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Abstract 

 

It is shown that composition operators on the Bloch space in 

polydiscs and on 𝜇-Bloch type spaces are dealt with. The weighted 

composition operators between µ- Bloch spaces on the unit ball, of 

𝐶0(𝑋) and on Maeda-Ogasawara spaces are considered. The compact 

and weakly compact operators on BMOA, on Bergman and µ-

Bergman spaces in the unit ball are studied. In addition the isometries 

between function spaces, on Banach-Stone theorem, atomic 

decomposition of µ-Bergman spaces in unitary space and strict 

singularity of Volterra-type integral operator on Hardy space are 

characterized. We show the linear isometries spaces of Lipschitz and 

vector-valued Lipschitz functions. The new properties, approximation 

numbers and rigidity of composition operators are discussed. 

  



IV 

 الخلاصة
 

تم التعامل مع إيضاح مؤثرات التركيب على فضاء بلوش في الأقراص 

. قمنا بأعتبار مؤثرات التركيب المرجحة 𝜇-البولي وعلى الفضاءات نوع بلوش

-وعلى فضاءات مايدا 𝐶0(𝑋)على كرة الوحدة و  𝜇-بين فضاءات بلوش

 BMOAاوقاساوارا. تمت دراسة مؤثرات التركيب الضعيفة والمتراصة على 

في كرة الوحدة. أضافة تم تشخيص  𝜇-وعلى فضاءات بيرجمان وبيرجمان

الذري  تفكيكستون وال - زوميتريس بين فضاءات الدالة وعلى مبرهنة باناخيلأا

-امل نوعكفي الفضاء الواحدي والشذوذية التامة لمؤثر الت 𝜇-لفضاءات بيرجمان

زوميتريس الخطية لدوال يفولتيرا على فضاء هاردي. أوضحنا فضاءات الأ

المتجة. قمنا بمناقشة الخصائص الجديدة وأعداد -قيمة ليبشيتزليبشيتز ودوال 

 التقريب والصلابة لمؤثرات التركيب.
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Introduction 

For Ω be a bounded Bergman domain in ℂ𝑛 (A domain Ω ⊂ ℂ𝑛 is called 

boanded Bergman domain if it is bounded and there exists a constant 𝐶 

depending only on Ω, such that 𝐻𝜓(𝑧)(𝐽𝜓(𝑧)𝑢, 𝐽𝜓(𝑧)𝑢) ≤ 𝐶𝐻𝑧(𝑢, 𝑢), for each 

𝑧 ∈ Ω, 𝑢 ∈ ℂ𝑛 and holomorphic serlf-map 𝜓 of Ω, where 𝐻𝑧(𝑢, 𝑢) denote the 

Bergman metric of Ω and 𝐽𝜓 the Jacobian of 𝜓) and 𝜙 a holomorphic self-map 

of Ω. Necessary and sufficient conditions are given for the weighted 

composition operator 𝑇𝜓,𝜙 to be bounded or compact from the space 𝛽𝜇 to 𝛽𝜈 

(or 𝛽𝜇,0 to 𝛽𝜈,0) on the unit ball of ℂ𝑛. 

Surjective isometries between some classical function spaces are 

investigated. We give a simple technical scheme which verifies whether any 

such isometry is given by a homeomorphism between corresponding Hausdorff 

compact spaces. We investigated for the isometries of 𝐶(𝑇)and for the 

holoorphic maps which are isometries for the Caratheodory-Kobayashi 

differential metric of 𝐵(𝑇).  

We give examples of results on composition operators connected with 

lens maps. The first two concern the approximation numbers of those operators 

acting on the usual Hardy space 𝐻2. We show that the approximation numbers 

of a compact composition operator on the Hardy space 𝐻2 or on the weighted 

Bergman spaces ℬ𝛼  of the unit disk can tend to 0 arbitrarily slowly, but that 

they never tend quickly to 0. Any analytic map 𝜙 of the unit disc 𝔻 into itself 

induces a composition operator 𝐶𝜙 on BMOA, mapping 𝑓 → 𝑓 ∘ 𝜙, where 

BMOA is the Banach space of analytic functions 𝑓 ∶ 𝔻 → ℂ whose boundary 

values have bounded mean oscillation on the unit circle. We show that 𝐶𝜙 is 

weakly compact on BMOA precisely when it is compact on BMOA, thus 

solving a question initially posed by Tjani and by Bourdon, Cima and Matheson 

in the special case of VMOA.  

Let µ be a normal function on [0, 1). The atomic decomposition of the µ-

Bergman space in the unit ball 𝐵 is given for all 𝑝 >  0. Let 𝑝 > 0 and µ be a 

normal function on [0, 1), 𝜈(𝑟) = (1 − 𝑟2 )
1+

𝑛

𝑝µ(𝑟) for 𝑟 ∈ [0, 1). The bounded 

or compact weighted composition operator 𝑇𝜙,𝜓 from the µ-Bergman space 

𝐴𝑝(µ) to the normal weight Bloch type space 𝛽𝜈 in the unit ball is characterized. 

The briefly sufficient and necessary condition that the composition operator 𝐶𝜙 

is compact from 𝐴𝑝 (µ) to 𝛽𝜈 is given.  



VI 

We state a Lipschitz version of a known Holsztyński’s theorem on linear 

isometries of 𝐶(𝑋)-spaces. Let Lip(𝑋) be the Banach space of all scalar-valued 

Lipschitz functions 𝑓 on a compact metric space 𝑋 endowed with the norm 

‖𝑓‖ = max{‖𝑓‖∞, 𝐿(𝑓)}, where 𝐿(𝑓) is the Lipschitz constant of 𝑓. Every 

Archimedean Riesz space can be embedded as an order dense subspace of some 

𝐶∞(𝑋), the Riesz space of all extended continuous functions on a Stonean space 

𝑋, called its Maeda–Ogasawara space. Furthermore, it is a fact that every Riesz 

homomorphism between spaces of ordinary continuous functions on compact 

Hausdorff spaces is a weighted composition operator.  

We show that the Volterra-type integral operator 𝑇𝑔𝑓(𝑧) =

∫ 𝑓(𝜁)
𝑧

0
𝑔(𝜁)𝑑𝜁, 𝑧 ∈  𝐷, defined on the Hardy spaces 𝐻𝑝 fixes an isomorphic 

copy of 𝑝 if it is not compact. In particular, the strict singularity of 𝑇𝑔 coincides 

with its compactness on spaces 𝐻𝑝. Let 𝜑 be an analytic map taking the unit 

disk 𝔻 into itself. We establish that the class of composition operators 𝑓 →
𝐶𝜑(𝑓) = 𝑓 ∘ 𝜑 exhibits a rather strong rigidity of non-compact behaviour on the 

Hardy space 𝐻𝑝, for 1 ≤ 𝑝 < ∞ and 𝑝 ≠ 2. Our main result is the following 

trichotomy, which states that exactly one of the following alternatives holds: (i) 

𝐶𝜑 is a compact operator 𝐻𝑝 → 𝐻𝑝, (ii) 𝐶𝜑 fixes a (linearly isomorphic) copy of 

ℓ𝑝 in 𝐻𝑝, but 𝐶𝜑 does not fix any copies of ℓ2 in 𝐻𝑝, (iii) 𝐶𝜑 fixes a copy of ℓ2 

in 𝐻𝑝. Moreover, in case (iii) the operator 𝐶𝜑 actually fixes a copy of 𝐿𝑝(0, 1) 

in 𝐻𝑝 provided 𝑝 > 1.  
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Chapter 1 

Compact and Weighted Composition Operators 

We show that the composition operator 𝐶𝜙 induced by 𝜙 is always bounded on the 

Bloch space 𝛽(Ω). For Ω = 𝑈𝑛 the unit polydisc of ℂ𝑛, we give a necessary and sufficient 

condition for 𝐶𝜙 to be compact 𝛽(𝑈𝑛). Under a mild condition we show that a 

composition operator 𝐶𝜙 is compact on the Bergman space 𝐴𝛼
𝑝

 of the open unit ball in ℂ𝑛 

if and only if 
1−|𝑧|

1−|𝜙(𝑧)|
→ 0 as |𝑧| → 1−. 

Section (1.1): Bloch Space in Polydiscs 

       Let 𝛺 be a bounded domain in ℂ𝑛.The class of all holomorphic functions with domain 

𝛺 will be denoted by 𝐻(𝛺). If 𝜙 holomorphic maps 𝛺 into itself, the composition operator 

𝐶𝜙 induced by 𝜙 is defined by 

(𝐶𝜙𝑓)(𝑧) = 𝑓(𝜙(𝑧)), 

for 𝑧 in 𝛺 and 𝑓 ∈  𝐻(𝛺). 
       Let 𝐾(𝑧, 𝑧) be the Bergman kernel function of 𝛺, the Bergman metric 𝐻𝑧(𝑢, 𝑢) in 𝛺 is 

defined by 

𝐻𝑧(𝑢, 𝑢) =
1

2

𝜕2 log𝐾(𝑧, 𝑧)

𝜕𝑧𝑙𝜕𝑧�̅�
𝑢𝑙�̅�𝑘 ,                                  (1) 

where 𝑧 ∈ 𝛺 and 𝑢 =  ( 𝑢1, . . . . , 𝑢𝑛) ∈ ℂ
𝑛. 

       Following Timoney [3], we say that 𝑓 ∈ 𝐻(𝛺) is in the Bloch space 𝛽(𝛺), if 
‖𝑓‖𝛽(𝛺) = sup

𝑧∈𝛺
𝑄𝑓(𝑧) < ∞,                                           (2) 

where 

𝑄𝑓(𝑧) = sup{
|𝛻𝑓(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

: 𝑢 ∈ ℂ𝑛 − {0}}, 

and 𝛻𝑓(𝑧) = ((𝜕𝑓(𝑧) 𝜕𝑧1⁄ ),… , (𝜕𝑓(𝑧) 𝜕𝑧𝑛⁄ )), 𝛻𝑓(𝑧)𝑢 = ∑
𝜕𝑓(𝑧)

𝜕𝑧1

𝑛
𝑙=1 𝑢𝑙. 

A domain 𝛺 is called bounded Bergman domain if 𝛺 is bounded and there exists a 

constant 𝐶 depending only on 𝛺, such that 

𝐻𝜙(𝑧)(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢) ≤ 𝐶𝐻𝑧(𝑢, 𝑢),                       (3) 

for each 𝑧 ∈ 𝛺, 𝑢 ∈ ℂ𝑛 and holomorphic self-map of 𝛺, where 𝐻𝑧(𝑢, 𝑢) denotes the 

Bergman metric of 𝛺, 𝐽𝜙(𝑧)𝑢 = ((𝜕𝜙𝑙(𝑧) 𝜕𝑧𝑘⁄ ))
1≤𝑙,𝑘≤𝑛

 denotes the Jacobian matrix 

of 𝜙 and 𝐽𝜙(𝑧)𝑢 denotes a vector, which 𝑙th component is (𝐽𝜙(𝑧)𝑢)𝑙 =
∑ (𝜕𝜙𝑙(𝑧) 𝜕𝑧𝑘⁄ )𝑢𝑘
𝑛
𝑘=1 , 𝑙 = 1,2,… , 𝑛. 

The goal of the study composition operators will be to answer the question when 𝐶𝜙 

will be a bounded or compact operator on Bloch space 𝛽(𝛺). 
Madigan and Matheson [I] studied the problem on the Bloch space 𝛽(𝛺) on the unit 

disk 𝑈. They proved that 𝐶𝜙, is always bounded on 𝛽(𝑈), they also gave the sufficient and 

necessary conditions that 𝐶𝜙 is compact on 𝛽(𝑈). 

We show that 𝐶𝜙 is always bounded on 𝛽(Ω), where Ω is a bounded Bergman 

domain in ℂ𝑛. For Ω = 𝑈𝑛 the unit polydisc of ℂ𝑛,we give a sufficient and necessary 

condition that the composition operator 𝐶𝜙, is compact on 𝛽(𝑈𝑛) Some new methods and 

techniques have been used because of the difference between one complex variable and 

several complex variables. 
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Theorem (1.1.1)[1]: Let 𝛺 be a bounded Bergman domain in ℂ𝑛 and 𝜙 a holomorphic 

self-map of 𝛺. Then 𝐶𝜙 is bounded on 𝛽(𝛺). 

Theorem (1.1.2)[1]: Let 𝑈𝑛 be the unit polydisc of ℂ𝑛.If 𝜙 holomorphic maps 𝑈𝑛 into 

itself, then 𝐶𝜙 is compact on 𝛽(𝑈𝑛) if and only if for every 𝜀 >  0, there exists a 𝛿 >  0, 

such that 
𝐻𝜙(𝑧)(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧(𝑢, 𝑢)
< 𝜀, (4) 

For all 𝑢 ∈ ℂ𝑛{0} whenever 𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝑈𝑛) < 𝛿. 

When 𝑛 = 1, the Bergman metric of the unit disk 𝑈 is 𝐻𝑧(𝑢, 𝑢) = (|𝑢
2| (1 − |𝑧|2)2⁄ ), 𝑧 ∈

𝑈, 𝑢 ∈ ℂ. Hence 

𝐻𝜙(𝑧)(𝜙
′(𝑧)𝑢, 𝜙′(𝑧)𝑢)

𝐻𝑧(𝑢, 𝑢)
= {

1 − |𝑧|2

1 − |𝜙(𝑧)|2
}

2

 |𝜙′(𝑧)|2 

where 𝜙 is a holomorphic self-map from 𝑈 to 𝑈 Thus. by Theorem (1.1.2), we can also 

obtain Theorem (1.1.2) in [2] . 

       In what follows, 𝛺 always denotes a bounded Bergman domain in ℂ𝑛, and 𝑈𝑛 the unit 

polydisc in ℂ𝑛. 𝜙 holomorphic maps 𝛺 or 𝑈𝑛 into itself and 𝐶 is a positive constant not 

necessary the same at each occurence. 

       In order to prove Theorem (1.1.1) and Theorem (1.1.2), we need the following 

Lemmas. 

By the Bergman distance in 𝛽(𝛺) and Montel's Theorem, according to the definition of 

compact operators, it is easy to prove the following Lemma which is a characterization of 

compactness of composition operators 𝐶𝜙 in terms of sequential convergence, we omit the 

details. 

Lemma (1.1.3)[1]: 𝐶𝜙 is compact on 𝛽(𝛺) if and only if for any bounded sequence {𝑓𝑘} in 

,𝛽(𝛺) which converges to zero uniformly on compact subsets of 𝛺, we have ‖𝑓𝑘 ∘
𝜙‖𝛽(𝛺) → 0, 𝑎𝑠  𝑘 → ∞. 

Lemma (1.1.4)[1]: let 𝐹(𝑧) = (1 − 𝑧/1 − 𝜆𝑧). If 0 < 𝜆 < 1, |𝑧| ≤ 1 then  

|𝐹(𝑧)| < 2. 
Proof. Since 0 < 𝜆 <  1, |1 − 𝜆𝑧| ≥ 1 − 𝜆|𝑧| ≥ 1 − 𝜆 > 0, it follows that 

|𝐹(𝑧)| = |
1 − 𝑧

1 − 𝜆𝑧
| = |

(1 − 𝜆𝑧) − (1 − 𝜆)𝑧

1 − 𝜆𝑧
| 

= |1 − 𝑧
1 − 𝜆

1 − 𝜆𝑧
| ≤ 1 + (1 − 𝜆)

1

1 − |𝜆𝑧|
< 2. 

The desired inequality follows. 

Lemma (1.1.5)[1]: Let 𝐺(𝑧) = √1 − 𝑧 + √1 − 𝜆𝑧. If 0 < 𝜆 < 1, |𝑧| < 1, then  

|𝐺(𝑧)| ≥ √2(1 − |𝑧|). 

Proof. We write 𝑧 =  𝑥 + 𝑖𝑦, 1 −  𝑧 =  𝑑1𝑒
𝑖𝜃1 , 1 − 𝜆𝑧 =  𝑑2𝑒

𝑖𝜃2, where 𝑑1 =
|1 − 𝑧|, 𝜃1 = arg(1 − 𝑧) , 𝑑2 = |1 − 𝜆𝑧|, 𝜃2 = arg(1 − 𝜆𝑧). 
It is clear that 𝜃1 = arctan(𝑦 1⁄ − 𝑥), 𝜃2 = arctan(𝑦/1 − 𝜆𝑥), 1 −  𝑥 >  0, 1 − 𝜆𝑥 > 0, 

so 

−𝜋 2⁄ ≤ 𝜃1 ≤ 𝜋 2⁄ , −𝜋 2⁄ ≤ 𝜃2 ≤ 𝜋 2⁄  

furthermore 

−𝜋 2⁄ ≤
𝜃1 − 𝜃2
2

≤ 𝜋 2⁄ . 
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𝐺(𝑧) = √1 − 𝑧 + √1 − 𝜆𝑧 = √𝑑1𝑒
𝑖(𝜃1 2⁄ ) +√𝑑2𝑒

𝑖(𝜃2 2⁄ )

= (√𝑑1 cos
𝜃2
2
+ √𝑑2 cos

𝜃2
2
) + 𝑖 (√𝑑1 sin

𝜃1
2
+ √𝑑2 sin

𝜃2
2
) 

|𝐺(𝑧)| = √𝑑1 + 𝑑2 + 2√𝑑1√𝑑2 cos
𝜃1 − 𝜃2
2

≥ √𝑑1 + 𝑑2 = √|1 − 𝑧| + |1 − 𝜆𝑧|

≥ √2(1 − |𝑧|). 
The proof of this Lemma is completed. 

       Using the chain rule, we get 

∇(𝑓 ∘ 𝜙)(𝑧) = ∇(𝑓)(𝜙(𝑧))𝐽𝜙(𝑧) 

if 𝑢 ∈ ℂ𝑛 − {0} and 𝐽𝜙(𝑧)𝑢 =  0, from the above equality, it follows that ∇(𝑓 ∘
𝜙)(𝑧)𝑢 =  0 . 
       If 𝑢 ∈ ℂ𝑛 − {0} and 𝐽𝜙(𝑧)𝑢 ≠ 0, 

∇(𝑓 ∘ 𝜙)(𝑧)𝑢

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

=
∇(𝑓)(𝜙(𝑧))𝐽𝜙(𝑧)𝑢

𝐻
𝜙(𝑧)
(1 2⁄ )(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

×
𝐻𝜙(𝑧)
(1 2⁄ )(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

. 

Hence 

𝑄𝑓∘𝜙(𝑧) = sup{
|∇(𝑓 ∘ 𝜙)(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

: 𝑢 ∈ ℂ𝑛 − {0}} 

= sup {
|∇(𝑓 ∘ 𝜙)(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

: 𝑢 ∈ ℂ𝑛 − {0}, 𝐽𝜙(𝑧)𝑢 ≠ 0} 

≤ 𝑄𝑓(𝜙(𝑧)) sup{
𝐻𝜙(𝑧)
(1 2⁄ )(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

: 𝑢 ∈ ℂ𝑛 − {0}}.              (5) 

𝑄𝑓∘𝜙(𝑧) ≤ 𝐶𝑄𝑓(𝜙(𝑧)) 

so 

‖𝐶𝜙(𝑓)‖𝛽(𝛺)
= ‖𝑓 ∘ 𝜙‖𝛽(𝛺) = sup

𝑧∈𝛺
𝑄𝑓∘𝜙(𝑧) ≤ 𝐶 sup

𝑧∈𝛺
𝑄𝑓(𝜙(𝑧)) ≤ 𝐶‖𝑓‖𝛽(𝛺). 

It means that 𝐶𝜙 is bounded on 𝛽(𝛺). Theorem (1.1.1) is proved. 

Lemma (1.1.6)[1]: If 𝜙 ∶  𝛺 → 𝛺 is a holomorphic self-map, where 𝛺 is a bounded 

Bergman domain in ℂ𝑛.Then 𝐶𝜙 is compact on 𝛽(𝛺) if for every 𝜀 >  0, there exists a 

𝛿 >  0, such that 

𝐻𝜙(𝑧)(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧(𝑢, 𝑢)
< 𝜀, 

For all 𝑢 ∈ ℂ𝑛 − {0} whenever 𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝛺) < 𝛿. 
Proof. By Lemma (1.1.3), it is enough to show that if {𝑓𝑘} is a bounded sequence in 𝛽(𝛺) 
which converges to zero uniformly on compact subsets of 𝛺, then ‖𝑓𝑘 ∘ 𝜙‖𝛽(𝛺) → 0 as 

𝑘 → ∞. 

       Let 𝑀 = ‖𝑓𝑘‖𝛽(𝛺), for given 𝜀 >  0, there exists a 𝛿 >  0, such that 

𝐻𝜙(𝑧)(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧(𝑢, 𝑢)
< (

𝜀

𝑀
)
2

,                                          (6) 

For all 𝑢 ∈ ℂ𝑛 − {0} whenever 𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝛺) < 𝛿. 
𝑓𝑘 ∈ 𝛽(𝛺), so (5) gives  
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𝑄𝑓𝑘∘𝜙(𝑧) ≤ 𝑄𝑓𝑘(𝜙(𝑧)) sup{[
𝐻𝜙(𝑧)(𝐽𝜙(𝑧)𝑢, 𝐽𝜙(𝑧)𝑢)

𝐻𝑧(𝑢, 𝑢)
]

(1 2⁄ )

: 𝑢 ∈ ℂ𝑛 − {0}}.  (7) 

Combining (6) and (7), we have 

𝑄𝑓𝑘∘𝜙(𝑧) < 𝜀,                                      (8) 

for dist(𝜙(𝑧), 𝜕𝛺) < 𝛿. 

       On the other hand, it is easy to see that 

inf {𝐻𝑤
(1 2⁄ )(𝑢, 𝑢): |𝑢| = 1, 𝑑𝑖𝑠𝑡(𝑤, 𝜕𝛺) ≥ 𝛿} = 𝑚 > 0. 

So 
|∇(𝑓𝑘)(𝑤)𝑢|

𝐻𝑤
(1 2⁄ )(𝑢, 𝑢)

=
|∇(𝑓𝑘)(𝑤)||𝑢|

𝐻𝑤
(1 2⁄ )(𝑢, 𝑢)

=
|∇(𝑓𝑘)(𝑤)|

𝐻𝑤
(1 2⁄ )

((
𝑢
|𝑢|
) , (

𝑢
|𝑢|
))

≤
|∇(𝑓𝑘)(𝑤)|

𝑚
         (9) 

if 𝑑𝑖𝑠𝑡(𝑤, 𝜕𝛺) ≥ 𝛿. Now the hypothesis that {𝑓𝑘} converges to zero uniformly on compact 

subsets of 𝛺 implies 𝑄𝑓𝑘(𝑤) → 0 uniformly for 𝑑𝑖𝑠𝑡(𝑤, 𝜕𝛺) ≥ 𝛿 as 𝑘 → ∞. So by (3) and 

(9), (7) gives that for large enough 𝑘, 

𝑄𝑓𝑘∘𝜙(𝑧) ≤ 𝐶𝑄𝑓𝑘(𝜙(𝑧)) < 𝜀,                                            (10) 

if 𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝛺) ≥ 𝛿. 

It follows from (8) and (10) that ‖𝑓𝑘 ∘ 𝜙‖𝛽(𝛺) < 𝜀 for large enough 𝑘.  

The compactness of 𝐶𝜙 on 𝛽(𝛺) follows by Lemma (1.1.3). 

We will prove Theorem (1.1.2) in the following. 

It is obvious that the sufficiency of condition (4) has been proved by Lemma (1.1.6), 

so we only need to prove the condition (4) is necessary. 

       Suppose 𝐶𝜙 is compact on 𝛽(𝑈𝑛) and the condition (4) fails, then there exists a 

sequence  {𝑧′} in 𝑈𝑛 with 𝜙(𝑧′) → 𝜕𝑈𝑛, as 𝑗 → ∞,𝑢𝑗 ∈ ℂ𝑛 − {0},  such that 

𝐻𝜙(𝑧𝑗)(𝐽𝜙(𝑧
𝑗)𝑢𝑗 , 𝐽𝜙(𝑧𝑗)𝑢𝑗)

𝐻𝑧𝑗(𝑢
𝑗 , 𝑢𝑗)

≥ 𝜀0                               (11) 

for all 𝑗 =  1, 2 , . . . . 

       Using the condition (1l), we will construct a sequence of functions {𝑓𝑗} satisfying the 

following three conditions: 

   (i) {𝑓𝑗} is a bounded sequence in 𝛽(𝑈𝑛); 

   (ii) {𝑓𝑗} tends to zero uniformly on coiiipaci subsets of 𝑈𝑛, 

   (iii)     ‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
↛ 0,as 𝑗 → ∞. 

       This contradicts the compactness of 𝐶𝜙 by Lemma (1.1.3). 

       To construct the sequence of {𝑓𝑗}, we first assume that 

𝜙(𝑧𝑗) = 𝑟𝑗𝑒1, 𝑗 = 1,2,…, 

where 𝑒1  =  (1,0, . . . ,0), the 1th coordinate is 1 and the others are 0.  

       It is clear that 0 <  𝑟𝑗  <  1. From 𝜙(𝑧𝑗) → 𝜕𝑈𝑛, we know 𝑟𝑗 → 1, as 𝑗 → ∞. Denote 

𝐽(𝜙(𝑧′)) = 𝑤𝑗. 
       It is well known that the Bergman metric of 𝑈𝑛 

𝐻𝑧(𝑢, 𝑢) = ∑
|𝑢𝑘|

2

(1 − |𝑧𝑘|
2)2

𝑛

𝑘=1

, 
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where 𝑧 ∈ 𝑈𝑛 and 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ ℂ
𝑛. So 

𝐻𝜙(𝑧𝑗)(𝑤
𝑗 , 𝑤𝑗) =

|𝑤1
𝑗
|
2

(1 − 𝑟𝑗
2)
2 +∑|𝑤𝑘

𝑗
|
2

𝑛

𝑘=2

,                          (12) 

We construct the functions according to two different cases: 

Case 1. If tor some 𝑗, 

∑|𝑤𝑘
𝑗
|
2

𝑛

𝑘=2

≤
|𝑤1

𝑗
|
2

(1 − 𝑟𝑗
2)
2 ,                                             (13) 

then set 

𝑓𝑗(𝑧) = log(1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1) − log(1 − 𝑧1)                       (14) 

Where 𝑎 is any positive number. 

Case 2. If for some 𝑗, 

∑|𝑤𝑘
𝑗
|
2

𝑛

𝑘=2

>
|𝑤1

𝑗
|
2

(1 − 𝑟𝑗
2)
2 ,                                             (15) 

then set 

𝑓𝑗(𝑧) = (∑𝑒−𝑖𝜃𝑘
𝑗

𝑧𝑘

𝑛

𝑘=2

)√1 − 𝑧1

(

 
1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

−
1

√1 − 𝑧1
)

 ,        (16) 

where 𝑎 is any positive number, and 𝜃𝑘
𝑗
= arg𝑤𝑘

𝑗
, 𝑘 =  2,3, . . . , 𝑛. If 𝑤𝑘

𝑗
 =  0 for some 𝑘 

replace the corresponding term 𝑒−𝑖𝜃𝑘
𝑗

𝑧𝑘 by 0. 

       First we prove that the functions defined by (14) satisfy the conditions (i), (ii) and 

(iii). 

       By (14), we know 

𝜕𝑓𝑗
𝜕𝑧𝑘

= 0(2 ≤ 𝑘 ≤ 𝑛),    
𝜕𝑓𝑗
𝜕𝑧1

=
1

1 − 𝑧1
−

𝑒−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
 

|∇𝑓𝑗(𝑧)𝑢| = |
𝜕𝑓𝑗
𝜕𝑧1

𝑢1 +
𝜕𝑓𝑗
𝜕𝑧2

𝑢2 +⋯+
𝜕𝑓𝑗
𝜕𝑧𝑛

𝑢𝑛| = |(
1

1 − 𝑧1
−

𝑒−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
)𝑢1|, 

|∇𝑓𝑗(𝑧)𝑢| =
|(1 1⁄ − 𝑧1) − (𝑒

−𝑎(1−𝑟𝑗) 1⁄ − 𝑒−𝑎(1−𝑟𝑗)𝑧1)||𝑢1|

(∑ (|𝑢𝑙|
2 (1 − |𝑧𝑙|

2)2⁄ )𝑛
𝑙=1 )1/2

≤
|(1 1⁄ − 𝑧1) − (𝑒

−𝑎(1−𝑟𝑗) 1⁄ − 𝑒−𝑎(1−𝑟𝑗)𝑧1)||𝑢1|

(|𝑢1| 1 − |𝑧1|⁄ )2

= (1 − |𝑧1|
2) |

1

1 − 𝑧1
−

𝑒−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
|

≤ (1 − |𝑧1|
2) (

1

1 − |𝑧1|
+

1

1 − |𝑧1|
) = 2(1 + |𝑧1|) ≤ 4 

so  

‖𝑓𝑗‖𝛽(𝑈𝑛) = sup𝑧∈𝑈𝑛
𝑄𝑓𝑗 (𝑧) = sup

𝑧∈𝑈𝑛

sup{
|∇𝑓𝑗(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

, 𝑢 ∈ ℂ𝑛 − {0}} ≤ 4, 

If means that 𝑓𝑗 ∈ 𝛽(𝑈
𝑛) and {𝑓𝑗} is bounded on 𝛽(𝑈𝑛). 
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       Let 𝐸 be a compact subset of 𝑈𝑛, it is clear that there exists a 𝜌(0 < 𝜌 < 1) such that  

|𝑧1| ≤ 𝜌,                                           (17) 
for every 𝑧 =  (𝑧1, . . . , 𝑧𝑛) ∈ 𝐸. 

𝑓𝑗(𝑧) = log(1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1) − log(1 − 𝑧1) = log

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
1 − 𝑧1

. 

Since 

|
1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

1 − 𝑧1
− 1| = |

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1 − 1 + 𝑧1
1 − 𝑧1

| 

= |
𝑧1

1 − 𝑧1
| |1 − 𝑒−𝑎(1−𝑟𝑗)| 

≤
1

1 − 𝜌
(1 − 𝑒−𝑎(1−𝑟𝑗)) → 0, 

as 𝑗 → ∞. So (1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1 1 − 𝑧1⁄ ) converges to 1 uniformly on compact subset 𝐸, 

that is, 𝑓𝑗(𝑧) = log(1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1 1 − 𝑧1⁄ ) converges to zero uniformly on compact 

subsets of 𝑈𝑛. 

       We now prove that ‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
↛ 0. In fact, by (1 l), (12) and (13), we get 

‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
= ‖𝑓𝑗 ∘ 𝜙‖𝛽(𝑈𝑛) ≥ 𝑄𝑓𝑗∘𝜙

(𝑧𝑗) 

≥
|∇(𝑓𝑗 ∘ 𝜙)(𝑧

𝑗)𝑢𝑗|

𝐻
𝑧𝑗
(1 2⁄ )(𝑢, 𝑢)

=
|∇(𝑓𝑗)(𝜙(𝑧

𝑗))𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝑧𝑗
(1 2⁄ )(𝑢, 𝑢)

 

=
|∇(𝑓𝑗)(𝜙(𝑧

𝑗))𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝜙(𝑧𝑗)

1 2⁄ (𝐽𝜙(𝑧𝑗)𝑢𝑗 , 𝐽𝜙(𝑧𝑗)𝑢𝑗)
{
𝐻𝜙(𝑧𝑗)(𝐽𝜙(𝑧

𝑗)𝑢𝑗, 𝐽𝜙(𝑧𝑗)𝑢𝑗)

𝐻𝑧𝑗(𝑢
𝑗 , 𝑢𝑗)

}

(1 2⁄ )

 

≥ √𝜀0
|∇(𝑓𝑗)(𝑟𝑗𝑒1)𝑤

𝑗|

𝐻𝑟𝑗𝑒1
(1 2⁄ )(𝑤𝑗, 𝑤𝑗)

= √𝜀0
|(𝜕𝑓𝑗/𝜕𝑧1)(𝑟𝑗𝑒1)𝑤1

𝑗
|

((|𝑤1
𝑗|2 (1 − 𝑟𝑗

2)2⁄ ) + ∑ |𝑤𝑘
𝑗|2𝑛

𝑘=2 )(1 2⁄ )
 

≥ √
𝜀0
2

|(𝜕𝑓𝑗/𝜕𝑧1)(𝑟𝑗𝑒1)𝑤1
𝑗
|

(|𝑤1
𝑗| 1 − 𝑟𝑗

2⁄ )
 

= √
𝜀0
2
(1 − 𝑟𝑗

2) |
1

1 − 𝑟𝑗
−

𝑒−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
| 

≥ √
𝜀0
2
(1 −

(1 − 𝑟𝑗)𝑒
−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
), 

From the fact 

lim
𝑗→∞

[1 −
(1 − 𝑟𝑗)𝑒

−𝑎(1−𝑟𝑗)

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
] =

𝑎

𝑎 + 1
≠ 0, 

we know ‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
↛ 0, as 𝑗 → ∞. 

Now we prove that the functions defined by (16) also satisfy the conditions (i), (ii) and 

(iii). 

In fact, 
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𝜕𝑓𝑗
𝜕𝑧1

=
1

2
(∑𝑒−𝑖𝜃𝑘

𝑗

𝑧𝑘

𝑛

𝑘=2

)

[
 
 
 

√1 − 𝑧1 (
𝑒−𝑎(1−𝑟𝑗)

(1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1)
(3 2⁄ )

−
1

(1 − 𝑧1)
(3 2⁄ )

)

−
1

√1 − 𝑧1
(

 
1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

−
1

√1 − 𝑧1
)

 

]
 
 
 

 

𝜕𝑓𝑗
𝜕𝑧𝑘

= 𝑒−𝑖𝜃𝑘
𝑗

√1 − 𝑧1

(

 
1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

−
1

√1 − 𝑧1
)

 , 

|∇𝑓𝑗(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

=
|∑ (𝜕𝑓𝑗 𝜕𝑧𝑘⁄ )𝑢𝑘
𝑛
𝑘=2 + (𝜕𝑓𝑗 𝜕𝑧1⁄ )𝑢1|

(∑ (|𝑢𝑙|
2 (1 − |𝑧𝑙|

2)2⁄ )𝑛
𝑙=1 )(1/2)

 

≤
∑ |(𝜕𝑓𝑗 𝜕𝑧𝑘⁄ )||𝑢𝑘|
𝑛
𝑘=2

(∑ (|𝑢𝑙|
2 (1 − |𝑧𝑙|

2)2⁄ )𝑛
𝑙=1 )(1 2⁄ )

+
|(𝜕𝑓𝑗 𝜕𝑧1⁄ )||𝑢1|

(∑ (|𝑢𝑙|
2 (1 − |𝑧𝑙|

2)2⁄ )𝑛
𝑙=1 )(1 2⁄ )

 

≤∑(1 − |𝑧𝑘|
2) |
𝜕𝑓𝑗
𝜕𝑧𝑘
|

𝑛

𝑘=2

+ (1 − |𝑧1|
2) |
𝜕𝑓𝑗
𝜕𝑧1
| 

≤∑|√
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
− 1|

𝑛

𝑘=2

+
𝑛 − 1

2
(1 − |𝑧1|

2) 

× |(
𝑒−𝑎(1−𝑟𝑗)√1 − 𝑧1

(1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1)
(3 2⁄ )

−
1

1 − 𝑧1
) −

1

1 − 𝑧1
(√

1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
− 1)| 

≤ (𝑛 − 1)(√
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
+ 1) + (𝑛 − 1)(1 − |𝑧1|) 

× [(
1

1 − |𝑧1|
√

1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
+

1

1 − |𝑧1|
) +

1

1 − |𝑧1|
(√|

1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
| + 1)] 

= (𝑛 − 1)(√|
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
| + 1) 

+2(𝑛 − 1)(√|
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
| + 1) 

= 3(𝑛 − 1)(√|
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
| + 1) 

If we choose 𝜆 = 𝑒−𝑎(1−𝑟𝑗), then 0 <  𝜆 <  1, it follows from Lemma (1.1.4) that 
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|
1 − 𝑧1

1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1
| < 2, 

|∇𝑓𝑗(𝑧)𝑢|

𝐻𝑧
(1 2⁄ )(𝑢, 𝑢)

< 3(𝑛 − 1)(√2 + 1), 

it means that 𝑓𝑗 ∈ 𝛽(𝑈
𝑛) and {𝑓𝑗}is bounded on 𝛽(𝑈𝑛). 

For the compact subset 𝐸 of 𝑈𝑛. By (16) 

𝑓𝑗(𝑧)    = (∑𝑒−𝑖𝜃𝑘
𝑗

𝑧𝑘

𝑛

𝑘=2

)
√1 − 𝑧1 −√1 − 𝑒

−𝑎(1−𝑟𝑗)𝑧1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

 

= (∑𝑒−𝑖𝜃1
𝑗

𝑧1

𝑛

𝑘=2

)
(𝑒−𝑎(1−𝑟𝑗) − 1)𝑧1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1 (√1 − 𝑧1 +√1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1)

. 

Since |𝑧1| < 1,0 < 𝜆 = 𝑒
−𝑎(1−𝑟𝑗) < 1,√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1 ≥ √1 − |𝑧1| , and from Lemma 

(1.1.5), it follow that  

|√1 − 𝑧1 + √1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1| ≥ √2(1 − 𝑧1) 

By (17), 1 − |𝑧1| ≥ 1 − 𝜌, thus  

|𝑓𝑗(𝑧)| ≤ (𝑛 − 1)
1 − 𝑒−𝑎(1−𝑟𝑗)

√1 − |𝑧1|√2(1 − |𝑧1|)
≤

𝑛 − 1

√2(1 − 𝜌)
(1 − 𝑒−𝑎(1−𝑟𝑗)), 

it is clear that lim
𝑗→∞

(1 − 𝑒−𝑎(1−𝑟𝑗)) = 0, thus {𝑓𝑗} converges to zero uniformly on compact 

subset 𝐸 of 𝑈𝑛. 

We now prove that‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
↛ 0. By ( l l ) , (12) and (15), we get 

‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
= ‖𝑓𝑗 ∘ 𝜙‖𝛽(𝑈𝑛) ≥ 𝑄𝑓𝑗∘𝜙

(𝑧𝑗) 

≥
|∇(𝑓𝑗 ∘ 𝜙)(𝑧

𝑗)𝑢𝑗|

𝐻
𝑧𝑗
(1 2⁄ )(𝑢, 𝑢)

=
|∇(𝑓𝑗)(𝜙(𝑧

𝑗))𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝑧𝑗
(1 2⁄ )(𝑢, 𝑢)

 

=
|∇(𝑓𝑗)(𝜙(𝑧

𝑗))𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝜙(𝑧𝑗)

1 2⁄ (𝐽𝜙(𝑧𝑗)𝑢𝑗 , 𝐽𝜙(𝑧𝑗)𝑢𝑗)
{
𝐻𝜙(𝑧𝑗)(𝐽𝜙(𝑧

𝑗)𝑢𝑗, 𝐽𝜙(𝑧𝑗)𝑢𝑗)

𝐻𝑧𝑗(𝑢
𝑗 , 𝑢𝑗)

}

(1 2⁄ )

 

≥ √𝜀0
|∇(𝑓𝑗)(𝑟𝑗𝑒1)𝑤

𝑗|

𝐻𝑟𝑗𝑒1
(1 2⁄ )(𝑤𝑗 , 𝑤𝑗)

= √𝜀0
|∑ (𝜕𝑓𝑗/𝜕𝑧𝑘)(𝑟𝑗𝑒1)𝑤𝑘

𝑗𝑛
𝑘=2 |

((|𝑤1
𝑗|2 (1 − 𝑟𝑗

2)2⁄ ) + ∑ |𝑤𝑘
𝑗
|
2

𝑛
𝑘=2 )

1 2⁄
 

≥ √
𝜀0
2

|∑ (𝜕𝑓𝑗/𝜕𝑧𝑘)(𝑟𝑗𝑒1)𝑤𝑘
𝑗𝑛

𝑘=2 |

(∑ |𝑤𝑘
𝑗
|
2

𝑛
𝑘=2 )

1 2⁄
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= √
𝜀0
2

√1 − 𝑟𝑗
2 |(1 (√1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗)⁄ − (1 (√1 − 𝑟𝑗)⁄ ))|∑ |𝑤𝑘

𝑗
|𝑛

𝑘=2

(∑ |𝑤𝑘
𝑗
|
2

𝑛
𝑘=2 )

1 2⁄
 

= √
𝜀0
2
|√

1 − 𝑟𝑗

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
− 1| = √

𝜀0
2
(1 − √

1 − 𝑟𝑗

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
) 

From the fact 

lim
𝑗→∞

1 − 𝑟𝑗

1 − 𝑒−𝑎(1−𝑟𝑗)𝑟𝑗
= lim
𝑟→1

1 − 𝑟

1 − 𝑒−𝑎(1−𝑟)𝑟
=

1

𝑎 + 1
, 

we know ‖𝐶𝜙𝑓𝑗‖𝛽(𝑈𝑛)
↛ 0, as 𝑗 → ∞. 

In general situation, set (𝑧𝑗) = (𝑡𝑗
1, 𝑡𝑗

2, … , 𝑡𝑗
𝑛) = ∑ 𝑡𝑗

𝑙𝑒𝑙
𝑛
𝑖=1  , where 𝑒𝑙 = (0, . . . , 1, . . . ,0), 

the 𝑙th coordinate is 1 and the others are 0. Since 𝜙(𝑡𝑖) → 𝜕𝑈𝑛, for some 𝑘, there exists a 

subsequence in {𝑡𝑗
𝑘} (we write still {𝑡𝑗

𝑘}) such that |𝑡𝑗
𝑘| → 1 as 𝑗 → ∞, without loss of 

generality, we may assume 𝑘 = 1.  Let 𝑟𝑗  = |𝑡𝑗
1|, 𝜃 = arg 𝑟𝑗 𝑟𝑗

𝑙 = 𝑒−𝑖𝜃𝑡𝑗
𝑙 , 2 ≤ 𝑙 ≤ 𝑛. Then 

0 < |𝑟𝑗
𝑙| = |𝑡𝑗

𝑙| < 1 ,0 < 𝑟𝑗 < 1 and 𝑟𝑗 → 1. 

Let 𝜓𝑗(𝑧) = (𝜓1
𝑗(𝑧),… , 𝜓𝑛

𝑗(𝑧)), where 𝜓𝑙
𝑗(𝑧) =  𝑒−𝑖𝜃(𝑧𝑙 − 𝑡𝑗

𝑙 1⁄ − 𝑡𝑗
−𝑙𝑧𝑙)(2 ≤ 𝑙 ≤ 𝑛) 

and 𝜓1
𝑗(𝑧) = 𝑒−𝑖𝜃𝑧1, then 

𝜓𝑗(𝜙(𝑧𝑗)) = 𝑟𝑗𝑒1. 

Set 𝑔𝑗 = 𝑓𝑗 ∘ 𝜓
𝑗, then  

|∇(𝑔𝑗)(𝜙(𝑧
𝑗))𝑤𝑗| = |∇(𝑓𝑗 ∘ 𝜓

𝑗)(𝜙(𝑧𝑗))𝑤𝑗| 

= |∇(𝑓𝑗)(𝜓
𝑗 ∘ 𝜙(𝑧𝑗))𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗| 

= |∇(𝑓𝑗)(𝑟𝑗𝑒1)𝐽𝜓
𝑗(𝜙(𝑧𝑗))𝑤𝑗|.                                            (18) 

It is well known that for 𝜓𝑗 ∈ 𝐴𝑢𝑡(𝑈𝑛), 

𝐻𝜓𝑗(𝑧)(𝐽𝜓
𝑗(𝑧)𝑢, 𝐽𝜓𝑗(𝑧)𝑢) = 𝐻𝑧(𝑢, 𝑢),                                (19) 

For each 𝑧 ∈ Ω. So 

𝐻𝜙𝑗(𝑧𝑗)(𝑤
𝑗 , 𝑤𝑗) = 𝐻𝜓𝑗∘𝜙(𝑧𝑗)(𝐽𝜓

𝑗(𝜙(𝑧𝑗))𝑤𝑗 , 𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗) 

= 𝐻𝑟𝑗𝑒𝑘(𝐽𝜓
𝑗(𝜙(𝑧𝑗))𝑤𝑗 , 𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗).                 (20) 

It follows from (18) and (20) that 

|∇(𝑔𝑗)(𝜙(𝑧
𝑗))𝑤𝑗|

𝐻
𝜙(𝑧𝑗)

(1 2⁄ )(𝑤𝑗 , 𝑤𝑗)
=

|∇(𝑓𝑗)(𝑟𝑗𝑒1)𝐽𝜓
𝑗(𝜙(𝑧𝑗))𝑤𝑗|

𝐻𝑟𝑗𝑒1
(1 2⁄ )(𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗 , 𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗)

 

=
|∇(𝑓𝑗)(𝑟𝑗𝑒1)𝑊

𝑗|

𝐻𝑟𝑗𝑒1
(1 2⁄ )(𝑊𝑗 ,𝑊𝑗)

,                                                  (21) 

Where 𝑊𝑗 = 𝐽𝜓𝑗(𝜙(𝑧𝑗)). 

‖𝐶𝜙𝑔𝑗‖𝛽(𝑈𝑛)
= ‖𝑔𝑗 ∘ 𝜙‖𝛽(𝑈𝑛) ≥ 𝑄𝑔𝑗∘𝜙

(𝑧𝑗) 

≥
|∇(𝑔𝑗 ∘ 𝜙)(𝑧

𝑗)𝑢𝑗|

𝐻
𝑧𝑗
1 2⁄ (𝑢𝑗 , 𝑢𝑗)

=
|∇(𝑔𝑗)(𝜙(𝑧

𝑗))𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝑧𝑗
1 2⁄ (𝑢𝑗, 𝑢𝑗)
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=
|∇(𝑔𝑗) (𝜙(𝑧

𝑗)) 𝐽𝜙(𝑧𝑗)𝑢𝑗|

𝐻
𝜙(𝑧𝑗)

1 2⁄ (𝐽𝜙(𝑧𝑗)𝑢𝑗 , 𝐽𝜙(𝑧𝑗)𝑢𝑗)
{
𝐻𝜙(𝑧𝑗)(𝐽𝜙(𝑧

𝑗)𝑢𝑗 , 𝐽𝜙(𝑧𝑗)𝑢𝑗)

𝐻𝑧𝑗(𝑢
𝑗 , 𝑢𝑗)

}

1
2

 

≥ √𝜀0
|∇(𝑔𝑗)(𝜙(𝑧

𝑗))𝑤𝑗|

𝐻
𝜙(𝑧𝑗)

1 2⁄ (𝑤𝑗 , 𝑤𝑗)
 

= √𝜀0
|∇(𝑓𝑗)(𝑟𝑗𝑒1)(𝐽𝜓

𝑗(𝜙(𝑧𝑗))𝑤𝑗)|

𝐻𝑟𝑗𝑒1
1 2⁄ (𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗 , 𝐽𝜓𝑗(𝜙(𝑧𝑗))𝑤𝑗)

 

= √𝜀0
|∇(𝑓𝑗)(𝑟𝑗𝑒1)𝑊

𝑗|

𝐻𝑟𝑗𝑒1
1 2⁄ (𝑊𝑗 ,𝑊𝑗)

.                                                                 (22) 

If for some 𝑗,√∑ |𝑊𝑘
𝑗
|
2

𝑛
𝑘=2 ≤ (|𝑊1

𝑗
| 1⁄ − 𝑟𝑗

2), then choose the functions {𝑓𝑗} defined by 

(14). If for some 𝑗, √∑ |𝑊𝑘
𝑗
|
2

𝑛
𝑘=2 > (|𝑊1

𝑗
| 1⁄ − 𝑟𝑗

2), then choose the functions {𝑓𝑗} defined 

by (16). 

Now we prove {𝑔𝑗 = 𝑓𝑗 ∘ 𝜓
𝑗} satisfies condition (i),(ii) and (iii). In fact, by (19), we have 

|∇(𝑔𝑗)(𝑧)𝑢|

𝐻𝑧
1 2⁄ (𝑢, 𝑢)

=
|∇(𝑓𝑗)(𝜓

𝑗(𝑧))𝐽𝜓𝑗(𝑧)𝑢|

𝐻
𝜓𝑗(𝑧)

1 2⁄ (𝐽𝜓𝑗(𝑧)𝑢, 𝐽𝜓𝑗(𝑧)𝑢)
≤ |𝑓𝑗|𝛽(𝑈𝑛) ≤ 𝑀. 

So |𝑔𝑗|𝛽(𝑈𝑛) ≤ 𝑀, {𝑔𝑗} is bounded on 𝛽(𝑈𝑛). 

For the compact subset 𝐸 of 𝑈𝑛. If 

𝑓𝑗(𝑧)  = log(1 − 𝑒
−𝑎(1−𝑟𝑗)𝑧1) − log(1 − 𝑧1) , 

then 

𝑔𝑗(𝑧)  = log(1 − 𝑒
−𝑎(1−𝑟𝑗)𝑒−𝑖𝜃𝑧1) − log(1 − 𝑒

−𝑖𝜃𝑧1) , 

similar to {𝑓𝑗}, {𝑔𝑗} tends to zero uniformly on compact subset 𝐸 of 𝑈𝑛. 

If  

𝑓𝑗(𝑧) = (∑𝑒−𝑖𝜃𝑙
𝑗

𝑧𝑙
𝑙≠𝑘

)√1 − 𝑧1

(

 
1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑧1

−
1

√1 − 𝑧1
)

 , 

𝑔𝑗(𝑧) = (∑𝑒−𝑖𝜃𝑘
𝑗

𝑧𝑘

𝑛

𝑘=2

)√1 − 𝑒−𝑖𝜃𝑧1

(

 
1

√1 − 𝑒−𝑎(1−𝑟𝑗)𝑒−𝑖𝜃𝑧1

−
1

√1 − 𝑒−𝑖𝜃𝑧1
)

 , 

similar to {𝑓𝑗}, {𝑔𝑗} also tends to zero uniformly on compact subset 𝐸 of 𝑈𝑛. 

By (22), similar to {𝑓𝑗}, we can prove that ‖𝐶𝜙𝑔𝑗‖𝛽(𝑈𝑛)
↛ 0, as 𝑗 → ∞.  

       This contradicts the compactness of 𝐶𝜙 by Lemma (1.1.3). Now we complete the 

proof of Theorem (1.1.2). 

Example (1.1.7)[1]: If 𝜓 ∈ 𝐴𝑢𝑡(𝑈𝑛), then 𝐶𝜓 is not compact on 𝛽(𝑈𝑛).In fact, it is easy 

to know from Theorem (1.1.2) and the well-known fact 

𝐻𝜓(𝑧)(𝐽𝜓(𝑧)𝑢, 𝐽𝜓(𝑧)𝑢) = 𝐻𝑧(𝑢, 𝑢). 
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Section (1.2): 𝝁-Bloch Spaces on the Unit Ball 

For 𝐵 denote the unit ball of 𝐶𝑛 and 𝐷 be the unit disc in the complex plane. The 

class of all holomorphic functions with a domain 𝐵 will be denoted by 𝐻(𝐵). 
       A positive continuous function 𝜇 on [0, 1) is normal if there are two constants 

0 <  𝑎 <  𝑏 such that (i) 𝜇(𝑟)(1 −  𝑟)−𝑎 is decreasing for 𝑟 ∈  [0, 1) and 𝜇(𝑟)(1 −
 𝑟)−𝑎  →  0 as 𝑟 →  1−; (ii) 𝜇(𝑟)(1 −  𝑟)−𝑏 is increasing for 𝑟 ∈  [0, 1) and 𝜇(𝑟)(1 −
 𝑟)−𝑏  →  ∞ as 𝑟 →  1−. 

       Let 𝜇 be normal on [0, 1).  𝑓 ∈  𝐻 (𝐵) is said to belong to the 𝜇-Bloch space 𝛽𝜇  if 

            

‖𝑓‖𝜇 = sup
𝑢∈𝐶𝑛−{0}
𝑧∈𝐵

𝜇(|𝑧|)|< 𝛻𝑓 (𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
= sup

𝑧∈𝐵

𝑢(|𝑧|)

1 − |𝑧|2
𝑄𝑓(𝑧) < ∞ 

and to the little 𝜇-Bloch space 𝛽𝜇,0  if 

lim
|𝑧|→1

sup
𝑢∈𝐶𝑛−{0}
𝑧∈𝐵

𝜇(|𝑧|)|< 𝛻𝑓 (𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
= 0 

where 𝛻𝑓 is the complex gradient of 𝑓 . It is well known that 𝛽𝜇 is a Banach space under 

the norm ‖𝑓‖𝛽𝜇 = |𝑓(0)|  + ‖𝑓‖𝜇, and that 𝛽𝜇,0 is a closed subspace of 𝛽𝜇. The normal 

function μ, as a weight, was usually used to define the mixed norm spaces before, for 

example [5]. When 𝜇(𝑟)  =  1 − 𝑟2 and 𝜇(𝑟)  =  (1 − 𝑟2)1−𝛼(0 <  𝛼 <
1

2
 )– two 

typical normal functions, the induced spaces 𝛽𝜇 are the Bloch space 𝛽 and Lipschitz space 

𝛬𝛼 respectively. And these spaces have been studied extensively. 

       Let 𝑋 and 𝑌 be two Banach spaces of functions holomorphic on 𝐵 and 𝜑 ∶  𝐵 →  𝐵 be 

holomorphic. For 𝜓 ∈  𝐻 (𝐵), one can define the weighted composition operator 𝑇𝜓,𝜑 

from 𝑋 to 𝑌 by 𝑇𝜓,𝜑(𝑓)  =  𝜓. 𝑓 ∘ 𝜑(𝑓 ∈  𝑋 ). 

       It is easy to see that an operator defined in this manner is linear. We can regard this 

operator as a generalization of a multiplication operator 𝑀𝜓 and a composition operator 

𝐶𝜑. In the complex plane, the behaviors of the operators 𝐶𝜑 and 𝑇𝜓,𝜑 on 𝛽1−𝑟2 or 𝛽(1−𝑟2)𝑝 

were studied in refs. [2]–[10]; and the main results in [11] was to characterize the 

boundedness of 𝐶𝜑 on 𝛽(1−𝑟2)log(1−𝑟2)−1 . In several complex variables cases, Shi and Luo, 

Zhou and Zeng got that the characterization on 𝜑 for which 𝐶𝜑 is bounded or compact on 

𝛽1−𝑟2 or 𝛽(1−𝑟2)𝑝 in the unit ball in. [1]–[13] respectively. And in the polydiscs, Zhou 

[14]−[15] studied the same problems. Hu [16] discussed the boundedness and compactness 

of 𝐶𝜑 from 𝛽𝜇 to 𝛽𝜈 in the polydiscs. But the sufficient and necessary conditions for 𝐶𝜑 to 

be bounded or compact from 𝛽𝜇 to 𝛽𝜈 on the unit ball have not been obtained up to now, 

even in the simplest case 𝜇(𝑟)  =  (1 − 𝑟2)𝑝, 𝜈(𝑟)  =  (1 − 𝑟2)𝑞. The main purposes are 

to solve the problem and generalize the known corresponding results on composition 

operators and pointwise multipliers on the Bloch type space and the little Bloch type 

space. 

       We will use the symbol 𝑐, 𝑐1, ⋯ to denote the finite positive numbers which do not 

depend on variables 𝑧, 𝑤 and may depend on some bounded quantities, being not 

necessarily the same at each occurrence. “𝐸 ≈  𝐹” is comparable, that is, there exist two 

positive constants 𝐴1 and 𝐴2 such that 𝐴1𝐸 ≤ 𝐹 ≤ 𝐴2𝐸. 
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Lemma (1.2.1)[4]: Let 𝜇 be normal on [0, 1) (suppose 𝑎  >
1

2
  when 𝑛  >   1) and 𝑓 ∈

 𝐻 (𝐵). Then (a) 𝑓 ∈  𝛽𝜇 if and only if sup
𝑧∈𝐵

𝜇(|𝑧|)|𝛻𝑓 (𝑧)|  <  ∞. Furthermore ‖𝑓‖𝛽𝜇 ≈

|𝑓(0)| + sup
𝑧∈𝐵

𝜇(|𝑧|)|𝛻𝑓 (𝑧)|. (b) 𝑓 ∈  𝛽𝜇,0 if and only if 𝜇(|𝑧|)|𝛻𝑓(𝑧)|  →  0 as |𝑧|  →  1. 

Proof. The proof is similar to that of Theorem 7.2 in [17]. 

Lemma (1.2.2)[4]: Let 𝜇 be normal on [0, 1). (a) If 𝑓 ∈  𝛽𝜇, then 

|𝑓(𝑧)| ≤ (1 +∫
1

𝜇(𝑡)
𝑑𝑡

|𝑧|

0

)‖𝑓‖𝛽𝜇(𝑧 ∈  𝐵). 

 (b) If 𝑓 ∈ 𝛽𝜇,0 and ∫
1

𝜇(𝑡)
𝑑𝑡

1

0
= ∞, then lim

|𝑧|→1

|𝑓(𝑧)|

∫ [𝜇(𝑡)]−1𝑑𝑡
1

0

= 0. 

Proof. By the definitions of 𝛽𝜇 and 𝛽𝜇,0, 𝑢(|𝑧|)𝛻𝑓(𝑧) ≤
𝑣(|𝑧|)

1−|𝑧|2
𝑄𝑓(𝑧) ≤ ‖𝑓‖𝛽𝜇(𝑧 ∈  𝐵) 

and the equality 

𝑓(𝑧)  =  𝑓(0) + ∫ < 𝛻𝑓(𝑡𝑧), 𝑧̅ > 𝑑𝑡
1

0

, 

we can obtain the results easily. 

Lemma (1.2.3)[4]: Let 𝜇 be normal on [0, 1) and 𝑔(𝜉) =  1 + ∑ 2𝑠 𝜉𝑛𝑠∞
𝑠=1 (𝜉 ∈  𝐷), 

where 𝑛𝑠 is the intgral part of (1 − 𝑟𝑠)
−1, 𝜇(𝑟𝑠)  =  2

−𝑠(𝑠 =  1, 2, . . . ). Then 

(i) 𝑔(𝑟) is strictly increasing with 𝑟 ∈  [0, 1) and inf
𝑟∈[0,1)

𝜇(𝑟)𝑔(𝑟) > 0, 

sup
𝜉∈𝐷

𝜇(|𝜉|)|𝑔(𝜉)| < ∞. 

 (ii) 𝜇(|𝑧|)|𝑔′(𝑟𝑧1)| = 𝑂 (
1

1 − 𝑟|𝑧1|
) for any 𝑧 =  (𝑧1, . . . , 𝑧𝑛)  ∈  𝐵 and 0 ≤ 𝑟 <  1. 

(iii) |∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑧1
0

| ≤ ∫ 𝑔(𝑡)𝑑𝑡
𝑟

0
≤ 𝑐{𝑔 (

1

2
)  +  ∫ 𝑔(𝑡) 𝑑𝑡

𝑟2

0
} for any 𝑧 =  (𝑧1, . . . , 𝑧𝑛)  ∈

𝐵 and √
1

2
<  𝑟 <  1.  

Proof. First, the definitions of 𝜇 and 𝑟𝑠 show that 𝑟𝑠 is strictly increasing and 
𝜇(𝑟𝑠+1)

(1 − 𝑟𝑠+1)
𝑏
≥

𝜇(𝑟𝑠)

(1 − 𝑟𝑠)
𝑏
, that is 

1 − 𝑟𝑠
1 − 𝑟𝑠+1

≥ 2
1
𝑏(𝑠 =  1, 2, … ). 

So 

lim
𝑠→∞

inf
𝑛𝑠+1
𝑛𝑠

= lim
𝑠→∞

inf
𝐼𝑛𝑡 [

1
1 − 𝑟𝑠+1

]

𝐼𝑛𝑡 [
1

1 − 𝑟𝑠
]
= lim
𝑠→∞

inf

1
1 − 𝑟𝑠+1
1

1 − 𝑟𝑠

≥ 2
1
𝑏 . 

This means that ∑ 2𝑠 𝜉𝑛𝑠∞
𝑠=1  is absolutely convergent on 𝐷. 

(i) The result was proved by Hu [16]. 

(ii) If 𝜌 =  𝑟|𝑧1| >  𝜇
−1 (

1

2
) =  𝜌0 >  0, then there exists 𝑘 ∈  {1, 2, . . . } such that 𝑟𝑘 ≤

 𝜌 <  𝑟𝑘+1. By computation we have 

sup
0≤𝑥<∞

{ 𝑥𝜌
𝑥
2}    =  −

2

𝑒 𝑙𝑜𝑔𝜌
  as 0 <  𝜌 <  1; sup

0≤𝑥<1
𝑥
1
1−𝑥 =

1

𝑒
. 

Thus 

𝑔′(𝜌) =∑𝑛𝑠 2
𝑠 𝜌𝑛𝑠−1

∞

𝑠=1

≤
1

𝜌0
∑

1

1− 𝑟𝑠
 2𝑠 𝜌𝑛𝑠

𝑘

𝑠=1

+
1

𝜌0
∑

1

1− 𝑟𝑠
 2𝑠 𝜌𝑛𝑠

∞

𝑠=𝑘+1
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≤
1

(1 − 𝜌)𝜌0
∑2𝑠 𝜌𝑛𝑠

𝑘

𝑠=1

+
1

𝜌0
∑

1

1− 𝑟𝑠
 2𝑠 𝜌

1
1−𝑟𝑠

−1
∞

𝑠=𝑘+1

 

≤
2𝑘+1

(1 − 𝜌)𝜌0
+
1

𝜌0
2 ∑

𝜌
1

2(1−𝑟𝑠)

1 − 𝑟𝑠
 2𝑠 𝜌

1
2(1−𝑟𝑠)

∞

𝑠=𝑘+1

 

≤
2𝑘+1

(1 − 𝜌)𝜌0
+

2

𝑒𝜌0
2 log 1/𝜌

∑ 2𝑠 𝜌
1

2(1−𝑟𝑠)

∞

𝑠=𝑘+1

 

≤
2𝑘+1

(1 − 𝜌)𝜌0
+

2𝑘+2

𝑒𝜌0
2 log 1/𝜌

∑ 2𝑠−(𝑘+1) 𝑟
𝑘+1

1
2(1−𝑟𝑠)

∞

𝑠=𝑘+1

 

=
2𝑘+1

(1 − 𝜌)𝜌0
+

2𝑘+2

𝑒𝜌0
2 log 1/𝜌

∑ 2𝑠−(𝑘+1) (𝑟
𝑘+1

1
2(1−𝑟𝑘+1))

1−𝑟𝑘+1
1−𝑟𝑘+2

 
1−𝑟𝑘+2
1−𝑟𝑘+3

…
1−𝑟𝑠−1
1−𝑟𝑠

∞

𝑠=𝑘+1

 

≤
2𝑘+1

(1 − 𝜌)𝜌0
+

2𝑘+2

𝑒𝜌0
2 log 1/𝜌

∑ 2𝑠−(𝑘+1) (
1

√𝑒
)(2

1
𝑏)𝑠−(𝑘+1)

∞

𝑠=𝑘+1

 

=
2𝑘+1

(1 − 𝜌)𝜌0
+

2𝑘+2

𝑒𝜌0
2 log 1/𝜌

∑2𝑠  (
1

√𝑒
)
(2
1
𝑏)𝑠∞

𝑠=0

 

=
2𝑘+1

(1 − 𝜌)𝜌0
+
𝑐 2𝑘+2

log 1/𝜌
≤
𝑐1 2

𝑘

1 − 𝜌
 

This means that          

𝜇(|𝑟𝑧1|)|𝑔
′(𝑟𝑧1)| ≤ 𝜇(𝜌)𝑔

′(𝜌) ≤
𝑐1 2

𝑘

1 − 𝜌
𝜇(𝑟𝑘) =

𝑐1
1 − 𝑟|𝑧1|

. 

If 𝜌 =  𝑟|𝑧1| ≤ 𝜇
−1(

1

2
)  =  𝜌0, then 

𝑔′(𝜌) =∑𝑛𝑠 2
𝑠 𝜌0

𝑛𝑠−1

∞

𝑠=1

≤
𝑚

𝜌0
2∑2𝑠 𝜌0

1
2(1−𝑟𝑠)

∞

𝑠=1

≤
𝑚

𝜌0
2∑2𝑠 (𝜌0

1
2(1−𝑟1))(2

1
𝑏)𝑠−1

∞

𝑠=1

 

≤ 𝑐 ≤
𝑐1
1 − 𝜌

, where 𝑚 = max {1,
2

𝑒 𝑙𝑜𝑔1/𝜌0
}. 

Thus     

𝜇(|𝑟𝑧1|)|𝑔
′(𝑟𝑧1)| ≤ 𝜇(𝜌)𝑔

′(𝜌) =
𝑐1𝜇(0)

1 − 𝜌
=
𝑐1𝜇(0)

1 − 𝑟|𝑧1|
. 

 (iii)  

|∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑧1

0

| = |∫ 𝑧1𝑔(𝑠𝑧1)𝑑𝑠
𝑟

0

| ≤ ∫ |𝑧1𝑔(𝑠𝑧1)|𝑑𝑠
𝑟

0

≤ ∫ 𝑔(𝑠)𝑑𝑠
𝑟

0

 

= ∫
𝑔(√𝑡)

2√𝑡
𝑑𝑡

𝑟2

0

≤ ∫
𝑐1

2√𝑡 𝜇(√𝑡)
𝑑𝑡

𝑟2

0

≤ ∫
2𝑏𝑐1

2√𝑡 𝜇(𝑡)
𝑑𝑡

𝑟2

0

 

≤ 𝑐2∫
𝑔(𝑡)

2√𝑡
𝑑𝑡

𝑟2

0

 



14 

= 𝑐2 (∫  

1
2

0

+∫  
𝑟2

1
2

)
𝑔(𝑡)

2√𝑡
𝑑𝑡 ≤

𝑐2

√2
{𝑔(
1

2
) + ∫ 𝑔(𝑡) 𝑑𝑡

𝑟2

0

}. 

Lemma (1.2.4)[4]: Let 𝜇 and 𝜈 be normal on [0, 1). Suppose 𝜑 is a holomorphic self-map 

of 𝐵 and 𝜓 ∈  𝐻 (𝐵). Then 𝑇𝜓,𝜑 is a compact operator from 𝛽𝜇 to 𝛽𝜈 if and only if for any 

bounded sequence {𝑓𝑗} in 𝛽𝜇 which converges to 0 uniformly on a compact subset of 𝐵, 

we have ‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝜈
 →  0 as 𝑗 →  ∞. 

Proof. The result can be proved by using Montel Theorem (1.2.7) and Lemma (1.2.2). 

Lemma (1.2.5)[4]: Let 𝜇 be normal on [0, 1) and ∫ [𝜇(𝑡)]−1
1

0
𝑑𝑡 <  ∞. If the sequence 

{𝑓𝑗} is bounded in 𝛽𝜇 and converges to 0 uniformly on a compact subset of 𝐵, then  

lim
𝑗→∞

sup
𝑧∈𝐵

|𝑓𝑗(𝑧)| = 0. 

Proof. Let ‖𝑓𝑗‖𝛽𝜇
≤ 𝑀0.  Since ∫ [𝜇(𝑡)]−1

1

0
𝑑𝑡 <  ∞, for any 𝜀 >  0, there is 0 <  𝜂 <  1 

such that ∫ [𝜇(𝑡)]−1
1

0
𝑑𝑡 <  𝜀. If 𝜂 < |𝑧| <  1, then  

|𝑓𝑗(𝑧) − 𝑓𝑗(
𝜂

|𝑧|
𝑧)|   = |∫ < 𝛻𝑓𝑗(𝑡𝑧), 𝑧̅ >  𝑑𝑡

1

𝜂
|𝑧|

| 

≤ ∫
𝑐𝑀0|𝑧|

𝜇(𝑡|𝑧|)
𝑑𝑡

1

𝜂
|𝑧|

= ∫
𝑐𝑀0
𝜇(𝑡)

𝑑𝑡
|𝑧|

𝜂

<  𝑐𝑀0𝜀. 

We have sup
𝜂<|𝑧|<1

|𝑓𝑗(𝑧)| ≤ 𝑐𝑀0𝜀 + sup
|𝑤|=𝜂

|𝑓𝑗(𝑤)|. Thus 

lim sup
𝑗→∞

sup
𝑧∈𝐵

|𝑓𝑗(𝑧)| ≤ limsup
𝑗→∞

{sup
|𝑧|≤𝜂

|𝑓𝑗(𝑧)| + sup
𝜂<|𝑧|<1

|𝑓𝑗(𝑧)|} ≤ 𝑐𝑀0𝜀. 

This means that sup
𝑧∈𝐵

|𝑓𝑗(𝑧)| →  0 as 𝑗 →  ∞. 

Lemma (1.2.6)[4]: Let 𝜈 be normal on [0, 1). A closed set 𝐾 in 𝛽𝜈,0 is compact if and only 

if it is bounded and satisfies sup
𝑓∈𝐾

𝜈(|𝑧|)|𝛻𝑓 (𝑧)|   →  0 as |𝑧|  →  1. 

Proof. The proof is similar to that of Lemma 1 in [2]. 

Theorem (1.2.7)[4]:  Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
  when 𝑛 >  1), 𝜑 

be a holomorphic self-map of 𝐵 and 𝜓 ∈  𝐻 (𝐵). (i) 𝑇𝜓,𝜑 is a bounded operator from 𝛽𝜇 to 

𝛽𝜈 if and only if 

sup
𝑢∈𝐶𝑛−{0}
𝑧∈𝐵

𝑣(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(|𝑧|)|2)|𝐽𝜑(𝑧)𝑢|2|< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

< ∞,    (23) 

and 

sup
𝑧∈𝐵

𝑣(|𝑧|)

1 − |𝑧|2
𝑄𝜓(𝑧) (1 + ∫

1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) < ∞,   (24) 

where 𝐽𝜑(𝑧) denotes a Jacobian matrix of 𝜑(𝑧) as follows: 

𝐽𝜑(𝑧) = (
𝜕𝜑𝑗(𝑧)

𝜕𝑧𝑘
)
1≤𝑗,   𝑘≤𝑛

  and 𝐽𝜑(𝑧)𝑢 = (∑
𝜕𝜑1(𝑧)

𝜕𝑧𝑘
𝑢𝑘

𝑛

𝑘=1

, . . . ,∑
𝜕𝜑𝑛(𝑧)

𝜕𝑧𝑘
𝑢𝑘

𝑛

𝑘=1

)

𝑇

. 



15 

 (ii) 𝑇𝜓,𝜑 is a bounded operator from 𝛽𝜇,0 to 𝛽𝜈,0 if and only if (23) and (24) hold, 𝜓 ∈

 𝛽𝜈,0 and 𝜓𝜑𝑙  ∈  𝛽𝜈,0 for all 𝑙 =  1, 2,⋯ , 𝑛. 

Proof. (i) Suppose (23) and (24) hold. For any 𝑓 ∈  𝛽𝜇, by Lemma (1.2.1) and Lemma 

(1.2.2) we obtain 

𝜈(|𝑧|)|𝛻(𝑇𝜑,𝜓𝑓)(𝑧)| ≤ 𝜈(|𝑧|)(|𝛻𝜓(𝑧)||𝑓(𝜑(𝑧))| + |𝜓(𝑧)||𝛻(𝐶𝜑𝑓)(𝑧)|) 

≤ 𝑐 𝜈(|𝑧|)|𝛻𝜓(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

)‖𝑓‖𝛽𝜇 

+ sup
𝑢∈𝐶𝑛−{0}
𝑧∈𝐵

𝑐1 𝑣(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{(
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
)

1
2

×
𝜇(|𝜑(𝑧)|) |< ∇(𝑓)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ >|

√(1 − |𝜑(|𝑧|)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2
} ≤ 𝑐2‖𝑓‖𝛽𝜇 . 

This means that 𝑇𝜓,𝜑  is a bounded operator from 𝛽𝜇 to 𝛽𝜈 . 

       Conversely, suppose 𝑇𝜓,𝜑  is a bounded operator from 𝛽𝜇  to 𝛽𝜈. Then we can easily 

obtain 𝜓 ∈  𝛽𝜈  and 𝜓𝜑𝑙 ∈ 𝛽𝜈  by taking 𝑓(𝑧)  =  1 and 𝑓(𝑧)  =  𝑧𝑙(𝑙 =  1, . . . , 𝑛) in 𝛽𝜇  

respectively.       

       For any given 𝑤 ∈  𝐵 and 𝑢 ∈  𝐶𝑛-{0}, if |𝜑(𝑤)| ≤ √2/3, it follows from 𝜓 ∈  𝛽𝜈  

and 𝜓𝜑𝑙 ∈ 𝛽𝜈  that 

𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 + |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}

1
2

 

≤
1

𝜇(√2 3⁄ )
𝜈(|𝑤|)|𝜓(𝑤)|

| 𝐽𝜑(𝑤)𝑢|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
1

𝜇(√2 3⁄ )
∑𝜈(|𝑤|)

𝑛

𝑙=1

|< |𝜓(𝑤)|∇𝜑𝑙(𝑤), �̅� >|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
1

𝜇(√2 3⁄ )
∑𝜈(|𝑤|)

𝑛

𝑙=1

|< ∇(𝜓𝜑𝑙)∇(𝑤), �̅� >||< ∇𝜓(𝑤), �̅� >||𝜑𝑙(𝑤)|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
1

𝜇(√2 3⁄ )
∑(‖𝜓𝜑𝑙‖𝛽𝑣 + ‖𝜓‖𝛽𝑣)

𝑛

𝑙=1

. 

This shows that (23) and (24) hold.        

       In the following, we always assume that |𝜑(𝑤)|  > √2 3⁄ .  First we suppose  

𝜑(𝑤)  =  𝑟𝑤 𝑒1, where 𝑟𝑤   =  |𝜑(𝑤)|, 𝑒1  is a vector (1, 0, … , 0).  

(i) If √(1 − 𝑟𝑤
2)(|𝜉2|

2 +⋯+ |𝜉𝑛|
2) ≤ |𝜉1| (where (𝜉1, … , 𝜉𝑛)

𝑇 = 𝐽𝜑(𝑤)𝑢), 
we set             

𝑓𝑤(𝑧)  = ∫ 𝑔(𝑡) 𝑑𝑡
𝑟𝑤𝑧1

2

𝑟𝑤
2𝑧1

, where 𝑔 is the function in Lemma (1.2.3). 

By the properties of normal function and Lemma (1.2.3), we have 
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𝜇(|𝑧|)

1 − |𝑧|2
𝑄𝑓𝑤(𝑧) ≤ 𝑐 {

1 − |𝑧|

1 − |𝑧1|
}

𝑎−
1
2

≤ 𝑐 ⇒ ‖𝑓𝑤‖𝛽𝜇 ≤ 𝑐. 

It is clear that           

𝑐‖𝑇𝜓,𝜑‖ ≥ ‖𝑇𝜓,𝜑‖‖𝑓𝑤‖𝛽𝜇 ≥ ‖𝑇𝜓,𝜑𝑓𝑤‖𝛽𝑣
 

≥
𝑣(|𝑤|)|< 𝑓𝑤(𝜓(𝑤))∇(𝜓)(𝑤) + 𝜓(𝑤)∇(𝐶𝜑𝑓𝑤)(𝑤), �̅� >|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

=
𝑣(|𝑤|)|𝜓(𝑤)||< ∇(𝑓𝑤)(𝜑(𝑤)), 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

=
𝑣(|𝑤|)|𝜓(𝑤)|𝑟𝑤

2𝑔(𝑟𝑤
3)|𝜉1|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
.                                      (25) 

It follows from (25) and Lemma (1.2.3) that       

𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 + |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}

1
2

 

=
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − 𝑟𝑤

2)(|𝜉2|
2 +⋯+ |𝜉𝑛|

2) + |𝜉1|
2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}
1
2 

≤
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√2|𝜉1|

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

=
𝑣(|𝑤|)|𝜓(𝑤)|𝑟𝑤

2𝑔(𝑟𝑤
3)|𝜉1|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2

√2

𝑟𝑤
2 𝜇(𝑟𝑤)𝑔(𝑟𝑤

3)
≤ 𝑐1‖𝑇𝜓,𝜑‖. 

 (ii) If √(1 − 𝑟𝑤
2)(|𝜉2|

2 +⋯+ |𝜉𝑛|
2) > |𝜉1|, for 𝑗 =  2, . . . , 𝑛, let 𝜃𝑗   =  arg𝜉𝑗 and 𝑎𝑗   =

 𝑒−𝑖𝜃𝑗 as 𝜉𝑗 ≠ 0 or 𝑎𝑗   =  0 as 𝜉𝑗 =  0.  We take 𝑓𝑤(𝑧) = (𝑎2𝑧2  + ⋯+ 𝑎𝑛𝑧𝑛)𝑔(𝑟𝑤𝑧1).       

By Lemma (1.2.3) and the definition of 𝜇, 

𝜇(|𝑧|)

1 − |𝑧|2
𝑄𝑓𝑤(𝑧) ≤ 𝑐 {

1 − |𝑧|

1 − |𝑧|1
}

𝑎−
1
2 1

√1 − 𝑟𝑤
2
≤

𝑐

√1 − 𝑟𝑤
2
⇒ ‖𝑓𝑤‖𝛽𝜇 ≤ 𝑐 √1 − 𝑟𝑤

2⁄  

Similarly to the proof of (25) we can get       
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

|𝜉2| + ⋯+ |𝜉𝑛|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
𝑐1‖𝑇𝜓,𝜑‖

𝑔(𝑟𝑤
2) 𝜇(𝑟𝑤)√1 − 𝑟𝑤

2
≤
𝑐‖𝑇𝜓,𝜑‖

√1 − 𝑟𝑤
2
. 

Thus             

𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 + |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}

1
2

 

≤
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√2(1 − 𝑟𝑤
2)(|𝜉2|

2 +⋯+ |𝜉𝑛|
2)

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤ √2
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√1 − 𝑟𝑤
2(|𝜉2| + ⋯+ |𝜉𝑛|)

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
≤ √2𝑐‖𝑇𝜓,𝜑‖ 

This shows that (23) holds. 
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       In a general situation, if 𝜑(𝑤) ≠ |𝜑(𝑤)|𝑒1, we use the unitary transformation 𝑈𝑤 to 

make 𝜑(𝑤)  =  𝜌𝑤  𝑒1𝑈𝑤 , where 𝜌𝑤   =  |𝜑(𝑤)|  > √2/3 . 

(i) If (1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 ≤ |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2, we set  

𝑔𝑤   =  𝑓𝑤 ∘ 𝑈𝑤
−1, 𝑤ℎ𝑒𝑟𝑒 𝑓𝑤(𝑧)  = ∫ 𝑔(𝑡)𝑑𝑡

𝜌𝑤 𝑧1
2

𝜌𝑤
2 𝑧1

. 

By 𝛻𝑔𝑤 (𝑧)  =  𝛻(𝑓𝑤 ∘ 𝑈𝑤
−1)(𝑧)  =  (𝛻𝑓𝑤)(𝑧𝑈𝑤

−1)(𝑈𝑤
−1)𝑇 and a simple computation we 

can get ‖𝑔𝑤‖𝛽𝜇 ≤  𝑐. Thus 

𝑐‖𝑇𝜓,𝜑‖ ≥ ‖𝑇𝜓,𝜑‖‖𝑔𝑤‖𝛽𝜇 ≥ ‖𝑇𝜓,𝜑‖ 𝛽𝜇 

≥
𝜈(|𝑤|)|< 𝜓(𝑤)𝛻(𝐶𝜑𝑔𝑤)(𝑤) + 𝑔𝑤(𝜑(𝑤))𝛻(𝜓)(𝑤), �̅� >|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

=
𝜈(|𝑤|)|𝜓(𝑤)|𝜌𝑤

2𝑔(𝜌𝑤
3 )|< 𝑒1(𝑈𝑤

−1)𝑇 , 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

=
𝜈(|𝑤|)|𝜓(𝑤)|𝜌𝑤

2𝑔(𝜌𝑤
3 )|< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

So 

𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 + |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}

1
2

 

≤
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√2|< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
≤

√2𝑐‖𝑇𝜓,𝜑‖

𝜌𝑤𝑔(𝜌𝑤
3 )𝜇(𝜌𝑤)

≤ 𝑐1‖𝑇𝜓,𝜑‖. 

 (ii) If (1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 > |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2, let (𝑈𝑤
−1)𝑇𝐽𝜑(𝑤)𝑢 =

 (|𝜉1|𝑒
𝑖𝜃1  , . . . , |𝜉𝑛|𝑒

𝑖𝜃𝑛)
𝑇
 . We take 𝑔𝑤 = 𝑓𝑤 ∘ 𝑈𝑤

−1, where 

𝑓𝑤(𝑧)  =  (𝑒
−𝑖𝜃2𝑧2  + ⋯ .+𝑒

−𝑖𝜃𝑛𝑧𝑛)𝑔(𝜌𝑤 𝑧1)  ⇒ ‖𝑔𝑤‖𝛽𝜇 ≤
𝑐

√1 − 𝜌𝑤
2
. 

Similarly, we can get          

𝜈(|𝑤|)|𝜓(𝑤)|𝑔(𝜌𝑤
2 )(|𝜉2| + ⋯+ |𝜉𝑛|)

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
≤
𝑐‖𝑇𝜓,𝜑‖

√1 − 𝜌𝑤
2
.              (26) 

Since 𝜌𝑤   > √2/3, we have         

|𝜉1| + ⋯+ |𝜉𝑛| =  |< (𝑒
−𝑖𝜃1 ,⋯ , 𝑒−𝑖𝜃𝑛)(𝑈𝑤

−1)𝑇  , 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >| 

= |< (0, 𝑒−𝑖𝜃2 , ⋯ , 𝑒−𝑖𝜃𝑛)(𝑈𝑤
−1)𝑇  , 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > +< ( 𝑒−𝑖𝜃1 , 0,⋯ , 0)(𝑈𝑤

−1)𝑇  , 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >| 

≤ |𝜉2| + ⋯+ |𝜉𝑛| +
|< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >|

𝜌𝑤
 

≤ |𝜉2| + ⋯+ |𝜉𝑛| +
√1 − 𝜌𝑤

2 |𝐽𝜑(𝑤)𝑢|

𝜌𝑤
 ⇒ |𝜉1| ≤

√1 − 𝜌𝑤
2

𝜌𝑤
|𝐽𝜑(𝑤)𝑢| 

⇒ |𝜉1|
2 ≤

1 − 𝜌𝑤
2

2𝜌𝑤
2 − 1

(|𝜉2|
2 +⋯+ |𝜉𝑛|

2) 

⇒ |𝜉1|
2 +⋯+ |𝜉𝑛|

2 ≤
𝜌𝑤
2

2𝜌𝑤
2 − 1

(|𝜉2|
2 +⋯+ |𝜉𝑛|

2) 

≤ 2(|𝜉2|
2 +⋯+ |𝜉𝑛|

2).                                                      (27) 
Using (26), (27), Lemma (1.2.3) and the property of unitary transformation,  



18 

𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)
{
(1 − |𝜑(𝑤)|2)|𝐽𝜑(𝑤)𝑢|2 + |< 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >|2

(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
}

1
2

 

≤ √2
𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√1 − 𝜌𝑤
2 |𝐽𝜑(𝑤)𝑢|

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
2𝑣(|𝑤|)|𝜓(𝑤)|

𝜇(|𝜑(𝑤)|)

√1 − 𝜌𝑤
2 (|𝜉2| + ⋯+ |𝜉𝑛|)

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤
√2𝑐‖𝑇𝜓,𝜑‖

𝜇(𝜌𝑤)𝑔(𝜌𝑤
2 )
≤ 𝑐1‖𝑇𝜓,𝜑‖. 

This shows that (23) holds. 

       In order to prove (24), we take 

ℎ𝑤(𝑧)  =  1 + ∫ 𝑔(𝑡) 𝑑𝑡
<𝑧,𝜑(𝑤)>

0

. 

Then ‖ℎ𝑤‖𝛽𝜇 ≤ 𝑐.           

       Therefore,            

𝑐‖𝑇𝜓,𝜑‖ ≥ ‖𝑇𝜓,𝜑ℎ𝑤‖𝛽𝜈
≥ 𝑐1𝜈(|𝑤|)|𝛻𝜓(𝑤)| |ℎ𝑤(𝜑(𝑤))| 

− sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑤|)|𝜓(𝑤)|| <  𝛻(ℎ𝑤 )(𝜑(𝑤)), 𝐽𝜑(𝑤)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >| 

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
. 

That is 

𝜈(|𝑤|)|𝛻𝜓(𝑤)| (1 + ∫ 𝑔(𝑡)𝑑𝑡
|𝜑(𝑤)|2

0

) 

≤ 𝑐1‖𝑇𝜓,𝜑‖ + sup
𝑢∈𝐶𝑛 −{0}

𝑐2𝜈(|𝑤|)|𝜓(𝑤)|𝑔(|𝜑(𝑤)|
2)| < 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >| 

√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
 

≤ 𝑐1‖𝑇𝜓,𝜑‖ + 𝑐3 sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑤|)|𝜓(𝑤)|| < 𝜑(𝑤), 𝐽𝜑(𝑤)𝑢 >| 

𝜇(|𝜑(𝑤)|)√(1 − |𝑤|2)|𝑢|2 + |< 𝑤, 𝑢 >|2
             (28) 

It follows from (23), (28) and Lemma (1.2.3) that 

𝜈(|𝑤|)|𝛻𝜓(𝑤)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑤)|

0

) 

≤ 𝜈(|𝑤|)|𝛻𝜓(𝑤)| (1 + 𝑐∫ 𝑔(𝑡)𝑑𝑡
|𝜑(𝑤)|

0

) 

≤ 𝜈(|𝑤|)|𝛻𝜓(𝑤)| {1 + 𝑐1𝑔 (
1

2
) + 𝑐1∫ 𝑔(𝑡)𝑑𝑡

|𝜑(𝑤)|2

0

} 

≤ 𝑐2‖𝜓‖𝛽𝑣 + 𝑐3𝜈(|𝑤|)|𝛻𝜓(𝑤)| (1 + ∫ 𝑔(𝑡)𝑑𝑡
|𝜑(𝑤)|2

0

) 

≤ 𝑐2‖𝜓‖𝛽𝑣 + 𝑐4‖𝑇𝜓,𝜑‖ + 𝑐5. 

This shows that (24) holds. 

(ii) Suppose (23) and (24) hold, 𝜓 ∈  𝛽𝜈,0 and 𝜓𝜑𝑙  ∈ 𝛽𝜈,0 for all 𝑙 =  1, 2, … , 𝑛. Take 

any 𝜀 >  0. Let 𝑓 ∈ 𝛽𝜇,0. Then there exists 0 <  𝛿1  <  1 such that 𝜇(|𝑧|)|𝛻𝑓(𝑧)|  <

 𝜀, 𝜈(|𝑧|)|𝛻𝜓(𝑧)|  <  𝜀 and 𝜈(|𝑧|)|𝛻(𝜓𝜑𝑙)(𝑧)|  <  𝜀 (𝑙 =  1, 2, … , 𝑛) as 𝛿1  <  |𝑧|  <  1. 
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If ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 =  ∞, then, by Lemma (1.2.2), there exists 0 <  𝛿2   <  1 such that 

|𝑓(𝑧)|

∫ [𝜇(𝑡)]−1𝑑𝑡
1

0

<  𝜀  as 𝛿2 < |𝑧|  <  1. 

Thus for |𝜑(𝑧)|  >  𝛿 =  max(𝛿1, 𝛿2) and ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
=  ∞, we get 

𝜈(|𝑧|)|𝛻(𝑇𝜓,𝜑𝑓)(𝑧)| 

≤ 𝜈(|𝑧|)|𝛻𝜓(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

)
|𝑓(𝜑(𝑧))|

∫ [𝜇(𝑡)]−1𝑑𝑡
|𝜑(𝑧)|

0

 

+ sup
𝑢∈𝐶𝑛 −{0}
𝑧∈𝐵

𝑐 𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{(
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
)

1
2

×
𝜇(|𝜑(𝑧)|) |< ∇(𝑓)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ >| 

√(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 
} 

≤
𝑐1|𝑓(𝜑(𝑧))|

∫ [𝜇(𝑡)]−1𝑑𝑡
|𝜑(𝑧)|

0

+ 𝑐2𝜀‖𝑓‖𝛽𝜇 ≤ 𝑐3𝜀.                                                 (29) 

If |𝜑(𝑧)|  >  𝛿 =  max(𝛿1, 𝛿2) and ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
< ∞, then 

𝜈(|𝑧|)|𝛻(𝑇𝜓,𝜑𝑓)(𝑧)| ≤ 𝑐 𝜈(|𝑧|)|𝛻𝜓(𝑧)| ‖𝑓‖𝛽𝜇 

+ sup
𝑢∈𝐶𝑛 −{0}
𝑧∈𝐵

𝑐1𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{(
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |〈𝜑(𝑧), 𝐽𝜑(𝑧)𝑢〉|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
)

1
2

×
𝜇(|𝜑(𝑧)|) |< ∇(𝑓)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ >| 

√(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 
} 

≤ 𝑐2𝜀‖𝑓‖𝛽𝜇 .                                                 (30) 

If |𝜑(𝑧)| ≤ 𝛿 =  max(𝛿1, 𝛿2)(|𝑧|  >  𝛿), then      

𝜈(|𝑧|)|𝛻(𝑇𝜓,𝜑𝑓)(𝑧)| ≤ 𝑐 𝜈(|𝑧|)|𝛻𝜓(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

𝛿

0

)‖𝑓‖𝛽𝜇 

+𝑐1∑(𝜈(|𝑧|)|𝛻(𝜓𝜑𝑙)(𝑧)| + 𝜈(|𝑧|)|𝛻𝜓(𝑧)|)

𝑛

𝑙=1

‖𝑓‖𝛽𝜇
𝜇(𝛿)

 

< 𝑐 (1 +∫
1

𝜇(𝑡)
𝑑𝑡

𝛿

0

)‖𝑓‖𝛽𝜇𝜀 +
2𝑛𝑐1‖𝑓‖𝛽𝜇
𝜇(𝛿)

𝜀.           (31) 

By (29)– (31) we get 𝜈(|𝑧|)|𝛻(𝑇𝜓,𝜑𝑓)(𝑧)| →  0 as |𝑧|  →  1. This shows that 

𝑇𝜓,𝜑𝑓 ∈  𝛽𝜈,0. 

       Conversely, if 𝑇𝜓,𝜑 is a bounded operator from 𝛽𝜇,0 to 𝛽𝜈,0, then 𝜓 ∈ 𝛽𝜈,0 and 𝜓𝜑𝑙  ∈

 𝛽𝜈,0 by taking 𝑓(𝑧)  =  1 and 𝑓(𝑧)  =  𝑧𝑙( 𝑙 =  1,… , 𝑛 ) in 𝛽𝜇,0 respectively. The rest 

proof is similar to that of (a). The proof is complete. 
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Corollary (1.2.8)[4]: Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
 when 𝑛 >  1). 

Suppose 𝜑 is a holomorphic self-map of 𝐵. Then (a) 𝐶𝜑 is a bounded operator from 𝛽𝜇  to 

𝛽𝜈  if and only if 

sup
𝑢∈𝐶𝑛 −{0}
𝑧∈𝐵

𝜈(|𝑧|)

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

< ∞.    (32) 

 (b) 𝐶𝜑 is a bounded operator from 𝛽𝜇,0 to 𝛽𝜈,0 if and only if (32) holds and 𝜑𝑙  ∈  𝛽𝜈,0 

for all 𝑙 ∈  {1, 2, … , 𝑛}. 

Corollary (1.2.9)[4]: Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
 when 𝑛 >  1). 

Suppose 𝜑 is a holomorphic self-map of 𝐵. (a) If    

sup
𝑧∈𝐵

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
< ∞.                                                 (33) 

then 𝐶𝜑  is a bounded operator from 𝛽𝜇  to 𝛽𝜈 , where 

|𝜑′(𝑧)| = {∑∑|
𝜕𝜑𝑘
𝜕𝑧𝑙

(𝑧)|
2𝑛

𝑙=1

𝑛

𝑘=1

}

1
2

. 

 (b) If 𝜑𝑙  ∈  𝛽𝜈,0 for all 𝑙 ∈  {1, 2, … , 𝑛} and (33) holds, then 𝐶𝜑 is a bounded operator 

from 𝛽𝜇,0 to 𝛽𝜈,0. 

Proof. (a) Suppose 

sup
𝑧∈𝐵

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
= 𝑀 < ∞. 

Then 

𝜈(|𝑧|)

𝜇(|𝜑(𝑧)|)
(
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
)

1
2

 

≤
1

𝜇(|𝜑(𝑧)|)

𝜈(|𝑧|)|𝐽𝜑(𝑧)𝑢|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
≤∑

𝑐 𝜈(|𝑧|) |∇𝜑𝑗(𝑧)|

𝜇(|𝜑(𝑧)|)

𝑛

𝑗=1

 

 

≤
𝑐√𝑛 𝜈(|𝑧|) |𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
≤ 𝑐√𝑛𝑀. 

This shows that 𝐶𝜑  is a bounded operator from 𝛽𝜇 to 𝛽𝜈 by Corollary (1.2.8).  

(b) Noting 𝜑𝑙   ∈  𝛽𝑣,0, the proof is similar to that of (a).     

Corollary (1.2.10)[4]: Let 𝑛 =  1. Suppose 𝜇 and 𝜈 are normal on [0, 1), and 𝜑 is a 

holomorphic self-map of 𝐷,𝜓 ∈  𝐻 (𝐷). Then (a) 𝑇𝜓,𝜑 is a bounded operator from 𝛽𝜇 to 

𝛽𝜈 if and only if 

sup
𝑧∈𝐷

𝜈(|𝑧|)|𝜓(𝑧)||𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
< ∞                                   (34) 

and  

sup
𝑧∈𝐷

𝜈(|𝑧|)|𝜓′(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) < ∞.                (35) 

 (b) 𝑇𝜓,𝜑 is a bounded operator from 𝛽𝜇,0 to 𝛽𝜈,0 if and only if 𝜓 ∈  𝛽𝜈,0, 𝜓𝜑 ∈  𝛽𝜈,0, 

(34) and (35) hold. 
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Corollary (1.2.11)[4]: Let 𝑛 =  1. Suppose 𝜇 and 𝜈 are normal on [0, 1), and 𝜑 is a 

holomorphic self-map of 𝐷. Then (a) 𝐶𝜑 is a bounded operator from 𝛽𝜇 to 𝛽𝜈 if and only if 

sup
𝑧∈𝐷

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
< ∞.                              (36) 

 (b) 𝐶𝜑 is a bounded operator from 𝛽𝜇,0 to 𝛽𝜈,0 if and only if 𝜑 ∈  𝛽𝜈,0 and (36) holds. 

Theorem (1.2.12)[4]: (i) Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
 when 𝑛 >  1), 

𝜑 be a holomorphic self-map of 𝐵 and 𝜓 ∈ 𝐻(𝐵).  (a) If ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 < ∞, then 𝑇𝜓,𝜑  is 

a compact operator from 𝛽𝜇  to 𝛽𝜈  if and only if 𝜓 ∈  𝛽𝜈 , 𝜓𝜑𝑙   ∈  𝛽𝜈 for all 𝑙 ∈

 {1, 2, … , 𝑛} and      

lim
|𝜑(𝑧)|→1

sup
𝑢∈𝐶𝑛−{0}

𝑣(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(|𝑧|)|2)|𝐽𝜑(𝑧)𝑢|2|< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

 

= 0.      (37) 

 (b)  If ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
= ∞, then 𝑇𝜓,𝜑 is a compact operator from 𝛽𝜇 to 𝛽𝜈 if and only if 

𝜓 ∈  𝛽𝜈 , 𝜓𝜑𝑙   ∈  𝛽𝜈  for all 𝑙 ∈  {1, 2, … , 𝑛}, (37) holds and   

lim
|𝜑(𝑧)|→1

𝑣(|𝑧|)

1 − |𝑧|2
𝑄𝜓(𝑧) (1 + ∫

1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) = 0.               (38) 

 (c) 𝑇𝜓,𝜑  is a compact operator from 𝛽𝜇,0  to 𝛽𝜈,0 if and only if    

lim
|𝑧|→1

sup
𝑢∈𝐶𝑛−{0}

𝑣(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(|𝑧|)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

 

= 0.  (39) 
and 

lim
|𝑧|→1

𝑣(|𝑧|)

1 − |𝑧|2
𝑄𝜓(𝑧) (1 + ∫

1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) = 0.               (40) 

Proof. (a)–(b) Suppose (37) and (38) hold. Then for any 𝜀 >  0, there is 0 <  𝛿 <  1, 

when |𝜑(𝑧)|2  >  1 −  𝛿, such that 

sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

< 𝜀   (41) 

and           

𝜈(|𝑧|)|∇𝜓(𝑧)|(1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) < 𝜀.                       (42) 

Let {𝑓𝑗} be any a sequence {𝑓𝑗} which converges to 0 uniformly on compact subset of 𝐵 

satisfying ‖𝑓𝑗‖𝛽𝜇
≤ 1. Then {𝑓𝑗} and {|∇𝑓𝑗|} converges to 0 uniformly on {𝑤 ∶  |𝑤|2 ≤

1 −  𝛿}. 

If |𝜑(𝑧)|2   >  1 −  𝛿 and ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
< ∞, then, by (41) we have 

sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|< ∇(𝑇𝜓,𝜑𝑓𝑗)(𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
 

≤ sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|< 𝜓(𝑧)∇(𝑓𝑗)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ >| + |< 𝑓𝑗(𝜑(𝑧))∇𝜓(𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
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≤ sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

 

×
𝜇(|𝜑(𝑧)|)|< ∇(𝑓𝑗)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ >|

√(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2
+ ‖𝜓‖𝛽𝑣|𝑓𝑗(𝜑(𝑧))| 

≤ 𝜀‖𝑓𝑗‖𝛽𝑣
+ ‖𝜓‖𝛽𝑣|𝑓𝑗(𝜑(𝑧))|.          (43) 

If |𝜑(𝑧)|2   >  1 −  𝛿 and ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 = ∞, by (41), (42), Lemma (1.2.1) and 

Lemma (1.2.2) we get  

sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|< ∇(𝑇𝜓,𝜑𝑓𝑗)(𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
 

≤ sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

 

×
𝜇(|𝜑(𝑧)|)|〈∇(𝑓𝑗)(𝜑(𝑧)), 𝐽𝜑(𝑧)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅〉|

√(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2
+ 𝑐 𝑣(|𝑧|)|∇𝜓(𝑧)||𝑓𝑗(𝜑(𝑧))| 

≤ 𝜀‖𝑓𝑗‖𝛽𝜇
+ 𝑐1𝜈(|𝑧|)|∇𝜓(𝑧)| (1 + ∫

1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

)‖𝑓𝑗‖𝛽𝜇
 

≤ 𝜀‖𝑓𝑗‖𝛽𝜇
+ 𝑐1𝜀‖𝑓𝑗‖𝛽𝜇

≤ 𝑐2𝜀.                                    (44) 

If |𝜑(𝑧)|2 ≤ 1 −  𝛿,  by 𝜓 ∈  𝛽𝜈  and 𝜓𝜑𝑙   ∈  𝛽𝜈(𝑙 =  1, 2, … , 𝑛) we have  

sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|< ∇(𝑇𝜓,𝜑𝑓𝑗)(𝑧), �̅� >|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
 

≤ sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|< ∇𝜓(𝑧), �̅� >||𝑓𝑗(𝜑(𝑧))|

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
+ sup
𝑢∈𝐶𝑛 −{0}

  

×
𝜈(|𝑧|)|𝜓(𝑧)||∇𝑓𝑗(𝜑(𝑧))|(|< ∇𝜑1(𝑧), �̅� >| + ⋯+ |< ∇𝜑𝑛(𝑧), �̅� >|)

√(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
 

≤ ‖𝜓‖𝛽𝜇 + |𝑓𝑗(𝜑(𝑧))|∑(‖𝜓𝜑𝑙‖𝛽𝜇 + ‖𝜓‖𝛽𝑣)

𝑛

𝑙=1

|∇𝑓𝑗(𝜑(𝑧))|.        (45) 

On the other hand,           

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≤ |𝜓(0)𝑓𝑗(𝜑(0))| 

+( sup
|𝜑(𝑧)|2>1−𝛿

 + sup
|𝜑(𝑧)|2≤1−𝛿

 ) sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧|)|〈∇(𝑇𝜓,𝜑𝑓𝑗)(𝑧), �̅�〉|

√(1 − |𝑧|2)|𝑢|2 + |〈𝑧, 𝑢〉|2
. (46) 

By (43)–(46), we have          

lim sup
𝑗→∞

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≤ 𝑐2𝜀.                     (47) 

By (47) we obtain ‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
→  0    (𝑗 →  ∞). This means that 𝑇𝜓,𝜑 is a compact 

operator from 𝛽𝜇 to 𝛽𝜈  by Lemma (1.2.4).      

       Conversely, for any 𝑙 ∈  {1, 2, … , 𝑛}, we get 𝜓 ∈  𝛽𝜈 and 𝜓𝜑𝑙  =  𝑇𝜓,𝜑𝑓 ∈  𝛽𝜈 by 

taking 𝑓(𝑧)  =  1 or 𝑓(𝑧)  =  𝑧𝑙  ∈  𝛽𝜇. 
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       Assume that (37) fails. Then there exist the sequence {𝑧𝑗}  ⊂  𝐵 satisfying 𝑟𝑗  =

 |𝜑(𝑧𝑗)|  →  1 as 𝑗 →  ∞, the sequence {𝑢𝑗}  ⊂  𝐶𝑛  −  {0} and a constant 𝜀0   >  0 such 

that 

𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)|

𝜇(|𝜑(𝑧𝑗)|)
{
(1 − |𝜑(𝑧𝑗)|

2
) |𝐽𝜑(𝑧𝑗)𝑢𝑗|

2
+ |< 𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢𝑗 >|

2
 

(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗, 𝑢𝑗 >|2
}

1
2

≥ 𝜀0. (48) 

Since 𝑟𝑗   →  1(𝑗 →  ∞), we can pick out the subsequence {𝑟𝑗𝑘} satisfying  

1 −
1

2𝑘2
< 𝑟𝑗𝑘 <  1. 

To construct the sequence of functions {𝑓𝑗}, we first assume that   

𝜑(𝑧𝑗) =  𝑟𝑗𝑒1  and  1 −
1

2𝑗2
< 𝑟𝑗𝑘 < 1   (𝑗 =  1, 2, … , ). 

 (i) For ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 < ∞, if √(1 − 𝑟𝑗

2) (|𝑤2
𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) < |𝑤1

𝑗
| (where 

(𝑤1
𝑗
, . . , 𝑤𝑛

𝑗
)
𝑇
= 𝐽𝜑(𝑧𝑗)𝑢𝑗), we take 

𝑓𝑗(𝑧) =
1

𝑟𝑗
∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑗𝑧1

0

−
1

𝑟𝑗
𝑗
∫ 𝑔(𝑡) 𝑑𝑡
𝑟𝑗
𝑗
𝑧1

0

. 

We can prove easily ‖𝑓𝑗‖𝛽𝜇
≤ 𝑐. 

       Let 𝐸 be any a compact subset of 𝐵. Then there exists 0 <  𝑟 <  1 such that 𝐸 ⊆  {𝑧 ∶
 |𝑧| ≤ 𝑟}. Thus 

max
𝑧∈𝐸

|𝑓𝑗(𝑧)| = max
𝑧∈𝐸

|
1

𝑟𝑗
∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑗𝑧1

𝑟𝑗
𝑗
𝑧1

− (
1

𝑟𝑗
𝑗
−
1

𝑟𝑗
)∫ 𝑔(𝑡) 𝑑𝑡

𝑟𝑗
𝑗
𝑧1

0

| 

≤ max
𝑧∈𝐸

2|𝑧1| (1 − 𝑟𝑗
𝑗−1
) max
𝑡∈[0,𝑟]

𝑔(𝑡) 

≤ 2{1 − (1 −
1

2𝑗2
)
𝑗−1

} max
𝑡∈[0,𝑟]

𝑔(𝑡) → 0  as  𝑗 → ∞. 

That is {𝑓𝑗} converges to 0 uniformly on compact subset of 𝐵. But, by (48) we have 

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
 

≥
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)||< ∇(𝑓𝑗)(𝑟𝑗𝑒1), 𝐽𝜑(𝑧

𝑗)𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >|

√(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗, 𝑢𝑗 >|2
− 𝑐‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)| 

=
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)|

𝜇(|𝜑(𝑧𝑗)|)
{
(1 − |𝜑(𝑧𝑗)|

2
) |𝐽𝜑(𝑧𝑗)𝑢𝑗|

2
+ |< 𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢𝑗 >|

2
 

(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗 , 𝑢𝑗 >|2
}

1
2

 

×
𝜇(𝑟𝑗)|𝑤1

𝑗
||𝑔(𝑟𝑗

2) − 𝑔(𝑟𝑗
𝑗+1
)|

√(1 − 𝑟𝑗
2) (|𝑤2

𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) + |𝑤1

𝑗
|
2
− 𝑐 ‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)| 

≥
𝜀0

√2
𝜇(𝑟𝑗)(𝑔(𝑟𝑗

2) − 𝑔(𝑟𝑗
𝑗+1)) − 𝑐‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)| 
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≥
𝜀0

√2
{
1

2𝑏
𝜇(𝑟𝑗

2)𝑔(𝑟𝑗
2) − 𝜇(𝑟𝑗

𝑗+1)𝑔(𝑟𝑗
𝑗+1)

𝜇(𝑟𝑗)

𝜇(𝑟𝑗
𝑗+1)

} − 𝑐‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)| 

≥
𝜀0

√2
{
1

2𝑏
𝜇(𝑟𝑗

2)𝑔(𝑟𝑗
2) − 𝜇(𝑟𝑗

𝑗+1)𝑔(𝑟𝑗
𝑗+1) (

1

1 + 𝑟𝑗 +⋯+ 𝑟𝑗
𝑗
)

𝑎

} − 𝑐‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)|. 

Since 

𝑟𝑗
𝑗
> (1 −

1

2𝑗2
)
𝑗

→  1  𝑎𝑠 𝑗 → 1, 

we can assume that 𝑟𝑗
𝑗
  >  1/2. Thus, by Lemma (1.2.3) and Lemma (1.2.5) we have 

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≥
𝜀0

√2
{
𝑐1
2𝑏
− 𝑐2 (

2

𝑗 + 2
)
𝑎

} − 𝑐‖𝜓‖𝛽𝑣|𝑓𝑗(𝑟𝑗𝑒1)| →
𝑐1𝜀0

2𝑏+
1
2

(𝑗 → ∞). 

This means that 

lim
𝑗→∞

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≠ 0. 

This contradicts the compactness of 𝑇𝜓,𝜑 by Lemma (1.2.4).     

  

 

If √(1 − 𝑟𝑗
2)(|𝑤2

𝑗|2 +⋯+ |𝑤𝑛
𝑗|2) ≥ |𝑤1

𝑗
| , we let 𝜃𝑘

𝑗
= arg𝑤𝑘

𝑗
(𝑘 =  2,… , 𝑛) and take 

𝑓𝑗(𝑧)  =  (𝑒
−𝑖𝜃2

𝑗

𝑧2 +⋯+ 𝑒
−𝑖𝜃𝑛

𝑗

𝑧𝑛)√1 − 𝑟𝑗
2𝑔(𝑟𝑗 𝑧1). 

We have ‖𝑓𝑗‖𝛽𝜇
≤ 𝑐 and {𝑓𝑗} converges to 0 uniformly on compact subset of 𝐵. But 

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
 

≥
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗) < ∇𝑓𝑗(𝑟𝑗𝑒1), 𝐽𝜑(𝑧

𝑗)𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > +𝑓𝑗(𝜑(𝑧
𝑗)) < ∇𝜓(𝑧𝑗), �̅� >|

√(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗 , 𝑢𝑗 >|2
 

=
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)|

𝜇(|𝜑(𝑧𝑗)|)
{
(1 − |𝜑(𝑧𝑗)|

2
) |𝐽𝜑(𝑧𝑗)𝑢𝑗|

2
+ |< 𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢𝑗 >|

2
 

(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗 , 𝑢𝑗 >|2
}

1
2

 

×

𝜇(𝑟𝑗)𝑔(𝑟𝑗
2)(|𝑤2

𝑗
| + ⋯+ |𝑤𝑛

𝑗
|)√1 − 𝑟𝑗

2

√(1 − 𝑟𝑗
2) (|𝑤2

𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) + |𝑤1

𝑗
|
2
> 𝑐𝜀0.                                              (49) 

This contradicts the compactness of 𝑇𝜓,𝜑  by Lemma (1.2.4).     

(ii) For ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 = ∞, if √(1 − 𝑟𝑗

2) (|𝑤2
𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) < |𝑤1

𝑗
|, we set 

𝑓𝑗(𝑧) =
1

∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑗
2

0

∫ 𝑔(𝑡)𝑑𝑡
𝑟𝑗𝑧1

0

∫ 𝑔(𝑡) 𝑑𝑡
𝑟𝑗𝑧1

2

𝑟𝑗
2𝑧1

. 

By Lemma (1.2.3) and ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
 =  ∞ we can get ‖𝑓𝑗‖𝛽𝜇

≤ 𝑐 and {𝑓𝑗} converges to 0 

uniformly on compact subset of 𝐵. But, by (48) and Lemma (1.2.3) we have 
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‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
 

≥
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗) < ∇𝑓𝑗(𝑟𝑗𝑒1), 𝐽𝜑(𝑧

𝑗)𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ > +𝑓𝑗(𝜑(𝑧
𝑗)) < ∇𝜓(𝑧𝑗), �̅� >|

√(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗 , 𝑢𝑗 >|2
 

=
𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)|

𝜇(|𝜑(𝑧𝑗)|)
{
(1 − |𝜑(𝑧𝑗)|

2
) |𝐽𝜑(𝑧𝑗)𝑢𝑗|

2
+ |< 𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢𝑗 >|

2
 

(1 − |𝑧𝑗|2)|𝑢𝑗|2 + |< 𝑧𝑗 , 𝑢𝑗 >|2
}

1
2

 

×
𝑟𝑗
2𝑔(𝑟𝑗

3)𝜇(𝑟𝑗)|𝑤1
𝑗
|

√(1 − 𝑟𝑗
2) (|𝑤2

𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) + |𝑤1

𝑗
|
2
> 𝑐𝜀0. 

Thus 

lim
𝑗→∞

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≠ 0. 

       This contradicts the compactness of 𝑇𝜓,𝜑 by Lemma (1.2.4). 

       If √(1 − 𝑟𝑗
2) (|𝑤2

𝑗
|
2
+⋯+ |𝑤𝑛

𝑗
|
2
) + |𝑤1

𝑗
|
2
≥ |𝑤1

𝑗
|, by (49) we can get contradiction.  

       If there exists 𝜑(𝑧𝑗) such that 𝜑(𝑧𝑗) =  |𝜑(𝑧𝑗)|𝑒1, then there is the unitary 

transformation 𝑈𝑗 such that 𝜑(𝑧𝑗) =  𝜌𝑗  𝑒1𝑈𝑗  𝑗 ∈  {1, 2, … , 𝑛}. Now 𝑔𝑗  =  𝑓𝑗 ∘ 𝑈𝑗
−1 is the 

desired function sequence. 

       Next we prove that (38) holds. Assume that (38) fails, then there exist the sequence 

{𝑧𝑗}  ⊂  𝐵 satisfying |𝜑(𝑧𝑗)|  →  1as 𝑗 →  ∞ and a constant 𝜀0  >  0 such that 

𝜈(|𝑧𝑗|)|𝛻𝜓(𝑧𝑗)|(1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧𝑗)|

0

) ≥ 𝜀0.                            (50) 

We take again           

𝑓𝑗(𝑧)  =
1

∫ 𝑔(𝑡)𝑑𝑡
|𝜑(𝑧𝑗)|

2

0

(∫ 𝑔(𝑡)𝑑𝑡
<𝑧,𝜑(𝑧𝑗)>

0

)

2

. 

Then {𝑓𝑗} is bounded in 𝛽𝜇 and converges to 0 uniformly on compact subset of 𝐵. By 

Lemma (1.2.1) and Lemma (1.2.3) we have 

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≥ 𝑐 𝜈(|𝑧𝑗|)|∇𝜓(𝑧𝑗)||𝑓𝑗(𝜑(𝑧

𝑗))| 

− sup
𝑢∈𝐶𝑛 −{0}

𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)||< ∇𝑓𝑗(𝜑(𝑧
𝑗)), 𝐽𝜑(𝑧𝑗)𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅̅ >|

√(1 − |𝑧𝑗|2)|𝑢|2 + |< 𝑧𝑗 , 𝑢 >|2
 

= 𝑐 𝜈(|𝑧𝑗|)|∇𝜓(𝑧𝑗)|(1 + ∫ 𝑔(𝑡)𝑑𝑡
|𝜑(𝑧𝑗)|

2

0

)− 𝑐 𝜈(|𝑧𝑗|)|∇𝜓(𝑧𝑗)| 

− sup
𝑢∈𝐶𝑛 −{0}

𝜇(|𝜑(𝑧𝑗)|)𝑔(|𝜑(𝑧𝑗)|2)𝜈(|𝑧𝑗|)|𝜓(𝑧𝑗)||〈𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢〉|

𝜇(|𝜑(𝑧𝑗)|)√(1 − |𝑧𝑗|2)|𝑢|2 + |< 𝑧𝑗 , 𝑢 >|2
 

≥ 𝑐1 𝜈(|𝑧
𝑗|)|∇𝜓(𝑧𝑗)| (1 + ∫

1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧𝑗)|

0

) − 𝑐 𝜈(|𝑧𝑗|)|∇𝜓(𝑧𝑗)| 
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− sup
𝑢∈𝐶𝑛 −{0}

𝑐2 𝜈(|𝑧
𝑗|)|𝜓(𝑧𝑗)||< 𝜑(𝑧𝑗), 𝐽𝜑(𝑧𝑗)𝑢 >|

𝜇(|𝜑(𝑧𝑗)|)√(1 − |𝑧𝑗|2)|𝑢|2 + |< 𝑧𝑗 , 𝑢 >|2
             (51) 

We know that a compact operator is a bounded operator. Thus   

sup
𝑧∈𝐵

𝜈(|𝑧|)|∇𝜓(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) < ∞. 

If ∫ [𝜇(𝑡)]−1𝑑𝑡
1

0
= ∞, we have 

lim
|𝜑(𝑧)|→1

𝑣(|𝑧|)|∇𝜓(𝑧)| =  0.                                          (52) 

By (50)–(52) and (37) we get 

lim
𝑗→∞

‖𝑇𝜓,𝜑𝑓𝑗‖𝛽𝑣
≠ 0. 

This contradicts the compactness of 𝑇𝜓,𝜑 by Lemma (1.2.4). This shows that (38) holds. 

(c) For any 𝑓 ∈  𝛽𝜇,0, we have 

𝜈(|𝑧|)|𝛻[𝑇𝜓,𝜑(𝑓)](𝑧)| 

≤ 𝑐𝜈(𝑧 )|𝛻(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

)‖𝑓‖𝛽𝜇 + sup
𝑧∈𝐶𝑛 −{0}

𝑐1 𝜈(|𝑧|)|𝜓(𝑧)|

𝜇(|𝜑(𝑧)|)
 

× {
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

‖𝑓‖𝛽𝜇 . 

By (39) and (40), the above inequality implies that     

lim
|𝑧|→1

sup
‖𝑓‖𝛽𝜇≤1

𝜈(|𝑧|)|𝛻[𝑇𝜓,𝜑(𝑓)](𝑧)| = 0 

       This shows that 𝑇𝜓,𝜑  is a compact operator from 𝛽𝜇,0  to 𝛽𝜈,0  from Lemma (1.2.6). 

       Conversely, if 𝑇𝜓,𝜑 is a compact operator from 𝛽𝜇,0 to 𝛽𝜈,0, then 𝜓,𝜓𝜑𝑙  ∈  𝛽𝜈,0(𝑙 =

 1, 2, … , 𝑛). We can prove that (37) and (38) hold as the proof of Theorem 𝐵. By (37), (38) 

and 𝜓,𝜓𝜑𝑙  ∈  𝛽𝜈,0, this implies that (39) and (40) hold. The proof is complete. 

Corollary (1.2.13)[4]: Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
 when 𝑛 >  1). 

Suppose 𝜑 is a holomorphic self-map of 𝐵. Then (a) 𝐶𝜑 is a compact operator from 𝛽𝜇 to 

𝛽𝜈 if and only if 

lim
|𝜑(𝑧)|→1

sup
𝑢∈𝐶𝑛−{0}

𝜈(|𝑧|)

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

= 0 

and 𝜑𝑙   ∈  𝛽𝜈  for all 𝑙 ∈  {1, 2, … , 𝑛}. 
(b) 𝐶𝜑  is a compact operator from 𝛽𝜇,0  to 𝛽𝑣,0  if and only if 

lim
|𝜑(𝑧)|→1

sup
𝑢∈𝐶𝑛−{0}

𝜈(|𝑧|)

𝜇(|𝜑(𝑧)|)
{
(1 − |𝜑(𝑧)|2)|𝐽𝜑(𝑧)𝑢|2 + |< 𝜑(𝑧), 𝐽𝜑(𝑧)𝑢 >|2 

(1 − |𝑧|2)|𝑢|2 + |< 𝑧, 𝑢 >|2
}

1
2

 

= 0. 

Corollary (1.2.14)[4]: Let 𝜇 and 𝜈 be normal on [0, 1) (suppose 𝑎 >
1

2
 when 𝑛 >  1). 

Suppose 𝜑 is a holomorphic self-map of 𝐵. (a) If     

lim
|𝑧|→1

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
= 0 

and 𝜑𝑙   ∈  𝛽𝜈 for all 𝑙 ∈  {1, 2, … , 𝑛}, then 𝐶𝜑  is a compact operator from 𝛽𝜇 to 𝛽𝜈. 
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(b) If 

lim
|𝑧|→1

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇(|𝜑(𝑧)|)
= 0 

then 𝐶𝜑  is a compact operator from 𝛽𝜇,0  to 𝛽𝜈,0. 

Corollary (1.2.15)[4]: Let 𝑛 =  1. Suppose 𝜇 and 𝜈 are normal on [0, 1), and 𝜑 is a 

holomorphic self-map of 𝐷,𝜓 ∈  𝐻(𝐷). Then (a) 𝑇𝜓,𝜑 is a compact operator from 𝛽𝜇 to 

𝛽𝜈 if and only if 

   (a)  

𝜓 ∈ 𝛽𝑣, 𝜓𝜑 ∈ 𝛽𝑣  and   lim
|𝜑(𝑧)|→1

𝜈(|𝑧|)|𝜓(𝑧)||𝜑′(𝑧)|

𝜇|𝜑(𝑧)|
= 0 as ∫

1

𝜇(𝑡)
𝑑𝑡

1

0

< ∞, 

   (b) 

𝜓 ∈ 𝛽𝑣 , 𝜓𝜑 ∈ 𝛽𝑣  and   lim
|𝜑(𝑧)|→1

𝜈(|𝑧|)|𝜓(𝑧)||𝜑′(𝑧)|

𝜇|𝜑(𝑧)|
= 0 

and  

lim
|𝜑(𝑧)|→1

𝜈(|𝑧|)|𝜓′(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) = 0 as ∫
1

𝜇(𝑡)
𝑑𝑡

1

0

= ∞, 

 (b) 𝑇𝜓,𝜑  is a compact operator from 𝛽𝜇,0  to 𝛽𝜈,0  if and only if    

lim
|𝑧|→1

𝜈(|𝑧|)|𝜓(𝑧)||𝜑′(𝑧)|

𝜇|𝜑(𝑧)|
= 0 

and             

lim
|𝑧|→1

𝜈(|𝑧|)|𝜓′(𝑧)| (1 + ∫
1

𝜇(𝑡)
𝑑𝑡

|𝜑(𝑧)|

0

) = 0. 

Corollary (1.2.16)[4]: Let 𝑛 =  1. Suppose 𝜇 and 𝜈 are normal on [0, 1), and 𝜑 is a 

holomorphic self-map of 𝐷. Then (a) 𝐶𝜑 is a compact operator from 𝛽𝜇 to 𝛽𝜈 if and only if 

𝜑 ∈  𝛽𝜈 and 

lim
|𝜑(𝑧)|→1

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇|𝜑(𝑧)|
= 0 

 (b) 𝐶𝜑 is a compact operator from 𝛽𝜇,0  to 𝛽𝜈,0  if and only if 

lim
|𝑧|→1

𝜈(|𝑧|)|𝜑′(𝑧)|

𝜇|𝜑(𝑧)|
= 0. 

Section (1.3): Bergman Spaces of the Unit Ball 

       For any positive integer 𝑛 we let 

ℂ𝑛  = ℂ × ⋯ × ℂ 
denote the 𝑛-dimensional complex Euclidean space. For any two points 𝑧 =  (𝑧1, ⋯ , 𝑧𝑛) 
and 𝑤 =  (𝑤1, ⋯ , 𝑤𝑛) in ℂ𝑛 we write 

〈𝑧, 𝑤〉 = 𝑧1�̅�1 +⋯+ 𝑧𝑛�̅�𝑛, 
and 

|𝑧| = √|𝑧1|
2 +⋯+ |𝑧𝑛|

2. 
The open unit ball in ℂ𝑛 is the set 

𝔹𝑛  =  {𝑧 ∈  ℂ
𝑛 ∶  |𝑧|  <  1}. 

The space of holomorphic functions in 𝔹𝑛 will be denoted by 𝐻(𝔹𝑛). 
       Let 𝑑𝑣 be Lebesgue volume measure on 𝔹𝑛, normalized so that 𝑣(𝔹𝑛)  =  1. For any 

𝛼 >  −1 we let 
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𝑑𝑣𝛼(𝑧)  =  𝑐𝛼(1 − |𝑧|
2)𝛼  𝑑𝑣(𝑧), 

where 𝑐𝛼 is a positive constant chosen so that 𝑣𝛼(𝔹𝑛)  =  1. The weighted Bergman space 

𝐴𝛼
𝑝

, where 𝑝 >  0, consists of functions 𝑓 ∈  𝐻(𝔹𝑛) such that 

∫ |𝑓(𝑧)|𝑝 𝑑𝑣𝛼(𝑧)
 

𝔹𝑛

 <  ∞. 

The space 𝐴𝛼
2  is a Hilbert space with inner product 

〈𝑓, 𝑔〉 = ∫ 𝑓(𝑧)𝑔(𝑧)̅̅ ̅̅ ̅̅ 𝑑𝑣𝛼(𝑧)
 

𝔹𝑛

. 

Every holomorphic 𝜑 ∶ 𝔹𝑛 → 𝔹𝑛 induces a composition operator 

𝐶𝜑 ∶  𝐻(𝔹𝑛)  →  𝐻(𝔹𝑛), 

namely, 𝐶𝜑𝑓 =  𝑓 ∘ 𝜑. When 𝑛 =  1, it is well known that 𝐶𝜑 is always bounded on 𝐴𝛼
𝑝

; 

and 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 if and only if 

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0. 

See [20] and [21]. 

       When 𝑛 >  1, not every composition operator is bounded on 𝐴𝛼
𝑝

. For example, it can 

easily be checked with Taylor coifficients that the composition operator 𝐶𝜑 is not bounded 

on 𝐴𝛼
2  when 

𝜑(𝑧)  =  (𝜋(𝑧), 0,⋯ , 0), 
Where 

𝜋(𝑧)  = √𝑛𝑛𝑧1⋯𝑧𝑛. 
See [20] for more examples. 

       The main result is the following. 

Theorem (1.3.1)[18]: Suppose 𝑝 >  0 and 𝛼 >  −1. If the composition operator 𝐶𝜑 is 

bounded on 𝐴𝛽
𝑞

 for some 𝑞 >  0 and −1 <  𝛽 <  𝛼, then 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 if and only 

if 

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0.                                                 (52) 

Note that the compactness of 𝐶𝜑 on 𝐴𝛼
𝑝

 always implies condition (52); we do not need any 

assumption on 𝜑 for this half of the theorem. The assumption that 𝐶𝜑 be bounded on 𝐴𝛽
𝑞

 

for some 𝛽 <  𝛼 is needed only for the other half the theorem. The exponents 𝑝 and 𝑞 are 

not important. 

We begin with the notion of compact composition operators on 𝐴𝛼
𝑝

. 

When 𝑝 >  1, the Bergman space 𝐴𝛼
𝑝

 is a reflexive Banach space (see [17] for more 

information about Bergman spaces), and all reasonalble definitions of compactness of 𝐶𝜑 

on 𝐴𝛼
𝑝

 are equivalent. In general, for any 𝑝 >  0, we say that the composition operator 𝐶𝜑 

is compact on 𝐴𝛼
𝑝

 if 

lim
𝑘→∞

∫ |𝐶𝜑𝑓𝑘|
𝑝
 𝑑𝑣𝛼

 

𝔹𝑛

= 0 

whenever {𝑓𝑘} is a bounded sequence in 𝐴𝛼
𝑝

 that converges to 0 uniformly on compact 

subsets of 𝔹𝑛. 

For any holomorphic 𝜑 ∶  𝔹𝑛  → 𝔹𝑛 we can define a positive Borel measure µ𝜑,𝛼 on 𝔹𝑛 as 

follows. Given a Borel set 𝐸 in 𝔹𝑛, we set 
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µ𝜑,𝛼(𝐸)  =  𝑣𝛼(𝜑
−1(𝐸))  =  𝑐𝛼∫ (1 − |𝑧|2)𝛼 𝑑𝑣(𝑧)

 

𝜑−1(𝐸)

. 

Obviously, µ𝜑,𝛼 is the pullback measure of 𝑑𝑣𝛼 under the map 𝜑. Therefore, we have the 

following change of variables formula: 

∫ 𝑓(𝜑) 𝑑𝑣𝛼

 

𝔹𝑛

 = ∫ 𝑓𝑑µ𝜑,𝛼

 

𝔹𝑛

,                     (53) 

where 𝑓 is either nonnegative or belongs to 𝐿1(𝔹𝑛, 𝑑µ𝜑,𝛼). In particular, the composition 

operator 𝐶𝜑 is bounded on 𝐴𝛼
𝑝

 if and only if there exists a constant 𝐶 >  0 such that 

∫ |𝑓|𝑝𝑑µ𝜑,𝛼

 

𝔹𝑛

≤  𝐶 ∫ |𝑓|𝑝𝑑𝑣𝛼

 

𝔹𝑛

              (54) 

for all 𝑓 ∈  𝐴𝛼
𝑝

. Measures satisfying this condition are called Carleson measures for the 

Bergman space 𝐴𝛼
𝑝

. 

       Similarly, a positive Borel measure µ on 𝔹𝑛 is called a vanishing Carleson measure 

for the Bergman space 𝐴𝛼
𝑝

 if 

lim
𝑘→∞

∫ |𝑓𝑘|
𝑝 𝑑𝜇

 

𝔹𝑛

= 0                                   (55) 

whenever {𝑓𝑘} is a bounded sequence in 𝐴𝛼
𝑝

 that converges to 0 uniformly on compact 

subsets of 𝔹𝑛. In particular, a composition operator 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 if and only if the 

pullback measure µ𝜑,𝛼 is a vanishing Carleson measure for 𝐴𝛼
𝑝

. 

       It is well known that Carleson (and vanishing Carleson) measures for the Bergman 

space 𝐴𝛼
𝑝

 is indenpendent of 𝑝. More precisely, the following result holds. 

Lemma (1.3.2)[18]: Suppose 𝑝 >  0 and 𝛼 >  −1. Then the following conditions are 

equivalent for any positive Borel measure µ on 𝔹𝑛. 

(i) µ is a Carleson measure for 𝐴𝛼
𝑝

, that is, there exists a constant 𝐶 > 
0 such that 

∫ |𝑓|𝑝 𝑑𝜇
 

𝔹𝑛

≤  𝐶 ∫ |𝑓|𝑝 𝑑𝑣𝛼

 

𝔹𝑛

 

for all 𝑓 ∈  𝐴𝛼
𝑝

. 

 (ii) For some (or each) 𝑅 >  0 there exists a constant 𝐶 >  0 (depending on 𝑅 and 𝛼 

but independent of 𝑎) such that 

µ(𝐷(𝑎, 𝑅))  ≤  𝐶𝑣𝛼(𝐷(𝑎, 𝑅)) 
for all 𝑎 ∈  𝔹𝑛, where 𝐷(𝑎, 𝑅) is the Bergman metric ball at 𝑎 with radius 𝑅. 

Proof. See [24] for example. 

A consequence of the above lemma is the following well-known result about composition 

operators; see [20]. 

Corollary (1.3.3)[18]: Suppose 𝑝 >  0, 𝑞 >  0, and 𝛼 >  −1. Then 𝐶𝜑 is bounded on 𝐴𝛼
𝑝

 

if and only if 𝐶𝜑 is bounded on 𝐴𝛼
𝑞

. 

A similar characterization of vanishing Carleson measures for 𝐴𝛼
𝑝

 also holds. 

Lemma (1.3.4)[18]: Suppose 𝑝 >  0 and 𝛼 >  −1. The following two conditions are 

equivalent for a positive Borel measure on 𝔹𝑛. 

   (i) µ is a vanishing Carleson measure for 𝐴𝛼
𝑝

. 

   (ii) For some (or any) 𝑅 >  0 we have 
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lim
|𝑎|→1−

µ(𝐷(𝑎, 𝑅))

𝑣𝛼(𝐷(𝑎, 𝑅))
=  0. 

Proof. See [24] for example.   

       As a result of the above lemma we see that the compactness of 𝐶𝜑 on 𝐴𝛼
𝑝

 is 

indenpendent of 𝑝. We state this as the following corollary which can be found in [20] as 

well. 

Corollary (1.3.5)[18]: Suppose 𝑝 >  0, 𝑞 >  0, and 𝛼 >  −1. Then 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 

if and only if 𝐶𝜑 is compact on 𝐴𝛼
𝑞

. 

       We need two more technical lemmas. The first of which is called Schur’s test and 

concerns the boundedness of integral operators on 𝐿𝑝 spaces. Thus we consider a measure 

space (𝑋, µ) and an integral operator 

𝑇 𝑓(𝑥)  = ∫𝐻(𝑥, 𝑦)𝑓(𝑦)𝑑µ(𝑦)
 

𝑋

,                                           (56) 

where 𝐻 is a nonnegative measurable function on 𝑋 ×  𝑋. 

Lemma (1.3.6)[18]: Suppose that there exists a positive measurable function ℎ on 𝑋 such 

that 

∫𝐻(𝑥, 𝑦)ℎ(𝑦) 𝑑µ(𝑦)
 

𝑋

 ≤  𝐶ℎ(𝑥) 

for almost all 𝑥 and 

∫𝐻(𝑥, 𝑦)ℎ(𝑥) 𝑑µ(𝑥)
 

𝑋

 ≤  𝐶ℎ(𝑦) 

for almost all 𝑦, where 𝐶 is a positive constant. Then the integral operator 𝑇 defined in 

(56) is bounded on 𝐿2(𝑋, 𝑑µ). Moreover, the norm of 𝑇 on 𝐿2(𝑋, 𝑑µ) is less than or equal 

to the constant 𝐶. 

Proof. See [23] or [17]. 

Lemma (1.3.7)[18]: Suppose 𝛼 >  −1 and 𝑡 >  0. Then there exists a constant 𝐶 >  0 

such that  

∫
𝑑𝑣𝛼(𝑤)

|1 − 〈𝑧, 𝑤〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

≤
𝐶

(1 − |𝑧|2)𝑡
 

for all 𝑧 ∈  𝔹𝑛.       

Proof. See [22].       

       In order to understand the mild assumption made in the statement of the main 

theorem, we show how the boundedness and compactness of composition operators on 

Bergman spaces can be described in terms of Bergman type kernel functions. 

Theorem (1.3.8)[18]: Suppose 𝑝 >  0, 𝛼 >  −1, and 𝑡 >  0. Then the composition 

operator 𝐶𝜑 is bounded on 𝐴𝛼
𝑝

 if and only if 

sup
𝑎∈𝔹𝑛

(1 − |𝑎|2)𝑡∫
𝑑𝑣𝛼(𝑧)

|1 − 〈𝛼, 𝜑(𝑧)〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

< ∞.                     (57) 

Proof. It follows from Lemma (1.3.7) that the boundedness of 𝐶𝜑 on 𝐴𝛼
𝑝

 implies condition 

(57). 

Next we assume that condition (57) holds. Then by the change of variables formula (53) 

there exists a constant 𝐶 >  0 such that 

(1 − |𝑎|2)𝑡∫
𝑑𝜇𝜑,𝛼(𝑧)

|1 − 〈𝛼, 𝑧〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

≤ 𝐶 
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for all 𝑎 ∈ 𝔹𝑛. For any fixed positive radius  𝑅 we have 

(1 − |𝑎|2)𝑡∫
𝑑𝜇𝜑,𝛼(𝑧)

|1 −  〈𝛼, 𝑧〉|𝑛+1+𝛼+𝑡

 

𝐷(𝑎,𝑅)

≤ 𝐶 

for all 𝑎 ∈ 𝔹𝑛. It is well known that 

|1 − 〈𝛼, 𝑧〉|  ∼  1 − |𝑎|2 
for 𝑧 ∈  𝐷(𝑎, 𝑅), and it is also well known that 

(1 − |𝑎|2)𝑛+1+𝛼 ∼ 𝑣𝛼(𝐷(𝑎, 𝑅)); 
see [24]. It follows that there exists another positive constant 𝐶 (independent of 𝑎) such 

that 

𝜇𝜑,𝛼(𝐷(𝑎, 𝑅))  ≤  𝐶𝑣𝛼(𝐷(𝑎, 𝑅)) 

for all 𝑎 ∈ 𝔹𝑛. By Lemma (1.3.2), the measure 𝜇𝜑,𝛼 is Carleson for 𝐴𝛼
𝑝

, and so the 

composition operator 𝐶𝜑 is bounded on 𝐴𝛼
𝑝

.   

       This result is probably well known to experts in the field. The main point here is that 𝑡 
can be an arbitrary positive constant. This also tells us roughly how far away the 

boundedness of 𝐶𝜑 on 𝐴𝛼
𝑝

 is from that of 𝐶𝜑 on 𝐴𝛽
𝑝

. 

Corollary (1.3.9)[18]: Suppose 𝑝 > 0, 𝑞 > 0, and −1 <  𝛽 <  𝛼. If 𝐶𝜑 is bounded on 

𝐴𝛽
𝑞

, then 𝐶𝜑 is bounded on 𝐴𝛼
𝑝

.         

Proof. Write 𝛼 =  𝛽 +  𝜖 with  𝜖 >  0. Since 

(1 − |𝑧|2)𝜖

|1 − 〈𝑎, 𝜑(𝑧)〉|𝜖
≤ 𝐶1 (

1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝜖

≤ 𝐶2, 

where the last inequality is an easy consequence of Schwarz lemma for the unit ball, we 

have 

∫
(1 − |𝑤|2)𝛼 𝑑𝑣(𝑤)

|1 − 〈𝛼, 𝜑(𝑤)〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

≤ 𝐶2∫
(1 − |𝑤|2)𝛽  𝑑𝑣(𝑤)

|1 − 〈𝛼, 𝜑(𝑤)〉|𝑛+1+𝛽+𝑡

 

𝔹𝑛

 

This shows that 

sup
𝑎∈𝔹𝑛

(1 − |𝑎|2)𝑡∫
𝑑𝑣𝛽(𝑧)

|1 − 〈𝛼, 𝜑(𝑧)〉|𝑛+1+𝛽+𝑡

 

𝔹𝑛

< ∞ 

Implies 

sup
𝑎∈𝔹𝑛

(1 − |𝑎|2)𝑡  ∫
𝑑𝑣𝛼(𝑧)

|1 − 〈𝛼, 𝜑(𝑧)〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

< ∞. 

The desired result then follows from Theorem (1.3.8).     

       A similar argument gives the following characterization of the compactness of 𝐶𝜑 on 

𝐴𝛼
𝑝

. 

Theorem (1.3.10)[18]: Suppose 𝑝 >  0, 𝛼 >  −1, and 𝑡 >  0. Then 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 

if and only if 

lim
|𝑎|→1−

(1 − |𝑎|2)𝑡  ∫
𝑑𝑣𝛼(𝑧)

|1 − 〈𝛼, 𝜑(𝑧)〉|𝑛+1+𝛼+𝑡

 

𝔹𝑛

= 0                            (58) 

Corollary (1.3.11)[18]: Suppose 𝑝 >  0, 𝑞 >  0, and −1 <  𝛽 <  𝛼. Then the 

compactness of 𝐶𝜑 on 𝐴𝛽
𝑞

 implies the compactness of 𝐶𝜑 on 𝐴𝛼
𝑝

. 

We do not need Hardy spaces, we mention here that if 𝐶𝜑 is bounded (or compact) 

on a Hardy space 𝐻𝑞 of the unit ball, then 𝐶𝜑 is bounded (or compact) on very Bergman 
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space 𝐴𝛼
𝑝

. This result, along with Corollaries (1.3.9) and (1.3.11) above, can be found in 

[19]. 

Theorem (1.3.12)[18]: Suppose 𝑝 >  0 and 𝛼 >  −1. If 𝐶𝜑 is bounded on 𝐴𝛽
𝑞

 for some 

𝑞 >  0 and −1 <  𝛽 <  𝛼, then 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 if and only if 

lim
|𝑧|→1−

1 − |𝑧|2

|1 − |𝜑(𝑧)|2
= 0.                                                 (59) 

Proof. According to Corollary (1.3.5), we may assume that 𝑝 =  2. 

       The normalized reproducing kernels of 𝐴𝛼
2  are given by  

𝑘𝑧(𝑤)  =   
(1 − |𝑧|2)(𝑛+1+𝛼) 2⁄

(1 − 〈𝑤, 𝑧〉)𝑛+1+𝛼
. 

Each 𝑘𝑧 is a unit vector in 𝐴𝛼
2  and it is clear that 

lim
|𝑧|→1−

𝑘𝑧(𝑤)  =  0, 𝑤 ∈  𝔹𝑛. 

Furthermore, the convergence is uniform when 𝑤 is restricted to any compact subset of 

𝔹𝑛. A standard computation shows that 

∫ |𝐶𝜑
∗𝑘𝑧|

2
𝑑𝑣𝛼

 

𝔹𝑛

= (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛+1+𝛼

, 

so the compactness of 𝐶𝜑 on 𝐴𝛼
2  (which is the same as the compactness of 𝐶𝜑

∗  on 𝐴𝛼
2 ) 

implies condition (59). 

       We proceed to show that condition (59) implies the compactness of 𝐶𝜑 on 𝐴𝛼
2 , 

provided that 𝐶𝜑 is bounded on 𝐴𝛽
𝑞

 for some 𝛽 ∈  (−1, 𝛼). An easy computation shows 

that the operator 

𝐶𝜑𝐶𝜑
∗ ∶ 𝐴𝛼

2 → 𝐴𝛼
2  

admits the following integral representation: 

𝐶𝜑𝐶𝜑
∗𝑓(𝑧)  = ∫

𝑓(𝑤) 𝑑𝑣𝛼(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛼

 

𝔹𝑛

, 𝑓 ∈  𝐴𝛼
2 .           (60) 

We will actually prove the compactness of 𝐶𝜑𝐶𝜑
∗  on 𝐴𝛼

2 , which is equivalent to the 

compactness of 𝐶𝜑 on 𝐴𝛼
2 . In fact, our arguments will prove the compactness of the 

following integral operator on 𝐿2(𝔹𝑛, 𝑑𝑣𝛼): 

𝑇𝑓(𝑧)  = ∫
𝑓(𝑤) 𝑑𝑣𝛼(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛼

 

𝔹𝑛

.                                 (61) 

For any 𝑟 ∈  (0, 1) let 𝜒𝑟 denote the characteristic function of the set {𝑧 ∈  ℂ𝑛 ∶  𝑟 <
 |𝑧|  <  1}. Consider the following integral operator on 𝐿2(𝔹𝑛, 𝑑𝑣𝛼): 

𝑇𝑟𝑓(𝑧)  =   ∫ 𝐻𝑟(𝑧, 𝑤)𝑓(𝑤)𝑑𝑣𝛼(𝑤)
 

𝔹𝑛

,                                   (62) 

where 

 

𝐻𝑟(𝑧, 𝑤)  =
𝜒𝑟(𝑧)𝜒𝑟(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛼
 

is a nonnegative integral kernel. We are going to estimate the norm of 𝑇𝑟 on 𝐿2(𝔹𝑛, 𝑑𝑣𝛼) 
in terms of the quantity 

𝑀𝑟  =  sup
𝑟<|𝑧|<1

1 − |𝑧|2

1 − |𝜑(𝑧)|2
. 
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We do this with the help of Schur’s test. 

       Let 𝛼 =  𝛽 +  𝜎, where 𝜎 >  0, and consider the function 

ℎ(𝑧) =  (1 −  |𝑧|2)−𝜎 , 𝑧 ∈ 𝔹𝑛. 
We have 

∫ 𝐻𝑟(𝑧, 𝑤)ℎ(𝑤)𝑑𝑣𝛼(𝑤)
 

𝔹𝑛

=
𝑐𝛼
𝑐𝛽
∫

𝜒𝑟(𝑧)𝜒𝑟(𝑤)𝑑𝑣𝛽(𝑤)

|1 −  〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛽+𝜎

 

𝔹𝑛

 

≤
𝑐𝛼
𝑐𝛽
∫

𝜒𝑟(𝑧)𝑑𝑣𝛽(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛽+𝜎

 

𝔹𝑛

. 

By the boundedness of 𝐶𝜑 on 𝐴𝛽
𝑞

, there exists a constant 𝐶1  >  0, independent of 𝑟 and 𝑧, 

such that 

∫ 𝐻𝑟(𝑧, 𝑤)ℎ(𝑤)𝑑𝑣𝛼(𝑤)
 

𝔹𝑛

≤ 𝐶1𝜒𝑟(𝑧)∫
𝑑𝑣𝛽(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛽+𝜎

 

𝔹𝑛

. 

We apply Lemma (1.3.7) to find another positive constant 𝐶2, independent of 𝑟 and 𝑧, 
such that          

∫ 𝐻𝑟(𝑧, 𝑤)ℎ(𝑤)𝑑𝑣𝛼(𝑤)
 

𝔹𝑛

≤
𝐶2𝜒𝑟(𝑧)

(1 − |𝜑(𝑧)|2)𝜎
 

= 𝐶2𝜒𝑟(𝑧) (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝜎

ℎ(𝑧) 

≤ 𝐶2𝑀𝑟
𝜎ℎ(𝑧) 

for all 𝑧 ∈ 𝔹𝑛. By the symmetry of 𝐻𝑟(𝑧, 𝑤), we also have 

∫ 𝐻𝑟(𝑧, 𝑤)ℎ(𝑧)𝑑𝑣𝛼(𝑧)
 

𝔹𝑛

≤ 𝐶2𝑀𝑟
𝜎ℎ(𝑤) 

for all 𝑤 ∈ 𝔹𝑛. It follows from Lemma (1.3.6) that the operator 𝑇𝑟 is bounded on 

𝐿2(𝔹𝑛, 𝑑𝑣𝛼) and the norm of 𝑇𝑟 on 𝐿2(𝔹𝑛, 𝑑𝑣𝛼) does not exceed the constant 𝐶2𝑀𝑟
𝜎. 

       Now fix some 𝑟 ∈  (0, 1) and fix a bounded sequence {𝑓𝑘} in 𝐴𝛼
2  that converges to 0 

uniformly on every compact subset of 𝔹𝑛. In particular, {𝑓𝑘} converges to 0 uniformly on 

|𝑧|  ≤  𝑟. We use (60) to write 

𝐶𝜑𝐶𝜑
∗𝑓𝑘(𝑧)  =  𝐹𝑘(𝑧)  + 𝐺𝑘(𝑧), 𝑧 ∈ 𝔹𝑛, 

where  

𝐹𝑘(𝑧)  = ∫
𝑓𝑘(𝑤)𝑑𝑣𝛼(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛼

 

|𝑤|≤𝑟

 

and 

𝐺𝑘(𝑧) = ∫
𝜒𝑟(𝑤)𝑓𝑘(𝑤)𝑑𝑣𝛼(𝑤)

|1 − 〈𝜑(𝑧), 𝜑(𝑤)〉|𝑛+1+𝛼

 

𝔹𝑛

 

Since {𝑓𝑘(𝑤)} converges to 0 uniformly on for |𝑤|  ≤  𝑟, we have 

lim
𝑘→∞

∫ |𝐹𝑘(𝑧)|
2𝑑𝑣𝛼(𝑧)

 

𝔹𝑛

= 0  

For any fixed 𝑧 ∈  𝔹𝑛, the weak convergence of {𝑓𝑘} to 0 in 𝐿2(𝔹𝑛, 𝑑𝑣𝛼) implies that 

𝐺𝑘(𝑧)  →  0 as 𝑘 →  ∞. In fact, by splitting the ball into |𝑧|  ≤  𝛿 and 𝛿 <  |𝑧|  <  1, it is 

easy to show that 

lim
𝑘→∞

𝐺𝑘(𝑧) = 0 

uniformly for 𝑧 in any compact subset of 𝔹𝑛. 
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It follows from the definition of  𝑇𝑟 that 

∫ |𝐺𝑘|
2𝑑𝑣𝛼

 

𝔹𝑛

≤ ∫ |𝐺𝑘|
2𝑑𝑣𝛼

 

|𝑧|≤𝑟

+∫ |𝑇𝑟(|𝑓𝑘|)|
2𝑑𝑣𝛼

 

𝔹𝑛

. 

Since {𝑓𝑘} is bounded in 𝐿2(𝔹𝑛, 𝑑𝑣𝛼), and since the norm of the operator 𝑇𝑟 on 

𝐿2(𝔹𝑛, 𝑑𝑣𝛼) does not exceed 𝐶2𝑀𝑟
𝜎, we can find a constant 𝐶3  >  0, independent of 𝑟 and 

𝑘, such that 

∫ |𝑇𝑟(|𝑓𝑘|)|
2𝑑𝑣𝛼

 

𝔹𝑛

≤ 𝐶3𝑀𝑟
2𝜎 

for all 𝑘. Combining this with 

lim
𝑘→∞

∫ |𝐺𝑘|
2𝑑𝑣𝛼

 

|𝑧|≤𝑟

= 0 

we obtain 

lim sup
𝑘→∞

∫ |𝐺𝑘|
2𝑑𝑣𝛼

 

𝔹𝑛

≤ 𝐶3𝑀𝑟
2𝜎 . 

This along with the estimates for 𝐹𝑘 in the previous paragraph gives 

lim sup
𝑘→∞

∫ |𝐶𝜑𝐶𝜑
∗𝑓𝑘|

2
𝑑𝑣𝛼

 

𝔹𝑛

≤ 𝐶3𝑀𝑟
2𝜎 . 

Since 𝑟 is arbitrary and 𝑀𝑟  →  0 as 𝑟 →  1− (which is equivalent to the condition in (59)), 

we conclude that 

lim
𝑘→∞

∫ |𝐶𝜑𝐶𝜑
∗𝑓𝑘|

2
𝑑𝑣𝛼

 

𝔹𝑛

= 0. 

So 𝐶𝜑 is compact on 𝐴𝛼
2 , and the proof of the theorem is complete.   

       Note that when 𝑛 =  1, 𝐶𝜑 is bounded on every Bergman space 𝐴𝛽
𝑞

, so the 

characterization of compact composition operators on 𝐴𝛼
𝑝

 does not need any extra 

assumption. However, our proof here still works. The idea of using Schur’s test to prove 

the compactness of composition operators seems to be new even in the case 𝑛 =  1. 

       A similar compactness result was proven in [19] for composition operators on 𝐴𝛼
𝑝

. But 

the condition in [19] involves the derivatives of 𝜑 and is much stronger than our condition 

here.   
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Chapter 2 

Isometries and Weighted Composition Operators 

We show that into isometries and disjointness preserving linear maps from 𝐶0(𝑋) 
into 𝐶0(𝑌) are essentially weighted composition operators 𝑇𝑓 = ℎ · 𝑓 ∘ 𝜙 for some 

continuous map ϕ and some continuous scalar-valued function ℎ. 

Section (2.1): Function Spaces 

       Let 𝐴 and 𝐵 be Banach spaces. By an isometry from 𝐴 onto 𝐵 we mean a linear, norm 

preserving and surjective map between these Banach spaces. The isometries of most of the 

well-known Banach spaces have been described. The classical Banach-Stone Theorem 

states that any isometry from 𝐶(𝑋) onto 𝐶(𝑌) is induced by a homeomorphism of 𝑌 and 

𝑋. This result has been extended to various other Banach spaces by Nagasawa for function 

algebras [41]; by Amir [26], Cambern [28] and Cengiz [32] for regular subspaces; by 

Cambern and Pathak [30], Pathak [42] and Pathak and Vasavada [44] for spaces of 

differentiable functions; by de Leeuw [40] and Roy [46] for Lipschitz functions; by Pathak 

[43], Vasavada [47] and Rao and Roy [45] for absolutely continuous functions. In all the 

above-mentioned the following situation was considered. 

      Let 𝐴 be a subspace of a Banach space 𝐶(𝑋), which separates points of 𝑋, and let 𝑇𝐴 

be a linear map from 𝐴 into a Banach space 𝑉. We assume the complete norm on 𝐴 is 

given by one of the following formulas: 

‖𝑓‖ =  max (‖𝑓‖∞, ‖𝑇𝐴𝑓‖ ) for 𝑓 ∈ 𝐴,                     (𝑀) 
where by ‖. ‖∞ we denote the usual sup-norm on 𝐶(𝑋); 

‖𝑓‖ = ‖𝑓‖∞, ‖𝑇𝐴𝑓‖  for 𝑓 ∈ 𝐴,                      (∑) 
‖𝑓‖ = sup{|𝑓(𝑥)| + |𝑇𝐴𝑓(𝑥)|: 𝑥 ∈ 𝑋}for 𝑓 ∈ 𝐴,          (𝐶) 

Where, in this case, we assume that 𝑉 = 𝐶(𝑋). 
    For example the space 𝐶1(𝑋), 𝑋 ⊂ 𝑅, is defined by a map 𝑇: 𝐶1(𝑋) ⟶ 𝐶(𝑋): 𝑇𝑓 = 𝑓′, 
via the formula (𝑀), (∑)𝑜𝑟(𝐶). The space 𝐴𝐶[0,1] of absolutely continuous functions is 

defined by a map 𝑇: 𝐴𝐶[0,1] ⟶ 𝐿1[0,1]: 𝑇𝑓 = 𝑓′. The space 𝐿𝑖𝑝𝛼(𝑋), 𝑋-metric space, 

0 < 𝛼 ≤ 1, is defined by 

𝑇: 𝐿𝑖𝑝𝛼(𝑋) ⟶ 𝐶(𝛽(𝑋 × 𝑋{(𝑥, 𝑥): 𝑥 ∈ 𝑋})): 𝑇𝑓(𝑥, 𝑦) =
𝑓(𝑥) − 𝑓(𝑦)

(𝑑(𝑥, 𝑦))
𝛼  

Assume next that 𝐵is a subspace of 𝐶(𝑌), which separates points of 𝑌, and that the norm 

on 𝐵 is given by a map 𝑇𝐵: 𝐵 ⟶ 𝑈, via the same formula as the norm of 𝐴. The question 

arises whether any isometry Φ from 𝐴 onto 𝐵 is of the canonical form 

Φ(𝑓)(𝑦) = 𝜒(𝑦). 𝑓 ∘ 𝜑(𝑦), 𝑓 ∈ 𝐴, 𝑦 ∈ 𝑌,                           (∗) 
Where 𝜑 is a homeomorphism from 𝑌 onto 𝑋 and 𝑥 is a scalar valued function defined on 

Y such that |𝜒| ≡ 1. 

We give a very simple, elementary scheme to verify the abovementioned problems. 

This scheme covers all the results we mentioned at the beginning of the introduction. The 

results hold in both real and complex cases. 

We denote by ext 𝑉 the set of all extreme points of the closed unit ball 𝑉1 of the 

space 𝑉; by 𝑉∗ we denote the space of all continuous linear forms on 𝑉. If 𝐴 is a subspace 

of 𝐶(𝑋) then we identify a point 𝑥 of 𝑋 with a linear functional 𝛿𝑥 on 𝐴 defined by 𝐴 ∋
𝑓 ⟼ 𝑓(𝑥). By 𝑆 we denote the set of all scalars of modulus one. If we do not specify the 

set of scalars, we mean that the result holds both in the real and in the complex case.  
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Let �̅� be a normed subspace of a Banach space 𝐶(𝑊), both with the usual sup norm. By a 

standard result [33] every extreme point of 𝐴1
∗  is of the form 𝜆𝛿𝑤, where 𝑤 ∈ 𝑊 and |𝜆| =

1. 

    Note that if the norm on 𝐴 is defined by the formula (𝑀) then there is an 

isometric embedding 𝐴 ∋ 𝑓 ⟼ 𝑓̅ ∈ �̅� ⊂ 𝐶(𝑊), where 𝑊 = 𝑋𝑈𝑉1
∗, defined by 

𝑓(̅𝑥) =  𝑓(𝑥), 𝑥 ∈ 𝑋, 
𝑓(̅𝑣∗) = 𝑣∗(𝑇𝐴𝑓), 𝑣

∗ ∈ 𝑉1
∗. 

Hence any extreme point of 𝐴1
∗  is of the form 

𝑓̅ ⟼ 𝛼𝑓(𝑥),where 𝑥 ∈ 𝑋 and 𝛼 ∈ 𝑆 
or of the form 

𝑓 ⟼ 𝐹 ∘ 𝑇𝐴(𝑓),where 𝐹 ∈ ext𝑉
∗. 

  If the norm on 𝐴 is defined by (∑) then a map 𝐴 ∋ 𝑓 ⟼ 𝑓̅ ∈ �̅� ⊂ 𝐶(𝑋 × 𝑉1
∗) 

defined by 

𝑓(̅𝑥, 𝑣∗) = 𝑓(𝑥) + 𝑣∗(𝑇𝐴𝑓), (𝑥, 𝑣
∗) ∈ 𝑋 × 𝑉1

∗, 
is an isometry. Hence any extreme point of 𝐴1

∗  is of the form 

𝑓 ⟼ 𝛼𝑓(𝑥) + 𝐹 ∘ 𝑇𝐴(𝑓),where 𝑥 ∈ 𝑋, 𝐹 ∈ ext𝑉, 𝛼 ∈  𝑆. 
If the norm on 𝐴 is defined by (𝐶) then a suitable choice is 𝑊 = 𝑋 × 𝑆 and 

𝑓(̅𝑥, 𝜆) = 𝑓(𝑥) + 𝜆(𝑇𝐴𝑓)(𝑥), 𝑥 ∈ 𝑋, 𝜆 ∈ 𝑆. 
Hence any extreme point of 𝐴1

∗  is given by 

𝑓 ⟼ 𝛼𝑓(𝑥) + 𝛽𝑇𝐴𝑓(𝑥), 
where 𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝑆. 

   Let 𝐴 be a subspace of a space 𝐶(𝑋), 𝑋 compact Hausdorff space. We say that 𝐴 is an 

𝑀-subspace of 𝑋,∑-subspace of 𝑋 or 𝐶-subspace of 𝑋 if there is a Banach space 𝑉 and a 

linear map 𝑇𝐴: 𝐴 ⟶ 𝑉 such that 

  (i) the norm on 𝐴 is given by the formula (𝑀), (∑)𝑜𝑟(𝐶), respectively, 

  (ii) for any 𝑥1, 𝑥2 ∈ 𝑋, functionals 𝛿𝑥1 and 𝛿𝑥2 are linearly independent, and if the 

corresponding assumptions listed below are satisfied: 

(iii𝑀)𝑋0 = {𝑥 ∈ 𝑋: 𝛿𝑥 ∈ ext 𝐴
∗} is a dense subset 𝑜𝑓 𝑋, 

        (iii∑)There is an 𝐹0 in ext𝑉∗ such that 

𝑋0 = {𝑥 ∈ 𝑋; ∀𝛼 ∈ 𝑆, 𝛿𝑥 + 𝛼𝐹0 ∘ 𝑇𝐴 ∈ ext 𝐴
∗} 

is a dense subset of 𝑋, 

       (iii𝐶) 𝑋0 = {𝑥 ∈ 𝑋: ∀𝛼, 𝛽 ∈ 𝑆, 𝛼𝛿𝑥 + 𝛽𝛿𝑥 ∘ 𝑇𝐴 ∈ ext 𝐴
∗} is a dense Subset  of 𝑋; 

(iv∑  )if 𝛼𝛿𝑥 + 𝐹 ∘ 𝑇𝐴  =  𝛼
′𝛿𝑥′ + 𝛽

′𝐹′ ∘ 𝑇𝐴,where 𝐹, 𝐹′ ∈ ext𝑉∗, 𝑥, 𝑥′ ∈ 𝑋, 𝛼𝛿𝑥 + 𝐹 ∘

𝑇𝐴 ∈  𝑒𝑥𝑡 𝐴
∗ and 𝛼′, 𝛽′ are scalars then 𝑥 = 𝑥′ and 𝛼 = 𝛼′, 

(iv𝐶) if 𝛼𝛿𝑥 + 𝛿𝑥 ∘ 𝑇𝐴 = 𝛼
′𝛿𝑥 + 𝛽

′𝛿𝑥′ ∘ 𝑇𝐴, where 𝑥, 𝑥′ ∈ 𝑋, 𝛼𝛿𝑥 + 𝛿𝑥 ∘ 𝑇𝐴 ∈ext 𝐴∗and 

𝛼′, 𝛽′ are scalars, then 𝑥 = 𝑥′ and 𝛼 = 𝛼′. 
Theorem (2.1.1)[25]: Let 𝐴 and 𝐵 be M-subspaces of 𝐶(𝑋) and 𝐶(𝑌), respectively. 

Put 𝑋0 = {𝑥 ∈ 𝑋: 𝛿𝑥 ∈ 𝑒𝑥𝑡𝐴
∗}, �̃� = {𝛼𝛿𝑥: 𝑥 ∈ 𝑋0, 𝑎 ∈ 𝑆}, 𝑌0 = {𝑦 ∈ 𝑌: 𝛿𝑦 ∈ ext𝐵∗}, 𝑌 =

{𝛼𝛿𝑦: 𝑦 ∈ 𝑌0, 𝛼 ∈ 𝑆}. Then an isometry Φ from 𝐴 onto 𝐵 iscanonical, of the form (∗) if 

and only if Φ∗(�̃�) = �̌�. 

      The assumption of the above Theorem, that Φ∗(�̌�) = �̌�, looks very strong and so the 

Theorem seems to be almost trivial, and as a matter of fact it is true, but the advantage of 

this statement is that for all the classical function spaces, with M norm, this strong 

assumption can be easily verified. The method of verifying this. We define a property 𝑃 

concerning the points of 𝐴∗(𝐵∗) such that 𝐹 ∈ 𝐴∗ (𝐺 ∈ 𝐵∗) has this property if and only if 
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𝐹 ∈ �̌� (𝐺 ∈ �̌�). This property is defined by the weak-* topology of 𝐴∗(𝐵∗), the norms of 

A and 𝐴∗ (𝐵 and 𝐵∗) and the linear structures of these Banach spaces. 

      The map Φ∗ is a weak-* homeomorphism and a norm isometry from 𝐵∗ onto 

𝐴∗ 𝑠𝑜 𝐺 ∈ 𝐵∗ has the 𝑃 property if and only if 𝐹 = Φ∗(𝐺) ∈ 𝐴∗ has the same property and 

hence we get Φ∗(�̌�) = �̌�. A similar remark concerns the next Theorems also. 

Proof. The "only if" part of Theorem (2.1.1) is trivial. 

      Assume that Φ∗(�̌�) = �̌�. Then there are two functions 𝜑1: �̌� ⟶ �̌� and 𝜑2: �̌� ⟶ 𝑆 

such that 

Φ∗(𝜆𝛿𝑦) = 𝜑2(𝜆, 𝑦) . 𝛿𝜑1(𝜆,𝑦) for 𝜆𝛿𝑦 ∈ �̌�. 

For any 𝑦 ∈ 𝑌 and 𝜆1, 𝜆2 ∈ 𝑆 functionals 𝜆1𝛿𝑦 and𝜆2𝛿𝑦 are proportional. 

Hence𝛿𝜑1(𝜆1𝑦)and 𝛿𝜑1(𝜆2,𝑦) are also proportional and this means that𝜑2(𝜆1, 𝑦) =

𝜑2(𝜆2, 𝑦) So 𝜑1does not depend on the first coordinate and, by linearity of Φ∗, the map 

𝜑2is linear with respect to 𝜆. We get 

Φ∗(𝜆𝛿𝑦) = 𝜆𝜑2(𝜆, 𝑦) 𝛿𝜑1(𝑦) for 𝜆𝛿𝑦 ∈ �̌�.                                       (1) 

Since Φ∗ is a weak-* homeomorphism of ext 𝐵∗ onto ext 𝐴∗ as well as a homeomorphism 

of the closures of these sets, and moreover the weak-* topologies of {𝛿𝑥: 𝑥 ∈ 𝑋} ⊂ 𝐴
∗ and 

{𝛿𝑦: 𝑦 ∈ 𝑌} ⊂ 𝐵
∗ coincide with the original topologies of 𝑋 and𝑌, the map (𝜑1, 𝜑2): �̃� ⟶

�̃� can be extended to a homeomorphism (𝜑, 𝜒) from �̅̃� = 𝑆 × 𝑌 onto �̅̃� = 𝑆 × 𝑋. Hence 

from (1) we get (*) and we are done. 

Theorem (2.1.2)[25]: Let 𝐴 and 𝐵 be ∑-subspaces of 𝐶(𝑋) and 𝐶(𝑌), respectively. 

      Then an isometry 𝜑 from 𝐴 onto 𝐵 is canonical, of the form (*), if and only if for any 

𝛼1𝛿𝑦𝑖 + 𝐺𝑖 ∘ 𝑇𝐵 ∈ ext 𝐵
∗, 𝑖 = 1,2, the following two implications hold: 

   (a) 𝑦1 = 𝑦2 iff 𝑥1 = 𝑥2 and 

   (b) 𝐺1 ∘ 𝑇𝐵 and𝐺2 ∘ 𝑇𝐵 are proportional iff𝐹1 ∘ 𝑇𝐴 and𝐹2 ∘ 𝑇𝐴 are proportional; here by 𝑥𝑖 

and 𝐹𝑖, we denote the elements of 𝑋 and ext 𝑉∗, respectively, such that Φ∗(𝛼1𝛿𝑦𝑖 + 𝐺1 ∘

𝑇𝐵) = 𝛽1𝛿𝑥𝑖 + 𝐹1 ∘ 𝑇𝐴, for some scalars 𝛽𝑖 , 𝑖 = 1,2. 

   Proof. As before the "only if" part is trivial. To prove the "if" part assume that an 

isometry Φ:𝐴 ⟶ 𝐵 satisfies our assumptions. Hence there are functions 𝜑1, 𝜑2and 

𝜑3defined on the set ext 𝐵∗ ⊂  𝑆 × 𝑌 × extU∗, with values in 𝑋, 𝑆 and ext𝑉∗, respectively, 

such that 

Φ∗(𝛼𝛿𝑦 + 𝐺1 ∘ 𝑇𝐵) = 𝜑2(𝛼, 𝑦, 𝐺)𝛿𝜑1(𝛼,𝑦,𝐺) + 𝜑3(𝛼, 𝑦, 𝐺) ∘ 𝑇𝐴 +            (2) 

for 𝛼𝛿𝑦 + 𝐺 ∘ 𝑇𝐵 ∈ ext𝐵
∗. 

      By the assumption (a) the function tpi does not depend on a and 𝐺 and we write 

𝜑1(𝑦)in place of 𝜑2(𝛼, 𝑦, 𝐺). By (b) the map 𝜑3 is of the form 𝜑3(𝛼, 𝑦, 𝐺) 𝜑4(𝐺) where 

𝜑4(𝐺) ∈ ext𝑉
∗ and ip has values in 𝑆. 

     By the same argument as in the proof of Theorem (2.1.1) the map 𝜑1can be extended to 

a homeomorphism 𝜑 from 𝑌 onto 𝑋. So to end the proof we have to show that Φ∗maps 

𝛼𝛿𝑦 onto 𝜑2(𝛼, 𝑦, 𝐺)𝛿𝜑(𝑦). 

      For any 𝐻 = 𝛼𝛿𝑦 + 𝐺1 ∘ 𝑇𝐵 ∈ ext 𝐵
∗ we define 

Ω𝐵(𝐻) = {𝛼
′𝛿𝑦 + 𝛽

′𝐺 ∘ 𝑇𝐵ext 𝐵
∗: 𝛼′, 𝛽′ ∈ 𝑆}. 

By our assumptions we have Ω𝐵(𝐻) = Ω𝐴(Φ
∗(𝐻))for any 𝐻 ∈ ext𝐵∗. Let 𝐺0 and 𝑌0 be as 

in assumption (iii∑) for the space 𝐵. Notice that for any 𝑦 ∈ 𝑌0the setΩ𝐵(𝛿𝑦 + 𝐺0 ∘ 𝑇𝐵) is 

homeomorphic to 𝑆 × 𝑆. Hence, by (2), the set 
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Ω𝐴 (𝜑2(1, 𝑦, 𝐺0)𝛿𝜑1(𝑦) + 𝜓(1, 𝑦) 𝜑4(𝐺0)) is also homeomorphic to 𝑆 × 𝑆 and so 

𝛼𝛿𝜑1(𝑦) + 𝛽𝜑4(𝐺0) ∈ ext 𝐴
∗  for all 𝑦 ∈ 𝑌0, 𝛼, 𝛽 ∈ 𝑆. 

Hence we have 𝑋0 = 𝜑4(𝑌0) and we can put 𝐹0 = 𝜑4(𝐺0) in our assumption (iii∑). Notice 

that for any vector space E, for any functionals 𝑒1
∗, 𝑒2

∗. on E and for any 𝑒 ∈ 𝐸 we have 

card({|𝛼𝑒1
∗(𝑒) + 𝛽𝑒2

∗(𝑒)|: 𝛼, 𝛽 ∈ 𝑆}) = 1 iff 𝑒1
∗(𝑒). 𝑒2

∗(𝑒) = 0. 
      Hence for any 𝑓 ∈ 𝐴 and any 𝑦 ∈ 𝑌0 we have the following implications: 

𝑓(𝜑1(𝑦)) = 0 𝑜𝑟 𝐹0 ∘ 𝑇𝐴(𝑓) = 0 iff 

Card({|𝐻(𝑓)|: 𝐻 ∈ Ω𝐴(𝛿𝜑1(𝑦) + 𝐹0 ∘ 𝑇𝐴)}) = 1 iff 

Card({|𝐻(𝑓)|: 𝐻 ∈ Ω𝐵(𝛿𝑦 + 𝐺0 ∘ 𝑇𝐵)}) = 1 iff 

Φ(𝑓)(𝑦) = 0 𝑜𝑟 𝐺0 ∘ 𝑇𝐵(𝑓) = 0. 

This means that the union of 𝛿𝜑1(𝑦) and ker𝐹1 ∘ 𝑇𝐴 is equal to the union of kerΦ∗(𝛿𝑦) and 

kerΦ∗(𝐺0 ∘ 𝑇𝐵)- By the assumption (4s) functionals 𝛿𝜑1(𝑦) and 𝐹1 ∘ 𝑇𝐴are linearly 

independent so the above proves that for any 𝑦 ∈ 𝑌0 we have two possibilities. 

   (i) Φ∗(𝛿𝑦) =  𝜒(𝑦)𝛿𝜑1(𝑦) and Φ∗(𝐺0 ∘ 𝑇𝐵) = 𝜒
′(𝑦)𝐹0 ∘ 𝑇𝐴or 

   (ii) Φ∗(𝛿𝑦) =  𝜒
′(𝑦)𝐹1 ∘ 𝑇𝐴 and Φ∗(𝐺0 ∘ 𝑇𝐵) = 𝜒(𝑦)𝛿𝜑1(𝑦), 

where 𝜒 and 𝜒′ are scalar valued functions. 

On the other hand by our assumption (b) we have 

Φ∗({𝛼′𝛿𝑦 + 𝛽
′𝐺 ∘ 𝑇𝐵: 𝑦 ∈ 𝑌, 𝛼, 𝛽 ∈ 𝑆}) =  {𝛼𝛿𝑥 + 𝛽𝐹0 ∘ 𝑇𝐴: 𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝑆}. 

This shows that the second possibility does not hold for any 𝑦 ∈ 𝑌0 (except in the trivial 

case when card(𝑌) = 1); so to end the proof of (*) it is sufficient to notice that by (i), (2) 

and by the assumption (iv∑) we have |𝜒| = |𝜑2| ≡ 1. 

Theorem (2.1.3)[25]: Let 𝐴 and 𝐵 be C-subspaces of 𝐶(𝑋) and 𝐶(𝑌), respectively. 

      Then an isometry Φ from 𝐴 onto 𝐵 is canonical, of the form {*), if and only if the 

following two conditions hold: 

   (a) for any 𝛼𝑖𝛿𝑦𝑖 + 𝛽𝑖𝛿𝑦𝑖 ∘ 𝑇𝐵 ∈ ext𝐵
∗ , 𝑖 = 1,2, we have 𝑦1 = 𝑦2 = iff 𝑥1 = 𝑥2 where 

by 𝑥𝑖 we denote an element of 𝑋 such that 

Φ∗(𝛼𝑖𝛿𝑦𝑖 + 𝛽𝑖𝛿𝑦𝑖 ∘ 𝑇𝐵 = 𝛼𝑖
′𝛿𝑥𝑖 + 𝛽𝑖

′𝛿𝑥𝑖 ∘ 𝑇𝐴 ) 

for some scalars 𝛼𝑖
′, 𝛽𝑖

′, 𝑖 = 1,2; 

  (b)              Φ∗({𝛼𝛿𝑦: 𝑦 ∈ 𝑌, 𝛼 ∈ 𝑆}) ∩ {𝛼𝛿𝑥 ∘ 𝑇𝐴: 𝑥 ∈ 𝑋, 𝑎 ∈ 𝑆} = ∅. 

Proof. The "only if" part is again trivial. Assume that Φ satisfies assumptions (a) and (b). 

Following what is by now a standard argument we get a homeomorphism 𝜑 from 𝑌 onto 𝑋 

and scalar valued functions 𝜑2and 𝜑3 defined on 𝑆 × 𝑆 × 𝑌, with |𝜑2| ≡ 1 ≡ |𝜑3|such 

that 

Φ∗(𝛼𝛿𝑦 + 𝛽𝛿𝑦 ∘ 𝑇𝐵) = 𝜑2(𝛼, 𝑦, 𝐺)𝛿𝜑(𝑦) + 𝜑3(𝛼, 𝑦, 𝐺). 𝛿𝜑(𝑦) ∘ 𝑇𝐴,                  (3) 

Where 𝑦 ∈ 𝑌 and 𝛼, 𝛽 ∈ 𝑆. For any 𝐻 = 𝛼𝛿𝑥 + 𝛽𝛿𝑥 ∘ 𝑇𝐴 ∈ ext 𝐴
∗ we define 

Ω𝛼(𝐻) = {𝑎′𝛿𝑦 + 𝛽
′𝛿𝑥 ∘ 𝑇𝐴 ∈ ext 𝐴

∗: 𝛼, 𝛽 ∈ 𝑆}. 

As in the proof of the preceding Theorem we show that for any 𝑦 ∈ 𝑌 we have two 

possibilities: 

(i) Φ∗(𝛿𝑦) =  𝜒(𝑦)𝛿𝜑(𝑦) and Φ
∗(𝛿𝑦 ∘ 𝑇𝐵) = 𝜒

′(𝑦). 𝛿𝜑(𝑦) ∘ 𝑇𝐴𝑜𝑟 

(ii) Φ∗(𝛿𝑦) = 𝜒
′ (𝑦)𝛿𝜑(𝑦) ∘ 𝑇𝐴and Φ

∗(𝛿𝑦 ∘ 𝑇𝐵) = 𝜒(𝑦). 𝛿𝜑(𝑦). 

   By the assumption (b) the second possibility never holds; by (iv𝐶) we then get |𝑥| ≡
|𝜑2| = 1 and we are done. 
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   To verify the assumptions of our schemes, given by Theorems (2.1.1)-(2.1.3), it is 

usually necessary to have at least partial description of the extreme functionals in the unit 

ball of the dual spaces. Hence in some cases it is easier to apply the following Theorem, 

which is an immediate consequence of the Theorem of [37]. 

Theorem (2.1.4)[25]: Let 𝐴 be a complex subspace of 𝐶(𝑋), 𝑋 compact Hausdorff Space, 

such that 

   (i) 𝐴 is sup-norm dense in 𝐶(𝑋), 
   (ii) the norm on 𝐴 is given by a map 𝑇𝐴: 𝐴 ⟶ 𝑉𝐴, via the formula (𝑀) or (∑), 
   (iii) 𝐴 contains the constant function 1 and 𝑇𝐴(1) = 0. 

  Assume next that 𝐵 is a complex subspace of𝐶(𝑌) which satisfies the analogous 

assumptions (i)-(iii). Then any isometry Φ from 𝐴 onto 𝐵, such that Φ(1) = 1 is of the 

form  

Φ(𝑓) = 𝑓 ∘ 𝜑   𝑓𝑜𝑟 𝑓 ∈ 𝐴, 
Where 𝜑 is a homeomorphism from 𝑌 onto 𝑋. 

Example (2.1.5)[25]: Let 𝐴 = 𝐶1(𝑋) and 𝐵 = 𝐶1(𝑌) be algebras of continuously 

differentiable functions defined on the compact subsets 𝑋 and 𝑌 of the real line, 

We do not assume here that the sets 𝑋 and 𝑌 do not contain isolated points but we 

understand that the derivative of a function 𝑓 ∈ 𝐶1(𝑋) is defined only on the set of 

nonisolated points of 𝑋. Assume that the norms on 𝐴 and B are given by the formula (𝑀); 
this means 

‖𝑓‖ = m ax(‖𝑓‖∞, ‖𝑓
′‖∞), 𝑓 ∈ 𝐴(𝐵). 

  We prove that 𝐴 is an M-subspace of 𝐶(𝑋). The first two assumptions of the definition of 

M-subspace are evidently fulfilled. To show the last one notice that 

for any 𝑥0 ∈ 𝑋 there is an 𝑓 ∈ 𝐶1(𝑋) such that ‖𝑓‖ = ‖𝑓‖∞ = 𝑓(𝑥0) = 1 > ‖𝑓‖∞and 

such that |𝑓(𝑥)| < 1 for 𝑥 ∈ 𝑋\{𝑥0} Hence for any 𝑥0 ∈ 𝑋  the functional 𝛿𝑋0 is an 

extreme point of 𝐴1
∗ , so 𝑋0 = 𝑋. Notice also that for any 𝑥0 G X there is a 𝑔 ∈ 𝐶1(𝑋) such 

that ‖𝑔‖ = ‖𝑔′‖∞  = 𝑔
′(𝑥0) = 1 > ‖𝑔‖∞, Hslloo and such that \𝑔′(𝑥)\ <  1for 𝑥 ∈

𝑋\{𝑥0}. Hence 

ext 𝐴∗ = {𝛼𝛿𝑥: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆} 𝑈 {𝛼𝛿𝑥
′ : 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆},                        (4) 

Where by 𝛿𝑥
′  we denote a functional defined by 𝛿𝑥

′ (𝑓) − 𝛿𝑥 ∘ 𝐷(𝑓) = 𝑓
′(𝑥). 

      Now let Φ be any isometry from 𝐴 onto 𝐵. We prove that Φ∗(𝑌) = 𝑋. To this end we 

define the following property concerning points of 𝐴∗(𝐵∗). 
𝐹 ∈ 𝐴∗ has the P-property iff 𝐹 ∈ ext𝐴∗ and there is 𝑎 𝐺 in ext 𝐴∗, not proportional to 𝐹, 

such that for any weak-* open neighborhood 𝑈 ⊂ ext𝐴∗ of 𝐺 and any  𝑓 ∈ 𝐴 ⊂ 𝐶𝐴∗∗ we 

have: if 𝑓|𝑈  ≡ 0 then 𝐹(𝑓) = 0. 

      We check that 𝐹 ∈ 𝐴∗ has the P-property if and only if 𝐹 ∈ ext 𝐴∗\𝑋. Fix any Point 

𝑥0 ∈ 𝑋 and put 𝐹 = 𝛼𝛿𝑥0
′  with 𝛼 ∈ 𝑆. By (4) 𝐹 ∈ ext𝐴∗* and for any weak-* open 

neighborhood 𝑈 ⊂ ext 𝐴∗of the functional 𝛿𝑥0 and for any 𝑓 ∈  𝐴 we have 

𝑓|𝑈  ≡ 0 ⇛ 𝑓 ≡ 0 on an open neighborhood of 𝑥0⟹ 𝑓′(𝑥0) = 0. 

      Hence any element of ext 𝐴∗\�̃� has the 𝑃-property. 

   Now fix again 𝑥0 ∈ 𝑋 and put 𝐹 = 𝛼𝛿𝑥
′ . Let 𝐺 ∈ ext𝐴∗\{𝛾𝐹: 𝛾 ∈ 𝑆}. By (4) 

      We have two possibilities: 1. 𝐺 = 𝛽𝛿𝑥1 , 𝑥1 ≠ 𝑥0 or 2. 𝐺 = 𝛽𝛿𝑥1
′ . If the first one Holds 

then we put 𝑈 = {𝛾𝛿𝑥: |𝑥 − 𝑥1| < |𝑥0 − 𝑥1|/2, 𝛾 ∈ 𝑆}; evidently there is an 𝑓in 𝐴 ⊂ 𝐴∗∗ 
such that 𝑓|𝑈  ≡ 0 and 𝑓(𝑥0) = 1. If the second possibility holds we put𝑈 = {𝛾𝛿𝑥

′ : 𝑥 ∈
𝑋, 𝛾 ∈ 𝑆} and put 𝑓 ≡ 1. Hence 𝐹 does not have the P-property. 

   We have proved that 𝐹 ∈ 𝐴∗ has the P-property if and only if 𝐹 ∈ ext 𝐴∗\𝑋. 
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      This property is defined by the weak-* topology of 𝐴∗, and the norm and the linear 

structure of 𝐴∗ ; this means by the properties which are preserved by Φ∗. Hence 𝐹 =
Φ∗(𝐺) ∈ 𝐴∗ has this property if and only if 𝐺 ∈ 𝐵∗ has, and this proves thatΦ∗(𝑌) = 𝑋. 

    By Theorem (2.1.1) we now get that any isometry Φ from 𝐶1(𝑋) onto 𝐶1(𝑌) is of the 

form 

Φ(𝑓)(𝑦) = 𝑥(𝑦). 𝑓. 𝜑(𝑦 ) for 𝑓 ∈ 𝐴, 𝑦 ∈ 𝑌, 
Where 𝑥 ∈ 𝐶1(𝑋), |𝑥| ≡ 1 and 𝜑 is a homeomorphism from 𝑌 onto 𝑋. It is also easy to 

verify now that since Φ preserves both 𝑀-norm and sup-norm, it also preserves the sup-

norm of the derivative and hence we get |𝜑′| ≡ 1. 

  We have assumed at the beginning of this example that the sets 𝑋 and 𝑌 are compact. In 

fact this assumption is not essential and the same holds for arbitrary subsets of the real line 

not necessarily bounded and closed. We then consider 𝐴 as a subset of 𝐶(𝛽𝑋) and the 

proof is slightly more technical. 

   The general form of the isometries of complex 𝐶1(𝑋) spaces, defined on a compact 

subset 𝑋 of the real line, without isolated points, was investigated by Pathak and Vasavada 

[44]. 

Example (2.1.6)[25]: Let 𝐴 = 𝐴𝐶(𝑋) be the space of all absolutely continuous, scalar 

valued functions defined on a compact subset 𝑋 of the real line, such that 𝑋 = int𝑋̅̅ ̅̅ ̅̅ . We 

define norm on 𝐴 by 

‖𝑓‖ = 𝑚𝑎𝑥(‖𝑓‖∞, ‖𝑓
′‖1) for  𝑓 ∈ 𝐴, 

Where ‖𝑓′‖ 1 = ∫ |𝑓
′|

 

𝑥
 dm and m is the Lebesgue measure. 

      As in the preceding example it is easy to notice that for any 𝑥0 ∈ 𝑋 there is an 𝑓 ∈ 𝐴 

such that ‖𝑓‖ = ‖𝑓‖∞ = 𝑓(𝑥0) = 1 > ‖𝑓
′‖1and |𝑓(𝑥)| < 1 for 𝑥 ∈ 𝑋\{𝑥0}. Hence 𝑋0 =

𝑋 and 𝐴 is an Af-subspace of 𝐶(𝑋). Notice also that for any 𝐹 ∈ 𝑒𝑥𝑡(𝐿1(𝑚))
∗
 ≅

 𝑒𝑥𝑡(𝐿∞(𝑚)) and a function 𝑓 ∈ 𝐴𝐶(𝑋) defined by  

𝑓(𝑡) =
1

𝑚(𝑋)
∫ �̅�(𝑥)

 

𝑋∩(−∞,𝑡)

𝑑𝑚(𝑥) −
1

2𝑚[𝑋]
∫ �̅�(𝑥)

 

𝑋

𝑑𝑚(𝑥) 

We have ‖𝑓‖ = 1, ‖𝑓‖∞ ≤
1

2
 and for any 𝐺 ∈ 𝑒𝑥𝑡(𝐿∞) = 𝑒𝑥𝑡(𝐿1) 

𝐺(𝑓):= ∫𝐺𝑓′𝑑𝑚

 

𝑋

 = 1 iff 𝐺 =  𝐹. 

This means that the function 𝑓 ∈ 𝐴 ⊂ 𝐶(𝑋 𝑈 𝑒𝑥𝑡(𝐿∞)) peaks exactly at the point 𝐹 ∈
𝑒𝑥𝑡(𝐿∞), so any such point 𝐹 is an extreme point of 𝐴∗ and we have 

ext 𝐴∗ = {𝛼𝛿𝑥: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆}𝑈{𝐹𝑜𝐷: 𝐹 ∈ ext(𝐿
∞)}, 

Where 𝐷: 𝐴𝐶(𝑋) → 𝐿1 is defined by 𝐷(𝑓) = 𝑓′. 
      By Theorem (2.1.1) to prove that any isometry Φfrom 𝐴𝐶(𝑋) onto 𝐴𝐶(𝑌) is canonical 

we have to, as before, define the set�̌� = {𝛼𝛿𝑥 ∈ ext 𝐴
∗: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆} by the weak-* 

topology of 𝐴∗ and the norms and the linear structures of 𝐴 and 𝐴∗. We have 𝐹 ∈ �̌� iff 𝐹 ∈
ext 𝐴∗ and there is a weak-* open neighborhood of 𝐹 in ext 𝐴∗ which is homeomorphic to 

a subset of 𝑆 × 𝑅, 𝑅 the real line. 

Example (2.1.7)[25]: If 𝑋 is any compact metric space with metric 𝑑 we let 

 𝐿𝑖𝑝𝛼(𝑋) = {𝑓 ∈ 𝐶(𝑋): ‖𝑓‖𝑑𝛼 = sup
𝑥,𝑦∈𝑌
𝑥≠𝑦

|𝑓(𝑥) − 𝑓(𝑦)|

𝑑𝛼(𝑥, 𝑦)
< ∞} 
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and 

 𝐿𝑖𝑝𝛼(𝑋) = {𝑓 ∈ 𝐿𝑖𝑝𝛼(𝑋):=  lim
𝑑(𝑥,𝑦)→0

𝑓(𝑥) − 𝑓(𝑦)

𝑑𝛼(𝑥, 𝑦)
= 0} 

both provided with the M-norm; this means with the norm defined by 

‖𝑓‖ = max(‖𝑓‖∞, ‖𝑓‖𝑑𝛼). 
As before it is easy to check that both  𝐿𝑖𝑝𝛼(𝑋)and 𝐿𝑖𝑝𝛼(𝑋) are M-subspaces of 

𝐶(𝑋). Therefore to prove that any isometry from 𝐿𝑖𝑝𝛼(𝑋) onto 𝐿𝑖𝑝𝛼(𝑌) or from 𝐿𝑖𝑝𝛼(𝑋) 
onto 𝐿𝑖𝑝𝛼(𝑌) is canonical we have to define a property which "separates�̌� = {𝛼𝛿𝑥: x ∈
X, 𝛼 ∈ 𝑆}from the rest of the extreme points of the unit ball of (𝐿𝑖𝑝𝛼(𝑋))

∗ or (𝐿𝑖𝑝𝛼(𝑋))
∗ 

We have 𝐹 ∈ ext 𝐴∗\�̌� iff 𝐹 ∈ ext 𝐴∗ and there are sequences (𝐹1
𝑛)𝑛=1
∞  and (𝐹2

𝑛)𝑛=1
∞ 1s 

uch that (𝐹1
𝑛 − 𝐹1

𝑛)\‖𝐹1
𝑛 − 𝐹2

𝑛‖ tends to 𝐹 in the norm topology. 

      The isometries of the complex 𝐿𝑖𝑝1(𝑋)spaces with the above M-norm were considered 

by Roy [46], when 𝑋 is connected with diameter at most 1, and by Vasavada [47], when 𝑋 

satisfies certain separation conditions. A similar space defined on the real line was 

investigated by de Leeuw [40]. 

Example (2.1.8)[25]: Let 𝐴 = 𝐶1(𝑋)𝑎𝑛𝑑 𝐵 = 𝐶1(𝑌) be the same vector spaces as in 

Example (2.1.5) but now with the ∑-norm; this means with the norm given by 

‖𝑓‖ = ‖𝑓‖∞ + ‖𝑓
′‖∞, 𝑓 ∈ 𝐴(𝐵). 

To prove that 𝐴 is a ∑-subspace of 𝐶(𝑋) it is sufficient to notice that for any 𝑥1 ≠ 𝑥2 in 𝑋 

and any 𝛼, 𝛽 ∈ 𝑆 there is an 𝑓 in A such that ‖𝑓‖ = 1, 𝑓(𝑥1) = �̅�/2, |𝑓(𝑥)| <
1

2
 for 𝑥 ≠

𝑥1, 𝑓′(𝑥2) = �̅�/2 and |𝑓′(𝑥)| <
1

2
 for 𝑥 ≠ 𝑥2- Hence 

{𝛼𝛿𝑥 + 𝛽𝛿𝑦 𝑜𝐷: 𝑥 ≠ 𝑦, ∈ 𝑋, 𝛼, 𝛽 ∈ 𝑆} 𝐶ext 𝐴
∗. 

Now let Φ be any isometry from 𝐴 onto 𝐵. To prove that Φ is canonical, by Theorem 

(2.1.2), we have to show that the assumptions (a) and (b) of this Theorem are Satisfied. To 

see this we define two equivalence relations ~1 and ~2 on ext 𝐴∗ by the following 

formulas: 

𝛼1𝛿𝑥1 + 𝐹1𝑜𝐷~1𝛼2𝛿𝑥2 + 𝐹2𝑜𝐷 iff 𝑥1 = 𝑥2                                    (5) 

And 

𝛼1𝛿𝑥1 + 𝐹1𝑜𝐷~2𝛼2𝛿𝑥2 + 𝐹2𝑜𝐷   iff 𝑥1 = 𝑥2 iff 𝐹1𝑜𝐷 and 𝐹2𝑜𝐷 are proportional.      (6) 

To verify (a) and (b) we just have to prove that the map Φ∗ preserves both the above 

relations. We prove this by defining ~1 and ~2 in terms of the weak-* topology of 𝐴∗, the 

norms and the linear structures of 𝐴 and 𝐴∗, so in the terms which are preserved by Φ∗. To 

this end we notice that a sequence (𝛼𝑛𝛿𝑥𝑛 + 𝛽𝑛𝛿𝑦𝑛 ∘ 𝐷)𝑛=1
∞
𝐶ext 𝐴∗ tends to 𝛼0𝛿𝑥0 +

𝛽0𝛿𝑦0 ∘ 𝐷 in the weak-* topology iff an 𝛼𝑛 ⟶ 𝛼0, 𝛽𝑛⟶ 𝛽0, 𝑥𝑛 ⟶ 𝑥0 and 𝑦𝑛⟶ 𝑦0,and 

in the norm topology iff  𝛼𝑛 ⟶ 𝛼0, 𝛽𝑛⟶ 𝛽0, 𝑥𝑛 ⟶ 𝑥0and 𝑦𝑛 = 𝑦0 for all but finitely 

many 𝑛. We have  𝐹~1  𝐺 iff there are sequences (𝐹𝑛)𝑛=1
∞ and (𝐺𝑛)𝑛=1

∞  in ext 𝐴∗ which 

tend, in the norm topology, to 𝐹 and 𝐺, respectively and there is a scalar a such that 

dim(span{𝐹𝑛: 𝑛 = 1,2, . . . }) = ∞ and 𝐹𝑛 + 𝛼𝐺𝑛 = 𝐹 + 𝛼𝐺for all 𝑛 ∈ 𝑁. 
      We also have 𝐹~2  𝐺 iff there are sequences (𝐹𝑛)𝑛=1

∞ and (𝐺𝑛)𝑛=1
∞  in ext 𝐴∗which tend 

to 𝐹 and G respectively, in the weak-* topology, but do not tend in the norm topology, and 

there is a scalar a such that 𝐹𝑛 + 𝛼𝐺𝑛 = 𝐹 + 𝛼𝐺for all 𝑛 ∈ 𝑁. 

      The isometries of the complex 𝐶1 [0,1] space with the above ∑ -norm were described 

by Rao and Roy [45]. 
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Example (2.1.9)[25]: Let 𝐴 = 𝐴𝐶[0,1] be the spaces of all complex absolutely continuous 

functions defined on the unit interval with the E-norm; this means with the norm given by 

‖𝑓‖ = ‖𝑓‖∞ + ‖𝑓
′‖1, 𝑓 ∈ 𝐴. 

As we noticed any extreme functional on 𝐴 is of the form 

𝐴 ∋ 𝑓
𝛼𝛿𝑥+𝐹𝑜𝐷
→      𝛼𝑓(𝑥) + ∫𝐹 . 𝑓′𝑑𝑚,                                          (7) 

Where 𝑥 ∈ 𝑋, 𝛼 ∈  𝑆,𝑚 is the Lebesgue measure and 𝐹 is an extreme point of (𝐿1)∗, which 

we identify with a function 𝐹 ∈ 𝐿∞ such that |𝐹| = 1 a.e. To prove 

      That 𝐴 is a ∑ -subspace of 𝐶[0,1] we have to show that there is an 𝐹0 in ext(𝐿∞) such 

that for any 𝑥 ∈ 𝑋 and any 𝛼 ∈ 𝑆 the corresponding functional defined by (7) is an 

extreme point of 𝐴1
∗ . To this end let 𝐾 be a measurable subset of [0,1] such that for any 

open subset 𝑈 of [0,1] we have 0 < 𝑚(𝐾 ∩ 𝑈) < 𝑚(𝑈). By Lemma 2.1 of [45] the 

desired function 𝐹0 can be defined by 

𝐹0(𝑡) = {
1   if 𝑡 ∈ 𝐾,
−1  if 𝑡 ∉ 𝐾.

 

  To prove that any isometry from 𝐴 onto itself is canonical we have to, as in the previous 

example, describe the equivalence relations defined by (5) and (6) by the weak-* topology 

of 𝐴∗, the norms and the linear structures of 𝐴 and 𝐴∗. To this end notice that a sequence 

(𝛼𝑛𝛿𝑥𝑛 + 𝛽𝑛𝛿𝑦𝑛 ∘ 𝐷)𝑛=1
∞
𝐶ext 𝐴∗ tends to 𝛼𝛿𝑥𝐹 ∘ 𝐷 in the weak-* topology iff 𝛼𝑛 ⟶

𝛼, 𝑥𝑛 ⟶ 𝑥 and 𝐹 tends to 𝐹 in the weak-* topology of 𝐿∞; and in the norm topology iff 

𝛼𝑛 ⟶ 𝛼 , 𝑥𝑛 = 𝑥 for all but finitely many 𝑛 ∈ 𝑁 and ‖𝐹𝑛 − 𝐹‖ ⟶ 0. 
      By Lemma 2.1 of [45] we have and 𝐹~1𝐺 iff 𝐹 and 𝐺 are contained in the same 

connected component of the set ext 𝐴∗ equipped with the norm topology, and 𝐹~2𝐺 iff 

there are sequences (𝐹𝑛)𝑛=1
∞  and (𝐺𝑛)𝑛=1

∞  in ext 𝐴∗ which tend, in the norm topology, to 𝐹 

and 𝐺, respectively and a scalar a such that dim(span{𝐹𝑛: 𝑛 = 1,2, . . . }) = ∞ and𝐹𝑛 +
𝛼𝐺𝑛 = 𝐹 + 𝛼𝐺   for all 𝑛 ∈ 𝑁. 

      The isometries of the spaces 𝐴𝐶[0,1] have been described by Cambern [28] and by 

Rao and Roy [45]. 

Example (2.1.10)[25]: Let 𝐴 = 𝐶1(𝑋) 𝑎𝑛𝑑 𝐵 = 𝐶1(𝑌) be as in Example (2.1.5) but now 

with 

the 𝐶-norm; this means with the norm given by 

‖𝑓‖ = sup{|𝑓(𝑥)| + |𝑓′(𝑥)|: 𝑥 ∈ 𝑋}. 
In order for ‖. ‖ to be a well-defined norm we have to assume now that 𝑋 and 𝑌 

Do not contain isolated points. 

  As before, it is standard to verify (see [30], for the complex case) that 

ext 𝐴∗ = {𝛼𝛿𝑥 + β𝛿𝑥 ∘ 𝐷: 𝑥 ∈ 𝑋, 𝛼, 𝛽 ∈ 𝑆}. 
Hence 𝐴 and 𝐵 are 𝐶-subspaces of 𝐶(𝑋) and 𝐶(𝑌), respectively. To prove that any 

isometry from 𝐴 onto 𝐵 is canonical we have to check whether assumptions (a) And (b) of 

Theorem (2.1.3) are satisfied. To this end we describe the equivalence relation on ext 𝐴∗ 
defined by 

𝛼𝛿𝑥 + β𝛿𝑥 ∘ 𝐷~𝛼
′𝛿𝑥 + β

′𝛿𝑥 ∘ 𝐷 iff 𝑥 = 𝑥
′ 

In terms of the weak-* topology of 𝐴∗, the norms and the linear structures of 𝐴 and 𝐴∗, and 

we also "separate" the set {𝛼𝛿𝑥 ∈ 𝐴
∗: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆} from the set {𝛼𝛿𝑥 ∘ 𝐷 ∈ 𝐴

∗: 𝑥 ∈ 𝑋, 𝛼 ∈
𝑆} by the same properties, which are preserved by Φ∗. We have 𝐹 ~ 𝐺 iff 𝐹 and 𝐺 are 

contained in the same connected component of the set ext 𝐴∗, equipped with the norm 

topology. 
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      We also have 𝐹 ∈ {𝛼𝛿𝑥: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆}is an open subset of the set {𝛼𝛿𝑥: 𝑥 ∈ 𝑋, 𝛼 ∈
𝑆}𝑈{𝛼𝛿𝑥 ∘ 𝐷: 𝑥 ∈ 𝑋, 𝛼 ∈ 𝑆}, equipped with the norm topology. 

      The isometries of the complex 𝐶1(𝑋) spaces with the 𝐶-norm have first been 

considered by Cambern [28] for 𝑋 =  [0,1] and then by Cambern and Pathak [30] for 𝑋 

any compact subset of the real line, without isolated points. 

      It can be proved that 𝐴1(𝐾) gives 𝑀−,∑ − and 𝐶-subspaces of 𝐶(𝜕𝐾), where 𝜕𝐾is 

the topological boundary of 𝐾, and that all the assumptions of Theorems (2.1.1), (2.1.2) 

and (2.1.3) are satisfied for 𝐴 = 𝐴1(𝐾), 𝐵 = 𝐴1(𝐿). Hence any 𝑀−,∑ − or 𝐶 −isometry 

Φ from 𝐴1(𝐾) onto 𝐴1(𝐿) is of the form 

 Φ𝑓(𝑧) = 𝜒(𝑧). 𝑓 ∘ 𝜑(𝑧) , 𝑓 ∈ 𝐴1(𝐾), 𝑧 ∈ 𝐿, 
Where 𝜑 is an analytic homeomorphism from 𝐿 onto K, with |𝜑′| ≡ 1 and 𝑥 ∈ 𝐴1(𝐾), 
with |𝜒| ≡ 1. 

Example (2.1.11)[25]: Let 𝑋 be a compact subset of the real line. For 1 ≤ 𝑝 ≤ ∞ we 

      Define  

𝐴𝐶𝑃(𝑋) = {𝑓 ∈ 𝐶(𝑋): 𝑓′exists 𝑎. 𝑒. , 𝑓′ ∈ 𝐿𝑃(𝑋)} 
and we define a norm on 𝐴𝐶𝑃(𝑋) by  

‖𝑓‖ = ‖𝑓‖∞ + ‖𝑓
′‖𝑝. 

   For 𝑝 = 1 (resp. oo) we get the space 𝐴𝐶(𝑋) (resp. 𝐿𝑖𝑝(𝑋)). Rao and Roy [45] proved 

that any isometry from the complex 𝐴𝐶𝑝([0, 1]) space, 𝑝 = 1 or∞ onto itself is canonical 

(cf. Example (2.1.9)) and asked whether the same holds for 1 < 𝑝 < ∞. The answer is 

positive and is a consequence of the following more general proposition. 

Proposition (2.1.12)[25]: Let 𝐴 be a complex subspace of 𝐶(𝑋), 𝑋 compact Hausdorff 

Space, such that 

   (i) 𝐴 is sup-norm dense in 𝐶(𝑋), 
   (ii) The norm on 𝐴 is given by a map 𝑇𝐴: 𝐴 ⟶ 𝑉𝐴 a, via the formula (∑), 
   (iii) 𝐴 Contains the constant function 1 and𝑇𝐴(1) = 0, 

   (iv) dim(𝑇𝐴(𝐴)) ≥ 2, 

   (v) 𝑉 is strictly convex, 

   (iv) For any unimodular function 𝜒 ∈ 𝐴 such that 𝑇𝐴(𝜒) = 0 a map 

𝐴 ∋ 𝑓 ⟶ 𝑓/𝜒 ∈ 𝐴 
Is a well defined surjective isometry. 

      Assume next that 𝐵 is a complex subspace of𝐶{𝑌), 𝑌 compact Hausdorff, which also 

satisfies assumptions (i)-(vi). Then any isometry Φ from 𝐴 onto 𝐵 is of the form 

Φ(𝑓) = 𝜒. 𝑓 ∘ 𝜑,    𝑓 ∈ 𝐴, 
Where 𝜑 is a homeomorphism from 𝑌 onto 𝑋 and 𝜒 ∈ 𝐵 is a unimodular function on 𝑌 

such that 𝑇𝐵(𝑥)  =  0. 
Proof. By Theorem (2.1.4) and by our assumption (vi) it is sufficient to prove that Φ(1) is 

a unimodular function on 𝑌 such that𝑇𝐵{Φ(1)) = 0. We say that an element 𝑔 of 𝐴 has the 

P-property if ‖𝑔‖ = 1 and if for any 𝑓 in 𝐴 there is a 𝛽 ∈ 𝑆 such that 

‖𝑔 + 𝛽𝑓‖ = ‖𝑔‖ + ‖𝑓‖. 
It is evident that this property is preserved by our isometry Φ. By the definition of the 

norm on 𝐴 for any 𝑓 ∈ 𝐴 and 𝛽 ∈ 𝑆 such that  

‖𝑓‖∞ = sup𝑥∈𝑋𝑅𝑒(𝛽𝑓(𝑥)) 
We have 

‖1 + 𝛽𝑓‖ = ‖1 + 𝛽𝑓‖∞ + ‖𝑇𝐴(𝑓)‖ = 1 + ‖𝑓‖∞ + ‖𝑇𝐴(𝑓)‖ = 1 + ‖𝑓‖. 
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Hence to end the proof we have to show that if 𝑔 ∈ 𝐴 has the property 𝑃 then 𝑔 is a 

unimodular function on 𝑋 such that𝑇𝐴(𝑔) = 0. 

      We first prove that |𝑔|  ≡ 𝑐on 𝑋 for some constant𝑐, then we prove that 𝑇𝐴(𝑔) = 0 

and then from the definition of the norm on 𝐴 we get 𝑐 = ‖𝑔‖∞ = ‖𝑔‖ = 1. 
   Assume that there is an 𝑥0 ∈ 𝑋 such that |𝑔(𝑥0)| < ‖𝑔‖∞. by assumption (i) there is an 

𝑓 in A such that 

‖𝑓‖∞ = ‖𝑔‖∞ − |𝑔(𝑥0)| 
And 

|𝑓(𝑥)| ≤ ‖𝑔‖∞ − |𝑔(𝑥)| +
1

2
(‖𝑔‖∞ − |𝑔(𝑥0)|)   for 𝑥 ∈ 𝑋 

For any 𝛽 ∈ 𝑆 we have 

‖𝑔 + 𝛽𝑓‖∞ ≤ ‖𝑔‖∞ +
1

2
‖f‖∞; 

So 

‖𝑔 + 𝛽𝑓‖ = ‖𝑔 + 𝛽𝑓‖∞ + ‖𝑇𝐴(𝑔 + 𝛽𝑓)‖; 

≤ ‖𝑔‖∞ +
1

2
‖f‖∞ + ‖𝑇𝐴(𝑔)‖ + ‖𝑇𝐴(𝑓)‖ 

= ‖𝑔‖ + ‖𝑓‖ −
1

2
‖𝑓‖∞ < 1 + ‖𝑓‖; 

Hence|𝑔| = const. Assume now that𝑇𝐴(𝑔) ≠ 0; by assumption (iv) there is an 𝑓in A such 

that 𝑇𝐴(𝑓)and 𝑇𝐴(𝑔) are not proportional. Since 𝑉𝐴 is strictly convex 

For any ℎ, ℎ′ in 𝑉𝐴 we have ‖ℎ + ℎ′‖ = ‖ℎ‖ + ‖ℎ′‖ iff ℎ and ℎ′ are proportional and 

hence for any 𝛽 ∈ 𝑆 we get 

‖𝑔 + 𝛽𝑓‖ = ‖𝑔 + 𝛽𝑓‖∞ + ‖𝑇𝐴(𝑔 + 𝛽𝑓)‖ 
< ‖𝑔‖∞ + ‖f‖∞ + ‖𝑇𝐴(𝑔)‖ + ‖𝑇𝐴(𝑓)‖ = 1 + ‖𝑓‖. 

Hence 𝑇𝐴(𝑔) =  0 and we are done. 

Example (2.1.13)[25]: Let 𝑋 be a compact metric space, with metric d and let 𝐿𝑖𝑝𝛼(𝑋), 
𝐿𝑖𝑝𝛼(𝑋) Be defined as in Example (2.1.7), but now with the ∑-norm; this is with the norm 

defined by 

‖𝑓‖ = ‖𝑓‖∞ + ‖𝑓‖𝑑𝛼; 
Rao and Roy [45] proved that any isometry from the complex Lipi [0, 1] onto itself is 

canonical and asked whether the same holds in general. To answer this question let 𝑋, 𝑌 be 

compact metric spaces, let 𝐴 be equal to a complex 𝐿𝑖𝑝𝛼(𝑋) or 𝐿𝑖𝑝𝛼(𝑋)space and let 𝐵 be 

equal to a complex 𝐿𝑖𝑝𝛼′(𝑌)or 𝐿𝑖𝑝𝛼′(𝑌) space. We prove that any isometry Φ from 𝐴 

onto 𝐵 is canonical and hence of the form 

Φ𝑓(𝑦) = 𝑐𝑓 ∘ 𝜑(𝑦), 𝑓 ∈ 𝐴, 𝑦 ∈ 𝑌, 
Where |𝑐| = 1 and 𝜑 is an isometry from 𝑌 onto 𝑋. To this end, by Theorem (2.1.4), it is 

sufficient to prove that for any such isometry Φ,Φ(1) = 𝜒¡s a constant function of norm 

one. 

Put 

𝑦 = 𝛽(𝑌 × 𝑌 − {(𝑦, 𝑦): 𝑦 ∈ 𝑌}), 
Define 𝑇: 𝐵 → 𝐶(𝑦) by 

𝑇𝑔(𝑦1, 𝑦2) =  
𝑔(𝑦1) − 𝑔(𝑦2)

𝑑𝛼
′(𝑦1, 𝑦2)

 

and for any 𝑔 ∈ 𝐵 let us denote by g an element of 𝐶(𝑌 × 𝑦 × 𝑆) defined by 

�̅�(𝑦, 𝜔, 𝛽)  =  𝑔(𝑦) + 𝛽𝑇𝑔(𝜔). 
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As we noticed in the introduction the map 𝑔 → �̅� i s an isometric embedding from 𝐵 onto 

�̅� ⊂ 𝐶(𝑌 × 𝑦 × 𝑆) and any element 𝐺 of ext 𝐵∗ is of the form 

𝐺(𝑔) = 𝛾�̃�(𝑦, 𝜔, 𝛽) = 𝛾𝑔(𝑦) + 𝛾𝛽𝑇𝑔(𝜔). 
Fix (𝑦0, 𝜔0, 𝛽0) ∈  𝑌 × 𝜔 × 𝑆 and let 𝜇, be any norm one measure on 𝑌 × 𝑦 × 𝑆 which 

represents, on �̃�, evaluation at the point (𝑦0, 𝜔0, 𝛽0)- Considering any function 𝑔0 ∈ 𝐵 

which peaks exactly at the point 𝑦0 it is easy to notice that 𝜇, is concentrated on the set 

{𝑦0} × 𝑦 × 𝑆 and that for any 0 ≤ 𝜗 < 2𝜋 a measure 𝜇𝜗 defined on 𝑌 × 𝑦 × 𝑆 by 

𝜇𝜗(𝐸) = 𝜇({(𝑦, 𝜔, 𝛽): (𝑦, 𝜔, 𝑒
𝑖𝜗𝛽)  ∈ 𝐸}) 

represents, on �̌�, the functional of the evaluation at the point (𝑦0, 𝑤0, 𝑒
−𝑖𝜗𝛽0). 

Hence we can define a map Ψ𝜗: ext 𝐵
∗⟶ ext 𝐵∗ by 

Ψ(Υ(𝑦,𝜔,𝛽)
𝛿 ) = Υ 

𝛿(𝑦, 𝜔, 𝑒𝑖𝜗𝛽) 

For any 𝐹 ∈  ext 𝐴∗ we have |𝐹(1)| = 1, hence for any 𝐺 ∈ ext𝐵∗ we also have 

|𝐺(𝜒)| = 1. Let 𝐺 = 𝛿𝑦 + 𝛽𝛿𝜔 ∘ 𝑇 ∈ ext 𝐵
∗. For any 0 ≤ 𝜗 < 2𝜋 we have 

1 =  |Ψ𝜗(𝐺)(𝜒)| = |𝜒(𝑦) + 𝑒
𝑖𝜗𝛽𝑇(𝜒)(𝜔)|, 

hence for any such 𝐺 we have two possibilities: 

𝜒(𝑦) = 0 and |𝑇(𝜒)(𝜔)|  =  0. 
or 

|𝜒(𝑦)| = 1 and 𝑇(𝜒)(𝜔)  =  0. 
Since 1 = ‖𝜒‖ = ‖𝜒‖∞ + ‖𝑇(𝜒)‖∞ we get that the second possibility always holds, this 

means that 𝑇(𝜒) ≡ 0 and we are done. 

      Beside the extensions of the surjective Banach-Stone Theorem for various function 

spaces also considered injective isometries between classical Banach spaces (see [27], 

[34], [35], [36], [38]) and isomorphisms with a small bound (see [26], [27], [29], [31], 

[32], [36], [38], [44]). These problems in general seem to be much harder and we do not 

know whether the similar general schemes can be produced. The following example shows 

however that even for a very simple function space an injective isometry may be "very 

uncanonical." Let 𝐴 be equal to 𝐶1[0, 1] with the 𝑀-norm. Let 𝜑 be a continuous map 

from [0, 1] onto 𝐴1
∗  equipped with the weak-* topology. We define Φ: 𝐴 ⟶ 𝐴′ by 

Φ(𝑓)(𝑡) = ∫𝜑

𝑡

0

(𝑥)(𝑓)𝑑𝑥. 

On the other hand, if we assume that the injective isometry from the above  space 𝐴 into 

itself preserves the constant function then it is automatically surjective and of the 

canonical form. This can be proven exactly by the same arguments as used in [37]. 

Section (2.2): Banach-Stone Theorem 

For 𝑇 be a compact Hausdorf space and let 𝐵(𝑇)be the open unit ball of the compex 

Banach space 𝐶(𝑇)of all complex-valued continuous functions on 𝑇, with the uniform 

norm. if 𝑢 ∈ 𝐶(𝑇)  satisfies the condition |𝑢(𝑡)| = 1 for all 𝑡 ∈ 𝑇, and if 𝑥 ∈ 𝐶(𝑇) is such 

that 𝑢 + 𝜁𝑥 ∈ 𝐵(𝑇)the closure of 𝐵(𝑇) for all 𝜁 ∈ ⊿( the open unit disc of 𝐶). Then 

necessarily 𝑥 = 0. Hence 𝑢 is a complex extreme point of 𝐵(𝑇)̅̅ ̅̅ ̅̅ ̅ . on other hand, if , for 

𝑢 ∈ 𝐵(𝑇)̅̅ ̅̅ ̅̅ ̅, there is some point 𝑡0 ∈ 𝑇 such that|𝑢(𝑡0)| < 1. then |𝑢(𝑡)| < 1 − 𝜀 for all 𝑡 in 

some neighborhood 𝑈 of in 𝑇 and for some𝜀 > 0. If 𝑥 ∈ 𝐶(𝑇)\{0} is such that supp (𝑥) ⊂
𝑈and‖𝑥‖ < 𝜀, then for all 𝑡 ∈ 𝑇and all 𝜁 ∈ ⊿,  

|𝑢(𝑡) + 𝜁𝑥(𝑡)| ≤ 1, 
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 Showing that 𝑢 is not a complex extreme point of 𝐵(𝑇)̅̅ ̅̅ ̅̅ ̅. if 𝑥 ∈ 𝜕⊿. 𝛽 ∈ 𝐶\{0}, and if 𝑟 >
0, then either 𝑥 + 𝑟𝛽 ∉ ⊿̅. hence a complex extreme point of 𝐵(𝑇)̅̅ ̅̅ ̅̅ ̅ is also a real extreme 

point. In conclusion, the following lemma holds. 

Lemma (2.2.1)[48]: The set Γ(𝑇) of all 𝑢 ∈ 𝐶(𝑇) such that |𝑢(𝑡)| = 1 for all 𝑡 ∈ 𝑇 is the 

se of all (complex=real) extreme points of 𝐵(𝑇)̅̅ ̅̅ ̅̅ ̅. 
    Let 𝑆  and 𝑇 be compact Hausdorff spaces, and let 𝐴 be a surjective isometry of 𝐶(𝑆) 
onto 𝐶(𝑇). if 𝐴(0) = 0. according to a theorem of 𝑆. Mazur and Ulam [53]. [49], 𝐴 ∈

𝑦(𝐶(𝑆), 𝐶(𝑇)). if this is the case. Then, by a classical theorem established by 𝑆.  Banach 

[49] when 𝑆 = 𝑇is the interval [0, 1], and by 𝑀.𝐻. Stone [54] in the genral case (see also 

[33]), there exist a homeomorghism 𝜏 of 𝑇 onto 𝑆 and a function 𝑥 ∈ Γ(𝑇) such that 

(𝐴𝑥)(𝑡) = 𝛼(𝑡)(𝑥. 𝜏)(𝑡)                                                 (22) 
For all 𝑥 ∈ 𝐶(𝑆) and all 𝑡 ∈ 𝑇  hypothesis that the isometry 𝐴 be surjective is essential for 

the validy of the Mazur-Ulam theorem. An example will be constructed of a non-surjective 

linear isometry 𝐴 of 𝐶(𝑇) onto 𝐶(𝑇) whicis fixes 0 but non-linear. The fact that as will be 

shown-such an isometry does not map Γ(𝑇) into  itself turns out to be crucial. Indeed the 

following theorem holds, which extends linear isometries.  

Theorem (2.2.2)[48]: let 𝐴 ∈ 𝑦(𝐶(𝑆), 𝐶(𝑇)) be such that ‖𝐴‖ ≤ 1. if  
𝐴Γ(𝑆) ⊂ Γ(𝑇).                                                                      (23) 

Then there exist a continuous map 𝜏: 𝑆 → 𝑇 and a function 𝛼 ∈ Γ(𝑇) for which (23) holds. 

Moreover, 𝐴 is a linear  isometry of 𝐶(𝑆) into 𝐶(𝑇)if, and only if, 𝐴 is injective. And that 

happens if, and only if, 𝜏 is surjctive. 

For any 𝑡 ∈ 𝑇, the map 𝐶(𝑆) ∋ 𝑥 ⟼ (𝐴𝑥)(𝑡) is a continuous linear form on 𝐶(𝑇), by the 

Riesz representation theorem, there exists a uniqe regular Borel measure 𝜇𝑡 in 𝑆such that 

(𝐴𝑥)(𝑡) = ∫𝑥𝑑𝜇𝑡 ≔ (𝑥, 𝜇𝑡). 

Then (23) reads 

|(𝑢, 𝜇𝑡)| = 1                                                                   (24) 
For all 𝑢 ∈ Γ(𝑇)and 𝑡 ∈ 𝑇. it will be shown now that this equation holds for all 𝑢 

contained in the set Λ(𝑆) for all measureable complex-valued functions on 𝑆 such that 

|𝑢(𝑠)| = 1a.e. |𝜇𝑡|. Any 𝑧 ∈ Λ(𝑆) can be written 

𝑧(𝑠) = 𝑒𝑖𝜆(𝑠), 
Where 𝜆: 𝑆 ⟶ 𝑅 is measureable, by the Lusin theorem, for any 𝑣 = 1,2,… there is a 

continuous function 𝜆𝑣: 𝑆 ⟶ 𝑅 such that 

|𝜇𝑡|(𝑠 ∈ 𝑆: 𝜆𝑣(𝑠) ≠) <
1

𝑣
 

And 

|𝜆𝑣(𝑠)| ≤ |𝜆(𝑠)| 
a.e. |𝜇𝑡|. Hence the sequence 𝜆𝑣 converges to 𝜆 in measure, and therefore  continains a 

subsequence 𝜆𝑣, which converges to 𝜆 a.e. |𝜇𝑡| letting 𝑧𝑣𝑗(𝑠) = 𝑒
𝑖𝜆𝑣𝑗

(𝑠)
,then 𝑧𝑣𝑗 ∈ Γ(𝑆) 

and𝑧𝑣𝑗 converges to 𝑧 a.e. |𝜇𝑡|. As a consequence of the dominated  convergence theorem, 

the sequence (𝑧𝑣𝑗 , 𝜇𝑡) converges to (𝑧, 𝜇𝑡), and therefore |(𝑧, 𝜇𝑡)| = 1. in conclusion, if 

(24) holds for all 𝑥 ∈ Γ(𝑆), itΓ(𝑇) holds also for all 𝑥 ∈ Λ(𝑆). 
Lemma (2.2.3)[48]: For every 𝑡 ∈ 𝑇 there is a complex constant 𝛼(𝑡), with |𝛼(𝑡)| = 1. 
and a point 𝑠 ∈ 𝑆, such that 

𝜇𝑡 = 𝛼(𝑡)𝛿𝑠,                                                                    (25) 
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Where  𝛿𝑠 is the measure with mass 1 covcentrated at the point 𝑠, i.e, 

(𝑥, 𝜇𝑡) = 𝛼(𝑡)𝑥(𝑠) 
For all 𝑥 ∈ 𝐶(𝑆). 
Proof. If 𝐾 ⊂ 𝑆 is the support of |𝜇𝑡|, for any open neighborhood 𝑉 of 𝐾, |𝜇𝑡|(𝑉) > 0. 
hence, if 𝐾 contains as least two distinct points, 𝑠1and 𝑠2,and if 𝑈 is any open 

neighborhood of   𝑠1such that 𝑠2 ∉ �̅�, then 

|𝜇𝑡|(𝑈) > 0,      |𝜇𝑡|(𝑆 𝑈⁄ ) > 0.                                           (19) 
Let 𝑥 ∈ Γ(𝑆). and let 𝜉 and 𝜂 be two real numbers. The function 𝑧 defined on 𝑆 by 

𝑧(𝑠) = 𝑒𝑖𝜂𝑥(𝑠) 
If  𝑠 ∈ 𝑈, and by 

𝑧(𝑠) = 𝑒𝑖𝜂𝑥(𝑠) 
If 𝑠 ∉ 𝑈, is contained in Λ(𝑆).thus |(𝑧, 𝜇𝑡)| = 1, i.e, 

|∫ 𝑒𝑖𝜂
 

𝑈

𝑥𝑑𝜇𝑡|

2

+ | ∫ 𝑒𝑖𝜂
 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡|

2

+ 2ℜ(∫𝑒𝑖𝜂
 

𝑈

𝑥𝑑𝜇𝑡 ∫ 𝑒
𝑖𝜂

 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡) = 1. 

Differentiation with respect to 𝜉and to 𝜂yields 

∫𝑒𝑖𝜉
 

𝑈

𝑥𝑑𝜇𝑡 ∫ 𝑒
𝑖𝜂

 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− ∫𝑒𝑖𝜉

 

𝑈

𝑥𝑑𝜇𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∫ 𝑒𝑖𝜂
 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡 = 0. 

∫𝑒𝑖𝜉
 

𝑈

𝑥𝑑𝜇𝑡 ∫ 𝑒
𝑖𝜂

 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ ∫𝑒𝑖𝜉

 

𝑈

𝑥𝑑𝜇𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
∫ 𝑒𝑖𝜂
 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡 = 0. 

Whence 

∫𝑒𝑖𝜉
 

𝑈

𝑥𝑑𝜇𝑡 ∫ 𝑒
𝑖𝜂

 

𝑆 𝑈⁄

𝑥𝑑𝜇𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 0.                                                   (20) 

For all 𝜉, 𝜂 ∈ 𝑹 and all 𝑥 ∈ Λ(𝑆), let 𝑑𝜇𝑡 = ℎ𝑑|𝜇𝑡|be the polar decomposition of the 

measure 𝜇𝑡, with ℎ ∈ Λ(𝑆). choosing 𝜉 = 𝜂 = 0and 𝑥 = 1 ℎ⁄  then (20) yields 

∫𝑑

 

𝑈

|𝜇𝑡| ∫ 𝑑

 

𝑆 𝑈⁄

|𝜇𝑡| = 0, 

Contradicting (19), 

Setting 𝑠 = 𝜏(𝑡), one  defines a map 𝜏: 𝑇 → 𝑆, and (25) becomes 

(𝐴𝑥)(𝑡) = 𝑥(𝑡). 𝑥(𝜏(𝑡)) 
For all 𝑥 ∈ 𝐶(𝑆) and all 𝑡 ∈ 𝑇. choosing 𝑥 = 1, one sees that the function 𝑥: 𝑇 → 𝜕⊿is 

continuous. To show that 𝜏: 𝑇 → 𝑆 is a continuous map, 

    Assume the contrary, i.e. that are 𝑡0 ∈ 𝑇 and an neighborhood 𝑊 of 𝜏(𝑡0) in 𝑆, such that 

every neighborhood 𝑈 of 𝑡0 contains some 𝑡 with 𝜏(𝑡) ∉ 𝑊. let 𝑊0 be an open 

neighborhood of 𝜏(𝑡0), whose closure is contained in 𝑊, and let 𝑦 ∈ 𝐶(𝑆) be such that 

𝑦 = 1 on 𝑊0 and 𝑦 = 0 on 𝑆 𝑊⁄ . for 0 < 𝜀 < 1, there is a neighborhood 𝑈 of 𝑡0in 𝑇such 

that 

|𝛼(𝑡)𝑦(𝜏(𝑡)) − 𝛼(𝑡0)𝑦(𝜏(𝑡0))| < 𝜀 
For all 𝑡 ∈ 𝑈. if 𝑡 ∈ 𝑈is such that 𝜏(𝑡) ∉ 𝑊, then this inequality becomes  

1 = |𝑦(𝜏(𝑡0))| < 𝜀 < 1. 
This contradiction shows that 𝜏is continuous. 
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 If 𝜏surjective and  if 𝐴𝑥 = 0 for some 𝑥 ∈ 𝐶(𝑆) , then 𝑥(𝑠) = 0 for all 𝑠 ∈ 𝑆, i.e., 𝑥 = 0. 
Vice versa, if 𝜏 is not surjective , 𝜏(𝑇) is a closed, proper subset of 𝑆. if 𝑥 ∈ 𝐶(𝑆)\{0} is 

such that 𝑥 ∈ 𝜏(𝑇) = 0, then 𝐴𝑥 = 0, and therefore 𝐴is not injective. 

If 𝜏is surjective, then  

‖𝐴𝑥‖ = sup{|α(t)x(𝜏(𝑡))|: 𝑡 ∈ 𝑇} = sup{|∈ x(s)|: s ∈ S} = ‖x‖ 

For all 𝑥 ∈ 𝐶(𝑆), and 𝐴 is an isometry. 

    This completes the proof of the theorem. 

    Clearly the isometry 𝐴 is surjective if, and only if, 𝜏 is a homeomorphism. Thus, 

Theorem (2.2.2) extends the Banach-Stone theorem, and above considerations offer a 

differenent proof of this latter result. 

    Let 𝐵(𝑇)and 𝐵(𝑆) be the open unit balls of the comblex Banach spaces 𝐶(𝑇)and 𝐶(𝑆), 
and let 𝐹 be a bi-holomorphism of 𝐵(𝑆) onto 𝐵(𝑇). was shown in [51] that there exist a 

unique function 𝛼 ∈ Γ(𝑇) and a unique homeormorphism 𝜏of𝑇 onto 𝑆such that, setting 

𝑥0 = 𝐹 (0), 

𝐹(𝑥)(𝑡) = 𝛼(𝑡)
𝑥(𝜏(𝑡)) − 𝑥0(𝜏(𝑡))

1 − 𝑥0(𝜏(𝑡))𝑥(𝜏(𝑡))
                            (21) 

For all 𝑥 ∈ 𝐵(𝑆)and all 𝑡 ∈ 𝑇. 
Let 𝐾𝐵(𝑇)(𝑥; . )be the Caratheodory-Kobayashi differential metric of 𝐵(𝑇) at the 

open ∈ 𝐵(𝑇) for all 𝑣 ∈ 𝐶(𝑇) and 𝑡 ∈ 𝑇. (21) yields 

𝑑𝐹(𝑥)𝑣 = 𝛼
|𝑥0−𝜏|

2

1−(𝑥0,𝜏)(𝑥,𝜏)
(𝑣, 𝜏),                                               (22)  

And therefore 

𝐾𝐵(𝑇)(𝑥; 𝑣) = ‖𝛼
𝑣

1−|𝑥|2
‖.                                                    (23)  

Let Iso (𝐵(𝑆) > 𝐵(𝑇))be the set of all holomorphic maps of 𝐵(𝑆)into 𝐵(𝑇) which are 

isometries for 𝐾𝐵(𝑆)and 𝐾𝐵(𝑇),i.e, 

𝐾𝐵(𝑇)(𝐹(𝑥); 𝑑𝐹(𝑥)𝑣) = 𝐾𝐵(𝑆)(𝑥; 𝑣) 

For all 𝑥 ∈ 𝐵(𝑆) and all 𝑣 ∈ 𝐶(𝑆). in view of (23), 𝐾𝐵(𝑆)(0, 𝑣) = ‖𝑣‖, hence, if 𝐴 ∈

𝑦(𝐶(𝑆), 𝐶(𝑇))is such that 𝐴𝐵(𝑆) ∈ 𝐼𝑠𝑜(𝐵(𝑆), 𝐵(𝑇)), then 𝐴 is a linear isometry of 

𝐶(𝑆)into 𝐶(𝑇). Obvisously, if 𝐴 is a surjective linear isometry, 𝐴𝐵(𝑆)is a holomorphic 

homeomorphism of 𝐵(𝑆) onto 𝐵(𝑇), however, as will be shown, there are linear 

isometries of 𝐶(𝑆)into 𝐶(𝑇) whose restrictions to 𝐵(𝑆) are not contained in 

Iso(𝐵(𝑆), 𝐵(𝑇)). the following lemma proves that all the linear isometries described by 

Theorem (2.2.2) do define holomorphic isometries of 𝐵(𝑆) into 𝐵(𝑇). 
Lemma (2.2.4)[48]: If 𝐴 ∈ 𝑦(𝐶(𝑆), 𝐶(𝑇)) is a linear isometry of 𝐶(𝑆) into 𝐶(𝑇) 
satisyfying (23), then 𝐴𝐵(𝑆) ∈ 𝐼𝑠𝑜(𝐵(𝑆), 𝐵(𝑇)). 

Proof. Since, for 𝑥 ∈ 𝐵(𝑆) and 𝑣 ∈ 𝐶(𝑆) < 𝑑𝐴(𝑥)𝑣 = 𝐴𝑣, then, by (22) and by theorem 

1, 

𝐾𝐵(𝑇)(𝐴𝑥, 𝑑𝐴(𝑥)𝑣) = ‖
𝐴𝑣

1 − |𝐴𝑥|2
‖ 

= sup {
|v ∘ τ(t)|

1 − |x ∘ τ(t)|2
: t ∈ T} 

= sup{
|v(s)|

1 − |x(s)|2
: s ∈ S} 
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= ‖
𝑣

1 − |𝑥|2
‖ = 𝐾𝐵(𝑆)(𝑥, 𝑣). 

   Since any holomrphic map of 𝐵(𝑆) into 𝐵(𝑇) is a contraction for 

𝐾𝐵(𝑆)and 𝐾𝐵(𝑇)if 𝐹 ∈ 𝐻𝑂𝐼(𝐵(𝑆), 𝐵(𝑇)) is a homeorphism of 𝐵(𝑆) onto 𝐵(𝑇), then 𝐹 ∈

𝐻𝑂𝐼(𝐵(𝑆), 𝐵(𝑇)). 

    Two facts identify within 𝐻𝑂𝐼(𝐵(𝑆), 𝐵(𝑇)) the family of all holomorphic 

homeomorphisms 𝐹 of 𝐵(𝑆) onto 𝐵(𝑇), 
    (a) First of all, (21) shows that, if 𝐹(0) = 0, then 𝐹 is the restriction to 𝐵(𝑆) of linear 

isomorphism of 𝐶(𝑆) onto 𝐶(𝑇), this is particular case of the linearization theorem of 𝐻. 
Cartan (see, eg., [51]), whereby, if E E E and F are tow compex Banach spaces, if 𝑈and 𝑉 

are open, bounded, ciricled neighbor hoods of 0in E and in F, and if 𝐹 is a bi-holomorphic 

homeomorphism of 𝑈onto 𝑉with 𝐹(0) = 0. then 𝐹 is the restriction to𝑈 of a linear 

isomorphism of   E onto F 

   (b) Furthermore, a direct inspection of (21) shows that there are no non-trivial 

holomorghic families of bi-holomorphic homeomorphisms of 𝐵(𝑆) onto 𝐵(𝑇). also this 

fact turns out to be a conscequence of a general result [51] acoording to which, if 𝐷 is a 

hyperbolic domain (in particular, a bounded domain) in E and 𝐹 ∈ 𝐻𝑜𝑙(⊿ × 𝐷,F)is such 

that, for some 𝜁0 ∈ ⊿, 𝐹(𝜁𝑣, 𝐷)is an open set in F, and 𝐹(𝜁0, . )is a bi-holomorpgic 

homeomorphism of 𝐷 onto 𝐹(𝜁0, 𝐷), then 𝐹(𝜁, . ) is independent of 𝜁 ∈ ⊿, as an example 

which will be exhibited will show, these two facts do not hold, in general, when 

holomorphic isometries of 𝐵(𝑆) onto 𝐵(𝑇) replace bi-holomorphic 

homoemorphisms of 𝐵(𝑆) onto 𝐵(𝑇). The following proposition provides however a 

sufficient condition for a holomorphic isometry of 𝐵(𝑆) onto 𝐵(𝑇) to be the restriction to 

𝐵(𝑆) of a linear isometry of 𝐶(𝑆) onto 𝐶(𝑇). 
Proposition (2.2.5)[48]: Let 𝐹 ∈ 𝐻𝑜𝐼(𝐵(𝐶), 𝐵(𝑇)) be such that 𝐹(0) = 0. if for every 

𝑥 ∈ Γ(𝑆), there is some 𝜁 ∈ ⊿ {0}⁄ for which 
1

𝜁
𝐹(𝜁𝑥) ∈ Γ(T), 

Or if lim
𝜁→0

1

𝜁
𝐹(𝜁𝑥) ∈ Γ(T) for all 𝑥 ∈ Γ(S), then 𝐹 is the restriction of 𝑑𝐹(0) ∈ Y 

(𝐶(𝑆), 𝐶(𝑇)) to 𝐵(𝑆). moreover, if 𝑑𝐹(0) is injective, then 𝐹 ∈ 𝐼𝑠𝑜(𝐵(𝑆), 𝐵(𝑇)). 
Proof. By Lemma (2.2.1) and by the strong maximum principle, the function  

𝜁 ⟼
1

𝜁
𝐹(𝜁𝑥) 

Is independent of 𝜁 ∈ ⊿ {0}⁄ , there fore 

𝐹(𝜁𝑥) = 𝜁𝑑𝐹(0)x 
For all 𝜁 ∈ ⊿ and all 𝑥 ∈ Γ(S). hence 

𝑑𝐹(0)Γ(S) ⊂ Γ(T).                                             (24) 
Since Γ(S) is a stable subset of 𝐵(𝑆)̅̅ ̅̅ ̅̅ , by the Schwarz lemma [52], 𝐹 is the restriction of 

𝑑𝐹(0) to 𝐵(𝑆). In view of (24), Theorem (2.2.2) and Lemma (2.2.1) yield the conclusion. 

    The holomorphic map 𝐹: (𝑧1, 𝑧2) ⟼ 𝑧1of ⊿ × ⊿ onto ⊿provides an example showing 

that the assumption on the injectivity of 𝑑𝐹(0) in the proposition cannot be avoided in 

general. 

    On the other hand, since the groups aut 𝐵(𝑆)and aut𝐵(𝑇) of all holomorphic 

automorphisms of 𝐵(𝑆)and 𝐵(𝑇)act transitively on 𝐵(𝑆)and 𝐵(𝑇), the condition 𝐹(0) =
0 can be removed. 
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Let 𝐹 ∈ 𝐻𝑜𝐼(𝐵(𝑆), 𝐵(𝑇))and, for 𝑥0 ∈ 𝐵(𝑆) , let 𝐹(𝑥0) = 𝑧0. the maps 𝐻 ∈Aut 𝐵(𝑆)and 

𝐾 ∈ Aut𝐵(𝑇)defined by 

𝐻(𝑥) =
𝑥 + 𝑥0
1 + 𝑥0̅̅ ̅𝑥

 

And by 

𝐾(𝑧) =
𝑧 − 𝑧0
1 − 𝑧0̅𝑧

 

On 𝑥 ∈ 𝐵(𝑆) and𝑧 ∈ 𝐵(𝑇), are such that 𝐻(0) = 𝑥0, 𝐾(𝑧0) = 0. hence the map defined by  

𝐿 = 𝐾, 𝐹,𝐻 ∈ 𝐻𝑜𝐼(𝐵(𝑆), 𝐵(𝑇))                                      (25) 
Is such that 𝐿(0) = 0. since, for any 𝑣 ∈ 𝐶(𝑆), 

𝑑𝐿(0)𝑣 = 𝑑𝐾(𝑧0)𝑑𝐾(𝑥0)𝑑𝐻(0)𝑣. 
𝑑𝐻(0)𝑣 = (1 − |𝑥0|

2)𝑣, 

𝑑𝐾(𝑧0)𝑤 =
𝑤

1 − |𝑧0|
2
. 

For all 𝑤 ∈ 𝐶(𝑇). then 

𝑑𝐿(0) = (1 − |𝑧0|
2)𝑑𝐹(𝑥0)((1 − |𝑥0|

2)𝑣). 

Hence 𝑑𝐹(0)𝑣 ∈ Γ(T)if, and only if, (1 − |𝑥0|
2)𝑑𝐹(𝑥0)((1 − |𝑥0|

2)𝑣) ∈ Γ(T). 
    In conclusion, Proposition (2.2.5) yields the following ‘’Schwarz lemma’’ 

Theorem (2.2.6)[48]: Let 𝐹 ∈ 𝐻𝑜𝐼(𝐵(𝑆), 𝐵(𝑇)) if there is 𝑥 ∈ 𝐵(𝑆)such that  

(1 − |𝐹(𝑧0)|
2)𝑑𝐹(𝑥)((1 − |𝑥|2)𝑣) ∈ Γ(T) 

For all 𝑣 ∈ Γ(S), and if 𝑑𝐹(𝑥) is injective, then 𝐹 ∈ 𝐻𝑜𝐼(𝐵(𝑆), 𝐵(𝑇)). 
    Satisfies the hypotheses of Theorem (2.2.6), then, by Theorem (2.2.2), there a unique 

continuous surective map 𝜏: 𝑇 → 𝑆 and a unique function 𝛼 ∈ Γ(T) such that 𝐿𝑥(𝑡) =

𝛼(𝑡)𝑥(𝜏(𝑡)) for all 𝑥 ∈ 𝐵(𝑆) and all 𝑡 ∈ 𝑇, hence (25) implies the following ‘’Schwarz-

pick lemma’’ for 𝐼𝑠𝑜(𝐵(𝑆), 𝐵(𝑇)) which extends a similar result established in [51] for 

the group Aut 𝐵(𝑇). 

Theorem (2.2.7)[48]: For every 𝐹 ∈ 𝐼𝑠𝑜(𝐵(𝑆), 𝐵(𝑇))   satisfiying the hypothesis of 

Theorem (2.2.6) there exist a unique continuous surjective map 𝜏: 𝑇 → 𝑆and a unique 

function 𝛼 ∈ Γ(T)such that, setting 𝑥0 = 𝐹 (0) 
1 , 𝐹 represented by (21) for all 𝑥 ∈ 𝐵(𝑆) 

and all 𝑡 ∈ 𝑇. 
    The following example will exhibit a non-trivial holomorphic family of non-linear 

holomorphic isometries acting on 𝐵(𝑇), where 𝑇 is the closed interval [0, 1]. 

For 𝑥 ∈ 𝐶(𝑇), let 𝑥 ∈ 𝐶(𝑇) be defined by 

�̃� = {
𝑥(1 − 2𝑡)   𝑖𝑓 0 ≤ 𝑡 ≤ 1 2⁄

𝑥(2𝑡 − 1)    𝑖𝑓 1 2⁄ ≤ 𝑡 ≤ 1.
 

The map 𝑥 ⟼ �̃�is a linear isometry of 𝐶(𝑇) into𝐶(𝑇). 
    Let 𝜌: [0,1] → [0,1]and 𝜆: [0,1] → [0,1]be continuous functions such that 

𝜌(𝑡) = {

0                      𝑖𝑓 0 ≤ 𝑡 ≤ 1 3⁄

0 < 𝜌(𝑡) < 1    𝑖𝑓 1 3⁄ < 𝑡 < 1 2⁄

1                      𝑖𝑓 1 2⁄ ≤ 𝑡 ≤ 1

 

and 

𝜆(𝑡) = {

0                      𝑖𝑓  0 ≤ 𝑡 ≤ 1 5⁄

0 > 𝜆(𝑡) > 1    𝑖𝑓 1 5⁄ < 𝑡 < 1 4⁄

1                     𝑖𝑓 1 4⁄ ≤ 𝑡 ≤ 1.
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Finally, let 𝐹 ∈ 𝐻𝑜𝐼(⊿ × 𝐶(𝑇), 𝐶(𝑇))be defined by 

𝐹(𝜁, 𝑥) = 𝜁𝜆𝑥2 + 𝜌�̃�                                               (19) 
Since 

𝐹(𝜁, 𝑥)(𝑡) =

{
 

 
𝜁𝜆(𝑡)𝑥(𝑡)2       𝑖𝑓 0 ≤ 𝑡 ≤ 1 3⁄

0                              𝑖𝑓 1 4⁄ ≤ 𝑡 ≤ 1 3⁄

𝜌(𝑡)�̃�(𝑡)                 𝑖𝑓 1 3⁄ ≤ 𝑡 ≤ 1 2⁄

�̃�(𝑡)                     𝑖𝑓 1 2⁄ ≤ 𝑡 ≤ 1

                          (20) 

Then 

‖𝐹(𝜁, 𝑥)‖ = ‖𝑥‖                                            (21) 
For all 𝜁 ∈ ⊿ and all 𝑥 ∈ 𝐵(𝑇). 
For all 𝜁, 𝜂 ∈ ⊿and 𝑥 ∈ 𝐵(𝑇), 𝑦 ∈ 𝐶(𝑇). 

𝐹(𝜁, 𝑥 + 𝜂𝜁) = 𝐹(𝜁, 𝑥) + 𝜂𝑑2𝐹(𝜁, 𝑥) + 𝜁𝜂
2𝜆𝑦2, 

Where 𝑑2𝐹(𝜁, 𝑥)𝑦 = 2𝜁𝜆𝑥𝑦 + 𝑝�̃� is the image of 𝛾 by the Fréchet differential of 𝐹 with 

respect to the second variable at the point (𝜁, 𝑥). 
Hence (22) yields 

𝐾𝐵(𝑇)(𝐹(𝜁, 𝑥); 𝑦𝑑2𝐹(𝜁, 𝑥)𝑦) = ‖
2𝜁𝜆𝑥𝑦 + 𝑝�̃�

1 − |𝐹(𝜁, 𝑥)|2
‖.                           (22) 

And 

2𝜁𝜆(𝑡)𝑥(𝑡) + 𝑝(𝑡)�̃�(𝑡)

1 − |𝐹(𝜁, 𝑥)|2
 =

{
 
 
 

 
 
 

2𝜁𝜆(𝑡)𝑥(𝑡)𝑦(𝑡)

1 − |𝜁(𝜆)𝑥(𝑡)|2
   𝑖𝑓 0 ≤ 𝑡 ≤ 1 4⁄

0                                    𝑖𝑓 1 4⁄ ≤ 𝑡 ≤ 1 3⁄

𝑝(𝑡)�̃�(𝑡)

1 − |𝑝(𝑡)�̃�(𝑡)|2
         𝑖𝑓 1 3⁄ ≤ 𝑡 ≤ 1 2⁄

𝑦(2𝑡 − 1)

1 − |𝑥(2𝑡 − 1)|2
        𝑖𝑓 1 4⁄ ≤ 𝑡 ≤ 1 3⁄

        (23) 

For 0 ≤ 𝑡 ≤ 1 2⁄ . 
𝑝(𝑡)|�̃�(𝑡)|

1 − |𝑝(𝑡)�̃�(𝑡)|2
≤

|�̃�(𝑡)|

1 − |�̃�(𝑡)|2
=

|𝑦(1 − 2𝑡)|

1 − |𝑥(1 − 2𝑡)|2
 

And 
|2𝜁𝜆(𝑡)𝑥(𝑡)𝑦(𝑡)|

1 − |𝜁(𝜆)𝑥(𝑡)2|2
≤
|2𝜁𝑥(𝑡)𝑦(𝑡)|

1 − |𝜁𝑥(𝑡)2|2
≤
|2𝜁𝑥(𝑡)𝑦(𝑡)|

1 − |𝜁𝑥(𝑡)|2
≤

2|𝜁|

1 − |𝜁|2
|𝑦(𝑡)|. 

In the interval [0, 1] the inequality 2𝑡 (1 − 𝑡2)2⁄ ≤ 1 is equivalent to 0 ≤ 𝑡 ≤ √2 − 1. 

hence, if |𝜁| < √2 − 1. 
|2𝜁𝜆(𝑡)𝑥(𝑡)𝑦(𝑡)|

1 − |𝜁𝜆(𝑡)𝑥(𝑡)2|2
≤ |𝑦(𝑡)| ≤

|𝑦(𝑡)|

1 − |𝑥(𝑡)|
 

For all 𝑡 ∈ [0,1]. 
In view of (23), (20)and(22)yield 

Proposition (2.2.8)[48]: Whenever|𝜁| < √2 − 1, 𝐹(𝜁, . ) ∈ 𝐼𝑠𝑜(𝐵(𝑇), 𝐵(𝑇)), see [50], 

[55]. 

Replace now (19) by the map 𝐹(𝜁, . ) ∈ y(𝐶(𝑇) < 𝐶(𝑇))defined by  

𝐹(𝜁, 𝑥) = 𝜁𝜆𝑥 + 𝜌�̃�.                                              (24) 
A similar (even easier) computation to that carried out above shows that, whenever 𝜁 ∈
⊿, (21) holds for all 𝑥 ∈ 𝐶(𝑇), i.e., is a linear isometry of 𝐶(𝑇) into itself. Furthermore, 

(22) and (23) become, respectively, 
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𝐾𝐵(𝑇)(𝐹(𝜁, 𝑥); 𝑦𝑑2𝐹(𝜁, 𝑥)𝑦) = ‖
𝐹(𝜁, 𝑦)

1 − |𝐹(𝜁, 𝑥)|2
‖.  

𝐹(𝜁, 𝑦)(𝑡)

1 − |𝐹(𝜁, 𝑥)|2
=

{
 
 
 

 
 
 

𝜁𝜆(𝑡)𝑦(𝑡)

1 − |𝜁𝜆(𝑡)𝑥(𝑡)|2
   𝑖𝑓 0 ≤ 𝑡 ≤ 1 4⁄

0                                    𝑖𝑓 1 4⁄ ≤ 𝑡 ≤ 1 3⁄

𝑝(𝑡)�̃�(𝑡)

1 − |𝑝(𝑡)�̃�(𝑡)|2
         𝑖𝑓 1 3⁄ ≤ 𝑡 ≤ 1 2⁄

�̃�(𝑡)

1 − |�̃�(𝑡)|2
        𝑖𝑓 1 2⁄ ≤ 𝑡 ≤ 1.

        (25) 

Showing, as before, that Proposition (2.2.8) holds also when 𝐹 is given by (24), whenever 

|𝜁| < (√5 − 1) 2⁄ . 

Choosing as 𝑥 a real constant 𝑘, with 0 < 𝑘 < 1, the top equality in (25) becomes, for 0 ≤
1 ≤ 1 5⁄ , 

𝜁𝜆(𝑡)𝑦(𝑡)

1 − |𝜁𝜆(𝑡)𝑥(𝑡)|2
=

𝜁𝑦(𝑡)

1 − |𝜁|2𝑘2
, 

And, if (√5 − 1) 2⁄ < |𝜁| < 1, then 

|𝜁|

1 − |𝜁|2𝑘2
> 1. 

As a consequence, if |𝜁| ∈ ((√5 − 1) 2⁄ , 1), the linear isometry 𝐹(𝜁, . ) given by (24) 

does not define a holomorphic isometry in 𝐵(𝑇), i.e,. 𝐹(𝜁, . ) ∉ 𝐼𝑠𝑜(𝐵(𝑇), 𝐵(𝑇)). 
Exampling the function 𝜆 to 𝑹+by assuming 𝜆(𝑡) = 0 when 𝑡 ≥ 1, let 𝐹: 𝐶(𝑇) → 𝐶(𝑇) be 

defined by 

𝐹(𝑥)(𝑡) = 𝜆(𝑡)𝜆(‖𝑥(𝑡)‖)𝑥(𝑡) + 𝜌(𝑡)�̃�(𝑡) 
For all 𝑡 ∈ 𝑇. since 

𝐹(𝑥)(𝑡) = {

𝜆(𝑡)𝜆(|𝑥(𝑡)|)𝑥(𝑡)   𝑖𝑓 0 ≤ 𝑡 ≤ 1 3⁄

𝜌(𝑡)�̃�(𝑡)                          𝑖𝑓 1 3⁄ ≤ 𝑡 ≤ 1 2⁄

�̃�(𝑡)                            𝑖𝑓 1 2⁄ ≤ 𝑡 ≤ 1

 

Then ‖𝐹(𝑥)‖ = ‖𝑥‖ for all 𝑥 ∈ 𝐶(𝑇), the function 𝐹 provids an example of a non-linear 

isometry of 𝐶(𝑇) into 𝐶(𝑇) fixing 0. 

Section (2.3): Weighted Composition Operators 

For 𝑥 and 𝑦 be locally compact Hausdorff spaces. Let 𝐶0(X) (resp. 𝐶0(Y )) be the 

Banach space of continuous scalar-valued (i.e. real- or complex-valued) functions defined 

on X (resp. Y ) vanishing at infinity and equipped with the supremum norm. The classical 

Banach-Stone theorem gives a description of surjective isometries from 𝐶0(X) onto 𝐶0(Y ). 

They are all weighted composition operators 𝑇𝑓 =ℎ. 𝑓 ∘ 𝜑 = (i.e.T𝑓(𝑦) =
ℎ(𝑦)𝑓(𝜑(𝑦)), ∀𝑦 ∈ 𝑌 ) for some homeomorphism 𝜑 from Y onto X and some continuous 

scalar-valued function h on Y with |h(y)|≡ 1, ∀𝑦 ∈ 𝑌 . Different generalizations (see e.g. 

[58], [59], [61], [25], [48]) of the Banach-Stone Theorem have been studied in many 

years. Some of them discuss the structure of into isometries and disjointness preserving 

linear maps (see e.g. [60], [62]). A linear map from 𝐶0(𝑋) into 𝐶0(𝑌) is said to be 

disjointness preserving if f ∘ g = 0 in 𝐶0(X) implies 𝑇𝑓. 𝑇𝑔 = 0 in 𝐶0(𝑌). We shall discuss 

the structure of weighted composition operators from 𝐶0(X) into 𝐶0(Y). 

       We prove that every into isometry and every disjointness preserving linear map from 

𝐶0(X) into 𝐶0(Y ) is essentially a weighted composition operator. 
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Theorem (2.3.1)[57]: Let X and Y be locally compact Hausdorff spaces and T a bounded 

disjointness preserving linear map from C0(X) into C0(Y ). Then there exist an open subset 

Y1 of Y and a weighted composition operator T1 from C0(X) into C0(Y1) such that for all f 

in C0(X), Tf vanishes outside Y1 and 

Tf|Y1 = T1f = h. f ∘ φ 

 

for some continuous map φ from Y1 into X and some continuous scalar-valued function h 

defined on Y1 with h(y)≠ 0, ∀y ∈ Y. 

Since weighted composition operators from 𝐶0(X) into 𝐶0(Y ) are disjointness preserving, 

Theorem (2.3.1) gives a complete description of all such maps. When X and Y are both 

compact, Theorems (2.3.5) and (2.3.1) reduce to the results of 𝑊. Holsztynski [60] and K. 

Jarosz [62], respectively. It is plausible to think that Theorems (2.3.5) and (2.3.1) could be 

easily obtained from their compact space versions by simply extending an into isometry 

(or a bounded disjointness preserving linear map) 𝑇: 𝐶0(𝑋) → 𝐶0(𝑌)to a bounded linear 

map  of 𝑇∞: 𝐶(𝑋∞) → 𝐶(𝑌∞) of the same type, where  𝑋∞=X∪ {∞} and 𝑌∞ = 𝑌 ∪ {∞} are 

the one –point compactifications of the locally compact Hausdorff spaces X and Y , 

respectively. 

However, the example given will show that this idea is sometimes fruitless because T can 

have no such extensions at all. We thus have to modify, and in some cases give new 

arguments to, the proofs of W. Holsztynski [60] and K. Jarosz [62] to fit  into our more 

general settings. 

Recall that for f in 𝐶0(X), the cozero of f is coz(f) = {𝑥 ∈ 𝑋: 𝑓(𝑥) ≠ 0 and the 

support supp(f) of f is the closure of coz(f) in 𝑋∞. A linear map 𝑇: 𝐶0(𝑋) → 𝐶0(𝑌)is 

disjointness preserving if T maps functions with disjoint cozeroes to functions with 

disjoint cozeroes. For x in X, 𝛿𝑥 denotes the point evaluation at x, that is, 𝛿𝑥 is the linear 

functional on 𝐶0(X) defined by           𝛿𝑥(𝑓) = 𝑓(𝑥). For y in  , let supp(𝛿𝑦𝜊𝑇) be the set of 

all x in 𝑋∞ such that for any open neighborhood U of x in 𝑋∞ there is an f in 𝐶0(X) with 

Tf(y) ≠0 and coz(f)⊂ 𝑈 U. The kernel of a function f is denoted by ker f. 

Definition (2.3.2) Let X and Y be locally compact Hausdorff spaces. A map 𝜑 from Y into 

X is said to be proper if preimages of compact subsets of X under 𝜑 are compact in Y . 

       It is obvious that 𝜑 is proper if and only if 𝑙𝑖𝑚𝑦→∞𝜑(𝑦) = ∞. As a consequence, a 

proper continuous map 𝛿 from a locally compact Hausdorff space 𝑌 onto a locally 

compact Hausdorff space X is a quotient map, i.e. 𝜑−1(O) is open in X if and only if O is 

open in Y . A quotient map from a locally compact space onto another is, however, not 

necessarily proper. For example, the quotient map 𝜑 from (−∞,+∞) onto [0,+∞)defined 

by 

 

𝜑(𝑦) = {
𝑦, 𝑦 > 0
0, 𝑦 ≤ 0

} 

is not proper. 

Lemma (2.3.3)[57]: Let X and Y be locally compact Hausdorff spaces, φ a map from Y 

into X, and h a continuous scalar-valued function defined on Y with bounds M,m> 0 such 

that m ≤ |h(y)| ≤ M, ∀y ∈ Y Then the weighted composition Tf = h. f ∘ φ defines 

a(necessarily bounded) linear map from C0(X) into C0(Y ) if and only if ' is continuous and 

proper. 
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Proof. For the sufficiency, we need to verify that ℎ. 𝑓 vanishes at 1 for all f in 𝐶0(X). For 

any 𝜖 > 0,  |f(x)|<𝜖/𝑀 outside some compact subset K of X. Since 𝜑 is proper, 𝜑−1(K) is 

compact in Y . Now the fact that |ℎ(𝑦). 𝑓(𝜑(𝑦))| ≤ 𝑀|𝑓(𝜑(𝑦))| < 𝜖 outside 𝜑−1(K) 

indicates that                    ℎ. 𝑓 ∘ 𝜑 ∈ 𝐶0(𝑌). The boundedness of T is trivial in this case. 

       For the necessity, we first check the continuity of 𝜑. Suppose 𝑦⋋ in Y. 

       We want to show that 𝑥⋋ = 𝜑(𝑦⋋) → 𝜑(𝑦) in X. Suppose not, by passing to a subnet 

if necessary, we can assume that 𝑥⋋¸ either converges to some 𝑥 ≠ 𝜑(𝑦) in X or ∞. If 𝑥⋋ 

in X then for all f in 𝐶0(X), 

ℎ(𝑦)𝑓(𝑥)  =  lim ℎ(𝑦⋋)𝑓(𝑥⋋)  =  lim ℎ(𝑦¸)𝑓(𝜑(𝑦⋋)) 
=  lim 𝑇𝑓(𝑦¸)  =  𝑇𝑓(𝑦)  =  ℎ(𝑦)𝑓(𝜑(𝑦)): 

As h(y) ≠ 0, f(x) = f(𝜑(y)), ∀𝑓 ∈ 𝐶0 (X). Consequently, we obtain a contradiction x = 

𝜑(𝑦)! if 𝑥⋋⟶∞  then a similar argument gives f(𝜑(y)) = 0   for all f in 𝐶0(X). Hence 𝜑(y) 

= 1, a contradiction again! Therefore, 𝜑 is continuous from 𝑌 into 𝑋. Finally, let K be a 

compact subset of 𝑋 and we are going to see that 𝜑−1(K) is compact in Y , or equivalently, 

closed in 𝑌∞ = Y∪ {∞}, the one-point. 

       We want 𝑦 ∈ 𝜑−1(𝐾), i.e. 𝑦 ≠ ∞ and 𝜑(𝑦) ∈ K. Without loss of generality, we can 

assume that 𝑥⋋ → 𝑥 for some x in K. compactification of Y . To see this, suppose 𝑦⋋ → 𝑦 

in 𝑌∞ and 𝑥⋋ = 𝜑(𝑦⋋) ∈ K. Now, 

lim |𝑇𝑓(𝑦⋋)  =  lim |ℎ(𝑦⋋)𝑓(𝜑(𝑦¸))| ≥  𝑚 lim |𝑓(𝑥⋋)|  =  𝑚|𝑓(𝑥)| 
for all f in 𝐶0(X). This implies that y ≠ 1 and then a similar argument gives 𝜑(𝑦) = 𝑥 ∈ 𝐾.       
The assumption on the bounds of f in Lemma (2.3.3) is significant. For example, let X = Y 

= R = (-∞,+∞) and define 

 

ℎ(𝑦) = {
𝑒𝑦 , 𝑦 < 0
1 , 𝑦 ≥ 0

𝑎𝑛𝑑 𝜑(𝑦) = {sin
𝑦

𝑦 , 𝑦 ≥ 0} 

Then the weighted composition operator 𝑇𝑓 = ℎ. 𝑓 ∘ 𝜑 from 𝐶0(ℝ) into 𝐶0(ℝ) is well-

defined. It is not difficult to see that 𝜑−1([−
1

2
,
1

2
]) is not compact in R. 

On the other hand, if we redefine h(y) = 𝑒𝑦 and 𝜑(y) = y for all y in R then the weighted 

composition operator T is not well-defined from 𝐶0(R) into 𝐶0(R), even though 𝜑 is proper 

and continuous in this case. 

Recall that a bounded linear map T from a Banach space E into a Banach space F is called 

an injection if there is an m > 0 such that ||𝑇𝑥|| ≥ 𝑚||𝑥|| ¸ ∀𝑥 ∈E. It follows from the 

open mapping theorem that T is an injection if and only if T is one-to-one and has closed 

range. 

Proposition (2.3.4)[57]: Let X and Y be locally compact Hausdorff spaces, φ a map from 

Y into X and h a continuous scalar-valued function defined on Y . The weighted 

composition operator Tf = h. f ∘ φ from C0(X) into C0(Y ) is an injection if and only if φ 

is continuous, proper and onto and h has bounds M,m > 0 such that m ≤ |h(y)| ≤ M, ∀y ∈
Y . In this case, φ is a quotient map and thus X is a quotient space of Y . 

Proof. The sufficiency follows easily from Lemma (2.3.3) and the observation that 

||𝑇𝑓|| = ||ℎ.𝑓 ∘ 𝜑||≥ 𝑚||𝑓||, ∀𝑓 ∈ 𝐶0(X) For the necessity, we first note that there are 

constants M,m > 0 such that 𝑚||𝑓|| ≤ ||𝑇𝑓|| ≤ 𝑀||𝑓|| for all f in 𝐶0(X). It is then obvious 

that m ≤ |ℎ(𝑦)| ≤ M, ∀𝑦 ∈ 𝑌 . By Lemma (2.3.3), 𝜑 is continuous and proper. Finally, we 

check that 𝜑 is onto. It is not difficult to see that 𝜑 has dense range. In fact, if 𝜑(Y ) were 

not dense in X, then there were an x in X and a neighborhood U of x in X such that U ∩
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𝜑(Y ) =∅ . Choose an f in 𝐶0(X) such that f(x) = 1 and f vanishes outside U. Then Tf(y) = 

ℎ(𝑦)𝑓(𝜑(𝑦)) = 0 for all y in Y , i.e. 𝑇𝑓 = 0. Since T is an injection, we get a contradiction 

that f = 0! We now show that 𝜑(Y ) = X. Let x ∈ X and K a compact neighborhood of x in 

X. 

       By the density of 𝜑(Y ) in X, there is a net {𝑦⋋} in Y such that 𝑥⋋ = 𝜑(𝑦⋋)in X. 

Without loss of generality, we can assume that x¸ belongs to K for all . 

       Since 𝜑−1(K) is compact in Y , 𝜑(𝜑−1(𝐾)) is a compact subset of X containing the 

net {𝑥⋋}. Consequently, x = lim 𝑥⋋¸ belongs to 𝜑(𝜑−1(𝐾)) ⊂ 𝜑(𝑌). 
Theorem (2.3.5)[57]: Let X and Y be locally compact Hausdorff spaces and T a linear 

isometry from C0(X) into C0(Y ). Then there exist a locally compact subset Y1 (i.e. Y1is 

locally compact in the subspace topology) and a weighted composition operator T1 from 

C0(X) into C0(𝑌1) such that for all f in C0(X), 

Tf|Y1 = T1f = h. f ∘ φ 

for some quotient map ' fromY1 onto X and some continuous scalar-valued function h 

defined on Y1 with |h(y)|≡ 1, ∀y ∈ Y1. 

Proof. We adopt some notations from W. Holsztynski [60] and K. Jarosz [62]. Let 𝑋1 = 𝑋 

∪ {∞} and 𝑌∞ = Y ∪ {∞} be the one-point compactifications of X and Y , respectively. For 

each x in X and y in Y, put 

𝑆𝑥 = {𝑓 ∈ 𝐶0(𝑋): |𝑓(𝑥)| = ||𝑓|| = 1} 

𝑅𝑦 = {𝑔 ∈ 𝐶0(𝑌): |𝑔(𝑦)| = ||𝑔|| = 1}𝑎𝑛𝑑 

𝑄𝑥 = {𝑦 ∈ 𝑌: 𝑇(𝑆𝑥) ⊂ 𝑅𝑦} 

We first Claim (2.3.7) that {𝑄𝑥}𝑥∈𝑋 is a disjoint family of non-empty subsets of Y. In fact, 

for 𝑓1, 𝑓2, … , 𝑓𝑛 𝑖𝑛 𝑆𝑥 , let ℎ = ∑ 𝑓𝑖(𝑥)𝑓𝑖̅̅ ̅̅ ̅̅ ̅̅𝑛
𝑖=1 . 

       Then ||ℎ|| = 𝑛 and thus ||𝑇ℎ|| = 𝑛. Hence there is a 𝑦 in 𝑌 such that 

| ∑ 𝑓𝑖(𝑥)̅̅ ̅̅ ̅̅ 𝑇𝑓𝑖(𝑦)| = |𝑇ℎ(𝑦)| = 𝑛 
𝑛
𝑖=1 . This implies |𝑇𝑓𝑖(𝑦)| = 1 for all 𝑖 = 1,2…𝑛. In other 

words 𝑦 ∈∩𝑖=1
𝑛 (𝑇𝑓𝑖)

−1(Γ), where Γ = {𝑧: |𝑧| = 1. We have just proved that the family 

{(𝑇𝑓)−1(Γ): 𝑓 ∈ 𝑆𝑥} of closed subsets of the compact space𝑌∞ has finite intersection 

property. It is plain that ∞ ∉ (𝑇𝑓)−1(Γ) for all f in 𝑆𝑥. Hence 𝑄𝑥 =∩𝑓∈𝑆𝑥 (𝑇𝑓)
−1(Γ) is 

non-empty for all x in X. Moreover,𝑄𝑥1 ∩ 𝑄𝑥2=∅  if 𝑥1 ≠ 𝑥2in X. In fact, 𝑓1 in 𝑆𝑥1 and 𝑓2 

in 𝑆𝑥2 exist such that coz(𝑓1)\coz(𝑓2) =∅. 

       If there is a y in 𝑄𝑥1 ∩ 𝑄𝑥2 then it follows from 𝑇𝑓1 ∈ 𝑅𝑦 and 𝑇𝑓2 ∈ 𝑅𝑦 that 

1 = ||𝑓1 + 𝑓2|| = ||𝑇(𝑓1 + 𝑓2)|| = |𝑇(𝑓1 + 𝑓2)(𝑦)| = 2, a contradiction! 

       Let 𝑌1 =∪𝑥∈𝑋 𝑄𝑥. It is not difficult to see that supp(𝛿𝑦 ∘ 𝑇) = {𝑥} whenever 𝑦 ∈ 𝑄𝑥. 

So we can define a surjective map 𝜑: 𝑌1 → 𝑋 by 

{𝜑(𝑦)} = 𝑠𝑢𝑝𝑝(𝛿𝑦 ∘ 𝑇) 

Note that for all f in 𝐶0(X) and for all y in 𝑌1, 

𝜑(𝑦) ∉ 𝑠𝑢𝑝𝑝(𝑓) ⟹ 𝑇(𝑓)(𝑦) = 0                                                 (26) 
In fact, if 𝑇𝑓(𝑦) ≠ 0, without loss of generality, we can assume 𝑇𝑓(y) = r > 0 and ||𝑓||= 

1. Since 𝜑(y) ∉ supp(f), there is a 𝑔 in 𝐶0(X) such that coz(f)∩coz(g) =∅ and 𝑇𝑔(𝑦) =

||𝑔|| = 1 . Hence 1+r = 𝑇(𝑓 + 𝑔)(𝑦) > ||𝑓 + 𝑔|| = 1  , a contradiction! 

       Now, we want to show that ' is continuous. Suppose 𝜑 were not continuous at some y 

in 𝑌1, without loss of generality, let {𝑦⋋} be a net converging to y in 𝑌1 such that 𝜑(𝑦⋋) →
𝑥 ≠ 𝜑(𝑦) in 𝑋∞. Then there exist disjoint neighborhoods 𝑈1 and 𝑈2 of x and 𝜑(𝑦) in 𝑋1, 

respectively, and a ⋋1 such that 𝜑(𝑦⋋) ∈ 𝑈1,∀⋋≥⋋0. Let f∈ 𝐶0(𝑋) such that coz(f) ⊂ 𝑈2 
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and 𝑇(f)(y) = ||𝑓|| = 1.   As supp(f)∩ 𝑈1 =∅, we have 𝜑(𝑦⋋) ∉ 𝑠𝑢𝑝𝑝(𝑓),∀ ⋋≥⋋0 by (26)., 

T(f)(𝑦⋋)=0  ∀≥⋋0This implies 𝑇(𝑓) is not continuous at 𝑦, a contradiction! 

       For each 𝑦 in 𝑌1, put 

𝐽𝑦 = {𝑓 ∈ 𝐶0(𝑋): 𝜑(𝑦) ∉ 𝑠𝑢𝑝𝑝(𝑓)}, 𝑎𝑛𝑑 

𝐾𝑦 = {𝑓 ∈ 𝐶0(𝑋): 𝑓(𝜑(𝑦)) = 0} 

For 𝑓  in 𝐾𝑦 and 𝜖 > 0, let 𝑋1 = {𝑥 ∈ 𝑋: |𝑓(𝑥)| ≥ 𝜖} ¸ and 𝑋2 = {𝑥 ∈ 𝑋: |𝑓(𝑥)|   < 𝜖/2}. 

Let 𝑔 be a continuous function defined on X such that 0 ≤ 𝑔(𝑥) ≤ 1, ∀ 𝑥 ∈ 𝑋 , 𝑔(𝑥) =
1    , ∀𝑥 ∈ 𝑋, 𝑔(𝑥) = 1, ∀𝑥 ∈ 𝑋1 and 𝑔(𝑥) = 0 ,∀𝑥 ∈ 𝑋2. Let 𝑓𝜖 = 𝑔. 𝑓 Then 𝑓𝜖 ∈ 𝐽𝑦 and 

||𝑓𝜖 − 𝑓|| ≤ 2𝜖. One thus can show that 𝐽𝑦 is a dense subset of 𝐾𝑦. By (26), 𝐽𝑦 ⊂ 𝑘𝑒𝑟(𝛿𝑦 ∘

𝑇), and hence ker(𝛿𝜑(𝑦)) =𝐾𝑦 ⊂ ker (𝛿𝑦 ∘ 𝑇).Consequently, there exists a scalar h(y) such 

that 𝛿𝑦 ∘ 𝑇 = ℎ(𝑦). 𝛿𝜑(𝑦), i.e. 

𝑇(𝑓)(𝑦) = ℎ(𝑦). 𝑓(𝜑(𝑦)) ,     ∀𝑓 ∈ 𝐶0(𝑋) 
It follows from the definition of 𝑌1 that h is continuous on 𝑌1 and |ℎ(𝑦)| = 1, ∀𝑦 ∈ 𝑌1. 

It is the time to see that 𝑌1 is locally compact. For each 𝑦1 in 𝑌1 and a neighborhood 𝑈1 of 

𝑦1 in 𝑌1, we want to find a compact neighborhood 𝐾! of 𝑦1 in 𝑌1 such that 𝑦1 ∈ 𝐾1  ⊂ 𝑈1. 

Let 𝑥1 = 𝜑(𝑦1) in X. Then 

|𝑇𝑓(𝑦1)| = |𝑓(𝑥1)| , ∀𝑓 ∈ 𝐶0(𝑋) 

Fix 𝑓1 in 𝑆𝑥1 . Then 𝑉1 = 𝜑−1 ({𝑥 ∈ 𝑋: |𝑓1(𝑥)| >
1

2
})𝑈1 is an open neighborhood of 𝑦1 in 

𝑌1 and contained in 𝑈1. Since 𝑉1 = 𝑊 ∩ 𝑌1 for some neighborhood 𝑊 of 𝑦1 in  , there 

exists a compact neighborhood 𝐾 of 𝑦1 in 𝑌 such that 𝑦1 ∈ 𝐾 ⊂ 𝑊 . 

       We are going to verify that 𝐾1 = 𝐾 ∩ 𝑌1 is a compact neighborhood of y1 in 𝑌1. 

       Let {𝑦⋋} be a net in 𝐾1 ⊂ 𝑌1. By passing to a subnet, we can assume that 𝑦⋋ converges 

to 𝑦 in 𝐾 and we want to show 𝑦 ∈ 𝑌1. Let 𝑥⋋ = 𝜑(𝑦⋋) in 𝑋. Since 𝑋1 is compact, by 

passing to a subnet again, we can assume that x¸ converges to x in 𝑋 or   𝑥⋋ → ∞ ,   
|𝑇𝑓1(𝑦)| = in X ,|𝑇𝑓(𝑦⋋) =  lim |ℎ(𝑦⋋)|   = lim  |ℎ(𝑦⋋)𝑓(𝜑(𝑦⋋) =lim |𝑓(𝑥⋋)| = |𝑓(𝑥)| , 
for all f in 𝐶0(X). Hence 𝑦 ∈ 𝑄𝑥, and thus 𝑦 ∈ 𝑌1. If 

𝑥⋋ → ∞  , |𝑇𝑓1(𝑦)| = lim |𝑇𝑓1(𝑦⋋)| = lim |𝑓1(𝑥⋋)| =  0. 

However, the fact that 𝑦⋋ ∈ 𝑉1 ensures |𝑇𝑓1(𝑦⋋)| = |𝑓1(𝑥⋋)| >
1

2
 for all ⋋¸, a 

contradiction! Hence 𝑌1 is locally compact. 

       Let 𝑇1 : 𝐶0(X) → 𝐶0(𝑌1) defined by 𝑇1𝑓= ℎ. 𝑓 ∘ 𝜑. It is clear that 𝑇1 is a linear isometry 

and 𝑇𝑓|𝑌1 = 𝑇1𝑓. By Proposition (2.3.4), the surjective continuous map 𝜑 is proper and 

thus a quotient map. The proof is complete.  

       In Theorem (2.3.5), 𝑌1 can be neither open nor closed in Y and 𝜑 may not be an open 

map. See the following examples. 

       It is clear that Theorem (2.3.1) follows from the following more general result in 

which discontinuity of the linear disjointness preserving map 𝑇 is allowed. The payoff of 

the discontinuity is a finite subset 𝐹 of 𝑋 at which the behaviour of 𝑇 is not under control. 

Theorem (2.3.6)[57]: Let X and Y be locally compact Hausdorff spaces and T a 

disjointness preserving linear map from C0(X) into C0(Y ). Then Y can be written as a 

disjoint union Y = Y ∪1 Y2 ∪ Y3, in which Y2 is open and Y3 is closed. A continuous map 

φ from Y1 ∪ Y2 into X∞ exists such that for every f in C0(X), 

𝜑(𝑦) ∉ supp(𝑓) ⇒ 𝑇(𝑓)(𝑦) = 0                                    (27) 
Moreover, a continuous bounded non-vanishing scalar-valued function h on Y1 exists such 

that 
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𝑇𝑓|𝑌1 = ℎ. 𝑓 ∘ 𝜑, 𝑎𝑛𝑑  

𝑇𝑓|𝑌3 = 0 

Furthermore, F = φ(Y2) is a finite set and the functional δy ∘ T are discontinuous on C0(X) 

for all y in Y2. 

Proof. We shall follow the plan of 𝐾. Jarosz in his compact space version [62]. 

       Set 

𝑌3 = {𝑦 ∈ 𝑌|𝛿𝑦 ∘ 𝑇 ≡ 0} 

𝑌2 = {𝑦 ∈ 𝑌|𝛿𝑦 ∘ 𝑇 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠} , 𝑎𝑛𝑑 

𝑌1 = 𝑌 ∖ (𝑌2⋃𝑌3) 
First, we Claim (2.3.7) that supp(𝛿𝑦 ∘ 𝑇) contains exactly one point for every 𝑦 in 𝑌1 ∪ 𝑌2. 

Suppose on the contrary that supp(𝛿𝑦 ∘ 𝑇) contains two distinct points 𝑥1 and 𝑥2 in 𝑋1. Let 

𝑈1 and 𝑈2 be neighborhoods of 𝑥1 and 𝑥2 in 𝑋1, respectively, such that 𝑈1 ∩ 𝑈2 = ∅ =  

Let 𝑓1 and 𝑓2 in 𝐶0(𝑋) with coz(𝑓1) ⊂ 𝑈1 and coz(𝑓2) ⊂ 𝑈2 be such that 𝑇𝑓1(𝑦) ≠ 0 and 

𝑇𝑓2(𝑦) ≠ 0. However, f1f2 = 0 implies 𝑇𝑓1𝑇𝑓2 = 0, a contradiction! Suppose supp(𝛿𝑦 ∘

𝑇) is empty. Then we can write the compact Hausdorff space 𝑋∞ as a finite union of open 

sets 𝑋∞ =∪𝑖=1
𝑛 𝑈𝑖 such that 𝑇𝑓(𝑦) whenever coz(f) ⊂ 𝑈𝑖 for some 𝑖 = 1,2,…𝑛. Let 1 

=∑ 𝑓𝑖
𝑛
𝑖=1  be a continuous decomposition of the identity coordinate to {𝑈𝑖}𝑖=1

𝑛 . Then for all f 

in 𝐶0(𝑋), 𝑇𝑓(𝑦) = ∑ 𝑇(𝑓𝑓𝑖)(𝑦) = 0
𝑛
𝑖=1 . This says 𝛿𝑦 ∘ 𝑇 ≡ 0 and thus 𝑦 ∈ 𝑌3. 

       Next we define a map 𝜑 from 𝑌1 ∪ 𝑌2 into 𝑋∞ by 

{𝜑(𝑦)} = 𝑠𝑢𝑝𝑝(𝛿𝑦 ∘ 𝑇) 

We now prove (27). Assume 𝜑(𝑦) ∉ 𝑠𝑢𝑝𝑝(𝑓). Then there is an open neighborhood 𝑈 of 

𝜑(𝑦) disjoint from coz(f). Let 𝑔 ∈ 𝐶0(𝑋) such that coz(g) ⊂ 𝑈 and 𝑇𝑔(𝑦) ≠ 0. Since 

𝑓𝑔 = 0 and T is disjointness preserving, 𝑇𝑓(𝑦) = 0 as asserted. 

       It then follows from (27) the continuity of ' as one can easily modify an argument of 

the proof of Theorem (2.3.5) for this goal. Similarly, it also follows from (27) the desired 

representation 

𝑇𝑓(𝑦) = ℎ(𝑦)𝑓(𝜑(𝑦)) , ∀𝑓 ∈ 𝐶0(𝑋), ∀𝑦 ∈ 𝑌1                     (28) 

where h is a continuous non-vanishing scalar-valued function defined on 𝑌1. 

Claim (2.3.7)[57]: Let {yn}n=1
∞  be a sequence in Y1 ∪ Y2 such that xn = φ(y2)′s are 

distinct points of X. Then 

lim sup ||𝛿𝑦𝑛 ∘ 𝑇|| < ∞ 

In particular, only finitely many δy ∘ T can have in finite norms. 

       Assume the contrary and, by passing to a subsequence if necessary, we have 

||𝛿𝑦𝑛 ∘ 𝑇|| > 𝑛
4 , 𝑛 = 1,2,… 

Let 𝑓𝑛 ∈ 𝐶0(𝑋)with ||𝑓𝑛|| ≤ 1 such that 

|𝑇𝑓𝑛(𝑦𝑛)| ≥ 𝑛
3, 𝑛 = 1,2,… 

Let 𝑉𝑛,𝑊𝑛 and 𝑈𝑛 be open subsets of X such that 𝑥𝑛 ∈ 𝑉𝑛 ⊆ 𝑉�̅� ⊆ 𝑊𝑛 ⊆
𝑊𝑛̅̅ ̅̅ 𝑈𝑛 𝑎𝑛𝑑 𝑈𝑛⋂𝑈𝑚 = ∅ if  n≠ 𝑚 , 𝑛,𝑚 = 1,2,…, and let 𝑔𝑛 ∈ 𝐶(𝑋∞) such that 0 ≤ 𝑔𝑛 ≤
1, 𝑔𝑛|𝑉𝑛 ≡ 1 𝑎𝑛𝑑 𝑔𝑛|𝑋∞∖𝑊𝑛 ≡ 0 , 𝑛 = 1,2,… . Then (27) implies 

𝑇𝑓𝑛(𝑦𝑛) = 𝑇(𝑓𝑛𝑔𝑛)(𝑦𝑛) + 𝑇(𝑓𝑛(1 − 𝑔𝑛))(𝑦𝑛) 

= 𝑇(𝑓𝑛𝑔𝑛)(𝑦𝑛) , 𝑛 = 1,2,… 



58 

Therefore, we can assume supp𝑓𝑛 ⊂ 𝑈𝑛. Let f =∑
1

𝑛2
𝑓𝑛

∞
𝑛=1  in 𝐶0(𝑋) By (27) again,  

|𝑇𝑓(𝑦𝑛)| = |
1

𝑛2
𝑇𝑓𝑛(𝑦𝑛)| ≥ 𝑛 for n = 1, 2, … . This conflicts with the boundedness of 𝑇𝑓 in 

𝐶0(Y ), and the Claim (2.3.7) is thus verified. 

       The assertion F = 𝜑(𝑌2) is a finite subset of X is clearly a consequence of the Claim 

(2.3.7) while the boundedness of h follows from the Claim (2.3.7) and (28). It is also plain 

that 𝑌3 =∩ {𝑘𝑒𝑟𝑇𝑓: 𝑓 ∈ 𝐶0(𝑋)} is closed in  . Finally, to see that 𝑌2 is open, we consider 

for every f in 𝐶0(X), 

sup {|𝑇𝑓(𝑦)|: 𝑦 ∈ 𝑌1 ∪ 𝑌3̅̅ ̅̅ ̅̅ ̅̅ ̅ = sup{|𝑇𝑓(𝑦)|: 𝑦 ∈ 𝑌1 ∪ 𝑌3}} 
 = sup{ |𝑇𝑓(𝑦): 𝑦 ∈ 𝑌1} 

= sup{|ℎ(𝑦)𝑓(𝜑(𝑦))|: 𝑦 ∈ 𝑌1} ≤ 𝑀||𝑓||, 

where M > 0 is a bounded of h on 𝑌1. It follows that the linear functional 𝛿𝑦 ∘ 𝑇 is 

bounded for all y in 𝑌1 ∪ 𝑌3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and thus 𝑌2 ∩ 𝑌1 ∪ 𝑌3̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∅. Hence, 𝑌1 ∪ 𝑌3 = 𝑌1 ∪ 𝑌3̅̅ ̅̅ ̅̅ ̅̅ ̅  is 

closed. In other words, 𝑌2 is open.  

Theorem (2.3.8)[57]: Let 𝑋 and 𝑌 be locally compact Hausdoff spaces and T a bijective 

disjointness preserving linear map from C0(X) onto C0(Y ). Then T is a bounded weighted 

composition operator, and X and Y are homeomorphic. 

Proof. We adopt the notations used in Theorem (2.3.6). Since T is surjective, 𝑌3 = ∅. We 

are going to verify that 𝑌2 = ∅, too. First, we note that the finite set 𝐹 ∖ {∞} consists of 

non-isolated points in X. In fact, if y ∈ 𝑌2 such that 𝑥 = 𝜑(𝑦) is an isolated point in  𝑋 then 

it follows from (27) that for every f in 𝐶0(X), f(x) = 0 implies 𝜑(𝑦) = x ∈ 𝑠𝑢𝑝𝑝 𝑓 and thus 

𝑇𝑓(𝑦) = 0. Hence, 𝛿𝑦 ∘ 𝑇=⋋ 𝛿𝑥 for some scalar ⋋. Therefore, 𝛿𝑦 ∘ 𝑇 is continuous, a 

contradiction to the assumption that 𝑦 ∈ 𝑌2. We then Claim (2.3.7) that 𝜑(𝑦) = 𝜑(𝑌1 ∪
𝑌2)  is dense in 𝑋. In fact, if a nonzero 𝑓 in 𝐶0(X) exists such that supp𝑓 ∩ 𝜑(𝑌) = ∅ then 

𝑇𝑓 = 0 by (27), conflicting with the injectivity of 𝑇. Since 

𝑋 = 𝜑(𝑌)̅̅ ̅̅ ̅̅ ̅ = 𝜑(𝑌1 ∪ 𝜑(𝑌2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜑(𝑌1) ∪ 𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜑(𝑌1)̅̅ ̅̅ ̅̅ ̅ 𝑜𝑟  
for every f in 𝐶0(X), 

𝑇𝑓|𝑌1 = 0 ⟹ 𝑓|𝜑(𝑌1) = 0 ⟹ 𝑓 = 0 ⟹ 𝑇𝑓|𝑌2 = 0 

Therefore, the open set 𝑌2 = ∅ by the surjectivity of T. Theorem (2.3.6) then gives 

𝑇𝑓 = ℎ. (𝑓 ∘ 𝜑) , ∀𝑓 ∈ 𝐶0(𝑋) 
This representation implies that 𝑇−1 is also a bijective disjointness preserving linear map 

from 𝐶0(Y ) onto 𝐶0(X). The above discussion provides that 

𝑇−1𝑔 = ℎ1. 𝑔 ∘ 𝜑1  , ∀𝑔 ∈ 𝐶0(𝑌) 
for some continuous non-vanishing scalar-valued function ℎ1 on 𝑋 and continuous 

function 𝜑1 from 𝑋  into 𝑌 . It is plain that 𝜑1 = 𝜑
−1 and thus 𝑋 and Y are homeomorphic.  

       The following example shows that not every into isometry or bounded disjointness 

preserving linear map from 𝐶0(𝑋) into 𝐶0(𝑌 ) can be extended to a bounded linear map 

from 𝐶(𝑋1) into 𝐶(𝑌1) of the same type. Here 𝑋 and 𝑌 are locally compact Hausdorff 

spaces with one-point compactifications 𝑋1 and 𝑌1, respectively. 

Example (2.3.9)[57]: Let 𝑋 = [0,+∞), 𝑌 = (−∞,+∞) and the underlying scalar field is 

the field R of real numbers. Let 

ℎ(𝑦) = {

1 , 𝑦 > 2
𝑦 − 1 ,0 ≤ 𝑦 ≤ 2
−1 , 𝑦 < 0

} 

and 
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𝜑(𝑦) = {
𝑦 , 𝑦 ≥ 0
−𝑦 , 𝑦 < 0

 

Then the weighted composition operator 𝑇𝑓 = ℎ. 𝑓 ∘ 𝜑 is simultaneously an into isometry 

and a bounded disjointness preserving linear map from 𝐶0([0, +∞)) into 𝐶0((−∞,+∞ ) 

.However, no bounded linear extension 𝑇∞ from 𝐶([0,∞]) into 𝐶((−∞,+∞) ∪ {∞}of T 

can be an into isometry or a disjointness preserving linear map. 

       Suppose, on the contrary, 𝑇∞ were an into isometry. Consider 𝑓𝑛 in 𝐶0([0, +∞)) 

defined by 

𝑓𝑛(𝑥) {

1 , 0 ≤ 𝑥 ≤ 𝑛,
2𝑛 − 𝑥

𝑛
, 𝑛 < 𝑥 < 2𝑛  , 𝑛 = 1,2, . .

0, 2𝑛 ≤ 𝑥 ≤ +∞,

 

Note that 𝛿𝑦 ∘ 𝑇∞ can be considered as a bounded Borel measure my on [0, +∞] for all 

point evaluation 𝛿𝑦 at 𝑦 in (−∞,+∞) ∪ {∞} with total variation       ||𝑚𝑦|| =

||𝛿𝑦 ∘ 𝑇∞|| ≤ 1. Let 1 be the constant function 1(x)≡ 1 in 𝐶([0,+∞]). For all y in 

(−∞,+∞), 

𝑇∞1(𝑦) = 𝛿 ∘ 𝑇∞(1) = ∫ 1 𝑑𝑚𝑦

 

[0,+∞]

 

= lim
𝑛→∞

∫ 𝑓𝑛

 

[0,+∞]

𝑑𝑚𝑦 +𝑚𝑦({∞})

= lim
𝑛→∞

𝛿𝑦 ∘ 𝑇∞(𝑓𝑛) + 𝑚𝑦({∞}) 

= lim
𝑛→∞

𝑇𝑓𝑛(𝑦) + 𝑚𝑦({∞}) = lim
𝑛→∞

ℎ(𝑦). 𝑓𝑛(𝜑(𝑦)) + 𝑚𝑦({∞}) 

= ℎ(𝑦) + 𝑚𝑦({∞}) 

 

Let g(𝑦) = 𝑚𝑦({∞}) for all 𝑦 in (−∞,+∞). Then 𝑔(𝑦) =𝑇∞1(𝑦) − ℎ(𝑦) is continuous on 

(−∞,+∞) and  |𝑔(𝑦)| = |𝑚𝑦({∞})| ≤ ||𝑚𝑦|| ≤ 1, ∀𝑦 ∈ (−∞,+∞).Note that ||𝑇∞1|| =

1. Therefore, 𝑔(𝑦) = 𝑇∞1(𝑦) − 1 ≤ 0  when         𝑦 > 2, and 𝑔(𝑦) = 𝑇∞1(𝑦) + 1 ≥ 0 ¸ 

when 𝑦 < −2. We Claim (2.3.7) that    𝑔(𝑦)𝑔(−𝑦) = 0 whenever |𝑦| > 2. In fact, if for 

example 𝑔(𝑦0) < −𝛿 for some 𝑦0 > 2 and some 𝑦0 > 2, then for each small 𝜖 > 0, 0 ≤
𝑇∞1(𝑦) < 1 − 𝛿 for all  𝑦 I     (𝑦0 − 𝜖, 𝑦0 + 𝜖). We can choose an f in 𝐶0([0,+∞)) 
satisfying that   𝑓(𝑦0) = ||𝑓|| = 1 and f vanishes outside (𝑦0 − 𝜖, 𝑦0 + 𝜖) ⊂ (2,+∞). 
Now, 

𝑇∞(1 + 𝛿𝑓)(𝑦) = 𝑇∞(1)(𝑦) + 𝛿𝑇∞(𝑓)(𝑦) 
   = 𝑇∞(1)(𝑦) + 𝛿𝑇(𝑓)(𝑦) 

       = ℎ(𝑦) + 𝑔(𝑦) + 𝛿ℎ(𝑦)𝑓(𝜑(𝑦)) 

= {

1 + 𝑔(𝑦) + 𝛿𝑓(𝑦), 𝑦 > 2

𝑇∞1(𝑦),−2 ≤ 𝑦 ≤ 2

−1 + 𝑔(𝑦) − 𝛿𝑓(−𝑦), 𝑦 < −2

 

Since ||𝑇∞(1 + 𝛿𝑓|| = ||1 + 𝛿𝑓|| = 1 + 𝛿 and|𝑇∞(1 + 𝛿𝑓)(𝑦)| ≤ 1 · unless −𝑦 ∈ (𝑦0 −
𝜖, 𝑦0 + 𝜖), there is a 𝑦1 in (𝑦0 − 𝜖, 𝑦0 + 𝜖) such tha   |−1 + 𝑔(−𝑦1) − 𝛿𝑓(𝑦1)| = 1 + 𝛿. 

It forces that 𝑔(−𝑦1) = 0. Since 𝜖 can be arbitrary small, we have 𝑔(−𝑦0) = 0 and our 
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Claim (2.3.7) that 𝑔(𝑦)𝑔(−𝑦) = 0 whenever |𝑦| > 0 has thus been verified. As𝑇∞1 is 

continuous on (−∞,+∞)∪ {∞}, we must have 

 

lim
𝑦→+∞

𝑇∞1(𝑦) = lim
𝑦→−∞

𝑇∞1(𝑦) 

𝑡ℎ𝑎𝑡 𝑖𝑠 , 
lim
𝑦→+∞

−1 + 𝑔(𝑦) = lim
𝑦→−∞ 

 1 + 𝑔(𝑦) 

Let L be their common (finite) limit. Then 

 

lim
𝑦→+∞

𝑔(𝑦) = 𝐿 + 1 ,    lim
𝑦→−∞

𝑔(𝑦) = 𝐿 − 1 

Consequently, 

0 = lim
𝑦→+∞

𝑔(𝑦)𝑔(−𝑦) = 𝐿2 − 1 

It follows that L =±1, and thus either lim
𝑦→+∞

𝑔(𝑦) = 2 or lim
𝑦→−∞

𝑔(𝑦) = −2 . 

       Both of them contradicts the fact that |𝑔(𝑦)| ≤ 1, ∀𝑦 ∈ (−∞,+∞). 
       On the other hand, suppose 𝑇∞ were disjointness preserving. Since 𝑓𝑛(1 − 𝑓2𝑛) = 0, 

we have 𝑇∞𝑓𝑛 . 𝑇∞(1 − 𝑓2𝑛) = 0. That is, 

𝑇∞𝑓𝑛(𝑦). 𝑇∞(1 − 𝑓2𝑛)(𝑦) = 0   , ∀𝑦 ∈ (−∞,+∞) ∪ {∞} 
When |𝑦| < 𝑛 and 𝑦 ≠ 1, 𝑇∞𝑓𝑛(y)= 𝑇𝑓𝑛(𝑦) = ℎ(𝑦) ≠ 0 and hence  𝑇∞(1)(𝑦) =
𝑇∞(𝑓2𝑛)(𝑦) = 𝑇(𝑓2𝑛)(𝑦) = ℎ(𝑦). Since 𝑇∞1 is continuous on (−∞,+∞) ∪ {∞}, we must 

have 

+1 = lim
𝑦→+∞

ℎ(𝑦) = lim
𝑦→−∞

ℎ(𝑦) = −1 

a Contradiction again.  
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Chapter 3 

Properties of Approximation Numbers with Compact and Weakly Compact 

Composition Operators 

We connect with Hardy–Orlicz and Bergman–Orlicz spaces 𝐻𝜓 and 𝐵𝜓, and 

provide a negative answer to the question of knowing if all composition operators which 

are weakly compact on a non-reflexive space are norm-compact. The approximation 

numbers of a compact composition operator cannot decay more rapidly than exponentially, 

and this speed of convergence is only obtained for symbols which do not approach the unit 

circle. We also give an upper bound and explicit an example. As a crucial step of the 

argument we simplify the compactness criterion due to Smith for 𝐶𝜙 on BMOA and show 

that his condition on the Nevanlinna counting function alone characterizes compactness. 

Additional equivalent compactness criteria are established. We show the unexpected result 

that compactness of 𝐶𝜙 on VMOA implies compactness even from the Bloch space into 

VMOA. 

Section (3.1): Composition Operators Associated with Lens Maps 
As a continuation of [72], [73], [74], [77] and [78]. 

For 𝔻 be the open unit disk of the complex plane and ℋ(𝔻) be the space of 

holomorphic functions on 𝔻. To every analytic self-map 𝜑:𝔻 → 𝔻 (also called Schur 

function), a linear map 𝐶𝜑 ∶ ℋ(𝔻)  → ℋ(𝔻) can be associated by 𝐶𝜑(𝑓) =  𝑓 ∘ 𝜑. This 

map is called the composition operator of symbol 𝜑. A basic fact of the theory ([83], page 

13, or [67], Theorem 1.7) is Littlewood’s subordination principle which allows one to 

show that every composition operator induces a bounded linear map from the Hardy space 

𝐻𝑝 into itself, 1 ≤  𝑝 <  ∞. 

We are specifically interested in a one-parameter family (a semigroup) of Schur 

functions: lens maps 𝜑𝜃 , 0 < 𝜃 <  1, whose definition is given below. They turn out to be 

very useful in the general theory of composition operators because they provide non-trivial 

examples (for example, they generate compact and even Hilbert–Schmidt operators on the 

Hardy space 𝐻2 [83], page 27). We illustrate that fact by new examples. 

       We show that, as operators on 𝐻2, the approximation numbers of 𝐶𝜑𝜃 behave as 

𝑒−𝑐𝜃√𝑛. In particular, the composition operator 𝐶𝜑𝜃 is in all Schatten classes 𝑆𝑝, 𝑝 >  0. 

We show that, when one “spreads” these lens maps, their approximation numbers become 

greater, and the associated composition operator 𝐶�̃�𝜃 is in 𝑆𝑝 if and only if 𝑝 >  2𝜃. We 

answer in the negative a question of H.-O. Tylli: is it true that every weakly compact 

composition operator on a non-reflexive Banach function space is actually compact? We 

show that there are composition operators on a (non-reflexive) Hardy–Orlicz space, which 

are weakly compact and Dunford–Pettis, though not compact, and that there are 

composition operators on a non-reflexive Bergman– Orlicz space which are weakly 

compact but not compact. We also show that there are composition operators on a non-

reflexive Hardy–Orlicz space which are weakly compact but not Dunford–Pettis. 

       We give now the definition of lens maps (see [83], page 27). 

Definition (3.1.1)[63]: (Lens maps): The lens map 𝜑𝜃 ∶ 𝔻 → 𝔻 with parameter 𝜃, 0 <
𝜃 <  1, is defined by: 

𝜑𝜃(𝓏) =
(1 + 𝓏)𝜃 − (1 − 𝓏)𝜃

(1 + 𝓏)𝜃 + (1 − 𝓏)𝜃
, 𝓏 ∈ 𝔻.                          (1) 
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In a more explicit way, 𝜑𝜃 is defined as follows. Let ℍ be the open right half-plane, and 

𝑇 ∶ 𝔻 → ℍ be the (involutive) conformal mapping given by 

𝑇(𝓏) =
1 −  𝓏

1 +  𝓏
.                                                           (2) 

We denote by 𝛾𝜃 the self-map of ℍ defined by 

𝛾𝜃(𝑤) =  𝑤
𝜃 = 𝑒𝜃 log  𝑤,                                                   (3) 

where log   is the principal value of the logarithm and finally 𝜑𝜃 ∶ 𝔻 → 𝔻 is defined by 

𝜑𝜃 = 𝑇
−1 ∘ 𝛾𝜃 ∘ 𝑇.                                                    (4) 

Those lens maps form a continuous curve of analytic self-maps from 𝔻 into itself, and an 

abelian semi-group for the composition of maps since we obviously have from (4) and the 

rules on powers that 𝜑𝜃(0)  =  0 and 

𝜑𝜃 ∘ 𝜑𝜃′ = 𝜑𝜃′ ∘ 𝜑𝜃 = 𝜑𝜃𝜃′ .                                           (5) 
       For every operator 𝐴: 𝐻2  →  𝐻2, we denote by 

𝑎𝑛(𝐴) = inf
𝑟𝑎𝑛𝑘 𝑅<𝑛

 ‖𝐴 − 𝑅‖,            𝑛 = 1, 2 ,   .  .  .   

its 𝑛-th approximation number. See [65] for more details on those approximation numbers. 

       Recall ([86], page 18) that the Schatten class 𝑆𝑝 on 𝐻2 is defined by 

𝑆𝑝 = {𝐴: 𝐻
2  →  𝐻2 ;  (𝑎𝑛(𝐴))𝑛  ∈ ℓ

𝑝}, 𝑝 >  0; 

𝑆2 is the Hilbert–Schmidt class and the quantity ‖𝐴‖𝑝 = (∑  ∞
𝑛=1 (𝑎𝑛(𝐴))

𝑝
)
1/𝑝

 is a 

Banach norm on 𝑆𝑝 for 𝑝 ≥  1. 

We can now state the following theorem: 

       The lower bound in (9) was proved in [78]. The fact that 𝐶𝜑𝜃 lies in all Schatten 

classes was first proved in [84] under a qualitative form. 

       The upper bound will be obtained below as a consequence of a result of O. G.       

Parfenov ([80]). However, an idea of infinite divisibility, which may be used in other 

contexts, leads to a simpler proof, though it gives a worse estimate in (9): √𝑛 is replaced 

by 𝑛1/3. We shall begin by giving this proof, because it is quite short. It relies on the semi-

group property (5) and on an estimate of the Hilbert–Schmidt norm ‖𝐶𝜑𝛼‖2
 in terms of 𝛼, 

as follows: 

Lemma (3.1.2)[63]: There exist numerical constants 𝐾1, 𝐾2 such that 
𝐾1

1 −  𝛼
 ≤  ‖𝐶𝜑𝛼‖2

≤
𝐾2

1 −  𝛼
  ,          for all 0 < 𝛼 <  1.               (6) 

In particular, we have 

𝑎𝑛(𝐶𝜑𝛼) ≤
𝐾2

√𝑛(1 −  𝛼)
.                                             (7) 

Proof. The relation (7) is an obvious consequence of (6) since 

𝑛 [𝑎𝑛(𝐶𝜑𝛼)]
2
≤∑ 

𝑛

𝑗=1

[𝑎𝑗(𝐶𝜑𝛼)]
2
≤ ∑  

∞

𝑗=1

[𝑎𝑗(𝐶𝜑𝛼)]
2
= ‖𝐶𝜑𝛼‖2

2
≤

𝐾2
2

(1 −  𝛼)2
. 

For the first part, let 𝑎 =  cos(𝛼𝜋/2)  =  sin((1 −  𝛼)𝜋/2)  ≥  1 −  𝛼 and let 𝜎 =
 𝑇 (𝑚) (𝑚 is the normalized Lebesgue measure 𝑑𝑚(𝑡)  =  𝑑𝑡/2𝜋 on the unit circle) be the 

probability measure carried by the imaginary axis which satisfies  

∫  
ℍ

𝑓 𝑑𝜎 =  ∫  
∞

−∞

𝑓(𝑖𝑦)
𝑑𝑦

𝜋(1 + 𝑦2)
. 
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By definition, defined in (2), is a unitary operator from 𝐻2(𝔻,𝑚) into 𝐻2(ℍ, 𝜎), and we 

easily obtain, setting 𝛾(𝑦)  =  𝛾𝛼(𝑖𝑦) = 𝑒
𝑖(𝜋/2)𝛼 𝑠𝑖𝑔𝑛(𝑦) |𝑦|𝛼 (where sign is the sign of 𝑦 

and 𝛾𝛼 is defined in (3)), that (see [83]) 

‖𝐶𝜑𝛼‖2
2
= ∫ 

𝕋

𝑑𝑚

1 − |𝜑𝛼|
2
= ∫  

ℍ

𝑑𝜎

1 −
|1 − 𝛾|
|1 + 𝛾|2

 =  ∫  
ℍ

|1 +  𝛾|2

4 ℛ𝑒 𝛾
 𝑑𝜎 

= ∫  
+∞

−∞

 
|1 +  𝛾(𝑦)|2

4𝑎|𝑦|𝛼
 

𝑑𝑦

𝜋(1 + 𝑦2)
 

≤
𝐾

1 −  𝛼
 ∫  
+∞

0

 
1 + 𝑦2𝛼

𝑦𝛼
 
𝑑𝑦

1 + 𝑦2
=

2𝐾

1 −  𝛼
 ∫  

+∞

0

 
𝑦𝛼

1 + 𝑦2
𝑑𝑦 

≤
4𝐾

(1 −  𝛼)2
, 

where 𝐾 is a numerical constant. This gives the upper bound in (6) and the lower one is 

obtained similarly. 

       We can now finish the first proof of Theorem (3.1.3). Let k be a positive integer and 

let 

𝛼𝑘 = 𝜃
1/𝑘 , 

so that 𝛼𝑘
𝑘 = 𝜃. 

       Now use the well-known sub-multiplicativity 𝑎𝑝+𝑞−1(𝑣𝑢)  ≤  𝑎𝑝(𝑣)𝑎𝑞(𝑢) of 

approximation numbers ([81], page 61), as well as the semi-group property (5) (which 

implies 𝐶𝜑𝜃 = 𝐶𝜑𝛼𝑘
𝑘 ), and (7). We see that 

𝑎𝑘𝑛(𝐶𝜑𝜃) = 𝑎𝑘𝑛 (𝐶𝜑𝛼𝑘
𝑘 ) ≤ [𝑎𝑛 (𝐶𝜑𝛼𝑘

)]
𝑘
≤ [

𝐾2

1 − 𝛼𝑘√𝑛
]

𝑘

. 

Observe that 

1 − 𝛼𝑘  ≥
1 − 𝛼𝑘

𝑘

𝑘
=
1 −  𝜃

𝑘
. 

We then get, 𝑐 =  𝑐𝜃 denoting a constant which only depends on 𝜃: 

𝑎𝑘𝑛(𝐶𝜑𝜃) ≤ (
𝑘

𝑐√𝑛
)
𝑘

. 

Set 𝑑 =  𝑐/𝑒 and take 𝑘 =  𝑑 √𝑛, ignoring the questions of integer part. We obtain 

𝑎𝑑𝑛3/2(𝐶𝜑𝜃)  ≤  𝑒
−𝑘 = 𝑒−𝑑√𝑛. 

Setting 𝑁 =  𝑑𝑛3/2, we get 

𝑎𝑁(𝐶𝜑𝜃) ≤ 𝑎 𝑒
−𝑏𝑁1/3                                                   (8) 

for an appropriate value of 𝑎 and 𝑏 and for any integer 𝑁 ≥  1. This ends our first proof, 

with an exponent slightly smaller that the right one (1/3 instead of 1/2), yet more than 

sufficient to prove that 𝐶𝜑𝜃 ∈  ⋂  𝑝>0 𝑆𝑝. 

Theorem (3.1.3)[63]: Let 0 < 𝜃 <  1 and 𝜑𝜃 be the lens map defined in (1). There are 

positive constants 𝑎, 𝑏, 𝑎′, 𝑏′ depending only on 𝜃 such that 

𝑎′𝑒−𝑏
′√𝑛  ≤  𝑎𝑛(𝐶𝜑𝜃) ≤  𝑎 𝑒

−𝑏√𝑛.                                       (9) 

 In particular, 𝐶𝜑𝜃 lies in all Schatten classes 𝑆𝑝, 𝑝 >  0. 

Proof. This proof will give the correct exponent 1/2 in the upper bound. Moreover, it 

works more generally for Schur functions whose image lies in polygons inscribed in the 
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unit disk. This upper bound appears, in a different context and under a very cryptic form, 

in [80]. First note the following simple lemma. 

Lemma (3.1.4)[63]: Suppose that 𝑎, 𝑏 ∈ 𝔻 satisfy |𝑎 −  𝑏|  ≤  𝑀 min(1 − |𝑎|, 1 −
 |𝑏|), where 𝑀 is a constant. Then 

𝑑(𝑎, 𝑏) ≤
𝑀

√𝑀2 + 1
∶=  𝜒 <  1. 

Here 𝑑 is the pseudo-hyperbolic distance defined by 

𝑑(𝑎, 𝑏)  = |
𝑎 −  𝑏

1 − �̅�𝑏
| ,    𝑎, 𝑏 ∈ 𝔻. 

Proof. Set 𝛿 =  min(1 − |𝑎|, 1 − |𝑏|). We have the identity 

1

𝑑2(𝑎, 𝑏)
− 1 =

(1 − |𝑎|2)(1 − |𝑏|2)

|𝑎 − 𝑏|2
≥
(1 − |𝑎|)(1 − |𝑏|)

|𝑎 − 𝑏|2
≥

𝛿2

𝑀2𝛿2
=
1

𝑀2
, 

hence the lemma. 

       The second lemma gives an upper bound for 𝑎𝑁(𝐶𝜑). In this lemma, 𝜅 is a numerical 

constant, 𝑆(𝜉, ℎ) the usual pseudo-Carleson window centred at 𝜉 ∈ 𝕋 (where 𝕋 = 𝜕𝔻 is 

the unit circle) and of radius ℎ (0 < ℎ <  1), defined by  

𝑆(𝜉, ℎ) =  {𝓏 ∈ 𝔻 ; |𝓏 −  𝜉| ≤  ℎ},                          (10) 
and 𝑚𝜑 is the pull-back measure of 𝑚, the normalized Lebesgue measure on 𝕋, by 𝜑∗.       

Recall that if 𝑓 ∈ ℋ(𝔻), one sets 𝑓𝑟(𝑒
𝑖𝑡) = 𝑓(𝑟𝑒𝑖𝑡) for 0 < 𝑟 <  1 and, if the limit exists 

m-almost everywhere, one sets 

𝑓∗(𝑒𝑖𝑡) = lim
𝑟→1−

 𝑓(𝑟𝑒𝑖𝑡).                                               (11) 

Actually, we shall do write 𝑓 instead of 𝑓∗. Recall that a measure 𝜇 on �̅� is called a 

Carleson measure if there is a constant 𝑐 >  0 such that 𝜇[𝑆(𝜉, ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅]  ≤  𝑐 ℎ for all 𝜉 ∈ 𝕋.               

Carleson’s embedding theorem says that 𝜇 is a Carleson measure if and only if the 

inclusion map from 𝐻2 into 𝐿2(𝜇) is bounded (see [67], Theorem 9.3, for example). 

Lemma (3.1.5)[63]: Let 𝐵 be a Blaschke product with less than 𝑁 zeroes (each zero being 

counted with its multiplicity). Then, for every Schur function 𝜑, one has  

𝑎𝑁
2 ∶= [𝑎𝑁 (𝐶𝜑)]

2
≤ 𝜅2  sup

0<ℎ<1,𝜉∈𝕋

    
1

ℎ
 ∫  
𝑆(𝜉,ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅

|𝐵|2 𝑑𝑚𝜑 ,         (12) 

for some universal constant 𝜅 >  0. 

Proof. The subspace 𝐵𝐻2 is of codimension ≤  𝑁 −  1. Therefore, 𝑎𝑁 = 𝑐𝑁 (𝐶𝜑)  ≤

 ‖𝐶𝜑|𝐵𝐻2
‖, where the 𝑐𝑁 ’s are the Gelfand numbers (see [65]), and where we used the 

equality 𝑎𝑁 = 𝑐𝑁 occurring in the Hilbertian case (see [65]). Now, since ‖𝐵𝑓‖𝐻2 = ‖𝑓‖𝐻2  
for any 𝑓 ∈  𝐻2, we have 

‖𝐶𝜑|𝐵𝐻2
‖
2
= sup
‖𝑓‖𝐻2≤1

 ∫  
𝕋

|𝐵 ∘ 𝜑|2 |𝑓 ∘ 𝜑|2 𝑑𝑚 = sup
‖𝑓‖𝐻2≤1

 ∫  
�̅�

|𝐵|2|𝑓|2𝑑𝑚𝜑 

= ‖𝑅𝜇‖
2
,  

where 𝜇 =  |𝐵|2𝑚𝜑 and where 𝑅𝜇 ∶  𝐻
2  →  𝐿2(𝜇) is the restriction map. Of course, 𝜇 is a 

Carleson measure for 𝐻2 since 𝜇 ≤  𝑚𝜑. Now, Carleson’s embedding theorem tells us 

that 

‖𝑅𝜇‖
2
≤ 𝜅2 sup

0<ℎ<1,𝜉∈𝕋

  
𝜇[𝑆(𝜉, ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅]

ℎ
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(see [67], Remark after the proof of Theorem 9.3, at the top of page 163; actually, in that 

book, Carleson’s windows 𝑊(𝜉, ℎ) are used instead of pseudo-Carleson’s windows 

𝑆(𝜉, ℎ), but that does not matter, since 𝑊(𝜉, ℎ)  ⊆  𝑆(𝜉, 2ℎ): if 𝑟 ≥  1 − ℎ and |𝑡 −
 𝑡0|  ≤  ℎ, then |𝑟𝑒𝑖𝑡 − 𝑒𝑖𝑡0| ≤ |𝑟𝑒𝑖𝑡 − 𝑒𝑖𝑡| + |𝑒𝑖𝑡 − 𝑒𝑖𝑡0| ≤ 2ℎ). That ends the proof of 

Lemma (3.1.5). 

       The following lemma takes into account the behaviour of 𝜑𝜃(𝑒
𝑖𝑡), and will be useful. 

The notation 𝑢(𝑡)  ≈  𝑣(𝑡) means that 𝑎 𝑢(𝑡)  ≤  𝑣(𝑡) ≤ 𝑏 𝑢(𝑡), for some positive 

constants 𝑎, 𝑏. 

Lemma (3.1.6)[63]: Set 𝛾(𝑡)  =  𝜑𝜃(𝑒
𝑖𝑡)  =  |𝛾(𝑡)|𝑒𝑖𝐴(𝑡), with −𝜋 ≤  𝑡 ≤  𝜋, and −𝜋 ≤

 𝐴(𝑡)  ≤  𝜋. Then, for 0 ≤  |𝑡|, |𝑡′|  ≤  𝜋/2, one has 

|1 − 𝛾(𝑡)| ≈  1 − |𝛾(𝑡)| ≈ |𝑡|𝜃   and   |𝛾(𝑡) −  𝛾(𝑡′)| ≤  𝐾 |𝑡 − 𝑡′|𝜃 .  (13)  
Moreover, we have for |𝑡|  ≤  𝜋/2 

𝐴(𝑡) ≈  |𝑡|𝜃      and    𝐴′(𝑡) ≈  |𝑡|𝜃−1.                          (14) 
Proof. First, recall that 

𝜑𝜃(𝓏) =
(1 + 𝓏)𝜃 − (1 − 𝓏)𝜃

(1 + 𝓏)𝜃  +  (1 − 𝓏)𝜃
,  

so that 𝜑𝜃(�̅�)  =  𝜑𝜃(𝓏)̅̅ ̅̅ ̅̅ ̅̅  and 𝜑𝜃(−𝓏)  =  −𝜑𝜃(𝓏). It follows that 𝛾(−𝑡)  =  𝛾(𝑡)̅̅ ̅̅ ̅̅  and 

𝛾(𝑡 +  𝜋)  =  −𝛾(𝑡), so that we may assume 0 ≤  𝑡, 𝑡′ ≤  𝜋/2. Then, we have more 

precisely, setting 𝑐 =  𝑒−𝑖𝜃𝜋/2, 𝑠 =  𝑠𝑖𝑛(𝜃𝜋/2) and 𝜏 = (tan(𝑡/2))
𝜃

, 

𝛾(𝑡) =  
(cost/2)𝜃  − 𝑒−𝑖𝜃𝜋2(sin 𝑡/2)𝜃

(cost/2)𝜃 + 𝑒−𝑖𝜃𝜋2(sin 𝑡/2)𝜃
 =
1 −  𝑐𝜏

1 +  𝑐𝜏
=
1 − 𝜏2

|1 +  𝑐𝜏|2
+

2𝑖𝑠𝜏

|1 +  𝑐𝜏|2
, 

after a simple computation, since (1 + 𝑒𝑖𝑡)
𝜃
= 𝑒𝑖𝑡𝜃/2(2 𝑐𝑜𝑠𝑡/2)𝜃 and (1 − 𝑒𝑖𝑡)

𝜃
=

 𝑒−𝑖𝜃𝜋/2 𝑒𝑖𝑡𝜃/2(2 sin 𝑡/2)𝜃. Note by the way that 

𝜑𝜃(1)  =  1 ; 𝜑𝜃(𝑖)  = 𝑖tan(𝜃𝜋/4) ; 𝜑𝜃(−1) = −1 ; 𝜑𝜃(−𝑖) = −𝑖tan(𝜃𝜋/4). 
Now, observe that 2 ≥  |1 +  𝑐𝜏|  ≥ ℜ𝑒 (1 +  𝑐𝜏)  ≥  1 and therefore that 

|1 − 𝛾(𝑡)| = |
2𝑐𝜏

1 +  𝑐𝜏
| ≈ 𝜏 ≈ 𝑡𝜃 , 

and similarly for 1 − |𝛾(𝑡)| since 

1 − |𝛾(𝑡)|2 =
4(ℜ𝑒 𝑐)𝜏

|1 +  𝑐𝜏|2
. 

The relation (13) clearly follows. To prove (14), we just have to note that, for 0 ≤  𝑡 ≤

 𝜋/2, we have 𝐴(𝑡) =  arctan
2𝑠𝜏

1−𝜏2
. 

       Now, we prove Theorem (3.1.3) in the following form (in which 𝑞 = 𝑞𝜃 denotes a 

positive constant smaller than one), which is clearly sufficient: 

𝑎4𝑁2+1 ≤ 𝐾𝑞
𝑁 .                                               (15) 

The proof will come from an adequate choice of a Blaschke product of length 4𝑁2, with 

zeroes on the curve 𝛾(𝑡) = 𝜑𝜃(𝑒
𝑖𝑡),−𝜋 ≤  𝑡 ≤  𝜋. Let 𝑡𝑘 = 𝜋2

−𝑘 and 𝑝𝑘 = 𝛾(𝑡𝑘), with 

1 ≤  𝑘 ≤  𝑁, so that the points 𝑝𝑘 are all in the first quadrant. We reflect them through 

the coordinate axes, setting 

𝑞𝑘 = 𝑝𝑘̅̅ ̅,     𝑟𝑘 = −𝑝𝑘 ,    𝑠𝑘 = −𝑞𝑘,               1 ≤  𝑘 ≤  𝑁. 
Let now 𝐵 be the Blaschke product having a zero of order 𝑁 at each of the points 

𝑝𝑘 , 𝑞𝑘 , 𝑟𝑘, 𝑠𝑘 , namely 
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𝐵(𝓏) =∏ 

𝑁

𝑘=1

   [
𝓏 − 𝑝𝑘
1 − 𝑝𝑘̅̅ ̅𝓏

 ·
𝓏 − 𝑞𝑘
1 − 𝑞𝑘̅̅ ̅𝓏

·
𝓏 − 𝑟𝑘
1 − 𝑟𝑘 ̅̅ ̅𝓏

 ·
𝓏 − 𝑠𝑘
1 − 𝑠𝑘  ̅̅̅̅ 𝓏

]
𝑁

. 

This Blaschke product satisfies, by construction, the symmetry relations 

𝐵(�̅�) =  𝐵(𝓏)̅̅ ̅̅ ̅̅ ̅,     𝐵(−𝓏) =  𝐵(𝓏).                             (16) 
Of course, |𝐵|  =  1 on the boundary of 𝔻, but |𝐵| is small on a large portion of the curve 

𝛾, as expressed by the following lemma. 

Lemma (3.1.7)[63]: For some constant 𝜒 = 𝜒𝜃 <  1, the following estimate holds:  

𝑡𝑁  ≤  𝑡 ≤  𝑡1  ⟹ |𝐵(𝛾(𝑡))| ≤  𝜒𝑁 .                             (17) 
Proof. Let 𝑡𝑁  ≤  𝑡 ≤  𝑡1 and 𝑘 be such that 𝑡𝑘+1 ≤ 𝑡 ≤ 𝑡𝑘. Let 

𝐵𝑘(𝓏) =
𝓏 − 𝑝𝑘
1 − 𝑝𝑘̅̅ ̅𝓏

. 

Then, with the help of Lemma (3.1.6), we see that the assumptions of Lemma (3.1.4) are 

satisfied with 𝑎 =  𝛾(𝑡) and 𝑏 =  𝛾(𝑡𝑘), since |𝑡 − 𝑡𝑘| ≤ 𝑡𝑘 − 𝑡𝑘+1 = 𝜋2
−𝑘−1, so that 

min(1 − |𝑎|, 1 − |𝑏|)  ≈  𝑡𝑘
𝜃 ≈ 2−𝑘𝜃 and hence, for some constant 𝑀, 

|𝑎 − 𝑏| ≤ 𝐾 |𝑡 − 𝑡𝑘|
𝜃 ≤  𝐾2−𝑘𝜃 ≤ 𝑀 min(1 − |𝑎|, 1 −  |𝑏|). 

We therefore have, by definition, and by Lemma (3.1.4), where we set 𝜒 =  𝑀/√𝑀2 + 1, 

|𝐵𝑘(𝛾(𝑡))|  =  𝑑(𝛾(𝑡), 𝑝𝑘)  ≤  𝜒 <  1. 
It then follows from the definition of 𝐵 that 

|𝐵(𝛾(𝑡))| ≤ |𝐵𝑘(𝛾(𝑡))|
𝑁
≤ 𝜒𝑁 , 

and that ends the proof of Lemma (3.1.7). 

       Now fix 𝜉 ∈ 𝕋 and 0 <  ℎ ≤  1. By interpolation, we may assume that ℎ =  2−𝑛𝜃. 

By symmetry, we may assume that ℜ𝑒 𝜉 ≥  0 and ℜ𝑒 𝛾(𝑡)  ≥  0, i.e., |𝑡|  ≤  𝜋/2. Then, 

since 𝜑𝜃(𝔻) is contained in the symmetric angular sector of vertex 1 and opening 𝜃𝜋 <
 𝜋, there is a constant 𝐾 >  0 such that |1 −  𝛾(𝑡)|  ≤  𝐾(1 − |𝛾(𝑡)|). The only pseudo-

windows 𝑆(𝜉, ℎ) giving an integral not equal to zero in the estimation (12) of Lemma 

(3.1.5) satisfy |𝜉 − 1|  ≤  (𝐾 + 1)ℎ. Indeed, suppose that |𝛾(𝑡)  −  𝜉|  ≤  ℎ. Then 1 −
|𝛾(𝑡)| ≤ |𝛾(𝑡) − 𝜉| ≤ ℎ and |1 − 𝛾(𝑡)| ≤ 𝐾(1 − |𝛾(𝑡)|)  ≤  𝐾ℎ. If |𝜉 − 1| > (𝐾 + 1)ℎ, 

we should have |𝛾(𝑡) − 𝜉| ≥ |𝜉 − 1| − |𝛾(𝑡) − 1| > (𝐾 + 1)ℎ − 𝐾ℎ = ℎ, which is 

impossible.       Now, for such a window, we have by definition of 𝑚𝜑  

∫  
𝑆(𝜉,ℎ)

|𝐵|2 𝑑𝑚𝜑𝜃 = ∫  
|𝛾(𝑡)−𝜉|≤ℎ

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
≤ ∫  

|𝛾(𝑡)−1|≤(𝐾+2)ℎ

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
 

≤ ∫  
|𝑡|≤𝐷𝑡𝑛

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
 ≝ 𝐼ℎ , 

since |𝛾(𝑡)  −  1| ≤ |𝛾(𝑡)  −  𝜉|  + |𝜉 −  1|  ≤  ℎ + (𝐾 +  1)ℎ and since |𝛾(𝑡)  −  1|  ≥
 𝑎|𝑡|𝜃 and |𝛾(𝑡)  −  1|  ≤  (𝐾 +  2)ℎ together imply |𝑡|  ≤  𝐷𝑡𝑛, where 𝐷 >  1 is another 

constant (recall that ℎ = 2−𝑛𝜃 = (𝑡𝑛/𝜋)
𝜃). 

       To finish the discussion, we separate two cases. 

   (a) If 𝑛 ≥  𝑁, we simply majorize |𝐵| by 1. We set 𝑞1 = 2
𝜃−1 < 1 and get 

1

ℎ
 𝐼ℎ ≤

1

ℎ
 ∫  
𝐷𝑡𝑛

−𝐷𝑡𝑛

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
≤
2𝐷𝑡𝑛
2𝜋ℎ

= 𝐷𝑞1
𝑛 ≤ 𝐷 𝑞1

𝑁 . 

   (b) If 𝑛 ≤  𝑁 −  1, we write 

1

ℎ
 𝐼ℎ =

2

ℎ
 ∫  
𝐷𝑡𝑁

0

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
+
2

ℎ
 ∫  
𝐷𝑡𝑛

𝐷𝑡𝑁

|𝐵(𝛾(𝑡))|
2 𝑑𝑡

2𝜋
∶=  𝐽𝑁 + 𝐾𝑁 . 
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The term 𝐽𝑁 is estimated above: 𝐽𝑁 ≤  𝐷 𝑞1
𝑁 . The term 𝐾𝑁 is estimated through Lemma 

(3.1.7), which gives us 

𝐾𝑁 ≤ 2
𝑛𝜃  
2𝐷𝑡𝑛
2𝜋

 𝜒2𝑁 ≤ 𝐷 𝜒2𝑁 , 

since 𝑡𝑛2
𝑛𝜃 ≤ 𝜋, due to the fact that 𝜃 <  1. 

       If we now apply Lemma (3.1.5) with 𝑞 = max(𝑞1, 𝜒
2) and with 𝑁 changed into 

4𝑁2 + 1, we obtain (15), by changing the value of the constant 𝐾 once more. This ends 

the proof of Theorem (3.1.3). 

       Theorem (3.1.3) has the following consequence (as in [83], page 29). 

Proposition (3.1.8)[63]: Let 𝜑 be a univalent Schur function and assume that 𝜑(𝔻) 
contains an angular sector centred on the unit circle and with opening 𝜃𝜋, 0 < 𝜃 <  1. 

Then 𝑎𝑛(𝐶𝜑)  ≥  𝑎 𝑒
−𝑏√𝑛, 𝑛 =  1, 2, . . ., for some positive constants 𝑎 and 𝑏, depending 

only on 𝜃. 

Proof. We may assume that this angular sector is centred at 1. By hypothesis, 𝜑(𝔻) 
contains the image of the “reduced” lens map defined by �̃�𝜃(𝓏) = 𝜑𝜃((1 + 𝓏)/2). Since 

𝜑 is univalent, there is a Schur function 𝑢 such that �̃�𝜃 = 𝜑 ∘ 𝑢. Hence 𝐶�̃�𝜃 = 𝐶𝑢 ∘ 𝐶𝜑 and 

𝑎𝑛(𝐶�̃�𝜃)  ≤  ‖𝐶𝑢‖𝑎𝑛(𝐶𝜑). Theorem (3.1.3) gives the result, since the calculations for �̃�𝜃 

are exactly the same as for 𝜑𝜃 (because they are equivalent as z tends to 1). 

       The same is true if 𝜑 is univalent and 𝜑(𝔻) contains a polygon with vertices on 𝜕𝔻. 

       In [72], we studied the effect of the multiplication of a Schur function 𝜑 by the 

singular inner function (𝓏) = 𝑒
− 1+𝓏

1−𝓏   , and observed that this multiplication spreads the 

values of the radial limits of the symbol and lessens the maximal occupation time for 

Carleson windows. In some cases this improves the compactness or membership to 

Schatten classes of 𝐶𝜑. We proved the following result. 

Theorem (3.1.9)[63]: ([72], Theorem (3.1.14)): For every 𝑝 >  2, there exist two Schur 

functions 𝜑1 and 𝜑2  =  𝜑1𝑀 such that |𝜑1
∗|  =  |𝜑2

∗| and 𝐶𝜑1 ∶  𝐻
2 → 𝐻2 is not compact, 

but 𝐶𝜑2 ∶  𝐻
2  →  𝐻2 is in the Schatten class 𝑆𝑝. 

We will meet the opposite phenomenon: the symbol 𝜑1 will have a fairly big 

associated maximal function 𝜌𝜑1 , but will belong to all Schatten classes since it “visits” a 

bounded number of windows (meaning that there exists an integer 𝐽 such that, for fixed 𝑛, 

at most 𝐽 of the 𝑊𝑛,𝑗 are visited by 𝜑∗(𝑒𝑖𝑡)). The spread symbol will have an improved 

maximal function, but will visit all windows, so that its membership in Schatten classes 

will be degraded. We will prove that 

Theorem (3.1.10)[63]: Fix 0 < 𝜃 <  1. Then there exist two Schur functions 𝜑1 and 𝜑2 

such that: 

   (i) 𝐶𝜑1 ∶  𝐻
2  →  𝐻2 is in all Schatten classes 𝑆𝑝, 𝑝 >  0, and even 𝑎𝑛(𝐶𝜑1) ≤ 𝑎 𝑒

−𝑏√𝑛; 

   (ii) |𝜑1
∗|  =  |𝜑2

∗|; 
   (iii) 𝐶𝜑2 ∈ 𝑆𝑝 if and only if 𝑝 >  2𝜃; 

   (iv) 𝑎𝑛(𝐶𝜑2)  ≤  𝐾 (log
𝑛

𝑛
)
1/2𝜃

, 𝑛 =  2, 3, . . ..  

Of course, it would be better to have a good lower bound for 𝑎𝑛(𝐶𝜑2), but we have not yet 

succeeded in finding it. 
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Proof. First observe that 𝐶𝜑1 ∈  𝑆2, so that 𝐶𝜑2 ∈ 𝑆2 too, since |𝜑1
∗|  =  |𝜑2

∗| and since the 

membership of 𝐶𝜑 in 𝑆2 only depends on the modulus of 𝜑∗ because it amounts to ([83], 

page 26) 

∫  
𝜋

−𝜋

  
𝑑𝑡

1 − |𝜑∗(𝑒𝑖𝑡)|
<  ∞. 

Theorem (3.1.10) says that we can hardly have more. We first prove a lemma. Recall (see 

[72], for example) that the maximal Carleson function 𝜌𝜑 of a Schur function 𝜑 is defined, 

for 0 < ℎ <  1, by 

𝜌𝜑(ℎ) = sup
|𝜉|=1

 𝑚𝜑[𝑆(𝜉, ℎ)].                                        (18) 

Lemma (3.1.11)[63]: Let 0 < 𝜃 <  1. Then, the maximal function 𝜌𝜑𝜃 of 𝜑𝜃 satisfies 

𝜌𝜑𝜃(ℎ)  ≤  𝐾
1/𝜃(1 −  𝜃)−1/𝜃ℎ1/𝜃 and, moreover, 

𝜌𝜑𝜃(ℎ) ≈  ℎ
1/𝜃 .                                                  (19) 

Proof. Let 0 < ℎ <  1 and 𝛾(𝑡)  =  𝜑𝜃(𝑒
𝑖𝑡);  𝐾 and 𝛿 will denote constants which can 

change from a formula to another. We have, for |𝑡|  ≤  𝜋/2, 

1 − |𝛾(𝑡)|2 =
4(ℜ𝑒 𝑐)𝜏

|1 +  𝑐𝜏|2
 ≥ 𝛿 cos(𝜃𝜋/2)

𝜏

|1 +  𝑐𝜏|2
 ≥  𝛿(1 −  𝜃)

𝜏

|1 +  𝑐𝜏|2
 

≥ 𝛿(1 −  𝜃)|𝑡|𝜃. 
Hence, we get, from Lemma (3.1.6), 

𝜌𝜑𝜃(ℎ)  ≤ 2 𝑚({1 − |𝛾(𝑡)| ≤ ℎ and |𝑡| ≤ 𝜋/2}) ≤ 2 𝑚({(1 − 𝜃)𝛿|𝑡|
𝜃 ≤ 𝐾ℎ}) 

≤ 𝐾1/𝜃(1 −  𝜃)−1/𝜃ℎ1/𝜃 . 
Similarly, we have 

𝜌𝜑𝜃(ℎ) ≥ 𝑚𝜑𝜃[𝑆(1, ℎ)] ≥ 𝑚({|1 − 𝛾(𝑡)| ≤ ℎ}) ≥ 𝑚({|𝑡|
𝜃 ≤ 𝐾ℎ}) ≥ 𝐾ℎ1/𝜃 , 

and that ends the proof of the lemma. 

       Going back to the proof of Theorem (3.1.10), we take 𝜑1 = 𝜑𝜃 and 𝜑2(𝓏) =
𝜑1(𝓏)𝑀(𝓏

2). We use 𝑀(𝓏2) instead of 𝑀(𝓏) in order to treat the points −1 and 1 

together. 

       The first two assertions are clear. For the third one, we define the dyadic Carleson 

windows, for 𝑛 =  1, 2, . . . , 𝑗 =  0, 1, . . . , 2𝑛 −  1, by 

𝑊𝑛,𝑗 = {𝓏 ∈ 𝔻 ;  1 − 2
−𝑛 ≤ |𝓏| < 1 and (2𝑗𝜋)2−𝑛 ≤ arg(𝓏) < (2(𝑗 + 1))𝜋)2−𝑛}. 

Recall (see [72], Proposition (3.1.11)) the following proposition, which is a variant of 

Luecking’s criterion ([79]) for membership in a Schatten class, and which might also be 

used to give a third proof of the membership of 𝐶𝜑𝜃 in all Schatten classes 𝑆𝑝, 𝑝 >  0, 

although the first proof turns out to be more elementary.  

Proposition (3.1.12)[63]: ([79], [72]): Let 𝜑 be a Schur function and 𝑝 >  0 a positive 

real number. Then 𝐶𝜑  ∈  𝑆𝑝 if and only if 

∑ 

∞

𝑛=1

∑  

2𝑛−1

𝑗=0

[2𝑛𝑚𝜑(𝑊𝑛,𝑗)]
𝑝/2
< ∞. 

We apply this proposition with 𝜑 =  𝜑2, which satisfies, for 0 <  |𝑡|  ≤  𝜋/2, the 

following relation: 

𝜑(𝑒𝑖𝑡) = |𝛾(𝑡)|𝑒𝑖[𝐴(𝑡)−cot(𝑡)] ≝ |𝛾(𝑡)|𝑒𝑖𝐵(𝑡), 
where 𝛾(𝑡) = 𝜑1(𝑒

𝑖𝑡) and (using Lemma (3.1.6)) 
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0 < |𝑡| ≤ 𝜋/2 ⟹ 𝐵(𝑡) = 𝛤(𝑡) −
1

𝑡
 , with 𝛤(𝑡) ≈ |𝑡|𝜃 and 𝛤′(𝑡) ≈ |𝑡|𝜃−1.       (20) 

It clearly follows from (20) that the function B is increasing on some interval [−𝛿, 0[ 
where 𝛿 is a positive numerical constant. Let us fix a positive integer q0 such that −𝜋/
2 ≤  𝑡 <  0 and 

𝐵(𝑡)  ≥  2𝑞0𝜋   ⟹    𝑡 ≥  −𝛿. 
Fix a Carleson window 𝑊𝑛,𝑗 and let us analyze the set 𝐸𝑛,𝑗 of those t’s such that 𝜑(𝑒𝑖𝑡) 

belongs to 𝑊𝑛,𝑗. Recall that 𝑚𝜑(𝑊𝑛,𝑗) = 𝑚(𝐸𝑛,𝑗). The membership in 𝐸𝑛,𝑗 gives two 

constraints. 

   (a) Modulus constraint. We must have |𝛾(𝑡)|  ≥  1 − 2−𝑛, and therefore |𝑡| ≤ 𝐾2−𝑛/𝜃. 

   (b) Argument constraint. Let us set 𝜃𝑛,𝑗 = (2𝑗 +  1)𝜋2
−𝑛, ℎ =  𝜋2−𝑛 and 𝐼𝑛,𝑗 = (𝜃𝑛,𝑗 −

ℎ, 𝜃𝑛,𝑗 + ℎ). The angular constraint arg 𝜑(𝑒𝑖𝑡)  ∈  𝐼𝑛,𝑗 will be satisfied if 𝑡 <  0 and 

𝐵(𝑡) ∈ ⋃  

𝑞≥𝑞0

 [𝜃𝑛,𝑗 − ℎ + 2𝑞𝜋, 𝜃𝑛,𝑗 + ℎ + 2𝑞𝜋] ∶= ⋃  

𝑞≥𝑞0

𝐽𝑞(ℎ) ∶=  𝐹. 

We have 𝐹 ⊂  [2𝑞0𝜋,∞[, and so 𝐵(𝑡)  ∈  𝐹 and 𝑡 <  0 imply 𝑡 ≥  −𝛿. Set 

𝐸 = ⋃  

𝑞≥𝑞0

[𝐵−1(𝜃𝑛,𝑗 − ℎ + 2𝑞𝜋), 𝐵
−1(𝜃𝑛,𝑗 + ℎ + 2𝑞𝜋)] ∶= ⋃  

𝑞≥𝑞0

𝐼𝑞(ℎ) ⊂ [−𝛿, 0[. 

The intervals 𝐼𝑞’s are disjoint, since 𝜃𝑛,𝑗 + 2(𝑞 +  1)𝜋 −  ℎ > 𝜃𝑛,𝑗 + 2𝑞𝜋 + ℎ and since 

𝐵 increases on [−𝛿, 0[. Moreover, 𝑡 ∈  𝐸 implies that 𝐵(𝑡)  ∈  𝐹, which in turn implies 

that arg 𝜑(𝑒𝑖𝑡)  ∈  𝐼𝑛,𝑗 . Using Lemma (3.1.6), we can find positive constants 𝑐1, 𝑐2 such 

that 

𝑞 ≥ 𝑞0  ⟹ −𝑐1/𝑞 ≤  min 𝐼𝑞(ℎ)  ≤  max 𝐼𝑞(ℎ)  ≤  −𝑐2/𝑞. 

Now, by the mean-value theorem, 𝐼𝑞(ℎ) has length 2ℎ/|𝐵′(𝑡𝑞)| for some 𝑡𝑞 ∈ 𝐼𝑞(ℎ). But, 

using (20), we get 

𝐵(𝑡) ≈
1

𝑡
    and     |𝐵′(𝑡)| ≈

1

𝑡2
, 

so that 𝐼𝑞(ℎ) has length approximately ℎ𝑡𝑞
2 ≈ ℎ/𝑞2 since |𝑡𝑞| ≈ 1/𝑞. Because of the 

modulus constraint, the only involved 𝑞’s are those for which 𝑞 ≥ 𝑞1, where 𝑞1 ≈ 2
𝑛/𝜃.       

Taking 𝑛 numerically large enough, we may assume that 𝑞1 > 𝑞0. We finally see that, for 

any 0 ≤  𝑗 ≤  2𝑛  −  1, we have the lower bound 

𝑚𝜑(𝑊𝑛,𝑗) = 𝑚(𝐸𝑛,𝑗) ≳ ∑  

𝑞≥𝑞1

𝑚(𝐼𝑞(ℎ)) ≳ ∑  

𝑞≥𝑞1

ℎ

𝑞2
≳
ℎ

𝑞1
 ≳ 2−𝑛(1+1/𝜃). 

It follows that  

∑ 

∞

𝑛=1

 ∑  

2𝑛−1

𝑗=0

2𝑛𝑚𝜑(𝑊𝑛,𝑗  )
𝑝
2∑ 

∞

𝑛=1

∑  

2𝑛−1

 𝑗=0

 [2𝑛2
−
𝑛(1+1)
𝜃 ]

𝑝
2
=∑  ∑  

2𝑛−1

 𝑗=0

∞

𝑛=1

 [2−
𝑛𝑝
2𝜃]  = ∑  

∞

𝑛=1

2𝑛
1−𝑝
2𝜃

=  ∞, 
𝑖𝑓 𝑝 ≤  2𝜃. Hence 𝐶𝜑2  ∉ 𝑆𝑝 𝑓𝑜𝑟 𝑝 ≤  2𝜃 by Proposition (3.1.12). 

       A similar upper bound, and the membership of 𝐶𝜑2 𝑖𝑛 𝑆𝑝 𝑓𝑜𝑟 𝑝 >  2𝜃, would easily 

be proved along the same lines. But this will also follow from the more precise result on 

approximation numbers. To that effect, we shall borrow the following result from [78]. 

Theorem 3.5 ([78]): Let 𝜑be a Schur function. Then the approximation numbers of 𝐶𝜑 ∶

 𝐻2  →  𝐻2 have the upper bound  
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𝑎𝑛(𝐶𝜑) ≤  𝐾 inf
0<ℎ<1

[(1 −  ℎ)𝑛  +  √
𝜌𝜑(ℎ)

 ℎ
 ] , 𝑛 =  1, 2, . . . .         (21) 

Applying this theorem to 𝜑2, which satisfies 𝜌𝜑2  (ℎ) ≤  𝐾ℎ
1+1

𝜃    as is clear from the 

preceding computations, would provide upper bounds for mφ(Wn,j ) of the same order as 

the lower bounds obtained. Then choosing ℎ =  𝐻 𝑙𝑜𝑔 𝑛/𝑛, where H is a large constant 

(𝐻 =  1/2𝜃 𝑤𝑖𝑙𝑙 𝑑𝑜) and using 1 −  h ≤  e−h, we get from (21)  

𝑎𝑛(𝐶𝜑2 )  ≤  𝐾 [𝑛
−𝐻  +  (

𝑙𝑜𝑔 𝑛

 𝑛
 )

1
2𝜃
 ]  ≤  𝐾 (

𝑙𝑜𝑔 𝑛

 𝑛
)

1
2𝜃
 . 

This ends the proof of Theorem (3.1.10).  

       Recall that an operator 𝑇 ∶  𝑋 →  𝑌 between Banach spaces is said to be Dunford–

Pettis (in short DP) or completely continuous, if for any sequence (𝑥𝑛) which is weakly 

convergent to 0, the sequence (𝑇 𝑥𝑛) is norm-convergent to 0. It is called weakly compact 

(in short w-compact) if the image 𝑇 (𝐵𝑋) of the unit ball in 𝑋 is (relatively) weakly 

compact in 𝑌 . The identity map 𝑖1 ∶  ℓ1  →  ℓ1is DP and not w-compact, by the Schur 

property of ℓ1 and its non-reflexivity. 𝐼𝑓 1 < 𝑝 <  ∞, the identity map 𝑖𝑝 ∶  ℓ𝑝  →  ℓ𝑝 is 

w-compact and not DP by the reflexivity of ℓ𝑝 and the fact that the canonical basis (𝑒𝑛) of 

ℓ𝑝 converges weakly to 0, whereas ‖𝑒𝑛‖ 𝑝  =  1. Therefore, the two notions, clearly 

weaker than that of compactness, are not comparable in general. When 𝑋 is reflexive, any 

operator 𝑇 ∶  𝑋 →  𝑌 is w-compact and any Dunford–Pettis operator 𝑇 ∶  𝑋 →  𝑌 is 

compact. 

       Yet, composition operators 𝑇 =  𝐶𝜑 ∶  𝑋 →  𝑋, with 𝑋 a non-reflexive Banach space 

of analytic functions, several results say that weak compactness of 𝐶𝜑implies its 

compactness. Let us quote some examples  

- 𝑋 =  𝐻1; this was proved by D. Sarason in 1990 ([82]); 

− 𝑋 =  𝐻∞ and the disk algebra 𝑋 =  𝐴(𝔻) (𝐴. Ulger [85] and R. Aron, ¨ P. Galindo and 

M. Lindstr¨om [64], independently; the first-named of us also gave another proof in [70]); 

 - X is the little Bloch space ℬ0 (𝐾. Madigan and A. Matheson [2]); 

 - X is the Hardy–Orlicz space 𝑋 =  𝐻𝜓, when the Orlicz function 𝜓 grows more rapidly 

than power functions, namely when it satisfies the condition 𝛥0 ([74], Theorem (3.1.14), 

page 55); 

 − 𝑋 =  𝐵𝑀𝑂𝐴 and 𝑋 =  𝑉 𝑀𝑂𝐴 (J. Laitila, P. J. Nieminen, E. Saksman and 𝐻.−𝑂. Tylli 

[69]). 

        Moreover, in some cases, 𝐶𝜑 is compact whenever it is Dunford–Pettis ([70] for 𝑋 =

 𝐻∞ and [74], Theorem (3.1.14), page 55, 𝑓𝑜𝑟 𝑋 =  𝐻𝜓, when the conjugate function of 𝜓 

satisfies the condition 𝛥2). The question naturally arises whether for any non-reflexive 

Banach space 𝑋 of analytic functions on 𝔻, every weakly compact (resp. Dunford–Pettis) 

composition operator 𝐶𝜑 ∶  𝑋 →  𝑋 is actually compact. The forthcoming theorems show 

that the answer is negative in general. Our spaces 𝑋 will be Hardy–Orlicz and Bergman–

Orlicz spaces, so we first recall some definitions and facts about Orlicz spaces ([74]). An 

Orlicz function is a nondecreasing convex function 𝜓:ℝ+  → ℝ+ such that and 𝜓(∞)  =
 ∞. Such a function is automatically continuous on ℝ+. If 𝜓(𝓍) is not equivalent 

to 𝜓(0)  = 0an affine function, we must have 𝜓(𝓍)/𝓍 −→ 𝓍 → ∞ ∞.  
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       The Orlicz function ψ is said to satisfy the 𝛥2-condition if 𝜓(2𝓍 )/𝜓(𝓍) remains 

bounded. The conjugate function 𝜓˜ of an Orlicz function 𝜓 is the Orlicz function defined 

by 

𝜓˜(𝓍)  = sup
𝓎≥0

 (𝓍𝑦 −  𝜓(𝓎))  . 

 For the conjugate function, one has the following characterization of 𝛥2 (𝑠𝑒𝑒 [74], page 

7): 𝜓˜ has 𝛥2 if and only if, for some 𝛽 >  1 and 𝓍0  >  0,  
                        𝜓(𝛽𝓍)  ≥  2𝛽𝜓(𝓍), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ≥ 𝓍0.                                          (22)  

Let (Ω, A, 𝕡)be a probability space, and 𝐿0 the space of measurable functions 𝑓 ∶  𝛺 → 𝕔. 
The Orlicz space 𝐿𝜓  =  𝐿𝜓(𝛺, 𝐴, 𝕡) is defined by  

𝐿𝜓(𝛺, 𝐴, 𝕡) =  { 𝑓 ∈  𝐿0 ; ∫  
𝛺

 𝜓(|𝑓|/𝐾) 𝑑 𝕡 <  ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝐾 >  0 } 

This is a Banach space for the Luxemburg norm: 

‖𝑓‖𝐿𝜓  =  𝑖𝑛𝑓 {𝐾 >  0 ;∫  
𝛺

 𝜓(|𝑓|/𝐾) 𝑑 𝕡  ≤  1 }. 

The Morse– Transue space 𝑀𝜓 (𝑠𝑒𝑒 [74], 𝑝𝑎𝑔𝑒 9) is the subspace of functions 𝑓 𝑖𝑛 𝐿𝜓 

for which ∫  
𝛺
 𝜓(|𝑓|/𝐾) 𝑑 𝕡 <  ∞ 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝐾 >  0. It is the closure of 𝐿∞. One always 

has (𝑀𝜓)
∗
 =  𝐿�̃� 𝑎𝑛𝑑 𝐿𝜓  =  𝑀𝜓 if and only if 𝜓 ℎ𝑎𝑠 𝛥2. When the conjugate function �̃� 

of 𝜓 has 𝛥2, the bidual of 𝑀𝜓  is then (isometrically isomorphic to) 𝐿𝜓. 
 Now, we can define the Hardy–𝑂𝑟𝑙𝑖𝑐𝑧 𝑠𝑝𝑎𝑐𝑒 𝐻𝜓 attached to 𝜓 as follows. Take the 

probability space (𝕋 , 𝐵,𝑚) and, recalling that 𝑓𝑟(𝑒
𝑖𝑡)  =  𝑓(𝑟𝑒𝑖𝑡), 

𝐻𝜓  =  { 𝑓 ∈  𝐻(𝔻); sup
0<𝑟<1

 ‖ 𝑓𝑇‖ 𝐿𝜓 (𝑚) ∶= ‖ 𝑓 ‖𝐻𝜓 < ∞ } . 

See [74] for more information on 𝐻𝜓. Similarly, we define (see [74]) the Bergman–Orlicz 

space 𝐵𝜓, using this time the normalized area measure 𝐴, by 𝐵𝜓  =  {𝑓 ∈
ℋ(𝔻) ; ‖𝑓‖𝐵𝜓 ∶=  ‖𝑓‖𝐿𝜓(𝐴)  <  +∞}. If 𝜓(𝓍)  = 𝓍

𝑝, 𝑝 ≥  1, we get the usual Hardy and 

Bergman spaces 𝐻𝑝 and 𝐵𝑝. Those spaces are Banach spaces for any 𝜓, and Hilbert 

spaces for 𝜓(𝑥)  =  𝑥2. The Hardy–Morse–Transue space 𝐻𝑀𝜓 and Bergman–Morse–

Transue space 𝐵𝑀𝜓 are defined by 𝐻𝑀𝜓  =  𝐻𝜓  ∩ 𝑀𝜓 and 𝐵𝑀𝜓  =  𝐵𝜓  ∩ 𝑀𝜓. When 

the conjugate function of 𝜓 has 𝛥2, the bidual of 𝐻𝑀𝜓 is (isometrically isomorphic to) 

𝐻𝜓 ([74], page 10). 

       We can now state the following.  

Theorem (3.1.13)[63]: There exists a Schur function 𝜑 and an Orlicz function 𝜓 such that 

𝐻𝜓 is not reflexive and the composition operator 𝐶𝜑 ∶  𝐻
𝜓  →  𝐻𝜓 is weaklycompact and 

Dunford–Pettis, but is not compact. 

Proof. First take for 𝜑 the lens map 𝜑1
2

  which in view of (19) of Lemma (3.1.11) satisfies, 

for some constant 𝐾 >  1, 
𝜌𝜑(ℎ) ≥  𝐾

−1ℎ2, 0 < ℎ <  1.                                 (23) 

We now recall the construction of an Orlicz function made in [76]. Let (𝓍𝑛) be the 

sequence of positive numbers defined as follows: 𝓍1  =  4 and then, for every integer 𝑛 ≥
 1, 𝓍𝑛 + 1 >  2𝓍𝑛 is the abscissa of the second intersection point of the parabola 𝓎 = 𝓍2 

with the straight line containing (𝓍𝑛, 𝓍𝑛
2) and 

(2𝓍𝑛, 𝓍𝑛
4); equivalently, 𝓍 𝑛+1  = 𝓍𝑛

3 –  2𝓍𝑛. We now define our Orlicz function ψ by 

𝜓(𝓍) = 4𝓍 𝑓𝑜𝑟 0 ≤  𝑥 ≤  4 𝑎𝑛𝑑, 𝑓𝑜𝑟 𝑛 ≥  1, 𝑏𝑦, 𝜓(𝓍𝑛) = 𝓍𝑛
2,  
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              𝜓 affine between 𝓍𝑛 and 𝓍𝑛+1, so that 𝜓(2𝓍𝑛)  = 𝓍𝑛
4.           (24)  

 Observe that ψ does not satisfy the 𝛥2− condition, since 𝜓(2𝓍𝑛) = [𝜓(𝓍𝑛)]
2. It clearly 

satisfies (since ψ−1 is concave)  

      𝓍2 ≤ 𝜓(𝓍) ≤ 𝓍4 for 𝓍 ≥ 4,𝜓−1(𝐾𝓍) ≤ 𝐾𝜓−1(𝓍)for any 𝓍 >  0,𝐾 > 1.      (25)  
Therefore, it has a moderate growth, but a highly irregular behaviour, which will imply the 

results we have in view. Indeed, let 𝓎n =  ψ(𝓍n) and ℎ𝑛  =  1/𝓎𝑛. see from (23), (24) 

and (25) that  

𝐷(ℎ𝑛) ≝  
𝜓−1 (

1
ℎ𝑛
)

 𝜓−1  (
1

𝜌𝜑(ℎ𝑛)
)

≥
𝜓−1 (

1
ℎ𝑛
)

𝜓−1 (
𝐾
ℎ𝑛2
)
=
𝜓−1(𝑦𝑛)

𝜓−1(𝐾𝓎𝑛
2)
≥

𝓍𝑛
 2𝐾𝓍𝑛

=
1

2𝐾
 .          (26) 

Thus, we have 𝑙𝑖𝑚 supℎ → 0 +  𝐷(ℎ)  >  0. 𝐵𝑦 [74], Theorem (3.1.13) (see also [75], 

comment before Theorem 5.2), 𝐶𝜑 is not compact. 

       On the other hand, let 𝑗𝜓, 2 ∶  𝐻
𝜓  →  𝐻2 𝑎𝑛𝑑 𝑗4 ,𝜓 ∶  𝐻

4  →  𝐻𝜓 be the natural 

injections, which are continuous, thanks to (25). We have the following diagram: 

 𝐻𝜓   
𝑗𝜓,2 
→  𝐻2  

 𝐶𝜑
→ 𝐻4

 𝑗4,𝜓  
→    𝐻𝜓 .  

The second map is continuous as a consequence of (19) and of a result of P. Duren ([66]; 

see also [67], Theorem 9.4, page 163), which extends Carleson’s embedding theorem (see 

also [74], Theorem (3.1.13)8). Hence 𝐶𝜑  =  𝑗4,𝜓  ° 𝐶𝜑 ° 𝑗𝜓,2 factorizes through a reflexive 

space (𝐻2 𝑜𝑟 𝐻4) and is therefore w-compact. To prove that 𝐶𝜑 is Dunford–Pettis, we use 

the following result of [77] (Theorem (3.1.3)): 

Theorem (3.1.14)[63]: ([77]): Let 𝜑 be a Schur function and 𝛷 be an Orlicz function. 

Assume that, for some 𝐴 >  0, one has  

 sup 
0 < 𝑡 ≤ ℎ  

𝜌𝜑(𝑡)

𝑡2
  ≤ (

1

ℎ2
)/(𝛷 (𝐴𝛷−1 (

1

ℎ2
)) , 0 < ℎ <  1.            (27) 

Then, the canonical inclusion 𝑗𝛷,𝜙 ∶  𝐵
𝛷   →  𝐿 𝛷 (𝑚𝜑) is continuous. 

       In particular, it is continuous for any 𝑂𝑟𝑙𝑖𝑐𝑧 function Φ if 𝜌𝜑(ℎ)  =  𝑂 (ℎ
2). 

       Now, 𝑙𝑒𝑡 𝐽𝜓 ∶  𝐻
𝜓  →  𝐵𝜓 be the canonical inclusion, and consider the following 

diagram: 

 𝐻𝜓  
𝐽𝜓 
→  𝐵𝜓

 𝑗𝜓,𝜑
→    𝐿𝜓( 𝑚𝜑). 

The first map is Dunford–Pettis, by [76], Theorem (3.1.13). The second map is continuous 

by (19) and (27). Clearly, being Dunford–Pettis is an ideal property (if either u or v is 

Dunford–Pettis, so is vu). Therefore, 𝑗𝜓,𝜑  ° 𝐽𝜓 is Dunford– Pettis, and this amounts to 

saying that 𝐶𝜑 ∶  𝐻
𝜓  →  𝐻𝜓 is Dunford–Pettis. Now, the non-reflexivity of 𝐻𝜓 follows 

automatically, since 𝐶𝜑 is Dunford– Pettis but not compact. 

       This ends the proof of Theorem (3.1.13). 

       Theorem (3.1.13) admits the following variant.  

Theorem (3.1.15)[63]: There exist a Schur function 𝜑and an Orlicz function 𝜒 such that 

Hχ is not reflexive and the composition operator Cφ : 𝐻
𝜒  →  𝐻𝜒 is weakly compact and 

not Dunford–Pettis; in particular, it is not compact. 

Proof. We use the same Schur function 𝜑 = 𝜑1
2

 , but we replace ψ by the function 

𝜒 defined by 𝜒(𝓍)  =  𝜓(𝓍2). 𝐿𝑒𝑡 𝐴 >  1. Observe that, in view of (25),  
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𝜒(𝐴𝓍)

[𝜒(𝓍)]2
 =
𝜓(𝐴2𝓍2 )

[𝜓(𝓍2)]2
 ≤
𝐴8𝓍8

 𝓍8
 =  𝐴8. 

By [76], Proposition (3.1.16), 𝐽𝜒: 𝐻
𝜒 → 𝐵𝜒 is w-compact, and we can see 𝐶𝜑: 𝐻

𝜒 → 𝐻𝜒 as 

the canonical inclusion 𝑗 ∶  𝐻𝜒  →  𝐿𝜒(𝑚𝜑). Hence Theorem (3.1.14) and the diagram 

𝑗 =  𝑗𝜒,𝜑 ∘  𝐽𝜒 ∶  𝐻
𝜒
𝐽𝜒 
→   𝐵𝜒

 𝑗𝜒,𝜑
→     𝐿𝜒(𝑚𝜑 ) 

show that 𝐶𝜑 ∶  𝐻
𝜒 → 𝐻𝜒 is w-compact as well. Now, to prove that 𝐶𝜑 𝑖𝑠 not Dunford–

Pettis, we cannot use [76], as in the proof of Theorem (3.1.13), but we follow the lines of 

Proposition (3.1.9) of [76]. We remark first that, by definition, the function 𝜒 satisfies, for 

𝛽 =  2, the following inequality: 

𝜒(𝛽𝓍)  =  𝜓(4𝓍2)  ≥  4𝜓(𝓍2) = 2𝛽𝜒(𝓍); 
hence, by (22), this implies that the conjugate function of 𝜒 verifies the Δ2- condition. Let 

xn be as in (24), and set 

𝑢𝑛  =  √𝓍𝑛 𝑎𝑛𝑑 𝐴 =  √2 

so that 

𝜒(𝐴𝑢𝑛) =  [ 𝜒(𝑢𝑛)]
2  = 𝓍𝑛

4.                                              (28)  
Finally, let 

𝑟𝑛   =  1 −
 1

 𝜒(𝑢𝑛)
 𝑎𝑛𝑑 𝑓𝑛(𝑧)  =  𝑢𝑛  (

1 − 𝑟𝑛
 1 −  𝑟𝑛𝑧 

)
2

 . 

By ([74], Corollary (3.1.9)), ‖𝑓𝑛‖𝐻𝜒  ≤  1 and fn tends to 0 uniformly on compact subsets 

of 𝔻; that implies that 𝑓𝑛  →  0 weakly in 𝐻𝜒 since the conjugate function of 𝜒 has 𝛥2  

([74], Proposition 3.7). On the other hand, 𝑖𝑓 𝐾𝑛  =  ‖𝑓𝑛‖𝐿𝜒 (𝑚𝜑), mimicking the 

computation of ([76], Proposition (3.1.9)), we get 

1 = ∫  
𝔻

 𝜒(|𝑓𝑛|/𝐾𝑛)  𝑑𝑚𝜑  ≥  (1 − 𝑟𝑛)
2𝜒(𝛼𝑢𝑛/4𝐾𝑛)              (29) 

for some 0 < 𝛼 <  1 independent of n, where we used the convexity of 𝜒 and the fact that 

the lens map 𝜑 satisfies, by (23), 

𝑚𝜑({𝑧 ∈ 𝔻 ; |1 −  𝑧|  ≤  1 − 𝑟𝑛})  ≥  𝛼(1 −  𝑟𝑛)
2. 

In view of (28), (29) reads as well 

 𝜒(𝛼𝑢𝑛/4𝐾𝑛)  ≤  𝜒
2(𝑢𝑛)  =  𝜒(𝐴𝑢𝑛), 

so that 

‖𝑗(𝑓𝑛)‖𝐿𝜒(𝑚𝜑)  =  𝐾𝑛  ≥  𝛼/4𝐴.                            (30) 

This shows that 𝑗 ∶  𝐻𝜒  →  𝐿𝜒(𝑚𝜑) and therefore also 𝐶𝜑 ∶  𝐻
𝜒 → 𝐻𝜒 are not Dunford–

Pettis. 

        It remains to show that 𝐻𝜒 is not reflexive. We shall prove below a more general 

result, but here, the conjugate function �̃� of 𝜒 satisfies the 𝛥2 condition, as we saw. Hence 

𝐻𝜒 is the bidual of 𝐻𝑀𝜒. Since 𝜒 fails to satisfy the 𝛥2 − condition, we know that 𝐿𝜒  ≠
 𝑀𝜒. 𝐿𝑒𝑡𝑢 ∈  𝐿𝜒 \ 𝑀𝜒, with 𝑢 ≥  1. Let f be the associated outer function, namely  

𝑓(𝑧) =  𝑒𝑥𝑝 (
1

2𝜋
  ∫  

2𝜋

0

𝑒𝑖𝑡 +  𝑧

 𝑒𝑖𝑡 −  𝑧
log 𝑢(𝑡) 𝑑𝑡) . 

One has |𝑓∗|  =  𝑢 almost everywhere, with the notation of (11), and hence 𝑓 ∈
 𝐻𝜒 \ 𝐻𝑀𝜒. It follows that 𝐻𝜒  =  𝐻𝑀𝜒. Hence HM𝜒 is not reflexive, and therefore 𝐻𝜒 is 

not reflexive either. 

 As promised, we give the general result on non-reflexivity 
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Proposition (3.1.16)[63]: Let 𝜓 be an Orlicz function which does not satisfy the 

𝛥2−  condition. Then neither 𝐻𝜓 nor 𝐵𝜓 is reflexive. 

Proof. We only give the proof for 𝐵𝜓 because it is the same for 𝐻𝜓. Since 𝜓 does not 

satisfy 𝛥2 there is a sequence (𝓍𝑛) of positive numbers, tending to infinity, such that 

𝜓(2𝓍𝑛 )/𝜓(𝓍𝑛) tends to infinity. Let 𝑟𝑛 ∈  (0, 1) such that (1 − 𝑟𝑛)
2  =  1/𝜓(2𝓍𝑛) and 

set  

𝑞𝑛(𝑧) =
(1 − 𝑟𝑛)

4

 (1 − 𝑟𝑛𝑧)
4 
. 

One has 

‖𝑞𝑛‖∞  =  1 𝑎𝑛𝑑 ‖𝑞𝑛‖1  =
(1 − 𝑟𝑛)

2

 (1 + 𝑟𝑛)
2
 ≤  (1 − 𝑟𝑛)

2. 

On the other hand, on the pseud𝑜 − 𝐶arleson window 𝑆(1, 1 −  𝑟𝑛), one ha 

|1 − 𝑟𝑛𝑧| ≤  (1 − 𝑟𝑛) + 𝑟𝑛|1 −  𝑧| ≤  (1 − 𝑟𝑛) + 𝑟𝑛(1 − 𝑟𝑛) = 1 − 𝑟𝑛
2   

≤  2(1 − 𝑟𝑛); 
Hence  |𝑞𝑛(𝑧)|  ≥  1/16. It follows that 

 1 = ∫  
𝐷

 𝜓 (
|𝑞𝑛|

 ‖𝑞𝑛‖𝜓
)   𝑑𝐴 ≥ ∫  

𝑆(1,1−𝑟𝑛)

 𝜓 (
|𝑞𝑛|

 ‖𝑞𝑛‖𝜓
)    𝑑𝐴  

≥  𝐴[𝑆(1, 1 − 𝑟𝑛)]𝜓 (
1

16 ‖𝑞𝑛‖𝜓
)   ≥

1

3
 (1 −  𝑟𝑛)

2𝜓 (
1

 16‖ 𝑞𝑛‖𝜓
)  

≥ (1 − 𝑟𝑛)
2𝜓(

1

 48 ‖𝑞𝑛‖𝜓 
)   =

1

 𝜓(2𝓍𝑛)
 𝜓 (

1

 48 ‖𝑞𝑛‖𝜓
)  ;  

hence 𝜓(1/[48 ‖𝑞𝑛‖𝜓])  ≤  𝜓(2𝓍𝑛), 𝑠𝑜 1/(48 ‖𝑞𝑛‖𝜓)  ≤  2𝓍𝑛 and 96 𝓍𝑛 ‖𝑞𝑛‖𝜓  ≥  1. 

 Set now 𝑓𝑛  =
𝑞𝑛

‖𝑞𝑛‖𝜓
; one has ‖𝑓𝑛‖𝜓  =  1 and (using that 𝜓(𝓍𝑛 |𝑞𝑛(𝑧)|) ≤

 |𝑞𝑛(𝑧)|𝜓(𝓍𝑛), by convexity, since |𝑞𝑛(𝑧)|  ≤  1) 

 ∫  
𝐷

𝜓 (
|𝑓𝑛|

 96
)   𝑑𝐴 = ∫  

𝐷

 𝜓
 𝓍𝑛 |𝑞𝑛|

 96 𝓍𝑛 ‖𝑞𝑛‖𝜓
  𝑑𝐴 ≤ ∫  

𝐷

 𝜓(𝓍𝑛 |𝑞𝑛|)𝑑𝐴 

 ≤ 𝜓(𝓍𝑛)∫  
𝐷

 |𝑞𝑛|𝑑𝐴  

≤ 𝜓(𝓍𝑛)(1 − 𝑟𝑛)
2  =

𝜓(𝓍𝑛)

 𝜓(2𝓍𝑛)  𝑛→∞
→   0. 

 By [71], Lemma 11, this implies that the sequence (𝑓𝑛) has a subsequence equivalent to 

the canonical basis of 𝑐0  and hence 𝐵𝜓 is not reflexive. 

 We finish by giving a counterexample using Bergman–Orlicz spaces instead of Hardy–

Orlicz spaces. 

Theorem (3.1.17)[63]: There exists a Schur function𝜑 and an Orlicz function 𝜓 such that 

the space 𝐵𝜓 is not reflexive and the composition operator 𝐶𝜑 ∶  𝐵
𝜓  →  𝐵𝜓 is weakly-

compact but not compact. 

Proof. We use again the Orlicz function ψ defined by (24) and the Schur function 𝜑 = 𝜑1
2

. 

The space 𝐵𝜓 is not reflexive since 𝜓 does not satisfy the condition 𝛥2. 
       We now need an estimate similar to (19) for 𝜑𝜃 , namely (31)       

𝜌𝜑 ,2(ℎ) ≔ sup
𝑠|𝜉|=1

  𝐴[{𝓏 ∈ 𝔻 ; 𝜑(𝑧) ∈  𝑆(𝜉, ℎ)}] ≈  ℎ
2
𝜃 .              (31) 
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The proof of (31) is best seen by passing to the right half-plane with the measure 𝐴𝛾𝜃  

which is locally equivalent to the Lebesgue planar measure 𝐴; we get 𝜌𝜑 ,2(ℎ)  ≥

 𝐴({|𝓏|𝜃  ≤  ℎ}  ∩ ℍ)  ≥  𝐾ℎ
2

𝜃  and the upper bound in (31) is proved similarly. 

 We now see that 𝐶𝜑 ∶  𝐵
𝜓  →  𝐵𝜓 is not compact as follows. We use the same 𝓍𝑛 as in 

(24) and set 𝒴𝑛  =  𝜓(𝓍𝑛), 𝑘𝑛  =  1 √𝓎𝑛 . We notice that, since 𝜌𝜑,2(ℎ)  ≥

 𝐾−1ℎ4 (𝑤𝑖𝑡ℎ 𝐾 >  1) in view of (31), we have 

𝐸(𝑘𝑛) ≝  
𝜓−1 (

1
𝑘𝑛
2)

𝜓−1 (
1

𝜌𝜑 ,2(𝑘𝑛)
)

 ≥
𝜓−1 (

1
𝑘𝑛
2)

𝜓−1 (
𝐾
𝑘𝑛
4)
 =

𝜓−1(𝓎𝑛)

𝜓−1(𝐾𝓎𝑛
2)
 ≥

𝓍𝑛
 2𝐾𝓍𝑛

 =
1

2𝐾
 , 

 so that 

lim
 
sup

(𝑘→0+) 
 𝐸(𝑘) >  0, 

 and this implies that 𝐶𝜑 ∶  𝐵
𝜓  →  𝐵𝜓 is not compact ([77], Theorem (3.1.10)). To see that 

𝐶𝜑 ∶  𝐵
𝜓  →  𝐵𝜓 is w-compact, we use the diagram  

𝐵𝜓
 𝑗𝜓,2
→    𝐵2  

𝐶𝜑 
→   𝐵4

 𝑗4,𝜓
→    𝐵𝜓  

as well as (31), which gives 𝜌𝜑,2(ℎ)  ≤  𝐾ℎ
4. A result of W. Hastings ([68]) now implies 

the continuity of the second map. This diagram shows that 𝐶𝜑 factors through a reflexive 

space (𝐵2 𝑜𝑟 𝐵4), and is therefore 𝑤 −compact. 

Section (3.2): Approximation Numbers of Composition Operators 

For 𝔻 be the open unit disk of the complex plane, equipped with its normalized area 

measure 𝑓(𝑧) =
𝑑𝑥𝑑𝑦

𝜋
 . For 𝛼 > −1, let ℬ𝛼 be the weighted Bergman space of analytic 

functions 𝑓(𝑧) = ∑ 𝑎𝑛𝑧
𝑛∞

𝑛=0  on 𝔻 such that 

‖𝑓‖𝛼
2 = (𝛼 + 1)∫ |𝑓(𝑧)|2(1 − |𝑧|2)𝛼𝑑𝐴(𝑧)

𝔻

= ∑
𝑛!𝛤(2 + 𝛼)

𝛤(𝑛 + 2 + 𝛼)
|𝑎𝑛|

2

∞

𝑛=0

< ∞. 

The limiting case, as 𝛼
>
→−1, of those spaces is the usual Hardy space 𝐻2 (indeed, if f is a 

polynomial, we have lim
𝛼
>
→−1

‖𝑓‖𝛼
2 = ∑ |𝑎𝑛|

2∞
𝑛=0 = ‖𝑓‖𝐻2

2 ), which we shall treat as ℬ−1. 

Note that ‖𝑓‖𝛼
2 ≈ ∑

|𝑎𝑛|
2

(𝑛+1)𝛼+1
∞
𝑛=0  and that  

𝑑𝐴𝛼(𝑧) = (𝛼 + 1)(1 − |𝑧|
2)𝛼𝑑𝐴(𝑧) 

is a probability measure on 𝔻.  

       Bergman spaces [86] are Hilbert spaces of analytic functions on 𝔻 with reproducing 

kernel 𝐾𝑎 ∈ ℬ𝛼, given by 𝐾𝑎(𝑧) = (
1

1−�̅�𝑧
)
𝛼+2

, namely, for every 𝑎 ∈ 𝔻: 

𝑓(𝑎) = ⟨𝑓, 𝐾𝑎⟩, ∀ 𝑓 ∈ ℬ𝛼;    and   ‖𝐾𝑎‖
2 = 𝐾𝑎(𝑎) = (

1

1 − |𝑎|2
)
𝛼+2

.       (32) 

An important common feature of those spaces is that the multipliers of ℬ𝛼 can be 

(isometrically) identified with the space 𝐻∞ of bounded analytic functions on 𝔻, that is: 

∀𝑔 ∈ 𝐻∞, ‖𝑔‖∞ = sup
𝑓∈ℬ𝛼,‖𝑓‖𝛼≤1

‖𝑓 𝑔‖𝛼 .                  (33) 

Indeed, ‖𝑓𝑔‖𝛼 ≤ ‖𝑔‖∞‖𝑓‖𝛼 is obvious, and if ‖𝑓𝑔‖𝛼 ≤ 𝐶‖𝑓‖𝛼 for all 𝑓 ∈ ℬ𝛼, testing 

this inequality successively on 𝑓 = 1, 𝑔, … , 𝑔𝑛, … easily gives 𝑔 ∈ 𝐻∞ and ‖𝑔‖∞ ≤ 𝐶.  
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       Let now 𝜑 be a non-constant analytic self-map (a so-called Schur function) of 𝔻 and 

let 𝐶𝜑: ℬ𝛼 → H (𝔻) the associated composition operator:  

𝐶𝜑(𝑓) = 𝑓 ∘ 𝜑. 

It is well-known [20] that such an operator is always bounded from ℬ𝛼 into itself, and we 

are interested in its approximation numbers.  

Also recall that the approximation (or singular) numbers 𝑎𝑛(𝑇) of an operator 𝑇 ∈
ℒ(𝐻1, 𝐻2), between two Hilbert spaces 𝐻1 and 𝐻2, are defined, for 𝑛 = 1, 2, . . ., by:  

𝑎𝑛(𝑇) = 𝑖𝑛𝑓{‖𝑇 − 𝑅‖; 𝑟𝑎𝑛𝑘(𝑅) < 𝑛}. 
We have:  

𝑎𝑛(𝑇) = 𝑐𝑛(𝑇) = 𝑑𝑛(𝑇), 
where the numbers 𝑐𝑛  (resp. 𝑑𝑛) are the Gelfand (resp. Kolmogorov) numbers of T ([65] 

respectively).  

We shall need the following quantity:  

𝛽(𝑇) = lim inf
𝑛→∞

[𝑎𝑛(𝑇)]
1
𝑛 .                                         (34) 

Those approximation numbers form a non-increasing sequence such that  

𝑎1(𝑇) = ‖𝑇‖, 𝑎𝑛(𝑇) = 𝑎𝑛(𝑇
∗) = √𝑎𝑛(𝑇

∗𝑇) 
and verify the so-called “ideal” and “subadditivity” properties [101]:  

𝑎𝑛(𝐴𝑇 𝐵) ≤  ‖𝐴‖ 𝑎𝑛(𝑇)‖𝐵‖;  𝑎𝑛+𝑚−1(𝑆 + 𝑇) ≤ 𝑎𝑛(𝑆) + 𝑎𝑚(𝑇).     (35) 

Moreover, the sequence (𝑎𝑛(𝑇)) tends to 0 iff T is compact. If (𝑎𝑛(𝑇)) ∈ ℓ𝑝, we say that 

T belongs to the Schatten class 𝑆𝑝 of index 𝑝, 0 < 𝑝 < ∞. Taking for T a compact 

diagonal operator, we see that this sequence is non-increasing with limit 0, but otherwise 

arbitrary. But if we restrict ourselves to a specified class of operators, the answer is far 

from being so simple, although in some cases the situation is completely elucidated. For 

example, for the class of Hankel operators on 𝐻2  (those operators H𝜑 whose matrix (𝑎𝑖,𝑗) 

on the canonical basis of 𝐻2 is of the form 𝑎𝑖,𝑗 = �̂�(𝑖 + 𝑗) for some function 𝜙 ∈ 𝐿∞), it is 

known that H𝜙 is compact if and only if the conjugate �̅� of the symbol 𝜙 belongs to 𝐻∞ +

𝐶, where C denotes the space of continuous, 2𝜋-periodic functions (Hartman’s theorem, 

[110]). For those Hankel operators, the following theorem, due to Megretskii et al. [108], 

[114], shows that the approximation numbers are absolutely arbitrary, under the following 

form.  

Theorem (3.2.1)[78]: (Megretskii–Peller–Treil). Let (𝜀𝑛)𝑛≥1 be a non-increasing 

sequence of positive numbers. Then there exists a Hankel operator H𝜙 satisfying:  

𝑎𝑛(H𝜙) = 𝜀𝑛, ∀𝑛 ≥ 1. 

Indeed, if we take a positive self-adjoint operator A whose eigenvalues 𝑠𝑛 coincide with 

the 𝜀𝑛’s and whose kernel is infinite-dimensional, it is easily checked that this operator A 

verifies the three necessary and sufficient conditions of Theorem 0.1, page 490 in [114] 

and is therefore unitarily equivalent to a Hankel operator H𝜙 which will verify, in view of 

(35):  

𝑎𝑛(H𝜙) = 𝑎𝑛(𝐴) = 𝜀𝑛, 𝑛 = 1, 2,… 

In particular, if 𝜀𝑛 → 0, the above Hankel operator will be compact, and in no Schatten 

class if 𝜀𝑛 = 1/𝑙𝑜𝑔(𝑛 + 1) for example. We also refer to [100] for the following slightly 

weaker form due to Khruscev and Peller, but with a more elementary proof based on 

interpolation sequences in the Carleson sense: for any 𝛿 > 0, there exists a Hankel 

operator H𝜙 such that  
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1

1 + 𝛿
𝜀𝑛 ≤ 𝑎𝑛(H𝜙) ≤ (1 + 𝛿)𝜀𝑛, 𝑛 = 1, 2, … 

We prove analogous theorems for the class of composition operators (whose 

compactness was characterized in [107], [117]). But if we are able to obtain the Khruscev–

Peller analogue for the lower bounds, we will only obtain sub exponential estimates for the 

upper bounds, a fact which is explained by our second result: the speed of convergence to 

0 of the approximation numbers of a composition operator cannot be greater than 

geometric (and is geometric for symbols 𝜑 verifying ‖𝜑‖∞ < 1). Our first result involves 

a constant < 1 and is not as precise as the result of Megretskii–Peller–Treil or even that of 

Khruscev–Peller; this is apparently due to the non-linearity of the dependence with respect 

to the symbol for the class of composition operators, contrary to the case of the Hankel 

class. This latter lower bound improves several previously known results on “non-

Schattenness” of those operators  (see Corollary (3.2.18)) and also answers in the positive 

to a question which was first asked to us by Le Merdy [103], concerning the bad rate of 

approximation of compact composition operators. Those theorems are, the first individual 

results on approximation numbers 𝑎𝑛 of composition operators  (in Parfenov [80], some 

good estimates are given for the approximation numbers of the Carleson embedding 

operator in the case of the space 𝐻2 = ℬ−1, but they remain fairly implicit, and are not 

connected with composition operators), whereas all previous results where in terms of 

symmetric norms of the sequence  (𝑎𝑛), not on the behavior of each 𝑎𝑛.  

       Before describing our results, let us recall two definitions. For every 𝜉 with |𝜉| = 1 

and 0 < ℎ < 1, the Carleson window 𝑊(𝜉, ℎ) centered at 𝜉 and of size h is the set  

𝑊(𝜉, ℎ) = {𝑧 ∈ �̅�; |𝑧| ≥ 1 −  ℎ and |𝑎𝑟𝑔(𝑧𝜉̅)| ≤ 𝜋ℎ}. 

Let µ be a positive, finite, measure on �̅�; the associated maximal function 𝜌µ is defined 

by:  

𝜌µ(ℎ) = sup
|𝜉|=1

µ(𝑊(𝜉, ℎ)) .                                      (36) 

The measure µ is called a Carleson measure for the Bergman space ℬ𝛼, or an  (𝛼 + 2)-
Carleson measure (including the case ℬ−1 = 𝐻

2), if 𝜌µ(ℎ) = 𝑂(ℎ
2+𝛼) as ℎ → 0. For any 

Schur function 𝜑, we shall denote by 𝑚𝜑 the image 𝜑∗(𝑚) of the Haar measure m of the 

unit circle under the radial limits function 𝜑∗(𝑢) = lim
𝑟→1−

𝜑(𝑟𝑢) of 𝜑, |𝑢| = 1, and by 

𝐴𝜑,𝛼+2 the image of the probability measure (𝛼 + 1)(1 − |𝑧|2)𝛼𝑑𝐴(𝑧) under 𝜑. The 

corresponding maximal function will be denoted by 𝜌𝜑,𝛼+2. This notation is justified by 

the fact that 𝑚𝜑 ≝ 𝐴𝜑,1 is a 1-Carleson measure and 𝐴𝜑,𝛼 an (𝛼 + 2)-Carleson measure 

for 𝛼 > −1, in view of the famous Carleson embedding theorem which, expressed under a 

quantitative and generalized form, states the following, implicit as concerns ‖𝑗‖ and with 

different notations, but fully proved in [118], for the case 𝛼 >  −1 (see [110]).  

Theorem (3.2.2)[78]:  (Carleson’s Theorem). For any (𝛼 + 2)-Carleson measure µ, the 

canonical inclusion mapping 𝑗: ℬ𝛼 → 𝐿
2(µ) is defined and continuous, and its norm 

satisfies  

𝐶−1 sup
0<ℎ<1

√
𝜌µ(ℎ)

ℎ2+𝛼
≤ ‖𝑗‖ ≤ 𝐶 sup

0<ℎ<1

𝜌µ(ℎ)

ℎ2+𝛼
.                   (37) 

We show some preliminary lemmas. Our first theorems concern lower bounds. We 

show that the convergence of the approximation numbers 𝑎𝑛(𝐶𝜑) of a composition 
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operator 𝐶𝜑: ℬ𝛼 →  ℬ𝛼 cannot exceed an exponential speed: for some 𝑟 ∈ (0, 1) and some 

constant 𝑐 > 0, one has 𝑎𝑛(𝐶𝜑) ≥ 𝑐 𝑟
𝑛 . With the notations (34) and (47), one has (𝐶𝜑) ≥

[𝜑]2 . This speed of convergence is only attained if the values of φ do not approach the 

boundary of the unit disk: ‖𝜑‖∞ < 1 (Theorem (3.2.12)). On the other hand, the speed of 

convergence to 0 of 𝑎𝑛(𝐶𝜑) can be arbitrarily slow; this is proved. The proof is mainly an 

adaptation of the one in [92], but is fairly technical at some points, and will require several 

additional explanations. We prove an upper estimate  (Theorem (3.2.23)), and give three 

applications of this theorem. We test our general results against the example of lens maps, 

which are known to generate composition operators belonging to all Schatten classes.  

We shall state several lemmas, which are either already known or quite elementary, 

but turn out to be necessary for the proofs of our Theorems (3.2.9) and (3.2.17).  

For the proof of Theorem (3.2.9), we shall need the Weyl lemma [65]. 

Lemma (3.2.3)[78]: (Weyl Lemma). Let 𝑇:𝐻 → 𝐻 be a compact operator. Suppose that 

(𝜆𝑛)𝑛≥1 is the sequence of eigenvalues of T rearranged in non-increasing order. Then, we 

have: 

∏𝑎𝑘(𝑇)

𝑛

𝑘=1

≥∏|𝜆𝑘|

𝑛

𝑘=1

. 

We recall [91], [97], [109] that an interpolation sequence (𝑧𝑛) with (best) interpolation 

constant C is a sequence (𝑧𝑛)  (necessarily Blaschke, i.e., ∑ (1 − |𝑧𝑛|)
∞
𝑛=1 < ∞) in the unit 

disk such that, for any bounded sequence (𝑤𝑛) of scalars, there exists a bounded analytic 

function 𝑓(𝑖. 𝑒. , 𝑓 ∈ 𝐻∞) such that:  

𝑓(𝑧𝑛) = 𝑤𝑛, ∀𝑛 ≥ 1, and  ‖𝑓‖∞ ≤ 𝐶 sup
𝑛≥1
|𝑤𝑛|. 

The Carleson constant 𝛿 of a Blaschke sequence (𝑧𝑛) is defined as follows:  

𝛿𝑛 =∏𝜌(𝑧𝑛, 𝑧𝑗)

𝑗≠𝑛

;   𝛿 = 𝑖𝑛𝑓 𝛿𝑛 = inf
𝑛≥1
(1 − |𝑧𝑛|

2)|𝐵′(𝑧𝑛)|,     (38) 

where B is the Blaschke product with zeros 𝑧𝑛, 𝑛 ≥ 1 and 𝜌(. , . ) is the pseudo-hyperbolic 

distance, defined below in (45). The interpolation constant C is related to the Carleson 

constant δ by the following inequality [94], in which λ is a positive numerical constant:  
1

𝛿
≤ 𝐶 ≤

𝜆

𝛿
(1 + log

1

𝛿
).                                              (39) 

This latter inequality can be viewed as a quantitative form of the Carleson interpolation 

theorem. Interpolation sequences and reproducing kernels of ℬ𝛼 are related as follows 

[109].  

Lemma (3.2.4)[78]: Let (𝑧𝑛)𝑛≥1 be an 𝐻∞-interpolation sequence of the unit disk, with 

interpolation constant C. Then, the sequence (𝑓𝑛) = (
𝐾𝑧𝑛

‖𝐾𝑧𝑛‖
)  of normalized reproducing 

kernels at 𝑧𝑛 is C-equivalent to an orthonormal basis in ℬ𝛼, namely we have for any finite 

sequence (𝜆𝑛) of scalars:  

𝐶−1 (∑|𝜆𝑛|
2

𝑛

)

1
2

≤ ‖∑𝜆𝑛𝑓𝑛
𝑛

‖

𝛼

≤ 𝐶 (∑|𝜆𝑛|
2

𝑛

)

1
2

 .          (40) 

The proof in [109] is only for 𝐻2 , therefore we indicate a simple proof valid for Bergman 

spaces ℬ𝛼 as well. Let 𝑆 = ∑𝜆𝑛𝐾𝑧𝑛 be a finite linear combination of the kernels 𝐾𝑧𝑛 , 𝜔 =

(𝜔𝑛) be a sequence of complex signs, 𝑆𝜔 = ∑𝜔𝑛𝜆𝑛𝐾𝑧𝑛 and 𝑔 ∈ 𝐻∞ an interpolating 
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function for the sequence (�̅�𝑛), i.e., 𝑔(𝑧𝑛) = �̅�𝑛 and ‖𝑔‖∞ ≤ 𝐶. If 𝑓 ∈ ℬ𝛼 and ‖𝑓‖𝛼 ≤
1, we see that:  

⟨𝑆𝜔, 𝑓⟩ =∑𝜔𝑛𝜆𝑛𝑓(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅ =∑𝜆𝑛(𝑓𝑔)(𝑧𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑𝜆𝑛⟨𝐾𝑧𝑛 , 𝑓𝑔⟩ = ⟨𝑆, 𝑓𝑔⟩, 

so that using  (33):  

|⟨𝑆𝜔, 𝑓 ⟩| ≤  ‖𝑆‖𝛼‖𝑓𝑔‖𝛼 ≤ ‖𝑆‖𝛼‖𝑔‖∞‖𝑓‖𝛼 ≤ 𝐶‖𝑆‖𝛼 

and passing to the supremum on f , we get ‖𝑆𝜔‖𝛼 ≤  𝐶‖𝑆‖𝛼. Since the coefficients 𝜆𝑛 are 

arbitrary, this implies that (𝑓𝑛) is C-unconditional, namely:  

𝐶−1 ‖∑𝜔𝑛𝜆𝑛𝑓𝑛‖
𝛼
≤ ‖∑𝜆𝑛𝑓𝑛‖

𝛼
≤ 𝐶 ‖∑𝜔𝑛𝜆𝑛𝑓𝑛‖

𝛼
. 

Now, squaring and integrating with respect to random, independent, choices of signs 𝜔𝑛’s, 

we get (40).  

       We also recall [97] that an increasing sequence (𝑟𝑛) of numbers such that 0 < 𝑟𝑛 < 1 

and 
1−𝑟𝑛+1

1−𝑟𝑛
≤ 𝜌 < 1 (i.e., verifying the so-called Hayman–Newman condition) is an 

interpolation sequence (see also [110]). In the following, let (𝑟𝑛) be such a sequence 

verifying moreover the backward induction relation:  

𝜑(𝑟𝑛+1) = 𝑟𝑛.                                                         (41) 
Set 𝑓𝑛 = 𝐾𝑟𝑛/‖𝐾_𝑟𝑛‖ and 𝑊 = span̅̅ ̅̅ ̅̅ (𝑓𝑛). Let (𝑒𝑛)𝑛≥1 be the canonical basis of ℓ2, 𝜑 a 

Schur function and ℎ ∈ 𝐻∞ a function vanishing at 𝑟1. Denote by 𝑀ℎ: ℬ𝛼 → ℬ𝛼 the 

operator of multiplication by h. Then, we have the following basic lemma, which shows 

that some compression of 𝐶𝜑
∗  is a backward shift with controlled weights [92].  

Lemma (3.2.5)[78]: Let 𝐽: ℓ2 → 𝑊 be the isomorphism given by 𝐽(𝑒𝑛) = 𝑓𝑛. Then, the 

operator 𝑩 = 𝐽−1𝐶𝜑
∗𝑀ℎ

∗𝐽: ℓ2 → ℓ2 is the weighted backward shift given by:  

𝑩(𝑒𝑛+1) = 𝑤𝑛𝑒𝑛     and   𝑩(𝑒1) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑛 = ℎ(𝑟𝑛+1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅
‖𝐾𝑟𝑛‖

‖𝐾𝑟𝑛+1‖
.      (42) 

To exploit Lemma (3.2.5), we shall need the following simple fact on approximation 

numbers of weighted backward shifts.  

Lemma (3.2.6)[78]: Let (𝑒𝑛)𝑛≥1 be an orthonormal basis of the Hilbert space H and 𝑩 ∈
ℒ(𝐻) the weighted backward shift defined by  

𝑩(𝑒1) = 0    and    𝑩(𝑒𝑛+1) = 𝑤𝑛𝑒𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑛 → 0. 
Assume that |𝑤𝑛| ≥ 𝜀𝑛 for all 𝑛 ≥ 1, where (𝜀𝑛) is a non-increasing sequence of positive 

numbers. Then B is compact, and satisfies:  

𝑎𝑛(𝑩) ≥ 𝜀𝑛, ∀𝑛 ≥ 1.                                      (43) 
Proof. The compactness of B is obvious. Let R be an operator of 𝑟𝑎𝑛𝑘 < 𝑛. Then ker R is 

of codimension < 𝑛, and therefore intersects the n-dimensional space generated by 

𝑒2, . . . , 𝑒𝑛+1 in a vector 𝑥 = ∑ 𝑥𝑗𝑒𝑗+1
𝑛
𝑗=1  of norm one. We then have:  

‖𝑩 − 𝑅‖2 ≥ ‖𝑩𝑥 − 𝑅𝑥‖
2 = ‖𝑩𝑥‖

2 =∑|𝑤𝑗|
2
|𝑥𝑗|

2
𝑛

𝑗=1

  

≥∑𝜀𝑗
2|𝑥𝑗|

2
𝑛

𝑗=1

 ≥ 𝜀𝑛
2 𝑛 𝑗 = 1 |𝑥𝑗|

2
= 𝜀𝑛

2. 

This ends the proof of Lemma (3.2.6). 
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       Now, in view of (32) and (42), the weight 𝑤𝑛 roughly behaves as 
1−𝑟𝑛+1

1−𝑟𝑛
 , so we shall 

need good estimates on that quotient, before defining the sequence (𝑟𝑛) explicitly.  

       We first connect this estimate with the hyperbolic distance d in 𝔻. We denote (see 

[96] or [99] for the definition) by 𝑑(𝑧,𝑤;𝑈) the hyperbolic distance of two points 𝑧, 𝑤 of 

a simply connected domain U. It follows from the generalized Schwarz–Pick lemma [99] 

applied to the canonical injection 𝑈 → 𝑉 that the bigger the domain the smaller the 

hyperbolic distance, namely:  

𝑈 ⊂ 𝑉   and   𝑧, 𝑤 ∈ 𝑈 𝐻 ⇒ 𝑑 (𝑧, 𝑤; 𝑉) ≤  𝑑(𝑧, 𝑤;𝑈).           (44) 
Moreover, as is well-known,  

0 ≤ 𝑟 < 1 ⇒  𝑑(0, 𝑟;𝔻) =
1

2
log

1 + 𝑟

1 −  𝑟
. 

Recall that the pseudo-hyperbolic and hyperbolic distances ρ and d on 𝔻 are defined by:  

𝜌(𝑎, 𝑏) = |
𝑎 − 𝑏

1 − �̅�𝑏
| , 𝑑(𝑎, 𝑏) =

1

2
log
1 + 𝜌(𝑎, 𝑏)

1 − 𝜌(𝑎, 𝑏)
, 𝑎, 𝑏 ∈ 𝔻.   (45) 

We shall omit the symbol 𝔻 as far as the open unit disk is concerned. For this unit disk, 

we have the following simple inequality [92].  

Lemma (3.2.7)[78]: Let 𝑎, 𝑏 ∈ 𝔻 with 0 < 𝑎 < 𝑏 < 1. Then:  

𝑒−2𝑑(𝑎,𝑏) ≤
1 −  𝑏

1 −  𝑎
≤ 2 𝑒2𝑑(𝑎,𝑏).                             (46) 

Finally, before proceeding to the construction of our Schur function 𝜑, it will be useful to 

note the following simple technical lemma.  

Lemma (3.2.8)[78]: Let (𝜀𝑛) be a non-increasing sequence of positive numbers of limit 0. 

Then there exists a decreasing and logarithmically convex sequence (𝛿𝑛) of positive 

numbers, with limit 0, such that 𝛿𝑛 ≥ 𝜀𝑛 for all 𝑛 ≥ 1.  

Proof. Provided that we replace 𝜀𝑛 by 𝜀𝑛 +
1

𝑛
, we may assume that (𝜀𝑛) is decreasing. Let 

us define our new sequence by the inductive relation:  

𝛿1 = 𝜀1;    𝛿2 = 𝜀2;      𝛿𝑛+1 = max(𝜀𝑛+1,
𝛿𝑛
2

𝛿𝑛−1
). 

This sequence is log-convex by definition, i.e., 𝛿𝑛
2 ≤ 𝛿𝑛+1𝛿𝑛−1. By induction, it is seen to 

be decreasing. Therefore, it has a limit 𝑙 ≥ 0. If 𝛿𝑛 = 𝜀𝑛 for infinitely many indices, 𝑙 = 0.       

Otherwise, for n large enough, we have the inductive relation 𝛿𝑛+1 = 𝛿𝑛
2/𝛿𝑛−1, which 

implies that 𝛿𝑛 = 𝑒𝑥𝑝(𝜆𝑛 + µ) for some constants 𝜆, µ. Since (𝛿𝑛) is decreasing, we must 

have 𝜆 < 0 and again we get 𝑙 = 0.  

We may and will thus assume, without loss of generality, that (𝜀𝑛) is decreasing and 

logarithmically convex.  

If  

𝜑#(𝑧) = lim
𝑤→𝑧

𝜌(𝜑(𝑤), 𝜑(𝑧))

𝜌(𝑤, 𝑧)
=
|𝜑′(𝑧)|(1 − |𝑧|2)

1 − |𝜑(𝑧)|2
 

is the pseudo-hyperbolic derivative of 𝜑, we set:  

[𝜑] = sup
𝑧∈𝔻

𝜑#(𝑧) = ‖𝜑#‖
∞
.                                              (47) 

In our first theorem, we get that the approximation numbers cannot supersede a geometric 

speed.  

Theorem (3.2.9)[78]: For any Schur function 𝜑, there exist positive constants 𝑐 > 0 and 

0 < 𝑟 < 1 such that, for 𝐶𝜑: ℬ𝛼 → ℬ𝛼, we have:  
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𝑎𝑛(𝐶𝜑) ≥ 𝑐 𝑟
𝑛, 𝑛 = 1, 2, . . . .                           (48) 

More precisely, one has 𝛽(𝐶𝜑) ≥ [𝜑]
2 and hence, for each 𝜅 < [𝜑], there exists a 

constant 𝑐𝜅 > 0 such that:  

𝑎𝑛(𝐶𝜑) ≥ 𝑐𝜅 𝜅
2𝑛.                                                (49) 

We shall see in Proposition (3.2.31) that this estimate is actually rather crude in general 

because [𝜑] may be arbitrarily small, though 𝑎𝑛(𝐶𝜑) decays “slowly”.  

       For the proof, we need the following lemma.  

Lemma (3.2.10)[78]: Let 𝑇:𝐻 →  𝐻 be a compact operator. Suppose that (𝜆𝑛)𝑛≥1, the 

sequence of eigenvalues of T rearranged in non-increasing order, satisfies, for some 𝛿 > 0 

and 𝑟 ∈ (0, 1): 
|𝜆𝑛| ≥ 𝛿𝑟

𝑛, 𝑛 = 1, 2,… 

Then there exists 𝛿1 > 0 such that  

𝑎𝑛(𝑇) ≥ 𝛿1𝑟
2𝑛, 𝑛 = 1, 2,… 

In particular 𝛽(𝑇) ≥ 𝑟2. 
Proof. By the Weyl inequality (Lemma (3.2.3)), we have  

∏𝑎𝑘(𝑇)

𝑛

𝑘=1

≥∏|𝜆𝑘|

𝑛

𝑘=1

≥ 𝛿𝑛 𝑟
𝑛(𝑛+1)
2 . 

Since 𝑎𝑘(𝑇) is non-increasing and 𝑎𝑘(𝑇) ≤ ‖𝑇‖ for every k, changing n into 2𝑛, we get: 

‖𝑇‖𝑛𝑎𝑛(𝑇)
𝑛 ≥∏𝑎𝑘(𝑇)

2𝑛

𝑘=1

≥ 𝛿2𝑛𝑟𝑛(2𝑛+1) 

and therefore 𝑎𝑛(𝑇) ≥
𝛿2𝑟

‖𝑇‖
𝑟2𝑛 = 𝛿1𝑟

2𝑛, as claimed.  

       By applying this lemma to composition operators, we get the following result, which 

ends the proof of Theorem (3.2.9).  

Proposition (3.2.11)[78]: For every composition operator 𝐶𝜑: ℬ𝛼 → ℬ𝛼 of symbol 𝜑:𝔻 →

𝔻, we have 𝛽(𝐶𝜑) ≥ [𝜑]
2. 

Proof. For every 𝑎 ∈ 𝔻, let 𝛷𝑎 be the (involutive) automorphism of the unit disk defined 

by  

𝛷𝑎(𝑧) =
𝑎 − 𝑧

1 − �̅�𝑧
, 𝑧 ∈ 𝔻. 

Observe that we have  

𝛷𝑎(𝑎) = 0, 𝛷𝑎(0) = 𝑎, 𝛷𝑎
′(𝑎) =

1

|𝑎|2 − 1
, 𝛷𝑎

′(0) = |𝑎|2 − 1. 

Define now 𝜓 = 𝛷𝜑(𝑎) ∘ 𝜑 ∘ 𝛷𝑎. We have that 0 is a fixed point of 𝜓, whose derivative is, 

in modulus, by the chain rule:  

|𝜓′(0)| = |𝛷′𝜑(𝑎)(𝜑(𝑎))𝜑′(𝑎)𝛷𝑎
′(0)| =

|𝜑′(𝑎)|(1 − |𝑎|2)

1 − |𝜑(𝑎)|2
≝ 𝜑#(𝑎).  (50) 

By the Schwarz lemma, we know that |𝜓′(0)| ≤ 1 and so 
|𝜑′(𝑎)|(1−|𝑎|2)

1−|𝜑(𝑎)|2
≤ 1 (the Schwarz–

Pick inequality).  

       Let us first assume that the composition operator 𝐶𝜑 is compact. Then, so is 𝐶𝜓, since 

we have  

𝐶𝜓 = 𝐶𝛷𝑎 ∘ 𝐶𝜑 ∘ 𝐶𝛷𝜑(𝑎) .                                          (51) 
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If 𝜓′(0) ≠ 0, the sequence of eigenvalues of 𝐶𝜓 is ([𝜓′(0)]𝑛)𝑛≥0 ([83]; the result given 

for the space 𝐻2 holds for ℬ𝛼 ⊂ 𝐻
2 , and would also hold for any space of analytic 

functions in 𝔻 on which 𝐶𝜓 is compact). Lemma (3.2.10) then gives us:  

𝛽(𝐶𝜓) ≥ |𝜓
′(0)|2 = [𝜑#(𝑎)]2 ≥ 0. 

This trivially still holds if 𝜓′(0) = 0.  

       Now, since 𝐶𝛷𝑎 and 𝐶𝛷𝜑(𝑎) are invertible operators, (51) clearly implies that 𝛽(𝐶𝜑) =

𝛽(𝐶𝜓), and therefore, with the notation of (50):  

𝛽(𝐶𝜑) ≥ [𝜑
#(𝑎)]2, for all 𝑎 ∈ 𝔻. 

By passing to the supremum on 𝑎 ∈ 𝔻, we end the proof of Proposition (3.2.11), and that 

of Theorem (3.2.9) in the compact case. If 𝐶𝜑 is not compact, the proposition trivially 

holds.       Indeed, in this case, we have 𝛽(𝐶𝜑) = 1 ≥ [𝜑]
2. 

Theorem (3.2.12)[78]: For every 𝛼 ≥ −1, there exists, for any 0 < 𝑟 < 1, 𝑠 = 𝑠 (𝑟) < 1, 

satisfying lim
𝑟→1−

𝑠(𝑟) = 1, such that, for 𝐶𝜑: ℬ𝛼 → ℬ𝛼, one has, with the notation coined in 

(34):  

diam𝜌(𝜑(𝔻)) > 𝑟 ⇒ 𝛽(𝐶𝜑) ≥ 𝑠
2.                            (52) 

In particular, the exponential speed of convergence to 0 of the approximation numbers of a 

composition operator 𝐶𝜑 of symbol 𝜑 takes place if and only if ‖𝜑‖∞ < 1; in other words, 

we have:  

‖𝜑‖∞ = 1 ⇔ 𝛽(𝐶𝜑) = 1.                                 (53) 

Let us remark that one cannot replace 𝑑𝑖𝑎𝑚𝜌(𝜑(𝔻)) > 𝑟 by ‖𝜑‖∞ > 𝑟 in (52). In fact, if 

for every 𝑡 ∈ (0, 1), one takes an automorphism 𝜓𝑡: 𝔻 → 𝔻 such that 𝜓𝑡(0) = 𝑡 and if 

one sets 𝜑𝑡(𝑧) = 𝜓𝑡(𝑧/2), then ‖𝜑𝑡‖∞ ≥ 𝑡, but 𝛽(𝐶𝜑𝑡) = 1/2 (in fact, if 𝑢(𝑧) = 𝑧/2, it 

is easy to see that 𝑎𝑛(𝐶𝑢) = 1/2
𝑛−1 and, since 𝐶𝜓𝑡 is invertible, 𝛽(𝐶𝜑𝑡) = 𝛽(𝐶𝑢)).  

       The proof will proceed through a series of lemmas. Observe that given two points 

𝑎, 𝑏 ∈ 𝔻, with 𝑟 = 𝜌(𝑎, 𝑏), there exists an automorphism 𝜓 of 𝔻 such that 𝜓(𝑎) = 0 and 

𝜓(𝑏) = 𝑟. As 𝛽(𝐶𝜑) = 𝛽(𝐶𝜓∘𝜑), we may assume, without loss of generality, throughout 

that proof, that 0 and r belongs to 𝜑(𝔻). 
Lemma (3.2.13)[78]: Let 𝐾 be a compact subset of 𝜑(𝔻) and µ be a probability supported 

by 𝐾. Then, there exists a constant 𝛿 > 0 such that, if 𝑅µ: ℬ𝛼 → 𝐿
2(µ) denotes the 

restriction operator, we have:  

𝑎𝑛(𝐶𝜑) ≥ 𝛿 𝑎𝑛(𝑅µ). 

In particular:  

𝛽(𝐶𝜑) ≥ 𝛽(𝑅µ). 

Proof. Since 𝜑 is an open map, there exists a compact set 𝐿 ⊂ 𝔻 and a Borel subset 𝐴 ⊂ 𝐿 

such that 𝜑(𝐴) = 𝐾 and 𝜑:𝐴 → 𝐾 is a bijection (see [113]). Then µ = 𝜑(𝜈), where 𝜈 =
𝜑−1(µ) is a probability measure supported by L, and we have automatically ‖𝑅𝜈‖ < ∞. 

Then, for every 𝑓 ∈ ℬ𝛼:  

‖𝑓‖𝐿2(µ)
2 = ∫|𝑓|2𝑑µ

𝐾

= ∫|𝑓 ∘ 𝜑|2𝑑𝜈
𝐿

= ‖𝐶𝜑𝑓‖𝐿2(𝜈)
2

. 

This yields ‖𝑅µ𝑓‖ = ‖(𝑅𝜈 ∘ 𝐶𝜑)𝑓‖, so we have 𝑅µ = 𝑗 𝑅𝜈𝐶𝜑, where 𝑗: 𝐿2(𝜈) →  𝐿2(µ) is 

an isometry, and the lemma follows, since we have then:  

𝑎𝑛(𝑅µ) = 𝑎𝑛(𝑅𝜈 ∘ 𝐶𝜑) ≤ ‖𝑅𝜈‖𝑎𝑛(𝐶𝜑) 
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for every 𝑛 ≥ 1. 

       Observe that this provides a new proof of Theorem (3.2.9). Indeed, if 𝐾 ⊂ 𝜑(𝔻) is a 

small closed ball of center 0 and radius 𝑡 > 0, we can take as µ the normalized area 

measure on K; then Parseval’s formula easily shows that 𝛽(𝑅µ) ≥ 𝑡 in that case.  

       The strategy of the proof of Theorem (3.2.12) will consist of refining this observation. 

We shall show that the situation can be reduced to the case 𝐾 = [0, 𝑟], and that an 

appropriate choice of µ can be made in that case, giving a sharp lower bound for 𝛽(𝑅µ). 

We begin with explaining that choice in the next two lemmas.  

Lemma (3.2.14)[78]: For every 𝑟 ∈ (0,1) there exists 𝑠 = 𝑠(𝑟) < 1 and 𝑓 = 𝑓𝑟 ∈ 𝐻
∞ 

with the following properties:  

(i)  lim
𝑟→1−

𝑠(𝑟) = 1;  

(ii)  ‖𝑓‖∞ ≤ 1;  

(iii)  𝑓((0, 𝑟]) = 𝑠 𝜕𝔻 in a one-to-one way. 

Proof. Let 𝜌 =
1−√1−𝑟2

𝑟
. Then 𝑟 =

2𝜌

1+𝜌2
 and the automorphism 𝜑𝜌(𝑧) =

𝜌−𝑧

1−𝜌𝑧
 maps [0, 𝑟] 

onto [−𝜌 , 𝜌]. We define 𝜀 = 𝜀 (𝑟) and 𝑠 = 𝑠(𝑟) by the following relations:  

𝜀(𝑟) =
𝜋

log
1 + 𝜌
1 − 𝜌

, and    𝑠 = 𝑒−
𝜀𝜋
2 .                 (54) 

Let now  

𝜒(𝑧) = 𝜀 log
1 + 𝜑𝜌(𝑧)

1 − 𝜑𝜌(𝑧)
                                               (55) 

and  

𝑓(𝑧) = 𝑠 𝑒𝑖𝜒(𝑧).                                            (56) 
Note that 𝑓 = 𝑒ℎ, where  

ℎ(𝑧) = 𝑖𝜀 log
1 + 𝜑𝜌(𝑧)

1 − 𝜑𝜌(𝑧)
− 𝜀

𝜋

2
 

is a conformal mapping from 𝔻 onto a small vertical strip of the left-half plane. This 

function f fulfills all the requirements of the lemma. Indeed, we have |𝑓 (𝑧)| ≤ 1 for all 

𝑧 ∈ 𝔻 and  

ℎ([0, 𝑟]) = [−𝑖𝜀 log
1 + 𝜌

1 − 𝜌
, 𝑖𝜀 log

1 + 𝜌

1 − 𝜌
] −  𝜀

𝜋

2
= [−𝑖𝜋, 𝑖𝜋] − 𝜀

𝜋

2
, 

so that 𝑓((0, 𝑟]) = {𝑤 = 𝑠𝑒𝑖𝜃;  −𝜋 ≤ 𝜃 ≤ 𝜋}, in a one-to-one way.  

       Lemma (3.2.14) allows a good choice of the measure µ as follows.  

Lemma (3.2.15)[78]: Let f be as in Lemma (3.2.14). Then, there exists a probability 

measure µ = µ𝑟 supported by [0, 𝑟] and a constant 𝛿𝑟 > 0 such that, for any integer 𝑛 ≥ 1 

and any choice of scalars 𝑐0, 𝑐1, … , 𝑐𝑛−1, we have:  

‖∑𝑐𝑗𝑅µ (𝑓
𝑗)

𝑛−1

𝑗=0

‖

𝐿2(µ)

≥
𝑠𝑛

√𝑛
‖∑𝑐𝑗𝑓

𝑗

𝑛−1

𝑗=0

‖

𝐻2

≥
𝑠𝑛

√𝑛
‖∑𝑐𝑗𝑓

𝑗

𝑛−1

𝑗=0

‖

ℬ𝛼

. 

As a consequence, we can claim that, for 𝐶𝜑: ℬ𝛼 → ℬ𝛼:  

𝜑(𝔻) ⊃ [0, 𝑟] ⇒  𝛽(𝐶𝜑) ≥ 𝑠 = 𝑠(𝑟).                       (57) 
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Proof. With our previous notations, we know that 𝜒 is a bijective map from ]0, 𝑟] onto the 

interval ] −  𝜋, 𝜋]. Let m be the normalized Lebesgue measure on ] −  𝜋, 𝜋] and µ = 𝜒 −
1(𝑚) be the image of m by 𝜒−1. We have, thanks to (56) and by definition of µ: 

‖∑𝑐𝑗𝑅µ(𝑓
𝑗)

𝑛−1

𝑗=0

‖

𝐿2(µ)

2

= ∫ |∑ 𝑐𝑗𝑓
𝑗(𝑥)

𝑛−1

𝑗=0

|

2

𝑑𝜇(𝑥)
𝑟

0

= ∫ |∑ 𝑐𝑗𝑠
𝑗𝑒𝑖𝑗𝜒(𝑥)

𝑛−1

𝑗=0

|

2

𝑑µ(𝑥)
𝑟

0

 

= ∫ |∑ 𝑐𝑗𝑠
𝑗𝑒𝑖𝑗𝜃

𝑛−1

𝑗=0

|

2

𝑑𝜃

2𝜋

𝜋

−𝜋

 = ∑|𝑐𝑗|
2
𝑠2𝑗

𝑛−1

𝑗=0

≥ 𝑠2𝑛∑|𝑐𝑗|
2

𝑛−1

𝑗=0

. 

Now, ‖𝑓𝑗‖
𝐻2
≤ ‖𝑓𝑗‖

∞
≤ 1, so that we have, using the Cauchy–Schwarz inequality:  

‖∑𝑐𝑗𝑓
𝑗

𝑛−1

𝑗=0

‖

𝐻2

≤∑|𝑐𝑗|‖𝑓
𝑗‖
𝐻2

𝑛−1

𝑗=0

≤∑|𝑐𝑗|

𝑛−1

𝑗=0

≤ √𝑛 (∑|𝑐𝑗|
2

𝑛−1

𝑗=0

)

1
2

, 

giving the first inequality, since ‖ ‖𝐻2 ≥ ‖ ‖ℬ𝛼. Finally, let 𝑅:ℬ𝛼 → 𝐿
2(µ) be an operator 

of rank< 𝑛. We can find a function 𝑔 = ∑ 𝑐𝑗𝑓
𝑗𝑛−1

𝑗=0  such that ‖𝑔‖ℬ𝛼 = 1 and 𝑅(𝑔) = 0. 

The first part of the proof gives:  

‖𝑅µ − 𝑅‖ ≥ ‖𝑅µ(𝑔) − 𝑅(𝑔)‖ = ‖𝑅µ(𝑔)‖ = ‖∑𝑐𝑗𝑓
𝑗

𝑛−1

𝑗=0

‖

𝐿2(µ)

 ≥
𝑠𝑛

√𝑛
‖∑𝑐𝑗𝑓

𝑗

𝑛−1

𝑗=0

‖

ℬ𝛼

=
𝑠𝑛

√𝑛
 . 

Therefore 𝑎𝑛(𝑅µ) ≥ 𝑠
𝑛/√𝑛 and, in view of Lemma (3.2.13), the last conclusion of 

Lemma (3.2.15) follows.  

The next lemma explains how to reduce the situation to the case 𝐾 = [0, 𝑟] when we only 

know that 0 and r belongs to 𝜑(𝔻). It was inspired to us by the proof of the Lindelof 

theorem ¨ that convergence along a curve implies non-tangential convergence for 

functions in Hardy spaces [115].  

Lemma (3.2.16)[78]: Suppose that 0 and r belong to 𝜑(𝔻), with 0 < 𝑟 < 1. Let µ be a 

probability measure carried by [0, 𝑟]. Then, there exists a probability measure ν carried by 

a compact set 𝐾 ⊂ 𝜑 (𝔻) such that, for any 𝑓 ∈ H(𝔻) :  

∫ |𝑓(𝑥)|2𝑑µ(𝑥)
[0,𝑟]

≤
1

2
∫(|𝑓(𝑧)|2 + |𝑓(𝑧̅)|2)𝑑𝜈(𝑧)
𝐾

.             (58) 

Proof. Since 𝜑(𝔻) is open and connected and 0, 𝑟 ∈ 𝜑(𝔻), there is a curve with image 

𝐾 ⊂ 𝜑(𝔻) connecting 0 and r. Put 𝐾 = {𝑧̅;  𝑧 ∈ 𝐾}. Then, there exists a compact set L 

such that [0, 𝑟] ⊂ 𝐿 and whose boundary 𝜕𝐿 ⊂ (𝐾 ∪ �̃�). 1 Now, the existence of ν carried 

by K will be provided by an appropriate application of the Pietsch factorization theorem. 

To that effect, let X be the real subspace of 𝐶(𝐿) formed by the real functions which are 

harmonic in the interior of L. By the maximum principle for harmonic functions, X can be 

viewed as a subspace of 𝐶(𝐾 ∪ �̃�). Now, the inclusion map j of X into 𝐿2(µ) has 2-

summing norm less than one ([88], or [104]). Therefore, the Pietsch factorization theorem 

([88], or [104]) implies the existence of a probability ` σ on 𝐾 ∪ �̃� such that, for every 𝑢 ∈
𝑋:  

‖𝑢‖𝐿2(µ)
2 = ∫ 𝑢2𝑑µ

[0,𝑟]

≤ ∫ 𝑢2𝑑𝜎
𝐾∪𝐾

.                       (59) 
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For any harmonic function u on 𝔻, we can apply (59) to 𝑢(𝑧) and 𝑢(𝑧̅) to get:  

2∫ 𝑢2𝑑µ
[0,𝑟]

≤ ∫ [𝑢2(𝑧) + 𝑢2(𝑧̅)]𝑑𝜎(𝑧)
𝐾∪𝐾

= ∫ [𝑢2(𝑧) + 𝑢2(𝑧̅)]𝑑�̃�(𝑧)
𝐾∪𝐾

, 

 where �̃� is the symmetric measure of σ, defined by �̃�(𝐸) = 𝜎(�̃�). There is a probability ν 

on K such that 𝜈 + 𝜈 = 𝜎 + �̃�. For this probability ν, we thus have, for any real harmonic 

function u on 𝔻: 

2‖𝑢‖𝐿2(µ)
2 ≤ ∫[𝑢2(𝑧) + 𝑢2(𝑧̅)]𝑑𝜈(𝑧)

𝐾

.                          (60) 

Now, given 𝑓 ∈ H(𝔻), we use (60) with u the real and imaginary parts of f, and sum up to 

get (58).  

       We can now finish the proof of Theorem (3.2.12) as follows.  

       Suppose that 𝑑𝑖𝑎𝑚𝜌(𝜑 (𝔻)) > 𝑟. Then we may assume, as explained before Lemma 

(3.2.13), that 0, 𝑟 ∈ 𝜑(𝔻). Let µ be as in Lemma (3.2.15). Using Lemma (3.2.16), we find 

a probability measure ν, compactly supported by 𝜑(𝔻), such that (58) holds. This 

inequality shows that:  

‖𝑅µ𝑓‖
2
≤
1

2
(‖𝑅𝜈𝑓‖

2 + ‖𝑅𝜈𝑓‖
2), 

so that 𝑅µ = 𝐴(𝑅𝜈⊕𝑅𝜈) with ‖𝐴‖ ≤ 1/√2 ≤ 1. Therefore, by the ideal and sub-

additivity properties (35):  

𝑎2𝑛(𝑅µ) ≤ 𝑎2𝑛(𝑅𝜈⊕𝑅𝜈) ≤ 𝑎𝑛(𝑅𝜈) + 𝑎𝑛(𝑅𝜈) = 2 𝑎𝑛(𝑅𝜈), 

implying 𝛽(𝑅𝜈) ≥ 𝛽(𝑅µ)
2
. Finally, Lemmas (3.2.13) and (3.2.15) give:  

𝛽(𝐶𝜑) ≥ 𝛽(𝑅𝜈) ≥ 𝛽 (𝑅µ)
2
≥ 𝑠(𝑟)2, 

and this ends the proof of Theorem (3.2.12).  

We shall see that the convergence to 0 of the approximation numbers of a compact 

composition operator can be as slow as one wants. This answers in the positive to a 

question which was first asked to us by Le Merdy [103] in the OT Conference 2008 of 

Timisoara. 

Theorem (3.2.17)[78]: Let (𝜀𝑛)𝑛≥1 be a non-increasing sequence of positive real numbers 

of limit zero. Then, there exists an injective Schur function 𝜑 such that 𝜑(0) = 0 and 

𝐶𝜑: ℬ𝛼 → ℬ𝛼 is compact, i.e., 𝑎𝑛(𝐶𝜑) → 0, but:  

lim inf
𝑛→∞

𝑎𝑛(𝐶𝜑)

𝜀𝑛
> 0.                                                   (61) 

Equivalently, we have for some positive number 𝛿 > 0, independent of n:  

𝑎𝑛(𝐶𝜑) ≥ 𝛿 𝜀𝑛    for all   𝑛 ≥ 1. 

As in the case of Hankel operators, an immediate consequence of Theorem (3.2.17) is the 

following:  

Corollary (3.2.18)[78]: There exists a composition operator 𝐶𝜑: 𝐻
2 → 𝐻2 which is 

compact, but in no Schatten class.  

       This corollary, which Theorem (3.2.17) reinforces and précises, was an answer to a 

question of Sarason, and has been first proved in [92]. Other proofs appeared in [87], [98], 

[72], [73], [120] (for a positive result on Schattenness, we refer to [106]).  

       The construction of the symbol 𝜑 in Theorem (3.2.17) follows that given in [92], but 

we have to proceed to some necessary adjustments. In order to exploit (46), we shall use, 

as in [92], the following two results due to Hayman [96] concerning the hyperbolic 
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distance 𝑑(𝑧,𝑤;𝑈) of two points 𝑧, 𝑤 of a simply connected domain U (see also [99]), 

whose proof uses in particular the comparison principle (44):  

Proposition (3.2.19)[78]: Suppose that U contains the rectangle  

𝑅 = {𝑧 ∈ ℂ; 𝑎1 − 𝑏 < ℛ𝑒 𝑧 < 𝑎2 + 𝑏, |𝒥𝑚 𝑧| < 𝑏}, 
where 𝑎1 < 𝑎2 and 𝑏 > 0. Then, we have the upper estimate:  

𝑑(𝑎1, 𝑎2; 𝑈) ≤
𝜋

4𝑏
(𝑎2 − 𝑎1) +

𝜋

2
.                              (62) 

Proposition (3.2.20)[78]: Suppose that U contains the rectangle  

𝑅 = {𝑧 ∈ ℂ; 𝑎1 − 𝑐 < ℛ𝑒 𝑧 < 𝑎2 + 𝑐, |𝒥𝑚 𝑧| < 𝑐}, 
where 𝑎1 < 𝑎2 and 𝑐 > 0, but that the horizontal sides  

{𝑧 ∈ ℂ; 𝑎1 − 𝑐 ≤ ℛ𝑒 𝑧 ≤ 𝑎2 + 𝑐, |𝒥𝑚 𝑧| < 𝑐} 
of that rectangle are disjoint from U. Then, we have the lower estimate:  

𝑑(𝑎1, 𝑎2; 𝑈) ≥
𝜋

4𝑐
(𝑎2 − 𝑎1) −

𝜋

2
.                               (63) 

We now proceed to the construction of our Schur function 𝜑. 

       We first define a continuous map 𝜓:ℝ → ℝ as follows. Let (𝐴𝑛) be an increasing 

sequence of positive numbers, which is concave for 𝑛 ≥ 1, and which tends to ∞. Let 

𝐴: [0,∞) → [0,∞) be the increasing piecewise linear function on the intervals (0,1) and 

(𝑒𝑛−1, 𝑒𝑛) such that  

𝐴(0) ≝ 𝐴0 = 0, 𝐴(𝑒𝑛−1) ≝ 𝐴𝑛      for   𝑛 ≥ 1, and   2𝐾 = 1 𝐴(1)⁄ . 

The sequence of slopes 
𝐴𝑛−𝐴𝑛−1

𝑒𝑛−𝑒𝑛−1
 is decreasing, since  

𝐴𝑛+1 − 𝐴𝑛 ≤ 𝐴𝑛 − 𝐴𝑛−1 ≤  𝑒(𝐴𝑛 − 𝐴𝑛−1). The function A is hence increasing and 

concave on (0,∞) and vanishes at 0. This implies that 𝐴(𝑡)/𝑡 is decreasing on (0,∞).  
       We set:  

𝜓(𝑡) = {

𝐾(1 + |𝑡|)        if  |𝑡| ≤ 1
|𝑡|

𝐴(|𝑡|)
               if |𝑡| > 1.

 

By the previous discussion, 𝜓 is increasing on (1,∞). 
We then define a domain Ω of the complex plane by:  

Ω = {𝑤 ∈ ℂ; |𝒥𝑚 𝑤| < 𝜓(|ℛ𝑒 𝑤|)}.                     (64) 
Let 𝜎:𝔻 →  Ω be the unique Riemann map such that 𝜎(0) = 0 and 𝜎′(0) > 0. This map 

exists in view of the following simple fact.  

Lemma (3.2.21)[78]: The domain Ω defined by (64) is star-shaped with respect to the 

origin and 𝜎: (−1, 1) → ℝ is an increasing bijection such that 𝜎(−1) = −∞ and 𝜎(1) =
∞.  

Proof. The star-shaped character of Ω will follow from the implication:  

|𝒥𝑚 𝑤| < 𝜓(|ℛ𝑒 𝑤|)  and  0 < 𝜆 < 1 ⇒ |𝒥𝑚 (𝜆𝑤)| < 𝜓(|ℛ𝑒 (𝜆𝑤)|). 
We may assume that both ℛe w, Im w are positive, and it is enough to prove:  

𝜆𝜓(𝑥) ≤ 𝜓(𝜆𝑥), ∀𝜆 ∈ [0, 1], ∀𝑥 > 0.                          (65) 
This is easy to check separating three cases:  

(i)  𝑥 ≤ 1; then 𝜆𝜓(𝑥) = 𝜆𝐾(1 + 𝑥) ≤ 𝐾(1 + 𝜆𝑥) = 𝜓(𝜆𝑥); 
(ii) 𝜆𝑥 ≤ 1 < 𝑥; then, since 𝐴(𝑥) > 𝐴(1), 

𝜆𝜓(𝑥) = 𝜆
𝑥

𝐴(𝑥)
< 2𝐾𝜆𝑥 ≤ 𝐾(1 + 𝜆𝑥) = 𝜓 (𝜆𝑥); 

(iii)  𝜆𝑥 > 1; we then have, since A increases,  
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𝜆𝜓(𝑥) = 𝜆
𝑥

𝐴(𝑥)
≤

𝜆𝑥

𝐴(𝜆𝑥)
= 𝜓(𝜆𝑥) 

and this ends the proof of (65). Now, since σ is determined by the value of 𝜎(0) and the 

sign of 𝜎′(0), we have 𝜎(𝑧̅) = 𝜎(𝑧)̅̅ ̅̅ ̅̅  for all 𝑧 ∈ 𝔻, so that 𝜎[ (−1, 1)] ⊂ ℝ. And since the 

derivative of an injective analytic function does not vanish and 𝜎′(0) > 0, we get that σ is 

increasing on (−1, 1). Finally, if 𝑤 ∈ ℝ and 𝑤 = 𝜎(𝑧), we have �̅� = 𝑤, so that 𝜎(𝑧̅) =
𝜎(𝑧) and 𝑧̅ = 𝑧, which proves the subjectivity of 𝜎: (−1, 1) → ℝ.  

       We now choose 𝐴𝑛 as follows, 𝜂 > 0 denoting a positive numerical constant to be 

specified later.  

𝐴𝑛 = 𝜂 log
1

𝜀𝑛
, 𝑛 ≥  1.                                                       (66) 

Observe that this is an increasing, concave sequence tending to ∞ since we assumed that 
(𝜀𝑛) is log-convex and decreasing to 0.  

       Finally, we define our Schur function 𝜑 and our sequence (𝑟𝑛) under the form of the 

following lemma, in which the increasing character of 𝜓 is important. 

Lemma (3.2.22)[78]: Let 𝜑 be defined by  

𝜑(𝑧) = 𝜎−1(𝑒−1𝜎(𝑧)), 

and let 𝑟𝑛 = 𝜎
−1(𝑒𝑛). Then we have:  

(a)  𝜑 is univalent and maps 𝔻 to 𝔻, (𝑟𝑛) increases, and 𝜑(0) = 0; 

(b) 𝜑(𝑟𝑛+1) = 𝑟𝑛; 

(c) 
1−𝑟𝑛+1

1−𝑟𝑛
→ 0 and therefore (𝑟𝑛) is an interpolation sequence;  

(d) 𝐶𝜑: ℬ𝛼 → ℬ𝛼 is compact.  

Proof.  

(a) Since Ω is star-shaped, 𝑒−1𝜎(𝑧) ∈ Ω when 𝑧 ∈ 𝔻, so 𝜑 is well-defined and maps 𝔻 

to itself in a univalent way. Moreover, 𝜑(0) = 𝜎−1(0) = 0, and (𝑟𝑛) increases 

since 𝜎−1 increases on ℝ. 

(b) We have 𝜑(𝑟𝑛+1) = 𝜎
−1 (

1

𝑒
𝜎(𝑟𝑛+1)) = 𝜎

−1 (
1

𝑒
𝑒𝑛+1) = 𝜎−1(𝑒𝑛) = 𝑟𝑛. 

(c) This assertion is more delicate and relies on Proposition (3.2.20) as follows.  

Set 𝑑𝑛 = 𝜓(𝑒
𝑛). We have clearly 𝑒𝑛+1 + 𝑑𝑛+2 < 𝑒

𝑛+2 for large n (recall that 𝜓(𝑡) =
𝑜(𝑡) as 𝑡 → ∞), so that 𝜓(𝑒𝑛+1 + 𝑑𝑛+2) < 𝜓(𝑒

𝑛+2) = 𝑑𝑛+2 since 𝜓 is increasing. By the 

intermediate value theorem for the function 𝜓(𝑒𝑛+1 + 𝑥) − 𝑥, we can therefore find a 

positive number 𝑐𝑛 < 𝑑𝑛+2 such that 𝜓(𝑒𝑛+1 + 𝑐𝑛) = 𝑐𝑛.  

Now, consider the open sets:  

𝑅𝑛 = {𝑧 ∈ ℂ; 𝑒
𝑛 − 𝑐𝑛 < ℛ𝑒 𝑧 < 𝑒

𝑛+1 + 𝑐𝑛  and   |𝒥𝑚 𝑧| < 𝑐𝑛}, 𝑈𝑛 = 𝑅𝑛 ∪ Ω. 
Those sets 𝑈𝑛 satisfy the assumptions of Proposition (3.2.20) in view of (64). Indeed, if z 

belongs to the horizontal sides of 𝑅𝑛, we have 𝑧 ∉ 𝑈𝑛 since  

𝑒𝑛 − 𝑐𝑛 ≤ ℛ𝑒 𝑧 ≤  𝑒
𝑛+1 + 𝑐𝑛 ⇒ 𝜓(ℛ𝑒 𝑧) ≤ 𝜓 (𝑒

𝑛+1 + 𝑐𝑛) = 𝑐𝑛 = |𝒥𝑚 𝑧|. 
This proposition then gives, since Ω ⊂ 𝑈𝑛 and 𝑐𝑛 < 𝑑𝑛+2, and since the hyperbolic metric 

is conformally invariant,  

𝑑(𝑟𝑛, 𝑟𝑛+1) = 𝑑(𝑒
𝑛 , 𝑒𝑛+1; Ω) ≥ 𝑑(𝑒𝑛, 𝑒𝑛+1; 𝑈𝑛)  ≥

𝜋

4𝑐𝑛
(𝑒𝑛+1 − 𝑒𝑛) −

𝜋

2
 ≥ 𝑐

𝑒𝑛+2

𝜓(𝑒𝑛+2)
= 𝑐𝐴 (𝑒𝑛+2) ≥  𝑐𝐴𝑛, 

where c is a positive constant. Now, we use Lemma (3.2.7) to obtain:  
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1 − 𝑟𝑛+1
1 − 𝑟𝑛

≤ 2 𝑒−2𝑑(𝑟𝑛,𝑟𝑛+1) ≤ 2 𝑒−2𝑐𝐴𝑛 , 

which proves that 
1−𝑟𝑛+1

1−𝑟𝑛
→ 0, and implies that (𝑟𝑛) is an interpolation sequence.  

(d)  Since 𝜑 is univalent, the compactness of 𝐶𝜑: ℬ𝛼 → ℬ𝛼 amounts to proving that 

lim
|𝑧|→1

1−|𝜑(𝑧)|

1−|𝑧|
= ∞. For 𝛼 > −1, this follows from [21] and for 𝛼 = −1 from [83]. 

By the Julia–Caratheodory Theorem [83], this in turn is equivalent to proving that 

for any 𝑢, 𝑣 on the unit circle, the quotient 
𝜑(𝑧)−𝑣

𝑧−𝑢
 has no finite limit as z tends to u 

radially. This latter fact requires some precise justification.  

First, we notice that σ extends continuously to an injective map of the open upper half of 

the unit circle onto the upper part of the boundary of Ω (and similarly for lower parts). 

This follows from the Caratheodory extension theorem [115], applied to the restriction of 

𝜎−1 to the Jordan region limited by 𝜕Ω and two vertical lines ℛ𝑒 𝑤 = ±𝑅 where 𝑅 > 0 is 

arbitrarily large. Now, let 𝑢 ∈ 𝜕𝔻 with 𝑢 ≠ ±1. Then, 𝜎(𝑟𝑢) →  𝑤 ∈ 𝜕Ω as 𝑟 → 1 −, so 

that 𝑒−1𝜎(𝑟𝑢) → 𝑒−1𝑤 = 𝑤′ ∈ Ω and that 𝜑(𝑟𝑢) → 𝜎−1(𝑤′) ∈ 𝔻. Therefore the image 

of 𝜑 touches the unit circle only at ±1, and the assumption of the Julia–Caratheodory 

Theorem is ´ fulfilled if 𝑢 ≠ ±1. By symmetry, it remains to test the point 𝑢 = 1 for 

which we have:  

lim sup
𝑟
<
→1

1 − 𝜑(𝑟)

1 − 𝑟
≥ lim sup

𝑛→∞

1 −  𝜑(𝑟𝑛+1)

1 − 𝑟𝑛+1
= limsup

𝑛→∞

1 − 𝑟𝑛
1 − 𝑟𝑛+1

= ∞ 

by the preceding point 3. Since |𝑣 −  𝜑(𝑟)| ≥ 1 − 𝜑(𝑟), this ends the proof of Lemma 

(3.2.22).  

We now want a good lower bound for the weights 𝑤𝑛 appearing in (42). To that effect, we 

apply Proposition (3.2.19) with  

𝑈 = Ω, 𝑎1 = 𝑒
𝑛, 𝑎2 = 𝑒

𝑛+1    and    𝑏𝑛 = 𝜓(𝑒
𝑛−1), 

as well as  

𝑅𝑛
′ = {𝑧 ∈ ℂ; 𝑒𝑛 − 𝑏𝑛 < ℛ𝑒 𝑧 < 𝑒

𝑛+1 + 𝑏𝑛 𝑎𝑛𝑑 |𝒥𝑚 𝑧| < 𝑏𝑛}. 
We have 𝑒𝑛 − 𝑏𝑛 > 𝑒

𝑛−1 for large n, since this amounts to  

𝑒𝑛 − 𝑒𝑛−1 > 𝑏𝑛 = 𝑒
𝑛−1𝐴(𝑒𝑛−1) , 𝑜𝑟   𝑒 − 1 >

1

𝐴(𝑒𝑛−1)
, 

which holds for large n since 𝐴(𝑡) tends to ∞ with t. We then observe that 𝑅𝑛
′ ⊂ Ω. 

Indeed, 𝑧 ∈ 𝑅𝑛
′ ⇒ ℛ𝑒 𝑧 > 𝑒𝑛 − 𝑏𝑛 > 𝑒

𝑛−1 and, since ψ is increasing, we have 𝜓(ℛ𝑒 𝑧) >
𝜓(𝑒𝑛−1) = 𝑏𝑛 > |𝒥𝑚 𝑧|. Therefore, we can apply (62) and get, for all 𝑛 ≥ 1: 

𝑑(𝑒𝑛, 𝑒𝑛+1; Ω) ≤
𝜋

4𝜓(𝑒𝑛−1)
(𝑒𝑛+1 − 𝑒𝑛) +

𝜋

2
≤ 𝐶0𝐴(𝑒

𝑛−1) = 𝐶0𝐴𝑛, 

where 𝐶0 is a numerical constant. By conformal invariance, we have as well 𝑑(𝑟𝑛, 𝑟𝑛+1) ≤
𝐶0𝐴𝑛. It then follows from (46) that:  

1 − 𝑟𝑛+1
1 − 𝑟𝑛

≥ exp(−2𝑑(𝑟𝑛, 𝑟𝑛+1)) ≥ exp(−2𝐶0𝐴𝑛).           (67) 

Now, we take ℎ(𝑧) = 𝑧 − 𝑟1 in Lemma (3.2.6) and use the ideal property (35) of the 

approximation numbers. We get, denoting by C the interpolation constant of the sequence 
(𝑟𝑛), and using the fact that ‖𝑀ℎ‖ = ‖ℎ‖∞ ≤ 2:  

𝑎𝑛(𝑩) ≤ ‖𝐽
−1‖𝑎𝑛(𝐶𝜑)‖𝑀ℎ‖‖𝐽‖ ≤ 2𝐶

2𝑎𝑛(𝐶𝜑).               (68) 
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Next, we choose 𝜂 = 1/𝐶0 in (66) and we set 𝑑 =  (𝑟2 − 𝑟1)/√2. Using Lemma (3.2.5) 

and relations (32), (42) and (67), we see that the weights 𝑤𝑛 associated with B verify:  

|𝑤𝑛| = ℎ(𝑟𝑛+1)
‖𝐾𝑟𝑛‖

‖𝐾𝑟𝑛+1‖
= ℎ(𝑟𝑛+1)√

1 − 𝑟𝑛+1
2

1 − 𝑟𝑛
2
≥
𝑟2 − 𝑟1

√2
√
1 − 𝑟𝑛+1
1 − 𝑟𝑛

 ≥ 𝑑 𝑒𝑥𝑝(−𝐶0𝐴𝑛) 

≥  𝑑𝜀𝑛 for all 𝑛 ≥ 1.                                                                    (69) 
Finally, using Lemma (3.2.6), (68) and (69):  

𝑎𝑛(𝐶𝜑) ≥
1

2𝐶2
𝑎𝑛(𝑩) ≥

1

2𝐶2
𝑑 𝜀𝑛 ≝ 𝛿𝜀𝑛 for all 𝑛 ≥ 1. 

       We thus get the desired conclusion (61) of Theorem (3.2.17). 

       We do not obtain a fairly good upper bound, and we shall content ourselves with the 

following result, whose proof is quite simple and, for the case 𝛼 = −1, partly contained in 

[80], but under a very cryptic form which is not easy to decipher.  

Theorem (3.2.23)[78]: Let 𝜑 be a Schur function and 𝛼 ≥ −1. Then, we have for the 

approximation numbers of 𝐶𝜑: ℬ𝛼 → ℬ𝛼 the upper bound:  

𝑎𝑛(𝐶𝜑) ≤ 𝐶 inf
0<ℎ<1

[𝑛
𝛼+1
2  (1 − ℎ)𝑛 +√

𝜌𝜑,𝛼 + 2(ℎ)

ℎ2+𝛼
] , 𝑛 = 1, 2,…   (70) 

where C is a constant. In particular, if 
𝜌𝜑,𝛼+2(ℎ)

ℎ2+𝛼
≤ 𝑒

−
ℎ

𝐴(ℎ) , where the function 𝐴: [0, 1] →

[0, 1] is increasing, with 𝐴(0) = 0 and with inverse function 𝐴−1, we have:  

𝑎𝑛(𝐶𝜑) ≤ 𝐶𝑛
𝛼+1
2  𝑒

−𝑛𝐴−1(
1
2𝑛
)
, 𝑛 = 1, 2,…               (71) 

The proof of (70) uses a contraction principle which was first proved for 𝛼 = −1 [74] and 

𝛼 = 0 [77], but is also valid for any 𝛼 ≥ −1, as follows from the forthcoming work [105].  

To prove Theorem (3.2.23), it will be convenient to prove first the following simple 

lemma.  

Lemma (3.2.24)[78]: Let 𝑛 be a positive integer, 𝑔 ∈ ℬ𝛼 and 𝑓(𝑧) = 𝑧𝑛 𝑔(𝑧). Then, we 

have:  

‖𝑔‖𝛼 ≤ 𝐶𝑛
𝛼+1
2 ‖𝑓‖𝛼 .                                            (72) 

Proof. Let 𝑤𝑛 =
𝑛𝛤(2+𝛼)

𝛤(𝑛+2+𝛼)
. We first observe that  

𝑤𝑘
𝑤𝑘+𝑛

≤ 𝐶𝑛𝛼+1, ∀𝑘 ≥ 0, ∀𝑛 ≥ 1.                   (73) 

Indeed, we have:  

𝑤𝑘
𝑤𝑘+𝑛

=
𝑘!

(𝑘 + 𝑛)!

𝛤(𝑘 + 𝛼 + 2 + 𝑛)

𝛤(𝑘 + 𝛼 + 2)
=∏

(𝑘 + 𝑗 + 𝛼 + 1)

(𝑘 + 𝑗)

𝑛

𝑗=1

≤∏
𝑗 + 𝛼 + 1

𝑗

𝑛

𝑗=1

 

=∏(1 +
𝛼 + 1

𝑗
)

𝑛

𝑗=1

≤ exp [(𝛼 + 1)∑
1

𝑗

𝑛

𝑗=1

] ≤  𝐶𝑛𝛼+1, 

which proves (73).  

Now, if 𝑓(𝑧) = ∑ 𝑎𝑘 𝑧
𝑘∞

𝑘=𝑛 , we have 𝑔(𝑧) = ∑ 𝑎𝑘+𝑛𝑧
𝑘∞

𝑘=0  so that, using (73):  

‖𝑔‖𝛼
2 =∑|𝑎𝑘+𝑛|

2𝑤𝑘

∞

𝑘=0

=∑|𝑎𝑙|
2𝑤𝑙−𝑛

∞

𝑙=𝑛

≤ 𝐶𝑛𝛼+1∑|𝑎𝑙|
2𝑤𝑙

∞

𝑙=𝑛

= 𝐶𝑛𝛼+1‖𝑓‖𝛼
2 , 
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proving (72).  

       We shall now majorize 𝑎𝑛+1(𝐶𝜑), but provided that we change the constant C, this 

makes no difference with majorizing an (𝐶𝜑). The choice of the approximating operator R 

of rank ≤  𝑛 for 𝐶𝜑 is quite primitive, but in counterpart we shall estimate ‖𝐶𝜑 − 𝑅‖ 

rather sharply. We denote by 𝑃𝑛 the projection operator defined by 𝑃𝑛𝑓 = ∑ 𝑓(𝑘)𝑧𝑘𝑛−1
𝑘=0  

and we take 𝑅 = 𝐶𝜑 ∘ 𝑃𝑛, i.e., if we have 𝑓(𝑧) = ∑ 𝑓(𝑘)𝑧𝑘∞
𝑘=0 ∈ ℬ𝛼, then 𝑅(𝑓) =

∑ 𝑓(𝑘)𝜑𝑘𝑛−1
𝑘=0  , so that (𝐶𝜑 − 𝑅)𝑓 = 𝐶𝜑(𝑟), with, making use of (72):  

𝑟(𝑧) = ∑ 𝑓(𝑘)𝑧𝑘
∞

𝑘=𝑛

= 𝑧𝑛𝑠(𝑧), with ‖𝑠‖𝛼
2 ≤ 𝐶𝑛𝛼+1‖𝑟‖𝛼

2 , ‖𝑟‖𝛼 ≤ ‖𝑓‖𝛼 .     (74) 

Assume that  ‖𝑓‖𝛼 ≤ 1, fix 0 < ℎ < 1 and denote by µℎ the restriction of the measure 

𝐴𝜑,𝛼+2 to the annulus 1 − ℎ < |𝑧| ≤ 1. Then, we have:  

‖(𝐶𝜑 − 𝑅)𝑓‖𝛼
2
= ‖𝐶𝜑(𝑟)‖𝛼

2
= ∫|𝑟(𝑧)|2𝑑 𝐴𝜑,𝛼+2(𝑧)

�̅�

 

≤ (1 − ℎ)2𝑛∫ |𝑠(𝑧)|2𝑑 𝐴𝜑,𝛼+2(𝑧)
|𝑧|≤1−ℎ

 + ∫ |𝑟(𝑧)|2𝑑𝐴𝜑,𝛼+2(𝑧)
1−ℎ<|𝑧|≤1

 

≤ (1 − ℎ)2𝑛∫ |𝑠(𝑧)|2𝑑𝐴𝜑,𝛼+2(𝑧)
𝔻

+∫ |𝑟(𝑧)|2𝑑µℎ(𝑧)
�̅�

  

= (1 − ℎ)2𝑛‖𝐶𝜑(𝑠)‖𝛼
2
+∫ |𝑟(𝑧)|2𝑑µℎ(𝑧)

�̅�

  

≤ 𝐶 [(1 − ℎ)2𝑛‖𝑠‖𝛼
2 +∫ |𝑟(𝑧)|2𝑑µℎ(𝑧)

�̅�

] 

≤ 𝐶 [𝑛𝛼+1(1 − ℎ)2𝑛 + sup
0<𝑡≤ℎ

𝜌𝜑,𝛼+2(𝑡)

𝑡2+𝛼
] 

if we use (74), as well as (37) under the form  

∫ |𝑟(𝑧)|2𝑑µℎ(𝑧)
�̅�

≤  𝐶 sup
0<𝑡≤ℎ

𝜌𝜑,𝛼+2(𝑡)

𝑡2+𝛼
‖𝑟‖𝛼

2  

and we know that ‖𝑟‖𝛼 ≤ ‖𝑓‖𝛼 ≤ 1. 

To get rid of the supremum with respect to t, we make use of the following inequality, 

which holds for ℎ ≤ 1 − |𝜑(0)| and 0 < 𝜀 ≤ 1:  

𝜌𝜑,𝛼+2(𝜀ℎ) ≤ 𝐶𝜀
𝛼+2𝜌𝜑,𝛼+2(ℎ).                                 (75) 

For 𝛼 = 0 or 𝛼 = −1, this follows respectively from [74], and from [77]. The general case 

is proved in [105]. Setting 𝑡 = 𝜀ℎ for 0 < 𝑡 ≤ ℎ, this also reads 
𝜌𝜑,𝛼+2(𝑡)

𝑡𝛼+2
≤  𝐶

𝜌𝜑,𝛼+2(ℎ)

ℎ𝛼+2
 , 

and we can forget the supremum in t in the previous inequalities. Taking square roots, we 

get the relation (70).  

       When 𝜌𝜑,𝛼+2(ℎ)/ℎ
2+𝛼 ≤ 𝑒

−
ℎ

𝐴(ℎ) , let us take for h the nearly optimal value ℎ =

𝐴−1(1/2𝑛), so that ℎ/𝐴(ℎ) = 2𝑛ℎ. We then have from (70), since (1 − ℎ)2𝑛 ≤ 𝑒−2𝑛ℎ:  

𝑎𝑛+1(𝐶𝜑)
2
≤ ‖𝐶𝜑 − 𝑅‖𝛼

2
≤ 𝐶𝑛𝛼+1 [𝑒−2𝑛ℎ + 𝑒

−
ℎ
𝐴(ℎ)]  ≤ 2𝐶𝑛𝛼+1𝑒−2𝑛𝐴

−1(
1
2𝑛
)

, 

proving (71), and ending the proof of Theorem (3.2.23).  

       Let us now indicate three corollaries, which improve results of [72], [102], [77] 

respectively.  
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Corollary (3.2.25)[78]: Suppose that 𝜌𝜑,𝛼+2(ℎ) ≤ 𝐶ℎ
(2+𝛼)𝛽 for some 𝛽 > 1. Then:  

𝑎𝑛(𝐶𝜑) ≤ 𝐶𝑛
−
(𝛽−1)(𝛼+2)

2 (log 𝑛)
(𝛽−1)(𝛼+2)

2 . 

In particular, 𝐶𝜑 belongs to the Schatten class 𝑆𝑝 = 𝑆𝑝(ℬ𝛼) for each 𝑝 >
2

(𝛽−1)(𝛼+2)
 . 

Proof. Set 𝛾 = (𝛽 − 1)(𝛼 + 2)/2, 𝑎 = (𝛼 + 1)/2, and 𝑐 = 𝑎 + 𝛾. If we apply (70) of 

Theorem (3.2.23) with the value ℎ = 𝑐 log 𝑛/𝑛 which satisfies 𝑛𝑎𝑒−𝑛ℎ = 𝑛−𝛾 , as well as 

the inequality (1 − ℎ)𝑛 ≤ 𝑒−𝑛ℎ, we get:  

𝑎𝑛(𝐶𝜑) ≤ 𝐶 [𝑛
−𝛾 + (

log𝑛

𝑛
)
𝛾

] ≤  𝐶 (
log𝑛

𝑛
)
𝛾

, 

ending the proof.  

       In [72], we had only the assertion on Schatten classes, for the single value 𝛼 = −1, 

and not the upper bound for the individual approximation numbers 𝑎𝑛(𝐶𝜑).  

       In particular, we can get 𝑎𝑛(𝐶𝜑) ≤ 𝐶𝑒
−

𝑛

log(𝑛+1) and 𝐶𝜑 is in every Schatten class 

𝑆𝑝(ℬ𝛼), 𝑝 > 0.  

       Notice that the sequence (𝜀𝑛) in the statement cannot be dispensed with. Indeed, if 𝜑 

is surjective, we surely have ‖𝜑‖∞ = 1! And we know from Theorem (3.2.12) that 

𝛽(𝐶𝜑) = 1 in that case.  

       We begin with a lemma of independent interest.  

Lemma (3.2.26)[78]: Let 𝛿: (0, 1] → ℝ be a positive and non-decreasing function. Then 

there exists a Schur function 𝜑 with the following properties:  

(a) 𝜑:𝔻 → 𝔻 is surjective and 4-valent;  

(b) 𝜌𝜑,𝛼+2(ℎ) ≤ 𝛿(ℎ), for ℎ > 0 small enough.  

Proof. We begin with the case 𝛼 = −1. Set, for 𝑎 = 1/2: 

𝛷𝑎(𝑧) =
𝑎 − 𝑧

1 − 𝑎𝑧
, 𝐵 = 𝛷𝑎

2, 

and 𝐶 =
1+𝑎

2(1−𝑎)
= 3/2. Note that 𝐵 (

2𝑎

𝑎+1
) = 𝐵(0). Let now  

𝑏𝑛 =
1

4𝑛𝜋
, 𝜀(ℎ) =

1

2
𝛿 (
ℎ

𝐶
) , 𝜀𝑛 = 𝜀(𝑏𝑛+1). 

In the proof of Theorem (3.2.17) of [102], using an argument of harmonic measure and of 

barrier, we have found a 2-valent symbol 𝜑1 with 𝜑1(𝔻) = 𝔻
∗ such that, noting 𝜌𝜑 for 

𝜌𝜑,1: 

𝑏𝑛+1 < ℎ ≤ 𝑏𝑛 ⇒ 𝜌𝜑1(ℎ) ≤ 𝜀𝑛.                            (76) 

This gives 𝜌𝜑1(ℎ) ≤ 𝜀(𝑏𝑛+1) ≤ 𝜀(ℎ). Let now, as in [102], 𝜑 = 𝐵 ∘ 𝜑1. This Schur 

function is surjective (since 𝜑(𝔻) = 𝐵(𝔻∗) = 𝐵(𝔻) = 𝔻), and 4-valent. Moreover, if 𝐼 =

 (𝑢, 𝑣) is an arc of 𝕋 of length ℎ <
1

2
 and 𝐽 =  (

𝑢

2
,
𝑣

2
), we have 𝐵−1(𝐼) ⊂ 𝛷𝑎(𝐽) ∪

𝛷𝑎 (−𝐽) = 𝐼1 ∪ 𝐼2, where 𝐼1, 𝐼2 are two arcs of 𝕋 of length at most ‖𝑃𝑎‖∞ (ℎ/2) = 𝐶ℎ, 

since 𝛷𝑎 being an inner function, we have [111], 𝑃𝑎 being the Poisson kernel at a:  

𝑚𝛷𝑎 = 𝑃𝑎𝑚. 

Hence, using (76), we obtain:  

𝑚𝜑(𝐼) = 𝑚𝜑1(𝐵
−1(𝐼)) ≤ 𝑚𝜑1(𝐼1) + 𝑚𝜑1(𝐼2) ≤ 2𝜌𝜑1(𝐶ℎ) ≤ 2𝜀(𝐶ℎ) = 𝛿(ℎ), 

and 𝜌𝜑(ℎ) ≤ 𝛿(ℎ) for small h, by passing to the supremum on all I’s.  
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For the general case 𝛼 ≥  −1, we use the following extension of an inequality from [77] 

(which treats the case 𝛼 = 0, see Remark before Corollary (3.2.9)1):  

Lemma (3.2.27)[78]: For small ℎ, namely 0 < ℎ < (1 − |𝜑 (0)|)/4, we have, for every 

𝛼 > −1: 

𝜌𝜑,𝛼+2(ℎ) ≤ 𝐶[𝜌𝜑(𝐶ℎ)]
𝛼+2
.                              (77) 

Proof. Let us define, as in [117], the generalized Nevanlinna counting function 𝑁𝜑,𝛼+2 by 

the formula  

𝑁𝜑,𝛼+2(𝑤) = ∑ [log (
1

|𝑧|
)]
𝛼+2

𝜑(𝑧)=𝑤

, 𝑤 ∈ 𝔻\{𝜑(0)}. 

The case 𝛼 = −1 corresponds to the usual Nevanlinna counting function, which will be 

denoted by 𝑁𝜑. The partial Nevanlinna counting function 𝑁𝜑(𝑟, 𝑤) is defined, for 0 ≤ 𝑟 ≤

1, by:  

𝑁𝜑(𝑟, 𝑤) = ∑ log+(𝑟/|𝑧|)

𝜑 (𝑧)=𝑤

, 

so that 𝑁𝜑(1,𝑤) = 𝑁𝜑(𝑤).  

Since 𝛼 + 2 ≥ 1, we have the obvious but useful inequality:  

𝑁𝜑,𝛼+2(𝑤) ≤ [𝑁𝜑(𝑤)]
𝛼+2
.                            (78) 

We shall also make use of the following identity, due to Shapiro ([117], where a weight 

1/𝑟 is missing), and which can easily be checked after two integrations by parts:  

𝑁𝜑,𝛼+2(𝑤) = (𝛼 + 2)(𝛼 + 1)∫ 𝑁𝜑(𝑟, 𝑤) [log (
1

𝑟
)]
𝛼 𝑑𝑟

𝑟

1

0

.       (79) 

As it was noticed in [77], this formula reads, for w close to the boundary, as follows, for 

0 < ℎ < (1 − |𝜑(0)|)/4 and |𝑤| > 1 − ℎ:  

𝑁𝜑,𝛼+2(𝑤) = (𝛼 + 2)(𝛼 + 1)∫ 𝑁𝜑(𝑟, 𝑤) [log (
1

𝑟
)]
𝛼 𝑑𝑟

𝑟

1

1
3

.          (80) 

Under the same conditions on h and w, this obviously implies:  

𝑁𝜑,𝛼+2(𝑤) ≥
1

𝐶
∫ 𝑁𝜑(𝑟, 𝑤)(1 − 𝑟

2)𝛼  𝑟𝑑𝑟
1

1
3

=
1

𝐶
∫ 𝑁𝜑(𝑟, 𝑤)(1 − 𝑟

2)𝛼 𝑟𝑑𝑟
1

0

. 

Now, using the same arguments as in [77] and in particular using (80) for 𝜑𝑟(𝑧) = 𝜑(𝑟𝑧), 
the identity 𝑁𝜑(𝑟, 𝑤) = 𝑁𝜑𝑟(𝑤) and an integration in polar coordinates, we get:  

sup
|𝑤|≥1−ℎ

𝑁𝜑,𝛼+2(𝑤)  ≥
1

𝐶
𝜌𝜑,𝛼+2 (

ℎ

𝐶
).                   (81) 

The end of the proof is easy: changing h into 𝐶ℎ and using successively (81) and (78), we 

get for small h, depending on 𝜑:  

𝜌𝜑,𝛼+2(ℎ) ≤ 𝐶 sup
|𝑤|≥1−𝐶ℎ

𝑁𝜑,𝛼+2(𝑤) ≤ 𝐶 sup
|𝑤|≥1−𝐶ℎ

[𝑁𝜑(𝑤)]
𝛼+2

≤ 𝐶[𝜌𝜑(𝐶ℎ)]
𝛼+2
, 

the last inequality coming from [75]. This ends the proof of (77).  

Going back to the proof of Lemma (3.2.26), if we apply the already settled case 𝛼 = −1 to 

the function 𝛿(ℎ) = [
𝛿(
ℎ

𝐶
)

𝐶
]

1

𝛼+2

 , we obtain a surjective and 4-valent Schur function 𝜑 such 

that:  
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𝜌𝜑,𝛼+2(ℎ) ≤ 𝐶[𝜌𝜑(𝐶ℎ)]
𝛼+2

≤ 𝐶[𝛿(𝐶ℎ)]
𝛼+2

= 𝛿(ℎ), 

for h small enough.  

Corollary (3.2.28)[78]: Let (𝜀𝑛) a sequence of positive numbers which tends to 0. Then, 

there exists a Schur function 𝜑 with the following properties:  

(a) 𝜑:𝔻 → 𝔻 is surjective and 4-valent; 

(b) 𝑎𝑛(𝐶𝜑) ≤ 𝐶𝑒
−𝑛𝜀𝑛 , 𝑛 = 1, 2,… 

Proof. Set 𝑎 = (𝛼 + 1)/2. Provided that we replace (𝜀𝑛) by the decreasing sequence (𝜀𝑛
′ ) 

with 𝜀𝑛
′ =

1

𝑛
+ sup
𝑘≥𝑛

𝜀𝑘 ≥ 𝜀𝑛, we can assume that (𝜀𝑛) decreases. Let 𝐴: [0, 1] → [0, 1] be a 

function such that 𝐴(0) = 0, and which increases (as well as 𝐴(𝑡)/𝑡) so slowly that 

𝐴(𝜀𝑛 + 𝑎 (log 𝑛/𝑛)) ≤ 1/2𝑛; therefore 𝐴−1(1/2𝑛) ≥ 𝜀𝑛 + 𝑎(log 𝑛/𝑛) and  

𝑛𝑎𝑒
−𝑛𝐴−1(

1
2𝑛
)
≤ 𝑒−𝑛𝜀𝑛 . 

We now apply Lemma (3.2.26) to the non-decreasing function 𝛿(ℎ) = ℎ2+𝛼𝑒
−

ℎ

𝐴(ℎ) to get 

the result, in view of (71) of Theorem (3.2.23).  

       Our last corollary involves Hardy–Orlicz spaces 𝐻𝜓 and Bergman–Orlicz spaces ℬ𝜓. 

For the definitions, see [74].  

Corollary (3.2.29)[78]: There exists a Schur function 𝜑 and an Orlicz function ψ such that 

𝐶𝜑: 𝐻
𝜓 → 𝐻𝜓 is compact whereas 𝐶𝜑: ℬ

𝜓 → ℬ𝜓 is not compact. Moreover, the 

approximation numbers 𝑎𝑛(𝐶𝜑) of 𝐶𝜑: ℬ𝛼 → ℬ𝛼 satisfy the upper estimate 𝑎𝑛(𝐶𝜑) ≤

𝑎𝑒−𝑏√𝑛 where 𝑎, 𝑏 are positive constants independent of n, and therefore 𝐶𝜑 belongs to 

⋂ 𝑆𝑝(ℬ𝛼)𝑝>0 . 

Proof. Let 𝛼 ≥ −1 be fixed. The Schur function constructed in the proof of Theorem 

(3.2.18) of [77] satisfies the two first assertions, as well as 𝜌𝜑(ℎ)/ℎ ≤ 𝑒
−
𝑑

ℎ for some 

positive constant 𝑑 > 0. We now apply (77) to get for small h:  

𝜌𝜑,𝛼+2(ℎ)

ℎ𝛼+2
≤ 𝐶

[𝜌𝜑(𝐶ℎ)]
𝛼+2

ℎ𝛼+2
≤ 𝐶𝛼+3𝑒−

(𝛼+2)𝑑
𝐶ℎ ≤ 𝑎𝑒−

𝑏
ℎ 

for positive constants a and b. We can thus apply (71) of Theorem (3.2.23), for some 𝛿 >

0, with the increasing function 𝐴(ℎ) = ℎ2/𝛿 (hence 𝐴−1(𝑥) = √𝛿𝑥) to get the result, 

diminishing slightly b to absorb the power factor 𝑛
(𝛼+1)

2  (see [89], [101], [81]).  

sup
1≤𝑘≤𝑛

[𝑘𝛼𝑒𝑘(𝑇)] ≤ 𝐶𝛼 sup
1≤𝑘≤𝑛

[𝑘𝛼𝑎𝑘(𝑇)] , ∀𝛼 > 0.          (82) 

(𝑎𝑛(𝑇)) ∈ ℓ𝑞  ⇒ (𝑒𝑛(𝑇)) ∈ ℓ𝑞 , ∀𝑞 > 0.               (83) 
The converse of (83) does not hold in Banach spaces, but it does for operators between 

Hilbert spaces, by polar decomposition. More precisely, we have [81] 𝑎𝑛(𝑇) ≤ 4𝑒𝑛(𝑇) 

and, in particular, (𝑒𝑛(𝑇)) ∈ ℓ𝑞 if and only if (𝑎𝑛(𝑇)) ∈ ℓ𝑞.  

       We now have the following improved version of Theorem (3.2.9). Recall that 

𝜑#(𝑧) =
|𝜑′(𝑧)|(1−|𝑧|2)

1−|𝜑(𝑧)|2
 and [𝜑] = ‖𝜑#‖

∞
. 

Theorem (3.2.30)[78]: Let 𝑇 = 𝐶𝜑 be a compact composition operator on ℬ𝛼, and 𝛾(𝑇) =

lim inf
𝑛→∞

[𝑒𝑛(𝑇)]
1

𝑛 . Then:  

𝛾(𝑇) ≥ [𝜑]
1
2.                                           (84) 
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Proof. We proceed as in the proof of Theorem (3.2.9). First, recall that the entropy 

numbers 𝑒𝑛(𝑇) also have the ideal property [101], namely:  

𝑒𝑛(𝐴𝑇 𝐵) ≤  ‖𝐴‖𝑒𝑛(𝑇)‖𝐵‖. 
Then, we use an improved Weyl-type inequality for entropy numbers, due to Carl and 

Triebel [90], in which (𝜆𝑛(𝑇))𝑛≥1 denotes the sequence of eigenvalues of T rearranged in 

non-increasing order of moduli and 𝐶 = √2: 

(∏|𝜆𝑘(𝑇)|

𝑛

𝑘=1

)

1
𝑛

≤ 𝐶𝑒𝑛 (𝑇).                            (85) 

It should be noted that this inequality can itself be improved [95]:  

(∏𝑎𝑘(𝑇)

𝑛

𝑘=1

)

1
𝑛

≤ 𝐶𝑒𝑛(𝑇).                              (86) 

Yet, the tempting similar inequality (∏ |𝜆𝑘(𝑇)|
𝑛
𝑘=1 )

1

𝑛 ≤ 𝐶𝑎𝑛(𝑇) is wrong (even the 

inequality |𝜆𝑛(𝑇)| ≤ 𝐶𝑎𝑛(𝑇) is wrong) as follows from an example of [101]. Note that 

(86) implies the following:  

𝑎𝑛(𝑇) ≥ 𝛿𝑟
𝑛 ⇒ 𝑒𝑛(𝑇) ≥

𝛿

𝐶
𝑟
1
2𝑟
𝑛
2 . 

This might explain why a square root appears in (84), and tends to indicate that [𝜑] should 

appear instead of [𝜑]2 in Theorem (3.2.9).  

       Now, for every 𝑎 ∈ 𝔻, let again 𝛷𝑎 be defined by 𝛷𝑎(𝑧) =
𝑎−𝑧

1−𝑎𝑧
 , for 𝑧 ∈ 𝔻. Set 𝑏 =

𝜑(𝑎) and define 𝜓 = 𝛷𝑏 ∘ 𝜑 ∘ 𝛷𝑎. We already know that 0 is a fixed point of 𝜓 and that 

𝐶𝜓 = 𝐶𝛷𝑎 ∘ 𝐶𝜑 ∘ 𝐶𝛷𝑏  . We may assume that |𝜓′(0)| = 𝜑#(𝑎) ≠ 0. The sequence of 

eigenvalues of 𝐶𝜓 is then, as we have seen, (𝜓′(0)𝑛)𝑛≥0 [83]. The Eq. (85) then gives us, 

setting 𝑟 = |𝜓′(0)| = 𝜑#(𝑎):  

𝑒𝑛(𝐶𝜓) ≥
1

𝐶
(∏𝑟𝑘
𝑛−1

𝑘=0

)

1
𝑛

=
1

𝐶
𝑟
𝑛−1
2 . 

This clearly gives us 𝛾(𝐶𝜓) ≥ √𝑟. Now, since 𝐶𝛷𝑎 and 𝐶𝛷𝑏 are invertible operators, the 

relation 𝐶𝜓 = 𝐶𝛷𝑎 ∘ 𝐶𝜑 ∘ 𝐶𝛷𝑏 and the ideal property of the numbers 𝑒𝑛(𝑇) imply that 

𝛾(𝐶𝜑) = 𝛾(𝐶𝜓), and therefore, with the notation of (50), 𝛾(𝐶𝜑) ≥ (𝜑
#(𝑎))

1

2
 , for all 𝑎 ∈

𝔻. Passing to the supremum on 𝑎 ∈ 𝔻, we end the proof of Theorem (3.2.30). 

We shall suppose that 𝛼 = −1, i.e., we are concerned with the Hardy space 𝐻2. Fix 

0 < 𝜃 < 1. Denote by ℍ = {𝑧 ∈ ℂ;ℛ𝑒 𝑧 > 0} the right half-plane, by 𝑇:𝔻 → ℂ\{−1} the 

involutive transformation defined by 𝑇(𝑧) =
1−𝑧

1+𝑧
, which maps 𝔻 to ℍ, and by 𝜏𝜃 the 

transformation 𝑧 ∈ ℍ → 𝑧𝜃 ∈ ℍ. Recall that the associated lens map 𝜑𝜃: 𝔻 → 𝔻 is:  

𝜑𝜃 = 𝑇 ∘ 𝜏𝜃 ∘ 𝑇. 
It is known that the associated composition operator on 𝐻2 is in all Schatten classes 𝑆𝑝 

[84]. Alternatively, one could use Luecking’s criterion [79]. Therefore, its approximation 

numbers decrease rather quickly. Still more precisely, adapting techniques of Parfenov 

[80], we might show the following (where 𝛽𝜃 , 𝛾𝜃 , … are positive constants):  
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𝑎𝑛(𝐶𝜑𝜃) ≤ 𝛾𝜃𝑒
−𝛽𝜃√𝑛.                                    (87) 

We do not detail this adaptation of Parfenov’s methods from Carleson embeddings to 

composition operators here (see [63]), but shall dwell on the converse inequality, which is 

not proved in [80]. First, we show that there is no converse to the inequality of Theorem 

(3.2.9).  

Proposition (3.2.31)[78]: The value of [𝜑𝜃] for the lens map is  

[𝜑𝜃] = 𝜃.                                                            (88) 

In particular, [𝜑𝜃] can be as small as we wish, although 𝛽(𝐶𝜑𝜃) = 1.  

       Recall that 𝛽 is defined in (34) and [𝜑] in (47).  

Proof. First note the simple  

Lemma (3.2.32)[78]: Let 𝑧 ∈ 𝔻 and 𝑣 = 𝑇(𝑧) ∈ ℍ. Then:  

|𝑇′(𝑧)|(1 − |𝑧|2) = 2ℛ𝑒(𝑇(𝑧))   and  
|𝑇′(𝑣)|

1 − |𝑇(𝑣)|2
=

1

2ℛ𝑒 𝑣
 . 

The two equalities are the same because |𝑇′(𝑣)| =
1

|𝑇′(𝑧)|
 in view of = 𝑇−1. For the first 

one, we have:  

|𝑇′(𝑧)|(1 − |𝑧|2) =
2(1 − |𝑧|2)

|1 + 𝑧|2
= 2ℛ𝑒 (𝑇(𝑧)). 

Let now 𝑧 ∈ 𝔻 and 𝑤 = 𝑇(𝑧) ∈ ℍ. By the chain rule, we have:  

𝜑𝜃
′ (𝑧) = 𝑇′(𝜏𝜃(𝑤))𝜏𝜃

′ (𝑤)𝑇′(𝑧). 
Taking moduli and using the lemma with z and 𝑣 = 𝜏𝜃(𝑤), we obtain:  

|𝜑𝜃
′ (𝑧)|(1 − |𝑧|2)

1 − |𝜑𝜃(𝑧)|
2

=
|𝑇′(𝜏𝜃(𝑤))|

1 − |𝑇(𝜏𝜃(𝑤))|
2
|𝜏𝜃
′ (𝑤)||𝑇′(𝑧)|(1 − |𝑧|2) =

|𝜏𝜃
′ (𝑤)|ℛ𝑒 𝑤

ℛ𝑒(𝜏𝜃(𝑤))
 . 

Now, setting 𝑤 = 𝑟𝑒𝑖𝑡 with 𝑟 > 0 and −𝜋/2 < 𝑡 < 𝜋/2, this writes as well:  

𝜑𝜃
#(𝑧) =

𝜃𝑟𝜃−1𝑟 cos 𝑡

𝑟𝜃 cos 𝜃𝑡
=
𝜃 cos 𝑡

cos 𝜃𝑡
. 

Using the fact that w runs over ℍ as z runs over 𝔻 and that the cosine decreases on (0,
𝜋

2
), 

we obtain (88) by taking 𝑡 = 0. 

       The proof of the second assertion is obvious in view of Theorem (3.2.12) since 
‖𝜑𝜃‖∞ = 1. 

We now give the following more precise form (the small Roman and Greek letters 

𝑎𝜃 , … , 𝛽𝜃 , … will denote positive constants depending only on 𝜃):  

       The upper bound is (87). For the lower bound, we shall need two simple lemmas.  

Lemma (3.2.33)[78]: Let 0 < 𝜎 < 1 and 𝑢 =  (𝑢𝑗) be a sequence of points of 𝔻 such that 
1−|𝑢𝑗+1|

1−|𝑢𝑗|
≤ 𝜎. Then, the Carleson constant 𝛿𝑢 of the sequence u satisfies:  

𝛿𝑢 ≥ exp (−
𝑎

1 − 𝜎
) , 𝑤𝑖𝑡ℎ 𝑎 =

𝜋2

2
. 

Proof. We use the following fact [97]:  

𝛿𝑢 ≥∏(
1 − 𝜎𝑗

1 + 𝜎𝑗
)

2∞

𝑗=1

.                                              (89) 

This implies log 𝛿𝑢 ≥ 2∑ log (
1−𝜎𝑗

1+𝜎𝑗
)∞

𝑗=1 . Now, expanding the logarithm in power series 

and permuting sums, we note that:  
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2∑log(
1 + 𝜎𝑗

1 − 𝜎𝑗
)

∞

𝑗=1

= 4∑
𝜎2𝑘+1

(2𝑘 + 1)(1 − 𝜎2𝑘+1)

∞

𝑘=0

≤ 4∑
1

(2𝑘 + 1)2(1 − 𝜎)

∞

𝑘=0

=
𝑎

1 − 𝜎
, 

where we used 1 − 𝜎2𝑘+1 ≥ (2𝑘 + 1)(1 − 𝜎)𝜎2𝑘+1 and ∑
1

(2𝑘+1)2
∞
𝑘=0 = 𝜋2/8. So that 

𝛿𝑢 ≥ exp (−
𝑎

1−𝜎
) , which was to be proved.  

The second lemma is similar.  

Lemma (3.2.34)[78]: Let 0 < 𝜎 < 1, 𝑢𝑗 = 1 − 𝜎
𝑗 , 𝑣𝑗 = 𝜑𝜃(𝑢𝑗) and 𝑣 = (𝑣𝑗). Then, the 

Carleson constant 𝛿𝑣 of the sequence v satisfies:  

𝛿𝑣 ≥ exp (−
𝑎𝜃
1 − 𝜎

) , 𝑤𝑖𝑡ℎ   𝑎𝜃 =
𝜋2

2𝜃𝜃
 

Proof. We first note that 1 − 𝜑𝜃(𝑟) =
2(1−𝑟)𝜃

(1+𝑟)𝜃+(1−𝑟)𝜃
 , and so  

1 − 𝑣𝑗+1
1 − 𝑣𝑗

= 𝜎𝜃
𝜎𝑗𝜃 + (2 − 𝜎𝑗)

𝜃

𝜎(𝑗+1)
𝜃
+ (2 − 𝜎𝑗+1)𝜃

= 𝜎𝑗 , 

with 𝜎𝑗 ≤ 𝜎
′ = 1 −

𝜃

2
2𝜃(1 − 𝜎). To see this, observe that:  

1 − 𝜎𝑗 =
(2 − 𝜎𝑗+1)

𝜃
− (2𝜎 − 𝜎𝑗+1)

𝜃

𝜎(𝑗+1)
𝜃
+ (2 − 𝜎𝑗+1)𝜃

≝
𝑁

𝐷
≥ 𝜃2𝜃−1(1 − 𝜎) = 1 − 𝜎′. 

Indeed, the function 𝑓(𝑥) = 𝑥𝜃 + (2 − 𝑥)𝜃 increases on [0, 1], so 𝔻 ≤ 𝑓(1) = 2. On the 

other hand, the mean-value theorem gives 𝑁 = 2(1 − 𝜎)𝜃𝑐𝜃−1 ≥  𝜃(1 − 𝜎)2𝜃 for some 

𝑐 ∈ (0, 2).Lemma (3.2.33) then gives the result for the sequence 𝑣. 

Proposition (3.2.35)[78]: There exist constants 𝑏𝜃 , 𝑐𝜃 , 𝛽𝜃 , 𝛾𝜃 with 𝑏𝜃 = 𝜋√
2(1−𝜃)

𝜃
 such 

that:  

𝑐𝜃𝑒
−𝑏𝜃√𝑛 ≤ 𝑎𝑛(𝐶𝜑𝜃) ≤ 𝛾𝜃𝑒

−𝛽𝜃√𝑛.                       (90) 

In particular, we have 𝛽(𝐶𝜑𝜃) = 1 and 𝐶𝜑𝜃 is in all Schatten classes 𝑆𝑝, 𝑝 > 0 but its 

approximation numbers do not decrease exponentially.  

Proof. Fix an integer 𝑛 ≥ 1, and take (𝑢𝑗), (𝑣𝑗) as in Lemma (3.2.34). We have 𝜑𝜃(0) =

0, |𝜑𝜃(𝑧)| ≤ |𝑧| and so for 0 < 𝑟 < 1: 

1 − 𝑟2

1 − 𝜑𝜃(𝑟)
2
≥

1 − 𝑟

1 − 𝜑𝜃(𝑟)
=
(1 − 𝑟)[(1 − 𝑟)𝜃 + (1 + 𝑟)𝜃]

2(1 − 𝑟)𝜃
 ≥
(1 − 𝑟)1−𝜃

2
, 

implying  

1 − 𝑢𝑗
2

1 − 𝑣𝑗
2 ≥

1

2
𝜎𝑛(1−𝜃), for 1 ≤ 𝑗 ≤ 𝑛. 

Let now R be an operator of rank< 𝑛. There exists a function 𝑓 = ∑ 𝜆𝑗𝐾𝑢𝑗
𝑛
𝑗=1 ∈  𝐻2 ∩

𝑘𝑒𝑟 𝑅 with  ‖𝑓‖  = 1. We thus have, denoting by 𝐶𝑢 and 𝐶𝑣 the interpolation constants of 

the sequences u and v, and using Lemma (3.2.4) twice:  

‖𝐶𝜑𝜃
∗ − 𝑅‖

2
≥ ‖𝐶𝜑𝜃

∗ (𝑓) − 𝑅(𝑓)‖
2
 =  ‖𝐶𝜑𝜃

∗ (𝑓)‖
2
= ‖∑𝜆𝑗𝐾𝑣𝑗

𝑛

𝑗=1

‖

2
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≥ 𝐶𝑣
−2∑|𝜆𝑗|

2
‖𝐾𝑣𝑗‖

2
𝑛

𝑗=1

= 𝐶𝑣
−2∑

|𝜆𝑗|
2

1 − 𝑣𝑗
2

𝑛

𝑗=1

  

≥
1

2

𝐶−2

𝑣
𝜎𝑛(1−𝜃 )∑

|𝜆𝑗|
2

1 − 𝑢𝑗
2

𝑛

𝑗=1

≥
1

2
 𝐶𝑢
−2𝐶𝑣

−2𝜎𝑛(1−𝜃)‖𝑓‖2  =
1

2
 𝐶𝑢
−2𝐶𝑣

−2𝜎𝑛(1−𝜃). 

Therefore, 𝑎𝑛(𝐶𝜑𝜃) =  𝑎𝑛(𝐶𝜑𝜃
∗ ) ≥

1

2
𝐶𝑢
−1𝐶𝑣

−1𝜎
𝑛(1−𝜃 )

2 . But it follows from (39), Lemmas 

(3.2.33) and (3.2.34) that 𝐶𝑢, 𝐶𝑣 satisfy, provided that we now take the value 𝑎𝜃 =
𝜋2

𝜃
>

𝜋2

2
+

𝜋2

2𝜃𝜃
 , since 𝜃 + 21−𝜃 < 2, to absorb the logarithmic factor of (39):  

𝐶𝑢𝐶𝑣 ≤ 𝑐𝜃
−1 exp (

𝑎𝜃
1 − 𝜎

) . 

The preceding now gives us (𝑐𝜃 changing from line to line):  

𝑎𝑛(𝐶𝜑𝜃) ≥ 𝑐𝜃 exp (−
𝑎𝜃
1 − 𝜎

) exp(
𝑛(1 − 𝜃)

2
log 𝜎).  

Finally, adjust 𝜎 = 1 − 𝜆𝑛−
1

2 so that 
𝑎𝜃

𝜆
=
1−𝜃

2
𝜆, i.e., 𝜆 = √

2𝑎𝜃

1−𝜃
 and use log (1 − 𝑥) ≥

−𝑥 − 𝑥2 for 0 ≤ 𝑥 ≤ 1/2; this gives (90) with the value  

𝑏𝜃 =
2𝑎𝜃
𝜆
= √2𝑎𝜃(1 − 𝜃) = 𝜋√

2(1 − 𝜃)

𝜃
, 

and that ends the proof of Proposition (3.2.35).  

We prove the existence of the compact L claimed in the proof of Lemma (3.2.16). 

Let 𝛾: [0, 1] →  𝜑(𝔻) be a simple curve joining 0 and r, i.e., 𝛾 (0) = 0 and 𝛾(1) = 𝑟, and 

consisting of segments parallel to the coordinate axes. This is always possible since 𝜑(𝔻) 
is open and connected (for example, if γ had self-intersection points, we may add them and 

obtain a graph going from 0 to r. Now, from any finite such graph, we can extract a 

maximal tree rooted at 0 and finishing at r, and this tree generates the required simple 

curve). Denote by 𝐾 = 𝛾([0, 1]) ⊂ 𝜑(𝔻) the image of this curve, and set 𝛾(𝑡) = 𝑥(𝑡) +
𝑖𝑦(𝑡). We define inductively a sequence 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑀 = 1 in the following way. 

Start from 𝑡0 = 0 and 𝛾(𝑡0) = 𝑥(𝑡0) = 0 and suppose that we have defined 𝑡0 <· · ·< 𝑡𝑗 

with 𝛾(𝑡𝑗) = 𝑥(𝑡𝑗). If 𝑡𝑗 = 1, we set 𝑀 = 𝑗 and we have finished. If 𝑡𝑗 < 1, we define 

𝑡𝑗+1 > 𝑡𝑗 as follows:  

   (i) If the curve just after 𝑡𝑗 is followed by a horizontal segment of the real axis, until the 

time 𝑡𝑗+1, we say that j is an index of horizontal type and we have just defined 𝑡𝑗+1. 

   (ii) If the curve just after 𝑡𝑗 is followed by a vertical segment, we say that j is of vertical 

type and we denote by 𝑡𝑗+1 the first value of 𝑡 > 𝑡𝑗 for which 𝑦(𝑡) = 0. Such a value 

exists since 𝛾(1) = 𝑟, implying 𝑦(1) = 0. Set 𝐼𝑗 = [𝑡𝑗 , 𝑡𝑗+1]. If 𝛾𝑗 is the restriction of 𝛾 to 

𝐼𝑗, we complete it by symmetry with respect to the real axis in a closed, positively oriented 

Jordan curve 𝛿𝑗 with image in 𝐾 ∪ �̃� . This is possible since γ is simple and 𝛾𝑗 intersects 

the real axis only at 𝑥(𝑡𝑗) and 𝑥(𝑡𝑗+1). The process must stop after a finite number 𝑀 ≥ 1 

of steps, and we now set 𝐿𝑗 = {𝑧; 𝐼𝑛𝑑 (𝑧, 𝛿𝑗) ≠ 0} and 𝐿 =∪𝑗=0
𝑀−1 𝐿�̅� ∪ 𝐾 (Ind denotes the 

winding number). We claim that this set L has the following properties, which are exactly 

those required in the proof of Lemma (3.2.16). First, L is obviously a compact subset of 𝔻. 
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Then [0, 𝑟] ⊂ 𝐿. In fact, first observe that each segment [𝑥(𝑡𝑗), 𝑥(𝑡𝑗+1)] is a subset of L. 

Indeed, if j is of horizontal type, this is obvious. If j is of vertical type, we may assume 

without loss of generality that 𝑥(𝑡𝑗) < 𝑥(𝑡𝑗+1). By definition, 𝑥 < 𝑥(𝑡𝑗) implies that ∉ 𝛿𝑗 

, so that 𝐼𝑛𝑑 (𝑥, 𝛿𝑗) = 0 by connection to −∞. Therefore 𝐼𝑛𝑑 (𝑥, 𝛿𝑗) = 1 for 𝑥(𝑡𝑗) < 𝑥 <

𝑥(𝑡𝑗+1) since the index changes by one when one crosses orthogonally the boundary of a 

simple curve [112] and since 𝛿𝑗 contains a vertical segment passing through 𝑥(𝑡𝑗). Now, 

by the intermediate value theorem, we see that  

[0, 𝑟] ⊂ 𝑥 ([0, 1]) ⊂∪𝑗=0
𝑀−1 [𝑥(𝑡𝑗), 𝑥 (𝑡𝑗+1)] ⊂ 𝐿. Finally, ⊂ 𝐸 = 𝐾 ∪ �̃� . Indeed, using the 

Jordan curve theorem, we see that ⊂ (∪𝑗=0
𝑀−1 𝜕𝐿𝑗) ∪ 𝐾 ⊂ (∪𝑗=0

𝑀−1 𝛿𝑗) ∪ 𝐾 ⊂ 𝐾 ∪ �̃� , since 

𝛿𝑗 ⊂ 𝐾 ∪ �̃� by definition. 

Section (3.3): Compact Composition Operators on BMOA 

For 𝔻 be the open unit disc of the complex plane ℂ. The space BMOA consists of 

the analytic functions 𝑓:𝔻 → ℂ whose boundary values have bounded mean oscillation on 

the unit circle 𝕋. Equivalently, f belongs to BMOA if and only if the seminorm  

|𝑓|∗  = sup
𝑎∈𝔻
‖𝑓 ∘ 𝜎𝑎 − 𝑓(𝑎)‖𝐻2   

is finite, where ‖·‖𝐻2 is the standard norm of the Hardy space 𝐻2 and 𝜎𝑎(𝑧) =
𝑎−𝑧

1−�̅�𝑧
 is the 

automorphism of 𝔻 that exchanges the points 0 and a. Then BMOA becomes a Banach 

space under the norm  ‖𝑓‖∗ = |𝑓(0)| + |𝑓|∗. Furthermore, VMOA is the closed subspace 

of BMOA consisting of those functions f whose boundary values have vanishing mean 

oscillation, or equivalently, which satisfy  

lim
|𝑎|→1

‖𝑓 ∘ 𝜎𝑎 − 𝑓(𝑎)‖𝐻2 = 0. 

See [94], [126] and [23] for more information on the spaces BMOA and VMOA.  

       If 𝜑:𝔻 → 𝔻 is an analytic map, then the composition operator 𝐶𝜑 induced by 𝜑 is the 

linear map defined by 𝐶𝜑𝑓 = 𝑓 ∘ 𝜑 for all analytic functions 𝑓:𝔻 → ℂ. It is well known 

that 𝐶𝜑 is always bounded from BMOA into itself and that 𝐶𝜑 preserves VMOA if and 

only if 𝜑 ∈ 𝑉𝑀𝑂𝐴; see e.g. [121], [123], [138]. Composition operators have been 

intensively studied on various spaces of analytic functions, see [20] or [83] for more about 

the classical background.  

       Recall that a linear operator is compact if it takes bounded sets into sets having a 

compact closure. The compactness of a composition operator 𝐶𝜑 acting on BMOA (or on 

its subspace VMOA) has been investigated various kinds of characterizations are known; 

see e.g. [123], [128], [129], [133], [135], [139], [141]–[143]. In particular, Smith [135] 

proved that 𝐶𝜑 is compact on BMOA if and only if 𝜑 satisfies the following pair of 

conditions:  

lim
|𝜑(𝑎)|→1

sup
0<|𝑤|<1

|𝑤2|𝑁(𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎, 𝑤) = 0,                  (𝑆1) 

And for all 0 < 𝑅 < 1, 
lim
𝑡→1

sup
{𝑎:|𝜑(𝑎)|≤𝑅}

|𝜁 ∈ 𝕋: |(𝜑 ∘ 𝜎𝑎)(𝜁)| > 𝑡| = 0.                  (𝑆2) 

Above 𝑁(𝜓, 𝑤) = −∑ 𝑙𝑜𝑔|𝑧|𝜓(𝑧)=𝑤   denotes the Nevanlinna counting function of an 

analytic self-map 𝜓 of the disc, 𝜑(𝜁) is the radial limit of 𝜑 for a.e. 𝜁 on the unit circle 𝕋, 

and |𝐸| stands for the normalized Lebesgue measure of sets 𝐸 ⊂ 𝑇. Recently the first 

author [129] showed that (S1) is equivalent to the condition  
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lim
|𝜑(𝑎)|→1

‖𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎‖𝐻2
= 0,                                (𝐿) 

which is technically more convenient for our later purposes.  

       A well-known open problem concerning composition operators is that of 

characterizing the weak compactness of 𝐶𝜑 on the non-reflexive spaces BMOA and 

VMOA. Recall that an operator is weakly compact provided it takes bounded sets into sets 

whose closure is compact in the weak topology of the space. For 𝐶𝜑 acting on VMOA this 

problem was explicitly posed in [139] and [123], and for the BMOA case it was stated in 

[127], [128]. Partial results for VMOA were obtained in [133] and [125]. For instance, if 

𝜑 ∈ 𝑉𝑀𝑂𝐴 and 𝜑(𝔻) is contained in a polygon inscribed in �̅� [133], or if 𝜑 is univalent 

[125], then compactness and weak compactness are equivalent for 𝐶𝜑 on VMOA. It is 

natural to conjecture that the same equivalence should persist for arbitrary symbols 𝜑 even 

on BMOA, especially because a similar phenomenon is known to occur for composition 

operators on many other classical non-reflexive spaces, such as 𝐻1 [82], 𝐻∞ (see e.g. [64]) 

and Bloch spaces [132], [2].  

We solve the above problem. The main result reads as follows:  

Theorem (3.3.1)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map. Then the following conditions 

are 

equivalent:  

(i) 𝐶𝜑: 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 is compact.  

(ii) 𝐶𝜑: 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 is weakly compact.  

(iii)  𝜑 satisfies condition (S1). 

(iv)  𝜑 satisfies condition (L).  

A key ingredient of our argument is the surprising result that condition (L) (and 

consequently also (S1)) actually implies (S2). This result is proved. Thus our work 

substantially clarifies and simplifies the existing compactness criteria for composition 

operators on BMOA. The proof of Theorem (3.3.1) is then completed by verifying that (ii) 

implies (iv). This step is carried out, where the argument is based on an idea of Leibov 

[130] (cf. also [134]) on how to construct explicit isomorphic copies of the sequence space 

𝑐0 inside VMOA.  

As a by-product the results answer a recent question of Wulan, Zheng and Zhu 

[143]. Namely, it follows that the condition lim
|𝑎|→1

|𝜎𝑎 ∘ 𝜑|∗ = 0 is sufficient for the 

compactness of 𝐶𝜑 on BMOA. The necessity was earlier observed by Wulan [142].  

We further reformulate (L) as a pseudo-hyperbolic mean oscillation condition for 

the boundary values of the symbol as follows:  

1

|𝐼|2
∫∫𝜌(𝜑(𝜁), 𝜑(𝜉))

2
 |𝑑𝜁||𝑑𝜉|

𝐼𝐼

→ 0   𝑎𝑠 |
1

|𝐼|
∫𝜑(𝜁)|𝑑𝜁|
𝐼

| → 1.       (𝐴) 

Here 𝜌 denotes the pseudo-hyperbolic metric, 𝐼 ⊂ 𝕋 is a boundary arc and the integration 

is with respect to the normalized Lebesgue measure on 𝕋.  

Collects together some related new results in the VMOA setting. We observe that the 

analogue of Theorem (3.3.1) holds on VMOA (that is, for symbols 𝜑 ∈ 𝑉𝑀𝑂𝐴), where 

(L) can be replaced by lim
|𝑎|→1

‖𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎‖𝐻2
= 0. Moreover, we prove that one may 

substitute the genuine hyperbolic metric for the pseudo-hyperbolic metric in the VMOA 

version of condition (A). We then get the unexpected corollary that 𝐶𝜑 is compact on 

VMOA if and only if it is compact from the Bloch space to VMOA.  
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We prove that condition (L) alone is enough to characterize the compactness of 𝐶𝜑 

on the space BMOA. It is known [129] that (L) is equivalent to Smith’s first condition 

(S1). Since this fact is central to our work, we first briefly recall the argument for the 

reader’s convenience.  

       If we write 𝜑𝑎 = 𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎, then 𝜑𝑎(0) = 0, so that Stanton’s change-of-variable 

formula (see e.g. [83]) gives the identity  

‖𝜑𝑎‖𝐻2
2 = 2∫𝑁(𝜑𝑎, 𝑤)𝑑 𝐴(𝑤)

𝔻

,                            (91) 

where A is the normalized area measure. By Littlewood’s inequality [20] we also have 

𝑁(𝜑𝑎, 𝑤) ≤ −𝑙𝑜𝑔|𝑤|. Since this implies that the functions 𝑁(𝜑𝑎,·) are uniformly 

integrable, the implication from (S1) to (L) follows from (91) upon observing that for 

|𝑤| ≥ 𝛿 one has the estimate 𝑁(𝜑𝑎, 𝑤) ≤ 𝛿
−2|𝑤|2𝑁(𝜑𝑎, 𝑤). In the converse direction, 

observe that |𝑤|2𝑁(𝜑𝑎 , 𝑤) is uniformly small for |𝑤| close to 1 (again by Littlewood’s 

inequality). For 0 > |𝑤| ≤ 1 − 𝛿, we apply the submean-value property of 𝑁(𝜑𝑎,·) (see 

e.g. [83]) on a maximal w-centred disc contained in 𝔻\{0}, and deduce that 𝑁(𝜑𝑎, 𝑤) ≤

𝑚𝑖𝑛(|𝑤|, 𝛿)−2 ∫ 𝑁(𝜑𝑎 ,·)𝔻
 d A. Thus |𝑤|2𝑁(𝜑𝑎, 𝑤) ≤ 2

−1𝛿−2‖𝜑𝑎‖𝐻2
2  by (91).  

       In view of Smith’s compactness criterion consisting of the pair (S1) and (S2), our 

work below reduces to showing that (S2) is actually implied by (S1), or by (L):  

       We stress that (L) is used here because it is technically very convenient for our 

arguments and also allows for quite appealing reformulations in terms of the boundary 

values of 𝜑. In particular, by expressing the 𝐻2 norm as an 𝐿2 norm on 𝕋 and performing 

a change of variable using the automorphism 𝜎𝑎, we get  

‖𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎‖𝐻2
2
= ∫ 𝜌(𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎))

2
|𝑑𝜁|

𝕋

= ∫𝜌(𝜑(𝜁), 𝜑(𝑎))
2
𝑃𝑎(𝜁)|𝑑𝜁|

𝕋

  (92) 

where 𝑃𝑎(𝜁) = (1 − |𝑎|
2)/|𝜁 − 𝑎|2 is the Poisson kernel for 𝑎 ∈ 𝔻 and 𝜌(𝑧, 𝑤) = |𝑧 −

𝑤|/|1 − �̅�𝑧| denotes the pseudo-hyperbolic distance in �̅� (observe that 𝜌 extends to the 

boundary 𝕋 in a natural way if we agree that 𝜌(𝑧, 𝑧) = 0 for 𝑧 ∈ 𝕋). Thus (L) can be seen 

as a kind of vanishing mean oscillation condition with respect to the pseudo-hyperbolic 

metric. We will elaborate on this point further.  

       It is relevant to observe that if 𝜑 satisfies condition (L), or equivalently (S1), then one 

has |𝜑| < 1 a.e. on T. This can be checked by a straightforward density point argument. 

Below and elsewhere in the text we use the following notation for closed arcs of 𝕋: when 

𝑟𝑒𝑖𝜃 ∈ 𝔻 with 0 ≤ 𝑟 < 1, set  

𝐼(𝑟𝑒𝑖𝜃) = {𝑒𝑖𝑡: |𝑡 − 𝜃| ≤ 𝜋(1 − 𝑟)}. 

Thus 𝐼(𝑟𝑒𝑖𝜃) denotes the arc of 𝕋 whose midpoint is 𝑒𝑖𝜃 and (normalized) length 

|𝐼(𝑟𝑒𝑖𝜃)| = 1 − 𝑟. The proof of Theorem (3.3.3) applies a uniform density estimate for 

Lebesgue measurable sets on 𝕋: 

Lemma (3.3.2)[69]: Suppose that 𝐸 ⊂ 𝕋 is a measurable set with |𝐸| > 0. Then there is a 

measurable set 𝐸′ ⊂ 𝐸 such that |𝐸′| > 0 and  

|𝐼(𝑟𝜁) ∩ 𝐸|

|𝐼(𝑟𝜁)|
≥
1 − √1 − |𝐸|

4
 

for every 0 ≤  𝑟 < 1 and 𝜁 ∈ 𝐸′. 
       Proof Consider a standard dyadic decomposition of 𝕋. If 𝜁 is the midpoint of an arc 

𝐼 ⊂ 𝕋, then I contains a dyadic arc J such that 𝜁 ∈ 𝐽 and|𝐽| ≥ |𝐼|/4. Thus it is enough to 
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verify that|𝐽 ∩ 𝐸|/|𝐽| ≥ 1 − √1 − |𝐸| for all dyadic arcs 𝐽 ⊂ 𝕋 that contain 𝜁. Passing to 

the complement 𝐹 = 𝕋\𝐸, this amounts to finding a subset 𝐸′ ⊂ 𝐸 of positive measure 

such that  

𝑀𝜒𝐹(𝜁) ≤  √|𝐹|         𝑓𝑜𝑟   𝜁 ∈ 𝐸
′,                             (93) 

where 𝑀𝜒𝐹 is the dyadic maximal function of the characteristic function of F.  

It is known that the dyadic maximal function satisfies a weak 1–1 inequality with constant 

1 (see e.g. [137], or apply Doob’s 1–1 inequality for martingales, see e.g. [122]), whence 

one has the estimate   

|{𝑀𝜒𝐹 > √|𝐹| ≤
|𝐹|

√|𝐹|
= √|𝐹| < 1. 

This yields the desired result since almost every point 𝜁 ∈ 𝕋 satisfying (93) belongs to E 

by the Lebesgue density theorem.  

Theorem (3.3.3)[69]: Condition (L) implies (S2) for any analytic map 𝜑:𝔻 → 𝔻. Hence 

𝐶𝜑: 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 is compact if and only if (L) holds.  

Proof. As a preparatory step we first establish a Möbius-invariant version of condition (L). 

Let 𝜑𝑏 = 𝜑 ∘ 𝜎𝑏    for   𝑏 ∈ 𝔻. Then the following identity can be verified just by 

inspection and using the self-inverse property of the automorphisms:  

𝜎𝜑𝑏(𝑎) ∘ 𝜑𝑏 ∘ 𝜎𝑎 = [𝜎𝜑(𝜎𝑏(𝑎)) ∘ 𝜑 ∘ 𝜎𝜎𝑏(𝑎) ∘ 𝜎𝜎𝑏(𝑎)] ∘ [𝜎𝜎𝑏(𝑎) ∘ 𝜎𝑏 ∘ 𝜎𝑎]. 

Note that the composite mapping enclosed in the last brackets is a disc automorphism that 

fixes the origin, hence a rotation. Therefore  

‖𝜎𝜑𝑏(𝑎) ∘ 𝜑𝑏 ∘ 𝜎𝑎‖𝐻2
= ‖𝜎𝜑(𝜎𝑏(𝑎)) ∘ 𝜑 ∘ 𝜎𝜎𝑏(𝑎)‖𝐻2

. 

Now, in view of (92) and the fact that 𝑃𝑎(𝜁) ≥
1

4
|𝐼(𝑎)|−1 for 𝜁 ∈ 𝐼(𝑎), condition (L) 

implies the following: Given 𝜀 > 0, there exists 𝜂 < 1 such that  
1

|𝐼(𝑎)|
∫ 𝜌(𝜑𝑏(𝜁), 𝜑𝑏(𝑎))

2
|𝑑𝜁|

𝐼(𝑎)

≤ 𝜀                           (94) 

whenever a and b satisfy |𝜑𝑏(𝑎)| ≥ 𝜂.  

       For the actual proof of Theorem (3.3.3) we argue by contradiction, assuming that (L) 

holds but (S2) does not. Since (S2) fails, there are constants 𝑅 < 1 and 𝑐 > 0, points 𝑏𝑘 ∈
𝔻, and numbers 0 < 𝑡𝑘 < 1 with 𝑡𝑘  →  1 such that for all 𝑘 ≥ 1 we have |𝜑(𝑏𝑘)| ≤ 𝑅 

and the sets  

𝐸𝑘 = {𝜁 ∈ 𝕋: the radial limit 𝜑𝑘(𝜁) exists and |𝜑𝑘(𝜁)| > 𝑡𝑘} 
satisfy |𝐸𝑘| ≥ 𝑐, where 𝜑𝑘 = 𝜑 ∘ 𝜎𝑏𝑘 . By Lemma (3.3.2) we can further find sets 𝐸𝑘

′ ⊂ 𝐸𝑘 

such that |𝐸𝑘| > 0 and  

|𝐼(𝑟𝜁) ∩ 𝐸𝑘|

|𝐼(𝑟𝜁)|
≥
1 − √1 − 𝑐

4
     for 0 ≤ 𝑟 < 1, 𝜁 ∈ 𝐸𝑘

′ .           (95) 

Let 𝜀 = (1 − √1 − 𝑐)/8 > 0. We may choose η large enough so that 𝑅 < 𝜂 < 1 and (94) 

holds for |𝜑𝑏(𝑎)| ≥ 𝜂. Fix k such that 𝑡𝑘 ≥ 𝜂. Recall that by the definition of 𝐸𝑘 we have 

|𝜑𝑘  (𝑟𝜁)| → |𝜑𝑘(𝜁)| > 𝑡𝑘 as 𝑟 →  1 for each 𝜁 ∈ 𝐸𝑘. In particular, we can fix a point 𝜁𝑘 ∈
𝐸𝑘
′  with this property. Moreover, since |𝜑𝑘(0)| = |𝜑(𝑏𝑘)| ≤ 𝑅, it follows from continuity 

that there is a radius 0 < 𝑟𝑘 < 1 such that |𝜑𝑘(𝑟𝑘𝜁𝑘)| = 𝜂. Let 𝑎𝑘 = 𝑟𝑘𝜁𝑘 . By elementary 

geometry it holds for each 𝜁 ∈ 𝐸𝑘 that 𝜌(𝜑𝑘(𝜁), 𝜑𝑘(𝑎𝑘)) ≥ 𝜌(𝑡𝑘 , 𝜂). Hence we can use 

(95) to obtain the estimate  
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1

|𝐼(𝑎𝑘)|
∫ 𝜌(𝜑𝑘(𝜁), 𝜑𝑘(𝑎𝑘))

2
| 𝑑𝜁|

𝐼(𝑎𝑘)

≥
|𝐼(𝑎𝑘) ∩ 𝐸𝑘|

|𝐼(𝑎𝑘)|
𝜌(𝑡𝑘, 𝜂)

2 ≥ 2𝜀𝜌(𝑡𝑘, 𝜂)
2. 

Since this estimate holds for all sufficiently large k, we may let 𝑘 → ∞. In this case 

𝜌(𝑡𝑘 , 𝜂) → 1, which leads to a contradiction with (94) by the choice of 𝜀. 
       We close by addressing a question recently posed by Wulan, Zheng and Zhu [143]. 

Based on an earlier work by Wulan [142], they showed that the single condition  

lim
𝑛→∞

|𝜑𝑛|∗ = 0                                                        (𝑊1) 

characterizes the compactness of 𝐶𝜑 on BMOA. The earlier result in [142] involved the 

additional condition  

lim
|𝑎|→1

|𝜎𝑎 ∘ 𝜑|∗  = 0,                                                (𝑊2) 

and consequently it was asked in [143] whether (W2) alone would suffice to characterize 

when 𝐶𝜑 is compact on BMOA. This is indeed the case.  

Corollary (3.3.4)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map. Then 𝐶𝜑 is compact on BMOA 

if and only if (W2) holds.  

Proof: It is enough to observe that |𝜎𝜑(𝑎) ∘ 𝜑|∗
≥ ‖𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎‖𝐻2

 , whence (W2) 

trivially implies (L). 

       After the work of the preceding the only step that remains to be proved in Theorem 

(3.3.1) is that (ii) implies (iv). Equivalently, if the map 𝜑 fails to satisfy condition (L), then 

we must show that the composition operator 𝐶𝜑 is not weakly compact on BMOA. This 

will be accomplished separately in Proposition (3.3.6) below.  

       Our argument depends on the following result which is due to Le˘ıbov [130] for 

VMO(𝕋) and independently to Müller and Schechtman [134] for the linearly isomorphic 

setting of dyadic martingale VMO. As usual, here 𝑐0 denotes the Banach space of complex 

sequences converging to zero endowed with the supremum norm ‖·‖∞. We sketch a self-

contained argument of the formulation required here.  

Proposition (3.3.5)[69]: Let (𝑓𝑛) be a sequence in VMOA such that  ‖𝑓𝑛‖∗ = 1 for all n 

and ‖𝑓𝑛‖𝐻2 → 0 as 𝑛 → ∞. Then there exists a subsequence (𝑓𝑛𝑘) which is equivalent to 

the natural basis of 𝑐0; that is, for which the map (𝜆𝑘) ⟼ ∑ 𝜆𝑘𝑓𝑛𝑘𝑘  is an isomorphism 

from 𝑐0 into VMOA. 

Proof: For brevity write 𝛾(𝑓, 𝑎) = ‖𝑓 ∘ 𝜎𝑎 − 𝑓(𝑎)‖𝐻2 whenever 𝑓 ∈ 𝐻2 and 𝑎 ∈ 𝔻. Note 

that 𝛾(𝑓, 𝑎) defines a seminorm with respect to f for each a. We also have 𝛾(𝑓, 𝑎) ≤
‖𝑓 ∘ 𝜎𝑎‖𝐻2 ≤ 𝑐𝑎 ‖𝑓‖𝐻2 for some 𝑐𝑎 > 0, where 𝑐𝑎 is an increasing function of |𝑎|. 
Therefore 

sup{𝛾 (𝑓𝑛, 𝑎): |𝑎| ≤ 𝑟}  →  0    𝑎𝑠   𝑛 → ∞ 

for any 0 < 𝑟 < 1. On the other hand, the VMOA condition says that 𝛾(𝑓𝑛, 𝑎) → 0 as 

|𝑎| → 1 for each n. Proceeding inductively, one may use these properties of (𝑓𝑛) to find 

increasing sequences of integers 𝑛𝑘 ≥ 1 and numbers 0 < 𝑟𝑘 < 1 such that for each 𝑘 ≥ 1 

one has ‖𝑓𝑛𝑘‖𝐻2
> 2−𝑘−1 and  

sup
|𝑎|≤𝑟𝑘

𝛾(𝑓𝑛𝑘 , 𝑎) > 2
−𝑘−1, sup

|𝑎|≥𝑟𝑘+1

𝛾(𝑓𝑛𝑘 , 𝑎) > 2
−𝑘−1. 

Then every 𝑎 ∈ 𝔻 satisfies 𝛾(𝑓𝑛𝑘 , 𝑎) < 2
−𝑘−1 for all except possibly one index k, for 

which 𝛾(𝑓𝑛𝑘 , 𝑎) ≤ 1. Also, for each 𝑘 ≥ 1 there is 𝑎 ∈ 𝔻 such that 𝛾(𝑓𝑛𝑘 , 𝑎) ≥
3

4
 since 
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‖𝑓𝑛𝑘‖∗
= 1 and |𝑓𝑛𝑘(0)| ≤ ‖𝑓𝑛𝑘‖𝐻2

≤
1

4
. It is then fairly straightforward to verify that the 

sequence (𝑓𝑛𝑘) is equivalent in VMOA to the natural basis of 𝑐0.  

The following proposition completes the proof of Theorem (3.3.1).  

Proposition (3.3.6)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map and suppose that condition (L) 

fails. Then the composition operator 𝐶𝜑: 𝐵𝑀𝑂𝐴 → 𝐵𝑀𝑂𝐴 fixes a copy of 𝑐0 and therefore 

it is not weakly compact.  

Proof: Since (L) fails to hold, we can find points 𝑎𝑛 ∈ 𝔻 such that |𝜑(𝑎𝑛)| → 1 and  

‖𝜎𝜑(𝑎𝑛) ∘ 𝜑 ∘ 𝜎𝑎𝑛‖𝐻2
≥ 𝑐 

for some 𝑐 > 0. Put 𝑓𝑛 = 𝜎𝜑(𝑎𝑛) − 𝜑(𝑎𝑛). Then 𝑓𝑛(0) = 0 and, for each 𝑎 ∈ 𝔻,  

‖𝑓𝑛 ∘ 𝜎𝑎 − 𝑓𝑛(𝑎)‖𝐻2 = ‖𝜎𝜑(𝑎𝑛) ∘ 𝜎𝑎 − 𝜎𝜑(𝑎𝑛)(𝑎)‖𝐻2
= √1 − |𝜎𝜑(𝑎𝑛)(𝑎)|

2
. 

The last equality can be seen by using the fact that 𝜎𝜑(𝑎𝑛) ∘ 𝜎𝑎 is an inner function. Now it 

follows easily that 𝑓𝑛 ∈ 𝑉𝑀𝑂𝐴 and ‖𝑓𝑛‖∗ = 1 for each n. By taking 𝑎 = 0 we obtain that 

‖𝑓𝑛‖𝐻2 → 0 as 𝑛 → ∞. Moreover,  

‖𝐶𝜑𝑓𝑛‖∗
≥ ‖𝑓𝑛 ∘ 𝜑 ∘ 𝜎𝑎𝑛 − 𝑓𝑛(𝜑(𝑎𝑛))‖𝐻2

= ‖𝜎𝜑(𝑎𝑛) ∘ 𝜑 ∘ 𝜎𝑎𝑛‖𝐻2
≥ 𝑐.  

According to Proposition (3.3.5) there is a subsequence (𝑓𝑛𝑘) which is equivalent in 

VMOA to the natural basis of 𝑐0. In particular, (𝐶𝜑𝑓𝑛𝑘) is a weak-null sequence in 

BMOA. By applying the Bessaga-Pełczynski selection principle (see e.g. [88]) to (𝐶𝜑𝑓𝑛𝑘) 

we can pass to a further subsequence, still denoted (𝑓𝑛𝑘), such that (𝐶𝜑𝑓𝑛𝑘) is a 

seminormalized basic sequence in BMOA. It follows that there are constants 𝐴, 𝐵 > 0 so 

that  

𝐴 · ‖𝜆‖∞ ≤ ‖∑𝜆𝑘𝐶𝜑𝑓𝑛𝑘
𝑘

‖

∗

≤ ‖𝐶𝜑‖ · ‖∑𝜆𝑘𝑓𝑛𝑘
𝑘

‖

∗

≤ 𝐵 · ‖𝐶𝜑‖‖𝜆‖∞ 

holds for any sequence 𝜆 = (𝜆𝑘) ∈ 𝑐0. (To find A just apply the biorthogonal basis 

functionals to ∑ 𝜆𝑘𝐶𝜑𝑓𝑛𝑘𝑘 .) These estimates state that the restriction of 𝐶𝜑 to the closed 

subspace of BMOA spanned by the sequence (𝑓𝑛𝑘) is an isomorphism on a linearly 

isomorphic copy of 𝑐0, and we are done. 

We examine the function-theoretic meaning of condition (L) by revisiting the point 

of view that we already touched upon. That is, (L) can be thought of as a kind of pseudo-

hyperbolic vanishing mean oscillation condition for the boundary values of 𝜑 over certain 

arcs in 𝕋; see Proposition (3.3.8) below.  

When 𝜑:𝔻 → 𝔻 is an analytic map and I is an arc of 𝕋, denote  

𝜑𝐼 =
1

|𝐼|
∫𝜑
𝐼

=
1

|𝐼|
∫𝜑(𝜁)|𝑑𝜁|
𝐼

 

for the integral average of 𝜑 over I. Here and elsewhere all integrals over subsets of 𝕋 are 

calculated with respect to the normalized Lebesgue arc-length measure. Also recall from 

that 𝐼(𝑟𝑒𝑖𝜃) = {𝑒𝑖𝑡: |𝑡 − 𝜃| ≤ 𝜋(1 − 𝑟)} for 𝑟𝑒𝑖𝜃 ∈ 𝔻.  

Lemma (3.3.7)[69]: For 𝑎 ∈ 𝔻 we have |𝜑(𝑎)| → 1 if and only if |𝜑𝐼(𝑎)| → 1.  

Proof: The left-to-right implication is easy to prove. In fact, assuming that 𝜑(𝑎) ≥ 0 (as 

we may, after applying a rotation), we get by using (96) that  

1 − |𝜑(𝑎)| = ∫(1 − 𝑅𝑒 𝜑)𝑃𝑎
𝕋

≥
1

4|𝐼(𝑎)|
∫ (1 − 𝑅𝑒 𝜑)
𝐼(𝑎)

≥
1

4
(1 − |𝜑𝐼(𝑎)|). 
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This clearly shows that |𝜑(𝑎)| → 1 implies |𝜑𝐼(𝑎)| → 1. 

       For the reverse implication, we may assume that 𝜑𝐼(𝑎) ≥ 1 − 𝛿 for some 0 < 𝛿 <
1

2
. 

Let 𝐸 = {𝜁 ∈ 𝐼(𝑎): 𝑅𝑒 𝜑(𝜁) ≥ 1 − 2𝛿}. Since 𝑅𝑒𝜑 ≤ 1, we must have |𝐸| ≥
1

2
|𝐼(𝑎)|. 

Consider the positive harmonic function 𝑢 = log(2/|1 − 𝜑|). It is geometrically obvious 

that |1 − 𝜑| ≤ 𝑐 √𝛿 on E for some constant 𝑐 > 0. Hence  

𝑢(𝑎) ≥ ∫𝑢 𝑃𝑎
𝕋

≥ (log
2

𝑐√𝛿
)∫𝑃𝑎
𝐸

≥
1

8
(log

2

𝑐√𝛿
). 

Since |1 − 𝜑(𝑎)| = 2𝑒−𝑢(𝑎) , we deduce from this estimate that 1 − |𝜑(𝑎)| ≤
|1 − 𝜑(𝑎)| →  0 as 𝛿 → 0. 

Proposition (3.3.8)[69]: For any analytic map 𝜑:𝔻 → 𝔻 condition (L) is equivalent to the 

following:  
1

|𝐼|2
∫∫𝜌(𝜑(𝜁), 𝜑(𝜉))

2
|𝑑𝜁||𝑑𝜉|

𝐼𝐼

→  0   𝑎𝑠   |𝜑𝐼| → 1,       (𝐴) 

where 𝐼 ⊂ 𝕋 are arcs.  

In the proof we will make use of the following simple estimates for the Poisson kernel: for 

every 𝑎 ∈ 𝔻, 
1

4|𝐼(𝑎)|
≤ 𝑃𝑎(𝜁) ≤

2

|𝐼(𝑎)|
, 𝜁 ∈ 𝐼(𝑎).                     (96) 

       For convenience we first isolate a technical step towards Proposition (3.3.8). 

Proof: We start by proving the necessity of (A). By the preceding lemma |𝜑𝐼| → 1 implies 

that |𝜑(𝑎𝐼)| → 1. Hence (92) and the left-hand side of (96) yield  
1

|𝐼|
∫𝜌(𝜑(𝜁), 𝜑(𝑎𝐼))

2
|𝑑𝜁|

𝕋

→  0    𝑎𝑠    |𝜑𝐼| → 1,           (𝐴
′) 

where 𝐼 ⊂ 𝕋 is an arc and 𝑎𝐼 ∈ 𝔻 is the unique point for which 𝐼 = 𝐼(𝑎𝐼). Then (A) is 

obtained from (𝐴′) by a simple application of the triangle inequality 𝜌(𝜑(𝜁), 𝜑(𝜉)) ≤

𝜌(𝜑(𝜁), 𝜑(𝑎𝐼)) + 𝜌(𝜑(𝜉), 𝜑(𝑎𝐼)). 
To prove the sufficiency of (A) we will show that  

𝐽(𝑎) = ∫ ∫𝜌(𝜑(𝜁), 𝜑(𝜉))
2
 𝑃𝑎(𝜁)𝑃𝑎(𝜉)|𝑑𝜁||𝑑𝜉|

𝕋𝕋

→ 0    𝑎𝑠   |𝜑(𝑎)| → 1.   (97) 

In view of (92) this actually implies (L), because the function 𝑤 ⟼ 𝜌(𝑧, 𝑤)2 is 

subharmonic in 𝔻 and therefore ∫ 𝜌(𝑧, 𝜑(𝜉))
2
𝑃𝑎(𝜉)|𝑑𝜉|𝕋

≥ 𝜌(𝑧, 𝜑(𝑎))
2
 for every 𝑧 ∈ �̅�.  

       Let 𝜀 > 0. For each 𝑎 ∈ 𝔻 we can choose a point aon the line segment between 0 and 

a such that ∫ 𝑃𝑎𝐼(𝑎′)
≥ 1 − 𝜀 and 1 − |𝑎′| ≤ 𝑐𝜀(1 − |𝑎|) for some constant 𝑐𝜀 > 0. For real 

a close to 1 this can be seen by integration the estimate 𝑃𝑎(𝑒
𝑖𝑡) ≥ (1 − 𝑎2)/[(1 − 𝑎)2 +

𝑡2] over an interval |𝑡| ≤ 𝑐(1 − 𝑎) and letting 𝑐 → ∞. Thus ∫ 𝑃𝑎𝕋\𝐼(𝑎′)
≤ 𝜀, and since 𝜌 ≤

1, we can estimate  

𝐽(𝑎) ≤ 2𝜀 + ∫ ∫ 𝜌(𝜑(𝜁), 𝜑(𝜉))
2
𝑃𝑎(𝜁)𝑃𝑎(𝜉)|𝑑𝜁||𝑑𝜉|

𝐼(𝑎′)𝐼(𝑎′)

≤ 2𝜀 +
4𝑐𝜀
2

|𝐼(𝑎′)|2
∫ ∫ 𝜌(𝜑(𝜁), 𝜑(𝜉))

2
|𝑑𝜁||𝑑𝜉|

𝐼(𝑎′)𝐼(𝑎′)

 

by using the right-hand side of (96) in the last step. According to the Schwarz-Pick 

inequality we have 𝜌(𝜑(𝑎), 𝜑(𝑎′)) ≤ 𝜌(𝑎, 𝑎′) ≤ 𝑐𝜀
′  for some 𝑐𝜀

′ < 1 due to the fact that 
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1 − |𝑎| ≤ 𝑐𝜀(1 − |𝑎|). Thus |𝜑(𝑎)| → 1 implies that |𝜑(𝑎)| → 1, which, in turn, yields 

|𝜑𝐼(𝑎′)| → 1 by Lemma (3.3.7). By applying (A) to the arcs 𝐼(𝑎′) we then deduce from the 

above estimate that lim sup 𝐽(𝑎) ≤ 2𝜀 as|𝜑(𝑎)| → 1. Since 𝜀 > 0 was arbitrary, this 

proves (97).  

       We summarize the principal function-theoretic compactness criteria for 𝐶𝜑 on BMOA 

in the following theorem. Criteria of a different nature are given in [123] and [141].  

Theorem (3.3.9)[69]: Compactness and weak compactness of 𝐶𝜑: BMOA →  BMOA are 

equivalent to each of the conditions (S1), (L), (W1), (W2), (A) and (𝐴′).  
We discuss the case where 𝜑 ∈ VMOA. Here simplified compactness criteria are 

available and new phenomena occur. Recall first that if 𝜑 ∈ VMOA then 𝐶𝜑 takes VMOA 

into itself and 𝐶𝜑: BMOA →  BMOA can be identified with the biadjoint of its restriction to 

VMOA; see [125].  

       Let 𝜏 denote the hyperbolic metric in the unit disc, that is,  

𝜏(𝑧, 𝑤) =
1

2
log
1 + 𝜌(𝑧,𝑤)

1 − 𝜌(𝑧,𝑤)
, 

where 𝜌(𝑧, 𝑤) is the pseudo-hyperbolic distance between z and w (see e.g. [94] or [23]). 

Contrary to the pseudo-hyperbolic metric, 𝜏 is unbounded in 𝔻 and it is appropriate to 

define 𝜏(𝑧, 𝑤) = ∞ if z and w are distinct points (at least) one of which lies on the 

boundary.  

We collect the main new results in the case of VMOA as follows.  

The Bloch space B consists of the analytic functions 𝑓:𝔻 → ℂ for which 

sup
𝑧∈𝔻
|𝑓 (𝑧)|(1 − |𝑧|2) < ∞. Then B becomes a Banach space equipped with the norm 

|𝑓(0)| + sup
𝑧∈𝔻
|𝑓′(𝑧)|(1 − |𝑧|2). Composition operators 𝐶𝜑 acting from B into VMOA or 

BMOA have been studied in e.g. [124], [131], [133], [136], [139], [144]. As observed by 

Makhmutov and Tjani [133], it follows from the results of Choe, Ramey and Ullrich [124] 

combined with [145] that 𝐶𝜑 is bounded from B into BMOA if and only if (99) holds. In 

addition, it was proved in [133] that 𝐶𝜑 is compact from B into VMOA if and only if (iv’) 

holds. Therefore Theorem (3.3.12) has the following surprising consequence.  

Corollary (3.3.10)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map with 𝜑 ∈ 𝑉𝑀𝑂𝐴. Then 𝐶𝜑 is 

compact 𝑉𝑀𝑂𝐴 →  𝑉𝑀𝑂𝐴 if and only if it is compact B → 𝑉𝑀𝑂𝐴.  

This result was known earlier in the special case of boundedly valent symbols 𝜑 whose 

image 𝜑(𝔻) is contained in a polygon inscribed in �̅�; see [133]. Of course, in Corollary 

(3.3.10) the implication from right to left follows from the fact that VMOA is continuously 

embedded in B. Furthermore, it is relevant to note that 𝐶𝜑 is bounded B →  𝑉𝑀𝑂𝐴 if and 

only if it is compact B →  𝑉𝑀𝑂𝐴; see [136]. 

       Towards the proof of Theorem (3.3.1) we make some preliminary remarks. It was 

already observed by the first author [129] that condition (iii) alone characterizes the 

compactness of 𝐶𝜑: 𝑉𝑀𝑂𝐴 →  𝑉𝑀𝑂𝐴. At first sight (iii) might seem stronger than (L) 

because |𝜑(𝑎)|  →  1 always implies |𝑎| → 1 by the Schwarz lemma. We include a direct 

function-theoretic argument proving the equivalence of these two conditions for symbols 

𝜑 ∈ VMOA.  

Lemma (3.3.11)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map. Then condition (iii) of Theorem 

(3.3.1) holds if and only if 𝜑 ∈ 𝑉𝑀𝑂𝐴 and (L) holds. 
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Proof: Let 𝜑𝑎 = 𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎. By the self-inverse property of 𝜎𝜑(𝑎) we may write 𝜑 ∘

𝜎𝑎 = 𝜎𝜑(𝑎) ∘ 𝜑𝑎, from which it follows that  

|(𝜑 ∘ 𝜎𝑎)(𝑧) − 𝜑(𝑎)| =
1 − |𝜑(𝑎)|2

|1 − 𝜑(𝑎)̅̅ ̅̅ ̅̅ ̅𝜑𝑎(𝑧)|
|𝜑𝑎(𝑧)|.                     (98) 

This yields ‖𝜑 ∘ 𝜎𝑎 − 𝜑(𝑎)‖𝐻2 ≤ 2‖𝜑𝑎‖𝐻2 . Hence (iii) implies that 𝜑 ∈ 𝑉𝑀𝑂𝐴.  

       Conversely note that if (L) holds but (iii) fails, then there exists a sequence (𝑎𝑛) such 

that |𝑎𝑛| → 1 while |𝜑(𝑎𝑛)| ≤ 𝑟 < 1 and ‖𝜑𝑎𝑛‖𝐻2
≥ 𝑐 > 0 for all n. Then (98) implies 

that ‖𝜑 ∘ 𝜎𝑎𝑛 − 𝜑(𝑎𝑛)‖𝐻2
≥ (1 − 𝑟)‖𝜑𝑎𝑛‖𝐻2

≥ (1 − 𝑟)𝑐, whence 𝜑 ∉ 𝑉𝑀𝑂𝐴. This 

proves the lemma.   

Theorem (3.3.12)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map such that 𝜑 ∈ VMOA. Then the 

following conditions are equivalent:  

(i) 𝐶𝜑: VMOA → VMOA is compact.  

(ii)  𝐶𝜑: VMOA →  VMOA is weakly compact.  

(iii) lim
|𝑎|→1

‖𝜎𝜑(𝑎) ∘ 𝜑 ∘ 𝜎𝑎‖𝐻2
= 0. 

(iv) lim
|𝑎|→1

∫ 𝜌 (𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎))
2
|𝑑𝜁|

𝕋
= 0. 

(v) lim
|𝐼|→0

1

|𝐼|2
∫ ∫ 𝜌(𝜑(𝜁), 𝜑(𝜉))

2
|𝑑𝜁||𝑑𝜉|

𝐼𝐼
= 0,where 𝐼 ⊂ 𝑇 are arcs. 

Further, (iv) and (v) are equivalent to the following conditions involving the hyperbolic 

metric:  

(iv') lim
|𝑎|→1

∫ 𝜏 (𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎)) |𝑑𝜁|𝕋
= 0. 

(iiv') lim
|𝐼|→0

1

|𝐼|2
∫ ∫ 𝜏(𝜑(𝜁), 𝜑(𝜉))|𝑑𝜁||𝑑𝜉|

𝐼𝐼
= 0, where 𝐼 ⊂ 𝕋 are arcs. 

The main novelty of Theorem (3.3.12), as compared to Theorem (3.3.1), lies in conditions 

(iv’) and (v’), which relate to vanishing mean oscillation with respect to the genuine 

hyperbolic metric. This also ties to earlier research on composition operators from the 

Bloch space to VMOA. Before embarking on the proof of Theorem (3.3.12) we discuss 

the interpretation of (iv’) from the literature and draw some consequences.  

       First note that if the integral ∫ 𝜏 (𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎)) |𝑑𝜁|𝕋
 is finite for some 𝑎 ∈ 𝔻, then 

|𝜑| < 1 a.e. on T. Moreover, the integral stays bounded as a varies on a compact subset of 

𝔻. Hence (iv’) implies  

sup
𝑎∈𝔻

∫ 𝜏 (𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎)) |𝑑𝜁|
𝕋

< ∞,                        (99) 

saying that 𝜑 belongs to the hyperbolic BMOA class introduced by Yamashita [145]. 

Actually the fact that (iv) implies the finiteness of the integral in (99) for some 𝑎 ∈ 𝔻 is 

already non-trivial.  

Proof. Recall that the operator 𝐶𝜑: 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 is the biadjoint of the restriction 

𝐶𝜑: 𝑉𝑀𝑂𝐴 →  𝑉𝑀𝑂𝐴, since here 𝜑 ∈ 𝑉𝑀𝑂𝐴. Hence, according to Theorem (3.3.1), 

conditions (i) and (ii) are both equivalent to (L). On the other hand, in this case (L) and 

(iii) are equivalent by Lemma (3.3.11). We refer below for an approach to the 

equivalences between conditions (i)–(iii) which does not depend.  

       Conditions (iii) and (iv) are restatements of each other according to (92). The 

equivalence of (iii) and (v) is proved in the same way as Proposition (3.3.8); instead of 
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invoking Lemma (3.3.7) we just observe that for points 𝑎 ∈ 𝔻 one has |𝑎| → 1 if and only 

if |𝐼(𝑎)| → 0.  

       Since 𝜏 ≥ 𝑐𝜌2 for a suitable 𝑐 > 0, it is obvious that (v’) implies (v). Moreover, (v’) 

can be deduced from (iv’) by making a change of variable, using the lower estimate from 

(96) for the Poisson kernel and applying the triangle inequality as in the first part of the 

proof of Proposition (3.3.8). The crucial remaining step in the proof of Theorem (3.3.12) 

consists of verifying the implication that the pseudo-hyperbolic condition (iv) implies the 

hyperbolic condition (iv’). We isolate this more technical result below, which then 

completes the proof of the theorem.   

The argument will employ ideas of Wik [140] related to his elementary approach to the 

John-Nirenberg inequality for BMO functions. We will require the following one-

dimensional special case of [140]: 

Lemma (3.3.13)[69]: Suppose that 0 < 𝜆 < 1 and 𝐸 ⊂ [0,1] is any measurable set having 

Lebesgue measure |𝐸| ≤ 𝜆. Then there is a sequence 𝑄1, 𝑄2, … of closed dyadic intervals 

of [0,1], having pairwise disjoint interiors, such that 
1

2
𝜆|𝑄𝑘| ≤ |𝑄𝑘 ∩  𝐸| ≤ 𝜆|𝑄𝑘| for 𝑘 ≥

1 and |𝐸\ ⋃ 𝑄𝑘𝑘 |  = 0.  

Proposition (3.3.14)[69]: Let 𝜑:𝔻 → 𝔻 be an analytic map. Then condition (iv) implies 

condition (iv’) in Theorem (3.3.1).  

Proof. Assuming that condition (iv) (and equivalently also (v)) holds, we split the proof 

into two steps. As the first step we show:  

Claim (3.3.15)[69]: 

lim
|𝑎|→1

1

|𝐼(𝑎)|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
𝐼(𝑎)

= 0. 

To begin recall from that condition (iv) implies that |𝜑| < 1 a.e. on 𝕋 (this fact can 

alternatively be deduced by observing that (i) implies the compactness of 𝐶𝜑 on 𝐻2 by 

[123]). Towards the proof of Claim (3.3.15) we first deduce from (iv) by a change of 

variable and (96) that  

lim
|𝑎|→1

1

|𝐼(𝑎)|
∫ 𝜌 (𝜑(𝜁), 𝜑(𝑎))

2
|𝑑𝜁|

𝐼(𝑎)

= 0,                (100) 

where 𝐼(𝑎) = {𝑒𝑖𝑡: |𝑡 − 𝜃| ≤ 𝜋(1 − 𝑟)} is the subarc of 𝕋 associated to 𝑎 = 𝑟𝑒𝑖𝜃 ∈ 𝔻. 

Hence we may pick 𝛿 > 0 small enough so that  
1

|𝐼(𝑎)|
∫ 𝜌(𝜑(𝜁), 𝜑(𝑎))

2
|𝑑𝜁|

𝐼(𝑎)

<
1

4
                    (101) 

whenever 𝑎 ∈ 𝔻 satisfies |𝑎| > 1 − 𝛿. 

Let 𝜀 ∈ (0, 1/32). According to (v) we may decrease 𝛿 > 0, if necessary, to ensure that 

for all 𝑎 ∈ 𝔻 with |𝑎| > 1 − 𝛿 we also have  
1

|𝐼(𝑎)|2
∫ ∫ 𝜌(𝜑(𝜁), 𝜑(𝜉))

2
|𝑑𝜁||𝑑𝜉|

𝐼(𝑎)𝐼(𝑎)

< 𝜀.              (102) 

Fix such a point a and put  

𝐶𝑘 = {𝜁 ∈ 𝐼(𝑎): 𝜏 (𝜑(𝜁), 𝜑(𝑎)) ≥ 𝑘}, 𝑘 = 0, 1, 2, …, 
whence 𝐼(𝑎) = 𝐶0 ⊃ 𝐶1 ⊃ 𝐶2 ⊃···. Observe that if 𝜁 ∈ 𝐶1, then the definition of the 

hyperbolic metric yields 𝜌(𝜑(𝜁), 𝜑(𝑎)) ≥ 𝛽, where 𝛽 =
𝑒2−1

𝑒2+1
> 1/√2. One gets from 

(101) that  
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𝛽2|𝐶1|

|𝐼(𝑎)|
≤

1

|𝐼(𝑎)|
∫ 𝜌(𝜑(𝜁), 𝜑(𝑎))

2
|𝑑𝜁|

𝐼(𝑎)

>
1

4
, 

Whence |𝐶1| ≤
1

2
|𝐼(𝑎)|. 

Let 𝑘 ≥ 1 be fixed. Then we may apply Lemma (3.3.13) to the set 𝐶𝑘 relative to the arc 

𝐼(𝑎) with 𝜆 =
1

2
 , which gives a sequence 𝐽1, 𝐽2, … of subarcs of 𝐼(𝑎) with disjoint interiors 

such that for each ℓ ≥ 1 

|𝐶𝑘 ∩ 𝐽ℓ| ≥
1

4
|𝐽ℓ|, |𝐶𝑘

𝑐 ∩ 𝐽ℓ| ≥
1

2
|𝐽ℓ|                          (103) 

and  

𝐶𝑘⋃𝐽ℓ

∞

ℓ=1

= 0.                                                     (104) 

Observe next that if 𝜁 ∈ 𝐶𝑘
𝑐 and 𝜉 ∈ 𝐶𝑘+1, then 𝜏(𝜑(𝜁), 𝜑(𝜉)) ≥ 𝜏 (𝜑(𝜉), 𝜑(𝑎)) −

𝜏 (𝜑(𝜁), 𝜑(𝑎)) ≥ 1, so that 𝜌(𝜑(𝜁), 𝜑(𝜉))
2
≥ 𝛽2 > 0. Consequently we get from (102), 

(103) and the assumption on a that  

𝜀 >
1

|𝐽ℓ|
2
∫ ∫ 𝜌(𝜑(𝜁), 𝜑(𝜉))

2
|𝑑𝜁||𝑑𝜉|

𝐽ℓ𝐽ℓ

≥ 𝛽2
|𝐶𝑘
𝑐 ∩ 𝐽ℓ|

|𝐽|
·
|𝐶𝑘+1 ∩ 𝐽ℓ|

|𝐽ℓ|
≥
1

4

|𝐶𝑘+1 ∩ 𝐽ℓ|

|𝐽ℓ|
 

Thus |𝐶𝑘+1 ∩ 𝐽ℓ| ≤ 4𝜀|𝐽ℓ| for ℓ ≥ 1. We sum this inequality over ℓ and employ (103) and 

(104) together with the essential disjointness of the subarcs 𝐽ℓ to obtain 

|𝐶𝑘+1| = ∑|𝐶𝑘+1 ∩ 𝐽ℓ|

∞

ℓ=1

≤ 4𝜀∑|𝐽ℓ|

∞

ℓ=1

≤ 16𝜀∑|𝐶𝑘 ∩ 𝐽ℓ|

∞

ℓ=1

= 16𝜀|𝐶𝑘|.   (105) 

In particular, since 𝜀 > 1/32, we get by induction that |𝐶𝑘| ≤ 2
2−𝑘|𝐶2| for 𝑘 ≥ 2. Note 

that 𝑘 ≤ 𝜏 (𝜑(𝜁), 𝜑(𝑎)) > 𝑘 + 1 whenever 𝜁 ∈ 𝐶𝑘\𝐶𝑘+1 and 𝑘 ≥ 0. Employing the short-

hand notation {𝜏 > 2} for the set {𝜁 ∈ 𝐼(𝑎): 𝜏(𝜑(𝜁), 𝜑(𝑎)) > 2} = 𝐶0\𝐶2 we thus get that   

∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
𝐼(𝑎)

= ∫ (𝜙(𝜁), 𝜙(𝑎))|𝑑𝜁|
{𝜏<2}

+∑∫ 𝜏(𝜙(𝜁 ), 𝜙(𝑎))|𝑑𝜁|
𝐶𝑘\𝐶𝑘+1

∞

𝑘=2

 

≤ ∫ 𝜏(𝜙(𝜁), 𝜙(𝑎))|𝑑𝜁|
{𝜏<2}

 +∑(𝑘 + 1)|𝐶𝑘|

∞

𝑘=2

. 

After division by |𝐼(𝑎)| the last term is less than |𝐶2||𝐼(𝑎)|
−1∑ (𝑘 + 1)22−𝑘∞

𝑘=2 ≤ 128𝜀, 
which tends to 0 as 𝜀 → 0. On the other hand, in the set {𝜏 < 2} 

we have 𝜏(𝜑(𝜁), 𝜑(𝑎)) ≤ 𝑐𝜌(𝜑(𝜁), 𝜑(𝑎))
2
 with a universal constant 𝑐 > 0, so that also  

lim
|𝑎|→1

1

|𝐼(𝑎)|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
{𝜏<2}

= 0 

in view of (100). This finishes the proof of Claim (3.3.15). 

As the final step we show that the condition of Claim (3.3.15) implies the desired 

hyperbolic condition (iv’) of Theorem (3.3.12). The required argument is quite standard 

but more technical than the analogous fact for the pseudo-hyperbolic distance 𝜌 because 

the hyperbolic distance τ is unbounded. We omit some computational details.  
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Claim (3.3.16)[69]: 

∫ 𝜏 (𝜑(𝜎𝑎(𝜁)), 𝜑(𝑎)) |𝑑𝜁|
𝕋

= ∫𝜏(𝜑(𝜁), 𝜑(𝑎))𝑃𝑎(𝜁)|𝑑𝜁|
𝕋

→ 0, |𝑎| → 1. 

For the proof we assume that 𝑎 ∈ 𝔻 satisfies 2−𝑁 ≤ 1 − |𝑎| > 21−𝑁 for some 𝑁 ≥ 1, and 

then let 𝑁 → ∞ in our estimates. Define for 𝑘 = 1, . . . , 𝑁 the radii 𝑟𝑘 , points 𝑎𝑘 ∈ 𝔻 and 

arcs 𝐼𝑘 through 1 − 𝑟𝑘 = 2
𝑁−𝑘(1 − |𝑎|), 𝑎𝑘 = 𝑟𝑘𝑎/|𝑎| and 𝐼𝑘 = 𝐼(𝑎𝑘). Set also 𝑎0 = 0 

and 𝐼0 = 𝕋. Then 𝑎 = 𝑎𝑁 and 𝐼(𝑎) = 𝐼𝑁 ⊂ 𝐼𝑁−1 ⊂. . . ⊂ 𝐼0 = 𝕋. Moreover, 2−𝑘 ≤ |𝐼𝑘| >
21−𝑘 . Observe that if 1 ≤ 𝑘 < 𝑁 and 𝜁 ∈ 𝐼𝑘\ 𝐼𝑘+1, then elementary trigonometry yields 

|𝜁 − 𝑎| ≥
1

2
|𝐼𝑘+1| ≥ 2

−𝑘−2. Hence the Poisson kernel satisfies 𝑃𝑎(𝜁) ≲ 2
2𝑘−𝑁 for all 𝜁 ∈

𝐼𝑘\𝐼𝑘+1, where ≲ indicates that the left-hand side is bounded above by a constant multiple 

of the right-hand side, the constant being independent of 𝑁 and 𝑘. Consequently we may 

estimate the second integral appearing in Claim (3.3.16) as follows:   

∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))𝑃𝑎(𝜁)|𝑑𝜁|∑ 22𝑘−𝑁∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
𝐼𝑘\𝐼𝑘+1

𝑁−1

𝑘=0𝕋

   

+ 2𝑁∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
𝐼(𝑎)

≲∑
2𝑘−𝑁

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎))|𝑑𝜁|
𝐼𝑘

𝑁

𝑘=0

 

≤∑
2𝑘−𝑁

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘))|𝑑𝜁|
𝐼𝑘

𝑁

𝑘=0

+ ∑ 2𝑘−𝑁𝜏 (𝜑(𝑎𝑘), 𝜑(𝑎))

𝑁 −1

𝑘=0

≡ 𝐴𝑁 + 𝐵𝑁  

It will suffice to verify that the condition of Claim (3.3.15) implies that the terms 𝐴𝑁 and 

𝐵𝑁 both tend to zero as 𝑁 → ∞. First of all (observe that now (99) holds), 

𝐴𝑁 ≲

(

 ∑2𝑘−𝑁

[
𝑁
2
]

𝑘=0

+ ∑ 2𝑘−𝑁
𝑁

𝑘=[
𝑁
2
]+1 )

 
1

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘))|𝑑𝜁|
𝐼𝑘

 

≲ 𝑁 · 2−
𝑁
2 + sup

𝑘>[
𝑁
2
]

1

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘))|𝑑𝜁|
𝐼𝑘

. 

Above the first term tends to zero trivially, and the second term by Claim (3.3.15),as 𝑁 →
∞. 

       In order to relate the term 𝐵𝑁 to the averages in Claim (3.3.15) we introduce the short-

hand 𝑏𝑘 = |𝐼𝑘|
−1 ∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘))|𝑑𝜁|𝐼𝑘

. Let 1 ≤ 𝑘 ≤ 𝑁. By averaging over the arc 𝐼𝑘 we 

get from the triangle inequality for 𝜏 that  

𝜏(𝜑(𝑎𝑘−1), 𝜑(𝑎𝑘)) ≤
1

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘−1))|𝑑𝜁|
𝐼𝑘

 

+
1

|𝐼𝑘|
∫ 𝜏(𝜑(𝜁), 𝜑(𝑎𝑘))|𝑑𝜁|
𝐼𝑘

≤ 2𝑏𝑘−1  +  𝑏𝑘 , 

Since |𝐼𝑘−1| ≤ 2|𝐼𝑘|. Because = 𝑎𝑁 , we deduce that  

𝜏(𝜑(𝑎𝑘), 𝜑(𝑎)) ≲∑𝑏𝑗

𝑁

𝑗=𝑘

≤ (𝑁 − 𝑘 +  1) max
𝑘≤𝑗≤𝑁

𝑏𝑗 . 

Put 𝐸𝑘 = max
𝑘≤ 𝑗≤𝑁

𝑏𝑗 , so that by combining the above estimates one has  
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𝐵𝑁 ≲ ∑(𝑁 − 𝑘 + 1)2𝑘−𝑁𝐸𝑘

𝑁 −1

𝑘=0

, 

where the 𝐸𝑘 ’s have a uniform upper bound (independent of a) and 𝐸
[
𝑁

2
]
→ 0 as 𝑁 → ∞. 

By splitting the preceding sum as before at the level [𝑁/2] we deduce that 𝐵𝑁 → 0 as 𝑁 →
∞. This completes the proof of Claim 2, and hence of Proposition (3.3.14).  
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Chapter 4 

Compact Composition Operators and Atomic Decomposition 

We characterize boundedness, closedness of the range and compactness for 

composition operators acting on 𝜇-Bloch spaces, where 𝜇 is a positive continuous function 

defined on the interval 0 <  𝑡 ≤  1, that satisfy certain holomorphic extension properties. 

At the same time, we give the briefly sufficient and necessary condition that 𝐶𝜙 is compact 

on 𝛽µ for 𝑎 > 1. 

Section (4.1): 𝜇-Bloch Type Spaces 

For 𝔻 denote the unit disk in the complex plane ℂ and let H(𝔻) be the space of all 

holomorphic functions on 𝔻 with the topology of uniform convergence on compact 

subsets of 𝔻. The Bloch space B consists of all functions  𝑓 ∈ 𝐻(𝔻) for which  

‖𝑓‖B ∶= sup
z∈𝔻
(1 − |z|2)  ‖𝑓′(z)‖ < ∞. 

𝐵 becomes a Banach space when it is equipped with the norm ‖𝑓‖ ∶= |𝑓 (0)| +
 ‖𝑓‖𝐵 (see, e. g., [147]). 

 For 𝛼 > 0, the α- Bloch space, denoted as 𝐵𝛼, consists of all holomorphic functions 𝑓 on 

𝔻 such that 

 ‖𝑓‖𝛼 ∶= sup
z∈𝔻
(1 − |z|2)  ‖𝑓′(z)‖ < ∞. 

 𝛼-Bloch spaces have been introduced and studied by numerous authors. For the general 

theory of α- Bloch functions see [159]. Many have studied different classes of Bloch type 

spaces, where the typical weight function, w(z) = 1 − |z|2 (z ∈ 𝔻), is replaced by a 

continuous positive function μ defined on the interval 0 < 𝑡 ≤ 1. A function f ∈ H(𝔻) is 

called a μ-Bloch function, denoted as f ∈ Bμ, if  
 ‖f‖μ ∶= sup

z∈𝔻
(1 − |z|2)  ‖f′(z)‖ < ∞. 

 Clearly, if 𝜇(𝑡) = 𝑡𝛼 with 𝛼 >  0, 𝐵𝜇 is just the 𝛼-Bloch space. It is readily seen that 𝐵𝜇 

is a Banach space with the norm  ‖𝑓‖𝐵𝜇 ∶= | 𝑓 (0)| + ‖ 𝑓‖𝜇 . 

𝐵𝜇 spaces appear in a natural way when one studies properties of some operators in certain 

spaces of holomorphic functions; for instance, if 𝜇1(𝑡) = 𝑡 log
2

𝑡
  , with t ∈ (0,1], K. Attele 

in [148] proved that the Hankel operator induced by a function 𝑓 in the Bergman space is 

bounded if and only if 𝑓 ∈ 𝐵𝜇1   . The space 𝐵𝜇1 is also known as the Log-Bloch space or 

the weighted Bloch space. Quite recently in [157] was introduced, so called, the 

logarithmic Bloch type space with 𝜇(𝑡) = 𝑡𝛼 ln𝛽
𝑒

𝑡
 , 𝛼 > 0 and 𝛽 ≥ 0, where some 

properties of this space are studied and applied in studying of a composition operator. 

       Let  𝐻1 and 𝐻2 be two linear subspaces of 𝐻(𝔻). 𝐼𝑓 𝜑 is a holomorphic self-map of 

𝔻, such that 𝑓 ∘ 𝜑 belongs to 𝐻2 for all 𝑓 ∈ 𝐻1, then 𝜑 induces a linear operator 𝐶𝜑 ∶

 𝐻1  →  𝐻2 defined as 

 𝐶𝜑( 𝑓 ) ∶=  𝑓 ∘ 𝜑, 

 called the composition operator with symbol 𝜑. Composition operators has been studied 

by numerous authors in many subspaces of 𝐻(𝔻) and in particular in Bloch-type spaces. 

       In [2], Madigan and Matheson characterized continuity and compactness for 

composition operators on the classical Bloch space 𝐵. In turn, their results have been 

extended by Xiao [158] to the 𝛼-Bloch spaces and by Yoneda [11] to the Log-Bloch 

space. On the other hand, Gathage, Zheng and Zorboska [153] characterized closed range 

composition operators on the Bloch space. This result has been extended by Chen and 
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Gauthier [149] to 𝛼-Bloch spaces. Composition eoperators between 𝛼-Bloch and/or 

Lipschitz spaces on the unit ball are studied in [150], while the case of the polydisk was 

thoroughly studied in [151]. 

       Also, in [4], Zhang and Xiao have characterized boundedness and compactness of 

weighted composition operators that act between 𝜇-Bloch spaces on the unit ball of ℂ𝑛. In 

this case it is required that 𝜇 be a normal function. The results of Zhang and Xiao have 

been extended by Chen and Gauthier to the 𝜇-Bloch spaces being 𝜇 a positive and non-

decreasing continuous function such that μ(t )→0 as 𝑡 → 0 and 𝜇(𝑡)/𝑡𝛿 is decreasing for 

small 𝑡 and for some 𝛿 > 0. 
Other compactness criteria for composition operators onBloch spaces have been found by 

Tjani [139]. Wulan, Zheng and Zhu (see [143]) proved the following result. 

Theorem (4.1.1)[146]: ([143]): Let 𝜑 be an analyitic self-map of 𝔻. Then 𝐶𝜑 is compact 

on the Bloch space 𝐵 if and only if 

lim
𝑛→∞

‖𝜑𝑛‖𝐵  =  0. 

We characterize boundedness and closedness of the range for composition operators acting 

on certain 𝜇-Bloch spaces. We will approach these problems from a slightly different point 

of view. We will consider only those functions 𝜇 that can be extended to non vanishing, 

complex valued holomorphic functions, that satisfy a reasonable, for the purpose of 

extending the results of [11], [153], [149], geometric condition on the Euclidean disk 

𝐷(1,1). We will consider the problem of compactness of composition operators acting on  

𝜇- Bloch spaces. We discuss extensions of the results in [2], [143]. In fact, we will see that 

a result similar to Theorem (4.1.1) holds for 𝐶𝜑 ∶ 𝐵 → 𝐵𝜇 . 
We obtain genuine extensions of the results in [11], [153], [149]. For that reason, 

we will assume that 𝜇 ∶ (0, 1] → ℝ is a positive continuous function satisfying 𝜇(𝑡 ) →
0 𝑎𝑠 𝑡 → 0+, and also that 𝜇 can be extended to a complex function �̃� satisfying the 

following properties: 

   (a)  �̃� ∈  𝐻 (𝐷(1,1)), 
   (b)  �̃�(𝑧) ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈  𝐷(1,1), 
   (c) there exists a constant 𝑀𝜇 > 0 such that 

𝜇(1 − |1 − 𝑧|) ≤  𝑀𝜇 | �̃�(𝑧)|                                            (1) 

for all 𝑧 ∈  𝐷(1,1). 

For instance, the functions 𝜇1(𝑡 ) ∶=  𝑡
𝛼 , with 𝛼 > 0; 𝜇2(𝑡 ) ∶= 𝑡𝑙𝑜𝑔

2

𝑡
  and 𝜇3(𝑡) ∶=

 𝑡𝑝 𝑙𝑜𝑔(1 + 𝑡 ) with 𝑝 > 1, defined on the interval (0, 1], satisfy all three conditions 

stated above. Observe that 𝐵𝜇1 is the 𝛼-Bloch space and 𝐵𝜇2 is the weighted Bloch space. 

     Let 𝜑 be a holomorphic self-map of the unit disk 𝔻. For a function 𝜇 that satisfies all 

the properties mentioned above, put 

τφ
μ
 (z):=

μ(1 − |z|2)

μ(1 − |φ(z)|2)
|φ′(z)| , z ∈ 𝔻                .                 (2) 

It is readily seen that if 𝜏𝜑
𝜇
(𝑧) is bounded on 𝔻, then the composition operator 𝐶𝜑 is well 

defined on 𝐵𝜇. Moreover, this condition turns out to be necessary and sufficient for 𝐶𝜑 to 

be bounded on 𝐵𝜇, as the following proposition shows. 

Theorem (4.1.2)[146]: The composition operator 𝐶𝜑 is bounded on 𝐵𝜇   if and only if 

sup
z∈𝔻

τφ
μ (z) < ∞.                                                 (3) 

Proof. Let us suppose first that 
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sup
z∈𝔻

τφ
μ
 (z)  =  L <  ∞. 

Then, for each 𝑓 ∈ 𝐵𝜇, we have the following estimate 

‖𝐶𝜑( 𝑓 )‖𝜇
= ‖ 𝑓 ∘ 𝜑‖𝜇 = sup

𝑧∈𝔻
𝜇_(1 − |𝑧|2 |𝑓′(𝜑(𝑧))||𝜑′(𝑧)| 

= sup
𝑧∈𝔻

𝜇(1 − |𝜑(𝑧)|2) |𝑓′(𝜑(𝑧))|𝜏𝜑
𝜇
 (𝑧) 

                                 ≤  𝐿 ‖𝑓‖𝜇 .    

Thus, the composition operator 𝐶𝜑 is bounded on 𝐵𝜇. 

       Now, suppose that there exists a constant 𝐶 >  0 such that 

‖𝐶𝜑( 𝑓 )‖𝜇
≤ 𝐶‖𝑓‖𝜇 

for all functions 𝑓 ∈  𝐵𝜇; then, since the identity function 𝑖(𝑧)  =  𝑧 belongs to 

𝐵𝜇, it follows that 𝜑 ∈ 𝐵𝜇. Let us fix 𝑤 ∈ 𝔻\{0} and consider the function 

𝑓𝑤(𝑧):= ∫
𝑑𝑠

�̃� (1 −
�̅�2

|𝑤|2𝑠2
)

 𝑧

0

. 

Since the function �̃�satisfies conditions (𝑎) and (𝑏), it is clear that 𝑓𝑤 ∈ 𝐻(𝔻).Also, by 

condition (𝑐) 

𝜇(1 − |𝑧|2)|𝑓𝑤
′ (𝑧)| =  𝜇(1 − |𝑧|2)(

1

|�̃� (1 −
�̅�2

|𝑤|2
𝑧2)|

≤ 𝑀𝜇                   (4) 

for all 𝑧 ∈ 𝔻. This means that 𝑓𝑤 ∈ 𝐵
𝜇 . Thus, by the hypothesis on 𝐶𝜑 and (4), there is a 

constant 𝐾 > 0 (depending only on 𝜇) such that  ‖𝑓𝑤 ∘ 𝜑‖𝜇 ≤  𝐾, which implies that 

𝜇(1 − |𝑧|2)

|�̃� (1 −
�̅�2

|𝑤|2
|(𝜑(𝑧)|2)|

|𝜑′(𝑧)| ≤  𝐾                              (5) 

for all 𝑧 ∈ 𝔻 and all 𝑤 ∈ 𝔻\{0}. Therefore, if 𝑧 ∈ 𝔻 satisfies 𝔻(𝑧) ≠  0, the substitution 

𝑤 = 𝜑(𝑧) into (5) yields 

 sup
(𝑧∈𝔻):𝜑(𝑧)≠ 0

 
𝜇(1 − |𝑧|2)

𝜇(1 − |𝜑(𝑧)|2)
|𝜑′(𝑧)| ≤  𝐾, 

where we have used the fact that �̃� is an extension of 𝜇. Finally, since 

sup
(𝑧∈𝔻):𝜑(𝑧)=0

 
𝜇(1 − |𝑧|2)

𝜇(1 − |𝜑(𝑧)|2)
|𝜑′(𝑧)| =

1

𝜇(1)
 sup
(𝑧∈𝔻):𝜑(𝑧)≠ 0

𝜇(1 − |𝑧|2)|𝜑′(𝑧)| 

≤
1

𝜇(1)
‖𝜑‖𝜇 < ∞; 

we can write 

sup
𝑧∈𝔻

𝜏𝜑
𝜇
(𝑧) ≤ sup

(𝑧∈𝔻):𝜑(𝑧)≠ 0
𝜏𝜑
𝜇(𝑧) + sup

(𝑧∈𝔻):𝜑(𝑧)≠ 0
𝜏𝜑
𝜇(𝑧) ≤ 𝐾 +

1

𝜇(1)
‖𝜑‖𝜇 < ∞ 

and the proof of Theorem (4.1.2) is complete.  

       Now, we present a necessary and sufficient condition for a composition operator on 

𝐵𝜇 to be bounded below (and therefore with closed range). The purpose here is to 

generalize the results in [153], [149] to the  𝜇- Bloch space. To this end, for 𝜀 >  0, let us 

denote 

Ω𝜀 ∶=  {𝑧 ∈ 𝔻 ∶ 𝜏𝜑
𝜇
(𝑧) 𝜀}. 
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Based on the definition of sampling sets for the Korenblum space (see [154]) and for 𝛼-

Bloch spaces (see [149]), the following definition is now natural. 

Here, as before, 𝜇 ∶ (0, 1] → ℝ will be a positive continuous function such that 𝜇(𝑡 ) → 0 

as 𝑡 → 0+ and we will use 𝐵𝜇 to denote the Bloch-type space associated to a such 

function 𝜇. 

Definition (4.1.3)[146]: A subset G of the unit disk 𝔻 is said to be a sampling set for Bμ if 

there exists a positive constant L >  0 such that 

sup
z∈G
(μ1 − |z|2)|f′(z)| ≥  L ‖f‖μ                                       (6) 

for all f ∈ Bμ. 

       In the following propositionwe characterize closed range composition operators on Bμ 

in terms of sampling sets. 

Theorem (4.1.4)[146]: Let Cφ be a bounded composition operator on Bμ. Cφ is bounded 

below on Bμ if and only if there exists ε > 0 such that Gε = φ(Ωε) is a sampling set for 

Bμ. 

Proof. Let us suppose first that there exists ε > 0 such that Gε = φ(Ωε) is a sampling set 

for Bμ. In this case, we can find a constant L >  0 such that 

‖ f‖μ ≤ L sup
z∈Gε

μ(1 − |z|2)|f′(z)| 

for all functions f ∈  Bμ. Hence, we have that 

‖ f‖μ ≤  L sup
z∈Ωε

μ(1 − |φ(z)|2)|f′(φ(z))| 

=  L sup
z∈Ωε

1

τφ
μ (z)

μ(1 − |z|2)|( f ∘ φ)′(z)| 

≤
L

ε
 ‖f ∘ φ‖μ . 

This readily implies that the operator Cφ is bounded below on Bμ. 

    To prove the converse, suppose that Cφ is bounded below on Bμ. Then there exists a 

constant K > 0, such that 

‖𝐶𝜑( 𝑓 )‖𝜇
= sup
𝑧∈𝔻

𝜇(1 − |𝑧|2)|𝑓′(𝜑(𝑧))||𝜑′(𝑧)| ≥  𝐾 

for all functions 𝑓 ∈  Bμ with ‖f‖μ = 1. Thus, by definition of supremum, we can find 

zf ∈ 𝔻 such that 

μ(1 − |zf|
2)|f ′(φ(zf))||φ

′(zf)| ≥
K

2
, 

which, in turn, implies that 

τφ
μ (zf)μ(1 − |φ(zf)|

2)f ′|(φ(zf))| ≥
K

2
.                            (7) 

Thus, since μ(1 − |φ(zf)|
2)|f ′(φ(zf))| ≤  1, it must be τφ

μ
 (zf ) ≥

K

2
. Therefore, putting ε ∶

=
K

2
, we have zf ∈ Ωε. 

       Now, since Cφ is bounded, Theorem (4.1.2) implies that there is a constant Mμ >  0 

such that 

τφ
μ
 (z)  ≤ Mμ 

 for all z ∈ 𝔻. In particular, τφ
μ
 (zf) ≤ Mμ. From (7) we conclude that 
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μ (1 − |φ(zf)|
2)| f′φ(zf)| ≥

K

2Mμ
 . 

 Finally, since φ(zf) ∈ Gε, it must be 

sup
z∈Gε

μ (1 − |z|2)|f ′(z)|  ≥
K

2Mμ
 . 

 Therefore Gε is a sampling set for Bμ. The proof of Theorem is complete. 

      Indeed, from [152] we observe that any sampling sequence for Bμ is an  η- net, for 

some η ∈ (0,1) and, conversely, if  Γ = {zk} is a separated η-net for η ∈ (0,1) small 

enough, then Γ is a sampling sequence for Bμ. Thus, Theorem (4.1.4) can be rephrased as 

Corollary (4.1.5)[146]: Let Cφ be a bounded composition operator on Bμ. If Cφ is 

bounded below on Bμ, then there exists ϵ = 0 such that G contain a separated η-net for 

some η ∈ (0,1). Conversely, if for some ϵ > 0 the set Gϵ contain an η-net with η ∈ (0,1) 
small enough, then Cφ is bounded below on Bμ . 

We characterize compactness of composition operators that act from the Bloch 

space, B, to μ- Bloch spaces. We obtain extensions of the results in [2], [143]. In order to 

do that we will assume that μ ∶ (0,1]  → ℝ is a positive continuous function satisfying 

μ(t)  →  0 as t → 0+. We also will assume that there exists t0 ∈ (0,1) such that μ is 

increasing in (0, t0), and that μ can be extended to a non vanishing analytic function μ̃ on 

the disk D(1,1) that satisfies the following properties: 

   (i) 1/μ̃(z) = ∑ bn(1 − z)
n ∞

 n=0  , with bn ≥ 0 for all n ∈ ℕ, 

   (ii) there exists a constant Kμ > 0 such that limtt→0+
tμ′(t)

μ(t)
= Kμ. 

       For instance, the functions μ1(t) ∶= t
α, with α > 0; μ2(t): = t log 

3

t
   and μ3(t) ∶=

tp log(1 + t) with p >  1, satisfy the required conditions. 

       Let φ  be a holomorphic self-map of the unit disk 𝔻 and let μ be a function that 

satisfies all the properties mentioned above. Arguing as in the proof of Theorem (4.1.2) we 

can show that Cφ ∶  B →  B
μ  is bounded if and only if  

sup
z∈𝔻

 
μ (1 − |z|2)

 1 − |φ(z)|2
|φ′(z)|  < ∞. 

Also, as a consequence of [139] we have the following result. 

 

 Lemma (4.1.6)[146]: The composition operator Cφ ∶ B →  Bμ is compact if and only if 

given a bounded sequence {fn} in B such that fn →  0 uniformly on compact subsets of 𝔻, 

then ‖Cφ( fn)‖μ
→  0 as n → ∞.  

     Next we establish the compactness of Cφ ∶ B →  B
μ. It extends a result of Madigan and 

Matheson in [2]. 

Theorem (4.1.7)[146]: The composition operator Cφ ∶  B →  B
μ is compact if and only if 

φ ∈ Bμ and 

lim
|φ(z)|→1−

μ(1 − |z|2)

1 − |φ(z)|2
 |ϕ′(z)| = 0.                                       (8) 

Proof. Let us suppose first that φ ∈ Bμ and that (8) holds. Let {fn} be a bounded sequence 

in B converging to 0 uniformly on compact subsets of 𝔻. Then, by Lemma (4.1.6), it 
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suffices to show that   ‖Cφ(fn)‖μ
→  0 as n →  ∞. To this end, set K = sup

n
‖fn‖B  . Then, 

for  ϵ >  0 we can find an r ∈  (0,1) such that 

μ(1 − |z|2)

1 − |φ(z)|2
 |φ′(z)| <

ϵ

K
 , 

 for any z ∈ 𝔻 satisfying r < |φ(z)| < 1. From here, we have that 

 μ(1 − |z|2)|(fn ∘ φ)
′(z)| =

μ(1 − |z|2)

1 − |φ(z)|2
 |φ′(z)|(1 − |φ(z)|2)|fn

′ ∘ φ(z)| 

≤
ϵ

K
K = ϵ 

Whenever  r <  |φ(z)| < 1. 
       On the other hand, since {fn } converges to 0 uniformly on compact subsets of 𝔻, 𝑓𝑛 ∘
φ(0)  →  0 and sup

|w|≤r
 μ(1 − |w|2)|fn

′  (w)| →  0, as n →  ∞ 

       Also, since φ ∈ Bμ, we can find a constant Cr > 0, depending only on r, such that 

sup
|φ(z)|≤r

μ(1 − |z|2)

1 − |φ(z)|2
 |φ′ (z)|  ≤  Cr ‖φ‖μ. 

 Therefore, for the  ϵ > 0 given, there exists an N ∈  ℕ such that 

 sup|φ(z)|≤r  μ(1 − |z|
2)|(fn ∘ φ)′(z)| 

= sup
|φ(z)|≤r

 
μ(1 − |z|2)

1 − |φ(z)|2
φ′(z)(1 − |φ(z)|2)| fn

′ ∘ φ(z)| 

≤ Cr‖φ‖μ 

whenever n ≥  N. Thus, we conclude that 

  ‖fn ∘ φ‖μ = |fn ∘ φ(0)| + sup
z∈𝔻

 μ(1 − |z|2) |(fn ∘ φ)
′(z)| < (1 + Cr‖φ‖μ) ϵ 

whenever n ≥  N, which means that Cφ ∶  B →  B
μ is a compact operator. 

        To prove the converse, suppose that there exists an ϵ0 > 0 such that  

sup
|φ(z)|≥r

μ(1 − |z|2)

1 − |φ(z)|2
 |φ′(z)|  ≥ ϵ0 

 for any r ∈  (0,1). Then, given a sequence of real numbers {rn}  ⊂  (0,1) such that rn →
1 as n → ∞, we can find a sequence {zn} ⊂ 𝔻 such that |φ(zn)| > rn and 

μ(1 − |zn |2)

 1 − |wn|
|φ′(zn)| ≥

1

2
ϵ0. 

 By taking a subsequence,if it is necessary, we may suppose that wn = φ(zn) →  w0 ∈
∂𝔻. Now, for n ∈ ℕ and z ∈ 𝔻, we set gn(z) ∶= fn,0(z) − fn (z), where 

 fn,0(z) =
wn̅̅ ̅̅

|wn|
∫

ds

1 −
wn̅̅ ̅̅
|wn|

s

 z

0

     , 

 fn(z) =  wn̅̅ ̅̅  ∫   
 z

 0

ds

1 − wn̅̅ ̅̅ s
       . 

 Clearly {gn} is a bounded sequence in B. Furthermore, since 

|gn
′ (z)|  ≤ (1 − |z|)−2(1 − |wn|) 

and |gn(z)| ≤ ∫ |gn
′ (s)|

z

 0
|ds| for all z ∈ 𝔻, {gn} is a sequence converging to 0 uniformly 

on compact subsets of 𝔻, and satisfying 

 ‖Cφ(gn)‖μ
≥ μ(1 − |zn|2)gn

′ (wn)||φ′(zn)| 
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=
μ(1 − |zn|

2 )

1 − |wn|
 |φ′(zn)| ≥

1

2
 ϵ0 > 0. 

 Therefore, Cφ: B →  B
μ is not a compact operator. This completes the proof of the 

theorem. 

We collect alternative tests to determine the compactness of a composition operator 

Cφ ∶ B → B
μ. We have modified some of the techniques used in [143]. Here, for a ∈ 𝔻 

fixed, let 

σa
μ(z):=

1

a̅

μ(1 − |a|2)

μ̃(1 − a̅z)
=
1

a̅
μ(1 − |a|2) ∑ bna

− nzn .

 ∞

 n=0

 

 Theorem (4.1.8)[146]: Let φ be an analytic function on 𝔻 into itself such that φ ∈ Bμ. 
The following conditions are equivalent. 

(a)
μ(1−|z|2 )|φ′(z)|

1−|φ(z)|2
 →  0 as |φ(z)|  →  1−, 

(b) ‖φn‖μ →  0 as n → ∞  

(c) ‖σa
μ
∘ φ‖

μ
→  0 as |a|  → 1− 

 Proof. If ‖ϕ‖∞ < 1, then the theorem is clear. Hence assume that ‖ϕ‖∞ =  1. Suppose 

that condition a) holds. Then by Theorem (4.1.7), the composition operator Cφ ∶ B → B
μ 

is compact. Thus, since the sequence {zn}is bounded in the Bloch space and converges to 

0 uniformly on compact subsets of 𝔻, Lemma (4.1.6) implies that lim
n→∞ 

‖φn‖μ  =  0. 

       Suppose now that condition b) holds and let  ϵ >  0. Then by hypothesis, there exists 

an N ∈ ℕ such that ‖φn‖μ < ϵ whenever n ≥  N. Thus, we can write. 

‖σa
μ
∘ ϕ‖

μ
≤
1

|a|
μ(1 − |a|2) ×∑  bn|a|

n‖φn‖μ +
1

|a|
μ(1 − |a|2)

N

n=0

∑ bn|a|
n‖φn‖μ

  ∞

 N+1

  

 <
1

|a|
μ(1 − |a|2) ∑ bn|a|

n‖φn‖μ

N

 n=0

 + ϵ
1

|a|
 
μ(1 − |a|2)

μ(1 − |a|)
 .                             (9) 

 On the other hand, since lim
t→0+

tμ′(t)

μ(t)
 =  Kμ >  0 and μ is increasing for t >  0 small 

enough, then there exists t0 ∈ (0,1) such that 
tμ′(t)

μ(t)
<
3

2
 Kμ  

whenever 0 <  t <  t0. It follows, by integration, that  
μ(2t)

μ(t)
< 2

3
2
Kμ 

whenever 0 <  t <  t0. Thus, since t ≤  (2t – t2 ) ≤ 2t for t ∈ (0,1], we conclude that  

1 ≤
μ(2t – t2)

μ(t)
≤
μ(2t)

μ(t)
≤ 2

3
2
Kμ 

for t >  0 small enough. Now, the hypothesis on μ together with the latter innequality 

and (9) gives that 

  ‖σa
μ
∘ φ‖

μ
≤

1

|a|
μ(1 − |a|2)∑ bn|a|

n‖φn‖μ
  N
 n=0  + ϵ

1

|a|
 2
3

2
Kμ   
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whenever 1 − |a|  >  0 is small enough. The condition c) follows by taking limit as |a|  →
 1−.  

       Finally, suppose that condition c) holds. Then, given ϵ >  0 there exists r ∈ (0,1) 

such that ‖σa
μ
∘ φ‖

μ
< ϵ whenever  r < |a| < 1. In particular, if z ∈ 𝔻 satisfies |φ(z)| >

r, 

‖σφ(z)
μ
(φ)‖

μ
= sup
w∈𝔻

μ(1 − |w|2)|
( μ(1 − |φ(z)|2)|μ̃′ (1 − φ(z)̅̅ ̅̅ ̅̅ φ(w)

|μ̃ (1 − φ(z)̅̅ ̅̅ ̅̅ φ(w))|
2 |φ′(z)| < ϵ  

, thus, for w =  z we have 

μ(1 − |z|2)

μ(1 − |φ(z)|2)
|μ̃′(1 − |φ(z)|2)||φ′(z)| <  ϵ                         (10) 

whenever r <  |φ(z)|  < 1. Furthermore, since lim
t→0+

tμ′(t)

μ(t)
= Kμ, we can choose r ∈ (0,1) 

in such a way that  

Kμ

2(1 − |φ(z)|2)
≤
|μ̃′(1 − |φ(z)|2)|

μ(1 − |φ(z)|2)
 

whenever r <  |φ(z)| < 1. From this latter fact and (10), we finally obtain 
μ(1−|z|2)|φ′(z)|

1−|φ(z)|2
<
2ϵ

Kμ
 

whenever r < |φ(z)| < 1, and so a) holds. 

       We want to conclude with a comment about compactness of the composition operator 

Cφ ∶  B0 → B0
μ
 ; namely, if μ is as above, by applying similar arguments to those given by 

Madigan and Matheson in [2], we may also establish the following: 

 (i) A subset K of B0
μ
 is compact if and only if 

lim
|z|→1−

sup
f∈K
μ(1 − |z|2)|   f′(z)|  =  0. 

 (ii) The composition operator Cφ ∶ B0  →  B0
μ
  is compact if and only if  

lim
|z|→1−

μ(1 − |z|2)

(1 − |φ(z)|2|
φ′(z)| = 0. 

Section (4.2): 𝝁-Bergman Space in 𝑪𝒏∗ 
For 𝑑𝑣 be the Lebesgue measure on the unit ball 𝐵, normalized so that 𝑣(𝐵) =

1;  𝑑𝑣𝛼(𝑧) = 𝑐𝛼(1 − |𝑧|
2)𝛼𝑑𝑣(𝑧) (𝑧 ∈  𝐵, 𝛼 >  −1) such that 𝑣𝛼(𝐵)  =  1. The class of 

all holomorphic functions on 𝐵 is denoted by 𝐻(𝐵). In the following, 𝑧 =  (𝑧1,· · ·
 , 𝑧𝑛), 𝑤 =  (𝑤1,· · · , 𝑤𝑛) in 𝐶𝑛, and 〈𝑧, 𝑤〉  = ∑ 𝑧𝑗𝑤𝑗̅̅ ̅

𝑛
𝑗=1 . 

     A positive continuous function 𝜇 on [0, 1) is called as normal, if there are constants 

0 <  𝑎 <  𝑏 such that 

(i) 
𝜇(𝑟)

(1 − 𝑟2)𝑎
 is decreasing for 0 ≤  𝑟 <  1 and lim

𝑟→1−

𝜇(𝑟)

(1 − 𝑟2)𝑎
=  0; 

(ii) 
𝜇(𝑟)

(1 − 𝑟2)𝑏
 is increasing for 0 ≤  𝑟 <  1 and lim

𝑟→1−

𝜇(𝑟)

(1 − 𝑟2)𝑏
=  ∞. 

     Let 𝑝 >  0, and 𝜇 be normal on [0, 1). 𝑓 is said to belong to the space 𝐿𝑝(𝜇) if 𝑓 is 

Lebesgue measurable function on 𝐵 and 

‖𝑓‖𝐿𝑝(𝜇)  =  {∫ |𝑓(𝑧)|
𝑝  
𝜇𝑝 (|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

}

1
𝑝

<  ∞. 
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𝐴𝑝(𝜇)  =  𝐿𝑝(𝜇)  ∩ 𝐻(𝐵) is called as 𝜇-Bergman space. In particular, 𝐴𝑝(𝜇) is the 

Bergman space 𝐴𝑝 when 𝜇(𝑟)  =  (1 −  𝑟2)
1

𝑝, and 𝐴𝑝(𝜇) is the weight Bergman space 𝐴𝛽
𝑝

 

when 𝜇(𝑟) = (1 − 𝑟2)
𝛽+1

𝑝 (𝛽 >  −1). 
     It is well known that 𝐴𝑝(𝜇) is a Banach space with the norm ‖ . ‖𝐿𝑝(𝜇) when 𝑝 ≥  1, 

and 

𝐴𝑝(𝜇) is a Fréchet space with the distance ‖ . ‖𝐿𝑝(𝜇) when 0 <  𝑝 <  1. At the same time, 

(𝐴𝑝(𝜇), ‖ . ‖𝐿𝑝(𝜇)) is a topological vector space when 𝑝 >  0. 

     Let 𝑝 >  0. The sequence space 𝑙𝑝 is defined as following 

𝑙𝑝  =  {{𝑐𝑘} ∶  ‖{𝑐𝑘}‖  =  (∑|𝑐𝑘|
𝑝

∞

𝑘=1

)

1
𝑝

<  ∞ and each 𝑐𝑘 is complex number}. 

We will discuss the atomic decomposition. Atomic decomposition was studied for a 

long time (For example, [161]–[162]). In [161], R.Coifman and R.Rochberg discussed the 

problem on the weighted Bergman space 𝐴𝛼
𝑝
. In [17], Kehe Zhu modified the proof for the 

following Theorem: 

Theorem (4.2.1)[160]: Suppose 𝑝 >  0, 𝛼 >  −1, and 𝑏 >  𝑛 max {1,
1

𝑝
}  + 

𝛼+1

𝑝
. Then, 

there exists a sequence {𝑎𝑘} in 𝐵 such that 𝐴𝛼
𝑝

 consists exactly of functions of the form 

𝑓(𝑧)  = ∑𝑐𝑘
(1 − |𝑎𝑘|

2)
𝑏−
𝑛+1+𝛼
𝑝

(1 − 〈𝑧, 𝑎𝑘〉)
𝑏

∞

𝑘=1

  (𝑧 ∈  𝐵), 

where {𝑐𝑘} belongs to the sequence space 𝑙𝑝 and the series converges in the norm topology 

of 𝐴𝛼
𝑝
. 

We extend the weight (1 − |𝑧|2)𝛼 to the normal weight 
𝜇𝑝(|𝑧|)

1−|𝑧|2
. We show that every 

function in the 𝜇−Bergman space 𝐴𝑝(𝜇) can be decomposed into a series of very nice 

atoms. These atoms are defined in terms of kernel functions and in some sense act as basis 

for the space 𝐴𝑝(𝜇). 

The radial derivative 𝑅𝑓(𝑧)  = ∑ 𝑧𝑗
𝜕𝑓

𝜕𝑧𝑗
(𝑧)𝑛

𝑗=1  for 𝑓 ∈  𝐻(𝐵). We will use the 

symbols 𝑐, 𝑐′, 𝑐′′, and 𝑐′′′ to denote positive constants, independent of variables 𝑧, 𝑤, and 

functions. But they may depend on some parameters, with different values in different 

cases. 

We say that 𝐸 and 𝐹 are equivalent (denoted by 𝐸 ≈  𝐹 in the following) if there exist two 

positive constants 𝐴1 and 𝐴2 such that 𝐴1𝐸 ≤  𝐹 ≤  𝐴2𝐸. 
We first give some lemmas. 

Lemma (4.2.2) ([17])[160]: There exists a positive integer 𝑁 such that for any 0 <  𝑟 ≤
 1, we can find a sequence {𝑎𝑘} in 𝐵, and for each 𝑘 ∈  {1, 2,· · · }, there exists a Lebesgue 

measurable set 

𝐷𝑘 satisfying the following conditions: 

   (i) 𝐵 = ⋃ 𝐷(𝑎𝑘 , 𝑟)
∞
𝑘=1  = ⋃ 𝐷𝑘

∞
𝑘=1 ; 

   (ii) 𝐷𝑘  ∩  𝐷𝑗  =  ∅ for 𝑘 ≠  𝑗 (𝑘, 𝑗 ∈  {1, 2,· · · }); 

   (iii) 𝐷(𝑎𝑘,
𝑟

4
)  ⊂  𝐷𝑘  ⊂  𝐷(𝑎𝑘 , 𝑟) for every 𝑘 ∈  {1, 2,· · · } (𝐷(𝑎𝑘, 𝑟) is Bergman ball); 

   (iv) Each point 𝑧 ∈  𝐵 belongs to at most 𝑁 of the sets 𝐷(𝑎𝑘, 4𝑟). 
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Lemma (4.2.3)[160]: Let 𝜇 be normal on [0, 1), 0 <  𝑟 ≤  1, and 𝑤 ∈  𝐵. Then, 

   (i) 𝐷(𝑧, 𝑟)  ⊂  𝐷(𝑤, 2𝑟)  ⊂  𝐷(𝑤, 4𝑟) for any 𝑧 ∈  𝐷(𝑤, 𝑟); 

(ii) 
𝜇(|𝑧|)

𝜇(|𝑤|)
 ≤  (

1−|𝑧|2

1−|𝑤|2
)
𝑎

+ (
1−|𝑧|2

1−|𝑤|2
)
𝑏

 for any 𝑧 ∈  𝐵; 

(iii) There exists a constant 𝑐 >  0, independent of 𝑟, such that 𝑐−1𝜇(|𝑤|) ≤ 𝜇(|𝑧|) ≤
𝑐𝜇(|𝑤|) for any 𝑧 ∈  𝐷(𝑤, 𝑟); 
(iv) There exists a constant 𝐴 >  0, independent of 𝑟, such that 

𝐴−1(tanh 𝑟)2𝑛  ≤
𝑣𝜇,𝑝[𝐷(𝑤, 𝑟)]

(1 − |𝑤|2)𝑛𝜇𝑝(|𝑤|)
≤  𝐴(tanh 𝑟)2𝑛, 

where 𝑝 >  0 and 𝑣𝜇,𝑝[𝐷(𝑤, 𝑟)]  =  ∫
𝜇𝑝(|𝑧|)

1−|𝑧|2
𝑑𝑣(𝑧)

 

𝐷(𝑤,𝑟)
. 

   Proof. (i) By the definition of distance function, we have 𝐷(𝑧, 𝑟)  ⊂  𝐷(𝑤, 2𝑟). 
(ii) By the definition of normal function, if |𝑧|  ≤  |𝑤|, then we have 

𝜇(|𝑧|)

(1 − |𝑧|2)𝑏
 ≤

𝜇(|𝑤|)

(1 − |𝑤|2)𝑏
; 

if |𝑧|  >  |𝑤|, then 

𝜇(|𝑧|)

(1 − |𝑧|2)𝑎
≤

𝜇(|𝑤|)

(1 − |𝑤|2)𝑎
⇒
𝜇(|𝑧|)

𝜇(|𝑤|)
≤ (

1 − |𝑧|2

1 − |𝑤|2
)

𝑎

+ (
1 − |𝑧|2

1 − |𝑤|2
)

𝑏

. 

(iii) If 𝑧 ∈  𝐷(𝑤, 𝑟), then 
1−tanh 1

1+tanh 1
 ≤  

1−|𝑤|2

1−|𝑧|2
 ≤  

1+tanh 1

1−tanh 1
 by (12) in [163]. Using (2), we 

have 

𝜇(|𝑧|)

𝜇(|𝑤|)
≤ (

1 − |𝑧|2

1 − |𝑤|2
)

𝑎

+ (
1 − |𝑧|2

1 − |𝑤|2
)

𝑏

≤ (
1 + tanh 1

1 − tanh 1
)
𝑎

+ (
1 + tanh 1

1 − tanh 1
)
𝑏

 

and 

𝜇(|𝑤|)

𝜇(|𝑧|)
≤ (

1 − |𝑤|2

1 − |𝑧|2
)

𝑎

+ (
1 − |𝑤|2

1 − |𝑧|2
)

𝑏

≤ (
1 + tanh 1

1 − tanh 1
)
𝑎

+ (
1 + tanh 1

1 − tanh 1
)
𝑏

 

⇒ 𝑐−1𝜇(|𝑤|)  ≤  𝜇(|𝑧|)  ≤  𝑐𝜇(|𝑤|). 
(iv) By Lemma 1.23 in [17] and (3), (12) in [163], we have 

𝑣𝜇,𝑝[𝐷(𝑤, 𝑟)]  ≤
𝑐𝑝𝜇𝑝(|𝑤|)(1 − |𝑤|2)𝑛

(1 +  tanh 1)𝑛(1 −  tanh 1)𝑛+2
(tanh 𝑟)2𝑛 

and 

𝑣𝜇,𝑝[𝐷(𝑤, 𝑟)] ≥
𝑐−𝑝(1 −  tanh 1)𝜇𝑝(|𝑤|)(1 − |𝑤|2)𝑛

1 +  tanh 1
(tanh 𝑟)2𝑛 

  ≥
𝑐−𝑝(1 −  tanh 1)𝑛+2𝜇𝑝(|𝑤|)(1 − |𝑤|2)𝑛

(1 +  tanh 1)−𝑛
(tanh 𝑟)2𝑛. 

Lemma (4.2.4)[160]: Let 0 <  𝑟 ≤  1 and 𝑏 be any real number. Then, there exist 

constants 𝑐 >  0 

and 𝐴 >  0, independent of 𝑟, such that 

|
(1 − 〈𝑧, 𝑢〉)𝑏

(1 − 〈𝑧, 𝑣〉)𝑏
 −  1| ≤  𝑐 tanh 𝑟  and  𝐴−1  ≤ |

1 − 〈𝑧, 𝑢〉

1 − 〈𝑧, 𝑣〉
| ≤  𝐴 

for any 𝑧, 𝑢, and 𝑣 in 𝐵 with 𝛾(𝑢, 𝑣)  ≤  𝑟. 
Proof. This Lemma is Lemma (4.2.3) in [17]. We mainly show that there exist constants 

𝑐 >  0 and 𝐴 >  0, independent of 𝑟. 
If 𝑢 and 𝑣 satisfy (u, v) ≤ r, then we can write 𝑣 =  𝜑𝑢(𝑤) with |𝑤|  ≤  tanh 𝑟. Let 
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z′ = 'u(z). By Lemma 1.3 in [17], we have 

(1 − 〈𝑧, 𝑢〉)𝑏

(1 −  〈𝑧, 𝑣〉)𝑏
 −  1 =

(1 − 〈𝑢, 𝑤〉)𝑏  −  (1 − 〈𝑧′, 𝑤〉)𝑏

(1 − 〈𝑧′, 𝑤〉)𝑏
.               (11) 

If 𝑏 =  0, then the result is obvious. If 𝑏 ≠  0, then, 

|(1 − 〈𝑢, 𝑤〉)𝑏  −  (1 − 〈𝑧′, 𝑤〉)𝑏| = |∫
𝑏(〈𝑢, 𝑤〉  − 〈𝑧′, 𝑤〉)

{1 − (1 −  𝑡)〈𝑢, 𝑤〉  −  𝑡〈𝑧′, 𝑤〉}1−𝑏
𝑑𝑡

1

0

| 

≤  2|𝑏|[ 2𝑏−1  +  (1 −  tanh 1)𝑏−1]tanh 𝑟.      (12) 
By (11) and (12), we have 

|
(1 − 〈𝑧, 𝑢〉)𝑏

(1 − 〈𝑧, 𝑣〉)𝑏
 −  1| ≤

 2|𝑏|[ 2𝑏−1  +  (1 −  tanh 1)𝑏−1]

[(1 −  tanh 1)−𝑏 + 2−𝑏]−1
tanh 𝑟. 

If we take 𝑏 =  1, then |
(1 − 〈𝑧,𝑢〉)𝑏

(1 − 〈𝑧,𝑣〉)𝑏
| ≤  1 +  𝑐 tanh 1; If we take 𝑏 =  −1, then 

|
(1 − 〈𝑧,𝑣〉)𝑏

(1 − 〈𝑧,𝑢〉)𝑏
| ≤  1 +  𝑐 tanh 1. 

     For 0 <  𝑟 ≤  1, 𝜂 denotes a positive radius that much smaller than 𝑟. Fixed a finite 

sequence {𝑧1,· · · , 𝑧𝐽} in 𝐷(0, 𝑟) such that {𝐷(𝑧𝑗 , 𝜂)} cover 𝐷(0, 𝑟) and that {𝐷(𝑧𝑗 ,
𝜂

4
)} are 

disjoint. Then, each set 𝐷(𝑧𝑗  ,
𝜂

4
)  ∩  𝐷(0, 𝑟) is enlarged to a Borel set 𝐸𝑗  ⊂  𝐷(𝑧𝑗  , 𝜂) such 

that 𝐷(0, 𝑟)  = ⋃ 𝐸𝑗
𝐽
𝑗=1 . For 𝑘 ∈  {1, 2,· · · } and 𝑗 ∈  {1, 2,· · · , 𝐽}, let 𝐷𝑘 𝑗 = 𝐷𝑘 ∩

𝜑𝑎𝑘  (𝐸𝑗) and 𝑎𝑘𝑗  =  𝜑𝑎𝑘(𝑧𝑗) [17]. 

Lemma (4.2.5)[160]: Let 𝑝 >  0 and 𝜇 be normal on [0, 1). For 𝑡 >  𝑏 +  𝑛 max {
1

𝑝
−

 1, 0}, there exists a constant 𝑐 >  0, independent of 𝑟 and 𝜂, such that 

|𝑓(𝑧)  − 𝑆1𝑓(𝑧)|  ≤ ∑
𝑐𝜎(1 − |𝑎𝑘|

2)
𝑛+𝑡−

𝑛
𝑝

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

∞

𝑘=1

 {∫
|𝑓(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

 

for any 0 <  𝑟 ≤  1, 𝑧 ∈  𝐵, and 𝑓 ∈  𝐴𝑝(𝜇), where 𝜎 =  𝜂 + 
tanh 𝜂

[tanh 𝑟]1−2𝑛(1−1/𝑝)
 and 

𝑆1𝑓(𝑧)  = ∑∑
𝑣𝑡−1(𝐷𝑘𝑗)𝑓(𝑎𝑘𝑗)

(1 −  〈𝑧, 𝑎𝑘𝑗〉)
𝑛+𝑡

𝐽

𝑗=1

∞

𝑘=1

. 

Proof If 𝑓 ∈  𝐴𝑝(𝜇), then 

∫(1 − |𝑧|2)𝑝𝑏−1|𝑓(𝑧)|𝑝𝑑𝑣(𝑧)
 

𝐵

 ≤
1

𝜇𝑝(0)
∫
|𝑓(𝑧)|𝑝𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

 ⇒  𝑓 ∈  𝐴𝑝𝑏−1
𝑝

. 

If 0 <  𝑝 ≤  1, when 𝑡 >  𝑏 +  𝑛 (
1

𝑝
−  1), by Lemma (4.2.2) in [17], we have 

∫|𝑓(𝑧)|𝑑𝑣𝑡−1(𝑧)
 

𝐵

 ≤  𝑐𝑡−1∫|𝑓(𝑧)|(1 − |𝑧|
2)
𝑛+𝑝𝑏
𝑝

−(𝑛+1)
𝑑𝑣(𝑧)

 

𝐵

 ≤
𝑐𝑡−1
𝑐𝑝𝑏−1

‖𝑓‖𝑝,𝑝𝑏−1. 

If 𝑝 >  1, then 𝑝′(𝑡 −  1 −  𝑏 + 
1

𝑝
)   >  −1 when 𝑡 >  𝑏. By the Hölder inequality, we 

have 

∫|𝑓(𝑧)|𝑑𝑣𝑡−1(𝑧)
 

𝐵

 =  𝑐𝑡−1∫ {|𝑓(𝑧)|(1 − |𝑧|
2)
𝑏−
1
𝑝} (1 − |𝑧|2)

𝑡−1−𝑏+
1
𝑝𝑑𝑣(𝑧)

 

𝐵
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≤
𝑐𝑡−1

(𝑐𝑝𝑏−1)
1
𝑝

∫ {(1 − |𝑧|2)
𝑝′(𝑡−1−𝑏+

1
𝑝
)
𝑑𝑣(𝑧)}

1
𝑝′ 

𝐵

‖𝑓‖𝑝,𝑝𝑏−1 

≤  𝑐‖𝑓‖𝑝,𝑝𝑏−1. 

That is 𝑓 ∈  𝐴𝑡−1
1 . By Theorem (4.2.3) in [17], when 𝑡 >  𝑏 +  𝑛 max {

1

𝑝
−  1, 0}, 

𝑓(𝑧)  =  ∫
𝑓(𝑤)

(1 − 〈𝑧, 𝑤〉)𝑛+𝑡
𝑑𝑣𝑡−1(𝑤)

 

𝐵

 (𝑧 ∈  𝐵).                               (13) 

From the proof process of Lemma (4.2.3) in [17], the above integral representation is 

necessary. 

       For any 𝑘 ∈  {1, 2,· · · }, we write 𝐴1  =  𝐷(𝑎𝑘 , 2𝑟)  ∩ {𝑤 ∶  |𝑎𝑘|  <  |𝑤|  <  1} and 

𝐴2 = 𝐷(𝑎𝑘, 2𝑟)  ∩  {𝑤 ∶  |𝑤|  ≤  |𝑎𝑘|}. By the definition of normal function and (12) in 

[163], we have 

∫
|𝑓(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,2𝑟)

 

≥
𝜇𝑝(|𝑎𝑘|)

(1 − |𝑎𝑘|
2)𝑝𝑏

∫
|𝑓(𝑤)|𝑝𝑑𝑣(𝑤)

(1 − |𝑤|2)−𝑝𝑏+1

 

𝐴1

+
𝜇𝑝(|𝑎𝑘|)

(1 − |𝑎𝑘|
2)𝑝𝑎

∫
|𝑓(𝑤)|𝑝𝑑𝑣(𝑤)

(1 − |𝑤|2)−𝑝𝑎+1

 

𝐴2

 

≥ (
1 −  tanh 2

1 +  tanh 2
)
𝑝𝑏−𝑝𝑎 𝜇𝑝(|𝑎𝑘|)

(1 − |𝑎𝑘|
2)𝑝𝑎

∫ |𝑓(𝑤)|𝑝(1 − |𝑤|2)𝑝𝑎−1𝑑𝑣(𝑤)
 

𝐷(𝑎𝑘,2𝑟)

. (14) 

We take 𝑏 =  𝑛 +  𝑡 and 𝛼 =  𝑝𝑎 −  1 from Lemma (4.2.3) in [17] and (14). Then, 

∑
(1 − |𝑎𝑘|

2)
𝑛+𝑡−

𝑛
𝑝

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

{∫
|𝑓(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

∞

𝑘=1

 

≥  𝑐∑
(1 − |𝑎𝑘|

2)
𝑛+𝑡−

𝑛
𝑝

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡

{∫ |𝑓(𝑤)|𝑝(1 −  |𝑤|2)𝑝𝑎−1𝑑𝑣(𝑤)
 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

∞

𝑘=1

 

   ≥
𝑐′|𝑓(𝑧)  − 𝑆1𝑓(𝑧)|

𝜎
. 

Theorem (4.2.6)[160]: Let 𝜇 be normal on [0, 1). Suppose 𝑝 >  0, 𝑡 >  𝑏 +

 𝑛 max {
1

𝑝
−  1, 0}, and 

0 <  𝑟 ≤  1. Then, there exists a constant 𝑐 >  0, independent of 𝑟, such that 

|𝑓(𝑧)  −  𝑆𝑓(𝑧)| ≤ ∑
𝑐𝑟
2𝑛(1−

1
𝑝
)
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 −  |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

 

for any 𝑓 ∈  𝐴𝑝(𝜇) and 𝑧 ∈  𝐵, 

𝑆𝑓(𝑧)  = ∑
𝑓(𝑎𝑘)

(1 −  〈𝑧, 𝑎𝑘〉)
𝑛+𝑡

∞

𝑘=1

∫ 𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

 (𝑧 ∈  𝐵). 

Proof If 𝑓 ∈  𝐴𝑝(𝜇), by Lemma (4.2.2) and (13), we have 

𝑓(𝑧)  −  𝑆𝑓(𝑧)  = ∑∫ {
𝑓(𝑤)

(1 − 〈𝑧, 𝑤〉)𝑛+𝑡
−

𝑓(𝑎𝑘)

(1 − 〈𝑧, 𝑎𝑘〉)
𝑛+𝑡
} 𝑑𝑣𝑡−1(𝑤)

 

𝐷𝑘

∞

𝑘=1

⇒ 
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|𝑓(𝑧) −  𝑆𝑓(𝑧)| ≤ ∑
1

(1 − 〈𝑧, 𝑎𝑘〉)
𝑛+𝑡

∞

𝑘=1

∫ |𝑓(𝑤) − 𝑓(𝑎𝑘)|𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

 

+∑
1

(1 − 〈𝑧, 𝑎𝑘〉)
𝑛+𝑡

∞

𝑘=1

∫ |(
1 − 〈𝑧, 𝑎𝑘〉

1 − 〈𝑧, 𝑤〉
)

𝑛+𝑡

| |𝑓(𝑤)|𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

. (15) 

For every 𝑘 ∈  {1, 2,· · · }, by Lemma (4.2.2), Proposition 1.13 in [17], and (12) in [163], 

we have 

∫ |𝑓(𝑤) − 𝑓(𝑎𝑘)|𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

 

≤ ∫ |𝑓(𝑤) − 𝑓(𝑎𝑘)|𝑑𝑣𝑡−1(𝑤)
 

𝐷(𝑎𝑘,𝑟)

 

≤  𝑐(1 −  |𝑎𝑘|
2)𝑛+𝑡∫ |𝑓 ∘ 𝜑𝑎𝑘(𝑤) −  𝑓 ∘ 𝜑𝑎𝑘(0)|𝑑𝑣(𝑤)

 

𝐷(0,𝑟)

 

=  𝑐(1 − |𝑎𝑘|
2)𝑛+𝑡 |∫ ∫

1

𝜌
𝑅[𝑓 ∘ 𝜑𝑎𝑘](𝜌𝑤)𝑑𝜌

1

0

 

𝐷(0,𝑟)

| 𝑑𝑣(𝑤).                         (16) 

We write 𝑅1  =  tanh 𝑟 and 𝑅2  =  tanh 2𝑟. Let 𝑔𝑘(𝑧)  =  𝑓 ∘ 𝜑𝑎𝑘(𝑅1𝑧). 

     For any 𝛼 >  −1, we have 

𝑔𝑘(𝑧) =  ∫
𝑔𝑘(𝑅1

−1𝑅2𝑢)

(1 − 〈𝑅2
−1𝑅1𝑧, 𝑢〉)

𝑛+1+𝛼
𝑑𝑣𝛼(𝑢)

 

𝐵

 (|𝑧| <
𝑅2
𝑅1
) ⇒ 

𝑅𝑔𝑘(𝑧)  =
(𝑛 +  1 +  𝛼)𝑅1

𝑅2
∫

𝑔𝑘(𝑅1
−1𝑅2𝑢)〈𝑧, 𝑢〉

(1 −  〈𝑅2
−1𝑅1𝑧, 𝑢〉)

𝑛+2+𝛼
𝑑𝑣𝛼(𝑢)

 

𝐵

.             (17) 

When 𝑝 >  1, we take 𝛼 >  0. By the polar coordinates transformation and (17), the 

Fubini 

Theorem (4.2.1) and Proposition 1.4.10 in [22], the Hölder inequality, Proposition 1.7 in 

[17], and (13) in [163], we have 

∫ {∫
1

𝜌
𝑅[𝑓 ∘ 𝜑𝑎𝑘](𝜌𝑤)𝑑𝜌

1

0

}
 

𝐷(0,𝑟)

𝑑𝑣(𝑤) 

= 𝑅1
2𝑛∫

1

𝜌
{∫ |𝑅[𝑓 ∘ 𝜑𝑎𝑘](𝑅1𝜌𝑤)|

 

𝐵

𝑑𝑣(𝑤)}𝑑𝜌
1

0

 

= 𝑅1
2𝑛∫

1

𝜌
{∫ |𝑅𝑔𝑘(𝜌𝑤)|

 

𝐵

𝑑𝑣(𝑤)}𝑑𝜌
1

0

 

≤ ∫|𝑢||𝑔𝑘(𝑅1
−1𝑅2𝑢)|

 

𝐵

{∫ (∫
(𝑛 +  1 +  𝛼)𝑅1

2𝑛+1|𝑤|𝑑𝑣(𝑤)

𝑅2|1 − 〈𝑅2
−1𝑅1𝜌𝑤, 𝑢〉|

𝑛+2+𝛼

 

𝐵

)𝑑𝜌
1

0

} 𝑑𝑣𝛼(𝑢) 

≤
𝑐𝑅1

2𝑛+1

𝑅2
∫|𝑔𝑘(𝑅1

−1𝑅2𝑢)|
 

𝐵

{∫
|𝑢|

(1 − 𝑅2
−1𝑅1𝜌|𝑢|)

𝛼+1
𝑑𝜌

1

0

} 𝑑𝑣𝛼(𝑢) 

≤ 𝑐′𝑅1
2𝑛 (

𝑅2
𝑅2  −  𝑅1

)
𝛼

∫|𝑔𝑘(𝑅1
−1𝑅2𝑢)|𝑑𝑣(𝑢)

 

𝐵

 

≤ 𝑐′𝑅1
2𝑛 (

𝑅2
𝑅2  −  𝑅1

)
𝛼

{∫ |𝑔𝑘(𝑅1
−1𝑅2𝑢)|

𝑝𝑑𝑣(𝑢)
 

𝐵

}

1
𝑝
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=
𝑐′𝑅1

2𝑛

𝑅2

2𝑛
𝑝

(
𝑅2

𝑅2  −  𝑅1
)
𝛼

(∫ |𝑓 ∘ 𝜑𝑎𝑘(𝑢)|
𝑝
𝑑𝑣(𝑢)

 

𝐷(0,2𝑟)

)

1
𝑝

 

≤
𝑐′′𝑅1

2𝑛

𝑅2

2𝑛
𝑝 (1 − |𝑎𝑘|

2)
𝑛+1
𝑝

(
𝑅2

𝑅2  −  𝑅1
)
𝛼

{∫ |𝑓(𝑢)|𝑝𝑑𝑣(𝑢)
 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

.                                (18) 

When 0 <  𝑝 ≤  1, we take 𝛼 =
 𝑛+1

𝑝
− (𝑛 +  1). By the polar coordinates 

transformation and (17), the Fubini Theorem (4.2.1) and Proposition 1.4.10 in [22], 

Lemma (4.2.2) and Proposition 1.7 in [17], 

(13) in [163], we have 

∫ {∫
1

𝜌
𝑅[𝑓 ∘ 𝜑𝑎𝑘](𝜌𝑤)𝑑𝜌

1

0

}
 

𝐷(0,𝑟)

𝑑𝑣(𝑤) 

≤ 𝑐𝑅1
2𝑛 (

𝑅2
𝑅2  −  𝑅1

)
𝛼

∫|𝑔𝑘(𝑅1
−1𝑅2𝑢)|(1 − |𝑢|

2)
𝑛+1
𝑝
−𝑛−1

𝑑𝑣(𝑢)
 

𝐵

 

≤ 𝑐′𝑅1
2𝑛 (

𝑅2
𝑅2  −  𝑅1

)
𝛼

{∫ |𝑔𝑘(𝑅1
−1𝑅2𝑢)|

𝑝𝑑𝑣(𝑢)
 

𝐵

}

1
𝑝

 

= 𝑐𝑅1
2𝑛 (

𝑅2
𝑅2  −  𝑅1

)
𝛼

{∫ |𝑓 ∘ 𝜑𝑎𝑘(𝑅2𝑢)|
𝑝
𝑑𝑣(𝑢)

 

𝐵

}

1
𝑝

 

≤
𝑐′𝑅1

2𝑛𝑅2

−2𝑛
𝑝

(1 − |𝑎𝑘|
2)
𝑛+1
𝑝

(
𝑅2

𝑅2  −  𝑅1
)
𝛼

{∫ |𝑓(𝑢)|𝑝𝑑𝑣(𝑢)
 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

.                                       (19) 

When 0 <  𝑟 ≤  1, we have 

𝑟

𝑒2
 <  𝑅1  =

𝑒2𝑟  −  1

𝑒2𝑟  +  1
=

𝑟

𝑒2𝑟  +  1
 {2 +

22𝑟

2!
+
23𝑟2

3!
+ · · ·}  <  𝑒2𝑟; 

𝑟

𝑒4
 <  𝑅2  =

𝑒4𝑟  −  1

𝑒4𝑟  +  1
=

𝑟

𝑒4𝑟  +  1
 {4 +

42𝑟

2!
+
43𝑟2

3!
+ · · ·}  <  𝑒4𝑟; 

𝑟

𝑒4
 <
𝑅1
𝑒2𝑟
 =

2𝑒2𝑟𝑅1
𝑒4𝑟  +  𝑒4𝑟

 <
2𝑒2𝑟𝑅1
𝑒4𝑟  +  1

=  𝑅2  −  𝑅1  <  𝑅2  <  𝑒
4𝑟 .                  (20) 

By (16), (18)–(20), and Lemma (4.2.3), we have 

∫ |𝑓(𝑤) − 𝑓(𝑎𝑘)|𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

 

≤  𝑐𝑟
2𝑛(1−

1
𝑝
)
(1 − |𝑎𝑘|

2)
𝑛+𝑡−

𝑛+1
𝑝 {∫ |𝑓(𝑢)|𝑝𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

 

≤
𝑐′𝑟

2𝑛(1−
1
𝑝
)
(1 −  |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

𝜇(|𝑎𝑘|)
 {∫

|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

. (21) 

By Lemma 2.2–2.3, (12) in [163], Lemma 1.23 and Lemma (4.2.3) in [17], and (20), we 

have 
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∫ |(
1 − 〈𝑧, 𝑎𝑘〉

1 − 〈𝑧, 𝑤〉
)

𝑛+𝑡

− 1| |𝑓(𝑤)|𝑑𝑣𝑡−1(𝑤)
 

𝐷𝑘

 

≤ ∫ |(
1 − 〈𝑧, 𝑎𝑘〉

1 − 〈𝑧, 𝑤〉
)

𝑛+𝑡

− 1| |𝑓(𝑤)|𝑑𝑣𝑡−1(𝑤)
 

𝐷(𝑎𝑘,𝑟)

 

≤  𝑐𝑅1(1 − |𝑎𝑘|
2)𝑡−1∫ |𝑓(𝑤)| 𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,𝑟)

 

≤  𝑐𝑅1(1 − |𝑎𝑘|
2)𝑡−1𝑣[𝐷(𝑎𝑘, 𝑟)] sup

𝑤∈𝐷(𝑎𝑘,𝑟)
|𝑓(𝑤)| 

≤ 𝑐′𝑅1
2𝑛+1(1 

− |𝑎𝑘|
2)𝑡+𝑛 sup

𝑤∈𝐷(𝑎𝑘,𝑟)
{

1

𝑣[𝐷(𝑤, 𝑟)]
∫ |𝑓(𝑢)|𝑝𝑑𝑣(𝑢)
 

𝐷(𝑤,𝑟)

}

1
𝑝

 

≤ 𝑐′′𝑅1
2𝑛(1−

1
𝑝
)+1
(1 − |𝑎𝑘|

2)
𝑡+𝑛−

𝑛+1
𝑝 {∫ |𝑓(𝑢)|𝑝𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

 

≤
𝑐′′′𝑟

2𝑛(1−
1
𝑝
)+1
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

𝜇(|𝑎𝑘|)
 {∫ |𝑓(𝑢)|𝑝

𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

. (22) 

By (15) and (21)–(22), we have 

|𝑓(𝑧) −  𝑆𝑓(𝑧)| ≤ ∑
𝑐𝑟
2𝑛(1−

1
𝑝
)
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

. 

Theorem (4.2.7)[160]: Let 𝜇 be normal on [0, 1). Suppose 𝑝 >  0 and 𝑡 >  𝑏 +

 𝑛 max {
1

𝑝
−  1, 0}. 

Then, there exists a sequence {𝑤𝑘} in 𝐵 such that 𝐴𝑝(𝜇) consists exactly of functions of 

the form 

𝑓(𝑧)  = ∑
𝑑𝑘(1 − |𝑤𝑘|

2)
𝑡+𝑛−

𝑛
𝑝

𝜇(|𝑤𝑘|)(1 − 〈𝑧, 𝑤𝑘〉)
𝑛+𝑡

∞

𝑘=1

   (𝑧 ∈  𝐵), 

where {𝑑𝑘} belongs to the sequence space 𝑙𝑝 and the series converges in the norm 

topology of 𝐴𝑝(𝜇). 
Proof: We take the sequence {𝑎𝑘𝑗} from Lemma (4.2.5). We may write 

𝑓(𝑧) = ∑∑
𝑐𝑘𝑗 (1 − |𝑎𝑘𝑗|

2
)
𝑡+𝑛−

𝑛
𝑝

𝜇(|𝑎𝑘𝑗|)(1 − 〈𝑧, 𝑎𝑘𝑗〉)
𝑛+𝑡

𝐽

𝑗=1

∞

𝑘=1

,                                     (23) 

where 𝐽 is a fixed positive integer and {𝑐𝑘𝑗} belongs to the sequence space 𝑙𝑝. In fact, 

𝑤1  =  𝑎11,· · · , 𝑤𝐽  =  𝑎1𝐽, 𝑤𝐽+1  =  𝑎21,· · · , 𝑤𝐽+𝐽  =  𝑎2𝐽, 𝑤2𝐽+1  =  𝑎31,· · · ;  𝑑1  

=  𝑐11,· · · , 𝑑𝐽  = 𝑐1𝐽, 𝑑𝐽+1  =  𝑐21,· · · , 𝑑𝐽+𝐽  =  𝑐2𝐽, 𝑑2𝐽+1  =  𝑐31,· · · . 

First, let 𝑓 admit a representation given in (23). 

     First assume that 0 <  𝑝 ≤  1. 

We write 𝑓𝑘𝑗(𝑧)  =
(1 − |𝑎𝑘𝑗|

2
)
𝑡+𝑛−

𝑛
𝑝

𝜇(|𝑎𝑘𝑗|)(1 − 〈𝑧,𝑎𝑘𝑗〉)
𝑛+𝑡 for any 𝑘 ∈  {1, 2,· · · } and 𝑗 ∈  {1, 2,· · · , 𝐽}. 
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The assumption on 𝑡 implies that 𝑝𝑡 + 𝑝𝑛 − 𝑝𝑎 −  𝑛 >  𝑝𝑡 + 𝑝𝑛 −  𝑝𝑏 − 𝑛 >  0 when 

0 <  𝑝 ≤  1. 
By Proposition 1.4.10 in [22] and Lemma (4.2.3), we have 

‖𝑓𝑘𝑗‖𝐿𝑝(𝜇)
𝑝

=
(1 − |𝑎𝑘𝑗|

2
)
𝑝𝑡+𝑝𝑛−𝑛

𝜇𝑝(|𝑎𝑘𝑗|)
∫

𝜇𝑝(|𝑧|)

(1 − |𝑧|2)|1 − 〈𝑧, 𝑎𝑘𝑗〉|
𝑝(𝑛+𝑡)

𝑑𝑣(𝑧)
 

𝐵

≤ (1 − |𝑎𝑘𝑗|
2
)
𝑝𝑡+𝑝𝑛−𝑛

∫
(1 − |𝑧|2)𝑝𝑎−1

(1 − |𝑎𝑘𝑗|
2
)
𝑝𝑎

|1 − 〈𝑧, 𝑎𝑘𝑗〉|
𝑝(𝑛+𝑡)

𝑑𝑣(𝑧)
 

𝐵

+ (1 − |𝑎𝑘𝑗|
2
)
𝑝𝑡+𝑝𝑛−𝑛

∫
(1 − |𝑧|2)𝑝𝑏−1

(1 − |𝑎𝑘𝑗|
2
)
𝑝𝑏

|1 − 〈𝑧, 𝑎𝑘𝑗〉|
𝑝(𝑛+𝑡)

𝑑𝑣(𝑧)
 

𝐵

≤  𝑐. 

As {𝑐𝑘𝑗}  ∈  𝑙
𝑝 and {𝑓𝑘𝑗} is bounded in 𝐴𝑝(𝜇), then, we have 

‖𝑓‖𝐿𝑝(𝜇)
𝑝

 =  ∫ |∑∑𝑐𝑘𝑗𝑓𝑘𝑗(𝑧)

𝐽

𝑗=1

∞

𝑘=1

|

𝑝

𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

 

≤∑∑|𝑐𝑘𝑗|
𝑝
‖𝑓𝑘𝑗‖𝐿𝑝(𝜇)

𝑝

𝐽

𝑗=1

∞

𝑘=1

≤  𝑐∑∑|𝑐𝑘𝑗|
𝑝

𝐽

𝑗=1

∞

𝑘=1

<  ∞. 

Next assume that 𝑝 >  1. 
       Let {𝐷𝑘𝑗} denote the sets from Lemma (4.2.3)9 in [17], then 𝐷𝑘𝑗  ⊂  𝐷𝑘 and 1 −

 |𝑎𝑘|
2 ≈ 1 − |𝑎𝑘𝑗|

2
, 𝜇(|𝑎𝑘|) ≈ 𝜇(|𝑎𝑘𝑗|), |1 − 〈𝑧, 𝑎𝑘〉| ≈ |1 − 〈𝑧, 𝑎𝑘𝑗〉| (𝑧 ∈  𝐵) for all 

𝑗 ∈  {1, 2,· · · , 𝐽}. 
We consider the function 

𝑔(𝑧)  = ∑∑|𝑐𝑘𝑗|
 
{𝑣𝜇,𝑝(𝐷𝑘)}

−
1
𝑝𝑋𝑘(𝑧)

𝐽

𝑗=1

∞

𝑘=1

 (𝑧 ∈  𝐵), 

where 𝑋𝑘 is the characteristic function of 𝐷𝑘  (𝑘 ∈  {1, 2,· · · }). 
       By Lemmas (4.2.2) and (4.2.3), we have 

‖𝑔‖𝐿𝑝(𝜇)
𝑝

 =  ∑∫
|𝑔(𝑧)|𝑝𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐷𝑘

∞

𝑘=1

 

=∑∑|𝑐𝑘𝑗|
𝑝
{𝑣𝜇,𝑝(𝐷𝑘)}

−1

𝐽

𝑗=1

∞

𝑘=1

∫
𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐷𝑘

= ∑∑|𝑐𝑘𝑗|
𝑝

𝐽

𝑗=1

∞

𝑘=1

 

The assumption on 𝑡 >  𝑏 implies that the operator 

𝑇𝑔(𝑧)  =  ∫
(1 − |𝑤|2)𝑡−1𝑔(𝑤)

|1 − 〈𝑧, 𝑤〉|𝑛+𝑡
𝑑𝑣(𝑤)

 

𝐵

 (𝑧 ∈  𝐵) 

is bounded on 𝐿𝑝(𝜇) by [164]. 

By Lemmas (4.2.2) and (4.2.4), (12) and (13) in [163], Lemma 1.23 in [17], and (20), we 

have 

𝑇𝑔(𝑧)  = ∑∫ ∑|𝑐𝑘𝑗|
 
{𝑣𝜇,𝑝(𝐷𝑘)}

−
1
𝑝
(1 − |𝑤|2)𝑡−1

|1 − 〈𝑧, 𝑤〉|𝑛+𝑡
𝑑𝑣(𝑤)

𝐽

𝑗=1

 

𝐷𝑘

∞

𝑘=1
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≥  𝑐(tanh 𝑟)
−
2𝑛
𝑝 ∑∑

|𝑐𝑘𝑗|(1 − |𝑎𝑘|
2)
𝑡−1−

𝑛
𝑝

𝜇(|𝑎𝑘|)

𝐽

𝑗=1

∞

𝑘=1

∫
1

|1 − 〈𝑧, 𝑤〉|𝑛+𝑡
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,
𝑟
4
)

 

≥ 𝑐′(tanh 𝑟)
−
2𝑛
𝑝 ∑∑

|𝑐𝑘𝑗|(1 − |𝑎𝑘|
2)
𝑡−1−

𝑛
𝑝

𝜇(|𝑎𝑘|)|1 −  〈𝑧, 𝑎𝑘〉|
𝑛+𝑡

𝐽

𝑗=1

𝑣[𝐷(𝑎𝑘,
𝑟

4
)]

∞

𝑘=1

 

≥ 𝑐′′𝑟
2𝑛(1−

1
𝑝
)
∑∑

|𝑐𝑘𝑗| (1 − |𝑎𝑘𝑗|
2
)
𝑡+𝑛−

𝑛
𝑝

𝜇(|𝑎𝑘𝑗|)(1 − 〈𝑧, 𝑎𝑘𝑗〉)
𝑛+𝑡

𝐽

𝑗=1

∞

𝑘=1

 

≥ 𝑐′′𝑟
2𝑛(1−

1
𝑝
)
|𝑓(𝑧)| for any 𝑧 ∈  𝐵 

⇒ ‖𝑓‖𝐿𝑝(𝜇)
𝑝

≤  𝑐𝑟2𝑛(1−𝑝)‖𝑇 𝑔‖𝐿𝑝(𝜇)
𝑝

≤  𝑐𝑟2𝑛(1−𝑝)‖𝑇‖𝑝∑∑|𝑐𝑘𝑗|
𝑝

𝐽

𝑗=1

∞

𝑘=1

 

⇒  𝑓 ∈  𝐴𝑝(𝜇). 
It remains to show that every function f ∈ Ap(μ) admits a representation given in (23). 

When 𝑝 >  1, we write 

𝐹(𝑧)  = ∑
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

|1 − 〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 −  |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

𝑋𝑘(𝑧) (𝑧 ∈  𝐵), 

where 𝑋𝑘 is the characteristic function of 𝐷𝑘  (𝑘 ∈  {1, 2,· · · }). By (13) in [163], and 

Lemmas (4.2.2)–(4.2.3), we have 

‖𝐹‖𝐿𝑝(𝜇)
𝑝

=∑
(1 − |𝑎𝑘|

2)𝑝𝑡+𝑝𝑛−𝑛

𝜇𝑝(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

} 

×∫
𝜇𝑝(|𝑧|)

(1 −  |𝑢|2)|1 − 〈𝑧, 𝑎𝑘〉|
𝑝𝑛+𝑝𝑡

𝑑𝑣(𝑧)
 

𝐷𝑘

 

≥  𝑐(tanh 𝑟)2𝑛∑∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,4𝑟)

∞

𝑘=1

 

≥  𝑐(tanh 𝑟)2𝑛𝑁∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 −  |𝑢|2
𝑑𝑣(𝑢)

 

𝐵

= 𝑐(tanh 𝑟)2𝑛𝑁‖𝑓‖𝐿𝑝(𝜇)
𝑝

.        (24) 

By Lemma (4.2.2) and Lemma (4.2.4), (12)–(13) in [163], and Lemma 1.23 in [17], we 

have 

𝑇𝐹(𝑧)  = ∑
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

𝜇(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

 

×∫
(1 − |𝑤|2)𝑡−1

|1 − 〈𝑤, 𝑎𝑘〉|
𝑛+𝑡|1 − 〈𝑧, 𝑤〉|𝑛+𝑡

𝑑𝑣(𝑤)
 

𝐷𝑘

 

≥ 𝑐(tanh 𝑟)2𝑛∑
(1 − |𝑎𝑘|

2)
𝑡+𝑛(1−

1
𝑝
)

|1 −  〈𝑧, 𝑎𝑘〉|
𝑛+𝑡𝜇(|𝑎𝑘|)

∞

𝑘=1

{∫
|𝑓(𝑢)|𝑝𝜇𝑝(|𝑢|)

1 − |𝑢|2
𝑑𝑣(𝑢)

 

𝐷(𝑎𝑘,2𝑟)

}

1
𝑝

. (25) 

By (24)–(25) and (20), Lemma (4.2.5), and the bounded-ness of 𝑇 on 𝐿𝑝(𝜇), we have 
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‖(𝐼 − 𝑆1)𝑓‖𝐿𝑝(𝜇)
𝑝

 = ∫ |𝑓(𝑧) − 𝑆1𝑓(𝑧)|
𝑝
𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

 

≤  𝑐𝜎𝑝(tanh 𝑟)−2𝑝𝑛∫|𝑇𝐹(𝑧)|𝑝
𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

 

≤  𝑐𝜎𝑝(tanh 𝑟)−2𝑝𝑛‖𝑇‖𝑝‖𝐹‖𝐿𝑝(𝜇)
𝑝

 

≤ 𝑐′𝜎𝑝(tanh 𝑟)−2𝑝𝑛𝑁‖𝑇‖𝑝‖𝐹‖𝐿𝑝(𝜇)
𝑝

.                                          (26) 

By Proposition 1.4.10 in [22] and Lemma (4.2.3) (2), for any 𝑘 =  1, 2,· · · , we have 

∫
(1 − |𝑎𝑘|

2)𝑝𝑛+𝑝𝑡−𝑛𝜇𝑝(|𝑧|)𝑑𝑣(𝑧)

(1 −  |𝑧|2)|1 − 〈𝑧, 𝑎𝑘〉|
𝑝𝑛+𝑝𝑡𝜇𝑝(|𝑎𝑘|)

 

𝐵

 

≤ (1 − |𝑎𝑘|
2)𝑝𝑛+𝑝𝑡−𝑝𝑏−𝑛∫

(1 − |𝑧|2)𝑝𝑏−1

|1 − 〈𝑧, 𝑎𝑘〉|
𝑝𝑛+𝑝𝑡

𝑑𝑣(𝑧)
 

𝐵

 

+(1 − |𝑎𝑘|
2)𝑝𝑛+𝑝𝑡−𝑝𝑎−𝑛∫

(1 − |𝑧|2)𝑝𝑎−1

|1 − 〈𝑧, 𝑎𝑘〉|
𝑝𝑛+𝑝𝑡

𝑑𝑣(𝑧)
 

𝐵

≤  𝑐.  (27) 

When 0 <  𝑝 ≤  1, by Lemma (4.2.5), Lemma (4.2.2), and (27), we may prove that 

‖(𝐼 − 𝑆1)𝑓‖𝐿𝑝(𝜇)
𝑝

 = ∫ |(𝐼 − 𝑆1)𝑓(𝑧)|
𝑝
𝜇𝑝(|𝑧|)

1 − |𝑧|2
𝑑𝑣(𝑧)

 

𝐵

 

≤∑∫
𝑐𝜎𝑝(1 − |𝑎𝑘|

2)𝑝𝑛+𝑝𝑡−𝑛𝜇𝑝(|𝑧|)𝑑𝑣(𝑧)

(1 − |𝑧|2)|1 − 〈𝑧, 𝑎𝑘〉|
𝑝𝑛+𝑝𝑡𝜇𝑝(|𝑎𝑘|)

 

𝐵

∞

𝑘=1

{∫
|𝑓(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,4𝑟)

} 

≤ 𝑐′𝑁𝜎𝑝∫
|𝑓(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐵

= 𝑐′𝜎𝑝𝑁‖𝑓‖𝐿𝑝(𝜇)
𝑝

.                                               (28) 

By (26) and (28), if 𝜎 is small enough, then we have ‖𝐼 − 𝑆‖  <  1. In this case, it follows 

from standard functional analysis that the operator 𝑆 is invertible on 𝐴𝑝(𝜇). Therefore, 

every 𝑓 ∈  𝐴𝑝(𝜇) admits a representation 

𝑓(𝑧) = ∑∑
𝑐𝑘𝑗 (1 − |𝑎𝑘𝑗|

2
)
𝑡+𝑛−

𝑛
𝑝

𝜇(|𝑎𝑘𝑗|)(1 − 〈𝑧, 𝑎𝑘𝑗〉)
𝑛+𝑡

𝐽

𝑗=1

∞

𝑘=1

 (𝑧 ∈  𝐵), 

where 𝑐𝑘𝑗  =  
𝑣𝑡−1(𝐷𝑘𝑗)𝜇(|𝑎𝑘𝑗|)𝑔(𝑎𝑘𝑗)

(1−|𝑎𝑘𝑗|
2
)
𝑡+𝑛−

𝑛
𝑝

(𝑘 ∈  {1, 2,· · · }, 𝑗 ∈  {1, 2,· · · , 𝐽}) and 𝑔 =  𝑆−1𝑓. 

By (12) in [163], Lemma 1.24 and Lemma 2.34 in [17], Lemmas (4.2.2) and (4.2.3), (20), 

we have 

∑∑|𝑐𝑘𝑗|
𝑝

𝐽

𝑗=1

∞

𝑘=1

≤  𝑐∑∑(1 − |𝑎𝑘𝑗|
2
)
𝑛
𝜇𝑝(|𝑎𝑘𝑗|)|𝑔(𝑎𝑘𝑗)|

𝑝

𝐽

𝑗=1

∞

𝑘=1

 

≤ 𝑐′∑∑
(1 − |𝑎𝑘𝑗|

2
)
𝑛
𝜇𝑝(|𝑎𝑘𝑗|)

𝑣[𝐷(𝑎𝑘, 𝑟)]

𝐽

𝑗=1

∞

𝑘=1

∫ |𝑔(𝑤)|𝑝𝑑𝑣(𝑤)
 

𝐷(𝑎𝑘,𝑟)

 

≤ 𝑐′′𝐽𝑟−2𝑛∑∫
|𝑔(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐷(𝑎𝑘,4𝑟)

∞

𝑘=1

 

≤ 𝑐′′𝑟−2𝑛𝐽𝑁∫
|𝑔(𝑤)|𝑝𝜇𝑝(|𝑤|)

1 − |𝑤|2
𝑑𝑣(𝑤)

 

𝐵

< ∞. 
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This show that {𝑐𝑘𝑗}  ∈  𝑙
𝑝. This completes the proof of the Theorem. 

 

Section (4.3): The 𝝁-Bergman Space in the Unit Ball 

For 𝐵 denote the unit ball of ℂ𝑛, and 𝐷 denote the unit disc of ℂ. Suppose the class 

of all holomorphic functions with domain 𝐵 is denoted by 𝐻(𝐵). Let d𝑣 denote the 

volume measure on the unit ball 𝐵, normalized so that 𝑣(𝐵) = 1. The surface measure on 

the boundary 𝑆𝑛 of 𝐵 is denoted by d𝜎, normalized so that 𝜎(𝑆𝑛) = 1. When 𝛼 >  −1, a 

finite measure d𝑣𝛼 on 𝐵 is defined by d𝑣𝛼(𝑧)  =  𝑐𝛼(1 − |𝑧|
2)𝛼d𝑣(𝑧), where 𝑐𝛼 is a 

normalizing constant so that 𝑣𝛼(𝐵)  =  1. The class of all bounded holomorphic functions 

on 𝐵 is denoted by 𝐻∞.  
       A positive continuous function µ on [0, 1) is called normal if there are constants 0 <
 𝑎 ≤  𝑏 and 0 ≤  𝑟0  <  1 such that  

       (i) µ(𝑟)(1 −  𝑟2)−𝑎 is decreasing for 𝑟 ∈  [𝑟0, 1);  
       (ii) µ(𝑟)(1 − 𝑟2)−𝑏 is increasing for 𝑟 ∈  [𝑟0, 1). For example,  

µ(𝑟) =  (1 − 𝑟2)𝛼 log𝛽
2

1 − 𝑟2
 and µ(𝑟) = {∑  

∞

𝑘=1

𝑘𝛼𝑟2𝑘−2

log(𝑘 +  1)
}

−1

 (𝛼 >  0, 𝛽 is real)  

are all normal functions. In the following, 𝑎 and 𝑏 are always the constants in the 

definition of the normal function µ. Without loss of generality, in this article, let 𝑟0  =  0.  
       Let 𝑝 >  0, and µ be normal on [0, 1). The µ-Bergman space is defined as  

𝐴𝑝 (µ)  =  {𝑓 ∈  𝐻(𝐵): ‖𝑓‖𝐴𝑝(µ)  = {∫  
𝐵

 |𝑓(𝑧)|𝑝
µ𝑝(|𝑧|)

1 − |𝑧|2
d𝑣(𝑧)}

1
𝑝

 <  ∞}. 

       In particular, 𝐴𝑝 (µ) is the Bergman space 𝐴𝑝 when µ(𝑟)  =  (1 − 𝑟2 )
1

𝑝 , and 𝐴𝑝 (µ) 

is the weight Bergman space 𝐴𝛽
𝑝

 when µ(𝑟)  =  (1 − 𝑟2)
𝛽+1

𝑝  (𝛽 >  −1). 𝐴𝑝 (µ) is a 

Banach space with the norm ‖. ‖𝐴𝑝(µ) when 𝑝 ≥  1, and 𝐴𝑝 (µ) is a complete metric space 

with the distance 𝜌(𝑓, 𝑔)  =  ‖𝑓 −  𝑔‖𝐴𝑝(µ)
𝑝

 when 0 <  𝑝 <  1. At the same time, 

(𝐴𝑝 (µ), ‖. ‖𝐴𝑝(µ)) is a topological vector space when 𝑝 >  0.  

       Let µ be normal on [0, 1). f is said to belong to the µ-Bloch space 𝛽µ if 𝑓 ∈  𝐻(𝐵) 

and  

‖𝑓‖µ,1   = sup
𝑧∈𝐵

  µ(|𝑧|) |𝛻𝑓(𝑧)|  <  ∞, 

where complex gradient  

𝛻𝑓(𝑧) = (
𝜕𝑓

𝜕𝑧1
 (𝑧),· · · ,

𝜕𝑓

𝜕𝑧𝑛
 (𝑧)) .  

𝛽µ is a Banach space with the norm ‖𝑓‖𝛽µ  =  |𝑓(0)|  + ‖𝑓‖µ,1.  

       Let 𝑋 and 𝑌 be two holomorphic function spaces on 𝐵, and 𝜑 =  (𝜑1,· · · , 𝜑𝑛) be a 

holomorphic self-map of 𝐵 and 𝜓 ∈  𝐻(𝐵). The weighted composition operator 𝑇𝜑,𝜓 from 

𝑋 to 𝑌 is defined by  

𝑇𝜑,𝜓(𝑓) =  𝜓 ·  𝑓 ° 𝜑 (𝑓 ∈  𝑋).  

If 𝜓 =  1, then the operator 𝑇𝜑,𝜓 is composition operator 𝐶𝜑. For 𝑤 ∈  𝐵, we will use the 

𝜑𝑤 to denote the involutions on B with interchanges the points 0 and 𝑤, and 𝜑𝑤  =
 𝜑𝑤
−1 . The Bergman ball 𝐷(𝑤, 𝑟)  =  { 𝑧 ∶  𝑧 ∈  𝐵 and |𝜑𝑤(𝑧)| <  𝑟 } for 𝑟 ∈  (0, 1). We 
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use the symbols 𝑐 , 𝑐′ , 𝑐′′, and 𝑐′′′ to denote positive constants, independent of variables z, 

w. But they may depend on some parameters (for example, 𝑝, 𝑎, 𝑏, 𝛾, 𝜎, etc.) or some fixed 

values (for example, µ(0), 𝜑(0), etc.), with different values in different cases. We call 𝐸 

and 𝐹 are equivalent (denoted by 𝐸 ≈  𝐹 in the following) if there exist two positive 

constants 𝐴1 and 𝐴2 such that 𝐴1𝐸 ≤  𝐹 ≤  𝐴2𝐸.  

The radial derivative  

𝑅𝑓(𝑧) =  ∑  

𝑛

𝑗=1

 𝑧𝑗
𝜕𝑓

𝜕𝑧𝑗
 (𝑧)  =  〈𝛻𝑓(𝑧), 𝑧〉 for 𝑓 ∈  𝐻(𝐵). 

Let 𝑅𝜑(𝑧)  =  (𝑅𝜑1(𝑧),· · · , 𝑅𝜑𝑛(𝑧)) and  

𝐻𝑧(𝑢)  =
(1 − |𝑧|2 )|𝑢|2  +  |〈𝑧, 𝑢〉|2

(1 − |𝑧|2)2
 for any 𝑧 ∈  𝐵 and 𝑢 ∈  ℂ𝑛  −  {0}. 

Then, we have 𝐻𝜑(𝑧)(𝑅𝜑(𝑧))  ≤  𝑐𝐻𝑧(𝑧) when Ω =  𝐵 by Theorem (4.3.6) in [3]. For 

𝑓 ∈  𝐻(𝐵), we write  

‖𝑓‖µ,2  = sup
𝑧∈𝐵

  µ(|𝑧|)|𝑅𝑓(𝑧)|.  

For 𝑓 ∈  𝐻(𝐵), we write  

‖𝑓‖µ,3  = sup
𝑧∈𝐵

 sup
𝑢∈ℂ𝑛−{0}

   {
µ(|𝑧|)|〈𝛻𝑓(𝑧), 𝑢〉|𝑝

√1 − |𝑧|2|𝑢|2  +  |〈𝑧, 𝑢〉|2
} . 

By [4], and Proposition 1.18 and Theorem (4.3.11) in [17], we have  

‖𝑓‖µ,3  = sup
𝑧∈𝐵

  
µ(|𝑧|)

1 − |𝑧|2
 𝑄𝑓 (𝑧) = sup

𝑧∈𝐵
  µ(|𝑧|) {

|𝛻𝑓(𝑧)|2  −  |𝑅𝑓(𝑧)|2

1 − |𝑧|2
}

1
2

 . 

Therefore, ‖𝑓‖µ,3  =  ‖𝑓‖µ,1 when 𝑛 =  1.  

       In the disc, by [20], [21], we know that 𝐶𝜑 is always bounded on 𝐴𝛼
𝑝

, and 𝐶𝜑 is a 

compact operator on 𝐴𝛼
𝑝

 if and only if  

lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0. 

Could the mentioned result as above be generalized to the setting of the unit ball? 

First, 𝐶𝜑 is not always bounded on 𝐴𝛼
𝑝

 when 𝑛 >  1; for example, we take  

𝜑(𝑧)  =  (𝑛
𝑛
2  𝑧1  · · ·  𝑧𝑛, 0,· · · , 0),𝑤 = (

𝑟

√𝑛
 ,· · · ,

𝑟

√𝑛
)  for 𝑟 ∈  (0, 1) 

and  

𝑓𝑤(𝑧)  =
1 − |𝜑(𝑤)|2

(1 − 〈𝑧, 𝜑(𝑤)〉)
𝑛+𝛼+1
𝑝

 +1
 . 

By computation, there is constant 𝑐, independent of 𝑟, so that ‖𝑓𝑤‖
𝐴𝛼
𝑝
𝑝
 ≤  𝑐, and  

‖𝐶𝜑(𝑓𝑤)‖𝐴𝛼
𝑝

𝑝
 ≈

1

(1 −  𝑟)
𝑛−1
2

 .  

       This means that 𝐶𝜑 is not bounded on 𝐴𝛼
𝑝

 when 𝑛 >  1.  

        Second, the condition for which 𝐶𝜑 is compact on 𝐴𝛼
𝑝

, Kehe Zhu gave the result in 

[18]:  

Theorem (4.3.1)[169]: Suppose 𝑝 >  0 and 𝛼 >  −1. If 𝐶𝜑 is bounded on 𝐴𝛽
𝑞

 for some 

𝑞 >  0 and −1 <  𝛽 <  𝛼, then 𝐶𝜑 is compact on 𝐴𝛼
𝑝

 if and only if  
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lim
|𝑧|→1−

 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0. 

        Theorem (4.3.1) is partly extended to the normal weight Bergman space in [170]:  

Theorem (4.3.2)[169]: For 𝑝 >  1, let µ be a normal function on [0, 1).  

        (i) If 𝐶𝜑 is compact on 𝐴𝑝 (µ), then  

lim
|𝑧|→1−

 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0.  

       (ii) If 𝐶𝜑 is bounded on 𝐴𝛽
1  for some −1 <  𝛽 <  𝑝𝑎 −  1, and  

lim
|𝑧|→1−

 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
= 0, 

then 𝐶𝜑 is compact on 𝐴𝑝 (µ).  

       As 𝐶𝜑 is not always bounded on 𝐴𝑝 (µ), we fail to get the analogous necessary and 

sufficient conditions for compactness on the unit ball directly. A natural problem is that if 

can we find some analogous conditions for compactness as in the case of the complex 

analysis with one variable provided that 𝐶𝜑 is mapped into a space 𝑌 which contains 

𝐴𝑝 (µ)? We will give and prove the following result:  

Proposition (4.3.3)[169]: Suppose 𝑝 >  0 and µ is a normal function on [0, 1), 𝜈(𝑟)  =

 (1 − 𝑟2)
𝑛

𝑝
 +1
µ(𝑟) for r ∈ [0, 1). Then,  

        (i) 𝐶𝜑 is always bounded from 𝐴𝑝 (µ) to 𝛽𝜈 ;  

        (ii) 𝐶𝜑 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if  

lim
|𝑧|→1−

 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
= 0 

In [171], if 𝑎 >
1

2
 (when 𝑛 >  1), then we have  

𝐺𝜑(𝑧)
µ
 (𝑅𝜑(𝑧), 𝑅𝜑(𝑧)) ≈

(1 −  |𝜑(𝑧)|2)2

µ2(|𝜑(𝑧)|)
 𝐻𝜑(𝑧)(𝑅𝜑(𝑧)). 

         If 𝑎 >  1, then ∫  
1

0
 µ−1 (𝑡)𝑑𝑡 =  ∞ and 𝜑𝑙  ∈  𝐻

∞  ⊂  𝛽µ for 𝑙 ∈  {1, 2,· · · , 𝑛}. In 

fact, X. J. Zhang ([171]) and H. H. Chen ([146]) gave the following result.  

Theorem (4.3.4)[169]: Let µ be normal on [0, 1). If 𝑎 >  1 and ‖𝜑‖∞  = sup
𝑧∈𝐵

  |𝜑(𝑧)|  =

 1, then 𝐶𝜑 is compact on 𝛽µ if and only if  

lim
|𝜙(𝑧)|→1−

 
μ|𝑧|

µ(|𝜑(𝑧)|)
 {(1 − |𝜙(𝑧)|2 )|𝑅𝜑(𝑧)|2  +  |〈𝜑(𝑧), 𝑅𝜑(𝑧)〉|2 }

1
2   =  0. 

We will give and prove the following result.  

Proposition (4.3.5)[169]: Let µ be normal on [0, 1). If 𝑎 >  1, then 𝐶𝜑 is compact on βµ 

if and only if  

lim
|𝑧|→1−

 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0. 

We will first discuss the bounded and compact conditions of 𝑇𝜑,𝜓 from 𝐴𝑝 (µ) to 

𝛽𝜈 . As Corollary, we give Proposition (4.3.3).  

We first give some lemmas.  

Lemma (4.3.6)[169]: Suppose µ is a normal function on [0, 1) and 𝑓 ∈  𝐻(𝐵). Then, 

‖𝑓‖µ,1, ‖𝑓‖µ,2, and ‖𝑓‖µ,3 are equ1valet for 𝑎 >  1/2 (when 𝑛 >  1), and the controlling 

constants are independent of 𝑓.  
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Proof. We may give the result by Lemma 3 and Theorem 2 in [146].  

Lemma (4.3.7)[169]: Suppose 𝑝 >  0, and µ is a normal function on [0, 1), 𝜈(𝑟)  =

 (1 − 𝑟2)
𝑛

𝑝
 +1
µ(𝑟) for 𝑟 ∈  [0, 1). If 𝑓 ∈  𝐴𝑝 (µ), then 𝑓 ∈  𝛽𝜈 and ‖𝑓‖𝛽𝜈  ≤  𝑐‖𝑓‖𝐴𝑝(µ) .  

Proof. If 𝑓 ∈  𝐴𝑝 (µ), then we have  

∫ 
𝐵

 (1 − |𝑧|2)𝑝𝑏−1 |𝑓(𝑧)|𝑝d𝑣(𝑧) ≤
‖𝑓‖𝐴𝑝(µ)

𝑝

µ𝑝(0)
 ⇒  𝑓 ∈  𝐴𝑝𝑏−1

𝑝
 . 

        By Theorem (4.3.6) in [17], we have  

|𝑓(𝑧)| ≤
𝑐‖𝑓‖𝐴𝑝𝑏−1

𝑝

(1 − |𝑧|2)
𝑛+𝑝𝑏
𝑝

 
≤ 

𝑐′‖𝑓‖𝐴 𝑝(μ)

(1 − |𝑧|2)
𝑛+𝑝𝑏
𝑝

 
 (𝑧 ∈  𝐵). 

        This means that 𝑓 ∈  𝐴𝛾
1  when 𝛾 >  𝑏 +

𝑛

𝑝
 −  1. By Theorem 2.2 in [17], we have  

𝑓(𝑧) =  ∫  
𝐵

𝑓(𝑤)

(1 − 〈𝑧, 𝑤〉)𝑛+1+𝛾
 d𝑣𝛾(𝑤) (𝑧 ∈  𝐵).  

        By Lemma 2.2 in [163], Lemma 2.2 in [160], and Proposition 1.4.10 in [22], we have  

𝜈(|𝑧|)|𝑅𝑓(𝑧)| ≤  𝑐′′‖𝑓‖𝐴𝑝(µ)  ∫  
𝐵

 
(1 − |𝑧|2)

𝑛
𝑝
 +1
µ(|𝑧|)(1 − |𝑤|2)

𝛾−
𝑛
𝑝

|1 − 〈 𝑧, 𝑤〉|𝑛+2+𝛾
µ(|𝑤|)  d𝑣(𝑤)  

≤ 𝑐′′‖𝑓‖𝐴𝑝(µ)(1 − |𝑧|
2)
𝑛
𝑝
 +1+𝑎

 ∫  
𝐵

 
(1 − |𝑤|2)

𝛾−
𝑛
𝑝
−𝑎

|1 − 〈 𝑧, 𝑤〉|𝑛+2+𝛾
 d𝑣(𝑤) 

+ 𝑐′′‖𝑓‖𝐴𝑝(µ)(1 − |𝑧|
2)
𝑛
𝑝
 +1+𝑏

 ∫  
𝐵

 
(1 − |𝑤|2)

𝛾−
𝑛
𝑝
−𝑏

|1 − 〈 𝑧, 𝑤〉|𝑛+2+𝛾
 d𝑣(𝑤) 

≤ 𝑐′′‖𝑓‖𝐴𝑝(µ).                                                                                                (29) 

On the other hand, by the subharmonicity of |𝑓|𝑝 on 𝐵, we have  

‖𝑓‖𝐴𝑝(µ)  =  ∫  
𝐵

|𝑓(𝑧)|𝑝µ𝑝(|𝑧|)

1 − |𝑧|2
 d𝑣(𝑧) 

=  2𝑛 ∫  
1

0

𝑟2𝑛−1µ𝑝(𝑟)

1 − 𝑟2
 {∫  

𝑆𝑛

  |𝑓(𝑟𝜉)|𝑝d𝜎(𝜉)}d𝑟  

≥  2𝑛 ∫  
1

0

𝑟2𝑛−1µ𝑝(𝑟)|𝑓(0)|𝑝

1 − 𝑟2
d𝑟 ≥

𝑛! Γ(𝑝𝑏)µ𝑝(0)

Γ(𝑛 +  𝑝𝑏)
|𝑓(0)|𝑝 .       (30) 

        By (29)–(30) and Lemma (4.3.6), we have 𝑓 ∈  𝛽𝜈 and ‖𝑓‖𝛽𝜈  ≤  𝑐‖𝑓‖𝐴𝑝(µ) .  

Lemma (4.3.8)[169]: Let 𝑑(𝑧, 𝑤)  =  |𝜑𝑤(𝑧)| (𝑤, 𝑧 ∈  𝐵) be the Bergman metric on B. 

Given 0 <  𝑟 <
1

2
 and 0 <  𝛿 <

1

2
 , if |𝑧|  >  1 −  𝛿 and 𝑑(𝑧,𝑤)  ≤  𝑟, then  

|𝑤| >  1 −
𝛿(1 +  𝑟)

1 −  𝑟 +  𝛿𝑟
 .  

Proof. If 𝑑(𝑧,𝑤)  ≤  𝑟, by Lemma 1.2 in [17], then we have  

(1 − |𝑧|2)(1 − |𝑤|2)

(1 − |𝑧𝑘𝑤|)2
 ≥
(1 − |𝑧|2)(1 − |𝑤|2)

|1 − 〈𝑧, 𝑤〉|2
 =  1 −  |𝜑𝑤(𝑧)|2  ≥  1 − 𝑟2  

⇒ (1 − 𝑟2 |𝑤|2)|𝑧|2 − 2(1 − 𝑟2)|𝑤𝑘𝑧| + |𝑤|2 − 𝑟2  ≤  0  

⇒ |𝑧|  ≤
|𝑤| +  𝑟

1 +  𝑟|𝑤|
 . 

        When |𝑧|  >  1 −  𝛿, we have 
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|𝑤| +  𝑟

1 +  𝑟|𝑤|
 >  1 −  𝛿 ⇒  |𝑤| >  1 −

𝛿(1 +  𝑟)

1 −  𝑟 +  𝛿𝑟
 . 

Lemma (4.3.9)[169]: Let 𝜑 be a automorphism of 𝐵. Then,  

1 − |𝜑(0)|

1 + |𝜑(0)|
 ≤

1 − |𝑧|2

1 − |𝜑(𝑧)|2
 ≤
1 + |𝜑(0)|

1 − |𝜑(0)|
 . 

Proof. The result can be obtained by Theorem 1.4 and Lemma 1.2 in [17].  

Lemma (4.3.10)[169]: Let µ be normal on [0, 1) and  

𝑔(𝜉)  =  1 +∑ 

∞

𝑠=1

2𝑠 𝜉𝑛𝑠  (𝜉 ∈  𝐷), 

where ns is the integral part of (1 − 𝑟𝑠)
−1 , µ(𝑟𝑠)  =  2

−𝑠 (𝑠 =  1, 2,· · ·). Then  

        (i) 𝑔(𝑟) is increasing for r ∈ [0, 1) and  

inf
𝑟∈[0,1)

  µ(𝑟)𝑔(𝑟) >  0, sup
𝜉∈𝐷

  µ(|𝜉|)|𝑔(𝜉)|  <  ∞;                  

        (ii) There exists constant 𝑐 >  0 such that  

µ(𝜌)𝑔′ (𝜌) ≤
𝑐

1 −  𝜌
 for all 𝜌 ∈  [0, 1) . 

Proof The results come from Theorem 1 in [16] and Lemma (4.3.9) in [171].  

We give and prove the main results.  

Theorem (4.3.11)[169]: Suppose 𝑡 ≥  0, and µ is a normal function on [0, 1). Let 𝜑 be a 

holomorphic self-map of 𝐵 and ℎ ∈  𝐻(𝐵).  

(i) If sup
𝑧∈𝐵

  µ
(|𝑧|)|ℎ(𝑧)|

(1 − |𝜑(𝑧)|2)
𝑡 = 𝑀 < ∞, then sup

𝑧∈𝐵
 (1 − |𝑧|2)µ

(|𝑧|)|𝑅ℎ(𝑧)|

(1 − |𝜑(𝑧)|2)𝑡
  ≤  𝑐𝑀. 

(ii) When ‖𝜑‖∞  = sup
𝑧∈𝐵

  |𝜑(𝑧)| =  1, if lim
|𝜑(𝑧)|→1−

  
µ(|𝑧|)ℎ(𝑧)

µ(|𝜙(𝑧)|)
 =  0, then 

lim
|𝜑(𝑧)|→1−

  
(1 − |𝑧|2)µ(|𝑧|)𝑅ℎ(𝑧)

µ(|𝜑(𝑧)|)
 =  0.  

Proof. (i) For any 𝑤 ∈  𝐵, we take  

𝐹𝑤(𝑧) =
ℎ(𝑧)

1 − 〈𝜑(𝑧), 𝜑(𝑤)〉𝑡
 (𝑧 ∈  𝐵). 

        The theorem condition implies that  

sup
𝑧∈𝐵

  µ(|𝑧|)|𝐹𝑤(𝑧)|  ≤  2
𝑡𝑀.                                  (31)  

        By Theorem 2.2 in [17], we have  

𝐹𝑤(𝑧) =  ∫  
𝐵

𝐹𝑤(𝜂)

(1 − 〈𝑧, 𝜂〉)𝑛+1+𝛾
 d𝑣𝛾(𝜂) when 𝛾 >  𝑏 −  1 (𝑧 ∈  𝐵). 

        By (31), Lemma 2.2 in [160], Proposition 1.4.10 in [22], we have  

µ(|𝑧|)|𝑅𝐹𝑤(𝑧)| ≤  ∫  
𝐵

  
𝑐𝑀(1 − |𝜂|2)𝛾µ|𝑧|

|1 − 〈𝑧, 𝜂〉|𝑛+2+𝛾µ(|𝜂|)
 d𝑣(𝜂) 

≤  𝑐𝑀 ∫ 
𝐵

(1 − |𝑧|2)𝑎(1 − |𝜂|2)𝛾−𝑎

|1 − 〈𝑧, 𝜂〉|𝑛+2+𝛾
 d𝑣(𝜂) 

+𝑐𝑀 ∫  
𝐵

(1 − |𝑧|2)𝑏(1 − |𝜂|2)𝛾−𝑏

|1 − 〈𝑧, 𝜂〉|𝑛+2+𝛾
 d𝑣(𝜂) 

≤
𝑐′𝑀

1 − |𝑧|2
.                                                                   (32) 
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𝐻𝜑(𝑤)(𝑅𝜑(𝑤))  ≤  𝑐𝐻𝑤(𝑤) shows that  

(1 − |𝑤|2)|〈𝑅𝜑(𝑤), 𝜑(𝑤)〉|

(1 − |𝜑(𝑤)|2)
 ≤  𝑐(1 − |𝑤|2 ){𝐻𝜑(𝑤)(𝑅𝜑(𝑤))}

1
2  ≤  𝑐.  (33) 

        Taking 𝑧 =  𝑤 in (32), by computation and (33), we have  

(1 − |𝑤|2)µ(|𝑤|)|𝑅ℎ(𝑤)|

(1 − |𝜑(𝑤)|2)𝑡
≤ 𝑐′′𝑀+

𝑡|ℎ(𝑤)|(1 − |𝑤|2)µ(|𝑤|)|〈𝑅𝜑(𝑤), 𝜑(𝑤)〉|

(1 − |𝜑(𝑤)|2)𝑡+1
 ≤ 𝑐′′′𝑀. 

        (ii) When ‖𝜑‖∞  =  1, if  

lim
|𝜑(𝑧)|→1−

 
μ(|𝑧|)ℎ(𝑧)

µ(|𝜑(𝑧)|)
 =  0,  

then, for any 0 <  𝜀 <  1, there exists 0 <  𝛿 <  1/2 such that  
μ(|𝑧|)|ℎ(𝑧)|

µ(|𝜑(𝑧)|)
 <  𝜀 when |𝜑(𝑧)|  >  1 −  2𝛿.  

For any sequence {𝑧𝑗}  ⊂  𝐵 satisfying lim
𝑗→∞

  |𝜑(𝑧𝑗)|  =  1, we write  

𝐷 (𝑧𝑗  ,
1

3
)  =   {𝑤 ∶  𝑤 ∈  𝐵 and 𝑑(𝑤, 𝑧𝑗)  ≤

1

3
 }.  

       As |𝜑(𝑧𝑗)|  →  1 (𝑗 →  ∞),  then there exists positive integer 𝑁 such that |𝜑(𝑧𝑗)|  >
 1 −  𝛿 when 𝑗 >  𝑁. By Theorem 8.1.4 in [22], we have  

𝑑 (𝜑(𝑤), 𝜑(𝑧𝑗))  ≤  𝑑(𝑤, 𝑧𝑗)  ≤
1

3
 when 𝑗 >  𝑁 and 𝑤 ∈  𝐷 (𝑧𝑗  ,

1

3
) . 

        We take 𝑟 =  1/3 in Lemma (4.3.8), then  

|𝜑(𝑤)| >  1 −
4𝛿

2 +  𝛿
 >  1 −  2𝛿 ⇒

μ(|𝑤|)|ℎ(𝑤)|

µ(|𝜑(𝑤)|)
 <  𝜀.        (34) 

        On the other hand, by Corollary 1.22 in [17], we have  

𝑑(𝜑𝑧𝑗 (𝑧), 𝑧
𝑗)  =  𝑑 (𝜑𝑧𝑗  (𝑧), 𝜑𝑧𝑗  (0))  =  𝑑(𝑧, 0)  =  |𝑧| ≤

1

6
 when |𝑧| ≤

1

6
 .  

If |𝑧|  ≤  1/6 and 𝑤 ∈  𝐷 (𝜑𝑧𝑗  (𝑧),
1

6
)  , then  

𝑑(𝑤, 𝑧𝑗) ≤ 𝑑 (𝑤, 𝜑𝑧𝑗  (𝑧)) + 𝑑(𝜑𝑧𝑗 (𝑧), 𝑧
𝑗) ≤

1

3
 ⇒  𝐷 (𝜑𝑧𝑗 (𝑧),

1

6
) ⊆ 𝐷 (𝑧𝑗 ,

1

3
).  (35) 

        We take 𝐺𝑗  =  𝐹𝑗  ° 𝜑𝑧𝑗 , where 𝐹𝑗  (𝑧)  =  µ(|𝑧
𝑗|)𝑔(〈𝜑(𝑧), 𝜑(𝑧𝑗  )〉)ℎ(𝑧), and 𝑔 is the 

function in Lemma (4.3.10).  

       By Lemma 2.2 and Lemma 2.2 in [17], Lemma 1.2 and Lemma 1.23 in [17], (34)–

(35), Lemma 2.2 in [160] and Lemma (4.3.10), we have  

|𝐺𝑗  (𝑧)| =  |𝐹𝑗  [𝜙(𝑧)]| ≤
𝑐′

(1 − |𝜑𝑧𝑗  (𝑧)|
2)𝑛+1

∫  
𝐷(𝜑

𝑧𝑗
 (𝑧),

1
6
 )

 |𝐹𝑗  (𝑤)|d𝑣(𝑤) 

≤
𝑐′

(1 −  |𝜑𝑧𝑗  (𝑧)|
2)𝑛+1

∫  
𝐷(𝜑

𝑧𝑗
 (𝑧),

1
3
 )

 |𝐹𝑗  (𝑤)|d𝑣(𝑤)  

≤ 𝑐′′𝜀 (1 − |𝑧𝑗|
2
)
−𝑛−1

∫  
𝐷(𝜑

𝑧𝑗
 (𝑧),

1
3
 )

µ(|𝜑(𝑤)|)𝑔(|𝜑(𝑤)|)d𝑣(𝑤) 

≤  𝑐𝜀 when |𝑧|  ≤  1/6 and 𝑗 >  𝑁. 
         This shows that {𝐺𝑗  (𝑧)} converges to 0 uniformly on {𝑧 ∶  |𝑧|  ≤  1/6}. Thus, 

{|𝛻𝐺𝑗  (𝑧)|} must converge to 0 uniformly on |𝑧|  ≤  1/12. In particular,  

lim
𝑗→∞

   |𝛻𝐺𝑗  (0)| =  0.                                         (36) 
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        On the other hand, by Lemma (4.3.6)4 and (2.11) in [17], we have  

|𝛻𝐺𝑗  (0)|
2
 =  |𝛻𝐹𝑗  (𝑧

𝑗)|
2
 ≥  (1 − |𝑧𝑗|

2
 )
2
 |𝑅𝐹𝑗  (𝑧

𝑗)|
2
 .      (37) 

        (36) and (37) show that  

lim
𝑗→∞

  (1 −  |𝑧𝑗|
2
 ) |𝑅𝐹𝑗  (𝑧

𝑗)|   =  0.                        (38) 

        By computation, we have  

𝑅𝐹𝑗(𝑧
𝑗) = µ(|𝑧𝑗|)𝑔′ (|𝜑(𝑧𝑗)|

2
 ) 〈𝑅𝜑(𝑧𝑗), 𝜙(𝑧 𝑗 )〉ℎ(𝑧𝑗) 

+µ(|𝑧𝑗|)𝑔 (|𝜑(𝑧𝑗)|
2
)𝑅ℎ(𝑧𝑗).                   (39) 

         By (33) and (38)–(39), and Lemma (4.3.10) and Lemma 2.2 in [160], we have  

(1 − |𝑧𝑗|
2
) μ(|𝑧𝑗|)|𝑅ℎ(𝑧𝑗)|

µ(|𝜑(𝑧𝑗)|)
=

1 − |𝑧𝑗|
2

μ(|𝜑(𝑧𝑗)|)𝑔(|𝜑(𝑧𝑗)|2)
µ(|𝑧𝑗|)𝑔 (|𝜑(𝑧𝑗)|

2
 ) | 𝑅ℎ(𝑧𝑗 )| 

≤  𝑐 (1 − |𝑧𝑗|
2
 ) |𝑅𝐹𝑗  (𝑧

𝑗)|  +
𝑐′μ(|𝑧𝑗|)|ℎ(𝑧𝑗)|

µ(|𝜑(𝑧𝑗)|)
 

⇒ lim
𝑗→∞

  (1 − |𝑧𝑗|
2
 ) µ(|𝑧𝑗|)𝑅ℎ(𝑧𝑗) µ(|𝜑(𝑧𝑗)|)  =  0. 

        This means that  

lim
|𝜑(𝑧)|→1−

 
(1 − |𝑧|2 )μ(|𝑧|)𝑅ℎ(𝑧)

µ(|𝜑(𝑧)|)
 =  0.  

        The proof is completed.  

Theorem (4.3.12)[169]: Suppose 𝑝 >  0, and µ is a normal function on [0, 1), 𝜈(𝑟)  =

 (1 − 𝑟2 )
𝑛

𝑝
 +1
µ(𝑟) for 𝑟 ∈  [0, 1). If 𝜑 is a holomorphic self-map of B and 𝜓 ∈  𝐻(𝐵), 

then  

        (i) 𝑇𝜑,𝜓 is bounded from 𝐴𝑝(µ) to 𝛽𝜈 if and only if  

𝑀0  = sup
𝑧∈𝐵

  {|𝜓(𝑧)| (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
}  <  ∞;        (40)  

        (ii) 𝑇𝜑,𝜓 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if 𝜓 ∈  𝛽𝜈 when ‖𝜑‖∞  <  1;  

        (iii) 𝑇𝜑,𝜓 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if 𝜓 ∈  𝛽𝜈 and  

lim
|𝜑(𝑧)|→1−

  (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
 =  0                     (41) 

when ‖𝜑‖∞  =  1.  
Proof. (i) For any 𝑓 ∈  𝐴𝑝 (µ), by Lemma 2.2 in [163], we have  

|𝑓(𝑧)| ≤
𝑐‖𝑓‖𝐴𝑝(µ)

(1 − |𝑧|2)
𝑛
𝑝µ(|𝑧|) 

(𝑧 ∈  𝐵).                   (42)  

        If (40) holds, then we take 𝑡 =  0, ℎ =  𝑇𝜑,𝜓(𝑓) and the normal function 

(1 − 𝑟2 )
𝑛

𝑝 µ(𝑟) in Theorem (4.3.11). By Lemma 2.2 in [160] and (42), for any 𝑧 ∈  𝐵, 

we have  

(1 − |𝑧|2 )
𝑛
𝑝
 +1
µ(|𝑧|)|𝑅[𝑇𝜑,𝜓(𝑓)](𝑧)|  

≤ 𝑐′ sup
𝑤∈𝐵

  (1 −  |𝑤|2)
𝑛
𝑝  µ(|𝑤|)|𝑇𝜑,𝜓 (𝑓)(𝑤)|  
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≤ 𝑐′′ sup
𝑤∈𝐵

  {
|𝜓(𝑤)|µ(|𝑤|)

µ(|𝜑(𝑤)|)
(
1 − |𝑤|2

1 − |𝜑(𝑤)|2
)

𝑛
𝑝

 } ‖𝑓‖𝐴𝑝(µ) 

≤ 𝑐′′𝑀0‖𝑓‖𝐴𝑝(µ) .                                                                     (43)  

        By (42)–(43) and Lemma (4.3.6), then 𝑇𝜑,𝜓 is bounded from Ap (µ) to βν. 

Conversely, if 𝑇𝜑,𝜓 is bounded from 𝐴𝑝 (µ) to 𝛽𝜈, then, for any 𝑤 ∈  𝐵, we take  

𝑓𝑤(𝑧) =
(1 − |𝜑(𝑤)|2 )𝑏+1

µ(|𝜑(𝑤)|)(1 − 〈𝑧, 𝜑(𝑤)〉)
𝑏+1+

𝑛
𝑝

 . 

 By the definition of normal function, we have  

µ𝑝 (|𝑧|) ≤
μ𝑝(|𝜑(𝑤)|)(1 − |𝑧|2 )𝑝𝑏

(1 − |𝜑(𝑤)|2)𝑝𝑏
 +
μ𝑝(|𝜑(𝑤)|)(1 − |𝑧|2)𝑝𝑎

(1 − |𝜑(𝑤)|2)𝑝𝑎
 .     (44) 

        By Proposition 1.4.10 in [22] and (44), we obtain  

‖𝑓𝑤‖𝐴𝑝(µ)
𝑝

 =
(1 − |𝜑(𝑤)|2 )𝑝𝑏+𝑝

µ𝑝(|𝜑(𝑤)|)
∫  
𝐵

μ𝑝(|𝑧|)

(1 − |𝑧|2)|1 − 〈𝑧, 𝜑(𝑤)〉|𝑝𝑏+𝑝+𝑛
d𝑣(𝑧)

≤  (1 − |𝜑(𝑤)|2 )𝑝∫ 
𝐵

(1 − |𝑧|2)𝑝𝑏−1

|1 − 〈𝑧, 𝜑(𝑤)〉|𝑝𝑏+𝑝+𝑛
d𝑣(𝑧)

+ (1 − |𝜑(𝑤)|2 )𝑝𝑏+𝑝∫ 
𝐵

(1 − |𝑧|2)𝑝𝑏−1

|1 − 〈𝑧, 𝜑(𝑤)〉|𝑝𝑏+𝑝+𝑛
d𝑣(𝑧) ≤  𝑐.  

On the other hand, by Lemma 2.2 in [4] and Lemma (4.3.6), taking 𝑧 =  𝑤, we have  

|𝑇𝜑,𝜓 (𝑓𝑤)(𝑤)|  ≤  𝑐 (1 + ∫  
|𝑤|

0

1

𝜈(𝑡)
 d𝑡) ‖𝑇𝜑,𝜓 (𝑓𝑤)‖𝛽𝜈

  

⇒
|𝜓(𝑤)|μ(|𝑤|)

µ(|𝜑(𝑤)|)
  (

1 − |𝑤|2

1 − |𝜑(𝑤)|2
)

𝑛
𝑝

 

≤ 𝑐′ (1 − |𝑤|2 )
𝑛
𝑝  µ(|𝑤|) (1 + ∫  

|𝑤|

0

1

𝜈(𝑡)
 d𝑡) ‖𝑇𝜑,𝜓‖ 

≤ 𝑐′µ(0)‖𝑇𝜑,𝜓‖ + 𝑐
′ ‖𝑇𝜑,𝜓‖(1 − |𝑤|

2)
𝑛
𝑝  ∫  

|𝑤|

0

μ(|𝑤|)

(1 − 𝑡2)
1+
𝑛
𝑝μ(𝑡)

d𝑡 

≤ 𝑐′µ(0)‖𝑇𝜑,𝜓‖ + 𝑐
′ ‖𝑇𝜑,𝜓‖(1 − |𝑤|

2)
𝑛
𝑝  + 𝑎 ∫  

|𝑤|

0

1

(1 − 𝑡2)
1+
𝑛
𝑝
 +𝑎
d𝑡  

+𝑐′‖𝑇𝜑,𝜓‖(1 − |𝑤|
2 )
𝑛
𝑝
+𝑏 
 ∫  
|𝑤|

0

1

(1 − 𝑡2)
1+
𝑛
𝑝
 +𝑏
d𝑡  

≤ 𝑐′µ(0)‖𝑇𝜑,𝜓‖ + 𝑐
′′‖𝑇𝜑,𝜓‖.  

      This shows that (40) holds.  

(ii)–(iii) If 𝑇𝜑,𝜓 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 , then 𝜓 ∈  𝛽𝜈 by taking 𝑓(𝑧)  =  1. 

When ‖𝜑‖∞  =  1, we prove that (41) holds.  

Let {𝑧𝑗}  ⊂  𝐵 be any sequence satisfying |𝜑(𝑧𝑗  )|  →  1 (𝑗 →  ∞). We take  

𝑓𝑗  (𝑧) =
(1 − |𝜑(𝑧𝑗)|

2
 )
𝑏+1

µ(|𝜑(𝑧𝑗)|)(1 − 〈𝑧, 𝜑(𝑧𝑗)〉)
𝑏+1+

𝑛
𝑝

 . 
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       Then, ‖𝑓𝑗‖𝐴𝑝(µ)  ≤  𝑐 and {𝑓𝑗(𝑧)} converges to 0 uniformly on any compact subset of 

B. This means that  

lim
𝑗→∞

  ‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈
 =  0. 

        On the other hand, we have  

|𝑇𝜑,𝜓(𝑓𝑗)(𝑧
𝑗)| ≤  𝑐 (1 + ∫  

|𝑧𝑗|

0

1

𝜈(𝑡)
d𝑡) ‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈

  

⇒
|𝜓(𝑧𝑗)|μ(|𝑧𝑗|)

µ(|𝜑(𝑧𝑗)|)
  (

1 − |𝑧𝑗|
2

1 − |𝜑(𝑧𝑗)|2
)

𝑛
𝑝

  

≤  𝑐 (1 − |𝑧𝑗|
2
 )

𝑛
𝑝
 µ(|𝑧𝑗|) (1 + ∫  

|𝑧𝑗|

0

1

𝜈(𝑡)
 d𝑡 ) ‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈

  

≤  𝑐µ(0)‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈
 +  𝑐′ ‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈

 . 

      This shows that  

lim
𝑗→∞

  
|𝜓(𝑧𝑗)|μ(|𝑧𝑗|)

µ(|𝜑(𝑧𝑗)|)
  (

1 −  |𝑧𝑗|
2

1 − |𝜑(𝑧𝑗)|2
)

𝑛
𝑝

=  0. 

      This means that (41) holds.  

       Conversely, for all 𝑙 ∈  {1, 2,· · · , 𝑛}, we have 𝜑𝑙  ∈  𝐻
∞  ⊂  𝛽. This means that (1 −

 |𝑧|2 )|𝑅𝜑𝑙(𝑧)|  ≤  ‖𝜑𝑙‖𝛽 holds for all 𝑧 ∈  𝐵.  

      Let {𝑓𝑗(𝑧)} be any sequence which converges to 0 uniformly on any compact subset of 

𝐵 and ‖𝑓𝑗‖𝐴𝑝(µ)  ≤  1. When ‖𝜑‖∞  <  1, we know that {|𝛻𝑓𝑗(𝑤)|} converges to 0 

uniformly on {𝑤 ∶  |𝑤|  ≤ ‖𝜑‖∞} and {𝑓𝑗(𝜑(0))} converges to 0. If  ∈  𝛽𝜈 , by Lemma 

(4.3.6), Lemma 2.2 in [4], then  

‖𝑇𝜑,𝜓 (𝑓𝑗)‖𝛽𝜈
   ≤ |𝜓(0)| ·  |𝑓𝑗[𝜑(0)]|  + 𝑐

′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝑅[𝑇𝜑,𝜓 (𝑓𝑗)](𝑧)|  

≤ |𝜓(0)|  ·  |𝑓𝑗[𝜑(0)]|  + 𝑐
′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝑅𝜓(𝑧)|   ·  |𝑓𝑗  [𝜑(𝑧)]|  

+ 𝑐′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝜓(𝑧)|  ·  |〈𝛻𝑓𝑗  [𝜑(𝑧)], 𝑅𝜑(𝑧)〉|  

≤ |𝜓(0)|  ·  |𝑓𝑗[𝜑(0)]|  + 𝑐
′ ‖𝜓‖𝛽𝜈 sup

|𝑤|≤‖𝜑‖∞

  |𝑓𝑗  (𝑤)| 

 +(𝑐′′µ(0) + 𝑐′′′)‖𝜓‖𝛽𝜈  (∑  

𝑛

𝑙=1

‖𝜑𝑙‖𝛽) sup
|𝑤|≤‖𝜑‖∞

  |𝛻𝑓𝑗  (𝑤)|  →  0 (𝑗 →  ∞).  

       When ‖𝜑‖∞  =  1, if (41) holds, then we take the normal function (1 − 𝑟2 )
𝑛

𝑝 µ(𝑟) 
and ℎ =  𝜓 in Theorem (4.3.11). This means that  

lim
|𝜑(𝑧)|→1−

  |𝑅𝜓(𝑧)| 
(1 − |𝑧|2)

𝑛
𝑝
 +1

(1 − |𝜑(𝑧)|2)
𝑛
𝑝

μ(|𝑧|)

µ(|𝜑(𝑧)|)
 =  0.  

       Therefore, for any 𝜀 >  0, there exists 0 <  𝛿 <  1 such that  

|𝜓(𝑧)| (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
< 𝜀 and 

|𝑅𝜓(𝑧)|(1 − |𝑧|2)
𝑛
𝑝
 +1

(1 − |𝜑(𝑧)|2)
𝑛
𝑝

μ(|𝑧|)

µ(|𝜑(𝑧)|)
 < 𝜀 (45) 
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 when |𝜑(𝑧)|  >  𝛿. As {𝑓𝑗(𝑧)} converges to 0 uniformly on any compact subset of 𝐵, then 

{|𝛻𝑓𝑗(𝑤)|} converges to 0 uniformly on {𝑤 ∶  |𝑤| ≤  𝛿} and {𝑓𝑗(𝜑(0))} converges to 0. 

Therefore, there exists positive integer 𝑁 such that  

sup
|𝑤|≤𝛿

  |𝑓𝑗(𝑤)| <  𝜀, sup
|𝑤|≤𝛿

 |𝛻𝑓𝑗  (𝑤)| <  𝜀, and |𝑓𝑗(𝜑(0))|  <  𝜀 when 𝑗 >  𝑁.  

       When |𝜑(𝑧)|  ≤  𝛿 and 𝑗 >  𝑁, we have  

𝜈(|𝑧|)|𝑅[𝑇𝜑,𝜓 (𝑓𝑗)](𝑧)| 

≤ ‖𝜓‖𝛽𝜈 sup
|𝑤|≤𝛿

  |𝑓𝑗  (𝑤)| 

+(𝑐′µ(0) + 𝑐′′)‖𝜓‖𝛽𝜈 (∑ 

𝑛

𝑙=1 

‖𝜑𝑙‖𝛽) sup
|𝑤|≤𝛿

 |𝛻𝑓𝑗  (𝑤)|  < 𝑐𝜀.  (46) 

       If 𝑗 >  𝑁, by Lemma (4.3.6)–2.2, (42), (45)–(46), and 𝐻𝜑(𝑧) [𝑅𝜑(𝑧)]  ≤  𝑐𝐻𝑧(𝑧), then  

‖𝑇𝜑,𝜓 (𝑓𝑗  )‖𝛽𝜈
 ≤ |𝜓(0)|  ·  |𝑓𝑗  (𝜑(0))|  

+𝑐′  ( sup
|𝜑(𝑧)|>𝛿

  +  sup
|𝜑(𝑧)|≤𝛿

 ) 𝜈(|𝑧|)|𝑅[𝑇𝜑,𝜓 (𝑓𝑗)](𝑧)|  

< 𝑐′′𝜀 + 𝑐′𝜀 sup
|𝜑(𝑧)|>𝛿

(1 − |𝜑(𝑧)|2 )
𝑛
𝑝
+1
 µ(|𝜑(𝑧)|) |〈𝛻𝑓𝑗  [𝜑(𝑧)], 𝑅𝜑(𝑧)〉| (1 −  |𝑧|

2 )

√(1 − |𝜑(𝑧)|2)|𝑅𝜑(𝑧)|2  +  |〈𝑅𝜑(𝑧), 𝜑(𝑧)〉|2
  

 √ 𝐻𝜑(𝑧) [𝑅𝜑(𝑧)] <  𝑐
′′𝜀 + 𝑐′′′𝜀‖𝑓𝑗‖𝛽𝜈

 ≤  𝑐′′𝜀 +  𝑐𝜀‖𝑓𝑗‖𝐴𝑝(µ) ≤ 𝑐
′′𝜀 +  𝑐𝜀.  

       This shows that  

lim
𝑗→∞

  ‖𝑇𝜑,𝜓(𝑓𝑗)‖𝛽𝜈
 =  0. 

       This means that 𝑇𝜑,𝜓 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 . The proof is completed. 

Corollary (4.3.13)[169]: Suppose 𝑝 >  0, and µ is a normal function on  

[0, 1), 𝜈(𝑟)  =  (1 − 𝑟2 )
𝑛

𝑝
 +1
µ(𝑟) for 𝑟 ∈  [0, 1). If 𝜑  is a automorphism of 𝐵 and 𝜓 ∈

 𝐻(𝐵), then  

       (i) 𝑇𝜑,𝜓 is bounded from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if 𝜓 ∈  𝐻∞;  

       (ii) 𝑇𝜑,𝜓 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if 𝜓 ≡  0.  

Proof. By Lemma 2.2 in [160], Lemma (4.3.9), there exists constant 𝑐 >  0 such that  

1

𝑐
 ≤ {

1 − |𝑧|2

1 − |𝜑(𝑧)|2
}

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
 ≤  𝑐.                         (47) 

        On the other hand, if 𝜑 is a automorphism of 𝐵, then |𝜑(𝑧)|  →  1− if and only if 

|𝑧|  →  1−. Therefore, by (47), Theorem (4.3.12), and the Maximum Modulus Principle, 

we can obtain the result.  

Corollary (4.3.14)[169]: Suppose 𝑝 >  0, and µ is a normal function on [0, 1), 𝜈(𝑟)  =

 (1 − 𝑟2)
𝑛

𝑝
 +1
µ(𝑟) for 𝑟 ∈  [0, 1). If 𝜑 is a holomorphic self-map of 𝐵, then  

       (i) 𝐶𝜑 is always bounded from 𝐴𝑝 (µ) to 𝛽𝜈 ;  

       (ii) 𝐶𝜑 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 if and only if  

lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0.                          (48) 

Proof. (i) By Lemma 2.2 in [160], we have  
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(
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
≤ (

1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑎

+ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑏

 

≤ (
1 + |𝜑(0)|

1 − |𝜑(0)|
)

𝑛
𝑝
+𝑎

+ (
1 + |𝜑(0)|

1 − |𝜑(0)|
)

𝑛
𝑝
+𝑏 

. 

        By Theorem (4.3.12), 𝐶𝜑 is always bounded from 𝐴𝑝 (µ) to 𝛽𝜈. 

        (ii) If (48) holds and ‖𝜑‖∞  =  1, then we have   

(
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
 

≤ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑎

+ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑏

 (|𝜑(𝑧)| →  1−).  

        By Theorem (4.3.12), 𝐶𝜑 is compact from 𝐴𝑝 (µ) to 𝛽𝜈.  

        Conversely, if 𝐶𝜑 is compact from 𝐴𝑝 (µ) to 𝛽𝜈 and ‖𝜑‖∞  =  1, then, by Theorem 

(4.3.12), we have  

0 ←  (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝 μ(|𝑧|)

µ(|𝜑(𝑧)|)
≥ (

1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑏

{1 + (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑏−𝑎

}

−1

 

≥ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑛
𝑝
+𝑏

{1 + (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑏−𝑎

}

−1

(|𝜑(𝑧)| →  1−). 

        This shows that  

lim
|𝜑(𝑧)|→1−

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0. 

          Therefore, for any 𝜀 >  0, there exists 0 < δ < 1 such that 
1−|𝑧|2

1−|𝜑(𝑧)|2
 <  𝜀 when 

|𝜑(𝑧)|  >  𝛿. On the other hand,  

lim
|𝑧|→1−

  
1 − |𝑧|2

1 − 𝛿2
 =  0, 

then there exists 0 <  𝛿0  <  1 such that 
1 − |𝑧|2

1 −𝛿2
 <  𝜀 when |𝑧|  >  𝛿0. When |𝑧|  >  𝛿0, if 

|𝜑(𝑧)|  ≤  𝛿, then  

1 − |𝑧|2

1 − |𝜑(𝑧)|2
 ≤  

1 − |𝑧|2

1 − 𝛿2
 <  𝜀;  if |𝜑(𝑧)|  >  𝛿, then 

1 − |𝑧|2

1 − |𝜑(𝑧)|2
 <  𝜀. 

 This shows that  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0.  

        The proof is completed.  

        This is Proposition (4.3.3).  

Theorem (4.3.15)[169]: Let µ be normal on [0, 1), and 𝜑 be a holomorphic self- map of 

𝐵. If a > 1, then 𝐶𝜑 is compact on βµ if and only if  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0. 

       Proof First, suppose that 𝐶𝜑 is compact on 𝛽µ. If ‖𝜑‖∞  <  1, then we have  
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lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0. 

        When ‖𝜑‖∞  =  1, let {𝑧𝑗}  ⊂  𝐵 be any sequence satisfying  

lim
𝑗→∞

  |𝜑(𝑧𝑗)|  =  1. 

       We take 𝑓𝑗  (𝑧)  =  (1 − |𝜑(𝑧
𝑗)|

2
)  𝑔(〈𝑧, 𝜑(𝑧𝑗  )〉), where 𝑔 is the function in 

Lemma (4.3.10). By Lemma (4.3.10), we have  

µ(|𝑧|)|𝛻𝑓𝑗  (𝑧)|  =  µ(|𝑧|) (1 −  |𝜑(𝑧
𝑗)|

2
 ) |𝑔′ (〈𝑧, 𝜑(𝑧𝑗)〉) 𝜑(𝑧𝑗)|  

≤  2µ(|〈𝑧, 𝜑(𝑧𝑗)〉|)(1 − |〈𝑧, 𝜑(𝑧𝑗)〉|)𝑔′ (|〈𝑧, 𝜑(𝑧𝑗)〉|)   ≤  𝑐. 

        Therefore, ‖𝑓𝑗‖𝛽µ
 ≤  1 +  𝑐 and {𝑓𝑗(𝑧)} converges to 0 uniformly on any compact 

subset of B. This means that  

lim
𝑗→∞

  ‖𝐶𝜑(𝑓𝑗)‖𝛽µ
 =  0. 

       On the other hand, by Lemma (4.3.10), Lemma (4.3.6), Lemma 2.2 in [4], and Lemma 

2.2 in [160], we have  

0 <  𝑐 ≤  µ (|𝜑(𝑧𝑗)|
2
 ) 𝑔 (|𝜑(𝑧𝑗)|

2
)  =  

µ (|𝜑(𝑧𝑗)|
2
 ) |𝐶𝜑(𝑓𝑗  )(𝑧

𝑗)|

1 − |𝜑(𝑧𝑗)|2
 

≤  
𝑐′µ (|𝜑(𝑧𝑗)|

2
 )

1 − |𝜑(𝑧𝑗)|2
(1 + ∫  

|𝑧𝑗|

0

1

µ(𝑡)
 d𝑡 )  ‖𝐶𝜑 (𝑓𝑗)‖𝛽µ

 

≤ {𝑐′µ(0) (1 − |𝜑(𝑧𝑗  )|
4
 )
𝑎−1
 +  
𝑐′′ (1 − |𝜑(𝑧𝑗)|

2
)
𝑎−1

(1 − |𝑧𝑗|2)𝑎−1
  

+  
𝑐′′ (1 − |𝜑(𝑧𝑗)|

2
)
𝑏−1

(1 − |𝑧𝑗|2)𝑏−1
}‖𝐶𝜑 (𝑓𝑗)‖𝛽µ

 

⇒ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑏−1

 

 1 − |𝑧 𝑗 |2 1 −  |𝜙(𝑧 𝑗 )|2 𝑏 − 1  

≤
1

𝑐
{
𝑐′′′ (1 − |𝜑(𝑧𝑗)|

2
)
𝑏−1

(1 − |𝜑(𝑧𝑗)|2)𝑏−1
 +
𝑐′′′ (1 − |𝜑(𝑧𝑗)|

2
)
𝑏−𝑎

(1 − |𝜑(𝑧𝑗)|2)𝑏−𝑎
+ 𝑐′′} ‖𝐶𝜑 (𝑓𝑗)‖𝛽µ

  

≤
1

𝑐
 { 
𝑐′′′(1 + |𝜑(0)|)𝑏−𝑎

(1 − |𝜑(0)|)𝑏−𝑎
+ 
𝑐′′(1 + |𝜑(0)|)𝑏−𝑎

(1 − |𝜑(0)|)𝑏−𝑎
+ 𝑐′′} ‖𝐶𝜑 (𝑓𝑗)‖𝛽µ

 . 

 By b ≥ a > 1, this shows that  

lim
𝑗→∞ 1

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0 ⇒ lim

|𝜑(𝑧)|→1−
  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0. 

        By Proof of Corollary (4.3.13), we have lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
 =  0.  

       Conversely, first, for all 𝑙 ∈  {1,· · · , 𝑛}, we have 𝜑𝑙  ∈  𝛽µ when 𝑎 >  1. If  
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lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
=  0, 

then for any 0 <  𝜀 <  1, there exists 0 <  𝑟 <  1 such that  

1 − |𝑧|2

1 − |𝜑(𝑧)|2
<  𝜀 when 𝑟 <  |𝑧|  <  1.                         (49)  

        Let {𝑓𝑗(𝑧)} be any sequence that converges to 0 uniformly on any compact subset 

of 𝐵 and ‖𝑓𝑗‖𝛽µ
 ≤  1. Let 𝑟1  =  max{|𝜑(𝑧)|: |𝑧| ≤  𝑟}. Then, there exists positive integer 

𝑁 such that  

|𝑓𝑗  [𝜑(0)]| <  𝜀 and sup
|𝑤|≤𝑟1

  |𝛻𝑓𝑗  (𝑤)|  <  𝜀 when 𝑗 >  𝑁.       (50) 

        Therefore, by Lemma (4.3.6) and 𝐻𝜑(𝑧) [𝑅𝜑(𝑧)]  ≤  𝑐𝐻𝑧(𝑧), (49)–(50), Lemma 2.2 

in [160], as long as 𝑗 >  𝑁, we have  

‖𝐶𝜑 (𝑓𝑗)‖𝛽µ
 ≤  𝑐 {|𝑓𝑗  [𝜑(0)]|  + sup

𝑧∈𝐵
   µ(|𝑧|)|〈𝛻𝑓𝑗  [𝜑(𝑧)], 𝑅𝜑 (𝑧)〉|}  

≤  𝑐|𝑓𝑗  [𝜑(0)]|  

+  𝑐 

{
 

 

( ∑ 

𝑛

𝑙=1

 ‖𝜑𝑙‖𝛽µ) sup
|𝑤|≤𝑟1

  |𝛻𝑓𝑗  (𝑤)|

+ ‖𝑓𝑗‖µ,3 sup
𝑟<|𝑧|<1

 

μ(|𝑧|)(1 − |𝜑(𝑧)|2)√ 𝐻𝜑(𝑧) [𝑅𝜑(𝑧)]

μ(|𝜑(𝑧)|)

}
 

 

≤ 𝑐′𝜀 + 𝑐′′ sup
𝑟<|𝑧|<1

μ(|𝑧|)

µ(|𝜑(𝑧)|)

1 − |𝜑(𝑧)|2

1 − |𝑧|2

≤ 𝑐′𝜀 + 𝑐′′ sup
𝑟<|𝑧|<1

{(
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑎−1

+ (
1 − |𝑧|2

1 − |𝜑(𝑧)|2
)

𝑏−1

}

<  𝑐′𝜀 +  2𝑐′′𝜀𝑎−1.  
        This shows that  

lim
𝑗→∞

  ‖𝐶𝜑(𝑓𝑗)‖𝛽µ
 =  0. 

       This implies that 𝐶𝜑 is compact on 𝛽µ.  

        The proof is completed.  

        This is Proposition (4.3.5). 

Lemma (4.3.16)[245]: Suppose 𝜖 ≥  0, and µ is a normal function on [0, 1), 𝜈(1 − 𝜖)  =
 (2𝜖 − 𝜖2)2µ(1 − 𝜖) for 0 < 𝜖 < 1. If 𝑓2  ∈  𝐴1+𝜖  (µ), then 𝑓2  ∈  𝛽𝜈 and ‖𝑓2‖𝛽𝜈  ≤

 𝑐‖𝑓2‖𝐴1+𝜖(µ) .  

Proof. If 𝑓2  ∈  𝐴1+𝜖  (µ), then we have  

∫ 
𝐵

 (1 − |𝑧|2)−
1
2
+
5
2
𝜖+2𝜖2  |𝑓2(𝑧)|1+𝜖d𝑣(𝑧) ≤

‖𝑓2‖𝐴1+𝜖(µ)
1+𝜖

µ1+𝜖(0)
 ⇒  𝑓2 ∈  𝐴1

2
+
5
2
𝜖+2𝜖2

1+𝜖  . 

By Theorem 2.1 in [149], we have  

|𝑓2(𝑧)| ≤

𝑐‖𝑓2‖𝐴
−
1
2
+
5
2
𝜖+2𝜖2

1+𝜖

(1 − |𝑧|2)2(1+𝜖)
≤ 

𝑐′‖𝑓2‖𝐴 1+𝜖(μ)
(1 − |𝑧|2)2(1+𝜖)

 (𝑧 ∈  𝐵). 
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This means that 𝑓2  ∈  𝐴1
2
+3𝜖

1  when 𝜖 > 0. By Theorem 2.2 in [149], we have  

𝑓2(𝑧) =  ∫  
𝐵

𝑓2(𝑧 + 𝜖)

(1 −  〈𝑧, 𝑧 + 𝜖〉)
5
2
+4𝜖
 d𝑣1

2
+3𝜖
(𝑧 + 𝜖) (𝑧 ∈  𝐵).  

By Lemma 2.2 in [2], Lemma 2.2 in [155], and Proposition 1.4.10 in [156], we have  

𝜈(|𝑧|)|𝑅𝑓2(𝑧)|

≤  𝑐′′‖𝑓2‖𝐴1+𝜖(µ)  ∫  
𝐵

 
(1 −  |𝑧|2)2µ(|𝑧|)(1 − |𝑧 + 𝜖|2)3𝜖−

1
2

|1 − 〈 𝑧, 𝑧 + 𝜖〉|
7
2
+4𝜖

µ(|𝑧

+ 𝜖|)  d𝑣(𝑧 + 𝜖)  

≤ 𝑐′′‖𝑓2‖𝐴1+𝜖(µ)(1 − |𝑧|
2)
5
2
+𝜖  ∫  

𝐵

 
(1 − |𝑧 + 𝜖|2)2𝜖−1

|1 − 〈 𝑧, 𝑧 + 𝜖〉|
7
2
+4𝜖
 d𝑣(𝑧 + 𝜖) 

+ 𝑐′′‖𝑓2‖𝐴1+𝜖(µ)(1 − |𝑧|
2)
5
2
+2𝜖  ∫  

𝐵

 
(1 − |𝑧 + 𝜖|2)𝜖−1

|1 − 〈 𝑧, 𝑧 + 𝜖〉|
7
2
+4𝜖
 d𝑣(𝑧 + 𝜖) 

≤ 𝑐′′‖𝑓2‖𝐴1+𝜖(µ).                                                                                                           (51) 

On the other hand, by the subharmonicity of |𝑓2|1+𝜖 on 𝐵, we have  

‖𝑓2‖𝐴1+𝜖(µ)  =  ∫  
𝐵

|𝑓2(𝑧)|1+𝜖µ1+𝜖(|𝑧|)

1 − |𝑧|2
 d𝑣(𝑧)

=  2(1

+ 𝜖) ∫  
1

0

(1 − 𝜖)1+2𝜖µ1+𝜖(1 − 𝜖)

2𝜖 − 𝜖2
 {∫  

𝑆1+𝜖

  |𝑓2((1 − 𝜖)𝜉)|
1+𝜖
d𝜎(𝜉)} d(1

− 𝜖)  

≥  2(1 + 𝜖) ∫  
1

0

(1 − 𝜖)1+2𝜖µ1+𝜖(1 − 𝜖)|𝑓2(0)|1+𝜖

2𝜖 − 𝜖2
d(1 − 𝜖)  

≥
(1 + 𝜖)! Γ (

1
2
+
5
2
𝜖 + 2𝜖2) µ1+𝜖(0)

Γ (
3
2
+
7
2
𝜖 + 2𝜖2)

|𝑓2(0)|1+𝜖  .                                 (52) 

        By (51)–(52) and Lemma (4.3.6), we have 𝑓2  ∈  𝛽𝜈 and ‖𝑓2‖𝛽𝜈  ≤  𝑐‖𝑓
2‖𝐴1+𝜖(µ) .  

Lemma (4.3.17)[245]: Let 𝑑(𝑧, 𝑧 + 𝜖)  =  |(𝜑𝑟)𝑧+𝜖(𝑧)| (𝑧 + 𝜖, 𝑧 ∈  𝐵) be the Bergman 

metric on B. Given 0 < 𝜖 <
1

2
 and 0 <  𝛿 <

1

2
 , if |𝑧|  >  1 −  𝛿 and 𝑑(𝑧, 𝑧 + 𝜖)  ≤  

1

2
−

𝜖, then  

|𝑧 + 𝜖| >  1 −
𝛿 (
3
2
− 𝜖)

− 
1
2
− 𝜖 +  𝛿(

1
2
− 𝜖)

 .  

Proof. If 𝑑(𝑧, 𝑧 + 𝜖)  ≤  
1

2
− 𝜖, by Lemma 1.2 in [149], then we have  

(1 −  |𝑧|2)(1 − |𝑧 + 𝜖|2)

(1 −  |𝑧𝑘(𝑧 + 𝜖)|)2
 ≥
(1 − |𝑧|2)(1 − |𝑧 + 𝜖|2)

|1 − 〈𝑧, 𝑧 + 𝜖〉|2
 =  1 − |𝜑𝑟(𝑧 + 𝜖)(𝑧)|

2  

≥  
3

4
+ 𝜖 − 𝜖2  



143 

⇒ ((
3

4
+ 𝜖 − 𝜖2) |𝑧 + 𝜖|2) |𝑧|2  −  2 (

3

4
+ 𝜖 − 𝜖2) |(𝑧 + 𝜖)𝑘𝑧| + |𝑧 + 𝜖|2  

− (
1

4
− 𝜖 + 𝜖2)  ≤  0  

               ⇒  |𝑧|  ≤
|𝑧 + 𝜖| + 

1
2
− 𝜖

1 + (
1
2
− 𝜖) |𝑧 + 𝜖|

 . 

        When |𝑧|  >  1 −  𝛿, we have 

|𝑧 + 𝜖| + 
1
2
− 𝜖

1 + (
1
2
− 𝜖) |𝑧 + 𝜖|

 >  1 −  𝛿 ⇒  |𝑧 + 𝜖| >  1 −
𝛿 (
3
2
− 𝜖)

𝛿 (
1
2
− 𝜖) − (

1
2
+ 𝜖)

 . 

Theorem (4.3.18)[245]: Suppose 𝜖 ≥ 1, and µ is a normal function on [0, 1). Let 𝜑𝑟 be a 

holomorphic self-map of 𝐵 and ℎ2  ∈  𝐻(𝐵).  

        (i)If sup
𝑧∈𝐵

  µ
(|𝑧|)|ℎ2(𝑧)|

(1 − |𝜑𝑟(𝑧)|
2)
 (1 + 𝜖)  =  𝑀 

<  ∞ , then sup
𝑧∈𝐵

  (1 −  |𝑧|2)µ
(|𝑧|)|𝑅ℎ2(𝑧)|

(1 −  |𝜑𝑟(𝑧)|
2)1+𝜖

  ≤  𝑐𝑀. 

        (ii)When ‖𝜑𝑟‖∞  = sup
𝑧∈𝐵

  |𝜑𝑟(𝑧)| =  1, if lim
|𝜑𝑟(𝑧)|→1−

  
µ(|𝑧|)ℎ2(𝑧)

µ(|𝜑𝑟(𝑧)|)
 =  0, then 

lim
|𝜑𝑟(𝑧)|→1−

  
(1 −  |𝑧|2)µ(|𝑧|)𝑅ℎ2(𝑧)

µ(|𝜑𝑟(𝑧)|)
 =  0.  

Proof. (i) For any (𝑧 + 𝜖)  ∈  𝐵, we take  

𝐹𝑧+𝜖(𝑧) =
ℎ2(𝑧)

1 − 〈𝜑𝑟(𝑧), 𝜑𝑟(𝑧 + 𝜖)〉
1+𝜖
 (𝑧 ∈  𝐵). 

        The theorem condition implies that  

sup
𝑧∈𝐵

  µ(|𝑧|)|𝐹𝑧+𝜖(𝑧)|  ≤  2
1+𝜖𝑀.                                  (53)  

        By Theorem 2.2 in [149], we have  

𝐹𝑧+𝜖(𝑧) =  ∫  
𝐵

𝐹𝑧+𝜖(𝜂)

(1 − 〈𝑧, 𝜂〉)
3
2
+4𝜖
 d𝑣

−
1
2
+3𝜖
(𝜂)when 𝜖 > 0 (𝑧 ∈  𝐵). 

        By (53), Lemma 2.2 in [155], Proposition 1.4.10 in [156], we have  

µ(|𝑧|)|𝑅𝐹𝑧+𝜖(𝑧)| ≤  ∫  
𝐵

  
𝑐𝑀(1 − |𝜂|2)−

1
2
+3𝜖µ|𝑧|

|1 − 〈𝑧, 𝜂〉|
5
2
+4𝜖µ(|𝜂|)

 d𝑣(𝜂)

≤  𝑐𝑀 ∫  
𝐵

(1 − |𝑧|2)
1
2
+𝜖(1 − |𝜂|2)2𝜖−1

|1 − 〈𝑧, 𝜂〉|
5
2
+4𝜖

 d𝑣(𝜂) 

+𝑐𝑀 ∫  
𝐵

(1 −  |𝑧|2)
1
2
+2𝜖(1 − |𝜂|2)𝜖−1

|1 −  〈𝑧, 𝜂〉|
5
2
+4𝜖

 d𝑣(𝜂) 

≤
𝑐′𝑀

1 − |𝑧|2
.                                                                               (54) 

𝐻𝜑𝑟(𝑧+𝜖)(𝑅𝜑𝑟(𝑧 + 𝜖))  ≤  𝑐𝐻𝑧+𝜖(𝑧 + 𝜖) shows that  
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(1 − |𝑧 + 𝜖|2)|〈𝑅𝜑𝑟(𝑧 + 𝜖), 𝜑𝑟(𝑧 + 𝜖)〉|

(1 − |𝜑𝑟(𝑧 + 𝜖)|
2)

≤ 𝑐(1 − |𝑧 + 𝜖|2 ){𝐻𝜑𝑟(𝑧+𝜖)(𝑅𝜑𝑟(𝑧 + 𝜖))}
1
2 ≤ 𝑐.  (55) 

        Taking 𝜖 = 0 in (54), by computation and (55), we have  

(1 − |𝑧 + 𝜖|2)µ(|𝑧 + 𝜖|)|𝑅ℎ2(𝑧 + 𝜖)|

(1 −  |𝜑𝑟(𝑧 + 𝜖)|
2)1+𝜖

 

≤  𝑐′′𝑀 

+ 
(1 + 𝜖)|ℎ2(𝑧 + 𝜖)|(1 − |𝑧 + 𝜖|2)µ(|𝑧 + 𝜖|)|〈𝑅𝜑𝑟(𝑧 + 𝜖), 𝜑𝑟(𝑧 + 𝜖)〉|

(1 − |𝜑𝑟(𝑧 + 𝜖)|
2)2+𝜖

 

≤  𝑐′′′𝑀.  
        (ii) When ‖𝜑𝑟‖∞  =  1, if  

lim
|𝜑𝑟(𝑧)|→1−

 
μ(|𝑧|)ℎ2(𝑧)

µ(|𝜑𝑟(𝑧)|)
 =  0,  

then, for any 0 <  𝜀 <  1, there exists 0 <  𝛿 <  1/2 such that  

μ(|𝑧|)|ℎ2(𝑧)|

µ(|𝜑𝑟(𝑧)|)
 <  𝜀 when |𝜑𝑟(𝑧)|  >  1 −  2𝛿.  

For any sequence {𝑧𝑗}  ⊂  𝐵 satisfying lim
𝑗→∞

  |𝜑𝑟(𝑧
𝑗)|  =  1, we write  

𝐷 (𝑧𝑗  ,
1

3
)  =   {𝑧 + 𝜖 ∶ (𝑧 + 𝜖)  ∈  𝐵 and 𝑑(𝑧 + 𝜖, 𝑧𝑗)  ≤

1

3
 }.  

       As |𝜑𝑟(𝑧
𝑗)|  →  1 (𝑗 →  ∞),  then there exists positive integer 𝑁 such that 

|𝜑𝑟(𝑧
𝑗)|  >  1 −  𝛿 when 𝑗 >  𝑁. By Theorem 8.1.4 in [156], we have  

𝑑 (𝜑𝑟(𝑧 + 𝜖), 𝜑𝑟(𝑧
𝑗))  ≤  𝑑(𝑧 + 𝜖, 𝑧𝑗)  ≤

1

3
 when 𝑗 >  𝑁 and (𝑧 + 𝜖)  ∈  𝐷 (𝑧𝑗  ,

1

3
) . 

        We take 𝜖 =
2

3
 in Lemma (4.3.17), then  

|𝜑𝑟(𝑧 + 𝜖)| >  1 −
4𝛿

2 +  𝛿
 >  1 −  2𝛿 ⇒

μ(|𝑧 + 𝜖|)|ℎ2(𝑧 + 𝜖)|

µ(|𝜑𝑟(𝑧 + 𝜖)|)
 <  𝜀.        (56) 

        On the other hand, by Corollary 1.22 in [149], we have  

𝑑((𝜑𝑟)𝑧𝑗 (𝑧), 𝑧
𝑗)  =  𝑑 ((𝜑𝑟)𝑧𝑗  (𝑧), (𝜑𝑟)𝑧𝑗 (0))  =  𝑑(𝑧, 0)  =  |𝑧| ≤

1

6
 when |𝑧| ≤

1

6
 .  

If |𝑧|  ≤  1/6 and (𝑧 + 𝜖) ∈  𝐷 ((𝜑𝑟)𝑧𝑗 (𝑧),
1

6
)  , then  

𝑑(𝑧 + 𝜖, 𝑧𝑗) ≤  𝑑 (𝑧 + 𝜖, (𝜑𝑟)𝑧𝑗 (𝑧)) +  𝑑((𝜑𝑟)𝑧𝑗  (𝑧), 𝑧
𝑗  ) ≤

1

3
 ⇒  𝐷 ((𝜑𝑟)𝑧𝑗  (𝑧),

1

6
)   

⊆  𝐷 (𝑧𝑗 ,
1

3
)  .                                                                                                               (57) 

        We take 𝐺𝑗  =  𝐹𝑗  ∘  (𝜑𝑟)𝑧𝑗  , where 𝐹𝑗  (𝑧)  =  µ(|𝑧
𝑗|)𝑔2(〈𝜑𝑟(𝑧), 𝜑𝑟(𝑧

𝑗 )〉)ℎ2(𝑧), and 

𝑔2 is the function in Lemma (4.3.10).  

       By Lemma 2.24 and Lemma 2.20 in [149], Lemma 1.2 and Lemma 1.23 in [149], 

(56)–(57), Lemma 2.2 in [155] and Lemma (4.3.10), we have  
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|𝐺𝑗 (𝑧)| =  |𝐹𝑗  [𝜑𝑟(𝑧)]| ≤
𝑐′

(1 −  |(𝜑𝑟)𝑧𝑗 (𝑧)|
2)2+𝜖

∫  
𝐷((𝜑𝑟)𝑧𝑗  (𝑧),

1
6
 )

 |𝐹𝑗  (𝑧 + 𝜖)|d𝑣(𝑧 + 𝜖)

≤
𝑐′

(1 − |(𝜑𝑟)𝑧𝑗  (𝑧)|
2)2+𝜖

∫  
𝐷((𝜑𝑟)𝑧𝑗  (𝑧),

1
3
 )

 |𝐹𝑗  (𝑧 + 𝜖)|d𝑣(𝑧 + 𝜖)  

≤  𝑐′′𝜀 (1 

− |𝑧𝑗|
2
)
−(2+𝜖)

 ∫  
𝐷((𝜑𝑟)𝑧𝑗  (𝑧),

1
3
 )

 µ(|𝜑𝑟(𝑧 + 𝜖)|)𝑔
2(|𝜑𝑟(𝑧 + 𝜖)|)d𝑣(𝑧 + 𝜖)

≤  𝑐𝜀 when |𝑧|  ≤  1/6 and 𝑗 >  𝑁. 
         This shows that {𝐺𝑗  (𝑧)} converges to 0 uniformly on {𝑧 ∶  |𝑧|  ≤  1/6}. Thus, 

{|𝛻𝐺𝑗  (𝑧)|} must converge to 0 uniformly on |𝑧|  ≤  1/12. In particular,  

lim
𝑗→∞

   |𝛻𝐺𝑗  (0)| =  0.                                                                                 (58) 

        On the other hand, by Lemma 2.14 and (2.11) in [149], we have  

|𝛻𝐺𝑗  (0)|
2
 =  |𝛻𝐹𝑗  (𝑧

𝑗)|
2
 ≥  (1 − |𝑧𝑗|

2
 )
2
 |𝑅𝐹𝑗  (𝑧

𝑗)|
2
 .                                      (59) 

        (58) and (59) show that  

lim
𝑗→∞

  (1 − |𝑧𝑗|
2
 ) |𝑅𝐹𝑗  (𝑧

𝑗)|   =  0.                                                                  (60) 

        By computation, we have  

𝑅𝐹𝑗  (𝑧
𝑗)  

=  µ(|𝑧𝑗|)𝑔2
′
(|𝜑𝑟(𝑧

𝑗)|
2
 ) 〈𝑅𝜑𝑟(𝑧

𝑗), 𝜑𝑟(𝑧
𝑗)〉ℎ2(𝑧𝑗)  

+  µ(|𝑧𝑗|)𝑔2(|𝜑𝑟(𝑧
𝑗)|

2
)𝑅ℎ2(𝑧𝑗).                                                    (61) 

         By (55) and (60)–(61), and Lemma (4.3.10) and Lemma 2.2 in [155], we have  

(1 − |𝑧𝑗|
2
)μ(|𝑧𝑗|)|𝑅ℎ2(𝑧𝑗)|

µ(|𝜑𝑟(𝑧
𝑗)|)

 

=
1 − |𝑧𝑗|

2

μ(|𝜑𝑟(𝑧
𝑗)|)𝑔2(|𝜑𝑟(𝑧

𝑗)|2)
µ(|𝑧𝑗|)𝑔2 (|𝜑𝑟(𝑧

𝑗)|
2
 ) | 𝑅ℎ2(𝑧𝑗  )|  

≤  𝑐 (1 − |𝑧𝑗|
2
 ) |𝑅𝐹𝑗  (𝑧

𝑗)|  +
𝑐′μ(|𝑧𝑗|)|ℎ2(𝑧𝑗)|

µ(|𝜑𝑟(𝑧
𝑗)|)

 

⇒ lim
𝑗→∞

  (1 − |𝑧𝑗|
2
 ) µ(|𝑧𝑗|)𝑅ℎ2(𝑧𝑗) µ(|𝜑𝑟(𝑧

𝑗)|)  =  0. 

        This means that  

lim
|𝜑𝑟(𝑧)|→1−

 
(1 − |𝑧|2 )μ(|𝑧|)𝑅ℎ2(𝑧)

µ(|𝜑𝑟(𝑧)|)
 =  0.  

        The proof is completed.  

Theorem (4.3.19)[245]: Suppose 𝜖 ≥  0, and µ is a normal function on [0, 1), 𝜈(1 − 𝜖)  =
 (2𝜖 − 𝜖2 )2µ(1 − 𝜖) for 0 < 𝜖 < 1. If 𝜑𝑟 is a holomorphic self-map of B and 𝜓𝑟  ∈
 𝐻(𝐵), then  

        (i) 𝑇𝜑𝑟,𝜓𝑟  is bounded from 𝐴1+𝜖(µ) to 𝛽𝜈 if and only if  

𝑀0  = sup
𝑧∈𝐵

  {|𝜓𝑟(𝑧)| (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
}  <  ∞;        (62)  
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        (ii) 𝑇𝜑𝑟,𝜓𝑟  is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 if and only if 𝜓𝑟  ∈  𝛽𝜈 when ‖𝜑𝑟‖∞  <

 1;  
        (iii) 𝑇𝜑𝑟,𝜓𝑟  is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 if and only if 𝜓𝑟  ∈  𝛽𝜈 and  

lim
|𝜑𝑟(𝑧)|→1−

  (
1 −  |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
 =  0                     (63) 

when ‖𝜑𝑟‖∞  =  1.  
Proof. (i) For any 𝑓2  ∈  𝐴1+𝜖  (µ), by Lemma 2.2 in [2], we have  

|𝑓2(𝑧)| ≤
𝑐‖𝑓2‖𝐴1+𝜖(µ)

(1 − |𝑧|2) µ(|𝑧|) 
(𝑧 ∈  𝐵).                   (64)  

        If (62) holds, then we take 𝜖 = 1, ℎ2  =  𝑇𝜑𝑟,𝜓𝑟(𝑓
2) and the normal function 

(2𝜖 − 𝜖2 )  µ(1 − 𝜖) in Theorem (4.3.11). By Lemma 2.2 in [155] and (64), for any 𝑧 ∈
 𝐵, we have  

(1 − |𝑧|2 )2µ(|𝑧|)|𝑅[𝑇𝜑𝑟,𝜓𝑟(𝑓
2)](𝑧)|  

≤  𝑐′ sup
𝑧+𝜖∈𝐵

  (1 − |𝑧 + 𝜖|2)  µ(|𝑧 + 𝜖|)|𝑇𝜑𝑟,𝜓𝑟  (𝑓
2)(𝑧 + 𝜖)|  

≤  𝑐′′ sup
𝑧+𝜖∈𝐵

  {
|𝜓𝑟(𝑧 + 𝜖)|µ(|𝑧 + 𝜖|)

µ(|𝜑𝑟(𝑧 + 𝜖)|)
(
1 − |𝑧 + 𝜖|2

1 − |𝜑𝑟(𝑧 + 𝜖)|
2
)

 

 } ‖𝑓2‖𝐴1+𝜖(µ) 

≤ 𝑐′′𝑀0‖𝑓
2‖𝐴1+𝜖(µ).                                                                                          (65)  

        By (64)–(65) and Lemma (4.3.6), then 𝑇𝜑𝑟,𝜓𝑟 is bounded from 𝐴1+𝜖(µ) to 𝛽𝜈. 

Conversely, if 𝑇𝜑𝑟,𝜓𝑟  is bounded from 𝐴1+𝜖  (µ) to 𝛽𝜈, then, for any (𝑧 + 𝜖)  ∈  𝐵, we take  

𝑓𝑧+𝜖
2 (𝑧) =

(1 − |𝜑𝑟(𝑧 + 𝜖)|
2 )
3
2
+2𝜖

µ(|𝜑𝑟(𝑧 + 𝜖)|)(1 − 〈𝑧, 𝜑𝑟(𝑧 + 𝜖)〉)
5
2
+2𝜖
 . 

 By the definition of normal function, we have  

µ1+𝜖  (|𝑧|) ≤
μ1+𝜖(|𝜑𝑟(𝑧 + 𝜖)|)(1 − |𝑧|

2 )
1
2
+
5
2
𝜖+2𝜖2

(1 − |𝜑𝑟(𝑧 + 𝜖)|
2)
1
2
+
5
2
𝜖+2𝜖2

 

+
μ1+𝜖(|𝜑𝑟(𝑧 + 𝜖)|)(1 −  |𝑧|

2)
1
2
+
3
2
𝜖+𝜖2

(1 − |𝜑𝑟(𝑧 + 𝜖)|
2)
1
2
+
3
2
𝜖+𝜖2

 .                                  (66) 

        By Proposition 1.4.10 in [156] and (66), we obtain  

‖𝑓𝑧+𝜖
2 ‖𝐴1+𝜖(µ)

1+𝜖  

=
(1 −  |𝜑𝑟(𝑧 + 𝜖)|

2 )
3
2
+
7
2
𝜖+2𝜖2

µ1+𝜖(|𝜑𝑟(𝑧 + 𝜖)|)
∫  
𝐵

μ1+𝜖(|𝑧|)

(1 − |𝑧|2)|1 − 〈𝑧, 𝜑𝑟(𝑧 + 𝜖)〉|
5
2
+
9
2
𝜖+2𝜖2

d𝑣(𝑧)

≤  (1 −  |𝜑𝑟(𝑧 + 𝜖)|
2 )1+𝜖∫ 

𝐵

(1 − |𝑧|2)−
1
2
+
5
2
𝜖+2𝜖2

|1 − 〈𝑧, 𝜑𝑟(𝑧 + 𝜖)〉|
5
2
+
9
2
𝜖+2𝜖2

d𝑣(𝑧)

+ (1 − |𝜑𝑟(𝑧 + 𝜖)|
2 )
3
2
+
7
2
𝜖+2𝜖2∫ 

𝐵

(1 − |𝑧|2)−
1
2
+
5
2
𝜖+2𝜖2

|1 − 〈𝑧, 𝜑𝑟(𝑧 + 𝜖)〉|
5
2
+
9
2
𝜖+2𝜖2

d𝑣(𝑧) ≤  𝑐.  

On the other hand, by Lemma 2.2 in [2] and Lemma (4.3.6), taking 𝜖 = 0, we have  
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|𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑧+𝜖
2 )(𝑧 + 𝜖)|  ≤  𝑐 (1 + ∫  

|𝑧+𝜖|

0

1

𝜈(1 + 𝜖)
 d(1 + 𝜖)) ‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑧+𝜖

2 )‖
(𝜖−1)𝜈

 

⇒
|𝜓𝑟(𝑧 + 𝜖)|μ(|𝑧 + 𝜖|)

µ(|𝜑𝑟(𝑧 + 𝜖)|)
  (

1 − |𝑧 + 𝜖|2

1 − |𝜑𝑟(𝑧 + 𝜖)|
2
)

 

≤ 𝑐′ (1 − |𝑧 + 𝜖|2 )  µ(|𝑧 + 𝜖|) (1 

+ ∫  
|𝑧+𝜖|

0

1

𝜈(1 + 𝜖)
 d(1 + 𝜖)) ‖𝑇𝜑𝑟,𝜓𝑟‖

≤  𝑐′µ(0)‖𝑇𝜑𝑟,𝜓𝑟‖ 

+ 𝑐′ ‖𝑇𝜑𝑟,𝜓𝑟‖(1 − |𝑧 + 𝜖|
2)  ∫  

|𝑧+𝜖|

0

μ(|𝑧 + 𝜖|)

(2𝜖 − 𝜖2)2μ(1 + 𝜖)
d(1 + 𝜖) 

≤ 𝑐′µ(0)‖𝑇𝜑𝑟,𝜓𝑟‖ + 𝑐
′ ‖𝑇𝜑𝑟,𝜓𝑟‖(1 − |𝑧 + 𝜖|

2)  + (
1

2

+ 𝜖)∫  
|𝑧+𝜖|

0

1

(2𝜖 − 𝜖2)
5
2
+𝜖
d(1 + 𝜖)  

+ 𝑐′‖𝑇𝜑𝑟,𝜓𝑟‖(1 − |𝑧 + 𝜖|
2 )
3
2
+2𝜖  ∫  

|𝑧+𝜖|

0

1

(2𝜖 − 𝜖2)
5
2
+2𝜖
d(1

+ 𝜖)  ≤  𝑐′µ(0)‖𝑇𝜑𝑟,𝜓𝑟‖ + 𝑐
′′‖𝑇𝜑𝑟,𝜓𝑟‖. 

      This shows that (62) holds.  

(ii)–(iii) If 𝑇𝜑𝑟,𝜓𝑟  is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 , then 𝜓𝑟  ∈  𝛽𝜈 by taking 

𝑓2(𝑧)  =  1. When ‖𝜑𝑟‖∞  =  1, we prove that (63) holds.  

Let {𝑧𝑗}  ⊂  𝐵 be any sequence satisfying |𝜑𝑟(𝑧
𝑗  )|  →  1 (𝑗 →  ∞). We take  

𝑓𝑗
2 (𝑧) =

(1 − |𝜑𝑟(𝑧
𝑗)|

2
 )

3
2
+2𝜖

µ(|𝜑𝑟(𝑧
𝑗)|)(1 − 〈𝑧, 𝜑𝑟(𝑧

𝑗)〉)
5
2
+2𝜖
 . 

       Then, ‖𝑓𝑗
2‖
𝐴1+𝜖(µ)

 ≤  𝑐 and {𝑓𝑗
2(𝑧)} converges to 0 uniformly on any compact subset 

of B. This means that  

lim
𝑗→∞

  ‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)‖

𝛽𝜈
 =  0. 

        On the other hand, we have  

|𝑇𝜑𝑟,𝜓𝑟(𝑓𝑗
2)(𝑧𝑗)| ≤  𝑐 (1 + ∫  

|𝑧𝑗|

0

1

𝜈(1 + 𝜖)
d(1 + 𝜖)) ‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗

2)‖
𝛽𝜈
 

⇒
|𝜓𝑟(𝑧

𝑗)|μ(|𝑧𝑗|)

µ(|𝜑𝑟(𝑧
𝑗)|)

  (
1 − |𝑧𝑗|

2

1 − |𝜑𝑟(𝑧
𝑗)|2

)

 

 

≤  𝑐 (1 −  |𝑧𝑗|
2
 )
 

 µ(|𝑧𝑗|) (1 + ∫  
|𝑧𝑗|

0

1

𝜈(1 + 𝜖)
 d(1 + 𝜖) ) ‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗

2)‖
𝛽𝜈
 

≤  𝑐µ(0)‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)‖

𝛽𝜈
 +  𝑐′ ‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗

2)‖
𝛽𝜈
 . 
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      This shows that  

lim
𝑗→∞

  
|𝜓𝑟(𝑧

𝑗)|μ(|𝑧𝑗|)

µ(|𝜑𝑟(𝑧
𝑗)|)

  (
1 − |𝑧𝑗|

2

1 − |𝜑𝑟(𝑧
𝑗)|2

)

 

=  0. 

      This means that (63) holds.  

       Conversely, for all 𝑙 ∈  {1, 2,· · · , 1 + 𝜖}, we have (𝜑𝑟)𝑙  ∈  𝐻
∞  ⊂  𝜖 − 1. This means 

that (1 − |𝑧|2 )|𝑅(𝜑𝑟)𝑙(𝑧)|  ≤  ‖(𝜑𝑟)𝑙‖𝜖−1 holds for all 𝑧 ∈  𝐵.  
      Let {𝑓𝑗

2(𝑧)} be any sequence which converges to 0 uniformly on any compact subset 

of 𝐵 and ‖𝑓𝑗
2‖
𝐴1+𝜖(µ)

 ≤  1. When ‖𝜑𝑟‖∞  <  1, we know that {|𝛻𝑓𝑗
2(𝑧 + 𝜖)|} converges 

to 0 uniformly on {𝑧 + 𝜖 ∶  |𝑧 + 𝜖|  ≤ ‖𝜑𝑟‖∞} and {𝑓𝑗
2(𝜑𝑟(0))} converges to 0. If 𝜓𝑟 ∈

 𝛽𝜈 , by Lemma (4.3.6), Lemma 2.2 in [2], then  

‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)‖

𝛽𝜈
   ≤  |𝜓𝑟(0)| ·  |𝑓𝑗

2[𝜑𝑟(0)]|  + 𝑐
′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝑅[𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)](𝑧)|  

≤  |𝜓𝑟(0)|  ·  |𝑓𝑗
2[𝜑𝑟(0)]|  +  𝑐

′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝑅𝜓𝑟(𝑧)|   ·  |𝑓𝑗
2 [𝜑𝑟(𝑧)]|  

+  𝑐′ sup
𝑧∈𝐵

   𝜈(|𝑧|)|𝜓𝑟(𝑧)|  ·  |〈𝛻𝑓𝑗
2 [𝜑𝑟(𝑧)], 𝑅𝜑𝑟(𝑧)〉|  

≤  |𝜓𝑟(0)|  ·  |𝑓𝑗
2[𝜑𝑟(0)]|  +  𝑐

′ ‖𝜓𝑟‖𝛽𝜈 sup
|𝑧+𝜖|≤‖𝜑𝑟‖∞

  |𝑓𝑗
2 (𝑧 + 𝜖)|  

+ (𝑐′′µ(0) + 𝑐′′′)‖𝜓𝑟‖𝛽𝜈  (∑  

1+𝜖

𝑙=1

‖(𝜑𝑟)𝑙‖𝛽) sup
|𝑧+𝜖|≤‖𝜑𝑟‖∞

  |𝛻𝑓𝑗
2 (𝑧 + 𝜖)|  

→  0 (𝑗 →  ∞).  
       When ‖𝜑𝑟‖∞  =  1, if (63) holds, then we take the normal function (2𝜖 − 𝜖2 )  µ(1 −
𝜖) and ℎ2  =  𝜓𝑟 in Theorem (4.3.18). This means that  

lim
|𝜑𝑟(𝑧)|→1

−
  |𝑅𝜓𝑟(𝑧)| 

(1 − |𝑧|2)2

(1 − |𝜑𝑟(𝑧)|
2) 

μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
 =  0.  

       Therefore, for any 𝜀 >  0, there exists 0 <  𝛿 <  1 such that  

|𝜓𝑟(𝑧)| (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
< 𝜀 and 

|𝑅𝜓𝑟(𝑧)|(1 − |𝑧|
2)2

(1 − |𝜑𝑟(𝑧)|
2) 

μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
< 𝜀  (67) 

 when |𝜑𝑟(𝑧)|  >  𝛿. As {𝑓𝑗
2(𝑧)} converges to 0 uniformly on any compact subset of 𝐵, 

then {|𝛻𝑓𝑗
2(𝑧 + 𝜖)|} converges to 0 uniformly on {𝑧 + 𝜖 ∶  |𝑧 + 𝜖| ≤  𝛿} and 

{𝑓𝑗
2(𝜑𝑟(0))} converges to 0. Therefore, there exists positive integer 𝑁 such that  

sup
|𝑧+𝜖|≤𝛿

  |𝑓𝑗
2(𝑧 + 𝜖)| <  𝜀, sup

|𝑧+𝜖|≤𝛿
 |𝛻𝑓𝑗

2 (𝑧 + 𝜖)| <  𝜀,

and |𝑓𝑗
2(𝜑𝑟(0))|  <  𝜀 when 𝑗 >  𝑁.  

       When |𝜑𝑟(𝑧)|  ≤  𝛿 and 𝑗 >  𝑁, we have  

𝜈(|𝑧|)|𝑅[𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)](𝑧)| 

≤ ‖𝜓𝑟‖𝛽𝜈 sup
|𝑧+𝜖|≤𝛿

  |𝑓𝑗
2 (𝑧 + 𝜖)|

+ (𝑐′µ(0) + 𝑐′′)‖𝜓𝑟‖𝛽𝜈  (∑  

1+𝜖

𝑙=1 

‖𝜑𝑟𝑙‖𝛽
) sup
|𝑧+𝜖|≤𝛿

  |𝛻𝑓𝑗
2 (𝑧 + 𝜖)|  <  𝑐𝜀. (68) 

       If 𝑗 >  𝑁, by Lemma (4.3.6)–(4.3.16), (64), (67)–(68), and 𝐻𝜑𝑟(𝑧) [𝑅𝜑𝑟(𝑧)]  ≤

 𝑐𝐻𝑧(𝑧), then  
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‖𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2 )‖

𝛽𝜈
 

≤  |𝜓𝑟(0)|  ·  |𝑓𝑗
2 (𝜑𝑟(0))|  

+ 𝑐′  ( sup
|𝜑𝑟(𝑧)|>𝛿

  +  sup
|𝜑𝑟(𝑧)|≤𝛿

 ) 𝜈(|𝑧|)|𝑅[𝑇𝜑𝑟,𝜓𝑟  (𝑓𝑗
2)](𝑧)|  

< 𝑐′′𝜀 

+  𝑐′𝜀 sup
|𝜑𝑟(𝑧)|>𝛿

(1 − |𝜑𝑟(𝑧)|
2 )2 µ(|𝜑𝑟(𝑧)|) |〈𝛻𝑓𝑗

2 [𝜑𝑟(𝑧)], 𝑅𝜑𝑟(𝑧)〉| (1 −  |𝑧|
2 )

√(1 − |𝜑𝑟(𝑧)|
2)|𝑅𝜑𝑟(𝑧)|

2  +  |〈𝑅𝜑𝑟(𝑧), 𝜑𝑟(𝑧)〉|
2

  √ 𝐻𝜑𝑟(𝑧) [𝑅𝜑𝑟(𝑧)] 

< 𝑐′′𝜀 + 𝑐′′′𝜀‖𝑓𝑗
2‖
𝛽𝜈
 ≤  𝑐′′𝜀 +  𝑐𝜀‖𝑓𝑗

2‖
𝐴1+𝜖(µ)

≤ 𝑐′′𝜀 +  𝑐𝜀.  

       This shows that  

lim
𝑗→∞

  ‖𝑇𝜑𝑟,𝜓𝑟(𝑓𝑗
2)‖

𝛽𝜈
 =  0. 

       This means that 𝑇𝜑𝑟,𝜓𝑟  is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈. The proof is completed. 

Corollary (4.3.20)[245]: Suppose 𝜖 ≥ 0, and µ is a normal function on [0, 1), 𝜈(1 − 𝜖)  =
 (2𝜖 − 𝜖2 )2µ(1 − 𝜖) for 0 < 𝜖 < 1. If 𝜑𝑟   is a automorphism of 𝐵 and 𝜓𝑟  ∈  𝐻(𝐵), then  

       (i) 𝑇𝜑𝑟,𝜓𝑟 is bounded from 𝐴1+𝜖  (µ) to 𝛽𝜈 if and only if 𝜓𝑟  ∈  𝐻
∞;  

       (ii) 𝑇𝜑𝑟,𝜓𝑟  is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 if and only if 𝜓𝑟  ≡  0.  

Proof. By Lemma 2.2 in [155], Lemma (4.3.9), there exists constant 𝑐 >  0 such that  

1

𝑐
 ≤ {

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
}

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
 ≤  𝑐.                                                          (69) 

        On the other hand, if 𝜑𝑟 is a automorphism of 𝐵, then |𝜑𝑟(𝑧)|  →  1
− if and only if 

|𝑧|  →  1−. Therefore, by (69), Theorem (4.3.19), and the Maximum Modulus Principle, 

we can obtain the result.  

Corollary (4.3.21)[245]: Suppose 𝜖 ≥ 0, and µ is a normal function on [0, 1), 𝜈(1 − 𝜖)  =
 (2𝜖 − 𝜖2)2µ(1 − 𝜖) for 0 < 𝜖 < 1. If 𝜑𝑟 is a holomorphic self-map of 𝐵, then  

       (i) 𝐶𝜑𝑟 is always bounded from 𝐴1+𝜖  (µ) to 𝛽𝜈 ;  

       (ii) 𝐶𝜑𝑟 is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 if and only if  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
= 0.                                                                        (70) 

Proof. (i) By Lemma 2.2 in [155], we have  

(
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
≤ (

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

3
2
+𝜖

+ (
1 − |𝑧|2

1 −  |𝜑𝑟(𝑧)|
2
)

3
2
+2𝜖

≤ (
1 + |𝜑𝑟(0)|

1 − |𝜑𝑟(0)|
)

3
2
+𝜖

+ (
1 + |𝜑𝑟(0)|

1 − |𝜑𝑟(0)|
)

3
2
+2𝜖

. 

        By Theorem (4.3.19), 𝐶𝜑𝑟 is always bounded from 𝐴1+𝜖  (µ) to 𝛽𝜈. 

        (ii) If (70) holds and ‖𝜑𝑟‖∞  =  1, then we have   

(
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)

≤ (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

3
2
+𝜖

+ (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

3
2
+2𝜖

 (|𝜑𝑟(𝑧)| →  1
−).  

        By Theorem (4.3.19), 𝐶𝜑𝑟 is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈.  
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        Conversely, if 𝐶𝜑𝑟 is compact from 𝐴1+𝜖  (µ) to 𝛽𝜈 and ‖𝜑𝑟‖∞  =  1, then, by 

Theorem (4.3.19), we have  

0 ←  (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

 
μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)
≥ (

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

3
2
+2𝜖

{1 + (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

𝜖

}

−1

≥ (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

3
2
+2𝜖

{1 + (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

𝜖

}

−1

(|𝜑𝑟(𝑧)| →  1
−). 

        This shows that  

lim
|𝜑𝑟(𝑧)|→1

−
  
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 =  0. 

          Therefore, for any 𝜀 >  0, there exists 0 < δ < 1 such that 
1−|𝑧|2

1−|𝜑𝑟(𝑧)|
2
 <  𝜀 when 

|𝜑𝑟(𝑧)|  >  𝛿. On the other hand,  

lim
|𝑧|→1−

  
1 − |𝑧|2

1 − 𝛿2
 =  0, 

then there exists 0 <  𝛿0  <  1 such that 
1 − |𝑧|2

1 −𝛿2
 <  𝜀 when |𝑧|  >  𝛿0. When |𝑧|  >  𝛿0, if 

|𝜑𝑟(𝑧)|  ≤  𝛿, then  

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 ≤  

1 − |𝑧|2

1 − 𝛿2
 <  𝜀;  if |𝜑𝑟(𝑧)|  >  𝛿, then 

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 <  𝜀. 

 This shows that  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
=  0.  

        The proof is completed.  

Theorem (4.3.22)[245]: Let µ be normal on [0, 1), and 𝜑𝑟 be a holomorphic self- map of 

𝐵. If 𝜖 > 0, then 𝐶𝜑𝑟 is compact on 𝛽µ if and only if  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
=  0. 

Proof. First, suppose that 𝐶𝜑𝑟 is compact on 𝛽µ. If ‖𝜑𝑟‖∞  <  1, then we have  

lim
|𝑧|→1−

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
=  0. 

        When ‖𝜑𝑟‖∞  =  1, let {𝑧𝑗}  ⊂  𝐵 be any sequence satisfying  

lim
𝑗→∞

  |𝜑𝑟(𝑧
𝑗)|  =  1. 

       We take 𝑓𝑗
2 (𝑧)  =  (1 − |𝜑𝑟(𝑧

𝑗)|
2
) 𝑔2(〈𝑧, 𝜑𝑟(𝑧

𝑗  )〉), where 𝑔2 is the function in 

Lemma (4.3.10). By Lemma (4.3.10), we have  

µ(|𝑧|)|𝛻𝑓𝑗
2 (𝑧)|  =  µ(|𝑧|) (1 − |𝜑𝑟(𝑧

𝑗)|
2
 ) |𝑔2

′
 (〈𝑧, 𝜑𝑟(𝑧

𝑗)〉) 𝜑𝑟(𝑧
𝑗)|  

≤  2µ(|〈𝑧, 𝜑𝑟(𝑧
𝑗)〉|)(1 − |〈𝑧, 𝜑𝑟(𝑧

𝑗)〉|)𝑔2
′
 (|〈𝑧, 𝜑𝑟(𝑧

𝑗)〉|)   ≤  𝑐. 

        Therefore, ‖𝑓𝑗
2‖
𝛽µ
 ≤  1 +  𝑐 and {𝑓𝑗

2(𝑧)} converges to 0 uniformly on any compact 

subset of B. This means that  

lim
𝑗→∞

  ‖𝐶𝜑𝑟(𝑓𝑗
2)‖

𝛽µ
 =  0. 

       On the other hand, by Lemma (4.3.10), Lemma (4.3.6), Lemma 2.2 in [2], and Lemma 

2.2 in [155], we have  
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0 <  𝑐 ≤  µ (|𝜑𝑟(𝑧
𝑗)|

2
 ) 𝑔2 (|𝜑𝑟(𝑧

𝑗)|
2
)  =  

µ (|𝜑𝑟(𝑧
𝑗)|

2
 ) |𝐶𝜑𝑟(𝑓𝑗

2 )(𝑧𝑗)|

1 − |𝜑𝑟(𝑧
𝑗)|2

 

≤  
𝑐′µ (|𝜑𝑟(𝑧

𝑗)|
2
 )

1 − |𝜑𝑟(𝑧
𝑗)|2

(1 + ∫  
|𝑧𝑗|

0

1

µ(1 + 𝜖)
 d(1 + 𝜖) )  ‖𝐶𝜑𝑟  (𝑓𝑗

2)‖
𝛽µ

 

≤ {𝑐′µ(0) (1 − |𝜑𝑟(𝑧
𝑗  )|

4
 )
𝜖

 +  
𝑐′′ (1 − |𝜑𝑟(𝑧

𝑗)|
2
)
𝜖

(1 − |𝑧𝑗|2)𝜖
  

+  
𝑐′′ (1 − |𝜑𝑟(𝑧

𝑗)|
2
)
2𝜖

(1 −  |𝑧𝑗|2)2𝜖
}‖𝐶𝜑𝑟  (𝑓𝑗

2)‖
𝛽µ
 ⇒  (

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

2𝜖

 

≤
1

𝑐
{
𝑐′′′ (1 − |𝜑𝑟(𝑧

𝑗)|
2
)
2𝜖

(1 − |𝜑𝑟(𝑧
𝑗)|2)𝜖

  +  
𝑐′′′ (1 − |𝜑𝑟(𝑧

𝑗)|
2
)
𝜖

(1 −  |𝜑𝑟(𝑧
𝑗)|2)𝜖

+ 𝑐′′} ‖𝐶𝜑𝑟  (𝑓𝑗
2)‖

𝛽µ
  

≤
1

𝑐
 { 
𝑐′′′(1 + |𝜑𝑟(0)|)

𝜖

(1 − |𝜑𝑟(0)|)
𝜖
+ 
𝑐′′(1 + |𝜑𝑟(0)|)

𝜖

(1 −  |𝜑𝑟(0)|)
𝜖
+ 𝑐′′} ‖𝐶𝜑𝑟  (𝑓𝑗

2)‖
𝛽µ
 . 

 By 𝜖 > 1, this shows that  

lim
𝑗→∞ 1

  
1 −  |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 =  0 ⇒ lim

|𝜑𝑟(𝑧)|→1
−
  

1 −  |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 =  0. 

        By Proof of Corollary (4.3.20), we have lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
 =  0.  

       Conversely, first, for all 𝑙 ∈  {1,· · · , 1 + 𝜖}, we have (𝜑𝑟)𝑙  ∈  𝛽µ when 𝜖 > 0. If  

lim
|𝑧|→1−

  
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
=  0, 

then for any 0 <  𝜀 <  1, we have 

1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
<  𝜀 when 1 − 𝜖 <  |𝑧|  <  1.                         (71)  

        Let {𝑓𝑗
2(𝑧)} be any sequence that converges to 0 uniformly on any compact subset 

of 𝐵 and ‖𝑓𝑗
2‖
𝛽µ
 ≤  1. Let 𝑟1  =  max{|𝜑𝑟(𝑧)|: |𝑧| ≤  1 − 𝜖}. Then, there exists positive 

integer 𝑁 such that  

|𝑓𝑗
2 [𝜑𝑟(0)]| <  𝜀 and sup

|𝑧+𝜖|≤𝑟1

  |𝛻𝑓𝑗
2 (𝑧 + 𝜖)|  <  𝜀 when 𝑗 >  𝑁.       (72) 

        Therefore, by Lemma (4.3.6) and 𝐻𝜑𝑟(𝑧) [𝑅𝜑𝑟(𝑧)]  ≤  𝑐𝐻𝑧(𝑧), (71)–(72), Lemma 2.2 

in [155], as long as 𝑗 >  𝑁, we have  

‖𝐶𝜑𝑟  (𝑓𝑗
2)‖

𝛽µ
 ≤  𝑐 {|𝑓𝑗

2 [𝜑𝑟(0)]|  + sup
𝑧∈𝐵

   µ(|𝑧|)|〈𝛻𝑓𝑗
2 [𝜑𝑟(𝑧)], 𝑅𝜑𝑟  (𝑧)〉|}  

≤  𝑐|𝑓𝑗
2 [𝜑𝑟(0)]|  

+  𝑐 

{
 

 

( ∑  

1+𝜖

𝑙=1

 ‖(𝜑𝑟)𝑙‖𝛽µ) sup
|𝑧+𝜖|≤𝑟1

  |𝛻𝑓𝑗
2 (𝑧 + 𝜖)|

+ ‖𝑓𝑗
2‖
µ,3

sup
1−𝜖<|𝑧|<1

 

μ(|𝑧|)(1 − |𝜑𝑟(𝑧)|
2)√ 𝐻𝜑𝑟(𝑧) [𝑅𝜑𝑟(𝑧)]

μ(|𝜑𝑟(𝑧)|)

}
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≤ 𝑐′𝜀 + 𝑐′′ sup
1−𝜖<|𝑧|<1

μ(|𝑧|)

µ(|𝜑𝑟(𝑧)|)

1 − |𝜑𝑟(𝑧)|
2

1 − |𝑧|2

≤ 𝑐′𝜀 + 𝑐′′ sup
1−𝜖<|𝑧|<1

{(
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

𝜖

+ (
1 − |𝑧|2

1 − |𝜑𝑟(𝑧)|
2
)

2𝜖

}

<  𝑐′𝜀 +  2𝑐′′𝜀𝜖 . 
        This shows that  

lim
𝑗→∞

  ‖𝐶𝜑𝑟(𝑓𝑗
2)‖

𝛽µ
 =  0. 

       This implies that 𝐶𝜑𝑟 is compact on 𝛽µ.  

        The proof is completed.  
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Chapter 5 

Isometries Between Spaces and Maeda–Ogasawara Spaces 

We show that any linear isometry 𝑇 from Lip(𝑋) into Lip(𝑌) satisfying that 

𝐿(𝑇1𝑋) < 1 is essentially a weighted composition operator 𝑇𝑓(𝑦) = 𝜏(𝑦)𝑓(𝜙(𝑦)) (𝑓 ∈
Lip(𝑋), 𝑦 ∈ 𝑌0), where 𝑌0 is a closed subset of 𝑌, 𝜙 is a Lipschitz map from 𝑌0 onto 𝑋 with 

𝐿(𝜙) ≤ max{1, diam(𝑋)} and τ is a function in Lip(𝑌) with ‖𝜏‖ = 1 and |𝜏(𝑦)|  =  1 for 

all 𝑦 ∈ 𝑌0. We improve this representation in the case of onto linear isometries and we 

classify codimension 1 linear isometries in two types. We state a Lipschitz version of a 

theorem due to Cambern concerning into linear isometries between spaces of vector-

valued continuous functions and deduce a Lipschitz version of a celebrated theorem due to 

Jerison concerning onto linear isometries between such space. We show that a generalised 

statement holds for Maeda–Ogasawara spaces and refine these results in case the 

homomorphism preserves order limits. 

Section (5.1): Lipschitz Functions 

       A map 𝑓 ∶  𝑋 →  𝑌 between metric spaces is said to be a Lipschitz map if there exists 

a constant 𝑘 such that 𝑑(𝑓(𝑥), 𝑓(𝑧))  ≤  𝑘𝑑(𝑥, 𝑧) for all 𝑥, 𝑧 ∈  𝑋. We shall use the letter 

𝑑 to denote the distance in any metric space.  

       Let 𝑋 be a compact metric space and let 𝕂 be either ℝ or ℂ. The space Lip(X) is the 

Banach space of all Lipschitz functions 𝑓 from 𝑋 into 𝕂, with the norm ‖𝑓‖  =
 max {‖𝑓‖∞ , 𝐿(𝑓)} , where ‖𝑓‖∞  =  sup {|𝑓(𝑥)|: 𝑥 ∈  𝑋} is the supremum norm of 𝑓 

and 𝐿(𝑓)  =  sup {|𝑓(𝑥)  −  𝑓(𝑦)| /𝑑(𝑥, 𝑦) ∶  𝑥, 𝑦 ∈  𝑋, 𝑥 ≠  𝑦} is the Lipschitz constant 

of 𝑓.  

       The study of linear isometries of spaces Lip(𝑋) goes back to the sixties when Roy 

[46] described the surjective linear isometries 𝑇 of Lip(𝑋) in the case that 𝑋 is connected 

and its diameter diam(𝑋) is at most 1. Namely, he proved that such an isometry 𝑇 has the 

canonical form:  

𝑇𝑓(𝑦)  =  𝜏𝑓(𝜑(𝑦)) (𝑓 ∈  Lip(𝑋), 𝑦 ∈  𝑌),  

where 𝜑 is an isometry from 𝑌 onto X and 𝜏 is a scalar of 𝑆𝕂, the set of all unimodular 

elements of 𝕂. Novinger [182] extended Roy’s result to the case of linear isometries of 

Lip(𝑋) onto Lip(𝑌) when 𝑋 and 𝑌 are connected with diameter at most 1. Vasavada’s 

result in [47] generalizes the aforementioned results since it states that if 𝑋 and 𝑌 are 𝛽-

connected for some 𝛽 <  1 with diameter at most 2, then any linear isometry from Lip(𝑋) 
onto Lip(𝑌) arises from an isometry from 𝑌 onto 𝑋 as in the aforementioned canonical 

form. Let us recall that a metric space 𝑋 is 𝛽-connected if it cannot be decomposed into 

two nonempty subsets 𝐴 and 𝐵 such that 𝑑(𝑎, 𝑏)  ≥  𝛽 for every 𝑎 ∈  𝐴 and 𝑏 ∈  𝐵.  
The surjective isometries of Lip(𝑋) have a valuable literature. However little has 

been published about the into isometries of Lip(𝑋), that is not necessarily surjective. This 

fact is also meaningful if we compare it to the formidable literature existing about into 

isometries in the context of the Banach spaces 𝒞(𝑋) of scalar-valued continuous functions 

on a compact Hausdorff space 𝑋 with the supremum norm.  

The classical Banach–Stone theorem states that if 𝑇 is a linear isometry from 𝒞(𝑋) 
onto 𝒞(𝑌 ), then there exists a homeomorphism from 𝑌 onto 𝑋 and a continuous function τ 

from 𝑌 into 𝑆𝕂 such that  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦))(𝑓 ∈  𝐶(𝑋), 𝑦 ∈  𝑌 ). 
An important generalization of this theorem was given by Holsztyński in [60] by 

considering into isometries. He proved that if 𝑇 is a linear isometry from 𝒞(𝑋) into 𝒞(𝑌 ), 
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then there exists a closed subset 𝑌0 of 𝑌, a continuous map 𝜑 from 𝑌0 onto 𝑋 and a 

function 𝜏 ∈ 𝒞(𝑌) with ‖𝜏‖∞  =  1 and |𝜏 (𝑦)| =  1 for all 𝑦 ∈  𝑌0 such that  

𝑇𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)) (𝑓 ∈ 𝒞(𝑋), 𝑦 ∈  𝑌0). 

This result has been extended in many directions. We can cite, for example, the 

generalizations obtained by Cambern [176] for spaces of vector-valued continuous 

functions, by Moreno and Rodríguez [181] with a bilinear version, by Jeang and Wong for 

spaces of scalar-valued continuous functions vanishing at infinity [57], by Araujo and Font 

for certain subspaces of scalar-valued continuous functions [174] and by many other 

authors. The object is to show that Holsztyński’s theorem has a natural formulation in the 

context of the spaces Lip(𝑋). We focus our attention on linear isometries 𝑇 from Lip(𝑋) 
into Lip(𝑌 ) for which 𝑇1𝑋 is a contraction, where 1𝑋 denotes the function constantly 

equal 1 on 𝑋. We recall that a Lipschitz function 𝑓 is a contraction if 𝐿(𝑓)  <  1.  
The main theorem states that any linear isometry 𝑇 from Lip(𝑋) into Lip(𝑌 ) for 

which 𝑇1𝑋 is a contraction, is essentially a weighted composition operator  

𝑇𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦))(𝑓 ∈  Lip(𝑋), 𝑦 ∈  𝑌0), 

where 𝑌0 is a closed subset of 𝑌, 𝜑 is a Lipschitz map from 𝑌0 onto 𝑋 with 𝐿(𝜑)  ≤
 max{1, diam(𝑋)} and τ is a function of Lip(𝑌 ) with ‖𝜏‖  =  1 and |𝜏 (𝑦)|  =  1 for all 

𝑦 ∈  𝑌0. Namely, the weight function τ is 𝑇1𝑋. Moreover, we show (Corollary (5.1.5)) that 

𝑌0  is the largest subset of 𝑌 on which we can define a Lipschitz map 𝜑 with values in 𝑋 

satisfying the equality above.  

      We use extreme point techniques to prove our theorem as they do in [180], [182], [46] 

and [47]. This method of proof is still used to obtain similar results [173] and seems to 

date from the known proof of the Banach–Stone theorem given by Dunford and Schwartz 

in [33].  

The theorem is not true when 𝐿(𝑇1𝑋)  =  1 (see [184]). We must point out also that, 

the connectedness condition imposed on the metric spaces is used to prove that 𝑇1𝑋  is a 

constant function, in whose case 𝐿(𝑇1𝑋)  =  0. On the other hand, we want to emphasize 

that Vasavada’s reduction to metric spaces of diameter at most 2 is not restrictive because 

if (𝑋, 𝑑) is a compact metric space and 𝑋′ is the set 𝑋 remetrized with the metric 

𝑑′ (𝑥, 𝑦)  =  min{𝑑(𝑥, 𝑦), 2}, then diam(𝑋′)  ≤  2 and Lip(𝑋′) is isometrically isomorphic 

to Lip(𝑋) (see [184]).  

      Our theorem also provides some new information concerning the onto case. We show 

(Theorem (5.1.6)) that any linear isometry 𝑇 from Lip(𝑋) onto Lip(𝑌 ) such that 𝑇1𝑋 is a 

nonvanishing contraction, is a weighted composition operator  

𝑇𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦))(𝑓 ∈  Lip(𝑋), 𝑦 ∈  𝑌 ), 

where 𝜑 is a Lipschitz homeomorphism from 𝑌 onto 𝑋 and τ is a Lipschitz function from 

𝑌 into 𝑆𝕂 . Our approach is different from one which Novinger [182], Roy [46], Vasavada 

[47] and Weaver [184] present since they impose conditions of connectedness. Let us 

recall that a map between metric spaces 𝜑 ∶  𝑋 →  𝑌 is a Lipschitz homeomorphism if 𝜑 is 

a bijection such that 𝜑 and 𝜑−1 are both Lipschitz, and a function 𝑓 ∶  𝑋 → 𝕂 is said to be 

nonvanishing if 𝑓(𝑥) ≠  0 for all 𝑥 ∈  𝑋.  

        In [184] Weaver obtained a noncompact version of Vasavada’s result. He defined 

Lip(𝑋) as the space of all bounded Lipschitz scalar-valued functions f on a metric space 

𝑋 with the norm ‖𝑓‖  =  max {‖𝑓‖∞ , 𝐿(𝑓)} , and showed that if 𝑋 and 𝑌 are complete 1-
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connected with diameter at most 2, then every linear isometry 𝑇 from Lip(𝑋) onto Lip(𝑌 ) 
is of the form  

𝑇𝑓(𝑦) =  𝜏𝑓(𝜑(𝑦))(𝑓 ∈  Lip(𝑋), 𝑦 ∈  𝑌 ), 

where 𝜑 is an isometry from 𝑌 onto 𝑋 and 𝜏 is a unimodular constant. Theorem (5.1.6) can 

be improved with the aid of this Weaver’s result. Namely, we show (Theorem (5.1.8)) that 

if 𝑋 and 𝑌 are compact metric spaces with diameter at most 2 and 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) 
is a surjective linear isometry such that 𝑇1𝑋 is a nonvanishing contraction, then there exists 

a surjective isometry 𝜑 ∶  𝑌 →  𝑋 and a function 𝜏 ∶  𝑌 →  𝑆𝕂 with 𝜏 (𝑥)  =  𝜏 (𝑦) 
whenever 𝑑(𝑥, 𝑦)  <  2 such that  

𝑇𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈ 𝑌. 

We classify codimension 1 linear isometries between Lip(𝑋)- spaces in two types. If 𝑇 ∶

 Lip(𝑋)  →  Lip(𝑌 ) is such an isometry with 𝐿(𝑇1𝑋)  <  1, Theorem (5.1.9) asserts the 

existence of a closed subset 𝑌0 of 𝑌 such that either 𝑌0  =  𝑌 \{𝑝}, where p is an isolated 

point of 𝑌, or 𝑌0  =  𝑌 ; a surjective Lipschitz map 𝜑: 𝑌0  →  𝑋 and a unimodular Lipschitz 

function 𝜏 ∶  𝑌0  → 𝕂 such that 𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)) for all 𝑦 ∈  𝑌0. If 𝑌 \𝑌0 is just a 

single point or 𝑌0  =  𝑌 , we label these isometries as of type I and of type II, respectively. 

These two types are not disjoint. We give a method for constructing codimension 1 linear 

isometries which are simultaneously of types I and II (Proposition (5.1.11)). We also give 

examples of type I codimension 1 linear isometries which are not of type II (Proposition 

(5.1.12)), and vice versa (Example (5.1.13)). The remainder is devoted to study the 

properties of 𝜑 (Proposition (5.1.15)).  

        In the last years, several have investigated about codimension 1 linear isometries on 

the space 𝒞(𝑋) ([175], [177], [179], among others many). However the key is due to 

Gutek, Hart, Jamison and Rajagopalan [178]. These studied shift operators on 𝒞(𝑋) and 

classified these operators using the aforementioned Holszty´nski’s theorem [60]. We have 

followed a similar way to study codimension 1 linear isometries between Lip(𝑋)-spaces 

applying now our Lipschitz version of the cited theorem.  

        We begin by recalling some results which describe partially the set of extreme points 

of the closed unit ball of the dual space of Lip(𝑋).  
        For a Banach space 𝐸, we denote by 𝐵𝐸 the closed unit ball of 𝐸, by 𝑆𝐸 the unit 

sphere of 𝐸, by Ext(𝐵𝐸) the set of extreme points of 𝐵𝐸 and by 𝐸∗ the dual space of 𝐸. 

        Given a compact metric space 𝑋, let �̃�  =   (𝑥, 𝑦)  ∈  𝑋2 : 𝑥 ≠  𝑦 and let the compact 

Hausdorff space 𝑊 be the disjoint union of 𝑋 with 𝛽�̃�, where 𝛽�̃� is the Stone-Cech 

compactification of  �̃�. Consider the mapping Φ : Lip(𝑋)  →  𝐶(𝑊) defined for each 𝑓 ∈
 Lip(𝑋) by  

Φ𝑓(𝑤)  =  {
𝑓(𝑤) if 𝑤 ∈  𝑋,

(𝛽𝑓∗ )(𝑤) if 𝑤 ∈  𝛽�̃�,
  

where  

𝑓∗ (𝑥, 𝑦)  =
𝑓(𝑥) −  𝑓(𝑦)

𝑑(𝑥, 𝑦)
 , ∀(𝑥, 𝑦)  ∈  �̃�, 

and 𝛽𝑓∗ is its norm-preserving extension to 𝛽�̃�. It is easily seen that Φ is a linear isometry 

from Lip(𝑋) into 𝒞(𝑊). For each w ∈ W, define the functionals 𝛿𝑤  ∈ 𝒞(𝑊)
∗ and 𝛿𝑤  ∈

 Lip(𝑋)∗ by 𝛿𝑤(𝑓)  =  𝑓(𝑤) and 𝛿𝑤(𝑓)  =  Φ𝑓(𝑤), respectively. Clearly,    |𝛿𝑤(𝑓)|    ≤

 ‖𝑓‖ for all 𝑓 ∈  Lip(𝑋) and therefore 𝛿𝑤  ∈  𝐵Lip(𝑋)∗  . It is well known (see [33]) that the 

extreme points of 𝐵Lip(𝑋)∗   are essentially of this form:  
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Lemma (5.1.1)[172]: Every extreme point of 𝐵Lip(𝑋)∗  must be either of the form 𝜏 𝛿𝑥 

with 𝜏 ∈  𝑆𝕂 and 𝑥 ∈  𝑋 or of the form 𝜏 𝛿𝑤 with 𝜏 ∈  𝑆𝕂 and 𝑤 ∈  𝛽�̃�. We also shall 

need the following fact which was proved by Roy [46] using a result of de Leeuw [180]:  

Lemma (5.1.2)[172]: For each 𝑥 ∈  𝑋, 𝛿𝑥 is an extreme point of 𝐵Lip(𝑋)∗   . An application 

of the Hahn–Banach and Krein–Milman theorems yields the following fact surely known.  

Lemma (5.1.3)[172]: Let 𝑋 be a normed space and 𝑀 a vector subspace of 𝑋. For each 

𝑔 ∈  Ext(𝐵𝑀∗ ) there exists 𝑓 ∈  Ext(𝐵𝑋∗ ) such that 𝑓|𝑀  =  𝑔.  
        Finally, we present two families of Lipschitz functions which will be used frequently 

throughout.  

      Let 𝑋 be a compact metric space. For each 𝑥 ∈  𝑋, the real function 𝑓𝑥, defined on 𝑋 

by 𝑓𝑥(𝑧)  =  𝑑(𝑧, 𝑥), belongs to Lip(𝑋) with 𝐿(𝑓𝑥)  ≤  1 and ‖𝑓𝑥‖∞  ≤  diam(𝑋). Also, 

for each 𝑥 ∈  𝑋 and 𝛿 >  0, the function ℎ𝑥
𝛿 ∶  𝑋 →  [0, 1] given by  

ℎ𝑥
𝛿  (𝑧) = max {0, 1 −

𝑑(𝑧, 𝑥)

𝛿
} 

is also in Lip(𝑋) with 𝐿(ℎ𝑥
𝛿)  ≤  1/𝛿 and ‖ℎ𝑥

𝛿‖
∞
 ≤  1.  

We formulate the main result which is a version for isometries of Lip(𝑋)-spaces of 

a known Holszty´nski’s theorem on isometries of 𝒞(𝑋)-spaces [60].  

Theorem (5.1.4)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a linear isometry and suppose 𝑇1𝑋  is 

a contraction. Then there exists a closed subset 𝑌0 of 𝑌, a surjective Lipschitz map 𝜑 ∶
 𝑌0  →  𝑋 with 𝐿(𝜑)  ≤  max{1, diam(𝑋)} and a function 𝜏 ∈  Lip(𝑌 ) with ‖𝜏‖  =  1 

and |𝜏 (𝑦)|  =  1 for all 𝑦 ∈  𝑌0 such that  

𝑇𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0.  

Proof. Let 𝜏 =  𝑇1𝑋. Evidently, 𝜏 ∈  Lip(𝑌 ) and ‖𝜏‖  =  ‖1𝑋‖  =  1. Let 𝑍 =
 𝑇(Lip(𝑋)) and define  

𝑌0  = {𝑦 ∈  𝑌 ∶  𝜏 (𝑦)𝑇
∗ 𝛿𝑦|𝑍  ∈  Ext(𝐵Lip(𝑋)∗), |𝜏 (𝑦)|  =  1} . 

We first prove that 𝑌0 is nonempty. Since 𝑇 is a linear isometry from Lip(𝑋) onto 𝑍, the 

adjoint map 𝑇∗ ∶  Lip(𝑌)∗  →  Lip(𝑋)∗ is also a linear isometry from 𝑍∗ onto Lip(𝑋)∗ and 

therefore 𝑇∗ induces a bijection from Ext(𝐵𝑍∗ ) onto Ext(𝐵Lip(𝑋)∗  ). Let 𝑥 ∈  𝑋. By 

Lemma (5.1.2), 𝛿𝑥  ∈  Ext(𝐵Lip(𝑋)∗  ). Therefore 𝑇∗µ =  𝛿𝑥 for some µ ∈  Ext(𝐵𝑍∗ ). By 

Lemma (5.1.3), µ is the restriction to 𝑍 of an extreme point of 𝐵Lip(𝑌)∗ . Hence µ =

 𝛼 𝛿𝑤 |𝑍 for some 𝛼 ∈  𝑆𝕂 and 𝑤 ∈  𝑌 ∪ 𝛽�̃� by Lemma (5.1.1) and so 𝛼𝑇∗ 𝛿𝑤 |𝑍 (1𝑋)  =
 𝛿𝑥(1𝑋). We now see that 𝑤 ∈  𝑌. If there were 𝑤 ∈  𝛽�̃� , 𝑒 we should have    

|𝛼𝑇∗ 𝛿𝑤 |𝑍 (1𝑋)|  <  1 since     

|𝛼𝑇∗ 𝛿𝑤|𝑍(1𝑋)|     =    |𝛿𝑤(𝑇1𝑋) |   =  |𝛽(𝑇1𝑋)
∗
 (𝑤)|  <  1. 

It suffices to observe that  

|(𝑇1𝑋)
∗
 (𝑦, 𝑧)|  =  |𝑇1𝑋(𝑦) − 𝑇1𝑋(𝑧)| 𝑑(𝑦, 𝑧) ≤  𝐿(𝑇1𝑋)  <  1 

for all (𝑦, 𝑧)  ∈  �̃� and that �̃� is dense in 𝛽�̃� . But, on the other hand, 𝛿𝑥(1𝑋)  =  1. This 

contradiction gives us 𝑤 =  𝑦 for some 𝑦 ∈  𝑌. It follows that  

1 =  𝛿𝑥(1𝑋)  =  𝛼𝛿𝑦(𝑇(1𝑋))  =  𝛼𝑇(1𝑋)(𝑦)  =  𝛼𝜏 (𝑦). 

From this it is deduced that |𝜏 (𝑦)|  =  1 and 𝛼 =  𝜏 (𝑦). Hence 𝜏 (𝑦)𝑇∗ 𝛿𝑦 |𝑍  =  𝛿𝑥  ∈

 Ext(𝐵Lip(𝑋)∗ ) and so 𝑦 ∈  𝑌0. We next show that for each 𝑦 ∈  𝑌0, there exists a unique 

point 𝑥 ∈  𝑋 such that 𝜏 (𝑦)𝑇∗ 𝛿𝑦 |𝑍 = 𝛿𝑥. Let 𝑦 ∈  𝑌0. Since 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  ∈
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 Ext(𝐵Lip(𝑋)∗) by definition of 𝑌0, Lemma (5.1.1) yields 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  =  𝛼𝛿𝑤 for suitable 

𝛼 ∈  𝑆𝕂 and 𝑤 ∈  𝑋 ∪  𝛽�̃�.  We show that 𝑤 ∈  𝑋. If 𝑤 ∈  𝛽�̃�, it is clear that 

𝛼𝛿𝑤(1𝑋)  =  0, but  

𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍 (1𝑋)  =  𝜏 (𝑦)𝛿𝑦(𝑇1𝑋)  =  𝜏 (𝑦)𝑇1𝑋(𝑦)  =  |𝜏 (𝑦)|
2  =  1. 

This contradiction proves that 𝑤 =  𝑥 for some 𝑥 ∈  𝑋. Then  

𝛼 =  𝛼𝛿𝑥(1𝑋)  =  𝜏 (𝑦)𝑇
∗ 𝛿𝑦 |𝑍 (1𝑋)  =  1  

and so 𝜏 (𝑦)𝑇∗ ( 𝛿𝑦|𝑍)  =  𝛿𝑥. This proves the existence of 𝑥.  

       To show its uniqueness, assume there exists 𝑥  
′  ∈  𝑋 such that 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  =  𝛿𝑥′  . 

Consider the function 𝑓𝑥  ∈  Lip(𝑋). If there were 𝑥′ ≠ 𝑥, we would have  

𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍 (𝑓𝑥)  =  𝛿𝑥′  (𝑓𝑥)  =  𝑓𝑥(𝑥
′ )  =  𝑑(𝑥′ , 𝑥)  ≠  0, 

but also  

𝜏 (𝑦)𝑇∗ 𝛿𝑦 |𝑍 (𝑓𝑥) =  𝛿𝑥(𝑓𝑥) =  𝑓𝑥(𝑥) =  0. 

This contradiction gives us 𝑥′  =  𝑥. Let 𝜑 ∶  𝑌0  →  𝑋 be the map defined by 𝜑(𝑦)  =  𝑥 

whenever 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  =  𝛿𝑥. Clearly, 𝑇∗ 𝛿𝑦|𝑍  =  𝜏 (𝑦)𝛿𝜑(𝑦) for each 𝑦 ∈  𝑌0 and 

therefore  

𝑇𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0. 

The map 𝜑 ∶  𝑌0  →  𝑋 is surjective. This is proved as the existence of points in 𝑌0. We 

now check that 𝜑 ∶  𝑌0  →  𝑋 is Lipschitz. Notice that for each 𝑥 ∈  𝑋, 𝑓𝑥  ∈  Lip(𝑋) and 

‖𝑓𝑥‖  ≤  𝑘 where 𝑘 =  max{1, diam(𝑋)}. Hence ‖𝑓𝜑(𝑦) ‖ ≤  𝑘 for all 𝑦 ∈  𝑌0. Since 𝑇 is 

a linear isometry, it follows that ‖𝑇 𝑓𝜑(𝑦)‖  ≤  𝑘  for all 𝑦 ∈  𝑌0. Then 𝐿(𝑇 𝑓𝜑(𝑦)) ≤  𝑘 for 

all 𝑦 ∈  𝑌0. Let 𝑦, 𝑧 ∈  𝑌0. We have  |𝑇 𝑓𝜑(𝑦)(𝑦)  −  𝑇 𝑓𝜑(𝑦)(𝑧)|   ≤  𝑘𝑑(𝑦, 𝑧). An easy 

calculation yields  

𝑇 𝑓𝜑(𝑦)(𝑦)  =  𝜏 (𝑦)𝑓𝜑(𝑦)(𝜑(𝑦))  =  𝜏 (𝑦)𝑑(𝜑(𝑦), 𝜑(𝑦))  =  0,  

 𝑓𝜑(𝑦)(𝑧)  =  𝜏 (𝑧)𝑓𝜑(𝑦)(𝜑(𝑧))  =  𝜏 (𝑧)𝑑(𝜑(𝑦), 𝜑(𝑧)), 

and thus 𝑑(𝜑(𝑦), 𝜑(𝑧))  ≤  𝑘𝑑(𝑦, 𝑧). Finally, we see that 𝑌0 is closed in 𝑌. To prove this, 

given 𝑥 ∈  𝑋 and 𝑦 ∈  𝑌 , we notice that 𝑦 ∈  𝑌0 and 𝜑(𝑦)  =  𝑥 if and only if 

|𝑇 𝑓(𝑦)|  =  |𝑓(𝑥)| for all 𝑓 ∈  Lip(𝑋). Indeed, if 𝑦 ∈  𝑌0 and 𝜑(𝑦)  =  𝑥, then 

𝑇∗ 𝛿𝑦 |𝑍  =  𝜏 (𝑦)𝛿𝑥; hence, for all 𝑓 ∈  Lip(𝑋), we have  

𝑇𝑓(𝑦) =  𝑇
∗ 𝛿𝑦|𝑍 (𝑓) =  𝜏 (𝑦)𝛿𝑥(𝑓) =  𝜏 (𝑦)𝑓(𝑥), 

and so |𝑇 𝑓(𝑦)|  =  |𝑓(𝑥)| . Conversely, if |𝑇 𝑓(𝑦)|  =  |𝑓(𝑥)|  for all 𝑓 ∈  Lip(𝑋), then 

|𝜏 (𝑦)|  =  1 and ker 𝑇∗ 𝛿𝑦|𝑍  =  ker 𝛿𝑥. This last implies that 𝑇∗ 𝛿𝑦|𝑍  =  𝛼𝛿𝑥 for some 

nonzero scalar 𝛼. In particular, we deduce that 𝜏 (𝑦)  =  𝛼 and thus 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  =

 𝛿𝑥. This says us that 𝑦 ∈  𝑌0 and 𝜑(𝑦)  =  𝑥. To show that 𝑌0 is closed in 𝑌, let {𝑦𝑛} be a 

sequence in 𝑌0 converging to a point 𝑦 ∈  𝑌. For each natural 𝑛, let 𝑥𝑛  = 𝜑(𝑦𝑛). By the 

compactness of 𝑋, {𝑥𝑛}  has a subsequence  {𝑥𝜎(𝑛)} which converges to a point 𝑥 ∈  𝑋. Let 

𝑓 ∈  Lip(𝑋). We have |𝑇 𝑓(𝑦𝜎(𝑛))|  = |𝑓(𝑥𝜎(𝑛))|   for all 𝑛 ∈ ℕ. It follows that 

|𝑇(𝑓)(𝑦)|  =  |𝑓(𝑥)|. Since 𝑓 was arbitrary, the remark above gives us 𝑦 ∈  𝑌0 and so 

𝑌0 is closed in 𝑌.  

        The next result shows that the triple {𝑌0, 𝜏, 𝜑} associated to the isometry 𝑇 in 

Theorem (5.1.4) possesses a universal property.  
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Corollary (5.1.5)[172]: Let 𝑇 be a linear isometry from Lip(𝑋) into Lip(𝑌 ) for which 𝑇1𝑋 

is a contraction. Let 𝑌0, 𝜏 and 𝜑 be as in Theorem (5.1.4). If 𝑌0
′ is a subspace (not 

necessarily closed) of 𝑌, and 𝜏′ ∶  𝑌0
′  →  𝑆𝕂 and 𝜑′ ∶  𝑌0

′  →  𝑋 are Lipschitz maps such 

that  

𝑇 𝑓(𝑦) =  𝜏′ (𝑦)𝑓(𝜑′(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0
′ , 

then 𝑌0
′  ⊂  𝑌0, 𝜏

′  =  𝜏 |𝑌0′ and 𝜑 = 𝜑|𝑌0′ .  

Proof. Let 𝑦 ∈  𝑌0
′ . Taking 𝑓 =  1𝑋 above in the expression of 𝑇 𝑓, we have 𝜏′ (𝑦)  =

 𝑇1𝑋(𝑦)  =  𝜏 (𝑦), and so 𝜏′  =  𝜏 |𝑌0′  . Now the expression of 𝑇 𝑓 reads as 𝜏 (𝑦)𝑇∗ 𝛿𝑦|𝑍  =

 𝛿𝜑′(𝑦) where 𝑍 =  𝑇(Lip(𝑋)). Since 𝛿𝜑′(𝑦)  ∈  Ext(𝐵Lip(𝑋)∗  ) by Lemma (5.1.2), it 

follows that 𝜏 (𝑦)𝑇∗ 𝛿𝑦 |𝑍  ∈  Ext(𝐵Lip(𝑋)∗  ). Moreover,  

1 =  𝛿𝜑′(𝑦)(1𝑋)  =  𝜏 (𝑦)𝛿𝑦(𝑇1𝑋)  =  𝜏 (𝑦)𝜏 (𝑦)  =  |𝜏 (𝑦)|
2 . 

Hence 𝑦 ∈  𝑌0 and thus 𝑌0
′  ⊂  𝑌0. Let 𝑓 ∈  Lip(𝑋). Since 𝑇 𝑓(𝑧)  =  𝜏 (𝑧)𝑓(𝜑(𝑧)) for all 

𝑧 ∈  𝑌0 by Theorem (5.1.4), 𝑌0
′  ⊂  𝑌0 and 𝜏′  =  𝜏 |𝑌0′  , we have 𝑇 𝑓(𝑦)  =  𝜏′ (𝑦)𝑓(𝜑(𝑦)). 

Moreover, 𝑇 𝑓(𝑦)  =  𝜏′ (𝑦)𝑓(𝜑′ (𝑦)) by hypothesis. Therefore 𝑓(𝜑′(𝑦))  =  𝑓(𝜑(𝑦)) for 

all 𝑓 ∈  Lip(𝑋). This implies 𝜑′ (𝑦)  = 𝜑(𝑦), because otherwise we could take the 

function 𝑓𝜑(𝑦) and 𝑓𝜑(𝑦)(𝜑
′(𝑦))  =  𝑑(𝜑′(𝑦), 𝜑(𝑦))  ≠  0 =  𝑓𝜑(𝑦)(𝜑(𝑦)). Thus 𝜑′  =

𝜑|𝑌0′  .  

We shall apply Theorem (5.1.4) to study the onto case. 

Theorem (5.1.6)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a surjective linear isometry. 

Suppose 𝑇1𝑋 is a nonvanishing contraction. Then there exists a Lipschitz homeomorphism 

𝜑 ∶  𝑌 →  𝑋 with 𝐿(𝜑)  ≤  max{1, diam(𝑋)} and 𝐿(𝜑−1 )  ≤  max{1, diam(𝑌 )} and a 

Lipschitz function 𝜏 ∶  𝑌 →  𝑆𝕂 such that  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌.  
Proof. According to Theorem (5.1.4), there exists a closed subset 𝑌0 of 𝑌, a Lipschitz map 

𝜑 from 𝑌0 onto 𝑋 with 𝐿(𝜑)  ≤  max{1, diam(𝑋)} and a function 𝜏 ∈  Lip(𝑌 ) with 
‖𝜏‖  =  1 and |𝜏 (𝑦)|  =  1 for all 𝑦 ∈  𝑌0 such that  

𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0. 
Since now 𝑇 is surjective, the set 𝑌0 comes given by  

{𝑦 ∈  𝑌 ∶  𝜏 (𝑦)𝑇∗ 𝛿𝑦  ∈  Ext(𝐵Lip(𝑋)∗  ) } 𝑜 .  

We next prove that 𝑌0  =  𝑌. Let  ∈  𝑌 . Since 𝛿𝑦  ∈  Ext(𝐵Lip(𝑌)∗  ) by Lemma (5.1.2), it 

follows that 𝑇∗ 𝛿𝑦  ∈  Ext(𝐵Lip(𝑋)∗) because 𝑇∗ is a linear isometry from Lip(𝑌)∗ onto 

Lip(𝑋)∗ . Then 𝑇∗ 𝛿𝑦  =  𝛼𝛿𝑤 for some 𝛼 ∈  𝑆𝕂 and 𝑤 ∈  𝑋 ∪  𝛽�̃� by Lemma (5.1.1). 

We see that 𝑤 ∈  𝑋. Indeed, if 𝑤 ∈  𝛽�̃�, then 𝛼𝛿𝑤(1𝑋)  =  0, but  

𝑇∗ 𝛿𝑦(1𝑋)  =  𝛿𝑦(𝑇1𝑋)  =  𝑇1𝑋(𝑦)  ≠  0 

because 𝑇1𝑋 is nonvanishing. Hence 𝑤 =  𝑥 ∈  𝑋. Then  

𝜏 (𝑦)  =  𝑇1𝑋(𝑦)  =  𝑇
∗ 𝛿𝑦(1𝑋)  =  𝛼𝛿𝑥(1𝑋)  =  𝛼. 

Hence |𝜏 (𝑦)|  =  1 and so 𝜏 (𝑦)𝛼 =  1. It follows that  

𝜏 (𝑦)𝑇∗ (𝛿𝑦)  =  𝜏 (𝑦)𝛼𝛿𝑥  =  𝛿𝑥  ∈  Ext(𝐵Lip(𝑋)∗)  

and so 𝑦 ∈  𝑌0.  
To prove the injectivity of 𝜑, let 𝑦, 𝑦0  ∈  𝑌 be for which 𝜑(𝑦) = 𝜑(𝑦′) and let us suppose 

𝑦 ≠  𝑦′ . Since 𝑇 𝑓(𝑧)  =  𝜏 (𝑧)𝑓(𝜑(𝑧)) for all 𝑓 ∈ Lip(𝑋) and 𝑧 ∈  𝑌, it is clear that 

|𝑇 𝑓(𝑦)|  =  |𝑇 𝑓(𝑦′)|  for all 𝑓 ∈ Lip(𝑋) and, since 𝑇 is surjective, it follows that 
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|ℎ(𝑦)|  =  |ℎ(𝑦′)| for all ℎ ∈ Lip(𝑌 ). However this can not be because |𝑓𝑦(𝑦)|  =  0 ≠

 𝑑(𝑦, 𝑦′ )  =  |𝑓𝑦(𝑦
′)| .  

       On the other hand, 𝑇−1 is a linear isometry from Lip(𝑌) onto Lip(𝑋). It comes given 

indeed by  

𝑇−1 𝑔(𝑥)  =  𝜏 (𝜑−1(𝑥))𝑔(𝜑−1(𝑥)), ∀𝑔 ∈  Lip(𝑌 ), ∀𝑥 ∈  𝑋.  

Using this we can deduce that 𝜑−1 is Lipschitz with 𝐿(𝜑−1 )  ≤  max{1, diam(𝑌 )}. The 

proof is similar to that given in Theorem (5.1.4) to prove that 𝜑 is Lipschitz.  

      Under the conditions of Theorem (5.1.6), if T is also unital, that is 𝑇(1𝑋)  =  1𝑌 , then 

𝑇 is an algebra isomorphism. Namely, we have the following:  

Corollary (5.1.7)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a surjective linear isometry. 

Suppose 𝑇 is unital. Then there exists a Lipschitz homeomorphism 𝜑 ∶  𝑌 →
 𝑋 with 𝐿(𝜑)  ≤  max{1, diam(𝑋)} and 𝐿(𝜑−1 )  ≤  max{1, diam(𝑌 )} such that  

𝑇 𝑓(𝑦) =  𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌. 
Next we see that Theorem (5.1.6) can be improved. If 𝜏 ∶  𝑌 →  𝑆𝕂 is a function such that 

𝜏 (𝑦)  =  𝜏 (𝑦′) whenever 𝑑(𝑦, 𝑦′)   <  2, and 𝜑 ∶  𝑌 →  𝑋 is a surjective isometry, it is 

easily seen that 𝑇 𝑓 =  𝜏 (𝑓 °𝜑) (𝑓 ∈  Lip(𝑋)) is a linear isometry from Lip(𝑋) onto 

Lip(𝑌 ). Conversely, we have the following improvement of Theorem (5.1.6).  

Theorem (5.1.8)[172]: Let 𝑋 and 𝑌 be compact metric spaces with diameter at most 2 and 

let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a surjective linear isometry such that 𝑇1𝑋 is a nonvanishing 

contraction. Then there exist a Lipschitz function 𝜏 ∶  𝑌 →  𝑆𝕂 with 𝜏 (𝑦)  =  𝜏 (𝑦′) 
whenever 𝑑(𝑦, 𝑦′)  <  2 and a surjective isometry 𝜑 ∶  𝑌 →  𝑋 such that 𝑇 is of the form  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌.  
Proof. By Theorem (5.1.6), there exists a Lipschitz function 𝜏 ∶  𝑌 →  𝑆𝕂 and a Lipschitz 

homeomorphism 𝜑 ∶  𝑌 →  𝑋 such that  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌. 
Let us define an equivalence relation on 𝑋 by setting 𝑥 ∼  𝑧 (𝑥, 𝑧 ∈  𝑋) if and only if 

there is a finite sequence of points 𝑥1, . . . , 𝑥𝑘 in 𝑋 such that 𝑥1  =  𝑥, 𝑥𝑘  =  𝑧 and 

𝑑(𝑥𝑖  , 𝑥𝑖+1)  <  1 for 1 ≤  𝑖 <  𝑘. The equivalence class of this relation are called the 1-

connected components of 𝑋. Since 𝑋 is compact, there exist 𝑧1, . . . , 𝑧𝑚  ∈  𝑋 such that 𝑋 =
 ∪𝑖=1
𝑚 𝐵(𝑧𝑖  , 1) where 𝐵(𝑧𝑖  , 1)  =  {𝑥 ∈  𝑋 ∶  𝑑(𝑥, 𝑧𝑖) <  1} . For each 𝑖 ∈  {1, . . . , 𝑚}, the 

ball 𝐵(𝑧𝑖  , 1) is contained in the 1-connected component of 𝑋 which contains to 𝑧𝑖 and 

therefore the number of 1-connected components of 𝑋 is 𝑛 ≤  𝑚. Let 𝑋1, . . . , 𝑋𝑛 be the 1-

connected components of 𝑋. Notice that 𝑋1, . . . , 𝑋𝑛 are pairwise disjoint closed sets. 

        Fix 1 ≤  𝑖 ≤  𝑛 and identify Lip(𝑋𝑖) with the functions in Lip(𝑋) which are 

supported on 𝑋𝑖  . Let 𝑌𝑖  =  𝜑
−1 (𝑋𝑖). Clearly, 𝑇 takes Lip(𝑋𝑖) isometrically onto Lip(𝑌𝑖) 

and then, by [184], there exists a constant 𝜏𝑖  ∈  𝑆𝕂 and an isometry 𝜑𝑖 from 𝑌𝑖 onto 𝑋𝑖 
such that  

𝑇 𝑓(𝑦)  =  𝜏𝑖𝑓(𝜑𝑖(𝑦)), ∀𝑓 ∈  Lip(𝑋𝑖), ∀𝑦 ∈  𝑌𝑖  . 
A simple verification shows that 𝜏 |𝑌𝑖  =  𝜏𝑖1𝑌 and 𝜑|𝑌𝑖  =  𝜑𝑖  .  

       Fix 𝑖, 𝑗 ∈  {1, . . . , 𝑛} with 𝑖 ≠  𝑗. Suppose 𝑑(𝑥0, 𝑥0
′  )  <  2 for some 𝑥0  ∈  𝑋𝑖  𝑎nd 

𝑥0
′  ∈  𝑋𝑗 . Let 𝑎 =  inf {𝑑(𝑥, 𝑥0 ): 𝑥 ∈  𝑋𝑖  , 𝑥0  ∈  𝑋𝑗}  and consider 𝑓 ∶  𝑋 → ℝ defined 

by 𝑓(𝑥)  =  −𝑎/2 if 𝑥 ∈  𝑋𝑖  , 𝑓(𝑥)  =  𝑎/2 if 𝑥 ∈  𝑋𝑗 and 𝑓(𝑥)  =  0 if 𝑥 ∉  𝑋𝑖  ∪  𝑋𝑗  . 

We claim that 𝑓 ∈  Lip(𝑋) with 𝐿(𝑓)  =  1. Let 𝑥, 𝑥0  ∈  𝑋. If 𝑥 ∈  𝑋𝑖 and 𝑥′  ∈  𝑋𝑗  , we 

have  
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|𝑓(𝑥) −  𝑓(𝑥′)|

𝑑(𝑥, 𝑥′)
 =

𝑎

𝑑(𝑥, 𝑥′)
 ≤  1. 

 If 𝑥 ∈  𝑋𝑖  ∪  𝑋𝑗 and 𝑥′  ∉  𝑋𝑖  ∪  𝑋𝑗 , we obtain  

|𝑓(𝑥) −  𝑓(𝑥′)|

𝑑(𝑥, 𝑥′)
 =

𝑎2

𝑑(𝑥, 𝑥′)
 ≤  𝑎2  <  1. 

 It follows that 𝐿(𝑓)  ≤  1. Using the definition of a it is easy to see that 𝐿(𝑓)  =  1. Since 

‖𝑓‖∞  =  𝑎/2 <  1, we have ‖𝑓‖  =  1 and thus ‖𝑇 𝑓‖  =  1. Moreover, since 𝑇 𝑓(𝑦)  =
 −𝜏𝑖𝑎/2 if 𝑦 ∈  𝑌𝑖  , 𝑇 𝑓(𝑦)  =  𝜏𝑗𝑎/2 if 𝑦 ∈  𝑌𝑗 and 𝑇 𝑓(𝑦)  =  0 elsewhere, we have 

‖𝑇 𝑓‖∞  =  𝑎/2 <  1 and thus 𝐿(𝑇 𝑓)  =  1. Let  

𝑏 =  inf {𝑑(𝑦, 𝑦′ ): 𝑦 ∈  𝑌𝑖  , 𝑦
′  ∈  𝑌𝑗} . 

Since 𝑌𝑖  and 𝑌𝑗 are pairwise disjoint closed sets, we have b > 0. Next we check 

that 𝐿(𝑇 𝑓)  ≤  𝑎/𝑏. Let 𝑦, 𝑦0  ∈  𝑌. If 𝑦 ∈  𝑌𝑖 and 𝑦′  ∈  𝑌𝑗  , we have  

|𝑇 𝑓(𝑦) −  𝑇 𝑓(𝑦′)|

𝑑(𝑦, 𝑦′)
 =

𝑎
2 |
𝜏𝑖  +  𝜏𝑗  |

𝑑(𝑦, 𝑦′)
 ≤
𝑎

𝑏
 . 

If 𝑦 ∈  𝑌𝑖  ∪  𝑌𝑗 and 𝑦′  ∉  𝑌𝑖  ∪  𝑌𝑗 , we get  

|𝑇 𝑓(𝑦) −  𝑇 𝑓(𝑦′)|

𝑑(𝑦, 𝑦′)
 =

𝑎
2

𝑑(𝑦, 𝑦′)
 ≤
𝑎

2
 ≤
𝑎

𝑏
 . 

Therefore 𝐿(𝑇 𝑓)  ≤  𝑎/𝑏 and so 1 ≤  𝑎/𝑏. 
       We now prove that 𝜏𝑖  =  𝜏𝑗  . Suppose 𝜏𝑖  ≠   𝜏𝑗  and let 𝑔 ∶  𝑋 → 𝕂 be the function 

given by 𝑔(𝑥)  =  −𝜏𝑖𝑎/2 if 𝑥 ∈  𝑋𝑖  , 𝑔(𝑥)  =  𝜏𝑗𝑎/2 if 𝑥 ∈  𝑋𝑗 and 𝑔(𝑥)  =  0 

elsewhere. To see that 𝑔 ∈  Lip(𝑋), let 𝑥, 𝑥0  ∈  𝑋. If 𝑥 ∈  𝑋𝑖 and 𝑥′  ∈  𝑋𝑗  , we have  

|𝑔(𝑥) −  𝑔(𝑥′)|

𝑑(𝑥, 𝑥′)
 =

𝑎
2 |
𝜏𝑖  +  𝜏𝑗|

𝑑(𝑥, 𝑥′)
 ≤
|𝜏𝑖  +  𝜏𝑗|

2
 <  1  

since 𝜏𝑖  , 𝜏𝑗  ∈  𝑆𝕂 and 𝜏𝑖  ≠  𝜏𝑗  . If now 𝑥 ∈  𝑋𝑖  ∪  𝑋𝑗 and 𝑥′  ∉  𝑋𝑖  ∪  𝑋𝑗  , we obtain  

|𝑔(𝑥) −  𝑔(𝑥′)|

𝑑(𝑥, 𝑥′)
 =

𝑎
2

𝑑(𝑥, 𝑥′)
 ≤
𝑎

2
 <  1. 

Hence 𝑔 ∈  Lip(𝑋) with 𝐿(𝑔)  ≤  max {|𝜏𝑖 + 𝜏𝑗| /2, 𝑎/2}  <  1. Since ‖𝑔‖∞  =  𝑎/2, it 

follows that ‖𝑔‖  <  1 and so 𝐿(𝑇 𝑔)  ≤  ‖𝑇 𝑔‖  =  ‖𝑔‖  <  1. On the other hand, since 

𝑇 𝑔(𝑦)  =  −𝑎/2 if 𝑦 ∈  𝑌𝑖 and 𝑇 𝑔(𝑦′ )  =  𝑎/2 if 𝑦′  ∈  𝑌𝑗 , we deduce  

|𝑇 𝑔(𝑦) −  𝑇 𝑔(𝑦′)|

𝑑(𝑦, 𝑦′)
 =

𝑎

𝑑(𝑦, 𝑦′)
 ≤  𝐿(𝑇 𝑔), 

which implies 𝑎/𝑏 ≤  𝐿(𝑇 𝑔). Then 𝑎/𝑏 <  1, which contradicts that 1 ≤  𝑎/𝑏. This 

proves that 𝜏𝑖  =  𝜏𝑗  .  

          It is an easily checked fact, which is contained in [47], that ‖𝛿𝑦  −  𝛿𝑦′‖  =

 𝑑(𝑦, 𝑦′ ) whenever 𝑑(𝑦, 𝑦′)  ≤  2. Using this fact we now prove that 𝜑 is an isometry.       

Let 𝑦, 𝑦′  ∈  𝑌 be such that 𝑑(𝜑(𝑦), 𝜑(𝑦′ ))  <  2. Clearly, 𝑦 ∈  𝑌𝑖 and 𝑦′  ∈  𝑌𝑗 for some 

𝑖, 𝑗 ∈  {1, . . . , 𝑛}. By what has been proved above, we have 𝜏 (𝑦)  =  𝜏𝑖  =  𝜏𝑗  =  𝜏 (𝑦
′) 

and it follows that  

𝑑(𝜑(𝑦), 𝜑(𝑦′ ))  =  ‖𝛿𝜑(𝑦)  −  𝛿𝜑(𝑦′)‖  =  ‖𝜏 (𝑦)𝛿𝜑(𝑦)   −  𝜏 (𝑦
′)𝛿𝜑(𝑦′)‖  

=  ‖𝛿𝑦 ° 𝑇 − 𝛿𝑦′  ° 𝑇‖  =  ‖𝑇
∗ (𝛿𝑦  −  𝛿𝑦′)‖  =  ‖𝛿𝑦  −  𝛿𝑦′‖ =  𝑑(𝑦, 𝑦

′).  
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If now 𝑦, 𝑦′  ∈  𝑌 with 𝑑(𝜑(𝑦), 𝜑(𝑦′))  =  2, then 𝑑(𝑦, 𝑦′)  =  2. In contrary case, it 

would be 𝑑 (𝜑−1 (𝜑(𝑦)), 𝜑−1 (𝜑(𝑦′)))  <  2 and, by applying to 𝑇−1 what has already 

been proved, we would have 𝑑 (𝜑−1 (𝜑(𝑦)), 𝜑−1 (𝜙(𝑦′)))  =  𝑑(𝜑(𝑦), 𝜑(𝑦′)), that is, 

2 =  𝑑(𝜑(𝑦), 𝜑(𝑦′))  =  𝑑(𝑦, 𝑦′)  <  2, a contradiction.  

       Applying Theorem (5.1.4), we can describe codimension 1 linear isometries between 

Lip(𝑋)-spaces as follows.  

Theorem (5.1.9)[172]: Let 𝑇 be a codimension 1 linear isometry from Lip(𝑋) into 

Lip(𝑌 ). Suppose 𝑇1𝑋 is a contraction. Then there exists a closed subset 𝑌0 of 𝑌  where 

either 𝑌0  =  𝑌 \{𝑝} being p an isolated point of 𝑌 or 𝑌0  =  𝑌, a surjective Lipschitz map 

𝜑 ∶  𝑌0  →  𝑋 and a Lipschitz function 𝜏 ∶  𝑌0  →  𝑆𝕂 such that  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0. 

Proof. By Theorem (5.1.4) there exists a nonempty closed subset 𝑌0 of 𝑌, a Lipschitz map 

𝜑 from 𝑌0 onto 𝑋 and a Lipchitz function τ from 𝑌0 into 𝑆𝕂 such that  

𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑓 ∈  Lip(𝑋), ∀𝑦 ∈  𝑌0. 
 Suppose 𝑌 \𝑌0 has two distinct points 𝑦1, 𝑦2. For 𝑖 ∈  {1, 2}, let 

 𝛿𝑖  =  𝑑(𝑌0  ∪  {𝑦𝑗 ∶  𝑗 ≠  𝑖}, 𝑦𝑖). 

 Clearly, 𝛿𝑖  >  0 and ℎ𝑦𝑖
𝛿𝑖  ∈  Lip(𝑌 ) satisfies that ℎ𝑦𝑖

𝛿𝑖  (𝑦𝑖)  =  1 and ℎ𝑦𝑖
𝛿𝑖  (𝑦)  =  0 for all 

𝑦 ∈  𝑌0  ∪  {𝑦𝑗 ∶  𝑗 ≠  𝑖}.  

         We see that ℎ𝑦1
𝛿1 and ℎ𝑦2

𝛿2 are linearly independent. Suppose 𝛼ℎ𝑦1
𝛿1  +  𝛽ℎ𝑦2

𝛿2  =  0 for 

some scalars 𝛼, 𝛽. Since ℎ𝑦𝑖
𝛿𝑖  (𝑦𝑗  )  =  𝛿𝑖𝑗 where 𝛿𝑖𝑗 is the Kronecker’s delta, it follows that 

𝛼 =  𝛽 =  0.  

      We now prove that no nonzero linear combination of ℎ𝑦1
𝛿1 and ℎ𝑦2

𝛿2 belongs to the range 

of 𝑇. Let 𝛼, 𝛽 ∈ 𝕂 and suppose there exists a 𝑓 ∈ Lip(𝑋) such that 𝑇 𝑓 =  𝛼ℎ𝑦1
𝛿1  +

 𝛽ℎ𝑦2
𝛿2  . Then, for all 𝑦 ∈  𝑌0, we have 𝑇 𝑓(𝑦)  =  0, but also 𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)). In 

consequence, 𝜏 (𝑦)𝑓(𝜑(𝑦))  =  0 for all 𝑦 ∈  𝑌0. Then 𝑓 is the zero function because 𝜏 is 

unimodular and 𝜑 is surjective, and thus 𝛼ℎ𝑦1
𝛿1  +  𝛽ℎ𝑦2

𝛿2 = 0 by the linearity of 𝑇.  

       From the above it is deduced that ℎ𝑦1
𝛿1   is not in the range of 𝑇. Since the range of 𝑇 

has codimension 1, we have ℎ𝑦2
𝛿2= 𝛼ℎ𝑦1

𝛿1  + 𝑇(𝑔) for some 𝛼 ∈ 𝕂 and 𝑔 ∈ Lip(𝑋). Then 

ℎ𝑦2
𝛿2 − 𝛼ℎ𝑦1

𝛿1   = 0, a contradiction. Therefore 𝑌 \𝑌0 has at most a point. Then either 𝑌0  =

 𝑌 or 𝑌0  =  𝑌 \{𝑝} for some point 𝑝 ∈  𝑌. This point 𝑝 must be isolated since 𝑌 \{𝑝} is 

closed.  

       Theorem (5.1.9) allows us to classify codimension 1 linear isometries between 

Lip(𝑋)-spaces in two types:  

Definition (5.1.10)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a codimension 1 linear isometry 

such that 𝑇1𝑋 is a contraction. We say:  

       (i) 𝑇 is of type 𝐼 when there exists an isolated point 𝑝 of 𝑌 , a surjective Lipschitz map 

𝜑 ∶  𝑌 \{𝑝}  →  𝑋 and a Lipschitz function τ∶  𝑌 \{𝑝}  →  𝑆𝕂 such that  

𝑇 𝑓(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑦 ∈  𝑌 \{𝑝}.  
       (ii) 𝑇 is of type II if there is a surjective Lipschitz map 𝜑 ∶  𝑌 →  𝑋 and a Lipschitz 

function 𝜏 ∶  𝑌 →  𝑆𝕂 such that  
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𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑦 ∈  𝑌. 
       These two types are not necessarily disjoint as the next result shows.  

Proposition (5.1.11)[172]: Let Y be a metric compact space with an isolated point 𝑝. Let 

𝑋 =  𝑌 \{𝑝} and suppose there exists a point 𝑥′  ∈  𝑋 such that 𝑑(𝑥, 𝑥′)  ≤  𝑑(𝑥, 𝑝) for all 

𝑥 ∈  𝑋 (in particular, this happens when diam(𝑋)  ≤  𝑑(𝑝, 𝑋)). Then the map 𝑇 ∶
 Lip(𝑋)  →  Lip(𝑌 ) defined by  

𝑇 𝑓(𝑦)  =  𝑓(𝑦), ∀𝑦 ∈  𝑋, 𝑇 𝑓(𝑝)  =  𝑓(𝑥′), 
is a codimension 1 linear isometry with 𝐿(𝑇1𝑋)  <  1, which is simultaneously of types I 

and II.  

Proof. Let 𝑓 ∈ Lip(𝑋). Obviously, ‖𝑇 𝑓‖∞  =  ‖𝑓‖∞ and 𝐿(𝑓)  ≤  𝐿(𝑇 𝑓). Moreover, we 

check at once that  

|𝑇 𝑓(𝑥)  −  𝑇 𝑓(𝑝)|  =  |𝑓(𝑥)  −  𝑓(𝑥′)|  ≤  𝐿(𝑓)𝑑(𝑥, 𝑥′)  ≤  𝐿(𝑓)𝑑(𝑥, 𝑝), ∀𝑥 ∈  𝑋. 
Therefore 𝐿(𝑇 𝑓)  ≤  𝐿(𝑓) and so ‖𝑇 𝑓‖  =  ‖𝑓‖ . Clearly, T is linear. However T is not 

surjective, since the function ℎ𝑝
𝑟  ∈ Lip(𝑌 ) with 𝑟 =  𝑑(𝑝, 𝑋)  >  0 is not in 𝑇(Lip(𝑋)). 

Moreover, 𝑇1𝑋  =  1𝑌 and thus 𝐿(𝑇1𝑋)  =  0 <  1. Finally, 𝑇(Lip(𝑋)) is of codimension 1 

since every 𝑔 ∈ Lip(𝑌 ) may be expressed as  

𝑔 =  𝑇 𝑓 + (𝑔(𝑝) −  𝑔(𝑥′))ℎ𝑝
𝑟  , 

where 𝑓 is the function in Lip(𝑋) defined by 𝑓(𝑥)  =  𝑔(𝑥) for all 𝑥 ∈  𝑋.  
       Hence T is of type I taking as 𝜑 the identity map on 𝑌 \{𝑝} and as 𝜏 the function 1𝑌 

\{p}. But also 𝑇 is of type II if we now put 𝜏 =  1𝑌 and 𝜑 the function from 𝑌 to 𝑌 \{𝑝} 
given by 𝜑(𝑦) =  𝑦 if 𝑦 ≠  𝑝 and 𝜑(𝑝)  =  𝑥′.  
      We next give a method for constructing type I codimension 1 linear isometries which 

are not of type II.  

Proposition (5.1.12)[172]: Let 𝑋 and 𝑌 be metric compact spaces. Let 𝑝 be a point of 

𝑌 such that 1 <  𝑑(𝑝, 𝑌 \{𝑝}), 𝜑 ∶  𝑌 \{𝑝}  →  𝑋 a surjective isometry and τ a unimodular 

constant. Then the map T : Lip(X) → Lip(Y ) defined by  

𝑇 𝑓(𝑦) =  𝜏𝑓(𝜑(𝑦)), ∀𝑦 ∈  𝑌 \{𝑝}, 𝑇 𝑓(𝑝)  =  0, 

 for all 𝑓 ∈ Lip(𝑋), is a codimension 1 linear isometry of type I with 𝐿(𝑇1𝑋)  <  1, but it 

is not of type II. 

Proof. Obviously, 𝑇 is linear and preserves the supremum norm. Let f ∈ Lip(X). For 

all 𝑥, 𝑤 ∈  𝑋, we have  

|𝑓(𝑥) −  𝑓(𝑤)|  = 𝑇 𝑓(𝜑−1 (𝑥)) −  𝑇 𝑓(𝜑−1 (𝑤))    

≤  𝐿(𝑇 𝑓)𝑑(𝜑−1 (𝑥), 𝜑−1 (𝑤))  =  𝐿(𝑇 𝑓)𝑑(𝑥,𝑤).  
Hence 𝐿(𝑓)  ≤  𝐿(𝑇 𝑓) and so ‖𝑓‖  ≤ ‖𝑇 𝑓‖ . On the other hand, it is clear that  

|𝑇 𝑓(𝑦) −  𝑇 𝑓(𝑧)| =  |𝑓(𝜑(𝑦)) −  𝑓(𝜑(𝑧))|  

≤  𝐿(𝑓)𝑑(𝜑(𝑦), 𝜑(𝑧))  ≤  ‖𝑓‖ 𝑑(𝑦, 𝑧)  
for all 𝑦, 𝑧 ∈  𝑌 \{𝑝}, and  

|𝑇 𝑓(𝑦) −  𝑇 𝑓(𝑝)| =  |𝑇 𝑓(𝑦)| =  |𝑓(𝜑(𝑦))| ≤  ‖𝑓‖∞  

≤ ‖𝑓‖∞ 𝑑(𝑝, 𝑌 \{𝑝})  ≤  ‖𝑓‖ 𝑑(𝑝, 𝑦)  
for all 𝑦 ∈  𝑌 \{𝑝}. This implies that 𝐿(𝑇 𝑓) ≤  ‖𝑓‖ and thus ‖𝑇 𝑓‖  ≤  ‖𝑓‖. Hence T is 

an isometry. Moreover, we have  

|𝑇1𝑋(𝑦)  −  𝑇1𝑋(𝑝)|  =  |𝑇1𝑋(𝑦)|  =  1 <  𝑑(𝑝, 𝑌 \{𝑝})  ≤  𝑑(𝑝, 𝑦)  

for all 𝑦 ∈  𝑌 \{𝑝}, which gives 𝐿(𝑇1𝑋)  <  1.  
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       We now claim that 𝑇 has codimension 1. First observe that the function ℎ𝑝
1  ∈  Lip(𝑌) 

does not belong to 𝑇(Lip(𝑋)), since if ℎ𝑝
1  =  𝑇 𝑓 for some 𝑓 ∈ Lip(𝑋)), then 1 =

 ℎ𝑝
1  (𝑝)  =  𝑇 𝑓(𝑝)  =  0, a contradiction. Then, given 𝑔 ∈ Lip(𝑌 ), we take 𝑓 =

 𝜏 (𝑔 ° 𝜑−1 )  ∈  Lip(𝑋) and it is clear that 𝑔 =  𝑇 𝑓 +  𝑔(𝑝)ℎ𝑝
1  , which proves our claim. 

Evidently, 𝑇 is of type I. However T is not of type II since, in contrary case, we could 

write 𝑇 𝑓 =  𝜏′ (𝑓 ° 𝜑′) for some Lipschitz surjection 𝜑′ ∶  𝑌 →  𝑋 and some Lipschitz 

function 𝜏′ ∶  𝑌 →  𝑆𝕂, and we would have 𝑇1𝑋 (𝑝)  =  𝜏′ (𝑝)  ≠  0, which contradicts the 

definition of 𝑇.  

      We next provide a example of a type II codimension 1 linear isometry which is not of 

type I.  

Example (5.1.13)[172]: For 𝑋 =  [0, 2] and 𝑌 =  [0, 1]  ∪  [2, 3], let 𝜑 ∶  𝑌 →  𝑋 be the 

map defined by  

𝜑(𝑦)  =   {
𝑦 𝑖𝑓 𝑦 ∈  [0, 1],

𝑦−1 𝑖𝑓 𝑦 ∈  [2, 3],
  

and let 𝜏 ∶  𝑌 →  𝑆ℂ be the function given by  

𝜏 (𝑦) =  {

1 𝑖𝑓 𝑦 ∈  [0, 1],

2

3
 +
√5

3
 𝑖 𝑖𝑓 𝑦 ∈  [2, 3].

 

We claim that 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) defined by  

𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)), ∀𝑦 ∈  𝑌, ∀𝑓 ∈  Lip(𝑋),  
is a codimension 1 linear isometry.  

      Since 𝜑 and τ are Lipschitz, 𝑇 is well defined. Obviously, 𝑇 is linear and, by the 

surjectivity of 𝜑, 𝑇 preserves the supremum norm.  

      We now check that 𝐿(𝑓)  ≤  𝐿(𝑇 𝑓) for all 𝑓 ∈ Lip(𝑋). Let 𝑓 ∈ Lip(𝑋) and 𝑥1, 𝑥2  ∈
 𝑋 with 𝑥1  ≠  𝑥2. If 𝑥1, 𝑥2  ∈  [0, 1]or 𝑥1, 𝑥2  ∈  [1, 2], then  

|𝑓(𝑥1) −  𝑓(𝑥2)|  =  |𝑇 𝑓(𝑦1) −  𝑇 𝑓(𝑦2)|  ≤  𝐿(𝑇 𝑓)|𝑦1  −  𝑦2|  =  𝐿(𝑇 𝑓)|𝑥1  −  𝑥2| 
for suitable points 𝑦1, 𝑦2 in Y satisfying 𝜑(𝑦1)  =  𝑥1 and 𝜑(𝑦2)  =  𝑥2. If 𝑥1  ∈  [0, 1] and 

𝑥2  ∈  [1, 2], suppose that 𝑥1  ≠  1 ≠  𝑥2 and  
|𝑓(1) −  𝑓(𝑥1)|

1 − 𝑥1
 <
|𝑓(𝑥2) −  𝑓(𝑥1)|

𝑥2  −  𝑥1
 ,
|𝑓(𝑥2) −  𝑓(1)|

𝑥2  −  1
 <
|𝑓(𝑥2) −  𝑓(𝑥1)|

𝑥2  −  𝑥1
 .  

Then we arrive at the following contradiction:  

|𝑓(𝑥2) −  𝑓(𝑥1)| ≤  |𝑓(𝑥2) −  𝑓(1)|  + |𝑓(1) −  𝑓(𝑥1)| 

<
|𝑓(𝑥2) −  𝑓(𝑥1)|

𝑥2  −  𝑥1
 [(𝑥2  −  1) + (1 − 𝑥1)]  =  |𝑓(𝑥2) −  𝑓(𝑥1)| . 

Therefore we have 
|𝑓(𝑥2) −  𝑓(𝑥1)|

𝑥2  −  𝑥1
 ≤
|𝑓(1) −  𝑓(𝑥1)|

1 − 𝑥1
  

or 
|𝑓(𝑥2) −  𝑓(𝑥1)|

𝑥2  −  𝑥1
 ≤
|𝑓(𝑥2) −  𝑓(1)|

𝑥2  −  1
 . 

Applying the above-proved gives |𝑓(𝑥2)  −  𝑓(𝑥1)| /(𝑥2 − 𝑥1)  ≤  𝐿(𝑇 𝑓) and so 𝐿(𝑓)  ≤
 𝐿(𝑇 𝑓). As also ‖𝑇 𝑓‖∞  =  ‖𝑓‖∞ , we deduce that ‖𝑓‖  ≤  ‖𝑇 𝑓‖ .  
       On the other hand, let 𝑦1, 𝑦2  ∈  𝑌. A simple calculation yields  

|𝑇 𝑓(𝑦1) −  𝑇 𝑓(𝑦2)| =  |𝜏 (𝑦1)𝑓(𝜑(𝑦1)) −  𝜏 (𝑦2)𝑓(𝜑(𝑦2))| 
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≤ |𝜏 (𝑦1)𝑓(𝜑(𝑦1))  −  𝜏 (𝑦1)𝑓(𝜑(𝑦2))|  + |𝜏 (𝑦1)𝑓(𝜑(𝑦2)) −  𝜏 (𝑦2)𝑓(𝜑(𝑦2))|  

≤  𝐿(𝑓)|𝜑(𝑦1)  − 𝜑(𝑦2)|  + ‖𝑓‖∞ |𝜏 (𝑦1) −  𝜏 (𝑦2)| .  
If 𝑦1, 𝑦2  ∈  [0, 1] or 𝑦1, 𝑦2  ∈  [2, 3], it follows that  

|𝑇 𝑓(𝑦1) −  𝑇 𝑓(𝑦2)|  ≤  𝐿(𝑓)|𝑦1 − 𝑦2|   ≤  ‖𝑓‖ |𝑦1 − 𝑦2| , 
whereas for 𝑦1  ∈  [0, 1] and 𝑦2  ∈  [2, 3], we obtain that 

 |𝑇 𝑓(𝑦1) −  𝑇 𝑓(𝑦2)|  ≤  ‖𝑓‖ [ |𝑦1  −  𝑦2  +  1|  + |
1

3
 −
√5

3
 𝑖|]  

= ‖𝑓‖ (𝑦2  −  𝑦1  −  1 + √
2

3
)  ≤  ‖𝑓‖ (𝑦2  −  𝑦1)  =  ‖𝑓‖ |𝑦1  −  𝑦2| . 

This proves that 𝐿(𝑇 𝑓)  ≤  ‖𝑓‖ and therefore ‖𝑇 𝑓‖  ≤  ‖𝑓‖. Hence 𝑇 is a linear 

isometry. Furthermore, 𝐿(𝑇1𝑋)  =   √2/3  <  1.  

      Finally, we claim that T has codimension 1. Clearly, the function  

𝑔(𝑦)  =  1 𝑖𝑓 𝑦 ∈  [0, 1], 𝑔(𝑦)  =  0 𝑖𝑓 𝑦 ∈  [2, 3].  
is in Lip(𝑌 ), but not in 𝑇(Lip(𝑋)) since |𝑔(1)|  =  1 ≠  0 =  |𝑔(2)|. Given ℎ ∈

 Lip(𝑌 ), we can take the scalar 𝛼 =  ℎ(1) −  ℎ(2) (
2

3
 −

√5

3
 𝑖) and the function  

𝑓(𝑥) =  {

ℎ(𝑥) −  𝛼 𝑖𝑓 𝑥 ∈  [0, 1],

(
2

3
 −
√5

3
 𝑖)   ℎ(𝑥 +  1) 𝑖𝑓 𝑥 ∈  [1, 2].

 

 It is readily seen that 𝑓 ∈ Lip(𝑋) with 𝐿(𝑓)  ≤  𝐿(ℎ). Taking into account that  

𝑇 𝑓(𝑦) +  𝛼𝑔(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)) +  𝛼𝑔(𝑦) =  𝑓(𝑦) +  𝛼 =  ℎ(𝑦)   
for all 𝑦 ∈  [0, 1], and  

𝑇 𝑓(𝑦) +  𝛼𝑔(𝑦) =  𝜏 (𝑦)𝑓(𝜑(𝑦)) +  𝛼𝑔(𝑦) = (
2

3
 +
√5

3
 𝑖)  𝑓(𝑦 −  1) 

= (
2

3
 +
√5

3
 𝑖) (

2

3
 −
√5

3
 𝑖)  ℎ(𝑦)  =  ℎ(𝑦)  

for all 𝑦 ∈  [2, 3], we have ℎ =  𝑇 𝑓 +  𝛼𝑔, which proves our claim.  

       Observe that 𝑇 is of type II, but not of type I since Y has not isolated points. Next we 

study the properties of the map 𝜑 and state some conditions under which 𝜑 is a Lipschitz 

homeomorphism.  

Lemma (5.1.14)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a codimension 1 linear isometry 

such that 𝑇1𝑋 is a contraction. For any 𝑓 ∈  Lip(𝑋) and 𝑥 ∈  𝑋, the function |𝑇 𝑓| is 

constant on 𝜑−1  ({𝑥}).  
Proof. By Theorem (5.1.9), for all 𝑦 ∈  𝑌0 we have 𝑇 𝑓(𝑦)  =  𝜏 (𝑦)𝑓(𝜑(𝑦)) and since 

 (𝑦)  ∈  𝑆𝕂 , it follows that |𝑇 𝑓(𝑦)|  =  |𝑓(𝜑(𝑦))| . If now 𝑦 ∈  𝜑−1 ({𝑥}), we 

get |𝑇 𝑓(𝑦)|  =  |𝑓(𝑥)| .  
Proposition (5.1.15)[172]: Let 𝑇 ∶  Lip(𝑋)  →  Lip(𝑌 ) be a codimension 1 linear isometry 

such that 𝑇1𝑋 is a contraction. We take 𝑌0, 𝜑 and 𝜏 as in Theorem (5.1.9). The following 

assertions hold:  

       (i) For each 𝑥 ∈  𝑋, 𝜑−1 ({𝑥}) has at most two elements.  

       (ii) If there exists a point 𝑥0  ∈  𝑋 and two distinct points 𝑎, 𝑏 ∈  𝑌0 such that 𝜑(𝑎)  =
𝜑(𝑏)  =  𝑥0, then 𝜑−1 ({𝑥}) is a singleton for each 𝑥 ∈  𝑋\{𝑥0}.  
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       (iii) If 𝑇 is of type I (𝑌0  ≠  𝑌 ), then 𝜑 is injective and hence a homeomorphism.  

       (iv) If 𝑇 is of type I with 𝑌0  =  𝑌 \{𝑝} and 𝑇∗ (𝛿𝑝)  ∈  Lip(𝑋)
∗ is zero, then 𝜑 is a 

Lipschitz homeomorphism.  

Proof. (i) Suppose that there exist three distinct points 𝑦1, 𝑦2, 𝑦3  ∈  𝑌0 such that 𝜑(𝑦1)  =
 𝜑(𝑦2)  =  𝜑(𝑦3). Put 𝜌 =  min{𝑑(𝑦1, 𝑦2), 𝑑(𝑦2, 𝑦3), 𝑑(𝑦1, 𝑦3)} and consider the 

functions ℎ𝑦1
𝜌

 and ℎ𝑦3
𝜌
 . Since the codimension of range of T is 1, there exist constants 𝛼 

and 𝛽, not both zero, such that 𝛼ℎ𝑦1
𝜌
 + 𝛽 ℎ𝑦3

𝜌
 ∈  𝑇(Lip(𝑋)). By Lemma (5.1.14) we 

obtain 

|𝛼 ℎ𝑦1
𝜌
 (𝑦1)  +  𝛽ℎ𝑦3

𝜌
 (𝑦1)|   =   |𝛼ℎ𝑦1

𝜌
 (𝑦2)  +  𝛽ℎ𝑦3

𝜌
 (𝑦2)|    = |𝛼ℎ𝑦1

𝜌
 (𝑦3)  +  𝛽ℎ𝑦3

𝜌
 (𝑦3)|   . 

       This gives |𝛼|  =  0 =  |𝛽|, a contradiction. Hence 𝜑−1 ({𝑥}) contains at most two 

points for all 𝑥 ∈  𝑋.  
       (ii) Suppose there are distinct points 𝑥0, 𝑥 ∈  𝑋 and 𝑎, 𝑏, 𝑝, 𝑞 ∈  𝑌0 such that  

𝑎 ≠  𝑏, 𝜑(𝑎) =  𝜑(𝑏) =  𝑥0, 𝑝 ≠  𝑞, 𝜑(𝑝)  =  𝜑(𝑞)  =  𝑥. 
Take the positive numbers  

𝜖 = min{𝑑(𝑎, 𝑏), 𝑑(𝑝, 𝑏), 𝑑(𝑞, 𝑏)}, 
 𝑟1  = min{𝑑(𝑎, 𝑏), 𝑑(𝑎, 𝑝), 𝑑(𝑎, 𝑞)}, 
 𝑟2  =  min {𝑑(𝑝, 𝑎), 𝑑(𝑝, 𝑏), 𝑑(𝑝, 𝑞)} , 

 and consider the functions 𝑓1  =  ℎ𝑏
𝜖  and 𝑓2  =  ℎ𝑎

𝑟1  +  ℎ𝑝
𝑟2 in Lip(𝑌 ). Then  

𝑓1(𝑏) = 1,   𝑓1(𝑎) = 𝑓1(𝑝) =  𝑓1(𝑞) =  0,   𝑓2(𝑎) = 𝑓2(𝑝) = 1,   𝑓2(𝑏) = 𝑓2(𝑞) = 0. 
 Again, the codimension 1 of range of T provides two scalars α, β, not both zero, such that 

𝛼𝑓1  +  𝛽𝑓2  ∈  𝑇(Lip(𝑋)). By Lemma (5.1.14), it follows that  

|𝛼𝑓1(𝑝) +  𝛽𝑓2(𝑝)|  =  |𝛼𝑓1(𝑞) +  𝛽𝑓2(𝑞)|  
and  

|𝛼𝑓1(𝑎) +  𝛽𝑓2(𝑎)|  =  |𝛼𝑓1(𝑏) +  𝛽𝑓2(𝑏)| . 
Therefore |𝛼|  =  |𝛽|  =  0, a contradiction. Hence ii) is true.  

        (iii) Let us assume 𝑇 is of type I (𝑌0  ≠  𝑌 ). Then 𝑌 \𝑌0  =  {𝑝} for some isolated 

point 𝑝 ∈  𝑌. Therefore we may take 𝑟 =  𝑑(𝑝, 𝑌0)   >  0 and consider ℎ𝑝
𝑟  ∈  Lip(𝑌 ). If 

ℎ𝑝
𝑟  ∈  𝑇(Lip(𝑋)), it is easy to show that ℎ𝑝

𝑟  = 0, a contradiction. Hence ℎ𝑝
𝑟  does not belong 

to the range of 𝑇.  
       Suppose there exist 𝑦0, 𝑦 ∈  𝑌0 such that 𝑦0  ≠  𝑦 and 𝜑(𝑦0)  =  𝜑(𝑦). Let 𝜖 =
 min{𝑑(𝑦0, 𝑦), 𝑑(𝑦, 𝑝)}. Since ℎ𝑦

𝜖  satisfies ℎ𝑦
𝜖  (𝑦)  =  1 ≠  0 =  ℎ𝑦

𝜖  (𝑦0), Lemma (5.1.14) 

gives ℎ𝑦
𝜖  ∉  𝑇(Lip(𝑋)). As a consequence, there exists 𝛼 ∈ 𝕂 and 𝑓 ∈  Lip(𝑋) such that 

ℎ𝑝
𝑟  =  𝑇 𝑓 +  𝛼ℎ𝑦

𝜖  . Then Lemma (5.1.14) gives |ℎ𝑝
𝑟  (𝑦0) −  𝛼ℎ𝑦

𝜖  (𝑦0)|    = |ℎ𝑝
𝑟  (𝑦)  −

 𝛼ℎ𝑦
𝜖  (𝑦)|   , that is 0 =  |𝛼|, but then ℎ𝑝

𝑟  ∈  𝑇(Lip(𝑋)), a contradiction. Hence 𝜑 is 

injective.  

        (iv) Let 𝑦, 𝑧 ∈  𝑌0 with 𝑦 ≠  𝑧. Putting 𝛾 =  min {𝑑(𝑦, 𝑧), 𝑑(𝑦, 𝑝)} , define 𝑔 =

 𝑑(𝑦, 𝑧)ℎ𝑦
𝛾
 ∈  Lip(𝑌 ). A trivial verification yields 𝐿(𝑔)  ≤  max {1, diam(𝑌0)/𝑑(𝑝, 𝑌0)} 

and ‖𝑔‖∞  =  𝑔(𝑦)  =  𝑑(𝑦, 𝑧)  ≤  diam(𝑌0). As a consequence, ‖𝑔‖  ≤  𝑘 where 𝑘 =
 max{𝛿, diam(𝑌0)} and 𝛿 =  max {1, diam(𝑌0)/𝑑(𝑝, 𝑌0)} .  
      We now consider the function ℎ𝑝

𝑟  ∈  Lip(𝑌 ) with 𝑟 =  𝑑(𝑝, 𝑌0). Since ℎ𝑝
𝑟  ∉

 𝑇(Lip(𝑋)) (see iii)) and 𝑇(Lip(𝑋)) has codimension 1, there exist 𝛼 ∈ 𝕂 and 𝑓 ∈
 Lip(𝑋) such that  =  𝑇 𝑓 +  𝛼ℎ𝑝

𝑟  . Since  

0 =  𝑔(𝑝)  =  𝑇 𝑓(𝑝)  +  𝛼 =  𝑇∗ 𝛿𝑝(𝑓)  +  𝛼 =  𝛼, 

it follows that 𝑔 =  𝑇 𝑓. Then  
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𝑑(𝑦, 𝑧) =  |𝑔(𝑦)| = |𝑔(𝑦) − 𝜏 (𝑦)𝜏 (𝑧)𝑔(𝑧)   | =   | 𝑇 𝑓(𝑦) −  𝜏 (𝑦)𝜏 (𝑧)𝑇 𝑓(𝑧)|     

=   |𝜏 (𝑦)𝑓(𝜑(𝑦)) −  𝜏 (𝑦)𝜏 (𝑧)𝜏 (𝑧)𝑓(𝜑(𝑧))|     =  |𝑓(𝜑(𝑦)) −  𝑓(𝜑(𝑧))|  

≤  𝐿(𝑓)𝑑(𝜑(𝑦), 𝜑(𝑧))  ≤  ‖𝑔‖ 𝑑(𝜑(𝑦), 𝜑(𝑧))  ≤  𝑘𝑑(𝜑(𝑦), 𝜑(𝑧)). 
 Hence 𝜑−1 is Lipschitz and so 𝜑 is a Lipschitz homeomorphism. 

Section (5.2): Vector-Valued Lipschitz Functions 

              Given a metric space (𝑋, 𝑑) and a Banach space 𝐸, we denote by Lip(𝑋, 𝐸) the 

Banach space of all bounded Lipschitz functions 𝑓: 𝑋 ⟶ 𝐸 with the norm ‖𝑓‖  =
max{𝐿(𝑓), ‖𝑓‖∞}, where 

 𝐿(𝑓) = sup{‖𝑓(𝑥) −  𝑓(𝑦)‖/𝑑(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝑋, 𝑥 ≠  𝑦}   . 
  If 𝐸 is the field of real or complex numbers, we shall write simply Lip(𝑋).   
          The study of surjective linear isometries between spaces Lip(𝑋) was initiated by 

Roy [46] and Vasavada [47]. In [46], Roy proved that if (𝑋, 𝑑) is a compact connected 

metric space with diameter at most 1, then a map 𝑇 is a surjective linear isometry from 

Lip(𝑋) onto itself if and only if there exist a surjective isometry 𝜑: 𝑋 ⟶ 𝑋 and a scalar 𝜏 
of modulus 1 such that 

𝑇(𝑓)(𝑦) = 𝜏𝑓(𝜑(𝑦)), ∀𝑦 ∈ 𝑌, ∀𝑓 ∈ Lip(𝑋). 
In [182], Novinger improved slightly Roy's result by considering linear isometries from 

Lip(𝑋) onto Lip(𝑌). Vasavada [47] proved it for linear isome tries from Lip(𝑋) onto 

Lip(𝑌) when the metric spaces 𝑋, 𝑌 are compact with diameter at most 2 and 𝛽-connected 

for some 𝛽 <  1. Weaver [189] developed a technique to remove the compactness 

assumption on 𝑋 and 𝑌 and showed that the above-mentioned characterization holds if 

𝑋, 𝑌 are complete and 1-connected with diameter at most 2 [189]. The reduction to metric 

spaces of diameter at most 2 is not restrictive since if (𝑋, 𝑑) is a metric space and 𝑋′ is the 

set 𝑋 remetrized with the metric 𝑑′(𝑥, 𝑦) = min{𝑑(𝑥, 𝑦), 2}, then the diameter of 𝑋′ is at 

most 2 and Lip(𝑋′) is isometrically isomorphic to Lip(𝑋) [184]. We must also mention 

the complete research carried out on surjective linear isome tries between spaces of Holder 

functions [25], [186], [180], [188]. See Weaver's book Lipschitz Algebras [184]. This is 

essentially the history of the onto scalar-valued case. Recently, into linear isometries (that 

is, not necessarily surjective) and codimension 1 linear isometries between spaces Lip(𝑋) 
have been studied in [172]. 

We give a complete description of linear isometries between spaces of vector-

valued Lipschitz functions. Little or nothing is known on the matter in the vector-valued 

case. Our approach to the problem is not based on extreme points. We have used here a 

different method which is influenced by that utilized by Cambern [176] to characterize 

into linear isometries between spaces 𝐶(𝑋, 𝐸) of continuous functions from a compact 

Hausdorff space 𝑋 into a Banach space 𝐸 with the supremum norm. In [187], Jerison 

extended to the vector case the classical Banach-Stone theorem about onto linear 

isometries between spaces 𝐶(𝑋), and Jerison's theorem was generalized by Cambern [176] 

by considering into linear isometries. 

We show that Cambern's and Jerison's theorems have a natural formulation in the 

context of Lipschitz functions. 

           Given a Banach space 𝐸, 𝑆𝐸 will denote its unit sphere and 𝐵𝐸 its closed unit ball. 

Let us recall that a Banach space 𝐸 is said to be strictly convex if every element of 𝑆𝐸 is an 

extreme point of 𝐵𝐸 . For Banach spaces 𝐸 and 𝐹, 𝐿(𝐸, 𝐹) will stand for the Banach space 

of all bounded linear operators from 𝐸 into 𝐹 with the canonical norm of operators. In the 
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case 𝐸 =  𝐹, we shall write 𝐿(𝐸) instead of 𝐿(𝐸, 𝐹).  Given a metric space (𝑋, 𝑑), we 

shall denote by 𝑙𝑥 the function constantly 1 on 𝑋 and by diam(𝑋) the diameter of 𝑋. If 
𝜑: 𝑋 ⟶ 𝑌 is a Lipschitz map between metric spaces, 𝐿(𝜑) will be its Lipschitz constant.          

        For any 𝑓 ∈ Lip(𝑋) and 𝑒 ∈ 𝐸, define 𝑓 ⊗  𝑒: 𝑋 → 𝐸 by (𝑓 ⊗ 𝑒)(𝑥)  =  𝑓 (𝑥)𝑒. It is 

easy to check that 𝑓 ⊗ 𝑒 ∈ Lip(𝑋, 𝐸) with ‖𝑓 ⊗ 𝑒‖∞ = ‖𝑓‖∞‖𝑒‖ and 𝐿(𝑓 ⊗ 𝑒) =
𝐿(𝑓)‖𝑒‖, and thus ‖𝑓 ⊗ 𝑒‖  =  ‖𝑓‖‖𝑒‖. 
Theorem (5.2.1)[185]: Let 𝑋 and 𝑌 be compact metric spaces and let 𝐸 be a strictly 

convex Banach space. Let 𝑇 be a linear isometry from Lip(𝑋, 𝐸) into Lip(𝑌, 𝐸) such that 

𝑇(1𝑋⊗𝑒)  =  𝐼𝑦⊗𝑒 for some 𝑒 ∈ 𝑆𝐸  . Then there exists a Lipschitz map 𝜑 from a 

closed subset 𝑌𝑜 of 𝑌 onto 𝑋 with 𝐿(𝜑) ≤ max{1, diam(𝑋)/2}, and a Lipschitz map 𝑦 ⟼

𝑇𝑦 from 𝑌 into 𝐿(𝐸) with ‖𝑇𝑦‖ = 1 for all 𝑦 ∈ 𝑌, such that 

𝑇(𝑓)(𝑦) =  𝑇𝑦 (𝑓(𝜑(𝑦))) , ∀𝑦 ∈ 𝑌𝑜, ∀𝑓 ∈ Lip(𝑋, 𝐸). 

Proof. For each 𝑥 ∈ 𝑋, define 

𝐹(𝑥) =  {𝑓 ∈ Lip(𝑋, 𝐸):  𝑓 (𝑥) =  ‖𝑓‖∞𝑒} . 
Clearly, 𝑙𝑥⨂𝑒 ∈ 𝐹(𝑥). For each 𝛿 >  0, the map ℎ𝑥,𝛿  ⨂  𝑒: 𝑋 → 𝐸,  defined by 

ℎ𝑋,𝛿(𝓏) = max  {0, 1 − 𝑑(𝓏, 𝑥)/𝛿}    (𝓏 ∈ 𝑋), 

belongs to 𝐹(𝑥). Indeed, an easy verification shows that ℎ𝑥,𝛿⨂Lip(𝑋) with ‖ℎ𝓍,𝛿‖∞  =

1 =  ℎ𝑥,𝛿(𝓍). Hence ℎ𝑥,𝛿  ⨂ 𝑒 ∈ Lip(𝑋, 𝐸) with ‖ℎ𝑥,𝛿⨂𝑒‖∞ = 1 and (ℎ𝑥,𝛿⨂𝑒)(𝑥)  =  𝑒. 

Then (ℎ𝑥,𝛿⨂𝑒)(𝑥) =  ‖ℎ𝑥,𝛿⨂  𝑒‖∞ 𝑒 and thus ℎ𝑥,𝛿⨂  𝑒 ∈ 𝐹(𝑥). 

       We shall prove the theorem in a series of steps. 

Step 1. Let 𝑥 ∈ 𝑋. For each 𝑓 ∈ 𝐹(𝑥), the set 

𝑃(𝑓)  =  {𝑦 ∈ 𝑌: 𝑇(𝑓)(𝑦)  =  𝑓(𝑥)} 
is nonempty and closed. 

     Let 𝑓 ∈ 𝐹(𝑥). If  𝑓 = 0, then 𝑃(𝑓)  =  𝑌 and there is nothing to prove. Suppose 𝑓 ≠ 0 

and consider 𝑔(𝑥) = ‖𝑓‖∞𝑓 + ‖𝑓‖
2 (1𝑥⨂  𝑒). Clearly, 𝑔 ∈ Lip(𝑋, 𝐸) with 𝐿(𝑔) =

 ‖𝑓‖∞ 𝐿(𝑓)and 𝑔(𝑥) = (‖𝑓‖∞
2 + ‖𝑓‖2) 𝑒. The latter equality implies 𝑔 ≠ 0. Since 

𝐿(𝑔) ≤ ‖𝑓‖∞‖𝑓‖ ≤ ‖𝑓‖∞
2 + ‖𝑓‖2  = ‖𝑔(𝑥)‖ ≤ ‖𝑔‖,  

it follows that ‖𝑔‖ = ‖𝑔‖∞. Moreover,‖𝑔‖∞ = ‖𝑔(𝑥)‖ + ‖𝑓‖∞
2 + ‖𝑓‖2 since 

‖𝑔‖∞ = ‖‖𝑓‖∞ 𝑓 + ‖𝑓‖
2(1𝑋⨂𝑒)‖∞ ≤ ‖𝑓‖∞

2 + ‖𝑓‖2 = ‖𝑔(𝑥)‖∞. 
We now claim that there exists a point 𝑦 ∈ 𝑌 such that 𝑇(𝑔/ ‖𝑔‖) (𝑦)  =  𝑒. Contrary to 

our claim, assume 𝑒 ≠ 𝑇 (𝑔/ ‖𝑔‖) (𝑦) for all 𝑦 ∈ 𝑌. Let 𝜀 >  0 and take ℎ =  𝑔/‖𝑔‖ +
𝜀(1𝑋 ⨂𝑒) . Clearly, ℎ ∈ Lip(𝑋, 𝐸) and 𝑇(ℎ)  =  𝑇(𝑔)/‖𝑔‖ + 𝜀(1𝑦⨂ 𝑒). A simple 

calculation yields 

𝐿(𝑇(ℎ))  =  𝐿(𝑇(𝑔))/‖𝑔‖ ≤  𝑇(𝑔) / ‖𝑔‖ = 1. 
Next we show that ‖𝑇(ℎ)‖∞ <  1 + 𝜀. For any 𝑦 ∈ 𝑌, we have 

 ‖𝑇(ℎ)(𝑦)‖ = ‖𝑇 (𝑔/‖𝑔‖)(𝑦)  + 𝜀𝑒‖ ≤  1 + 𝜀  
since ‖𝑇(𝑔/‖𝑔‖) (𝑦)‖ ≤  ‖𝑇(𝑔)‖/‖𝑔‖ =  1. Indeed, 

‖𝑇 (𝑔/‖𝑔‖) (𝑦)  + 𝜀𝑒‖ ≤  1 + 𝜀. 
Otherwise the vector 𝑢 =  (1/(1 + 𝜀)) (𝑇 (𝑔/‖𝑔‖) (𝑦)  + 𝜀𝑒)  would be an extreme 

point of 𝐵𝐸 by the strict convexity of 𝐸, and since 𝑢 is a convex combination of 𝑇 (𝑔/
‖𝑔‖)(𝑦)  and 𝑒, which are in 𝐵𝐸 , we infer that 𝑇 (𝑔/‖𝑔‖)(𝑦)  =  𝑒, a contradic tion. 

Hence ‖𝑇(ℎ) (𝑦)‖ <  1 + 𝜀 for all 𝑦 ∈ 𝑌. Since ‖𝑇(ℎ)‖∞ = ‖𝑇(ℎ) (𝑦)‖ for some 𝑦 ∈ 𝑌, 
we conclude that ‖𝑇(ℎ)‖∞ <  1 + 𝜀. From what we have proved above it is deduced that 
‖𝑇(ℎ)‖ <  1 + 𝜀, but, on the other hand, 
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 1 + 𝜀 = ‖𝑔(𝑥)/‖𝑔‖ + 𝜀𝑒 ‖ =  ‖ℎ(𝑥)‖ ≤ ‖ℎ‖∞ ≤ ‖ℎ‖ = ‖𝑇(ℎ)‖, 
which is impossible. This proves our claim. 

      Now, let 𝑦 ∈ 𝑌 be such that 𝑇 (𝑔/‖𝑔‖)(𝑦) =  𝑒. Since 𝑒 =  𝑔(𝑥)/‖𝑔‖, 𝑇𝑔(𝑦) = 𝑔(𝑥), 
that is, 

‖𝑓‖∞ 𝑇𝑓(𝑦)  + ‖𝑓‖
2 𝑇(1𝑋⨂𝑒)(𝑦)  =  (‖𝑓‖∞

2 + ‖𝑓‖2) 𝑒 

Since 𝑇(1𝑋⨂𝑒)  =  1𝑌⨂𝑒, we have 

(‖𝑓‖∞𝑇(𝑓)(𝑦) + ‖𝑓‖
2𝑒 = (‖𝑓‖∞

2  + ‖𝑓‖2) 𝑒, 
and thus 𝑇(𝑓)(𝑦)  = ‖𝑓‖∞𝑒, which is 𝑇(𝑓)(𝑦)  =  𝑓(𝑥) since 𝑓 ∈ 𝐹(𝑥). Hence 𝑃(𝑓) ≠ ∅. 
Moreover, 𝑃(𝑓) is closed in 𝑌 since 𝑃(𝑓)  =  𝑇(𝑓)−1({𝑓(𝑥)}) and 𝑇(𝑓) is continuous. 

Step 2. For each 𝑥 ∈ 𝑋, the set 

𝐵(𝑥) =  {𝑦 ∈  𝑌: 𝑇(𝑓)(𝑦) =  𝑓(𝑥), ∀𝑓 ∈ 𝐹(𝑥)} 
is nonempty and closed. 

      Let 𝑥 ∈  𝑋. For each 𝑓 ∈  𝐹(𝑥), 𝑃(𝑓) is a nonempty closed subset of 𝑌 by Step 1. 

Since 𝐵(𝑥) = ⋂  𝑓∈𝐹(𝑥)  𝑃(𝑓), 𝐵(𝑥) is closed. To prove that 𝐵(𝑥):≠ ∅, since 𝑌 is compact 

and 𝐵(𝑥) = ⋂  𝑓∈𝐹(𝑥)  𝑃(𝑓), it suffices to check that if 𝑓1, . . . , 𝑓𝑛 ∈

𝐹(𝑥), then ⋂  𝑗=1
𝑛  𝑃(𝑓𝑗) ≠ ∅. 

      We can suppose, without loss of generality, that 𝑓𝑗 ≠ 0 for all 𝑗 ∈  {1, . . . , 𝑛} since 

𝑃(𝑓𝑗)  =  𝑌 if 𝑓𝑗  =  0. For each 𝑗 ∈  {1, . . . , 𝑛} define 𝑔𝑗 = (‖𝑓‖∞𝑓𝑗 + ‖𝑓𝑗‖
2
+ (1𝑋⨂𝑒). 

As in the proof of Step 1, 𝑔𝑗 ∈ Lip(𝑋, 𝐸) with 𝑔𝑗(𝑥)  = (‖𝑓𝑗‖∞
2
+ ‖𝑓𝑗‖

2
) 𝑒 and ‖𝑔𝑗‖  =

 ‖𝑓𝑗‖∞
2
 + ‖𝑓𝑗‖

2
 . Hence 𝑔𝑗 ≠ 0 and we can define ℎ = (1/𝑛)∑  𝑛

𝑗=1 (𝑔𝑗/‖𝑔𝑗‖) Clearly, 

ℎ ∈ Lip(𝑋, 𝐸), ℎ(𝑥) = 𝑒 and ‖ℎ‖∞ = 1. Hence ℎ(𝑥) = ‖ℎ‖∞𝑒 and thus ℎ ∈ 𝐹(𝑥). Then, 

by Step 1, there exists a point 𝑦 ∈  𝑌 such that 𝑇(ℎ)(𝑦)  =  ℎ(𝑥). Since 𝑇(ℎ)(𝑦)  =

 (1 𝑛⁄ )∑  𝑛
𝑗=1 (𝑇(𝑔𝑗)(𝑦)‖𝑔𝑗‖) and ℎ(𝑥)  =  𝑒, it follows that 𝑒 =

 (1 𝑛⁄ )∑  𝑛
𝑗=1 (𝑇(𝑔𝑗)(𝑦)/‖𝑔𝑗‖). Since 𝐸 is strictly convex and ‖𝑇(𝑔𝑗)(𝑦)‖/‖𝑔𝑗‖ ≤

 ‖𝑇(𝑔𝑗)‖/‖𝑔𝑗‖ =  1 for all 𝑗 ∈ {1, . . . , 𝑛}, we infer that 𝑇(𝑔𝑗)(𝑦) = ‖𝑔𝑗‖𝑒 for all 𝑗 ∈

 {1, . . . , 𝑛}. Reasoning as in Step 1, we obtain 𝑇(𝑓𝑗)(𝑦)  =  𝑓𝑗(𝑥) for all 𝑗 ∈ {1, . . . , 𝑛} and 

thus 𝑦 ∈ ⋂  𝑗=1 
𝑛 𝑃(𝑓𝑗). 

Step 3. Let𝑓 ∈ Lip(𝑋, 𝐸), 𝑥 ∈ 𝑋and 𝑦 ∈ 𝐵(𝑥). If𝑓(𝑥) = 0, then𝑇(𝑓)(𝑦) = 0. If 𝑓 =  0, 
then there is nothing to prove. Suppose 𝑓 ≠  0 and let 𝛿 = ‖𝑓‖∞/‖𝑓‖. Clearly, 𝐿(𝑓)/
‖𝑓‖∞  ≤  1/𝛿. Consider ℎ𝑥,𝛿⨂𝑒 ∈ 𝐹(𝑥). We next prove that 𝑓/‖𝑓‖∞ + (ℎ𝑥,𝛿⨂𝑒) 

belongs to 𝐹(𝑥). Since 𝑓‖𝑓‖∞  + (ℎ𝑥,𝛿⨂𝑒) ∈ Lip(𝑋, 𝐸) and 𝑓(𝑥)/‖𝑓‖∞ +

(ℎ𝑥,𝛿⨂𝑒)(𝑥)  =  𝑒, it suffices to check that ‖𝑓/‖𝑓‖∞  +  (ℎ𝑥,𝛿⨂𝑒)‖∞   =  1. Let 𝓏 ∈ 𝑋. 

If 𝑑(𝓏, 𝑥) ≥ 𝛿, we have (ℎ𝑥,𝛿⨂ 𝑒)(𝓏)  =  0 and so 

‖𝑓(𝓏)/‖𝑓‖∞ + (ℎ𝑥,𝛿⨂𝑒)(𝓏)‖ = ‖𝑓(𝓏)/‖𝑓‖∞‖ ≤  1.  

If 𝑑(𝓏, 𝑥) ≤ 𝛿, then (ℎ𝑥,𝛿  ⨂𝑒)(𝓏)  =  (1 −  𝑑(𝓏, 𝑥)/𝛿) 𝑒, and therefore 

‖𝑓(𝓏)/‖𝑓‖∞ + ℎ𝑥,𝛿⨂ 𝑒)) (𝓏)‖ ≤ ‖𝑓(𝓏)‖/‖𝑓‖∞ +  1 −  𝑑(𝓏, 𝑥)/𝛿 ≤  1, 
since  

‖𝑓(𝓏)/‖𝑓‖∞‖  = ‖𝑓(𝓏) −  𝑓(𝑥)‖‖𝑓‖∞ ≤  𝐿(𝑓)𝑑(𝓏, 𝑥)/‖𝑓‖∞ ≤  𝑑(𝓏, 𝑥)/𝛿. 

Hence ‖𝑓(𝑥)/‖𝑓‖∞  +  (ℎ𝑥,𝛿⨂ 𝑒)) (𝓏)‖∞ ≤  1. Since 

‖𝑓(𝑥)/‖𝑓‖∞  +  (ℎ𝑥,𝛿⨂ 𝑒)) (𝑥)‖ = ‖𝑒‖ =  1,  
we obtain the desired condition. 
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     By the definition of 𝐵(𝑥) it follows that 

𝑇(𝑓‖𝑓‖∞  +  (ℎ𝑥,𝛿⨂ 𝑒)) (𝑦)  = (𝑓‖𝑓‖∞  +  (ℎ𝑥,𝛿⨂ 𝑒)) (𝑥), 
that is, T(f)(y)/ Ilf IOO+T(hx,60e)(y) = e. Moreover, since 𝑦 ∈ 𝐵(𝑥) and ℎ𝑥,𝛿⨂𝑒 ∈ 𝐹(𝑥), 
we have 𝑇(ℎ𝑥,𝛿⨂𝑒)(𝑦)  =  (ℎ𝑥,𝛿⨂𝑒)(𝑥) 𝑒. Hence 𝑇(𝑓)/(𝑦) ‖𝑓‖∞ +  𝑒 =  𝑒 and thus 

𝑇(𝑓)(𝑦)  =  0. 
Step 4. Let 𝑥, 𝑥′ ∈ 𝑋 with 𝑥 ≠  𝑥′. Then 𝐵(𝑥) ∩  𝐵(𝑥′)∅. 
       Suppose 𝑦 ∈ 𝐵(𝑥) ∩  𝐵(𝑥′). Let 𝛿 =  𝑑(𝑥, 𝑥′)  >  0 and consider ℎ𝑥,𝛿⨂ 𝑒. Since 𝑦 ∈
𝐵(𝑥) and ℎ𝑥,𝛿⨂𝑒 ∈ 𝐹(𝑥), we have 𝑇(ℎ𝑥,𝛿  ⨂ 𝑒)(𝑦)  =  (ℎ𝑥,𝛿⨂𝑒)(𝑥)  =  𝑒 by Step 2, but 

Step 3 also yields 𝑇(ℎ𝑥,𝛿⨂𝑒)(𝑦)  =  0 since 𝑦 ∈ 𝐵(𝑥′) and (ℎ𝑥,𝛿⨂𝑒)(𝑥
′)  =  0. So we 

arrive at a contradiction. Hence 𝐵(𝑥)⋂𝐵(𝑥′)  = ∅. Steps 3 and 4 motivate the following: 

Definition (5.2.2)[185]: Let 𝑌0  =  ⋃  𝑥∈𝑋 𝐵(𝑥). Define 𝜑: 𝑌0 →  𝑋 by 𝜑(𝑦)  = 𝑥 if 𝑦 ∈
𝐵(𝑥). 
      Clearly, 𝜑 is surjective. Moreover, given 𝑦 ∈ 𝑌0, there exists 𝑥 ∈ 𝑋 such that 𝑦 ∈
𝐵(𝑥), and hence 𝜑(𝑦)  =  𝑥 and 𝑇(𝑓)(𝑦)  =  𝑓(𝑥) for all 𝑓 ∈ 𝐹(𝑥). We shall obtain the 

representation of 𝑇 in terms of the following functions. 

Definition (5.2.3)[185]:  For each 𝑦 ∈ 𝑌, define 𝑇𝑦: 𝐸 → 𝐸 by 𝑇𝑦(𝑢)  =  𝑇(1𝑋⨂𝑢)(𝑦). It 

is easy to show that 𝑇𝑦 ∈  𝐿(𝐸) with ‖𝑇𝑦‖ =  1 =  ‖𝑇𝑦(𝑒)‖ for all 𝑦 ∈ 𝑌. 

Step 5. The map 𝑦 ⟼ 𝑇𝑦 from 𝑌 into 𝐿(𝐸) is Lipschitz. 

    Let 𝑦, 𝓏 ∈ 𝑌. Given 𝑢 ∈  𝐸, we have 

‖(𝑇𝑦  −  𝑇𝑧)(𝑢)‖ ≤ 𝐿(𝑇(1𝑋⨂ 𝑢))𝑑(𝑦, 𝓏) ≤ ‖𝑇(1𝑋⨂𝑢)‖𝑑(𝑦, 𝓏)  = ‖𝑢‖ 𝑑(𝑦, 𝓏), 

and thus ‖𝑇𝑦 − 𝑇𝑧‖ ≤ 𝑑(𝑦, 𝑧). 

Step 6. 𝑇(𝑓)(𝑦) = 𝑇𝑦 (𝑓(𝜑(𝑦))) for all 𝑓 ∈  Lip(𝑋, 𝐸) and 𝑦 ∈  𝑌0 

        Let 𝑓 ∈ Lip(𝑋, 𝐸) and 𝑦 ∈  𝑌0. Let 𝑥 = 𝜑(𝑦) ∈ 𝑋 and define ℎ = 𝑓 − (1𝑋⨂𝑓(𝑥)). 
Obviously, ℎ ∈ Lip(𝑋, 𝐸) with ℎ(𝑥)  =  0. From Step 3, we have 𝑇(ℎ)(𝑦)  =  0 and 

therefore 𝑇(𝑓)(𝑦) = 𝑇(1𝑋⨂𝑓(𝑥))(𝑦)  = 𝑇𝑦(𝑓(𝑥))  = 𝑇𝑦 (𝑓((𝑦))). 

Step 7. 𝑌0 is closed in 𝑌. 
       Let 𝑦 ∈ 𝑌 and let {𝑦𝑛} be a sequence in 𝑌0 which converges to 𝑦. Let 𝑥𝑛  = 𝜑(𝑦𝑛) for 

all 𝑛 ∈ ℕ. Since 𝑋 is compact, there exists a subsequence {𝑥𝜎(𝑛)} converging to a point 

𝑥 ∈ 𝑋. Let 𝑓 ∈ 𝐹(𝑥). Clearly, {𝑇(𝑓)(𝑦, (𝑛))} converges to 𝑇(𝑓)(𝑦), but also to 𝑓(𝑥) as 

we see at once. Indeed, for each 𝑛 ∈ ℕ, we have 

𝑇(𝑓 )(𝑦𝜎(𝑛)) = 𝑇𝑦𝜎(𝑛)  (𝑓 (𝑥𝜎(𝑛))) =  𝑇 (1𝑋⨂𝑓 (𝑥𝜎(𝑛))) (𝑦𝜎(𝑛)), 

by Step 6, and 

𝑓 (𝑥) =  ‖𝑓‖∞ 𝑒 =  ‖𝑓‖∞ (1𝑌⨂𝑒)(𝑌𝜎(𝑛)) 

= ‖𝑓‖∞𝑇(1𝑋⨂𝑒)(𝑦𝜎(𝑛))  =  𝑇(1𝑋⨂𝑓(𝑥))(𝑦𝜎(𝑛)), 

since 𝑓 ∈ 𝐹(𝑥). We deduce that 

‖𝑇(𝑓)(𝑌𝜎(𝑛))  −  𝑓(𝑋)‖ =  ‖𝑇(1𝑋⨂(𝑓(𝑥𝜎 (𝑛)) − 𝑓(𝑥))) (𝑦𝜎(𝑛))‖

≤ ‖|𝑇(1𝑋⨂(𝑓(𝑥𝜎(𝑛)) − 𝑓(𝑥)))‖  = ‖1𝑋⨂(𝑓(𝑥𝜎(𝑛)) − 𝑓(𝑥))‖  

= ‖𝑓 (𝑋𝜎(𝑛))  − 𝑓 (𝑥)‖ 

for all 𝑛 ∈ ℕ. Since {𝑓(𝑋𝜎(𝑛))} → 𝑓(𝑥), we conclude that {𝑇(𝑓)/(𝑦𝜎(𝑛))}  → 𝑓(𝑥). Hence 

𝑇(𝑓)(𝑦)  =  𝑓(𝑥) and thus 𝑦 ∈ 𝐵(𝑥) ⊂ 𝑌0. 
Step 8. The map 𝜑 𝑌0 → 𝑋 is Lipschitz and 𝐿(𝜑) ≤ max{1, diam(𝑋)/2}. 
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        Let 𝑦, 𝑧 ∈ 𝑌0 be such that 𝜑(𝑦) ≠ 𝜑(𝑧) and put 𝛿 =  𝑑(𝜑(𝑦), 𝜑(𝑧))/2. De fine 

𝑓𝑦,𝑧  = 𝛿(ℎ𝜑(𝑦),𝛿 − ℎ𝜑(𝑧),𝛿) on 𝑋. It is easy to see that 𝑓𝑦,𝑧 ∈ Lip(𝑋) and ‖𝑓𝑦,𝑧‖ ≤  𝑘 ∶=

 max{1, diam(𝑋)/2}. Since 𝑇 is an isometry, ‖𝑇(𝑓𝑦,𝑧⨂𝑒)‖) ≤  𝑘.This inequality implies 

𝐿(𝑇(𝑓𝑦,𝑧⨂ 𝑒) ≤  𝑘. It follows that 

‖𝑇(𝑓𝑦,𝑧⨂𝑒)(𝑦) −  𝑇(𝑓𝑦,𝑧 ⨂ 𝑒)(𝑧)‖ ≤  𝑘𝑑(𝑦, 𝑧). 

Using Step 6 we get 

𝑇(𝑓𝑦,𝑧⨂ 𝑒) (𝑦) =  𝑇𝑦 ((𝑓𝑦,𝑧⨂ 𝑒) (𝜑(𝑦)))   =  𝑇𝑦(𝛿𝑒)  = 𝛿𝑒, 

𝑇(𝑓𝑦,𝑧⨂𝑒)(𝑧)  =  𝑇𝑧 ((𝑓𝑦,𝑧⨂𝑒)(𝜑(𝑧)))  =  𝑇𝑧(−𝛿𝑒)  =  −𝛿𝑒. 

We conclude that 𝑑(𝜑(𝑦), 𝜑(𝑧)) ≤  𝑘𝑑(𝑦, 𝓏). 
       The condition in Theorem (5.2.1), 𝑇(1𝑋 ⨂ 𝑒)1𝑌 ⨂ 𝑒 for some 𝑒 ∈ 𝑆𝐸 , is not too 

restrictive if we analyse the known results in the scalar case. In this case our condition 

means 𝑇(1𝑋) =  1𝑌;  notice that the connectedness assumptions on the metric spaces in 

[46] and [189] yield a similar condition, namely,that 𝑇(1𝑋) is a constant function. 

         Recall that a map between metric spaces 𝜑: 𝑋 → 𝑌 is said to be a Lipschitz 

homeomorphism if 𝜑 is bijective and 𝜑 and 𝜑−1 are both Lipschitz. 

Theorem (5.2.4)[185]: Let 𝑋, 𝑌 be compact metric spaces and let 𝐸 be a strictly convex 

Banach space. Let 𝑇 be a linear isometry from Lip(𝑋, 𝐸) onto Lip(𝑌, 𝐸) such that 

𝑇(1𝑋⨂𝑒)  =  1𝑌 ⨂𝑒 for some 𝑒 ∈  𝑆𝐸 . Then there exists a Lipschitz homeomorphism 

𝜑: 𝑌 → 𝑋 with 𝐿(𝜑) ≤  max{1, diam(𝑋)/2}  and 𝐿(𝜑−1) ≤  max{1, diam(𝑌)/2}, and a 

Lipschitz map 𝑦 ⟼ 𝑇𝑦 from 𝑌 into 𝐿(𝐸) where 𝑇𝑦 is an isometry from 𝐸 onto itself for all 

𝑦 ∈  𝑌 such that 

𝑇(𝑓)(𝑦)  =  𝑇𝑦 (𝑓(𝜑(𝑦))) , ∀𝑦 ∈ 𝑌, ∀𝑓 ∈ Lip(𝑋, 𝐸). 

Proof. Let 𝑌0 and 𝜑 be as in Theorem (5.2.1). Since 𝑇−1: Lip(𝑌, 𝐸) → Lip(𝑋, 𝐸) is a 

linear isometry and 𝑇−1(1𝑌⨂𝑒) =  1𝑋⨂𝑒, applying Theorem (5.2.1) we have 

𝑇−1(𝑔)(𝑥)  =  (𝑇−1)𝑥 (𝑔(𝜓(𝑥))) , ∀𝑥 ∈  𝑋0, ∀𝑔 ∈ Lip(𝑌, 𝐸), 

where 𝜓 is a Lipschitz map from a closed subset 𝑋0 of 𝑋 onto 𝑌 with 𝐿(𝜓) ≤
max  {1, diam(𝑌)/2}, and 𝑥 ⟼ (𝑇−1)𝑥 is a Lipschitz map from 𝑋 into 𝐿(𝐸). Namely, 

𝑋0 = ⋃  𝑦∈𝑌 𝐵(𝑦) where, for each 𝑦 ∈  𝑌, 

𝐵(𝑦) = {  𝑥 ∈  𝑋: 𝑇−1(𝑔)(𝑥)  =  𝑔(𝑦), ∀𝑔 ∈ 𝐹(𝑦)}  
with 

𝐹(𝑦)  =  {𝑔 ∈ Lip(𝑌, 𝐸) ∶  𝑔(𝑦) = ‖𝑔‖∞𝑒},  
and 𝜓: 𝑋0 →  𝑌 is the Lipschitz map defined by 𝜓(𝑥)  =  𝑦 if 𝑥 ∈ 𝐵(𝑦). Moreover, using 

the same arguments as in Step 3, the following can be proved: 

Claim (5.2.5)[185]: Let 𝑔 ∈  Lip(𝑌, 𝐸), 𝑦 ∈ 𝑌 and 𝑥 ∈ 𝐵(𝑦). If 𝑔(𝑦) = 0, then 

𝑇−1(𝑔)(𝑥)  =  0. 
      After this preparation we proceed to prove the theorem. Fix 𝑥 ∈ 𝑋 and let 𝑦 ∈ 𝐵(𝑥). 
We first prove that 𝑥 ∈ 𝐵(𝑦). Suppose that 𝑥 ∉ 𝐵(𝑦). Since 𝐵(𝑦) ∉ ∅, there exists 𝑥′ ∈
𝐵(𝑦) with 𝑥′ ≠  𝑥. Take 𝑓 ∈ Lip(𝑋, 𝐸) for which 𝑓(𝑥)  =  0 and 𝑓(𝑥′) ≠ 0. Since 𝑦 ∈

𝐵(𝑥) and 𝑓(𝑥)  =  0, we have 𝑇(𝑓)(𝑦) = 0 by Step 3. Then 𝑇−1(𝑇(𝑓))(𝑥′) = 0 since 

𝑥′ ∈ 𝐵(𝑦) by Claim (5.2.5), and thus 𝑓 (𝑥′)  =  0, a contradiction. Therefore 𝑥 ∈ 𝐵(𝑦) ⊂
𝑋0 and thus 𝑋0  =  𝑋. Next we see that 𝑌0  =  𝑌. Let 𝑦 ∈ 𝑌. We can take a point 𝑥 ∈ 𝐵(𝑦). 
As above it is proved that 𝑦 ∈ 𝐵(𝑥) and thus 𝑦 ∈ 𝑌0. 
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      To see that 𝜑 is a Lipschitz homeomorphism, let 𝑦 ∈ 𝑌. Then 𝑦 ∈ 𝐵(𝑥) for some 𝑥 ∈
𝑋, that is, 𝜑(𝑦) = 𝑥. Moreover, by what we have proved above, 𝑥 ∈ 𝐵(𝑦) and so 𝜓(𝑥)  =

𝑦. As a consequence, 𝜓(𝜑(𝑦))  =  𝑦. Since 𝜑 was surjective, 𝜑 is bijective with 𝜑−1 = 4 

and thus 𝜑 is a Lipschitz homeomorphism. 

      To check that 𝑇𝑦 is an isometry from 𝐸 into itself for every 𝑦 ∈  𝑌, we first show that 𝑇 

sends nonvanishing functions of Lip(𝑋, 𝐸) into nonvanishing functions of Lip(𝑌, 𝐸).   
Assume there exists 𝑓 ∈ Lip(𝑋, 𝐸) such that 𝑓(𝑥) ≠ 0 for all 𝑥 ∈  𝑋, but 𝑇(𝑓)(𝑦)  =  0 

for some 𝑦 ∈ 𝑌. By the surjectivity of 𝜓, there is a point 𝑥 ∈ 𝑋0 such that 𝜓(𝑥)  =  𝑦, that 

is, 𝑥 ∈  𝐵(𝑦). Since 𝑇(𝑓)(𝑦)  =  0, by Claim (5.2.5) 

we have 𝑓(𝑥) =  𝑇−1(𝑇(𝑓))(𝑥) =  0, a contradiction. Hence 𝑇 maps nonvanishing 

functions into nonvanishing functions. If, for some 𝑦 ∈ 𝑌, 𝑇𝑦 is not an isometry, then there 

exists a 𝑢 ∈ 𝑆𝐸 such that ‖𝑇𝑦(𝑢)‖ =  ‖𝑇(1𝑋⨂𝑢)(𝑦)‖ <  1. Since 𝑇 is surjective, there is 

an 𝑓 ∈ Lip(𝑋, 𝐸) such that 𝑇(𝑓) =  1𝑌⨂𝑇(1𝑋⨂𝑢)(𝑦). Thus ‖𝑓‖∞ ≤ ‖𝑓‖ = ‖𝑇(𝑓)‖ =
‖𝑇(1𝑋⨂𝑢)(𝑦) < 1‖ and (1𝑋⨂ 𝑢)  −  𝑓 never vanishes on 𝑋. As 𝑇(1𝑋⨂𝑢)(𝑦) =
 𝑇(𝑓)(𝑦), we arrive at a contradiction. 

      Next we prove that 𝑇𝑦 ∶  𝐸 →  𝐸 is surjective for every 𝑦 ∈ 𝑌. Fix 𝑦 ∈ 𝑌 and let 𝑣 ∈ 𝐸. 

Since 𝑇 is surjective, there exists 𝑓 ∈ Lip(𝑋, 𝐸) such that 𝑇(𝑓) =  1𝑌 ⨂ 𝑣. Let 𝑢 =

(𝑓 𝑜 𝜑)(𝑦) ∈ 𝐸. Using Step 6, we have 𝑇𝑦(𝑢)  =  𝑇𝑦 (𝑓(𝜑(𝑦)))  =  𝑇(𝑓)(𝑦)  =  𝑣. Hence 

𝑇𝑦 is surjective. 

We obtain the following: 

Corollary (5.2.6)[185]: Let 𝑋, 𝑌 be compact metric spaces with diameter at most 2 and let 

𝐸 be a strictly convex Banach space. Then every surjective linear isometry 𝑇 from 

Lip(𝑋, 𝐸) into Lip(𝑌, 𝐸) satisfying that 𝑇(1𝑋 ⨂𝑒)  =  1𝑌 ⨂𝑒 for some 𝑒 ∈ 𝑆𝐸 , can be 

expressed as 𝑇(𝑓)(𝑦)  =  𝑇𝑦 (𝑓(𝜑(𝑦))) for all 𝑦 ∈  𝑌 and 𝑓 ∈ Lip(𝑋, 𝐸), where 𝜑: 𝑌 → 𝑋 

is a surjective isometry and 𝑦 ⟼ 𝑇𝑦 is a Lipschitz map from 𝑌 𝑖𝑛𝑡𝑜 𝐿(𝐸) such that 𝑇𝑦 is 

an isometry from 𝐸 onto 𝐸 for all 𝑦 ∈ 𝑌. 
       In the special case that 𝐸 is a Hilbert space, Theorems (5.2.1) and (5.2.4) can be 

improved as follows. For a Hilbert space 𝐸, let us recall that a unitary operator is a linear 

map Φ: 𝐸 →  𝐸 that is a surjective isometry. 

Corollary (5.2.7)[185]: Let 𝑋 and 𝑌 be compact metric spaces and let 𝐸 be a Hilbert 

space. Let 𝑇 be a linear isometry from Lip(𝑋, 𝐸) into Lip(𝑌, 𝐸) such that 𝑇(1𝑋⨂ 𝑒) is a 

constant function for some 𝑒 ∈ 𝑆𝐸 . Then there exists a Lipschitz map 𝜑 from a closed 

subset 𝑌0 of 𝑌 onto 𝑋 with 𝐿(𝜑) ≤ max  {1, diam(𝑋)/2} and a Lipschitz map 𝑦 ⟼ 𝑇𝑦 

from 𝑌 into 𝐿(𝐸) with ‖𝑇𝑦‖ =  1 for all 𝑦 ∈  𝑌 such that 

𝑇(𝑓)(𝑦) =  𝑇𝑦 (𝑓(𝜑(𝑦))) , ∀𝑦 ∈ 𝑌𝑜, ∀𝑓 ∈ Lip(𝑋, 𝐸). 

If, in addition, 𝑇 is surjective, then 𝑌𝑜  =  𝑌, 𝜑 is a Lipschitz homeomorphism with 

𝐿(𝜑−1 ) ≤ max  {1, diam(𝑌)/2} and, for each 𝑦 ∈ 𝑌, 𝑇𝑦 is a unitary operator. 

Proof. Assume that 𝑇(1𝑋 ⨂𝑒)  =  1𝑌⨂𝑢 for some 𝑢 ∈ 𝐸. Obviously, ‖𝑢‖  =  1. Since 𝐸 

is a Hilbert space, we can construct a unitary operator Φ: 𝐸 → 𝐸 such that Φ(𝑢)  =  𝑒. 
Define 𝑆 ∶  Lip(𝑌, 𝐸) → Lip(𝑌, 𝐸) by 

𝑆(𝑔)(𝑦) =  Φ(𝑔(𝑦)), ∀𝑦 ∈ 𝑌, ∀𝑔 ∈ Lip(𝑌, 𝐸). 
It is easy to prove that 𝑆 is a surjective linear isometry satisfying that 𝑆(1𝑌⨂ 𝑢)  =  1𝑌⨂𝑒. 
Hence 𝑅 =  𝑆 𝑜 𝑇 is a linear isometry from Lip(𝑋, 𝐸) into Lip(𝑌, 𝐸) with 𝑅(1𝑋⨂ 𝑒)  =
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 1𝑌⨂ 𝑒. Then Theorem (5.2.1) guarantees the existence of a Lipschitz map 𝜑 from a 

closed subset 𝑌0 of 𝑌 onto 𝑋 with 𝐿(𝜑) ≤ max  {1, diam(𝑋)/2} and a Lipschitz map 𝑦 ⟼

 𝑅𝑦 from 𝑌 into 𝐿(𝐸) with ‖𝑅𝑦‖ =  1 for all 𝑦 ∈ 𝑌 such that 

𝑅(𝑓)(𝑦) =  𝑅𝑦  (𝑓 (𝜑(𝑦))) , ∀𝑦 ∈ 𝑌𝑜, ∀𝑓 ∈ Lip(𝑋, 𝐸). 

For each 𝑦 ∈  𝑌, consider 𝑇𝑦  = Φ
−1 𝑜 𝑅𝑦 ∈ 𝐿(𝐸). It is easily seen that the map 𝑦 ⟼ 𝑇𝑦 . 

from 𝑌 into 𝐿(𝐸) is Lipschitz with ‖𝑇𝑦‖ = 1 for all 𝑦 ∈ 𝑌. Moreover, for any 𝑦 ∈ 𝑌𝑜 and 

𝑓 ∈ Lip(𝑋, 𝐸), we have 

𝑇(𝑓 )(𝑦) =  Φ−1 (𝑅𝑦 (𝑓 (𝜑(𝑦)))) =  𝑇𝑦  (𝑓 (𝜑(𝑦))).  

If, in addition, 𝑇 is surjective, the rest of the corollary follows by applying Theo rem 

(5.2.4) to 𝑅.  
Section (5.3): Generalised Weighted Composition Operators  

Any Riesz homomorphism (i.e. a linear lattice homomorphism) between spaces of 

continuous functions on compact Hausdorff spaces can be characterised as a so-called 

weighted composition operator. We reformulate Theorem (5.3.4) from [193] in our 

terminology.  

Theorem (5.3.1)[190]: Let 𝑋, 𝑌 be compact Hausdorff spaces and let 𝑇 ∶  𝐶(𝑋)  →  𝐶(𝑌 ) 
be a positive operator. Then 𝑇 is a Riesz homomorphism if and only if there exist a map 

𝜋: 𝑌 → 𝑋 and a function 𝜂 ∈  𝐶(𝑌)+ such that for all 𝑓 ∈  𝐶(𝑋): 𝑇 𝑓 =  𝜂( 𝑓 ∘ 𝜋). 
       In this case, 𝜂 =  𝑇 𝟏𝑋  and π is uniquely determined and continuous on {𝜂 >  0}.  
       This result has been generalised and extended in multiple ways: we mention 𝐶0(𝑋) for 

𝑋 locally compact in [57], Lipschitz functions on metric spaces in [185], and pre-Riesz 

spaces, a concept introduced in [195], in [196]. We provide another generalisation, 

concerning Maeda–Ogasawara spaces of extended continuous functions on a Stonean 

space. We study the setting in which 𝐸, 𝐹 are Archimedean Riesz spaces, which we 

characterise as order dense subspaces of their respective Maeda–Ogasawara spaces 𝐶∞(𝑋) 
and 𝐶∞(𝑌 ), with a Riesz homomorphism 𝑇 ∶  𝐸 →  𝐹. We prove that there is indeed a 

continuous map 𝜋 ∶  𝑌 →  𝑋 such that for all 𝑓, 𝑢 ∈  𝐸: 𝑇 𝑓 =  𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋) on 

supp(𝑇 𝑢), the support of 𝑇 𝑢. Note that an exact meaning of the quotient f 𝑢 ∈  𝐶∞ (𝑋) is 

given in Definition (5.3.8).  

        Let us first introduce the necessary definitions, see [197].  

Definition (5.3.2)[190]: A Riesz space 𝐸 is  

      (i) Dedekind complete if every non-empty subset which is bounded from above has a 

supremum;  

      (ii) laterally complete if every non-empty disjoint subset of 𝐸+ has a supremum. 

Concerning Riesz subspaces and homomorphisms, we use the following concepts.  

Definition (5.3.3)[190]: A Riesz subspace 𝐷 of a Riesz space 𝐸 is  

       (i) a Riesz ideal if 𝑓 ∈  𝐷, 𝑔 ∈  𝐸, |𝑔|  ≤  | 𝑓 | together imply that 𝑔 ∈  𝐷;  

       (ii) order dense if for every non-zero 𝑓 ∈  𝐸+, there exists a 𝑔 ∈  𝐷+ such that 0 <
 𝑔 ≤  𝑓 .  
A Riesz homomorphism 𝑇 from 𝐸 to a Riesz space 𝐹 is  

       (i) (𝜎−)order continuous if it preserves order limits (of sequences);  

       (ii) order bounded if for every 𝑢 ∈  𝐸+, the set {|𝑇 𝑓 |  ∈  𝐹 |  −  𝑢 ≤  𝑓 ≤  𝑢}   is a 

bounded subset of 𝐹+.  
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       Every Archimedean Riesz space 𝐸 has an order dense embedding in some unique 

Dedekind complete Riesz space, called its Dedekind completion 𝐸𝛿 . We identify 𝐸 with 

this embedding and write  ⊂  𝐸𝛿 . Before we introduce the representation theorem of 

Maeda and Ogasawara, we have.  

Definition (5.3.4)[190]: Let 𝑋 be a topological space.  

       (i) A subset A of 𝑋 is meagre if there exist closed subsets 𝐶1, 𝐶2, . . . ⊂  𝑋 such that 

𝐶𝑛
∘  =  ∅ for all 𝑛 and 𝐴 ⊂  ⋃  𝑛 𝐶𝑛.  

       (ii) 𝑋 is extremally disconnected if the closure of every open set is open (hence 

clopen). An extremally disconnected compact Hausdorff space is called Stonean.  

Definition (5.3.5)[190]: Let ℝ ∶=  [−∞,∞], topologised in the natural way such that ℝ is 

homeomorphic to [−1, 1]. The space of extended continuous functions on a Stonean space 

𝑋 consists of all continuous functions f : X → R such that 𝑓−1 ({±∞}) is meagre, and is 

denoted by 𝐶∞(𝑋).  
Lemma (5.3.6)[190]: Let 𝐵 be a dense subset of a Stonean space 𝑋, and suppose 𝑓 ∶  𝐵 →
ℝ is continuous. Then f has a unique extension in C∞(X). For f, g ∈ C ∞(X), the closed set 

𝐴 ∶=  𝑓−1 ({±∞}) ∪  𝑔−1 ({±∞}) is meagre. Hence 𝑋 \ 𝐴 is dense, and we define 𝑓 +
 𝑔, 𝑓 ·  𝑔 ∶  𝑋 \ 𝐴 → ℝ by ( 𝑓 +  𝑔)(𝑥) ∶=  𝑓 (𝑥)  +  𝑔(𝑥) and 𝑓 ·  𝑔(𝑥)  =  𝑓 (𝑥)𝑔(𝑥). 
The previous lemma leads to unambiguous extensions of 𝑓 +  𝑔 and 𝑓 ·  𝑔 in 𝐶∞(𝑋).  
Theorem (5.3.7)[190]: The space 𝐶∞(𝑋) with these operations, supplemented by the 

natural ordering and scalar multiplication, is a multiplicative, Dedekind complete, and 

laterally complete Riesz space. In addition, it is an 𝑓-algebra with unit 𝟏𝑋 .  

Definition (5.3.8)[190]: For future purposes, we also define the quotient 𝑓 𝑔 of 𝑓, 𝑔 ∈

 𝐶∞(𝑋). Set supp(𝑔) ∶=  {𝑥 ∈  𝑋 | 𝑔(𝑥) ≠  0}, the support of 𝑔. First define 
𝟏

𝑔
 to be the 

unique continuous extension of  

𝑥 ↦  {

𝟏

𝑔(𝑥)
 if 0 <  |𝑔(𝑥)|  <  ∞

0 𝑖𝑓 𝑥 ∉  supp(𝑔),

                                       (1) 

to the whole 𝑋. Now set 
𝑓

𝑔
∶=  𝑓 ·

𝟏

𝑔
 .  

      For a clopen 𝑍 ⊂  𝑋, we embed 𝐶∞(𝑍)  ⊂  𝐶∞(𝑋) by setting ℎ(𝑥) ∶=  0 if 𝑥 ∉  𝑍 for 

all ℎ ∈  𝐶∞(𝑍). We list a few properties that follow directly from the definitions.  

Proposition (5.3.9)[190]: Let 𝑓, 𝑔 ∈  𝐶∞(𝑋) and suppose that π is a continuous map from 

a Stonean space 𝑌 to 𝑋 such that 𝑓 ∘  𝜋, 𝑔 ∘  𝜋 ∈  𝐶∞(𝑌 ). Then:  

       (i) supp( 𝑓 )  ⊂  𝑋 is clopen;  

       (ii) 
𝟏

𝑔
 ·  𝑔 =  𝟏supp(𝑔) and 𝑓 𝑔 ·  𝑔 =  𝑓 ·  𝟏supp(𝑔);  

       (iii) supp( 𝑓 )  =  supp(
𝟏

𝑓
 );  

        (iv) for all 𝑥 ∈  𝑋 ∶  𝑓 (𝑥)  =  ∞ implies 
𝟏

𝑓(𝑥)
 =  0;  

        (v) ( 𝑓 ∘  𝜋) ·  (𝑔 ∘  𝜋) =  ( 𝑓 ·  𝑔) ∘  𝜋; 

        We now come to the main point: the next theorem clarifies why spaces of extended 

continuous functions are of interest.  

Theorem (5.3.10)[190]: (Maeda–Ogasawara). Let 𝐸 be an Archimedean Riesz space. 

Then there exists a unique Stonean space 𝑋 such that 𝐸 is Riesz isomorphic to an order 

dense subspace of 𝐶∞(𝑋). 𝐶∞(𝑋) is called the Maeda–Ogasawara space of 𝐸. We also 
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identify 𝐸 with the embedding in its Maeda–Ogasawara space 𝐶∞(𝑋) and write 𝐸 ⊂
 𝐶∞(𝑋).  
        Let us first outline the setting to which we adapt Theorem (5.3.1). Motivated by the 

Maeda– Ogasawara Theorem, we consider Stonean spaces  , an order dense Riesz ideal1 

𝐸 ⊂  𝐶∞(𝑋), and a Riesz homomorphism 𝑇 ∶  𝐸 →  𝐶∞(𝑌 ) such that the image 𝑇 (𝐸)  ⊂
 𝐶∞(𝑌 ) is order dense. The next example shows why we can in general not hope for 𝑇 to 

be an ordinary weighted composition operator.  

Example (5.3.11)[190]: Let 𝛽ℕ be the Stone-C̆ech compactification of ℕ, which is 

Stonean. Define 𝑗 ∈  𝐶∞(ℕ) to be the unique continuous extension of 𝛽(𝑛)  ↦  𝑛 ∈ ℝ. 
Fix 𝑎 ∈  𝛽ℕ \ 𝛽(ℕ). Let 𝐸 ⊂  𝐶∞(𝛽ℕ) be given by 𝐸 ∶=  { 𝑓 ∈  𝐶∞(𝛽ℕ) | ( 𝑓 ·

 𝑗)(𝑎)  ∈ ℝ} and 𝑆 ∶  𝐸 →  𝐶∞({0})  ≅ ℝ by 𝑇 𝑆 =  𝑆 𝑓 (0) ∶=  ( 𝑓 ·  𝑗)(𝑎). Then 
𝟏

𝑗
 ∈  𝐸 

and 𝑆
𝟏

𝑗
 =  1, so 𝑆 ≠  0.  

       Suppose 𝑆 𝑓 =  𝜂( 𝑓 ∘  𝜋) for some 𝜂 ∈  ℝ+, 𝜋 ∶  {0}  →  𝛽ℕ. For 𝑔 ∈  𝐶(𝛽ℕ),
𝑔

𝑗
 ∈

 𝐸. Then 𝑔(𝑎) =  𝑆
𝑔

𝑗
 =  𝜂(

𝑔

𝑗
 ∘  𝜋). We have 𝜋(0)  =  𝑎, for if not, we can find an open 

𝑈 ⊂  𝛽ℕ with 𝑎 ∈  𝑈 ∌ 𝜋(0). For 𝑔 ∶=  𝟏𝑈 , this means that 𝑔(𝑎)  =  1, while 

𝑔 𝑗 (𝜋(0)) =  0, which is a contradiction. Hence 𝑆 𝑓 =  𝜂 𝑓 (𝑎), but 𝑓 (𝑎)  =  0 for all 

𝑓 ∈  𝐸, implying 𝑆 𝑓 =  0. This is again a contradiction, from which we conclude such 𝜂 

and 𝜋 do not exist.  

Lemma (5.3.12)[190]: Let 𝑋, 𝑌 , 𝐸, and 𝑇 be as above. Then there exists a unique map 𝜋 ∶
 𝑌 →  𝑋 such that 𝑇 ( 𝑓 ·  𝑢)  =  𝑇 𝑢 ·  ( 𝑓 ∘  𝜋) for all 𝑓 ∈  𝐶(𝑋)+ and 𝑢 ∈  𝐸. This 𝜋 is 

continuous.  

Proof. Fix 𝑓 ∈  𝐶(𝑋)+. We see that for all 𝑢 ∈  𝐸:  

|𝑇 ( 𝑓 ·  𝑢)| ≤  ‖ 𝑓 ‖∞|𝑇 𝑢|.                                 (2) 
From T we construct the Riesz homomorphism 𝑆 ∶  𝑇 (𝐸)  →  𝑇 (𝐸) by 𝑇 𝑢 ↦  𝑇 ( 𝑓 ·

 𝑢).  𝑆 is band preserving and order bounded, so 𝑆 ∈ Orth(𝑇 (𝐸)) by the definition of 

orthomorphism. By Theorem 8.12 of [191], S then extends to a positive orthomorphism 𝑆𝛿 

on the Dedekind completion 𝐸𝛿 of 𝐸. Note that 𝑆 and 𝑆𝛿 are order continuous by Theorem 

(5.3.5) from [193]. As 𝐸 ⊂  𝐸𝛿  ⊂  𝐶∞(𝑌 ) is order dense, we may apply Theorem (5.3.4) 

from [193] to get a positive orthomorphism �̃� ∶  𝐶∞(𝑌 )  →  𝐶∞(𝑌 ). Every positive 

orthomorphism on an f -algebra with unit is given by multiplication with a positive 

element (Theorem 141.1 from [198]), so we have a unique 𝑓  ∈  𝐶(𝑌 ) such that 𝑇 ( 𝑓 ·
 𝑢)  =  �̃�(𝑇 𝑢)  =  𝑓  ·  𝑇 𝑢 for all 𝑢 ∈  𝐸. Note that 𝑓 is bounded by Eq. (2). 

        Now we view 𝑓 ↦  𝑓 as a Riesz homomorphism from 𝐶(𝑋) to 𝐶(𝑌 ), for which we 

note that 𝟏𝑋 is mapped to 1Y . Application of Theorem (5.3.1) yields a map 𝜋 ∶  𝑌 →  𝑋 

such that 𝑓  =  𝑓 ∘  𝜋 and 𝑇 ( 𝑓 ·  𝑢)  =  𝑇 𝑢 ·  ( 𝑓 ∘  𝜋) for 𝑓 ∈  𝐶(𝑋)+, 𝑢 ∈  𝐸. 
Moreover, this 𝜋 is uniquely determined and continuous on 𝑌 , by the second part of the 

theorem.  

        We can now prove that 𝑇 is a generalised weighted composition operator.  

Theorem (5.3.13)[190]: Let 𝑋, 𝑌 , 𝐸, and 𝑇 be as above. There exists a unique map 𝜋 ∶
 𝑌 →  𝑋 such that for all 𝑓, 𝑢 ∈  𝐸 : 

       (i) 𝜋(supp(𝑇 𝑢))  ⊂  supp(𝑢);  

       (ii) 
𝑓

𝑢
 ∘  𝜋|supp(𝑇 𝑢)  ∈  𝐶

∞(supp(𝑇 𝑢));  
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       (iii) 𝑇 𝑓 =  𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋) on supp(𝑇 𝑢).  

       Furthermore, π is continuous.  

Proof. We apply the preceding lemma to T and get the unique map 𝜋 ∶  𝑌 →  𝑋 that 

satisfies 𝑇 ( 𝑓 ·  𝑢)  =  𝑇 𝑢 ·  ( 𝑓 ∘  𝜋) for all 𝑓 ∈  𝐶(𝑋), 𝑢 ∈  𝐸. We also have that 𝜋 is 

continuous.  

       Proof of (i). Let 𝑢 ∈  𝐸. Substituting 1supp(𝑢) for 𝑓 in the expression above, we have 

𝑇 𝑢 =  𝑇 𝑢 ·  (𝟏supp(𝑢)  ∘  𝜋)  =  𝑇 𝑢 ·  𝟏𝜋
(supp(𝑢))
−1 , so 1supp(𝑇 𝑢)  ≤  1𝜋

(supp(𝑢))
−1  and (i) 

follows.  

        Proof of (ii) and (iii) for all 𝑓, 𝑢 ∈  𝐸+. Let f, u ∈ E +. For 𝑛 ∈ ℕ, we define ℎ𝑛 ∶=
𝑓

𝑢
 ∧ 𝑛𝟏𝑋  ∈  𝐶(𝑋). By the lemma: 𝑇 (ℎ𝑛  ·  𝑢)  =  𝑇 𝑢 ·  (ℎ𝑛  ∘  𝜋). Also ℎ𝑛  ·  𝑢 =  𝑓 ·

 𝟏supp(𝑢)  ∧  𝑛𝑢 =  𝑓 ∧  𝑛𝑢, so 𝑇 (ℎ𝑛  · 𝑢)  =  𝑇 𝑓 ∧ 𝑛𝑇 𝑢, whence 𝑇 𝑓 ∧ 𝑛𝑇 𝑢 =  𝑇 𝑢 ·

(ℎ𝑛  ∘ 𝜋). Then for 𝑦 ∈  𝑌 such that 𝑇 𝑓 (𝑦)  <  ∞, 0 <  𝑇 𝑢(𝑦)  <  ∞: 

 𝑇 𝑓 (𝑦) ∧  𝑛𝑇 𝑢(𝑦) =  𝑇 𝑢(𝑦)( 𝑓 𝑢 (𝜋(𝑦)) ∧  𝑛 )                  (3) 
and by taking limits:  

𝑇 𝑓 (𝑦)  =  𝑇 𝑢(𝑦) 𝑓 𝑢 (𝜋(𝑦)) 
𝑇𝑓

𝑇𝑢
 (𝑦) =

𝑇𝑓(𝑦)

𝑇𝑢(𝑦)
 =
𝑓

𝑢
  (𝜋(𝑦)).                                           (4) 

Both
𝑇𝑓

𝑇𝑢
  and 𝑓 𝑢 ∘  𝜋 are continuous functions from this dense subset of supp(𝑇 𝑢) to ℝ. 

As they coincide on this subset, we must have
𝑓

𝑢
 ∘  𝜋 =

𝑇𝑓

𝑇𝑢
 on the whole supp(𝑇 𝑢). 

Furthermore, 
𝑇𝑓

𝑇𝑢
  ∈  𝐶∞(supp(𝑇 𝑢)), so (ii) and (iii) follow.  

        Proof of (ii) for all 𝑓, 𝑢 ∈  𝐸. Let 𝑓, 𝑢 ∈  𝐸. We have |
𝑓

𝑢
|  ∘  𝜋|supp(𝑇 𝑢)  ∈

 𝐶∞(supp(𝑇 |𝑢|)), supp(𝑇 𝑢)  =  supp(𝑇 |𝑢|), and |𝑔 ∘  𝜋| =  |𝑔| ∘  𝜋 for all 𝑔 ∈  𝐸. 

Also observe that ( 𝑓 𝑢 )−1 (ℝ) is |
𝑓

𝑢
|
−1
 (ℝ), which is dense in supp(𝑇 𝑢). This together 

implies 
𝑓

𝑢
 ∘  𝜋|supp(𝑇 𝑢)  ∈  𝐶

∞(supp(𝑇 𝑢)).  

      Proof of (iii) for all 𝑓, 𝑢 ∈  𝐸. First, let 𝑓 ∈  𝐸+ and 𝑢 ∈  𝐸. By (i), 𝑢 ∘  𝜋 =  𝑢+  ∘  𝜋 

on supp(𝑇 𝑢+), and supp(𝑇 𝑢+)  ∩  supp(𝑇 𝑢−) = ∅. By (3):  

𝑇 𝑓 =  𝑇 𝑢±  ·  (
𝑓

𝑢±
 ∘  𝜋 )  on supp(𝑇 𝑢± ), (5) 

 hence 𝑇 𝑓 =  𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋 )  on supp(𝑇 𝑢). Dropping the assumption that 𝑓 ∈  𝐸+, we 

write 𝑓 =  𝑓+  −  𝑓− and observe that  

𝑇 𝑓 =  𝑇 ( 𝑓+ )  −  𝑇 ( 𝑓− )  

=  𝑇 𝑢 ·  ((
𝑓+

𝑢
 ∘  𝜋 )  − (

𝑓+

𝑢
 ∘  𝜋 ))  

=  𝑇 𝑢 ·  (
𝑓+  −  𝑓−

𝑢
 ∘  𝜋 )  

= 𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋 ) ,                                                   (6) 

 which completes the proof. 
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       As a final step, we translate the theorem to the setting of Maeda–Ogasawara spaces to 

state the main result.  

Theorem (5.3.14)[190]: Let 𝐸, 𝐹 be Archimedean Riesz spaces, with a Riesz 

homomorphism 𝑇 ∶  𝐸 →  𝐹. We denote the Maeda–Ogasawara space of 𝐸 by 𝐶∞(𝑋) and 

the one of 𝑇 (𝐸) by 𝐶∞(𝑌 ). Then there exists a map 𝜋 ∶  𝑌 →  𝑋 such that for all f, 𝑢 ∈
 𝐸 :  

       (i) 𝜋(supp(𝑇 𝑢))  ⊂  supp(𝑢);  

       (ii) 
𝑓

𝑢
 ∘  𝜋|supp(𝑇 𝑢)  ∈  𝐶

∞(supp(𝑇 𝑢));  

       (iii) 𝑇 𝑓 =  𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋) on supp(𝑇 𝑢).  

        Furthermore, any such 𝜋 is continuous.  

      If in addition either E is Dedekind complete or T is order continuous, then π is 

uniquely determined.  

Proof. By the Lipecki–Luxemburg–Schep Theorem (Theorem (5.3.3) in [193]), T can be 

extended to the ideal 𝐸′  generated by 𝐸. Then we apply the preceding theorem.  

       In case 𝐸 is Dedekind complete, 𝐸 ∈  𝐶∞(𝑋) is already a Riesz ideal. Theorem 

(5.3.13) then yields a unique 𝜋 ∶  𝑌 →  𝑋. Assuming order continuity of 𝑇 and observing 

that 𝐸′  =  𝐸𝛿, we use that fact that 𝑇 has a unique extension 𝑇𝛿 on 𝐸𝛿  .  
       Note that the Lipecki–Luxemburg–Schep Theorem does not entail uniqueness of the 

extension. The following example illustrates that these extensions can induce different 

composition maps.  

Example (5.3.15)[190]: Let 𝑇 ∶  𝐶[0, 1]  →  𝐶∞({0})  ≅ ℝ be given by 𝑇 𝑓 =  𝑓 (𝑎) for 

some 𝑎 ∈  [0, 1]. Application of the Maeda–Ogasawara Theorem yields a Stonean 

space 𝑋 such that 𝐶[0, 1]  ⊂  𝐶(𝑋)  ⊂  𝐶∞(𝑋), where 𝐶[0, 1]𝛿  =  𝐶(𝑋). There is a 

surjective (but not injective) map 𝜆 ∶  𝑋 →  [0, 1], from which it follows that 𝑇 can be 

extended to 𝑇′ ∶  𝐶(𝑋)  →  𝐶∞({0}) by 𝑇′ 𝑓 ∶=  �̃� for any �̃�  ∈  𝜆−1 ({𝑎}). The resulting 𝜋 

from Theorem (5.3.13) is then of course given by 𝜋(0)  =  �̃�.  
We make some remarks concerning Theorem (5.3.13). The details can be found in 

[194]. It is well-known that for composition operators between spaces of continuous 

functions, injectivity and surjectivity of the operator and its composition map are 

connected. In the generalised setting, similar results hold. We mention Theorem (5.3.16) 

from [194].  

Theorem (5.3.16)[190]: Let 𝑋, 𝑌 , 𝐸, and 𝑇 as in Theorem (5.3.13). The following 

statements are equivalent:  

       (i) 𝑇 is injective and 𝑇 (𝐸)  ⊂  𝐶∞(𝑌 ) is a Riesz ideal;  

       (ii) 𝜋 is a homeomorphism.  

       When applying these results to the setting of Theorem (5.3.14), we need to overcome 

the ambiguity as illustrated in Example (5.3.15). We therefore require either that 𝐸 is 

Dedekind complete or that 𝑇 preserves order limits. As an example of an application, we 

note that the Maeda–Ogasawara space of 𝐿𝑝 (1 ≤  𝑝 <  ∞) on a 𝜎-finite measure space is 

Riesz isomorphic to the space of measurable functions on that measure space. Theorem 

(5.3.14) then provides a set map between the 𝜎-algebras of the respective measure spaces. 

A detailed exposure can be found in [194].  

      We consider the same setting as in Theorem (5.3.14). 𝐸, 𝐹 are Archimedean Riesz 

spaces, with a Riesz homomorphism 𝑇 ∶  𝐸 →  𝐹. We again denote the Maeda–Ogasawara 
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space of 𝐸 by 𝐶∞(𝑋) and the one of 𝑇 (𝐸) by 𝐶∞(𝑌 ). Let us present an example that 

motivates.  

Example (5.3.17)[190]: Define 𝑗 ∈  𝐶∞(𝛽ℕ) as in Example (5.3.11). Fix 𝑎 ∈  𝛽ℕ \ 𝛽(ℕ) 

and observe that 𝑗(𝑎)  =  ∞. Define 𝑆 ∶  𝐶∞(𝛽ℕ)  →  𝐶∞({0})  ≅ ℝ by 𝑆 𝑓 ∶=
𝑓

𝑗
 (𝑎). 

Then supp(𝑆𝟏)  =  ∅ ≠  {0}  =  supp(𝑆𝑗), while supp(𝟏)  =  supp(𝑗). We conclude that 

inclusions of supports of elements are in general not preserved under 𝑇 .  
Proposition (5.3.18)[190]: Let 𝐸, 𝐹, 𝑇 , 𝑋, and 𝑌 be as above. Suppose 𝑇 is 𝜎-order 

continuous. If 𝑓, 𝑔 ∈  𝐸 with supp( 𝑓 )  ⊂  supp(𝑔), then supp(𝑇 𝑓 )  ⊂  supp(𝑇 𝑔).  
Proof. Let 𝑓, 𝑔 ∈  𝐸 with supp( 𝑓 )  ⊂  supp(𝑔). Then 𝑓 =  ⋁  𝑛  ( 𝑓 ∧ 𝑛𝑔), so 𝑇 𝑓 =
 ⋁  𝑛  (𝑇 𝑓 ∧ 𝑛𝑇 𝑔). We conclude 𝑇 𝑓 =  0 outside supp(𝑇 𝑔), so supp(𝑇 𝑓 )  ⊂
 supp(𝑇 𝑔). 
       For the last part, assume that either  

       (i) 𝐸 is Dedekind complete and 𝑇 is 𝜎-order continuous, or  

       (ii) 𝑇 is order continuous, and let 𝜋 be the unique map from Theorem (5.3.14).  

Lemma (5.3.19)[190]: Let 𝐸, 𝐹, 𝑇 , 𝑋, 𝑌 , and 𝜋 be as above. For all 𝑓 ∈  𝐸 ∶  𝑓 ∘  𝜋 ∈
 𝐶∞(𝑌 ) and supp( 𝑓 ∘  𝜋)  =  supp(𝑇 𝑓 ).  
Proof. In case of (ii), T has a unique order continuous extension to 𝐸𝛿 , so we do not need 

the Lipecki–Luxemburg–Schep Theorem and may assume 𝐸 is an ideal. Take 𝑓 ∈  𝐸+.  

Claim. 𝑓 ∘  𝜋|supp(𝑇 𝑓)  ∈  𝐶
∞(supp(𝑇 𝑓 )). 

        As 𝜋 is continuous, it suffices to prove that the closed set {𝑦 ∈
 supp(𝑇 𝑓 ) | 𝑓 (𝜋(𝑦))  =  ∞} is meagre. Let 𝐶 ⊂  supp(𝑇 𝑓 ) therefore be clopen such 

that 𝑓 (𝜋(𝐶)) =  {∞}. We have 
𝑓∧𝟏𝑋

𝑓
 ∘  𝜋 ≤

𝟏𝑋

𝑓
 ∘  𝜋 =  0 on 𝐶 by Proposition (5.3.9)(iv). 

Using Theorem (5.3.14)(iii), we see that 𝑇 ( 𝑓 ∧  𝟏𝑋 )  =  𝑇 𝑓 ·  ( 
𝑓∧𝟏𝑋

𝑓
 ∘  𝜋) on 

supp(𝑇 𝑓 ). Hence 𝑇 ( 𝑓 ∧  𝟏𝑋 )  =  0 on 𝐶. Observing that 𝐶 ⊂  supp(𝑇 𝑓 )  =

 supp(𝑇 ( 𝑓 ∧  𝟏𝑋 )), we conclude that 𝐶 =  ∅.  
Claim. 𝑓 ∘  𝜋 =  0 on 𝑌 \ supp(𝑇 𝑓 ). Order denseness of 𝑇 (𝐸)  ⊂  𝐶∞(𝑌 ) implies that 

𝑊 ∶= ⋃  𝑔∈𝐸+  supp(𝑇 𝑔) is dense in 𝑌 . By Proposition (5.3.18), W is 

⋃  𝑔∈𝐸+∩𝐶(𝑋)  supp(𝑇 𝑔). Hence we are done if for every 𝑔 ∈  𝐸+  ∩  𝐶(𝑋): 𝑓 ∘  𝜋 =

 0 on 𝑈𝑔 ∶=  supp(𝑇 𝑔) \ supp(𝑇 𝑓 ).  

      Fix 𝑔 ∈  𝐸+  ∩  𝐶(𝑋). We prove 𝑓 ∘  𝜋 =  0 on 𝑈𝑔. Observe that 
𝑓

𝑔
 ∘  𝜋, 𝑔 ∘  𝜋 ∈

 𝐶∞(𝑈𝑔), respectively because 𝑈𝑔  ⊂  supp(𝑇 𝑔) and because 𝑔 ∈  𝐶(𝑋). Using 

Proposition (5.3.9)(v), this implies that 𝑓 ∘  𝜋 =  (
𝑓

𝑔
 ∘  𝜋) · (𝑔 ∘  𝜋)  in 𝐶∞(𝑈𝑔) . By 

Theorem (5.3.14)(iii), 𝑇 𝑓 =  𝑇 𝑔 · (
𝑓

𝑔
 ∘  𝜋) on supp(𝑇 𝑔)  ⊃  𝑈𝑔, while 𝑇 𝑓 =

 0 on 𝑈𝑔 by definition. The set {𝑦 ∈  𝑈𝑔 | 𝑇 𝑔(𝑦)  =  0} is meagre in 𝑈𝑔, so 
𝑓

𝑔
 ∘  𝜋 =

 0 on 𝑈𝑔. Hence 𝑓 ∘  𝜋 =  0 on 𝑈𝑔. This holds for all 𝑔 ∈  𝐸+  ∩  𝐶(𝑋), proving the 

claim.  

Claim. supp(𝑇 𝑓 )  ⊂  supp( 𝑓 ∘  𝜋). According to the preceding, we already have 𝑓 ∘
𝜋 ∈  𝐶∞(𝑌 ) and supp( 𝑓 ∘ 𝜋)  ⊂  supp(𝑇 𝑓 ). For the reverse inclusion, set 𝑔 ∶=  𝑓 ∧
 𝑓2 . As 𝑔 ≤  𝑓 , 𝑔 must be in 𝐸+. From Theorem (5.3.14)(iii), which states that 𝑇 𝑔 =

 𝑇 𝑓 · (
𝑔

𝑓
 ∘ 𝜋) on supp(𝑇 𝑓 ), we deduce that supp(𝑇 𝑔) ∩ supp(𝑇 𝑓 )  ⊂  supp(

𝑔

𝑓
 ∘ 𝜋). 
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Note that supp(𝑔)  =  supp( 𝑓 ), so by order continuity of 𝑇 ∶  supp(𝑇 𝑔)  =
 supp(𝑇 𝑓 ). This allows us to calculate: 

supp(𝑇 𝑓 ) ⊂  supp(
𝑓 ∧  𝑓2

𝑓
 ∘  𝜋 ) ⊂  supp(

𝑓2

𝑓
 ∘  𝜋 ) 

=  supp( 𝑓 ∘  𝜋),                                                                          (7) 
 which finishes the argument.  

Proposition (5.3.20)[190]: Let 𝐸, 𝐹, 𝑇 , 𝑋, 𝑌 , and 𝜋 be as above. For all 𝑓, 𝑔 ∈  𝐸 ∶
𝑇𝑓

𝑓 ∘𝜋
 =

𝑇𝑔

𝑔∘𝜋
 on supp(𝑇 𝑓 )  ∩  supp(𝑇 𝑔).  

Proof. Let 𝑓, 𝑔 ∈  𝐸. We have 𝑓 ∘  𝜋, 𝑔 ∘  𝜋 ∈  𝐶∞(𝑌 ) by Lemma (5.3.19). Theorem 

(5.3.14) implies 
𝑔

𝑓
 ∘  𝜋 ∈  𝐶∞(𝑌 ). We start with Theorem (5.3.14)(iii) and use Proposition 

(5.3.9)(v) and the preceding lemma:  

𝑇 𝑔 =  𝑇 𝑓 ·  (
𝑔

𝑓
 ∘  𝜋 )  on supp(𝑇 𝑓 ) 

( 𝑓 ∘  𝜋)  ·  𝑇 𝑔 =  𝑇 𝑓 ·  (
𝑔

𝑓
 ∘  𝜋 )  ·  ( 𝑓 ∘  𝜋) on supp(𝑇 𝑓 ) 

( 𝑓 ∘  𝜋) ·  𝑇 𝑔 =  𝑇 𝑓 ·  ( 𝑓 ·
𝑔

𝑓
 ∘  𝜋 )  on supp(𝑇 𝑓 ) 

( 𝑓 ∘  𝜋) ·  𝑇 𝑔 =  𝑇 𝑓 ·  (𝑔 ∘  𝜋)on supp(𝑇 𝑓 ),                             (8) 

 so 
𝑇𝑔

𝑔∘𝜋
 =

𝑇𝑓

𝑓 ∘𝜋
 on supp(𝑇 𝑓 )  ∩  supp(𝑇 𝑔), as desired. 

       In contrast with Example (5.3.11), T turns out to be an ordinary weighted composition 

operator, in the sense of Theorem (5.3.1).  

Theorem (5.3.21)[190]: Let 𝐸, 𝐹, 𝑇 , 𝑋, 𝑌 , and π be as above. There exists a unique 𝜂 ∈
 𝐶∞(𝑌 ) such that for all 𝑓 ∈  𝐸 ∶  𝑇 𝑓 =  𝜂 ·  ( 𝑓 ∘  𝜋).  

Proof. For any 𝑓 ∈  𝐸+, the set 𝑊 𝑓 ∶=  {𝑦 ∈  𝑌 |𝑇 𝑓 (𝑦) >  0,
𝑇𝑓

𝑓 ∘𝜋
 (𝑦)  <  ∞} is an open 

and dense subset of supp(𝑇 𝑓 ). Set 𝑊 ∶= ⋃  𝑓 ∈𝐸+ 𝑊 𝑓 . By order denseness of 𝑇 (𝐸)  ⊂

 𝐶∞(𝑌 ), W is dense in 𝑌 . The preceding theorem then implies that there exists a function 

�̃� ∶  𝑊 → ℝ that satisfies �̃�  =
𝑇𝑓

𝑓 ∘ 𝜋
 on 𝑊 𝑓 for every 𝑓 ∈  𝐸+. Each 𝑊 𝑓 is open and 

𝑇𝑓

𝑓 ∘ 𝜋
 

is continuous for every 𝑓 ∈  𝐸+, so �̃� is continuous and extends to a unique 𝜂 ∈  𝐶∞(𝑌 ). 
For any 𝑓, 𝑢 ∈  𝐸, this leads to:  

𝑇 𝑓 =  𝑇 𝑢 ·  (
𝑓

𝑢
 ∘  𝜋 )  =  𝑇 𝑢 ·

𝑓 ∘   𝜋

𝑢 ∘   𝜋
  

=  𝜂 ·  ( 𝑓 ∘  𝜋)                                                                            (9) 
on supp(𝑇 𝑓 )  ∩  supp(𝑇 𝑢). As supp(𝑇 𝑓 )  =  supp( 𝑓 ∘  𝜋), we conclude that 𝑇 𝑓 =
 𝜂 ·  ( 𝑓 ∘  𝜋) on the whole 𝑌.  
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Chapter 6 

Approximation Numbers with Strict Singularity and Hardy Space 

We give estimates for the approximation numbers of composition operators on the 

𝐻𝑝 spaces, 1 ≤  𝑝 <  ∞. We obtain a new proof for the equivalence of the compactness 

and the weak compactness of 𝑇𝑔 on 𝐻1. A non-compact 𝑇𝑔 acting on the space BMOA 

fixes an isomorphic copy of 𝑐0. We reinterpret these results in terms of norm-closed ideals 

of the bounded linear operators on 𝐻𝑝, which contain the compact operators 𝐾(𝐻𝑝). The 

class of composition operators on 𝐻𝑝 does not reflect the quite complicated lattice 

structure of such ideals. 

Section (6.1): Composition Operators on 𝑯𝒑 

The study of approximation numbers of composition operators on 𝐻2 has been 

initiated (see [78], [203], [63], [209], [204]), and (upper and lower) estimates have been 

given. Most of the techniques used there are specifically Hilbertian (in particular Weyl’s 

inequality; see [78]). We consider the case of composition operators on 𝐻𝑝 for 1 ≤  𝑝 <
 ∞. 
       We focus essentially on lower estimates, because the upper ones are similar, with 

similar proofs, as in the Hilbertian case. We give in Theorem (6.1.4) a minoration 

involving the uniform separation constant of finite sequences in the unit disk and the 

interpolation constant of their images by the symbol. We finish with some upper estimates. 

       Recall that if 𝑋 and 𝑌 are two Banach spaces of analytic functions on the unit disk 𝔻, 
and 𝜑 ∶  𝔻 →  𝔻 is an analytic self-map of 𝔻, one says that 𝜑 induces a composition 

operator 𝐶𝜑 ∶  𝑋 →  𝑌 if 𝑓 ∘ 𝜑 ∈ 𝑌 for every 𝑓 ∈  𝑋;  𝜑 is then called the symbol of the 

composition operator. One also says that 𝜑 is a symbol for 𝑋 and 𝑌 if it induces a 

composition operator 𝐶𝜑 ∶  𝑋 →  𝑌. 

       For every 𝑎 ∈  𝔻, we denote by 𝑒𝑎  ∈  (𝐻
𝑝)∗ the evaluation map at 𝑎, namely: 

𝑒𝑎(𝑓) =  𝑓(𝑎), 𝑓 ∈  𝐻𝑝.                      (1) 
We know that ([86], p. 253): 

‖𝑒𝑎‖ = (
1

1 − |𝑎|2
)
1/𝑝

                              (2) 

and the mapping equation 

𝐶𝜑
∗ (𝑒𝑎) =  𝑒𝜑(𝑎)                                              (3) 

still holds. 

We denote by ‖ . ‖, without any subscript, the norm in the dual space (𝐻𝑝)∗. 
       Let us stress that this dual norm of (𝐻𝑝)∗ is, for 1 <  𝑝 <  1, equivalent, but not 

equal, to the norm ‖ . ‖𝑞 of 𝐻𝑞 , and the equivalence constant tends to infinity when 𝑝 goes 

to 1 or to ∞. 
       As usual, the notation 𝐴 ≾ 𝐵 means that there is a constant 𝑐 such that 𝐴 ≤  𝑐𝐵 and 

𝐴 ≈ 𝐵 means that 𝐴 ≾  𝐵 and 𝐵 ≾  𝐴. 
       For an operator 𝑇 ∶  𝑋 ⟶  𝑌 between Banach spaces 𝑋 and 𝑌, its approximation 

numbers are defined, for 𝑛 ≥  1, as: 

𝑎𝑛(𝑇) = inf
rank 𝑅<𝑛

‖𝑇 −  𝑅‖.                     (4) 

One has ‖𝑇‖ =  𝑎1(𝑇 ) ≥  𝑎2(𝑇 ) ≥ ⋅ ⋅ ⋅ ≥  𝑎𝑛(𝑇 ) ≥  𝑎𝑛+1(𝑇 ) ≥ ⋅ ⋅ ⋅, and (assuming that 

𝑌 has the Approximation Property), 𝑇 is compact if and only if 𝑎𝑛(𝑇 )  
𝑛→∞
→   0. 

       We will also need other singular numbers (see [65], p. 49). 

       The 𝑛-th Bernstein number 𝑏𝑛(𝑇) of 𝑇, defined as: 
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𝑏𝑛(𝑇 ) = sup
𝐸⊆𝑋

dim𝐸=𝑛

inf
𝑥∈𝑆𝐸

‖𝑇𝑥‖,                        (5) 

where 𝑆𝐸  =  {𝑥 ∈ 𝐸; ‖𝑥‖  =  1} is the unit sphere of 𝐸. When these numbers tend to 0, 𝑇 

is said to be superstrictly singular, or finitely strictly singular (see [208]). 

The 𝑛-th Gelfand number of 𝑇, defined as: 

𝑐𝑛(𝑇 ) = inf
𝐿⊆𝑌

codim 𝐿<𝑛

‖𝑇|𝐿‖,                              (6) 

One always has: 

𝑎𝑛(𝑇) ≥  𝑐𝑛(𝑇) and    𝑎𝑛(𝑇) ≥  𝑏𝑛(𝑇),               (7) 
and, when 𝑋 and 𝑌 are Hilbert spaces, one has 𝑎𝑛(𝑇 )  =  𝑏𝑛(𝑇 )  =  𝑐𝑛(𝑇 ) ([207], 

Theorem (6.1.1)). 

We first show that, as in the Hilbertian case 𝐻2 ([78], Theorem (6.1.12)), the 

approximation numbers of the composition operators on 𝐻𝑝 cannot decrease faster than 

geometrically. 

We cannot longer appeal to the Hilbertian techniques of [78], Weyl’s inequality has 

the following generalization ([90], Proposition 2). 

Proposition (6.1.1)[199]: (Carl-Triebel). Let 𝑇 be a compact operator on a complex 

Banach space 𝐸 and 𝜆𝑛(𝑇)𝑛≥1 be the sequence of its eigenvalues, indexed such that 

|𝜆1(𝑇)|  ≥  |𝜆2(𝑇)|  ≥  ・ ・ ・. Then, for 𝑛 =  1, 2, . .. and 𝑚 =  0, 1, . . . , 𝑛 −  1, one 

has: 

∏|𝜆𝑗(𝑇)|

𝑛

𝑗=1

≤ 16𝑛‖𝑇‖𝑚𝑎𝑚+1(𝑇)
𝑛−𝑚.            (8) 

(see [200]). Then, we can state: 

Theorem (6.1.2)[199]: For every non-constant analytic self-map 𝜑 ∶  𝔻 →  𝔻, there exist 

0 <  𝑟 ≤  1 and 𝑐 >  0, depending only on 𝜑, such that the approximation numbers of 

the composition operator 𝐶𝜑: 𝐻
𝑝  → 𝐻𝑝 satisfy: 

𝑎𝑛(𝐶𝜑)  ≥  𝑐 𝑟
𝑛, 𝑛 =  1, 2, . .. 

In particular 𝑙𝑖𝑚 inf
𝑛→∞

[𝑎𝑛(𝐶𝜑)]
1/𝑛
≥  𝑟 >  0. 

Proof. If 𝐶𝜑 is not compact, the result is trivial, with 𝑟 =  1; so we assume that 𝐶𝜑 is 

compact. 

       Before carrying on, we first recall some notation used in [78]. For every 𝑧 ∈  𝔻, let 

𝜑⋕(𝑧)  =  
|𝜑′(𝑧)|(1 – |𝑧|2)

1 − |𝜑(𝑧)|2
 

be the pseudo-hyperbolic derivative of 𝜑 at 𝑧, and 

[𝜑] = sup
𝑧∈𝔻

𝜑⋕(𝑧). 

By the Schwarz-Pick inequality, one has [𝜑]  ≤  1. Moreover, since 𝜑 is not constant, one 

has [𝜑]  >  0. 
       We also set, for every operator 𝑇 ∶  𝐻𝑝  →  𝐻𝑝: 

𝛽−(𝑇) =  lim inf
𝑛→∞

[𝑎𝑛(𝑇)]
1/𝑛. 

For every 𝑎 ∈  𝔻, we are going to show that 𝛽−(𝐶𝜑)  ≥ (𝜑
⋕(𝑎))

2
, which will give 

𝛽−(𝐶𝜑)  ≥  [𝜑]
2, by taking the supremum for 𝑎 ∈  𝔻, and the stated result, with 0 <

 𝑟 <  [𝜑]2. 
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       If 𝜑⋕(𝑎) = 0, the result is obvious, so we assume that 𝜑⋕(𝑎)  >  0. 

We consider the automorphism Φ𝑎, defined by Φ𝑎(𝑧)  =  
𝑎−𝑧

1−�̅�𝑧
, and set 

𝜓𝑎 = Φ𝜑(𝑎) ο 𝜑 ο Φ𝑎. 

One has 𝜓𝑎(0)  =  0 and |𝜓𝑎
′ (0)|  =  𝜑⋕(𝑎). 

Since 𝐶𝜑 is compact on 𝐻𝑝, 𝐶𝜓𝑎 = 𝐶Φ𝑎  ο 𝐶𝜑 ο 𝐶Φ𝜑(𝑎) is also compact on 𝐻𝑝. But we 

know that this is equivalent to say that it is compact on 𝐻2. Since 𝜓𝑎(0)  =  0 and 

𝜓𝑎
′ (0)  =  𝜑⋕(𝑎)  ≠ 0, we know, by the Eigenfunction Theorem ([83], p. 94), that the 

eigenvalues of 𝐶𝜓𝑎 ∶  𝐻
2  →  𝐻2 are the numbers (𝜓𝑎

′ (0))
𝑗
, 𝑗 = 0, 1, . . ., and have 

multiplicity one. Moreover, the proof given in [83], § 6.2 shows that the eigenfunctions 𝜎𝑗 
are not only in 𝐻2, but in all 𝐻𝑞 , 1 ≤  𝑞 <  1. 

       Hence 𝜆𝑗(𝐶𝜓𝑎)  = (𝜓𝑎
′ (0))

𝑗−1
. We now use Proposition (6.1.1), with 2𝑛 instead of 𝑛 

and 𝑚 =  𝑛 −  1; we get: 

|𝜓𝑎
′ (0)|𝑛(2𝑛−1) =∏|𝜆𝑗(𝐶𝜓𝑎)|

2𝑛

𝑗=1

 ≤ 162𝑛‖𝐶𝜓𝑎‖
𝑛−1
𝑎𝑛(𝐶𝜓𝑎)

𝑛+1
  

≤  162𝑛‖𝐶𝜓𝑎‖
𝑛
𝑎𝑛(𝐶𝜓𝑎)

𝑛
, 

since 𝑎𝑛(𝐶𝜓𝑎)  ≤  ‖𝐶𝜓𝑎‖. 

That implies that 𝛽−(𝐶𝜓𝑎)  ≥  |𝜓𝑎
′ (0)|2  = (𝜑⋕(𝑎))

2
. 

Since 𝐶Φ𝑎 and 𝐶Φ𝜑(𝑎) are automorphisms, we have 𝛽−(𝐶𝜑)  =  𝛽
−(𝐶𝜓𝑎), hence the result. 

We use the fortunate fact that, though the evaluation maps at well-chosen points of 

𝔻 can no longer be said to constitute a Riesz sequence, they will still constitute an 

unconditional sequence in 𝐻𝑝 with good constants, as we are going to see, which will be 

sufficient for our purposes. 

Recall (see [94], p. 276) that the interpolation constant 𝜅𝜎 of a finite sequence 𝜎 =
 (𝑧1, . . . , 𝑧𝑛) of points 𝑧1, . . . , 𝑧𝑛  ∈  𝔻 is defined by: 

𝜅𝜎 = sup
|𝑎1|,...,|𝑎𝑛|≤1

inf{‖𝑓‖∞;  𝑓 ∈ 𝐻
∞ and 𝑓(𝑧𝑗) = 𝑎𝑗 , 1 ≤ 𝑗 ≤ 𝑛}.                 (9) 

Then: 

Lemma (6.1.3)[199]: For every finite sequence 𝜎 =  (𝑧1, . . . , 𝑧𝑛) of distinct points 

𝑧1, . . . , 𝑧𝑛  ∈  𝔻, one has: 

𝜅𝜎
−1 ‖∑𝜆𝑗𝑒𝑧𝑗

𝑛

𝑗=1

‖ ≤ ‖∑𝜔𝑗𝜆𝑗𝑒𝑧𝑗

𝑛

𝑗=1

‖ ≤ 𝜅𝜎 ‖∑𝜆𝑗𝑒𝑧𝑗

𝑛

𝑗=1

‖                 (10) 

for all 𝜆1, . . . , 𝜆𝑛  ∈  ℂ and all complex numbers numbers 𝜔1, . . . , 𝜔𝑛 such that |𝜔1|  =  ・ 
・ ・ =  |𝜔𝑛|  =  1. 
Proof. Set 𝐿 = ∑ 𝜆𝑗𝑒𝑧𝑗

𝑛
𝑗=1  and 𝐿𝜔  = ∑ 𝜔𝑗𝜆𝑗𝑒𝑧𝑗

𝑛
𝑗=1 . There exists ℎ ∈  𝐻∞ such that 

‖ℎ‖∞ ≤ 𝜅𝜎 and ℎ(𝑧𝑗)  =  𝜔𝑗 for every 𝑗 =  1, . . . , 𝑛. For every 𝑔 ∈  𝐻𝑝, one has 

𝐿𝜔(𝑔)  = ∑ 𝜔𝑗𝜆𝑗𝑔(𝑧𝑗)
𝑛
𝑗=1 = ∑ ℎ(𝑧𝑗)𝜆𝑗𝑔(𝑧𝑗)

𝑛
𝑗=1 =  𝐿(ℎ𝑔); hence: 

|𝐿𝜔(𝑔)|  ≤  ‖𝐿‖ ‖ℎ𝑔‖𝑝  ≤  ‖𝐿‖ ‖ℎ‖∞‖𝑔‖𝑝  ≤ 𝜅𝜎‖𝐿‖ ‖𝑔‖𝑝 

and we get ‖𝐿𝜔‖ ≤ 𝜅𝜎  ‖𝐿‖, which is the right-hand side of (10). The left-hand side 

follows, by replacing 𝜆1, . . . , 𝜆𝑛 by 𝜔1̅̅̅̅ 𝜆1, . . . , 𝜔𝑛̅̅ ̅̅ 𝜆𝑛. 
       We now prove the following lower estimate. 
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For the proof, we need to know some precisions on the constant in Carleson’s embedding 

theorem. Recall that the uniform separation constant 𝛿𝜎 of a finite sequence 𝜎 =
 (𝑧1, . . . , 𝑧𝑛) in the unit disk 𝔻, is defined by: 

𝛿𝜎 = inf
1≤𝑗≤𝑛

∏|
𝑧𝑗 − 𝑧𝑘
1 − 𝑧�̅�𝑧𝑘

|

 

𝑘≠𝑗

                              (11) 

Lemma (6.1.5)[199]: Let 𝜎 =  (𝑧1, . . . , 𝑧𝑛) be a finite sequence of distinct points in 𝔻 

with uniform separation constant 𝛿𝜎 . Then: 

∑(1 − |𝑧𝑗|
2
) |𝑓(𝑧𝑗)|

𝑝
𝑛

𝑗=1

 ≤ 12 [1 + log
1

𝛿𝜎
] ‖𝑓‖𝑝

𝑝
           (12) 

for all 𝑓 ∈  𝐻𝑝. 

Proof. For 𝑎 ∈  𝔻, let 𝑘𝑎(𝑧)  =
√1−|𝑎|2

1−�̅�𝑧
 be the normalized reproducing kernel. 

For every positive Borel measure 𝜇 on 𝔻, let: 

𝛾𝜇 = sup
𝑎∈supp 𝜇

∫ |𝑘𝑎(𝑧)|
2𝑑𝜇(𝑧)

 

𝔻

. 

The so-called Reproducing Kernel Thesis (see [110], Lecture VII, pp. 151–158) says that 

there is an absolute positive constant 𝐴1 such that: 

∫ |𝑓(𝑧)|𝑝𝑑𝜇(𝑧)
 

𝔻

 ≤  𝐴1 𝛾𝜇 ‖𝑓‖𝑝
𝑝
 

for every 𝑓 ∈  𝐻𝑝 (that follows from the case 𝑝 =  2 in writing 𝑓 =  𝐵ℎ2/𝑝 where 𝐵 is a 

Blaschke product and ℎ ∈  𝐻2). Actually, one can take 𝐴1 = 2𝑒 (see [206], Theorem 0.2). 

But when 𝜇 is the discrete measure ∑ (1 − |𝑧𝑗|
2
) 𝛿𝑧𝑗

𝑛
𝑗=1 , it is not difficult to check (see 

[201], Lemma 1, p. 150, or [97], p. 201) that: 

𝛾𝜇  ≤  1 +  2 log
1

𝛿𝜎
. 

That gives the result since 4 𝑒 ≤  12. 
Theorem (6.1.4)[199]: Let 𝜑 ∶  𝔻 →  𝔻 and 𝐶𝜑 ∶  𝐻

𝑝 → 𝐻𝑝, with 1 ≤ 𝑝 <  1. Let 

𝑢1, . . . , 𝑢𝑛  ∈  𝔻 such that 𝑣1 = 𝜑(𝑢1), . . . , 𝑣𝑛 = 𝜑(𝑢𝑛) are distinct. Then, for some 

constant 𝑐𝑝 depending only on 𝑝, we have: 

𝑎𝑛(𝐶𝜑) ≤ 𝑐𝑝𝜅𝑣
−1 (1 +  log

1

𝛿𝑢
)
−

1
min(𝑝,2)

inf
1≤𝑗≤𝑛

(
1 − |𝑢𝑗|

2

1 − |𝑣𝑗|
2)

1
𝑝

,          (13) 

where 𝛿𝑢 is the uniform separation constant of the sequence 𝑢 = (𝑢1, . . . , 𝑢𝑛) and 𝜅𝑣 the 

interpolation constant of 𝑣 =  (𝑣1, . . . , 𝑣𝑛). 
Proof. We will actually work with the Bernstein numbers of 𝐶𝜑

∗ . Recall that they are 

defined in (5). That will suffice since 𝑎𝑛(𝐶𝜑)  ≥  𝑎𝑛(𝐶𝜑
∗ ) (one has equality if 𝐶𝜑 is 

compact: see [202] or [65], pp. 89–91) and 𝑎𝑛(𝐶𝜑
∗ )  ≥  𝑏𝑛(𝐶𝜑

∗ ). 

       Take 𝑢1, . . . , 𝑢𝑛  ∈  𝔻 such that 𝑣1  =  𝜑(𝑢1), . . . , 𝑣𝑛  =  𝜑(𝑢𝑛) are distinct. The points 

𝑢1, . . . , 𝑢𝑛 are then also distinct and the subspace 𝐸 =  span {𝑒𝑢1 , . . . , 𝑒𝑢𝑛} of (𝐻𝑝)∗ is 𝑛-

dimensional. Let 

𝐿 =∑𝜆𝑗𝑒𝑢𝑗

𝑛

𝑗=1
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be in the unit sphere of 𝐸. We set, for 𝑓 ∈  𝐻𝑝 and for 𝑗 =  1, . . . , 𝑛: 

Λ𝑗  =  λ𝑗 ‖𝑒𝑢𝑗‖ , and  𝐹𝑗 = ‖𝑒𝑢𝑗‖
−1
𝑓(𝑢𝑗), 

and finally: 

Λ =  (Λ1, . . . , Λ𝑛)  and  𝐹 =  (𝐹1, . . . , 𝐹𝑛). 
We will separate three cases. 

Case 1: 1 <  𝑝 ≤  2. 

One has ‖𝐶𝜑
∗ (𝐿)‖ = ‖∑ 𝜆𝑗𝑒𝑣𝑗

𝑛
𝑗=1 ‖. Using Lemma (6.1.3), we obtain for any choice of 

complex signs 𝜔1, . . . , 𝜔𝑛: 

‖𝐶𝜑
∗ (𝐿)‖  ≥  𝜅𝑣

−1 ‖∑𝜔𝑗𝜆𝑗𝑒𝑣𝑗

𝑛

𝑗=1

‖.                            (14) 

Let now 𝑞 be the conjugate exponent of 𝑝. We know that the space 𝐻𝑝 is of type 𝑝 as a 

subspace of 𝐿𝑝 ([104], p. 169) and therefore its dual (𝐻𝑝)∗ is of cotype 𝑞 ([104], p. 165), 

with cotype constant ≤ 𝜏𝑝, the type 𝑝 constant of 𝐿𝑝 (let us note that we might use that 

(𝐻𝑝)∗ is isomorphic to the subspace 𝐻𝑞 of 𝐿𝑞 , but we have then to introduce the constant 

of this isomorphism). Hence, by averaging (14) over all independent choices of signs and 

using the cotype q property of (𝐻𝑝)∗, we get: 

‖𝐶𝜑
∗ (𝐿)‖  ≥  𝜏𝑝

−1𝜅𝑣
−1 (∑|𝜆𝑗|

𝑞
‖𝑒𝑣𝑗‖

𝑞 
𝑛

𝑗=1

)

1/𝑞

≥ 𝜏𝑝
−1𝜅𝑣

−1𝜇𝑛 (∑|𝜆𝑗|
𝑞
‖𝑒𝑢𝑗‖

𝑞 
𝑛

𝑗=1

)

1/𝑞

, 

so that 

‖𝐶𝜑
∗ (𝐿)‖  ≥  𝜏𝑝

−1𝜅𝑣
−1𝜇𝑛‖Λ‖𝑞 ,                              (15) 

where: 

𝜇𝑛 = inf
1≤𝑗≤𝑛

‖𝑒𝑣𝑗‖

‖𝑒𝑢𝑗‖
= inf
1≤𝑗≤𝑛

(
1 − |𝑢𝑗|

2

1 − |𝑣𝑗|
2)

1/𝑝

. 

It remains to give a lower bound for ‖Λ‖𝑞 . 
But, by Hölder’s inequality: 

|𝐿(𝑓)|  = |∑𝜆𝑗𝑓(𝑢𝑗)

𝑛

𝑗=1

| = |∑𝜆𝑗𝐹𝑗

𝑛

𝑗=1

| ≤ ‖Λ‖𝑞‖F‖𝑝. 

Since 

‖𝐹‖𝑝
𝑝
=∑‖𝑒𝑢𝑗‖

−𝑝

|𝑓(𝑢𝑗)|
𝑝

𝑛

𝑗=1

 = ∑(1 − |𝑢𝑗|
2
) |𝑓(𝑢𝑗)|

𝑝
𝑛

𝑗=1

, 

Lemma (6.1.5) gives: 

|𝐿(𝑓)| ≤  ‖Λ‖𝑞 [12 (1 +  log
1

𝛿𝑢
)]
1/𝑝

‖𝑓‖𝑝. 

Taking the supremum over all 𝑓 with ‖𝑓‖𝑝 ≤ 1, we get, taking into account that ‖𝐿‖ = 1: 

‖Λ‖𝑞 ≥ [12 (1 +  log
1

𝛿𝑢
)]
−1/𝑝

.                           (16) 

By combining (15) and (16), we get: 
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‖𝐶𝜑
∗ (𝐿)‖  ≥ (12) −1/𝑝𝜏𝑝

−1𝜇𝑛𝜅𝑣
−1 (1 +  log

1

𝛿𝑢
)
−1/𝑝

. 

Therefore: 

𝑏𝑛(𝐶𝜑
∗ ) ≥ (12)

 −
1
𝑝𝜏𝑝
−1𝜇𝑛𝜅𝑣

−1 (1 +  log
1

𝛿𝑢
)
−
1
𝑝
. 

Case 2: 2 <  𝑝 <  1. 
We follow the same route, but in this case, 𝐻𝑝 is of type 2 and hence (𝐻𝑝)∗ is of cotype 2. 
Therefore, we get: 

‖𝐶𝜑
∗ (𝐿)‖  ≥ 𝜏2

−1𝜅𝑣
−1𝜇𝑛‖Λ‖2                                (17) 

and, using Cauchy-Schwarz inequality: 

‖Λ‖2 ≥ [12(1 +  log
1

𝛿𝑢
)]
−1/2

;                  (18) 

so: 

‖𝐶𝜑
∗ (𝐿)‖  ≥ (12) −1/2𝜏2

−1𝜇𝑛𝜅𝑣
−1 (1 +  log

1

𝛿𝑢
)
−1/2

.              (19) 

Case 3: 𝑝 =  1. 
In this case (𝐻1)∗ (which is isomorphic to the space 𝐵𝑀𝑂𝐴) has no finite cotype. But, for 

each 𝑘 =  1, . . . , 𝑛, one has, using Lemma (6.1.3): 

|𝜆𝑘|‖𝑒𝑣𝑘‖ =
1

2
‖(∑𝜆𝑗𝑒𝑣𝑗 + 𝜆𝑘𝑒𝑣𝑘

 

𝑗≠𝑘

) − (∑𝜆𝑗𝑒𝑣𝑗 + 𝜆𝑘𝑒𝑣𝑘

 

𝑗≠𝑘

)‖

≤
1

2
(‖∑𝜆𝑗𝑒𝑣𝑗 + 𝜆𝑘𝑒𝑣𝑘

 

𝑗≠𝑘

‖ + ‖∑𝜆𝑗𝑒𝑣𝑗 + 𝜆𝑘𝑒𝑣𝑘

 

𝑗≠𝑘

‖) ≤ 𝜅𝑣
 ‖∑𝜆𝑗𝑒𝑣𝑗

𝑛

𝑗=1

‖ ; 

hence: 

‖𝐶𝜑
∗ (𝐿)‖  ≥ 𝜅𝑣

−1𝜇𝑛‖Λ‖∞.                      (20) 

Since |𝐿(𝐹)|  ≤  ‖Λ‖∞‖F‖1, we get, as above, using Lemma (6.1.5): 

‖Λ‖∞ ≥ [12(1 +  log
1

𝛿𝑢
)]
−1

                (21) 

and therefore: 

‖𝐶𝜑
∗ (𝐿)‖  ≥ (12) −1𝜇𝑛𝜅𝑣

−1 (1 +  log
1

𝛿𝑢
)
−1

.  (22) 

and that finishes the proof of Theorem (6.1.4). 

Example (6.1.6)[199]: We will now apply this result to lens maps. See [83] or [63] for 

their definition. For 𝜃 ∈  (0, 1), we denote: 

𝜆𝜃(𝑧) =
(1 +  𝑧)𝜃 − (1 −  𝑧)𝜃

(1 +  𝑧)𝜃 + (1 −  𝑧)𝜃
.                (23) 

Proposition (6.1.7)[199]: Let 𝜆𝜃 be the lens map of parameter 𝜃 acting on 𝐻𝑝, with 1 ≤
 𝑝 <  ∞. Then, for positive constants 𝑎 and 𝑏, depending only on 𝜃 and 𝑝: 

𝑎𝑛(𝐶𝜆𝜃)  ≥  𝑎 𝑒
−𝑏√𝑛. 

Actually, this estimate is valid for polygonal maps as well. 
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Proof. Let 0 < 𝜎 <  1 and consider 𝑢𝑗  =  1 − 𝜎
𝑗 and 𝑣𝑗 = 𝜆𝜃(𝑢𝑗), 1 ≤  𝑗 ≤  𝑛. We 

know from [78], Lemma 6.4 and Lemma 6.5, that, for 𝛼 =  
𝜋2

2
 and 𝛽 =  𝛽𝜃  =

𝜋2

2𝜃𝜃
∶ 

𝛿𝑢  ≥  𝑒
−𝛼/(1−𝜎)     and    𝛿𝑣  ≥  𝑒

−𝛽/(1−𝜎). 
But we know that the interpolation constant 𝜅𝜎

  is related to the uniform separation 

constant 𝛿𝜎 by the following inequality ([94] page 278), in which Λ is a positive numerical 

constant: 
1

𝛿𝜎
≤ 𝜅𝜎

 ≤
Λ

𝛿𝜎
(1 + log

1

𝛿𝜎
).                                        (24) 

Actually, S. A. Vinogradov, E. A. Gorin and S. V. Hrušcëv [210] (see [205], p. 505) 

proved that 

𝜅𝜎
 ≤

2𝑒

𝛿𝜎
(1 + 2 log

1

𝛿𝜎
), 

so we can take Λ ≤  4 𝑒 ≤  12. 
It follows that 

𝜅𝑣
−1 ≥ 

1 −  𝜎

Λ(𝛽 +  1)
𝑒−𝛽/(1−𝜎).                             (25) 

Setting �̃�  =  min(𝑝, 2), we have: 

(1 + log
1

𝛿𝑢
)
−1/�̃�

≥ (
1 − 𝜎

𝛼 +  1
)

1
�̃�
.                      (26) 

We now estimate 𝜇𝑛. 

Since 𝜆𝜃(0)  =  0, Schwarz’s lemma says that |𝜆𝜃(𝑧)|  ≤  |𝑧|; hence 
1−|𝑧|2

1−|𝜆𝜃(𝑧)|
2
≥

1−|𝑧| 

1−|𝜆𝜃(𝑧)|
 
. 

But 1 – 𝑣𝑗  =  1 − 𝜆𝜃(𝑢𝑗) =  
2𝜎𝑗𝜃

(2−𝜎𝑗)
𝜃
+𝜎𝑗𝜃

; hence (since 𝑢𝑗 and 𝑣𝑗 are real): 

1 − |𝑢𝑗|
2

1 − |𝑣𝑗|
2 ≥

1 – 𝑢𝑗
1 – 𝑣𝑗

=
𝜎𝑗

2𝜎𝑗𝜃
[(2 – 𝜎𝑗)

𝜃
 +  𝜎𝑗𝜃]. 

Since the function 𝑓(𝑥)  =  (2 −  𝑥)𝜃  +  𝑥𝜃 increases on [0, 1], one gets: 

1 − |𝑢𝑗|
2

1 − |𝑣𝑗|
2 ≥ (

1

2
𝜎𝑗)

1−𝜃

, 

and therefore: 

𝜇𝑛 ≥ (
1

2
𝜎𝑗)

1−𝜃
𝑝
.                                              (27) 

Applying now Theorem (6.1.4) and using (25), (26) and (27), we get: 

𝑎𝑛(𝐶𝜆𝜃)  ≥  𝛼𝑝,𝜃𝑒
−
𝛽
1−𝜎(1 −  𝜎)

1
�̃� 𝜎𝑛(1−𝜃)/𝑝 

with 𝛼𝑝,𝜃 = 
𝑐𝑝

Λ(𝛽+1)(𝛼+1)1/�̃�2(1−𝜃)/𝑝
. 

Taking 𝜎 =  𝑒−𝜀 where 0 <  𝜀 <  1, we get, since 1 − 𝑒−𝜀 ≥ 𝜀/2 ∶ 

𝑎𝑛(𝐶𝜆𝜃)  ≥  𝛼𝑝,𝜃𝑒
−
2𝛽
𝜀 (
𝜀

2
)
1/�̃�

𝑒−𝜀𝑛(1−𝜃)/𝑝. 

Optimizing by taking 𝜀 = √
3𝛽𝑝

1−𝜃

1

√𝑛
 gives, for 𝑛 large enough (in order to have 𝜀 <  1): 
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𝑎𝑛(𝐶𝜆𝜃) ≥  𝛼𝑝,𝜃
′ 𝑛

−
1
2�̃�𝑒−𝛽𝑝,𝜃√𝑛                                                    (28) 

with 𝛼𝑝,𝜃
′ = 𝛼𝑝,𝜃  (

𝛽𝑝

2(1−𝜃)
)
1/(2�̃�)

 and 𝛽𝑝,𝜃 = √
2𝛽(1−𝜃)

𝑝
. 

We get Theorem (6.1.7), with 𝑏 > 𝛽𝑝,𝜃 . 

       Let us note that 𝛽𝑝,𝜃 = 
2
1−𝜃
2

√𝑝
√
1−𝜃

𝜃
 tends to 0 when 𝜃 goes to 1 and tends to infinity 

when 𝜃 goes to 0. 
       We are using Theorem (6.1.4) to give, as in [203], Theorem (6.1.13), a lower bound 

for 𝑎𝑛(𝐶𝜑) which depends on the behaviour of 𝜑 near 𝜕𝔻. 

       We recall first (see [203]) that an analytic self-map 𝜑: 𝔻 → 𝔻 is said to be real if it 

takes real values on ] − 1, 1[. If 𝜔: [0, 1] → [0, 2] is a modulus of continuity (meaning that 

𝜔 is continuous, increasing, sub-additive, vanishing at 0, and concave), 𝜑 is said to be an 

𝜔-radial symbol if it is real and: 

1 −  𝜑(𝑟) ≤  𝜔(1 −  𝑟), 0 ≤  𝑟 <  1.           (29) 
We have the following result. 

Theorem (6.1.8)[199]: Let 𝜑 be an 𝜔-radial symbol. Then, for 1 ≤  𝑝 <  ∞, the 

approximation numbers of the composition operator 𝐶𝜑 ∶  𝐻
𝑝  →  𝐻𝑝 satisfy: 

𝑎𝑛(𝐶𝜑) ≥  𝑐𝑝
′ sup
0<𝜎<1

[(
𝜔−1(𝑎 𝜎𝑛)

𝑎 𝜎𝑛
)

1
𝑝

(1 −  𝜎)
1

max(𝑝∗,2)exp (−
5

1 − 𝜎
)],           (30) 

where 𝑐𝑝
′  is a constant depending only on 𝑝, 𝑝∗ is the conjugate exponent of 𝑝, and 𝑎 =

 1 −  𝜑(0)  >  0. 
Proof. As in [203], p. 556, we fix 0 <  𝜎 <  1 and define inductively 𝑢𝑗  ∈ [0, 1) by 

𝑢0  =  0 and, using the intermediate value theorem: 

1 −  𝜑(𝑢𝑗+1) =  𝜎[1 −  𝜑(𝑢𝑗)], with 1 >  𝑢𝑗+1  >  𝑢𝑗 . 

We set 𝑣𝑗  =  𝜑(𝑢𝑗). We have −1 <  𝑣𝑗  <  1 and 1 − 𝑣𝑛  =  𝑎 𝜎
𝑛. We proved in [203], p. 

556, that: 

1 − |𝑢𝑗|
2

1 − |𝑣𝑗|
2  ≥

1

2

𝜔−1(𝑎 𝜎𝑛)

𝑎 𝜎𝑛
.                         (31) 

Moreover, we proved in [203], p. 557, that the uniform separation constant of 𝑣 =
 (𝑣1, . . . , 𝑣𝑛) is such that: 

𝛿𝑣  ≥ exp (−
5

1 − 𝜎
).                       (32) 

Since 𝛿𝑢  ≥  𝛿𝑣, we get, from (24), that: 

𝜅𝑢 ≤ 12(
6 − 𝜎

1 − 𝜎
)exp (

5

1 − 𝜎
) ≤ 60(

1

1 − 𝜎
) exp (

5

1 − 𝜎
).      (33) 

Using now (13) of Theorem (6.1.4) and combining (31), (32) and (33), we get Theorem 

(6.1.8). 

Example (6.1.9)[199]: Lens maps. Let us come back to the lens maps 𝜆𝜃 for testing 

Theorem (6.1.8). We have 𝜔−1(ℎ)  ≈  ℎ1/𝜃 (see [63], Lemma (6.1.5)) and 𝑎 =  1 −

𝜆𝜃(0)  = 1. Setting 𝐾 =  
1

10√𝑝
√
1−𝜃

𝜃
 and taking, for 𝑛 large enough, 𝜎 =  1 −

1

𝐾√𝑛
, we 
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have, using that 𝑒−𝑠  ≤  1 − 
4

5
𝑠 for 𝑠 >  0 small enough, 𝜎𝑛  ≥ exp(− 

5

4𝐾
√𝑛) and 

hence: 

𝑎𝑛(𝐶𝜆𝜃)  ≥  𝑐𝜃,𝑝 𝑛
−1/2max(𝑝∗,2)exp(− 

5

√𝑝
√
1 − 𝜃

𝜃
√𝑛). 

Note that the coefficient of √𝑛 in the exponential is slightly different of that in (28), but of 

the same order. 

Example (6.1.10)[199]: Cusp map. We refer to [203], for its definition and properties. It is 

the conformal mapping 𝜒 from 𝔻 onto the domain represented on Fig. 1 such that 𝜒(1) =
1, 𝜒(−1) = 0, 𝜒(𝑖) = (1 + 𝑖)/2 and 𝜒(−𝑖)  =  (1 − 𝑖)/2. 
We proved in [203], Lemma 4.2, that, for 0 ≤  𝑟 <  1, one has: 

 
Figure (1)[199]: Cusp map domain 

1 −  𝜒(𝑟)  =
1

1 + 
2
𝜋
log [1/2 arctan (

1 − 𝑟
1 + 𝑟)

]
 

Since 1 −
2

𝜋
log 2  >  0 and arctan 𝑥 ≤  𝑥 for 𝑥 ≥  0, we get that: 

1 −  𝜒(𝑟) ≤
𝜋

2

1

log (
1 + 𝑟
1 − 𝑟)

≤
𝜋

2

1

log (
1

1 − 𝑟)
≤ 2

1

log (
1

1 − 𝑟)
. 

Hence 𝜒 is an 𝜔-radial symbol with 𝜔(𝑥)  =  2/log(1/𝑥). Then 𝜔−1(ℎ)  =  𝑒−2/ℎ . By 

choosing 𝜎 =  1 –
log 𝑛

4𝑛
 in (30), we get, using that log(1 −  𝑥)  ≥  −2𝑥 for 𝑥 >  0 small 

enough, that, for 𝑛 large enough, 𝜎𝑛  ≥  1/√𝑛; hence: 

𝑎𝑛(𝐶𝜒) ≥ 𝑐𝑝
′′(√𝑛 exp[−(2 𝑎)√𝑛])

1
𝑝 (
log n

n
)
1/max(𝑝∗,2)

exp (−
20𝑛

log 𝑛
). 

It follows that, for some constant 𝐶𝑝 > 0 depending only on 𝑝, we have: 

𝑎𝑛(𝐶𝜒) ≥ 𝐶𝑝exp (−
20𝑛

log 𝑛
).                             (34) 

It has to be stressed that the term in the exponential does not depend on 𝑝. 
Example (6.1.11)[199]: Shapiro-Taylor’s maps. These maps 𝜍𝜃 , for 𝜃 >  0, were defined 

in [84]. Let us recall their definition. For 𝜀 >  0, we set 𝑉𝜀  =  {𝑧 ∈  ℂ;  ℜ𝑧 >
0 and |𝑧|  <  𝜀}. For 𝜀 =  𝜀𝜃  >  0 small enough, one can define 

𝑓𝜃(𝑧) =  𝑧(−log 𝑧)
𝜃 ,                                (35) 
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for 𝑧 ∈ 𝑉𝜀 , where log 𝑧 will be the principal determination of the logarithm. Let now 𝑔𝜃 be 

the conformal mapping from 𝔻 onto 𝑉𝜀 , which maps 𝑇 =  𝜕𝔻 onto 𝜕𝑉𝜀 , defined by 

𝑔𝜃(𝑧)  =  𝜀𝜑0(𝑧), where 𝜑0 is the conformal map from 𝔻 onto 𝑉1, given by: 

𝜑0(𝑧) =
(
𝑧 −  𝑖
𝑖𝑧 −  1)

1
2
−  𝑖

−𝑖 (
𝑧 −  𝑖
𝑖𝑧 −  1)

1
2
+  1

.                              (36) 

Then, we define: 

𝜍𝜃 =  exp(−𝑓𝜃 ο 𝑔𝜃).                             (37) 

We saw in [203], p. 560, that 𝜔−1(ℎ)  =  𝐾𝜃ℎ (log (
1

ℎ
))
−𝜃

. Hence, choosing 𝜎 =

 1/(𝑒 𝛼
𝜃

1

𝑛), where 𝛼𝜃  =  1 − 𝜍𝜃(0), we get that: 

𝑎𝑛(𝐶𝜍𝜃)  ≥  𝑐𝑝,𝜃 .
1

𝑛
𝜃
2𝑝

.                            (38) 

However, we already remarked in [203], that, even for 𝑝 =  2, this result is not optimal. 

       For upper bounds, there is essentially no change with regard to the case 𝑝 =  2. 
Hence we essentially only state some results. 

We have the following upper bound, which can be obtained with the same proof as in [63]. 

Theorem (6.1.12)[199]: Let 𝐶𝜑 ∶  𝐻
𝑝  →  𝐻𝑝, 1 ≤  𝑝 <  ∞, a composition operator, and 

𝑛 ≥  1. Then, for every Blaschke product 𝐵 with (strictly) less than 𝑛 zeros, each counted 

with its multiplicity, one has: 

𝑎𝑛(𝐶𝜑) ≤ 𝐶√𝑛( sup
0<ℎ<1
𝜉∈𝕋

1

ℎ
∫ |𝐵|𝑝 𝑑𝑚𝜑

 

𝑆(𝜉,ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅
)

1/𝑝

, 

where 𝑚𝜑 is the pullback measure of 𝑚, the normalized Lebesgue measure on 𝕋, under 𝜑 

and 𝑆(𝜉, ℎ) =  𝔻 ∩ 𝐷(𝜉, ℎ) is the Carleson window of size ℎ centered at 𝜉 ∈ 𝕋. 
Proof. We first estimate the Gelfand number 𝑐𝑛(𝐶𝜑) by restricting to the subspace 𝐵𝐻𝑝 

which is of codimension <  𝑛. As in [63], Lemma (6.1.4): 

𝑐𝑛(𝐶𝜑) ≾ ( sup
0<ℎ<1
𝜉∈𝕋

1

ℎ
∫ |𝐵|𝑝 𝑑𝑚𝜑

 

𝑆(𝜉,ℎ)̅̅ ̅̅ ̅̅ ̅̅ ̅
)

1/𝑝

. 

Now (see [65], Proposition (6.1.4)), one has 𝑎𝑛(𝐶𝜑) ≤ √2𝑛𝑐𝑛(𝐶𝜑), hence the result. 

We can then deduce, with the same proof, the following version of [203], Theorem (6.1.3). 

Recall ([203], Definition (6.1.2)) that a symbol 𝜑 ∈  𝐴(𝔻) (i.e. 𝜑: �̅�  → �̅� is continuous 

and analytic in 𝔻) is said to be globally regular if 𝜑(�̅�) ∩ 𝜕𝔻 =  {𝜉1, . . . , 𝜉𝑙} and there 

exists a modulus of continuity 𝜔 (i.e. a continuous, increasing and sub-additive function 

𝜔: [0, 𝐴] → ℝ+, which vanishes at zero, and that we may assume to be concave), such that, 

writing 𝐸𝜉𝑗 = {𝑡 ;  𝛾(𝑡)  =  𝜉𝑗}, one has 𝕋 = ⋃ (𝐸𝜉𝑗 + [−𝑟𝑗 , 𝑟𝑗])
𝑙
𝑗=1  for some 𝑟1, . . . , 𝑟𝑙 >

0, and for some positive constants 𝐶, 𝑐 >  0: 

|𝛾(𝑡) −  𝛾(𝑡𝑗)| ≤  𝐶(1 − |𝛾(𝑡)|)                                      (39) 

𝑐 𝜔(|𝑡 – 𝑡𝑗|)   ≤ |𝛾(𝑡) −  𝛾(𝑡𝑗)|                                        (40) 
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for 𝑗 =  1, . . . , 𝑙, all 𝑡𝑗  ∈  𝐸𝜉𝑗 with |𝑡 – 𝑡𝑗|  ≤  𝑟𝑗 . 

Theorem (6.1.13)[199]: Let 𝜑 be a symbol in 𝐴(𝔻) whose image touches 𝜕𝔻 exactly at 

the points 𝜉1, . . . , 𝜉𝑙 and which is globally-regular. Then there are constants 𝜅, 𝐾, 𝐿 >  0, 
depending only on 𝜑, such that, for every 𝑘 ≥  1: 

𝑎𝑘(𝐶𝜑)  ≤  𝐾 [
𝜔−1(𝜅2−𝑁𝑘)

𝜅2−𝑁𝑘
]

1
𝑝

,                                   (41) 

where 𝑁𝑘 is the largest integer such that 𝑙𝑁𝑑𝑁 < 𝑘 and 𝑑𝑁 is the integer part of 

[log
𝜅2−𝑁 

𝜔−1(𝜅2−𝑁 )
/log(𝜒−𝑝)] + 1, with 0 <  𝜒 <  1 an absolute constant. 

As a corollary, we get for lens maps 𝜆𝜃 (as well as for polygonal maps), in the same way 

as Theorem (6.1.4) in [203], p. 550 (recall that then 𝜔(ℎ)  ≈  ℎ𝜃), the following upper 

bound. 

Theorem (6.1.14)[199]: Let 𝜑 =  𝜆𝜃 be the lens map of parameter 𝜃 acting on 𝐻𝑝, 1 <
𝑝 <  ∞. Then, for positive constants 𝑏 and 𝑐 depending only on 𝜃 and 𝑝: 

𝑎𝑛(𝐶𝜆𝜃)  ≤  𝑐 𝑒
−𝑏√𝑛. 

For the cusp map, we also have as in [203], Theorem 4.3 (here, 𝜔(ℎ)  ≈  1/ log(1/ℎ)). 
Theorem (6.1.15)[199]: Let 𝜑 =  𝜒 be the cusp map. For some positive constants 𝑏 and 𝑐 
depend in 𝑔 only on 𝑝, one has: 

𝑎𝑛(𝐶𝜒)  ≤  𝑐 𝑒
−𝑏𝑛/log 𝑛. 

 

Section (6.2): Volterra-Type Integral Operator on 𝑯𝒑 

For 𝑔 be a fixed analytic function in the open unit disc 𝔻 of the complex plane ℂ. 
We consider a linear integral operator 𝑇𝑔 defined for analytic functions 𝑓 in 𝔻 by 

𝑇𝑔𝑓(𝑧) = ∫ 𝑓(𝜁)𝑔′(𝜁)𝑑𝜁
𝑧

0

, 𝑧 ∈  𝔻. 

Ch. Pommerenke consider the boundedness of the operator 𝑇𝑔 on the Hardy space 𝐻2 and 

he characterized it in connection to exponentials of 𝐵𝑀𝑂𝐴 functions [224]. A systematic 

study of 𝑇𝑔 was initiated by 𝐴. Aleman and A. G. Siskakis in [214], who showed that 𝑇𝑔 is 

bounded (compact) on the Hardy spaces 𝐻𝑝, 1 ≤  𝑝 <  ∞, if and only if 𝑔 ∈
 𝐵𝑀𝑂𝐴 (𝑔 ∈  𝑉𝑀𝑂𝐴). The same boundedness characterization of the operator 𝑇𝑔 on 

𝐻𝑝, 0 <  𝑝 <  1, spaces was obtained by Aleman and J. Cima in [213]. Here 𝐵𝑀𝑂𝐴 and 

𝑉𝑀𝑂𝐴 denote the spaces of analytic functions in 𝔻 with boundary values of bounded 

mean oscillation and vanishing mean oscillation respectively. See [212] and [225]. 
       A bounded operator 𝑆 ∶  𝑋 →  𝑌 between Banach spaces is strictly singular if its 

restriction to any infinite-dimensional closed subspace is not an isomorphism onto its 

range. This notion generalizes the concept of compact operators and it was introduced by 

T. Kato in [219]. Canonical examples of non-compact strictly singular operators are the 

inclusion mappings 𝑖𝑝,𝑞 ∶  ℓ
𝑝 ↪ ℓ𝑞 , where 1 ≤  𝑝 <  𝑞 <  ∞. 

       There also exist non-compact strictly singular operators on 𝐻𝑝 spaces for 1 ≤  𝑝 <
∞, 𝑝 ≠  2. To construct such an operator, one may consider cases 1 ≤  𝑝 <  2 and 2 <
 𝑝 <  ∞ separately and use the fact that 𝐻𝑝, 1 ≤  𝑝 <  ∞, contains complemented copies 

of ℓ2 and ℓ𝑝; see e.g. [228] for 𝑝 =  1. In the first case, one considers a bounded 

projection from 𝐻𝑝 onto its closed subspace 𝑀, which is isomorphic to ℓ𝑝. Then one 
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utilizes the inclusion mapping 𝑖𝑝,2 and the fact that ℓ2 can be embedded in 𝐻𝑝. In the 

second case, one interchanges the roles of ℓ𝑝 and ℓ2 and repeats the reasoning above. 

We show that every non-compact operator 𝑇𝑔 acting on a Hardy space 𝐻𝑝, 1 ≤

 𝑝 <  ∞, fixes an isomorphic copy of ℓ𝑝. In particular, this implies that 𝑇𝑔 is strictly 

singular on 𝐻𝑝 if and only if it is compact. This article was partly motivated by [221], 

where the same question was studied in connection to composition operators. For the case 

𝑝 =  ∞; see also [216]. 

       We should point out that there is a striking extrapolation result concerning strict 

singularity by Hernández, Semenov, and Tradacete in [217]. It states that if an operator 𝑆 

is bounded on 𝐿ℝ
𝑝
(𝐸) and 𝐿ℝ

𝑞
(𝐸) for some 1 <  𝑝 <  𝑞 <  ∞ and strictly singular on 

𝐿ℝ
𝑟 (𝐸) for some 𝑝 <  𝑟 <  𝑞, then it is compact on 𝐿ℝ

𝑠 (𝐸) for all 𝑝 <  𝑠 <  𝑞. Here 

𝐿ℝ
𝑝
(𝐸) stands for the 𝐿𝑝 space of real-valued functions on a finite measure space 𝐸. Taking 

the complex-valued counterpart of this result for granted, we may deduce the equivalence 

of strict singularity and compactness of 𝑇𝑔 on 𝐻𝑝 for 1 <  𝑝 <  ∞ by using the Riesz 

projection in the following way: 

       Recall that strictly singular operators form a two-sided (closed) ideal in the space 

ℒ(𝐿𝑝) of bounded operators on 𝐿𝑝  =  𝐿ℂ
𝑝
(𝕋), where 𝕋 =  𝜕𝔻. Therefore the strict 

singularity of 𝑇𝑔 ∶  𝐻
𝑝  →  𝐻𝑝 implies that 𝑇𝑔𝑅: 𝐿

𝑝  →  𝐿𝑝 is strictly singular, where 

𝑅: 𝐿𝑝  →  𝐻𝑝 is the Riesz projection and we have identified 𝑇𝑔 ∶  𝐻
𝑝  →  𝐻𝑝 with 𝑇𝑔 ∶

 𝐻𝑝  →  𝐿𝑝. Since the condition 𝑔 ∈  𝐵𝑀𝑂𝐴 characterizes the boundedness of 𝑇𝑔 on every 

𝐻𝑞 space and the Riesz projection is bounded on the scale 1 <  𝑞 <  ∞, we get that 𝑇𝑔𝑅 

is bounded on every 𝐿𝑞 , 1 <  𝑞 <  ∞, space. Now assuming that the complex version of 

the interpolation result is valid, it follows that 𝑇𝑔𝑅 is compact on 𝐿𝑝 and consequently the 

restriction 𝑇𝑔𝑅|𝐻𝑝 = 𝑇𝑔 is compact on 𝐻𝑝. 

       Theorem (6.2.6), however, makes a stronger statement: a non-compact operator 𝑇𝑔 on 

𝐻𝑝 fixes an isomorphic copy of ℓ𝑝. This holds for 𝑝 =  1 as well, in which case we obtain 

a new proof for the equivalence of the compactness and the weak compactness of 𝑇𝑔 on 

𝐻1 ∶ If 𝑔 ∈  𝐵𝑀𝑂𝐴 \ 𝑉𝑀𝑂𝐴, i.e., the operator 𝑇𝑔 is not compact, then by Theorem (6.2.6) 

𝑇𝑔 fixes an isomorphic copy of ℓ1 and consequently it is not weakly compact. 

We give the proof of Theorem (6.2.6). We consider the case of 𝑇𝑔 acting on the 

space 𝐵𝑀𝑂𝐴 and we make some remarks on strict singularity of 𝑇𝑔 on other spaces. 

We point out that the notions of strict singularity and compactness of an operator 

can also be defined in a more general setting, for example in quasi-Banach spaces; see 

[218]. Examples of such spaces are the Hardy spaces 𝐻𝑝 when 0 <  𝑝 <  1. The same 

compactness and boundedness characterizations of 𝑇𝑔 as in the case 1 ≤  𝑝 <  ∞ also 

hold when 0 <  𝑝 <  1; see [213]. On the scale 0 <  𝑝 <  1, the triangle inequality is 

replaced by an inequality of the type ‖𝑓 + 𝑔‖𝑝  ≤  𝐶(‖𝑓‖𝑝 + ‖𝑔‖𝑝) for some constant 

𝐶 >  1 for all 𝑓, 𝑔 ∈  𝐻𝑝. This brings only some (multiplicative) constants to the proofs 

of results and lemmas in this article. So a non-compact 

𝑇𝑔 ∶  𝐻
𝑝  →  𝐻𝑝 fixes an isomorphic copy of ℓ𝑝 also in the case 0 <  𝑝 <  1. 

We briefly recall some spaces of analytic functions that appear later. 

Let 𝐻(𝔻) be the algebra of analytic functions in 𝔻. We define the Hardy spaces 
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𝐻𝑝  = {𝑓 ∈  𝐻(𝔻) ∶  ‖𝑓‖𝑝 = ( sup
0≤𝑟<1

1

2𝜋
∫ |𝑓(𝑟𝑒𝑖𝑡)|

𝑝
𝑑𝑡

2𝜋

𝑜

)

1/𝑝

< ∞}. 

The space 𝐵𝑀𝑂𝐴 consists of functions 𝑓 ∈  𝐻(𝔻) with 

‖𝑓‖∗  = sup
𝑎∈𝔻
‖𝑓 ∘ 𝜎𝑎 –  𝑓(𝑎)‖2  <  ∞, 

where 𝜎𝑎(𝑧)  =  (𝑎 − 𝑧)/(1 − �̅�𝑧) is the Möbius automorphism of 𝔻 that interchanges the 

origin and the point 𝑎 ∈  𝔻. Its closed subspace 𝑉𝑀𝑂𝐴 consists of those 𝑓 ∈  𝐵𝑀𝑂𝐴 with 

lim sup
|𝑎|→1

‖𝑓 ∘  𝜎𝑎 –  𝑓(𝑎)‖2 =  0. 

Every 𝐵𝑀𝑂𝐴 function 𝑓 satisfies “a reverse Hölder’s inequality”, which implies that for 

each 0 <  𝑝 <  ∞ we have that 

‖𝑓‖∗  ≃ sup
𝑎∈𝔻
‖𝑓 ∘  𝜎𝑎 –  𝑓(𝑎)‖𝑝  <  ∞,                    (42) 

where each side is bounded above by a constant multiple of the other. See e.g. [126] for 

more information on the spaces 𝐵𝑀𝑂𝐴 and 𝑉𝑀𝑂𝐴. 
We show that a non-compact operator 𝑇𝑔 ∶  𝐻

𝑝  →  𝐻𝑝, 1 ≤  𝑝 < ∞,𝑔 ∈

 𝐵𝑀𝑂𝐴\𝑉𝑀𝑂𝐴, fixes an isomorphic copy of ℓ𝑝 and hence the compactness and strict 

singularity are equivalent for 𝑇𝑔 on 𝐻𝑝. This is done by constructing bounded operators 

𝑉 ∶  ℓ𝑝  →  𝐻𝑝 and 𝑈 ∶  ℓ𝑝  →  𝐻𝑝 such that the diagram in Figure 1 commutes (𝑈 =
 𝑇𝑔𝑉), where 𝑉(ℓ𝑝)  =  𝑀 is the closed linear span of suitably chosen test functions 𝑓𝑎𝑘 ∈

 𝐻𝑝 and the operator 𝑈 is an isomorphism onto its range 𝑈(ℓ𝑝)  =  𝑇𝑔(𝑀). 

 
Figure (1)[211]: Operators 𝑈, 𝑉 and 𝑇𝑔 

The strategy for choosing the suitable test functions in Propositions (6.2.2) and (6.2.5) 

below is similar to the one used by Laitila et al. in [221], where they utilized these test 

functions to show that a non-compact composition operator 𝐶𝜑 ∶  𝐻
𝑝  →  𝐻𝑝, where 

𝜑: 𝔻 →  𝔻 is analytic, fixes an isomorphic copy of ℓ𝑝. However, due to the distinct nature 

of operators 𝑇𝑔 and 𝐶𝜑 , a different kind of analysis is needed in our case. 

Before proving our main result, we provide some preparatory material. We first 

state a localization lemma for the standard test functions in 𝐻𝑝, 1 ≤  𝑝 <  ∞, defined by 

𝑓𝑎(𝑧)  = [
1 − |𝑎|2

(1 − �̅�𝑧)2
]

1/𝑝

, 𝑧 ∈  𝔻, 

for each 𝑎 ∈  𝔻. Observe that ‖𝑓𝑎‖𝑝  =  1 for all 𝑎 ∈  𝔻. The proof of the lemma is 

straightforward and therefore omitted. 

Lemma (6.2.1)[211]: Let 1 ≤  𝑝 <  ∞ and m be the normalized Lebesgue measure on 𝕋. 
Define 

𝐴𝜀  =  {𝑒
𝑖𝜃 ∶  |𝑒𝑖𝜃  −  1|  <  𝜀} 

for 𝜀 >  0. Then 
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(𝑖) lim
𝑎→1

∫ |𝑓𝑎|
𝑝𝑑𝑚

 

𝕋\𝐴𝜀

 =  0 for each 𝜀 >  0. 

(𝑖𝑖) lim
𝜀→0
∫ |𝑓𝑎|

𝑝𝑑𝑚
 

𝐴𝜀

 =  0 for each 𝑎 ∈  𝔻. 

Next, utilizing test functions 𝑓𝑎𝑘 , 𝑎𝑘  ∈  𝔻, for which |𝑎𝑘|  →  1 sufficiently fast, we 

construct a certain type of bounded operator 𝑉 ∶  ℓ𝑝  →  𝐻𝑝. 
Proposition (6.2.2)[211]: Let 1 ≤  𝑝 <  ∞ and (𝑎𝑛)  ⊂  𝔻 be a sequence such that 𝑎𝑛  →
𝜔 ∈  𝕋.       Then there exists a subsequence (𝑏𝑛) of (𝑎𝑛) so that the mapping 

𝑉 ∶  ℓ𝑝  →  𝐻𝑝, 𝑉(𝛼)  = ∑𝛼𝑛𝑓𝑏𝑛

∞

𝑛=1

, 

where 𝛼 =  (𝛼𝑛)  ∈  ℓ
𝑝, is bounded. 

Proof. We may assume that 𝜔 =  1. For each 𝜀 >  0, we consider the set 𝐴𝜀 defined in 

Lemma (6.2.1). Using the fact that ‖𝑓𝑎‖𝑝  =  1 for all 𝑎 ∈  𝔻 and Lemma (6.2.1), we 

choose positive numbers 𝜀𝑛 with 𝜀1  =  2𝜋 >  𝜀2  > . . . >  0 and a subsequence (𝑏𝑛) of 

(𝑎𝑛) such that the following conditions hold: 

(i) (∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛

)

1/𝑝

< 4−𝑛, 𝑗 =  1, . . . , 𝑛 −  1; 

(ii) (∫ |𝑓𝑏𝑛|
𝑝
𝑑𝑚

 

𝕋\𝐴𝑛

)

1/𝑝

< 4−𝑛,                                         

for every 𝑛 ≥  1, where 𝐴𝑛  =  𝐴𝜀𝑛 . 

Using conditions (i)-(ii) and the fact that (∫ |𝑓𝑏𝑛|
𝑝
𝑑𝑚

 

𝐴𝑛
)
1/𝑝
≤  1 for all 𝑛, we show the 

upper bound ‖𝑉 𝛼‖𝑝  ≤  𝐶‖𝛼‖ℓ𝑝 for all 𝛼 = (𝛼𝑗) ∈ ℓ
𝑝, where 𝐶 >  0 may depend on 𝑝: 

‖𝑉 𝛼‖𝑝
𝑝
= ∫ |∑𝛼𝑗𝑓𝑏𝑗

∞

𝑗=1

|

𝑝

𝑑𝑚
 

𝕋

 = ∑∫ |∑𝛼𝑗𝑓𝑏𝑗

∞

𝑗=1

|

𝑝

𝑑𝑚
 

𝐴𝑛\𝐴𝑛+1

∞

𝑛=1

 

≤∑(∑|𝛼𝑗|

∞

𝑗=1

(∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

)

𝑝
∞

𝑛=1

 

≤∑(|𝛼𝑛| (∫ |𝑓𝑏𝑛|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

+∑|𝛼𝑗|

 

𝑗≠𝑛

(∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

)

𝑝
∞

𝑛=1

, 

where 

(∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

≤ (∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛

)

1
𝑝

≤ 4−𝑛           (43) 

for 𝑗 <  𝑛 by condition (i) and 

(∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

≤ (∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝕋\𝐴𝑗

)

1
𝑝

< 4−𝑗           (44) 

for 𝑗 >  𝑛 by condition (ii). Thus by estimates (43) and (44), we have that 
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(∫ |𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

< 2−𝑛−𝑗       (45) 

for 𝑗 ≠  𝑛. By using estimate (45) we get 

‖𝑉 𝛼‖𝑝
𝑝
≤ ∑(|𝛼𝑛| (∫ |𝑓𝑏𝑛|

𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

+∑|𝛼𝑗|2
−𝑛−𝑗

 

𝑗≠𝑛

)

𝑝
∞

𝑛=1

 

≤ ∑(|𝛼𝑛| + ‖𝛼‖ℓ𝑝2
−𝑛)𝑝

∞

𝑛=1

≤ 2𝑝 (∑|𝛼𝑛|
𝑝 + ‖𝛼‖ℓ𝑝

𝑝
∑2−𝑛
∞

𝑛=1

∞

𝑛=1

) 

≤ 2𝑝+1‖𝛼‖ℓ𝑝
𝑝
. 

The next result is an observation by Aleman and Cima [213] and it states that for a non-

compact operator 𝑇𝑔 on 𝐻𝑝 we can find a sequence (𝑓𝑎𝑘) of test functions so that the 

sequence (‖𝑇𝑔𝑓𝑎𝑘‖𝑝
) converges to a positive constant. Its proof is based on the fact that 

for all 0 <  𝑝 <  ∞ and 𝑡 ∈  (0, 𝑝/2) there exists a constant 𝐶 =  𝐶(𝑝, 𝑡)  >  0 such that 

‖𝑇𝑔𝑓𝑎‖𝑝
 ≥  𝐶‖𝑔 ∘  𝜎𝑎 –  𝑔(𝑎)‖𝑡 

for all 𝑎 ∈  𝔻, where 𝜎𝑎(𝑧)  =  (𝑎 −  𝑧)/(1 − �̅�𝑧); see [213]. 

Proposition (6.2.3)[211]: Let 𝑔 ∈  𝐵𝑀𝑂𝐴 \𝑉𝑀𝑂𝐴 and 1 ≤  𝑝 <  ∞. Then 

𝑐 ∶=  lim sup
|𝑎|→1

‖𝑇𝑔𝑓𝑎‖𝑝
 >  0. 

In particular, there exists a sequence (𝑎𝑘)  ⊂  𝔻, 𝑎𝑘  →  𝜔 ∈  𝕋 so that 

lim
𝑘→∞

‖𝑇𝑔𝑓𝑎𝑘‖𝑝
=  𝑐. 

Next, we prove a localization result for the images 𝑇𝑔𝑓𝑎 of the test functions 𝑓𝑎 (cf. Lemma 

(6.2.1)). 

Lemma (6.2.4)[211]: Let 𝑔 ∈  𝐵𝑀𝑂𝐴, 1 ≤  𝑝 <  ∞, and (𝑎𝑘)  ⊂  𝔻 be a sequence such 

that 𝑎𝑘  →  𝜔 ∈  𝕋. Define 

𝐴𝜀  =  {𝑒
𝑖𝜃 ∶  |𝑒𝑖𝜃  −  𝜔|  <  𝜀} 

for each 𝜀 >  0. Then 

(𝑖) lim
𝑘→∞

∫ |𝑇𝑔𝑓𝑎𝑘|
𝑝

 

𝕋\𝐴𝜀

𝑑𝑚 =  0 for every 𝜀 >  0. 

(𝑖𝑖) lim
𝜀→0
∫ |𝑇𝑔𝑓𝑎𝑘|

𝑝
 

𝐴𝜀

𝑑𝑚  =  0 for each 𝑘.                 

Proof. (i) Let 𝜀 >  0. For the simplicity of notation, we may assume that 𝜔 =  1. 
Also, we assume that 𝑔(0)  =  0. We have that 

|1 – 𝑎𝑘̅̅ ̅𝑠𝑒
𝑖𝜃|  ≥  𝛿 

for all 𝑘, 0 ≤  𝑠 ≤  1, and 𝜀 ≤  |𝜃|  ≤  𝜋, where 𝛿 >  0. Thus for those 𝑠 and 𝜃 we have 

|𝑓𝑎𝑘(𝑠𝑒
𝑖𝜃)|

𝑝
 =  

1 − |𝑎𝑘|
2

|1 – 𝑎𝑘̅̅ ̅𝑠𝑒
𝑖𝜃|2

≤ 
1 − |𝑎𝑘|

2

𝛿2
 

and 

|𝑓𝑎𝑘
′ (𝑠𝑒𝑖𝜃)|

𝑝
≤ 𝐶

1 − |𝑎𝑘|
2

|1 – 𝑎𝑘̅̅ ̅𝑠𝑒
𝑖𝜃|2+𝑝

≤ 𝐶
1 − |𝑎𝑘|

2

𝛿2+𝑝
 

for all 𝑘, where 𝐶 >  0 may depend on 𝑝. For 𝜁 ∈  𝕋 \ 𝐴𝜀 , we obtain 



194 

|𝑇𝑔𝑓𝑎𝑘(𝜁)|
𝑝
 = |∫ 𝑓𝑎𝑘(𝑠𝜁)𝑔

′(𝑠𝜁)𝜁𝑑𝑠
1

0

|

𝑝

≤  𝐶 ((|𝑓𝑎𝑘(𝜁)𝑔(𝜁)|
𝑝
) + (∫ |𝑓𝑎𝑘

′ (𝑠𝜁)𝑔(𝑠𝜁)|𝑑𝑠
1

0

)

𝑝

)

≤  𝐶 (
1 − |𝑎𝑘|

𝛿2
|𝑔(𝜁)|𝑝 +

1 − |𝑎𝑘|

𝛿2+𝑝
(∫ |𝑔(𝑠𝜁)|𝑑𝑠

1

0

)

𝑝

), 

where constants 𝐶 >  0 may depend on p and change from one instance to another. 

Since 𝑔 ∈  𝐵𝑀𝑂𝐴, we have that |𝑔(𝑧)|  ≤  𝐶 log (
1

1−|𝑧|
) ‖𝑔‖∗ for some 𝐶 >  0, and 

consequently ∫ |𝑔(𝑠𝜁)|𝑑𝑠
1

0
≤  𝐶‖𝑔‖∗. Therefore 

∫ |𝑇𝑔𝑓𝑎𝑘|
𝑝

 

𝕋\𝐴𝜀

𝑑𝑚 ≤ (
1 − |𝑎𝑘|

𝛿2
‖𝑔‖𝑝

𝑝
+
1 − |𝑎𝑘|

𝛿2+𝑝
‖𝑔‖∗

𝑝
) →  0 

as 𝑘 → ∞, where ‖𝑔‖𝑝  ≤ sup
𝑏∈𝔻
‖𝑔 ∘ 𝜎𝑏 –  𝑔(𝑏)‖𝑝 ≃

‖𝑔‖∗  <  ∞; see (42). 

(ii) If 𝑘 is fixed, then it follows from the absolute continuity of the measure 𝐵 ↦

∫ |𝑇𝑔𝑓𝑎𝑘|
𝑝
𝑑𝑚

 

𝐵
 that ∫ |𝑇𝑔𝑓𝑎𝑘|

𝑝
𝑑𝑚

 

𝐴𝜀
 →  0 as 𝜀 →  0.  

       As a final step towards the proof of Theorem (6.2.6), we construct an isomorphism 

from ℓ𝑝 into 𝐻𝑝 using a non-compact 𝑇𝑔 and test functions. 

Proposition (6.2.5)[211]: Let 𝑔 ∈  𝐵𝑀𝑂𝐴 \ 𝑉𝑀𝑂𝐴, 1 ≤  𝑝 <  ∞, and (𝑎𝑛)  ⊂  𝔻 be the 

sequence from Proposition (6.2.3). Then there exists a subsequence (𝑏𝑛) of (𝑎𝑛) such that 

the mapping 

𝑈 ∶  ℓ𝑝  →  𝐻𝑝, 𝑈(𝛼)  = ∑𝛼𝑛𝑇𝑔𝑓𝑏𝑛

∞

𝑛=1

, 

where 𝛼 =  (𝛼𝑛)  ∈  ℓ
𝑝, is an isomorphism onto its range. 

Proof. By Proposition (6.2.2) there exists a subsequence (𝑐𝑛) of (𝑎𝑛) inducing a bounded 

operator 

𝑆 ∶  ℓ𝑝  →  𝐻𝑝, 𝑆(𝛼)  = ∑𝛼𝑛𝑓𝑐𝑛

∞

𝑛=1

, 

and for any subsequence (𝑏𝑛) of (𝑐𝑛) the operator 𝑉 ∶  ℓ𝑝 → 𝐻𝑝, 𝑉(𝛼)  = ∑ 𝛼𝑛𝑇𝑔𝑓𝑏𝑛
∞
𝑛=1  is 

bounded. After finding the suitable sequence (𝑏𝑛), the operator 𝑈 =  𝑇𝑔𝑉 will be bounded 

as a composition of two bounded operators. 

       Before proving that 𝑈 is bounded from below, we provide some preparatory material. 

Since (𝑐𝑛) is a subsequence of (𝑎𝑛), we have that 𝑐𝑛  →  𝜔 ∈  𝕋 and there exists a 

number 𝑐 >  0 such that 

lim
𝑛→∞

‖𝑇𝑔𝑓𝑐𝑛‖𝑝
 =  𝑐 

by Proposition (6.2.3). Using Proposition (6.2.3) and Lemma (6.2.4), we choose positive 

numbers 𝜀𝑛 with 𝜀1  >  𝜀2  > . . . >  0 and a subsequence (𝑏𝑛) of (𝑐𝑛) such that the 

following 

conditions hold: 

(i) (∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛

)

1/𝑝

< 4−𝑛𝛿𝑐, 𝑗 =  1, . . . , 𝑛 −  1, 
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(ii) (∫ |𝑇𝑔𝑓𝑏𝑛|
𝑝
𝑑𝑚

 

𝕋\𝐴𝑛

)

1/𝑝

< 4−𝑛𝛿𝑐,                                          

(iii)
𝑐

2
≤ (∫ |𝑇𝑔𝑓𝑏𝑗|

𝑝
𝑑𝑚

 

𝐴𝑛

)

1
𝑝

≤  2𝑐,                                             

for every 𝑛 ≥  1, where 

𝐴𝑛  =  𝐴𝜀𝑛  =  {𝑒
𝑖𝜃 ∶  |𝑒𝑖𝜃  −  𝜔|  <  𝜀𝑛} 

and 𝛿 >  0 is a constant whose value is determined later. 

Now we are ready to prove that 𝑈 is bounded from below. Using conditions (ii) and (iii), 

we get 

‖𝑈 𝛼‖𝑝
𝑝
= ∫ |∑𝛼𝑗𝑇𝑔𝑓𝑏𝑗

∞

𝑗=1

|

𝑝 

𝑑𝑚
 

𝕋

 ≥ ∑∫ |∑𝛼𝑗𝑇𝑔𝑓𝑏𝑗

∞

𝑗=1

|

𝑝 

𝑑𝑚
 

𝐴𝑛\𝐴𝑛+1

∞

𝑛=1

 

≥∑
|

|
|𝛼𝑛| (∫ |𝑇𝑔𝑓𝑏𝑛|

𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

− (∫ |∑𝛼𝑗𝑇𝑔𝑓𝑏𝑛

 

𝑗≠𝑛

|

𝑝

𝑑𝑚
 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

|

|

𝑝

∞

𝑛=1

 

≥∑(2−𝑝|𝛼𝑛|
𝑝 (
𝑐

2
− 4−𝑛−1𝛿𝑐)

𝑝

−∫ |∑𝛼𝑗𝑇𝑔𝑓𝑏𝑛

 

𝑗≠𝑛

|

𝑝

𝑑𝑚
 

𝐴𝑛\𝐴𝑛+1

)

∞

𝑛=1

 

≥∑(2−𝑝|𝛼𝑛|
𝑝 (
𝑐

2
− 4−𝑛−1𝛿𝑐)

𝑝

− (∑|𝛼𝑗|

 

𝑗≠𝑛

(∫ |𝑇𝑔𝑓𝑏𝑛|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1
𝑝

)

𝑝

)

∞

𝑛=1

, 

where 

(∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1/𝑝

≤ (∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛

)

1/𝑝

< 4−𝑛𝛿𝑐 

for 𝑗 <  𝑛 by condition (i) and 

(∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1/𝑝

≤ (∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝕋\𝐴𝑛

)

1/𝑝

< 4−𝑗𝛿𝑐 

for 𝑗 >  𝑛 by condition (ii). Thus we have that 

(∫ |𝑇𝑔𝑓𝑏𝑗|
𝑝
𝑑𝑚

 

𝐴𝑛\𝐴𝑛+1

)

1/𝑝

< 4−𝑛−𝑗𝛿𝑐 

for 𝑗 ≠  𝑛. Consequently, we can estimate 

‖𝑈𝛼‖𝑝
𝑝
≥∑(2−𝑝|𝛼𝑛|

𝑝 (
𝑐

2
− 4−𝑛−1𝛿𝑐)

𝑝

− (∑|𝛼𝑗|2
−𝑛−𝑗𝛿𝑐

∞

𝑗=1

)

𝑝

)

∞

𝑛=1

 

≥∑(2−𝑝|𝛼𝑛|
𝑝 (
𝑐

2
− 4−𝑛−1𝛿𝑐)

𝑝

− 2−𝑛𝛿𝑝𝑐𝑝‖𝛼‖ℓ𝑝
𝑝
)

∞

𝑛=1
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≥ 2−𝑝∑|𝛼𝑛|
𝑝

∞

𝑛=1

(
𝑐

2
− 
1

16
𝛿𝑐)

𝑝

− 𝛿𝑝𝑐𝑝‖𝛼‖ℓ𝑝
𝑝

 

≥ 2−𝑝 (
7

16
)
𝑝

𝑐𝑝‖𝛼‖ℓ𝑝
𝑝
− 𝛿𝑝𝑐𝑝‖𝛼‖ℓ𝑝

𝑝
 

= ((
7

32
)
𝑝

− 𝛿𝑝) 𝑐𝑝‖𝛼‖ℓ𝑝
𝑝
= (
1

8
)
𝑝

𝑐𝑝‖𝛼‖ℓ𝑝
𝑝
, 

when we choose 0 <  𝛿 <  1 such that 𝛿𝑝  = (
7

32
)
𝑝
− (

1

8
)
𝑝
, i.e., 𝛿 =  

(7𝑝−4𝑝)1/𝑝

32
. 

Thus the bounded operator 𝑈 is also bounded from below and consequently it is an 

isomorphism onto its range. 

       Now our main result follows. 

Theorem (6.2.6)[211]: Let 𝑔 ∈  𝐵𝑀𝑂𝐴 \ 𝑉𝑀𝑂𝐴 and 1 ≤  𝑝 <  ∞. Then the operator 

𝑇𝑔 ∶  𝐻
𝑝  →  𝐻𝑝 fixes an isomorphic copy of ℓ𝑝 inside 𝐻𝑝, that is, there exists a subspace 

𝑀 ⊂  𝐻𝑝 which is isomorphic to ℓ𝑝 and such that the restriction of 𝑇𝑔 to 𝑀 is an 

isomorphism onto its range. In particular, 𝑇𝑔 is not strictly singular. 

Proof. By Propositions (6.2.2) and (6.2.5), we can choose a sequence (𝑏𝑛)  ⊂  𝔻 that 

induces a bounded operator 

𝑉 ∶  ℓ𝑝  →  𝐻𝑝, 𝑉(𝛼)  = ∑𝛼𝑛𝑓𝑏𝑛

∞

𝑛=1

, 

where 𝛼 =  (𝛼𝑛)  ∈  ℓ
𝑝, and an isomorphism 𝑈 ∶  ℓ𝑝  →  𝐻𝑝, 𝑈 =  𝑇𝑔𝑉 onto its range. 

Define 𝑀 =  span{𝑓𝑏𝑛}
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , where the closure is taken in 𝐻𝑝. Since 𝑈 is bounded from below, 

we have that the restriction 𝑇𝑔|𝑀 is bounded from below. Thus 𝑇𝑔|𝑀 ∶  𝑀 → 𝑇𝑔(𝑀) is an 

isomorphism and consequently 𝑀 is isomorphic to ℓ𝑝. In particular, the operator 𝑇𝑔 is not 

strictly singular. 

       We conclude by posing two questions concerning the ℓ2−singularity of 𝑇𝑔. To be 

specific, define 𝑆(𝐻𝑝) to be the class of strictly singular operators on 𝐻𝑝 and 𝑆𝑟(𝐻
𝑝) to be 

the class of ℓ𝑟−singular operators on 𝐻𝑝, i.e., those bounded operators which do not fix a 

copy of the space ℓ𝑟 . Then 𝑆(𝐻𝑝)  =  𝑆2(𝐻
𝑝) ∩ 𝑆𝑝(𝐻

𝑝) for 1 <  𝑝 <  ∞; see [227]. For 

a non-compact operator 𝑇𝑔 on 𝐻𝑝 it follows from Theorem (6.2.6) that 𝑇𝑔  ∉ 𝑆𝑝(𝐻
𝑝). 

However, we did not pursue the following questions. 

       Does a non-compact 𝑇𝑔 ∶  𝐻
𝑝  →  𝐻𝑝 satisfy 𝑇𝑔 ∉ 𝑆2(𝐻

𝑝) ? Can we 

characterize those 𝑔 such that 𝑇𝑔  ∈  𝑆2(𝐻
𝑝), where 1 ≤  𝑝 <  ∞, 𝑝 ≠  2 ? 

We consider the strict singularity of 𝑇𝑔 on 𝐵𝑀𝑂𝐴, the Bergman spaces 𝐴𝑝, 1 ≤

 𝑝 <  ∞, and the Bloch space 𝐵. The case of 𝐵𝑀𝑂𝐴 essentially follows from the 

reasoning done in [220], where we utilize an idea of Leǐbov [222] that there exist 

isomorphic copies of the space 𝑐0 of null sequences inside 𝑉𝑀𝑂𝐴. 
       This fact will imply that the strict singularity of 𝑇𝑔 on 𝐵𝑀𝑂𝐴 or on 𝑉𝑀𝑂𝐴 is 

equivalent to the compactness of 𝑇𝑔 on the same space. The sketch of the proof is the 

following. 

We recall that the boundedness of 𝑇𝑔 on 𝐵𝑀𝑂𝐴 is characterized by the condition 𝑔 ∈

 𝐿𝑀𝑂𝐴, where 𝐿𝑀𝑂𝐴 is the “logarithmic 𝐵𝑀𝑂𝐴” space; see [226]. 

By the proof of Theorem 2 and Lemma 6 in [220] we can find a sequence (ℎ𝑛) in 𝑉𝑀𝑂𝐴 

which is equivalent to the standard basis of 𝑐0. If 𝑇𝑔 is non-compact on 𝑉𝑀𝑂𝐴, it follows 
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from the estimate (4.6) in [220] that ‖𝑇𝑔ℎ𝑛‖∗
 >  𝑐 >  0 for some constant 𝑐 for all 𝑛. 

Since 𝑔 ∈  𝐿𝑀𝑂𝐴 ⊂  𝐵𝑀𝑂𝐴, the operator 𝑇𝑔 is bounded on 𝐻2 and consequently 

‖𝑇𝑔ℎ𝑛‖2
 →  0, as 𝑛 →  ∞. Now we apply Lemma 6 in [220] again to obtain (by passing 

to a subsequence, if needed) that (𝑇𝑔ℎ𝑛) is equivalent to the standard basis of 𝑐0. Hence 

𝑇𝑔|𝑀, where 𝑀 =  span{ℎ𝑛}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , is an isomorphism onto its range and 𝑇𝑔 is not strictly 

singular on 𝑉𝑀𝑂𝐴 (or on 𝐵𝑀𝑂𝐴). 

       In the Bergman spaces, boundedness and compactness of 𝑇𝑔 was characterized in 

[215]. It is known that 𝐴𝑝, 1 ≤  𝑝 <  ∞, are isomorphic to ℓ𝑝; see e.g. [229]. Hence the 

strict singularity of the operator 𝑇𝑔 coincides with the compactness, since all strictly 

singular operators on ℓ𝑝 are compact; see [223] and a comment thereafter. The 

boundedness and compactness of 𝑇𝑔 acting on Bloch spaces was investigated in [230]. In 

this case, we can deduce as follows: If 𝑇𝑔 acting on 𝐵 is strictly singular, then its 

restriction to the little Bloch space 𝐵0 is also strictly singular. Since 𝐵0 is isomorphic to 𝑐0 

and strictly singular operators on 𝑐0 are compact, the restriction 𝑇𝑔|𝐵0 is compact. Also, 

the bidual (𝐵0)
∗∗ can be identified with 𝐵, so the operator 𝑇𝑔 can be identified with the 

biadjoint operator (𝑇𝑔|𝐵0)
∗∗
. Therefore 𝑇𝑔 is compact. 

Section (6.3): Rigidity of Composition Operators  

For 𝔻 =  {𝑧 ∈ ℂ ∶  |𝑧| <  1} be the unit disk in ℂ. For 0 <  𝑝 <  ∞ the analytic 

function 𝑓 ∶ 𝔻 → ℂ belongs to the Hardy space 𝐻𝑝 if  

‖𝑓‖𝑝
𝑝
 = sup

0≤𝑟< ∞
  ∫ 
𝕋

|𝑓(𝑟𝜉)|𝑝 < ∞,                             (46) 

where 𝑇 =  𝜕𝔻 (identified with [0, 2𝜋]) and 𝑑𝑚(𝑒𝑖𝑡) =
𝑑𝑡

2𝜋
 . Let 𝜙 ∶ 𝔻 → 𝔻 be an 

analytic self-map of 𝔻. It is a well-known consequence of the Littlewood subordination 

principle, see e.g. [20], that the composition operator  

𝑓 →  𝐶𝜙(𝑓) =  𝑓 ∘  𝜙 

is bounded 𝐻𝑝  →  𝐻𝑝 for any 𝜙 as above. Properties of these composition operators have 

been studied very extensively during the last 40 years on various Banach spaces of 

analytic functions on 𝔻, see [20] and [83] for comprehensive expositions of the early 

developments of the area. The compactness of 𝐶𝜙 on 𝐻𝑝 is well understood, and there are 

several equivalent characterisations in the literature. To exhibit a specific criterion recall 

that Shapiro [117] established that 𝐶𝜙 is a compact operator 𝐻𝑝  →  𝐻𝑝 if and only if  

lim
|𝑤|→1

  
𝑁(𝜙,𝑤)

log(1/|𝑤|)
 =  0.                                 (47) 

Above 𝑁(𝜙,𝑤) is the Nevanlinna counting function of 𝜙 defined by 𝑁(𝜙,𝑤)  =
 ∑  𝑧∈𝜙−1(𝑤)  log(1/|𝑧|) for 𝑤 ∈ 𝜙(𝔻) (counting multiplicities). Finer gradations of 

compactness were obtained e.g. by Luecking and Zhu [106], who characterised the 

membership of 𝐶𝜙 in the Schatten 𝑝-classes on 𝐻2. Moreover, the approximation numbers 

of 𝐶𝜙 on 𝐻2 were estimated in [63], [78] and [203], as well as on 𝐻𝑝 in [239].  

We demonstrate that composition operators on 𝐻𝑝 only allow a small variety of 

qualitative non-compact behaviour compared to that of arbitrary bounded operators on 𝐻𝑝. 

Let 𝐸, 𝐹 and 𝑋 be Banach spaces. It will be convenient to say that the bounded linear 

operator 𝑈 ∶  𝐸 →  𝐹 fixes a copy of 𝑋 in 𝐸 if there is an infinite-dimensional subspace 

𝑀 ⊂  𝐸,𝑀 linearly isomorphic to 𝑋, for which 𝑈|𝑀 is bounded below on 𝑀, that is, there 
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is 𝑐 >  0 so that ‖𝑈𝑥‖  ≥  𝑐 ·  ‖𝑥‖ for all 𝑥 ∈  𝑀. We use the standard notation 𝑀 ≈  𝑋 

for linearly isomorphic spaces 𝑀 and 𝑋, and refer to [88], [223] and [229] for general 

background related to the theory of Banach spaces.  

       The trichotomy contained in Theorem (6.3.3) below is the main result. Let 𝐸𝜙  =

 {𝑒𝑖𝜃 ∶  |𝜙(𝑒𝑖𝜃)|  =  1} be the boundary contact set of the analytic map 𝜙 ∶ 𝔻 → 𝔻. Here, 

and in the sequel, we use 𝜙(𝑒𝑖𝜃) to denote the a.e. radial limit function of 𝜙 on 𝕋. It is 

part of the trichotomy that (47) together with the simple condition  

𝑚(𝐸𝜙)  =  0                                                (48) 

completely determine the composition operators which fix copies of the subspace ℓ𝑝 or ℓ2 

in 𝐻𝑝. Recall that the known compactness results for 𝐶𝜙 on 𝐻2 yield that (47) implies 

(48), but the class of symbols 𝜙 satisfying (48) is much larger than that of (47), see e.g. 

[83].  

     In the statement below we exclude the Hilbert space 𝐻2, where the situation is known 

and much simpler, since part (ii) does not occur for 𝑝 =  2 (cf. the discussion following 

Theorem (6.3.4)). We use 𝐾(𝐸) to denote the class of compact operators 𝐸 →  𝐸 for any 

Banach space 𝐸, and take into account the known characterisation of the composition 

operators 𝐶𝜙  ∈  𝐾(𝐻
𝑝).  

        Theorem (6.3.3) is obtained by combining Theorems (6.3.4), (6.3.2) and (6.3.11) 

stated below, which also contain more precise information. We first recall some standard 

linear classes that classify the behaviour of non-compact operators. Let 𝐸, 𝐹 and 𝑋 be 

Banach spaces, and ℒ(𝐸, 𝐹) be the space of bounded linear operators from 𝐸 to 𝐹. The 

operator 𝑈 ∈ ℒ(𝐸, 𝐹) is called 𝑋-singular if 𝑈 does not fix any copies of 𝑋 in E. We 

denote  

𝑆𝑋(𝐸, 𝐹)  =  {𝑈 ∈ ℒ(𝐸, 𝐹): 𝑈 is 𝑋 − singular}, 
and put 𝑆𝑝(𝐸, 𝐹)  =  𝑆𝑝 (𝐸, 𝐹) to simplify our notation in the case of 𝑋 =  ℓ𝑝. Recall 

further that 𝑈 ∈ ℒ(𝐸, 𝐹) is strictly singular, denoted by 𝑈 ∈  𝑆(𝐸, 𝐹), if 𝑈 is not bounded 

below on any infinite-dimensional linear subspaces 𝑀 ⊂  𝐸. It is clear that 𝐾(𝐸, 𝐹)  ⊂
 𝑆(𝐸, 𝐹)  ⊂  𝑆𝑝(𝐸, 𝐹) for any Banach spaces 𝐸 and 𝐹, and it is known that the classes 

𝑆(𝐸, 𝐹) and 𝑆𝑝(𝐸, 𝐹) define norm-closed operator ideals in the sense of Pietsch [241] for 

any 1 ≤  𝑝 ≤  ∞ (cf. [227] for the case of 𝑆𝑝).  
       Part of Theorem (6.3.3) is contained in the following dichotomy, which we also relate 

to the known characterisation of the compact composition operators on 𝐻𝑝.  

       The above theorem holds for 𝑝 =  2 because of the general fact due to Calkin that 

𝐾(𝐻2)  =  𝑆(𝐻2)  =  𝑆2(𝐻
2) for the Hilbert space 𝐻2, see e.g. [241]. For 1 <  𝑝 <

 ∞ and 𝑝 =  2 one has that  

𝑆(𝐻𝑝)  =  𝑆2(𝐻
𝑝)  ∩  𝑆𝑝(𝐻

𝑝).                                  (49) 

 This follows from the characterisation of 𝑆(𝐿𝑝) by Weis [227] combined with the 

wellknown fact that 𝐻𝑝  ≈  𝐿𝑝  ≡  𝐿𝑝(0, 1), see e.g. [240]. By contrast, for 𝑝 =  2 all the 

inclusions  

𝐾(𝐻𝑝) ⊊ 𝑆(𝐻𝑝)  , 𝑆(𝐻𝑝) ⊊  𝑆2(𝐻
𝑝), 𝑆(𝐻𝑝) ⊊ 𝑆𝑝(𝐻

𝑝)           (50) 

are strict. This is easily deduced from the facts that 𝐻𝑝  ≈  𝐿𝑝 contains complemented 

subspaces isomorphic to ℓ𝑝 and ℓ2, whereas any 𝑈 ∈ ℒ(ℓ𝑝, ℓ𝑞) is strictly singular for 𝑝 ≠
 𝑞, see e.g. [223]. Thus Theorem (6.3.4) states that for 𝑝 =  2 the compactness of 

composition operators 𝐶𝜙   ∈ ℒ(𝐻
𝑝) is a fairly rigid property as compared to (49) and (50) 

for arbitrary operators. It is also convenient to rephrase this as follows:  
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Corollary (6.3.1)[231]: For 1 ≤  𝑝 <  ∞ the following conditions are equivalent for any 

analytic map 𝜙 ∶ 𝔻 → 𝔻:  

        (i) 𝜙 satisfies (47),  

        (ii) 𝐶𝜙  ∈  𝐾(𝐻
𝑝),  

        (iii) 𝐶𝜙  ∈  𝑆(𝐻
𝑝),  

        (iv) 𝐶𝜙  ∈  𝑆𝑝(𝐻
𝑝).  

        The first result (excluding the case 𝐻2) in the direction of Theorem (6.3.4) and 

Corollary (6.3.1) is due to Sarason [82], who showed that 𝐶𝜙  is weakly compact 𝐻1  →

 𝐻1 if and only if it is compact. Jarchow [237] pointed out that as a consequence 𝐶𝜙  ∈

 𝐾(𝐻1) if and only if 𝐶𝜙 is weakly conditionally compact on 𝐻1, that is, 𝐶𝜙  ∈  𝑆1(𝐻
1) in 

view of Rosenthal’s ℓ1-theorem, see e.g. [223]. Hence the case 𝑝 =  1 in Theorem (6.3.4) 

and Corollary (6.3.1) was known earlier. We refer for a list of further references to 

analogous rigidity results for composition operators on several (classical) Banach spaces 

of analytic functions on the unit disk 𝔻.  

        The lattice structure of the operator norm-closed ideals of ℒ(𝐻𝑝)  ≈ ℒ(𝐿𝑝) 
containing the compact operators is quite complicated for 1 <  𝑝 <  ∞ and 𝑝 =  2, see 

e.g. [241] and [243]. For instance, 𝑆𝑝(𝐻
𝑝) and 𝑆2(𝐻

𝑝) are mutually incomparable classes, 

since 𝐻𝑝 ≈ 𝐿𝑝 contains complemented copies of ℓ2 and ℓ𝑝. However, note that Corollary 

(6.3.1) implies that if 𝐶𝜙  ∈ ℒ(𝐻
𝑝) fixes a copy of ℓ2 in 𝐻𝑝, then 𝐶𝜙 must also fix a copy 

of ℓ𝑝 in 𝐻𝑝. These facts raise the problem whether it is possible to explicitly determine the 

ℓ2-singular composition operators on 𝐻𝑝. In turns out in Theorem (6.3.2) below that 

condition (48) characterises this class, thus providing a finer classification of the non-

compact 𝐶𝜙  ∈ ℒ(𝐻
𝑝) for 1 ≤  𝑝 <  ∞ and 𝑝 =  2. We stress that Theorem (6.3.2) (as 

well as the subsequent Theorem (6.3.11)) does not hold for 𝐻2.  

Theorem (6.3.2)[231]: Let 1 ≤  𝑝 <  ∞, 𝑝  =  2, and 𝜙 ∶ 𝔻 → 𝔻 be an analytic map. 

Then 𝐶𝜙 fixes a copy of ℓ2 in 𝐻𝑝 if and only if 𝑚(𝐸𝜙)  >  0. Equivalently, 𝐶𝜙  ∈  𝑆2(𝐻
𝑝) 

if and only if (48) holds. Cima and Matheson [233] have shown that (48) characterises the 

completely continuous composition operators 𝐶𝜙  ∈ ℒ(𝐻
1). As a significant strengthening 

of Theorem (6.3.2) we are further able to show that for 𝑝 >  1 (and 𝑝  =  2) condition 

(48) actually describes the operators 𝐶𝜙 which belong to the class 𝑆𝐿𝑝  (𝐻
𝑝). Here 

𝑆𝐿𝑝  (𝐻
𝑝) is the maximal non-trivial ideal of ℒ(𝐻𝑝), see [235]. To state the relevant result 

let ℎ𝑝 be the harmonic Hardy space consisting of the harmonic functions 𝑓 ∶ 𝔻 → ℂ 

normed by (46).  

The proof of Theorem (6.3.4). The argument is based on explicit perturbation 

estimates, where the starting point is a known test function reformulation of the 

compactness criterion (47). The proofs of Theorems (6.3.2) and (6.3.11) are contained. 

Although these results are connected, we have stated them separately, since the argument 

for the ℓ2-singularity in 𝐻𝑝 also holds for 𝑝 =  1. By contrast the proof of Theorem 

(6.3.11) relies on properties of ℎ𝑝  =  𝐿𝑝(𝑇,𝑚) for 1 <  𝑝 <  ∞, and it depends on the 

non-trivial fact due to Dosev et al. [235] that the class 𝑆𝐿𝑝  (𝐿
𝑝)  ≈  𝑆𝐿𝑝  (ℎ

𝑝) is additive. 

We contain a number of further comments and open problems. As an application we 

characterise the ℓ2-singular compositions 𝐶𝜙  ∈ ℒ(𝑉𝑀𝑂𝐴). As an additional motivation 

we also indicate a connection between a weaker version of Corollary (6.3.1) and a general 

extrapolation result [217] for operators on 𝐿𝑝-spaces.  
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       A starting point for was a question by Jonathan Partington about the strict singularity 

of composition operators on 𝐻𝑝 for 𝑝 =  2. We are indebted to Manuel González, 

Francisco Hernández and Dmitry Yakubovich for timely questions towards Theorems 

(6.3.2) and (6.3.11).  

Theorem (6.3.3)[231]: Let 1 ≤  𝑝 <  ∞, 𝑝 =  2, and 𝜙 be any analytic self-map of D. 

Then there are three mutually exclusive alternatives:  

       (i) 𝐶𝜙 is compact on 𝐻𝑝,  

       (ii) 𝐶𝜙 fixes a copy of ℓ𝑝 in 𝐻𝑝, but does not fix any copies of ℓ2 in 𝐻𝑝,  

       (iii) 𝐶𝜙 fixes a copy of ℓ2 (as well as of ℓ𝑝) in 𝐻𝑝. In this case, if 1 <  𝑝 <  ∞ and 

𝑝 =  2, then 𝐶𝜙 also fixes a copy of 𝐿𝑝(0, 1) in 𝐻𝑝.  

Furthermore, regarding the above alternatives  

        (i) takes place if and only if Shapiro’s condition (47) holds,  

        (ii) takes place if and only if (47) fails to hold but 𝑚(𝐸𝜙)  =  0,  

        (iii) takes place if and only if 𝑚(𝐸𝜙)  >  0.  

In particular, 𝐶𝜙  ∈  𝐾(𝐻
𝑝) if and only if 𝐶𝜙 does not fix any copies of ℓ𝑝 in 𝐻𝑝. 

Proof. For 𝑎 ∈ 𝔻 and fixed 0 <  𝑝 <  ∞ let 

 𝑔𝑎(𝑧) =
(1 − |𝑎|2)1/𝑝

(1 − 𝑎𝑧)2/𝑝
 , 𝑧 ∈ 𝔻. 

Observe that if 𝛾𝑎(𝑧) =
(1 − |𝑎|2)1/𝑝

1 − 𝑎𝑧
 is the normalised reproducing kernel of H2 associated 

to 𝑎 ∈ 𝔻, then |𝑔𝑎(𝑧)|
𝑝  =  |𝛾𝑎(𝑧)|

2 for 𝑧 ∈ 𝔻, so that ‖𝑔𝑎‖𝑝  =  1. The proof of 

Theorem (6.3.4) is based on the following criterion: 𝐶𝜙  ∈  𝐾(𝐻
𝑝) if and only if  

lim
|𝑎|→1

 sup  ‖𝐶𝜙(𝑔𝑎)‖𝑝
 =  0.                                          (51) 

This is a restatement using the test functions (𝑔𝑎) ⊂  𝐻
𝑝 of a well-known characterisation 

of the compact operators 𝐶𝜙  ∈ ℒ(𝐻
𝑝) in terms of vanishing Carleson pull-back measures, 

see [20] (such a characterisation was first obtained by MacCluer [107] in the case of 

𝐻𝑝(𝐵𝑁) for 𝑁 >  1, where 𝐵𝑁 is the open Euclidean ball in 𝐶𝑁 ). Alternatively, (51) is 

stated explicitly for 𝑝 =  2 in e.g. [117], whereas the compactness of 𝐶𝜙 ∶  𝐻
𝑝  →  𝐻𝑝 is 

independent of 𝑝 ∈  (0,∞) e.g. by [20]. Note that the compactness criterion (47) plays no 

explicit role, as we will mostly use condition (51). After these preparations we proceed to 

the proof itself.  

Theorem (6.3.4)[231]: Let 1 ≤  𝑝 <  ∞ and let 𝜙 ∶ 𝔻 → 𝔻 be any analytic map. Then 

either 𝐶𝜙  ∈  𝐾(𝐻
𝑝), or else 𝐶𝜙  ∉ 𝑆𝑝(𝐻

𝑝). Equivalently, 𝐶𝜙 fixes a copy of ℓ𝑝 in 𝐻𝑝 if 

and only if (47) does not hold.  

Proof. Suppose that 𝐶𝜙  ∉  𝐾 (𝐻
𝑝), where 1 ≤  𝑝 <  ∞. We will show by an explicit 

perturbation argument that 𝐶𝜙 fixes a linearly isomorphic copy of ℓ𝑝 in 𝐻𝑝. Since 

condition (51) fails there is 𝑑 >  0 and a sequence (𝑎𝑛)  ⊂ 𝔻 so that |𝑎𝑛|  →  1 as 𝑛 →
 ∞ and  

‖𝐶𝜙(𝑔𝑎𝑛)‖𝑝
 ≥  𝑑 >  0                                     (52) 

 for all 𝑛 ∈ ℕ. We may further assume without loss of generality that 𝑎𝑛  →  1 as 𝑛 →  ∞. 

Namely, we may pass to a convergent subsequence in 𝔻 and compose 𝜙  with a suitable 

rotation of 𝔻 that defines a linear isomorphism of 𝐻𝑝. Our starting point is the 

phenomenon that (𝑔𝑎𝑛) admits subsequences which are small perturbations of a disjointly 

supported sequence in 𝐿𝑝(𝑇,𝑚), and hence span an isomorphic copy of ℓ𝑝. The crux of 
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the argument is that this can be achieved simultaneously for further subsequences of 

(𝐶𝜙 (𝑔𝑎𝑛)), and the following claim actually contains the basic step of the argument: 

Claim (6.3.5)[231]: There is a further subsequence of (𝑎𝑛) , still denoted by (𝑎𝑛) for 

simplicity, for which there are constants 𝑐1, 𝑐2  >  0 so that  

𝑐1  ·  ‖(𝑏𝑗  )‖ℓ𝑝  ≤     ‖∑ 

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)‖

𝑝

 ≤  𝑐2  ·  ‖(𝑏𝑗)‖ℓ𝑝  for all (𝑏𝑗)  ∈  ℓ
𝑝.   (53) 

        Assuming Claim (6.3.5) momentarily, the proof of Theorem (6.3.4) is completed by 

using this claim a second time (formally in the case where 𝜙(𝑧)  =  𝑧 for 𝑧 ∈ 𝔻) to 

extract a further subsequence of (𝑔𝑎𝑛), still denoted by (𝑔𝑎𝑛), so that  

𝑑1  ·  ‖(𝑏𝑗)‖ℓ𝑝   ≤    ‖∑ 

∞

𝑗=1

 𝑏𝑗𝑔𝑎𝑗‖

𝑝

 ≤  𝑑2  ·  ‖(𝑏𝑗)‖ℓ𝑝  for all (𝑏𝑗)  ∈  ℓ
𝑝, (54) 

for suitable constants 𝑑1, 𝑑2  >  0. Then by combining (53) and (54) we get      

‖∑ 

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)‖

𝑝

 ≥  𝑐1‖(𝑏𝑗)‖ℓ𝑝  ≥  𝑐1𝑑2
−1  ‖∑ 

∞

𝑗=1

 𝑏𝑗𝑔𝑎𝑗‖

𝑝

 , 

so that the restriction of 𝐶𝜙 defines a linear isomorphism 𝑀 →  𝐶𝜙(𝑀), where 𝑀 =

 span{𝑔𝑎𝑗 ∶  𝑗 ∈ ℕ}  ≈  ℓ
𝑝.  

       Let 𝐴 =  {𝜉 ∈  𝑇 ∶  the radial limit 𝜙 (𝜉)exists} and  

𝐸𝜀 =  {𝜉 ∈  𝐴 ∶  |𝜙(𝜉) −  1| <  𝜀} 
for 𝜀 >  0. Recall that 𝕋 \ 𝐴 has measure zero. The proof of Claim (6.3.5) is an argument 

of gliding hump type based on the following auxiliary observation.  

Lemma (6.3.6)[231]: Let 𝜙 and (𝑔𝑎𝑛) be as above, where 𝑎𝑛  →  1 as 𝑛 →  ∞. Then  

        (L1) ∫  
𝕋\𝐸𝜀

 |𝐶𝜙(𝑔𝑎𝑛)|
𝑝
𝑑𝑚 →  0 as 𝑛 →  ∞ for each fixed 𝜀 >  0,  

        (L2) ∫  
𝐸𝜀
 |𝐶𝜙(𝑔𝑎𝑛)|

𝑝
𝑑𝑚 →  0 as 𝜀 →  0 for each fixed 𝑛 ∈ ℕ.  

Proof. Observe first that  

∫  
𝐸𝜀

 |𝐶𝜙(𝑔)|
𝑝
𝑑𝑚 →  0  

as 𝜀 →  0 for any 𝑔 ∈  𝐻𝑝, since ∩𝜀>0 𝐸𝜀 =  {𝜉 ∈  𝐴 ∶ 𝜙(𝜉)  =  1} has measure 0 as 𝜙 is 

not identically 1. Moreover, if 𝜀 >  0 is fixed and ξ ∈ A \ Eε, then there is nε such that  

|1 − 𝑎𝑛𝜙(𝜉)|  =  |1 − 𝜙(𝜉)  + 𝜙(𝜉)(1 − 𝑎𝑛)| ≥ |1 − 𝜙(𝜉)| − |1 − 𝑎𝑛|  >  𝜀/2 

 for all 𝑛 ≥  𝑛𝜀 . It follows that  

|𝐶𝜙(𝑔𝑎𝑛)(𝜉)|
𝑝
 =

1 − |𝑎𝑛|
2

|1 − 𝑎𝑛𝜙(𝜉)|
2
 ≤
4(1 − |𝑎𝑛|

2)

𝜀2
 , 

so that (L1) holds as 𝑛 →  ∞.  

       To continue the argument of Claim (6.3.5) recall that ∫  
𝕋
 |𝐶𝜙(𝑔𝑎𝑛)|

𝑝
𝑑𝑚 ≥  𝑑𝑝  >  0 

by condition (52). We may then use Lemma (6.3.6) inductively to find indices 𝑗1  <  𝑗2  <
 ... and a decreasing sequence 𝜀𝑗  >  𝜀𝑗+1  →  0 so that  

       (i) (∫  
𝐸𝜀𝑛

 |𝐶𝜙 (𝑔𝑎𝑗𝑘
)|
𝑝
𝑑𝑚)

1/𝑝

 <  4−𝑛𝛿𝑑 for all 𝑘 =  1, . . . , 𝑛 −  1,  
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       (ii) (∫  
𝕋\𝐸𝜀𝑛

 |𝐶𝜙 (𝑔𝑎𝑗𝑛)|
𝑝
𝑑𝑚)

1/𝑝

 <  4−𝑛𝛿𝑑,  

       (iii) (∫  
𝐸𝜀𝑛

 |𝐶𝜙 (𝑔𝑎𝑗𝑛)|
𝑝
𝑑𝑚)

1/𝑝

 >  𝑑/2  

for all 𝑛 ∈ ℕ.Here 𝛿 >  0 is a small enough constant (to be chosen later). In fact, suppose 

that we have already found 𝑎𝑗1 , . . . , 𝑎𝑗𝑛−1 and 𝜀1  >. . . > 𝜀𝑛−1 satisfying (i)–(iii). Then 

property (L2) from Lemma (6.3.6) yields 𝜀𝑛  <  𝜀𝑛−1 such that   

(∫  
𝐸𝜀𝑛

 |𝐶𝜙 (𝑔𝑎𝑗𝑘
)|
𝑝
𝑑𝑚)

1/𝑝

 <  4−𝑛𝛿𝑑 

 for each 𝑘 =  1, . . . , 𝑛 −  1. After this use property (L1) from Lemma (6.3.6) together 

with (52) to find an index 𝑗𝑛  >  𝑗𝑛−1 so that conditions (ii) and (iii) are satisfied for the set 

𝐸𝜀𝑛 . 

        In the interest of notational simplicity we relabel ajn as an for 𝑛 ∈ ℕ . The idea of the 

argument is that the sequence (𝐶𝜙(𝑔𝑎𝑛)) essentially resembles disjointly supported peaks 

in 𝐿𝑝(𝑇,𝑚) close to the point 1. We will next verify the left-hand inequality in (53) by a 

direct perturbation argument. Let 𝑏 =  (𝑏𝑗  )  ∈  ℓ
𝑝 be arbitrary. Our starting point will be 

the identity      

‖∑ 

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)‖

𝑝

𝑝

 =  ∑  

∞

𝑛=0

∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|∑  

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)|

𝑝

 𝑑𝑚,         (55) 

 where we set 𝐸𝜀0  =  𝑇.  

       Observe first that for each 𝑛 ∈ ℕ we get that  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

| 𝐶𝜙(𝑔𝑎𝑛)|
𝑝
 𝑑𝑚)

1
𝑝

= ( ∫  
𝐸𝜀𝑛  

|𝐶𝜙(𝑔𝑛)|
𝑝
 𝑑𝑚 − ∫  

𝐸𝜀𝑛+1

|𝐶𝜙(𝑔𝑎𝑛)|
𝑝
 𝑑𝑚)

1
𝑝

 

>  ((
𝑑

2
)
𝑝

 −  (4−𝑛−1𝛿𝑑)𝑝 )

1/𝑝

 ≥
𝑑

2
 − 4−𝑛−1𝛿𝑑  

in view of (i) and (iii), where the last estimate holds because 0 < 1/p ≤ 1. Moreover, note 

that  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶𝜙 (𝑔𝑎𝑗)|
𝑝
 𝑑𝑚)

1/𝑝

 <  2−𝑛−𝑗  𝛿𝑑 

 for all 𝑗 ≠  𝑛. In fact, (∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶𝜙 (𝑔𝑎𝑗)|
𝑝
 𝑑𝑚)

1/𝑝

 is dominated by 4−𝑛𝛿𝑑 for 𝑗𝑛 in 

view of (i) and (ii). Thus we get from the triangle inequality in 𝐿𝑝, together with the 

preceding estimates, that for all 𝑛 ∈ ℕ one has  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|∑  

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)|

𝑝

 𝑑𝑚)

1/𝑝

 

≥ |𝑏𝑛| (∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

| 𝐶𝜙(𝑔𝑎𝑛)|
𝑝
 𝑑𝑚)

1
𝑝

−∑ 

𝑗≠𝑛

|𝑏𝑗| (∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶𝜙 (𝑔𝑎𝑗)|
𝑝
 𝑑𝑚)

1/𝑝
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≥ |𝑏𝑛|  (
𝑑

2
 − 4−𝑛−1𝛿𝑑 ) − 2𝑛 𝛿𝑑‖𝑏‖𝑑  ≥

𝑑

2
 − 2−𝑛+1𝛿𝑑‖𝑏‖𝑏 . 

By summing over 𝑛 we get from the disjointness and the triangle inequality in ℓ𝑝 that 

‖∑ 

∞

𝑗=1

 𝑏𝑗𝐶𝜙 (𝑔𝑎𝑗)‖

𝑝

 

≥ (∑  

∞

𝑛=1

|
𝑑

2
|𝑏𝑛|  − 2

−𝑛+1𝛿𝑑‖𝑏‖𝑝|
𝑝

)

1/𝑝

 

≥
𝑑

2
(∑  

∞

𝑛=1

|𝑏𝑛|
𝑝)

1
𝑝

−  𝛿𝑑‖𝑏‖𝑝 (∑  

∞

𝑛=1

2(−𝑛−1))

1/𝑝

 

𝑑 (
1

2
− 𝛿 ∙ (1 − 2𝑝)−1/𝑝)

 

‖𝑏‖𝑝 ≥
𝑑

4
‖𝑏‖𝑝, 

where the last estimate holds once we choose δ >  0 small enough, so that 𝛿 ∙
(1 − 2𝑝)−1/𝑝. The proof of the right-hand inequality in (53) is a straightforward variant 

of the preceding estimates. This inequality does not affect the choice of 𝛿 >  0, and hence 

the details will be omitted here. 

       The proof of Theorem (6.3.2) is contained in the following three results. We first look 

separately at the case 𝑝 =  2. Recall our notation 𝐸𝜙  =  {𝑒
𝑖𝜃 ∶  |𝜙(𝑒𝑖𝜃)|  =  1} for 

analytic maps 𝜙 ∶ 𝔻 → 𝔻.  
Lemma (6.3.7)[231]: Suppose that condition (48) fails, that is, 𝑚(𝐸𝜙)  >  0. Then there 

exist integers 0 ≤  𝑛1 < 𝑛2  < ··· and a constant 𝐾 >  0 such that  

𝐾−1  ·  ‖𝑐‖ℓ2  ≤      ‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

2

 ≤  𝐾 ·  ‖𝑐‖ℓ2   

for all 𝑐 =  (𝑐𝑘)  ∈  ℓ
2.  

Proof. The upper estimate follows from the boundedness of 𝐶𝜙 on 𝐻2 and the 

orthonormality of the sequence (𝑧𝑛) in 𝐻2.  
       To establish the lower estimate, note that 𝑧𝑛  →  0 weakly and therefore also 𝜙𝑛  =
 𝐶𝜙(𝑧𝑛) →  0 weakly in 𝐻2 as 𝑛 →  ∞. Hence we may set 𝑛1  =  0 and then proceed 

inductively to pick increasing indices nk such that the inner-products satisfy 

|𝜙 
𝑛𝑗  , 𝜙 

𝑛𝑘  |  ≤  2−2𝑘𝑚(𝐸𝜙) for all 1 ≤  𝑗 < 𝑘 and each 𝑘 ∈ ℕ. Let 𝑐 = (𝑐𝑘)  ∈ ℓ
2be 

arbitrary and note that 

‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

2

2

  =  ∑   

∞

𝑘=1

|𝑐𝑘|
2‖𝜙𝑛𝑘‖2

2 +  2Re ∑  

∞

𝑘=1

 ∑  

𝑘−1

𝑗=1

 𝑐𝑗  𝑐𝑘(𝜙
𝑛𝑗 , 𝜙𝑛𝑘). 

Obviously ‖𝜙𝑛𝑘‖2
2 ≥ ∫  

𝐸𝜙
|𝜙𝑛𝑘|2𝑑𝑚 = 𝑚(𝐸𝜙) for each 𝑘. Moreover, we get that  

∑ 

∞

𝑘=1

 ∑  

𝑘−1

𝑗=1

 𝑐𝑗  𝑐𝑘(𝜙
𝑛𝑗 , 𝜙𝑛𝑘) ≤  ‖𝑐‖ℓ2

2  ∑  

∞

𝑘=1

 ∑  

𝑘−1

𝑗=1

 2−2𝑘𝑚(𝐸𝜙) 

≤
1

2
‖𝑐‖ℓ2

2 𝑚(𝐸𝜙) ∑  

∞

𝑘=1

 ∑  

𝑘−1

𝑗=1

 2−2𝑘 =
1

6
‖𝑐‖ℓ2

2 𝑚(𝐸𝜙) 

By combining these estimates we obtain the desired lower bound  
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‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

2

2

≥ ‖𝑐‖ℓ2
2 𝑚(𝐸𝜙) −

1

3
‖𝑐‖ℓ2

2 𝑚(𝐸𝜙) = (
2

3
𝑚(𝐸𝜙) ) ‖𝑐‖ℓ2

2 .  

         In order to treat general 𝑝 ∈  [1,∞) recall that the analytic map 𝑓:𝔻 → ℂ belongs to 

BMOA if 

|𝑓|∗ = sup
𝑎∈𝔻

 ‖𝑓 ∘  𝜎𝑎 − 𝑓(𝑎)‖2 < ∞, 

where 𝜎𝑎(𝑧) =
𝑎−𝑧

1−𝑎𝑧
 is the Möbius-automorphism of 𝔻 interchanging 0 and a for 𝑎 ∈ 𝔻. 

The Banach space BMOA is normed by ‖𝑓‖𝐵𝑀𝑂𝐴  =  |𝑓(0)|  + |𝑓|∗. Moreover, 𝑉𝑀𝑂𝐴 is 

the closed subspace of 𝐵𝑀𝑂𝐴, where 𝑓 ∈  𝑉𝑀𝑂𝐴 if  
lim
|𝑎|→1

  ‖𝑓 ∘  𝜎𝑎  −  𝑓(𝑎)‖2  =  0. 

See [236] and [126] for background on 𝐵𝑀𝑂𝐴. It follows readily from Littlewood’s 

subordination theorem that 𝐶𝜙 is bounded 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 for any analytic map 𝜙 ∶

𝔻 → 𝔻, see e.g. [123].  

      The following proposition establishes one implication of Theorem (6.3.2).  

Proposition (6.3.8)[231]: Let 1 ≤  𝑝 <  ∞ and suppose that 𝑚(𝐸𝜙)  >  0. Then there 

exist increasing integers 0 ≤  𝑛1  <  𝑛2  < ··· such that the subspace  

𝑀 =  span{𝑧𝑛𝑘 ∶  𝑘 ≥  1}  ⊂  𝐻𝑝  
is isomorphic to 2 and the restriction 𝐶𝜙|𝑀 is bounded below on 𝑀. Hence 𝐶𝜙  ∉  𝑆2(𝐻

𝑝).  

Proof. We start by choosing the increasing integers (𝑛𝑘) as in Lemma (6.3.7). By passing 

to a subsequence we may also assume that (𝑧𝑛𝑘) is a lacunary sequence, that 

is,inf
𝑘
 (𝑛𝑘+1/𝑛𝑘)  >  1. Paley’s theorem (see e.g. [201]) implies that for 1 ≤  𝑝 <  ∞ the 

sequence (𝑧𝑛𝑘) is equivalent in 𝐻𝑝 to the unit vector basis of 2, that is, 

‖∑  

∞

𝑘=1

𝑐𝑘𝑧
𝑛𝑘‖

𝑝

 ∼  ‖𝑐‖ℓ2                                                 (56) 

for all 𝑐 =  (𝑐𝑘)  ∈  ℓ
2. (Here, and in the sequel, we use ∼ as a short-hand notation for the 

equivalence of the respective norms.) Case 𝑝 ≥  2. By Hölder’s inequality and Lemma 

(6.3.7) we have that      

‖𝐶𝜙  ∑  

∞

𝑘=1

 𝑐𝑘𝑧
𝑛𝑘‖

𝑝

 =  ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝑝

 ≥ ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

2

 ∼  ‖𝑐‖ℓ2 . 

According to (56) and the boundedness of 𝐶𝜙 this proves the claim for 𝑝 ≥  2.  

       Case 1 ≤  𝑝 <  2. We start by invoking a version of Paley’s theorem for 𝐵𝑀𝑂𝐴 (see 

e.g. [126]), which together with the boundedness of 𝐶𝜙 on 𝐵𝑀𝑂𝐴 ensures that      

‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝐵𝑀𝑂𝐴

 = ‖𝐶𝜙‖ ∙  ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝑧
𝑛𝑘‖

𝐵𝑀𝑂𝐴

≤ 𝐾 ∙ ‖𝐶𝜙‖ ∙  ‖𝑐‖ℓ2 

for all 𝑐 =  (𝑐𝑘)  ∈  ℓ
2 and a uniform constant 𝐾 >  0. In view of Fefferman’s 𝐻1 −

𝐵𝑀𝑂𝐴 duality pairing (see e.g. [126]) we may further estimate 

‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝐵𝑀𝑂𝐴

 =  ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

1
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≤ |(∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘 ,∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘)| = ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

2

2

 ~‖𝑐‖ℓ2 

where we again use Lemma (6.3.7) at the final step. By applying Hölder’s inequality and 

combining the preceding estimates we obtain that 

‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝑝

≥ ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

1

≥ 𝐾′‖𝑐‖ℓ2 

for some uniform constant 𝐾′ >  0. In particular, 𝐶𝜙  ∉  𝑆2(𝐻
𝑝) in view of (56), which 

completes the verification of the proposition for 1 ≤  𝑝 <  2.  
       The converse implication in Theorem (6.3.2) is contained in the following  

Proposition (6.3.9)[231]: Let 1 ≤  𝑝 <  ∞, 𝑝 =  2, and suppose that 𝑚(𝐸𝜙)  =  0. If 

(𝑓𝑛) is any normalized sequence in 𝐻𝑝 which is equivalent to the unit vector basis of ℓ2, 

then 𝐶𝜙 is not bounded below on span{𝑓𝑛 ∶  𝑛 ∈ ℕ}  ⊂  𝐻
𝑝. In particular, 𝐶𝜙  ∈  𝑆2(𝐻

𝑝).  

Proof. Assume to the contrary that 

‖∑  

∞

𝑛=1

 𝑐𝑛𝐶𝜙(𝑓𝑛)‖

𝑝

~ ‖ ∑  

∞

𝑛=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝑝

~ ‖𝑐‖ℓ2                    (57) 

for all sequences 𝑐 =  (𝑐𝑛)  ∈  ℓ
2. In particular, 𝐶𝜙(𝑓𝑛)

𝑝  ≥  𝑑 >  0 for all 𝑛 and some 

constant 𝑑. We write 𝐸𝑘  =  {𝑒
𝑖𝜃 ∶  |𝜙(𝑒𝑖𝜃)|  ≥  1 −

1

𝑘
 } for 𝑘 ≥  1. Since 

lim
𝑘→∞

  𝑚(𝐸𝑘)  =  𝑚(𝐸𝜙)  =  0, we get that  

lim
𝑘→∞

  𝐸𝑘 |𝐶𝜙(𝑓𝑛)|
𝑝
 𝑑𝑚 =  0 for all 𝑛.  

On the other hand, 𝑓𝑛  →  0 weakly in 𝐻𝑝 and hence 𝑓𝑛  →  0 uniformly on compact 

subsets of 𝔻 as 𝑛 →  ∞. This implies that 

lim
𝑛→∞

  ∫  
𝕋\𝐸𝑘

 |𝐶𝜙(𝑓𝑛)|
𝑝
 𝑑𝑚 =  0 for all 𝑘.  

By using the above properties and proceeding recursively in a fashion similar to the 

argument for Theorem (6.3.4) we find increasing sequences of integers 0 ≤  𝑛1  <  𝑛2  <
 ··· and 1 =  𝑘1  <  𝑘2  < ··· , such that 

‖∑  

∞

𝑛=1

 𝑐𝑛𝐶𝜙(𝑓𝑛)‖

𝑝

𝑝

=∑ 

∞

𝑙=1

 ∫  
𝐸𝑘𝑙\𝐸𝑘+1

 |∑  

∞

𝑗=1

 𝑐𝑛𝐶𝜙(𝑓𝑛)|

𝑝

 𝑑𝑚~ ‖𝑐‖ℓ2 

holds for all 𝑐 =  (𝑐𝑗)  ∈  ℓ
𝑝 with uniform constants. However, for 𝑝 =  2 such estimates 

obviously contradict (57). Thus 𝐶𝜙  ∈  𝑆2(𝐻
𝑝), and this completes the proof of the 

proposition (and hence also of Theorem (6.3.2)). 

       We remind that Theorem (6.3.2) does not hold for 𝑝 =  2. For 𝑝 ≠  2, the result 

easily yields very explicit examples of operators 𝐶𝜙  ∈  𝑆2(𝐻
𝑝) \ 𝑆𝑝(𝐻

𝑝).  

Example (6.3.10)[231]: Let 𝜙(𝑧) =
1

2
 (1 +  𝑧) for 𝑧 ∈ 𝔻. Theorem (6.3.2) implies that 

𝐶𝜙 does not fix any copies of ℓ2 in 𝐻𝑝. On the other hand, it is well known that 𝐶𝜙 ∉

 𝐾 (𝐻𝑝), see e.g. [83], so that 𝐶𝜙 does fix copies of ℓ𝑝 in 𝐻𝑝 by Theorem (6.3.4).  

       We next prepare for the proof of Theorem (6.3.11). This involves the harmonic Hardy 

space ℎ𝑝, that is, the space of complex-valued harmonic functions 𝑓 ∶ 𝔻 → ℂ normed by 

(46). Recall that for 1 <  𝑝 <  ∞ there is a well-known isometric identification ℎ𝑝  =
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 𝐿𝑝(𝑇,𝑚) as a complex Banach space. Here 𝑓 ∈  ℎ𝑝 corresponds to its a.e. radial limit 

function 𝑓 ∈  𝐿𝑝(𝑇,𝑚), whereas conversely 𝑔 ∈  𝐿𝑝(𝑇,𝑚) determines its harmonic 

extension 𝑃[𝑔]  ∈  ℎ𝑝 through the Poisson integral. Moreover, ℎ𝑝  =  𝐻𝑝  ⊕ 𝐻0
𝑝
 , where 

𝐻0
𝑝
 =  {𝑓 ∈  𝐻𝑝 ∶  𝑓(0)  =  0} and 𝐻0

𝑝
 =  {𝑓 ∶  𝑓 ∈  𝐻0

𝑝
 }.  

       Let 𝜙 ∶ 𝔻 → 𝔻 be any analytic map. The Littlewood subordination theorem for 

subharmonic functions (see e.g. [20]) implies that the composition operator 𝑓 →  𝑓 ∘  𝜙 is 

also bounded ℎ𝑝 → ℎ𝑝 for 1 ≤  𝑝 <  ∞. It will be convenient in the argument to use the 

notation �̃�𝜙(𝑓) =  𝑓 ∘  𝜙 for 𝑓 ∈  ℎ𝑝 to distinguish the composition operator on ℎ𝑝 from 

its relative on 𝐻𝑝. In particular, if in addition 𝜙(0)  =  0, then we may decompose  

�̃�𝜙  =  (
𝐶𝜙 0

0 𝐶𝜙
) �̃�𝜙(𝑓, 𝑔) = (𝑓 ∘  𝜙, 𝑔 ∘  𝜙),                     (58) 

as a matrix direct sum with respect to the decomposition ℎ𝑝 = 𝐻𝑝  ⊕ 𝐻0
𝑝
 . Here 𝜙(0)  =

 0 ensures that 𝑔 ∘  𝜙 ∈  𝐻0
𝑝

 for any 𝑔 ∈  𝐻0
𝑝
 .  

Theorem (6.3.11)[231]: Let 1 <  𝑝 <  ∞, 𝑝 =  2, and  𝜙 ∶ 𝔻 → 𝔻 be an analytic map. 

Then the following conditions are equivalent:  

       (i) 𝜙 satisfies 𝑚(𝐸𝜙)  =  0,  

       (ii) 𝐶𝜙  ∈  𝑆𝐿𝑝  (𝐻
𝑝), that is, 𝐶𝜙 does not fix any copies of 𝐿𝑝 in 𝐻𝑝,  

       (iii) 𝐶𝜙  ∈  𝑆𝐿𝑝  (ℎ
𝑝),  

        (iv) 𝐶𝜙  ∈  𝑆2(𝐻
𝑝).  

Proof. We may assume during the proof that 𝜙(0)  =  0. In fact, otherwise consider 𝜓 =
 𝜎𝜙(0) ∘  𝜙, where 𝜎𝜙(0) ∶ 𝔻 → 𝔻 is the automorphism interchanging 0 and 𝜙(0). Then 

𝜓(0)  =  0 and �̃�𝜓  =  �̃�𝜙  ∘ �̃�𝜎𝜙(0) , where �̃�𝜎𝜙(0) is a linear isomorphism ℎ𝑝  →  ℎ𝑝 (as 

well as 𝐻𝑝 → 𝐻𝑝), which does not affect any of the claims of the theorem.  

      The proof of the implication (iii) ⇒ (i) is contained in the following claim.  

Claim (6.3.12)[231]: Let 1 <  𝑝 <  ∞ and suppose that 𝑚(𝐸𝜙)  >  0. Then �̃�𝜙  ∉

 𝑆𝐿𝑝  (ℎ
𝑝), that is, there is a subspace 𝑀 ⊂  ℎ𝑝, 𝑀 ≈  𝐿𝑝, such that �̃�𝜙|𝑀 is bounded 

below.  

      To prove the claim define the Borel measure ν on 𝕋 by 𝜈(𝐴)  =  𝑚(𝜙−1(𝐴)). Then ν 

is absolutely continuous: if 𝐴 ⊂  𝑇 is a Borel set and 𝑢𝐴  =  𝑃[𝜒𝐴] is the harmonic 

extension (i.e. the Poisson integral) of 𝜒𝐴, we have that  

𝜈(𝐴) =  ∫  
𝜙−1(𝐴)

 𝑑𝑚 ≤  ∫ 
𝕋

 𝑢𝐴  ∘  𝜙 𝑑𝑚 =  𝑢𝐴(𝜙(0))  =  𝑢𝐴(0)  =  𝑚(𝐴). 

Since 𝜈(𝕋)  =  𝑚(𝐸𝜙)  >  0, it follows that the density 𝑑𝜈/𝑑𝑚 ≥  𝛿 for some 𝛿 >  0 on 

a Borel set 𝐹 ⊂ 𝕋 of positive Lebesgue measure. 

        We may now choose 𝑀 =  𝐿𝑝(𝐹,𝑚). Indeed, given any 𝑓 ∈  𝐿𝑝(𝐹,𝑚), we have  

‖�̃�𝜙𝑓‖𝐿𝑝
𝑝
 ≥  ∫  

𝐸𝜙

 |𝑓 ∘  𝜙|𝑝 𝑑𝑚 =  ∫ 
𝕋

 |𝑓|𝑝 𝑑𝜈 ≥  𝛿 ∫ 
𝐹

 |𝑓|𝑝 𝑑𝑚 =  𝛿‖𝑓‖𝐿𝑝(𝐹,𝑚)
𝑝

, 

which establishes Claim (6.3.12), since 𝐿𝑝(𝐹,𝑚)  ≈  𝐿𝑝.  
        The implication (ii) ⇒ (iii) follows from (58) and the non-trivial result that the class 

𝑆𝐿𝑝  (𝐿
𝑝)  ≈  𝑆𝐿𝑝  (ℎ

𝑝) is additive, see [235]. In fact, if  𝐶𝜙  ∈  𝑆𝐿𝑝  (𝐻
𝑝), then 

�̃�𝜙  =  (
𝐶𝜙 0

0 𝐶𝜙
) + (

0 𝐶𝜙
𝐶𝜙 0

) 
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 is the sum of two operators from 𝑆𝐿𝑝  (ℎ𝑝), and hence 𝐿𝑝-singular by additivity. Here one 

applies the observation that if 𝑀 ⊂  𝐿𝑝 is a subspace isomorphic to 𝐿𝑝, then {𝑓 ∶  𝑓 ∈
 𝑀}  is also linearly isomorphic to 𝐿𝑝.  

        Finally, the proof of the implication (i) ⇒ (ii) is already contained in that of 

Proposition (6.3.9). In fact, if there is a subspace 𝑀 ⊂  𝐻𝑝, 𝑀 ≈  𝐿𝑝, so that 𝐶𝜙 is an 

isomorphism 𝑀 →  𝐶𝜙(𝑀), then 𝐶𝜙 also fixes the isomorphic copies of ℓ2 contained in 

𝑀. It was shown in Proposition (6.3.9) that the latter property is incompatible with 

condition (i) of Theorem (6.3.11). 

        We note that Claim (6.3.12) also holds for 𝑝 =  1. However, there is no immediate 

analogue of Theorem (6.3.11) for 𝐻1. In fact, 𝑆𝐿1  (𝐻
1)  =  𝐿(𝐻1), since 𝐿1 does not 

embed isomorphically into 𝐻1, see e.g. [223]. In conclusion, recall that there are infinitely 

many norm-closed ideals 𝐼 of 𝐿(𝐻𝑝) satisfying 𝑆2(𝐻
𝑝) 𝐼 ⊂ 𝑆𝐿𝑝  (𝐻

𝑝) for 1 <  𝑝 <  ∞ 

and 𝑝 =  2, see [241]. By contrast, Theorems (6.3.2) and (6.3.11) imply that there is no 

corresponding gradation for composition operators on 𝐻𝑝. In some cases the trichotomy of 

Theorem (6.3.3) can be sharpened by combining with known results about the subspaces 

of 𝐻𝑝  ≈  𝐿𝑝. For instance, for 2 <  𝑝 <  ∞ it follows from a result of Johnson and Odell 

[238] that if 𝐶𝜙|𝑀 is bounded below on an infinite-dimensional subspace 𝑀 ⊂  𝐻𝑝 that 

contains no isomorphic copies of ℓ2, then 𝑀 embeds isomorphically into 𝑝, whence 𝐶𝜙  ∉

 𝑆𝑝(𝐻
𝑝).  
We list some further examples of Banach spaces of analytic functions where 

composition operators have related rigidity properties, and draw attention to open 

problems. We also sketch another approach towards Theorem (6.3.4), though its 

conclusion is much weaker.  

       The weaker rigidity property  

𝐶𝜙  ∈  𝑆(𝐸)if and only if 𝐶𝜙  ∈  𝐾(𝐸)                                (59) 

holds for many other Banach spaces E of analytic functions on D apart from the Hardy 

spaces. The following list briefly recalls some cases. Typically these results were not 

stated in terms of strict singularity, and as a rule they do not yield as precise information as 

our results for 𝐻𝑝.  
       (a) The following dichotomy in [216] is an explicit precursor of Theorem (6.3.4): 

either 𝐶𝜙  ∈  𝐾(𝐻𝑣
∞ ) or 𝐶𝜙  ∉  𝑆∞(𝐻𝑣

∞). Here 𝐻𝑣
∞ is the weighted 𝐻∞-space for a strictly 

positive weight function 𝑣 on 𝔻. It is also possible to deduce versions of (59) for 𝐻∞ (the 

case 𝑣 ≡  1) from even earlier results. In fact, it follows from [85], [64] or [234] that 

𝐶𝜙  ∈  𝐿(𝐻
∞) is weakly compact if and only if 𝐶𝜙  ∈  𝐾(𝐻

∞). Moreover, Bourgain [232] 

established that 𝑊(𝐻∞, 𝑋)  =  𝑆∞(𝐻
∞, 𝑋) for any Banach space 𝑋, where 𝑊 denotes the 

class of weakly compact operators. Here 𝐾(𝐻∞)𝑆(𝐻∞) , since this holds for the 

complemented subspace ℓ∞ of 𝐻∞. 

       (b) The dichotomy in Theorem (6.3.4) holds for arbitrary bounded operators on the 

Bergman space 𝐴𝑝. In fact, 𝐴𝑝  ≈  𝑝 for 1 ≤  𝑝 <  ∞ by a result of Lindenstrauss and 

Pełczynski, see [229], whereas 𝑆(ℓ𝑝)  =  𝑆𝑝(ℓ
𝑝)  =  𝐾(ℓ𝑝) by a result of Gohberg, 

Markus and Feldman, see [241].  

        (c) It is known that the Bloch space B is isomorphic to ℓ∞, while 𝐶𝜙  ∈  𝑊(𝐵) if and 

only if 𝐶𝜙  ∈  𝐾(𝐵), see e.g. [132]. Moreover, any 𝑈 ∉   𝑊(ℓ∞, 𝑋) fixes a copy of ℓ∞ for 

any Banach space 𝑋, see [223]. Consequently either 𝐶𝜙  ∈  𝐾(𝐵) or 𝐶𝜙  ∉  𝑆∞(𝐵).  
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        (d) It follows from [69] that 𝐶𝜙  ∈  𝐾(𝐵𝑀𝑂𝐴) if and only of 𝐶𝜙  ∈  𝑆𝑐0  (𝐵𝑀𝑂𝐴). In 

fact, the argument shows that if 𝐶𝜙  ∉  𝐾 (𝐵𝑀𝑂𝐴), then there is 𝑀 ⊂  𝑉𝑀𝑂𝐴,𝑀 ≈  𝑐0, so 

that 𝐶𝜙|𝑀 is bounded below. Here again 𝐾(𝐵𝑀𝑂𝐴)  ⊊ 𝑆𝑐0  (𝐵𝑀𝑂𝐴), since 

𝐵𝑀𝑂𝐴 contains complemented subspaces isomorphic to ℓ2 in view of Paley’s theorem 

(see e.g. [126]).  

        Actually the results combined with [69] lead to a better understanding of the ℓ2-

singular composition operators on 𝑉𝑀𝑂𝐴 and 𝐵𝑀𝑂𝐴.  
Proposition (6.3.13)[231]: (i) If 𝜙 ∶ 𝔻 → 𝔻 is an analytic map, and 𝐶𝜙  ∈  𝑆2(𝐵𝑀𝑂𝐴), 

then (48) holds (that is, 𝑚(𝐸𝜙)  =  0).  

        (ii) If 𝜙 ∈  𝑉𝑀𝑂𝐴, then 𝐶𝜙  ∈  𝑆2(𝑉𝑀𝑂𝐴) if (and only if) (48) holds.  

Proof. (i) The argument is essentially contained in that of Proposition (6.3.8). In fact, 

suppose that 𝑚(𝐸𝜙)  >  0, where 𝐸𝜙  =  {𝑒
𝑖𝜃 ∶  |𝜙(𝑒𝑖𝜃)|  =  1}. Then the proof of the 

case 1 ≤  𝑝 <  2 of Proposition (6.3.8) gives a lacunary sequence (𝑛𝑘) and constants 

𝐾1, 𝐾2  >  0 so that in the 𝐻1 − 𝐵𝑀𝑂𝐴 duality pairing  

‖∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

𝐵𝑀𝑂𝐴

≥ ‖ ∑  

∞

𝑘=1

 𝑐𝑘𝜙
𝑛𝑘‖

1

≥ 𝐾1
 ∙ ‖𝑐‖ℓ2 

as well as ‖ ∑  ∞
𝑘=1  𝑐𝑘𝜙

𝑛𝑘‖1 ≥ 𝐾2
 ∙ ‖𝑐‖ℓ2 for all 𝑐 =  (𝑐𝑘)  ∈  ℓ

2. Since 𝐶𝜙 is bounded on 

𝐵𝑀𝑂𝐴 it follows as before from Paley’s theorem in 𝐵𝑀𝑂𝐴 that 𝐶𝜙 is bounded below on 

span{𝑧𝑛𝑘 ∶  𝑘 ∈ ℕ}  ≈  2 in 𝐵𝑀𝑂𝐴.  
        (ii) Recall that 𝐶𝜙 ∶  𝑉𝑀𝑂𝐴 →  𝑉𝑀𝑂𝐴 if 𝜙 ∈  𝑉𝑀𝑂𝐴, see e.g. [123]. Assume that 

𝑚(𝐸𝜙)  =  0 and suppose to the contrary that there is a normalised sequence (𝑓𝑘)  ⊂

 𝑉𝑀𝑂𝐴 equivalent to the unit vector basis of 2, for which   

‖∑  

∞

𝑘=1

 𝑐𝑘𝐶𝜙(𝑓𝑘)‖

𝐵𝑀𝑂𝐴

~ ∙ ‖𝑐‖ℓ2                             (60) 

for all 𝑐 =  (𝑐𝑘)  ∈  ℓ
2. In particular, ‖𝑓𝑘  ∘  𝜙 ‖𝐵𝑀𝑂𝐴  ≥  𝑑 >  0 for all 𝑘, while (𝑓𝑘) is 

weak-null sequence in 𝑉𝑀𝑂𝐴, so that 𝑓𝑘  →  0 uniformly on compact subsets of 𝔻 as 𝑘 →
 ∞. Moreover, by the John–Nirenberg inequality there is a uniform constant 𝑑 >  0 so that  

‖𝑓𝑘  ∘  𝜙‖4  ≤  𝑑‖𝑓𝑘  ∘  𝜙‖𝐵𝑀𝑂𝐴, 𝑘 ∈ ℕ. 

        Let 𝐸𝑘  =  {𝑒
𝑖𝜃 ∶  |𝜙(𝑒𝑖𝜃)| ≥  1 −

1

𝑘
 } for 𝑘 ∈ ℕ. From the above estimates and 

Hölder’s inequality we get that 

 ‖𝑓𝑛  ∘  𝜙‖2
2  =  𝐸𝑘 |𝑓𝑛  ∘  𝜙|

2𝑑𝑚 + ∫  
𝕋\𝐸𝑘

 |𝑓𝑛  ∘  𝜙|
2𝑑𝑚  

≤ (∫  
𝐸𝑘

 |𝑓𝑛  ∘  𝜙|
4𝑑𝑚)

1/2

√𝑚(𝐸𝑘)  +  ∫   
𝕋\𝐸𝑘

 |𝑓𝑛  ∘  𝜙|
2𝑑𝑚.  

Since ∫  
𝕋\𝐸𝑘

 |𝑓𝑛  ∘  𝜙|
2𝑑𝑚 →  0 for each 𝑘 as 𝑛 →  ∞, we obtain that  

lim
𝑛→∞

  sup ‖𝑓𝑛  ∘  𝜙‖2
2  ≤  𝐶 √𝑚(𝐸𝑘) 

 for some constant 𝐶 >  0 independent of 𝑘 ∈ ℕ. By letting 𝑘 →  ∞ and using that 

𝑚(𝐸𝜙)  =  0 we deduce that lim
𝑛→∞

   ‖𝑓𝑛  ∘  𝜙‖2
   = 0.  

        By [69] there is a subsequence (𝑓𝑛𝑘  ∘  𝜙) such that 
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‖∑  

∞

𝑘=1

 𝑐𝑘𝐶𝜙(𝑓𝑛𝑘)‖

𝐵𝑀𝑂𝐴

~‖𝑐‖ℓ∞ 

holds for all 𝑐 =  (𝑐𝑘)  ∈  𝑐0. Obviously this contradicts (60).  

        We next indicate a different approach towards a weaker version of Theorem (6.3.4), 

which highlights a connection to the following general interpolation-extrapolation theorem 

for strictly singular operators on 𝐿𝑝-spaces due to Hernández et al. [217]: Let 1 ≤  𝑝 <
 𝑞 ≤  ∞, and assume that the linear operator 𝕋 is bounded 𝐿𝑝  →  𝐿𝑝 and 𝐿𝑞  →  𝐿𝑞 . 
Moreover, suppose further that there is 𝑟 ∈  (𝑝, 𝑞) for which 𝑇 ∈  𝑆(𝐿𝑟). Then 𝑇 ∈
 𝐾(𝐿𝑠) for all 𝑝 <  𝑠 <  𝑞.  

       To apply the above result suppose that 𝐶𝜙  ∈  𝑆(𝐻
𝑝), where 1 <  𝑝 <  ∞. Recall 

from that the related operator 𝑓 →  𝐶�̃�(𝑓) =  𝑓 ∘ 𝜙 is bounded on the harmonic Hardy 

space ℎ𝑝 for 1 <  𝑝 <  ∞, and that (58) holds with respect to ℎ𝑝  =  𝐻𝑝  ⊕ 𝐻0
𝑝

 provided 

𝜙(0)  =  0. It follows from (58) that 𝐶�̃�  ∈  𝑆(ℎ
𝑝), since 𝑆(ℎ𝑝) is a linear subspace. Fix 𝑞 

and 𝑟 such that 1 < 𝑞 < 𝑟 <  ∞. Since 𝐶�̃� is bounded ℎ𝑡 → ℎ𝑡 for any 𝑡 ∈  (1,∞) and 

𝐶�̃�  ∈  𝑆(ℎ
𝑝), the above extrapolation result applied to ℎ𝑡  =  𝐿𝑡 (𝑇,𝑚) yields that 𝐶�̃�  ∈

 𝐾(ℎ𝑠) for any 𝑞 <  𝑟. In particular, 𝐶𝜙  ∈  𝐾(𝐻
𝑠) for any 𝑞 <  𝑟 by restricting to 𝐻𝑠  ⊂

 ℎ𝑠. Hence we have deduced by different means the following weak version of Theorem 

(6.3.4): if 𝐶𝜙  ∈  𝑆(𝐻
𝑝), then 𝐶𝜙  ∈  𝐾(𝐻

𝑝) for 1 <  𝑝 <  ∞.  

        Above we do not address the technical issue that [217] only explicitly deals with real 

𝐿𝑝-spaces, whereas the above application requires complex scalars. (We are indebted to 

Francisco Hernández for indicating that there is indeed also a complex version.) leave the 

above alternative here as an incomplete digression, because it is not possible to obtain the 

full strength of Theorem (6.3.4) in this way (cf. the following example).  

Example (6.3.14)[231]: We point out for completeness that the extrapolation result [217] 

for 𝑆(𝐿𝑝)  =  𝑆𝑝(𝐿
𝑝) ∩ 𝑆2(𝐿

𝑝) does not have an analogue for the classes 𝑆𝑝(𝐿
𝑝) or 

𝑆2(𝐿
𝑝). In fact, let (𝑟𝑛) be the sequence of Rademacher functions on [0, 1] and 𝑓 →

 𝑃𝑓 =  ∑  ∞
𝑛=1 (𝑓, 𝑟𝑛)𝑟𝑛 the canonical projection 𝐿𝑝  →  𝑀 for 1 <  𝑝 <  ∞, where 𝑀 =

 span{𝑟𝑛 ∶  𝑛 ∈ ℕ}. Since 𝑀 ≈  ℓ2 by the Khinchine inequalities, see e.g. [223], it follows 

that 𝑃 ∈  𝑆𝑝(𝐿
𝑝) by the total incomparability of ℓ𝑝 and ℓ2 for 𝑝 ≠  2. Furthermore, the 

results (in particular, see Example (6.3.10) and (58)) imply that for 𝑝 ≠  2 there are 

composition operators 𝐶�̃�  ∈  𝑆2(ℎ
𝑝) which fail to be compact.  

       Our results suggest several natural questions.  

Problems (6.3.15)[231]: (i) Are there results corresponding to our main theorems for 

𝐶𝜙  ∈ ℒ(𝐻
𝑝, 𝐻𝑞) in the case 𝑝 =  𝑞? Note that the conditions for boundedness and 

compactness of 𝐶𝜙 ∶  𝐻
𝑝  →  𝐻𝑞 are different in the respective cases 𝑝 <  𝑞 and 𝑝, 𝑞 > 2 

and 𝑝 =  𝑞, then 𝑆(𝐿𝑝, 𝐿𝑞)  =  𝑆2(𝐿
𝑝, 𝐿𝑞) but 𝑆𝑝(𝐿

𝑝, 𝐿𝑞) = ℒ(𝐿𝑝, 𝐿𝑞). These equalities 

follow from the Kadec–Pełcynski dichotomy [88] and the total incomparability of ℓ𝑝 and 

ℓ𝑞.  

       (ii) Is there an analogue of Theorem (6.3.11) for 𝑝 =  1?  

       (iii) Is the converse of Proposition (6.3.13). (i) also true?  

       (iv) Is there a Banach space 𝐸 of scalar-valued analytic functions on 𝔻 and an analytic 

map 𝜙 ∶ 𝔻 → 𝔻, for which 𝐶𝜙  ∈  𝑆(𝐸) \ 𝐾(𝐸)? In this direction Lefèvre et al. [63] found 

a non-reflexive Hardy–Orlicz space 𝐻𝜓 so that 𝐶𝜙   ∈  𝑊(𝐻
𝜓) \ 𝐾(𝐻𝜓), where 𝜙 is a 



210 

lens map. The approach sketched suggests that weaker rigidity properties such as (59) are 

likely to hold for many other concrete classes of operators on 𝐻𝑝. Subsequently Miihkinen 

[211] has used similar techniques to show that the dichotomy of Theorem (6.3.4) remains 

valid for the class of analytic Volterra operators 𝑇𝑔 on 𝐻𝑝, where  

𝑓 → (𝑇𝑔(𝑓))(𝑧)  =  ∫  
𝑧

0

 𝑓(𝜏 )𝑔′ (𝜏 )𝑑𝜏, 𝑧 ∈ 𝔻. 

See [212] or [225] for the conditions on the fixed analytic map 𝑔 ∶ 𝔻 → ℂ which 

characterise the boundedness or compactness of 𝑇𝑔. 

Theorem (6.3.16)[245]: Let 0 ≤  𝜖 <  ∞, 𝜖 ≠ 1, and (𝜑1 + 𝜑2) be sum of any analytic 

self-maps of D. Then there are three mutually exclusive alternatives:  

       (i) 𝐶(𝜑1+𝜑2) is compact on 𝐻1+𝜖,  

       (ii) 𝐶(𝜑1+𝜑2) fixes a copy of ℓ1+𝜖 in 𝐻1+𝜖, but does not fix any copies of ℓ2 in 𝐻1+𝜖,  

       (iii) 𝐶(𝜑1+𝜑2) fixes a copy of ℓ2 (as well as of ℓ1+𝜖) in 𝐻1+𝜖. In this case, if 0 < 𝜖 <

 ∞ and 𝜖 ≠ 1, then 𝐶(𝜑1+𝜑2) also fixes a copy of 𝐿1+𝜖(0, 1) in 𝐻1+𝜖.  

Furthermore, regarding the above alternatives  

        (i) takes place if and only if Shapiro’s condition (47) holds,  

        (ii) takes place if and only if (47) fails to hold but 𝑚(𝐸(𝜑1+𝜑2))  =  0,  

        (iii) takes place if and only if 𝑚(𝐸(𝜑1+𝜑2))  >  0.  

In particular, 𝐶(𝜑1+𝜑2)  ∈  (1 + 𝜖)(𝐻
1+𝜖) if and only if 𝐶(𝜑1+𝜑2) does not fix any copies of 

ℓ1+𝜖 in 𝐻1+𝜖 .  
Proof. For 𝑎2 ∈ 𝔻 and fixed 0 ≤ 𝜖 <  ∞ let 

 𝑔𝑎2(𝑧) = (1 −
|𝑎2|2

(1 − 𝑎
2
𝑧)
2)

1
1+𝜖

 , 𝑧 ∈ 𝔻. 

Observe that if 𝛾𝑎2(𝑧) =
(1 − |𝑎2|

2
)

1
1+𝜖

1 − 𝑎
2
𝑧

 is the normalized reproducing kernel of 𝐻2 

associated to 𝑎2  ∈ 𝔻, then |𝑔𝑎2(𝑧)|
1+𝜖  =  |𝛾𝑎2(𝑧)|

2 for 𝑧 ∈ 𝔻, so that ‖𝑔𝑎2‖1+𝜖  =  1. 
The proof of Theorem (6.3.17) is based on the following criterion: 𝐶(𝜑1+𝜑2)  ∈  (1 +

𝜖)(𝐻1+𝜖) if and only if  

lim
|𝑎2|→1

 sup  ‖𝐶(𝜑1+𝜑2)(𝑔𝑎2)‖1+𝜖
 =  0.                                                (61) 

Theorem (6.3.17)[245]: Let 0 ≤  𝜖 <  ∞ and let (𝜑1 + 𝜑2) ∶ 𝔻 → 𝔻 be sum of any 

analytic maps. Then either 𝐶(𝜑1+𝜑2)  ∈  (1 + 𝜖)(𝐻
1+𝜖), or else 𝐶(𝜑1+𝜑2) ∉ 𝑆1+𝜖(𝐻

1+𝜖). 

Equivalently, 𝐶(𝜑1+𝜑2) fixes a copy of ℓ1+𝜖 in 𝐻1+𝜖 if and only if (47) does not hold.  

Proof. Suppose that 𝐶(𝜑1+𝜑2)  ∉  (1 + 𝜖) (𝐻
1+𝜖), where 0 ≤  𝜖 <  ∞. We will show by 

an explicit perturbation argument that 𝐶(𝜑1+𝜑2) fixes a linearly isomorphic copy of ℓ1+𝜖 in 

𝐻1+𝜖. Since condition (61) fails there is 𝜖 ≥ 0 and a sequence (𝑎𝑛
2)  ⊂ 𝔻 so that |𝑎𝑛

2|  →
 1 as 𝑛 →  ∞ and  

‖𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)‖1+𝜖
 ≥ 𝜖 ≥  0                                                      (62) 

 for all 𝑛 ∈ ℕ. We may further assume without loss of generality that 𝑎𝑛
2  →  1 as 𝑛 →  ∞. 

Namely, we may pass to a convergent subsequence in 𝔻 and compose (𝜑1 + 𝜑2)  with a 

suitable rotation of 𝔻 that defines a linear isomorphism of 𝐻1+𝜖 . The starting point is the 

phenomenon that (𝑔𝑎𝑛2) admits subsequences which are small perturbations of a disjointly 
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supported sequence in 𝐿1+𝜖(𝑇,𝑚), and hence span an isomorphic copy of ℓ1+𝜖. The crux 

of the argument is that this can be achieved simultaneously for further subsequences of 

(𝐶(𝜑1+𝜑2) (𝑔𝑎𝑛2)), and (see [231]): 

Lemma (6.3.18)[245]: Let (𝜑1 + 𝜑2) and (𝑔𝑎𝑛2) be as above, where 𝑎𝑛
2  →  1 as 𝑛 →

 ∞. Then  

        (L1) ∫  
𝕋\𝐸𝜀

 |𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|
1+𝜖
𝑑𝑚 →  0 as 𝑛 →  ∞ for each fixed 𝜀 >  0,  

        (L2) ∫  
𝐸𝜀
 |𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|

1+𝜖
𝑑𝑚 →  0 as 𝜀 →  0 for each fixed 𝑛 ∈ ℕ.  

Proof. Observe first that  

∫  
𝐸𝜀

 |𝐶(𝜑1+𝜑2)(𝑔)|
1+𝜖
𝑑𝑚 →  0  

as 𝜀 →  0 for any 𝑔 ∈  𝐻1+𝜖, since ∩𝜀>0 𝐸𝜀  =  {𝜉 ∈  𝐴 ∶ (𝜑1 + 𝜑2)(𝜉)  =  1} has 

measure 0 as (𝜑1 + 𝜑2) is not identically 1. Moreover, if 𝜀 >  0 is fixed and 𝜉 ∈  𝐴 \ 𝐸𝜀, 
then there is 𝑛𝜀 such that  

|1 − 𝑎𝑛
2(𝜑1 + 𝜑2)(𝜉)| = |1 − (𝜑1 + 𝜑2)(𝜉) + (𝜑1 + 𝜑2)(𝜉) (1 − 𝑎𝑛

2)|

≥ |1 − (𝜑1 + 𝜑2)(𝜉)| − |1 − 𝑎𝑛
2| >

𝜀

2
 

 for all 𝑛 ≥ 𝑛𝜀 . It follows that  

|𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)(𝜉)|
1+𝜖
 =

1 − |𝑎𝑛
2|2

|1 − 𝑎𝑛
2(𝜑1 + 𝜑2)(𝜉)|

2  ≤
4(1 − |𝑎𝑛

2|2)

𝜀2
 , 

so that (L1) holds as 𝑛 →  ∞.  

To continue the argument of Claim (6.3.5) recall that ∫  
𝕋
 |𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|

1+𝜖
𝑑𝑚 ≥

 (1 + 𝜖)1+𝜖  >  0 by condition (62). We may then use Lemma (6.3.18) inductively to find 

indices 𝑗1  <  𝑗2  < ... and a decreasing sequence 𝜀𝑗 > 𝜀𝑗+1 → 0 so that  

       (i) (∫  
𝐸𝜀𝑛

 |𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗𝑘
2 )|

1+𝜖
𝑑𝑚)

1

1+𝜖

 <  4−𝑛𝛿(1 + 𝜖) for all 𝑘 =  1, . . . , 𝑛 −  1,  

       (ii) (∫  
𝕋\𝐸𝜀𝑛

 |𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗𝑛
2 )|

1+𝜖
𝑑𝑚)

1

1+𝜖

 <  4−𝑛𝛿(1 + 𝜖),  

       (iii) (∫  
𝐸𝜀𝑛

 |𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗𝑛
2 )|

1+𝜖
𝑑𝑚)

1

1+𝜖

 >
1+𝜖

2
  

for all 𝑛 ∈ ℕ.Here 𝛿 >  0 is a small enough constant (to be chosen later). In fact, suppose 

that we have already found 𝑎𝑗1
2 , . . . , 𝑎𝑗𝑛−1

2  and 𝜀1  >. . . > 𝜀𝑛−1 satisfying (i)–(iii). Then 

property (L2) from Lemma (6.3.18) yields 𝜀𝑛  <  𝜀𝑛−1 such that   

(∫  
𝐸𝜀𝑛

 |𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗𝑘
2 )|

1+𝜖
𝑑𝑚)

1
1+𝜖

 <  4−𝑛𝛿(1 + 𝜖) 

 for each 𝑘 =  1, . . . , 𝑛 −  1. After this use property (L1) from Lemma (6.3.18) together 

with (62) to find an index 𝑗𝑛  >  𝑗𝑛−1 so that conditions (ii) and (iii) are satisfied for the set 

𝐸𝜀𝑛 . 

        In the interest of notational simplicity we relabel 𝑎𝑗𝑛
2  as 𝑎𝑛

2  for 𝑛 ∈ ℕ . The idea of 

the argument is that the sequence (𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)) essentially resembles disjointly 
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supported peaks in 𝐿1+𝜖(𝑇,𝑚) close to the point 1. We will next verify the left-hand 

inequality in (53) by a direct perturbation argument. Let 𝑏 =  (𝑏𝑗
2 )  ∈  ℓ1+𝜖 be arbitrary. 

Our starting point will be the identity      

‖∑ 

∞

𝑗=1

 𝑏𝑗
2𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗

2)‖

1+𝜖

1+𝜖

 

=  ∑  

∞

𝑛=0

∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|∑  

∞

𝑗=1

 𝑏𝑗
2𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗

2)|

1+𝜖

 𝑑𝑚,                          (63) 

 where we set 𝐸𝜀0  =  𝑇.  

       Observe first that for each 𝑛 ∈ ℕ we get that  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

| 𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|
1+𝜖
 𝑑𝑚)

1
1+𝜖

 

= ( ∫  
𝐸𝜀𝑛  

|𝐶(𝜑1+𝜑2)(𝑔𝑛)|
1+𝜖
 𝑑𝑚 − ∫  

𝐸𝜀𝑛+1

|𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|
1+𝜖
 𝑑𝑚)

1
1+𝜖

>  ((
1 + 𝜖

2
)
1+𝜖

 −  (4−𝑛−1𝛿(1 + 𝜖))1+𝜖  )

1
1+𝜖

 ≥
1 + 𝜖

2
 − 4−𝑛−1𝛿(1 + 𝜖)  

in view of (i) and (iii), where the last estimate holds because 0 ≤ 𝜖. Moreover, note that  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗
2)|

1+𝜖
 𝑑𝑚)

1
1+𝜖

 <  2−𝑛−𝑗  𝛿(1 + 𝜖) 

 for all 𝑗 ≠  𝑛. In fact, (∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗
2)|

1+𝜖
 𝑑𝑚)

1

1+𝜖

 is dominated by 

4−𝑛𝛿(1 + 𝜖) for 𝑗𝑛 in view of (i) and (ii). Thus we get from the triangle inequality in 𝐿1+𝜖, 
together with the preceding estimates, that for all 𝑛 ∈ ℕ one has  

(∫  
𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|∑ 

∞

𝑗=1

 𝑏𝑗
2𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗

2)|

1+𝜖

 𝑑𝑚)

1
1+𝜖

≥ |𝑏𝑛
2| (∫  

𝐸𝜀𝑛  \𝐸𝜀𝑛+1

| 𝐶(𝜑1+𝜑2)(𝑔𝑎𝑛2)|
1+𝜖
 𝑑𝑚)

1
1+𝜖

−∑ 

𝑗≠𝑛

|𝑏𝑗
2| (∫  

𝐸𝜀𝑛  \𝐸𝜀𝑛+1

|𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗
2)|

1+𝜖
 𝑑𝑚)

1
1+𝜖

≥ |𝑏𝑛
2| (

1 + 𝜖

2
 − 4−𝑛−1𝛿(1 + 𝜖) ) − 2𝑛 𝛿(1 + 𝜖)‖𝑏‖1+𝜖  

≥
1 + 𝜖

2
 − 2−𝑛+1𝛿(1 + 𝜖)‖𝑏‖𝑏 . 

By summing over 𝑛 we get from the disjointness and the triangle inequality in ℓ1+𝜖 that 
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‖∑ 

∞

𝑗=1

 𝑏𝑗
2𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗

2)‖

1+𝜖

 

≥ (∑  

∞

𝑛=1

|
1 + 𝜖

2
|𝑏𝑛
2|  − 2−𝑛+1𝛿(1 + 𝜖)‖𝑏‖1+𝜖|

1+𝜖

)

1
1+𝜖

 

≥
1 + 𝜖

2
(∑  

∞

𝑛=1

|𝑏𝑛
2|1+𝜖)

1
1+𝜖

−  𝛿(1 + 𝜖)‖𝑏‖1+𝜖 (∑  

∞

𝑛=1

2(−𝑛−1))

1
1+𝜖

 

(1 + 𝜖) (
1

2
− 𝛿 ∙ (1 − 21+𝜖)−

1
1+𝜖)

 

‖𝑏‖1+𝜖 ≥
1 + 𝜖

4
‖𝑏‖1+𝜖 , 

Note that: By combining (53) and (54) we have  

(i) ‖∑𝑏𝑗
2𝐶(𝜑1+𝜑2) (𝑔𝑎𝑗

2)

∞

𝑗=1

‖

1+𝜖

= ‖∑𝑏𝑗
2𝑔𝑎𝑗

2

∞

𝑗=1

‖

1+𝜖

≥
1 + 𝜖

2
− 4−(𝑛+1)𝛿(1 + 𝜖) 

Note that: 

(ii) ‖∑𝑏𝑗
2𝑔𝑎𝑗

2

∞

𝑗=1

‖

1+𝜖

1+𝜖

≥
1 + 𝜖

2
− 4−(𝑛+1)𝛿(1 + 𝜖) 

(iii) ‖∑𝑏𝑗
2𝑔𝑎𝑗

2

∞

𝑗=1

‖

1+𝜖

 

≥
1 + 𝜖

4
‖𝑏‖1+𝜖 

(iv) By combining (ii) and (iii) we get 

‖𝑏‖1+𝜖 ≥ (2 − 4
−𝑛
𝛿(1 + 𝜖)

1 + 𝜖
) 

where the last estimate holds once we choose δ >  0 small enough, so that 𝛿 ∙

(1 − 21+𝜖)−
1

1+𝜖. The proof of the right-hand inequality in (53) is a straightforward variant 

of the preceding estimates. This inequality does not affect the choice of 𝛿 >  0, and hence 

the details will be omitted here. 

Lemma (6.3.19)[245]: Suppose that condition (48) fails, that is, 𝑚(𝐸(𝜑1+𝜑2))  >  0. Then 

there exist integers 0 ≤  𝑛1 < 𝑛2  < ··· and a constant 𝜖 ≥  0 such that  

(1 + 𝜖)−1  ·  ‖1 + 𝜖‖ℓ2  ≤      ‖∑ 

∞

𝜖=0

 (1 + 𝜖)𝑘(𝜑1 + 𝜑2)
𝑛𝑘‖

2

 ≤  (1 + 𝜖)  ·  ‖1 + 𝜖‖ℓ2   

for all 1 + 𝜖 =  ((1 + 𝜖)1+2𝜖)  ∈  ℓ
2.  

Proof. The upper estimate follows from the boundedness of 𝐶(𝜑1+𝜑2) on 𝐻2 and the 

orthonormality of the sequence (𝑧𝑛) in 𝐻2.  
       To establish the lower estimate, note that 𝑧𝑛  →  0 weakly and therefore also (𝜑1 +
𝜑2)𝑛  =  𝐶(𝜑1+𝜑2)(𝑧𝑛) →  0 weakly in 𝐻2 as 𝑛 →  ∞. Hence we may set 𝑛1  =  0 and 

then proceed inductively to pick increasing indices 𝑛1+2𝜖 such that the inner-products 

satisfy |(𝜑1 + 𝜑2) 
𝑛1+𝜖 , (𝜑1 + 𝜑2) 

𝑛1+2𝜖 |  ≤  2−2(1+2𝜖)𝑚(𝐸(𝜑1+𝜑2)) for all 𝜖 > 0 and each 

(1 + 2𝜖) ∈ ℕ. Let 1 + 𝜖 = ((1 + 𝜖)1+2𝜖)  ∈ ℓ
2be arbitrary and note that 
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‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+2𝜖(𝜑1 + 𝜑2)
𝑛1+2𝜖‖

2

2

  

=  ∑   

∞

𝜖=0

|(1 + 𝜖)1+2𝜖|
2‖(𝜑1 + 𝜑2)

𝑛1+2𝜖‖2
2

+  2Re ∑  

∞

𝜖=0

 ∑  

2𝜖

𝜖=0

 (1 + 𝜖)1+𝜖  (1 + 𝜖)1+2𝜖((𝜑1 + 𝜑2)
𝑛1+𝜖 , (𝜑1 + 𝜑2)

𝑛1+2𝜖). 

Obviously ‖(𝜑1 + 𝜑2)
𝑛1+2𝜖‖2

2 ≥ ∫  
𝐸(𝜑1+𝜑2)

|(𝜑1 + 𝜑2)
𝑛1+2𝜖|2𝑑𝑚 = 𝑚(𝐸(𝜑1+𝜑2)) for 

each 1 + 2𝜖. Moreover, we get that  

∑ 

∞

𝜖=0

 ∑  

2𝜖

𝜖=0

 (1 + 𝜖)1+𝜖  (1 + 𝜖)1+2𝜖((𝜑1 + 𝜑2)
𝑛1+𝜖 , (𝜑1 + 𝜑2)

𝑛1+2𝜖)

≤  ‖1 + 𝜖‖ℓ2
2  ∑  

∞

𝜖=0

 ∑  

2𝜖

𝜖=0

 2−2(1+2𝜖)𝑚(𝐸(𝜑1+𝜑2)) 

≤
1

2
‖1 + 𝜖‖ℓ2

2 𝑚(𝐸(𝜑1+𝜑2)) ∑  

∞

𝜖=

 ∑  

2𝜖

𝜖=0

 2−2(1+2𝜖) =
1

6
‖1 + 𝜖‖ℓ2

2 𝑚(𝐸(𝜑1+𝜑2)) 

By combining these estimates we obtain the desired lower bound  

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+2𝜖(𝜑1 + 𝜑2)
𝑛1+2𝜖‖

2

2

≥ ‖1 + 𝜖‖ℓ2
2 𝑚(𝐸(𝜑1+𝜑2)) −

1

3
‖1 + 𝜖‖ℓ2

2 𝑚(𝐸(𝜑1+𝜑2))

= (
2

3
𝑚(𝐸(𝜑1+𝜑2)) ) ‖1 + 𝜖‖ℓ2

2 .  

         In order to treat general 0 ≤ 𝜖 < ∞ recall that the analytic maps 𝑓:𝔻 → ℂ belongs 

to BMOA if 

|𝑓|∗ = sup
𝑎2∈𝔻

 ‖𝑓 ∘  𝜎𝑎2 − 𝑓(𝑎
2)‖2 < ∞, 

where 𝜎𝑎2(𝑧) =
𝑎2−𝑧

1−𝑎2𝑧
 is the Möbius-automorphism of 𝔻 interchanging 0 and 𝑎2 for 𝑎2  ∈

𝔻. The Banach space BMOA is normed by ‖𝑓‖𝐵𝑀𝑂𝐴  =  |𝑓(0)|  + |𝑓|∗. Moreover, 

𝑉𝑀𝑂𝐴 is the closed subspace of 𝐵𝑀𝑂𝐴, where 𝑓 ∈  𝑉𝑀𝑂𝐴 if  
lim
|𝑎2|→1

  ‖𝑓 ∘  𝜎𝑎2  −  𝑓(𝑎
2)‖2  =  0. 

We refer to e.g. [236] and [126] for background on 𝐵𝑀𝑂𝐴. It follows readily from 

Littlewood’s subordination theorem that 𝐶(𝜑1+𝜑2) is bounded 𝐵𝑀𝑂𝐴 →  𝐵𝑀𝑂𝐴 for sum 

of any analytic maps (𝜑1 + 𝜑2) ∶ 𝔻 → 𝔻, see e.g. [123].  

Proposition (6.3.20)[245]: Let 0 ≤  𝜖 <  ∞ and suppose that 𝑚(𝐸(𝜑1+𝜑2))  >  0. Then 

there exist increasing integers 0 ≤  𝑛1  <  𝑛2  < ··· such that the subspace  

𝑀 =  span{𝑧𝑛1+𝜖 ∶ 𝜖 ≥ 0}  ⊂  𝐻1+𝜖   
is isomorphic to 2 and the restriction 𝐶(𝜑1+𝜑2)|𝑀 is bounded below on 𝑀. Hence 

𝐶(𝜑1+𝜑2)  ∉  𝑆2(𝐻
1+𝜖).  
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Proof. We start by choosing the increasing integers (𝑛1+𝜖) as in Lemma (6.3.19). By 

passing to a subsequence we may also assume that (𝑧𝑛1+𝜖) is a lacunary sequence, that 

is, inf
1+𝜖
 (𝑛2+𝜖/𝑛1+𝜖)  >  1. Paley’s theorem (see e.g. [201]) implies that for 0 ≤  𝜖 <

 ∞ the sequence (𝑧𝑛1+𝜖) is equivalent in 𝐻1+𝜖 to the unit vector basis of 2, that is, 

‖∑ 

∞

𝜖=0

(1 + 𝜖)1+𝜖𝑧
𝑛1+𝜖‖

1+𝜖

 ∼  ‖1 + 𝜖‖ℓ2                                      (64) 

for all 1 + 𝜖 =  ((1 + 𝜖)1+𝜖)  ∈  ℓ
2. (Here, and in the sequel, we use ∼ as a short-hand 

notation for the equivalence of the respective norms.) Case 𝜖 ≥ 0. By Hölder’s inequality 

and Lemma (6.3.19) we have that      

‖𝐶(𝜑1+𝜑2)  ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖𝑧
𝑛1+𝜖‖

2+𝜖

 =  ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

2+𝜖

 

≥ ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

2

 ∼  ‖1 + 𝜖‖ℓ2  . 

According to (64) and the boundedness of 𝐶(𝜑1+𝜑2) this proves the claim for 𝜖 ≥ 0.  

       Case 0 ≤ 𝜖 < 1. We start by invoking a version of Paley’s theorem for 𝐵𝑀𝑂𝐴 (see 

e.g. [126]), which together with the boundedness of 𝐶(𝜑1+𝜑2) on 𝐵𝑀𝑂𝐴 ensures that      

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

𝐵𝑀𝑂𝐴

 = ‖𝐶(𝜑1+𝜑2)‖ ∙  ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖𝑧
𝑛1+𝜖‖

𝐵𝑀𝑂𝐴

≤ (1 + 𝜖) ∙ ‖𝐶(𝜑1+𝜑2)‖ ∙  ‖1 + 𝜖‖ℓ2 

for all 1 + 𝜖 =  ((1 + 𝜖)1+𝜖)  ∈  ℓ
2 and a uniform constant 𝜖 ≥  0. In view of 

Fefferman’s 𝐻1 − 𝐵𝑀𝑂𝐴 duality pairing (see e.g. [126]) we may further estimate 

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

𝐵𝑀𝑂𝐴

 =  ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

1

≤ |(∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖 ,∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖)|

= ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

2

2

 ~‖1 + 𝜖‖ℓ2 

where we again use Lemma (6.3.19) at the final step. By applying Hölder’s inequality and 

combining the preceding estimates we obtain that 

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

1+𝜖

≥ ‖ ∑  

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

1

≥ (1 + 𝜖)‖1 + 𝜖‖ℓ2 

for some uniform constant 𝜖 ≥  0. In particular, 𝐶(𝜑1+𝜑2)  ∉  𝑆2(𝐻
1+𝜖) in view of (64), 

which completes the verification of the proposition for 0 ≤  𝜖 < 1.  
Proposition (6.3.21)[245]: Let 0 ≤ 𝜖 <  ∞, 𝜖 ≠ 1, and suppose that 𝑚(𝐸𝜑1+𝜑2)  =  0. If 

(𝑓𝑛) is any normalized sequence in 𝐻1+𝜖 which is equivalent to the unit vector basis of ℓ2, 

then 𝐶(𝜑1+𝜑2) is not bounded below on span{𝑓𝑛 ∶  𝑛 ∈ ℕ}  ⊂  𝐻
1+𝜖 . In particular, 

𝐶(𝜑1+𝜑2)  ∈  𝑆2(𝐻
1+𝜖).  

Proof. Assume to the contrary that 
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‖∑(1 + 𝜖)𝑛

∞

𝑛=1

𝐶(𝜑1+𝜑2)(𝑓𝑛)‖

1+𝜖

~‖ ∑(1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖

∞

𝑛=1

‖

1+𝜖

~‖1 + 𝜖‖ℓ2   (65) 

for all sequences 1 + 𝜖 =  ((1 + 𝜖)𝑛)  ∈  ℓ
2. In particular, 𝐶(𝜑1+𝜑2)(𝑓𝑛)

1+𝜖  ≥  1 + 𝜖 >

 0 for all 𝑛 and some constant 1 + 𝜖. We write 𝐸1+𝜖  =  {𝑒
𝑖(𝜃1

2+𝜃2
2) ∶  |(𝜑1 +

𝜑2)(𝑒
𝑖(𝜃1

2+𝜃2
2))|  ≥  

𝜖

1+𝜖
 } for 𝜖 ≥ 0. Since lim

𝜖→∞
  𝑚(𝐸1+𝜖)  =  𝑚(𝐸(𝜑1+𝜑2))  =  0, we get 

that  

lim
𝜖→∞

 ∫  
𝕋\𝐸1+𝜖

𝐸1+𝜖  |𝐶(𝜑1+𝜑2)(𝑓𝑛)|
1+𝜖
 𝑑𝑚 =  0 for all 𝑛.  

On the other hand, 𝑓𝑛  →  0 weakly in 𝐻1+𝜖 and hence 𝑓𝑛  →  0 uniformly on compact 

subsets of 𝔻 as 𝑛 →  ∞. This implies that 

lim
𝑛→∞

  ∫  
𝕋\𝐸1+𝜖

 |𝐶(𝜑1+𝜑2)(𝑓𝑛)|
1+𝜖
 𝑑𝑚 =  0 for all 1 + 𝜖.  

By using the above properties and proceeding recursively in a fashion similar to the 

argument for Theorem (6.3.17) we find increasing sequences of integers 0 ≤  𝑛1  <
 𝑛2  < ··· and 0 = 𝜖 < 2𝜖 < ··· , such that 

‖∑  

∞

𝑛=1

 (1 + 𝜖)𝑛𝐶(𝜑1+𝜑2)(𝑓𝑛)‖

1+𝜖

1+𝜖

=∑ 

∞

𝑙=1

 ∫  
𝐸(1+𝜖)𝑙\𝐸2+𝜖

 |∑  

∞

𝜖=0

 (1 + 𝜖)𝑛𝐶(𝜑1+𝜑2)(𝑓𝑛)|

1+𝜖

 𝑑𝑚~ ‖1 + 𝜖‖ℓ2 

holds for all 1 + 𝜖 =  ((1 + 𝜖)1+𝜖)  ∈  ℓ
1+𝜖 with uniform constants. However, for 𝜖 ≠

1 such estimates obviously contradict (65). Thus 𝐶(𝜑1+𝜑2)  ∈  𝑆2(𝐻
1+𝜖), and this 

completes the proof of the proposition (and hence also of Theorem (6.3.4)). 

Theorem (6.3.22)[245]: Let 0 <  𝜖 <  ∞, 𝜖 ≠ 1, and (𝜑1 + 𝜑2) ∶ 𝔻 → 𝔻 be sum of an 

analytic maps. Then the following conditions are equivalent:  

       (i) (𝜑1 + 𝜑2) satisfies 𝑚(𝐸(𝜑1+𝜑2))  =  0,  

       (ii) 𝐶(𝜑1+𝜑2)  ∈  𝑆𝐿1+𝜖  (𝐻
1+𝜖), that is, 𝐶(𝜑1+𝜑2) does not fix any copies of 𝐿1+𝜖 in 

𝐻1+𝜖,  
       (iii) 𝐶(𝜑1+𝜑2)  ∈  𝑆𝐿1+𝜖 (ℎ

1+𝜖),  

        (iv) 𝐶(𝜑1+𝜑2)  ∈  𝑆2(𝐻
1+𝜖).  

Proof. We may assume during the proof that (𝜑1 + 𝜑2)(0)  =  0. In fact, otherwise 

consider 𝜓 =  𝜎(𝜑1+𝜑2)(0) ∘ (𝜑1 + 𝜑2), where 𝜎(𝜑1+𝜑2)(0) ∶ 𝔻 → 𝔻 is the 

automorphism interchanging 0 and (𝜑1 + 𝜑2)(0). Then 𝜓(0)  =  0 and �̃�𝜓  =  �̃�(𝜑1+𝜑2) ∘

�̃�𝜎(𝜑1+𝜑2)(0) , where �̃�𝜎(𝜑1+𝜑2)(0) is a linear isomorphism ℎ1+𝜖  →  ℎ1+𝜖 (as well as 

𝐻1+𝜖 → 𝐻1+𝜖), which does not affect any of the claims of the theorem.  

Proposition (6.3.23)[245]: (i) If (𝜑1 + 𝜑2) ∶ 𝔻 → 𝔻 is sum of an analytic maps, and 

𝐶(𝜑1+𝜑2) ∈  𝑆2(𝐵𝑀𝑂𝐴), then (48) holds (that is, 𝑚(𝐸(𝜑1+𝜑2))  =  0).  

        (ii) If (𝜑1 + 𝜑2) ∈  𝑉𝑀𝑂𝐴, then 𝐶(𝜑1+𝜑2)  ∈  𝑆2(𝑉𝑀𝑂𝐴) if (and only if) (48) holds.  

Proof. (i) The argument is essentially contained in that of Proposition (6.3.20). In fact, 

suppose that 𝑚(𝐸(𝜑1+𝜑2))  >  0, where 𝐸(𝜑1+𝜑2)  =  {𝑒
𝑖(𝜃1

2+𝜃2
2) ∶  |(𝜑1 +

𝜑2)(𝑒
𝑖(𝜃1

2+𝜃2
2))|  =  1}. Then the proof of the case 0 ≤  𝜖 < 1 of Proposition (6.3.20) gives 
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a lacunary sequence (𝑛1+𝜖) and constants 𝜖 >  0 so that in the 𝐻1 − 𝐵𝑀𝑂𝐴 duality 

pairing  

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

𝐵𝑀𝑂𝐴

≥ ‖ ∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖

1

≥ (1 + 𝜖) ∙ ‖1 + 𝜖‖ℓ2 
as well as ‖ ∑  ∞

𝜖=0  (1 + 𝜖)1+𝜖(𝜑1 + 𝜑2)
𝑛1+𝜖‖1 ≥ (1 + 2𝜖) ∙ ‖1 + 𝜖‖ℓ2 for all 1 + 𝜖 =

 ((1 + 𝜖)1+𝜖)  ∈  ℓ
2. Since 𝐶(𝜑1+𝜑2) is bounded on 𝐵𝑀𝑂𝐴 it follows as before from 

Paley’s theorem in 𝐵𝑀𝑂𝐴 that 𝐶(𝜑1+𝜑2) is bounded below on span{𝑧𝑛1+𝜖 ∶ (1 + 𝜖) ∈

ℕ}  ≈  2 in 𝐵𝑀𝑂𝐴.  
        (ii) Recall that 𝐶(𝜑1+𝜑2) ∶  𝑉𝑀𝑂𝐴 →  𝑉𝑀𝑂𝐴 if (𝜑1 + 𝜑2) ∈  𝑉𝑀𝑂𝐴, see e.g. [123]. 

Assume that 𝑚(𝐸(𝜑1+𝜑2))  =  0 and suppose to the contrary that there is a normalised 

sequence (𝑓1+𝜖)  ⊂  𝑉𝑀𝑂𝐴 equivalent to the unit vector basis of (ii), for which   

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖𝐶(𝜑1+𝜑2)(𝑓1+𝜖)‖

𝐵𝑀𝑂𝐴

~ ∙ ‖1 + 𝜖‖ℓ2 

for all (1 + 𝜖) =  ((1 + 𝜖)1+𝜖)  ∈  ℓ
2. In particular, ‖𝑓1+𝜖  ∘ (𝜑1 + 𝜑2) ‖𝐵𝑀𝑂𝐴  ≥ 1 +

𝜖 >  0 for all (1 + 𝜖), while (𝑓1+𝜖) is weak-null sequence in 𝑉𝑀𝑂𝐴, so that 𝑓1+𝜖  →
 0 uniformly on compact subsets of 𝔻 as 𝜖 →  ∞. Moreover, by the John–Nirenberg 

inequality there is a uniform constant 𝜖 ≥  0 so that  

‖𝑓1+𝜖  ∘ (𝜑1 + 𝜑2)‖4  ≤  (1 + 𝜖)‖𝑓1+𝜖  ∘ (𝜑1 + 𝜑2)‖𝐵𝑀𝑂𝐴, (1 + 𝜖) ∈ ℕ. 

        Let 𝐸(1+𝜖)  =  {𝑒
𝑖(𝜃1

2+𝜃2
2) ∶  |(𝜑1 + 𝜑2)(𝑒

𝑖(𝜃1
2+𝜃2

2))| ≥  
𝜖

1+𝜖
 } for (1 + 𝜖) ∈ ℕ. From 

the above estimates and Hölder’s inequality we get that 

 ‖𝑓𝑛  ∘ (𝜑1 + 𝜑2)‖2
2  =  𝐸(1+𝜖) |𝑓𝑛  ∘ (𝜑1 + 𝜑2)|

2𝑑𝑚 + ∫  
𝕋\𝐸(1+𝜖)

 |𝑓𝑛  ∘ (𝜑1 + 𝜑2)|
2𝑑𝑚 

≤  (∫  
𝐸1+𝜖

 |𝑓𝑛  ∘ (𝜑1 + 𝜑2)|
4𝑑𝑚)

1/2

√𝑚(𝐸(1+𝜖))  

+ ∫   
𝕋\𝐸1+𝜖

 |𝑓𝑛 ∘ (𝜑1 + 𝜑2)|
2𝑑𝑚.  

Since ∫  
𝕋\𝐸1+𝜖

 |𝑓𝑛 ∘ (𝜑1 + 𝜑2)|
2𝑑𝑚 →  0 for each (1 + 𝜖) as 𝑛 →  ∞, we obtain that  

lim
𝑛→∞

  sup ‖𝑓𝑛 ∘ (𝜑1 + 𝜑2)‖2
2  ≤ (1 + 𝜖) √𝑚(𝐸(1+𝜖)) 

 for some constant 𝜖 ≥  0 independent of (1 + 𝜖) ∈ ℕ. By letting 𝜖 →  ∞ and using that 

𝑚(𝐸(𝜑1+𝜑2)) =  0 we deduce that lim
𝑛→∞

   ‖𝑓𝑛 ∘ (𝜑1 + 𝜑2)‖2
   = 0.  

        By [69] there is a subsequence (𝑓𝑛1+𝜖 ∘ (𝜑1 + 𝜑2)) such that 

‖∑ 

∞

𝜖=0

 (1 + 𝜖)1+𝜖𝐶(𝜑1+𝜑2)(𝑓𝑛1+𝜖)‖

𝐵𝑀𝑂𝐴

~‖1 + 𝜖‖ℓ∞ 

holds for all (1 + 𝜖) =  ((1 + 𝜖)1+𝜖)  ∈  (1 + 𝜖)0. Obviously this contradicts (60).  
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List of Symbols 
Symbol  Page 

𝐴𝛼
𝑝
: Bergman space 1 

sup: supremum 1 

dist: distance 2 

arg: argument 2 

inf: infimum 4 

𝐿1: Lebesgue integral on the line  29 

𝐿𝑝: Lebesgue space 30 

𝐿2: Hilbert space 30 

𝐻𝑞: Hardy space 32 

𝐴𝛼
2 : Bergman space 32 

lip: Lipschitz 35 

max: maximum 35 

ext: extreme 36 

card: cardinal 38 

ker: kernel 38 

int: interior 40 

𝐿∞: essential Lebesgue space 40 

a. e: almost every where 42 

dim: dimension 42 

Re: Real 44 

supp: support 46 

iso: isometry 48 

Hol: Holomorphic 49 

Aut: Automorphism 50 

BMOA: The analytic function of the bounded mean oscillation 61 

VMOA: The analytic function of the vanishing mean oscillation 61 

𝐻𝑝: Hardy space 61 

𝐻2: Hardy space 61 

ℓ𝑝: Banach space 62 

min: minimum 64 

𝐻∞: essential Hardy space 70 

𝐵𝑝: Bergman space 71 

𝐻𝑀𝜓: Morse–Transue spaces 71 

𝐵𝑀𝜓: Bergman Morse–Transue space 71 

diam: diameter 82 

⨂: tensor product 167 

⨁: Direct sum 206 
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