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Abstract 

       The application of Adomian’s decomposition method and its 

modifications to partial differential equations, when the exact solution is not 

reached, demands the use of truncated series. But the solution’s series may 

have small convergence radius and the truncated series may be inaccurate in 

many regions. In order to enlarge the convergence domain of the truncated 

series, Pad´e approximants technique is applied to partial differential 

equations, particularly to Boussinesq equations to find explicit and travelling 

waves solutions. Graphical illustrations were used to show that this technique 

can enlarge the domain of convergence of Adomian’s solution. It is also 

showed that the solution accuracy can be improved by increasing the order of 

the Pad´e approximants. In this thesis, besides graphical illustrations, also 

numerical results are presented to show that this technique can not only 

enlarge the domain of convergence of the solution but also improves its 

accuracy even when the actual solution cannot be expressed as the ratio of two 

polynomials. 
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 الخلاصة

يهدف هذا البحث الى عرض طريقة أدوميان وتحديثاتها على المعادلات التفاضلية         

  .(معادلات بوزنسكالغير خطية ) الجزئية

طريقة أدوميان تعطى الحل في شكل متسلسلة وعندما يكون الحل غير منتظم نلجأ الى 

إقتطاع المتسلسلة وفي هذه الحالة يكون التقارب الى الحل غير دقيق في كثير من الحالات, 

خلال  ,لإيجاد تقريب منتظم للحلة ومن أجل زيادة دقة الحل إستخدمنا طريقة بادي التقريبي

حلها بطريقة  بعدد من الطرق , ومن ثم بوزنسكمعادلات  علىهذا البحث تم  الحصول 

  .ان المحسنة , كما إستخدمنا تحويلات لابلاس وبعض التحويلات الأخرىأدوميان و أدومي

النتائج أظهرت أن إستخدام تقنية بادي أدت الى تحسين طريقة أدوميان و أعطت الحل 

 المضبوط بإختيار عدد محدود من حدود المتسلسلة.
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Abbreviations 
 

BTMs                  Boussinesq-type Models  

 NSWEs               Non-linear Shallow Water Equations  

IBq                       Improved Boussinesq  

AP`s                    Adomian Polynomials  

ADM                   Adomian Decomposition Method 

MADM               Modified Adomian Decomposition Method 

IADM                 Improved Adomian Decomposition Method 

LADM                Laplace Adomian Decomposition Method 

STM                   Sumudu Transform Method  
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 Introduction  

 

   Nonlinear partial differential equations are encountered in various fields of 

mathematics, physics, chemistry, and biology, and numerous applications. 

One of the crucial problems in the theory of partial differential equations 

(PDEs) at its early stages in the eighteenth and nineteenth century was finding 

and studying classes of important equations that were integrable in closed 

form and, in particular, possessed explicit solutions. It seems that the first 

general type of explicit solutions were traveling waves in d’Alembert’s 

formula for the linear wave equation. Many famous mathematicians, such as 

Euler, Lagrange, Liouville, Sturm, Laplace, Boussinesq, and others developed 

various techniques for obtaining explicit solutions of a variety of linear and 

nonlinear models from physics and mechanics. Their methods included a 

number of particular transformations, symmetries, expansions, separation of 

variables, etc. 

     The Boussinesq equations described here are model equations for 

propagation of long waves. The Boussinesq equations are named after the 

French scientist J. Boussinesq who derived a version of the equations to find 

solutions for solitary waves on a water surface. Later, Boussinesq equations 

have been presented in many different versions, and there is no strict assent 

concerning the use of “Boussinesq equations” in relation to a single set of 

equations or group of equations. 
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Chapter 1 

Literature Review 

 

1.1 Introduction   

       Over the last years, Boussinesq-type models (BTMs) have enjoyed 

increasing favor within the coastal engineering community. The main reasons 

for this are the optimal blend of physical adequacy (i.e. their ability to 

represent all main physical phenomena) and computational ease (i.e. their 

numerical cheapness). Hence, Boussinesq- type equations (BTEs), beating the 

competition of non-linear shallow-water equations (NSWEs), have become 

the most favored approximations of Navier–Stokes equations for coastal-type 

computations [2]. 

     Such computations are essential tools for any design activity in which 

water waves play a significant role. Examples of such activities can be found 

in the field of off shore engineering (design of off shore platforms, pipelines, 

underwater cables, etc.), near-shore engineering (design of harbors, coastal 

defense structures, etc.), and environmental management (evaluation of 

morphodynamic evolution, assessment of pollutant and nutrients flows, etc.). 

Applications are now also increasing in the field of riverine engineering. 

 1.2. Fundamentals of BTMs  

The fundamentals of BTMs are proposed here using a schematic approach, 

which aims at highlighting the fundamental principles of the modelling and 

the initial applications of the models [2].  
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 1.2.1 The Modelling 
Any BTM to be used for predictive purposes is built by: 

 proper account of the physics to be described (e.g. wave propagation) 

 choice of the most suited model equations (e.g. best description of 

nature or idealized dynamics); 

 use of appropriate boundary conditions (BCs) 

 use of the most suited numerical methods for the chosen equations 

and BCs 

1.2.2 The Approach 

The above fundamental ingredients of any BTM can be balanced as functions 

of the chosen modelling approach. The following two main approaches can 

be singled out, which largely depend on the scientific community. 

 Mathematicians use model equations for inspection of mathematical 

behaviour (integrability, symmetries, etc.)  

 Physicists/engineers use equations derived from physical arguments 

and for practical applications. In this case, many fundamental physical 

phenomena are to be accounted for and mathematical properties are 

subordinate to physical requirements. 

1.2.3 The Model Equations 

We use a Cartesian coordinate system with the *x and *z  axes lying on the 

still-water level and, respectively, pointing seawards and upwards, i.e. 

* 0x  gives the still-water shoreline (figure 1.1). In the following, asterisks 

are used to label dimensional quantities, whereas plain variables give 

dimensionless quantities.   
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Figure 1-1. sketch of the flow over the bottom boundary layer (dotted line)  

Neglecting boundary-layer dynamics (i.e. modelling the flow above the 

dotted line of figure 1.1), a vast majority of BTEs of the above-mentioned 

classes can be formally written as follows:                                                                                                                         

                .[ ] 0t Hd u d                                                                          (1.1) 

2

, rotational contributions][ ] [t H Hud d u d  

2 2[ ( , , , ) rotational and turbulence contributi 0,]onsn u h               (1.2)      

Closure equations for vorticity and turbulence                                           (1.3) 

2 2 2

2

2 2 2

2 2 2

1
, , , , ,H H

a
kh d h

h x y z
       (1.4) 

a  is a reference wave amplitude, k is the wave number and the comma denotes 

partial differentiation. The continuity equation (1.1) is exact, whereas the 

momentum equation (1.2) is given in conservation form. Equations (1.3) and 

(1.4) are solved for the total water depth (d) and for a reference velocity (u ) 
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once closures (1.3) are given. Because these may be of many different forms, 

they are given here by a generic formal representation. As for all BTEs, 

solution of the system (1.1)–(1.4) is a function of the size of the wave 

nonlinearity ( )  and frequency dispersion (μ) parameters. 

 

Figure 1.2 example of a contour map of harbor water oscillations     

1.2.4. Early Applications: Harbor Waves 1 

The first applications of BTMs to real-life problems date back to the 1970s 

and 1980s, and were related to the description of harbor free-surface 

oscillations. Such oscillations may cause excessive ship motion and 

negatively interfere with loading and unloading operations at port facilities. 

Hence, predictions of such oscillations (e.g. figure 1.2), of the related ship 

motions and mooring forces were made by means of weakly nonlinear and 

weakly dispersive BTMs 
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1.3. Applications 

The advances and progress in BTMs can be described not only through the 

analysis of the physical, mathematical and numerical ingredients that are used 

to build a specific model, but also on the basis of the actual applications of the 

models. The most important are described here through some examples whose 

illustration have been made available. 

1.3.1 Harbor Waves 2 

Harbor waves and ship motions have been the object of BTMs because their 

initial application is still being studied by means of BTMs. Figure 1.3 

illustrates the harbor wave fields induced by wind waves. 

 

Figure 1.3 Harbor waves. (a) Funwave wave simulation in Ponce de Leon 

Inlet (courtesy of J. T. Kirby & F. Shi) and (b) finite volume modelling of 

random directional waves into a harbor (courtesy of P. Lynett). 
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1.3.2 Complex Bathymetries 

Much more testing are applications associated with the propagation of waves 

over complex bathymetries. For these computations, most of the 

characteristics of the models are put under serious scrutiny, such as, for 

example dispersive properties, shoaling behavior and interaction with 

possibly steep slopes. Other properties of importance for this sort of 

computations are the wave–wave interaction (e.g. at the lee side of an 

obstacle) and the existence of multiple shorelines. The latter mechanisms are 

visible in figure 1.4 

 

Figure 1.4 Finite-volume modelling of a plane wave interacting with a 

conical island (courtesy of V. Roeber, K. F. Cheung and M. H. Kobayashi). 

1.3.3 Tsunamis 

Because of the growing societal impact of tsunami waves and in virtue of the 

modelling improvements made over the last 30 years, applications of BTMs 

to the description of the evolution of tsunamis are growing. Although, 

theoretically appropriate only for the far-field modelling of such long waves 

(i.e. far from the generation point of the tsunami wave), BTMs are practically 

being used to describe tsunamis over their entire lifespan. Figure 1.5 illustrates 

the computations of laboratory solitary waves. 
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1.3.4 Flow Mixing 

Another recent application of BTMs is in the field of study of shallow-water 

turbulence and water quality management. BTMs are being used to run 

numerical experiments whose outputs are used both to analyses Lagrangian 

statistics of a large number of water particles and to assess the main 

characteristics of the horizontal flow mixing. 

 

Figure 1.5 BTE NSWE, finite-difference modelling of solitary wave run-up 

(courtesy of A. G. L. Borthwick, J. Orszaghova and P. H. Taylor  

1.3.5 Morphodynamics 

One fundamental field of application of BTMs is near-shore morpho- 

dynamics used in conjunction with simplified morphological evolution 

equations (i.e. Exner equations) and simplified sediment transport closures, 

BTMs have been used to model many specific features of the near-shore 

sediment transport, morphodynamics and morphology. Erosion and 

accretion of a sandy beach (figure 1.6 a , b) as well as water infiltration/ 
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exfiltration at a porous beach (figure 1.6 c , d) are among the most typical 

morphodynamic computations made with BTMs. 

 

Figure 1.6 Morphodynamic modelling. (a,b) Application of Karambas & 

Koutitas’s model for erosive (a) and accretive (b) conditions (adapted from 

Karambas& Koutitas) .(c,d) Evolution of a porous beach by the model of Xiao 

etal. Seabed profiles at initial stages (c) and corresponding morphological 

changes (d). Adapted from Xiaoeta. SWL: still water level. 
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1.4 Numerics 

Once the physics of interest and the mathematics in use have been described, 

the final aspect to be analyzed is the numerics used to carry out suitable BTM 

computations. This aspect, which was a specific target of the original 

international Conference on Coastal Engineering talk, is discussed in some 

detail. 

1.4.1 Early Approaches 

A brief overview is here given of the numerical approaches used before the 

2000s, when finite volumes (FVs) became the dominating method. 

(a)  Finite differences (FDs) 

This approach has found much favor because of the wealth of specific 

literature available and because of the ease of application, as it is a rather 

intuitive approach for writing difference equations. The best-known FD 

scheme used in BTMs is that initially proposed by Abbott et al., and 

subsequently used by many authors. In brief, the differential equations were 

discretized using a time-centred implicit scheme with variables defined on a 

space-staggered rectangular grid. The method is based on the alternating 

direction implicit algorithm. 

(b)  Finite elements (FEs) 

This method has found less favor than the FD method because it is relatively 

more difficult to implement. However, its excellent performances in dealing 

with complex geometries suggested its use in the case of confined water 

bodies (e.g. harbors). The early FE BTMs relied on the Galerkin-weighted 

residual method and used linear shape functions for interpolation. 
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1.4.2 Finite Volumes 

A more detailed analysis is dedicated to the description of the use of FVs in 

BTMs because such an approach, which makes the most of the wealth of 

knowledge in the integration of hyperbolic equations 

In the majority of currently available FV BTMs: 

i. Weakly nonlinear BTEs are integrated. Examples of exceptions are the 

models of Kim et al. and Shi et al, which integrate fully nonlinear 

equations. 

ii. FV methods are used for the conservative (left-hand side) part of the 

equations, while FD schemes are used for the source terms SB and SD: 

hybrid FV–FD models. Examples of exceptions are the models of 

Roeber et al., Roeber & Cheung and Dutykh et al, which use fully FV 

methods. 

iii. The data reconstruction (averages) is performed by means of the fourth-

order monotone upstream-centred schemes for conservation laws 

(MUSCL) method. Examples of exceptions are the models of 

Cienfuegos et al.( Padè interpolation) and Roeber et al 

(multidimensional limiting process). 

iv. The flux computation is performed by using the approximate Harten, 

Lax and Van Leer finite volume scheme (HLL) and the Harten, Lax and 

Van Leer finite volume scheme for contact waves 

(HLLC). Examples of exceptions are the models of Erduran et al (Roe 

scheme), Roeber et al.and Dutykh et al (various schemes). 

v. The time stepping is performed by either the fourth-order predictor-

corrector Adams– Bashforth–Moulton (ABM) scheme or the Runge–

Kutta scheme Examples of exceptions are the models of Ning et al.and 
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Shiach & Mingham (second-order MUSCL–Hancock, claiming second 

order is enough for time stepping).  

  1.4.3 Finite elements 

Although still lagging behind FV methods, FE methods are increasingly being 

applied to modern BTMs in virtue of the power and flexibility of the 

discontinuous Galerkin (DG) approach. For the sake of simplicity, the 

derivation of the scheme is briefly given starting from a simple, generic, scalar 

conservation law, 

( ) , ,t x xu A u S x u V   

The main steps can summarized as follows. 

a. Define the FE subdivision of the domain 

1

, ,
I

i h h

i

V V V Subspace such that ,( )i iu u x t   

b. Use of local basis functions. The DG approach makes use of 

elemental basis functions. 

         1,2 ; ,( ),
i i

x h p p  power of the polynomial functions  
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Figure 1.7 Propagation of waves over a semicircular shoal by the model of 

Eskilsson & Sherwin. (a) Snapshot of surface elevation. (b) Wave amplitude 

for first, second and third harmonics along the centre line.Adapted from 

Eskilsson & Sherwin. 
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    Among the important models and applications, the following can be 

mentioned. 

a. The model of Eskilsson & Sherwin. This solves the equations by 

Madsen & Sørensen using the HLLC scheme for the IF. The model 

performances are assessed here on the basis of the propagation of waves 

over a semicircular shoal (figure 1.7a). In particular, the amplitudes of 

the first three harmonics obtained from the model are compared with 

those from the laboratory experiments of Whalin to show a fairly good 

match (figure 1.7b). 

b. The model of Engsig-Karup et al. This model solves the equations of 

Madsen et al. through a Lax–Friedrich scheme for the IF. Application 

of the model to the scattering of linear waves about a vertical cylinder 

in open water and comparison with the analytical solution owing to 

McCamy & Fuchs reveal the good performance of the model. 
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Chapter 2 

The Boussinesq Equations 

 

2.1 Indroduction 

    The Boussinesq equations are named after the French scientist  

J. Boussinesq who derived a version of the equations to find solutions for 

solitary waves on a water surface. Later, Boussinesq equations have been 

presented in many different versions, and there is no strict consensus 

concerning the use of “Boussinesq equations” in relation to a single set of 

equations or group of equations.  

There are several basic assumptions for simplified descriptions for waves, 

such as small amplitude, slowly varying medium, and large wavelength. For 

surface gravity waves, the simplest form of long-wave equations is the 

shallow water equations which require that the waves are much longer than 

the depth. This implies that the pressure distribution is hydrostatic. The 

Boussinesq equations extend the shallow water equations by including the 

leading correction to hydrostatic pressure due to the vertical acceleration, 

while nonlinearity is retained, either approximately or fully.  

2.2 The Mathematical Model 

The starting point for modelling water waves is the incompressible Navier-

Stokes equations. However the numerical solution of these equations,  

a three-dimensional problem with a free-surface boundary, is extremely  

complex and it is usual to make some simplifying assumptions before the 

 numerical solution is attempted [3]. 
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The Boussinesq equations describing shallow water flow are derived from the 

incompressible, irrotational Euler equations for simplicity of presentation 

only two spatial dimensions are considered; ( , )x z  being horizontal and  

vertical respectively. The z coordinate varies between the free surface 

( , )x t  and the sea bed ( )h x  with the origin taken at the still-water depth. 

The frame of reference is illustrated in Figure 2.1 

 

  Figure 2.1 .The frame of reference. 

2.3 Derivations of the Boussinesq Equations  

       Boussinesq equations can be derived in a number of ways: One  

classical approach (followed by e.g. Peregrine, 1967) is to use depth-

integration of the continuity and Euler equations, a procedure which involves 

the determination of the pressure by integration of the vertical Euler equation. 

Another classical approach (followed by e.g. Boussinesq, 1872; Mei and 

Mehaute, 1966; Svendsen, 1974; Mei, 1983) is to use the Laplace equation 

combined with the dynamic and kinematic free surface boundary conditions 

formulated in terms of the velocity potential. 
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2.3.1 Boussinesq’s (1872) Derivation 

We consider the original method of derivation for horizontal bottom, due the 

Boussinesq (1872).The Boussinesq equation is built from the following 

system of equations [4]: 

        

2 2

2 2
0 ( , )for h z x t

x z

 


 
    

 
                              (2.1) 

        

2 2
1

0 at ( , )
2

gz z x t
t x z

  


      
        

       
                              (2.2) 

        at ( , )z x t
t x x z

   


   
  

   
                            (2.3) 

        0 at
h

z h
x x z

   
   

  
                            (2.4) 

These express the Laplace equation, dynamic and kinematic free surface 

condition and the boundary condition on ( )z h x   respectively. 

Integrating of the Laplace equation (2.1) twice respect to z yields (use the 

kinematic bottom condition 0
z





 at )z h         

    

` 2

0 2
( , , ) ( , ) `

z z

h h

x z t x t dz dz
x


 

 


 

                                            (2.5) 

Where 0 ( , , )x h t    is the value of the potential at the bottom. For the 

shallow water the velocity  
x




 is not much different from the velocity at the 
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bottom, 0

x




.Taking also the horizontal acceleration to be nearly equal to its 

value at the bottom i.e setting 0   in the integral, one obtain from (2.5) 

                  
2 2

0
0 2

( )
( , , ) ( , )

2

z h
x z t x t

x


 

 
 


                                         (2.6) 

By substituting this approximation back into the integral (2.5) one obtain next  

2 2 4 4

0 0
0 2 4!

( ) ( )

!
( , , ) ( , )

2 4

z h z h
x z t x t

x x

 
 

   
  

 
                                   (2.7) 

Substitute (2.7) in the dynamic and kinematic free surface condition (2.2) and 

(2.3), from which the following two equation in ( , )x t  and 0
0 ( , )u x t

x





when the quadratic terms in  and u are kept, 

            
2 3

0 0 0
0 22

u u h u
u g

t x x x t

   
  

    
                                                 (2.8)      

            
3 3

0 0

3

(( ) )

6

h u h u

t x x

    
 

  
                                                                    (2.9) 

Equation (2.8) (2.9) were obtained by Boussinesq (1872). Without the right 

hand side the classical shallow water equation are obtained  

               0 0
0 0

u u
u

t x x

  
  

  
                                                                 (2.10) 

               0(( ) )
0

h u

t x

   
 

 
                                                                   (2.11) 
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2.3.2 Derivation by Expansion of the Velocity Potential                                              

Equations (2.1)-(2.4) are written in dimensionless form with , , ,x z t  and 

h made dimensionless in the same way as in (2.31) the velocity potential   

is scaled with 0gh  (   a typical wave length). After introduction also 

the scaling    and    with 0/ 1a h    (   ratios) the 

dimensionless equations are (dropping the distinction between dimensional 

and dimensionless variables) [4]:  

2 2

2 2
0 ( ) ( , )for h x z x t

x z

 
 
 

    
 

                       (2.12) 

 

2 2
1 1 1

( , )
2 2

z at z x t
t x z

  
   



      
       

       

                   (2.13) 

( , )at z x t
t x x z

   
  

    
       

                  (2.14)  

0 ( )
h

at z h x
x x z

 

  

   
  

                                               (2.15) 

Where  

2

2 0 1
h

 


 
   

 
  

Notice that a factor   appears in the continuity equation. This shows that 

differentiation of   to z  necessarily introduce an ( )O   effect. 

The velocity potential   is expanded as  

                      
0

( , , ) ( ) ( , )n n

n

n

x z t z h x t  




                    (2.16) 

It is noted that 0 (1)O   due the normalization .The derivatives of   directly 

follow from (2.16) one has 
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0

1

0

1

0

2
2

22
0

2 2

1
12 2

0

2 2

( )

( ) ( 1)

( ) ( 1)

( ) ( 1)( 2)

( ) [ ( 1) 2( 1)

( 1)( 2)

n n n

n

n n

n

n

n n n
x n

n

n n

n

n

n n n n
xx n x

n

x

z h
t t

z h n
z

z h n h
x x

z h n n
z

z h n h n h
x x x

n n h

 



 

 
  


  

  
   

 




















 
 

 


  



  
      


   



  
      

  

 











1]n

  

       It can be seen that in the expressions for 
x




 and 

2

2x




 the extra factors 

 always occur in the combination x xxh or h  , where as in those for 
z




 

and 
2

2z




 they occur in the combination 1n   and 2

2n  
.This clear shows 

that 
z




 is not of ( ) ( )O in  .In present normalization we have (1)xh O  and 

therefore the combination xh always occurs because the physical bottom 

slope is ( )O   . 

Substituting the expansion (2.16) in the continuity equation (2.12) and  

collecting equal powers of ( )nz h  leads to the following recursion formula 

 

2

1
12

2 2

( 1) 2( 1)
, 0,1,2,...

( 1)( 2)(1 ( ) )

n n
xx n x

n

x

n h n h
x x n

n n h

 
  









 
   

  
  

         (2.17)  

From the bottom condition is obtained     

                   0
1 21

x

x

h

h x

 





 

 
                           (2.18) 
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It follows from (2.17) that 2 ( )n nO   ; from (2.18) it can be seen that

1 ( )O  . Because we have 0 (1)O   we thus obtain the order estimates       

2 2 1(1) ( ) 0,1,2,...n nO and O for n             (2.19)                                            

Substitution of the expansion (2.16) in the dynamic and kinematic free surface 

conditions (2.13) and (2.14) yields after neglection of 2( , )O    terms the 

following two equations  

2

2 20 1 2 0

2 3 20
1 2 3 4

1
( , ) 0

2

1
2( ) 3 4 ( , )

h h O
t t t x

h h h O
t x x

   
     

  
         



    
      

    

  
      

  

   (2.20) 

Using the recursion formula (2.17) and (2.18) it is possible to express 

2 3 4, and    in terms of 0 .To the necessary order of magnitude is obtained. 

0
1 2

1

1

x

x

h

h x




 


 

 
  

2 2
20 0

2 2 2 2 2 3

1 1 3
( )

2 (1 ) 2 (1 )

x x xx

x x

h h h
O

h x h x

   
 

 

  
   

   
 

3 2
20 0 0

3 2 2 3 2 3 2 2 4

1 1 1
( )

2 (1 ) 2 (1 ) 6 (1 )

x xxx xxx

x x x

h h h
O

h x h x h x

     
 

  

  
   

     
 

4
20

4 2 4 4

1 1
( )

24 (1 )x

O
h x


  




 

 
 

          After expansion of the denominators, the above results for 1  to 4  are 

substituted into Eqs. (2.20). After differentiating the first equation to x and 

introducing the notation 0
mu

x





 the following Boussinesq-like set of 

equations results: 
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3
2

2

2
2 2

1

2

( ) 2 ( , )

m m m
m

m m
x xx x

u u u
u h

t x x t x

u u
h hh hh O

t t x


 

   

   
  

    

 
   

  

                         (2.21) 

 
3

3

3

2
3 2 2 2

2

1
( )

6

3 3
( ) ( , )

2 2

m
m

m m
x xx x

u
h u h

t x x

u u
h h h h h O

x x


 

   

  
  

  

 
   

 

 

This set of equations has been derived for a flat horizontal bed; that is the 

mean depth h is a constant independent of position x . (2.21) reduce to     

3
2 2

2

1
( , )

2

m m m
m

u u u
u h O

t x x t x


   

   
   

    
          (2.22)                              

 
3

3 2

3

1
( ) ( , )

6

m
m

u
h u h O

t x x


   

  
   

  
                 (2.23) 

 

2.3.3 Peregrine Derivations 

The governing equation system is comprised of horizontal momentum, 

vertical momentum, incompressibility and irrotationality equations 

respectively. These equations are written in terms of the two dimensional 

velocity field ( , )u w  pressure p  , constant density   and acceleration due to 

gravity g  with respect to the coordinate system ( , )x z  and time t [3] 

      
1

0
u u u P

u w
t x z x

   
   

   
                                                                   (2.24) 

      
1

0
w w w P

u w g
t x z x

   
    

   
                                                      (2.25) 
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        0
u w

x z

 
 

 
                                                                                              (2.26) 

       0
u w

z x

 
 

 
                                                                                              (2.27) 

At the free surface ( , )z x t  there are a kinematic boundary condition: 

0w u
x t

  
  

 
                                                         (2.28) 

and 

0p                                                                                          (2.29) 

The kinematic boundary condition on ( )z h x  is now 

0
h

w u
x


 


                                                                      (2.30) 

      The parameters  , g and H are chosen to non-dimensionalise the system  

variables, where H is a typical water depth eg. the average depth. 

                       

( , , , ) ( , , , )

( , ) ( , )

, /

x z h H x z h

u w gH u w

p gHp t H gt

 







 

                                   (2.31) 

      Variables are scaled in order to make their magnitude explicit. An (*) is 

used here to denote non-dimensional scaled variables. 

                              
* *,t t x x   , 

* 



 , 

                              
* *,

u w
u w

  
                                                                  (2.32) 

All other variables are assumed to have scaling factors of one.    
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Inserting these new variables into the equations (2.24)-(2.27) gives, 

* *
2 * 2 *

* * *
0

u u u P
u w

t x z x
  
   

   
   

                                                (2.33) 

* * *
2 2 2 * 2 2 *

* *
1 0

w w w P
u w

t x z z
    

   
    

   
                               (2.34) 

* *

*
0

u w

x z

 
 

 
                                                                                       (2.35) 

* *
2

*
0

u w

z x


 
 

 
                                                                                   (2.36) 

At the free surface 
*z   the boundary conditions (2.28) and (2.29) become  

* *
* *

* *
0w u

x t

 


 
  

 
                                                  (2.37) 

and  

0p                                                                                     (2.38) 

At the bed z h   the boundary condition (2.28) becomes,  

* *

*
0

h
w u

x


 


                                                           (2.39) 

Peregrine was derived the Boussinesq equations by expanding equations 

(2.33)-(2.36) in terms of the small parameters  and  . 

    Integrating equation (2.35) with respect to z  and applying Liebnitz’ Rule 

gives  

* *

*

z z

h h

w u
dz dz

xz
 

 
 

    
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* * * * *

* * *

( )
| | | |

z

z zh h

h

h z
w w u dz u u

x x x 



   
    

     

Using the boundary condition (2.39) at z h  , and the fact that the  

coordinates *x and z  are independent gives, 

* *

*

z

h

w u dz
x




 

                                                                         (2.40) 

The vertical velocity 
* |zw  is simply denoted 

*w  Substituting equation (2.40) 

in equation (2.36), and integrating with respect to z   

* *
2

*

u w

xz


 



  

2

2
2 *

*

z

h

u dz
x








                                                              (2.41) 

* * * * 2

0 ( , ) ( )u u x t O                                                                             (2.42) 

Where 
* * *

0 ( , )u x t an arbitrary function of *x and 
*t introduced by the  

integration. Equation (2.42) therefore implies that 
*u  is independent of z to 

2( )O   Substituting equation (2.42) in equation (2.40) and using the  

independence of 
*u from z to evaluate the integral leads to an expression for 

the vertical velocity  

* * * * 2

0*
( , ) ( )

z

h

W u x t dz O
x





  

    

* 2

0*
(( ) ) ( )z h u O

x



   


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* *
20 0

* *

( )
( )

u hu
z O

x x


 
   

 
                                                                       (2.43) 

Substituting equation (2.43) in equation (2.36) and integrating with respect to 

z  obtains an expression for 
*U   

2 2

* 2 * 2 *
2 40 0

* *

( )
( )

u u hu
z O

z x x
 

   
    

   
                                            (2.44) 

2 2

2 2 * 2 *
* * * * 2 40 0

0 * *

( )
( , ) ( )

2

z u hu
u u x t z O

x x
 

  
    

  
                         (2.45) 

Equations (2.34) and (2.43) are now used to obtain an expression for the 

pressure. 

*
2 2 2

*

2 * 2 *
2 2 2 40 0

* * * *

1 ( )

(
1 ( , )

p w
O

z t

u hu
z O

x t x t

  

   

 
   
 

  
     

    

  

This is integrated with respect to z  from an arbitrary depth z  to the free  

surface 
*   

 

*
*

*
2 2 * 2 *

2 2 2 40 0

* * * *

( )
( , ) (2.46)

2 z

z z

p z u hu
dz z z O

z x t x t




   
   

      
     
   

The boundary condition (2.38) gives *| 0.p

  Denoting |zp  simply as p  and 

expanding the right hand side terms, noting that evaluation at 
*  introduces 

only 
2 2( )O    terms, gives,  
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2 2 * 2 *
2 * 2 2 40 0

* * * *

( )
( , )

2

z u hu
p z z O

x t x t
    

  
     

    
          (2.47) 

The expressions for 
* *,w u and p  are substituted in the horizontal momentum 

equation (2.33) rearranging the terms and collecting the high order terms in 

 and  on the right hand side,  

* * *
* 2 40 0
0* * *

( , )
u u

u O
t x x


  

  
  

  
                                                 (2.48) 

Now define the depth averaged velocity,
* * *( , )u x t , in terms of the velocity 

field 
* * *( , , )u x z t   

 

*

* *

*

1

h

u u dz
h







                                                         (2.49) 

Substituting from equation (2.45) and rearranging the terms to separate out 

higher order terms in  and   

2 2

* 3 3 2 * * 2 2 2 *
* * 2 40 0
0* * *

1 ( ) ( ) (
( ) ( )

6 2

h u h hu
u h O

h x x

 
  



        
                 

  

2 2

2 3 2 * 2 2 *
* 2 40 0
0 * * *

( )
( , )

6 2
1

h u h hu
u O

x x
h

h


 




  
    

     
 

  

2 2

2 2 * 2 *
* 2 2 40 0
0 * *

( )
( , )

6 2

h u h hu
u O

x x
  

  
    

  
                                      (2.50) 

from equation (2.39)  
* * 2

0 ( )u u O     
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2 2

2 2 * 2 *
* * 2 2 40 0
0 * *

( )
( , )

6 2

h u h hu
u u O

x x
  

  
    

  
                               (2.51) 

Substituting this in equation (2.48) obtains the momentum equation in the 

Boussinesq system  

2 2

* * * 2 2 * 2 *
* 2 2 4

* * * * ** *
( , )

6 2

u u h u h u
u h O

t x x t tx x


   

          
        

         
     (2.52) 

    To obtain the second equation of the Boussinesq system equation (2.35) is 

integrated through the depth. 

*
* *

*
0

h

u w
dz

x z





  
  

  
                                                           (2.53) 

Using Liebnitz’ Rule, the boundary conditions (2.37) and (2.42) and the 

definition of the depth averaged velocity (2.49),  

*

* *

*
* * * * *

* * *

( ) ( )
| | | | 0h h

h

h
u dz u u w w

x x x



 


 



   
    

     

*
* *

* *
(( ) ) 0h u

x t




 
  

 
                                                               (2.54) 

Returning the variables to dimensional, unscaled form via the transformations 

defined before, gives the Boussinesq equation system, 

2 3 3

2 2

( )
0

6 2

u u h u h hu
u

t x x x t x t

    
    

      
                                           (2.55) 

(( ) )
0

h u

t x

   
 

 
                                                                                    (2.56) 
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(2.55) and (2.56) can be reduced to a single partial differential equation for 

the free surface elevation ( , )x t  by depth h  scales to1.differentiating the 

(2.55) to x and (2.56) to ,t a subsequent subtraction yields. 

2 2 2 2 2 4

2 2 2 3

( ) 1 ( ) 1 ( )

2 3

u u u

t x t x x t x

      
    

      
                                                   (2.57) 

To obtain an equation is either u or  alone, assume ( )u O          

2 2 2 2 2 2 4

2 2 2 3

( ) 1 ( ) 1 ( )

2 3

u u u u u

t x t x x t x

    
    

      
                                       (2.58) 

by applying t x    by using cos cos sin sinu A t x B t x   ,A B constants 

in the last (nonlinear) term in the right-hand side we get 

          
2 2 2 2

2

2 2 2 2

1 1

2 3

u u u
u

t x x x

    
    

    
                               (2.59) 

And the generalized form given by  

( ( )) 0tt xx xx xxxxu u f u u                                                          (2.60) 

where | | = 1 is a real parameter. Setting  = −1 gives the good Boussinesq 

equation (GB), while by setting = 1, we get the bad Boussinesq equation. 

2.4 The improved Boussinesq Equation 

From (2.47) by applying in the first (nonlinear) term in the right-hand side and 

applying x t    once in the last term. Then the term xxu , is replaced with 

t tu this gives the so called improved Boussinesq (iBq) equation[18,19]:  
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2 2 2 2

2

2 2 2 2

3 1

2 3

u u u
u

t x x t

    
    

    
                            (2.61) 

And the generalized form given by [20]  

                ( ( )) 0tt xx xx xxttu u f u u                                                          (2.62) 

Similarily, using an analogous characterization used for Boussinesq equation 

(2.48), the IBq equation for  = −1 will give the good (GIBq), while for  

 = 1 the bad (BIBq) equation [54,55,56].  
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Chapter 3 

Adomian Decomposition Method (ADM) 

 

3.1 Introduction 

   In the beginning of the 1980’s an American mathematician named George 

Adomian presented a powerful decomposition methodology for practical  

solution of linear or nonlinear, including ordinary differential equations, 

partial differential equations, integral equations, integro-differential 

equations, etc. The Adomian decomposition method or in short ADM is a 

powerful technique, which provides efficient algorithms for analytic 

approximate solutions and numeric simulations for real-world applications in 

the applied sciences and engineering. It permits us to solve both nonlinear 

initial value problems (IVPs) and boundary value problems (BVPs) without 

unphysical restrictive assumptions such as required by linearization, 

perturbation. The accuracy of the analytic approximate solutions obtained can 

be verified by direct substitution. A key notion is the Adomian polynomials, 

which are tailored to the particular nonlinearity to solve nonlinear operator 

equations. 

3.1.1 Advantages of the Method 

Advantages of the Adomian’s decomposition method applied to many linear 

and nonlinear problems are emphasized by many authors. Common analytical 

procedures, to solve nonlinear differential equations, linearize the system or 

assume that the nonlinearities are relatively small, transforming the physical 

problem into a purely mathematical one with an available solution. This 
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procedure may change the real solution of the mathematical model which 

represents the physical reality. Generally, the numerical methods are based on 

discretization techniques, and permit only to calculate the approximate 

solutions for some values of time and space variables, which has the 

disadvantage of causing overlooking for some important phenomena 

occurring in very small time and space intervals, such as chaos and 

bifurcations. Perturbation methods may only be applied when nonlinear 

effects are very small [6]. 

     Adomian’s method does not require discretization of the variables.  

Hence, the solution is not affected by computation roundoff errors and the 

necessity of large computer memory. Moreover it does not require 

linearization or perturbation, and, therefore it does not need any modification 

of the actual model that could change the actual solution, being very efficient 

on determining an approximate or even exact solution in a closed form, on 

both linear and nonlinear problems, minimizing in many cases the 

computational work. 

    Another advantage of Adomian’s decomposition technique is that it 

provides a fast accurate convergent series, being this the reason why it is only 

necessary a small number of terms to obtain an approximate solution with 

high accuracy. 

3.2 Adomian Decomposition Method in Mathematical Form 

A brief description of the ADM follows along with a list of the necessary 

Adomian Polynomials, an essential component of the method [6]. 

Definition 3.1 (Decomposition scheme) Let 
0( ,..., )K KC X X  be a strongly 

convergent decomposition series. The decomposition scheme associated with
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KC is the recurrent 0 0u  , 1 0( ,... )n n nu C u u   which constructs a series 

nC in a Banach space E. 

Definition 3.2 (Decomposition Method) 

The decomposition method is the method consisting of constructing the  

solution of an equation with a decomposition scheme. 

3.2.1 Analysis of Adomian Decomposition Method 

        The Adomian decomposition method consists of decomposition the  

unknown function ( , )u x t of any equation into sum of infinite number of  

components defined by [1,7,8] 

                                       
0

( , ) ( , )n

n

u x t u x t




                                               (3.1)                                              

Where ( , ), 0nu x t n  are to be determined in a recursive manner. 

The ADM concerns itself by finding the component 0 1 2, , ,...u u u individually. 

This technique is very simple in an abstract formulation but the difficulty 

arises in calculating the Adomian polynomials and proving convergence of 

the series of the function.  

For a clear overview of the ADM, we consider a differential equation 

                                       ( ) ( )F u t g t                                                          

     Where represent a general nonlinear ordinary or partial differential 

operator comprising of both linear and nonlinear terms. Linear terms are 

decomposed into L R , where L is invertible and is taken as the highest order 

derivative, and R is the remainde of the linear operator thus the equation may 

be written as                   
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                               Lu R u N u g                                                   (3.2)   

Where Nu represents nonlinear terms. Solving for Lu , we obtain 

                               Lu g Ru N u                                                             (3.3)      

L is invertible and 1L is a twofold integration    operator and is defined as 

a define integration. 

                              
1

0 0

( . )

t t

L d t d t                                                       (3.4) 

For the operator 
2

2
L

t





, we have 

      
1 ( , ) ( ,0) ( ,0)tL Lu u x t u x t u x                                                                  (3.5) 

Operating on both side of equation (3.3) with 1L we have, 

     
1 1 1 1L Lu L g L R u L N u                                                                  (3.6) 

Combining equation (3.5) and (3.6) yields, 

    
1 1 1( , ) ( ,0) ( ,0)tu x t u x t u x L g L R u L N u                                    (3.7) 

The decomposition method represent the solution ( , )u x t  as a series of this 

form (3.1) 

The non-linear term Nu is decomposed as  

                        
0 nn

Nu A



                                                                        (3.8) 

Substitute equation (3.1) and (3.8) into equation (3.7) 

            1 1

0

0 0 0

( , )n n n

n n n

u x t u L R u L A
  

 

  

                                              (3.9)   

Where  



 

34 
 

                 0u f , 

and f represents the term arising from integrating the source term g and from 

given condition all are assumed to be prescribed. 

Consequently, we can write  

                    
1 1

1 0 0,u L Ru L A     

                     1 1

2 1 1,u L Ru L A     

                                                                                                                  

                      
1 1

1 ,n n nu L Ru L A 

     

where the , 0nA n   , are the Adomian polynomials generated for each  

nonlinearity  so that 0A  depends only on 0u , 1A  depends only on 0u and 1u ,and 

so on.  

3.3 Adomian Polynomial 

The main part of Adomian decomposition method is calculating Adomian 

polynomials for nonlinear polynomials [9]. 

To compute 
nA  take ( ) ( )N u f u  to be a nonlinear function in u , where 

( , )u x t , and consider the Taylor series expansion of ( )f u around 
0u  

2 3

0 0 0 0 0 0 0

1 1
( ) ( ) `( )( ) ``( )( ) `

!
``( )( ) ...

2 3!
f u f u f u u u f u u u f u u u          

But 0 1 2 ...u u u u      

Then 
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2

0 0 1 2 0 1 2

3

0 1 2

1
( ) ( ) `( )( ...) ``( )(

!

!

...)
2

1
```( )( ...) ...

3

f u f u f u u u f u u u

f u u u

      

   

  

by expanding all terms we get  

2

0 0 1 0 2 0 3 0 1 0 1 2

3 2 2

0 1 3 0 1 0 1 2 0 1 3

1 1
( ) ( ) `( ) `( ) `( ) ... ``( ) ``( )( )

2 2

1 1 1 1
``( )( ) ... ```( )( ) ```( ) ```( ) ...

2

! !

3 3! ! !3!

f u f u f u u f u u f u u f u u f u u u

f u u u f u u f u u u f u u u

      

     

now, let ( )l i be the order of i

lu and ( ) ( )l i m j be the order of i j

l mu u

then 
nA consists of all terms of order n , so we have  

0 0( )A f u   

'

1 0 1( )A f u u , 
2

' ' ' 1
2 0 2 0

!
( ) ( )

2

u
A f u u f u                                                             

3
' ' ' (3) 1

3 0 3 0 1 2 0( ) ( ) ( )
!3

u
A f u u f u u u f u  

 

Hene  

                   
0 0

1
( , 0,1,2,...

!
.

n
i

n in
i

d
A F u n

n d







 

 
  

 
                           (3.10) 

where  ¸ is a grouping parameter of convenience. 

      There are different methods to calculate Adomian polynomials [10,14,24]. 

Here we present another method and we show by some examples that this 

method is very easy for computing Adomian polynomials [27]. 

This formula given by  
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1

0

( )
n

n n j

j

A f S A




                                                 (3.11) 

where the partial sum is 
0

( )
n

n i

i

S u t


   

The Adomian polynomials can be generated using formula (3.10) or formula 

(3.11). Formula (3.11) is programmable and the Adomian series solution can 

be converged faster when using it. For example, if 2( )f u u the first four 

polynomials using formulas (3.10) and (3.11) are computed to be:  

Using formula (3.10): 

2

0 0A u   

1 0 12A u u   

2

2 1 0 12A u u u   

3 1 2 0 32 2A u u u u   

2

4 2 1 3 0 42 2A u u u u u     

Using formula (3.11): 

2

0 0A u   

2

1 0 1 12A u u u    

2

2 2 0 2 1 22 2A u u u u u    

2

3 0 3 1 3 2 3 32 2 2A u u u u u u u     

2

4 0 4 1 4 2 4 3 4 42 2 2 2A u u u u u u u u u      

Clearly, the first four polynomials computed using formula (3.11) include the 

first four polynomials computed using formula (3.10) in addition to other 

terms which should appear in 
5 6 7, , ,...A A A  using formula (3.10). Thus, the 
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solution using formula (3.11) forces many terms to be entered into the 

calculation processes earlier, yielding a faster convergence. 

So , the practical solution for the n-term approximation is , 

                   
1

0

( , ) ( , )
n

n i

i

x t u x t




                                                                      (3.12) 

Where  

                
0

( , ) lim ( , ) ( , )n i
n

i

u x t x t u x t





                                                            (3.13)  

3.3.1 Modified Adomian Polynomials 

A new class of the Adomian Polynomials is defined [13], denoted by 
nA

several studies have been proposed to modifiy the regular Adomian 

polynomials 
nA a rapidly converging approximant to the solution u denoted 

by  

1

0

[ ]
m

m n

n

u u




  then 
1

0

( , ) lim [ ] lim
m

m n
m m

n

u x t u u u


 


     

Where 
nu are components to be determined such that we have convergence 

 to .u   

Now we make an analogous definition that just as [ ]m u or simply 
m  

approximates , . ,u i e  
1

0

[ ]
m

m n

n

u u




  

[ ( )]m f u  similarly approximates ( )f u  or  

                                               
1

0

[ ( )]
m

m n

n

f u A




  

The 
nA represent a new class of the Adomian polynomials and the 

1

0

lim [ ( )] ( )
m

m n
m

n

f u A f u





 
  

 
  thus we view ( )m f u  and [ ]m u u  as 

truncated representations of ( )f u  and u . The 
nA , can now be defined by:  

                                        
1m m mA                                                 (3.14) 
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just as  
1m m mu      

from 
1

0

m

m n

n

A




 , we see that 
1 0A   , for 1m    

1[ ( )] [ ( )]m m mA f u f u    

Thus  

1 2 1[ ( )] [ ( )]A f u f u    

2 3 2[ ( )] [ ( )]A f u f u    

3 4 3[ ( )] [ ( )]A f u f u  
 

we can also write from (3.14) 

1 2 1A     

2 3 2A     

3 4 3A   
 

The 
m  are conveniently defined as:  

1
1 0

0

0 !
( )

nm
nm n

m

n

u
f u

n





 



 
  

 
  

Hence 

1 0( )f u   

1

2 0 1 0( ) ( )f u u f u    

2
1 22 0

3 0 3 0 0 0

( )
( ) ( ) ( ) ( )

2

u
f u u f u f u


 


   

 

from which 

0 0( )A f u  
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1

1 2 1 0 1 0( ) ( )A f u u f u      

2
1 22 0

2 3 2 0 3 0 0 0

( )
( ) ( ) ( ) ( )

2

u
A f u u f u f u


  


     

 

which so far, are identical to the classical or original 
0 1 2, ,A A A , respectively. 

For ,3, m mm A A  To see this, we calculate 
4  and 

3A . 

2 3
1 2 33 0 2 0

4 0 4 0 0 0 0
! !

( ) ( )
( ) ( ) ( ) ( ) ( ),

2 3

u u
f u u f u f u f u

 
 

 
      

Since  

2 3
1 2 32 1

3 4 3 3 0 1 2 0 0
2!

( ) ( ) ( ) ( ),
3!

u u
A u f u u u f u f u        

But  

3
' ' ' (3) 1

3 3 0 0 1 2 0( ) ( ) (
3!

)
u

A u f u f u u u f u    

clearly, then the decomposition components 
nu of the solution u of a 

differential equation using the 
nA  for nonlinearities are equal to the 

components using the 
nA  for 

0 1 2 3, , , ,u u u u  but not for 
4 5, ,...u u  

3.3.2 Properties of Adomian polynomials  

The polynomial , 0nA n  , possess the following properties [17] 

i. Property 1. nA depends by construction only on the vector 1 2( , ,... )nu u u  

and does not depend on nu with m n  ; 

ii. Property 2. nA is the sum of terms of the form 

               ( )

, 1 2 0

1

( , ,..., ) ( )
n

k

n m k n

k

A Z u u u F u


  
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         Where ,m kZ  are called here the reduced polynomial and depend on        

1 2( , ,... )nu u u .    

iii. Property 3. In each reduced polynomial ,m kZ , the components of the 

vector 1 2( , ,... )nu u u appear in such a way that the sum of their subscripts 

is equal to m a consequence of this property is that each reduced 

polynomial ,m kZ depends only on few components of the vector 

1 2( , ,... )nu u u  this is obvious since the sum of the subscripts of the 

components of the vector 1 2( , ,... )nu u u exceeds m  

3.4 The Noise Terms Phenomenon     

    A particular phenomenon noticed by Adomian and Rach, is the existence 

of the “self-canceling noise terms” for a decomposition series solution, where 

the summation vanishes at the limit. The noise terms are the identical terms 

with opposite signs that arise in the components. It was found that by 

canceling the noise terms between 0( )u x and 1( )u x , even though 1( )u x  

contains other terms, the remaining non canceled terms of 0( )u x may give the 

exact solution of the equation[12]. 

3.4.1 Necessary Condition for the Appearance of Noise Terms  

We consider the nonhomogeneous differential equation [15] 

                         Lu Ru g                                                                 (3.15)                                      

With the initial conditions  (0)u A  , '(0)u B  

Where L is a second order operator .Applying 1L  to both side yields 

                      
1 1( ) ( ( )) ( ( ))u x A Bx L g x L R u                                  (3.16) 

The first two components of ( )u x  are  
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                      1

0( ) ( ( ))u x A Bx L g x                                                    (3.17) 

and  

                       1

1 0( ) ( )u x L R u                                                                      (3.18) 

For the differential Equation (3.15) we obtain 

                       0( ) ( )u x f x                                                                           (3.19) 

The solution ( )u x  of (3.15) must exist in 
1( ( ))A B x L g x   of (3.17) 

Assuming that ( )u x appears in the zeroth component 0u , and this occurs for a 

specific style of nonhomogeneous problems, then based on this assumption, 

we may rewrite (3.16) as  

                        0( ) ( ) ( )u x u x T x                                                            (3.20) 

Where ( )T x  are other terms of 0u  that were called the noise terms. 

Using (3.1) into (3.19) yields  

                        1 2 3 4( ) ( ) ( ...)u x T x u u u                                        (3.21) 

And immediate consequence of (3.20) and (3.21) is that if u is included in 0u

, then the noise terms ( )T x of 0u must appear in 1u with opposite signs .It now 

seems reasonable to call these terms the effective noise terms so that by 

 canceling these terms[15,16] , the exact solution follows immediately .one 

further important point to be noted in this analysis :Becauseu is not known 

,the remaining noncanceled terms of 0u must be substituted into the equation 

to verify that these terms provide the exact solution , and the canceled terms 

are the effective noise terms[13]. 
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3.4.2 The necessary conditions for the appearance of the 

effective noise terms between 0u  and 1u . 

1. Effective noise terms appear for specific style of nonhomogeneous 

 differential and integral equations. 

2. Effective noise terms appear if the exact solution u appears in 0u  

explicitly  

3. Verification that the remaining noncanceled terms of 0u provide the  

exact solution is derived from the substitution of these terms into the 

 equation. 

3.5 The Convergence Analysis of ADM 

       The convergence of Adomian’s method has been subject of investigation 

by several authors. 

Following Cherruault [18] has given the first proof of convergence of the 

ADM and he used fixed point theorems for abstract functional equations. We 

give the proof of convergence of the Adomian decomposition method 

Consider the general functional equation [15] 

                     ,u Nu f u H                                                           (3.22) 

where H  is the Hilbert space and N  is the nonlinear operator :N H H  and 
1f L g  is also in H  .  

Substituting (3.3) and (3.4) in (3.22) yields 

                               
0 0

n n

n n

u A f
 

 

     

then the recursive terms are got from this algorithm 

                               
0

1 0 1 2( , , ,..., )n n n

u f

u A u u u u




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The Adomian decomposition method is equivalent to find the sequence 

1 2 3 · · ·n nS u u u u       by using iterative scheme 

0

1 0

0

0

0

( )

where ( )

n n

n

n k

k

S

S N S u

N S u A







 

 

  

If this limit exist  lim n
n

S S


  in a Hilbert space, then S is a solution of the 

fixed point functional equation 0( )nS N S u   in H 

Theorem 3.1.   

Let N  be a nonlinear operator from a Hilbert space H  where :  N H H  

and u  be the exact solution of (3.22). The decomposition series 
0

n

n

u




   of 

u  converges to u  when 

                                1, 1 , 0n nu u n N          

Proof. We have the sequence 

                               1 2 3 · · ·n nS u u u u      

We need to show that this sequence is a Cauchy sequence in the Hilbert 

space H. 

2 1

1 1 01 ... n

n n n n nS S u u u u   

          

In order to prove that nS  is Cauchy sequence 
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1 1 2 1( ) ( ) ... ( )m n m m m m n nS S S S S S S S             

1 1 2 1...m m m m n nS S S S S S            

1 1

0 0 0...m m nu u u         

1 1

0( ... )m m n u         

1 1

0( ...)n n u      

 Then       
1

0 , for , ,
1

n

m nS S u n m N m n






   


                                      (3.23) 

Since 1   . From definition in [15] ,the sequence  
0n n

S



 is a Cauchy 

sequence in the Hilbert space. Hence,  

                                        lim forn
n

S S S H


    

where  
0n

S u




  solving (3.21) is the same as solving the functional equation 

0( ) ;N S u S   by assuming that N  is a continuous operator we get 

      0 0 0 1( ) (lim( )) lim ( ) limn n n
n n n

N S u N S u N S u S s
  

         

So S  is the solution of (3.21) 

3.6 Pade` Approximation 

      Often time, power series don't give a good approximation to a function 

except the radius of convergence is sufficiently large to contain the domain

[ , ]a b  over which the function is approximated. In order to make the maximum 

error as small as possible, a rational (Pade’) approximation method  

which has a smaller error on [ , ]a b  than a polynomial approximation  

can be constructed [17]. 
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 Pade´ approximant extrapolation technique consists in approximating a 

truncated series by a rational function. In general, the latter function has the  

advantage of extending the range of validity of the initial polynomial. Pade´  

approximants have thus far been successfully applied to physical problems.  

3.6.1 Pade´ approximants 

   The main concept of Padé approximants is to replace a series function [22]  

                            
0

( ) k

k

k

f x c x




 by        

2

0 1 2

2

1 2

( ) ...
( , )

( ) 1 ...

L

L L

m

M m

P x a a x a x a x
f L M

Q x b x b x b x

   
 

   
                                      (3.24) 

Given  /L m  called the Padé approximants. 

For a function          

                         
2

0 1 2( ) ...f x c c x c x                                                 (3.25) 

the coefficients 0 1, ,... ,La a a 0 1, ,... Mb b b  can be calculated by matching the 

series coefficients.  

Therefore, one can acquire the following sequence [118] 

                0 1 1

1 1

1/1 , lim 1/1
1 x

a a x a

b x b


 


 

             
   

2

0 1 2 2

1 2 2

2 / 2 , lim 2 / 2
1 x

a a x a x a

b x b x b

 
 

                                        (3.26) 

                       lim / m

x
m

a
m m

b
  

For a fixed value of L M  the error in the approximation is smallest when 

( )LP x  and ( )MQ x  have the same degree or when ( )LP x  has degree one 

higher than ( )MQ x . 
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Illustrative example 3.6.1  

Establish the Pad´e approximants [2/2] for ( ) xf x e   [118] 

Solution  

The Taylor expansion for the exponential function is   

        2 3 4 51 1 1 1
1 ...

2 6 24 120

xe x x x x x         

The [2/2] approximant is defined by 

                                         
2

0 1 2

1 2

2 / 2
1

a a x a x

b x b x

 


 
 

Set   

2
2 3 40 1 2

1 2

1 1 1
1

1 2 6 24

a a x a x
x x x x

b x b x

 
    

 
 

Cross multiplying yields 

2 3

1 1 2 1 2

4 2

1 2 0 1 2

1 1 1
1 ( 1) ( ) ( )

2 2 6

1 1 1
( )

6 2 24

b x b b x b b x

b b x a a x a x

         

     

 

Equating powers of x  leads to  

coefficient of  
0

0: 1x a   

coefficient of  
1

1 1: 1x b a    

coefficient of  
2

1 2 2

1
:

2
x b b a      

coefficient of  
3

1 2

1 1
: 0

2 6
x b b     

coefficient of  
4

1 2

1 1 1
: 0

6 2 24
x b b      

This system of equations gives 
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           0 1 2 1 2

1 1 1 1
1, , , ,

2 12 2 12
a a a b b       

so that the Pad´e approximant is 

                           

21 1
1

2 122 / 2
1 1

1
2 12

x x

x x

 


 

 

3.6.2 The Used Algorithm 

Decomposition method is used first to obtain the approximate truncated  

series solution ( , )u x t . Then the Padé approximants is used to obtain an  

equivalent rational function approximation or the closed form solution [20] 

(see Figure 3.1) 

                                       Partial differential equation 

 

 

 

                                         Truncated series solution 

 

 

                  rational function approximation or the closed form solution 

Figure 3.1 The used Algorithm 

 

 

Decomposition     

Method 

Pade’ approximants 
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3.7. Applications   

We will demonstrate the Adomian decomposition methd and Pade` 

decomposition method on the well-known Boussinesq type equations that was 

derived in chapter two. 

Example 3.7.1: Consider the nonlinear Boussinesq equation [37,39]: 

                       
2 2 2 2 4

2 2 2 4
6

u u u u

t x x x
                                                    (3.27) 

subject to the initial conditions:                    

                        
2 2

1 2
( ,0) , ( ,0)

u
u x x

x t x


  


                                                (3.28)  

Applying the ADM on Eq. (3.27) we have 

           
2 2 2 4

2 2 2
6t

u u u
L u

x x x
                                                                    (3.29) 

Where
2

2tL
t





 , 
1

0 0

(.) (.)

t t

LL d t d t      

Operating with 1L  on the both sides of Eq. (3.29) and using the initial  

conditions (3.28) gives 

            
2 2 2 4

1

2 2 2 2 4

1 2
( , ) 6

u u u
u x t t L

x x x x x
                 (3.30) 

Using Eq. (3.1) − (3.8) in equation (3.30) we get 

2 4
1

2 2 2 4
0 0 0 0

1 2
6n n

n n

n n n n

u u
u t L A

x x x x
 

leads to the following results 

0 2 2

1 2 t
u

x x
    
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2 4
1

1 2 2
6n n

n n

u u
u L A

x x





  
   

  
 

Then  

2
2

0 0 6 6 6

20 80 80
( )xx

t t
A u

x x x
  

2 4
1 0 0

1 02 2
6

u u
u L A

x x

   
    

  

2 3 3 4

4 6 4 6

3 40 2 40t t t t

x x x x
    

4 3 3 2 5 4

1 0 1 10 8 10 8 10 8

17280 672 5760 252 11520 336
(2 )xx

t t t t t t
A u u

x x x x x x
 

2 4
1 1 1

2 12 4
6

u u
u L A

x x

   
   

  
    

        
4 4 5 5 5 6 6 7

6 8 6 10 8 10 8 10

5 84 2 4320 1008 576 616 11520

5 5 7

t t t t t t t t

x x x x x x x x
         

8 7 7 6 6
2

2 1 0 2 12 10 12 10 8

5 6 5 4 5 4

8 12 10 8 12 10

57280 3264 29312 7264 12
( 2 )

7 5 7 5

36 16832 1536 19 8640 168

5

xx

t t t t t
A u u u

x x x x x

t t t t t t

x x x x x x

2 4
1 2 2

3 22 4
6

u u
u L A

x x

   
   

  
  

6 6 6 7 7 7 7 8 8

10 8 12 8 10 12 14 8 10

8 8 9 9 9 10

12 14 14 12 10 12

672 16 22176 22 1104 48096 12355200 9 96

5 7 7 7 7 35

16752 1235520 2745600 6496 272 11456

7 7 3 5 21

t t t t t t t t t

x x x x x x x x x

t t t t t t

x x x x x x

       

     

 

Which in closed form gives exact solution 
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2 3 3 4 4 4 5

2 2 4 6 4 6 6 8 60

1 2 3 40 2 40 5 84 2
( , ) ( , ) ...nn

t t t t t t t t
u x t u x t

x x x x x x x x x




         

Thus  

                    
2

1 2
( , )

t
u x t

x


   

 

 

Figure 3.2  Example 3.7.1: Three-dimensional plot for the solution obtained 

by Adomian’s method for n = 3. 

Pade`[2,2]=

   
   

6 4 6 4 2 4 2 2

8 6 6 4 6 4 2 2

4 89 8 102 288 160 788 1348

4 89 76 288 4 55 1348

x x x x x t x x t

x x x x t x x x t

       

       
  

And pade`[3,3]= 

10 8 6 10 8 6

4 10 8 6 4

2 2 6 4 8 2

3

1
(105450 382200 12944000 ( 205500 1026675 30004350

5

16056000 ) ( 10800 416250 10359340 66789600

1241280000 ) (5417580 241741660 216000 2468813000

1639392000) ) / 210

x x x x x x

x t x x x x

x t x x x x

t

     

     

     

12 10 8 12 10

8 6 10 8 6 4 2

10 8 6 4 2 3

90 76440 2588800 (1080 52455

823270 3211200 ) ( 41610 196008 27546720 248256000 )

( 1080 462345 2155298 96667800 327878400 ) )

x x x x x

x x t x x x x t

x x x x x t

   

      

     
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(a)                                                                 (b) 

 

Figure 3.3 Example 3.7.1: (a) Three-dimensional plot for the exact solution. 

(b) Three-dimensional plot for the solution obtained by Pad’ Adomian method 

for n = 3. 

 

Figure 3.4 Example 3.7.1: Results obtained for the exact solution (dashed line) 

and by application of a Pad´e approximant [2,2] (dash dot )and [3,3] (solid 

line) to Adomian’s series solution. 
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Table 3.1: Example 1: Results obtained for the the exact solution compared 

with ADM and by application of a Pad´e approximant [2,2] and  [3/3] to 

Adomian’s series solution  when 0.1.t    

x ADM Pade` [2,2] Pade` [3,3] Exact solution 

0.9000  10.63443547 1.101364904 0.9512080464 0.9876543208 

1.1000 1.012937449                              0.7025608046 1.161750005 0.6611570248                              

1.3000 0.5126145033                             0.4913522013 0.4998843046 0.4733727810                                

1.5000 0.3671548149                             0.3645201245 0.3659588214 0.3555555555                           

1.7000 0.2822855326 0.2817742412 0.2821321816 0.2768166090 

1.9000 0.2247073916 0.2245721139 0.2246820308 0.2216066482 

2.1000 0.1833347437 0.1832908087 0.1833296461 0.1814058957 

2.3000 0.1525022411 0.1524858831 0.1525010596 0.1512287334 

2.5000 0.1288784239 0.1288717434 0.1288781247 0.1280000000 

2.7000 0.1103664671 0.1103635686 0.1103663907 0.1097393690 

2.9000 0.09558527158 0.09558397349 0.09558525610 0.09512485136 

3.1000 0.08359269479 0.08359211576 0.08359269734 0.08324661808 

3.3000 0.07372727844 0.07372703758 0.07372728862 0.07346189164 

 

Example 3.7.2. Consider now a higher nonlinear Boussinesq equation with 

the initial conditions [40,41] 

                   
2 2 3 4

2 2 4

u u u

t x x
                                                             (3.31) 

                     
( ,0) 2 sech( )

( ,0) 2 sech( ) tanh( )t

u x x

u x x x




                                             (3.32) 

The exact solution is given by  

                                         ( , ) 2 sech( )u x t x t    

Using the Adomian decomposition method, we obtain 
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0

4
1

4
0 0

( , ) 2 sech( ) 2 sech( ) tanh( )

( , )

n

n

n
n

n n

u x t x x x

u
t L A x t

x





 


 

 

 
  

 



 
                                   (3.33) 

Being 
` ``

1

0 0

(.) ``

x x

xxL dx dx      

The a view nonlinear terms are given by  

3 2 2 2

0 0 1 0 1 2 0 2 0 1, , 3 3 3A u A u u A u u u u      

Then (3.34) leads to the following results 

0 2sech( ) 2sech( ) tanh( )u x x x t    

       

           

           

         

4
1 4 20

1 0 4

3 2 3 2 5

3 3 3

3 3 3 4 3

(12 2sech tanh 14 2sech tanh

5
2sech 12 2sech tanh 3 2sech ) (20 2sech tanh

2

61
30 2sech tanh 2sech tanh 20 2sech tanh

6

23
11 2sech tanh ) (15 2sech tanh 2sech ta

2

u
u L A x x x x

x

x x x x t x x

x x x x x x

x x t x x x

  
    

 

   

   

   

         

   

2

3 4 3 5 3 3

3 5

nh

21 39
2sech ) ( 2sech tanh 2sech tanh

5 10

3
2sech tanh )

5

x

x t x x x x

x x t

  


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Figure 3.5 Example 3.7. 2: Three-dimensional plot for the solution obtained 

by Adomian’s method for n = 2. 

(a)                                                           (b) 

 

Figure 3.6 Example 3.7.2: (a) Three-dimensional plot for the solution obtained 

by Pad’ Adomian method for n = 2. (b) Three-dimensional plot for the exact 

solution. 
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Example 3.7.3 Cconsider now a linear example [42] 

                  
2 3 4 41

( ) 2 15
2

tt xx x x x xu u u x x t                                (3.34)    

                       ( ,0) 0 , ( ,0) 0tu x u x                                             

Using the Adomian decomposition method, we obtain 

64 2 4
3 2 1

1 2 4
0 0 0

1 ( , )
( , )

2 2

n n
n

n n n

x t A x t u
u x t x t L

x x

  




  

  
    

  
       

leads to the following results        

64
3 2

0
2

x t
u x t                   

2 4 4 5 8 6 12

0 0( ) 30 42 14xxA u x t x t x t      

2 4
1 8 4 6 10 5 14 60 0

1 2 4

3 1 7 1

14 2 30 26

A u
u L t x t t x t x

x x

   
       

  
 

5 8 6 12 16 7 20 8 10 14 2

1 0 1

812 1452 45 18 18
(2 ) 42

15 65 13 7 7
xxA u u x t x t t x t x t x t x         

2 4
1 1 1

2 2 4

8 12 16 2 10 5 14 6 18 7 22 83 205 459 7 29 121 15

14 924 7280 30 195 3315 4004

A u
u L

x x

t t x t x t x t x t x t x

   
   

  

     

  

2 10 14 2 18 3 22 4 6 12

2 1 0 2

16 7 20 8 24 9 28 10

18 806 7687 1737 602
( 2 )
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3576 62579 31622 816
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   
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2 4
1 14 6 18 7 22 82 2

3 2 4

26 9 30 10 12 16 2 20 3

24 4

43 298 5689

390 3315 185640

15811 68 205 58831 1025111

3016650 171535 924 240240 11085360

39969

2946944

A u
u L t x t x t x

x x

t x t x t x t x t x

t x

   
     

  

    



  

  

The self-canceling “noise” terms appear, looking into the first and third term 

of 1u  and first and third term of 2u , are the self-canceling “noise” terms, and 

so on.  

0 1 2 ...u u u     gives the solution ( , )u x t in a series form and in a closed 

form by 
3 2( , )u x t x t   

 

 

Figure 3.7 Example 3.7.3: Results obtained for the exact solution (line) and 

by application Adomian (dash line) when t=0.6. 
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Calculating the [3,3] Pade’approximant about t by MAPLE, give the exact 

solution 

                   
' 3 2

5
pade [ ( , )]x t x t    

Table 3.2 Resuts obtained for exact solution and the one obtained by 

application of Pade [3, 3] to ADM solution 
5 and exact solution.t=0.6 

x ADM solution Pade[3,3] solution  Exact solution 

0 0 0 0 

0.1 0.0003575364834 0.00036 0.00036 

0.2 0.002874103650 0.00288 0.00288 

0.3 0.009709812595 0.00972 0.00972 

0.4 0.02302454636 0.02304 0.02304 

0.5 0.04497791747 0.04500 0.04500 

0.6 0.07772906599 0.07776 0.07776 

0.7 0.1234364078 0.12348 0.12348 

0.8 0.1842573379 0.18432 0.18432 

0.9 0.2623478892 0.26244 0.26244 

1 0.3598623597 0.36000 0.36000 
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Chapter 4 

Adomian’s Method Modifications 

 

4.1. Introduction 

       A modification of Adomian method is proposed to overcome the 

computational difficulties arising when obtaining the solution of differential 

equations, particularly when the initial approximation is not a constant. Here 

we proposed to kinds modified and improved Adomian decompositions 

method [27].  

4.2 Modified Adomian Decomposition Method  

The modified decomposition method was introduced by Wazwaz [43] in order 

to simplify the calculations and accelerate the rapid convergence of the series 

solution. The modified forms was established on the assumption that the 

function ( , )f x t can be divided into two parts, namely 1 2( , ), ( , )f x t f x t .  

in order to obviate the appearance of the so-called noise terms occurring in 

special cases.Under this assumption we set 

                                   1 2( , ) ( , ) ( , )f x t f x t f x t                                                 (4.1) 

Under this assumption, we propose a slight variation only in the components

0 1,u u  . The variation we propose is that only the part 1( , )f x t  be assigned to 

the 0 ,u whereas the remaining part 2( , )f x t  be combined with the other terms 

given in Eq. (3.10) to define 1u . In view of these suggestion, we formulate the 

modified recursive algorithm as follows [44]: 

                        10 ( , )fu x t                                                                               
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                         1

1 2 0 0( , ) ( , )u x t f x t L Ru A                                              (4.2) 

                        
1

1

0 0

, 1n n n

n n

u L R u nA
 





 

 
   

 
                                       

The solution through the modified Adomian decomposition method is highly 

depend upon the choice of 1( , )f x t  and 2( , )f x t . 

4.3 Improved Adomian Decomposition Method 

Consider the following general nonlinear non-homogenous (3.2) with the  

initial problem  

                0 0( , ) ( )u x t f x   

                1

0

( , )
( )

t

u x t
f x

t 





                                                                                           (4.3) 

                       

                 
1

11

0

( , )
( 1) ( )!

s

ss

t

u x t
s f x

t








 


 

Where , 1,2,3,...
s

s
L s

t


 


 is the highest partial derivative with respect to .t   

Applying 1L to Eg. (3.2) and using the initial condition (4.3) lead to 

1

0 1 1( , ) ( ) ( ) ... ( ) s

su x t f x f x t f x t 

      

               
1( ( ( , )) ( , ) ( , ))L N u x t Ru x t g x t                                            (4.4) 

    Where the component nA  is called the Adomian polynomial and it is  

redefined by Abassy in the form [17, 36, 41]  

 

( 1)

( 1)
0 00 0

1 1
( ( ....

( 1)! !

n s n s
i i i i

n i in s n s
i i

d d
A N f t N f t

n s d n s d
 

 
 

 


  

   
        

                                                     
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( 1)

( 1)
0 0

1
( , 0,1,2,3,..

( 1 !)

n s s
i i

in s s
i

d
N f t n

n s s d





  

 
 

 
    

          (4.5) 

Where nf  is the coefficient of 
nt in ( , )nu x t  components . 

The non-homogenous term ( , )g x t is decomposed using Taylor series in the 

form  

                             
0

( , ) ( , )nn
g x t g x t




                                                   (4.6) 

Where ng  equals  

           

( 1)
1

( 1)

0 0
! !

1 1
( , ) ( , ) ...

( 1)

n s n s
n s n s

n n s n s

t t

d d
g g x t t g x t t

n s dt n s dt






 

   
     

   
  

           
( 1)

1

( 1)

0

1
( , ) , 0,1,2,3, .

( 1 !
. .

)

n s s
n s s

n s s

t

d
g x t t n

n s s dt

 
 

 



 
 

   
 

Substituting (3.8) and (4.5) into Eq. (4.4) gives  

1

0 1 1

0

( , ) ( ) ( ) ... ( ) s

n s

n

u x t f x f x t f x t








      

                     
1

0 0 0

( , ) ( , ) .n n n

n n n

L A R u x t g x t
  



  

 
  

 
                     (4.7) 

The component of ( , )nu x t  follows immediately upon setting 

1

0 0 1 1( , ) ( ) ( ) ... ( ) ,s

su x t f x f x t f x t 

     

1

1( , ) ( ), 0.n n n nu x t L A Ru g n

       
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4.4 Applications  

We will demonstrate the modified Adomian decomposition methd, Improved 

Adomian Decomposition method and Pade`decomposition method on the 

well-known Boussinesq type equations that was derived in chapter two. 

Example 4.4.1: Consider the nonlinear Boussinesq equation [39]: 

                       
2 2 2 2 4

2 2 2 4
6

u u u u

t x x x
                                                    (4.8) 

subject to the initial conditions:                    

                        
2 2

1 2
( ,0) , ( ,0)

u
u x x

x t x


  


                                                (4.9)  

Using Modified Adomian Decomposition Method (MADM) 

Let 1 2

1
f

x
  and 2 2

2 t
f

x


   

By using the recursive (4.2) we obtain 

0 2

1
u

x
                                                                              

2 4
1 0 0

1 02 2 2

2
( , ) 6

t u u
u x t L A

x x x

    
    

  
                                              

2 4
1

1 2 2
6n n

n n

u u
u L A

x x





  
   

  
                                     

This lead to  

2

0 0 6

20
( )

xx
A u

x
    

2 4 2
1 0 0

1 02 2 2 2 4

2 2 3
6

t u u t t
u L A

x x x x x

    
       

  
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2

1 0 1 6 8

80 252
(2 )

xx

t t
A u u

x x
      

2 4 4 4 3 3
1 1 1

2 12 4 6 8 4 6

5 84 2 40
6

u u t t t t
u L A

x x x x x x

   
       

  
    

2 3 4 4 3

2

2 1 0 2 4 6 8 10 8

4 16 19 168 80
( 2 )

xx

t t t t t
A u u u

x x x x x
         

2 4
1 2 2

3 22 4

6 6 6 5 5 5 4

10 12 8 6 10 8 4

6

672 22176 16 14 6048 24 2

5 5

u u
u L A

x x

t t t t t t t

x x x x x x x

   
    

  

        

Which in closed form gives exact solution 

0
( , ) ( , )nn

u x t u x t



   

2 4 4 3 3

2 2 4 6 8 4 6

1 2 3 5 84 2 40
...

t t t t t t

x x x x x x x
       

By Improved Adomian Decomposition Method (IADM) 

0 0 1 2 2

1 2
( , ) ( ) ( )u x t f x f x t t

x x
   

2 4
1

1 2 4
0 0 0

( , ) 6n n
n n

n n n

u u
u x t L A

x x

  




  

  
   

  
    

Where nA  are the Adomian Polynomial which represent the nonlinear term 

2

xxu and are defined by (4.5) where 2S  , nA takes the form 

( 1)

( 1)
0 00 0

1 1
( (

( 1)! !

n s n s
i i i i

n i in s n s
i i

d d
A N f t N f t

n s d n s d
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 
 

 


  

   
       

   

The following result are obtain 
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2 4 7 7 7
1 2 2

3 22 4 8 10 12

7 6 6 6

14 10 8 12

2 37584 311520
6

35 7

1572480 144 581 18480

5

u u t t t
u L A

x x x x x
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x x x x
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        

  

     

And so on  

Considering these components, the solution can be approximate as: 

0

( , ) ( , ) ( , )n i

i

u x t x t u x t




   

3 3 2

1 2 2 4 6 4

1 2 2 40 3t t t t

x x x x x
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3 3 2 5 5 5 4 4
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1 2 2 40 3 1008 4320 2 35 84
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t t t t t t t t t

x x x x x x x x x x
            

n is an approximate power series expansion in which successive converges 

to Eq.(4.8) closed form solution  
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1 2
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t
u x t

x


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(a)                                                                 (b) 

 

Figure 4.1 Example 4.4.1(a) Three-dimensional plot for the solution 

obtained by Modified Adomian’s method for n = 5 (b) Three-dimensional 

plot for the exact solution 

using 4 terms of an improved Adomian power series, Padé approximant size 

of [1/1],[2,2] we obtain the following expression of the Padé approximant for 

this case respectively  

 2 2

3 4 2

2 4 3
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2 3
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x tx
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       


       
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Figure 4.2 The behavior of the exact solution (solid line) and Pade[1,1] (dot) 

and Pade [2,2] (dash ) of 3( , )x t  in case 0.1t  . 

Example 4.4.2. Consider now a higher nonlinear example [53], 

2 2 3 4

2 2 2 2
, , 0

u u u
x t

t x x t
                                                  (4.10)                   

( ,0) / 3 , ( ,0) / 3tu x x u x x      

By using the recursive (4.2) we obtain 

0
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3
u x                                                                               

4
1 0

1 0 2 2

1
( , )

3

u
u x t xt L A

x t

  
    

  
                                                        (4.11) 
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

 
  
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leads to the following results 
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(a)                                                       (b) 

 

Figure. 4.3: Example 4.4.2 (a) Three-dimensional plot for the exact solution  

(b) Three-dimensional plot for the solution obtained by Modified Adomian’s 

method for n = 5 
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using 5 terms of modified Adomian power series, Padé approximant size of 

[2,2] we obtain the exact solution 

5
Pade `[2,2]

3( 1)

x

t





 

 

Figure. 4.4. The behavior of the exact solution (solid line) and MADM (dot) 

and IADM (dash ) of 4( , )x t  in case 0.9t  . 

Using the Improved Adomian decomposition method, we obtain 

0 0 1

1 1
( , ) ( ) ( )

3 3
u x t f x f x t x x t      

4
1

1 2 2
( , ) ( )n

n n

u
u x t L A

x t






 

 
  

Where nA  are the Adomian Polynomial which represent the nonlinear term 

2

xxu and are defined by (3.18) where 2S  , nA takes the form 
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leads to the following results 
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      4 5 564 2
10 3 3

5 5
x t t x t      

4
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t t
d

u u A u
dx dt
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 
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And so on  

Considering these components, the solution can be approximate as: 

0

( , ) ( , ) ( , )n i

i

u x t x t u x t




   

2 3

1

1 1 1 1

3 3 3 3
x x t xt xt       

2 3 4 5 5

2

1 1 1 1 1 2 1

53 3 3 3 3 5 3
x x t xt xt xt t x t          

  

n  is an approximate power series expansion in which successive converges 

to Eq.(3.32) closed form solution  ( , )
3( 1)

x
u x t

t





 

Example 4.4.3. Consider the cubic modified Boussinesq equation [39,45], 

            
2 4 2 3

2 2 4 2

2
0

9

tu u u u

t x t x x
                                                  (4.12)                   

23 3
( ,0) 1 tanh , ( ,0) 3sech

2 2
tu x x u x x

   
      

   
  

By using the recursive (4.2) we obtain 
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



  
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leads to the following results 
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Figure. 4.5. The behavior of the exact solution (solid line) and MADM (dot) 

and pade[2,4] (dash ) of 3( , )x t  in case 0.5t  . 

Using the Improved Adomian decomposition method, we obtain 
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0 0 1

3 3
( , ) ( ) ( ) 1 tanh 3sech

2 2
u x t f x f x t x x t

   
       
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x t x





  
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   
  

Where nA  are the Adomian Polynomial which represent the nonlinear term 

3

xxu and are defined by (3.18) where 2S  , nA takes the form 

( 1)

( 1)
0 00 0

1 1
( (

( 1)! !

n s n s
i i i i

n i in s n s
i i

d d
A N f t N f t

n s d n s d
 

 
 

 


  

   
       

   

leads to the following results 
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Figure. 4.6. The behavior of the exact solution (solid line) and IADM (dash 

line) of 2( , )x t  in case 0.5t  . 
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 Chapter 5  

Integral Transformation Method 

 

5.1. Introduction 

In modern time, integral transforms (Laplace transform, Sumudu transform, 

etc.) have very useful role in Mathematics, Physics, Chemistry, Social 

Science, Biology, Radio Physics, Nuclear Science, Electrical and Mechanical 

Engineering for solving the advanced problems of these fields. 

5.2 Laplace Decomposition Method  

Laplace Adomian Decomposition Method (LADM) is a combination of 

Adomian decomposition method (ADM) and Laplace Transform. It is an  

approximate analytical method, which can be adapted to solve nonlinear  

partial differential equations [46,66].  

We will see how to use the ADM in combination with the Laplace transform. 

Given a partial (or ordinary) differential equation 

                                   ( , ) ( , )Fu x t h x t                                                                     (5.1) 

With initial condition 

                               ( ,0) ( ), ( ,0) ( )tu x f x u x g x                                           (5.2) 

Where F  is a differential operator that could, in general, be nonlinear and 

therefore includes some linear and nonlinear terms. 

In general, equation (5.1) could be written as 
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                          ( , ) ( , ) ( , ) ( , )Lu x t Ru x t Nu x t h x t                            (5.3) 

where L  is second order differential operator, R is the is remaining linear 

operator,Nu  represents a general non-linear differential operator and ( , )h x t   

is source term. 

The Laplace transform  is an integral transform discovered by Pierre-Simon 

Laplace and is a powerful and very useful technique for solving ordinary and 

partial differential Equations, which transforms the original differential  

equation into an elementary algebraic equation. Before using the Laplace 

transform combined with Adomian decomposition method we review some 

basic definitions and results on it. 

Definition 5.1 Given a function ( )f t defined for all 0t  , the Laplace  

transform of f  is the function F defined by[97,112]  

                                  
0

( ) ( ) ( ) s tF s f t f t e dt



                                             (5.4) 

for all values of s  for which the improper integral converges. 

 In particular   1

!n

n

n
t

s 
  .  

Definition 5.2 Given a continuous function ( )f t  if  ( ) ( )F s f t , then

( )f t  is called the inverse Laplace transform of ( )F s  and denoted 

 1( ) ( )f t F s . 

The methodology consists of applying Laplace transform first on both sides 

of  Eq. (5.3) 

       ( , ) ( , ) ( , ) ( , )Lu x t Ru x t Nu x t h x t    
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Using the differentiation property of Laplace transform we get 

2 ( , )] ( ) ( ) ( , )] ( , )] ( , )[ ][ [ [s u x t s f x g x R u x t N u x t h x t      

and so: 

2 22 2

( ) ( )
( , )] ( , )] ( , )] ( , )

1 1 1
[ [ [ [ ]

f x g x
u x t R u x

s s s
t N u x t h x t

s s
            (5.5) 

The next step in Laplace decomposition method is representing the solution 

as an infinite series given below  

                     
0

( , ) ( , )n

n

u x t u x t




                                                               (5.6) 

The nonlinear operator is decomposed as  

                        
0

n

n

Nu A




                                                                                  (5.7)                                                   

Using (4.6), (4.7) and (4.5) we get 

2 2 2
0 0

2

( ) ( 1 1 1)
( , )] ( , )] ] ( , )][ [ [ [n

n n

f x g x
u x t R u x t h x t

s ss
A

ss

 

 

               (5.8)   

On comparing both sides of the Eq. (4.8) we have 

0 2 2

( ) ( )
( , )] ( , )] ( , )

1
[ [

f x g x
u x t h x t k x s

s s s
                                                  (5.9) 

02 21 0

0

( , )] ( , )]
1 1

[ [ [ ]
n

A
s s

u x t R u x t




                                                      (5.10) 

2 1 12 2
0

( , )] ( , )]
1

[ [ [ ]
1

n

u x t R u x t A
s s





                                                          (5.11) 

In general, the recursive relation is given by 

1 2 2
0

1
( , )] ( , )] ]

1
[ [ [ , 1n n n

n

u x t R u x n
s s

t A




                                 (5.12) 
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Applying inverse Laplace transform to Eq. (5.9) − (5.12), so our required 

 recursive relation is given below  

                       0( , ) ( , )u x t k x t                                                                            

      
1

2
0

1 2
( , ) ( , )

1 1
[ ] ][ , 1nn n

n

u x t x t Au
s

R n
s








 
 


 


                   (5.13)      

Where ( , )k x t  represent the term arising from source term and prescribe  

initial conditions.  

5.3 Modified Laplace Decomposition Method 

     To apply this modification, we assume that ( , )k x t can be divided into the 

sum of two parts namely 1 2( , ), ( , )k x t k x t therefore we get [71]  

                                        1 2( , ) ( , ) ( , )k x t k x t k x t                                   (5.14)                             

In view of these suggestion, we formulate the modified recursive algorithm as 

follows: 

                                          10 ( , )ku x t                                                                      

   

1

01 2 2 2
0

1

21 2
0

0( , ) ( , ) ( , )] ]
1 1

[ [

1
( , ) ( , )]

1
[ ][ , 1

n

n n n

n

u A
s s

A n

x t k x t Ru x t

u x t R x t
s

u
s













 
 
 

 
 

 

  

  




                        (5.15)       

5.4 Double Laplace Transforms   

Let ( , )f x t be a function of two variables x and t ,The double Laplace 

transform of the function  ( , )f x t is defined by [113] 

 
0 0

( , ) ( , ) ( , )px st

x t f x t F p s e e f x t dt dx

 

       
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Whenever that integral exist . Here p and s are complex numbers. 

The invers double Laplace transform  1 1 ( , ) ( , )x t F p s f x t   is defined 

by the complex double integral formula. 

 1 1 1 1
( , ) ( , ) ( , )

2 2

c i d i

px st

x t

c i d i

F p s f x t e dp e F p s ds
i i 

   

 

   

     

Where ( , )F p s must be an analytic function for all p and s in the region 

defined by the inequalities Re p c and Re s d , where c and d are real 

constants to be chosen suitably . 

The double Laplace transform for second partial derivative with respect to x 

and t are defined as follows 

2
2

2

(0, )
( , ) (0, )x t

f F s
p F p s pF s

x x

  
   

  
 

2
2

2

( ,0)
( , ) ( ,0)x t

f F p
s F p s pF p

t t

  
   

  
 

5.5 Sumudu Transform 

Sumudu transform was introduced in 1993 by Watugala to solve differential 

equations and control engineering problems. Since then, several authors have 

studied its properties, application to solving various problems and its 

relationship with some other common integral transforms such as Laplace 

transform. 

The Sumudu transform of a function ( )f t , defined for all real numbers  0t 

, is the function ( )F u defined by [93] 

                
0

1
( ( )) ( ) ( )

v

tS f t F v e f t dt
v

 

                                              (5.16) 
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where the symbol S denotes the Sumudu transform. 

If 
1 2,c c are non-negative constants, ( )f t  and ( )g t are functions having 

Sumudu transform ( )F v and ( )G v , respectively, then  

1. Linearity Property  

1 2 1 2[ ( ) ( )] [ ( )] [ ( )]S c f t c g t c S f t c S g t     

2. Differentiation Property 

         

1
( ) ( )

0

( ) ( ) (0)
n

n n k k

k

S f t v F u u f






 
     

 
  

5.5.1 Analysis of Adomain Sumudu Transform Method  

Taking Sumudu transform on both sides of Eq. (5.3), to get: 

              ( , ) ( , ) ( , ) ( , )S Lu x t S Ru x t S Nu x t S h x t                  

Applying the differentiation property of Sumudu transform, we have: 

     2 2 2( , ) ( , ) ( ) ( ) ( , ) ( , )S u x t v h x t vf x V g x v S Ru x t Nu x t      (5.17) 

Taking the inverse Sumudu on both sides of equation (3.5), we have 

 1

2

1
( , ) ( , ) ( , ) ( , )u x t G x t S S Ru x t Nu x t

v

  
   

 
                                     (5.18) 

Then (5.18) becomes 

1

2
0 0 0

1
( , ) ( , ) ( , )n n n

n n n

u x t G x t S S R u x t A
v

  


  

  
    

  
                          (5.19) 

Then the recursive relation is given by 

  0( , ) ( , )u x t G x t                                                                                          

   
1

1 2
0 0

1
( , ) ( , , 1)n n n

n n

u x t S S R u x t A
v

n
 





 

  
    

 



                            (5.20) 
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Applying Sumudu transform of the right hand side Eq.(5.20) and then taking 

inverse Sumudu transform, we get 0 1 2, , ,...u u u  

5.6 Applications  

To demonstrate the applicability of the above-presented method, for nonlinear 

partial differential equations, we now consider some examples. 

 

Example 5.6.1. We consider now a linear example [35] 

                 
2 2 4

2 2 2 2

u u u

t x x t

  
 

   
                                                            (5.21) 

                  / 2 / 2( ,0) ( ,0)x x

tu x e u x e   

using double Laplace transform method we obtain 

2 4

2 2 2 2
2

1 1 1
( , )

1 1

2 2

x t

u u
U p s

s x x t
s p s p

  
    

           
   

 

taking double inverse Laplace transform, we have 

2 4

/ 2 / 2

2 2

1

2

1

2

1
( , )

x t x t

x x u u
u x t e t e

s x x t

    
    

  

 
 
 

 

Then  

2 4

/ 2 / 2

2

1

2 2 2
0

1 1
( , )

x t x t

x x n n

n
n

u u
u x t e t e

s x x t

 




  
    

  






 




                  (5.22) 

By using (5.21) and (5.22) we get   

    / 2 / 2

0

x xu e t e                                                                                                                                                 
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2 4

1 2 2

1 1

2 2

1
( , ) n

n x t t
n

x

u u
u x t

s x x t


    
  

 

 





  
                                                 

we obtain 

2 4

0 0
1 2 2 2

2

1 1

2

1 1

2

1

1 1
(1 )

2

x t x t

x t x t

x

u u
u

s x x t

e t
s

 

 

   
  


 
 

 
 

  

 
  




  

         

1

3

4

/

1

2
2

3

1 1

1

2 2

1 1
2 2

2 2

! !3

x

x

t

t t
e

s p s p

 

 
 
  

            

 
  








 

 

And  

1 1
2 4

1 1
2 2 2 2 2

1
x t t x t

u u
u

s x x t

    
  

   

 
 
 

  

2 3

21 1

2

1 1
1

4 2 6

x

x t x t

t t
e t

s

 
  

     
  

 
  

  

 

       

2 3 4 5
/ 2

1 1

3 4 5 6

1 1 1 1

1 1 1 1
4 4 4 4

2 2 2 2

! ! 4 !2 !

1

4 53

x t

x

s p s p s p s

t t t t
e

p

 

 


 
 
    

                           

   
 

 

And so on  
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Considering these components, the solution can be approximate as: 

0

( , ) ( , ) ( , )n i

i

u x t x t u x t




   

 / 2

0 1xe t    

 
2 3

/ 2 / 2

1

1
1

2 2! !3

x x t t
e t e

 
    

 
 

 
2 3 4 5

/ 2 / 2 / 2

2

1 1

! ! 4! 5
1

4 2 !2 3

x x xt t t t
e t e e

    
          

    
 

As N   
2 3 4 5

/ 2 / 2

! ! 4! 5!
1 ...

2 3

x t x

N

t t t t
e t e  

        
 

 

Which is exact solution. 

Example 5.6.2 we consider a nonlinear example, with no source, with 

inhomogeneous initial conditions, namely [35] 

2( / 2) , , 0tt xx xx xxttu u u u x t                                             (5.23) 

2 2( ,0) 2 3, ( ,0) 2 4 8tu x x x u x x x x                           (5.24) 

Eq. (5.18) is the improved Boussinesq equation for the longitudinal strain 

( , )u x t   of the acoustic waves in elastic rods with circular cross section. The 

analytical solution of (5.18) and (5.19) is given by  

                    
2

2

2 4
( , ) 1 , , 0

( 1)

x x
u x t x t

t

 
     


                            (5.25) 

which obviously blows up as 1t  . The purpose of example is to illustrate 

this phenomenon using the LADM. 

 Applying the Laplace transform and by using the initial condition we have 

2 2 2 2( , ) ( 2 3) 2 4 8 ( / 2)xx xx xxttS U x S S x x x x u u u            
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Applying the inverse Laplace transform we get 

2

21

2

2

1

( , ) 2 3 ( 2 4 8)

( / 2)xx xx xxtt

u x t x x x x t

S
u u u

       

    
 
 
 

                                              (5.26) 

We decompose the solution as an infinite sum given below 

             
0

( , ) ( , )n

n

u x t u x t




                                                                       (5.27) 

Using (5.26) on (5.27) we get 

2 2 1

2
( , ) 2 3 ( 2 4 8

1
)

xx xx xxtt
n n n nu x t x x x x t

S
u A u            
 

 
 
 

 

In which 
2

2
n

u
A   the recursive relation is given below 

Now by using equation (5.27) through the LADM method, recursively obtain

1

2

2 2

0 1 0 0 02 3 ( 2 4 8)
1

,
xx xx xxtt

u x x x x t u
S

u A u

1

1

2

1
1,

xx xx xxtt
n n n nu u A u n

S
 

Then  

2 2

0 2 3 2 4 8u x x x x t  

  2 2 2

1
2 2 3 2 4u t x x t t        

2 5 2 5 4 2 4 4 2 7 7 7

2

5 6 2 6 6 3

8 16 40
6 6 10 3 6 9

7 7 21

20
12 4 8 8

3

u t t x t t x t x t x t xt t

t x t x t x t t

         

    

6 4 4 2 4 2

3

2 3 3

1
( 63 60 15 504 1296 1008 756 2304

15120

1944 224 448 )

u t x tx t x x tx t x t

t t x t

        

  
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5 3 7 6 4

4

5 6 5 2 5 4 5

6 5 3 2 3 2 2 7 7

6 4 6 2

1
( 11975040 53460 35840 202752 237600

19958400

355872 208896 194304 7700 393888 13305600

720 112860 106920 3801600 8960 35840

1440 69888 396

u t x t t t t

t t x t x t x t x tx

t x t x t x t x x t xt

t x t x

     

     

     

   5 5 4 4 4 2 4

3 4 4 5 3 5

0 12540 241560 311520

4455 6820 2970 )

t x t x t x t x

t x t x t x

  

  

  

Considering these components, the solution can be approximated as: 

                                         
0

n n

n

u




                                                        (5.28) 

Calculating the [4/4] Pade’ approximant about t by MAPLE,  

2 3 4

'

4
2 3

2564266754 275470121237 242229193357 34989810074
2

484474673 40695872532 30521904399 16956613555pade [ ]
171290642 234855157 67487229821 186368768021

1
484474673 4283776056 244175235192 81391745

t t t t

t t t


    



    4

0640
t

  

Figure. 5.1 show the 4th order of approximation of ( )nu t   and [4/4] Adomian–

Padé approximation, comparing with the exact solution 
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Figure. 5.1. The curves of the approximant solution 4(1, )t  (dashed line) 

and [4/4] Adomian–Padé approximation (-) and exact solution (solid line) 

 

Using Modified Laplace Adomian Decomposition Method (MLADM) 

Let 
2

1 2 3x xf     and 
2

2 )( 2 4 8xf x t     

By using the recursive (5.15) we obtain 
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2

0 2 3x xu                                                                                

2 4

0 0
1 02 2 2

2 1

2

1
2 4) ( 8)( ,

u u
u x t t A

x t
x x

S x


   

      
  






                                              

2 4

1 22 2 2

1 1 n n
n n

u u
u A

x x tS



   

    
   

                                     

This lead to  

2

0 0
( ) 24 24

xx
A u x     

2 4

0 0
1 02 2 2

2 1

2

1
2 4( 8)

u u
u A

x x
x x t

S t


   

      
  




  
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2 4 18 18

3
t tx tx t x        

3 3 2

1 0 1
(2 ) 16 16 72

xx
A u u t x t t      

 
2 4

41 1
2 1 2

1

2 2 2

1
15 2 2

5

1 u u
u A t tx t

x x tS


   

        
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2 1 0 2
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1
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45

1260 5 20 216 828 3780 1890 )

xx
A u u u t t t x t x tx

tx t x t x tx t x x

       
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2 4

2 2
3 22 2 2

2 2 2

6

1

2

2 4 2 3 2 2 3 2

4536 1104 864 1680 80 801

5040 5 20 60 288 705 3528

1

6

u u
u A

x x t

t tx tx t x t
t

t x t x t x

S

x tx x


   

     
   

       
       

  

Which in closed form gives exact solution 

2 4 2 5 8 8 4

0

8 3 8 2 9 4

2 25 17
( , ) ( , ) 3 6 3 6

5 126 1260

17 97 1
...

315 840 252

nn
u x t u x t t t t x t t x t x

t x t x t x




         

 


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Calculating the [4/4] Pade’ approximant about t by MAPLE,  

2 3 4

'

4
2 3 4

5310765 15932295 1788237 98418645
2738610

8 8 8 16pade [ (1, )]
5310765 15932295 9166203 3422655

1369305
16 16 16 4

t t t t
t

t t t t


   



    

 

 

Figure. 5.2. The curves of the MLADM solution 4(1, )t  (dashed line) and 

[4/4] Adomian–Padé approximation (-) and exact solution (solid line) 
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Table 5.1 : Example 5.6.2: Results obtained for the the exact solution 

compared with LADM,MLADM and by application of a Pad´e approximant 

[4,4] to Adomian’s series solution  when 1.x    

 

Example 5.6.3. The other equation we are considering is 

2 2 2 4

2 2 2 4

ln
3

u u u u

t x x x
                                                                                  (5.29) 

With initial conditions  

                                 
( ,0)

( ,0) 2

x

x

t

u x e

u x e




                                                         (5.30) 

Using the Sumudu Adomian decomposition method, we obtain 

t LADM MLADM     Pade’ 

(LADM) 

    Pade’ 

(MLADM) 

Exact  

solution 

-1 1.2147 -6.5698   1.3284 -4.0886 0.25 

-0.9 1.006547704 -4.610046625 1.053432958 -3.540382531 0.1689750694 

-0.8 0.7387807031 -3.394860506 0.7553963911 -3.006484971 0.0740740741 

-0.7 0.4438117030 -2.682245930 0.4486961972 -2.567408200 -0.038062284 

-0.6 0.1437411340 -2.293908845 0.1448698028 -2.267255833 -0.171875000 

-0.5 -0.1509768497 -2.103097292 -0.1507888831 -2.098497065 -0.333333333 

-0.4 -0.4418039898 -2.023447982 -0.4417846882 -2.022913122 -0.530612245 

-0.3 -0.7418445386 -1.999195542 -0.7418436685 -1.999161294 -0.775147929 

-02 -1.075528994 -1.996966418 -1.075528990 -1.996965664 -1.083333333 

-0.1 -1.478757232 -1.999302600 -1.478757231 -1.999302598 -1.479338843 

0 -2. -2.000000000 -2.000000000 -2.000000000 -2.000000000 

0.1 -2.702849410 -2.001302600 -2.702849410 -2.001302602 -2.703703703 

0.2 -3.670495745 -2.012966465 -3.670495637 -2.012966827 -3.687500000 

0.3 -5.012588772 -2.053197370 -5.012582944 -2.053208259 -5.122448981 
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leads to the following results        
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Figure. 5.3. The behavior of the exact solution and SADM solution of ( , )u x t  

in case 2t  . 

 

Figure. 5.4. The behavior of the exact solution and SADM solution of ( , )u x t  

in case 5t  . 
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Example 5.6.4. We consider now a linear example 

2 2 2

2 2 2 2

u u u

t x x t
              

/ 2 / 2( ,0) ( ,0)x x

tu x e u x e                                                                                 (5.31) 

Using the Adomian decomposition method [78], we obtain 
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Leads to the following results        
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By MDM 

Using the Adomian decomposition method [77,79], we obtain 
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Example 5.6.5. We consider now a nonlinear example 
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Taking transform [38] of “Eq. (6.24)”, we have 
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Now using the property, transform [38] of the derivatives of the function, in 

“Eq. (6.26)”, we have 
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Using “Eq. (5.34)” in “Eq. (5.35)”, we have 
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Now taking inverse transform [38] of “Eq. (5.36)”, we have 
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Eq (5.37) can decompose as  
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Then the series solution expression can be written in the form, 
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This will, in the limit of infinitely many terms, yields the closed-form solution 
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Figure. 5.5. The behavior of the exact solution and Pade[3,3] SADM solution 

of ( , )u x t  in case 2t   . 

Calculating the [3,3] Pade’ approximant about t by MAPLE,  

'

3 2

6
pade [ ( , )]

( )
x t

x t
 


  

Which is exact solution 

 

 

 

 

 

 

 

 

 

 



 

97 
 

Conclusions 
 

Nonlinear phenomena is present in every science field and therefore, it is of 

fundamental importance to develop efficient methods to solve nonlinear 

differential equations. Unfortunately, in most cases, only numerical solutions 

can are obtainable. This makes evident the importance of analytical 

techniques, such Adomian’s decomposition method, since it searches for 

solutions under a series form, not requiring any discretization or assumption 

for a small parameter to be present in the problem, which, in fact, may not 

exist at all. The application of this method to partial differential equations 

poses some obstacles, as the computational effort that is heavier than the one 

required to solve ordinary differential equations and the possible convergence 

to a solution that does not satisfy all the boundary conditions. Anyway, as the 

exact analytical solution is probably not recognized from the solution series, 

truncated series must be used to represent the solution. A disadvantage of such 

approach is that the truncated series may have a small convergence radius. To 

overcome this drawback when applying Adomian’s method to ordinary 

differential equations, some authors have used an aftertreatment with Pad´e 

approximants. This technique was applied to partial differential equations 

where graphical illustrations were used to show that the domain of 

convergence of Adomian’s solution was improved by the application of this 

technique. In this thesis, it is shown not only graphically but also numerically, 

that this technique can enlarge the domain of convergence of the solution and 

that the accuracy is generally also improved inside the domain of convergence 

of Adomian’s series solution as the numerical results show. 

To increase the accuracy of the solution, some authors proposed the choice of 

a smaller time interval and/or to add more terms to the solution series. 
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