

 Sudan University of Science and Technology

 College of Graduate Studies

Motion Detection Algorithm Using Open Computer Vision

يةرؤية الحاسوبلل رمجية المفتوحةبال ةالمكتببإستخدام ف الحركةشكخوارزمية

A thesis submitted in partial fulfillment for the award of the degree of

M.Sc. in Computer and Network Engineering

Prepared by:

Mohammed Naeem Altyp Osman

Supervisor:

Dr. Ibtihal Haidar Gismallah Yousif

August 2020

i

 الإستهلال

﴿
ْ
م
َ
عْل
َ
 ي
ْ
م
َ
 مَال

َ
سَان

ْ
 الإن

َ
م
َّ
 ﴾ (5)عَل

(5العلق)

ي م

 صدق الله العظ

ii

DEDICATION

To

The source of tenderness

My mother

To

All My family

To

Who Paved the way of science for me

my Teachers

To

All my friends

iii

ACKNOWLEDGMENT

First, I would like to thank God Almighty and all his blessings and

blessings to complete this research.

I would like also to thank Dr. Ebtihal Haidar for her unlimited support and

guide me to the right path to complete this research.

Finally, I would like to thank my family and all my friends who helped me

to complete this research.

iv

Abstract

Monitoring areas such as security and surveillance are key areas in all

aspects of our life in homes, roads, work areas, military zones, and other areas.

Surveillance cameras have emerged to cover this field and have produced

good results, but these cameras need people during the surveillance time to

monitor the video from the cameras, making the monitoring process

expensive and tedious. Motion detection system was designed for this

purpose to detect any motion occurred in the area and then gives alarm signal

to notify by the movement. This project was designed using the open

computer vision (Open cv) library under Microsoft Visual Studio and tested

with universal serial bus (USB) camera. The project gave good results

especially in extracting the background and updating it by doing three tests,

two of them using pre-recorded video files, the result of project was good

because it detected almost all the movable targets in the video approximately

(99.9%) detectable objects. The third test was a live video from webcam

cameras on the laptop and another external USB camera connected to the

computer and the project was tested and gave good results.

v

 المستخلص

الطرق ، ة في جميع جوانب حياتنا مثل المنازل ،تعتبر مجالات المراقبة من المجالات الرئيسي

لمجال امناطق العمل ،المناطق العسكرية ومناطق أخرى. لقد ظهرت كاميرات المراقبة لتغطية هذا

لفيديو من اوحققت نتائج جيدة ، لكن هذه الكاميرات تحتاج إلى أشخاص خلال فترة المراقبة لمراقبة

حركة لهذا ة باهظة الثمن ومملة. تم تصميم نظام الكشف عن الالكاميرات ، مما يجعل عملية المراقب

م تالغرض للكشف عن أي حركة حدثت في المنطقة ومن ثم يعطي إشارة إنذار للإعلام بالحركة.

ة خاصة أعطى المشروع نتائج جيد تصميم هذا المشروع باستخدام مكتبة رؤية الكمبيوتر المفتوحة.

لفات الفيديو طريق إجراء ثلاثة اختبارات ، إثنان منها باستخدام م في إستخراج الخلفية وتحديثها عن

لفيديو تقريباً االمسجلة مسبقاً ، وكانت نتيجة المشروع جيدة لأنها اكتشفت جميع الأهداف المنقولة في

على ٪(أشياء قابلة للكشف. الاختبار الثالث كان فيديو مباشر من كاميرات كاميرا ويب99.9)

م اختبار خارجية أخرى متصلة بالكمبيوتر بالناقل التسلسلي العام وت محمول وكاميراالكمبيوتر ال

 . المشروع وقدم نتائج جيدة

vi

TABLE OF CONTENTS

 i ... الإستهلال

DEDICATION ... ii

ACKNOWLEDGMENT ... iii

Abstract ... iv

تخلصالمس ... v

TABLE OF CONTENTS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF ABBREVIATIONS .. xii

CHAPTER ONE :INTRODUCTION .. 1

1.1 Overview .. 1

1.2 Analogue Videos Standard .. 2

1.2.1 Component Analog Video (CAV) .. 2

1.2.2 Composite Video .. 3

1.2.2.1 National Television System Committee (NTSC) 3

1.2.2.2 Phase Alternation Line (PAL) ... 3

1.2.2.3 System Electronic Color Avec Memoire (SECAM) 3

1.2.3 S-Video (Y/C video) ... 4

1.3 Problem Statement ... 4

1.4 Objectives ... 4

vii

1.5 Methodology .. 5

1.6 Thesis organization .. 6

CHAPTER TWO : LITERATURE REVIEW .. 7

2.1 Background .. 7

2.2 background Subtraction Methods .. 7

2.3 Sobel Edge Detection Algorithm ... 9

2.4 Frequency-Tuned (FT) algorithm .. 10

2.5 Morphological Transformation and segmentation method 15

2.6 Improved background subtraction algorithm ... 16

2.7 Further Related Studies .. 17

CHAPTER THREE : ALGORITHM DESIGN 25

Introduction .. 25

3.1 Software and Tools .. 25

3.1.1 Open CV Library .. 25

3.1.2 USB Camera ... 26

3.2 General System Description .. 27

3.3 Algorithmic Design .. 28

viii

CHAPTER FOUR : THE RESULTS ... 33

4.1 Average algorithm.. 33

4.2 Modified average algorithm ... 35

4.3 Motion Detection Algorithm .. 38

4.3.1 Motion Detection from Video File ... 38

4.3.2 Bounding box feature (Tracking object) 41

4.3.3 Motion Detection using Live Video ... 42

CHAPTER FIVE : CONCLUSION AND RECOMMENDATION 44

5.1 Conclusion ... 44

5.2 Recommendation ... 45

References .. 46

APENDEX A: Source CODE1 .. 48

APENDEX B: Source CODE 2 ... 50

APENDEX C: source CODE 3 .. 53

ix

LIST OF TABLES

Table 3.1: The specification of selected camera .. 27

Table 4.1: Buffer Size with Background and Frame Rate 36

Table 4.2: Threshold with Output Accuracy ... 40

x

LIST OF FIGURES

Figure 1.1: Progressive Tv Scanning ... 1

Figure 1.2: Interlaced TV scanning ... 2

Figure 1.3: Flow Chart for Motion Detection Algorithms 5

Figure 2.1: motion detection structure [2]. .. 8

Figure 2.2: Sobel masks [2]. .. 9

Figure 2.3: Frequency-tuned (FT) algorithm ... 12

Figure 2.4: falling detection algorithm [8] ... 14

Figure 2.5: The Brightness Image Difference During Time Axis Change

Function.. 15

Figure 2.6: Improved Background Subtraction Algorithm [9]. 16

Figure 2.7: Vehicles Detection Algorithm [9] ... 17

Figure 2.8: Motion Detection Uses Mathematical Morphology. 20

The result of this work is shown in figure bellow witch consist little noise in

output binary image. .. 20

Figure 2.9: Detecting Object Causing Motion & Output of Absolute

Differencing ... 20

Figure 2.10: Object detection algorithm .. 21

Figure 3.1: USB Camera .. 26

Figure 3.2: General System Description .. 27

Figure 3.3: System Flow Chart Design .. 29

xi

Figure 3.4: Background Subtraction Algorithm .. 32

Figure 4.2: Result of Average Algorithm with Updating Background. 34

Figure 4.3: Modified Background Extraction Algorithm Results 35

Figure 4.4: Relation Between Buffer Size and Background Accuracy. 37

Figure 4.5: Relation between Buffer Size and Output Frame Rate. 37

Figure 4.6: Motion Detection Results. ... 39

Figure 4.7: Relation Between Threshold and Output Accuracy 40

Figure 4.8: Effect Threshold for Quality of Output. 41

Figure 4.9: result of output with bounding box on original video 42

Figure 4.10: The Result of Motion Detection by Using Live Video 43

xii

LIST OF ABBREVIATIONS

2D Two Dimension

CAV Component Analog Video

 CCTV Closed-Circuit Television

CV Computer Vision

EPZS Export Processing Zones

FPGA Field-Programmable Gate Arrays

FT Frequency-Tuned

GSM Global System For Mobile

HDL Hardware Description Language

HLS High Level Synthesis

MAT LAB Matrix Laboratory

MPEG-4 Moving Picture Experts Group

NTSC National Television System Committee

PAL Phase Alternating Line

PIC Peripheral Interface Controller

PTZ Pan–Tilt–Zoom Camera

QAM Quadrature Amplitude Modulation

SECAM Sequential Color with Memory

SIP Spatial Image Partition

SSB-L Subcarrier Sideband

STP Spatiotemporal Projection

TMD Temporal Motion Detection

TV Television

UN United Nation

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Hardware_description_language
https://en.wikipedia.org/wiki/Moving_Picture_Experts_Group

xiii

USB Universal Serial Bus

VSB Vestigial Side Band

GUI Graphic User Interface

OS Operating System

V3 Version Three

1

 CHAPTER ONE

 INTRODUCTION

1.1 Overview

The video is a sequence of images changes with time. The image

sometimes called frame in video concept so the video rate measure number

frames per second which indicate the number of images taken in one second

such as 25 frames per second and 30 frames per second, these two rates are

the most common rates used in the video. Video signals were being analog

or digital signals, analog signal usually used for transmitting or recording as

TV video, but the digital signals are used on the video processing such as

enhancement, compressing … etc. [1].

Analog video signals obtained by periodic sampling (scanning), there are

two methods of scanning video progressive scanning and interlaced scan.

In progressive scanning method complete frame will be traced each

second. The computer industry is an example of this method with time t=1/72

second for monitors [1].

Figure 1.1: Progressive Tv Scanning

2

But the interlaced scanning method use the odd and even lines to scan the

picture, that means this method will separate the picture (frame) into two

parts odd parts and even parts, each part called field. Also, this method has a

horizontal retraced to switch from field to another. TV video signals are the

example of this method [1].

Figure 1.2: Interlaced TV scanning

1.2 Analogue Videos Standard

There are three standards for analogue video witch differ in image

parameter and also differ in the method to process the image color. These can

classified as follow.

1.2.1 Component Analog Video (CAV)

This standard uses Three signals to represent all components of video,

one signal for luminance gray level (Y Signal), and two signal for

chrominance colored signals (I & Q signals).

Y=0.3R+0.59G+0.11B (1.1)

 I=0.60R+0.28G-0.32B (1.2)

 Q=0.21R-0.52G+0.31B (1.3)

This standard requires synchronization of three video components with time

[1].

3

1.2.2 Composite Video

All components of video are collecting together with one signal in this

standard, there are three signals format using this standard [1].

1.2.2.1 National Television System Committee (NTSC)

This standard used in North America and Japan, it is composite video

standard it depends on interlaced video scanning method with 30 frames per

second and 4:3 aspect ratio.

The signal of NTSC has 6MHz of bandwidth and it composed from

Vesical Side Band modulation (VSB) for luminance signal(Y), quadrature

amplitude modulation (QAM) for (Q) channel, subcarrier sideband

modulation (SSB-L) for (I) channel and frequency modulation for the audio

channel [1].

 1.2.2.2 Phase Alternation Line (PAL)

European standards also use interlaced scanning method with 50 frames

per second, 625 lines per frame, and 2:1 interlaced. The band width of signal

is 8MHz, with a color subcarrier at 4.43 MHz above the picture carrier. the

both chrominance signals (Q and I) are used Quadrature Amplitude

Modulation (QAM). The main difference between PAL and SECAM in the

integration color signals (chrominance) with the luminance signal [1].

 1.2.2.3 System Electronic Color Avec Memoire (SECAM)

The chrominance signals Cr and Cb are transmitted alternatively on

successive scan lines. They are used FM modulated on color subcarriers 4.25

4

MHz and 4.41 MHz for Cb and Cr, respectively. Since only one chrominance

signal will be transmitted on line, there is no interference between the

chrominance components [1].

1.2.3 S-Video (Y/C video)

 combination between the composite video and the component analog

video, which represent the video as two component signals, a luminance and

a composite chrominance signal, The chrominance signal can be based upon

the (I,&) or (Cr, Cb) representation for NTSC, PAL, or SECAM systems.

S-video is currently being used in consumer quality video cassette recorders

and camcorders to give image quality better than the composite video [1].

1.3 Problem Statement

In several fields sometimes we need to detect the motion of objects in an

important place to avoid many problems such as thieve and car traffic,

monitoring place. In the field of using CCTV camera this feature does not

support in security cameras, this feature will add new technique in security

fields.

1.4 Objectives

The main objective of this thesis is to design motion detection algorithm

from life video using computer vision environment open CV with increase

accuracy.

5

1.5 Methodology

This project will use a motion detection algorithm by two parts, the first

part is algorithm for extract the fixed background from the video and then

apply this algorithm for recorded videos, life webcam video and live video

from external camera to ensure this algorithm will extract real background

video properly, then the second part applies the motion detection algorithm

and deliver the output video as binary video (Black and white). This

algorithm will apply by the computer vision library (Open CV) on visual

studio C/C++ software figure 1.3 below explain the main steps to implement

the propose solution.

Figure 1.3: Flow Chart for Motion Detection Algorithms

 Start

Getting more frames(image) from video

Apply background extraction algorithm

Apply motion detection algorithm

 Binaries the output video

 END

6

1.6 Thesis organization

The Research will be organized as a follows chapter2 discusses the

literature review of video processing techniques. Chapter3 discusses the

methodology that will apply in this project by more details (explain all

algorithms will have applied in this project) and software and tools that will

be used. Chapter 4 present the result of this project and finally chapter 5

present the conclusion and recommendation.

7

CHAPTER TWO

 LITERATURE REVIEW

This chapter covers the related work for this research in different topics

by using different methods to solve this problem by using different tools,

software and algorithm.

2.1 Background

The idea of the research has been achieved by a lot of researchers and

designer, for this project will used the different methods to extract the

background video will be discussing that will expect to enhance the output

of background video which will improve the final output, then border will be

adding to input video (high quality) around the moving objects as output

video in addition of the binary output video.

 This project can use at security systems field which will give more

reliable system, no need for human check the video at all time, activate the

alarm system when the camera reaches the un wanted view and can generate

record signal only if the motion occurred in monitoring place which will save

many memory space bytes to store the monitoring video (low cost).

2.2 background Subtraction Methods

 Video processing applications became very important in surveillance

field, traffic flow, security systems and computer vision etc. Computer vision

has the basic tools of detect live moving object. For improve the real time

moving object detection, motion detection algorithm is applied based on the

background subtraction algorithm with many steps grey level background

8

video, color reduction technique is applied to both the background and input

video, both filtered videos are subtracted using image subtraction, the gravity

center of the object image is calculated and sent to a computer via serial

interface and Sobel edge detection algorithm is used to identify motion

object's edges [2].

Figure 2.1: motion detection structure [2].

Detection algorithm takes a number of frames in order or to identifies

moving pixels in the given scene. This thesis only focuses on Background

Subtraction Algorithm. which uses as background reference video which is

saved in memory. The original video is transformed into images and each

9

image was compared with the background image to gives the moving pixels

from the difference. There are two methods to extract background video,

offline method (un-updated method) and online method (update method) if

the offline method was applied the more error may be accrued even if the

moving object becomes stationary this mean this became one element of the

background. But if the online method was applied the background video was

updated by averaging out the images in a period of time. This is a more

effective method because in such case frequently moving the object,

temporarily fixed objects etc., the background image doesn’t contain this

target. Successive images are subtracted to identify moving pixels rather than

using a fixed reference image. This method is able to adapt to dynamic

scenery changes [2].

2.3 Sobel Edge Detection Algorithm

Sobel operator rub on a 2-D spatial domain for image. the aim of the

Sobel is to find the absolute gradient scale at each pixels. Fig. 2 show Sobel

mask with size 3*3. Two (one pair) 3*3 mask is used by the Sobel edge

detector. One mask is used for estimate the X direction and other is used for

y direction. The size of the convolution mask is smaller than the actual image.

 Gy Gx

Figure 2.2: Sobel masks [2].

-1 0 +1

-2 0 +2

-1 0 +1

+1 +2 +1

0 0 0

-1 -2 -1

10

This algorithm applies this mask for the row to change pixel value and

shift it to right for entire raw then go to another raw till complete all rows to

detect the edge.

 The main advantage of this approach is that it is very cost effective and

simple, requires less computation. However, this approach faces difficulty in

identifying object’s shape resulting in difficult posterior recognition. Also it

fails to identify stopped objects in the scene. In optical flow, a motion vector

of each pixel is computed and entire image could be imagined as a vector

field. The motion vector of each pixel represents the brightness of the pixel.

The region of the image where brightness change is observed is considered

as a candidate for moving object. This approach results in good performance,

however this algorithm is very complex, as one more than image needs to be

stored, thus resulting in higher memory requirements, in-turn resulting in

high cost [2].

2.4 Frequency-Tuned (FT) algorithm

Motion detection and recognition of targets is an important in the field of

video processing. A new Frequency-tuned (FT) algorithm has been used for

extracting target dynamic saliency information from a mixture of Gaussian

models, aiming at the misty effect of the traditional Frequency-tuned (FT)

algorithm saliency map and the significant of feature map fusion. This

algorithm makes innovative improvements from distance metrics and feature

graphs. To solve the large computational complexity of traditional

identification algorithms, the algorithm uses a Haar cascaded classifier with

low computational complexity as a classification algorithm, and uses Open

CV and Qt interface library to build an integrated multi-module system

11

software platform to achieve single-target recognition and moving object.

This algorithm achieved a good results and has significant effects on the

detection and recognition of single-target motion and has high accuracy [2].

A moving object detection and identification mainly contain three

functions: moving detection, tracking the targets and recognition. Now,

according to the old method, there are two methods of different ideas for

motion detection. The first type is based on the content of pixel location, this

algorithm mainly focuses on the motion properties of the moving targets

themselves, the image is segmented by means of edge detection, optical flow,

etc., and then the spatial characteristics are used as the main criterion to

estimate the moving object. The results of this method are more accurate, but

the amount of calculation is very large; another kind of algorithm mainly uses

the change of detection time as a basic criterion. This type of algorithm does

not focus on the motion properties of moving objects but detects the change

and invariant regions of the image mainly by the inter-frame difference

method. the goal from it segments the moving target and the fixed

background and ultimately achieve the effect of moving object detection. The

biggest advantage of this method is that it reduces the computational

complexity, but the accuracy is not good. This article is mainly based on the

principle and mechanism of visual attention, applied to the detection and

recognition of single target moving objects [3].

12

Start

Input image

Extract static saliency map based

On improved FT algorithm

Use pre-background separation

Algorithm to deal with static

Saliency map

Extract dynamic saliency map

Output final saliency map

End

Figure 2.3: Frequency-tuned (FT) algorithm

Firstly, an improved Frequency-tuned (FT) algorithm is proposed, which

is improved from both the distance metric form and the feature graph fusion

method. Then the improved Frequency-tuned (FT) algorithm is combined

with the pre-background separation algorithm based on the mixture Gaussian

model to extract the dynamic significant information. Then, the Hear cascade

13

classifier with relatively simple computation as the basic algorithm for object

recognition. Finally, the Open CV open-source computer vision platform was

chosen as the basis for the implementation of the algorithm, and the Qt open

source interface library was chosen as the platform for system integration,

and it integrates human-computer interaction GUI interface module,

detection algorithm module, identification algorithm module, network

remote transmission module, and forms a complete system model. Through

the actual test analysis of the image effects and the final frame rate and

recognition error rate, it can be seen that the algorithm model can well

complete the single-target moving object detection and identification tasks.

The entire system has a wide range of applications and has a good prospect

of practical engineering applications.

The progress advantages of networking, digitization and intelligence,

embedded video surveillance system is broadly used in our life. In the current

solutions, the difficult image processing algorithms cannot be achieved

professionally in costly manner [4].

Design a embedded image processing system that involved image

acquisition, processing and displaying in one set, but the image processing

module and network transmission module is still not perfect [5].

Used Open CV to process the single image downloaded from the Web

server, rather than the streams collected from camera in real-time [6].

Designed a networked video surveillance system based on B/S structure,

this solution is very matured in embedded video surveillance, while there is

no image processing module [7].

Based on the existed embedded video surveillance system platform, this

paper adds the image processing module using efficient Open CV library

14

functions, the live video streams captured from cameras can be handled

effectively. Then take moving target detection algorithm as an example to

verify this solution is feasible [8].

Figure 2.4: falling detection algorithm [8]

Falling detect system. In the proposed system, this design presents an

automatic approach for detecting and recognizing falls people using video

based technology. This design focus on the protection and assistance to the

elderly people. The fall action is automatically extracted from the video,

special information that can be used to give alarm or to make a suitable action

whether the fall is really occurred. The main function of this work is to

provide such a system which automatically detects the fall and intimate the

respective authority. Proposed method uses background subtraction to detect

15

the falling object and mark those objects with a boarder box followed by

extracting the f information [8].

2.5 Morphological Transformation and segmentation method

This work aims to detect a vehicle from the high way traffic flow based

on the morphology and wavelet transform method. Using image differences

to get a background to transform the impact of light clearly, the

corresponding easy and quick to update the background algorithm was used.

This was achieved by background subtraction algorithm, and then images of

the vehicles were the accurate detection of mathematical morphology and

wavelet transform. A video object detection system was developed using

visual (C++) v6.0 and Open CV. A background extraction, image filtering,

binary image, morphological conversion, vehicle detection, and separation

methods and stages have detected vehicle on the road from traffic flow. this

system to identify the correct rate of more than 98 percent, satisfying the

requirements of practical applications [9].

Figure 2.5: The Brightness Image Difference During Time Axis Change Function

The flowing equations represent the corresponding video background as (2.1).

And video frequency background as in (2.2).

M (x, y) -(ST (x, y) +End (x, y))/2 (2.1)

B (x, y) =F (x, y, M (x, y)) (2.2)

16

ST (x, y), End (x, y) the statistic partition (starting and end), B (x, y) is

reconstruction video frequency back ground [9].

2.6 Improved background subtraction algorithm

Motion detection and tracking function is based on the video stream

processing of computer vision. Motion detection mainly used for object

tracking, behavioral analysis, target recognition and identification, and so on.

To achieve all these tasks must use the background extraction firstly, then

easily can achieve these tasks, therefore enhances the motion detection

algorithm timeliness, the accuracy and the integrity has theoretical value and

the actual project significance. To detect moving object, the object position

is very important to movement object tracking when needs to solve the

question has the movement object classification, tracking function not

effective when tracking the movement, the multi objective tracks and so on.

Moving object detection and tracking algorithm was researched in this work.

An improved background subtraction algorithm was proposed for this work

[9].

Figure 2.6: Improved Background Subtraction Algorithm [9].

17

Figure 2.7: Vehicles Detection Algorithm [9]

2.7 Further Related Studies

In [10] the issue is detecting up normal sleep by sensing the patient

motion using motion detection algorithm to determine sleep disorder. The

MATLAB software was used to achieve this project, the image differences

algorithm was found in MATLAB library (imabsdiff) this function requires

two arguments as image and has one output image as absolute differences

between the pixel’s value. The output of this work was tested at a short time.

18

Because the designer found the processing of this algorithm using MATLAB

was need more time so this project unable to process at a long time.

In [11] the issue object extraction combining with motion detection

algorithm using MPEG-4, the project focused on the object rather than

background so the output was doing not consist of background. Three steps

were used for this project, spatial image partition(SIP), temporal motion

detection (TMD) and spatiotemporal projection (STP) using global. Applied

all three algorithms on MPEG-4 software to test project. The result of this

project was effective to extract the object if there is one object appear in the

video, but if the video contains more than object this project cannot process

all objects so the project will need new techniques to avoid this problem.

In [12] the issue is detecting a salient object motion in the complex

background area and recognize target motion from different motions on the

monitoring area. The algorithm that was used for this project based on

combining temporal difference image and binary block image which is

calculated by the motion vector using the newest MPEG-4 and EPZS.

The result of this project is more effective in complex background area

that consists of more than one moving object, but the target object must be

moved faster than other objects. The limitation of this project depends on the

type of moving objects and their speed if the target object was moving slowly

or zigzag this algorithm cannot detect this object.

In [13] the aim of the work is to design the real-time motion detection

algorithm using open CV library. The image segmentation preprocessing

algorithm was used in this project using open CV library, and transform all

picture from RGB colored picture to gray level, then using frame differences

to detect the moving object by using threshold value. Through this threshold,

19

applied to the whole image, pixels whose gray levels exceed the value, then

set the value of this pixel (1) otherwise reset this pixel (0). The Result of this

project is to detect only a red color object but did not detect any other color

object. this project was designed for the only red color object so this project

could not use in general application because it designs for specific

applications.

In [14] the issue is design and enhance security system by motion

detection algorithm using MATLAB and GSM connecting with a PIC

microcontroller for the alert system. MATLAB software was used for video

processing and apply the algorithm of detecting an object, the microcontroller

for alarm system witch send alarm control signal to the GSM module to send

alarm message when moving to detect. The output of this project depends on

complexity and format of input video because the algorithm was used for

motion detection based on try and error input value (tuning factor) to enhance

the output.

In [15] the issue is detecting motion for security system using video

processing on open CV. The methodology that was used in this paper is

mathematical morphology using generic tool for open CV, Emgu CV with

absolute differencing to get the object motion. Also, use image filtering for

noise removal.

20

Figure 2.8: Motion Detection Uses Mathematical Morphology.

 The result of this work is shown in figure bellow witch consist little noise in output

binary image.

Figure 2.9: Detecting Object Causing Motion & Output of Absolute Differencing

21

Classification Object detection

The left image is the moving object surrounded by bounding yellow triangle

and the right image it is binary output result there are some noise in the object,

also the video was used in this project is file video, not a real time and the

stationary background.

In [16] the issue is design the moving object detection and tracking

system for security in important area. The methodology was followed on this

work background subtraction algorithm and Foreground mask sampling. This

paper proposes the use of cascade classifier for object detection.

 Image Acquisition Background Foreground

 From camera subtraction extraction

Figure 2.10: Object detection algorithm

This paper provided the function of moving object effectively using the

background subtraction method but did not use video contain un stationary

background to test the updated background.

In [17] the issue is design and implementation the motion detection

algorithm using Raspberry Pi hardware an optical flow algorithm.

The methodology was used in this project is the optical flow algorithm

using Raspberry Pi. The idea behind this project is to find the displaced object

from an image using the Lucas Kanade algorithm. This algorithm works by

22

comparing the first two successive image frame with that it guesses the

direction of the displaced object. The output of this project worked well at a

low-speed object but there is the delay was created from Lucas-Kanade

algorithm estimates the motion of objects. The hardware was used in his

project did not support all video format.

In [18] the issue is design motion detection algorithm to keep a more time

to monitoring and system power. The method that used in this project is

background subtraction and frame differencing technique. Background

subtraction is a method that subtracts the current frame with background

frame to get a moving object and frame differencing is a method that subtracts

the current frame with the previous frame to get a moving object.

The monitoring system is usually applied to security parts, for example

in investment, warehousing, workplaces, various public facilities such as

airports, stations, until used in homes. The implementation of a checking

system for production parts, for example, is applied in the manufacturing or

industrial segments where management can monitor or monitor production

events of worker’s laborers, control process instrumentation, machinery

installations, and others. And of course, there are still many other objectives

that underlie the implementation of the monitoring system. Thus, the use of

a camera on a surveillance system is needed. But the problem is that the

camera that is installed is always recording even though there is no movement

or incident that occurs, as a result, there is a useless memory use. One other

to handle this problem is to design software that can improve the efficiency

of the camera.

What is meant by background is a number of pixels that are still images

and do not move in front of the camera. The simplest background model

23

assumes that all background pixel brightness changes freely depending on

the normal distribution. Background characteristics can be calculated by

accumulating several numbers of frames so that it will find the number of

pixel values in location s (x, y) and square-square sq (x, y) which have values

for each pixel location. While the foreground is all objects that exist besides

the background and usually the foreground is there after the background is

obtained [18].

Background subtraction is one of the important tasks that was first done

in computer vision applications. The output from background subtraction is

usually input which will be processed at a further level such as tracking the

identified object. The quality of background subtraction generally depends

on the background modeling technique used to take background from a

camera screen. Background subtraction is usually used in the desired object

segmentation technique from a screen and is often applied to surveillance

systems [18].

The purpose of background subtraction itself is to generate a sequence of

frames from the camera and detect all the foreground objects. A description

of the existing approach to background subtraction is to detect foreground

objects as differences between the current frame and the background image

from the static screen. A pixel is said to be foreground if:

|Frame i–Backgroundi| > Threshold (2.3)

Another approach to getting a background is the Running average model.

Compared to other models such as the Average Model or Median, this model

is superior because it requires less memory than the other models. The

running average model has the following formula:

Bi + 1 = α *Fi + (1α) *Bi (2.4)

24

Where α is the level of learning, usually has a value of 0.05, while Bi is the

background and F is a frame (image).

The result of this project was testing by two recorded videos, the first

video is used the object is different from the background then the final result

is clear, and the other video consists the similarity between the object and the

background then the result has been corrupted [18].

25

CHAPTER THREE

 ALGORITHM DESIGN

Introduction

In this research, the system of detection of moving objects was carried

out using the background extraction algorithm and then use the motion

detection algorithm and tested the system using three kind of videos such as:

 Two Recorded videos.

 Computer web cam video.

 External USB camera video.

3.1 Software and Tools

 There are many software and tools can we chosen to implement this

project. The software and tools will be explained in the following subsections.

3.1.1 Open CV Library

 The algorithms were written on open CV version 3 library on visual

studio version 12 using C++ language. Open CV was chosen because it

specialized programs in the field of video processing in computer vision and

it has more features than other programs in this field such as

 Open CV is open source computer vision library.

 Open CV support common programming language as C, C++, Python

and supported by windows, Linux, and Mac OS X.

 Power full in field of image and video processing.

 After design the project code can use this code to generate HDL code

using special program for hardware design.

26

3.1.2 USB Camera

This project was need external camera to do the real time test to verify

the system designed as we need.

USB camera was selected because it easily to connect with computer

throw USB interface, also the windows easily recognize it and available with

suitable price.

Figure 3.1: USB Camera

27

Table 3.1: The specification of selected camera

Parameters Specification Note

Camera Model 10 & SUPP

camera

Fixed camera with

flexible carrier

Frequency (frame

rate)

30 frame per

second

Standard frame rate

Focal number 2.8 (F. Number)

Focal lens 24 mm Zooming lens

Video Format PAL Digital video

Interface USB 2.0

Frame size 640X480 307200 Pixels

3.2 General System Description

In the general this system consists of three main parts

 Monitoring view: The target place that you need to monitor

important places as work shop, homes, offices, high way traffic flow,

etc…

 Camera: To get real time video then send this video information to

the system.

 The System: May be computer or hardware system receive the real

time video from camera then apply the algorithm to give the result as

information as you like.

 Display unit: external screen or computer screen for display.

Target view Camera System Display

Figure 3.2: General System Description

28

3.3 Algorithmic Design

This part explains by more details the steps of design the project and all

algorisms that were applied.

 Start

 Initialization

 Buffer size and Image size

 Input the video

 Capture image (Frame)

 NO

 No. of frames ≥ Buffer size?

 Yes

 1

2

29

1

 Extract & Update the background

 Read Image one frame

 Apply motion detection algorithm

 Send Record command

 Binary output image

 Tracking the moving object

Figure 3.3: System Flow Chart Design

2

30

 Start: When run the program the system will start execute the design

codes.

 Initialization: In this step all parameter is setting with initial value such

as buffer size witch indicates for number of image captured from input

vide, frame size includes the number of pixels in rows and number of

pixels in column, and other variable if you need to initialized it.

 Input the video: There are three ways used to input video to the system

 Recorded video (already video saved in memory).

 Getting video from the laptop web cam.

 Getting video from external camera throw USB interface.

 Capture image: This process for getting one image (frame) from the

input video and store it in the buffer to use in background extraction

algorithm and motion detection algorithm.

 Comparison stage: This stage to compare the number of captured images

with buffer size value:

 If the number of captured images equal the value of buffer size, then the

background will be update to avoid the un stationary background

problem, the next captured image will be passing to the motion detection

algorithm direct, and the counter of the captured image will be reset.

 If the number of captured image did not equal the buffer size value, then

the captured frame will be passing to the background extraction

algorithm and motion detection algorithm and the counter of the

captured frame will be increment.

 Extract and Update the background: In this stage the extraction

background algorithm has been applied. The idea of this algorithm refers

to comparison operation between the value of pixel in the position (x, y)

31

in the background frame with corresponding pixel in the same position

in the new captured frame, then if the two value are matching to gather,

then the possibility of this pixel in this position as background will

increase, if you found the big different between two pixels in same

position, then the possibility will decrease, then switch to the following

pixel till reach the end of frame, then receive a new frame and apply the

same operation on it till the number of frames reach the value of the

buffer size.

This algorithm should be running all of time but the updated output will

appear rapidly (smooth) each certain period of time. The initial background

was getting from the first frame, then every frame would be coming should

enhance the background till the number of frames equal to the buffer size at

this moment the background must be clearest. After the number of frames

equal the value of buffer size then each frame would be coming must compare

with all previous frames to detect the changing if the background would

change. When buffer size is big the output of background is more clearly but

the rate of out but video will decrease

I = (No.FC-1) % BZ (3.1)

Average Background= (∑ F(I) + FC
𝐵𝑍+𝐼

𝐼
)/BZ (3.2)

Where I the index of saved frame, No.FC the number of current frame,

BZ is Buffer size, F(I) frame number I and FC the current frame.

32

 Start

 FC=Input frame

 No. F=No.F+1

 Yes (No. F) >BZ? NO

 Index = (No. F-1) %BZ Sum. F = Sum. F + FC

 BG = Sum. F/ No. F

Sum. F = Sum. F-F(Index) + FC

 BG = Sum. F/ BZ

Figure 3.4: Background Subtraction Algorithm

33

CHAPTER FOUR

 THE RESULTS

4.1 Average algorithm

 In the first test The algorithm was tested by un-updated background

video, then the background video would have extracted well this algorithm

effective on the fixed background view (Stationary background) because the

background would take one time from input video this cannot make a delay

on output video.

a. Original frame b. gray image

d. Background frame

Figure 4.1: Result of Average Algorithm with Un-Updating Background

34

In the second test another video test was tested with the same algorithm, but

we found the background did not update well because the view of the

background was changed by the moving object (appear or hidden) at a long

time then this object became one part from background view.

 a. Original frame b. gray image

c. Background frame

Figure 4.2: Result of Average Algorithm with Updating Background.

35

a. Input (original) video.

b. Gray scale for original video.

c. UN updated background frame.

In picture c. the big car no. 2 appear in the background frame, but it

doesn’t exist in the original frame. That means this care was left and another

car was parking in the same place appear in the picture a.

4.2 Modified average algorithm

 After modified the average algorithm the background was extracted and

updated well from the average number of frames (buffer size) the figures

below show the result of the modified algorithm.

 a. original video frame b. Gray video frame

 c. Background frame

Figure 4.3: Modified Background Extraction Algorithm Results

36

In this case, there is a delay in the rate of output video because after the buffer

size is full, any new frame would update the output background frame by

adding all previous frames with the new frame then calculate the new average

witch represent the updating background.

The result of background accuracy based on the value of buffer size as

follow:

Table 4.1: Buffer Size with Background and Frame Rate

Buffer size Background

accuracy

Frame per second FPS

50 50% 90%

100 60% 80%

150 70% 70%

200 80% 60%

250 90% 50%

300 100% 40%

350 100% 30%

400 100% 20%

37

Figure 4.4: Relation Between Buffer Size and Background Accuracy.

Figure 4.5: Relation between Buffer Size and Output Frame Rate.

38

4.3 Motion Detection Algorithm

 Motion detection algorithm using frames differencing from the new

frame and background frame. the output appears as a binary video, the

accuracy of the result based on the accuracy of the extracted background.

Figures below explain the result and steps of the motion detection

algorithm from video file.

4.3.1 Motion Detection from Video File

In this case, the algorithm was applied by recorded video, then the result

depends on the stability of the background, the right number of the threshold

for binary output and number of moving objects.

39

 a. Original frame b. Gray video frame

 c. Background frame d. difference frame

e. Binary output frame

Figure 4.6: Motion Detection Results.

a. the original video.

b. the result of a grayscale video frame for processing.

c. the result of updated background video frame.

d. the result of differencing background and a new frame.

e. the result of detection as a binary frame.

40

Table 4.2: Threshold with Output Accuracy

Threshold The object

appearance

Accuracy

10 Bad 40%

20 Good 60%

30 Good 70%

40 Very good 90%

50 Good 60%

60 Bad 40%

70 Bad 30%

Figure 4.7: Relation Between Threshold and Output Accuracy

41

Figure 4.8: Effect Threshold for Quality of Output.

4.3.2 Bounding box feature (Tracking object)

In this part, the output might be the original video with a bounding box

around the moving object. This feature makes the algorithm more effective

by tracking the moving object only without affected to the source video. All

details of the original video are found but the bounding box appears only if

the motion was detected.

42

 a. original gray video b. background frame

c. output motion detection

Figure 4.9: result of output with bounding box on original video

4.3.3 Motion Detection using Live Video

 The quality output video based on camera resolution, the tested area

(the number of moving object that you need to detect), the good tuning for

buffer size to get a clear and updated background and also suitable threshold

value to get clearance output video with object detection.

43

The buffer size tuning must be different based on the background updated,

if the monitoring area has updating background slowly and the speed of the

object is high, then the buffer size tuning value must be big value. And if the

monitoring area has updating background slowly and the speed of the object

is low, then the buffer size tuning value must be a small value. Because the

time that needs to update the background effect on the output of the algorithm.

 a. input video b. background video

 c. output of motion detection

Figure 4.10: The Result of Motion Detection by Using Live Video

44

CHAPTER FIVE

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This research was talked about video processing topic in computer vision

field witch discussed the motion detection algorithm to detect moving objects

for several purposes such as security systems, surveillance fields, traffic flow

and so on. Also after moving objects was detecting the project was creating

the suitable action that you need after the unwanted motion was accrued,

these actions such as generate alert signal to alarm system to inform this

action was accrued, send the recorded signal to video recording system to

start recording video for important actions only to save the memory space

(reduce the cost) and make analysis for playback more easy, and also you can

use with PTZ cameras to track object by sending control command to PTZ

camera to make a suitable pan or tilt depending on motion direction.

This project was achieved by two algorithms, Background extraction

algorithm based on average pixels’ value, this algorithm was used to extract

and update the fixed view from the input video (video file or camera live

video). The test of this algorithm was succeeded with a different kind of video

and gave the good results. This algorithm was used with another algorithm to

achieve the moving object detection. Another algorithm is a motion detection

algorithm based on frame differencing also was tested successfully with

different videos. The two algorithms designed by open cv library under visual

studio v12.

45

 The final project was tested with the two video files and live video from

the web camera and external USB camera. The two video files were used to

test the extraction of the background (stationary and non-stationary) which

gave the good results compared by previous work. The live video test from

webcam and external USB camera was passed successfully and good results

output were reached after test complete.

5.2 Recommendation

 This project was designed by using Visual Studio as software only so

I recommend to design this project as hardware by using HLS program,

because this software can compatible with open cv code then burn the output

bit stream file from HLS to FPGA, also you can use Raspberry Pi after

download the open cv library on raspberry pi under Linux. This hardware

design should make this project more effective and general use. Today Object

recognition feature become very important more application also I

recommend adding this feature to this project.

46

References

1- Tekalp, A.M., 2015. Digital video processing. Prentice Hall Press.

2- Gujrathi, P., Priya, R.A. and Malathi, P., 2014, August. Detecting moving object using

background subtraction algorithm in FPGA. In Advances in Computing and

Communications (ICACC), 2014 Fourth International Conference on (pp. 117-120).

IEEE.

3- Yu, L., Sun, W., Wang, H., Wang, Q. and Liu, C., 2018, August. The Design of Single

Moving Object Detection and Recognition System Based on OpenCV. In 2018 IEEE

International Conference on Mechatronics and Automation (ICMA) (pp. 1163-1168).

IEEE.

4- Guo-rong, Z., Chang-zhen, X. and Yan, Z., 2011, May. A method of embedded video

surveillance based on OpenCV. In E-Business and E-Government (ICEE), 2011

International Conference on (pp. 1-4). IEEE.

5- Jia Jing-jing, Liu Ming-jie, Sun Kai. A Embedded Image Processing System Based on

ARM [J].Control & Automation. 2009,25(8)

6- Zhang Li-ping, Zheng Wei-qiang. Image recognition and processing platform based

onS3C2410 and embedded Linux [J], Science and Technology Information,2009 , No. 5

7- MENG Xu-xia, QIN Shao-hua, WANG Yan-mei,et al.Design and Implementation of

Embedded Remote Video Monitoring System[J].Control & Automation,2009 㧘 25(1-

2).

8- Chamle, M., Gunale, K.G. and Warhade, K.K., 2016, August. Automated unusual event

detection in video surveillance. In Inventive Computation Technologies (ICICT),

International Conference on (Vol. 2, pp. 1-4). IEEE.

9- Lei, Z., Xue-fei, Z. and Yin-ping, L., 2008, December. Research of the real-time

detection of traffic flow based on OpenCV. In 2008 International Conference on

Computer Science and Software Engineering (pp. 870-873). IEEE.

10- Islam, M.Z., Nahiyan, K.T. and Kiber, M.A., 2015, December. A motion detection

algorithm for video-polysomnography to diagnose sleep disorder. In Computer and

47

Information Technology (ICCIT), 2015 18th International Conference on (pp. 272-275).

IEEE.

11- Yang, W., Lu, W. and Zhang, N., 2007, September. Object extraction combining image

partition with motion detection. In Image Processing, 2007. ICIP 2007. IEEE

International Conference on (Vol. 3, pp. III-337). IEEE.

12- Choi, Y.S., Zaijun, P., Kim, S.W., Kim, T.H. and Park, C.B., 2006, November. Salient

motion information detection technique using weighted subtraction image and motion

vector. In Hybrid Information Technology, 2006. ICHIT'06. International Conference on

(Vol. 1, pp. 263-269). IEEE.

13- Image Processing and Object Detection. (2015). International Journal of Applied

Research, p.4.

14- Thomas, A.M., Ashraf, A., Lai, L., Mathew, M.J. and Jayashree, M.J., 2011, July.

Security enhancement using motion detection. In Signal Processing, Communication,

Computing and Networking Technologies (ICSCCN), 2011 International Conference on

(pp. 552-557). IEEE.

15- Balsaraf, S. and Joshi, U. (2013). Implementation of Motion detection and Tracking

based on Mathematical Morpohology. International Journal of Computer Applications,

80(15), pp.22-28.

16- Sahasri, M. and Gireesh, C., Object Motion Detection and Tracking for Video

Surveillance. International Journal of Engineering Trends and Technology (IJETT),

pp.161-164.

17- C. Sureindar and Dr. P. Saravanan, Nov-2015. Motion Detection Using Optical Flow on

Raspberry PI.

18- Irianto, K.D. and Ariyanto, G., 2009. Motion Detection Using OpencvWith

Background Subtraction and Frame Differencing Technique.

48

APENDEX A:

SOURCE CODE

--

#include<opencv2/opencv.hpp>

using namespace cv;

#define buffsize 100

int main ()

{

//For image.

Mat FrameCopy;

Mat Frame;

bool status = true;

VideoCapture Cap("320_180.mp4");

Mat BK[buffsize];

for (int i = 0; i<buffsize; i++)

{

BK[i] = Mat (Size (320,180), CV_8UC1,

Scalar (255));

}

int Width, Height;

int FrameCount = 0, BKF=0;//Time Window size is initialized to

buffsize.

//For Video play.

if (! Cap.isOpened())

return -1;

Mat tmpimage (Size (320,180), CV_32FC1,

Scalar (0)) ;//Accumulated value for averaging.

Mat tmpimage_new (Size (320,180), CV_32FC1,

Scalar (0));

Mat tmpdata (Size (320,180), CV_32FC1, Scalar (0));

while (status)

49

{

Cap >> Frame;

if (Frame.empty())

break;

Width = Frame.cols;

Height = Frame.rows;

Imshow ("Input Video", Frame);

FrameCount++;

Printf ("FrameN0=%d\n", FrameCount);

cvtColor (Frame, FrameCopy, CV_BGR2GRAY);

imshow ("gray", FrameCopy);

if ((FrameCount-1) <buffsize)

{

Memcpy (BK [(FrameCount - 1) % buffsize].data, FrameCopy.data,

sizeof(uchar)*Width*Height);

Accumulate (BK [(FrameCount - 1) % buffsize], tmpimage);

tmpdata = tmpimage / (FrameCount*255);

imshow ("BKground", tmpdata);

waitKey (25);

}

else

{

if ((FrameCount-1) >= buffsize)

{

int idx = (FrameCount - 1) % buffsize;

memcpy(BK[idx].data, FrameCopy.data,

sizeof(uchar)*Width*Height);

for (int j = 0; j<buffsize; j++)

{

accumulate(BK[j], tmpimage_new);

}

tmpdata = tmpimage / (buffsize * 255);

imshow ("BKground", tmpdata);

waitKey (25);

}}}

50

return 0;}

APENDEX B:

SOURCE CODE 2

#include<opencv2\opencv.hpp>

using namespace cv;

#define Buffsize 50

int main ()

{

Mat FrameCopy, OldFrame;

Mat Frame;

bool status=true;

VideoCapture Cap("320_180.mp4");

Mat BK[Buffsize];

for (int i = 0; i < Buffsize; i++)

{

BK[i]=Mat (Size (320,180), CV_8UC1, Scalar (255));

// reserve a location in memory as gray scale image

}

int width, hight;

int Frame_Counter =0, BKF=0;

// For Reading Video from Camera

if (! Cap.isOpened())

return -1;

while (status)

{

Cap>>Frame;

If (Frame.empty())

break;

width = Frame.cols;

hight = Frame.rows;

51

Mat tmpimage (Size (width, hight), CV_32FC1,

Scalar (0));

MatimageF32(Size (width, hight), CV_32FC1,

Scalar (0));

Mat tmpdata (Size (width, hight), CV_32FC1,

Scalar (0));

Mat tmpdata8U (Size (width, hight), CV_8UC1,

Scalar (0));

Mat BGImg (Size (width, hight), CV_32FC1,

Scalar (0));

Imshow ("Original Video", Frame);

Frame_Counter ++;

Printf ("Frame Number %d\n", Frame_Counter);

cvtColor (Frame, FrameCopy, CV_BGR2GRAY);

imshow ("Gray Image", FrameCopy);

if (Frame_Counter <Buffsize)

{

BK[(Frame_Counter-1) %Buffsize].

convertTo (imageF32, CV_32F,1.0/255);

accumulate (imageF32, tmpimage);

tmpdata = tmpimage/Frame_Counter;

memcpy (BGImg.data, tmpdata.data,

sizeof(float)*width*hight);

BGImg.convertTo(tmpdata8U, CV_8U,255);

Imshow ("BackRound", tmpdata8U);

 waitKey (30);

}

else

{

if(Frame_Counter>=Buffsize)

{

int idx=(Frame_Counter-1) %Buffsize;

m*emcpy(BK[idx].data,FrameCopy.data,

sizeof(uchar)*width*hight);

52

for (int j=0; j< Buffsize; j++)

{

BK[j]. convertTo (imageF32, CV_32F,1.0/255);

Accumulate (imageF32, tmpimage);

}

tmpdata = tmpimage/Buffsize;

memcpy (BGImg.data, tmpdata.data,

sizeof(float)*width*hight);

BGImg.convertTo(tmpdata8U, CV_8U,255);

Imshow ("BackRound", tmpdata8U);

waitKey (30);

}

}

}

return 0;

}

53

APENDEX C:

SOURCE CODE 3

#include<opencv2/opencv.hpp>

using namespace cv;

#define buffsize 200

#define Threshold 40

#define USE_CAMERA

int main ()

{

//For image.

Mat FrameCopy;

Mat Frame;

//Defining a silhouette set

vector<vector<Point>> Contours;

vector<Vec4i> Hierarchy;

bool status = true;

#ifdef USE_CAMERA

VideoCapture Cap;

Cap.open(3);

#else

VideoCapture Cap("TestVideo.avi");

#endif

//End.

//get width of camera, the width is same to frame's width.

int Width = Cap.get(CV_CAP_PROP_FRAME_WIDTH);

//get height of camera, the height is same to

frame's height.

int Height = Cap.get(CV_CAP_PROP_FRAME_HEIGHT);

printf ("Width = %d \n Hight \n= %d", Width, Height);

54

Mat BK[buffsize];

for (int i = 0; i < buffsize; i++)

{

BK[i] = Mat (Size (Width, Height), CV_8UC1,

Scalar (255));

}

int FrameCount = 0;//Time Window size is initialized to

buffsize.

//For Video play.

if (! Cap.isOpened ())

return -1;

//Accumulated value for averaging.

Mat tmpdata (Size (Width, Height), CV_32FC1,

Scalar (0));

Mat tmpimage (Size (Width, Height), CV_32FC1, Scalar (0));

Mat BkImg8U (Size (Width, Height), CV_8UC1,

Scalar (0));

Mat Diff (Size (Width, Height), CV_8UC1,

Scalar (0));

Mat ResultBinary (Size (Width, Height), CV_8UC1, Scalar (0));

// get results after erosion

Mat erosion_mask (Size (Width, Height), CV_8UC1, Scalar (0));

//get results after dilation

Mat dilation_mask (Size (Width, Height), CV_8UC1, Scalar (0));

while (status)

{

Mat result (Size (352, 288), CV_8UC1,

55

Scalar (0));

Cap >> Frame;

if (Frame.empty())

break;

FrameCount++;

cvtColor (Frame, FrameCopy, CV_BGR2GRAY);

imshow ("gray", FrameCopy);

if ((FrameCount - 1) < buffsize)

{

Memcpy (BK [(FrameCount - 1) % buffsize].data, FrameCopy.data,

sizeof(uchar)*Width*Height);

Accumulate (BK [(FrameCount - 1) % buffsize], tmpimage);

tmpdata = tmpimage / (FrameCount * 255);

imshow ("BKground", tmpdata);

tmpdata. Convert To (BkImg8U, CV_8U, 255);

for (int n = 0; n < Height; n++)

for (int m = 0; m < Width; m++)

 {

uchar Diff8U = abs(BkImg8U.at<uchar> (n, m) - FrameCopy.at<uchar>

(n, m));

Diff.at<uchar> (n, m) = Diff8U;

ResultBinary.at<uchar> (n, m) = Diff8U >= Threshold? 255: 0;

}

waitKey (25);

}

else

{

if ((FrameCount - 1) >= buffsize)

{

Mat tmpimage_new (Size (Width, Height), CV_32FC1, Scalar (0));

int idx = (FrameCount - 1) % buffsize;

56

memcpy(BK[idx].data, FrameCopy.data,

sizeof(uchar)*Width*Height);

for (int j = 0; j < buffsize; j++)

 {

accumulate(BK[j], tmpimage_new);

 }

tmpdata = tmpimage_new / (buffsize * 255);

imshow ("BKground", tmpdata);

tmpdata. convertTo (BkImg8U, CV_8U, 255);

for (int n = 0; n < Height; n++)

for (int m = 0; m < Width; m++)

 {

uchar Diff8U = abs(BkImg8U.at<uchar> (n, m) -

FrameCopy.at<uchar> (n, m));

Diff.at<uchar> (n, m) = Diff8U;

ResultBinary.at<uchar> (n, m) = Diff8U >= Threshold? 255: 0;

 }

waitKey (25);

 }

 }

imshow ("Binary", ResultBinary);

//1. Erosion operation.

erode (ResultBinary, erosion_mask, Mat (),

Point (-1, -1), 1);

//imshow ("erosion_mask", erosion_mask);

//2. Dilation Operation

dilate (erosion_mask, dilation_mask, Mat (), Point (-1, -1), 6);

//imshow ("dilation_mask", dilation_mask);

//3. Compute Contoures and size of object in binary image.

find Contours (dilation_mask, Contours, Hierarchy,

CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE, Point (0, 0)); int size =

Contours. Size ();

57

//4. Display frame number and number of rectangles

printf ("FrameN0=%d size=%d\n", FrameCount, size);

//5. Show camera image with bounding box

for (int i = 0; i < Contours. Size (); i++)

{

Rect r = boundingRect(Mat(Contours[i]));

rectangle (Frame, r, Scalar (0, 0, 255), 2);

}

imshow ("Difference", Diff);

imshow ("Input Video", Frame);

}

return 0;

}

