SUDAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY
COLLEGE OF GRADUATE STUDIES

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

ol saill cildaiay) Ao Al dpusal) Auaigl) Lagia
il 4y jlasal

A thesis Submitted to the College of Graduate Studies,
College of Computer Science and Information Technology,
Sudan University of Science and Technology

In Partial Fulfillment of the Requirements for the degree of
DOCTOR OF PHILOSOPHY in Computer Science

By
Hind Alamin Mohamed Hassan

Supervisor

Dr.Hany Hussein Ammar, Professor

October 2020

Sudan University of Science & Technology

L_\’.)],.-g-) ”l..U O‘b)..J\ Aol
College of Graduate Studies
(WA RCI [W g

Ll byl s

Ref: SUST/ CGS/All

Approvai Page
(To be completed after the college council approval)

Name of Candidate: RS | [Alamic] [Mohaned| [Hossan |

.. e Bodal Wg"{ et ./Qg».(el Softwace. Aronitedwre.

N isuels

Approved by:

1. External Examiner

Signature: @

2. Internal Examiner

Declaration of the Status of Thesis
(By Student)

I signing here-under, and declare that the contents of this dissertation represent
my own work, and that the dissertation has not previously been submitted for
academic examination towards any qualification. Furthermore, it represents

my own opinions, which is an original intellectual work.

Candidate’s Name: Hind Alamin Mohamed Hassan.
Candidate’s Signature: Zre># 2

Date: October 2020

Declaration of the Status of Thesis

(By Main Supervisor)

I signing here-under, and declare that I’'m the supervisor of the sole author of
the Ph.D. dissertation entitled:

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

Supervisor’s Name: Prof. Hany Hussein Ammar.
Supervisor’s Signature: f%g«/ > Zvar

Date: October 2020

Assigning the copy-right to CGS

I signing here-under, and declare that [’'m the sole author of the Ph.D.

dissertation entitled:

A Concerns-Based Reverse Engineering Methodology

for Partial Software Architecture Visualization

This is an original intellectual work. Willingly, I assign the copyright of this
work to the College of Graduate Studies (CGS), Sudan University of Science
and Technology (SUST).

Accordingly, SUST has all the rights to publish this work for scientific

purposes.

Candidate’s Name: Hind Alamin Mohamed Hassan
Candidate’s Signature: oZaw>Z 2

Date: October 2020

(11) a1 DslE &g

& Lo

e Oty Bl g Al iy Like arantyy (liv JLoSy wlabu gdae g WSS Bk T &b el
I At] 9 Al S28] g0 9 A 9 AT S 9 Ty Ty S ulild Jooyt (01 b b F
Jindl ey Lo il Gl A et ol 1L OLGY! oo (il Gle ol et (pl) g

iy Ladts & dasedly Ll 05 azamsy @l & dasdl g ol 5 el

DEDICATION

To those whom always remember me to believe in myself and continuous to
provide me their constant love, unlimited support and encouragement for
advancement and success throughout my PhD journey and my life in general.

I could not have done it without your support. I am extremely grateful to

My Heartbeat (Mum and Dad)
My Sweet Sisters (Hiba, Sara and Salam)
My Lovely Husband and little Angle (My Son, Abdulrahman),
All My Big Family,

Special People in my heart we lost them, but their souls are always with us

(Uncle Ahmed Abdalla, Uncle Tahar Osman and Uncle Mohamed Abdalla)

To those who enlighten our way with knowledge since the first steps and

throughout the whole of the education stages.

My Supervisor and My Teachers..

To those whom we spent with them all the enjoyable moments, happy times and

been touch with all meaning of Friendship and Encouragement.

My best friends and My Colleagues..

i

ACKNOWLEGDMENT

Firstly, “Alhamdulillah”..

I would like to extend my sincere thanks and appreciation to a number of people for
their participation and cooperation to accomplish this research:

Firstly, special thanks to my supervisor Prof. Hany Ammar, Who had afforded and
guided me with all the needed instructions and information, inspiration,
encouragement, guidance, reading drafts and many technical discussions which have
improved the expected outcomes, and providing feedback to complete the aim of
this research. Honestly; it was really great honor for me to work under his

supervision.

My gratitude and appreciation to a number of people (Dr.lbrahim Abdallah
Mohamed, Dr.Yahia Abdallah Mohamed, Dr.Hisham M. .Abushama, Dr.Wafaa
F.Mukhtar, Dr.Mohamed Mustafa Ali, Dr.Afaf Madani, Miss.Intsar Ibrahim,
Dr.Amar Ibrahim and Dr.Hitham A.Moneim) for their encouragement and

continuous support me throughout my PhD journey.

I am extremely grateful to my colleagues and all members at the College of
computer science and information technology at SUDAN University of Science

and Technology for their unlimited support and encouragement.

Moreover; [place my sincere thanks to Scientific Affair and College of
Graduation Studies at SUNAN University for their supporting, coordinating and
following up through my PhD scholarship.

Last but not least, I would like to thank my special friends (Dr.Amal Hassan,
Dr.Asma, Wafaa Ali, Hind Ahmed, Hiba A.Maki, Bodoor Ali, Nahla Murtada, Sara
Abdalla, Hyba Abdu, Eman A.moneim, and Bothyna Moneer) and all my friends
around the world and my colleagues for their moral help and support, and for their
understanding during my PhD journey. I am lucky to have such special friends and
colleagues! Thank you all.

Hind Alamin Mohamed

il

ABSTRACT

The use of reverse engineering (RE) is increasingly spreading and becoming one
of the essential engineering trends for software evolution and maintenance. RE is used
to support the process of analyzing and recapturing the design information in legacy
systems or complex systems during the maintenance phase. The major problem
stakeholders might face in understanding the architecture of existing software systems
is that the knowledge of software architecture information is difficult to obtain because
of the size of the system, and the existing architecture document often missing or does
not match the current implementation of the source code of software system. Therefore,
much more effort and time are needed from multiple stakeholders such as developers,
maintainers and architects for obtaining and re-documenting and visualizing the
architecture of a target system from its source code files. Hence, most of the current

work is mainly focused on the developer’s viewpoint.

To contribute in solving the mentioned problems for obtaining and re-
documenting the architecture of target system; this research presents a RE methodology
for visualizing architectural information for multiple stakeholders and viewpoints by
applying a reverse engineering process on specific parts of the source code. The process
is driven by eliciting stakeholders' concerns on specific architectural viewpoints to
obtain and visualize the architectural information related to these concerns. In this
research the proposed RE methodology’s phases have been illustrated and validated

using a case study of a legacy web application system.

The main contributions of this research are three folds: firstly; the
RE methodology is based on IEEE1471 standard for architectural description and
supports concerns of stakeholder including the end-user and maintainer; secondly; it
supports the visualization of a particular part of the target system by providing a visual
model of the architectural representation which highlights the main components needed
to execute specific functionality of the target system and finally; the methodology also

uses architecture styles to organize the visual architecture information, this architectural

v

representation helps stakeholders to inspect the dependencies of the different parts of

the architecture obtained from specific source code segments of the target system.

ual."cw«l\

25k Al Bl SV uT s oy e S B S Redidl plsaa] i)

Ll o) Slaglan B3latuly bl Blos wes 3 2nSW) Aedig) pasand G sl o2yl
8 o Leerlse an @) A AL oo U Bl e JY Lapsles & o) suaal 2l o agaal
ot W3y allad) B lang Aol Sloglal) @m0y Jsuad) ygmo 3 plladl o cpiizad) 5 aliall Ol
) peand QU adl e g Y w5 i pladl AU Blanal) 3553 0 L WL o LS () o
Tokall ool a) ol e cBglly ded) e bl Jb n al ad G pllal) 3l el (5,9
el dylamng Gad jpadly 555 Balely plad) Blans Jo Jguadl 3 opleaally Blaall pwdigay cpyshll ;s
S By el JleeW) OF ad il 2ol el (5,42) jae Slike Jo 587 IV r g

(UQA.U cﬁj\L\ jT)}Jal\ J.EJ 3.@:—} J& L;""L‘j J‘i“:"’j JS_,: JW\ (\.E.J\ ;\gw

i ¢ gl allad) dyylaal 335l Salely allad) Byjlans o Jguamdd 35T STED) > (3 aplund)

ly amball Ol e dall Bleall Sloslall st 2 S andidl aliscra] e dated damgie ol I
o) 845 o jhas e 8302 sl e S Bl ke Goas S e o 2ol B Slery e
o 3302 b lemy wady dmlall Ol ol SlbaaVl (oMl s r Bgmse 05T dhedl) oda
Codl e 3 & b @ gl olleasl ol diladl Byleall Sloghall o sas o padl) wog (3 Laslaze!

AR sl Sliles aalail asT e Leiphaiy Al aulys plaseal Lete Gimdly am il dmgdd) |0 25

FPPNEAR WKL 5 ST (i SENPEPR TN S P P15 U WSSOI RPR VS SN RCST PSR

ol Slilexal el LS lapshs v gl a2l 2l &y lene Loy pasadl IEEET471 52 ol
Pl e sa2 b ot Bagdll e (LB LAY odd Bl igey Sl pasad) ells (3 s asliall
3ot 3 B gt SUSL oy Gy (leall Jitadl (o 356 pbg D e Sagrld
Slglall iy oo a2 by Wb de il Rl Cosera] (llity (Ougrll allall saud) sl
o e Jgad) @ g Lkl Sliglall ods aulieg ogb S dolial) sl Ltad) e deliy G g)laall

J.L@.:’.Ml\ (Ua_..“ ?\a:...ia_s UA) CA\J}\.“ SJ.L& /).X.\AA o 5Js CI&U.A) ;\J;-T LSL:‘ ;jd\ J))u-

Vi

TABLE OF CONTENTS

AU AAATI s s s sessee s s b e s bbb R bR bbb bbb bR s R b ee i
DEDICATION ...uuiiiiiuiinnisncssnnsssisssicssicssecsnsssnsssasssns ii
ACKNOWLEGDMENTouicivinvunnsenssaicssnssessess jii
ABSTRACT .aucoiiiiistiiiniinsneicsseecssensssssssssecsssscss iv
ORI eeceeeeeseesesesessseeseseessssesessssssssssssssssssessssssessssssssssssesessssssessssssssasesanasn vi
TABLE OF CONTENTS....cciininntinsnicsnnsssnessasssass vii
LIST OF TABLES ...coouiiiiniiniinninninninssecssncssicssissssssssissssssssssssssssssssesssssssssssssns xi
LIST OF FIGUREScoouiiniiniinsiinsnissnnsssnsssnsssnsssssssasssssssssssssssssssssssssssssssssssssss xii
LIST OF FIGUREScocuiiiiintiinninnsneinsnencsnsesssicssicsssesssscsssscssssessssesssssssssens xiil
LIST OF ABBREVIATIONSuuioniiniininneicseicsnisssesssnsssesssessssssssssssssssesssssnes Xiv
LIST OF PUPLICATIONScucitviitinneicsancssisssesssessse XV
LIST OF APPENDICEScconiiiniininsninsninsnncsnecssecssnssssssssissssssssssssssssssssssssssssse XVvi
CHAPTER L..uuuiuiiniisiininssnnsnisssnsssossssssssssssssssssssssssssss 1
INTRODUCTION...uuccniissrnssenssansssmsssnssssossssssssssass 1
L1, INtrodUCHIONevieiiiiie et e e e e e eae e 1
1.2. Problem Statement............cocveiiiiiiniieniinieieeceee et 2
1.3. Research QUESHIONSccuviiiiiiiiiiiie e 3
1.4. Research Hypotheses........cccoeviieiiiiiiieiieccieccie et 3
1.5. ReSearch ODJECLIVESueevviieiiieiiieie ettt et 4
1.6. ReSEAICh SCOPEC....ccutiiieiiieciiieece et et re e e eaeae e 4
1.7. Research methodologyccceeviiriiiiiiieiiiece e 5
1.8. Research ContribUtIONSceevcuiieeiiiieieiiieeiee e eeeeeesiee e e senee e 5
1.9. Thesis OrganizZation..........c..cecuveeiuieeeureesieeseeesreesreesreesseessseesseesseesnne 6

vii

CHAPTER IL ...ccuuuineiennienienninsnensanssaessesssesssssssssssssssssssassssssssssssssssssssssssssssasssssssase

BACKGROUND AND RELATEDWORKccceeinnuinniesnnssecssanssnsssssssssssaseses
2.1, INtrOAUCHION ...eeieiiiiiie ettt 7
2.2. Reverse Engineering Definitions..........cccceeceeeveeeiieeiieeneeeee e, 7
2.3. Software Architecture Definitioncoeceeeiiiriiiiniiieniieciie e, 8
2.4, Literature REVIEWccc.eoiiiiiiiiiiiiiieiieeieeieeeete et 9
2.4.1. Reverse Engineering for Understanding Software Artifacts............ 10
2.4.2. Model Driven Reverse Engineering (MDRE)..........cccccovevviniiennnnnn. 11
2.4.3. Documenting of Architectural Design Decisions (ADDs) 12
2.4.3.1. Collecting of Architectural Design Decisionscccceeeerueeneene. 13
2.43.2. Scenario-Based Documentation and Evaluation Method.............. 14
2.43.3. UML Metamodel.........cccoviiiiiiiiiiiiiieiiiecieeeeecee e 14

2.4.4. Comparison of Existing Architectural Design Decisions Models ... 15

2.5. Comparison with Related Workcoocuviiveiiiiiiiiiieceeeeee, 16
2.6. OPENISSUES ..ottt 22
2.7. Chapter SUMMATYcccciieiiiieeeiieeeeieeeesieeeerieeeerreeesereeeesesaeeseeeeenens 23
CHAPTER IHL....uucinuiiieiiseissnissnissansssnssse 24
CONCERNS-BASED RE METHODOLOGY FOR EXTRACTING
PARTIAL SOFTWARE ARCHITECTUREccovervnnrernrernsanssurcsancsassoeses 24
3.1, INErOUCHION ..oueeiiiieie ettt 24
3.2. Overview of the Proposed RE Methodologyccccvveeevieeeiieeennnen. 24
3.3. The Principles of RE Methodology.........ccceeeevvieviiiiiciiieeiieeeiee e 25
3.4. The Main Phases of RE Methodologyccccceeviiiiiiiiniiiiiiieciieee, 27

viii

3.4.1. Define stakeholders concerns based on architectural viewpoint28
3.4.1.1. Select viewpoint from a given catalog..........ccceeevvveeciereciieecieeennnn. 28
3.4.1.2. Categorize stakeholder’s concerns related to selected viewpoint. 30
3.4.2. Elicit specific stakeholder concern............coccvvevuveeriieniienciienieeeieens 32

3.4.3. Extract related requirement information based on elicited concern 34

3.4.3.1. Extraction of related requirement informationc..cccuveeeeee. 37
3.4.3.1.1. Define Full-Text INdeX........cocveeviinieniienieniinienieeieereeseeee 37
3.4.3.1.2. Select Full-Text searching mode:c..cceeeveeeviieeiieeeeiee e, 38
3.4.3.1.3. Relevance in Full-Text searching:cccceovvveriiiinciencieennnnn. 38

3.4.3.2. Traceability among specific concern and its related information.41

3.4.4. RE for extracting particular architectural information..................... 41
3.44.1. RE process for extracting specific source code files 41
3.4.4.2. Representation of the particular architectural information........... 43
3.44.2.1. Mapping extracted code into a component architecture............ 44
3.4.4.2.2. Visualizing architectural information using ArcheType............ 44
3.5. Chapter SUMMATYccveeiiiirieeiieenieenieesreesreesreesaeesreesseesssaesseeens 47
CHAPTER IV .uuuiiiiiiniicnicsnicsncsnssssisssisssiss 49
IMPLEMENTATION OF RE METHODOLOGY TO CASE STUDY. 49
4.1, INErOAUCIION ..ooviiiniiiieieeiie ettt ettt 49
4.2. Selecting Software System for a Case Studycccceeeevveevvieeecnrieenne. 49
4.3. Applying RE Methodology Phases to the Case Study........................ 51
4.3.1. Define a set of stakeholders coOncernsccceeveevierienieeieeneenenne 51
4.3.2. Elicit a specific stakeholders concern:ccccceveeeeviieescieeeecneeeenne, 52

iX

4.3.3. Extract requirements information based on elicited concern........... 52
4.3.4. Extracting architectural informationccceeeevvevvieeniiienieenneeneen. 54
4.3.4.1. Extracting specific source code files.........coceervriinriiieeniieeeiiennnne, 54

4.3.4.2. Representation and Visualization of architectural information....56

4.4. The Main Results and DiSCUSSIONcccueeruieriiiriieniieniieniie e 60
4.5. Chapter SUMMATYcccciieiiiieeeiieeeeeeeereeeetee e ereeeesereeeeseraeesaeeeeens 62
CONCLUSION AND FUTURE WORKccuuieeuiisuicssicssanssansssssssssssssssssssssssssss 63
APPENDICESouuiiiiiiinnnineissensssnsssnsssisssssssssssssssssssssssassssssssssssssssssssssssasssssssases 66
APPENDIX A ..uuoioiiiriiiniininnsninsicssicssesssnssse 66
APPENDIX B ...ccuiiiiiininnniseissensssnsssnssasss 71
APPENDIX C .uuciurriniiniisnnsninsicssncssnssnssse 73
APPENDIX D coucioniiiricnensnisenssensssnsssnsssssssssssssssssssssssssssassssssssssssssssssssssssasssssssasss 75
REFERENCEScconiininiiniininnsnissnisssisssiss 76

LIST OF TABLES

Table 2.1 Examples of some methodologies and approaches for documenting 18
software architecture
Table 2.2 Summarization of important related approaches and methodologies 21
Table 3.1 Functional Viewpoint Catalog 30
Table 3.2 Functional viewpoint: Stakeholders and Concerns 31
Table 3.3 Summary of Phase(l) of RE Methodology 32
Table 3.4 The application archetypes summary from MICROSOFT 45
Architecture guide
Table 4.1 TMS source code overview 51

xi

LIST OF FIGURES

Figure 2.1 RE thorough Complementary Software View 10
Figure 2.2 MoDisco Framework’s Architecture 12
Figure 2.3 Triple View Model Framework 13
Figure 3.1 Overview of RE Methodology 25
Figure 3.2 IEEE1471 Conceptual Framework 26
Figure 3.3 The RE Methodology’s Phases 27
Figure 3.4 The Viewpoints Catalog 29
Figure 3.5 The Phase(2) of RE Methodology 32
Figure 3.6 Elicitation specific stakeholder’s concern(s) 33
Figure 3.7 The Phase(3) of RE Methodology 34
Figure 3.8 Example of the Requirement repository information 35
Figure 3.9 Tracing Specific Concern to its Related Requirement Information 36
Figure 3.10 Calculation formula for the weight in MySQL Database 39
Figure 3.11 The Phase(4) of RE Methodology 41
Figure 3.12 The Code Analyzer Process 42
Figure 3.13 Example of Mapping Code’s Element into Component 44

xii

LIST OF FIGURES

Figure 3.14 Example of Visualizing Architectural Information using Layered 47
Architecture Model

Figure 4.1 An overview of the main contents of TMS system 50

Figure 4.2 Elicit a specific stakeholder functional concern 52

Figure 4.3 Extraction of related Requirements Information 53

Figure 4.4 Traceability among specific concerns and related Requirement 54
Information

Figure 4.5 Applying Code Analyzer Process 55

Figure 4.6 Extracted Call Graph for executing “TMS Req2.20” functionality 55

Figure 4.7 Mapping extracted code elements into Components Architecture 56

Figure 4.8 Visualizing particular architectural information using Layered 58
Architecture Model

Figure 4.9 Representation of particular Architectural Information based on 59
stakeholder’s Functional Concern

Figure 4.10 Example of the main components that implement the core 60
functionality

Figure 4.11 Example of how to determine and decide a new feature for a 61

target system

xiii

LIST OF ABBREVIATIONS

RE Reveres Engineering

RQs Research Questions

ROs Research Goals

MDRE Model Driven Reverse Engineering
ADDs Architectural Design Decisions
UML Unified Modeling Language

SBSE Search Based Software Engineering
TVM Triple View Model

EA tool Enterprise Architect tool

ATM Automatic Teller Machine

TMS Timetable Management System
GUI Graphical User Interface

CID Functional Concern ID

PML Process Modelling Language

FR Functional Requirement

IEEE Std1471-2000

Institute of Electrical and Electronics Engineers Standard
1471-2000 (also known as Conceptual framework for

architectural description)

MySQL is one of the most popular open-source database

systems. It based on a universal language known as SQL

MySQL Database (Structured Query Language) which has been developed
and accepted as the definitive model for relational
database management systems (RDBMS).

PHP Personal Home Page is an open source technology that is

supported by large community of users and developers
and becoming one of the most popular server side

scripting language for creating dynamic web pages.

X1V

LIST OF PUPLICATIONS

» Hind Alamin M. and Hany. H Ammar, "Reverse Engineering for Documenting
Software Architectures, a Literature Review", International Journal of Computer
Applications Technology and Research, vol. 3(2014), no.12, pp. 785 - 790,
Dec 2014, ISSN: 2319-8656 (Online).

» Hind Alamin M. and Hany. H Ammar, "Concerns-Based Reverse Engineering
for Partial Software Architecture Visualization", International Journal on
Informatics Visualization, vol. 4(2020), no.2, pp. 58 - 68, Apr 2020,
ISSN: 2549-9610 (Online).

XV

LIST OF APPENDICES

APPENDIX A The Execution of GUI Prototype Tool 67

APPENDIX B Timetable Management System (TMS): The detailed 72
description of the Privileges of System's Users

APPENDIX C Viewpoint Catalog (Rozanski & Woods, 2011) 74

APPENDIX D Certification of Publication 76

xXvi

CHAPTER I

INTRODUCTION

1.1. Introduction

The use of reverse engineering (RE) is increasingly spreading and becoming one
of the essential engineering trends for software evolution and maintenance.
Generally; RE is defined as the way of analyzing an existing software system to
identify its current components and the dependencies between these components to
recover design information, and create new forms of system representations
(Chikofsky & James, 1990) (Rosenberg & Lawrence, 1996) (Penta & Massimiliano,
2008) (Garg & Jindal, 2009).

Furthermore; software architecture is defined by the recommended practice of
(ANSI/IEEE Std1471-2000) as the fundamental organization of a system, embodied
in its components, their relationships to each other and the environment, and the
principles governing its design and evolution. Therefore, software architecture
focuses on how the major elements and components within software application are
used by or interact with other elements and components (Institute of Electrical and

Electronics Engineers, 2000) (R.Hilliard, D. Emery, M. Maier, 2007).

The core of RE consists of extracting information from the available software
artifacts (such as: source code) and representing it into visual models to be
understandable by stakeholders (Harman, et al., 2013). The main objectives of RE
are focused on generating alternative views of system's architecture, recapture
design information, re-documentation of software system, facilitate software
system’s reuse, and represent software systems at higher level of abstractions (by
putting the system’s users in the maintenance loop so that users can give feedback

on the information related to the target system) (Garg & Jindal, 2009).

The software documentation is essential for the system’s stakeholders (such as:
developers, end-users, testers, maintainers, architects, system administrators) to
decide on activities in order to evolve and maintain the software system. For
example source code is considered as the detailed documentation for the software
system implementation, and in most cases, it is the only source of information that
up to date and available for legacy software systems (Rosenberg & Lawrence, 1996)

(Garg & Jindal, 2009).

Recovering and documenting software architectures (either fully or partially) has
been an area of active research where programmers, architects, maintainers, testers
and software engineers spend a lot of time using their expertise in resolving such
problems of mapping existing source code of a target system into architecture
components and for supporting the understand-ability and maintainability of

software systems.

1.2. Problem Statement

The RE is used to support recapturing the design information for restructuring
the architecture into more maintainable architecture. Hence, most of the companies
rely on reengineering the legacy systems which are important for their business
process and keep them in operations (Rosenberg & Lawrence, 1996) (Harman, et

al., 2013).

The major problem stakeholders might face in understanding the architecture of
existing software systems is that the knowledge of software architecture information
is difficult to obtain because of the size of the system, and the existing architecture
document often missing or does not match the current implementation of the source
code of software system. Therefore, much more efforts and time are needed from
multiple stakeholders such as developers, maintainers and architects for obtaining
and re-documenting and visualizing the architecture of a target system from its
source code files. Hence, most of the current work is mainly focused on the

developer viewpoint.

Previous research made great progress to overcome the problems of
documenting and recovering software architectures to reflect the system’s changes
at the code level. However to deal with complex legacy systems, there is a
significant need to develop new RE approaches or methods for documenting the
partial architecture of the target system in order to simplify and visualize the

available information of complex architectures.

Additionally, these approaches should be based on stakeholders concerns and
their decisions about the architecture of the target system. Hence, it's important to
determine what to look for and focus in obtaining specific information on the

architecture of the implemented software system.

1.3. Research Questions
The following are the research questions (RQs) of this research:

* RQ(1): Which Industry standard that will be used for visualizing the

architectural Information of software system?

* RQ(2): How this standard could be used to develop RE Methodology for

architecture description?

* RQ@3): How to visualize particular architectural information, so it can

support such a stakeholder’s concern for end-user and maintainer?

1.4. Research Hypotheses

The hypothesis behind the proposed methodology of this research concerns with
the possibility to represent a flexible reverse engineering methodology for obtaining
and re-documenting the architecture of a target system from its source code files.
The methodology will focus on extracting and visualizing the architectural
information for multiple stakeholders and viewpoints based on applying the RE

process on specific parts of the implemented source code of the target software.

Accordingly, the extraction and visualization of information documenting the partial

of the architecture in order to simplify and visualize the available information of

complex architectures. As the result, this visual architecture information will
support the understand-ability and the maintainability process for particular parts of

the software system.

1.5. Research Objectives

The general goal is mainly to design an RE methodology for extracting a
particular architectural information based on applying the RE process on existing
source code of a target system. Additionally; the other specific objectives are

highlighted as follows:

* Investigate the current state of existing work related to the reverse
engineering methodologies and the documenting approaches for software's

architecture.

= Develop a methodology based on the industry standard of architecture

description to visualize the architectural information.

= Implement and validate a methodology’ phases in a case study of a legacy

system.

1.6. Research Scope

This research will propose a methodology that focuses on using the RE approach
on source code for visualizing and re-documenting the architecture of software.
Besides that adapting of the extraction of the architectural information on specific
stakeholders' concerns about the target system. The proposed methodology will be
based on the industry standard of architecture description to visualize the
architectural information, and validate by applying the proposed methodology’s
phases using a case study of a legacy web application system. The reason for
choosing these types of applications is that it became well known and most of

existing applications were developed based on them.

1.7. Research methodology

This research starts to investigate the existing work related to the reverse
engineering methodologies and approaches and the documenting approaches for
software's architecture; then present a survey to determine the gaps and the

suggested challenges that will need to focus on as a research area.

Based on the results of a survey, propose RE methodology as an alternative solution
for extracting and visualizing the architectural information of the target system from
its source code files. The proposed RE methodology will base on the conceptual
framework in IEEE1471-2000 standard for the architectural description; also known
as the conceptual framework for architectural description (Institute of Electrical and

Electronics Engineers, 2000).

Generally; the extraction process of the proposed methodology will be totally driven
by addressing specific stakeholder’s concern about the target system for extracting a
particular architectural information. Furthermore; the proposed methodology will
extend additional stakeholders beside the developer viewpoints to supports the
understandability and maintainability of legacy software systems. Finally, validate
the main phases of proposed methodology using a case study in a legacy software

system.

1.8. Research Contributions

The main contributions of this research can be summarized as follows:

» A new methodology that supports the IEEE1471 standard for architectural
description and, supports the concerns of stakeholder including End-user

and Maintainer.
» Prototype tool to support the main phases of methodology.

» Verification of the methodology using a legacy web application system,

(called Timetables Management System).

1.9. Thesis Organization

The rest of this thesis is organized as the following chapters: Chapter II explains
the main concepts of the revere engineering and the software architecture definition,
and outlines the main objectives of RE, investigates some of the related works on
the reverse engineering from different perspective and highlights the summarization
of important related work. Chapter III presents an overview of the proposed
methodology (RE Methodology); discusses the principles of the proposed
methodology, and describes the detailed design of the main phases of the
methodology. Chapter IV describes how to apply the proposed RE methodology’s
phases to a practical case study, and discusses the main results from applying the
methodology’s phases to a practical case study. Chapter VI concludes with the main
contributions and highlights the future research based on the methodology
verification results. Finally, the end of thesis presents the references and the

appendices.

CHAPTER I

BACKGROUND AND RELATEDWORK

2.1. Introduction

This chapter describes an overview of the revere engineering definitions,
software architecture definition, and outlines the main objectives of RE. The
following section presents a literature review of common existing research on the
reverse engineering from different perspectives that form the current state of the art
in documenting software architectures. Finally; the last section highlights the new
research areas as open issues for future works, and concludes with summarizing the

main contributions and the future research.

2.2.Reverse Engineering Definitions

The reverse engineering (RE) has become one of the major engineering trends for
software evolution. RE is defines as the process of analyzing an existing system to
determine its current components and the relationship between them. This process
extracts and creates the design information and new forms of system representations

at a higher level of abstraction (Garg & Jindal, 2009).

According to the main RE concepts; some of the researches classified RE into two
types: hardware and software reverse engineering. Hardware reverse engineering is
based on expertise and concerns with taking a part of the device to show how it
works, with respected to the copyright and trade secrets with the original design.
While software reverse engineering concerns with studying how the program
performs its operations, investigate and correct errors or limitations. Furthermore,
software reverse engineering allows the retrieving and generating the source code of
program in case the code is lost or for recapturing the design information of a target

system (Garg & Jindal, 2009; Rosenberg & Lawrence, 1996).

Garg et al. categorized the software engineering into forward engineering and
reverse engineering; and both of these types are essential in the software

7

development life cycle. The forward engineering refers to the traditional process for
developing software which includes: gathering requirements, designing and coding
process till reach the testing phase to ensure that the developed software satisfied the
required needs. While reverse engineering defined as the way of analyzing an
existing system (without changing its overall functionality) to identify its current
components and the dependencies between these components to recover the design
information, and other forms of system representations (Garg & Jindal, 2009).
However, some of the researches suggested integrating the reverse and forward
engineering processes for large systems to achieve long term evolution and increase
the productivity of these systems as discussed in (Chikofsky & James, 1990; Penta
& Massimiliano, 2008; Rosenberg & Lawrence, 1996).

Legacy systems are old existing systems which are important for business process.
Companies rely on these legacy systems and keep them in operations. Therefore,
reverse engineering is used to support the software engineers in the process of
analyzing and recapturing the design information of complex and legacy systems

during the maintenance phase (Rosenberg & Lawrence, 1996; Harman, et al., 2013).

2.3. Software Architecture Definition

Software architecture is defined by the recommended practice (ANSI/IEEE
Std1471-2000) as: the fundamental organization of a system, embodied in its
components, their relationships to each other and the environment, and the

principles governing its design and evolution (Institute of Electrical and Electronics

Engineers, 2000; R.Hilliard et al., 2007).

The recovering and documenting software architectures (either fully or partially) has
been an area of active research where programmers, architects, maintainers, testers
and software engineers spend a lot of time using their expertise in resolving such
problems of mapping existing source code of a target system into architecture
components and for supporting the understand-ability and maintainability of

software systems.

Furthermore; previous research such as (Chikofsky & James, 1990; Garg & Jindal,
2009; Harman, et al., 2013; Kumar, 2013) made great progress to overcome the
problems of documenting and recovering software architectures to reflect the
system’s changes at the code level. However to deal with complex legacy systems,
there is a significant need to develop a new RE approaches or methods for
documenting the only part of the architecture in order to simplify and visualize the
available information of complex architectures. This should be based on
stakeholders concerns and their decisions about the architecture of the target system.
Hence, it's important to determine what to look for and focus in obtaining specific

information on the architecture of the implemented software system.

The main objectives of RE are focused on generating alternative views of system's
architecture, recapture design information, re-documentation of software system,
facilitate software system’s reuse, and represent software systems at higher level of
abstractions (by putting the system’s users in the maintenance loop so that users can
give feedback on the information related the target system). Furthermore; RE is used
to support recapturing the design information for restructuring the architecture into
more maintainable architecture (Chikofsky & James, 1990; Garg & Jindal, 2009;
Harman, et al., 2013).

The following sections of this chapter present a literature review of the common
existing researches on reverse engineering from different perspectives, and
highlights the new research areas as open issues for future works. Finally, the last

section concludes with summarizing the main contribution and the future research.

2.4, Literature Review

Program understanding plays a vital role in most of software engineering tasks.
In fact; the developers use the software documentation to understand the structure
and behavior of existing systems (Harman et al., 2014; Kumar, 2013). However, the
main problem that developers face is that the design document or others software
artifacts were out-of-date to reflect the system's changes. As a result, more effort

and time needed for understanding the software rather that modifying it.

The following sub sections will introduce the most common reverse engineering
approaches that focused in documenting the architecture of software from different

perspectives.

2.4.1. Reverse Engineering for Understanding Software Artifacts

The developers should understand the source code based on the static
information and dynamic information as described in (Kumar, 2013). The static
information explained the structural characteristic of the system. While dynamic
information explained the dynamic characteristics or behaviors of the system.
Hence, these details help the developers on understanding the source code in
order to maintain or evaluate the system. However, Kumar clarified that few
reverse engineering tools supported both of dynamic and static information.
Therefore, presented alternative methodology to extract the static and dynamic

information from existing source code.

This methodology focused on using one of the RE tools; namely, Enferprise
Architect (EA) to extract the static and dynamic views. Additionally, all of the
extracted information was represented in form of Unified Modeling Language
(UML) models. The main purpose was to get the complementary views of
software in form of state diagrams and communication diagrams. The stages of

this methodology are summarized and shown in Figure 2.1.

o Extracting Static e Extracting Dynamic
Software Views Software Views

Dy

Integrating the static and

dynamic information

i

o Complementary of
Software Views

Extracting the state diagram :
]
]

and communication diagram

Figure 2.1 RE thorough Complementary Software Views (Kumar, 2013)

10

The Kumar’s proposed methodology was very useful for supporting developers
to understand the software artifacts of existing software systems. However, the
methodology needs to support additional stakeholder beside the developers in
order to identify the stakeholders' concerns and their decisions about the whole

system.

2.4.2. Model Driven Reverse Engineering (MDRE)

MDRE was proposed as described in (Hugo, et al., 2014) to improve the
traditional reverse engineering activities and legacy technologies. It is used to
describe the representation of derived models from legacy systems to understand
their contents. However, most of MDRE solutions focused on addressing several
types of legacy system scenarios, but these solutions are not complete and they
do not cover the full range of legacy systems. The work also introduced several
reverse engineering processes such as: the technical/functional migration,

processes of MDRE (Hugo, et al., 2014).

Recently, Hugo et al. presented a generic and extensible MDRE framework
called "MoDisco". This framework is applicable to different refactoring and re-

documentation techniques (Hugo, et al., 2014).

The architecture of MoDisco is represented in three layers, each layer is
comprised of one or more components (see Figure 2.2). The components of each
layers provided high adaptability because they are based on the nature of legacy

system technologies and the scenario based on reverse engineering.

However, MoDisco framework was limited to traditional technologies such as:
JAVA, JEE (including JSP) and XML. This framework needs to be extended to
support additional technologies and to add more advanced components to
improve the system comprehension, and expose the key architecture design

decisions.

11

MoDisco Framework Used to provides additional features such as:

reusing and integrating for specific reverse
e -I engineering scenario(s).
Use cases
Layer
Provides set of deployable components that used to
eTechnoIogies -1 exchange the model(s) with other model(s) at
Layer / "Infrastructure” layer to address the scenario(s)
based on reverse engineering.
Infrastructure
Layer 4 . .
Includes set of basic components which are totally

independent from any reverse engineering scenario

or legacy technology.

Figure 2.2 MoDisco Framework’s Architecture (Hugo, et al., 2014, p.9)

2.4.3. Documenting of Architectural Design Decisions (ADDs)

Historically, Shaw and Garlan introduced the concepts of software architecture
and defined the system in terms of computational components and interactions
between these components as indicated in (Nicholas, 2005). Furthermore, Perry
and Wolf defined software architecture in terms of elements, their properties,
and the relationships among these elements. They suggested that the software
architecture description is the consequence of early design decisions as indicated

in (Nicholas, 2005).

The software architecture development is based on a set of architectural design
decisions (ADDs). This is considered as one of the important factors in
achieving the functional and non-functional requirements of the system as
introduced in (Che, 2013). Che explained that the process of capturing and
representing ADDs is very useful for organizing the architecture knowledge and

reducing the possibility of missing this knowledge (Che, 2013).

Furthermore, the previous research focused on developing tools and approaches
for capturing, representing and sharing of the ADDs. However, Che clarified

that most of the previous research proposed different methods for documenting

12

ADDs, and these methods rarely support architecture evaluation and knowledge

evaluation in practice (Che, 2013).
Furthermore, (Che & Dewayne, 2011) presented an alternative approach for

documenting and evaluating ADDs. This approach proposed solutions described

in the following subsections:
» Collecting of Architectural Design Decisions
» Scenario-Based Documentation and Evaluation Method

> UML Metamodel

2.4.3.1. Collecting of Architectural Design Decisions

The first solution focused on creating a general architectural framework for
documenting ADDs called the Triple View Model (TVM). The framework
includes three different views for describing the notation of ADDs as shown
in Figure 2.3. It also covers the features of the architecture development

process.

What

Architectural
Design Decisions

How

Constraint
View

Figure 2.3 Triple View Model Framework (Che, 2013, p.1374)

As it shown in Figure 2.3; the Element View describes the elements that
should be defined to develop the architecture; such as: computation elements,
data elements, and connector elements. The Constraint View explains how

the elements interact with each other by defining what the system should do

13

and not to do, the constraint(s) on each element of the element view.
Additionally, define the constraints on the interaction and configuration

among the elements.

Finally, the Intent View includes the rationale decision that made after
analyzing all the available decisions, Moreover, the selection of styles and

patterns for the architecture and the design of the system (Che, 2013).

2.4.3.2. Scenario-Based Documentation and Evaluation Method

The second solution called SceMethod is based on the TVM framework. The
main purpose is to apply the TVM framework by specifying its views
through the end-user scenarios; then manage the documentation and the
evaluation needs for ADDs as discussed in (Che & Dewayne, 2012; Che,
2013).

2.4.3.3. UML Metamodel

The third solution is focused on developing the UML Metamodel for the
TVM framework. The main purpose was to make each view of TVM
specified by classes and a set of attributes for describing ADD information.
Accordingly, this solution provided the following features as discussed in
(Che, 2013): a) establish traceable evaluation of ADDs, b) apply the
evaluation related to the specified attributes, c) support multiple ways on
documenting during the architecture process and allow explicit evaluation

knowledge of ADDs.

Furthermore, TVM and SceMethod solution was validated in using a case
study to ensure the applicability and the effectiveness. Supporting the ADD
documentation and evaluation in geographically separated software
development (GSD) is currently work in progress as mentioned and stated in

(Che, 2013).

14

2.4.4. Comparison of Existing Architectural Design Decisions Models

Researchers made a great of effort to present related tools and models for
capturing, managing, and sharing the ADDs. These proposed models were based
on the concept of architectural knowledge to promote the interaction between the
stakeholders and improve the architecture of the system as mentioned in

(Shahin, et al., 2009; Che, 2013).

Accordingly (Shahin, et al., 2009) presented a comparison study that is based on
surveying and comparing the existing architectural design decisions models.
Their comparison included nine ADD models and used six criteria based on
desired features as discussed in (Shahin, et al., 2009). The main reason was to
investigate the ADD models to decide if there are similarities and differences in
capturing the ADDs. Moreover, the study aimed at finding the desired features

that were missed according to the architecture needs.

The authors in (Shahin, et al., 2009) classified the ADD eclements into two
categories: major elements and minor elements. The major elements refer to the
consensus on capturing and documenting ADDs based on the constraints,
rationale, and alternative decisions. While the minor elements refer to the
elements that used without consensus on capturing and documenting the ADDs,
such as: stakeholders, problem, group, status, dependency, artifacts, and

phase/iteration.

The main observations of this comparison study in (Shahin, et al., 2009) are
highlighted as the following points: 1) all of the selected ADD models included
the major elements and used different terms to express similar concepts of the
architecture design; 2) most of ADD models used different minor elements for
capturing and documenting ADDs; 3) all the selected ADD models deal with the
architecture design as a decision making process; 4) While not all of them are
supported by tools, some were based on only textual templates for capturing and
documenting ADDs; 5)The main important observation was that most of

existing ADD tools do not provide support for ADD personalization which

15

refers to the ability of stakeholders to communicate with the stored knowledge

of ADD in (Shahin, et al., 2009) that based on their own profile.

2.5. Comparison with Related Work

The core of RE consists of extracting information from the available software
artifacts such as source code and translating it into abstract representations to be
understandable by the stakeholders (Chikofsky & James, 1990; Rosenberg &
Lawrence, 1996; Harman, et al., 2013).

Accordingly; (Stringfellow et al., 2006) discussed that reverse architecting is a
specific type of reverse engineering, and stated that the RE process should consist of
three phases starting with an extraction phase where we extract information from the
source code and document it in documentation, and documented system history. The
process also include an abstraction phase which abstracts the extracted information
based on the objectives of RE activity, then elicits the extracted information into a
manageable amount of information. And finally a presentation phase that represents

the abstracted data in a way suitable for the stakeholders.

Software architecture consists of the description of components and their
relationships and interactions, both statically and behaviorally as described in

(Clements, et al., 2010; Riva & Yang, 2002; Stringfellow, et al., 2006; Che, 2013).

Chikofsky et al. discussed that the RE process helps to generate the documentation
to recover the design information of the system by analyzing the software to identify
the components and the interrelationships between these components, and to create

a representations of the software system (Chikofsky & James, 1990).

Previous research made great strides to overcome the problem of documenting and
recovering the software architecture to reflect the system’s changes. Therefore,
several approaches, methods, frameworks and RE methodologies have been
proposed form different perspectives such as the following works (Harman, et al.,
2013; Clements, et al., 2010; Riva & Yang, 2002; Stringfellow, et al., 2006; Len
Bass & Celements, 2003; Lau & Tran, 2012; Panas , et al., n.d.; Razavizadeh , et al.,

16

2009; Demeyer, et al., 2008; Arshad & Lau , 2017). The most important of these
proposed approaches were based on the concept of architectural knowledge as
discussed in (Che, 2013; Shahin, et al., 2009). They promote the interactions

between the stakeholders to improve the architecture of the software system.

Moreover; some of the recent approaches and techniques considered the perspective
of getting the executable architecture from existing source code of software system
as in (Lau & Tran, 2012; Maras, et al., 2009; Arshad & Lau , 2017). These
techniques considered every line of code for extracting the architecture of a target
system. However, these extracted architecture were reflected every functionality
exists in the original source code. For example; Arshad et al. proposed a RE model
called (X-MAN) for extracting executable architecture in form of component model

based on object oriented source code (Arshad & Lau , 2017).

The executable architecture contains structural and behavioral aspects of software
system in analyzed manner, and the extracted components can be used to support
the re-usability of component and integrated them with other systems as described

in (Lau & Tran, 2012; Arshad & Lau , 2017).

For further information; we presented a survey paper indicated in (Alamin &
Ammar, 2014). This survey paper reflects the current state of art in documenting
and recovering software architectures using RE techniques. We highlighted and
compared set of existing RE methods and approaches based on their findings and
limitations (for more information see Table 2.1). However, the main observation
indicates that most of these existing methods and approaches are mainly focused on
the developer viewpoint as the main stakeholder; and based to reflect the whole
architecture of software system(see Table 2.2 the summarization of important

approaches and methodologies).

Furthermore, the recent approaches and methods discussed the need for alternative
solutions to extend additional stakeholders. The solutions should focus to
communicate with the stored architectural information by applying the scenario

based documentation through stakeholders’ scenarios and managing the

17

architecture’s documentation of software system. However; these issues should

simplify and classify the architectural

information based on

identifying

stakeholders’ concerns and viewpoints about the target system, and visualize the

architectural information in a proper level of abstractions based on these

stakeholders’ concerns.

Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

Che et al. (2011)

the notation of
ADDs.

TVM covers the
main features of
the architecture
process.

5 Problem Results and
< . o . .
% Statement Proposed Solution(s) s Limitation(s)
RE method for | Alternative methodology Supports the This methodology needs
understanding | to extract the static and developers to | to support addit.ional
- thq software dynamic information achieve RE stakeholder'bes1de the
Z [artifacts from the source code oals in order developers in order to
% ' tg derstand identify the stakeholders'
s . . 0 understan concerns and their
The main purpose is to .
5 lp P . the artifacts of | gecisions about the whole
o get complementary views software system.
of software systems. systems.
Understanding | Generic and extensible MoDisco MoDisco should extend to
the contents of | MDRE framework called | provided high | support additional
the legacy "MoDisco". adaptability technologies and include
& | systems using b . more advanced
— . ecause 1t 1S .
S | model driven | This framework is based on the components to improve
~ . . t hension.
= Zi;?;ieering applicable to different nature of system comprehension
5 flegacy systems.
S | (MDRE) types o legacy system
= technologies
= and scenario(s)
based on RE.
Collecting Triple View Model TVM framework | TVM framework should
architectural (TVM) an architecture includes three extend to manage the
ges%g'n framework for different views Zvaluatlon and ¢ ADD
ecisions . s ocumentation o S
ting ADDs. f e
(ADDs) documenting s or describing by specifying its views

through the stakeholders'
scenarios.

18

Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

the architecture
process.

) Problem Results and
I~ 0 o..0 0
% Statement Proposed Solution(s) Hindinpy Limitation(s)
Managing the | Scenario based method Manage There is a need to support
documentqtion (SceMethod) for documentation multipl.e ways on
and evolution documenting and and the managmg.and
of th'e evaluating ADDs. evaluation needs doqu menting the ADDs
~ | architectural during the architecture
= | design for ADDs rocess
> '8! This solution is based on | o4 p :
Q | decisions TVM. Th . roug
= _ - 171€ Al purpose ¢akeholders'
- is to apply TVM for scenario(s).
2 specifying its views
© through end-user
scenario(s).
Documenting | Developed UML Apply the This solution is focused
and evolving Metamodel for the TVM | evaluation on.the develqpers VieW
the framework. related to the point and their work is
architectural specified currently in progress to
Elles%g'n The main purpose was to | ¢ ipiocang ZUPPO“ the _ADD q
ecisions . ocumentation an
makéfeagl; Vlelw of TVlC:/I establish evaluation in
spectiied by classes and a 1 raceable geographically separated
set of attributes for evaluation of software development.
e describing ADDs ADDs.
g information.
Q Allow explicit
& evaluation
o knowledge of
ADDs.
Support multiple
ways for
documenting
ADDs during

19

Table 2.1 Examples of some related methodologies and approaches for documenting
software architecture adapted from (Alamin &Ammar, 2014, p.788)

The survey classified
ADD concept into two
categories: Major
elements refer to the
consensus on capturing
and documenting ADD
based on the constraint,
rationale and alternative
of decision. While the
Minor elements refer to
the elements that used
without consensus on
capturing and
documenting ADD.

Moreover, to clarify the
desired features that are
missed according to the
architecture needs

based on using
different minor
elements for
capturing and
documenting the
ADD.

- All selected
ADD models
deal with the
architecture
design as the
decision making
process.

- Not all models
were supported
by tools. Hence,
some of these
ADD based on
text template for
capturing and
documenting
ADDs.

However, most
of existing ADD
tools do not
support the
ability of
stakeholders to
communicate
with the stored
knowledge of
ADD.

= Problem Results and

< . . .

S| Statement Proposed Solution(s) gy Limitation(s)
& | A survey of The purpose of this - All selected There is a need to focus
§ architectural survey was to investigate | ADD models on stakeholder to
= design ADD models to decide if | include the communicate with the
; ﬂfoccllsellznan d there are any similar major elements. stored knowledge of
_E tools concepts 9r dji‘t;;ences - Most of ADD A]}DIPS. (;f]ins COTC-‘ be
E on capturing . models are achieve Y applying
7 the scenario based

documentation and
evaluation methods
through stakeholders'
scenario(s) to manage
the documentation and
the evaluation needs for
ADDs.

20

Table 2.2 Summarization of important related approaches and methodologies adapted
from (Alamin &Ammar, 2020, p.67)

Documenting

Author . Architecture Addressing Organizing Extracted
General Description stakeholder . .
(year) Whole/ information
. concern
Particular
PHPModeler tool for | Whole developer Static UML diagrams
. legacy PHP Web Architecture concern (such as: dependency
= _ | applications models for
S 3 representing resources
w2 = .
ls) of the current page, its
g functions and
dependencies).
Framework for Whole developer Conceptual model for
= extracting the Architecture | concern representing the
k3 architectural views architectures’
§ & | from object-oriented viewpoints.
.g § source code.
> A
<
N
<
=2
An approach for Whole developer Using triple view
collecting the Architecture and model framework
— architectural design Architect (TVM) which includes
g = | decisions (ADDs) concern three different views
28 for describing the
o~ notation of ADDs.
An approach for Whole developer TVM framework for
managing the Architecture and specifying its views
documentation and architect through the end-user
evolution of concern scenario(s).

Che et al.
(2012)

architectural design
decisions

21

Table 2.2 Summarization of important related approaches and methodologies adapted
from (Alamin &Ammar, 2020, p.67)

Documenting Addressin
Author . . Architecture g Organizing Extracted
General Description stakeholder : c
(year) Whole/ information
. concern
Particular
RE methodology for | Whole developer UML models such as
understanding Architecture | concern (state diagram and
8 & | software artifacts. communication
§ = diagram).
v
Framework for Whole developer By three layers and the
o, understanding the Architecture concern components of each
g & | contents of legacy layer are based on the
= = | systems using model nature of legacy
50 Q . :
E ~ | driven RE. system technologies.
RE model for Whole/ Developer Component model for
= extracting the Particular concern representing the
@ & | architecture of Architecture architecture.
= = . .
= © | object oriented
=
— | source code.
<
Arc24 Template for | Whole Developer Textual document
documentation of Architecture and includes several
software and system architect sections: underlying
= architecture concern business goals,
S essential features and
o .
gs functional
E =~ requirements for the
@

system, quality goals,
the relevant
stakeholders and their
expectations.

2.6. OPEN ISSUES

This section describes the open issues that require further research based on the

research work, these issues are described in our survey paper (Alamin & Ammar,

2014) as follows:

22

» There is a significant need to develop alternative approaches of reverse
engineering for documenting the architectures that should simplify and
classify all of the available information based on identifying the stakeholders'

concerns and their decisions about the system.

» Improve the system's comprehension by establishing more advanced
approaches for understanding the software artifacts. These approaches should
help in documenting the architecture at different levels of abstractions and

granularities based on the stakeholders concerns.

» Finally, it’s important to support multiple methods and guidelines on how to
use the general ADDs framework in the architecting process. These methods
should base on the architecture needs, context and challenges in order to

evaluate the ADDs in the architecture development and evolution processes.

2.7. Chapter Summary

This chapter described an overview of the revere engineering definitions, software
architecture definition, and outlines the main objectives of RE process. The second
section presented a literature review of common existing research on reverse
engineering from different perspectives that form the current state of the art in
documenting software architectures. The next section compared the important
related work based on the findings and limitations. Finally; the last section

highlighted several open issues for future work.

23

CHAPTER III

CONCERNS-BASED RE METHODOLOGY FOR EXTRACTING
PARTIAL SOFTWARE ARCHITECTURE

3.1. Introduction

Generally, this chapter represents an overview of the proposed reverse
engineering methodology (RE Methodology); discusses the principles of proposed
methodology, and describes the detailed design of the main phases of the
methodology. The last section of this chapter concludes with a summary that

highlights the main activities of each phase of proposed RE methodology.

3.2. Overview of the Proposed RE Methodology

The main goal of the proposed methodology is to design a reverse a RE
methodology for extracting particular architectural information based on applying
the RE process on implemented source code to support the understand-ability and

maintainability of a target system.

The RE methodology is based on three main concepts in IEEE1471-2000 standard
for architectural description such as (stakeholder, viewpoint and concern). The main
idea is to elicit stakeholders' concern on specific architectural viewpoint of target
system; then apply RE process to extract and document a particular architectural
information about the target software system driven by the elicited concern that held

by one or more stakeholder(s).

The extraction process of RE methodology is driven by addressing the specific
concern by stakeholder(s) for extracting only partial architectural information.
Therefore, it’s doesn’t address the RE of the whole architecture of target software

system.

24

The general overview of RE methodology is shown in Figure 3.1; the inputs are the
source code and documentation as well as the stakeholders concerns regarding the
software system. The output is a model of a particular architectural information

based on the specific concerns.

Input(s) P Teas -

proposed Reverse \

[
> Source code (as read only) - -| Engineering (RE) Methodology

(ex. requirement document,

» General software document
manual or Test document) D

I
I
I
I
I
I
|

> Stakeholders concerns > * *
as viewpoint(s) of software

Particular Architectural

Information of Target System

Based on Stakeholder’s Concern

Figure 3.2 Overview of RE Methodology

3.3. The Principles of RE Methodology
The principles of RE methodology are summarized as:

» RE methodology is based on three concepts defined in the IEEE1471-2000
standard for architectural description (see Figure 3.2). These concepts are
described in (Institute of Electrical and Electronics Engineers 2000, R.Hilliard
et al. 2007, Clements et al. 2010) as:

= Stakeholder is a person, group or entity with an interest in the

realization of the architecture.

= C(Concern is related to specific functional or non-functional

requirements of the software system is defined as: a concern to a

25

requirement, an objective, an intention, or aspiration which a

stakeholder has for the software system.

» Viewpoint defines the perspective from which the view is taken; and

each viewpoint covers a set of concerns related to one or more

stakeholder(s).

» RE methodology extends additional stakeholders

maintainer, analyst, architect and tester.

such as: end-user,

» The RE methodology supports the understand-ability and maintainability of

legacy software systems.

has an

System

Stakeholder

Architecture

described by 1

hiks 1..*

Architectural
Description

is organized by 1 ..*

used to
cover 1.."

View

conforms to

Figure 3.2 IEEE1471 Conceptual Framework. Adapted from (Institute of Electrical
and Electronics Engineers, 2000, p.15)

26

3.4. The Main Phases of RE Methodology
The RE methodology consists of four phases (see Figure 3.3) described as follows:
» Phase(1): Define stakeholders concerns based on the architectural viewpoints.
» Phase(2): Elicit specific stakeholder’s concern.
» Phase(3): Extract related requirement information based on the elicited concern.

» Phase(4): Apply RE process for extracting the particular architectural

information driven by the extracted requirement information.

‘ Legend

|:| Product

Define stakeholders’ C Process
concerns based on "

. . . Oé] process uses
architectural viewpoint prodict
Elicit specific -0 A process produces
Y stakeholder concern a product

List of Stakeholders’ | _—

Concerns
y
Software Requirement Specific Stakeholder
Document Concern

\

Extract related
Requirement information

4

Specific related
information

\
Source Code / Specific Architectural
information based on ‘
Stakeholder Concern

Figure 3.3 The RE Methodology’s Phases

Extract related
architectural information

27

As shown in Figure 3.3; the phases of RE methodology is described using a process
modelling language. The following paragraphs of this chapter elaborate on the

detailed design of each phase of the proposed RE methodology.

3.4.1. Define stakeholders concerns based on architectural viewpoint

This phase is based on the definition of “stakeholders” and “‘concerns” in
IEEE1471-2000 standard for architectural description. The phase follows the
classification of architectural viewpoints that are presented in literature. The

activities in this phase includes the following two steps:

» Select viewpoint from a given catalog which describes specific

architectural viewpoint for the target software system.

» Categorize common stakeholders related to the selected viewpoint.

3.4.1.1. Select viewpoint from a given catalog

The definitions of stakeholders’ concerns are based on a set of architectural
viewpoints about software system. These viewpoints have been considered
by several researchers form different perspectives (Kruchten 1995), (Riva &
Yang 2002), (Woods 2004), (Nicholas 2005), (Rozanski & Woods, 2005),
(Clements 2005), (Henk & Vliet 2006), (R.Hilliard et al. 2007), (Clements et
al. 2010), (Rozanski & Woods 2011).

The selection step is based on the classification of viewpoints catalog that
were presented by (Rozanski & Woods 2005, 2011). They developed a set of
core viewpoints which are based on extending the well-known “4+1”
standard view model of software architectures (Logical, Process, Physical,
and Development) that was defined by Philippe Kruchten in (Kruchten,
1995).

The viewpoint catalog includes six core viewpoints for information systems
architecture, namely: Functional viewpoint, Information viewpoint,

Concurrency viewpoint, Development viewpoint, Deployment viewpoint,

28

and Operational viewpoint (see Figure 3.4). Each one of these viewpoint

defines a set of concerns related to one or more stakeholder(s).

*T:unctional Viewpoint Development Viewpoint
~ . s =3 -

Information Viewpoint Deployment Viewpoint

Concurrency Viewpoint Operational Viewpoint

Figure 3.4 The Viewpoints Catalog (Rozanski & Woods 2005, 2011)

Summarized the viewpoints catalog in Figure 3.4; the first three viewpoints:
Functional viewpoint, Information viewpoint and Concurrency viewpoint
characterize the fundamental organization of the software system. The
development viewpoint exists to support the system’s construction. The
deployment and operational viewpoints characterize the system’s runtime
environment (Rozanski & Woods 2005, 2011). The last three viewpoints

mainly covers the concerns of the developers and maintainers stakeholders.

The RE methodology is focused on the “Functional viewpoint” from the
catalog of (Rozanski & Woods, 2011). The justification for selecting the
“Functional viewpoint” is that it is applicable to all types of software
systems; and reflects the essential architectural information for most of the
stakeholders (such as: maintainer, end-user, developer, system administrator,

tester, acquirer, assessor and communicator).

Furthermore, the functional viewpoint includes a set of general stakeholders’
concerns which reflect and realize the essential and basic architectural
information about the software system. This information include the internal

structure which determines the main elements of software system, the

29

responsibilities of each element and primary interactions between elements,
the functional capabilities that defines what the specific action(s) that system
should take in a given situation, and the functional design philosophy that
reflects how the system will work step by step from the user’s perspective as

represented in Table 3.1.

Table 3.1 Functional Viewpoint Catalog (Rozanski & Woods, 2011)

Functional Viewpoint

Description Describes the system’s runtime functional
elements and their responsibilities, interfaces,

and primary interactions between these elements.

General * Internal structure
Concerns = Functional capabilities
= Functional design philosophy

= The external interfaces

Related = End-User,
Stakeholders | = Maintainer,

= Developer,

= Tester,

= Acquirer,

= System Administrator,
= Assessor,

= Communicator.

3.4.1.2. Categorize stakeholder’s concerns related to selected viewpoint

This step includes the categorization of common stakeholders and their
architectural concerns based on selected viewpoint catalog. The main idea is
to address the following points: who are the stakeholders of target software

system; and which concerns do they have according to the selected

30

viewpoint. Table 3.2 represents the categorization of stakeholder’s and their
architectural concerns based on the selected functional viewpoint catalog as

following:

Table 3.2 Functional Viewpoint: Stakeholders and Concerns adapted from
(Rozanski & Woods, 2011)

Functional viewpoint > Categorize the Stakeholder Concern(s)

* Acquirer v Internal structure: (The main elements of system, responsibilities
of each elements and primary interactions between elements).
* Users * Functional capabilities:(define what the specific action(s) the
system should taken in a given situation).

* The external interfaces

System * Internal structure
Administrator * Functional design philosophy
* Maintainer * Internal structure
* Tster * Functional capabilities

_ * Functional design philosophy
* Communicator

* The external interfaces
* Developer

To summarize; the Phase(1) includes two key points, the first one is to select
specific architectural viewpoint; and the second one is to categorize common
stakeholders related to the selected functional viewpoint, accordingly the main

output of this phase is the list of the stakeholders’ concerns (see Table 3.3).

31

Table 3.3 Summary of the Phase(1) of RE Methodology

Phase[1] Define Stakeholders’ Concern(s) based on Architectural
Viewpoint

Description The phase includes the following steps:

> Select Viewpoint from a given Catalogue which describes

specific architectural viewpoint about software system,

» Categorize the common stakeholders and general
architectural concerns related to selected viewpoint
catalogue.

Main Output List of Stakeholders’ Concern(s)

Functional viewpoint:

[R R NN RN Description | Describes the system’s runtime functional elements and their responsibilities,

I : : PR
; Functional viewpoint 3

General * Internal structure: (The main elements of system, responsibilities of each
| I —

ns betwoen these elements.

nterfaces, and primary inter.

Concerns. elements and primary Interactions between elements)

capabilities:(define what the specific action(s) the systom

should taken in a given situation).

* Functional design philosophy:(how the systom will work *step by step”
from user’s perspective?)

* The external interfaces

" Related

Acquirer, User, Tester, System Administrator, Assessor, Communicator and
Stakeholders

Developer.

3.4.2. Elicit specific stakeholder concern
This phase is called “Phase(2)” which includes the elicitation process for
specific concern that needed to take and decide where to handle such a concern

from the general architectural concerns that addressed in methodology Phase(1).

Legend
D Product
O Process
& Aprocess uses
e EET EEEEREEEEE ;) Xt L | product
I Elicit specific | =] Aprocess produces
: a product
I List of Stakeholders stakeholder concern(s) I > Aprocess uses
I Concerns ' another process
I
I
---------------- i |
| I
Software Requirement I Specific Stakeholder :
Document : Concern(s) |
............... |

Figure 3.5 The Phase(2) of RE Methodology
32

The elicitation process performs by eliciting specific concern of stakeholder
from the functional requirements of a target software system (that addressed in
use case diagram). Accordingly, each elicited concern should be in a form of

question format and has two elements (see Figure 3.6):

= CIDn: refers to concern ID (where n is an integer number), which written

in dotted diamond box.

* Question: refers to elicited concern from the functional scenario of a

target software system, and written in dotted rectangular box.

Figure 3.6 describes the association between the functional requirement (FR)
and elicited concern appears with dotted lines in the use case diagram of the

target system. Moreover, it’s possible to have multiple elicited concerns for one

FR which are numbered as CID1, CID2,..., CIDn.
Elicited Concern
In form of (Question)

Functional Requirement e,
FR(1)

< ’
N e |
* -
~
A N L -

~~—(Functional Requirement

Stakeholder /N . :
OD27> lemmmmeaaaas ’
N 4

ittt :‘ """" |
NPT, Question concern(3) |

Figure 3.6 Elicitation Specific Stakeholder’s Concern(s)

33

3.4.3. Extract related requirement information based on elicited concern

In “Phase(3)” which describes how to extract the related requirement
information related to the elicited functional concern produced in Phase(2). The
stakeholder’s functional concern should be focused on the functionality offered

by the target software system, as follow:

Legend
|:| Product
O Process

i S S
I |« Aprocess uses

i i product
Software Requirement Specific Stakeholder ol Aplaress prodmes
Document Concern

a product

----» A process uses
another process

Extract related
requirement information

Specific Related
Information

Figure 3.7 The Phase(3) of RE Methodology

Therefore, it’s important to note that, this phase assumes that all of system’s
requirements are already existed in a requirement repository. The requirement
repository contains detailed descriptions for all the requirements of software

system as follow:

= RID (Requirement code)

= Description of requirement

= Type of Requirement: either “F > Functional” or ”"NF >Non Functional”
= The creation date of requirement in form of (dd-mm-yyyy)

= Status

= Author

= Additional comments

34

& localhost » &1 db_tracelink » & requirement_repository ‘Requiements Repository Information”

(= Browse 6§ Structure JSQL "Search 3chnset [EExport [Elmport % Operations [fEmpty % Drop
o Stoingors 0283t Quryok 0110 s

SELECT +

TR ‘requirasent repository’
LIMIT 0, 30
[|Profiing [Edt | [Explain SQL | | Create PHP Code | [Refresh]
+ Options
T+ No RIDReghame Description Type Author DateCreated RelatedTo Status

7 /) K 1 TMSReq2t Usingthe webinteface, the College admincanlog.. F Hind Alamin 20081205 Callage Admin Actve
7) K 2 TMSReq22 Allowto change the password of Colsge’s admina.. F HindAmin 20084205 Callage Admin Actve
0/ ¥ 3 TMSReq23 Insart the st of Teachers (Staf for each calle... F' HndAmin 20081205 College Admin Activa
0) K 4 TUSReq4 Updateldelete tne regstered Teachers per semester ~ F HindAmn 20084205 Callege Admin Active
0/ K 5 TUSReq28 Inset the departments of the college F o HndAmn 20081205 Collage Admin Actie
7 J % 6 TMSReq26 Insertthe academic programs and classes oneachd.. F HindAmin 20081205 Collage Admin Active
0/ K 7 TMSReqT Updateldelete the ccademic programs on department F - HindAmin 20081205 Collage Admin Active
1/ X 8 TUSReq28 Register cowses per semesterforeach academicpr.. F - HindAmn 20084205 Calege Admin Active
0 /K % TMSReq2d Updateldelete the registered cowrsss oneachseme.. F - HindAmin 20084205 Collzge Admin Active
7 S ¥ 10 TUSReq210 Insed Academic year before the statng ofthefi.. — F HindAmn 20084205 Callege Admin Active
1/ K A1 TUS Req 1t Inser the numbers of tudents on each academicpr. F HindAmin 20084205 Callege Admin Active
M2 X 42 THS Rea? 12 Selot the lacture mome at Collene on each semest— F Hind Amin 20084208 Callane Admin Artiva

Figure 3.8 Example of the Requirement Repository Information

To support the activities of this phase, the development of a prototype tool is
adopted which has a graphical user interface (GUI). The tool allows stakeholders
to enter a specific concern in form of a “query”. The specific concern will be
elicited from the functional requirements repository assumed to be available for

the target software system.

The tool extracts a set of related requirement information based on elicited
concern, and creates a trace link between elicited concern and its relevant
information (see APPENDIX A for more detailed about the execution of GUI
prototype tool). The Figure 3.9 shows screen shots of GUI prototype tool

described as follow:

35

Extraction Related Requiremen... X

€ @ localhost/Reverse_Document_Tool/mainPage.php?go=1

Extraction of Related Requirement Information

Stakeholder's Concern: What is the mechanism for managing scheduling of teacher lectures?

* Functional Concern: should focus on the Functionality and
Usability that offers by the System to different type of users

List of Suggested Requirement(s): 1.~ Req2 20->(3.20673) [
#104 2

TMS_Req2.19->([2.80108)
TMS_Req3.3->[2.43999)
TMS_Req2.18->(2.38913] v

*Note: You can select multiple

requirements from the Dropdown

list by Clicking on the mouse and

press on (Shift or Ctrl)key from the

keyboard.. . "
: | =1 - Save Trace link between the specified
Sl ST recaetiy e concern and related requirement

N
= || i
Functional Req

COIERD Req_Info " ot Req_Infl Req_Infl ~ 2017-07-06

ID2 D1 D'
N ? Extraction of related P, ?Tucnblllty link among (specific concern

requirement information & its related requirement information)

Figure 3.9 Tracing Specific Concern to its Related Requirement Information

The following paragraphs elaborate on the detailed of the main activities of the
Phase(3) as follow:
» Extraction of related requirement information, and

» Traceability among specific concern and its related information.

36

3.4.3.1. Extraction of related requirement information

The extraction process starts by accessing the requirement repository and
filtering all relevant information related the specified concern. Furthermore,
the extraction process is achieved using the Full-Text indexing and searching

mode technique.

Furthermore, the Full-Text indexing and searching technique is supported by
MySQL database since version 3.23.23 and above. It allows to implement
keyword based filtering and sorting; and provides several searches mode

such as (Natural Language, Boolean and Query expansion).

The implementation techniques to adopt the extraction process requires the
following key steps which are adapted and configured from (MySQL 5.7
Reference Manual Document, 2017). The following paragraphs describe the
detailed design of these key steps:

> Define Full-Text Index
» Select Full-Text searching mode

» Relevance in Full-Text searching

3.4.3.1.1. Define Full-Text Index

The definition of Full Text index is compulsory in the MySQL database
before executing of the Full Text query. Technically, Full-Text index in
MySQL is an index of type “FULLTEXT”; this index is used with
MyISAM tables, and can be created only for CHAR, VARCHAR, or
TEXT columns.

In case of large data sets in the database, it is much faster to load the
data into a table that has no FULLTEXT index and then create the index
after that, than to load data into a table that has an existing FULLTEXT
index. Accordingly; the FULLTEXT index had been created on the

requirements repository after load the data into the table according the

37

adapted instructions from (MySQL 5.7 Reference Manual Document,
2017, section 12.9.1).

3.4.3.1.2. Select Full-Text searching mode:

The Full-Text searching is performed using the following syntax:

MATCH (coll, col2, ...) AGAINST (expr [search_ modifier])

Where

» MATCH: a function takes the name of the column(s) to be

searched.

» AGAINST(expr): this function takes a string to search for. The
search modifier indicates what type of search from the

following options:

o Natural language search: interprets the search for string as

a phrase in natural human language.

o Boolean search: interprets the search for string using the
rules of a special query language. The string contains the
words to search for and additional operators that used to

determine the present or absent of word in matching rows.

o Query expansion search: the search string is used to
perform a natural language search. Then words from the
most relevant rows returned by the search are added to the

search string and the search is done again.

3.4.3.1.3. Relevance in Full-Text searching:

MySQL database uses the ranking with Vector spaces technique for
ordinary Full-Text queries adapted from (MySQL 5.7 Reference Manual
Document, 2017). The relevance (R) is a number that describes how the
match of text is, the basic formula for R which stands for either rank or

relevance as follow: R=w * gf

38

Where
= w: is the weight, which goes up if the term occurs more often in
a row, and goes down if the term occurs in many rows on a
target table. This is depending on whether the number of

unique words in a row is fewer or more than average.

= gf: is the number of times the term appears in the AGAINST

expression.

Additionally, the term weight(w) is what MySQL stores in the index,

and the calculation of weight is done using the following formula:

4)
W= (log(dtf)+1)/sundtf * U/(140.0115*U) * log((N-nf)/nf)
k | ||)
| Y Y

Base part Normalization factor Global multiplier

\. y,
Where:

v dtf is the number of times the term appears in the document

v sumdtf is the sum of (log(dtf)+1l)'s for all terms in the
same document.

" U is the number of Unique terms in the document

* N is the total number of documents
* nf is the number of documents that contain the term

Figure 3.10 Calculation formula for weight in MySQL. Adapted
from (MySQL Reference Manual Document 2017, section 10.7)

Generally, the calculation formula in Figure 3.10 has three parts:

= Base part: is the left part of the formula; the idea of base part is
totally depends on two values: the number of times that the
term appears in the document and the summation of all terms

which appear in the document.

39

* Normalization factor: is the middle part, the idea of this factor
is that: if the document is shorter than average length then
weight goes up, if its average length then weight stays the
same, and if it longer than average length then weight goes
down. The constant 0.0115 is a pivot value that uses in MySQL
source code, which known as pivoted unique normalization
factor, and the measure of document length is based on the

unique terms in the document.

* Global multiplier: is the final part and it used to make a better

guess of the probability that a term will be relevant.

According to these mentioned technical key points; the searching techniques
of GUI prototype tool is achieved using the natural language searching
mode which interprets the search for specific functional concern (in form of
user query); then performs filtering process and ranking of the relevant

information related to the specified concern.

The main results from the GUI prototype are displayed in a dropdown menu
and sorted into three categories and each one highlighted with a specific

color as follow:

» High weight. appears in green color and represents highly relevant

requirement information related the specified functional concern,

» Medium weight: appears in yellow color and represents the medium
relevance requirement information related the specified functional

concern,

» Low weight: represents low relevance values of requirement

information, and appears in red color.

40

3.4.3.2. Traceability among specific concern and its related information

The traceability process is performed after the extraction process. The main
idea is to create a trace link among the extracted concerns and its relevant

information using the tool as shown in Figure 3.9.

3.4.4. RE for extracting particular architectural information

The final phase, “Phase(4)” is based on using the extracted requirement
information that produced from the previous phases as shown in Figure 3.11.

This phase includes two key activities as follows:

» RE process for extracting specific source code files,

» Representation of the particular architectural information based on the

extracted code files.

Legend

I:l Product
O Process

&1 Aprocess uses
product
> Aprocess produces
a product
----» A process uses
another process

Extract related
architectural information

4
/ Specific Architectural

I
Specific related 5 |
I
I
I
I
information based on -:
Stakeholder Concern I

information

Source Code

Figure 3.11 The Phase(4) of RE Methodology

3.4.4.1. RE process for extracting specific source code files
The RE process is achieved by applying a code analyzer process which
performs static analysis on source code files to determine and trace which set

of code files are used to implement specific functionality reflected by the

41

extracted requirement information in Phase(3). The code analyzer process

includes three key steps (see Figure 3.12).

Code Analyzer process

£

User manual /Testing document »

A\
** Specific
E / Requirement Info

/——§\

Select starting point for tracking the
execution for specific functionality
(for example: class or page file or
method/function).

TTrack the execution from the

Code Extraction - N selected starting code element and
B analyze code extraction contents to
| Dorygen ool j gather all of related code elements.
' ' - <Analyzer process
tom e | . | Extract related code elements in
— \\--—" form of: <main code element> and

<related code elements>

Code Extracted
Contents

Figure 3.12 The Code Analyzer Process

The following paragraphs describe these three key steps (see Figure 3.12):

» Select the starting point for tracking the execution of a specific
functionality represented by extracted requirement information. For
examples: page file, class, method or function from code elements.
Notably, the selection of a starting point can be performed by using
references from existing documents such as the user manual, or the

software testing document.

42

» Track the execution of selected starting code element and analyze the

code extraction contents and gather all related code elements.

> Extract related code elements in form of main code element and its
related elements. The relation between code elements can be

describes as following:

o require relation is used to describe the relations between code
files and show the dependences of these files within the

software system, or

o contain relation is used to describe that code file contains a set
of functions that are used to execute specific functionality of

the system, or

o call relation is used to describe the relation between code

elements and how different functions interact with each other.

As summarized; the whole process of code analyzer is achieved by using a
static analyzer tool called Doxygen tool. The Doxygen tool is used to extract
code structure from the existing source code files, and visualize the relations
between various code elements according the type of source code of target
software system in the form of function call graphs, or dependency graphs, or
inheritance diagrams, or collaboration diagrams, which are all generated

automatically by the tool (Doxygen Reference Manual Document, 2016).

3.4.4.2. Representation of the particular architectural information

The representation process includes two key steps; mapping the extracted
code elements into a component model; and visualizing the architectural
information using architecture styles. The following paragraphs describe the

details of these steps:

43

3.4.4.2.1. Mapping extracted code into a component architecture

This step involves the process of organizing the extracted code elements
into a component model to make an explicit mapping between software
architecture and the code elements of the target system. It is important to
note that this process assumes that the term ‘“component” can be
associated with a code element such as a code file, a webpage file, a
class, a class method, a function, or either as a group of related methods
or functions which are used frequently together in the execution of

specific system’s functionality.

For example, suppose the given code element is a webpage source file
called page Layout.php, this webpage file can be mapped into a “Page
Layout” component which contains the set of functions or methods that
are used to execute specific system’s functionality as in the following

example shown in Figure 3.12.

/~ N\

Page_layout code file>
- Display_title()
Mapping Background_page()

\<P399_Layout.php> Layout)

Figure 3.13 Example of Mapping Code’s Element into Component

3.4.4.2.2. Visualizing architectural information using ArcheType

The whole purpose of this process is to create a logical model, so that
the architectural information is visualized and represented in the form of
logical component model which helps the stakeholders to gain insight of
the architecture information related to their functional concerns about a

target system.

The visualization process starts by selecting the structure of the

architecture which is mainly based on the application’s type called

44

archetypes. The Microsoft guide for application architecture defines

these archetypes as in Table 3.4.

Table 3.4 Application Archetypes Summary adapted from (MICROSOFT

Architecture Guide, 2009, P.226).

Application Type

Description

Web applications

The applications of this type are typically support connected
scenarios and can support different browsers running on a range of
operating systems and platforms.

Rich client

applications

The applications are usually developed as standalone applications
with a graphical user interface that displays data using a range of
controls. Those applications can be designed for disconnected and
occasionally connected scenarios if they need to access remote
data or functionality.

Rich Internet
applications

The applications of this type can be developed to support multiple
platforms and multiple browsers, displaying rich media or graphical
content. Rich Internet applications run in a browser sandbox that
restricts access to some features of the client.

Service
applications

The services expose shared business functionality and allow clients
to access them from a local or a remote system. Service operations
are called using messages, based on XML schemas, passed over a
transport channel. The goal of this type of application is to achieve
loose coupling between the client and server.

Mobile

applications

Applications of this type can be developed as thin client or rich
client applications. Rich client mobile applications can support
disconnected or occasionally connected scenarios. Web or thin
client applications support connected scenarios only. Device
resources may prove to be a constraint when designing mobile
applications.

As summarized in Table 3.4; the application archetypes includes the

architecture’s structure for common types of applications such as web

applications, rich client applications, rich internet applications, service

applications and mobile applications. However, beside these archetypes,

45

the Microsoft’s guide also contains details of some specialized
application types such as hosted and cloud services, and office business

applications.

The architecture of each of the archetype application can be defined using
architecture styles. For example, the guide (MICROSOFT® Architecture
guide, 2009) describes a layered architecture style for web applications.
The visualization process is performed using these architectural styles.
This is based, for example, on grouping related components in web
applications as a three-layered architecture which consists of a
presentation layer, business layer and data layer as the shown example in
Figure 3.14. Each layer should include specific components described as

follows:

> Presentation Layer: responsible for managing user interaction
with software system, and generally consists of components that
provide a common bridge into the core business logic that

encapsulated in the business layer.

» Business Layer: which implements the core functionality of
software system, and encapsulates the relevant business logic. It
generally consists of components, some of which may expose

service interfaces that other callers can use.

» Data Access Layer: provides access to data hosted within the
system, and data exposed by other networked systems; perhaps

accessed through services.

To summarize; Phase(4) includes two key steps. The first step deals with

organizing the extracted code elements into a component model to make an

explicit mapping between the system’s architecture and code elements. The

second step deals with using archetypes and architecture styles to visualize the

46

architecture model and give an example of a layered architectural style for web

applications.
Client Workstation
C BROWSER ’* J}feyboardlmtrmitor” | Web brj::vser
HTTP/HTTPS connection
/ Web Server \
(i
.2
T 5 .
2 g Main Menu % Login Page % Repaiing
n - Form
;
_ J

Core Component Core Component
(BL1) (BL2)

Business
Layer

Core Component
(BL(n)

Core Component
(BL3)

Database
Connection

Data Access (
Layer

Data
Sources

/

Figure 3.14 Example of Visualizing Architectural Information using Layered

Architecture Model

3.5. Chapter Summary

This chapter represented an overview of the proposed RE methodology; then

discussed the principles of proposed methodology and described the detailed design

of the main phases of proposed methodology. To summarize the main activities of

each RE Methodology phase: Phase(l) includes the selection of specific

47

architectural viewpoint and categorize common stakeholders related to the selected
viewpoint, accordingly the main output is the list of the stakeholders’ concerns.
Phase(2) performs the elicitation process for specific concern that needed to take
and decide where to handle such a concern from the general architectural concerns

that addressed in previous phase.

In Phase(3) the development of a GUI prototype tool is adopted. The tool allows
stakeholders to enter a specific concern in form of a “query”. The specific concern
will be elicited from the functional requirements repository assumed to be available
for the target software system. The tool extracts a set of related requirement
information based on elicited concern, and creates a trace link between elicited

concern and its relevant information.

The final phase; Phase(4) involves the organization of the extracted code elements
into a component model and using archetypes and architecture styles to visualize
the architecture model. As a result, the visual model represents the extraction of the
partial architectural information in the form of a logical model. This architectural
information helps stakeholders to answer their architectural concerns about a target
system. The next chapter will describe how to apply the methodology phases to a

practical case study.

48

CHAPTER 1V

IMPLEMENTATION OF RE METHODOLOGY TO CASE STUDY

4.1. Introduction

Generally, this chapter describes how to implement the RE methodology phases
using a legacy web application as a practical case study. The first section starts by
giving an overview of the selected software system, and describes the main reasons
for selecting this system. The second section describes the details of applying each
phase of the methodology to the case study. The third section represents main
benefits of the extracted architectural information for stakeholders; and the last

section concludes with the chapter summary.

4.2. Selecting Software System for a Case Study

A practical case study had been implemented in a web application system called
Timetable Management System (TMS). TMS was developed by the Computer
Center at Sudan University of Science and Technology (SUST) in 2008.

TMS is a Web-based open source system which was built for Sudanese Universities
using MySQL database and PHP web page language with Arabic interface; and it
provides high flexible features for managing and controlling the scheduling of
lectures’ times for students at Sudanese universities (adapted from TMS Manual

Document, 2009).

Moreover; TMS is flexible to accept changes that occur in schedules for all colleges
at the university during the academic year without an overlap in specified slot times
between these colleges. The main reports are the extraction timetables and schedules
for students according the academic year, the scheduling timeslots for the lecture
rooms and laboratories per week and the timetable for teachers per semester (see

Appendix B for more details about the privileges of system’s users).

49

The selection of TMS for the following reasons; TMS software is a diverse software
implemented as a combination of both front-end PHP, JavaScript and HTML code
plus a back-end MySQL database. It is an example of an application with multiple
components implemented with different technologies. TMS is considered to be a

legacy system implemented with more than 10 years old technologies (since 2008).

The documentation of TMS’s architecture is missing, and the system documentation
needs to reflect its current architectural representation in order to be reengineered
with new technologies. Recovering the particular architectural information of the
system is essential to support the system’s understand-ability and maintainability.
The following Figure 4.1 represents the general description of the main contents of

TMS.

E> sl Jp o
/ du__}u\.‘n]' ghams!
ﬂ—---.\l -rU'J-t!ql <
g o T~ el il St
WI-".U- \ S,
'5-.-'-141" bm,_h

Figure 4.1 an overview of the main contents of TMS, adapted from (Developer’s
Documentation, 2009)

50

The general description about TMS’s source code contents represented in Table

4.1 as follow:

Table 4.1 TMS Source Code Overview

System Name Timetable Management System(TMS)

The core of source code is mainly PHP
webpage source files (written with PHP
procedural function code style, and its
non-object oriented code style).

Description

PHP Source Files | 110

Total LOC 30364

Number of 148
Functions Code

4.3. Applying RE Methodology Phases to the Case Study
The following paragraphs elaborate on the details of applying each phase of RE
methodology:

4.3.1. Define a set of stakeholders concerns

Apply Phase(1) to define a set of stakeholders’ concerns base on the Functional

viewpoint of the TMS system. The primary TMS’s stakeholders are:

= End-User: who defines the system’s functionality and ultimately make
use of it. TMS has three end-users such as (College Admin, Teachers, and

Students).

* Maintainer: who manages the reengineering and improvements of the

TMS system.

51

4.3.2. Elicit a specific stakeholders concern:

The elicitation process is focused on a selecting a particular functional concern
related to a use-case or a major functionality offered by the system to different
type of users. The main idea is to elicit a specific concern such as “CID1” shows

in the Figure 4.2 bellow.

General Concern: The main functionalities that offers by TMS system to
different types of end-users (College Admin, Student , Teacher)?

Elicited Concern
i) In form of (Question)
Functional \ e __
~ equirement(t) L os ' Question concern(1) '
ST S Sda '

\[» FR(2)) ‘
Stakeholder : 2

< mm

CiD Elicit Specific Concern (as Question Format) Related Stakeholder

Y CID1 Whatis the mechanism for managing scheduling of End-user (Teacher and

Teacher lectures? College Admin)

Figure 4.2 Elicit a specific stakeholder functional concern

4.3.3. Extract related requirements information based on elicited concern

TMS has 34 functional requirements; this phase assumes that all of TMS’s
functional requirements are already existed in a “requirement repository” (see
Figure 3.8). The extraction process starts by accessing the requirement
repository and filtering all of relevant information based on the elicited concern.
Then create a trace link between its relevant information. The phase is achieved
by using the tool as described in section 3.4.3.1 and section 3.4.3.2 in the

previous chapter.

52

Using the developed prototype tool and obtain the results shown in Figure 4.3.
The results of the search shows ten requirements information that displayed in

a dropdown menu and sorted by ranking using three following categories as:
= High weight (2) appears in green color,
» Medium weight (7) appears in yellow color, and

= Low weight (1) appears in red color.

@ Extraction Related Requirement X <+

& C O localhost/Reverse_Document_Tool/index.php?go=1

—Extraction of Related Requirement Information

Stakeholder's Concern: What is the mechanism for managing scheduling of Teacher lectures?

* Functional Concern: should focus on the Functionality
and Usability that offers by the System to different type v

of users y
List of Suggested Requirement(s):
4104 Fetch of relevance
TMS_Req2.19>[2.80108) requirement(s)
TMS_Req3.3>[2.43999)
TMS_Req2.18[2.38913]
TS Req2.165[2.21122)
TMS_Req2.15>[220162] e
TS Req3.15[21677) Rapostioy
TMS_Req3.2(2.05831)
*Note: You can select multiple - Medium
requirements from the Dropdown Review Sugeested Resully [weight]

list by Clicking on the mouse and
press on (Shuft or Ctrl)key from the
keyboard..

Search | | Save Traceability Link

Figure 4.3 Extraction of related Requirements Information

Additionally, the creation of a trace link is performed in order to link the elicited
concern with its relevant information produced from the extraction process in

Figure 4.4 as follow:

53

7 ™ - Listof Extracted Related Requireasent Information
%% TMS_Req2.20 Fadags 114

i G—
CID1
- 1™ what 15 the mechansien for manaping schedubing of

TMS_Req3.4 voacher lactures” IM:—; i.“319-':'3~05

what s e mechanusen for managung schedubng of SRadd DVIS4MS
Y, tncb« lectures? ksl l.\JN ’ 0',
Extraction of related f
requirement information
Traceability link among (specific concern
& its related requirement information)

Figure 4.4 Traceability among specific concerns and their related Requirement
Information

4.3.4. Extracting architectural information
This final phase is achieved by applying the RE process at code level to

perform following key steps:
» Extracting specific source code files

» Representation and visualization of architectural information

4.3.4.1. Extracting specific source code files

The code extraction process is performed by using a static code analyzer as
described in section 3.4.4.1. Using the existing TMS source code file, to
determine which set of source code files are used to implement the specific

functionality of the system specified in the previous steps.

Notably, the selection of a starting point for the extraction process is
performed by returning to TMS’s user manual document in order to track the
starting point for “TMS Req2.20” execution. The main output of this process
is to extract the call graph to obtain and visualize the dependencies between
the function elements which are used to execute specific functionality in the

system as described in Figure 4.5 and Figure 4.6 below.

54

]
]]
lu 1 s
/{y ' |ecenment. II: / Code Analyzer process \
]]

Select starting point for tracking the

TMS_Req2.20 . .pe . ;

** _ _ _ execution for specific functionality
Display scheduling of Teaching hours (ex. Webpage php flle)

Functional for each Teacher per a week

CID1

>Track the selected starting code
! | element and analyze the execution
to gather all of other related code
elements.

source code
files

Extract related code elements in

form of: <main code element> and
<related code elements> /

Figure 4.5 Applying Code Analyzer Process

» Trackthe flow of execution for specific functionality (TMS_Req2.20)

» Select starting point for tracking(page file “TMSR.php”)

» Trackselected page file and analyze the code extraction contents to gather all of
related code elements such as: Page File(s) and Function(s).

L 2

Collope. g Dept_method php
/
I PrepareTeacherReport }—.{ GetCollegeTimeSiot

P — — — —
I Related source Files™\, LI
e | P

.cm m.m Cogit v wm g [
l » I = "o 3 = = | GetShortClassName L A pop

Dept_method. J

php | ReportDetails db_connect

[[FemEecein S Sp—

sformDept.php
= | e

{ php I o " GetBuildingName

W ——— d

\ Deptimeodse GetTeacherName /

Figure 4.6 Extracted Call Graph for executing “TMS Req2.20” functionality
55

4.3.4.2. Representation and Visualization of architectural information

This process includes two steps: The first step deals with mapping the
extracted code elements into architectural components. The selected code

elements in Figure 4.7 (for webpages and functions) are mapped into thirteen

components architecture as following:

.

TMSR code file>
Display CollegeWelcome Header()
Display_TMSR_Menu()

#No of Component(s)= 13

DeptForm code file>

T™MS
Main Menu

PreapareTeacherReport()

FinDisplay code file> J

Preparation of

=

Teacher’s Report |

College_Method code file>

ReportDetails()

% Report Details

Reporting
Form

Page_layout code file>

Display_title()

Page
Layout

GetGroup()

selectMForm()
Dept_Method code file> J

GetBuildingName()

Dept_Method code file> J

Academic Class
Group

Lecture Room
Name

Dept_Method code file>
GetShortClassName()

Department

Dept_Method code file>

College_Method code file>

\

GetCollegeTimeSlot() GetDeptColor()
College Department
Timeslots Background Theme

Dept_Method code file>
GetTeacherName()

J
% Teacher

Dept_Method code file>
GetSubjecttName()

J

$ Subject Name

db_fns code file>
db_connect()

] Database
— Connection

_Il

N

J

Figure 4.7 Mapping extracted code elements into Components Architecture

56

The second step is visualizing and representing particular architectural
information using a web application layered architecture style.

The selection of the architecture type is based on Web Application
Archetype which is applicable with the TMS system. The core of the Web
application is the server-side logic which is visualized in a three-layer

architecture.

Figure 4.8 shows the main components in each layer that are used to describe

and represent “TMS Req2.20” functionality as following:

» Presentation layer includes three components such as (TMS Main
Menu, Reporting Form and Page Layout component). These
components are responsible for managing the End-user interaction

with TMS system.

» Business layer includes nine components which implement the core
functionality of TMS system. The first four components such as
(Preparation of Teacher Report, College Timeslots, Report Detail
component and DeptBackground Theme component). These
Components are concerned with the retrieval, processing,
transformation, and management of TMS’s data; business rules and
policies. The others five components called “business entities” which
encapsulate the business logic and data necessary to present the real
world elements within TMS system, such as (Academic Class Group,

Lecture Room, Teacher, Subject and Department).

» Data access layer consists of the database connection component

which provides access to the data hosted within TMS system.

To summarized Phase(4), the layered architecture model is used to visualize and
represent the extraction of particular architectural information into a graphical model
for stakeholders which helps to answer their architectural concerns about specific

functionality of the TMS system.

57

Client

BROWSER

Keyboard/monitor

Workstation

%Web browser

N

N

N

HTTPHTTPS connection
Web Server
5 A\ 4
55 THS Reporting Page
§3 Main Menu Form Layout
£
Preparation of College Report Department
& [Creacher'sReport [Timeslots Details Background
0o Theme
£ >
2
1]
Academic Lecture Teacher Subject Department
lass Group Room j

S\~

ata Acces

Layer

Database

Connectlon

&

(

Data
Sources

Figure 4.8 Visualizing particular Architectural Information using Layered Architecture

Model

58

Moreover, the architectural model provides an abstract level of architectural
representation for stakeholders which highlights which set of components are needed to
execute specific functionality of the system. This is shown here as the functionality of

the mechanism for managing the scheduling of Teachers lectures as in Figure 4.9.

Functional concern * *

What is the mechanism for managing scheduling of Teacher lectures?

¥

TMS_Req2.20

Related Requirement
Information

; 7 | ‘ |
| ™S Reporting J ‘ Page ’
) Main Menu Form l \ Layout ‘

Preparation of College Report
Teacher’s Report Timeslots Details

Layer

YPresentatioD

Department
Background
Theme

Business
Layer

Academic Lecture Teacher Subject Department
lass Group Room \
Database
Connection

S

Data Acces
Layer

f

Data
Sources

Figure 4.9 Representation of particular Architectural Information Based on Stakeholder’s
Functional Concern

59

4.4. The Main Results and Discussion

The extraction of architectural representation is very useful and helps the
stakeholders especially (developer, maintainer, architect and tester) for obtaining the
as built architecture of implemented software system based on its existing source
code, and supporting the understand-ability and maintainability phase for the target

systems.

For example; the architectural representation can be used by the maintainer to
support the understand-ability for particular part of the system; by tracing the related
requirement information through its implemented code elements and highlighted
which components were needed to represent specific functionality of the target

system as described in Figure 4.9.

Furthermore; in case of improving or re-engineering the legacy software system into
new technology such as (object oriented system or cloud based application system);
the architectural representation helps the maintainer to identify which set of
components that implement the core functionality of legacy system, and encapsulate
the relevant business logic, or either to decide how to manage and migrate the

executable components into cloud based environment, as the following example:

\

\

Preparation of College Report geplfftmen;
Teacher's Report Timeslots Details afrhge:]‘:‘e‘"

A

Business
Layer

Academic | . Lecture
Department Subject Teacher
gmass Group g eparmen %] g % Room

|
|
|
|
I
|
|
|
L

Figure 4.10 Example of the main components that implement the core functionality

60

Additionality, the extracted architectural information can be used by the end-
user to support the understand-ability for particular part of the system by providing a
proper level of architectural diagram that highlighted which components are needed
to describe specific functionality. Actually, this is very important point by putting
the end-user in the maintenance loop so that end-user can give feedback on the
information related the target system, or either to determine and decide in case of
re-engineering specific functionality of legacy software system through adding new

features for the target system.

Example: in case of re-engineering
specific functionality of a target system

by adding new feature.
i % Export to
MS word

Preparation of
Teacher’s Report

College
Timeslots

Report
Details

Department \

Background
Theme

Business
Layer

Lecture
Room

Academic :
Subject Teacher
% Class Group ‘% e l$) ‘g I%

Figure 4.11 Example of how to determine and decide a new feature for a target system

To summarize; the extraction of architectural representation is very useful and
helps the stakeholders for obtaining the as built architecture of implemented
software system based on its existing source code, and supporting the understand-
ability and maintainability phase for these existing or legacy systems. Generally; the

main benefits of this extracted architectural representation summarized as follow:

» Basis for re-documenting the architecture document of legacy software
systems, in case of the document is out of date or the nonexistent of

document;

61

» Determine what to look for and focus in the extracted architectural
information and help in identifying which set of components can be used for
reuse; for example in case of reusing specific components to others software

system.

» Starting point for re-engineering the legacy systems to a new desired

architecture, or managing and upgrading them to a new technology.

4.5. Chapter Summary

This chapter described how to implement the RE methodology phases using a
practical case study. The first section presented an overview of the selected software
system, and described the main reasons for selecting the system. The second section
described the details of applying each phase of the proposed RE methodology to a
case study. The final section highlighted the main benefits of the extracted
architectural information for stakeholders and discussed the main contributions of

applying the proposed RE methodology.

62

CONCLUSION AND FUTURE WORK

The main contributions drawn from this research are: firstly; a new RE
Methodology follows IEEE 1471 standard of architectural description and support
concerns of stakeholder including end-user and maintainer. Secondly; GUI prototype
tool to support the steps of Methodology. It supports the visualization of a particular
part of the target system by providing a visual model of the
architectural representation which highlights the main components needed to execute
specific functionality of the target system. Finally; the verification of the methodology

using legacy web application system.

Further information; the extraction of architectural representation helps stakeholders
especially (maintainer, end-user, architect, tester and developer) for obtaining the as
built architecture from its implemented source code elements, and supporting the

understand-ability and maintainability phase for the target system.

For example; the architectural representation can be used by the maintainer to support
the understand-ability for particular part of the system; by tracing the related
requirement information through its implemented code elements and highlighted which
components were needed to represent specific functionality of the target system as

described in a case study.

Furthermore; in case of improving or re-engineering the legacy software system into
new technology such as (object oriented system or cloud based application system); the
architectural representation helps the maintainer to identify which set of components
that implement the core functionality of legacy system, and encapsulate the relevant
business logic, or either to decide how to manage and migrate the executable

components into cloud based environment.

The extracted architectural information can be used by the end-user to support the

understand-ability for particular part of the system by providing a proper level of

63

architectural diagram that highlighted which components are needed to describe
specific functionality. Actually, this is very important point by putting the end-user in
the maintenance loop so that end-user can give feedback on the information related the
target system, or either to determine and decide in case of re-engineering specific
functionality of legacy software system through adding new features for the target

system.

RECOMMENDATIONS FOR FUTURE WORK

This section presents some recommendations for future work. While many
issues related to this area of research remain to be explore. Therefore, this thesis could
be extended in several directions to cover additional related issues. These issues can be

highlighted as the following key points:

» There is a need to extend the proposed RE methodology to support and apply
additional architectural viewpoints beside the selected ‘“Functional
viewpoint” based on a given classification of viewpoints catalog (such as: the
information viewpoint, the deployment viewpoint, and the operational

viewpoint),

» The development of automated tool is needed to support and include the

whole phases of the proposed RE methodology,

» Furthermore; the proposed RE methodology can be apply in different
application domains beside the legacy software systems such as: the robotics
systems and smart object systems to support the understand-ability and

maintainability process for the particular parts of these systems,

» The proposed RE methodology can be extremely important for iterative
migration of legacy systems. Accordingly; the extraction of architectural
representations from the proposed RE methodology were based on the
layered architecture model. This model is used to visualize and represent the
extraction of particular architectural information into a graphical model to

answer the stakeholder's concerns about specific functionality of the target

64

system. Furthermore; this architectural representation will help stakeholders
such as the maintainer, architect, tester and developer to inspect the
dependencies of the different parts of the architecture obtained from specific
source code segments of the legacy system. This will support the understand-
ability process by identifying which set of components implement the core
functionality of the target legacy system. The visual models also encapsulate
the relevant business logic. This information is needed to manage and
migrate the executable components into the desired cloud based environment

or either into mobile based environment.

The important concepts of the container technology and the microservices
architecture style show the importance of the proposed RE methodology in
migrating legacy systems architectures to scalable cloud applications
architectures. Accordingly; the layered architecture model from the proposed
RE methodology will support the understand-ability process by identifying
which set of components that implement the core functionality of the target
legacy system can be migrated as microservices in containers. This will help
the stakeholders decide how these components can be factored out as

microservices and allocated to different containers.

65

APPENDICES

APPENDIX A
The Execution of GUI Prototype Tool

The prototype tool is a Web-based tool which has a graphical user interface (GUI), and
built by using MySQL database and PHP web page language. The prototype tool allows
stakeholders to enter a specific concern in form of a “query”. The specific concern will
be elicited from the functional requirements repository assumed to be available for the
target software system. The main functions of prototype tool is to extract a set of related
requirement information based on the elicited concern, and create a trace link between
elicited concern and its relevant information. The following is the execution of the

prototype tool:

» A.1: Main Page of Prototype Tool

» A.2: Extraction of Related Requirement information
» A.3: Review the suggested Results

» A.4: Create a trace link

A.1: Main Page of Prototype Tool

Extraction Related Requiremen... X = =

(' i) localhost/Reverse Document_Tool/mainPage,php ¢

Extraction of Related Requirement Information
Allow stakeholder to

enter specific concermn
Stakeholder's Concern: [What is the mechanism for managing scheduling of teacher lectures?) |

VaGliild

- Search

66

A.2: Extraction of Related Requirement information

Btraction Related Requiremen... X 4

(‘@ localhost Reverse Document_Tool/mainPagephplgo=1 ¢ Q Search ﬁ B ¥4 e

~Extraction of Related Requirement Information

Stakeholder's Concemn: What s the mechanism for managing scheduling of teacher lectures?

* Functional Concern: should focus on the Functionality and

Usability that offers by the System to different type of users

S
#104 Fetch the related Medium
THS_RB]M?‘)[IM]M] Requi[em en t(sl Review Sugzested Result(s :
10/[35Reqs] | g Rega3->[243000 | [weigh]
TMS_Req2.18->[2.38913] v

*Note: You can select multiple

requirements from the Dropdown 7

list by Chchngmmemomemd DB Repository
press on (Shift or Ctrl)key from the

ke)’ooard_.. - Requirement repository

- Source_file(.php)_repository

s s Tty L |
% A

67

A.3: Review the suggested Results

Bxtraction Related Requiremen.. X

(- ® localhost/Reverse_Document_Tool/mainPzge phplgo=1 ¢ Q Search ﬁ B8 ¥ & @

~Estraction of Related Requirement Information-

Stakeholder's Concern: \What is the mechanism for managing scheduling of teacher lectures? |

List of Suggested Requirement(s): TM!
#104 MS_Req3.4->[3.20673]
THS_Req2.19->[2.80108] Review Suggested Result(s
TMS_Req3.3->[2.43999]
TMS_Req2.18->[2.38913] v

|
|
|
|
(™

*Note: You can select multiple

respiserseae o e Depviocs ° Click to review all of suggested results

list by Clicking on the mouse and
press on (Shuft or Ctrl)key from the
l_ e ot -t

pTeual) (8 (m Lol o J5 A 8 L 5 0 08 Lpuadlai) o5 (20 i) - ala A gl

:ﬁueﬁﬂ'%ﬁ%ﬂﬂd*&ﬂ°56e‘emf3e[w]3-e§&-‘-cﬁﬂﬁéi3 L

) Aau A el <yl Gyl
) ot i e had < i) gl
A gl g oY) L) e Bl s 00 A 0 OB < paa gtt)

68

Review Suggested Result(s) f

.' [weight]

raction Related Requiremen., X Review SuggestedResuls X 4

&0 localhost/Reverse_Document_Tool/SugaestResultsphplconcem=What is the mechanism for managing scheduling oft € Q Search

~Review Suggested Result(s) # 10 #

Bkl v

i

Display the scheduling of Teaching hours for each Teacher per a week

tl)jp]gy the scheduling of Teaching hours for each Teacher pera week.

[.S0108]TMS Req. 19 ?g:li)j i;i:sﬁ:duiiug of all lectures and labs for each academic program per semester, allow college admin o edit or delete the
[243999) TMS Req33 Display the scheduling of all lectures and labs for each academic program per semester

[238913) TMS Req2 18 [UpdateDelete the scheduling of lectures and labs for each academic program class per semester |
[221122] TMS Req2.16 Reserve a laboratory for scheduling lectures lab of the academic class and extend an existing laboratory reservation per semester
[2.20162) TMS Req2 15 ‘Resenf a lecture foom for scheduling lectures of the academic program and extend an existing foom reservation per semester
[21677] TMS Reg3 1 ‘Using the web interface, Teacher and student allowed to access the University page (without login)

(O3] TMS Recd? Fi:pla}' the nhc@mg of all lectures anﬂ labs o cach semester pera \T\':ek. If thcrf. aemany Colleges that used the specific

i lecture toom during the week. then the displaytng of scheduled slots will appear with specific color for each college

69

A.4: Create a trace link

Extraction Related Requiremen... +

i‘ ® Iocalhost_fi\‘we!'ﬂe_!?r_\tumem_[ncl_fm.alni’agr—.php:‘gc;1

—Extraction of Related Requirement Information

Stakeholder's Concern: 1Whut is the mechanism for managing scheduling of teacher lectures?

* Functional Concern: should focus on the Functionality and
Usabilicy that offera by the System to different type of users

List of Suggested Requirement(s): ."“5 Req? 20->[3.20673] fa
#10# | TMS

mumu >[2.80108]
TMS_Req3.3->[2.43999]
TMS_Req2.18->[2.38913] v

*Note: You can select multiple
requirements from the Dropdown
list by Clicking on the mouse and
press on (Shift or Ctrl)key from the
kevboard..

Search | Save Traceability Link

4

~ Listof Entractd Relted Reuireent nformaton Display all specified link between
concerns and Requirements

Findings: # 1
(D! i\’haiwthcmechmmformmagmgxhedﬂmgoftcarhﬂm:s" | TAS Reg _2 102

(D! I\l’hamthemechanmnfmmamgng scheduling of teacherlctues” TMS Regid 0170541

70

APPENDIX B

Timetable Management System (TMS)

» The Privileges of System's Users:

B.1: System Administrator

Registration of Universities

Registration of Colleges

Registration of Lecture rooms

Registration of Laboratories

<incll®\A

Login and
Accessing System

S Extracting Reports

Administrator \

Change password

<<inefude>>

Specifying the
Lectures start
time

71

» The privileges of System's Users:

B.2: Administrator of College (CollegeAdmin)

Registration of Departments
and sections

Login and
Accessing System

Specifying Lectures rooms and
laboratories per each semester

AR

College Admi

B.3: Teachers and Students

Display the schedules of study
for students

Display the schedules of study
for Teachers

Display the schedules of study
for Lectures

Teachers
and
Students

YAIRNN

Display the schedules of study
for Laboratories

72

APPENDIX C

Viewpoint Catalog (Rozanski & Woods, 2011)

Functional Viewpoint

Development Viewpoint

Information Viewpoint

Deployment Viewpoint

Concurrency Viewpoint

Operational Viewpoint

#

Description

Functional

Describes the system’s functional elements, their responsibilities,
interfaces, and primary interactions. A Functional view is the
cornerstone of most ADs and is often the first part of the description
that stakeholders try to read. It drives the shape of other system
structures such as the information structure, concurrency structure,
deployment structure, and so on. It also has a significant impact on the
system’s quality properties such as its ability to change, its ability to be
secured, and its runtime performance.

Information

Describes the way that the architecture stores, manipulates, manages,
and distributes information. The ultimate purpose of virtually any
computer system is to manipulate information in some form, and this
viewpoint develops a complete but high-level view of static data
structure and information flow. The objective of this analysis is to
answer the big questions around content, structure, ownership, latency,
references, and data migration.

73

#

Description

Concurrency

Describes the concurrency structure of the system and maps functional
elements to concurrency units to clearly identify the parts of the system
that can execute concurrently and how this is coordinated and
controlled. This entails the creation of models that show the process and
thread structures that the system will use and the interprocess
communication mechanisms used to coordinate their operation.

Development

Describes the architecture that supports the software development
process. Development views communicate the aspects of the
architecture of interest to those stakeholders involved in building,
testing, maintaining, and enhancing the system.

Deployment

Describes the environment into which the system will be deployed,
including capturing the dependencies the system has on its runtime
environment. This view captures the hardware environment that your
system needs (primarily the processing nodes, network
interconnections, and disk storage facilities required), the technical
environment requirements for each element, and the mapping of the
software elements to the runtime environment that will execute them.

Operational

Describes how the system will be operated, administered, and supported
when it is running in its production environment. For all but the
simplest systems, installing, managing, and operating the system is a
significant task that must be considered and planned at design time. The
aim of the Operational viewpoint is to identify system-wide strategies
for addressing the operational concerns of the system’s stakeholders and
to identify solutions that address these.

74

APPENDIX D

Certification of Publication

= International Journal of Computer
Applications Technology and Research
LICATR Peer Review Journal

http://www.ijcat.com
1S5N: 2319-8656 (Online)

CERTIFICATE OF PUBLICATION

This is to certify that the paper entitled

Literature Review"
Authored by
Hind Alamin Mohamed
Has been published in Volume 3, Issue 12, December 2014 of
International Journal of
Computer Applications Technology and Research (IJCATR)

54| The Editors of International Journal of Computer Applications Technology and Research (LICATR)

“Reverse Engineering for Documenting Software Architectures, a

75

REFERENCES

Alamin, H. & Ammar, H., 2014. Reverse Engineering for Documenting Software
Architectures, a Literature Review. International Journal of Computer Applications

Technology and Research, Dec, 3(12), pp. 785-790, ISSN: 2319-8656 (Online).

Alamin, H. & Ammar, H., 2020. Concerns-Based Reverse Engineering for Partial
Software Architecture Visualization, International Journal on Informatics Visualization,

vol. 4(2020), no.2, Apr 2020, pp. 58 - 68, ISSN: 2549-9610 (Online).

Anquetil , N. & C. Lethbridge, T., 1999. Recovering Software Architecture from the
Names of Source Files. Journal of Software Maintenance: Research and Practice, 3(11),

pp. 201-221.

Arshad, R. & Lau, K. K., 2017. Extracting Executable Architecture From Legacy Code
Using Static Reverse Engineering. s.1., s.n., pp. 55-59.

Che, M., 2013. An Approach to Documenting and Evolving Architectural Design
Decisions. San Francisco, CA, USA, IEEE, pp. 1373-1376.

Che, M. & Dewayne, E. P., 2011. Scenario-based architectural design decisions
documentation and evolution. In Proceedings of Engineering of Computer Based

Systems (ECBS'11), IEEE, 2011, 27-29 Aprilpp. 216-225.

Che, M. & Dewayne, E. P., 2012. Managing architectural design decisions
documentation and evolution. In Proceedings of 6th International Journal of Computers,

pp. 137-148.

Chikofsky, E. J. & James, H. C., 1990. Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 13-17 January, 7(1), pp. 13-17.

76

Clements, P., 2005. Comparing the SEI’s Views and Beyond Approach for
Documenting Software Architectures with ANSI-IEEE 1471-2000, Carnegie Mellon

University: Software Engineering Institute.

Clements, P., Bachmann, F., Bass, L. & Ga, D., 2010. Prologue: Software Architectures
and Documentation. [Online] [Accessed 26 April 2014].

Demeyer, S., Stéphane, D. & Nierstrasz, 2008. Object Oriented Reengineering Patterns.
In: Switzerland: Square Bracket Associates, pp.338.

Garg, M. & Jindal, M. K., 2009. Reverse Engineering Roadmap to Effective Software

Design. International Journal of Recent Trands in Engineering, May.1(2).

Harman, M., Langdon, W. B. & Weimer, W., 2013. Genetic Programming for Reverse
Engineering. Koblenz, Germany, IEEE.

Heesch, D. v., Copyright © 1997-2016. Doxygen Tool website and Doxygen

Documentation. [Online] Available at: http://www.doxygen.org/download.html

Henk, K. & Vliet, H. V., 2006. A method for defining IEEE Std 1471 viewpoints.
Journal of Systems and Software, ELSEVIER, 79(1), pp. 120-131.

Hugo, B., Cabot, J., Dupé, G. & Madiot, F., 2014. MoDisco: A Model Driven Reverse
Engineering Framework. Information and Software Technology, 56(8), pp. 1012-1032.

Imam Ya’u , B. & Yusuf, M. N., February 2018. Building Software Component

Architecture Directly from User Requirements. International Journal Of Engineering

And Computer Science, 7(2), pp. 23557-23566.

77

Institute of Electrical and Electronics Engineers, 2000. IEEE Recommended Practice
for Architectural Description of Software Intensive Systems. [Online]
Available at: http://cabibbo.dia.uniroma3.it/ids/altrui/ieee1471.pdf [Accessed 9 July
2014].

Khadka, R., A., S., S., J. & J., H., 2013. A structured legacy to SOA migration process
and its evaluation in practice. 2013 IEEE 7th International Symposium in Maintenance

and Evolution of Service-Oriented and CloudBased Systems (MESOCA), pp. 2-11.

Kim, W., Chung, S. & Endicott Popovsky, B., October 15-18, 2014, ACM. Software
Architecture Model Driven Reverse Engineering Approach to Open Source Software

Development. Atlanta, Georgia, USA, ACM, pp. 9-14.

Kruchten, P., 1995. Architectural Blueprints: The “4+1” View Model of Software
Architecture. IEEE Software, 6(12), p. 42-50.

Kumar, N., 2013. An approach for Reverse Engineering thorough Complementary
Software Views. In Proceedings of International Conference on Emerging Research in

Computing, Information, Communication and Applications (ERCICA'13), pp. 229-234.

Lau, K. & Tran, C. M., 2012. X-man: An mde tool for Component based System
Development. IEEE, IEEE, pp. 158-165.

Len Bass, R. K. & Celements, P., 2003. Software Architecture in Practice. 2nd ed.

s.l.:Addison Wesley Professional.

Liang, G. & Yu, L., December, 2013. Quality Driven Re-engineering Framework,
Sweden: Blekinge Institute of Technology.

78

M. Harman, W. B. Langdon, and W. Weimer, 2013. Genetic Programming for Reverse
Engineering. Koblenz, Germany, IEEE.

M. Harman, Yue J., W. B. Langdon, J. Petke, Iman H. Moghadam, Shin Y. and F. Wu.,
2014. Genetic Improvement for Adaptive Software Engineering. s.1., In Proceedings of
Oth International Symposium on Software Engineering for Adaptive and Self-Managing

System.

Maras, J., Stula , M. & Crnkovic, L., 2009. PHPModeler- a Web Model Extractor. IEEE
Computer Society (Nov2009), s.n., pp. 660-661.

MICR O S OF T ® Architecture guide, 2009. MI CR O S O F T ® Application
Architecture Guide(patterns & practices Developer Center), Application ArcheTypes,
Chapter 20: Choosing an Application Type. [Online]
Available at: https://msdn.microsoft.com/en-us/library/ee658104.aspx

MySQL 5.7 Reference Manual Document, 2017. MySQL 5.7 Reference Manual
Document /Full-Text Search Functions/Full-Text Restricitions. [Online]

Available at: https://dev.mysql.com/doc/refman/5.7/en/ [Accessed 28 March 2017].

MySQL 5.7 Reference Manual Document, 2017. MySQL 5.7 Reference Manual
Document/Full-Text Search Functions/Natural Language Full-Text Searches. [Online]
Available at: https://dev.mysql.com/doc/refman/5.7/en/fulltext-natural-language.html
[Accessed 25 March 2017 at 8:00AM].

MySQL Reference Manual, n.d. MySQL Reference Manual/Important Algorithms and
Structures/10.7-Full-TextSearch. [Online] Available at:
https://dev.mysql.com/doc/internals/en/full-text-search.html [Accessed 1 April 2017 at
05:30PM].

79

Nicholas, M., 2005. A survey of Software Architecture Viewpoint Models. s.1., s.n., pp.
13-24.

Panas , T., Lowe, W. & ABmann , U., n.d. Towards the Unified Recovery Architecture
for Reverse Engineering. [Online] Available at: https://ai2-s2-
pdfs.s3.amazonaws.com/b8e1/c9bd8cf3360b82de68e8049b281ale2f4a25.pdf
[Accessed 30 October 2017].

Penta, G. C. & Massimiliano , D., 2008. Frontiers of Reverse Engineering: a

Conceptual Model. pp. 38-47.

R.Hilliard, D. Emery, M. Maier, 2007. All About IEEE Std 1471. [Online]
Auvailable at:

http://www.csee.wvu.edu/~ammar/CU/swarch/lectureslides/slidesstandards/all-about-

ieee-1471.pdf

Razavizadeh, A., Verjus, H., Cimpan, S. & Ducasse, S., 2009. Multiple Viewpoints
Architecture Extraction. 2009 IEEE/IFIP WICSA/ECSA, pp. 329-332.

Riva, C. & Yang, Y., 2002. Generation of architectural documentation using XML.
IEEE Computer Society Press, In Proceedings of the 9th Working Conference on
Reverse Engineering (WCREO02), pp. 161-169.

Rosenberg, L. H. & Lawrence, E. H., 1996. Software re-engineering. [Online]
Available at: http://www.scribd.com/doc/168304435/Software-Re-Engineering1

[Accessed 26 April 2014].

Rozanski, N. & Woods, E., 2005. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. 2nd ed. s.l.:Addison Wesley.

80

Rozanski, N. & Woods, E., 2011. Applying viewpoints and views to software
architecture. [Online] Available at: http://www.viewpointsandperspectives.info/vpandp
/wpcontent/themes/secondedition/doc/VPandV_WhitePaper.pdf

[Accessed 14 June 2015].

Rozanski, N. & Woods, E., 2011. Viewpoints and Concerns. [Online] Available at:
http://www.viewpoints-andperspectives.info/home/viewpoints

[Accessed 10 November 2015].

Rozanski, N. & Woods, E., n.d. Viewpoints and Perspectives Reference Card. [Online]
Available at: http://www.viewpoints-and-perspectives.info/home/viewpoints/functional-

viewpoint/ [Accessed 10 November 2015].

Saeidi, A., 2013. Migrating a large scale legacy application to SOA: Challenges and
lessons learned. In Reverse Engineering (WCRE), 2013 20th Working Conference, pp.
425-432.

Shahin, M., Liang, P. & Khayyambashi, M., 2009. A Survey of Architectural Design
Decision Models and Tools. Technical Report SBU-RUG-2009-SL-01. [Online]
Available at: http://www.cs.rug.nl/search/uploads/Publications/shahin2009sad.pdf
[Accessed 8 July 2014].

Shahin, M., Liang, P. & Khayyambashi, M., 2009. Architectural Design Decision:
Existing models and tools. In Proceedings of Software Architecture, 2009 & European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference 2009, pp. 293-296.

Somasegar, D. H. S. & Guthrie, S., 2009. MICROSOFT APPLICATION
ARCHITECTURE GUIDE (Patterns & Practices Developer Center), s.1.: s.n.

81

Starke, G. & Hruschka, P., 2017. Arc24 Template for documentation of software and

system architecture. [Online] Available at: http://www.arc24.de

Stringfellow, C., Amory, C. D. & Potnur, D., 2006. Comparison of software
architecture reverse engineering methods. In Proceedings of Information and Software

Technology, July, 7(48), pp. 484-497.
Woods, E., 2004. Experiences Using Viewpoints for Information Systems Architecture:
An Industrial Experience Report. European Workshop on Software Architecture, May,

pp. 182-193.

Zalazar, A., Gonnet, S. & Leone, H., 2015. Migration of Legacy Systems to Cloud
Computing. Electronic Journal of SADIO (EJS), Issue 14, pp. 42-55.

82

