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Abstract

It is shown that composition operators on the Bloch space in
polydiscs and on u-Bloch type spaces are dealt with. The weighted
composition operators between p- Bloch spaces on the unit ball, of
Co(X) and on Maeda-Ogasawara spaces are considered. The compact
and weakly compact operators on BMOA, on Bergman and p-
Bergman spaces in the unit ball are studied. In addition the isometries
between function spaces, on Banach-Stone theorem, atomic
decomposition of p-Bergman spaces in unitary space and strict
singularity of Volterra-type integral operator on Hardy space are
characterized. We show the linear isometries spaces of Lipschitz and
vector-valued Lipschitz functions. The new properties, approximation

numbers and rigidity of composition operators are discussed.
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Introduction

For Q be a bounded Bergman domain in C* (A domain Q < C" is called
boanded Bergman domain if it is bounded and there exists a constant C
depending only on Q, such that Hy, (J¥(2)u, JY(z)u) < CH,(u,u), for each
z € Q,u € C™ and holomorphic serlf-map ¥ of Q, where H,(u,u) denote the
Bergman metric of Q and Jy the Jacobian of ¥) and ¢ a holomorphic self-map
of Q. Necessary and sufficient conditions are given for the weighted
composition operator Ty, 4 to be bounded or compact from the space g, to g,

(or B0 t0 B,,0) On the unit ball of C™.

Surjective isometries between some classical function spaces are
investigated. We give a simple technical scheme which verifies whether any
such isometry is given by a homeomorphism between corresponding Hausdorff
compact spaces. We investigated for the isometries of C(T)and for the
holoorphic maps which are isometries for the Caratheodory-Kobayashi
differential metric of B(T).

We give examples of results on composition operators connected with
lens maps. The first two concern the approximation numbers of those operators
acting on the usual Hardy space H?. We show that the approximation numbers
of a compact composition operator on the Hardy space H? or on the weighted
Bergman spaces B, of the unit disk can tend to O arbitrarily slowly, but that
they never tend quickly to 0. Any analytic map ¢ of the unit disc D into itself
induces a composition operator C, on BMOA, mapping f — f o ¢, where
BMOA is the Banach space of analytic functions f : D — C whose boundary
values have bounded mean oscillation on the unit circle. We show that Cy is
weakly compact on BMOA precisely when it is compact on BMOA, thus
solving a question initially posed by Tjani and by Bourdon, Cima and Matheson
in the special case of VMOA.

Let u be a normal function on [0, 1). The atomic decomposition of the p-
Bergman space in the unit ball B is given forall p > 0. Let p > 0 and p be a

normal function on [0,1),v(r) = (1 — r? )1+%u(r) for r € [0,1). The bounded
or compact weighted composition operator Ty ., from the u-Bergman space
AP () to the normal weight Bloch type space f3,, in the unit ball is characterized.
The briefly sufficient and necessary condition that the composition operator C
Is compact from AP (p) to B, is given.



We state a Lipschitz version of a known Holsztynski’s theorem on linear
iIsometries of C(X)-spaces. Let Lip(X) be the Banach space of all scalar-valued
Lipschitz functions f on a compact metric space X endowed with the norm
Il = max{||flle, L(f)}, where L(f) is the Lipschitz constant of f. Every
Archimedean Riesz space can be embedded as an order dense subspace of some
C~ (X), the Riesz space of all extended continuous functions on a Stonean space
X, called its Maeda—Ogasawara space. Furthermore, it is a fact that every Riesz
homomorphism between spaces of ordinary continuous functions on compact
Hausdorff spaces is a weighted composition operator.

We show that the Volterra-type integral operator T,f(z) =
fozf(()g(()d(,z € D, defined on the Hardy spaces H? fixes an isomorphic
copy of p if it is not compact. In particular, the strict singularity of T, coincides
with its compactness on spaces HP. Let ¢ be an analytic map taking the unit

disk D into itself. We establish that the class of composition operators f —
C,(f) = f ° ¢ exhibits a rather strong rigidity of non-compact behaviour on the

Hardy space HP, for 1 < p < oo and p # 2. Our main result is the following
trichotomy, which states that exactly one of the following alternatives holds: (i)
C, is a compact operator H? — HP, (ii) C,, fixes a (linearly isomorphic) copy of
£P in HP, but C,, does not fix any copies of £ in H?, (iii) C,, fixes a copy of £?
in HP. Moreover, in case (iii) the operator C,, actually fixes a copy of LP(0, 1)
in HP provided p > 1.
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Chapter 1
Compact and Weighted Composition Operators
We show that the composition operator Cy induced by ¢ is always bounded on the
Bloch space £(Q). For Q = U™ the unit polydisc of C", we give a necessary and sufficient
condition for C, to be compact F(U™). Under a mild condition we show that a

composition operator Cy is compact on the Bergman space AP of the open unit ball in C"

if and only |f —0as|z| » 1

I¢( )I
Section (1.1): Bloch Space in Polydlscs

Let 2 be a bounded domain in C™.The class of all holomorphic functions with domain
N will be denoted by H(2). If ¢ holomorphic maps £ into itself, the composition operator
Cy induced by ¢ is defined by

(Cof)(@) = f(P(2)),

forzinf and f € H(N).

Let K(z, z) be the Bergman kernel function of (2, the Bergman metric H, (u, w) in £ is
defined by

192%1ogK(z, z)

H,(u,u) = 2 9z,02, U U, (1)
whereze Randu = (uy,....,u,) € C"
Following Timoney [3], we say that f € H(2) is in the Bloch space g(2), if
Ifllgey = sup Qr(2) < oo, (2)
where
%4
Qr(z) = sup M'u € C" — {0},

HM? (u,u)

and V£ (2) = ((0f (2)/02,), .., (0f (2)/92,)), Vf ) = By L 2w,
A domain £ is called bounded Bergman domain if £ is bounded and there exists a
constant C depending only on (2, such that

Hp (2w, JPp(2)u) < CH,(u,w), (3)
for each z € 2,u € C* and holomorphic self-map of 2, where H,(u,u) denotes the
Bergman metricof 2, Jp(2)u = ((a¢l(z)/azk))1<lk<n denotes the Jacobian matrix

of ¢ and J¢p(z)u denotes a vector, which I[th component is (J¢(2)u);, =
k=100 (2)/0z; )uy , 1l =1,2,...,n

The goal of the study composition operators will be to answer the question when Cy
will be a bounded or compact operator on Bloch space £ (02).

Madigan and Matheson [1] studied the problem on the Bloch space g(£2) on the unit
disk U. They proved that Cy, is always bounded on (U), they also gave the sufficient and
necessary conditions that Cy is compact on g(U).

We show that Cy is always bounded on B (), where Q is a bounded Bergman
domain in C". For Q = U™ the unit polydisc of C",we give a sufficient and necessary
condition that the composition operator Cg, is compact on f(U™) Some new methods and
techniques have been used because of the difference between one complex variable and
several complex variables.



Theorem (1.1.1)[1]: Let 2 be a bounded Bergman domain in C™ and ¢ a holomorphic
self-map of 2. Then Cy is bounded on B(02).
Theorem (1.1.2)[1]: Let U™ be the unit polydisc of C"™.If ¢ holomorphic maps U™ into
itself, then Cy is compact on g(U™) if and only if for every ¢ > 0, there existsa § > 0,
such that

Hy)Up(2)u, Jp(2)u)

H,(u,u)

For all u € C*{0} whenever dist(¢(z),0U™) < §.
When n = 1, the Bergman metric of the unit disk U is H,(u,u) = (|[u?|/(1 = |z|?)?),z €
U,u € C. Hence

<eg (4)

Hy (9" (2w, ¢' (@) { 1- |z } &P
H,(u, u) 1-[¢p(2)]?
where ¢ is a holomorphic self-map from U to U Thus. by Theorem (1.1.2), we can also
obtain Theorem (1.1.2) in [2] .

In what follows, 2 always denotes a bounded Bergman domain in C"*, and U™ the unit
polydisc in C™. ¢ holomorphic maps 2 or U™ into itself and C is a positive constant not
necessary the same at each occurence.

In order to prove Theorem (1.1.1) and Theorem (1.1.2), we need the following
Lemmas.

By the Bergman distance in (£2) and Montel's Theorem, according to the definition of
compact operators, it is easy to prove the following Lemma which is a characterization of
compactness of composition operators Cy in terms of sequential convergence, we omit the
details.
Lemma (1.1.3)[1]: Cy is compact on £ (2) if and only if for any bounded sequence {f}} in
B (2) which converges to zero uniformly on compact subsets of 02, we have ||f; o
dllgwy) = 0,as k — .
Lemma (1.1.4)[1]: let F(z) = (1 —z/1—12). If 0 < A < 1,|z| < 1 then

|F(z)| < 2.
Proof.Since 0 <A< 1,|]1 —Az| =1 —A|z| =1 — 21> 0, it follows that

1—2z A-22)—-(AQ -2z
F)I = 1—2z| 1—-1z
—|1 1_7L|<1+(1 D <2
B 2= 1—|Az| '

The desired inequality follows.
Lemma (1.15)[1]: Let G(z) = V1 —z+ V1 —2z. If 0 < 1 < 1,|z| < 1, then

1G(2)| = y2(1 — |z]).
Proof. We write z = x+iy,1— z = de%1,1 -1z = d,ye'®2, where d, =
|1 —2|,60, =arg(1—2),d, =|1—1z|,6, = arg(1 — Az).
It is clear that 8, = arctan(y/1 — x), 6, = arctan(y/1 —Ax),1 — x > 0,1 —Ax > 0,
SO

furthermore

0, — 6,

—1m/2 < <m/2.



G(z)=V1—z+V1- Az—\/_ei(91/2)+\/_ei<ez/2)
(\/_cos +\/_cos—)+1<\/—sm—+\/—sm—)

|G(z)|=\/d1+d2+2\/d_1\/d_2cos ! 221/d1+d2=\/|1—z|+|1—/12|
> /2(1—|z]).

The proof of this Lemma is completed.
Using the chain rule, we get
V(f o $)(@) = V() (¢(2)]p(2)
if ueC*—{0} and Jp(z)u = 0, from the above equality, it follows that V(f o
d)(2)u = 0.
IfueC*—{0}and Jp(z2)u # 0,

V(fep)@u V(N ($()p(Du xH&é?(/qb(z)u Jow)

M ww) B2 Up@u o@D HEY? (u,u)
Hence
IV o p)@ul
Qrop(2) = Sup{ HO () {0}}
V(o p)@ul }
= e C" — {0}, 0
w7 T (0}, (2 #
(1/2)
5 Us@uip@w
= Qf(¢(z))suP{ - (1/5 S e - {0}}. (5)
(u,0)
Qrop(2) < CQf(¢(Z))
SO

||C¢(f)||ﬁ(m =|lf e dllg) = sup Qrop(2) < Cilelg Qr(9(2) < Clifllpcay-

It means that Cy is bounded on £(«2). Theorem (1.1.1) is proved.
Lemma (1.1.6)[1]: If ¢ : 2 — 0 is a holomorphic self-map, where 2 is a bounded
Bergman domain in C™.Then Cy is compact on §(£2) if for every € > 0, there exists a
& > 0, such that
Hy i JP(2)u, ]gb(z)u)
H,(u,u) <&
For all u € C™ — {0} whenever dist(¢(z),00) < 6.
Proof. By Lemma (1.1.3), it is enough to show that if {f,.} is a bounded sequence in 5(£2)
which converges to zero uniformly on compact subsets of (2, then [|f; o ¢l[g) — 0 as
k — oo,
Let M = || fillgca), for given e > 0, there existsa § > 0, such that
Hy U Jp () _ (5)2
H,(u,u) M/’
Forall u € C* — {0} whenever dist(¢(z),001) < 6.
fi. € B(2), so (5) gives

(6)

3



(1/2)
Qe () < Qs (#(2)) sup [ e ~- 0}t ()
Combining (6) and (7), we have
kaoqf)(z) <g, (8)
for dist(¢p(z2),0n) < 6.
On the other hand, it is easy to see that
inf {H/? (u,u): lul = 1,dist(w,00) = §} =m > 0.
So
VU Wul _ IV W)Ilu| IV(fi) (W)| VWl 9)
HY? (u,u) - HY (u,u) (1/2) u\\ m
1 ( () ()

if dist(w,d2) = &. Now the hypothesis that {f;.} converges to zero uniformly on compact
subsets of 2 implies Q¢, (w) — 0 uniformly for dist(w, d2) = § as k — 0. So by (3) and
(9), (7) gives that for large enough k,
Qfiep(@) < CQp, (#(2)) <&, (10)
if dist(¢(z),00n) = 4.
It follows from (8) and (10) that || f; o ¢ |l g(a) < € for large enough k.
The compactness of Cy on B(£2) follows by Lemma (1.1.3).
We will prove Theorem (1.1.2) in the following.
It is obvious that the sufficiency of condition (4) has been proved by Lemma (1.1.6),
so we only need to prove the condition (4) is necessary.
Suppose Cy is compact on F(U™) and the condition (4) fails, then there exists a
sequence {z'}in U™ with ¢(z’) - 0U™, asj — oo,u/ € C* — {0}, such that
¢(zf)</¢(zf)u1 1) _

> £
zJ (u] u]) 0

(11)

forallj = 1,2,....
Using the condition (11), we will construct a sequence of functions {f]} satisfying the
following three conditions:
(i) {f;}is abounded sequence in S(U™);
(ii) {f;}tends to zero uniformly on coiiipaci subsets of U™,
(iii) ||C¢]j-||ﬁ(un) + 0,as j — oo.
This contradicts the compactness of Cy by Lemma (1.1.3).
To construct the sequence of {;}, we first assume that
p(z) =rie,j =12, ..,
where e; = (1,0,...,0), the 1th coordinate is 1 and the others are 0.
Itis clearthat 0 < r; < 1. From ¢(z/) - aU™, we know r; - 1, as j — 0. Denote

J(#(z) = w.

It is well known that the Bergman metric of U™

|y |2
o) = 2(1 PADE



where z € U and u = (uq,...,u,) € C*. So

Hy (W), w)) = L Z jwi]’ (12)
— T ) k=2
We construct the functions according to two different cases

Case 1. If tor some j,
Z|W,g| |W1| (13)

-r?)"

fi(z) = log(1 — e_“(l_rf)zl) —log(1 —z,) (14)
Where a is any positive number.
Case 2. If for some j,

then set

n

> il > ] (15)
k=2 ( 7}2)

then set

= 1
)= (kzzz ) - \\/ —a-1j)z, \/1 7)) "o

where a is any positive number, and 9; =argw; k= 23,...,n If w,{ = 0 for some k

replace the corresponding term e‘ieljczk by 0.

First we prove that the functions defined by (14) satisfy the conditions (i), (ii) and
(iii).

By (14), we know

of: of;: 1 e—a(l-1))
i:0(ZSkSn), fj: — -
0z, 0zy 11—z 1—e 20Tz
f, afj of; 1 e—a(1=T))
IVf(2u| = U+ o 2 +---+Zun = \T=7 T e, U,
IVfi(2u| = (1/1 —2) — (e *"77/1 — e780 7z, ) [Juy |
g w2/ = 1z12)2)1/?
/1 —z) = (7001 = ez
(|u1|/1 — |z11)?
e—a(l )
=(1— _
( 1 _1Z1 1 _ e—a(l—rj)Zl
< (1-|z]|? ( ) =21 <4
—( |le ) 1_|le+1_|21| ( +|Z1|)—
SO
|Vf; (@)
; n=su Z) = sup supy——7——,u € C" — {0} ; < 4,
”fJ”[;(U) p Qr; (2) ZEUp p HYD ()’ {0}

If means that f; € B(U™) and {f;} is bounded on g(U™).
5



Let E be a compact subset of U™, it is clear that there exists a p(0 < p < 1) such that

|z, < p, (17)
foreveryz = (z4,...,2z,) €EE.

_ p—a(1-rj)
fi(z) =log(1 - e‘“(l_rf)zl) —log(1—2z,) =log 1-e 2

1 - Zl
Since
1—e2(-rj)g, 1—e 07z — 142
1 - Zl B N 1 - Zl
Z1 .
— 1— —a(1-rj)
1 - Zl | € |
1
<——(1-e-1)) 5o,
1-p

as j — oo. So (1 — e‘a(l‘rf)zl/l — 21) converges to 1 uniformly on compact subset E,

that is, fj(z) = log(l — e‘a(l‘rf)zl/l —21) converges to zero uniformly on compact
subsets of U™.

We now prove that ”Cqbff”g(un) + 0. In fact, by (1 1), (12) and (13), we get

oty =120l = Qo
|V(f] P)H)w| V() (p(2)]p (2|
- H(1/2) (w,w) B H(l./z) (u, 1)

VU] (Hyon(bEu o u))
Hy2 U (2 w) Hyy/,w)
V() (e )w/| |(3f;/02,) (re)w] |
B J_H“/Z) wn V- DRI IIADEL
\/7 |(6f]/621)(r]el)wl |
N (1w |/1 1)
—a(1-7j)
S0 2 __°
2 (1 7,‘] ) 1 —T) 1 _ e—a(l—‘rj)rj
s [y -Gzt
2 1— e_a(l_rf)rj
From the fact
— 1)e-a(1-1))
lim 1—(1 7j)e S # 0,
j—oo 1— e_a(l_rj)rj a+1
we know ”Cqbfi”g(un) + 0,asj - oo.
Now we prove that the functions defined by (16) also satisfy the conditions (i), (ii) and
(iii).
In fact,



n |
9 _1 el | e=(1-7)) B 1
0z; 2 (z ° Zk)[ Lo <(1 — e_a(l_rj)21)(3/2) (1—2)®/2
1 / 1 1 \]|
\/1_21 \Jl_e—a(l—rj)zl \/1_21/j

df; */ 1 1 \
i:e_leljc 1_Z1 _—

\Jl _emalior,, VIS 21/’

|ij(z)u| _ |Zz:2(afj/azk)uk + (afj/azl)u1|
HMPww)  Qki(wl?/A—|z5H2)/2

< ;cl=2|(afj/azk)||uk| + |(6f]/621)||u1|
TR (wl?/A =z HD)WD L w2/ = 1z,]2)?)A/2)
(1—|Zk|) f] + (1= z/%) fjl

S P R R
1-— e_a(l_rj)zl 2 “1
e—a(l—rj)‘/l—z1 _ 1 ~ 1 1—2z, .
(1 - e‘a(l—rj)Zl)B/Z) 1=z 1-2z 1-— e_a(l_ri)Z1
1—2
<(n-1) +1 |+ (=10 - |z
\/1 _ e—a(l—rj)z1
. 1>

X + +
1=|z] |1 -e oz, 1—lzl] 1—lzl| [|1-ealt-iyg
1

- - 1
— 3( _ 1) ‘ 1- Zq
o n 1 — e—a(l—rj)zl

If we choose 2 = e=%(1=71) 'then 0 < 1 < 1, it follows from Lemma (1.1.4) that



1—2z
1 — e—a(l—rj)zl
|Vf; @)yl
HZ(I/Z)(u, u)

it means that f; € B(U™) and {f; }is bounded on g(U™).
For the compact subset E of U™. By (16)

/@) =<Ze-wkzk>
Jl — e~a1-1))7,

<2,

<3(m-1H2+1),

k=2

n . a(1-rj) _
_ (z e‘ie{zl> (e 1)Z1 .
k=2 \/1 — ea(1-1))z, ( 1— 2z, + \/1 — e—a(l—rj)zl>

Since |z;] < 1,0 < 2 = e~9(17)) < 1,J1 —e~9(1=7)z > 1 — |z, and from Lemma
(1.1.5), it follow that

‘Jl -z + \/1 — e_a(l_rf')z1

By (17), 1 — |z;| = 1 — p, thus

>./2(1—2z2)

)] = (1)t (11— emeiom))
(2)<(n- < —e ),

’ JT= 12 =z~ V201 -p)

it is clear that lim (1 — e~2(1=7))) = 0, thus {f;} converges to zero uniformly on compact

j—

subset E of U™,
We now prove that||C¢fj||ﬁ(Un) + 0.By (11),(12) and (15), we get

[ P T/ I e
_ VG e )| _ [V @@
B Hz(jl-/ 2)(u,u) HZ(]l-/ 2)(u,u)
V(@@ S| (Hyon (9@, b))
" HYZ, (9w Jg(2)u) H(ul,ul)
V(£ (rye)w/ | - |30, (0f,/0z;) (e )w] |

\/_H(l/Z) i wi) , S\ V2
((IW{IZ/(l —12)2) + YR, |w )

& | Ziea(9£;/02:) (e )W)

=42 -1241/2
( P A )




2|Wk|

/1 —r?
o J

(1/(f1=e=r) - (1/(@)))
: (stawil”)

1-r 4l ) 1 1-—r
1-— e_a(l_r]')rj 2 1— e_a(l_rj)rj

I i 1-r 1
im = lim :

€o

2

From the fact

we know ||Cy ;|| + 0,asj - oo,

BW™)
In general situation, set (z/) = (¢}, t7,..,t]") = X, tle, , where ¢, = (0,...,1,...,0),
the Ith coordinate is 1 and the others are 0. Since ¢(t') —» U™, for some k, there exists a
subsequence in {t/} (we write still {¢}) such that |¢f| — 1 as j — oo, without loss of
generality, we may assume k = 1. Letr; = |t}],0 = argrrf = e7t/,2 <1 <n. Then
0<|r|=ltj|<1.0<n<landr - 1.
Let /(z) = (! (z),...,¢n(z)), where ¥/(z) = e™(z,—t}/1—t7'z)(2 <1 <n)
and ! (z) = ez, then
_ P (¢(2)) = rje,.

Setg; = fj o/, then
V(gD (@@ NW| = [V(f; o ) (@(2)))w/|

= [V © p@NJY (9w |

= |V(f) (e ]y’ (p(27)w/|. (18)
It is well known that for ¥/ € Aut(U™),
ij(z) (]t,l)](z)u,jtl)](z)u) = Hz(u' U,), (19)

For each z € Q. So

H i oy (W), W) = Hyjog oy (197 (@)W, 19 ($(2)))w)

= H, o J9/ (9@ DW, J9p! (9 (@ ))W/). (20)
It follows from (18) and (20) that
V(g)@ENHwW/| V() (e )]y (d(z)w|
HSDwi,wh)  HEP (I (@)W, JI ($(z))w)
_ [V (e )w”|
- HSP Wi, wiy @D

Where W/ = JyJ (¢(27)). .
1Co91ll 5 ymy = 97 © Bl 5 m) Z Qo0 (27
U CRICH I I\ CAICICLICHI

1/Z(uf ul) Hzlj/z(uj,uf)




1
|V(gj (¢(Zj))]¢(zf)uf| H¢(ZJ')(]d)(Zj)uj,]q_')(Zf)uj) 1
%ZJ)U‘P(Z w,jg(z))ul) H,;(ul,ul)

V(gj)(¢)w
2 7 LGCE |

<l>( 7

(wl, wi)
_ /e T Ge)0v @@ w)
VB2 Gl (gl ($(2D)wh)

\/_|V(f])(7‘ el)W |

1/2 (W W])

If for some J, / Z=2|ij|2 < (|w/|/1 = r?), then choose the functions {f;} defined by
Y jl? Jl /1 _ 42 ' . '

(14). If for some j, / raW!| > (Jw/|/1 =), then choose the functions {f;} defined

by (16).
N{)\(/v V\)/e prove {gj =fje 1/)f} satisfies condition (i),(ii) and (iii). In fact, by (19), we have
V(g (@u| _ V() @ (@) (2)u] <If|
H ) HYE G @u i @w) D
So |gj|B(Un) < M,{g;} is bounded on B(U™).
For the compact subset E of U™. If

f;(@) =log(1—e™"i)z,) —log(1 — 2,),

(22)

<M.

then
g;(z) =log(1 - e‘a(l_rf)e‘iezl) —log(1—e7%z),
similar to {f;},{g;} tends to zero uniformly on compact subset E of U™.

If
i) = (; ) o \\/ (i), \/11—21)

n
. 1 1
gj(z) = Z e_“gljczk ’1 —e~i0z, - : ,
\/ \/1 - 8_1921

k=2 1— e @(1-7))g-i6 7

similar to {f;},{g;} also tends to zero uniformly on compact subset E of U™.

By (22), similar to {f;}, we can prove that ”Cd)gf”[;(un) + 0,as j — oo

This contradicts the compactness of Cy by Lemma (1.1.3). Now we complete the

proof of Theorem (1.1.2).
Example (1.1.7)[1]: If ¢ € Aut(U™), then C,, is not compact on B(U™).In fact, it is easy
to know from Theorem (1.1.2) and the well-known fact

Hy @ Uy (2u, Jp(2)uw) = H, (u, u).
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Section (1.2): u-Bloch Spaces on the Unit Ball
For B denote the unit ball of C™ and D be the unit disc in the complex plane. The

class of all holomorphic functions with a domain B will be denoted by H(B).

A positive continuous function p on [0, 1) is normal if there are two constants
0 < a < b such that (i) u(r)(1 — r)=% is decreasing for r € [0,1) and u(r)(1 —
r)™@ > 0asr — 17; (i) u(r)(1 — r)7P is increasing for r € [0,1) and u(r)(1 —
r)™? - owasr - 1°.

Let u be normalon [0,1). f € H (B) is said to belong to the u-Bloch space g, if

u(zDI< Vf (2),u >| u(|z])
sup =sup—-—3
uecn—(0} /(1 — |z|D)[ul? + [< z,u >|2  zeB 1— |2
ZEB

Ifll, = Qr(z) <o

and to the little u-Bloch space g, o if
. u(zDI< Vf (2),u >|
lim sup =0
121> yecn—{o} /(1 — |z|D)|ul? + |< z,u >|?
ZEB

where Vf is the complex gradient of f . It is well known that g, is a Banach space under
the norm [Ifllg, = 1f(0)| + [Ifll,, and that B, , is a closed subspace of j,. The normal
function p, as a weight, was usually used to define the mixed norm spaces before, for
example [5]. When u(r) =1 — 7% and u(r) = (1 — r>)17%(0 < «a <%)— two
typical normal functions, the induced spaces S, are the Bloch space 8 and Lipschitz space
A, respectively. And these spaces have been studied extensively.

Let X and Y be two Banach spaces of functions holomorphicon Band ¢ : B — B be
holomorphic. For i € H (B), one can define the weighted composition operator Ty, ,

from X toY by Tt,[),go(f) = P.foep(f € X).

It is easy to see that an operator defined in this manner is linear. We can regard this
operator as a generalization of a multiplication operator M,, and a composition operator
Cy- In the complex plane, the behaviors of the operators C, and Ty, , 0N B;_,2 OF B1_,2y,
were studied in refs. [2]-[10]; and the main results in [11] was to characterize the
boundedness of €, 0N B;1_,2)10g(1-r2)-1 - IN SeVeral complex variables cases, Shi and Luo,
Zhou and Zeng got that the characterization on ¢ for which C,, is bounded or compact on
Bi—r2 OF By_r2yp in the unit ball in. [1]-[13] respectively. And in the polydiscs, Zhou
[14]-[15] studied the same problems. Hu [16] discussed the boundedness and compactness
of C, from g, to B, in the polydiscs. But the sufficient and necessary conditions for C,, to
be bounded or compact from g, to 3, on the unit ball have not been obtained up to now,
even in the simplest case u(r) = (1 —72)?, v(r) = (1 — r2)4. The main purposes are
to solve the problem and generalize the known corresponding results on composition
operators and pointwise multipliers on the Bloch type space and the little Bloch type
space.

We will use the symbol c, c,, -+ to denote the finite positive numbers which do not
depend on variables z,w and may depend on some bounded quantities, being not
necessarily the same at each occurrence. “E =~ F” is comparable, that is, there exist two
positive constants A; and A, suchthat A,E < F < A,E.
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Lemma (1.2.1)[4]: Let u be normal on [0,1) (suppose a > 1 whenn > 1)and f €
H (B). Then (a) f € B, if and only if supy(|z|)|\7f (2)] < co. Furthermore ||f||3

|f(0)|+SUpH(|Z|)|Vf (2)|.(b) f € .Buo if and only if u(|zDIVf(2)| —» Oas|z| - 1.

Proof. The proof is similar to that of Theorem 7.2 in [17].
Lemma (1.2.2)[4]: Let u be normal on [0, 1). (a) If f € p,, then

lzI 1
|f(Z)| < <1 +j ﬁdt> ”f“ﬁ”(z € B).
0

F r(2)|
(b) 1T f € Buo andf 5 dt = oo, then £1|r—r>11f [u(®)]-1dt

Proof. By the definitions of B, and B, u(|z)Vf(z) < ff'li'l)z (@) < IIfllg,(z € B)
and the equality

1
f(z) = f(0) + f < Vf(tz),z > dt,
0

we can obtain the results easily.

Lemma (1.2.3)[4]: Let u be normal on [0,1) and g(&) = 1 +>2,25¢&™ (§ € D),
where ng is the intgral part of (1 — 7)™ %, u(ry) = 275(s = 1,2,...). Then

(i) g(@) is strictly increasing with r € [0,1) and 1nf u(r)g() >0,

€[0,1)
gggu(lfl)lg(f)l < co.
(i) u(lzDlg' (rzy)| =0( 714 )foranyz = (zl,... ) e Band0<r < 1.
i) |, g(tydt| <[] gdt <c{g (5) + J7 “g(t) de) for any z = (zy,...,2,) €

Band\E<r < 1.

Proof. First, the definitions of u and ry; show that r; is strictly increasing and

U(Ts41) u(ry) 1—1
> ,thatis > 2b s =1,2,..).
A—ror)? = A= 1)P —r 2 20 )
So
1
Int

n 1-— 1— 1
lim inf—*% = lim inf [ TS“] = lim inf—3*L > 25,

S—00 N, S—00 Int [ 1 S—00 1

1—71 1—1

This means that };o2, 2° &™s is absolutely convergent on D,
(i)  The result was proved by Hu [16].

(i) Ifp =r|z| > u? G) = po > 0, then there exists k € {1,2,...}such that r, <
p < T,4+1- By computation we have

(xp?) ®_ 250 < p < 1; sup xTF =~
Su X = — as , Su X1=—x = —
Osxfoo P e logp p Ost<)1
Thus
0 k (o)
9'(P)=Zn 25 pMs~ 1<iz ! 25/)"S+l Z L 25 p"s
S — —
s=1 s= 11 Ts pos k+11 Ts

12



= §=k+1
k+1 2 20— 1
< 2 n lz p (1-7¢) 9s p2(1—7”5)
(I=ppo Py 44 17
2k+1 2 i 1
< + Z 25 p2(-ry)
(L=plpo  epglogl/p Lo
2k+1 2k+2 had _ 1
< + Z 2s—(k+1) r2(1—7’s)
(L=plpo ~ epglogl/p 44 ferd
k+1 k+2 * I S e 1-7
=( 2 ) + 22 z 95—(k+1) ( k(l Tk+1))1 5221 i,’:; : 1rr51
1-p)po epslogl/p
s=k+1
2k+1 2k+2 had 1 1 .
B S e Ly
(1—=p)po  epglogl/p 44, Ve
2k+1 2k+2 had 1 (2%)5
“ T a2 ()
(1—p)po  epslogl/p Ve
2k+1 c 2k+2 C Zk

= +
(1 - p)po logl/p 1-p
This means that

2k
k(lrziDlg (rzn)] < w(p)g' () < = () =

_1,1
Ifp =rlz| <u 1(g) = po, then

g,(p) = Zns 2°p ns 1 —Zz 2(1 rs) < — Z 25 (p 2(1 T1))(2b)5 1
Po 4=
<

C1

1—r|z]|

s=1
2
<c = elogl/py)
< — ,0' where m max{l,e logl/po}
Thus
cu(0)  cu(0)
’ < 14 — = .
u(lrz,D0g' (rzy)| < ulp)g’ (p) 1—p 1-—7|z]
(iii)

jr21g(t)dt = frzlg(szl)ds

< f zg(sz)lds < j g(s)ds

0

g(\/_) €1 T 2bg
fo 2T t<fo Zﬁu(\/f)dtgfo NG

" g(®)
< CZ_IO Z_ﬁdt

13
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Lemma (1.2.4)[4]: Let u and v be normal on [O, 1). Suppose ¢ is a holomorphic self-map
of Bandy € H (B). Then Ty, is a compact operator from g, to g, if and only if for any
bounded sequence {f;} in B, which converges to 0 uniformly on a compact subset of B,

we have ||T¢,q,fj||ﬁ - 0asj - o,
Proof. The result cevm be proved by using Montel Theorem (1.2.7) and Lemma (1.2.2).
Lemma (1.2.5)[4]: Let u be normal on [0,1) and f u(t)]~1dt < oo. If the sequence
{f;} is bounded in 8, and converges to 0 uniformly on a compact subset of B, then

hm sup |fj(z)| = 0.

ZEB

Proof. Let ”fj”g < M,. Since [, y(t) 1dt < oo, forany e > 0, thereis0 < n < 1
u
such that fol[,u(t)]‘1 dt < e.Ifn <|z| < 1, then

£ - f,(-L2)

1
12| - jn <Vf(tz),Z> dt

|z]

LeMy)z| Izl e M,
SJ dt=j —2dt < cMye.
PRTCED Rl MO

We have sup |f;(2)| < cMqe + sup |fi(w)|. Thus

n<|z|<1
limsup sup |f;(2)| < llmsup{sup|f](z)| + sup |f](z)|} < cM,e.
j—oo ZEB J—

This means that sup Ifj(z)| > Oasj — oo.

Lemma (1.2. 6)[4] Let v be normal on [0, 1). A closed set K in f3,, o is compact if and only
if it is bounded and satisfies sup v(|z))|Vf (z)| — Oas|z| — 1.
feK

Proof. The proof is similar to that of Lemma 1 in [2].
Theorem (1.2.7)[4]: Let 4 and v be normal on [0, 1) (suppose a >% whenn > 1), ¢

be a holomorphic self-map of B andy € H (B). (i) Ty, is a bounded operator from ,, to
B, if and only if

" 1ﬂﬂWM@%ﬂ—MMﬂWﬂw&MPK¢&%w&M>fF<w 23)
weentioy nle@D A - 1zZPDul + 1<z u > '

ZEB

and

v(|z|) le@I| 1
Zlelgl E |2le( )(1 +JO ﬁdi’) < oo, (24)

where J@(z) denotes a Jacobian matrix of ¢(z) as follows:

n T
_ (09;(2) 3 d¢p1(2) 0 (2)
Jo(z) —< oz >1Sj’ - and Jo(z)u = (z oz, uk,...,z oz k> :

k=1 k=1

14



(i) Ty, is a bounded operator from g, to B, o if and only if (23) and (24) hold, ¥ €
Bvoand e, € B, foralll = 1,2,--,n.

Proof. (i) Suppose (23) and (24) hold. For any f € B,, by Lemma (1.2.1) and Lemma
(1.2.2) we obtain

v(IzD|V Ty f) (@) < vUzD (17 )I|f (9(2))| + [p(DI|V(C, f) (2)])
o ()]

1
< cv(lzDIVy(2)] (1 +f @dt> I£llg,
0

s o QD@ ((1—|<p<z)|2)|/<p<z>u|2+|<<p<z),/<o(z>u>|2>f
weenrtoy 1@ A - zZPuP +<zu>]?

ZEB

VA =lozDIDe@ul? + < 9(2),Jo(2)u >[?
This means that T, , is a bounded operator from g, to g, .
Conversely, suppose Ty, , is a bounded operator from g, to f,. Then we can easily
obtainy € B, and Yy, € B, bytaking f(z) = 1and f(z) = z(l = 1,...,n) in B,
respectively.

Forany given w € B and u € C™-{0}, if |o(w)| < ./2/3, it follows from ¢ € B,
and Y, € B, that

v(lwDlp W) {(1 — lpW)DJeWul® + [< pw), Jo(wW)u >I2}E

ule@)D < V(N (@), Jp(u >| } < GlIfIl
= ( Bu:

(oD A= WP+ [<w,u >
<L wDipw) Jplw)ul
e Ja—wPlE FI<wa P

1 |<|pW)|Vp,(w),u >|
= u(w/Z/B)ZV(le\/(l — W) |ul? + |[< w,u >|?
< 1 EV(IWI) < V(e )V(w), u >||< Vip(w), u >|]g;(w)]|
=1

n(2/3) VA= w2 + < w,u >
1
Iellg, + 1¥llg, )-
i ,—2/3);( Pulip 8,)

This shows that (23) and (24) hold.

In the following, we always assume that |@(w)| > +/2/3. First we suppose
p(w) = r, e, Wherer,, = |p(w)|,e; isavector (1,0,...,0).

D) 1Y@ = 1DUEI2 + -+ [&]2) < |&1] (where (6, ..., &) = Jo(w)w),

we set

<

TwZi
fw(z) = f g(t) dt,where g is the function in Lemma (1.2.3).
122,

By the properties of normal function and Lemma (1.2.3), we have
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H(|Z|)

— |z

—1z|)* 2
— 0, (2) < {1 — |le} <c=|lfwllg, c.
It is clear that
Tl 2 (T llfwlls, = [Tyl
v(IWI)|< fio (W))VE) (w) + l/J(W)V(prW)(W) >
VA = wD)ul? + [< w,u >[?
_vAwDlpW)I[< V() (o), Jow)u >|
VA= wP)[ul? + < w,u >[?
_ v(wDlpW)Ing g ()1 |
- JA— WP+ [<w,u >
It follows from (25) and Lemma (1.2.3) that )
v(wDlp(w) {(1 — le)I)JewW)ul? + |< p(w), Jp(w)u >I2}E
ulew)iD (1= IwD)ul* + [<w,u >|?
_v(wDIW)I (1 =15 1% + - + 18,17 + €117,
— u(lew)D (1= [wIHul? + |<w,u >|?
_vwDlyw)| V21§
— ulewD) A —wP)ul® + I<w,u>|?
v(IwDlpW)Insg(r)1é | V2
\/(1 — wWIDul? + |< w,u >2% krw)g(®rd) ~
(i) If (1 = 12)(|& 12 + -+ |E,]D) > &, forj = 2,..., n,letd; = argé;anda; =
e % as §i#0ora; =0asé; = 0. Wetake f,(z) = (azz; + -+ anz,)g(ryz1).
By Lemma (1.2.3) and the definition of p,
1

(25)

}2

< [Ty ||

u(l ) { — |z| }a" 1
< wllg <c/JJ1—n2
| |2 wa( ) 1 — |Z|1 \/1—7‘W \/1—7‘W “f “ﬁH /
Slmllarly to the proof of (25) we can get
v(IwDlp(w)l $2] 4 -+ S5
u(lew)) JA = wD)ul?2 + < w,u >|?
&[Tyl - Tyl

CgED rGINLI-RE J1-72

Thus
1

v(Iw)lp(w) {(1 — W) )JeW)ul? + |< p(w), Jo(w)u >|2}E
ulem)) (1= wlHul® + [<w,u >|?
_ vwDlyp W) V2(1 =1 (&2 + -+ [&,]2)
— u(em)D) JA = wD)ul2 + |< w,u >|?
v(IwDlpyW) 1 —r(1&] + -+ 1§D
=V2 uleMD /@ = wDulz + |< w,u >|? = V2T

This shows that (23) holds.
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In a general situation, if (w) # |@(w)|e;, we use the unitary transformation U, to

make p(w) = p,, e,U, ,wWherep, = |p(w)| >./2/3.
) I (1 = leMWIDJeWul? < |< pw),Jow)u >|?, we set

Pw Z1
9w = fwo Uyl where f,(z) = JZ g(t)dt.
PwZ1

By Vg, (2) = V(f, e U2 = (V) (zU,D)U,HDT and a simple computation we
can get ||gW||;;# < c¢. Thus

Tyl 2 | Tpollllgwlls, = [Tyl 5.
_ VAWDI< 9V (Cpg0) ) + gu (9O)TEIW), 7 >]
JA— WP+ < w,u >
_v(wDlwW)1pd g(p3)|< er (U™, Jow)u >|
- JA— WP+ < w,u >
V(WD W12 g (p3)I< p(w), Jow)u >|2
- JA— WPl + < w,u >?

So

1
v(lwD[pw)| {(1 —leW) A JeW)ul* + |< p(w), JeW)u >I2}E
u(lew)) (1= wPlul* + [<w,u >|?

LrAwDionl V2 o) o>l V2ellTyoll e

— uleMD Ja—=wDlulz+I<w,u>2 " PwdPi)ulpw) = Clllwe
i)y 1If A-leWIDeWul> > |< o), Jew)u >|?, let  (U;)JeW)u =
(1&1e ..., |§n|ei9n)T . We take g,, = f,, o U,*, where

fw(2) = (e—iQZZz +"'-+e_i9nzn)g(pw 7)) = “gW”ﬁ” <

— piv
Similarly, we can get

v(AwDIpW)Ig i) (&1 + -+ 18D _ cllTyp|
JA = WD ul? + < w,u >|? \/1—pw

Since p,, > ./2/3, we have
&l + -+ & = |< (e7101, -, e~ ) (U, Jo(W)u >|

= |< (0,672, .-, e7 ) (UL, JoW)u > +< (e7%91,0,-+,0) (U7, Jo(w)u >|
<o), Jow)u >|

J1-p

(26)

Sl 4 18l +

v1- PVZVIIQD(W)UI

w

< I& |+ + Il + I JoGwyul
> Il <5 B et e
2
S Il 4 l6al? < B (6 4 60l
<2081 + - + 16, 12) @27)

Using (26), (27), Lemma (1.2.3) and the property of unitary transformation,
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v(lw])|ypw)l {(1 —leW) D JeW)ul* + |< p(w), JeW)u >|2}E
u(lew)D) A= wPBul?+[<w,u>|?
<\Ev(lwl)lw(w)l V1=p&lJew)ul|
- oD /@ = wDul? + < w,u >|?
_ 2v(wDlyw) V1=pi&]+ -+ 18D
— wleD  J@ = wiD)ul2 + |< w,u >|?
V2e| Tyl _

< <
ulpw)g(p)
This shows that (23) holds.

In order to prove (24), we take

<z,p(w)>
h,(z) = 1 +f g(o) dt.
0

Al it

Then ”hW”ﬁu <c.
Therefore,
Tl = 1Ty phull, = cvAwDIZHWI] (R (@ (W)

v(IwDIpWI| < 7w ) (@), Jew)u >| |

uec™ —{0} \/(1— lw|?)|ul? + |< w,u >|?
That is
lo(w)|?
V(WD 7w <1 ¥ j g(t)dt)
0
e+ V(WD g (W) D] < o(w), Jowu >|

uec™ —{0} JA = wD)ul2 + |< w,u >|?

sup v(IwDlpW)Il < ow),Jew)u >|
uec™ =0} u(|p(W) D/ (1 = (w2 [ul? + |[< w,u >|?
It follows from (23), (28) and Lemma (1.2.3) that

o)l 1
(wDI7Yw)| (1 + j mdt>

[e(W)|
<v(wDITpw)| (1 e f g(t)dt)

< ¢1||Ty ol + 3 (28)

1 (w2
< v(IwDI7pw)| {1 rag(3) v g(t)dt}
0

lp(w)l?
< c;llYllg, + csv(IwDIVp(w) <1 + f g(t)dt>

< cllYllg, + cal| Tyl + cs.
This shows that (24) holds.
(if)  Suppose (23) and (24) hold, Y € B, and P, € B, forall I = 1,2,...,n. Take
any € > 0. Let f € B,. Then there exists 0 < §; < 1 such that u(|z])|Vf(2)| <
ev(zDIVY(2)| < eandv(|zD|IVWe)(2)] < ¢l = 1,2,..,n)asé; < |z| < 1.

18



If fol[u(t)]‘ldt = oo, then, by Lemma (1.2.2), there exists 0 < §, < 1 such that
|f (2)]

J, Tu(®)]de
Thus for |p(z)| > & = max(8;,8,) and [ [u(t)]""dt = oo, we get
v(1zD|7(Ty,of) (2]
lo@| 1 |f(go(z))|
<v(|zDIVy(2)| (1 +j0 o) dt)fl(p(z)l[u(t)]‘ldt

0

1
N cv(lZD @) {((1 o@D e@ul? + 1< @), Jo(Du >I? >§

< gash, <|z| < 1.

Su
weenny 1le@D A— 1z + <z u >|2

ZEB

ulp@D |< V(N (e@).Je@)u >|
VA = le@ P Je@ul? + 1< ¢(2),Jp(2)u >|?
C1|f(§0(z))|
P @) de
It |o(2)| > & = max(y,6,) and [ [u(t)]dt < oo, then
v(1zD|V(Tyof) @] < cvIzDIVyp @1 Ifllg,

1
wup  VUZDI @) <(1 — lp@) ) p(2)ul® + Kp(2),Jp(2)w)|? )7
wecr oy H(9@N (1= lz[®)[ul® + < z,u >|?

ZEB
wlo@D) [< V(A (0@),Jo2)u >|
VA =lo@)e@ul? + |< ¢(2),Jp(2)u >|?

< cellflg,. (30)
If [p(z)| <8 = max(6;,8,)(|z| > &), then

5 1
v(1zD|V(Ty o f ) (2| < cv(IzDIVy(2)| <1 +f @dt> If1lg,

- If1
v, Y DT o) @1+ v(DITp))
=1

u(6)
2ney|Ifllg,

4 1
<c<1+f0 mdt>||f||/;#£+ 105) £ (31)

By (29)- (31) we get v(|z|)|V(Ty »f)(2)| » 0as|z| - 1.Thisshows that
Tdmpf € .81/,0-

Conversely, if Ty, ,, is a bounded operator from g, 4 to B, o, theny € B, , and Yo, €
Bvo by taking f(z) = 1 and f(z) = z(l = 1,..,n) in B, respectively. The rest
proof is similar to that of (a). The proof is complete.

+céllfllp, < cze. (29)

+
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Corollary (1.2.8)[4]: Let u and v be normal on [0,1) (suppose a >% when n > 1).

Suppose ¢ is a holomorphic self-map of B. Then (a) C,, is a bounded operator from g, to
B, ifand only if

1
IR C) {(1 — le@IOle@ul? + |< o(2), Jo(Z)u >|? }? co (32)
ween oy (9 (@D A - zZPDul + <z u > |

ZEB

(b) C, is a bounded operator from g, to B, o if and only if (32) holds and ¢, € B,
foralll € {1,2,...,n}.
Corollary (1.2.9)[4]: Let u and v be normal on [0,1) (suppose a >% when n > 1).

Suppose ¢ is a holomorphic self-map of B. (a) If
v(lz]) g’ (Z)I

sup
zep H(lo(2)])
then C,, is a bounded operator from g, to g3, , where

') = {}ZZ|—() }

(b) Ifg, € B,oforalll € {1,2,..,n} and (33) holds, then C,, is a bounded operator

from g, o to B, 0.
Proof. (a) Suppose

(33)

N| =

ozl @)
ver 1(e@)D

=M<

Then
1

v(lzD) ((1 ~ lo@Pe@ul* + < 9@, Jp@u >’ )f

ule@D (A~ 2Pl +1<zu>]

1 v(IzD e (2)ul - icvuzn Ve, @)
u(l<p(z)|)¢(1— 1zI2)[u]? + |< z,u >|? ulle )0

cvnv(|z]) l¢'(2)]
= ule@p =M
This shows that C,, is a bounded operator from g, to g, by Corollary (1.2.8).
(b) Noting ¢, € p, 0, the proof is similar to that of (a).
Corollary (1.2.10)[4]: Let n = 1. Suppose u and v are normal on [0,1), and ¢ is a
holomorphic self-map of D,y € H (D). Then (a) Ty, is a bounded operator from g, to
B, if and only if

o VD@l @] _
i IO

(34)

and

, 0@ 1 i
supv(lz)Iy (z)|(1+ f o t) (35)

(b) Ty, is a bounded operator from g, , to B, if and only if Y € B, o, Y@ € B, ,,
(34) and (35) hold.
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Corollary (1.2.11)[4]: Let n = 1. Suppose u and v are normal on [0,1), and ¢ is a
holomorphic self-map of D. Then (a) C,, is a bounded operator from g, to g, if and only if

v(zDle'@)l _

Su
vep (o@D
(b) C, is abounded operator from g, , to B, o if and only if ¢ € p, , and (36) holds.

Theorem (1.2.12)[4]: (i) Let u and v be normal on [0, 1) (suppose a > % whenn > 1),
¢ be a holomorphic self-map of B and ¢ € H(B). (a) If fol[u(t)]‘ldt < o, then Ty, , Iis
a compact operator from g, to g, if and only if ¥ € B,,¥¢p, € B, forall [ €
{1,2,...,n} and
lim  sup v(IZI)Il/J(Z)I{(l— lp(1zDI) (@) ul?|< ¢(2),Jo(2)u >I2}2
0 @I~1 yeeniroy £(l@@) (1= z[D)[ul* + < z,u>|?

(36)

=0. (37)
(b) If fol[u(t)]‘ldt = oo, then Ty, ,, is a compact operator from g, to g, if and only if
Y € B, Yo, € B, foralll € {1,2,...,n}, (37) holds and
v(|z D le@| 1
o@I-11 — |z|? HE Oz )<1 * _[0 (_)dt> =0. (38)
(¢) Ty, isacompact operator from g, to B, if and only if

v(lzDIy(2)] {(1 — lpzDI)e@ul® + I< 9(2),Jp(2Du >|2}7

A uP o o@D A—1zZPDul + <z u>]?
= 0. (39)
and
~ v(lz]) lo@l 1
IZI 11 iz |2Qd,( )(1+j0 ﬂdt> (40)

Proof. (a)-(b) Suppose (37) and (38) hold. Then for any ¢ > 0, there is 0 < § < 1,
when |@(z)|? > 1 — &, such that

o Yz {(1— 02D Je@ul? + |< 9(2),Jo(2)u >|2}f<8 )
ween iy (o@D A - zZPDul + <z u >
and
lo(2)]
V(1zZDIVP(2)I(L + fo —Sdn<e (42)

Let {f;} be any a sequence {f;} which converges to 0 uniformly on compact subset of B
satisfying ”fj”ﬁu < 1. Then {f;} and {|Vf;|} converges to O uniformly on {w : |w|? <
1 — 6}
If|p(2)2 > 1 — Sand [ [u(t)]'dt < oo, then, by (41) we have
“u v(lz])|< V(Tw,q,]j-)(z),ﬂ >|
uecm —{0} /(1 — |z|D)|u|? + |< z,u >|?
v(Iz))|< w(@)V(f;) (0(@), Jo@u >| + |< f;(p(2)V(2), 7 >|
uecm {0} JA=1z)ul?2 + |< z,u >|?

<
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< v(|zD[y(2)] {(1 — @I Je@ul? + < ¢(2),Je(2)u >|? }7
= weentiy k(o@D A= 2Pl + < zu >|?
u(le@D|< V(1) (@@).Jo@)u >|
+ 1Yllg, |fi (@(2))
JA—1e@Pe@ul + 1< 9@, Jo@u>2 /o]
<ellfill, +lglfi@@)]-  (43)
Iflp(2)I> > 1 — sand [][u(t)] " dt = oo, by (41), (42), Lemma (1.2.1) and
Lemma (1.2.2) we get

“u v(|Z|)|< V(Tlpmfj)(z),ﬂ >|
uecm —{0} /(1 — |z|2)|u|? + |< z,u >|?
1
sup v(|zD[Y(2)] {(1 —le@I)Je@ul* + |< 9(2),Je(@)u >|? }f
" uecn—oy u(@(@)]) (1= [zI)|ul* + < z,u >|?
ulle@D[V(f;) (@), Jo(2)u)]
VA= le@ P Je@ul? + 1< ¢(2),Jp(2)u >|?

@ 1
<elill,, + evtanimer (1+ [ a5,

<ellfill, +eaellill,, < coe. (44)
If lp(2)]? <1 — 6, byy € B, andypp, € B,(I = 1,2,...,n) we have
“u v(|Z|)|< V(Tlp@fj)(z),ﬂ >|
uecn—(0}\[(1 — [z1Dul2 + < z,u >|2
sup v(|zDI< VY (2),u >||f](<P(Z))|
uec™ —{0} \/(1 — |zIP)|ul]? + |< z,u >|? uecn—{O}
o YUZDIY @I ()| (< Yoy (2), 8 > + -+ |< Von (2), 4 >])
VA= 1zP)ul? + |< z,u >|?

< W, + 50| Y (Wl + il ) 9/ (0@)].  (45)
=1

On the other hand,

+ cv(1zDIVY ()| fi (p(2))|

<

AR TOICION
v(IzD[(V(Ty o f;) (2), 0)|

+ sup + sup ) S .(46)
<|<p(z)|2>1—6 lp@12s1-6 ) uecm —{0} /(1 — |z|2)|u|? + |(z, u)|?
By (43)-(46), we have
lim sup||Ty, f]| , < cae. (47)
Jj—ooo v

By (47) we obtain ||T¢’q,fj||ﬁ - 0 (j » o). This means that T,, is a compact

operator from g, to g, by Lemma (1.2.4).
Conversely, for any [ € {1,2,..,n}, we get Y € B, and Yo, = Ty, f € B, by
taking f(z) = 1lorf(z) = z € B,.
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Assume that (37) fails. Then there exist the sequence {z/} c B satisfying T o=

lo(z/)] - 1lasj — oo, the sequence {u/} c C™ — {0} and a constant &, > Osuch

that
1

V(|Zj|)|¢(zj)| {(1 — |g0(Zj)|2) |](p(zj)uj|2 + |< (p(zj),]go(zf)uj >|2 }E A

u(le(z)) 1= 1Z/1D)W|? +|< 2/, u/ >|?

Sincer; — 1(j — o), we can pick out the subsequence {r;, } satisfying

1
1 —m < rfk < 1.
To construct the sequence of functions {f;}, we first assume that

| 1 |
¢(z’) = rje; and 1 _ﬁ< <1 (=12.,)

() For ['u®]dt <oo, if \/(1—7}2)(|sz|2 tot i) < lwf] (where
(wlj,..,w,{)T = Jo(z/)u’), we take

o=y

JY0

T'jzl

1 rizy
g(t)dt——jj g(t) dt.
i Jo

We can prove easily ||fyl| , <c
n

Let E be any a compact subset of B. Then there exists 0 < r < 1suchthatE € {z:

Iz| < r}. Thus |
1Jrjz1 1 1\ (&
[ gae - —.——f g(t) dt
Tj r}zl T}-} i) Jo

< max2|21| (1- r. ) max g(t)

axlfi ()] = max

1\/7"
< — -
_2{1 (1 2]2> }trél[gi(g(t)ﬁo as j — oo.

That is {f;} converges to 0 uniformly on compact subset of B. But, by (48) we have

T fill
Y2 D EDlI< V() (er) JpDw >|
C JA- 2P+ < 20l >]?

= cll¥llg, | (e

(|2 Dlw(=) {(1 ~lo()) o[ +|< o(2)), Jo(2 ! > }

ulle(z)) (A= 2/ D)/ |? + < 2/, u/ >|?

) Wle6R) - o)
J(l—rZ)(|wf| +oot i) + ]
—=u()(g@?) — g™ ) = clipllg, |f; (ryer)|

= llbllg, |fi(red)|

\/—
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u(j}-)
u@™

) |-wnlscet

o)1 2 2 + i+
g_{Z_b”(rj )9 —u( g™

. }—cuwummrjea|

1 1 +1
72{ n@A g — u@ Hg ! )(

Since

1+nr+

. 1\/
] .
T >(1——2j2> - 1lasj—-1,

we can assume that 73.] > 1/2. Thus, by Lemma (1.2.3) and Lemma (1.2.5) we have

g (¢4 2 \* C1& .
Iyl 2 Sl () |~ Wlalired] = 25>
This means that
lim [T fill 5, #

This contradicts the compactness of Ty, , by Lemma (1.2.4).

If\/(l—rz)(lw 12+ + |w] |2) > |w | we let 9] —argwk (k = 2,...,n) and take

fi(z) = (e“92zz + ---+e‘i9nzn) /1 — 1r29(r; 21).

We have ”fj”ﬁu < cand {f;} converges to 0 uniformly on compact subset of B. But
170l

v(|zf|)|z,b(zf) < Vfi(rie,), ](p(zf)uf > +fi(p(2)) < Vip(z)),u >|
VA =122+ |< 2/, u >|?

(2D @) (L= lo@)) o' +1< o) Jo( ! >[ |
— uleDD (A - 1z/DW/? + < 2/, w >|?

u(r)g () (wi| + -+ wa]) [1 =77
X > Cgp. (49)

. 2 . 2 . 2
Ja=m?) (Wl ) + |

This contradicts the compactness of T;, , by Lemma (1.2.4).

(ii) For [, [u(t)]™*dt = oo, if\/(1—7"j2)(|wzj|2 ot wl]) < |wf ], we set

(@) = [ e | @,
Jy g(@®dt o

By Lemma (1.2.3) and fol[u(t)]‘ldt = oo We can get ”ff”b’ < c and {f;} converges to 0
u
uniformly on compact subset of B. But, by (48) and Lemma (1.2.3) we have
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T fill
- v(|Z7)|w(2) < Vfi(rier) JoDul > +fi(p(2))) < V(z)),u >|
- VA =122 + < 2,ul >|2

_v(lZDlw(=) {(1 ~lo() ) Vo +|< o(2)). Jo(2 )l > }

u(le(z)) A= 1Z/D)|?2 +|< 2/, ul >|?

y 9 () () wi | > ce

.2 . 2 .2
J@=r2) (Wil + 4 i) + [l

fim 1750 £l, 0.

j—oo

This contradicts the compactness of Ty, , by Lemma (1.2.4).

Thus

IfJ(l —1?) (|w21|2 + et |w7{|2) + |w1j|2 > |w/|, by (49) we can get contradiction.

If there exists ¢(z/) such that ¢(z/) = |p(z’)|ey, then there is the unitary
transformation U; such that ¢(z/) = pje;U;j € {1,2,..,n}. Now g; = f; o U; " is the
desired function sequence.

Next we prove that (38) holds. Assume that (38) fails, then there exist the sequence
{z/} c B satisfying |¢(z’)| - lasj — ooand aconstant e, > 0 such that

lo(z))] 1

vﬂﬂDW¢@0K1+] s> (50)
0

We take again
<z,<p(zj)>

fi(z) = g(t)dt) :

1
1T g eyt (j"

Then {f;} is bounded in B, and converges to 0 uniformly on compact subset of B. By
Lemma (1.2.1) and Lemma (1.2.3) we have

ITyofill, = cv(2ID|7p(2)]|f (o)
v(1Z/D|w(27)||< Vfi(0(@), Jo(2)u >|
uecn—{0} /(1= |Z/|?)|ul? + |< 2/, u >|?

N2

lo(27)]

=c v(|Zj|)|V1/J(Zj)| <1 + f g(t)dt) —C V(|Zj|)|vw(zj)|

wle@)DgUeE) ) v/ D] (2))| (e (2)), Jo(2))u)]

sup . . .
uec™ —{0} u(loENDV (L = 271D ul? + |< 27, u >|?
|o(27))]

> eIl (14 [ ) evtenloa)
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~ osp =22 v(IZ/ D] (2)]|< @), Je(2)u >| 1)

uec™ {0} u(|p(z )NV (1 = 12712 ul? + |< 27, u >|?
We know that a compact operator is a bounded operator. Thus

. . lo@)| 1 p
supv(zD)| w(z)|< T fo o t)

If fol[u(t)]‘ldt = o0, we have
lim vzDIVip(2)] = 0. (52)
By (50)—(52) and (37) we get
lim |7y, |,

]—)oo
This contradicts the compactness of Ty, ,, by Lemma (1.2.4). This shows that (38) holds.
(c) Foranyf € B,o, We have

v(1zD[V [Ty, (H] ()]

@I 1 c1 v(zDI(2)]
<criwel (14 [ csac) i, + s “ IS
1

% 1= le@AJe@ul® + |< ¢(2),Je(z)u >|*)? Il
A= zI)ul? + < z,u >|? Bu’
By (39) and (40), the above inequality implies that

lim sup_v(1z)|V[Ty, (1](@)] = 0
Z_>1||f||[;

This shows that Ty, ,, isa compact operator from g, , to B, o from Lemma (1.2.6).
Conversely, if Ty, ,, is a compact operator from g, o to B, o, then ¥, Y@, € B, (1 =
1,2,...,n). We can prove that (37) and (38) hold as the proof of Theorem B. By (37), (38)
and Y, Y@, € B, ,, thisimplies that (39) and (40) hold. The proof is complete.
Corollary (1.2.13)[4]: Let u and v be normal on [0,1) (suppose a >% when n > 1).

Suppose ¢ is a holomorphic self-map of B. Then (a) C,, is a compact operator from g, to
B, if and only if

1
lim  sup v(lz]) {(1 — @) Jp(Dul® + |< ¢(2),Jo(2)u >|* }2 _ 0
9 @1~1 yeenoioy k(@ (D)) (1 =1z |ul? + < z,u >|?
and @, € B, foralll € {1,2,..,n}.
(b) C,, is a compact operator from g, , to B, if and only if

1
lim  sup v(|z]) {(1 —le@)He@ul* + < ¢(2),Jp(2)u >|? }2
0 @I=1 yeentioy k(1P @) A= zID)[ul* + < z,u>|?
= 0.
Corollary (1.2.14)[4]: Let u and v be normal on [0,1) (suppose a >% when n > 1).
Suppose ¢ is a holomorphic self-map of B. (a) If
V(IZI)Icp (2)]

221 u(p@)D)
and ¢, € p, foralll € {1,2,..,n}, then C, isacompact operator from g, to g,.

=0
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(b) If
V(IZI)I<p (2)]
21 u(lp@)D
then C,, is a compact operator from g, , to S, 0.
Corollary (1.2.15)[4]: Let n = 1. Suppose u and v are normal on [0,1), and ¢ is a
holomorphic self-map of D,y € H(D). Then (a) T, , is a compact operator from g, to
B, if and only if

=0

@
o Y@@t
beRbweh, amd i o =0 | gy <
Q
VD@l () _
d ll)Eﬁv,lngDEﬁv and |(P%;§r|l—>1 ,U|§0(Z)| =0
an

@l 1 1
P ()l (lZl)ll/J (Z)l(l‘i‘Jo ﬁdt>=0asj mdt_oo

(b) Ty, isa compact operator from g, 5 to B, if and only if
_v(lzDIY(@)lle'(2)]
lim =0
lzI->1 tlo(2)]

and

)
Corollary (1.2.16)[4]: Let n = 1. Suppose u and v are normal on [0,1), and ¢ is a

holomorphic self-map of D. Then (a) C,, is a compact operator from g, to g, if and only if
¢ € [, and

. , o] 1
|£l|r—r>l1v(|zl)|¢ (2)] <1 +-[o —dt) = 0.

v(lz])|p'(2)]
1m
lo@-1 ple(2)]
(b) C,, is a compact operator from 8, , to B, if and only if
v(lz]) e’ (2)]
1m
-1 ple(2)]
Section (1.3): Bergman Spaces of the Unit Ball
For any positive integer n we let
C" =Cx -+ xXC
denote the n-dimensional complex Euclidean space. For any two points z = (zq,:**, z,)
andw = (wy, -, wy,) in C"* we write
(z,w) = zyWy + -+ z,W,,

=0

= 0.

and

z| = 1z 2 + -+ + |z, |2
The open unit ball in C" is the set
={z € C": |z]| < 1}
The space of holomorphic functions in B,, will be denoted by H(B,,).
Let dv be Lebesgue volume measure on B,,, normalized so that v(B,) = 1. For any
a > —1welet

27



dve(2) = c (1 — |z|*)* dv(2),
where c,, is a positive constant chosen so that v, (B,) = 1. The weighted Bergman space
AP 'where p > 0, consists of functions f € H(IB,,) such that
If(2)|P dvy(2) < co.
Brn
The space A% is a Hilbert space with inner product

(f,9)=| f(@g(@)dvy(2).
By,

Every holomorphic ¢ : B,, = B,, induces a composition operator
Cp : H(By) — H(By),
namely, C,f = fo@.Whenn = 1, itis well known that C,, is always bounded on AP
and C,, is compact on AP if and only if
N Sl 1 G
1= @
See [20] and [21].
When n > 1, not every composition operator is bounded on A%. For example, it can
easily be checked with Taylor coifficients that the composition operator C,, is not bounded

on A% when
¢(z) = (n(2),0,,0),
Where
n(z) =Vnhz, - z,.
See [20] for more examples.
The main result is the following.
Theorem (1.3.1)[18]: Suppose p > 0 and a« > —1. If the composition operator C,, is
bounded on Ag forsomegq > 0Oand -1 < f < a, then C, is compact on AP if and only
if
lim — |z|?
1m —Y
z-1-1 = | (2)]?
Note that the compactness of C,, on AP always implies condition (52); we do not need any
assumption on ¢ for this half of the theorem. The assumption that C,, be bounded on Ag
for some f < «a is needed only for the other half the theorem. The exponents p and q are
not important.

We begin with the notion of compact composition operators on A% .

When p > 1, the Bergman space A%, is a reflexive Banach space (see [17] for more
information about Bergman spaces), and all reasonalble definitions of compactness of C,
on A? are equivalent. In general, for any p > 0, we say that the composition operator Co
is compact on A? if

= 0. (52)

lim J Cofie|” dve =0
Bn

k—o0

whenever {f;.} is a bounded sequence in A% that converges to 0 uniformly on compact
subsets of B,,.
For any holomorphic ¢ : B, — B, we can define a positive Borel measure p, , on B,, as
follows. Given a Borel set E in B,,, we set
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tpalE) = V@B = o [ (1= 12 dv(a).
()
Obviously, u,  is the pullback measure of dv, under the map ¢. Therefore, we have the

following change of variables formula:

f(9) dvg = fB Fdy e, (53)

]BTL n

where f is either nonnegative or belongs to L'(B,, dig o). In particular, the composition
operator C,, is bounded on AP if and only if there exists a constant C > 0 such that

IfIPdyupe < C| |fIPdv, (54)
B, B,

for all f € AE. Measures satisfying this condition are called Carleson measures for the
Bergman space AP
Similarly, a positive Borel measure p on B,, is called a vanishing Carleson measure
for the Bergman space A?, if
lim | |f|P dp=0 (55)
k—oo B,
whenever {f;.} is a bounded sequence in A%, that converges to 0 uniformly on compact
subsets of B,,. In particular, a composition operator C,, is compact on Aﬁ if and only if the
pullback measure p,, , is a vanishing Carleson measure for AP,
It is well known that Carleson (and vanishing Carleson) measures for the Bergman
space AP is indenpendent of p. More precisely, the following result holds.
Lemma (1.3.2)[18]: Suppose p > 0 and a« > —1. Then the following conditions are
equivalent for any positive Borel measure p on B,,.

(i)  wisa Carleson measure for A?, that is, there exists a constant C >
0 such that
IfIPdu< C | IfIP dv,
B, B,
forall f € AP,

(i) For some (or each) R > 0 there exists a constant C > 0 (depending on R and «
but independent of a) such that

w(D(a,R)) = Cvq(D(a,R))
forall a € B, where D(a, R) is the Bergman metric ball at a with radius R.
Proof. See [24] for example.
A consequence of the above lemma is the following well-known result about composition
operators; see [20].
Corollary (1.3.3)[18]: Suppose p > 0,q > 0,and @ > —1. Then C, is bounded on AP
if and only if C,, is bounded on AZ.

A similar characterization of vanishing Carleson measures for A%, also holds.
Lemma (1.3.4)[18]: Suppose p > 0 and a« > —1. The following two conditions are
equivalent for a positive Borel measure on B,,.

(i) wis avanishing Carleson measure for A%

(i) For some (or any) R > 0 we have
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_ WOD@R) _
lal-1-v,(D(a, R))
Proof. See [24] for example.

As a result of the above lemma we see that the compactness of C, on A% is
indenpendent of p. We state this as the following corollary which can be found in [20] as
well.

Corollary (1.3.5)[18]: Suppose p > 0,q > 0,and @« > —1. Then C, is compact on AP
if and only if C,, is compact on AZ.

We need two more technical lemmas. The first of which is called Schur’s test and
concerns the boundedness of integral operators on L? spaces. Thus we consider a measure
space (X, w) and an integral operator

TFG) = | HEDFOIG), (56)

X
where H is a nonnegative measurable functionon X x X.

Lemma (1.3.6)[18]: Suppose that there exists a positive measurable function h on X such
that

f H(xy)h() du() < Ch(x)
X
for almost all x and

jX H(x y)h(x) du(x) < Ch(y)

for almost all y, where C is a positive constant. Then the integral operator T defined in
(56) is bounded on L?(X, du). Moreover, the norm of T on L?(X, dp) is less than or equal
to the constant C.

Proof. See [23] or [17].

Lemma (1.3.7)[18]: Suppose ¢ > —1 and t > 0. Then there exists a constant C > 0
such that

dv,(w) - C
-[[Bnll — (Z’W)|n+1+a+t - (1 — |Z|2)t
forall z € B,.
Proof. See [22].

In order to understand the mild assumption made in the statement of the main
theorem, we show how the boundedness and compactness of composition operators on
Bergman spaces can be described in terms of Bergman type kernel functions.

Theorem (1.3.8)[18]: Suppose p > 0, > —1, and t > 0. Then the composition
operator C,, is bounded on A} if and only if

sup (1 — |a|2)tf Avq(2) < oo (57)
sup 5 1T = (@ gt <

Proof. It follows from Lemma (1.3.7) that the boundedness of C,, on AP implies condition
(57).

Next we assume that condition (57) holds. Then by the change of variables formula (53)
there exists a constant C > 0 such that

d Z
(- laly [ Hoa@ .
Bnll — {a, z)[Hiratt
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for all a € B,,. For any fixed positive radius R we have
(1- Ialz)tf dug,q(2) <C
D(a.R) |1 _ (0(, Z)|n+1+a+t
forall a € B,,. Itis well known that
11 —(&,2)| ~ 1 — |al?

forz € D(a,R), and it is also well known that

(1 — |a|>)™** ~ v, (D(a, R));
see [24]. It follows that there exists another positive constant C (independent of a) such
that

Hoa(D(a,R)) < Cvg(D(a,R))
for all a € B,,. By Lemma (1.3.2), the measure u,, is Carleson for AP and so the
composition operator C,, is bounded on AP,

This result is probably well known to experts in the field. The main point here is that t
can be an arbitrary positive constant. This also tells us roughly how far away the
boundedness of C, on A? is from that of Cy 0N AZ.

Corollary (1.3.9)[18]: Suppose p >0, >0, and —1 < p < a. If C, is bounded on
Ag, then C, is bounded on A5
Proof. Writea = f + e with € > 0. Since
2\€ 2 \€
(1 — |z]%) SC1<1—IZI ) <c,
11 —(a, p(2))|° 1-lp(2)]?
where the last inequality is an easy consequence of Schwarz lemma for the unit ball, we
have

j (1= [w|®)* dv(w) - f (1 - |w|®)F dv(w)
B, |11 — (@, e(w))[r+irert = ? B, |1 — (@ @w))|1ith+t
This shows that

dvg(2)
sup (1 — |al|? tJ 4 <
e A e
Implies
dv,(z)
sup (1 — |a|?)t j 2 < oo,
s A =1al)" | T g pplrirare

The desired result then follows from Theorem (1.3.8).
A similar argument gives the following characterization of the compactness of C,, on
AP,
Theorem (1.3.10)[18]: Suppose p > 0, > —1,andt > 0. Then C, is compact on AP
if and only if
dv,(z)
1. 1 _ 2\t .[ a —
e A R e
Corollary (1.3.11)[18]: Suppose p > 0,q > 0, and —1 < B < a. Then the
compactness of C, on Ag implies the compactness of C,, on AP,
We do not need Hardy spaces, we mention here that if C,, is bounded (or compact)
on a Hardy space H? of the unit ball, then C,, is bounded (or compact) on very Bergman

0 (58)
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space AP. This result, along with Corollaries (1.3.9) and (1.3.11) above, can be found in
19].
[The]:orem (1.3.12)[18]: Suppose p > 0 and « > —1. If C,, is bounded on Ag for some
q > 0and -1 < B < a,then C, is compact on A, if and only if
lim L-lal =
zI>17 |1 — |@(2)[?
Proof. According to Corollary (1.3.5), we may assume thatp = 2.

The normalized reproducing kernels of A% are given by
(1 _ |Z|2)(n+1+a)/2

k,(w) = (1 — (w,z)n+i+a
Each k, is a unit vector in A2 and it is clear that
|llirr}_kz(w) = 0,w € B,.
VAR

(59)

Furthermore, the convergence is uniform when w is restricted to any compact subset of
B,,. A standard computation shows that
1 _ |Z|2 >n+1+a

2
Cok,| dvy, = | ———
JBn okl dve (1 ~lo@?
so the compactness of C,, on A% (which is the same as the compactness of Cy ON A2)

implies condition (59).

We proceed to show that condition (59) implies the compactness of C, on A2,
provided that C,, is bounded on Ag for some f € (—1,a). An easy computation shows
that the operator

C,Cp : Az — AL
admits the following integral representation:
w) dv,(w
C(pC(;f(Z) :j |1 _ {( ) a( )n+1+a’
By, @(2), p(w))|
We will actually prove the compactness of C,C, on A%, which is equivalent to the
compactness of C, on AZ. In fact, our arguments will prove the compactness of the
following integral operator on L?(B,,, dv,):
Tf(2) = j T { e (61)
By, @(z), p(w))|
For any r € (0,1) let y, denote the characteristic function of the set {z € C": r <
|z| < 1}. Consider the following integral operator on L?(B,,, dv,,):

T.f(2) = fB H, (2, w)f (W) dve (W), (62)

f € A2, (60)

where

Xr(2)xr(w)
HT(Z' W) = n+l+a
11 = (p(2), p(W))I
is a nonnegative integral kernel. We are going to estimate the norm of T, on L*(B,,, dv,)
in terms of the quantity

1—|z|?
Su _—.
vt 1= 1o @)2
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We do this with the help of Schur’s test.
Leta = B + o, where o > 0, and consider the function
h(z)= (1 — |z|*)7%,z€B,.

We have
_Ca Xr (2) 2t (W)dvg (w)
anHr(Z, w)h(w)dv,(w) = % j[-Bn T o), 0 [T
C_“ XT(Z)de(W)

< :

cg g |1 — (p(2), p(w))|F1+h+o
By the boundedness of C,, on Ag, there exists a constant C; > 0, independent of r and z,
such that

f H,(z,w)h(w)dv,(w) < C (Z)f dvg(w)
B, T\ a = L Xy IBn|1 — (@ (2), p(W))|*+1+B+o’

We apply Lemma (1.3.7) to find another positive constant C,, independent of r and z,
such that

CZXr(Z)
J, e = g
¢ -1z \7,
= 2Xr(Z)<W> (2)

< C,M?h(z)
forall z € B,,. By the symmetry of H,.(z, w), we also have

H,.(z,w)h(z)dv,(z) < C,M?h(w)
Bn
for all w € B,,. It follows from Lemma (1.3.6) that the operator T, is bounded on
L*(B,,, dv,) and the norm of T, on L*(B,,, dv,) does not exceed the constant C,M?.

Now fix some » € (0, 1) and fix a bounded sequence {f;} in A% that converges to 0
uniformly on every compact subset of B,,. In particular, {f,.} converges to 0 uniformly on
|z| < r.We use (60) to write

CoCofi(2) = Fi(2) + Gi(2),z € By,
where

B frw)dv,(w)
F(2) = +1+
wisr 11— {@(2), p(w))|r+1+e
and
_ XT(W)fk(W)dva(W)
G(2) = +1+
B, |1 — {@(2), pw))|"+1+
Since {f, (w)} converges to 0 uniformly on for |w| < r, we have
Jim | 1R @Fdny(2) = 0
For any fixed z € B,, the weak convergence of {f;} to 0 in L?(B,, dv,) implies that
Gi(z) = 0ask — oo. In fact, by splitting the ball into [z] < dand§ < |z| < 1,itis
easy to show that

lim Gy (2) = 0

uniformly for z in any compact subset of B,,.
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It follows from the definition of T, that
Ilesza Sf

B, |z|sr
Since {fi} is bounded in L*(B,,dv,), and since the norm of the operator T, on
L*(B,,, dv,) does not exceed C,M?, we can find a constant C; > 0, independent of r and

k, such that

|Gk|2dva + |Tr(|fk|)|2dva'
Bn,

|Tr(|fk|)|2dva < CBMT?G
By,
for all k. Combining this with
lim |Gk|2dva =0
k—co |z|sr
we obtain
limsup | |G|?dv, < C3M2°.
k— o0 Bn
This along with the estimates for F;, in the previous paragraph gives
lim supf |C¢C(;fk|2dva < C3MZ°.
k—o0 Bn
Since r is arbitrary and M,, — 0 asr — 1~ (which is equivalent to the condition in (59)),
we conclude that
limj 1C,C fre| “dvg = 0.
Br,

k— o0

So C,, is compact on A% and the proof of the theorem is complete.
Note that when n = 1,(C, is bounded on every Bergman space Al so the

characterization of compact composition operators on A? does not need any extra
assumption. However, our proof here still works. The idea of using Schur’s test to prove
the compactness of composition operators seems to be new even in the case n = 1.

A similar compactness result was proven in [19] for composition operators on A?. But
the condition in [19] involves the derivatives of ¢ and is much stronger than our condition
here.
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Chapter 2
Isometries and Weighted Composition Operators
We show that into isometries and disjointness preserving linear maps from C,(X)

into C,(Y) are essentially weighted composition operators Tf = h-f o¢ for some
continuous map ¢ and some continuous scalar-valued function h.
Section (2.1): Function Spaces

Let A and B be Banach spaces. By an isometry from A onto B we mean a linear, norm
preserving and surjective map between these Banach spaces. The isometries of most of the
well-known Banach spaces have been described. The classical Banach-Stone Theorem
states that any isometry from C(X) onto C(Y) is induced by a homeomorphism of Y and
X. This result has been extended to various other Banach spaces by Nagasawa for function
algebras [41]; by Amir [26], Cambern [28] and Cengiz [32] for regular subspaces; by
Cambern and Pathak [30], Pathak [42] and Pathak and Vasavada [44] for spaces of
differentiable functions; by de Leeuw [40] and Roy [46] for Lipschitz functions; by Pathak
[43], Vasavada [47] and Rao and Roy [45] for absolutely continuous functions. In all the
above-mentioned the following situation was considered.

Let A be a subspace of a Banach space C(X), which separates points of X, and let T,
be a linear map from A into a Banach space V. We assume the complete norm on A is
given by one of the following formulas:

If Il = max (|| flle, IT4f |l ) for f € A, (M)
where by ||. || we denote the usual sup-norm on C(X);
IF Il = 1flleo, IT4f 1l for f € A4, )

If1l = sup{lf (Ol + |Taf (X)]:x € X}for f € 4, (C)
Where, in this case, we assume that V = C(X).

For example the space C1(X),X c R, is defined by amap T: C*(X) — C(X): Tf = f/,
via the formula (M), (3))or(C). The space AC[0,1] of absolutely continuous functions is
defined by a map T: AC[0,1] — L[0,1]: Tf = f'. The space Lip,(X), X-metric space,
0 < a <1, is defined by

O =f)

T: Lips(X) — C(BX x X{(x,x):x € X})): Tf (x,¥) = (@)

Assume next that Bis a subspace of C(Y), which separates points of Y, and that the norm
on B is given by a map Tz: B — U, via the same formula as the norm of A. The question
arises whether any isometry ® from A onto B is of the canonical form

P =xO).-fep),fEAYEY, (%)
Where ¢ is a homeomorphism from Y onto X and x is a scalar valued function defined on
Y such that || = 1.

We give a very simple, elementary scheme to verify the abovementioned problems.
This scheme covers all the results we mentioned at the beginning of the introduction. The
results hold in both real and complex cases.

We denote by ext V the set of all extreme points of the closed unit ball V; of the
space I/; by V* we denote the space of all continuous linear forms on V. If A is a subspace
of C(X) then we identify a point x of X with a linear functional §, on A defined by A 3
f — f(x). By S we denote the set of all scalars of modulus one. If we do not specify the
set of scalars, we mean that the result holds both in the real and in the complex case.
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Let A be a normed subspace of a Banach space C (W), both with the usual sup norm. By a
standard result [33] every extreme point of A7 is of the form A6,,, where w € W and || =
1.
Note that if the norm on A is defined by the formula (M) then there is an
isometric embedding A 3 f — f € A < C(W), where W = XUVy, defined by
f@=fxex,
f?) = v (Tyf), v’ € VY.
Hence any extreme point of A7 is of the form
f— af(x),wherex € Xanda € S
or of the form
f+— FoT,(f), whereF € extV".
If the norm on A is defined by (3)) thenamap A3 f+— f e A c C(X x Vy)
defined by
fO,v™) = f(x) + v (Tyf), (x,v*) €X X V7,
Is an isometry. Hence any extreme point of A7 is of the form
froaf(x)+FoTy(f),wherex € X,F € extV,a € S.
If the norm on A is defined by (C) then a suitable choice is W = X x S and
fle, ) =f(x)+ AT )(x),x €X,1ES.
Hence any extreme point of A7 is given by

f=af(x) + BT,f(x),
wherex € X,a,8 € S.

Let A be a subspace of a space C(X),X compact Hausdorff space. We say that A is an
M-subspace of X, Y'-subspace of X or C-subspace of X if there is a Banach space V and a
linear map T4: A — V such that

(i) the norm on A is given by the formula (M), (3))or(C), respectively,

(ii) for any x;,x, € X, functionals &, and &,, are linearly independent, and if the
corresponding assumptions listed below are satisfied:

(iiip) Xy = {x € X: 6, € ext A"} is a dense subset of X,

(iiiy ) There is an F in extV* such that

Xo={x€EX;Va €S, b, +aF,oT, € ext A*}

Is a dense subset of X,

(iiic) X ={x e X:Va,B € S,ad, + [, o T, € ext A"} is a dense Subset of X;
(ivy )ifad, + FoTy = a'Sy + B'F' o Tywhere F,F' € extV*,x,x' € X,a8, + F o
T, € ext A"and a’, B' are scalars then x = x" and a = o/,
(ive) ifad, + 8, 0Ty =a'd, + '8, 0Ty, Where x,x" € X, ad, + 6, o T4 €ext A*and
a', B are scalars, then x = x" and a = «'.
Theorem (2.1.1)[25]: Let A and B be M-subspaces of C(X) and C(Y), respectively.
Put X, ={x € X: 6, €extA’},X ={ad,:x €Xy,a€S}LYy={y€EY:§, €EextB}Y =
{ad,:y €Y, a € S}. Then an isometry @ from A onto B iscanonical, of the form (x) if
and only if ®*(¥) = X.

The assumption of the above Theorem, that ®*(¥) = X, looks very strong and so the
Theorem seems to be almost trivial, and as a matter of fact it is true, but the advantage of
this statement is that for all the classical function spaces, with M norm, this strong
assumption can be easily verified. The method of verifying this. We define a property P
concerning the points of A*(B*) such that F € A* (G € B*) has this property if and only if
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F € X (G € Y). This property is defined by the weak-* topology of A*(B*), the norms of
A and A* (B and B*) and the linear structures of these Banach spaces.

The map @®* is a weak-* homeomorphism and a norm isometry from B* onto
A* so G € B* has the P property if and only if F = ®*(G) € A" has the same property and
hence we get ®*(Y) = X. A similar remark concerns the next Theorems also.
Proof. The "only if" part of Theorem (2.1.1) is trivial.

Assume that ®*(Y) = X. Then there are two functions ¢,:Y — X and ¢,:Y — S
such that

D*(28,) = 9,1, ¥) .84, ay) for A6, € Y.
Foranyy € Y and A;, A, € S functionals 4,6,, andA,6,, are proportional.
Henced, (1,5)and 8, (1,,) are also proportional and this means thatp,(4,,y) =
©,(A,,y) So ¢, does not depend on the first coordinate and, by linearity of ®*, the map
@,1s linear with respect to A. We get
®*(268,) = 292(4,Y) 8, () for 18, € Y. (1)

Since @®* is a weak-* homeomorphism of ext B* onto ext A* as well as a homeomorphism
of the closures of these sets, and moreover the weak-* topologies of {6,: x € X} € A* and
{6,:y € Y} c B* coincide with the original topologies of X andY, the map (¢;, ,): Yy —
X can be extended to a homeomorphism (¢, y) from ¥ =S x Y onto X = S x X. Hence
from (1) we get (*) and we are done.
Theorem (2.1.2)[25]: Let A and B be );-subspaces of C(X) and C(Y), respectively.

Then an isometry ¢ from A onto B is canonical, of the form (*), if and only if for any
a8, + G; o Ty € ext B*,i = 1,2, the following two implications hold:

@) y, =y, iff x; = x, and

(b) G, o Ty andG, o Ty are proportional iffF; o T, andF, o T, are proportional; here by x;
and F;, we denote the elements of X and ext V*, respectively, such that CID*(alcSyi + G, o
Tg) = P18y, + Fy o Ty, for some scalars ;i = 1,2.

Proof. As before the "only if" part is trivial. To prove the "if" part assume that an
isometry @:A — B satisfies our assumptions. Hence there are functions ¢, ¢,and
@psdefined onthe setext B* € S X Y X extU*, with values in X, S and extl/’*, respectively,
such that

q)*(a5y + Gl ° TB) = <p2(ar Y, G)6¢1(a,y,6) + <p3(oc, Y, G) ° TA + (2)

for aé, + G o T € extB".

By the assumption (a) the function tpi does not depend on a and G and we write
@, (y)in place of ¢,(a,y, G). By (b) the map ¢5 is of the form @5 (a,y, G) @.(G) where
04(G) € extV* and ip has values in S.

By the same argument as in the proof of Theorem (2.1.1) the map ¢, can be extended to
a homeomorphism ¢ from Y onto X. So to end the proof we have to show that ®*maps
ady, onto @, (a,y, G)8y(y)-

Forany H = ad,, + G; o Ty € ext B* we define

Qp(H) ={a’'8, + B'G o TgextB*: a’, B’ € S}.

By our assumptions we have Qg (H) = Q,(®*(H))for any H € extB*. Let G, and Y, be as
In assumption (iiiz) for the space B. Notice that for any y € Yythe setQg (8, + G © Tg) is
homeomorphic to S x S. Hence, by (2), the set
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Q4 ((pz(l,y, Go)0y, ) T ¥(1,y) <p4(GO)) is also homeomorphic to S X S and so
aby, ) + Bps(Gy) € ext A forally € Yy, a,p € S.
Hence we have X, = ¢,(Y,) and we can put F, = ¢,(G,) in our assumption (iiiz). Notice
that for any vector space E, for any functionals e;, e;. on E and for any e € E we have
card({|lae;(e) + Be;(e)|:a, B € S}) = 1iffe;(e).e;(e) = 0.
Hence for any f € A and any y € Y, we have the following implications:
fl@1(¥)) = 00r Fy o T,(f) = 0 iff
Card({|H(f)|: H € Q(8,,¢) + Fo ° Tx)}) = 1iff
Card({|H(f)|: H € Qp(8, + Gy o Tp)}) = 1iff
P(f)(y) =00r GyoTe(f) = 0.
This means that the union of §,, (,y and kerF; o T, is equal to the union of kerCD*(Sy) and
kerd®* (G, o Tg)- By the assumption (4s) functionals 80, and F; o T,are linearly
independent so the above proves that for any y € Y, we have two possibilities.
(i) @(8y) = X(1)8p, ) and @*(Go © Tp) = X' (¥)Fy © Tyor
(i) ©*(8,) = X' G)Fy o Ty and " (Go © Tp) = X(¥)3p, 3,
where y and y' are scalar valued functions.
On the other hand by our assumption (b) we have
d*({a's, +B'GoTgy€Y,a,B€S}) = {ab, +BFyoTy:x € X,a,p € S}.
This shows that the second possibility does not hold for any y € Y, (except in the trivial
case when card(Y) = 1); so to end the proof of (*) it is sufficient to notice that by (i), (2)
and by the assumption (ivy ) we have [x| = |¢,| = 1.
Theorem (2.1.3)[25]: Let A and B be C-subspaces of C(X) and C(Y), respectively.
Then an isometry @ from A onto B is canonical, of the form {¥*), if and only if the
following two conditions hold:
(a) for any «;6,, + B;6,, o T € extB™,i = 1,2, we have y; =y, =iff x; = x, where
by x; we denote an element of X such that
O*(a;8,, + Biby, © Ts = aiby, + By, o Ty )
for some scalars a;, B;,i = 1,2;
(b) CI>*({a6y:y€Y,aES})ﬂ{a6xoTA:xEX,aES}=Q).
Proof. The "only if" part is again trivial. Assume that @ satisfies assumptions (a) and (b).
Following what is by now a standard argument we get a homeomorphism ¢ from Y onto X
and scalar valued functions ¢,and ¢4 defined on S XS x Y, with |p,| =1 = |p;|such
that
CD*(aSy + p6,, © Tz) = ¢2(a,y, G)Spyy T ©3(a,¥,G). 84y © Ty, (3)
Wherey e Yand a,8 € S. Forany H = ad, + 5, o T, € ext A* we define
Qu(H) ={a'6, + '8, T, €Eext A" a,B € S}.
As in the proof of the preceding Theorem we show that for any y € Y we have two
possibilities:
(i) CD*(Sy) = X(¥)8y(y) and CD*((Sy o TB) = X' (¥). 6y © Tyor
(ii) CID*(Sy) =X (¥)8yp(y) ° Tyand CID*((Sy ° TB) = X(¥)- 8y (y)-
By the assumption (b) the second possibility never holds; by (ive) we then get |x| =
lp,| = 1 and we are done.

38



To verify the assumptions of our schemes, given by Theorems (2.1.1)-(2.1.3), it is
usually necessary to have at least partial description of the extreme functionals in the unit
ball of the dual spaces. Hence in some cases it is easier to apply the following Theorem,
which is an immediate consequence of the Theorem of [37].

Theorem (2.1.4)[25]: Let A be a complex subspace of C(X), X compact Hausdorff Space,
such that

(i) A is sup-norm dense in C(X),

(ii) the norm on A is given by a map T,: A — V,, via the formula (M) or (})),

(iii) A contains the constant function 1 and 7,(1) = 0.

Assume next that B is a complex subspace ofC (Y) which satisfies the analogous
assumptions (i)-(iii). Then any isometry ® from A onto B, such that (1) = 1 is of the
form

P(f)=feq forfeA
Where ¢ is a homeomorphism from Y onto X.
Example (2.1.5)[25]: Let A = C1(X) and B = C1(Y) be algebras of continuously
differentiable functions defined on the compact subsets X and Y of the real line,

We do not assume here that the sets X and Y do not contain isolated points but we
understand that the derivative of a function f € C1(X) is defined only on the set of
nonisolated points of X. Assume that the norms on A and B are given by the formula (M);
this means

If1l = max(llflle, If"lle). f € A(B).

We prove that A is an M-subspace of € (X). The first two assumptions of the definition of
M-subspace are evidently fulfilled. To show the last one notice that
for any x, € X there is an f € C1(X) such that ||f]l = lIflle = f(x0) = 1> ||f]loand
such that |f(x)| <1 for x € X\{x,} Hence for any x, € X the functional &y, is an
extreme point of A7, so X, = X. Notice also that for any x, G X thereisa g € C*(X) such
that |lgll = 19’ lle = g’ (x0) =1 > ||glle, Hslloo and such that \g'(x)\ < 1for x €
X\{x,}. Hence

ext A* ={ad,:x € X,a € S} U {ad,:x € X,a € S}, (4)
Where by &, we denote a functional defined by 6,.(f) — 6, e D(f) = f'(x).

Now let & be any isometry from A onto B. We prove that ®*(Y) = X. To this end we
define the following property concerning points of A*(B™).

F € A" has the P-property iff F € extA* and there is a G in ext A*, not proportional to F,
such that for any weak-* open neighborhood U c extA® of G and any f € A c CA™ we
have: if f|; = 0then F(f) = 0.

We check that F € A* has the P-property if and only if F € ext A*\X. Fix any Point
Xo € X and put F = ab,, with a €5. By (4) F € extA™ and for any weak-* open
neighborhood U c ext A*of the functional §,, and for any f € A we have
fly =0 = f = 0onanopen neighborhood of x, = f'(x,) = 0.

Hence any element of ext A*\ X has the P-property.

Now fix again x, € X and put F = ad,. Let G € extA*"\{yF:y € S}. By (4)

We have two possibilities: 1. G = 8, ,x; # xo or 2. G = 6, . If the first one Holds
then we put U = {yd,: |x — x1| < |xo — x1|/2,y € S}; evidently there is an fin A c A™
such that f|; =0 and f(x,) = 1. If the second possibility holds we putU = {yd,:x €
X,y € S} and put f = 1. Hence F does not have the P-property.

We have proved that F € A* has the P-property if and only if F € ext A"\ X.
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This property is defined by the weak-* topology of A*, and the norm and the linear
structure of A* ; this means by the properties which are preserved by ®*. Hence F =
®*(G) € A” has this property if and only if G € B* has, and this proves thatd*(Y) = X.

By Theorem (2.1.1) we now get that any isometry @ from C1(X) onto C1(Y) is of the
form

P =x).f.o(y)forfeAy€EY,
Where x € C1(X),|x| =1 and ¢ is a homeomorphism from Y onto X. It is also easy to
verify now that since ® preserves both M-norm and sup-norm, it also preserves the sup-
norm of the derivative and hence we get |¢'| = 1.

We have assumed at the beginning of this example that the sets X and Y are compact. In
fact this assumption is not essential and the same holds for arbitrary subsets of the real line
not necessarily bounded and closed. We then consider A as a subset of C(fX) and the
proof is slightly more technical.

The general form of the isometries of complex C1(X) spaces, defined on a compact
subset X of the real line, without isolated points, was investigated by Pathak and Vasavada
[44].

Example (2.1.6)[25]: Let A = AC(X) be the space of all absolutely continuous, scalar
valued functions defined on a compact subset X of the real line, such that X = intX. We
define norm on A by

IF1l = max(llflle, IIf'1ly) for f € 4,
Where |||l 1 = fxlf’l dm and m is the Lebesgue measure.

As in the preceding example it is easy to notice that for any x, € X thereisan f € A
such that [|fll = lIflle = f(xo) = 1> [If'llsand | £ (x)| < 1 for x € X\{x,}. Hence X, =

X and A is an Af-subspace of C(X). Notice also that for any F € ext(Ll(m))* =
ext(L*(m)) and a function f € AC(X) defined by

) = — F(x) dm(x) —
m(X)

2miX] J F(x) dm(x)

XN(—oo,t) X
We have ||f]l = 1, |[flle < %and forany G € ext(L*) = ext(L')

G(f): = jc;f'dm = 1iffG = F.

X
This means that the function f € A € C(X U ext(L™)) peaks exactly at the point F €
ext(L™), so any such point F is an extreme point of A* and we have
ext A* = {ad,:x € X,a € S}U{FoD: F € ext(L”)},
Where D: AC(X) — L! is defined by D(f) = .

By Theorem (2.1.1) to prove that any isometry ®from AC(X) onto AC(Y) is canonical
we have to, as before, define the setX = {ad, € ext A:x € X, € S} by the weak-*
topology of A* and the norms and the linear structures of A and A*. We have F € X iff F €
ext A* and there is a weak-* open neighborhood of F in ext A* which is homeomorphic to
a subset of S X R, R the real line.

Example (2.1.7)[25]: If X is any compact metric space with metric d we let

. 3 . 3 lf (x) — fF()
Lipo(X) =f € CQAO: If llae = SUP T daxy) < oo

XEY
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and

L) = {7 € i 0:=  tiy 2o

both provided with the M-norm; this means with the norm defined by
£ 1l = max(llf lleo, 11l g2).

As before it is easy to check that both Lip,(X)and Lip,(X) are M-subspaces of
C(X). Therefore to prove that any isometry from Lip, (X) onto Lip,(Y) or from Lip,(X)
onto Lip,(Y) is canonical we have to define a property which "separatesX = {ad,:x €
X, a € S}rom the rest of the extreme points of the unit ball of (Lip,(X))* or (Lip,(X))*
We have F € ext A*\X iff F € ext A* and there are sequences (F*)%_, and (F)%_,1s
uch that (F{* — F{)\I|F{* — F3!|| tends to F in the norm topology.

The isometries of the complex Lip, (X)spaces with the above M-norm were considered
by Roy [46], when X is connected with diameter at most 1, and by Vasavada [47], when X
satisfies certain separation conditions. A similar space defined on the real line was
investigated by de Leeuw [40].
Example (2.1.8)[25]: Let A = C'(X)and B = C*(Y) be the same vector spaces as in
Example (2.1.5) but now with the }:-norm,; this means with the norm given by

IFIF=1flleo + [1f Nl  f € A(B).

To prove that A is a }-subspace of C(X) it is sufficient to notice that for any x; # x, in X

and any a,f € S there is an f in A such that ||f|| =1, f(x;) = a/2,|f(x)]| < % for x #
x1, f'(22) = B/2 and |f'(x)] < 5 for x # x,- Hence
{aby + 6, 0D:x #y,€ X,a,B € S5} Cext A™.
Now let @ be any isometry from A onto B. To prove that @ is canonical, by Theorem
(2.1.2), we have to show that the assumptions (a) and (b) of this Theorem are Satisfied. To
see this we define two equivalence relations ~1 and ~2 on ext A* by the following
formulas:
@16y, + FioD_1a;8,, + F,0D iff x; = x, (5)

And

@10y, + F0D_;a;6,, + F,0D iff x; = x; iff F;oD and F,0D are proportional.  (6)
To verify (a) and (b) we just have to prove that the map ®* preserves both the above
relations. We prove this by defining ~1 and ~2 in terms of the weak-* topology of A*, the
norms and the linear structures of A and A*, so in the terms which are preserved by ®*. To

this end we notice that a sequence (Ofn5xn + B 6y, © D):;lCextA* tends t0 ayd,, +

Boby, o D in the weak-* topology iff an a, — ag, B, — Bo, xn, — xo and y,, — y,,and
in the norm topology iff «a, — ay, B, — Bo, Xn — xoand y,, = y, for all but finitely
many n. We have F_; G iff there are sequences (F,)m=iand (G,)n=1 in ext A* which
tend, in the norm topology, to F and G, respectively and there is a scalar a such that
dim(span{E,:n = 1,2,...}) = o and E, + aG,, = F + aGforalln € N.

We also have F_, G iff there are sequences (E,)n=,and (G,)n=q in ext A*which tend
to F and G respectively, in the weak-* topology, but do not tend in the norm topology, and
there is a scalar a such that F,, + aG,, = F + aGfor alln € N.

The isometries of the complex € [0,1] space with the above ¥ -norm were described
by Rao and Roy [45].
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Example (2.1.9)[25]: Let A = AC[0,1] be the spaces of all complex absolutely continuous
functions defined on the unit interval with the E-norm; this means with the norm given by
I =1fllo +1If" Nl fEA

As we noticed any extreme functional on A is of the form
ady,+FoD

Aaf—>af(x)+fF.f’dm, (7)
Where x € X,a € S, m is the Lebesgue measure and F is an extreme point of (L1)*, which
we identify with a function F € L™ such that |[F| = 1 a.e. To prove
That A is a ), -subspace of C[0,1] we have to show that there is an F, in ext(L*) such
that for any x € X and any a € S the corresponding functional defined by (7) is an
extreme point of A7. To this end let K be a measurable subset of [0,1] such that for any
open subset U of [0,1] we have 0 <m(K NnU) < m(U). By Lemma 2.1 of [45] the
desired function F, can be defined by
1 ift ek,
FRO={" " ¢,
To prove that any isometry from A onto itself is canonical we have to, as in the previous
example, describe the equivalence relations defined by (5) and (6) by the weak-* topology
of A*, the norms and the linear structures of A and A*. To this end notice that a sequence

(en8y, + Bnby, OD):oleext A* tends to ad,F oD in the weak-* topology iff a,, —

a,x, — x and F tends to F in the weak-* topology of L*; and in the norm topology iff
a, — a,x, = x for all but finitely many n € N and ||E, — F|| — 0.

By Lemma 2.1 of [45] we have and F_,G iff F and G are contained in the same
connected component of the set ext A* equipped with the norm topology, and F_,G iff
there are sequences (F,) =, and (G,)n=; in ext A* which tend, in the norm topology, to F
and G, respectively and a scalar a such that dim(span{F,:n = 1,2,...}) = oo andF, +
aG, =F +aG foralln € N.

The isometries of the spaces AC[0,1] have been described by Cambern [28] and by
Rao and Roy [45].

Example (2.1.10)[25]: Let A = C1(X) and B = C*(Y) be as in Example (2.1.5) but now
with
the C-norm; this means with the norm given by
If1l = sup{lf (Ol + |f"(x)|: x € X}.
In order for ||. || to be a well-defined norm we have to assume now that X and Y
Do not contain isolated points.
As before, it is standard to verify (see [30], for the complex case) that

ext A" ={ab, +BéyoD:x € X,a,f € S}.
Hence A and B are C-subspaces of C(X) and C(Y), respectively. To prove that any
isometry from A onto B is canonical we have to check whether assumptions (a) And (b) of
Theorem (2.1.3) are satisfied. To this end we describe the equivalence relation on ext A*
defined by

ad, + B0, o D~a'6, + '8, o Diff x = x'
In terms of the weak-* topology of A*, the norms and the linear structures of A and A*, and
we also "separate” the set {ad, € A":x € X,a € S} fromthe set {ad, oD € A" x € X,a €
S} by the same properties, which are preserved by ®*. We have F ~ G iff F and G are
contained in the same connected component of the set ext A*, equipped with the norm
topology.
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We also have F € {ad,:x € X,a € S}is an open subset of the set {ad,:x € X,a €
SYU{ad, o D:x € X,a € S}, equipped with the norm topology.

The isometries of the complex C!(X) spaces with the C-norm have first been
considered by Cambern [28] for X = [0,1] and then by Cambern and Pathak [30] for X
any compact subset of the real line, without isolated points.

It can be proved that A*(K) gives M—, Y — and C-subspaces of C(0K), where 9Kis
the topological boundary of K, and that all the assumptions of Theorems (2.1.1), (2.1.2)
and (2.1.3) are satisfied for A = A'(K), B = A(L). Hence any M—, Y — or C —isometry
® from A'(K) onto A1(L) is of the form

f(z) = x(2).fop(2),f € A'(K),z E L,
Where ¢ is an analytic homeomorphism from L onto K, with |¢’| = 1 and x € A'(K),
with || = 1.
Example (2.1.11)[25]: Let X be a compact subset of the real line. For 1 < p < oo we

Define

ACP(X) ={f € C(X): f'exists a.e., f' € LF(X)}
and we define a norm on AC? (X) by
WAl = 1Iflleo + 1f"1lp-

For p = 1 (resp. 00) we get the space AC(X) (resp. Lip(X)). Rao and Roy [45] proved
that any isometry from the complex ACP ([0, 1]) space, p = 1 orco onto itself is canonical
(cf. Example (2.1.9)) and asked whether the same holds for 1 < p < co. The answer is
positive and is a consequence of the following more general proposition.

Proposition (2.1.12)[25]: Let A be a complex subspace of C(X), X compact Hausdorff
Space, such that

(i) A is sup-norm dense in C(X),

(i) The normon A is given by amap T,: A — V, a, via the formula (}),

(iii) A Contains the constant function 1 andT,(1) = 0,

(iv) dim(T,(4)) = 2,

(v) V is strictly convex,

(iv) For any unimodular function y € A such that T,(x) = 0 a map

ASf—f/xeA
Is a well defined surjective isometry.
Assume next that B is a complex subspace ofC{Y), Y compact Hausdorff, which also
satisfies assumptions (i)-(vi). Then any isometry & from A onto B is of the form
O(f)=x.fop, fEA,
Where ¢ is a homeomorphism from Y onto X and y € B is a unimodular function on Y
such that Tz (x) = 0.
Proof. By Theorem (2.1.4) and by our assumption (vi) it is sufficient to prove that ®(1) is
a unimodular function on Y such thatTz{®(1)) = 0. We say that an element g of A has the
P-property if ||g|| = 1 and if for any f in A there isa 8 € S such that
lg + BfIl = llgll + lIf1l.
It is evident that this property is preserved by our isometry @. By the definition of the
normon A forany f € Aand 8 € S such that

If |l = supxexRe(Bf(x))
We have

11+ BFIl =11+ Bfllec + ITa(NOIl = 1+ (I flleo + IT2GOHI = 1+ IfII-
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Hence to end the proof we have to show that if g € A has the property P then g is a
unimodular function on X such thatT,(g) = 0.
We first prove that |g| = con X for some constantc, then we prove that T,(g) = 0
and then from the definition of the norm on A we get c = ||gll = llgll = 1.
Assume that there is an x, € X such that |g(x,)| < [|gll- by assumption (i) there is an
f in A such that

Ifllo = 1gllc — lg(x0)I
And

1
FCI < Mgl = 1gCII +5 (gl = 1g(xo)) forx € X
For any 8 € S we have

1
g+ Bflleo < llgllo + 5 lIfllco;

So
lg +Bfll=1lg +Bflle + [ITalg + BOII;

1
< liglleo + 5 liflleo + ITa (I + ITa(HI

1
= lgll + 1A =S M flle < T+ NFI

Hence|g| = const. Assume now thatT,(g) # 0; by assumption (iv) there is an fin A such
that T, (f)and T4(g) are not proportional. Since V, is strictly convex
For any h,h' in V, we have ||h+ h'|| = ||h|| + ||R'|| iff h and k' are proportional and
hence for any § € S we get

lg +BfIl = llg + Bfllw + ITaCg + B

< llglleo + llflleo + I T2l + (Ta(OIl = 1+ lIf]I.
Hence T,(g) = 0 and we are done.

Example (2.1.13)[25]: Let X be a compact metric space, with metric d and let Lip, (X),
Lip, (X) Be defined as in Example (2.1.7), but now with the }-norm; this is with the norm
defined by
WA= flleo + [1f 1l

Rao and Roy [45] proved that any isometry from the complex Lipi [0, 1] onto itself is
canonical and asked whether the same holds in general. To answer this question let X, Y be
compact metric spaces, let A be equal to a complex Lip, (X) or Lip,(X)space and let B be
equal to a complex Lip,(Y)or Lip, (Y) space. We prove that any isometry & from A
onto B is canonical and hence of the form

Cf(y) =cfop(y).f EAYEY,
Where |c| = 1 and ¢ is an isometry from Y onto X. To this end, by Theorem (2.1.4), it is
sufficient to prove that for any such isometry &, ®(1) = yjs a constant function of norm
one.
Put

y=BY XY —-{(y):yer},
Define T: B — C(y) by

9(y1) — g (y2)
Tg(y1,y2) 2 O y)

and for any g € B let us denote by g an element of C(Y X y x S) defined by
gy wp) = g(y) +pTg(w).
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As we noticed in the introduction the map g — g i s an isometric embedding from B onto
B c C(Y x y x S) and any element G of ext B* is of the form

G =vdy,wB)=vg(y)+vBTg(w).
FiX (y9,wo,Bo) € Y X w X S and let u, be any norm one measure on Y X y X S which
represents, on B, evaluation at the point (y,, wo, 5,)- Considering any function g, € B
which peaks exactly at the point y, it is easy to notice that u, is concentrated on the set
{yo} X y x S and that for any 0 <9 < 2w a measure puy definedonY X y x S by

5 .u19(E) ::u({(yquB):(y'w'ewﬁ) EE}) _
represents, on B, the functional of the evaluation at the point (o, wo, e ~?F0).
Hence we can define a map Wy: ext B* — ext B* by

8 —_ Ve 9
Y(YG.0p) =Yy 0,eF)
Forany F € ext A* we have |F(1)| = 1, hence for any G € extB* we also have
|G| =1.LetG =6, +B6,°T € ext B*. Forany 0 <9 < 2m we have
1= (O = |x») + e BT (0 (W),
hence for any such G we have two possibilities:

x(y) = 0and [T()(w)| = 0.

lx()| =1and T(x)(w) = 0.
Since 1 = |lxll = llxlle + ITGO) o We get that the second possibility always holds, this

means that T (y) = 0 and we are done.

Beside the extensions of the surjective Banach-Stone Theorem for various function
spaces also considered injective isometries between classical Banach spaces (see [27],
[34], [35], [36], [38]) and isomorphisms with a small bound (see [26], [27], [29], [31],
[32], [36], [38], [44]). These problems in general seem to be much harder and we do not
know whether the similar general schemes can be produced. The following example shows
however that even for a very simple function space an injective isometry may be "very
uncanonical." Let A be equal to C1[0,1] with the M-norm. Let ¢ be a continuous map
from [0, 1] onto A7 equipped with the weak-* topology. We define ®: A — A’ by

t

or

*(N® = [ ¢
0

On the other hand, if we assume that the injective isometry from the above space A4 into
itself preserves the constant function then it is automatically surjective and of the
canonical form. This can be proven exactly by the same arguments as used in [37].
Section (2.2): Banach-Stone Theorem

For T be a compact Hausdorf space and let B(T)be the open unit ball of the compex
Banach space C(T)of all complex-valued continuous functions on T, with the uniform
norm. if u € C(T) satisfies the condition |u(t)| =1 forallt € T, and if x € C(T) is such
that u + {x € B(T)the closure of B(T) for all { € 4( the open unit disc of C). Then
necessarily x = 0. Hence u is a complex extreme point of B(T) . on other hand, if , for
u € B(T), there is some point t, € T such that|u(t,)| < 1. then |u(t)| < 1 — ¢ forall t in
some neighborhood U of in T and for somee > 0. If x € C(T)\{0} is such that supp (x) c
Uand||x|| < &,thenforall t € Tand all { € 4,

lu(t) + {x()| < 1,
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Showing that u is not a complex extreme point of B(T). if x € 4.8 € C\{0}, and if r >
0, then either x + rB & 4. hence a complex extreme point of B(T) is also a real extreme
point. In conclusion, the following lemma holds.
Lemma (2.2.1)[48]: The set I'(T") of all w € C(T) such that |u(t)| = 1 forall t € T is the
se of all (complex=real) extreme points of B(T).

Let S and T be compact Hausdorff spaces, and let A be a surjective isometry of C(S)
onto C(T). if A(0) = 0. according to a theorem of S. Mazur and Ulam [53]. [49], A €
y(C(S), C(T)). If this is the case. Then, by a classical theorem established by S. Banach
[49] when S = Tis the interval [0, 1], and by M. H. Stone [54] in the genral case (see also
[33]), there exist a homeomorghism 7 of T onto S and a function x € I'(T) such that

(Ax) (@) = a(t)(x.T)(t) (22)

Forall x € C(S) and all t € T hypothesis that the isometry A be surjective is essential for
the validy of the Mazur-Ulam theorem. An example will be constructed of a non-surjective
linear isometry A of C(T) onto C(T) whicis fixes 0 but non-linear. The fact that as will be
shown-such an isometry does not map I'(T) into itself turns out to be crucial. Indeed the
following theorem holds, which extends linear isometries.
Theorem (2.2.2)[48]: let A € y(C(S),C(T)) be such that ||[A]| < 1. if

AT(S) c I(T). (23)
Then there exist a continuous map 7: S — T and a function « € I'(T) for which (23) holds.
Moreover, A is a linear isometry of C(S) into C(T)if, and only if, A is injective. And that
happens if, and only if, T is surjctive.
Forany t € T, the map C(S) 3 x — (Ax)(t) is a continuous linear form on C(T), by the
Riesz representation theorem, there exists a unige regular Borel measure u; in Ssuch that

(U@ = [ xdpte = Gop)
Then (23) reads

(w,p)l =1 (24)
For all uel'(T)and t € T. it will be shown now that this equation holds for all u
contained in the set A(S) for all measureable complex-valued functions on S such that
lu(s)| = 1a.e. |u:|- Any z € A(S) can be written

z(s) = et
Where A:S — R is measureable, by the Lusin theorem, for any v = 1,2, ... there is a
continuous function A,,: S — R such that

1
el (s € S:4,(s) #) <

And

12,(s)] < [A(s)]
a.e. |us|. Hence the sequence A, converges to Ain measure, and therefore continains a
subsequence A, which converges to 4 a.e. |u;| letting Zvj(s) = ei’l”f(s),then zy, € I'(s)
andz,,]. converges to z a.e. |u;|. As a consequence of the dominated convergence theorem,

the sequence (Zv,-,lit) converges to (z, u;), and therefore |(z, u;)| = 1. in conclusion, if

(24) holds for all x € T'(S), itl'(T) holds also for all x € A(S).
Lemma (2.2.3)[48]: For every t € T there is a complex constant a(t), with |a(t)| = 1.
and a point s € S, such that
e = a(t)Ss, (25)
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Where 4§ is the measure with mass 1 covcentrated at the point s, i.e,
(e, pue) = a(t)x(s)
Forall x € C(S).
Proof. If K c S is the support of |u;|, for any open neighborhood V of K, |u:|(V) > 0.
hence, if K contains as least two distinct points, s;and s,,and if U is any open
neighborhood of s;such that s, & U, then
lue|(U) >0, |ul(S/U) > 0. (19)
Let x € I'(S). and let £ and n be two real numbers. The function z defined on S by
z(s) = ex(s)
If s € U,andby
z(s) = ex(s)
If s € U, is contained in A(S).thus [(z, u:)| =1, i.e,
2 2

jei’? xdus| + fe”’ xdugs| + 2R jei” xd s j e xdu, | = 1.
U S/U U S/U
Differentiation with respect to and to nyields

jeifxdut jemxdut—je‘fxd,ut Jei”xd,ut =0.

U /U U SJU
jeifxdut jem xd,ut+je‘5xd,ut Jei” xdu, = 0.
U s/U U SJU
Whence
jeif xdu, je‘" xdu, = 0. (20)

U S/U
For all £,n € R and all x € A(S), let du; = hd|u.|be the polar decomposition of the
measure u,, with h € A(S). choosing ¢ = n = 0and x = 1/h then (20) yields

jdw jd|ut|=o,
U

S/U
Contradicting (19),
Setting s = 7(t), one definesamap t: T — S, and (25) becomes
(Ax)(t) = x(t).x(r(t))
For all x € C(S) and all t € T. choosing x = 1, one sees that the function x: T — 04is
continuous. To show that 7: T — S is a continuous map,

Assume the contrary, i.e. that are t, € T and an neighborhood W of t(t,) in S, such that
every neighborhood U of t, contains some t with 7(t) € W. let W, be an open
neighborhood of t(t,), whose closure is contained in W, and let y € C(S) be such that
y=1lonW,andy=0onS/W.for 0 < e <1, there is a neighborhood U of t,in Tsuch
that

la®y(z(®)) — alt)y(z(t))| < e
Forallt € U.if t € Uis such that t(t) € W, then this inequality becomes
1=|y(z(t))]| <e< 1.
This contradiction shows that tis continuous.
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If Tsurjective and if Ax = 0 for some x € C(S) , then x(s) =0 foralls € S, i.e., x = 0.
Vice versa, if T is not surjective , T(T) is a closed, proper subset of S. if x € C(S)\{0} is
such that x € 7(T) = 0, then Ax = 0, and therefore Ais not injective.

If is surjective, then

|Ax|| = sup{|a(©x(z(0))|: t € T} = sup{|€ x(s)|:s € S} = [Ix|

Forall x € C(S), and A is an isometry.

This completes the proof of the theorem.

Clearly the isometry A is surjective if, and only if, T is a homeomorphism. Thus,
Theorem (2.2.2) extends the Banach-Stone theorem, and above considerations offer a
differenent proof of this latter result.

Let B(T)and B(S) be the open unit balls of the comblex Banach spaces C(T)and C(S),
and let F be a bi-holomorphism of B(S) onto B(T). was shown in [51] that there exist a
unique function « € I'(T) and a unique homeormorphism tofT onto Ssuch that, setting
xo = F (0),

x(r(t)) — Xo (r(t))

1 —xo(z()x(z(1))
Forall x e B(S)andallt € T.
Let Kpry(x;.)be the Caratheodory-Kobayashi differential metric of B(T) at the
open € B(T) forallv e C(T)and t € T.(21) yields

dF(x)v =« B e (v, 1), (22)

1—(x0,7)(x,T)

F) (@) = a(t)

(21)

And therefore

v

Kpcry (23 v) = ||a1_|x|2 . (23)
Let Iso (B(S) > B(T))be the set of all holomorphic maps of B(S)into B(T) which are
isometries for Kg(syand Kg(7y,i.€,

Kp(ry (F(x); dF (x)v) = Kg(s) (x;v)

For all x € B(S) and all v € C(S). in view of (23), Kp(5(0,v) = [[v][, hence, if A€
y(C(S),C(T))is such that Ags) € Iso(B(S),B(T)), then A is a linear isometry of
C(S)into C(T). Obvisously, if A is a surjective linear isometry, Ag)is a holomorphic
homeomorphism of B(S) onto B(T), however, as will be shown, there are linear
isometries of C(S)into C(T) whose restrictions to B(S) are not contained in
Iso(B(S), B(T)). the following lemma proves that all the linear isometries described by
Theorem (2.2.2) do define holomorphic isometries of B(S) into B(T).
Lemma (2.2.4)[48]: If A€ y(C(S),C(T)) is a linear isometry of C(S) into C(T)
satisyfying (23), then Ag(sy € Iso(B(S), B(T)).
Proof. Since, for x € B(S) and v € C(S) < dA(x)v = Av, then, by (22) and by theorem
1,

Av
Ko (45, 44CO0) = |

B vor(®
_SuP{l—lxor(t)lz'tET}

B lv(s)l
= sup {W S € S}
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v
- ”1 “ 2l T Kp(s) (x,v).

Since any holomrphic map of B(S) into B(T) is a contraction for
Kgsyand Kg(nif F € HOI(B(S), B(T)) is a homeorphism of B(S) onto B(T), then F €
HOI(B(S), B(T)).

Two facts identify within HOI(B(S),B(T)) the family of all holomorphic
homeomorphisms F of B(S) onto B(T),

(a) First of all, (21) shows that, if F(0) = 0, then F is the restriction to B(S) of linear
isomorphism of C(S) onto C(T), this is particular case of the linearization theorem of H.
Cartan (see, eg., [51]), whereby, if E E E and F are tow compex Banach spaces, if Uand V
are open, bounded, ciricled neighbor hoods of Oin E and in F, and if F is a bi-holomorphic
homeomorphism of Uonto Vwith F(0) = 0.then F is the restriction toU of a linear
isomorphism of E onto F

(b) Furthermore, a direct inspection of (21) shows that there are no non-trivial
holomorghic families of bi-holomorphic homeomorphisms of B(S) onto B(T). also this
fact turns out to be a conscequence of a general result [51] acoording to which, if D is a
hyperbolic domain (in particular, a bounded domain) in E and F € Hol(4 x D,F)is such
that, for some ¢, € 4,F({,,D)is an open set in F, and F({,,.)is a bi-holomorpgic
homeomorphism of D onto F({,, D), then F({,.) is independent of { € 4, as an example
which will be exhibited will show, these two facts do not hold, in general, when
holomorphic isometries of B(S) onto B(T) replace bi-holomorphic
homoemorphisms of B(S) onto B(T). The following proposition provides however a
sufficient condition for a holomorphic isometry of B(S) onto B(T) to be the restriction to
B(S) of a linear isometry of C(S) onto C(T).

Proposition (2.2.5)[48]: Let F € Hol(B(C),B(T)) be such that F(0) = 0. if for every
x € T'(S), there is some ¢ € 4/{0}for which

1
?F(Cx) € I'(D),
Or if %ir%%F(Cx) e I'(T) for all x € I'(S), then F is the restriction of dF(0) €Y

(C(S),€(T)) to B(S). moreover, if dF(0) is injective, then F € Iso(B(S), B(T)).
Proof. By Lemma (2.2.1) and by the strong maximum principle, the function

¢ LF(g0)
g hx

Is independent of { € 4/{0}, there fore
F(¢x) = ¢dF(0)x
Forall { € a4 and all x € T'(S). hence
dF(0)I'(S) c T(T). (24)
Since T'(S) is a stable subset of B(S), by the Schwarz lemma [52], F is the restriction of
dF(0) to B(S). In view of (24), Theorem (2.2.2) and Lemma (2.2.1) yield the conclusion.

The holomorphic map F: (z,,z,) + z,0f 4 X 4 onto 4provides an example showing
that the assumption on the injectivity of dF(0) in the proposition cannot be avoided in
general.

On the other hand, since the groups aut B(S)and autB(T) of all holomorphic
automorphisms of B(S)and B(T)act transitively on B(S)and B(T), the condition F(0) =
0 can be removed.
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Let F € Hol(B(S),B(T))and, for x, € B(S) , let F(x,) = z,. the maps H €Aut B(S)and
K € AutB(T)defined by

X+ Xxg
Hx) 1+ Xyx
And by
Z — ZO
K(z) = —
1—2yz
On x € B(S) andz € B(T), are such that H(0) = x4, K(z,) = 0. hence the map defined by
L =K,F,H € Hol(B(S),B(T)) (25)

Is such that L(0) = 0. since, forany v € C(S),
dL(0)v = dK(z,)dK (x,)dH(0)v.
dH(0)v = (1 =[x,
w
dK (zy)w = TPPNE
Forallw € C(T). then
dL(0) = (1 — |zo|*)dF (xo) (1 — |x0]*)v).
Hence dF (0)v € T'(T)if, and only if, (1 — |x0|2)dF(x0)((1 — |x0|2)v) e Ir'(T).
In conclusion, Proposition (2.2.5) yields the following “’Schwarz lemma’’
Theorem (2.2.6)[48]: Let F € Hol(B(S),B(T)) if there is x € B(S)such that
(1 = |F(2p)[)dF (x)((1 — |x|*)v) € T(T)
For all v € T(S), and if dF (x) is injective, then F € Hol(B(S), B(T)).

Satisfies the hypotheses of Theorem (2.2.6), then, by Theorem (2.2.2), there a unique

continuous surective map 7: T — S and a unique function a € I'(T) such that Lx(t) =
a(t)x(r(t)) for all x € B(S) and all t € T, hence (25) implies the following ‘’Schwarz-
pick lemma’’ for Iso(B(S), B(T)) which extends a similar result established in [51] for
the group Aut B(T).
Theorem (2.2.7)[48]: For every F € Iso(B(S),B(T)) satisfiying the hypothesis of
Theorem (2.2.6) there exist a unique continuous surjective map 7: T — Sand a unique
function a € I'(T)such that, setting x, = F1(0), F represented by (21) for all x € B(S)
andall t € T.

The following example will exhibit a non-trivial holomorphic family of non-linear
holomorphic isometries acting on B(T), where T is the closed interval [0, 1].

Forx € C(T), let X € C(T) be defined by
. (x(1=2t) if0<t<1/2
B {x(Zt— 1) if1/2<t<1.
The map x +— Xis a linear isometry of C(T') intoC (T).
Let p: [0,1] = [0,1]and A: [0,1] — [0,1]be continuous functions such that

(0 if0<t<1/3
p(t) =10<p®) <1 if 1/3<t<1/2
! if 1/2<t<1
and
(0 if 0<t<1/5
At)=<50>A(t)>1 if 1/5<t<1/4
! if 1/4<t<1.
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Finally, let F € Hol(4 x C(T), C(T))be defined by

F({,x) = {Ax* + pX (19)
Since
( SAx(®)* if0<t<1/3
_Jo if 1/4<t<1/3
FEGx)(©) = ip(t)f(t) if 1/3<t<1/2 (20)
%(t) if 1/2<t<1
Then
IF (00 = lx]] (21)

Forall { € aand all x € B(T).
Forall {,n € 4and x € B(T),y € C(T).
F(3,x +n0) = F({,x) + nd,F({,x) + {n*Ay?,
Where d,F({,x)y = 2{Axy + p7 is the image of y by the Fréchet differential of F with
respect to the second variable at the point (¢, x).
Hence (22) yields

202 5
KB(T)(F((, x); yd,F({,x)y) = ||1 E |)IC*"32;_:)]|/2 _ (22)
And
( 20A()x()y(t) |
I HONO 1/4
2A0x(®) +pOF®) _ | 0 oI if 1/4<t<1/3 -

1= F(x)]?

—porer U /PEEs2

y(2t — 1)
\1 — |x(2t — 1)|?

if 1/4<t<1/3

For0<t<1/2.
p@®OIF®I  __Ir®I Iy =20
1-lp@®X®P -~ 1-2®)1> 1—|x(1-20t)|?

And
IZS/l(t)x(t)y(zt)zl < IZ_CX(t)y(i;)I2 < |2(_x(t)y(t)2| < il(l Iy ©l
1=1¢Mx@)** ~ 1= [{x(®)?> ~ 1= [{x(®)]* ~ 1 -[]]
In the interval [0, 1] the inequality 2t/(1 —t%)? <1 is equivalent to 0 < t <2 — 1.
hence, if || < V2 — 1.

200Xyl o y©)
1-1A@Ox@©22 = N S T @)
Forall t € [0,1].

In view of (23), (20)and(22)yield
Proposition (2.2.8)[48]: Whenever|{| <v2 —1,F({,.) € Iso(B(T),B(T)), see [50],
[55].
Replace now (19) by the map F({,.) € y(C(T) < C(T))defined by

F({,x) = {Ax + pX. (24)
A similar (even easier) computation to that carried out above shows that, whenever ¢ €
4,(21) holds for all x € C(T), i.e., is a linear isometry of C(T) into itself. Furthermore,
(22) and (23) become, respectively,
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F(,y)

KB(T)(F(('X);deF((J X)y) = H]-

) — [F(¢, 02|
( 1 —{lfslt()t);it()tﬂz ifo<t<1/4
FEN® 7 o szl -
1—|F(¢x)I? T OO if 1/3<t<1/2
\ % if 1/2<t<1.
Showing, as before, that Proposition (2.2.8) holds also when F is given by (24), whenever

17l < (V5-1)/2.
Choosing as x a real constant k, with 0 < k < 1, the top equality in (25) becomes, for 0 <
1<1/5,
OGRS
1-gA®x(®O 1 -I[¢|2k?
And, if (V5 —1)/2 < |¢] < 1, then

<]
1—|{[*k>
As a consequence, if |{| € (V5 —1)/2,1), the linear isometry F({,.) given by (24)
does not define a holomorphic isometry in B(T), i.e,. F({,.) & Iso(B(T), B(T)).
Exampling the function A to R, by assuming A(t) = 0whent > 1, let F: C(T) = C(T) be
defined by

> 1.

F) (@) = A0 A(lx(@[Dx(®) + p(O)%()

AA(x(@)Dx(t) if0<t<1/3

Forall t € T. since

F(x)(t) =< p(t)x(t) if 1/3<t<1/2
%(t) if 1/2<t<1
Then [|F(x)|| = ||x|| for all x € C(T), the function F provids an example of a non-linear

isometry of C(T) into C(T) fixing 0.
Section (2.3): Weighted Composition Operators
For x and y be locally compact Hausdorff spaces. Let C,(X) (resp. Co(Y )) be the

Banach space of continuous scalar-valued (i.e. real- or complex-valued) functions defined
on X (resp. Y ) vanishing at infinity and equipped with the supremum norm. The classical
Banach-Stone theorem gives a description of surjective isometries from C,(X) onto Cy (Y ).
They are all weighted composition operators Tf =h.foq@ = (i.eTf(y) =
h(y)f(p(y)),Vy €Y ) for some homeomorphism ¢ from Y onto X and some continuous
scalar-valued function h on Y with |h(y)|= 1,Vy € Y . Different generalizations (see e.g.
[58], [59], [61], [25], [48]) of the Banach-Stone Theorem have been studied in many
years. Some of them discuss the structure of into isometries and disjointness preserving
linear maps (see e.g. [60], [62]). A linear map from C,(X) into Cy(Y) is said to be
disjointness preserving if f o g = 0 in Cy(X) implies Tf.Tg =0 in Cy(Y). We shall discuss
the structure of weighted composition operators from C,(X) into Cy(Y).

We prove that every into isometry and every disjointness preserving linear map from
Co(X) into Cy(Y ) is essentially a weighted composition operator.
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Theorem (2.3.1)[57]: Let X and Y be locally compact Hausdorff spaces and T a bounded
disjointness preserving linear map from C,(X) into C,(Y ). Then there exist an open subset
Y; of Y and a weighted composition operator T; from C,(X) into C,(Y;) such that for all f
in Cy(X), Tf vanishes outside Y; and

Tfi,, = Taif =h.fo

for some continuous map ¢ from Y; into X and some continuous scalar-valued function h
defined on Y; with h(y)# 0,Vy € Y.

Since weighted composition operators from C,(X) into C,(Y ) are disjointness preserving,
Theorem (2.3.1) gives a complete description of all such maps. When X and Y are both
compact, Theorems (2.3.5) and (2.3.1) reduce to the results of W. Holsztynski [60] and K.
Jarosz [62], respectively. It is plausible to think that Theorems (2.3.5) and (2.3.1) could be
easily obtained from their compact space versions by simply extending an into isometry
(or a bounded disjointness preserving linear map) T: Cy(X) = Cy(Y)to a bounded linear
map of To.: C(Xo) = C(Y,) of the same type, where X,,=XU {o}and Y, =Y U {oo} are
the one —point compactifications of the locally compact Hausdorff spaces X and Y ,
respectively.

However, the example given will show that this idea is sometimes fruitless because T can
have no such extensions at all. We thus have to modify, and in some cases give new
arguments to, the proofs of W. Holsztynski [60] and K. Jarosz [62] to fit into our more
general settings.

Recall that for f in Cy(X), the cozero of f is coz(f) = {x € X: f(x) # 0 and the
support supp(f) of f is the closure of coz(f) in X,. A linear map T:Cy(X) = Cy(Y)is
disjointness preserving if T maps functions with disjoint cozeroes to functions with
disjoint cozeroes. For x in X, &, denotes the point evaluation at x, that is, &, is the linear
functional on C,(X) defined by 8,(f) = f(x). Foryin , let supp(6,0T) be the set of
all x in X, such that for any open neighborhood U of x in X, there is an f in C,(X) with
Tf(y) #0 and coz(f)c U U. The kernel of a function f is denoted by ker f.

Definition (2.3.2) Let X and Y be locally compact Hausdorff spaces. A map ¢ fromY into
X is said to be proper if preimages of compact subsets of X under ¢ are compactiny .

It is obvious that ¢ is proper if and only if lim,_@(y) = . As a consequence, a
proper continuous map 6 from a locally compact Hausdorff space Y onto a locally
compact Hausdorff space X is a quotient map, i.e. ¢ ~*(O) is open in X if and only if O is
open in Y . A quotient map from a locally compact space onto another is, however, not
necessarily proper. For example, the quotient map ¢ from (—oo, +00) onto [0, +o0)defined

by

v,y >0
o) = {O,y < 0}

IS not proper.

Lemma (2.3.3)[57]: Let X and Y be locally compact Hausdorff spaces, ¢ a map from Y
into X, and h a continuous scalar-valued function defined on Y with bounds M, m> 0 such
that m < |h(y)| <M,Vy €Y Then the weighted composition Tf = h.fo ¢ defines
a(necessarily bounded) linear map from C,(X) into C,(Y ) if and only if ' is continuous and
proper.
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Proof. For the sufficiency, we need to verify that h. f vanishes at 1 for all f in C,(X). For
any € > 0, [f(x)|[<e/M outside some compact subset K of X. Since ¢ is proper, ¢ ~1(K) is
compact in Y . Now the fact that |h().f (e ()| < M|f(¢())| < € outside ¢~1(K)
indicates that h.f o @ € Cy(Y). The boundedness of T is trivial in this case.

For the necessity, we first check the continuity of ¢. Suppose y, inY.

We want to show that x, = @(y,.) = @(y) in X. Suppose not, by passing to a subnet
If necessary, we can assume that x, , either converges to some x # ¢@(y) in X or oo, If x,,
in X then for all f in Cy(X),

h@)f(x) = limh(y,)f (x,) = limh(y)f(9(¥,.))

IimTf(y) = Tf(y) = h(y)f(e)):
As h(y) # 0, f(x) = f(e(y)), Vf € C, (X). Consequently, we obtain a contradiction x =

e(y)!if x,, — oo then a similar argument gives f(@(y)) =0 forall fin C,(X). Hence ¢(y)
= 1, a contradiction again! Therefore, ¢ is continuous fromY into X. Finally, let K be a
compact subset of X and we are going to see that ¢ ~1(K) is compact in Y , or equivalently,
closed in Y,, = YU {0}, the one-point.

We want y € ¢~ 1(K), i.e. y # o0 and ¢(y) € K. Without loss of generality, we can
assume that x, — x for some x in K. compactification of Y . To see this, suppose y, — y
inY, and x, = @(y,) € K. Now,

lim [Tf(y) = lim [h(y)f (@) 2 mlim [f(x,)] = m|f(x)]
for all f in C,(X). This implies that y # 1 and then a similar argument gives ¢(y) = x € K.
The assumption on the bounds of f in Lemma (2.3.3) is significant. For example, let X =Y
= R = (-0, +00) and define

_eV,y<o0 (. y
h) = {7 7)< gand ) = {sin, 75 o}
Then the weighted composition operator Tf = h. f o ¢ from C,(R) into Cy(R) is well-
defined. It is not difficult to see that <p‘1([—%,%]) IS not compact in R.

On the other hand, if we redefine h(y) = e¥ and ¢(y) =y for all y in R then the weighted
composition operator T is not well-defined from C,(R) into C,(R), even though ¢ is proper
and continuous in this case.

Recall that a bounded linear map T from a Banach space E into a Banach space F is called
an injection if there is an m > 0 such that ||Tx|| = m||x|| , Vx €E. It follows from the
open mapping theorem that T is an injection if and only if T is one-to-one and has closed
range.

Proposition (2.3.4)[57]: Let X and Y be locally compact Hausdorff spaces, ¢ a map from
Y into X and h a continuous scalar-valued function defined on Y . The weighted
composition operator Tf = h.f o ¢ from Cy(X) into Cy(Y ) is an injection if and only if ¢
is continuous, proper and onto and h has bounds M,m > 0 such that m < |h(y)| < M, Vy €
Y . In this case, ¢ is a quotient map and thus X is a quotient space of Y .

Proof. The sufficiency follows easily from Lemma (2.3.3) and the observation that

ITF1| = Ih.f e @||= ml|f]],Vf € Co(X) For the necessity, we first note that there are
constants M,m > 0 such that m||f|| < ||Tf|| < M||f]]| for all f in Cy(X). It is then obvious
thatm < |h(y)| <M, Vy € Y . By Lemma (2.3.3), ¢ is continuous and proper. Finally, we
check that ¢ is onto. It is not difficult to see that ¢ has dense range. In fact, if (Y ) were
not dense in X, then there were an x in X and a neighborhood U of x in X such that U n
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@(Y ) =0 . Choose an f in Cy(X) such that f(x) = 1 and f vanishes outside U. Then Tf(y) =
h(y)f(e(y))=0forallyinY ,i.e. Tf =0. Since T is an injection, we get a contradiction
that f = 0! We now show that ¢(Y ) = X. Let x € X and K a compact neighborhood of x in
X.

By the density of (Y ) in X, there is a net {y,} in Y such that x, = @(y,)in X.
Without loss of generality, we can assume that x, belongs to K for all .

Since ¢ ~1(K) is compact in Y , (@ ~1(K)) is a compact subset of X containing the
net {x, }. Consequently, x = lim x,_, belongs to <p(<p‘1(K)) c (V).
Theorem (2.3.5)[57]: Let X and Y be locally compact Hausdorff spaces and T a linear
isometry from C,(X) into C,(Y ). Then there exist a locally compact subset Y; (i.e. Y;is
locally compact in the subspace topology) and a weighted composition operator T, from
Co(X) into Cy(Y;) such that for all fin Cy(X),

Tfi,, = Tif =h.fo

for some quotient map ' fromY; onto X and some continuous scalar-valued function h
defined on Y; with |h(y)|= 1,Vy € Y;.
Proof. We adopt some notations from W. Holsztynski [60] and K. Jarosz [62]. Let X; = X
U {o}and Y, =Y U {oo} be the one-point compactifications of X and Y , respectively. For
eachxin XandyinY, put

Sy ={f € CeX):If )| = |IfI| = 1}
Ry ={g € C,(V):1g| = |lgl| = 1}and
Qx={yeY:T(Sy) c Ry}
We first Claim (2.3.7) that {Q, },ex is a disjoint family of non-empty subsets of Y. In fact,
for fi, fo, o, fnin Sy, let h =Y f,(0)f..

Then ||h|| =nand thus [|Th|| = n. Hence there is a y in Y such that
| Y% . FGOTFH ()| = ITh(y)| = n. This implies |Tf;(y)| = 1 forall i = 1,2....n. In other
words y enl,(Tf;)"*("), where T = {z:|z| = 1. We have just proved that the family
{(TH)~LT):f € S, } of closed subsets of the compact spaceY,, has finite intersection
property. It is plain that co & (Tf)~*(I") for all f in S,. Hence Q, =Nges (Tf)7H(D) is
non-empty for all x in X. Moreover,Q,, N Q,,=@ if x; # x,in X. In fact, f; in S, and f,
in S, exist such that coz(f;)\coz(f;) =@.

If there isay in Q,, N Qy, then it follows from Tf; € R, and T f, € R,, that

1= Ii + £l = [ITG + £)I] = IT(fL + )] = 2, a contradiction!

Let Y; =U,cx Q. It is not difficult to see that supp(d, o T) = {x} whenever y € Q,.

So we can define a surjective map ¢: Y, —» X by
{p(¥)} = supp(6, o T)
Note that for all f in Cy(X) and for all y in Y7,

¢(y) & supp(f) = T()y) =0 (26)
In fact, if Tf(y) # 0, without loss of generality, we can assume Tf(y) =r >0 and ||f]|=
1. Since ¢@(y) & supp(f), there is a g in Cy(X) such that coz(f)ncoz(g) =@ and Tg(y) =
llgl| = 1. Hence 1+r=T(f + g)(¥) > |If + gl| = 1 , a contradiction!

Now, we want to show that ' is continuous. Suppose ¢ were not continuous at some y
in Y;, without loss of generality, let {y, } be a net converging to y in Y; such that ¢ (y,) =
x # @(y) in X,. Then there exist disjoint neighborhoods U; and U, of x and ¢(y) in X;,
respectively, and a X, such that ¢(y,) € U;,V,=>X,. Let fe Cy(X) such that coz(f) c U,
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and T(H(Y) = |If1] =1. Assupp(f)n U; =0, we have ¢ (y,) & supp(f),V X=X, by (26).,
T(H)(y.)=0 Y=x,This implies T (f) is not continuous at y, a contradiction!
For each y in Yy, put
Jy ={f € Co(X): ¢(y) & supp(f)}, and
Ky = {f € Co(X): f(p()) = 0}

For f inK,ande >0, letX; ={x € X:|f(x)| =€}, and X, = {x € X:[f(x)| <e€/2}.
Let g be a continuous function defined on X such that 0 < g(x) < 1,Vx € X,g(x) =
1 ,vxeX,g(x)=1, Vx€e€ X, and g(x) =0,Vx € X;. Let f, = g.f Then f; € ], and
||fe — f1| < 2e. One thus can show that J,, is a dense subset of K,,. By (26), /,, < ker(d,, o
T), and hence ker(,(y)) =K,, < ker(6,, o T).Consequently, there exists a scalar h(y) such
that 8, o T = h(y). 8y (y), i.€.

T(H) = h).f(e(), Yf € C(X)
It follows from the definition of Y; that h is continuous on Y; and |h(y)| =1, Vy € Y;.
It is the time to see that Y; is locally compact. For each y; in Y; and a neighborhood U, of
y, in'Y;, we want to find a compact neighborhood K, of y, inY; such that y, € K; < Uj.
Let x; = @(y;) in X. Then

ITf Dl = 1f ), Vf € Co(X)
Fix fy in Sy, . Then V; = 71 ({x eEX:|fix)] > %}) U, is an open neighborhood of y, in
Y; and contained in U;. Since V; = W nY; for some neighborhood W of y; in , there
exists a compact neighborhood K of y; inY suchthaty, e K c W .

We are going to verify that K; = K Nn'Y; is a compact neighborhood of yl inY;.

Let {y, } be anetin K; cY;. By passing to a subnet, we can assume that y, converges
to y in K and we want to show y € Y;. Let x, = ¢(y,) in X. Since X; is compact, by
passing to a subnet again, we can assume that x, converges to x in Xor x, — oo,
ITAWI=1n X |Tf(y.) = lim [h(y)] =lim |h(y)f (@) =lim [f G0l = 1f (0]
forall fin Cy(X). Hence y € Q,,and thus y € ;. If

X, =00, |THO)| =1m|Tf;(y)] = lim|f;(x,)| = 0.
However, the fact that y, € V; ensures |Tfi(y,)| = |fi(x)] >% for all X, a

contradiction! Hence Y; is locally compact.
Let Ty : Co(X) = Cy(Yy) defined by T; f= h. f o ¢. It is clear that T; is a linear isometry
and Tf|Y1 = T,f. By Proposition (2.3.4), the surjective continuous map ¢ is proper and

thus a quotient map. The proof is complete.

In Theorem (2.3.5), Y; can be neither open nor closed in Y and ¢ may not be an open
map. See the following examples.

It is clear that Theorem (2.3.1) follows from the following more general result in
which discontinuity of the linear disjointness preserving map T is allowed. The payoff of
the discontinuity is a finite subset F of X at which the behaviour of T is not under control.
Theorem (2.3.6)[57]: Let X and Y be locally compact Hausdorff spaces and T a
disjointness preserving linear map from C,(X) into Cy(Y ). Then Y can be written as a
disjoint union Y = YU, Y, U Y5, in which Y, is open and Y5 is closed. A continuous map
@ fromY; UY, into X, exists such that for every fin Cy(X),

¢(y) & supp(f) = T(H(y) =0 (27)
Moreover, a continuous bounded non-vanishing scalar-valued function h on Y; exists such
that
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TﬁY1 =h.f o @, and

Tfiy, =0

Furthermore, F = @(Y,) is a finite set and the functional &, o T are discontinuous on Cy(X)
forallyiny,.

Proof. We shall follow the plan of K. Jarosz in his compact space version [62].

Set
Y;={y€evY|s, T =0}
Y, ={y € Y|8, o T is discontinuous}, and
Y1 =Y\ (Y,UY3)

First, we Claim (2.3.7) that supp(6,, o T) contains exactly one point for every y inY; U Y.
Suppose on the contrary that supp(d,, o T) contains two distinct points x; and x, in X;. Let
U, and U, be neighborhoods of x; and x, in X;, respectively, such that Uy nU, = @ =
Let f; and £, in Cy(X) with coz(f;) < U; and coz(f,) < U, be such that Tf;(y) # 0 and
Tf,(y) # 0. However, f1f2 = 0 implies Tf;Tf, = 0, a contradiction! Suppose supp(§,, °
T) is empty. Then we can write the compact Hausdorff space X, as a finite union of open
sets X, =Uj-, U; such that Tf(y) whenever coz(f) c U; for some i = 1,2,..n. Let 1
=", f; be a continuous decomposition of the identity coordinate to {U;};~,. Then for all f
inCo(X), Tf(y) = X T(ff)(y) = 0. Thissays 6, o T = 0and thus y € V3.

Next we define amap ¢ fromY; UY; into X, by

{o()} = supp(8, ° T)
We now prove (27). Assume @(y) & supp(f). Then there is an open neighborhood U of
@ (y) disjoint from coz(f). Let g € C,(X) such that coz(g) < U and Tg(y) # 0. Since
fg = 0 and T is disjointness preserving, Tf(y) = 0 as asserted.

It then follows from (27) the continuity of ' as one can easily modify an argument of
the proof of Theorem (2.3.5) for this goal. Similarly, it also follows from (27) the desired
representation

Tf(y) = hf(9(¥)),Vf € Co(X), ¥y € Y, (28)
where h is a continuous non-vanishing scalar-valued function defined on Y; .
Claim (2.3.7)[57]: Let {y,}a=, be a sequence in Y; UY, such that x, = ¢@(y,)’s are
distinct points of X. Then

lim sup ||6yn ° T|| < o0
In particular, only finitely many &, o T can have in finite norms.
Assume the contrary and, by passing to a subsequence if necessary, we have

||6yn o T|| >ntn=1.2..
Let £, € Co(X)with ||f,,|| < 1 such that

ITH ()l =ndn=12,.. B
Let V,W, and U, be open subsets of X such that x, €V, cV,
W, U, and U,NU,, = @ if n£m,n,m =12, ..., and let g,, € C(X.,) such that 0
L gn,, =1 and gnx.\w, = 0,n = 1,2,.... Then (27) implies

Tfn()’n) = T(fngn)(yn) + T(fn(l - gn))(yn)
=T(fngn) n) ,n =12, ...

cW,c
< gn <
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Therefore, we can assume suppf, < U,. Let f =Z;‘{’=1%fn in Co(X) By (27) again,

ITf(y)| = %Tfn(yn)| >nforn=1,2,...This conflicts with the boundedness of Tf in

Co(Y ), and the Claim (2.3.7) is thus verified.

The assertion F = ¢(Y,) is a finite subset of X is clearly a consequence of the Claim
(2.3.7) while the boundedness of h follows from the Claim (2.3.7) and (28). It is also plain
that Y; =n {kerTf: f € Co,(X)} is closed in . Finally, to see that Y, is open, we consider
for every fin Cy(X),

sup{ITf(¥)|:y € 1 U Yz = sup{|[Tf(y)l:y € Y1 U Y3}}
= sup{ [Tf(y):y € 11}
= sup{|h(f(e()|:y € 11} < M|Ifl|,
where M > 0 is a bounded of h on Y;. It follows that the linear functional &, T is
bounded for all y inY; UY;, and thus Y, NnY, UY; =@. Hence, UY; =Y, UY; s
closed. In other words, Y, is open.
Theorem (2.3.8)[57]: Let X and Y be locally compact Hausdoff spaces and T a bijective
disjointness preserving linear map from C,(X) onto C,(Y ). Then T is a bounded weighted
composition operator, and X and Y are homeomorphic.
Proof. We adopt the notations used in Theorem (2.3.6). Since T is surjective, Y; = @. We
are going to verify that Y, = @, too. First, we note that the finite set F \ {oo} consists of
non-isolated points in X. In fact, if y € Y, such that x = ¢(y) is an isolated point in X then
it follows from (27) that for every f in Cy(X), f(x) = 0 implies ¢(y) = x € supp f and thus
Tf(y) = 0. Hence, &, o T=X §, for some scalar x. Therefore, §, o T is continuous, a
contradiction to the assumption that y € Y,. We then Claim (2.3.7) that ¢(y) = ¢(Y; U
Y,) isdense in X. In fact, if a nonzero f in Cy(X) exists such that suppf N @(Y) = @ then
Tf =0 by (27), conflicting with the injectivity of T. Since
X=9¥) =M Vo) =) UF =9)or
for every fin Cy(X),
Tf|Y1=O=>f|¢(Y1)=O=>f=O:>Tf|Y2 =0
Therefore, the open set Y, = @ by the surjectivity of T. Theorem (2.3.6) then gives
Tf=h(fe¢), Vf € Cy(X)
This representation implies that 7—1 is also a bijective disjointness preserving linear map
from C,(Y ) onto Cy(X). The above discussion provides that
T™'g=hi.gopr, VgEC(Y)
for some continuous non-vanishing scalar-valued function h; on X and continuous
function ¢, from X into Y . It is plain that ¢, = ¢! and thus X and Y are homeomorphic.

The following example shows that not every into isometry or bounded disjointness
preserving linear map from C,(X) into C,(Y ) can be extended to a bounded linear map
from C(X;) into C(Y;) of the same type. Here X and Y are locally compact Hausdorff
spaces with one-point compactifications X; and Y;, respectively.

Example (2.3.9)[57]: Let X = [0, +), Y = (—o0,+0) and the underlying scalar field is
the field R of real numbers. Let

1,y>2
h(y)={y—1,0§y£2}
-1, y<O0
and
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_(y.¥=20
‘p(y)_{—y,y<0

Then the weighted composition operator Tf = h. f o ¢ is simultaneously an into isometry
and a bounded disjointness preserving linear map from C,([0, +o0)) into Cy((—o0,+0 )
.However, no bounded linear extension T,, from C([0, oo]) into C((—o0,+o0) U {oo}of T
can be an into isometry or a disjointness preserving linear map.

Suppose, on the contrary, T,, were an into isometry. Consider f,, in Cy([0, +0))

defined by
1,0<5x<n,
2n—x

fu(X)

Nn<x<22n,n=1,2,..

0,2n < x < +oo,
Note that &, o T, can be considered as a bounded Borel measure my on [0, +oo] for all

n

point evaluation &, at y in (—oco,+w) U{eo} with total variation ||my||=

|6, e To|| < 1. Let 1 be the constant function 1(x)=1 in C([0, +co0]). For all y in
(=00, +0),

Twl(y) = 8 0 Tpp(1) = j 1dm,
[0,+00]

= lim fo dmy, + my({o0})

= rlll_)rgo 6}/ oT, (fn) + my({oo})
= lim T,(y) + my ({eo}) = lim h(¥). (0 () + my ({eo])
= h(y) + my,({e0})

Let g(y) = my,({o0}) for all y in (—o, +c0). Then g(y) =T, 1(y) — h(y) is continuous on
(—o0,+00) and [g(¥)| = |m, ({eo})| < ||my|| < 1,Vy € (—,+).Note that ||T,1|| =

1. Therefore, g(y) = To,1(y) — 1 <0 when y>2,and g(y) =T,1(y) +1 >0,
when y < —2. We Claim (2.3.7) that g(y)g(—y) = 0 whenever |y| > 2. In fact, if for
example g(y,) < —6 for some y, > 2 and some y, > 2, then for each small € > 0, 0 <
To1(y)<1—6 forall y I (yo — €,Vo + €). We can choose an f in Cy([0,+0))
satisfying that  f(y,) = ||f]| = 1 and f vanishes outside (y, —€,y, + €) C (2, +0).
Now,
To(1+6f) () = T (D) + 6T () ()
=T (D) +6T(H )
= h(y) + g + h()f(e))
1+9) +6f)y>2
= To1(y),—2<y<?2
—1+g90) -6f(=y)y <-2

Since ||Tw (1 + 6F|| = [I1 + 6fI| = 1+ 6 and|Too (1 + 8F)(¥)| < 1 - unless —y € (yp —
€Yo+ €), thereisay; in (yo —€,y,+€)suchtha |[-1+g(—y,) —8f(y1)| =1+6.
It forces that g(—y;) = 0. Since € can be arbitrary small, we have g(—y,) = 0 and our
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Claim (2.3.7) that g(y)g(—y) = 0 whenever |y| > 0 has thus been verified. AsT,1 is
continuous on (—oo, +00)U {0}, we must have

lim To1(y) = 11m To1(y)

y—+oo
that is,

lim -1+ g(y) = 11m 1+g9W)

y—+oo
Let L be their common (finite) limit. Then

lim gy)=L+1, Ilm g(y)=L-1
y——00

y—+oo
Consequently,

0= lim g(»)g(-y) = > -1
It follows that L =+1, and thus elther 11m gly)=2or hm gly) =

y—+00

Both of them contradicts the fact that |g(y)| < 1, Vy € (—oo +00).

On the other hand, suppose T,, were disjointness preserving. Since f,,(1 — f,,) = 0,
we have T f,, . Too (1 — f5,,) = 0. That is,

Toofn().-To(1 = f2,)(¥) =0 ,Vy € (—, +00) U {0}
When |yl<n and y#1, Tof,(Y)=Tf () =h(y)#0 and hence T,(1)(y) =
Too (fon) ) = T(f2,) ¥) = h(y). Since T, 1 is continuous on (—oo,+0) U {oo}, we must
have
+1 = lim h(y) = lim h(y) =-1
Y-+ y—>—00

a Contradiction again.
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Chapter 3
Properties of Approximation Numbers with Compact and Weakly Compact
Composition Operators
We connect with Hardy—Orlicz and Bergman—Orlicz spaces H¥ and BY, and
provide a negative answer to the question of knowing if all composition operators which
are weakly compact on a non-reflexive space are norm-compact. The approximation
numbers of a compact composition operator cannot decay more rapidly than exponentially,
and this speed of convergence is only obtained for symbols which do not approach the unit
circle. We also give an upper bound and explicit an example. As a crucial step of the
argument we simplify the compactness criterion due to Smith for C, on BMOA and show
that his condition on the Nevanlinna counting function alone characterizes compactness.
Additional equivalent compactness criteria are established. We show the unexpected result
that compactness of Cy on VMOA implies compactness even from the Bloch space into

VMOA.
Section (3.1): Composition Operators Associated with Lens Maps

As a continuation of [72], [73], [74], [77] and [78].

For D be the open unit disk of the complex plane and H (D) be the space of
holomorphic functions on . To every analytic self-map ¢: D — D (also called Schur
function), a linear map C,, : H'(D) — H (D) can be associated by C,(f) = f o ¢. This
map is called the composition operator of symbol ¢. A basic fact of the theory ([83], page
13, or [67], Theorem 1.7) is Littlewood’s subordination principle which allows one to
show that every composition operator induces a bounded linear map from the Hardy space
HP intoitself, 1 < p < oo.

We are specifically interested in a one-parameter family (a semigroup) of Schur
functions: lens maps ¢4,0 < 6 < 1, whose definition is given below. They turn out to be
very useful in the general theory of composition operators because they provide non-trivial
examples (for example, they generate compact and even Hilbert—Schmidt operators on the
Hardy space H? [83], page 27). We illustrate that fact by new examples.

We show that, as operators on H?, the approximation numbers of C,, behave as

e~V |n particular, the composition operator C,, is in all Schatten classes S,,p > 0.
We show that, when one “spreads” these lens maps, their approximation numbers become
greater, and the associated composition operator Cz, is in S, if and only if p > 26. We
answer in the negative a question of H.-O. Tylli: is it true that every weakly compact
composition operator on a non-reflexive Banach function space is actually compact? We
show that there are composition operators on a (non-reflexive) Hardy—Orlicz space, which
are weakly compact and Dunford—Pettis, though not compact, and that there are
composition operators on a non-reflexive Bergman— Orlicz space which are weakly
compact but not compact. We also show that there are composition operators on a non-
reflexive Hardy—Orlicz space which are weakly compact but not Dunford—Pettis.

We give now the definition of lens maps (see [83], page 27).
Definition (3.1.1)[63]: (Lens maps): The lens map ¢y : D — D with parameter 6,0 <
0 < 1, is defined by:
(1+2)?f-@1 -23)°
A+2°+1 —2)°°

©p(2) = € D. (D
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In a more explicit way, ¢4 is defined as follows. Let H be the open right half-plane, and
T : D — H be the (involutive) conformal mapping given by

T(z) = 1-3 2
8) = 1+ 3z @)
We denote by y, the self-map of H defined by
yo(w) = wf = efloew, 3)
where log is the principal value of the logarithm and finally ¢, : D — D is defined by
o =T toygoT. (4)

Those lens maps form a continuous curve of analytic self-maps from D into itself, and an
abelian semi-group for the composition of maps since we obviously have from (4) and the
rules on powers that ¢,(0) = 0 and

Po °Po' = Pg' °Pg = Popg’- ()
For every operator A: H> — H?, we denote by
a,(A) = inf [[A—R|, n=12, ...
rank R<n

Its n-th approximation number. See [65] for more details on those approximation numbers.
Recall ([86], page 18) that the Schatten class S, on H? is defined by

Sp={A:H* > H?; (an(4)) €¢"}p> 0;

S, is the Hilbert-Schmidt class and the quantity [lAll, = (Zr-1 (an(A))p)l/p is a
Banach normon S, forp = 1.
We can now state the following theorem:

The lower bound in (9) was proved in [78]. The fact that Cj,, lies in all Schatten
classes was first proved in [84] under a qualitative form.

The upper bound will be obtained below as a consequence of a result of O. G.
Parfenov ([80]). However, an idea of infinite divisibility, which may be used in other
contexts, leads to a simpler proof, though it gives a worse estimate in (9): vn is replaced
by n'/3. We shall begin by giving this proof, because it is quite short. It relies on the semi-
group property (5) and on an estimate of the Hilbert-Schmidt norm ||C(,,a||2 in terms of «,
as follows:

Lemma (3.1.2)[63]: There exist numerical constants K;, K, such that

£ < |G, < i , forall0 <a < 1. (6)
-« a2 71—«

1
In particular, we have
K

a,(C, ) < ———0. 7
n( (pa) \/H(l _ a) ( )
Proof. The relation (7) is an obvious consequence of (6) since
n (o'e]
2 2 2 2 K?
nlan(Co )l < ) (51 < . [a(Co)) = 6ol < = o
j=1 j=1
For the first part, let a = cos(an/2) = sin((1 — a)n/2) =2 1 — a and let 0 =
T (m) (m is the normalized Lebesgue measure dm(t) = dt/2m on the unit circle) be the
probability measure carried by the imaginary axis which satisfies
dy

[ ras = ) s
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By definition, defined in (2), is a unitary operator from H2(ID, m) into H?(H, o), and we
easily obtain, setting y(y) = y,(iy) = e!(®/2)asign) || (where sign is the sign of y
and y, is defined in (3)), that (see [83])

¢a2_T1_|(pa|2_H1_|1—y|_ y 4Rey ?

11+ y[?
B J*‘” 11+ y(I*?  dy
co Aalyl® m(1 + y?)
K J+°°1+y2“ dy 2K J+°° y*
“1-al, y« 14+y2 1—-al, 1+ y2
4K
S
(1 — a)?
where K is a numerical constant. This gives the upper bound in (6) and the lower one is
obtained similarly.

We can now finish the first proof of Theorem (3.1.3). Let k be a positive integer and
let

dy

a, = 67k,
so that af = 6.
Now use the well-known sub-multiplicativity a,.,_q(vu) < a,(v)a,(u) of
approximation numbers ([81], page 61), as well as the semi-group property (5) (which
implies C,,, = C],fak), and (7). We see that

K, ]"
1 — apvn]

k
unCpu) = e (€8, = [ (65.,)] =
Observe that
1—af 1-0
_ kK k
We then get, ¢ = ¢y denoting a constant which only depends on 6:
k

Axn(Cpy) < (%) .

Setd = c/e andtake k = d +/n, ignoring the questions of integer part. We obtain
adn3/2(C(p9) < ek= e‘d‘/ﬁ.

Setting N = dn®/?, we get
ay(Cpp) < a e €)
for an appropriate value of a and b and for any integer N > 1. This ends our first proof,

with an exponent slightly smaller that the right one (1/3 instead of 1/2), yet more than
sufficient to prove that C,, € Npso Sp.

Theorem (3.1.3)[63]: Let 0 < 8 < 1 and ¢4 be the lens map defined in (1). There are
positive constants a, b, a’, b’ depending only on 6 such that

a'e? V" < a,(C,,) < ae ™V, 9)
In particular, C,,, lies in all Schatten classes S,,,p > 0.

Proof. This proof will give the correct exponent 1/2 in the upper bound. Moreover, it
works more generally for Schur functions whose image lies in polygons inscribed in the
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unit disk. This upper bound appears, in a different context and under a very cryptic form,
in [80]. First note the following simple lemma.

Lemma (3.1.4)[63]: Suppose that a,b € D satisfy |a — b|] < M min(1 — |a|,1 —
|b|), where M is a constant. Then

M
d(a,b) < ——:= y < 1.
VvM? + 1
Here d is the pseudo-hyperbolic distance defined by
a—»>b
d(a,b) = |1 = a, b € D.
Proof. Set§ = min(1 — |a|,1 — |b]|). We have the identity
1 _G-laPA-[pP) _A-lahA-1b) _ 6> 1
d?(a,b) la — b|? - la — b|? — M252 M7

hence the lemma.

The second lemma gives an upper bound for ay(C,). In this lemma, x is a numerical
constant, S(¢, h) the usual pseudo-Carleson window centred at ¢ € T (where T = 9D is
the unit circle) and of radius h (0 < h < 1), defined by

S¢Eh)={z€D; |z — & < hj, (10)
and m,, is the pull-back measure of m, the normalized Lebesgue measure on T, by ¢".
Recall that if f € # (D), one sets f.(e') = f(re't) for 0 < r < 1 and, if the limit exists
m-almost everywhere, one sets

fe(e'*) = lim f(re®). (11)

r-1-
Actually, we shall do write f instead of f*. Recall that a measure u on D is called a
Carleson measure if there is a constant ¢ > 0 such that u[S(f, h)] < chforall £ eT.
Carleson’s embedding theorem says that p is a Carleson measure if and only if the
inclusion map from H? into L? () is bounded (see [67], Theorem 9.3, for example).
Lemma (3.1.5)[63]: Let B be a Blaschke product with less than N zeroes (each zero being
counted with its multiplicity). Then, for every Schur function ¢, one has

af = |ay (qu)]2 <k? sup |B|?> dm,,  (12)

0<h<1,£€T h S(&,h)

for some universal constant k > 0.
Proof. The subspace BH? is of codimension < N — 1. Therefore, ay = cy (Cp) =

||C€0|BH2 , Where the cy ’s are the Gelfand numbers (see [65]), and where we used the
equality ay = cy occurring in the Hilbertian case (see [65]). Now, since ||Bf ||,z = ||f ]l 52
forany f € H?, we have
2
||C§0|BH2|| = Sup f |B0(p|2 |f°¢|2 dm — Sup f_ |B|2|f|2dm<0
T D

Ifllg2=1 Ifllgz=1
2
= Rl |
where u = |B|*m, and where R, : H*> — L?(u) is the restriction map. Of course, u is a
Carleson measure for H? since u < m,. Now, Carleson’s embedding theorem tells us
that

2 u[SE m)]

||Rﬂ||2 < K sup —
0<h<1,€T
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(see [67], Remark after the proof of Theorem 9.3, at the top of page 163; actually, in that
book, Carleson’s windows W (&, h) are used instead of pseudo-Carleson’s windows
S(&,h), but that does not matter, since W (&, h) € S(&,2h): if r 2 1—h and |t —
to] < h, then |rett —elo| < |re't —et| + |e't — eto| < 2h). That ends the proof of
Lemma (3.1.5).

The following lemma takes into account the behaviour of ¢4 (et), and will be useful.
The notation u(t) = v(t) means that au(t) < v(t) < bu(t), for some positive
constants a, b.

Lemma (3.1.6)[63]: Set y(t) = @g(e’) = |y(t)|e® with—mr < t < m,and - <
A(t) < m. Then,for0 < |t|,|t'| < m/2, 0ne has
11—yl = 1 - ly®I~[t]° and |y(®) -yl < K|t — t'|° (13)
Moreover, we have for |t| < n/2
At) = |t|? and A'(t) = |t|?71. (14)
Proof. First, recall that
1+ -1 -2)°
#o(2) = 1+2)° + 1 -23)Y
so that @g(28) = @e(2) and @o(—2) = —@e(z). It follows that y(—t) = y(t) and

y(t + m) = —y(t), so that we may assume 0 < ¢, t' < m/2. Then, we have more
precisely, setting c = e~9"/2s = sin(fn/2) and T = (tan(t/Z))B,
(cost/2)¢ —e 0™2(sint/2)® 1 —ct 1 — 72 2isT
v = (cost/2)? + e~0m2(sin t/2)° "1+t |11 + c1|? * |11 + ct|?

) ) . ) . N
after a simple computation, since (1+e%)” =e'/2(2 cost/2)? and (1 — e%) =
e~l0m/2 ¢it6/2(2 sin t/2)?. Note by the way that

(1) = 1; @o(i) = itan(8m/4); pg(=1) = —1; @g(—i) = —itan(6m/4).
Now, observethat2 > |1 + ct| = Re (1 + ct) = 1 and therefore that

1=yl = [ s = f
A e R
and similarly for 1 — |y(t)] since
| — O = 4(Re o)t
4 1+ cT)?

The relation (13) clearly follows. To prove (14), we just have to note that, for 0 < t <

Now, we prove Theorem (3.1.3) in the following form (in which g = g denotes a
positive constant smaller than one), which is clearly sufficient:
Aunzer < Kq". (15)
The proof will come from an adequate choice of a Blaschke product of length 4N?2, with
zeroes on the curve y(t) = @g(e®),—m < t < m. Let t, = 727% and p, = y(t,), with
1 < k < N, so that the points p,, are all in the first quadrant. We reflect them through
the coordinate axes, setting

9k =Pr» Tk = —Pr» Sk = — Gk < k
Let now B be the Blaschke product having a zero of orde N

Dk Q> T Sk, NAMely

< N.
at each of the points
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N
Z—Pr 23— Qqr 3—T% z — s 1V
B@ =] | [ e e ]|
11 1 -2 1 —-—qrz 1 —7,2 1— 5,2
This Blaschke product satisfies, by construction, the symmetry relations
B(%) = B(z), B(-z)= B(2). (16)
Of course, |[B| = 1 on the boundary of D, but |B] is small on a large portion of the curve
Y, as expressed by the following lemma.
Lemma (3.1.7)[63]: For some constant y = yo < 1, the following estimate holds:
ty <t <t = [Bly®)| < xV. (17)
Proof. Letty < t < t;and k besuchthatt,, , <t <t,. Let
Bk(Z) = ﬂ
1 — Pr<
Then, with the help of Lemma (3.1.6), we see that the assumptions of Lemma (3.1.4) are
satisfied with a = y(t) and b = y(ty), since |t — ty| <ty — tpy1 = T27%71, so that
min(1 — |a|,1 — |b]) = t¢ ~ 27*% and hence, for some constant M,
la—b| <K |t—t,|° < K27 < M min(1 — |a|,1 — |b]).
We therefore have, by definition, and by Lemma (3.1.4), where we set y = M/VM? + 1,

1B (y ()| = d(y(®),px) < x < 1.
It then follows from the definition of B that

Bo@)] < [Be(r®)|" <2,

and that ends the proof of Lemma (3.1.7).

Now fix £ € Tand 0 < h < 1. By interpolation, we may assume that h = 2779,
By symmetry, we may assume that Re § = 0 and Rey(t) = 0, i.e., |t| < m/2. Then,
since @y (D) is contained in the symmetric angular sector of vertex 1 and opening O <
m, there is a constant K > 0 such that |[1 — y(t)|] < K(1 — |y(t)]). The only pseudo-
windows S(&,h) giving an integral not equal to zero in the estimation (12) of Lemma
(3.1.5) satisfy |€ — 1] < (K + 1)h. Indeed, suppose that |y(t) — é| < h. Then 1 —
ly@OI<ly@®)=¢l<h and [1-y@O| <KA—=|y(®)]) < KhIf|$=1] > (K + Dh,
we should have |y(t)—=¢&|=|E—1|—|y(t)—1|>(K+1)h—Kh =h, which is
impossible. Now, for such a window, we have by definition of m,,

dt dt
| eRdm,=| |aG@) 5= B 5
S(&,h) ly(t)-&|<h T Jym-11sk+2)h T

dt
< B(y®)|" — 1,
fmgmn| o) 5 =1,

since ly(t) — 1| <|y(t) — & + 1§ — 1] < h + (K + 1)handsince |y(t) — 1| =
alt|? and |y(t) — 1| < (K + 2)h together imply |t|] < Dt,, where D > 1 is another
constant (recall that h = 27™% = (¢t,,/m)?).
To finish the discussion, we separate two cases.
(@) Ifn > N, we simply majorize |B| by 1. We set q; = 26~1 < 1 and get
1 1 (Ptn dt 2Dt
= In <+ fD |B(V(t))|2§ <——-=Dql <Dgqi
(b)Ifn < N — 1, we write

1 2 [Pty 2dt 2 bty 2 dt
Elh =Ej() |B(]/(t))| %-I_Ej |B(]/(t))| EZ= In + Ky

Dty
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The term J is estimated above: Jy < D gV . The term K, is estimated through Lemma
(3.1.7), which gives us
Ky < 2n0 20t
N= 2T
since t,,2™ < m, due to the fact that 8 < 1.
If we now apply Lemma (3.1.5) with g = max(q,,x?) and with N changed into
4N? + 1, we obtain (15), by changing the value of the constant K once more. This ends
the proof of Theorem (3.1.3).
Theorem (3.1.3) has the following consequence (as in [83], page 29).
Proposition (3.1.8)[63]: Let ¢ be a univalent Schur function and assume that ¢(ID)
contains an angular sector centred on the unit circle and with opening 67,0 <6 < 1.

Then a,(C,) = a e 2Vn n = 1,2,..., for some positive constants a and b, depending
only on 6.
Proof. We may assume that this angular sector is centred at 1. By hypothesis, ¢ (D)
contains the image of the “reduced” lens map defined by @4(z) = @4((1 + 3)/2). Since
@ is univalent, there is a Schur function u such that g = ¢ ° u. Hence C3, = Cy, ° C,, and
an(Cs,) < lICylla,(Cy,). Theorem (3.1.3) gives the result, since the calculations for @g
are exactly the same as for ¢4 (because they are equivalent as z tends to 1).
The same is true if ¢ is univalent and ¢ (ID) contains a polygon with vertices on dDD.
In [72], we studied the effect of the multiplication of a Schur function ¢ by the

—1+z

singular inner function (z) = e 1-= , and observed that this multiplication spreads the
values of the radial limits of the symbol and lessens the maximal occupation time for
Carleson windows. In some cases this improves the compactness or membership to
Schatten classes of C,,. We proved the following result.

Theorem (3.1.9)[63]: ([72], Theorem (3.1.14)): For every p > 2, there exist two Schur
functions ¢, and ¢, = ;M such that |@;| = |¢@;| and C,y : H*> — H? is not compact,
but C,, : H> — H? is in the Schatten class S,,.

We will meet the opposite phenomenon: the symbol ¢, will have a fairly big
associated maximal function p,, , but will belong to all Schatten classes since it “visits” a
bounded number of windows (meaning that there exists an integer J such that, for fixed n,
at most J of the W, ; are visited by @*(e')). The spread symbol will have an improved
maximal function, but will visit all windows, so that its membership in Schatten classes
will be degraded. We will prove that
Theorem (3.1.10)[63]: Fix 0 < 6 < 1. Then there exist two Schur functions ¢; and ¢,
such that:

(i) Cp1 : H> — H?isinall Schatten classes S,,,p > 0, and even a,(C,,) < a e~ bVn.
(i) [o1] = lezl;
(iii) C,, € Sy ifand only if p > 26;
. n\1/26
(iv) a,(Cp,) < K (logz) n = 2,3,...
Of course, it would be better to have a good lower bound for a,, (C,,), but we have not yet
succeeded in finding it.

XZN < D)(ZN,
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Proof. First observe that C,,, € S, so that C,, € S, 100, since |p1| = |@3| and since the
membership of C, in S, only depends on the modulus of ¢* because it amounts to ([83],
page 26)

j” dt <

- (0]
1= le*(e)]
Theorem (3.1.10) says that we can hardly have more. We first prove a lemma. Recall (see
[72], for example) that the maximal Carleson function p,, of a Schur function ¢ is defined,
for0 <h< 1,Dby

py(h) = |s‘;}ll:p1 my,[S(&, h)]. (18)

Lemma (3.1.11)[63]: Let 0 <6 < 1. Then, the maximal function p,  of ¢, satisfies
P, () < KY9(1 — 6)~*/9h*/? and, moreover,

Ppg(h) = RY/°. (19)
Proof. Let 0 <h < 1 and y(t) = @g(e®); K and § will denote constants which can

change from a formula to another. We have, for |t| < ©/2,
4(Re o)t T
— 2 —_~ 7 > - > —
1 ly ()] 1+ o = 6 cos(6m/2) 1T+ c? = 6(1 — 0)
> 5(1 — 0)|t|°.
Hence, we get, from Lemma (3.1.6),
Pp,(h) <2m({1—|y(®)| < hand|t] <m/2}) < 2m({(1— 0)6\t|° < Kh})

< K1/9(1 _ 9)—1/9’11/9.

|1 + ct|?

Similarly, we have
Ppo (M) = My, [S(1, )] 2 m({|1 - y(©)| < h}) = m({|t|° < Kh}) = Kh'/?,
and that ends the proof of the lemma.

Going back to the proof of Theorem (3.1.10), we take @; = @ and ¢,(z) =
01(2)M(3%). We use M(z?) instead of M(z) in order to treat the points —1 and 1
together.

The first two assertions are clear. For the third one, we define the dyadic Carleson
windows, forn = 1,2,...,j = 0,1,...,2" — 1, by

W,;={z€D;1-2"<|z| <1land (2jm)2™" <arg(z) < (2( + 1))m)27"}.
Recall (see [72], Proposition (3.1.11)) the following proposition, which is a variant of
Luecking’s criterion ([79]) for membership in a Schatten class, and which might also be
used to give a third proof of the membership of C,, in all Schatten classes S,,p > 0,
although the first proof turns out to be more elementary.

Proposition (3.1.12)[63]: ([79], [72]): Let ¢ be a Schur function and p > 0 a positive
real number. Then C, € S, if and only if

o 2M-1

Z Z [27m, (W )P < .

We apply this proposition with ¢ = ¢,, which satisfies, for 0 < |t| < /2, the
following relation:

p(e™) = [y(0)]e OO & |y (1) [P,
where y(t) = ¢4 (e') and (using Lemma (3.1.6))
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1
0<|t| sm/2= B(t) = I'(t) -, with I'(¢) ~ 1t]1® and I’ (t) = [t|°7L.  (20)

It clearly follows from (20) that the function B is increasing on some interval [—4,0[
where § is a positive numerical constant. Let us fix a positive integer g0 such that —m/
2 <t < 0and
B(t) = 2qomr = t = 6.

Fix a Carleson window W, ; and let us analyze the set E,, ; of those t’s such that p(e')
belongs to W, ;. Recall that m, (W, ;) = m(E,;). The membership in E, ; gives two
constraints.

(a) Modulus constraint. We must have |y(t)] = 1 — 27", and therefore [t| < K27/,

(b) Argument constraint. Letusset 8, ; = (2j + 1)n2 ™, h = m2™"and I,; = (6, —
h, 0, ; + h). The angular constraint arg o) eI, ; Will be satisfied if ¢ < 0 and

B(t) € U [Bn,j —h+2qm,0,; +h+ an] = U Jq(h) :=
q=qo qzqo
We have F c [2qqom,o[,andso B(t) € Fandt < Oimplyt > —§. Set
E= ] [B72(0n; —h+2am),B71(0n; + h+ 2qm)] := | ] 1, < [-8,00

a=qo azqo
The intervals I,’s are disjoint, since 8, ; + 2(q + 1)m — h > 6, ; + 2qm + h and since

B increases on [—6,0[. Moreover, t € E implies that B(t) € F, which in turn implies
that arg @ (e®) € L, ; . Using Lemma (3.1.6), we can find positive constants c,, ¢, such
that

q=qy = —¢/q < minl,(h) < maxl,(h) < —c,/q.
Now, by the mean-value theorem, I, (h) has length 2h/|B’(t,)| for some ¢, € I,(h). But,
using (20), we get

1
B(t) = ? and |B’(t)| Y

so that I,(h) has length approximately ht7 = h/q* since |t,;| ~ 1/q. Because of the

modulus constraint, the only involved g’s are those for which q > g, where q; =~ 2™/,
Taking n numerically large enough, we may assume that g, > q,. We finally see that, for
any 0 < j < 2™ — 1, we have the lower bound

m<p(Wn,j) = m(En,j) = z m(lq(h)) = q£> E > 2-n(1+1/6)

q1
qzq, qzq,
It follows that
© 220l © 2271 n(1+1) © 21 np > 1-p
2 o) PIDN (-3 B -3
n=1 j=0 n=1

o,
if p < 26. Hence Co2 €S, forp < 26 by Proposition (3.1.12).
A similar upper bound, and the membership of C,, in S, for p > 26, would easily

be proved along the same lines. But this will also follow from the more precise result on
approximation numbers. To that effect, we shall borrow the following result from [78].
Theorem 3.5 ([78]): Let @be a Schur function. Then the approximation numbers of C,

H? — H? have the upper bound
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. . /pq,(h) 3
an(C,) < K inf 11— M+ —|m =12 (21)

1+1

Applying this theorem to ¢,, which satisfies p,, (h) < Kh'e  as is clear from the
preceding computations, would provide upper bounds for m,(W,; ) of the same order as
the lower bounds obtained. Then choosing h = H log n/n, where H is a large constant
(H = 1/26 will do) andusing1 — h < e™®, we get from (21)
1 1
logn )29 < K (log n)29 |
n n

0, (Cpz) < K |n7H + (

This ends the proof of Theorem (3.1.10).

Recall that an operator T : X — Y between Banach spaces is said to be Dunford-
Pettis (in short DP) or completely continuous, if for any sequence (x,) which is weakly
convergent to 0, the sequence (T x,,) is norm-convergent to 0. It is called weakly compact
(in short w-compact) if the image T (By) of the unit ball in X is (relatively) weakly
compact in Y. The identity map i, : £; — #,is DP and not w-compact, by the Schur
property of £; and its non-reflexivity. If 1 <p < oo, the identity map i, : £, — £, s
w-compact and not DP by the reflexivity of £,, and the fact that the canonical basis (e,,) of
¢, converges weakly to O, whereas |le,|l , = 1. Therefore, the two notions, clearly
weaker than that of compactness, are not comparable in general. When X is reflexive, any
operator T: X — Y is w-compact and any Dunford—Pettis operator T: X — Yis
compact.

Yet, composition operatorsT = C, : X — X, with X a non-reflexive Banach space
of analytic functions, several results say that weak compactness of C,implies its
compactness. Let us quote some examples
- X = H?%; this was proved by D. Sarason in 1990 ([82]);

— X = H® and the disk algebra X = A(ID) (A. Ulger [85] and R. Aron, " P. Galindo and
M. Lindstr'om [64], independently; the first-named of us also gave another proof in [70]);
- X is the little Bloch space B, (K. Madigan and A. Matheson [2]);

- X is the Hardy—Orlicz space X = H¥, when the Orlicz function ¥ grows more rapidly
than power functions, namely when it satisfies the condition 4° ([74], Theorem (3.1.14),
page 55);

—X = BMOAand X = V MOA (J. Laitila, P. J. Nieminen, E. Saksman and H.—0. Tylli
[69]).

Moreover, in some cases, C,, is compact whenever it is Dunford—Pettis ([70] for X =
H® and [74], Theorem (3.1.14), page 55, for X = HY, when the conjugate function of
satisfies the condition A4,). The question naturally arises whether for any non-reflexive
Banach space X of analytic functions on D, every weakly compact (resp. Dunford—Pettis)
composition operator C,, : X — X is actually compact. The forthcoming theorems show
that the answer is negative in general. Our spaces X will be Hardy—Orlicz and Bergman-—
Orlicz spaces, so we first recall some definitions and facts about Orlicz spaces ([74]). An
Orlicz function is a nondecreasing convex function : Rt — R* such that and () =
co. Such a function is automatically continuous on R*. Ify(x)is not equivalent
to ¥ (0) = Oan affine function, we must have Y (x)/x —— x — oo o,
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The Orlicz function y is said to satisfy the A4,-condition if ¥ (2x)/y(x) remains
bounded. The conjugate function Y~ of an Orlicz function  is the Orlicz function defined
by

P (x) =sup (xy — Y(y)) .

3420
For the conjugate function, one has the following characterization of 4, (see [74], page
7): Y~ has 4, if and only if, forsome f§ > 1and x, > 0,
Y(fx) = 20Y(x), for all x = x,. (22)
Let (O, A, p)be a probability space, and L° the space of measurable functions f : 2 - c.
The Orlicz space L¥ = L¥ (0, A, p) is defined by

LY(0,A,p) = {f € Lo;f Y(f|I/K)dp < o for some K > 0}
0

This is a Banach space for the Luxemburg norm:

IFIILY = inf {K > 0:] YAfI/K)dp < 1}-

The Morse— Transue space MY (see [74],page 9) is the subspace of functions f in L¥
for which fn Y(fI/K)dp < oo forevery K > 0. Itis the closure of L. One always

has (M¥)" = LY and LY = MY if and only if 1 has 4,. When the conjugate function )
of 1 has 4,, the bidual of M¥ is then (isometrically isomorphic to) LY.
Now, we can define the Hardy—Orlicz space HY attached to 1 as follows. Take the
probability space (T, B, m) and, recalling that £,.(e®*) = f(re®),

Y = {f € HY sup | frll oy (m) = fllyw <o }.

0<r<1
See [74] for more information on H¥. Similarly, we define (see [74]) the Bergman—Orlicz

space BY, using this time the normalized area measure A, by BY = {f €
HD); fllge := ||f||L¢(A) < 4ool IfY(x) = 2P, p = 1, we get the usual Hardy and
Bergman spaces HP? and BP. Those spaces are Banach spaces for any iy, and Hilbert
spaces for(x) = x2. The Hardy—Morse-Transue space HMY and Bergman—Morse—
Transue space BMY are defined by HMY = HY n MY and BM¥Y = BY n M¥. When
the conjugate function of 1 has 4,, the bidual of HMY is (isometrically isomorphic to)
HY ([74], page 10).
We can now state the following.

Theorem (3.1.13)[63]: There exists a Schur function ¢ and an Orlicz function 1 such that
HY is not reflexive and the composition operator Co HY — HY is weaklycompact and
Dunford—Pettis, but is not compact.

Proof. First take for ¢ the lens map @1 which in view of (19) of Lemma (3.1.11) satisfies,

2

for some constant K > 1,

ppo(h) = K™'h?,0 <h < 1. (23)
We now recall the construction of an Orlicz function made in [76]. Let (x,) be the
sequence of positive numbers defined as follows: x; = 4 and then, for every integer n >
1,x, +1 > 2x, is the abscissa of the second intersection point of the parabola ¢ = x2
with the straight line containing (x,,, #2) and
(2x,,, 2); equivalently, x,.; = 23 - 2x,,. We now define our Orlicz function y by
Y(x) =4x for0 < x < 4and, forn = 1,by, P(x,) = x2,
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Y affine between x,, and x,,, 1, so that Y(2x,,) = x;. (24)
Observe that y does not satisfy the 4,_ condition, since ¥ (2x,,) = [ (x,,)]?. It clearly
satisfies (since y—1 1s concave)
x> <YP(x) <x*forx = 4,9 (Kx) < K~ *(x)foranyx > 0,K > 1. (25)
Therefore, it has a moderate growth, but a highly irregular behaviour, which will imply the
results we have in view. Indeed, let ¢, = Y(x,) and h, = 1/4,. see from (23), (24)
and (25) that

—1 (1 _
) v ) wiom)
1\ g1 (K) v (Kyd) = 2Kx, 2K

P! v (5g)

(p(,, (hn)) n
Thus, we have lim suph - 0+ D(h) > 0. By [74], Theorem (3.1.13) (see also [75],
comment before Theorem 5.2), C,, is not compact.

On the other hand, let j,,2 : HY — H%and j, 5 : H* — HY be the natural
injections, which are continuous, thanks to (25) We have the following diagram:

w2 e 0 g

The second map is continuous as a consequence of (19) and of a result of P. Duren ([66];
see also [67], Theorem 9.4, page 163), which extends Carleson’s embedding theorem (see
also [74], Theorem (3.1.13)8). Hence C,, = ju ° Cy, ° jy,2 factorizes through a reflexive
space (H? or H*) and is therefore w-compact. To prove that C,, is Dunford—Pettis, we use

the following result of [77] (Theorem (3.1.3)):
Theorem (3.1.14)[63]: ([77]): Let ¢ be a Schur function and @ be an Orlicz function.
Assume that, for some A > 0, one has

0 ::I;h f’«;ﬁ” < (hz)/(cp (Acp (,;)) 0 <h< 1. 27)
Then, the canonical inclusion jg 4 : B® — L ® (m,,) is continuous.
In particular, it is continuous for any Orlicz function @ if p,,(h) = O (h?).
Now, let J,, : H¥ — BY be the canonical inclusion, and consider the following
diagram:

D(h,) & (26)

jv.e
He % gy 1Y4 LY (my).

The first map is Dunford—Pettis, by [76], Theorem (3.1.13). The second map is continuous
by (19) and (27). Clearly, being Dunford—Pettis is an ideal property (if either u or v is
Dunford—Pettis, so is vu). Therefore, j, , °Jy is Dunford— Pettis, and this amounts to
saying that C, : H¥ — HY is Dunford—Pettis. Now, the non-reflexivity of HY follows
automatically, since C,, is Dunford— Pettis but not compact.

This ends the proof of Theorem (3.1.13).

Theorem (3.1.13) admits the following variant.
Theorem (3.1.15)[63]: There exist a Schur function gand an Orlicz function y such that
HX is not reflexive and the composition operator C, : HX — HX is weakly compact and
not Dunford—Pettis; in particular, it is not compact.
Proof. We use the same Schur function ¢ = @1, but we replace y by the function

2

x defined by y(x) = yY(x?).Let A > 1. Observe that, in view of (25),
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x(Ax)  P(A%x?) <A8x8 _ e

x)]?  [WE&2)]2 — 28 '
By [76], Proposition (3.1.16), J,: H¥ — B is w-compact, and we can see C,: H* — HX as
the canonical inclusion j : H* — L*(m,). Hence Theorem (3.1.14) and the diagram

) ) Jx Jxe
] :])(,<p°])(: HX - BX — L)((m<p)

show that C, : HX - HX is w-compact as well. Now, to prove that C, is not Dunford—
Pettis, we cannot use [76], as in the proof of Theorem (3.1.13), but we follow the lines of
Proposition (3.1.9) of [76]. We remark first that, by definition, the function y satisfies, for
B = 2, the following inequality:

x(Bx) = P(4x?) = 4Pp(x?) = 2Bx(x);
hence, by (22), this implies that the conjugate function of y verifies the A%- condition. Let
xn be as in (24), and set

u, = Jx,and A = \2
so that
X(Aun) = [X(un)]z = .’)C;{ (28)

g B ( 1 —mn )2
Kl D = T )
By ([74], Corollary (3.1.9)), |[fnlly, < 1and fn tendsto 0 uniformly on compact subsets
of D; that implies that f,, = 0 weakly in HX since the conjugate function of y has 4,

([74], Proposition 3.7). On the other hand, if K,, = ||fn||LX(m(p), mimicking the
computation of ([76], Proposition (3.1.9)), we get

1= [ XURI/KD dmy = (= 5@ /4 29)
D
for some 0 < a < 1 independent of n, where we used the convexity of y and the fact that

the lens map ¢ satisfies, by (23),
my,({z €ED; |1 -z <1-1r}) =al - rn)
In view of (28), (29) reads as well
x(au,/4Ky,) < Xz(un) = x(Auy),

M ly(m,) = Kn = a/4A. (30)
This shows that j : HX — L*(m,) and therefore also C, : H¥ - H* are not Dunford-
Pettis.

It remains to show that H% is not reflexive. We shall prove below a more general
result, but here, the conjugate function y of y satisfies the 4, condition, as we saw. Hence
HZX is the bidual of HMX. Since y fails to satisfy the 4, — condition, we know that LX¥ =+
MX. Letu € LX¥\ MX,withu > 1. Let f be the associated outer function, namely

S /1 ot + z
f(z) = exp (% J - Zlogu(t) dt).
One has|f*| = u almost everywhere, with the notation of (11), and hence f €
HX \ HMZ. It follows that H¥ = HMX. Hence HMy is not reflexive, and therefore HX is

not reflexive either.
As promised, we give the general result on non-reflexivity

Finally, let

, =1-—

so that
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Proposition (3.1.16)[63]: Let ¥ be an Orlicz function which does not satisfy the
A,_ condition. Then neither H¥ nor BY is reflexive.

Proof. We only give the proof for B¥ because it is the same for H¥. Since 1 does not
satisfy 4, there is a sequence (x,,) of positive numbers, tending to infinity, such that
Y(2x, ) /P(x,) tends to infinity. Let ,, € (0,1) such that (1 — r,)? = 1/y(2x,) and
set

( )_ (1 - rn)4
L G T
One has
(1 - rn)z
— = T < _ 2.
lgnlle = 1and |iqn|l; A+~ 1 -mn)

On the other hand, on the pseudo — Carleson window S(1,1 — r,), one ha
1 -—rzl<Q-1r)+rl—-zI<A-r)+r,Ad-1r)=1-r7r?
< 2(1 — ny);
Hence |q,(z)| = 1/16. It follows that

=f¢(|q"|>dA>J 1p(|qn|>dA
D ”qn”d; N S(1,1-1y) “qn“w

> A[S(1,1 ! >2 : 1
> A[S(L1 = Bl <M> 3 ( ‘r"W(wuqnnw)

> (1 - r)zlp(;) 1y (;) .
- " 48 llqnlly, | v(2x,) © \ 48llgnlly)
hence ¥(1/[48 llqully]) < ¥ (2%,),50 1/(48 llqully) < 2z, and 96 x, llgnlly = 1.

Set now f, =”qc1’1’7|w;one has [[fxlly = 1 and (using that Y(x, lg,(2)]) <

lq, (2) 1Y (x,), by convexity, since |q,(z)| < 1)
N % |l
[ (56) a4 =] vomsiony ¢ = [, wetanbas
< p(x) f |qn]dA
D

, V)

<Y = 7 =N 0

By [71], Lemma 11, this implies that the sequence (f;,,) has a subsequence equivalent to

the canonical basis of c, and hence BY is not reflexive.

We finish by giving a counterexample using Bergman—Orlicz spaces instead of Hardy—

Orlicz spaces.

Theorem (3.1.17)[63]: There exists a Schur functiong and an Orlicz function  such that

the space B¥ is not reflexive and the composition operator Cy BY — BYis weakly-

compact but not compact.

Proof. We use again the Orlicz function y defined by (24) and the Schur function ¢ = 1.
2

The space BY is not reflexive since 1 does not satisfy the condition 4,.
We now need an estimate similar to (19) for ¢4, namely (31)

Py 2(h) = sup Al{z €D;¢(z) € S )} = ho.

S|g1=1

SR

(31)
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The proof of (31) is best seen by passing to the right half-plane with the measure 4,,
which is locally equivalent to the Lebesgue planar measure A; we get p, ,(h) =

A{|z]°® < h} NH) > th and the upper bound in (31) is proved similarly.
We now see that C,, : B¥Y — BYis not compact as follows. We use the same x,, as in
(24) and set Y, = P(xy),k, = 1,/y,. We notice that, sincep,,(h) =
K~1h* (with K > 1) inview of (31), we have
(1 (1
A ‘(@) Y () v L E 1
_1< 1 ) i () VT KeR) T 2K 2K
v qu,z(kn) kn

so that

lim sup E(k)> 0,
(k—0+)

and this implies that C,, : B¥Y — BY is not compact ([77], Theorem (3.1.10)). To see that
C,: BY — BY¥isw-compact, we use the diagram

Bllli’z) BZC_(p) B4ﬂ BY

as well as (31), which gives p,,,(h) < Kh*. A result of W. Hastings ([68]) now implies
the continuity of the second map. This diagram shows that C,, factors through a reflexive

space (B? or B*), and is therefore w —compact.
Section (3.2): Approximation Numbers of Composition Operators
For D be the open unit disk of the complex plane, equipped with its normalized area

measure f(z) = &9 For a > —1, let B, be the weighted Bergman space of analytic
functions f(z) = Y5~ a,z™ on D such that

= nil(2
I3 = (a+ 1) fD|f(z>|2(1 ~ 1Py dA) = ) o ¢ 2++02)

|an|? < oo,

The limiting case, as a 3 —1, of those spaces is the usual Hardy space H? (indeed, if f is a
polynomial, we have lim [If|% = X53lola,l? = If11%2), which we shall treat as B_;.

a-—1

0 Ianlz
Note that ||f]|2 = Y%, o and that

dAy(2) = (e + (1 - |2|*)*dA(2)
Is a probability measure on D.
Bergman spaces [86] are Hilbert spaces of analytic functions on D with reproducing

a+2
kernel K, € B, givenby K,(z) = (ﬁ) , namely, for every a € D:
‘ a+2

1
F@=(fK)  VfEBy and Kl =K@ = (;=m) - (D)

An important common feature of those spaces is that the multipliers of B, can be
(isometrically) identified with the space H* of bounded analytic functions on D, that is:

vgeH”, llglle= sup |Ifglla- (33)

fe€Ballfllast
Indeed, [Ifglle < llgllwllflle is obvious, and if ||fglla < ClIfll, for all f € B,, testing
this inequality successivelyon f =1, g, ...,g", ... easily gives g € H* and ||g||, < C.
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Let now ¢ be a non-constant analytic self-map (a so-called Schur function) of D and

let C,: B, — H (ID) the associated composition operator:
Co(f)=fr0.
It is well-known [20] that such an operator is always bounded from B, into itself, and we
are interested in its approximation numbers.
Also recall that the approximation (or singular) numbers a, (T) of an operator T €
L(Hy, H,), between two Hilbert spaces H, and H,, are defined, forn =1, 2,..., by:
a,(T) = inf{||T — R||;rank(R) < n}.
We have:
an(T) = ¢, (T) = d,,(T),
where the numbers c¢,, (resp. d,,) are the Gelfand (resp. Kolmogorov) numbers of T ([65]
respectively).
We shall need the following quantity:

B(T) = liminfla, (D] (34)
Those approximation numbers form a non-increasing sequence such that
o (T) =TI,  an(T) = an(T*) = a,(T*T)

and verify the so-called “ideal” and “subadditivity” properties [101]:

an(AT B) < ||All an(DIIBIl; an+m-1(S +T) < an(S) + an(T). (35)
Moreover, the sequence (a,(T)) tends to 0 iff T is compact. If (a,,(T)) € £,, we say that
T belongs to the Schatten class S, of index p,0 <p < . Taking for T a compact
diagonal operator, we see that this sequence is non-increasing with limit O, but otherwise
arbitrary. But if we restrict ourselves to a specified class of operators, the answer is far
from being so simple, although in some cases the situation is completely elucidated. For
example, for the class of Hankel operators on H? (those operators H, whose matrix (ai, ]-)
on the canonical basis of H? is of the form a; ; = @ (i + j) for some function ¢ € L%), it is
known that Hy, is compact if and only if the conjugate ¢ of the symbol ¢ belongs to H® +
C, where C denotes the space of continuous, 2m-periodic functions (Hartman’s theorem,
[110]). For those Hankel operators, the following theorem, due to Megretskii et al. [108],
[114], shows that the approximation numbers are absolutely arbitrary, under the following
form.
Theorem (3.2.1)[78]: (Megretskii—Peller—Treil). Let (&,),=; be a non-increasing
sequence of positive numbers. Then there exists a Hankel operator Hg satisfying:

an(Hy) =€, Vn=1.
Indeed, if we take a positive self-adjoint operator A whose eigenvalues s,, coincide with
the &,’s and whose kernel is infinite-dimensional, it is easily checked that this operator A
verifies the three necessary and sufficient conditions of Theorem 0.1, page 490 in [114]
and is therefore unitarily equivalent to a Hankel operator Hy, which will verify, in view of
(35):
an(Hy) =an(A) =g, n=12,..
In particular, if ¢, = 0, the above Hankel operator will be compact, and in no Schatten
class if &, = 1/log(n + 1) for example. We also refer to [100] for the following slightly
weaker form due to Khruscev and Peller, but with a more elementary proof based on
interpolation sequences in the Carleson sense: for any § > 0, there exists a Hankel
operator Hy such that
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T i 68" < an(H¢) <1+ d6)e, n=1,2,..

We prove analogous theorems for the class of composition operators (whose
compactness was characterized in [107], [117]). But if we are able to obtain the Khruscev—
Peller analogue for the lower bounds, we will only obtain sub exponential estimates for the
upper bounds, a fact which is explained by our second result: the speed of convergence to
0 of the approximation numbers of a composition operator cannot be greater than
geometric (and is geometric for symbols ¢ verifying [|¢|| < 1). Our first result involves
a constant < 1 and is not as precise as the result of Megretskii—Peller—Treil or even that of
Khruscev—Peller; this is apparently due to the non-linearity of the dependence with respect
to the symbol for the class of composition operators, contrary to the case of the Hankel
class. This latter lower bound improves several previously known results on “non-
Schattenness” of those operators (see Corollary (3.2.18)) and also answers in the positive
to a question which was first asked to us by Le Merdy [103], concerning the bad rate of
approximation of compact composition operators. Those theorems are, the first individual
results on approximation numbers a,, of composition operators (in Parfenov [80], some
good estimates are given for the approximation numbers of the Carleson embedding
operator in the case of the space H?> = B_,, but they remain fairly implicit, and are not
connected with composition operators), whereas all previous results where in terms of
symmetric norms of the sequence (a,), not on the behavior of each a,,.

Before describing our results, let us recall two definitions. For every & with || =1

and 0 < h < 1, the Carleson window W (&, h) centered at & and of size h is the set
W h) ={zeD;|z| =1 — hand |arg(z¢)| < mh}.

Let u be a positive, finite, measure on ID; the associated maximal function p, is defined
by:

pu(h) = sup wW(W(n). (36)

The measure p is called a Carleson measure for the Bergman space B,, or an (a + 2)-
Carleson measure (including the case B_, = H?), if p,(h) = 0(h**%) as h — 0. For any
Schur function ¢, we shall denote by m,, the image ¢*(m) of the Haar measure m of the
unit circle under the radial limits function ¢*(u) = rllr{l— @(ru) of ¢@,|u] =1, and by

Ay a+2 the image of the probability measure (a + 1)(1 — |z|?)*dA(z) under ¢@. The
corresponding maximal function will be denoted by p,, 4. This notation is justified by
the fact that m, = A, is a 1-Carleson measure and A4, , an (a + 2)-Carleson measure
for « > —1, in view of the famous Carleson embedding theorem which, expressed under a
quantitative and generalized form, states the following, implicit as concerns |[j|| and with
different notations, but fully proved in [118], for the case « > —1 (see [110]).

Theorem (3.2.2)[78]: (Carleson’s Theorem). For any (a + 2)-Carleson measure y, the
canonical inclusion mapping j: B, — L?(n) is defined and continuous, and its norm
satisfies

pu.(h)

h2+a

h
C~! sup < |ljll £C sup Puh) (37)
0

0<h<1 <h<1 h?t®°
We show some preliminary lemmas. Our first theorems concern lower bounds. We
show that the convergence of the approximation numbers an(C¢) of a composition
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operator C,: B, — B, cannot exceed an exponential speed: for some r € (0, 1) and some
constant ¢ > 0, one has a,,(C,) = ¢ r™ . With the notations (34) and (47), one has (C,) =

[@]? . This speed of convergence is only attained if the values of ¢ do not approach the
boundary of the unit disk: ||¢||. < 1 (Theorem (3.2.12)). On the other hand, the speed of
convergence to O of an(C(p) can be arbitrarily slow; this is proved. The proof is mainly an
adaptation of the one in [92], but is fairly technical at some points, and will require several
additional explanations. We prove an upper estimate (Theorem (3.2.23)), and give three
applications of this theorem. We test our general results against the example of lens maps,
which are known to generate composition operators belonging to all Schatten classes.

We shall state several lemmas, which are either already known or quite elementary,
but turn out to be necessary for the proofs of our Theorems (3.2.9) and (3.2.17).
For the proof of Theorem (3.2.9), we shall need the Weyl lemma [65].
Lemma (3.2.3)[78]: (Weyl Lemma). Let T: H - H be a compact operator. Suppose that
(A4)n=1 Is the sequence of eigenvalues of T rearranged in non-increasing order. Then, we

have:
ﬂakm > 1_[|Ak|

We recall [91], [97], [109] that an mterpolatlon sequence (z,,) with (best) interpolation
constant C is a sequence (z,) (necessarily Blaschke, i.e., >7=1(1 — |z,|) < o0) in the unit
disk such that, for any bounded sequence (w,,) of scalars, there exists a bounded analytic
function f(i.e., f € H*) such that:

f(z,) = wy, vn > 1, and |[|f|le < C sup|wy].

n=1
The Carleson constant § of a Blaschke sequence (z,,) is defined as follows:

60 = [p(zn2); 6= inf 8, = inf(1 = 1ZDIB' @I (38)

j¥n
where B is the Blaschke product with zeros z,,,n = 1 and p(.,.) is the pseudo-hyperbolic
distance, defined below in (45). The interpolation constant C is related to the Carleson

constant & by the following inequality [94], in which A is a positive numerical constant:

1<c<’1(1+1 1) 39
575 °85s) (39)

This latter inequality can be viewed as a quantitative form of the Carleson interpolation
theorem. Interpolation sequences and reproducing kernels of B, are related as follows
[109].

Lemma (3.2.4)[78]: Let (z,),>1 be an H-interpolation sequence of the unit disk, with

interpolation constant C. Then, the sequence (f;,) = ( iZ” ) of normalized reproducing

1z |

kernels at z,, is C-equivalent to an orthonormal basis in B,, namely we have for any finite

sequence (4,,) of scalars:
c- (Zu |2> <c (ZM |2> (40)

The proof in [109] is only for H? , therefore we |nd|cate a S|mple proof valid for Bergman

spaces B, as well. Let S = ZAnKZn be a finite linear combination of the kernels K, ,w =

(wy,) be a sequence of complex signs, S, = Y w,4,K, and g € H” an interpolating
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function for the sequence (w,), i.e., g(z,) = @, and ||gll. < C. If f € B, and ||f|l, <
1, we see that:

(Surf) = D daf ) = ) 20T D) = ) InlKs, f9) = (5. £),
so that using (33):
[(Se, fH = NISHlallfglle < USlellglleollflla < ClISIla
and passing to the supremum on f, we get ||S, |, < CIIS||,. Since the coefficients 4,, are
arbitrary, this implies that (f;,) is C-unconditional, namely:

2 DA B DI B YA

Now, squaring and integrating with respect to random, independent, choices of signs w,,’s,
we get (40).
We also recall [97] that an increasing sequence (1;,) of numbers such that 0 <17, < 1
—r,

and uSp <1 (i.e., verifying the so-called Hayman—Newman condition) is an

interpolation sequence (see also [110]). In the following, let (n,) be such a sequence
verifying moreover the backward induction relation:

@(Tny1) = Ty (41)
Set f, = K;. /IIK_r,|| and W = span(f;,). Let (e,),>, be the canonical basis of 2,9 a
Schur function and h € H* a function vanishing at r,. Denote by M,:B, — B, the
operator of multiplication by h. Then, we have the following basic lemma, which shows
that some compression of Cg, is a backward shift with controlled weights [92].

Lemma (3.2.5)[78]: Let J: £2 - W be the isomorphism given by J(e,) = f,. Then, the
operator B = J~'CyMpJ: €% — £ is the weighted backward shift given by:

I,

(Lo}
To exploit Lemma (3.2.5), we shall need the following simple fact on approximation

numbers of weighted backward shifts.
Lemma (3.2.6)[78]: Let (e,,),,»; be an orthonormal basis of the Hilbert space H and B €
L(H) the weighted backward shift defined by
B(e;) =0 and B(e,;1) = wye,, where w,, — 0.

Assume that |w,,| = ¢, for all n = 1, where (&,,) is a non-increasing sequence of positive
numbers. Then B is compact, and satisfies:

a,(B) = ¢, vn > 1. (43)
Proof. The compactness of B is obvious. Let R be an operator of rank < n. Then ker R is
of codimension < n, and therefore intersects the n-dimensional space generated by
€., €nyr IN @ vector x =3%  xe,, of norm one. We then have:

B(e,+1) = wpe, and B(e;) =0, where w,, = h(1,,41) (42)

n

2 2

IB—RII> 2 [IBx — Rll> = IBlI> = ) |w;| |
j=1

n

2 ., 2
> Zejz|xj| >e2 nj=1|x|" =¢
j=1
This ends the proof of Lemma (3.2.6).
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Now, in view of (32) and (42), the weight w,, roughly behaves as IZntt 5o we shall

1-1,
need good estimates on that quotient, before defining the sequence (7;,) explicitly.

We first connect this estimate with the hyperbolic distance d in D. We denote (see
[96] or [99] for the definition) by d(z, w; U) the hyperbolic distance of two points z, w of
a simply connected domain U. It follows from the generalized Schwarz—Pick lemma [99]
applied to the canonical injection U — V that the bigger the domain the smaller the
hyperbolic distance, namely:

UcV and zzweUH=d (z,w;V) < d(z,w; U). (44)
Moreover, as is well-known,

1 1+7r
0<r<il= d(O,r;lD)):Elog1 —

Recall that the pseudo-hyperbolic and hyperbolic distances p and d on D are defined by:
( b)_|a—b| a( b)—ll 1+ p(a,b)
PRD) = T "Gl 0= T T (4, b)’
We shall omit the symbol ID as far as the open unit disk is concerned. For this unit disk,
we have the following simple inequality [92].
Lemma (3.2.7)[78]: Leta,b e Dwith0 < a < b < 1. Then:
—-2d(a,b) < 1 — b <2 eZd(a,b). (4-6)
—a
Finally, before proceeding to the construction of our Schur function ¢, it will be useful to
note the following simple technical lemma.
Lemma (3.2.8)[78]: Let (&,,) be a non-increasing sequence of positive numbers of limit 0.
Then there exists a decreasing and logarithmically convex sequence (8,,) of positive
numbers, with limit 0, such that §,, > ¢, foralln > 1.

Proof. Provided that we replace &, by ¢, + % we may assume that (¢,,) is decreasing. Let

us define our new sequence by the inductive relation:

52

01 =¢; 0, =& Opyp = max <5n+1r5_n>-

n-—1
This sequence is log-convex by definition, i.e., 62 < 6,,.,6,_. By induction, it is seen to
be decreasing. Therefore, it has a limit [ > 0. If §,, = ¢, for infinitely many indices, [ = 0.
Otherwise, for n large enough, we have the inductive relation &,,., = §2/8,,_,, which
implies that §,, = exp(An + p) for some constants A, p. Since (&,,) is decreasing, we must
have 4 < 0 and again we get [ = 0.

We may and will thus assume, without loss of generality, that (&,,) is decreasing and

logarithmically convex.

a,b €D. (45)

e

If
) ! 1—|z|2
o) = lim PP9@) _ l9' @10 121
woz  p(w,z) 1— o)
Is the pseudo-hyperbolic derivative of ¢, we set:
01 =5up 0" () = 9", 7)

In our first theorem, we get that the approximation numbers cannot supersede a geometric
speed.

Theorem (3.2.9)[78]: For any Schur function ¢, there exist positive constants ¢ > 0 and
0 <r < 1such that, for C,: B, — B, We have:
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an(Cy) =cr™, n=12,... (48)
More precisely, one has B(C,) = [¢]* and hence, for each k < [¢], there exists a
constant ¢,, > 0 such that:

an(Cp) = ¢, K*™. (49)
We shall see in Proposition (3.2.31) that this estimate is actually rather crude in general
because [¢] may be arbitrarily small, though a,,(C,,) decays “slowly”.
For the proof, we need the following lemma.
Lemma (3.2.10)[78]: Let T:H — H be a compact operator. Suppose that (4,,),>1, the
sequence of eigenvalues of T rearranged in non-increasing order, satisfies, for some § > 0
and r € (0,1):
|4,,] = 6r™, n=1,2,..
Then there exists §; > 0 such that
a,(T) = 6;r°", n=12,..

In particular B(T) = r2.
Proof. By the Weyl inequality (Lemma (3 2.3)), we have

( +1)
ﬂakm >1_[|Ak| > o

Since a, (T) is non- mcreasmg and ay (T) < ||T|| for every Kk, changing n into 2,,, we get:
2n

ITIan(ry" = | [ ax(m) = s2nneney
k=1

and therefore a,,(T) > ”Tﬁ r?" = §,r?", as claimed.

By applying this lemma to composition operators, we get the following result, which
ends the proof of Theorem (3.2.9).
Proposition (3.2.11)[78]: For every composition operator C,: B, — B, of symbol ¢: D -
D, we have 3(C,) =
Proof. For every a € D, let @, be the (involutive) automorphism of the unit disk defined
by

a—Zz

®,(z) = z € D.

1—az’
Observe that we have

1
2@=0, @O =0 H@)=TE,

Define now ) = @) © ¢ o @,. We have that 0 is a fixed point of ), whose derivative is,
in modulus, by the chain rule:

Y' (0] = [2'¢(@)(¢(@)¢' (@P,(0)] =

By the Schwarz lemma, we know that |y'(0)| < 1 and so

®.(0) = |al? — 1.

P @IA-la) ,, ,
- Jpp 7 W OY

’ 112
lo’@]alal® < 1 (the Schwarz—
1-lp(a)]?

Pick inequality).
Let us first assume that the composition operator C,, is compact. Then, so is Cy, since
we have
Cd] = C‘Da o C(P o Cd)(p(a). (51)
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If 4"(0) # 0, the sequence of eigenvalues of Cy, is (["(0)]™)5 ([83]; the result given
for the space H? holds for B, c H? , and would also hold for any space of analytic
functions in D on which C,, is compact). Lemma (3.2.10) then gives us:
B(Cp) = ' O)I? = [p*(@)]? =
This trivially still holds if 1’ (0) = 0.
Now, since C,, and C%(a) are invertible operators, (51) clearly implies that ,B(C(p) =
B(C,), and therefore, with the notation of (50):
B(C,) = [¢*(@)]? for all a € D.
By passing to the supremum on a e D, we end the proof of Proposition (3.2.11), and that
of Theorem (3.2.9) in the compact case. If C, is not compact, the proposition trivially
holds.  Indeed, in this case, we have B(C,) = 1 = [¢]°.
Theorem (3.2.12)[78]: For every a = —1, there exists, forany 0 <r < 1,s =s (r) < 1,
satisfying rllf{‘- s(r) = 1, such that, for C,,: B, — B, one has, with the notation coined in
(34):
diam, (p(D)) > r = B(C,) = s2. (52)
In particular, the exponential speed of convergence to 0 of the approximation numbers of a
composition operator C, of symbol ¢ takes place if and only if ||¢||, < 1; in other words,

we have:
ol =1 B(C,) = 1. (53)
Let us remark that one cannot replace diamp(q)(]D))) > r by ||l@lle > 7 in (52). In fact, if
for every t € (0,1), one takes an automorphism y,: D — D such that ¥,(0) =t and if
one sets ¢, (z) = P,(z/2), then |lg.llo = ¢t, but B(C,,) = 1/2 (in fact, if u(z) = z/2, it
is easy to see that a,,(C,) = 1/2™* and, since Cy, is invertible, B(C,,) = B(C,)).
The proof will proceed through a series of lemmas. Observe that given two points
a,b € D, with r = p(a, b), there exists an automorphism y of D such that ¥(a) = 0 and

Y(b) =r. As B(C,) = B(Cypeyp), We may assume, without loss of generality, throughout

that proof, that 0 and r belongs to ¢ (D).

Lemma (3.2.13)[78]: Let K be a compact subset of ¢ (ID) and p be a probability supported
by K. Then, there exists a constant 6 > 0 such that, if R;:B, — L?(n) denotes the
restriction operator, we have:

a,(C,) = 8 an(R)).

B(Cp) = B(R,).
Proof. Since ¢ is an open map, there exists a compact set L ¢ ID and a Borel subset A c L
such that ¢ (4) = K and ¢: A — K is a bijection (see [113]). Then p = ¢(v), where v =
@~ 1(n) is a probability measure supported by L, and we have automatically ||R, || < oo.
Then, for every f € B,:

11 = [ 112 = [ 17 o o2y = G f,,
K L

This yields ||R.f]| = ||(Ry ° C,)f||, so we have R, = j R,C,,, where j: L?>(v) - L*(p) is
an isometry, and the lemma follows, since we have then:
an(Ru) = an(Rv ° C<p) = ”Rv||an(c<p)
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for everyn > 1.

Observe that this provides a new proof of Theorem (3.2.9). Indeed, if K c ¢ (D) is a
small closed ball of center 0 and radius t > 0, we can take as p the normalized area
measure on K; then Parseval’s formula easily shows that (Ru) > t in that case.

The strategy of the proof of Theorem (3.2.12) will consist of refining this observation.
We shall show that the situation can be reduced to the case K = [0,r], and that an
appropriate choice of pu can be made in that case, giving a sharp lower bound for ﬁ(Ru).
We begin with explaining that choice in the next two lemmas.

Lemma (3.2.14)[78]: For every r € (0,1) there exists s=s(r)<1 and f =f, € H®
with the following properties:
() Jim s() =1;

(i) [Ifllo = 1;
(i) £((0,7]) = s AD in a one-to-one way.
Proof. Let p = — :_TZ. Then r = 1-2:;2 and the automorphism @, (z) = f_—_pzz maps [0, 7]
onto [—p, p]. We define ¢ = € (r) and s = s(r) by the following relations:
T ETT
e(r) =——m—, and s=e 2. (54)
log 1+p
1-p
Let now
1+ ¢,(2)
z) =¢elog———— 55
X(@) = elog— 2 (55)
and
f(2) =sex®, (56)
Note that f = e, where
1+ ¢,(2) T
h(z) =iclog—————¢—
(2) 81 0, @ °2

Is a conformal mapping from D onto a small vertical strip of the left-half plane. This
function f fulfills all the requirements of the lemma. Indeed, we have |[f (z)| < 1 for all
z € D and

, 1+ 1+p s o T
h([O,r])—[ lelogl_p 1—,0] 82—[ i, im] £
so that £((0,7]) = {w = se’’; — < 6 < =}, in a one-to-one way.
Lemma (3.2.14) allows a good choice of the measure p as follows.
Lemma (3.2.15)[78]: Let f be as in Lemma (3.2.14). Then, there exists a probability
measure u = W, supported by [0, 7] and a constant &,. > 0 such that, for any integer n > 1
and any choice of scalars c, ¢, ... , ¢,,_1, We have:

n—1 n n—-1 n n—1

ijRu(fj) Zs—n zcjfj 25/—% chfi

]=O LZ(H) j=0 HZ ]=0 Ba
As a consequence, we can claim that, for C,: B, - By:
(D) > [0,r] = ,B(C}p) > s =s(r). (57)

,iclog
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Proof. With our previous notations, we know that y is a bijective map from ]0, ] onto the
interval | — m, ]. Let m be the normalized Lebesgue measure on | — m, ] and p = y —
1(m) be the image of m by y 1. We have, thanks to (56) and by definition of p:

2 2 2
n—1 o .
1= pe = > =0
- n-—1 2d9 n-—1 n-—1
= J z ¢jsTeV?| — = Z|cj|252j > sznz|cj|2.
|4 2 2 :
Jj=0 Jj=0 Jj=0
Now, [|f7]|... < |||, < 1, so that we have, using the Cauchy—Schwarz inequality:
n-—1 n—1 n-—1 n-—1 %
. . 2
Yol =Dl <D lgl<va | > lel’ |
=0 Ly =0 =0 =0

giving the first inequality, since || ||z = || ||, . Finally, let R: B, — L?(p) be an operator
of rank< n. We can find a function g = Z}‘;& ijj such that [[gllz, = 1 and R(g) = 0.
The first part of the proof gives:

I~z o)~ r@l = @l = ) or | =) ar) =7

LZ(H) By
Therefore a,(R,) =s"/v/n and, in view of Lemma (3.2.13), the last conclusion of
Lemma (3.2.15) follows.
The next lemma explains how to reduce the situation to the case K = [0, r] when we only
know that O and r belongs to @ (D). It was inspired to us by the proof of the Lindelof
theorem ~ that convergence along a curve implies non-tangential convergence for
functions in Hardy spaces [115].
Lemma (3.2.16)[78]: Suppose that 0 and r belong to ¢(ID), with 0 <r < 1. Let p be a
probability measure carried by [0, r]. Then, there exists a probability measure v carried by
a compact set K c ¢ (D) such that, for any f € H(D) :

1
| rraw ;[ (r@r + f@nav@. 68)
[0,7] K

Proof. Since ¢(ID) is open and connected and 0,7 € @ (D), there is a curve with image
K < (D) connecting 0 and r. Put K = {Z; z € K}. Then, there exists a compact set L
such that [0, 7] < L and whose boundary dL c (K U K) 1 Now, the existence of v carried
by K will be provided by an appropriate application of the Pietsch factorization theorem.
To that effect, let X be the real subspace of C(L) formed by the real functions which are
harmonic in the interior of L. By the maximum principle for harmonic functions, X can be
viewed as a subspace of C(K U K). Now, the inclusion map j of X into L?(p) has 2-
summing norm less than one ([88], or [104]). Therefore, the Pietsch factorization theorem
([88], or [104]) implies the existence of a probability * ¢ on K U K such that, for every u €
X:

||u||fz(u) = J u?dp < J u?do. (59)

[07]

KUK
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For any harmonic function u on D, we can apply (59) to u(z) and u(2) to get:
Zf u?dp < j [u?(z) + u?(2)]do(2) = J [u?(2) + u?(2)]dé(2),
[0,r] KUK KUK
where G is the symmetric measure of o, defined by 6(E) = G(E' ) There is a probability v
on K such that v + ¥ = o + &. For this probability v, we thus have, for any real harmonic
function u on D:

2llullzzg, < f [u?(z) + u®(2)]dv(2). (60)

Now, given f € H(ID), we use (60) with u the real and imaginary parts of f, and sum up to
et (58).
) (Wg can now finish the proof of Theorem (3.2.12) as follows.

Suppose that diam,, (go (]D))) > r. Then we may assume, as explained before Lemma
(3.2.13),that 0,7 € (D). Let u be as in Lemma (3.2.15). Using Lemma (3.2.16), we find
a probability measure v, compactly supported by ¢@(D), such that (58) holds. This
inequality shows that:

IR <5 QNRLAIZ + RS 1),
so that R, = A(R, @ Ry) with [lA|l < 1/¥2 < 1. Therefore, by the ideal and sub-
additivity properties (35):
aZn(Ru) < aZn(Rv @ Rﬁ) < an(Rv) + an(Rv) =2 an(Rv);
implying 8(R,) = ,B(Ru)z. Finally, Lemmas (3.2.13) and (3.2.15) give:

B(Cy) = B(R)) = B (R) = 5(r)?,
and this ends the proof of Theorem (3.2.12).

We shall see that the convergence to 0 of the approximation numbers of a compact
composition operator can be as slow as one wants. This answers in the positive to a
question which was first asked to us by Le Merdy [103] in the OT Conference 2008 of
Timisoara.

Theorem (3.2.17)[78]: Let (¢,,) >, b€ a non-increasing sequence of positive real numbers
of limit zero. Then, there exists an injective Schur function ¢ such that ¢(0) = 0 and

Cp:By = B, is compact, i.e., a,(C,) - 0, but:

lim inf M > 0.
n—-oo &n
Equivalently, we have for some positive number § > 0, independent of n:
an(C(p) >6¢g, forall n=>1.

As in the case of Hankel operators, an immediate consequence of Theorem (3.2.17) is the
following:

Corollary (3.2.18)[78]: There exists a composition operator C,: H? > H? which is
compact, but in no Schatten class.

This corollary, which Theorem (3.2.17) reinforces and précises, was an answer to a
question of Sarason, and has been first proved in [92]. Other proofs appeared in [87], [98],
[72], [73], [120] (for a positive result on Schattenness, we refer to [106]).

The construction of the symbol ¢ in Theorem (3.2.17) follows that given in [92], but
we have to proceed to some necessary adjustments. In order to exploit (46), we shall use,
as in [92], the following two results due to Hayman [96] concerning the hyperbolic

85

(61)



distance d(z, w; U) of two points z, w of a simply connected domain U (see also [99]),
whose proof uses in particular the comparison principle (44):
Proposition (3.2.19)[78]: Suppose that U contains the rectangle
R={z€eC, a,—b<Rez<a,+b,|IJmz| <b}
where a; < a, and b > 0. Then, we have the upper estimate:

T
d(ay,a;U) < E(az —a;) +

Proposition (3.2.20)[78]: Suppose that U contains the rectangle
R={z€eCa, —c<Rez<a,+c|Jmz| <c}
where a; < a, and ¢ > 0, but that the horizontal sides
{zeCa,—c<Rez<a,+c|Imzl <c}

of that rectangle are disjoint from U. Then, we have the lower estimate:
T A
d(aq,ap;U) = Ic (a; —ay) — 5 (63)

T

> (62)

We now proceed to the construction of our Schur function ¢.

We first define a continuous map ¥: R — R as follows. Let (4,,) be an increasing
sequence of positive numbers, which is concave for n > 1, and which tends to oo. Let
A:[0,00) — [0, ) be the increasing piecewise linear function on the intervals (0,1) and
(e™ 1, e™) such that

A0) & A, =0, A(e™ V)& A, for n>1  and 2K = 1/4A(1).
An_An—l H H H
The sequence of slopes —on 1 decreasing, since

Api1— A4, <A, —A,_1 < e(4, — A,_1). The function A is hence increasing and
concave on (0, o) and vanishes at 0. This implies that A(t)/t is decreasing on (0, ).
We set:
K(1+ |t]) if [t]| <1

W(t) =1 It
A(lt])
By the previous discussion, ¥ is increasing on (1, o).
We then define a domain Q of the complex plane by:
Q={w € G |gJmw| < P(|Re w|)}. (64)
Let 0: D — Q be the unique Riemann map such that (0) = 0 and ¢'(0) > 0. This map
exists in view of the following simple fact.
Lemma (3.2.21)[78]: The domain Q defined by (64) is star-shaped with respect to the
origin and o: (—1,1) - R is an increasing bijection such that 6(—1) = —o and o(1) =
0,
Proof. The star-shaped character of Q will follow from the implication:
|Imw| <Y(JRew|) and 0 <A <1 = |Jm (Aw)| < Y(|Re (Aw)|).
We may assume that both Re w, Im w are positive, and it is enough to prove:
AP(x) < Y(Ax), vA € [0,1],vx > 0. (65)
This is easy to check separating three cases:
(i) x <1;thenAY(x) =AK(1 +x) < K(1 + Ax) = Y (Ax);
(i)Ax < 1 < x; then, since A(x) > A(1),
Ap(x) = Aﬁ < 2KAx < K(1 + Ax) = ¥ (1x);
(iif) Ax > 1; we then have, since A increases,

if ¢] > 1.
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X
M) = 4505 = 503, o = Y

and this ends the proof of (65). Now, since ¢ is determined by the value of (0) and the
sign of ¢'(0), we have ¢(2) = o(z) for all z € D, so that o[ (—1,1)] < R. And since the
derivative of an injective analytic function does not vanish and ¢'(0) > 0, we get that o is
increasing on (—1,1). Finally, if w € R and w = g(z), we have w = w, so that (2) =
o(z) and Z = z, which proves the subjectivity of o: (—1,1) - R.

We now choose A,, as follows, n > 0 denoting a positive numerical constant to be
specified later.

1
A, =nlog8—,n2 1. (66)
n
Observe that this is an increasing, concave sequence tending to co since we assumed that

(&,) is log-convex and decreasing to 0.
Finally, we define our Schur function ¢ and our sequence (1;,,) under the form of the
following lemma, in which the increasing character of y is important.
Lemma (3.2.22)[78]: Let ¢ be defined by
@(2) = a7 (e o (2)),

and let r,, = 0~ 1(e™). Then we have:

(@) ¢ is univalent and maps D to D, (r;,) increases, and ¢ (0) = 0;

(b)go(rn+1) = T

(c) ™1, 0 and therefore (;,) is an interpolation sequence;

(d)C B — B, Is compact.
Proof.
(a) Since Q is star-shaped, e 1o(z) € Q when z € D, so ¢ is well-defined and maps D
to itself in a univalent way. Moreover, ¢(0) = ¢~1(0) =0, and (r;,) increases
since o~ increases on R.

(BYWe have p(rs1) = 07 (30(en) ) = 078 (2e™1) = 07 (en) = T

(c) This assertion is more delicate and relies on Proposition (3.2.20) as follows.

Set d,, = y(e™). We have clearly e™*! +d,,, < e™? for large n (recall that ¥(t) =
o(t) ast — ), so that Y(e™! +d,,,,) < Y(e™?) = d, ., since Y is increasing. By the
intermediate value theorem for the function y(e™*! + x) — x, we can therefore find a
positive number c,, < d,,,, such that Y (e™*! + ¢,)) = c,,.

Now, consider the open sets:

R,={z€Ce"—c,<Rez<e™l+c, and |IJmz|<c,}, U, =R, U
Those sets U,, satisfy the assumptions of Proposition (3.2.20) in view of (64). Indeed, if z
belongs to the horizontal sides of R,,, we have z &€ U,, since

e"—c, <Rez< e+, 2Y(Rez) <Y (e +c,) =c,=|IJmz|.
This proposition then gives, since Q c U,, and c¢,, < d,,,, and since the hyperbolic metric
is conformally invariant,
n+2

d(T‘ T ) — d(en €n+1'.Q) > d(en en+1. U ) > l(en+1 n) . €
n 'n+1 ’ ’ = ’ rEnJ = 4Cn l/)(en+2)
=cA (e™?) > cA,,
where c is a positive constant. Now, we use Lemma (3.2.7) to obtain:
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1-r
n+1 < 2 e—zd(rn,rn+1) S 2 e_ZCAn’

1—mn,
which proves that % — 0, and implies that (r;,) is an interpolation sequence.

.
(d) Since ¢ is univalent, the compactness of C,: B, - B, amounts to proving that
1-1¢(2)|

|z|-1 1-l|z|
By the Julia—Caratheodory Theorem [83], this in turn is equivalent to proving that

for any u, v on the unit circle, the quotient 2@=v has no finite limit as z tends to u

radially. This latter fact requires some precise justification.

First, we notice that ¢ extends continuously to an injective map of the open upper half of
the unit circle onto the upper part of the boundary of Q (and similarly for lower parts).
This follows from the Caratheodory extension theorem [115], applied to the restriction of
o~ 1 to the Jordan region limited by 0 and two vertical lines Re w = +R where R > 0 is
arbitrarily large. Now, let u € 0D with u # +1. Then, c(ru) > weadQ asr - 1 —, so
that e 1o(ru) —» e7'w = w’ € Q and that p(ru) » o~} (w’) € D. Therefore the image
of ¢ touches the unit circle only at +1, and the assumption of the Julia—Caratheodory
Theorem is ~ fulfilled if u # +1. By symmetry, it remains to test the point u = 1 for
which we have:

= oo, For a > —1, this follows from [21] and for « = —1 from [83].

: 1—9() . 1— @(rn41) . 1-n
lim sup——— = lim sup = limsup——— =
< 1- n—oo — Th+1 n—oo — Th+1

r-1

by the preceding point 3. Since |v — ¢@(r)| = 1 — ¢@(r), this ends the proof of Lemma
(3.2.22).
We now want a good lower bound for the weights w,, appearing in (42). To that effect, we
apply Proposition (3.2.19) with
U=, a, =e", a, =e™! and b, =y(e™ D),

as well as

R,={z€C; e"—b,<Rez<e™l+b,and |Jmz| <b,}.
We have e™ — b,, > ™! for large n, since this amounts to

n_ ,n—1 — p,n—1 n—1 _ 1
e e > b, =e" tA(e™), or e—1>

A(en—l)'
which holds for large n since A(t) tends to oo with t. We then observe that R;, c Q.
Indeed, z € R}, = Re z > e™ — b,, > e™ 1 and, since v is increasing, we have P(Re z) >
Y(e™ 1) = b, > |Jm z|. Therefore, we can apply (62) and get, for all n > 1:

T T
d(e™ e Q) < We D (e™! — e + > < CoA(e™) = CyA,,
where C, is a numerical constant. By conformal invariance, we have as well d (7, 1,41) <

CoA,,. It then follows from (46) that:
1- Th+1
Ep—— exp(—2d (1, Ty1)) = exp(—2Co4y). (67)
n
Now, we take h(z) = z—r; in Lemma (3.2.6) and use the ideal property (35) of the
approximation numbers. We get, denoting by C the interpolation constant of the sequence

(), and using the fact that ||M,|| = ||l < 2:
an(B) < ”]_1”an(c(p)”Mh””]” < Zczan(c<p)- (68)
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Next, we choose n = 1/C, in (66) and we set d = (r, — 17)/v2. Using Lemma (3.2.5)
and relations (32), (42) and (67), we see that the weights w,, associated with B verify:

”Krn” Tnz+1 r,—1 |1—7h4
=h >
1o ) [T =

> de, foralln > 1. (69)
Finally, using Lemma (3.2.6), (68) and (69):

1 1
an( ) 2502 an(B) = 5s—d &, = g, foralln = 1.

We thus get the desired conclusion (61) of Theorem (3.2.17).

We do not obtain a fairly good upper bound, and we shall content ourselves with the
following result, whose proof is quite simple and, for the case a« = —1, partly contained in
[80], but under a very cryptic form which is not easy to decipher.

Theorem (3.2.23)[78]: Let ¢ be a Schur function and « = —1. Then, we have for the
approximation numbers of C,: B, — B, the upper bound:

Po.a + 2(h)
an(C )<CO<12£1 Nz (1—h)" /"’O;IT n=1,2.. (70)

h
where C is a constant. In particular, if p‘ph“—a(h) < e A | where the function A4:[0,1] —

[0, 1] is increasing, with A(0) = 0 and with inverse function A=, we have:

a+1 1

a,(C,)<Cnz e™ (zn) n=1,2,.. (71)
The proof of (70) uses a contraction principle which was first proved for « = —1 [74] and
a = 0[77], but is also valid for any « = —1, as follows from the forthcoming work [105].
To prove Theorem (3.2.23), it will be convenient to prove first the following simple
lemma.
Lemma (3.2.24)[78]: Let n be a positive integer, g € B, and f(z) = z" g(z). Then, we
have:

|Wn| = h(rn+1) =>d exp(_COAn)

lglle < Cn ”f”a (72)
Proof. Let w,, = Ifzri;;a) We first observe that
Wi
< Cn%t1, vk >0, vn > 1. (73)
Wk+n

Indeed, we have:
n n
wy kIl Ttk+a+2+n) (k+j+a+1)<1—[j+a+1
Wisn (k+n)! T'(k+a+2) __1 (k+)) - '
]=

j=1
- +1 1
a
=1_[(1+ . )Sexp (a+1)Z—, < Cn%*t1,
J =

j=1

which proves (73).
Now, if f(2z) = Y, ax 2z, we have g(z) = Y5, axsnz® so that, using (73):

g1 = D @icenlwic = ) larf?wiy < €Y JagPwy = Cro* 2,
k=0 l=n l=n
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proving (72).

We shall now majorize a,.,(C, ), but provided that we change the constant C, this
makes no difference with majorizing an (Cq,). The choice of the approximating operator R
of rank < n for C, is quite primitive, but in counterpart we shall estimate ||C, — R||
rather sharply. We denote by P, the projection operator defined by P,f = Y121 f(k)z*
and we take R=C,o P, ie., if we have f(z) = Xpo,f(k)z* € B,, then R(f) =

w2 f(k)e*  sothat (C, — R)f = C,(r), with, making use of (72):

r(z) = Z fUayzk = z"s(z),  with|lsllz < Cn®*MIrliZ Irlle < NIflle- (74)

Assume that ||j_f||a < 1,fix0 < h <1 and denote by p;, the restriction of the measure
Agp a2 tothe annulus 1 — h < |z| < 1. Then, we have:

(o = RIFIE = Co @I = [ 1rFd Apans@
D
<(1-Rnm j 15@)1Pd Ay sa(2) + j (D)1 d Ay 22 (2)
|z|ls1-h 1-h<|z|<1
<(1-nm j 1512 dAp gs2(2) + j_|r<z)|2duh(z)
D D
= = 0?e, G + | Ir@)Pdunt)
D

<C|A-m*slz + f_IT(Z)IZdun(Z)]
D

Po,a+2(t)
< a+l(q _ KB\2n P,
< C[n (1-h) +Os<1£h 7ta ]
if we use (74), as well as (37) under the form
p 2(t)
| Ir@ @ = ¢ sup P

and we know that ||7]l, < lIflle < 1.
To get rid of the supremum with respect to t, we make use of the following inequality,
which holds forh <1 — |p(0)|and 0 < ¢ < 1:

Poarz(Eh) < Ce%*2py oy (h). (75)
For a = 0 or @ = —1, this follows respectively from [74], and from [77]. The general case

Is proved in [105]. Setting t = ¢h for 0 < t < h, this also reads Poarz® _ (- Pparz(t)

tat2 - hot2 !
and we can forget the supremum in t in the previous inequalities. Taklng sguare roots, we
get the relation (70).

h
When p, g+2(h)/h*** < e 4™  let us take for h the nearly optimal value h =
A~1(1/2n), so that h/A(h) = 2nh. We then have from (70) since (1 — h)?" < e™2n;

an+1(C<p) ”C - R” < Cna"'l[ —2nh 4 o A(h) < 20n%*tle—2nA 1(2111)

)

proving (71), and ending the proof of Theorem (3.2.23).
Let us now indicate three corollaries, which improve results of [72], [102], [77]
respectively.

90



Corollary (3.2.25)[78]: Suppose that p,, 442 () < Ch*®F for some g > 1. Then:

_(B-1)(a+2) (B-1)(a+2)
an(CqD) <Cn 2 (logn) 2 : 2

In particular, C, belongs to the Schatten class S,, = S,,(B,,) for each p > TSR

Proof. Set y = (f —1)(a+2)/2,a=(a+1)/2, and c = a +y. If we apply (70) of
Theorem (3.2.23) with the value h = ¢ log n/n which satisfies n%e ™™ = n~7 , as well as
the inequality (1 — h)™ < e™™", we get:

Y Y
. (logn> ] < (logn> |
n n
ending the proof.

In [72], we had only the assertion on Schatten classes, for the single value a = —1,
and not the upper bound for the individual approximation numbers an(Cq,).

an(C,) <C

In particular, we can get an(C(p) < Ce logn+1) and C, is in every Schatten class
Sp(Be),p > 0.

Notice that the sequence (&,,) in the statement cannot be dispensed with. Indeed, if ¢
is surjective, we surely have |l¢|l, = 1! And we know from Theorem (3.2.12) that
B(C,) = 1in that case.

We begin with a lemma of independent interest.

Lemma (3.2.26)[78]: Let §:(0,1] = R be a positive and non-decreasing function. Then
there exists a Schur function ¢ with the following properties:

(@) ¢: D — D is surjective and 4-valent;

(b) ppa+2(h) < 8(h), for h > 0 small enough.
Proof. We begin with the case « = —1. Set, fora = 1/2:

a 2
®(2) =T——, B=%F
1+a 2a
and C = e 3/2. Note that B (E) = B(0). Let now
1 1 h
bp = 7—, e(h) = 6 (E) &n = €(bni1).

In the proof of Theorem (3.2.17) of [102], using an argument of harmonic measure and of
barrier, we have found a 2-valent symbol ¢; with ¢;(ID) = D* such that, noting p,, for

Pp,1-

bpi1 <h < b, = p, (h) <&, (76)
This gives p, (h) < e(byi1) < €(h). Let now, as in [102], ¢ = B o ¢,. This Schur
function is surjective (since ¢ (D) = B(D*) = B(ID) = D), and 4-valent. Moreover, if I =
(w,v) is an arc of T of length h<% and J = (gg) we have B~1(I) c &,(J) U
®a (—]) =1, U L,, where I, I, are two arcs of T of length at most ||P,|| (h/2) = Ch,

since @, being an inner function, we have [111], P, being the Poisson kernel at a:
Mep = Pam.

Hence, using (76), we obtain: ’
my, (1) =m, (B7*()) < m, (1) + my,, (I,) < 2p,, (Ch) < 2¢(Ch) = §(h),

and p,,(h) < §(h) for small h, by passing to the supremum on all Is.
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For the general case « = —1, we use the following extension of an inequality from [77]
(which treats the case a = 0, see Remark before Corollary (3.2.9)1):
Lemma (3.2.27)[78]: For small h, namely 0 < h < (1 — |¢ (0)|)/4, we have, for every

a > —1:
a+2

Ppar2(B) < Clp,(CW]™ . (77)
Proof. Let us define, as in [117], the generalized Nevanlinna counting function N, o, by

the formula
a+2
N,

1
v = > Jlog()] . weD\pO)
p(2)=w
The case @« = —1 corresponds to the usual Nevanlinna counting function, which will be
denoted by N,,. The partial Nevanlinna counting function N, (r, w) is defined, for 0 < r <

1, by:
NoGw) = ) log*(r/lzl)

¢ (2)=w
so that N, (1,w) = N,(w).
Since @ + 2 > 1, we have the obvious but useful inequality:
a+2

Npar2W) < [Npw)]". (78)
We shall also make use of the following identity, due to Shapiro ([117], where a weight
1/r is missing), and which can easily be checked after two integrations by parts:

Npai2(w) = (a+2)(a+1) Jol N, (r,w) [log G)rg (79)

As it was noticed in [77], this formula reads, for w close to the boundary, as follows, for
O<h<(@-|@0)])/4and |w|>1—h:

Nyarz(W) = (@ +2)(@+ 1) jl 1 N, (r,w) [log (%)]a g. (80)
3

Under the same conditions on h and w, this obviously implies:
1 1 1

1
Ny ai2(W) = E./l Ny, (r,w)(1 - r2)% rdr = Efo Ny, (r,w)(1 - r2)% rdr.

3
Now, using the same arguments as in [77] and in particular using (80) for ¢,-(z) = ¢(1;),
the identity N, (r,w) = N, (w) and an integration in polar coordinates, we get:

1 h
N, > — = . 81
|w?;1£h (p,a+2(w) =C p(p,a+2 <C) ( )

The end of the proof is easy: changing h into Ch and using successively (81) and (78), we
get for small h, depending on ¢:
Ppara(h) SC sup Nyara(W) <C sup [N,(w)]
lw|z1-Ch lw|z1-Ch
the last inequality coming from [75]. This ends the proof of (77).
Going back to the proof of Lemma (3.2.26), if we apply the already settled case @ = —1 to

a+2 a+2

< Clp,(CRW] 7,

Mla+2z
the function §(h) = [(TC)] , We obtain a surjective and 4-valent Schur function ¢ such

that:
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a+2 a+2

Poa+2(W) < Clp,(CR]™ < C[S(CW]™ " = 8(h),
for h small enough.
Corollary (3.2.28)[78]: Let (&,,) a sequence of positive numbers which tends to 0. Then,
there exists a Schur function ¢ with the following properties:
(@) ¢: D — D is surjective and 4-valent;
(b)a,(C,) < Ce™™n,n=1,2,...
Proof. Set a = (a + 1)/2. Provided that we replace (&,) by the decreasing sequence (&;,)

with g, = % + sup €, = ¢, we can assume that (&, ) decreases. Let A:[0,1] — [0,1] be a
k=n
function such that A(0) = 0, and which increases (as well as A(t)/t) so slowly that

A(g, + a (logn/n)) < 1/2n; therefore A~1(1/2n) = ¢, + a(log n/n) and

n“e_nA_l(%) < e "n,

h
We now apply Lemma (3.2.26) to the non-decreasing function §(h) = h?*%e A® to get
the result, in view of (71) of Theorem (3.2.23).
Our last corollary involves Hardy—Orlicz spaces H¥ and Bergman—Orlicz spaces BY.
For the definitions, see [74].
Corollary (3.2.29)[78]: There exists a Schur function ¢ and an Orlicz function y such that
C,: HY > HY is compact whereas C,:B¥ - B¥ is not compact. Moreover, the

approximation numbers a,(C,) of C,: B, —» B, satisfy the upper estimate an(C(p) <

ae V™ where a, b are positive constants independent of n, and therefore C, belongs to

np>OSf(Ba)
Proof. Let « = —1 be fixed. The Schur function constructed in the proof of Theorem

d
(3.2.18) of [77] satisfies the two first assertions, as well as p,(h)/h < e » for some
positive constant d > 0. We now apply (77) to get for small h:

a+2
Pparz() _[pp(Ch)] ] ]
—pavz <C et < C3¢7 Ch <aqaeh

for positive constants a and b. We can thus apply (71) of Theorem (3.2.23), for some § >
0, with the increasing function A(h) = h?/8 (hence A~'(x) = /6x) to get the result,

(a+1)

diminishing slightly b to absorb the power factor n= 2 (see [89], [101], [81]).
sup [k%ex(T)] < C, sup [k%a,(T)], Va > 0. (82)

1<k=sn 1<k=sn
(a, (D)) €, = (en(T)) €t,  Vg>0. (83)
The converse of (83) does not hold in Banach spaces, but it does for operators between
Hilbert spaces, by polar decomposition. More precisely, we have [81] a,(T) < 4e,(T)
and, in particular, (e,(T)) € ¢, if and only if (a,(T)) € 4,.
We now have the following improved version of Theorem (3.2.9). Recall that
'(2)|(1-12%)
o*(z) = LOOD ang [p] = [l
Theorem (3.2.30)[78]: Let T = C,, be a compact composition operator on B, and y(T) =

1
liminfle,,(T)]~ . Then:
n—oo

(a+2)d b

y(T) > [o]:. (84)
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Proof. We proceed as in the proof of Theorem (3.2.9). First, recall that the entropy
numbers e,, (T) also have the ideal property [101], namely:

en(AT B) < |[[Alle,(D)IIBII.
Then, we use an improved Weyl-type inequality for entropy numbers, due to Carl and
Triebel [90], in which (/1,1(T))n>1 denotes the sequence of eigenvalues of T rearranged in

non-increasing order of moduli and € = V2
1

(ﬂmk(m) < Cen () (85)

It should be noted that this inequality can itself be |mproved [95]:

(1_[ ak(T)> < Ce, (T). (86)

k=1

Yet, the tempting similar inequality (]'[};zll/lk(T)l)% < Ca, (T) is wrong (even the
inequality [1,,(T)| < Ca,(T) is wrong) as follows from an example of [101]. Note that
(86) implies the following:
)
a,(T) = 6r" = e,(T) == il
This might explain why a square root appears in (84), and tends to indicate that [¢] should
appear instead of [¢]? in Theorem (3.2.9).

Now, for every a € D, let again @, be defined by &,(z) = 1“_—_;2 ,forzeD. Set b =
@(a) and define Y = @, o @ o @,. We already know that 0 is a fixed point of i and that
Cy =Cp, °CpoCy, . We may assume that [1'(0)| = ¢*(a) # 0. The sequence of
eigenvalues of Cy, is then, as we have seen, (1'(0)™),», [83]. The Eq. (85) then gives us,
setting v = |y’ (0)| = ¢*(a):

1
n—1 n
1 1 n-1
en(ap) = E(HT") = ET 2,
This clearly gives us V(Cw) > +/r. Now, since Ce, and Cyp, are invertible operators, the

relation Cy, = Cyp, © C, © Cp, and the ideal property of the numbers e, (T) imply that
1

1
r2r

N|3

¥(C,) =v(Cy), and therefore, with the notation of (50), y(C,) = ((p#(a))E ,foralla €
D. Passing to the supremum on a € D, we end the proof of Theorem (3.2.30).

We shall suppose that « = —1, i.e., we are concerned with the Hardy space H?. Fix
0 < 6 < 1. Denote by H = {z € C; Re z > 0} the right half-plane, by T: D — C\{—1} the
involutive transformation defined by T(z) = 5 which maps D to H, and by 7, the

transformation z € H — z° € H. Recall that the associated lens map @g: D - D is:

P = T o Tg © T.
It is known that the associated composition operator on H? is in all Schatten classes S,
[84]. Alternatively, one could use Luecking’s criterion [79]. Therefore, its approximation
numbers decrease rather quickly. Still more precisely, adapting techniques of Parfenov
[80], we might show the following (where By, vg, ... are positive constants):
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a,(C,,) < yge Folm. (87)
We do not detail this adaptation of Parfenov’s methods from Carleson embeddings to
composition operators here (see [63]), but shall dwell on the converse inequality, which is
not proved in [80]. First, we show that there is no converse to the inequality of Theorem
(3.2.9).
Proposition (3.2.31)[78]: The value of [¢g] for the lens map is

[pg] = 6. (88)
In particular, [¢4] can be as small as we wish, although B(C,,) = 1.

Recall that g is defined in (34) and [¢] in (47).
Proof. First note the simple
Lemma (3.2.32)[78]: Letz € D and v = T(z) € H. Then:
, . WO
IT'"(D|(1—|z|?) = ZiRe(T(Z)) and I ITE_ 2Re v

~__ in view of = T~1. For the first
IT"(2)]

The two equalities are the same because |T'(v)| =

one, we have:
, 2(1—z|?)
IT"(2)|(1 - |2]?) = Ti¥2 2Re (T(2)).
Letnow z € D andw = T(z) € H. By the chain rule, we have:
Py (2) = T'(tg(W))To(W)T' (2).
Taking moduli and using the lemma with z and v = 74(w), we obtain:
lpo (2)|(1 — |2|?) T'(tg(w) , , |Tp(W)|Re w

- = 7' (zo ()] > e WIT @)I(1 - 12]?) = = .

1 |pg(2)] 1= |T(rg(w))] Re(zg(W))
Now, setting w = re't withr > 0 and —m/2 < t < m/2, this writes as well:
Or®~1rcost _ Bcost

# = =
¥o(2) = 79 cos Ot cos Ot
Using the fact that w runs over H as z runs over D and that the cosine decreases on (Og)
we obtain (88) by taking t = 0.
The proof of the second assertion is obvious in view of Theorem (3.2.12) since

logllo = 1.
We now give the following more precise form (the small Roman and Greek letters
ag, .-, Bg, ... Will denote positive constants depending only on 6):

The upper bound is (87). For the lower bound, we shall need two simple lemmas.
Lemma (3.2.33)[78]: Let 0 < o < 1 and u = (u;) be a sequence of points of D such that
1= [ujaa|

1=|uy

< 0. Then, the Carleson constant §,, of the sequence u satisfies:

6u2exp(—1a ) withaz%z.

Proof. We use the following fact [97]: -
1-o/\*
(1 + af> ' (89)

). Now, expanding the logarithm in power series

8, >

(0]

j=1
1-o/
1+0/

This implies log &, > ZZ‘f:llog(
and permuting sums, we note that:
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® 1+ o) 2k+1 1 a
221°g<1—01> z(2k+1)(1—02k+1) _42(2k+1)2(1—0) 1o
j=

m = 7'[2/8. So that

where we used 1 — 021 > (2k+ 1)(1 — 0)o?**! and Y32,

6, = exp (— ﬁ) which was to be proved.

The second lemma is similar.
Lemma (3.2.34)[78]: Let 0 <o < 1,u; =1 —0/,v; = @g(w;) and v = (v;). Then, the
Carleson constant §,, of the sequence v satisfies:

2

a /[
6v2exp(—1 o ) with a9=%

2(1-1)°
1+r)f+(-r)f "’
) N
1=y 0/% +(2—a7) s
1-v oU+D? 4 (2 —gi+t1)e )

withg; <o’ =1-— g2"(1 — o). To see this, observe that:

(2-o*)’ - (20-0*1)"
1=0;= gU+D? 4 (2 — gi*1)6 =D
Indeed, the function f(x) = x® + (2 — x)? increases on [0, 1], so D < f(1) = 2. On the
other hand, the mean-value theorem gives N = 2(1 — ¢)0c?~1 > 0(1 — 5)2° for some
c € (0,2).Lemma (3.2.33) then gives the result for the sequence v.

Proof. We first note that 1 — @q(r) = and so

> 020-1(1—-0)=1-0".

2026) such

Proposition (3.2.35)[78]: There exist constants by, cg, Bg,Y9 With by =1

that:

cge PV < a,(C,,) < yge FoVm. (90)
In particular, we have ﬁ(Cq,g) =1 and C,, is in all Schatten classes S,,p > 0 but its
approximation numbers do not decrease exponentially.
Proof. Fix an integer n > 1, and take (u;), (v;) as in Lemma (3.2.34). We have ¢4 (0) =
0,|pg(z)| < |z|andso for 0 < r < 1:

1— 7? 1—r (1—r)[(1—r)0+(1+r)]>(1—r)1‘9
1= 0o = 1= g™ 2(1—r1)° -z
implying )
1—-u; 1
] > n(1-0) <ji<n.
1—v2_20 , fort1<j<n

Let now R be an operator of rank< n. There exists a function f = Z}l:lljl(uj € H?>n

ker R with ||f]|| = 1. We thus have, denoting by C,, and C, the interpolation constants of
the sequences u and v, and using Lemma (3.2.4) twice:

2
n

LI = || 4K,

j=1

Cfpe_R”2 = |C<;9(f)_R(f)”2 = |
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_ 2

> ¢;2 Y |yl K,

j=1 j=1
n 2
1¢72 4l 1 1
-6 J Y a -0 _ -2 - -6
2570"(1 )Zl_ujzzzCuszza”(l MNFI? —ECuZCvzan(l ).

]:

n(1-6)
Therefore, a,(C,,) = a,(C; )> C;'C;*a" 2 . But it follows from (39), Lemmas

(3.2. 33) and (3.2.34) that C,, C, satisfy, provided that we now take the value ag = 7 >

2

. + ,since 6 + 2179 < 2, to absorb the logarithmic factor of (39):
CuCy < to
utv —CQ exp(l_o_)-
The preceding now gives us (cg changing from line to line):

a n(l—0)
an(Cq,e) > Cg exp (— 1 —90) exp <Tlog a).

1 —
Finally, adjust o = 1 — An"z so that % = %/1, e, 1= /fi% and use log (1 —x) =

—x — x2 for 0 < x < 1/2; this gives (90) with the value

2%  Tad P =r m1— )

and that ends the proof of Proposmon (3.2.35).
We prove the existence of the compact L claimed in the proof of Lemma (3.2.16).

Let y:[0,1] = ¢(ID) be a simple curve joining0andr, i.e., y (0) =0and y(1) = r, and
consisting of segments parallel to the coordinate axes. This is always possible since ¢ (D)
is open and connected (for example, if y had self-intersection points, we may add them and
obtain a graph going from 0 to r. Now, from any finite such graph, we can extract a
maximal tree rooted at 0 and finishing at r, and this tree generates the required simple
curve). Denote by K = y([0,1]) < ¢(D) the image of this curve, and set y(t) = x(t) +
iy(t). We define inductively a sequence 0 = t, < t; < -+ < ty, = 1 in the following way.
Start from t, = 0 and y(t,) = x(t,) = 0 and suppose that we have defined t, <---<t¢;
with y(t;) = x(t;). If t; = 1, we set M = j and we have finished. If ¢; < 1, we define
ti+1 > t; as follows:

(i) If the curve just after ¢; is followed by a horizontal segment of the real axis, until the
time t;,1, we say that j is an index of horizontal type and we have just defined ¢;, 4

(ii) If the curve just after ¢; is followed by a vertical segment, we say that j is of vertical
type and we denote by t;,, the first value of ¢ > ¢; for which y(t) = 0. Such a value
exists since y(1) = r, implying y(1) = 0. Set I; = [¢;, tj1]. If y; is the restriction of y to
I;, we complete it by symmetry with respect to the real axis in a closed, positively oriented
Jordan curve §; with image in K U K . This is possible since y is simple and y; intersects
the real axis only at x(t;) and x(tj+1). The process must stop after a finite number M > 1
of steps, and we now set L; = {z; Ind (z,6;) # 0} and L =U;Z;' L, U K (Ind denotes the

winding number). We claim that this set L has the following propertles which are exactly
those required in the proof of Lemma (3.2.16). First, L is obviously a compact subset of D.
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Then [0,7] < L. In fact, first observe that each segment [x(¢;),x(¢;11)] is @ subset of L.
Indeed, if j is of horizontal type, this is obvious. If j is of vertical type, we may assume
without loss of generality that x(¢;) < x(¢;4,). By definition, x < x(t;) implies that & ;
, so that Ind (x, ;) = 0 by connection to —co. Therefore Ind (x,6;) = 1 for x(t;) < x <
x(tj+1) since the index changes by one when one crosses orthogonally the boundary of a

simple curve [112] and since &; contains a vertical segment passing through x(t]-). Now,
by the intermediate value theorem, we see that
[0,7] € x ([0,1]) cU/Zg" [x(¢), x (tj41)] < L. Finally, € E = K UK . Indeed, using the

Jordan curve theorem, we see that ¢ (U}L;' dL;) UK < (ULt 6;) UK c K UK |, since

5§ cKuU K by definition.
Section (3.3): Compact Composition Operators on BMOA

For D be the open unit disc of the complex plane C. The space BMOA consists of
the analytic functions f: D — C whose boundary values have bounded mean oscillation on
the unit circle T. Equivalently, f belongs to BMOA if and only if the seminorm

Ifl. = i‘é]g”f o gg — f(@)ly2

is finite, where ||-|| ;2 is the standard norm of the Hardy space H2 and o,(z) = % is the

automorphism of D that exchanges the points 0 and a. Then BMOA becomes a Banach
space under the norm ||fll. = |f(0)| + |f|.. Furthermore, VMOA is the closed subspace
of BMOA consisting of those functions f whose boundary values have vanishing mean
oscillation, or equivalently, which satisfy

lm lIf 0z = f(@lly2 = 0.

See [94], [126] and [23] for more information on the spaces BMOA and VMOA.

If o:ID — D is an analytic map, then the composition operator C,, induced by ¢ is the
linear map defined by C,,f = f o ¢ for all analytic functions f:ID — C. It is well known
that C,, is always bounded from BMOA into itself and that C,, preserves VMOA if and
only if ¢ €e VMOA; see e.g. [121], [123], [138]. Composition operators have been
intensively studied on various spaces of analytic functions, see [20] or [83] for more about
the classical background.

Recall that a linear operator is compact if it takes bounded sets into sets having a
compact closure. The compactness of a composition operator C,, acting on BMOA (or on
its subspace VMOA) has been investigated various kinds of characterizations are known;
see e.g. [123], [128], [129], [133], [135], [139], [141]-[143]. In particular, Smith [135]
proved that C, is compact on BMOA if and only if ¢ satisfies the following pair of
conditions:

lim sup |[W?|N(o, . o@oo,w)=0, S1
|<P(a)|_’10<|wll)<1| IN (o) © ¢ © 0a W) (51)

Andforall 0 < R < 1,

lim sup [C€T:|(peoa,)()|>t]=0. (52)
t=1 {a:lp(a)|<R}
Above N(¥,w) = — Yyz)=w log|z| denotes the Nevanlinna counting function of an

analytic self-map vy of the disc, ¢ ({) is the radial limit of ¢ for a.e. ¢ on the unit circle T,
and |E| stands for the normalized Lebesgue measure of sets E c T. Recently the first
author [129] showed that (S1) is equivalent to the condition
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|(p(a)|_)1||o-§0(a) e O-a” O’ (L)

which is technically more convenient for our later purposes.

A well-known open problem concerning composition operators is that of
characterizing the weak compactness of C, on the non-reflexive spaces BMOA and
VMOA. Recall that an operator is weakly compact provided it takes bounded sets into sets
whose closure is compact in the weak topology of the space. For C,, acting on VMOA this
problem was explicitly posed in [139] and [123], and for the BMOA case it was stated in
[127], [128]. Partial results for VMOA were obtained in [133] and [125]. For instance, if
@ € VMOA and ¢ (D) is contained in a polygon inscribed in D [133], or if ¢ is univalent
[125], then compactness and weak compactness are equivalent for C, on VMOA. It is
natural to conjecture that the same equivalence should persist for arbitrary symbols ¢ even
on BMOA, especially because a similar phenomenon is known to occur for composition
operators on many other classical non-reflexive spaces, such as H* [82], H® (see e.g. [64])
and Bloch spaces [132], [2].

We solve the above problem. The main result reads as follows:

Theorem (3.3.1)[69]: Let ¢: D — DD be an analytic map. Then the following conditions
are
equivalent:

() C,: BMOA — BMOA is compact.

(ii)C,: BMOA — BMOA is weakly compact.

(iii) ¢ satisfies condition (S1).

(iv) ¢ satisfies condition (L).

A key ingredient of our argument is the surprising result that condition (L) (and
consequently also (S1)) actually implies (S2). This result is proved. Thus our work
substantially clarifies and simplifies the existing compactness criteria for composition
operators on BMOA. The proof of Theorem (3.3.1) is then completed by verifying that (ii)
implies (iv). This step is carried out, where the argument is based on an idea of Leibov
[130] (cf. also [134]) on how to construct explicit isomorphic copies of the sequence space
co inside VMOA.

As a by-product the results answer a recent question of Wulan, Zheng and Zhu
[143]. Namely, it follows that the condition |Li|r31|0a°90|* = 0 is sufficient for the

compactness of C, on BMOA. The necessity was earlier observed by Wulan [142].

We further reformulate (L) as a pseudo-hyperbolic mean oscillation condition for
the boundary values of the symbol as follows:
—j<p(c)|dc|‘ S @

1 2
W“p(mc),«p(f)) ld¢fldé] >0 as |\

Here p denotes the pseudo-hyperbolic metric, I < T is a boundary arc and the integration
Is with respect to the normalized Lebesgue measure on T.

Collects together some related new results in the VMOA setting. We observe that the
analogue of Theorem (3.3.1) holds on VMOA (that is, for symbols ¢ € VMOA), where
(L) can be replaced by |(11i|r—r>11”0"’(a) oo aa||H2 = 0. Moreover, we prove that one may

substitute the genuine hyperbolic metric for the pseudo-hyperbolic metric in the VMOA
version of condition (A). We then get the unexpected corollary that C, is compact on
VMOA if and only if it is compact from the Bloch space to VMOA.
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We prove that condition (L) alone is enough to characterize the compactness of C,,
on the space BMOA. It is known [129] that (L) is equivalent to Smith’s first condition
(S1). Since this fact is central to our work, we first briefly recall the argument for the
reader’s convenience.

If we write @, = 0,(q) © @ ° 04, then ¢, (0) = 0, so that Stanton’s change-of-variable
formula (see e.g. [83]) gives the identity

lgallZ. = 2 f N (9o w)d A(W), (91)
D

where A is the normalized area measure. By Littlewood’s inequality [20] we also have
N(p,,w) < —log|w|. Since this implies that the functions N(¢a,) are uniformly
integrable, the implication from (S1) to (L) follows from (91) upon observing that for
|lw| = & one has the estimate N(@,,w) < §?|w|?>N (@4 w). In the converse direction,
observe that |w|?N(¢@,, w) is uniformly small for |w| close to 1 (again by Littlewood’s
inequality). For 0 > |w| <1 — &, we apply the submean-value property of N(¢,,") (see
e.g. [83]) on a maximal w-centred disc contained in D\{0}, and deduce that N(¢,,w) <
min(lwl, 8)72 [ N(@q,) d A. Thus [w|2N(@q, w) < 272672 |lpql 52 by (91).

In view of Smith’s compactness criterion consisting of the pair (S1) and (S2), our
work below reduces to showing that (S2) is actually implied by (S1), or by (L):

We stress that (L) is used here because it is technically very convenient for our
arguments and also allows for quite appealing reformulations in terms of the boundary
values of ¢. In particular, by expressing the H? norm as an L? norm on T and performing
a change of variable using the automorphism o, we get

log(@) o @ ool = jT p((0a(©) 0@) 1dg| = ]T p(9(0), 0(@) P(DIdC| (92)

where P,({) = (1 —|a|?) /| — al?* is the Poisson kernel for a € D and p(z,w) = |z —
w|/|1 — wz| denotes the pseudo-hyperbolic distance in D (observe that p extends to the
boundary T in a natural way if we agree that p(z,z) = 0 for z € T). Thus (L) can be seen
as a kind of vanishing mean oscillation condition with respect to the pseudo-hyperbolic
metric. We will elaborate on this point further.

It is relevant to observe that if ¢ satisfies condition (L), or equivalently (S1), then one
has |¢| < 1 a.e. on T. This can be checked by a straightforward density point argument.
Below and elsewhere in the text we use the following notation for closed arcs of T: when
re® e Dwith0 <r < 1, set

I(re®) ={e:|t - 0] <m(1—-1)}
Thus I(re'®) denotes the arc of T whose midpoint is e?® and (normalized) length
[I(re®)| = 1 —r. The proof of Theorem (3.3.3) applies a uniform density estimate for
Lebesgue measurable sets on T
Lemma (3.3.2)[69]: Suppose that E c T is a measurable set with |E| > 0. Then there is a
measurable set E’ < E such that |[E’| > 0 and

GHNEl 1= T E]
1GOr - 4

forevery0 < r<1land{ € E'.
Proof Consider a standard dyadic decomposition of T. If { is the midpoint of an arc
I c T, then | contains a dyadic arc J such that { € J and|/| = |I|/4. Thus it is enough to
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verify that) n E|/|J]| = 1 —+/1 — |E| for all dyadic arcs /] c T that contain {. Passing to
the complement F = T\E, this amounts to finding a subset E’ c E of positive measure
such that

Mxr() < IF  for {€F, (93)
where M y is the dyadic maximal function of the characteristic function of F.
It is known that the dyadic maximal function satisfies a weak 1-1 inequality with constant
1 (see e.g. [137], or apply Doob’s 1-1 inequality for martingales, see e.g. [122]), whence
one has the estimate

F
{(Myp > T < J% _ /<1

This yields the desired result since almost every point { € T satisfying (93) belongs to E
by the Lebesgue density theorem.
Theorem (3.3.3)[69]: Condition (L) implies (S2) for any analytic map ¢: D — . Hence
C,:BMOA — BMOA is compact if and only if (L) holds.
Proof. As a preparatory step we first establish a Mobius-invariant version of condition (L).
Let ¢, =@oo, for beD. Then the following identity can be verified just by
inspection and using the self-inverse property of the automorphisms:

0, (@) © @1 0 05 = [0,(05(@)) © @ © 05,0 © T, (@)] © [0, (@) © b © Ta-
Note that the composite mapping enclosed in the last brackets is a disc automorphism that
fixes the origin, hence a rotation. Therefore

logs@ © @5 © dall,. = ”%(ob(a)) °PCIop@ |2
Now, in view of (92) and the fact that Pa({) zill(a)l‘1 for ¢ € I(a), condition (L)
implies the following: Given € > 0, there exists n < 1 such that

@] I(@P(‘Pb(()»‘ﬁb(a)) |d{| < ¢ (94)

whenever a and b satisfy |p,(a)| = 7.

For the actual proof of Theorem (3.3.3) we argue by contradiction, assuming that (L)
holds but (S2) does not. Since (S2) fails, there are constants R < 1 and ¢ > 0, points b;, €
D, and numbers 0 < t;, < 1 with t;, — 1 such that for all kK > 1 we have |p(b;)| <R
and the sets

Ey = {{ € T:the radial limit ¢, ({) exists and |@,({)| > t;}
satisfy |Ex| = ¢, where ¢, = ¢ ° gp,, . By Lemma (3.3.2) we can further find sets E;, < Ej
such that |E},| > 0 and

|[I(r) N Ey| - 1-vV1l-c
Irol 4

Lete = (1 —-+1—-c)/8 > 0. We may choose 1 large enough so that R <n < 1 and (94)
holds for |, (a)| = 7n. Fix k such that t,, = n. Recall that by the definition of E;, we have
o, )| = lor(Q)| >t asr — 1 foreach ¢ € Ej. In particular, we can fix a point {;, €
E,, with this property. Moreover, since |, (0)| = |@(b,)| < R, it follows from continuity
that there is a radius 0 < 1, < 1 such that |, (1. {x)| = n. Let a;, = 1 {; . By elementary
geometry it holds for each ¢ € E;, that p(¢ (), pr(ar)) = p(ty,m). Hence we can use
(95) to obtain the estimate

for0<r<1,{ €E. (95)
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1 2 11(a) N E| , 2
en] I(ak)p(w(i)xpk(ak)) 4| = e S ot n)? = 26p(tm)”

Since this estimate holds for all sufficiently large k, we may let k — co. In this case
p(ty,n) — 1, which leads to a contradiction with (94) by the choice of «.
We close by addressing a question recently posed by Wulan, Zheng and Zhu [143].
Based on an earlier work by Wulan [142], they showed that the single condition
lim |@"], = 0 (W1)

n—oo

characterizes the compactness of C, on BMOA. The earlier result in [142] involved the
additional condition

lim |6, 0 @], =0, (W2)

la|—=1
and consequently it was asked in [143] whether (W2) alone would suffice to characterize
when C,, is compact on BMOA. This is indeed the case.
Corollary (3.3.4)[69]: Let ¢: D — DD be an analytic map. Then C,, is compact on BMOA
if and only if (W2) holds.
Proof: It is enough to observe that |o ) © @
trivially implies (L).

After the work of the preceding the only step that remains to be proved in Theorem
(3.3.1) is that (ii) implies (iv). Equivalently, if the map ¢ fails to satisfy condition (L), then
we must show that the composition operator C,, is not weakly compact on BMOA. This
will be accomplished separately in Proposition (3.3.6) below.

Our argument depends on the following result which is due to Le ibov [130] for
VMO(T) and independently to Miller and Schechtman [134] for the linearly isomorphic
setting of dyadic martingale VMO. As usual, here ¢, denotes the Banach space of complex
sequences converging to zero endowed with the supremum norm ||-||.. We sketch a self-
contained argument of the formulation required here.

Proposition (3.3.5)[69]: Let (f,,) be a sequence in VMOA such that ||f,]l. = 1 for all n
and ||f,|lyz = 0 as n — oo. Then there exists a subsequence (f,,x) Which is equivalent to
the natural basis of c,; that is, for which the map (1) — X Axfp, is an isomorphism
from ¢, into VMOA.

Proof: For brevity write y(f,a) = ||f ¢ o, — f(a)||y2 Whenever f € H* and a € D. Note
that y(f,a) defines a seminorm with respect to f for each a. We also have y(f,a) <
If o agllgz < cq llIfllyz for some ¢, > 0, where ¢, is an increasing function of |al.
Therefore

2 ||op@ o @ oaa,. , whence (W2)

sup{y (fp,a):la| <r} - 0 as n—- o
for any 0 < r < 1. On the other hand, the VMOA condition says that y(f,,,a) —» 0 as
la] = 1 for each n. Proceeding inductively, one may use these properties of (f;,) to find
increasing sequences of integers n;, = 1 and numbers 0 < r;, < 1 such that for each k > 1
one has ||f,, || .. > 27" and
sup ¥(foa) > 2751, sup y(fy,.a) >27F
la|sTg lalzrg+1

Then every a € D satisfies y(fnk, a) < 27%=1 for all except possibly one index k, for
which y(f,,,a) < 1. Also, for each k > 1 there is a € D such that y(fy,.a) = z since
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£ ll, = 1 and [ £, O] < [Ifo ]2 < %. It is then fairly straightforward to verify that the

sequence (f;,, ) is equivalent in VMOA to the natural basis of c,.

The following proposition completes the proof of Theorem (3.3.1).
Proposition (3.3.6)[69]: Let ¢: D — D be an analytic map and suppose that condition (L)
fails. Then the composition operator C,: BMOA — BMOA fixes a copy of ¢, and therefore
it is not weakly compact.
Proof: Since (L) fails to hold, we can find points a,, € D such that |¢(a,)| = 1 and

1o © @ Uan||Hz =c

for some ¢ > 0. Put f;, = 0(4,) — ®(a,). Then f,(0) = 0 and, for each a € D,

|fn ©0q — fa(@|lyz = ||0¢(an) °©0q — U(p(an)(a)”Hz = \/1 - |0¢(an)(a)|2-
The last equality can be seen by using the fact that 0,4, © 0, is an inner function. Now it
follows easily that f,, € VMOA and ||f,,||. = 1 for each n. By taking a = 0 we obtain that
I fnll gz = 0 as n — co. Moreover,
|Cotull, = [/ 0 @ © 0a, = (@)l = llopan) © @ ° 0all . =

According to Proposition (3.3.5) there is a subsequence (fnk) which is equivalent in
VMOA to the natural basis of cy. In particular, (C(pfnk) Is a weak-null sequence in
BMOA. By applying the Bessaga-Petczynski selection principle (see e.g. [88]) to (Cq, fnk)
we can pass to a further subsequence, still denoted (fy, ). such that (C,f,,) is a
seminormalized basic sequence in BMOA. It follows that there are constants A, B > 0 so

that
> Moty > A,
k k *

holds for any sequence A = (A;) € ¢y. (To find A just apply the biorthogonal basis
functionals to Y 4,C, f,,.) These estimates state that the restriction of C,, to the closed

subspace of BMOA spanned by the sequence (fnk) is an isomorphism on a linearly
isomorphic copy of c,, and we are done.

We examine the function-theoretic meaning of condition (L) by revisiting the point
of view that we already touched upon. That is, (L) can be thought of as a kind of pseudo-
hyperbolic vanishing mean oscillation condition for the boundary values of ¢ over certain
arcs in T'; see Proposition (3.3.8) below.

When ¢@: D — D is an analytic map and | is an arc of T, denote

1 1
= — = — d

for the integral average of ¢ over I. Here and elsewhere all integrals over subsets of T are
calculated with respect to the normalized Lebesgue arc-length measure. Also recall from
that I(reie) = {eit: t—0|<m(1- r)} for re® € D.

Lemma (3.3.7)[69]: For a € D we have |¢(a)| = 1 if and only if |p;(a)| = 1.

Proof: The left-to-right implication is easy to prove. In fact, assuming that ¢(a) = 0 (as
we may, after applying a rotation), we get by using (96) that

1
1-1p@I = [ (1~ Re@)p, 2 (1=Re @) =7 (1~ |01))
T

A Ao = < B - [|Cy|[l12]le

< [Coll -
*

4|1(a)| (@)
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This clearly shows that ¢ (a)| — 1 implies |@; | - 1.

For the reverse implication, we may assume that ¢;,) =1 — & for some 0 < 6§ < %
Let E={( €l(a):Re p({) =1 — 26}. Since Rep <1, we must have |E| Z%II(a)l.
Consider the positive harmonic function u = log(2/|1 — ¢|). It is geometrically obvious
that |1 — ¢| < ¢ V/§ on E for some constant ¢ > 0. Hence

u(a) Zj;rup ><logc\/_>f a_;<logi§)

Since |1 —¢(a)] =2 @  we deduce from this estimate that 1— |¢(a)| <
|1 —¢@(a)] > 0asé — 0.

Proposition (3.3.8)[69]: For any analytic map ¢: D — ID condition (L) is equivalent to the
following:

1
o= [ [plo@no@)1agl1at - 0 as -l -1, @
1VYI

where I c T are arcs.
In the proof we will make use of the following simple estimates for the Poisson kernel: for
every a € D,

1 2
i S RO < (El@. (96)

For convenience we first isolate a technical step towards Proposition (3.3.8).
Proof: We start by proving the necessity of (A). By the preceding lemma |¢@;| — 1 implies
that |@(a;)| — 1. Hence (92) and the left-hand side of (96) yield

1 2
ITIJP(«)(C),co(az)) d¢] =0 as lg/ =1, (4)
T

where I c T is an arc and a; € D is the unique point for which I = I(a;). Then (A) is
obtained from (A") by a simple application of the triangle inequality p(¢({), @(§)) <

p(0(0), p(al)) + p(e(€), p(al)).

To prove the sufficiency of (A) we will show that

J(@) = j j 2(0(0, 0(©) P(OP(O)1dSINdEl » 0 as |p(@)] - 1. (97)
TYT

In view of (92) this actually implies (L), because the function w— p(z,w)? is

subharmonic in D and therefore [ p(z, <p(€))2Pa(€)|d€| > p(z, go(a))2 for every z € D.

Let € > 0. For each a € D we can choose a point aon the line segment between 0 and
a such that fl(a,) P,>21—c¢cand1—|a’| < c.(1 — |a|) for some constant ¢, > 0. For real

a close to 1 this can be seen by integration the estimate Pa(eit) >(1-a®/[1-a)?+
t?] over an interval |t| < c¢(1 — a) and letting ¢ — oo. Thus [ P, < ¢, and since p <

1, we can estimate
J@sze+ | [ p(p@.00) BEREIEIE]
I(a") Y1(a")

4c? ,
[1(a")|? _];(a,) Jl(a,)P(q’((),(p(f)) |ad|ldé|

by using the right-hand side of (96) in the last step. According to the Schwarz-Pick
inequality we have p(¢(a), ¢(a")) < p(a,a’) < ¢/ for some ¢, < 1 due to the fact that

T\I(a")

<2+
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1—la|l <c.(1—|a]). Thus |@(a)| —» 1 implies that |@(a)| — 1, which, in turn, yields
|#1ary| = 1 by Lemma (3.3.7). By applying (A) to the arcs I(a’) we then deduce from the
above estimate that lim sup J(a) < 2¢ as|@(a)| = 1. Since € > 0 was arbitrary, this
proves (97).

We summarize the principal function-theoretic compactness criteria for C, on BMOA
in the following theorem. Criteria of a different nature are given in [123] and [141].
Theorem (3.3.9)[69]: Compactness and weak compactness of C,: BMOA — BMOA are
equivalent to each of the conditions (S1), (L), (W1), (W2), (A) and (4").

We discuss the case where ¢ € VMOA. Here simplified compactness criteria are
available and new phenomena occur. Recall first that if ¢ € VMOA then C,, takes VMOA
into itself and C,,: BMOA — BMOA can be identified with the biadjoint of its restriction to
VMOA, see [125].

Let 7 denote the hyperbolic metric in the unit disc, that is,
( 11 1+ p(z,w)
T(z,w) = Ogl—p(,w)
where p(z, w) is the pseudo-hyperbolic dlstance between z and w (see e.g. [94] or [23]).
Contrary to the pseudo-hyperbolic metric, T is unbounded in D and it is appropriate to
define 7(z,w) = oo if z and w are distinct points (at least) one of which lies on the
boundary.

We collect the main new results in the case of VMOA as follows.

The Bloch space B consists of the analytic functions f:DD — Cfor which
suplf (2)|(1 — |z|?) < o0. Then B becomes a Banach space equipped with the norm

|f(0)| + sup|f'(2)|(1 — |z|?). Composition operators C, acting from B into VMOA or

z€D

BMOA have been studied in e.g. [124], [131], [133], [136], [139], [144]. As observed by
Makhmutov and Tjani [133], it follows from the results of Choe, Ramey and Ullrich [124]
combined with [145] that C,, is bounded from B into BMOA if and only if (99) holds. In
addition, it was proved in [133] that C,, is compact from B into VMOA if and only if (iv’)
holds. Therefore Theorem (3.3.12) has the following surprising consequence.

Corollary (3.3.10)[69]: Let ¢:ID — D be an analytic map with ¢ € VMOA. Then C,, is
compact VMOA — VMOA if and only if it is compact B - VMOA.

This result was known earlier in the special case of boundedly valent symbols ¢ whose
image ¢(D) is contained in a polygon inscribed in D; see [133]. Of course, in Corollary
(3.3.10) the implication from right to left follows from the fact that VMOA is continuously
embedded in B. Furthermore, it is relevant to note that C,, is bounded B —» VMOA if and
only if it is compact B - VMOA; see [136].

Towards the proof of Theorem (3.3.1) we make some preliminary remarks. It was
already observed by the first author [129] that condition (iii) alone characterizes the
compactness of C,:VMOA - VMOA. At first sight (iii) might seem stronger than (L)
because |@(a)| = 1 always implies |a| — 1 by the Schwarz lemma. We include a direct
function-theoretic argument proving the equivalence of these two conditions for symbols
@ € VMOA.

Lemma (3.3.11)[69]: Let ¢: D — D be an analytic map. Then condition (iii) of Theorem
(3.3.1) holds if and only if ¢ € VMOA and (L) holds.
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Proof: Let ¢, = 04(q) © @ © 0,. By the self-inverse property of g, we may write ¢ o
Ogq = Og(a) © Pa, from which it follows that
— lp(a)|?

(@ 2 04)(2) — p(a)| = 1= @02 |9a(2)]. (98)

This yields ||¢ o 0, — @(a)|ly2 < 2|l@.ll 2 - Hence (iii) implies that ¢ € VMOA.
Conversely note that if (L) holds but (iii) fails, then there exists a sequence (a,,) such

that |a,| » 1 while |p(a,)| <7 <1 and ||¢q, || > ¢ > 0 for all n. Then (98) implies
that ||<p °0q, — <,o(an)||H2 >(1- r)||goan|| , = (1 —=r)c, whence ¢ &€ VMOA. This
proves the lemma.
Theorem (3.3.12)[69]: Let ¢: D — DD be an analytic map such that ¢ € VMOA. Then the
following conditions are equivalent:

(i) C,: VMOA — VMOA is compact.

(ii) C,: VMOA — VMOA is weakly compact.

(III) |<11i|r—r>11”%(a) oo o'a”H2 = 0.
™ lim fp(0(00).0@) 141 =0,
(v) li lhmowf f p(e(), go(f)) |d¢||d&| = O,where I c T are arcs.

Further, (iv) and (v) are equivalent to the following conditions involving the hyperbolic
metric:

iv)  lim fy7(0(0(©) 0(@)1d¢] = 0,

(iiv) |P|moﬁff (), (&))1dC||dé| = 0, where I c T are arcs.
The main novelty of Theorem (3.3.12), as compared to Theorem (3.3.1), lies in conditions
(iv’) and (v’), which relate to vanishing mean oscillation with respect to the genuine
hyperbolic metric. This also ties to earlier research on composition operators from the
Bloch space to VMOA. Before embarking on the proof of Theorem (3.3.12) we discuss
the interpretation of (iv’) from the literature and draw some consequences.

First note that if the integral [z ((p(aa(()), (p(a)) |d¢| is finite for some a € D, then

|| < 1 a.e. on T. Moreover, the integral stays bounded as a varies on a compact subset of
D. Hence (iv’) implies

sup | =(p(ex(D), 0(@)) 2] < e (99)

saying that ¢ belongs to the hyperbollc BMOA class introduced by Yamashita [145].
Actually the fact that (iv) implies the finiteness of the integral in (99) for some a € D is
already non-trivial.
Proof. Recall that the operator C,: BMOA — BMOA is the biadjoint of the restriction
Cy,:VMOA — VMOA, since here ¢ € VMOA. Hence, according to Theorem (3.3.1),
conditions (i) and (ii) are both equivalent to (L). On the other hand, in this case (L) and
(iii) are equivalent by Lemma (3.3.11). We refer below for an approach to the
equivalences between conditions (i)—(iii) which does not depend.

Conditions (iii) and (iv) are restatements of each other according to (92). The
equivalence of (iii) and (v) is proved in the same way as Proposition (3.3.8); instead of
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invoking Lemma (3.3.7) we just observe that for points a € ID one has |a| — 1 if and only
if |[I(a)| - 0.

Since T > cp? for a suitable ¢ > 0, it is obvious that (v’) implies (v). Moreover, (v’)
can be deduced from (iv’) by making a change of variable, using the lower estimate from
(96) for the Poisson kernel and applying the triangle inequality as in the first part of the
proof of Proposition (3.3.8). The crucial remaining step in the proof of Theorem (3.3.12)
consists of verifying the implication that the pseudo-hyperbolic condition (iv) implies the
hyperbolic condition (iv’). We isolate this more technical result below, which then
completes the proof of the theorem.

The argument will employ ideas of Wik [140] related to his elementary approach to the
John-Nirenberg inequality for BMO functions. We will require the following one-
dimensional special case of [140]:

Lemma (3.3.13)[69]: Suppose that 0 < A < 1 and E < [0,1] is any measurable set having
Lebesgue measure |E| < A. Then there is a sequence Q, Q,, ... of closed dyadic intervals

of [0,1], having pairwise disjoint interiors, such that %AIQ,{I < |Qx N E| < A|Qy| for k =

1 and |E\ Uk le - 0

Proposition (3.3.14)[69]: Let ¢: D — D be an analytic map. Then condition (iv) implies
condition (iv’) in Theorem (3.3.1).

Proof. Assuming that condition (iv) (and equivalently also (v)) holds, we split the proof
into two steps. As the first step we show:

Claim (3.3.15)[69]:

it ), O e (@)ldgi = 0.

To begin recall from that condition (iv) implies that |¢| < 1 a.e. on T (this fact can
alternatively be deduced by observing that (i) implies the compactness of C, on H? by
[123]). Towards the proof of Claim (3.3.15) we first deduce from (iv) by a change of
variable and (96) that

. 2 —_—
BTl G (0D 0@)"1ds] =0, (100)

where I(a) = {e':|t — 6] < (1 —r)} is the subarc of T associated to a = re’ € D.
Hence we may pick § > 0 small enough so that
2 1
@] I(a)p(qo((),w(a)) |d¢] < 7 (101)
whenever a € D satisfies |a| > 1 — 6.
Let € € (0,1/32). According to (v) we may decrease § > 0, if necessary, to ensure that
for all a € D with |a] > 1 — & we also have

1 2
|1(a)|2f,(a) fl(a)PW@W(f)) |d¢lldg] < e. (102)

Fix such a point a and put

CGo={el@:t (@ p@) =k}, k=012,
whence I(a) = C, D C; D C, D--. Observe that if ¢ € C;, then the definition of the

2_
2> 1/v/2. One gets from

e2+1

hyperbolic metric yields p(¢({),p(a)) = [, where f =
(101) that
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rcil _ 1

[1(a)| ~ |I(a)| I(a)
Whence |C; | < %Il(a)l.
Let k > 1 be fixed. Then we may apply Lemma (3.3.13) to the set C; relative to the arc
I(a) with A = % , Which gives a sequence J/,, /,, ... of subarcs of I(a) with disjoint interiors
such that for each £ > 1

2 1
p(e(D), (@) 1dC| > 7

1 1
|C N ]| = ZU{’L |Ck N el = EUH (103)
and

Cy U J, = 0. (104)

P=
Observe next that if ( € Cf and & € Ck+11, then 7(@(0), (&) =7 (p(&), p(a)) —

T (p(0), p(a)) = 1, so that p(go({),<p(€))2 > B2 > 0. Consequently we get from (102),
(103) and the assumption on a that

|Cx; ]£| |Crr1 0 Jol _ 1|Cryq Nyl
— dz|dé| = B2 -
£ |/, |2>]][’[]p(<p({) go(f)) lacflds] = 5 /] |/l Z4 A

Thus |Creq1 N Jo| < 4€]],| for £ = 1. We sum this inequality over £ and employ (103) and
(104) together with the essentlal disjointness of the subarcs ]{) to obtain

Cal = Zlckﬂrwl<4eZ|1e|<16eZ|cknJg|—16elck| (105)

In particular, since € > 1/32 we get by mductlon that |Ck| < 227%|c,| for k > 2. Note
that k <t (<p({),<p(a)) > k + 1 whenever ¢ € C,\Cy+1 and k = 0. Employing the short-
hand notation {r > 2} for the set {¢ € I(a):T(({), <p(a)) > 2} = Cy\C, we thus get that

| e o@aci=| (9@, ¢<a>)|dc|+2 [ He@re@)ia
I(a) {r<2} C

k\Ck+1

< j{m}f((p(q) $(@)]dg] + Z(k + DICI

After division by |I(a)]| the last term is less than |CZ||I(a)| Iy ,(k+1)227% < 128¢,
which tends to 0 as € — 0. On the other hand, in the set {t < 2}

we have t(@({), p(a)) < cp(<p({), <,o(a))2 with a universal constant ¢ > 0, so that also

oy ()] {T<2}T(€0((),<P(a))|d(| -0

in view of (100). This finishes the proof of Claim (3.3.15).

As the final step we show that the condition of Claim (3.3.15) implies the desired
hyperbolic condition (iv’) of Theorem (3.3.12). The required argument is quite standard
but more technical than the analogous fact for the pseudo-hyperbolic distance p because
the hyperbolic distance t is unbounded. We omit some computational details.
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Claim (3.3.16)[69]:
J (000 @) 0@) 1421 = | (0@, 9@)P.@4z1 = 0lal - 1.

For the proof we assume that a € I satisfies 277 < 1 — |a| > 217" for some N > 1, and
then let N — oo in our estimates. Define for k = 1,..., N the radii r;, , points a; € D and
arcs I, through 1 —r7, = 2V"%(1 — |a|), a;, = r,a/|a| and I, = I(a;). Set also a, = 0
and I, = T. Then a = ay and I(a) = Iy € Iy_; €...C I, = T. Moreover, 27% < |I,,| >
217k Observe that if 1 < k < N and { € I\ I.4+,, then elementary trigonometry yields
| —al > %Ilkﬂl > 27%=2 Hence the Poisson kernel satisfies P,(¢) < 22N forall ¢ €

I \I+1, Where < indicates that the left-hand side is bounded above by a constant multiple
of the right-hand side, the constant being independent of N and k. Consequently we may
estimate the second integral appearing in Clalm (3.3.16) as follows:

| wo@ o@)r@lac) Z 2 [ @ 0@)ldc)

Ik\1k+1

w2 @T(go(o P@)I&| 5 2 T f (0, 9(@) 14
N -1

Z ] f (), p(a)dd| + z 2N (p(ay), ¢(a)) = Ay + By

k=0
It will suffice to verlfy that the condition of Claim (3.3.15) implies that the terms A, and

By both tend to zero as N — oo. First of all (observe that now (99) holds),

N

z
_ B 1
AN S ksz N 4 ZV: 2N mjlkf(w(é),co(ak))ldfl
= k:[ ]+1
N
SN-2 2+ sup

k>[ | 1k

Above the first term tends to zero trivially, and the second term by Claim (3.3.15),as N —
O,

In order to relate the term By to the averages in Claim (3.3.15) we introduce the short-
hand by, = |I|™?! flk T(<p((),go(ak))|d(|. Let 1 < k < N. By averaging over the arc I, we

get from the triangle inequality for t that

t(p(ag-1), o(ar)) < 7

7 ), @ ee)id)

| (060 ai))1ee]

T(‘P(O <P(ak))|d(| < 2by_1 + by,

|I | J;
Since |I,_1] < 2|I;]. Because = ay , we deduce that
N
T((p(ak),q)(a)) S Zb <(N—-k + 1) max b;.
— k<j<N
j=
Put E, = max b; , so that by combining the above estimates one has

k<]<
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N -1

By S Z (N —k + 1)2*NE,,
k=0
where the E}, ’s have a uniform upper bound (independent of a) and E [g] - 0as N — oo.
2

By splitting the preceding sum as before at the level [N /2] we deduce that By - 0as N —
co. This completes the proof of Claim 2, and hence of Proposition (3.3.14).
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Chapter 4
Compact Composition Operators and Atomic Decomposition

We characterize boundedness, closedness of the range and compactness for
composition operators acting on u-Bloch spaces, where u is a positive continuous function
defined on the interval 0 < t < 1, that satisfy certain holomorphic extension properties.
At the same time, we give the briefly sufficient and necessary condition that Cy is compact
on g, fora > 1.
Section (4.1): u-Bloch Type Spaces

For D denote the unit disk in the complex plane C and let H(ID) be the space of all
holomorphic functions on D with the topology of uniform convergence on compact
subsets of D. The Bloch space B consists of all functions f € H(ID) for which

Ifllg = Slel]g(l = 1zI*) lIf' @I < oo.
B Dbecomes a Banach space when it is equipped with the norm |[f|| :=|f (0)] +

For a > 0, the a- Bloch space, denoted as B%, consists of all holomorphic functions f on
D such that

Iflle == ilelﬂl)?(l —1zI?) If'@Il < oo.

a-Bloch spaces have been introduced and studied by numerous authors. For the general
theory of a- Bloch functions see [159]. Many have studied different classes of Bloch type
spaces, where the typical weight function, w(z) = 1 — |z|? (z € D), is replaced by a
continuous positive function u defined on the interval 0 < t < 1. A function f € H(ID) is
called a p-Bloch function, denoted as f € B¥, if

Ifll, := sup(1 — [z[*) |If (@) < 0.
z€D

Clearly, if u(t) = t* with a« > 0, B* is just the a-Bloch space. It is readily seen that B#
is a Banach space with the norm ||fllg, := | £ (0)| + | f1l,..
B* spaces appear in a natural way when one studies properties of some operators in certain

spaces of holomorphic functions; for instance, if u,(t) = tlog% , with t € (0,1], K. Attele

in [148] proved that the Hankel operator induced by a function f in the Bergman space is
bounded if and only if f € B#t+ . The space B is also known as the Log-Bloch space or
the weighted Bloch space. Quite recently in [157] was introduced, so called, the
logarithmic Bloch type space with u(t) =t% lnﬁ§ ,a >0 and B =0, where some

properties of this space are studied and applied in studying of a composition operator.

Let H, and H, be two linear subspaces of H(ID).If ¢ is a holomorphic self-map of
D, such that f o ¢ belongs to H, for all f € Hy, then ¢ induces a linear operator C,, :
H, — H, defined as

Co(f):= froo,

called the composition operator with symbol ¢. Composition operators has been studied
by numerous authors in many subspaces of H(ID) and in particular in Bloch-type spaces.

In [2], Madigan and Matheson characterized continuity and compactness for
composition operators on the classical Bloch space B. In turn, their results have been
extended by Xiao [158] to the a-Bloch spaces and by Yoneda [11] to the Log-Bloch
space. On the other hand, Gathage, Zheng and Zorboska [153] characterized closed range
composition operators on the Bloch space. This result has been extended by Chen and
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Gauthier [149] to a-Bloch spaces. Composition eoperators between a-Bloch and/or
Lipschitz spaces on the unit ball are studied in [150], while the case of the polydisk was
thoroughly studied in [151].

Also, in [4], Zhang and Xiao have characterized boundedness and compactness of
weighted composition operators that act between p-Bloch spaces on the unit ball of C*. In
this case it is required that u be a normal function. The results of Zhang and Xiao have
been extended by Chen and Gauthier to the u-Bloch spaces being u a positive and non-
decreasing continuous function such that p(t )—0 as t — 0 and u(t)/t? is decreasing for
small t and for some § > 0.

Other compactness criteria for composition operators onBloch spaces have been found by
Tjani [139]. Wulan, Zheng and Zhu (see [143]) proved the following result.
Theorem (4.1.1)[146]: ([143]): Let ¢ be an analyitic self-map of D. Then C,, is compact
on the Bloch space B if and only if

lim [|™[|B = 0.
We characterize boundedness and closedness of the range for composition operators acting
on certain u-Bloch spaces. We will approach these problems from a slightly different point
of view. We will consider only those functions u that can be extended to non vanishing,
complex valued holomorphic functions, that satisfy a reasonable, for the purpose of
extending the results of [11], [153], [149], geometric condition on the Euclidean disk
D(1,1). We will consider the problem of compactness of composition operators acting on
u- Bloch spaces. We discuss extensions of the results in [2], [143]. In fact, we will see that
a result similar to Theorem (4.1.1) holds for Cp : B - B*.

We obtain genuine extensions of the results in [11], [153], [149]. For that reason,
we will assume that u : (0,1] —» R is a positive continuous function satisfying u(t) —
Oast — 0%, and also that u can be extended to a complex function7i satisfying the
following properties:

(@) n € H(D(1,1)),
(b) Ti(z) # 0 forallz € D(1,1),
(c) there exists a constant M,, > 0 such that
p(l—11-z|) < M, |a(2)| (1)
forall z € D(1,1).
For instance, the functions u,(t) := t%, with a > 0; u,(t) := tlog% and us(t) :=
tP log(1 +t) with p > 1, defined on the interval (0, 1], satisfy all three conditions
stated above. Observe that B#1 is the a-Bloch space and B#2 is the weighted Bloch space.
Let ¢ be a holomorphic self-map of the unit disk D. For a function u that satisfies all
the properties mentioned above, put
u(1 — |z[?)

Ty (2):= (1= @2 l9'(z)],z€ D : (2)

It is readily seen that if rg(z) is bounded on D, then the composition operator C,, is well
defined on B#. Moreover, this condition turns out to be necessary and sufficient for C,, to
be bounded on B*, as the following proposition shows.

Theorem (4.1.2)[146]: The composition operator C,, is bounded on B# if and only if

sup Tf;, (z) < 0. 3)
z€D

Proof. Let us suppose first that
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suprz) (z) = L < oo,
vA=3))
Then, for each f € B#, we have the following estimate

ICo (O, =11f o @llu = supu (1 ~ 2 | (0@)]l¢' D)
= sup (1~ o) If' (0(@)]75 (2)

< Lfll
Thus, the composition operator C,, is bounded on B*.
Now, suppose that there exists a constant C > 0 such that

1€, (O, =< Clifll,

for all functions f € B*; then, since the identity function i(z) = z belongs to
B#, it follows that ¢ € B*. Let us fix w € D\{0} and consider the function

d ds
fo@:= |
U [w[Zs2
Since the functionZisatisfies conditions (a) and (b), it is clear that f,, € H(ID).Also, by
condition (¢)

u = 1zI)1fw@| = u —1zI*)( =M (4)

1
B w2 i 22
a1 -ep7?)
for all z € D. This means that f,, € B* . Thus, by the hypothesis on C,, and (4), there is a
constant K > 0 (depending only on ) such that ||f;, e ¢ll,, < K, which implies that

u(l—1zI?) ,
— '@ < K 5)
7 (1- oz le@P)
forall z € D and all w € D\{0}. Therefore, if z € D satisfies D(z) # 0, the substitution
w = @(z) into (5) yields

u(l —1z1%) ,
o lp'(2)| < K,
(ZEID))KPI()Z):eo ,Ll(l — |<p(Z)|2) % ( )

where we have used the fact that i is an extension of u. Finally, since
u(l—z|?)

1
su lo'(2)| = —= su u(1—|z|?)|¢'(2)|
T e e 5 LS Aoy B, SO @)

1
< gyl < oo
we can write
1
I U 7
= 0T entnee ? P =Ky el <
and the proof of Theorem (4.1.2) is complete.

Now, we present a necessary and sufficient condition for a composition operator on
B*to be bounded below (and therefore with closed range). The purpose here is to
generalize the results in [153], [149] to the u- Bloch space. To this end, for ¢ > 0, let us
denote

Q= {z eD:1/(2) €}.
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Based on the definition of sampling sets for the Korenblum space (see [154]) and for a-
Bloch spaces (see [149]), the following definition is now natural.

Here, as before, u : (0,1] = R will be a positive continuous function such that u(t) - 0
as t —» 07 and we will use B* to denote the Bloch-type space associated to a such
function pu.

Definition (4.1.3)[146]: A subset G of the unit disk D is said to be a sampling set for B* if
there exists a positive constant L. > 0 such that

sup(ul — [z[)If (2)| = LIfll, (6)
Z€G

for all f € B*.

In the following propositionwe characterize closed range composition operators on B*
in terms of sampling sets.
Theorem (4.1.4)[146]: Let C,, be a bounded composition operator on B*. C,, is bounded
below on B" if and only if there exists € > 0 such that G, = @(Q,) is a sampling set for
B,
Proof. Let us suppose first that there exists € > 0 such that G, = @(Q,) is a sampling set
for B®. In this case, we can find a constant L > 0 such that

Il fll, < Lisup u(1 — |z[*)If (2)]

Z€Gg
for all functions f € BH. Hence, we have that

Il < Lsup w1 = lp@DIF (0@
ATV
L 1
= Su
220, Ty (2)

L
<= lIfooll,.
This readily implies that the operator C, is bounded below on B¥.

To prove the converse, suppose that C, is bounded below on B*. Then there exists a
constant K > 0, such that

1€, (POl = supr( = 12P)]f (eD)]l0' ()] = K

for all functions f € B* with [|f][, = 1. Thus, by definition of supremum, we can find
z¢ € ID such that

(1 = |zI*)I(fe @) ()]

2 ! ! K
w(1 — |zel )| (@) |9’ (zp)| = 5
which, in turn, implies that

K
To (R — @) D' [ (@(z))] = > (7)

Thus, since p(1 — [@(z) |?)|f' (p(zp)| < 1, it must be r(‘; (z¢) = g Therefore, putting € :
= g we have z¢ € ().
Now, since C,, is bounded, Theorem (4.1.2) implies that there is a constant M;, > 0
such that
T(‘; (z) <M,

forall z € D. In particular, rf;, (zf) < Mp. From (7) we conclude that
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K
w1 —=le)?)| fo(ze)l = N

Finally, since @(zf) € Gg, it must be
Sé‘&““ zI)If' (2)] = M,
Therefore Ge is a sampling set for Bu. The proof of Theorem is complete.

Indeed, from [152] we observe that any sampling sequence for B* is an n- net, for
some n € (0,1) and, conversely, if T = {z.} is a separated n-net for n € (0,1) small
enough, then T is a sampling sequence for B*. Thus, Theorem (4.1.4) can be rephrased as
Corollary (4.1.5)[146]: LetC, be a bounded composition operator on B. If C, is
bounded below on B, then there exists e = 0 such that G contain a separated n-net for
some 1 € (0,1). Conversely, if for some € > 0 the set G, contain an n-net with n € (0,1)
small enough, then C,, is bounded below on B, .

We characterize compactness of composition operators that act from the Bloch
space, B, to p- Bloch spaces. We obtain extensions of the results in [2], [143]. In order to
do that we will assume that p: (0,1] — Ris a positive continuous function satisfying
u(t) » 0 as t - 0F. We also will assume that there exists t, € (0,1) such that p is
increasing in (0,t,), and that p can be extended to a non vanishing analytic function {i on
the disk D(1,1) that satisfies the following properties:

() 1/fi(z) = X poby(1 —2)",withb, = 0foralln €N,
tw' ()
no W

For instance, the functions p,(t) :=t% with o> 0; p,(t):= tlog% and p;(t) :=
tP log(1 + t) withp > 1, satisfy the required conditions.

Let ¢ be a holomorphic self-map of the unit disk D and let p be a function that
satisfies all the properties mentioned above. Arguing as in the proof of Theorem (4.1.2) we
can show that C, : B — B" is bounded if and only if

p(—lz*)
Sup —————~ Z < oo
o T-Teer * @

Also, as a consequence of [139] we have the following result.

(ii) there exists a constant K, > 0 such that limt_,o+ ——=

Lemma (4.1.6)[146]: The composition operator C, : B — B, is compact if and only if
given a bounded sequence {f,} in B such that f, = 0 uniformly on compact subsets of D,
then ||C,( f“)”u — 0asn — c.

Next we establish the compactness of C,, : B — BY. It extends a result of Madigan and
Matheson in [2].
Theorem (4.1.7)[146]: The composition operator C, : B — B" is compact if and only if
@ € B* and
u(l —z|*)
im ———= |¢ = 0. 8
P T o) 2 14’ (2)] (8)

Proof. Let us suppose first that ¢ € B* and that (8) holds. Let {f,} be a bounded sequence
in B converging to 0 uniformly on compact subsets of . Then, by Lemma (4.1.6), it
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suffices to show that [|Cq(fa)|| > 0asn — co. To this end, set K = sup|lfy [l . Then,
n

for e > Owecanfindanr € (0,1) such that

n —z») |, €
1— |(p(Z)|2 |(p (Z)l < E;

forany z € D satisfying r < |@(z)| < 1. From here, we have that

1 — 2
A1 — 12)I(Es 0 0) ()] = % 0D~ o@D, o ()|
€
< EK =€

Whenever r < |o(2)| < 1.
On the other hand, since {f,, } converges to 0 uniformly on compact subsets of D, f,, o
@(0) —» 0and sup pu(l — |w|?)|fy (W)| > 0,asn — oo

|w|sr

Also, since ¢ € B¥, we can find a constant C, > 0, depending only on r, such that

W(1— |21)
sup ————— ¢’ (@)]| < C, ||oll,.
S T e 1@ @I = Gllel,

Therefore, for the € > 0 given, there existsan N € N such that
Supl(p(z)lsr U(l - |Z|2)|(fn ° (P),(Z)l

Ay
" other T TpGop © U T 0@ e 0]
< Clell,

whenever n > N. Thus, we conclude that

Ifn o @lly = Ifn o @(0)] + sup p(1 — [z]*) [(fy o ) ()] < (1 + Cillpll,) €

zeD
whenever n = N, which means that C, : B — B" is a compact operator.

To prove the converse, suppose that there exists an €, > 0 such that

u(—zl?)

oo T To@P [© M =
for any r € (0,1). Then, given a sequence of real numbers {r,} < (0,1) such that r, =
1asn — oo, we can find a sequence {z,} ¢ D such that |¢(z,)| > r, and

p1—|zn|?) 1
T Pl = 5¢
By taking a subsequence,if it is necessary, we may suppose that w, = @(z,) - w, €
odD. Now, forn € Nandz € D, we set g, (z) := £, o(z) — f,, (z), where

w, (*Z ds
fn,O (Z) =

)

n
f()__fz ds
nlZ) = w, . 1—W_n5

Clearly {g,} is a bounded sequence in B. Furthermore, since
lgn(@)] < (1 —1zD72(1 — |wal)
and |g,(2)| < f;lg;,(s)l |ds| for all z € D, {g,} is a sequence converging to 0 uniformly
on compact subsets of D, and satisfying
IICq,(gn)IIu > u(1 = zn|*)gn (W)@’ (z0)|
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(1 —zl?)
1- |Wn|
Therefore, C,: B — BM is not a compact operator. This completes the proof of the
theorem.
We collect alternative tests to determine the compactness of a composition operator
Co : B = B*. We have modified some of the techniques used in [143]. Here, for a € D

fixed, let
Tpd—Ja®) 1
13
P = 1-— Z b,a™"z".
Ga (Z) 3 Fl(l ) a ( | | ) a "z
Theorem (4.1.8)[146]: Let ¢ be an analytic function on ]D into itself such that ¢ € B*.
The following conditions are equivalent.
\H(1=(z[2)]o’ ()|
T 1-le@)?
(b) lle™ly > Oasn— oo
(c) |[o} ° (p||u - Oas|a| = 1°
Proof. If |||, < 1, then the theorem is clear. Hence assume that |||, = 1. Suppose
that condition a) holds. Then by Theorem (4.1.7), the composition operator C, : B — B*
Is compact. Thus, since the sequence {z"}is bounded in the Bloch space and converges to
0 uniformly on compact subsets of D, Lemma (4.1.6) implies that lim [[@"[[, = 0
n—->o0o

Suppose now that condition b) holds and let € > 0. Then by hypothesis, there exists
an N € N such that [[@"]], < c—:whenever n = N. Thus, we can write.

1
|‘-p,(Zn)| = E €o > 0.

= Oas|e(z)| » 17,

ot < o], < u(l—lal )xz bulal" " |Iu+ﬁu(1—lal )Zb ™l
N+1
1 p(1-1al?)
<1 u—ap? Zb o™, + e e 9
a1 2, onlaltlletlh + e gr LA ®
On the other hand, since thron :‘;(? = K, > 0and pisincreasing fort > 0 small
enough, then there exists t, € (0,1) such that
tu' (t
o 3
u® 2
whenever 0 < t < t,. It follows, byintegration that
2t
M < 2
u(t)

whenever 0 < t < t,. Thus, sincet < (2t-t?) < 2t for t € (0,1], we conclude that
2t - t2 2t 3
15”( )Su()SZEKH
w® o _ _ _
fort > 0 small enough. Now, the hypothesis on p together with the latter innequality
and (9) gives that

. 1,3k
lok o @ll, < (L = 1al) & Xobalal"ll@"l, + e 22
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whenever 1 — |a| > 0 is small enough. The condition c) follows by taking limit as |a| —
1°.

Finally, suppose that condition c) holds. Then, given € > 0 there exists r € (0,1)
such that ||o} o (p”u < e whenever r < |a| < 1. In particular, if z € D satisfies |@(z)| >

T,

(1 = le@ P (1 = @) p(w)

Op (@] = sup ul — [wl?)| lo'(2)]| <€
” ¢(2) ”u weD |l~l(1 B @(p(w))r
, thus, forw = z we have
2

W~ oGPl ()] < ¢ (10)
wheneverr < |@(z)| < 1. Furthermore, since t1_1)%1 u;i)) K,, we can choose r € (0,1)
in such a way that

Ku I lp(@)1?)]

21— le(@)*) ~ n@—le(2)]?)
whenever r < |@(z)| < 1. From this latter fact and (10), we finally obtain
na-lzi®le' @] _ 2¢
1-le(2)|? Ky,
whenever r < |@(z)| < 1, and so a) holds.

We want to conclude with a comment about compactness of the composition operator
Cp: Bp— B} ; namely, if p is as above, by applying similar arguments to those given by
Madigan and Matheson in [2], we may also establish the following:

(i) A subset K of B} is compact if and only if

lim_sup u(1 — [z|?)| f(z)| =
1z-17 fek
(ii) The composition operator C,, : By — By is compact if and only if

e —zy)
-1 =T @170
Section (4.2): u-Bergman Space in C™*
For dv be the Lebesgue measure on the unit ball B, normalized so that v(B) =

1; dv,(z) = ¢, (1 —|z|*)%dv(z) (z € B,a > —1) such that v, (B) = 1. The class of
all holomorphic functions on B is denoted by H(B) In the following, z = (zq, - -
yZp ), W = (Wy,- - -,wy) InC" and (z,w) = ] 1ZjW; .

A positive continuous function p on [0, 1) is called as normal, if there are constants
0 < a < bsuch that

. u(r) . : w@ Q.
(1) 2 _(r?a Is decreasing for0 < r < 1and rlirln a _(r)z)a = 0;
.- u(r . - . u(r _

(ii) (L r2)p IS Increasing for0 < r < 1and rlir1n T =

Let p > 0, and u be normal on [0,1).f is said to belong to the space LP(w) if f is

Lebesgue measurable function on B and
1

1%
Il = { jB P £ ('l 'l)zd ()}
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AP(u) = LP(u) N H(B) is called as u-Bergman space. In particular, AP(u) is the
1
Bergman space AP when u(r) = (1 — r?)», and AP (i) is the weight Bergman space Ag
B+1

whenu(r) =1 — r?3)» (B > —1).

It is well known that AP () is a Banach space with the norm || .||»(,) when p > 1,
and
AP (u) is a Fréchet space with the distance || . [|,p(,) When 0 < p < 1. At the same time,
(AP (), || . llLp () 1s a topological vector space when p > 0.

Let p > 0. The sequence space [? is defined as following
1

* p
P = <{ce}: e}l = <z|ck|p> < oo and each ¢, is complex number ;.
k=1

We will discuss the atomic decomposition. Atomic decomposition was studied for a
long time (For example, [161]-[162]). In [161], R.Coifman and R.Rochberg discussed the
problem on the weighted Bergman space A%. In [17], Kehe Zhu modified the proof for the
following Theorem:

a+1

Theorem (4.2.1)[160]: Suppose p > 0, > —1,and b > nmax{l,%} + - Then,
there exists a sequence {a,} in B such that A? consists exactly of functions of the form
n+l+a

RS 0
f(Z) _;Ck (1 _ (Z,Clk>)b (Z € B):

where {c, } belongs to the sequence space [P and the series converges in the norm topology
of AP,
We extend the weight (1 — |z|?)* to the normal weight

uP(|z])
1-|z|?"
function in the u—Bergman space AP (u) can be decomposed into a series of very nice
atoms. These atoms are defined in terms of kernel functions and in some sense act as basis

for the space AP (w).
The radial derivative Rf(z) = X717

We show that every

%(z) for f € H(B). We will use the

]
symbols ¢, c’, ¢, and ¢'"" to denote positive constants, independent of variables z, w, and
functions. But they may depend on some parameters, with different values in different
cases.
We say that E and F are equivalent (denoted by E = F in the following) if there exist two
positive constants A; and A, suchthat A,E < F < A,E.

We first give some lemmas.

Lemma (4.2.2) ([17])[160]: There exists a positive integer N such that forany 0 < r <
1, we can find a sequence {a,} in B, and for each k € {1, 2,- - - }, there exists a Lebesgue
measurable set
D, satisfying the following conditions:

() B = Ug=1D(ay,m) = Uy Dy ;

(i)Dy N D; = @fork # j(k,j € {1,2,-});

(i) D(ak,g) c D, < D(ay,r)foreveryk € {1,2,---}(D(ay,r) is Bergman ball);

(iv) Each point z € B belongs to at most N of the sets D (ay, 4r).
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Lemma (4.2.3)[160]: Let u be normalon [0,1),0 < r < 1,andw € B. Then,

(1) D(z,v) € D(w,2r) ¢ D(w,4r) foranyz € D(w,r);

u(lz)) 1-1z12\* | (1-[z12\° ,
(i )u(lwl) < (1_|W|2) + (1_|W|2) forany z € B;
(iii) There exists a constant ¢ > 0, independent of r, such that ¢ u(|w|) < u(|z|) <
cu(lw|) forany z € D(w,r);
(iv) There exists a constant A > 0, independent of r, such that

A l(tanh1)?" < b p[DZ(W )] <
1 — |wl )“MP(I )

P(|z|)
where p > 0and v, ,[D(w,1)] = D(w,r)li—|zz|2 dv(z).

Proof. (i) By the definition of distance function, we have D(z,r) < D(w,2r).
(i1) By the definition of normal function, if |z| < |w|, then we have
plzh)  _  wlwh
(1 - z[»)> = A = w[®)?’

< A(tanhr)?",

if |z| > |w|, then
plzD  _ wQwh (2D (1— |z|2>“+<1— |z|2>b
1= 1z[»*~ 1 — [w|») .U(|W|) “\1-wl|? 1—1wl2)~
(i) If z € D(w,r), then I=nhl o 1owl  irtanhi 40y 40 1163]. Using (2), we

14+tanh1 — 1-|z|? — 1-tanh1
have
uzh) _ (1= 12’ “+ 1—|z|? b<(1+tanh 1)a+<1+tanh 1)b
u(lw)]) — \1 —|w|? 1—|wl?) ~ \1—-tanh1 1—tanh 1

u(lw|) 1—wl2\* /1-=w®\” /1+tanh1\® 1+ tanh1\”
<|l—) t—) s l—=) +——=
u(lzD 1—|z|? 1—|z|? (1 — tanh 1) (1 — tanh 1)
> clu(wl) < p(zl) < cu(wl).
(iv) By Lemma 1.23 in [17] and (3), (12) in [163], we have
o [Dw )] < cPuP(lwh( — [w|?)"
wp ~ (1 + tanh 1)*(1 — tanh 1)7+2

and

(tanh r)?"

and
¢™P(1 — tanh DpP(w)(@ = |w|?)"

S 2n
vupD(W, )] 2 1 + E%nh 1 2( tanh7)
¢™P(1 — tanh D™ 2P (w1 — |w|D)™
- t h 21’1.
= (1 + tanh1)™ (tanh )

Lemma (4.2.4)[160]: Let 0 < r < 1 and b be any real number. Then, there exist
constantsc > 0
and A > 0, independent of r, such that

b
g — Zing — 1| < ctanhr and A7 <
forany z,u, and v in B with y(u,v) < r.
Proof. This Lemma is Lemma (4.2.3) in [17]. We mainly show that there exist constants
c > 0and A > 0, independent of r.
If u and v satisfy (u, v) <r, then we can write v = ¢, (w) with [w| < tanhr. Let

1 — (z,u)

1—(Zv)<A
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z'='u(z). By Lemma 1.3 in [17], we have
(1= zu)® (= @w)® = (4= @ w)

- Gwy - a = (@,w (1)
If b = 0, then the result is obvious. If b # 0, then,
, ot b((u,w) — (2, w))
@ = ww))® = (A = (= w)’| = f 1 -1 - tuw) — t{z,w)}i-b dt

< 2|b|[2°~' + (1 — tanh 1)®"Jtanhr. (12)
By (11) and (12), we have

1 — (z,u))? 2|b|[ 2P~ + (1 — tanh 1)?1
( (z,u)) _1‘3 |b|[ ( ) ]tanhr.

(1 — (z,v)P [(1 — tanh 1)7? + 2-P]-1
b
If we take b = 1, then |ﬁ| <1+ ctanh1; If we take b = —1, then
(1 - (zwpb
—(1—(z,u))b| < 1 + ctanh1.

For 0 < r < 1,7n denotes a positive radius that much smaller than r. Fixed a finite
sequence {z,- - -, z;} in D(0,7) such that {D(z;,n)} cover D(0,r) and that {D(z-,%)} are
disjoint. Then, each set D(z; ,%) N D(0,r) is enlarged to a Borel set E; < D(z;,n) such
that D(0,7) = Uj_, E;. For k € {1,2,--} and j € {1,2,--,J}, let Dy; = DN
Pa, (Ep) and ay; = @q,(z) [17].

Lemma (4.2.5)[160]: Let p > 0 and u be normal on [0,1). Fort > b + nmax{%—

1, O}, there exists a constant ¢ > 0, independent of r and n, such that

1
+t—
co(1 — |ag|)"

\ lf W) IPuP(lw])
k=1|1 - <Z,ak)|n+t'u(|ak|) {fD(ak,Zr) 1 — | |2 dv ( )}

tanh n
[tanh 7] 1-2n(1-1/p)

f(2) = Sif (2] =

forany0 < r < 1,z € B,and f € Ap(u) whereg = n + and

S.f(2) = zz Ve 1(Dk1)f(ak1)
=1 j= 1

_ (@ akj>)n+t

Proof If f € AP(u), then
1 p,P
[[@ - Eprirerae < oo [ PO ae - 1 e,

IfO < p < 1,whent > b + n(;— 1) by Lemma (4.2.2) in [17],We have

n+pb _q
S llp,pp—1-

j|f(z)|dvt_1(z) < Ct_1J|f(Z)|(1 -z 7 b—
B B p 1

Ifp > 1,thenp’(t — 1 — b + %) > —1 when t > b. By the Holder inequality, we
have

—-(n+1)

dv(z) <~

t1b+

[ @lave@) = e [ fr@ia - 122" 7}a - 127 v
B B
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1

<= [Ha = 1P D) Wl
(cpp-1)P ™"
< cllfllppp-1-
Thatis f € A}_,. By Theorem (4.2.3) in [17], whent > b + nmax{%— 1, 0},

(L fw)
F&) = | G prapydve ) (2 € B) (13)

From the proof process of Lemma (4.2.3) in [17], the above integral representation is
necessary.

For any k € {1,2,---}, we write A; = D(ay,2r) N {w: |ag| < |w| < 1} and
A, = D(ag,2r) n {w: |w| < |ag|}. By the definition of normal function and (12) in
[163], we have

f |f<w)|puv<|2w|) do(w)
D(ay,2r) 1 - |W|
uP (lay ) |f (W) [Pdv(w) uP () |f (W) [Pdv(w)
@ - PP ), @ = (w2 T (1 = a2)Pe ), (1 — (w2 Per
1 — tanh 277777 pP(|ay) o
= (1 + tanh 2) (1 — |ag|?)re D(ak2r)|f(W)|p(1 - WRPaven. 4y
Wetakeb = n + tanda = pa — 1from Lemma (4.2.3) in [17] and (14) Then,
21— gt { |F W) PuP (lwl) }
AT~ G el D) L(ak,m T— w2
U » N 1
(1 — la ™" b

= Ck=1 11 — (z, a)|*** {_[D(ak’zr)V(WNp(l — |w|?)Pa- dv(w)}
@ - syl

o
Theorem (4.2.6)[160]: Let u be normal on [0,1). Suppose p > 0,t > b +
nmax{%— 1, O}, and

0 < r < 1.Then, there exists a constant ¢ > 0, independent of r, such that

m(15) (1 _ (g )" 075)
P~ la?) U< )If(u)l”u”(lul) d()}

1

7@ =5 (Z)'<zl T~ (@ a0l eua) T - [P

forany f € AP(u)and z € B

SF(2) = Z L [ av o € B
k=1 Dr

(Z' ak))n+t

Proof If f € AP(w), by Lemma (4.2.2) and (13), we have

) fw) f(@)
f2) = Sf(2) = kzl /) k{ﬂ P SR ak))n+t}dvt_1<w) -

122



) = SFOIS Y e | 17 = Fl@ldves
k=1

0 1 1 . (Z,ak> n+t
T [T w) |09

For every k € {1,2, -}, by Lemma (4.2.2), Proposition 1.13 in [17], and (12) in [163],
we have

|f (W) — fap)ldve_y (w)

Dy

< f W) = F(@)|dve—s W)
D(a,r)
< c(1 — |ag)m j If o 9a, (W) — f © P, (O)]dv(w)

D(0,r)

1
1
f —R[f © @q,](pw)dp
p(or)Jo P

We write R; = tanhrand R, = tanh 2r. Let g, (z) = f © @g4, (R;12).
Forany @« > —1, we have

= c(1 — |ag|®)"*t dv(w). (16)

_ g (RT'Ryu) R,
9@ = | Tk 0 (11 <2) =
+ 1+ a)R RI*R )
ng(Z) = S R, 2Ll = (1 €k§R2—1RjZ')Ii§):22+a dvg(u). (17)

When p > 1, we take a« > 0. By the polar coordinates transformation and (17), the
Fubini

Theorem (4.2.1) and Proposition 1.4.10 in [22], the Holder inequality, Proposition 1.7 in
[17], and (13) in [163], we have

11
j { j “R[f o qoakkpw)dp} dv(w)
po,r) o P
11
= R j [—){ f IRIf © 9o, ](Ripw))| dv(w)} dp

11
= anjo ;{L|ng(pw)|dv(w)}dp

_ Yir(m+ 1+ )R w|dv(w)
Sjlullgk(Rl 1R2u)|{f ( R,|1 — (Rz_lRlpw,u)ln"'Z"'“)dp}dv“(u)

2n+1 |u|
= Rz f|gk(R1 Rzu)|{J (1 — 1R1p|u|)a+1d,0}dva(u)

< or () [ Lo Rl

1

R,
< c'R{" (ﬁ {f |9k (RY 1R2u)|pdv(u)}

RZ_R
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1

CIRZTL R a p 5
- i (Rz —2 R1> (f |f0(pak(u)| dv(U)>
D(0,27)

I"p2n a
< c"'Rj ( R, ) f
- 2n n+1 \R, — R, N

Ry (1 — |al?) 7

1

If(u)lpdv(u)}p-

(ak,ZT)

(18)

When 0 <p <1, we take « ="T+1— (n + 1). By the polar coordinates
transformation and (17), the Fubini Theorem (4.2.1) and Proposition 1.4.10 in [22],

Lemma (4.2.2) and Proposition 1.7 in [17],
(13) in [163], we have

11
| { | —R[f°<0ak](pW)dp} dv(w)
po,) o P

< ey (ﬁ f gk RT R — [ul®) P " dv(w)
2 1

1

R,
< ¢'R" (m U |gk(R11Rzu)|de(u)}

| =

| =

¢'RI"R, P R, \*“ p
(R A ) [ reora!”
(1 _ |a |2) D 2 1 D(ag,2r)

When 0 < r < 1, we have
r<R _le_l_ r 2%r 23r2+
P er +11 e 41

eZ

r et — 1 r 42 4372 .

?<R2_e‘”+1=e4r+1 4+_.+ ! TS e
r Ry 2e?"R,; 2e2"R,; ar
;<ez‘r=e4r+e4r<e4r+1:R2_R1<R2<e .

By (16), (18)—(20), and Lemma (4.2.3), we have

| 17w = F@ldve, o)

Dy

S

n+1
n+t—

< oD gy { f If(u)lpdv(u)}
D(ay,2r)

S

2081 = a0 )U £ QPP ()
QD P e

(19)

(20)

1

dv(u )} (21

By Lemma 2.2-2.3, (12) in [163], Lemma 1.23 and Lemma (4.2.3) in [17], and (20), we

have
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1 . ' n+t
(%) — 1| IfW)ldv,_, (w)

1 — (Z,ak> n+t
(1 — (Z,W)) a

Lk
<)
D(ak,T')

1 fW)ldve_q (W)

< Ry — |apD)t f |F ()] dv(w)
D(ag,r)
< eRi(1 ~ la)oD(@, ] sup [Fw)
< c'REI(1 |
1
@)t sup {; f If(u)lpdv(u)}g
weD (ag,r) v[D(w,7)] D(w,r)
2n(1—1)+1 n+1 %
< RV < gt {f If(u)lpdv(u)}
D(ay,2r)
(1541 o en(1) ;
¢ A - |l pupu ul) }
= ) {L(ak,zr)'f WP T TR dv@y - @22

By (15) and (21)—(22), we have

t+n( 1

& o001 = a0 ) oL
k F PP (ul)
(@) - SF@) <Zl T T { jD B e )}

Theorem (4.2.7)[160]: Let u be normal on [0,1). Suppose p > 0 and t > b +
N max {; — 1, O}.
Then, there exists a sequence {w;} in B such that AP (u) consists exactly of functions of

the form
e A = (w DT
/= kZ_luuWkD(l ~ Gy €

where {d,} belongs to the sequence space [P and the series converges in the norm

topology of AP (u).
Proof: We take the sequence {akj} from Lemma (4.2.5). We may write

o\t
Ck] = |ay,] ) b
f(2) = 2 2 (23)
=19z 1H(|ak1|)(1 (z, a;))
where ] is a fixed positive integer and {cy;} belongs to the sequence space . In fact,
Wi = Qi1 Wp = Qqp, Wi = Qo1 Wiy = QA Wop4q1 = 431,005 dq
= C11 'd] =Cy d]+1 = C1, -,d]_,_] = Cy) d2]+1 = C31," "

First, let f admit a representation given in (23).
Firstassumethat0 < p < 1.
(1 - Jaxj]
u(lar;)(1 - (z.ax;)

n
p

—forany k € {1,2,---}andj € {1,2,---,]}.

We write f;(z) =
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The assumption on t implies that pt + pn —pa— n > pt+pn— pb—n > 0 when
0<p<1.

By Proposition 1.4.10 in [22] and Lemma (4.2.3), we have

(1= Jayl)""" (120)
B — |Akj uP(lz
”f%j”LPuO B 1P (|ax;|) j;(l — z)|1 - (Z,akj>rxn+t)dv(2)
2\ Pt+pn-n 1 - |Z|2)pa—1
< (1= e )
3(1 = |ay ) |1 = (z,a)]
o\ pt+pn—-n 1 - |z| )pb 1
+ (1 - |akj| ) _]. 2\DPb p(n+t) dv(z) < c
B(l = |al ) |11 = (z,ax;)|

As {cy;} € [P and {fy;} is bounded in AP (u), then, we have

w ] p
b
IF1Er = | Eick,-fk,-(z) 2 v
=1

o) ] oo J
ZZ i i oy < €. D legl” < oo
k=1j=1 k=1j=1

Next assume that p > 1.

Let {Dy;} denote the sets from Lemma (4.2.3)9 in [17], then Dy; < Dy and 1 —

2
lagl> = 1 — || u(ak]) = u(lag;D. 11 — (z, ax)l = |11 — (z,ax;)| (z € B) for all
j € {12, -]}
We consider the function

o J 1
92 = > |yl {s PO} 7X2) @ € B),

k=1 j=1
where X, is the characteristic function of D, (k € {1,2,---}).
By Lemmas (4.2.2) and (4.2.3), we have

> D
91 = . f TP o

o ]
=SS e Pl @) A= Y el

k=1 j=1
The assumption ont > b implies that the operator

Tg(z) = L(ll_ WID™9W) ) 2 € BY

1 — (z,w)|™+t
Is bounded on LP () by [164].
By Lemmas (4.2.2) and (4.2.4), (12) and (13) in [163], Lemma 1.23 in [17], and (20), we

have
had J 1 2\t—1
_ =1 = [w]*)
ro = ;fnk;lcm tup (D) # |11 — (z,w)|*+t dv(w)
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e |1 = lal® 1
> c(tanhr) 0 zz e L(ak’%ll —(Zw)| dv(w)

2n (1 — t_l_%
= ¥y Ziii‘é,'fm @)

k=1 j=1
n
|akj|2)t+n—5

AR |ij|
” 1
z z u(la (@ = (zag)"™

k=1j=1

IV

> c”rzn(1_5)| f(z)|foranyz € B
o ]

_ - p
S WfIgy < e GPUT gy < er ™G PYTIP Y Y [ay]

k=1 j=1
= f € AP(w).
It remains to show that every function f € Ap(un) admits a representation given in (23).
Whenp > 1, we write

1 1
S A - gt { £ Q1P (ful) }
FO = ) =G gl fD(akm e @] %@ (2 € B),

where X, is the characteristic function of D, (k € {1,2,---}). By (13) in [163], and
Lemmas (4.2.2)—(4. 2 3), we have

(1 — |ag2yresom—n £GP ()
12 = Z ol {jD R dv(u)}

§ fD 1P (|2]) i)

(1= [ul?)[1 = (z, qp) PPt
N |f )PP (Jul)
> c(tanhr) sz(akM) I — TP dv(u)

o [ FQOIPRP (Jul) .
> c(tanhr)“"N g dv(u) = c(tanh r) N||f||Lp(M) (24)

By Lemma (4.2.2) and Lemma (4.2.4), (12)—(13) in [163], and Lemma 1.23 in [17], we
have

& - g ) { @) PP (ul) }1
e _kzzl u(lagl) JD(ak,Zr) 1 — |ul? dv(u)
(1 _ |W|2)t—1
g f T = (w, a1 = (g wype V)

> c(tanh r)?"

1 1
(1 - la 20 { Q)PP (Jul) }
T~ (z,a) " uCiagD fmm T— e vy -2
By (24)—(25) and (20), Lemma (4.2.5), and the bounded-ness of T on L? (u), we have
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p
I = SDf % = j @)= S @P = ('l'fzd(z)

< coP(tanh r)~2Pn f |TF(2)|? % dv(z)

< ca?(tanh ) 2P TP (IF || p
< c'oP(tanh r) 2PN TIPIF I p - (26)
By Proposition 1.4.10 in [22] and Lemma (4.2.3) (2), forany k = 1,2,- - -, we have
f (1 — |a )PP uP(|z|)dv(2)
g (L — 1zl = (z, ap)|P**PtuP (|ay])
_ 2\pb-1
< (1 — g |?yprepe-pbon f a - D
h g |1 — (z,a;)|Pn+Pt
(1 — |z|*)Pe!
1 — 2\pn+pt—pa—-n
When 0 < p < 1,byLemma (4.2.5), Lemma (422) and (27) we may prove that

p
U = 50U, = [ 10 = sDrC LS o)

O [ coP(1 = |ay|H)PrPuP (2] dv (2) [f W)PuP(w))
: Z »[ {-[D(ak 4r) dV(W)}

dv(z)

dv(z) < c. (27)

g (1 = 1zI2)|1 = (z, )PP uP (Jag|) 1 — |wf?
, |f W)PuP(lwl]) ,
< c¢'Ng? T dv(w) =c pN“f”LP(H) (28)

By (26) and (28), if o is small enough, then we have ||[I — S|| < 1. In this case, it follows
from standard functional analysis that the operator S is invertible on AP (u). Therefore,
every f € AP(u) admits a representation
n
2 t+n——

F2) ii il —lowl) 7, g
Z) = o Z ,
= 2 (a1~ (zag)"™
where ¢ = ~= 1(D’”)“(|a’”|)g(a’”) (k € {1,2--}, j € {1,2,--,])andg = S7If.

t+n—
(1 |a;l ) z

By (12) in [163], Lemma 1.24 and Lemma 2.34 in [17], Lemmas (4.2.2) and (4.2.3), (20),

we have
o J
ZZI%I cZZ = Jaig[*)" P (|ags ) g ()"
=1 k=1j

o J
—|ak1| )" P (|ay )

f lgW)IPuP (Iwl) dv(w)
D(ay,4r) 1 - |W|2

|gwW)|PuP(lw])
1 — |w|?

< c”r‘Z”]N
B

dv(w) < o
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This show that {c,;} € [P. This completes the proof of the Theorem.

Section (4.3): The u-Bergman Space in the Unit Ball
For B denote the unit ball of C*, and D denote the unit disc of C. Suppose the class

of all holomorphic functions with domain B is denoted by H(B). Let dv denote the
volume measure on the unit ball B, normalized so that v(B) = 1. The surface measure on
the boundary S,, of B is denoted by da, normalized so that o(S,,)) = 1. Whena > —1,a
finite measure dv, on B is defined by dv,(2) = c,(1 — |z|*)*dv(z), where ¢, is a
normalizing constant so that v,(B) = 1. The class of all bounded holomorphic functions
on B is denoted by H®.

A positive continuous function p on [0, 1) is called normal if there are constants 0 <
a < band0 < 1, < 1suchthat

(i) u(r) (1 — r?)"*is decreasing forr € [ry, 1);

(i) p(r)(1 — r?»)~Pisincreasing for r € [ry, 1). For example,

[00]

kar2k—2

z and u(r) = {k,:l log(k + 1)

are all normal functions. In the following, a and b are always the constants in the
definition of the normal function p. Without loss of generality, in this article, let r, = 0.
Letp > 0, and p be normal on [0, 1). The p-Bergman space is defined as

uv(ll l?zd (Z)}E <ol

@) = (1 - 1”2)alog31 _2 } (¢ > 0, isreal)

AP (W) = 1 f € HB): [Ifllarw =U If (2P

1
In particular, AP (p) is the Bergman space AP when p(r) = (1 — r2)r, and AP (p)
B+1

is the weight Bergman space Ag when p(r) = (1 —r?)» (B > —1). AP (p) is a
Banach space with the norm || || 4»(,) Whenp = 1, and AP () is a complete metric space
with the distance p(f,g) = |If — gllA,,() when0 < p < 1. At the same time,
(AP (), II- ll4» () is a topological vector space when p > 0.

Let p be normal on [0, 1). f is said to belong to the p-Bloch space g, if f € H(B)
and

Iflls = sup w(izD IVf (D] < o=,

d
V() = <a7f @), - —f 2 ))

B, is a Banach space with the norm ”f”ﬁu = |f(0)| + f 11

Let X and Y be two holomorphic function spaces on B, and ¢ = (¢4, -, @,) be a
holomorphic self-map of B and ¢ € H(B). The weighted composition operator T,, ,, from
X toY is defined by

where complex gradient

Top(HD =Y - [P0 (f € X).
Ify = 1,then the operator T, ,, is composition operator C,. For w € B, we will use the
¢, to denote the involutlons on B with interchanges the points 0 and w, and ¢, =
@, . The Bergman ball D(w,7) = {z: z € Band|¢,(2)| < r}forr € (0,1). We
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use the symbols ¢, c’,c”, and ¢""’ to denote positive constants, independent of variables z,
w. But they may depend on some parameters (for example, p, a, b, y, g, etc.) or some fixed
values (for example, u(0), ¢(0), etc.), with different values in different cases. We call E
and F are equivalent (denoted by E = F in the following) if there exist two positive
constants A, and A, suchthat A,E < F < A,E.

The radial derivative
n

d
Rf(2) = Z zja—fj (2) = (Vf(2),2) for f € H(B).
=
LetR,(z) = (R(pl(z),- . ,R(pn(z)) and
@ = zZP)ul? + [z w)?
T =g Ty
Then, we have H,,)(R@(z)) < cH,(z) when QO = B by Theorem (4.3.6) in [3]. For
f € H(B), we write

foranyz € Bandu € C* — {0}.

1f1ly2 = sup u(lzDIRf (2)I.
For f € H(B), we write

3 u(zDVf (2), u)P
Ifll,s =sup sup :

zep ueen—0} 1 — |z[2[ul? + [(z,u)I?
By [4], and Proposition 1.18 and Theorem (4.3.11) in [17], we have

1

n(lzl) IVf(DI? — |IRf(2)|*)?

Ifllys = SUp 77 Qf (2) = sup u(lzl) { 1 = 1217 } :
Therefore, [|fll,3 = lIfll,. whenn = 1.

In the disc, by [20], [21], we know that C,, is always bounded on AP and Cy is a
compact operator on A® if and only if
Y 1 - |z|?
1= T = [p(@)P
Could the mentioned result as above be generalized to the setting of the unit ball?
First, C,, is not always bounded on A}, whenn > 1; for example, we take

= 0.

= % 0 0 — (< - fi 0,1
(p(z)_(n Zl...Zn’ 0, ),W_(ﬁ’...’ﬁ) Orre(')
and
1 — 2
fw(2) = o

(1= (Zow)) »

By computation, there is constant c, independent of r, so that ||fw||§p < ¢, and

D 1
||C<p(fw)||AP ~ n—1-
-7

This means that C,, is not bounded on AP whenn > 1.

Second, the condition for which C,, is compact on AP Kehe Zhu gave the result in
[18]:
Theorem (4.3.1)[169]: Supposep > 0 and a > —1. If C, is bounded on Ag for some
g > 0and -1 < B < a,then C, is compact on AP if and only if
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y 1 - |z|?
1m
lzZl-1- 1 — |p(2)]|?
Theorem (4.3.1) is partly extended to the normal weight Bergman space in [170]:
Theorem (4.3.2)[169]: For p > 1, let 4 be a normal function on [0, 1).
(i) If C, is compact on AP (p), then

Y 1 — |z]?
2o1- 1 — [p(2)]?
(ii) If C, is bounded on A} for some —1 < f < pa — 1, and
@ B
y 1 — |z|?
1m =
lzZl-1- 1 — |@(2)|?

= 0.

= 0.

0,

then C,, is compact on AP ().

As C,, is not always bounded on AP (u), we fail to get the analogous necessary and
sufficient conditions for compactness on the unit ball directly. A natural problem is that if
can we find some analogous conditions for compactness as in the case of the complex
analysis with one variable provided that C, is mapped into a space Y which contains
AP (1)? We will give and prove the following result:

Proposition (4.3.3)[169]: Suppose p > 0 and p is a normal function on [0, 1), v(r) =

(1—r2)p "'uer) forr € [0, 1). Then,
(i) C, is always bounded from AP (u) to Bv ;
(ii) C,, is compact from AP () to Bv if and only if
1 — |z]?

I =0
2= 1 — )2
In[171],ifa > (whenn > 1), then we have
(1 = le@)*)?
Gl (Ro(2),Rp(2)) = Hyz)(Rp(2)).

w*(le(2))
If a > 1, then fol uwt(t)dt = wand ¢; € H® < B, forl € {1,2,---,n}.In
fact, X. J. Zhang ([171]) and H. H. Chen ([146]) gave the following result.
Theorem (4.3.4)[169]: Let i be normal on [0, 1). If a > 1 and [|¢|le =sup |@(2)| =
ZEB

1, then C,, is compact on g, if and only if

. H|Z| 2 2 2 % —
odim o@D {1 = 1¢@DI*)IRp()|* + Ke(2),Rp(2))|*}2 = 0.

We will give and prove the following result.
Proposition (4.3.5)[169]: Let u be normal on [0, 1). Ifa > 1, then C,, is compact on Bu
if and only if

Y 1 - |z]?
A= T = [p(@)P

We will first discuss the bounded and compact conditions of T, ., from A? (u) to
B, . As Corollary, we give Proposition (4.3.3).

We first give some lemmas.
Lemma (4.3.6)[169]: Suppose [ is a normal function on [0, 1) and f € H(B). Then,
/Nl 1f 12, and || f]l,, 5 are equlvalet fora > 1/2 (whenn > 1), and the controlling
constants are independent of f.

= 0.
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Proof. We may give the result by Lemma 3 and Theorem 2 in [146].
Lemma (4.3.7)[169]: Suppose p > 0, and p is a normal function on [0,1),v(r)

(1 — r2)5+1p(r) forr € [0,1).1ff € AP (w),then f € By and [Ifllg, < cllfllarqy -
Proof. If f € AP (), then we have

| @it irpae) <
By Theorem (4.3.6) in [17], we have

cllflla c'lIf v
(@) < T W (z € B).
(1 —z|>) 7 (1 —z|*) 7
This means that f € A, wheny > b +§ — 1. By Theorem 2.2 in [17], we have
fw)
f(2) = f 0 =z, W)y dv,(w) (z € B).

By Lemma 2.2 in [163], Lemma 2.2 in [160], and Proposition 1.4, 10 in [22], we have

Tl

= 1z udlzD@ - w»"”

|1 — (z,w)|r+2+y

c"’ LS (1 - |W|2)y_5_a
W llargo(1 = 1222 [ e v
n

1F 1B

b
w© )€ Aomr

v(IZDIRf (D] < c"lIfllar j a u(IWI) dv(w)
B

" L) (]— - |W|2)y_5_
+ e o1 = 12l | e du)
< ¢"llf llargo. (29)
On the other hand, by the subharmonicity of |f|P on B, we have

bP
Il = [ L2EE o)

_ o fo A { fs n If(rf)lpda(f)}dr

12
LR OIFOP | mTEb)(0)
2o | T 2 S PR 0r . o)

By (29)—(30) and Lemma (4.3.6), we have f € B, and ||fllg, < cllfllarqy -
Lemma (4.3.8)[169]: Letd(z,w) = |¢,,(2)| (w,z € B) be the Bergman metric on B.
Given0 < r <%and0 ) <§,if|z| > 1 — dandd(z,w) < r,then

5(1 + r)
wl > 1_1—r+6r'
Proof. If d(z,w) < r, by Lemma 1.2 in [17], then we have
A= 129A = w® _ A = 1203 — wl)
(1 — |zkw])? - I1 — (z,w)|?
> 1 -7 wP®zI?-201 -1 |wkz|+ [Ww|? =72 < 0

=1-|low@)|* =1 - r?

When |z| > 1 — §, we have



|W|+7”>1 5= wl> 1 5(1 + r)
1+ r|w| W 1 —7r+ 6r
Lemma (4.3.9)[169]: Let ¢ be a automorphism of B. Then,
1~ le@] _ 11—z _1+ lo(0)]
1+ e ~ 1= lp@I> ~ 1 — e
Proof. The result can be obtained by Theorem 1.4 and Lemma 1.2 in [17].
Lemma (4.3.10)[169]: Let p be normal on [0, 1) and

g@§) = 1+) 2°¢™ (¢ € D),
s=1

where ns is the integral part of (1 — rs)‘lju(rs) = 27%(s = 1,2,--+). Then
(i) g(r) is increasing for r € [0, 1) and
inf  p(r)g(r) > O'Sg‘éDp w(EDIg I < oo;

rel[0,1)
(if) There exists constant ¢ > 0 such that

Cc
wp)g’ (p) < =, forallp € [0,1).

Proof The results come from Theorem 1 in [16] and Lemma (4.3.9) in [171].

We give and prove the main results.
Theorem (4.3.11)[169]: Suppose t = 0, and [ is a normal function on [0, 1). Let ¢ be a
holomorphic self-map of B and h € H(B).

(IzDr(2)] (IzDIRR(2)|
i) Ifsu t =M < oo,thensup (1 — |z|? < cM.
WIS v T JeP i I N M OIDE
(ii) When ||¢|lc =sup |@(2)| = 1,if lim M = 0, then
2€B lo@1>1- p(lp(2)])
im (1 — 1z1*)u(zDRA(z) _
lp(2)|>1- n(le(2)))
Proof. (i) Forany w € B, we take
Fy(2) ) (z € B)
zZ) = Z .
v 1 = (p(2), pW))*
The theorem condition implies that
sup w(lzDIEy (2] < 2°M. (31)
zZ
By Theorem 2.2 in [17], we have
F,(z) = f £, () dv, () wheny > b — 1(z € B).
v p (1 — (zyp)n+i+y =Y
By (31), Lemma 2.2 in [160], Proposition 1.4.10 in [22], we have
wUZDIRR @)1 < | M= Tl
g 11— ™ u(nl)
(1 — [z — In*)*¢
<M T = ey @0
(1 — [z - [n»)r°
teM | T = ey 400D
< cM 32
— 1 _ |Z|2' ( )
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Hyu)(Re(w)) < cH, (w) shows that
(1 — [WI){Rp(w), p(W))] :
R < et = Wity (RO = €. 39
Taking z = w in (32), by computation and (33), we have
(1 = w[®Hu(w)IRR(W) - C,,M+tlh(W)|(1— lw[Hu(wI{ReWw), <p(W))| .
(1 = [pw)[*)* - (1 = lew)[?)t*
(ii) When ||¢||, = 1, if
u(lzDh(z)

w@e1- p(e@D
then, forany 0 < € < 1,thereexists0 < § < 1/2 such that

u(lzDIh(2)| -
u(le2)[)

For any sequence {z/} c B satisfying lim |p(z/)| = 1, we write
j—

)

when |p(z)| > 1 — 26.

_ 1 . 1
D (ZJ,§> = {Wﬁ w E Bandd(w,zf) Sg}

As |p(z)] » 1(j » =), then there exists positive integer N such that |¢(z/)| >
1 — 6whenj > N.By Theorem 8.1.4 in [22], we have

. . 1 —_/ 1
d(@(W);QO(Z])) < d(W,ZJ) S§ whenj > Nandw € D(zf,g).
We take r = 1/3 in Lemma (4.3.8), then
>1—-26 = < e (34)

w)[> 1 —
oWI> 1 =575 1D
On the other hand, by Corollary 1.22 in [17], we have

. 1 1
d(p, @,2') = d(9,1 (2.9, (0)) = d(z,0) = |z <= when |z] <.
If|z| < 1/6andw € 5(<ij (2),7) . then

d(w,2') < d (w9, (@) +d(p, @),2) < S5 D (<pz, ), —) cD <zf —) (35)

We take G; = F;°¢,;, where F; (z) = u(lzJDg(((p(z),(p(Z] )))h(2), and g is the
function in Lemma (4.3.10).

By Lemma 2.2 and Lemma 2.2 in [17], Lemma 1.2 and Lemma 1.23 in [17], (34)-
(35), Lemma 2.2 in [160] and Lemma (4.3.10), we have

6] = |5 19| < 5

u(wD[h(w)

i | 1 () dww)
~ 100 @OP Iy oty

f |F (W)|dv(w)
(¢, @3 )

c
=a- lp,i (2)|2)m+1

; -n-1
<ce(1-12)" [ u(lowIDg e dv(w)
D( Pz (@)3 )
< cewhen|z| < 1/6andj > N.
This shows that {G; (z)} converges to O uniformly on {z: |z| < 1/6}. Thus,
{IVG; (2)|} must converge to 0 uniformly on |z| < 1/12. In particular,

lim |VG; (0)] = o. (36)

j—oo
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On the other hand, by Lemma (4.3.6)4 and (2.11) in [17], we have

6, @ = [7E () = (1 - |2]°) |rE (). 37
(36) and (37) show that

lim (1 - |2/|)|RE; (/)| = o. (38)

Jj—=oo

By computation, we have
RE(2') = u(|2/)g’ (lo ()" ) (Re(2)), &z j W(2/)

+u(lz/)g (lo(2))[) Rr(2"): (39)
By (33) and (38)—(39), and Lemma (4.3.10) and Lemma 2.2 in [160], we have
(1 = 127") u(l2’ ) |RR(=")| 1 - |2 . N2 .
el ~wleEHNgeE)I1%) Ll(|Z]Dg(|(|g'0|§71)(| 3' -
2 , c'u(|z’|)|h(z’
< (-] )|’5Ff @+ = @D
> lim (1 - |2|° ) u(z/DRh() u(lo(2)]) = o.

Jj—=oo

This means that
(1 = |z|*)u(lz])Rh(2) _

im
lp(2)|>1- nlle(2)1)
The proof is completed.

Theorem (4.3.12)[169]: Suppose p > 0, and p is a normal function on [0,1),v(r) =

(1—72)p "'u@r) for r € [0,1). If ¢ is a holomorphic self-map of B and ¢ € H(B),
then

(i) T,y is bounded from AP (W) to B, if and only if

n
1 — |z|? )5 u(lz|)
M, = su Z < 00; 40
o =3P {"’”( ) (1 “Te@F) wle@D 0
(ii) T,y is compact from AP (u) to B, ifand only if p € B, when ||@|l, < 1;
(iii) T, is compact from AP (u) to B, ifand only ifp € B, and

n
lim 1 —|z|* \? u(lz])
lp@I-1- \1 — |p(2)|?

wo@D *D
when [l = 1.
Proof. (i) Forany f € AP (), by Lemma 2.2 in [163], we have
ol s—ww ¢ p, (42)

(1 — |z12)Pu(|z])
If (40) holds, thenwe take t = 0,h = T, (f) and the normal function

(1 — r2)7 u(r) in Theorem (4.3.11). By Lemma 2.2 in [160] and (42), for any z € B,
we have

(1 = 1212)7 " u(zD|R[T, 0 (D] @)]
< ¢'sup (1 — [WIBP p(wD|Tpy (HW)|

WEB
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< ¢ sup Iw(w)lu(|w|)< 1 - |wl? >5 Ul
" wes (e \1 = [pw)|? AP(W)
< CHA4O”f”ApQQ- (43)
By (42)-(43) and Lemma (4.3.6), then T,, is bounded from Ap (u) to Pv.

Conversely, if T,, ,;, is bounded from AP (u) to B, then, forany w € B, we take
(1 — lpw)|? )

fw(2) =
nlew)D@ — (z,ow)))

By the definition of normal function, we have

WlemD@ — 1z12)P*  pPlew)D(A — z|*)Pe

b+1+

WD == "o T d - e - ¢
By Proposition 1.4.10 in [22] and (44), we obtain
(1 — |p(w)[2)pb+p uP(|z])
Itz = 2o L(l “TZBIT = (z, pGwyyprrem
< (- lo@P ) | A= 2
= v s 11 = (@GP
(1 — |z[2)Pb-
_ 2 b+
(= lpw)P e | e () <
On the other hand, by Lemma 2.2 in [4] and Lemma (4.3.6), taking z = w, we have
(w|
Ty (F)W)] < (1 w0 o dt) 1T GO,
0
_ lwm)luw)) ( 1 — |wl? >‘
uotnD \T=ToGP)
< (1 - |wl?)p u(IWI)(l + f —dt) (|
0
(w|
< O Tpyll + ¢ [Tyl = wiw [ —D
0 (1 - )" Pu)
lw 1
< RO|Tppll + ¢ [Tonll L = IWI2)P +af ——dt
0 (1 -¢)'"p
lw 1
+c’ (1 — |w|? )P dt
7o B ety

< ¢wO)|[Tpupll + ¢ Tpull
This shows that (40) holds.

(ii)-(iii) If T, is compact from AP (u) to B, , then yp € B, by taking f(z) =
When ||¢]l., = 1, we prove that (41) holds.
Let {z/} < B be any sequence satisfying |@(z/ )| » 1(j — ). We take

(1 _ |<p(zj)|2 )b+1

w(leHDA = (z,¢(2))))
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Then, ||fjll ,», < cand {f;(2)} converges to 0 uniformly on any compact subset of
B. This means that

lim (|7 (5)Il,

On the other hand, we have

i) o1+ [ ()dt) T (),
RUCC YEET )

w(le(z)1) 1 — |p(2)]?

. _ |2/
< c(t- P P ule (1+ | —dt)n o O,
< WOl ), + ¢ Ty (),

This shows that

n

ENC) ( 1|’ ) .

s wle@END  \1 — le)]?
This means that (41) holds.
Conversely, forall I € {1,2,---,n}, we have ¢, € H* < . This means that (1 —
1zI?)|Rp;1(2)| < lloill holds forall z € B.
Let {f;(2)} be any sequence which converges to 0 uniformly on any compact subset of

B and ||fj], arq S 1 When lgll, < 1, we know that {|Vf;(w)|} converges to 0O

uniformly on {w : |w| < |l¢llw}and {fj(¢(0))} converges to 0. If € B, , by Lemma
(4.3.6), Lemma 2.2 in [4], then

1To (g, < WO |file(O]] + ¢"sup v(I1zD[R[Tyy ()]
< YO - |filp]] + ¢"sup v(zDIRY@I - |f; [p]
+c'sup v(IzZDY@) - (Vf; [9(2)] Re(@)]

ZEB

< YOI - [file@]] + ¢ llpllg, ol |fi )]

w|=llolleo
n

+(c"n(0) + c"lYllg, (2 ||<Pz||/3> I |S<1I?<Ip?ll Vf; W)| - 0 — o).

=1

When ||¢|l. = 1, if (41) holds, then we take the normal function (1 — 2 )7 p(r)
and h = 3 in Theorem (4.3.11). This means that

(1 - 1z2Pr* ulzl)
IR (2)| pR— o 0.

Therefore, for any € > 0, there exists 0 < § < 1 such that

n

| ¢(z)|< 1= |22 )5 wled) _IRY@IA - PRCARN(E)

lp(2)|-17

< € (45)

137



when |@(z)| > 6. As {fj(2)} converges to 0 uniformly on any compact subset of B, then
{IVf;(w)|} converges to O uniformly on{w : |w| < &} and {f;(¢(0))} converges to 0.
Therefore, there exists positive integer N such that

sup |f](w)| < g sup ||7f] (W)| < g and |fj(go(0))| < ewhenj > N.

lw|<é

When |p(2)| < 6and] > N, we have
v(1zD[R[Tyy (£)]@)|
Slllpllgvlfvtllg(S |fi W)
+HEO) +¢llg, | D Nolly | sup [7f; ] < ce. (46)
— wl<

Ifj > N, by Lemma (4.3.6)-2.2, (42), (45)—(46), and Hy(,) [Rp(2)] < cH,(z), then
7o (5, < 10O - |f; (9(0))]

+c’< sup + sup >V(|z|)|R[ lp(f])](z)|

lp(2)|>6 I<png)I56
o 1 = @7 wllo@D [(Vf; [p(2)] Re@)| (1 — IzI?)
< c'e +c'e sup
0@)1>5 Ja = Te@PIRe@ + (Rp(), p(D)I?

\/H(p(z) [Rp(2)] < e + c”’e||fj||ﬁv < c'e + ce||f]||Ap( pScletce

This shows that
lim  {|Tg ()|l 5.

j—ooo
This means that T, ,;, is compact from AP () to B,,- The proof is completed.
Corollary (4.3.13)[169]: Suppose p > 0, and p is a normal function on

[0,1),v(r) = (1—72)p "'u@r) for r € [0,1). If ¢ is a automorphism of Band ¥ €
H(B), then
(1) Ty, is bounded from AP () to B, ifand only if y € H°°'
(ii) T, is compact from AP () to B, ifand only if yp =
Proof. By Lemma 2.2 in [160], Lemma (4.3.9), there exists constant ¢ > 0such that
n

2
1 S{ 1 — |z }p udzh
1 - le@)I?) wlle@)D
On the other hand, if ¢ is a automorphism of B, then |p(z)| — 1~ if and only if
|z| = 1°. Therefore, by (47), Theorem (4.3.12), and the Maximum Modulus Principle,
we can obtain the result.
Corollary (4 3.14)[169]: Suppose p > 0, and p is a normal function on [0,1),v(r) =

(47)

1-r ) u(r) forr € [0,1). If ¢ is a holomorphic self-map of B, then
(i) C,, is always bounded from AP (w) to B, ;
(i) C(p is compact from AP () to B, if and only if
y 1 - |z]?
-1 1 — [p@)I?

= 0. (48)
Proof. (i) By Lemma 2.2 in [160], we have
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n Ria Rib
< 1 — |z|? )P u(lz|) << 1 — |z|? )P +< 1 - |z|? )P
1= le@PE) ule@D ~\1 - lp@I’ 1~ le@?
n n
_ (1 + |<p<o>|>v+“ N (1 + |<p(0)|>p“’
“\1 = lp(0)] 1 —lpO@I)
By Theorem (4.3.12), C,, is always bounded from AP (u) to f,,.
(i) If (48) holds and ||¢]|l, = 1, then we have

n

( 1 — |z )5 u(lzl)
1= le@I?) wle@D

1=z VP (1= 22\ ]
s( ) +( ) (l9(@)] - 1)

1 - le@)|? 1 - le(2)?
By Theorem (4.3.12), C,, is compact from AP (u) to B,
Conversely, if C, is compact from AP () to g, and ||¢|l = 1, then, by Theorem
(4.3.12), we have
n

( 1 — |z|? )5 u(lz)) ( 1 — |z|? )3”’ ( 1 — |z|? )”‘“ -
0 « > 1+
1 — 9@1Z) wle@D) = \1 = @2 1 — 9@

>< 1 — |22 )3“’ 1+< 1 — |2 )”‘“ o)l > 19
“\1-Te@P 1= lp@)I o |

This shows that

lim 1 - lzl”
lp@)l-1- 1 — |p(2)]?
Therefore, for any € > 0, there exists 0 < 6 < 1 such that
|o(z)| > 6. 0On the other hand,

= 0.

1-|z|?

CleE < € when

1 —z?
A T = O
then there exists 0 < §, < 1 such that 11__@2 < e when |z| > 6,. When |z| > §,, if
lp(z)] < 4, then
il S el 1 < & if|p(2)| > 6, then L Izl <e
1= lp@P = 1-062 ~ 707 T e T
This shows that
1 — |z|?

T @l
The proof is completed.
This is Proposition (4.3.3).
Theorem (4.3.15)[169]: Let 1 be normal on [0, 1), and ¢ be a holomorphic self- map of
B.1fa> 1, then C, is compact on Bu if and only if
y 1 — |z|?
=11 = [p@)]?
Proof First, suppose that C,, is compact on g,,. If [[¢|l., < 1, then we have

= 0.
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1 — |z|?

lim
|z|—>1_1 — |<P(Z)|2
When |||l = 1, let{z/} c B beany sequence satisfying

lim |<p(zf)|

jooo
We take fj(z) = (1 — |e(27)| )g((z,<p(zf ))) where g is the function in
Lemma (4.3.10). By Lemma (4.3.10), we have
w(lzD|7f @] = wllzD (1 = |o()]")|g’ (2 o (2))) 02D
< 2u([(z. o(Z N - [z 0(Z)])g" ((zo(Z))]) <«

Therefore, ||f]||ﬁ < 1 + cand {fj(2)} converges to 0 uniformly on any compact
n

= 0.

subset of B. This means that

lim {1, (/)

]—)OO

On the other hand, by Lemma (4.3.10), Lemma (4.3. 6), Lemma 2.2 in [4], and Lemma

2.2 in [160], we have
12 ,
k(lo @) ) 1¢, (5, )()]

0<c< u(|<p(zj)|2)g(|€0(zj)|2) - 1 — |p()?
c’u(|<p(zj)|2) 2] 1
< (1 [ ) 1 o,

4 \a—1 "1 - AR
lewo( - o )+ TH)

a\b-1
" (1= lo()P)
e 16 (I,

. ( 1 — |z|? )”‘1
1 = le2)|?
1 —-lzjl21 = |¢zj)I2b—1

1cm(L4¢eon”_F~( o))"

A= Fa -t (1% W,

1 {C”’(l +1p0))"7% "1+ |p(0)])"~¢

+ + ¢" ¢ |[Co U
d — o@D " @ = lp@Dr= } <o (1l
By b >a > 1, this shows that
i 1 - |z|? 0 y 1 - |z|? 0
im = = lim = 0.
joet 1 — |p(2)|? lo@)I->17 1 — |@(2)]?
1—-|z|2
By Proof of Corollary (4.3.13), we have th}— e @F =
Conversely, first, forall [ € {1,---,n}, we have ¢, € B, whena > 1.If

a
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y 1 — |z|?
1m
lzl-1- 1 — |@(2)|?
thenforany 0 < & < 1,thereexists0 < r < 1 such that
1 — |z|?
1 — lp(2)I?
Let {f;(2)} be any sequence that converges to 0 uniformly on any compact subset
of B and ”ff”ﬁ < 1.Letr; = max{|@(2)|: |z| < r}. Then, there exists positive integer
vl

N such that

= 0,

< ewhenr < |z| < 1. (49)

|f] [@(0)] | < gand sup |Vf; (W)| < ewhenj > N. (50)

lw|<sry

Therefore, by Lemma (4.3.6) and H,(,) [Re(z)] < cH,(z), (49)-(50), Lemma 2.2
in [160], aslongasj > N, we have

Ico (), < e{lfi o] +sup wzDITS; [p@)Re @]
< clf; lo(0)]]

(, n
(2 ||<pl||,;u>|s1|1<g 75 )|

+ c
=1

u(lzD(1 - Iw(Z)IZ)\/ Hy(z) [Rp(2)])
w3 r<z|<1 P—(l‘ﬂ(z)l) J}

<ce+ " sup ulz) 1 = lp(2)I?
B reizl<t (@) 1 — |z]?

<c'e+ c" ( 1 - | |2 )a 1+( 1 - |Z|2 >b_1
S C & C Su
o \T = [o@)I2 1— lp@)

< c'e + 2c"e% L,
This shows that
lim - {|C, ()l

]—)OO
This implies that C,, is compact on f3,,.
The proof is completed.
This is Proposition (4.3.5).
Lemma (4.3.16)[245]: Suppose € = 0, and p is a normal function on [0,1),v(1 — €)
(2e—€?)’p(1—¢) for0<e<1. If f2 € A™€(w), then f? € B, and [If?llg,

cllf 2|l ar+eqy) -
Proof. If f2 € A€ (), then we have

IA 1l

LSerze [Vl 1+e
| @iy P @ s SRt s e Aty
2 2
By Theorem 2.1 in [149], we have
cllf? ||A1+6

+ E+262 C,”lelAl"'e(p) (Z c B)
1 - |z |2)2(1+e) = — |z2)2@+o :
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This means that 2 € Ai+3e when € > 0. By Theorem 2.2 in [149], we have
2
2(z+€
f2(z) = f [ ) s— dvi  (z+¢€)(z € B).
B(1—(zz+e)zt™ 2
By Lemma 2.2 in [2], Lemma 2.2 in [155], and Proposition 1.4.10 in [156], we have

v(1zDIRf2(2)] )
1 — 2\2 1 — 2 35—5
S C””lelAl"'E(u) f ( |Z| ) H(|Z|)( LZ_I_ El ) l.l(lZ

11 —(z,z+e)z"*

+€|) dv(z +¢€)

, 5 (1 — |z+€l?)* Tt
< cIf 2| greey (1 — 12|22 — dv(z +¢)

B |1 —(zz+e)z™*

) 5 (1 — |z + e[t
-wnﬂmm@u—umf%f _
B

dv(z + €)
11 —(zz+e)2™
< ¢l e, (51)

On the other hand, by the subharmonicity of |f2|1*€ on B, we have

2 1+€,,1+€
”f2||A1+E(u) _ jB |f (Zil - l|12|2 (zl) dv(2)
= 2(1
1 (1 — 6)1+26}11+6(1 - 6) te
te) L 2€ — €2 {LHE |f2((1 - E)g)ll da(f)} a
1 _ 1+2€,,1+€ _ 2 1+e€
T ol A
0
1 5
(1+e)!T(5+5€+ 2€?)ut*€(0)
% : ) JTHORS (52)

I (7 + 7 €+ 262)

By (51)—(52) and Lemma (4.3.6), we have f? € B, and [[f?]lz, < cllf?|ls1+e( -
Lemma (4.3.17)[245]: Letd(z,z+€) = |(¢)z+¢(2)| (z+ €,z € B) be the Bergman
metric on B. Given 0 <€ <%and 0<$6 <%, if|z| >1 —3d6andd(z,z+¢€) < %—

€, then
3
5(z-¢)
1 1 '
- 7 —€ + 6(7 — E)
Proof. If d(z,z+¢€) < %— €, by Lemma 1.2 in [149], then we have

(1 - 120 = |z +€l?) - (1= 12z2)A = |z+€l®) _
(1 — |zk(z + €)])? - |1 — (z,z + €)|? B
3

> —4¢—¢?
4

lz+el>1 —

1 = o, (z+e)(2)|
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3 3
= ((Z+E—€2) |z+e|2) |z|* — 2(—+€—62)|(Z+E)kZ|+ |z + €]?

4
1 +€e%] <0
_(Z_e e)_

|z + €] + %—E
T :
1 +(7—€)|Z+E|
When |z] > 1 — §, we have

3
|z+e|+%—e 5(7—6)
>1—-—6=>|z+€|>1 —

1 1 1 '
1+(7—€)|Z+6| 5(7—6)—(§+6)
Theorem (4.3.18)[245]: Suppose € = 1, and [ is a normal function on [0, 1). Let ¢, be a

holomorphic self-map of B and h? € H(B).

| (12D)|h2(2)| ’
WIfswp v g 1T = M
(12D)IRR2(2)|

< oo,thensup (1 — |z|? < cM.
7 O R G LR
n(lzDh*(2)
'y Wh o — — 1, 'f — —_—
(1 = |zI®)u(lzDRR*(2) _

lim
oy (2)| 51— n(le-(2)1)
Proof. (i) Forany (z + €) € B, we take

o h(2)
) T @D e G O

The theorem condition implies that
sup W(|ZDIFzre(2)] < 21M. (53)
zZ

By Theorem 2.2 in [149], we have

F,
F,.c(2) = j Z+6(n)3 dv_1 . (mwhene >0(z € B).

B (1= ()t 2
By (53), Lemma 2.2 in [155], Proposition 1.4.10 in [156], we have

1
cM(1 = [n|*)27 plz] q

= |z| <

0, then

(z € B).

W(IZD)IRF, 1o (2)] < f v(n)

=11 = Gl udnD

o | (= 190~ e

P Gl

ve | (1 — |22 — g2
B

5
11 — (zm)2"*
- c'M
1 - |z|*
Hy z+e)(Rpr(z + €)) < cHyy (2 + €) shows that

dv(n)

dv(n)

(54)
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(1=1|z+€l)Rep,(z+ €),p,(z + €))] 1
: (1- I<pr(zZ+ &)%) : <c( - |z +el*){Hy, 1o (Ror(z + €)F < c. (55)

Taking € = 0 in (54), by computation and (55), we have
(1 — |z + €el>)u(lz + €))|IRR?*(z + )|

(1 = lg, Gz + P
S CIIM

(1+ 1Nz + OI(1 — |z +€)uz + DR (2 + ), 9, (2 + ©))
(= lo.G+ P

C”,M,
(ii) When [lg,[lo = 1, if

+
<

ulzDh*@) _

im — =
lor(2)1>1- p(ler(2)1)
then, forany 0 < &€ < 1,thereexists0 < § < 1/2 such that

u(lz[h?(2)|
u(ler-(2)1)

For any sequence {z/} c B satisfying lim |¢,(z/)| = 1, we write
j—

)

< g¢when |@p,.(2)| > 1 — 26.

—7 .1 , 1
D (zf,§> = {z+e:(z+e) € Bandd(z +¢,2/) S§}'
As |p.(z7)] » 1(j » =), then there exists positive integer N such that
lo,(z7)| > 1 — §whenj > N.By Theorem 8.1.4 in [156], we have
. . 1 —7 . 1
d ((pr(z + e),gor(zf)) <d(z+¢7)) < 3 whenj > Nand(z+¢€) € D <zf §> .
We take € = g in Lemma (4.3.17), then
+ e |h?(z+ €
s - s SHErDIGErOIl o

2+6 wller(z +€)))
On the other hand, by Corollary 1.22 in [149], we have

. 1 1

d((¢r),i (2),27) = d ((<Pr)zj (2), (¢r) i (0)) = d(z,0) = |z] < ‘ when |z] < r

If|z| < 1/6and (z +¢€) € 5((%)2,- (z),%)  then
. , 1 — 1
d(z+e2') < d (Z +€(Pr), (Z)) + d((¢), (2),27) < 3=>0D (((pr)zj (Z),g)
c B(zf,%) | (57)
We take G; = F; o (¢,),;, Where F; (z) = u(|zj|)g2((<pr(z), (pr(zj )))hz(z), and

g? is the function in Lemma (4.3.10).

By Lemma 2.24 and Lemma 2.20 in [149], Lemma 1.2 and Lemma 1.23 in [149],
(56)—(57), Lemma 2.2 in [155] and Lemma (4.3.10), we have

|<pr(z+e)| > 1 -
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CI
|Gj (Z)l = |F) [(Pr(z)]l = (1 — (@), (2)]P)2+e '[5((<Pr)zj (z)% |F} (z + e)|dv(z +€)

CI
< (1 — |(9,),; (2)|>)?*e JE((qu)Zj (z),%) |P} (z + E)ldU(Z +€)

< c'¢ (1
12 —(2+6) 2
- |21[") j_ (e +eNg? (e, (z + e)Ddv(z +€)
b((er), ()3
< cewhen |z| < 1/6andj > N.
This shows that {G; (z)} converges to O uniformly on {z: |z| < 1/6}. Thus,
{IVG; (2)|} must converge to 0 uniformly on |z| < 1/12. In particular,
lim |VG; (0)] = o. (58)
]—>00
On the other hand, by Lemma 2.14 and (2.11) in [149], we have
2 — .12 .2\ 2 2
v6; O = [VE ()| = (1 - |Z[") [rE ()] (59)
(58) and (59) show that
lim (1 - |2/|")|RF (/)] = o. (60)

By com{JTJ;tio_n, we have
RF; (2))
= u(lel)gz'(|<pr(Zj)|2)<R¢r(2j)»¢r(zj)>h2(zj)
+ u(lz’Dg* (o (2)| IRR? (). (61)
By (55) and (60)—(61), and Lemma (4.3.10) and Lemma 2.2 in [155], we have
(1 = 12" ) u(2'])|RR2(2)]
1o, DD N
- u(|<pr(z11')|;g|zz<]|lpr(zf)|2) (2/Dg* (lor (NI ) [ Rh*())
< (1 s ()] + 202U
> lim (1 = |2/ ) u(lzZ DRR2(2) u(|o:(27)]) = o.

j—oo

This means that

lim (A — 1zI*)udlzDRR*(z) _
lor(2)[>1- w(le(2)1)
The proof is completed.
Theorem (4.3.19)[245]: Suppose € = 0, and p is a normal function on [0,1),v(1 —¢€) =
(2e —€?)?p(1 —e)for 0 <e < 1. If @, is a holomorphic self-map of B and v, €
H(B), then
(i) Ty, ., is bounded from A'*€(p) to B,, if and only if

) 1 e\ wllzh )
Mo = sup {"”T(z)'<1 - |<pr<z)|2> u(|<pr<z)|)} <o (62)
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(ii) Ty, . is compact from A*€ (u) to B, if and only if ¥, € B, when [l |l <

1;
(iii) T, is compact from A'*€ () to B, if and only if . € B, and
1 — |z|? ) u(lzl)
lim =0 63
|mm+(rw%@vuwmm (63)

when [l [l = 1.
Proof. (i) For any f2 € A'*€ (u), by Lemma 2.2 in [2], we have

el 2l v
POl S G g ¢ © 2 Y

If (62) holds, then we take € =1,h* = T, , (f*) and the normal function
(26 — €?) u(1 —¢€) in Theorem (4.3.11). By Lemma 2.2 in [155] and (64), for any z €
B, we have

(1 - IZIZ)ZM(IZI)|R[ D] @)
< ¢ sup (1 = |z+¢€l®) u(lz+eD|Ty,y, F(z+6)

Z+€EB
" Wb, z+elulz+e)( 1 — |z+e€l? 2
< c¢"” sup — 2 ”f ”A1+E(u)
Z+€€EB I-J-(l(pr(z + E)l) 1 |§Dr(z + E)l
< " Mollf 2]l grveqy- (65)
By (64)-(65) and Lemma (4.3.6), then T, ,, is bounded from A'*¢(u) to B,.
Conversely, if T, ., is bounded from A™*€ (i) to ﬁv, then, for any (z + €) € B, we take

(1 - lgz+ ) yzee

5
wler(z+ )N — (z,¢.(z +€)))2
By the definition of normal function, we have

15
uﬁﬂw@+@M1—uFﬁ#”*

1 - |<Pr(Z+E)|2)2+ ze2e”

-2 2
N (o, (z+ DA - |z| )2+26+6 (66)
(1 — lp,(z + Q)27+
By Proposition 1.4.10 in [156] and (66), we obtain

1
12 el e

fzz+6(z) =

+2€

utte (lz) <

3.7 2
_u—Ww@+@Pﬁ?”ff u*e(lzl) dv(z)
- 1+ 9

IJ- 6(|¢T(Z+E)D B (1 |Z|2)|1 _ (Z (Pr(Z+E)>|2+ 6+26
(1 _ |Z|2) 2+ E+26
<a —-|¢cm+-en2>1+€j' ()
B |1 — (z,0.(z + €))[272+2€
15

3 7 1 _ 2+ E+26

+ (1 = g (z+ )2 )22+ f a- kD ——dv(2) < <.
+ €+2€2

11 = (z, ¢, (z+€))|272
On the other hand, by Lemma 2.2 in [2] and Lemma (4.3.6), taking € = 0, we have
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|z+e€]| 1
Torapy Az +€) < c<1 + jo AT d<1+e>> 1T, Gl sy,

:)Il/Jr(Z+6)Iu(|Z+6I) ( 1 — |z+€l? >
u(le,(z +€)]) 1 - lo(z+e)l?

<c - |z+€?) u(|z+6|)<1

|z+e€]| 1
v s 4t | 7w

< 'RO)|[Tg .|

|z el z+e€
+ ¢’ || rll)r”(l — |z +€]?) j H(|2)2 (|1)+ )d(1+e)
< 'WO)|| Ty, || + <" [T, wrll(1 = lz+ ¢l +(—
|z+e€]|
+E)J —d(1+¢)
2)2+6
|z+€| 1
+c'||T, 1,,T||(1 — |z + €|? )z*“f —d(1
0 (2¢ — 62)§+26

+€) < cuO||Tp,p, | + " ITp,. I
This shows that (62) holds.

(ii)—(iii) 1f T, . is compact from A€ (n) to B, , then ¥, € B, by taking
f%(2) = 1. When llo-lle = 1, we prove that (63) holds.
Let {z/} c B be any sequence satisfying |¢,(z’ )| - 1(j = o). We take

(1=l )

) 2 '
u(le-(ZNDA = (z, @ (2)))2"*
Then, ||f]-2||A1+e(u) < cand {f{*(2)} converges to 0 uniformly on any compact subset

of B. This means that

f? (2) =

lim |y, y, ()l

]—)OO

On the other hand, we have
27 1
o ()1 o1+ [ v(1+€)d<l+e>) Ty GO,
_ [¥r@D]u(l2]) ( 1 - || )

u(le, (1) 1 — |o.(2)|? |

12 _ Izl 1
c(1 — |77| ) u(|z|) (1 + jo e )d(1+6)> [ (f])“
< wO|Tp,p, (75, + ¢ WTor (5O,
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This shows that

=2 e, @)D
This means that (63) holds.
Conversely, foralll € {1,2,---,1 + €}, we have (¢,.)); € H® < € — 1. This means
that (1 — |z|*)|R(¢:)i(@)] < 11(@;)ille-1 holds forall z € B.
Let {sz (z)} be any sequence which converges to 0 uniformly on any compact subset

of B and ||f]-2||A1+6(u) < 1. When |l¢,]l < 1, we know that {|Vf?(z + €)|} converges

to 0 uniformly on {z+€: |z + €| <ll¢.lle}and {f7(@,-(0))} converges to 0. If 1), €
B, , by Lemma (4.3.6), Lemma 2.2 in [2], then

”Tq’rﬂpr (EZ)HBV = |¢T(O)| ) |f}2[(pr(0)]| + C, ilelg v(lzl)lR[Tﬁorﬂ/)r (f}z)](z)|
< [ (O] - |fPler(0)]] + C,Slelg v(IzDIRY (D] - |fF [or (2]
+ c'sup  v(IzDIYr (@) - [(V£7 [9r (2], Rpy(2))]
<

|¢r<zf>|u<|zf|>< 1 |2’ ) .

1 = lop(2)I?

ZEB

Y- (O] - [£2 Lo (0] + ¢’ Ilt.llrllgv| sup  |ff (z+¢€)

z+e€ls]lorllo

1+€
+ (c"n(0) + "l llg, (2 ||(90r)z||g) sup  |Vf? (z+¢€)

= |z+€l<ll@rllo
- 0( - o).
When [|¢, ]l = 1, if (63) holds, then we take the normal function (2e — e?) p(1 —
€) and h? = 1, in Theorem (4.3.18). This means that

im R, ()| (1 - 1z1H*  pdzD

lpr(2)>1 1 = lo,@1») nle-@D)
Therefore, for any € > 0, thereexists 0 < § < 1 such that

h/zr(z)l( ik ) udzh) Ry (DI = 121)*  u(lz])

0.

=19, OF) wllo D~ * " A = Ig, 0P uigrtan 7

when |@,-(z)| > 6. As {sz (z)} converges to 0 uniformly on any compact subset of B,
then {||7fj2(z+ €)|} converges to O uniformly on{z+e€: |z+¢€| < 8§} and
{f#*(#,(0))} converges to 0. Therefore, there exists positive integer N such that
sup |f]-2(z+e)| < & sup |l7f]-2 (z+e)|< ¢
|z+€e|<6

z+€|<6
e and |f?(¢,(0))| < ewhenj > N.
When |@,(z)] < dandj > N, we have
v(IzD[R[Ty, ., ()] @]
< Ilrllg, sup |ff (z+€)
|z+€e|<b

1+€

+ RO+ Mellg, [ D llonll, | sup 777 z+e)] < ce.(68)
= |z+€|<b

Ifj > N, by Lemma (4.3.6)-(4.3.16), (64), (67)-(68), and H, () [Rp.(2)] <
cH,(z), then
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Torr I,
< WJT(O)l ' |E2 (‘pr(o))|

+ c’( sup + sup >V(|z|)|R[T¢r'¢T ()] @]

lor(2)[>6 lpr(2)|<6
< c'e
1 = lo @1 uller @D [(7£7 [0: ()] Ro,@)| (1 = 121%)
+ c'e sup JH"’T(Z) [Ro,(2)]
lor(2)[>6 VA = 1o, @D IRe (212 + (R, (2), 9, (2))]?
2] rnr 2 14 2 "
<c'e+c e||f] ”Bv < c’e+ ce||fj ||A1+e(u) < c’¢ + ce

This shows that
lim ”T(Prﬂpr(sz)“Bv = 0.

Jj—=oo

This means that T,,_,,is compact from A*€ (i) to 8,,.. The proof is completed.
Corollary (4.3.20)[245]: Suppose € = 0, and W is a normal function on [0,1),v(1 —€) =
(2e —€2)?u(1 —e) for 0 < e < 1. If ¢, is a automorphism of B and ¢, € H(B), then

(i) Ty, . is bounded from A**€ () to B, if and only if . € H*;

(ii) Ty, ., is compact from A'*€ (p) to B, if and only if ¢, = 0.

Proof. By Lemma 2.2 in [155], Lemma (4.3.9), there exists constant ¢ > 0 such that
1 <{ 1 — |22 } ullzh)  _

- = > S C.

¢ = (1 = le:(2)%) uller(2)))

On the other hand, if ¢, is a automorphism of B, then |@,(z)| — 1 if and only if
|z| = 1. Therefore, by (69), Theorem (4.3.19), and the Maximum Modulus Principle,
we can obtain the result.

Corollary (4.3.21)[245]: Suppose € = 0, and p is a normal function on [0,1),v(1 —€) =
(2e — €®)?u(1 —¢) for 0 < € < 1. If ¢, is a holomorphic self-map of B, then
(i) C,, is always bounded from A™€ (p) to 8, ;
(ii) C,, is compact from A€ (W) to B, if and only if
. 1 — |z|?
m =
=11 = [ (2)]2
Proof. (i) By Lemma 2.2 in [155], we have

( 1 - [z ) u(lz)) <( 1~ |zl >f+€+< 1 - [z >
L= 1e:@F) ulle,@D ~\1 = o @) L= le: (@)

3 3

_ (1 + |<pr(0)|>f+e .\ (1 + |<pr<0)|>f“€
—\1 - |§0r(0)| 1 - |§0r(0)| .

By Theorem (4.3.19), C,,_is always bounded from A**€ (i) to f3,,.

(ii) If (70) holds and ||, |l = 1, then we have

< 1 — |z|? > u(lz))
1 = o217 ) uler(2)D .

(e (N 1
“\1 - o, @ 1— o, @I oris '

By Theorem (4.3.19), C,,,_is compact from A+ () to B,,.

(69)

(70)
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Conversely, if C, is compact from A€ (W) to B, and [l¢.llo = 1, then, by
Theorem (4.3.19), we have

oo (L) e (1 ){H( 1 2P )}
T 10, @F) /oD = \1 ~ 1o, DF T 10, P

1

3 _
>< 1 — |z|? )2*2 {1+( 1 — |z|? )} (0. ()] > 1°)
—\1 = e (2)]? 1 — o (2)]? ’ '
This shows that

-1

y 1 — |z|?
1m
lor(2)1-1 1 — |@,.(2)]?

= 0.

_ 2
Therefore, for any € > 0, there exists 0 < § < 1 such that % < ¢ when
|o,(2)| > 6. 0n the other hand,
R S G
1201 1 -5z

IZI

then there exists 0 < §, < 1such that
|- (2)] < &, then
Lozl 1= R o) > 6 then —— 1A o
= g 1 Z ,then &
1= lp@F = 1-6° or 1= lp @)

This shows that

< e when |z| > §,. When |z]| > §,, If

im L2
1m .
zZ>1-1 — | (2)|2

The proof is completed.
Theorem (4.3.22)[245]: Let pu be normal on [0, 1), and ¢, be a holomorphic self- map of
B.1f € > 0, then C,, is compact on g, if and only if

1 — |z

lim
Iz|—>1-1 — o, ()2
Proof. First, suppose that C,, is compact on g,,. If [l < 1, then we have

1 — |z|?

lim
211 — g, (DI
When ||l¢, |l = 1,let{z/} c B beany sequence satisfying

lim |(pr(zf)|

o
We take f7 (z) = (1 — | (27)| ) g ((z,cp,,(zf ))), where g2 is the function in
Lemma (4.3.10). By Lemma (4.3.10), we have
w(lzD|7f? @] = n(zD (1 = lo ()" ) |9% (2 0r(27))) 0r (@)
< 2u((z ¢ (Z D)1 = [z - (2 D])g* (20 (2))]) < <

Therefore, ”ij”ﬁ < 1 + cand {f(2)} converges to 0 uniformly on any compact
u
subset of B. This means that

= 0.

lim [, ()l

Jj—oo
On the other hand, by Lemma (4.3.10), Lemma (4.3.6), Lemma 2.2 in [2], and Lemma
2.2 in [155], we have
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0 < ¢ < u(lo@ ) g (lo I = 1 (ler @) 6y, (7))

( 2) 1 — | (z)]?
c'u |(Pr(Zj)| |27 1
=71- lpr(27)12 (1 " ]O u(l +¢€) d(1+6)> ICy, (sz)”ﬁu

4 \€ ! - r( j) 2)
S{C,u(o) (1= lon Gl ) + - ((11 —|(l|)zf|22)€| )

2€
” 1— |(pr ])|2 1 — |Z|2 2€e
1{ " |(,0r(Z])| ) c'" (1 — |(pr(Zj)|2)e

— " 2
cl = lo.(@)2)E + (1 — |o.(Z)|?)¢ + "¢ [ICy, (£ )llﬂu

'"<1 o, OD "+ 19, (0D

+ + ¢’ C 2
(1 — | (0)])¢ (1 — | (0)€ ¢ } IC,, ( )Hﬁu
By € > 1, this shows that

y 1 - |z]? 0 Y 1 - |z|? 0
im = = 1m = .
jooo1 1 — |(pT(Z)|2 lor(2)|-1" 1 - |(pT(Z)|2

By Proof of Corollary (4.3.20), we have lim i W 0.

|z|-1— 1- |(Pr(z)|2
Conversely, first, forall I € {1,---,1 + €}, we have (¢,), € B, whene > 0. If

I il 1 W
1m =\,
zl>1- 1 — |, (2)]?
thenforany 0 < & < 1, we have

1 - |z|?
1 = |- (2)I?
Let {sz (z)} be any sequence that converges to 0 uniformly on any compact subset
of B and ||fj2||ﬁ < 1.Let r, = max{|e,(2)|:|z| £ 1 — €}. Then, there exists positive
n
integer N such that
|f] <pr(0)]| < e€and sup |l7fj2 (z+¢€)| < ewhenj > N. (72)

|z+€|<sry
Therefore, by Lemma (4.3.6) and H,, () [Rp,(2)] < cH,(2), (711)~(72), Lemma 2.2
in [155],as longasj > N, we have

I¢o, (5N, < {5 [or@] +5up uzDlVF} [0, @) Rer ]
< <|f? o]

(Z ||(<pr>l||,;> sup |V} (z + )

w1z = 1o, D12 J Hy, ) [Rer(2)])
N, su }

w3 1 _e<|z|<1 ll(lfpr (Z)D )

< ewhenl—-€ < |z] < 1. (71)

151



e s s 0D 1- eGP
o 1—-e<|z|<1 U(lgor(z)l) 1 - |Z|2

< ! + 17; ( 1 - |Z|2 >E+< 1 - |Z|2 >2€
SC E C Su
o< \T = [0, @) 1 — o (@)

< c'e + 2c"¢&°.
This shows that

lim |, ()5, = O

Jj—=oo
This implies that C,, is compact on 3,,.
The proof is completed.
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Chapter 5
Isometries Between Spaces and Maeda—Ogasawara Spaces

We show that any linear isometry T from Lip(X) into Lip(Y) satisfying that
L(T1y4) < 1 is essentially a weighted composition operator Tf(y) = r(y)f(qb(y)) (f €
Lip(X),y € Yy), where Y, is a closed subset of Y, ¢ is a Lipschitz map from Y,, onto X with
L(¢) < max{1,diam(X)} and 1 is a function in Lip(Y) with ||z]| = 1 and |t(y)| = 1 for
all y € Y,. We improve this representation in the case of onto linear isometries and we
classify codimension 1 linear isometries in two types. We state a Lipschitz version of a
theorem due to Cambern concerning into linear isometries between spaces of vector-
valued continuous functions and deduce a Lipschitz version of a celebrated theorem due to
Jerison concerning onto linear isometries between such space. We show that a generalised
statement holds for Maeda—Ogasawara spaces and refine these results in case the
homomorphism preserves order limits.

Section (5.1): Lipschitz Functions

Amap f: X — Y between metric spaces is said to be a Lipschitz map if there exists
a constant k such that d(f(x), f(z)) < kd(x,z) for all x,z € X. We shall use the letter
d to denote the distance in any metric space.

Let X be a compact metric space and let K be either R or C. The space Lip(X) is the
Banach space of all Lipschitz functions f from X into KK, with the norm ||f]l =
max {||fle, L(f)}, where |[fllc = sup {|f(x)]: x € X} is the supremum norm of f
and L(f) = sup{|f(x) — f(¥)|/d(x,¥): x,y € X,x # y}is the Lipschitz constant
of f.

The study of linear isometries of spaces Lip(X) goes back to the sixties when Roy
[46] described the surjective linear isometries T of Lip(X) in the case that X is connected
and its diameter diam(X) is at most 1. Namely, he proved that such an isometry T has the
canonical form:

Tr(y) = tf(e()) (f € Lip(X),y € Y),

where ¢ is an isometry from Y onto X and t is a scalar of Sk, the set of all unimodular
elements of K. Novinger [182] extended Roy’s result to the case of linear isometries of
Lip(X) onto Lip(Y) when X and Y are connected with diameter at most 1. Vasavada’s
result in [47] generalizes the aforementioned results since it states that if X and Y are 3-
connected for some 8 < 1 with diameter at most 2, then any linear isometry from Lip(X)
onto Lip(Y) arises from an isometry from Y onto X as in the aforementioned canonical
form. Let us recall that a metric space X is -connected if it cannot be decomposed into
two nonempty subsets A and B such that d(a,b) = S foreverya € Aandb € B.

The surjective isometries of Lip(X) have a valuable literature. However little has
been published about the into isometries of Lip(X), that is not necessarily surjective. This
fact is also meaningful if we compare it to the formidable literature existing about into
iIsometries in the context of the Banach spaces C(X) of scalar-valued continuous functions
on a compact Hausdorff space X with the supremum norm.

The classical Banach—Stone theorem states that if T is a linear isometry from C(X)
onto C(Y ), then there exists a homeomorphism from Y onto X and a continuous function t
from Y into Sk such that

Tfy) = tWMf(eM)f € CX),y € Y).
An important generalization of this theorem was given by Holsztynski in [60] by
considering into isometries. He proved that if T is a linear isometry from C(X) into C(Y ),
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then there exists a closed subset Y, of Y, a continuous map ¢ from Y, onto X and a
functiont € ¢(Y) with ||t]|l, = 1and |t (y)| = 1forall y € Y, such that
Tr(y) = 1 Wf(e) (f €CX),y € V).

This result has been extended in many directions. We can cite, for example, the
generalizations obtained by Cambern [176] for spaces of vector-valued continuous
functions, by Moreno and Rodriguez [181] with a bilinear version, by Jeang and Wong for
spaces of scalar-valued continuous functions vanishing at infinity [57], by Araujo and Font
for certain subspaces of scalar-valued continuous functions [174] and by many other
authors. The object is to show that Holsztynski’s theorem has a natural formulation in the
context of the spaces Lip(X). We focus our attention on linear isometries T from Lip(X)
into Lip(Y ) for which T,y is a contraction, where 1X denotes the function constantly
equal 1 on X. We recall that a Lipschitz function f is a contraction if L(f) < 1.

The main theorem states that any linear isometry T from Lip(X) into Lip(Y ) for
which Ty, is a contraction, is essentially a weighted composition operator

Tr(y) = tMNf(eM)(f € Lip(X),y € ¥p),
where Y, is a closed subset of Y, is a Lipschitz map from Y, onto X with L(p) <
max{1, diam(X)}and 7 is a function of Lip(Y ) with ||z]]| = 1 and |z (y)| = 1 for all
y € Y,. Namely, the weight function 1 is T; x. Moreover, we show (Corollary (5.1.5)) that
Y, is the largest subset of Y on which we can define a Lipschitz map ¢ with values in X
satisfying the equality above.

We use extreme point techniques to prove our theorem as they do in [180], [182], [46]
and [47]. This method of proof is still used to obtain similar results [173] and seems to
date from the known proof of the Banach—Stone theorem given by Dunford and Schwartz
in [33].

The theorem is not true when L(T;,) = 1 (see [184]). We must point out also that,
the connectedness condition imposed on the metric spaces is used to prove that T,y is a
constant function, in whose case L(T;,) = 0. On the other hand, we want to emphasize
that Vasavada’s reduction to metric spaces of diameter at most 2 is not restrictive because
if (X,d) is a compact metric space and X' is the set X remetrized with the metric
d' (x,y) = min{d(x,y),2}, then diam(X’') < 2 and Lip(X") is isometrically isomorphic
to Lip(X) (see [184]).

Our theorem also provides some new information concerning the onto case. We show
(Theorem (5.1.6)) that any linear isometry T from Lip(X) onto Lip(Y ) such that T;, is a
nonvanishing contraction, is a weighted composition operator

Tr(y) = T (f(e()(f € Lip(X),y € Y),

where ¢ is a Lipschitz homeomorphism from Y onto X and 7t is a Lipschitz function from
Y into Sk . Our approach is different from one which Novinger [182], Roy [46], Vasavada
[47] and Weaver [184] present since they impose conditions of connectedness. Let us
recall that a map between metric spaces ¢ : X — Y is a Lipschitz homeomorphism if ¢ is
a bijection such that ¢ and ¢~ are both Lipschitz, and a function f : X — K is said to be
nonvanishing if f(x) # O forallx € X.

In [184] Weaver obtained a noncompact version of Vasavada’s result. He defined
Lip(X) as the space of all bounded Lipschitz scalar-valued functions f on a metric space
X with the norm ||f|| = max {||f|l» ,L(f)}, and showed that if X and Y are complete 1-
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connected with diameter at most 2, then every linear isometry T from Lip(X) onto Lip(Y )
is of the form
Tr(y) = tf(p()(f € Lip(X),y € Y),

where ¢ is an isometry from Y onto X and 7 is a unimodular constant. Theorem (5.1.6) can
be improved with the aid of this Weaver’s result. Namely, we show (Theorem (5.1.8)) that
if X and Y are compact metric spaces with diameter at most 2 and T : Lip(X) — Lip(Y)
IS a surjective linear isometry such that T,y is @ nonvanishing contraction, then there exists
a surjective isometry ¢ : Y — Xand a function t7:Y — Sg with 7(x) = 7(y)
whenever d(x,y) < 2 such that

Tr(y) = 1 ()f(e()),Vf € Lip(X),Vy €Y.
We classify codimension 1 linear isometries between Lip(X)- spaces in two types. If T :
Lip(X) — Lip(Y ) is such an isometry with L(T;,) < 1, Theorem (5.1.9) asserts the
existence of a closed subset Y, of Y such that either Y, = Y \{p}, where p is an isolated
pointof Y, or Y, = Y ;asurjective Lipschitz map ¢:Y, — X and a unimodular Lipschitz
functiont: Yy, = Ksuchthat T f(y) = 7 (y)f(e(y)) forally € Y,. If Y \Y, is just a
single pointor Y, = Y, we label these isometries as of type | and of type Il, respectively.
These two types are not disjoint. We give a method for constructing codimension 1 linear
iIsometries which are simultaneously of types | and Il (Proposition (5.1.11)). We also give
examples of type I codimension 1 linear isometries which are not of type Il (Proposition
(5.1.12)), and vice versa (Example (5.1.13)). The remainder is devoted to study the
properties of ¢ (Proposition (5.1.15)).

In the last years, several have investigated about codimension 1 linear isometries on
the space C(X) ([175], [177], [179], among others many). However the key is due to
Gutek, Hart, Jamison and Rajagopalan [178]. These studied shift operators on C(X) and
classified these operators using the aforementioned Holszty ‘nski’s theorem [60]. We have
followed a similar way to study codimension 1 linear isometries between Lip(X)-spaces
applying now our Lipschitz version of the cited theorem.

We begin by recalling some results which describe partially the set of extreme points
of the closed unit ball of the dual space of Lip(X).

For a Banach space E, we denote by By the closed unit ball of E, by Sg the unit
sphere of E, by Ext(Bg) the set of extreme points of B; and by E* the dual space of E.

Given a compact metric space X, let X = (x,y) € X?:x # yand let the compact
Hausdorff space W be the disjoint union of X with BX,where BX is the Stone-Cech
compactification of X. Consider the mapping @ : Lip(X) — C(W) defined for each f €

Lip(X) by

_ fw)ifw € X,
0 = {gr Yy itw < 5%
where
F ey =1 (’;)(; yf)(y ) vy € %,

and Bf* is its norm-preserving extension to SX. It is easily seen that ® is a linear isometry
from Lip(X) into C(W). For each w € W, define the functionals §,, € ¢(W)* and §,, €

Lip(X)* by 8, (f) = f(w)and §,(f) = ®f(w), respectively. Clearly, |5,,(f)| <
If]| for all f € Lip(X) and therefore §,, € Bripcxy+ - Itis well known (see [33]) that the
extreme points of By, (x)- are essentially of this form:
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Lemma (5.1.1)[172]: Every extreme point of By;,x)- must be either of the form 7 5,

with 7 € Sk and x € X or of the form 7§, with T € Sk and w € BX. We also shall
need the following fact which was proved by Roy [46] using a result of de Leeuw [180]:
Lemma (5.1.2)[172]: For each x € X, &, is an extreme point of Bripx)+ - An application
of the Hahn—Banach and Krein—Milman theorems yields the following fact surely known.
Lemma (5.1.3)[172]: Let X be a normed space and M a vector subspace of X. For each
g € Ext(By ) thereexists f € Ext(By-)suchthat f|,, = g.

Finally, we present two families of Lipschitz functions which will be used frequently
throughout.

Let X be a compact metric space. For each x € X, the real function f,, defined on X
by f.(z) = d(z, x), belongs to Lip(X) with L(f,) < 1 and ||fille < diam(X). Also,
foreachx € Xand§ > 0, the function kS : X — [0,1] given by
d(z, x)}

he (z) = max{O, 1 — 5
is also in Lip(X) with L(hg) < 1/8and ||h]| < 1.

We formulate the main result which is a version for isometries of Lip(X)-spaces of
a known Holszty ‘nski’s theorem on isometries of C(X)-spaces [60].
Theorem (5.1.4)[172]: Let T : Lip(X) — Lip(Y ) be a linear isometry and suppose T; x iS
a contraction. Then there exists a closed subset Y, of Y, a surjective Lipschitz map ¢ :
Yo = Xwith L(¢) < max{l,diam(X)} and a function t € Lip(Y ) with [|z]] = 1
and |t (y)| = 1forally € Y, such that

Tr(y) = tMf(e()), Vf € LipX), Vy €Y,

Proof. Let t = Tyx. Evidently, t € Lip(Y)and ||z]] = [|11X]| = 1.Let Z =
T (Lip(X)) and define

Yo ={y € Y: TOIT" 81z € Ext(Bupry ), It I = 1},
We first prove that Y, is nonempty. Since T is a linear isometry from Lip(X) onto Z, the
adjoint map T* : Lip(Y)* — Lip(X)* is also a linear isometry from Z* onto Lip(X)* and
therefore T* induces a bijection from Ext(B;-) onto Ext(Biipx)- ). Letx € X. By
Lemma (5.1.2), §, € Ext(Byipcx) )- Therefore T*u = 5, for some p € Ext(B, ). By
Lemma (5.1.3), W is the restriction to Z of an extreme point of By,yy-. Hencep =

ad, |, forsomea € Sxandw € Y UBY by Lemma (5.1.1) and so aT* §,, |, (1) =
5,(1x). We now see that w € Y. If there were w € BY,ewe should have
laT* &, 1z (1x)| < 1since

|aT* 8, 12(L)| = [8w(Ty,) | = [B(Ty,) W) < 1.
It suffices to observe that

(To,) 0.2 = |1, ) = T, (@] d(,2) < L(Ty,) < 1
for all (y,z) € ¥ and that ¥ is dense in BY . But, on the other hand, 6,(1X) = 1. This
contradiction givesusw = y forsome y € Y. It follows that

1 = 6,(1x) = ady(T(1y)) = aT(A) () = ar (¥).
From this it is deduced that |z (y)| = 1 and @ = 7 (y). Hence T ())T* 4, |; = &, €
Ext(Bpipx): ) @nd so y € Y. We next show that for each y € Y;, there exists a unique

point x € X such that T ())T* 4, |, = &,. Let y € Y,. Since ()T §,|; €
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Ext(Bipx)-) by definition of ¥,, Lemma (5.1.1) yields = (y)T* é,|, = ad,, for suitable
@ € S, and w € X U BX. We show that w € X. Ifw € BX, it is clear that
ad,,(1X) = 0, but
TONT* 8ylz (1) = T8, (Ty,) = TOIT,B) = ltWI* = 1.
This contradiction proves that w = x forsome x € X. Then
a = aby(ly) =TT 8,1z (1x) = 1
and so T (¥)T* (6,1;) = 8. This proves the existence of x.

To show its uniqueness, assume there exists x’ € X such that T (y)T* Sy|Z = 6,.
Consider the function f, € Lip(X). If there were x" # x, we would have

TONT* 6ylz (fx) = 8¢ () = f(x') = d(x',x) # 0,

but also

T(WT" 6y |z () = 6x(f) = fi(x) = 0.
This contradiction gives us x" = x. Let ¢ : Y, — X be the map defined by ¢(y) = x
whenever t (y)T* 8, |, = &, Clearly, T*&,|; = v (¥)8,(,, for each y € ¥, and
therefore
Tr(y) = tNf(e(y)), Vf € Lip(X), Vy €Y,
The map ¢ : Y, — X is surjective. This is proved as the existence of points in Y,. We
now check that ¢ : Y, — X is Lipschitz. Notice that for each x € X, f, € Lip(X) and
Il < k where k = max{1,diam(X)}. Hence ||f,¢, || < k forall y € Y,. Since T is
a linear isometry, it follows that ||T f,,,»|| < k forally € Y,. Then L(T f,,) < k for
ally € Y,. Let y,z € Y,. We have |T f,) () — T fo)(2)| < kd(y,z). An easy
calculation yields
T foun @) = T DN fpien(e®) = T Md(e(), ¢(»)) = 0,
fon(@ = T (@Dfppn(9(@) = 1 (@Dd(e(), ¢(2)),
and thus d((p(y),(p(z)) < kd(y, z). Finally, we see that Y, is closed in Y. To prove this,
given x € X and y € Y, we notice that y € Y, and ¢(y) = x if and only if
IT f(y)| = |f(x)| for all f € Lip(X). Indeed, if y € Y, and ¢(y) = x, then
T* 8,1, = T (¥)8y; hence, forall f € Lip(X), we have
Tr(y) = T* 8,1z (f) = T (&) = T Mf (),
and so |T f(¥)| = |f(x)|. Conversely, if |T f(y)| = |f(x)| for all f € Lip(X), then
|t ()| = 1 and ker T*§,|, = ker 8,. This last implies that T* §,|, = aé, for some

nonzero scalar a. In particular, we deduce that 7 (y) = a and thus mT* Sy|Z =
5. This says us that y € Y, and ¢(y) = x. To show that Y, is closed in Y, let {y,} be a
sequence in Y, converging to a point y € Y. For each natural n, let x,, = ¢(y,,). By the
compactness of X, {x,,} has a subsequence {xa(n)} which converges to a point x € X. Let
f € Lip(X). We have |T f(yom)| =|f(*omy)|  for all n €N. It follows that
IT(H)(Y)| = |f(x)|. Since f was arbitrary, the remark above gives us y € Y, and so
Yo isclosedinY.

The next result shows that the triple {Y;,7, ¢} associated to the isometry T in
Theorem (5.1.4) possesses a universal property.
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Corollary (5.1.5)[172]: Let T be a linear isometry from Lip(X) into Lip(Y ) for which T,
is a contraction. Let Y;,7 and ¢ be as in Theorem (5.1.4). If Y; is a subspace (not
necessarily closed) of Y, and 7’ : Y; — Sk and ¢’ : Y; — X are Lipschitz maps such
that

Tfy) = Wf(e'®)  Vf € LipX), Vye€y,
thenYy c Yo, v = 7|pyandp = Ply;-
Proof. Lety € Y. Taking f = 1X above in the expression of T f, we have t’ (y) =
T,(y) = t(y)andsot’ =1 |Yo’ . Now the expression of T f reads as t (y)T"* Sy|Z =
6,'¢) WhereZ = T(Lip(X)). Since 8,1, € Ext(Bripixy-) by Lemma (5.1.2), it
follows that T (y)T* 8, |; € Ext(Bripcx)- ). Moreover,

1 =6,0)(1X) = 1(M6,(T1ix) = TMT W) = [Tt I,
Hencey € Y,andthusY, c Y,. Let f € Lip(X).Since T f(z) = t(2)f(¢(z)) for all
z € Yy by Theorem (5.1.4),Y; < Yoandz' = |y, wehaveT f(y) = v )f ().

Moreover, T f(y) = ©" (y)f (¢’ (v)) by hypothesis. Therefore f(¢'(y)) = f(@(y)) for
all f € Lip(X). This implies ¢’ (y) = @(y), because otherwise we could take the

function f(p(y) and f(p(y)(‘p’(y)) = d(‘P’(}’)KP()’)) =0 = f(p(y)((p(Y))- Thus ¢’ =
Plys -

We shall apply Theorem (5.1.4) to study the onto case.
Theorem (5.1.6)[172]: Let T : Lip(X) — Lip(Y )be a surjective linear isometry.
Suppose T, x is a nonvanishing contraction. Then there exists a Lipschitz homeomorphism
@:Y - X with L(¢) < max{l,diam(X)} and L(¢~!) < max{1,diam(Y )} and a
Lipschitz functiont : Y — Sk such that

Tf) =tOf(e(»),  Vf € Lip(X), Vy €Y.

Proof. According to Theorem (5.1.4), there exists a closed subset Y, of Y, a Lipschitz map
@ from Y, onto X with L(¢) < max{1,diam(X)} and a function 7 € Lip(Y ) with
Izl = 1and |z (y)| = 1forall y € Y, such that

Tf) = tMf(e®),  Vf € Lip(X), Vy €Y,
Since now T is surjective, the set Y, comes given by
{y eEY: (YT Sy € Ext(BLip(X)* ) }o.
We next prove that ¥, = Y. Let € Y . Since &, € Ext(Byipyy- ) by Lemma (5.1.2), it
follows that T* 8, € Ext(Byip(x)-) because T* is a linear isometry from Lip(Y)* onto
Lip(X)*. Then T* 6, = ad,, for some a € Sx and w € X U X by Lemma (5.1.1).
We see that w € X.Indeed, ifw € X, then aé,,(1X) = 0, but
T” Sy(lx) = gy(Tlx) =T, #0

because T, is nonvanishing. Hence w = x € X. Then

T(y) = T, () = T*6,(1y) = ab,(1y) = a.
Hence |7 (y)| = landsot (y)a = 1. It follows that

T(WT" (Sy) = T(y)agx - Sx € EXt(BLip(X)*)

andsoy € Y,.

To prove the injectivity of ¢, let y,y, € Y be for which ¢ (y) = ¢ (y') and let us suppose

y #y' .Since T f(z) = 1(2)f(p(2)) for all f €Lip(X)and z € Y, it is clear that

IT f(y)| = IT f(y")| for all f €Lip(X) and, since T is surjective, it follows that
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|h(y)| = |h(y")]| for all h € Lip(Y ). However this can not be because |f,(y)| = 0 #
dy,y") = |01

On the other hand, T~ is a linear isometry from Lip(Y) onto Lip(X). It comes given
indeed by

T™hg(x) = (7 2(x)g(e~"(x)), Vg € Lip(Y), Vx € X
Using this we can deduce that ¢~ is Lipschitz with L(¢~1) < max{1,diam(Y )}. The
proof is similar to that given in Theorem (5.1.4) to prove that ¢ is Lipschitz.

Under the conditions of Theorem (5.1.6), if T is also unital, that is T(1X) = 1Y, then
T is an algebra isomorphism. Namely, we have the following:

Corollary (5.1.7)[172]: Let T : Lip(X) — Lip(Y ) be a surjective linear isometry.
Suppose T is unital. Then there exists a Lipschitz homeomorphism ¢: Y -
X with L(¢) < max{1,diam(X)}and L(¢~!) < max{1,diam(Y )} such that
T = f(e()),  Vf ELipX), VyEery.

Next we see that Theorem (5.1.6) can be improved. If T : Y — Sk is a function such that
T(y) = t(y') whenever d(y,y’) < 2,and ¢ : Y — Xis a surjective isometry, it is
easily seen that T f = © (f °p) (f € Lip(X))is a linear isometry from Lip(X) onto
Lip(Y ). Conversely, we have the following improvement of Theorem (5.1.6).
Theorem (5.1.8)[172]: Let X and Y be compact metric spaces with diameter at most 2 and
let T : Lip(X) — Lip(Y ) be a surjective linear isometry such that T,y is a nonvanishing
contraction. Then there exist a Lipschitz function 7: Y — Sk with 7 (y) = (%)
whenever d(y,y') < 2 and a surjective isometry ¢ : Y — X such that T is of the form

T =tWf(e®), Vf € Liplx), Vye€Y.
Proof. By Theorem (5.1.6), there exists a Lipschitz function T : Y — Sk and a Lipschitz
homeomorphism ¢ : Y — X such that

Tf(y) =tOf(e(®)  Vf € Lip(X), Vy €Y.
Let us define an equivalence relation on X by setting x ~ z (x,z € X) if and only if
there is a finite sequence of points xj,...,x; In Xsuch that x;, = x,x;, = zand
d(x;,x;+1) < 1for1 < i < k. The equivalence class of this relation are called the 1-
connected components of X. Since X is compact, there exist z;,...,z,, € X suchthatX =
Ui, B(z;,1) where B(z;,1) = {x € X: d(x,z;) < 1}. Foreachi € {1,...,m}, the
ball B(z;,1) is contained in the 1-connected component of X which contains to z; and
therefore the number of 1-connected components of X isn < m. Let X;,...,X,, be the 1-
connected components of X. Notice that X,..., X,, are pairwise disjoint closed sets.

Fix 1 < i < n and identify Lip(X;) with the functions in Lip(X) which are
supported on X; . Let Y; = ¢~ (X;). Clearly, T takes Lip(X;) isometrically onto Lip(Y;)
and then, by [184], there exists a constant 7; € Sk and an isometry ¢; from Y; onto X;
such that

Tf(y) = uf(e:(¥)), Vf € Lip(X;), Vy €Y.
A simple verification shows that 7 |, = 7;1Y and ¢y, = ¢; .

Fix i,j € {1,...,n}with i # j. Suppose d(xq x,) < 2for some x, € X; and
xy € X; . Let a = inf{d(x,x,):x € X;,x, € X;} and consider f: X - R defined
by f(x) = —a/2 if x € X;,f(x) = a/2if x € X;and f(x) = 0if x € X; U X;.
We claim that f € Lip(X) with L(f) = 1. Letx,x, € X. If x € X; and x" € X;, we
have
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fG) - f&DI _  a

= < 1.
d(x,x") d(x,x') — 1
Ifx € X; U X;andx" € X; U X;, we obtain
x)— f(x' a?
f@ - FODI o

d(x,x") Cd(x,x") ~
It follows that L(f) < 1. Using the definition of a it is easy to see that L(f) = 1. Since
Iflle = a/2 < 1, we have ||[f]| = 1 and thus||T f|| = 1. Moreover, since T f(y) =
—t1;a/2if y € Y, T f(y) = 1;a/2ify € ¥; and T f(y) = 0 elsewhere, we have
IT flloe = a/2 < 1andthus L(T f) = 1. Let

b = inf{d(y,y' )iy € V;,y' € Y]}

Since Y;and Y; are pairwise disjoint closed sets, we have b > 0. Next we check
that L(T f) < a/b.Lety,y, € Y.Ify € Y;andy’' € Y;, we have

, a
TfD - TrON _zlut 5l _a
d(y,y") dy,y) ~ b
Ify € Y, UY,andy' € Y; U Y;, we get
a
T/ -TfOI _ 32
d(y,y") dy,y")
Therefore L(T f) < a/bandso1 < a/b.
We now prove that 7; = 7;. Suppose 7; # T7;and let g: X — K be the function
given by g(x) = —1a/2 if x € X;,9(x) = 1ja/2if x € X; and g(x) = 0
elsewhere. To see that g € Lip(X), letx,x, € X.Ifx € X;andx" € X;,we have

a
900 — 9@l _zln + ol _[n +

d(x, x") odx,x) T2
sincet;,7; € Sxandt; # 7;.Ifnowx € X; U X;andx’” € X; U X;, we obtain

a
<5 <
2

S Q

<1

a
g0 -9 _ 7 _a _
d(x,x") d(x,x') — 2
Hence g € Lip(X) withL(g) < max{|rl-+ Tj|/2,a/2} < 1. Since [lgllc = a/2, it
follows that ||g|]] < 1 and so L(T g) < |IT gll = llgll < 1. On the other hand, since

Tgly) = —a/2ify € Y;andT g(y') = a/2ify" € Y;, we deduce
Tg») - TgWIl _ < LT
d,y") dy,y")
which implies a/b < L(T g). Then a/b < 1, which contradicts that 1 < a/b. This
proves thatz; = 1;.

It is an easily checked fact, which is contained in [47], that ||6, — &,/ =
d(y,y' ) whenever d(y,y') < 2. Using this fact we now prove that ¢ is an isometry.
Lety,y’ € Y be such that d(¢(»),¢(y’)) < 2.Clearly, y € Y; and y’ € Y; for some
i,j € {1,...,n}. By what has been proved above, we have T (y) = 7; = 7; = 7(¥")
and it follows that

d(e(), e(")) = ||5<p(y)~_ 5<p(y’)|| = ||T~(y)5<p§y) - T(y:)aw(yi)”
= |18,°T = &y °T|| = [|I7* (8 = 8,)ll = I8y = &yl = d¥".
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If now y,y' € Y with d(¢(),9(¥")) = 2, then d(y,y') = 2. In contrary case, it
would be d ((p‘1 (), @71 (<p(y’))) < 2 and, by applying to T~* what has already

been proved, we would have d ((p‘l (), @71 (gb(y’))) = d(e(), ¢(y")), that is,

2 = d(e,9(¥")) = d(y,y") < 2,acontradiction.
Applying Theorem (5.1.4), we can describe codimension 1 linear isometries between
Lip(X)-spaces as follows.
Theorem (5.1.9)[172]: LetT be a codimension 1 linear isometry from Lip(X) into
Lip(Y ). Suppose T;, is a contraction. Then there exists a closed subset Y, of ¥ where
either Y, = Y \{p} being p an isolated point of Y or Y, = Y, a surjective Lipschitz map
¢ : Y, = X anda Lipschitz functiont : Y, — Sk such that
Tf) = tMf(e(®)  Vf € Lip(X), Vy €Y,
Proof. By Theorem (5.1.4) there exists a nonempty closed subset Y, of Y, a Lipschitz map
@ from Y, onto X and a Lipchitz function t from Y, into Sk such that
Tfy) = tWMf(e®), Vf € Lip(X), Vy €Y,
Suppose Y \Y, has two distinct points y;, y,. Fori € {1, 2}, let
Clearly, 6; > 0 and hgﬁ € Lip(Y) satisfies that hii (y;)) = 1 and hf,§ (y) = 0for all
We see that hf,i and hf,j are linearly independent. Suppose ahgi + ,Bhf,j = 0 for

some scalars a, 8. Since hgi (y; ) = &;; where §;; is the Kronecker’s delta, it follows that
a=pf =0.

We now prove that no nonzero linear combination of hii and hgj belongs to the range
of T. Let a,f € K and suppose there exists a f € Lip(X) such that T f = ahii +

Bhij .Then, forally € Yy, we have T f(y) = 0, butalso T f(¥) = 7 (»)f(¢()).In
consequence, T (y)f(¢(y)) = 0forall y € Y,. Then f is the zero function because t is
unimodular and ¢ is surjective, and thus ahgi + ﬁhi; = 0 by the linearity of T.

From the above it is deduced that hgi is not in the range of T. Since the range of T

S 18 :
y.= ah, + T(g) for some a € K and g € Lip(X). Then

hﬁj - “hii = 0, a contradiction. Therefore Y \Y, has at most a point. Then either Y, =

YorY, = Y \{p} for some point p € Y. This point p must be isolated since Y \{p}is
closed.

Theorem (5.1.9) allows us to classify codimension 1 linear isometries between
Lip(X)-spaces in two types:
Definition (5.1.10)[172]: Let T : Lip(X) — Lip(Y ) be a codimension 1 linear isometry
such that T, x is a contraction. We say:

(i) T is of type I when there exists an isolated point p of Y, a surjective Lipschitz map
¢ : Y \{p} = X and a Lipschitz function t: Y \{p} — Sk such that

T =tMf(e()), Vv € Y\{p}.

(if) T is of type Il if there is a surjective Lipschitz map ¢ : Y — X and a Lipschitz

functiont: Y — Sk such that

has codimension 1, we have h
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Tf) = T 0f(@®)),¥y € Y.
These two types are not necessarily disjoint as the next result shows.

Proposition (5.1.11)[172]: Let Y be a metric compact space with an isolated point p. Let
X = Y \{p}and suppose there exists a point x" € X such that d(x,x") < d(x,p) for all
x € X (in particular, this happens when diam(X) < d(p,X)). Then the map T :
Lip(X) — Lip(Y ) defined by
Tfy) =f», VvyeX, Tfp)=[fx),
Is a codimension 1 linear isometry with L(T;x) < 1, which is simultaneously of types I
and I1.
Proof. Let f € Lip(X). Obviously, |IT fllec = |lflle and L(f) < L(T f). Moreover, we
check at once that
ITfx) = TfI = If(x) = f&xD| < L(Hd(x,x') < L(fd(x,p),  Vx € X.
Therefore L(T f) < L(f) and so ||T f|| = ||f]l . Clearly, T is linear. However T is not
surjective, since the function h, € Lip(Y ) with r = d(p,X) > 0 is not in T(Lip(X)).
Moreover, T;, = 1y and thus L(T;,) = 0 < 1. Finally, T(Lip(X)) is of codimension 1
since every g € Lip(Y ) may be expressed as
g=Tf+ (g - g&x))hj,

where f is the function in Lip(X) defined by f(x) = g(x) forall x € X.

Hence T is of type | taking as ¢ the identity map on Y \{p} and as t the function 1,
\{p}. But also T is of type Il if we now put t = 1, and ¢ the function from Y to Y \{p}
givenby p(y) = yify # pand ¢(p) = x".

We next give a method for constructing type | codimension 1 linear isometries which
are not of type II.

Proposition (5.1.12)[172]: Let X and Y be metric compact spaces. Let p be a point of
Ysuchthat 1 < d(p,Y \{p}), ¢ : Y \{p} — X a surjective isometry and t a unimodular
constant. Then the map T : Lip(X) — Lip(Y ) defined by
T =tf(e(), VyeY\p), Tf®) =0
for all f € Lip(X), is a codimension 1 linear isometry of type | with L(TlX) < 1, but it
is not of type II.
Proof. Obviously, T is linear and preserves the supremum norm. Let f € Lip(X). For
all x, w € X, we have
f@) = fFWI =T f(o71 () = T f(p™" W)
< L(T (e~ (x), 9™ W) = L(T f)d(x,w).
Hence L(f) < L(T f)andso |[f]| < IIT f|| . On the other hand, it is clear that
TfO) = TF@I = |fle0) - flo@)|
< L(HdleW), ¢(2) < lIflld(y,2)
forall y,z € Y \{p}, and
T - TI@I=ITfWI= |flem)| < IIflle

< Iflle d@ Y \{p}) < lIfll d(p y)
for all y € Y \{p}. This implies that L(T ) < |If|l and thus |IT fIl < |IfIl. Hence T is

an isometry. Moreover, we have

IT.,(y) — T, ()| = T, =1 < dpY\{p}) < dpy)
forall y € Y \{p}, which gives L(T;,) < 1.
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We now claim that T has codimension 1. First observe that the function h; € Lip(Y)
does not belong to T(Lip(X)), since if h, = T f for some f € Lip(X)), then 1 =
hy; () = T f(p) = 0, a contradiction. Then, given g €Lip(Y), we take f =
1(g°¢@ 1) € Lip(X)anditisclearthat g = T f + g(p)h}, which proves our claim.
Evidently, T is of type I. However T is not of type Il since, in contrary case, we could
write T f = 1’ (f ° ¢") for some Lipschitz surjection ¢’ : Y — X and some Lipschitz
function 7’ : Y — Sk, and we would have T;, (p) = 7' (p) # 0, which contradicts the
definition of T.

We next provide a example of a type Il codimension 1 linear isometry which is not of
type I.

Example (5.1.13)[172]: For X = [0,2] and Y = [0,1] U [2,3], letp : Y — X be the
map defined by
_ (yify €10,1],
»0) {y‘l if y € [2,3],
andlett: Y — S be the function given by

1ify € [0,1],
T(y) = {2 V5

—+—ii € [2,3].
3+3llfy [2, 3]

We claimthat T : Lip(X) — Lip(Y ) defined by
TfQ) = tf(e®), Vy ey, Vf € LipX),
Is a codimension 1 linear isometry.
Since ¢ and t are Lipschitz, T is well defined. Obviously, T is linear and, by the
surjectivity of ¢, T preserves the supremum norm.
We now check that L(f) < L(T f) for all f € Lip(X).Let f € Lip(X) and x;,x, €
X withx; # x,.1fx;,x, € [0,1]or xy,x, € [1,2], then
If(x) — fC)| = T f) = Tf@)l < LT Hlyr — y2l = LT Hlxg — x5
for suitable points y;, y, in Y satisfying ¢ (y;) = x; and ¢(y,) = x,.Ifx; € [0,1] and
X, € [1,2],supposethatx; # 1 # x, and
| (1) = f(xq)l < [fCe) = fOe)| 1f () = fF(D < |f (x2) = f(x0)l
1 - x X, — X1 Tox, — 1 X, — X1
Then we arrive at the following contradiction:

£G) = FGl < 1fGe) — FODI + (D) = £l
M) = Oy k(= ) = 1) - FGI

Xy — Xq
Therefore we have

fCe) = fOeDl _ If D) = f)

X, — Xq 1 —x
or
fCe) = fGe)l _ 1f(x) = fFD
Xy — Xq - x, — 1 '

Applying the above-proved gives |f(x;) — f(x1)| /(xz —x;) < L(T f) and so L(f) <
L(T f). Asalso [T flle = llflle , we deduce that ||f]| < [IT fI|.
On the other hand, let y,,y, € Y. A simple calculation yields

ITf) — Tl = |t Df(e01)) — T ) f (0(y2)|
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< |t o)f(en) — T (e))| + |t ) f () — T ) f (e ()

< LDle) —o)l + lIflle IT () = 7 (2l
If y;,v, € [0,1]ory;,y, € [2,3], it follows that

ITf) = TfFWIl < LAy — v2l < MIfIl lyr — yal,
whereas for y; € [0,1] and y, € [2, 3], we obtain that
V5

1
ITfO1)—TfOIl < ||f||[|)’1 -y, + 1 +‘§ _?i

|

2
= lIfIl yz—y1—1+£ < N Tz =y = lIfllys = el

This proves that L(T f) < ||fIl and therefore ||T ]| < IIfll. Hence T is a linear

isometry. Furthermore, L(T;,) = /2/3 < 1.
Finally, we claim that T has codimension 1. Clearly, the function
g = 1ify € [0,1],g(») = 0ify € [2,3].
is in Lip(Y ), but not inT(Lip(X)) since |g(1)] = 1 # 0 = |g(2)|. Given h €

Lip(Y ), we can take the scalar « = h(1) — h(2) G — g i) and the function

h(x) — aif x € [0,1],

f) = {(g _g i) h(x + 1) if x € [1,2].

It is readily seen that f € Lip(X) with L(f) < L(h). Taking into account that

T+ agy) = tf(e)+ agy) = fO») + a = h(y)
forall y € [0,1], and
V5

2
T+ ag(y) = 1 WMf(e() + agy) = <§ Y i) fo -1

2 V5 \(2 5.
:(§ +?l)(§ —? )h(Y) = h(y)

forally € [2,3],wehave h = T f + ag, which proves our claim.

Observe that T is of type Il, but not of type | since Y has not isolated points. Next we
study the properties of the map ¢ and state some conditions under which ¢ is a Lipschitz
homeomorphism.

Lemma (5.1.14)[172]: Let T : Lip(X) — Lip(Y ) be a codimension 1 linear isometry
such that T;, is a contraction. For any f € Lip(X)and x € X, the function |T f]is
constant on ¢~1 ({x}).

Proof. By Theorem (5.1.9), forall y € Y, we have T f(y) = t (y)f(¢(y)) and since
(y) € S , it follows that [T f()| = |f(e(¥)| . If now y € ¢~ ({x}), we
get|T f(y)| = [f()].

Proposition (5.1.15)[172]: LetT : Lip(X) — Lip(Y ) be a codimension 1 linear isometry
such that T;, is a contraction. We take Y;, ¢ and 7 as in Theorem (5.1.9). The following
assertions hold:

(i) Foreachx € X, ¢~ ({x}) has at most two elements.

(i1) If there exists a point x, € X and two distinct points a,b € Y, such that ¢(a) =
@(b) = xg, then ¢~ ({x}) is a singleton for each x € X\{x,}.
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(i) If T isof type | (Y, # Y ), then ¢ is injective and hence a homeomorphism.
(iv) If T is of type | with Y, = Y \{p} and T* (§,) € Lip(X)* is zero, then ¢ is a
Lipschitz homeomorphism.
Proof. (i) Suppose that there exist three distinct points y;, y,,y; € Y, such that ¢(y,) =
o(y2) = ¢(y3). Putp = min{d(y1,¥,),d(y2,¥3),d(y1,y3)} and consider the
functions h§1 and h§3 . Since the codimension of range of T is 1, there exist constants «
and B, not both zero, such that ahl) + B hj € T(Lip(X)). By Lemma (5.1.14) we
obtain
lahy (v1) + Bhy, v)| = |ahy, (2) + BRY, (02)| = |ahy, (73) + BRY, (v3)] -
This gives |a|] = 0 = |pB|,a contradiction. Hence ¢~! ({x}) contains at most two
points for all x € X.
(i1) Suppose there are distinct points x,,x € X and a, b,p,q € Y, such that
a*zb el@=eb)=x pFq ¢@ =e@ =x
Take the positive numbers
e = min{d(a,b),d(p,b),d(q,b)},
r, = min{d(a, b),d(a,p),d(a q)},
r, = min{d(p,a),d(p,b),d(p,q)},
and consider the functions f; = hjand f, = hgl + hgz in Lip(Y ). Then
) =1, file) = fi(p) = fi() = 0, fa(a) = f,(p) =1, f2(b) = f2(q) = 0.
Again, the codimension 1 of range of T provides two scalars a, B, not both zero, such that
afi + Bf, € T(Lip(X)). By Lemma (5.1.14), it follows that

lafi(p) + Bf2(0)| = lafi(q) + Bf2(q)]
lafi(a) + Bf2(a)| = |afi(b) + Bf2(b)].

Therefore |a| = |B| = 0, a contradiction. Hence ii) is true.

(iii) Let us assume T is of type | (Y, # Y ). Then Y \Y, = {p} for some isolated
point p € Y. Therefore we may taker = d(p,Y,) > 0 and consider h), € Lip(Y). If
hy, € T(Lip(X)), itis easy to show that hj, = 0, a contradiction. Hence hj, does not belong
to the range of T.

Suppose there exist y,, ¥ € Y, such that y, #= y and ¢(y,) = @(y). Let € =
min{d(y,,y),d(y,p)}. Since h;j satisfies h§, (y) = 1 # 0 = hj, (y,), Lemma (5.1.14)
gives hj, ¢ T(Lip(X)). As a consequence, there exists « € K and f € Lip(X) such that
hy = Tf + ah$. Then Lemma (5.1.14) gives |h} (y0) — ah$ (vo)| = |hp () —
ahs, (y)| , that is 0 = |a|, but then hj, € T(Lip(X)), a contradiction. Hence ¢ is
injective.

(iv) Let y,z € Y, with y # z. Putting y = min{d(y,z),d(y,p)}, define g =
d(y,z)h}) € Lip(Y). A trivial verification yields L(g) < max {1, diam(Yy)/d(p, Y)}
and ||glle = g(y) = d(y,z) < diam(Y,). As a consequence, ||g|l < k where k =
max{d, diam(Yy)}and § = max {1,diam(Yy)/d(p,Yy)}.

We now consider the function hj € Lip(Y)with r = d(p,Y;). Since hy ¢
T (Lip(X)) (see iii)) and T(Lip(X)) has codimension 1, there exist « € K and f €
Lip(X) suchthat = T f + ahj, . Since

0=9gm =TfP) +a=T06) +a=a
it followsthatg = T f. Then

and
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dy,2) = 19 =g -t T @D9@ |= |Tf3) - 1 G)T@AT f(2)|

= [ o)f(e) - T )T @ Df(p@)| = |F(0)) = F0(D))]

< L(NHd(e), 9(2) < llglldle(), ¢(2)) < kd(e(y), ¢(2)).
Hence ¢~ is Lipschitz and so ¢ is a Lipschitz homeomorphism.

Section (5.2): Vector-Valued Lipschitz Functions
Given a metric space (X, d) and a Banach space E, we denote by Lip(X, E) the
Banach space of all bounded Lipschitz functions f: X — E with the norm ||f]|| =

max{L(f), ||f e}, where
L(f) = sup{llf (x) — fWIl/d(x,y):x,y € X, x # y} .
If E is the field of real or complex numbers, we shall write simply Lip(X).

The study of surjective linear isometries between spaces Lip(X) was initiated by
Roy [46] and Vasavada [47]. In [46], Roy proved that if (X,d) is a compact connected
metric space with diameter at most 1, then a map T is a surjective linear isometry from
Lip(X) onto itself if and only if there exist a surjective isometry ¢: X — X and a scalar t
of modulus 1 such that

T(HW) =tf () Yy €Y,  Vf € Lip(X).

In [182], Novinger improved slightly Roy's result by considering linear isometries from
Lip(X) onto Lip(Y). Vasavada [47] proved it for linear isome tries from Lip(X) onto
Lip(Y) when the metric spaces X, Y are compact with diameter at most 2 and 5-connected
for some [ < 1. Weaver [189] developed a technique to remove the compactness
assumption on X and Y and showed that the above-mentioned characterization holds if
X,Y are complete and 1-connected with diameter at most 2 [189]. The reduction to metric
spaces of diameter at most 2 is not restrictive since if (X, d) is a metric space and X' is the
set X remetrized with the metric d’(x, y) = min{d(x, y), 2}, then the diameter of X’ is at
most 2 and Lip(X") is isometrically isomorphic to Lip(X) [184]. We must also mention
the complete research carried out on surjective linear isome tries between spaces of Holder
functions [25], [186], [180], [188]. See Weaver's book Lipschitz Algebras [184]. This is
essentially the history of the onto scalar-valued case. Recently, into linear isometries (that
IS, not necessarily surjective) and codimension 1 linear isometries between spaces Lip(X)
have been studied in [172].

We give a complete description of linear isometries between spaces of vector-
valued Lipschitz functions. Little or nothing is known on the matter in the vector-valued
case. Our approach to the problem is not based on extreme points. We have used here a
different method which is influenced by that utilized by Cambern [176] to characterize
into linear isometries between spaces C(X,E) of continuous functions from a compact
Hausdorff space X into a Banach space E with the supremum norm. In [187], Jerison
extended to the vector case the classical Banach-Stone theorem about onto linear
iIsometries between spaces C(X), and Jerison's theorem was generalized by Cambern [176]
by considering into linear isometries.

We show that Cambern's and Jerison's theorems have a natural formulation in the
context of Lipschitz functions.

Given a Banach space E, Sg will denote its unit sphere and By its closed unit ball.
Let us recall that a Banach space E is said to be strictly convex if every element of Sy is an
extreme point of Bg. For Banach spaces E and F, L(E, F) will stand for the Banach space
of all bounded linear operators from E into F with the canonical norm of operators. In the
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case E = F, we shall write L(FE) instead of L(E,F). Given a metric space (X,d), we
shall denote by L, the function constantly 1 on X and by diam(X) the diameter of X. If
@: X — Y is a Lipschitz map between metric spaces, L(¢) will be its Lipschitz constant.
Forany f € Lip(X)ande € E,define f @ e: X - Eby (f®e)(x) = f (x)e. ltis
easy to check that f ® e € Lip(X,E) with ||f Qello = llfllllel] and L(f Q e) =
L(f)llell, and thus [[f @ ell = [IfllIell.
Theorem (5.2.1)[185]: LetX and Y be compact metric spaces and let E be a strictly
convex Banach space. Let T be a linear isometry from Lip(X, E) into Lip(Y, E) such that
T(1x®e) = 1, ®e for some e € S;. Then there exists a Lipschitz map ¢ from a
closed subset Y, of Y onto X with L(¢) < max{1,diam(X)/2}, and a Lipschitz map y +—
T, from Y into L(E) with ||T, || = 1 forall y € Y, such that

T(HO) = T, (F(0()),  Vy €Y, ¥f € Lip(X, E).
Proof. For each x € X, define
F(x) = {f e Lip(X,E): f (%) = [Ifllwe}.
Clearly, [, ®e € F(x).Foreachd > 0,themap h, s ® e: X — E, defined by
hy 5(z) = max {0,1—d(z,x)/6} (z€X),
belongs to F(x). Indeed, an easy verification shows that h, s®Lip(X) with ||h,s|| =

1 = hys(x). Hence hy s ® e € Lip(X, E) with ||h, s®e|_ = 1and (h,sQe)(x) = e.
Then (hys®e)(x) = ||hys ® el| eandthush,s® e € F(x).

We shall prove the theorem in a series of steps.
Step 1. Let x € X. For each f € F(x), the set

P(f) ={yer:T(NH) = f()}
Is nonempty and closed.

Let f € F(x).If f =0, then P(f) = Y and there is nothing to prove. Suppose f # 0
and consider g(x) = |Ifllof + lIflI* (1,® e). Clearly, g € Lip(X,E) with L(g) =
If |l L(Hand g(x) = (IfI% + lIf1I?) e. The latter equality implies g # 0. Since

_ L@ < IfllllF I < IAIS + AP = 1lgll < llgll,
it follows that [lgll = llglle- Moreover,|lglle, = llg@)Il + IIfIIS + [If11* since

Igllee = Ml fllw £+ IFIIP(1x @)l < IFNI% + 1IN = 11g () lco-

We now claim that there exists a point y € Y such that T(g/ llgl]) (y) = e. Contrary to
our claim, assume e =# T (g/ llgl) (v) forall y e Y. Let e > 0 and take h = g/|lgll +
¢(1x ®e). Clearly, h€Lip(X,E) and T(h) = T(g)/llgll +&(1,®e).A simple
calculation yields

L(T(D) = L(T(g)/llgll < T(g) / llgll = 1.
Next we show that [|T(h)||l, < 1 + €. Forany y € Y, we have

IT(RYWI =T (9/llglD) +eell< 1 +e¢
since IT(g/llgl) WMl < IT(@II/llgll = 1. Indeed,

IT (g/llgl) (v) +eell < 1 +e.
Otherwise the vector u = (1/(1 +¢€)) (T (g/llgll) (y) +€e) would be an extreme

point of B by the strict convexity of E, and since u is a convex combination of T (g/
lglD(y) and e, which are in By, we infer that T (g/||gl])(y) = e, a contradic tion.
Hence [|[T(h) )|l < 1 + eforall y € Y. Since ||T(h)|l = |IT(h) (v)|| for some y €Y,
we conclude that ||T(h)|l < 1 + €. From what we have proved above it is deduced that
IT(h)|| < 1 + &, but, on the other hand,
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1 +e=lgt)/ligll+eell = Il < llhlle < lIRIl = NIT R,
which is impossible. This proves our claim.

Now, lety € Y be suchthat T (g/llgll)(y) = e.Sincee = g(x)/llgll,Tg(y) = g(x),

that is,
1flle TAOD + 2 T(1x®)(y) = (IfIIE + IfII*) e
Since T(1y®e) = 1,Qe, we have

(T + NI I12e = AIfIIE + 11 e,
and thus T(f)(y) = lIfllwe, whichisT(f)(y) = f(x) since f € F(x).Hence P(f) # @.
Moreover, P(f) is closed in Y since P(f) = T(f) " *({f (x)}) and T(f) is continuous.
Step 2. For each x € X, the set

B(x)={ye V:T(/)(y) = f(x),Vf € F(x)}
Is nonempty and closed.
Letx € X. For each f € F(x), P(f) is a nonempty closed subset of Y by Step 1.
Since B(x) = N fepy P(f), B(x) is closed. To prove that B(x): # @, since Y is compact

and  B(x) =N fepy P(f), it suffices to check that if fi,....f, €
F(x),then N 7, P(f]) * Q.

We can suppose, without loss of generality, that f; # 0 for all j € {1,...,n} since
P(f;) = Yiff; = 0.Foreachj € {1,...,n}define g; = (Ifllwf; + |Fi||” + (1x®e).
As in the proof of Step 1, g; € Lip(X, E) with g;(x) = (”fJ”i + ||fj||2)e and ||g;|| =

||f]||io + I5|I° - Hence g; # 0 and we can define h = (1/n) X7, (g;/||g;])) Clearly,
h € Lip(X,E),h(x) = e and ||h||, = 1. Hence h(x) = ||h||e and thus h € F(x). Then,
by Step 1, there exists a point y € Y such that T(h)(y) = h(x). Since T(h)(y) =
/)2, (T(g)Mlgll) and  h(x) =e it follows that e =
(/) 2, @(g,)/||lg;|D- Since E is strictly convex and ||[T(g;)0)||/llg/ll <
1T/ |lg;]| = 1 for all j €{1,...,n}, we infer that T(g;)(y) = ||g;||e for all j €
{1,...,n}. Reasoning as in Step 1, we obtain T(f;)(y) = f;(x) forallj € {1,...,n} and
thusy € N 7y P(f)).

Step 3. Letf € Lip(X,E),x € Xand y € B(x). Iff(x) =0, thenT(f)(y) =0. If f = 0,
then there is nothing to prove. Suppose f # 0 and let § = ||f|lo/Ilf]l- Clearly, L(f)/
Iflle < 1/8. Consider h,s®e € F(x). We next prove that f/||fllc + (hes®e)

belongs to F(x). Since fllflle +(hx,5®e) € Lip(X,E)and  f(x)/|Iflle +
(hys®e)(x) = e, it suffices to check that ||f/IIflle + (hys®e)| = 1. Letz€X.
If d(z,x) = 6, we have (h, s® e)(z) = 0andso

If @)/ Ifllo + (hys®@e)(@)|| = If @)/ lIflleoll < 1.
If d(z,x) < §,then (hy,s ®e)(z) = (1 — d(z,x)/0) e, and therefore

_ 1 @)/ N1f llos + hxs® €)) @D < IfF @/ NIflloo + 1 = d(5,2)/8 < 1,
since

If @)/ flloll = 11f(Z) = FOIIfllo = LAz )/|Ifll < d(z,x)/6.
Hence [|[f(x)/IIfllec + (hes® €)) (3)||_ < 1.Since

1FCO/Nflle + (hes® €)) )| = llell = 1,

we obtain the desired condition.
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By the definition of B(x) it follows that
T(flifllec + (hxs®e)) ) = (Fllflle + (hyes® €)) (x),
that is, T(f)(y)/ 1If 100+T(hx,60e)(y) = e. Moreover, since y € B(x) and h, s®e € F(x),
we have T(hys®e)(y) = (hys®e)(x)e. Hence T(f)/(y) lIfll-+ e = e and thus

T(Hy) = 0.
Step 4. Letx,x" € X with x # x". Then B(x) N B(x")®.

Suppose y € B(x) N B(x"). Let § = d(x,x") > 0 and consider h, s® e. Since y €
B(x) and h, s®e € F(x), we have T(h,s ® e)(y) = (h,s®e)(x) = e by Step 2, but
Step 3 also yields T(h,s®e)(y) = 0 since y € B(x") and (h,s®e)(x") = 0. So we
arrive at a contradiction. Hence B(x)NB(x") = @. Steps 3 and 4 motivate the following:
Definition (5.2.2)[185]: Let Yy = U ,cx B(x). Define ¢: Y, —» Xby o(y) =x if y €
B(x).

Clearly, ¢ is surjective. Moreover, given y €Y,, there exists x € X such thaty €
B(x), and hence ¢(y) = x and T(f)(y) = f(x) for all f € F(x). We shall obtain the
representation of T in terms of the following functions.

Definition (5.2.3)[185]: For eachy €Y, define T,,: E —» E by T, (w) = T(1xQu)(y). It
is easy to show that T, € L(E) with ||T, || = 1 = ||T,(e)|| forally € Y.
Step 5. The map y — T,, from Y into L(E) is Lipschitz.

Lety,z € Y.Givenu € E, we have

(T, = TH@| < LT (1x®@w)d(y, ) < ITAx@Wd(y,2) = llull d(y,2),
and thus ||, — T,|| < d(v, 2).

Step 6. T(f)(y) =T, (f(<p(y))) forall f € Lip(X,E)andy € Y,
Let f € Lip(X,E) and y € Y,. Letx = @(y) € X and define h = f — (1,Qf (x)).
Obviously, h € Lip(X,E) with h(x) = 0. From Step 3, we have T(h)(y) = 0 and

therefore T(f)(y) = T(1x®f (1)) () =T, (f() =T, (F()))-

Step 7. Yy isclosed inY.
Let y € Y and let {y, } be a sequence in Y, which converges to y. Let x,, = ¢@(y,,) for
all n € N. Since X is compact, there exists a subsequence {x,,)} converging to a point

x € X. Let f € F(x). Clearly, {T(f)(v, (n))} converges to T(f)(y), but also to f(x) as
we see at once. Indeed, for each n € N, we have

T(f)(ya(n)) = Tya(n) (f (xa(n))) = T(1X®f (xa(n))) (ya(n)):

by Step 6, and
F =Ml e = Ifllo (1 (X) €) (Yorm)

= lflloT(1x®€) Vo)) = T(1x®f (X)) Vo))
since f € F(x). We deduce that

1T Vo)) — FXO = [|[TAx®U (X6 my) = F)) Gom)|
< ITAx®(f (tomy) = FEN|| = [1x® (X)) — F ()|
= ||f Komy) —fF @)
for all n € N. Since {f (Xom))} = f (%), we conclude that {T'()/(ysm)} — f(x). Hence

T(f)(y) = f(x)andthusy € B(x) CY,.
Step 8. The map ¢ Y, — X is Lipschitz and L(¢) < max{1,diam(X)/2}.
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Let y,z € Y, be such that ¢(y) # ¢(z) and put § = d(@(y),(2))/2. De fine
frz = 6(Rpis — Rowys) ON X. It is easy to see that f,,, € Lip(X) and ||f;,.|| < k :=
max{1, diam(X)/2}. Since T is an isometry, ||T(f;,®e)|[) < k.This inequality implies
L(T(f,.®e) < k. It follows that

IT(f,.®) () — T(f;, ® e)(2)|| < kd(y, 2).
Using Step 6 we get

T(fy,z® e) (y) = Ty ((fyz® e) (p(y))) = Ty(6e) = Je,
T(£,..®e)(2) = T,((£,.8€)(9(2)) = T,(~¢) = —de.
We conclude that d(¢ (), 9(2)) < kd(y, 2).

The condition in Theorem (5.2.1), T(1y ® e)1y @ e for some e € Sg, is not too
restrictive if we analyse the known results in the scalar case. In this case our condition
means T (1) = 1,; notice that the connectedness assumptions on the metric spaces in
[46] and [189] yield a similar condition, namely,that T (1) is a constant function.

Recall that a map between metric spaces ¢: X —» Y is said to be a Lipschitz
homeomorphism if ¢ is bijective and ¢ and ¢~ are both Lipschitz.
Theorem (5.2.4)[185]: Let X,Y be compact metric spaces and let E be a strictly convex
Banach space. Let T be a linear isometry from Lip(X,E) onto Lip(Y,E) such that
T(1,®e) = 1, Qe for some e € Sg. Then there exists a Lipschitz homeomorphism
@:Y - X with L(¢p) < max{1,diam(X)/2} and L(¢~!) < max{1,diam(Y)/2}, and a
Lipschitz map y +— T, from Y into L(E) where T,, is an isometry from E onto itself for all
y € Y such that

T(HG) =T, (f(e()), Vvyey, vfeLip(X,E).
Proof. Let Y, and ¢ be as in Theorem (5.2.1). Since T~ 1: Lip(Y,E) - Lip(X,E) is a
linear isometry and T~1(1,®e) = 1,Qe, applying Theorem (5.2.1) we have

T (g)x) = T (9(¥@)),  Vx € Xo,¥g € Lip(Y, E),
where ¥ is a Lipschitz map from a closed subsetX, of X onto Y with L(y) <
max {1,diam(Y)/2}, and x — (T~1), is a Lipschitz map from X into L(E). Namely,
Xo = U yey B(y) where, foreachy € Y,

By)={x€e X:T ' (g)(x) = g(y), VgeFH)}

F(y) = {g € Lip(Y,E): g¥) = llgllwe},
and y: X, = Y is the Lipschitz map defined by ¥ (x) = y if x € B(y). Moreover, using
the same arguments as in Step 3, the following can be proved:
Claim (5.2.5)[185]: Let g€ Lip(Y,E), yeY and x € B(y). If g(y) =0, then
T (g)(x) = 0.

After this preparation we proceed to prove the theorem. Fix x € X and let y € B(x).
We first prove that x € B(y). Suppose that x & B(y). Since B(y) & @, there exists x' €
B(y) with x" # x. Take f € Lip(X,E) for which f(x) = 0 and f(x") # 0. Sincey €
B(x) and f(x) = 0, we have T(f)(y) = 0 by Step 3. Then T~1(T(f))(x") = 0 since
x' € B(y) by Claim (5.2.5), and thus f (x") = 0, a contradiction. Therefore x € B(y) c
X, and thus X, = X. Nextwe seethatY, = Y. Lety € Y. We can take a point x € B(y).
As above it is proved that y € B(x) and thus y € Y,,.

with
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To see that ¢ is a Lipschitz homeomorphism, let y € Y. Then y € B(x) for some x €
X, that is, ¢(y) = x. Moreover, by what we have proved above, x € B(y) and so ¥(x) =
y. As a consequence, ¥ (@(y)) = y. Since ¢ was surjective, ¢ is bijective with ¢~ = 4
and thus ¢ is a Lipschitz homeomorphism.

To check that T, is an isometry from E into itself for every y € Y, we first show that T
sends nonvanishing functions of Lip(X,E) into nonvanishing functions of Lip(Y,E).
Assume there exists f € Lip(X,E) such that f(x) # 0 forall x € X, but T(f)(y) = 0
for some y € Y. By the surjectivity of vy, there is a point x € X, such that ¥ (x) = vy, that
is, x € B(y).Since T(f)(y) = 0, by Claim (5.2.5)
we have f(x)= T }(T(f))(x) = 0, a contradiction. Hence T maps nonvanishing
functions into nonvanishing functions. If, for some y € Y, T,, is not an isometry, then there
exists a u € Sg such that ||, (w)|| = IIT(1x®w)(¥)Il < 1. Since T is surjective, there is
an f € Lip(X,E) such that T(f) = 1,®T(1xQ@u)(y). Thus |Iflle < Ifll = ITUHIl =
IT(1x®u)(y) < 1| and (1xy® u) — f never vanishes on X. As T(1yQu)(y) =
T(f)(y), we arrive at a contradiction.

Next we prove that T, : E — E is surjective forevery y € Y. Fixy € Y and letv € E.
Since T is surjective, there exists f € Lip(X,E) such that T(f) = 1, @ v.Letu =

(f 0 9)(¥) € E. Using Step 6, we have T, (u) = T, (f((p(y))) = T(f)(y) = v.Hence
T,, is surjective.

We obtain the following:
Corollary (5.2.6)[185]: Let X, Y be compact metric spaces with diameter at most 2 and let
E Dbe a strictly convex Banach space. Then every surjective linear isometry T from
Lip(X,E) into Lip(Y, E) satisfying that T(1x ®e) = 1, Qe for some e € S;, can be

expressed as T(f)(y) = T, (f((p(y))) forall y € Y and f € Lip(X, E), where ¢: Y —» X

is a surjective isometry and y — T, is a Lipschitz map from Y into L(E) such that T,, is
an isometry from E onto E forall y € Y.

In the special case that E' is a Hilbert space, Theorems (5.2.1) and (5.2.4) can be
improved as follows. For a Hilbert space E, let us recall that a unitary operator is a linear
map ®: E — E that is a surjective isometry.

Corollary (5.2.7)[185]: Let X and Y be compact metric spaces and let E be a Hilbert
space. Let T be a linear isometry from Lip(X, E) into Lip(Y,E) such that T(1y® e) is a
constant function for some e € S;. Then there exists a Lipschitz map ¢ from a closed
subset Y, of Y onto X with L(¢) < max {1,diam(X)/2} and a Lipschitz map y — T,

from Y into L(E) with ||T, || = 1 forall y € Y such that

TG = T, (f(e®)),  VyeY,  Vf€Lip(X,E).
If, in addition, T is surjective, then Y, = Y, is a Lipschitz homeomorphism with
L(p™) < max {1,diam(Y)/2} and, for each y € Y, T, is a unitary operator.
Proof. Assume that T(1y ®e) = 1,Qu for some u € E. Obviously, ||u]| = 1. Since E
is a Hilbert space, we can construct a unitary operator ®@: E — E such that ®(u) = e.
Define S : Lip(Y,E) — Lip(Y,E) by

SO = ®(g(»), Vyey, VgelLip,E).

It is easy to prove that S is a surjective linear isometry satisfying that S(1,®@ u) = 1,Qe.
Hence R = SoT is a linear isometry from Lip(X, E) into Lip(Y,E) with R(1,® e) =
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1,® e. Then Theorem (5.2.1) guarantees the existence of a Lipschitz map ¢ from a
closed subset Y, of Y onto X with L(¢) < max {1,diam(X)/2} and a Lipschitz map y +—

R, from Y into L(E) with ||R,|| = 1 forall y € Y such that

R(NG) = Ry (f (0))), V¥yeY,  V¥f€Lip(X E).
For each y € Y, consider T, = ®~' o R, € L(E). Itis easily seen that the map y + T,
from Y into L(E) is Lipschitz with ||T, || = 1 for all y € Y. Moreover, for any y € Y, and
f € Lip(X, E), we have

T(HG) = 7 Ry (f (03)))) = T, (£ (90)).
If, in addition, T is surjective, the rest of the corollary follows by applying Theo rem
(5.2.4) to R.
Section (5.3): Generalised Weighted Composition Operators
Any Riesz homomorphism (i.e. a linear lattice homomorphism) between spaces of

continuous functions on compact Hausdorff spaces can be characterised as a so-called
weighted composition operator. We reformulate Theorem (5.3.4) from [193] in our
terminology.
Theorem (5.3.1)[190]: Let X, Y be compact Hausdorff spacesand let T : C(X) = C(Y)
be a positive operator. Then T is a Riesz homomorphism if and only if there exist a map
m:Y - X and afunctionn € C(Y)*suchthatforall f € C(X):Tf = n(f om).

Inthiscase,n = T 14 and 7 is uniquely determined and continuous on { > 0}.

This result has been generalised and extended in multiple ways: we mention C,(X) for
X locally compact in [57], Lipschitz functions on metric spaces in [185], and pre-Riesz
spaces, a concept introduced in [195], in [196]. We provide another generalisation,
concerning Maeda—Ogasawara spaces of extended continuous functions on a Stonean
space. We study the setting in which E,F are Archimedean Riesz spaces, which we
characterise as order dense subspaces of their respective Maeda—Ogasawara spaces € (X)
and C*(Y ), with a Riesz homomorphism T : E — F. We prove that there is indeed a

continuous map mw: Y — X such that for all f,u € E:Tf =Tu - (5 ° n) on

supp(T w), the support of T u. Note that an exact meaning of the quotientfu € C* (X) is
given in Definition (5.3.8).

Let us first introduce the necessary definitions, see [197].
Definition (5.3.2)[190]: A Riesz space E is

(i) Dedekind complete if every non-empty subset which is bounded from above has a
supremum;

(ii) laterally complete if every non-empty disjoint subset of E* has a supremum.
Concerning Riesz subspaces and homomaorphisms, we use the following concepts.
Definition (5.3.3)[190]: A Riesz subspace D of a Riesz space E is

() aRieszidealif f € D,g € E,|g| < | f | together imply that g € D;

(ii) order dense if for every non-zero f € E™, there existsa g € D* such that 0 <
g =<f.

A Riesz homomorphism T from E to a Riesz space F is

(i) (c—)order continuous if it preserves order limits (of sequences);

(ii) order bounded if forevery u € E* theset{|ITf| € F| —u < f < u} isa
bounded subset of F*.
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Every Archimedean Riesz space E has an order dense embedding in some unique
Dedekind complete Riesz space, called its Dedekind completion E® . We identify E with
this embedding and write c E9 . Before we introduce the representation theorem of
Maeda and Ogasawara, we have.

Definition (5.3.4)[190]: Let X be a topological space.

(i) A subset A of X is meagre if there exist closed subsets C;,C,,...c X such that
C, = @forallnand A c U, C,.

(i) X is extremally disconnected if the closure of every open set is open (hence
clopen). An extremally disconnected compact Hausdorff space is called Stonean.
Definition (5.3.5)[190]: Let R := [—o0, o], topologised in the natural way such that R is
homeomorphic to [—1, 1]. The space of extended continuous functions on a Stonean space
X consists of all continuous functions f : X — R such that f~1 ({+o0}) is meagre, and is
denoted by C* (X).

Lemma (5.3.6)[190]: Let B be a dense subset of a Stonean space X, and suppose f : B —
R is continuous. Then f has a unique extension in Coo(X). For f, g € C oo(X), the closed set
A:= 71 ({+o}) U g7t ({£}) is meagre. Hence X \ A is dense, and we define f +
gf g: X\A->Rby (f + @) :=f + g@and f - g(x) = f ()g(x).
The previous lemma leads to unambiguous extensions of f + gand f - g in C*(X).
Theorem (5.3.7)[190]: The space C*(X) with these operations, supplemented by the
natural ordering and scalar multiplication, is a multiplicative, Dedekind complete, and
laterally complete Riesz space. In addition, it is an f-algebra with unit 1y .

Definition (5.3.8)[190]: For future purposes, we also define the quotient f gof f,g €

C*(X). Set supp(g) := {x € X | g(x) # 0}, the support of g. First define é to be the
unique continuous extension of

if0 < x)| < o

x - 1900 lg ()] (1)
0if x € supp(g),

to the whole X. Now setg = f -g :

For aclopen Z c X, we embed C*(Z) c C*(X) by setting h(x) := 0if x ¢ Z for
allh € C*(Z).We list a few properties that follow directly from the definitions.
Proposition (5.3.9)[190]: Let f,g € C*(X) and suppose that & is a continuous map from
a Stonean space Y to X suchthat f o m,g o m € C*(Y ). Then:

(i) supp( f) < X is clopen;

. |
(“)E "9 = Lappy@andfg - g = f - Lsupp(g):
1
(ii) supp(f) = supp(;);
(iv)forallx € X : f (x) = ooimplies
M(fem:-(@em=(f- gem
We now come to the main point: the next theorem clarifies why spaces of extended
continuous functions are of interest.
Theorem (5.3.10)[190]: (Maeda—Ogasawara). Let E be an Archimedean Riesz space.

Then there exists a unique Stonean space X such that E is Riesz isomorphic to an order
dense subspace of C*(X).C*(X) is called the Maeda—Ogasawara space of E. We also

1

o
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identify E with the embedding in its Maeda—Ogasawara space C*(X) and write E C
C”(X).

Let us first outline the setting to which we adapt Theorem (5.3.1). Motivated by the
Maeda— Ogasawara Theorem, we consider Stonean spaces , an order dense Riesz ideall
E c C*(X), and a Riesz homomorphismT : E — C*(Y ) such that the image T (E) c
C> (Y ) is order dense. The next example shows why we can in general not hope for T to
be an ordinary weighted composition operator.

Example (5.3.11)[190]: Let BN be the Stone-Cech compactification of N, which is
Stonean. Define j € C*(N) to be the unique continuous extension of f(n) » n € R.
Fix a € FN\B(N). Let E c C*(BN) be given by E:= {f € C*(IN)|(f -
D@ €RYandS: E - C({0}) =RbyTS = SF(0):= (f - j)(a).Then% €E

andS% = 1,505 # 0.
Suppose S f = n(f o m) forsomen € RY,m: {0} - AN. For g € C(,BN),% =
E. Then g(a) = S% = TI(? o 1). We have 7(0) = a, for if not, we can find an open

U c BN with a € U3 n(0). For g:= 1, , this means that g(a) = 1, while
gJj (m(0)) = 0, which is a contradiction. Hence S f = 1 f (a), but f (a) = 0 for all
f € E,implying S f = 0. This is again a contradiction, from which we conclude such n
and mr do not exist.
Lemma (5.3.12)[190]: Let X,Y ,E, and T be as above. Then there exists a unique map r :
Y > XsuchthatT (f -u) = Tu - (f em)forall f € C(X)"andu € E.Thismis
continuous.
Proof. Fix f € C(X)*. Weseethatforallu € E:
IT(f - WIS I f llolT ul. 2)

From T we construct the Riesz homomorphismS: T (E) - T(E)by Tu » T (f -
u). S'is band preserving and order bounded, so S € Orth(T (E)) by the definition of
orthomorphism. By Theorem 8.12 of [191], S then extends to a positive orthomorphism S°¢
on the Dedekind completion E¢ of E. Note that S and S are order continuous by Theorem
(5.3.5) from [193]. ASE c E® < C*(Y ) is order dense, we may apply Theorem (5.3.4)
from [193] to get a positive orthomorphism S: C*(Y) - C*(Y). Every positive
orthomorphism on an f -algebra with unit is given by multiplication with a positive
element (Theorem 141.1 from [198]), so we have a unique f € C(Y ) such that T (f -
u) = §(Tu) = f - Tuforallu € E.Note that f is bounded by Eq. (2).

Now we view f + f as a Riesz homomorphism from C(X) to C(Y ), for which we
note that 1, is mapped to 1Y . Application of Theorem (5.3.1) yieldsamapm: Y - X
such that f = fom and T(f-u) =Tu-(feom for f € CX)",u€E.
Moreover, this 7 is uniquely determined and continuous on Y, by the second part of the
theorem.

We can now prove that T is a generalised weighted composition operator.
Theorem (5.3.13)[190]: Let X,Y ,E, and T be as above. There exists a unique map r :
Y - Xsuchthatforall f,u € E:

(i) =(supp(T u)) < supp(w);
(”)5 ° T[Isupp(Tu) € Coo(supp(T u));
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(Tf =Tu - (5 o 1) on supp(T u).

Furthermore, 7 is continuous.
Proof. We apply the preceding lemma to T and get the unique map 7: Y — X that
satisfiesT (f -u) = Tu - (f o m) forall f € C(X),u € E. We also have that 7 is
continuous.

Proof of (i). Let u € E. Substituting 15,5, for f in the expression above, we have

Tu=Tu - (1supp(u) o T[) =Tu - 1”(_slupp(u))’ SO 1supp(Tu) < 1n(—51upp(u)) and (i)

follows.

Proof of (ii) and (iii) for all f,u € E*. Letf, u € E +. For n € N, we define h,, :=
L'an1y € c(x). By the lemma: T (hy, - u) = Tu - (hy o ). Also hy - u = f -
Lsuppay Anu = f Anu,s0T (hy, -u) = Tf AnTu, whence T f AnTu =Tu -
(h, om). Thenfory € YsuchthatT f (y) < 00,0 < Tu(y) < oo:

TfAnTu(y)=Tu@)(fu(r®)An) 3)
and by taking limits:
Tf®) = Tu®)fu(r®))
2 o) = =L aon @)

Both% and f u o m are continuous functions from this dense subset of supp(T u) to R.

As they coincide on this subset, we must have£ o = % on the whole supp(T w).

% € C®(supp(T w)), so (ii) and (iii) follow.

Proof of (ii) for all f,u € E. Let f,u € E. We have |§| ° T|supp(ru) €
C°°(supp(T |u|)),supp(Tu) = supp(T |u|), and |g o m| = |g|e @ for allg € E.
Also observe that ( f u )~ (R) is |§|_1 (R), which is dense in supp(T u). This together

implies£ ° T|supp(ru) € C°°(supp(T u)).
Proof of (iii) forall f,u € E.First,letf € EtYandu € E.By(i),uocm = u*t om
on supp(T ut), and supp(T u*) N supp(T u~) = @. By (3):

Tf=Tui-<L+on)onsupp(Tui), (5)

Furthermore,

hence Tf = Tu - (5 ° n) on supp(T u). Dropping the assumption that f € E*, we
write f = f* — f~ and observe that

Tf=T(f*)~T(f)
re((5r)- (5 )
u u
Ty (u ,T>
u

:Tu.<£o7'[>’ (6)

u
which completes the proof.
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As a final step, we translate the theorem to the setting of Maeda—Ogasawara spaces to

state the main result.
Theorem (5.3.14)[190]: LetE,F be Archimedean Riesz spaces, with a Riesz
homomorphism T : E — F.We denote the Maeda—Ogasawara space of E by C*(X) and
the one of T (E) by C*(Y ). Then there existsamap m: Y — X such that for all f, u €
E:

(i) 7(supp(T w)) < supp(w);

(”)5 ° T[lsupp(Tu) € Coo(supp(T u));

(i) Tf = Tu - (¢ o m) onsupp(Tu).

Furthermore, any such m is continuous.

If in addition either E is Dedekind complete or T is order continuous, then 7w is
uniquely determined.

Proof. By the Lipecki—Luxemburg—Schep Theorem (Theorem (5.3.3) in [193]), T can be
extended to the ideal E’ generated by E. Then we apply the preceding theorem.

In case E is Dedekind complete, E € C*(X) is already a Riesz ideal. Theorem
(5.3.13) then yields a unique  : Y — X. Assuming order continuity of T and observing
that E' = E%, we use that fact that T has a unique extension T2 on E? .

Note that the Lipecki—Luxemburg—-Schep Theorem does not entail uniqueness of the

extension. The following example illustrates that these extensions can induce different
composition maps.
Example (5.3.15)[190]: Let T : C[0,1] —» C*({0}) =R be given by T f = f (a) for
some a € [0,1]. Application of the Maeda—Ogasawara Theorem yields a Stonean
space X such that C[0,1] © C(X) c C®(X), where C[0,1]° = C(X). There is a
surjective (but not injective) map A: X — [0,1], from which it follows that T can be
extendedto T’ : C(X) » C®{0) by T’ f := dforanya € A~* ({a}). The resulting =
from Theorem (5.3.13) is then of course given by 7(0) = a.

We make some remarks concerning Theorem (5.3.13). The details can be found in
[194]. It is well-known that for composition operators between spaces of continuous
functions, injectivity and surjectivity of the operator and its composition map are
connected. In the generalised setting, similar results hold. We mention Theorem (5.3.16)
from [194].

Theorem (5.3.16)[190]: Let X,Y ,E, and T as in Theorem (5.3.13). The following
statements are equivalent:

(i) T isinjectiveand T (E) < C*(Y ) is a Riesz ideal;

(i)  is a homeomorphism.

When applying these results to the setting of Theorem (5.3.14), we need to overcome
the ambiguity as illustrated in Example (5.3.15). We therefore require either that E is
Dedekind complete or that T preserves order limits. As an example of an application, we
note that the Maeda—Ogasawara space of LP (1 < p < o0) on a o-finite measure space is
Riesz isomorphic to the space of measurable functions on that measure space. Theorem
(5.3.14) then provides a set map between the g-algebras of the respective measure spaces.
A detailed exposure can be found in [194].

We consider the same setting as in Theorem (5.3.14). E, F are Archimedean Riesz
spaces, with a Riesz homomorphism T : E — F. We again denote the Maeda—Ogasawara
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space of E by C*(X) and the one of T (E) by C*(Y ). Let us present an example that
motivates.
Example (5.3.17)[190]: Define j € C*(BN) as in Example (5.3.11). Fixa € BN\ B(N)

and observe thatj(a) = oo.Define S: C*(BN) - C*({0}) =Rby Sf :=§ (a).

Then supp(§1) = @ # {0} = supp(Sj), while supp(1) = supp(j). We conclude that
inclusions of supports of elements are in general not preserved under T .
Proposition (5.3.18)[190]: LetE,F,T,X, and Y be as above. Suppose T is o-order
continuous. If f,g € E with supp( f) < supp(g), then supp(T f) < supp(T g).
Proof. Let f,g € E with supp(f) < supp(g). Then f =V, (f Ang),soTf =
Vo, (Tf AnT g).We conclude T f = 0 outside supp(T g),sosupp(Tf) c
supp(T 9).

For the last part, assume that either

(i) E is Dedekind complete and T is a-order continuous, or

(i1) T is order continuous, and let r be the unique map from Theorem (5.3.14).
Lemma (5.3.19)[190]: Let E,F,T,X,Y, and = be as above. Forall f € E: f o €
C*(Y ) and supp(f o m) = supp(T f).
Proof. In case of (ii), T has a unique order continuous extension to E¢ , so we do not need
the Lipecki—Luxemburg—-Schep Theorem and may assume E is an ideal. Take f € E*.
Claim. f o 7|sypprs) € C®(supp(T f)).

As m is continuous, it suffices to prove that the closed set {y €
supp(T f) | f (m(y)) = oo} is meagre. Let C < supp(T f) therefore be clopen such

that f (m(C)) = {o0}. We have f’;}" om < 1f—X o T = 0on C by Proposition (5.3.9)(iv).
Using Theorem (5.3.14)(iii), we see thatT(f Aly) =Tf - (f/>1X ° n) on

supp(T f). Hence T (f A1x) = 0on C. Observing that C < supp(T f) =
supp(T (f A 1x)), we conclude that C = @.
Claim. f o r = 0 onY \ supp(T f). Order denseness of T (E) c C*(Y ) implies that
W := Ugeg+ supp(T g)is dense in Y . By Proposition (5.3.18), W s
Ugeetncey supp(T g). Hence we are done if for every g € E* N C(X): f o =
0 on Uy := supp(T g) \ supp(T f).

Fix g € E* n C(X). We prove f o m = 0on U, Observe that g °oT,g oM E

C°°(Ug), respectively because U, < supp(T g)and because g € C(X). Using
Proposition (5.3.9)(v), this implies that f o 7 = (5 o n) (g o) inC™(U,) . By

Theorem  (5.3.14)(iii), Tf =Tg '(ﬁ o myon supp(T g) > U, while Tf =

0 on U, by definition. The set {y € U, [T g(y) = 0} is meagre in Ug, SO g o =

Oon U,. Hence f o m = 0onU,. This holds for all g € E* n C(X), proving the

claim.

Claim. supp(T f) < supp(f o m). According to the preceding, we already have f o
m € C*(Y) and supp( f oem) < supp(T f). For the reverse inclusion, set g := f A
f?2.As g < f,g must be in E*. From Theorem (5.3.14)(iii), which states that T g =

TF - (% 0 n) on supp(T f ), we deduce that supp(T g) N supp(T f) < supp (? ° n)'
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Note that supp(g) = supp(f), so by order continuity of T : supp(T g) =
supp(T f ). This allows us to calculate:

supp(T f) c supp(f /}fz o n)c supp(j%2 o n)

= supp(f ° n), (7)
which finishes the argument.

Proposition (5.3.20)[190]: Let E,F,T ,X,Y , and & be as above. Forall f,g € E :

T

gT‘i onsupp(T f) n supp(T g).

Proof. Let f,g € E. We have f o m,g o m € C*(Y) by Lemma (5.3.19). Theorem
(5.3.14) implies% o € C*(Y).We start with Theorem (5.3.14)(iii) and use Proposition

(5.3.9)(v) and the preceding lemma:

Tf

fom

Tg=Tf - (% ° n) on supp(T f)
(fem Tg=Tf(Fom): (fmonsupp(Tf)
(fem): Tg=Tf(f Fon)onsupp(Ty)
(fem-Tg =Tf - (g e monsupp(Tf), (8)
50 ngn =fT—£Ton supp(T f) N supp(T g), as desired.

In contrast with Example (5.3.11), T turns out to be an ordinary weighted composition
operator, in the sense of Theorem (5.3.1).
Theorem (5.3.21)[190]: Let E,F,T ,X,Y , and &t be as above. There exists a unique 1 €
C*(Y)suchthatforall f € E: Tf =n - (f o ).

Proof. Forany f € E*, thesetW f:= {y € Y|Tf (y) > O,fT—Z; (y) < oo}isan open

and dense subset of supp(T f ). Set W := Uscg+ W f . By order denseness of T (E)

C*(Y ), Wisdense in Y . The preceding theorem then implies that there exists a function
i+ W — R that satisfies 7 = ;—fnon W f forevery f € E*.Each W f is open and fT—fn
is continuous for every f € E™, so # is continuous and extends to a unique n € C®(Y).

Forany f,u € E, this leads to:
Tf=Tu-(£o7r>=Tu-f° ~
u Uo7

=n-(femn) 9)
on supp(T f) N supp(T w). As supp(T f) = supp(f ° m), we conclude that T f =
n - (f o m)onthewholeY.
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Chapter 6
Approximation Numbers with Strict Singularity and Hardy Space
We give estimates for the approximation numbers of composition operators on the
HP spaces, 1 < p < oo. We obtain a new proof for the equivalence of the compactness
and the weak compactness of T, on H*. A non-compact T, acting on the space BMOA

fixes an isomorphic copy of c,. We reinterpret these results in terms of norm-closed ideals
of the bounded linear operators on H?, which contain the compact operators K(H?). The
class of composition operators on HP does not reflect the quite complicated lattice
structure of such ideals.
Section (6.1): Composition Operators on HP

The study of approximation numbers of composition operators on H? has been
initiated (see [78], [203], [63], [209], [204]), and (upper and lower) estimates have been
given. Most of the techniques used there are specifically Hilbertian (in particular Weyl’s
inequality; see [78]). We consider the case of composition operators on HP for 1 < p <
0,

We focus essentially on lower estimates, because the upper ones are similar, with
similar proofs, as in the Hilbertian case. We give in Theorem (6.1.4) a minoration
involving the uniform separation constant of finite sequences in the unit disk and the
interpolation constant of their images by the symbol. We finish with some upper estimates.

Recall that if X and Y are two Banach spaces of analytic functions on the unit disk D,
and ¢ : D — D is an analytic self-map of D, one says that ¢ induces a composition
operator C,, : X - Y if fop €Y forevery f € X; ¢ is then called the symbol of the
composition operator. One also says that ¢ is a symbol for X and Y if it induces a
composition operator C,, : X — Y.

Forevery a € D, we denote by e, € (HP)" the evaluation map at a, namely:

ea(f) = fla), f € HP. (1)

We know that ([86], p. 253):
1 1/p
leall = (7=7ap) @)

and the mapping equation

C(Z(ea) = €yp(a) (3)
still holds.

We denote by || . ||, without any subscript, the norm in the dual space (HP)".

Let us stress that this dual norm of (HP)* is, for 1 < p < 1, equivalent, but not
equal, to the norm || .||, of H9, and the equivalence constant tends to infinity when p goes
to 1 or to oo.

As usual, the notation A < B means that there is a constant ¢ such that A < c¢B and
A~ BmeansthatA < Band B < A.

For an operator T : X — Y between Banach spaces X and Y, its approximation
numbers are defined, forn > 1, as:

an(T) = inf |IT — RIl. (4)

rank R<n
Onehas ||IT|| = a;(T) = a,(T)=---= a,(T) = a,4+1(T) =---, and (assuming that
Y has the Approximation Property), T is compact if and only if a,, (T ) —2 0.
We will also need other singular numbers (see [65], p. 49).
The n-th Bernstein number b,,(T) of T, defined as:
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by(T) = sup inf[[Tx|l, ()
ECX XESg
dimE=n
where S = {x € E; |[|x|| = 1} is the unit sphere of E. When these numbers tend to 0, T
Is said to be superstrictly singular, or finitely strictly singular (see [208]).
The n-th Gelfand number of T, defined as:

()= inf |[|ITy.], (6)
codim L<n
One always has:
a,(T) = c,(T)and a,(T) = b,(T), (7)

and, when X and Y are Hilbert spaces, one has a,,(T ) = b,(T) = c,(T) ([207],
Theorem (6.1.1)).

We first show that, as in the Hilbertian case H? ([78], Theorem (6.1.12)), the
approximation numbers of the composition operators on HP cannot decrease faster than
geometrically.

We cannot longer appeal to the Hilbertian techniques of [78], Weyl’s inequality has
the following generalization ([90], Proposition 2).

Proposition (6.1.1)[199]: (Carl-Triebel). Let T be a compact operator on a complex
Banach space E and A,(T),s,; be the sequence of its eigenvalues, indexed such that

A (T)| = |[A,(T)] =+ - - . Then, forn = 1,2,.. and m = 0,1,...,n — 1, one
has:
n
[ [wmi < weimimap, @ @
j=1

(see [200]). Then, we can state:
Theorem (6.1.2)[199]: For every non-constant analytic self-map ¢ : D — D, there exist
0 < r < 1andc > 0, depending only on ¢, such that the approximation numbers of
the composition operator C,: HP — HP satisfy:

a,(Cy) = cr™, n=12..

In particular limniggo[an(c(p)]l/n >r > 0.

Proof. If C, is not compact, the result is trivial, with » = 1; so we assume that C,, is
compact.
Before carrying on, we first recall some notation used in [78]. For every z € D, let
/ _ 2
oH2) = lo"(2)|(1 lZzl )

1—-|e(2)l

be the pseudo-hyperbolic derivative of ¢ at z, and
[¢] = sup p*(2).

zeD
By the Schwarz-Pick inequality, one has [¢] < 1. Moreover, since ¢ is not constant, one

has [¢] > 0.
We also set, for every operator T : HP — HP:

B~(1) = liminfla,(1)]/"

2
For every a € D, we are going to show that 37 (C,) = ((p#(a)) , which will give
B~(C,) = [¢]? by taking the supremum for a € D, and the stated result, with 0 <
r < [p]?.
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If *(a) = 0, the result is obvious, so we assume that ¢*(a) > 0.
We consider the automorphism &, defined by ®,(z) = % and set
Y, = D) 0P 0Dy,
One has ,(0) = 0and |pL(0)| = ¢*(a).
Since C, is compact on H?,Cy, = Cg_ 0 C, 0 CP ) is also compact on HP. But we
know that this is equivalent to say that it is compact on H?. Since 1,(0) = 0 and
YL (0) = ¢*(a) # 0, we know, by the Eigenfunction Theorem ([83], p. 94), that the

eigenvalues of Cy_ : H? — H? are the numbers (¥.(0),j =0,1,..., and have

multiplicity one. Moreover, the proof given in [83], § 6.2 shows that the eigenfunctions ¢’
are notonly in H2,butinall H9,1 < q < 1.

Hence 2;(Cy,) = (z/)c’l(O))j_l. We now use Proposition (6.1.1), with 2n instead of n
andm = n — 1; we get:

2n
e = [ [1c,)1 < 167y,
j=1

||Tl—1 )Tl+1

an (Cwa

< 167Gy " an(Cy,)"
since a, (Cy.) < ||Cy,||-

That implies that 8~(Cy,) = [Wi(0)1> = (¢*(a))
Since €y, and Co,q are automorphisms, we have f~(C,) = B~ (Cy,), hence the result.

We use the fortunate fact that, though the evaluation maps at well-chosen points of
D can no longer be said to constitute a Riesz sequence, they will still constitute an
unconditional sequence in HP with good constants, as we are going to see, which will be
sufficient for our purposes.
Recall (see [94], p. 276) that the interpolation constant x, of a finite sequence o =
(z4,...,2z,) Of points z,...,z, € D isdefined by:
ke = sup inf{l|f|lo; f € H* and f(z;) = a;,1 < j < n}. 9)

lay],lanl<1

2

Then:
Lemma (6.1.3)[199]: For every finite sequence ¢ = (z4,...,2,) Of distinct points

Zy,-..,Z, € D, 0ne has:
n

n n
o1 ZAjezj < zwjzjezj <k, ZAjezj (10)
j=1 j=1 j=1
forall A4,...,4, € C and all complex numbers numbers wy,...,w, such that |w,| = -
= |w,| = 1.
Proof. Set L = }‘=1Ajezj and L, =Z}‘=1wj)1jezj. There exists h € H™ such that
|hllo < ks and h(z;) = w; for every j = 1,...,n. For every g € HP, one has
L,(g9) = Xj=1wi4g(z) = Xi-1 h(z)A;9(z)) = L(hg); hence:
Lo (@] < lLIIRgll, < IILIHIRlelIglly, < ®sIILI gl
and we get ||L,|l < k, ||L||, which is the right-hand side of (10). The left-hand side
follows, by replacing A4,...,4,, by w;44,..., 0, 4,.
We now prove the following lower estimate.
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For the proof, we need to know some precisions on the constant in Carleson’s embedding
theorem. Recall that the uniform separation constant 6, of a finite sequence o =
(z4,...,2,) Iin the unit disk D, is defined by:

Zj — Zy

0, = inf
g 1<jsn

(11)
k#j

Lemma (6.1.5)[199]: Let ¢ = (z4,...,2,) be a finite sequence of distinct points in D
with uniform separation constant §,. Then:
n

D1 - 15[)Ir@)Il <12 [1+log5—1a] Iy a2

j=1

1—Z_]Zk

forall f € HP.
Proof. Fora € D, letk,(z) = V271aF he the normalized reproducing kernel.

1-az
For every positive Borel measure p on D, let:

= sw | lka@lPduc).
a€supp u Jp
The so-called Reproducing Kernel Thesis (see [110], Lecture VII, pp. 151-158) says that

there is an absolute positive constant A, such that:
| reraue) < av i
D

for every f € HP (that follows from the case p = 2 in writing f = Bh?/P where B is a
Blaschke product and h € H?). Actually, one can take A; = 2e (see [206], Theorem 0.2).

But when u is the discrete measure Y7_, (1 - |zj|2) 8., it is not difficult to check (see
[201], Lemma 1, p. 150, or [97], p. 201) that:

1
Yu =1+ 210g6—.
o

That gives the result since 4 e < 12.
Theorem (6.1.4)[199]: Let ¢ : D - D and C,: HP - HP, with 1<p < 1. Let
Uy,...,u, € D such that v; = @(uy),...,v, = @(u,) are distinct. Then, for some

constant ¢, depending only on p, we have:
1

1 2\ 7
1\ mint2) 1 — ) p
u - Uj

1<jsn

where §,, is the uniform separation constant of the sequence u = (uy,...,u,) and k, the
interpolation constant of v = (vy,...,v,).
Proof. We will actually work with the Bernstein numbers of Cg. Recall that they are
defined in (5). That will suffice since a,(C,) = a,(C;) (one has equality if C, is
compact: see [202] or [65], pp. 89-91) and a,,(C;,) = b, (Cyp).

Take uy,...,u, € Dsuchthatv, = ¢(u;),...,v, = @(u,) are distinct. The points
U, ..., Uy are then also distinct and the subspace E = span {e,,...,e, } of (H?)" is n-

dimensional. Let
n
L = Z Ajeuj
j=1
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be in the unit sphere of E. We set, for f € HP andforj = 1,...,n:

-1
by = fle . and £ = fleu ]| ra,
and finally:
A= (Ay,...,A,) and F = (Fy,..., E).
We will separate three cases.
Casel:1 < p < 2

n
One has | o1 jey,
complex signs w4, ..., wy:

. Using Lemma (6.1.3), we obtain for any choice of

n
Z a)jxljevj . (14)
j=1

Let now g be the conjugate exponent of p. We know that the space HP is of type p as a
subspace of LP ([104], p. 169) and therefore its dual (HP)* is of cotype g ([104], p. 165),
with cotype constant < t,,, the type p constant of L? (let us note that we might use that
(HP)* is isomorphic to the subspace H? of L%, but we have then to introduce the constant
of this isomorphism). Hence, by averaging (14) over all independent choices of signs and
using the cotype g property of (HP)*, we get:

n /q n 1/q
-1 .- q 1. q q
e Z|Aj| ey, > 1, ke, Z|/1j| ”euj” ,
j=1 j=1
so that
> 7515 g llAllg, (15)
where:
2\ 1/p
el (1=
Up = inf = inf | ———— :
1<jsn |euj|| 1<jsn 1 — |17]-|

It remains to give a lower bound for [|A]l,.
But, by Holder’s inequality:

LN = D A )| = [ 4| < Il lF,
j=1

j=1
Since

IFIE = flew | 1F@) =) (1 = hyl*) 1F )P
j=1 Jj=1

Lemma (6.1.5) gives:
1\1/P
LG WAl [12(1 + 10g )| 171

Taking the supremum over all f with [|f|,, < 1, we get, taking into account that ||L|| = 1:
1\1" /P
IAll, = [12 (1 + log - )] | (16)

By combining (15) and (16), we get:
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1\~ /P
Co(D)|| = @2) ~YPr pyi;? (1 + 10g5—>
u

Therefore:
1

_1 1\ r
bn(C{;,) > (12) Pty ppkey? (1 + log6—u) .
Case2:2 < p < 1.
We follow the same route, but in this case, H? is of type 2 and hence (HP)* is of cotype 2.
Therefore, we get:

[Co Wl = 7215 uallAll (17)
and, using Cauchy-Schwarz inequality:
-1/2
A, = [12 (1 + log—)] ; (18)
Oy
so:
1 -1/2
Co || = (12) V227 iy (1 + log6—u) . (19)
Case3:p = 1.

In this case (H1)* (which is isomorphic to the space BMOA) has no finite cotype. But, for
each k = 1,...,n,one has, using Lemma (6.1.3):

1
1Al ||ev, || = > Z/ljevj + Akey, | — ZAjevj + Axey,
j£k J#k
1 n
< > Z)Ljevj + Akey || + ZAje,,j + ey || | < Ko Z/ljevj ;
J*k J*k Jj=1
hence:
1€ W = 15 pallAlleo (20)
Since |L(F)| < ||IAll«lIF]l1, we get, as above, using Lemma (6.1.5):
1 -1
[Alloo = [12 (1 + log—)] (21)
Ou

and therefore:

1 -1
oW = (12) iy (1 4 log5—> L (22)
u

and that finishes the proof of Theorem (6.1.4).
Example (6.1.6)[199]: We will now apply this result to lens maps. See [83] or [63] for
their definition. For 8 € (0, 1), we denote:

1+ 2%->1 - 2)°

Ao(2) = 1+ 20+ - 2)¢ (23)
Proposition (6.1.7)[199]: Let A4 be the lens map of parameter 8 acting on H?, with 1 <
p < oo, Then, for positive constants a and b, depending only on 6 and p:
a,(Cy,) = ae V™
Actually, this estimate is valid for polygonal maps as well.
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Proof. Let 0 <o < 1 and consider u; = 1 -0’ and v; = 25(y;),1 < j < n. We

2 2
know from [78], Lemma 6.4 and Lemma 6.5, that, for @ = 7T;andﬁ = By =;—6:
5, = e %/(1=9 and §, > e F/-9),
But we know that the interpolation constant x, is related to the uniform separation

constant 6, by the following inequality ([94] page 278), in which A is a positive numerical
constant:

= < Kg; < A 1+1 ! 24
5"“5( °g5>' (24)
Actually, S. A. Vinogradov, E. A. Gorin and S. V. Hruscév [210] (see [205], p. 505)
proved that

2e(1+21 1)
KG_(SG og50,

sowecantake A < 4e < 12.
It follows that

1—-o0
1> _—_ ~  p-B/(A-0) 2
Y E=ag T D°¢ (25)
Setting p = min(p, 2), we have:
. 1
(1+10g1) = (2=2) 26
Og6u “\a+ 1/ (26)

We now estimate u,,.

—1z|2 -
Since 44(0) = 0, Schwarz’s lemma says that |[19(z)| < |z|; hence 1ozt 1kl

1-12g(@)1? ~ 1-12e@)|

2079
Butl-v; = 1 — Ag(w) = m hence (since u; and v; are real):
1 - |yl _1-y

Since the function f(x) = (2 — x)? + x? increases on [0, 1], one gets:
1 A\1f

1 — ful” (Gj)
1= |y* 2

1-6

and therefore:

1 NP
Applying now Theorem (6.1.4) and using (25), (26) and (27), we get:
B 1
an(Cy,) = apge 1-6(1 — 0)P g"1=6)/P
‘p
A(B+1)(a+1)1/P2(1-6)/p"
Takingo = e ®*where0 < € < 1,weqget,sincel — e ¢ >¢/2:

_2B je\VP
an(C/lg) > ayge € (E) e—en(1-6)/p.

with (Ip’g =

Optimizing by taking ¢ = / 3Wp 1 glves for n large enough (in order to have ¢ < 1):
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1
an(Cy,) = ), gn 2Pe Frovn (28)

1/(2p) 2B(1-6)
L =
R 6)) and Bp’g )

p
We get Theorem (6.1.7), with b > B, .

I
witha, g = apg (

1-6
Let us note that 8,9 = ZT; /% tends to 0 when 6 goes to 1 and tends to infinity

when 6 goes to 0.

We are using Theorem (6.1.4) to give, as in [203], Theorem (6.1.13), a lower bound
for a,,(C,) which depends on the behaviour of ¢ near oD.

We recall first (see [203]) that an analytic self-map ¢: D — D is said to be real if it
takes real valueson | — 1, 1[. If w: [0, 1] — [0, 2] is a modulus of continuity (meaning that
w IS continuous, increasing, sub-additive, vanishing at 0, and concave), ¢ is said to be an
w-radial symbol if it is real and:

1 - < @ —-71), 0<r<1 (29)
We have the following result.
Theorem (6.1.8)[199]: Let ¢ be an w-radial symbol. Then, for 1 < p < oo, the
approximation numbers of the composition operator C,, : H? — HP satisfy:

<a)‘1(a o) z

aoch

v 1 (1*2) > 30
— max(p*, —_—
( o) exp( 1 —0) ’ (30)

an(C(p) = cp sup
0<o<1
where c;, is a constant depending only on p,p* is the conjugate exponent of p, and a =
1 — ¢(0) > 0.
Proof. As in [203], p. 556, we fix 0 < o < 1 and define inductively u; € [0,1) by
u, = 0 and, using the intermediate value theorem:
1 — o(ujs1) = o[l — o(w)], withl > ujyy > u,.

Wesetv; = ¢(u;). Wehave -1 < v; < 1and1—-wv, = ao™. We proved in [203], p.
556, that:

(31)

Moreover, we proved in [203], p. 557, that the uniform separation constant of v =
(v4,...,vy) is such that:

8, = exp (—1 ia>' (32)

Since §,, = 6, we get, from (24), that:

<12(82¢ > ) < 60(— > 33
fu = (1—a>eXp<1 —0) = (1—a>eXp<1 —a>' (33)
Using now (13) of Theorem (6.1.4) and combining (31), (32) and (33), we get Theorem
(6.1.8).

Example (6.1.9)[199]: Lens maps. Let us come back to the lens maps A4 for testing
Theorem (6.1.8). We have w='(h) = h'/? (see [63], Lemma (6.1.5)) and a = 1 —

. 1 1-6 - 1
Ag(0) = 1. Setting K = o5 /T and taking, for n large enough, o = 1 ~ e e
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have, using that e™> < 1 — gs for s > 0 small enough, o" > exp(— %\/ﬁ) and
hence:

. 5 [1-

an(CAQ) = Co,p n~1/2max(e 'Z)GXp(_ =

- D)

Note that the coefficient of v/n in the exponential is slightly different of that in (28), but of
the same order.

Example (6.1.10)[199]: Cusp map. We refer to [203], for its definition and properties. It is
the conformal mapping y from DD onto the domain represented on Fig. 1 such that y(1) =
Lx(=D)=0,y())=Q+i)/2and y(—=i) = (1 —-1i)/2.

We proved in [203], Lemma 4.2, that, for 0 < r < 1, one has:

IR

.,x\ N JQ K

-
e, =

e
=

Figure (1)[199]: Cusp map domain
1

1—-x() =
2 1—r
1+ Elog[l/Z arctan (1+r)]
Since 1 —%logz > (O andarctanx < xforx = 0, we get that:
1 ( )<T[ 1 <T[ 1 5 1
- yrnN<—-——>———<-——71—<2———F—.
2 1+7r 2 1 1

log (1 — r) log (1 — r) log (1 — r)

Hence y is an w-radial symbol with w(x) = 2/log(1/x). Then w~t(h) = e ?/" By
choosing o = 1 —l‘fln in (30), we get, using that log(1 — x) = —2x for x > 0 small
enough, that, for n large enough, 6™ > 1/+/n; hence:

an(C) 2 ¢ (VA exp~2 a)Val)P (27) exp -

It follows that, for some constant C,, > 0 depending only on p, we have:
20n
an(CX) = Cpexp <_log n).
It has to be stressed that the term in the exponential does not depend on p.
Example (6.1.11)[199]: Shapiro-Taylor’s maps. These maps ¢g, for 8 > 0, were defined
in [84]. Let us recall their definition. For ¢ > 0, we set V., = {z € C; Rz >
Oand |z| < €}.Fore = g > 0 small enough, one can define

fo(2) = z(~log z)°, (35)

1/max(p*,2)

ZOn)
logn/

(34)
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for z €V, where log z will be the principal determination of the logarithm. Let now g4 be
the conformal mapping from D onto V,, which maps T = dD onto dV,, defined by
9o (z) = e@y(2), where ¢, is the conformal map from D onto V;, given by:

1

(= il)i_ i

Po(z) = — (36)
(Z — 1\2
_l(iz — 1) + 1
Then, we define:
o = eXp(—fegge)- (37)
We saw in [203], p. 560, that w™1(h) = th(log(%)) . Hence, choosing o =
1/(e al), where @y = 1 — ¢4(0), we get that:
1
an(Cge) > Cp’g.—e. (38)
n2p

However, we already remarked in [203], that, even for p = 2, this result is not optimal.
For upper bounds, there is essentially no change with regard to the case p = 2.

Hence we essentially only state some results.

We have the following upper bound, which can be obtained with the same proof as in [63].

Theorem (6.1.12)[199]: Let C, : HP — HP,1 < p < oo, a composition operator, and

n = 1. Then, for every Blaschke product B with (strictly) less than n zeros, each counted

with its multiplicity, one has:
1/p

1
a,(C,) < CvVyn| su —J B|P dm )
n( (p) \/_ 0<hI<)1h S(g’h)l | ¢
€T
where m,, is the pullback measure of m, the normalized Lebesgue measure on T, under ¢

and S(¢,h) = D N D(¢, h) is the Carleson window of size h centered at ¢ € T.
Proof. We first estimate the Gelfand number c,(C,) by restricting to the subspace BHP

which is of codimension < n. As in [63], Lemma (6.1.4):
1/p

1
c,(C,) | su —j B|P dm
n( <p) 0<hI<)1 S(g’h)l | ¢
T

Now (see [65], Proposition (6.1.4)), one has a,,(C,) < V2nc,(C, ), hence the result.
We can then deduce, with the same proof, the following version of [203], Theorem (6.1.3).
Recall ([203], Definition (6.1.2)) that a symbol ¢ € A(D) (i.e. : D — D is continuous
and analytic in D) is said to be globally regular if (D) N dD = {¢,,...,&,;} and there
exists a modulus of continuity w (i.e. a continuous, increasing and sub-additive function
w: [0,A] = R*, which vanishes at zero, and that we may assume to be concave), such that,
writing Ee, = {t; y(t) = §;}, one has T = U§-=1 (Egj + [—rj,rj]) for some ry,..., 171 >
0, and for some positive constants C,c > 0:
[y(® = v(t)] < €1 = y(©®D (39)
co(lt-g]) <ly@® - v(y)] (40)
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forj = 1,....Lall¢ € Egjwith|t— ti| < .
Theorem (6.1.13)[199]: Let ¢ be a symbol in A(ID) whose image touches dID exactly at
the points &;,..., & and which is globally-regular. Then there are constants x, K,L > 0,

depending only on ¢, such that, for every k > 1:
1

w‘l(KZ‘Nk)r

a,(C,) < — (41)

where Nk Is the largest integer such that INdy < k and dy is the integer part of

[l _1( - N)/log()( p)] + 1, with 0 < y < 1 an absolute constant.

As a corollary, we get for lens maps A4 (as well as for polygonal maps), in the same way
as Theorem (6.1.4) in [203], p. 550 (recall that then w(h) =~ h?), the following upper
bound.

Theorem (6.1.14)[199]: Let ¢ = A4 be the lens map of parameter 6 acting on HP,1 <
p < oo. Then, for positive constants b and c depending only on 6 and p:

a,(Cy,) < ce PV,
For the cusp map, we also have as in [203], Theorem 4.3 (here, w(h) = 1/log(1/h)).

Theorem (6.1.15)[199]: Let ¢ = y be the cusp map. For some positive constants b and ¢
depend in g only on p, one has:

an(C,) < ce bn/logn,

Section (6.2): Volterra-Type Integral Operator on H?
For g be a fixed analytic function in the open unit disc D of the complex plane C.
We consider a linear integral operator T, defined for analytic functions f in D by

1) = [ fQ9©%, zeD
0

Ch. Pommerenke consider the boundedness of the operator T, on the Hardy space H* and
he characterized it in connection to exponentials of BMOA functions [224]. A systematic
study of T, was initiated by A. Aleman and A. G. Siskakis in [214], who showed that T} is
bounded (compact) on the Hardy spaces HP,1 < p < oo, if and only if g €
BMOA (g € VMOA). The same boundedness characterization of the operator T, on
HP,0 < p < 1, spaces was obtained by Aleman and J. Cima in [213]. Here BMOA and
VMOA denote the spaces of analytic functions in D with boundary values of bounded
mean oscillation and vanishing mean oscillation respectively. See [212] and [225].

A bounded operator S: X — Y between Banach spaces is strictly singular if its
restriction to any infinite-dimensional closed subspace is not an isomorphism onto its
range. This notion generalizes the concept of compact operators and it was introduced by
T. Kato in [219]. Canonical examples of non-compact strictly singular operators are the
inclusion mappings i, , : ¥ © £9,wherel < p < q < oo.

There also exist non-compact strictly singular operators on HP spaces for 1 < p <
oo,p # 2. To construct such an operator, one may consider cases 1 < p < 2 and 2 <
p < oo separately and use the fact that H?,1 < p < oo, contains complemented copies
of £2 and ¢?; see e.g. [228] for p = 1. In the first case, one considers a bounded
projection from HP onto its closed subspace M, which is isomorphic to #P. Then one
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utilizes the inclusion mapping i,, and the fact that £? can be embedded in HP. In the
second case, one interchanges the roles of #7 and #2 and repeats the reasoning above.

We show that every non-compact operator T, acting on a Hardy space H?,1 <
p < oo, fixes an isomorphic copy of £P. In particular, this implies that T, is strictly
singular on H? if and only if it is compact. This article was partly motivated by [221],
where the same question was studied in connection to composition operators. For the case
p = oo; see also [216].

We should point out that there is a striking extrapolation result concerning strict
singularity by Hernandez, Semenov, and Tradacete in [217]. It states that if an operator S
Is bounded on L%(E) and L;’R(E) for some 1 < p < g < oo and strictly singular on

r(E) for some p < r < g, then it is compact on Ly(E) for all p < s < q. Here
L% (E) stands for the L space of real-valued functions on a finite measure space E. Taking
the complex-valued counterpart of this result for granted, we may deduce the equivalence
of strict singularity and compactness of T, on H? for 1 < p < o by using the Riesz
projection in the following way:

Recall that strictly singular operators form a two-sided (closed) ideal in the space
L(LP) of bounded operators on LP = L’é('ﬂ‘), where T = JdD. Therefore the strict
singularity of T, : H? — HP implies that T R:LP — LP is strictly singular, where
R:LP — HP is the Riesz projection and we have identified T, : H? — HP with T :
HP — [P, Since the condition g € BMOA characterizes the boundedness of T, on every
H4 space and the Riesz projection is bounded on the scale 1 < g < oo, we get that T;R
Is bounded on every L9,1 < q < oo, space. Now assuming that the complex version of
the interpolation result is valid, it follows that TR is compact on L? and consequently the
restriction T,R|,» = T, is compact on HP.

Theorem (6.2.6), however, makes a stronger statement: a non-compact operator T, on
HP fixes an isomorphic copy of #P. This holds for p = 1 as well, in which case we obtain
a new proof for the equivalence of the compactness and the weak compactness of T, on
H':1f g € BMOA\VMOA, i.e., the operator T, is not compact, then by Theorem (6.2.6)
T, fixes an isomorphic copy of £* and consequently it is not weakly compact.

We give the proof of Theorem (6.2.6). We consider the case of T, acting on the
space BMOA and we make some remarks on strict singularity of T, on other spaces.

We point out that the notions of strict singularity and compactness of an operator
can also be defined in a more general setting, for example in quasi-Banach spaces; see
[218]. Examples of such spaces are the Hardy spaces HP? when 0 < p < 1. The same
compactness and boundedness characterizations of T, as in the case 1 < p < oo also
hold when 0 < p < 1; see [213]. On the scale 0 < p < 1, the triangle inequality is
replaced by an inequality of the type ||If + gll, < C(lIfIl, + llgll,) for some constant
C > 1forall f,g € HP. This brings only some (multiplicative) constants to the proofs
of results and lemmas in this article. So a non-compact
T, : H? — HP fixes an isomorphic copy of £7 also inthecase 0 < p < 1.

We briefly recall some spaces of analytic functions that appear later.

Let H(ID) be the algebra of analytic functions in D. We define the Hardy spaces
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1 2T ) 1/p
HP =i{f € HD): |Ifll, = <Os;u1<)1§j |f(relt)|pdt> < oo}.

The space BMOA consists of functions f € H(ID) with
Ifll. = sugllf° oq - f(all2 < oo,
ae

where ,(z) = (a —z)/(1 — az) is the Mdobius automorphism of D that interchanges the
origin and the pointa € . Its closed subspace VMOA consists of those f € BMOA with

limsupllf o g - f(@ll, = 0.

la|-1
Every BMOA function f satisfies “a reverse Holder’s inequality”, which implies that for
each0 < p < oo we have that

Il = supllf o oq - f(@)l, < oo, (42)

[eAN)
where each side is bounded above by a constant multiple of the other. See e.g. [126] for

more information on the spaces BMOA and VMOA.

We show that a non-compact operator T,: HP — HP,1 < p <oo,g €
BMOA\VMOA, fixes an isomorphic copy of ¢P and hence the compactness and strict
singularity are equivalent for T, on HP. This is done by constructing bounded operators
V:# - HP and U: #P — HP such that the diagram in Figure 1 commutes (U =
T,V), where V(£P) = M is the closed linear span of suitably chosen test functions f,, €
HP and the operator U is an isomorphism onto its range U(£7) = T,(M).

gp
vV i

HPF > HP
Tq

Figure (1)[211]: Operators U,V and T,
The strategy for choosing the suitable test functions in Propositions (6.2.2) and (6.2.5)
below is similar to the one used by Laitila et al. in [221], where they utilized these test
functions to show that a non-compact composition operator C, : H? - HP, where
p: D — D isanalytic, fixes an isomorphic copy of £P. However, due to the distinct nature
of operators T, and C,,, a different kind of analysis is needed in our case.

Before proving our main result, we provide some preparatory material. We first
state a localization lemma for the standard test functions in HP,1 < p < oo, defined by
1 — |a|? 1/p
fa(2) = [m , Z€D,

for each a € . Observe that [|f,|[, = 1 for all a € D. The proof of the lemma is
straightforward and therefore omitted.

Lemma (6.2.1)[211]: Let 1 < p < oo and m be the normalized Lebesgue measure on T.
Define

A, = {e¥: e — 1] < g}
fore > 0. Then
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(i) lim |fa|Pdm = 0 foreache > 0.
a=bJm\a,

(ii) 11m |fz1Pdm = 0foreacha € D.
Ag
Next, utilizing test functions f, ,a, € D, for which |a,| — 1 sufficiently fast, we

construct a certain type of bounded operator V : #¥ — HP,
Proposition (6.2.2)[211]: Let1 < p < o and (a,) < D be a sequence such that a,, —
w € T.  Then there exists a subsequence (b,,) of (a,) so that the mapping

Vi s HY V(@) = ) aufy,
n=1
where ¢ = (a,) € #P,is bounded.
Proof. We may assume that w = 1. For each ¢ > 0, we consider the set A, defined in
Lemma (6.2.1). Using the fact that ||f,ll, = 1 for all a € D and Lemma (6.2.1), we

choose positive numbers ¢, with & = 2m > &, >...> 0 and a subsequence (b,,) of
(a,,) such that the following conditions hold:

p 1/p
(i)(j |be.| dm) <4 j=1,..n - 1;
An

1/p
(ii)( j |fbn|pdm> < 4
T\A4,

foreveryn = 1,where 4,, = A,

1/
Using conditions (i)-(ii) and the fact that (fA |fbn|pdm) ’ < 1 for all n, we show the

upper bound ||V all, < Cllall» for all @ = (a;) € £, where C > 0 may depend on p:
p

Wy = | Ea,fb dm—z | a,-fb,. dm

A .
n\ n+1 j=

(00] (00] 5
<2\ 2d(f, 1wl am)
n=1 j:1 An n+1
o0 1\?
p b
<> {1l |fbn|’“dm) ([l am) ).
An\Ani1 JFn An41

n=1

where
1

|fbj|pdm>ES<L Ifbj|pdm>gs4‘” (43)

for j < n by condition (i) and
1

1 1
oo ([ ofonf <o o
Ap\An+1 T\A4;

for j > n by condition (ii). Thus by estimates (43) and (44), we have that

(

n\An+1
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1

(. Isl dm>p <2 (45)
A

n\An+1

for j # n. By using estimate (45) we get

p
14
wasy (tal([ I dm) > agl2
n— 1 Ap\Ant1 JFn
Z(|an| + llallw2™P < 27 (Zlam + flaly > 27 )
n=1
< 2P*|a|l}p.

The next result is an observation by Aleman and Cima [213] and it states that for a non-
compact operator T, on H? we can find a sequence (fz, ) of test functions so that the

sequence (||T fak||p) converges to a positive constant. Its proof is based on the fact that

forall0 < p < woandt € (0,p/2) there exists a constant C = C(p,t) > 0 such that
ITsfall ) = Cllg e 00~ g(@lle

foralla € D, whereo,(z) = (a — z)/(1 — az); see [213].

Proposition (6.2.3)[211]: Letg € BMOA\VMOAand1 < p < oo.Then

hmsup”T fa|| > 0.
lal-
In particular, there exists a sequence (a;) € D,a;, = w € T so that

im 17, = .

k— oo

Next, we prove a localization result for the images T, f,, of the test functions f, (cf. Lemma
(6.2.1)).
Lemma (6.2.4)[211]: Let g € BMOA,1 < p < o, and (a,) < D be a sequence such
that a, — w € T. Define

A, = {e9: |e? — w| < &)
foreach e > 0. Then

(&) lim |T,fo|” dm = 0 foreverye > 0.
T\4,

(ii) lir%f |Tgfak|p dm = 0 for each k.
E— Ae

Proof. (i) Let ¢ > 0. For the simplicity of notation, we may assume that o = 1.
Also, we assume that g(0) = 0. We have that

|1 - agse®] = 6
forall k,0 < s < 1,ande < || < m where§ > 0. Thus for those s and 8 we have
o 1= lal? < 1 — Jal?
|fak(se )l - |1_a—ksei9|2— 52
and
1 — |ag|? 1 — |agl?
(e < 0t < o2 Jad
k |1_ ak58u9|2+p 52tp

for all k, where C > 0 may depend on p.For{ € T\ A,, we obtain

193



p

|Tgfak (() |P =

(s¢)g'(s¢){ds

1 b
< ¢ (sl + ([ 1fs0se0ls)
0

1 _ _ p
< (= wor + 5 ([ 1geoias) )

where constants C > 0 may depend on p and change from one instance to another.
Since g € BMOA, we have that |g(z)|] < Clog(l_LM) llgll. for some C > 0, and

consequently fl lg(s))|ds < Cllgll.. Therefore

1 — |agl 1 — |agl
[t dm < (=2 gl + gl = 0
T\A

E

as k — oo, where ||gll, < gugﬂg o oy - g, = llgll. < oo; see (42).
(S

(if) If k is fixed, then it follows from the absolute continuity of the measure B ~
STy fo, P dm that fA£|Tgfak|pdm - 0ase — 0.

As a final step towards the proof of Theorem (6.2.6), we construct an isomorphism
from 7 into H? using a non-compact T, and test functions.
Proposition (6.2.5)[211]: Letg € BMOA\VMOA,1 < p < o,and (a,) < D bethe
sequence from Proposition (6.2.3). Then there exists a subsequence (b,,) of (a,,) such that
the mapping

U: ¢ - HP, Ula) = zanTgfbn,
n=1

where @« = (a,) € £P,isan isomorphism onto its range.

Proof. By Proposition (6.2.2) there exists a subsequence (c,,) of (a,) inducing a bounded
operator

(00

St 5 H,S(@) = ) afe,
n=1

and for any subsequence (b,,) of (c,) the operator V : £ - HP,V(a) = Xy, anTyfp, is
bounded. After finding the suitable sequence (by,), the operator U = T,V will be bounded
as a composition of two bounded operators.

Before proving that U is bounded from below, we provide some preparatory material.
Since (c¢,) is a subsequence of (a,), we have that ¢, - w € T and there exists a
number ¢ > 0 such that

im |7, |, =

n—oo

by Proposition (6.2.3). Using Proposition (6.2.3) and Lemma (6.2.4), we choose positive
numbers &, with & > &, >...> 0 and a subsequence (b,,) of (c,) such that the
following

conditions hold:

1/p
p
(i)(j 7,15, dm> < 4§, j=1,..n -1
An
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1/p
(ii)( j |Tgfbn|pdm> < 473,
T\A,,

1

- C p 5
(111)§S L|Tgfbj| dm| < 2c,

foreveryn > 1, where
Ay = A, {819 |€ — | < &}
and & > 0 is a constant whose value is determined later.

Now we are ready to prove that U is bounded from below. Using conditions (ii) and (iii),
we get

(0] (e 0] (0] p
U ally = j Z iTafp;| dm EZJ Z“jTgfb,- dm
j=1 n=1 An\An+1 j=1
1P
0 1 p p
. p
2 lal j T, f, [Fdm ) — j > aTyfy,| dm
n=1 An\An41 An\An+1 |50
- p
C p
> Z 27P|a,,|? (__ 4—n—15c) —J z“jTgfbn dm
~ 2 An\Anq [4
= j£n
p

1
15"

zi 2—P|an|p(%—4_n_15c)p— Z|aj|<J

1/p

([, [l am) (], ol am) "< s
An\An41 An

for j < n by condition (i) and

p 1/p » 1/p _
( f 7,53 dm) < < f 753 dm) < 47i5¢
An\An41 T\An

for j > n by condition (ii). Thus we have that

(f | fb| dm) < 4™ J§c
An\An+1

for j # n. Consequently, we can estimate

where

p

(00]

lUall, = z 27P|a,|P (%— 4_"_166)10 — Z|aj|2—”—16c
=1

n=1

Cc p
> z (2—P|an|P (E — 4‘"‘166) - 2‘"5pcpI|aII§p)

n=1
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p
> 2- pz|an|p (_— —5c> — 8PcPlallf
p 7 p PP p
> 2 (16) cPllall?y — 57cPllall%

7 \P 1\?
= ((5) - 6P>cp||a||€p = (5) el

p p - 1/
when we choose 0 < § < 1 such that 6P = (%) —(%) ,le, 8 = %.

Thus the bounded operator U is also bounded from below and consequently it is an
iIsomorphism onto its range.
Now our main result follows.

Theorem (6.2.6)[211]: Let g € BMOA\VMOA and 1 < p < oo. Then the operator
T, : HP — HP fixes an isomorphic copy of 7 inside H?, that IS, there exists a subspace
M C HP which is isomorphic to ¢ and such that the restriction of T, to M is an
Isomorphism onto its range. In particular, T, is not strictly singular.

Proof. By Propositions (6.2.2) and (6.2.5), we can choose a sequence (b,) < D that
induces a bounded operator

0

Vi s HY V(@) = ) aufy,
n=1
where a = (a,) € £P,and anisomorphism U : ¢ — HP,U = T,V onto its range.

Define M = span{f;,_}, where the closure is taken in HP. Since U is bounded from below,
we have that the restriction T, |, is bounded from below. Thus T,|y : M — T,(M) is an
isomorphism and consequently M is isomorphic to £7. In particular, the operator T, is not
strictly singular.

We conclude by posing two questions concerning the £?—singularity of T,. To be
specific, define S(HP) to be the class of strictly singular operators on HP and S,.(H?) to be
the class of £"—singular operators on HP?, i.e., those bounded operators which do not fix a
copy of the space £". Then S(H?) = S,(HP) N S,(HP) for 1 < p < oo; see [227]. For
a non-compact operator T, on H? it follows from Theorem (6.2.6) that T, & S,(H?).
However, we did not pursue the following questions.

Does a non-compact T, : H? — HP satisfy T, & S,(HP) ? Can we
characterize those g such that 7, € S,(HP),where1 < p < oo,p # 27

We consider the strict singularity of T, on BMOA, the Bergman spaces AP,1 <
p < oo, and the Bloch space B. The case of BMOA essentially follows from the
reasoning done in [220], where we utilize an idea of Leibov [222] that there exist
iIsomorphic copies of the space ¢, of null sequences inside VMOA.

This fact will imply that the strict singularity of T, on BMOA or on VMOA is
equivalent to the compactness of T, on the same space. The sketch of the proof is the
following.

We recall that the boundedness of T, on BMOA is characterized by the condition g €
LMOA, where LMOA is the “logarithmic BMOA” space; see [226].

By the proof of Theorem 2 and Lemma 6 in [220] we can find a sequence (h,,) in VMOA
which is equivalent to the standard basis of c,. If T, is non-compact on VMOA4, it follows

196



from the estimate (4.6) in [220] that ||T;h,|| > ¢ > 0 for some constant ¢ for all n.

Since g € LMOA c BMOA, the operator T, is bounded on H? and consequently
||Tghn||2 — 0,asn — oo. Now we apply Lemma 6 in [220] again to obtain (by passing
to a subsequence, if needed) that (T, h,,) is equivalent to the standard basis of ¢,. Hence
Tylym, where M = span{h,}, is an isomorphism onto its range and T, is not strictly
singular on VMOA (or on BMOA).

In the Bergman spaces, boundedness and compactness of T, was characterized in
[215]. It is known that AP,1 < p < oo, are isomorphic to £P; see e.g. [229]. Hence the
strict singularity of the operator T, coincides with the compactness, since all strictly
singular operators on #P are compact; see [223] and a comment thereafter. The
boundedness and compactness of T, acting on Bloch spaces was investigated in [230]. In
this case, we can deduce as follows: If T, acting on B is strictly singular, then its
restriction to the little Bloch space By, is also strictly singular. Since B, is isomorphic to c,
and strictly singular operators on c, are compact, the restriction T |, is compact. Also,
the bidual (By)™* can be identified with B, so the operator T, can be identified with the

biadjoint operator (T, |z, )" . Therefore T, is compact.
Section (6.3): Rigidity of Composition Operators

ForD = {z € C: |z| < 1} be the unit disk in C. For 0 < p < oo the analytic
function f : D — C belongs to the Hardy space H? if

1A = sup [ 1FGoP <on (46)
0<sr<oo T
where T = 9D (identified with [0,27]) and dm(e™) =% et ¢:D > D be an

2T
analytic self-map of . It is a well-known consequence of the Littlewood subordination

principle, see e.g. [20], that the composition operator
foCo(f)=fod

is bounded H? — HP for any ¢ as above. Properties of these composition operators have
been studied very extensively during the last 40 years on various Banach spaces of
analytic functions on I, see [20] and [83] for comprehensive expositions of the early
developments of the area. The compactness of Cy4 on HP is well understood, and there are
several equivalent characterisations in the literature. To exhibit a specific criterion recall
that Shapiro [117] established that C is a compact operator H? — HP if and only if

lim —N(¢' W) =

wl-1 log(1/|w])
Above N(¢,w) is the Nevanlinna counting function of ¢ defined by N(¢p,w) =
Yzep-1w) log(1/|z]) for w € ¢(D) (counting multiplicities). Finer gradations of
compactness were obtained e.g. by Luecking and Zhu [106], who characterised the
membership of Cy in the Schatten p-classes on H?. Moreover, the approximation numbers
of C, on H* were estimated in [63], [78] and [203], as well as on H? in [239].

We demonstrate that composition operators on HP only allow a small variety of
qualitative non-compact behaviour compared to that of arbitrary bounded operators on HP.
Let E, F and X be Banach spaces. It will be convenient to say that the bounded linear
operator U : E — F fixes a copy of X in E if there is an infinite-dimensional subspace
M c E,M linearly isomorphic to X, for which U|,, is bounded below on M, that is, there
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isc > 0sothat | Ux|| = ¢ - ||x|| for all x € M. We use the standard notation M =~ X
for linearly isomorphic spaces M and X, and refer to [88], [223] and [229] for general
background related to the theory of Banach spaces.

The trichotomy contained in Theorem (6.3.3) below is the main result. Let E, =

{e®: |p(e'®)| = 1} be the boundary contact set of the analytic map ¢ : D — D. Here,

and in the sequel, we use ¢(e'@) to denote the a.e. radial limit function of ¢ on T. It is
part of the trichotomy that (47) together with the simple condition

m(Ey) = 0 (48)
completely determine the composition operators which fix copies of the subspace £? or £2
in HP. Recall that the known compactness results for Cg on H? vyield that (47) implies
(48), but the class of symbols ¢ satisfying (48) is much larger than that of (47), see e.g.
[83].

In the statement below we exclude the Hilbert space H?, where the situation is known
and much simpler, since part (ii) does not occur for p = 2 (cf. the discussion following
Theorem (6.3.4)). We use K(E) to denote the class of compact operators E — E for any
Banach space E, and take into account the known characterisation of the composition
operators Cy, € K(HP).

Theorem (6.3.3) is obtained by combining Theorems (6.3.4), (6.3.2) and (6.3.11)
stated below, which also contain more precise information. We first recall some standard
linear classes that classify the behaviour of non-compact operators. Let E, F and X be
Banach spaces, and L(E, F) be the space of bounded linear operators from E to F. The
operator U € L(E,F)is called X-singular if U does not fix any copies of X in E. We
denote

Sy(E,F) = {U € L(E,F): U is X — singular},
and put S,(E,F) = S, (E,F) to simplify our notation in the case of X = ¢P. Recall
further that U € L(E, F) is strictly singular, denoted by U € S(E, F), if U is not bounded
below on any infinite-dimensional linear subspaces M c E. It is clear that K(E,F) c
S(E,F) c S,(E,F) for any Banach spaces E and F, and it is known that the classes
S(E,F)and S,(E, F) define norm-closed operator ideals in the sense of Pietsch [241] for
any 1 < p < oo (cf. [227] for the case of S,).

Part of Theorem (6.3.3) is contained in the following dichotomy, which we also relate
to the known characterisation of the compact composition operators on H?.

The above theorem holds for p = 2 because of the general fact due to Calkin that
K(H?) = S(H?) = S,(H?) for the Hilbert space H?, see e.g. [241]. For 1 < p <
o and p = 2 one has that

S(HP) = S,(HP) n S,(HP). (49)
This follows from the characterisation of S(LP) by Weis [227] combined with the
wellknown fact that H? = LP = LP(0,1), see e.g. [240]. By contrast, for p = 2 all the
inclusions
K(H?) & S(H?) ,S(HP) & S,(HP),  S(HP) & S,(HP) (50)
are strict. This is easily deduced from the facts that H? ~ LP contains complemented
subspaces isomorphic to £ and £2, whereas any U € L(£P, £9) is strictly singular for p #
q, see e.g. [223]. Thus Theorem (6.3.4) states that for p = 2the compactness of
composition operators C, € L(HP) is a fairly rigid property as compared to (49) and (50)
for arbitrary operators. It is also convenient to rephrase this as follows:
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Corollary (6.3.1)[231]: For 1 < p < oo the following conditions are equivalent for any
analyticmap ¢ : D — D:

(i) ¢ satisfies (47),

(i) Cp € K(HP),

(iii) C, € S(HP),

(iv) Cp € S,(HP).

The first result (excluding the case H?) in the direction of Theorem (6.3.4) and
Corollary (6.3.1) is due to Sarason [82], who showed that Cy is weakly compact H! -
H* if and only if it is compact. Jarchow [237] pointed out that as a consequence Cp €
K(H") if and only if Cy is weakly conditionally compact on H', that is, C;, € S;(H") in
view of Rosenthal’s #1-theorem, see e.g. [223]. Hence the case p = 1 in Theorem (6.3.4)
and Corollary (6.3.1) was known earlier. We refer for a list of further references to
analogous rigidity results for composition operators on several (classical) Banach spaces
of analytic functions on the unit disk ID.

The lattice structure of the operator norm-closed ideals of L(HP) = L(LP)

containing the compact operators is quite complicated for 1 < p < o and p = 2, see
e.g. [241] and [243]. For instance, S, (H?) and S, (H?) are mutually incomparable classes,
since HP ~ LP contains complemented copies of £2 and £?. However, note that Corollary
(6.3.1) implies that if Cy, € L(HP) fixes a copy of £2 in HP, then Cy must also fix a copy
of #P in HP. These facts raise the problem whether it is possible to explicitly determine the
£2-singular composition operators on HP. In turns out in Theorem (6.3.2) below that
condition (48) characterises this class, thus providing a finer classification of the non-
compact Cy € L(HP) for 1 < p < oo and p = 2. We stress that Theorem (6.3.2) (as
well as the subsequent Theorem (6.3.11)) does not hold for H2.
Theorem (6.3.2)[231]: Let 1 < p < oo,p = 2,and ¢ : D — D be an analytic map.
Then C, fixes a copy of £2 in H? if and only if m(Eg) > 0. Equivalently, Cy € S,(HP)
if and only if (48) holds. Cima and Matheson [233] have shown that (48) characterises the
completely continuous composition operators Cy € L(HY). As a significant strengthening
of Theorem (6.3.2) we are further able to show that for p > 1 (and p = 2) condition
(48) actually describes the operators Cs which belong to the class S;» (H?). Here
S.» (HP) is the maximal non-trivial ideal of L(HP?), see [235]. To state the relevant result
let hP? be the harmonic Hardy space consisting of the harmonic functions f: D — C
normed by (46).

The proof of Theorem (6.3.4). The argument is based on explicit perturbation
estimates, where the starting point is a known test function reformulation of the
compactness criterion (47). The proofs of Theorems (6.3.2) and (6.3.11) are contained.
Although these results are connected, we have stated them separately, since the argument
for the #2-singularity in H? also holds forp = 1. By contrast the proof of Theorem
(6.3.11) relies on properties of h? = LP(T,m) for1l < p < oo, and it depends on the
non-trivial fact due to Dosev et al. [235] that the class S;» (LP) = S;» (hP) is additive.
We contain a number of further comments and open problems. As an application we
characterise the £*-singular compositions €, € L(VMOA). As an additional motivation
we also indicate a connection between a weaker version of Corollary (6.3.1) and a general
extrapolation result [217] for operators on LP-spaces.
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A starting point for was a question by Jonathan Partington about the strict singularity
of composition operators on HP for p = 2. We are indebted to Manuel Gonzélez,
Francisco Herndndez and Dmitry Yakubovich for timely questions towards Theorems
(6.3.2) and (6.3.11).

Theorem (6.3.3)[231]: Let 1 < p < oo,p = 2, and ¢ be any analytic self-map of D.
Then there are three mutually exclusive alternatives:

(1) C4 is compact on HP,

(ii) Cy fixes a copy of £7 in HP, but does not fix any copies of £2in HP,

(iii) C, fixes a copy of £ (as well as of £7) in HP. In this case, if 1 < p < oo and
p = 2,then Cy also fixes a copy of LP (0, 1) in HP.

Furthermore, regarding the above alternatives

(1) takes place if and only if Shapiro’s condition (47) holds,

(ii) takes place if and only if (47) fails to hold but m(Eg) = 0,

(iii) takes place if and only if m(E,4) > 0.

In particular, C, € K(HP) if and only if C4 does not fix any copies of £7 in HP.
Proof. Fora e D and fixed0 < p < oo let
(1 — |a|)?
ga(2) = a = a0’ z € D.
Observe that if y,(z) = —(1_1|_a;;1/p is the normalised reproducing kernel of H2 associated

to a €D, then |g,(2)|P = |y, (2)|* for z € D, so that lgall, = 1. The proof of
Theorem (6.3.4) is based on the following criterion: C, € K(HP?) if and only if

|¢11i|r—r>11 sup ||C¢(ga)||p = 0. (51)
This is a restatement using the test functions (g,) © HP of a well-known characterisation
of the compact operators C, € L(HP) in terms of vanishing Carleson pull-back measures,
see [20] (such a characterisation was first obtained by MacCluer [107] in the case of
HP(By) for N > 1, where By is the open Euclidean ball in Cy ). Alternatively, (51) is
stated explicitly for p = 2 in e.g. [117], whereas the compactness of Cy : H? — HP is
independent of p € (0, o) e.g. by [20]. Note that the compactness criterion (47) plays no
explicit role, as we will mostly use condition (51). After these preparations we proceed to
the proof itself.
Theorem (6.3.4)[231]: Let 1 < p < oo and let ¢ : D — D be any analytic map. Then
either C, € K(HP), or else Cy & S,(HP). Equivalently, Cy fixes a copy of £7 in H? if
and only if (47) does not hold.
Proof. Suppose that C, ¢ K (HP), where 1 < p < oco. We will show by an explicit
perturbation argument that Cy4 fixes a linearly isomorphic copy of ¢7 in HP. Since
condition (51) fails there is d > 0 and a sequence (a,) < D so that |a,| - 1asn —
oo and

ICo(ga)ll, = d >0 (52)
for all n € N. We may further assume without loss of generality that a,, — 1asn — oo.
Namely, we may pass to a convergent subsequence in D and compose ¢ with a suitable
rotation of D that defines a linear isomorphism of HP. Our starting point is the
phenomenon that (g, ) admits subsequences which are small perturbations of a disjointly

supported sequence in LP(T,m), and hence span an isomorphic copy of #P. The crux of
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the argument is that this can be achieved simultaneously for further subsequences of
(Cqb (gan)), and the following claim actually contains the basic step of the argument:

Claim (6.3.5)[231]: There is a further subsequence of (a,), still denoted by (a,) for
simplicity, for which there are constants c¢,,c, > 0 so that

e N < | 6o (9)|| = 2 - 1B, forall (5) € . (53)
j=1
Assuming Claim (6.3.5) momentarily, the proof of Theorem (6.3.4) is completed by
using this claim a second time (formally in the case where ¢(z) = z for z € D) to
extract a further subsequence of (g, ), still denoted by (g, ), so that

(00]

d N = (D) biga|| < 2 - @),y foran i) e e, (54)

j=1

p
for suitable constants d,,d, > 0. Then by combining (53) and (54) we get
> biCe(9a)|| = @)l = ads D bga|
j=1 p j=1 p

so that the restriction of Cy defines a linear isomorphism M — C,(M), where M =
span{g,, : j € N} = 7.
LetA = {& € T : theradial limit ¢p (§)exists} and
Ee = {§ € A: [p(§)— 1< ¢}

for ¢ > 0. Recall that T \ A has measure zero. The proof of Claim (6.3.5) is an argument
of gliding hump type based on the following auxiliary observation.

Lemma (6.3.6)[231]: Let ¢ and (gan) be as above, where a,, - 1asn — oo. Then
(L1) fT\ES 1Cs(ga,)|"dm — 0asn — oo foreach fixede > 0,

(L2) fEe |C¢,(gan)|pdm — 0ase — O foreachfixedn € N.
Proof. Observe first that

j |C¢,(g)|pdm - 0
Ee

ase —» Oforanyg € HP,sinceNggEe = {£ € A: (&) = 1} has measure 0 as ¢ is
not identically 1. Moreover, if ¢ > 0 is fixed and § € A\ Eg, then there is ne such that

11 = a, )| = 11 =) +(HA — a)| 211 =) =11 — a,| > £/2

foralln > n,. It follows that
p
C(0a,) @I =
so that (L1) holdsasn — oo.

To continue the argument of Claim (6.3.5) recall that | 1Cs(9a,)|"dm = d? > 0

by condition (52). We may then use Lemma (6.3.6) inductively to find indices j; < j, <
.. and a decreasing sequence &; > g, — 0 so that

1 - |an|2 <4‘(1 - |an|2)
1 — ap(I* ~ g? '

(i) (ngn |C¢ (gajk)|p dm)l/p < 4™5dforallk = 1,...,n — 1,
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0 (i, (60 (00, am) " < 4.

1/p
(iii) ( [, ( |C¢ (ga] )|p dm) > d/2
foralln € N Here § > 0 is a small enough constant (to be chosen later). In fact, suppose
that we have already found a;,...,a;  and & >...> g,_; satisfying (i)-(iii). Then
property (L2) from Lemma (6.3.6) yields €,, < &,,_; such that

1/p
( [ e (gajk)rdm) < 4nsd

for eachk = 1,...,n — 1. After this use property (L1) from Lemma (6.3.6) together
with (52) to find an index j,, > j,—_1 SO that conditions (ii) and (iii) are satisfied for the set
E

En *
In the interest of notational simplicity we relabel ajn as an for n € N . The idea of the
argument is that the sequence (Cqb (gan)) essentially resembles disjointly supported peaks

in LP (T, m) close to the point 1. We will next verify the left-hand inequality in (53) by a
direct perturbation argument. Let b = (b; ) € £P be arbitrary. Our starting point will be

the identity
- p

i biCo (9a,) i j 2 biCo (9a))| dm  (55)
j=1 n=

EEn \E£n+1 j=1

where we set E, = T.

Observe first that for each n € N we get that
1 1

p p
(] |C¢(gan)|”dm> =( j |Co(gn)|” dm — j |C¢,(gan)|pdm>
Een \Eepyq Eg, E
d\P 1/p d
> <(§> _ (4‘”‘16d)p> >

in view of (i) and (iii), where the last estimate holds because 0 < 1/p < 1. Moreover, note

that
P e .
(Lgn . |C¢, (gaj)| dm) < 27"J §d

p 1/p _ . o
e \Eer s Co (gaj)| dm) Is dominated by 47"&d for j,, in

view of (i) and (ii). Thus we get from the triangle inequality in LP, together with the
preceding estimates, that for all n € N one has

En+1

— 47""18d

forall j # n. In fact, (fE

1
o P /D

Z bjC¢(gaj) dm

Esn \E€n+1 j=1

1/p
colae am) =3 ([ e am)

j#En

S

z|bn|<fE

én \E€n+1
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d d
> |b,| (— — 4 16d>—2” sdllblly 25 = 275dlbll,.
By summing over n we get from the disjointness and the triangle inequality in €7 that

(0]

00 d p 1/p
> 5Cy(9a,) z(E 515l = 27 5d] 1| )
] n=1

=1
J p
1

d 1) D 1) 1/p
>—(z I |p> — sd|bl| (Z 2<-n-1>)
>2 i )

n=1 n=1

1 Yy d
d(3-6-(t = 227 ) Il = S lIbll,

where the last estimate holds once we choose & > 0small enough, so that & -
(1 — 2P)~YP, The proof of the right-hand inequality in (53) is a straightforward variant
of the preceding estimates. This inequality does not affect the choice of § > 0, and hence
the details will be omitted here.

The proof of Theorem (6.3.2) is contained in the following three results. We first look
separately at the casep = 2. Recall our notation E, = {e': |¢p(e'®)| = 1} for
analytic maps ¢ : D — D.

Lemma (6.3.7)[231]: Suppose that condition (48) fails, that is, m(E,) > 0. Then there
existintegers0 < n, < n, <--andaconstant K > 0 such that

0

Z Cr Pk

k=1

K= lcllz < < K - lclle2

2
forallc = (¢) € ¢2.

Proof. The upper estimate follows from the boundedness of Cg on H? and the
orthonormality of the sequence (z,) in HZ.

To establish the lower estimate, note that z, — 0 weakly and therefore also ¢,, =
Cy(2zn) = 0 weakly in H? as n — oo. Hence we may set n;, = 0 and then proceed
inductively to pick increasing indices nk such that the inner-products satisfy
|p™ ¢ | < 27%m(E,) for all 1 < j <kand each k € N. Letc = (¢;) € ¢%be
arbitrary and note that

1) 2 o0

o k-1
Dl = IalPlgnE+ 2Re YD G T(gM ™).
k=1 j=1

k=1 2 k=1
Obviously ||¢™||3 = fE¢ |p™|2dm = m(Eq,,) for each k. Moreover, we get that

0]

i kz & T(p™, ™) < lcll Z Z 2%m(E,)

k=1 j=1 =
k

1
Eucufzm(%)i z 2% = — lellZm(E,)

]:
By combining these estimates we obtain the desired Iower bound
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2

(0]

1 2
D || = llelizm(Ey) - 5 llclzm(Ey) = (53m(Ey) ) llelz
k=1 2
In order to treat general p € [1, o) recall that the analytic map f:ID — C belongs to
BMOA if

Ifl. =sup |If o gq — f(a)ll; < o,
aeD

where a,(z) = % is the Mdbius-automorphism of D interchanging 0 and a for a € D.

The Banach space BMOA is normed by |[|fllzmoa = |f(0)| + |f].. Moreover, VMOA is
the closed subspace of BMOA, where f € VMOA if

lim f o 0p = f(@llz = 0.
See [236] and [126] for background on BMOA. It follows readily from Littlewood’s
subordination theorem that Cy4 is bounded BMOA — BMOA for any analytic map ¢ :
D — D, seee.g. [123].
The following proposition establishes one implication of Theorem (6.3.2).
Proposition (6.3.8)[231]: Let 1 < p < o and suppose thatm(E,) > 0. Then there

exist increasing integers 0 < n; < n, < ---such that the subspace

M = span{z™ : k > 1} c HP
is isomorphic to 2 and the restriction Cy |y, is bounded below on M. Hence Cy & S,(HP).
Proof. We start by choosing the increasing integers (n;) as in Lemma (6.3.7). By passing
to a subsequence we may also assume that (z"™k) is a lacunary sequence, that
is,igf (ng4+1/m,) > 1. Paley’s theorem (see e.g. [201]) implies that for1 < p < oo the

sequence (z™k) is equivalent in HP to the unit vector basis of 2, that is,

(0.0)

k=1 p
forallc = (cx) € #2. (Here, and in the sequel, we use ~ as a short-hand notation for the
equivalence of the respective norms.) Case p = 2. By Hoélder’s inequality and Lemma
(6.3.7) we have that

(00] oo (0e]

C¢z WAL Z ™| = z c Pk

k=1 p k=1 p k=1 2
According to (56) and the boundedness of Cy this proves the claim forp = 2,

Case 1 < p < 2. We start by invoking a version of Paley’s theorem for BMOA (See
e.g. [126]), which together with the boundedness of C, on BMOA ensures that

(0] o0
D adm| = el || e
BMOA

k=1 k=1 BMOA
for all ¢ = (¢,) € #? and a uniform constant K > 0. In view of Fefferman’s H! —

BMOA duality pairing (see e.g. [126]) we may further estimate

[o0] (o]

Z Cr Pk Z Cr Pk

k=1 k=1

~ llclle (56)

~ llclle .

<K-|[Coll - licll,z

BMOA 1
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oo 2

(Z Ck¢n"»z Ck¢n"> Z Crp"k
k=1 k=1 k=1 2

where we again use Lemma (6.3.7) at the final step. By applying Holder’s inequality and
combining the preceding estimates we obtain that

oo (0e]

Dl =D || =Kl

k=1 k=1 1
for some uniform constant K’ > 0. Inpparticular C¢ & S,(HP) in view of (56), which
completes the verification of the propositionfor1 < p < 2.

The converse implication in Theorem (6.3.2) is contalned in the following
Proposition (6.3.9)[231]: Let 1 < p < oo,p = 2, and suppose that m(Eg) = 0. If
(f,) is any normalized sequence in HP which is equivalent to the unit vector basis of £2,
then Cy is not bounded below on span{f, : n € N} < HP.In particular, Cy € S,(HP).
Proof. Assume to the contrary that

< ~lcll 2

=

D aled| ~ [ cd™|| ~lele (57)
for all sequences ¢ = (c,) € #2. In particular, C¢,(fn)p > d > 0 for all n and some
constant d. We write = {e: |p(e®)]| = 1 - for k > 1. Since

Ilim m(Ey) = m(Ey) = O,We get that
lim  Ej 1Cs(£)|” dm = 0 foralln.

On the other hand, f,, — 0 weakly in HP and hence f, — 0 uniformly on compact
subsets of D asn — oo. This implies that

lim 1Cs(F0|” dm = 0forall k.

n—oo T\Ej,
By using the above properties and proceeding recursively in a fashion similar to the
argument for Theorem (6.3.4) we find increasing sequences of integers 0 < n; < n, <
~and1 = k; < k, <., such that
1% oo %} p

= D o] dm~ il

p =1 Ekl\Ek+1 j=1

(e0)

> eColf)

n=1
holds for all ¢ = (¢;) € £ with uniform constants. However, for p = 2 such estimates
obviously contradict (57). Thus C, € S,(HP), and this completes the proof of the
proposition (and hence also of Theorem (6.3.2)).

We remind that Theorem (6.3.2) does not hold for p = 2. For p # 2, the result
easily yields very explicit examples of operators Cy, € S,(H?) \ S, (HP).

Example (6.3.10)[231]: Let ¢(2) =% (1 + z)for z € D. Theorem (6.3.2) implies that

Cy does not fix any copies of £% in H?.On the other hand, it is well known that Cy &
K (HP), see e.g. [83], so that Cy, does fix copies of £¥ in HP by Theorem (6.3.4).

We next prepare for the proof of Theorem (6.3.11). This involves the harmonic Hardy
space hP, that is, the space of complex-valued harmonic functions f : D — C normed by
(46). Recall that for 1 < p < oo there is a well-known isometric identification h? =
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LP(T,m) as a complex Banach space. Here f € hP corresponds to its a.e. radial limit
function f € LP(T,m), whereas conversely g € LP(T,m) determines its harmonic

extension P[g] € hP through the Poisson integral. Moreover, h? = HP @ F, where

HY = {f € HP: f(0) = 0yandHY = {f: f € H} }.

Let ¢ : D — DD be any analytic map. The Littlewood subordination theorem for
subharmonic functions (see e.g. [20]) implies that the composition operator f — f o ¢ is
also bounded h? — hP for 1 < p < oo. It will be convenient in the argument to use the
notation 5¢(f) = f o ¢ for f € hP to distinguish the composition operator on hP from
its relative on HP. In particular, if in addition ¢(0) = 0, then we may decompose

. Co 0\ .
Cy = ((f) C¢> Co(f,9)=(f > b.g° ¢) (58)

as a matrix direct sum with respect to the decomposition h? = HP @ H(’f . Here ¢(0) =
Oensuresthat go ¢ € HY forany g € HY .
Theorem (6.3.11)[231]: Let 1 < p < oo,p = 2,and ¢ : D — D be an analytic map.
Then the following conditions are equivalent:

(i) ¢ satisfies m(Eg) = 0,

(ii) Cyp € Sy» (HP), thatis, Cy does not fix any copies of LP in HP,

(iii) Cp € Spp (RP),

(iv) Cp € S,(HP).
Proof. We may assume during the proof that ¢(0) = 0. In fact, otherwise consider yp =
04(0) o ¢, where g4(0) : D — D is the automorphism interchanging 0 and ¢(0). Then
P(0) = 0and Cy, = Cyp © C%(O) , where C,, (0) is a linear isomorphism h? — hP (as
well as HP — HP), which does not affect any of the claims of the theorem.

The proof of the implication (iii) = (i) is contained in the following claim.
Claim (6.3.12)[231]: Let 1 < p < oo and suppose that m(Eg) >~ 0. Then €¢ ¢
Si» (hP), that is, there is a subspace M < hP,M =~ LP, such that Cy|, is bounded
below.

To prove the claim define the Borel measure v on T by v(A) = m(d)_l(A)). Then v
is absolutely continuous: if A ¢ T is a Borel set and uy, = P[y4]is the harmonic
extension (i.e. the Poisson integral) of y,, we have that

v(A) = f dm < f uy o pdm = uy(Pp(0)) = u,(0) = m(A).
$~1(A) T

Since v(T) = m(E4) > 0, it follows that the density dv/dm > & for some § > 0 on
a Borel set F < T of positive Lebesgue measure.

We may now choose M = LP(F,m).Indeed, givenany f € LP(F,m), we have
ICsrIF, = f f o ¢IP dm = fT PP dv = 8 [ 1FP dm = Ol Wy
¢

F

which establishes Claim (6.3.12), since LP(F,m) =~ LP.
The implication (ii) = (iii) follows from (58) and the non-trivial result that the class
Sip (LP) = Spp (hP) is additive, see [235]. In fact, if Cy € S;» (HP), then

; Cy O 0 ¢
%= (0 ¢)* (e, 0)
0 €,/ T \Cp 0
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Is the sum of two operators from S;» (hp), and hence LP-singular by additivity. Here one

applies the observation that if M c LP is a subspace isomorphic to LP, then {f : f €
M} is also linearly isomorphic to LP.

Finally, the proof of the implication (i) = (ii) is already contained in that of
Proposition (6.3.9). In fact, if there is a subspace M c HP,M =~ LP, so that Cy is an
isomorphism M — C,(M), then Cy also fixes the isomorphic copies of £ contained in
M. It was shown in Proposition (6.3.9) that the latter property is incompatible with
condition (i) of Theorem (6.3.11).

We note that Claim (6.3.12) also holds for p = 1. However, there is no immediate
analogue of Theorem (6.3.11) for H!. In fact, S;» (H') = L(H?'), since L' does not
embed isomorphically into H1, see e.g. [223]. In conclusion, recall that there are infinitely
many norm-closed ideals I of L(HP) satisfying S,(HP)I c S;p (HP)forl < p < o
and p = 2, see [241]. By contrast, Theorems (6.3.2) and (6.3.11) imply that there is no
corresponding gradation for composition operators on HP. In some cases the trichotomy of
Theorem (6.3.3) can be sharpened by combining with known results about the subspaces
of HP = LP. For instance, for 2 < p < oo it follows from a result of Johnson and Odell
[238] that if C4ly is bounded below on an infinite-dimensional subspace M c H? that
contains no isomorphic copies of %, then M embeds isomorphically into p, whence Cy &
S, (HP).

We list some further examples of Banach spaces of analytic functions where
composition operators have related rigidity properties, and draw attention to open
problems. We also sketch another approach towards Theorem (6.3.4), though its
conclusion is much weaker.

The weaker rigidity property

Cy € S(E)ifandonlyif Cy € K(E) (59)
holds for many other Banach spaces E of analytic functions on D apart from the Hardy
spaces. The following list briefly recalls some cases. Typically these results were not
stated in terms of strict singularity, and as a rule they do not yield as precise information as
our results for HP.

(a) The following dichotomy in [216] is an explicit precursor of Theorem (6.3.4):
either Cy, € K(H," )orCy & So(Hy ). Here H” is the weighted H*-space for a strictly
positive weight function v on . It is also possible to deduce versions of (59) for H* (the
case v = 1) from even earlier results. In fact, it follows from [85], [64] or [234] that
Cp € L(H®) is weakly compact if and only if C, € K(H®). Moreover, Bourgain [232]
established that W(H™,X) = S, (H®,X) for any Banach space X, where W denotes the
class of weakly compact operators. Here K(H*)S(H®), since this holds for the
complemented subspace £ of H.

(b) The dichotomy in Theorem (6.3.4) holds for arbitrary bounded operators on the
Bergman space AP. In fact, AP =~ p for 1 < p < oo by a result of Lindenstrauss and
Pelczynski, see [229], whereas S(¢P) = S,(¢P) = K(#P) by a result of Gohberg,
Markus and Feldman, see [241].

(c) It is known that the Bloch space B is isomorphic to £%, while Cy, € W (B) if and

only if C, € K(B), see e.g. [132]. Moreover, any U & W (£%,X) fixes a copy of £% for
any Banach space X, see [223]. Consequently either C, € K(B)or Cy & So(B).

207



(d) It follows from [69] that C, € K(BMOA) if and only of C, € S, (BMOA). In
fact, the argument shows that if Cy, ¢ K (BMOA), thenthereis M c VMOA,M = c,, SO
that Cgl|y is bounded below. Here again K(BMOA) &S, (BMOA), since
BMOA contains complemented subspaces isomorphic to £2 in view of Paley’s theorem
(see e.g. [126]).

Actually the results combined with [69] lead to a better understanding of the £2-
singular composition operators on VMOA and BMOA.

Proposition (6.3.13)[231]: (i) If ¢ : D — D is an analytic map, and Cy € S,(BMOA),
then (48) holds (that is, m(E,) = 0).

(ii) If ¢ € VMOA, then Cy, € S,(VMOA) if (and only if) (48) holds.

Proof. (i) The argument is essentially contained in that of Proposition (6.3.8). In fact,
suppose that m(E;) > 0, where E;, = {e' : |¢(e'®)| = 1}. Then the proof of the
case 1 < p < 2of Proposition (6.3.8) gives a lacunary sequence (n,) and constants
K;,K, > 0sothatinthe H® — BMOA duality pairing

(00 (00

Z Cr Pk Z Cr Pk

k=1 BMOA k=1 1 _ i
aswell as || Xpo; cx®™ |y = K, - |lcll,2 forall c = (¢,) € £2. Since Cy is bounded on

BMOA it follows as before from Paley’s theorem in BMOA that Cy is bounded below on
span{z™ : k € N} ~ 2in BMOA.

(ii) Recall that Cy : VMOA —» VMOAif ¢ € VMOA, see e.g. [123]. Assume that
m(E¢) = 0 and suppose to the contrary that there is a normalised sequence (fi) <
VM OA equivalent to the unit vector basis of 2, for which

(ee)

D afl|  ~-llelle (60)
k=1 BMOA

for allc = (¢,) € ¢2. In particular, ||f; © @ llgmoa = d > 0 for all k, while (f;,) is
weak-null sequence in VMOA, so that f, — 0 uniformly on compact subsets of D ask —
oo, Moreover, by the John—Nirenberg inequality there is a uniform constant d > 0 so that

”fk ° ¢”4 < d”fk ° ¢“BMOA» k €N.
Let £, = {e: |p(e??)|= 1 —%} for k € N. From the above estimates and

Holder’s inequality we get that

Hﬁ°¢M=EMﬁ°M%m+f fo o Gl2dm
T\Ex
1/2
SO‘m~¢WM> mwu+f f. o d2dm.
Ep T\Ex

Since fT\Ek |f,, © ¢|?°dm — 0 foreach k asn — oo, we obtain that

lim = sup [If, © @Iz < Cym(E)
for some constant € > 0 independent of k € N. By letting k — ocoand using that
m(Ey) = 0we deduce that lim [If,  ¢[l, =0.
n—-oo

By [69] there is a subsequence (f;, ° ¢) such that

>

= Ky - llclle
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(0]

> aColfn)

k=1 BMOA
holds for all c = (c;) € cy. Obviously this contradicts (60).

We next indicate a different approach towards a weaker version of Theorem (6.3.4),
which highlights a connection to the following general interpolation-extrapolation theorem
for strictly singular operators on LP-spaces due to Hernandez et al. [217]: Let 1 < p <
q < oo, and assume that the linear operator T is bounded LP — LP and L7 — L4.
Moreover, suppose further that there isr € (p,q) for which T € S(L"). Then T €
KL% forallp < s < gq.

To apply the above result suppose that Cy € S(H?), where 1 < p < co. Recall
from that the related operator f — C;,(f) = f o ¢ is bounded on the harmonic Hardy

space h? for 1 < p < oo, and that (58) holds with respect to h? = HP? @ HS’ provided
¢(0) = 0. It follows from (58) that C; € S(hP), since S(hP) is a linear subspace. Fix g
and r such that 1 < g < r < oo. Since C; is bounded ht —» ht for any t € (1,0) and
C, € S(hP), the above extrapolation result applied to h* = L* (T, m) yields that C;, €
K(h*) for any g < r. In particular, C, € K(H?®) for any q < r by restricting to H® c
hs. Hence we have deduced by different means the following weak version of Theorem
(6.3.4):ifC4 € S(HP),thenCy € K(HP)forl < p < oo,

Above we do not address the technical issue that [217] only explicitly deals with real

LP-spaces, whereas the above application requires complex scalars. (We are indebted to
Francisco Hernandez for indicating that there is indeed also a complex version.) leave the
above alternative here as an incomplete digression, because it is not possible to obtain the
full strength of Theorem (6.3.4) in this way (cf. the following example).
Example (6.3.14)[231]: We point out for completeness that the extrapolation result [217]
for S(LP) = S,(LP) N S,(LP) does not have an analogue for the classes S,(LP) or
S,(LP). In fact, let (r;,) be the sequence of Rademacher functions on [0,1] and f —
Pf = Y2, (f,n)n, the canonical projection LP - Mfor 1 < p < oo,where M =
span{r, : n € N}. Since M ~ ¢2 by the Khinchine inequalities, see e.g. [223], it follows
that P € S,(LP) by the total incomparability of £7 and £* for p # 2. Furthermore, the
results (in particular, see Example (6.3.10) and (58)) imply that for p # 2 there are
composition operators C~¢, € S,(hP) which fail to be compact.

Our results suggest several natural questions.

Problems (6.3.15)[231]: (i) Are there results corresponding to our main theorems for
Cp € L(HP,HT) in the case p = q? Note that the conditions for boundedness and
compactness of Cy : H? — H4Y are different in the respective cases p < q and p,q > 2
and p = q, then S(LP,L?) = S,(LP,L%) but S,(LP,L7) = L(LP,L%). These equalities
follow from the Kadec—Petcynski dichotomy [88] and the total incomparability of P and
£,

(ii) Is there an analogue of Theorem (6.3.11) forp = 1?

(iii) Is the converse of Proposition (6.3.13). (i) also true?

(iv) Is there a Banach space E of scalar-valued analytic functions on D and an analytic
map ¢ : D — D, for which C, € S(E) \ K(E)? In this direction Leféevre et al. [63] found

a non-reflexive Hardy-Orlicz space HY so that C; € W(HY)\ K(HY), where ¢ is a
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lens map. The approach sketched suggests that weaker rigidity properties such as (59) are
likely to hold for many other concrete classes of operators on HP. Subsequently Miihkinen
[211] has used similar techniques to show that the dichotomy of Theorem (6.3.4) remains
valid for the class of analytic Volterra operators T, on H?, where

f*(%@M@=Jﬂf@M%ﬂmJem
0

See [212] or [225] for the conditions on the fixed analytic map g : D — C which
characterise the boundedness or compactness of Tj,.
Theorem (6.3.16)[245]: Let 0 < € < o0,e # 1, and (¢, + ¢,) be sum of any analytic
self-maps of D. Then there are three mutually exclusive alternatives:
(i) Cp,+¢,) is cOmpact on H'*€,
(i1) Cep,+¢,) fixes a copy of £1*€ in H'*€, but does not fix any copies of €% in H'*¢,
(ii) Cip,+¢,) fixes a copy of £2 (as well as of £1*€) in H'*. In this case, if 0 < € <
o and € # 1, then C,, 1+, also fixes a copy of L'*€(0,1) in H*¢.
Furthermore, regarding the above alternatives
(1) takes place if and only if Shapiro’s condition (47) holds,
(ii) takes place if and only if (47) fails to hold but m(E,, +4,)) = 0,

(iii) takes place if and only if m(E(,,+4,)) > 0.
In particular, Cy, 44,y € (1+€)(H'™€)ifand only if C,, 4,,) does not fix any copies of
£1+6 |n H1+6.
Proof. For a? € D and fixed 0 < € < oo let

22 T+e
gaZ (Z) = 1 - 2 2 ) Z E D.
(1 —az
purl
1-— 2 1+€
Observe that if y,2(2) =% is the normalized reproducing kernel of H?

associated to a? € I, then |g,2(2)|**€ = |y,2(2)|? for z € D, so that ||g,z|l14e = 1.
The proof of Theorem (6.3.17) is based on the following criterion: Ciy +¢4,) € (1 +
€)(H*€) if and only if

|c};?—1>1 sup ||C(<p1+<p2)(ga2)||1+6 = 0. (61)
Theorem (6.3.17)[245]: Let 0 < € < o and let (¢, + ¢,): D — D be sum of any
analytic maps. Then either C, +4,) € (1+ €)(H€), or else Cip+9,) & Si1+e(HTE).
Equivalently, C¢,, +,,) fixes a copy of £1*€ in H'*€ if and only if (47) does not hold.
Proof. Suppose that C(,, +4,) ¢ (1+¢€) (H™€), where 0 < € < oo. We will show by
an explicit perturbation argument that C,_ 4+, fixes a linearly isomorphic copy of £1*€in
H'*€, Since condition (61) fails there is e > 0 and a sequence (a2) c D so that |a2| —
lasn — ooand

€1+ (9a3)l,,, Z €20 (62)

for all n € N. We may further assume without loss of generality that a2 — 1asn — oo,
Namely, we may pass to a convergent subsequence in D and compose (¢, + ¢,) with a
suitable rotation of D that defines a linear isomorphism of H*€. The starting point is the
phenomenon that (g,z) admits subsequences which are small perturbations of a disjointly
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supported sequence in L1*¢(T,m), and hence span an isomorphic copy of #1*€. The crux
of the argument is that this can be achieved simultaneously for further subsequences of

(C((pﬁ(pz) (ga%)), and (see [231]):
Lemma (6.3.18)[245]: Let (¢, + @) and (g,2) be as above, where a3 — lasn -
oo, Then

(L1) fT\Es |C(<p1+<p2)(ga%)|1+edm — Qasn — ooforeachfixede > 0,

(L2) [, |C(¢1+¢2)(ga%)|l+6dm — 0ase — 0 foreachfixedn € N.
Proof. Observe first that

1+€

J |C(<P1+<P2) (g)l dm - 0
E

ase » 0for anyg € H'*¢,  sinceNgoE, = {¢ € A: (@, + ¢,)(§) = 1} has
measure 0 as (¢, + ¢,) is not identically 1. Moreover, if ¢ > 0isfixedand ¢ € A\ E,
then there is n, such that

|1 - @G + 00O = [1 = (01 + 9@ + (91 + 0)(©) (1 — )|
21— (91 + 9Ol ~ 11— G}l >
for all n > n,. It follows that

1 — 212 4(1 — 212
|C(<P1+(P2)(-garzz)(€)|1+€ = |an| < ( |an| );

T

82

so that (L1) holdsasn — oo.

To continue the argument of Claim (6.3.5) recall that [ Corrop(gaz)| dm =

(1+ e)**¢ > 0 by condition (62). We may then use Lemma (6.3.18) inductively to find
indices j; < j, <..and adecreasing sequence g > ;.1 — 0 so that
1

1+€

. 1+€

(1) (IE |C(<p1+<p2) (ga]z. )| dm) < 451 +¢) forallk = 1,...,n — 1,

&n k

1
.- 1+e€ 1te B

(i) (f']I‘\Egn |C(<p1+<pz) (gajz,n) dm) < 47861 +e),

1

i) (Fy,. [Coonron (922 )| am)™ > 2

foralln € N.Here § > 0 is a small enough constant (to be chosen later). In fact, suppose
that we have already found a?,...,af  and & >...>¢,_, satisfying (i)—(iii). Then
property (L2) from Lemma (6.3.18) yields &,, < ¢&,,_; such that

1

(], T o) am) ™ < s

for eachk = 1,...,n — 1. After this use property (L1) from Lemma (6.3.18) together
with (62) to find an index j,, > j,,—; S0 that conditions (ii) and (iii) are satisfied for the set
E. .

In the interest of notational simplicity we relabel ajzn as a? for n € N. The idea of

the argument is that the sequence (C((p1+<p2)(ga%)) essentially resembles disjointly
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supported peaks in L*€(T,m) close to the point 1. We will next verify the left-hand
inequality in (53) by a direct perturbation argument. Let b = (bj2 ) € £1*€ be arbitrary.
Our starting point will be the identity

1+€

1+€

= Z J Z b]'ZC(<P1+<P2) (gajz-) dm, (63)

where we set E, = T.
Observe first that for each n € N we get that
1

1+e
([ Teoeeolan)l™an)
&n \én+1

1

1+e€
= (L |C(<p1+<pz)(gn)|1+6 dm — j |C(<p1+<pz)(ga%)|l+6 dm)

én E£n+1

1+ e\17€ e 1 4¢
> (( - ) — (4 is( +e))1+€> > - 4761+ )

in view of (i) and (iii), where the last estimate holds because 0 < €. Moreover, note that

1
(Lgn \epps |C(<P1+<P2) (ga]z)

for all j # n. In fact, (fE

&n \E8n+1

1+€ 1te ]
dm < 277481 +e€)
1+e  \Tye _
Cio1+0,) (gajz) dm) is dominated by

47"§(1 + €) for j,, in view of (i) and (ii). Thus we get from the triangle inequality in L**€,

together with the preceding estimates, that for all n € N one has

1
1+e 1+e

bj2C(<P1+<P2) (gajz-) dm

1

5 1+e€ 1+e
281 [Cuon(ga) ™ dm
Efn E€n+1

1

1+€ 1+e
2
A s (92)] T dm
j#En Een \Eepyq
. 1+e€ 1
> B3] (5 = 4781 +€) ) =27 81+ )bl e
1+e€

> — - 27151 + €)|b|.
By summing over n we get from the disjointness and the triangle inequality in #1*€ that
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1

1+E>1+E

Z b7 Clpy+e2) (gajz-) (Z |— bl — 2718 (1 + €)lbll14e
=1 n=1
1 1
1+e¢€ e
(Z |b2|1+6> — §(1+ e)Ibll1+e (Z 20n= 1)>

1+€
Loy - 1+e€
A+ (58 = 2975 Ibllyee =4 Ibluee
Note that: By combining (53) and (54) we have

. - = 1+e€ _
(1) Z b]'ZC(€01+€02) (gajz) = Z bfzgajz- = 2 —4 (n+1)6(1 + E)
j=1 J=1 14€
Note that:
1+€

1+e€
(i) Z bga|| =40 +e)

1+€
(0]
(iif) beg ,
J=1 1+€

(iv) By combining (ii) and (iii) we get
1+e

where the last estimate holds once we choose & > 0small enough, so that & -

(1 — 21*€)71xe, The proof of the right-hand inequality in (53) is a straightforward variant
of the preceding estimates. This inequality does not affect the choice of § > 0, and hence
the details will be omitted here.

Lemma (6.3.19)[245]: Suppose that condition (48) fails, that is, m(E(,, +4,)) > 0. Then

there exist integers 0 < n; < n, <---andaconstant e > 0 such that

> A+l + o)™
=0

forall1+e = (14 €)1420) € £2.
Proof. The upper estimate follows from the boundedness of C,. .,,) on H? and the
orthonormality of the sequence (z,) in H>.

To establish the lower estimate, note that z,, — 0 weakly and therefore also (¢, +
®2)n = Clp,+90,)(Zn) = 0 weakly in H* as n — oo. Hence we may set n; = 0 and
then proceed inductively to pick increasing indices n,,,. such that the inner-products
satisfy |(@; + @2)"1+e, (@1 + @)™+2e | < 2720%2m(E, ., ) forall e > 0 and each
(1+2¢)eN.Letl+e€ = ((1+€)4,) € #2be arbitrary and note that

1+e)™t - |l1+€, < < (146 - |I11+e€ll,2
¢ ¢

2
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o) 2

Z (1 + €)142e(@q + @) t12e

e=0 2
= > 1+ e PllCr + @)l
€=0
00 2€
+ 2Re z 2 (1+6)14e (L +€),,,. (@1 + @r)"+e, (1 + @) 1+2€).
€=0 €=0
Obviously gy + 95 2 [, IGon + ga)oeedm = m(Eig, ) T

each 1 4+ 2e. Moreover, we get that

D U4 Duee T 6, (1 + 02)™5, (91 + @2)420)
- - oo 2e
< 1 +ellz Z z 2720429m(E g, 40,))

1 oo
<5 I+ elEm(Egp,pn) ) 2 2720429 = 21+ elm(Epyv)
€=

By comblnlng these estimates we obtain the desired lower bound
2

Z (14 €)142¢(@1 + ) 142e
=0

2

> [|1+ E||£2m(E(<p1+<pz)) |1 + E”ezm(E(fpﬁfpz))

=@mwmwm)m+ﬂﬁ
In order to treat general 0 < € < oo recall that the analytic maps f: D — C belongs
to BMOA if

Ifl. = sup |If o g2 = f(a®llz < o,

aehD

where 0,2(z) = - |s the Mobius-automorphism of D interchanging 0 and a? for a® €
a

D. The Banach space BMOA is normed by ||fllzmoa = If(0)] + |f].. Moreover,

VMOA is the closed subspace of BMOA, where f € VMOA if

dim If o 002 = f(@)llz = 0
We refer to e.g. [236] and [126] for background on BMOA. It follows readily from
Littlewood’s subordination theorem that C(,, 14,y is bounded BMOA — BMOA for sum
of any analytic maps (¢, + ¢,) : D — D, see e.g. [123].
Proposition (6.3.20)[245]: Let 0 < € < o and suppose thatm(E,, +4,)) > 0. Then
there exist increasing integers 0 < n; < n, < ---such that the subspace

M = Span{z™+c:e >0} c H*€
is isomorphic to 2 and the restriction C¢, 4+4,)ln 1S bounded below on M. Hence
C(‘P1+<P2) ¢ SZ(H1+6)'
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Proof. We start by choosing the increasing integers (n,,.) as in Lemma (6.3.19). By

passing to a subsequence we may also assume that (z"1+€) is a lacunary sequence, that

iS,H}_lf (Ny4e/N14e) > 1.Paley’s theorem (see e.g. [201]) implies that for0 < € <
€

oo the sequence (z™1+€) is equivalent in H1*€ to the unit vector basis of 2, that is,

2 (1 +€)14ezmrte
€=0 1+€

forall1+e = ((1+€)4c) € £ (Here, and in the sequel, we use ~ as a short-hand
notation for the equivalence of the respective norms.) Case € > 0. By Holder’s inequality
and Lemma (6.3.19) we have that

C(<p1+<p2) Z (1 + e)1+t:'an+6
e=0

~ 11 +€ll 2 (64)

D A+ Oraelpr + 9)" e
€=0

2+€

+ @)"rell ~ [T+ €ll,2.

2
According to (64) and the boundedness of C,_ ;) this proves the claim for € = 0.

Case 0 < € < 1. We start by invoking a version of Paley’s theorem for BMOA (See
e.g. [126]) which together with the boundedness of C,_ 4, ) 0 on BMOA ensures that
BMOA

Z (1+ €y en™e
€=0
<(1+¢e)- ||C(<p1+<pz)|| 11+ €l

for all 1+e = ((14+€)14c) € £2 and a uniform constante > 0. In view of
Fefferman’s H1 — BMOA duality pairing (see e.g. [126]) we may further estimate

oo [ee)

D A+ Orrelpr + @) D A+ Orelpy + @)

e=0 e=0

= ||C(<P1+<P2)|| )

Z (1+ €)11e (01 + P+

BMOA

BMOA 1

< (Z (1+e)1+e(<p1+<pz)”1+62 (1+e)1+e(<p1+<pz)”1+e)

2

~|I1 + €ll 2

2 (1+ ©1re(py + ;)"

2
where we again use Lemma (6.3.19) at the final step. By applying Holder’s inequality and

combining the preceding estimates we obtain that

Z (14 €)14e(y + @) 1te Z (1 + €)14e(r + o) 1te
€=0 € e=0

for some uniform constant € 21+0. In particular, Cip,1¢,) € SZ(Hl'l*E) in view of (64),
which completes the verification of the proposition for 0 < ¢ < 1.
Proposition (6.3.21)[245]: Let 0 < € < o,e # 1, and suppose that m(E, +,,) = 0. If
(f,,) is any normalized sequence in H1*€ which is equivalent to the unit vector basis of £2,
then Cip,+p, IS not bounded below on span{f,: n € N} ¢ H™*. In particular,
C(§01+§02) € SZ(H1+6)'

Proof. Assume to the contrary that

> 1+ e)|l1+€l,

215



D 1+ Clpyrpn () Z(l + O1re(@r + 92" ~lIT+ el (65)
n=1 1+€ 1+€

for all sequences 1 +¢ = ((1+ e)n) e £2. In particular, Cp 1) (f)'"¢ = 1+€ >

0 for alln and some constant 1+e. We writt Ej .. = {e/®*9): |(p, +
. 92 92 € . . _ _

g02)(6,1( 24 2))| > E} for e > 0. Since gl_)rgo M(E14e) = M(Eg,+4,)) = 0, we get

that

_ 1+
lim Eiie |C((p1+(p2)(fn)| “dm = 0foralln.

€% JT\Eq4e
On the other hand, f,, — 0 weakly in H*€ and hence f, — 0 uniformly on compact
subsets of D asn — oo. This implies that

lim |C((p1+(p2)(fn)|1+6 = Oforall 1 +e.

n—oo
\E1+e

By using the above properties and proceeding recursively in a fashion similar to the
argument for Theorem (6.3.17) we find increasing sequences of integers 0 < n; <

n, <--and0 =€ < 2e <--,such that
1+€

z (1 + E)nC((p1+<p2)(fn)
n=1

(00]

2

=1 “Ea+e)\E2+e |e—p
holds for all 1+¢€ = ((1+€);4c) € £1*¢ with uniform constants. However, for ¢ #
1such estimates obviously contradict (65). Thus Ci,. 1, € S2(H'*€), and this
completes the proof of the proposition (and hence also of Theorem (6.3.4)).
Theorem (6.3.22)[245]: Let 0 < € < o0,e # 1, and (¢, + ¢,) : D — D be sum of an
analytic maps. Then the following conditions are equivalent:

(1) (@1 + @,) satisfies m(E(y,+p,)) = 0

(i) Cp,,) € Sp+e (H'), that is, Cyp, 44, does not fix any copies of L'*€ in
H1+6,

(i) C(<P1+<Pz) € Sji+e (h1+€),

(iV) Cip 40, € S2(H™E).

Proof. We may assume during the proof that (¢; + ¢,)(0) = 0. In fact, otherwise
consider Y = 0(p,+9,)(0) o (@1 +@2), Where 0y 4+p,)(0): D - Dis  the
automorphism interchanging 0 and (¢, + ¢,)(0). Then (0) = 0 and Cy = Cip 40, ©
Ca(mw ,(0), where CG oy (0) s @ linear isomorphism h't€ — h'*€ (as well as
H*te > H*€) which does not affect any of the claims of the theorem.

Proposition (6.3.23)[245]: (i) If (¢, + ¢,) : D — D is sum of an analytic maps, and
Cipitp,) € S2(BMOA), then (48) holds (that is, m(E(,, +4,)) = 0)

(i) If (@1 + @;) € VMOA, then C iy +4,) € S2(VMOA) if (and only if) (48) holds.
Proof. (i) The argument is essentially contained in that of Proposition (6.3.20). In fact,
suppose that Mm(Ep,+9,) > 0, where E¢p 10,y = {€/CT9D 1 | (@ +
02)(e/®T9D)| = 1}. Then the proof of the case 0 < e < 1 of Proposition (6.3.20) gives
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a lacunary sequence (n,;.) and constants e > 0 so that in the H! — BMOA duality
pairing

=

PIRCERNCARLEE D A+ e + )
€=0 BMOA €=0

>14+e€)||1+€llpe

as well as || X2y (14 €)14e(@r + @) |l = (1 4+ 2€) - ||[1 + €[,z for all 14+€ =
((1+€)14¢) € £2. Since Cp, 1y, is bounded on BMOA it follows as before from
Paley’s theorem in BMOAthat C¢,, +4,) is bounded below on span{z™i+<: (1+¢€) €
N} =~ 2in BMOA.

(i) Recall that C,, 4,y : VMOA — VMOAf (¢, + ¢,) € VMOA, see e.g. [123].
Assume that m(E((pﬁ(pz)) = 0 and suppose to the contrary that there is a normalised
sequence (fi+e) © VMOA equivalent to the unit vector basis of (ii), for which

D 1+ 1icCprrpn (fisd)
€=0 BMOA

for all(1+6€)= ((1+€)14c) € £2 In particular, |[fize © (@1 + @2) llgmoa =1+
e > 0 for all (1 +¢€), while (fi;¢)is weak-null sequence in VMOA, so that f;,. —
0 uniformly on compact subsets of D ase — oo. Moreover, by the John—Nirenberg
inequality there is a uniform constant e > 0 so that

I f1+e © (1 + §0_2)2||4 ZS (1 + )l f1+e ° (201 ;" ©2)|lBmoas (1+¢€)€EN.
Let Eqppey = {e'0T02) | (@) + @,)(e'O1+02))| > i} for (1+¢€) € N. From

the above estimates and Holder’s inequality we get that

1

~ [T + €],z

Ifa (P14 @5 = Eqre lfn o (@1 + @2)|1?dm + f Ifn © (01 + @2)|?dm
T\E(1+e
12 (1+€)
< <j |fn ° ((pl + (p2)|4dm> /m(E(1+e))
Eite
; f fo o (01 + @2)|2dm.

T\E1+e
Since fT\EHE | © (@1 + @;)|?°dm — 0foreach (1 +¢)asn — oo, we obtain that

lim sup [Ify e (01 + @I} < (1 +€) /m(E<1+e))

for some constant € > 0 independent of (1 + €) € N. By letting € — oo and using that
m(E(g,+¢,)) = 0we deduce that lim I, o (¢1 + @)l =0.

By [69] there is a subsequence (f;,,._° (¢; + ¢2)) such that
~|I1 + €lf

D A+ OricCiprrpn Fansd)
€=0 BMOA

holds forall (1 +¢€) = ((1 +€)14¢) € (1 + €),. Obviously this contradicts (60).
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