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Abstract  
 

The behavior of macroscopic electronic components can be easily 

understood using classical electric and electronic relations. 

Unfortunately such classical relations can no longer capable of 

describing nano electronic components. This is due to the fact that nano 

particles can not be described by classical laws, but one needs quantum 

laws in this case. This needs new quantum electronic model that can 

describe nano electronic components behavior. Using quantum 

uncertainty principle and statistical distribution current, one can find 

conductivity, conductance and resistance in terms of Plank constant, 

density of energy states and diffusion constant. These quantities are 

shown to be quantized. These relations enables writing ohms law as a 

sum of classical part sensitive to the conductor length beside a quantum 

part sensitive to chemical energy and diffusion current at diode interface. 

The formal definition of resistance and conductance in terms of current 

and volt has been used to find the quantum resistance. The energy 

density of states manifests it self through the statistical distribution 

function, while the plank constant was incorporated through the 

chemical potential. The statistical nature of these parameters manifests 

itself through the diffusion constant which is  related to the current 

density. The same arguments were used to obtain quantum capacitance 

in terms of the energy density of states, for non-equilibrium systems.  

The Boltzman transport equation has been written in terms of a chemical 

potential variation instead of the statistical distribution function, which 

has been smeared out using simple mathematical tricks. The Boltzman 

equation was thus used to obtain conductance and resistance for 

quantum non equilibrium systems.   
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 صـلـمستخ
 

النبائط الالكترونية المرئية باستخدام العلاقات التقميدية في الكيرباء يمكن وصف سموك 
ولسوء الحظ لا تستطيع ىذه العلاقات التقميدية وصف النبائط  .والإلكترونيات بسيولة

يا بالقوانين التقميدية صفيمكن و لا انوية، نانوية وىذا يعزى لحقيقة أن الجسيمات النالإلكترونية ال
لمقوانين الكمية في ىذه الحالة. وىذا يحتاج لنموذج إلكتروني كمي جديد يمكن أن بل تحتاج 

انوية باستخدام مبدأ عدم التيقن الكمي وتيار التوزيع نيصف سموك النبائط الإلكترونية ال
يمكن إيجاد الموصمية والتوصيمية والمقاومة بدلالة ثابت بلانك وكثافة مستويات  .الإحصائي

. وىذه العلاقات مكنت من كتابة لانتشار. وتم توضيح أن ىذه المقادير مكممةالطاقة وثابت ا
قانون أوم كمجموع تقميدي يعتمد عمى طول الموصل بجانب جزء كمي يعتمد عمى الجيد 
الكيميائي وتيار الانتشار عند السطح الفاصل لموصمة الثنائية. تم استخدام الصيغة النموذجية 

لة التيار والجيد لإيجاد المقاومة الكمية حيث ظيرت كثافة مستويات لممقاومة والتوصيمية بدلا
الطاقة من خلال دالة التوزيع الإحصائي في حين ضمن ثابت بلانك عبر الجيد الكيميائي وقد 
 ظيرت الطبيعة الإحصائية ليذه المعاملات عبر ثابت الانتشار الذي لو علاقة بكثافة التيار.

جاد السعة الكمية بدلالة كثافة مستويات الطاقة لممنظومات الغير واستخدمت نفس الفرضيات لإي
متزنة. تمت كتابة معادلة الانتقال لبولتزمان بدلالة تغيرات الجيد الكيميائي بدلًا من دالة التوزيع 

عض الحيل الرياضية البسيطة. وعميو تم استخدام معادلة بالإحصائي الذي أزيل باستخدام 
 غير المتزنة.  التوصيمية والمقاومة لممنظومات الكميةبولتزمان ىذه لإيجاد 

  



IV 
 

 
Page Title No 

I Acknowledgment  

III English Abstract  

IV Arabic Abstract  

V Table of contents  

1 
Chapter one  
introduction 

 

1 Research motivation  1.1 

1 Importance of the research  1.2 

2 Overview of the research problem 1.3 

3 Research objectives 1.4 

3 Historical background 1.5 

6 Change in paradigm (Theory) 1.6 

8 (Bottom -up) Approach 1.7 

9 Thesis layout  1.8 

 Chapter Two  
Nano electronics and it’s new prospective 

 

 Scientific descriptions  2.1 

 The Basic Conceptual Framework 2.2 

 Chapter Three  
The New modified Ohm’s law 

 

 Key concepts 3.1 

 The Transistor Model 3.2 

 The Current Flow 3.3 

 Current Estimation 3.4 



V 
 

 General Conductance Equation 3.5 

Ballistic Conductance 3.6 

Diffusive conductance 3.7 

Ballistic and Diffusive time Justification 3.8 

Connection of the ballistic and diffusive 

transports 
3.9 

The Generalization of Ohm’s Law 3.10 

Wrapping up summary 3.11 

 
Chapter (4) 

Energy Band Model 
 

 Introduction 4.1 

Energy-Momentum Relation 4.2 

Counting States 4.3 

The Density of States  ( ) 4.4 

Number of Modes 4.5 

Electron Density (n) 4.6 

The Conductivity (σ) Against the Electron 

Density (n) 
4.7 

Quantum Capacitance 4.8 

Wrapping up summary 4.8 

 
Chapter (5) 

Nanoscale Transistor 
 

Introduction 5.1 

The full current voltage characteristic 5.2 



VI 
 

Self-consistent model 5.3 

The Role of Electrostatics 5.4 

Model extension 5.5 

Wrapping up summery 5.6 

 
Chapter (6) 

Potential Change inside the channel 
 

Introduction 6.1 

The New Boundary Conditions 6.2 

Quasi Fermi Levels (QFL) 6.3 

Current from The Quasi Fermi Levels 6.4 

Landauer Formalism 6.5 

The Electrostatic Potential 6.6 

The PN junction 6.7 

Boltzmann’s Equation 6.8 

 
Chapter (7) 
Conclusions 

 

154 Comments and Findings 7.1 

160 Future work suggestions 7.2 

164 References  

173 
Appendix (I): Boltzmann Transport 

Equation (BTE) 
 

176 Appendix (II): Angular Averaging  

183 
Appendix (III) : Derivation of Relativistic 

Energy 
 

186 Appendix (IV) : Graphene   

 



1 
 

Chapter One 

Introduction 

1.1 Research motivation 

 This research is motivated by the recognition of the future of 

nanotechnology. Nanotechnology evolved very fast over the last forty years. 

Electronic computers have grown more powerful as their basic subunit, the 

transistor, has shrunk. However, the laws of physics changed. This change in 

physics laws put the scientists in a good opportunity of time not met before, to give 

them the capability to manufacture objects down to the size of few hundred atoms.  

General speaking, if the manipulation of material under one micrometer to 

be put into that perspective, that 0.001 of one micrometer (about 800,000 times 

smaller than one strand of hair), when applied, many things change dramatically 

with this scale, specially the laws of physics. This research focuses on the 

innovation of nanoscale devices uniquely enabled by emerging electronics for a 

wide range of applications, such as computing, sensing, energy conversion, and 

communication. The research philosophy is to address major challenges in these 

domains by pioneering the fundamentals of new concept prototypes to enable 

smarter life, by employing distinctive ―atoms to applications‖ through examination 

of traverse low-dimensional material physics approach, to learn more about 

predictive ab-initio (from scratch) modeling electrical transport theory. 

1.2 Importance of the research: 

 This research is very important because the transistor is the key invention of 

modern society which have paved the way for innovative technologies. Due to 

their economic importance and pressure to keep production costs low, while 

simultaneously increasing efficiency, transistors have been scaled to deka-

nanometer regime during the last decades. This excessive down scaling of 

dimensions has now reached several physical limits, whereby, transistor building 

and manufacturing fabrication have been challenged numerous times. Although 

some of these challenges have been overcome by the usage of new materials and 

clever building of device geometries. A lot of additional efforts must be put into 

the research work to innovative nanotechnology in order to open up for new 
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opportunities. In this work recent development in transistor technologies has been 

summarized to give short overview of new future technologies people are going to 

win, such as TMOSFET. 

1.3 Overview of the research problem:    

 One of the problems facing this research is the confusion made by the 

scientists about how they can define the nanotechnology. Most of them focus on 

the study and control of the phenomena and material at length scale (100nm). 

Since the basic of conventional procedure for scaling down from top to bottom 

approach is rapidly approaching inherent physical limits of miniaturization, the 

nanoelectronics circuitry requires the realization of three dimensions integration 

based on nanodevices. To achieve this goal, significant progress has been made, 

and miniaturized electronic circuits are integrated on semi-conductor chips where 

the basic elements is the transistor, whose size is taken under (100nm). The 

problem with this is how to make these devices self-consistent and extremely 

comfortable, feasible, and adaptable according to the needs of people. 

 Continued success in device scaling is necessary for further development of 

the semiconductor industry in the years to come. A group of leading companies 

publishes their projections for the next decade in the most recent International 

Technology Roadmap for Semiconductors (ITRS-99) [International Technology 

Roadmap for Semiconductors, Semiconductor Industry Association, CA2]. The 

roadmap projects a device gate-length down to ~30 nm around 2014 [ 

International Technology Roadmap for Semiconductors, Semiconductor Industry 

Association, CA2]. This forecast promises another ten years of brightness. Scaling 

beyond 30 nm, however, can be much more difficult and different. Now the 

research work is quite close to the fundamental limits of semiconductor physics. 

How much further down it can go? It is hard to answer. Nevertheless, without 

doubt, the research work is facing numerous challenges, both practically and 

theoretically, it requires new theory and approaches to help in understanding 

device physics, so as to build devices at the sub-30nm scale. Efforts have been put 

forth in recent years, but much more is needed. For these purposes, this research 

project has been proposed, the results of which may help to understand device 

physics to build devices at nanoscale. 
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1.4 Research objectives: 

 Nanoelectronics aims at improving the capabilities of electronic devices and 

display while shrinking them to a very small size, reducing their weights and 

power consumption. Hence the objective of this research is to develop research 

efforts to increase the usefulness and reliability of these nanoelectronics‘ devices 

inventory by continued realization of Gordon Moore law using new methods and 

materials to build electronic devices with feature size on the nanoscale.    

1.5 Historical background 

In the year 1984 researchers were involved in the research of how they can 

get to smaller devices [1,2,3,4,5,6]. They looked at the active region (the channel) 

in the following model consisting of a resistor represented by a channel and two 

big contacts to bring it down in few (microns) in size [7], 

 

Figure 1.1 ;Three region device representing three dimensional device 

What has happened, they brought it in a submicron to about (100nm), and 

now researchers are thinking to bring it to sub (10nm). Nobody now knows how to 

bring it to less than that in the near future. The device has been driven in the 

submicron scale due to the need of the continuous miniaturization to pack more 

and more of them into small area of a chip [8,9]. 

The model is basically a resistor, when a voltage is applied across it, current 

flows. A third terminal to control the current flow is needed to make it a transistor. 
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Figure 1.2 ;Three region device representing two dimensional homogenous material  

During the last three decades the dimensions of a transistor channel 

has gone down by a factor of one hundred, although the transistor is 

somewhat greater than the channel, because of the two big contacts, roughly 

the dimensions is going down by one hundred, that means (10
4
) more 

transistors can be packed in there. The largescale integration probability may 

reach hundred thousand (10
5
) to overcome the (10

4
) by a factor of ten more. 

But what has happened today the number of the accommodated transistors 

reach about a billion transistors in an area of not more than (3x3) cm
2
. 

Now researchers are debating what will happen after this since they 

are getting so close to the atomic dimension and this research will not be 

dealing with this, because up to now researchers don‘t know the answer and 

they don‘t know the type of new devices they are going to win in the near 

future. 

This research discussion will be confined to the basic understanding 

of the current flow and how it could be controlled by studying how it 

evolved and how it has been affected by what is known today in comparison 

of what is not known before. 

Back to 1984 what is known, the resistance is given by; 

  
  

 
 
 

 
          (   ) 

Where,     is the conductor length. 

                  is cross-sectional area of the conductor  

                  is the material property (resistivity), the reciprocal of which is 

the        conductivity  ; 

  
 

 
          (   ) 

There are a lot of theories which deals with the dimensions of the 

resistivity, and the conductivity. 
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By 1989 ,five years after 1984 a completely new thing appeared at 

that time, when there is really a short conductor, the electrons instead of 

going through the conductor in a diffusive random manner (random walk) it 

passes through as bullet without hitting anything in between the two 

contacts, known later as (ballistic transport) between the source and the 

drain, in this case the resistance is quantized by (    ) the value of which is 

25kΩ and the resistance of the ballistic conductor will be given by [10] ; 

   (   
 ) 
 

 
            (   ) 

Where:       is the Plank‘s constant  

                    is the charge of the electron  

                    is the number of modes  

The number of modes ( ) is going to be explained later inside this 

dissertation, but for the time being it can be looked at as a numerical factor in 

equation (1.3) above. 

Because of this ballistic phenomena what has happened in 1989,there were 

two groups (from Nano hub-u) who reported on this experimentally and before that 

there was a lot of debate arguing what is really the resistance of a very  short 

conductor or what exactly would it be, because if they use the resistance of 1984 , 

given by equation (1.1)  above , it must go to zero when the length of the resistor 

( ) goes to zero, but it doesn‘t, it goes to some other constant value . 

During the period (1984 _ 1989) the answer came in a clear cut to show the 

importance of the experimental work.  

Since the resistances (      ) and    (
 

  
) (

 

 
) are totally look 

different, but they could be connected by defining something, that is called the 

mean free path (mfp) [11,12,13] in the following form; 

    (  
 

   
)  (

 

 

 

) (
 

 
* (  

 

   
*        (   ) 



6 
 

Equation (1.4) above describes the resistance of a very short conductor and 

the very long one as well. When the length ( ) is zero the ballistic form is given, 

and when ( ) is longer compared to the mfp, by dropping the one, Ohm‘s law is 

given in which ( ) is directly proportional to the length ( ), so a nice clear picture 

appeared from (the bottom up) approach.  (National Science Foundation, the Intel 

Foundation, and Purdue University who laid the foundation for the Computational 

Nanotechnology’s “Electronics from the Bottom Up” initiative.) 

1.6 Change in paradigm (Theory) 

 During the last three decades (20 to 25) years ago, current flow developed in 

a different prospective compared to what is used to be in the elementary physics 

(fresh man‘s physics). Simply the picture carried in physician mind starts at the 

diffusion end, but now the nature of the current flow in small devices is the 

ballistic transport [15]. 

 In nanoelectronics the most important device is the Nano transistor (see 

figure1.3), which in its simplest form consists of a channel through which electrons 

can flow between the two contacts (the source and the drain), the flow of electrons 

give rise to current flow in the external circuit according to Ohm‘s law. 

 

Figure 1.3 ; Simplest  form of nanotransistor construction 

 The word Nano stands for a nanometer in length scale, equals to (10
-9

 

meter). The word micron is (10
-6

 meter) also called a micrometer, therefore a 

nanometer is one thousandth of a micron. The distance between atoms is a little 

less than one nanometer. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwixyPfq4-vgAhVKA2MBHSCaA7gQjRx6BAgBEAU&url=https://www.allaboutcircuits.com/news/smaller-self-healing-transistors-being-developed-for-chip-sized-spacecraft/&psig=AOvVaw1B84dKpuE0FBQi51-vbBxX&ust=1551901664628556
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwixyPfq4-vgAhVKA2MBHSCaA7gQjRx6BAgBEAU&url=https://www.allaboutcircuits.com/news/smaller-self-healing-transistors-being-developed-for-chip-sized-spacecraft/&psig=AOvVaw1B84dKpuE0FBQi51-vbBxX&ust=1551901664628556
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 Historically as stated above during the last five decades the transistor 

channel continuously reduced to minimize the transistor size so as, to get more 

transistors to fit in a chip at a given area, and that is why computers of today are 

more powerful than those of the 1985. In a chip (3x3cm
2
), if the channel is reduced 

to  (10 μm) long, the whole transistor will be ten times that much, because of the 

extra two big contacts, then the size of the transistor will be (100 μm) or (0.1mm), 

that means each millimeter can accommodate ten transistors, three centimeters 

accommodate (300) transistors, in total there will be (10
5
) transistors in an area of 

9 cm
2
, that is to say (300) transistors each way. Today each dimension is reduced 

by a factor of (100) to fit (300000) transistors each way in the same area to go up 

to (10
9
) transistors, approximately one billion transistors. This very small device 

that has come about has changed the paradigm in which the electron goes from 

source to drain straight through in a ballistic transport, which represents the change 

in paradigm in contrast to the diffusion transport in the devices of 1985. 

 Ohm‘s law sometimes is used to be denoted by (  
 

 
 

  

 
 ) the first part 

 (  
 

 
) does not change, but due to the shrinking of the device the new Ohm‘s 

law can be represented by the second part (
  

 
), after being modified. If this work 

has been taken in the order of nanometer, Ohm‘s law will take the form; 

  (
 

 
*  

 

 
(           ) 

This (something) is the mean free path as stated above in equation (1.4). The 

mean free path can be defined by the distance traveled by the electron before it 

turned around, by this equation when the channel length ( ) turns to zero the 

resistance does not go to zero, but it goes to some other constant value. To connect 

the resistance to this (something), in that case there will not be a mean free path, 

because when the device goes to a short distance, ( ) doesn‘t  mean much by itself 

and so the mean free path (mfp), though their product means that (something), and 

that is a constant to denote the resistance of something that is really short. 
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1.7 (Bottom -up) Approach 

 (National Science Foundation, the Intel Foundation, and Purdue University who 

laid the foundation for the Computational Nanotechnology’s “Electronics from the 

Bottom Up” initiative.) 

Understanding of current flow usually based on much bigger resistances 

evolved from(  
  

 
). Getting to small devices the usage of this relation is needed 

with the trial to understand what has been observed in a very short conductor. This 

approach seems to be rather difficult, and it looks very puzzling, because after all if 

the length went to zero the resistance should go to zero, and there will be no reason 

to go to one term resistance (
 

  
) divided by ( ) whose significance is the number 

of modes, this is a very important concept which will be discussed later, it emerges 

from the field of nanoelectronics and microscopic physics[18,19,20]. 

 At hand now if the bottom-up approach is taken to start from (   
 

  
 
 

 
), 

which applies to a very short conductor to be compared to the diffusive conductor, 

where(  
  

 
), usually those two relations look very different in forms, but 

actually they are the same when connected together, whereas for the resistance of a 

long conductor is the ballistic resistance (  ) multiplied by a factor (  
 

 
), 

where ( ) is the length of the conductor, ( ) is the mean free path (mfp). This what 

is known as the new prospective, in general we could write the resistance as; 

    (  
 

 
*  (    ) (

 

 
*(  

 

 
*      (   ) 

As the length ( ) approaches zero, (    ), when ( ) is very long the 

(one) can be omitted and ( ) will be equal to (
   

 
) getting back to Ohm‘s law 

where ( )  is directly proportional to the length of the conductor ( ). Therefore, 

the bottom up approach gives a different view of how current flows, but also there 

is something relatively simpler to understand, to clarifies many concepts, which‘s 

going to be discussed in this thesis. 
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1.8 Thesis layout. 

The thesis consists of seven chapters. Chapter (1) is the introduction, while 

chapter (2) deals with Nano electronics. Chapter (3) is concerned with the new 

modified ohms law. Chapter (4) deals with energy band model while the Nano 

scale transistor is given in chapter (5). Chapter (6) is devoted for potential change 

inside channel, whereas chapter (7) is concerned with conclusion.  
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Chapter Two 

Nano electronics and it’s new prospective 

2.1 Scientific descriptions 

 Before ballistic conductors were studied back in 1980‘s, what is confusing 

was how can such conductors have any resistance if electron went from source to 

drain ballistically? What is known whenever current flows, there will be heat loss 

generated given by (   ). For heat to be generated electrons need to interact with 

the solid. Then if the electrons go right through the conductor without any 

interaction there will be no heat generated, though how can there be a resistance of 

any kind? As an answer to this question, a very clear idea of an Elastic Resistor 

was described by an elastic process, where there is no exchange of energy in in the 

elastic resistor itself, all the heating takes place at the ends of that elastic resistor 

[18]; 

 

Figure 2.1: An elastic resistance process 

There was a good experimental evidence to proof that small conductors 

behave this way. In carbon nanotube the amount of current passing through is 

enough to burn it up, if the heating happened to be inside the nanotube, but it 

doesn‘t burn, because heating appears at the contacts, those big things, which are 

able to get rid of that heat. 

The separation of the elastic part from the heat generated part makes this 

type of resistance conceptually very much simpler than what people used to, 

because this elastic process is very different from what happens at the ends. The 

elastic part can be described physically by mechanics and the end parts can be 

described by thermodynamic (flow of heat); 

 

Figure 2.2: Separation of the elastic resistance from the heat generated contacts 
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Mechanics and thermodynamic are two different branches of science, 

separated from each other by a very long span of time. Newton‘s laws came first, 

then several centuries later heat engines arrived, and heat has considered to be a 

form of energy which can be converted into work. During the eighteenth and 

nineteenth centuries both mechanics and thermodynamics were put together, and 

one of the famous scientists who played a very important role in that area was 

Boltzmann, who put together Newton‘s laws and added to them the 

thermodynamics processes driven by entropy, to create his famous Boltzmann 

Transport Equation (BTE) as follows; see appendix (I) 

Newton‘s laws +Entropy processes=BTE 

What Boltzmann did here is very subtle, and it causes a lot of debate at his 

time, and even today still people arguing about this. In general, BTE has been 

accepted as a standard starting point to all semiclassical transport theory (flow of 

all kinds of things). Boltzmann equation is used as a statistical mechanics in the 

sense that it consists of mechanics and entropic processes added to it, that is to say 

(nonequilibrium statistical mechanics), it represents the starting point to all 

semiclassical transport theory of what has been done in this research (dissertation), 

is to obtain a lot of results like the thermoelectric coefficients, conductivity, 

diffusion coefficient ..etc. Because this (BTE) takes some time to get used to and 

get familiar with, all the above results can be obtained in a relatively elementary 

way without getting into this (BTE), what made that possible was the introduction 

of the idea of the elastic resistor, because the mechanics and the thermodynamics 

are well separated in an elastic resistor, whereas what makes the transport so 

complicated using (BTE) is the mesh up of the mechanics and thermodynamics 

like an intertwin. In this  proposed new prospective, mechanics and 

thermodynamics are nicely separated from each other [21,22], and that was really 

made everything so simple to handle in an elementary way, because 

thermodynamics processes continually restore contacts into equilibrium, so 

whenever an electron comes in from the contact can be described by its 

equilibrium distribution function (Fermi-function), and just with this statement all 

the details of what is really going on inside the contacts can be bypassed, but this 

only applies to relatively small things. Out of the small scale lies the big things, to 

extend these ideas to big devices, conceptually these results can be applied 

approximately by thinking of a big device as a punch of a very little conductors in 
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series. This picture provides a nice approximation, and it also agrees with rigorous 

theory for low bias to give all the standard results given by rigorous theory (what 

would be got from BTE) [23,24]. 

The quantum version of the subject, where the electron will be thought of as 

a wave, will be introduced instead of Newton‘s laws, where the electron will be 

thought of as a particle, therefore Newton‘s laws get replaced by Schrodinger 

equation, then still entropy driven term should be added. The resulting equation is 

known as; Quantum Boltzmann Transport Equation (QBTE), but normally called 

None Equilibrium Green‘s Function (NEGF) method which involve work of many 

people, that why it is preferred to take an impersonal name rather than just 

Boltzmann Quantum Transport Equation; 

NEGF =Schrodinger Equation + Entropy driven 

This equation seems to be rather difficult stuff, because it consists of a none 

equilibrium statistical mechanics, but what makes it possible to be applied is the 

idea of the elastic resistor. Schrodinger equation looks as shown here below; 

                  (   ) 

Where;   is a differential operator which can be converted into a matrix 

version. 

                  is the eigen values of energy. 

                  is the wave function. 

 Schrodinger equation as it stands in this form, is not enough to 

analyze devices, it needs to include the entropy driven term (the contacts and 

sources), the extra term to be added will look like this,(    ), to represent the 

effect of all contacts where all the entropic processes take place, therefore; 

      (    )          (   ) 

Then what about NEGF since equation (2.2) above doesn‘t look more than 

something totally different modified Schrodinger equation, where matrix ( ) 

describes the electronic highway (the available energy levels for electrons to flow), 

matrices ( ) represent the flow of electrons in and out of the contacts, interactions 

in the channel can be added as a matrix (  ), all these processes develop NEGF 

method. It is quite clear that this modified Schrodinger equation cannot be used 
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directly or at least should be carefully treated, because of  the assumption that if 

two electrons are coming in from the two contacts, (  ) from the source with a 

wave function(  ), (  ) from the drain with a wave function (  ), if both of them 

present at the same time there will be no capability to add them together 

algebraically, because they are complex  numbers, and their addition is a vector 

sum , therefore their squares should be added [25]; 

(     )    (  )
     (  )

            (   ) 

Where the star indicates the conjugate of the wave functions. 

 

 

 

Figure 2.3: Effect of all contacts where entropic processes take place 

 By analogy to light sources in this case, there will be two types of sources, 

incoherent thermal source (the ordinary thermal light bulb), and the laser source.  

In the first one powers of the light bulbs can be added, but their electric fields 

cannot be added. In the laser source electric fields can be added. Electrons in 

normal solids have the equivalent of thermal sources and not the equivalent laser 

sources, although the superconductors are more like a laser sources, but this not a 
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part of this research, those who are interested may revise (Fireman’s Lectures, 

volume iii, the last chapter). 

Instead of working directly with the modified Schrodinger equation using 

the wave functions (   ), when there are multiples of sources, NEGF equation is 

used to avoid adding every single wave function from each separate source. 

NEGF directly relates (   ) to be written like this [26]; 

(   )                  (   ) 

Where    is the none equilibrium Green‘s function  

This is the basic equation for NEGF method or the None Equilibrium 

Quantum Statistical Mechanics originated back in the 1960‘s with the work of 

many people, although the notion is slightly different (see1965, papers by; Keldish 

Chile), and the difference requires fairly advanced formalism, because it involves 

many body perturbation theory, which need more than a complete year to master. 

Fortunately by the application of the new prospective (elastic resistor principle), all 

that can be avoided without getting into many body perturbation theory to go 

forward to one electron Schrodinger equation to show that how it can be used to 

understand all types of experiments of today, involving one conductor 

quantization, quantum Hall effect and spin transport experiments. That is why 

intentionally this part is left for future work. 

2.2 The Basic Conceptual Framework 

 The continuous miniaturization processes of making small devices, has 

changed the nature of current flow from the diffusive random walk based on 

Ohm‘s law given by equation (1.1) above, to the ballistic form in which the 

resistance is quantized by the value (    ) with units of (KΩ), it‘s exact value is 

(25KΩ) at room temperature, which could be multiplied by (
 

 
), as given by 

equation (1.3) above, where M is the number of modes. The number of modes is an 

important concept going to be explained later as this research goes on. Equations 

(1.1) and (1.3) look very different in their forms, but they are connected by the 

generalized form of the resistance given by equation (1.4) above, after 

rearrangement it takes the following form stated here below; 

    (  
 

 
*       (   ) 
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 When the length ( ) is much smaller than (0.01λ) the second term (
 

 
) can 

be dropped to have the ballistic resistance (  ), on the other hand when ( ) is 

hundred times longer than (λ), the (one) can be dropped to have the diffusive 

resistance which is directly proportional to the length where Ohm‘s law connects. 

 Expanding the generalized form of the resistance given by equation (1.4) 

mentioned above, it consists of two terms (  ) and (
   

 
), that it is one term is 

directly proportional to the length of the channel ( ) and the other one is 

independent of the length ( ), then physically where these resistances are located? 

  Any one might think the term which is directly proportional to the length (L) 

is associated with the length of the channel, and the other term (  ) is independent 

of the length is associated with the contacts (the source and the drain), or the two 

interfaces, the overall (  ) is a series combination of the two interfaces, (
  

 
 
  

 
). 

 

Figure 2.4: Generalization form of resistance given by equation (1.4) 

This description is not quite convincing which is going to be justified by an 

experimental evidence, as the discussion is going along with this dissertation. 

 Thinking about current flow driven by an applied voltage, usually a 

resistance is defined given by equation (1.1), the inverse of which is known as the 

conductance   , 

  
  

 
          (   ) 

Where:     is the cross-sectional area of the conductor 

                   is the length of the conductor 

                 σ is conductivity  

 The conductivity (σ) is the reciprocal of the resistivity (ρ) given by the 

Drude formula [24,]; 
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         (   ) 

Where;    is the effective mass 

                    the number of electrons (the electron density per unit length, area, or 

volume).  

                  is the mean free time (for how long an electron travel before it get to 

hit something) 

                   is the electron charge  

 So, there would be an expression for the conductivity (σ); the used material 

parameter, inside which electrons travel by a diffusive process or random walk, 

given by; 

  
    

 
            (   ) 

This what is called the old prospective which is going to refer to occasionally to 

connect with the new prospective, which starts from what happens in small devices 

using the bottom-up approach. Since the resistance in short devices is quantized by 

(   
 

   
), see equation (1.3), therefore, the quantum conductance can be written 

as; 

   (
   

 
)          (   ) 

Where;    is the electron charge  

                  is Boltzmann‘s constant  

                 is the number of modes. 

The fundamental constant (    ) has the dimensions of conductance (mho) 

exactly (
 

  
) . This result got established more than twenty five years ago, in 

mesoscopic physics, viewed as a separate result for small devices, whereas for big 

devices still people do the traditional way, here people argued that for big devices 
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they could actually start from equation (2.8), and show that the conductance G can 

be written as the ballistic conductance GB multiplied by the factor  (
 

   
); 

 

  
   

(    )
             (   )  

Where;    is the length of the device 

                  is the mean free path  

The mean free path can be defined as the distance an electron travels in the mean 

free time ( ) before it hits something. Therefore ( ) can be omitted if the device is 

very short compared to the mean free path ( ), and the conductance ( ) will be 

equal to the ballistic conductance (  ), in the other hand for a long device ( ) is 

very large compared to ( ), so ( ) can be ignored in the denominator to have a 

conductance,   (
   

  
), which goes inversely as length, just as expected from 

Ohm‘s law for long devices. 

 Let us now compare equation (2.5) with equation (2.9); for long devices 

  
  

 
     (   ) 

                    (    ) 

This result arrived to, is the new prospective, starting from the bottom end (10nm 

to 1um) up to the diffusive end, by defining something on the ballistic conductance 

(  ) depending on the number of modes ( ) which is the material property. 

 From equation (2.10) above for any real short section of any material 

experimentally (   
   

 
) , can be measured. To make it longer, it would have 

the usual behavior described by the conductivity; 

  
   

 
                (    ) 
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How to obtain this new prospective shown by equation (2.11) is going to be 

explained and justified in detail when convenient to understand the new 

prospective of the current flow in the next chapter. 

 To see the difference between the new prospective and the old prospective 

represented by the Drude formula given by equation (2.7). 

 The Drude formula can be described by the standard prospective of the 

current flow learned from freshman‘s physics, due to the electrons driven by an 

electric field. From Newton‘s laws the force is given by mass times acceleration; 

 ⃗    ⃗   (
   
  
*     

Where;    is the drift velocity 

                  is the charge of the electron  

                  is the electric field 

                 ⃗  is the force that an electron feels 

But this true only in vacuum, in solids there will be a frictional force ( 
  

 
),  

momentum per time, or the compensation for viscous mechanism (a kind of 

viscous drag) which can be described by a mean free time, therefore; 

    (
  
 
*   (

   
  
* 

At steady state nothing is changing with time, therefore,  (
   

  
) is equal to 

zero, then; 

   
   
 

 

And the drift velocity is given by; 

   (
  

 
)  
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The factor (
  

 
) is known as the mobility which is the material property 

always people ask about it for any material. The current depends on the electron 

density ( ) times the velocity; 

     (  )     (
  

 
)   (      )   

  
 

 
 (

    

 
)                 (    ) 

The current density ( ) depends on the electric field [27,28], which 

determine the voltage, through the factor (
    

 
), which is called the conductivity 

( ) [29]. Electrons driven by an electric field causes a very interesting problem, 

because all the electrons in the solid must feel the electric field, and start to move, 

but this statement is completely wrong, and no one claims that it is true. All 

scientists say that only the free electrons in the valance band close to the Fermi-

level are the only ones able to move. Electrons deep down in a solid have a lot of 

states, and up to now only the (tip of Iceberg) just shown, because there are many 

other states well down there in the solid containing most of the electrons, but no 

one claims that they play any role in current flow. This very well-known and very 

well established, the argument is the number of electrons used as shown in by 

equation (2.12), is the number of free electrons ( ) only, because all the bands 

other than the valence band are filled completely, filled bands don‘t conduct. But 

in the new prospective of the current flow, the answer to the question; why filled 

bands don‘t conduct, is very pretty explained in a very clear way, as will be shown 

in the next paragraph. 

To understand this new prospective of current flow the energy levels inside 

the channel need to be known. For hydrogen atom for example there will be 

discrete leveled represented by          , for molecules energy levels get closer, 

and for solids energy levels get very dense represented by lots of states typically 

they form a band (an energy range),  with certain states followed by an energy gap 

with no states in it, again there will be an energy band full of states, and so on, 

energy levels might look like this, (see the figure below); 
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Figure 2.5: Energy levels configuration 

For contacts there are many states continuously distributed, the details of 

which doesn‘t matter, because the flow of current takes place in a very big region, 

while the channel is in the form of a narrow bottle neck to control the flow of 

current. The contacts can be represented by a lot of States filled up to a certain 

level called the Fermi-level or the electrochemical potential denoted by ( ) 

[30,31,32,33]. These two expressions shall be used almost interchangeably to tell 

up to what point all the levels are filled at low temperature. 

 

Figure 2.6: Contact states with Energy levels inside the channel  

 Electrons if they are left free, they tend to occupy the lowest energy levels, 

but all of them are not able to do that, because of Pauli exclusion principle. When a 

positive voltage is applied to the drain side, it lowers all the energy levels by an 

amount (  ) 
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Figure 2.7: Energy diagram 

This what is called the energy diagram. Both contacts in this energy diagram 

try to bring the channel into equilibrium with themselves, and that is why current 

flows, because one contact tries to fill the channel, and the other contact tries to 

empty it. Using this viewpoint, an expression for the conductance ( ) can be 

obtained from the following relations; 

Number of electrons in the channel = (electrons/second) * (time spent) 

  (
 

 
*   

Density of states D(E) = number of levels per unit energy 

 

 
 ( )  (

 

  
) 

Then, an expression for the conductance G is given by, 

  
   ( )

  
          (    ) 

Where;   ( ) is the average density of states 

                  is the transfer time 

                  is the electron charge 

By assuming  ( ) is not constant, equation (2.13) can be generalized, and 

from which current can be estimated. For instance, this will be ignored to be 
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discussed later in another contest, in the next chapter. Equation (2.13) leads 

naturally to ballistic conductance;     (
   

 
) ; given by equation (13) above, it is 

possible to use this viewpoint for diffusive transports well to get an expression for 

the conductivity (σ) as; 

  (
   ( ) 

  
)          (    ) 

Where;  ( )  is the density of states close to the Fermi-level energy 

                 is the diffusion coefficient  

                 is the cross-sectional area 

                 is the length of the channel 

Note that equation (2,14) above does not look like the Drude formula, 

although this equation is not a new expression, it is well known a long time ago, 

and referred to as Kupo formula. Everyone agrees that, this is really a much more 

general expression for the conductivity ( ), which can be obtained from an 

advanced formulism like Boltzmann equation, see appendix (I). What is new about 

this equation the way by which it is found using the concept of an elastic resistor 

(Landauer resistor) - after Ralf Landauer- the first of pioneered this way of 

thinking a long before it become experimentally relevant, to come so easily and 

naturally from equation (2.13) with no need to rigorous theory of Boltzmann‘s 

formula. 
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Chapter Three 

The New modified Ohm’s law 

3.1 Key concepts 

 In this chapter the resistance or the conductance in the nanoscale devices is 

described. A couple of concepts need to get across, namely; 

(1) The density of states dented by  ( ). 

(2) The Fermi- Function denoted by  ( ). 

  3.1.1 The density of states (DOS) 

The density of states denoted by, DOS or  ( ) [34,35,36,37], is based upon 

some experiments, the most common one is by photoemission means discovered 

hundred years ago by hitting a solid with an ultraviolet light (photons) to knock out 

an electron to the vacuum out of the solid with sufficient energy, otherwise it stays 

inside the solid [38]. By considering the vacuum as zero reference, that means all 

energy levels are negative quantities to keep the electrons inside the solid, or they 

would jump out of the solid (see figure 3.1 below); 

 

Figure 3.1: Photoemission processes 
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As far as current flow is concerned, what really matters is the top part, the 

valence electrons, where the highest energies are located, but still there are a lot 

more electrons down which need more energy to knock them out. Therefore, inside 

the solid there are some states filled, and some others are empty, and that is why an 

electrochemical potential or Fermi-level line ( ) need to be drawn, above which all 

the states are empty, and below it all the states are completely filled. Empty states 

cannot be measured with spectroscopy [38], because there are no electrons there to 

be knocked out, hence no current can be calculated.  ( ) can be plotted 

schematically in a more convenient manner by drawing the energy in the vertical 

axis, and horizontally the density of states  ( ), which tells how many states per 

unit energy are in there. This not like what usually people used to, by drawing the 

independent variable ( ) horizontally (see Figure 3.2 below); 

 

Figure 3.2: Schematic plot of density of states against energy 

Energy is measured in International Standard units (  ) given in (Joules) or 

(Colombo volts), but for small nanoscale devices it is much convenient to measure 

the energy in electron volt (  ), which is very smaller than the (Joule) unit; 

                       

                               (  ) 

Electrons fill up a lot of states obeying the Pauli- exclusion principle, so the 

number of filled states equal to the number of electrons, because each electron 

occupy a separate level or state, this statement may cause a little confusion, 

because people always say; isn‘t like every state can hold two electrons (an up spin 

and down spin), the right way is every state hold only one electron, because there 

two separate states one for the up spin and the other for down spin, so as if states 
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come in pairs, but each state can hold one electron, that is the exclusion principle, 

therefore there is a level ( ), which separates all the filled states from the empty 

ones. The density of states can be defined by the number of levels per unit energy; 

 ( )  
 

  
              (   ) 

Where;  ( ) is density of states 

                 is the electron charge 

                 is the applied voltage  

                  is the number of levels (the number of electrons). 

3.1.2 The Fermi-Function  ( )  

The mathematical form of the Fermi-Function is given by; 

 

 ( )  (
 

   
   
  

+         (   ) 

 

Where;   is the energy  

                is the Boltzmann‘s constant  

                 is the absolute temperature  

                 is the electrochemical potential  

This relation tells the probability of occupation of the energy levels. The 

concept of the electrochemical potential should be introduced to separate all the 

filled states from the empty ones, since some of the available levels are filled, 

others are empty. The function  ( ) can be plotted as a function of ( ) using the 

MATLAB or something equivalent. When ( ) is very small, just below the Fermi-

level ( ), (
   

  
) will be negative large number, so the Fermi-Function  ( ) is 

equal to one, the reverse if ( ) is above the Fermi-level ( ), (
   

  
), will be a large 

positive number, then  ( ) turns to zero, and the Fermi-Function is expected to 

behave as shown in Figure 3.3, as follows ; 
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Figure 3.3: The Fermi-Dirac distribution for different temperatures 

At zero temperature, the Fermi-Function takes an abrupt change, to resemble a 

rectangular shape, but at none zero temperature the function is somewhat diffused 

boundary, in an energy range in the order of (  ), it spreads out with (  ), as 

shown in the figure above. This the shape of the function normally found in most 

of the books, but it more convenient to be flipped to the left-hand side and rotated 

ninety degrees to take the following shape (see Figure 3.4); 

 
Figure 3.4: Convenient plot of Fermi function population 

3.2 The Transistor Model 

To introduce the Nano-transistor basic model, which is going to be referred 

to from time to time. The transistor is nothing more than a resistor in the sense that, 

when a voltage is applied across, current flows using the available energy 

channels, in small energy window, between the two Fermi-levels of the contacts 

(μ1 & μ2) [39,40]. Based on this the conductance,   (
   

  
) can just be obtained, 

from which both the ballistic and the diffusive regimes are connected by making 
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use of the idea of time the electron takes from source to drain. From the picture 

developed in the last section, namely; there are the density of states  ( ) in the 

channel, and two big reservoirs (the contacts), full of electrons to a certain level 

(the Fermi-levels of the source and the drain). When a voltage is applied between 

the source and the drain, they separate by an amount of (  ). As a result of current 

flow through the channel from one terminal to the other giving rise of the current 

in the external circuit. The model can be described in its simplest form by a 

conductor called the channel, through which the electrons can flow between the 

two contacts the source and the drain. Since the transistor has three terminals, the 

third one (the gate) is to control the resistance of the channel to change it into 

different orders of magnitudes. The third terminal has not been shown in the 

following diagram for simplicity, and it is going to be added later when convenient 

when putting a voltage in that gate.; 

 

 

Figure 3.5: Small energy window separation due to an applied voltage between the source and the drain 

3.3 The Current Flow 

There are two important concepts needed for the current flow discussions; 

(1) If the whole of the function  ( ) is at equilibrium then a 

common Fermi-level in both contacts, and no current flow. 

(2) If a positive voltage is applied across the two terminals 

(source and drain), the two Fermi-levels μ1 and μ2 separates 

by an amount of energy (  ), hence the current flows. 
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3.3.1 Equilibrium Case 

To understand the nature of the current flow in small devices consider the 

equilibrium case by short circuiting the two contacts, under these conditions no 

current flows. Some photoemission experiments can be done on this system to 

draw the energy levels diagram. Since the channel has certain energy levels 

available to it, in the form of bands and energy gaps, it is more convenient to 

consider the density of states  ( ) which tells how many energy levels per unit 

energy are there. In the contacts a continuous density of states up to the level (  ) 
is drawn to which all the states are filled. The level (  ) separates the filled states 

from the empty ones at zero temperature (0k). 

 

Figure 3.6: Electron distribution at equilibrium state given by Fermi function 

At room temperature (300k) some electrons below (  ) will have enough 

thermal energy (KT) to jump up and occupy the higher states above (  ), the 

distribution of the electrons at equilibrium will be given by the Fermi-function 

given by equation (3.2) above, this equation can be normalized to 
(   )

  
  in the 

vertical axis, that means energy referred to as ( ) gives the zero axis at (  ) , the 

plot of which as shown here below [41]; 

 

Figure 3.7: Energy function normalization to 
(   )
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For (   ) greater than zero, 
(   )

  
 is a large positive number, so  ( ) 

equals to zero; for (   ) less than zero, 
(   )

  
 is a large negative number, so 

 ( ) quals to one, and for (   ),  ( ) equals 0.5. In other words, the function 

 ( ) given by equation (3.2) tells what fraction of states is filled. For ( ) far 

below (  ), 100% of states are filled, for ( ) far above (  ), 100% of the states 

are empty, and for (   ) or ( ) is around (  ), 50% of states are filled. The 

thermal energy (  ) is roughly (      ), and it has got the dimensions of 

energy.  In MKS system of units, energy is given by (coulomb volts), but it is quite 

common to describe the electronic energy in (electron volts) rather than joules 

(Colombo volt);                                                                                                                                                                  

                                                  

3.3.2 Out of Equilibrium Case 

 In this case there is a current flow through nanodevice, in order to obtain an 

expression for that current, the nature of the current flow through the device should 

be discussed. From the current expression the conductance ( ) or the resistance 

( ) can be deduced. 

 From the picture developed in the last section (3.3.1), namely the density of 

states  ( ) in the channel and the Fermi-level in the two big contacts full of 

electrons to certain Fermi-level, both contacts have the same Fermi-level (  ), 

because they are at equilibrium. When a bias is applied across the device, the 

positive side, the drain, all energies including the electrochemical potential sink 

down by an amount (  ) with respect to the negative side, the source, and the two 

contacts are held at two different electrochemical potentials (        ) 

respectively. This is the basic fundamental to be known before discussing why 

electrons flow in the first place. 

 The reason for current flows very simple; the states in the channel are below 

the Fermi-level of the source contact, therefore the source wants to fill up the 

channel and bring it in equilibrium with itself all the way up to (  ). If the channel 

happened to be empty, the source will push an electron to fill the empty space in 

the channel, on the other hand the drain contact sees an electron above its Fermi-

level (  ), it tends to pull it up to empty the channel to bring it in equilibrium with 
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itself, therefore one contact wants to fill up the channel and the other contact want 

to empty it. No contact wants to give up, and that will go for ever, another electron 

comes in then goes out. Both contacts have totally different agenda, the source fill 

up and the drain takes out, then the electron leaves the drain to the battery, and a 

new electron comes into the source, so the process goes for ever. 

 The electrons in the lower bands, energy levels below the band gap don‘t 

conduct, because all the energy levels therein are below the Fermi-levels of both 

contacts so that the source contact wants to fill up and so the drain contact as well, 

that means both contacts have the same agenda, therefore all the states down there 

stay filled, and more happen the electrons keep pumping into the channel from 

both sides. As far as these states are concerned, both contacts want to keep them 

filled, so they just stay filled and no current flows. This the point that causes a lot 

of argument and confusion, because it is so hard to understand when thinking of 

electric field driving electrons, as in the freshman‘s physics. Because in that case 

electrons down therein should start moving because every electron should feel the 

electric field and should be moving essentially, but this is not true and widely 

accepted is that the current flows only in the small energy window around the 

Fermi-level. States deep down teleplay no role in current conduction, and this what 

causes the whole confusion in case of electric field, the reasons given in that case 

is by stating :((Filled bands don’t conduct.)) without giving any explanation for 

that, but as far as the ballistic current is concerned, this is not true by making a pun 

that; what really drive the electron is the difference in agenda between the two 

contacts, which is quite different from what stated in case of electrified drive. 

 Another important reasoning for how well a material conduct. Copper for 

example conducts very well with high conductivity, while glass does not, although 

both has the same number of electrons. Copper conducts well because it‘s Fermi-

level passes through the upper band where conduction takes place, and it has some 

free electrons for conduction, while in the glass Fermi-level passes through the 

region where  ( ) is almost zero below 

 the band gap, and no free electrons are available for conduction (see figure 3.8 

below); 
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Figure 3.8: How well different materials with the same number of electron differ in conduction 

To turn all the above information into a quantitative expression, assume that 

the density of states almost constant over the entire range of energy window (  ), 

which is opened by the applied voltage (see Figure 3.9 below); 

 

Figure 3.9: Constant density of states over entire (qV) window opened by an applied voltage 

By equating the number of electrons in the channel (
   

 
)  to the number of 

electrons flowing per second multiplied by the time spent inside the channel to get 

immediately an expression of the conductance ( ) given by equation (2.13) above. 

Why  ( ) is divided by two, the argument goes like this, some electrons are 

flowing from source to drain, and some electrons are flowing from drain to source 

and all of them are sharing the same channeling both directions. 
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3.4. Current Estimation 

In the last paragraph  the steady state number of new electrons coming in 

continuously and leave, are estimated, that number of electrons will be the flow of 

electrons multiplied by the time, each electron spreads inside the channel, by 

accepting that the conductance can obtained right away in condition that the 

density of states is assumed to be constant over the energy window. To be done in 

a better way by assuming that the density of states is constant in small energy 

range (  ), in which there is a current and there is a time  ( ) spent inside the 

channel depending on energy. At certain energies the electrons might have fast 

velocities and zip right through, other energies might take longer time, therefore 

the number of states can be estimated either by the average density of states within 

small energy range (  ) given by (
 (  )  

 
), or by  (

   ( )

 
) , by equating these and 

rearrange current can be written as; 

  
  (  )  

  (  )
        (   ) 

This is the current which should be obtained if the states at the source 

contact (  ) is completely full, and zero states at the drain contact (  ), but the 

states at both ends may be partially full or partially empty, so in general a 

difference factor     (   (  )    (  )), should be introduced 

  
  (  )     

  ( )
       

If (   (  )    (  )) implies     equals to zero, putting the system into 

equilibrium and no current flows. The current is driven only by difference in the 

Fermi-functions    , because one contact wants to fill up the channel and the other 

contact wants to empty it tending to bring the system into equilibrium, but neither 

of contacts will give up, so their trial will go alternatively forever, hence current 

continues to flow. This is the current in single energy level without changing its 

energy, so the different energy levels are independent to each other, because the 

elastic resistor idea states that the current is carried by different channels 

independently. To add different amounts of currents in different energy levels, 

(highways), can be done by integration 
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  ∫
  ( )     

  ( )

 

  

 

Multiplying by (
 

 
) 

    ∫ (
   ( )

  ( )
)     

 

  

⁄  

Where; (
   ( )

  ( )
)   ( ) 

    ∫  ( )     
 

  

⁄           (   ) 

Where;  (  )     is the ballistic conductance function 

This is the general form of the current equation, and this is what had been 

done earlier in a simple version given by equation (2.13) above, where we assumed 

the conductance is independent of energy in the energy window. 

3.5 General Conductance Equation 

The conductance factor  ( ) in equation (3.4) above, given by 

(
   ( )

  ( )
)  tells how easily electrons can follow through the channel. This factor 

depends on the density of states  ( ), which tells how many lines in the highway, 

and  ( ) also depends on the time  ( )  to tell for how long an electron takes 

from source to drain. To obtain the general expression for the conductance  ( ), 

the current equation can be divided by the voltage. For low voltages a little 

approximation can be done to get the required general conductance expression G, 

which is equal to the conductance function  ( ) averaged on energy according to 

the following relation; 

  
 

 
 ∫  ( ) ( 

   
  
*      (   )

 

  

 

Note what enters this relation is the derivative of the Fermi-function with 

respect to energy E, and this is not obvious at all, but everything will be explained 

in the following paragraphs. 
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The derivative of the Fermi-function looks like what is shown in the 

following figure (3.10); 

 

                             

Figure 3.10: Fermi function derivative curve 

Right around the zero axis the derivative is the highest where most of the 

change take place. 

   ( 
  

  
) Is plotted, and the peak value of this derivative is (

 

   
), away 

from the electrochemical potential it goes to zero, roughly (   ), therefore the 

area under the curve is unity. To get from the current equation (3.4), to the inverse 

Ohm’s law, equation (3.5), or the conductance expression is by using Taylor 

expansion. At constant temperature ( ), the Fermi-function given by equation 

(3.2) depends on both (E) and (μ), therefore     in the current equation (3.4) can 

be written; 

    (   (  )    (  ))  ( (      )   (      ) 

For small voltages much less than (  ), the difference between Fermi-

levels (     )    , i.e. they are very close together, then; 

   ( )    ( ) 

(       )
 (

   ( )

  
)        

 

  ( )    ( )  (
   ( )

  
) (     ) 
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Where   ( ) is the average between   ( ) and   ( ). Now let;  

  ( )  
 

   
    
  

 
 

     
 

Where;   (
    

  
). 

 Using the chain rule; 

   ( )

   
 
   ( )

  
 
  

   
 
  

  
[
   ( )

  
] 

And, 

   ( )

  
 
   ( )

  
 
  

  
 

 

  
[
   ( )

  
] 

So *
   ( )

  
+ and *

   ( )

  
+ are the negative of each other, and any one of them can be 

put instead of the other, therefore; 

 

  ( )    ( )  (
    ( )

  
) (     ) 

The difference between the two electrochemical potentials (     )     , then   

  ( )    ( )  (
    ( )

  
)   

The general current equation (23), can be rewritten as; 

    ∫  ( )(  ( )    ( ))  
 

  

⁄      

    ∫  ( )(
    ( )

  
) (     )  

 

  

⁄  

    ∫  ( ) *
    ( )

  
+     

 

  

⁄  
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Since V is a constant value and independent of the energy can be pulled out  

    ∫  ( ) *
    ( )

  
+    

 

  

⁄  

     ∫  ( ) *
    ( )

  
+  

 

  

⁄  

 

This is the same conductance equation given by equation (3.5) above. The 

conductance-function  ( ) is multiplied by *
    ( )

  
+ , but *

    ( )

  
+  has its peak 

value right around the Fermi-level (E=μ) and then dies out. In fact the 

conductance-function  ( ) is very strongly peaked as the temperature ( ) 

approaches zero, because *
    ( )

  
+ is infinitely tall and rather thin, exactly 

representing an impulse or a ( ) function, therefore *
    ( )

  
+ can be recognized as 

a (δ-function) as the temperature tends to be zero, and the average of which is 

equal to unity; 

∫ ( 
   ( )

  
)  

 

  

   

When the conductance function  ( ) is multiplied by ( ) it will be taken to 

a particular energy at zero temperature, but the general value of the conductance 

( ) in the other side of its equation is at nonzero temperature, so the conductance 

function   ( ) should be averaged over the entire range of energy by integration, 

to get the inverse of Ohm‘s law; given by equation (3.5) 

3.6 Ballistic Conductance 

In the section (section 5) above, the small device is considered. The current 

equation (3,4) is written down first, then linearized to get an expression for the 

general conductance (G) equation (3.5), by averaging the conductance 

function  ( ) at any given energy. Recall equation (3,5) brought here below; 

     ∫  ( ) *
    ( )

  
+  

 

  

⁄  
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If  ( ) is taken out of the relation the integral,  ∫ (
    ( )

  
)  

 

  
 , will average to 

one in either one of the following two cases;  

(1) At low bias, low temperature, and the Fermi- levels are so close together, 

*
    ( )

  
+ is infinitely tall and thin to be recognized as a (δ) function to 

take the value of  ( ) to the Fermi- level, in this case G can be looked at 

by the value of the conductance function  ( ), where;  (  )  
   

  
  , so 

it is more convenient to work with  ( ) when looking for the 

conductance without writing the integral explicitly every time when 

using this relation. 

(2) If the temperature is relatively high the conductance  ( ) is varying 

strongly with energy, therefore an average will be involved by doing the 

integral, where; 

 (  )  
   ( )

  (  )
 

 

And the area under the curve *
    ( )

  
+ is equal to unity. 

Philosophically two different things are discussed, a value about certain 

energy, and another value about the integral number of electrons. These two types 

of values will be connected in another context later when the relationship between 

the Drude formula, and the general relation of conductivity, given by equation 

(2.14), are discussed to show under what conditions they are equal. 

For large devices usually the density of states ( ) is a constant value for 

particular material measured per unit energy per unit volume, where as in  ( )  

equation (2.13) the density of states ( ) has been defined as density of states per 

unit energy only and not per unit volume, so the density of states will be directly 

proportional to the volume (  ), plugging in the density of states of any material 

in  ( )  equation (2.13), where the time ( ) in that equation depends on the length 

of the channel ( ) and the average electron velocity ( ), therefore the ballistic 

conductance (  ) depends on the dimensions of the channels follows: 

   
    

  
 
    

  
   

  

 
          (   ) 
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Then (     ), this relation was observed 1969, often called Shaven resistor 

[42], which shows the ballistic conductance    would be linearly proportional to 

the area ( ) in three dimensions, or the width ( ) in two dimensions.  

 

Figure 3.11: Sharven resistance 

In semi classical view the electron is looked to as a particle, then the ballistic 

conductance    would be (  ) to get this linear increase. 

Twenty years later 1988 some experiments are carried on small ballistic 

conductors with a relatively small areas, instead of going linearly with area, started 

to go in steps to show a quantized version of conductance due to the wave nature 

of the electron. 

To understand this version, take one dimensional wire then confine it to a 

very small area to show that (      ), then plugging this number into   ( ) to 

get the quantum conductance (  ( )  
   

  
)  (

  

 
) ; 

   (
  

 
)              (   ) 
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Figure 3.12: Quantum conductance 

The value of (
  

 
) is exactly the inverse of (25KΩ), this can be explained by 

saying, the particle (energy levels) are not sharp, but they experience broadening 

out somewhat, and the fundamental unit of that broadening is given by the 

uncertainty principle. If an electron stays in one level for a length of time   , then; 

                  (   ) 

Therefore, the minimum broadening is  (   
 

  
), if the level spread out 

over ΔE, the density of states is given by the inversion ΔE; 

  
 

  
 
  

 
   

  

 
           (   ) 

 

 

Figure 3.13: Energy level spread out; minimum broadening is    

But in general,  
  

 
     for this proportionality there could not be a numerical 

factor of this argument  directly, but needs to go deeper to see why this has a 
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fundamental limit there, with this the ballistic conductance can be rationalized as  

   (
  

 
)  for one dimensional conductor, the real conductor can be viewed as a 

lot of one dimensional conductors in parallel, which could be called the conducting 

channels. If there are ( ) of them, the conductance would be,    (
   

 
). This 

what experiments of 1988 show. There is a fundamental quantum unit (
  

 
) times 

an integer ( ) which is the number of modes. This number of modes tells how 

many wavelengths of the electron fit into the cross-section, and that is why ballistic 

conductance is given by ( ) times (
  

 
) to fit this, and that is the reason which 

make people to think of the actual conductor as a lot of one-dimensional channels 

in parallel.  

 

Figure 3.14: Channel as a collection of (M) one dimensional channels 

In the figure above the conductance should not be normalized to  (
  

 
), but to 

2(
  

 
) , because energy levels in normal materials come into degenerate pairs, and 

experimentally that ( ) is an even integer usually 2,4,6,8,..etc, these even integers 

has something to do with spin (up & down spin), normally in nonmagnetic 

materials spin degenerate even in one dimensional conductor can be considered. 

To have two spins exactly like two things in parallel and the conductance as big as 

2 (
  

 
 ) for ( ) channels as shown a lot in all kinds of systems. 
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3.7 Diffusive conductance 

When an electron flows in a diffusive manner through any conductor, it 

doesn‘t go in in straight line like a bullet as in ballistic transport, but it takes a 

random manner (random walk).  

 

Figure 3.15: Diffusive Transport of an electron 

The time it takes to cross the channel is directly proportional to the length of 

the channel squared and can be written as; 

  
  

  
            (    ) 

Where;    is the length of the channel 

                 is diffusive coefficient, and (       ), 

where τ is the mean free time (   ) taken by the electron before it changes its 

path, V is the velocity of the electron to travel a distance (  ) called the mean free 

path (   ).  

        Since the time ( ) goes directly with (  ), this where Ohm‘s law is expected 

to be seen, and the conductance will not be directly proportional to the area ( ) but 

directly proportional to (
 

 
) as an inverse to Ohm‘s law to go inversely with ( ). 

 The time will be a lot longer and directly proportional to (  ) rather than 

( ) compared to the ballistic transport. To combine the time given by equation 

(3.10) with the general conductance expression; 

  
   

  
 
    

   
     (    ) 

Multiply by (
 

 
) and, rearrange and equate with equation (2.5) 
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  (
    

   
)(
 

 
*    (

 

 
* 

The conductivity σ as given by equation (2.14) above, this conductivity with 

a little discussion could also be written in the form of modes per unit area 

multiplied by the mean free path ( ) as shown by equation (2.11); 

  (
  

 
) (
 

 
*  (

   

 
* 

The form usually seen in literature is as in equation (2.14), namely, 

  (
   ( ) 

  
)           

This form is not a new result, it is very well known, but most of the people 

don‘t remember it as they remember the Drude formula, because the usual 

derivation of it requires Boltzmann‘s equation which needs a lot of time to master, 

and it needs a lot more back ground of knowledge. What is new is the way how to 

get so easily by using a completely different new prospective. The conductivity 

equation (2.14) depends on the density of states ( ) and the diffusion coefficient 

( ), this equation is really more correct, because it generally more applicable 

compared to the Drude formula which sometimes makes trouble in many contexts, 

to explain this recall the Drude formula, equation (2.7), namely; 

  
    

 
             

In this equation ( ) is the number of free electrons, τ is the mean free time 

and there is a mass ( ) which causes some problems, because it is not the mass of 

the electron in free space, but it the mass of electron in a solid, and usually its 

energy -momentum relation is parabolic, and in this case is very well defined mass. 

But in Graphene for example  the energy is directly proportional to momentum 

(     ), it takes a linear form and looks like a relativistic thing, and that is why 

it is not clear what to do for mass exactly, but it possible to account for that so 

easily and at the same time so difficult to confirm or explain. This issue with the 
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problem of the number of free electrons ( ) is going to be discussed when 

Graphene material is studied later. 

3.8 Ballistic and Diffusive time Justification  

 Before proceeding to connect the ballistic transport to the diffusive one, it is 

very important to justify the time used for either of them [43,44,45]. One way to 

think about this justification by the usage of electronic version expression 

introduced already in chapter (2) to get equation (2.13), as the number of electrons 

( ) stored in the channel is related to the flux ( ) of electron per second multiplied 

by the time ( )  each electron spends inside the channel; 

        

On that basis the number of electrons stored in the channel for ballistic 

transports   (
 

 
) , the same for diffusive transport, as shown in the following 

figures of electron distributions in both cases,  

        o  

Figure 3.16: Electron distribution for ballistic and diffusive transports 

For the ballistic transport all the states carrying the current flow from source 

to drain occupy half the states in the channel (
 

 
), and all the states are fully 

occupied while the other half in the reverse from drain to source are completely 

empty.  

For the diffusive transport, half the states from source to drain and from the 

drain to source are equally filled, but the occupation goes down gradually as the 

electrons flow from source to drain, because the electrons entered the channel from 

the source are a lot of  (
 

 
) and some of them hit something to turn around and go 
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back to the source, and very few remain the drain are about (
 

 
). The return path 

starts to build up gradually till the source to drain path is equally the same as the 

return path from drain to source, (
 

 
) both ways. 

For the ballistic transport the number of electrons entering the channel from 

the source are (
 

  
) given in the density of states per unit length and divided by two 

because half the states are available for them to flow from source to drain, to get 

the fatal number of electrons stored in the channel is by multiplying by ( ), 

therefore ; 

 

Figure 3.17: Stored number of electrons in the channel for ballistic transport 

  (
 

  
*    (

 

 
*        (    ) 

The time for the ballistic electron to cross the channel is given by; 

   
 

 
         (    ) 

Where; ( ) is the average velocity of the electron  

               ( ) is the channel length. 

Therefore, current can be calculated as; 

   
 

  
 
(
 
 )

 
 

   
  

  
        (    ) 
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For the diffusive transport it is not so easy to write the time, the process will 

be reversed by trying to write the current first using the standard diffusive equation 

to deduce the time from it. 

The current in diffusive is given by the diffusive equation; 

    (
  

  
*       (    ) 

Where, ( ) is the diffusive coefficient 

             (
  

  
)  is the derivative of the electron density. 

The minus sign shows that the going direction in which the function 

increases most rapidly, it decreases the most rapidly.  

The total number of electron density per unit length (i.e. the number of 

levels) at the source end equals (
 

 
) , where (

 

  
) going from source to drain, and  

(
 

  
) in the reverse from drain to source. (see figure 3.18, below) 

 

Figure 3.18: Total number of diffusive electrons density per unit length in two directions 

 The slope of the straight line is given by, 

(
  

  
*  (

 

  
* 

 Then, 

  ( 
  

  
* 

 Initially (
 

  
) electrons are waiting to get in the highway from source to 

drain while there are no electrons in the reverse way back from drain to source.  
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Therefore, the total number of electrons stored in the channel will be; 

   (
 

 
* 

 Combine         ; to get the time, 

  (
 

 
*  (

  

  
)             (    ) 

3.9 Connection of the ballistic and diffusive transports 

To connect the ballistic regime to the diffusive regime, the general 

conductance expression      (      ) is used, and by making use of times 

given in equation (3.13) for the ballistic transport, and equation (3.16) for the 

effusive transport. The main difference between the two regimes simply in the 

ballistic limit, time goes up as ( ) whereas in the diffusive limit, time goes up as 

( ). To get the general answer for both limits and in between time can be written 

as; 

  (
 

 
*  (

  

  
)         (    ) 

By this equation all the physics can be captured, but it not quite obvious to 

add them, one way to justify this, the equation looks as if it is written as a 

polynomial expression in the form of (    
 ). In principle it could have been 

written     etc. But according to the ballistic theory, when the length of the 

device is too short, the time goes with length ( ), and the first term with the lower 

power dominates. When the length of the device is slightly longer, the time goes 

with (  )  according to diffusive theory, hence the second term with the higher 

power still dominates. 

For very long device it is very well known that the answer stops at the 

diffusive limit and no need for higher powers       etc. If this is accepted, the 

time reads as: 

  (
 

 
*  (

  

  
)  (

 

 
*  (

  

  
)  (

 

 
)  (

 

 
*(  

  

  
 ) 
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Let ( 
  

  
)     , where   (

  

 
), which can be defined as the ratio of the 

diffusive coefficient [46] to the average velocity, and at the same time note that ( ) 

is the mean free path, since; 

(
  

 
*  

    

 
     

Rearrange  

  (
 

 
*  (

  

  
)  (

 

 
*(  

  

  
 ) 

 

  (
 

 
*  (

  

  
)    (  

 

 
 *          (    )  

This (time equation) describes three situations; 

(1) All ballistic case 

(2) All diffusive case 

(3) Semi-ballistic (intermediate between the two) 

To generalize the three cases, define a general fraction (T) for the electrons 

that succeeded to pass from source to drain. This ( ) is sometimes known as (the 

transmission coefficient). This fraction equal one for ballistic transport, 0.5 for 

diffusive transport, and can take any other value for semi-ballistic case, see the 

figure 3.19, below; 

 

Figure 3.19: Transmission coefficient T 

Note that the number of electrons stored inside the channel is still the same 

for ballistic, diffusive, and probably for semi-ballistic, as    (
 

 
) in the three 

cases, because if the number of electrons passing from source to drain are added to 
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48 
 

the number of electrons in the return path would get exactly the same number in all 

of the three cases. But the current differs from one case to the other, because the 

times in all three cases are different. The current has the highest value according to 

the shortest time (ballistic), and relatively low current for longer times and in 

between, then what ever the current may be, the ballistic current is, 

        (  )  

Where,   is the transmission coefficient  

                 is the ballistic current 

                 is the average time an electron spends inside the channel 

Therefore  

  (
 

  
*  (

 

 
*  (

  
 
*       (    ) 

Equate with equation (3.18) 

(
  
 
*    (  

 

 
 *   

Then,  

  
 

(   )
    (    ) 

The transmission coefficient   can be used almost as a definition of the 

mean free path, in the sense that the length of the device is equal to the mean free 

path if 50% of electrons get through the device from source to drain, because if the 

length of the device is one free path ( ), from equation (3.20),   is equal to 0.5, 

that means 50% of the electrons get through the device from one end to the other. 

If the length of the device ( ) is very short compared to the mean free path  ,    can 

be dropped in equation (3.20), and   will be equal to (one), that means 100% of the 

electrons get through the device. 

 The conventional definition of the mean free path is not exactly given by 

equation (3.20), it has been chosen as a definition of the mean free path measured 
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with the length  , because the expression (3.20) comes out nicely to comply with 

the previous discussions. It is possible to choose a different definition in which the 

length of the device equals the mean free path for (     ) or (60%) of the 

electrons to path through the device from one end to the other, the last case might 

have got, 

  
  

    
 

  
  

    
       

    

 (     )
 

How to define the mean free path is somewhat can be different from one 

definition to the other, but the exact definition will come later after the 

generalization of ohm‘s law. For instance, the fraction   (the transmission 

coefficient) can be written as in equation (3.20). 

 To combine ( ) with ( ) given by equation (3.19), 

  
  
 
   (  

 

 
) 

This is the same expression given earlier by equation (1.4), chapter (1), 

where the time in general can be written as in equation (3.18), namely found here 

below, 

  (
 

 
*  (

  

  
)    (  

 

 
 *           

When   is small compared to the mean free path, then equation (3.18) gives 

the ballistic time (  ), when it is large, gives the diffusive time. If the ballistic time  

(   
 

 
 ) is applied, directly to equation (3.13), namely found here below; 

  
   ( )

  
           

  The ballistic conductance is given as, 
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At the same time if the diffusive time      (  
 

 
) is applied on equation 

(3.13), the conductance equation, it gives; 

  
  

(  
 
 
)
 

   

(   )
 

That means for a little bigger device the conductance will be less by the 

factor (  
 

 
) . The conductivity ( ) and the ballistic conductance (  ) can be 

related in the following form; 

  
   

(   )
 

  

(   )
 

Where, the conductivity can be given by    (
   

 
  ), when the length gets 

really short, so neither the resistance goes to zero nor the conductivity goes to 

infinity, but they tend to go to some constant value. For a long conductor ( ) can 

be dropped, hence   (
  

 
) just like Ohm‘s law learned in the freshman‘s physics. 

 The usual understanding of conductivity starts from long conductors while 

in the proposed new prospective any material when made very short its property is 

characterized by; 

       

 Which can be used for long conductors as well, because the ballistic 

conductance when multiplied by the mean free path ( ) gives the general 

conductance multiplied by area.  

3.10 The Generalization of Ohm’s Law 

 Ohm‘s law states that the resistance is changing linearly with length. For a 

very short conductor Ohm‘s law has got an additional term to take the form; 

  
 

 
(     ) 
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Where, (   ) is the mean free path. 

  (     ) for one-dimensional conductor, two-dimensional conductor    

or, three-dimensional conductor respectively 

                  is the resistivity  

This form of resistance seems to be very useful when a conductor goes to the 

ballistic limit with length almost equal to zero, the resistance does not go to zero, 

but goes to another constant value. This form of resistance is slightly misleading, 

because (   ) does not mean much by itself so the resistivity ( ), but their 

product has got some meaning, what does it means is basically; 

   
    

  
 

 

     
 

Where,   (     ), for 1D, 2D or3D respectively. When writing (     )  

as a function of    in its quantum form without any extra factors is slightly 

misleading, because it gives an impression that it is independent of any mean free 

time ( ) or scattering at all. To understand this, recall the resistance equation; 

  
  

   
 
 

 
 

Where ( ) is the time taken by the electron to get from source to drain 

through the channel, this time can be generalized to cover the ballistic, the 

diffusive, and in between transports, by adding the diffusive component which is 

directly proportional to (  ) to the ballistic component which is directly 

proportional to ( ). Since   is directly proportional  to ( ), then ballistic 

component is not representing Ohm‘s law while the second diffusive component is 

exactly an Ohm‘s law. 

  
 

 
 
  

  
 

 

It is not immediately clear to add them but this has been justified before by 

saying the time is a function of the length ( ), and it is written in the form of 
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Taylor series; comes first ballistic linear term followed by the diffusive quadratic 

term, and no further terms will be added to it, this also has been justified by the 

diffusive transport theory. Substituting ( ) in the resistance equation to get; 

  
  

   
 

 

   
(
 

 
 
  

  
) 

  
  

   
 

 

  (
 
 
)
(
 

 
 
 

  
* 

Where, (
 

 
) is the density of states per unit length for one dimensional 

conductor, because D is directly proportional to ( ) when dividing ( ) by ( ) 

makes ( ) independent of the length. To generalize the resistance for different 

dimensions of conductors in one shot, multiply by (
 

 
) , where   (     ) for 

(        ) respectively. 

  

  
  

   
 

 

   (
 
  )

(
 

 
 
 

  
* 

The ratio (
 

  
) is the material property, this quantity would not change, 

because if we change the dimensions of the material the density of states ( ) will 

also change with the same proportion, so the ratio (
 

  
) remains constant. Therefore 

( ) is given per unit energy per unit (length, area, or volume) when (   ) for 

one dimension, or (   ) for two dimensions, or (   ) for three dimensions. 

 Pull 2Đ out of the bracket in the resistance equation above 

  

  
  

   
 

 

    (
 
  )

 
(
  

 
  * 

  (
    

  
) 
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(
  

 
  * 

  
  

   
 
 

 
(
  

 
  * 

The ratio of the diffusion coefficient (Đ) to the average velocity ( ) looks 

like the mean free path since (     ).  

 In  last section 3.8 under the title of time justification, the parameter ( )  is 

defined as (
  

 
) , starting from the conductance expression (  

   

  
), then this 

expression had been applied to the ballistic limit to give (   
    

  
  ), then to the 

diffusive limit to give (  
    

  
), when connecting them together, the 

fundamental parameters (  ) and ( ) are written as, 

(   
    

  
) 

And, 

 (  
    

  
) 

  hence; 

       

The bar on the diffusive coefficient ( ) and the bar over the velocity ( ) 

indicate that an average is involved therein, (see appendix II). The factor (2) 

appeared in the relation (  
  

 
) is due to the backscattering. Assuming that the 

process is isotropic, scattering take place either in the positive direction or the 

negative direction in one-dimensional conductor, but our real interest on those 

which have been completely turned a round (backscatter) into the right direction 

from source to drain, and the time getting turned a rounds (  ), where one ( ) is 

before hitting anything and the second one after hitting any object to turn around in 

the opposite direction, therefore (     ) by considering the longer time taken by 
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the mean free path for backscattering. The exact scattering factor is equals (2) for 

one dimensional conductor. In two-dimensional conductor the scattering take place 

in a form of a circle in all directions, averaging any single velocity over an energy 

range of few (  ) around the electrochemical potential, turned around in the right 

direction, the factor will come out to be (
 

 
). For three dimensional conductors 

scattering tale place in rather complicated mathematical form, and it will be treated 

as a polar coordinate with two angles to project the velocity vector at an angle ( ) 

with respect to the (Z-direction) on the (XY) plane to see the azimuth angle ( ) 

which defines a particular direction in the three dimensions, the factor in this case 

will be (1/2). To collect all these factors together the average value of the velocity 

can be written as; 

   (  
 

 
 
 

 
*  

For (1D, 2D, 3D) respectively, where V is the maximum velocity. 

 Similarly, for diffusive transport the integration for  (        ) will be 

taken over a solid angle to give; 

    (  
 

 
 
 

 
* 

  For 1D, 2D, 3D respectively, where V is the maximum velocity, the final 

result seems to be like the reciprocal of the number of dimensions. Therefore; 

  
   (  

 
 
 
 
 )

 (  
 
 
 
 
 )

 

 

    (  
 

 
 
 

 
*              (    )  

This definition of ( ), the mean free path (  ) multiplied by certain factors 

depending on the dimensions of the conductor. These factors are always greater 

than one, equals (2) in one dimensional conductor, (1.6) in two-dimensional 
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conductor, and (1.3) in three-dimensional conductor, due to the back scattering in 

each case. ( ) is the mean free time for backscattering, where only small fractions 

of all scattering processes are considered, or only those backscattering which are 

able to turn around. 

This definition of ( ) can be used to connect the fundamental parameter 

(  ) to the conductivity ( ) by some factor F; 

          (
 

  
* 

  (       ) (        ) 

  

      
  (  

 
 
 
 
 )

  (
  
  
) (  

 
 
 
 
 )
  

  
  

 
(  

 

 
 
 

 
*  

 

 
            (    ) 

(
  

  
)  has got a name called (the density of modes) which is equal to (

 

 
), where 

( ) is the number of modes, ( ) is the Planck‘s constant.  In equation (3.22) 

above the mean free path      (  
 

 
 
 

 
) can be written as in the resistance 

equation; 

  
 

 
(     ) 

Where,   (     ) for (1D, 2D, or3D) respectively. 

  It is slightly written in a misleading way, because it gives an impression that 

it is independent of the mean free time ( ) or any scattering at all.  

Then, 

  
 

 
(     )     

 

 (     )
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 (     )
 

 

     
 
   

 
 

                 

But when the factor ( ), from the relation (      ) is used; 

    

 
            

Where ( ) contains all the scattering processes factor for different 

dimensions plus the mean free path ( ). 

3.11 Wrapping up summary 

This chapter (3) started by the current equation of an elastic or Landauer 

resister as a function of the difference between the two Fermi-functions, 

 

    ∫  ( )     
 

  

⁄           (    ) 

Using the low bias approximation to get an expression for the conductance, 

 

  
 

 
 ∫  ( ) ( 

   
  
*  

 

  

            (    ) 

Where the conductance ( ) looks like the average of the conduction 

function  ( ). The conductance function  ( ) depends on the density of states 

and the time taken by an electron to go through the channel, 

 (  )  
   ( )

  (  )
 

Starting from this relation of  ( ) a general expression for the conductance 

can be obtained, for both the ballistic and the diffusive limit; 

  
   

(   )
 

  

(   )
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When the length of the channel ( ) is very short compared to the mean free 

path ( ) the length ( ) can be dropped to have the ballistic conductance, in 

contrast if ( ) is large compared to ( ), so the mean free path ( ) can be dropped 

to get back as Ohm‘s law requires for the channel to go with the length ( ). By this 

way different expressions for conductivity are given, using this new prospective, 

(  
   

(   )
 

  

(   )
* 

The conductivity is given by, 

  
   

( )
 

Where the conductivity equals the ballistic conductance per unit area times 

the mean free path. Whereas in the old prospective, the Drude formula 

conductivity is given by, 

  
    

 
            

  where, ( ) is the free electron density 

               ( ) is the effective mass 

                ( ) is the mean free time 

One of the main objectives is to connect the two conductivity relations by an 

introduction of specific model of the energy levels, therefore, everything should be 

discussed in the next chapter (4) in terms of the density of states to get the 

conductance, the current, etc. To compare the two-conductivity equations is by the 

usage of the following correspondence, 

  (
  
 
*        

    (
 

 
)   

          (
  
 
*    (

 

 
)  
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Chapter Four 

Energy Band Model 

4.1 Introduction 

The density of states plays a central role in determining how well something 

conducts, basically the material conducts if there is a large density of states around 

an equilibrium chemical potential μ. The density of states has not been discussed 

much to see from where it originates and how it can be modeled [47]. In big 

conductors it is more convenient to talk in terms of the density of states which tells 

how much states are there at a given range of energy, that is to say, the number of 

states per unit energy, and it could be measured by photoemission experiments. 

Generally the density of states can be modeled starting from Schrodinger 

equation to see the wave nature of electrons, but in this chapter the modeling will 

be done in a relatively simple model based on energy-momentum relation  ( ); 

taking into account the electron in solids behaves almost as if it is in vacuum , but 

with energy-momentum relation  ( ),  ( ), or with different mass. 

 ( ) curve and the density of states curve look similar in shape, but they are 

totally different in the sense that, momentum can take any direction, thus the  ( ) 

curve can be in both the positive and negative sides of the curve, while the density 

of states curve should take the positive side only. (see figures (4.1: left, right) 

below, 

 

Figure 4.1: Left/Schematic energy momentum diagram; Right/Density of states diagram 
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Starting from  ( ) relation, by  ( ) translation, density of states  ( ), and 

the number of modes  ( ) can be got. Also in this chapter how the Drude formula 

relates the conductivity to the electron density will be discussed, whereas the 

ballistic conductance     
 (

  

  
)    

 

 
  plays a central role in the discussion 

depending on either of  ( ), or  ( ) at a given range of energy , that means over 

that energy, averages at high temperatures and low temperatures‘ are needed. 

Philosophically as if two different things are dealt with, one of them is the 

value about certain energy and the other is the integrated number of electrons. 

 

Figure 4.2: Electron density, value of integrated number of electrons 

 To connect these two types by discussing the electron density and 

explaining why the new prospective usually agrees with what is got from the 

Drude formula, but   sometimes they don‘t agree.  

Finally, one of the most important devices, the Nano transistor is going to be 

discussed. The main goal of this thesis is the ability to apply Moor‘s law for 

continuous miniaturization of the electronics devices. Up to now an over simplified 

model of a transistor has been shown, because the third terminal (the gate) has 

been left out, which is going to be added in this chapter, and it is completely 

isolated from the channel, in that sense ideally no current flows through that 

terminal, but in practice here is a negligible leakage current. The open circuited 

gate voltage (  ) moves the energy levels in the channel up and down according to 

whether the gate voltage (  ) is negative or positive respectively. Since the 

conductivity ( ) depends on where is the chemical potential ( ) is, the 

conductivity can be changed by raising the energy levels to stop the current flow if 

the chemical potential ( ) gets into the gap. There are two ways to think about 
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this; either the chemical potential is kept fixed and moving the energy levels, or 

vice versa. The essence of the transistor is the ability to control how well the 

channel conducts controlling the resistivity ( ) by several orders of magnitudes. 

The characteristics of the transistor looks something like this (see figure below); 

 

Figure 4.3: MOSFET IV characteristics 

For more positive gate voltage (  ), the gate conducts better to get more 

current. Till now low bias is considered, where the conductance around the origin 

(
  

  
), is taken. This controlled low bias conductance introduces a very important 

concept of quantum capacitance. At high bias the shape of the transistor 

characteristics will change tending to saturate as the voltage bias is increased. For 

saturation to be perfect, it seems to be a very difficult task to do as the device gets 

smaller. 

4.2 Energy-Momentum Relation 

Energy of an electron in vacuum is the sum of the kinetic energy plus the 

potential energy, written as; 

  
  

   
          (   ) 

Where, ( )  is the momentum 
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              (  ) is the free electron mass (the rest mass) 

               ( ) The potential energy of the electron or (the well) 

Plotting the energy-momentum relation, the bottom of the parabolic band at 

(   ) equals the potential energy ( ), The parabolic dispersion looks as 

follows, 

 

Figure 4.4: Parabolic dispersion of energy momentum relation   

An equivalent shape can be shown relating the velocity using the kinetic 

energy equation; 

  
     

 

 
          (   ) 

 These two relations;   
     

 

 
 and  

  

   
 , are equivalent only in this special case 

of parabolic energy-momentum relation [48,49,50,51,52], but in general we have 

many other types of energy-momentum relations, where ( ) is not always equals 

(  ) in the sense that it is not always true to multiply the velocity by the mass to 

get the momentum. The general way, the momentum must come first and from 

which the velocity can be deduced in a certain way. 

In solids, atoms are arranged in a very complicated periodic manner, and 

there should be an energy- momentum relation where the potential energy ( ) is 

not constant but changing periodically all over. If there is a unit cell energy-

momentum relational be drawn according to the laws of solid states physics, which 

can be justified by quantum mechanics models, which is going to be avoided for 

the time being till the follow up is taken, when getting to quantum models, left for 

the future work. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=https://jnep.sumdu.edu.ua/download/numbers/2013/1/articles/en/jnep_2013_V5_01023.pdf&psig=AOvVaw0AxsIylY_hRoBhfpnWgjNW&ust=1567695974146756
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By accepting that the electrons in a solid behave almost as if they are in 

vacuum, but with different mass, called the effective mass, gives a chance not to go 

deep in quantum mechanics in this chapter. The energy – momentum relations are 

different even in complicated solids such as silicon and (    ), because the 

electron behaves somewhat with different mass (the effective mass), and it won‘t 

look anything as simple as a parabola, but it may take any shape, typically 

parabolic bands as shown here bellow in some solids; 

 

Figure 4.5:  Parabolic bands of energy momentum relation 

The bottom of the band is (  ). Since the electron in the solid behaves in the 

energy range of interest ΔE like in vacuum, with a different effective mass (  ), if 

attention is restricted in small region shown by a circle in the figure above, it looks 

like a parabola with different mass other than the free electron mass (  ) which is 

going to be different in solids, but still the energy can be written as; 

  
  

   
     

 Where, me is the effective mass 

This is just a true approximation over small range of energy (ΔE). If the 

electrochemical potential passes through (  ) the conduction processes depend on 

the energy levels around the electrochemical potential ( ), energies far away from 

the chemical potential don‘t matter, what matters only those energies inside the 
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circle, possibly not even the upper parts of the curve.  To describe the entire curve 

with the same relation  ( ) as far as the ability to fit the parabola well. As far as 

the bands are parabolic momentum equals (    ), so the laws of mechanics 

apply for all the entire shape of the energy- momentum relation.  

For a parabolic band, 

  
  

   
      [

  

  
 
 

  
     (

  

  
*]        (   ) 

Second Newton‘s law states that the rate of change of momentum with respect to 

time is the gradient of energy, which is equal to the force, 

      [
  

  
   (

  

  
*    ⃗   ⃗        

  

  
 ( 

  

  
*]       (   ) 

The minus sign in equation (45) above shows that, the going direction in 

which the function increases most rapidly, it decreases the most rapidly.  

In non- parabolic band energy -momentum relation is not given by   
  

   
    , 

instead it can be more complicated than that, and there are many popular materials 

such as graphene can take a linear relationship with (P), 

                      (   ) 

 

 

Figure 4.6: Linear dispersion of energy momentum relation 
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Sometimes the most suitable relation is the relativistic energy-momentum of 

the form; 

   (   )                   (    )               (   ) 

When (   ),       , the famous Einstein equation. Einstein special theory 

of relativity describes how space and time should be modified when systems and 

particles are moving close to the speed of light ( ), this the generalization of 

classical ideas of kinematics which describes the space and time, but how about 

dynamics? Likely to talk about forces, momentum, and energy to come up with 

some relativistic generalization of these ideas (Einstein was able to generalize 

them). 

Using the non-relativistic, the momentum is equal to the mass multiplied by 

the velocity (     ), to understand how things work, the conservation of 

momentum is very useful. Conservation of momentum does not mean that the 

momentum is the same for all observers while the velocity is a relative concept in 

different reference frames, hence an object will have different velocities, so the 

momentum, and that is not what the conservation of momentum says. 

The interaction between any two particles having no external forces acting 

on them, they collide and recoil, conservation of momentum says the total 

momentum of the system is the same before and at any time after.  

If the momentum is conserved in one reference frame it better to be 

conserved in the other reference frame, and if (     ) is used, by looking at 

some collision where the momentum is conserved, Lorenz equation should be used 

when shifting to the other reference frame, to tell the new position and the new 

velocities of particles, then by addition of the of the equations, the velocities of all 

particles are worked out before and after in the new co-ordinate system, to discover 

that the momentum is not conserved when viewed in different reference frames. To 

fix it up in a very simple way by; 

                         (   ) 

That means a relativistic generalization by making sure that the definition 

agrees with the old definition in the limit that velocities are small compared to the 

velocity of light if ( ) is close to one. Whenever the velocity is close to zero, sure 
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enough that (      ), that is, the equation reduced to the non-relativistic form. 

When something is moving fast the formula is (      ), thats is, the correct 

momentum will be significantly larger. But in solids these relativistic speeds do not 

exist, in spite of that energy-momentum relations could easily possesses the form 

(see equation 4.6), shown here below; 

   (   )        

The equation is not in terms of actual constants, C is not the velocity of light in this 

case, but much smaller. The equation takes that shape from the mathematical point 

of view. There could have been any shape of energy-momentum relation to 

describe the dynamics of an electron in non-parabolic band by writing laws of 

mechanics in the following forms; 

[(
  

  
*  

  

  
         ] 

[
  

  
 ( 

  

  
*       ] 

Force is equal to the gradient of ( ) with distance or the rate of change of 

momentum with time. The relation between momentum and velocity can be seen 

by the derivative of (  ) with respect to momentum; 

   (   )        

 

  
  

  
   (    ) 

 ( )         
   

 
   (   )

     

    
  

  
                  (   ) 

Consider ( ) to be constant, therefore mass goes with ( ), it increases and 

decreases with the increase or decrease of ( ). When ( ) increases mass gets 

bigger. Since the mass is directly proportional to ( ) the mass is not constant in 
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non-parabolic energy-momentum relations, it is relativistic and change with 

energy. The mass then is an energy dependent, and amounts to; 

  
  

√  (
 
 )

 
          (    ) 

Where, (  )  is the rest mass. This is the relativistic enhanced masses seen in the 

freshman‘s physics. The mass could be an energy dependent, so if the 

electrochemical potential happened to be higher up in the band the usage of 

different mass should be used. 

4.3 Counting States 

The basic idea of counting states is not clear how to count the density of 

states, for any energy- momentum relation, an electron could have any momentum 

corresponding to more than one energy. 

 

Figure 4.7: Energy momentum relation 

 It is like continuum, the argument concerned in a solid with a certain finite 

size, all the electrons momenta are not allowed which lead to discrete values of 

momentum corresponding to an allowed energy level in the upper band; 
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Figure 4.8: Allowed energy levels corresponding to discrete values of momentum 

These discrete set of momenta can be translated into density of states 

 ( ), or into number of modes  ( ). 

Figure 4.9: Translation of momenta into density of states 

 

For certain maximum value of momentum ( ) how many allowed 

states therein whose momentum is less than P? A function  ( ) is defined 

to tell the number of states within the solid of one-dimensional conductor (a 

line conductor), two-dimensional conductor (a circle with radius P), or three-

dimensional conductor (a sphere with radius P). 

Since the energy-momentum relation is known the momentum ( ) 

can be eliminated to get the number of energy states  ( ) for an energy less 

than some value ( ) to deduce the density of states  ( ), given by; 

 

 ( )  
  ( )

  
                  (    ) 
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If the energy ( ) is increased by (  ), extra states are added which is equal 

to the density of states in that energy range (  ), to discretize the momentum, the 

wave nature of electrons is brought in, that means, basically to introduce the 

quantum mechanics. Not to go deep into quantum mechanics, it is preferred to be 

done in an elementary way based on DeBrogle wavelength (  ) related by; 

   
 

 
                  (    ) 

Where,    is DeBrogle wavelength 

                is the Planck‘s constant 

                 is the momentum 

The essence of this counting scheme for one dimensional conductor of 

length ( ), the length must be an integer times the wavelength, often called the 

Period Boundary Condition (   ). The only allowed momenta are given by; 

   (
 

 
*               (    ) 

Therefore, the electron cannot have any momentum other than some certain values 

(  ), the condition imposed on that, an electron with certain wavelength to fit into 

a box of length ( ). Turning equation (4.12) around gives the spacing between 

allowed momenta as a discrete multiple of (
 

 
) for a one-dimensional conductor; 

    (
 

 
*      

 

 

Figure 4.10: Allowed momenta as discrete multiple of (h/L) 
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Therefore, so easily  ( ) can be found as; 

 ( )  
  

 
 

   (
 

 
*             (    ) 

For big values of ( ), the allowed values of (  ), are very dense and close 

together, and further apart for short lengths, that is why a bigger box is chosen to 

get more states, since the states depend on the size of the solid. 

Considering the wave property of an electron, the wave possesses a wave 

number property ( ), where (  
  

  
 ), then; 

(         ) 

This equation gives the wave-particle duality, that is the momentum ( ), the 

particle, and the wavenumber ( ), the wave. Both are related by the reduced 

Planck‘s constant (      ), therefore, ( )K is just an equivalent to ( ); 

    (
 

 
*         

  
 
  (

 

 
* (
 

 
*   (

  

 
) 

All the states are going from (  ) to (  ) and that is why the range is 

taken as (  ) and spaced by (
 

 
). 

The total number of states  ( ) in two-dimensional conductor with ( )  

happened to be less than any momentum value ( ) is directly proportional to (  ); 

 ( )  
   

(
 
 )
 (
 
 
)
    (   )                (    ) 

Where,  ( ) is the length in one direction, and ( ) is the length in the other 

direction, so these states are spaced by (
 

 
)  on (  ), and (

 

 
) on the (  )  direction 

to occupy an area of (
  

  
) for each state. 
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Figure 4.11: An area of each state in 2D conductor 

For three-dimensional conductor instead of an area a volume of sphere is 

considered with a radius ( ) happen to be less than the momentum value ( ) 

   

Figure 4.12: Volume of each state in 3D conductor 

The total number of states is directly proportional to (  ); 

 ( )  

 
 
   

(
 
 )
 (
 
 )

 (
 
 
)
 

 
 
 

  
(   )  

    

 
(   )        (    ) 

To collect all the three relations together to write it in a single expression for 

 ( ) in one dimension, two dimensions, or three dimensions conductors 

respectively, 
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 ( )  (
 

 
*
 

(       
 

 
   *                (    ) 

Therefore,  ( ) is directly proportional to (  ), where ( ) is the number 

of dimensions we are in, all the other bracketed factors represent the constants 

which hoes in front of (  ) of the general relation; 

 ( )     ( )                        (    ) 

Exactly what constant goes in front of (  ), even what that constant is not known 

the overall picture can be seen by combing  ( ) with  ( ), then by elimination of 

( ) the number of energy states  ( ) can be got for a value less than the energy 

value ( ), and by using equation (52) the density of states  ( ) can be calculated. 

4.4 The Density of States  ( ) 

In the last section, section (4.3) above the counting of states rule  ( ) is 

obtained in equation (4.17) by using the Periodic Boundary Conditions (   ) to 

tell how many states are allowed to have a momentum less than a momentum value 

( ). 

The rule  ( ) comes simply by fitting only the corresponding momentum 

into a box using the DeBrogle wavelength making no use of any energy-

momentum relation. This is the general method of counting the number of states 

based on (   ) as widely used in solid state physics. 

To get  ( ), the number of states allowed to have an energy less than an 

energy value ( ), by coupling  ( ) with the energy momentum relation  ( ), 

which in general could have many complicated forms of relations, and by 

eliminating  ( ),  ( ) is given , the derivative of  ( ) with respect to energy ( )  

gives the density of states  ( ). 

If an isotropic energy-momentum is assumed where energy is the same for 

any momentum in all directions [53,54,55]. In the figure below the shaded region 

corresponds to a certain value ( ). Increasing the momentum, a little bit, the 

corresponding ( )  will increase by an amount (  ), so slightly bigger circle 

results, 
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Figure 4.13: An isotropic energy momentum 

The number of states available are increased representing the density of 

states at that energy. 

From equation (4.18), having the function,  ( )       where the 

unimportant constant ( ) varies with ( ), in general  ( ) can be described by; 

 

 ( )       
            (    ) 

 

Where,    is the bottom of band, and    varies with ( ) in a certain way. 

                 is an unimportant constant multiplied by   , also varies with   

in a certain way depending on  . 

Parabolic bands are often dealt with where  (   ) (  
 

 
 ) then, 

 ( )     
  

  
 , 

But it is better to keep the equation in its general form for the purpose of 

other  ( ) relations. 
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From equation (4.19); 

    
( ( )    )

 
    (

 ( )    
 

)

 
 

  

 

Eliminate ( ) by substituting it in equation (4.18), to get  ( ); 

 

 ( )  
 

 
( ( )    )

 
  

 

 ( )  
  ( )

  
 
  

  
( ( )    )

(
 
 
  )

 

 

 ( )  ( ( )    )
(
 
  
  )
                (    ) 

 

This the general expression for the density of states,  ( ) depends on the 

number of dimensions ( ) and the factor ( ) which describe how the  ( ) 

relation varies with momentum.  

To apply these results for a specific case, the most common one is the 

parabolic band, where (α=2);  

(1) For one-dimensional conductor,   =1; then  ( )  ( ( )    ) 
 

  

,which can be represented by the following figure; 

 

 
Figure 4.14: Density of states of 1D conductor for parabolic relation 
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That figure has a singularity right near the band edge (Ec) with energy. 

These things are observed experimentally 

(2) For a two-dimensional conductor, α =   =2, then, 

  ( ) ( ( )    )
             

  

  
  , which can be represented 

by the following figure; 

 

 
Figure 4.15: Density of states of 2D conductor for parabolic relation 

 

(3) For three-dimensional conductor,  =3, α=2, then  ( )  ( ( )  

  )
   , which can be represented by a parabolic band for (3D) bulk semi-

conductor shown by the following figure; 

 

Figure 4.16: Density of states of 3D conductor for parabolic relation 

Also, there are very popular materials such as graphene, in graphene  ( ) 

can take a linear relationship with ( ); 

 

 ( )     
  

 

Where, (   ) for graphene, (see appendix (IV)); 
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 To combine  ( ) with the rule of counting states  ( ) to obtain  ( ) by 

eliminating the momentum ( ); 

 ( )  (
 ( )

  
)

 
 

 

 

 ( )  
  ( )

  
 
  

 
 (
 ( )

  
)

(
 
 
  )

           (    ) 

 

As in  ( ) relation instead of parabolic it is linear in this case, and all the 

above results will change; 

(1) For (1D), α =   =1, then  ( )             (
  

   
), which can 

be represented by the following figure; 

 
Figure 4.17: Density of states of 1D conductor for linear relation 

 

(2) For (2D), α=1,  =2, then  ( )    which can be represented by a 

linear relationship by the following figure 

 
Figure 4.18: Density of states of 2D conductor for linear relation 
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(3) For (3D), α=1,  =3, then  ( )   ( )  
which

 
can be represented by 

the following figure; 

 
Figure 4.19: Density of states of 3D conductor for linear relation 

The energy-momentum relation  ( ) can be more complicated than that, it 

could have been in a relativistic form, where energy is the square root of some 

constant plus some (  ),  

 

 ( )  (      
 
  )

 
   

 

In this case formula given by equation (61) cannot be used, therefore,  ( ) 

should have been taken to find  ( ), then to combine it with  ( ) to get  ( ) by 

the derivative of  ( ) with respect to  ; 

 

  (
 ( )    

 

  
 )

 
 

  

Eliminate ( ); 

 ( )     (
 ( )    

 

  
 )

  

 

4.5 Number of Modes 

Here a very useful relation independent of specific energy-momentum  ( ) 

is introduced to have a general relation valid for all the  ( ) relations and could be 

used to obtain an expression for the number of modes  ( )[56,57,58]. Back to the 
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rule of counting states  ( ) given by equation (4.17), the rule does not include 

any energy-momentum relation  ( ). It is just based on the idea of discretized 

momentum using the number of DeBrogle wavelength to fit in a box. Differentiate 

 ( ) with respect to ( ) to get a new important relation according to the 

following procedure, 

 ( )  (
 

 
*
 

(       
 

 
   *                (    ) 

 

  ( )

  
 
     

  
(       

 

 
   *    

 

  ( )

  
                 

  ( )

  
 
  

  
 

 

  ( )

  
 
  

  
 
     

  
(       

 

 
   * 

Multiply both sides by ( ) 

 

 
  ( )

  
 
  

  
  

     

  
(       

 

 
   * 

 

 
  ( )

  
 
  

  
  (

 

 
*
 

(       
 

 
   *  

 

   ( )      ( )             (    ) 
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This basic relation should hold in general, because it is totally independent 

of any  ( ) relation, but there is (
  

  
) representing the velocity ( ), without any 

assumption of any particular form of energy-momentum relation  ( ). 

The number of modes  ( ) can be related to the ballistic conductance    given by  

   
    

  
  where the average velocity involves some numerical factors depending 

on the number of dimensions  

 

   
    

  
(  

 

 
 
 

 
*   

The quantity (
  

  
) known as density of modes, which is equal to the number of 

modes  ( ) divided by the Planck‘s constant, and it has special significance, the 

material property, or (density of modes) 

  

  
 
 ( )

 
 

Therefore, 

 ( )  
   

  
(  

 

 
 
  

 
*             (    ) 

 

The number of modes can be found by multiplying the density of states by the 

velocity, but it can be done another way by using the general relation given by 

equation (63); where, 

 ( )    ( ) 
 

 
 

By substituting (  ) in equation (64), 

 ( )  
 

  
(
  

 
*(  

 

 
 
  

 
*  ((

 

 
)
  

  
(  

 

 
 
  

 
* 

 



79 
 

  ( )  (
 

 
*
 

(       
 

 
   * 

 

Both of  ( ) and  ( ) have an (   ) factor, so  ( ) can be written as; 

 ( )  
 

  
(
 

 
*
   

(       
 

 
   * (  

 

 
 
  

 
* 

Then, 

 ( )  
 

  
(
 

 
*
   

(       
  

 
  * 

Substitute (
 

  
)  inside the bracket, 

 ( )  (
 

 
*
   

(       )           (    ) 

Compare  ( ) with  ( ), the one-dimensional result (  ) in  ( ) is 

shifted to the two-dimensional result (  ) in  ( ), the same with two-

dimensional result (   ) in  ( ) is shifted to the three-dimensional result (  ) 

in  ( ), while the number of modes in one-dimensional conductor is unity in 

 ( ). 

These results can give a totally different physical interpretation by writing 

these expressions of  ( ) and  ( ) in a different way as follows, 

 ( )  (
 

 
*
 

(       
 

 
   *  (  (

 

 
*     (

 

 
*
 

 
 

 
   (

 

 
*
 

) 

 ( )  (
 

(
 
  )

 
   

 (
 
  )

  
   

 (
 
  )

 , 
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 ( )  (
 

(
 
 )
 (
 

 
)
  

(
 
 )

  (
 

 
)
  

(
 
 )

 ,             (    ) 

Similarly, with  ( ), 

 ( )  (  
 

(
 
 )
 (
 

 
)
 

(
 
 )

 ,            (    ) 

Therefore, the number of modes physically equals one for (1D) conductor, 

how many half wavelengths of DeBrogle fit into the width in (2D) conductor, and 

how many DeBrogle half wave lengths fit in either direction of the cross-sectional 

area for the the(3D) conductor. 

 

Figure 4.20: Number of modes in 2D and 3D conductors (Degree of freedom) 

Similarly, the number of momentum states physically equals to how many 

DeBrogle half wave lengths fit into the length of (1D) conductor, how many 

DeBrogle half wave lengths fit in either direction of the cross- sectional area for 

(2D) conductor, and how many DeBrogle half wavelengths fit in each direction of 

the volume in (3D) conductor. 

 

Figure 4.21: Number of momentum states in 1D ,2D, and 3D conductors  
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The word mode originates from the same ideas of electromagnetic wave 

guides, when the determination of the transverse modes for electromagnetic wave 

guides are required. 

An important consequence of equation (4.26), if multiplied by a constant 

value (    ) gives the ballistic conductance (  ). Since the number of modes 

 ( ) is directly proportional to the width of the cross-sectional area, the ballistic 

conductance changes linearly with the width ( ) or the cross- sectional area ( ) 
of the conductor.This had been observed back in 1970‘s and sometimes called 

Sharven resistance. 

 

Figure 4.22: Ballistic metal conductance  

In 1990‘s a very important development take place, that in small cross-

sections, where the number of modes is very small in the order of ten to twenty 

thousand it was observed that the ballistic conductance take a quantized form 

rather than to go linearly with ( ) or ( ) [59,60,61,62,63,64], but it goes in steps; 

 

Figure 4.23: Quantized conductance in quantum point contacts 
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To understand this phenomenon,  ( ) is not exactly equal to the quantity   

(  
 

(
 

 
)
 (
 

 
)

 

(
 

 
)
 +,  but if (

 

(
 

 
)
) happen to be a rational number it is actually a whole 

positive number, because the number of modes is given by how many states are 

available in that cross-section. Therefore, the correct expression is the integer part 

of (
 

(
 

 
)
), when  ( ) is small and (  ) is quantized,  ( ) is the integer value of 

the quantity inside the bracket, 

 ( )         (  
 

(
 
 )
 (
 

 
)
 

(
 
 )

 ,    

But normally nobody cares about that when  ( ) is a large number in the order 

of thousand or more, that will make no difference if it is (1000 or 1001). Because 

the steps are very close together with these big numbers, so they need to be 

averaged with * 
  

  
+ factor over an energy (  ). The steps smoothed out at high 

temperatures, but with low temperatures specially with conductors of small cross-

sections this phenomenon is very well established. This was first seen in semi- 

conductors like (    ) material even in small hydrogen molecules 

4.6 Electron Density (n) 

The ballistic conductance and the ballistic conductivity involve the density 

of states  ( ) and the number of modes  ( ),    
    

  
 

  

 
 , do not quite 

involve the electron density ( ). 
A band with an electrochemical potential ( ), shown here below, 

 

Figure 4.24: Band with electrochemical potential 
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The density of states at zero temperature can be determined by the number 

of electrons using the counting of states rule  ( ) to tell how many states are there 

below the electrochemical potential ( ), whose momentum is less than a 

momentum value ( ). The electron density is given by the number of electrons per 

unit length for (1D), per unit area for (2D), or per unit volume for (3D), 

 ( )  (
 

 
*
 

(       
 

 
   * 

Then, the electron density  ( ) is given by, 

 ( )  (
 

 
*
 

(    
 

 
 *           (    ) 

To combine  ( ) with  ( ), after converting the momentum into ( ), the 

electron density as a function of energy ( ) will be given at zero temperature for 

all the states below (   ) per unit volume. 

At reasonable temperature when ( ) is not equal (  ) the states below ( )  

are not fully occupied, and their occupation follow the Fermi-function which is 

changing in the order of (  ) between one far below the Fermi-level, and zero far 

above it (see figure below), 

 

Figure 4.25: States occupation below electrochemical potential  

To calculate the number of electrons (  ) using the following relation, 

   ∫  (  ) 
 

  

  (  )           (    ) 

Where,  ( ) is the density of states (the number of states per unit energy). 
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                 ( ) is the Fermi-function to tell whether the state is occupied or not. 

 (  )  
  (  )

  
 

Then, 

   ∫
  (  )

  
 

 

  

  (  )           (    ) 

Integrate by parts, not that the derivative (  ), instead of being at the first 

function  ( ) will be transferred over to the second function   ( ) with a minus 

sign associated with it.  

    [(  (  )  (  )]
  ∫  (  ) [ 

   
  
]   

 

  

 

For the surface term (   ) at the limit of (  ), (    ) but  ( ) is not 

equal to zero, their product equals zero, at (  ) limit (  ) is not equal to zero but 

 ( ) is, because  ( ) starts at the bottom of the band where  ( ) equals zero 

and from there it starts to grow, again their product equals zero, therefore, (   ) is 

equal to zero. 

     ∫  (  ) * 
  

  
+    

 

  
           (    ) 

 

Figure 4.26: calculation of the number of electrons (N0) 
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Equation (4.29) and (4.30) are mathematically the same, both give the same 

result. Note that at a very low temperature *
   

  
+ acts like a delta function ( )  right 

at (   ), and the value of ( ) will be given at the energy ( ). At non-zero 

temperature  ( ) should be averaged over a certain range of energy to be 

determined by * 
   

  
+. 

Back to equation (4.22), where the electron density,  ( )  (
 

 
)
 

(    
 

 
 ), 

from which the number of electron density (  ) with a given electrochemical 

potential ( ) can be got from the following relation, 

   ∫  (  ) [ 
   
  
]    

 

  

              (    ) 

 

Where,  ( ) tells the electron density as a function of energy when all the 

states below ( ) are all filled up to (   ), therefore  ( ) is the total number of 

states per unit (length, area, or volume) for (1D, 2D, 3D) respectively for an energy 

value less than ( ) at zero temperature. In this special case   ( )   ,  ( 
  

  
) = δ. 

 

Figure 4.27: Special case when   ( )   ,  ( 
  

  
) = δ. 

At non-zero temperature equation (4.31), can be generalized by averaging 

over certain energy range and the number of electron density (  ) is simply given 

by the value  ( ) as stated in equation (4.30), which has got the status of 

similarity with the conductance equation (3.5) chapter (3), brought here below, 
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 ∫  ( )( 

   
  
*  

 

  

            (   ) 

Therefore, the quantity  ( ) in equation (4.31) above, should be understood 

as the electron density at zero temperature. 

The energy momentum relation in the valence band is running downwards, 

the top of which is denoted by (  ). When it is translated into a density of states or 

the number of modes, it takes some shape confined to the positive side of the 

curve, and if the electrochemical potential happen to pass somewhere through this 

band, in that case  ( ) gives the number of holes above ( ), or the number of 

empty states, the density of which (  ) is given by, 

 

   ∫  ( )(    (  ))  
 

  

               (    ) 

Where,    is the number or density of empty states. 

                (  ) tells whether the states are occupied or not. 

              (    (  )) tells whether the states are empty or not    

 ( )   
  ( )

  
 

The minus sign shows the direction in which the function  ( ) decreases 

rapidly while ( ) increases rapidly or vice versa, then; 

   ∫  
  ( )

  
(    (  ))   

 

  

 

  Where,  ( ) represents all the states whose energy is higher than (   ), 

at the same time  ( ) tells how many states are available for a momentum less 

than a certain value ( ), to corresponds to the number of the empty states above 

certain energy value ( ). 
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Figure 4.28: Number of empty states above certain energy value (E) 

Integrate by parts, 

   [  (  )(    (  )]
  *∫  (  ) [ 

   
  
]  

 

 

+ 

The surface term [  (  )(    (  )]
  vanishes at both ends and can be 

ignored, note that when   ( ) is used instead of     ( ), the surface term (   )  

would not be zero at one end of the limits, then 

  

   *∫  (  ) [ 
   
  
]   

 

 

+             (    ) 

It is quite important to note then when dealing with the Drude formula (  
    

 
) 

the value of ( ) should be interpreted as the number of empty states in the valence 

band above ( ). 

4.7 The Conductivity (σ) Against the Electron Density (n) 

The introduction of electron density in the last section (4.6), gives the 

capability to connect up the old prospective, the Dude formula, ( 
    

 
), to the new 

prospective (  
   

 
) , where the ballistic conductance GB in the new prospective 

plays the same role of electron density ( ) in the old prospective. Also, the mean 

free path ( ) in the new prospective corresponds to the mean free time in the old 

prospective. (    ) gives either of (  ) per unit (length, area, or volume) 

according to the dimension ( ), we are in.   
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To connect these perspectives, an expression for the electron density given 

by equation (4.27) is needed for the sake of comparison; 

 ( )  (
 

 
*
 

(    
 

 
 *           (    ) 

Now bring in equation (4.31), shown here below; 

   ∫  (  ) [ 
   
  
]    

 

  

               

So, these are the electron density per unit length, area, or volume. 

To see if the two conductivity equations of the old and new prospective are 

equivalent or not, this can be done by the correspondence between the quantities 

(      ) and (    )    (   ) of the new prospective to the old one. 

The Drude formula is fundamentally correct and works well except in some 

cases in non-parabolic bands, where some careful treatment is needed for either of 

mass or the electron density ( ). 

In the new prospective the ballistic conductance (    ) depends only on the 

density of states  ( ) and the velocity ( ), or the number of modes  ( ), which 

tells how many half wave length fits into the cross-section for (3D) or how many 

wave length fits in the width for (2D), and equal to one in (1D). 

 

Since;    
    

  
 

   

 
 ,then using equation (4.24), to find 

  

 
, 

 ( )  (
 

 
*
   

(       )           (    ) 

 

  
 
 (    ) (

 

 
*
   

(     )           (    ) 
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Where,  ( ) gives the three dimensions in one shot, then using equation (4.27) to 

find 
   

 
, 

 ( )  (
 

 
*
 

(    
 

 
 *           (    ) 

   

 
 
  

 
(
 

 
*
 

(    
 

 
 *           (    ) 

Compare equation (4.34) by equation (4.35) above; to compare;  

(
  
 )

   
 

 
 

 
(
 

 
 
 

 
 
 

 
*           (    ) 

Then compare the other ratio (   ); 

 

 
  (      

 

 
*           (    ) 

Multiply equation (4.36) by equation (4.37), to compare the corresponding 

parameters of the old prospective to the new prospective at the left-hand side of the 

equation where the result is found in the right-hand side of the equation; as 
  

 
(     )   , that means they are equivalent, but this is only true in the 

parabolic bands where the energy goes quadratically with the momentum. It is not 

necessarily true in general, to how to define mass physically should be taken so 

carefully, it could be defined as; 

  

  
 
 

 
 
 

  
(
  

  
*  

   

   
   

This definition of mass is found in different context of solid-state physics. 

This definition is not correct in Dude formula, and should not be used at all, the 

correct expression is ( 
 

 
 

 

 
 ), and not ( 

  

  
 

 

 
 ), these two relations are the same 

for parabolic bands, but in general they must not be considered the same, because 

looking back to see how the Drude formula has been derived, there are two 

quantities required, 
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(1) The current density (     ), which depends on the velocity. 

(2) The momentum (
  

  
 
 

 
   ), which comes from Newton‘s laws, where 

(
  

  
  ), and (

 

 
 ) is the frictional force in the solidity viscous drag. 

Following the same procedure adopted in section (2) of chapter (2) the 

Drude formula for conductivity ( ) is derived; 

  
    

 
 

While the derivation of the Drude formula, the mass is introduced as a ratio of 

(   ), and (     ) or anything else, so the mass in the Drude formula should be 

viewed as (   ). 

For non-parabolic bands, the mass depends on what energy -momentum relation 

 ( ) to deal with, because sometimes the mass keeps changing with energy, and 

(   ) ratio will not be constant, in such case when using Drude formula care 

should have to be taken. The formula (   ) correlates very well with Drude 

formula, and the ratio between  (
  

 
)      (

   

 
)  equals one. When using (

 

 
 

  

  
), 

the density of states  ( ) and the number of modes  ( ) should be known, all 

these values are very well defined, but taking care is required when dealing with 

the number of free electrons and the effective mass in the Drude formula and must 

know what they mean. If they don‘t agree, the answer will be found in the new 

prospective got from Boltzmann‘s equation, which is the corner stone of the semi-

classical transport, and that why people tend to use the Drude formula, because it is 

easy to learn and derive, not like the new prospective version which require the 

complicated Boltzmann‘s equation, but now by the new (bottom-up) approach the 

new prospective expression (  
   

 
  ) comes out in a relatively simple way. 

4.8 Quantum Capacitance 

The Nano transistor is the most important electronic device, it is like a 

resistor in the since that when a voltage is applied between the source and the 

drain, current flows. For this two terminals device, the density of states of the 

channel with a chemical potential ( ) to tell the level up to which the states are 

filled as shown here below; 
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Figure 4.29: Level up to which the states are filled 

The valence band (the lower band will be ignored and concerned only with 

the conduction band, the upper band). The transistor normally has three terminals, 

the third one is to control the channel, and this gives the essence of the transistor, 

for this purpose the third terminal will be supplied by a voltage (  ). 

Schematically this terminal is called the gate terminal, and it is insulated from the 

channel by any insulating material. Ideally no current flows through this terminal, 

but the insulator should be very thin, and that is why there will be an undesirable 

leakage current. The gate voltage (  ) changes the potential inside the channel. 

 

 

Figure 4.30: Schematic diagram of three terminal nano transistor 

The voltage (  ) moves the energy states in the channel up or down to 

change the resistance of the channel, hence the energy inside the channel by an 

amount; 

   (    )    (    )   (    ) 

When (    ) the channel is neutral that means all the electrons (  ) has 

a compensating positive charge in them (or protons), then; 
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   (    ) 

For extra electrons come in the channel will give rise to negative energy, the 

channel will be out of equilibrium, so the second term appears as in equation (4.38) 

where U0 is known as single electron charging energy. 

Suppose a negative voltage (   ) ls put at the gate, that means it adds more 

electrons to the channel to increase the energy inside the channel by an amount 

 (    ), so all the energy levels float up.  

Let the electrochemical potentials in figure below stay where they are before 

and after adding the gate voltage (   ), because these electrochemical potentials 

are controlled by the contacts; 

 

                                                                                         

Figure 4.31: How energy levels float up, Left/ After adding (   ) ; Right/Before adding (   )  

Before adding the gate voltage (   ) the channel conducts well because 

there is a lot of states there. After adding the gate voltage (   ), the energy levels 

float up and the density of states are small, and the channel does not conduct as 

well anymore. 

To model this description mathematically, the Fermi-function can be 

brought in, whose mathematical form is; 
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  ( )  
 

    
 

Where,    
   

  
 

The Fermi-function tells how the states are occupied. At zero temperature 

everything below ( ) is filled, at non-zero temperature the Fermi-function 

describes the occupation of the levels. 

The number of electrons is; 

   ∫  ( )  ( )  
 

  

 

Where,  ( ) tells how many states there are 

                            ( ) tells what fraction of the states is filled 

When the gate potential changes, as a result the positive potential ( )  adds 

up inside the channel, so the density of states float up, therefore, the electron 

density can be written as, 

  ∫  (    )  ( )  
 

  

    (    ) 

By transformation of variables, let (      ), then; 

  ∫  ( )  (   )          (    )
 

  

 

There are two cases; 

(1)  if the density of states floats up, and the electrochemical potential happen to 

be below the band then the non-generative approximation 
(   )

  
 is positive 

then; 

 

 

  ( )  
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This what is called Boltzmann‘s approximation, the Fermi-function where 

the Fermi-function can be replaced by a simple exponential function; 

  (   )   
 
     
    (    ) 

Then, 

  ∫  ( )  
     
    

 

  

      (    ) 

Pull (  
 

  ) out of the integral, because it doesn‘t depend on energy ( ); 

 

        ∫  ( )  
   
     

 

  

    
         (    ) 

    (
 

  
*   

 

  
      (    ) 

When the gate voltage changes, the energy inside the channel changes by an 

amount     (    ) where the best value of ( ) can be equals to one, but 

practically always less than one 

 

    (
 

  
*   

 (    )

  
       (    ) 

Turn the relation to (  ); 

   
  

  
    (

 

  
*      (    ) 

 

    (
  

 
* (
 

 
*   (     (

 

  
*+      (    ) 
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At room temperature, 

  

 
      

If the electron density factor (    ) changed by a decade, then     (   

   ), therefore, (  ) will change by (             ), this represents the 

ideal case for the change of (  ) by (           ). If the change per decade is 

greater than (    ), the work should be confined to ( ), in the opposite if the 

change per decade is less than (    ) that means ( ) is greater than (   ), and 

that of course impossible, therefore, either a big mistake has been made or 

something big has been discovered. 

(2). If the density of states floats up, and the electrochemical potential ( ) happen 

to be inside the band of the states, where there are enough number of electrons, in 

such a case the non-generative approximation cannot be used any more instead the 

original modified form of electron density equation is used; 

  ∫  ( )  (   )  
 

  

 

  

  
 ∫  (  ) * 

   (   )

  
+ 

 

   

           (    ) 

(  ) is a negative quantity, because the derivative of the Fermi-function is 

negative, that is, as the energy goes up the derivative goes down in the energy 

range of interest. The quantum capacitance will be given by; 

  

  
 
 (  )

 (
 
 )

 
    

  
           

  

  
    

  

  
         (    ) 

The potential energy inside the channel changes by an amount (    

  (    )), this is true as long as charging energy (  (    )) due to the 

electron‘s interaction is ignored when there are a lot of electrons. An extra term 
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should be added to compensate for the interaction of each electron with the rest of 

other electrons. 

   (    )    (    ) 

Where, (  ) is the single electron charging energy. 

                ( ) is the number of electrons increased to the value N 

               (  ) is the number of electrons in the neutral state. 

Change in the number of electrons (    ) give rise to negative energy in 

the channel, (  ) tells how much the potential changes due to one electron in the 

channel, and the actual change will be given by (  ) times the change in the 

number of electrons. When (    ) the channel is neutral and all electrons will 

compensate the positive charge of the protons in the channel, if extra electrons 

come in, they give rise to negative energy (out of equilibrium case). 

When the number of electrons goes up and need to be lowered still the 

number of electrons will go up to cause an increase in the overall potential energy. 

Because the electrons are treated as uncharged particles different pictures other 

than what is really is, are expected. Any time if there are extra electrons will make 

it harder for the other electrons to come in and at the same time makes the energy 

states to float, so the state goes down less. Back to equation (4.38); 

   (    )    (    ) 

  

 (    )
   

  (    )

 (    )
 

Using the chain rule; 

  

 (    )
     (

  

  
*  (

  

 (    )
)  

  

 (    )
     (   ) (

  

 (    )
)        (

  

 (    )
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The quantity (
  

 (    )
*in both sides of the equation, move all to the left side; 

  

 (    )
     (

  

 (    )
)      

  

 (    )
 

 

      
        (    )  

The change in the potential energy U is due to the change of the gate voltage 

(   ) given by the nonideal factor ( ), the change has been shown is less than 

( ) depending on how big (    ) is, where (  ) is the density of states at 

equilibrium and (  ) is the single electron charging energy. For small values of 

(  ), don‘t worry about this result, but in general the extra term should be 

included. Another way to write this term is to introduce the electrostatic 

capacitance. 

Since the quantum capacitance is given by equation (4.49);  

  

  
    

  
  

 

The electrostatic capacitance is given; 

   
  

  
 

  

 (    )
 

 

      
  

 

  
  
   
 
  

  

 
   

     
   (    ) 

Equation (92) can be visualized as an electric circuit of series capacitors as shown 

here below; 

 

Figure 4.32: Subthreshold gate voltages 
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Applying the gate voltage (   ) at the terminal of the electrostatic capacitor 

(  ), and the quantum capacitor (  ) is connected to the ground at the end 

terminal of the source, and from the middle node the potential of the channel is 

taken. When the density of states in the channel is very low to confirm the non-

generative case, and the Fermi-energy level is down in the gap, , (  ) is small then 

(  ) is small, so the entire voltage will appears at (  ) , where essentially in the 

channel is the applied voltage on the gate (   ), because small capacitor is a kind 

of small conductance, or high resistor. On the other hand, the Fermi-energy level  

( ) is inside the band and the density of states are very high, hence (  ) is large, 

like having small resistance in (  ). So, the potential actually got in the middle 

node, the channel, is very much less than the ailed voltage (   ). 

This is the basic framework in terms of which how the gate voltage changes 

the potential energy in the channel is understood by making the band to float up 

and down to control the conductance, which of course is the essential physics 

underlining the operation of the field effect transistors. 

4.9 Wrapping up summary 

This chapter (4) the model for density of states, that is, the energy band 

structure model is adopted, which is widely used for crystalline solids. The 

crystalline solid introduces the concept of effective mass and other relatedness 

things connected with the Drude formula, that is why this chapter started with 

energy momentum relation  ( ) in vacuum, then  ( ) which tells how many 

states are available, whose momentum is less than the value of the momentum ( ) 

in vacuum. The energy in vacuum is related to momentum by addition of the 

potential energy to the kinetic energy where the kinetic energy is directly 

proportional to the momentum squared. In complicated solid objects energy can be 

written in terms of momentum relations with some caveats. One of these caveats 

the solid could have more than one band. This is one of the early insights in solid 

states physics. Energy is not necessary to be proportional to the momentum 

squared it could be non-parabolic complicated function. Specific scheme known as 

the Periodic Boundary Condition (   ), for counting how many states are 

available whose momentum is less than ( ), has been adopted. (   ) is not 

necessary to be obeyed by real solids, because (   ) doesn‘t matter in big solids,  
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and could be used whenever convenient from the mathematical point of view to 

lead the function  ( ). By the combination of  ( ) &  ( ) to get various 

quantities of interest, namely the density of states  ( ), the number of modes 

 ( ), and the electron density  ( ). When these quantities are ready to enter the 

expression of the conductivity sigma in its new prospective form, 

 

  
   

 
 

 

Hence it will be so easy to connect this new prospective, with the old 

prospective, the Drude formula; 

    (
 

 
)   

Finally, many things have been prepared to introduce the third terminator the 

transistor which is going to be discussed in the next chapter, chapter (5). 
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Chapter Five 

Nanoscale Transistor 

  5.1 introduction 

The transistor is the basic circuit element from which electronic systems are 

built. The discovery of the transistor eff ect in 1947 set the stage for a revolution in 

electronics. The invention of the integrated circuit in 1959 launched the revolution 

by providing a way to mass produce monolithic circuits of interconnected 

transistors. As semiconductor technology developed, the number of transistors on 

an integrated circuit chip doubled each year. This doubling of the number of 

transistors per chip, driven by continuously downscaling the size of transistors, has 

continued at about the same pace for more than 50 years. The resulting continuous 

increase in the capabilities of electronic systems and the continuous decrease in the 

cost per function have shaped the world of today. The theory of the MOSFET (the 

most common type of transistor) was formulated in the 1960‘s when transistor 

channels were about 10 micrometers (10,000 nanometers) long [65,66,67]. As 

semiconductor technology matured, transistor dimensions shrunk, new physics 

became important, and the models evolved. By the end of the 20th century, 

transistor dimensions had reached the nanoscale, and the transistor became the first 

active, nanoscale device in high-volume manufacturing. The flow of electrons in 

modern transistors is much diff erent from what it was 50 years ago when transistor 

models were first developed, but most people continue to study traditional 

MOSEFT theory. The goal of this thesis is to demonstrate the essential operating 

principles of nano transistors. Nano transistors are much diff erent from those 

transistors which had been described some decades ago, note that these operating 

principles are remarkably simple and easy to understand. The approach is based on 

a new understanding of electron transport that has emerged from research on 

molecular and nanoscale electronics [68], but it retains much of the original theory 

of the MOSFET. In addition to describing a specific device, this research should 

serve as an example of how other nanodevices might be understood and modeled. 

This research is not meant to cover a comprehensive treatment of transistor science 

and technology; but it could be considered as a starting point aims to convey some 

important physical fundamentals, assuming an understanding of basic 

semiconductor physics where a new approach is presented.  
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5.2 The full current voltage characteristic 

For the first time in this research the third terminal, (the gate), is going to be 

introduced 

 

Figure 5.1: Pictorial structure of the nano transistor 

The conductance is charged through the gate voltage; 

 

Figure 5.2: Conductance charged by gate voltage 

So far everything has been discussed is about the low bias looking right around 

the origin of the (I-V) characteristic to see the slope which is going to be known as 

the low bias conductance, the shape of (I-V) curve is an important factor to get 

familiar of what is going on inside the transistor.   

 

Figure 5.3:  Low bias conductance around the origin of IV MOSFET characteristics 
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The full current against the voltage characteristics right around the origin for 

small bias, the slope of which gives the conductance, because the characteristics 

are represented by straight line. 

The expression for conductance starts from the full current expression; 

  
 

 
∫  ( )(  ( )    ( ))   
 

  

 

By Taylor series approximation, *
  

  
+ is deduced, hence the conductance. 

Using the current equation, the entire voltage current characteristics curve takes the 

following shape; 

 

Figure5.4: Voltage current characteristics curve for the ballistic MOSFET 

This shape drawn above is not likely to be quite like that, there are some few 

things to be explained, one of them is why the current saturates so perfectly when 

the voltage is increased beyond a certain value where the current doesn‘t increase 

any more. The reason is, when applying a voltage, the source is taken as a 

reference (zero voltage), and the drain has a certain positive voltage (  ) in it, and 

let (  ) to grow bigger and bigger the electrochemical potential in the drain goes 

down accordingly, and the current flows in the window between (      ).  
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Figure 5.5: Electrochemical potential goes down according to how much the positive applied 

drain voltage is. 

For small voltages more current flows because there are more channels 

available for conduction. Once (  ) dropped below the band no states will be 

available, it doesn‘t matter where (  ) is located if the empty gap is under the 

conduction band and (  ), that is why saturation is seen in the model. If (  ) 

pulled down further to get into the lower band (the valence band), then again 

current will start to flow, but usually the voltage range is controlled to be kept at 

the stage not to reach that end for the current to saturates perfectly.  

 

Figure 5.6: Current flow in the lower valence band when the electrochemical potential is pulled 

below the band gap  

If the number of electrons increases in the channel it causes a negative 

potential, and a positive potential if it decreases. For that reason the band goes 

down somewhat, because the band is full of electrons and when a voltage is 

applied the electrochemical potential goes down leaving fewer electrons in the 

band and the system is out of equilibrium, so one contact wants to fill the channel 

the other wants to empty it, so the band states are lowered to half of their value 

because they are used to be full all the time, now they are filled half the time 
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because when one electron comes in another electron goes out, the average results 

in half the electrons. As a result, there are fewer electrons in the channel to cause a 

positive potential and makes the band to go down, 

 

Figure 5.7: Out of equilibrium system due to the reduced number of electrons in the band 

That would then give more current flow, what is expected from this effect is, 

more current flow compared to the current given when this effect is neglected. 

Mathematically how this effect is explained is by defining the channel potential 

( ) and rewrite it in the form of something that depends on the gate voltage as 

shown in the next paragraph self-consistent model [69,70]. 

5.3 Self consistent model 

The positive potential applied would make the band to go down and then 

more current flows over what is expected. Mathematically define the channel 

potential ( ) which depends on the gate voltage given by the following relation; 

   (    )    (    )     (   ) 

The first term doesn‘t matter because of the assumption that the gate voltage 

is fixed, the second term stands for the discharging energy. The effect of the bias 

makes the number of electrons to go down by half of they are used to be, so ( ) 

goes down and (  ) becomes negative, adding this effect to the current equation 

then, 

  
 

 
∫  (   )(  ( )    ( ))          (   )
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The number of electrons; 

  ∫  (   ) 
(  ( )    ( ))

 
     

 

  

           (   ) 

Out of equilibrium there are two Fermi-functions, one at the right contact 

and the other at the left contact, therefore, the occupation of the states is average of 

the two functions. 

These two equations can be solved self consistently, because ( ) depends 

on ( ), and ( ) depends on ( ). There is a numerical technique for that solution. 

If they are solved self consistently results in a much bigger current than what is 

expected to be.  

If the band lowering process is ignored (    ), but when the band 

lowering process is taken into account much bigger current flows and (    )  

tends to be small as if the band floats down, so the number of electrons used to be 

will try to go back to half of its value, but instead it goes down enough and almost 

stay as it is. Under these conditions again more current flows like what is shown by 

(    )      

 

Figure 5.8: Band lowering process results in bigger current flow 

5.4 The Role of Electrostatics 

Another factor is missing in this discussion, that is why the saturation is very 

perfect, although this a very good thing if the transistor has got such perfect 

saturation at the on state, this will help the transistor user to consider the on state is 
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independent of the voltage (  ), and this is what really good transistors are likely 

to be to control the current entirely by the gate voltage and is not affected by the 

voltage between the source and the drain. This model seems to predict what has 

been said so easily, but that is not true completely because an important effect of 

the potential inside the channel has been ignored, so the channel is not affected by 

the gate voltage alone but also by the drain voltage which should be included in 

equation (5.1); 

   (    )    (    )    (    )       (   ) 

When (  ) is included in equation (5.1), the current does not saturate so 

nicely as before, physically this true when (  ) is increased, because the channel 

potential tends to go down more hence the band sinks down more, and the current 

keeps increasing.  

 

Figure 5.9: Physical operation IV characteristics of nano transistor 

To get good current saturation in the Nano transistor, the art of technology 

is, ( ) should be kept as small as possible. As long as the long devices are 

concerned nice saturation can be achieved, because the gate voltage controls the 

potential through ( ), and the drain potential is charged through ( ), as the 

devices gets smaller enough and the channel is about few hundred atoms across the 

drain voltage (  ) get more effective in terms of controlling the channel potential, 

this effect is sometimes called Drain Induced Barrier Lowering (    )  [71]. 

In order to make sure that the gate controls the potential better than the drain 

that means ( ) is a whole lot bigger than ( ), the insulator should have to be very 

few atoms (more like ten atoms), and that is extremely hard to do, because there 
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will be more leakage currents the electrons tunnel is through the insulator, though 

ten atoms across billion devices is really hard job to do to make billion Nano 

transistors to work, any way from the qualitative point of view the insulator should 

be very thin for the gate to control the channel potential much better than the drain 

do. On the other hand, from the quantitative point of view this model is not 

adequate, much deeper knowledge in some other issues is required, the most 

important one of them is putting the channel potential as a single number.  

Practically the potential varies along the channel. In other words, the value 

of the potential at the source end is different from the potential at the other drain 

end. It changes continuously. That is, the density of states  ( ) or the conductance 

function  ( ) will keep going down, when the channel potential ( ) changes, the 

bottom of the band tracks that change by going down along the channel length that 

means the channel potential ( ) is not a single number. 

 

 

Figure 5.10: The track of the bottom of the band 

5.5 Model extension 

To calculate the channel potential U a differential equation is needed to do 

that calculation. That differential equation is the Poisson Equation 

[
 

  
( 
  

  
*    (    )]         (   ) 

Doing a serious device simulation Poisson Equation should be used which 

tells the potential (     ) as a function of the electron density (    ), and what 

have been done is a poor algebraic version of equation (5.4), 

https://nanohub.org/courses/FON1/01a/outline/unit2energybandmodel/l29thenanotransistor
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   (    )    (    )    (    )       (   ) 

   From equation (96) a single number ( ) is got, just to give a rough idea of 

what are those factors in the equation look like, to understand the real observed 

characteristics or the physical features well. One thing still missed in the model 

shown by equations (5.2,5.3), that is, the current and the number of electrons 

equations, were based on the elastic cross transport without any change of energy, 

to give a good approximation for ballistic devices.  

For diffusive transport the electron losses momentum at each stage as it 

moves down along the potential gradient from the source to carry on to the drain 

and will not be confined to the energy channel like what happens in the ballistic 

case. If the model allows electrons to travel along the channel, they start at an 

energy, where if the current is calculated results in much lower current than what is 

actually should be, because in practice, some of the elastic processes allow an 

electron to relax, so the current increases because an electron from the source goes 

down the energy slope, then it is so hard for that electron to get back to the source, 

and continue to proceed on, to the drain. This description can be done in a more 

convincing qualitative way by segmenting the long device into a lot of little ones in 

series. What is usually done for device modeling techniques is the usage of the 

drift diffusion equation, which is written as, current directly proportional to the 

slope of the electrochemical potential; 

   
 ( )  

   
          (   ) 

Usually the electrochemical potentials are considered at the source and the 

drain ends without considering what is going on in between. If the electrochemical 

potential in between is assumed to be ( ), and it changes along the way it could be 

written as (
  

  
) as shown above in the drift diffusion equation (5.6) that is widely 

used in for device simulation, and it should be coupled by the continuity equation 

in one dimension, and  the current does not change with length; 

  

  
            (   ) 
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The equations (5.5, 5.6, 5.7) are old equation generally used, and they are 

not based on new prospective sight of view, the old prospective conductivity ( ) is 

given by the Drude formula, whereas the new prospective has added new 

understanding of the conductivity ( ) plus a new understanding of an extra 

ballistic resistance. The conductance from the freshman‘s physics or the old 

prospective is given by the usual Ohm‘s law, 

  
  

 
 

What had been seen in the new prospective, the conductance is given by, 

  
   

   
  (

  

   
*    (   ) 

When the length of the conductor turns to zero, the conductance doesn‘t go 

to infinity but rather goes to a fixed number, if this relation is turned around the 

resistance can be written as, 

    (
   

 
*  

   

 
    

The first term of the equation(
   

 
), follows Ohm‘s law, the second term of 

equation (  ) is constant, in the early days, the major controversy was about what 

this constant is. To understand where this constant comes from just look back to 

equation (5.8) to see its origin. This constant resistance (  ) is associated with the 

contacts interfaces, since it is independent of the length, the middle part of the 

model is the channel and has a resistance that it is directly proportional to the 

length of the channel ( ). This is what the new prospective added to the old 

understanding is this important idea of interface resistance. Although it is very well 

known always there are some contact resistances, but they are considered as an 

undesirable thing to get rid of it by good engineering efforts. What is not 

recognized there is a fundamental limit, where, there is always the ballistic 

resistances appearing at the interfaces which cannot be avoided whatever how 

good technology efforts are done to get rid of them. But still an answer will be 

needed where these interface resistances come from? the answer to this question is 
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found in the next chapter, and that is why when the drift diffusion equation is used 

the user should be careful to add these interface resistances. 

5.6 Wrapping up summery  

In this chapter the third terminal of the transistor (the gate) has been 

introduced to the ordinary two terminal device (the resistor) to give the essence of 

the transistor action. When the gate terminal is introduced the potential energy 

inside the channel is controlled by this gate terminal, so that conduction band 

energy ( ), can be moved up or down inside the channel by an amount ( ) due 

the electron charging or electron to electron interaction to change the resistance of 

the channel. When a positive voltage (  ) is applied to the drain, all the energy 

level in the drain (  ) are pushed down by an amount (    ) relative to the 

electrochemical potential of the source (  ), at the same time the conduction band 

energy levels inside the channel move down by an amount (  ) due to (the 

negative electron charging), if the gate voltage (  ) is positive, or move up by an 

amount (  ) due (the positive electron charging),therefore, ( ) depends on the 

gate potential ,the drain potential, and the change in electron density inside the 

channel. This electron charging (or the electron -electron interaction) should be 

included in the current equation (5.2), brought here below; 

   
 

 
∫  (   )(  ( )    ( ))          (   )
 

  
 

The conductance function  ( ) is shifted by an amount ( ), this ( ) is a function 

of ( ); see equation (5.4), brought here below; 

   (    )    (    )    (    )       (   ) 

There is another expression for the number of electrons as a function of ( ), 

where ( ) depends on the density of states and how it is occupied, see equation 

(5.3), brought here below; 

  ∫  (   ) 
(  ( )    ( ))

 
     

 

  

           (   ) 

Since ( ) is a function of ( ), and ( ) is a function of ( ), these two 

equations (5.3&5.4) in general can be solved self consistently. The simultaneous 
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solution of these two equations can be done in straightforward way numerically, 

and sometimes in simpler cases can be solved even analytically. All the devices 

simulation usually involves this self-consistent calculation. One part of it focuses 

on the density of states and the other part describes the electrostatics of the 

transistor problem. (  ) is the single electron charging energy, it tells how much 

the potential energy changes by adding one electron, may be the potential changes 

by (    ), but for big devices still this could be sizable under operation 

conditions, because the change (    ) might reach a high number in the order 

of 10,000 or 100,000 electrons which causes a change of (10mV or 100mV). For 

small devices one electron makes much bigger difference in terms of what 

potential is. The potential energy could be significantly affected because (    ) 

could be relatively big, and that leads to a new class of phenomena called the 

single electron charging effect or Colombo blockade, these are important when 

(  ) is relatively large number in the order of (  ) or more. 

To understand the operation of the transistor the model ( ) 

 

   (    )    (    )    (    )       (   ) 

Could be used to see how the gate voltage controls it, and how current voltage 

characteristics look like    etc. But if the model is extended beyond that the 

potential inside the channel should not be taken as a single number but varies 

specially. This part should not be ignored for more serious model and should be 

included by replacing the algebraic (          ) to a differential equation 

using Poisson‘s equation to describe the electrostatics of the transistor, 

[
 

  
( 
  

  
*    (    )]         (   ) 

  Sticking to the basic electrostatics keeps the subject away from Poisson 

equation corrections based on the exchange and correlations to avoid the various 

quantum effects that scientists are talking about. For the current equation (5.2), the 

electron number equation (5.3), and so on .. etc. 

  
 

 
∫  (   )(  ( )    ( ))          (   )
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  ∫  (   ) 
(  ( )    ( ))

 
     

 

  

           (   ) 

There would something like the drift diffusion equation, says the charging 

current is directly proportional to the slope of electrochemical potential inside the 

channel, by which the current can be calculated, in connection with the continuity 

equation, which says; in one dimensional device the current does not change 

spatially, it is constant. 

       

   
 ( )  

   
          (   ) 

  

  
            (   ) 

All these equations (Poisson, drift diffusion, and the continuity) equations 

are based on the semi-classical transport Boltzmann‘s Transport Equation (   ), 

which is corner stone of all semi-classical theory people are using long time ago 

before nanoelectronics evolved. From nanoelectronics a new thing has been 

gained, that the conductance not more than four decades was, 

  
  

 
 

But today as L approaches zero the conductance turns to a constant known 

as the ballistic conductance (  ), so  (   ) is needed to be substituted for the 

length ( ) to give the conductance, 

  
   

   
  (

  

   
*    (   ) 

By inverting the resistance could be written as; 

    (
   

 
*  

   

 
    

Therefore, part of the resistance is directly proportional to the length of the 

channel ( ), the other part is the constant ballistic resistance. The origin of this 
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ballistic resistance comes out of the Boltzmann‘s Transport Equation (   ) in the 

sense that it all hidden there, because people were unaware of that till 

nanoelectronics emerged to understand that the first part of the resistance which is 

directly proportional to the channel length could be viewed as the channel 

resistance, whereas, the constant part (  ) can be associated with the interface 

resistances at the contacts.  

 

For the device simulation, the drift diffusion equation is used. The important 

piece of new knowledge that should be added the interfaces resistances. If using 

(   ), and did it correctly, the interfaces resistances (    ) would come out 

automatically, when using the drift diffusion equation addition of the interface‘s 

resistances should have to be remembered. The important thing that everyone must 

realize is; always there is a contact or interface resistance for any conductor 

especially short ones, and there is a fundamental limit to that. To get rid of the 

contact resistances to improve the quality of the conductors was the usual thinking 

in the past, but today the fundamental limit represented by the ballistic resistance is 

discovered, hence the roadmap to the future devices should have to take these 

fundamental limits into account. Still there is something has not been discussed till 

now, that is how to realize that the extra resistance (RB) is associated with the 

interfaces, so as to understand that, the potential change inside the device should be 

studied. This what is going to be done in the next chapter (6).  
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Chapter Six 

Potential Change inside the channel 

6.1 Introduction 

So far, a channel with a voltage across it has been discussed to write 

the current and the resistances in the channel for small voltages as shown 

here below; 

      

 

     (
 

   
* 

 

   
 

  
 

   
 

  
    

   

 
 

The second term of (  ), which is directly proportional to the length, 

can be associated with the central region (the channel), the longer the 

channel the bigger the resistance. The first term is a constant part (the 

ballistic resistance), can be associated with the contacts, but this decision is 

not quite obvious, because resistances used to be associated with heat when 

a current flow through them, but that thinking is very misleading if adopted 

to clarify that (  ) can be associated with the contacts. For small devices the 

heating is not in the channel, it is entirely in the contacts, because the 

channel is assumed to be elastic and has got the characteristic of Landauer 

resistance. If the resistance is assumed to be everywhere, this point of view 

goes against something felt instinctively it is not going with the intuitive 

feeling. Let us increase the resistance of the channel by making a hole in the 

middle of the channel, but that doesn‘t mean heating will be associated with 

that resistance occurred in the hole, because the hole haven‘t got the degree 

of freedom needed to dissipate heat from the electrons going into the atoms 

to let them vibrate so as to convert their thermal energy into heat. Therefore, 

heating occurs somewhere else. It is quite wrong to associate that heat 

location with the location of the resistance; the right criterion is to follow the 
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voltage to locate where the voltage drop takes place. When a current run 

through a set of resistances in series, the voltage drops across each one of 

them is directly proportional to that resistance. By measuring the voltage at 

the interfaces, a voltage drops are found there, and that is why (  ) can be 

located at the interfaces. 

 

  
Figure 6.1: Resistance associated with voltage drop 

The contacts have two different values of the electrochemical 

potentials (       ), because the source potential is negative relative to the 

drain potential, the negative side will be higher up, and they are separated by 

the applied voltage by an energy amount (  ) , then the electrochemical 

potential vary spatially inside the channel from one contact to the other. The 

actual voltage drop looks like the bold line shown in the figure above, it is 

linear, but doesn‘t go directly from μ1 to μ2, rather there is a drop at the 

interfaces, these drops are associated with the ballistic resistance (  ). 

 What is drawn is the electrochemical potential which causes a lot of 

confusion and comes up with a deep question, namely what is meaning of 

voltage? Simply the answer will be, it is an electrostatic potential, because 

the electrochemical potential is a deep subtle concept, normally felt 

uncomfortable due to its statistical mechanics concept, but that answer is not 

quite right if the current is described by the electric field, where the electric 

field is directly proportional to the slope of the electrostatic potential energy 

(
  

   
) , 
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    (   ) 

On the other hand, the correct answer that all experts agree with is that 

the current is directly proportional to the slope of the electrochemical 

potential ( ), and not to the slope of electrostatic energy potential (
  

   
); 

 

  
  
 

  

  
   (   ) 

 

This result needs a little more elaboration. Consider a channel 

structure with the density of states distributed at low temperature as shown 

by the figure below, this is what goes into the Fermi-function, 

 

 
Figure 6.2: Left/ A channel structure with the density of states distributed at low temperature 

Right/What goes into Fermi function 

 

Suppose there is an electrostatic potential that varies across the 

channel, the lowest energy point of the band is expected to go down 

continually,  

 

     ( ) 
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Figure 6.3: An electrostatic potential that varies across the channel 

 

because there is a positive electrostatic potential and negative electron 

charge, that means negative energy      ( ). The density of states plot 

would look as shown here below; 

 

 

     ( ) 

Figure 6.4: The density of states plot follows the negative energy      ( ).                                                                                                                                                                                                                                                                                                                                             

 In homogenous conductors whose electron density is the same everywhere, 

and the electron density depends on the energy range between the bottom of the 

band and the electrochemical potential μ. The current equation; (  
  

 

  

  
 ), being 

proportional to the electric field is not quite true unless the electrochemical 

potential goes down also, or only if      ( ) is parallel to   ( ). Like what 

has been shown here below,  

 

 
Figure 6.5: Energy range between the bottom of the band and the electrochemical potential μ. 
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 For an inhomogeneous conductor there are more electrons in one side 

than in the other side. At equilibrium the electrochemical potential is 

constant with higher electron density on the right side than in the left side 

and there is no current flow because the system is at equilibrium. The 

explanation of this condition is by the addition of the diffusion current to the 

drift current as follows; 

 

   
  
 

  

  
  

  

  
   (   ) 

Where the first term is the drift current while the second term is the 

diffusion current represented by the slope of the electron density. From the 

following figure the electron density is seen due to the smaller density of 

electron at the left side than in the right side. 

 

 
Figure 6.6: The electron density is much smaller at the left side than in the right side. 

 

 The diffusion current can be rewritten in the following form; 

  
  

  
  

  
 

 (   )

  
  

 

Where (   ) is the distance between the electrochemical potential 

and the electrostatic potential that varies across the channel in figure above, 

which is directly proportional to the electron density ( 
  

  
). That is just as 

(
  

  
) in the drift current, could be written as (

 (   )

  
) in the diffusion 

current. 
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  To add the diffusion current to the drift current results in the following 

correct expression for the current; 

 

   
  
 

  

  
 
  
 

 (   )

  
   (   )  

 

  
   
 

  

  
    (   ) 

 

If the first term out of this equation is used, the current is directly 

proportional to the electrostatic potential, could that be right or wrong? The 

answer of this question could be completely right at the same time it could 

be completely wrong, that means there is something important has been 

missed. But there is nothing controversy about the correctness of the usage 

of that term to calculate the current, because all scientists and experts agree 

that is the correct answer. Most of the experts avoid talking about the second 

term of the equation, because ( ) is changing continuously and very difficult 

to define under none equilibrium conditions. At equilibrium conditions ( ) 

is the same everywhere (constant), exactly like what heat is doing, it the 

same everywhere at equilibrium, but when the temperature is varying the 

concept gets more subtle.  

In conclusion at equilibrium  ( ) is the same everywhere, when it is 

out of equilibrium it is very difficult to define, because it leads to more 

subtle issues, and that why most of the experts try to avoid it, instead they 

prefer to talk about the electrostatic potential. 

  Considering the electrostatic potential, it doesn‘t quite show the 

discontinuity at the contacts associated with the ballistic resistances. That 

part of physics is going to be lost, because it will be smoothed out as shown 

in the following figure; 
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Figure 6.7: With ballistic resistances, the electrostatic potential at the contacts smoothed out 

The actual quantitative calculation based on quantum transport 

formalism; the electrochemical potential is discontinuous while the 

electrostatic potential is smoothed out. The electrochemical potential inside 

the channel should be defined with care, this was done on the bases of 

quantum transport based on NEGF calculations on (McLennan et Phys-Rev 

B 4313846(1991)). 

But in this dissertation the electrochemical potential will be defined in 

the semi classical context in terms of Boltzmann‘s Equation to show the 

concept of the Quasi- Fermi levels [72,73,74,75].  

There are many electrochemical potentials when the system is out of 

equilibrium, in this context as if there are right moving electrons and left 

moving ones, with different electrochemical potentials represented by (  ) 

and (  ) respectively, known as the quasi Fermi levels. If a single 

electrochemical potential is drawn in between it represents the average of the 

two. This is something has been described during the last half of last 

century. 
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Figure 6.8: The quasi Fermi levels with different electrochemical potentials represented by (  ) 

and (  ). 

 

After the enormous progress in spintronics the discussion of these 

issues became much more important, specifically in TOPOLOGY 

INSULATORS, in such materials there is something called SPIN-

MOMENTUM LOCKING in which electrons moving to right direction their 

momentum is considered to spin upwards, while those moving to the left 

direction are spinning downwards, this is what is known as the spin-

momentum locking. 

 Because in the ordinary conductors as the electrons are moving to the 

right direction, they could have either to spin up or down, not like the 

topological insulator materials which lock together in each direction, that is, 

all of them spin up or down according to what direction they are moving to.  

That is why right moving carriers (  ) are different from the left moving 

carriers (  ). This difference appears as SPIN POTENTIAL, and that is 

why they are different from one another in their quasi Fermi levels. The spin 

can be measured using a magnetic probe depending on the direction of the 

magnet. While looking for the up spin or the down spin in a certain region of 

the channel the (spin potential) decreases rapidly in the right direction with 

the up spin (  ), and the spin potential increases rapidly in the right 

direction with the down spin (  ) 
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Figure 6.9: Spin potential behavior 

This phenomenon can be explained by saying the current depends on the 

spin potential gradient, that means the up-spin carriers diffuses to the right 

direction and the down spin carriers diffuse to the left direction. This phenomenon 

is so difficult to be explained in terms of the electrostatic potential, because there is 

only one electrostatic potential either to slope to right direction or to the left. It is 

very hard to understand how one type of carriers could be going right and the other 

type of carriers going left. To study nanoelectronics devices it very important to 

understand what potential means, this idea of quasi Fermi levels, and the different 

species can have different quasi Fermi levels.   

Considering the new boundary conditions, if required to locate where the 

resistance is, it is very important not to think of the heat to be associated with the 

resistance. That will not get you to anywhere, so it must be better to follow the 

voltage drop. In this case the knowledge of what does the voltage mean should be 

clearly understood by looking to the electrochemical potential and not to the 

electrostatic potential, in the sense that how does it vary across the device. Start by 

noting that the contacts have got two different values of electrochemical potentials 

(        ), due to the negative voltage in the source relative to the drain, the 

negative side (the source) is higher up, and separated from the other side (the 

drain) due the applied voltage by an energy amount of (  ).  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjei87y27fkAhUhx4UKHaj3A3wQjRx6BAgBEAQ&url=https://nanohub.org/courses/ss2014/01a/outline/unit1supriyodattaspinpotentialsspincurrentsandspincircuits/l11whydoelectronsflow&psig=AOvVaw2L_cyfRiECeFAEKJiV88kB&ust=1567705108610690
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Figure 6.10: Spatial variation of the electrochemical potential inside the channel 

But how the electrochemical potential varies spatially inside the channel? 

Let ( ) be the electrochemical potential, because, the following diffusion 

equation, includes both the drifting diffusion as shown by the deduction of 

equation (105) above; 

   
   

 

  

  
   (   ) 

This basic equation says the current is directly proportional to the slope of 

the electrochemical potential. To solve this equation, the continuity equation, 

(
  

  
  ) is needed. This continuity equation is a (  ) equation and the current at 

steady state (
  

  
  ) should be spatially constant. That is to say, the current is 

constant everywhere, at different points along the channel, whatever comes in per 

second must be leaving per second. Since the current is constant spatially, the out 

front (
   

 
) is constant, to indicate that the slope of the electrochemical potential 

(
  

  
), must be constant, and goes in straight line from (        ) over a distance 

( ), with a negative sign because it is going down. Therefore, the slope can be 

written as; 

 
  

  
 
     
 

 

Substituting this relation in equation (106), to calculate the current; 
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(     )

 
     (   ) 

Using equation (100) the current can be calculated as; 

  
    

 
 
(     )

(   )
    (   ) 

Equations (107) and (108) are the same except that λ is missed in equation (107), 

because the discussion is about the ballistic transport, and the diffusion equation is 

used for the discussion. This reasoning could be right, and in that sense basically 

the wrong equation is used. Therefore, a different equation should be looked for, 

but that is may not be the case. The equation may be the right one, but the 

boundary conditions are wrong, because of the addition of the ballistic resistor 

(  ) in the diffusive equation (6.6). To get rid of the ballistic resistor out of the 

standard diffusion equation is by modifying the boundary conditions. 

6.2 The New Boundary Conditions 

In the previous paragraph the boundary conditions used are,   (   )      , 

and  (   )      , then straight line is drawn between (       ) as required by 

the diffusion equation (6.6) and the continuity equation (
  

  
  ). The new 

boundary conditions suggested are,  

 (   )     
    
 

    (   ) 

 (   )     
    
 

  (    )  

A straight line is drawn inside the channel, the line is still straight line as 

required by the standard diffusion equation (6.6), but depending on the amount of 

current, it starts somewhat below μ1, and ends slightly above (   ). The new slope; 

  

  
 
          

 
 

Substitute in the standard diffusion equation (6.6), where (  ) is ballistic 

resistance; 
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((     )      )  

  
   

  
(    )  

   

  
(     ) 

 (  
 

 
*  

   

  
(     ) 

  

  
   

 (   )
(     ) 

This is the correct answer, therefore, when the boundary conditions are 

modified as shown, the right answer out of the diffusion equation is got with no 

need to change the equation itself. 

  This how the boundary conditions are represented pictorially; to justify the 

answer, 

 

Figure 6.11: Pictorial representation boundary conditions 

6.3 Quasi Fermi Levels (QFL) 

The new boundary conditions have been introduced in the last paragraph for 

the electrochemical potential to solve the standard diffusion equation (6.6) to get 

the correct answer for the current calculation. The new boundary conditions 
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include an extra interface resistance. There are two quasi Fermi levels, one for the 

right moving carriers and the other for the left moving carriers. 

 

Figure 6.12: Two quasi Fermi levels, one for the right moving carriers and the other for the left 

moving carriers. 

From the figure (6.12) the correct boundary conditions of the quasi levels 

are; 

  (   )          (    ) 

  (   )       (    ) 

The electrochemical potential is the average of the two. The approximate 

boundary conditions of this average are; 

 (   )     
    
 

     (   )  

 (   )     
    
 

     (    )  

To determine the correct boundary conditions for these two quasi Fermi levels, 

for the purpose of connecting them later.  

(1) Start from the ballistic end where the length of the channel is very much less 

than the mean free path ( ). Therefore, the middle region resistance is very 

small, and the entire resistance is just the interface resistance (  ). In this 

case the electrochemical potential inside the channel will not be able to 
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change and expected to be flat, but half way in between the two quasi Fermi 

levels, because the  quasi Fermi level are separate, the right moving carriers 

quasi Fermi level is connected to the electrochemical potential (  ), and the 

left moving carriers quasi Fermi level is connected to the electrochemical 

potential (   ). 

 

Figure 6.13: Quasi Fermi levels are connected to the electrochemical potential (  ), and to the 

electrochemical potential (   ). 

To understand this, the electrochemical potential originates from the Fermi 

function which possesses the property when high above the the electrochemical 

potential μ equals to zero, that is to say, all the states far above the electrochemical 

potential are completely empty, and far below the electrochemical potential μ, 

Fermi function is equal to one, that means all the states far below the 

electrochemical potential are completely filled. 

 

Figure 6.14: Transition change in Fermi function at different temperatures 
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At low temperature (   ) the transition from one to zero is quite abrupt 

(Brickwall). The energy range over which this transition change take place, is in 

the order of few (  ) for (   ).  

The electrochemical potential μ1 in the left hand side contact is drawn to 

indicate that all the states below it are completely filled, the same with the 

electrochemical potential (   ) in the  right hand side contact. Consider the energy 

range (  ) between (       ), the Fermi function below (  ) is equal to one in 

the left hand side contact, and equal to zero above (   ) in the right hand side 

contact. 

 For the  energy range (  ), all the right moving carriers states are 

completely filled and all the left moving carriers states are completely empty, 

between them is the channel to act as a highway. 

 

Figure 6.15:  In Ballistic Transport, Right moving carriers and left moving carriers makes the 

channel to act as a highway   

Then all the carriers in the left hand side contact are trying to get to the right 

hand side contact, at the same time there are no carriers from the right hand side 

contact trying to get to the left hand side contact. All the lanes from left contact to 

the right contact are expected to be full of carriers moving towards the right 

contact ,that is (  ) , all the lanes from right contact to left contact are completely 

empty ,that is (  ). 

This situation can be describe as the BALLISTIC TRANSPORT, since the 

length of the channel is much less than the mean free path. In this context when an 
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electron gets into the highwayit has no chance to turn around, because it is 

ballistically transported and it keeps going in straight line till it gets to the other 

end.  

In the DIFFUSIVE TRANSPORT conductors, the situation is different, 

because some of the electrons  have the chance to turn around and come back to 

the left hand side contact, where they originate. At this left hand side end the traffic 

from left  hand side to the right hand side is very condense. As the electrons go 

along the channel from left to right they reduce in number, because some of them 

start to turn round and go back. The states in the other end start of being empty, 

they gradually build up due to the electrons turned around from the other lanes. In 

terms of the quasi Fermi levels what is expected is the right moving carriers starts 

from the left contact at μ1 and gradually reduce in number, hence the quasi Fermi 

level gradually goes down, and the left moving electrons start from μ2 and 

gradually they increase in number, hence the quasi Fermi level build up. 

 

Figure 6.16:  In Diffusive Transport, Right moving carriers and left moving carriers makes the 

channel to act as a highway with some electrons having chance to turn around to the left handside 

The boundary condition of the electrochemical potential starts at the left 

contact end at μ1 to follow the quasi Fermi level (  ), therefore, the states inside 

the channel are filled up to μ1 as well. The boundary condition of electrochemical 

potential starts at the right contact at μ2 to follow the quasi Fermi level  (  ), 

therefore, the states inside the channel are empty at μ2 as well. Then; 

(        ) = μ1 
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(       )  = μ2 

The key point here, ( ) tells the degree of filling the states, and not to be 

considered as the average energy of the electrons, because the average energy of 

the electrons goes down due to some dissipation. This dissipation is not necessarily 

happening in the channel, but somewhere else, mostly in the contacts. The 

inclination of the quasi Fermi level doesn‘t imply any energy dissipation but telling 

that the density of electrons will keep going down as expected from the common 

sense. Two quasi Fermi levels are expected to describe the occupation of the 

different electrochemical potentials in either of the right moving carriers‘ lanes or 

the left moving carriers‘ lanes. 

(2) To connect the quasi Fermi levels boundary conditions to the deduced 

modified new boundary conditions to show that the quasi Fermi levels 

boundary conditions are nothing more than the modified boundary 

conditions obtained, or the quasi Fermi levels boundary conditions implies 

the modified boundary conditions.  

Recall the diffusion equation (6.6), and use the set of boundary conditions to 

get a result including the ballistic resistance; 

 (   )     
    
 
  

 (   )     
    
 

 

Also recall the boundary conditions of the quasi Fermi levels  

(        )      

(        )      

To deduce the modified boundary condition from the quasi Fermi levels 

boundary conditions a relation of current to the separation between the two quasi 

Fermi levels is needed; 

  
  
 
(     )       (    ) 
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When the ballistic conductance is seen within the diffusive equation, there 

will be a miss understanding, because everyone may think that this equation only 

applies to the ballistic case, but this a general equation can be applied to both 

ballistic and diffusive transports. 

Turn the equation around to get; 

     

(     )  
  

  
         (    ) 

Then the separation of quasi Fermi levels is directly proportional to the 

current. If there is no current the two quasi Fermi levels will collapse into one level 

to tell the two quasi Fermi levels are equally filled, and there will be no current 

flow unless one of the two quasi Fermi levels is (less or more) than the other. 

To accept the current equation (6.13), without knowing where this current 

equation comes from, these quasi Fermi levels boundary conditions shown by 

equations (6.11 & 6.12), give the boundary conditions for ( ) shown by equations 

(6.9) & (6.10), quite simply as follows: 

The average of the two quasi Fermi levels can be given as; 

  
     

 
      (    ) 

Since from equation (6.11&6.12), (    
         

 ), and from 

equation (6.14) the difference between the two quasi Fermi levels is given by; 

(      )       

Then this can be substituted in equations (6.9 & 6.10) respectively; 

 (   )    
     

 
    

(      )

 
    (    ) 

 (   )    
     

 
 (   )  

(      )

 
  (    )   

These are the relations which directly give the boundary conditions for  
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 (   )      
  

 (   )      (  
 ) 

     ( 
    ) 

So, the boundary conditions automatically give the modified boundary 

conditions in one line. 

6.4 Current from The Quasi Fermi Levels 

The relation which relates the current to the separation of the quasi Fermi 

levels is given by equation (6.13) as; 

  
  
 
(     )  

The aim now is to explain where this equation comes from, after it has been 

taken for granted it is a correct, and used without having to be proved, for the 

purpose to connect the two quasi Fermi levels boundary conditions to the modified 

boundary conditions, to show how the quasi Fermi levels imply the modified 

boundary conditions. The origin of the current is the flow of electrons across the 

channel. Starting by the current of electrons from left to right to be expressed as; 

      
 ( )

 
   ( )     (    )  

Where,    is the right moving electrons  

                 The time spent inside the channel 

                 is the electron charge 

             
 ( )

 
  is the density of states in the right moving bound lane  

              ( ) is the occupation of the right moving states 

The time spent inside the channel for ballistic transport equals (
 

 
), where 

( ) is the average velocity of the electron, ( ) is the channel length. Substitute the 

time in equation (6.18), and rearrange: 
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 ( ) 

  
   ( )     (    )  

( 
 ( ) 

  
 ) is defined as ( ( ), the number of modes 

   
 

 
  ( )   ( )     (    )  

Similarly, with the left moving electrons current; 

   
 

 
 ( )    ( )     (    ) 

The overall current in the energy range    is the difference between the two 

currents; 

 

Figure 6.17: The overall current in the energy range    

        
 

 
  ( )  (   ( )     ( ))      (    )  

Using the general Taylor series expansion to get from the occupation, expressed in 

terms of the Fermi function, to the quasi Fermi levels, then  (   ( )     ( ))will 

be changed to the derivative  

        
 

 
  ( ) [ 

   
  
]   (     )            (    ) 

Integrate over energy for the total current; 

        
 

 
(     )∫   ( ) [ 

   
  
]  

 

  

 

Let, ∫   ( ) * 
   

  
+      

 

  
 ,then ; 
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(     )      

  
 
 (     )        (    ) 

Therefore, the ballistic conductance is; 

   
  

 
     (    ) 

Basically   times the quasi Fermi levels separation holds at any point, and 

the current should have to be the same everywhere as required by the continuity 

equation to imply that the quasi Fermi levels difference must be the same 

everywhere i.e. quasi Fermi levels are parallel straight lines. 

Usually the current is written as the conductance times the electrochemical 

potentials voltage difference; 

  
  
 
 (     )    (    ) 

Also, the current is related to the separation of the quasi Fermi levels; 

  
  
 
(     ) 

To connect these two current expressions, equate both relations to find the 

ratio between ( 
  

  
 ); 

  
  

 
(     )

(     )
 

Recall equation (100); 

     
 

   
   (    ) 

Then; 

(     )   (     )
 

   
  (    ) 



135 
 

For ballistic transport ( ) is much less than the mean free path, and the quasi 

Fermi levels separation is equal to the applied energy potential  (  ) i.e. The 

separation between the electrochemical potentials at the contacts. For effusive 

conductors length of the channel ( ) is longer than the mean free path, and the 

quasi Fermi levels separation is much smaller than the applied energy potential 

difference (  ), and that is why the quasi Fermi level separation is forgotten, and 

no one needs to worry about it. 

6.5 Landauer Formalism 

Historically Landauer Formulae are very important to develop all the points 

of view to see how these formulae connect to what has been discussed. So far 

channels with a continuous scattering processes everywhere, has been discussed. 

 For Landauer resistance the case is completely different because the channel 

is largely ballistic where the scattering is localized somewhere. This helps very 

much to clarify certain ideas. 

 

Figure 6.18: Localized barrier where scattering take place. 

The channel has distributed scattering. The scattering processes are 

described by the mean free path ( ), that is how far an electron goes before it is 

turned around. Consider a localize scatterer (barrier), i.e. The channel is basically 

ballistic and no scattering anywhere except one point where the acatterer is 

localized. 

  Under these conditions, two things will be discussed; 

1. The average current flow 

2. The shape of the potential profile  
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The conductance is given by the ballistic conductance times the transmission 

coefficient ( ). 

     ( )   (    ) 

Where, ( ) is the transmission coefficient, that describes the localized scatterer or 

the fraction of electron that crosses the scatterer to get to the other side. 

 For example, if ( )     , means 30% leaves to the other side from the 

total 100% coming in, and the current flow expected is not more than 30%, so the 

conductance decreases to 30% of its value. 

  To compare,      ( ) with      
 

   
 , as if ( ) for the scatterer 

replaces ( 
 

   
 ) the quantity of distributed scattering processes, i.e. (

 

   
) can be 

interpreted as ( ). Hence a channel of length ( ), and mean free path ( ), with 

distributed scattering processes, the fraction ( )    the ratio of the incident 

electrons from left to right. But that is something different from what the localized 

scatterer whose transmission probability is ( ), in that case the electrochemical 

potential of the quasi Fermi levels, the upper quasi Fermi level drops sharply from 

    ( ), and at the other end the lower quasi Fermi level steps up from       to 

(  ( ))   bear in mind that                                       , here 

below find the plot of the state‘s occupation; 

 

 

Figure 6.19: The states occupation in the presents of scatterer. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiOtaLxqbzkAhVIzBoKHbFyDzcQjRx6BAgBEAQ&url=https://www.youtube.com/watch?v=RKs4nPGUYr4&psig=AOvVaw1mI8PLWdfC_Oe9_MVSK3W8&ust=1567863728101725
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The states in μ1 contact are all filled, so the occupation is (1), and in (  ) 

contact the occupation is zero. In the left side contact the right moving states are all 

occupied, because (  )             , all the states are filled. When the scatterer 

is crossed the occupation drops sharply, and the occupation is much less than one, 

and the occupation will go from (     ( )) inside the channel. When the right 

moving carriers arrived at the other end, they face a situation that all the states are 

completely empty above (  ) in the range of interest. The right moving carriers 

can‘t distribute themselves below (  ) because all the states are fully occupied 

there, so this range doesn‘t matter to them. Above (  ) there is no proper energy 

distribution, so a virtual ( ) is chosen not to describe the energy distribution of 

electrons rather than just to represent the degree of filling the states. ( ) is not a 

proper electrochemical potential, because the actual energy distribution needs an 

inelastic process. In elastic process some electron may go up to a level equals (  ) 

but still cannot be considered an equilibrium condition, because the equilibrium 

condition needs an inelastic process. The degree of filling the states could be 

turned to look like Fermi function to change at low temperature from zero to one.  

In brief, when the right moving carriers cross the barrier, lanes at the other 

end in the right contact appear very empty and the virtual ( ) gives the degree of 

filling the states. There is no proper electrochemical potential. 

The left moving carriers quasi Fermi level steps up sharply from (    )  

to   (   )  after crossing the barrier they see the channel occupied up to 

 (     ). When they reach the left contact they see that it is completely filled, 

they can‘t climb to (  ) level, so they stay at  the level somewhere between 

              (   ), therefore, the problem is very complicated and people feel 

not quite comfortable with it because it needs a lot of debate, better not to go deep 

into that question at all and to be left for those who are interested in the subject as a 

future work. It is quite obvious the quasi Fermi levels are deep subtle concepts 

need statistical mechanic to get it right. 

Remember that the electrochemical potential μ is not describing the energy 

distribution of electrons. The occupation ( ) is related to the electrochemical 

potential ( ) by the following equation; 

(    )      
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Recall the current equation (113) 

  
  
 
(     )  

  
 
     

Where, (     ) is a constant everywhere with a difference equal to ( ). The 

current is directly proportional to the voltage, and can be given by; 

     ( )           ( )   (    ) 

Where,    is the ballistic conductance. 

              ( ) is the transmission coefficient 

The inverse of    is the ballistic resistance    . The resistance of the 

scatterer is    gives rise to a lot of extra resistance. The voltage drop across the 

scatterer is a fraction of the total voltage drop (     ). If the two quasi Fermi 

levels have been drawn, any one of them can be used to give the same answer, to 

find Landauer formulae, because in either case the drop across the scatterer is the 

overall voltage times (   ). 

    (   ) 

   
  

 
 
 (   )

   ( )
 
  (   )

( )
 
  
( )

        (    ) 

Equations (6.28 & 6.29) give the overall resistance of the device R, and the 

scatterer resistance    respectively, known as Landauer formulae; 

     ( )  

   
  (   )

( )
 

They differ by an amount   , 

        

Therefore, there is an extra part    to   which appears at the interfaces. 

Taking the average of the two quasi Fermi levels there will be an extra drop at the 

source contact and another drop at the drain contact as well, therefore, half of   is 
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associated with either of the two ends. The middle part   is associated with the 

scatterer. 

 

For the right moving carriers‘ quasi Fermi level all the resistance    appears 

at the drain contact  (  ), the same at the other end for the left moving carriers 

quasi Fermi level, all the resistance    appears at the source contact (  ). This is a 

very subtle condition needs more discussion. In this context professor Supriyo 

Data of Prude University USA said:  

The overall resistance is 
 

( )
 , whereas the scatterer resistance is (

   

 
), these 

are the Landauer formulating the sense that Landauer had appreciated all the 

sublet issues involved, although the interface resistance took more discussion and 

people credit Imref* with not recognizing this interface resistance, and in this 

context, 

   
  (   )

( )
 

Is the original Landauer formula whereas today people use, 

     ( )  

To interpret their results, because usually they look for the total resistance rather 

than looking for scatterer resistance. 

*The Quasi Fermi Level is called (Imref) which is Fermi spelled backwards, it is a 

term used in quantum mechanics and specially in solid state physics. 

6.6 The Electrostatic Potential 

Quasi Fermi Level is rather difficult concept to be understood, because it 

needs a deeper knowledge of statistical mechanics. Quasi Fermi Levels are very 

difficult because it depends on the electrochemical potential, which is so difficult 

to define out of equilibrium, that is why it leaves uncomfortable feeling to push 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjA-tXE67zkAhVdDmMBHWu_A9sQjRx6BAgBEAQ&url=https://nanohub.org/courses/FON1/01a/outline/unit3whatandwhereisthevoltage/l35landauerformulas&psig=AOvVaw2liF6126-6QEs7G1luS1AF&ust=1567881368015525
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some of the researchers to think of something more concrete. For that purpose, two 

approaches are suggested; 

a) The discussion of the subject should be carried through the study of 

electrostatic potential instead of studying it through the electrochemical 

potential, although electrostatic potential hides some of the information 

explored by using the electrochemical potential, as a result some of the 

physics will be obscured. 

b) Practical measurement of the Quasi Fermi Level to make use of to justify 

why to look for the average instead of looking to the Quasi Fermi Levels. 

a) Let‘s start with the study of electrostatic potential. Consider the figure 

below, 

 

Figure 6.20: Electrostatic potential inside the channel between the tops of the source band and the drain 

band is separated by (qV) 

The bottom of the band (   ) represents, where the density of states ends. 

Assume there is only one band under consideration at each end. When a voltage is 

applied, the bottom of the bands at the source and the drain are separated by an 

amount (  ), the same as the electrochemical potential do at the top of the bands. 

All the energy levels in the positive drain side go down with respect to the energy 

levels in the negative source side. The electron densities are the same in both 

contacts. Since the bottom of the band generally follow the electrostatic potential 

(except for minus sign) as shown in the introduction of this chapter (6). 

 According to what has been said; initially anyone may think that the 

electrostatic potential inside the channel between the bottom of the bands resemble 

what the electrochemical potential is doing inside the channel in between the top of 

the bands. If it did that means the electron density remained unchanged.  
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Figure 6.21: Electrostatic potential inside the channel between the bottoms of the source band and the 

drain band resembles the electrochemical potential in between the tops of the bands  

The electrostatic potential is seen to be changing along the barrier, so the 

gradient of which gives rise to an electric field. This electric field goes from the 

positive drain side to the negative source side, as a result charges create a residual 

dipole of around the barrier, to accommodate the extra electrons on the drain side 

and the deficient of the electrons in the source side.  Therefore, the electrostatic 

potential curve cannot quite follow the electrochemical potential, it should have to 

be a little different. If the channel is very conductive, the density of states will very 

high, then the electrostatic potential approximately follows the electrochemical 

potential. To prove that let‘s write down the number of electrons as follows; 

  ∫  (   ) (   )  
 

  

   (    ) 

Where,  (   )                          

 (   )                                                    

The density of the states is shifted by the electrostatic energy (U). If (U) is 

high, the density of states is moved up, if ( ) is low the density of states is moved 

down. By the change of variables; 
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  ∫  ( ) (     )  
 

  

   (    ) 

The argument f now picks all the change into the Fermi function rather than 

into the density of states. By Taylor series expansion; 

    (   )∫  ( ) ( 
   
  
*  

 

  

   (    ) 

The change in the number of electrons, (  ) due to the change in  (   ) 

are related by the integral (∫  ( ) ( 
   

  
)     

 

  
). The electron density 

depends on the distance from the electrochemical potential at the top of the band to 

the electrostatic potential at the bottom of the band, (   ), and it is related by 

the average density of states,   ; 

    (   )    (    ) 

If the medium is so conductive with a high density of states, that 

means,     is high, so for a given change of electron density, small change in 

 (   ) is needed, all the extra electrons create an electric field to be 

accommodated with only slight change in  (   ); which cannot be noticed. 

That is to say, in a very conductive medium the change in ( ) is approximately 

equals the change in ( ). 

For semiconductors the density of statuses not high enough but still equation 

(134) holds. From the mathematical point of view the actual change in potential 

( ) can be calculated using Poisson‘s equation; 

  (  )   
    

 
        (    ) 

Substitute (  ) from equation (6.34) into equation (6.35), 

  (  )   
     (   )

 
        (    ) 
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The factor (
    

 
) has got the dimension (   ) ,and it can be defined as the 

inverse of the screening length squared (
 

   
 ) , then rewrite equation (6.36) as, 

  (  )   (
 

  
 
*  (   )  (    ) 

By simple algebra, 

  (   
 

  
 
 *   

  

  
 
           (    ) 

Where, the screening length    (
 

    
)
 

 . 

This differential equation (138) defines how (  ) respond to the screening 

length, hence to the change in electrochemical ( ). If the screening length 

approaches zero implies a very high density of states (  ) , and the inverse of the 

screening length approaches ( ), thus (  ) can be dropped, therefore, 

      

This the case for the very conductive medium which has been discussed 

already. But in case the screening length is long enough, then equation (6.38) 

should be solved by assuming that the change in μ is at one point then the 

corresponding (  ) is an impulsive response of equation (6.38); 

 (   
 

  
 
*       (     ) 

Where, S is the screening function which is roughly the screening length 

responding to (  ). 

The actual response (  ) is the convolution to of the screening function ( ); 

       ( ) 

So, the change of electrostatic potential U equals the change in 

electrochemical potential convoluted with  ( ), the screening function, then the 

electrochemical potential is smoothed out curve, and the sharp edges of 
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electrostatic potential smeared out by screening length. But this would not be the 

case when the medium is very conductive.  

b) Practical measurement of the Quasi Fermi Level to make use of to justify why to 

look for the average instead of looking to the Quasi Fermi Levels. 

Some of the researchers suggested that it too early to talk about the Quasi 

Fermi Levels before studying the accessible quantities inside the channel which 

can be measured from outside by using scanning tunneling probe. There are two 

groups of states, the right moving states with a Quasi Fermi Level (  ), and 

another group of states, the left moving ones with a Quasi Fermi Level (  ), all 

these are inside the channel. Let us have a probe whose potential is (  ), to access 

the inside quantities from outside by a volumetric measure. Electron can tunnel 

through the region ( ) could be represented by a little conductance. Two separate 

conductance are required, one for the right moving states (  ), and (  ) for the 

left moving states. Electrons in the probe is preferred to be coupled to the right 

moving states, but that wouldn‘t happen, they may be coupled equally, so, the two 

conductance are equal, but in general they could be unequal. To determine the 

probe potential, suppose the voltmeter draws no current to flow out into the probe, 

by Kirchhoff‘s law whatever current flows through (  ), must be the negative of 

the current flows through (  ). 

 

   (     ) 
  

   (     ) 
  

The sum of these two currents is equal zero, then the probe potential (  ) 

comes out as a weighted combination or weighed average of (        ). 

    (
  

(     )
   

  

(     )
  ) 

   (  
  (   )  ) 
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The factors in front add to one. If the probe couple very well to the positive right 

moving states, then (  ) would be high conductance and (  ) will be low 

conductance. Therefore, (      (   )   ) in that case.  

On the other hand, if the probe couple better to the left moving states (  

    (   )   ). This is how the probe is measuring the Quasi Fermi Levels.  

If (   ), the probe measures the top curve of the Quasi Fermi Level  

(  ). When it measures (one) and seen drops to ( ), therefore, the voltage drop is 

(   ), and the current is directly proportional to ( ), the resistance is (  
   

 
). 

If (   ), the probe measures the bottom curve of the Quasi Fermi Level  

(  ). When it measures (   ) and seen drops to (zero), therefore, the voltage 

drop is still (   ). 

More commonly what would happen if   (   )  
 

 
, that will 

correspond to the average curve ( ), still the drop will be (   ). So, in any case 

the same conclusion comes out, if the probe had always fixed α with no change as 

the probe is moving.  This provides a good understanding of what the non-invasive 

probe is measuring relative to the Quasi Fermi Levels when it is weakly coupled to 

sense what is going inside the channel without changing it.  

The three-terminal circuit with a probe will be as follows, 

 

Figure 6.22: Three terminal circuit with terminal (3) as a probe potential (  ).Terminal (1) is the right 

moving states with the QFL (  ). Terminal (2) is the left moving states with QFL (  ). The scatterer 

region T is represented by separate conductance (  ) at terminal (1) and, (  ) at Terminal (2). These 

conductances are determined from terminal (3). 

Late 1980‘s and 1990‘s of the last century, voltages are measured in 

mesoscopic physics with a probe with conductors connected directly to the 

channel, this make these conductors to act as scatterers in their own and change the 
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entire distribution of what is required to be measured. Hence, they need some 

calculations using linear algebra (matrices) to assure that these probes were not 

there, as an example, Busttiker equation, suggested by him back in 1986. So, they 

are not relevant now, since the non-invasive probes has already emerged. 

6.7 The PN junction 

The PN junction is one of the primary building blocks of semiconductor 

devices. It is a one-way valve with P-type on one side and N-type on the other side. 

The P-type material has a conduction band edge and a valance band edge, it‘s 

electrochemical potential (the Fermi level) ( ) is closer to the valance band edge. 

The same with the N-type material, except that it‘s electrochemical ( ) is closer to 

the conduction band edge. At equilibrium the electrochemical potentials the same 

in both materials, but the P-type material must be offset from the N-type material 

by a built-in potential. 

When a voltage is applied for forward bias, all the energy levels in the N-

type material are pulled up, so it‘s electrochemical potential separates from the 

electrochemical potential of the P-type material. Around the junction, in the active 

region, two electrochemical potentials are found to create two separate quasi Fermi 

levels there, one for the N-type material and the other for the P-type material. One 

of the quasi Fermi Levels is controlled by the electrons coming from the N-type 

material, and the other is controlled by the holes coming from the P-type material. 

 

Figure 6.23: Two separate quasi Fermi levels are created in the active region around the junction 

These two quasi Fermi Levels give a lot of information of how the current 

flows. 

When the electrostatic potential is considered, at equilibrium there will be a 

built-in potential around the junction in the active region. This is the major 
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difference with electrochemical potential case, because the electrochemical 

potential is flat, i.e. the electrochemical potential is the same everywhere, but for 

the electrostatics case there is a major variation around the junction region to 

indicate that there is a flow due to an electric field, the problem there is a built in 

electric field at equilibrium with net flow equals to zero (no flow). 

When a forward bias voltage is applied the electrostatic potential is reduced.  

The change in the electrostatic potential has become less as shown in the following 

figure [76],  

 

Figure 6.24: Reduction of electrostatic potential under forward bias conditions 

All the information given by the Quasi Fermi Levels  diagrams are smeared 

and lost, up to now the electrostatic potential is used to study the PN junctions and 

the usage of the Quasi Fermi Levels is avoided, because the electrochemical 

potential requires additional conceptual discussions and justification, also it so 

difficult to define the electrochemical potential when the system is out of 

equilibrium. The proper justification of all what has been discussed so far involve 

the Boltzmann‘s Equation which is going to be discussed in the following section. 

  

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=&url=https://physics.stackexchange.com/questions/285646/change-of-chemical-potential-in-forward-biased-pn-junction&psig=AOvVaw1zR5VJjQH6Ab_R5K3_qpEm&ust=1568098034401261


148 
 

6.8 Boltzmann’s Equation 

All the semi classical transport results arrived to, have their basis from 

Boltzmann‘s Equation. To justify properly everything has been discussed, start 

from the Boltzmann‘s Equation, which can be written as; 

[(  
  

  
*  (  

  

   
*]   (

   ⃗

 
)      (    ) 

 It has not been used from the first begging because this equation is rather 

difficult to understand it mathematically. It is a partial differential equation with 

multivariable in it. It includes the spatial location ( ), the momentum (  ), and 

time ( ). In general, the more the independent variables the more difficult to 

conceive and solve the equation mathematically or numerically. For this reason, 

this dissertation started by the derivation of everything from its fundamentals 

analytically, to explore the basic knowledge required in a simple way, till a 

reasonable standard capacity of knowledge is reached, to provide the capability of 

understanding everything has been discussed, to justify it directly from 

Boltzmann‘s Equation. 

To introduce the idea of Quasi Fermi Levels the Fermi function should be 

taken out of equilibrium, and rewritten in the form; 

 (      )  
 

     (
   (    )

  *
        (     ) 

Where,  (    )                           

                (      )                    

At equilibrium ( ) is constant, then the function ( ) is given by the Fermi 

function. Out of equilibrium, ( ) is not constant, and the function just looks like 

the Fermi function with different ( ) at different locations, and different 

momentum. 

 The derivative (
  

  
) ,can be written to involve the same derivative and 

Taylor series expansion, 
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(
  

  
*  ( 

   
  
*
  

  
 

Similarly, 

(
  

   
*  ( 

   
  
*
  

   
 

Bring in the Boltzmann‘s Equation and write a similar equation in terms of 

 (    ) as shown by equation (131). As   depends on (           ), because as 

far as ( ) is concerned, a particular form is assumed. 

 
  

  
   

  

   
  

   ⃗

 
 

Since              , the equilibrium solution is given by Fermi 

function, then Boltzmann‘s Equation is satisfied, because  

  

  
 
  

   
 
   ⃗

 
   

That is what statistical mechanics is saying at equilibrium, the 

electrochemical potentials the same everywhere. For nonequilibrium solution 

 (    ), varies with the location ( ) and the momentum (  ), and can have 

different electrochemical potentials or Quasi Fermi Levels associated with. 

In devices if the applied voltage is small compared to the thermal 

broadening (  ), the Fermi function with varying ( ) can be assumed under 

conditions of nonequilibrium. While it not necessarily true with larger applied 

voltages, because the energy distributional may not look like the Fermi function. 

Such case has been mentioned in Landauer formula, where the energy distribution 

may not look like the Fermi function, because ( ) is not describing the energy 

distribution rather than just telling the degree of filling states. Therefore, ( ) is 

defined to give the right number of electrons, in such a case any change in the 

occupation ( ) can be related to the change in electrochemical potential ( ) by; 
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So, the relation goes from ( ) to ( ), that is, any change in ( ) is related to 

the change in ( ) through (  ). Similarly, when the Boltzmann‘s Equation is 

taken from the equation in terms of ( ) to the equation in terms of ( ), any change 

in ( ) is related to the change in ( ) through (  ) and not through these 

derivatives, 

(
  

  
*  ( 

   
  
*
  

  
  (

  

   
*  ( 

   
  
*
  

   
 

Then; 

[(  
  

  
*  (  

  

   
*]   (

   ⃗

 
)      (    ) 

The energy variable ( ) is taken out the discussion and ( ) dominate. 

Another important point the middle term (  
  

   
), consists of the force (  ), that an 

electron feels due to the electric field, this is where the electric field often enter the 

Boltzmann‘s Equation. Sometimes under certain conditions this middle term can 

be ignored, because at equilibrium all the derivatives turn to zero with constant μ 

for an elastic ballistic transport through the channel. Out of equilibrium the term 

(  
  

   
), really is a second order, when a voltage is applied, then an electric field is 

applied, so another  first order term (   
   

  
), exist there , and there is another 

first order term 
  

   
 already there, in total is like the second order term. Therefore, 

the middle term can be dropped. This is wouldn‘t be true if there was a built-in 

field in some region, or there was a magnetic field due to Hall effect. For this 

discussion assume we can drop that term. The rest of the equation can be written in 

the form; 

  
  (    )

  
  

 (    )   (    )

 
   (    ) 

Note that ( ) at a given location can be different for different momenta. To 

simplify further keep track of the two Quasi Fermi Levels           , (  ) for 

forward moving carriers, with positive velocity, and (   ) for backward moving 

carriers, with a negative velocity; 
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‖  ‖
   

  
  (

    ⃗

 
)          (    ) 

 

 ‖  ‖
   

  
  (

    ⃗

 
)      (     ) 

Since there are two different Quasi Fermi Levels, the system is under 

nonequilibrium situation. The scattering processes will try to restore the system 

into equilibrium by collapsing           into single average value   ⃗, so, this the 

average value of the two; 

 ⃗  (
     

 
) 

Take equations (6.44 &6.45), and by making use of the average  ⃗, to get; 

    

  
 
   

  
  (

     

 ‖  ‖ 
) 

Either slope of the two Quasi Fermi Levels is given by separation of the two 

Quasi Fermi Level divided by the mean free path ( ); 

    

  
 
   

  
  (

     

 
)        (    ) 

Recall the current equation (6.13), which relates the current to the ballistic 

conductance times the Quasi Fermi Levels separation,  

  
  
 
(     )       (   )  (     )  

  

  
  

  Replace (     )  by (
  

  
) in equation (6.46), 

    

  
 
   

  
  (

  

   
* 

Turn the equation around, to write the current; 
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   (
   

 
*
   

  
   (

   

 
*
   

  
       (    ) 

Basically, the current is directly proportional to the slope of (  ), or the 

slope of  (  ). To solve this current equation (6.47), for constant current to vary 

linearly, to get the variations of the two Quasi Fermi Levels, using the boundary 

conditions at the two ends; 

  (   )     

  (   )     

 

 

Figure 6.25: The average quasi Fermi level, for the right moving carriers and the left moving 

carriers. 

Also, the two currents equation for the right moving electrons and the left 

moving electrons can be added to get a single equation for the average potential 

( ),  

  
(     )
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By using the actual conductivity,        , to get the normal diffusion 

current equation; 

  
   

 

  

  
 

Solve this diffusion current equation using the new boundary conditions, 

 (   )     
    
 

 

 (   )     
    
 

 

Note that all of what has been discussed physically from their first 

principles, to see how they are working, can be done in a proper way 

mathematically using Boltzmann‘s Equation with appropriate assumptions to tie 

them together, and derive everything step by step. That is why it is preferred not 

use Boltzmann‘s Equation from the first beginning rather than to start with the 

intuitive descriptions first, because Boltzmann‘s Equation gives a lot of insight and 

a little physical feeling towards the origin from which all these expressions come 

out. 
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Chapter Seven  

Conclusions 

7.1 Comments and Findings 

The discussion started by a simple model consisting of a channel and two 

big contacts, the resistance of which has got two parts, one part is directly 

proportional to the length of the channel L, and the second part is an extra constant 

resistance independent of the channel length called the ballistic resistance. To 

show that this ballistic resistance is essentially associated with the contacts 

interfaces, a lot of very important and general concepts has been introduced. 

The first of which is the tendency to associate any resistance with heat loss, 

but that does not give the insight about why this ballistic resistance is associated 

with the interfaces. The heat loss can be all over the place, largely in the two big 

contacts, because the heat loss is distributed spatially over an inelastic scattering 

length, from this point of view nobody can say that the resistance is here or there, it 

seems to be everywhere. The intuitive feeling of the resistance to be associated 

with obstacles, if a little hole was put in the channel, it will be so difficult for the 

electrons to get across to the other side, therefore, no doubt the resistance should 

go up. Then it quite clear that a criterion is needed to determine where these 

obstacles are, simply by following the voltage drop (  ), and not to follow the heat 

loss (   ). This is the first point to associate the voltage drop with the obstacle, 

even at atomic scale.  

The second point is what is the voltage? Without answering this question in 

a way to associate the voltage definition with the electrochemical potential, nobody 

can be able to see the drops at the two ends of such device or model are associated 

with interface resistances. If the voltage is defined through the electrostatic 

potential the voltage drops at the two interfaces will be smeared out by the 

screening length, and all the information given by the electrochemical potential 

will be lost. 

Fundamentally statistical equilibrium mechanics requires the 

electrochemical potential (ECP) to be the same everywhere at equilibrium, that is, 
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 (
  

  
  ) . On the other hand, fundamentally electrostatic potential (ESP) is not 

necessary to be constant even at equilibrium. In microscopic level all kinds of 

electrostatic potentials are there, even at equilibrium, this is very confusing to be 

associated with current flow. 

Boltzmann‘s Equation is the key of semi-classical transport, which is what 

this dissertation is about, this equation can be used to model how these potentials 

(ECP & ESP) vary inside the device quantitatively, also there is an alternative 

quantum transport to Boltzmann‘s Transport Equation, which is the Non 

Equilibrium Green‘s Function (NEGF) including the quantum mechanics 

represented by Schrodinger equation instead of Newton‘s laws plus the 

thermodynamics effects. This NEGF is left as an extension to this research for 

future work. NEGF based calculations for the electrochemical potential and the 

electrostatic potential (see McLennan et al. Phys. REVB43.1384(1991). The 

electrochemical potential has sharp drops at the contacts while the electrostatic 

potential is more smoothed out. 

                                                  

Figure 7.1: The electrochemical potential has sharp drops at the contacts (left), while the 

electrostatic potential is more smoothed out (right). 

So, NEGF is  a nice perfect way to calculate both the (ECP) and the (ESP), 

but still the approximate concepts like the (ECP) and the Quasi Fermi Levels are 

dealt with, because everybody should have to realize that by calculation, can gain a 

lot of insight, but a little to understand the physics behind it. Calculation is 

something and understanding is something else, they are not quite the same. For 

example, the Quasi Fermi Levels hep very much to provide the physical 

imagination of how to calculate what is expected from the simple model needed to 
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explain the Quasi Fermi Levels behavior, so as not to be led astray. Another 

example the general approach to ignore the inelastic scattering, selection of small 

section of the device (channel) has been adopted leaving the inelastic scattering to 

be only in the contacts. 

 

Figure 7.2: The inelastic scattering to be only in the contacts 

The small section of the device could be looked at, as different independent 

energy channels or energy lanes. Any specified energy channel E1 can be 

represented by a set of resistances in series, in between the two contacts. Similarly, 

there will be another set of resistances for the energy channel E2, and so on 

E1  

E2  

E3  

Figure 7.3: The small channel section of the device could be represented by different independent energy 

channels or energy lanes. 

Bear in mind that the inelastic scattering is ignored. 

 

Figure 7.4: The inelastic scattering is ignored 
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  The inelastic scattering conceptually tries to bring different energies into 

equilibrium. So, the inelastic scattering can be considered as a vertical resistor to 

connect one energy channel to the other. To include the inelastic scattering 

pictorially, some resistors to go between energy channel are added, and the 

potentials for one set of connected points can be considered one set of 

electrochemical potential appropriate for energies (           ).  

 

Figure 7.5: To include the inelastic scattering pictorially, the inelastic scattering considered as a vertical 

resistor to connect one energy channel to the other.  

Similarly, another set of the connected points is another electrochemical 

potential appropriate for the same energies (         ), and so on. The channel is 

out of equilibrium, and the distributions of the electrons is not necessarily given by 

the Fermi Function. 

 ( )  (
 

   
   ( )
  

+ 

Where  ( ), is not necessarily constant, but It could be energy dependent, 

so that any function can be represented by Fermi function in a convenient way. 

 There should be different (ECP) at each energy level, so the inelastic 

processes cause a current flow. The model which ignores these vertical resistances 

might give certain current, more current may be expected if these resistances are 

added. It possible to have different situations to show these resistances are 

connected to contacts. In case all these energy levels are connected to the contacts 

and all the vertical resistances are added make all the energy levels at the same 

potential since all these vertical resistances are similar, inserting vertical 
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connections between two points makes no difference because each resistor is 

connected between two equal potentials, and that is why for low bias neglecting an 

elastic scattering gives the exacts results given by solving Boltzmann‘s equation. 

On the other hand, a high bias nano transistor, the inelastic scatter makes a 

difference, because more current is given than what has been calculated otherwise. 

There are many ways of a complicated situations where the channels can be 

connected to different energies of the left-hand side contact, and on the other right 

side contact the channels are connected to different energies.  

 

Figure 7.6: PN junction, where the left-hand side contact (the n-side) is connected to higher energy 

channel (  ) of the conduction band, and the right-hand side contact (p-side) is connected to lower 

energy channel (  )  

A more complicated situation to represent a PN junction where in  the left 

hand side contact (the n-side) can be connected to higher energy channel (  ) of 

the conduction band, and at the right-hand side contact (p-side) is connected to 

different energy channel (  ), in that case the inelastic processes make a very big 

difference. If the inelastic processes are neglected there won‘t be any path from left 

to right. It is this inelastic process that make current flow possible in such 

structure. Making use of this concept of this electrochemical potential a pictorial 

view will show whether the inelastic processes will make a difference or not. A 
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check can be carried by the comparison of the actual calculations and the 

experimental results to gain a good thinking idea about how these things are going. 

What has just been explained is the different electrochemical potential for 

different energy channels, but what has been discussed in more details in this 

dissertation is the general idea of Quasi Fermi Levels which is a very useful 

concept in terms of understanding current flow in small devices. The QFL is the 

idea of having different potentials for right moving electrons and left moving 

electrons in a channel. 

 

Figure 7.7: The QFL idea of having different potentials for right moving electrons and left 

moving electrons in a channel. 

The idea of spin potentials is Avery wide area of spintronics, but a little has 

been discussed in this dissertation to talk about two different Quasi Fermi Levels 

for up spin and down spin, and the material with spin orbit coupling. What has 

been tried to be explained is how (  ) gets associated with (  ) up, and (  ) 
gets 

associated with (  ) down, and in general could have four QFLs. Two QFLs for 

up spin moving to the right and down spin moving to the left, and vice versa two 

QFLs for down spin moving to the right and up spin moving to the left. In general, 

QFL for particular momentum (  ), and particular spin direction could have 

 (       ). This gives a very useful physical picture in terms of thinking about 

how current flows on nanoscale. Thinking in terms of electrostatics potentials 
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picture (      
  

  
) that most people use, when intuition is guided by certain 

physical picture, all rich physics given by the QFLs will be missed. Therefore 

electrostatics picture is not rich and not general enough to capture all the new 

physics in the nano scale electronics being discovered in nano devices 

[79,80,81,82,83,84,85,86,87,88], or those which will be discovered in the coming 

years as researchers move along for a lot of more developments in terms of how 

they make contacts a kind of material to give exquisite control over different 

QFLs.  

For quantitative benchmark Boltzmann‘s equation and NEGF are used, in 

order to have pictorial view of how current flows, control is carried over different 

groups of states, spins, right moving and left moving carriers, conduction bands, 

valance bands, and all different things needed for the concept of QFLs. In 

conclusion QFLs is a way of thinking that helps to understand or catalogue what 

could be seen. 

7.2 Future work suggestions 

Nanotechnology is extremely diverse, so that the research can be extended to 

include the photo electronic and thermal characteristics as well. There are a lot of 

suggestion for future work to continue studying the subject. One of the most 

important topics is the introduction of None Equilibrium Green Function method to 

analyze Quantum Transporting nanoscale devices to explore a number of topics 

within nano electronics area [89,90,91,92,93,94,95,96,97,98,99,100] for the sake of 

deep looking at the quantum transport to gain greater insight into the application of 

Schrodinger Equation and learning the basis of spintronics. 

Another suggestion is to study the thermal electricity to see how current can 

be driven by temperature, this is something a little different from what had been 

discussed in driving currents by external voltage source. 

A third suggestion is concerned with the study of the Graphene material 

since one of the clearest specialties of this material is its thermal management 

properties to help control the heat generated by electronics. The cooler the 

operating temperature of computers, tablets, or mobile phones, the better they run. 

The outcome of the continuous miniaturization of electronics is in need for 
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enhanced thermal management, because there has been a large number of  circuits 

to be packed very close together, their design should be miniaturized, and the heat 

should be minimized to disappear, in order for the electronics to work properly, 

this is one of the major strength opportunity of Graphene. 

For thousands of years humans have been crafting the earth elements to 

shape the tools and technologies of our world. Graphene is getting to appear as a 

relatively new technology to realize its potential and its manufacturing applications 

in different areas. 

Graphene or Angstrom material could change the technology of the future, 

only what is required is to be prepared mentally to get there. Graphene has been 

around ten years ago under investigation, to be applied for devices which has not 

been tried before to change industry for the better. 

 Graphene is a two-dimensional material composed of carbon atoms 

arranged in hexagonal manner, and it has unique properties can‘t be found in any 

other material, it is six-sided shape which gives the material its extraordinary 

properties to conduct electricity and heat better than most materials. This improves 

electricity more efficiently from one place to the other.  

There are a lot of other suggestions, but it is preferred to stick to those three 

mentioned suggestions above, since the subject is very wide open without limits. 

Recently remarkable developments happens to the field of nano electronics 

[101,102,103,104,105,106,107,108,109,110]. The researchers utilize quantum laws 

for development [111,112,113,114,115,116,117,118,119,120,121]. Many 

researches are done including experimental and theoretical models 

[122,123,124,125,126]. But till now no ultimate model describing all nono 

electronic phenomena has been established.  
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Very important note 

To access the references list, the following abbreviations should be 

consulted to understand what they are standing for; 

Et al. is defined as an abbreviation for the Latin phrase et alia which means 

"and others." An example of et. al. used as an abbreviation is in the sentence, "The 

article was written by Smith, Jones, Paul, et al." which means that Smith, Jones, 

Paul and others wrote the article. 

A DOI, or Digital Object Identifier, is a string of numbers, letters and 

symbols used to permanently identify an article or document and link to it on the 

web. A DOI will help your reader easily locate a document from your citation. 

URL stands for Uniform Resource Locator, and is used to specify addresses 

on the World Wide Web. A URL is the fundamental network identification for any 

resource connected to the web (e.g., hypertext pages, images, and sound 

files). URLs have the following format: protocol://hostname/other_information.Jan 

18, 2018 

An ISBN is essentially a product identifier used by publishers, booksellers, 

libraries, internet retailers and other supply chain participants for ordering, listing, 

sales records and stock control purposes. The ISBN identifies the registrant as well 

as the specific title, edition and format. 

The International Standard Book Number (ISBN) is a numeric 

commercial book identifier which is intended to be unique. Publishers purchase 

ISBNs from an affiliate of the International ISBN Agency.  

An ISBN is assigned to each separate edition and variation (except 

reprintings) of a publication. For example, an e-book, a paperback and 

a hardcover edition of the same book will each have a different ISBN. The ISBN is 

ten digits long if assigned before 2007, and thirteen digits long if assigned on or 

after 1 January 2007. The method of assigning an ISBN is nation-specific and 

varies between countries, often depending on how large the publishing industry is 

within a country. 

The initial ISBN identification format was devised in 1967, based upon the 

9-digit Standard Book Numbering (SBN) created in 1966.  

https://en.wikipedia.org/wiki/E-book
https://en.wikipedia.org/wiki/Paperback
https://en.wikipedia.org/wiki/Hardcover
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The 10-digit ISBN format was developed by the International Organization 

for Standardization (ISO) and was published in 1970 as international standard ISO 

2108 (the 9-digit SBN code can be converted to a 10-digit ISBN by prefixing it 

with a zero digit '0'). 

Privately published books sometimes appear without an ISBN. The 

International ISBN Agency sometimes assigns such books ISBNs on its own 

initiative.
[2]

 

Another identifier, the International Standard Serial Number (ISSN), 

identifies periodical publications such as magazines and newspapers. 

The International Standard Music Number (ISMN) covers musical scores. 

NIST is the National Institute of Standards and Technology, a unit of the 

U.S. Commerce Department. Formerly known as the National Bureau of 

Standards, NIST promotes and maintains measurement standards. It also has active 

programs for encouraging and assisting industry and science to develop and use 

these standards. 

Although it can be so used, it is a misconception that ACME was by the 

cartoonists intended an acronym standing for such things as "A Company Making 

Everything", "American Companies Make Everything" or "American Company 

that Manufactures Everything". 

IEEE‖ stands for The Institute of Electrical and Electronics 

Engineers. IEEE style is a numbered referencing style that uses citation numbers 

in the text of the paper, provided in square brackets. A full 

corresponding reference is listed at the end of the paper, next to the 

respective citation number.N.TElectr 
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Appendix (I) 

Boltzmann Transport Equation (BTE) 

The semiclassical transport results can be justified properly by Boltzmann‘s 

Transport Equation. The general Boltzmann‘s Transport Equation is a partial 

differential equation, can be written as; 

[  
  

  
   

  

   
  (    ) ]     ( ) 

 Where,     (      ) 

                 Z is the spatial location of electron 

             Pz is the momentum of electron in Z- direction 

              t is the time 

              Vz.is velocity of the electron along the Z- direction 

               Fz is the force of the electron in the Z- direction  

                 ‘ is the occupation function at equilibrium state.  

The origin of this equation is Newton‘s laws;  

   
  

  
     

   

   
     ( ) 

Equation (2) above describes the motion of a particle like an electron by Newton‘s 

laws. Where,     (      ) in Boltzmann‘s equation can be defined by the 

following equation to tell the occupation of states with a certain momentum Pz at a 

spatial location Z at a given time t;  

 (      )  ( (      )  (       )  (     ))      ( ) 

 In equation (3) above Z, Pz, and t, are all independent variables. The left-hand side 

part must be equal to the right hand side part, because looking to the number of 

electrons in the present instant of time t, must have been passed the position they 

were in sometime    ago, whenever they are now at time t, must have been at a 

little time ago at  (    ) , therefore the momentum Pz, now must have (    
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    ) a short time ago. This viewpoint is known as (collective description). This 

description evolved as shown by equation (3) above. Since the motion of each 

electron is shown by Newton‘s laws as in equation (2) above, whatever has been at 

time t, must have been in at time    a little time ago. This statement connects the 

collective description viewpoint to  note the only independent variable is t, so there 

is an important change in concept of equation (3), compared to the individual 

particles given by Ohm‘s law viewpoint, by assuming that    is very small Taylor 

series can be applied, then; 

 (      )   (      )  [
  

  
 ]       ( ) 

 (      )   (      )  [  
  

  
     

  

   
   

  

  
   ] 

Note that in equation (3) the left hand side is equal to the right hand side because 

of Newton‘s laws, and in equation (4) the two sides are equal from the 

mathematical view, because of Taylor series expansion with no physical contents, 

all the physics is found in equation (3).  In equation (4),   (      ) can be 

cancelled to give; 

   [  
  

  
     

  

   
   

  

  
   ]      ( ) 

           ; 

  [
  

  
   

  

   
 
  

  
 ]   ( ) 

Nothing evolved with time at steady state (
  

  
   ); 

  [
  

  
   

  

   
]          ( ) 

Which is the left-hand side of Boltzmann‘s Equation, equation (7) is a 

reformulation of Newton‘s laws using collective variables. Boltzmann‘s Equation 

includes the entropy driven things or scattering, to describe irreversible processes. 

In principle  Mechanics are represented by Newton‘s laws and the irreversible 

phenomenon needs an extra scattering term, which can be written as (     ) as the 
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scattering operator is acting on the function  , and the precise nature of the 

scattering operator requires a lot of discussion in general, therefore; 

  (     )  [
  

  
   

  

   
]        ( ) 

 For the purpose of this thesis, the scattering operators assumed to be  (     ) to 

take   and restore it to a local equilibrium   , when (     ) there will be no 

scattering at all, if away from equilibrium then the scattering can be represented by 

a term proportional to how far the case is from equilibrium condition, this what is 

often referee to as the relaxation time approximation. Then the final form of 

Boltzmann‘s Equation is, 

 (
    

 
)  [

  

  
   

  

   
]       

QED 
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Appendix (II) 

Angular Averaging 

To start from the basic expression of the conductance, 

  
   

  
 

Using the idea of time taken by the electron from the left contact (the 

source) to the right contact (the drain), to calculate the diffusive conductance then 

the ballistic conductance. This time has got two components one for diffusive 

transport directly proportional to the channel length squared, the other for ballistic 

transport directly proportional to the length of the channel. 

Using the diffusive part of time, 

  
   

  
 
    

  
 

Since for the diffusive transport Ohm‘s law applies without any 

modification, then;  

  
  

 
        

  
  

 
 
     

   
 
    

  
 

(
 

  
) is the material property, which would not change by changing the material 

dimensions, since the density of states changes by the same amount of increment, 

so the ratio remains the same, since the density of states is given by energy per unit 

(length, area or volume) for 1D,2D and 3D respectively. Therefore, the density of 

states depends on (WL) for 2D.     

Using the ballistic part of time,  
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From the last paragraph seen that D depends on (WL) for 2D, then the 

overall ballistic conductance does not depend on the length of the channel while it 

depends on the width only,  

   
     

  
 
    

 
 

To average the velocity  , consider the maximum velocity V going in 

different directions, what matters is the velocity from source to drain (to be 

considered as the z- direction) to which the average velocity is to be found by a 

little algebra. The answer depends on how many dimensions the average is to be 

taken. 

For 1D conductor;  

Here there is only one direction Z and there is nothing to average, it is just 

the maximum velocity V, so the factor of averaging is one. But for convenience the 

new prospective indicates that the fundamental material parameters; 

a- the ballistic conductance, 

   
   

  
 
    

  
 

b- the conductivity multiplied by area is equal to the ballistic conductance times 

the mean free path, 

       

c- The mean free path (λ), is defined as the ratio of the diffusion coefficient to the 

average velocity, 

  
  

 
 

Recall the elastic transport where an electron with certain energy 

corresponds to a certain velocity. But the velocity could be either in the positive or 

the negative Z- direction, and could have one of the two values (+ V) or (- V), 

because in elastic model an electron with a single energy at a time is considered, so 

one particular value of velocity, then an integral over energy is done. The average 
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value of velocity has got two possible values (+V) or (-V), basically the average is 

just (V); 

 

 

       

Then the average diffusion coefficient Ð entered the conductivity, 

    
   

  
                  

Recall (  
  

 
), where λ is the mean free path for back scattering. In this 

context the completely turned around back scattering is interested in, because if the 

electrons are going straight, they are considered heading in the right direction from 

source to drain. Therefore, half of the electrons keep heading in the same direction, 

the other half turned around and come back, and the average time for getting 

turned around is not τ but 2τ. That is why there is a factor of two in front of the 

mean free path Vτ. This factor of two will be in different dimensions, right now it 

for 1D. 

For 2D conductors, 

 In 2D conductor, consider the Z- direction between the source and drain. 

The direction of velocity can be at an angle to Z- direction, so the velocity along 

the Z- direction is the            , which is the absolute value of |      |. 
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Integrate from (-π to +π) and divide by the integral of (dθ), to get the 

average value of the ballistic velocity; 

  (
∫ |      |  
  

  

∫   
  

  

+   

(
 ∫ |     |  

    

    

∫   
    

    

)  
  

 
 

 

  In 2D the average velocity for ballistic transport is given by ( 
  

 
 ), with an 

extra factor (
 

 
).  

But for the diffusive transport the average velocity is involved in the 

diffusion coefficient, 

      

The average of that is quantity is to integrate from (0 to 2π) and divide by 

the integral of (  ), to get the average value of the diffusive velocity; 

  (
∫           
   

 

∫   
   

 

+  
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For 3D conductors: 

This is the most complicated case mathematically. Here there are two angles, 

θ with respect to the Z-axis, when (r) is projected down to the (xy) plane, another 

angle Φ with the x- axis is formed. These two angles define a particular direction  

in 3D.   

 

 

How to integrate over an angle, define the solid angle  
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In 2D it quite simple, just integrate over   , but in 3D this solid angle 

(∫   
  

 
∫       
 

 
) is needed, and the integral is done to find the average as 

follows; 

  (
∫   ∫        |      |

  

 

   

 

∫   
   

 ∫       
  

 

+  
 

 
 

The same procedure is followed for calculating the diffusion coefficient 

using (         ). Pull (   ) out and integrate (      ) over the solid angle 

(∫   
  

 
∫       
 

 
); 

  (
∫   ∫      

  

 
           

   

 

∫   
   

 ∫       
  

 

+  
   

 
 

To collect all these results together, the average value of the velocity for 

1D,2D, and 3D respectively; 

       (  
 

 
 
 

 
) 

The average value of the diffusive coefficient for 1D,2D, and 3D 

respectively; 

           (  
 

 
 
 

 
) 

So, it like dividing by the number of dimensions. 

In fact, there is a simple way can be used to get all these results without 

doing all these integrals.  

The way to define the mean free path (  
  

 
), λ can be expressed in all the 

three dimensions as; 

    (  
 

 
  
 

 
) 
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The way the mean free path is defined Leeds to the simple expression; 

  
   

   
 

Where (    ), as might be expected, but it is given multiplied by certain 

factors, depending on what number of dimensions the conductor has. The factors 

always greater than (one), because the mean free path is taken for back scattering 

where the electron turned around. Factor for 1D is (2), for 2D is (π/2) and for 3D is 

(4/3). 
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Appendix (III) 

Derivation of Relativistic Energy 

The distance, time, length, and momentum are all relativistic quantities, that 

the energy of an objected might be expected to be also relativistic, because the 

object energy depends on the inertial frame of reference. 

Assume work-energy principle holds under relativity, the principle can be 

used to derive the energy. 

By work – energy theorem, the amount of work done on particle to increase 

its velocity from (zero) to (V) is equal to;  

  ∫    
 

 

 ∫
  

  
    ∫       ( )

 

 

 

 

 

Where: I, is the initial velocity equals to zero 

               F, is the final velocity V 

Since; 

 (  )                  (  )       

Then; 

  ∫     
 

 

 ∫ ( (  )      )  ∫  (  )  ∫    
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Recall, 

  
  

√  (
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Evaluating the above integral, 

  ∫ ( (  )      )  ∫  (  )  ∫
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            ( ) 

Multiply the second term of equation (4) by;  
√  (
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√  (
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√  (
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√  (
 
 )

 
        ( )  

By work – energy principle the work done on particle is equal to the kinetic energy 

it gains. 

Energy momentum relation 

 The relationship between energy and momentum of a particle is exactly, 

           ( ) 

  
   

√  (
 
 )

 
      (  ) 

  
   

√  (
 
 )

 
     (   ) 

Square both sides of equation (ii) 

   
(   ) 

  (
 
 )

     ( ) 
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Insert the term (       ) as shown here below, 

   
    (        )

  (
 
 )

  

                /          /         ( )  

   (    )                /    ( ) 

   ( )         (     )/  )   ( )  

   ( )         (     )/(     )   ( ) 

   ( )          

Where E is the total energy of the particle, then; 

        ( )    

Implies that it will be identical in all reference frames. 
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Appendix (IV) 

Graphene  

Scientists have been puzzling over graphene for decades. Back in 1947, 

Canadian physicist Philip Wallace wrote a paper about the electronic behavior of 

graphite that sparked considerable interest in the field. Nobel-Prize winning 

chemist Linus Pauling was speculating about how flat, single layers of carbon 

atoms would behave as long ago as 1960. In 1962, such materials were named 

"graphene" by German chemist Hans-Peter Boehm, who had spotted them under 

an electron microscope.  

Theoretical research into graphene continued for the next four decades, 

boosted in the 1980s and 1990s by the discoveries of fullerenes (effectively, 

graphene curled up into balls) and carbon nanotubes (graphene folded into a pipe). 

Even so, no-one could ever actually make the stuff in practice; graphene was only 

produced in a laboratory in 2004, by Russian-born scientists Andre Geim and 

Konstantin Novoselov working at the UK's University of Manchester. They made 

graphene by using pieces of sticky tape to pull off flakes of graphite, then folding 

the tape and pulling it apart to cleave the graphite into even smaller layers. 

Eventually, after a great deal of work, they were amazed to find they had some bits 

of graphite only one atom thick graphene. 

Four years later, the Manchester team managed to create a graphene 

transistor just one atom thick and ten atoms wide. The same year, workers at Rice 

University in the United States built the first graphene-based flash memory. In 

recognition of the huge importance of their work, Geim and Novoselov were 

awarded the 2010 Nobel Prizing physics.2010 Physics. 

Graphene should not to be confused with Graphite Grapheme, or Graphane.  

 
Graphene is an atomic-scale hexagonal lattice made of carbon atoms. 

https://en.wikipedia.org/wiki/File:Graphen.jpg
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Graphene is an allotrope of carbon in the form of a single layer of atoms in 

a two- dimensional hexagonal lattice in which one atom forms each vertex. It is the 

basic structural element of other allotropes, including graphite, charcoal, carbon 

nanotubes, and fullerenes. It can also be considered as an indefinitely large 

aromatic molecule, the ultimate case of the family of flat polycyclic aromatic 

hydrocarbons.  

General properties 

Graphene is an amazingly pure substance, its simple, orderly structure based 

on tight, regular, atomic bonding, Carbon is a nonmetal, so you might expect 

graphene to be one too. In fact, it behaves much more like a metal (though the way 

it conducts electricity is very different), and that's led some scientists to describe it 

as a semimetal or a semiconductor (a material mid-way between a conductor and 

an insulator, such as silicon and germanium). Even so, it's as well to remember that 

graphene is extraordinary—and quite possibly unique. 

Strength and stiffness 

  Graphite is horribly soft. That's because the carbon layers inside a stick of 

graphite shave off very easily. But the atoms within those layers are very tightly 

bonded so, like carbon nanotubes (and unlike graphite), graphene is super-strong, 

even stronger than diamond! Graphene is believed to be the strongest material yet 

discovered; some 200 times stronger than steel. Remarkably, it's both stiff and 

elastic (like rubber), so it can be stretched by an amazing amount (20-25 percent of 

its original length) without breaking. That's because the flat planes of carbon atoms 

in graphene can flex relatively easily without the atoms breaking apart. 

No-one knows quite what to do with graphene's super-strong properties, but 

one likely possibility is mixing it with other materials (such as plastics) to make 

composites that are stronger and tougher, but also thinner and lighter, than any 

materials we know. Imagine an energy-saving car with super-strong, super-thin, 

super-light plastic body panels reinforced with graphene; that's the kind of object 

we might envisage appearing in a future turned upside down by this amazing 

material! 

Heat conductivity 

As if super strength and featherweight lightness aren't enough, graphene is 

better at carrying heat (it has very high thermal conductivity) than any other 
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material—better by far than brilliant heat conductors such as silver and copper, and 

much better than either graphite or diamond. Again, we're most likely to discover 

the benefit of that by using graphene in composite materials, where we could use 

them to add extra heat-resistance or conductivity to plastics or other materials. 

Electrical conductivity 

This is where graphene starts to get interesting! Materials that conduct heat 

very well also conduct electricity well, because both processes transport energy 

using electrons. The flat, hexagonal lattice of graphene offers relatively little 

resistance to electrons, which zip through it quickly and easily, carrying electricity 

better than even superb conductors such as copper and almost as well as 

superconductors (unlike superconductors, which need to be cooled to low 

temperatures, graphene's remarkable conductivity works even at room 

temperature). Scientifically speaking, we could say that the electrons in graphene 

have a longer mean free path than they have in any other material (in other words, 

they can go further without crashing into things or otherwise being interrupted, 

which is what causes electrical resistances). What use is this? Imagine a strong, 

light, relatively inexpensive material that can conduct electricity with greatly 

reduced energy losses: on a large scale, it could revolutionize electricity production 

and distribution from power plants; on a much smaller scale, it might spawn 

portable gadgets (such as cellphones) with much longer battery life. 

Electronic properties 

Electrical conductivity is just about "ferrying" electricity from one place to 

another in a relatively crude fashion; much more interesting is manipulating the 

flow of electrons that carry electricity, which is what electronics is all about. As 

you might expect from its other amazing abilities, the electronic properties of 

graphene are also highly unusual. First because the electrons are faster and much 

more mobile, which provides the possibility of computer chips that work more 

quickly (and with less power) than the ones we use today. Second, the electrons 

move through graphene a bit like photons (wave-like particles of light), at speeds 

close enough to the speed of light (about 1 million meters per second, in fact) that 

they behave according to both the theories of relativity and quantum mechanics, 

where simple certainties are replaced by puzzling probabilities. 

After this introduction about graphene, this research is deeply concerned 

with of how to get an expression for conductivity that is directly proportional to 
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√ ¸ the way to this is to start from the general standard Dude formula for 

conductivity given by; 

  
    

 
 

Where, n is the density of electrons per unit (length, area, or volume), 

  
    (

 
 
 
 
  

 
 
  )

 
 

The mobility μ is given by;  

  
  

 
 
 

  
 

Where,    is the carrier density 

                 is the mass of the electron  

                 is the electron charge 

                 is the mean free time  

Graphene has no parabolic energy – momentum relation, it is rather linear relation, 

      

The mass in this case should be treated with care, in the sense that mass is 

not constant. In graphene the mass in with the increase in energy. 
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Experimentally if the electrochemical potential raised to an upper energy 

level from where it has been before, the mobility μ keeps going down, not because 

the mean free time is going shorter, but the mass is increasing because the 

electrons in the upper electrochemical potentials are more heavier than the 

electrons in the lower chemical potentials. In graphene the conductivity σ is not 

directly proportional to the electron density n, but it is expected to be directly 

proportional to the square root of the electron density n, because the momentum P 

is related to the counted number of states by the relation,  
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The graphene is a 2D conductor, then,  
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To relate P back to n, eliminate P from equation (3) using equation (1), 
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Then,  
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Since (   ) is the mean free path,  

  
    

 
√   

The degeneracy factor is taken equal to four, which is equal to spin 

multiplied by the number of valleys which is two for graphene. The graph hereafter 

is the plot of conductivity as a function of electron density for graphene with 

degeneracy factor of four, mfp λ equals 300 nm, and mfp equals 2μm. 

 

 

 

 

 


