP(H ) ® .. ® F?(Hp) @ Af; (I)(}[)
is an is ometry, the subspace K¢t is coinvariant under the operators W; ; & I-m—-~ oF, i €

(D@’
{1,....k},j € {1,...,n;}, and Tj; = K¢ (W;; )K¢ 1. Since Kf 1 K¢ r is the orthogonal

& IA'“ (D(30)
projection of (¥, F2(H,,) ® A% (1) (3) onto K¢ and Ky 1 Kip + 0,0y = I, we deduce
that O¢ y is a partial isometry and Kf 1H = Hg 1. Since K¢ 1 is an isometry, we can identify 7 with
K¢ t#. Therefore, T = (Ty, . . ., Ty) is unitarily equivalentto G = (Gy,..., Gy).

Conversely, if we assume that @, is inner, then it is a partial isometry. Due to the fact that
K¢ 1 Kip + 0@fy = I, the noncommutative Berezin kernel K¢ 1 is a partial isometry. On the
other hand, since T is completely non-coisometric, K¢ 1 is a one-to-one partial isometry and,
therefore, isometry. Due to Theorem (4.1.11), we have

* dk : q1 —
KerKir = q=(q1hnc}k)eZ+(ld chk,Tk) v ((d = Pelr )U) =1

Consequently, T is a pure k-tuple. The proof is complete.
We provide a model theorem for class of the completely non-coisometric k-tuple of operators in Cf*
(H).
Theorem (4.1.35) [186]: Let T = (T4, . . ., Ty) be a completely non-coisometric k-tuple in Cf* (#)
and let W := (W, ..., W, ) be the universal model associated to the abstract noncommutative
domain Df*. Set

D= AR (D), D, = Afy, (DMy),
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and Ag, .= (I — Oy O IT)l/Z, where O t is the characteristic function of T. Then T is unitarily
equivalentto := (Ty,...,T,) € €k, (Hr), where T; :=(T;,, ..., T;n,)and T, ; is a bounded
operator acting on the Hilbert space

Her 1= |((®0) F2(Hn)) ® D) ® Doy (B, F2(Hy) ® D))

e { ®f,T(p®A@f_T(p: @ € (®{'{=1 FZ(Hni)) ® D*}
and is uniquely defined by the

P (®{-‘:1F2(Hni))®D|Hf,T) Tijx = (Wy; ® ID)(P (®£‘:1F2(Hni>)®D|Hf,T)x

forany x € Hg r Here, P is the orthogonal projection of the Hilbert space

QKL F2(Hn)® D

Ker:=(®L, F*(H,)) ® D) @

Do, (R, F2(H,)) ® D.)
onto the subspace (®}-; F*(Hp,)) ® D.
Proof: First, we show that there is a unique unitary operator I' : ' — Hg¢r such that
[(Kixg) = Pa(9 ®0), g€ (® [ F2(H,))®D (34)
where Py, the orthogonal projection of K¢+ onto the subspace Hy . Indeed, note that the operator
®: (R, F*(Hy)) ® D - Ky defined by
P := O 19p@le, ¢, ¢ € (R, F2(Hy)) ® D.,

@* (g @ 0) =0rrgd, 9

e (®f: F2(Hy)) @ D. (35)

is an isometry and

This leads to
2
Igll? = ||Py;, (g®O0) ||” + |PD*(gBO)|I* =

2 . 2
1Pes (9@ = |82
forany g € (®F, F?(H,)) ® D.Now, taking into account that
. 2 . 2
IKixgl” + ll@72gll” = llgl*, g € ®, F*(H,)) ® D
we deduce that
K} o]l = || Pty (900) || g € ®L, F2(HRI)) @ D (36)
Since the k-tuple T = (T4, ..., T}) is completely non-coisometric, the noncommutative Berezin kernel
K¢ 1 is a one-to-one operator and, consequently, range K ¢ . is dense in . Now, let x € H rand
assume that (x, Py . (g @ 0)) = 0forany g(®%, F? (Hy,)) ® D. Using the definition of H r and
the fact that ¢ + coincides with the span of all vectors g @ 0 for g € (R, F?(H,)) ®
D and Ogr¢ @ Ae, @ for ¢ € (R, F*(H,)) ® D, we deduce that x = 0. This shows that
Hir = {Pu,, (9 ® 0): g € (®i2, F*(Ha)) ® D}
Using relation (36), we conclude that there is a unique unitary operator I satisfying relation (34).
Foreachi € {1,...,k}andj € {1,...,n;},letT;; : H¢y — H¢r be defined by
Ti,j ::FTi,jF*’ i € {1,,k},] € {1,...,ni},
In what follows, we prove that

(P(®{-‘=1F2(Hni))® Dmm) T;x = (Wi; ®

In) (P (@1 F2(Hn )® Dm”) X (37)
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foranyi € {1,...,k}andj € {1,...,n;},, and x € Hg . Using relations (34) and (35), and the
fact that @ is an isometry, we deduce that
Pk r2tm nen K119 = Pk r2u, po ol (9 © 0) =
9~ Pk, r2, ne PP (g © 0) =g~ 070519 = KerKipg
forany g € (®}, F?(H,,)) ® D. That Taking into account that the range of K; g is dense in
H, we deduce that
Pk i, neol = Ker (38)

Hence, and using the fact that the noncommutative Berezin kernel K¢ is one-to-one, we can see

that

P(®{F=1F2(Hni))® Dl]]—ﬂf’T = Kf,T F

is a one-to-one operator acting from H 1 to (®, FZ(Hnl.)) &® D. Relation (38) and Theorem
(4.1.11) imply

(P(®{'<=1F2(Hni))®D|]}Hf’T> ’]:[“lk’] Fh = (P(®{§=1F2(Hni))® DIHf'T) h KfT T h
= (W} ® Ip )Kerh= (W) ® Ip) (P (@ F?(Hp )® Dmm) Th
foranyi € {1,...,k},j € {1,...,n;},and h € H'. Now, we can deduce relation (37). Note that,

since the operator P(®{F=1F2(Hni))®D|]HIf’T IS one-to-one, the relation (37) uniquely determines each

operator T; ; for all i € {1,..., k}and j{1,...,n;}, this completes the proof .

In what follows, we show that the characteristic function @¢  is a complete unitary invariant for
the completely non-coisometric part of the noncommutative domain C§".

Theorem (4.1.36) [186]: Let T :=(Ty, ..., Tx) €ECF (H)and T’ :=(Ty. .., Ty) € C{* (H") be two
completely non-coisometric k-tuples. Then T and T' are unitarily equivalent if and only if their
characteristic functions

O¢ t and O 1 coincide ..

Proof: Assume that the k-tuples T and T’ are unitarily equivalent and let U : H — H' be a unitary
operator such that Ty; = U* T/; Uforanyi € {1,...,k}andj € {1,...,n;}. Itiseasy to see that

UAfT (D) = fT,(I)U and, consequently UD = D’ where
D= A (D), D=
fT’(I)(}[)

Using the definition of the noncommutative Berezin kernel associated with D§" one can easily
check that (1 ) & U)K 7Kg U . This implies

(I®{‘(=1F2(Hni) ®U ) (1 —Ken K;'T’) (1®{‘<=1F2(Hni) ® U) -

I — K¢r, Ki (39)
and (I®;;_1F2(Hn_) ® U)Mr = My, , where My :=range (I — K¢ 1, Kf 1) and My, is defined
similarly .Recall that My := (My, . . ., My) is the k-tuple with M; := (M;,, ..., My;,,) and M;,j €
B(Mr,), and itis given by M; ;:= A”, where 4; ; € B(Mr) is uniquely deflned by

11[(1 — K¢ 1, K§ T)l/zx] = (I — K¢ 1,Kf T)l/z( ® Dx
forany x € (@, F2(H,,) ® AP () (0). Similarly, we define the k- tuple Mr,and the operators
A} ; € B(Mr,). Note that

Ay (= KnKin )%= Ugy o) ® U AyQ = K Ky o) V2 Uy oy, ) ® U
= Ugk ro(n, )@ U4y VAL Ugie 2,y ® U — K Kip)'/2x
forany x € (@, F?(H,,) ® AP A (D () Hence, we deduce that

®K,F?(Hy
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Al,] = (I®£(:1F2(Hni) ® U* )A:,] (1®?:1F2(Hni) ® U )-
Now, we can see that (1®§21F2(Hni) R U )2)* =D, ,where D, = A (D (M) and Dy is

defined similarly. We introduce the unitary operators 7 and t' by setting
T:=Ul|p: D - D'and 1, := ([®k FZ( ) Q@ U)|p,:D. — D..
Using the definition of the characteristic function it is easy to show that
To prove the converse, assume that the characterlstlc functlons of T and T’ coincide. Then there
exist unitary operators t: D — D’ and t, : D, —» D, such that

Uk r2(ny) @ T ) Ot = Oprr U pa(y, ) @ T)
It is clear that this relation implies

AGf,T= (I®{-‘=1F2(Hni) ® T*) AG)f,T’ (I®{F=1F2(Hni) ®T*)

and

(1®§{=1F2(Hni) ® T*)A@f,T ((®i€:1 F? (Hnl-) ®D.) =

Do, ., (®I; F2(Hn,) ® D1).
Define now the unitary operator U : ¥ ¢t > ¥; v by setting

U= (1®{_(=1F2(Hni) ® r) ® (1®{_<=1F2(Hni) ® r*).
Note that the operator & : (®%, F?(H,,) ® D. - X jr, defined by
q)(p = G)f,TQDI (p @ A@f_T(p QD € (®£€=1 FZ(Hni) ® D*,
and the corresponding @' satisfy the following relations:

00 (1ot oy © 7.) = @ )
and
‘7ch * :k:f,T’
(1®5‘ i) @ ) ®L . F2(Hr)® D vt = ®, F2(Hn )® D'’ (41)
where P®{f'1r 2 (1) D is the orthogonal projection of K¢ onto (®F, FZ(Hni) &® D Note also

that relation (40) |mpI|es
UHtr =U Kpr © UP((®, F*(Hy,) ® D)
=K © P (I®i-‘:1F2(Hni) on) (®f, F? (Hni))
® D.)
=Ky © O (®, F2(Hy,)) @ D.).
This shows that the operator U|Hf,T . H¢ v — Hg o is unitary. Note also that

(W ® Ip') (1 ®F 1 F2(Hn,) ®T) N

(Tt rn ©7) (Wi © 1) (42).
LetT:=(T,,...T,)and T" :=(T%, ... T;) be the model operators provided by Theorem (4.1.35)
for T and T', respectively. Using the relation (37) for T’ and T, as well as (41) and (42), we have

Kt P = * XfT
P®i€ 1F2(Hn )®D1Tl] - (wl,] ® ID )P®l 1F2 Hp., )®D

= (Wi; ® Iy )(1®k 1F(Hn )®T) g{‘ijz(Hn )® DX

Uy
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_ % K
- ( I®?=1F2(Hni) ® T) (wl'] ® ID ) P®’i(:1F2(Hni)® Dx

X *
= ( I®{‘<=1F2(Hni) ® T) P f,T , ’]I‘lx

Bk ()8
K ot
=p )" ,UT; ;X
®l’:1F (Hnl)®D ’
x

foranyi = {1,...,k},j €{1,...,n;},and x € H¢ 1 since P® £r’

P10, ) "
operator (see Theorem (4.1.35)), we obtain (UIHf‘T) =T;; = (T; )" (UI]H]fIT ). Due to
Theorem (4.1.35), we conclude that the k-tuples T and T'are unitarily equivalent. The proof is
complete .
Proposition (4.1.37) [186]: If T =(Ty, . . ., Ty) € D§'(#), then the following statements hold.
0] T is unitarily equivalentto (W; @ Iy, ..., Wi & I;) for some Hilbert space K if and
only if T € Cf*(#) is completely non-coisometric and the characteristic function @¢ ¢ =
0.
(i) If T € C{'(H), then O 1 has dense range if and only if there is no nonzero vector h € H
such that

|]HIf . iS an one-to-one

!

1. -d_ q)ql . .d—q)ql I h’h _ h
Q=(q1}..r,2k)eNk((l f1'T1) (i fl,Tl)( 2)h, h) = ||h]l

Proof: Note that if T = (W; & Iy, ..., Wy ® I) for some Hilbert space X', then K¢ ¢ = 1.
Since K¢ rKf 1 + O¢ 1, O ¢+ =1, we deduce that @¢ 1 =0. Conversely, if T € C{*(H)) is
completely non-coisometric and the characteristic function @¢ = 0, then K¢ tK¢ 1+ = I. Using

Theorem (4.1.35), the result follows.

Due to Theorem (4.1.11), the condition in item (ii) is equivalent to ker(l —Kf ¢ Kf,T) = {0},
which is equivalent to ker (I — K¢ 1K¢ ) = {0} and, therefore, to ker @¢ 1, @; 1 = {0}. Hence, the
result follows. The proof is complete.

We develop a dilation theory on the noncommutative polydomain D{*(3') and obtain Wold
type decompositions for non-degenerate *-representations of the C*-algebra C*(W; ;).

We recall that (W) is the set of all polynomials (W;; ) in the operators W, ; , i €
{1,...,k},j € {1,...,n;}, and the identity.
Lemma (4.1.38) [186]: Letq = (q4,...,qx) be a k-tuple of positive regular noncommutative
polynomials and let W = (W, . . ., Wy) be the universal model associated with the
noncommutative polydomain Df*. Then all the compact operators in B(®¥_, F?(H,)) are
contained in the operator space

S:= span {p(W; ;))q(W; ;)" : p(W;;),q (W;;) € P(W)},

where the closure is in the operator norm.
Proof: According to Lemma (4.1.10), we have

(I - chl ’wl)ml (I - q)qk’wk)mk (I) = P(C (43)
where P is the orthogonal projection from (®¥_, F?(H,,) onto C1 (QF, F? (Hy,). Fix
g(Wi,j): = Z d.31 _____ ﬁkWLm Wk,ﬁk and

+ +
ﬂleanl,....,ﬂkeank
|B1l+--+[Bx|sn

. 1 k
¢ Z Cp1...565, QD B g,
P1EFS, ... BkEFF,

and note that Pcg(W; ;)*¢ = (&, g(W;;)(1)) . Consequently, we have
x (Wi)Peg(Wi )€ = (€ g(W;,;) (D) x(W;)(D) (44)
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for any polynomial x(W; ;). Using relation (43), we deduce that the operator y(W; ;)Pcg(W; ;)" has

rank one and it is in the operator space S. On the other hand, due to the fact that the set of all
vectors of the form

..........

|B11+-++|Bk|sn
{21 F2(H,,) , relation (44) implies that all the compact operators in B(®_, F*(H,,)) are
contained in S. This completes the proof.

Let C*(I') be the C*- algebra generated by a set of operators I' € B(X) and the identity. A
subspace H c XK is called = - cyclic for ' if X = span {Xh,X € C*('),h € H}. The main result
is the following dilation theorem for the elements of the noncommutative polydomain Dg' ().
Theorem (4.1.39) [186]: Letq = (q4,-.-.,qx) be a k-tuple of positive regular noncommutative
polynomials and let W= (W, ..., W,) be the universal model associated with the abstract
noncommutative polydomain Dg'. If T = (Ty,..., Ty) is a k-tuple in Dg' (), then there exists a *-
representation m : C*(W; ;) — B(X; ) on a separable Hilbert space X, , which annihilates the
compact operators and

(I = @q,wp ) U = P mew ) Ui, ) = 0,
where (W;) := (1 (W;4),...,m(W;y, ), such that  can be identified with a x-cyclic co-
invariant subspace of

K = |( @k, F2(H,)) ® Ar(NE)| @ %,

under each operator

W, Qlai—Frc— 0
Vi, = A7 GO e ... ke {1...,n)
0 (W)
where AP (D= (id — g, 7,) e (id = P 7)™ (1), and

such that
T j = Vijlyforalli € {1,...,k}andj € {1,...,n;}.
Proof: Applying Arveson extension theorem [193] to the map W, r of Theorem (4.1.12), we find a
unital com-pletely positive linear map Wqr: C* (W; ;) = B(H) such that Wy 1 (W) W) )™ =
T(o T(py, Where Tegy := Ty g, - Tig, fOr (@) := (ar,..., ax) € Ff X .. X Ff, ,and W(g, is
defined similarly. Let 7: C*(W;;) — B(%) be the minimal Stinespring dilation [193] of Wor -
Then we have

~ Yor(X) = Pyft NI, X € C*(W,)),
and K span{ft (X)h: X € C* (W;;),h € H} Now, we prove that that Pyt (W) = 0 for
an (a) := (ay,...,a;) €FF X ..x Fy .Indeed, we have

Yo (Wi Wiy) = Ty Ty = Pocft (Wiay) 7t (W) e
= Pyt (W) (P + Pyr1) T(Wig) s
=Wor WiyWie)) + (Pt (Wiey)le1 ) (PrcE (Wigy) 301"
Consequently, we deduce that P (W) |5+ = 0 and, therefore, # is an invariant subspace
under each operator 7 (W; ;)* and
T(W;;) % = ¥or (W{fj) = TiTj (45)
foranyi € {1,...,k}andj € {1,...,n;}.
All the compact operators C(®', F2(H,,)) in B(® X, F?(H,,)) are con-tained in the C*- algebra
C* (W; ;). Due to standard theory of representations of C* -algebras [194], the representation 7

decomposes into a directsum 7=, @ mon K = K, ® K,, where m,, 7 are disjoint
representations of C* (W; ;) on the Hilbert spaces
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Ho = span{fi (X) K : X € C(Q®L,F*(Hy))} and X :

= Xy,
respectively, such that m annihilates the compact operators in B(®¥_, F? (Hy,)), and m, is uniquely
determined by the action of 7 on the ideal C(®¥_, FZ(Hni)) of compact operators. Since every
representation of C (®¥_, FZ(Hni)) Is equivalent to a multiple of the identity representation, we
deduce that .
Ko = (Q, FP(Hy, ) ® G, 1 (X) = X®Ig, X € C"(W,;), (46)
for some Hilbert space G. And its proof, one can easily see that

Ko = Span {F(X) K : X € C(®L; F*(Hn))}

= span {7t (W)PcW(p)) X : (@), (B) € Ff x .. x Fh )}

— (-~ m m ~
= span {”(W(a))[(l — Pgaw) - (= Pgrawy) U)K+ (@) € Fy, x . ]F;k}
Since (I — @4, w1)™... (I — CDZ::Wk)(I) = Py, is a projection of rank one in C* (W, ;) we
deduce that (I — g nw)™... I — Py wy)™(Ixc,) =0 and dim
G =dim [range 7 (P¢)] . On the other hand, since the Stinespring representation 7 is minimal, we
can use the proof to deduce that

range & (P¢) = span {ff (Pc)#(W(z)) h: (B) € Fy, X .. X F},,heH }.
Indeed, we have
range it (P¢) = span{f (Pc)T (X)h: X € C*(W;;),h € H'}
= span {# (PR (V) h: Y € C(®k, F*(Hy)),h € H}
= span { 7 (P¢) & (WiyPcW(p) )b : (@), (B) € Fy X .. X F3, h € H'}
= span {# (P)R(W(z) h: (B) € Fi; X .. X Fi ,he€H }
Now , using the fact that

Yor (WiyX) = Py (T( W) (X))|H
= (Pt W) | H) (P T (X)|H)
= TqT (w(a))qjq,T (X)
foranyX € C* (W;;) and (a) € F; x .. x [y, ,itiseasy to see that
(#(PE(W(y )b R(POR(W(g))k) = (B, Ti[(id = @g, 1,)"" . (id = D, 1) Us)]Tip)h])
= (Agr (DT h, Ay (DT k)
forany h,k € H and (@), (B) € F;;, x .. x Fy .Thisimplies the existence of a unitary

operator , A : range i(Pc) — Agy (D defined by

A[R(P)F(W(y )R] := Aty (DT(yh,  h € H,a € F}.
This shows that

dim[range t(P¢)] = dimAgy (DH = dim .

Using relations (45) and (46), and identifying G with Ag'y (I)H, we obtain the required dilation. On
the other hand, due to the fact that (I — @, « w,))™ ... I — Py, = w) ™ (Is;,) = 0, we can
use Proposition(4.1.9) to deduce that (I — @, « wy,) = 0 — Pg wwy))(Ix,) = 0. The proof is
complete.

We remark that if we replace 9 =(q4, . . ., qx), in Theorem (4.1.39), by a k-tuple f := (f3,..., )
of positive regular free holomorphic functions we obtain a dilation theorem forany T = (T4, . . .,
T,) in D* () . More precisely, one can show that there is a *-representation 7: C* (Wl-,j) * -
B(J¢) such that #{ is an invariant subspace under each operator 7 (W; ;) * and T;'; =
7t (Wi,j)*|}[ foranyi € {1,...,k},j € {1,...,n;}. On the other hand , note that, using the proof of
Theorem (4.1.39) and due to the standard theory of representations of C*-algebras, one can deduce
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the following Wold type decomposition for non-degenerate *-representations of the C*-algebra
C* (W, ).
Corollary (4.1.40) [186]: Letq = (g, - - ., qx) be a k-tuple of positive regular noncommutative
polynomials and let W = (W; ;) be the universal model associated with the abstract
noncommutative polydomain D{*. If & : C* (Wi,j) — B(XK) is a nondegenerate *-representation of
c* (Wi,j) on a separable Hilbert space &, then = decomposes into a direct sum
T=my P mn,onK =%K,P K,
where m, and mr; are disjoint representations of C*(Wi,]-) on the Hilbert spaces
Ko = span{ (Wi )| (1 = Pg, mwy)) ™ - (I = Pgpmew) ™ (Usc)]
Ki(a)eFy, X ..x Fp}
And X, = K, respectively, where m(W;) := (n(wi,l), ---»ﬂ(Wi,ni)) Moreover, up to an
isomorphism,
Ko = (R, F? (Hy)) ® G, mo (X) =X Q I; forany X € C*(Wi,j)a
where G is a Hilbert space with
dim G =dim {range [(I — @4, nwy) )™ - U — Py mewy )™ Us) |},
and m, is a *-representation which annihilates the compact operators and
U = @ mowy)) (I = Py mew ) ls,) = 0.
If 7’ is another nondegenerate *-representation of C*(Wl-,j) on a separable Hilbert space X', then 7
is unitarily equivalent to 7’ if and only if dim G =dim G ' and 7, is unitarily equivalent to m,".

Note that in the particular case when m = (1,...,1),q; := Z;; + - + Z;p, fori €
{L,....k},and V; = (V;1...,V;y, ) are row isometries such that V = (V; ; ) are doubly commuting,
Corollary (4.1.40) provides a Wold type decomposition for V. We also remark that under the
hypotheses and notations of Corollary (4.1.40), and setting V; ; := n(W; ;) forany i € {1,...,k} and
j € {1,...,n;}, the following statements are equivalent:

Q) V = (V;...,Vk ) isapure element in Dg'(X) ;
(i) foreachi € {1,...,k}, l[1)1_r>£10 cpgi v; (I) = 0inthe strong operator topology;

(iiiy K :=5pan { Vi [(1 = @g, . )+ oo (1= @y )" Uxe)] (Kt (@) € B, X .o X
Fn, }-

We mention that, under the additional condition that
span { Wiy W(g): (@) (B) € Fy, X ... x Fy,  }isequelto C*(W;;), (eg. for the polyball) the
map Wy r in the proof of Theorem (4.1.39) is unique and the dilation of T is minimal, i.e., K is the
closed span of all Vi, H (@) € F;, X .. x Fy, Taking into account the uniqueness of the minimal
Stinespring representation and the Wold type decomposition mentioned above, one can prove the
uniqueness, up to unitary equivalence, of the minimal dilation provided by Theorem (4.1.39).
Moreover, let T'= (Ty , ..., Ty) be another k-tuple in Dg'(®") and let V" = (V] ,...,Vy) be the

corresponding dilation. Using standard arguments concerning the representation theory of C*-
algebras , one can prove that T and T” are unitarily equivalent if and only if dim AF (1) (%) = dim

Ag‘,T,(I)(jf ") and there are unitary operators

U (® F2(Hy)) ® A7(DED) - (®l, F2(Hy)) ® AR, (NEH)
K, - K, such that

U(W s = W,

! A @D YU, T (W) = ' (W;,;)T

AT (D

u 0]}( =

foranyi € {1,...,k}andj € {1,...,ni},and[0 T
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Corollary (4.1.41) [186]: LetV :=(V; ..., V}) € Dg‘(ﬁ) be the dilationof T :=(T; ..., T}) €
Dg' (#) given by Theorem (4.1.39). Then,

() V is a pure element in D“‘(jZ) if and only if T is a pure element in Dg'(#) ;

(i) (I = @gp ) (I = Dgy)Ug)=0ifandonlyif (I — @y 7 ) (I —

Pgrer )Uze) = 0
Proof: According to Theorem (4.1.39) , we have
(id = @fep ) (id = @) () =
(id - cI)pkw ) (id - % w, )U®’-‘= FZ(Hnl-)) ®1!

H Aqm,T (‘7{) g |-7'(

Hence, we deduce that qz(qﬂglk)em(ld CDZ;I:T:() (id — P ) Uy) =

[if and only if P, [(I) g] |7€ = I consequently, T is pure ifand only if H L (0 @

K, ). According to Theorem (4.1.39) this is equivalentto H c ( Q% ; F*(H,)) ®
mT(I)(}[) On the other hand, since (R~ FZ(HnL)) ® Ag: 't (D(H) is reducing for each
V; j,and K is the smallest reducing subspace For V; j which contlns H , we must have K =

(®F, F?(H, D)) ® Agy (D(H) . Therefore, item (|) holds.
To prove part (i), note that

Aqw(®L, F2(Hy)) @logm—7s O
v = | e )
0 0
Hence, we deduce that Ag'y (I%) = 0 if and only if A%y, (1®k F2(Hy )) X I 5 On the other
T

hand, we know that A'¢y, (I®,_<_1F2(Hn_)) = Pc. Consequently, the relation above holds if and only if

a1 = 0. Now, using Proposition (4.1.9), we obtain the equivalence in part (ii). The proof is
complete.
We remark that every pure k-tuple T € Dg', (%) with rank Ag'y = 1 unitarily equivalent to one
obtained by compressing (W, . .., W,,) to a co-invariant subspace under W; ; where i € {1,...,k}

andj € {1,...,n;}. Indeed, this follows from Theorem (4.1.39), Corollary (4.1.41), and the
remarks preceding Corollary (4.1.41).
Section (4.2): Noncommutative Varieties in Polydomains

We denote by B(H)™ X, - -X. B(H)"™ the set of all tuples X: = (X;,..., X)) in B(H)™ X---X
B (H)™ with the property that the entries of X;: = (X, 4,..., X, ) are commuting with the entries of
Xei= (Xe1s.- Xem,) forany s, t € {1,...,k}, s # t. Inan attempt to unify the multivariable
operator model theory for the ball-like domains and commutative polydiscs, we developed in [249]
an operator model theory and a theory of free holomorphic functions on regular polydomains of the
form

DF'(H): = {X = (X1,...,X,) € B(H)™ X, - X BH)™: A ,(I) 2 0 for 0 <p < m},
where m: = (mg,...,m;,) and n: = (n,,...,n;) are in N¥, the defect mapping Agx: B(H) - B(H)
is defined by

Agxi= (id — Py x, )M 0 - -0 (id — Dy, x, )™,

and g = (q4,---,qx) is a k-tuple of positive regular polynomials g; € C[Z;,,...,Z; 5 ], i.., all the
coefficients of g; are positive, the constant term is zero, and the coefficients of the linear terms
Zi1,.--,Zin, are different from zero. If the polynomial g; has the form q; = ¥, a; 4Z; o, the
completely positive linear map @, x,: B(H) —» B(H) is defined by setting ®,, . (Y): =
Yo AioXioV X, forY € B(H).
We study noncommutative varieties in the polydomain Dg*(H), given by
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Vo(H):={X € Di*(H): g(X)=0forall g € Q},
where Q is a set of polynomials in noncommutative indeterminates Z; ;, which generates a
nontrivial ideal in C[Z; ;]. We understand the structure of this noncommutative variety, determine
its elements and classify them up to unitary equivalence, for large classes of sets Q c C[Z; ;]. This
study can be seen as an attempt to initiate noncommutative algebraic geometry in polydomains.
Let H,, be an n;-dimensional complex Hilbert space.
We consider the full Fock space of H,,, defined by

®
F?(H,): = @ HE?,

p=0
where H,%O: = Cland Hff’f is the (Hilbert) tensor product of p copies of H,,.. Let ;. be the unital
free semigroup on n; generators g, ..., gviu and the identity gj. We use the notation Zig:=2Zyj, "
Zij, if a; € F and a; = g]i-1 cee g;p ,and Z;gii= 1If(@):= (ay,...,a,) isinFy X .- X Fy
we set Z(a): = Zy 4, - - Ziq, - after setting up the notation and recalling some basic results from
[183], we show that the abstract variety V,: = {V,(H): H is a Hilbert space} has a universal model
S ={S;;}such that g(S) = 0,g € Q, where each S; ; is acting on a subspace N, of a tensor product
of full Fock spaces. For each element T € V,, (H) we introduce the constrained noncommutative
Berezin transform at T as the map Bro: B(N,) — B(H) defined by setting
Brolel:= Kqro(@ @ In)Kgrq, @ € B(N)),
where K¢ 1 is the constrained Berezin kernel. This Berezin [189] type transform will play an
important role. We show that the pure elements of the noncommutative variety V, (H) are detected
by a class of completely positive linear maps. More precisely, given T = {T; ;} € B(H)"* X- - -X
B(H)™, we prove that T is a pure element of V,,(H) if and only if there is a unital completely
positive and w*-continuous linear map
W 2 Span” (S S(gy: (@), (B) € Fy, X -+ x Ff} —~ B(H)
such that
¥Y(SwSip) =TT, (@), (B) € Fy, X+ x Fy,.
Every map ¥ with the above-mentioned properties is the constrained Berezin transform By ,at a
pure element T € V,(H). A similar result (see Theorem (4.2.4)) characterizing the noncommutative
variety V, (H) is provided under the condition that Q c C[Z; ;] is a left ideal generated by
homogeneous polynomials.
We use the noncommutative Berezin transforms to show that a tuple T = {T; ;} in B(H)™ X - - - X
B(H)™ is a pure element in V, (H) if and only if it is unitarily equivalent to the compression of a
multiple of the universal model to a co-invariant subspace. In this case, we have
Ty = BrolSwy @ In], (@) €Ff, x---x Ffh,
the constrained Berezin kernel K, r o is an isometry, and the subspace K, r o H is co-invariant under
each operator S; ; @ I, where D is the closure of the range of the defect operator Ag'-(1). For a
certain class of noncommutative varieties V, (H), this leads to a characterization of the pure
elements T € V,(H) with dimD = n € N. In particular, we obtain the following description and
classification of the pure elements T € V,(H) with dimD = 1. We show that they have the form
T = {PyS; jlm}, Where M is a co-invariant subspace under each operator S; ; . Moreover, if M 7 s
another co-invariant subspace under S;;, which gives rise to an element T’ € V,,(H), then T and T"

are unitarily equivalent if and only if M = M'. This extends a result of Douglas and Foias [249] for
the Hardy space H%(D™) over the polydisc.

We also obtain a characterization of the Beurling [240] type joint invariant subspaces under the
universal model S = {S; ;}. We prove that a subspace M ¢ N, @ H has the form M = M (N, ®
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&) for some partially isometric multi-analytic operator M: N, ® € - N, ® H with respect to the
universal model S, i.e., M(S;; ® Iy) = (S;; ® Ix)M forall i, j, if and only if
A so1,(Pu) 20, foranyp € Zf,p <m,

where Py, is the orthogonal projection of the Hilbert space N, @ H onto M.
There is a strong connection between the noncommutative varieties in polydomains, the theory of
functions in several complex variables, and the classical complex algebraic geometry. Note that the
representation of the abstract variety V;, on the complex plane C is the compact set

Vo(€C) =Dy(C)Nn{A€C" g(1) =0 forall g € Q}
and Dg(C) = {4 € C": A, 2(1) > 0} is a Reinhardt domain in C"*, where n = ny + - - - + n, isthe
number of indeterminates in g = (q4,...,qyx)-
We determine all the joint invariant subspaces of co-dimension one of the universal model S =
{S:,;}- We show that the joint eigenvectors for S;; are precisely the noncommutative constrained
Berezin kernels K, ; o, where 4 € V,,(C)) n Dg(C). We introduce the variety algebra A(V,) as the
norm closed algebra generated by the S; ; and the identity, and the Hardy algebra F* (V,) as the
WOT-closed version. We identify the w*-continuous and multiplicative linear functionals of the
Hardy algebra F* (V) as the maps, indexed by A € V,(C) N Dy (C), defined by @, (A): = B, o[A]
forA € F®(Vy). If Q c C[Z;;] is a left ideal generated by noncommutative homogenous
polynomials, then we show that the right joint spectrum o,.(S) coincides with V, (C). On the other
hand, it turns out that the variety V, (C) is homeomorphic to the space Mawy) of all characters of

the variety algebra A(V,), via the mapping 1 — @, where @, is the evaluation functional.
Special attention is given to the commutative case when Q = Q,, the left ideal generated by the
commutators Z; ;Z,, — Z,Z; ; of the indeterminates in C[Z; ;]. In this case, the universal model
associated with V,, _, denoted by L = {L;;}, is acting on the Hilbert space N,_ which coincides with
the closed span of all vectors K, ; o With 2 € D;(C)}, and it is identified with a Hilbert space
H?*(D4(€)) of holomorphic functions on D, (C), namely, the reproducing kernel Hilbert space with

kernel defined by
1

m;
i (1 - Qi(.uiii))
We prove that the Hardy algebra F* (V) is reflexive and coincides with the multiplier algebra of
the Hilbert space H*(D;(C)). Under this identification, L; ; is the multiplier by the coordinate
function 2, ;. We remark that when n; = - - - = n; and Q. is the left ideal generated by Q. and the
polynomials Z; ; — Z,, ;, the universal model associated with V;,__is acting on the Hilbert space Ny,__
which can be identified with the reproducing kernel Hilbert space with kernel

1 k
= Z,WE ﬂ D°l.((C).
?:1(1 - qi(ZM_/))m i=1 !

In the particular case when f, =---=f, =Z;+--- +Z,andm; =---=my; = 1, we obtain the

reproducing kernel (z, w) +— m on the unit ball B,,. In this case, the reproducing kernel

Hilbert spaces are the Hardy-Sobolev spaces (see [247]), which include the Drurry-Arveson space
(see [250], [255], [248],[246]), the Hardy space of the ball and the Bergman space (see [255]). All
the results are true in these commutative settings.

We show that the isomorphism problem for the universal polydomain algebras is closed connected
to the biholomorphic equivalence of Reinhardt domains in several complex variables. Let g =
(q1,---,qx) and g = (g4,---, gx') be tuples of positive regular polynomials with n and ¢
indeterminates, respectively, and let m € N* and € Nk We prove that if the polydomain algebras
A(D7") and A(DJ) are unital completely contractive isomorphic, then the Reinhardt domains D; (C)
and D4 (C) are biholomorphic equivalent and n = 4. A similar result holds for the commutative

kg(u,A):= w A € Dg(C).

ke (u,w):=
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variety algebras A(Vg_) and A(Vg‘fQC). We remark that whenqg = Z; +---+Z,and g =
(Z4,...,Zy), the corresponding domain algebras are the universal algebra of a commuting row
contraction A(V;Qc) and the commutative polydisc algebra A(V;Qc), respectively. Since B,, and D"
are not biholomorphic equivalent domains in C™ if n > 2 (see [251]), our result implies that the two
algebras are not isomorphic. The classification problem for polydomain algebras will be pursued.
We develop a dilation theory for noncommutative varieties in polydomains. For the class of
noncommutative varieties V, (H), where Q  C[Z; ;] is an ideal generated by homogeneous
polynomials, the dilation theory is refined. We obtain Wold type decompositions for non-
degenerate =-representations of the C*-algebra C* (V) generated by the universal model S; ; and the
identity, and coisometric dilations for the elements of V, (H). Under natural conditions, the dilation
IS unigue up to unitary equivalence. In the particular case whenk =m=1,9q=2,+---+Z,, and
Q = Q., we recover Arveson’s results [255] concerning the dilation theory for commuting row
contractions.

We provide a characterization for the class of tuples of operators in the noncommutative variety

Vo (H) which admit constrained characteristic functions. The characteristic function is a complete
unitary invariant for the completely non-coisometric tuples. We also provide operator models in
terms of the constrained characteristic functions. These results extend the corresponding ones from
[258], [255], [257], [258], [251], [252], [251], and [253], to varieties in noncommutative
polydomains.

We remark that the results are presented in a more general setting, when q is replaced by a k-tuple
f = (f1,-.., fr) of positive regular free holomorphic functions in a neighborhood of the origin, and
Q is replaced by a WOT-closed left ideal of the Hardy algebra F* (Df").

We mention that noncommutative varieties in ball-like domains were studied in several (see [256],
[257], [258], [259], [250], [251], [252], and the references there in). The commutative case when
m; =2,n, =2,and q, = Z; +- - - +Z,,, was studied by Athavale [256], Muller [252], Muller-
Vasilescu [253], Vasilescu [250], and Curto-Vasilescu [255]. Some of these results were extended
by S. Pott [254] when g, is a positive regular polynomial in commuting indeterminates (see also
[252]). The commutative polydisc case, i.e, k > 2,n;, =---=n, =1,and q = (Z4,...,Z,), was
first considered by Brehmer [254] in connection with regular dilations. Motivated by Agler’s work
[251] on weighted shifts as model operators, Curto and Vasilescu developed a theory of standard
operator models in the polydisc in [256], [257]. Timotin [259] obtained some of their results from
Brehmer’s theorem. The polyball case, when k = 2and q; =Z; +--- + Z,,,i € {1,...,k}, was
considered in [256] and [258] for the noncommutative and commutative case, respectively.

We consider noncommutative varieties V¢';(H) < Df"(H) determined by left ideals J in either one
of the following algebras: C[Z; ;], C[W; ;], A(Df"), or F(Dg"). We associate with each such a
variety a universal model S = (Sj,...,S,) € V¢;(N;), where N, is an appropriate subspace of a
tensor product of full Fock spaces. We introduce a constrained noncommutative Berezin transform
and use it to characterize noncommutative varieties in polydomains.

We begin by recalling from [253] some definitions and basic properties of the universal model
associated with the abstract noncommutative polydomain D¢™ and of the associated Berezin kernel.

Foreachi € {1,..., k}, let F;;, be the unital free semigroup on n; generators gt,. ..,g,ill. and the
identity g§. The length of a € Iy, is defined by |a|: = 0 if a = gtand |a|:=pif a = gj-l cee
g]l-p, where jy,...,Jp €{1,...,m;}. If Z; 4,. i Ziy, are noncommuting indeterminates, we denote
Zigi=1Zij, " Zij, and Zl-’g(i): =1.Letf;:= ZaelFﬁi a;aZg,0;q € C, be aformal power series in ni
noncommuting indeterminates Z; ,..., Z; »,, . We say that f; is a positive regular free holomorphic
functionifa;, > 0 forany a € IF;;i,al.,gé =0, ai’g;; > (0 forje{l,...,n;},and

2)1/2k

lim SUpkﬁm(Zka |a; o < oo, We denote by B(H) the algebra of bounded linear operators

on a separable Hilbert space H.
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Given X;:= (Xj1,..., Xin,) € B(H)”i , define the map @, ,.: B(H) — B(H) by setting

CDle (Y) —z Z alaXLaYXla’ YEB(H)’
1aEIF+ lal=k
where the convergence is in the week operator topology. Let n: = (n4,...,n,) and m: =
(my,...,my), wheren;,;m; e N:={1,2,...}and i € {1,...,k},and let f: = (f1,..., fi) be a k-tuple
of positive regular free holomorphic functions. We associate with each element X = (X,,...,Xy) €
B(H)™ X---x B(H)"™ and p = (p4,..., px) € Z¥ the defect mapping A]’Z'X: B(H) — B(H) defined
by
A7 yi= (id — @y, x, )PL o+ - 0 (id — By, x, )Pk,
We use the convention that (id — @y, x,)° = id. We denote by B(H)™* X - - -X, B(H)™ the set of
all tuples X = (Xy,...,Xy) € B(H)" X - - - X B(H)", where X;:= (X;1,...,X;,) € B(H)™,i €
{1,..., k}, with the property that, forany p,q € {1,...,k},p # q, the entries of X,, are commuting
with the entries of X,,. In this case we say that X;, and X, are commuting tuples of operators. Note
that, for each i € {1,..., k}, the operators X; , ..., X; ,, are not necessarily commuting.
In [273], we developed an operator model theory and a theory of free holomorphic functions on the
noncommutative polydomain
DF*(H):={X = (Xy,..., X)) € BUH)™ X, - X B(H)": AY (1) 2 0 for 0 < p < mj}.
We refer to Df": = {Df"(H): H is a Hilbert space} as the abstract noncommutative polydomain,
while D¢ (H) is its representation on the Hilbert space H.
Let Hy,,, be an n;-dimensional complex Hilbert space with orthonormal basis el,..., e,ﬁi. We
consider the full Fock space of H,,, defined by

F?(Hp):=C1@® GB HY?,

p=1
where H? is the (Hilbert) tensor product of p copies of H,,,. Setel:= e} ® - ® e]-"p ifa=g -
: g]i-p € I, and e;i :=1 € C. Note that {e}: a € F;,} is an orthonormal basis of F2(H,,,). Let
0
m;,n; EN:={1,2,...},i €{1,...,k},and j € {1,...,n;}. We define the weighted left creation
operators W ;: FZ(HnL.) - F? (Hy,), associated with the abstract noncommutative domain Djfi” by

setting
/ (my)
, bi,al .
W, eq:= eg . a € Fy,
b(ml) J
1’ Lgja
where

(my), _ (mp), _ yla pt+m
b, :=1and b;,": =Yp=12 vy, ypeFh iy ai,yp< m, — l ) (47)
Y1Vp=a
|y1|21,---,|)/p|21
forall « € I, with |a| = 1. Foreachi € {1,...,k} and j € {1,...,n;}, we define the operator W ;
acting on the tensor Hilbert space F*(H,,) ® - - - @ F?(H,,) by setting
Wi=IQ -QIQW,; QIR Q1.
i—1times k —itimes

The k-tuple W:= (Wy,..., W), where W;:= (W, 4,...,W;,), is an element in the
noncommutative polydomain D}"(@{-‘zl F?(H,,)) and it is called the universal model associated
with the abstract noncommutative polydomain Df* . We say that T = (T,...,Ty) € Df"(H) is
completely non-coisometric if there isno h € H, h # 0 such that

((id = @) -+ (id — 1% Y(Ih,h) =0

f1Tk
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for any (qy, ..., qx) € N¥. The k-tuple T is called pure if
lim  (id - o, ). (id - o)D) =1.

q=(q1,--qK)€Z¥
The noncommutative Berezin kernel associated with any element T = {T; ;} in the noncommutative

polydomain D{™*(H) is the operator
KepiH = F*(Hy,) ® ... ® F2(Hy,) ® AT (D(3H)
defined by

— (my) (mg) 1 k * *
K¢rh == Z \/bmi ...\/bk'ﬁ’; e, @ ..Q ez ® A}’}T(I)l\ZTLB1 T g b
Bi€Fy,i=1,..k
where the defect operator is defined by
. m . m
AT (D) = (id = pp,) " (id = Ppr) (D,
and the coefficients b, ..., b,g’;’;) are given by relation (47). The noncommutative Berezin kernel

1*Bl ’
K¢ r is a contraction and

K rKpr = lim .1im (id — of%, ). (id = o)D),

=00 1T
qk—)OO

where the limits are in the weak operator topology. Moreover, forany i € {1, ...,k}and j €
{1, . ni},

Kf,TTi’fj = (W{fj Q DKs 1.
The noncommutative Berezin transform at T € D" () is the mapping Br: B(®F , F? (Hp,)) -
B(H) given by
Brlgl = Kir(g ® Is)Ksr, g € B(®, FZ(Hni))-
The polydomain algebra A(Df™) is the norm closed algebra generated by W; ; and the identity. Let
S = W{W(@W&;)! (a), (ﬁ) € Fnt X ... X Fn-’;c}’
where the closure is in the operator norm. We proved in [273] that there is a unital completely
contractive linear map Wy r: S — B(H) such that
Yrr(g) =limBrlgl, g€S,
where the limit exists in the norm topology of B(H),and
Yer(WiayWip)) = Ty Ty (@), (B) € Ff X .. X E},
where W) == Wi 4, .. Wi g, for (a) = (ay, ..., ay). In particular, the restriction of ¥ 1. to the
polydomain algebra A(Df") is a completely contractive homomorphism. For information on
completely bounded (resp. positive) maps, see [254].
The noncommutative Hardy algebra F* (Df" ) is the sequential SOT-(resp. WOT-, w* —) closure of
all polynomials in W; ; and the identity, where i € {1, ..., k},j € {1, ..., n,}. Each elemeny ¢ (W, ;)
in F(Df" )has a unique Fourier type representation
o(W;;) = Z ceoWepy, e €6
(B)EF, X..XFpn,
and (W, ;) = SOT — Lim,_, ¢(rW, ), where ¢ (rW; ))is in the polydomain algebra A(D}"). We
recall [253] the following result concerning the F* (D" )—functional calculus for the completely
non-coisometric part of the noncommutative polydomain D¢*(H). Let T = (T4, ..., Ty) be a
completely non-coisometric k-tuple in the noncommutative polydomain D¢* (). Then
Wy = SOT — lim o(rTy;), Yr=oW;,;)eF°(Df"),
exists in the strong operator topology and defines a map ¥;: F“(D}” ) — B(#H) with the following

properties:
¥ (@) = SOT — lrl_r)rlz B,r[p], where B, is the Berezin transform at rT € D™ (H);

(i)¥; is WOT-continuous (resp. SOT-continuous) on bounded sets;
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(ii)¥ is a unital completely contractive homomorphism and
Vr(Weg)) =Tipy,  (B) €Fy X X Y,
If T is a pure k-tuple, then ¥, (@) = By [¢].
Foreachi € {1,..,k}, letZ; .= (Z;,, ..., Z; ;) be an n;-tuple of noncommuting indeterminates and
assume that, for any s,t € {1, ..., k}, s # t, the entries in Z, are commuting with the entries in Z,.
The algebra of all polynomials in indeterminates Z; ; is denoted by C[Z; ;].
Let W = {W; ;} be the universal model associated with the abstract noncommutative polydomain
Dg* . If Q is a left ideal of polynomials inC[Z; ;], we let QW := {q(W, ;): q € Q} be the
corresponding ideal in the algebra C[W; ;]of all polynomials in W; ;and the identity. Using the
A(Df™)-functional calculus, one can easily show that the norm-closed left ideal generated by QW in
the polydomain algebra A(D") coincides with the norm closure QW . Similarly, using the
F* (Df")—functional calculus, one can prove that the WOT-closed left ideal generated by QW in the
Hardy algebra F* (D) coincides with Qi . If ] is a left ideal in C[W; ;], A(D}™), or F* (D), we
introduce the subspace M, to be the closed image of ] in ®_, F?(Hy),ie., M; =
J (R, F? (Hy,)- We also introduce the space
Ny = [®i’c=1 FZ(Hni )IES) M; .
When Q is a left ideal of polynomials inC[Z; ;], we set My := Mgy, and Ny == [@F_, F2(H,)] ©
M,. We remark that in this case we have
Ny = Ngyw = NQ_‘\;VVOt.

We consider ] to denote a left ideal in either one of the following algebras:
C[z;;], c[w;;], A(D), or F*(DJ™). We always assume that N, # {0}. It is easy to see that N, is
invariant under each operator Wij‘j forie{1,..,k},
j €{1,..,n;}. Define §; ; := Py, Wijin,» where Py, is the orthogonal projection of

K F? (Hy,) onto N, . Using the properties of the universal model W = {W, ;} and the fact that N,
is invariant under each operator W;’; , one can obtain the following result.
Lemma (4.2.1)[244]: Let ] be a left ideal in either one of the following algebras:
C[z;,]. c[w;;], AD), or F* (D). The k-tuple S := (Sy, ..., S), where S; := (S;; ..., Sin,) and
Sij = Pn,Wij, has the following properties.
(i) S is a pure tuple in the polydomain Df*(N;).
(ii) Under the F* (D¢")-functional calculus,

9(51» ""Sk) = 0, g E]_WOt.
(iii) If P; denotes the orthogonal projection from ®¥_; F?(H,,) onto C,, then

. . m
(ld - q)f1'51)m1 (ld - ¢fkﬂsk) k(IN]) = PN]P(ClN]
Proof: Since N, is invariant under each operator W;’;, we have q’?f,sl (N = Pde’;i,lsl 0)) IN]. Taking
into account that W is a pure element in D}”(®{-‘=1 F?(H,)), we deduce that SOT- lim CD;’ifWi () =

0, which implies that S is a pure tuple in the polydomain D¢*(N;). To prove part (ii), note that if
g(W; ;) € J™°¢, then the range of g(W; ;) is in N, .Using the F* (Df")-functional calculus, we
deduce that

g(Sy, .., S) = SOT — lim g(rS;;) = sor - Lim g(rw;;) |N] = PN]g(Wi'j)|N] = 0.
Part (iii) follows from the fact that Af, (1) = P¢ and N, is invariant under each operator W;’; .
Indeed, we have AT, (I) = PN]A}’}W(I)|N] = Py, Pcly,-

We define the noncommutative variety V¢ (3() in the polydomain Df"(3{) by setting
V() = {X = {X;;} € D*(#): g(X) = 0 for any g € J}.
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We remark that this variety is well-defined if  is a left ideal in C[Z; ;], C[W; ;], or A(D}™). In the
case when J is a WOT-closed left ideal inF* (D), we can use the F* (D;")—functional calculus to
define the variety V/'; ... (30)of all completely non coisometric (c.n.c.) tuples X € Df"(#)
satisfying the equation g(X) = 0 forany g € J.
According to Lemma (4.2.1), the k-tuple S := (S, ..., Sx) is in the noncommutative
varietyV/" (; ). We remark that S will play the role of universal model for the abstract
noncommutative variety

Vi = (V7 (3): 3 is a Hilbert space}.
We introduce the constrained noncommutative Berezin kernel associated with T € V;"} (#) as the
bounded operator Ky 1 ;: H — N; ® A}Z}T(I) () defined by

K= (PN] X IW) K¢ 1,
where K r is the noncommutative Berezin kernel associated with T € D™ (). The next result
shows that the main properties of the noncommutative Berezin kernel remain true for the
constrained Berezinkernel associated with the elements of the noncommutative varietyvf’f} (H).
Proposition (4.2.2) [244]: Let T = (T, ..., Tx), With T;(T; 1, ..., T; »,) b€ in the noncommutative
varietyV/";(#), where J is a left ideal inC[Z; ;], C[W; ;], or A(D/* ). The constrained
noncommutative Berezin kernel associated with T has the following properties.
() K¢ r; is a contraction and

q .
K1,/ Kyry = lim ..lim (id — o, ... (id — o)D),
where the limits are in the weak operator topology.

(i) Foranyie{l,.. ,k}andj €{1,.. ,n;},
K7y = (52 ® Dy,
(iii) If T is pure, then
Ki o Krry = I
If J is a WOT-closed left ideal in F*(Df") and T € V/'; .,,.(), all the properties above remain
true.
Proof: Since Ky ;Tr; = (W;; @ DKyr foranyi € {1, ... ,k}and j € {1, ... ,n;}, we deduce that
(Kprx, q(Wl,,)W@(l) ® y) = (x,q(Ti ) ) T Kfr(1 @ ¥)) =
(x,q(T; ;) Ty AT (DY2y) (48)
forany x € H,y € A7 (DH, () € Ff, & ... ® Fy,, and any polynomial q(W; ;) €
C[w; ;].Consequently, if ] is a left ideal in C[Z; ;] or C[W, ], then q(T; ;) = 0 forany q € J and
therefore
rangeK;r < N; ® Af" AT (DH. (49)
Assume that J is a norm-closed left |deal of A(Df™) and let g(W; ;) € J. Choose a sequence of
polynomials g, (W; ;) which converges in normto g(W; ;). This implies that g, (T; ;) converges in
normto g(T; ;).
Using equation (48), we deduce a similar one where q(W; ;) is replaced by g(W; ;). As above, we
deduce that relation (49) remains true in this case. Now, we consider the case when J isa WOT-
closed left ideal in F*(Df*) and T € V] ., (3). Let o(W; ;) be in ] < F*(Df™) with Fourier
representation

o(W;;) = Z e Wep-
(B)e]Fnlx x]Fnk
Then (W, ;) = SOT — lriirll o(rW;;), and @ (rW, ;) is in the polydomain algebra A(Df"). Relation
(48) implies
(Ke 2, ("W YWy (1) @ ¥) = (x, @ (rW; ) Ty AF (D 2y)
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forany r € [0,1),x € 3,y € AF(DH ., and (@) € Fy, X ... X Fy, . Due to the F*(Df™")—functional
calculus, we have 0 = ¢(T; ;) = SOT — lim QT ;). Consequently.(Kf,Tx, W j I Win(1) &

y)=~0forany p(W;;) €],y €A T(I)?f and(a) € IF;;, X ...x F; . Therefore, relation (49) holds
also in
this case. It is clear that due to relation (49), we have K; 1 K¢ r; = K7 Ky r. Now, one can easily
complete the proof using the appropriate properties of the noncommutative Berezin kernel K r and
the definition of the constrained Berezin kernel.
For each n-tuple T := {T; ;} € V}?}(ﬂf ), we introduce the constrained noncommutative Berezin
trans-form at T’ as the map Br ;: B(N;) — B(H) defined by setting
Br; [g] = K;,T,](g ® I}[)Kf,T,]! g € B(N]);
where J is a leftideal in C[Z; ;], C[W; ;], A(Df"), or F*(Df™). Note that By, ;is a completely
contractive, completely positive, and w*-continuous linear map. Consequently, By ; is WOT-
continuous (resp.SOT-continuous) on bounded sets. Note that T is pure if and only if Br ;(I) = I.
Theorem (4.2.3) [244]): Let T = (Ty, ..., Tx) € B(H)™ X ...x B(H)™ and let ] be a w*-closed left
ideal of F*(Df™). Then T is a pure element of the noncommutative variety V¢ (#) if and only if
there is a unital completely positive and w*-continuous linear map
Y:5pan”’ {S)Sis): (@), (B) € Ff X .. x F} } = B(H)
such that
Y(SwSipy) = T Tpy (@), (B) €EFy X . X Fy,.
Proof: Due to Proposition (4.2.2), if T := (Ty, ..., T}) is a pure tuple in the noncommutative variety
Vi (), then Kg 7, is an isometry and the constrained noncommutative Berezin transform is a
unital completely contractive and w*-continuos linear map such that
Br[ScSip] = Kfry[ScSip @ lclKpry = Talp
for any (a), (B) € F;, X ... X [, . To prove the converse, assume that W has the required
properties. Since (Sy, ... , Sx) isa commuting tuple and ¥ is a homomorphism when restricted to
C[S; j], we deduce that (T, ..., Ty) is @ commuting tuple. Taking into account that @, ¢ isa w*-
continuous map, and Af s is a linear combination of products of the form &/ .. ¢]3k"5k where
(q1, .-, qx) € Z¥, we deduce that A}’Sis a w*-continuous map. Since ¥ is a completely positive w*-
continuous linear map such that ¥ (S4)S(s)) = T(ayT(, for any (a), (8) € Fy, X ..XFp ,we
obtain
Afs(I) = ¥(Afs(1) 20
forany p = (p4, ... ,px) € Z& with p < m. Therefore, € Df*(#) . On the other hand, for each i €
{1, ..., k}, we have
qlii_r)noo ol (1) = lP(qlii_r)n @l (D) =W¥(0) =0,
which shows that T is a pure tuple in the polydomain D" (H). To prove that T is in the
noncommutative variety V¢ (H), fix g € J and recall that g(W; ;) = SOT- hm g(rW”) where

g(rw; ;) is in the polydomain algebra A(D/™), and ||g(rW; ;)|| < ||9(Wu)|| for any r € [0,1).
Using the the F* (D;")—functional calculus for pure elements in D¢*(H) and the fact that WOT and
w*-topology coincide on bounded sets, we deduce that
9(T;)) = WOT —lim g(rT; ;) = woT — lim ¥ (g(r,,))
= W(WOT —lim g(rS;;) = ¥ (9(5,)) =% =0o.
Therefore, T is in the noncommutative varietyV;"; (3€). The proof is complete.
Theorem (4.2.4) [244]: Let Q c C[Z; ;] be a left ideal generated by noncommutative homogenous

polynomials and let
T:=(Ty,..,T) €E B(H)™" X ..X B (H)™M.
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Then T is in the noncommutative variety V', (1), where g = (qy, ..., qi) is a k-tuple of positive
regular noncommutative polynomials, if and only if there is a unital completely positive linear map
Y:S - B(H),
where S := Span{S 4)S(s): (@), (B) € Fy, x ...x F} }, such that
Y(SwSip) =TTy (@), (B) €Fy, X .. X Ff,

where S: = {S; ;} is the universal model associated with the abstract noncommutative variety V.
Proof: Assume that T € V', (H). Since Dg*(H) is a radial domain [253], T € D% (H) forany r €
[0,1).
Note that, due to the fact that Q c C[Z; ;] is a left ideal generated by noncommutative homogenous
polynomials, if g € Q, then g(T;;) = 0 and g(rT; ;) = 0. Thus rT € V', (H) and, as in the proof
of Theorem (4.2.3), one can show that range K, ,r € N, @ H for any r € [0, 1), where K, ,. is the
Berezin kernel associated with »T € D7*(H). Moreover,

Karr,o 1 PIT oy Tig)) = (St Sipy ® TH)Kgrr 0 (@), (B) € Fy, X -+ X Fr,.
Since rT is pure, K, .o is an isometry. Consequently, for any n X n matrix with entries 1 (S; ;) in
the linear span S of all products S S(sy, where (a), (8) € Fy, X - - - X E* , we have the von
Neumann type inequality

s T Dlscnll < Nse (S, 7 €10, D).
Taking r — 1, we deduce that ||[s; (rT; ) ]nxn || < ||[1pst(5i,j)]||nxn. We define the unital
completely contractive linear map Wy o: S = B(H) by setting ¥, .0 (S(a)S(5)): = T(ayT(), for all
(@), (B) inFy x--- X F} . Now, itis clear that ¥ has a unique extension to a unital completely

contractive linear map on S.
To prove the converse, assume that W has the required properties and note that, due to Lemma
(4.2.1) and the fact that 1 € N, we have

(I =Dg, )Pt (I = Pgr IPRI) =P[U = Pg, 507 -+ (I = Py 5 )7 (Ing)] 20
forany p; € {0,1,...,m;}and i € {1,..., k}. Since (S;,...,S;) isa commuting tuple and W is a
homomorphism when restricted to C[S; ;], we deduce that (T, ..., T}) is a commuting tuple.
Therefore, T € D¢ (H). On the other hand, since g(S; ;) = 0 forany g € Q, we have g(T;;) =
W(g(S;;)) = 0, which shows that T € V', (H). The proof is complete.

Proposition (4.2.5) [244]: Let @ c C[Z; ;] be a left ideal generated by noncommutative
homogenous polynomials, and let T: = (T, ..., T,,) be in the noncommutative variety V', (H),
where f = (f1,..., fi) is a k-tuple of positive regular free holomorphic functions. Then there is a
unital completely contractive linear map Wy r o: S - B(H), where S: = Span{S)Sip): (@), (B) €
Fy, x---xFy },such that

Prro(9) =limBrolgl,  gES,

where the limit exists in the norm topology of B(H), and

Y 7.0(SSim) =TTl (@.(B) €Fy X X Fy,.
In particular, the restriction of W, to the variety algebra A(V) is a unital completely
contractive homomorphism. If, in addition, T is a pure k-tuple of operators, then

lrij}} Brrol9] = Brgig» ges,

where the limit exists in the norm topology of B(H).
Proof: Following the proof of the direct implication of Theorem (4.2.4), we can show that the
linear map Wy 7 o: S > B(H) defined by Wy 74 (S()Sip)) := T(ayT (g, for all (a), (B) € Fy, X- - - X
IF, » is unital and completely contractive. Given g = g(S; ;) € S, we define W; 7 ,(g): =
,11330 Y 1.0 (Gn), Where g, € Swith ||g — g,|| = 0,as n - co. Note that ¥, 1 ,(g) does not depend

on the choice of the sequence {g,,} and
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”lpf,T,Q (9) — Brrg [g]”
= ”Lpf,T,Q @) —Y¥rro g + ”lpf,T,Q (gn) — Brro [gnl|| + “BrT,Q [gn — 4]
< zllg - gn” + ”lpf,T,Q(gn) - B?:T,Q[gn]”'
Hence, we deduce that ¥, 1 ,(g) = lin} B,rolg] forany g € S. Now, we assume that T is a pure k-
r—
tuple in V7 (H). Since
Brolgnl: = Kiro(gn & ln)Kr 1o = 9u(Tij)
and taking into account that g,, € S with [|g — g,|| = 0, as n — <o, we conclude that By 4[g] =
Wrro(g) forany g € S. This completes the proof.
we obtain a characterization of the Beurling [250] type joint invariant subspaces under the universal
model § = {S; ;} of V], and a characterization of the joint reducing subspaces of S ® I. We use

noncommutative Berezin transforms to characterize the pure elements in noncommutative varieties
V¢, and obtain a classification result for the pure elements of rank one.

Denote by C*(S; ;) the C*-algebra generated by the operators S; ;, where i € {1,...,k},j €
{1,...,n;}, and the identity.

Theorem (4.2.6) [244]: Let q = (q4,--.,qx) be a k-tuple of positive regular noncommutative
polynomials and let S = (S,,...,S) be the universal model associated with the abstract
noncommutative variety V;';, where J is a WOT-closed two sided ideal of F*(Dg*) such that 1 €

N;. Then all the compact operators in B(N,) are contained in the operator space
S:=span{SxSipy: (@), (B) € Fy, X -+ - X Fj, }.
Moreover, the C*-algebra C*(S; ;) is irreducible.
Proof: Since 1 € N;, Lemma (4.2.1) implies
Ny

m
U = Dg5)™ -+ (1= Dg5) (In,) = Pu,Peln, =B, (50)
where P(CN] is the orthogonal projection of N, onto C. Fix a polynomial g(W; ;): =
Z(ﬁ)elFaX-"xlF%k dipyWsyand let &: = Z(B)GIFLX"%IFZR cpep) bein N, K, F?(H,,), where we
[B1l+--+|B|sn N
denote egy: = ez ® - - @ ef, if (B): = (By,..., B)- It is easy to see that P,/ g(S; ;)¢ =
(&,9(S;;)(1)) . Consequently, we have

X(Si)B9(5:) € = & gSpM x(S,) (51
for any polynomial x(S; ;). Employing relation (50), we deduce that the operator )((Si,j)P(CN]g(Si,j)*
has rank one and it is in the operator space S. On the other hand, due to the fact that the set of all
vectors of the form Z(ﬁ)eﬂlx“'x% dip)Sp) (1) withn € N, d 4 € C, is dense in N, relation (51)

|B1]+-+|Br|<n
implies that all the compact operators in B(N;) are contained in S.

To prove the last part of this theorem, let £ # {0} be a subspace of N, QK | F? (Hy,), Which is
jointly reducing for the operators S; ;,i € {1,...,k}and j € {1,...,n;}. Letp € £, # 0, and
assume that ¢ = Z(ﬁ)eﬂ’ﬁlx-"xﬁk acgyecp)- If aggy is anonzero C(l)efflment of1<p, then we have

« o e a .
&)
b(ml) b(mk)
Lﬁl krﬁk

Due to relation (50) and using the fact that £ is reducing for each S; ;, we deduce that a sy € £, s0
1 € &€. Using again that £ is invariant under the operators S; ;, we deduce that £ = N;. This
completes the proof.

LetT = (Ty,...,Ty) € DF*(H)and T' = (T4, ..., T) € Df*(H') be k-tuples with T;: =

(Ti1s -+ Timy) and Tj e = (Tj 4, ..., Ti ). We say that T is unitarily equivalent to 7" if there is a
unitary operator U: H - H' such that T; ; = U*T;;U forall i € {1,...,k}and j € {1,...,n;}.

J

PCS;IH U S;'ﬁk(p = P(Cwl*.& T W]:ﬁk(p =

g
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Corollary (4.2.7) [244]: Let S = {S; ;} be the universal model associated with the abstract
noncommutative variety V;, where J is a WOT-closed left ideal of F*(Dg") such that 1 € N;,. If
H, K are Hilbert spaces, then {S; ; @ I} is unitarily equivalent to {S; ; ® I, } if and only if dimH =
dimK.

Proof: Let U: N; ® H —» N; ® K be a unitary operator such that U(S; ; ® Iy) = (S;; ® Ix)U for
alli € {1,...,k}andj € {1,...,n;}. Then U(S;; ® Iy) = (S;; ® I;)U and, due to the fact that the
C*-algebra C*(S; ;) is irreducible, we must have U = I, @ A, where A € B(H, K) is a unitary
operator.

Therefore, dimH = dimK. The proof is complete.

We recall that a subspace H € K is called co-invariant under A c B(K) if X*H € H for any X € A.
Theorem (4.2.8) [244]: Let S = {S; ;} be the universal model associated with the abstract

noncommutative variety V¢, where J is a WOT-closed two sided ideal of F*(D") such that 1 € N,
. If K be a Hilbert space and M € N; @ K is a co-invariant subspace under each operator S; ; & I,
fori e {1,...,k},j € {1,...,n;}, then there exists a subspace £ € K such that

span{(S;p) @ Iy )M: (B) EFf; x - - xFr} =N, ® E.
Proof: Set &:= (P ® I, )M < K, where P is the orthogonal projection from N; onto C1 c N,
and let ¢ be a nonzero element of M with representation

¢ = Z ep)®hp) €M < N,
(B)EFS, X XF},
2
where hg) € K and Epyees xxe, |hepy |7 < 0. Assume that hg) # 0 for some o = (a3,..., )
in IF; x---X [Fyy, and note that
(Pc @ Ix) (S0, * Sk, @ L) = (Pc @ Ix) Wig, -+ Wi, ® Ix)@
1 1
-1®

[ h(o_)_
b(ml) b(mk)
1,01 k,0k

Consequently, since M is a co-invariant subspace under each operator S; ; ® I, we must have
h(O') E g.
Since 1 € N;, we deduce that

(Sl,al T Sk,ak R h(a)) =

Py,(e5, ® "+ ® ex) @ hiy

1 1
f (myq) f (my)
bl,all bk,ai
is a vector in N; @ E. Therefore,

¢ = lim 300 X ipers, x-xey, Puy (€3, @ - @ e5) @ hgy  (52)
|B11+-+|Bkl=q
isinN; ® €. Hence, M c N; ® € and
Y:=5pan{(Sy) ® Ix)M: (o) € Fj; x--xF}; }c N; ® E.
Now, we prove the reverse inclusion. If hy € €, hy # 0, then there exists § € M ¢ N; ® £ such
that

§=1Qho+ z es, @ ® 5, ® hep
(ﬁ)elF,ﬁlxmxlF,ﬁk

|B11+-+|Bil21

and 1 @ hy, = (Pc ® I,)&. Consequently, due to Lemma (4.2.1), we have

1®hy=(Pc® k)¢ =(d— Pp50p)™ - ((d = Prpse0n)™ Uy, @ IS
Taking into account that M is co-invariant under each operator S; ; & Iy, we deduce that h, € Y for
any h, € €. Therefore, € c Y. This inclusion shows that (S5 ® I)(1 ® €) c Y forany (o) €
Fy, XX F} , which implies
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1 1

o Jbm
Consequently, if ¢ € N; @ £ has the representation (52), we conclude that ¢ € Y. Therefore, N; @
ECY.
The proof is complete.
Now, we can easily deduce the following result.
Corollary (4.2.9) [244]: Let S: = (S4,...,S;) be the universal model associated to the abstract
noncommutative variety V7, where ] is a WOT-closed two sided ideal of F®(D;") such that 1 €
N;. If K is a Hilbert space, then a subspace M S N, @ K is reducing under each operator S; ; & I
fori € {1,...,k},j € {1,...,n;}, if and only if there exists a subspace £ € K such that

M=NQE.
Let S: = {S;;} be the universal model associated to the abstract noncommutative variety V;”;. An
operator M: N; @ H —» N; @ K is called multi-analytic with respect to S if
M(S;; ®1y) = (Si; ® Ix)M

foranyi e {1,...,k}andj € {1,...,n;}. Incase M is a partial isometry, we call it inner multi-
analytic operator.
The next result is an extension of Theorem 5.2 from [253] to varieties in noncommutative
polydomains.
The constructions from the proof are needed in a forthcoming to define characteristic functions
associated with noncommutative varieties.
Theorem (4.2.10) [244]: Let S: = (S,,...,Sk) be the universal model associated to the abstract
noncommutative variety V;'; and let S; @ Iy:= (S;1 ® Iy, ..., Sin, ® Iy) fori € {1,..., k}, where
H is a Hilbert space.
If G € B(N; ® H) then the following statements are equivalent.
(i) There is a multi-analytic operator I' : N; ® € - N; ® H with respect to S, where £ is a Hilbert
space, such that

Py,(e;, @ - Qef)RECY.

G =1IT".
(ii) For any p: = (py, ..., px) € ZX such that p < m,p # 0,
(Aj’Z'S@H(G) > 0.
Proof: Assume that item (i) holds. Then we have
A7 s, (G) = (id — ®p 5,01, )Pt -+ (id — g, 5,001,074 (G) = FA]’ZS@,g (D=0
forany p: = (py,...,pr) € Z¥ suchthatp < m,p # 0.
Now, assume that (ii) holds. In particular, we have @, s &1, (A}?;®,H (@) < A}75'®,H (G), where
m' = (my — 1, my,...,my), which implies ®¢ ¢ o, (A}f‘;®IH (@) < A}’,‘;@,H(G) forany n € N.
Since S:= (Sy,...,S,) is a pure k-tuple, we have SOT-lim,,_, o @ 5 o, (ATsg, (G)) = 0.
Consequently, A}75'®,H(G) > 0. Continuing this process, we deduce that G > 0.
Let G: = rangeG'/? and define
A (c;%x) = 63(S!; ® Ii)_, x €N, ®H, (53)
foranyi € {1,...,k}andj € {1,...,n;}. Taking into account that @, ¢.«,(G) < G, we have
@il 4G 2x” = (@ 5,00, (), ) < |62
ae[Fﬁi,|a|21
forany x € N; ® H, where @ = gj-p -+ g}, denotes the reverse of & = g} - - gj-p eF;. .
Consequently, al.’gji_||141-J-Gl/2x||2 < ||6Y/2x||*, forany x € N, ® H. Since a;qi # 0 each 4;; can
be uniquely be extended to a bounded operator (also denoted by A4; ; ) on the subspace G. Set X; ;: =
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Ai;jforie {1,...,k},j € {1,...,n;}. An approximation argument shows that @, y.(I;) < I; and
relation (53) implies
1 1
X (G2x) = G3(S{; ® I4) , x € N, @ H. (54)
This implies G'/2AL , (1) G? = A} ¢, (G) = 0 forany p: = (py,...,py) € Zf such that p <
m,p # 0. Now, note that
(DF x, )Y 2x, G 2x) = (DF 5.0, (D)X, x) < |GI(DPF 5,01, (DX, X)
forany x € N; ® H and n € N. Since SOT- lim,,_, o F, 5.2, (1) = 0, we have SOT-
limy_, e @F, x, (Ig) = 0.
Therefore, X: = (X;,..., X)) is a pure k-tuple in the noncommutative variety Df"(M). Due to the
F* (Df")—functional calculus, relation (54) implies
G'2g(X;;) = g9(S;)GY* =0,g €].
Consequently, g(X; ;) = 0 forany g € J. This shows that X: = (X,,..., X;) is a pure k-tuple in the
noncommutative variety V;";(G). According to Proposition (4.2.2), the noncommutative Berezin
kernel K¢y ;: G = N; @ € is an isometry with the property that Xl-,]-Kf*'XJ = K;,X,](Sl-,j X I¢). Set
E: = AF (I5)(G) and define the bounded linear operator I': = Gl/zK;'XJ: N, ® € > N; ® H. Note
that
(S ®Ie) = GY2Kf y ;(Si; ® Ie) = GY2X; jKfy
=5 ® IH)Gl/ZKf*,X,] = (5i; ® Iy)T
foranyi € {1,...,k}andj € {1,...,n;}, which proves that I is a multi-analytic operator with
respect to the universal model S = {S; ;}. Note that I'T* = G/2K; y /K, x ;G*/*> = G. The proof is
complete.
Following the classical case [260], we say that M c N; ® H is a Beurling type invariant subspace
under the operators S; ; @ I, fori € {1,...,k},j € {1,...,n;}, if there is an inner multi-analytic
operator with respect to S = {S; ;},
Y:N,®E->N, QH,
such that M = P(N; ® €&).
Corollary (4.2.11) [244]: Let M c N; @ H be an invariant subspace under the operators S; ; & Iy
foranyi € {1,...,k},j € {1,...,n;}. Then M is Beurling type invariant subspace if and only if
A 591, (Pu) 20,  foranyp € Z,p <m,
where Py, is the orthogonal projection of the Hilbert space N; ® H onto M.
Proof: If M: N; ® € - N; ® H is a inner multi-analytic operator and M = M(N; @ &), then P, =
MM*. Taking into account Lemma (4.2.1), we deduce that
A7 so1, (Pu) = $(Pe @ I)¥* =0
forany p: = (p4,...,pr) € Z¥ such that p < m. The converse is a consequence of Theorem
(4.2.10), when we take G = P,,. The proof is complete.
We remark that in the particular case when m = (1, ..., 1), the condition in Corollary (4.2.11) is
satisfied when S & Iy |y: = {S;; & Iy|um} is doubly commuting. The proof is very similar to that of
the corresponding result from [253].
Theorem (4.2.12) [244]: Let S = {S; ;} be the universal model associated with the abstract
noncommutative variety V¢, where J is a WOT-closed left ideal of F*(Df™), and let T = {T; ;} be a
pure element in the noncommutative variety V¢’ (H). If

Kerj:H-> N & A}’TT(I)(H)
is the noncommutative constrained Berezin kernel, then the subspace Ky r ;H is co-invariant under
each operator S; ; @ IW JTHforanyi € ({1,...,k},j € {1,...,n;}. If 1 € N,, then the dilation
provided by the relation
T(a) = K;T’](S(a) (0%9) IW)Kf‘T‘]' (a) € IF;1 X oo X IF';k,
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is minimal. If, in addition, f = q = (q4,...,q) IS @ k-tuple of positive regular noncommutative
polynomials and
span {S)S(s)) : (@), (B) € Fy, X - - X Fp, } = C*(Sy ),
then the minimal dilation of T is unique up to an isomorphism.
Proof: According to Proposition (4.2.2),

Ker T = (S @ DKsry,  1€{L...k}Lje{l,...,n}

and the noncommutative Berezin kernel K¢ 1 ; is an isometry. Due to the definition of the
constrained Berezin kernel Ky 1. ;, we obtain (Pc & Ip)Kyr;H = D, where D: = Af%.(I)(H). Now,
using Theorem (4.2.8) in the particular case when M: = K1 ;H and £: = D, we deduce that the
subspace K¢ 1 ;H is cyclic for the operators S; ; @ I, where i € {1,...,k}and j € {1,...,n;}. This
implies the minimality of the dilation, i.e.,

N, ®D = V(a)e[Fﬁlx --~><[F;k(5(a) 2 ID)Kf,T,]H- (55)
Now, assume that f = q = (q4,--.,qx) 1S & k-tuple of positive regular noncommutative
polynomials and that the relation in the theorem holds. Consider another minimal dilation of T, i.e.,

Ty =V (S ® Ip)V, (@) EFf X+ xFp, (56)
where V: H —» N; @ D' is an isometry, VH is co-invariant under each operator S; ; ® I/, and
N ® D' = Vegert, x...xet, (S ® 1) VH. (57)

According to Theorem (4.2.3), there exists a unique unital completely positive linear map
W:C*(S;;) — B(H) with the property that

Y(SwSin) =TTy (@, (B) €Fy, x--- X Fy,.
Now, we consider the x-representations ;: C*(S; ;) = B(N; ® D), m;(X): = X ® Ip, and
m,: C*(S; ;) » B(N)) ® D"), m,(X): = X @ I, . Since the subspaces K, r ;H and VH are co-
invariant for each operator S; ; & I, relation (56) implies

WX) =Koy (XKyr, = V'm,(X)V, X €C(Sy)).
Relations (55) and (57) show that ; and mr, are minimal Stinespring dilations of the completely
positive linear map W¥. Since these representations are unique up to an isomorphism, there exists a
unitary operator U: N; ® D - N; ® D' suchthat U(S; ; ® Ip) = (S;; @ Ipr)U fori €
{1,....k},j € {1,...,n;}, and UK, r; = V. Taking into account that U is unitary, we deduce that
U(S;j QR Ip) = (Si*,j ® Ip)U.
Since the C*-algebra C*(S; ;) is irreducible, due to Theorem (4.2.6), we musthave U = I ® W,
where W € B(D, D") is a unitary operator. This implies that dimD = dimD' and UK,y ;H = VH.
Consequently, the two dilations are unitarily equivalent. The proof is complete.
Proposition (4.2.13) [244]: Let S = {S; ;} be the universal model associated with the abstract
noncommutative variety Vg';, where J is a WOT-closed left ideal of F*(Dg") such that 1 € N}, and
q = (q1,---,qx) 1s a k-tuple of positive regular noncommutative polynomials such that

span {Sw)S(p)) : (@), (B) € Fy, X -+ X Fp, } = C*(Sy ).
A pure element T = {T; ;} € V;"(H) has

rank Ag'r (1) =, n=12..,%,

if and only if it is unitarily equivalent to one obtained by compressing {S; ; @ I¢n} to a co-invariant
subspace M c N; @ C™ under each operator S; ; @ I¢n With the property that dim[(P¢ @ I¢n)M] =
n, where P is the orthogonal projection from N; onto C1.
Proof: Note that the direct implication is a consequence of Theorem (4.2.12). We prove the
converse. Assume that

Ty = Pu(Sy @ Ien) |y, (@) €Ff X -+ X Ffh,
where H ¢ N; ® C" is a co-invariant subspace under each operator S; ; @ I¢n such that dim(P¢ @
Icn)H = n. Itis clear that T is a pure element in the noncommutative variety V;™ (H). First, we
consider the case when n < <o, Since (P¢ Q Icn)H S C™" and dim(P¢ @ I¢n)H = n, we must have
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(Pc ® Icn)H = C". The later condition is equivalent to the equality H+ n C* = {0}. Since

a.s(1) = Pc, we have A (I) = Py[Pc  Icn]|y = PyC™. Consequently, rank Ag'r(I) =
dim P, C". If we assume that rank AZ}T(I) < n, then there exists h € C*, h # 0, with Py;h = 0,
which contradicts the relation H+ n C* = {0}. Therefore, we must have rank A7+ (I) = n.
Now, assume that n = <o, According to Theorem (4.2.8) and its proof, we have

N ®E = \/ S ® Ien) H
(a)eFﬁ1x~~~xF$k

where E€: = (P¢ ® I¢n)H. Since N; @ £ is reducing for each operator S; ; @ I¢m, we deduce that
Tty = Piay(S(a) ® Ig) |y, forall (a) € Fa, X+ X IF;;k . Due to Theorem (4.2.12), the minimal
dilation of T is unique. Consequently, we have dim A7’ (I)H = dim € = <o, This completes the
proof.
We characterize the pure elements of rank one in the noncommutative variety Vg'; (H) and obtain a
classification result.
Corollary (4.2.14) [244]: Under the hypothesis of Proposition (4.2.13), the following statements
hold.
(i) If M c N, is a co-invariant subspace under each operator S; ;, then T: = {PyS; ;|»} is a pure
element in the noncommutative variety Vg, (M) and rank Ag'y= 1.
(ii) If M" is another co-invariant subspace under each operator S;
and T’ are unitarily equivalent if and only if M = M’.
Proof: To prove (i), note that Az’ (I) = Py Pc|y and, consequently, rank A7'z(I) < 1. Since S is
pure (see Lemma (4.2.1)) and M c N, is a co-invariant subspace under each operator S; ;, we
deduce that T is pure. Hence, Ag'r (1) # 0, so rank Ag'r(I) = 1. Therefore, rankAg'z(I) = 1.
To prove (ii), note that, as in the proof of Theorem (4.2.12), one can show that T and T' are
unitarily equivalent if and only if there exists a unitary operator A: N; - N, such that AS; ; = S; ;A
forall i,j, and AM = M'. Since AS;; = S; ;A and C*(S; ;) is irreducible, A must be a scalar multiple
of the identity. Therefore, we must have M = AM = M'. The proof is complete.
we find all the joint eigenvectors for S;'; , where S = {S; ;} is the universal model associated with
the noncommutative variety V;"; and J is a WOT-closed left ideal of the Hardy space F*(Df™). As
consequences, we determine the joint right spectrum of S and identify the character space of the
noncommutative variety algebra A(V,"}). When /. is the commutator ideal of F*°(Df™), we show
that the WOT-closed algebra F* (V7 ) generated by S; ; and the identity coincides with the
multiplier algebra of a reproducing kernel Hilbert space of holomorphic functions on a certain
polydomain in C".
The results show that there is a strong connection between the study of noncommutative varieties in
polydomains and the analytic function theory in C™.
Let f:= (fy,..., fi) be a k-tuple of positive regular free holomorphic functions and define the
polydomain

,j» Which gives rise to T', then T

DFL(C):={z = (21,...2) € C" X - - - X C™k: AP, (1) > 0},
Note that DfL.(C) = D7 . (C) X - - - x D}, - (C), where f;: = ZaEIF?ti a; o Z, and

Df o (©):={z; = (2,1, Zin;) € C™: Z AalZial® < 1}
aeFﬁi
Let J be a WOT-closed left ideal of the Hardy space F* (Df"). We consider the set
V(€)= {z = (z1,...2) € D] (C): g(21,...,2,) = 0 for g € J} c C,
where n = ny + - - - 4+ n; is the number of indeterminates in f: = (f1,..., fi)-
Theorem (4.2.15) [244]: Let S = {S; ;} be the universal model associated with the

noncommutative variety V¢, where J is a WOT-closed left ideal of the Hardy space F(Df"). The
joint eigenvectors for S;; are precisely the noncommutative constrained Berezin kernels
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ﬁie]F,J;i,i=1,...,k
for A= (44,...,4,) € Vi .(C), where A2, (1): = (1 — @f 5, (1))™ - -+ (1 = Df, 5, (1))™ . They
satisfy the equations
S;ih=A4,;0, forie{l,... k}Lje{l,...,n}
where 4; = (Ai1,-+ 5 Ain,)-
Proof: First, note that if 1 = (4,,...,4,) € V¢ (C), then 1 is a pure element. The noncommutative
constrained Berezin kernel at A is K ; ;: € - N; @ C defined by

(m4) (my) T y
Kf,/l,](W) = }71(1)1/2 Z ,/erZi o ',/bkfzi eﬁ’11 ® & e[’;k ® Aip, AW

Bie]F;i,i=1,...,k

w € C. )
According to Proposition (4.2.2), we have (S;; @ Ic)Kra; = Kpa; (A jlc) fori € {1,...,k},j €
{1, ey ni}. ~
Identifying N; @ C with N;, we have K ; ; = I and S;;T; = 4; ;T;.
Conversely, leth =B, € F; ,...,Bx € Fy cBy,..., Brey, @ - - - @ ey, be anon-zero vector in
N, c R, FZ(Hnl.) and assume th_at there exists (14,...,4,) € C* x - .- x C™*, where A; =
(Aigy -+ Ain)s suchthat S sh = 4; shforany i € {1,...,k},j € {1,...,n;}. Since N, is invariant

under W;';, we also have W;";h = /Tl-,jh. Using the definition of the operators W; ;, we deduce that

_ 1 ky\ _ (m4) (my)
By, = (g, @ - R eg ) = <hu/b1,ﬁi o Pgy Wap, - Wi, (1)

_ (my) (my) * * _ / (my) / (mg) 3 7

= \/bl,ﬂ; .. '\/bk,ﬁk (Wl,ﬁl .. 'Wk,ﬁkhr 1) = b1,ﬁi . bk,ﬁk ,11’[;1 - Ak,ﬁk<h» 1)
_ (mq) (my) 7 T
= ¢, ’bmi /bk,ﬁk ,11,[),1... Ak,ﬁk

forany g, € Fy, ,..., B € F;;, . Hence, we obtain

_ 3 Y (my) (my) 1 k
h = ¢ Z Apy Mg brgy ',/bk,ﬁk es, @ Qeg, .
k

ﬂiE[F?{i,i=1,...,

Since h € @I, F2(Hy,), we musthave $p, e gers, i, 12 e |2b50 - BT < o
On the other hand, relation (47) implies

k [ pi S\ ™
y) 2 < 1 2... 12 Zb(ml)'”b(ml)<oo
a’l,all i,ail - | 1lﬁ1| | k'ﬁkl 11ﬁ1 kiﬁk
i=1 \s=0 \|q;|21 B1€FR o BREFT,

forany p,,...,px € N. Letting p; —» <o in the relation above, we must have ¥ 4,151 i ;1 4i 0, 1* < 1,
foreachi € {1,...,k}. Therefore, A = (44,...,4,) € D71 (C). On the other hand, if g € J, then
relation §;';h = il-,jh and an approximation argument in the norm topology imply

(h'g(rsi,j)h) = (g(TSi,j)*h: h) = g(r/ll,;)”h”z-
Using the F* (Df")-functional calculus for pure elements and taking the limitas r — 1 in the
relation above, we obtain

(h, g(S;)h) = g, IR,

Since, due to Lemma (4.2.1), g(S; ;) = 0 and h # 0, we conclude that g(4; ;) = 0, which shows
that 4 € V¢} .. (C). The proof is complete.
Let S = {S; ;} be the universal model associated with the noncommutative variety V7, where | is a
WOT-closed left ideal of the Hardy algebra F*(D¢"). We introduce the Hardy algebra F* (V")) as
the WOT-closed algebra generated by S; ; and the identity.
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Theorem (4.2.16) [244]: Let ] be a WOT-closed left ideal of the Hardy algebra F*(D") such that
1 € N;. Then &: F*(V;") — Cis a w*-continuous and multiplicative linear functional if and only if
there exists A € V7 . (C) such that

D) = (AD,w),  AEF (M),

where u;: = [, and T is given by Theorem (4.2.15). Moreover, in this case, A*u; =

®(A)u, and

1
A}’}A(l)l/z

D(A) = (AT, T),  AEF*VM).
Proof: For each 4 € V/} . (C), let ®,: F* (V') — C be given by ®,(A4) = (A(1),u,). Itis clear that
@, is w*-continuous. To prove that @, is multiplicative, let ¢,y € F* (V")) and let {p,(S; ;)} and
{q,(5;;)} be nets of polynomials such that p,(S; ;) = ¢ and q,.(S; ;) — ¥ in the weak operator

topology.
Note that, due to Theorem (4.2.15), we have p,(4) = (p,(W; ;)1,u;) = (p,(5; ;)1,u,) and,
consequently, lim, p,(1) = (@ (1), u,). Similarly, we obtain lim,. g, (1) = (¥ (1), u;). Hence, it is
easy to see that
D1 (9yY) = WY (1), uy) = lim,(q, (1), 9" (ua))
= lim im(p, (S; )¢ (S;) (1), w2) = lim lim p, (1) 4, ()
= (@), wa) lim q,.(4) = (@(1), ) (Y(1), ) = Pa(P) P2 (Y)-
Note that, due to Theorem (4.2.15), we have
pL(Si,j)*uA = pt(/l)u/'l = (pt(sl,])]" uA)“/’l-
Since p,(S; ;) — ¢ inthe weak operator topology, we deduce that ¢*u; = (@ (1), u;)u,. Hence, we
deduce that

(o, ) = A7 (D(w, " wy) = @ (1) = (o).
Now, assume that @: F* (V) - C is a w*-continuous and multiplicative linear functional and let
x:= ker ®. Then x is a w*-closed two-sided ideal of F*(V}) of codimension one. We claim that
M,:= XN, is a subspace in N; of codimension one and M, + C1 = N, . By contradiction, assume
that there is a vector y € N; which is perpendicular to My + C1 and |[y|| = 1. Since

span{p(W;;)(1): p € C[Z;,]} = @, F2(Hy)
and taking the projection onto N; , we deduce that span{p(S;;)(1): p € C[Z; ]} = N,.
Consequently, we can choose a polynomial p(S; ;) € F* (V7)) such that ||p(Sl-J-)(1) - y|| < 1.0n
the other hand, since p(S; ;) — ®(p(S;;))Iy, isin X = ker ® and 1 € N;, we have p(S;;)(1) —
D (p(S;,;)) € My . Taking into account that y is perpendicular to My + C1, we have

Iyl = (y — @S »)
< Ky — oS )+ Kp(S;;)(1) — P((Si,;)) )
=Ky —=pS,) W < ly =)Dyl < 1,

which contradicts the fact that [|y|| = 1 and proves our assertion. Therefore, My < N; has
codimension one and it is invariant under each operator S; ; fori € {1,...,k},j € {1,...,n;}.
According to Theorem (4.2.15), there exists A € V" . (C) such that My = {u;}*. As shown in the

first part of the proof, @, is a w*-continuous and multiplicative linear functional. Note that, if A €
X:= ker @, then A(1) € My = {u,;}*, which implies (A(1),u;) = 0. Hence, A € ker &, and,
therefore, ker ® c ker @,. Since ker ® and ker &, are w*-closed two sided maximal ideals of
F® (V%) of codimension one, we must have ker @ = ker ®,. Therefore, ® = @;. This completes

the proof.
We make a few remarks concerning the particular case when J = {0}. First, we note that if A =

..........
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algebra F*(Df"), then ZﬁleIF*' ..... BrEFS, |Cﬁ1 ..... ﬁk||7l1ﬁ1 | Ak p, | < ©°. Indeed, since p(W; ;)(1) €
®, F2(H,,), we have

2 1
K1: = z |CBI ,,,,, ﬁk' b(ml) . b(ml) <
B1E€FF, ,...,,BkE[F k.Bk
On the other hand, since A = (4,,...,4,) € Df,> (©), we deduce that
Ky: = Z gl A 25 -+ BT < o,

ﬁlE]le """ :BkE]sz
Applying Cauchy’s inequality, we obtain

|cg, 1A, | g, | < (KiK)Y2,
B1EFF, - ﬁkEIFnk
We note that the w*-continuous and multiplicative map &®,: F*(Df") — C satisfies the equation
D, ((W;;)):= @ (). Indeed, in this case we have

<(P(Wi,j)1ru/1> = ( z CB1,-Br eﬁl
B1EFR, - BIEFR, \/b(ml) \/b(ml)

= z By A = P(A)-
B1EFS, BkE[F;-lk

We recall that the joint right spectrum o,.(Ty, ..., T,) of an n-tuple (T, ..., T,) of operators in B(H)
is the set of all n-tuples (u4, ..., u,) of complex numbers such that the right ideal of B(H)
generated by the operators y,I — Ty, ..., u,I — T,, does not contain the identity operator. We recall
[250] that (uy, ..., 1,) € 0,.(Ty,..., T,) if and only if there exists § > 0 such that >, (u;] —
T (il — T;) = 81.
Proposition (4.2.17) [244]: Let ] be a WOT-closed left ideal of the Hardy space F*(Df") and let
S = {S;;} be the universal model associated with the abstract noncommutative variety V7. If the set
Ve 5 (C) is dense in V¢ (C), then the right joint spectrum o,.(S) coincide with V/7(C).
In particular, if @ < C[Z, ;] is a left ideal generated by noncommutative homogenous polynomials,
then the right joint spectrum o,.(S) = V{5 (0).
Proof: Let A = {4, ;} € 0,(S). Since the left ideal of B(N,) generated by the operators Sii— A il
does not contain the identity, there is a pure state ¢ on B(Ny) such that ¢ (X (S;; — 1 Ay ;1)) = 0 for
any X € B(Np) andi € {1,...,k},j € {1,...,n;}. In particular, we have ¢(S; ;) = Ai] o(S:)
and

- ® eﬁl?(k’ uy)

* = 2
P(SwSw) = 4 w?(Sw) = Al (@ =(ay,.... &) EF} x---x F} .
Hence, we deduce that

ai,al/li,a'lz =@ Z ai,aSi,aS;a < Z ai,aSi,aSi*,a <1
aEIFﬁi,15|a|5m aEIF,"{i,15|a|Sm ae[Fﬁi,15|a|5m
for any n € N. Therefore, X oep;. ai,a|/11,a|2 < 1, which proves that (4;4, ..., ;) € D},(C). Hence,
we deduce that A: = {4, ;} € D{"(C). On the other hand, if g € Q, then g(S; ;) = 0 and,
consequently, we obtain g(4; ;) = ¢(g(S;;)) = 0. Therefore, 1 € V75 (C). Now, let u: = {u; ;} €
V' (€) and assume that there is 6 > 0 such that

n n
ZZH(SL'J — MUij

i=1 j=1

*>6lRl>  forallh € N,

Take
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R=Ti= A Y g A B B @ @ e
Bi€FR,i=1,...k
for 1 € V/%, - (C) in the inequality above. Due to Theorem (4.2.15), we have S; ;T = /’ll]l} for any
ie{l,...,k}andj € {1 ,n;}. Consequently, we deduce that

ZZMU pyl? =8 forall A=A} € V(0.

i=1 j=
Since the set V/7 . (C) is dense in V7(C), this leads to a contradiction.

Note that if Q < C[Z; ;] is a left ideal generated by noncommutative homogenous polynomials, then
{rui;} € Vg~ (C) forany {u; ;3 € Vi, (C) and r € [0, 1). Consequently, V¢, . (C) is dense in
2SO}
The proof is complete.
Let Q c C[Z; ;] be a left ideal generated by noncommutative homogenous polynomials. We recall
that the variety algebra A(V)) is the norm closed algebra generated by the S; ; and the identity, and
the Hardy algebra F* (V) is the WOT-closed version. We identify the characters of the
noncommutative variety algebra A(V,7,). Due to Proposition (4.2.5), if 4 € V7, (C), then the
evaluation functional
D A(Vip) = € @(p(Si)) = (),
is a character of A(V/Y).
Theorem (4.2.18) [244]: Let Q c C[Z; ;] be a left ideal generated by noncommutative homogenous
polynomials and let MA(VJ%) be the set of all characters of A(V/);). Then the map
P Vf% (C) - MA(V)%)’ LP()L) = (DA,
is a homeomorphism of V/', (C) onto MA(V]%).
Proof: The injectivity of ¥ is clear. To prove that ¥ is surjective assume that ®: A(V/;) —» Cisa
character. Setting A; ;:= ®(S;;) fori € {1,...,k},j € {1,...,n;}, we deduce that ®(p(S; ;)) =
p(4;;) for any polynomial p(S; ;) in A(V¢}). Since @ is a character, it is completely contractive.
Consequently, (A;1,...,4in,) € Dfli((C) foreachi € {1,..., k}, which implies (1; ;I¢) € Df"(C). On
the other hand, if g € Q, then g(S; ;) = 0 and, consequently, g(4; ;) = ®(g(S;;)) = 0. Therefore,
{1i,j} € V{75 (C). Since
D(p(Si;)) =pAi;) = Pa(p(Siy))
for any polynomial p(S; ;) in A(V/,), we must have & = ®;. To prove that ¥ is a
homeomorphism, let 1%: = (A7), « € A, be anetin V%, (C) such that hm A% = A= (4;)). Itis

clear that
}Zlg/} Dya(p(S;)) = }Zlg/} p(A%) = p(A) = ©,(p(S; /).
Since the set of all polynomials p(S; ;) is dense in A(V/;) and supgeql|®s«|l < 1, it follows that ¥
is continuous. On the other hand, since both V% (C) and M Ay) are compact Hausdorff spaces and
Y is a bijection, the result follows. The proof is complete.
Let W = {W; ;} be the universal model associated with the abstract noncommutative polydomain
D" and let Q. be the left ideal generated by all polynomials of the form
ZijiZij, —Zij,Zij i€e{l,...,k}and j,,j, €{1,...,n;}.
The universal model associated with the abstract variety V77, is the tuple L = (L4, ..., L) with
Liz= (Lis, ..., Lin,), where the operators L; ; are defined on Ny, by setting
Lij:= PNQCWi,j|NQC-
We recall that Nyy_: = (®/~; F*(H,,)) © My, where the subspace M,,_ of @}, F2(H,,) is defined
by setting
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Mg, = span{Wayq (W; )W (1): (@), (B) € Fi, X - - - X Fy,q € Q).
In what follows, we will identify the space N, with a reproducing kernel Hilbert space of
holomorphic functions in several complex variables and the Hardy algebra F* (V/7, ) is identified

with the corresponding multiplier algebra.
Let f:= (fy,..., fi) be a k-tuple of positive regular free holomorphic functions with f;: =

ZaelF;i Ajaly-
Foreach A; = (4;4,...,A;n,) € C" and each n;-tuple k;: = (kjs, ..., kin,) € Ny', where Ny: =
{0,1,...}, let A¥%: = /1?1'1 L+ A{EMIf ey € Ny, we denote
A= {a; € B Qg = A% for all A; € C)
and define the vector
wit = % Z \/@ el, € F?(Hy,), where y,gni):= Z bi(zli")
Vie  ajeay, a; €Ay,
and the coefficients bl.('ziii), a; € [y, are defined by relation (47). It is easy to see that the set {wlk1 ®
e Q w,f": k; € Nyii € {1,...,k}} consists of orthogonal vectors in ¥, F? (Hy,) and

1 1
”Wlkl@...@w:k”: : )... —
m
Vi, | Vi

Let F2 (Df™) be the closed span of these vectors. The Hilbert space F? (D) < Rk, FZ(Hnl.) IS
called the symmetric tensor product Fock space associated with the abstract noncommutative
domain D"
Forz = (zy,...,z,) and w: = (wy,...,w,) In C"*, we use the notation zw: = (z;wy, ..., z,Wy,).
Theorem (4.2.19) [244]: Let W = {W; ;} be the universal model associated with the
noncommutative polydomain Df", and let Q. be the left ideal generated by all polynomials of the
form

ZijiZ1j, — Zij,Zi
Then the following statements hold.
(i) FZ(Df") = span{ly : A € DJL(C)} = No: = (R, F*(Hy,)) © My,
(ii) The space F? (Df™) can be identified with the Hilbert space HZ(D}T‘> (©)) of all functions
@: D7 (C) — C which admit a power series representation

ie{l,....kland j,,j, € {1,...,n;}.

'jl’

_ k1 ke
P j) = Z Chydi At 0 A
kiENJY . kx€NGK
with
1 1
2 2
— C o o < 0,

loll2 > o T

k€N, kxENDK k1 ka

functional representation on D% (C) given by

POR= @)= D e B A= (a2 € DPL(O),
k1€NJY . kx€NGK
and
loll, m
P < ===, A= (A, A) € DL (C),
a7, (1)

1
where A7 (1) = (1= By, 2, (D)™ -+ (1= By, 3 (D)™ aNd i = i
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(iit) The mapping ¢: Df%,(C) X D%, (C) — C defined by

1
Ki(u,A):= = )
f — m;
?:1 (1 - fi(#ili))
where 4 = (44,...,4;) and u = (uy, ..., pux) are in DFL (C), is positive definite and
K;(‘Ll, A) = <u/11 uﬂ)-

Proof: We prove that
span{ly: 1 € DL (C)} € F*(Df") € N,,.
Note that the first inclusion is due to the fact that
u; = ZkleNgl ..... kkENgk /1’1(1 R /‘{Zkylgnl) ykglink)wlkl R W:k (58)
for A = (A4,...,4,) € DFL(C). To prove the second inclusion, note that, due to the definition of the
universal model W = {W; ;} , we have

ki
W, Wiy, (W, Wi, = Wi, Wi 5, )W, (1))
1 ’ . 1 . 1 .
_ (my) i _ i _
- )/(mi)< Z bi,ail eflli’ o ehgjlgjzﬁ’i o) eYigjzgjl.Bi> =0
ki *i€4k; \/ bi,)’igjlgjz Bi \/ bi.Vigjzgjlﬁi

ng

forany k; € Ng',y;, B; € Fy;,i € {1,..., k}. This implies that W1kl X Q w,f" € Ny, and proves
our assertion. To complete the proof of part (i), it is enough to show that
No, € span{Il; : A € DfL (©)}.

.....

No.and x L u, forall 2 € Df, (C). Then, using relation (58), we obtain

( Z Cﬁ1:--u3keﬁ11 ®-® e;;k’ul)

+ +
BIEIFTll """ BkEIFle

_ (m1) (m) |k kr _
= Z Z Cﬁl:---:ﬁk\/bl,ﬁi “e \/bk,ﬁk /’{11 “e )lk =0

.....

forany 1 € Df%. (€). Since Df"% (C) contains an open polydisc in C™***™, we deduce that

R, \[bfZi) . \/bggf = 0forall k; € N™,i € {1,..., k}(59).

Foreachy; € F; andi € {1,...,k}, set Q(yy, ..., vx): = ViV Fix B0 € Ay, and let ; €
Lm0 [ ()
1,81 kB

Ay, be such that g; is obtained from B? by transposing just two generators. We can assume that

B = Yig;,9;,w; and B; = y;g;,g;, w; for some y;, w; € Fy, and j; # j,, j1,j2 € {1,...,m;}. Since

x € Ny, = @, F*(Hp,) © M,_, we must have

QL Wiy (Wi j Wi g, = Wi, Wi j OWi 0, (D] = 0,

which implies Q(B?,...,82) = Q(By, ..., Br)-

Since any element y; € Ay, can be obtained from B? by successive transpositions, repeating the

above argument, we deduce that Q(BY,...,B87) = Q(y4,..., k). Setting t: = (BY,..., BY), we have

Cypvi = t fbf}’fll) e /bg:),yi € Ay, , and relation (59) implies t = 0. Therefore, ¢, ., =0

forany y; € Ay, and k; € NG, which implies x = 0. Therefore, we have Ny, =span{l;: 1 €

D% (O)}.
f.>
Now, we prove part (ii) of the theorem. Any element ¢ € F? (Df") has a unique representation ¢ =

W1k1®---®w,’:kwith

Zk1EN(?:L,...,kkEN(r)lk Cklr---,kk
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, 2 1 1
lpllz = z |Ciey | ,on) G < .

Kk ENJL,... ki ENg k1 ki

It is easy to see that
k1 kk — kl kk

W' ® - Qw,uy) =7 .. 4,
forany A € DL, (C) andk; € N’gi,i € {1, ... , k}. Consequently,e has a functional representation on
D (C) given by

) = (p,uy) = Z cklmkkl'fl .../1’;"", A= (A, ..., 4,) € DfL(C),
kyENJL,... kyENg K

and

lp()| < Mol
/A}'h(l)

This shows that F?2 (Df™) can be identified with HZ(D}T; ((C)). Now, we prove part (iii). Note that if
(A4, s An) and u = (py, ... , iy are in DL (C) then

[N

1

2 2
_ 2 2
Z ai,ai/li,aiﬂi,ai = 2 ai,ai|/1i,ai| z ai,ai|1ui,ai| <1
aEFy, aEFy; a€Fy,
Using relation (47), we deduce that
k Lk ik
ki(u,A) = 1_[ (1 - fi(ﬂi’li)) = H 1- z ;i i i,y
i=1 i=1 a€Fy,

_ (my) (my) — _
B Z blﬁi e bk,ﬁ; /11»31 ---Ak,ﬁklh,ﬁl o M,y

B1EFF, 1 BREFR,
= (u,-t,uﬂ).
The proof is complete.
Theorem (4.2.20) [244]: The Hardy algebra F(V/%,_) coincides with the algebra H*(D}% (C)) of
all multipliers of the Hilbert space H?(D}%(C)).

Proof: Let (W, ;) € F°(DJ") and set M,, == PFsz(D}n)(p(M/i,j)'Fsz(D}n)- According to Theorem
(4.2.15),Proposition (4.2.17), and Theorem (4.2.19), we have F2(D}") = N, the vector I} is in
F2(DJ) for A € DI.(C), and @(W; ;) I; = @(DI;. Consequently, we obtain
(M, ] (D) = (M, u3) = (p(W,; ), uy)

= (¥, o(W;;) u2) = W, (M) = 9(Dp(2)
forany y € F2(D}*) and A € D/, (C). Therefore, M,, is a multiplier of £2(D/"). In particular, the
operator L; ; is the multiplier by the coordinate function 4; ;.Now, we show that H°°(D}f‘> ((C))is
included in F°°(Vf']}zc), the weakly closed algebra generated by the operators L; ; and the identity.

Suppose that g = ZkleNgl kgeNTe Ckl,...,kkwlkl ®:---® w,f" is a bounded multiplier, i.e., M, €
B (FS2 (D}”)) As in [253], using Cesaro means, one can find a sequence p,, of polynomials in

Wi ® - @ wik where ky € Np* ..., ki € NO¥

, such that M,, converges to M, in the strong operator topology and,consequently, in the WOT -
topology. Since M,, is a polynomial in L; ; and the identity, our assertion follows.

Conversely, assume that the operator Y € B (FSZ (D}”)) is in F (V7% ). Then Y leaves invariant all

the invariant subspaces under each operator L; ;. Due to Theorem (4.2.15), we have L; ju; = A o
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for any A € Df", (C).Therefore, the vector u; must be an eigenvector for Y. Consequently, there is a
function ¢: D/ (C) - C such that Y*u; = (Au, for any A € DI (C). Note that, if f € F2(DJ"),
then, due to Theorem (4.2.19), Y f has the functional representation

YW = f,u) =, Y'wm)=9DfA), 1€DL(O.
In particular, if f = 1, then the the functional representation of Y (1) coincide with ¢.
Consequently, ¢ admits a power series representation on D7 (C) and can be identified with Y (1) €
FZ(DJ™). Moreover, the equality above shows that f € H?(D/% (C)) for any f € F2(Df"). The
proof is complete.
We need to recall some definitions. The set of all invariant subspaces of A € B(H) is denoted by
Lat A. Given U c B(H), we define Lat U = T,¢; Lat A. If S is any collection of subspaces of H,
then we define Alg A by setting Alg S := {A € B(H): S c Lat A}. The algebra U c B(H) is called
reflexive if U = Alg Lat U.
A closser look at the proof of Theorem (4.2.20) reveals the following result.

Corollary (4.2.21) [244]: The Hardy algebra F(V/%,) is reflexive.

Now, we make a few remarks in the particular case when n, = --- = n;, = n. Let Q. be the left
ideal of C[Z; ;] generated by the polynomials Z; ; Z; ;, — Z; ;,Z; ;, and Z; ; — Z,, ;, where i,p €
{1,..,k}and jy, j,,j € {1, ... ,n}. The universal model associated with the variety V/, isthe n
tuple € = (Cy, ... , C,), where C; == PNQCCWLJ"NQCC forj € {1, ... ,n}. Note that, in this case, we have
Vi0ee>(C) = Nk, Dy, -(C) . Similarly to Theorem (4.2.19), one can show that the space Nj__can be
identified with a reproducing kernel Hilbert space with kernel

1
k< (z, — —
P A )™

where z = (zq, ... ,2,),w = (Wy, ... ,wy,) areinthe set V7% . (C) < C". We remark that in the

particular case when f; = -+ = f,, =Z, + -+ Z, and m; = --- = m;, = 1, we obtain the
reproducing kernel (z, w) — ﬁ on the unit ball B,,. In this case, the reproducing kernel
1-(z,w

Hilbert spaces are the Hardy-Sobolev spaces (see [267]). The case when k = n corresponds to the
Hardy space of the ball, and the case when k = n + 1 corresponds to the Bergman space.

we show that the isomorphism problem for the universal polydomain algebras is closed related to to
the biholomorphic equivalence of Reinhardt domains in several complex variables. Our results also
show that there are many non-isomorphic polydomain algebras.

Given a Hilbert space H, the radial polydomain associated with the abstract D" is the set

DPaa(t) = | ] ropan e opan.
0=<r<1
A formal power series ¢ = Z(a)emlxu-xwk A Z () A € C, inideterminates Z; ; is called free
holomorphic function on the abstract radial polydomain Df".., =
{Df%qa(H): H is a Hilbert space} if the series

o(Xi;) = Z Z )X (@)
q=0 (a)eIFglx...xIFﬁk

lag |+--+|agl=q
is convergent in the operator norm topology for any X = {X; ;} € Df%.,,(H) and any Hilbert space

H. We denote by H ol(Df%,4) the set of all free holomorphic functions on the abstract radial
polydomain D¢, Let H”(Df%q4) denote the set of all elements ¢ in H ol(Df%,4) such that

lplle = SUP”(P(Xi,j)” < oo,

179



where the supremum is taken over all {X; ;}} € D", (H) and any Hilbert space H. One can show
that H* (Df".,4) is a Banach algebra under pointwise multiplication and the norm ||-||,. For each
p € N, we define the norms |||l ,: Mpx,, (H (Df%04)) = [0, 00) by setting

”[q)st]pxp”p = Sup”[(pst(X)]poHJ
where the supremum is taken over all X := {X; ;} € D¢’.,,(H) and any Hilbert space H. The norms
IIIl,, » € N, determine an operator space structure on H°°(D}f;ad), in the sense of Ruan ([248]).
Throughout, we assume that D" (H) is closed in the operator norm topology for any Hilbert space
H. Then we have Df.,,(H)™ = Df"(H) . Note that the interior of D¢*(H) , which we denote by
Int(Df"(H) ), is a subset of D", (H). We remark that if g = (g4, ..., @) is a k-tuple of positive
regular noncommutative polynomials, then Dg*(H) is closed in the operator norm topology.
We denote by A(D/.,,) the set of all elements g in H ol(D}"%,,) such that the mapping

Dfeq(H) 2 X » g(X) € B(H)

has a continuous extension to [D}%,,(H)| = D}*(H) for any Hilbert space H. We remark that
A(D}f}ad) is a Banach algebra under pointwise multiplication and the norm ||-||, and it has an
operator space structure under the norms ||-||,,, p € N. Moreover, we can identify the polydomain
algebra A(D}") with the subalgebra
A(D}%q), as follows. The map ®: A(D/,,) — A(D}") defined by

P (2 Uy Z (a)) = z AW

() (a)
is a completely isometric isomorphism of operator algebras. If g := ¥ o) a()Z(a)

is a free holomorphic function on the abstract radial polydomain Df7.,4, then g € A(D}’fmd) if and
only if g(rW;;) = X5, Liwers,x.xih, T Uy Wia)

_ _ |+ +lal=q _ _
is convergent in the norm topology as r — 1. In this case, there exists

a unique ¢ € A(DJ") with g = B[], where B is the noncommutative Berezin transform associated
with the abstract polydomain Df* , with the properties

d(g) = lri_r)rllg(rWi,j) and @ 1(¢) = Bly], ¢ € A(D]l”).
We proved in [253](see Proposition 4.4) that if p € N and ¢ is a free holomorphic function on the
abstract radial polydomain D/, then its representation on C?, i.e., the map ¢ defined by

Cat-+mp? o DI%.0a(CP) 3 A @(A) € My, (O) © cr®

is a holomorphic function on the interior of Df"*(CP). Moreover, if ¢ € A(D}f‘md), then its
representation on C? has a continuous extension toDf"(CP) and it is holomorphic on the interior of
Df*(CP). The continuous extension is defined by @(4) := lri_rg B, 4[¢] for A € D*(CP).
Let Q,, Q, be domains (open and connected sets) in C4. If there exist holomorphic maps {: 2, — 2,
and ¥ : 2, - 0, such that { °y = idy,and °¢ = id, , then £2;and (2, are called biholomorphic
equivalent and ¢ and v are called biholomorphic maps.

Theorem (4.2.22) [244]: Let f = (fy, ..., fx) and g = (g4, ---, gx’) be tuples of positive regular
free holomorphic functions with n and ¢ indeterminates, respectively, and let m := (m4, ... ,my) €

N¥and d := (dy, ... ,dyr) € N If P: A(D[*) > A(DZ) is a unital completely contractive
isomorphism, then the map ¢: Dg((C) - D{"(C)
defined by

(1) = [m Boua |[P(W)|:i et k) j et omd], A€ DO,
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where W) = {I/Vi’(jf )} is the universal model of the abstract polydomain D" and By, is the
Berezin transform at rA € Dg> (€), is a homeomorphism which is a biholomorphic function from
Int (Dg((c)) onto Int (D}"((C))and n=>4a
Proof: Denote

i) = lff(m’(]f)) e A(DY), ie{l,.. khjel . .,n} (60)
where W) := {Vllisf)} is the universal model of the abstract polydomain Df". Assume that f; has
the representation f; := Z(Q)Emi a; «Z; o Taking into account that 0 < @ o (I) < I, we deduce

that 0 < Y(wyery, lalsn ai'aVVi,(cj:)(VVi,(o]:))* =1
for any N € N. Using the fact that a; , = 0 and ¥ is a completely contractive homomorphism, one
can easily see that 0 < &, 5. (1) < I, where @; = (@1, ..., @i ,) aNAP = (@y, ..., @;). Due to the
remarks preceding the theorem, foreach i € {1,...,k} and j € {1,...,n;}, the map ¢, ;: Dg((c) - C
given by

@;;(4) = }}g} Byral®i]
is continuous on DZ(C) and holomorphic on Int (Dg ((C)) Now, we define the function ¢: DZ(C) —

C* by setting (1) == (91 (D), ..., 9 (1)) where @;(1) = ((pi,l(/l), e Qi) forall 2 € DE(C).
Since 0 < @y, 5,(1) < I we have 0 < X pyeps ajsn QiaPiaPia < I forall N € N. Apply the
Berezin transform at r1 € DZ.(C), r € [0, 1), we obtain

0< Z Ao Pia(T D@, ,(r1) < 1, N € N.
aeIF;“Li,lalsN
Takingr - 1and N — o, we deduce that 0 < &, ,,.;(1) < 1. Consequently, ¢ (1) € Df*(C) for
all 2 € DZ(C). Moreover, the map ¢: D§ (C) — Df*(C) is continuous on Dg (C) and holomorphic on
Int(DZ(C)). Now, we set

£ i= @—1(m/i§9)) eA(D), i€{l,... Kk}, je{l,.... &} (61)
where W @); = {Wi'(]r")} is the universal model of the abstract polydomain DJ. Since 0 <
d)g,w_(g) (1) <1 and P~ is a completely contractive homomorphism, we deduce that 0 <

@,z (1) < I, where we set §;: = (&;4,...,&;,) and &= (&,...,&,). As above, for each i €
{1,...,k'}andj € {1,...,%4;}, the map Ei,j:D}”((C) - C, given by

gi,j (u): = },l_r)rll Bf,ru [51]]
is continuous on Dg*(C) and holomorphic on Int(Dg"(C)). Set &(u): = (&1 (1), -, &k (1)) and
Si():i= (i1 (W), -, &ip, (W) for all w € DF*(C). Since 0 < @y = (I) < I, we can show that 0 <
Pgigiw(1) = 1.
Hence, we deduce that ¢ () € D (C) for all 4 € Df*(C). Therefore, the map ¢: Df*(C) — D§(C) is
continuous on Df™(C) and holomorphic on Int(Df"(C)).
Now, each &; ; € ADfM),i €{1,...,k'},j € {1,..., ¢} has a unique Fourier representation
Z(a)eu:‘;{lx...xu:‘;{k a(a)W(g) such that

$ij = lim Z r1awWey
q=0 (a)e]Fﬁlx.-.xlF;k
laq |+--+|ak|=q _
where the limit is in the operator norm topology. Hence, using the continuity of ¥ in the operator
norm, and relations (61) and (60), we obtain
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@ _ @z N @] 1 D)
Wl.J =W(E,)="Y lr1£r11 z rqa(a)W(a)

a=0 (a)€Fy, x-xFyp,
|011|+"'+|0¢k|=q

— 1 N\ _ —
D M T RIS WD W
q=0 (a)eF}, x- ><1F+ q=0 (a)emlx---xmk
laq |+ +|ak|= q lag|+-+|akl=q

Consequently, using the continuity in the operator norm of the noncommutative Berezin transform
at 2 € D (C) on the polydomain algebra A(DZ), and relations ¢; ;(1): = B, [@;;] forall 2 €
DZ.(C),and & ; () = lim 1 By, ruléi ] foru € Dm((C) we have

A g, A[W(g)] = Dg 2 | llm z z rqa(a)(ﬁ(a)

[ q= O(a)EIFnlx X]Fnk
lag |+ +|ak|=q
(ee]

= ll_r)rllz Z rqa(a)Bgll[(ﬁ(a)] = lez z rqa(a)(p(a) (A)

q=0 (a)€Fs, X~ ><1F+ q=0 (a)€Fs, x- xIF+
ety |+ +|ak|= q B letq [+ +|ak|= q
= lm By o [$i,i] = ¢ (@)
foreachi € {1,...,k'},j€{1,...,¢;},andany 1 € Dg>(C). Hence (( o @)(A) = Aforall 1 €
D3 (C).
Now, using the fact that the functions ¢: DJ(C) - Df*(€) and &: Df*(C) - DZ(C) are continuous,
and DZ..(C) is dense in DJ(C), we conclude that (¢ o ¢)(1) = A forall 1 € Dgg(C). Similarly, one
can prove that (¢ o &)(u) = u for u € Df*(C). Therefore, the map ¢: Dg (©) - Df*(C)isa
homeomorphism such that ¢ and ¢ ~!: = & are holomorphic functions on Int(Dg (©)) and
Int(Df"(C)), respectively. Now, a standard argument using Brouwer’s invariance of domain
theorem [253] shows that ¢ is a biholomorphic function from Int(Dg (©)) onto Int(Df"*(C)) and
n = £. The proof is complete.
Corollary (4.2.23) [244]: Let f = (f1,..., fr) and g = (g4,--., gx’) be tuples of positive regular
free holomorphic functions with n and £ indeterminates, respectively, and let m € N* and d € N*'.
If the domain algebras A(D/™) and A(D) are unital completely contractive isomorphic, then n = £
and there exists a permutation o of the set {1,...,n} and scalars t, ..., t,, > 0 such that the map
Int(D/*(C)) 3 (z1,.--,2) = (t1Z5(1)s - tnZemy) € Int(DF(C))
is a biholomorphic map.
Proof: Note that the sets Int(D;"(C)) < C" and Int(Dg((C)) c C? are Reinhardt domains which
contain 0. Due to Theorem (4.2.22), there is a biholomorphic function from Int(DZ(C)) onto
Int(Df*(C)) andn = 2.
Using Sunada’s result [257], we complete the proof.
Proposition (4.2.24) [244]: Let Q c C[Z; ;] be a left ideal generated by noncommutative
homogenous polynomials and let A(V/7,) be the corresponding noncommutative variety algebra. If
@ € A(V7), then the map ¢: V', (H) — B(H) defined by
p(Y): = lri_l}} Bry 0[] Y € Vi, (H),
is continuous, where the convergence is in the operator norm topology and By .y  is the constrained
noncommutative Berezin tranform.

N ——
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Proof: First, note that the map ¢ is well-defined due to Proposition (4.2.5). Let p,,(S; ;) be a
sequence of polynomials in the variety algebra A(V/7,) such that p,,(S; ;) — ¢ in the operator norm.

Given e > 0, let N € N be such that ||¢ — py (S, )| < E Fix A € V% (H) and and choose & > 0
such that [|py (Y) — py(A)Il < 5, whenever Y € Vf(H) and [|Y — Al| < &. Now, using again
Proposition (4.2.5), we have

1Y) = Il < lim sup||Bry o101 = Bracpell

Bry,olo-pn(sip ” + | Bry.amontsip ~ Bragpntsipi ”

+ | BT‘A,Q[PN(Si,j)—qJ] ”}
< 2[l¢ = pu (S )| + lim sup llpy (rY) = py (rA)
<2[le —pn (S )| + lIpn () — Py Al < €
forany Y € V¢, (H) with ||Y — Al < &. The proof is complete

Consider the particular case when Q = Q.. According to Theorem (4.2.20), the Hardy algebra
F*(V¢g,) coincides with the algebra H* (Df, (€)) of all multipliers of the Hilbert space

H?(Df (C)). We remark that each ¢ € A(V{%,,) can be identified with a multiplier ¢ of
HZ(D}T> (€)) which admits a continuous extension to D" (C). Moreover,

§() =lim B,z q,(01,2 € D5 (O).
Indeed, due to Theorem (4.2.20), ¢ can be identified with a multiplier & which is given by the
relation £(A) = (@(1),uy) forall A € Df%,(C). On the other hand, due to Proposition (4.2.24), the
map @: V¢5(C€) — C defined by ¢(1): = lirr11 By1.0[¢] IS cOntinuous on V¢ (C) = Df"(C). According

r—

to Theorem (4.2.16) and the remarks that follow, we deduce that £(1) = (@ (1), u,) = ¢(A) for all
A € Df’,(C), which proves our assertion.

Theorem (4.2.25) [244]: Let f = (fy,.--, fx) and g = (g4, ---, gx’) be tuples of positive regular
free holomorphic functions with n and £ indeterminates, respectively, let m: = (m,,...,m;) € N¥

andd:= (dy,...,dy) € N*' and let Q be a left ideal generated by homogenous polynomials in
C[Z;;]. If . AWV7p) - A(Vg‘fQ) Is a unital completely contractive isomorphism, then the map
@: Vo (C) = V7 (C) defined by

pA): = lirrllB

= lim sup {

r— 00

graglest] €Lk} j € {1,...,ni}],/1 € V3, (O),
ra.Q[®sy)

where S): = {Sl.(";)} is the universal model of the abstract variety V/'; and By ,.; o is the constrained
Berezin transform at A, is a homeomorphism of Vg”fQ (C€) onto V{75 (C).

In the particular case when Q = Q., the map ¢ is, in addition, a biholomorphic function from
Int(Vlo.(C)) onto Int (V% (C)) and n = .

Proof: We only sketch the proof, since it is very similar to that of Theorem (4.2.22), and point out
the differences. Denote

ii=P(sD) e a(Vg,), i€l k}hje(L,...,n} (62)
where §0): = {Si(.’;)} is the universal model of the abstract variety V/’,. Due to Proposition (4.2.24),
the map ¢, ;: V%, (C) — C, given by

@i (A):=1m By 11015,
is well-defined and continuous. Consider the function ¢: Vg‘fQ (C) - C* given by @(1): =
(@1 (D), ..., 9 (1)), where @;(1):= (9;1(A),..., i n, (1)) forall 1 € Vg‘fQ (C) and note that (1) €
D" (C) for all V%, (C).
On the other hand, since q(SY)) = 0 for any g € Q, and ¥ is a homomorphism, one can deduce
that q(¢) = 0. Applying the constrained Berezin transform By, ,.; o, and taking the limitas r — 1,

183



we obtain that g (¢ (4)) = 0 for any g € Q. Therefore (1) € V¢, (C) and the map ¢: V7, (C) —
V' (C) is continuous. Similarly, setting

Lp=0(s)ea(vr)iet,. . kY el ) (63)

where §@): = {Siff)} is the universal model of the abstract variety V,, Proposition (4.2.24) shows
that the map &; ;: V774 (C) — C given by &; ;(u): = lrif} Bme[gu] is well-defined and continuous.
Now, one can prove that the map &: V%, (C) - Vg‘fQ (C) defined by E(u): = (&, (W), ..., & (W),
where & (u): = (&1 (1), -, &, (1)), is continuous.

For each &; € AV/p),i € {1, k'},j € {1, £} 1et D (SD) = Tayert, x--xry, UaySey S €

N, be a sequence of polynomials such that &; ; = lim p,(S") where the convergence is in the
500

operator norm. Using the continuity of @ in the operator norm, and relations (63) and (62), we
obtain

SO = B(E,;) = P (lim py(sD)) = lim py(@).
Consequently, using the continuity in the operator norm of the constrained noncommutative
Berezin transform at 1 € Vg‘fQ’> (©) on the variety algebra A(Vg"fQ) and the relations above, we obtain

%) = BoaolS1 = Boa |lim p(@))
= lim py(@(A)) = lim By, (2,0 [ps(SY)]
= &i,j (@A)
foreachi € {1,...,k'},j €{1,...,4;},andany 1 € VgcfQ,>((C). Hence (o p)(A) = Aforall A €
Vo> (O).
Now, using the fact that the functions ¢: V%, (C) = V{7 (C) and &: V/%(C) = V5, (C) are
continuous, and V7, .(C) is dense in V%, (C), we conclude that (¢ o ¢)(1) = A for all 2 € V], (C).
Similarly, one can prove that (¢ o &)(u) = p for u € V¢, (C). Therefore, the map ¢ is a
homeomorphism. Note that in the particular case when @ = Q., we have V/, (€) = D¢*(C) and
Vg‘fQC((C) = Dg (©). Using Theorem (4.2.22), one can complete the proof.
We remark that a result similar to Corollary (4.2.23) holds in the commutative setting. Therefore, if
the variety algebras A(V/7,_ ) and A(Vgcch) are unital completely contractive isomorphic, thenn = ¢
and there exists a permutation o of the set {1,...,n} and scalars t, ..., t,, > 0 such that the map
Int(Ve5.(€©) 3 (21,--+,2n) ¥ (t1Zo(1ys -+ +r tnZo(n)) € Int(Vg‘fQC((C))
is a biholomorphic map.
The results show that there are many non-isomorphic polydomain algebras. We consider the
following particular case. If f = Z; +- - - +Z,,, then A(Vfl,QC) is the universal algebra of commuting
row contractions, and Int(Vfl’QC((C) = B,,, the open unit ball of C*. When g = (Z4,...,Z,), then
A(V;QC) is the commutative polydisc algeba. In this case, we have Int(Vfl‘Qc((C) = D" Since B,,
and D" are not biholomorphic domains in C"* if n > 2, Theorem (4.2.25) shows that the universal
algebras A(V;,_) and A(V,,, ) are not isomorphic.
We develop a dilation theory on abstract noncommutative varieties V';, where J is a norm-closed
two sided ideal of the noncommutative polydomain algebra A(Df™) such that N; # {0}.
The dilation theory can be refined for the class of noncommutative varieties V', where Q < C[Z; ;]

is an ideal generated by homogeneous polynomials and g = (q4,..., qx) is a k-tuple of positive
regular noncommutative polynomials. we also obtain Wold type decompositions for non-degenerate
+-representations of the C*-algebra C*(S; ;) generated by the universal model.

Lemma (4.2.26) [244]: Let T = (Ty,..., Ty) be in the noncommutative polydomain D¢ (H) and let
X € B(H) be a positive operator such that A]’ZIT(X) > 0 forany p:= (py,...,pr) € ZX withp < m.
Then
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0< lim - lim (id = ®7* )+ (id — ®{*, )(X) < X.

qg=>>°  q172> >

Proof: Foreachi € {1,...,k},let Q; c B(H) bethesetofallY € B(H),Y = 0, such that the series
> BiEFY, bi(,’[;‘ii)Ti, . YT; g, is convergent in the weak operator topology, where

||

my) . _ mp. _ p+m;—1
bl.’g(J :=1and bi’ai 1= Z Z Aiy, ** Qiy, ( m; —1 )

V1|21 |vpl21
for all « € F;;, with |a| = 1. We define the map W;: Q; — B(H) by setting

W,(Y) = 2 by g T, 5 Y T},
Bi€F,
Fixi € {1,...,k} and assume that 1 < p; = m;. In [253] (see the proof of Theorem 2.2), we proved
that

qi—>oo firTl
< A7 X) < X, (64)
for any p: = (py,...,px) € Z¥ with p < m and p; = m;. A repeated application of (64), leads to the
relation
0< (Wor o W(AF (X)) = qlkiinoo--- qlliinoo(id —ofk ) (id = o/t ) (X) < X.
The proof is complete.
Lemma (4.2.27) [244]: Let T = (Ty,..., Ty) be in the noncommutative polydomain D¢"*(H) and let
K¢ r be the associated Berezin kernel. Then
A7 (KfrKpr) < A7 (1)
forany p: = (py,...,pr) € Z¥ with p < m. The equality occurs if p > (1,...,1).
Proof: Lets € {1,...,k}and let Y = 0 be such that (id — @, 1) - -+ (id — @57, )(Y) = 0. Note
that {(id — d)}’szk) <o (id = q)/gll,Tl)(Y)}q=(q1,...,qs)EZi IS an increasing sequence of positive
operators. Indeed, since @, r.,..., @y, 7, are commuting, we have
0<(id—@f ) -+ (id =l ()

qs—1 q1—1
= Z q);s'Ts Z q);1;T1 (id - q)fs»Ts) T (id - q)f1T1)(Y) ’
t=0 t=0

which proves our assertion. If p = 0, the inequality in the lemma is due to the fact that K/ 7Ky < I.
Assume that p # 0. Without loss of generality, we can assume that p; = 1 forany j € {1,..., s} for
some s € {1,...,k},andp; = 0foranyj € {s +1,...,k} if s < k. Since

KfrKpp = lim - lim (id — &7 ) -+ (id — @£ ) (D),

qg=>>° 17

0 < W;(A7 (X)) = A7 ™ (id — lim ®¥% )(X)

and taking into account that the maps @, r. are WOT-continuous and commuting, we deduce that
(id = @p r )Pt -+ (id = Pp 1 )Ps (KprKpr)
= liclln(id — ol ) (id = @ [(id — @p p)Ps(id - Df )] -

frTk fs+1.Ts+1
-[(id = ®p, )P (id - DFOH](D)
Now, letj € {1,...,s}and letY > 0 be such that (id — Cij,Tj)(Y) > 0. Due to the remark at the

beginning of the proof, WOT-quiglm(id - CDJ?JJ_"T],)(Y) exists and, since @, r, is WOT-continuous,
we have
quiinoo(id — @y 7 )P (id — qa;’j_"Tj)(Y) = (id — ¢fj,Tj)pfq£i§1m(id — @y 7 )(id — CD?]’_"T],)(Y)
= (id = 7,7 )P (V).
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Applying this result repeatedly, when j = 1and Y =1, when j = 2and Y = (id — @, 1, )P (I),
andsoon,when j =sandY = (id — ®f 7, )P -+ (id — P, 1 )Ps (I), we obtain
Jim e lim [Gd = by, )Po(id = @f2p)] -+ [(Gd = @y, )7 id = )]

= (id = @p )P -+ (id = Pp )P (1)

Summing up the results above and using Lemma (4.2.26), we deduce that
(id — ®p )P -+ (id = Pp )P (KprKpr)
= lim (i =@ty ) o (d = O ) = Bpp)Pie - (id = Bpp)P ()

< (id —Pp )P+ (Id — Dp 1 )Ps (D).
The last part of this lemma is now obvious. The proof is complete.
Let f = (fi,..., fi) be a k-tuple of positive regular free holomorphic functions and let S =
(S1,..,Sp) With S; = (S; 4, ..., Si ;) b€ the universal model associated with the abstract
noncommutative variety V;7;, where J is a norm-closed two sided ideal of the noncommutative
domain algebra A(Df") such that N; # {0}. Let U = {U, ;} € V;(K) be such that

(id — &5, y,) - (id — @p, 4, ) (D) = 0,
where U; = (Uyy, ... , Uin)- Atuple V := {V; ;} having the matrix representation
5i;®p 071 .
Vi,j = 0 U. |’ 1 E {1, ,k},] € {1, ...,ni}, (65)

L]
is called constrained (or J-constrained) dilation of T = {T; ;} € V/";(H) if H can be identified with a
co-invariant subspace under each operator V; ; such that

H, (a)€F; X--XTFy,.

T =V
The dilation is called minimal if
(N; ® D) ® K = span{V(H: () € Fj x--x F} }.
The dilation index of T is the minimum dimension of D such that V is a constrained dilation of T.
Our first dilation result on the abstract noncommutative variety V/’; is the following.
Theorem (4.2.28) [244]: Let S = {S; ;} be the universal model associated with the abstract
noncommutative variety V7, where J is a norm-closed two sided ideal of the noncommutative
polydomain algebra A(Df™). If T := {T;;} is an element in the noncommutative variety V7 (H),
then there exists a Hilbert space K and U = {U; ;} € V/7(K) with
(id — @f, 0, ) - (id = pp, )(D) = 0
and such that H can be identified with a co-invariant subspace of K: = [N; @ AL (I)H] @ K under
each operator
Si,j (03] IW 0
0 Ui
where AZ(1): = (id — ®p 7)™ - -+ (id — &y, 7, )" (I), and
T =Viilu iefl,...k},je{l,...,n;}.
Moreover, the following statements hold.
(i) The dilation index of T coincides with rankAg*- (I).

(ii) T is a pure element in V7 (H) if and only if the dilation V: = {V; ;} is pure.
Proof: We recall that the constrained noncommutative Berezin kernel associated with the T €
V¢ (H) is the bounded operator K¢ ;: H — N; ® A (I)(H) defined by

Kf,T,]: = (PN] ® IA?’IT(I)(H)) Kf'T;
where K¢ 7 is the noncommutative Berezin kernel associated with T € D" (H). Taking into account
the properties of the Berezin kernel and the fact that range Ky < N; ® A7 (1)(H), we have

Ker Ty = (S(y ® In)Ksr;, () €Ff x---xFfh (66)

Vi,j:= , iE{l,...,k},jE{l,...,Tli},
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and K¢ r ;Kr 1., = K¢ r Ky 7. We consider the Hilbert space K: = (I — K; Ky r)H and denote Y: =
I — K rKer. Foreachi € {1,...,k},j € {1,...,n;}, define the operator L; ;: K - K by setting
LijYY?h:=Y'Y?T};h,  h€H.

Z aial|LigV 2R = (®f,r, (VR R) < |[Y /2R

aEIFﬁi,|a|21
forany h € H, where @ is the reverse of a. Consequently, we have al.gi.||Ll-J-Y1/2x||2 < ||,
]
forany x € N; ® H. Since a; gt # 0 each L; ; can be uniquely be extended to a bounded operator

(also denoted by L; ;) on the subspace K. Denoting U, ;: = L; ; and setting U = (Uy, ..., Uy) with
Ui = (Uiq,---,Uip,), an approximation argument shows that chi,Ui(IM) <Iy,forie{l,..., k}and
jE{L,... } The definition of L; ; implies
Ui ;(Y*2h) = Yl/szh, h€H, (67)
foranyi € {1,...,k}andj € {1,...,n;}. Hence, and using again Lemma (4.2.27), we deduce that
YY2AL (Y2 = AL (I — KfpKpr) 2 0

forany p:= (py,...,px) € Z% suchthatp < m,p # 0, and Y*/2(id — &y, ;. ) - - - (id —
o p ) (DYYZE=0.
Since Y*/% is injective on K = YH, we conclude that U = (Uy, ..., Uy) € V/;(K) and

(id = @, y,) -+ (id — P,y )U) = 0.
On the other hand, relation (67) implies

YY2qU) = q(T)Y? = 0,q € C[Z;].
Using the von Neumann type inequality for the elements in the abstract noncommutative
polydomain D¢* and the fact that the polynomials in WW; ; and the identity are dense in the
noncommutative polydomain algebra A(Df™), an approximation argument shows that Y*g(U) = 0
for any g € J. Once again, since Y*/2 is injective on K = YH, we have g(U) = 0 forany q € J. Let
V:H - [N; @ H] @ K be defined by

_ [Krrg
ve=| " |-

Note that
2 . 2
WA = |[Kpr hll” + | U = Kfry Kpr, ) /2RI = NIRII2
for any h € H. Therefore, VV is an isometry Using relations (66) and (67) we obtain

[Kf”]Th Kip Tih @ YT,

= (Sl] ® IH)KfT]h @ Ul‘]Yh
[l Oy,
0 Ui ;
Identifying H with VH, we deduce that T;; = V;;|H fori € {1,...,k}and j € {1,...,n;}.
Now, we prove the second part of the theorem. Assume that T has the dilation V given by relation

(65). Since A%, (I) = 0 and AF's(I) = Pc, where P is the orthogonal projection from N; onto C1 c
N;, we deduce that A7 (1) = PH[P(C & Ip]|H. Hence, rank A7 (I) < dimD. The reverse inequality
is due to the first part of the theorem. To prove item (ii), note that if T' is pure then K¢ 1 is an
isometry and, consequently, K = {0}. This implies V = S, which is pure. Conversely, if we assume
that V is pure, we must have

lim id — (I)q1 id — @k 1) = [
Q=(q1,...,qk)ENk( 11 ) ( fr Vk)( %) 74
Taking into account the matrix representation of each operator V; ; and the fact that
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1 1 q . qk _
q=(q11:-1--1:1(;1k)ENk(ld - bell’Ul) -.. (ld - cbfk,Uk)(lK) - O;
we deduce that K = {0}. This shows that the noncommutative Berezin kernel K r is an isometry,

which is equivalent to the fact that T is pure. The proof is complete.
We provide a Wold type decomposition for non-degenerate *-representations of the C*-algebra
C*(Si)-
Theorem (4.2.29) [244]: Let q = (q4,--..,qy) be a k-tuple of positive regular noncommutative
polynomials and let S = (S,,..., S;) be the universal model associated with the abstract
noncommutative variety V;';, where J is a WOT-closed two sided ideal of F*(Dg*) such that 1 €
N;. If m: C*(S; ;) = B(K) is a nondegenerate x-representation of C*(S; ;) on a separable Hilbert
space K, then m decomposes into a direct sum
n=n,Pm,onK =K, D K;,
where 7, and 7; are disjoint representations of C*(S; ;) on the Hilbert spaces
Ko: = 5pan{m(S)) Ay (s Ux)K: (@) € Fy, X - -+ X Fp, }
and K; = Ky, respectively, where 7t(S): = (1(Sy),...,m(S)) and 7(S): = (n(S; 1), - T (Sin,))-
More-over, up to an isomorphism,
Ko =N, ®G, To(X) =X Q I; forany X € C*(S;;),

where G is a Hilbert space with

dim G = dim{rangeA".,(I)},
and m, is a *-representation which annihilates the compact operators and

(I - (DQ1;7T1(51)) R (e CDCI1'7T1(51))(IK1) = 0.
If =" is another nondegenerate *-representation of C*(S; ;) on a separable Hilbert space K', then m is
unitarily equivalent to =~ if and only if dimG = dim G’ and m, is unitarily equivalent to }.
Proof: Note that, due to Theorem (4.2.6), the ideal C(N;) of compact operators in B(N;) is
contained in the C*-algebra C*(S; ;). Due to standard theory of representations of the C*-algebras
[254], the representation 7 decomposes into a direct sum = =y @ m; on K = K, @ K, where
K, :=span{r(X)K: X € C(N))} and K, := Ky,

and the representations 7;: C*(S; ;) = B(K;) are defined by m;(X) := n(X)|g; forj =0,1. We
remark that o, 7r; are disjoint representations of C*(S; ;) such that r; annihilates the compact
operators in B(N;), and m, is uniquely determined by the action of  on the ideal C(N;) of compact
operators. Since every representation of C(N;) is equivalent to a multiple of the identity
representation, we deduce that
Ky = N;® G, (X) = X®I,, forany X € C*(S;;), where G is a Hilbert space. Using Theorem
(4.2.6) and its proof, one can show that the space K, coincides with the space K. Taking into
accountthat (I — @4, )™ + -+ (I — ®g, 5, )™*(I) = Pc is a projection of rank one in C*(S; ;), we
deduce that (I — @, 7(s))™ - - (I — quk,n(sk))mk(l,(n) = 0and dim G = dim [range n(P¢)] .
The uniqueness of the decomposition is due to standard theory of representations of C*-algebras.
We remark that under the hypotheses and notations of Theorem (4.2.29), and setting V; ;: = 7(S; ;)
foranyi € {1,...,k}andj € {1,...,n;}, one can see that V: = {V; ;} is a pure element in V'; (K) if
and only if K := span{V A7y (Ix)(K): (a) € Fyy, X -+ - X [y, .
We can obtain a more refined dilation theorem for the class of noncommutative varieties Vg'; (H),
where Q@  C[Z; ;] is an ideal generated by homogeneous polynomials and g = (q,...,qx) isa k-
tuple of positive regular noncommutative polynomials.
Let C*(T') be the C*-algebra generated by a set of operators I' € B(K) and the identity. A subspace
H c K is called #-cyclic for ' if K = span{Xh,X € C*(T'),h € H}.
Theorem (4.2.30) [244]: Let g = (q4,...,qy)) be a k-tuple of positive regular noncommutative
polynomials and let S = {S; ;} be the universal model associated with the abstract noncommutative

variety V', where Q < C[Z; ;] is an ideal generated by homogeneous polynomials. If T = {T; ;} is
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in V7'o (H), then there exists a *-representation : C*(S; ;) — B(K,) on a separable Hilbert space
K., which annihilates the compact operators and

(I =Py nspy) - T = Pypn(si)Uk,) = 0,
where (5): = ((51),...,m(Sk)) and w(S;): = ((S;1), ..., m(Sin;)), SUch that H can be identified
with a =-cyclic co-invariant subspace of

K:=[Ny @ 47 (D(H)] ® K,

v [P @ om0

b 0 (S|’
where Aglr(1): = (id — @4, )™ - -+ (id — ®g, 7, )" (I), and such that

T =Vijlg foralli € {1,...,k},j € {1,...,n;}.

Proof: Applying Arveson extension theorem [253] to the map ¥ of Theorem (4.2.4), we find a
unital completely positive linear map W : C*(S; ;) = B(H) such that W(S)S())" = T(ayT(5 for all
(@), (B) inFy, X -+ Xy, . Letf: C*(S;;) - B(K) be the minimal Stinespring dilation [36] of W.
Then we have

under each operator

i€l kLj€l,...,n),

Y(X) = Pyt(X)|H, X €C(S)
and K = span{ft(X)h: X € C*(S;;), h € H}. Now, one can show that that that Py (S(z))| L = 0
forany () € F;, X --- X [F,,, . Consequently, H is an invariant subspace under each operator
7T(S;;)" and
ﬁ(si,j)*lH = lP(Si*,j) = Ti:kj
foranyi € {1,...,k}andj € {1,...,n;}. Applying the Wold decomposition of Theorem (4.2.29) to
the Stinespring representation 7, one can complete the proof of the theorem. We omit the details
since the proof is now very similar to the corresponding result from [253].
Let VV be the dilation of T given by Theorem (4.2.30). One can easily prove that I is a pure element
in qu(f{') if and only if T is a pure element in V;™ (H), and (I — @4, y,) -+ (I — @g, v, )Ug) =0
ifandonly if (I — @y, 1) -+ (I — @g, r,)Iy) = 0. We remark that under the additional condition
that
SPan{S(q)Sipy: (@), (B) € Fy, X -+ - X Fp, } = C*(S; ),
which holds, for example, for the polyballs (commutative or noncommutative), one can show that
the dilation provided by Theorem (4.2.30) is minimal. Taking into account the uniqueness of the
minimal Stinespring representation and the Wold type decomposition of Theorem (4.2.29), we can
prove that the dilation is unique up to unitary equivalence.
We provide a characterization for the class of elements in the abstract noncommutative variety V/”
which admit constrained characteristic functions. The characteristic function is a complete unitary
invariant for completely non-coisometric tuples. We obtain operator models in terms of the
constrained characteristic functions.
Let S: = {S;;} be the universal model associated to the abstract noncommutative variety V¢"; and let
®: N, ® H - N; @ K be a multi-analytic operator with respect to S, i.e.,
D(S;; & Iy) = (S Q Ig)®
foranyi € {1,...,k}andj € {1,...,n;}. The support of @ is the smallest reducing subspace
supp(P) of N; ® H under each operator §; ; containing the co-invariant subspace M: =
®*(N; ® K). Using Theorem (4.2.8) and its proof, we deduce that if 1 € N}, then

sipp @)= \/  Gw®LM=NSL
(Q)EFR, % -+ XFp,,
where £:= (Pc @ Iy)®*(N, ® K). We say that two multi-analytic operator ®: N, @ K; —» N, ®
K, and ®: N; ® K| = N; ® K, coincide if there are two unitary operators 7; € B(K;, K;) such that
CD,(IN] Q1) = (IN] R 72)P.
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As in [33], one can prove that if ®;: N, ® H; » N; ® K, s = 1,2, are multi-analytic operators
with respect to S: = {S; ;} such that ®; ®] = &, d3, then there is a unique partial isometry V: H; —
H, such that &, = DIy, @ V), where Iy, ®V) is a inner multi-analytic operator with initial
space sup p (®,) and final space sup p (). In particular, the multi-analytic operators
D [sup p (@) ANA Py | p (@,) COINCIdE.
Definition (4.2.31) [244]: A k-tuple T € V/";(H) is said to have constrained characteristic function
if there is a Hilbert space € and a multi-analytic operator ¥: N; @ € - N; @ AL (I)(H) with
respect to S = {S; ;} such that
Ker Kir, + P9 =1,

where K¢ 7 ; is the constrained noncommutative Berezin kernel associated with T € V7 (H).
According to the remarks above, if 1 € N; and there is a constrained characteristic function for T €
V7' (H), then it is essentially unique. We also remark that in the particular case when k = 1 and
m, = 1, all the elements in the noncommutative variety Vfi have constrained characteristic
functions.
Using Theorem (4.2.10), one can deduce the following result.
Theorem (4.2.32) [244]: An element T = {T; ;} in the noncommutative variety V;";(H) admits a
constrained characteristic function if and only if

A sor(I — KppyKir ) 20
forany p: = (ps,...,px) € ZX such that p < m, where K; -, is the constrained Berezin kernel
associated with T and S: = {S; ;} is the universal model of V7.

If T has characteristic function, the multi-analytic operator I" provided by the proof of Theorem
(4.2.10) when G = I — K1 ;K: 1 ; , which we denote by O ;, is called the constrained

characteristic function of T. More precisely, O, r ; is the multi-analytic operator
O Ny @ A%, (DMr) - N; @ A7 (D(H)

defined by O;r; := (I — K¢ r;Kf 7 )/?K 1 ;, where

Ker;iH - N, ®A -(D(H)
is the constrained noncommutative Berezin kernel assomated with T and

K¢ gyt H > Ny & A7, (D (M)

is the constrained noncommutative Berezin kernel assomated with My € V/™(Myr). Here, we have

Mp:=range (I — Kf T]K;,T,])
and My: = {M, ;}, where M; ; € B(My) is given by M, ;:= A; ; and A; ; € B(My) is uniquely
defined by

l][(l KfT]KfT])l/Z ] - (I_KfT]KfT])l/Z(SL] ®I)x
forany x € N; @ AF'; (I)(H) According to Theorem (4.2.10), we have
Krr Kery + OpryOpry =1
We denote by Cf; (H) the set of all T = {T; ;} € V,”;(H) which admit constrained characteristic
functions. W provide a model theorem for class of the completely non-coisometric elements in
C;;(H). Due to the results obtained the proof is now similar to that of Theorem 6.4 from [253].

Theorem (4.2.33) [244]: Let T = {T; ;} be a completely non-coisometric element in /", (H) and let
S:= {5, ;} be the universal model associated to the abstract noncommutative variety V" Set
D:=A7y(D(H),  D.=A4F, (DMy),

and Ag, . = (1- @}’T’]Gﬁm) , Where O 1 ; is the characteristic function of T. Then T is

unitarily equivalent to T: = {T; ;} € C/"(Hr;), where T, ; is a bounded operator acting on the
Hilbert space

Hyry:= |V, ® D) ® By, (N, @ DV)|
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S {Orr ;0 D Aef”(l’: @ €N, ® D.}
and is uniquely defined by the relation
(PNJ®D|Hf,T_,) Tijx = (S & Ip) (PN;®D|Hf_T,,) X
forany x € H ;. Here, Py, ®p is the orthogonal projection of the Hilbert space
Kf,T,]: = (N] ® D) @ A@f,T,](N] ® D*)

onto the subspace N; @ D.
Corollary (4.2.34) [244]: Let T = {T; ;} be an element in C{";(H). Then T is pure if and only if the
constrained characteristic function ©, 1 ; is an inner multi-analytic operator with respect to S: =
{Si ;3. Moreover, in this case T = {T; ;} is unitarily equivalent to ¢ = {G; ;}, where
Gy = PHf_TJ(Si,j X 1)|Hf,T_,
and Pyt is the orthogonal projection of N; & A¢".(I)(H) onto
Herpi=1{N, ® AT (D(H)} © range®; ;.
As consequences of the results above, we can easily show that if T = {T; ;} € V/";(H), then T is
unitarily equivalent to {S; ; &® I} for some Hilbert space K if and only if T € C/7; is completely
noncoisometric and the characteristic function ©,r ; = 0. On the other hand, if T € Cf} , then O
has dense range if and only if there is no nonzero vector h € H such that
q:(Q11,-1--1:1;11k)€Nk <(ld B ¢}11le) o (ld B q);ll’cc'Tk) (), h) = ||l
where T;: = (T; j,..., Ty ;) forany i € {1,..., k}.
An important consequence of Theorem (4.2.33) is that the constrained characteristic function 0,1,
is a complete unitary invariant for the completely non-coisometric part of the noncommutative
domain Cf.
The proof is similar to that of Theorem 6.5 from [253].
Theorem (4.2.35) [244]: Let T = {T; ;} € C/;(H) and T' = {T};} € C{";(H") be two completely
non-coisometric elements. Then T and T’ are unitarily equivalent if and only if their constrained
characteristic functions O 1 ; and O, ; coincide.
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Chapter 5
Berezin Transform on Harmonic Bergman Spaces
We show that an expansion has the additional property of being asymptotic for large ¢ with fixed a
uniformly in b and z (with bounded b/c). Moreover, the asymptotic character of the expansion holds
for a larger set of b, ¢ and z specified below. We provide the full asymptotic expansion of the harmonic
Berezin transform on the unit ball in R™ purely by means of transformations of hypergeometric
functions and function’s “hypergeometrization”.
Section (5.1): Gauss Hypergeometric Function

The asymptotic behaviour of the Gauss hypergeometric function F(a, b; c¢; z) when different
combinations of a,b,c and z are large is a subject of recent interest [286]. The hypergeometric
function is defined by the power series

- (), (b),
F(a,b;c;3) = wzn, lz| <1,c#0,-1,-2,... (1)
4 (c),n!
n=

This is an asymptotic expansion of F(a, b; c; z) forz — 0 and/or c = co. The condition |z| < 1 may
be relaxed still keeping the asymptotic character of the expansion for large ¢ [291]. A translation
formula for F(a, b; c; z) [288, p. 113, Eq. (5.11)], can be used to obtain an asymptotic representation
of F(a,b; ¢; z) for large values of z with | arg(—z)| < m [288, p. 127]:

F(C)F(b —a) (@p(l=c+a), 1
To)c—a) ) 2 (1—b+a),n! z"

I(c)f(a —b) b) ), (1—c+b), 1
T@le—b 2 Z (1—a+b),n! z"

F(a,b;c;2) =

But when one or several of the parameters a, b, c or z are large (except when only c or z are large),
the asymptotic study is more difficult. Some have obtained asymptotic expansions of F(a, b; c; z)
with certain restrictions on the parameters. Wagner provides in [282] an asymptotic expansion of
F(a,b; ¢; z) when ¢ — ocowith a? = 0(c) and b? = 0(c). This result is obtained from an integral
representation of F(a, b; c; z) followed by contour deformations and series expansions.

Several have focused their attention on the asymptotic behaviour of

F(a+eA,b+elc+es)dz),ey=0%1,A— o0 (2)

In [293],Watson obtained an asymptotic expansion of F(a+ A, b+ A;c+ 24;3),F(a+A,b—
A; c; 3) andF(a, b; c + A; z)in terms of inverse powers of A by contour integrals and the steepest
descent method, see also [287, Chapter 5,Section 9]. However, these expansions are only valid in
small regions of z. In [284], Jones obtains a uniform asymptotic expansion of F(a+ A,b —
A;¢c;1/2 —1/2 z)when A - o with | argz| < 1 in terms of Bessel functions. Jones uses for his
analysis Olver’s method [287], which is based on the linear second order differential equation
satisfied by F(a,b; c; z). Olde Daalhuis has obtained an asymptotic expansion of F(a,b —A; c +
A; —3) in terms of parabolic cylinder functions and of F(a + A,b + 2A; c; —3z) in terms of Airy
functions [286]. These expansions hold for fixed values of a, b and c, and are uniformly valid for z
with |arg z|<m. Olde Daalhuis uses Bleinstein’s method applied on a contour

integral representation of F(a, b; c; z) in which a saddle point and a branch point coalesce. In [289],
Temme has shown that the set of 26 possible cases in (2) can be reduced to only four cases:

(A)e1=e2=01e3=1 I(B)e1=11e2=_11e3=0
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(C)el = 0, €, = _1, €3 = 1, (D)el = 1, €, = 2, €3 = 0

For case (A), Temme obtains the uniform asymptotic expansion

T A b—a 2
%2 g:(2)(b)sE°U(b +5,b—a+1+584)(3)
s=0

where U is the confluent hypergeometric function, £ = In[(z — 1)/z] and g.are the coefficients of
the Taylor expansion g(t) = (t+ )323[(et — 1)/t]P"1e(=9Y(1 — 5 + ze ) 2at t = 0:g(t) =
Yoz 8s(z)t° . Formula (3) is an asymptotic expansion when A — oo, uniformly with respect to
bounded values of ¢(z bounded away from the origin). We are concerned with a generalization of
cases (A) and (C). We study asymptotic expansions of F(a,b; c; z) for large values of ¢ uniformly
in b with bounded b/c. In [288] we used a modification of the steepest descent method (see [283]) to
derive uniform asymptotic expansions of the incomplete gamma functions I'(a, z) and y(a, ) for
large values of a and z in terms of elementary functions. We apply here the same idea to derive a
uniform asymptotic expansion of F(a, b; c; z) for large b and c using the integral representation (4)
of F(a,b; c; z) given below. The approach consists of: (i) a factorization of the integrand in that
integral in an exponential factor times

another factor and (ii) an expansion of this second factor at the asymptotically relevant point of the
exponential factor. The main benefit of this procedure is the derivation of easy asymptotic expansions
(in terms of elementary functions) with easily computable coefficients.

We derive a convergent expansion of F(a,b + 1; ¢ + 2; z) valid under the restrictions |b||z]| <
|c — bz|and |c — b||z| < |c — bz| which has also an asymptotic character for large ¢ uniformly in
b and z with bounded b/c. This expansion is not new, it was already obtained by N@rlund in [285,
Eq. (1.21)], although with more restrictive conditions for the convergence and without mention to its
asymptotic properties. we show that the expansion obtained in the previous keeps its asymptotic
character for large ¢ (uniformly in b and z with bounded b/c) even if the restrictions |b||z| < |c —
bz|and |c —b||z| < |c —Dbz| do not hold. We consider a,b,c € ¢,c # —2,—-3,—4, . . . and
|arg(l — z)| <.

The Gauss hypergeometric function may be written in the form [288, p. 110, Eq. (5.4)]

F(a,b;c+A; 3~

1
o) — r'() b-1 c-b-1 —a
F(a,b;c;3) = F()(c—D) Oj tP7 (1 —t) (1—-tz)™2dt,Ra>Rb >0

\ Im(1/2) \ Im(1/2)
blc b/c-1 ble
. U .
0 > ?
Re(1/2) Re(1/2)
(a) (b)
Fig. 1. Eqs. (7) are equivalent to |~ = b/c| > |b/c| and = = b/e|> b~ 1] (last inequality in formula (6) for =0 and t = 1), Then, ! must

be outside of a disk of center b/c and radius Max{|b/c|, |b/c = 1|). When R(b/c) 2 lw the origin is on the boundary of the disk. When R(b/c) < :
itis inside the disk. (a) R(b/c) 21/2 (b) R(b/c) < 1/2.

193



For convenience, we consider a shift in the parameters b and ¢ and write the hypergeometric function
in the form

['(c+2)

1

_ LY O

F(ab+1;¢c+2;3) I‘(b+1)l“(c—b+1)fe g(t)dt (4)
0

With
(1) = —logt + (1 _ 9) log(1 —1),g(t) = (1 — tz)"Re + 1 > Rb > —1 (5)

The unique saddle point of f (t) is located at t = b/c .We replace the function g(t) in (5) by its Taylor
expansion at t = b/c with convergence radius |1/z — b/c| [283]

i A .
g0 = k; K (1 —(a()t;(/zc)z)k+a (t N 2) ’ |t N %

This expansion converges uniformly with respect to t € [0, 1] when the following conditions hold:

1 b
<lz-2
3 C

(6)

Ibl|z| < |c — bz|and |c — b]|z|] < |c — bz]|. (7)

Several possible z-regions are illustrated in Fig. 1.
For the values of z, b and c verifying (7), we can introduce (6) in (4) to obtain, after interchanging
summation and integration,

(@kz K
Lk (1 - (b/0)z)

F(ab+ 1;c+2;3) = @y (b, 0), 8)
K

where the functions @, (b, c) are defined by

! k
o, (b, c) = I'(c+ Z)b Y j oc® (t _ E) dt 9)

r(b+ DI(c— c

Using again the integral representation (4) we see that @, (b, c) is a very simple hypergeometric
function which is also a rational function of b and c:

b\* & k’(+),
o= (- r(kmser ) - ()Y LD o

The first few functions @, (b, c) are detailed in Table 1.

We have derived the above expansion under the restrictionsRc+ 1 > Rb > —1, |b||z]| < |c —
bz|and |c — b||z| < |c — bz]|. But the restriction Rc + 1 > Rb > — 1 is superfluous: for large
values of k we have that [290]

. — () () +m c c—b+ -C
F(=k b3 € 2) = oy (k&) 1+ 0 (D] + s et P91 = 2)°(ka)*[1 + o(1)]
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Table 1[285]:
First few functions @y (b, c) defined in (9) and used in (8)

k @, (b, ©)

0 1

1 c—2b

c(c+2)
5 (2+b)c?2-b(6+b)c+6b?
c2(c+2)(c+3)
3 (6+5b)c3—3b(8+5b)c?+2b%(18+5b)c—24b3
c3(c+2)(c+3)(c+4)

when k — cowith b and ¢ fixed complex numbers, ¢ # 0,—1,-2,...,z # 0and|arg(l — z)| < m.
Therefore, @y (b, c) = 9(y(k)aX)when k—oo

with y(k) = Max{k =%, kP~¢"1} and a= Max{|(b/c)|, |1 — (b/c)[}.

Then, the terms of the series (8) verify

(@kz" @, (b, ¢) = 9(k* Ly(K)B¥)when k—oo,

KI(1-(b/c)z)k+
B = Max{ c—bz c—bz } <1

Therefore, expansion (8) has almost a power rate of convergence under the restrictions |b||z|<|c — bz]|
and |c —b||z|<|c — bz| (and the restrictions Rc + 1>Rb>—1 are not necessary).
On the other hand, from [291, Eq. (15.2.10)] we find the recurrence

With

bz (c=b)z

)

(hwx)=EI%:TD{1—2%)+ap—n2(1—gy§;®mxkz2 (11)

Where
®, (b, 0)

Gk(b,c) = m,

k=1,23,..

From the explicit values of ®, and ®, given in Table 1 we see that G, (b,c) = 9(c™1) and G,(b,c) =
9(b/c) when |b| + |c| — cowith bounded b/c and b = 0.

From this behaviour of G, and G, and the above recurrence, it may be shown by induction that, for b
+ 0,

Gk (b,c) = 9(b/c) when |b| + |c| = oo with bounded b/c and even k.

Gy(b,c) =9(c™) when |b| + |c|] — oo with bounded b/c and odd k.

Therefore, forb # 0,

bl—k mod2

(b, c) = 9

®y_y (b, c) Jwhen [b] + [c| = oo with bounded b/c. (12)

C
The asymptotic properties of the expansion (8) improve when the saddle point t=b/c of (4) coalesces
with an end point of the contour of integrationt = Oort = 1, thatis, whenb =0 or b =c. In these
cases, from the recurrence (11)

we have that

k!

Cbk(br C) = (_1)kcbk(c! C) = (C + 2)k

(13)

Table 2 [285]:
A numerical experiment about the relative error in the approximation of F(—i,b+1;c+2;-5-3i) for
several values of b and c by using (8) with n terms

b+1 c+2 n=1 n=3 n=5 n=7 n=9

10ei™*  20ei™6  0.015019 0.001762 0.000234 0.000039 7.814(-6)
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50e~™/3  100e~™/* 0.006754 0.000072 1.682(-6) 6.055(-8) 2.886(-9)

100-30i  200+2i  0.003617 0.000019 2.255(-7) 3.987(-9) 9.308(-11)
200ei™/18  400e~1™/18 0001036 2.672(-6) 1.359(-8) 1.065(-10) 5.651(-12)
10-500i  40-300i  0.003759 0.000010 5.701(-8) 4.285(-10) 2.930(-12)

Then, (8) is an asymptotic expansion for large ¢ with fixed a uniformly in b and z with bounded b/c.
Table 2 contains some numerical experiments which show the accuracy achieved by expansion (8).
The expansion (8)was already obtained by N@rlund in [295, Eqg. (1.21)], although without any
mention to the asymptotic properties of the expansion. Also, the conditions for the convergence of
(8) given there are more restrictive: (|b| + |c])|z] < |c — bz]|.

We have shown that expansion (8) is convergent and asymptotic for large ¢ (uniformly in b and zwith
bounded b/c) if b, c and z satisfy (7). we will show that the expansion (8) keeps that asymptotic
character if O<b/c<1 (even if conditions (7) do not hold). In the remaining we consider O<b/c<1 and
—1<Rb<Rc + 1.

Expansion (6) is not uniformly convergent for t € [0, 1] if conditions (7) do not hold. We can

approximate the integral (4) by replacing the function g(t) by its Taylor expansion at the point t = b/c:
k

(@) b
g0 = Zk' a a(tljc)zm( _E) Ta® 14

with g, (t) = 9((t — b/c) ) when t — b/c. Introducing (14) in (4) and interchanging summation and
Integration we obtain

n—1

. L (a)z"
F(a,b +1;c+ Z,Z) = kz=0k| (1 _ (b/C)Z)k+a

®(b,c) + R,(a,b;c;3) (15)

where the functions @ (b, c) are given in (9) or (10) and

1
['(c+2
Rn(a,b;c;2) = T+ 1§F(C —)b D f e g, (Ddt (16)
0
The key point here is to use the idea given in [293]: the critical point b/c € (0, 1). Then, the Laplace
method can be applied to the integrals (9) to obtain their asymptotic behaviour for large c (or large b
and ¢ with bounded b/c) [293]:
@ (b, c) = 9(c~™+D/2)when |b| + |c| — oo with bounded b/c. (17)
On the other hand, we can also apply the Laplace’s method to the remainder R, (a,b; c; z) in (16) to
obtain [293]:
R,(a,b; c; 2) = 9(c~@+D/2)when || + |c| — oo with bounded b/c. (18)
Thus, from (12) or (13) and (18), we see that (15) is an asymptotic expansion of F(a, b + 1; ¢ + 2; 2)
for large ¢ (uniformly in b with bounded b/c). Moreover, from the Lagrange form for the Taylor
remainder we have

(@n(t—b/O)"

gn(t) = Il (1/Z — E)n_,_a;

e (tb/c) c [0,1]

Table 3[285]:
A numerical experiment about the relative error in the approximation of F(4, b + 1; ¢ + 2;,—12) for
different values of b and c¢ by using (8) with n terms

b+1 c+2 n=1 n=3 n=5 n=7 n=9

20 50 0.1675 0.025198  0.003424  0.000256  0.000084

50 100 0.07295 0.005519  0.0000468 0.0000444 4.769(-6)

100 200 0.036612 0.001398  0.000060  2.972(-6)  1.640(-7)
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250 500 0.014674 0.000225 3.947(-6)  7.886(-8)  1.780(-9)
500 1000 0.007342 0.000056  4.965(-7)  4.988(-9)  5.673(-11)

Conditions (7) do not hold for these values of b, ¢ and z.
Then,

1@ o b|"
- I5al |y _ 2
|gn(t)|Sn! por A(z,a,n)e™al |t -

With
IS(z"H|™ % ifo<Rz'<land Ra+n>0

z n+Ra . o
Max {Izl”ma, — in the remainingcases
V4

1-—

A(z,a,n) =

Then, for real b and ¢ and even n we have

(@n

Za

1 [
IR,(a,b,c 2)| < — A(z,a,n)e™2 (b, c)

We remark that the asymptotic properties of the sequence {®, (b, c)}, obtained in (12) or (13) making
use of (11) are slightly better than those derived from the Laplace’s method in (17).

Table 3 shows a numerical experiment which illustrates the approximation supplied by (8) for large
positive real values of b and ¢ with ¢c>b>0 when (7) does not hold.

Write t=x+iy and b/c=u+iv, with X, y, u, v € R. Consider a contour I' defined as (see Fig. 2): ' =
UL UT,

With

I, = {(—\/V2/4 — (y—v/2)2,y);0 <y< V}
LL={xv);0<x<1}
[; = {(1 + \/V2/4 — (y—V/Z)Z,y);O <y< V}
Consider the domain bounded by T'U [0, 1] and defined by

0= tE(C,—\/(St)(S%—St)SERtS1+\/(3t)(32—3t)} (19)

we extend the results of the previous to the case b € C with 0<®Rb<c and z7! € ¢/Q. In the remaining
of we consider 0<Rb<c and z~! € ¢/Qand use the ideas of the modified saddle point method
introduced in [293].

The integrand in (4) is an analytic function of t € c with branch cuts at (—o, 0], [1,:) and, if a ¢Z,
also at [1/z,0). Then, if z71 ¢ Q , the integrand in (4) is an analytic function of t in the interior of
(see Fig. 2).
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) (0,12) . Iy

(1,v/2)

Fig. 2. The contour " is the union of the arc I'y, the segment Iy and the are I'3. The arc I'} is a half of the circle 22+ (y=v/2)% =v?/4 of center
(0, v/2) and radius v/2. The segment I' is the segment y = v, 0 < x < 1. The arc I'3 is a half of the circle (x — 12+ (v=- L',/Z]Z = 1‘2,‘4 of center
(1, v/2) and radius v/2. The functions fand g are analytic in Q if =1 ¢Q.

Using the Cauchy’s Residue Theorem, we deform the integration contour [0, 1] in (4) to the contour
I

I'(c+ 2
F(ab+1;c+2;2) = (c )b D j ef®g(t)dt (20)
T

r(b+ DI(c—

The real part of the function f (t) in the exponent of the integrand in (20) reads

R(f(Y) = h(x 1)
=ulogyx? +y?+ (1

—w)log/(1 —x)2+y?+vtan~'[y/(x — 1)] — vtan~'(y/x) (21)

and verifies the following properties:

(i) For x € [0, 1], the function h(x, v) has an absolute maximum at x = u. It is a strictly increasing
function of x for x € [0, u) and strictly decreasing for x € (u, 1]. That is, it has an absolute maximum
at x = uover I3,.

(ii) The function h(—/v2/4 — (y — v/2)2,y)is an strictly increasing function of y for y € [0, v].
That is, it is strictly increasing overT; .

(iii) The function h(1 + \/v2/4 — (y —v/2)2,y) is an strictly increasing function of y fory € (0, v).
That is, it is strictly decreasing overTs; .

Taking into account (i)—(iii) we conclude that, over the path T, (f (t)) has an absolute maximum att =
b/c.

We divide the path _ in two pieces: = I U I't , where is that part of I'scontained inside a circle of
center b/c and radius r = |1/z — b/c|, and I'; = T'/Ts (see Fig. 3).

Then,
Fa,b+1;c+2;2) =I5 (a b;c;2) + I (a b;c; 2), (22)
With
Ce ) — F(c+2) cf(t)
Fs@bic2) =ty T pre—br D fe g(Ddt
I's
And
I'(c+ 2
Fr(a,b;cz) = (c+2)

cf(t)
I+ Dlc—b+ 1) fe g(0dt
I'r
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(uVV)

0 1 Re(t)

Fig. 3. I's is the piece of the path I' inside the circle of center (. v) and radius r = |1/z — b/c|. Expansion (6) is uniformly convergent fort € I'g
(for those points 1 of I'g located between 1y and t}).

On the one hand, (f (t)) has an absolute maximum at t =b/c and increases from t=0 up to t =b/c and
decreases from t = b/c up to t = 1 following the path I". On the other hand, g(t) is bounded on I". Then

f efOg(t)dt = 9(ef0) + ecf(t)) when c — o (23)

I'r
where t, and t, are the points of the path I" located at a distance r from b/c (see Fig. 2).
On the other hand, because of the expansion (6) is uniformly convergent for t inside the circle of
radius r and center b/c, we can repeat the reasoning to conclude that

oo (a) k S
Fs(a,b;c; ) = Zk=omq’ﬁ '(b,c) (24)

where the functions ® (b, c) are defined by

I'(c+2) b\*
©) _ cf(t)( __)
P = D= b+ D) fe t=g) &
I's

Using again that (f (t)) has an absolute maximum over I" at t = b/c we have that

I'(c+2) b\
©) _ cf(t)( _ _) cf(to)
d =
k(00 = T Db+ D) fe tmg) det e
r
+ ecf(t) (25)

when c—oo. Using that e (t — (b/c))¥ is an analytic function of t € C with branch cuts at (~oo, 0]
and [1,c0)
we deform the integration contour I' above back to [0, 1]: '— [0, 1]. Then, using the results we have:

I'(c+2)
I'(c+1)T'(c—b+1)

®™ (b, c) = D (b, c) + 9(ecf®) 4+ ecftwhen c—o, (26)

where @ (b, ¢) are defined in (9), calculated in (10) and verify the recurrence (11).
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Therefore, joining (22)—(24) and (26) we have that, even if the right-hand side of (8) is not convergent,
it is an asymptotic expansion of F(a, b + 1; ¢ + 2; z) for large c and fixed a uniformly in b and z (with
bounded b/c,0<Rb<c and z71¢Q ). Tables 4 and 5 show numerical experiments which illustrates the
approximation supplied by (24) for large values of b and ¢ with b complex and ¢>0 when (7) does
not hold.
Table 4 [285]:
A numerical experiment about the relative error in the approximation of F(6—5i, b +1; ¢ +2;—-4+3i)
for several values of b and ¢ by using (24) with n terms

b+1 ct2 n=1 n=3 n=5 n=7 n=9

50+27i 160  0.138447  0.006438 0.000817 0.000281 0.000055

115+16i 290 0.074796  0.003316 0.000104 2.185(-6) 2.910(-7)

155+2i 375 0.059992  0.002348 0.000079 2.632(-6) 5.259(-8)

Conditions (7) do not hold for these values of b, ¢ and z.
Table 5[285]:
A numerical experiment about the relative error in the approximation of F(—4 + 7i,b + 1; c + 2,7 —
3i) for several values of b and ¢ by using (24) with n terms
b+1 c+2 n=1 n=3 n=5 n=7 n=9
60-2i 140 0.177146 0.013372 0.000620 0.000023 9.267(-7)
130-30i 240 0.134019 0.005836 0.000034 8.676(-6)  6.385(-7)
150-7i 345 0.068925 0.001922  0.000031 4.468(-7) 7.242(-9)

Conditions (7) do not hold for these values of b, ¢ and z.
We can resume the analysis of the previous the following theorems.

Theorem (5.1.1)[285]: Fora, b,c € c, ¢ # —2,-3,-4, ..., | arg(l — z)|<m, |b||z|<|c — bz| and |c —
bl|z|<|c — bz,
- a)kzX
Fa,b;c + 2 2) = Z wa { ()l;‘/c)z)kﬂ Oy (b, ©)
Where 0
Oy (b, c) = (—E>kF(—k,b+1;c+2;£) 27)
C b

@ (b, c) = I((br~kmod2 /), _, (b, c)when |b| + |c| — oo uniformly in b(# 0) with bounded b/c and
verify the recurrence
&, (b,c) = ! [k(l Zb)CD (b,c) + (k—1 b<1 b)Cb b ] k> 2
k(b 0) =77 o) Pr-a(bc ( )c > k—2(b, )| k=
For the particular cases b =0 or b = ¢ we have
k!

q)k(or C) = (—1)kCI)k(C, C) = (C + Z)k

Theorem (5.1.2) [285]: For fixed a € c, | arg(1 — z)|<m, —1<Rb<Rc + 1 and
(0<b/c<1lor
(ii) 0 < Rb < ¢, bounded b/c and z7! € ¢/

: g @t
F(a,b+ 1;¢c+ 2;3)~ Ypeo =B/
uniformly in b and z. The functions givd, (b, c)are given in (27) and is defined in (19).

@ (b, c)when ¢ -

Section (5.2): Harmonic Bergman Spaces on the real Ball

Consider the harmonic Bergman space L% ,,., (B™, du®) on the unit ball B™in R", consisting of all
functions that are harmonic and square integrable with respect to the measure

dug(¥):=c,(1 = |y|H*d"y, a>-1,
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where d"y is the usual n-dimensional Lebesgue measure and the coefficient c, is chosen so that B"
has measure 1. Specifically,
n
. = r (a + 7 + 1)
a2l (a + 1)
It is known that such a space possesses so-called “Bergman kernel”, i.¢. there exists a function
R,:B™ x B™ — R harmonic and square integrable in both arguments satisfying the reproducing
property
Jagn FODR (e, ) Apz (v) = f(x) Vf € Ligrm(B", dug), vx € B™.  (28)
Consider now the integral transform

(Ba)(0: = [y fO) BB dyin(y), (29)

which is an example of the so-called Berezin transform appearing in the Berezin-Toeplitz
quantization with many applications in mathematical physics (quantization on Kahler manifolds,
see [304], [302], [303], [306],
[309]). The parameter a represents essentially the reciprocal value of the Planck constant.
It was shown by C. Liu in 2007 [310] that if n = 2 then for f € C(B?),

B,f = funiformly as ¢ — oo,
i.e. classical physics is recovered when the Planck constant goes to zero — or equivalently, as the
observer’s perspective gets larger and larger.
Subsequently, R. Otahalova in 2008 [313] generalized this result to an arbitrary dimension n > 2.
Meanwhile, M. Engli$ [307] was able to prove a similar a result for the Berezin transform of
functions on C™ providing moreover a full asymptotic expansion, with an occurrence of interesting
Stokes phenomenon — asymptotic behavior changes abruptly for x = 0.
We provide the full asymptotic expansion of the Berezin transform (29) as @ — oo generalizing thus
the work of Otahalova and with the same occurrence of the Stokes phenomenon as in [317].
We have main result is the following theorem.
Theorem (5.2.1)[299]: For x € B",x # 0,n > 1, and f € C*(B"),there exist differential
operators Q;: = Q;(4,x -V, |x|?), involving only the Laplace operator 4, the directional derivative
x - V and the quantity |x|?, such that

Rge ) S i
BN = [ ) = Y A0 @ e
B" i=0

Rq(x, %)
where Q, = 1 and
_n—=21—|x|? +(n—2)(1—lxlz)2
) |x|? x 4(n — 1)]x|?
Finally, for x = 0 it holds

(x- V)% + ﬁa — |x|?)24.

(Baf)(0) = Z; ~ (?Z)%(Tl). (a > o).

The symbol = stands for the usual Poincaré asymptotic expansion, i. e. f(a) = Y2, C;a~" if and
only if forall N = 0,1, ... we have f(a) — YNl c;a™ = 0(a™™) as a — oo.

The method used to prove this theorem differs substantially from methods used, [313] and [307].
Notably, Otahalova’s approach gives no hope to achieve this, on the other hand it does not look
entirely impossible to exploit the tools of the [307] to obtain our result but only for even
dimensions.

based on representing the Berezin transform in terms of generalized hypergeometric functions and
then make use of their many known properties (notably due to [301], [311]) including asymptotic
expansions for large parameters in some cases. Interestingly, the distinction between odd and even
dimension, which burdens heavily [313] and [307], does not prove itself as important in this setting.
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The definition of generalized hypergeometric functions as well as some of their properties will be
shown. we exhibit a connection between the Berezin transform of a polynomial and a linear

combination of functions £ with some parameters.

2F1
This is then used to prove Finally, along the way we prove Theorem (5.2.2) which bears some
significance of its own, since it provides means of computing the Bergman projection (28) of more
general functions than just harmonic ones:
Theorem (5.2.2) [299]: For Vp € Ny, B = a and f € CP(B™): Af = 0 it holds:

RoCo, M) f () (x - y)P dug (y)

[Bn
2y [x[20+0 (@), (2b),

Zp j+21+m=p]! m!l! ('B)j+m+l(b)j
where b: = g —land X:=x + §+ 1. The “hypergeometrization” ., f,,0f a function f, which is a

special case of a Hadamard product and which appears naturally in this setting, will be introduced.
Remember that the generalized hypergeometric function is defined by the series

v <a1 e Oy 'x> _ o (@) - (ap) X"
P\ ey ey’ . (c)k ...(cp)kk! '

where (a); is the Pochhammer symbol (a);:=a(a+1) ... (a+k —1) =

a+j 2b +j b_)

3((x'v)mf)3(ﬁ+j+l+m b+j 2b7)

F(CEJ’)'( ). Obviously, the

definition makes no sense when some lower parameter c; is a negative integer or zero.

In the case p = q + 1, which we will be most interested in, the series converges for |x| < 1 and can
be analytically continued to C\ [1, o).

The asymptotic expansions of these functions for large argument x are known [311], the asymptotic
expansion for large parameters can be worked out in many cases. The simplest one is when more of
the lower parameters are large than the upper ones. In that case the asymptotic expansion is simply
the Taylor series. More precisely, for r < s,x & [1, o0):

Ggta.a+a a4 t+1l.a,
p q(C1 ta.c,ta ¢t 1l.g x)
= (ay + @)y - (ar + @) (@rpr)y - (ap) xk
~ , (@ = +00). (30)

= (1 + @) - (5 + @) (Cop1)ic - (Cq) k!
(see [311] §7.3, [317]). Much less is known when some parameter is large and negative even in the
case of a lower parameter. Notice that for them the problem is even somewhat ill-posed, because
the lower parameter c; cannot be a negative integer. least in case of the Gauss hypergeometric
function the above result still remains in force [318], [316]:

For a, b, z fixed and Re(z) < 1 ,—c & N, it holds for every m € N
(¢, i7) = 2m1%§”;+ouﬁo (el » ), (31)
Some other cases can be worked out by the aid of transformations which hold for hypergeometric
functions. For example there is the Pfaff transformation
b, b
oFy (ac )—(1—x) b2F1( ? ixle)» (32)
which effectively solves the asymptotic expansion of the type

ata b .\ . (1_,)-b c—a b, _X
2F1( c+a ¥ ) (1 =x)” ZFl( c+a ’x—l) (@ = +o0).
The transformation

a b, \_TOrw-a,  _g4 a l+a-—c. 1
2F1( c 'x)_l"(b)l"(c—a)(bx) ZF;( 1+a-0»> ’x) (33)
r@r(-b . \_p 1+b—c.1
t rren Y 2F1( 1+b—a ’x) (34)
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which holds for x < 0,a — b € Z can be used to determine the asymptotic expansion when a is
large and so on.
Our task will be to handle the case
@« a by by, b3

st (a +a ¢ C €3’ x),
for large a.
Unfortunately, there are not as many transformation available for the function ¢F, as for the ,F; or
analogous transformations as for example (32) could be established but the final result is not
expressible in terms of ¢F, functions, but rather in terms of their certain multi-variable
generalizations.
Still, the following result holds.
Lemma (5.2.3) [299]: Let by, by, b; > 0 be positive real numbers, one of them strictly less than the
other two. Leta —a —y € Z,—c; € Ny and x € (0,1). Then we have

3 00
@ a by by by )N M)  (ax)7 z@
5F4<a+a o ¢ %)% , 1F(bi)(l—x)ot—y—a 1+ ak (@ = +)
i=

k=1

where y = Z?Zl(cj — bj) and d,, are constants independent of a.
Proof: Using the integral representation

by..by b )_ ['(e) f b-1 c—b-1 (bl .by )
p+1F (Cl .. C c’ o F(b)r(c _ b) t (1 t) F .Cq,Xt dt,

which is valid for ¢ > b > 0, in turn three times on pairs of parameters (cy, b;), (¢4, b2), (c3, b3),we
get

q

F(a a by b, b3 )

;X
Y \a+a ¢, € c3’
111 3

3
r(c) bi—1 cimbie1 a «a
1 ] r)ric; —by) .f f .f 1_1[ -t 2y (a + a’Xt1t2t3) dt,dtdts.
i= 000 i=

Double application of the transformation (32) gives us the Euler transform

zFl(aCb )—(1 x)c_a_szl(C_acc_b;x),

which leaves us with
1 1 1

i F(bi)l;((ccl) b)OffjH ebl(q — )bl (g

0
a
- Xt1t2t3) - 2F1 (a + a, xt1t2t3) dtldtzdt3
Atriple integral of this kind can be rearranged in the following way:

f f f (P(tptz:t3)G(t1t2t3)dt1dt2dt3 (35)
1-1nr; 1-1n ) 72
G(1 - , , drydr,drs;.
f ( 7"3)Jf I 1—nrr ' 1-nr/ (1 —nnrr)(l—1rrn) T

(This i |s nothing more than a series of changes of variables. Firstly, let s; = t;,s, = t;t,, 53 =
tit,ts.
Jacobian is % and the integral becomes:
1°2
Jo 13 050 (51, 2,2) 6 (s3) - dissds, ds,. (36)
Now we swap the order of integration

1 51 S2 1
S
jjj S1, 2, 3 (53)—ds3dszds1 j
5152
0
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and finally three changes of variable are performed: firstly 1 —s; = r;(1 —s,),then1 —s, =
r,(1—sg)andlastly 1 —s; =13.)
Applying this to our original triple integral we get:

f(l — x4+ x13)* % ,F, (0( +g ;x(1— r3))

11 3
f f l_[ rin_l(l —11)27P27 (1 — 1)) 7P (1 — 1) P37 (1 — 1) P23 (1
0 0 i=1

— ny1y1r3)P1 2 dr drydrs,
where y; = Y- (ci — by).
After a small manipulation this gives

_hi— _ a a
S 0 T Ty 677 (L = £8Pt (1 — xty by t5) %% F, (a_l_a;xtltztg) dt,dt,dt; (37)
— _ a—a v3—1 _ b3—1 a a. _ _ X @
—(1-x jt 3-1(1 — £)bs=1F (1), F, (a+a,x(1 t)) (1--=5¢) a
0

where
1

F(t)j y2" 1 — 1) 0371(1 — ryt)P2s ] 7'1]/1_1(1 — )27 271 (1 — ryryt)Pr%2drydr,

0

1
b B —
2 J e T(1 =)o 37 (1 — 1y t)b27% ,F, (Cz fl V1; th) ar,.

2

_ I'(y)l(c; —
- I'(yz)
We expand the hypergeometric function into Taylor series to get the form
F(t) = I'(cy, — by))I'(c; — b)) (c53 — b3)§: (c; — b1)j()/1)jt_jz ) ()/2 +j C3.— bz; t).
r(ys) (r3); J! Ys+J

We should talk about the convergence of the integral on the right hand side of the equation (37).
For that it is necessary to understand the behavior of the function F(t) at the end points of the
interval of integration, notably in the neighborhood of t = 1 (the behavior near t = 0 is evident).
It is well known that

I['(c)lT(c—b—a
2F1(a b;l): ()T ( )

I'(c—b)I'(c—a)
for ¢ > a + b. That means that the hypergeometric function in the infinite series is left-continuous
att =1ify; +j >y, +j+ c3 — b, orequivalently b, > bs. In such case the infinite series for
t = 1 takes the form:

I'(ys)I' (b, — b3) (c; — bl)j(yl)j
I'(c; + ¢4 — by — b3) = (c; +¢y— by — b3)jj!,

which is a convergent series for ¢, + ¢; — b; — b3 > ¢, — by + y4, i.e. by > bs. (Indeed, the series
is actually equal to
c;—by vi | )
2F1 <C2 + Cl - bl - b3’ 1

and the formula above can be used.)
This can be summarized by saying

F@®)=001) (@71,
which holds for b; > b3, b, > b; and the integral on the right hand side of the equation (37)
converges under the conditions b; > 0, b; > bs, b, > bs,y3 > 0. Those are significantly less
restraining conditions than in the triple integral on the left hand side of the same equation, which
converges for ¢; > b; > 0Vi.
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It is an example, therefore, of an analytic continuation. Furthermore, since hypergeometric
functions are symmetric with respect to permutation of the parameters b;, we can choose b5 to be
the smallest one.

We can summarize now that for x < 1,y; > 0,b; > b3 > 0, b, > b5 it holds

a a by b, b3.>
5F4(a+a o ¢ ¥

Q-0 [
 T(ys) F(bi)o

a - (CZ_bl)](yl)] t] ]/2 +] C3_b2
Fa(t) ZFl ( + a (1 - t))zo (]/3)] j_!ZFl( ]/3 +] ) t);
]=

andy; = Z;'-:l ¢; — b;. As a next step we replace the function F,(t) by its Taylor series expansion:

N=1 (k) ™)
E® (0 F
E,(t) = E “k'( )tk+ “Nfg)t"’,

a—a

t371(1 — )’ 1 E,(t) (1——1t) dt,

where

k=0
where 0 < ¢ < t.
Substituting this we get

a a b, b, b3.)
5F4(a+a c; C2 e’ * (38)

~ (1—X)a_“1i'F(ci) T FP0) Ty + OT(by) (a—a ys+k X )

I'(ys) lzi-F(bi) L k! T(rs+bs+ k) 21\ ya+bs+k ‘x—1
1
(1 - X)a a | I—'(C) ty3+N_1(1 t)b3 1 a (5) ( X t)a—a dt
riys |1 F(b ) x—1

Notice that the term Fa(N) (f) in the above line still remains O (1) for t » 1 because it can be written
as

EM(g) = N1tV (F () = yH-17d f‘” ) (39)
Therefore, the integral in the same line converges under conditions y; + N > 0 and b; > 0. The
first of these is fulfilled for sufficiently large N, hence for the right hand side of the equation to be
meaningful it is only required that b; > 0. This is the largest analytic continuation as we can get.
From the form of the remainder term (39) we also see that F(") (&) is a continuous function on [0,
1].
We can therefore estimate it by its maximum on this interval, which will in general depend on «,
but the asymptotic behavior of FOEN)(é”) fora - o« is Fa(N) (¢) = 0(1) uniformly for all t € [0,1].
(This can be seen again from the form of the remainder term (39) — the ,F; in the F, which contains

the parameter a has this uniform behavior due to the (30) and terms Fa(k)(o) are just some linear
combinations of the same ,F; function, only possibly with parameters shifted due to the
differentiations. In such case even additional negative powers of « appear.)

Hence
1

F(N)(f) (1 _ X t)a—a

t]/3+N—1 1 _ t b3—1 dt
f ( ) N! x—1
0

1

X a—a
y3+N—-1 ba—1(1 _
scfw (1—-1t)s~ (1 1t) dt
0
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_ a—a Y3tk X )
_0<2F1(y3+b3+k '_x—1> (a - o).

The problem of finding an asymptotic expansion of the function <F, for large « is now effectively
reduced to the problem of finding an expansion for the functions of the form:
_ Na-a a—a y;+k Xx )
(1-2x) 2F1( )
The large parameter cases for,F; function has been studied by several authors (see [315, 318]). The
logic goes as follows: Combining the transformations (32) and (33), we can see that

2F; (a c b; x) = rre-a (=x)b=¢(1 — x)¢b-a,F, (1 —-b c— b; l)

r'b)r(c—a) 1+a—-b 'x
r)r(a—n) _ b 1+b-c1
F(a)F(c—b)(_ ) bZFl( 1+b—a 'E)'

forx < 0,a — b & Z. Applying this we get
_ Na-a a—a y;+k X )
(1-x) 2F1< Ys+bs+k 'x—1
F(y3+b3+k)F(y3+k—a+a) b3 ( 1—ys—k b; 1 l)
F(y3+k)F(y3+b3+k—a+a)

\l+a—-a—-y;-kK~  «x
['(a — a)T'(bs) (1—x)a-a-rs—k 271 ’

1+y;+k—a+a x
for a — a — y5; & Z (we can always run the limit through such « so that this condition is fulfilled).
But in the light of (30) and (31) we can deduce that the first term is negligible with respect to the
second term, because it displays only polynomial growth and does not contain the exponentially
large term(1 — x)~ (remember x € (0,1)). Asymptotic behavior is, therefore, dictated by the
second term, which isO((1 — x) %a™"37%) as ¢ — oo.
Substituting into the equation (38) we get:
a a by by, bs )
s (a +a ¢ € e’ *
N-1
TT(e) N EP0) ()il (@ —a =y = k)x 157 ( vs+k 1-bs . _ 1)
F(b) k! rNa—a)(1—x)eerk Z1\1+y;+k—a+a x
+ 0((1 —x) %713 N),
It only remains to combine known asymptotic expansions of terms:
I'a—a—y;—k) o3}
~ _V3_k 1 j— e
= a ( o )
1\14+y,+k—a+a " x 1+y3+k—a+a x

d,
E(0) = F®(0) + — 4

where

F(t) — Z ( 2 1)]()’1)] '_lel (yz +] C3. bz' t),
= (r3); J! Y3 +J

and rearrange the terms.
Forp € No,f = aand f € CP(B"):4f = 0 it holds:

f R f ) (- P iy ()

]BTL
z Z x|+ (@), (2b), @+j  2b+j b )
Iz ' B 5y : ;X
2pi+21+m=p1!m! 3 (’B)j+m+l(b)j f+j+l+m b+j 2b
Theorem (5.2.2) deserves a bit of a clarification. From now on we set

XERWN|
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n n
b:=§—1, f:=x+§+1.
For a real (or complex) function f of a real argument we define its hypergeometrization by the series

p (a1 —a, t) 3 i tmfm (0) (a)m - (ap)
pJq C1 .- Cq Y L m! (Cl)m B (Cq)m;
whenever this defines some analytic function in a neighbourhood of zero — i.e. the radius of
convergence R is strictly greater than zero and none of the lower parameters c; is a non-positive
integer.
This can be also understand as a Hadamard product (or convolution)
a ...ay a ..a, 1
rla (01 g’ t) = p+1lg ( ¢y oy ;t) * (),

where the Hadamard product of the two formal power series g(t) = Y20 it , h(t) = Yo A t®
is defined

g(t) * h(t) = z i hct”.
k=0

A linear operator which brings a function to its Hadamard product with some hypergeometric
function (i.e. to its hypergeometrization) appear in [305] and elsewhere. But Hadamard product is a
fairly general operation. Hadamard product with hypergeometric functions — deserves its own
name, mainly since it possesses many properties the general Hadamard product does not have.
Some of them are listed bellow.

But first notice that although the function f is supposed to be of a real argument, once the
hypergeometrization is performed and the radius of convergence is strictly positive, the result can
be always treated unambiguously as a function of a complex argument and its domain can be
extended, if possible, by means of analytic continuation. In that sense, this generalizes the notion of
classical hypergeometric functions ,,f, which —in our setting — should be written as,exp, but we
keep the historical notation, i.e. F instead of exp.

For a real function f(x) of a vector argument, x € R",n > 1 we define

a ..a a ...a a ..a, 1
pfa (c1 ...c:;"x) = plq (cl ...C:; tx)|t=1 = p+1fy ( ¢ ___pcq ;t) * f(tx) .
that is the hypergeometrization is performed on the real function f(tx) of the real argument t and if
the corresponding radius of convergence is strictly grater than 1 then the function is evaluated at the
pointt = 1.
(i) For p = g hypergeometrization does not change the radius of convergence. (Indeed, lets assume
that the Taylor series of the function f(x) converges for ||x|| < r in some norm, then the Taylor

series of the function f(tx) converges for ||tx|| = [t]||x]| < r, in other words |t| < ﬁ so theradius

> 1 for any x such that ||x|| < r and we can evaluate t = 1. The region of

r
llxl
convergence is also unchanged by the presence of the Pochhammer symbols since there are same
number of them in the numerator as in the denominator.)

(ii) If the function depends on more than one n-tuple and is symmetric with respect to them in a
sense that F(tx,y) = F(x, ty) Vt, (for example the Bergman kernel R, (x, y) has this property) so
it does not matter with respect to which variable the hypergeometrization is performed, we will use
the simplified notation:

2 (G59) = (), (5) = (), ().

Specially, the conditions are fulfilled for functions of the form F(x,y) = f(x - y, |x|*|y|?).
Some properties of the hypergeometrization will be important later on.

(i) Obviously,  f, (Z x) = f(x).
(it) For Rec > Rea > 0:

of convergence is
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3 r'(c)
)_F(a)F(c—a)O

1f1 (Ccl} X ta (1 — )1 f (tx)dt.

(iif) When a # 0:
1fi (a L ) = %(a +xVifi (z; x) = i(a +t0:) 1f1 (Zi tx)L:l

The statements can be proved easily via Taylor series expansion.

For the proof of Theorem (5.2.2) it is useful to get acquainted with some representations of the
Bergman kernel. It is shown of Otahalova [313] (and elsewhere) that (although in different
notation)

_ a .
Ra(ny) - 1P1 (b + 1:x;3’);
where P(x, y) is the Poisson kernel, the generating function of the zonal harmonics:

1— [x|?]y|?
P(x,y) = E Zm (x,9).
(1—-2x-y+[x|? Iylz)2 m=0

The Bergman kernel can also be represent in terms of the Appell F; function
> (@)1 (b1); (b

F, (a b, bz;x,y) — Z (@) ik ( 1).1( z)kxjyk,
- (©) it k!

jk=0
as

Ra(xly) =F1 (Z;b_b;zri); (40)
wherez=x-y + i\/IxIZIyI2 — (x-y)?
Indeed, notice that

1—|z|? b+1b b,
P(X,y)=m=l:1( b ; _ ;Z,Z).

The last equality is a direct consequence of the known transformation rule for the Appell F;

function
ab, b, — N=bi(1 — =D ( —ab, by X y_)
A(G" _Phay) = a-0ma-ne (050 g o
and the fact that
_ b b

So what we need to do is only the hypergeometrization

RoGoy) =P (, € pxy)aEu (P51 50 Pan) =R (5P Pia2)

From this representation we can see that the Bergman kernel (as a function of y) is an analytic
function with radius of convergence|x| 1, because it is known that F; is a holomorphic function in
its arguments with singularity at the point 1 and because of the inequality

|z| = |xllyl < x|,
For y € B™.
From known properties of the Appell function it is also clear that when y = x

R,(x,x) = ,F, (a be; IxIZ).
For the proof of Theorem (5.2.2) we also need two lemmas.
Lemma (5.2.4) [299]: Forf € C1(B"):

[ 2310w 0) =5 [ 2-970Iaw )
B™ IB"
Proof: By the Stokes theorem,
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fz V@A = |yl e, d™y = ff(y) (1 - yI»"* cyp1z - ydo(y)
=0

B" J0B™

2c,,,(r+1)
+ 2T @) - P ety
% Bn

=27 [ 2y,
~ ]Bn
since ¢, = #
m2T(y+1)
Lemma (5.2.5) [299]:
alx|?
b

@b +x 7)1 Resn): (, © i)

x VR, (x,y) = b+ Xy

Proof: Recall that
ab b, _ -
R,(x,y) = F, (b; B ;Z,Z),
wherez = x -y + iy/|x|2|y|2 — (x - y)2. From that we can see
b

1(Ra41)1 (b N 1} X'Y) =F ((Z ::__ i: b_b;Z, Z_)-

Next,
x-Vz=x-Vz=|x|? x-Vz =jzI, x-VzF=kz¥
and

(Z;b_b;z,z_) = |x|2d(F1 (‘Z::__i;b-l__l b;Z,Z_) + F; (gii;b li+ 1;Z,Z)>

(@ + 1), 207
=alxl® ) E‘;‘ - 13’_ e (04 D00+ (0,0 + 1))
PN CES T

(b); (D) (2b +j + k)

alxl? i (& + 1) 2/ 2"
b L (b+ 1)K

@lx|? @d+1b b _ -
== (2b+xVx)F1(b+1, B ,z,z).

Proof: The proof of Theorem (5.2.2) will be done by induction on p.
p = 0. For B > a (& is always positive from the assumption @ > —1) we get:

a
Ra(x;y) = 1(Rﬁ)1 (ﬁl x)y)
()
r@r(g
We substitute this into the integral and swap the order of integration:
r(g)
r@r(g -
- 1

F(ﬂ) f -1 R_7 CY

= = t@ (1 — )P (tx)dt = (~; )
Wheng = a, this is just the reproducing property of the Bergman kernel.

p = p + 1. We can see that the function g(y): = R, (x,y)f (y)(x - y)P meets the condition of
Lemma (5.2.4), hence:

1
f RaCo ) O)Ce 3 i) = f X -V, (Re(t NF ) (- Y)P) il (),

B B"

1
3 f t%1(1 — t)P~T1 Ry (tx, y)dt.
—a
0

[ IR = 3 [ -0 [ roRy(en e
B™ 0 B"
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which divides the proof into three parts:

25 Jan (2 TR ) F O G - )P i () (41)
+ 55 Jan ReCe (B f D) (e y)P it ) (42)
+ 55 Jon ReCo VI F OIPCx - )P P, (). (43)

Notice that for a general series of the form

p! A(j,I,m)
20 Z jtiim!

j+2l+m=p
the transition p — p + 1 also divides this series into the three parts, namely:
(p+1)' A(j,Lm) A(j+1,Lm)
o Dj+alim= =P+ iy 2p+1 — T D j2lem= P it (44)
A(j,Lm+1)
+2p+1 Z}+Zl+m =p jiim (45)
A(j,l+1,m)
2_ij+Zl+m:p—1 jim! (4’6)
(The logic is as follows:
1 .
A(] L, m) Z ar* ]+zz+mA(]'l'm)
et jiltml (p + 1)' jritm! | _
o P ,Lm
= Z 1 -(j + 21 + m)e/r2tm S]l' ')
j,l,m:O( p+1)! jritmt |
p .
— at j+2l+m-1 A(J’ [,m)
4 (p+ 1) G-Diml_
]' m= -
_ af Jrarem AU+ L LM po L Z AG+1lLm)
I it m! i1t m! ’
= (p +1)! jrtmt | p+ 1j+21+m=p jtiim!

where the dots represent the other two terms, where the procedure is analogous.)
We will show that the corresponding parts are equal to each other, i.e. (41)=(44), (42)=(45) and
(43)=(46) when

A(,L,m) =

|x|20+D (@) ;(2b) a+j 2b+j b
5 y 13((x-V)mf)3(~ . : ;x)
(ﬁ)j+m+l(b)j p+j+l+m b+j 2b
The equalities (42)=(45) and (43)=(46) are trivial. It remains only to prove the equality (41)=(44),

I o« AG+11
2,3 f(x Ry (x, Y))f(Y)(x Y)pd,uﬁﬂ(Y) = 254-1 Z (Jj!“m!m)'

In the integral we use Lemma (5.2.5) to obtain:
1 I |? b
27 | G T @ V@i ] ) FOI )
[B;n
which according to the Leibniz rule equals

alx?
R p>l (91 Rari

Using the integral form of hypergeometrization

j+2l+m=p

b
+1

) fdppq ().

\Rer (7

1
bi1¥ bftb_lRaH(tx,y)dt
0

we get:
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alx|?

—p) f o-1p f (6 - Y)P Ry (60, ) F )il (),

By the induction hypothesis, this is equal to

1
a|x|?
%] @2b+x-V,—p) | tt-1P
Zﬁ )

p_! t2j+21+m|x|2(j+1)(ﬁ+1)j(2b)j . m ( a +] + 1 2b +] b )
2P ZJ""ZH'm:P jimi(B+1) jema1®)j (G " f)s ,E +j+14+1l4+m b+j 2b ‘
From the knowledge that

1
- 1 b+j
b+j-1 =— .
jt g(tx)dt Y 191 (b+]+1’ )
0

|x|2(2b + x - V, — p)
20+1) (7). . a+j+1 2b+j b
|x'| l _ (a)]+1(2b).] 3((x . V)mf)3 (~ . ] . ] ;x)
m'l'(ﬁ)]’+1+m+1(b)]+1 ﬂ +] +1+ l +m b +_] +1 2b
By the Leibniz rule and some manipulation we finally arrive at:
p! z |x|2(j+1+l)(55)j+1(2b)j+1
2p+1 ; G .
2 j+21+m:p]! mill (ﬁ)j+1+m+l(b)1"'1
2b+x-V,+j—m a+j+1 2b+j b
s (5, )
2b +j p+j+1+1l+m b+j+1 2b
To finish the proof it now only remains to show that the last formula is equal to
« \7)’”f)< a+j+1 2b+j+1 b.)
N \f+j+1+1+m b+j+1 207/
but from the property of hypergeometrization it follows generally that

(G )y (U Lx) =2 (0t 00 (G g (B0)|
= %(a + e (o), (Gex)| _ = %(a —m 4 10.), (e V)" (G tx)|

1 a )
=—(a—m+x 7 (G V"9 ((ix).
Set a = 2b + jand we are done.
Corollary (5.2.6) [299]: Forp e Nyjand 8 = a > —1,

[EBLREERITE

BN
20+ @) @m(20);2D)m (55 tj a+m 2b+j 2b+m Ix |2)

2w Zjw2timep (B) gt )i @I mimil “\B+j+m+1 b+j b+m 2b
Proof: We use Theorem (5.2.2) with f(y) = R,(x, y):

| R wrano)

we obtain

2p+1 Z_]+Zl+m p |

]BTL
p! Z |x|2U+D (@) ;(2b); F ( a+j 2b+j b x)
2 . = "3/3\ 5 . . X
) 2 j+21+m=p]!m!u(ﬁ)jm”(b), B+j+l+m b+j 2b
where f(y): = (x - V,)™R,(x,y). Fromthe fact x - V,z = x - V},Z = |x|* we have
FO) = (2 )"RaCey) = 1x1P™ @, + 9" (5P _P;2,.7)
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m

= |x|*™ (@) Z (7:) (b) m—-1 (D) Fy (d tmbtm-k bt k; Z, Z_)'

(b) i b+m’ —
Performing hypergeometrization (notice that z and.z are homogeneous of the degree 1) we get
. a+j 2b+j b
3f3 <~ . : ;x)
B+j+m+1l b+j 2b
(B)m

m @ +m @+j  2b+j b b+m—k b4k, 2)
;(k)(b)m‘k(b)kFl(b+m B+j+m+1b+j 2V - Il Ixl
m

(@), m a+m a+j 2b+j p 2b +m
_ 2m - 3 . 2 .
=M., Zk_o(k)(b)m"‘(b)"sF“ (b+m F+j+m+ib+j 2o M )

Here, by the Appell function with more parameters we mean the Kampeé de Fériet function (see
[314])

F, (a1 Qg by bz;x’y) — phL1 (a1 Qg by; bz, )

C1...Cy’ 40,0 \ ¢y .. Cy: —, _;,x,y

— (Cl)k+j (54)k+j Jtk! ,

and the last equality was obtained using the similar reduction formula like in the case of Appell F;
function of the same argument
ai..a4 by b, _ (a1 @y b+ by )
Fl(cl...c4’ — ,x,x)—5F4 €1 . Cy )
To complete the proof it is only necessary to become conscious of the fact that
m

> (%) ®rnoic®)yc = @b,

k=0
and substitute everything into the series at the beginning.
Corollary (5.2.7) [299]: As a — oo,
F( a a 2b 2b b'lxlz)
4\&+c, b+c; b+c; 2b+cy

F1 (d’ bei |x|2)

1 — 2\ C2FC3tcy © d
~a-pe ()T @m0, (1 + Z—’;)

k=1

_ i (@) - (@i (b0), (Bdic -,
J,k=0

)

where d, are some constants independent of a.
Theorem (5.2.8) [299]: For M, N € N,,

j O x = DM (x]? = [yIDVR2(x, ) dui ()
]Bn
R 20D M1 (— 1M (~N) o (b + 1)y (B, (=B, (—b)ie, (r + L+ k)i,

e 2M(M — 2D (@) g (@4 14ky 415 2D iy (D)1, (D) i L @l Ky iy hes iy ! K
ks ks

0]

5 a a 2b 2b b 2)
C(Jx| >5F4(a+z+r+k4+k5 btks b4k, 2b+k )
where

k ks K r
C(|x|2) = (_atl) ! e (_ats) Sat:ag;(_ato)
I+ky— - - -
tg+ ha 1t§+r Yo — 2%t ) (% ]* (1 — ty_7) + to — V92 — tgrzs — tyoa)™ 2llifo---t7=1
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Here t;_, := t t, ... t;, tgr35: = tetytztsand so on. The summation indices are bound by the
following inequalities
ki +ky,+ks+2k,+ks+2r+q+2l=>2M+N
2l<M
q, ki, T<N
ky ks, kg ks, 1+1I<N+M
Proof: We expand the parentheses in the integral into binomial series

G-x—x" = > () o,

p=0
2 2\N _— N 2 N-q 2yq
(2 =y = ) () (2 = Vet = Iy,
q=0
to get
N
> (O (N) 2y p(iat - 1yv-a f (e VP REGE Y)dpig (V)
o q Ca+q
Where ¢, = & By Corollary (5.2.6), this equals
nZF(y+1)

[0¢]

M\ (N - - (a + 1)q P! |x|2(j+l+m)(d)j(d)m(2b)j(Zb)m
Z ( )<q>(_'x'2)M PUlel® — 1) @, 2° 2 @+ Q) jmei (D) (D)t L]

p,q=0 j+2l+m=p
( a+j a+m  2b+j 2b+m b | |2)

>*\a+q+j+m+l b+j b+m
Now we sum over p by the procedure:

[e 0] [o'e) p
xM= pP' Ajim MY m—p P! a_ttj+21+mA. |
P x 2p p! Jimle=g
]+Zl+m =p p=0 Jj,Lm=0
> M—j-2l-m;
Z Z M-p tt1+21+mA | = z ( M )x J m(]+21+m)!A.
tmle—o j+2l+m 2j+mgyl jim:
Jlm=0p= j,Lm=0
This yields
w (N 2 N q(a+1>q |x|2M =D p1(—~1)M+IHM (@) (@) (2D) j(2D)
Zq=0<q>(|x| - Z”m 0 (M-21-j-m)!412J+M(@+q) jym41(D) (D)l lim! (47)

( Of+J a+m  2b+j 2b+m b | |2)
Y*\a+q+j+m+l b+j b+m
We would like to sum over g as well but we are unable to do that since the index is present also in
the hypergeometric function. To remove this difficulty we make use of the following lemma
Lemma (5.2.9) [299]: For r € N,

. 1 14 oo G, 14
_ﬁ@ﬂi ([), +k x) = (-1 (k)rzmx]a;ﬂcl (ﬁ + k41 x),
=

Where Agg(B):=g(B+1) —g(B).
The proof could be easily done by induction, but our approach will be much more direct.
Proof: Firstly

1 SN f(”(O)(y) f(”(O)(V) 1 1
éﬂﬁlfl(ﬂk"“)‘zéﬁ N By Z ((ﬁ+1)k+,- (ﬁ)k+,-)

f(”(O)(V) —k — ; fOOG);~k—x0, . k+xd, y
Z ([’))k+1+1 Z J! (,B)k+]+1 = (Bi+1 1f1('8+k+1'x)

Hence obV|oust
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1 y i 1 14 _
Ap B 1h (ﬁ + Kk x) = (Z7 0k + x0y), B re+r 1 (ﬁ tht+r x)
We claim that

T

1)/ (=r);(k), . .
(k + x3,), = Z( YCD i,
= J! (k)j
It is enough to check this equation on monomials x™ since the expressions on both sides are linear

combinations of operators x'd.. Since xd,x™ = mx™this reduces the problem to verifying the
equality

T

e (DI 0), m!
(“m)r‘z ik,  m-jr

j=0
But this can be rewritten as

("1 o,m Y () (<714
j=0

which is (aside the factor (k), m!) the so-called Chu-Vandermonde identity.
We will use this lemma in the following way. Obviously

1 1
m1f1(ﬁ+g+k;x) =Z(Z)é£’@1f1(ﬁr_k;x).

r=0
By the lemma with

o a+m 2b+j 2b+m b 2)
pey = (T LT S )
y=da+j,f=aandk:=j+ 1+ mweget

1 ( a+j a+m  2b+j 2b+m b'|x|2)
(@E+Qjriem® *\@+qg+j+m+1l b+j b+m 2b

YL

r=0
(o8]

+m)z (=D (=1)s|x1?°9} 2 (&+j a+m 2b+j 2b+m b'IxIZ)
TLis! G+ L+m)(@)jymarsr S N@+T+Hj+m+l b+j b4+m 2D

Z (g) (=1)7G + 1 +m), (—|1).S(—r)s|x|25 (a +~j)s(& +m),(2b _+j)s(2b +m);(b)s
] e~ st + 1+ m)s (a)j+m+l+r+s(b +j)s(b + m)s(2b);
d+j+s a+m+s 2b+j+s 2b+m+s b+s | 2
5 4(&+r+j+m+l+s b+j+s b+m+s 2b+s'|x| )
Substituting this into (47), with some manipulations and performing a transformation of the
summation index r — r + s we get

s=0

N 2 N— (a+1)
o — q:” 9
£o () (el = p-e 22 (48)
© |x|Z(M_HS)M!(_1)M+j+m(a)j+s(a)m+s(2b)j+s(2b)m+s(b)s(_Q)r+s(j+l+m)r+s

Jtmrs=0 (M—21-j-m)!1412/+¥M(b) j, s (D) 45 (2D) (@) j4mst4r+2si LMITISI(+1+m)5
a+j+s a+m+s 2b+j+s 2b+m+s b+s |2
5 4(07+r+j+m+l+25 b+j+s b+m+s 2b+s’|xI )
We can sum over g now. The series in question is

> (3) a2 = e % s

q=0
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By the representation (—q), s = (—8,)"**t?|,—,(from now on every parameter that contains the
letter ¢t- ¢, t;, and so on — will be understood to be evaluated at 1; we will not explicitly mention
this) we get
-N a+1 1
_ r+s 2 1 N F ( . )
(=07 (|x| Mo Fy & 1T 22
The known transformation

a b, \_ /4 _ -a a c—b X
ZFl( c ,X)—(l x) ZFI( c 'x_l)
enables us to write this as

_ t
— r+s 2_1 N F ( N b+1’ )
( at) (lxl ) 241 a |X|2 — 14t

_S B D a4 e

We did not manage to sum the series explicitly but this will do. Substituting this result into (48) we
get the second intermediate result:
g x| 2M =L M= )YM A (=N) g (0+1) g (@) s (@) ot s(2D) 5 (2D s (D) s G+ T+HM) s
!r"ls','rg (M_Zl_j_m)!4l2j+m(b)j+s(b)m+s(2b)s(a)q(a)j+m+l+r+25j!”m!r!S!q!(j+l+m)s
C (lxlz)F<c~¥+j+S a+m+s 2b+j+s 2b+m+s b+s
s Yt\a@a+r+j+m+1l+2s b+j+s b+m+s 2b+s

Where C, (|x]?) = (—=9)""t(|x|* — 1+ )N 4,
Sadly, this form is not of much use to us. As it is clear from Lemma (5.2.3) all functions<F, with
these parameters have the same principal asymptotic behavior as @ — . To get a more effective
form we exploit the known relation between contiguous hypergeometric functions

a+1y_¢ ay ¢—a a
FEED=S(r(O) -5 (5 )
which holds for any hypergeometric function with at least one upper and one lower parameter.
By iteration we get:

1x[2), (49)

(o]

Dm~ m);(c—a);
F(?I$)=<Z>m2 m(é)]c-j! - ]F(cfll-]')'

j=0

We apply this to the function

ks ky
— = 2b+j+s2b+m+s b+s

5F4(a+]+s a+m+s : ;lez\ (50)

G+r4j+male2s2TIHS b+;’;+5 Zbkj's

ksks
as indicated, five times in total. That will get us 5 new series with 5 new summation indices, which
we name k; ... ks. The role of m will be played in turn by the parameters s,m + s,j + s, m + s and
j + s. The lower indices c will be in this 2b,b,b,& +r+j+s+landd +r + [ + k,.
This way the expression (50) will change form to:
(Zb)s(b)m+s(b)j+s(& t+r +j +s+ l)m+s(('Y +r+l+ k4)j+s

oy (b)s(Zb)m+s(2b)j+s(&)m+s (d)j+s
1-:Ks
(=8)kq (-M—=8)k, (=j =) k3 (=M =)k, (= j=S)kg (D) ky (=D iy (=D kg (r+j+5+D g, (r+1+ka) kg
(2b)k1(b)k2(b)k3(a+r+j+s+l)k4(a+r+l+k4)k5k1!k2!k3!k4!k5!
F( a @ 2b 2b b'IXIZ)
S4\a+1l+r+ky+ks b+ks b+k, 2b+k '
Substituting this into (49) will fortunately reduce the number of terms, for many of them will cancel
out each other. It can be checked by an easy calculation, for example, that the terms containing «
but not g will squeeze to a single expression1/(&),4++k,+ks- We end up with this much more

k3
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tolerable expression:
|x|2M=) pi(—1)MATHM (N (b+1) g (G+HI+m+5)y

(00]
> : 51
kalinr;g (M=21—j—m)14 204 ™ (@) g (@) 4 14 kg + ks J 1 1MITISIq K ko g Ky Ks! G
(=) (M=), (= j =) g (M=), (=) ks (D) gy (=) g, (=D) g (r+j+s+D g, (r+l+ky)g
1 2 3 4 5 1 2 3 4 5

(2D) gy (D) ey (D) g
) a @ 2b 2b b 2)
Crsl s (g 1 14 4 kgt ks b+ ke, b+k, 2b+ky )
We can reduce the complexity of this formula further by summing over all indices which do not
appear in the hypergeometric function or depend on &, i.e. over indices j, m, s. This gives
i x| 2M=D M1 ()M (=N) g (b+1) g (D), (—b) iy (—D) e (r+1+kad s (52)
kq..ks

4@ q@r+14kg+ks 2Dy (Wi (Dicy Ur!q Ky thep ksl Kes!
5 a a 2b 2b b 2)
C(|x| )5F4(d+l+r+k4+k5 b+k; b+k, 2b+k1'|x| ’

where
_ C(|x|?) =
00 X125 (=) MG+ AMAS) 7 (=) ey (~M—=5) ey (= =) kg (~M—=5)pe, (= =g (r+j+5+Dp,
Jm,s (M=21-j-m)!12Jt*™M jimls!

(=0 t1(|x[* — 1+ )N,
We must deal now with the coefficient C(]x|?). For that purpose we represent each Pochhammer
symbol in the series by (—a), = (—9,)*t* whenever the argument is negative and by (a), =
aft**k=1in the opposite case (again, the default understanding is that every parameter t; is to be
evaluated, without
explicitly saying so, at the point 1). Thus we get

C(I1x1%) = (=0,,)* ... (=0,,)*s0,* 07, (=0,)"
|x|ZS(_1)j+mtf—7té735t;nz4(_at)s T+l+ky—1
o (M =2l —j—m)!27+mjlmlsl °©

where t;_, = t t,tstytstety, tegr3s = tetststs and so on. The sum over s is essentially the Taylor
series.
As for the other two indices, it is clear that

- AJB™ 1

1+ A+ B)M-2,
D G ( )
jm

tHTa (x| — 1+ )N,

—j—m)jiml (M - 2D)!

We thus finally get
C1x1%) = (=0,,)* ... (=0,,)*50,* 07, (=0,)"
M-=21

1 - _ _ 1 1
M —2D)! tg+l+k4 1t§+r Lt = |xPt)?(x)?(1 — ty_p) + £ — 1)V (1 - §t6735 - §t724)

Many things can be learnt from this form. Firstly: the last two parentheses are equal to zero when
all t — s are evaluated at the point 1. To avoid this we must differentiate them out. For that at least
N — q + M — 2l differentiations are needed. Available to us are k, + k, + k3 + 2k, + ks + 2r of
them. Hence:
ki +ky,+ks+2k, +ks+2r+q+2l=M+N.

Secondly: from the perspective of the parameter t we differentiate r-times a polynomial of degree
N. In order for the factor C; not to be zero it must hold » < N. Analogously, the degree of ¢, isr —
[l—14+ N+ M andthistellsusthat 1 + [ < N + M. The same reasoning can be applied to any
parameter t;. From those and other facts, such as that in the formula (52) there appears the term
(—N),, or from the presence of the term 1/(M — 21)!, we can easily compute upper bounds on
summation indices. They are:

r<N

2l<M A 1+ISN+M
q<N
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ki <N
ki <N+M V,=2..5.
Corollary (5.2.10) [299]: For M,N € N, and x # O:

R:(x, +
[orex =yt -y B ) = o («PH) (@ e

Proof: From the fact

Ra(r,x) = o (20 1x1?),
from Corollary (5.2.7) and from the presence of the factor (&), (@)+r+x,+k 1N the denominator in
Theorem (5.2.8) it follows that for x # 0

2
f(y cx — |x|2)M(|x|2 _ |y|2)N§:§—i:i3d#g(y) — z O(a—(r+l+q+k1+--.+k5)) (@ > ).

rigkq..ks
That is the speed of asymptotic decay grows with each summation index k4, k,, k3, k4, ks, 7, q, 1 as
a — oo, The slowest decay (and therefore the leading term) we get for the lowest possible values of
these parameters. But since k; + k, + ks + 2k, + ks + 2r + q + 21l > M + N, lowest values are
achieved for 2k, + 2r + 2l = M + Nand k; = --- = kg = 0 if this is possible, i.e. if M + N is an
even number; if M + N is odd, the decay is one negative power of alpha faster. Hence the leading

order term is
N+M
0 (a_[T]) (a{ - OO)

Corollary (5.2.11) [299]: For M € Ny and x # 0

] y - D ) =0 () (@ o)

Proof: The statement follows dlrectly from the representation
ly = xI* = (yl* = 2y - x + 2" = (Iy* = |xI* = 20y - x = [x[")™

= (=M M Py — 2\M—-N 2 _ 2\N
= 2" Y (M) G x = N (al? = 1y 1Y
N=0
The integral is therefore a series of terms, whose behavior is by Corollary (5.2.10):

0 ({[W]) (a » ).
Lemma (5.2.12) [299]: For m € Ny, x = 0 and n > 1:
[ y=z0m > aw)

B
o (-5), (57, o -
=> : [ 6oy = ok vl o)
k=0 (b + Z)k k! |x|2m B
where v o, = [ug[*|uz | — (uy - up)?.
Proof: The integral

f @y — 20" F(y] % Y)dut(y)

is unchanged upon replacing x, y, z by Ux, Uy, Uz for any orthogonal transformation U. Without
loss of generality, we can thus assume that x = (|x|,0,0,...) and z = (z,, z,, 0,0, ...) with z, > 0.
Thenx -y = |x|y,,z; = Zy = I I 2 and
Z'X Y2
Z'X = x| )t le |
We now change variables to hyper-spherical coordinates
Y1 =T COS @
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Y, =71 Ssin @ cos P

Vp—1 =T Sin@siny sin b, ... sin 6,,_,cos 0,,_5
Vo, =1rSsinpsinysinf, ..sinb,_,sin6,_;
n (CZ + Tl\Z)! 2\a,-n—1 oj,,n—2 ia—3 P
dul = Y EEEY (1 —r2)% " tsin™ 2@ sin™ Y ...sin 0,,_,drdedy ...d6,_;.
The integration bounds are: r € [0,1],¢ € [0,7],y € [0,7],6, € [0,7], ..., 0,,_4 € [0,7],0,,_5 €
[0,27].
For the sake of brevity put d?® := (1 — r2)*r" ! sin" 2pdrde.
Integration over all 8; will give us some constant C since the integrand does not depend on them.
For the rest we have

. m
Cf f f( rcos<p+vzxw—z.x) f(r,|x|r cos @)d?® sin™ 3y dip (53)

-3 () [ Cetreose

m-l rsin g\
-z x) (vZ’x ] (p) f(r,|x|r cos )d?® f cost P sin™ 3y dip.
0

Here and in the rest of the proof we assume n > 3 otherwise (in the case n = 3) integration over
the interval [0,27r] would rest with the parameter ¢ and in the case n = 2 1 would not be present at
all.

These cases would however require only minor changes in the proof which continues as follows.
Let

T

2 Z'Xx B rsing
= ——TCO0SQ — Z.X, =V
| a5 Tl
By an easy computation we have:

1

n . (\/Er(b) (i)kl 2k,
]cos wsln"‘3¢d¢={ (b+1)(b+1) l # 2k.

0

Together with fact that

we obtain that (53) equals
1 — 1r

m
Cz 1 kf A™2kB2E £ (v | x|r cos @)d? D
= (b+g) K83

Now we take hyper- spherlcal coordlnates back. First we had x.y = |x|y; = |x|r cospand |y| =,
so our result can be again interpreted as an integral over the unit ball in R™ if we replace

r cos ¢ by %and put 7 = |y|. Therefore

Z X _zZx Xy _z.x(ey — |x]?)
A=——rcosQp—z.x= — ———2.X = :
|x| x| [x| |2
2 _ M)
B , r?sinf@ . r*(1—cos’@) ] (le Vi xVyx
=vi,———— =7 =v = :
7 x)? i | |2 i |2 |c|*

Altogether we have
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o m 1—
cz ) f(z-x(x.y X2 2 vZivsk f(yl x - y)dug (v)

0 — s |x|*™ gn
The result, if necessary, an be easily checked by performing change of variables into the hyper-
spherical coordinates.

Lastly, we must determine the constant C into which we have collected all unimportant constants.
But comparing our original integral with the result for m = 0 gives us the equality

f Fylx - y)dui(y) = € f £yl Vo),
BN BN

hence C = 1.
Corollary (5.2.13) [299]: For m € N,

f(z y -z Ra(x,y)

Ry (x,x)

_ i (_7)k(1T) (—D*(z - x)m 2y 2k2pf
) (x-y

kjp=0 (b+ ) (k —j=pjtptIx|2m=p=D gy

2
— X[ () — [yl Raﬁx’i 4 )

Proof: The Bergman kernel depends only on |y|?|x|? and x - y- a fact easily seen from the
representation in terms of the Appell function (40). We can therefore apply Lemma (5.2.12).
Notice that the factor v2% can be written as follows
vk = (yP1x|? — (- )2 = (yP1x]* — (- y = 1x[)? = 2[x[2Ce -y — [x]?) = x|,
so we can expand it into a finite combination of terms(x - y — |x|?), (Ix|* — |y|%).Specifically,
2k k k!2p|x|2(p+j) 2)\2k-2j 2 2)j
EERC D oy ey y IS A B R
b=
Substituting this into the expression in Lemma (5.2.12) and performing some manipulations we get
the required result.
Corollary (5.2.14) [299]: For m € Ny and x # 0:

J(z cy —z-x)™ Ra(%,y) du’(y) =0 (a_[%]) (@ = ).

dug(y)

R (x,x)
]Bng
Proof: According to Corollary (5.2.13) and Corollary (5.2.10) we get for x # 0
RZ(x,y)
y — g ym 27 g
l (z-y—z-x) R, (x,0) dug(y)

B
e (-5),(57), 0k ot

2,

1 . . .
cirmo (b4g) Ue—j—p)Ljtp! x]2m=p=i)
Since j + p < k and 2k < m the principal term is at most

‘ = 0 (a7l3]).

0 (a_[m_zj_p]).

m-[7]

O|

We are now ready to prove the main result. We repeat the statement:

Forx € B",x # 0,n > 1, and f € C®(B™), there exist differential operators Q; := Q; (A, x,V, |x|?),
involving only the Laplace operator 4, the directional derivative x - V and the quantity |x|?, such
that
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EeB o)~y YO oo

i=0

(Baf) () = f FO 7

where Q, = 1 and
n—21-|x? (n—2)(1 — |x|?)?

Ql = > |x|2 x-V+ 4(n—1)|x|2 (x-V)2+m(1—|x|2)2A.
Finally, for x = 0 it holds
ALF(O
(Bef)(0) = Z - fgl ) (a - ).

Proof: Let us deal with the simpler case x = 0 first on which the general approach will be
demonstrated.
The problem is to determine the asymptotic expansion of the integral

Iof = ] fdug ().
]Bng

Remember that
I'(@)
7"\2['(a + 1)

dua(y) = Ca(l - |.V| )adn.% Ca =
We expand the function f(y) into its Taylor series

k
()—Z(” IO | o)

and plug in to get

Luf = Z o5 f 0P OdED) + | Ho (i),
IBTL
Notice that only the terms of even degree in the first integral survived. We can estimate the
remainder term H,,, (y) by the Taylor theorem as follows
| Han ()| < € max max|d” f(y)|y"| < Cly|*".
ly|-2M yeB™

So
]HZMdua(y) <C fIyIZMdua‘(y) = j(lyl2 -1+ DM"dug(y)
]B;Tl
-c . () B[ A )
C @+Dx . -M a+1 .\ _ T@rG+m Oy .
CZ (k '@, (@ CZFl( a@ '1) B Cr(& + M)I'(b) C(o?)M = 0(a™).

This sztems again from the identity
F (al a. ) _ r')r(c—a; —ay)
2 c ' I(c—a)r(c—a,)

which is true for ¢ > a, + a,.
It remains to deal with integrals

f (v - V)*dug ()£ (0).

Now, we argue that the operator Vcan be treated as an ordinary vector, i.e. it suffices to compute the
expression

f (y - 2)*dul(y)
]BTL
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and then in the result replace every occurrence of z; by d;. To conclude the first part of this proof it
therefore suffices to show that

2Kk)!
j(y - 2)dug(y) = %Izlz"-

[Bn
This could be, of course, computed directly but Corollary (5.2.6) can also be used in the light of the
following representation

[0 2% a0 = tim e j (- 2% R2(ez, y) Ak (),

.Tl
i.e. apply Corollary (5.2.6) to x = tz then divide by tz" and lett — 0.
In the case x # 0 the approach is almost identical. First we expand the function f into Taylor series
around x

2M-1 k
— . V
foy= Y OmD D TE Ly,
We have =
2M—-1 1 .
(Baf)(x) = 2 E(Ba (((y - X) ) V) f(X)>) (X) + (BaHZM,x)(x)-
k=0

=:Ck
The remainder term can be estimated using the Taylor theorem:
| Honx )| < € max max|d? NIy — x)Y| < Cly — x|
lyl=2M yeB"

for some constant C, whence

M
(Bebom ) = 0(Bolly = 2™ (@) = 0 (a72l) (@ > o)
where the last equality holds by Corollary (5.2.11).

Thus again, we have to deal only with the terms ¢, and they can further be modified by replacing V
byz:

1 k
e = 7B (=0 2)") (0.
So we must only be able to determine asymptotic behavior of the Berezin transform of a
polynomial.
The fact that in this case there exists an asymptotic expansion in negative powers of a follows from
Corollary (5.2.6) and Lemma(5 2.12), from where it is clear that terms c; can be written as finite

combinations of functions 52 whose asymptotic expansions are of this type. From that
2 1

representation it is also possible to see the Stokes phenomenon, since for x = 0 the ratio equals 1
but for 0 < |x| < 1 it decays in a way described in Corollary (5.2.7).

Dependence of differential operators Q; on 4, x - V and |x|? only (that means on |z|?, x - z and |x|?)
is a direct consequence . That Q, = 1 stems from the fact that ¢, = 1 and ¢, is, according to
Corollary(5.2.14) ,0(a™1).

To compute Q; much more work is needed. We are dealing with the expression ¢; + ¢, + ¢c3 + ¢4 —
the term cs is according to Corollary (5.2.14) already 0 (a~2). Application of Corollary (5.2.13)
toc; + ¢, + c3 + ¢4, in general, leaves us with 19 terms. Fortunately many of them are negligible
according to Corollary (5.2.10) (those for which m — j — p > 2) and collecting expressions
involving the same integral will reduce the number to 5 terms:

fon s (2 y = 2 O™ D () = (54)

i Vi 2 R (x 3’) n
<|x|2 (2b+1)|x|2> f(’yx II)R( ) Hay)

221



2 2 0-’( y) n
- s f(|x| - Iy R G )

sz,xx *Z v;x . Rczx(x; y) .
" ((Zb DI @b+ D@b+ 3)|x|8> Bl(y x — |x|?) R () dug(y)

_l_((x-z) vty Vi ) [0 =12 22D )
[Bn

2|x|* 22b + D|x|*  2@2b+ 1)(2b + 3)|x|* R, (x,x)

Vsx 5 ~p REY) _2
T D T jn<|x| ~ Iy R S A ) + 0 )
Each integral is by Theorem (5.2.8) (if we for a moment put aside the factor 1/R, (x, x)) a sum of
functions <F,. Numbers of terms in these sums are, in general, again very high (in the case N =
2,M = 0 even as high as 108), however since we are interested only in principal terms and the
order of asymptotic decay grows with summation indices k4, k,, k3, k4, ks, 7, q, , s can be seen
from the proof of Theorem (5.2.8), it is enough to consider only those summands for which
ki+ky,+ks+k,+ks+r+qg+1=1.
This together with the condition
ki+k,+ks+ky+ks+2r+q+2l=M+N
substantially reduces the number of terms. For the above-mentioned case N = 2, M = 0 we will be
left with only 2 terms, both of which in addition contain the same hypergeometric function, so they
can be combined together. Let us work this case out with more details, so we can demonstrate the
approach. From Theorem (5.2.8) we see that when M = 0 thenl = 0. We substitute k; + k, + k3 +
k, + ks +r + g = 1 into the inequality to get
r+k,=>1,
but it also must be the case that » < 1 and k, < 1. This is only possible in two cases: r = 1 or k, =
1 (with all other indices equal to zero). We find

j (P2 = Iy 22 RECe )i () = 2 (1 = 2)sF (2,2 2Pi1l?) + 0,

where 0, denotes a term of order O (oc‘ZZF1 (a 2b; |x|2)>.

b
Similar considerations in the other cases give us:
1|x|? 2b,
j(y = XD REGo D AED) = 5 - (= IxDay (T F b 1) 4 0,
2 2 2\p2 n |x|* a a 2b., 2
(- x = )l = YR NuE ) = === (1= 3R, (2,0 251x17) + 0,
2 — 2 a Zb 2
|05 = WoRE G Nz = % (521 )+02,
.Tl
xI* @ 2b
2 2 n — — —
[ et = Rz o) = S am (B 2020 ) =S )
a 2b. _ 2 a 2b 2
o (¢ b |x|) 2|x| zFl(b+1,|x|)
|x| 2b
Substituting this into (54) and performlng some manlpulatlons we obtain
2wy LGk (G )
fZ—W z=x2)" a( o) Ha) =7 x'x(2b+1)| pa T4 Z 2
B m=1 xima 2F1( b ;|x|2)
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a 2b 2b | 2
1 v, oF ( b 2b+1’|x|)
42b+1 a 2b,y. 2
Fu(F 25 1x1?)
We complete the proof by using Corollary (5.2.7), replacing v¢, = |z|*|x|* — (z- x)* and z; —
d;and remembering that b = ~ — 1.

+ 0(a™?).

Corollary (5.2.15) [349]. Let a, + €, a, + €,a; + € > 0 be positive real numbers, one of them
strictly less than the othertwo. Lete — 1 —a —y € Z,—(a + 2¢); € Ny and x,. € (0,1). Then we
have
e—1 a, + ¢ a; +& az+e
5F4<£—1+a a, +2¢ a,+2 ag +2£,xr>

. (0]
T lMa+28)) (e—1x)7" 0
) i=1 F((a + g)i) (1 - xr)s—l—y—a (1 + kz=1 1k> (g - +oo)

where y = Z?zl((a + 2¢); — (a + ¢€);) and dy, are constants independent of £ — 1.

Proof. Using the integral representation
a +é€..ap t+¢€ a+e )

p+1fg+1 <a1 +2e..a,+2¢ a+2e » Xr

B ['(a+ 2¢)
" T(a+ )l (e) )

which is valid for a + 2e > a + € > 0, in turn three times on pairs of parameters (a, + 2¢,a, +
€),(a, + 2¢,a, + €),(as + 2¢,a;5 + €),we get
e—1 -1 a,+c¢ a,+e az+e
sFa

e—1+a a, +2¢& a,+2¢ a3+2€;xr
111 3

_ : r'((a+2¢);) reyt
- i1 F'((a+&))r((a+2¢); — (a+¢);) Of Of Of L_Jti (1

_ — e—1 -1
e T P X tytaty ) diydtydts,

Double application of the transformation (5) gives us the Euler transform

2F (aa _Ic_l;::; xr) =(1- xr)a+3£2F1 (ig+ 235, xr);

a +€..a, +¢€

ate—1 _ -1 .
t 1-0 vfq (a1 +2¢..a, + 2¢ xrt) at,

which leaves us with
111 3

3
r'((a+ 2¢);) (@+)i-1/1 _ . \(a+2e)—(a+e)—1
L r((a+e&))r((a+2¢);—(a+e¢)) bf bf of 11:1[ ti (1—1¢) (1
a

e a
- xrt1t2t3)a € 12F1 (8 _ 1 + a, xrtltztg) dtldtzdt3

A triple integral of this kind can be rearranged in the following way:
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111
fff(P(tptz»t3)G(t1t2t3)dt1dt2dt3
00 0

=OfG(1

11
1—-1rr 1-1n ) r,T¢

— 1-— , , dr,dr,dr,.

s) f J ¢ ( nraTs 1—nrr'1—rr/ (1 —nrrr)(l—r1r;) ATz ars

00
(This is nothing more than a series of changes of variables. Firstly, let s, = t;,s, = t;t,, 53 =
Lt ts.
Jacobian is — and the integral becomes:

5152
Sy 53
fff(p sl, = 6(53)—ds3d52d51
S$15;
00 0

Now we swap the order of integration:

1 51 S2

S, S S, S
fff 511_2,_3 0(53)_d53d52d51 —fff Sl,_z,_B G(Sg)_sdsldSZdS3

5152 S152
0 s3 Sy

and flnally three changes of variable are performed: firstly 1 —s; = r;(1 —s,),then1 —s, =
(1 —s3)and lastly 1 — s3 = 13.)
Applying this to our original triple integral we get:

1

L a a
J(l—xr+xr7"3)a € 12F1 (8_1+a;xr(1_r3))

11
J ] —_ 7,.1)3.9—1(1 — 7"2)3‘9_1(1 _ T.3)a3+£—1 (1 _ rzrs)a2+3£—a3(1
0 0 i=1

— 11y13) 3% drydrydry

where y; = Yt _ (ay, + 2¢ — (ay, + ¢€)).
After a small manipulation this gives

i—1 i -
jjfl_[ti(a-l-g) (1 _ti)(a+2£)1 (a+€); 1(1
0 0 0 i=1

. a a
— Xty tyts) e F (8_ 1+a
1

=(1—x,)% 1 f tV371(1 — t)®+e 1E (), F, (E f 1 i & x-(1— t)) (1

0

X, a—e-1
_ t) dt, (10)

Xty bty ) dtydtydts

X, —1
where
1 1
F(t) :f Y2— 1(1 )38_1(1—T2t)a2+3£_a3f Y1— 1(1 r1)3£"1(1—rlrzt)“1+3£_“2dr1dr2
0 ) 0
T

- a, +e—a
27N (1 = 1p)E (1 — rpt) 2%, F, ( ? ! ylirzt) ary.

I'(y2) V2
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We expand the hypergeometric function into Taylor series to get the form

F(0) = 3r(e) (a, +&— a1)j(y1)jt._]2F1 (]/2 +j a; +'s — az_t).
r(ys) = (r3); J! Y3+

We should talk about the convergence of the integral on the right hand side of the equation (10).

For that it is necessary to understand the behavior of the function F(t) at the end points of the

interval of integration, notably in the neighborhood of t = 1 (the behavior near t = 0 is evident). It

is well known that

)

(a a+ £ ) _ F(a + ZE)F(a + 5)

21\ a+2¢’ T(e)I'(2¢)

for € > a. That means that the hypergeometric function in the infinite series is left-continuous at
t=1ify;+j >y, +j+as; +3e—a,) orequivalently a, > a5. In such case the infinite series
for t = 1 takes the form:

r'(ys)r(a; + 26 — a;) (a, + € - a1)j(]/1)j
I(a, +3e —a3) < . (ap +3e+a3);j!’
J=

which is a convergent series for € — a; > +a, + y;, 1.e. a; > as. (Indeed, the series is actually
equal to
a +e—a; Yq

2 1( a, + 2 —as '1)
and the formula above can be used.)
This can be summarized by saying

F®)=01) (@71,
which holds for a; > a3, a, > a5 and the integral on the right hand side of the equation (10)
converges under the conditions a; > 0,a; > a3, a, > as, y3; > 0. Those are significantly less
restraining conditions than in the triple integral on the left hand side of the same equation, which
converges for (a + 2¢); > (a + €); > OVi.
It is an example, therefore, of an analytic continuation. Furthermore, since hypergeometric
functions are symmetric with respect to permutation of the parameters (a + ¢€);, we can choose
a; + € to be the smallest one.
We can summarize now that for x,, < 1,y3 > 0,a, + € > a3 + € > 0,a, > a5 it holds

e—1 -1 a;+¢e a+te az+e

5F4< e—1+a a;+2& a,+2¢ a3+2£’xr)

Q) TR @200 [y e, o3

I'(y3) r((a+e)) J
xr >a—£—1
— t dt,
X, —1
where
a a oo(az+5_a1)'()/1)'tj +j a.+e—a
Fes® =0 () § (1) ) S S S (Y2 e PR, )
- 3)j !

and y; = j'-zl(a + 2¢); — (a + €);. As a next step we replace the function F,,,(t) by its Taylor
series expansion:

N-1 () (N)
E 0 E
Fs—l(t) = E S_I;( )tk + 8_1\1“(5) tN,
k=0 ’ |

where 0 < ¢ < t.
Substituting this we get
e—1 -1 a,+e¢ a,+e az+e¢
o ( x,)

e—1+a a, +2¢ a,+2s az+?2¢
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3 N-1
~ (1—x,)% &1 1—[ r'((a+2¢);) Fg(fi(O) F'(ys + K)T'(as + €) (g —1-a ys+k X
i=1

r'(ys) r'((a+¢),;) o k' T(ys+as+e+k)* '\ yzs+taz+e+k 'x,.—1
3 1
e (N) e
(1—x,)% &1 l—[F((a + 2¢);) pratN=1(] _ pyaste-1 E. 2/ () (1 e t)a e-1 "
ro LIT@+a0 ) N T T

Notice that the term Fg(f’l) (&) in the above line still remains 0 (1) for t ~ 1 because it can be written
as

N-1 (k) 0)
EM)() = N1 (Fg_ - ﬂt'ﬁ
1 1 kZO ]

Therefore, the integral in the same line converges under conditions y; + N > 0 and a; + € > 0.
The first of these is fulfilled for sufficiently large N, hence for the right hand side of the equation to
be meaningful it is only required that a; + € > 0. This is the largest analytic continuation as we can
get.
From the form of the remainder term (12) we also see that F ™) (&) is a continuous function on [0,
1].
We can therefore estimate it by its maximum on this interval, which will in general depend on & —
1, but the asymptotic behavior of Fg(f'l) (&) fore » s Fs(f’l) (¢) = 0(1) uniformly for all t € [0,1].
(This can be seen again from the form of the remainder term (12) — the ,F; in the F,_; which
contains the parameter € + 1 has this uniform behavior due to the (3) and terms Fg(fi (0) are just
some linear combinations of the same ,F; function, only possibly with parameters shifted due to
the differentiations. In such case even additional negative powers of € — 1 appear.)
Hence

1

J t]/3+N—1(1 — t)a3+€—1
0

F@) X, a-g+1
CGTRNEIR
N! xr—1

! X a—-2&e-1
<cC J tV3tN=1(1 — t)aste-1 (1 - t) dt
a x,—1

_ e—1—-a YS+k_ Xy )
_0(2F1<y3+a3+s+k’xr—1 (g > ).

The problem of finding an asymptotic expansion of the function <F, for larges + 1 is now
effectively reduced to the problem of finding an expansion for the functions of the form:
— a-e-1 e—1-a ]/3+k_ Xr )
1-x) 2F1<y3+a3+8+k’xr—1'
The large parameter cases for,F; function has been studied by several authors (see [15, 8]). The
logic goes as follows: Combining the transformations (5) and (6), we can see that

a a+c¢ I'(a+ 2l (e) _ ) 1—(a+e) &1
2f1 ( a+2e ;x,,) " T'la+erQe) (=)7L = 2, )% F ( (1 + e) x_r)
I'(a+ 2¢) a+e 1—¢) 1
_ (- —(a+¢) L
+ r(a) ( xr) 2F1 ( 1 + e ; xr)’
for x, < 0,& & Z. Applying this we get

(1= xR

e—1l—-a y;+k X )
Y3+a3+€+k'xr—1

=F(y3+a3+£+k)[‘(y3+k—s—1+a)x_(a3+€)F(1—y3—k a3+£_1_i)

Fyz+k)I(yz+a;+k+1+a) " I\ e—a-y;—k Xr

Frys+az;+e+k)l(e—1—a—y;—k) x, 137k (Y3+k 1—a3+e_1_i)
Fe—1—-a)l(as; +¢) (1—x)et-ars=k 21\ ys+k—e+a '~ x./)
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fore + 1 —a — y5; € Z (we can always run the limit through such & — 1 so that this condition is
fulfilled). But in the light of (3) and (4) we can deduce that the first term is negligible with respect
to the second term, because it displays only polynomial growth and does not contain the
exponentially large term(1 — x,)~¢*1 (remember x,. € (0,1)). Asymptotic behavior is, therefore,
dictated by the second term, which isO((1 — x,)"¢*Ve + 17737F) as ¢ - oo,
Substituting into the equation (11) we get:
e—1 a, +¢ a, +& azte
5F4<£—1+a a, +2& a,+2¢ a3+2£’xr)

3
11l (e + 26) X F(ki(O) (s)il'(e—1—a—y; —k)x, 77" ()/3 +k 1—(az+e)
I'(qa; +s) k! I'a—a)(1—x)a-a-vs—k l1+y;+k—a+a’
1
- —) +0((1 - x) (e — 1)),
Xy

It only remains to combine known asymptotic expansions of terms:
re—1—a—-y;—k a, + 2¢
( sk (e—1)7s7k (1+ ! +)

l_

'e—1-—a) e—1
vs+k 1—az;+e¢ 1 (V3+k)(1_a3+€)xr_1
2F 1-——) =1+
Ystk—¢e+a X, vs+tk—¢c+a X,

d,
Fs(fi(()) ~ F(k)(O) + S—_l + .-,
where

N te—a)) )Yy, +) as—ay)
F@—Z A) j_!2F1(2 -y Z't)’

j=0
and rearrange the terms.

Corollary (5.2.16) [349]: Forf € C*(B*¢):
Zy yrf(y)d.u +€(yr) _1)7 j Zy " vf()’r)d:u)l/ii(yr)

B1te Bite

Proof. By the Stokes theorem,
z V) A = |y 2 a + 26),11d ey,

Blte

B f fOr) A = 1y )V (@ + 28)y 412 yrdo(y)
oB1+e =0

2 + 2&),4 +1
@ (agiyzglify ) Zy* yrf(yr)(l - |yr|2)”(a + Zg)ydl"'gyr

B1lte

=2y f Zy* yrf(yr)dl")lx-l-g(yr):
B1lte

since (a + 2¢), = 2R,

T 2 T'(y+1)

Corollary(5.2.17)[349]:

Ix a+e
Xy " VyrRE_l(xr,yr) = TT(Za + 2¢ + Xr* er)l(Re)l (a + e+ 1;xrf yr)-
Proof. Recall that
— a+e a—+¢ _
Re 1(xr ) = F <(E 1); _ yZr) Zr);
a+e

Where z, = x, - ¥ + i/ |x,|2]y-12 — (x, - y,-)2. From that we can see
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a+e —1+1a+¢e a+e _
1(Rs)1( ;X rJYr)_ (8 + ) Z Z)

at+e+1 a+g+1 — rerm T
Next,
xr'VyrZr =xr'VyrZr=|xr|21 xr'er(Zr)]zj(Zr) 7, xr'vxrz_rkzkz_rkf
and
-—1)a+ea+te _
xr -V Fy ((z n 8); _ ;Zr:Zr>
= |x 226 =1(F ((8—1)+1 atet+l a+te Z_)
’ a+e+1 - e
((8 D+late atetl, _)
yZyy Zy
ate+1 -

(5—1)+1)+
= (g = DIx,|? Z (a+£+1)]ikkzr!lz ((a+8+1)j(a+e)k+(a+e)j(a+e+1)k)

e—1)|xr|2§ ©)jx 27"
(a

s et D Tl (at+te)jlat+e)2a+2e+j+k)
j+k

(8 - 1)|xr|2
a+e
Bold the proof will be done by induction on p.

p = 0. Fore > 0, ((¢ — 1) is always positive from the assumption € > 0) we get:

Rs—l(xr'.Vr) = 1(R28—1)1 ((2~}1)1 T y‘r‘)

g—

c—1)+1lat+te at+e _
2a+ 2+ x,.V F<(‘€ ; ,z,z)
( rxr)l at+e+1 - e

r(ze—1) f - S
= t&171(1 — t)P~E 17t R, (tx,, y,)dt.
F(S — 1)F(3€ _ 3) J ( ) 2¢ 1( r yr)
We substitute this into the integral and swap the order of integration:
J- f(yr)Rs—l(xr:yr)dﬂ%:—gl(Yr)

Bl+£

ey (o
iG] =0 [ FORRses (E0n 7)) AR )

Bl+£

r(ze=1) 1
t2572(1 — t)* % f(tx,)dt = <~,xr)
r(g—1)r(3e—3)f (1= O (b )dt = 4fy 1
When & = 0, this is just the reproducmg property of the Bergman kernel.
p = p + 1. We can see that the function g(y,): = Rc—1)(xr, ¥ ) f () (- - y,-)P meets the condition
of Lemma 2, hence:

| R Gy 0 G- P it 00)

Blte

= Z_,E f Xy * Vyr(R(e—l) (xr' yr)f(yr)(xr ' yr)p)d/“l%:s(yr)r

Blte
which divides the proof into three parts:

1
= 4e —2 f (XT | VYr R(E—l)(xT' yr))f(yr)(xr YT)pd.ul-i-g(yr)

Bl+£

t 4e — 2 f R(s_l)(xr'yr) (XT ' Vyrf(Yr)) (xr ’ YT)pd.u%:E(yr)

m1+£
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o f Ree-1) (e, ) f 0P Ot - )P~ H i P iz (o)
B1lte

Notice that for a general series of the form
p! A(j,l,m)
20 Z j'im!
j+2l+m=p
the transition p — p + 1 also divides this series into the three parts, namely:
(p + 1)! Z A(j,I,m) p! Z A(G+1,1,m)

20+l jiitm! 2+l jritm!
j+2l+m=p+1 j+2l+m=p

p! Z A(,L,m+1)

2rtt L jiliml
j+2l+m=p

p! Z A(,l+1,m)

2P jritm!
j+2l+m=p-1

+

(The logic is as follows:
Z A(j,1,m) _ atp+1 tj+21+mA(j’ L,m)

im! I i m!
j+2l+m=p+1 J: Lm! jlm=0 (p + 1)' J: l'm! t=0
%) ap A(J’ l’m)
= Z (] + Zl + m)t]+2l+m 1 .
! 11m!
j,l,m:O( p+1)! jittmt | _
p .
- 0% jsaemer _AG LM
@+ D! G-D'Im!| _
J.l t=0
Z t]+21+mA(j + 1,1, m) 1 z AG+1,1,m) o
! i m! T )
e 0(P+1) jHlilm! o p+1j+2l+m=p 1 liim!

where the dots represent the other two terms, where the procedure is analogous.)

We will show that the corresponding parts are equal to each other, i.e. (14)=(17), (15)=(18) and

(16)=(19) when

A(j,1,m)

~ IxTIZ(]H)(S_l)J-(Z“"‘ZS)j (e - V)™ ) e—1+j 2a+2e+j ate
2e = Djimula+e); SV ° 2e —1+j+1l+m a+e+j 2a+2 )

The equalities (15)=(18) and (16)=(19) are trivial. It remains only to prove the equality (14)=(17),

1 p! = AG+1,1,m)

—_— f (xr ) VyrRs—l(xr; Yr))f(yr)(xr yr)pdl’l1+g(yT) = ﬁ Z j! l'm! '

4e — 2
Bite j+2l+m=p
In the integral we use to obtain:

e — 1lx,|?
48— J( Xr yr %(Zaﬁ'zgﬁ'xr er 1(R£)1(
Blte

which according to the Leibniz rule equals

?(s_l)lxr|2(2a+s+x A —P) f(x ¥ )P (R )1( ,x,y)f(y Ydpzz* (7).
5 — 2a vV, | VIR g e 7 I IO r
]Blé'

Using the integral form of hypergeometrization

a+e
a+e+1

% 3y ) FOR AU ),

a+e

1

a+e _

1(R£)1 (a +e+1 xr:)’r) =a-+ g.[ta+s 1Rs(txr;yr)dt
0

we get:
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= 2—,,Zj+21+m=p

(e = Dlx|? _1-
—r(z +2e + Xy r - p) f e 1P .[ (txr ) yr)pRs(txr: yr)f(yr)d.ué-l-g(%“)dt-

48 - 1+
0 Blte
By the induction hypothesis, this is equal to
(e = Dlx,|? e
4€—_(2 +2£+xr r—p).[ta+£1p
p_l Z t21'+21+m|xr|2(}‘+1)(é—:’1 + 1)](2(1 + 28)] ((x . V)mf) 8_’—"1 +] +1 2a + 2¢ +] a+e¢ o ) de
2v JimIl (de = 1) jyme(a+e); T \2e=1+j+1+1l+m a+e+] 2a+¢ '

j+2l+m=p

From the knowledge that
1

1 a+e+j )

a+e+j-1 — .
Jt g(txr)dt a+ s+ ]1gl(a+s+]+1’ r
0

we obtain
Ix,12(2a + & + x, - Vy, — p)

LZ %201 (5=1) ;44 (2a+2¢); ((x, - 7)™F) ( et+j 2a+2e+j a+te )
2p+1 j+2l+m=p j!m!l!(ZS—1)j+1+m+1(a+£)j+1 3 r 3 1 +] +1+4+14m a+e¢ +] +1 2a+ E, Xr )
By the Leibniz rule and some manipulation we finally arrive at:

p! |, |2(]+1+l)(€ ) (2a +28) 11
D

. j+2lEm=p jimil (28 =1) +1+m+l( a+ &)
2a+2e+x. -V, +j—m m (e—=D+j+1 2a+2e+j a+e
; 3(Ce V)™ )3 . y Xy
2a +2e+j 2e +j+1l+m a+e+j+1 2a+2¢
To finish the proof it now only remains to show that the last formula is equal to
—1+j+1 2a+2e+j+1 a+e¢
)™ ( g ; )
30 V) ﬂ32£+j+l+m ate+j+1 2a+2e"

but from the property of hypergeometrization it follows generally that

(G, (8 F ) = %(a +0.)1(Cor - 7)) (4 i t%r)

1 -m m
= ~(a+ )t (% V)" )y (o 4 5 %)

t=1

t=1

~a—mt ), (e 1)y (i te)

t=1
1
= a(a —m+Xx,- er)l((xr ' V)mg)l (a + 28; xr)-

Set a = 2¢ + j and we are done.
Corollary (5.2.18) [349]: For p € Ny and € = 0,

f (xr ) yr)pRg—l(xr: yr)d“%;-—gl(yr)

B1lte

| |20 +HM) (227) jEDm(2(a+e));(2@a+e),

(28—1)j+m+l(a+s)]-(a+£)mj!m!l! 574

e—14+j e—14+m 2a+e+j 2@@+e)+m a+g_| 2
2¢e—1+4+j+m+1l a+e+j a+e+m 2a+e77 )
Proof. We use with f(y,.) = Re_1(x,, ¥):

f R(Zs—l)(xr:yr)(xr 'yr)pd/'l%z-l-sg—l)(yr)

B1lte
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2+D (¢ =7 —
p! z |x, |2Vt (e 1)j(2a+€)j ( (e—1)+j 2a+2e+j a+te -x)
20 - T — B\ e T+ - o
2 j+21+m=p]!m!l!(2£ 1)j+m+l(a+s)] 2¢e —1+j+l+m a+e+j 2a+2¢
where £(3,.): = (% %, )" Rye—y (%, ¥y). From the fact x,. - V, z, = x,. - V,, Z; = |x,| we have

FOW = () Reca G i) = I P20, )R (E T D04 4%, 7)

a+e -
(6 = D < m
= |x Zm—mz a+¢&),_x(a
| rl (a+8)mk=0(k)( )m k(
+8)RF1<8—1+m;a+£+m—k a+£+k;ZT’Z)_
at+e+m -
Performing hypergeometrization (notice that z and.z are homogeneous of the degree 1) we get
~< e—1+j 2a+2e+j ate )
£ 2e —1+j+m+1l a+e+j 2a +2¢ 7
e—1
=|xr|2mg
(a+ &)y,
m
m
Z(k)(a+€)m-k(a
k=0
e-1+m e—14j 2a+2e+j a+e at+e+m—k a+e+k | 2, 2
+€)kF1<a+e+m B+j+m+l ate+j 2a+2¢ - ,Ixrl,lxrl)

' m

= |x |2m%2(?) (a+ &), .(a

r m—
(a+£)mk:0 | |

+o) F<8—1+m e—1+j 2a+2c+j a+e 2a+2<€+m.| |2)

Frsti\g+e+m  2e—1+j+m+l at+e+j 2a+2e )

Here, by the Appell function with more parameters we mean the Kampé de Fériet function (see [14])

( a ...0a, ate a;teg )
T\ay + 2¢...a4 + 2¢’ — » Xro Yr
o pAll A ...y ray +ga; + €
o F4:0F0 (a1 + 2¢...a,4 + 2¢ == ’xr’yr)
_ z (a1)k+j (a4)k+j (a, + 5);’(‘12 + &)k X fy k
jk=0(a1+2€)k+j (g + 28) 14 jlk! ror

and the last equality was obtained using the similar reduction formula like in the case of Appell F,
function of the same argument

F( a ...0y a;te ap+te )_ F a..ay a;teta+e
\a; + 2¢...a, + 2¢’ — X Xr ) = sta a, + 2¢..a, + 2¢ X )
To complete the proof it is only necessary to become conscious of the fact that
m
m
Z (k) (a+ &)pmrla+e), =QR2a+2¢),
k=0
and substitute everything into the series at the beginning. As € — oo,
F (e—1) (e—1) 2a+2e 2a+2¢ a+£_|x|2
**"\e=1+a,+2¢ a+a,+3e a+3s+a; 2a +4e+a,
e—1 2a+ 2e. 2
Fi (BT 2at 2 )
1 — |X |2 ax+6etaztay
= (1 — |xr|2)a1+2£ (W) (a + £)a2+28(a + €)a3+28(2a
T

+28)q,+2¢ 1+;m )
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where d;, are some constants independent of € — 1.
Corollary (5.2.19) [349]: . For M, N € N,

f O - 20— 1 M (12,12 = [y [N RZ (v ) A5 (3,)

Blte

_ i ¢, |2M= DM (=DM (=N) (a + e + 1), (a + i, (—(a+ &), (—(a+ &)y, (r+ 1+ kg,
2M (M — 21)! (m)q(m) (Qa+ 28, (a+ &)y, (a+ &), U Tl qlky ky kgl ky! ks!

Lrq r+l+ks+ks
kq..Ks
e—1 c—1 2a+2s 2a+2¢ a+¢
C(lxr|2)5F4 — ;|xT|2 )
e=1+1l+r+kys+ks a+e+k; a+e+k, 2a+ 2 + ky
where

CQlx %) = (= atl)kl (= ats)ksa 1o, (- ato)
tg+l+k4_1t§+r_1(to — | Pt -2 P = t-7) + to = DVU(2 = tgy35 — t724)M_Zl|t0...t7=1
Here t,_, :=t t, ...t;, tg735: = tgt tstand so on. The summation indices are bound by the
following inequalities
ki +ky,+ks+2ky+ks+2r+q+2l=M+N
2l<M
q, ki, T <N
ko ks kg ks, 1+l <N+ M
Proof. We expand the parentheses in the integral into binomial series

Gr 2 = M = 3 (W) (e P G x0P,

P
p=0
2 2\N _ N 2 N-q 2y)q
(e 1 = |y 1Y = (e 12 = DY = |y 1)1,
q
q=0
to get
M\ (N _ _(a+2¢)e_4
> () (§) el 2 = o 2 ET0E [y P RE Gy ) g0,
p,4=0 -~ E-144 piye
Where (a + 2¢), = % By Corollary 1, this equals
m 2 I'(y+1

[0¢]

ST (Y) 2y 2

P,q=0
(g p! 2 2, 20 ™ (e — 1) (e — 1) (2a + 2¢);(2a + 2&)
(e—1), 20 P (e—1+q@)jmula+e)jla+e)yj!lim!

<e—1+] e—14+m 2a+2e+j 2a+2e+m a+£_|x |2)
A a+qgt+j+m+l ate+j a+e+m 2a+277 )
Now we sum over p by the procedure:

00] [ee) p
Z( Mpp' Z A, :Z Mpp'zat,mmA |
p! Jimli—o

— PN _———

]+Zl+m =p p=0 j,Lm=0
z z M- p 9 e | = z M GG 2 m)t
Jimle_o = Jj+ 2l +m 2j+myl jim:
jlm=0p= j.Lm=0

This yields
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o]

5 (e

=0
e E+ 2 (e +2), |2, |2M-D M1 (- 1)M+1+m(s 1) (e =1 1) (2a + 2¢);(2a + 2¢&),,
- (e = 1) Z . (M =21l —j—m) 42/t (e =1+ @) jyme(a+€);(a+ &)yl lim!
] m=

F e—1+4j e—14m 2a+2e+j 2a42¢e+m a+e P

YM\e—d+qg4j+m+l a+e+j ate+m 2a+2877 )
We would like to sum over g as well but we are unable to do that since the index is present also in
the hypergeometric function. To remove this difficulty we make use of the following lemma(
see[289])
For r € N,

(20)

r 1 14 .
)
) (=1 (=), » 1 .
-V, jZOjl (k);(2e — 1)Jk+r (Y 0z, (28 —14+k+7r xr),

Where A,,_19(2e—1):=g(2e) —g(2e — 1).
The proof could be easily done by induction, but our approach will be much more direct.

Proof. Firstly

i RO
fzen j'(2e — 1)k+]x

1
éZs—lmlfl (28 1+ 1%

zf(”(O)(y)< 11 )
(2€)k+j (2¢ _1)k+j

zf(”(O)(V) —k—j 2]“”(0)(1/) —k — %0y,
J! (2e — 1)k+j+1 B J! (B)k+]+1

k + x0,, oy
@Dy B ks %)

j=0

Hence obviously
1

1 y - 4
AZS 1(25 1)k lfl( 1+k!xr) - (_1) (k+xraxr)r(2£_—1)k+r1f1 (28_1+k+r1xr)
We claim that

(e man), = 2 gt Vo,
' J

j=0
It is enough to check this equation on monomials (x,.)™ since the expressions on both sides are linear
combinations of operators (xr)la,lcr. Since x,0,_(x,)™ = m(x,)"this reduces the problem to

verifying the equality
e DI, m
(e m). _]Zo 100,  m-p

But this can be rewritten as
'

G (") =00y () (5 0)

j=0
which is (aside the factor (k), m!) the so-called Chu-Vandermonde identity.
We will use this lemma in the following way. Obviously
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o]

1 1
(26—1+q)k1fl(2€—1)j|'q+k;xr):Z:(?”)AZ‘g Y2e = 1), 1f1( —y1+k;xr)'

r=0

By the lemma with
o e-1+m Z2a+2e+j 2a+2¢e+m a+e 2)
f(lxrl)'_4F3< ate+j at+e+m 2a+2€’|xrI
y—(e—1)+],26—1—(e—l)andk—]+l+mweget
(s—1+] e—1+m 2a+2e+j 2a+2c+m a+<€.I |2)
(5—1+CI)j+z+m5 e—1+q+j+m+l a+e+j a+e+m 2a+2¢""

YGIR

r=0
(—1D*(= T)s|xr|zsa|x|2 e—1+4j e—14+4m 2a+2s+j 2a+2¢e+m a+e¢ 5
+m), ) = F x|
oo

T_O -(/+l+m)s(£_1)j+m+l+r54 e=1+r+j+m+l a+e+j ate+m 2a+2¢

> (s

] > (DS (=) g|x, |2 (e—1 +j)s(<:1 + m)S(Za +2e +j);(2a + 26 + m);(a + &),

e s'(j+ 1+ m) (e = )j+m+l+r+s(a +e+j)(a+e+m);(2a + 2¢),

F(é:—:i+]+5 e—1+m+s 2a+2£+j+s 2a+2s+m+s a+g+5.|x|2>
"*\ e=l4r+j+m4l+s ate+j+s atetmt+s 2a+2e+5 77 )
Substituting this into (20), with some manipulations and performing a transformation of the
summation index r — r + s we get

[0¢]

> (7) e - 1)N-q%

q=0
> |X|Z(M_I+S)M! (_1)M+]+m(£ - 1)j+s(£ - 1)m+s(2a + 2£)j+s(2a +28)mes(@+ E)s(—QrssG+ 1+ M)y

e (M =21 —j—m) 4127+ (a + €) jy5(a+ &) mys(2a + 26)5(e — 1)j+m+l+r+25

F €—1+j+S e—1+m+s 2a+2£+j+s 2a+2s+m+s a-|—g-|—5.| |2
"\ e=1+r+j+m+l+2s a+e+j+s ate+tm+s 2a+2e+s 7
We can sum over g now. The series in question is

D (§) el = e % (~@rrs

q=0
By the representation (—q),,s = (—9,)""5t?],—,(from now on every parameter that contains the
letter t-t, t,, and so on — will be understood to be evaluated at 1; we will not explicitly mention this)
we get

JrUmlrist(j+ 1+ m)g

_ r+s 2 _ N —N £+2. t )
a0+ 2 = "o (T, B )

The known transformation
a a+te (1 o \-a aE_xr)
(Y e ) = A=) R () S

enables us to write this as

—N a+e+1 t
_ r+s 2 _1 N F ( : )
( at) (lxrl ) 241 8—1 |xr|2_1+t
S (=N), (a+e+1)
— E Do o [P = 10
74

We did not manage to sum the series explicitly but this will do. Substituting this result into (21) we
get the second intermediate result:
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i |xr|2(M_l+S)M! (_1)M+j+m(_N)q(a +e+1)g(e = Djis(e = Dimys(2a + 28) j15(2a + 28) (@ + )G+ L+ M)y
£ M =20 —j—m)! 4127+ m(a + &) jy5(a + €)mes(2a + 28)5(e — Dg(e — 1) jymerrsasit Imirtslql G + 1+ m),

r.s.q

c (l lZ)F<€—1+j+S e—14+m+s 2a+28+j+5 2a+2s+m-+s a+e+s
eSS T b j4mAl+2s  ate+j+s at+e+m+s  2a+2e+s

Where C,.;(|x,[*) = (=0 t1(|x,|> — 1 + )79

As it is clear from Lemma 1 all functions<F, with these parameters have the same principal

asymptotic behavior as € — oo. To get a more effective form we exploit the known relation between

contiguous hypergeometric functions

+ 2 2
O e o = )|

which holds for any hypergeometric function with at least one upper and one lower parameter.
By iteration we get:
F( a+m )_(a+2£)m (—m)j(Ze)jF( a )
a+2e+m/ (a), 'O(a+2€)jj! a+2es+j)
]:

;lxrlz

We apply this to the function

/ k ks
—_— 2a+2e+j+s2a+e+m+s a+e+s

51!:'4|g—1+]+s.£—1+m+s at+e+j+s a+e+m+s2a+2e+s
e—1+r+j+m+1+2s p k2 k1
3

kaks
as indicated, five times in total. That will get us 5 new series with 5 new summation indices, which
we name k; ... k<. The role of m will be played in turn by the parameters s,m + s,j + s,m + s and
j + s. The lower indices a + 2¢ will be in this 2a + 2s,a +¢,, @ +r+j+s+lande—1+7r+
L+ ky.
This way the expression (23) will change form to:
Z Qa+28)s(a+ &)mys(a+&)jys(e—1+r+j+s+Dpps(e—1+r+1+ky)jys

. (a+e)s(2a+28)m4s(2a+28)j45(e — Dppys(e — 1Dy
1...

(=), (=m = 8), (=] = 8)j, (=M — 8),, (=] = Sy (@ + &), (—a+ &), (—a+ &), (r +j + 5+ Dy, (
a +28),(at ey, (a+e),(e—1+r+j+s+ D, (e—1+r+1+ky) ki k! kslk,!
e—1 e—1 2a+2¢ 2a+2 a+e, |,
5F4<s—"“1+l+r+k4+k5 a+e+ky, a+e+k, 2a+ 26 + k, 0 1%l )
Substituting this into (22) will fortunately reduce the number of terms, for many of them will cancel
out each other. It can be checked by an easy calculation, for example, that the terms containing € — 1

but not g will squeeze to a single expression1/(e — 1)1 4k, +ks- We end up with this much more
tolerable expression:

[}

;lxrlz |

x| 2M=H M1 (—DMHAM(—N) (a+ e+ 1) G+ L+ m+ ),
(M =20 —j—m)lal2j+m(g = 1)q(s = Dyyrargrigf ImITl s gl kg Ly ksl k! k!

jlmrsq
kq..ks

(=), (=m = $), (= = ), (=M = )i, (=] = S (@ + &), (—a — &), (—a— &)y, (r+j+ 5+ Dy, (r + 1+ ka)yg
(2a +2&)i, (a + &)y, (a+ &)y,

e—1 e—1 2(a+¢) 2(a+te) a+e
Crs ()P | — (a+e) 2 ).
e=1+l+r+ky,+ks a+e+k; at+e+k, 2(a+¢e)+ky
We can reduce the complexity of this formula further by summing over all indices which do not
appear in the hypergeometric function or depend on &, i.e. over indices j, m, s. This gives
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o]

Z 26, [2M=O M (—DM(=N),(a+ e+ Dy(a+ )y, (—a— &)y, (—a— &)y, (r + L+ ko,
4l —1),(e—1) (Qa+ 28, (a+ &)y, (a+ ), Ul qlky ky ksl ky! ks!

Lr.q r+l+kyt+ks
kq..ks
, e—1 e—1 2a+2¢ 2a+2 a+¢e 2)
C(Jxr | )5F4<e—1+l+r+k4+k5 a+e+ks a+e+k, 2a+2(s+k1’|xrI ’
where
. C(lxrlz) =
o P (DI as) (=), (—M=8) ey (=S iy (~M—)k g (= =) (r+j+5+ D
jms (M=21—j—m)!12J+ ™M jim1s!

(=0 t(|x, 1> — 1+ )V 71,
We must deal now with the coefficient C(|x,|?). For that purpose we represent each Pochhammer
symbol in the series by (—a), = (—9,)*t* whenever the argument is negative and by (a), =
dkt**k=1in the opposite case (again, the default understanding is that every parameter t; is to be
evaluated, without explicitly saying so, at the point 1). Thus we get
Cxr|?) = (=8, .. (=0¢,)¥59,* 0, (—9,)"
it 2 j J
Ixrl 5(_1)]+7.ntig—7t673.5t;nz.zl-(_at)s g+l+k4—1t'§+r—1tq(|xr|2 —1+ t)N_q,

. (M -2l —j—m)!27*mjlImls!
jm,s

where t,_- = t it tstatstets, ter3s = tet,tsts and so on. The sum over s is essentially the Taylor
series.
As for the other two indices, it is clear that

= AJB™ 1
= 1+ A+ B)M-2,

Zn(M—Zl—j—m)!j!m! =L TATE)

e

We thus finally get
C(1xr?) = (=8, .. (=0 )50, 9T, (—0,)"

1 I4+ky— - _ 1
(M —2D)! te T = |2 Pt ) T (I P (L =ty p) + £ = DV (1 ~ 5 ter3s
1 M-21

I t724—>
2
Many things can be learnt from this form. Firstly: the last two parentheses are equal to zero when all
t — s are evaluated at the point 1. To avoid this we must differentiate them out. For that at least N —
q + M — 21 differentiations are needed. Available to us are k; + k, + k5 + 2k, + ks + 2r of them.
Hence:
ki +ky+ks+2k, +ks+2r+q+2l=>M+N.
Secondly: from the perspective of the parameter t we differentiate r-times a polynomial of degree N.
In order for the factor C._; not to be zero it must hold » < N. Analogously, the degree of t, isr —
l—14+ N+ M and this tells us that 1 + 1 < N + M. The same reasoning can be applied to any
parameter t;. From those and other facts, such as that in the formula (25) there appears the term
(—N)g, or from the presence of the term 1/(M — 21)!, we can easily compute upper bounds on
summation indices. (see[19]).They are:
r<N
2l<M A 1+I<N+M
q<N
ki <N
ki <N+M V,=2..5.
Corollary (5.2.20) [349]: For M,N € N, and x,. # 0:

RZ_,(x,, y,)
f Or - %y — 1, 2 (1, |2 — [y, |2 ezt )

a0 =0 (=17 1) (e o),
Bite Rs—l(xrlxr)
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Proof. From the fact

—1 2a+ 2¢
Rs—l(xr:xr) = 2F1( a+e | rl )

from and from the presence of the factor (¢ — 1),(¢ — 1);4y4x,+kiN the denominator it follows that
forx, #0

|Yr|2)N Re- 1( r»yr)d 1+£ v.)
s 1( Xr) X r)

— Z 0(8 _ 1—(7‘+l+q+k1+...+k5)) (8 N OO)
rigkq..ks

That is the speed of asymptotic decay grows with each summation index k4, k,, ks, k4, ks,7,q,1 as
€ — o, The slowest decay (and therefore the leading term) we get for the lowest possible values of
these parameters. But since ky + k, + k3 + 2k, + ks + 2r + q+ 21l > M + N, lowest values are
achieved for 2k, + 2r + 2l = M + Nand k; = --- = kg = 0 if this is possible, i.e. if M + N is an
even number; if M + N is odd, the decay is one negative power of alpha faster. Hence the leading
order term is

Oy - xp — |xr|2)M(|xr|2 -
1+£

_[M
0((8—1) 2 ) (g » o0).
Corollary (5.2.21) [349]. For M € Ny and x,- # 0

RZ_1(xy, y,) s M
Bigb’r - erZMm 1) = ((5 - 1) [2]) (e > o0).

Proof. The statement follows directly from the representation
Iyr - xr|2M = (lyrlz - goyr "Xr t+ |xr|2)M = (|y‘r‘|2 - IXTIZ - Z(yr “ Xy — |xr|2))M

M -
= 2" > (M) Or 2 = 10 MV (2 = 1y
N=0
The integral is therefore a series of terms, whose behavior:

_[M—N+Nl
0 <(£ - 1) 2 ) (g » ).
Corollary (5.2.22) [349]. For m € Ny, x,, # 0 and € > 0:

.]-(Zr Yr — Zp xr)mf(lyrl X yr)dﬂl+g(yr)

[Bl+£
(), (5, o,
= z v 1k Cer =y — |xr| )m Zkvyrxrf(lyrl Xy * yr)du“g(yr)

where Vz%l,uz = |ug |*|u|® = (uy - up)?.
Proof. The integral

f (Zr Vr — Zr xr)mf(l:)/rl Xy yr)d.u“-g(:)/r)

Blte
is unchanged upon replacing x,,y.,z. by Ux,,Uy,, Uz, for any orthogonal transformation U.

Without loss of generality, we can thus assume that x, = (|x,|,0,0,. ) and z, =
. rXr xr Xr
((Zr)li (ZT)Z’ O!Or ) Wlth (ZT)Z = 0. Then Xr* Yr = |xr|(YT)1' (Zr)l = xf ( r)z - 2| nd
Zy " Xy v (Yr)z
|xr| 1 ZrX |xr| .
We now change variables to hyper-spherical coordinates

()1 =71 cCos@
(M), =71 sin@ cos P

Zy "Xy =

(Vr)e—1 =T Ssin@ siny sin b ... sin 8,_zcos O,_,
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Vr)err =T Ssin@ siny sin b, ...sinO,_; sin 0,_,
(e—14+(e+ D\2)! i o o )

duttl = Do) (1 —=r®)E1resin® g sin® %y ...sin O,_sdrdedy ...do,_,.
The integration bounds are: r € [0,1],¢ € [0,7],y € [0,%],0, € [0, 7], ...,0,_5 € [0,7],0,_, €
[0,27].
For the sake of brevity put d?® := (1 — r2)¢ ¢ sin® 1pdrde.
Integration over all 8; will give us some constant C since the integrand does not depend on them. For
the rest we have

1

T T
Zy* Xy rsin @ cos Y
C TCoSQ + v, , —F———
||
000

x|

m
— Z,. xr> f(r, |x,|r cos @)d?® sin®~2 1 dyp

[o0) 1
_ m Zy " Xy
- (D] | (Ggreose
=0 00 .
m-l rsin @\
—Zr.xr> (UZT'xrlx—l(p) f(r, |x.|r cos (p)dZCI)jcoslt/)sin‘f‘zlpdt/).
T

0
Here and in the rest of the proof we assume & > 0 otherwise (in the case € = 0) integration over the

interval [0,27r] would rest with the parameter ¥ and in the case 3 + ¢ = 2 ¥ would not be present at
all.

These cases would however require only minor changes in the proof which continues as follows.
Let

Zy " Xy . T sin @
= | T COS Y — Zp. Xy, B:=v, , —
x| ||
By an easy computation we have:
1
f Vrl(a + ¢) (E)k | = 2k
costypsinfpdy = 1 1, o
Ta+e+s5)late+5) L # 2k
: (“ & 2) (a & z)k
0

Together with fact that

we obtain that (26) equals
1

m 1 — )
CZ ffAm 2kB2k £ (7, |x,|r cos @)d? .
k=0 a+e+

Now we take hyper-spherical coordlnates back. First we had x,.y, = |x,|(y,); = |x,|r cos pand
ly,-| = 7, so our result can be again interpreted as an integral over the unit ball in R3*€ if we replace

r cos ¢ by Tyrand put 7 = |y,|. Therefore
2y " Xy _ Zy- Xy Xy Yr _ Zr-xr(xr-yr B |xr|2)
= TCOS QP — Zp. Xy = =1 1% —Zp X, = PAE :
2 cin2 2 2 <|Yr|2 - (M)2> 2 .2
B2 = 2 risinfo T (1 — cos? @) _ E _ vzr.xr”yr-xr.
[ P b o |12 o |- |2 |oc-|*

Altogether we have
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7 (1 =)
2
cz [y, = b P02 w3 U 3R )
a+e+2 k! Ixrl B3+e

The result, if necessary, can be easily checked by performing change of variables into the hyper-
spherical coordinates.

Lastly, we must determine the constant C into which we have collected all unimportant constants.
But comparing our original integral with the result for m = 0 gives us the equality

f FQyrl % YR () = € ] £l % - 9 A2 Gy,

IB1+£ [Bl+£

hence C = 1.

Corollary (5.2.23) [349]: For m € N,

2
(Zr Yr — %y xr)mM 1+£ r)
s 1( r: r)

Bi+e
. (73), (13m0 xm s, 2

= , (o  yr
kjp=0 (a+£+ ) (k—j—p)jlip!x |2m—p=D) Li.

- |xr|2)m_2]_p(|xr|2 - |yr|2)1 Md 1+£ r)
£ 1( rr r)

Proof. The Bergman kernel depends only on |y,|?|x,|? and x, - y,—a fact easily seen from the
representation in terms of the Appell function (13). We can therefore apply.
Notice that the factor vyz"x can be written as follows
vyr,xr = (lyrl |xr|2 - (xr ) yr)z)k
= (lyrlzlxrlz - (xr Yr — |xr|2)2 - ler|2(xr “Vr — |xr|2) - |xr|
so we can expand it into a finite combination of terms(x, - v, — |x,-|%), (|1x,-1? — |y,-1%).Specifically,

k! 2p|xr|2(p+j) ' '
. — (Y — | DT (| 2 = |y ?).
— ] — I 71 pl
£ (ke —j —p)jtp!
Substituting this into the expression and performing some manipulations we get the required result.
Corollary (5.2.24) [349]: Form € N, and x,. # O:
RZ_1 (xy, yy) _m
| @z x2S 00 = 0 (e - 07TH) o)
e=1\~rr Ar

B1lte

Proof. According we get for x,. # 0

4)k’

v;:xr = (_ 1)k

Xy,
f(zr'yr_zr'xr)m = 1(Tyr)d 1+g r)
51( r; r)

pi+e
e (-5, (), 0
Kipto (ates ) (k —j = p)!j ptx [2m=p=D) <(E g )
Since j + p < k and 2k < m the principal term is at most
m-|3]
0 (s—1)| ‘ _0(5—1)”).

Corollary (5.2.25) [349]: For x, € B'*¢,x, # 0, > 0, and f € C®(B1*#), there exist differential
operators Q; := Q;(A, x,, V, |x,|?), involving only the Laplace operator 4, the directional derivative
x, - V and the quantity |x,.|?, such that
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— Rg—l(xrl yr) 1+£ Qlf(xr) IR
D)= | FON R 0N = D -1 €
where Q, = 1 and
_8_11_|xr|2 (8_1)(1_|xr|2)2
Q1= 2 |x, |2 Xpt V + 4()|x, |2 (xr-V)2+4( )(1_|xr| )?A.
Finally, for x,, = 0 it holds
N A (0)
(Be-1/)(0) = (¢ > ).
1 ;4i(e—1+(12ﬂ+1).

Proof. Let us deal with the simpler case x, = 0 first on which the general approach will be
demonstrated.
The problem is to determine the asymptotic expansion of the integral

loosf = j FODAILEG).

Blte

Remember that

1+£(yr) = (a+ 28)8 1(1 - |Yr|2)£ 1d1+£yrr (a+2&),_q =
We expand the function f(y,) into its Taylor series

2M -1 TV" 0
Fon) = Z(y )*f(0)

r(e—1)
7-[(1+s)\2 F(E).

+ Hyy (Yr);

and plug in to get

loaf = Z g | O DR @O + [ OG0
Blt+e Bite
Notice that only the terms of even degree in the first integral survived. We can estimate the remainder
term H,,,(y,.) by the Taylor theorem as follows

|Hon ()| < € max max |37 f(y)||y- Y| < Cly,|*M.
lv|-2M yep1+e

So
] Hyydpiti(y) < C f Iy 12Mdus*i(y,) = f Uy 1DMdui*s ()
]Bl+£ Bl+£ 1]331+£
M
M (a + 28)8—1
—¢C 1) f Al o)
k=0(k) Bite EmlHIT (a + 28)8—1+k

M U
CZ(k (=1)k ,(l‘ - CZF1< —M 18 1) - CF(E,:)F(WFHM) _ @t ou
( ) )’ F(s— 1+M)F(a+s) (s— 1)M
=0((e —1)™).
This stems again from the identity
(a1 a, ) _ I'la+28)l(a+2e—a, —a,)
21\a + 2¢’ F(a+2e—a)l(a+2e—a,)
which is true for a + 2e > a, + a,.
It remains to deal with integrals

f Or + V)22 (9,) £(0).

Bl+£
Now, we argue that the operator Vcan be treated as an ordinary vector, i.e. it suffices to compute the
expression
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f Oy - z-)**dpg*5 (yy)

B1lte

and then in the result replace every occurrence of( z,.) ; by d;. To conclude the first part of this proof
it therefore suffices to show that

(2k)!

2k 1+

i(}Ir ZT‘) dtu S(Yr) k'4k( )
B &

This could be, of course, computed directly can also be used in the light of the following

representation

f - Zr)z"du“s(yr)—hmt 2k ] (v tz,)?*RZ_, (tz,, v, )du: ¥ (),

IB1+£ Bl+£
i.e. apply to x, = tz, then divide by t* and let t — 0.
In the case x, # 0 the approach is almost identical. First we expand the function f into Taylor series
around x,.

|z,

o = 3y (0= IO 4, 0
We have
(Bs—lf)(xr) = Z %(Bs—l (((Yr - Xr ) ' V)kf(xr))> (xr) + (Bs—lHZM,xr)(xr)-
k=0

=:(a+28&)g
The remainder term can be estimated using the Taylor theorem:

|Hom ()| < € max max |87 fFDI(r — x,)| < Cly, — x,|2M
ly|=2M y,eB1te
for some constant C, whence

(BeesHaas, ) ) = 0(Becs Iy = %, ™)G)) = 0 (e - 0712} (e o0)
where the last equality.

Thus again, we have to deal only with the terms (a + 2¢), and they can further be modified by
replacing V by z,.:

1 k
(G, + Zs)k = EBs—l (((yr - xr) ) Zr) ) (xr)
So we must only be able to determine asymptotic behavior of the Berezin transform of a polynomial.

The fact that in this case there exists an asymptotic expansion in negative powers of € + 1 follows
from, from where it is clear that terms (a + 2¢); can be written as finite combinations of functions

5% whose asymptotic expansions are of this type. From that representation it is also possible to see

21

the Stokes phenomenon, since for x,. = 0 the ratio equals 1 but for 0 < |x,.| < 1 it decays in a way
described .

Dependence of differential operators Q; on 4, x, - V and |x|? only (that means on |z,|?, x, - z, and
|x,-|?) is a direct consequence 5. That Q, = 1 stems from the fact that a, + 2¢ = 1 and a, + 2¢ is,
according to Corollary6,0((¢ — 1)71).

To compute Q; much more work is needed. We are dealing with the expression a, + 2 + a, + a5 +
a, + 6¢ —the term as + 2¢ is according already 0((¢ — 1)~2). Application to a; + a, + a; + a, +
6¢, in general, leaves us with 19 terms. Fortunately many of them are negligible according (those for
which m — j — p > 2) and collecting expressions involving the same integral will reduce the number
to 5 terms:

NE RZ 1 (%0, )
— (2 Y —z -x)m—‘g LI 0rl ul*e(y) =
i[srnzzlm' " yr " ’ € 1(x7'; r) T
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X, " Z UZZ Xy
( — - — > f(Yr'xr_lxrl ) Re- 1( - yr)d 1+£ r)
B1lte

|xr|2 (2a+25+1)|xr|2 £ 1( r; r)
UZZT-,XT 2 2 Rg—l(xr! yT') 1+g
- 2 (lxrl - |yr| )— r)
(2a + 2e + 1)|x,| e R._,(x,,x,)
vzzrx X"z,
<(2a + 2 + 1)]x,.|*
vi X,
e 8) .[(yr Xr — ) Re- 1( . yr)d 1+£ yr)

(2a+2£+1)(2a+2€+3)|xr| R._,(x,,x,)

(x, - z.)? _ vz (1422, - x;)
2|x|* 2(2a + 2e + 1)|x,|*

Uz, %y )
2(2a+2£+1)(2a+2£+3)|xr|4> i(” r
B &

_ Ixrlz)z £ 1( r;Yr)d 1+g r)
£ 1( Xy X r)

Vg x (xr, )
o f (|xr|2—|yr|2>2Md 1+2(y,)
1+8

8(2a +2e+1)2a+ 2 + 3)|x,|* R._,(x,,x,)

+0((e — 1)72).
Each integral (if we for a moment put aside the factor 1/R,,,(x,, x;-)) a sum of functions cF,.
Numbers of terms in these sums are, in general, again very high (in the case N = 2, M = 0 even as
high as 108), however since we are interested only in principal terms and the order of asymptotic
decay grows with summation indices ky, k,, k3, k4, ks,7,q,1, as can be seen from the proof , it is
enough to consider only those summands for which
ki+k,+ks+k,+ks+r+q+1=1
This together with the condition
ki+k,+ks+k,+ks+2r+q+2l=>2M+N
substantially reduces the number of terms. For the above-mentioned case N = 2, M = 0 we will be
left with only 2 terms, both of which in addition contain the same hypergeometric function, so they
can be combined together. Let us work this case out with more details, so we can demonstrate the
approach. From we see that when M = 0 thenl = 0. We substitute k, + k, + ks + k, + ks + 7 +
q = 1 into the inequality to get
r+k, =1,
but it also must be the case that r < 1 and k, < 1. This is only possible in two cases: r = 1or k, =
1 (with all other indices equal to zero). We find

f (lxrlz |yr|2)2R§ 1(xr! yr)d.u“-g(%”)

B1lt+e
I x|

FT1 =1 2a+2e¢
=225 (1= ) (°

(e—1)+1 a+t+e

) |xr|2) + 02'

where 0, denotes a term of order O ((s —1)7%,F, (‘9 B 1a f‘; +2¢, |xT|2)>.

Similar considerations in the other cases give us:
f (yr "Xy — |XT|2)2R3 1(xr: :Vr)d.ul-l-g(yr)

Blte

C1lx |

_ = 2a+ 2
28 |xr|2)3F2 (8 (3: & 1 @ & I rl )+02'

-1 a+e¢
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f O - %0 — 12, [0 12 = [y DRZ G 9 At ()

B1lte

|xr|2 2 e—1 8’:_/1 2(a+8) 2
=== InPR (L T ST ) vo,
[ O30 = B IRE A G 9 = b om (71 2@ 02) 40,
pire a+e+1
f (12,12 = [y, DR, () A ()

1+£

|xr|2F<£—1 2(a+¢) 2(a+¢) |x|2) at+e+1
- 32 r -

e——l(l = |x %)

2 a+e 2(a+ &)+ 1
e—1 2(a+e). 2)_ 2 e—1 2(a+e), |2
oA as il 2 (U7 T )
x| e—1 e—1 2(a+e) 2
+£—13F2( e—1 a+€'|xr|)+02'

Substituting this into (27) and performing some manipulations we obtain
4

1 RZ_ (x, )
_ e m_&-1\Vm Jr dul*e
z — O zp — %" 2,) R ) ters ()

[Bl+£m=1
e—1 2(a+¢
1v2 , (a+e+ 1)1 - |x]?) ZFl( ( ! ), |xr|2)
= — Tr +Zr'xr J+€+
2 (a+e) +D|x 2e -1 F, (g -1 2(a+e)., |2)
2 a+e T
F (8—1 e—1 2(a+€)_|x |2)
+12(Zr'xr)2(1+a+€)(1_|xr|2))_|Zr|2|xr|2(1+|xr|2)2 1 ce—1+1 a—+ ¢ P
4 % 12Q2(a + &) + e —1 F, (e—l 2(a+e); |xr|2)
a+e
e—=1 2(a+¢) 2(a+¢) )
2 3F2 ;lxrl
1 Vg, a+e 2(a+8)+1 £ 0((e — 1))
42b +1 e—1 2(a+e)., 2 '
2F1 !lxrl
a+e
We complete the proof by using, replacing vxrzxr = |z, |*|x.|* = (z, - x,)* and (z,); — d;and
1+¢

remembering that a = _(T)'
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Chapter 6
Weighted Reproducing and Berezin Transform

We generalize the recent result of C. Liu for the unit disc, as well as the original assertion concerning
the holomorphic case. We also obtain a formula for the corresponding weighted harmonic Bergman
kernels. We give is in the setting of the holomorphic and the harmonic Fock spaces, respectively.

Section (6.1): Weighted Reproducing Kernels and Toeplitz Operators on Harmonic Bergman
Spaces on the Real Ball

For B™ be the ball in R*,n > 2, and dz the Lebesgue measure on B™. For « > —1, consider the
measure

dAy(2) i= c,(1 - |z|*)*dz,

where

F(a+%+ 1)

n
nzl(a+ 1)

Co =

is chosen so as to make dA, a probability measure. For simplicity, we will usually assume that « is
an integer.

The harmonic Bergman space L} .., (B"™, dA,) consists, by definition, of all harmonic functions in
L?(B™,dA,). It is known that point evaluation functionals are continuous on the harmonic Bergman
space, so it possesses a reproducing kernel; i.e., there exists a function R, (x,y) on B" x B",
harmonic in each variable, such that

fG) = j F IR, Y)dAL()
]Bn

foreach f € L2, (B",dA,) and for each x € B".

The Berezin transform of a bounded linear operator T on L (B™,dA,) is the

2
harm

function T%(z) on B"defined by

(T“Rqs , Raz) _ T'Rqy(2)
<R0£Z !Raz> Ra’(zl Z) ’

where, for the sake of brevity, we have denoted R,,(w) := R,(z,w).

T(2) =

Finally, for f € L (B™), the Toeplitz operator T; with symbol f is the operator on L}, (B", d4,)
defined by

Trg = Qu(f9),
Where Q,: L} . (B, dA,) — L}, (B", dA,) is the orthogonal projection. That

is,

19() = [ 9@ R DAL,
]Bn
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It was shown by C. Liu [327] that if n = 2 (so that B? is just the unit disc in the complex plane C),
then for f € C(B"),

79~ f D
uniformly, and

170 = NIf 1l 2
asa — oo,
This extends the same result known previously for Toeplitz operators on Bergman spaces of
holomorphic functions, which finds important applications in mathematical physics (quantization
on K"ahler manifolds; see e.g. [324]). generalize Liu’s result also to n = 3. We first establish a
(reasonably) explicit formula for the kernels R, (x, y); this is done. Our main result (the
generalization of (1) and (2)) is proved. We remark that we actually obtain a somewhat stronger
result than (1); namely, we show that for any f € BC(B™) := C(B™) n L (B™) we also have

7@ - f @
asa — oo forall z € B™. This gives a new piece of information even for the original case n = 2.

In this part we will find an explicit formula for the reproducing kernel of the space L2 ... (B", dA,)

harm

of all harmonic functions on the unit ball in R™ square-integrable with respect to the measure
dA,(y), when a is an integer. Let H,,, (R™) denote the space of the harmonic polynomials on R"
that are homogeneous of degree m.

For each x € R, there exists a unique function Z,,(+, x) € H,,(S) such that

p@>=fp@ﬂm@mﬁw@x 3)

S

for all p € H,,,(S). The polynomial Z,,(:, x) is called the zonal harmonic of degree m and pole x.
See e.g. [323, p. 94]. It extends to a function on R™ x R™ by setting

Zm(x,y) = Ix|™y|™Z2m (x/|x], ¥/1¥])
form > 0,andform =0,Z, = 1.

Passing to polar coordinates z = r& (r > 0,¢ € S), the Lebesgue measure becomes

n

212
rz)

From (3), we have therefore for any p € H,,,

dz =

" 1drdo(§).

f pMZn(x,¥)dA,(y) — SZ

]En
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_2F(2+a+1) :

a%r(%) !Tn—l(l — rz)a!p(rf)zm(x, rf)do-(f) dr
or (2+a+1)
- (azu p(an) ) Of rHAmIl(1 — r2)e Sf p ()2, (x,€)da(8) | dr
B 2r (g +a+ 1)

1
p(x) j rn+2m—1(1 _ rZ)a dr
0

ar ()

_2F(%+a+1)a!(m+%—1)!

a!F(%) (a+m+%)! P) @

for each x € R".

Now recall that for any orthonormal basis {¢,} of L2....(B™ dA,), the reproducing kernel R, is
given by

R,(7) = ) 0;(09,0).
=1

(See e.g. [332].) Now each H,,, is a closed subspace of L%, .., (B™, dA,), the spaces {,, and 7{; are
orthogonal if m # k, and the span of all H,,,m = 0, is the whole Lﬁarm (B™,dA,); in other words,

oo
@ }[m = L%larm (Bn’ dA(x)-
=1

dim Hp,

Thus if we choose a basis {omi}i=1 in each #,,, so that

dim Hy,
> 009;0) = Kn(x,y)
=1

dim Hy,

is the reproducing kernel of #,,,, then U;';jzo{q)mj}j:l is a basis for the whole L% ... (B", dA,);

consequently,

Ky) = ) Kn(o). (5)

On the other hand, from (4) we get

(@) (e +3)

Kon () = F(§+ a+ 1) (m+%— 1)!Zm(x'y)'

Thus we arrive at the following result.

Proposition (6.1.1)[318]:
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r(3)aeme2)

1R (%, y) = Xm=o F(E+a+1)(m+2—1)! Zm (X, Y).

It should be noted that this result is definitely not new, see e.g. [325, p. 32 (1)], or [326, Section 2],
or [329, Proposition 3], but it is convenient to recall it here.

For a an integer, the last sum can be summed explicitly. Recall [323, p. 178] that the usual Poisson
kernel

1= |x|?|yl?

P(xy) = 0
(1=2x-y+ |x[?|y|?)z

is equal to
P(LY) = ) Zn(6)
m=0

for x,y € B. Hence, for a an integer (¢ = 0,1, 2,...) we have

(t%+ a)P(tx,y) = i (t%+ a) Zn(x,y)
i (t— + a) t"™Z,(x,y)

m=0
= Z (m+ a)t™z,,(x,y)
m=0
By iteration it follows that
d n d n -
— — cee — —_— = m
(tdt+2) (tdt+2+a)P(tx,y) z m+2+a)t Z.,(x,y)
m:

Consequently,

[}

d n d n n n
(tdt+2> (tdt+2+a)P(tx'y)|t=1 Z("“Lz) (m+5+a) "2, (x,y)

m=0

=§:(m+%+a)!

(meio1)

n
— - (3 :(0;;'1) ! a! Ry (x,y)
H 7 H

m=0

so we get the following formula.
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Proposition (6.1.2) [318]: Let x,y € B.Then

n
Ry (x,y) = - (nr (2) )DaﬂP(tx, Y)le=1 (6)

7+0(+1

where

D —(td+”)gd-ﬂﬁ+g (td+"+ )
el \"dt  2/\dt 2 ac 27 ¢
Recall that the Mobius transformation ¢, is the smooth map of B™ onto itself defined for each z €
B™ by

w—z|?z — (1 = |z|)(w — 2)
1 - 2{w,z)+ |wl?|z]?

Pz (W) =

Where (w, z) := w,z; + -+ + w,, z,, denotes the usual scalar product in R™. In the next lemma, we
summarize the properties of the mapping ¢,. The proofs can be found e.g. in [331].

Lemma (6.1.3) [318]: For every z € B", ¢, has the following properties:
() ,(0) = zand @,(2) = 0,

(i) ¢, is an involution, i.e. @, o @, = id, the identity mapping,

(iii) the identity

(1 -z - [wl|?)
1 — 2(w,z)+ |w|?|z|?

1-lp,w)I* =

holds for every z,w € B",
(iv) the identity

1—|z|?
1 — 2(w,z)+ |w|?|z|?

lp:(W)| =

holds for every z,w € B™.

Theorem (6.1.4) [318]: If f € BC(B™), the space of all bounded continuous functions on B™, then
for each z € B",

9@ - f @
as a — oo through the integers.

For f € C(B"), the convergence is even uniform on B".

Proof: By the definitions,

(TfaRa’Z' Raz) _ (QafRaz:Raz> _ <fRaz:Raz> _ f(W)Raz(W)Raz(W)
R,(z,2) ~  Ry(z,z)  R,(z,2z) o R,(z, z)

T9(2) = dA,(w)
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|Ra(z,w)|?
:BJn‘f(W) R.(z,2) 4. (W)

Also, by reproducing property,

2
ff( B2l dn, o = f0 522 <

Hence

IR a( w)l?

7 (2) - f(2) = j (Fow) - 1) T

dA,(w) f + f ,
lpz(W)|=8  |@z(W)|>8

forany 0 < 6 < 1.

By the continuity of f, we may, for each fixed z and € > 0, choose § > 0 so small that
lfw) —f(2)] <« (7)

Whenever |p,(w)| < 6. Then

S 8 |Ra(Z; W)lz
R,(z, z)

1

dA,(w) = ¢

lpz(w)|<6
To estimate the second integral we use the following lemma:

Lemma (6.1.5) [318]: There exist constants ¢ and C, depending only on a and n, such that for all
z,w € B",

C
IRy (z,W)| £ ——52 (8)
[z,w] 2~
and
Cn+a < Ru(z,2) < Cn+a 9)
[z,z] 2~ [z,z] 2~

Here, for the sake of brevity, we have introduced the notation
[z,w] =1 —2(z,w)+ |z|*|w|%

Postponing the proof of the lemma for a moment, using (8) and (9) we can estimate the integral
over |p,(w)| = 6 by

2 2 2\yn+a
<ol [ Belamsan.S [ S dam
|02 (W)[>6 losmI>s o WI>8
N B e U1 b U
© s 2w (1= w5
< 20fll. & [ a-lempy—
=Wl PRGOS 7<) (1= wi5"
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Note that the measure

dx

W = Ty

is invariant on B", in the sense that

lpa)I"dx
(1= |paw)[2)n*e

dA(@q(x)) = dA(x),

by Lemma (6.1.3), parts (3) and (4).

Hence, making the change of variable ¢,(w) = x, we can continue with

<Nﬂu f(1|ﬂ>ﬁwﬂm—zwm; -fm—uwww
loz(w)|>6 |x|>8 |x|>6

2

< 2||f||oo —Ca(1- 62)¢

Since ¢, ~ a™? as a — oo, the right-hand side tends to zero as a — oo.

Hence

lim + < &

a—00

lpz(W)|<8  |@z(W)|>8

If £ is not only bounded and continuous on the ball but even continuous on its closure, then for each
€ > 0 we can choose § > 0 so that (7) holds for all z € B™ simultaneously, by uniform
continuity. This completes the proof of Theorem (6.1.4).

The proof of (8) actually occurs in [328, Lemma 3.1] taking t = 0,s = «a inthe operator Q,
there. For |y| = 1, see also [326, Lemma 2.7]. A simple proof of (9) can be found in [329,
Proposition 4.1]. For a an integer, it is possible to give another proof using the formula (2). Since
this might be useful for other applications we include it for completeness.

Consider the sets of functions

p(t,z,w) (1= 2|z wl) |
Agr = 3 I :p a polynomial ¢,
[tz, w]2 [tz, W]z
pt,zw) (1= ezl wl?\ .
Ag:= 5 q T :p,q a polynomial ¢,
[tz,w]Z [tz, w]z

Differentiation yields

d d, d p(t,z,w)(1 — t?|z[*|w[*)"
Br = B+r
Y Yar (2, w]Er
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p 2112 |2)7
to-(t,z,w) - (1 —t?|z|*|w|?)
i W (1= Elzf?w]2y
[tz,w] 2~
t-r-pt,z,w) - (=2t%|z|%|w|?)
+ B+r
[tz,w] 2~
p+r

5— (6, z,w) (1 = 2|z |w|*)" - ¢ - (=2(z, w) + 2t|z|*|w|?)
o B+r+1 (10)
[tz,w] 2

. (1 _ t2|Z|2|W|2)T—1

Since

—2{(z,w) + 2t%|z|?|w|? = [tz,w] — 1 — t?|z|?*|w|? + 2¢2|z|?*|w|? = [tz,w] — 1 + t2|z|*|w]|?
= —(1 - t?|z]*|w]*) + [tz, w]

The last term in (10) can be rewritten as

+
BET ptzw)- (1 = 21zl Iwl?)
- (1 = ElzPwl)
[tz,w] =
BT pezw)- (1 = 2zl lw?y ™
[tz,w]f + 71+ 2
Thus we get
d
taAﬁ,r € Apy1r-1 T Agrir+1s r> 0,
tEAﬁ'O € Aﬁ+1'0 +Aﬁ+1,1, r = 0

For arbitrary ¢ € R we thus get

d
(t_ + C) A,B,T € Aﬁ + A.B"'l

dt
and
Da+1Aﬁ,r € Aﬁ + ot Aﬁ+a+1'
—t2|z|?|w|? .
Applying this to W € A,,_1 1 We thus obtain by (22)
Ra(Z, W) € An—l + oo + An+a|t=1- (11)
Now

[zw] =1 - 2(zw) +|z]*lw|* = 1 = 2|z[|w| + |z]*|w|
= (1= lzllwh?*> 0
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And
[z,w] < 1 + 2|z||w| + |z|*lw]? = (1 + |z|]lw])? < 2%
SO
1—|z|?lw]* _1—|z|*|w|?

(2, w2

0<

= 1+ |z[lw] £2,
1—|zllwl

and thus every function from A; has fort = 1 the form

something bounded on B"
[z, w]/2

From (11) we thus get

something bounded on B"
[Z, W] (n+a)/2

R,(z,z) =

which proves (8).

To prove the second half of the lemma, note that for z = w,

R, ( )—(td+ ) <td+ +)1_t2|2|4

«\Z,z) = I nj.. I n+a 1= tlz2)"
—(td+ ) (td+ + ) -’
T\ttt (1 —t|z|?))n1

Now again, for any polynomial p,
)

(td ) p(t1212)  pt1z1?)  tap@1zP) (e, |212)pBlz)?
dt " ) A—tzPF T A —tlzZPF T A —tlzF T (1 - tlzP)F

Gmumq+t%p“”R0“’wmq W 1zDBlZ p' (G lel?)
- (1 —t|z|?)F+1 (1—t|z|DFT ~ (1 - t|z|2)F+T’

where p* is also a polynomial, which further satisfies p*(1,1) = Bp(1,1). By iteration and taking
|z|] = 1,t = 1, we get

_ p(z?)
Ra(z,2) = (1- |Z|2)n+a’
where P is a polynomial satisfying
n+a- 1)

Thus R, (z,2z)(1 — |z|*)™** is a positive function inside B™, which has a nonzero finite limit (12) at
the boundary. Consequently, it has positive and finite lower and upper bounds ¢ and C, respectively.
This concludes the proof of Lemma (6.1.5).

Corollary (6.1.6) [318]: For any f € C(B"),

”Tf(a)” = |Iflle asa — oo,
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Proof: From the Schwarz inequality we get

(@)
|<Tfa RO»’Z'RO»’Z>| _ |<fRaZ!Raz)| _ “fRazllellRaz”LZ < ”f”oo”Razlliz

7 (a)
T (2)| = = <
7 | Ra(z, 2) Ry(z, 2) IRez1I72 IRe 122

= lIfle

Taking the supremum over all z gives
1T < Iflleo: (13)
On the other hand, by Theorem (6.1.4),
9@ - f@),

forall z € B™. As ||Tf(“)|| > |’I~"f(“)(z)|and |’I~"f(“)(z)| - |f(2)], thus

lim inf| 7] > £ (2)]

a— oo
Taking again the supremum over all z € B" yields

lim inf[|71|| > suplf (@) = If . (14)
zEB™

a— oo

From (13) and (14) we therefore have
: F(a)|] —
lim [| 7] = 1f 1l

Which proves the “deformation estimate” (2).

rEE)meS)
It should be noted that this result is definitely not new, see e.g. [355,p. 32 (1)], or [356, Section 2],
or [359, Proposition 3], but it is convenient to recall it here. For( € — 1) an integer, the last sum can
be summed explicitly. Recall [353,p. 178] that the usual Poisson kernel

Corollary (6.1.7) [349]: Rj(g_l)(xn,yn) = Xm=0

1- |xn|2|Yn|2

P(xnryn) = +2
(1 - an *Yn + |xn|2|yn|2) 2

is equal to

P(xn,yn) = Z an(an’n)
m=0

for x,,, y, € B. Hence, for (e-1) aninteger (¢ —1 = 0,1, 2,...) we have

d - ([ d '
(ta-l- £ — 1) P(txn::Vn) = Z (ta-l' €= 1) Zin(xn'yn)

m=0
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= Z (ta +e— 1) t™Z (e vi)

m=0

_ Z (m + & — DE"ZL, (o, y)

m=0

By iteration it follows that

(td+2+g> (td+ + )P(t ) = i( +2+8) ( +o+ )th’( )
dt 2 dt &)\t In mt+— m+ote Xn) Y
m:

Consequently,

(td+2+e) (td+3)P(t )| i( +2+£) ( +3)th’( )
dt 2 dt 2 X Yn)lt=1 = m 2 m 5 X Yn

m=0

o 3¢
B m+ 7) P
= mzzo (m + 5) : Zin(xnrYn)
r(341)
= FEZZ—_Zl_S)?RJ(sl)(xn: Vn)

Corollary (6.1.8) [349]: Letx,,y, € B.Then

Rj(s—l) (X, V) = D P (txp, yn)le=1

where

D_(td+2+5)< d +2) ( d 33)
¢ \Udt 2 ac T
Remark. The formula (6) has apparently also appeared in [355,p. 32 (1)], though in the somewhat

different form

&

j d
R - e T ) [
p=vI

={lynl

Recall that the Mobius transformation ¢, is the smooth map of B2*¢ onto itself defined for each
Zn E IBZ"‘S

Wy, — 2z 1%z, — (1 = |2,]*) (Wy, — 2,,)
1 — 2<Wn;Zn)+ |Wn|2|Zn|2

Pz, (Wn) =
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Where (wy, z,,) := (Wp)1(Zp)1 + - + (Wn) 246)(Zn) (2+¢) denotes the usual scalar product in R2*€,
For every z, € B**%, ¢, has the following properties:

(i) ¢, (0) = z, and @, (z,) =

(ii) ., is an involution, i.e. ¢, ° @, = id,the identity mapping,

(iii) the identity

(1 = lzx ) (A = Iwn|?)

1 - Z(Wn;Zn)‘l' |Wn|2|Zn|2

1- |(pzn n)|

holds for every z,, w,, € B>*¢,
(iv) the identity

1- |Zn|2

-2 <Wn;Zn) + |Wn|2|Zn|2

|§0;n (Wn)| = 1

holds for every z,, ,w,, € B?*¢. Now we have(see[350]).

Corollary (6.1.9) [349]:. If X f; € BC (B?*¢), the space of all bounded continuous functions on

B2*¢, then for each z,, € B2*¢,
DT > Y f @)

as € — oo through the integers.
For Zf]. € C(B2+¢), the convergence is even uniform on B2*¢,

Bold. By the definitions,

(e-1) pj i , .

z ,T,,(g—l) (2,) = z (Tfj R (5_1)Zn’R] (5—1)211) _ z (Q(s—l)f)’R] (e-Dzp’ R’ (e—l)zn> _
T " j(e 1)( n) Rj(s—l) (Zn' Zn)

Z E(Wn)R (e 1)zn (Wn)R (e— 1)zn( n)

(2—1) (an Zn)

dA(s—l) (z,)

B2t+e

; 2
|RJ n(z,w )|
(e-1)\“4n» VWn
= (w, . dA._(w
Blezf}( Tl) RJ(s—l)(Zn:Zn) (e 1)( n)

Also, by reproducing property,

(e )( n» n)|2 (j(s )zn (e )zn
[ Y5 R,(Ell)( T3 ey n) = ) fy (o) g PR 2 S ()

IBZ+£

Hence
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|Rj(s—1) (Zn, Wn)l2
- Z f] (Zn)> Rj(s—l)(zn:zn) dA(s—l) (Wn) f + f ’

Pz, (Wn)ISE @z, (Wn)|>8
forany 0 < 6 < 1.

By the continuity of ¥ f;, we may, for each fixed z, and £ > 0, choose § > 0 so small that

D fw =) f)|<e

Whenever |¢, (w,)| < &.Then

. 2

< gj R (e-1y (20 W) |

B Rj(s—l)(znrzn)
1

dA—1)(Wy) = €

|‘Pzn(Wn)|55

Corollary (6.1.10) [349]:. There exist constants ¢ and C, depending only on( e — 1) and (2 + ¢€),
such that for all z,, w,, € B2*¢

|Rj(s—1)(Zn: Wn)| = 2e+1
[, wn| 2
And
C i C
et < R ey (Zn, 7)) < 2e+1
(2, 2,] 2 (2, 2] 2

Here, for the sake of brevity, we have introduced the notation
[Zn, W] = 1= 2 (25, wp) + |2, |? [, |2

Postponing the proof of the lemma for a moment, using (9) and (10) we can estimate the integral
over |@,, (w)| = & by

[ =2, [ Betenla
B g 0 Rj(e—l)(znrzn) (e=1)Vn

¢z, (zn)|>8 | @2, Wr)|>6
c? (L= Iz
=2 Zf} oo? f [Zn;Wn]28+1 dA(S_l)(Wn)
|(Pzn(Wn)|>5
<23y & (1= 1271 = w7 dw,
= i — C(e—
f] o C (e-1) [Zn’Wn]2£+1 (1- |Wn|2)2+s
|(Pzn(Wn)|>5
C? 2\ 28+1 dw,
<2 ZfJ Tc(s—l) f (1 - |(pzn(Wn)| ) (1= |w, |2)2+e
o n
|(Pzn(Wn)|>5
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Note that the measure

dx,

o) = G T e

is invariant on B2*¢, in the sense that

lpg () [**dxy,
1- |(pa (xn) |2)2£+1

Hence, making the change of variable ¢, (w,) = x,, we can continue with

dA(@a(xp)) = ( = dA(xn),

<2l Sy [ @i

|92, (Wn)|>6 |xp|>6

=235l Sy [ G-V,

|x|>6

<2 Y15l S - 53

Since ce—qy ~ (¢ —1)***/2as e — oo, the right-hand side tends to zero as & — co.

Hence

lim + < ¢

£—> 00

|<Pzn(Wn)|56 |<Pzn(Wn)|>6

If f; is not only bounded and continuous on the ball but even continuous on its closure, then for
each ¢ > 0 we can choose § > 0 so that (8) holds for all z, € B2*# simultaneously, by uniform
continuity. This completes the proof. The proof of (9) actually occurs in [328, Lemma 3.1] taking
t = 0,s = (&-1) in the operator Q. there. For |y, | = 1, see also [356, Lemma 2.7]. A simple
proof of (10) can be found in [359, Proposition 4.1]. For (e-1) an integer, it is possible to give
another proof using the formula. Since this might be useful for other applications we include it for
completeness.

-
pj(t:Zn:Wn) 1 _t2|Zn|2|Wn|2 .
Apgy = 3 T :p; a polynomial ¢,
[tz Wy ]2 [tz wn]2
pj(tyzn;wn) 1 _t2|Zn|2|Wn|2 .
Ap:= 5 dj T :pj,q; a polynomial ¢,
[th’ W‘)’l]i [tzn! Wn]z

Differentiation yields

d p](th Wn)(l t2|Zn| |Wn|2)
dt B+r
[thrWn] 2

Aﬁr—
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op;
t =7 (2, wo) - (1 = t21z |2 Iwy )"

= B+r ! (1 - t2|Zn|2|Wn|2)r—1

[tz,, w,] 2~
trp;(t, zy, wy) - (=2t%|2,|* W, |?)

B+r
[tZTU Wn] 2

’ (1 - t2|Zn|2|Wn|2)r—1

+r
ﬁ 2 ' p](t; Zn, Wn)(l - t2|Zn|2|Wn|2)T - (_Z(Zn; Wn) + 2t|Zn|2|Wn|2)

B+r

[tz Wyl 2 !

Since

_2<Zn» Wn> + 2t2|Zn|2|Wn|2 = [th: Wn] -1 - tzlznlzlwnlz + 2t2|Zn|2|Wn|2
= [th, Wn] -1+ tzlznlzlwnlz = _(1 - tzlznlzlwnlz) + [th; Wn]

The last term in (12) can be rewritten as

+r
£ 2 'pj(t,Zn,Wn) (1 = 2z 2 Iwn ) 2 2 2yr-1
~ . (1 = t%]z, 2w, |?)
[th,Wn]—z

+7r
BTtz w) - (1 = 1z 2w )7+

[th’ Wn] [;-I_z;-l_z

+

[tz,w]f + 71+ 2

Thus we get

d
tEAB,r € Agr1r—1 + Aprir+1) r> 0,

d
tEAB'O € AB+1’0 + AB+1’1, r = 0.

For arbitrary ¢ € R we thus get

d
<ta + C) AB'T € Aﬁ + Aﬁ+1
and
Dedg, € Ag + -+ Agyo.

1—t2|Zn|2|Wn|2
[th:Wn](2+£)/2

Applying this to € A(1+¢),1 We thus obtain by (2.2)

Rj(e—l)(zn: wy) € Ag4g) T+ A(25+1)|t=1 '

Now
[ZTUWTL] = 1 - 2<ZTUWTL> + |Zn|2|Wn|2 2 1 - 2|ZTL||Wn| + |Zn|2|Wn|2

= (1 - |Zn||Wn|)2 >0
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And
[z, wi] < 1+ 2|z,]lwyn| + Iz, 2w l? = (1 + |z,|[wp])? < 23,

SO

1- |Zn|2|Wn|2 1- |Zn|2|Wn|2
— 1

[ZTU W‘l’l]7

< = 1+ |z,||lw,| <2,
1_|Zn||Wn| " "

and thus every function from Az has fort = 1 the form

something bounded on B?*€
(2, Wy 1P/

From (13) we thus get

something bounded on B2*¢
[2,,, w,, | e+ D72

Rj(s—l) (Zp, 7)) =

which proves (9).

To prove the second half of the lemma, note that for ¢ = 0,

Rie_p\(z Z)=(ti+2+£)...(ti+2£+1> L tlal”
(e-1)n n dt dt (1 — t]z,|?)?+e
d d 1—t?|z,|*
=(ta+2+s)...<ta+2£+1)(1_tlzn|2)1+g

Now again, for any polynomial p;,

d
<ti+c) Pzl pielzl) | el ep (e Blal?
dt ) (L—tlz P~ A= tlzaP)P T (L= tlzelDF 7 (A= tlz, [P
d
. 2 . y 2 - 2
<Cp](t,|Zn| )+tatp](t; |Zn| )) (1 tlznl ) tp](t, |Zn|2)ﬁlzn|2

| lz)(l — t|z,|?)F (1 — t|z,|*)P*?
(p])* L, Zn
(1 =tz PPV

where (p;)* is also a polynomial, which further satisfies (p;)*(1,1) = Bp;(1,1). By iteration and
taking |z,| = 1,t = 1, we get

p;(1z,1*)

1— |Zn|2)28+1 ’

Rj(e—l)(znrzn) :(

where P is a polynomial satisfying

P(1) = 4.
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Thus Rgs 1y Zn2)(1 = |z,,|?)?¢*1 is a positive function inside B2*#, which has a nonzero finite

limit (14) at the boundary. Consequently, it has positive and finite lower and upper bounds ¢ and C,
respectively. This concludes the proof.

Corollary (6.1.11) [349]:. For any Y. f; € C(B?*),

Z ”Tf(f_l)” - Z”fJ”oo as € »> o,

Proof. From the Schwarz inequality we get

(e-1) pj i , .
FED 0 | = |<T R ez R -0z | 0 (R ey B -2
7| = - -

e—l(Zn: Zn) Rj(e 1) (an Zn)

_ Z ”fJ'Rj(s—l)Zn”Lz”Rj(s—l)zn”Lz < Z ”f]“oo” (e- 1)Zn”L2 z“f ”
= , 2 = !
||RJ(S—1)Z11||L2 ||RJ

(S 1)271 LZ

Taking the supremum over all z,, gives

Szl < s,
DT @) > ) ),

forall z, € B2+, As ¥ ||Tf<f‘1>||oo > 3 [T (z)|and X T (20)| = Zlfi ()], thus

iminf Y |77 2 Y1l

Taking again the supremum over all z,, € B?*¢ yields

On the other hand,

lim ian”T(g Y| = sup Zlf,-(zn)l =z||f,-||oo. (16)
E—C0 zER2tE

From (15) and (16) we therefore have

im ) N~ =12l

Which proves the “deformation estimate™ (2).
Section (6.2); Berezin Transform of Two Arguments

For the weighted Bergman space L7,,(22, w%) of holomorphic and square-integrable functions on a
smoothly bounded strictly pseudoconvex domain 2 c C", the Berezin transform

Baf(X) (fKaxKax> J‘ f( ) |Ka(x3’)| (y)ady, (15)

(KgxoKa,
where w is a weight satisfying some mild technlcal hypotheses, K, ,: = K,(-,y) is the reproducing
kernel of L7,,(2,w%), and f is a bounded smooth function on £, has the following asymptotic
behavior:

Bof ~ %% Q’], asa - o,a € 7Z, (16)
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where Q; are certain differential operators with Q, = I, the identity operator and Q, = 4, the
Laplace—Beltrami operator associated to w (see e.g.[326]). This result can be accordingly exploited
to define certain star-product that coincides with the so-called Berezin star-product going back to
Berezin [335]yielding what is known as the Berezin deformation quantization on 2. With some little
expenditure of time and effort, this can be further extended, asthe titles of some of the references
already correctly suggest, even to general Kéhler manifolds. For detailed information on this theme,
[331] or [331]. Also, the “intertwined” sibling of the Berezin quantization, the so-called Berezin—
Toeplitz deformation quantization , represents a quite well established area of interest in the realm of
Kéhler manifolds as witnessed for example in [333]. Yet another field where Berezin transform
makes appearance is representation theory of semisimple Lie groups, notably in decompositions of
tensor product of representations.
Interestingly enough, results similar to the expansion (16), albeit without any apparent direct
applications to quantization procedures or to representation theory, have been recently shown to be
true even in the case of harmonic Bergman spaces (though only for the unit ball [335], the half-
space[342], and the whole of R™ with n even[330]).
Note that (15) actually represents the Berezin transform B, f (x) as the restriction to the diagonal x =
z of a function of two variables

N fKazr Kax) j K (x y)K (v, 2) o

Bif (x,2) = e==ai = | fO) T VO,

holomorphic in x and conjugate-holomorphic in z; ofcourse, therlght-hand side is only defined when
K,(x,z) # 0. Infact, byaclassical result from complex function theory, B2f is uniquely determined
by B, f. Now in view of (16), it is very natural to ask — albeit this has no direct relevance whatsoever
either for the quantization or for the applications in representation theory mentioned above — what is
the asymptotic behavior of B2f as a — co. Plainly, from B,f — Q,f = fone would (heuristically)
expect BZf to tend to some “sesqui-holomorphic extension” f(x,z) of f holomorphic in x,z and
satisfying f (x, x) = f(x); clearly this fails to exist for general f(e.g.when f is not real-analytic), and
accordingly we will thus deal for the most part only with f(z) a polynomial in z and Z.
Furthermore, all the above makes perfect sense also of harmonic (rather than holomorphic) Bergman
spaces, where actually the situation becomes even more complicated since BZf is then no longer
uniquely determined by its restriction B, f to the diagonal.
We is to investigate the asymptotic behavior of BZ in the case of the Fock spaces of holomorphic
functions on C™ (the “easy part”), and of the Bergman spaces of harmonic functions on R"(the “hard
part”), although only for polynomial symbols f.
Consider the Segal-Bargmann or Fock space F, of all entire functions in C" that are square-integrable
with respect to the measure

n
a2, 9):= (=) e daw),
where dA(y) is the usual 2n-dimensional Lebesgue volume measure with the factor (a/m)™chosen
so that the whole space is of measure one.
The function K,(x,y) = e®*¥ = e®1yi++xn¥n) js the corresponding Bergman kernel, i.e. a
mapping K,: C"* x C* — C which is holomorphic in the first argument and anti-holomorphic in the
second, skew-symmetric: K, (x,y) = K, (y, x), and satisfies the reproducing property

EPIG:= | FOW N 0.5) = FG),  Vf €

The associated Berezin transform
Ko (x, y) Ko (x,y)

(BN0):= | fOI= L= i 0,9),

then behaves asymptotically as a — oo like the identity. it follows from the standard asymptotic
analysis of the Gaussian integral (the result appears also in [330]) that, as @ — oo,

BoIx) = f(x)  VfEL®(CT),
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and, whenever f is smooth in the neighborhood of x, there is in addition the full asymp-totic
expansion of the type(16), namely
(6x5x)2f(x)

0x0xf (%)
(Baf)(x) ~ f(x) 2L 000 T (17)
We establish the asymptotic behavior of a modified Berezin transform — the Berezin transform of
two arguments, with one of the x’s replaced by a new vector z:

2 . K. (x,y)Ky(y,2) M —
G202 = | fO) G2 i, 9)

Note that the transformed function is of two variable x and z even though the original f is of one
(vector) variable. For the purpose of iteration it is convenient to define the function (B2f)(x, z)for f
depending on two variables as follows

Ko (x, y)Ko (¥, 2)

(BN = | fO.0) =5 O A 0.9,

We will show that the principal term of the asymptotic expansion behaves still like an identity of a
kind and that there is also an asymptotic expansion strikingly similar to that in (17). More explicitly,
we will prove the following:
Theorem (6.2.1)[329]: Let f be a polynomial on C* x C™. Then, as ¢ — oo,
- = \2
(B2 2) ~ f2) + 22T (a"azzzg «D,
Remark (6.2.2) [329]: Note that when z = x the result is exactly the same as in(17).
It will also be clear from the proof that in this case the Berezin transform of two arguments is nothing
more than a special case of the Bergman projection, namely:
(Bif)(x,2) = (Puf)(x—2),  f,0,¥):=f(y+2z7+2),
hence it does not bring anything new to the subject. This example shows what a nice behavior the
Berezin transform of two arguments can act . We now move our attention , the case of harmonic Fock
space, where much more interesting behavior occurs.
Consider the harmonic Fock space F**™ of all harmonic functions in R™ that are square-integrable
with respect to the measure

dul(y): = ce~ 1 dny,

n

where the factor c,: = (%)Eis again chosen so that the whole space is of measure one.
The Bergman kernel for this space, R, (x,y), i.e. a function with the following properties:

R,(x,y) = Ro(y,x)  Vx,y ER", (18)
AyR,(x,y) = A,R,(x,y) =0 Vx,y € R, (19)
(Paf)(X): = [ou f (DR (x, ¥)dug(y) = f(X)Vf € FJo™, vx € R", (20)
is not of such a pleasing form as in the complex case; however, it is known that [10]:
— b b _
R,(x,y) = @, (b" B ;aux,y,aux,y), (21)

where b: = g— Luy,=x-y+ iy/|x|2|y|? — (x - y)? and @, is a hypergeometric function of two
variables from Horn’s list [332], defined1by means of the series:

__ b]_ bz_ _ 0 (bl)j(bZ)k Lyk
(1)2 (C ) _ ) x; y) - j’k=0 (C)]‘+k ]'k' ) VX, y E C . (22)
In the same [340], it has also been shown that the Berezin transform
BH:i= [ ForZEED gy
¢ R™ Ra (x: y) “

again displays an asymptotic behavior similar to that in the complex case(17). Inparticular, for every

f € L*(R*"), smooth in a neighborhoodof x # 0, wehave, as @ — oo,
1m-21
(B)0) ~ F) + 2 (5T 7
—4)fGO+.. (23)

4(n
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with the additional feature that for x = 0, in which case the terms in the asymptotic series(23)are
singular, the behavior changes abruptly?:

1
(B.f)(0) ~ f(0) +Eﬂf(0)+ ey @ 0.

This is an interesting manifestation of a kind of the so-called Stokes phenomenon. Wewill show that
in case of the Berezin transform of two arguments

(B2f)(x,2): = [, f(y) “eEDEEN) gm () = (B2f) (2, ), (24)

Ry (x,2)

the Stokes phenomenon appears multiple times — the asymptotic behavior is different for x, z not
collinear, for x = &z, for x = —éz where & > 0 and for x = 0.
In the latter case the Berezin transform of two arguments actually collapses into the Bergman
projection

(Bzf)(0,2) = (Puf)(2),
which is (contrary to the complex case) the only relationship between the two.
The main question is addressing is what is the limit behavior of B2 and, most importantly, whether
there exists a point v such that, by analogy with the single argument Berezin transform,

(B2f)(x,2z) » f(v), a - oo. (25)

The answer we give is affirmative, on condition that the limit is taken through complex values of «
and that x, z are not collinear. For the real values of a (and x, z real as well), there is in general no
such v and the limit even does not exist for any polynomial except the constant ones. For x, z collinear
the limit does exist (mostly) but it does not behave like the identity — except , when z = x — the case
of the usual Berezin transform.
The results can be summarized in the following two theorems:
Theorem (6.2.3) [329]: Let p be a polynomial on R", x,z € R™ not collinear. Then for « € C such
that (au,,) > Re(aii,,),Re(au,,) > 0,Re(a) > 0, *we have

(Bép)(x,2) » p(v),  |a| - oo,

where
Uy,z — |Z|2 Uyz — |x|2 ,
V=V, =X —————+Z2——— ,ux'z:=x-z+1\/|x|2|z|2—(x-z)z,
Uy,z = Uxz Uyz — Uy,
and the point v € C"* moreover satisfies the following relations:
x+z x|*+u
Rev = WU =x+zP 4+ |x—z|Bv v = Uy, x-vzllTx'z,
. xPlx+z)? _ 2
(x-v)(xV) = 2 y o Uy (xev) = x[7(Z),
Uy, |x + z|?
(x - v)(z V) Xz

4
For a € R and Vp # 0, the limit does not exist.

In the collinear case, the behavior is the following:
Theorem (6.2.4) [329]: Let p be a polynomial on R™, ¢, « > 0, u,, as above. Then
(i)For z = &x,

. I S S S O
(Bép)(x,fx)—>p(\7t)e“¢z<n—2?2 13 1?7”’““7“”)

)

t=0

a — OO,

(i)For z = 0,

Soorn_ 01 1
(Bzp)(x,0) - p(V,) @, (g -1 2 1 2 1 ; _ux,t:_ux,t>

a — OO,
(iii)For z = —éx and p(y) = p; (v, |v|?), where p, is a linear function in the first argument and a
polynomial in the other, wehave
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(B2p)(x,—¢&x) - p, (x - ), n > 3 even,
(Bzp)(x,—éx) - p(O) n > 1odd,
|(B: (1y2))(x, =¢x)| » 0, alln > 2.
The polynomial y,y, above serves only as an example of a divergent behavior of B2 in the case z =
—&x. It is not clear to the authors, what is the general behavior in this case, but we strongly suspect
that there are no other polynomials for which B2 would converge (for n > 2) other than p,.
Collecting the exponentials from the Bergman kernels and from the measure du2™ we obtain

N AN
BN = | fope o202 (2) 11w,
(Cn
After the change of variables y +— y 4+ z we get
fO +2,5 + D DT (1) dAy) = (Buf,) (x - 2,

_ (£O.9):= fy + 2,5 +2)). _

Thus the Berezin transform of two arguments can be reduced to a computation of the Bergman
projection. Since any Bergman projection is a function from the Fock space, that is entire and square-
integrable, we must have

(G- t)k
(Puf,)0x = 2) = Z T B ) Oleso,

(Cn

1( 0 . 0 1( 0 . 0
where 0;: = (5 (E — la—tzl) — (— — z—)) and the series converges absolutely for any x — z.

But
(x —2) - 0 (Paf2)(®) = f(c nfz(y, V) (x —z) - 0™V du*(v,y)

_ _ s\
LO.Malx—2) - ye T (~) dAw)

cn
n

RO 2 0)e e (1) di)

- [ (=2-ap) oesees () ao)
= (Pa(x —2) - 0:1,) (O),

the penultimate equality follows from Stokes’ theorem (the boundary term being obviously zero) and
d, stands for the (holomorphic) derivative with respect to the first argument. By repeated application
of this procedure we get

(Buf)(x = 2) = Z<a((x_2 ) )(0) ( Z((x_z) o) f)(O)-

k=0
We can switch the order of both operations since the sums are in fact finite. Wethus obtain

f(cn Z - Z) o) f: 4, y)e= > (%)n dA(y)

o ayy (A
(Cnf(y+x,y+z)e ”(n) dAY).

Finally, the last integral is nothing else than (B,f, ,)(0), i.e. the (usual) Berezin trans-form of the
function f, ,(v,¥): = f(x + y,Z + ) at the point 0, whose asymptotic expansion is known to be of
the form(17).

It is quite difficult to guess in advance, what the point v that should be the limit of B2 as @ — oo looks
like, even though it is fairly straightforward to compute it, since if the property (25) is to hold, wemust
have
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Roy(x,Y)Ra(2,y) | .

v =i 20t . — 1 :
t-v=lim(By(t-y))(x,z) = lim Rnt Y R.(n2) dug(y).
Applying Stokes’ theorem gives
1
t-V)gWdua(y) =5 | t-Vg(y) dua(v),
R R"?
so that
R,(x,Y)R,(z, 1 Ry(x,¥)Ry(2,
f ¢y Ra( Y)Ra( y)d#n()z_ oy Ra® Y)Ra( y)dug(y)
" Ry (x,2) 2a Jgn R,(x,2)

" 2aR,(x, z)j (Ra(z )t - WyRa(x,y) + R (X, )t - ByRa(2,7)) dua(y).-

Since AR, = 0, the last expression is, due to the reproducing property, equal to
1t-V,R,(x,z) +t-V,R,(z, x)

2a R,(x,2z)
Thus, representing the Bergman kernel by the hypergeometric function (21), we have
o ( — b+1 b, _)
5 2\p+ 1’ _ sanal ). g +t-7,
(Ba(t'y))(xrz) = — b b 2 u
CI)Z(b; _ ;au,aﬁ)
®a(pyy DT awad) ey e,
+ " (_.b b o U (26)
20pr _ ,au,au)

Therefore it is clear that, to get any further, we need to understand the limiting behavior of the @,
function.
In even dimensions (that is when b € N,) this is not difficult, since applying the famous
transformation formula for the &, function

D, ( bl_bz;x,y) =e*®, (;, ¢=by—by b2 —X,y — x)

we can represent @, as a linear combination of ;F, as follows

D, (b’l b_b; au, aﬂ) = e“ucpz (g, —b b

(=b); D)k (—aw) (a(@ —w))"

;—au,a(u — u))

= (D) j+k k!
e (b),( au)’ e
where
a o (@), x*
1F (c; x) = (c—):F
=0

is the confluent hypergeometric function whose asymptotic behavior for large argument is known to
be[335]:

@ ) ~ ex ) a-b —q _I'©
Fu (g x) ~ e E5x00 4 (m0)7 T (Ix] - oo). 27)

Hence, asa — oo foru € R,

P, (b; b_b; au,aﬁ)

b .
N D)j(aw) (o S T(h+)) - I'(b + )
NI (e( "y (@@ 0) (D) )
b
w N (Db u o &D)p (—aw)® __p I'(2D)
v ; I (u—a) e, b (“(”_”Dbr(b)
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= e®yP(u —u)7? + e®™ub (u — )P,
With the same technique it is easy to see that

o, (b I % b +_1 b; au, aﬁ) ~ e haul (i —u)P7 + e ub (u — )Y,
(¢ > @),
and therefore
— .b+1 b _ i
CI)Z (b + 1; _ ,au, au) eCha~ b (17, _ u)—b—l + euyb (u _ ﬁ)_b
@, (; b b, ., aﬂ) eyl (u —u)=b + e®ub(u—u)t

(a — ). (28)
Clearly, the limit as « — oo does not exist since the fraction oscillates. This means that there is no
such point v at least in even dimensions and one cannot hold high hopes for the odd-dimensional case
either, since, usually, it is the more complicated one.
Fortunately, this analysis is valid only for « € R. Nothing, however, prevents us from considering
the complex values of a. The Berezin transform of two arguments (24) of a polynomial p, that is
(B2p)(x, z), is always defined in the half-plane Re a > 0 except for zeros of R, (x, z), where it has
poles — the Bergman kernel (as a function of @) is an entire function (as seen from the representation
by the &, function which is entire in both arguments).
Consider therefore a € C satisfying Re(au) > Re(au), Re(au) > 0, thus forcing the factor e** to
dominate. We claim that this is possible for any fixed non-collinear x, z. Indeed, let

a = |ale®,cos(8) >0, u=|x||z| e, sing > 0.

The condition cosf@ > 0 is necessary for the integral (10) to converge. The assumption sing > 0
holds by the definition of u = x - z + iy/|x|2|z|? — (x - z)2, where the positive sign of v is taken.
Thus, we get

Re(au) > Re(au) Re(au) >0
cos(@ + @) >cos(@ —¢p) cos(8+¢)>0
cos 8 cosqp — sin 0 sing > cos 0 cosg + sinf sin@ cosO cosp > sin 0 sing
2 sinf sinp <0

for sing >0 sinf < 0 tanf < cotge.
The inequality sinf < 0 can always be satisfied and implies that we can make the factor tand
arbitrary large and negative letting cos6 closer and closer to 0. So for any finite value of the quantity
cotge (that is for sing # 0, i.e. for x,z non-collinear), the inequality tanf < cotge can be
satisfied.
Using(28)with Re(au) > Re(au), Re(au) > 0, wetherefore have (in even dimen-sions):

— .b+1 b _
D, (b+1; _ ;au,au) «
= -1, al - oo,
o, (b; b_b; au, aﬁ)
and
— .b b+1 _
P, (b+1; . ;au,au) a
— - 0, al = oo.
P, (b; b_b; au, aﬁ)
Substituting this into (26) we finally obtain
t-v= lim (B2t _Lhtth =t u_|Z|2+t u— "
v_|al|gloo(a y)(x,z) = > u = xu—ﬁ zZ———
In other words,
—1z|2 1|2
v= xuulzﬁl +z uul_i_l : (29)

Straightforward computations also reveal a few interesting properties of the point v:
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xX+z —
fRev—T v-U=|x+z*+|x—z|? VU = Uy,
+ — -
!x L= |X| sz (x v)(x v) |X| |X+Z| , ux‘z(x . v) — |x|2(Z - v), (30)
u |x+z| _
L(x U)(Z U) = ) Uxy = |x|2: Uxpy = Uxz = Upyy-

Obviously, the vector v (like the number w, ,) is symmetric with respect to inter-changing x and z,
so that to every property in (30)there is its corresponding mirror counterpart with x and z replaced.
We prove that the point v in(29)is the desired point — that is the property (25) is valid for a reasonably
general set of admissible functions f in all dimension n > 1. However, since the point v is a complex
vector, a necessary condition for the property (25) to hold is that the expression f(v) makes sense,
i.e.we must be able to evaluate the function f on complex numbers which in turn means that the
function f must be analytic. Since the modulus of the point v can assume arbitrarily large values (due
t0(30)), the associated radius of convergence must be 4+oco and the function f must be entire. We
should therefore consider entire functions. For this reason, aswe have already pointed out above, we
restrict ourselves to polynomials.

Aside from the function (22), we will actually make use of its slightly more general variant that will
be needed:

q’z( a b, b2 Z (a)j+k(b1)j(bz)kxjy"

€1 €2 ' (Cl)k+1(C2)]+k Jk!’

defined for every x,y € C (here we will use the symbol @, for both functions — this can result in no

serious confusion). Both functions are in fact special instances of the generalized Kampé de Fériet
function: .y (x, ) and Fy o’y (x, ), respectively (see[336]).
The following integral representation, then, is close to standard:

(O b b)) = Il (cz)
“\a & ) T (b (b)T (@ ()
thi=lgha=1(1 — ¢t — s)V"1,F, (Cl a aycz a a; 1—t— S) ety dtds .

t,s=0

t+s.S1 - - - - -
Proof: Expanding the exponentlal in the integrand into the Taylor series we get

1 1-s
I'(c)I'(c;) j] (hiti=1ghatk=1(1 _ ¢ _ )1~ 12F1( acz—a;l_t
F(bl)F(bz)F(a)F(y)j Jlk! 14
- S) dtds.

Performing a series of changes of variables t— (1—-s)ts—1-sandt+— 1—t bringsusto

L)) 1 1+j-1gb1+j+y+1
F(bl)r(bz)F(a)F(y) Tk f f £ (1 — t)PrtiTighititr (g
—S)"”" 121:1( aycz “ ts) dt ds.

Finally, by repeated application of the known integral representation for the ;F, function that holds
forany B,,B,,C;,andforC > A > O:

1
e e )
first with respect to t and then with respect to s, we obtain after some cancellations
Fe)r(c)  N° x/y* I(by+Dr(by +k) G—a c—a
F(bl)l“(bz)l“(a) jlk! T(hy+k+b,+j+y)* ! (bz +tk+b +j+y 1)

This can be simplified, due to the famous summation formula for Gauss’s hypergeometric function
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A B rrc—-B-4)
A (") = re e
C r(¢c —B)r(c - A
validforC > A+ B,C # 0,—1,-2, ..., to the form (remember thaty = c¢; + ¢, —a — b, — b,)
I(c)r(cr) x/y* T(by+ NI'(by +K)T(@a+j+k) _ Z x/y* (@) 4(br) (b)i
F(bl)F(bz)F(a)jkzo JUk! Tlea +j+ T, +j+ k) JUkb (e)jun(e)jen
which concludes the proof.
The integral representation as it stands would be, however, of little use in our case, since in Eq.(26)we

have y = —b which is never positive. Fortunately, wecan exploit the known contiguous relations
between hypergeometric functions to fix that problem by raising one of the lower indices as follows

o, ( a bl_bz;x’ y) _ G + to, q)z( a . bl_bz; tx, ty)|

J k=0

€1 c c;+1 ¢ -
or, generally for k € N,
a by by, _ (cr 4tk a b, b,
D, (Cl ¢, — 3 X, }7) = T o D, (C1 +k ¢ _ tx, ty)|t:1. (31)

The validity of this claim can be checked easily by expanding the @, function into its Taylor series
and noticing that the operator (c; + td;), acts on powers of t, its eigenfunctions actually, inthe
following

way:

(cy + ) t/ _ (cy + )k = t/ Ve,
(i (e +k);  (e)ryj (c1);j

which is what is needed. (Here we use the fact that to the Pochhammer symbol, the relation (¢) ., =
(c);(c + j)x applies.) Using the Newton series expansion of polynomials we can bring the operator

into the form
k k
(1 + 600 _ 3 a (c1 + 2 (19 = Ax (e + 0y
(e = —= (e x=0 l e~ I (e Yo
where 4, is the forward difference operator 4, f (x): = f(x + 1) — f(x) (not to be confused with the

Laplace operator A4). Substituting this into (31) and writing the &, function in the integral form we
arrive at
Lemma (6.2.6) [329]: Fork e N,y:=c¢; + ¢, —b; — b, —a withk > —y,and b; > 0,b, > 0,a >

tlal,

0,
D, (Clacz; bl_bz,'x,Y)
) i A% (e, + O I+ I, [[ s
4l (e rrb)r @ry +k) )
§=0 o

t+s<1
— s)Ytk-1 F, (Cl + ky—_:lkcz Bl a; 1—-t— s) (tx + sy)le™ ¥ dtds.

Wedeals with the asymptotic behavior of the previously defined &, functions which will ultimately
prove helpful in due course as suggested by the fore-going discussion. First of all, we shall prove one
auxiliary result treating the asymptotic behavior of certain integrals of the Laplace-type:

Lemma (6.2.7) [329]: Let 2 c R? be the set {(u,v) € R>:u,v = 0; u+ v < 1} and f be C* near
(u,v) = 0. Suppose that « > 0,x,y € C with Rex > 0 and Rey > 0. Then foreveryn € Z,n = 0,
and every by, b, € C with Reb; > 0 and Reb, > 0 such that u?r=1vb2=1f(u, v) € L*(12) we have

UR) £(0) r(byi+j) I'(by+k)
by—1,,by—1 —a(xu+yv) = A o :
fflﬁiol ut= v f(u,v)e dudv = jikt (ax)P1t (ay)batk

1
0 (Gormrrrs): (32)
as a — oo,
Proof: Fix an arbitrary § > 0 and put ¢ := min(Rex, Rey). Then
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I[ wpzo ubr~twP27lf(y,v)e 4 dy du| < Me %% = o(a™™),vn €N, (33)
o<su+vs<i
as a — oo. Expand the function f(u, v) into its Taylor series:

Gk .
f(u 17) ]+k OD ]j,k]:(O) u vk + Tn(u; v)r (34)
where 7, (u, v) = 0(]|(w, v)||**1), (u, v) = 0 (here we take ||(u, v)||: = |u| + |v|). Then

ff ubr=yb2=1p (y, v)e ~*CUFIV) gy dy

u,v=0
u+vséd
<M- uRe b1—1vRe bz—l(u, v)n+1e—ac(u+v)dv du
u,v=20
u+vséd : )
Re b;—1,,Re bp—1 n+1_,—ac(u+v
SM -], 0wV, v) M e dv du. (35)

Using the binomial theorem shows that the last integral in (35) is 0(a~?17?z="~1), Finally, upon
splitting the domain of integration in the integral

[[wpzo ubr=tHipbz-itkg-albautyv) gy dy (36)
u+v=48

into three parts £2,, 2, and £2; defined respectively by the conditions 2, = {(u,v) € R>:u > 0; v >
6L,0, ={(w,v) ER:Zu>6850<v<6L,2;={(wv)EREZ0<u<§5§—u<sv<d} and
estimating the three resulting integrals separately in an obvious manner, itis readily seen that(36)is
o(a™™) foreveryn € N as a — . Since

Jj up—lvq—le a(xu+yv)d du

u,v=0

r(rq)
~ (a0 (ay)?’

the proof is complete.

We are now ready to prove the following result treating the asymptotic behavior of the generalized
®,, function:

Lemma (6.2.8) [329]: For x,y € C,x # y, and for asuch that Re(ax) > Re(ay), Re(ax) > 0, the
following asymptotic expansion holds uniformly for a, by, b,, ¢4, ¢, € [€4, &,], Torevery 0 < &, < &,:

P, (C1aC2; bl—bZ; ax, ay)

— (eI (cx)e™ a+by+by—ci—c —by ,,a+by+by—c1—C

= F(bl)F(a) x 1+tb2—C1 z(x y) 2 1+b2—Cq1 2(1 + 0(a 1)),
as |a| = oo.

Proof: Making the change of variables ((1 —s —t),s) =: (u, v) in the integral representation from
Lemma(6.2.6) we have

kAL
( @ by by, ;ax, ay =Z:€ (c1 + O I'(c, + k) (cy) Lgax
2 Cy Cy’ _ el [! (Cl)k r(bl)r(bz)F(a)F(y + k)
= o
jf (1 —u =) o T Ry (Cl o ek u)
uv=0 14
u+v<1

(1 —u—v)x + vy)le vex=M-uaxgy dy,
where y:=c¢; + ¢, —a—b; — b, and k is an integer such that y + k > 0. We can use with
o bre1 c;t+k—ac,—
fluvyi= (1 —u—v)nR (T
number, the limit in the lemma is taken through |e|. The e part of « is added to the numbers x and
x —y. The condition of Lemma(6.2.7): Rex >0 and Rey >0 reads exactly Re(ax) >
Re(ay),Re(ax) > 0. Noting that the f,, coefficient in the Taylor expansion f(u,v) =

“, u) ((1 —u—v)x + vy)'. Since a is a complex
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Yk fixw/v¥is equal to x*, and that the principal behavior is obtained when I = k, the result follows.

The uniformity of the expansion on the compact interval [&;, &,] is obvious.
Finally, it is an easy exercise to prove that in case the arguments of the second @, function are the
same, the function itself collapses into the ,F,function,

a

@, (o Pt M) = B (T VT ), 37)
whose asymptotic behavior for large values of the argument x € R is well-known, (see[17,14]):
Lemma (6.2.9) [329]: For x > 0, we have
b, b, ) _ F(Cl)F(CZ) bi+by—c1—Cy ,x -1
2f2 <01 c,’ ) - F(bl)F(bz)x e*(1+0G70),

as x — oo,
Direct calculations of the Bergman projection or, even worse, the Berezin transform even of a
polynomial produce formulas of such length that it would be difficult not only to write them down
but it would also overwhelm the reader with details that are unessential to the main argument. We
will, therefore, represent our result by an operator calculus devised to simplify matters substantially
while keeping the full rigor at the same time.
We define a function of an operator standardly by means of Taylor series representations. From now
on, to avoid any convergence related questions, we will have to limit ourselves to the case of
polynomials, i.e. we shall consider only expressions of the form

< (7.7)"
p(V)f (x):= ol pOf)|
k=0 ' t=0
where p is a polynomial of degree m and f is a smooth function.
Or, dually,
< (7.7)F
f(V)p(x): = o p()f®f
k=0 ) t=0

where p, f are as above. That is, a smooth function acting on a polynomial produces only finitely
many terms.
The sort of duality alluded to above is spelled out in the following obvious relationship:

P(V)f () lx=0 = f (V)P (%)l =0 (38)
An important case is when f(y) = e'”. The corresponding operator is obviously acting like a
translation

etVrp(x) = p(x + 0. (39)

p(V)et*f(x) = e“*p(t + V) f (), (40)
which is a direct consequence of the Leibniz rule. It can be proved as follows:
p(Ve"™ f(x) = e" e " p(R)e" ™ f(x) = e p(e” " Ve"*)f (x)
=" p(t + V) f ().
Notice also that in order to compute the expression
e“"p(x),
we do not need the full Taylor series expansion of the exponential, only finitely many terms suffice.
More specifically, if the polynomial is of degree m, then only the first m + 1terms are needed. To
stress this fact we define

On the other hand,

k
m X

efi= Ty (41)
Obviously, it holds
e,t,;v"p(x) =p(x+1t) degp < m.
Nor in the dual view is the full expansion of the exponential needed. Thus in the equality

p(Ve =0 = p(x), (42)
only the truncation e;;, will in fact do:

p(Vo)er =0 = p(x) degp < m.
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In all these cases we are thus dealing with polynomial operators acting on polynomials and no
convergence related questions arise.

With the aid of the polynomial e;;, we can also represent Taylor series truncations of other functions
than just exponentials by means of the following equality

= Al
en (s o= & - " ).
=0

To proceed any further, wehave to formulate the following important lemma:
Lemma (6.2.10) [329]: Let g,,(s) be a polynomial of degree M, p(s) an analytic function with the
radius of convergence strictly greater than land Iet Pm(s) be its Taylor series truncation

® (0
pm()—zp D n

Then, as m — oo,
05
e Ay (S)Pm () |s=0 = au(Dp(1).
Proof: The claim stems from the fact that for m > k it holds

Skpm(s) |s=0 = Pm-k (1).
Thus

M M M
s Os
en A (5)Pm(lszo = ) Guens* Pm()lsmo = ) duPmie(D) > ) qep(1)
k=0 k=0 k=0

= qu(Dp(1).
It is important to understand that the polynomial e;;, behaves much like the ordinary exponential
function e* if we dispense with any concern about terms of order higher than m. For example it is an
easy exercise to prove that

e;:-y = em Z]+k>m x]ly . (43)

Jj,ksm JHe!
The operator case is exactly the one when no concerns about higher order terms are raised and we
have

e p(y) = e Ve, p(y) degp < m,
since
(x - Vy)(t- 7k
] Jjl k!
j+k>m
j,ksm
Also dually,

p(Ven t|,t 0o = p(V)ex'en’ |
Another property that closely resembles one of the propertles of the exponential function is the
formula for the derivative

(eX) = aelr,.

(1t is worth mentioning that the notation is slightly abused here, because e}, is no power of anything.
But it is convenient for our purposes and not quite an unprecedented usage since the usual exponential
function in complex domain is also written as a power although it is defined by infinite series.)
The second operator we will use enables us to deal with the so-called Pochhammer symbols
I'(a+k)
(@g:=ala+1)(a+2)...(a+k—-1) —W
The following representation obviously holds:

1 1 \F
(@), = (at,)*1, On (ara) 1 VkeN,:=Nu{0},

where 7, is the translation operator of a by 1:
t.f(a):=f(a+1).
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This gives us a useful tool for recovering some of the properties of the Pochhammer symbols. For
example:

(@i = (a1a)*™'1 = (a1,)*(a1)'1 = (k74 (a)iTe1 = (@k(a + k),

ra+1) \* 1 " 1 r'(a+k)
(@) = (at)*1 = (Wra> 1= (r @ )rar(a)> =@ Tl (a) = @

Again, we will consider mainly polynomials of such operators, i. e expressions of the form

pari= Y )" S e 1) p(0),p (7 74x) 1 = Z (x - V)*p(0),
k=0
that can be written, inlight of the precedlng equality, as

1 1 1
platgx)1l = mP(XTa)F(a), p (aTax) 1 =T (a)p(xty,) m,

a fact that will be important later on.
Notice that the two operator calculi can be combined. It is not hard to see, for example, that the
translation operator combined with the operator for the Pochhammer symbol still pretty much
behaves like the translation operator, only turning the polynomial on which it acts into an operator
itself. The following formula is true:

ety (x) = p(x + at,t)1, degp < m. (44)
To prove this equality amounts only to writing the corresponding Taylor series around 0 and x for
the left hand side and the right hand side, respectively, and observe that they are indeed the same.
We start by computing the Bergman projection of a polynomial. The equality (42) tells us that any
polynomial can be obtained by differentiation of the generating function e*”. Hence it is sufficient
to compute the Bergman projection of the exponential function.
Lemma (6.2.11) [329]: The generating function of the harmonic Bergman projection is given by the
formula

or

(a)k!

|¢]2
(Pet?)(x):= R, (x,y)etYdul(y) = e+« Ri(x, t). (45)
2
Proof: Recall that

dui(y) = e™PFcqdmy.
Completing the square in the integral we get
t 2

t-y 1el* —a’|y—L|2 .
(Ppe”?)(x) = ea | Ry(x,y)e 2al c,d"y,
R"

which upon the change of variables y —» y + i gets the form

%[ g (v + ) i
a _— .
e o Xyt Ue (V)

By the mean value property of harmonic functions this can be further simplified to
|¢1? t
R, (x5,
¢ a\ Y2

t
R —]=R .
@ (x 2a> 100
The Bergman projection of any polynomial can now be obtained by differentiation under the integral
sign as follows:

E)@) = | RaloypOIE) = | Raoy)pPoet? ooduily)

RTL

which is what we want, since

|t]?
= p(Vt)f Ro(x, y)eYdug(M)le=o = p(Vt)e4aR1(x t)|¢=o-
Or equivalently:
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A
e4aR1(x, V)p(t)le=o,
2
as it is clear from the duality property(38). Asalready before, neither in this case do we need the full
Taylor series expansion to compute the last expression and we can write
A
(Pep)(x) = e#aRY"(x, V)p(t)|¢=, ~m =degp,
2

where

B) Bk (e y) (i y)
R(ﬂz’l(x, 3’) = Zj+k5m (b;j+kk yj!k! 2 ) (46)

and e}, is the truncated exponential (41). This formula indeed covers the terms of the Bergman kernel
up to order m since

~ b b _ i () ; (D) (@usy) (it y)¥

R ) = CD r r ) = . )
«(%,¥) Z(b _ Oty aux,y) o (B) j+i Jlk!

and u, u are homogeneous of degree 1.

To understand the action of the Bergman projection more clearly we have to find a more useful

representation of the Bergman kernel. We achieve this by means of the following general lemma:

Lemma (6.2.12) [329]: Let 5, y be non-negative integers, then

ds 2sax-yBC'-s?a?|x|%|y|?2BC'? - b+ ﬂ b+p.

€m em 1ls=0 _(Dm(b+y' auxy,auxy)

where
- b+B b+ (b +B)(b+ By (auyy) (atiyy)”
CI)m (b +]/’ .8 p. auxy,auxy) = Z (b +V)j+k jlk!

j+ksm
and B and C' are operators defined by the relations

B:= (b + p)1g, C':=——r1
Proof: By definition

m

' 1 .

e,znsaxyBC ~sRt Py PBCT E ]—(Zsax yBC' — s?a?|x|?|y|?BC'*)’1
j=0

m
b+p); .
> —jlﬂ)] (2sax - yC' = s%a? x|y 2C"?) 1,

Jj=0
expanding the parenthesis in the sum we get
(b+ﬁ)1 y)j_k(—lxlz|y|2)ksj+kaj+kC'j+k1
| l
2 G —k)k!
(b+B); . o
= ) Gy o & Y Y
j+ ‘K

k<jsm

This is the same as

(b+PB)jsxk . . ,
Z (b+7y); J+jlkl(2x'3’)](—|x|2|)/|2)k5’+2"a1+2".
j+k=m J+2kJ T

Applying the operator e,ff|s=0will reduce the number of terms from j + k < mtoj + 2k < m:
b+ PB)j+k , ,
—— (2x * y) (= x| |y|>)*al 2k,
j+;m (b +7¥)js2j' k!

Using now the fact that 2x - y = u + @ and |x|?|y|* = u@ (here we use uinstead of u,, for the sake
of brevity), we get
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j+2_k5m
Expanding the term (u + )’ leaves us with
(b+B)j+k J=l4+k ( i\ 4k (1)K
Z]+2k<mzl 0(b+)/)]+2k(] l)'k'l'(au) ((XU) ( 1) (47)
otz S P (qu) U (@) (- 1), (48)

JRIZ0 (h1y) ok G-DIKIL
The last series (48) is the same as the next to the last one (47), even if written in slightly different
notation: the bounds on the summation indices, written explicitly in the latter, are only implicit in the
former, corresponding to those values of j, k, [ for which the summand function is non-zero. The fact

that this is the case for only finitely many indices is ensured by the presence of factors such as m

which is equal to 0 for j < [, since the reciprocal value of the factorial is defined to be 0 on negative
integers, and the factor H(m — j — 2k)which is just the Heaviside step function defined as H(t) =
1for t = 0 and H(t) = 0 otherwise.

In this form it is easier to handle changes of variables, since we do not have to worry about explicit
bounds on the indices (formally they are still the same) while focusing on the change of the summands
only. Weletj—»j+1— k in(34)and then [ = | — k to get

Z Hm —j—=Db + )1k
(b +y)jn(G—R kI = k)!

(aw)’ (aw)' (—1)*

Jk,1=0

_ (b+B) j+1 j (b+B+j+1)_pji(-1)k
= 2jizm (b+7)j+ 'l'(au) (@)’ Tizo G-lu-k)! (49)
Since
(—1)* iRl

b+B+j+D =

A-b-F—j-Dr G-lra—ki_ Db

the second series in (49) can be rewritten as

(= (=D —j =l A 1-b-B—));
2(1—19 B —j—Dk! 2F1<1—b—,8—j—l'1)_(1—b—ﬁ—j—l)j
b+ B),

ICEYEIN
In the last line above we have used the so-called Chu—Vandermonde identity for the Gauss
hypergeometric function

—-n b (c— b)n
A (7 )=
valid for all n =0,1,2,...[348]. Substituting this result into (49) and taking into account that
(b+B)j+1=b+p)jb+ B +j) completes the proof.
The preceding lemma applies to the Bergman kernel as a special case with 8,y = 0:
R(T(x, y) _ easeZSa’x -yBC'-s?a?|x|?|y|?>BC'? 1|s,y,ﬁ=0: (50)

so that the operator

R%”(x, 7p(y), degp=m,

can be understood as follows

Rg‘(x,Vy)p(y) Rf"‘(x, 7)) = ee, pPWlsyp=0- (G

Now the second eZm-term in (51) may be replaced by e,,, since, due to the presence of the operator
V,, no more than m derivatives is needed:

sx'VyBC'-s? IxIZAyBC’2

r_c21. 2 2
eas esx VyBC'—s 4IxI AyBC ( )l
2m-m by s,y,=0"
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But then the first e,,,-term is acting like a translation since the polynomial on the right (in s) is of
order 2m, hence we get just
xVyBC'—x|x|28,BC'?
RT'(x, 7)oM) =e,”  * 7 pOlyp=o

2
We shall summarize the obtained results in the following lemma:
Lemma (6.2.13) [329]: (Harmonic Bergman projection formula). The Bergman projection of a poly-
nomial takes the form

=2 xVyBC'—%|x|2A,BC'?
(Pp)(x) = epfe, ™ *7 7 pWlyyp=0 M =degp,
where
1
B = (b + 'B)T.B C' = m‘[y.

For example, when the polynomial p(y) happens to be harmonic, all 4,’s naturally vanish and we
are left with

Fap) () = €3, POy =0 = €*PDymg = PG + D)y = p),
(Vyp =0),

thus recovering the reproducing property. The second equality is due to the fact that (BC’)"IMZO =
(b)k _L.k_ck| — rkok
by B YVIpy=0 " "BVigy=
B or y, their action produces no difference and BC' can thus be viewed to be equal to 1, i.e. BC' = 1.
If so, no truncation of the exponential function is needed and the resulting operator is acting like a
translation by (39).

One corollary of Lemma (6.2.12) that will be important in the collinear case is the following

Corollary (6.2.14) [329]: For every m € N it holds

) 1221121022 2b +
BI'(x,y + ox) = else2sexyBC ~s"alxITlyI"5e 1F1m(b +yy; asalxlz)

o for every k and since nothing on the right of these operators depends on

)

s,B,y=0
where B and C' are operators defined as

1
B = (b+ﬁ)TB, Cc':

b+ yT’”
and

1FT (?; x) = \ ﬁﬁ

Proof: From the definition of the Bergman kernel we have

—.b b -
Bcrxn(x:y +ox) = o7 (b; _ 50Uy yrox aux,y+ax);

where as usual u,, == x-y + i\/|x|2|y|2 — (x - y)2. Itis an easy computation to show that
Uyytox = Uxy T olx|?,

so that we obtain

o (;, b_b; auy, + aolx|?, ail,,, + aalxlz)

egfqbz (;, b b; sauy , + sac|x|?, sai,, + saalxlz)
- s=0
Now we expand the @,function into its Taylor series around the point (sac|x|?, sac|x|?):
egfcbz (b; b b; sauy , + sao|x|?, sai,, + saalxlz)
T s=0
2, \O* (0); (D) (aus)! (atis)* ~  b+j b+k

s saa|x|?, saalxlz)
s=0

() : ;
LW K (b+s+k

0, N (0); (D) (aus)’ (atis)" (2b+j+k_

— 2
" L D) JHK! b+j+k S0l )

s=0
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_ s z (b);(b)y, (aus)’ (atis)* om (zb +j+ k-saa|x|2)
- - 141 1 )
" j+ksm (b)j+k J! It b Tt k 5=0
= efns(DZ (;, b B b; SaUT,, Saﬁrg) I (be_:_;; saalxlz) X
S,E=
We represent @7* as in Lemma (6.2.12) and get
ds 0s, 2ss,x-yBC't.—s%s2a?|x|?|y|2BC'2t¢ .m (2D + €, 2
€m €m €m 1F1 ( b+ e s sao|x| ) sore o’

This almost looks like what we need except for the additional variables € and s,. However, both of
them can be discarded due to the following analysis: from the perspective of the variables s, s,, weare

dealing with the expression

9. 0
emsemszf(ssz, s) |s,sz=0'

where f(x,y) is a polynomial in both arguments. It is clear that the expression
Os

em [ (552,5) |s=0
alone is a polynomial in s, of order not exceeding m(since the order of that expression as a polynomial
L : ds., . N
in sis at most m and s, appears only as a multiple of s), so that the operator e, is acting like a
translation and the variable s, can indeed be cast away.
Along similar lines we can get rid of the variable &, since in the operator C’ there is the operator 7,
which appears in the same order as t, and can thus replace the action of 7,. Fom the perspective of

variables y, €, weare dealing with
2b + ¢ ’ (52)

1 m : 2
f (b+y TyTg) Fi ( bt sao|x| ) oo
where, again, f is a polynomial whose exact form is unimportant. Clearly the expression in (52) is
the same as

1 m(2b+y )
f<m1y> 1Fi < b+y ; sao|x| ) -
The main objective is the proof of the following theorem that will become central to the proof of the
two main theorems (Theorem(6.2.3)and Theorem(6.2.4)).
Theorem (6.2.15) [329]: Let p,, be a polynomial of degree M. If x and z are non-collinear, then the
integral

Jan PR (X, Y)Ra(2,y) dug(y) (53)
admits the following representation:

|| PuOIRLGe VIR Y) i)

_ ef—é ex~VtBC’—%Ix|2AtBC’2

az~Vt(é—|x|ZBc’2)Bzcz’—a2|z|2(%(%—|x|ch’2)2+\7t.x(%—|x|ZBC’2)BC’>32052
o ( b+B b+p, b+p,
2\b+y b+y, -
In case z = &x, there is the representation

|| PuOIRCe IRz Y) i)

pm(t)
(54)

3 QU o) aﬁzlx) .
t,8,82,¥,v2=0

At 1
— ela ex-VtBC'—ZIxIZAtBC’Z

2
eafx'Vtz(%—|x|2BC’22)BZC2’—%azfz|X|2\7t(%—|x|2B’C’2) Bzcgsz(t)
+ +
ze( b +]/z b+ ﬁ;a€|x|2)
yz y ttﬁlﬁZrVrYZ=0
where u, , = z - x + iy/|z|2|x|? — (z - x)2and the operators B, B,, ', C} are defined as

)
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1 1

B = (b+ ) By, = (b + B2)cp, C' = mTV' C, = b7, Ty,
Proof: At first we will compute a slightly different integral with one of the Bergman kernels, say
R,(z,y), replaced by its truncated Taylor series:

Jen PR (, YIRT (2, ) A () (55)

At the end of the day we let m — oco. This will be the only limiting process involved. Everything else
is done by purely algebraic means.
Since the expression (55) can be understood as the Bergman projection of a polynomial of degree
m + M, we can apply Lemma (6.2.13) to obtain

Ay . r 12 12
i x-VyBC'—Z|x|24yBC

€mem Cmim Ra' (2, y)pu W)y, py=0-
Now we replace the polynomial by the standard representation

pu(¥) = o (Ve)e |0,

from which we get
o yp BC’——|x|2A BC'2
pM(Vt)em-}-M em+311/[ g t yRZln (Z’ y) |y,t,ﬂ,]/:0'
The property of differential operators (40) enables us to rewrite this last expression into the following
form (remember that 4,, = |V, |?):

|t+‘7y|2 1 2
x-(Vy+t)BC'—Z|x|?|t+4y| BC'?
pM(Vt)em+M em-}-]\i; * g Rgl(z’ y) |y,t,ﬁ,y:0'
Now, the truncated Bergman kernel is a harmonic polynomial — from the definition (46) we have
R (z,y) = enga (sz,y)|s=0and R, (sz, y)is a harmonic function. Therefore all the A’s again vanish,

leaving us with
|t| +2t- Vy

12 2 2
G A LAY ¥ TOR ) [N (56)
Now we split the operators in (56) into two parts — the one that contains V, and the other one that
does not — as follows:

|t]2 21212 EVy 1y 2, 2
o (Tes emy I g T T ) yar (5)
The last step is justified by the fact that terms (in t) of order higher than M (let alone M + m) are
killed by the factor py, (V,)|.=o and terms (in 7,) of order higher than mdisappear when acting on
R (z,¥).
Observing that the exponential terms in (57) containing V,, act like translation operators (see(44)),
weget the expression(57)transformed into

L2 B!~ Mx|2|e12BC"?
pM(Vt)em+M m+M 4| i Rgl (Z'i +xBC" - % |x|2tBC,2) 1|t,ﬁ,y=0' (58)
We also note that having the exponential terms truncated up at order m + M is in fact superfluous
and that their order being M is completely sufficient since the factor py (V;)|:=o makes all terms of
order higher than M disappear, so that(58) is in fact equal to:

|t]?
pM(Vt)e

L x tBC' - 1|x| |t|ch’2Rm (
The expression in (58)no longer depends on y which suggests that we are almost done. To finish the
proof we have to distinguish two cases in this place, depending on whether we are dealing with the
collinear or the non-collinear case.
Case 1. In the non-collinear case we use the representation(50):
t/1
RT (z,— (— — IxIZBC’Z) + xBC’) 1
2 \a ,
ds Zsaz-(é(é—IxIZBC’2)+xBC’)BZC2—S a?|z|? | (——lezBC’2)+xBC’| B,Cy?
m=-m

L ! _l 2 12
z,—+xBC' -3 |x|*tBC )1|t,ﬁ’y=0. (59)

, (60)
5rﬁ2rY2=0

where B,, C, are operators defined as usual:
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1
Bz: = (b +32)Tﬁz, C2,= b +'}/ TYZ'
2

Splitting again the terms in (60) into those that contain tand those that do not results in turning (60)
into the form

5. 7 t(——lxlzBC’Z)BZC2 -5 a.'2|z|2<|tI ( —|x|2B C’Z) +t-x($—|xlzBC’2)BC')BZC2'2
em €
2saz-xBC'B,Cy—s?a?|z|?|x|?(BC )2B262'21
m

61
Srﬁz‘h:o ( )

Once again, all terms in s of order higher than m are killed due to the presence of eﬁﬂszo. In addition,
the factor p,,(Vy)|:=o Kills all terms in t of order higher than M, so that we can truncate the
exponential terms containing t at order M instead of m. Finally, although the e,,-term in (61) is a
polynomial in s of degree at most 2m (since it contains s2), noterms of higher power than m are
necessary. Introducing a new auxiliary variable s,, we can therefore further restrict the expression in
(61) to be equal to

0s, 2ss,az-xBC'ByCy—s2s?a?|z|?|x|?(BC")?B,Cy?
m m

(mod s*, k > m). (62)
S,=0

To (62), Lemma (6.2.12) can now be applied with sxB C'instead of x, yielding

0s, 2ss,az-xBC'B,Cy—s2s%a?|z|%|x|2(BC)2B,C3?
mzmz 20 =S5 [z]“]x]=( )°B2C; (modsk,k>m)

S2=0
_CDm(b_l_y ; b+ B b+’/32, saBC'u,,,saBC’ uxy)l
b+p b+Bab+p _ )
— pm 2 2.
= o7 <b+y b+t y,’ - ; SQUy ., SAU, . |,

where

En( a 'bl b, X y) z @)k (bl).j(bz)k Xy,
G162 — i (C1)j+k(cz)j+k JUk!
the second @, function defined truncated at order m.
So, finally, we have
m E l_ 2 12 !
R | z, |x|*BC'* )+ xBC" |1
2\a
asz~t(%—|xlzBC’2)BZCZ—s a2|z|2<|t| ( ~|xI?BC'?) +t-x(%—|xIZBC’2)BC’>BZC2'2
= e, ey

¢m< b+B b+, b+p,.
2\b+y b+vyy —

Substituting(63)into(59)we obtain

(63)

; SAU, 5, Sal_LZ’x)
S;ﬁZ'YZ =0

ﬁ xtBC’—%IxIZItIZBC'Z t , 1 5 .
(Ve M ey R™ (z,—+xBC — —|x|“tBC )1
2“ 2 t,ﬁ,]/:O
|t| ' 20412 p 12
x-tBC'— IxI |t|“BC

= pM(Vt)e

saz- t(——IxIZBC’z)BZCZ 52a2|2|2<|t| ( —lx IZBC’Z) +t~x(é—|xlzBC'2)BC'>BZC£2
em €y

b+ﬂ ‘b+B,b+ _
o)y <b+y b+y2 '82_ '82, sauzx,sauz'x) (64)

S:t:ﬁ:)’:ﬁz:h:o
Now we can apply Lemma (6.2.10) (the radius of convergence being +oo in this case) to compute the

limit of (64) as m — oo. It is equal to
|t]2

= pM(Vt)e “e
az-t(=—|x —a?|z x +t~x =—|x
i’ |x|2BC"2)B,Ch—a?|z|? |t| 1 12Bc’2 é 1x|2B¢'2)BC! )ByCh2

M

th' 1|x| t|12BC"?

e
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b+p b+pB,b+p _
CDZ( ; 2 2;au,,au,) :
: b Ty b+y, . Z_x %x LBy Pay2=0. :
Using the duality property (38) and dispensing with the constraints on the exponential terms
containing t concludes the proof of Casel.
Case 2. We start again with the expression (59) with z = &x, this time expressing the Bergman kernel

by means of Corollary(6.2.14), which gives

Lt B’ -Lx21e2BC" t 1
pu(Veiae =" 74" R (5,x,—+xBC' ——|x|2tBC'2)1
20( 2 t,ﬁ,)/:()
|t]?

— x-th’—1|x|2|t|ZBc’2
=pu(Ve, e, *
1 2prl2 1_1 2 220 021412(1 212\ . o1 2
s safx‘t(a—lxl BC )BZCZ_ZS a“&4|x||t| (E—le BC ) B,C,
bty,
Fp (22 asepria?) 1 , (65)
]/2 slt'BlBZ'y'YZZO

where the operators B,, C, are defined as above. Notice that the e,,-term to the right of the operator

e,a,f in (65) can be truncated to e,, since it contains vector t and all terms of order higher than M are
killed by py, (V) |:=0- Also the action of the operator BC' in the {F{™ function can be computed in the

following manner
m (A oo _oemfab+ B )
1F1 (C,BCx)l—ZF2 (cb+ y'x .

So that eventually we see that(65)is equal to

2
_ % x-tBC'—%lxlzltlzBC'Z 95
- pM(Vt)eM eM em
1 2p 12 1 12 2z21.021412(1 212} 12
sagx-t(5-1x1?BC'?)B,Cy—7s2 a8 |x|2|t|2(3-1x[2BC'2) B,C;

M
Fp (31 8 sail)
Y2 Ty St.B8,B2,Y,¥2=0
Applying finally Lemma(6.2.10), using the duality property (38)and disregarding any constraints we
get the needed result.
We are now ready to prove Theorem(6.2.3):
According to Theorem(6.2.15), the Berezin transform of a polynomial can be written as

Rq(x,2)(Bip) (%, 2)
1 1 1
=q (— —B,EBZ,aC’, aCZ’)

; 4a’ a
@, (b+ +bﬁ_|_ DHhbtp au,aﬁ)| ) (66)
y ]/2 a ﬁ:ﬁz:)’:h:o
where q is a polynomial in all arguments, more explicitly

Q(l, bl' bZ! C1; CZ)

_ eAtl+x-th101—|x|zAtlblcf

z-Ve(1-1x12b1c2)bycy— 12|12 (Ael(1-1x|2b1 ¢2)+Vp-x(1=|x|2b1 2 )bycy )by

ey Pm () le=o (67)
u=2x-z+i/|x|?z]> — (x - z)? and

1 1
B=0B+pts By=0B+pBIr, C = Py G=17 Ty,

Due to Lemma(6.2.8), we know that for ¢ € C such that Re(au) > Re(au) and Re(au) > 0, we
have

b+ b+pb+p,, —)
T +Ib+7,)

T(b+p)rb+p,)

aPtB2=Y=v2q b+2B2+B-y~72 (u— a)—b—ﬁze“u(l + 0(0{_1)),
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uniformly in 8, 85,7, v, as |a| = oo. Denote

w B+B2=Y—V2,,b+2B2+B-V~V2 —b-p3 pau
| Bt by a u (u—u)~ e (68)
Substituting (68) into (66) we get

Ry (x,2)(Bzp)(x, 2)

1 1 1
=gq <4a —B,— BZ,aC’ aC2> d(1+ 0(a™)) |

BBZY!)/Z:O
=d ———BCD——BCDa CCDa C, 1+0(a? . 69
. q (40-’ 2 2 )( ( )) |ﬁ"32%)’2=0 (69)
It is an easy exercise to establlsh the relatlons
1
—B®d = ,
o aurﬁ
1 2
—B,d=a« ,
o2 u1 uTﬁ2
—C'd=—r,
d au Y
1 1
ECZCD _au Y2

Applying the latter to (69) results in the equation
Ry (x,2)(Bzp)(x, 2)

w1 u? 1 1 )
_( _) e | o Uty =T Ty T, (1+0(a™1)

)

u-—1u 4o
B:BZ!V!VZZO

hence

" u b u? 11
Ro(x,2)(BZD)(x,2) ~ (——=) e™a(0u—=,=,~).
Since p = 1 implies g = 1, we have

Ro(x,2) = R, ) (BED (5,2) ~ (=) e,

whence the relation

u> 11
(Bép)(x,z) — CI(O it ﬂ’ﬂ)

1
— ex.VteZ Ve(1- |X|2—)——|Z|2(Vt x(l |x|2= ))

(70)

“ipy ()
t=0
follows. It is now a matter of a minor manipulation to bring the last expression in (70) into the form

u=|z|? u—MF> u—|z|> u-—|x|?
x —+Z — |V
€< u-u u-u t = X +z .
pum(t) PM( " u—ﬁ)
t=0
—|x|?

+ z=—=_ are easy to establish and

u—-u u—-u

u—|z|?

This concludes the proof. The properties of the point v = x

they are listed in (30).
We having to be divided into two cases:

Case 1. z = &x, where & > 0. Weapply the second part of Theorem(6.2.15)to get
Ra(x,€x)(Bzp) (x, §x)

2b b
= 42 (2, BC,aBC, BG4 BaCP) o (5 12 T 0 ag ) , (71)
+ )/2 +-]/- t,ﬁ,ﬁz,]/,]/z=0
where g, is a polynomial in all arguments, more specifically
CIZl(l: 91,92, 93, q4)
_ ell\;lt el\aflvtql |x|214¢q5 efx Vt(1—|x|ZLI2)Q3—Z &%x1%4:(1-1x1%q2)%qa (t)lt . (72)

Using Lemma(6.2. 9)y|elds
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for a > 0, so that

Put once again

2b+y, b+ 2)
2F2<b+ v,b+7y’ aflxl

LOA IO L) (o apyoesreatit (1 4 0(a),

" T+ Br2b +vy)

- Roi(x, fx)(BépM)(;g,( ix) G )
/] / + y + yZ

- @ <4a 2l B et CZ)F(b Y B(2b +v,)

(aglx|?)P+E- Ve“f'x'z(l +0(a™)|

ﬁrﬁz VY2 =0

T+ b +y,)
“T(+p/I2b+y

5 (@ Ixl?)F et

and upon performing manipulations similar to those used in the course of the proof of Theorem(6.2.3)

we obtain

1
= ®@q, <_

where

so that

Therefore we have

R (x, §x) (Bipw) (%, §x)

1 11 1
— -1
=g BC'®.a s BO, 28050, cDBZC )(1+0(a )),

—B® = aé|x|*1p,

Ra' (xr EX) (BépM) (x! gx)

r(b) b - aflxl? 1
~ s @ e gy (= g,

+0(a™))|

i lzrﬁry,l_?zcg,13zc3 )(1

y'YZ'ﬁ'ﬂ2=0,

as a — oo, whence we infer that

Ra (.X', EX) (BépM)(xl EX) ~

Consequently,

and, asa — oo,

Using (72) we get

r(b)
r(2b)

r(b)
r(2b)

(a€|x|2)beaf|x|2q2 ((),1 BZCé,BZCéZ) 1|y2,/;2=0

1
“Elx|?

R, (x,&x) ~ (a&|x|2)Pe®® g - oo,

(B2p) (5,60) = 42 (01 27— BoCl BaCE ) Uy, 0

1
&’
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1 , )2
q: (0,1,W,BZC3»BZC3 ) Ly, p2=0

2V XVe(E-1)BCh—71x24¢(§-1)?ByC)
=ey ey, Pu(B)ly, 5, t=0,
or, equivalently,

1
qz (0:1:W: B,Cs, BZC3'2) 1|y2,ﬁ2=0
= py (V)™ e,iieL"'t“‘”Bzcz"52%""2'”2“‘“23202'2 Le5,8,,=0-
Obviously, no harm can be done by introducing a new variable s since the only effect it has is that it
cancels all terms in t of order higher than M (they would be canceled anyway by the factor
P (V) |e=0)- Applying Lemma (6.2.12) and casting aside all the constraints on the exponential terms
we get the final result

. - b bs—1 §-1_
(B2pu) e ) = pu(Fe™ 02 (5 P32 )|
t=
a — oo, (73)
Notice that for the usual Berezin transform (¢ = 1) we have only reproduced the already known
result

(BochM)(xt x) - pM(Vt)ex.tlt:O = pu (X).
Case 2. z = 0. In this case we have

(Bzpm)(x,0) = (Pupm) (%),
which is, according to Lemma (6.2.13), equal to

At
e*aR1(Vy, x)py ()l e=0-
2
Passing to the limit @ — oo we therefore obtain
R%(Vt' x)pM (t)|t=0!

or equivalently
Pu(Ve)R1(x, =0 = pu (V) @, (b; b_bi %ux,t;%ﬂx,t> .
2 t=0
completing the proof of this case. Note that the last expression can also be written as
x~VtBC’—%Ix|2AtBC’2
€y Pm ()| ¢=0-
Case 3. z = —&x, where & > 0. Westart by calculating the Berezin transform of two arguments for
the function f of the form f; ,,: = esb"z(a) -y + w,). Surely, any polynomial of the form p, (y, |y|?),
where degp, < 1 in the first argument, can be obtained by appropriate differentiation of the function
fs. With respect to the variables s and w. Now, the following equality holds:

J| £ @y + 00)Rae y)Ra(—Ex V)M )

a

NS

_ Rn(w -y 4 wo)Ry—s (ﬁx y) Ra-s (—f X, y) dpg—s(y) (

since

a—sS a

s) ’
du(y) = e~ (%)%d"y, and Re(x,) = R-s (——=x,%).

Application of the second part of Theorem(6.2.15) is easy because many terms cancel out since the

polynomial p,, is in this case linear and we end up with the expression
n

p=(-2) f eV (@ - y + o) Re (X, ) Re(—E, Y)AUE(Y)
Rn

a—s
— 2b, _ 2 a_ .
—1F1< g|x|>(a—sx a)+a)0)

2

b’ a-—s
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2

_pf2b+1_ @ o o) af
1F1<b+1' a—s€|x|>a—sw x

2 32142
2b+1, @ a’$|x|
+1F1< ;_a—s€|x|2>

b+2 b+D@a—s2> "
The asymptotic behavior of the confluent hypergeometric function ; F; in this case depends on whether
the dimension is odd or even. For even dimensions, we can use the transformation formula

1F (Ccli x) =e*1F; (C ; a; —X) )

to get
a2 _ a,z
I=e_ﬁf|x|21F1<bb;a_ X )( x-a)+a)0)
_a” —b
—e a—sflxl 1F1 b+1
3 2
22 2 F —bh+1 «@ 5 f|x| '
+e7as 1(b+2'a—s€|x| (b+1)(a—s)2“’ x

and all the ,F, functions are now polynomials (except when b = 0, i.e. n = 2) since b = g —1lisa

positive integer in even dimensions. Assuch, their asymptotic behavior is governed by the highest
order term. Thus we get as a¢ — oo,

J| £ -y + 00)Rae y)Ra(—Ex V)M )

~e a5l % (—a&|x|?)P (x “w 1T€ + a)o).
Consequently,
Ry (x, —x) ~ e~@8" —— re (—aglx|®)?, (@ - )
v r'(2b) '

and therefore for even dimensions (except n = 2) we have
1—
B0 @+ 000 - e (x0T v wy),  (@o )

(Incidentally, this result is exactly the same that we would get had we used the first part of Theorem
(6.2.4) for negative &. This is because the asymptotic behavior of ;F;is governed by the same
(exponential) term.)

For odd dimensions we apply the formula (27) to I to get

f SV (@ - y + wo) Ry (X, ¥)Re (—Ex, ) A (y) ~
Rn
hence we arrive at

rc)
I (=b)

(@1xI*)’wo, (@ - ),

B2(e*F(y- w + wp))(x,~€x) = wp, (@ = 00).
It remains to show that (B2 (y,y,))(x, —&x) diverges as a — oo. We can again use the second part of
Theorem(6.2.15)directly since the polynomial y, y,is quite nice (even harmonic) to get the expression

f Y1¥sRe (6, Y)Ra (€%, Y) AU (Y)

]RTI.
2b 2b+1
= x1x1F; ( b ; —af|x|2) — 28x1%31F; ( bh+1 ;—a€|x|2)

2a¢ 2b+1b+2 5 5 2b + 2 5
+x1x2_b+22 2(b+32b+21'_a€|x| )+x1xzf 1F1(b+2,—a€|x|)
as”|x| 2b+2 b+1 )
Bt T 2(b+2 b+2’ aslxl?)
22 4
a?&2|x| F(2b+2-—a§|x| )

X e VI p 4 4

(74)
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It is easy to understand from (27) that any of these ,F;functions cannot produce a divergent term
when divided by R, (x, —&x) which, being itself an ;F, function, has exactly the same asymptotic
behavior. Wecan rewrite the first ,F, term in (74) as a linear combination of ;F,’s:
(B0 D E T —asi?) + R (B0 F S —aginl?)
aélx|*(2b+1) _ 2b +2 2
T B+DB+3) 1(b+4"_0‘€|x| )
by rising its second lower parameter. The logic is the same as in (31). So the only interesting term
here, capable of producing a divergent term, is
2b+2 b+1 5
2f2 (b +2 b+2 %M )
which is a genuine ,F,function (when b # 0, i.e. n > 2).
Applying the asymptotic formula from [14,17] we get

v (2b+2 b+ 1,_a€|x|2)~F(b+ DI(b +2)°
Z2\p+2 b+2’ r2b +2)

But the function R,(x, —éx) = |F; (be; —aflxlz) behaves at best (that is in odd dimensions) as

a~?Pand it is therefore clear that the fraction of these two will grow without bound (for n > 2). Itis
easy to see why this is happening. There are only two ways in which the ;F, can behave in
a(exponentially or polynomially). On the other hand, there are three ways in which the ,F, function
can behave. And it is just this third mode of behavior of the ,F,— that one which the ,F; function
cannot mimic — that is dominant in the region where the argument is large and negative.

(—aélx]|*)™"71, (a - ).
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List of Symbols

Symbol The Symbols Page
F? Fock space 1
WOT | Weak operator Topology 2
R Tensor product 2
dim Dimension 2
H? Arveson space 3
F® Toeplitz algebra 3
D Orthogonal sum 3
H® Algebra of bounded Analytic functions 3
SOT Strong operator topology 4
o Direct difference 4
Ker Kernel 4
Mult | Multiplicity 11
C.n.c | Completely non-coisometric 12
Dil.ind | Dilation index 12
E> Toeplitz algebra 27
H? Hardy space 28
Rad Radial 34
K, Berezin kernel 35
Ap Almost —periodic 42
L? Hilbert space 48
Tp Trigonometric polynomial 52
Im Imaginary 53
can Canonical 53
cl class 59
tr trace 61
hol Holomorphic 63
re Real 63
L® Essential lebesgue space 67
Bt Berezin lebesgue space 83
det Determinant 91
PSH Plurisub harmonic 97
ord Order 105
Hess | hessian 105
max Maximum 113
int Interior 135
supp Support 142
arg Argument 147
giv Give 184
Harm | Harmonic 197
Erarm | Fock space of all harmonic function 205
min Minimum 206
deg Degree 268
mod Modulo 275
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