Sudan University of Science
and Technology
College of Graduate Studies

Improvement of the Search over Encrypted Data in Cloud
Computing by Enhancement of the Mutable Order

Preserving Encryption Model
Bia i gl gad oy o) daa gally 3 i) i) A Gl Craad
oAl QA el)

A Thesis Submitted to the Graduate College of
Sudan University of Science & Technology

In Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY in Computer Science

By
Nasrin Dalil Ali Arabi

Supervisor

Prof. Ahmed Kayed Ahmed

February-2021

In the Name of Allah Most

Gracious Most Merciful

i W

(ol RSN AU ay)

s s Ja

‘;E:g ‘;jﬁ R ‘.-.éj‘ Sian :, J}S.&\ C)‘ géQJZJ‘ ‘/;J)
o Al Gy 83 3 L 55 WAllia i &3
(Oallall date

(19 : Jaill)

padiad) N Jla

https://www.google.com/search?q=%D8%B5%D8%AF%D9%82+%D8%A7%D9%84%D9%84%D9%87+%D8%A7%D9%84%D8%B9%D8%B8%D9%8A%D9%85&tbm=isch&tbo=u&source=univ&sa=X&ved=2ahUKEwjijKe0sKveAhUnx4UKHeGEDd4QsAR6BAgEEAE
https://www.google.com/search?q=%D8%B5%D8%AF%D9%82+%D8%A7%D9%84%D9%84%D9%87+%D8%A7%D9%84%D8%B9%D8%B8%D9%8A%D9%85&tbm=isch&tbo=u&source=univ&sa=X&ved=2ahUKEwjijKe0sKveAhUnx4UKHeGEDd4QsAR6BAgEEAE
https://www.google.com/search?q=%D8%B5%D8%AF%D9%82+%D8%A7%D9%84%D9%84%D9%87+%D8%A7%D9%84%D8%B9%D8%B8%D9%8A%D9%85&tbm=isch&tbo=u&source=univ&sa=X&ved=2ahUKEwjijKe0sKveAhUnx4UKHeGEDd4QsAR6BAgEEAE

Dedications

Tomy fa’ther’s soul... Rest in peace

Tomy beloved Mom

Tomy fami[y

To all of those who put me on the way and continue encouraging, supporting,

and sponsoring...

Acknowledgment

First of all, 1 would like to thank Allah (Subhanahu Wa Ta’ala) who helps me and
supplies all my needs to complete this research.

I would like to express my special deep appreciation and thanks to my advisor
Professor Dr. Ahmed Kayed Ahmed for patience, sharing his knowledge, the valuable
guidance, and feedback, and for his endless support during the study and research. |
appreciate all his contributions, ideas, and time, to make my Ph.D. experience productive

and stimulating.

| am grateful to Professor Ezz Eldien Mohammed Osman, the creator of this
program, for his kind cooperation God bless him. Also, my sincere thanks extended to the
Sudan University of Science and Technology, specifically to the Department of “Computer

Science and Information Technology” for giving me the chance to do this thesis.

| would also like to thanks LAP14 family: Dr. Amjad Atta, Dr. Mohamed Adany,
Dr. Waleed Ali Mergani, Dr. Elsadig Basheer, Dr. Mohamed Ibrahim, Dr. Modathir Fadul,
Dr. Yosif Haroun, and Dr. Mohamed Elfatih for helping me and giving me many valuable

comments, guidelines, and suggestions during writing my thesis.

| deeply appreciate the unlimited support of my mother, her prayers, and
invocations for me. Also, | would like to thank my family for their continued support of

my education, their love and faith in me will always be a guiding force in my life.

Abstract

Cloud computing has been considered as an essential technology to support future
pervasive computing. It is becoming increasingly popular as it provides resources as
services to its users. One of the beneficial services that the cloud provides to its user is
storage. Indeed, outsourcing data to the untrusted domain leads to some vulnerability
problems. To protect the outsourced data from such problems the data should be stored
encrypted in the cloud. Ideally, to maintain the security of the user’s data, queries should
be performed over encrypted data. Generally, various approaches support computing over
encrypted data. A common approach that enables querying over encrypted data is the
Ordered Preserving Encryption (OPE) scheme. It allows the sort operations (such as range
query) and the comparison operation (like MIN, MAX) to be directly executed over
encrypted data.

Popa’s presented the first ideal-security OPE model called mutable Order-Preserving
Encryption (mOPE). The ideal-security guarantee for the OPE permits the cipher-texts to
leak nothing about the plain-texts besides the order. To achieve this, the mOPE model
constructs the OPE traversal tree to involve the client’s data. Moreover, to perform
operations the server needs the client’s help to search over encrypted data on the OPE tree.
The dependence of the server on the client to perform the requested operations dramatically
produces more requests and responses between the client and the server. Concurrently,

slow the system performance.

This thesis presents an enhanced OPE model improved on the mOPE model to reduce the
requests and responses between the client and the server to enhance the performance of the
search over encrypted data. The proposed enhanced model eliminates the dependence of
the server on the client by permitting the server to perform part of the search processes
without leaking any information about the original data besides the order. Moreover, to
speed up the process of the search operations it uses an indexing mechanism and developed
Range_Value to order the client’s data in the server. Based on the used indexing
mechanism information and the selected Range_Value the client’s data will be arranged

into two types of indices, one of them follows the Popa’s technique to preserve the order of

encrypted data, and the other one applies a different technique. This adds some aspect of

security.

The proposed enhanced model was implemented in two case study scenarios and tested on
various examples, using simulation programs. Also, the mOPE model was implemented in
the same case study scenarios using similar data as the enhanced OPE model. Finally, the
findings from the two models were compared to evaluate the enhanced OPE model. The
results shows that the enhanced OPE model succeeds in reducing the requests and
responses between the client and the server against the original model. The enhanced OPE
model behaves better in the small Range_Value. Moreover, the experiments on the used
sample of data show the best outcomes when the Range Value is less than halve of the
expected client’s data that will be outsourced for storage.

B .S\ . S

Bl e Ay ant Consal a8 Sl (8 A sall gl gl LY pe] Bl A8 Aplad) L sl e
o Leadinal Alaill Lgeadi il 3adal) claddll (e Basl g & oA Lgpeadiiual CiladdS 5) sall i g5 LY
8onadll Clibal) dles i (L GIRY) JSLAL Gl (e (550 e Jlae) Gl et Adda
A padional) iy A e e Bliall Ale ali Ga Adand) (85 00 Lei 535 g 4l JSLAW 038 Jie (e
e iyl st GOk e paall s ple JS3 3 ke A Gl e Gladlaial) ol) e
(OPE) i sl hain 585 s 5 jadall il e 2Dlaial) i Gl dadlid) 5okl gaa) 5 el bl
e 38he i 3l (MIN, MAX dis) 2aall Glilee 5 (GUaill odlaia) Jia) L8 Glilee iy sqd

Tisat (MOPE) all Jall s il L 5835 gy i) B 2) (M 23508 Il Popa’s o2
Ala¥) Ayl e A glea gl Gty 5 jadall Al Flead) axe Gaay g il Lais padd G Y
Lis 5l oLl 5l el a gy 3l A G il B 585w s (8 Gl () Jpea gl i i) il
Gl e anll Jaeall saclise) zling 20&l) b Cillaal) ol aY @l Culay | Jpenll iy auatl (i il
Sllaall o) aY Jseall e aslall dlaie) Zagall 3 (il Jais 5ads aUah Asll) 5ol 8 5 skl

Al el (o 4dls < gl s 8 aoladl s Jaandl s ililaial) 5 Ll e all 4 iy 3 sllal)

el il Al g gl Jads 58l #dsal o sk st il Bais 50l Guad 73 sad aady Ciad) 18
O Dy 2288l Guandll Z3 el 5 i)l bl e Gl ol Gaeatl anlall s Jread) o cililain) s cldlall
o Slaslaa gl ud e (e Gl Gllee (e 63 el ak 2l Fledlls @lld 5 Juendl e a2l slaic)
S0 Ay duyed A axdiey ald Gnll dlee Ao 321 Gl e s le il il Alal) il
Ll 8 3l (gaal) daf s dediionall A jedll 41 clily e Tely aolad) 8 Jaend) cilily agi il 5) shae
sobdial) Ll s i Jasal Popa Leeadind (A A ay Laaaad e ledll e Gue 5 B Lt o Jranl)

O il e any Chnmy 1aa Aalide (i 5 A (3uay JAY)

dalise dlial o o jlia) g Alladl du) (g g jl o Alphai &5 aa8al) i i) hds 5888 s al) 23 gl
Al A Hal G gl Gy o jiaall QU o il Jads 5005 23 s Gk a3 Lia)l 3Slaa gl o padinly
Al (pad sl & il 4 jlie ot T sy) Jada 50 e dll 23 saill b LS dgiliie iy aladiuly
lllall Qi 8 e i yill Jads 5udll s Al 23 gl of el @ jeal g il Jads 08 Al 3 gl
Lozie Jumdl IS Jae uenall i jill Jada 5835 w3 g0i | Jaa¥) 3 sailly 4 lie w015 Jaand) G iy 5

Vi

CulS Levie il Juadl dasdivall llull de 6 o jladll @ jelal 288 G ALLYL 5 ja sl dad S
LAl W jpaai a8 giall aadiivall Cilily Chual (e S8l gaall Ao

Vii

Table of Contents

e T [
D LTo oz U1 o] 1 TP O PO PRSP PPPPPR ii
ACKNOWIBAGIMENT ...ttt ettt e sb e sat e et e bt e sat e et e sbee st e saneenneenaee iii
AADSTIACT ...ttt b e sh e et b e bt et e b e nh e et b e e nan e b e naee e iv
TR Vi
Table OF CONLENES.......cviiiiiiieiiree e et viii
LISE OF TADIES ... et st Xii
IS 0 T O SR xiii
LIST OF SYMBOLS/ ABBREVIATIONSooiiiiitieiieeteiee ettt Xiv
CHAPTER ettt ettt et s et e st sabe e e bt e e s bt e e sabeeenabeesanee 1
INTRODUCTION L.ttt ettt ettt e sttt e bt e s bt e st e e e bt e e sabe e e sabeeenaneeeanes 1
1.1 General INtrOJUCTION:couiiiiiiiieiee e 1
1.2 RESEAICN MOTIVALION:.......iitiiiiiiieiiei et 2
1.3 Problem SEALEMENT:co.eiiiiiii e s 2
14 RESEAINCN QUESTIONS: ..veeiiicivreieeeiiee e e ettt e eetre e e eeetre e e e eebeeeeeetaeeeestreeeeeeataeeeeetreeeessreeeeennsees 2
15 Research Potential BENETILS:ccooviiiiiiiiiieiiicct e 3
1.6 RESEAICH ODJECLIVES: ...eeieveieiiei ettt ettt et e et e e ste e e s be e e abeesabaeesabeeesareeenneeans 3
1.7 =T Lo I T oT0] 0SSP 3
1.8 Research MethodoIOgY:cveiiuiieiiee ettt ee e sabe e eaaeeens 4
1.9 ReSEArch CONTIIDULION:c.eiiiiiieiiei et 6
110 TheSis OrganiZation:.......ccccueeeiieeiieeecieeectee st e e sree e e e s e e e sveeetaeesbe e e abeesnnaeesareeesnreeennneas 6
CHAPTER T1 oottt sttt e s et e e e s eab et e e saabbe e e s sbeeeeeaans 8
BACKGROUND AND RELATED WORKS.ottt 8
2.1 INEFOTUCTION: ...ttt st sttt st nbe s e sbe e 8
2.2 T 103 (o (U] Lo TSP 8
2.3 (01 (o100 J 00T 110111 { 4o RSP PR 9

2.3.1 Cloud Computing CharaCteristiCs:ceivueeeiiieiieieiree e e st et s e e sree e 9

2.3.2 Cloud Computing Deployment MOdEIS:cccvveiieiiiieiceeecee e 10

2.3.3 Cloud COmMPULING LAYEIS:ooeiuieeeiieeceieeeeite e et e steeesreeeete e sreeesareesaaeesaveeeenreeenens 11

viii

2.3.4 Cloud Computing Delivery MOGEIS:ceoevieriiiiiiieriereeeeree e 11

2.4 Security of Cloud COMPULING: ...oouviiiieiieeieeee et 12
25 Methods for Computing on Encrypted Data:cocveereerieriieiienieeieesee e 13
2.5.1 Methods With N0 LEAKAGE:eovveriieiiiriieeieeeeee e 14

2.5.1.1 Fully Homomorphic Encryption (FHE):ccccoooiiriiiiiiniiieeeenceene 14

2.5.1.2 Partially Homomorphic Encryption (PHE):c.ccoviriiiniiiiieeicees 14

2.5.2 Methods with Controlled Leakage:ocuevveerieriieiienie et 15

2.5.2.1 Functional ENCryption (FE):.......ccceioiriiieeeceie e esiee e sveeeeeee s 15

2.5.2.2 Deterministic ENCryption (DE):........ccceevieeriiieriee e eieesiee e sreeeeeee e 15

2.5.2.3 Order-Preserving Encryption (OPE):......c.cceovveveieeiiiie e ciee e 16

2.6 OPE SCREIMES: ...ttt ettt e 16
2.7 REIAIEA WOTKS: ...ttt s 18
2.8 SUMIMIATY vttt e ettt e ettt e e ettt e st et e s stb e e e s et beeeessbeeeessasbeeesssbaeessassseeessnssaeessnssaneesnnssenens 20
CHAPTER T oottt et sttt e st st e e st e e sabt e e sabeeesaneesanee 21
THE PROPOSED ENHANCED RANGES ORDER PRESERVING ENCRYPTION
MODKE. . .iuiitiiiiiiiiiitiiieiiietiitiietiieteiaeeisccsecssessccssssssssssssssssssstssssssscssscssscsscssssnns 21
3.1 INEFOTUCTION: ...ttt et st 21
3.2 The Original MOPE MOUGEL:cooiiieciei ettt e e s rae e sre e eeaee e 21
3.3 The Enhanced Ranges Order Preserving Encryption (ROPE) Model:ccccoveeveverennenns 24
3.3.1 DEFINITIONS: ...ttt 24

T I I 1 T I VS (=0 o RSP 25

3.3.3 The INdeX TabI:.....ccuiiiiiiiiece s 25

3.3.4 A Framework for the Enhanced ROPE Model:cccoieviiniiiiniiniiiciicicneeee, 28

3341 THE CHENE .ttt 30

3.3.4.2 The TruSted Party:ccocoveeeiiee ettt et stee e 30

3.3.4.3 THE SEIVEI: ettt 31

3.3.5 Preserving the Order of Data in the SEIVEr:ccocveeiieeiiiiecee e 31

3.3.5.1 Dealing with the 1d_ranges:ccceecveeeiiee et e 31

3.3.5.2 Organizing the Client’s Data into the Ranges:ccocvvvreiinieiinneens 32

3.3.6 The Access of Data in the Enhanced ROPE Model:cccooeeiinieniniinecieneee, 33

3.3.7 A Case StUAY EXAMPIE:......uii ettt e s 38

3.3.7.1 Createthe Index Table:cooeiriiiiieiieeee e 38

3.3.7.2 Data Encryption and Organization:ccccereervueeneeneenineeneeneennens 39

3.3.7.3 The INSErt OPEratioN:ccceeeeereienieeniienie ettt seeens 40

3.4 Research Methods for the Enhanced Model Evaluation:............cccceeviiivienicniceneeniennens 41
3.5 Research TooIS and DAta:cocveriiiieeriieiie ettt 44
3.6 SUMIMAIY ettt ettt ettt e sttt e bt e st b e e sabe e e sab e e e abb e e sabe e e sabeeebbeesabeeesabeeeanneesanes 44
CHAPTER TV ettt ettt e e st e e e s s bbe e e s s abe e e s sabeeeessabtaeessnreeessans 45
IMPLEMENTATION AND TESTING ...ooiiiiiiiiiietee ettt 45
4.1, INETOTUCTION: ... ettt e et sbe s 45
4.2. The Enhanced ROPE Madel Implementation:ccccceeevieeiceiescie e 45
4.2.1 The Experiments of the INSert SCENArio:eccveverieeeiii et 48

4.2.2 The Experiments of the Search SCenario:ccceeveeveiiiicii s 57

4.3 The mMOPE Model Implementation:ccvieiiieiiiie et see e e 59
4.3.1 The Experiment of the INSert SCENArio:.......ccceecevveerieeeiiee e cree e cee s 61

4.3.2 The Experiment of the Search SCENArio:cccvevvieeeiiieiiee e 61

4.4, SUMIMIATY vttt e ettt e ettt e e ettt e et et e s st ee s eaabe e e e ssbeeeessasbeeesssbaeeesassseeessnsseeesssseneesnnsseness 61
CHAPTER Vet ettt e sbb e e sb et e sttt e sab e e sbe e e sabeeesateesaaee 62
RESULTS AND DISCUSSIONSottt sttt et sttt e e e s 62
5.1 INEFOTUCTION: ...ttt et st 62
5.2 RESUIES: .t 62
5.3, DISCUSSIONS: ..ttt sttt ettt ettt b ettt b et sbe et s e bbbt et e nneeanenne e 65
5.4, T U 0] 00T Y PSSP 67
CHAPTER Vet e e e e sttt ettt e st e s bt e e st e e saneesanee 68
THE ENHANCED ROPE MODEL EVALUATION ...ooiiiiiiiii ettt 68
6.1. INEFOTUCTION: ...ttt ettt e e e 68
6.2 SECUNItY EVAIUALION:eeiieiee ettt et s e ar e eaees 68
6.2. Performance EValUALION:cccooiiiiiiiiiiieieeece et 69
6.3. The Enhanced ROPE MOdel FEAUIES:cceeiiriieiiniieiiieeicrececeee e 71
6.4. Comparison between the Enhanced ROPE Model and the mOPE Model:...............cc........ 71
6.5. SUMMIIY ettt et e e e e et e e e e e e e e et r e e e e e e e ssabb e eeeeeaeeeasasssaaeeeaesssanssssnaeeeaeeeesnasssnnneaaenenn 73
CHAPTER V..t et e e e st e e e st e e s eabbe e e e snreeeeaans 74
CONCLUSIONS AND FUTURE WORKS. ...ttt ieeee e 74
T L CONCIUSION: ..ttt ettt e sae e et e b s aneeneenneesaneens 74

X

7.2 Bl LT R O] 1 1] o 10| {014 T RTPPRR 75

7.3 THE FUTUIE WOTKS: ...ttt e 76
RETEIEINCES: ...ttt sttt b e bttt e sb e st st e b e st e eneenean 77
Y o] 0 1=] o [0 o= OO PP PP PSSP PTUPPTUPRRPPO 84
Y o] o 1=1 [0 1 QPP U PP PSSP PTUPPTOPRRRPPO 84
The enhanced ROPE MOdel SOUICE COUE:eoiviiiiiiiieriieiieete ettt 84
Subprograml: Creates the index table and prepares the database by allocating the
Lo I L0 USRS 84
Subprogram?2: The INSErtion PrOgram.coccveeevveeeoieeiieeeireeeeeesreeesereeeeeeesnreeessseeenens 87
Subprogram 3: The Search Program.c.coccveeevvieeeiee e esiee et seeesereeseee e seeesnnee e 96
N o] 1= T 1D = R 102
The MOPE MO0del SOUICE COUE:cooviiiiiiiiiciieeeereee ettt 102
Subprograml: The INSErtion Program.cccceeerieeiieeeiieeerreesreeesreeeseveesveeeseneeesaneeens 102
Subprogram?2: The SEarch PrOgram.cceeceeeerieeioieeiieeeseteeeeeesveeesveesreessreeenenee e 109
LiSt OF PUDIICALIONS ...ttt 114

Xi

List of Tables

Table 2.1: Security provided by previous OPE schemes and mOPE scheme (Raluca Ada

POP&, 2013). ..t 17
Table 3.1: The index table of the case StUAY..........cccviieiiiiie e 39
Table 3.2: The client’s data in the database of the case studyccccovvrviniieniiiiieiienn, 40
Table 4.1: The Index Table for experiment no.1, ECD=100, RV=5cccccoiniiniiininnnnn. 49
Table 4.2: The Index Table for experiment no.2, ECD=100, RV=10........c.c.cccesevrrrrrrnrrnn. 51
Table 4.3: The Index Table for experiment no.3, ECD=100, RV=20..........c.cccceeurrrrrrurrne. 52
Table 4.4: The Index Table for experiment no.4, ECD=100, RV=30...........ccccceevvrrrrrrrrrnne. 53
Table 4.5: The Index Table for experiment no.5, ECD=100, RV=40...........cccccceovrrrrrrrrnne. 53
Table 4.6: The Index Table for experiment no.6, ECD=100, RV=50...........ccccceevvvrrrrrnrrnne. 54
Table 4.7: The Index Table for experiment no.7, ECD=100, RV=60............c.c.ccccvrerrrrrrnne. 54
Table 4.8: The Index Table for experiment no.8, ECD=100, RV=70............cccceeevvrrrrrrrrnne. 55
Table 4.9: The Index Table for experiment no.9, ECD=100, RV=80............ccccecevrrrrrrrrnne. 55
Table 4.10: The Index Table for experiment no.10, ECD=100, RV=90..............cccecervrrrnn. 56
Table 4.11: The Index Table for experiment no.11, ECD=100, RV=100............c...ccovrrv.e. 56
Table 4.12: The search operation eXPErimeNtScc.ceeiveeiiireiiiee e sreeesee e 58

Table 5.1: The results of the insert operations experiments in the enhanced ROPE model. 63

Table 5.2: The results of the search operations experiments in the enhanced ROPE model 64

Table 5.3: The result of the insert experiment in the mOPE model..............cccccoevveeinnenne, 65
Table 5.4: The result of the search operations in the mOPE model...............cccccoovveeinnennn, 65
Table 6.1: Comparison between the mOPE model and the enhanced ROPE model............ 72

xii

List of Figures

Figure 1-1: The research methodology diagramccceovieiiiiiiiiiiei e 5
Figure 2-1: Cloud computing architecture (Qi Zhang, 2010).ccccevvrriienieiiie e, 12
Figure 3-1: The OPE tree in mOPE model (Raluca Ada Popa, 2013)ccccccveviieniieninnnn 22
Figure 3-2: The OPE tree traversal algorithm of the mOPE model (Raluca Ada Popa,

70) OO 23
Figure 3-3: The ITC algorithm...........ooiiiiieee e 26
Figure 3-4: The ITC algorithm diagram.ccooiiiriiieii e 27
Figure 3-5: The enhanced ROPE model framework.cooceiiiiiiiiin e 29
Figure 3-6: The enhanced ROPE model algorithm. ... 34
Figure 3-7: Searches for the right 1d_range diagram.cccooceeiiiiniiiiiieiie e 36
Figure 3-8: Search for the right location in the target OPE tree diagram...............cccceeveenn. 37
Figure 3-9: The insert of 2 in the database of the case study and the related storage after

TNAL. ..o 41
Figure 3-10: The research methods for the evaluation diagram.cccceevveeviieciinnnn, 43
Figure 4-1: The ROPE model experiments approach.cccccveeviveiiieesiiieeesieeeciie e 47
Figure 4-2: The mOPE model experiments approachcccccveeviveiiie e 60

xiii

LIST OF SYMBOLS/ ABBREVIATIONS

OPE Order Preserving Encryption

mOPE mutable Order Preserving Encoding

CryptDB Named

BBST Balanced Binary Search Tree

RRbCS Requests and Responses between the Client and the Server
RV Range_Value

DBaaS Database as a Service

CSP Cloud Services Provider

NIST National Institute of Standards and Technology

VMWare Named for cloud software

vCloud Director Named for cloud software

Xen Name for virtualization technology
KVM Name for virtualization technology
VM Virtual Machine

API Application Programming Interfaces
SaaS Software-as-a-Service

PaaS Platform-as-a-Service

laaS Infrastructure-as-a-Service

ISO International Standards Organization
CSS Cloud Service Subscribers

FHE Fully Homomorphic Encryption
PHE Partially Homomorphic Encryption
FE Functional Encryption

pk Public-key

Sk Secret key

DE Deterministic Encryption
IND-OCPA Indistinguishability under Ordered Chosen-Plaintext Attack

Xiv

PKE

SE
MV-OPES
DET

ROPE
IND-OLCPA

ROPF
RND
ORE
OOPE
DBMS
ROPE
ECD
ITC
AVL
BST
ThS

Public-key Encryption

Searchable Encryption

Multivalued-Order Preserving Encryption Scheme
Deterministic encryption

Real Order Preserving Encryption

Indistinguishability under Ordered Launching Chosen-
Plaintext Attack
Real Order Preserving Functions

Random encryption

Order Revealing Encryption

Oblivious Order Preserving Encryption
Database Management System

Ranges Order Preserving Encryption
Expected Client’s Data

Index Table Creation

Adelson-Velskii and Landis

Binary Search Tree

Tests of the Server

XV

CHAPTER I

INTRODUCTION

1.1General Introduction:

Cloud computing became an appealing technology in the computing era. Today’s
more and more companies outsourcing their data to the external cloud, outsourcing data to
cloud service offers lower cost by sharing hardware and elastic scaling (Sosinsky, 2010).
However, a key problem in outsourcing storage is that the sensitive data may be subject to
unauthorized access not only from an unknown attacker but also from a curious service
provider (Rahman, 2011).

Moreover, one possible approach to protect the confidentiality of outsourced data is
encryption (Dan Boneh, 2007) (Manpreet Kaur, 2013). Nevertheless, this solution requires
additional decryption operations when there is a need to perform operations on data. To
face this limitation the cloud server should be able to perform some computation over
encrypted data exactly as unencrypted one. The idea behind this is to use techniques that
support processing operations on encrypted data exactly and efficiently as unencrypted

ones and without knowing any information about it (Sergei Evdokimov, 2007).

However, one possible approach that permits querying over encrypted data is the
Order Preserving Encryption (OPE) scheme. It permits comparisons and sort operations to
be directly performed on encrypted data. Also, the OPE scheme can be integrated easily
with the existing database systems (Seungmin LEE, 2009). Moreover, (Raluca Ada Popa,
2013) presented the first ideal-security OPE model called the “mutable Order-Preserving
Encoding” or “mOPE” model (the word encoding was used instead of encryption). It was
constructed for order operations in CryptDB (POPA, 2014). The mOPE model was
function by building one OPE tree which is a Balanced Binary Search Tree (BBST) that
comprising all the client’s data in the server. Also, the server needs the client’s help to
search over the encrypted data. The server dependences on the client in the mOPE cause
more Requests and Responses between the Client and the Server (RRbCS). Sequentially,

this leads to slow system performance. To solve this problem this study presents an

enhanced OPE model from the mOPE model. It divides the client’s data into parts based
on a developed selected Range_Value (RV). Also, it uses an indexing mechanism to speed
up search operations.

1.2 Research Motivation:

Recent years show the success of cloud computing as new modern technology. Its
popularity comes from the benefits that it offers to the users. To get the benefit of the
cloud services, the users outsourced their sensitive data to the cloud server, despite the
unauthorized access from the service provider. They need to access their data anytime and
from any location. To keep track of this situation, there should be approaches to keep the
user’s data from leakage while providing flexibility to access them.

1.3 Problem Statement:

In the mOPE model, the server usually needs the client’s help to process the client’s
requests. The dependence of the server on the client to move over the OPE tree generates
more RRbCS. Moreover, the involvement of the client’s data in one OPE tree increases the
tree depth as the storage size is increasing. This leads to generate more and more RRbCS

and subsequently the system performance is a slowdown.

1.4 Research Questions:

This work can outline the problem statement in three main questions to map the
work direction, and also used as a guide for the study towards fulfilling the main goal. This

research aims to answer the following Research Questions (RQSs):

RQ1: How to reduce the RRbCS in the mOPE model?
RQ2: How to reduce the dependence of the server on the client in the mOPE model?

RQ3: What is the effect of the RV length on the RRbCS?

1.5

Research Potential Benefits:

The hypotheses of this research are formulated as follows:

1.6

= Proposes an enhanced OPE model.

= The proposed enhanced OPE model may reduce RRbCS.

= The proposed enhanced OPE model may reduce server dependence on the
client.

= The enhanced OPE model may enhance system performance.

= The enhanced OPE model may improve system security.

= The proposed methodology is expected to give promising results.

Research Objectives:

The general goal is mainly to improve the mOPE model to propose an enhanced

OPE model, that reduces the RRbCS and consequently enhances the performance of the

search over encrypted data, easily without affecting the efficiency and security of the whole

system. Also, the specific objectives are outlined as follows:

1)

2)
3)

4)

1.7

To reduce the RRbCS in the mOPE model. This objective has been achieved
through:
e Designing an enhanced OPE model architecture based on the mOPE model.
e Using a new indexing mechanism.
To reduce the server relies on the client in the mOPE model.
To apply the developed RV that can enhance the performance of search over
encrypted data.

To evaluate the proposed enhanced model compared to the mOPE model.

Research Scope:

This research introduces an enhanced OPE model that improved from the mOPE

model presented in (Raluca Ada Popa, 2013). The proposed model focuses on the number

of RRbCS to enhance the performance of search over encrypted data in cloud computing.

1.8 Research Methodology:

The proposed model uses a mixture of both the qualitative and quantitative research
methodologies to investigate the research questions through an effective literature review
and also by developing an OPE model to study the RRbCS (performance) of the enhanced
model compared to the mOPE model. The literature review forms the qualitative research
methodology, and the RRbCS in the enhanced model compared to the mOPE model forms
the quantitative part of the research methodology.

At the initial stage, a detailed literature study is made to understand the concept of
search over encrypted data and the issues concerning the OPE schemes. Then the study
analyzed the issues and challenges that have been emerging in previous works. Besides,
based on the results, it abstracted the research objectives, and then set up the enhanced OPE
model architecture. After that, a simulation program is designed to observe the behavior of
the RRbCS (by means of performance) of the developed model compared to the mOPE
model. The execution of the simulation program is to validate the research's initial
assumption that the enhanced model can reduce the RRbCS while searching over encrypted
data. This could enhance the performance of search over encrypted data. Tests are carried
out with the aid of the simulation program for the enhanced model. Having the results,
allowing analysis of the findings to be able to evaluate the developed model, and make
judgments about the study’s usefulness in practice.

In ordered to achieve the above objectives the following steps have been
accomplished as shown in:

1. Study literature review and related works on querying over encrypted data and OPE
schemes.

2. Define the problem statement.

3. Specify the research objectives.

4. Design and develop an OPE model architecture to enhance the performance of the
search over encrypted data (this step will be explained in chapter three).

5. Implement and test the enhanced model using a simulation program to measure the
performance enhancement compared to the mOPE model (this step will be
discussed in chapter four).

6. Obtain the results (this step will explore in chapter five).

4

Evaluate the developed model compared to the mOPE model (this step will view in
chapter six).

Publication of the research results.

Write the thesis.

Figure 1-1 formulates the steps of the research methodology.

Study letriture review and related
works

[Define the problem statement

 —

Specify the research objecteves J

[Design the developed model

The developed model Implementation
and testing

[Obtain tile results]

[The developed model evaluation

Publication the research results

—

[Write the thesis

| S S S S—

Figure 1-1: The research methodology diagram

1.9 Research Contribution:

The contributions of this dissertation can be summarized as follows:

1. Propose an enhanced OPE model for search over encrypted data.

2. Reduce the RRbCS of search processes over encrypted data.

3. Reduce the dependence of the server on the client while performing the search
processes.

4. Permit the server to perform part of the search processes.

5. Provide the IND-OCPA security for the enhanced model.

6. Enhance the performance of search over encrypted data compared to the mOPE
model.

1.10 Thesis Organization:

This dissertation is organized into seven chapters as follows:

Chapter One: Introduces the main subject of this study and provides a general
outline of the work. It presents an overview of this dissertation; cover the problem
statement of the study, the research questions, the potential benefits of the study, the
objectives of the study, the research scope, the research methodology, and the contribution

of the study. The rest of the thesis is organized as follows:

Chapter two: Presents theoretical background information for studies. Explains
the following concepts: general background, the cloud computing characteristics and
architecture, the security of cloud computing, methods for computing over encrypted data,

the OPE schemes, and the related works.

Chapter three: Introduces the enhanced model, focuses on architecture design.
Besides, this chapter describes the proposed enhanced OPE model. It addresses some
definitions, illustrates the introduced entities, and presents a framework for the enhanced
model. Also, it presents how the enhanced model preserves the order of data in the
database server and how it accesses the data. Rather it explains a case study example, the

research data and tools, and the research methods for the evaluation of the proposed model.

Chapter four: Covers the case studies that were conducted to test the enhanced

model compared to the mOPE model using simulation programs. It presents two scenarios

6

for testing the enhanced model, one for the insert operations and the other for the search

operations. Also, it presents the conducted case studies for the mOPE model.

Chapter five: States the results obtained from the conducted experiments and
discusses them compared to the OPE model.

Chapter six: For model evaluation, it evaluates the proposed enhanced model
security and performance compared to the mOPE model.

Chapter seven: Presents the conclusion of the study. Also, it mentioned the open
issues for new researchers in the same field.

References: Illustrates all the referenced studies that are used in this research.

Appendices: Displays the simulation programs that implement and test the
enhanced OPE model and the mOPE model in the insert and search scenarios. Also, it
presents the list of publications.

CHAPTER I

BACKGROUND AND RELATED WORKS

2.1 Introduction:

This chapter introduces a background about outsourcing database to the cloud
server. It covers cloud computing concepts and architecture. Also, it reviews the security
of cloud computing and the methods for computing over encrypted data. Accurately, it
focuses on the approaches for computing over encrypted data, especially the Order
Preserving Encryption (OPE) schemes. Concretely, this chapter reviews the concept of the
OPE schemes and the related works in this area.

2.2 Background:

In cloud computing, resources are provided as a service over the Internet to
customers who use them when needed (Safiriyu Eludiora, 2011). One of the most
attractive cloud services is the database. In which the cloud database is provided as a
service. It is called Database as a Service (DBaaS) (Divyakant Agrawal, 2009) (Shehri,
2013). It allows users to store their data at remote storage and access them anytime and
from any location (V. Spoorthy, 2014). To get the benefit of this cloud service, more and
more organizations outsourcing their sensitive data (such as e-mails, personal health
records, company financial data, and government documents, etc.) to be stored into the
cloud database and managed by the Cloud Services Provider (CSP). Unfortunately, the
migration of data to the untrusted domain put the outsourced unencrypted data at risk
(Treesa Maria Vincent, 2013). A key problem of outsourcing storage is that the sensitive
data may be subject to unauthorized access not only from an unknown attacker but also
from a curious service provider (Dan Boneh, 2007). However, confidentiality is the most
important security mechanism that should be provided to protect the user’s data in the
cloud (Jakimoski, 2016). Therefore, encryption is a better solution to prevent outsourced
data from unauthorized access. So, it is better to encrypt the user’s data before storing it in
the cloud (R. Velumadhava Rao, 2015).

However, after encryption, it becomes difficult to perform queries over the
database. It is not acceptable to decrypt the database before every querying because this
leads to security vulnerability again. Another reason is that the decryption for large
databases might be very slow. Ideally, queries should be executed directly over the
encrypted database (Somayeh Sobati Moghadam, 2016).

2.3 Cloud Computing:

Cloud is an Internet-based technology, where shared resources are provided on-
demand and pay-per-use basis. The National Institute of Standards and Technology (NIST)
defines cloud computing as ”a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction (Peter Mell, 2011).
Moreover, cloud computing is a computing platform for sharing resources that include
infrastructures, software, applications, storage, and services. It provides services to the user
in a virtualized manner through the internet. The flexible environment and cheaper cost of
using cloud computing attract people to use cloud services related to software, platform,
and infrastructure (Krunal Suthar, 2017).

2.3.1 Cloud Computing Characteristics:

(Sosinsky, 2010) And (Gamaleldin, 2013) were summarized the essential
characteristics of cloud computing as below:

e On-demand self-service: The user can use the resources without the need for
human interaction with CSP.

e Broad network access: Cloud resources are available over the network and can
access through different platforms.

e Resource pooling: The CSP creates resources that are pooled together in a system
that supports multi-tenant usage to serve multi-consumer, with physical and virtual
resources that are assigned or reassigned dynamically according to the user

demands. The idea behind pooling is to hide the location of the resource.

Rapid elasticity: Resources can add to the system by either scaling in or scaling
out. For the user, resources should be unlimited and can be purchased at any time
and in any quantity

Measured service: The resources’ usage can be monitored, controlled, and
reported. This feature has an advantage of what you are using is that you are paying
for.

2.3.2 Cloud Computing Deployment Models:

Further, based on the usage of the Cloud, there are different types of deployment

models. The cloud deployment models are private cloud, public cloud, hypride cloud, and

community cloud. The first three ones are commonly-used, while the last one is less-

commonly used (Gorelik, 2013). The deployment models are described below (Krunal
Suthar, 2017) (Gorelik, 2013):

Private cloud: It builds for a single organization and it manages by an organization
itself. Organizations use software that enables cloud functionality, such as
VVMWare, vCloud Director.

Public Cloud: The organization provides a set of computing resources for the
general public who can access it from anywhere and pay as per use. The most
popular public clouds include Amazon Web Services, Google AppEngine, and
Microsoft Azure.

Hypride Cloud: It is a mixture of private cloud and public cloud that provides
computing resources of both.

Community Cloud: Computing resources are shared among several organizations

that have similar missions and requirements.

10

2.3.3

Cloud Computing Layers:

The architecture of cloud computing is divided into four layers the hardware layer,

the infrastructure layer, the platform layer, and the application layer. The next part
describes each of them (Qi Zhang, 2010):

2.3.4

The hardware layer: It concerns managing the underlying physical resources of
the cloud such as physical servers, routers, switches, power, and cooling systems.
The infrastructure layer: Also known as the virtualization layer, creates a pool of
storage and computing resources by partitioning the physical resources using
virtualization technologies such as Xen, KVM, and VMware. Also, it is
responsible for dynamic resource assignment and many other features are available
in this layer. This layer is known as the virtualization layer.

The platform layer: It consists of operating systems and application frameworks.
The purpose of this layer is to facilitate the process of deploying applications into a
virtual machine (VM) container. Also, it provides Application Programming
Interfaces (API) for implementing web applications.

The application layer: At the top of the hierarchy, it consists of the actual cloud

applications.

Cloud Computing Delivery Models:

In cloud computing, three delivery models delivered different types of services to

the end-user which are (S. Subashini, 2010) (J.SRINIVAS, 2012):

Software-as-a-Service (SaaS): In a cloud-computing environment SaaS is the
software that is owned, delivered, and managed remotely by one or more providers.
Platform-as-a-Service (PaaS): It offers an integrated set of developer
environments that can help the consumers to build their applications and deliver
them to the users through the internet.

Infrastructure-as-a-Service (laaS): laaS completely abstracted the hardware
under it and allowed users to consume infrastructure as a service without knowing

anything about the underlying complexities.

11

Figure 2-1 describes the four layers of cloud computing and its three delivery models.

End Users
Resources Managed at Each layer Examples:
—> 4 Business Applications, Google Apps,
£ Web Services, Multimedia

Facebook, YouTube

Software as a
l Saleforce.com

Service (Saa$) Application

-------------------- /', A TTTTTTTTTTTTTTTTTTTTTT
/ Software Framework (Java/Python/.Net) I Microsoft Azure
S*’e'ar:f:;f;; e Stomge (Dh/Eve) A7 Google AppEngine,
Y .
| Platforms [’ .o s ot
———————————————————— Amazon EC2,
Computation (VM) Storage (block) GoGrid
Flexiscale
Infrastructure { Infrastructure] T
as a service (laaS) i

CPU, Memory, Disk, Bandwidth

[Hardware ‘

Figure 2-1: Cloud computing architecture (Qi Zhang, 2010).

2.4 Security of Cloud Computing:

Cloud computing has many advantages that attract the user to get benefited. The
fact that most of the user’s data and software in cloud computing are reside on the internet,
makes the system faces some challenges, especially for security. The nature of cloud
computing makes it a complicated matter to provide security in cloud computing. For
instance, each application may use the resource from multiple servers and the servers are at
multiple locations. Also, the cloud may provide services that used different infrastructures
across organizations. Therefore, to ensure cloud computing security, various security

issues must be taken into account (Liang Yan, 2009).

The International Standards Organization (ISO) recommended some security

requirements for Information Security which are:

e Identification & Authentication.
e Authorization.

e Confidentiality.

e Integrity.

¢ Non-repudiation.

e Availability.

12

These security requirements should be covered in cloud computing to recognize
cloud computing as a secure technology (Ramgovind S, 2010).

Cloud computing is a rich environment of security risk. Hence, there are specific
security issues the Cloud Service Subscribers (CSS) should pay more attention to them
which are:

e Privileged user access.
e Regulatory compliance.
e Data location.

e Data segregation.

e Recovery.

So, the CSS should agree on the security issues with their providers before selecting
them (Safiriyu Eludiora, 2011).

Generally, cloud customers have different motivations to move to the cloud. From
the perspective of different cloud clients, the security point of view is different. For
instance, academia is concerns about security and performance. Therefore, the cloud can
provide approaches to combine security and performance for them, whereas for enterprises,
the most important problem is security but performance maybe not as critical as academia
(MANDEEP KAUR, 2013).

2.5 Methods for Computing on Encrypted Data:

This section explains some methods that enable computing on encrypted data.
These methods were categorized into two types: methods with no leakage about the data
and methods that leak a well-defined function of the data. In the second type, the leakage
of the data enhances performance (POPA, 2014). In the following subsection, we describe

these methods.

13

2.5.1 Methods with no Leakage:
2.5.1.1 Fully Homomorphic Encryption (FHE):

The FHE permits general computations to be performed on the encrypted data
(Khamitkar, 2014). If a user has a function f and want to obtain f(mg,...,m,) for some
inputs my, ..., m,, it is possible to instead compute on encryptions of these inputs, ¢, ..., Cp,

obtaining a result which decrypts to f(my, ..., m,) (Frederik Armknecht, 2015).

More importantly, FHE allows different types of operations to be performed on
encrypted data without decryption (Maha TEBAA, 2013) (Mr. Manish M Poteya, 2016). It
permits addition and multiplication to be performed at the same time (SARAH SHIHAB
HAMAD, 2018). However, it allows numbers of operations to be performed an unlimited
number of times (Abbas Acar, 2018). FHE offers strong security guarantees, called
semantic security. It is too slow, because it runs arbitrary types of operations (POPA,
2014).

2.5.1.2 Partially Homomorphic Encryption (PHE):

Partial Homomorphic Encryption (PHE) schemes allow the computation of certain
mathematical operations over encrypted data. Unlike the FHE, the PHE permits only one
type of operation, either additive or multiplicative (Ayub Hussain Mondal, 2015) (Mr.
Manish M Poteya, 2016). For instance, additive homomorphic schemes provide the
addition of cipher-texts, such that the result is equal to the addition of the plaintext values
(i.e., ENC (m1) + ENC (m2) = ENC (m1 +m2)) (Hossein Shafagh, 2017).

Moreover, PHE allows operations to be performed on encrypted data for an
unlimited number of times (Abbas Acar, 2018). So, it provides better performance than the
FHE. This method provides the same strong security as FHE (POPA, 2014).

14

2.5.2 Methods with Controlled Leakage:
2.5.2.1 Functional Encryption (FE):

The FE is public-key (pk) encryption in which a receiver of the cipher-text can learn
certain functions of the underlying message based on its secret keys (sk) (O'Neill, 2010). In
a FE system, a trusted authority holds a master secret key known only to the authority.
When the authority is given the description of some function f as input, it uses its master
secret key to generate a derived secret key sk[f] associated with f. In symbols, if E(pk; X) is
encryption of x, then decryption accomplishes (Dan Boneh, 2012):

Given E(pk; x) and sk[f],
Decryption outputs f (x) (Dan Boneh, 2012).

This opens possibilities to specify a policy describing what users can learn from
the cipher-text (Allison Lewko, 2010).

2.5.2.2 Deterministic Encryption (DE):

A Public-key Encryption (PKE) scheme is said to be deterministic if its encryption
algorithm is deterministic. DE allows fast search over encrypted data (Alexandra
Boldyreva, 2008). Deterministic leaks encrypted data that corresponds to the same values
since it produces the same cipher-text from the same Palin-text. This encryption type
allows the server to perform equality checks, which means it can perform selects with
equality predicates, equality joins, GROUP BY, COUNT, DISTINCT, etc. (Raluca Ada
Popa, 2011). However, deterministic encryption permits logarithmic time search on
encrypted data, while randomized encryption only allows linear time search, meaning a
search requires scanning the whole database. This difference is crucial for large outsourced

databases that cannot afford to slow down search (Bellare, 2008).

15

2.5.2.3 Order-Preserving Encryption (OPE):

A practical approach that facilitates querying directly over encrypted data (without
decrypting) is an Order-Preserving Encryption (OPE) scheme. Assume the plain-text
values consist of unique values, which will be represented as P = p1, p2... pi < pi+1. The
corresponding encrypted values will be stored as C = ¢, Cs... Cj, Ci+1. This means that the
storage of ¢; and ci; is preserving the order of p; and pi:1, such that, the order of the plain-
texts is preserved in the cipher-texts (Rakesh Agrawal, 2004). So that, the OPE scheme
permits the untrusted server to process SQL queries over encrypted data especially
comparison queries and range queries (Hakan Hacig"um™us, 2002) (Hasan KADHEM,
2010).

2.6 OPE Schemes:

The notion of the OPE scheme was proposed earlier to allow the comparison
operation directly performed on encrypted data without decryption. The OPE scheme
mapped the i th value in the plain-text values to the i th value in the cipher-text values
(Rakesh Agrawal, 2004). In such a scheme the order of the plain-texts is preserved in the
cipher-texts. Thus, equality queries, range queries, MAX, MIN, and COUNT queries can
be directly processed over encrypted data. Also, GROUP BY and ORDER BY operations
can be applied. Only there is a need for value decryption when applying SUM or AVG
(Rakesh Agrawal, 2004).

However, the first formal study of the concept and its security was performed by
(Alexandra Boldyreva, 2009). Also, the study proposed the strongest security definition for
order-preserving schemes which is the IND-OCPA (INDistinguishability under Ordered
Chosen-Plaintext Attack). The IND-OCPA for order-preserving encryption allows the
adversary to learn nothing about the plaintext values except for their order (Alexandra
Boldyreva, 2009). Despite the large body of works on OPE schemes (Seungmin LEE,
2009) (Hasan KADHEM, 2010) (Alexandra Boldyreva, 2011), none of them achieves the
IND-OCPA. The prior schemes reveal more information about the plain-text besides the
order. Table 2.1 explains the security provided by the previous OPE scheme and the mOPE
scheme. Furthermore, it shows that the first ideal order-preserving encoding scheme that
achieves IND-OCPA security is the mOPE (Raluca Ada Popa, 2013). It reviews the

16

security provided by previous OPE schemes and the mOPE scheme, including the

cryptographic security guarantees provided by each scheme, and the information revealed

by each scheme in addition to the order of the plaintext values (Raluca Ada Popa, 2013).

Table 2.1: Security provided by previous OPE schemes and mOPE scheme (Raluca

Ada Popa, 2013).

Order-preserving scheme

Security Guarantees

Leakage besides order

(Gultekin Ozsoyoglu, 2004)

None

Yes

(Rakesh Agrawal, 2004)

None

Yes

(Alexandra Boldyreva, 2009)

ROPF (Alexandra Boldyreva,

Half of plaintext bits

(Alexandra Boldyreva, 2011) 2009)

(Divyakant Agrawal, 2009) None Yes
(Seungmin LEE, 2009) None Yes
(Hasan KADHEM, 2010) None Yes
(Kadhem, 2010) None Yes
(Liangliang Xiao, 2012) None Yes
(Liangliang Xiao, 2012) IND-OLCPA (Liangliang Yes

Xiao, 2012)

(Dae Hyun Yum, 2011)

ROPF (Alexandra Boldyreva,

Half of plaintext bits

2009)
(Dongxi Liu, 2012) None Most of the plaintext
(George Weilum Ang, 2014) None Yes
(Dongxi Liu, 2013) None Most of the plaintext
(Raluca Ada Popa, 2013) Ideal: IND-OCPA None

17

As explains in Table 2.1, the OPE schemes before the mOPE scheme leak more
than the order of data and the mOPE scheme is the first one that achieves the IND-OCPA.
This study is based on the mOPE model. The study improves the mOPE structure and
combines it with an indexing technique to reduce the RRbCS.

Also, in the OPE schemes, the cipher-texts reveal the ordering information of the
plain-texts. On the other hand, when it is desirable to have better performance for range
queries while providing a reasonable degree of security, the OPE is a good option
(Liangliang Xiao, 2012). However, the OPE schemes leak order information for plaintext
values as the minimum needs for the order-preserving property, the authors in (Vladimir

Kolesnikov, 2012) discusses approaches to limit the impact of this leakage.

2.7 Related Works:

There has been a significant amount of work on OPE schemes that allow querying
over encrypted database without any change on the database engine (Gultekin Ozsoyoglu,
2004) (Seungmin LEE, 2009) (Kadhem, 2010) (Liangliang Xiao, 2012) (Liangliang Xiao,
2012).

The authors in (Hasan KADHEM, 2010) proposed MV-OPES (Multivalued-Order
Preserving Encryption Scheme). The model allows queries over encrypted databases with
an improved security level. Their idea is to change the approach of encrypting a value to
another fixed value to prevent statistical attacks. MV-OPES allows an integer value to be
encrypted to many values using the same encryption key while preserving the order of the
integer values. By this, the attackers cannot infer information from the encrypted database

even if they have statistical knowledge about the plaintext database.

(Dongxi Liu, 2012) Proposed an order-preserving indexing scheme based on a
linear expression. The indexing scheme maps an input value v to a #v + b + noise, where
noise is a random value, where a and b are coefficients. The noise is selected in a way that
preserves the order of input values. The scheme is combined with the encryption
algorithms to deal with querying over the encrypted database. It has the proxy to
communicate between the database applications and the encrypted database. The proxy

uses the indexing mechanism to generate the index for the input value and also encrypts the

18

value with some encryption algorithm. The index and the encrypted value are then stored
into corresponding fields in the same record of the database. When a range query is made,
the proxy calculates the index of the value in the query condition, which is then used by the
database service to search indexes stored in the databases.

(Raluca Ada Popa, 2013) Proposed the mutable Order Preserving Encryption
(mOPE) model, the first OPE scheme that achieves the IND-OCPA. The mOPE scheme
uses the Deterministic (DET) encryption to encrypt the values. Also, it orders the values in
a BBST. Since it achieves the IND-OCPA, it reveals no information for the data except for
the order of the plain-texts.

However, some works were built on the mOPE model. (K. Srinivasa Reddy, 2014)
Introduced a novel scheme called “Randomized Order Preserving Encryption” (ROPE).
This scheme follows the mOPE scheme proposed in (Raluca Ada Popa, 2013). It replaces
the DET encryption with RND (random encryption) for the cipher-texts which prevents the
leakage of information about the distribution of plaintext values. Although the cipher-texts
are randomized they still maintain the plaintext order. Also, the scheme shows a query
retrieval time overhead. Nevertheless, it achieves the perfect security objective IND-
OCPA, in which the adversary can know nothing except for the order of the plain-texts.
Also, the study by (Florian Kerschbaum, 2014) was improved on Popa’s mOPE results and
provided IND-OCPA.

The OPE scheme is also related to cryptographic schemes for performing queries
over encrypted data. (POPA, 2014) Provided CryptDB, a system to protect data
confidentiality against threats by executing SQL queries over the encrypted database. The
architecture of CryptDB consists of a database proxy that intercepts the client’s requests,
transforms them into an understandable form to the Database Management System
(DBMS) server, and returns the expected results to the client. It is also responsible to
perform all the encryption and decryption processes. Interestingly, CryptDB uses the
mOPE scheme (Raluca Ada Popa, 2013) to perform order operations efficiently on an
encrypted database. Actually, they replace the BBST in the mOPE model with the
Adelson-Velskii and Landis (AVL) binary search tree which reduced the cost of the OPE
encryption (Raluca Ada Popa, 2011).

19

(Do Hoang Giang, 2017) Investigated certain types of complex queries namely
multi-dimensional range queries over encrypted data in cloud platforms (where the
plaintexts are multi-numerical attributes). Their solution combines a packetization based
scheme with order-preserving encryption-based techniques.

However, (Kim, 2019) Presented a construction to improve the round and client-
side storage on the ideally-secure mutable order-preserving encryption protocol. The
construction of the OPE is based on the Order Revealing Encryption (ORE: a special type
of symmetric encryptions). To present a non-interactive, ideally-secure OPE with a
constant-size client storage construction; they used the public comparison functionality of
the ORE. Their resulting constructions achieve better enhancement both on the number of
rounds and the client-side storage, but cannot guarantee the ideal security.

However, the study in (Anselme Tueno, 2020) presented the Oblivious Order
Preserving Encryption (OOPE) scheme based on the mOPE scheme to introduce an
interactive protocol. It’s a secure multiparty protocol that enables secure range queries for
multiple users (such as data owners and data analyst) in the OPE scheme. It allows the data
analyst to execute queries on the OPE database without revealing his private queries or

revealing the encryption key of the data owner.

2.8 Summary:

This chapter provides background about outsourcing database to the cloud server and
the related issues. It explains cloud computing concepts and architecture. Also, it reviews
the security of cloud computing and explores the methods for computing over encrypted
data especially for the OPE schemes. And, it covers the related works in the area of the
OPE schemes and querying over encrypted data. Especially, it reviews some studies that

enhanced the mOPE model.

20

CHAPTER IlI

THE PROPOSED ENHANCED RANGES ORDER PRESERVING
ENCRYPTION MODEL

3.1 Introduction:

This chapter describes the enhanced OPE model which is proposed in this research.
It works out how to reduce the Requests and Responses between the Client and the Server
(RRbCS) regarding the existing mOPE model, to improve the mOPE model, and to develop
an enhanced OPE model that reduces the RRbCS and sequentially enhanced the
performance of search over encrypted data.

3.2 The Original mMOPE Model:

One of the most efficient approaches that allow the server to compute over
encrypted data is the OPE scheme. (Raluca Ada Popa, 2013) Presented the first IND-
OCPA order-preserving encryption scheme called the “mutable Order-Preserving
Encoding” or “mOPE” model (the word encoding was used instead of encryption).
Moreover, the proposed enhanced OPE model in this research add improvement to the
mOPE model.

However, in the beginning, the mOPE model will be explained to understand the
behavior of the original model. The mOPE model functions by building a Balanced Binary
Search Tree (BBST) comprising all the encrypted data on the server. In such a tree for each
node v, all the nodes in the left subtree are smaller than v and all the nodes in the right
subtree are greater than v. Figure 3-1 shows the OPE tree which adapted from Popa’s
mOPE model. In the figure each node contains the cipher-text, the filled blocks show the

corresponding plain-text value (Raluca Ada Popa, 2013).

21

1934122

1372 Q7716

1542566 xc7a5ce

Figure 3-1: The OPE tree in mOPE model (Raluca Ada Popa, 2013)

Figure 3-2 describes the general algorithm that functions the OPE tree in Figure 3-
1. The algorithm inputs a value v and outputs the resulting pointer in the OPE tree, the path
in the OPE tree from the root, and whether v was found. It uses the variables: ¢’ : the
cipher-text at the tree node, v’ : the decryption of the cipher-text, c": the next cipher-text.
Also, the algorithm uses the CI for Client and Ser for Server to indicate at which party each

piece of computation happens (Raluca Ada Popa, 2013).

22

Algorithm 1 (OPE Tree traversal for a value v).

1: Cl s Ser: The client asks the server for the ciphertext
¢’ at the root of the OPE tree.

Cl: The client decrypts ¢’ and obtains v'.

Cl — Ser: If v < V/, the client tells the server “left™;
if v=1/ the client tells the server “found™; if v >/,
the client tells the server “right”.

woN

4: Ser: The server returns the next ciphertext ¢’ based
on the client’s information, and goes back to step 2.

5: Ser, Cl: The algorithm stops when v is found, or
when the server arrives at an empty spot in the tree.
The outcome of the algorithm is the resulting pointer
in the OPE Tree, the path in the OPE Tree from the
root, and whether v was found.

Figure 3-2: The OPE tree traversal algorithm of the mOPE model (Raluca Ada Popa,
2013).

For instance, consider the setting in which the client inserts 55 into the server using
the OPE tree shown in Figure 3-1 and the algorithm explained in Figure 3-2. In the
beginning, the client demands the server for the root node of the OPE tree, and then the
server returns the encrypted value x93d12a. Which the client decrypts to 32 and compares
55 with 32 since 55 greater than 32 the client demands the server for the right child of the
root node. The server responds with the encrypted value x27716¢c. The client decrypts
X27716c¢ to 69 and compares 69 with 55 since 55 lesser than 69 then the client demands the
server for the left child of the new node. The server responds that there is no such child.

This means that the server can insert 55 in this position (Raluca Ada Popa, 2013).

As we see in Popa’s OPE tree, the server always needs to ask the client to move
over the OPE tree. It returns to the client to know if it goes left or right in the next move.
Unfortunately, this scenario generates many RRbCS. Also, the increasing of the database

size increases the tree depth and the mOPE model generates more and more RRbCS.

23

3.3 The Enhanced Ranges Order Preserving Encryption (ROPE) Model:

This study aims to enhance the existing mOPE model by reducing the RRbCS in the
mOPE model. To achieve this goal, the study presents an enhanced OPE model named
“Ranges Order Preserving Encryption” (ROPE). The name Ranges comes from the fact
that the outsourced client’s data will be organized into ranges of data at the server-side
according to the indexing mechanism. Also, it reduces the server relies on the client by
allowing the server to perform some of the tasks without revealing any information except
for the order of data. The next subsections will illustrate the proposed enhanced ROPE

model in detail.

3.3.1 Definitions:

The following definitions clarify the terms and expressions used in the enhanced
ROPE model.

= The Client (or an enterprise): The owner of data to be outsourced, thus the
client is trusted.

= The Database Server: The storage where the outsourced client’s data is
stored, it’s untrusted.

= The Trusted Party: An introduced party allocated in the client. It acts as a
communication channel between the client and the server, it is trusted.

= The Index Table: A developed structure which stored in the trusted party.
It plays the role of the indexing mechanism.

= The Expected Client’s Data (ECD): The expected total number of records
or tuples that the client will outsource to be stored in the database server.

= The Range_Value (RV): It’s a suggested number that is used to divide the
ECD by it to obtain groups of equal elements (1<RV<=ECD).

= The Range: It’s a group of sequenced elements that contains some elements
equal to the RV.

= The Index Table Creation (ITC) algorithm: The algorithm explains how

to create the index table.

24

= The Ranges Order Preserving Encryption (ROPE) algorithm: The
algorithm describes how the ROPE model works and how does it access the
data stored in the database server.

3.3.2 The Trusted Party:

It’s an introduced party in the enhanced ROPE model. It authenticates the client
and acts as a communication channel between the client and the database server. It builds
at the client-side allocated inside the client boundaries. It concerns about the encryption
keys generation, encryption operations, and decryption operations. Moreover, it receives
all the client’s requests and intercepts all the RRbCS. The trusted party is responsible for
encrypts the client’s requests, decrypts the returned encrypted results from the database
server, and gives the client the exact results. Besides, the trusted party is used to make
some preparations in the initial stage of the enhanced ROPE model. Also, it will be
explained that it applies two different techniques to preserve the order of the client’s data.

3.3.3 The Index Table:

It is an essential part of the ROPE model. It should be created at the initialization
stage of the database system and stored in the trusted party. To create the index table,
firstly, it’s required to know the ECD that will be outsourced to the database server, for

example:

> If the client will outsource 10 values then the ECD = 10.
> If the client will outsource 100 values then the ECD = 100.
» If the client will outsource 1000 values then the ECD = 1000 ...etc.

However, the second requirement to create the index table is the value of the
suggested RV. Then, the ECD is divided by the suggested RV. As a result, we obtain
some groups of elements; each group of elements is became a Range. Of course, the total
number of Ranges depends on the value of the selected RV. Thus, the smaller RV has a
shorter Range and produces many Ranges, whereas the greatest RV has a longer Range and

produces a few Ranges. Note that, we construct the ROPE model for numeric data. For

25

simplicity, we implement the ECD and the RV in the forms of integer values with no

repetition.

Therefore, the client determines the value of the ECD and sends it to the trusted

party. Then, the trusted party uses the ECD and the selected RV to create the index table.

However, the steps of the index table creation are formulated in an algorithm named “Index

Table Creation” (ITC) algorithm. The following is the ITC algorithm:

Algorithml: Index Table Creation (ITC)

Input: ECD, RV

Output: The index table

1.

2.

Input the values of the ECD and the RV.
Divide the ECD by the RV to obtain the Ranges.
Specify the start value and the end value for each Range.

Give each Range a unique Id_range.

Create the index table with three columns: the 1d_range (key-value),
the Start_value, and the End_value.

Insert the values of the Id_range, the Start_value, and the End_value
for all ranges in the index table.

Commit the index table.

Figure 3-3: The ITC algorithm.

As we see in Figure 3-3, the ITC algorithm inputs the ECD and the RV; and

outcomes the index table. Also, the algorithm uses the variables: Id_range, Start value,

and End_value to name the table columns; and the Range: to indicate a part of the client’s

data. The steps of the ITC algorithm are described in Figure 3-4.

26

Start

v

Input the values of the ECD and the
RV

v

Divide the ECD by the RV to obtam
the Ranges

LN

Specify the Start values and the
End values for all Ranges

N

Create the index table with three columns
named: Id range, Start value, and End value

y

Insert the values of the Start value, the End value
and the associated Id_range for all Ranges

v

[Commit the index table

Give each Range a unique Id range

Figure 3-4: The ITC algorithm diagram.

As a result, we have the index table in the trusted party with several rows equal to
the total number of Ranges. And each row contains a unique Id_range, Start_value, and
End_value restricted to a specific Range. The two factors that affect the index table
information are the value of the ECD and the length of the suggested RV. In the coming
subsection, we will see how the index table information plays a basic role in storing

ordered encrypted data in the server and how the results can be retrieved from the server.

27

3.3.4 A Framework for the Enhanced ROPE Model:

In this section, we design a Framework to be a formative tool for the ROPE model.
In this Framework, the inputs are defined as the Data that should be outsourced to the cloud
server or retrieved from. The framework is the integration of three main parts which are:
the Client, the Trusted party, and the Server. These parts are communicating together in

terms of exchanging data. Figure 3-5 shows the ROPE model framework.

28

Data Owner | | Determines the value of the ECD]

Sends the request to the trusted party

Receives the result
[Returns the result to the client Authenticates the clent]
The Client
[Decrypts the returned result from server Receives the client 1‘equest]
Receives the encrypted result from the server Encrypts the client request and sends it to
the server
Encrypts all the Id_ranges and
sends them to the server The Trusted nteicepsall hERROGS
Party Creates the Index table]
Uses two techniques to preserve the
order of the client’'s data in the serrver Stores the index table in it's database]
[Doesn't preserve the order of the Id_ ranges that specified to ranges] Directs the client's request by using
k the index table information
Preserves the order of data Stores the client's data The Server Stores the encrypted Id_ranges
belongs to the same range in based on the index table
one OPE tree information Receives the request from the tusted party
The specific Id_range points to Accesses the ata [Returns the result to the trusted party]
the corresponding OPE tree

[Searches for the right Id_mnge]

O\

Searches for ightposition inthe [Searches for a value in the target OPE tree]
target OPE tree to insert a value

Figure 3-5: The enhanced ROPE model framework.

29

The following describes the three parts of the ROPE model framework and their

responsibilities, as shown in Figure 3-5:

3.3.4.1 The Client:

The client is the owner of the data and it is authorized to determine the value of the

ECD. It has a communication link with the trusted party to send its requests and receives

the result.

3.3.4.2 The Trusted Party:

Most of the important duties are accomplished by a trusted party. It performs the

following tasks:

Authenticates the client.

Receives the client's request.

Encrypts the client request and sends it to the server.

Creates the Index table.

Stores the index table in it’s database.

Encrypts all the 1d_ranges of the index table and sends them to the server.
Directs the client’s request by using the index table information.
Intercepts all the RRbCS.

Receives the encrypted result from the server.

Decrypts the returned result from the server.

Returns the result to the client.

Uses the technique that doesn’t preserve the order of the Id_ranges of the index

table in the server, and the other one that preserves the order of data in OPE trees.

30

3.3.4.3 The Server:
The server is the data storage and it is accomplished the following tasks:
e Stores the encrypted Id_ranges.
e Receives the trusted party request.

e Stores the client's data based on the index table information. It doesn't preserve the
order of Id_ranges that specified to Ranges, preserves the order of data that belongs
to the same Range in one OPE tree, and lets the specific Id_range points to the
corresponding OPE tree.

e Searches for the right 1d_range to reach the right value in the OPE tree (in case of
the search operation) or to achieve the right position in the OPE tree (in case of the

insert operation).

e Returns the result to the trusted party.

3.3.5 Preserving the Order of Data in the Server:

However, the power of the index table is appearing clearly when we need to access
the database server. There is a main relationship between the index table information and
the arrangement of data in the database server. It is important to deal with the client’s
values concerning the index table information (the Id_ranges and their related Ranges from
the Start_values up to the End_values). That is, the client’s data must reside in their
corresponding Ranges as declared in the index table. Therefore, we need to link the client’s
data with the index table information to preserve the order of the client’s data in the

database server.

3.3.5.1 Dealing with the Id_ranges:

However, after the creation of the index table, all the 1d_ranges of the index table
must be encrypted. Then, the encrypted Id_ranges will be sent to store in the server by
using a technique that might not preserve the order of data. As a result, the encrypted
Id_ranges are presented in the server as unordered. More importantly, the trusted party

must encrypt all the Id ranges and store them in the database server before start

31

outsourcing the client’s data to the database server. The secret behind this is to make the
stored 1d_ranges act as indices for the client’s data.

3.3.5.2 Organizing the Client’s Data into the Ranges:

In general, based on the index table information, the client’s data is dividing into
parts of data in the server. Each part contains values that belong to a specific Range as
defined earlier in the index table (values from the Start_value up to the End_value that is
associated with the exact 1d_range). This means each part of the client’s data corresponds
to the Range in the index table. Moreover, the trusted party uses the technique that
preserves the order of data to order the data that belongs to these Ranges. The trusted party
follows Popa’s mOPE to preserve the order of data in different Ranges. This means every
Range of the client’s data is organized into an OPE tree at the server. Ideally, the root node
of each OPE tree is pointed by the appropriate encrypted Id_range that stored initially (as
defined in the index table).

As a result, we have some OPE trees in the server equal to the number of Ranges in
the index table. Every OPE tree contains nodes of values related to a specific Range in the
index table (values from the Start_value to the End_value as defined in the index table).
And every OPE tree is pointed by the encrypted value of the associated Id_range in the
index table. In general, it can be said that the ROPE model preserves the order of data that
belongs to the same Range, while it doesn’t preserve the sequence of Ranges. This

provides some aspect of security to user’s data in the database server.

However, practically we implement the OPE trees instead of the AVL tree, as Popa
does. Of course, the AVL tree has advantages of the BST, in the AVL tree for each node v,
all the left subtree nodes of v are smaller than v and all the right subtree nodes of v are
greater than v. Also it is a self-balance tree, so that after balancing the OPE tree some

nodes may change their positions (Princiraj, 2019).

Further, we implement the nodes of the tree in the server as pre-ordered traversal
(root node, left subtree nodes, and right subtree nodes respectively). This allows us to
restore the original tree construction from the database to perform operations. Because of

the tree balancing and the need for maintaining the pre-order traversal implementation, the

32

server must update any storage related to the balanced OPE tree. Note that, such an update
affects only the target OPE tree not all the other OPE trees corresponding to the other
Ranges.

3.3.6 The Access of Data in the Enhanced ROPE Model:

As it mentioned before, there are basic requirements to function the enhanced
ROPE model, which are:

e Build the index table (by using the ECD, the RV, and run the ITC algorithm).
e Encrypt all the Id_ranges of the index table and store them in the server initially.

After provided these requirements it can be able to run the ROPE algorithm and
build the OPE trees. The enhanced ROPE algorithm runs by the client, the trusted party,
and the server. The algorithm obtains v as an input from the client and outcome the
resulting pointer in the target OPE tree (to insert v) and whether v was found. Also, the
algorithm functions either to insert a value v in the server or to search for v. The algorithm
variables are v: the client value, Enc(ld_range): the encrypted Id_range, c: the cipher-text
at the root node of the target OPE tree, ¢™: the cipher-text at OPE tree node, and V™: the
decryption of cipher-text. Figure 3-6 describes the enhanced ROPE model algorithm.

33

Algorithm 2: The enhanced ROPE scheme

Input: The value v

Output: The resulting pointer in the target OPE tree (to insert v) and

whether v was found.

1. The client sends a value v to the trusted party (either to insert or search
for).

2. The trusted party receives v and finds a suitable Id_range for v from the
index table.

3. The trusted party encrypts the id rang into Enc(ld_range) and sends it
to the server.
4. The server obtains the Enc(ld_range), then:
a) It starts a sequential search for a matching value to
Enc(ld_range), by performing equality checks.

b) When a matching value is found it tells the trusted party.

5. The trusted party asks the server for the cipher-text ¢™ at the root node

of the target OPE tree that the Enc(ld_range) points to.
6. The trusted party receives ¢, decrypts it, and obtains v~.

7. The trusted party compares v~ with the client value v:
a) If v < v~ the trusted party demands the server for the left
child of the current node.
b) If v > v~ the trusted party demands the server for the
right child of the current node.

c) If v = v~ the trusted party tells the server it is found.

8. The server returns the cipher-text ¢~ at the current tree node to the

trusted party and goes back to step 6.

9. The algorithm stops when v is found, or when the server achieves an

empty node in the tree.

Figure 3-6: The enhanced ROPE model algorithm.

34

However, the ROPE algorithm shows that we have to go through two steps to get

the expected outcome. The first step is to reach the right 1d_range in the server that points

to the intended OPE tree and the second step is to search for the appropriate location in the

target OPE tree, as follows:

Step 1: Searches for the right Id_range in the server (step 1 to 4 in the ROPE
algorithm). As we explain in Figure 3-7, after the trusted party receives v, it looks
in the index table to find the corresponding Id_range. Then it encrypts the found
value by using the same encryption algorithm that is used before to encrypt the
Id_ranges and obtains Enc(ld_range). Next, the trusted party sends the
Enc(ld_range) to the server. Then, the server receives the Enc(ld_range), starts
searching for a matching value, and finds the matching value. By this, we reach the

exact pointer to the target OPE tree.

35

The client sends v The trusted party receives v

W

to the trusted party 7

The trusted party finds the
suitable Id_range for v from the
index table

W
The trusted party encrypts the 1d
range into Enc(Id_range)

The trusted party sends the
Enc(Id_range) to the server

v

The server receives the Enc(Id_range)

and searches for a matching value

Na

Find
matching

Reach the pointer to
the target OPE tree

Figure 3-7: Searches for the right Id_range diagram.

36

e Step 2: After reaching the pointer of the target OPE tree, the next step is to search for
the right location in the target OPE tree (steps 5 to 9 in the ROPE algorithm). As
Figure 3-8 illustrates, the trusted party asks the server for the pointed cipher-text ¢ at
the root node of the target OPE tree. The trusted party receives c~, decrypts it to v-,
and compares v with v-. The next move in the server is based on the result of this
comparison. If v < v~ the trusted party demands the server for the left child of the
current node; if v > v~ the trusted party demands the server for the right child of the
current node; and if v = v~ the trusted party tells the server it is found. Moreover,
unless v= v, the server returns the next cipher-text ¢ at the current tree node to the
trusted party. Then, the same cycle is repeated until v = v~ or the server achieves an
empty node in the OPE tree.

The server reaches The trusted party asks the server
the pomntertothe =y for the cipher-text ¢ at the root
target OPE tree node of the target OPE tree

|

The trusted party receives ¢

and decryptsitto v
l The trusted party The trusted party
The trusted party compares the | | demands the server for demands the server
decrypted value v ~ with v the right child of the for the left child of
current node the current node
l Yes Yes
No No

l Yes \L No

v is found Null node

J

Can insert v here

Figure 3-8: Search for the right location in the target OPE tree diagram.

37

The following points can be observed from the ROPE algorithm:

e The server can search for the right Id_range independently to reach the intended
OPE tree.

e After reaching the intended OPE tree the server needs the client's help to move over
the OPE tree (actually the trusted party at the client-side will help the server).

e The search for the right Id_range is performed locally on the server.

e The search over the OPE tree is performed globally across the network (generates
RRbCS).

e S0, instead of return to the trusted party in all cases we just return when the data
preserves the order.

It can be summarize, the enhanced ROPE model replaces the one OPE tree in the
mOPE model with sub-OPE trees combined with the indexing mechanism. Further,
despite maintains the order of data in the sub-OPE trees it doesn’t preserve the sequence of

them.

3.3.7 A Case Study Example:

This section explains an example to illustrate how the enhanced ROPE model
works. The example uses ECD=20 from 1 to 20 and RV=5. The next part will explain

how to function the enhanced ROPE model regarding this case study.

3.3.7.1 Create the Index Table:

To create the index table we apply the ITC algorithm using the ECD=20 and the
RV=5. The obtained index table can be as shown in Table 3.1.

38

Table 3.1: The index table of the case study

Id_range | Start value | End_value
1 1 5
2 6 10
3 11 15
4 16 20

3.3.7.2 Data Encryption and Organization:

Moreover, considering the index table in Table 3.1, the data can be ordered in the

server like the following:

e The Id_ranges: 1, 2, 3, and 4, are encrypted and then they stored in the server by
using the technique that doesn’t preserve the order of them.
e The incoming client’s data will be encrypted and then stored in the server by using

the technique that preserves the order of data like the Popa’s one.

Therefore, the client’s data will be organized into four OPE trees. The nodes of the

OPE trees will contain values as described below:

» An OPE tree that has nodes values from 1 to 5.

» An OPE tree that has nodes values from 6 to 10.
» An OPE tree that has nodes values from 11 to 15.
» An OPE tree that has nodes values from 16 to 20.

For instance, suppose the actual client’s values are: 1, 3, 4, 13, 14, 15, 16, and 19
using the index table shown in Table 3.1. The organization of this data in the database
server can be illustrated as shown in Table 3.2. The grey blocks show the encrypted
Id_ranges, while the white one shows the encrypted client’s data. Also, the label (*) is used
to denote the part of data that applies the technique does not preserve the order of data.
And the label (7) is used to denote the part of data that applies the technique preserves the

order of data.

39

Table 3.2: The client’s data in the database of the case study

4 116° |19-
1~ 13- 1 |4-°
3 (14 |137|15"

As it is illustrated in Table 3.2, the encrypted client’s values are arranged in their
suitable location as declared earlier in the index table. Every encrypted Id_range references
an OPE tree that contains nodes of values related to a specific Range as specified in the
index table. And all of the OPE trees are implemented in the form of the pre-ordered
traversal tree (the root node, the nodes of the left subtree, and the nodes of the right

subtree).

3.3.7.3 The Insert Operation:

Moreover, assume the client wants to insert 2 using the database shown in Table 3.2
and the related index table expressed in Table 3.1. Whenever the trusted party receives the
value, it looks in the index table for a suitable Id_range. It finds that the appropriate
Id_range that 2 can reside in is 1. Next, it encrypts 1 by the same encryption technique that
is used before to encrypt the Id_ranges and obtains 1°. Then, it asks the server to search for
1°. The server makes its first try: 2~ doesn’t match 17, the second try: 4~ doesn’t match 17,
and the third try: 17 matches 1°. At this point, the server reaches the right Id_range that
points to the target OPE tree.

After that, the server needs the help of the trusted party to move over the target OPE
tree to find an empty node. Figure 3-9 illustrates the insert of 2 in the database of the case
study and the related database after that. Figure 3-9 (a) shows the target OPE tree. Firstly,
the trusted party requests the root node of the OPE tree, and the server returns 3, which the
trusted party decrypts to 3. Since 2 < 3, the trusted party requests the left child of the root
node, and the server responds with 17, which the trusted party decrypts to 1. 2 >1, so the
trusted party requests the right child of the last node requested, and the server responds that
there is no such child. This means that the trusted party can insert 2°, the encrypted value

of 2, in this position. Remember that, the trusted party encrypts 2 by the same encryption

40

technique that is used before to encrypt the client’s data. Figure 3-9 (b) displays the OPE
tree after inserting 2°. Lastly, there is a need to update the part of the database storage
where the OPE tree is storing. This is because we have to maintain the pre-order traversal
tree in the server. Figure 3-9 (c) shows the related storage part after updates.

(a) (©)

Figure 3-9: The insert of 2 in the database of the case study and the related storage
after that.

From the previous example, it is observed that the server can perform the search for
the right Id_range without any trusted party involvement, while it needs the help of the
trusted party to find a suitable location in the OPE tree where to insert 2°. Also, we see that
the server makes three tries until it finds the intended Id_range, after that, there are 6
requests and 6 responses between the trusted party and the server before reach an empty
node to insert 2°. Thus, it can be said that the server is responsible to perform all the tasks
that are related to the data that does not preserve the order independently (the encrypted
Id_ranges), while it needs the help of the trusted party to accomplish the works over the
OPE trees. More importantly, the trusted party told the server order information only for
the exact OPE tree and the interaction between them doesn’t reveal anything else besides
the order of the intended OPE tree.

3.4 Research Methods for the Enhanced Model Evaluation:

However, to evaluate the performance of the ROPE model the study go through
several steps, as it addresses in Figure 3-10. The figure describes that there are two
different simulation programs were designed, one to simulate the enhanced ROPE model
and the other one to simulate the mOPE model. The two simulation programs process the

same data with the same characteristics. To measure the performance of the enhanced

41

ROPE model, the study recognizes two parameters. The first parameter monitors the works
performed by the server. It computes how many times the server tests the stored encrypted
Id_ranges to find the right Id_range that points to the target OPE tree. This parameter is
named “Tests by the Server” (TbS). The second parameter monitors the works that are
performed across the network by the client and the server. And it counts the RRbCS to
reach the right position in the target OPE tree. Note that, the trusted party is the actual
entity that sends the requests and receives the responses at the client-side, and it builds in

the client. Because of this, the client is used instead of the trusted party.

Furthermore, unlike the enhanced ROPE model, the mOPE model involves only one
parameter to compute the RRbCS. This is because the server completely depends on the
client to perform the tasks. Of course, the findings of RRbCS from the two models are
used for the comparison purpose, whereas the findings of the TbS in the ROPE model
should be acceptable. Bring in your mind, in the two models we don’t take into account the

RRDCS of making the tree balancing.

42

Start

l

Generate Random Data
The ROPE model The mOPE model
| |
Smulation Program Simulation Program
Count the RRbCS and
the ThS Count the RRbCS

The Model Evaluation

Figure 3-10: The research methods for the evaluation diagram.

43

3.5 Research Tools and Data:

The validation of the proposed enhanced model is done by using a simulation
program in C code. User-defined functions were used to describe all the scheme activities,
and to conduct the experimental studies. Moreover, random distinct integer numbers were
generated for conducting experimental studies and testing the validity of the proposed
model. Borland C++ 5.02 was used to implement the mOPE model, while C Free 2015 was
used to execute the structure of the enhanced ROPE model. And, Mind Maple Lite was

used to draw figures and diagrams.

3.6 Summary:

This chapter discusses the proposed enhanced ROPE model. It explains the ROPE
model architecture and designs the ITC algorithm to create the index table. Also, it
presents a framework to be a formative tool for the enhanced model. Especially, it presents
how the ROPE preserves the order of data as an approach to achieve the research
objectives. Further, it illustrates the used techniques to preserve the order of encrypted
data, the ROPE algorithm to access the database, and explains a case study as an example
to practice the ROPE model. Also, it explains the research methods for the model
evaluation and the used tools and data. Besides, an enhanced OPE model is proposed for

search over encrypted data.

44

CHAPTER IV

IMPLEMENTATION AND TESTING

4.1. Introduction:

This thesis proposes the enhanced Ranges Order Preserving Encryption (ROPE)
model for reducing the Requests and Responses between the Client and the Server
(RRbCS) and enhancing the performance of search over encrypted data in cloud
computing. This chapter shows the implementation of the enhanced ROPE model facing
the mutable Order Preserving Encryption (mOPE) model. To do that, it presents two case
study scenarios for both of the models. In the first scenario, the client sends his data for
storing in the database server. And in the second scenario, the client retrieves his data from
the database server. Also, some experiments are conducted to test the enhanced model in

the two scenarios.

4.2. The Enhanced ROPE Model Implementation:
Moreover, to investigate the enhanced ROPE model and evaluate its performance,

we design a simulation program partitioning into three subprograms that are:

e Subprogram 1: The system initialization. Creates the index table by applying the
ITC algorithm (page -26). Also, it prepares the database by allocating the

Id_ranges.

e Subprogram 2: Inputs the data and builds the OPE trees of the ROPE model. It is
the insertion program that uses the index table created by subprogram 1. This

program applies the ROPE algorithm (page 34) to insert the data.

e Subprogram 3: Searches for target values. It uses the resulted database from the
insertion program and the corresponding index table. And it also applies the ROPE

algorithm (page 34) to search for the target values.

45

However, the investigation of the enhanced ROPE model is formulated into two
scenarios: one to implement the insert operations, and the other one to implement the
search operations. Further, the model is implementing in different Range_Values (RV) to
extract the effect of the RV on the outcomes of the tests made by the server to find the
target OPE trees and the requests and responses between the client and the server to reach
the right positions in the target OPE trees (ThS and RRbCS parameters) on both of the
scenarios. The study uses a fixed value for the Expected Client’s Data (ECD) equals 100 to
conduct the insert operations experiments. Actually, it generates random distinct integer
numbers from 1 to 100 that represent the client’s data. On the other side, the same values

with a fixed sequence are used to conduct the search operations experiments.

As Figure 4-1 displays, the implementation of the ROPE model for a specific RV is
accomplished in three steps:

e In the first step: Run subprogram 1 using the ECD and the selected RV, to create
the index table and to allocate the 1d_ranges in the database.

e In the second step: Run subprogram 2 to conduct the insert experiment using the
same index table created in the first step. Before this, random distinct integer
numbers from 1 to 100 were generated to represent the inputs for subprogram 2.
The outcomes of this step are the results of the RRbCS and the TbS of the insert
experiment in a specific RV plus its ordered database.

e In the third step: Run subprogram 3 to conduct the search experiment using the
ordered database that resulted from the second step. Random twenty numbers were
selected to be the searched values in this step. The outcomes of this step are the

results of the RRbCS and the TbS of the search experiment in a specific RV.

46

The ECD and the selected RV

Run the subprogram1 to create the
Index Table for the selected RV

Store the Id ranges in the database server

Generate random distinct numbers from 1 to 100

Run the subprogram 2 to insert the values

Tl_le finding ﬁ:om the The resulted database
msert experiment from the insert experiment

The resulted database is used to
conduct the search experiment in the

same RV

The target values to search for

Run the subprogram 3 to search for the
target values

1

The finding from the search experiment J

Figure 4-1: The ROPE model experiments approach.

47

4.2.1 The Experiments of the Insert Scenario:

In the first scenario of the experiments, the study examines the efficiency of the
enhanced ROPE model in the case of inserting data into the database server. It performs
eleven experiments to test the insert operations in the ROPE model using fixed ECD and
different RV values that vary from small to great. The eleventh experiments aimed to
compute ThS and RRbCS parameters after inserting the client’s data. The experiments
strategy is to start with a small RV and increasing it for every experiment. In the
beginning, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 are selected to be the RVs for the
eleven experiments. Then, each RV is used with the ECD to create the index table for a
separate experiment. Further, the generated random distinct integer numbers are saved in a
file as a fixed sample of data. This sample of data is used to form the inputs for all of the
insert operations experiments (same data in fixed sequence). Of course, all of the
experiments have ECD equal to 100. Actually, in each experiment the study did the
following:

1. The index table for the specific RV was created by running subprogram 1.
2. The Id_ranges of the index table were stored in the database server (actually they
were stored randomly to implement them as unordered).

3. The data was inserted into the ROPE database by running subprogram 2.
The next part will explain the selected RV and the index table details for every experiment.

= Experiment No.1: The ECD=100, the RV=5. Table 4.1 shows the index table that
was created according to the selected RV. The index table had twenty Ranges and
there were twenty Id_ranges specified to them. The Id_ranges, the Start_values,

and the End_values used in this experiment are explained below:

e Id _range =1, the Start_value = 1, and the End_value = 5.

e Id _range = 2, the Start_value = 6, and the End_value = 10.
e Id range = 3, the Start_value = 11, and the End_value = 15.
e |Id _range = 4, the Start_value = 16, and the End_value = 20.
e Id _range =5, the Start_value = 21, and the End_value = 25.
e |Id _range = 6, the Start_value = 26, and the End_value = 30.
e Id_range =7, the Start_value = 31, and the End_value = 35.

48

e Id_range = 8, the Start_value = 36, and the End_value = 40.

e Id_range =9, the Start_value = 41, and the End_value = 45.

e Id_range = 10, the Start_value = 46, and the End_value = 50.
e Id_range =11, the Start_value = 51, and the End_value = 55.
e Id_range =12, the Start_value = 56, and the End_value = 60.
e Id_range = 13, the Start_value = 61, and the End_value = 65.
e Id_range = 14, the Start_value = 66, and the End_value = 70.
e Id_range = 15, the Start_value = 71, and the End_value = 75.
e Id_range = 16, the Start_value = 76, and the End_value = 80.
e Id_range =17, the Start_value = 81, and the End_value = 85.
e Id_range = 18, the Start_value = 86, and the End_value = 90.
e Id_range =19, the Start_value = 91, and the End_value = 95.
e Id_range = 20, the Start_value = 96, and the End_value = 100.

Table 4.1: The Index Table for experiment no.1, ECD=100, RV=5

Id_range | Start_value | End_value
1 1 5
2 6 10
3 11 15
4 16 20
5 21 25
6 26 30
7 31 35
8 36 40

49

9 41 45
10 46 50
11 51 55
12 56 60
13 61 65
14 66 70
15 71 75
16 76 80
17 81 85
18 86 90
19 91 95
20 96 100

Experiment No.2: The ECD=100, the RV=10. Table 4.2 explains the index table

that was used for this experiment.

The index table had ten Ranges and ten

Id_ranges from 1 to 10 corresponding to those Ranges. The Id_ranges and their

corresponding Start_values and End_values are explained below:

Id_range = 1, the Start_value = 1, and the End_value = 10.

Id_range = 2, the Start_value = 11, and the End_value = 20.

Id_range = 3, the Start_value = 21, and the End_value = 30

Id_range = 4, the Start_value = 31, and the End_value = 40.

Id_range =5, the Start_value = 41, and the End_value = 50.

Id_range = 6, the Start_value =51, and the End_value = 60.

50

e |d_range =7, the Start_value = 61, and the End_value = 70.

Id_range = 8, the Start_value = 71, and the End_value = 80.

Id_range =9, the Start_value = 81, and the End_value = 90.

Id_range = 10, the Start_value = 91, and the End_value = 100.

Table 4.2: The Index Table for experiment no.2, ECD=100, RV=10

Id_range | Start_value | End_value
1 1 10
2 11 20
3 21 30
4 31 40
5) 41 50
6 51 60
7 61 70
8 71 80
9 81 90

10 91 100

51

Experiment No.3: The ECD=100, the RV=20. Table 4.3 shows the index table
that was created for this experiment. The index table had five Ranges and five
Id_ranges from 1 to 5 were specified to Ranges. The Start values and the
End_values for the five Id_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 20.

e Id_range = 2, the Start_value = 21, and the End_value = 40.
e Id_range = 3, the Start_value = 41, and the End_value = 60.
e Id_range = 4, the Start_value = 61, and the End_value = 80.
e Id_range =5, the Start_value = 81, and the End_value = 100.

Table 4.3: The Index Table for experiment no.3, ECD=100, RV=20

Id_range | Start_value | End_value
1 1 20
2 21 40
3 41 60
4 61 80
5 81 100

Experiment No.4: The ECD=100, the RV=30. Table 4.4 illustrates the index table
for that experiment. The index table had four Ranges and four Id_ranges from 1 to
4 for those Ranges. The Start_values and the End_values specified to the four

Id_ranges are:

e Id _range =1, the Start_value = 1, and the End_value = 30.

e Id _range = 2, the Start_value = 31, and the End_value = 60.
e Id _range = 3, the Start_value = 61, and the End_value = 90.
e Id_range = 4, the Start_value = 91, and the End_value = 100.

52

Table 4.4: The Index Table for experiment no.4, ECD=100, RV=30

Id_range | Start_value | End_value
1 1 30
2 31 60
3 61 90
4 91 100

Experiment No.5: The ECD=100, the RV=40. Table 4.5 shows the index table
that was used for this experiment. The index table had three Ranges and there were

three Id_ranges from 1 to 3 associated with them. The Start_values and the

End_values related to the three 1d_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 40.
e Id_range = 2, the Start_value = 41, and the End_value = 80.
e Id_range = 3, the Start_value = 81, and the End_value = 100.

Table 4.5: The Index Table for experiment no.5, ECD=100, RV=40

Id_range | Start_value | End_value
1 1 40
2 41 80
3 81 100

53

Experiment No.6: The ECD=100, the RV=50. Table 4.6 explains the index table
that was used for this experiment. The index table had two Ranges and we
specified 1 and 2 as the Id_ranges for those two Ranges. The Start_values and the

End_values that specified the two Id_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 50.
e Id_range = 2, the Start_value = 51, and the End_value = 100.

Table 4.6: The Index Table for experiment no.6, ECD=100, RV=50

Id_range | Start_value | End_value

1 1 50

2 51 100

Experiment No.7: The ECD=100, the RV=60. The index table that was created
for this experiment is shown in Table 4.7. The index table had two Ranges and we

determined 1 and 2 as the Id_ranges for those Ranges. The Start_values and the

End_values related to those Id_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 60.

e Id _range = 2, the Start_value = 61, and the End_value = 100.

Table 4.7: The Index Table for experiment no.7, ECD=100, RV=60

Id_range | Start value | End_value

1 1 60

2 61 100

54

Experiment No.8: The ECD=100, the RV=70. The index table for this experiment
is shown in Table 4.8. The index table had two Ranges and we specified 1 and 2 as
the 1d_ranges for the Ranges. The Start_values and the End_values for the two

Id_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 70.

e Id_range = 2, the Start_value = 71, and the End_value = 100.

Table 4.8: The Index Table for experiment no.8, ECD=100, RV=70

Id_range | Start_value | End_value

1 1 70

2 71 100

Experiment No.9: The ECD=100, the RV=80. The index table for this experiment
is explained in Table 4.9. The index table had two Ranges and we determined 1
and 2 as the Id_ranges for the Ranges. The Start values and the End_values

specified for the two Id_ranges are:

e Id _range =1, the Start_value = 1, and the End_value = 80.
e Id range = 2, the Start_value = 81, and the End_value = 100.

Table 4.9: The Index Table for experiment no.9, ECD=100, RV=80

Id_range | Start value | End_value

1 1 80

2 81 100

55

Experiment No.10: The ECD=100, the RV=90. The index table for this
experiment is shown in Table 4.10. The index table had two Ranges and we
specified 1 and 2 as the Id_ranges for the Ranges. The Start values and the

End_values for the two Id_ranges are:

e Id_range =1, the Start_value = 1, and the End_value = 90.
e Id_range = 2, the Start_value = 91, and the End_value = 100.

Table 4.10: The Index Table for experiment no.10, ECD=100, RV=90

Id_range | Start_value | End_value

1 1 90

2 91 100

Experiment No.11: The ECD=100, the RV=100. The index table for this
experiment is illustrated in Table 4.11. In this experiment, the index table had one
Range and we specified 1 as an Id_range for this Range. The determined

Start_value and End_value for this Id_range are 1 and 100 respectively.

Table 4.11: The Index Table for experiment no.11, ECD=100, RV=100

Id_range | Start_value | End_value

1 1 100

56

4.2.2 The Experiments of the Search Scenario:

In the second scenario of the study experiments, the enhanced ROPE model is
examined in the case of retrieving data from the database server. It performs eleven
experiments, corresponded to those of the insert operation, to test the search operation in
the enhanced ROPE model. These experiments aimed to compute the ThS and the RRbCS
parameters while searching for similar values with a fixed sequence. Hence, random
twenty numbers from 1 to 100 are selected to search for them in all of the search
experiments. The twenty numbers are: 95, 93, 40, 64, 26, 66, 19, 46, 3, 47, 91, 38, 12, 16,
8, 53, 56, 52, 99, and 24 sequentially. The search experiments are performed on the
databases that resulted from the insert experiments. That is, the resulting ordered database
from each insert experiment in a specific RV is used to search for the target values in the
same RV. Practically, the resulted database from experiment no.1 of the insert scenario is
used to conduct experiment no.1 of the search scenario. And the resulted database from
experiment no.2 of the insert scenario is used to conduct experiment no.2 of the search
scenario. Table 4.12 shows the details of the eleven experiments of the search operation. It

explains the database, the index table, and the RV that are used for every experiment.

57

Table 4.12: The search operation experiments

-Ic-)hifae;g;h The used database The Index | The
be Table | RV
experiment no.
. From riment no.1 of the inser
Experiment no.1 om experiment 9 orthe insert Table 4.1 >
operation
. From riment no.2 of the inser 1
Experiment no.2 om experiment 9 of the insert Table 4.2 0
operation
. From riment no.3 of the inser 2
Experiment no.3 om experiment 930 the Insert Table 4.3 0
operation
. From riment no.4 of the inser
Experiment no.4 om experiment .0 ofthe insert Table 4.4 30
operation
. From riment no.5 of the inser 4
Experiment no.5 om experiment .050 the Insert Table 4.5 0
operation
Experiment no.6 From experiment n9.6 of the insert Table 4.6 50
operation
. F iment no.7 of the insert 60
Experiment no.7 rom experimen n.0 OT e InSer Table 4.7
operation
. F iment no.8 of the insert 70
Experiment no.8 rom experimen n.0 OT e Inser Table 4.8
operation
. F iment no.9 of the insert 80
Experiment no.9 rom experimen n.0 OT e Inser Table 4.9
operation
Experiment From experiment n(?.lo of the insert Table 4.10 90
no.10 operation
Experiment From experiment n(?.llofthe insert Table 4.11 100
no.11 operation

58

4.3 The mOPE Model Implementation:

On the other hand, the study simulates the mOPE model in two subprograms to
conduct the experiments for the two scenarios as well as the enhanced ROPE model. The
first subprogram, subprogram 1, is to conduct the insert operations experiment. And the
other one, subprogram 2, is to conduct the search operations experiment. The data used for
the experiments is the same as the enhanced ROPE model. The experiments of this model
are aimed to compute only the requests and responses between the client and the server
during performing the operations. This is because the mOPE model organizes all the
encrypted data in one OPE tree, and the server depends on the client to move over the OPE

tree.

The approach of mMOPE model experiments is explained in Figure 4-2. At the start,
the study conducts the insert operations experiment by running subprogram 1. This
program inputs the same sample of data that is used in the insert experiments of the
enhanced ROPE model. Then it runs subprogram 2 to conduct the search operations
experiment. It uses the resulted database from the insert experiment and the target values to

search for them.

59

The sample of data that is used m the msert
experiments of the enhanced ROPE model

Run the subprogram 1 to insert the values

The finding from the msert
operations experiment

The resulted database from the
msert operations exmeriment

The resulted database is used to
conduct the search operations
expenment

The target values to search for
them

Run the subprogram 2 to search
for the target values

The findings from the search
operations experiment

Figure 4-2: The mOPE model experiments approach

4.3.1 The Experiment of the Insert Scenario:

On the other hand, the study conducts the insert experiment in the mOPE model.
To be more precise, the experiment used the sample of data that was used in the insert
experiments of the enhanced ROPE model. And run subprogram 1 to simulate the model

structure.

Note that, this model organizes all the encrypted data in one OPE tree, this is why it
conducts one experiment for the insert operations. Also, the server relies on the client to
move over the OPE tree. Therefore, the experiment aims to compute the results of the
RRDCS after inserting the 100 numbers.

4.3.2 The Experiment of the Search Scenario:

In contrast, the study implements search operations in the mOPE model. It
conducts the search experiment by running subprogram 2 to search for the target values.
To be more precise, it searches for the same target values in the same sequence as the
enhanced ROPE search experiments. It uses the database that resulted from the insert
experiment. Also, this experiment aims to find RRbCS after completing the search

operations.

4.4. Summary:

This chapter presents the implementation of the ROPE model facing the mOPE model. To
validate the research methodology, eleven experiments of the insert operations were
performed using eleven different RVs for the ROPE model. Also, the same sample of data
in a fixed sequence was used for all experiments. The resulted databases from the insert
experiments were used to conduct another eleven experiments of the search operations
scenario in the ROPE model. Besides, two experiments were conducted for the mOPE
model. The first one for the insert operations scenario, which used the similar sample of
data as the insert experiments of the enhanced ROPE model. The resulted database from
the insert experiment was used for the search operations experiment. The search
experiment was searched for the same target values in the search experiments of the
enhanced ROPE model.

61

CHAPTER V

RESULTS AND DISCUSSIONS

5.1 Introduction:
This chapter presents the results of the enhanced Ranges Order Preserving
Encryption (ROPE) model experiments and the mutable Order Preserving Encryption

(mOPE) model experiments and discusses the achieved results.

5.2 Results:

Table 5.1 shows the findings after inserting the data in the enhanced ROPE model
which are the final results of the Tests by the Server (TbS) and the Requests and Responses
between the Client and the Server (RRbCS). The table explains the outcomes from the
eleven experiments, each row for a particular experiment with a specific number. For each
one of them, the RV column addresses the Range_Value (RV) that used to create the index
table, the TbS column describes how many times the server tests the stored Id_ranges to
find the right 1d_ranges that points to the target OPE trees and the RRbCS column shows
the requests and responses between the client and the server to reach the right positions in
the target OPE trees.

62

Table 5.1: The results of the insert operations experiments in the enhanced ROPE

model
Experiment no. RV ThS RRDbCS
1 5 1050 482
2 10 550 652
3 20 300 816
4 30 240 918
5 40 200 970
6 50 150 1066
7 60 160 1058
8 70 170 1084
9 80 180 1108
10 90 190 1174
11 100 100 1272

63

Moreover, Table 5.2 shows the final results of the eleven experiments of the search
operations in the enhanced ROPE model. For the eleven experiments, the table illustrates
the RV that used to create the index table before, the ThS to find the right 1d_ranges that
points to the target OPE trees, and the RRbCS to reach the right positions in the target OPE
trees respectively.

Table 5.2: The results of the search operations experiments in the enhanced ROPE

model
Experiment no. RV ThS RRDbCS

1 5 198 88

2 10 124 106
3 20 56 132
4 30 51 146
5 40 42 180
6 50 31 180
7 60 34 180
8 70 36 216
9 80 36 214
10 90 36 212
11 100 20 224

64

Furthermore, Table 5.3 shows the final result of the requests and responses between
the client and the server after inserting the data in the mOPE model. As we mentioned
before, the mOPE model performs all tasks over the network. Because of this, The TbS

column records nothing.

Table 5.3: The result of the insert experiment in the mOPE model

RRbCS TbS

1272 —

However, Table 5.4 shows the outcomes after searching the target values in the
mOPE model.

Table 5.4: The result of the search operations in the mOPE model

RRbCS TbS

224 -

5.3. Discussions:

This section discusses the achieved results and makes some comparisons. It focuses
on the results of the TbS and the RRbCS in the enhanced ROPE model, and the results of
the RRbCS in the mOPE model. Moreover, the RRbCS of the two models is employed to
make comparisons between the two models, while monitoring the TbhS behavior of the

enhanced model.

Back to the results of the insert operations experiments in the enhanced ROPE
model (Table 5.1 — page-63). It is observed that the enhanced ROPE scheme behaves
better for the small RVs than the greater ones. The increase of the RV produces a

significant increase in the RRbCS besides decreasing in the ThS. This is not surprising

65

since the great RV generates a few Ranges in the index table, hence a few OPE trees in the
server. Consequently, the size of the OPE trees is growing and hence their height. For the
same reasons, those experiments of the RVs are greater than 50 have a lower change in the
TbhS and the RRbCS than those of the RVs are less than or equal to 50. The RRbCS
records the greatest value when the RV is equivalent to the ECD (experiment no 11). In
this case, all the data organized in one OPE tree, the TbS records the lowest result, and the
RRDCS records the highest result. This case is the worst case of the enhanced ROPE model
since it performs most of the tasks across the network.

On the other side, return to the results of the insert operations experiments in the
mOPE model (Table 5.3 — page-65). It is observed that the insertion of the data costs the
system 1272 RRbCS. Remember that, the insert operations experiment in the mOPE model
behaves like the eleventh experiment of the insert operations in the enhanced ROPE model
(Table 5.1 — page -63) since both of them are inserting the same data and organized the data
in one OPE tree. Moreover, the mOPE model and the last experiment of the insert
operations in the enhanced ROPE model are executing 1272 RRbCS to perform the insert
operations. Recall from the previous mentioned that, the order of encrypted data in one
OPE tree represents the worst case of the ROPE model. This means, the enhanced ROPE
model gets the same result as the mOPE model in it is worst-case otherwise it behaves
better than the mOPE model.

Moreover, in the results of the search operations experiments in the enhanced ROPE
model (Table 5.2 — page-64), it is observed that the greater RV produces few TbS and more
RRDCS than the smaller one to retrieve data. The more RV decreases, the higher the ThS
gets and the lower RRbCS obtains. This attributes to the fact that the small RV produces
more OPE trees and hence lower tree depth in the server than the greater RV. This is
appearing clearly in experiments no: 1, 2, 3, and 4 they record a significant decrease in the
TbhS and significant increases in the RRbCS due to the RV increasing. Whereas in
experiments no: 7, 8, 9, 10, and 11 they record a few changes in the TbS and the RRbCS
despite the increase of the RV. This is because all of these experiments are order the same
data in two OPE trees. Another reason that affects the findings of these experiments is the

distribution of the target values in the OPE trees, especially in experiment 5, 6, and 7.

66

Besides, experiment no 11 registers the lowest value in the TbS and the highest value in the
RRbCS.

On the other hand, the study registers the results of the search operations in the
mOPE model (Table 5.4 — page-65). It is observed that the search operations for the target
numbers cost the system 224 RRDCS, the same result as the eleventh experiment of the
search operations in the enhanced ROPE model. Remember that, the search operations
experiment in the mOPE model behaves as same as the eleventh experiment of the search
operations in the enhanced ROPE model. (Table 5.2 — page-64) since both of them are
searching for the same values in the same database structure (one OPE tree).

Generally, the enhanced ROPE approach eliminates the server's relies on the client
and allows the server to perform part of tasks. The use of the small RVs reduces the
RRDCS rather produces higher overload on the server (TbS), of course, the greater RV
results in the opposite.

5.4. Summary:

This chapter presents the results of the conducted experiments. It shows the results
for the eleven experiments of the insert operations and the eleven experiments of the search
operations in the enhanced ROPE model. Also, it illustrates the results of the insert
operation experiment and the search operations in the mOPE model. Moreover, it

compares the obtained results from the two models and discusses the achieved results.

67

CHAPTER VI

THE ENHANCED ROPE MODEL EVALUATION

6.1. Introduction:

This chapter evaluates the enhanced Ranges Order Preserving Encryption (ROPE)
model facing the mutable Order Preserving Encryption (mOPE) model. The evaluation is
presenting in terms of two aspects: security, and performance. The security evaluation is
proved from the mOPE model security. The performance evaluation is judged by
comparing the achieved results of the Requests and Responses between the Client and The
Server (RRbCS), and the Tests by the Sever (TbS) in the two scenarios in both of the

models.

6.2 Security Evaluation:

Since the enhanced ROPE model is order-preserving encryption, it reveals nothing
in addition to order. The justification of why the enhanced ROPE model is secure can be
proved from the mOPE model. In Popa’s mOPE, they prove that their OPE model is ideal-
security OPE model and it achieves Indistinguishability under Ordered Chosen-Plaintext
Attack (IND-OCPA) security where the data is ordered in one OPE tree. Further, the server
knows nothing besides the order of data in the whole OPE tree consistently. Indifference to
theirs, the enhanced ROPE scheme orders the data in sub-OPE trees based on the length of
the Range_Value (RV). The server knows nothing besides the order of the target OPE tree.
Therefore, the enhanced ROPE model is ideal-security OPE and achieves IND-OCPA
security. More interesting, the sub-OPE trees aren’t sequentially presented on the server.

This feature adds some aspects of security to the ROPE model.

An important fact of the enhanced ROPE model is that when the RV is equivalent to
the Expected Client’s Data (ECD) then the data is ordered in one OPE tree. This case has
the same structure as the mOPE model. Therefore, it provides the same level of security as
the mOPE one.

68

Moreover, If we decrease the RV value then the depth of the OPE trees becomes
smaller and the amount of the ordering information known by the server becomes lower.
The security level provided in such a case needs to be justified. Hence, it can be said that
the security of the enhanced ROPE model is at least as good as the security of the mOPE
model.

6.2. Performance Evaluation:

The performance evaluation of the enhanced ROPE model depends on the making
efforts in both of the client and the server. The client efforts and the server efforts that
affect the enhanced ROPE model performance are:

= The client efforts:
» Searches the appropriate 1d_range in the index table for the searched value.
» Encrypts the Id_range and asks the server to find it.
» Performs the encryption operation for the inserted value.
» Helps the server to move over the OPE tree to reach the right position or to
find the searched value, by doing the following:
v' Performs the decryption operations for the returned results
from the server.
v' Performs the comparison operations between the searched
value and the returned results from the server.
= The server efforts:
» Searches the encrypted Id_range, which produced the ThS.
» Searches the right position in the OPE tree, which produced the RRbCS.

However, to be more precise the search operation in the enhanced ROPE model
needs a search for a suitable Id_range in the index table and an encryption operation for
the searched Id_range. Recall that, these two operations are performed locally in the
trusted party (at the client-side) and only one time before requesting the server. It's
suggested that to serve these operations as part of the services. Also, it needs to study the
impact of the search for the right Id_range in the index table and its encryption operation
on the overall system performance. Hence, the part of the client efforts is added to future
works. This research focuses on the RRbCS as mentioned earlier.

69

Moreover, this research evaluates the performance of the ROPE model employing
the RRbCS and the ThS (the server efforts). To do that, the research aims to answer the
following questions:

e What is the impact of the RV length on the outcomes of the RRbCS and the ThS?

e Does the enhanced ROPE model reduce the RRbCS more than Popa’s mOPE

model?

To answer the above questions, the study observes the behavior of the RRbCS and
TbS of the enhanced ROPE model in different RVs compared to the mOPE model. It
considers the results of the insert operations experiments and the search operations
experiments that were performed to implement and test the enhanced ROPE model
compared to the mOPE model (chapter V). It is been noticed that from the achieved results
(Table 5.1 page-63, Table 5.2 page-64, Table 5.3 page-65, Table 5.4 page-65):

= The more RV decreases in the enhanced ROPE model, the more RRbCS reduces
and more TbS produces.

= Hence, the smallest RVs have a lower RRbCS than the mOPE model, further; they
have higher TbS.

Generally, we can summarize the following:

e The small RV enhances the RRbCS over the network while produces more

overload on the server.

e The great RV eliminates the overload on the server while increasing the
RRDCS over the network.

However, to reduce the RRbCS of the mOPE model the enhanced ROPE model
adds some overload in the server (TbS). Recall that, one of the research objectives is to
reduce the server relies on the client in the mOPE model by making the server doing parts
of the search operations and without knowing any things besides the order. Moreover, this
research concerns about the RRbCS factor because it performs the tasks globally through
the network. As we know, transmitting over the network may face more problems than
performing tasks locally in the server (ThS). Moreover, the overload on the server can be

solved by upgrading the equipment at the server-side to provide high processing. Another

70

solution is to take advantage of the provided services to serve the ThS as a part of the
service. To be more precise the study needs to unify the measurement of the performance
in the enhanced ROPE model (the client efforts and the server efforts). This point will be
added to future works.

From all the above mentioned, it can be said that the enhanced ROPE model
succeeds in reducing the RRbCS of the mOPE model. Moreover, the enhanced ROPE
model behaves better than the mOPE model, especially with the small RV. The
experiments on the sample data (where the Expected Client’s Data =100) shows the best
outcomes when the RV is less than halve of the ECD, especially when the RV equals 20
and 30. Finally, it is suggested to use the small RV concerning the overhead produced at
the server. By means, if the system provides the highest processors it can be allowed to
implement the smallest RV. Consequentially, it enhances system performance.

6.3. The Enhanced ROPE Model Features:

Moreover, the enhanced ROPE model has some key features that distinguish it from

the mOPE model. The following points describe these features:

1. The data is organized in sub-OPE trees in the server.

2. The search operation is performed in the target sub-OPE tree.

3. The update of the database storage is accomplished only on the related sub-
OPE tree.

4. The server knows only the order of the target sub-OPE tree.

6.4. Comparison between the Enhanced ROPE Model and the mOPE Model:

Table 6.1 makes a comparison between the mOPE model and the enhanced ROPE

under some criteria.

71

Table 6.1: Comparison between the mOPE model and the enhanced ROPE model

Criteria The mOPE Model The Enhanced ROPE Model
The data
organization in the In one OPE tree In sub-OPE trees
server

Using an indexing

. No Yes
mechanism
The server relies on
the client to process .
Totall Partiall
the search y y
operations

The update of the
database storage

In the whole OPE tree

In the target sub-OPE tree

The client efforts in
the search process

v' Performs encryption
operations.

v Performs the decryption
operations.

v' Makes the comparison
operations.

v" Searches the I1d_range
in the index table.
v Encrypts the Id_range.

v' Performs encryption
operations.

v Performs the decryption
operations.

v" Makes the comparison
operations.

The server efforts
in the search
process

v' Searches the right
position in the whole
OPE tree with the
client's help.

v’ Searches the encrypted
Id_range.

v’ Searches the right
position in the target
OPE tree with the
client's help.

The server knows

The order of the whole OPE
tree

The order of the target sub-
OPE tree

Security

IND-OCPA

IND-OCPA

72

6.5. Summary:

This chapter evaluates the enhanced ROPE model in terms of security and
performance. It proves the security of the enhanced ROPE model from the security of the
mOPE model. It observes the achieved results to show the impact of the RV on the RRbCS
and the TbS of the enhanced ROPE. Moreover, it is seen that it is better to implement the
small RV for the enhanced ROPE model to reduce the RRbCS.

73

CHAPTER VII

CONCLUSIONS AND FUTURE WORKS

7.1. Conclusion:

This study proposes the enhanced Ranges Order Preserving Encryption (ROPE)
model improved from the mOPE model, to enhance the performance of the search over
encrypted data in cloud computing, by reducing the Requests and Responses between the
Client and the Server (RRbCS). The ROPE model employs the index table to speed up the
search processes and to facilitate the search processes for the appropriate positions in the
server. Based on the index table knowledge and the applied technique for preserving the
order of encrypted data, the client’s data is organized in sub-OPE trees in the server.
Moreover, the OPE trees are not sequenced in the server. Besides, the proposed ROPE
model enables the server to perform part of the search processes independently.

From the evaluation, it was found that the proposed enhanced ROPE model is a
very efficient OPE scheme. Because it was demonstrated that, it provides some good
features in the model design that were not found in the mOPE model. Rather, it reduces the
RRbCS more than the mOPE model.

At the beginning of this study, the research problem was outlined in three Research
Questions (RQ) which were mapped to lead the direction of the study as well as guide the
model towards the research's main goal. Here it shall examine these questions one more

time to show how the achieved results help to answer them.

RQ1: How to reduce the RRbCS in the mOPE model?

One problem of the mOPE model is the high RRbCS it performed. This because it
comprises the client’s data in one OPE tree. This is solved in the proposed enhanced
ROPE model by splitting the one OPE tree to be sub-OPE trees regarding the index
table. Moreover, the search process is performed in the intended sub-OPE tree. And
the server needs to search only over the intended OPE tree. Therefore, instead of
returning to the client in all cases, the server just return to the client after it reaches the
intended OPE tree.

74

RQ2: How to reduce the dependence of the server on the client in the mOPE model?

In the mOPE model, the use of one OPE tree makes the server usually needs the client's

help to perform the search processes. Indifference to theirs, the enhanced ROPE model

performs the search processes specifically in the target OPE tree. Also, to reach the

target OPE tree, the enhanced ROPE model enables the server to search for the suitable

Id_range that points to the intended OPE tree independently without returning to the

client.

RQ3: What is the effect of the RV length on the RRbCS?

The proposed enhanced ROPE model results show that the length of the RV is mainly

affected the achieved findings of the RRbCS. The proposed enhanced model evaluation
demonstrates that the small RV reduces the RRbCS more than the mOPE model and

subsequently affects the performance of the search processes.

7.2

Thesis Contributions:

This thesis proposes the enhanced ROPE model to enhance the performance of

search over encrypted data. The proposed model can be adapted to the encrypted databases

and could use to compute over encrypted data especially for the sort operations. The main

contributions of this thesis are:

1.
2.

Propose an enhanced OPE model for search over encrypted data.

Reduce the RRbCS of search operations over encrypted data compared to the
mOPE model.

Reduce the dependence of the server on the client to process the search operations.
Permit the server to perform part of the search processes.

Provide the IND-OCPA for the enhanced OPE model.

75

7.3 The Future Works:

The thesis achieved all the objectives of the study by designing the sub-OPE

trees combined with the introduced index table. An enhanced OPE model is proposed to

improve the mOPE model. However, several research opportunities still exist and further

research can be conducted into them.

The future work will be achieved as the following objectives:

v

To study the client efforts in the enhanced ROPE model and its impact on the
whole system performance.

To unify the performance measurement in the enhanced ROPE model, by
unifying the measurement of the client efforts and the server efforts.

To study the security of the enhanced ROPE model by considering an accurate
measurement.

To study how to deal with the extra storage for the client without affecting the
system performance.

To study the ROPE model in reality by enabling integration with the cloud

Database system.

76

References:

Abbas Acar, H. A. A. S. U. M. C., 2018. A Survey on Homomorphic Encryption Schemes:
Theory and Implementation. ACM Computing Surveys, 51(4), pp. 1-35.

Alexandra Boldyreva, N. C. A. O., 2011. Order-Preserving Encryption Revisited: Improved
Security Analysis and Alternative Solutions. Springe, Berlin, Heidelberg, In Annual

Cryptology Conference, pp. 578-595.

Alexandra Boldyreva, N. C. Y. L. a. A. O., 2009. Order-Preserving Symmetric Encryption.
Springer,Berlin, Heidelberg, Annual International Conference on the Theory and

Application of Cryptographic Techniques, pp. 224-241.

Alexandra Boldyreva, S. F. A. O., 2008. On Notions of Security for Deterministic Encryption,
and Efficient Constructions without Random Oracles. Berlin, International Association for

Cryptologic Research, pp. 335-359.

Allison Lewko, T. O. A. S. K. T. B. W., 2010. Fully Secure Functional Encryption: Attribute-
Based Encryption and (Hierarchical) Inner Product Encryption. Springer, Berlin, Heidelberg,
In Annual International Confernce on the Theory and Applicatation of Cryptologic

Techniques, pp. 62-91.

Anselme Tueno, F. K., 2020. Efficient Secure Computation of Order-Preserving Encryption.
In Proceedings of the 15th ACM Asia Conference on Computer and Communications

Security, pp. 193-207.

Ayub Hussain Mondal, M. R. M. S., 2015. A Brief Overview of Homomorphic Cryptosystem

and Their Applications. International Journal of Computer Applications.

Bellare, M. a. F. M. a. 0. A. a. R. T.,, 2008. Deterministic encryption: Definitional
equivalences and constructions without random oracles. International Association for

Cryptologic Research, pp. 360-378.

77

Dae Hyun Yum, D. S. K. J. S. K. P. J. L. S. J. H., 2011. Order-Preserving Encryption for Non-

Uniformly Distributed Plaintexts. In Intl. Workshop on Information Security Applications.

Dan Boneh, A. S. B. W., 2012. Functional Encryption: A New Vision for Public Key
Cryptography. Communication of the ACM, 55(11), pp. 56-64.

Dan Boneh, B. W., 2007. Conjunctive, Subset, and Range Queries on Encrypted Data.

Springer, Berlin, Heidelberg, In Theory of Cryptography Conference, pp. 535-554.

Dan Boneh, G. D. C. R. O. G. P., 2004. Public Key Encryption with Keyword Search. Springer,
Berlin, Heidelberg, In International conference on the theory and applications of

cryptographic techniques, pp. 506-522.

Divyakant Agrawal, A. E. A. F. E. A. M., 2009. Database Management as a Service:
Challenges and Opportunities. |EEE, pp. 1709-1716.

Do Hoang Giang, N. W. K., 2017. Multi-dimensional Range Query on Outsourced Database
with Strong Privacy Guarantee. . J. Computer Network and Information Security, Issue 10,

pp. 13-23.

Dongxi Liu, S. W., 2012. Programmable Order-Preserving Secure Index for Encrypted

Database Query. In IEEE Fifth International Conference on Cloud Computing.

Dongxi Liu, S. W., 2013. Nonlinear order preserving index for encrypted database query in
service cloud environments. Concurrency and Computation: Practice and Experience,

25(13), pp. 1967-1984.

Florian Kerschbaum, A. S., 2014. Optimal Average-Complexity Ideal-Security Order-
Preserving Encryption. In Proceedings of the 2014 ACM SIGSAC Conference on Computer

and Communications Security, pp. 275-286.

Frederik Armknecht, C. B. C. C., 2015. A Guide to Fully Homomorphic Encryption. IACR
Cryptol. ePrint Arch, p. 1192.

78

Gamaleldin, A. M., 2013. An Introduction to Cloud Computing. Software Engineering

Competence Center.

George Weilum Ang, J. H. W. T. P. W., 2014. System and Method of Sort_Order Preserving
Tokenization, U.S. Patent 8,739,265.

Gorelik, E., 2013. Cloud Computing Models. Massachusetts Institute of Technology.

Gultekin Ozsoyoglu, D. A. S. S. S. C., 2004. Anti-Tamper Databases: Querying Encrypted
Databases. Springer, Boston, MA, In Data and Applications security XVII, pp. 133-146.

Hakan Hacig“um®us, B. I. C. L. S. M., 2002. Executing SQL over Encrypted Data in the
Database Service Provider. In Proceedings of the 2002 ACM SIGMOD international

conference on Management of data, pp. 216-227.

Hasan KADHEM, T. A. H. K., 2010. MV-OPES: Multivalued-Order Preserving Encryption
Scheme: A Novel Scheme for Encrypting Integer Value to Many Different Values. IEICE
TRANS. INF. & SYST, E93-D(9).

Hasan KADHEM, T. A. H. K., 2010. Optimization Techniques for Range Queries in the
Multivalued-Partial Order Preserving Encryption Scheme. Springer, Berlin, Heidelberg, In
International Joint Conference on Knowledge Discovery, Knowledge Engineering, and

Knowledge Management, pp. 338-353.

Hossein Shafagh, A. H. L. B. P. F. S. D., 2017. Secure Sharing of Partially Homomorphic
Encrypted loT Data. Delft, Netherlands, 15th ACM Conference on Embedded Networked

Sensor Systems.

J.SRINIVAS, K. S. R. A. Q., 2012. CLOUD COMPUTING BASICS. International Journal of

Advanced Research in Computer and Communication Engineering, 1(5).

Jakimoski, K., 2016. Security Techniques for Data Protection in Cloud Computing.

International Journal of Grid and Distributed Computing, 9(1), pp. 49-56.

79

K. Srinivasa Reddy, S. R., 2014. A New Randomized Order Preserving Encryption Scheme.
International Journal of Computer Applications, 108(12), p. 0975 — 8887.

Kadhem, H., 2010. A SECURE AND EFFICIENT ORDER PRESERVING ENCRYPTION SCHEME
FOR RELATIONAL DATABASES. In International Conference on Knowledge Management

and Information Sharing, pp. 25-35.

Khamitkar, S., 2014. A survey on Fully Homomorphic Encryption. IOSR Journal of Computer
Engineering, 17(6), p. .

Kim, K. S., 2019. New Construction of Order-Preserving Encryption Based on Order-
Revealing Encryption. Journal of Information Processing System, October, 15(5), pp. 1211-

1217.

Krunal Suthar, J. M. P., 2017. Data Security in Cloud Computing using Encryption and

Obfuscation Techniques. ResearchGate.

Liang Yan, C. R. a. G. Z., 2009. Strengthen Cloud Computing Security with Federal Identity
Management Using Hierarchical Identity-Based Cryptography. Springer-Verlag Berlin
Heidelberg, In IEEE International Conference on Cloud Computing (pp. 167-177).

Liangliang Xiao, I.-L. Y., 2012. A Note for the Ideal Order-Preserving Encryption Object and
Generalized Order-Preserving Encryption, IACR Cryptology ePrint Archive, 2012, p.350.

Liangliang Xiao, I.-L. Y. D. T. H., 2012. Extending Order Preserving Encryption for Multi-User
Systems, |ACR Cryptology ePrint Archive, 2012, p.192.

Maha TEBAA, S. E. H., 2013. Secure Cloud Computing through Homomorphic Encryption.

International Journal of Advancements in Computing Technology(lJACT), 5(16).

MANDEEP KAUR, M. M., 2013. Using encryption Algorithms to enhance the Data Security
in Cloud Computing. International Journal of Communication and Computer Technologies,

1(3).

80

Manpreet Kaur, R. S., 2013. Implementing Encryption Algorithms to Enhance Data Security
of Cloud in Cloud Computing. International Journal of Computer Applications, 70(18), p.
0975 — 8887.

Mr. Manish M Poteya, D. C. A. D. M. D. H. S., 2016. Homomorphic Encryption for Security

of Cloud Data. Procedia Computer Science, Volume 79, p. 175 — 181.

O'Neill, A., 2010. Definitional Issues in Functional Encryption. IACR Cryptology ePrint
Archive, Volume 2010, p. 556.

Peter Mell, T. G., 2011. The NIST Definition of Cloud Computing, National Institute of

Standards and Technology Special Publication 800-145.

POPA, R. A., 2014. BUILDING PRACTICAL SYSTEMS THAT COMPUTE ON ENCRYPTED DATA.

s.l.:Massachusetts Institute of Technology.

Princiraj, 2019. GreeksforGreeks. [Online]

Available at: www.GreeksforGreeks.org

Qi Zhang, L. C.,. R. B., 2010. Cloud computing: state-of-the-art and research challenges.

Journal of Internet Services and Applications.

R. Velumadhava Rao, K. S., 2015. Data Security Challenges and Its Solutions in Cloud

Computing. Elsevier B.V..

Rahman, A. B. a. S. (. M., 2011. AN OVERVIEW OF THE SECURITY CONCERNS IN
ENTERPRISE CLOUD COMPUTING. Volume 3.

Rakesh Agrawal, J. K. R. S. Y. X., 2004. Order Preserving Encryption for Numeric Data. Paris,
France, In Proceedings of the 2004 ACM SIGMOD international conference on

Management of data, pp. 563-574.

81

Raluca Ada Popa, C. M. S. R. N. Z. H. B., 2011. CryptDB: Protecting Confidentiality with
Encrypted Query Processing. In Proceeding of the Twenty-Third ACM Symposium on

Operating System Principles, pp. 85-100.

Raluca Ada Popa, F. H. L. N. Z., 2013. An Ideal-Security Protocol for Order-Preserving

Encoding. In 2013 IEEE Symposium on Security and Privacy, pp. 463-477.

Ramgovind S, E. M. S. E., 2010. The Management of Security in Cloud Computing. In 2010

Information Security for South Africa (pp. 1-7). IEEE.

S. Subashini, V., 2010. A survey on security issues in service delivery models of cloud

computing. Journal of Network and Computer Applications.

Safiriyu Eludiora, O. A. A. 0. A. 0. C. O. L. K., 2011. A User Identity Management Protocol
for Cloud Computing Paradigm. Int. J. Communications, Network and System Sciences,

4(3), pp. 152-163.

Sandhya Kohli, K. S. D. ,. R. K., 2015. A Review on Functional Encryption Schemes and their
usage in VANET. International Journal of Advanced Research in Computer and

Communication Engineering, 4(11).

SARAH SHIHAB HAMAD, A. M. S., 2018. PUBLIC KEY FULLY HOMOMORPHIC ENCRYPTION.
Journal of Theoretical and Applied Information Technology, 96(7).

Sergei Evdokimov, O. G., 2007. Encryption Techniques for Secure Database Outsourcing.

In: Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 327-342.

Seungmin LEE, T.-J. P. D. L. T. N. N. S. K., 2009. Chaotic order preserving encryption for
efficient and secure queries on databases. /EICE Transactions on Information and Systems,

92(11), pp. 2207-2217.

Shehri, W. A., 2013. CLOUD DATABASE DATABASE AS A SERVICE. International Journal of

Database Management Systems, 5(2).

82

Somayeh Sobati Moghadam, G. G. J. D., 2016. Secure Order-Preserving Indexing Schemes
for Outsourced Data. In 2016 IEEE International Carnahan Conference on Security

Technology (ICCST), pp. 1-7.

Sosinsky, B., 2010. Cloud Computing Bible. John Wiley & Sons.

Treesa Maria Vincent, J., 2013. Data Storage in Cloud Environment Enhance Privacy.

International Journal of Computer Trends and Technology, 4(3).

V. Spoorthy, M. M. B. S. K., 2014. A Survey on Data Storage and Security in Cloud

Computing. International Journal of Computer Science and Mobile Computing, 3(6).

Vladimir Kolesnikov, A. S., 2012. On The Limits of Privacy Provided by Order- Preserving
Encryption. Bell Labs Technical Journal 17(3).

Yan-Cheng Chang, M. M., 2005. Privacy Preserving Keyword Searches on Remote
Encrypted Data. Springer, Berlin, Heidelberg, In International Conference on Applied

Cryptography and Network Security, pp. 442-455.

83

Appendices

Appendix A

The enhanced ROPE Model Source Code:

Subprograml: Creates the index table and prepares the database by allocating the

Id_ranges.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>

#include <malloc.h>

int range_val=100;
int data_size=100;
int num[500];

[*The trusted party Generates ranges and store them randomly in a file.

This function run only one time..

Build the file with range id in the first column and zeros in rows.*/

void insert_id(int range_val)

{ FILE *f; FILE *f2;
int temp,i,j,r K;

int count_range=(data_size/range_val);
if((data_size%range_val)!=0)
count_range++;
printf(*\n The index table has %d ranges\n”,count_range);
for(temp=0, i=1; temp<count_range; i++,temp++)

num[temp]=i;
srand(time(NULL));

for(i=count_range-1; i>0; i--)

84

{r=rand()%i;
temp=num[i];
num[i]=num(r];
num[r]=temp;
}
f = fopen(*range100.txt", "w");
f2 = fopen("'r100.txt", "w");
if((f == NULL)||(f == NULL))
printf("\n Error opening file");
else
{
for(i=0; i<count_range; i++)
{
k=numl[i];
fprintf(f,"%d " k);
fprintf(f2,"%d " k);
for(j=1; j<=(range_val*2); j++)
{
fprintf(f,"%d ",0);
fprintf(f2,"%d ",0);
}
fprintf(f,"\n"); fprintf(f2,"\n");
}
Ylelse
printf("\n The two files are ready\n");
fclose(f); fclose(f2);

}

int main()

{

printf("\n Generate ranges and store them in file");

85

insert_id(range_val);
return O;

hy

86

Subprogram2: The Insertion Program.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>

int range_val=5;

int data_size=100;
int num[500];

int countl;

int count2;

/lint val;

FILE *f; FILE *f2;

struct Node
{
int key;
struct Node *left, *right;
int height;
3

//Get maximum of two integers.
int max(int a,int b)
{
return(a>b)? a:b;
}
/lget the height of the tree.
int height(struct Node *N)
{
if(N==NULL)
return O;
return N->height;
}
/[Allocte a new node with the give null left and right pointer.
struct Node*newNode(int key)
{
struct Node* node= (struct Node*) malloc(sizeof(struct Node));
node->key=key;
node->left=NULL;
node->right=NULL;

87

node->height=1;
return(node);

¥

struct Node *rightRotate(struct Node *y)
{

struct Node *x=y->left;

struct Node *t2=x->right;

[Iperform rotation
x->right = y;
y->left = t2;

/lupdate heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;

//Return new root
return x;

¥

struct Node *leftRotate(struct Node *x)
{

struct Node *y = x->right;

struct Node *t2 = y->left;

[Iperform rotation
y->left = x;
X->right = t2;

/lupdate heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;

//Return new root
returny;

}

/IGet balance factor of node N.
int getbalance(struct Node *N)

{

88

if (N == NULL)
return O;
else
return (height(N->left)- height(N->right));
k

/lInsert a value to AVL tree in a row with counter.
struct Node* insert(struct Node* node, int key)

{

/1 1. Perform the normal BST insertion.
if(node == NULL)
{

count2=count2+2;
return(newNode(key));

¥
if(key < node->key)

{

count2=count2+2;
node->left = insert(node->left key);

}
else if(key > node->key)

{

count2=count2+2;
node->right = insert(node->right,key);

}

else //equal keys are not allowed in BST
{count2=count2+2;
return node;

}

/I 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

89

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

//Right Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:
if((balance > 1) && (key > node->left->key))
{node->left = leftRotate(node->left);
return rightRotate(node);
}
/IRight Left case:
if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);
}
/Ireturn the unchanged node pointer.
return node;
}
/IReconsrtuct & Build AVL tree from row without counter.
struct Node* insert2(struct Node* node, int key)
{
/I 1. Perform the normal BST insertion.
if(node == NULL)
{
return(newNode(key));
}
if(key < node->key)
{

node->left = insert2(node->left, key);

}
else if(key > node->key)

{
node->right = insert2(node->right,key);

}

else //equal keys are not allowed in BST

{

return node;

90

¥

/I 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

//Right Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:

if((balance > 1) && (key > node->left->key))
{node->left = leftRotate(node->left);

return rightRotate(node);

}

/IRight Left case:

if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);

}

/Ireturn the unchanged node pointer.

return node;

}

/I 'Writes the tree values in a file in preorder traversal.
void store(FILE* fp,struct Node *root)
{
if(root!= NULL)
{
fprintf(fp,"%d ",root->key);
store(fp,root->left);
store(fp,root->right);
}

91

}
[[function to write a row contents in a correspondind row in an helper file
void copy(int id)
{
int k,k2;
/lint m=0;
f = fopen(“range5.txt", "r+");
f2 = fopen("'r5.txt", "r");
if((f == NULL)||(f2 == NULL))
printf("\n Error opening file");
else
{
fscanf(f2,"%d",&k?2);// first id in file
while(!feof(f2))
{
if(k2==id)
{
fscanf(f,"%d", &k);
while(!feof(f))
{ if(k==id)
{
fseek(f,1,SEEK_CUR);
fseek(f2,1,SEEK_CUR);
fscanf(f2,"%d",&k2);
while(k2>0)
{
fprintf(f,"%d " ,k2);
fscanf(f2,"%d",&k2);
}
if(k2==0)
break;
}
else
fseek(f,(range_val*4),SEEK_CUR);
fscanf(f,"%d",&K);
Hiwhile
if(k2==0)
break;
}
else
fseek(f2,(range_val*4),SEEK_CUR);

92

fscanf(f2,"%d",&k?2);
Hiwnhile
}lelse
fclose(f); fclose(f2);
}
/[The server Checks a suitable range_id inside the file to insert a value .
void check_id(int id,int val)
{
struct Node *root=NULL;
int X,x2,m;
f = fopen(“range5.txt", "'r");
f2 = fopen("'r5.txt", "r+");
if((f == NULL)||(f2 == NULL))
printf("\n Error opening file");
else
{ fscanf(f,"%d",&x);// search for id
while(!feof(f))
{
if(x==id)//find range_id for a value
{
countl++;
fseek(f,1,SEEK_CUR);
fscanf(f,"%d",&m);
while(m>0)//restore a tree from a row
{
root = insert2(root,m);
fscanf(f,"%d",&m);
}
root= insert(root,val);
if(m==0)
break;
}

else//k!=id
fseek(f,(range_val*4),SEEK_CUR);//4 digits for each number
countl++;
fscanf(f,"%d", &x);
Hiwhile
/I copy a row in an assistant file
fscanf(f2,"%d",&x2);
while(!feof(f2))

93

{
if(x2==id)

{
fseek(f2,1,SEEK_CUR);
store(f2,root);
break;

}

else

fseek(f2,(range_val*4),SEEK_CUR);//4 digits for each number

fscanf(f2,"%d", &x2);
Hiwhile

}
fclose(f); fclose(f2);

}
/[Proxy Calcolate suitable range_id for a value to insert it.
int get_range(int val)
{
int id=(val/range_val);
if((val%range_val)!=0)
id++;
return id;

¥

/IGenerate random numbers ftom min to max and insert them in model2
void rand_in()
{
FILE *f;
f=fopen("in100.txt","r");
count1=0; count2=0;
int k,id;
while(!feof(f))
{
fscanf(f,"%d ",&K);
id=get_range(Kk);
check_id(id,k);
copy(id);
}
fclose(f);

}

int main()

94

FILE *f;
printf("\n Uses the generated data ");

rand_in();

printf("\n Insert is complete\n™);

f=fopen("counter.txt","a+");

fprintf(f,"\n Range =5 ThS=%d RRbCS=%d \n",countl,count2);
fclose(f);

return O;

95

Subprogram 3: The Search Program.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>

int range_val=100;
int count1=0;
int count2=0;
struct Node
{
int key;
struct Node *left, *right;
int height;
3

struct Node *root;

//Get maximum of two integers.

int max(int a,int b)

{

return(a>b)? a:b;

}

/lget the height of the tree.

int height(struct Node *N)

{

if(N==NULL)
return O;
return N->height;

}

/[Allocte a new node with the give null left and right pointer.

struct Node*newNode(int key)

{

struct Node* node= (struct Node*) malloc(sizeof(struct Node));
node->key=Kkey;
node->left=NULL;
node->right=NULL;
node->height=1;
return(node);

96

struct Node *rightRotate(struct Node *y)
{

struct Node *x=y->left;

struct Node *t2=x->right;

[Iperform rotation
x->right = y;
y->left = t2;

/lupdate heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;

//Return new root
return x;

¥

struct Node *leftRotate(struct Node *x)
{

struct Node *y = x->right;

struct Node *t2 = y->left;

[Iperform rotation
y->left = x;
X->right = t2;

/lupdate heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;

//Return new root
returny;

}

//Get balance factor of node N.
int getbalance(struct Node *N)
{
if (N ==NULL)
return O;
else
return (height(N->left)- height(N->right));

97

¥

/lInsert a value to AVL tree in a row with counter.
struct Node* insert(struct Node* node, int key)

{

/! 1. Perform the normal BST insertion.
if(node == NULL)

{
return(newNode(key));

¥
if(key < node->key)

{

node->left = insert(node->left key);

¥
else if(key > node->key)

{
node->right = insert(node->right,key);

¥

else //equal keys are not allowed in BST

{

return node;

¥

/I 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

/IRight Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:
if((balance > 1) && (key > node->left->key))

98

{node->left = leftRotate(node->left);
return rightRotate(node);
}
/IRight Left case:
if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);
}
/Ireturn the unchanged node pointer.
return node;
}
/[Proxy Calcolate suitable range_id for a value to insert it.
int get_range(int val)
{
int id=(val/range_val);
if((val%range_val)!=0)
id++;
return id;

¥

void search(struct Node* node, int key)

{

if(node '=NULL)
{
if(key < node->key)
{
count2=count2+2;
search(node->left,key);
Yelse
if(key > node->key)
{
count2=count2+2;
search(node->right,key);
}else /lequal keys are not allowed in BST
if(key==node->key)
{
count2=count2+2;
/I printf(*\n Element is found");
Jelse
printf(*\n element is not found.");

99

}
}
void restore(FILE* f,int id, int val)
{
struct Node *root=NULL;
int m,x;
/[count1=0;
fscanf(f,"%d", &x);
while(!feof(f))
{
if(x==id)//find range_id for a value
{ /lread all elements in this row val and build tree
countl++;
fseek(f,1,SEEK_CUR);
fscanf(f,"%d",&m);
while(m>0)//&&(c<=range_val))
{
root = insert(root,m);
fscanf(f,"%d",&m);
}
search(root,val);
if(m==0)
break;
}
else//x!=id
fseek(f,(range_val*4),SEEK_CUR);//10numbers + 10space
countl++;
fscanf(f,"%d", &x);
Hiwhile

}

int main()

{
FILE* f; FILE* f2; FILE* f3;
int val,id;
f2 =fopen("20rand.txt", "r");
f3 =fopen("Search2_count.txt", "a+");
if((f==NULL)||(f2==NULL)||(f3==NULL))
printf(*\n Error to open file");

else

{fscanf(f2,"%d",&val);

100

while(1feof(f2))
{

id=get_range(val);

f =fopen(“'range100.txt", "r");
restore(f,id,val);
fscanf(f2,"%d",&val);
fclose(f);

}
fprintf(f3,"\nRange :100 count1=%d count2=%d\n",countl,count2);

printf(*\n Search is Complete..\n");
fclose(f2); fclose(f3);
return O;

101

Appendix B

The mOPE Model Source Code:
Subprograml: The Insertion Program.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>

int num[500];
int count=0 ;

struct Node
{
int key;
struct Node *left, *right;
int height;
¥

struct Node *root;

//Get maximum of two integers.
int max(int a,int b)
{
return(a>b)? a:b;
}
/lget the height of the tree.
int height(struct Node *N)
{
if(N==NULL)
return O;
return N->height;
}
/[Allocte a new node with the give null left and right pointer.
struct Node*newNode(int key)

{

102

struct Node* node= (struct Node*) malloc(sizeof(struct Node));
node->key=Kkey;
node->left=NULL;
node->right=NULL;
node->height=1;
return(node);

¥

struct Node *rightRotate(struct Node *y)
{

struct Node *x=y->left;

struct Node *t2=x->right;

[Iperform rotation
x->right = y;
y->left = t2;

/lupdate heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;

//Return new root
return x;

¥

struct Node *leftRotate(struct Node *x)
{

struct Node *y = x->right;

struct Node *t2 = y->left;

/Iperform rotation
y->left = x;
X->right = t2;

/lupdate heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;

//Return new root
returny;

103

//Get balance factor of node N.
int getbalance(struct Node *N)

{
if (N == NULL)
return O;
else
return (height(N->left)- height(N->right));
¥

/I To reconstruct a tree from a file without counter..
struct Node* insert2(struct Node* node, int key)

{

/1 1. Perform the normal BST insertion.
if(node == NULL)

{
return(newNode(key));

}
if(key < node->key)

{

node->left = insert2(node->left,key);

}
else if(key > node->key)

{
node->right = insert2(node->right,key);

}

else //equal keys are not allowed in BST

{

return node;

}

/I 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

104

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

//Right Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:
if((balance > 1) && (key > node->left->key))
{node->left = leftRotate(node->left);
return rightRotate(node);
}
/IRight Left case:
if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);
}
/lreturn the unchanged node pointer.
return node;
}
// Build AVL tree.
struct Node* insert(struct Node* node, int key)
{
// 1. Perform the normal BST insertion.
if(node == NULL)
{
count=count+2;
return(newNode(key));

}
if(key < node->key)

{

count=count+2;
node->left = insert(node->left,key);

}
else if(key > node->key)

{

count=count+2;
node->right = insert(node->right,key);

105

¥

else //equal keys are not allowed in BST
{ count=count+2;
return node;

ky

Il 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

/IRight Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:
if((balance > 1) && (key > node->left->key))
{node->left = leftRotate(node->left);
return rightRotate(node);
}
/IRight Left case:
if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);
}
/lreturn the unchanged node pointer.
return node;
}
/I 'Writes the tree values in a file in preorder traversal.
void store(FILE* fp,struct Node *root)

{
if(root!= NULL)

106

{
fprintf(fp,"%d ", root->key);
store(fp,root->left);
store(fp,root->right);
}

}

/I Recostruct the tree from file.
void restore(FILE* fp)
{
struct Node *root=NULL;
int val;
while(!feof(fp))
{
fscanf(fp,"%d",&val);
root = insert2(root,val);
}
}

/Iread fixwd data from a file to insert in mOPE model
void read100()
{
FILE™* f; FILE* f1; int Kk, size;
f=fopen("in100.txt","r");
f1=fopen("data.txt","w");
while(!feof(f))
{
fseek(f1,0,SEEK_END);
size=ftell(f1);
if(size==0)
{fscanf(f,"%d ",&K);
fprintf(f1,"%d " ,k);
fclose(fl);
}

else

{

fl=fopen("data.txt","r");
restore(fl);
fscanf(f,"%d ", &K);
root=insert(root,k);

107

fclose(f1);
f1=fopen("data.txt","w");
store(f1,root);

fclose(f1);

}
fclose(f);

¥

int main()

{
FILE *f;

read100();
f=fopen("counter.txt","a+");
fprintf(f,"” RRbCS=%d\n",count);
fclose(f);

printf("insert is completed™);
return 0;

108

Subprogram2: The Search Program.

#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include <malloc.h>

int count=0;
struct Node
{
int key;
struct Node *left,*right;
int height;
+
struct Node *root=NULL;

//Get maximum of two integers.

int max(int a,int b)

{

return(a>b)? a:b;

}

/lget the height of the tree.

int height(struct Node *N)

{

if(N==NULL)
return O;
return N->height;

}

/[Allocte a new node with the give null left and right pointer.

struct Node*newNode(int key)

{

struct Node* node= (struct Node*) malloc(sizeof(struct Node));
node->key=Kkey;
node->left=NULL,;
node->right=NULL;
node->height=1;
return(node);

}

struct Node *rightRotate(struct Node *y)

109

struct Node *x=y->left;
struct Node *t2=x->right;

[Iperform rotation
x->right = y;
y->left = t2;

/lupdate heights
y->height = max(height(y->left), height(y->right))+1;
x->height = max(height(x->left), height(x->right))+1;

//Return new root
return x;

¥

struct Node *leftRotate(struct Node *x)
{

struct Node *y = x->right;

struct Node *t2 = y->left;

[Iperform rotation
y->left = x;
x->right = t2;

/lupdate heights
x->height = max(height(x->left), height(x->right))+1;
y->height = max(height(y->left), height(y->right))+1;

//Return new root
returny;

}

//Get balance factor of node N.
int getbalance(struct Node *N)
{
if (N ==NULL)
return O;
else
return (height(N->left)- height(N->right));

110

/lnsert a value to AVL tree in a row with counter.
struct Node* insert(struct Node* node, int key)

{

/! 1. Perform the normal BST insertion.
if(node == NULL)

{
return(newNode(key));

¥
if(key < node->key)

{

node->left = insert(node->left key);

¥
else if(key > node->key)

{
node->right = insert(node->right,key);

¥

else //equal keys are not allowed in BST

{

return node;

¥

/I 2. Update height of this ancestor node.
node->height = 1 + max(height(node->left), height(node->right));

//Get balance factor of this ancestor node.
int balance = getbalance(node);

//1f this node becomes unbalanced, then there are 4 cases:

//Left Left case:
if((balance > 1) && (key < node->left->key))
return rightRotate(node);

/IRight Right case:
if((balance < -1) && (key > node->right->key))
return leftRotate(node);

//Left Right case:
if((balance > 1) && (key > node->left->key))
{node->left = leftRotate(node->left);

111

return rightRotate(node);
}
/IRight Left case:
if((balance < -1) && (key < node->right->key))
{node->right = rightRotate(node->right);
return leftRotate(node);
}
/lreturn the unchanged node pointer.
return node;

}

/[Search for an element in tree

void search(struct Node* node, int key)

{

if(node '=NULL)

{
if(key < node->key)
{

count=count+2;
search(node->left,key);
Yelse
if(key > node->key)
{
count=count+2;
search(node->right,key);
}else /lequal keys are not allowed in BST
if(key==node->key)
{
count=count+2;
[lprintf("\n Element is found™);
Yelse
printf("\n element is not found.");

}

}
void restore(FILE™* f)

{
int m;
while(!feof(f))

{
fscanf(f,"%d",&m);

root = insert(root,m);

112

¥

int main()
{
FILE* f; FILE* f2; FILE* f3;
int val;
f =fopen("data.txt", "r");
f2 =fopen("*20rand.txt", "r");
f3 =fopen("Searchl_count.txt", "a+");
if((f==NULL)||(f2==NULL)]|(f3==NULL))
printf("\n Error to open file");
else

{

restore(f);

[[fscanf(f2,"%d", &val);

while(!feof(f2))

{

fscanf(f2,"%d",&val);
search(root,val);

¥

fprintf(f3,"\n count=%d",count);
}

printf(*\n Search is completed."”);
return O;

¥

113

List of Publications

1. Nasrin Dalill and Ahmed Kayed (2015) “Preserving Data in Cloud Computing”,
IJCSI International Journal of Computer Science Issues, Volume 12, Issue 2, March
2015, ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784. www.l1JCSI.org

2. Nasrin Dalill and Ahmed Kayed (2019) “Enhancing Performance of Search over
Encrypted Data in Cloud Computing”, International Journal of Computer Science
Trends and Technology (IJCST) — Volume 7 Issue 6, Nov - Dec 2019, ISSN: 2347-
8578. www.ijcstjournal.org

114

http://www.ijcsi.org/
http://www.ijcstjournal.org/

