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Abstract 

Optimal control is a mathematical method to fined values for a systems variables, so  

that these values lead the system to follow an optimal path or curve that achieves the 

maximum or minimum values for a characteristic or cost function. The Turnpike 

phenomenon appears in several variational and optimal control problems, arising in 

engineering and economic growth. We say that a problem has a turnpike property  

when the optimal  solutions converge to certain path during most of time, this path is 

known as the turnpike of problem. In this research we discussed number of recent 

results concerning turnpike properties in the calculus of  variations and optimal 

control problems. The optimal trajectory is shown to remains exponentially close to 

the steady-state solution of an associated static optimal control problem ,but also 

corresponding adjoint vector of the Pontryagin maximum principle.  We provide a 

general version of a turnpike theorem, valuable for nonlinear dynamics without any 

specific assumption ,and for very general terminal conditions. We characterized  

turnpike properties  of  the dynamics in terms of the system matrices related to the 

linear quadratic problem. These characterizations lead to new necessary conditions 

for the turnpike properties under consideration,  and thus eventually to necessary and 

sufficient conditions in terms of spectral criteria and matrix inequalities.  

 

 

 

 

 

 

 

 

 



IV 

 الخلاصة

نخخبع يسبس أ نًخغٛشاث َظبو يب بحٛث حقٕد ْزِ انقٛى انُظبو  ٚعخبش انخحكى الأيثم طشٚقت سٚبضٛت لإٚدبد قٛى 

 فٙ انعذٚذ يٍ حظٓش ظبْشة يذخم انحبخز .يُحُٗ أيثم ٚحقق انقٛى انقصٕٖ أ انذَٛب نخبصٛت أ دانت انكهفت

د٘ ,َقٕل أٌ انًشكهت نٓب خبصٛت يذخم انُبشئت فٙ انُٓذست ٔانًُٕ الاقخصبيثم ٔانًخغٛشاث يسبئم انخحكى الأ

ْزا انًسبس بأسى يسبنت يذخم عُذيب حخقبسة انحهٕل انًثهٗ انٗ يسبس يعٍٛ خلال يعظى انٕقج ٚعشف  انحبخز

 فٙ حسبة انخغٛٛشاث انحبخز يذخم .َبقشُب فٙ ْزا انبحث عذدا يٍ انُخبئح انحذٚثت انًخعهقت بخصبئصانحبخز

يٍ حم انحبنت انًسخقشة نًشكهت انخحكى  كبٛشٌ انًسبس الأيثم ٚظم قشٚبب بشكم . ٔحبٍٛ أانخحكى الأيثمٔيسبئم 

ج قصٗ .نقذ قذيُب َسخت عبيت يٍ ًَٕرخدّ انًسبعذ نًبذأ بَٕخشٚبخٍٛ الأانًثهٗ انثببخت  انًشحبطت , أٚضب ٚقببم انً

فخشاض يحذد نهششٔط انُٓبئٛت انعبيت ,َحٍ أًت نهذُٚبيٛكٛبث غٛش انخطٛت دٌٔ ْٕٔ رٔ قٛيذخم انحبخز َظشٚت 

ئص انذُٚبيٛكٛت يٍ حٛث يصفٕفبث انُظبو انًخعهقت ببنًسأنت انخشبٛعٛت انخطٛت ,حؤد٘ ْزِ انخصبئص ًَٛز انخصب

ٗ انششٔط انضشٔسٚت حبخز فٙ ظم انظشٔف , ٔببنخبنٙ إنيذخم انبئص صانٙ ششٔط ضشٔسٚت خذٚذة نخ

 خببُٚبث انًصفٕفبث. ئانكبفٛت يٍ حٛث انًعبٚٛش انطٛفٛت ٔ
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Introduction 

In chapter one  we study  introduction content  basic concept , in chapter two we 

study some basic in calculus of variations. Classical solutions to minimization 

problems in the calculus of variations  are  prescribed by boundary by value problem 

involving certain types differential equations , known as the associated Euler-

Lagrange equations. The mathematical techniques that have been developed to handle 

such optimization problems are fundamental  in many areas of mathematics ,physics , 

engineering ,and other applications. The history of the calculus of variation is tightly 

interwoven with the history of mathematics.  The field has drawn the attention of a 

remarkable range of mathematical luminaries , beginning with Newton and Leibniz 

,then initiated as a subject in its own right by Bernoulli brother Jakob and Johann.  

The first major developments appeared in the work of Euler, Lagrange, and Laplace. 

In the nineteenth century, Hamilton, Jacobi, Dirichlet, and Hilbert are but a few of the 

outstanding contributors. In modern times, the calculus of variations has continued to 

occupy center stage, witnessing major theoretical advances, along with wide-ranging 

applications in physics, engineering and all branches of mathematics. Minimization 

problems that can be analyzed by the calculus of variations serve to characterize the 

equilibrium configurations of almost all continuous physical systems, ranging 

through elasticity, solid and fluid mechanics, electro-magnetism, gravitation, 

quantum mechanics ,string theory, and many, many others. Many geometrical 

configurations, such as minimal surfaces, can be conveniently formulated as 

optimization problems. 

        In chapter three we study mathematical optimal control, control system design is 

generally a trial and error process in Classical which various methods of analysis are 

used iteratively to determine the design parameters of an "acceptable" system.  

Acceptable performance is generally defined in terms of time and frequency domain 

criteria such as rise time, settling time, peak overshoot, gain and phase margin, and 

bandwidth. Radically different performance criteria must be satisfied, however, by 

the complex, multiple-input, multiple-output systems required to meet the demands 

of modern technology. For example, the design of a spacecraft attitude control system 
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that minimizes fuel expenditure is not amenable to solution by classical methods. A 

new and direct approach to the synthesis of these complex systems, called optimal 

control theory, has been made feasible by the development of the digital computer. 

The objective of optimal control theory is to determine the control signals that will 

cause a process to satisfy the physical constraints and at the same time minimize (or 

maximize) some performance criterion. Later, we shall give a more explicit 

mathematical statement of “ the optimal control problem ˮ  ,but first let us consider 

the matter of problem formulation. 

         In chapter four we study turnpike theory and it is properties, Turnpike Theory 

refers to a set  of economic theories about the optimal path of accumulation (often  

capital  accumulation ) in a system , depending on the initial and final levels.  In the 

context of a macroeconomic exogenous growth  model.  

     In chapter five we study turnpike properties in calculus of variation and optimal 

control, In this chapter we survey our results of the turnpike property for some classes 

of variational and optimal control problems. To have property means the approximate 

solution of the problems are determined mainly by objective functions and essentially 

independent of the choice of interval  and endpoint conditions except in regions close 

to the endpoint. We discuss necessary and sufficient conditions for turnpike 

properties of approximate solutions for variational problems and discrete-time 

optimal control problems. Turnpike properties have been established long time ago in 

finite-dimensional optimal control problem arising in econometry. 

 In chapter six we study main results an conclusion. 
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           Chapter One 

                                                  Introduction 

1. Background  

      Turnpike properties are well known in the field of mathematical economics . 

The term was first coined by Samuelson who showed  that  an efficient expanding 

economy would for most of  the time be in the vicinity of a balanced equilibrium 

path (von Neumann path) .Turnpike properties are studied for optimal control 

problems on finite time intervals [     ] such that       . Here   ,    are real 

numbers in the case of continuous –time problems and are integers in the case of 

discrete-time problems .Solutions of such problems (trajectories or path )  always  

depend on an  optimality criterion usually  determined  by a cost function and  

some initial conditions .In the turnpike theory we study the structure of solutions 

when a cost function (an optimality criterion) is fixed while    ,    and the data 

vary . To have turnpike properties means ,that the solutions of a problem are 

determined mainly by the a cost function (optimality criterion ) , and are 

essentially independent of the choice of time interval and data , except in regions 

close to the endpoints of the time interval . If a real  number t  does not belong to 

these regions ,then the value  of a solution at the point t  is closed to a “turnpike” 

– a trajectory ( path) which  is defined on the infinite time interval and depends 

only on the a cost  function (optimality criterion ).  This phenomenon has the 

following interpretation .If one wishes to reach a point A from a point B by    a 

car in an optimal way , then one should enter onto a turnpike, spend most of one‟s 

time on it and then leave the turnpike to reach  the  required point .P.A.Samuelson 

discovered the turnpike phenomenon in a specific situation in 1948 . In further 

studies turnpike results were obtained under certain rather strong assumptions on 
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an  optimality criterion .Usually it was assumed that an objective function is 

convex , as a function of all its variables and does not depend on the time variable

t .In this case it was shown that the “turnpike” is a stationary trajectory (a 

singleton ). Since convexity assumptions usually hold for models of economic 

growth ,turnpike theory has many  applications  in mathematical economics .  

1.1 Mathematical Control Theory[31]   

Mathematical control theory is the area of application-oriented mathematics the 

deals with the basic principles underlying the analysis and design of control 

systems. To control an object means to influence its behavior so as to achieve 

 a desired goal . In order to implement this influence, engineers build  devices 

that incorporate various mathematical techniques .These devices range from 

Watt‟s steam engine governor designed during the English Industrial 

Revolution ,to the sophisticated  microprocessor controllers found in consumer 

items- such as players and automobiles or in industrial robots and airplane 

autopilots .While on the one hand one wants to understand the fundamental 

limitations that mathematics imposes on what  is  achievable , irrespective of 

that precise technology being used , it is also true that technology may well 

influence the type of question to be asked and the choice of mathematical 

model . An example of this is the use of difference rather than differential 

equations when one is interested in digital control .Roughly speaking ,there 

have been two main  lines of work in control theory , which sometime have 

seemed to proceed in very different directions but which are in fact 

complementary. One of these is based on the ideas that a good model of the 

object to be controlled is available and that one wants to some now optimize its 

behavior . For instance physical principles and engineering specifications can 

be and are used in order to calculate that trajectory of a spacecraft which 
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minimizes total travel time or fuel consumption . The techniques here are 

closely related to the classical calculus of variations and to other areas of 

optimization theory , the end result is typically a preprogrammed fight plan .the 

other main line of work is that based on the constraints imposed by uncertainty 

about the model  or about the environment in which the object operates . The 

central tool here is the use of feedback in order to correct for deviations from 

the desired behavior . For instance , various feedback control systems are used 

during actual space flight in order to compensate for errors from  the 

precomputed trajectory mathematically , stability theory , dynamical systems , 

and especially the theory of  functions of complex variable, have had a strong 

influence on this approach . It is widely recognized today that these two broad 

lines of work deal just with different aspects of the some problems. 

1.2 Control Systems 

 Definition of Systems 1.1[21] 

   A system is a combination of components that act together and perform a 

certain objective . A system need not be physical .The concept of the system 

can be applied to abstract , dynamic phenomena such as those encountered  

economic .The word system should , therefore, be interpreted to imply physical 

, biological , economic , and the like , systems.    

      Definition of Control System 1.2[2] 

  A control system is an arrangement of physical components connected  or 

related in such manner as to command ,direct ,or regular itself  or another 

system. 

     Control systems abound in our environment , but before exemplifying, we 

define to terms: input and output , which help in identifying delineating , or 

defining a control system. 
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Definition of input  1.3[2] 

 The input is the stimulus , excitation or command applied to a control system 

,typically form an external energy source. 

Definition of output  1.4[2]   

The output is the actual response obtained from a control system . It may or may 

not be equal to the specified response implied by the. Input and out can have many 

different forms inputs for examples may be physical variables or more abstract 

quantities such as reference , set point or desired values for the output of the 

control system.   

Definition 1.5 : 

Controlled Variable and Control Signal or Manipulated Variable [21] 

The controlled variable is the quantity or condition that is measured and controlled 

. the control signal or manipulated variable is the quantity or condition that is 

varied by the controller so as to affect the value of the controlled variable 

.Normally , the controlled variable is the output of the system .Control means 

measuring the value of the  controlled variable of the system and applying the 

control signal to the system to correct or limit deviation of the measured value 

form a desired value.            

 Definition plants 1.6 [21] 

  A plant may be a piece of equipment ,  perhaps just a set of machine parts 

functioning together ,the purpose of which is perform a particular operation. 
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Definition Feedback Control 1.7[21] 

 Feedback control refers to an operation that , in the presence of disturbances, tends 

to reduce the difference between the output of a system and some reference input 

and does so on the basis of  this difference .Here only unpredictable disturbances 

can always be compensated for within the system. 

 1.3 Closed Loop Control Versus Open Loop Control[2]  

1.3.1 Feedback Control Systems : 

  A system that maintains a prescribed relationship between the output and the 

reference input by comparing then and using difference as a means of control is 

called a feedback control system. An example would  be  a room temperature 

control system .Feedback control systems are not limited engineering but can be 

found in various non engineering fields as well . The human body ,for instance, is 

highly advanced feedback control system. Both body temperature and blood  

pressure are kept constant by means of physiological feedback . In fact , feedback 

performs a vital function :It makes the human body relatively insensitive to 

external disturbances , thus enabling it to function properly in a changing 

environment. 

Definition of open loop control 1.8 

 An open-loop control system is one in which the control action is independent of 

the output. 

 Definition of closed loop control 1.9 

 A closed-loop control system is one in which the control action is somehow                         

dependent on the output. 
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1.4 Analog and Digital Control Systems[2]  

       The signal in control system ,for example , the input and output waveforms ,               

are typically functions of some independent variable , usually time , denoted   . 

 Definition 1.10:  

     A signal dependent on a continuum of values of the independent variable   is            

called  a continuous –time signal or , more generally , a continuous –date or (less    

frequently ) an analog signal.  

Definition1.11  

A signal defined at ,or interest  at ,only discrete (distinct ) instants  of the 

independent  variable   (upon which it depends).  Is called discrete-time , a discrete 

date , a sampled –date ,or a digital signal . 

Definition 1.12 

Continuous –time control systems also called continuous-date control systems  also 

called continuous-data control systems or , analog control systems , contain or 

process only continuous –time (analog )  signals and components. 

Definition 1.13 

 Discrete-time control systems  , also called discrete –data control systems , or 

sampled data control systems , have discrete –time  signals or components at one 

or more points in the systems . 

1.5 Control System Models or Representations[2] 

To solve a control systems problem we must put  the specifications or description 

of the system configuration and its components into a form amenable to analysis or 
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design . Three basic representations (models) components and systems are used 

extensively in the study of control systems  

1- Mathematical  models , in the form of differential equations ,difference 

equations ,and / or other mathematical relations ,for example , Laplace  

2- Block diagrams 

1.5.1 Mathematical Models [21]: 

Mathematical models may assume many different forms depending  on the 

particular system and the particular circumstances , one mathematical model may 

better suited than other models.  For example, in optimal control problems it is 

advantageous to use state- space representations . On other hand , for the  transient-

response or frequency-response analysis of single  input , single  output ,linear , 

time – invariant systems , the transfer  function representation may be more 

convenient than any other .Once a mathematical model of a system is obtained , 

various  analytical and computer tools can be used for analysis and synthesis 

purposes .  

1.5.2 Linear Systems [21] 

A system is called linear if the principle of superposition applies. The principle of 

superposition states that the response produced by the simultaneous application of 

two different  forcing functions the sum of the two individual responses .Hence ,for 

the linear system ,the response to several inputs can be calculated by treating one 

input  at a time  and adding the results . It is this principle  that allows one to build 

up complicated solutions to the linear differential equation from simple solutions 

.In an  experimental investigation of a dynamic system , if cause and effect are 

proportional , thus implying that the principle of superposition holds , then the 

system can be considered linear . 
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1.5.3 Linear Time-Invariant Systems and Linear Time- Varying Systems[21] 

   A differential equation is linear if the coefficients are constants or functions only 

of the independent  variable . Dynamic systems that are composed of linear time –

Invariant  lumped-parameter components may be described by linear time-

invariant differential equations –that is ,constant- coefficient differential equations. 

Such systems are called linear time – Invariant systems .Systems That are 

represented by differential equations whose coefficients are functions of time are   

called linear time varying systems . 

1.5.4 Nonlinear Systems[21] 

A system is nonlinear if the principle of superposition does not apply .Thus , for    

a nonlinear system the response to two inputs cannot be calculated by treating on 

input at a time and adding the results . 

Example of nonlinear differential equations are  

                                              wtAx
dt

dx

dt

xd
sin

2

2

2









  

                                                012

2

2

 x
dt

dx
x

dt

xd
 

Although many  physical relationships are often represented by linear equations, in 

most cases actual relationships are not quite linear , in most cases actual 

relationships  are not quite linear ,in fact ,a careful study of physical systems 

reveals that that  even so –called “linear system”  are really linear only in limited 

operating ranges , in practice , many  electromechanical systems , hydraulic 

systems , pneumatic systems, and so on , involve nonlinear relationships among , 

the variable .For example , the output of a component may saturate for large input 
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signals . There  may be a dead space that affects small signals. Square-law 

nonlinearity may occur in some components . For instance , dampers used in 

physical systems may be linear for law –velocity operations but may become 

nonlinear at high velocities , and the damping force may become proportional to 

the  square of the operating velocity .Note that some important control systems , 

are nonlinear for signals of any size. For example in on-off  control systems , the 

control action is either on or off ,and there is on linear relationship between the 

input and output of the controller .  Procedure for finding the solutions of problems 

involving such nonlinear systems , in general , are extremely complicated . 

Because of this mathematical difficulty attached  to nonlinear systems  , one often 

finds it necessary to introduce “equivalent” linear systems in place of nonlinear 

once . such equivalent linear systems are valid for only a  limited range of 

operation. Once a nonlinear system is approximated by linear mathematical model 

, a number of linear tools may be applied  for analysis and design purposes. 

1.6 Transfer Function and Impulse Response Function[21]  

 1.6.1 Transfer Function 

The transfer function of a liner ,time- invariant differential equation system is 

defined as the ratio of the Laplace transform of the  output (response function)  to 

the Laplace transform of the  input (deriving function) under the assumption that 

all initial conditions are zero. Consider the linear time-invariant system defined by 

the following differential equation£ 

                                            yayayaya nn

nn  

 
1

1

10 ...  

                                                  xbxbxbxb mm

mm  

 
1

1

10 ...            
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Where   is the output of the system and   is the input .The transfer function of this  

system is the ratio of the Laplace  transform output to the Laplace transform input 

when all initial conditions are zero ,or 

                    Transfer  Function= 
 [      ]

 [     ]
|
                       

 

                                                   
    

    
 

   
     

              

   
     

              
 

By using the concept of transfer function , it possible to represent system dynamics 

by algebraic equations in   .If the highest power of   in the denominator of the 

transfer function is equal to   , the system is called an    - order system., 

1.6.2 Convolution Integral 

 For a linear ,time-invariant system the transfer function      is  

                                                            
    

    
                                                  (1.1) 

Where      is Laplace transform of the input to the system and      is the is 

Laplace transform of the output of the system , where we assume that all initial 

conditions involved are zero . It follows that the output      can be written as the 

product of      and      , or  

                                                                  

 Note that the multiplication in the complex domain is equivalent to convolution  in 

the  time domain , so the inverse  Laplace transform of  equation  ( 1.1 ) is given by 

the following convolution integral: 

     ∫             
 

 

 

                                                       ∫             
 

 
 

Where both      and      are 0 for     . 
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1.6.3 Impulse Response Function  

 Consider the output (response) of a linear time invariant system to unit – impulse 

input when the initial conditions are zero . Since The Laplace transform of the unit 

– impulse function is unity ,the Laplace transform of output  of the system is  

                                                                                                                 (1.2) 

The Laplace transform of output given by equation (1.2 ) gives the impulse 

response of the system. The inverse Laplace transform of      . or  

   [    ]       

Is called the impulse-response function. The function     called the weighting 

function of the system. 

1.7 The Laplace Transform 

    The  Laplace transform relates time functions to frequency-dependent functions 

of complex variable. 

Definition1.14 

 Let      be a real function of a real variable   defined for     .Then  

      [    ]             
   

∫            ∫                   
 

  

 

 
 

Is called the Laplace transform of      . S is a complex variable defined by 

       , where   and   are a real variables and   √   .              

Definition1.15 

If      is defined and single-valued for     and      is absolutely convergent 

for some real number    , that is , 
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∫ |    |           
   
   

|    |                      
 

  

 

Then      is Laplace transformable for          . 

Example 1.1  

The Laplace transform of      is  

 [   ]  ∫     

         
  

     
        |

  

 
  

 

   
  for         . 

1.7.1 The Inverse  Laplace Transform 

 The Laplace transforms a problem from the real variable time domain into the 

complex variable  S-domain . After a solution of the transformed problem has been 

obtained in terms of    ,it is necessary to “invert” this transform to obtain the time 

domain solution . The transformation from the s-domain into the t-domain is called 

the inverse Laplace transform. 

Definition1.16 

 Let      be the Laplace transform of a function      ,     . The contour integral  

   [    ]       
 

   
∫        

    

    

   

Where   √   and      is called the inverse Laplace transform. 

Example 1.2  

   The inverse Laplace transform of the functions     ⁄  and     ⁄  are  

                                 *
 

   
+                     ,             *

 

   
+       
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1.8 Block Diagrams: Fundamentals[21] 

A block diagram is shorthand , pictorial  representation of the cause and- effect 

relationship between the input and output of a physical system. The simplest form 

of the block diagram is single block. With one input and one output ,as shown     

fig (1.1).  

                                            

                             Fig(1.1):block diagram is single input and single output 

1.8.1 Summing  Point  

     A circle with across in the symbol that indicates a summing operation . The plus 

or minus sign at each arrowhead indicated  whether that signal is to be added or 

subtracted . It is important that the quantities being added or subtracted have the 

same  dimensions and the same units. 

1.8.2 Branch Point 

  A branch point is a point from which the signal from a block goes concurrently to 

other blocks or summing points .  

1.8.3 Block Diagram of a Closed Loop System  

 Figures 1.2 shows an example of a block diagram of a closed –loop system . The 

output      is feedback to summing point , where it is compared with the reference 

input      . The output of the block ,      in this case , is obtained by multiplying 

the transfer function      by the input to the block ,     . Any linear control 

system may be represent by a block diagram consisting of a blocks , summing 

points ,and branch points . When the output is fed bock to the summing point for 
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comparison with the input . it is necessary to convert the form  of the output signal 

to that of the input signal. For example , in a temperature control system , the 

output signal is usually the controlled temperature . The output signal , which has 

the dimension of temperature , must be converted to a force or position or voltage 

before it can be compared with the input signal. This conversion is accomplished 

by the feedback element whose transfer function is     , as shown in figure 1.3 . 

The role of the feedback element is to modify the output before it is compared with 

the input. 

 

                    Figure 1.2 :Block diagram of a closed-loop system 

                            

                                   Figure 1.3: Closed-loop system 

In the present example the feedback signal that the summing point for comparison  

with the input is                
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1.8.4 Open-Loop Transfer Function and Feedforward Transfer Function  

Referring to figure 1.3 the ratio of the feedback signal      to the actuating error 

signal       is called the open-loop transfer function. That is 

                      Open –loop transfer function = 
    

    
           

The ratio of the output      to the actuating error signal      is called the 

feedforward  function, so that  

                        Feedforward transfer function = 
    

    
 =      

If the feedback transfer function     is unity, then the open –loop transfer 

function and the feedforward transfer function are same . 

1.8.5 Closed Loop Transfer Function  

 For the system shown in figure 1.3 the output      and input      are related as 

follows: since  

                                                                 

               

                                                                          

Eliminating      from these equations gives  

                                                     [             ]  

                                             
    

    
 = 

    

          
                                                     (1. 3)   
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The transfer function relation      to      is called the closed-loop system 

dynamic to the feedforward elements and feedback element . From equation (1.3 ) , 

     is given by  

     
    

          
      

Thus the output of the closed loop systems clearly depends on the both the closed-

loop transfer function ad nature of  the input .  

1.9 Modeling in State Space[21] 

 1.9.1 Modern Control Theory 

The modern trend in engineering systems is toward  greater complexity ,due 

mainly to the  requirements of complex tasks and good accuracy . Complex 

systems may have multiple inputs and multiple outputs and may be time varying . 

Because of the  necessity of meeting increasingly stringent requirements on the 

performance of control systems ,the increase in system complexity ,and easy 

access to large scale computers .This new approach is based on the concept of 

state. 

Definition State 1.19  

  The state of a dynamic system is the smallest set of variables (called state 

variables) such that knowledge of these variable at     ,together with knowledge 

of the input for     ,completely determines the behavior of the system for any 

time 0tt  . Note that the concept to state is by no means limited to physical 

systems. It is applicable to biological systems , economic systems , social systems , 

and others . 
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Definition State Variables 1.20 

   The state variables a dynamic systems are the variables making least   variables 

           are needed to completely describe the behavior of a dynamic system   

( so that once the input is given for 0tt   and the initial state at  0tt   is specified , 

the future state of the system is completely determined ) ,then such   variables are 

a set of state variables . Note that state variables need do not be  physically 

measurable or observable quantities . Variables that do not represent  physical 

quantities and those that are neither measurable  nor observable  can be chosen as 

state  variables . Such freedom in choosing state variables is an advantage of the 

state-space methods . Practically , however ,it is convenient to choose easily 

measurable quantities for state variables ,if  this is possible at all , because optimal 

control laws will require the feedback of all  state variables with suitable 

weighting. 

Definition State Vector 1.21 : 

         If   state variables are need to completely describe the behavior of a given 

system , then   state variables can be considered the   components of a vector . 

Such a vector is called state vector . A state vector is thus a vector that determines 

uniquely the system state       for any time       ,once the stats at      ,is 

given and the input      for      is specified . 

Definition State Space 1.22 : 

The n dimensional space whose coordinate axes consist of the 

axisxaxisxaxisx n,...,, 21 are state variables , is called a state space . Any state  can be 

represented by a point in the state space . 
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Definition State Space  Equations 1.23 

In state- space analysis are concerned with three types of variable that are involved 

in the modeling of dynamic systems: input variable ,output variable , and state 

variable .The state- space  representation for a given system is not unique , except 

that the number of state variables is the same for any of the different state- space 

representations of same system. Assume that a multiple- input ,multiple-output 

system involves   integrator . Assume also that there are   inputs 

                    and   output                    . Define   output of the 

integrators as stat variable :                     then the system may be 

described 

 ̇                                      

                                  ̇                                                       (1.4) 

                                             

                                  ̇                                      

The output                      of the system may be given by 

                                       

                                                                                      (1.5) 

                                              

                                       

If we define  
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The equations (1.4) and (1.5) become  

                                                             ̇                                               (1.6) 

                                                                                                            (1.7) 

Where equation (1.6) is the state equation and equation (1.7) is the output equation 

. If  vector function   and / or involve time   explicitly , then the system is called a 

time varying system . If equation (1.6) and(1.7) are linearized  about the operating 

state , then we have the following linearized state equation and output equation: 

                                        ̇                                                         (1.8) 

                                                                                                 (1.9) 

Where      is called the state matrix ,      the input matrix ,      the output 

matrix and the      the direct transmission matrix. If vector function   and   do 

not involve time            then the system is called a time invariant system . In 

this case ,equations (1.8) and (1.9) can be simplified to  

                                                ̇                                                      (1.10) 

                                                ̇                                                      (1.11) 
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Equation  (1.10) is state equation of the linear ,time – invariant system and 

equation (1.11) is the output equation for the same system. 

1.10 Fundamental Concepts of the Calculus of  Variations[19] 

1.10.1 Function and Functional  

(a) Function : A variable    is a function of variable quantity   (written        

         ) , if to every value   ; i.e. , we have a correspondence : to number   

there corresponds a number   . Note that here   need not be always time but any 

independent variable. 

(b) Functional: A variable quantity  J is a functional dependent a function      , 

written as          . If to each function      , there corresponds a number   . 

Functional depend on several functions . 

Example 1.3 

          Let            . Then 

                                     ∫       
 

 
   ∫           

 

 

 

 
                  (1.12) 

   Is the area under the curve     .If      velocity of a vehicle , then  

                                      (    )  ∫       
  
  

                                                (1.13) 

Is the path traversed by the vehicle . Thus , here      and      are functions of   

,and   is a functional of      and      . 
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1.10.2 Increment  

We consider here increment of a function and a functional . 

(a) Increment of a function : In order to consider optimal values of a function , 

we need the definition  of  an increment 

Definition1.24 

  The increment of the function  , denoted by    is defined as  

                

Form the definition that    depends on both the independent variable   and  the 

increment of the independent variable   , and hence strictly speaking , we need to 

write the increment of a function as          . 

 Example 1.4  

If              
  

       Find the increment of the function       

Solution 

                                          

                                               
         

  

                                        
          

                    

              
    

         .  

                                                            
       

           

 



 

22 
 

(b) Increment of a functional    

Definition1.25 

      The increment of the functional   ,denoted by    , is defined as  

                                                                                           (1.14 ) 

Here       is called the variation of the function      . Since the increment of a 

functional is dependent upon the function      and its variation  (    ) , strictly 

speaking , we need to write the increment as                 . 

Example1.5 

 Fined the increment of the functional  

                                             ∫ [        ]
  
  

                                        (1.15 ) 

The increment of    is given by 

                                                            , 

                                            ∫ [                ]
  
  

   ∫ [        ]
  
  

  , 

                                             ∫ [                    ]
  
  

   .                  (1.16) 

1.10.3 Differential and Variation 

(a)Differential of a function  

      Let as define at a point     the increment of the function    

                                                                                                  (1.17) 

By expanding          in a Taylor series a bout     we get  
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                                 (
  

  
)
 
   

 

  
(
   

   
)
 
                        (1.18) 

Neglecting the higher order terms in    . 

                                     (
  

  
)
 
   f                                             (1. 19) 

Here ,    is called the differential of   at the point (    .  tf  is the derivative or 

slope of    at    . the  differential    is the first order approximation to increment 

  . 

(b)Variation of  functional  

Consider the increment a functional  

                                                                                              (1.20) 

Expanding               in a Taylor series , we get  

                
 

  

   

   
(     )

 
           

                             
  

  
      

 

  

   

   
(     )

 
+… 

                                                                                                         (1.21) 

Where   

                
  

  
                and           

 

  

   

   
(     )

 
                             (1.22)    

  Are  called the first variation and the second variation of the functional     , 

respectively . the variation     is linear part of the increment    
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1.10.4 Linearity of  Functionals   

Definition 1.26: 

   is a linear function of    if and only if it satisfies the principle of  homogeneity  

             

 

For all q  . and for all real numbers   such that q  ,and the principle of 

additivity  

                               (         )   (    )                                   (1.23) 

For all      ,      and     +      in   

Definition1.27 

        J  is a linear functional of    if and only if it satisfies the principle of  

                                                       xJxJ                                                  (1.24) 

For all  x  and for all real numbers   such that x  and the principle of 

additivity  

                                           2121 xJxJxxJ                                              (1.25) 

For all      ,      and      +      in   . 

1.10.5 Closeness of Functions : 

Definition 1.28 

  The norm of  a function is a rule of correspondence assigns to each function 

    , defined for   [      ] , a real number . The norm of   , denoted by ‖ ‖ , 

satisfies the following  properties : 

1- ‖ ‖    and ‖ ‖    if and only if        for all   [     ] . 
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2- ‖  ‖  | | ‖ ‖ for all real number   

3- ‖         ‖  ‖    ‖  ‖    ‖ .                                                               (1.26) 

Definition 1.29 

The functional  [ ] is said to be continuous at point  ̂    if for any     there 

exists a     such that  

                                                               | [ ]   [ ̂]|    

Provided that ‖   ̂‖   . 

1.11 Optimal Control [10] 

Definition 1.30 

  Let      be an interval (finite or infinite) .We say a finite-valued function 

      is piecewise continuous if it is continuous at each     , with the possible 

exception of at most a finite number of  , and if u is equal to either its left or right 

limit at every     .                                                                                      

Definition 1.31 

   Let       be continuous on   and differentiable at all but finitely  points of   

.Further, suppose that    is continuous wherever it is defined . Then , we say   is 

piecewise differentiable . 

Definition1.32   

   Let       .We say is continuously differentiable if    exists and is continuous 

on   . 
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Definition1.33  

A function   is called Lipschitz if there exists a constant   (particular to  ) such 

that |           |   |     | for all points       in the domain of  . The 

constant   is called the Lipschitz constant of   .                                           

Definition1.34 

   A control   history which satisfies the control constraints during the 

entire time interval [     ] is called an admissible control . 

    Suppose       is piecewise continuous . Let        be continuous in 

three variables . Then ,by the solution   of differential equation 

                                                                                              (1.27)             

In our basic optima control problem for ordinary differential equations , we use 

     for the control and      for the state . The state variable satisfies a differential 

equation which depends on the control variable : 

                                                           (           )  

As the control function is changed, the solution to the differential equation 

will change. Thus, we can view the control-to-state relationship as a map 

                 . Our basic optimal control problem consists of finding a 

piecewise continuous control      and the associated state variable      to 

maximize the given objective functional , i.e., 

   
 

∫  (           )  
  

  

 

                                     Subject to         (           )                           

                                                        and       free .                              (1.28) 
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Such a maximizing control is called an optimal control . By       free , it is meant 

that the value of       is unrestricted .For our purposes ,   and   will always be 

continuously differentiable functions , the associated states will always be 

piecewise differentiable . A piecewise continuous solution   is called optimal 

control and the solution   of the associated system of boundary value problems is 

said to be optimal trajectory.                                                                         

Definition 1.35 

    If the optimal control is determined as a function of time for a specified 

initial state value, that is, 

                 

then the optimal control is said to be in open-loop form. 

    Thus the optimal open-loop control is optimal only for a particular initial 

state value, whereas, if the optimal control law is known, the optimal control 

history starting from any state value can be generated.                                                             

1.12 Eigenvalue Problems[17] 

1.12.1 An Introduction to Coupled System  

The simplest example is a system of linear differential equations of the from 

                                                       
  

  
                                                 (1.29) 

  

  
       

We note that this system is coupled. We cannot solve  

We note that this system is coupled. We cannot solve either equation without 

knowing either x(t) or y(t). A much easier problem would be to solve 

 an uncoupled system like 
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The solutions are quickly found to be  

        
    

        
    

Here,    and    are two arbitrary constants. 

We can determine particular solutions of the system by specifying        =    and 

         at some time    .Thus, 

        
    

        
    

We write the coupled system as 

 

  
     

And the uncoupled system as 

 

  
     

Where                                        

                                                      Λ  (
   
   

)  

Is a diagonal matrix. 
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Now, we seek a transformation between x and y that will transform the 

coupled system into the uncoupled system. Define the sought transformation 

as  

                                                               

Inserting this transformation into the coupled system, we have 

                                                       
 

  
        

Because   is a constant matrix , 

                                                         
 

  
                                                     (1.30) 

If   is invertible ,then        .So , we can multiply both sides of equation (1.30) 

by     to obtain  

 

  
         

Because we are seeking an uncoupled system of the form 

 

  
     

We will require that  

                                                                                                             (1.31) 

The expression       is called a similarity transformation of matrix A. 

Multiplying equation (1.31) by     , we have  
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In particular, the columns of   (denoted  ) satisfy equations of the form 

      

for each   on the diagonal of  . This is an equation for vectors v and numbers 

  given matrix  . This is called an eigenvalue problem. The vectors are 

called eigenvectors and the numbers   are called eigenvalues. In principle,we can 

solve the eigenvalue problem and this will lead us to solutions of the uncoupled 

system of differential equation. 

 1.12.2 Eigenvalue problem 

We seek nontrivial solutions to the eigenvalue problem 

                                                                                                                  ( 1.32) 

We are given the matrix   is the     matrix (
  
  

) .the eigenvalue problem 

Equation (1.32) takes the form 

                                                 (
  
  

) (
  

  
)   (

  

  
) . 

Multiplying the matrices, we obtain the homogeneous algebraic system 

              

                                                                . 

The solution of such a system would be unique if the determinant of the 

system is not zero. However, this would give the trivial solution          , 

To get a nontrivial solution, we need to force the determinant to be zero: 

  |
    

    
|                



 

31 
 

This is a quadratic equation for the eigenvalues that would lead to nontrivial 

solutions. This is called the eigenvalue equation. Expanding the right-hand side of 

the equation, we find 

                  

Thus, the eigenvalues correspond to the solutions of the characteristic equation for 

the system. Once we find the eigenvalues, then we solve the homogeneous system 

for    in terms of   , or vice versa. There are possibly an infinite number solutions 

to the algebraic system with representing parallel vectors in the 

plane. So, we need only pick one representative eigenvector as the solution for 

each eigenvalue. 

The method for solving problem consists of just a few simple steps . 

1.12.3 Solving Eigenvalue Problems 

a)Write the coefficient matrix; 

b)Find the eigenvalues from the equations             ,and 

c)Solve the linear system           for each   

Example1.6: 

Determine the eigenvalue and eigenvector for 

                                               (
   
   

)  

Let   (
  

  
) .Then the eigenvalue problem can be writte as the system 
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                                                                                  (1.33) 

The eigenvalue equation must hold: 

                                             det                                         (1.34 ) 

|
     
     

|    

Computing the determinant, we have 

                                                       . 

             

So ,the eigenvaules are         

The sconed step is to find the eigenvector .  

We first insert     into the system  .Solution would be 

            .For     , the system becomes  

          

           

We get  the same equation            . 

1.13 Matrix Formultion of Planar Systems[17]: 

This is a first –order vector differential equation  

 ̇     

Formally ,we can write the solutions of  

                                                            
  . 
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1.13.1 Classification of  the Solutions for Two Linear First Order Differential 

Equations 

Case 1:Two real , distinct roots. 

  Solve the eigenvalue problem       for each eigenvalue obtaining 

  two eigenvectors      . Then write the general solution as a linear 

combination         
         

     . 

Case II: One repeated root. 

Solve the eigenvalue problem for one       eigenvalue  , obtaining 

the first eigenvector   . One then needs a second linearly independent 

solution. This is obtained by solving the nonhomogeneous problem 

           for    . 

The general solution is then given by         
        

           . 

Case III: Two complex conjugate roots. 

Solve the eigenvalue problem       for one eigenvalue ,        , obtaining 

one eigenvector v. Note that this eigenvector may have complex entries. Thus, one 

can write the vector 

                              

Then the general solution can be written as                . 
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1.13.2 Planar Systems-Summary 

Here we summarize some of these cases. 

 

 

                     Table 1.1: List of typical behaviors in planar system 

1.14 Non Linear Dynamics Systems[18] 

We consider the nonlinear system 

                                                            ̇         

                                                            ̇                                                    (1.35)  

Where   and G are smooth functions. We assume the solution exists for all t ≥ 0 

and is unique when initial data is provided. Typically, explicit solutions to (1.35) 

cannot found. However, as we will see, we can construct a phase portrait for the 

nonlinear system without finding the solutions 

Definition 1. 36 : A critical point         ,(also called an equilibrium, Fixed, or 

stationary point) satisfies  

                      

Definition 1.37 

 A trajectory starting at      is the set  

                                         {           |    (         )        )} . 

Stability Eigenvalues Type 

    ,stable ,same signs    Real Node 

Mostly unstable ,opposite signs    Real Saddle 

  Pure imaginary   Center 

        ,stable Complex           Focus/spiral 

    ,stable Repeated  roots Degenerate node 

    ,stable One zero eigenvalue Line of Equilibria 
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Here are some facts about the solutions to the nonlinear system, (1.35): 

• If the initial data is a critical point, then the solution remains at the critical 

point for all time. 

• Trajectories cannot intersect. 

• In particular, trajectories not starting at a critical point can never intersect 

(in finite time) a critical point. 

• The interesting dynamics occur near the critical points. 

It turns out that we can usually figure out the behavior of the nonlinear system 

near a critical point. The rest of the phase portrait can usually be deduced from 

this information. To determine the behavior near a critical point, we will linearize 

the nonlinear system around the critical point and use our knowledge of linear 

systems. We hope the full nonlinear system inherits the behavior of the linearized 

system. As we shall see, this is frequently the case. 

1.14.1 The Linearization 

To find the linear approximation to the function       near a point   , we of 

course use Taylor‟s theorem: 

                        

There is a similar version of this theorem for functions depending on two variables. 

Indeed 

                         
  

  
              

  

  
             . 

At a critical point ,                     .So the linear approximation to 

(1.35) is  

                            (
 
 )
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5 (
    

    ). 
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We can clean this up a little if we set        and       . Then the 

linearization near        becomes 

                            (
 
 
)
 
 4

  

  
       

  

  
       

  

  
       

  

  
       

5 (
 
 
)  

                                     (
 
 
). 

The matrix J is called the Jacobian. 

Before stating the theorems relating the behavior of the linearized system to 

the full nonlinear system, we need first summarize the behavior of linear systems. 

We observe three types of behaviors in linear systems. They are (note the origin is 

always a critical point in a linear system) 

• all solutions converge to the origin as t → ∞. This happens when the eigenvalues 

are negative or the have negative real part. In this case we call the 

origin asymptotically stable. 

• solutions near the origin stay near the origin for all time. This happens when 

the eigenvalues are purely complex or there is an eigenvalue which is zero while 

the other is negative. In this case we call the origin stable.. 

• if neither of the above two occur, we call the origin unstable. That is, at least 

one trajectory leaves the vicinity of the origin. 

Here are the relevant theorems. 

Theorem1.1: (Poincar´e-Lyapunov) Suppose  is a critical point      of the 

nonlinear 

system (1.35), and suppose the Re(λ), the real part of the eigenvalues of J (the 

linearization) are negative. Then the critical point is locally asymptotically stable. 

Theorem1.2 : Suppose       is a critical point, and the real part of at least one 

eigenvalue of J is positive. Then the critical point is unstable. 
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These theorems only describe the local behavior of solutions near a fixed point. 

They don‟t say what happens to the phase portrait. For that we have 

Theorem1. 3 : (Grobman-Hartman) Suppose       is a hyperbolic critical point 

(i.e. the real part of the eigenvalues of J are not zero). Then the phase portrait of 

the linearization and the nonlinear equations are locally homeomorphic. 

This just says the phase portraits of the linearization and nonlinear equations 

are similar provided none of the eigenvalues of the linearization have zero real 

part. 

1.14.2 Robust Cases: 

• Sources or Repellers: both eigenvalues have positive real part. 

• Sinks or Attractors: both eigenvalues have negative real part. 

• Saddles: one eigenvalues is positive and the other negative. 

1.14.3 Marginal Cases: 

• Focus or Center: eigenvalues are pure imaginary. Linearized system does 

NOT describe the nonlinear system. 

• Zero Eigenvalue: usually results from non isolated critical points. If the other 

eigenvalue is positive, the critical point is unstable. If the other eigenvalue is 

negative, the linearization may NOT describe the nonlinear system. 
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Chapter Two 

                                      Calculus of Variations 

2.1 Introduction 

 Classical solutions to minimization problems in the calculus of variations  are  

prescribed by boundary by value problem involving certain types differential 

equations , known as the associated Euler-Lagrange equations . The mathematical 

techniques that have been developed to handle such optimization problems are 

fundamental  in many areas of mathematics ,physics , engineering ,and other 

applications .The history of the calculus of variation is tightly interwoven with the 

history of mathematics . The field has drawn the attention of a remarkable range of 

mathematical luminaries , beginning with Newton and Leibniz ,then initiated as a 

subject in its own right by Bernoulli brother Jakob and Johann . The first major 

developments appeared in the work of Euler, Lagrange, and Laplace. In the 

nineteenth century, Hamilton, Jacobi, Dirichlet, and Hilbert are but a few of the 

outstanding contributors. In modern times, the calculus of variations has continued 

to occupy center stage, witnessing major theoretical advances, along with wide-

ranging applications in physics, engineering and all branches of mathematics. 

Minimization problems that can be analyzed by the calculus of variations serve to 

characterize the equilibrium configurations of almost all continuous physical 

systems, ranging through elasticity, solid and fluid mechanics, electro-magnetism, 

gravitation, quantum mechanics ,string theory, and many, many others. Many 

geometrical configurations, such as minimal surfaces, can be conveniently 

formulated as optimization problems.  
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2.2 Optimum of Function and Functional [80] 

We give some definitions for optimum or extremum (maximum or minimum)  of a 

function and a functional . The variation plays the same role in determining 

optimal value of a functional as the differential does in finding extremal or optimal 

of a function . 

 Definition2.1 Optimum of a function  

A function      is said to have a relative optimum at the point    if there  is a 

positive parameter   such that for all points in a domain   that  satisfy |    |    

,the increment of      has the same sign (positive or negative). In other words , if  

                                                                                                     (2 .1) 

Then ,      is relative local minimum. If 

                                                                                                    (2.2)      

Then ,      is relative local maximum. If the previous relations are valid for 

arbitrarily large   , then       is said to have a global absolute optimum .  

It is well known that the necessary condition for optimum of a function is that the 

(first) differential vanishes , i.e.       . The sufficient condition  

1.for minimum is that is that the second  differential is positive i.e. ,       ,and 

2. for maximum is that the second differential is negative i.e.       .                    

If       , it corresponds to stationary (or inflection) point . 
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Definition2.2 Optimum of a functional  

A functional    is said to have a relative optimum at    if there is a positive   such 

that for all function   in a domain Ω which satisfy |    |    , then increment  

of   has the same sign. In other word , if                                      

                                                                                                     ( 2.3)   

Then        is a relative minimum , if                                                       

                                                                                                      (2.4)   

Then        is relative maximum . If the above  relations are satisfied for arbitrarily 

large   , then       is  a global absolute optimum. 

2.3 The First Variation[28] 

2.3.1 Function of Several Variable 

    The definitions for local and global extrema in n dimensions are formally the 

same as for one- variable case. Let        be region and suppose that       . 

For     and                , 

 let             , X̂     | 1x̂    |
 
 | 2x̂    |

 
  | nx̂    |

 
   - .  

The  function        has a global maximum ( global minimum) on   at     

If     x̂         (   x̂        ) for X̂    . The  function   has  a local 

maximum ( local minimum) at   if there exists a number      such that for any 

X̂                   x̂         (   x̂        ). 

Necessary conditions for a smooth function of two independent variables to have 

local extrema can be derived from considerations similar to those used in the 

single-variable case . Suppose that       is smooth function  on the region 

     and that   has local extremum at              .Then  There an     

Such that        x̂        does not change sign for all X̂          . 
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Let   X̂        where              . For   small , Taylor‟s Theorem 

implies  

   x̂         {  

     

   
   

     

   
}

 
  

  
2  

 
      

   
       

      

      
   

 
      

   
 3         

And the sign of        x̂        is given by the linear term in the Taylor expansion 

unless this terms is  zero. If x is a local extremum we must therefore have that  

                                                          (
  

    
  

  

    
)                                      (2.5) 

For all      . If    has a local extremum at   that  

                                                                   . 

Geometrically equation (2.5) implies that the tangent plane  to graph of    is 

horizontal at a local extremum point   at which         yare called stationary 

points. 

2.4 The Euler Lagrange Equation[28] 

       Let         be a functional  defined on the function space     ‖ ‖  and let 

    . The functional     is said have local maximum in   at      it there exists 

an      such that  ( ŷ )          for all Syˆ such that yy ˆ    . The 

functional    is said to have a local minimum in   is at     y is local maximum in 

for –   .The set   is a set of functions satisfying certain boundary conditions . 

Function Syˆ in an  -neighbourhood of a function     can be represented in 

convenient way as a perturbation of   . If Syˆ  and yy ˆ    , then there is some 

    such that  

                                                              ŷ        
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All functions in an  -neighbourhood of functions of   can generated from a 

suitable set    of functions   . The set    is thus defined                                                                              

                                           {                ‖ ‖    } .   

The auxiliary set    can thus be replaced by the set 

                                           {          }  . 

For purposes of analysis.   

    At this stage we specialize to a particular  class of problem called the fixed 

endpoint  variational problem , and work with the vector space   [      ] . That 

consists of functions on [      ]  that have continuous second derivatives . 

  Let     [      ]    be functional of the form 

                                                        ∫            

  
        

Where   if function assumed to have at least second-order continuous partial 

derivative with respect to              .Given two values          , the fixed 

endpoint variational problem consists     [      ]  such that                      

                         and   has a local extremum in   at     . Here 

                         {    [      ]                        }  and  

                                   {    [      ]              }    

For any Syˆ  there      such  that  ŷ         

                                       yyxfyyxf ,,ˆ,ˆ,   

                                                             , 
  

  
   

  

   
-        

       ( ŷ )       ∫     
  

  
yy ˆ,ˆ     ∫              

  

  
  

                             {(             { 
  

  
   

  

   
}       )              } 

                                 ∫ ( 
  

  
   

  

   
)         
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The quantity 

        ∫ ( 
  

  
   

  

   
)   

  

  

 

Is called the first variation of   . 

Unless           for all     . If       is a local maximum  

Then 

                                        ∫ ( 
  

  
   

  

   
)   

  

  
                                    (2.6) 

For all      

∫ (  
  

   
  )

  

  

  
  

   
|
  

  

 ∫  
 

  
(
  

   
)   

  

  

 

                                                        ∫  
 

  
(

  

   
)   

  

  
 

Where we have used conditions         and         . Equation (2.6) can thus 

written  

                                           ∫  ,
  

  
 

 

  
(

  

   
)-

  

  
                                                  

Now 

  

  
 

 

  
(
  

   
)  

  

  
 

   

     
 

   

     
   

   

      
    

And given that   has at least two continuous derivatives for any fixed                  

    [      ] the function    [      ]    defined by 

                                         
  

  
 

 

  
(

  

   
)   

Is continuous the interval [      ]  . 
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Theorem 2.1 

        Let     [      ]    be functional of the form 

                                                        ∫            

  
        

Where   has  continuous partial derivative of second-order with respect to 

             and       . Let                                                                                  

                      {    [      ]                        } , 

Where    and    are given real number . If     is an extremal for   , then  

                                                   
  

  
 

 

  
(

  

   
)                                                   (2.8) 

Note 

 

  
(   )                        

  

  
                     

  

   
     

                            (     )     (    )     (    )                               (2.9) 

For all   [      ]. Equation (2.8) is a second-order (generally nonlinear) 

ordinary differential equation that  any (smooth) extremal   must satisfy . 

This differential equation (2.8) is called the Euler –Lagrange equation. The 

boundary values associated with this equation for the fixed endpoint problem are  

                                                                                                       (2.10) 

The Euler- Lagrange  equation is the infinite –dimensional analogue of the 

equation         . In the transition from finite to infinite dimensional , an 

algebraic condition for determined of points       which might lead to local 

extrema is replaced by a boundary –value problem involving a second- order 

differential equation. 
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2.5 Some Special Cases[28] 

 Case I : No Explicit   dependence  

  Suppose That the functional is of  the  form  

                                                           ∫          

  
        

  Where the variable   does not appear explicitly in the integrand . Evidently the 

Euler- Lagrange equation reduces to  

                                                                 
  

   
                                                (2.11) 

 In principle , equation (2.11) is solvable for    ,provided  
   

     ⁄     so that 

equation (2.11) could be recast in the form  

                                                                        , 

For some function   and the integrand , in practice , however , solving equation 

(2.11) for    can prove formidable if not impossible , and there may be several 

solutions available. 

 Case II :No Explicit   dependence  

  Another simplification is available when the integrand does not contain the 

independent variable   explicitly . 

 Theorem 2.2 

     Let    be a functional of the form                                                                                 

                                                             ∫          

  
     

And define the function   by  

                                                               

   
   

Then   is constant along any extremal   

Proof  

    Suppose  that   is an extremal for   . Now „ 
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(    

   
  ) 

                                                            

   
    

  

  

   
 (    

  
     

   
) 

                                                           (
 

  

  

   
 

  

  
)   

And since   is an extremal ,the Euler – Lagrange  equation (2.8)  is satisfied ; 

Hence ,                                                                                                                                

                                                               
 

  
          

 Consequently ,   must be constant alonge an extrmal. Note that the function   

depends only on   and    , and Thus the equation 

                                                     
 

  
               

Is a first –order differential equation for the extremely . 

2.6 The Second Variation : 

A smooth  function   [     ]    such that                      , and the 

functional  

                                                 ∫            

  
                                       (2.12) 

Is an extremum . We assume that for any given extremal                     is 

smooth in  a neighbourhood of    and in  a neighbourhood  of   . 

 yyyf ˆ,ˆ,              ( 
  

  
   

  

   
)  

  

 
(,     

  
     

   

     
    

   

    
-)  

      , 

We use the following notation  

    
   

   
          

   

     
          

   

    
 

Where , unless otherwise noted , the partial derivative are evaluated            

Thus , 
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                                     yJyJ ˆ           
  

 
               , 

Where         is  the first variation and 

                                       ∫ (     

  
     

   

     
    

   

    
)

  

  
   . 

The term            is called the second variation of   . Let H denoted the set of 

function    smooth on [     ] such that              . 

Theorem 2.3 

Suppose  that   has a locale extremum in   at   . If    is a local minimum , Then 

                                                       (η,y)    

For     , If   is a local maximum then                                                                          

                                                      (η,y)    

For all     . 

2.7 Ordinary Differential Equations [67] 

Set 

                                            ∫         
  

  
          

And for given           

                                {    [     ]                   } , 

Where - ∞         and   is sufficiently regular .One of the basic problems 

in the calculus of variation is  

(P)                                                  

 

 

2.7.1 Euler Equation 
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Let     be a solution of (P) and assume additionally             , then  

 

  
 

y
(            )             

      

In (  ,  ) 

Basic lemma in the calculus of variations 2.1 

    Let          and ∫              
 

 
 

For all        
      .Then        on (a,b). 

Proof 

Assume         for an         , then there is a     such that 

                and              on (           .Set 

     {
    |    |

                    

                                         [          
 

Thus     
       and  

∫           
     

 

 

 

∫         

    

    

 

Which a contraction to the assumption of the lemma. 

 2.7.2 Brachistochrone: 

In 1696 Johan Bernoulli  studied the problem of a brachistochrone  to find a curve 

connecting two points    and    such that a mass point moves from   to     asfost 

as possible in a downward directed constant  gravitional field  see Figure 2.2 .The 

associated variation problem is here  
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∫
√             

√         

  

  

    

Where V is the set of   [     ] curves defined by (x(t),y(t)) ,         with 

               ,                  ,                                         

     
               the absolute value of the initial velocity of the mass point 

and         . Solutions are cycloids 

                                

                                        Figure 2.1 problem of a brachistochronce 

One arrives at the above functional which we have  minimize since  

                  √           
   ,       ⁄  ,    √     

           

             And                            ∫    ∫
  

 

  
  

  
  

 

Where     is the time which the mass point needs to move form    and    



 

50 
 

A piecewise continuous solution   is called optimal control and the solution   of 

the associated system of boundary value problems is said to be optimal trajectory.  

2.8 Partial Differential Equations[67] 

The  same procedure as above to the following multiple integral leads to a second-

order quasilinear  partial differential equation . Set 

     dxyyx


 ),,(  

Where     is a domain , 

                                                   
      

  

It is assumed that the function F is sufficiently regular in its arguments . 

For a given function  h , defined on   

  {    ( )          } 

2.8.1 Euler Equation 

Of   (P) and additionally         

Then 

∑
 

   

 

   

    
    

In Ω. 
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 2.9 Functions of   Variables [67] 

Let   be a real- function defined on a nonempty subset      . In the conditions 

below where derivative occur , we assume that      or      on open set 

    . 

 2.9.1  Optima, Tangent Cones  

Let   be a real –valued functional defined on a nonempty subset    . 

Definition 2.3  

  A subset     is said to be convex if for any tow vectors         That 

inclusion             holds for all       .                                    

Definition 2.4  

We say that a functional   defined on a convex subset     is convex if  

                             

For all        and for all       , and   is strictly convex if the strict 

inequality holds for all        ,      , and for all         . 

Theorem2.4  

If   is q convex functional on a convex set     , then any local minimum of   in  

  is a global minimum of   in   . 

Proof  

 Suppose that   is no global minimum  , then there exists an      such that 

           . Set  

                                                   ,        

Then 

                                                       . 

For each given     there exists a        such that            and 

             . This is a contradiction to the assumption. 
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Theorem 2.5 

   If   is a strictly convex functional on a convex set     , then a minimum 

(local or global) is unique. 

Proof 

Suppose that    ,      define minima of   , then             ,see theorem 

2.4 .  Assume       , then for       

                                              

This is a contradiction to the assumption that    ,    define global minima 

Theorem 2.6 

(a) If  is a convex function and     a convex set , then the set of minimizers 

is convex. 

(b) If    is concave,     convex , then the set of maximizers is convex . 

Theorem 2.7 

  Suppose  the      is convex .Then   is convex of   if and only if  

                     〈 )(xf      〉 for all        

Remark 2.1 

 The inequality of the theorem says that the surface S defined by 

       is above of the tangent plane    defined by    〈         〉       

,see Figure 2.1 for the case n = 1. 
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                                Figure2.2:  figure  the theorem 2.7 

Definition 2.5 

A nonempty subset     is said to be a cone with vertex at      

, if     implies that            for each    . 

Let   be a nonempty subset of   . 

Definition2.6 

For given     we define the local tangent cone of    at   by        

{                                                        

           
            }. 

The definition implies immediately 
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                                                Figure 2.3 : Tangent Cone  

Corollaries 2.1  

(i) the set        is a cone with vertex at zero 

(ii) A vector     is not isolated if and only if        { }. 

(iii)Suppose that     then      . 

(iv)       is closed  

(v)       is convex if   is convex. 

   2.10 Isoperimetric Problems[27] 

Here we consider the problem of finding an extremum to a functional subject to 

an equality constraint involving a second functional . Historically , the first 

problems of this type involved finding an optimal curve whose total length 

(perimeter ) was fixed –hence the name. It turns out that standared method used 

in the optimization of  functions in    under equality constraints- Lagrange 

multipliers- also applies here: 

Problem  IP: Minimise the functional  
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     ∫            
  

  

 

With          ,          , subject to the integral constraint: 

     ∫         
  

  

      

Where   is constant  

Theorem 2.8 

In order that         is a solution of problem IP (isoperimetric problem) it is 

necessary that it should be an extremal of 

∫                        
  

  

 

For a certain   (Lagrange multiplier ). 

2.11 Hamilton’s Conical Equation[27] 

 Define the momentum   and Hamiltonian   as  

             
y

         

And  

                                                                                                                                     

The variable   and   are called the canonical variable . Let   be extremal , that is   

satisfies E-L equation .Then, it follows that   and   satisfies  

  

  
   

  

  
    

} 

The above system is known as Hamilton‟s canonical system of equations. 
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Chapter Three 

Mathematical Optimal Control 

3.1 Introduction   

  Control system design is generally a trial and error process in classical which 

various methods of analysis are used iteratively to determine the design parameters 

of an "acceptable" system . Acceptable performance is generally defined in terms 

of time and frequency domain criteria such as rise time, settling time, peak 

overshoot, gain and phase margin, and bandwidth. Radically different performance 

criteria must be satisfied, however, by the complex, multiple-input, multiple-output 

systems required to meet the demands of modern technology. For example, the 

design of a spacecraft attitude control system that minimizes fuel expenditure is 

not amenable to solution by classical methods. A new and direct approach to the 

synthesis of these complex systems, called optimal control theory, has been made 

feasible by the development of the digital computer. The objective of optimal 

control theory is to determine the control signals that will cause a process to satisfy 

the physical constraints and at the same time minimize (or maximize) some 

performance criterion. Later, we shall give a more explicit mathematical statement 

of “ the optimal control problem ˮ  ,but first let us consider the matter of problem 

formulation. 

3.2 The Basic problem[22]  

3.2.1 Controlled Dynamics 

We open our discussion by considering on ordinary differential equation having 

the from  

                                         2
 ̇     (    )

       
                                               (3.1)  
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We are here given the initial point       and the function        . The 

unknown is the curve   [        , which we interpret as the dynamical 

evolution of the state of some “system”.  We generalize a bit and suppose now that  

  depends also upon some “control” parameters belonging to a set      so that 

          Then if we select some value     and consider the 

corresponding dynamics : 

                                                   {
 ̇             

                          

We obtain the evolution of our system when the parameter is constantly set to the 

value a. 

suppose we define the function   [       this way: 

         {
                      
                     
                  

 

For time              and  parameter value               ; and we then 

solve the dynamical equation  

                                       {
 ̇                

                        (                      (3.2) 

The point is that the system may behave quite differently as we change the control 

parameters .More general function   [       a control . Corresponding to each 

control , we consider the ODE (3.2) and regard the trajectory      as the 

corresponding response of the system . 

3.2.2 Payoffs  

Let us define the payoff  functional  

                                        [    ]  ∫  (         )          
 

 
 ,               ( 3. 3 ) 

Where      solves (ODE) for the control      . Here          and 

         are given , and we call   the running payoff and   the terminal payoff 

. The terminal time     is given as well. 
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3.3 Controllability[22]  

3.3.1 Controllability Question  

Definition 3.1 

We define the reachable set for time t to be  

                         = set of initial points    for which there exists a control such that 

       . 

And the overall reachable set                   

                     = set of initial points    for which there exists a control such that 

       for some finite time   . 

Note that  

  ⋃    

   

 

Hereafter , let     denote the set of all     matrices . We assume that our 

ODE is linear in both the sate      and the control      , and consequently has the 

form 

                                               {
 ̇               

                                  (ODE) 

Where        and         . We assume the set   of a control parameters 

is a cubeb in    :  

  [    ]  {    |  |  |            } 

Definition3.2   

Let             be the unique solution of the matrix ODE 

 

                                                  {
 ̇         

      
                      (     

We call      a fundamental solution , and sometime write  
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         ∑
    

  

 

   

 

Observe that              

Theorem 3.1 (Solving Linear Systems of ODE) 

(i) The unique solution of the homogeneous  system of ODE  

                                                {
 ̇         

                 

     Is  

                                                                                    

(ii) The unique solution of the nonhomogeneous system  

                                       {
 ̇              

        

     Is 

                                                        ∫     

 
          

3.3.2 Controllability of Linear Equations[22] 

According to the variation of parameters formula ,the solution of (ODE) for a 

given control      is  

                ∫    
 

 

           

Where           Furthermore , observe that  

        

If and only if  

 There exists a control        such that                                                  ( 3.4)  

If and only if  

                                 ∫     

 
                                         (3.5)  

For some control        
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If and only if  

                                                     ∫     

 
                                     (3.6) 

 For some control       . 

A simple Example  3.1 

Let     and     ,   [    ] , and write                     . Suppose  

                                                              {
 ̇   

 ̇      
 

This is a system of the form  ̇        , for  

                                                          (
  
  

)    ,   ( 
 
) 

Clearly   {       |      }  ,the   -axis . 

Definition 3.3  

The controllability matrix is 

                                                  [                   ] 

Theorem 3.2 

                                                           rank             

Proof 

1. Suppose that . Note that 

                                             rank     

          If rank    , then there exists a vector             such that 

      

This yields  

                                                                    

By Cayley- Hamilton‟s theorem , we also have  

                                                                              

We now claim  

  is perpendicular to      ,    i.e.      

If        , then  
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    ∫    
 

 

                 

Therefore  

       ∫      
 

 

             

2. Suppose that     . Thus               .Since      convex , there 

exists     such that  

                    

For          

 

    ∫    
 

 

           

Thus  

      ∫      
 

 

             

This yield  

            

By differentiating the above relation, we have 

                                                   ,i.e.,       

Hence  

                                                     rank     . 

Definition 3.4  

We say the liner system (ODE) is controllable if 

     

Theorem 3.3 

        Let   be the eigenvalue of the matrix A   

                                                rank     and   Re          

then the system (ODE) is controllable . 
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Example 3.2 

For which               [     ] and  

 ̇  (
  
  

)   (
 

 
)   

Then 

  [    ]  (
  
  

) 

Therefore  

                                                     rank      

Also ,the characteristic polynomial of the matrix M is  

                  (
   
  

)     

3.4 Uncontrollable System[16] 

An uncontrollable system has a subsystem that is physically disconnected from the, 

Input 

3.5 Observability[16] 

We discuss the observability of linear systems. Consider the unforced System 

described by the following equations 

                                                               ̇                                                       (3.7) 

                                                                                                                     (3.8) 

Where x = state vector (n-vector) 

                 (m-vector) 

        A=n n   matrix 

       C =m    matrix 

The system is said to be completely observable if every state x (  )can be 

determined from the observation of y(t) over a finite time interval,   t      The 

system is therefore completely observable if every transition of the state eventually 

affects every element, of the output vector. The concept of observability is useful 
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in solving the problem of reconstructingun measurable state variables from 

measurable variables in the minimum possible length of time we treat only linear, 

time-invariant systems. Therefore, without loss of generality, we can assume that 

  =0 the concept of observability is very important because, in practice, the 

difficulty. Encountered with state feedback control is that some of the state 

variables are not. Accessible for direct measurement, with the result that it 

becomes necessary to estimate the un measurable state variables in order to 

construct the control signals. It will be. Shown in that such estimate of state 

variables are possible if and only if the system is completely observable. In 

discussing observability conditions, we consider the unforced system as given by 

Equations (3.7) and (3.8).The reason for this is as follows: If the system is 

described 

 ̇        

        

Then 

                                        X (t) =   x (0) +∫         

 
        

And y (t) is 

                          Y (t) =   x (0) +∫         

 
            

Since the matrices A, B, C, and Dare known and u (t) is also known, the last two 

terms, on the right-hand side of this last equation are known quantities. Therefore 

they may be subtracted from the observed value of y (t). Hence, for investigating a 

necessary and sufficient condition for complete observability, it suffices to 

consider the system described by Equations (3.7) and (3.8) 
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3.5.1Complete Observability of Continuous Time Systems[16] 

Consider the system described by Equations (3.7) and (3.8).The output vectorY (t) 

is 

                                           Y (t) =C   X (0). 

We have 

                                                  ∑   
   
   ( )   

Where n is the degree of the characteristic polynomial. Hence we obtain. 

                                          ∑   
   
   ( )         

                                                                    

If the system is completely observable, then, given the output y (t) over a time 

interval    t     ,X (0) is uniquely determined from Equation (3.18). It can be 

shown that this requires the rank of the nm n matrix 

[
 
 
 
 

 
  
 
 

     ]
 
 
 
 

 

From this analysis, we can state the condition for complete observability as follows  

the system described by Equations (3.7) and (3.8) is completely observable if and 

only if the n nm matrix 

[                    ] 

Is of rank n or has n linearly independent column vectors. This matrix is called the 

observability matrix 

Example 3.3 considers the system .Is this system controllable and observable. 

Since the rank of the matrix 

*
  

 

  
 
+   *

  
    

+ *
  

  
+  *

 
 
+ 

                                                 Y=[  ] *
  

  
+ 
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[    ]  *
  
   

+ 

Is 2, the system is completely state controllable. For output controllability, let us 

find the rank of the matrix  [      ] since 

                                                 [      ] =[      ] 

The rank of this matrix is 1. Hence, the system is completely output controllable. 

To test the observability condition, examine the rank of 

[       ] 

  Since 

[       ]  *
  
  

+ 

The rank of [       ] is 2. Hence, the system is completely observable 

3.6 Bang-Bang principle[22]  

We will again take   to be the cube [     ]  in    

Definition 3.5 

A control       is called Bang-Bang if for each time     and each index 

        ,we have |     |    where 

                                                         .
     

 
     

/ . 

Theorem 3.4 (Bang-Bang Principle) 

Let     and suppose         , for The system  

 ̇                

 Then there exists a bang- bang control      which steers    to 0 at time   . 

Proof 

Let          Then , we set 

 

  {                                      } 
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3.7 Detectability[16]  

For a partially observable system, if the unobservable modes are, stable and the 

observable modes are unstable, the system is said to be detectable. Note, that the 

concept of detectability is dual to the concept of stabilizability. 

3.8 Unconstrained Optimization[27] 

Let   be an open set in    ,   be    function and assume     is called a local 

minimum . Note that     is called a local minimum of   if    a neighborhood of   

of    in   such that            for all    . One can derive a first order 

necessary condition as          and assuming that      , a second order 

necessary condition can also be derived as           that is 〈           〉    

for all     . A sufficient condition for optimality can be obtained by 

strengthening the second order condition ; that is if           and           

,Then    is a strict local minimum of   . 

Remark 3.1 

The idea of the proof is to consider any fixed vector      , Then for any   

sufficiently close to   , we have         (unconstrained case ) and consider 

the one dimensional function             . Then   has a minimum at     

And                   ,                . To derive second order 

conditions , one has to expand   up to order 2 . 

Remark 3.2 

Convex functions and convex sets plays an important role in optimization 

problems and quite often , it is easily tractable .The first order necessary condition 

is also sufficient , a local minimum is automatically a global one and there is 

uniqueness of the minimum. The main fact is that the function f lies above the 

linear function                           which satisfies            



 

67 
 

. Further the numerical algorithms like steepest descent (gradient) method 

converges to    satisfying          and leads to global minimum in convex 

problems. A point     satisfying           is called a stationary point. 

3.9 Constrained Optimization and Lagrange Multipliers[27]  

   Quite often one may not minimize over all points in a full neighborhood , but 

may be minimizing with a constraint say on a surface (manifold) of dimension less 

than   . 

Example 3.4. (Linear Constraint). 

 Consider a simple problem of minimizing               with the constraint 

      . In other words, minimizing along the straight line      , not on 

the whole space   .  

Method 1 (Reduction Method) The idea is to reduce the number of variables 

and minimize over   . Define              . It is easy to see that a 

minimization of    over    yields the minimum is achieved at ( 
 

 
  

 

 
) and the 

minimum value is 
 

 
 . 

Method 2: One can add the constraint with the minimizing function with the 

help of a new variable   . Define  

                        

Now treat   as an unconstrained minimization problem over    instead of     . 

By applying 
  

  
    

  

    
   

  

  
   one obtains      and      ⁄  , 

    ⁄  as obtained earlier      . 

3.9.1 Linear Constraints  

  Let        to be minimized  over  a plane 

  {          ∑          

 

   

} 
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Of dimension   , where         are  -linearly independent vectors in   . The 

space   normal to   will be spanned by     vectors , say           . Then we 

can write  

  {     〈        〉           } 

Theorem 3.5 

Let         and    minimizes   subject to   linear constraints  

                               ∑      
 
       〈    〉                         (3.10) 

Then there exists   multipliers           such that 

                                              〈          〉                                    ( 3.11) 

For     and orthogonal to         . Here   is the augmented function  

          ∑  

 

   

       

Conversely if           and   satisfying          and 〈          〉    for 

all     orthogonal to         , then    is a local minimum of   satisfying the 

constraints . 

3.9.2 Non- Linear Constraints  

Let   be a surface in    with the equality constraints  

                

Where             . Let       be a local minimum of   over   . Assume    

is a regular point , that is the set {     
        } is an independent set in   . 

First order necessary condition (Lagrange multipliers ): Since it is surface one need 

to consider curves lying in    passing through     then the line segments .Let      

be a curve in   such that         and let              , where   is small 

parameter varying in the neighborhood of   . A simple calculation will give us  
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And at    ,we have  

                                                                                               ( 3.12) 

Since    is a minimum over   . Note that , the vector       is a tangent vector in 

the tangent space      . Since            for all   and    , a further calculation 

will show that  

                                                       
                                                 (3.13) 

In fact , the converse is also true . That  is if      satisfying      
       

        , then    is a tangent vector to   at    corresponding to some curve . In 

other words , tangent vectors to   are exactly the vector   satisfying (3.11) , that is  

     {          
      } .In view of this characterization ,we can rewrite 

the condition (3.11) as 

                                               {     
        }                         ( 3.14) 

The condition (3.13) ,implies the existence of Lagrange multiplier           such 

that  

                                                ∑        
     

                                  (3.15) 

3.10 Optimal Control problem 

3.10.1 Cost Functional [77] 

A control system consists a system of constraints given by  

                                           ̇     (           )                               (3.16) 

Here           is called the state ,           is the control ,    is the 

time variable ,    is the initial time with initial state      . 

Together with control system , there will be an associated cost functional. The 

optimal control problem is to minimize this cost according to the dynamic (3.16). 

We Will consider cost functional of the form 

                                    ∫                        
  
  

                              (3.17) 
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    Here    ,and          are the final (or terminal ) time and state ,                         

 :          is the running cost (or Lagrangian) and           is 

the  terminal cost .Since the cost depends on the final time as well as on the 

control , it would be more accurate to write               but we write      

.For simplicity and to reflect the fact that the cost is being minimized over the  

space control functions. Optimal control problems in which the cost are known or 

problems in the Bolza form , or collectively as the Bolza problem there are two 

important special cases of the first one is the Lagrange problem , in which there is 

no terminal  cost :     . Indeed, given a problem with a terminal cost K ,we can 

write  

                    (     )           ∫
 

  

  
  

 (      )    

                                   =    ,    ∫   (      )   
  
  

          (           )   

Since K(      is constant independent of u ,we arrive at equivalent problem in the 

Lagrange from with  

                         added to the original running cost . One the other hand 

, given a problem with running cost L satisfying the same regularity conditions  as 

 , we can introduce an extra state variable    

                                             
0x =         ,          

This yields 

∫                   
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Thus converting the problem to the Mayer form. Note that the similar trick of 

introducing the additional state variable         eliminat 

S the dependence of  L and / or K on time ; for the  Bolza problem this gives  

                               ∫  (         )       
  
  

     with          

3.11 Necessary Conditions[10] 

If        ,       are optimal ,then the following conditions hold .. 

For now, let us derive the necessary conditions. Express our objective functional in 

terms of the control: 

     ∫                 
  

  

 

where       is the corresponding state. 

  Assume a (piecewise continuous) optimal control exists, and that    is such a 

control ,with    the corresponding state .Namely ,              for all 

controls   . Let      be a piecewise continuous variation function and    a 

constant .then  

                  

Is anther piecewise continuous control 

Let   by the state corresponding to the control   , namely ,    satisfies  

                                          
 

  
       (             )                            (3.18) 

It easily seen that ,             for all   as      
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|
   

      

In fact , something similar is true for    . Because of the assumptions mode on   , 

it follows that  

            

For each  . Further, the derivative 

 

  
     |

   
 

Exists for each  . Then actual value of quantity will prove unimportant . we need 

only  to know that it exists . 

The objective functional  at     is  

                                                  ∫           
  
  

          

To introduce the adjoint function or variable or variable   . Let      be a piecewise 

differentiable function on [     ] to be determined . By the fundamental theorem of 

calculus , 

∫
 

  

  

  

[         ]         
            

      

                       ∫
 

  

  
  

[         ]                 
                 

Adding this 0 expression to our       gives                                

      ∫ [                 
 

  
          ]
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              =∫ [ (             )                  (             )]
  
  

   

              
       

We used              
 

  
   .Since the maximum of   with reset to the control   

occurs at    , the derivative of       with respect to   is zero , i.e., 

  
 

  
     |

   
    

   

           

 
 

Therefore, 

             
 

  
     |

   
  

                =∫
 

  

  
  

[ (             )               (             )  ]|
   

 

 

  
      

     |
   

  

Applying the chain rule to  and   it follows 

            ∫ *  
   

  
   

   

  
      

   

  
        

   

  
   

   

  
+|

   
 

  
  

     
   

  
                                                                                                        ( 3.19) 

where the arguments of the    ,   ,   and    terms are (             )  in (3.19) 

gives  

  ∫ [(               )
   

  
|
   

                ]
  

  

 

      
   

  
    |

   
                                                                                         (3.20) 
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We want to choose the adjoint function to simplify (3.20) by making the             

coefficients of 
   

  
    |

   
 

Thus, we choose the adjoint function ,      to satisfy 

       [  (   
                     

           )]           (adjoint equation) , 

And the boundary condition 

                                                                                   ( transversality condition) 

Now(3.19) reduces to 

  ∫   (                    (   
          ))

  

  

       

As this for any continuous variation function      it holds for  

    (                    (   
          )) 

In this case  

  ∫   (                    (   
          ))

 
  

  

  

 

Which implies the optimality condition              

   (                    (   
          ))                                                            

for all        . 

These equations form a set of necessary conditions that an optimal control 

and state must satisfy. In practice, one does not need to rederive the above 

equations in this way for a particular problem. In fact, we can generate 
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the above necessary conditions from the Hamiltonian  , which is defined as 

follows , 

                              

We are maximizing   with respect to   to    and the above condition can be 

written in terms of the Hamilton: 

                             
  

  
   at                         ( optimality condition) 

                                
  

  
                          (adjoint equation) 

                                                                             (transversality equation) 

We are given the dynamic of the state equation : 

                                                   
  

  
 ,          

3.12 Pontryagin’s Maximum Principle (PMP)[10] 

Let    [     ]    be an optimal control and    [     ]     be the 

corresponding optimal state trajectory .  

Theorem 3.6 

If      and        are optimal for problem 

   
 

∫  (           )  
  

  

 

                                     Subject to         (           )                            (3.21)              

                                                        and       free .                               (3.22) 
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Then There exists a piecewise differentiable adjoint variable      such that  

                                                                      

For all controls   at each time   ,where the Hamiltonian   is  

                                   (           )                  and 

       
                     

  
 

         

Theorem 3.7 

Suppose that          and          are both continuously differentiable functions 

in their three arguments and concave in   . suppose   is an optimal control for 

problem (3.20) ,with associated state    , and   a piecewise differentiable function 

with        for all   . Suppose for all         . 

         
                 

Then for all controls   and each         , we have 

                                           

Proof 

Fix a control   and a point in time         .Then  

 (                  )   (                 ) 

 [ (             )                  ]   

                                     [ (            )                  ]    
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  (             )   (            )

     [ (             )                ] 

        (          )  (   
          )      (          )  (   

          ) 

        (          )   (   
               )    . 

 We can also check concavity conditions to distinguish between controls that 

maximize and those that minimize the objective functional . If 

                                                        
   

   
   at     

Then the problem is maximization ,while                                  

                                                      
   

   
   at     , 

Goes with minimization . 

When we are able to solve for the optimal control in terms of    and  , we 

will call that formula for    the characterization of the optimal control. The 

state equations and the adjoint equations together with the characterization 

of the optimal control and the boundary conditions are called the optimality 

system.  

Example 3.5 

   
 

∫        
 

 

 

                                Subject to                 ,       ,      free 

Can we see what the optimal control should be? The goal of the problem is 

to minimize this integral, which does not involve the state. Only the integral 

of control (squared) is to be minimized. Therefore, we expect the optimal 
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control is 0. We verify with the necessary conditions. 

We begin by forming the Hamiltonian 

            

The optimality condition is  

                                                   
  

  
       at        

 

 
  

We see problem is indeed minimization as 

                                                         
   

   
      

The adjoint equation is given by   

       
  

  
                    

So thus     so that         ⁄  so    satisfies      and         

Hence, the optimal solutions are  

                                      ,       ,        . 

 

                         

Figure 3.1 Optimal state for Example 3.5 plotted as a function of time 
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Example 3.6 

   
 

 

 
∫       

 

 

         

                                 Subject to                         
 1 

The 
 

 
 which appears before the integral will have no effect on the minimizing  

 control and, thus, no effect on the problem. It is inserted in order to make the 

computations slightly neater. You will see how shortly. Also, note we have omitted 

the phrase “     freeˮ  from the statement of the problem .This is standard 

notation, in that a term which is unrestricted is simply not mentioned. We adopt 

this convention from now on. 

Form the Hamiltonian of the problem 

  
 

 
   

 

 
         

The optimality condition gives  

                                         
  

  
     at          

Notice 
 

 
 cancels with the 2 which comes from the square on the control   

Also, the problem is a minimization problem as 

   

   
     

We use the Hamiltonian to find a differential equation of the adjoint   , 

       
  

  
               

Substituting  the derived characterization for the control variable   in the equation 

for    , we arrive at  

(
 

 
)
 

 (
   
    

) (
 

 
) 

The eigenvalues of the coefficient matrix are 2 and -2. Finding the eigenvectors 
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, the equations for   and   ¸ are 

(
 

 
)       (

 

  
)       (

 

 
)      

Using        and       , we find        
   and    

 

      
 

Thus using the optimality equation, the optimal solutions are 

      
    

      
    

 

      
     

 

      
    

      
    

 

      
     

 

                Figure 3.2: optimal control and state for Example 3.6 
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3.13 Existence and Uniqueness Results[10] 

Theorem 3.8 

Consider  

     ∫  (           )   
  

  

 

                                  Subject to        (           )          

Suppose that          and          are both continuously differentiable functions 

In their three arguments and concave in   and   . Suppose   is a control , with 

associated state    and   a piecewise differentiable function , such that        and 

  together satisfy on         : 

          

                                                                  

        

       

Then for all controls   , we have  

                                                                           

Proof 

Let   be any control , and   its associated state . Note ,as          is concave in 

both the   and    variable , we have by the tangent line property 

                                
                  

      

This gives 

           ∫   
  

  

                     

                                                    ∫       
  
  

             
                       (3.23) 

                                                                      
         

Substituting  
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      and 

      
                  

      

As given the hypothesis , the last term in (3.23) becomes 

∫ (                      
           )

  

  

 (          )            
         

Using integration by parts , and recalling         and              we see  

∫       (          )   
  

  

∫     (          )
 
  

  

  

 ∫      (             )                  
  

  

 

Making this substitution, 

          ∫     [                                
     

  

  

             
     ]     

Taking into account        and that  is concave in both   and   , this gives the 

desired result               

Theorem 3.9 

Let the set of controls for problem (3.20)be Lebesgue integrable functions (instead 

of  just piecewise continuous functions ) on         with values in   . suppose 

that          is convex in   and there exist constants    and           and 

    such that  

                        

|                  |    |    |   | |  

           | |
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For all   with                    in   .then there exists an optimal control    

maximizing     with       finite . 

Also of interest is the idea of uniqueness. Suppose an optimal control exists, i.e, 

there is    such that               for all controls   (in the maximization 

case). We say    is unique if whenever           , then      at all but 

finitely  many points. In this case, the associated states will be identical. We call 

this state,    , the unique optimal state. Clearly, uniqueness of solutions of the 

optimality system implies uniqueness of the optimal control, if one exists. We can 

frequently prove uniqueness of the solutions of the optimality system, but only for 

a small time interval. This small time condition is due to opposite time orientations 

of the state equation and adjoint equation, meaning the state equation has an initial 

time condition and the adjoint equation has a final time condition. However, in 

general, uniqueness of the optimal control does not necessarily guarantee 

uniqueness of the optimality system. To prove uniqueness of the optimal control 

directly, strict concavity of the objective functional           must be established. 

Direct uniqueness results tend to be cumbersome and difficult to state, and, as they 

will not be needed here, they will not be treated. If     , and the right hand side of 

the adjoint equation are Lipschitz in the state and adjoint variables, then the 

uniqueness of solutions of the optimality system holds for small time.  

3.14  Dynamic Programming and the HJB Equation[10] 

3.14.1 Principle of Optimality 

     An important result in both optimal control and dynamic programming is the 

Principle of Optimality. It concerns optimizing a system over a subinterval of the 

original time span, and in particular, how the optimal control over this smaller 

interval relates to the optimal control on the full time period. 
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Theorem 3.10 

 Let    be an optima control , and    the resulting stat , for the problem  

   
 

        
 

∫                 
  

  

 

                                   Subject to        (           )                    (3.24) 

Let  ̂ be a fixed point in time such that     ̂     . Then , the restricted functions 

 ̂    |[ ̂   ] ,  ̂
    |[ ̂   ] , form an optimal pair for the restricted  

   
 

 ̂       
 

∫                 
  

  

 

                             Subject to        (           )    ̂      ̂     (3.25)      

Further, if    is the unique optimal control for (3.23), then  ̂  is the unique optimal 

control for (3.24). 

Proof 

This proof is done by contradiction. Suppose, to the contrary, that  ̂   is not 

optimal, i.e., there exists a control  ̂  on the interval  [ ̂   ] such that 

  ̂  ̂    ̂  ̂   Construct a new control u1 on the whole interval [     ] as follows 

                                                      {
                ̂

 ̂          ̂      
  

Let    be the state associated with control   . Notice that    and    agree on 

[     ̂], so that    and    will also agree there. Hence, 

                  (∫          
 ̂

  
     ̂  ̂  )  (∫        ̂

  
        ̂  ̂  ) 

  ̂  ̂    ̂  ̂   

                                                         . 

 However, this contradicts our initial assumption that    was optimal for (3.24). 

Thus, no such control   ̂  exists, and   ̂  is optimal for (3.25). 
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Example 3.7 

   
 

∫      
 

 

 

 

        

                                 Subject to                       
 

 
     

First, we will solve this example on [0, 2] , then solve the same problem on 

a smaller interval [1, 2] . The Hamiltonian in this example is 

    
 

 
         

The adjoint equation and  transversality condition give 

                                   
  

  
      ,                    

And the optimality condition leads to  

                                         
  

  
                         

Finally , from the state equation , the associated state is  

      
 

 
       

Now , consider the same problem ,except on the interval [   ] ,i.e., 

   
 

∫      
 

 

 

 

        

                            Subject to                      
 

 
    

Clearly, the Principle of Optimality can be applied to find an optimal pair 

immediately, namely, the pair found above. The original problem on the interval 

[0, 2] has the same optimal control as the above problem on [1, 2]. Let us solve this 

example by hand, though, to reinforce the power of the theorem. The Hamiltonian 

will be the same, regardless of interval. Because the end point remains fixed , the 

adjoint equation and transversality also remain the same: 
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While the optimality is also unchanged 

  
  

  
                        

Using the new initial condition      
 

 
   , we find the corresponding state  

                                                             
 

 
      .  

3.14.2 The Value Function and Dynamic Programming Principle[27] 

We consider the cost functional  

                                   ∫  (           )         
  
  

              ( 3.26 ) 

The idea is to vary    and    and introduce the family of minimization problems 

                                          ∫                         
  
  

                ( 3.27) 

Where   [        ,      and      is the solution to the ODE with the initial 

condition         solved for   [      ] . Introduce , the value function 

  [             

          
 

                                                                                                            

Which is optimal cost to go from state   at time   to the state    at time   . Indeed 

  satisfies the final condition  

                                                         for all      

Theorem 3.11  

  For every       [          and every          , the value function   

satisfies 

          
 

2∫  (           )           
 

 

   3                                             

Where      is the trajectory corresponding to the control   . 

When an optimal control and trajectory exist , then the inf is achieved at the 

optimal solution and it will become a minimum . The infinitesimal version of DPP 
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the Hamilton –Jacobi-Bellman equation (HJB) which is a first order PDE satisfied 

by   and is given in [           by 

            
   

{                          }                                 

Theorem 3.12 

Let   ̅   ̅  be a solution to the ODE of the associated optimal control problem . 

Suppose      is a solution to (3.29) that satisfies :              and  

       ̅      (   ̅     ̅   )   (   ̅     ̅   )

    
   

{       ̅          ̅            ̅      }                              

Which is equivalent to the Hamiltonian maximization . Then  

1.   ̅    ̅  is an optimal solution 

2.           is minimum cost 

3.15 Hamilton Jacobi –Bellman (HJB) and Maximum Principle [27] 

Recall That PMP is formulated using the canonical equations 

                                                    ̇         
                                        (3.32) 

And says that at each time   , the value       of the optimal control must maximize 

 (             ) with respect to   ; that                            

                                                  arg         (             )              (3.33) 

This is an open – loop control because to compute    , we need not only the stat    

,but need co –state   as well which is given from the adjoint equation  

Let us see the Hamiltonian  associated with HJB . The inf  in the equation (3.30) 

becomes a minimum for the optimal control . Thus we get  

                  (   
    )     

   
              (   

    )         
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Where   is given by                               . Thus , the optimal 

control must satisfy (assume   is independent of  ) 

                                         arg         (             )                         (3.35) 

 This is a closed-loop (feed-back specification) quite useful in applications. If we 

know the value everywhere,    is determined by the current state        . This 

feature of generating an optimal control policy from the state is the trade mark of 

Dynamic programming approach. However, the major drawback is that   is 

obtained by solving HJB which is a very difficult task. Though this approach is 

more novel than PMP, the later one involves solving only ODEs and hence 

computationally more fruitful. Another question is the derivation of PMP from 

HJB. The equations (3.32) and (3.34) suggests that we should look for the co-state 

of the form               
      . The PMP follows if one proves that    

satisfies the second equation in (3.31) which can be established as usual in the 

smooth case. 

Example 3.8 [77] 

Consider the standard integrator  ̇    (with         and let              

.The corresponding HJB equation is 

                    { 
             }                                                                

 Since the expression inside the infimum is polynomial in   , we can easily find the 

control that achieves the infimum : differentiating with respect to   ,we have 

              which yields     
 

 
        

 
 ⁄  . Plugging this control into 

the HJB equation (3.35) , we obtain  

                                                 
 

 
        

 
 ⁄                                  (3.37)  

Assuming that we can solve the PDE (3.36)  for the value function   , The optimal 

control is given in the state feedback from         
 

 
      

     
 

 ⁄    . 
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3.16 The Linear Quadratic Regulator (LQR)[27] 

The well –known LQR problem is the optimal control problem with linear 

constraint 

               ̇                ,         ,      with the quadratic cost 

     ∫ [                           ]
  

  

                

Where                are matrices with  

                                               and           . 

Here                      and                          . All the 

results defined above are applicable in this case , but one can get further 

information . The Hamiltonian is given by  

                                                                 . 

    The gradient of   with respect to   is                  

Some computation will yield that an optimal control must satisfy  

                                                           
 

 
                 

Further since              the above control maximizes the Hamiltonian 

globally . Interestingly , one can do a further analysis on the co-state equation to 

get  

                  

Where      is some matrix valued function to be determined . But the crucial point 

is that    and    is related by a linear relation and    then take the from 

      
 

 
                    

Which is a linear state feedback law 

One can also deduce that      will satisfy linear matrix differential equation  
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 ̇                                                  

Which is Known as Riccati Differential Equation (RDE). 

Example 3.9[10] 

 

 
   

 
∫      

 

 

         

                                        Subject to                    

In this case, all the matrices are scalars (size    ) and          ,  

           . The Riccati equation is  

                

Solving as a separable equation , and using partial fractions , 

 

 
  |

   

   
|  ∫

  

    
   ∫        

Which along with        gives  

     
         

         
 

The optimal control satisfies       , so that optimal state satisfies        . 

Using partial fractions we can find an antiderivative of    , and solve the separable 

equationto see  

                  

Taking into account        , 

                                        
        

     
      and              

        

     
 . 

 

3.17 Discrete Time Optimal Control Systems [80] 
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We discussed the optimal control of continuous-time systems described by 

differential equations. There, we minimized cost functionals which are essentially 

integrals of scalar functions. Now, we know that discrete-time systems are 

characterized by difference equations, and we focus on minimizing the cost 

functionals which are summations of some scalar functions. 

  We obtain the necessary conditions for optimization of cost functionals which are 

summation such as  

              ∑                 

    

    

 

Where ,the discrete instant                

 Consider a linear ,time –varying ,discrete –time control system described by  

                                                                                        (3.38) 

Where ,               ,      is  th order state vector ,      is  th order 

control vector , and      and      are matrices of     and     dimensions , 

respectively . Note that we used   and   for the state space representation for 

discrete-time case as well as for the continuous-time case as shown in the previous 

chapters. One can alternatively use, say G and E for the discrete-time case so that 

the case of discretization of a continuous-time system with A and B will result in G 

and E in the  discrete-time representation. However, the present notation should 

not cause any confusion once we redefine the matrices in the discrete-time case. 

We are given the initial condition as 

                                                                                                       (3.39) 

                                                    

 

Chapter Four 
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                                Turnpike Theory and its Properties   

4.1 About the Turnpike Theory[85]   

Turnpike Theory refers to a set  of economic theories about the optimal path of 

accumulation (often  capital  accumulation ) in a system , depending on the 

initial and final levels . In the context of a macroeconomic exogenous growth  

model .For example , it says that if an infinite optimal path is calculated , and 

an economic planner wishes to move an economy from one level of capital  to 

another , as long as the planner has sufficient time , the most efficient path to 

quickly move the level of capital stock to a level  close to the infinite optimal 

path , and to allow capital to develop along that path until it is nearly the end of 

the desired final level .The name of the theory refers of the idea that a turnpike  

is the fastest  route  between two points which are far apart , even if it is not 

most direct route . 

4.2 Origins[1] 

 A turnpike theorem was first proposed, at least in a way that came to wide 

attention, by Dorfman, Samuelson, and Solow in their famous Chapter 12 of 

Linear Programming and Economic Analysis , entitled "Efficient Programs of 

Capital Accumulation." This was in the context of a von Neumann model in 

which labor is treated as an intermediate product. I would like to quote the 

critical passage: "Thus in this unexpected way, we have found a real normative 

significance for steady growth-not steady growth in general, but maximal von 

Neumann growth. It is, in a sense, the single most effective way for the system 

to grow, so that if we are planning long-run growth, no matter where we start, 

and where we desire to end up, it will pay in the inter-mediate stages to get into 

a growth phase of this kind. It is exactly like a turnpike paralleled by a network 

of minor roads. There is a fastest route between any two points; and if the 
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origin and destination are close together and far from the turnpike, the best 

route may not touch the turnpike. But if origin and destination are far enough 

apart, it will always pay to get on to the turnpike and cover distance at the best 

rate of travel, even if this means adding a little mileage at either end. The best 

intermediate capital configuration is one which will grow most rapidly, even if 

it is not the desired one, it is temporarily optima . It is due to this reference, I 

believe, that theorems on asymptotic properties of efficient, or optimal., paths 

of capital accumulation came to be known as "turnpike theorems." For a long 

time the theory continued to be developed for the von Neumann model, in the 

strict sense of a model in which consumption appears as a necessary input to 

processes of production. In order to discuss efficient accumulation an objective 

must be introduced and in such a model the natural objective is to maximize the 

level of terminal stocks in some sense. The objective chosen by Dorfman, 

Samuelson, and Solow was to maximize the distance from the origin of the 

terminal stocks along a prescribed ray. The original proofs they used were only 

valid in a neighborhood of the turnpike. Also their arguments were incomplete 

and a slip occurred at one place. 

 4.3 A history of Turnpikes[85] 

The turnpike theory is originated in two famous papers , one is the paper by                                      

John von Numann (1937) titled “A model of General  Economic Equilibrium 

ˮ ,and  the other is the one by Frank Ramsay (1928)  titled “ A mathematical 

theory of Saving ˮ . Later the turnpike property has been demonstrated in either of 

these models. Mckenzie referred to them as the “ Samuelson turnpike ˮ  and the 

“Ramsay turnpike ˮ  respectively . We will explain both turnpike respectively . 

The reader who wants to quickly learn a brief history of turnpike theory should 

consult an excellent article by Mckenzie (1986). 



 

94 
 

4.4 Kinds of  Turnpikes[1] 

The first turnpike theorem due to Dorfman, Samuelson, and Solow , was concerned  

with a finite accumulation path that swung  toward an efficient balanced path in the 

middle phase of its history. There is an assigned terminal capital stock and the 

objective is to maximize the sum of utility over the finite accumulation period. 

Then we show that  if  the accumulation period is long enough the optimal path 

will stay most of the time within an assigned small neighborhood of an infinite 

path that is optimal (using the term "optimal" vaguely at present).This kind of 

turnpike is illustrated in Figure 4.1, where the infinite path is balanced . It should 

be mentioned that the use of a balanced path as the turnpike is incidental to the 

stationarity of the model. The real ground for the result is the tendency for finite 

optimal paths to bunch together in the middle time, and this tendency is preserved 

even in models which are time-dependent. The second kind of turnpike theorem 

also concerns finite optimal paths but it compares them with an infinite path that is 

price-supported and starts from the same initial stocks. It asserts that a sufficiently 

long finite path will hug the infinite optimal path in its initial phase whatever 

terminal stocks are assigned . The second kind of turnpike is illustrated in Figure 

4.2 The third kind of turnpike deals with infinite paths that are optimal. It is the 

basic result that optimal paths converge to each other in appropriate circum-

stances. However, in stationary models it is convenient to describe this situation as 

convergence of infinite optimal paths to the optimal balanced path. The critical 

property of optimal  balanced paths in these models is that they can be supported 

by prices. This fact may be used to prove that infinite optimal paths exist from any 

initial stocks .The third kind of turnpike is illustrated in Figure 4.3. It is worthwhile 

describing the practical utility of the three kinds of turnpike theorem. If the initial 

steps of a finite program of length   that is optimal must lie near the initial steps of 
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the infinite optimal program from the same starting point, even though the target 

capital stock in period T ranges over a wide set of possibilities, it will not be 

necessary to know much about tastes and technology in periods beyond T in order 

to approximate an optimal program in the first period. Our models have a Markov 

property. The significance of facts beyond period T is fully allowed for in the 

choice of capital stocks for that period. To the degree that T period stocks can vary 

without substantial effect on choices in the first period, knowledge of tastes and 

technology beyond T is not needed. On the other hand, if the capital stocks of finite 

optimal programs of length T must lie near together in period      for widely 

differing initial and terminal stocks, it becomes possible to plan for an infinite 

program that is approximately optimal by aiming at the stock of period   for 

whatever program of the set is easiest to compute. Once more, it is not necessary to 

know tastes and technology beyond T and, in addition, planning can be 

concentrated on the first    periods. This assumes, of course, that the T period stock 

of the infinite optimal program belongs to the set of terminal stocks for which the 

theorem holds, and that an infinite optimal program exists. Finally, the 

convergence to one another of the infinite optimal paths from different initial 

stocks means that infinite optimal paths may be approximated by computing finite 

optimal paths with the stock of any (within limits) optimal path in some period T 

as the target. This is useful if the infinite optimal path from a particular initial stock 

is easy to compute.  
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                                 Figure 4.1:The middle turnpike 

                           

            Figure 4.2:The early turnpike 

        

               Figure 4.3:The late turnpike 

4.5 A Turnpike in the von Neumann Model[84]  

The  von Neumann model may be defined by an input matrix   [   ] and an 

output matrix   [   ] . The term       represents the input of the  th good 

needed at a unite level of the  th activity , and       represents the output of the 

 th good achieved at a unit  level of the  th activity . There are   goods and   

activities so   and   are    . Inputs occur at the start of a production period, 

which is uniform for all activities, and outputs appear at the end of the period. 

Goods at different levels of depreciation are treated as different goods but the 

number of goods may be as large as needed to achieve an adequate approximation 

  to reality. An equilibrium of the von Neumann model is defined by price vector 

    , a vector of activity levels     , and a rate of expansion     which 

satisfy the relations            , (2)        , and (3)      . Relation (1) 

provides that output is adequate to supply next period‟s input requirements . 

Relation (2) implies that no activity is profitable . Relation (3) implies that  some 
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good that is produced has a positive price .   and   may be chosen to satisfy 

∑      
  and ∑      

  . If (1) is multiplied on the left by   and (2) on the right 

by   , we find that           . Therefore , some activities are used and they 

earn zero profits. Assume  the conditions (1)       for some   and any    , 

 (2)       for some   for any   and (3) if    is maximum value of a such that 

      holds for some     ,then      . With these conditions (essentially) 

von Neumann proved that the model has a unique equilibrium, after normalizing 

x and p, and that the equilibrium value of a is the maximal rate of proportional 

expansion. The turnpike name was applied to an asymptotic result for the von 

Neumann model . They consider paths of accumulation starting from given initial 

stocks which maximize the size of terminal stocks at the end of the period of 

accumulation where the proportions of goods in the terminal stocks is specified in 

advance. They show that for sufficiently long paths which are maximal in this 

sense the configuration of stocks will be within an arbitrary neighbourhood of the 

von Neumann equilibrium for all but an arbitrary fraction of the time. This theorem 

gives the von Neumann equilibrium, which is called „the turnpike‟, a general 

significance for efficient accumulation. An efficient path may be supported by 

prices just as the equilibrium path is finite list of processes. (4) if         is von 

Neumann equilibrium and    is any other vector levels ,             . With 

this assumption Radner  proved  a „value loss ‟ lemma which may be stated in this 

way , for any     there is     such that              ,if    and 

|  |  |   | |⁄⁄ |    .With this lemma it is easy to prove a turnpike theorem. Let 

a sequence of capital stock vectors,               be a path if there is a 

corresponding sequence of activity vectors               such that          

for           ,and        for        . Assume that the vector    of 

initial stocks satisfies      . Then by disposal      may be chosen so that 
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     and         is a von Neumann equilibrium . then              is a 

feasible path . Suppose           is maximal path . then the value loss lemma 

implies that for any     there is    such that             where 

|  |  |   | |⁄⁄ |    . But the equilibrium conditions imply           . Thus 

if   |  |⁄  is outside the  -neighbourhood of  | |⁄  for   periods then for     it 

will be true that 

                                                                                                         ( 4.1) 

 Let the desired configuration of terminal stocks be given by the vector y. Define a 

utility function on terminal stocks by              ̅   ⁄  over         .Then  

          maximal implies  

                                                                                                ( 4.2 ) 

Since            . Now choose the length of the equilibrium price vector  so 

that        ̅   ⁄  for some   with        . this implies that  

                                                      ̅   ⁄                                           ( 4.3 ) 

Combining (4.1) ,(4.2) and (4.3) , gives the inequalities  

                                                                                      ( 4.4 ) 

 The first and last terms of (4) imply that   cannot exceed        ⁄ which is a 

well defined positive number. Thus (4) implies that an integer  ̅ exists such that 

  |  |⁄  cannot lie outside the  -neighbourhood of  | |⁄  for more than  ̅ periods 

regardless of the length   of the accumulation path. Since   and    are linear 

transforms of   and     , an analogous statement holds for  and    . This is a 

stronger form of the conclusion of the original Dosso theorem. 

4.6 Relevant Results in Continuous Time [54]  
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Consider the following problem subsequently referred to as problem    . 

      (       )  ∫   (         )   
 

 

 

Subject to  ̇     (         ) and          

Where                 is continuous mapping with respect to both 

arguments      and      ,         is compact , and that the mapping           

       is upper semicontinuous . 

We now turn to optimality  criteria for infinite –horizon problems  

Definition 4.1  

A trajectory       from    is said to be maximal if for any other trajectory from      

   
   

    ∫    (       )    

 

   

     
        

A program is optimal if the lim sup operator above is substituted for lim  inf .  

 For the problem    , let ( ̂  ̂  be the solution to the following associated  static 

problem: 

                                such that          and       .                        (4.5) 

The infinite –horizon problem we wish to investigate in general ,as an extension of 

the finite - horizon problem 

                            ∫   (      ̇   )  
 

 
 subject to                         

Has the from 

               ∫   (      ̇   ) 
    

 

 
 subject to        . 

4.7 The  Basic in Discrete Time[54] 
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We now turn to discrete-time setting, and consider the corresponding version  

of the Problem    We shall refer to it as the Problem    for  emphasis. 

                                           ∑        
 
        

And where       
     and      .We shall also consider the case where 

    and refer to it as the undiscounted version the of the problem   . 

Definition 4.2 

  A program from xo is a sequence {    } such that        , and for all 

    ,                A program  {    } is simply a  program from . 

 A program {    } is called stationary if for all    ,             . 

         We now turn to optimality criteria for a program. In the discounted case,  

with assumptions on  that ensure boundedness of programs, there is no issue of 

convergence of the performance functional.  

Definition4.3  

 For all        , a program {     } from    is said to be optimal if 

∑  [ (           )                  ]

 

   

   

For every program {    } from    . A stationary optimal program is a program that 

is stationary and optimal . 

 

 

 

 

Definition4.4 

A program {     } from    is said to be maximal if for any other program from 

{    } from     
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   ∑ (           )                   

 

   

 

A program is optimal if the lim sup operator above for lim inf . 

We consider the discrete –time analogue of static problem  considered above as 

(4.5) 

                                         such that      and          .                (4.6) 

4.8 Support Prices[1]  

The turnpike theorems will be proved by use of the support prices . When feasible 

path are infinite , the utility sum ∑   
 
           may diverge as    . Let {  

 } 

,       ,be an infinite path from      ̅. Then                 for all   .If 

{  
 } is the second  path from  ̅ at time 0 , let us say that {  } catches up to {  

 } if 

       ∑        
    

 

 

  
                 

As     .On the other hand , let us say that {  
 } overtakes {  } if  

       ∑        
    

 

 

  
                 

for some     as    . An optimal path is a feasible path that catches up to 

every other feasible path from the same initial stocks. A weakly maximal path is a 

feasible path which is not overtaken by any other feasible path from the same 

initial stocks.  

Assumption 4.1 

For any given   and     , there is     such that | |    implies           

and | |   . 

The derivation of support prices requires the following assumption: 

 Assumption 4.2 

The utility function         are concave and closed for all   .the set    is convex . 
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     Assumption 4.2 implies that       is a concave function. Let    be the set of   

such that          for some  .    is convex from the convexity of   . Let    be 

the smallest flat in    that contains    and   . Given initial stocks  ̅, we make the 

following assumption:  

Assumption 4.3 

 ̅   relative interior    and : for     ,interior         relative to    . 

Lemma4.1  

Let {  } ,             ̅ , be a weakly maximal path of accumulation . If 

Assumption 1,2 , and 3 are met , there exists a sequence of price vectors       

,                 which satisfy  

                                            for all                                      (4.7) 

                                                                      (4.8) 

For all            . 

4.9 An Insignificant Future[1] 

     We assume the following  

Assumption 4.4 

The utility function           is strictly concave and closed . 

    First we define the notion of value loss .Given          , let       satisfy  

                                                                        (4.9 ) 

For any          , where            .Thus       are support prices for       

in the  th period . Then         is the value loss associated with       . 
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Lemma 4.2 

If    satisfies Assumption 4.4 , give           and       satisfies (4.9) , there is 

    such that |   |    implies           for any          . 

 Theorem4.1  

Let {  } be weakly maximal path . Suppose Assumptions 4.1, 4.3,and 4.4 are  met 

.Let  ̅ be a stock vector that is freely reachable from {  } and from which {  } is 

freely reachable .for any     and any    there is    such that if {  
 } ,                          

              ,  ̅     , ,  ̅   ̅ . is an optimal path , then | ̅    |    

for      . 

An example of a utility function that satisfies the condition of theorem 4.1 is a 

stationary current utility function that is strictly concave where the objective is to 

maximize  a utility sum discounted at a positive rate , that is , 

∑            

 

 

∑            

 

 

 

For      .  

Proposition4.1 

Let {  } be a weakly maximal path and let Assumptions 4.1,4.3,and 4.4 hold . 

Suppose {  } is freely reachable from any path from    that it does not overtake . 

Then {  } is optimal. 

Assumption4. 5 

The utility function {  } are uniformly concave , that is ,the   of lemma 4. 2 may 

be chosen independent of       and   . 
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4.10 Scheinkman’s “Neighborhood’’ Stability Theorem[54] 

 Assumption4.6 

There exist     and     such that for all          ,‖ ‖    implies 

‖  ‖   ‖ ‖ . 

Assumption 4. 7 

If            then          for all    ,        and                  

holds. 

Assumption4.8 

There exists   ̅  ̅     such that  ̅    ̅ . In this case ,  ̅ is said to be 

expansible. 

 Assumption 4. 9 

The  golden –rule stock  ̂ is unique and expansible. 

Assumption4. 10 

(i)        is   in lnt   and concave . (ii) The matrix  

                              0
     ̂   ̂        ̂   ̂  

      ̂   ̂         ̂   ̂  
1  0

    

     
1  

Is negative at   ̂  ̂  . (iii) All programs are interior programs so that the Euler 

difference equation system 

                                                       for all               ( 4.10) 
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Is satisfied for an optimal program (iv) The characteristic equation of the Euler 

difference equation system (4.10) does not have a zero root . (v) there exist       

Such that for all      , there exists an expansible stationary program   such that 

 ̂        

Theorem4.2 (Scheinkman). 

Under Assumption 4.6,4.7 ,4.8 ,4.9 and 4.10. For any expansible   ,there exists 

 ̅    such that      ̅ and       implies that there exists an optimal 

program          such that                  ̂  where  ̂  is the unique 

modified golden-rule stock associated with  . 

4.11 The Theory in Non-Smooth Environments[54] 

In the chapter on Competitive Equilibriumover Time, McKenzie  presents results 

for a “generalized Ramsey model”, and his work is distinguished  by its reliance on 

a bounded assumption on the technology Ω, and a joint assumption on the pair 

      guaranteeing free-disposal and monotonicity. Under Assumptions 4.6 and 

4.7, he presents theorems for both the discounted and undiscounted cases, seeing 

the latter as logically antecedent to the former.  

4.11.1 Theorems Under Refined Interiority Assumptions  

We can now present a classical turnpike theorem, Card(A) denoting the cardinality 

of a finite set A.  

 

 

Theorem 4.3 

Let Assumption 4.1 ,4,2 and 4,3 hold and that  ̂ is expansible. Then ,there exists 

    such that for all    , and all optimal programs {  }   
    such that   and  

   are expansible , 
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    {  [       ] ‖       ̂  ̂ ‖   }    

Mckenzie introduces his other theorem for the undiscounted Ramsey  

setting as “an asymptotic theorem for infinite optimal paths.” For this, he needs a 

particular set of initial stocks  from which there start programs {    }such that 

       
   

∑ (                           )

 

   

     

4.11.2 Mckenzie’s “Neighborhood Turnpike’’ Theorem 

We shall now assumption on the discount factors . We shall need the following 

additional notation .Let   {    
         } and  

   {               ̅  ̅                  ̅    } 

Definition 4.5 

The utility function u is said to be uniformly strictly concave over    if for any 

      , and any        , the following holds: For  any    , there exists 

    such that  

|           |     .
 

 
      

 

 
     /  

 

 
                  

Assumption 4.11 

There exists      and    ̅  ̅      such that     ̅
     ̅. We assume  

       ,   is uniformly strictly concave over    and that    is in the relative 

interior of   . 

 

 

Assumption 4.12 

 ̂ is expansible  which is to say that there exists   ̂       such that      ̂ 

.Furthermore    is in the relation interior of   . 

Definition 4.6 
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We shall say that an initial stock      
  is sufficient if there exists a finite 

program {  }   
    such that    is expansible . 

  We can now present McKenzie‟s so-called “neighborhood turnpike theorem” for 

any expansible  ̂. 

Theorem4.4 

Under Assumptions 4.6 and 4.7, for any sufficient      ,  and any   satisfying 

Assumptions 4.11  and 4.12, and any    , there exists  

   ̅    such that  ̂  is asymptotically stable at        for all  ̅     .  

4.12 Particular Undiscounted Cases: the RSS Model 

4.12.1 A Theorem on Asymptotic Stability 

Assume the (i)   is strictly concave ,or that (ii)     . Let       . Then there 

exists   natural number   such that for each optimal program  

{         }   
 satisfying          each integer       

                                             ‖      ̂‖ ‖      ̂‖   . 

4.12.2 Classical Turnpike Theorems  

The basic results are as follows. 

Theorem 4.5 

Let     be positive numbers and        . Then there exists a natural number 

  such that for each integer     , each         
 satisfying 

      and           and each program {    }   
  {    }   

     which satisfies 

        ,            ∑              
                

The following inequality holds : 

    {         }    {‖      ̂‖ ‖      ̂‖   }    

Theorem 4.6 

Let      be positive numbers and        . Then there exists a natural number   

and a positive number    such that for  each integer     , each         
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satisfying       and           and each program {    }   
  {    }   

     

which satisfies                                             

                           ,            ∑              
                

There are integer       such that    [   ] ,    [     ],  

                     ‖      ̂‖ ‖      ̂‖    for all              

and ‖      ̂‖   , ‖      ̂‖    then       

4.13 Turnpike Properties[30] 

A “ Turnpike ˮ  is not necessarily a singleton or a half-ray. It can be an absolutely 

continuous time dependent function (trajectory) or a compact subset of     . To 

establish a turnpike property we consider a space of  cost functions equipped with 

a natural complete metric and show that a turnpike  property holds for most 

elements of this space in the sense of Baire categories . We obtain a turnpike 

theorem in the following way . We consider an optimality criterion (a cost function 

   and show that for a problem with this criterion there exists an optimal trajectory, 

say    , on an infinite time interval. Then we perturb our cost function by some 

nonnegative small perturbation which is zero only on    . We show that for our 

new cost function   the trajectory    is a turnpike, and that optimal solutions of the 

problem with a cost function   which is closed to   ̅ , are also most of the time 

close to    . 

 

 

4.13.1 The Turnpike Phenomenon[3] 

Let | | be the Euclidean norm in the  -dimensional Euclidean space    and          

let   . , .   be the scalar product in    . We consider the variational problem  

                                      ∫             
 

 
    min                                              (    
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                    [   ]     is an absolutely continuous function  

                                  Such that       ,        

Here   is a real number ,   and   are points of the space    and an integrand 

            is strictly convex and differentiable function such that  

                                      | |  | |    as | |  | |   . 

In order to meet our goal let us consider the following auxiliary minimization 

problem: 

                                             min ,                                                        (    

By the strict convexity of   and the growth condition , the problem (    has a 

unique solution  ̅ . It is easy to see that  

       ̅     . 

Define an integrand            by  

                 ̅         ̅            ̅     

                                            ̅              ̅       . 

Clearly   is also differential and strictly convex and satisfies the same growth 

condition as  :                              

                                    | |  | |    as | |  | |   . 

Since the functions   and   are strictly convex we obtain that  

                                            for all             

And                                   
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                                          if and only if    ̅ ,    . 

Consider an auxiliary variational problem  

                                                ∫             
 

 
    min                                     (        

                         [   ]     is an  absolutely continuous function  

                                          Such that                , 

Where     and        . It is easy to see that for any absolutely continuous 

function   [   ]    . with     

                                                        ∫  (          )
 

 
   

 ∫ [ (          )     ̅              ̅          ]
 

 

   

                 ∫  (          )      ̅              ̅ 
 

 
           . 

These equations imply that the problems (    and (    are equivalent : 

A function   [   ]     is solution of the problem      if and only if it is a 

solution of the problem (    . 

The integrand            has the following property: 

(C) If {        }   
        satisfies                  ,then           ̅ 

and           . 

Then 

                                                               ̅   . 
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Assume that a sequence {        }   
        satisfies                   : 

the growth condition implies that the sequence {        }   
  is bounded . Let        

be its limit point . Then, 

                                                       and         ̅    . 

This implies that   ̅                    , as claimed. 

     Assume that     are points of the  space    ,     is real number and that an 

absolutely continuous function  ̅ [   ]     is an optimal solution of the 

problem (    . Since the problem (   and (    are equivalent the function  ̅ is also 

an optimal solution of the problem (    . 

We claim that  

                                             ∫    ̅    
 

 
 ̅            | | | |  

Where a positive constants     | | | |  depends only on | | and | |. 

Consider an absolutely continuous function  ̅ [   ]      defined by  

                           ̅       [   ]        ̅     [     ] , 

                              ̅              ̅    [      ]. 

By the definitions of the functions  ̅and   , we have  

∫    ̅    
 

 

 ̅        ∫        
 

 

         

                    ∫        
 

 
 ̅       ∫   

   

 
 ̅      ∫          

 

   
 ̅    

                     ∫        
 

 
 ̅       ∫           ̅   

 

   
 . 
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Clearly ,the integrals  

                           ∫        
 

 
 ̅       and ∫           ̅   

 

   
 

Do not exceed a positive constant    | | | |  which depends only on the norms 

| | | | and does not depend on  . Therefore 

                                   ∫    ̅    
 

 
 ̅            | | | | . 

We denote by mes    the Lebesgue measure of a Lebesgue measurable set      

       Now let   be positive number . By the property (C) there is     such that if 

            and          then |   ̅|  | |    . in view of the choice of 

  and inequality    ∫    ̅    
 

 
 ̅            | | | | , we have  

                         mes{  [   ] | ̅     ̅        ̅   |   } 

  mes {  [   ]    ̅     ̅       } 

    ∫    ̅    
 

 

 ̅               | | | |  

And  

                           mes{  [   ] | ̅     ̅|    }         | | | | . 

Therefore the optimal solution  ̅ spends most of the time in an  -neighborhood of 

the point  ̅ . The Lebesgue measure of the set of all points  , for which  ̅     does 

not belong to this  -neighborhood, does not exceed the constant        | | | |  

which depends only on | | | | and   and does not depend on  . Following the 

tradition, the point  ̅ is called the turnpike. Moreover we can show that the set 

{  [   ] | ̅     ̅|   } 
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Is contained in the union of tow intervals 

                           [     ]  [      ] where                 | | | | . 

4.13.2 Nonconvex Nonautonomous Integrands [30]  

We showed in the previous section that the structure of optimal solutions of the 

problem     , under the assumptions posed on f, is rather simple and the turnpike 

is calculated easily as a solution of the problem     . Nevertheless, the convexity 

of the integrand  and its time independence are very essential for the proof of this 

turnpike result. In order to obtain a turnpike result for essentially larger classes of 

variational problems and optimal control problems we need other methods and 

ideas. The following example helps to understand what happens if the integrand   

is nonconvex and nonautonomous and what kind of turnpike we have for general 

nonconvex nonautonomous integrands. 

Example 4.1 

Let  

                                                     

And consider the family of the variational problems 

                ∫ [                                ]
  
  

   min                   (    

                 [      ]     is an absolutely continuous function  

                                     Such that                 , 

Where   ,  ,    ,       and       .The integrand   depends on   ,for each 

     the function                is convex  ,and for each         { } the 

function                is nonconvex . Thus the function 

               is also nonconvex and depends on  .  

         Let              be real number ,           and let a function 

  ̂ [      ]     is an optimal solution of problem (    . Note that the problem 

(     possesses a solution since the integrand  is a continuous function and the 



 

114 
 

function                 is convex and grows superlinearly at infinity for each 

point        [        . 

     Consider a function      [      ]     defined by  

                                                              [        ] , 

                                                            [          ] , 

                                              (         )    [       ] . 

Clearly , 

∫  (             )
    

    

     

And 

∫  (   ̂     ̂    )
  

  

   ∫  (             )  
  

  

 

 ∫  (             )
    

  

   ∫  (             )
  

    

   

                           {|        |          | | | |  | |  | |   } . 

Thus 

                                       ∫  (   ̂     ̂    )
  
  

      | | | | , 

Where 

                  | | | |       {|        |          | | | |  | |  | |   }. 

For any real number         the following inequality holds : 

    {  [     ] | ̂           |   } 

                                 ∫  (   ̂     ̂    )
  
  

         | | | |  . 

Since the constant    | | | |  does not depend on   and    we conclude that if 

      is sufficiently large , then the optimal solution  ̂    is equal to         up to 

  for most   [     ] . Again , as in the case of convex time independent 

problems we can show that  
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{  [     ] |            |   }  [       ]  [       ] 

Where     is a constant which depends on   , | | and | |. 

This example demonstrates  that there exist nonconvex time dependent integrands 

which have the turnpike property with the same type of convergence as in the case 

of convex autonomous variational problems. The difference is that the turnpike is 

not a singleton but an absolutely continuous time dependent function defined on 

the infinite interval [     . 

4.13.3 Definition of the Turnpike Property for General Integrands[30] 

   Consider the problem of the calculus of variations 

                                  ∫  (             )  
  
  

 min                                      (P) 

                     [     ]      is absolutely continuous function  

                                           Such that                 . 

Here       a real numbers,   and   are elements of the  -dimensional Euclidean 

space    and an integrand   [              is a continuous function .  

We say that the integrand   possesses the turnpike property if there exists a locally 

absolutely continuous function    [         (called the “turnpikeˮ ) which 

depends only on   such that the following condition holds : 

  For each bounded subset  of the space    and each positive number   there 

exists a positive constant         such that for each pair of real numbers      , 

each               ,each       and each optimal solution   [     ]     

of variational problem (P) , the inequality |       |     holds for all 

   [                     ]. 

The turnpike property is very important for applications. Suppose that the 

integrand   has the turnpike property,   and   are given , and we know a finite 

number of “approximate” solutions of the problem (P). Then we know the 
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turnpike    , or at least its approximation, and the constant        which is an 

estimate for the time period required to reach the turnpike. This information can be 

useful if we need to find an “approximate” solution of the problem (P) with a new 

time interval [     ] and the new values      at the end points   and   . 

Namely instead of solving this new problem on the “large” interval [     ] we can 

find an “approximate” solution of problem (P) on the “small” interval 

 [            ] with the values                at the end points and an 

“approximate” solution of problem (P) on the “small” interval [            ] 

with the values   (         )   at the end points. Then the concatenation of 

the first solution, the function    [                   ]and the second 

solution is an “approximate” solution of problem (P) on the interval [     ] with 

the values      at the end points. 

Example 4.2  

Let 

                  
    

             
         

  

                      

                        of the variational problems 

                         ∫     
 

 
           

 
       

 
                                      (    

        [   ]     is absolutely continuous function  

Such that              ,              

Where                         and     . The integrand   does not 

depend on   . Since   is continuous and for each              the function 

              is convex and grows superlinearly at infinity , the problem (    

Has solution for each     and each        . 

Cleary , if       ,                   and                   , then the 

function  
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                                    ̂            ,  ̂             ,   [   ]  

Is a solution of the problem (    .Thus , if the integrand   has a turnpike property , 

then the turnpike is not a singleton . 

 Let      ,       and let  ̅    ̅   ̅   [   ]     by  

                               [   ] 

                         [     ] 

                                                    

  [     ] . 

Then  

∫        
   

 

           

And  

∫   ̅    
   ̅    

     
 

 

    ∫  ( ̅     ̅    )  
 

 

 

 ∫        
 

 

         

 ∫        
 

 

         ∫             
 

   

    

    {                                  |  | |  |   | |   | |     

     } 

Thus 

∫   ̅    
   ̅    

          

 

 

 | | | |  

With  

   | | | |     {                                  |  | |  |

  | |   | |    } 
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 Here    | | | |  depend only on | | | | and does not on   . For any         we 

have  

    {  [   ] || ̅      ̅    |   |   } 

     {  [   ] | ̅    
   ̅    

   |    } 

    ∫   ̅    
   ̅    

       
 

 

 

                                                            | | | | . 

It means that for most   [   ]   ̅    belongs to the  -neighborhood of the set 

{     | |   }. Thus we can say that the integrand   has a weakened version of 

the turnpike property and the set {| |   }can be considered as the turnpike for  . 

 

 

 

 

 

 

 

 

Chapter Five 

Turnpike Properties in Calculus of Variations and Optimal Control 

5.1 Introduction 

In this chapter we surevey our results of the turnpike property for some 

classes of variational and optimal control problems. To have property 

means the approximate solution of the problems are determined mainaly 

by objective functions and essentially independent of the choice of 
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interval  and endpoint conditions except in regions close to the endpoint 

.We discuss necessary and sufficient conditions for turnpike properties 

of approximate solutions for variational problems and discrete-time 

optimal control problems. Turnpike properties have been established 

long time ago in finite-dimensional optimal control problem arising in 

econometry.  

5.2 Turnpike Properties for Variational Problems[83] 

 We consider the variational problems  

                        ∫  (            )   
  
  

 min ,                                   (P) 

                             [     ]     is an absolutely continuous function , 

Where                   and   [              belongs to space 

of integrands described. 

Let                   and   [              be an integrand and 

let  be positive number . We say that an absolutely continuous (a.c.) function  

  [     ]     satisfying                  is a    approximate solution of 

the problem (P) if  

∫  (            )  
  

  

 ∫  (            )    
  

  

 

For each a.c. function   [     ]     satisfying                 .  

The main results of  this section deals with the so-called turnpike property of the 

variational problems (P) . To have this property means, roughly speaking, that the 
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solutions of the problems (P) are determined mainly by the integrand (cost 

function), and are essentially independent of the choice of interval and endpoint 

conditions, except in regions close to the endpoints . 

Let us now define the space of integrands. Denote by | | the Euclidean norm in   . 

Let a positive constant and let   [     [     bean increasing function such 

that         as     . Denote by   the set of all continuous functions 

  [              which satisfy the following assumptions: 

A(i)  the function   is bounded on [       for any bounded set        ; 

A(ii)             { | |   | | | |}    for each         [          ; 

A(iii) for each       there exists       such that  

|                   |      {                   } 

For each   [     and each            which satisfy  

                                  |  |           | |     |     |   . 

A(iv)for each       there exists     such that|                     |    

For each   [     and each                which satisfy 

                        |  | |  |              {|     | |     |}   . 

For each set   we consider the uniformity his is determined by the following 

 base : 

         {         } |                 |    

For each   [     and each        satisfying | |    , where 

             . 

  We consider functionals of the from  

                                                    ∫               
  
  

                          (5.1) 

Where     ,           and   [     ]     is an a.c. function . 

For            and numbers       satisfying         we set  
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   {               [     ]                                           

         }                                                                                                      (5.2) 

It is easy to see that                       for each     , each         

And all numbers        satisfying         . Let      .Absolutely 

continuous function   [     ]     is called an (  - good function  if for any a.c 

function a.c function    [     ]      there is a number    such that  

                                                 or each         . 

Proposition 5.1 

Let     and let   [        be a bounded a.c. function then the   is 

    - good function  if and only if there is     such that  

                                                     for any     . 

We introduced two properties (P1) and (P2) and show that   has turnpike property 

if and only if   possesses the properties (P1) and (P2) . the Property (P2) means 

that all    - good functions , function   [    ]     is an approximate solution 

and   is large enough , then there is   [   ] such that      is close to      . 

 

 

Theorem 5.1 

Let     and     [        be a bounded continuous function . Then   has 

the turnpike property with    being the turnpike if and only if the following tow 

properties holds: 

(P1) For each       there exist       such that for each     and each a.c. 

function   [     ]     which satisfies  

|    | |     |                                       

There is   [     ] for which |          |   . 
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(P2) For each    - good function   [       , 

                                    |          |    as    . 

Theorem 5.2  

Let     and let    [        be an    - good function . Assume that the 

properties (P1) ,(P2) hold . then for each       there exist       and  a 

neighborhood   of   in M such that for each     each                

and each a.c. function   [     ]     which satisfies 

                  |     | |     |    ,              (                 )    

The inequality |          |    holds for all   [         ] . 

5.3 Strong Turnpike Property for Variational Problems[48]  

Proposition 5.2 

Let      and  let for each       [         the function                

be convex .Then for each      there is a bounded    - good function 

  [        such that        and that for each     ,  

                            

We say that   has the strong turnpike property , or briefly (STP) , if there exists a 

bounded a.c. function    Which satisfies the following condition : 

    For each       there exist constants        such that f each       

               or and each a.c. function   [     ]     which satisfies 

                   |     | |     |    ,               (                 )    

(i) there are    [       ] and    [       ] for which  

                                                  |          |       [     ]  

(ii) if |            |    then       and if |            |    then       

The function    is called turnpike of   . 
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  Let    . We say that an a.c. function   [        is    -overtaking 

optimal if for each a.c. function   [        satisfying           , 

   
   

   [                    ] 

 Theorem 5.3 

  Let      , for each       [         the function               be 

convex and let    [        be a bounded  a.c. function . Then   has the strong 

turnpike property with    being the turnpike if and only if the following  there 

properties hold : 

(P1) For each pair of (  -good functions       [          

|           |           

(P2)    is an    -overtaking optimal function and if an    -overtaking optimal 

function   [        satisfies            then      . 

(P3) For each       there exist        such for each     and each a.c. 

function    [     ]     which satisfies  

|    | |     |                                       

                       There is   [     ] for which |          |   . 

 

 

5.4 Discrete-Time Unconstrained Problem[48] 

In this section we analyze the structure of solutions of the optimization problem  

∑   
    
    

               , {  }    

     and    
       

                     (p)       

Let   {         } be the set of all integers       be compact matric space 

and let                       be a sequence of continuous functions 

such that  
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   {|       |          }    

And which satisfy the following assumption: 

A) For each    there exists     such that if    and if)ِ 

              

Satisfy  (     )           then |                   |    

(B) For each      and each pair of integers          set 

                { ∑             {  }    

        
      

  

    

    

} 

             { ∑             {  }    

    

    

    

} 

Choose a positive number    such that  

|       |               

A sequence {  }    
    is called good if there is     such that for each pair of 

 integers          

∑             

    

  

 (         
    

)    

We say that the sequence {  }    
  has turnpike property (TP) if there exists a 

sequence { ̂ }    
    which satisfies the following condition: 

 For each     there are     and a natural number   such that for each pair of  

integers             and each sequence {  }    

     which satisfies 
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∑             

    

    

 (             )    

Where are integers    {         }      {         } such that : 

(i)       ̂                 ; 

 (ii) If  (     ̂  )  δ Then       and if  (     ̂  )  δ , Then       

The  sequence { ̂ }    
    is called the turnpike of  {  }    

   

The turnpike property  is very important for applications .Suppose our sequence of 

cost functions  {  }    
  has the turnpike property and we know a finite number of 

"approximate '' solution of the problem (P). Then we know the turnpike { ̂ }    
  , 

or at least its approximation ,and the constant N which is an estimate for the time 

period to reach the turnpike. 

Theorem 5.4 

Let { ̂ }    
    . Then the sequence {  }    

  has turnpike property and 

{ ̂ }    
  is its turnpike if and only if the properties hold: 

(p1) if {  }    
    is good ,then  

   
   

      ̂         
    

      ̂     

(P2) For each pair of integers          

  ∑     ̂   ̂     
    
  

 (       ̂  
  ̂  

)  

And sequence {  }    
    satisfies 

                                ∑             
    
  

 (         
    

) 
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For each pair of integers          , then     ̂       

(p3) For each     there are     and a natural number   such that for each 

integer   and each sequence {  }   
      satisfies 

∑             

    

  

                   

There is   {       } for which  (     ̂  )    

5.5 Turnpike Properties for Finite and Infinite Optimal Control 

Problem 

The turnpike phenomenon is a property of trajectories of optimally controlled 

systems, that has long been observed in optimal control, even back to early work 

by von Neumann . The turnpike property describes the fact that an optimal 

trajectory ''most of the time" stays close to an equilibrium point, as illustrated in 

Figure 5.2, below, for finite horizon optimal trajectories. This property attracted 

significant interest, particularly in the field of mathematical economics , because it 

directly leads to the concept of optimal economic equilibria and thus provides a 

natural economic interpretation of optimality.  

5.5.1 Setting and Preliminaries [82] 

We consider possibly discounted discrete time optimal control Problem 

                                                                                                     ( 5.3) 

Where  

         ∑   

   

   

             

                                        (         )                                       ( 5.4) 
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      ]   ]         , and          for matric spaces   and   , 

state and input constraints         and admissible control sets 

       {        
                 

                
} 

5.5.2 The Undiscounted Case [82]  

We consider the undiscounted case , the case    . In this case, it is not 

guaranteed that∑                            
 
    exists for all trajectories 

and controls. In order to avoid the introduction of complicated constraints on the 

set of controls over which we minimize, we use          

                 in this case. Still, in order to obtain a meaningful optimal 

control problem, we need to ensure that |     | is finite for all    . A class of 

optimal control problems for which this can be achieved are dissipative optimal 

control problems satisfying a certain controllability property 

Definition 5.1[82] 

 The optimal control problem is called strictly dissipative at an equilibrium 

        if there exists a so-called storage function       which is bounded 

from below, and a function     such that for all     and     with  the 

         inequality 

                                                                           ( 5.5) 

holds. The optimal control problem is called dissipative if the same condition holds 

with      . 

 

Definition5.2 : (finite horizon turnpike property)[82] 

The optimal control problem (2.1) has the finite horizon robust turnpike property at 

an equilibrium        , if for each     ,     ,and each  bounded set      
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there is a constant        

   
   such that all trajectories            satisfying 

                  satisfy  

                                 {  {     }             }         

   
                   ( 5.6) 

 

        Figure 5.1: Finite horizon optimal control trajectories      for different             

optimization horizons           (left) and            (right) 

Definition 5.3:( infinite  horizon turnpike property)[82]  

Consider an optimal control problem (5.3) with     and |     |  ∞ for all 

    .Then the problem (5.3) has the infinite horizon robust turnpike property at 

an equilibrium        , if for each     ,     ,and each  bounded set      

there is a constant        

   
   such that all trajectories             satisfying 

                  satisfy  

                                 {                }         

                                  ( 5.7) 

 

 

5.5.3 The Discounted Case[82] 

We now turn our attention to the discounted case with   ]   [. For our analysis, 

the decisive difference in the discounted case is that the discount factor   tends to 
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0 as   tends to infinity. This means that if a trajectory has a large deviation from 

the optimal trajectory, then this large deviation may nevertheless be barely visible 

in the cost functional, provided it happens sufficiently late. For this reason, it is 

unreasonable to expect that one can see the turnpike behavior for trajectories 

satisfying                . In order to fix this problem, we need make two 

changes to the robust turnpike Definitions 5.1 and 5.2. First, we need to restrict the 

time interval on which we can expect to see the turnpike phenomenon  and second, 

we need to limit the difference   between the value of the trajectory under 

consideration and the optimal value.  

Definition5.4 : (infinite horizon turnpike property)[82] 

 The optimal control problem (2.1) has the infinite horizon near optimal 

approximate turnpike property, if for each      and each bounded set      

there is a constant      

   
   such that for each     there is a constant 

          

   
   such that for all     with    , all trajectories (         ) 

with       ,            and                   satisfy 

 {  {     }             }       

   
 

Definition 5.5: (finite horizon turnpike property)[82] 

 The optimal control problem (2.1) has the infinite horizon near optimal 

approximate turnpike property, if for each      and each bounded set      

there is a constant      

   
   such that for each     there is a constant 

          

   
   such that all trajectories (         ) 

with       ,            and                   satisfy 

 {  {     }             }       

  

 5.6 The Turnpike Properties in Finite Dimensional Nonlinear 

Optimal Control 
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5.6.1 Dynamic Optimal Control Problem [12] 

Consider the nonlinear control system  

                                        ̇                                                                  (5.8)           

Where            is of class   .Let            be mapping of 

class    , and let             be a function of class   .For a given     

     we consider the optimal control problem of determining a control  

                  minimizing the cost functional 

                                                          ∫   (         )  
 

 
                        ( 5.9) 

Over all controls                   ,where      is the solution of (5.8) 

corresponding to the control      and such that  

 (         )    

Optimal solution :              . 

5.6.2 Pontryagin Maximum Principle [46] 

There must exist an absolutely continuous mapping        [   ]    , called 

adjoint vector and a real number   
    ,with           

         

Such that 

                             ̇     
  

  
               

         

                             ̇      
  

  
                    

                             (5.10)    

                                                     
  

  
               

                 

                    Where  

            〈        〉       〈   〉                                                   (5.11)           

Moreover transversality condition s 
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.
      

     
/  ∑    

  

 

   

             

Assumption made throughout:no abnormal   
      

5.6.3 Static Optimal Control Problem[12] 

We consider the static optimal control problem 

     
            

        

                                                (5.12) 

We assume that this minimization problem has at least one solution   ̅  ̅  . 

 Note that the minimize exists and unique whenever   is linear in   and   for 

instance , and    is positive definite quadratic from in       . According to the 

Lagrange multipliers rule , there exists ( ̅  ̅ )       {     } ,with  ̅    

such that 

   ̅  ̅    

 ̅ 
   

  
  ̅   ̅  〈 ̅ 

  

  
  ̅   ̅ 〉    

 ̅ 
   

  
  ̅   ̅  〈 ̅ 

  

  
  ̅   ̅ 〉    

Using Hamiltonian   defined by (5.11) 

  

  
( ̅   ̅  ̅   ̅)    

                                                  
  

  
( ̅   ̅  ̅   ̅)                                     (5.13)      

  

  
( ̅   ̅  ̅   ̅)     

This is the optimality system of the static optimal control problem . 

 5.6.4  The Turnpike Property [6] 
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Since ( ̅   ̅   ̅) is an equilibrium point of the extremal equations(5.10) , it is 

natural expected that ,under appropriate assumptions if   is large time then the 

optimal extremal solution                     of optimal control problem remains 

most of the time close to the  static extremal point ( ̅   ̅   ̅) .More precisely , it is 

expected that if    is large time then the optimal extremal is approximately consists 

of three pieces: 

1-short –time :                     ( ̅   ̅   ̅)                            (arcs transient) 

2-longe-time, stationary : ( ̅   ̅   ̅)  

3-short –time : ( ̅   ̅   ̅)                                                 (arcs transient) 

The first and the  third is arcs are seen as transient.  The solution of an optimal 

control problem in large time should spend most of its time near a steady –state . In 

infinite horizon the solution should converge to that steady –state . In econometry 

such such stady-states are known is as Von Neumann points .The turnpike property 

means then , in this context , that large time optimal trajectories are expected to 

converge ,in some sense , to Von Neumann points. 

5.7 The Linear Quadratic Case[12] 

 We treat a special case in the optimal control of systems, in which the state 

differential equations are linear in x and u and the objective  functional is 

quadratic. A solution can be found in a slightly different way in this case and has a 

very nice format. In particular, we are able to  eliminate the adjoint variable in the 

necessary conditions. 

   We consider linear quadratic optimal control problems 

                                                                  

        

                                         (5.14) 

                                                              ̇                                      (5.15)                                  
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 With   a matrix of size     and   a matrix of size    . The objective 

functional is  

                          
 

 
               

 

 
                       (5.16)  

                 

Where   is a     symmetric positive definite matrix and   is a     

symmetric positive definite matrix ,and where             are arbitrary . It 

is assumed that the pair       satisfies the Kalman condition. 

Besides ,it is clear that        has a unique solution               ,having     

 a normal extremal lift                    , and the control has the simple 

expression  

                                                                                      

  ̇                                                                    (5.17)        

 ̇                                                

The static optimal control problem 

              

       

 

 
                                                (5.18)   

There  exists  ̅     { }such that  ̅           ̅ and 

                                                   ̅         ̅                                        (5.19)            

  ̅     ̅        

 

Theorem 5.5[44] 

          

                      (Kalman contition) 
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There exist constants      and      such that for every time     the 

optimal control problem        has a unique solution (                 ) , 

which satisfies 

               ‖       ̅‖  ‖       ̅‖  ‖       ̅‖      
                  

For every   [   ]. 

Theorem 5.6 [49] : Consider the LQ-problem with       stabilizable,       

and state and control constraint sets     and      . Then the following 

properties are equivalent. 

(i) The problem is strictly dissipative at an equilibrium                 .   

(ii) The problem has the turnpike property at an equilibrium                 

(iii) The pair       is detectable, i.e., all unobservable eigenvalues   of   satisfy 

Re     . 

Moreover, if one of these properties holds, then the equilibria in (i) and (ii) 

coincide. 

If, in addition,      holds, then the exponential turnpike property holds 

5.8 Control Affine Systems with Quadratic Cost [12] 

We consider the class of control –affine system with quadratic cost, that is , 

             ∑       

 

   

 

Where    is a    vector field in    , for every   {     } and  

        
 

 
               

 

 
               

With   a     symmetric positive definite matrix, and   a     symmetric 

positive definite matrix. The matrices   and   are weight matrices, as in the LQ 

case. In this framework, we have 

  〈       〉  ∑  

 

   

〈       〉  
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    4
〈 ̅      ̅ 〉

 
〈 ̅      ̅ 〉

5 

       〈 ̅       ̅ 〉  ∑  〈 ̅  
     ̅〉

 

   

 

       

And hence  

             
           

         〈 ̅  
 
    ̅ 〉 ∑  〈 ̅  

 
    ̅〉

 

   

 

Intuitively, the requirement that     says that the positive weight represented 

by Q has to be large enough in order to compensate possible distortion by the 

vector fields. 

 Theorem5.6 [44] 

Suppose that the     matrix is symmetric negative-definite ,the matrix is   

           
      is symmetric positive –definite ,and the pair of matrix     

          
      and       satisfies the Kalman condition: 

Rank                 

         ( ̅  ̅) almost satisfies” the terminal + transversality conditions 

Then for     large enough: 

 

               ‖       ̅‖  ‖       ̅‖  ‖       ̅‖      
                  

For every   [   ] 
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Results and Conclusions 

Model 1: Linear Quadratic Case [12] 

Let us provide a simple example in order to illustrate the turnpike phenomenon in 

the linear quadratic case. Consider the two-dimensional control system 

 ̇           

                                                        ̇                                                (6.1) 

With fixed initial point                     and the problem of minimizing the 

cost functional 

 

 
∫                      

 

 

          

     

Optimal solution of the static problem 

    ̅  ̅    

                                                         ̅      ̅   ̅  

   
    
    

 

 
                               

  (
  
   

)    (
 
 
) 

This system satisfies the condition of the theorem 5.5. 

 First, we have to apply the Maximum Principle, and we get: 

Hamiltonian :                 
 

 
                     

 

Adjoin vector: 

 ̇   
  

   
         

 ̇   
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Hamiltonian maximization condition: 

                                         
  

  
      at  ̅   ̅     

 

Use optimality system of static optimal control(5.13) 

 

 ̅   ̅      

 

                                                      ̅   ̅                                                 (6.2) 

Substation ( ̅      ̅   ̅ ) in system (6.2) 

  ̅       ̅     ̅   ̅  

  ̅       ̅     

The optimal solution of static problem is 

                               ̅          ̅    and  ̅         

( ̅   ̅   ̅   ̅   ̅)               

Such solutions is the point called turnpike of the problem . 

      The turnpike property can be observed on Figure 6.1.As expected , except 

transient initial and final arcs , the extremal (    ),     ),                   remains 

close to the steady-state               .It can be noted that , along the interval of 

time [    ] ,the curves      ) ,      ),                 oscillate around their steady 

–state value (with an exponential damping ) . This oscillation is visible on Figure 

6.2, where one can see the successive (exponential small ) loop that (      ) ,      )) 

makes around the point       . the number of loops tend to    as the final time   

tends to   . 
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                                                Figure 6.1: Turnpike in the LQ Case       

 
                     Figure 6.2 : Oscillation of (           ) around the steady-state (1,0). 
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 Model 2 : State Constraints in Turnpike Phenomena for LQ[49] 

Consider the LQ problem 

 ̇    (
   
  

)      (
 
 
)      ,             

With     ,   [      ] and stage cost  

ℓ        
          ,                 . 

With reference to the previous notations,   (
   
  

)   and   (
 
 
) , thus the 

pair       is stabilizable (but not controllable) . Moreover, since     (
  
  

) 

,the unobservable space, spanned by the eigenvector    (
 
 
) , corresponds to the 

eigenvalue      of A, which has negative real part, and thus the pair       is 

detectable. Thus the turnpike property holds for the system. 

 

 Model 3 : Control Affine System with a Quadratic Cost [12] 

 

      Let us provide a simple example in order to illustrate the turnpike phenomenon 

for control –affine system with a quadratic cost . Consider the optimal control 

problem of steering the two-dimensional control system 

 ̇           

                                       ̇                  
       

From the initial point                     to the final point               

      , by  minimizing the cost functional  

 

 
∫                      

 

 

              

An easy computation shows that the optimal solution of the static problem is given 

by 

                                       ̅              ̅   ̅ 
   ̅     
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First, we have to apply the Maximum Principle, and we get: 

Hamiltonian :                 ̅ 
     

 

 
                 

        
 

Adjoin vector: 

 ̇   
  

   
         

 ̇   
  

   
         

       

Hamiltonian maximization condition: 

                                         
  

  
         at  ̅   ̅       

Use optimality system of static optimal control(5.13) 

 

          

                                                
                                           (6.3) 

Substation (   ̅          ̅   ̅ 
   ̅    ) in system (6.3) 

  ̅       ̅     

                                                          ̅   ̅                                               (6.4) 

                                                           ̅   ̅                                              (6.5) 

Use maximization condition: 

  ̅       ̅     

Substitute value  ̅  in(6.5) Then  ̅    

 ̅   ̅     ̅    

The optimal solution of static problem is 

                               ̅          ̅    and  ̅          

( ̅   ̅   ̅   ̅   ̅)                

Such solutions is the point called turnpike of the problem . 

We compute the optimal solution (                               in time T = 20, 

by using a direct method. The result is drawn on Figure 6.3. Note that, according to 

the maximization condition of the Pontryagin maximum principle , we 
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have              . The turnpike property can be observed on Figure 6.3 . As 

expected, except transient initial and final arcs, the extremal 

(                               remains close to the steady-state (2, 0, -1,-1, 1). It 

can be noted that, along the interval of time [0, 20], the curves 

                         and      oscillate around their steady-state value(with 

exponential damping). This oscillation can be seen on Figure 6.4, in the form of 

successive (exponentially small) heart-shaped loops that               makes 

around the point (2, 0). The number of loops tends to    as the final  time   tends 

to   . This turnpike property is shown for nonlinear control –affine systems 

where the vector fieled are assumed to by globally Lipschitz .It can be noted that 

,due to the explosive term   
  , the convergence of the above optimization problem 

may be difficult to ensure .We use here the particularly adequate initialization 

given by the solution of the  static problem .Then the convergence is easily 

obtained. The convergence of an optimization solver with any other initialization 

would certainly not be ensured. 
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                          Figure 6.3 : Example in the control- affine case  

                                    

                     Figure 6.4: Oscillation of (             around the steady-state (2,0) 
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Conclusions 

Many real control problems must be considered in large time intervals, 

which requires precise numeric methods, since a small deviation in this 

kind of problem may have a very negative effect on the accuracy of the 

final solution .So for this problems ,the turnpike concept is particularly 

useful, because it allows performing a significant simplification of the 

analysis and computation of large-time horizon problems. Such 

application of turnpike property is very useful as it represent a good 

solution to the divergence and initialization problems of the classic 

method. necessary and sufficient condition for turnpike and near 

equilibrium turnpike properties in terms of spectral properties of the 

system matrices. 
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