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Abstract

Schrodinger equation for particle in a finite media with uniform potential
inside abox has been solved the solution which is based on the fact that the
particle exists gives complex and cosine wave function with energy
relations different from that of the ordinary sine solution.

Maxwell distribution law has been also found using the expression for the
wave function in a frictional medium, quantum energy average and
integration by parts, another approach has been tackled using the general
expression for quantum average and the ordinary differentiation.

Using Maxwell distribution Quantum law, and the Newtonian energy
relation continuity and momentum fluid equation was done by
differentiation the number density with respect to time and to coordinate.
The momentum equation derivation requires the coefficient of the energy
in the exponential power is equal to the thermal kinetic energy. This
conforms with the statically value proposed by Maxwell distribution but
with a positive sign. This number density function can successfully
describes lasing. This is since it predict population inversion and intensity
of amplified light. These fluid derived equations can be suitable for
superfluid’s, since they are free from frictional term and conforms with

statistical physics and quantum laws.
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Chapter one
Introduction
1.1 Fluids:

Fluids is a state of matter that describes liquids and gases, Super-fluidity
Is a state of matter in which the matter behaves like a fluid with zero
viscosity, where it appears to exhibit the ability to self-propel and travel in
a way that defies the forces of gravity and surface tension. Superfluity is
found in astrophysics, high energy physics, and theories of quantum
gravity. The phenomenon is related to Bose-Einstein condensation, but
neither is a specific type of the other, not all super-fluids are Bose-Einstein

condensates [1, 2].
1.1.1 Super-fluidity of liquid helium:

Super-fluidity was originally discovered in liquid helium, by Pyotr Kapitsa
and John F. Allen .1t has since been described through phenomenology
and microscopy theories. Inliquid helium-4, the super-fluidity occurs at far
higher temperatures than it does in helium-3. Each atom of helium-4 is a
boson particle, by virtue of its integer spin. A helium-3 atom is a fermions
particle; it can form bosons only by pairing with itself at much lower
temperatures. This process is similar to the electron pairing in

superconductivity [1, 2, 3].
1.1.2 Ultracold atomic gases:

Super-fluidity in an ultra-cold fermionic gas was experimentally proven by
Wolfgang Ketterle and his team who observed quantum vortices in °Li at a
temperature of 50 nk at MIT in April [2] Such vortices had previously
been observed in an ultra-cold bosonic gas using ®Rb in 2000, [3] and

more recently in two-dimensional gases.[4] As early as 1999 Lene Hau



created such a condensate using sodium atoms [5] for the purpose slowing
light, and later stopping it completely .[6] Her team then subsequently
used this system of compressed light[7] to generate the super-fluid
analogue of shock waves and tornadoes . These dramatic excitations result
in the formation of solitonis that in turn decay into quantized vortices
created far out equilibrium in Paris of opposite circulation revealing
directly the process of super-fluid breakdown in Bose-Einstein
condensates. With a double light-roadblock setup, we can generate
controlled collisions between shock waves resulting in completely
unexpected, nonlinear excitations. We have observed hybrid structures
consisting of vortex rings embedded in dark solitonic shells. The vortex

rings act as ' phantom propellers ' leading to very rich excitation dynamics.

[8].
1.1.3 Super-fluidity in astrophysics:

The idea that super-fluidity exists inside neutron stars was first proposed
by Arkady Migdal [9][10] By analogy with electrons inside
superconductors forming Cooper pairs due to electron-lattice interaction, it
IS expected that nucleons in a neutron star at sufficiently high density and
low temperature can also from Cooper pairs due to the long-range
attractive nuclear force and lead to super-fluidity and superconductivity
[11].

1.1.4 Super-fluidity in high-energy physics and quantum gravity:

Super fluid vacuum theory (SVT) is an approach in theoretical physics and
quantum mechanics where the physical vacuum is viewed as super-fluid.
The ultimate goal of the approach is to develop scientific modes that unify
quantum mechanics with gravity. This makes SVT a candidate for the

theory of quantum gravity and an extension of the standard Model. It is



hoped that development of such theory would unify into a single
consistent model of all fundamental interactions, and to describe all known
interactions and elementary particles as different manifestations of the

same entity, super-fluid vacuum [10].

1.2 Newton’s Laws with Relation to Quantum and statistical

Physics:

The concept of field is related to force. Force is related to momentum time
.momentum is a valuable tool for predicting the future of physical system
because it related to physical quantity that controlled a system, like force
and energy. According to Newton's second law the resultant force is equal
to the rate of change of momentum. The momentum is a conserved vector
quantity. Scalar quantity, and to forces, which are only conserved locally.
In quantum mechanics the energy cannot be continuous for a particle. The
energy of quantum particle can have minimum value but cannot be zero.
The importance of momentum in quantum mechanics results from the
uncertainty principle and De Broglie hypothesis. Also the equation of

motion as Schrddinger equation can be extracted from it {1, 2, and 3}.

The momentum also plays an important role in statistical physics. In a
dynamical system theory, a phase space is a space in which all possible
states of a system are represented, with each possible state corresponding
to unique point in the phase space. For mechanical systems, the phase
space usually consists of all possible values of position and momentum
variables of {4, 5}. In statistical mechanics, any choice of a generalized
coordinates for the position defines conjugate generalized momentum
which together define coordinates on the phase space the momentum

representation, wave functions are Fourier transforms of the equivalent



real-space wave functions. The continuity equation governs the

conservation of mass, charge and probability of any closed system.

This equation involves the spatial distribution of the flux density that is
related to the temporal variation of the particle density (charge, mass).
Ordinary, this equation is derived from the equation of motion. The
motion of any continuous charge/mass distribution can be thought of as a
continuum (field or fluid). The continuity equation guarantees that there is
no loss or gain of such quantities. This equation provides us with
information about the system. The information is carried from one point to

another by a particle (field wave) [6, 7].

The continuity and momentum beside lasing equations are derived from
Newton's laws. Different attempts were made to derive statistical laws and

lasing equations [8, 9, 10].

This work is conceived with new derivation of this these equations using
quantum wave function and Maxwell distribution. This is done in section

(2), sections (3) and (4). Are conserved with discussion and conclusion.

Quantum mechanics is fundamental theory in physics which describes
nature at the smallest scales of energy levels of atoms and subatomic
particles equation that describes the changes over time of a physical
system which is affected by the surrounding. This equation is considered
as a back bone of quantum mechanics, which succeeded in describing the
behavior of single particle but, but it fails to describe quantum system of
many —body, because of the complex interaction between particles. As a
consequence, the wave function of the system is complicated in nature
having a large amount of information. On the other hand statistical
mechanics is a branch of physics that uses method of probability theory

and statistics to describe atoms and elementary particles. It uses



mathematical tools for dealing with large amounts of particle in the
physical system in solving physical problems. It can descried a wide of
fields that consists of randomly be having particles. Its applications
include electronics, laser and material science it is main purpose is to
clarify the properties of matter in aggregate, in terms of the microscopic
properties of individual constituents of the system. These properties of
statistical physics make it in close link with fluids a fluid is a collection of
molecules that are randomly arranged and held together by weak cohesive
forces like liquids and gases. This branch of physics has two parts static
and dynamic fluid. In fluid dynamic, the equation of motion is performed
by principles of conservation in physics like mass, energy and momentum
conservation, Bernoulli's equation is one of important equations describing
fluid in motion, which can be obtained by principles of energy and
momentum conservation. There are equivalence between the laws of fluid,
quantum and classical mechanics because all of them depend on principles
of conservations, and deals with very small particles. This encourages
doing this work which is devoted to derive fluid continuity and momentum
equation from quantum and statistical laws. This is done in section (3),
section (2) is conserved with deriving and expression of the wave function
in a homogenous media, and discussion and conclusion are done in

sections (4).
1-3 Quantum Mechanics:

In 1900 Max Planck introduced the concept of quantum energy. He argued
that the energy exchange between an electromagnetic wave of certain
frequency and matter occurs only in integer multiples of a quantities

which is proportional to the frequency, this energy is called quanta [1, 2].



In 1905 Einstein provided a powerful consolidation to Black's quantum
concept. In trying to understand the photoelectric effect, he posited that the
light is made of discrete bits of energy called photons [3, 4].

After discovering atomic nucleus by Rutherford's experimental in 1911,
and combining Rutherford's atomic model, Blank's quantum concept, and
Einstein's photons, Bohr introduced in 1913 his model of the hydrogen
atom. Compton made an important discovery in 1923 that gave the most
conclusive confirmation for the corpuscular aspect of light. By scattering
X-rays with electrons, he confirmed that the X- ray photons behave like.
De Broglie introduced in 1923 another powerful new concept that classical
physics could not reconcile: he postulate that not only does radiation
exhibit particle like behavior but, conversely, material particles themselves
display wave-like behavior. This concept was confirmed experimentally in
1927 by Davisson and Germer; they showed that interference patterns, a
property of waves, can be obtained with material particles such as
electrons [5, 6, 7].

Heisenberg present first formulation called matrix mechanics to develop
atomic structure in 1925, the second formulation, called wave mechanics,
was due to Schrodinger 1926. In 1927 Max Born proposed his
probabilistic interpretation of wave mechanics: he took the square moduli
of wave functions that are solutions of Schrodinger equation and he
interpreted them as probability density [8, 9, 10, and 11].

Combining special relativity with quantum mechanics, Dirac derived in
1928 an equation which describes the motion of electrons [5, 12, 13].

1.4 Literature Review:

The theory of the condensate of a weakly interacting Bose gas is
developed. The condensate is described by a wave function normalized to
the number of particles. It obeys a nonlinear self-consistent field equation.
The solution in the presence of a rigid wall with the boundary condition of

6



vanishing wave function involves a de Broglie length. This length depends
on the mean potential energy per particle. The self-consistent field term
keeps the density uniform except in localized spatial regions. In the hydro-
dynamical version, a key role is played by the quantum potential. A theory
of quantized vortices and of general potential flows follows immediately.
In contrast to classical hydrodynamics, the cores of vortices are
completely determined by the de Broglie length and all energies are finite.
Non-stationary disturbances of the condensate correspond to phonons,
rotons, vortex waves etc. They can exchange momentum with rigid
boundaries. This is compatible with the vanishing of the wavefunction at a
boundary. This condition fully determines the dynamics of the system.
These points are illustrated by considering the motion of a foreign ion in a
Bose gas, a rotating container of fluid, and the Landau criterion for Super-
fluidity [3].

This paper presents an attempt of explaining the phenomenon of Super-
fluidity on the basisof the theory of degeneracy of a non-perfect Bose-

Einstein gas. [4].

By using the method of the second quantization together with an
approximation procedurewe show that in the case of the small interaction
between molecules the low excited states of thegas can be described as a
perfect Bose-Einstein gas of certain “quasi-particles” representingthe
elementary excitations, which cannot be identified with the individual
molecules.The special form of the energy of a quasi-particle as a function

of its momentum is shown to beconnected with the Super-fluidity. [6]

We consider the superfluid phase transition that arises when a Feshbach
resonance pairing occurs in a dilute Fermi gas. We apply our theory to

consider a specific resonance in potassium (40 K), and find that for



achievable experimental conditions, the transition to a superfluid phase is
possible at the high critical temperature of about 0.5T F . Observation of
Super-fluidity in this regime would provide the opportunity to
experimentally study the crossover from the superfluid phase of weakly
coupled fermions to the Bose-Einstein condensation of strongly bound

composite bosons. [9].

A theory is developed to describe grid turbulence in a superfluid in the
case where the normal fluid is held stationary, as would be the case for
super fluid He 3 —B in which the normal fluid is very viscous. The theory
is a straightforward development of earlier work, reviewed by Vinen and
Niemela [5] and it shows that on large length scales the turbulence is
strongly damped by mutual friction. A comparison is made with recent
work by Volovik and his colleagues [6].which was developed while our

work was in progress [2].

1.5 Research Problem:

Quantum, statistical physics and fluid laws seems to be not correlated
although they all describe huge number of particles there is no full theory

for relating them to each other.

(1-6) Aim of the Work:

The aim of the work is to construct quantum model based on Newton’s

laws to relate quantum, statistical physics and fluids laws to each other.



1.7 Thesis Layout:

The thesis consists of four chapters. Chapter one is the introduction.
Chapter two is the theoretical background. Chapter three and four are

concerned with the literature review and the contribution.



Chapter Two

Theoretical Background

2.1 Introduction:

In this chapter one will be derive the basic equations of motion for fluid,
conservation of mass and conservation of momentum, Maxwell

distribution, and superfluid’s.
2.2 Fluid laws:

In this section one will derive the partial differential equation representing
conservation of mass in a fluid flow, the so-called continuity equation .we
will then, in a sense, "work backwards" to recover an integral form, often
called the "control-volume™ form, that can be applied to engineering
calculations in an approximate, but very useful, way we will then consider

some specific examples of employing this equation [17, 18].
2.2.1 Derivation of the continuity equation:

We begin this section with the general statement of conservation of mass,
and arrive at the differential form of the continuity equation via a
straightforward analysis involving application of the general transport
theorem and Gauss's theorem [18, 19, 20].

2.2.2 Conservation of mass:

We start by considering a fixed mass m of fluid contained in an arbitrary
regionR(t). As we have already hinted, we can identify this region with a
fluid element, but in some cases we will choose to associate this with a
macroscopic domain. In either case, the boundary S(t)ofR(t)can in
general move with time. Any such region is often termed a system,

especially in thermodynamics contexts, and it might be either open or

10



closed. From our point of view it is only important that it have fixed mass;
it does not matter whether it is the same mass at all times — only that the

amount is the same[21].

It is convenient for our purposes to relate the mass of the system to the

density of the fluid comprising it via

m = fpdv (2.2.1)
R(b)

We emphasize that R(t)and p may both change with time, but they must
do so in a way that leaves m unchanged if we are to have conservation of
mass. An example of this might be a balloon filled with hot air
surrounded by cooler. As heat is transferred from the balloon to its
surroundings, the temperature of the air inside the balloon will decrease,
and the density will increase (equation of state for a perfect gas). At the
same time the size of the balloon will shrink, corresponding to a change in
R (t). But the mass of air inside the balloon remains constant- at least if

there are no leaks [21].

We can express this mathematically as:

am _ a [ paV

& =@ Ry (2.2.2)

That is, conservation of mass simply means that the time rate of change of

mass of a system must be zero [17, 18 19].

(2.2.3)The differential continuity equation:

We now recall that region R (t) was arbitrary (i.e., it can be made
arbitrarily small-within the confines of the continuum hypothesis), and this

implies that the integrand must be zero everywhere within R (t). If this

11



were not so (e.g., the integral is zero because there are positive and
negative contributions that cancel), we could subdivide R (t) into smaller
regions over which the integral was either positive or negative, and hence

violating the fact that it is actually zero. Thus, we conclude that

PR (pvx) +5- (pvy) +o (pvz) =0 (2.2.3)

This is the differential form of the continuity equation, the expression for

mass conservation in a flowing system [21, 22].
2.2.4 Momentum balance-the Navier-Stokes equations:

In this section we will derive the equations of motion for incompressible
fluid flows, i.e., the Navier-Stokes (N-S) equations. We begin by stating a
general force balance consistent with Newton's second law of motion, and
then formulate this specifically for a control volume consisting of a fluid
element. Following this we will employ the Reynolds transport theorem
which we have already discussed, and an argument analogous to that used
in deriving the continuity equation to obtain the differential form of the
momentum equation. We then develop a multi-dimensional form of
Newton's law of viscosity to evaluate surface forces papering in this

equation and finally arrive at the N-S. Equations [21, 22, 23].
2.2.5 A basic force balance; Newtown's second of motion:

We begin by recalling that because we cannot readily view fluids and
consisting of point masses, it is not appropriate to apply Newton's second
law of motion in the usual formF = ma. Instead, we will use a more

general form expressed in words as

{Time rate of change of momentum of a material region}= {sum of forces

acting on the material region}

12



The somewhat vague terminology "material region" is widely used, and
herein it will usually be simply a fluid element. But later when we develop
the control-volume momentum equation the material region will be any
region of interest in a given flow problem. We also remark that we are
employing the actual version of Newton's second law instead of the one
usually presented in elementary physics. Namely, if we recall that
momentum is mass times velocity, e.g., mu in ID, then the general

statement of Newton's second law is

d(mv)
F=—u

(2.2.4)

Which collapses to the usual F = ma in the case of point masses that are
independent of time. At this point it is worthwhile to recall the equation
for conservation of mass, equation (2.3), which we write here in the

abbreviated form

pe = (pu)y + (pv)y + (pw), =0 (2.2.5)

Containing the dependent variables p, u, v and w. It will be convenient to
express the momentum equations in terms of these same variables, and to
this end we first observe that the product, e.g.,pu, is momentum per unit
volume (since p is mass per unit volume ). Thus, yet another alternative

expression of Newton's second law is

F_d 2.2.6
;—a(ﬁu) (2.2.6)

Or force per unit volume is equal to time-rate of change of momentum per
unit volume. We are now prepared to develop formulas for the left-and

right-hand sides formula given above [28, 29, 30 31].

13



2.2.6 Time-Rate of change of momentum:

As was the case in deriving the differential equation representing
conservation of mass, it will agian be convenient here to choose a fluid
region corresponding to a fluid element. In contrast to what was done
earlier, we will restrict our region R(t) to be a fluid element from the start .
If, in addition, we utilize an Eulerian view of the fluid flow we recognize
that the substantial derivative should be employed to represent
acceleration or, in our present case, to calculate the time-rate of change of
momentum. As noted above, it is convenient for later purposes to consider
the momentum per unit volume, rather than the momentum itself; so for

the x component of this we would have

EjpudV
Dt R(t)

The equivalent of mass x acceleration .Then for the complete velocity

vector U we can write

Rj pUdV

{time rate of change ofmomentum vector}(2.2.7)
Dt R(D)

We remind the reader that application of the substantial derivative
operator to a vector is accomplished by applying it to each component
individually, so the above expression actually contains three components,

each of the form of that for x momentum([36,37].
2.2.7 Sum of forces:

We next consider the general form of the right hand side of the word

equation given earlier, via, the sum of forces acting on the material region

14



(fluid element in the present case). There are two main types of forces to

analyze:

1) Body forces acting on the entire region R (t), denoted

[ Fgav

R(E) (2.28) ,and
I1) Surface forces
[ FydA

s (2.2.9)

Acting only on the surface S (t) of R (t).

It is useful to view the surface S (t) as dividing the fluid into two distinct
regions: one that is interior to S (t), i.e., R (t), and one that is on the
outside of s(t). This implies that when we focus attention on R (t) alone, as
it will be convenient to do, we must somehow account for the fact that we
have discarded the outside which interacts with R (t). We do this by

representing these effects as surface forces acting on S (t).
2.3 The Maxwell Boltzmann Distribution:

Scottish physicist James clerk Maxwell developed his kinetic theory of
gases in 1859. Maxwell determined the distribution of velocities among
the molecules of a gas. Maxwell's finding was later generalized in 1871 by
a German physicist, Ludwig Boltzmann to express the distribution of

energies among the molecules [32, 33, 34].

Maxwell in the gas assuming to consist of billions of molecules moving
rapidly at random , colliding with each other and the walls of the
container. This was qualitatively consistent with the physical properties of

gases, if we accept the notion that raising the temperature causes the

15



molecules to move faster and collide with the walls of the container more

frequently.
Maxwell made four assumptions:
1) The collisions between molecules conserve energy.

2) The diameter of the molecules is much smaller than the distance

between them.
3) The positions and velocities of the molecules are initially at random.

4) The molecules move between collisions without interacting as a

constant speed in a straight line.

We will derive the Maxwell Boltzmann distribution, which will prove

useful information about the energy.

Why use statistical mechanics to predict molecule behavior? Why not just

calculate the motion of the molecules exactly?

Even though we are discussing classical physics, there exists a degree of
"uncertainty" with respect to the fact that the motion of every single

particle at all times cannot be determined in practice in any large system.

Even if we were only dealing with one mole of gas, we would still have to

determine characteristics of 6 x 1023 molecules!!

Maxwell's theory was based on statistical averages to see if the
microstates, (l.e. measurable, observable) could be predicted from the

microstates.

In these section it was determined that the thermal equilibrium is

established when the temperature of the subsystem are equal. So...

16



What is the nature of the equilibrium distribution for a system of N non-
interacting gas particles? Consider the simplest case, a system of N non-

interacting classical gas particles.
-Classical system:

. There are no restrictions on how many particles can be put into any one

state simultaneously
. The particles are distinguishable, i.e. each particle is labeled for all time

First, well need to determine the number of microstate within any given,
I.e. the number of ways in which N objects can be arranged into n distinct

groups, also called the multiplicity function.

The multiplicity function- determines the number of ways in which N

objects can be arranged into n containers.
Consider the first twelve letters of the alphabet: abcdefghijkl

Arrange the letters into 3 containers without replacement. Containers 1

holds 3 letters, containers 2 holds 4 letters, and containers 3 holds 5 letters.

For the 1% slot, there are 12 possibilities.

For the 2" slot, there are 11 possibilities.

For the 3" slot there are 10 possibilities.

Etc ...

There are 12! Possibilities arrangements if the containers are ignored.

The multiplicity function determined the number of ways in which N

objects can be arranged into n containers. Since we care about the

17



containers but we don’t care about the order of the letters within each
container, we divide out the number of arrangements within each given

container, resulting in:

12!

314!5!

= 27,720

There are 27,720 ways of partitioning 12 letters into the 3 containers

In general, the number of distinct arrangements of N particles into n

groups containing Ny, N, ..., N; ... N,, objects becomes:

N!
N1!Ny!...Njl..,Np!

Where N; is the number of objects in container |

The multiplicity function.

N! N!
Q(Ny, Ny ... N; ... N,) = _

N{!N,!..N;!..,Np! NI

In general, the possible arrangements of N; particles into g; sub-

containers is: g;Vi

Therefore, if our system has a particular state that has a particular
degeneracy, there is an additional multiplicity of g;"t for that particular
state. Therefore the total multiplicity function for a collection of classical

particles is:

QN Ny Ny ) = {5, g (23.1)

LN
There are two physical constraints on our classical system:
1- The total number of particles must be conserved
=Y~ N,=N
2- The total energy of the system must be conserved

18



Y= ) EN=U

Vi

=1

From previous slide:

N! .
QN N, Ny ) = {5, g

n !
i=1 V!

This equation will be easier to deal with if we take the logarithm of both

sides:

InQ=InN!'+Y" N;Ing; — >, InN,! (2.3.2)
Applying starling's approximation, for large:

Inx! = xlnx —x (2.3.3)

InQNInN — N +
i1 NiIng; —
L N InN; +
LN (2.3.4)

In order to maximize, we need to make use of Lagrange multipliers and

constraints 1 and 2:

61 + 99 6<p_0 2.3.5
6Nan aaNj aN,-_ (2.3.5)

Substituting in In Q and constraints 1 and 2:
aiNj (NInN=N+3¥", N;Ing; — ¥, N,InN; + ¥, N)) +

2 o
AN iz N) — B on; iz EiNy) =

0 (2.3.6)
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Taking the derivative, noting that N is const ant and the only terms that are

nonzero are when i= j:

lngi—(l.lnl\/j+1\/j.Ni>+1+a—BEj=O (2.3.7)

J

Ing;—InN; +a—BE; =0 (2.3.8)
lng—]: = a — BE; (2.3.9)
]
N;j —BE;
f(E) = o e*PE; (2.3.10)
j

The equation (2-20) called Maxwell Boltzmann distribution. Energy To
find £, we need to determine the total number of particles, N, in the

system and the total energy, E, of the system .

If the states are closely spaced in energy, they form a quasi continuum and

the total number of particles, N, is given by:

N = joof(E)D(E)dE

Where D(E) is the density of states function.

From previous slide:

N = joof(E)D(E)dE

N

f(E) =—==¢e%FE (2.3.11)
gj
3/2
D(E) = mhs—;/f_E (2.3.12)
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m3/2\2E ®
N=—€af \/Ee_ﬁEdE
0

h3m?
Using the stander integral:

I'n+1)
an+1

(o'e]
f xNe ™ dx =
0

3 5
m2v2 I'GG

— e%
h3m2 ,8%

The average energy per particle is given as:

ev
Kp = 8.6175 x 10—57

Where K5 is the Boltzmann constant.

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

Equation the average energy per particle with the ratio of our equations for

E and N:
3 5
mi\/f aF(Z)
W32 © 5
E gz 3
ﬁ = 3 3 = —KBT
mf\/f aF(Z)
B2 © 3
ﬁf
B E
N
5
rz pz 3
s 3.5 KsT
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(1+2)=z (2)

S _ KsT
2 28
1
= 2.3.19

Where u is the chemical potential. We will find out that the chemical

potential, u, is exactly equal to the Fermi Energy, Er leaving us with an a
of:

Ep

CTK,T

From previous slides:

N
f(B) == e"r" (2.3.20)
j

Substituting a and g intof (E;):

N Ep—Ej
f(B)==eTel (2.3.21)
j

From previous silde:

Ep—E;
N; el

f(E]) =g—;= e KT

22



Reversing terms in the numerator of the exponent:

f(E;) = & =e KT (2.3.22)

The distribution gives the number of particles in the j state, where the jt*

state has degeneracy, g;

If we want to find the probability of finding the particle in the j* state, we
need to normalize, well start by dividing the number of particles in the jt*

state. N;, by the total number of particles, N.

Using constraint 1 and f (E):

n

N =) Nj=e® gjeEumm (2.3.23)

j=1 j=1
Solving fore?:

a N

- —E;/KgT
Z?=1.gje ]/ B

e

Substituting e“intof (E;):

f(Ej) = N; = gjeveEilkeT (2.3.24)
Ng.e Ei/KsT

N; = ng] —E;/KgT
j=19j¢€¢

Normalizing:

N g

NS gje T

From previous slide:
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—Ej/KpT

N __ g
N Z;lzlg]e

—Ej/KgT

This normalized distribution is the probability,P;, of finding the particle in

the j* stat with energyE;:

—Ej/KgT

p N __9e

=— = 2.3.25
TN gy S

Since j is just a dummy index, the probability of a particle having energy

E, is:

g, o —Er/KpT

n
j=19j€

P. =
r —Ej/KpT

If the degeneracy factor is 1, i.e. no repeatable arrangements, the

probability become:

¢~ Er/KpT

P== = (2.3.26)

j=1
The mean value of a physical observable:

ZT‘ PT' yT'

y = (2.3.27)
TSR
The mean energy of a system can be determined by:
B ¢ —Er/KgT
E= 2r (2.3.28)

Y e~ Er/KsT

The classical partition function:

1
Z:ze—Er/KBT ; ﬂzm N Z=Z€_BET

Tr r
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We can use the classical partition function to easily calculate the mean

value of the energy.

First, we need to note the following relationships
0

_e_BET

zEre_BErz_ aﬁ
T

oLl

The mean energy equation:
(2.3.29)

_ d
E = ——(lnz)

ap
2.4 Maxwell’s solution for wave propagation in a_conductive

medium:
According to GSR model the linear energy is given by

1/2 ~1/2
E= 90(/) pmoc? +g00/ ca.p

= fmec? (1 * mocz)
(2.4.1)

1-— .
C( mocz)ap

Where
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1/2 v ~1/2 v
90(/) =1+ '900/ =1-

moc? meoc?

Multiplying both side of equation (2.4.1) by ¥ gives
EYy = (1 V) +(1+ V)
p=c(1-g)app+(1+z)sma

E*Y =cE (1 —g) a.py + E (1 +g>ﬁmo¢
~E2p =c(E—=V)a.py + (E +V)Bmoc?y (2.4.2)
E*Y = ca.pEyY — cVa.py + fm.c?EY + Bmoc?Vy

Where

E-A=ih2 , and p=p==V (2.4.3)

i

From equation (2.4.2) and (2-4-3)

%Y — (0Y h oY
W2 T 32 i : P
h 352 ch*a.V <6t) c i Va.Vy + ihfm.c (at)
+ Bmec?Vy (2.4.4)
From (2-4-4), by suggesting a solution
. . iE,
Y =u(r)e 't = ye '@t = yeh
o _ . a3y .
E = l(l)ow , 5¢2 = l(l)o'llj (24‘5)
A direct substitution of (2.4.5) in (2.4.4) gives
hZw.y = ch?awe.. Vi + ichVa. Vi — BmecZhwe. 1P
+ fmoc?Vip (2.4.6)
Where
E=hw., Ey=moc?

E%Y = chEa. Vi + ichVa. Vi — B3EEyy + BEV (2.4.7)

e @ t(E?y) = e 't (chEa.Vu + ichVa.Vu) + e 7't (BE
+ BV)Egu  (2.4.8)
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This time decaying exponential term can be cancelled on both sides to get

(E? — B(E + V)Ey)u = ch(E + iV)a.Vu

This can be written as

cqu — c,Vu =cza.Vu + ic,Va.Vu
Where

¢, = E? — BEE, ,c, = +BE,,c3 = chE
c, =ch

Travelling wave solution

W = AeiKr-owt)

P = ey = emi0ly(7)

u=Ae*" ,  Vu=iKu

ciu — c;,Vu =iK.[a](cs +ic,V)u

Equation coefficients of u and Vu, yields

. —licq .
C1=lK.(XC3, K=m=—ll(o
From equation (2.4.11)

—i(E — BE

k= JEZBE)
cha cos 6
c, = —ik.ac, = k.ac,

)
k.o = kacosf =—

Cy
C2
k=—"—
c,a cosf
BE,
o — K
cha cos @ 1

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)
(2.4.13)

(2.4.14)

(2.4.15)

(2.4.16)

(2.4.17)

(2.4.18)

The first expression fork in equation (2.4.12) where k = —ik, gives
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lp — Aekore—a)t

(2.4.19)

The second expression for k in equation (2.4.12) where k — k; gives

l/) — el(klr—wt) = u = Aetkar

(2.4.20)

Consider the outer most shell where electrons occupy this sell when the

radius of the atom is a. In this case
lu(@)|* =1

u(a) =1

coskia+isink;a=1

Thus

coska=1,sink;a=0 ,k;a =2nn
There fore

_ 27Tn

1= a
Thus the momentum is given by

hn
p=hk1=7

Hence the energy takes the form

E? = ¢?P?2 + m3c*

,  C*h®n? -
E“ = >— + mge
a

This liner energy is given by
E = ca.p + fmyc?

cahn
E= . + fmgc?

It is very interesting to note that the velocity is given by

28

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

(2.4.25)

(2.4.26)



W wczcosH
Vo =Aof = k_o = T (2.4.27)

Becomes infinite when

¢, =E(E—PBEy)) =0

E = BE, (2.4.28)
Where equation (2.4.27) gives

V, = (2.4.29)
In this case equation (2.4.2.16) gives

ko =0 (2.4.30)
Thus equation (2.4.19) become in the form

Y=Aeliot (2.4.31)

This represent a stationary oscillating wave. Fortunately equations
(2.4.29) and (2.4.31) describe the behavior of biophotons which are
stationary waves that spread themselves simultaneously through the
surrounding media [44, 45].

2.5 Super Fluids:

Superfluidity is closely related to Bose-Einstein condensation. In a
phenomenological level, superfluid can flow through narrow capillaries or
slits without dissipating energy. Superfluid does not possess the shear
viscosity. The superfluid of liquid *He, below the so-called A-point, was
discovered by Kapitza and independently by Allen and Misener. Soon
after Landau explained that if the excitation spectrum satisfies certain
criteria, the motion of the fluid does not cause the energy dissipation.
These Landau criteria are met by the Bogoliubov excitation spectrum
associated with the Bose-Einstein condensate consisting of an interacting
Bose gas and thus establish the first connection between superfluidity and
BEC. The connection between the two phenomena is further established in
a deeper level through the relationship between irrotationality of the
superfluid and the global phase of the BEC order parameter. This is the
first subject of this chapter. The second subject of this chapter is the
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rotational properties of the irrotational superfluid, with special focus on
the quantized vortices.[11,13,14]

2.5.1 Landau’s criteria of super fluidity:

Landau’s theory of super fluids is based on the Galilean transformation of
energy and momentum. Let E and P be the energy and momentum of the
fluid in a reference frame K. If we try to express the energy and
momentum of the same fluid but in a moving frame K’, which has a
relative velocity v with respect to a reference frame K, we have the

following relations:

P/ =P —mw, (2.5.1.1)
2
|P/]
E/ =—=—|P —mv|?
om = 2m!F ™
1
=E—P.v+§m|v|2 (2.5.1.2)
/| . .
whereE = and M is the total mass of the fluid.

2m

We first consider a fluid at zero temperature, in which all particles are in
the ground state and flowing along a capillary at constant velocity v. If the
fluid is viscous, the motion will produce dissipation of energy via friction
with the capillary wall and decrease of the kinetic energy. We assume that
such dissipative processes take place through the creation of elementary
excitation, which is the Bogoliubov quasi-particle for the case of an
interacting Bose gas. Let us first describe this process in the reference
frame K which, rather confusingly, moves with the same velocity v of the
fluid. In this reference frame, the fluid is at rest. If a single elementary
excitation with a momentum p appears in the fluid, the total energy of the
fluid in the reference frame K is Ey + &(p), where Ey and &(p) are the
ground state energy and the elementary excitation energy. Let us move to
the moving frame K’, in which the fluid moves with a velocity v but the
capillary is at rest. In this moving frame K°which moves with the velocity
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—v with respect to the fluid, the energy and momentum of the fluid are
given, setting v = —v in (2.5.2.2) and (2.5.2.1), by

p/ =p+mv (2.5.2.3)
1
E/'=Ey+ «(p) +p.v + Emv2 (2.5.2.4)

The above results indicate that the changes in energy and momentum
caused by the appearance of one elementary excitation are (p) + p. v and
p, respectively. Spontaneous creation of elementary excitations, i.e. energy
dissipation, can occur if and only if such a process is energetically
favorable. This means if the energy of an elementary excitation, in the
moving frame K° where the capillary is at rest, so that a thermal

equilibrium condition is satisfied, is negative:

ep)+p.v<0 (2.5.2.5)
The dissipation of energy occurs. The above condition is satisfied when
|v| >% andp.v < 0, i.e. when the elementary excitation has the

momentum p opposite to the fluid velocity v and the fluid velocity |v|

exceeds the critical value,

20)

o (2.5.2.6)

Ve = min,,
where the minimum is calculated over all the values of p. If instead the
fluid velocity v is smaller than (2.5.2.6), then no elementary excitation
will be spontaneously formed. Thus, the Landau’s criteria of superfluidity
Is summarized as the relative velocity between the fluid and the capillary

is smaller than the critical value,v < v,.

One can easily conclude that the weakly interacting Bose gas at zero

temperature satisfies the Landau’s criteria of super fluidity and that the
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critical velocity is given by the sound velocity. Strongly interacting fluids
such as liquid “He also fulfil the Landau criteria but in this case the critical
velocity is smaller than the sound velocity due to the complicated
excitation spectrum. It is easily understood that the critical velocity

decreases with the decrease in the particle-particle interaction and

disappears in the limit of an ideal gas because v, = minp% =0 for

2
(p) = ;’—m.The particle-particle interaction is a crucial requirement in the

appearance of superfluidity.
2.5.2 Superfluidity at finite temperatures:

Let us next consider a uniform Bose-Einstein condensed fluid at a finite
temperature. We assume the thermodynamic properties of the system are
described by the Bogoliubov quasi-particles in thermal equilibrium
distributions. According to the above argument, no new excitations can be
created directly by the condensate due to the motion of the superfluid with
respect to the capillary. However, the quasi-particles are excited thermally
and the fluid associated with the quasi-particles is not superfluid but
normal fluid. These elementary excitations can collide with the capillary
walls and dissipate their energies and momenta. Thus, we have the two
fluid components at a finite temperature: a superfluid without viscosity
and a normal fluid with viscosity. Collisions establish thermodynamic
equilibrium in the normal fluid in the frame where the capillary is at rest

(capillary frame).

If the energy and momentum of the quasi-particle are ¢(p) and p in the
frame where the superfluid is at rest (superfluid frame), the energy of the
same quasi-particle in the capillary frame becomes £(p) + p. vswhere v is
the relative velocity of the superfluid and the capillary. The Bogoliubov
quasi-particles obey the thermal equilibrium distribution in the capillary
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frame (not in the superfluid frame). Thus, the quasi-particle population is
given by

1

N J—
" e(p)+p vs]_l

(2.5.2.1)
exp[

&(p)
I

positive for all values of p. Therefore, we can conclude the coexistence of

Ife(p) + p.vs > 0, ielvg| <min,—= ™ the quasi-particle population Nj is

the two fluids becomes possible. Notice that the condition for the positive
Np , vg <min, I(pl) Is identical to the Landau’s criteria of

superfluidity[15,16,17].
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Chapter Three

Literature Review

3.1 Introduction:

Many attempts were made to modify Schrodinger equation to describe
bulk matter [1, 17, 18, and 19]. Same of them uses the approach of
complex many body problem [20, 21, 22], will some uses expression of
energy in a frictional medium [23, 24, 25]. Some attempts link quantum
laws with statistical physics and fluid or superfluid laws [26, 27,31 and

41]. Some of these attempts are exhibited here.

3.2 Potential Dependent Frictional Schrodinger Equation:

By treating particles as harmonic oscillator is obtained the friction energy
related to the momentum. The energy and the corresponding Newtonian
operator is found. This result in a new Schrodinger equation accounting
for the effect of friction. This new equation shows that the energy and
mass are quantized, if one treats particles as strings. The radioactive decay

law and collision probability is also derived [2, 9,24,36].
3.2.1 Schrodinger equation for frictional medium:

According to Plank and de Broglie hypothesis the quantum quanta are

treated as wave packets.

Pure waves is a wave packet consisting of single wave having specific
wave length .while a localized particle is a wave packet having a very
large of interfering waves having different wave lengths . This means that
any quantum system is a single or aggregate of oscillators. Moreover,
according to string theory matter building blocks are treated as vibrating

string. Motivated by all there hypothesis, the energy dissipated by fraction
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can be derived consider now a fractional force E¢ in terms of mass m,

relaxation time 7 and velocity v to be

Ey = — (3.2.1.1)

Considering matter building blocks as oscillators

v = v.e'®t (3.2.1.2)

Thus, the displacement is given by:

. Vo v
X = jvdt = Vs j ewtdt = —e'@t = — (3.2.1.3)
iw iw

The total dissipative energy E is given by:

p _fE y _m y _mvz_—imvz_—i(l 2)
r U x_ia)t v U_Zia)t_ 2wt wt zmv

—i 2
- —l<p—> (3.2.1.4)

wt\2m

But according to Newtonian mechanics the total energy can be expressed

in terms of the kinetic and potential energy V in the form

2

p
E=K+V=r— 2.1.
+V =tV (3.2.1.5)

Thus according to Eq. (3-3-5) and Eq. (3-3-4) Ef is given by

Ef = ;—i(E —V) (3.2.1.6)

But using plank hypothesis the energy E is given by
E =hw (3.2.1.7)

In view of Egs. (3.3.6) and (3.3.7) the frictional energy is given by
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E = th (K - 1) (3.2.1.8)

Thus the Hamiltonian classical relation for a particle in a fractional

medium is given by

E=H P V+ih(V 1)
T 2m T \E
P2+V+lh<V_E> 3.2.1.9
=5 . 5 (3.2.1.9)
Therefore
E? = P2+V E+ih(V E) 3.2.1.10
=7 - (3.2.1.10)

To find the Schrodinger equation corresponding to this relation multiplies
both sides of Eq. (3-3-10) by y to get:
2m

, p2 ih
E?y = <—+V> EY+—(V = E)p (3.2.1.11)

Considering the wave function

i
P = Aer®¥=¢t) (3.2.1.12)

Hence
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5 =~ EY (3.2.1.13)

0%
—h? = = E%Y (3.2.1.14)

Similarly differentiating the wave function respect to x yields

i
X h
ayp

lhﬁz l/)

=Py

2 +2
1/) [
9tz h? by

0" _
— _}R2y72
W —— = —h*Vy (3.2.1.15)

Thus inserting Egs. (3.2.1.13), (3.2.1.14) and (3.2.1.15) into Eq. (3.2.1.11)
yields

02 h? 0 h 0
—hz—lp = —<ﬁv2 + V) ih—¢+ lT ( lh—lp-l- V¢>

0x?2 ot ot
2 2 2
0“Y h® Y h°oy
—h? axz lh(zmv +V E-l'—% —VV(32116)

3.2.2 Harmonic oscillator solution:

To see how fraction force consider the solution of Eq. (3.2.1.12) in the

form

P = e 5V = F(Du(v) = fu

oy E
Frii v AC))
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0%y  i2E2 E?
o - e JuT Tl

A direct substitution in Eq. (3.2.1.16) gives

2

E2fu=ih( -4V (_iE) BN
fu=i o u ulf - lhrf

+'hV
lT fu

Dividing both sides of Eq. (3.2.2.2) by f yields

h? Eh h
m T T

E*u=+E <—2—V2u +Vu|—i—u+i-Vu
Dividing both sides of Eq. (3.2.2.3) by +E yields

ih h?2 ih
(E+—)u = ——V2u+V(1+—>u
T 2m Et

2

—%vzu +c¢,Vu = Eju

Where

ih
C1=1+E_‘[

ih
E1:E+_
T

For harmonic oscillator one finds

1
V = =kx?
5 kx

Thus substituting this expression in Eq. (3.2.2.4) gives
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h? 2 1 2
—%V u+c Ekx = Eju (3.2.2.7)
Let now
ko = Clk (3.2.2.8)

Therefore equation (3.2.2.7) became

hZ 2 1 2
—%V u+§kox = Elu (3229)

Thus substituting Eg. (3.2.2.5) into Eq. (3.2.2.9) gives

ih 1

E,=E+ ? = (n + E) hw (3.2.2.10)
1 ih

E = (n+§> hw —? (32211)

The frequency is given according to Eqg. (3.2.2.8) and Eq. (3.2.2.5) to be

ko_mw?

ih )
c1k=<1+T—E)k=mw

ih
(E + E) k = mw?*E (3.2.2.12)
Thus

maw? ih
E=(——-1)= (3.2.2.13)

From (3.2.1.12) and (3.2.1.13)

maw?

0=-—
k

+ 1 h
(Tl+z> w
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i k
— (3.2.2.14)

m=|1+ o7

(n+ %)

Thus, from Eq. (3.2.2.14) one finds the mass is quantized
3.2.3 Radioactive decay low and collision probability:
Consider now Eg. (3.2.1.16) for constant potential V,

Using the separation of variables let the wave function ¥ be in the form

Y(r,t) = fFOul) = fu (3.2.3.1)
A direct substitution of equation (3.2.3.1) in equation (3.2.1.16) gives
% f h? af\ ih h? af
Ry, = (w24 ) + —V. —
huat2 ( sz +V>u(lhat)+TVuf+Tuat
Thus
0%f ih h?of
Ry—2 vy f_—__L
< h”atz TV T@t)u
= hzV2+V ('haf> 3.2.3.2
~\ 2m I RANRFT: (3:2.32)

Divide both sides of Eg. (3.2.3.2) by fu to get

JOfNTY( ., 0% ivh _ Rn%af\ 1/h%*_,
(n5¢) (‘h”F_Tf_?E =u\zm? tVu

= E. (3.2.3.3)

Taking the time part of Eq. (3.2.3.3) only gives

%f iVh h?of of
-h?———f———=i{hE.— 2.3.4
ot? T / T ot 9t (3234)
Consider the case when the potential vanishes
Ve=0 (3.2.3.5)

Hence
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0%f h%of . of
_HK2I L _ 29 L
h at2 T Ot ihE ot

Consider now a solution

sze—%Et

of i

e

aZf l-2 EZ
s b=

Inserting Eq. (3.2.3.7) in Eq. (3.2.3.6) yields
E? +EE = {hE (—LE )
f +—Ef = ihE- (- Ef

Dividing both sides of Eq. (3.2.3.8) by f gives

ih
E?+—E =E.E
T
Rearranging both sides of Eq. (3.2.3.9) gives

th
E? = (E ——)E
T

Dividing both sides of Eq. (3.2.2.4) by E gives

th
£=(r-3)
T

Inserting Eq. (3.2.3.1) in Eq. (3.2.37) gives

i ih t i
f = Ae_ﬁ(E°_?)t = Ae e HE?

Hence

t i
f= Ae e RET
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(3.2.3.8)

(3.2.3.9)

(3.2.3.10)
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(3.2.3.12)



Since the probability and number of particles are given by

2t

n=IfI? =ff/ = A%"T

Eq. (3.2.3.13) is the ordinary radioactive decay low with

This expression also gives collision probability p with

p=n , p=A4°

_ T

To e 2

To get
_t
p=pe T

(3.2.3.13)

(3.2.3.14)

(3.2.3.15)

(3.2.3.16)

(3.2.3.17)

Eq. (3.2.3.17) is the ordinary collision probability relation [47, 48, and

49].

3.3 Quantum Schrodinger String Theory for

Frictional Medium and Collision:

Maxwell's equation for decaying wave due to friction, beside aclassical

and quantum expression for oscillating string energyare used to derive a

useful expression for particle energy in frictional resistive media. This

expression is used to derive Schrodinger equation for oscillating string in

resistive media. This new quantum reduces to the ordinary. Schrodinger

equation in the absence of friction it also gives collision probability similar
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to that obtained by transport equation. This new equation is used to derive
an expression for energy lost by friction by the vibrating string. This

energy is shown to be quantized [30,33,50].
3.3.1 Maxwell's Equations for Time Decaying Wave
in Resistive Medium:

Consider an electromagnetic wave enters a medium of conductivity o, and

electric polarization P . Maxwell's equations for this medium are given by
—V2E — o 0E /0t + )\e 0%E /dt? = —1) 0%P/dt? (3.3.1.1)

The electric field intensity decays in this case and can be described by the

relation
= Eje Mk tellkx—wt) (3.3.1.2)

The corresponding displacement is given by

. X
x = xge Hkteilkx—wt) — E—OE (3.3.1.3)
0

The electric polarization terms is defined to be

: X
P=enx =en—E (3.3.14)
Eo

With the aid of equations (3.3.1.2) and (3.3.1.4) of equation

(3.3.1.1) becomes

2 w? i, w
I(2+I'(Ck2 —— —fjoa+ c: — ifjow
enwf, x
— % No %o (3.3.1.5)
Ey

Equation (3.3.1.5) can be simplified by using the relation
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com_2nf o (3.3.1.6)
A Af ¢

And by assuming

, <c (3.3.1.7)

Where c is the speed of light in vacuum which is large. Thus

equation (3.3.1.5) becomes

21, W X
P How = eanﬁE—" (3.3.1.8)
0

_ﬁo-ﬂk + c2

Comparing real parts on both sides of equation (3.3.1.8) yields

X
ol = —enwzuﬁE—O (3.3.1.10)
0

3.3.2 Friction Coefficient and Relaxation:

It is quite natural to relate frictional coefficienty; to the relaxation time 7.
This due to the fact that by physical intuition are one can deduce that
shorter the relaxation time, the bigger frictional coefficient. This can show
also mathematics, by using the expression of energy dissipated by friction,

which for oscillation particle is given by

=V, (3.3.2.1)

E = _ = £ (3.3.2.2)

Where the effective displacement and velocityv , are related to the
maximum displacement by A by

A v wA
X, = — = WX, = —
e (—2 e e (—2
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Where the classical energy of the oscillator is

E =5 wA? (3.3.2.3)

The oscillator frequency for classical and quantum system is the same.

Thus one can write the quantum oscillator energy as
E =hw (3.3.2.4)
Thus inserting (3.2.2.3) in (3.2.2.1) yields

hE h
= =-— (3.3.2.5)

E. = =
I " the T

3.3.3 Derivation of frictional Schrodinger equation on the basis of

frictional energy equation:

Ordinary Schrodinger is based on the postulates. The first postulate is
related to the nature of micro particles. In this case the wave function takes

the form
i = Aellx—0D (3.3.3.1)

Using the fact that

P=hk AndE, =hw (3.3.3.2)
Therefore

i
) = AehP*7ED (3.3.3.3)

The second postulate is based on the classical expression of energy
P2

E=—+V 3.3.34
>t ( )

Using these tow postulates one can derive Schrodinger equation, where
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P2
Ep = 5+ Vi

Y
ih—=E

at Ol/j
Pz _ D%y
2m T 2m 9x2

Thus in three dimensions

L L 3.33.5
Mot =am? VHVY (3.3:35)

The expression of energy Eqgn. (3.3.3.4) in the presence of fiction is given,
with the aid of equation (3.2.3.2) to be

p? ih
E=EO+Ef=%+V—? (3336)

Multiply both sides by 1, one gets

pp=Fy vy B 3.3.3.7
Y=o+ VY Y (333.7)
But

oY [

— =—_E

ot h ¥

oy

h—=E

thop = Ev

oY i

L =-_p

Jdx h 2

621/)_ pP?

9x2  h?

In three dimensions
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—h?V2y = P2y (3.3.3.8)
Inserting Eqgn. (3.2.3.8) in Egn. (3.2.3.7), one gets

LN _ ;b

th——=——VY+Vp—i-y (3.3.3.9)

Which is the Schrodinger equation or resistive media. One can solve this

to do let equation for harmonic oscillator

Y = f(®Ou(r) (3.3.3.10)

Inserting in Eqn. (3.3.3.9) yields

Ll L

"Tor - 2mu’ ¢ bT T Ro

Hence

. Of

ih== Eof (3.3.3.11)

For harmonic oscillator string vibrating in one dimension the potential is

given by
1
V= EKXZ

Thus Eqgn. (3.2.3.9) reads

hZVZ +1I(2 —(E +'h> =F 3.3.3.12
Zmuzxu—olru—u (3.3.3.12)

This is the ordinary harmonic oscillator equation, with have quantized

energy
E

1
= (n1 + E) hw (3.3.3.13)
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For Egn. (3.2.3.9) one can suggest the solution

f = Ae kot (3.3.3.14)
Hroh = Eg

The periodicity condition requires

f@&+T)=f(t) (3.3.3.15)
Hence from Eqn. (3.3.3.13)

Ae—itko (t+T) — fp—ittkot

Ae kot = Ae~0 = cosf — i sind =1

0 =uT =2n,m

2 2mn,
.Uk0=T7T T Ny =Nw

Eqgn. (3.2.3.14)

In view of equation (3.3.3.12)
E=E,— i; (3.3.3.17)

Using Egns. (3.3.3.13), (3.2.3.16) and (3.3.3.17) yields

1 h
<n1+§>hw =n2wh+l;

oo 3e] a3

Tl=- w = iw (n + —) (3.3.3.18)
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The physical meaning of complex relaxation can be known from Eqn.
(3.3.3.6)

h
E=E —=E,+E
0+lT 0+ f
Thus the energy lost due to friction is given by
Er = 'h—( +1)h 3.3.3.19
f=—iz=(n+t3)hw (3.3.3.19)

The minus sign indicates that the energy is lost by the particle.

3.4 Quantum and Generalized Special Relativistic Model for

Electron Charge Quantization:

Explanation of electron self-energy and charge quantization is one of the
challenging problems facing quantum electrodynamics. In this work one
quantizes electron and elementary particles charges on the basis of
electromagnetic Hamiltonian in a curved space-time at vacuum stage of
the universe, using quantum spin angular momentum and Klein-Gordon
equation beside generalized special relatively. Electron charge is found to
be quantized and the electron self-energy is finite. The radius of the
electron is also found [31,47,75].

3.4.1 Electromagnetic Hamiltonian in curved space time and vacuum

energy:

According general relativity (GR) any energy form cause space to be
curved. Thus electromagnetic field can cause space to be curved.
According to GR, the time-component of the metric is gives by

Joo = — (1 + —) (3.4.1.1)
Where @,is the gravity potential per unit mass and is related to electric
potential @ and electron charge e through the relation [3.4.1.13]

U eo
Oy =— ="

=—= 3.4.1.2
= ( )
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Thus equation (3.4.1.1) becomes

2
Joo = — (1 + &> (3.4.1.3)

At early stage of the universe electric charge is generated due to the
electromagnetic (e.m) field at vacuum stage. This requires minimizing the
Hamiltonian (H) w.r.t electric potential @ to find the electric charge and
see how it is generated. Since the Hamiltonian part representing charge
itself can be neglected as for as they are independent of @ . The charge
field interactions are neglected for simplicity. One also assumes electric
charge to be at rest. This means that the magnetic field is not generated.

Therefore

A=0 , A;=0, i=123,.. (3.4.1.4)
To find the Hamiltonian in curved space, one generalized the space one
[3.4.1.14] [3.4.1.15]

H =1n%2¢(0;4, — 0,4;)? (3.4.1.5)
To be written in a curved space in the form [3.4.1.16][3.4.1.17]

H = g50&i(0;A — 0p4;)? (3.4.1.6)

From equation (3.2.1.3) one gets

2

H= ((1 i @) (V@)*> (3.4.1.7)

mc?
Thus minimization condition requires:

2e( —2mc?
-0 = (3.4.1.8)

1+— =
mc? 2e

Assuming the mass energy to be resulting from electric field energy

density E; where E; = eE? Inside electron of radius 7, one gets
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2 2
o€ 4 e
g —7'[7‘03 =

2 _ 24 3 _
mce = gE°-nry =
0% 3770 ™ qen2e2rd 3

(3.4.1.9)

12megry

The vacuum energy potential which results from electric charge becomes

U, = —ed = (3.4.1.10)

?n? -
<xz—2> + (1)2] (34111)

Thus combining Equations (3.4.2.10) and (3.4.2.11) yields

e’ m2n? w2 =
= w
12me,r, xgng

Thus the electric charge is given by

e = [(BR) + w2 E (127ey7) /2 (34.1.12)
It

XoMo

Setting to be equal to zero, for simplification. The electric charge is given

by

l Xon
e = (12meyry)z(=2)3 (3.4.1.13)

nm

ro IS the electron radius and X, is the universe radius. Thus the electron
radius can be found by assuming that the electron energy results from its

spinning, where the spin angular momentum is given by

V3h
L, =h[s(s + 1]/? = —- (3.4.1.14)
Where for electron
1
s = +§ (3.4.1.15)
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At vacuum stage we choose minimums lower value.

Ly ==h (3.4.1.16)

Assume that rest mass is neglected in relativistic expression to get
mc?=E =cp (3.4.1.17)
mc=p (3.4.1.18)

The same relation can hold for Newtonian mechanics by considering wave
nature of electrons, where the maximum velocity v, is related to the

effective value v through the relations

Fm (34.1.19)
V=— Al
V2
By assuming
p = mv
Thus the Newtonian expression for free particle takes the form
1 m?v?  p?
E= Emvﬁl = mv? = = (3.4.1.20)
If one believes in relativistic energy mass relation, one gets
2
me? = F =2
m
Thus one gets:
mc? =p?, mc=p (3.4.1.21)
Since the momentum p is related to L according to the
mvry, L
p=mv= == (3.4.1.22)
To To
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It follows from equation (3.4.2.21) that

Ls
— =mc
To
Using equation (3.4.1.16) one gets
L D 3.4.1.23
"= e T 2me (34.1.23)

Substituting the values of h, m and c, the electron radius can be calculated.
The electric charge is assumed to be born at very early stages of the
universe where vacuum exist and the minimum radius is X, where
[3.4.1.18]

xXo = 26.635 X 1073m

The electric charge is numerically given by = 1.6 x 1071°C . It can be

obtained by adjusting the quantum numbers n and n, to be

n—n( ¢ )21/3 3.4.1.24
no_xo[ 127'[807" ] ( B )

Similarly, the charges of quarks and charged leptons can be found by

adjusting the quantum numbers n and n,

Equation (2.4.1.10) shows that vacuum energy is repulsive due to the
existence of positive sign. This can form with cosmological models, which
suggests repulsive vacuum energy. Inflation models suggest also very
large vacuum energy. If one believes in this model, such that

U, c?

0= —— (3.4.1.25)

In this case according to generalized special relativity model the electron

mass is given by
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20
m=m, (1 — C_zg> — large (3.4.1.26)

Assume for simplicity
m=mgy X103 x 9 x 10731 =9 x 10718kg (3.4.1.27)

From Equations (3.4.1.16), (3.4.1.21) and (3.4.1.22) the electron radius

can be given to be

_h A 6.63 x 1073
0= e T dmme 4w x 9 x 10-18 x 3 x 108
7y = 1.954 x 10726 m (3.4.1.28)

Which is quite reasonable as far as nucleus or proton radius for very light

atoms are

r, =107 n,=10""°

3.5 Classical Newtonian model for destruction of

superconductors by magnetic field:

Newton second law is used to describe the destruction of super
conductivity for type 1 & type 2.The electron is assumed to be affected by
external electric and magnetic field as well as the internal magnetic field.
The conductivity and resistance depends on the internal as well as external
magnetic field. For type 1 the super conducting state is destroyed when the
external magnetic field exceeds the maximum internal field. For type 2 the
superconductivity is destroyed partially in the region where the local
maximum field is the lowest, and enters completely when the external

field exceeds the maximum local internal field [32,58,77].
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3.5.1 Classical Model to Describe Magnetic Destruction of Super
Conductivity by the External Magnetic Field:

The equation of motion of the electron moving inside matter under the
action of external electric and magnetic field intensities E and density B is

given by

dv
ma = eE + Bjev — Bev (3.5.1.1)

Where B; is the internal field since the electrons move with constant

velocity, hence

And
(B —Bj)ev = eE (3.5.1.2)

Therefore the velocity is given by

eE

Thus the current density takes the form
= nev = " 3.5.1.4
J = nev (B—B)e (3.5.1.4)

(3.5.1.5)

_(B—-By)
T ne

p (3.5.1.6)

Where the internal field can be written in terms of the field per atom as
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B, = n,B, (3.5.1.7)

B, Here represents the magnetic field induced by one atom, while n,
represent the number of diamagnetic atoms that induces magnetic field
that opposes the external field B.

The conductivity becomes zero in type |, due to the fact that the induced
internal field density B; increases and when the external flux density
increases such that always B; equals B, i. e

B; =B (3.5.1.8)
According to equations (3.4.1.5) and (3.4.1.6)
g = (3.5.1.9)

Thus the material becomes superconducting till all atoms N, in a unit
volume become magnetized. But when the external field B exceeds the

maximum value

Bim

= B,N, (3.5.1.10)
i.e. when
B > B;, (3.5.1.11)

In this case no more atoms can be magnetized to oppose and cancels. In

this case

ne Finit
0o = ——— = finite
B — Bim

B — B,
=— M+ 3.5.1.12
p s ( )

And the whole superconductor becomes conducting
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For type Il superconductor, one can assume that there are regions where
the densities of atoms are law and equalsNq:. In such regions the increase

of B increase B till

Bi, = Ng.Bq (3.5.1.13)
When B is less than B,

B = B; (3.5.1.14)

And an equation (3.4.1.5) and (3.4.1.6)

o =00
p=0 (3.5.1.15)
But when

B>B,

ne "

e (00]

T“B-B,

_B7Bu 3.5.1.16
p=— (3.5.1.16)

And these regions become ordinary conductors, while other regions are
still superconductors. The same hold for other regions with higher
concentration than Ng. They become ordinary conductors, when B
exceeds their local maximum internal field. This process continues till the
external field enters regions where the densities of atoms are high and
equalsNax. In this region the increase of B increases B; till

B =By, (3.5.1.17)
In these case when
B = B; < By, (3.5.1.18)

o=
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p=0 (3.4.1.19)

According to equations (3.5.1.5) and (3.5.1.6). But when

B > By, (3.5.1.20)
In this case
ne =
] (0.0]
=B -8B,
_B578n 3.5.1.21
p=— (3.5.1.21)

Thus when the external field B exceeds Bi. the SC becomes partially
ordinary conductor in regions where the diamagnetic atoms have law

density. Upon increasing B, such that
B > By (3.5.1.22)

More regions become ordinary conductors, till all SC material become

ordinary conductor when
Thus for type 11, one have two critical magnetic fields B, and Bin

Another explanation may also explain the behavior of type Il SC. This
approach is based on assuming that the matter density is homogeneous but
the magnetic field of atoms are randomly oriented such that the net
magnetic field in some regions is the lowest and in gradually increases and
attains its maximum value in another region. According to this model the
increase of external field in the lowest B; value increases B; according to
the Langevin equation

Be

= (3.5.1.24)

w; = Aw
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ezow; e?zyB

[ =—

3.5.1.25
2T dtm ( )

Where Z, is the number of electrons in the outer most sheet. By
considering electrons moving in a circular orbit one gets the internal
magnetic field in the form (here one assumes only outer most electrons
can produce induced magnetic field)

: 2
Ut pecz,
B = —= 5.1.2
@ 2r 8mmr (35.1.26)
The internal field B; is given by
B; =X B, (3.5.1.27)

This internal field increases upon increasing the external one, till the
electron Kkinetic energy exceeds electron binding energy E,. e.

~mv? > E, (3.5.1.28)

1 ,2Eb
w>—- |—
T m

The electron becomes free. In this case the electron will no longer revolve
around the nucleus. Thus it cannot produce internal magnetic field. Thus
the maximum produced atomic field is

i.e

Him
by = 4o
am 2r

Where the maximum current produced is

€ZoWp,
2T

l=—

Where
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1 [2E,
gl

Thus the internal field attains maximum value

Bim = Z Bam

When B exceeds this maximum value in the region of lowest B, i.e.
B > By

The resistivity will no longer vanishes according to equation (3.5.1.6),
where

B_BimL
=——>0
P ne

The same hold for the region having maximum internal field value due to
large orientation of magnetic field of atoms in the opposite direction of the
external one. In such region the external magnetic field B is balanced by

the internal oneBin, till electrons energy exceeds binding energy.

3.6 Energy-Momentum Relation and Eigen Equations In a
Curved Space Time:

Using the expression of time and distance in a curved space time a useful
expression of energy and momentum Eigen equation similar to that is a
curved space is found. These relations can be used to derive the
corresponding relations in the Euclidean space. The corresponding on of
Energy-Momentum relations for both curved and Euclidian space gives a
relation between energy and momentum typical to that obtained from the
energy and momentum Eigen equations. The expression of mass in a

curved space is similar to that of the generalized relativity [33,71,76].

60



The energy within the framework of the GSR and SR are given by:

9ooE? = guxP?c* + gGomgc*

EZ = Péc? + mic* (3.6.1)

Where E| is the ordinary SR energy. Thus the GSR energy ¢ is given by
-1/2

E = g.a°E, (3.6.2)

The wave function in the curved space is thus

Y= Ae®PxeEL) (3.6.3)
Energy Eigen equation and time independent Schrodinger equation in the

Euclidean space takes the form

)
iha—lf = E,p (3.6.4)

Also the momentum Eigen equation in the Euclidian space is given by

vy ==22 = pyy (3.6.5)
P = Ae®VTrePemyFoaED

Where

dt. = \/goodt , dx, = \/Gxxdx (3.6.6)

Schrodinger equation in the curved space, where the time is denoted byt.,

can read
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ih ay 1

ihg_z " Mat [ T Y] = To0 0t~ o ¥

= \/‘/%Ezp = Ey (3.6.7)
Thus
lh%= Ey (3.6.8)
But from (3)
lhg—t¢= Ey (3.6.9)

This is completely consistent with equation (3.6.8). Conversely from
(3.6.6), (3.6.9) and (3.6.2)

Lha—w = ih ihd

dt. a\/ Joo

= Ey

zh— JIo0oEY = Eop

EO - gooE (3610)

The momentum Eigen equation for the momentum in Euclidean space

takes the form

h g P 3.6.11
i axlp 01/) ( P )
In a curved space, the momentum Eigen equation becomes
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hov _

i 0x, P
With
Xe = +/Goodx (3.6.12)
Thus
h 0
- Ld = Py (3.6.13)
Joo0x

Thus, one can write

“5¥ = /900 PY (3.6.14)

Comparing this relation with (3.6.11) yields

PO = goo P (36150,)
Where
PO == gOO P (3.6.15b)

Thus equations (3.6.14) and (3.6.15.a) gives

h 9
—o—1) = Py (3.6.15¢)

This is the ordinary momentum Eigen equation in the Euclidian space.
The velocity in a curved space is define to be

oo dx \/ Joo

Vo (3.6.16)
Yoo dt v Yoo
But the momentum in a curved space and Euclidean
P=mv (3.6.17)
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PO == movo
Using equation (3.6.15)
P = (gxx)1/2P0

Thus

mv = (gxx)_lmovo

m = v doo My = v Yoo M
(\/ gxx)2 Gxx

Since in driving GSR, one assumes that

Ixx = 1
It follows that
M = goomy

But the mass in GSR is given by

YJooM¢
m = ———
vz
Yoo c2

For the mass at rest

v=20

_YooMc

\/g— =+ Y900Mg
00

This relation is consistent with equation.

(3.6.18)

(3.6.19)

(3.6.20)

(3.6.21)

(3.6.22)

To find the expression, which relates E to P in a curved space-time one

uses the relation
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c?dt? = c?goodts — grrxdx?

1 dt Vo
)4 :(E>: gOO_gxxC_z

Thus

2
GooMpoC

E=mc*= Yoo¥YMy =

But from (16)

2 _ 2
IxxVo = Yoo

2
GooMmoCE

\/gOOE2 - gxxPZCZ

E

9ooE? — gooP?c? = ggomgc*
9ooE? = gooP?c? + ggomgc*
Setting

E§ = gooE?P§ = gooP?

One gets

ESP¢c? + mict

<

2
-0

\/goo — Yxx c2

(3.6.23)

(3.6.24)

(3.6.25)

(3.6.26)

(3.6.27)

However, when one replaces v,by v in equation (3.6.23), one gets

2 1/2
-1 vO
y = [gOO — Yxx ?]

As a result, energy becomes
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2 2
JooMmpC JooMmoC

E = =
. 17_2 Joom?*c* — gy, m?v?c?
9oo — Gxx c2 m2ct

_ goomoc2

gOOE2 — gxxpzc2

L2
myc?E

E = YooMyp

\/gooEZ — guxP?c?
90oE? = gxxP?c? = ggomgoc?
9ooE? = guxP?c? + ggomgoc®
By setting

Eg = gOOEZPO2 = gxxpz

1
Ey = QSOE ’ Py = \/gxxP

One gets

E§ = Péc*mjict

Where

Moy = YooMo

Harmonic oscillator in a curved space:

The Schrodinger equation in a curved space is given

Y . 0y
h— = , h
l by l a\/ Yoo

ot, =EY

zh— VIo0oEY = Eop
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(3.6.30)

(3.6.31)

(3.6.32)

(3.6.33)



For harmonic oscillator in Euclidean space

1
E, = (n + E) hw (3.6.34)

1+x)"=1+nx

Forx <1

20

=z (3.6.35)
1 - ( 1) 20

(Goo) 2 =( 5) 2
_1 1)

(Goo) 2 = <1 - C—2> (3.6.36)

This approximation is justifiable since fn";f <1 2V <mc?

Which means that the total energy is the greater than potential energy.
Thus equation (3.6.30) gives

E = Ey(goy) 2 = E, (1 _ %) (3.6.37)
E = (n+%>(1 —%)hw
E= (n + %) heo — C% (n + %) ho (3.6.38)

= Ey +V, (3.6.39)
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3.7 summary for other attempts:

Similar attempts and some which are not related directly to this work was
done by others [34, 35, and 36]. For example in the work done An O (N)
algorithm is proposed for calculating linear response functions of non-
interacting electrons. This algorithm is simple and suitable to parallel- and
vector- computation. Since it avoids O(N®) computational effort of matrix
diagonalization, it requires only O(N) computational efforts where N is the
dimension of the statevector. The use of this O(N) algorithm is very
effective since otherwise we have to calculate large number of eigenstates,
I.e., the occupied one-electron states up to the Fermi energy and the
unoccupied states with higher energy. The advantage of this method
compared to the Chebyshev polynomial method recently developed by
Wang (L.W. Wang, Phys. Rev. B 49, 10154 (1994);L.W. Wang, Phys.
Rev. Lett. 73, 1039 (1994) ) is that our method can calculate linear
response functions without any storage of huge statevectors on external
storage. etal [47,49,57].

Also another work was done by with the use a variant of the method of
separation of the method of separation We analyze the quantum dynamics
of radiation propagating in a single mode optical fiber with dispersion,
nonlinearity, and Raman coupling to thermal phonons. We start from a
fundamental Hamiltonian that includes the principal known nonlinear
effects and quantum noise sources, including linear gain and loss. Both
Markovian and frequency-dependent, non-Markovian reservoirs are
treated. This allows quantum Langevin equations to be calculated, which
have a classical form except for additional quantum noise terms. In
practical calculations, it is more useful to transform to Wigner or +P
quasi-probability operator representations. These result in stochastic
equations that can be analyzed using perturbation theory or exact
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numerical techniques. The results have applications to fiber optics

communications, networking, and sensor technology. etal [38,49,70].

A useful work was also done by With the use of a variant of the method of
separation of variables, the initial value problem for the time-dependent
linear Schrodinger” equation is solved exactly for a large class of potential
functions related to multisoliton interactions in the vector nonlinear
Schrodinger” equation. Completeness of states is proved for absolutely
continuous initial data in L;. Copyright © 1998 Elsevier Science B.V etal
[41,61,65],

A new approach was also faceted by A new method is presented for the
solution of the time dependent Schrodinger equation, expressed in polar or
spherical coordinates. The radial part of the Laplacian operator is com-
puted using a Fast Hankel Transform. An algorithm for the FHT is
described, based on the Fast Fourier Transform. The accuracy of the
Hankel method is checked for the two- and three-dimensional harmonic
oscillator by comparing with the analytical solution. The Hankel method is
applied to the system H + H, with Delves hyperspherical coordinates and
IS com- pared to the Fourier method. 6 1985 Academic Press, Inc. etal
[43,55,59,62] .
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Chapter Four
The model of fluid and lasing equations from quantum

and statistical equation:

4.1 Introduction:

In this chapter quantum expression for the wave function in a frictional
medium has been used to derive statistical physical laws, beside fluid

laws. This link makes possibility to describe super fluid behavior.

(4.2) New Maxwell Quantum Distribution law and new

Energy relation for particle in a medium:

Schrodinger equation for particle in a finite media with uniform potential
was solved.

The solution which is based on the fact that the particle exists gives
complex and cosine wave function with energy relations different from
that of the ordinary sine solution.

Maxwell distribution law has been also found using the expression for the
wave function in a frictional medium, quantum energy average and
integration by parts, another approach has been tackled using the general
expression for quantum average and the ordinary differentiation
Keywords: Schrodinger equation, finite medium, Maxwell gquantum

distribution, friction.
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4.3Quantum and statistical laws to derive fluid and lasing

equations:
The equation of motion of a particle moving in a field of potential V and a

frictional medium with relaxation time T is given by :

dv_ dvdx_ dV_ dV m 4.3.1)
W~ ™Waxda Mar T ax ) -

Considering the practical as vibrating string

X = Xoe—i(ot
v=x = —iwx (4.3.2)
Thus:

m
mfvdv=—[dV+—[vdv

“myZ=—V +—y2 (4.3.3)

2TWi

Sine the kinetic energy oscillator is k:% mv? and the potential energy is
V:%kx2 = %moo2 = %mv2 = %mv2 =K (4.3.4)

On the other hand equation (3) yields

K
K+ V + — = constant (4.3.5)
wTi

This constant of motion is the total energy E of the system, which takes

the form

E=K+V-—=E—-— (4.3.6)
Where the non-frictional energy takes the form

E-=K+V=2K (4.3.7)
Thus

iEo

wT

F=E. —i—=K+V— (4.3.8)
wt

IF the relation time is assumed to be proportional to the periodic time T,

such that T=ar.

It follows that E=E. — i%Eo = Eo — iaoEo = K4 V — ia-E- (4.3.9)
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Therefore
PZ

E=—+V —ia.E- (4.3.10)
2m

For particle in a box Schrodinger equation in a frictional medium is given

by:
2

1 — | e — 2 o —-oo wJe
ih ot 2mv @ + Vo — ic-Eop (4.3.11)

Where Vothe potential barrier and T is a relaxation time .sing the method
of separation of variables one can write:

¢ =o@(rt) = f(Hu(r) = fu (4.3.12)
A direct substitution in equation (4.3.11) gives:

df h?2
ihu— ={ — —V?u + VeuiaeEo ¢ f
dt 2m

Rearranging gives

Y B+ Ve = — 1 v2y = E (4.3.13)

f dt 2mu

i df _

%ha = (Eo —_ Vo — laoEo)f (4.3.14)
h? 5

— EV u = E.u= Ef (4315)

The solution of equation (4.3.14) can be given by :

iEt i .
f=Aje B =Age R ETVTOr

= A e wEte REV (4.3.16)
Two possible solutions can be suggested for equation (4.3.15). In one of
them
u = A,sinax (4.3.17)

N S N _ [2mE. _ /2meE.
To get: Soacu = Eou o= = =" (4.3.18)

For a one dimensional box of length L just outside the box
lul*> = l@l* =0 (4.3.19)
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u(L) = p(x=1L) = A,sinaL. = 0 (4.3.20)

Thus : oL = nm
2,2 24212
Using (18) gives E. = hz; = hZIILr; (4.3.21)
h?n?
Eo = — (4.3.22)
The other solution of equation (4.3.15) can be
u = Ajel™ (4.2.23)
This with the aid equation (4.3.15), gives:
n2
—a“u = E.u
2m

This solution with be consist with the first solution and gives the same
energy relation when are assumes that the probability is equal are at the

bound any just inside the box at (x = L)

.e.
u(L) = Aze'*l = Ajcosal + Assinal = 1 (4.3.24)
Which requires:
Azcosal =1
Assinal = 0 (4.3.25)
This requires:
oL = 2nm =" Ay =1 (4.3.26)
Thus according to equation (4.3.18) equation (4.3.16) gives
2.:2%2
2mE._ha? =
h2 2
= (4.3.27)

This equation is not completely conforming to equation (4.3.22), the full

complete agreement requires rewriting (4.3.11) by suggesting

alL = 2nm (4.3.28)
Which also satisfies equation (4.3.27) to get again:
h2n2
o= — (4.3.29)
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Another boundary condition can be obtained by suggesting that at the
boundary just inside the box (medium) the probability of finding the
particle inside the box is finite and is equal toP- . This requires

lu(L)|? = P

u(l) = /P (4.3.30)
Thus: u(L) = Azel*t = AjcosaL + iAzsinaL + VP (4.3.31)
P- .
Ascosal = \/F , cosalL = ‘ﬁ\—: , sinaL = 0 , oL = nm
This requires: ‘Q—P—‘) = cosalL = +1 (4.3.32)
3
Where for
n=1357 cosalL = —1
And for
n=024,6 cosaL =1 (4.3.33)

This requires

A; =1P (4.3.34)
This means that u is real and is given by

u = Ajcosax (4.3.35)
But this is not consistent with the solution

u=A,sinax (4.3.36)

Since they give different probability distributions. To have solutions

typical to each other consider

u(x=1L) =iP (4.3.37)
This satisfies
lu(L)|? = P (4.3.38)

And gives also
Ajcosal + iAzsinal = i\/ﬁ (4.3.39)

This means that
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cosal = 0 Agsinal, = /P (4.3.40)

This requires

sinal = 1 A; =P (4.3.41)
alL=(n+1/2)

1
o = LT (4.3.42)

L
Which gives the energy in the form

(n+5)2h?
Eo = 2 (4.3.43)

8mlL2

Another solution based on the existence of particles inside the box can be

suqgested by assuming

u(x) = A,cosax ,Vu = oA sinax

V2u = —a?A,cosax = —a’u (4.3.44)
Inserting this expression in equation (4.3.15) gives

h2

2mE-
—a? =E.u a =
2m h

(4.3.45)

Since just inside the box at (x=L) the box at (x = L) the box the particle

exist, it flows that
lu(x = L)|?> = |AycosaL|? = Ps (4.3.46)

Which means that the probability of existence of the particle is P. . One of

the possible solution is to suggest

u(L) = Agcosal = \[P. , A, =[P (4.3.47)
cosal =1 (4.3.48)
al = 2nn (4.3.49)

According to equation (4.3.4)
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L./2mE- n?h?
= 2nm ) E. =
h 2mlL2

(4.3.50)

This solution gives the same energy from as that proposed by the
exponential solution with real wave function shown in equation(4.3.23),
(4.3.27) {see equation (4.3.27)} In view of equations (4.3.12), (4.3.16) and

(4.3.23) the wave function in excited state takes the form
@ =Ajefe " (4.3.51)
Where the collision for time t cause it to go in energy to be in an excited

state with energy E and 6

_ (Ve—Eo)T+axe

0 h

(4.3.52)

Here one assumes that all particles are in the ground state with (n =
0,E=0)

Thus when they are excited their energy is. Can write the wave function

as:
@ = Ae % (4.3.53)
Where a = a.t (4.3.54)
Ao = A,e' (4.3.55)
= fomooa_&pdE _lap f0°°ooE e 2%EdE (4.3.56)
J, @@dE  |A]? [ e"?9F dE

Using the identity: [ udv = uv — [ vdu (4.3.57)
With:

u==E dv = e 2 qu
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v = ——e2aE (4.3.58)

2a

[ Ee 2%FdE = — —
2a

—2qE |0 ; 1 ™ _oqE
) e |0+2af0 e 2%EdE

- -0
we”™®  0Oe 1 _ZaEloo
2a 2a 4a? 0

— _L —oo __ ,—0
= —-0+4+0 4a2{e e '}

1
=13 (4.3.59)
Also:
© _2aE _ _ 1 —2aE|®™
fo e 2eEJE = —e @ |0
1 —0co
=5 le™™ —e™)
_ 4.3.60
" 2a (4.3.60)
Thus:
p=2e_t 4.3.61
" 4a?  2a (4:3.61)
In view of equation (4.3.53) the wave function takes the form
_E
Thus the number of particle are given by
_E
n = (p(p = A%e"E
= n.e PE =7 (4.3.63)
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The statistical laws can also be found by using equation (4.3.56) to get

J, PE@dE _ ["nEdE [ EndE

E="5— — = (4.3.64)
J. @pdE [ ndE I

Where:

I :j ndE (4.3.65)
0

But one can write equation (4.3.64) in the form:

= dLnli dLnl dI 1 dI
==t =1 (4.3.66)

This means that {compeer (4.3.64) and (4.3.66)}

— = [EndE (4.3.67)

But from (4.3.66) [ dLnl = [ Edp-

Inl = [EdB. + C. , [ = el EdBpC = gCgl Edp:

[ =CelEdP (4.3.68)
For constant E

[ = CePE (4.3.69)
When all values are near the average value

I=CebF (4.3.70)
But from (4.2.64):

dl
I = fEdE = jndE (4.3.71)
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Thus from (4.3.70) and (4.3.71):

dl G

- = B-E — AePE
dE B © ©

n

But from (4.3.66) and (4.3.70)

1dl 1

Esz_BozT(BOI) =P

Hence from (4.272):

ollNe]

n = Ae

Another approach is based on defining [see (4.3.67)]

d
dp.

This means that:

dS

1
agz 2"

From (4.3.72) and (4.3.75)

dl dS

dE - ZaEz
Thus

1dE* dS
2 dE  dI

From (4.3.75):

_ds_ ds ds

T a1~ (4L ~ sd-
(dﬁo)dso B

E

1
S = [EndE =~ [ndE* = [

ds
dE?
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(4.3.73)

(4.3.74)

(4.3.75)

(4.3.76)

(4.3.77)



ds
? = fEdBO + C3
InS = C; + [ EdB-
S = e%ef EdB = C, of EdB: (4.3.78)

Assuming E to be independent of - , one gets:

S = C,efF (4.3.79)
Thus:
ds ds dE E (1 C4BoeP°E
_ 545 _ ,dSdE _ BE (1) = Cabee™”
n=2-2 =230 = fCuefE (2) = & (4.3.79)
n = g(E)e FE (4.3.80)

4.4 String model To Derive Continuity and Momentum Fluid
Equations from Quantum and Maxwell Distribution Laws

and Lasing Process:

Using Maxwell distribution Quantum law, and the Newtonian energy
relation continuity and momentum fluid equation was done by
differentiation the number density with respect to time and to coordinate.
The momentum equation derivation requires the coefficient of the energy
in the exponential power is equal to the thermal kinetic energy. This
conforms with the statically value proposed by Maxwell distribution but
with a positive sing.

This number density function can successfully describes lasing. This is
since it predict population inversion and intensity of amplified light.
Key words: Maxwell statistical distribution, energy, continuity equation,

momentum equation, Fluid, Energy.

4.5 String Model for Fluid Equations and Lasing:
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Consider the particles as small vibrating strings with kinetic and potential

energies given by
1

k = =mv? (4.5.1)

2
V= %kxe = %ma)zxe2 (4.5.2)
Where the effective values are related to the maximum valves according to

the relations

Ve =5 Vm o+ Xe =5 Xm (4.5.3)
Since x = x,, sinwt (4.5.4)
vV =2x = wx,, COSwt = V,,coswt (4.5.5)
Uy = WXy (4.5.6)
Thus:

v wix?
vZ = 7’“ =— = = wix? (4.5.7)

2

b4

x2 = 7’” (4.5.8)

From equations (4.5.1) and (4.5.2):
%mv2 = %mwzxe2 =V (4.5.9)
Thus the total energy E is given to be

E=K+V =2K = mv? = mv? (4.5.10)

One can also treat strings as subjected only to kinetic force such that its

energy is related to the maximum velocity,

1,
E = Emvm (4.5.11)

Where m is the mas and v,, is assumed to represent the maximum
velocity, such that the average velocity is given by:

v="2 (4.5.12)
Hence from (4.5.11) and (4.5.12) one can write the energy to be given by:

E = mv? =m(vZ + v3 + v?) (4.5.13)
Since the momentum P is given by:

P=mv (4.5.14)
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Thus one can write

E=mv.v=P.v (4.5.15)
In the x — direction
E=mv?=Pv,=P.v (4.5.16)

Now multiply both sides by the Quantum expression for the particle
density for resistive bulk matter which is given by:

n = Ae®x—BET (4.5.17)

To get

En = Pnv (4.5.18)

on

Thus Pyl —IBETL

— 4.5.19
n= 5ot (4.5.19)

onv B on N ov 4520
ox  Cox " ox (4:5.20)

= =aPn (4.5.21)

Here one assumes in (4.5.17) that P = mv is independent of coordinates

thus

P o o

Thus equation (4.5.22) and (4.5.10) beside (4.5.11) gives
onv

vk aPnv (4.5.23)
Since the matter density p is given by
p=mn (4.5.24)

And assuming uniform fluid particles with constant mass m equation
(4.5.19), (4.5.23) and (4.5.18) gives
mon _monv

Bt a dx
lopv 10p
7 Ox + EE =0 (4.5.25)

For:

a=p (4.5.26)
One gets the continuity equation
dpv dp

ox ot

The momentum equation can be derived also from number density
expression of Maxwell distribution

(4.5.27)
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n = AefE (4.5.28)
Where the mass density is given by
p = mn = mAePE = p.ehF (4.5.29)
Where the energy is given by
1
E= 5 pvi+V (4.5.30)
And
dE d(2 pV;) 4 4531
dx ~ dx dx (4:5.31)
But from (4.5.29)
d dGpv2 oV
—" = po.eﬁE {(Bza—x) + B&)} (4.5.32)
2 L2 2 L,dve V)
=Pp { Vx 592 T 2P %2 +6x} -
vy
pﬁ{ UXa +pvx6v+
d
= (4.5.33)
Since the force F is real ted to the potential according to the relation:
__ 4.5.34
 0x (4:5.34)
Rearranging (4 5.23) gives:
vy
{5 —3pvBse = puE e+ (4.5.35)
But
dpv, 0dpv, dx dpv,
= — = 4.5.36
ot ox ot % ox (4.5.36)
By using the laws of statistical physics:
L _ kT = L w2 4,5.37
Thus equation (4.5.35) gives:
eV _ 45.38
pvx ax - ax - ( e )
If one assumes that:
dvy  0vy 4530
dx  0Ox (4:5.39)
Then equation (4.5.38) gives:
dvy  Oxdv,  dvy 4540
Pl ax ~Pacax ~ Pat (4.5.40)
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Which is the ordinary momentum fluid equation .Another more direct

approach can be obtained from equation (4.5.28) to get:

p = mn-= poeBE

Where that total differentiation o .r.t.x gives:
dp dE dE

- = BE _— _—

ax PP TPy

Using the expression (4.5.20)
2

v
dE d97x+dv
dx_ dx dx

d(p—) 1 o,dp dv, 1 ,dp dx dvy
x TPV == =SV — =
dx 2 dx dx 2 dx dt dx
1 Zdy
“Uy =t
2 X dx
dv

dt
Assuming that the potential depends on x only:
dv  av
dx ~ ox
Inserting (4.5.44) and (4.5.45) in (4.5.43)
dE. 1 .dp dv,

= TP

—F

With the aid of equatlon (4.5.46) equation (4.5.32) give:

1dp _ 1 24P _
Sax = 2P xdx+(p F)p

(5=3PvD L= (0=~ F)p

Thus

1 _ 1 dv,
Ezgpvf , P =F

(4.5.41)

(4.5.42)

(4.5.43)

(4.5.44)

(4.5.45)

(4.5.46)

(4.5.47)

(4.5.48)

A third approach can also be tackled by differentiating (4.5.41) w.r.t (t)

To get:

dp dE

a - P

In view of equation (4.5.30)

dE _ 1dpvi AV _ o dve | dxdV 1 pdp

dt 2 dt dt_vxpdt+dtdx+2v dt
dvy | 1 2al_p av

_p X 4t + - vx xdx

Inserting (4.5.50) in (4.5.49) gives

84

(4.5.49)

(4.5.50)



1dp _ .4 WU O LT P
c 2=l st L v T S = oo p T+

X dx B 2 dt dt
av
=) (4.5.51)
One of the possible solutions is to set
1 1
,E = Epvx = kT (4552)

Thus equation (4.5.51) gives
dv, av._ dv _

P = T T F (4.5.53)

Which again represents the ordinary fluid momentum equation, according
to equation (4.5.28) the light intensity is given by:

I = ecnhf = cAePE(hf) = L.ePF (4.5.54)
Thus at ground state (E=0)

n=A4 (4.5.55)
But at excited state (E = o) , (n » ) (4.5.56)

Thus population inversion takes place. If one assumes that at ground state
the energy is only due to potential part. Thus state the energy is only due
to potential part.

Thus E. =V (4.5.57)
If it collide and gain Kkinetic energy:

1
E=E+ Emvz =E-+ B =E.+hf (4.5.58)
Thus from (4.5.28):
E Et

n = Aelfel = Aelen (4.5.59)
Where: ATAE =h , t(hf)=h

1
== 4.5.60

7 ( )

This means that n at excited state increases with life and relaxation time in

E which agrees with laser theory.
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4.6 Discussion:

Using the equation of motion of a particle in a frictional medium in
equation (4.3.1) a useful expression for energy of string in a frictional
medium was found in equation (4.3.8). This expression is used to find
Schrodinger equation (4.3.11) in a frictional media. Using separation of
variables for particle in a box subjected to constant potential the
expressions of the wave functions were found in equation (4.3.16) and
(4.3.17). Assuming that just outside the bulk matter (the box) no particles
exist (see equation (4.3.20)). The energy is shown to be quantized, in this
approach the spatial wave function. One can use an exponential spatial
wave function to find the same energy expression by assuming that just
inside the bulk matter the practical exists as shown by equations (4.3.24) a
new energy expression (4.3.27) is found by assuming u to be real. The
same expression in (4.3.50) can be obtained it u is a cosine function as
shown by equation (4.3.44).However it u is imaginary as equation (4.3.37)
shows another energy quantization expression is found in equation
(4.3.43).

The statistical distribution Maxwell equation can be found by using the
wave function (4.3.53) for frictional media. Using the quantum average
(4.3.56)

The number of particles was found in equation (4.3.63) by using
integration by parts. Another useful expression for Maxwell distribution
was found use ordinary differentiation and the quantum expression for
average physical quantity in (4.3.64) to get the number of particles in
equations (4.3.63) and (4.3.81).

When deriving continuity equation deals only with the relation between
the changes of fluid density with its motion. Thus the Kinetic term is
important and one can ignore the role of potential energy. This is done by
assuming that particles as in the form of strings. In this care the potential
energy effective value is equal to the effective value of the kinetic energy
as shown by equation (4.5.9). Thus equation (4.5.10) gives the total
energy, in terms of the kinetic energy. Another typical energy from can be
also found by assuming the string energy to be purely kinetic and related
to the maximum velocity as shown by equation (4.5.11). The energy
relation (16) resembles (4.5.11).
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Treating strings as travelling quantum waves moving in a medium , the
number density is given in equation (4.5.17) as function of energy and

momentum differentiating this expression w.r.t space and time the
ordinary continuity equation (4.5.27) for the fluid has been found . On the
other hand the Maxwell distribution law was derived by some of this paper
authors from quantum wave function. This expression (4.5.28) is used to
derive the fluid momentum equation. This is done by using Newtonian
energy density equation (4.5.31) , then multiplying both sides by m to find
matter density (see equation (4.5.29) .A direct differentiation of the matter

density partially w.r.t (see equation (4.5.33)) .gives fluid momentum

equation (4.5.40) This requires the parameter 8 to be equal to the kinetic
thermal energy as shown by equation (4.5.37) .this conforms with what
proposed in statistical physics . the same results can be obtained by

differentiating the matter density p w.r.t to x and ¢t totally as shown by
equations (4.5.48) and (4.5.53) .In all cases , equations (4.5.37) , (4.5.48)

and (4.5.52) shows that the parameter £ is equal to kinetic thermal energy .
these results agree with that proposal by statistical mechanics .

However the distribution law in this model has exponential coefficient
with a positive sign, which is a like that of Maxwell with a negative sing.
But for fortunately this relation can describe light amplification and lasing
process. This is very clear from equation (4.5.55) and (4.5.56), where the
number of particles in the excited state is larger than the number in the
ground state. This means that population inversion takes place.

The intensity relation in equation (4.5.54) and the number expression
(4.5.59) show also that the light intensity increases when the life time of
metastable state increases. This again agrees with the laser theories.
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(4.7) Conclusion:

The probability distribution for particle in a box or a medium with
constant potential was found for complex wave function as well as cosine
wave function using the fact that the particle exists inside the medium.
This gives new different probability distribution and different energy
relations. The Maxwell distribution was found also by using wave function
for frictional medium and quantum average as well as integration by parts.
The same distribution was found by using the quantum energy average and
ordinary differentiation laws.

Using quantum laws and statistical physical laws continuity equation and
momentum were derived. A new statistical law capable of describing
lasing process was also obtained.

It is very interesting to note that the fluid equations being derived from
quantum and statistical physics laws and being free from frictional term
can suitably describe super fluids.
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