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Abstract

A characterization of product and multi-paraproducts of bounded mean
oscillations with upper bound for multi-parameter and higher order Journé
commutators are studied. We describe an algorithm of nonlinear piecewise
polynomial approximations by refinable functions, of functions of the classes
W,* and multivariate bound variation spaces of Wiener-Young type. We show
the classes and maximal function characterization of Hardy spaces associated
with operators, nonnegative self-adjoint operators satisfying Gaussian estimates
with characterizations of Hardy and bounded mean oscillations by weak
factorizations and commutators.
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Introduction

We establish a commutator estimate which allows one to concretely
identify the product BMO space, BMO(R% x R3), of A. Chang and R.
Fefferman, as an operator space on L?(R?) . The one-parameter analogue of this
result is a well-known theorem of Nehari[9].

We present a newly-developed version of the Up-and-Down Algorithm
(UDA) designed for nonlinear approximation by piecewise polynomials.
Several almost optimal results are obtained about N-term nonlinear
approximation by dilated integer translates of a refinable function.

Let L be the infinitesimal generator of an analytic semigroup on L?(R™)
with suitable upper bounds on its heat kernels. In Auscher, Duong, and
Mclntosh (2005) and Duong and Yan (2005), a Hardy space H(R™) and a
BMOy,(R™) space associated with the operator L were introduced and studied.
We define a class of H? (R™) spaces associated with the operator L for a range
of p < 1 acting on certain spaces of Morrey-Campanato functions defined in
New Morrey-Campanato spaces associated with operators and applications by
Duong and Yan (2005), and they generalize the classical HP (R™) spaces. Let L
be a generator of a semigroup satisfying the Gaussian upper bounds. A new
BMO, space associated with L was recently introduced in [70] and [71]. We
discuss applications of the new BMO; spaces in the theory of singular
integration.

We show that the product BMO space can be characterized by iterated
commutators of a large class of Calder'on—-Zygmund operators. The proof
introduces some new paraproducts which have BMO estimates. We characterize
LP boundedness of iterated commutators of multiplication by a symbol function
and tensor products of Riesz and Hilbert transforms. We obtain a two-sided
norm estimate that shows that such operators are bounded on LP if and only if
the symbol belongs to the appropriate multiparameter BMO class. We extend
the results to a much more intricate situation; commutators of multiplication by
a symbol function and paraproduct-free Journé operators. We show that the
boundedness of these commutators is also determined by the inclusion of their
symbol function in the same multiparameter BMO class.

We investigate the order of approximation of functions of the Sobolev-
Slobodeckil classes W, *(Q™)(Q™is the m-dimensional unit cube) by
piecewise-polynomial functions. The named space denoted by Vp’fl consists of
L4 functions on [0, 1)? of bounded p-variation of order k € N. It generalizes
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the classical spaces ;,(0,1) (= Vy) and BV ([0,1)%) (V{y where q := ﬁ)
and is closely related to several important smoothness spaces, e.g., to Sobolev

spaces over L,, BV and BMO and to Besov spaces.

For a nonnegative, self-adjoint operator satisfying Gaussian estimates on
L*(R™). We give an atomic decomposition for the Hardy spaces Hfmax (R™) in
terms of the nontangential maximal functions associated with the heat
semigroup of self-adjoint operator. We provide a deeper study of the Hardy and
BMO spaces associated to the Neumann Laplacian 4, . For the Hardy space
HjN (R™) (which is a proper subspace of the classical Hardy space H1(R™)) we
demonstrate that the space has equivalent norms in terms of Riesz transforms,
maximal functions, atomic decompositions, and weak factorizations.

Vi
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Chapter 1
Characterization with Multi-Parameter

We discuss a situation governed by a two- parameter family of dilations, and so the
spaces H and BMO have a more complicated structure. We show that the classical
Coifman-Meyer theorem holds on any polydisc T¢ of arbitrary dimension d > 1.

Section (1.1): Product BMO by Commutators

Here R3denotes the upper half-plane and BMO (R% X R%) is defined to be the dual
of the real-variable Hardy space H! on the product domain R% x R3. There are several
equivalent ways to define this latter space, see [6] for the various characterizations. We
will be more interested in the bi-holomorphic analogue of H, which can be defined in
terms of the boundary values of bi-holomorphic functions on R2 x R%and will be denoted
throughout by H1(R% x R%) cf.[11].

In one variable, the space L?(R) decomposes as the direct sum H%(R)®H?2(R) ,
where H%(R) is defined as the boundary values of functions in H*(R%) and H2(R)
denotes the space of complex conjugate of functions in H%(R2). The space L2(R) , there-
fore, decomposes as the direct sum of the four spaces H2(R)®H?(R),H%(R) ®H?*(R),
H?(R)®H2%(R) and H2(R) ®HZ2(R), where the tensor products are the Hilbert space
tensor products. Let P, denote the orthogonal projection of L?(R?)onto the
holomorphic/anti-holomorphic subspaces, in the first and second variables, respectively,
and let H; denote the one-dimensional Hilbert transform in the jth variable, j = 1,2. In
terms of the projections P, ..

H=P,,+P,_—P_,—P _andH,=P,, +P_,—P,_ —P _.
The nested commutator deternfined by the function b is tile operator [[Mb,Hl],Hz] acting
on L?(R?), where, for a function b on the plane, we define M, f = bf.
In terms of the projectionsP, ., it takes the form

1
—[[My, Hy 1, Hy] = Py yMyP_ - — Py _MyP_y —P_ MyPy_+ P _MyPpy (1)

4
Ferguson and Sadosky [5] established the inequality ||[[My, H,], Hy]|| > < cllbllgmo- The

main result is the converse inequality.
Theorem  (1.1.1)[1]: There is a constant ¢ >0 such that]|bllgye <

c||[[Mp, Hyl, Hz]|| ., for all functions b in BMO (R} x R%).

As A. Chang and R. Fefferman have established for us, the structure of the space BMO is
more complicated in the two-parameter setting, requiring a more subtle approach to this
theorem, despite the superficial similarity of the results to the one-parameter setting. The
proof relies on three key ideas. The first is the dyadic characterization of the BMO norm
given in [2]. The second is a variant of Journ’s lemma, [6]. The third idea is that we have
the estimates, the second of which was shown in [5],

”b”BOM(reC) < C”[[Mb’Hl]rHZ]”Lz_,Lz < c'||bllgpo-
An unpublished example ofL. Carleson shows that the rectangular BMO norm is not
comparable to the BMO norm, [4]. We may assume that the rectangular BMO norm of the
function b is small. Indeed, this turns out to be an essential aspect of tile argument.

1
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From Theorem (1.1.1) we deduce a weak factorization for the (biholomorphic) space
H1(R% x R%). The idea is that if the function b has biholomorphic extension to R? x
RZthen for fimctions f, g € L?(R?),

1 S
2 [y, H1, Ho]f, 9) = (b, P_ [P, .9

So in this case, the operator norm of the nested commutator[[Mb,Hl],Hz]is comparable to
the dual norm

IB1l. := sup|{fy, b)
where the supremum above is over all pairs f, g in the unit ball of H2(R% x R%). On the
other hand, since||bl|gyo and||[[Mp, Hy), H ||| are comparable, the dual norm above

satisfies

)

L2512

Ibll.~ supl{h, b)|,
where the supremum is over all functions A in the unit ball of H*(R3 X R?%).
Corollary (1.1.2)[1]: Let h be inH1(R3 x R%) with||h||; = 1. Then there exist functions

(f;) (g;) < H*(RY x R)such that h = 372, fig;and X324 || fi | llgjll, < e
We remark that the weak factorization above implies the analogous factorization forH?® of
the bidisk. Indeed, for all1 < p < oo, the mapu,: H? (R x R3) — HP(D?) defined by

(upf)(Z,w) = w2/P (1 Z_iz)z/p (1 2i )2/” 142

f(@@),aw)), a@) = i,
IS an isometry with isometric inverse

2/p 2/p

)z = nn ()

A—i

) () 9B@.pwW)EM =T
The dual formulation of weak factorization forH*(D?) is a Nehari theorem for the bidisk.
Specifically, ifb € H%(D?) then the little Hankel operator with symbol b is densely
defined onH?(D?) by the formula

If = P__(bf).

By

Il = (| [[M5, Byl Ha] |l 1)
and thus, by Theorem(1.1.1), ||T}||lis comparable to ||b||zp0, Which, by definition, is just
the norm of b acting on H*(D?). So the boundedness of the Hankel operator T, implies
that there is a function ¢ € L*(T?) such that P, ,¢ = b. Several variations and
complements on these themes in the one-parameter setting have been obtained by
Coifman, Rochberg and Weiss [3].

We give the one-dimensional preliminaries for the proof of Theorem(1.1.1), and
devoted to the proof of Theorem (1.1.1). One final remark about notation A < B means
that there is an absolute constant C for which A < CB, A= B meansthat A < B and B <
A.

We are indebted to Andreas Seeger.

Several factors conspire to make the one-dimensional case easier than the higher-
dimensional case. Before proceeding with the higher-dimensional case, we make several
comments about the one-dimensional case, comments that extend and will be useful.



Let H denote the Hilbert transform in one variable,P, = %(1 + H) be the projection of

L>(R)onto the positive frequencies, and P_ is% (I — H)the projection onto the negative
frequencies. We shall in particular rely upon the following basic computation:

1 _
E[Mb;H]b=P—|P—b|2_P+|P+b|2- (2)

The frequency distribution of |P_b|2is symmetric since it is real-valued. Thus,
IbIIZ s 1IP_|P_b|* — PP, b|?|lz < [[Mp, H]ll 252 1Bl
Moreover, if b is supported on an interval I, we see that
Ibll, < U1Y*11blly S 1Y [My, H]I, 511611,
which is the BMO estimate on I. We seek an extension of this estimate in the two-
parameter setting.

We use a wavelet proof of Theorem (1.1.1), and specifically use a wavelet with
compact frequency support constructed by Y. Meyer[8]. There is a Schwartz function w
with these properties:

@) liwll; = 1.

(b) w(§) is supported on[g,g] together with the symmetric interval aboutO.

(c) Pyw is a Schwartz function. We have
lw(x)|, |Piw(x)| SA+xD™n>1.
Let D denote a collection of dyadic intervals on R. For any interval I, let c(I) denote its

center, and define
) = 1 x —c(l)
Wilx) = \/mw ] .

Set Wli = Pyw;. The central facts that we need about the functions {w;:I € D} are these:
First, that these functions are an orthonormal basis on L?(R). Second, that we have the
Littlewood-Paley inequalities, valid on all LP, though p = 4 will be of special significance

for us. These inequalities are
1/2
IKf, wi)|?
Ifll, = [ZT’L 1<p<o (3)

I1€D

p
Third, that the functions w;, have good localization properties in the spatial variables. That

IS,

w1, [wiE | s 117200 = 1, 4)
where y;(x) :== (1 + dist(x,1)/|I])~. We find the compact localization of the wavelets in
frequency to be very useful. The price we pay for this utility below is the careful
accounting of "Schwartz tails" we shall make in the main argument. Fourth, we have the
identity below for the commutator of one w; with a w;. Observe that since P, is one half

of I + H, it suffices to replace H by P, in the definition of the commutator. L

wy ;= [wy, Py Wy = wiw; — Pyw,wy = Poww; — Pywyw)t = Powiw,wy — Pawiw,t
0 if|I] = 4lJ],

= { P_|lwy |> = Pylw/ 12 ifl =], (5)

wrw; — WI+W—]+if|]| > 4]1].



From this we see a useful point concerning orthogonality. For intervals I,1',] and J’,
assume|J| = 8]I|, and likewise forI'andj’. Then
supp(w;,J) N supp(wy,J') = 8,11'] = 8l1. (6

Indeed, this follows from a direct calculation. The positive frequency support of w,*w;’is
contained in the interval [(3]1])~%, 8(3|I|)~t]. Under the conditions on I and I’, the
frequency supports are disjoint.

BMO (R x R%) will denote the BMO of two parameters (or product BMO) defined
as the dual of (real)H1(R% x R3%). The following characterization of the space BMO (R x
R?%) is due to A. Chang and R. Fefferman [2].
The relevant class of rectangles is R = D x D all rectangles which are products of dyadic
intervals. These are indexed by R € R. For such a rectangle, write it as a product R; X R,
and then define

Ug(xy,x3) = Wg, (x1)WR2 (x2).

A function f € BMO(R3 x R%)and only if

V1T ) K R

RcU
Here, the sum extends over those rectangles R € R, and the supremum is over all open

sets inthe plane of finite measure. Note that the supremum is taken over a much broader
class of sets than merely rectangles in the plane. We denote this supremum as||f || gpo- IN
this definition, if the supremum over U is restricted to just rectangles, this defines the
“rectangular BMO" space, and we denote this restricted supremum as||f || smocrec)-
We make a further comment on the BMO condition. Suppose that for R € R, we have
non-negative constants ag for which

> ar<lul

RcU
for all open sets U in the plane of finite measure. Then, we have the John-Nirenberg

inequality
z IR| " ag1g

RcU P
See [2]. This, with the Littlewood-Paley inequalities, will be used several times below, and
referred to as the John-Nirenberg inequalities.

The function b may be taken to be of Schwartz class. By multiplying b by a
constant, we can assume that the BMO norm of b is one. Set B,_,,.to be the operator norm
of [[My, H;]H,]. We provide a lower bound for B,_,,. Let U be an open set of finite
measure for which we have the equality

D b vR? = U1,

RcU
As b is of Schwartz class, such a set exists. By invariance under dilations by a factor of

1 .
two, we can assume thatz < |U| < 1. In several estimates below, the measure of U enters.

An essential point is that we may assume that the rectangular BMO norm of b is at most
¢. The reason for this is that we have the estimate||b|| pyo@rec) S B2—2- See[5]. Therefore,

1/2

sup < 0o,
U

S |UIMP,1 < p < oo




for a small constant ¢ to be chosen below, we can assume that ||b|[gpyo@ec) S & for
otherwise we have a lower bound on B,_,,.
Associated to the set U is a set V which contains U and has the properties specified in
Lemma (1.1.3)[1]: It is critical that the measure of V be only slightly larger than the
measure of U, or more exactly,|V| < (1+ 6)|U|, for a choice of 0 <6 <1 to be
specified.
Define

u(R) := sup{u:uR c V},R c U.
The quantityu(R) #(R) measures how deeply a rectangle R is inside V. This quantity
enters into the essential Journ’s lemma, see [7].
In the argument below, we will be projecting b onto subspaces spanned by collections of
wavelets. These wavelets are in turn indexed by collections of rectangles. Thus, for a
collection A € R, let us denote

bt = Z (b, vg) vg.

The relevant collections of rectangles are defined as
U:={R ER:R c U},
V={RER—-U:RCV},
W=R-U-V.

For functions f and g, we set{f, g} := [[Mf, Hl],Hz] g
We will demonstrate that for all §, e > 0 there is a constant K5 > 0 so that

M Y pY, s s,

() [[6™,b%, < Kse'/?.

Furthermore, we will show that 1 < [[{b"%, b¥}|,. Since b = b™ + bY + b%, ||pY||, <

1 and §,& > 0 are arbitrary, a lower bound on B,_,, will follow from an appropriate

choice of § and €. To be specific, one concludes the argument by estimating

1s||% 0y, s || +bY, b4}, + 6%/
S [|{(BY +bY + bV, b, + 8V* + Kse'/? S Byp + 8% + Kse' /.
Implied constants are absolute. Choosing & first and then sappropriately small supplies

a lower bound on B,_,,.
The estimate 1 < ||{b“,b"}| relies on the John-Nirenberg inequality and the two-

parameter version of (2), namely

1 ~ 2 2 2 2
Z[[Mb,Hl],Hz]b=P+,+|P+,+b| — P, _|P, _b|"—P_,|P_,b|"+P__|P__b|".
This identity easily follows from the one-variable identities. Here P, ., denotes the

projection onto the positive/negative frequencies in the first and second variables. These
projections are orthogonal and moreover, since|Pi,J_rb|2is real-valued we have
that||PJ_,,J_,|PJ_,,J_,b|2||2 > i ” |Pi¢b|2||2Therefore,||bu||z < [[(pY, b"3]|,- 1t follows that

s bz 1Y
1SIIb“‘IIZ=[Z|<b,vR>|2] s[ ﬁm] s [Ip%]],1
REU
4

ReU
1/2
, -

< (|6, b



The estimate (i) relies on the estimate |V| < (1 + 6)|U|. Now, if R € V, then R c V and
since b has BMO norm one, it follows that

2
I+ BYIE = ) KbuRl? < (1 + &)U,
REUUV
Hence||p"||, < 6*/2. Yet the BMO norm of b¥can be no more than that of b, which is to

say one. Interpolating norms we see that||b”||, < §%/*, and so
167, %31, = [67]], = [|b*]],67*.

We now turn to the estimate(ii). b%and b" live on disjoint sets. But in this
argument we are trading off precise Fourier support of the wavelets for imprecise spatial
localization, that is the "Schwartz tails" problem. Accounting for this requires a careful
analysis, invoking several subcases.

A property of the commutator that we will rely upon is that it controls the geometry
of R and R'. Namely, {vgr,ug} # 0 if and only if writing R = R, X R, and likewise forR’,
we have for both j=1,2,|R/| <4|R;|. This follows immediately from our one-
dimensional calculations, in particular (5). We abbreviate this condition on R and R’ as
R’ < R and restrict our attention to this case. Orthogonality also enters into the argument.
Observe the following. For rectangles R, R*, k = 1,2, with R < R*, and for j = 1 orj =
2,

if8|ﬁ}| < |Rj1| and 8|ﬁ]-2| < |Rj2 , then(vs10g1, V520R2) = 0. (7)
This follows from applying (6) in the jth coordinate.
Therefore, there are different partial orders on rectangles that are relevant to our argument.
They are:
(@) R" < R ifand only if 8|R/| < |R;|for j = 1 and j = 2.
(b) Forj = 1orj = 2, define R’ <; Rifand only if R" < R and 8|R/| < |R;| but R’ « R.
(c) R = R if and only if = |R;| < [R}| < |R;[forj = 1 andj = 2.
These four partial orders divide the collection {(R’,R): R’ € W,R € U,R" < R} into four
subclasses which require different arguments.
In each of these four arguments, we have recourse to this definition. SetU,, for k =
0,1,2,.., to be those rectangles in U with 27%¥~1 < u(R) < 2%, R € U,. Journe’s lemma

enters into the considerations. Let U’ < Uibe a collection of rectangles which are
pairwise incomparable with respect to inclusion. For this latter collection, we have the

inequality
Z IR| < K525/100 U R|.

(8)
ReU' ReU’
See Journe’s [7]. This together with the assumption that b has small rectangular BMO
norm gives us

%[ ,,, < K52/, 9
This interplay between the small rectangular BMO norm and Journe’'s lemma is a decisive
feature of the argument.
Essentially, the decomposition into the collections U, is a spatial decomposition of
the collection U. A corresponding decomposition of W enters in. Yet the definition of this
class differs slightly depending on the partial order we are considering.

6



For R’ € W and R € U the term {v®’, uR}is a linear combination of
Ug' HyHiUg, Hy (Vg HiUg), (Hivg!) (HoUg), Hy Hy (Ug/UR).

Consider the last term. As we are to estimate an L?-norm, the leading operators H,H, can
be ignored. Moreover, the essential properties of wavelets used below still hold for the
conjugates and Hilbert transforms of the same. These properties are Fourier localization
and spatial localization. Similar comments apply to the other three terms, and so the
arguments below applies to each type of term above.

We consider the case of R' < R for R" € W and € U . The sums we consider are
related to the following definition. Set

trun(x) = sup Z (b, vg)ug(x)|.

Re‘uk
- - - R <R - - -
We consider the maximal truncation of the sum over all choices of dimensions of the

rectangles in the sum. Thus, this sum is closely related to the strong maximal function M
applied to hY, so that in particular we have the estimate below, which relies upon(9):

bl

(By a suitable definition of the strong maximal functionM, one can deduce this inequality
from the LP-bounds for M.) We apply this inequality far away from the set U. For the
setW = R? — Ugey, AR, A > 1, we have the inequality

k
||btm||L,, w) S £210017190 1 < p < oo, (10)

We shall need a refined decomposition of the collection W, the motivation for which is
the following calculation. Let W' € W. For n = (ny,n,) € Z?2, set

W'(n) ={R' e W':|R]| = 2",j = 1,2}.

k
S £2100,1 < p < oo,

In addition, let

B(W',n) = Z Z(b,er)(b,vR)ervR.
R'eW’(n) REUy

R'<R

And set B(W') = ¥.,,ezz B(W', n).
Then, in view of (7), we see that B(W', n) and B(W', n")are orthogonal if n and n'differ
by at least three in either coordinate. Thus,

2
Z B(W',n)|| <3 Z IBOW', n)||3.
nez? 2 nez?
The rectangles R" € W(n)are all translates of one another. Thus, taking advantage of the
rapid spatial decay of the wavelets, we can estimate

1B, w3 < B, vl
R'ew(n) |R |
In this display, we let y(x;,x,) = (1 + x2 + x2)"1%nd for rectangles R, yr(xq,x;) =
x(x1|R{I71, x,|R,|™1). Note that yr depends only oil the dimensions of R and not its
location.
Continuing, note the trivial inequality [ (xg * f)?gdx < [|f]? xg * gdx. We. can estimate

2

O( 1R')btrun dx.

7



IBOIES |<b,va>|2{|R'|-1 | m (i, z)dx} (11)
RI

R'ew!

<

~

sup avg(R').

R'ew’

R'ew! 5
Here we take avg(R') := |R'|™?! fR,M (|bu" )

trun
The terms avg(R") are essentially of the order of magnitude £2 times the scaled distance
between R’ and the open set U. To make this precise requires a decomposition of the
collection W.
For integers [ > k and m > 0, set W(l,m)to be those R’ € W which satisfy these three
conditions:
(a) First, avg(R") < €22 *if m = 0 and £22~4*Mm"1 < qyg(R)e2274*™ if m > 0.
(b) Second, there is an R € U, with R’ < R and R’ c 2!*1R.
(c) Third, for every R € U,withR’ < R, we have R’ ¢ 2'*1R. Certainly, this collection of
rectangles is empty if | < k.
We see that

R'| s min(2%/P,27™P/2) 1 < p < oo,
R'ew(l,m)
The first estimate follows since the rectangles R’ € W(l,m) are contained in the set
{M1, = 27271}, The second estimate follows from (10).
But then from (11) we see that for m > 0,
|B(W(, m))”z S 2274+ M min(22/P,2-MP/2) < g2~ (m+D/10

In the case that m = 0, we have the bound 22'. This is obtained by taking the minimum
to be 22 for p = z and 0 <m < %l. Form > %ltake the minimum to be 2~™P/2 with
p = 4.
This last estimate is summable over 0 <k <!l and 0 <m to at most < &, and so
completes this case.

We treat the case of R’ <; R, while the case of R’ <, R is the same by symmetry.
The structure of this partial order provides some orthogonality in the first variable, leaving
none in the second variable. Bounds for the expressions from the second variable are
derived from a cognate of a Carleson measure estimate.
There is a basic calculation that we perform for a subset W' < W. For an integer n’ €
Zdefinew' (n') := {R' € W': |R}| = 2™ }Jand

B(W',n') = z z (b, vugr), (b, Ug)URUR.
R'ewW’'(n") REUy

R'<4R
Recalling(7), if n'and n" differ by more than 3, thenB(W',n’) and B(W',n") are
orthogonal.
Observe that for R’ and R as in the sum defining B(W', n), we have the estimate
1
o (TR S (IRIIR'D7Z dist(R’, )% ypr % 140 (x), xR2. (12)

In this display, we are using the same notation as before, y(x;, x,) = (1 + x2 + x3)~%nd
for rectangles R, xp(xy,%;) = x(x1|1R1|7L x2|R,|™Y).  In addition, dist(R,R) =
8



M1z (c(R"), with c(R") being the center of R’. (This distance is more properly the
inverse of a distance that takes into account the scale of the rectangle R.) Now define

B(RY = ) IRI™?|(b, vg)| dist(R', )%, (13)
REU
R'<4R
The main point of these observations and definitions is this. For the function B(W') :=
Ynrez BOW',n"), we have
IBAWH)II3 < IIBOW',n)|I3

< Z f Z |<b:UR’>|B(R,)|R,|_1/2XR’ * 1pr| dx
nez B | Riew ()
2

SO DT Wb edBERIRT | dx
wez B | R ew (n)

At this point, it occurs to one to appeal to the Carleson measure property associated to the

coefficients |(b,vz')||R’|~*/2. This necessitates that one proves that the coefficients 8(R")

satisfy a similar condition, which doesn't seem to be true in general. A slightly weaker

condition is however true.

To get around this difficulty, we make a further diagonalization of the terms S(R") above.

For integers v > vy, u = 1and a rectangle R" € W, consider rectangles R € U,such that

R' <{ R,27V < dist(R'.R) < 27V*1 2¥|R'| = |R|.

(The quantity v, depends upon the particular subcollection W' we are considering.) We

denote one of these rectangles asmt(R').

An important geometrical fact is this. We haverr(R") c 2VtH+10R! x 2v+10R! and
in particular, this last rectangle has measures 22v+«|R’|.

Therefore, there are at most 0(2%v) possible choices for m(R’). (Small integral
powers of 2V are completely harmless because of the large power ofdist(R’.R) that
appears in (13).)

We bound this next expression by a term which includes a power of &, a small

power of 2¥ and a power of 27#, Define
2

|<b, UR’><bi vT[(R’)>|

R’ * 1R’ dx

S(W'v,u) = Z

niez R R'eW’(n") |R'||(R")]
2
b,U' b,U /
< Z [$B, V)b, Urar)| 1
nez B | rew’ (n) |R'[[(R")|
=) . 00w e S b, v b v
- / / " » UR" y U (R"NH /|-
n'EZR’EW’(n’) |R ||7T(R )l Rllewl(nl) |7T(R )l

RIICRI
The innermost sum can be bounded this way. First||b||gpo¢rec) < €, SO that
(b, vgrn)|? < 2|R'|.

RIICRI
Second, by our geometrical observation about w(R"),

9



IR"|
Y. vl s 2n
R"

In particular, the factor Z”does not enter into this estimate.
This means that

|R’|

ey [0 vr b, V)

SW,v, 1) S e22% Z
R'ew’
1/2
s &2 | ) [bug)? ) Wbug)?| s 2| | ] R
R'ew’ REU, R'ew’
The point of these computations is that a further trivial application of the Cauchy-Schwarz
inequality proves that

1/2

1/4
RI
R'ew’
where v, is the largest integer such that for all R" € W' andR € U, we have
dist(R',R) < 27 Yo,
We shall complete by decomposing W into subcollections for which this last estimate is
summable to €27%. Indeed, take W, to be those R’ € W with R’ ¢ 2VR for all R € U,
with R’ <; R. And there is an R € U, with R’ ¢ 2U*1R and R’ <; R. Certainly, we need
only consider v > k.
It is clear that this decomposition of W will conclude the treatment of this partial

IBOV)I|, s 27100

)

order.
We now consider the case of R’ =~ R, which is less subtle as there is no
orthogonality to exploit and the Carleson measure estimates are more directly applicable.

We prove the bound
z Z (b, vg/ )b, U)W Dg|| < Kse'/3.

R'eW REU
R'=R 2

The diagonalization in space takes two different forms. For A > 2*and R € U,set
o (A, R)to be a choice of R" € W with R' = R and R’ < 2AR. (The definition is vacuous
for 2 <2k) It is clear that we need only consider =~ A%choices of these functions
ag(A,.): U, » W. There is an L'-estimate which allows one to take advantage of the
spatial separation between R and a(4, R):

Z (b, v, r)b, VRV (ar)UR|| S 27100 Z (b, vs(2,0) (D, V)|

REUy 1 REUy

- 2
o N e N (1

REUy, REUy
S KseA™%9,
This estimate uses (9) and is a very small estimate.

1/2
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To complete this case we need to provide an estimate in L*. Here, we can be quite
inefficient. By Cauchy-Schwarz and the Littlewood-Paley inequalities,

Z (b, g1, )b, VR W52 R)UR
ReU

4

1 1
5 2 2
< l2|(b,va(/1,R))Ua(/1,R)| ] lZl(b,U}ﬁGlZ] < A

REU REU
4 4

This follows directly from the BMO assumption onb. Our proof is complete.

Let U be an open set of finite measure in the plane. Let R(U)be all dyadic
rectangles inRthat are contained in U. For each R € R(U)and openset V o U, set

u(V;R) = sup{u > 0: uR c V}.

The form of Journs lemma we need is
Lemma (1.1.4)[1]: Foreach 0 < § < 1and open set U of finite measure in the plane, there
is a set V o U for which|V| < (1 + 6)|U], and for all0 < e < 1, there is a constantKs .So
that for any subset R' ¢ R(U) such that R ¢ R'for any two rectanglesR # R’ € R', we

have the inequality
> w; R IRl < K| | ] B]. (14)
RER' RER'

Journ~'s lemma is the central tool in verifying the Carleson measure condition, and points
to the central problem in two dimensions: that there can be many rectangles close to the
boundary of an open set.

Among the references we could find in the literature[7], [10], the form of Journ~'s lemma

cited and proved take the set V to be{MlU > %} , Whizch only satisfies|V| < K|U]|.

Proof. There are two stages of the proof, with the first stage being the specification of the
set V. This must be done with some care, and in a manner that depends upond > 0. Let us
illustrate the difficulty.

At first guess, one would takeV:= {M1, > 1 — §}, with M being the strong maximal
function. But the problem is that the strong maximal function is not bounded on L*(R?),s0
it can't possibly satisfy the desired inequality on its measure.

It is then tempting to define V as some variant of the one-dimensional maximal function.
While this maximal function is bounded on L*(R), as a map into L¥*(R), the norm is
known to exceed one.

The dyadic maximal function, however, maps Ltinto LV *with norm one. This well known
fact we shall utilize in a slightly more general form. Define a grid to be a collection 7 of
intervals in the real line for which for all I,I' € 7,InI' € {®,1,1'}. For a collection of
intervals 7 , not necessarily a grid, set

M7 f(x) = sup 1,01 f fO) dy.
1

1€7
Then, for any grid 7 ,M? maps L' (R)intoL>*(R) with norm one. This is in particular true
for the dyadic grid D.
Now, let us take 0 < § < 1, and in particular take § = (2¢ + 1)~ for integer d.
We define shifted dyadic grids, modifying an observation due to M. Christ. For integers
0<b<d anda € {+(2% + 1)1}, let

11



Dapa = {zkd”’ ((0,1) +i+ (—1)ka) keZje z}.
One checks that this is a grid. Indeed, it suffices to assumea = (2% + 1)1, and thatbh =
0. Checking the grid structure can be done by induction. And it suffices to check that the
intervals in Dy o ,0f length one are a union of intervals in Dy ;, , of length 274, One need
only check this for the interval (0,1) + a. But certainly

Zd
(0,1) + L _ (OZ‘d)+j2‘d—;
’ 24 +1 = ’ 24(29 + 1)
Zd
1 1 j
:]L:Jl(zd(zd+1)’2d+1)+2_d'

What is more important concerns the collections D, :== U, U422 Dgp o-For each dyadic
interval 1 € D,1 + 6|1| € D4. (The problem we are avoiding here is that the dyadic grid
distinguishes dyadic rational points. At the point 0, for instance, observe that for all
integersk, (1 + 6)(0,1) ¢ (0,2%), regardless of how big k is.) Moreover, the maximal
function MP2 maps L* into L>* with norm at most 2d =~ log 5.

We may define V. For a collection of intervals 7 and j =1, 2, set ijto be the
maximal function associated to 7, computed in the coordinate j. Initially, we use only the
dyadic grids, setting

Vo = J{M?1{Mj1,, >1-6}>1-6}
i+j

It is clear that|V,| < (1 + K&)|U|. Invoking the collections D, set
V= L {mPaa{mPir, >1-6}>1-s}

i#j

Then|V| < (1 + Ké&log §-1)|U|, and we will work with this choice of V.
The additional important property that V has can be formulated this way. For all dyadic
rectanglesR = R; X R, c V,, the four rectangles

(Ry £6[R1]) X (R; £ 6IR,|) € V. (15)
This follows immediately from the construction of the shifted dyadic grids. The first stage
of the proof is complete.
In the second stage, we verify(14). A typical proof of Journ~'s lemma shows that the
rectangles in R’ have logarithmic overlap, measured in terms of log u(V; U). We adopt
that method of proof. Fix a subsetR’ c R(U)satisfying the incomparability condition of
the lemma, and fix u = 1. Set S to be those rectangles in R" with u < u(R) < 2u. It

suffices to show that
Z|R| < (1 + log pu)? UR .

RES RES
For then this estimate is summed over u € {2*: k € Z}.

In showing this estimate, we can further assume for allR,R" € S, writingR = R; X R,and
likewise for R’, that if for j =, 2,|R;| > |R;|then|R;| > 16u67*|R;|. This is done by
restricting log2|Rj|to be in an arithmetic progression of difference =~ logud~t. This

necessitates the division of all rectangles intos (1 + logud~1)? subclasses, and so we
prove the bound above without the logarithmic term.

12




We define a bad class of rectangles B = B(S) as follows. For j = [, 2, let B;(S) be those
rectangles R for which there are rectangles

RYR? ..,R* e S —{R},
so that for each1 < k < K, |R’| > |R;|and

K
RnURk

1
Ur|> (1 —Ea) IR|.
Thus R € B;if it is nearly completely covered by dyadic rectangles in the j th direction of

the plane. Set B(S) = B;(S) U B,(S). It follows that if R ¢ B(S), it is not covered in both
the vertical and horizontal directions, hence

2

RN ﬂ (RH¢| =

100|R|
R'eS—{R}
And so
|R| < 10062 UR .
RES—B(S) RES

Thus, it remains to consider the set of rectanglesB;(S) andB,(S). Observe that for any
collection S'B;(§") ¢ S, as follows immediately from the definition. Hence

B, (Bz (Bl(S))) c B,(B,(S)). And we argue that this last set is empty. As our definition
of V and u(V; R) is symmetric with respect to the coordinate axes, this is enough to finish
the proof.

We argue that ’31(731(5)) Is empty by contradiction. Assume that R is in this collection.
Consider those rectangles R' in B, (S) for which (i)|R;| > |R;land (ii))R' N R # @ Then

1
Ro | ) Rz (1-759)IRL
R'€B,(S)
Fix one of these rectangles R’ with|R;| being minimal. We then claim that 8uR' c V,
which contradicts the assumption that w(V; R")is no more than 2.

Indeed, all the rectangles in B;(S) are themselves covered by dyadic rectangles in
the first coordinate axis. We see that the the set{M?1, > 1 — &}contains the dyadic
rectangle R; X R,, in which R, is the second coordinate interval for the rectangle R and R;
is the dyadic interval that contains R{ and has measure 8ud~|Ry| < |Ry| < 16u87 2[R
That is, R; X R, is contained in V,. And the dimensions of this rectangle are very much
bigger than those of R. Applying (15), the rectangles(R; % |R;|) X R, £ 8|R,|are
contained in V. And since 8uR’ is contained in one of these last four rectangles, we have
contradicted the assumption that u(V; R") < 2u.

Section (1.2): Multi-Parameter Paraproducts

Forn>1 Ietm(= m(r))in L*(R™) be a bounded function, smooth away from the

origin and satisfying

1
|0%m(7)| S — (16)
|7l
for sufrciently many multi-indices a. Denote by T,ﬁll) the n-linear operator defined by

13



T, o £ ) = | m@Fi(zy) ... fo(z,) e2x @t +m) gy (17)
]Rn
where fi, ..., f, are Schwartz functions on the real lineR. The following statement of
Coifman and Meyer is a classical theorem in Analysis [13], [17], [15].

Theorem (121)[12] T(l) maps LPt X ..x LPn — [P boundedly, as long as 1<

1
Soo—+ +———and0< < 00,
P1-sPn Dy Pn D p

In [18] we considered the bi-parameter analogue of T,S) defined as follows. Let m(=
(¥,m)) in L”(R®™) be a bounded function, smooth away from the subspaces {y = 0} U

{n = 0}and satisfying
1 1

ooy my, | S —ar (18)
ven lyllel |n|1A]
for sufrciently many multi-indices a and .
Denote by TT%Z) the n-linear operator defined by

T2 (fr, o) f) ()

= [ MR 1) o) OOty (19)
R21

where f, ..., f, are Schwartz functions on the planeR™. The following theorem has been
proven in [18].

Theorem (1.2.2)[12]: T(Z) maps LP1 x ... x LP» —» LP boundedly, as long as 1<
P Pn = o0, — + ---+i :;and 0<p< oo,

We generalize Theorem (1.2.2) to the d-parameter setting, for any d > 1.

In general, if & = (6{)‘;1, v &y = (Eﬁ)ilare n generic vectors in R%, they
naturally generate the following d vectors inR™ which we will denote by & =
(5});;1, v &g = (fj‘-i);;l. As before, let m(= m(§) = m(@)in L*(R*™)be a bounded
symbol, smooth away from the subspaces {¢; = 0} U .U {&; = 0}and satisfying

6% .. 0%m(?)| s 1_[ |_|1|a| (20)

for sufaciently many multi-indices a4, ..., a4. Denote by T,ﬁld) the n-linear operator defined
by

T (s oes f) () =f M) f1(§1) - fu(§y) 2™t +éndde (21)
RAn

wheref;, ..., f,, are Schwartz functions onR¢. The main theorem is the following.

Theorem (1.2. 3)[12] T(d) mapsLP1 X ... X LP» — LP boundedly, as long asl <
P1,-- ,'pngooP—+ +p— —and0<p<oo

Classically,[2, 7, 5] an estlmate as the one in Theorem (1.2.1) is proved by using the T(1)
theorem of David and Journ“e[19] together with the Caldero’n- Zygmund decomposition.
In particular, the theory of BMO functions and Carleson measures is involved.

On the other hand, it is well known [2], [16] that in the multi-parameter setting all these
results and concepts are much more delicate (BMO, John-Nirenberg inequality, Caldero’n-
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Zygmund decomposition). To overcome these dificulties, in [18] we had to develop a

completely new approach to prove Theorem(1.2.2). This approach relied on the one
dimensional BMO theory and also on Journe’s lemma [16],[1], but did not extend to prove
the general d-parameter case.

The novelty is that it simplifies the method introduced in [18] and this simplification
works equally well in all dimensions. It turned out that one doesn’t need to rely on any
knowledge of BMO, Carleson measures or Journ'e’s lemma in order to prove the estimates
in Theorem(1.2.3).

We shall rely on [18] and we chose to present the argument in the same bi-linear bi-
parameter setting (so both n and d will be equal to 2). However, it will be clear from the
proof that its extension to the n-linear d-parameter case is straightforward.

We recall the discretization procedure from [18] which reduces the study of our
operator to the study of some general multi-parameter paraproducts. We present the proof
of our main theorem, Theorem (1.2.3) and we give a proof of Lemma (1.2.6) which plays
an important role in our simplified construction.

As we promised, assume throughout that n = d = 2. In this case, our operatorT,%d)
can be written as
TP, @) = | m@.mfrn)§an)e2m rm+andlgydy  (22)
Rél-
In [18], we decomposed the operator T,ff) into smaller pieces, well adapted to its bi-
parameter structure. This allowed us to reduce its analysis to the analysis of some simpler
discretized dyadic paraproducts. We will recall their definitions below.
An interval I on the real line R is called dyadic if it is of the form I = 2¥[n,n + 1] for
some k,n € Z. If A,t € [0,1] are two parameters and I is as above, we denote by I, , the
interval I, = 2¥™[n + t,n + t + 1].
Definition (1.2.4)[12]: For /] € R an arbitrary interval, we say that a smooth function @,
Is a bump adapted to J, if and only if the following inequalities hold
1 1
0]
D (x)|<C ’
T

for every integer a € N and for suficiently many derivatives [ € N. If®,is a bump adapted

to /, we say that |J|~*/?®;, is an L?-normalized bumpadapted to J.
For A,t;,ty,t3 €[0,1] and j € {1,2,3} we define the discretized dyadic paraproduct

] (13 ¥
Attt Of “typej” by
1,%2,%3 ] 1 ) , .
[[ vo=)merel)eel e, @
1€D

(23)

At,6,t
where f, g are complex-valued measurable functions on R and CD}A,ti,ti are L?-normalized
bumps adapted to I ; with the additional property that fR CD}'A,ti(x)dx =0 fori#j,i=
1,2,3. D is an arbitrary finite set of dyadic intervals and by(.,.) -, we denoted the
complex scalar product.
Similarly, forA, t;,5,,t; € [0,1]% and J € {1,2,3}%, we define the discretized dyadic bi-
parameter paraproduct of “type J’
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n_.__=1 .
Aty,tats At1tats ’® Aty tats

by
A:tlltth?) ’ |R | 1/2 ’ RX,H g' Rz’g RX,E) )

ReD
where this time f, g are complex-valued measurable functions on R?, R = I X ] are dyadic
rectangles and CD;QX? are given by
i
®CD]A",E£
for i =1,23. In particular, if i # ;' then [ CD]iA’ ,(0)dx =0 and if i +j then

O = ]
RA’?L I

1!
A,ti

fR CID}'A,, .(x)dx =0 D is an arbitrary finite collection of dyadic rectangles. We will also
£

denote byA%?F,t_,(f,g, h) the trilinear form given by
v1,02,03

J _ J
Ai)t_{,t_z’,t_gf(f’ g: h) - ij Hz,t—{,t—i,t—é (fr g) (xl Y)h(x; y)dXdy (26)

In [18] we showed that Theorem(1.2.2) can be reduced to the following Proposition.
Proposition (1.2.5)[12]: Fixj € {1,2,3}?and let 1 < p,q < oo be two numbers arbitrarily
close tol. Let also, f € L?,||If]l, = 1,9 € L%, ||gll, = 1andE < R?|E| = 1. Then, there
exists a subset E' € E with |E’ |~1 such that

| Fﬁﬁ(f g.h)| =1 (27)

t1 2 t3
uniformly in the parametersi, ;, &, t3 € [0,1]2, whereh = X5’
It is therefore enough to prove the above Proposition(1.2.5), in order to complete the
proof of our main Theorem(1.2.2). Since all the cases are similar, we assume as in [18]
that 7 = (1,2).
To construct the desired set E’, we need to recall the “maximal-square”, “square-maximal”
and “square-square” functions considered in [18].
For (x,y) € R? define

1
MS(N)G0y) = suprs| ) sup 0 |u, @9

J:R= Ix]eD’Hl Ul

1/2

/ won )

| sup «1epSuUPz Xy |
SM(g)(xy=iz e “m i 0@ | @)

\ )

and
1/2
3

SSMEy) =| ) supm—r ey | . (0)

rep Mt

Then, we also recall (see[19]) the bi-parameter Hardy-Littlewood maximal function
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MM(F)(x,y) = sup
(x,y)eIx] |I||]| Ix]

The following simple estimates explain the appearance of these functions. In particular, we
will see that our desired bounds in Theorem (1.2.2) can be easily obtained as long as all
the indices involved are strictly between 1 and oo.

We start by recalling the following basic inequality, [18]. If II* is a one-parameter
paraproduct of “typel” given by

1
(i f2) = ) rra7a o PP, @10 (32)
I

|F(x',y")|dx'dy’'. (31)

then we can write

|A1(f1»f2»f3)| =

Hl(fl:fz)(x)f3 (x)dx
R

1
< . i 4 DI @IS, o)
1

_ [{f1, PO {fo, PO {f3, P3)]
- f]R |I|1/2 |1|1/2 |I|1/2 xi1(x) |dx

< f MF) S (OS(f) (@) dx . (33)
R

where M denotes the Hardy-Littlewood maximal function and S is the square function of
Littlewood and Paley. In particular, we easily see that M:L? x L7 - L"for any 1<
p,q,r < oo satisfying 1/p + 1/q = 1/r . Analogous estimates hold for any other type of
paraproducts I17 for j = 1,2,3.

Similarly, for the bi-parameter paraproduct T2 of “type(1,2)” formally defined by
M2 = N'®I1%one obtains the inequalities

|A(1’2) (f1 f2 f3)| - _IRH(I'Z) (f1, f2)(, ¥) f3(x, y)dxdy

S s | MS(f)(x,y)SM(f)(x, y)S(f3)(x,y) dxdy. (34)
]RZ

and analogous estimates hold for any other type of paraproducts I/forj € {1,2,3}2. It is
important that all theseMS, SM and SS functions are bounded on LP forany 1 <p < o .
We recall the proof of this fact here (see[18]). We start with SM(f;)(x,y). It can be

written as
) ) 2 1/2
/ (o, D2 @D2)] \
supjy = ](J’) |

MG = | : OYINED
I
\ )
< ZM(“[Z’F/;)) 1)

I

where I andj are the intervals where the corresponding supremums over/, t, € [0,1]?
(29) are attained.
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In particular, by using Fefrerman-Stein[14] and Littlewood-Paley [19] inequalities, we
have

1/2

IsM¢EDN, = ||| D M (“;2"1/;)) Mxr(x) (36)

1/2

(fy, ©3)]
< Z 7 Mxi() S £l

for any 1 < p < co. Then, we observe that the MS function is pointwise smaller than a
certain SM type function and hence bounded on LP, while the SS function is a classical
double square function and its boundedness on LP spaces is well known, [2]. As a
consequence, it follows as before that IT*: LP x L9 - L"as long as 1 < p,q,r < oo with
1/p+1/q=1/r.

It remains to prove Proposition(1.2.5). First, we state the following Lemma.

It is the main new ingredient which allows us to simplify our previous argument in
[18]. Using it, we can decompose our trilinear form in(25) as

N (fgh) = Z 2- woolklz —(f, @k, (9, P}, ) 3F ), (37)
keN2 RED|R|2

where the new functions CDRﬁﬁhave basically the same structure as the old CDRﬁﬂbut they

also have the additional property that supp (CD Ml) c 2"R~~ We denoted by2"R~~ =
2kl 0 X 2820 o K = (ky, kg)and]k| = ky + k.
Fix now f, g, E, p, q as in Proposition(1.2.5). For each k € N? define

Q_g = {00 y) € REMS(F)(x, y) > 251} (38)

| J{ e r:smig)cxy) > c25Fl}
Also, define

~

0= {cen emmm (g ) n) >0l (9

and then

<

O g = {(x y) € R%: MM( )(x y) > —} (40)

2[k|
0= U Q—5|ﬁ|'
kEN?
It is clear that |Q] < 1/2 if C is a big enough constant, which we fix from now on. Then,
define E' := E \Q and observe that|E’| ~ 1. We now want to show that the corresponding
expression in(27) is 0(1) uniformly in the parameters 4,4, t,, &3 € [0,1]2. Since our
argument will not depend on these parameters, we can assume for simplicity that they are

Finally, we denote by
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all zero and in this case we will write ®% instead of d)}eﬁfor i = 1,2 and ®>¥instead of

C.

Fix then k € N2 and look at the corresponding inner sum in (37). We split it into
two parts as follows. Part I sums over those rectangles R with the property that

Rn QCSIkI 1) (41)
while Part 1T sums over those rectangles with the property that
RN QCSIkI = Q. (42)

We observe that Part 1l is identically equal to zero, because if R n Q° + @ then R C

—5]K|
Q—5|%| and in particular this implies that 2kR Q—5|E| which is a set disjoint from E’. It is

therefore enough to estimate Part | only. This can be done by using the technique
developed in [18].

Since if R N Q€ # @, it follows that

~s[k| 7

[Rna_gy|
2l < or equivalently,
IR| 100 100

We describe three decomposition procedures, one for each function f, g, h. Later on, we
will combine them, in order to handle our sum. First, define

25kl
Q_sfj41 = {(x y) € R*:MS(f)(x,y) > }

IRI

c
RN Q_5|E|| >

21
and set
1
Tsfkl+1 = {R € D:|R N Qg | > WIRI};
then define
¢ 25[K]
-Q'_5|k|+2 (x y) € RZ MS(f)(x y) > 22
and set

T sz = {R € D\T_gjgjsa |R 0 Qgpifsa] > o0 100 |R|}
and so on. The constant C > 0 is the one in the definition of the setE’ above.
Since there are finitely many rectangles, this algorithm ends after a while, producing the

sets {Q,,} and{T,,} such that D = U,, T,
Independently, define

, ) ¢ 25IK]
Qg1 =)0 ¥) € RESM(g) (%, y) >

21
and set
, 1
T—5|k|+1 {R € D: |R na’ 5|k|+1| ﬁlRl}'
then define
, ) 25[k|
Qg4 = )0 ¥) ERTSM(9) (0, y) > —
and set
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T—5|k|+2 {R € D\T 5[%[+1° |R ne 5|k|+2| ~ 100 100 lRl}
and so on, producing the sets {0/} and {T.} such that D = U, T.,. We would like to have

such a decomposition available for the function h also. To do this, we first need to
construct the analogue of the set Q-SI?I’ for it. Pick N > 0 a big enough integer such that

forevery R € D we have|R N Q"_N| > 2 IRIWhere we defined

v={xy) € RZ sSE () (x,y) > c2V}.
Here SS* denotes the same “square-square” function defined in (30) but with the
functions CDZ’;; instead of &3 - Then, similarly to the previous algorithms, we define

N
e = {(x y) € RE:SSF(R) (x) > 2 }

21
and set
T N+1—{RED IR nQ_N+1|> |R|}
then define
. 2. ook c2N
Uni2 = 31X ER“:SS*(h)(x) > —— 2
and set

T Ntz = {R € D\T_n41: |[RNQLy4n| > — 00 |R|}

and so on, constructing the sets {Q;,} and {T;} such that D = U,, Ty,
Then we write Part I as

DY mmElneRle Rkl @)
nyn,>— 5|k| RETTll np,n3
nz>—N

where Ty non, = Tp, N Ty, N T,"l3. Now, if R belongs to T;, ;. n, this means in particular
that R has not been selected at the previous n;, —1,n, — 1 and n; — 1 steps respectively,
which means that

RN Q4| <—— 00 |R| RN Q4| <— 00 |R|and|RnQn3_1| <W|R|

or equivalently,

|R n QS |>9 IR|,|R N Qf |>9 |R|and|R N Q¢ |<9—|R|
-7 100 2=11 7100 37117100

But this implies that

’ 97
RNQS 1 nQf_ 1N, | > 100 IR|. (44)
In particular, using (44), the term in (43) is smaller than
1
. TREE N ORI, ORI ORI X [R 105, 100 0 0y |

nq{,n, >—5|7(>| RETnl,nz,ng
n3>_N
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1 1 2
-y ) sl eRlig, @R
Q5 100" _1nQ,L IR]

ny,ny>—5[k]| 371 RETny 1y ng
Tl3 >_N

s > MS(F)(x, Y)SM(g)Cx,y) X SSF () (x, ) dxdy

708 . nQlc _.nQE_.nQ
nl,n2>—5|k| n1-1 "nz-1 Fing -1 R Tng,na ng

ng>-N
< —-Nny9-Ny9—n
s > rmemslag (45)
ny,ny>—5[k]|
ng>-N
Where

QTTL1,Tl2,Tl3 = l | R .

RE€Ty, nyng

On the other hand we can write

| Tuwngms | < |QTn1| < |{(x y) € R?>: MM ()mnl) (x,y) > %ﬂ

< 2 ¢
< 100, = ey e R M5 (DG > ]

Similarly, we have

< 2™MP,

S 2m24

| Tn1,n2,n3

and also

n,a
r < 2me?
ni,ny,n3

for every a > 1. Here we used the fact that all the operators SM, MS,SSE, MM are

bounded on L° (independently of E) as long as 1 <s < o and also that|E’'|~1. In
particular, it follows that

< 2”11’912712‘192 2”3“93 (47)

| Tnl,nz,n3

forany 0 < 64,6,,05; < 1, suchthat 8, + 6, + 65 = 1.
Now we split the sum in (45) into

2-m2-m2pms | 2-mp MM | (47)
Tnynzng Tnyimans|*
nl,n2>_5|E| nl,n2>_5|ﬁ|
n3>_N 0>n3>_N

To estimate the first term in (47) we use the inequality (46) in the particular case 6, =
6, =1/2,6; = 0, while to estimate the second term we use (46) for 6;,j = 1,2,3 such

that 1 — p6; > 0,1 —qB, > 0 and ab; — 1 > 0. With these choices, the sum in (47) is
0 (21°|%|) and this makes the expression in(37) to be 0 (1), after summing overk € N2.
This completes our proof.

It is now clear that our argument works equally well in all dimensions. In the general case,
exactly as in [18], one first reduces the study of the operator T,%d) to the study of generic
d-parameter dyadic paraproducts I/ for 7 = (jy,..,j4) € {1,2,3}%formally defined
byH7 ='"® ... ®I1/4. Then, one observes as before, by using the linear theory and
Fefierman- Stein inequality, that all the corresponding “square and maximal” type
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functions which naturally appear in inequalities analogous to (33), (34) are bounded in L?
for 1 < p < oo (in fact, as before, it is enough to observe this in the SS...SMM... M case,
because all the other expressions are pointwise smaller quantities).

Having all these ingredients. Finally, the n-linear case follows in the same way.

Lemma (1.2.6)[12]: Let J € R be an arbitrary interval. Then, every bump function @,
adapted to J can be written as

¢, = Z 2—1000k0 (48)

keN
where for each k € N,(Z)}‘ Is also a bump adapted to J but with the additional property that

supp(@¥) € 2. Moreover, if we assume [, @;(x) dx = 0 then all the functions @ can
be chosen so that [ @ (x) dx = 0 for every k € N.
Proof. Fix ] € R an interval and let ¢, be a bump function adapted to J. Considery a

smooth function such that supp(y)) € [-1/2,1/2] and ¢ =1 on[ —-1/4,1/4]. IfI C R is
a generic interval with center x;, we denote byy;the function defined by

i) = (). (49)

Since
L=y + (Yo — ) + (Pa2) = Ppy) + -
it follows that
¢] = ¢]-1/J] + Z ¢] . (lpzk] - 1»bzk—l])
k=1

(00]

= ¢, + z 21000k [2-1000kgs (4 — 4y )] = Z 21000k ok
k=1

= k=0
and it is easy to see that all theqb}c functions are bumps adapted to/, having the property

that supp(qb}‘) c 2k,
Suppose now that in addition we havef]R ¢;(x)dx = 0. This time, we write

¢, =¢p 0 +¢.(1—y))
1

1
+ [(W.fR¢](x)¢](x)dX>.¢] + ¢](1 — lp])]
= ¢} + R}
Clearly, by construction we have that fR ¢}’ (x)dx = 0and therefore
fR]O(x)dx = 0.
R

Moreover, qb}’ IS a bump adapted to the interval J having the property that supp(qb})) cJ.
On the other hand, since

1
9,00 chp,(x)t/J](x)dx
R
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f by ()dx (1 -, () dx| 5 271000 (50)

(x)d

follows that||Rp|| < 21000,

Then, we perform a similar decomposition for the “rest ﬁmction”R]O, but this time we
localize it on the larger interval 2J. We have

R} :R]O Yoy + R (1= 1y)

ZIRJ"-%J (g [ om0,

[(f Yo (x)dx fR] (X)l/JZJ(x)dx> Yz +RJ (1 _¢21)]

= 271001 + Ry,
As before, we observe that [ ¢;(x)dx = Oand also [, Rj (x)dx = 0. Moreover, ¢}is a
bump adapted to J whose support lies in 2/ and||R}||_ < 27"°%%2, Iterating this procedure
N times, we obtain the decomposition

¢] — z 2= 1000k¢k + R] (51)

where all the functions qb] are bumps adapted to] W|thf ¢] (x)dx = 0and supp(qb]) c
2%], while||RY||_ < 271000W,
This completes the proof of the Lemma.
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Chapter 2
Algorithm and Nonlinear N-Term Approximation

We establish the order of approximation by this algorithm in weighted L,-spaces.
We show an associated with a finite mask and a rather general matrix dilation A €
GL,(Z).

Section (2.1): Nonlinear Approximation by Piecewise Polynomials

The UDA was firstly developed for nonlinear approximation by compactly
supported refinable functions, see [21] and [23]. We present its version intended for
approximation by piecewise polynomials. We believe that this modification of the UDA
will have important applications to Numerical Analysis and deserves to be presented to
experts in this field. On the other hand, an approximation theorem to be proved in the
present has important applications to Approximation theory. One can derive from it the
corresponding optimal approximation results for functions from Besov spaces (see [22]).

The algorithm considered makes use of a collection T := {Tj;j € Z+} of subsequent
subdivisions of measurable set O c R%. This collection is equipped with the structure of
ordered tree. The input of the algorithms consists of an integer N > 1and a set function

F:T-X,
where X is a subspace of polynomials inR%. The output is a function
Fy:T - X
such that
supp Fy == {w € T; Fy(w) # 0} < 4N.
Using this we then introduce an approximation aggregate

Tv(F) = ) Fy(@)xe) (D

w

wherey ,here and below stands for the Characteristic function ofw c R%.
If, in particular,X: = P 4, the space of polynomials of degree s inR?, the aggregateTy (F)
becomes a piecewise polynomial of degree s with 4N “pieces”.
However,supp Ty (F)does not form a subdivision ofQ and therefore these pieces relate to
subsets that may differ from subsets w € T'.

We present the description of the algorithm. We apply the algorithm to establish a
general approximation theorem for functions f € L,(Q), 0 < p < oo,presented in a form

f= Z fwxe (convergence ian).
WET
In this case the aforementioned function F is defined by F(w) = f,, w € T,and we

estimate the rate of approximation of f by Ty (F)in a weighted L,-norm,p < g < co.In the
subsequent [22], this theorem is applied to derive the corresponding approximation results
for Besov spaces. The aggregate(1) in this case yields an optimal in order rate of
approximation showing the efficiency of the algorithm.

We begin with the introduction of a tree of subdivisions 7. Let Q be a subset of R%
with finite d-measure|Q|,and T is a collection of subsets of Q.7 is called a tree of
subdivisions for Q, if the following holds.

(i) Every w',w" € Teither nonoverlap, i.e.,
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|w'Nw’| =0,
or one of them is contained in the other. This condition introduces an ordered tree structure
on T. Actually, we regard subsets of T as vertices and connect w’, w € Thy the edge
directed from w’ to w (written o’ - ') if @’ < w and there is no set of T situated
between them different fromw’ andw .
Assume that Q € 7. Then T is an ordered tree with the root Q. Hence each w € J'can be
connected with Q by a unique array. In other words, there is a coIIection{wj: 1<) <
n} c T such that w; = w, — -+ = wy,(i.e., this collection is an array), andw; = @ and
wy, = . Because of uniqueness of this array one can correctly define a height h: T — Z,
letting

h(w) = (card4) — 1, (2)
where A is the array connecting w and Q. Specially,h(Q) = 0.
Set now for j € Z,

T ={w € T:h(w) = j}. (3)
These form a partition of T
TNT: = ,ifj # j'andT = U 7. O)
JEZ,
(ii) Forevery j € Z,
supp J; = U w = Q. (5)
WET

In other words, {T; }is a sequence of consequent subdivisions of .
To formulate the last condition one set
S(w) ={w €T: 0 - w}. (6)
In accordance with the terminology of Graph Theory, each element of this set is a son of
w(and w is its father).
(iii) There is a constant C(7") such that for everyw € T
1 < cardS(w) < C(T). (7)
Definition (2.1.1)[20]: A collection T of subsets of Q is said to be a tree of subdivision, if
it meets the conditions (i)-(iii).
Let w:T - R be a weight, and 0 <p < co. Introduce a space £y (7T;X) of

functions F: T — R defined by the quasinorm
1

Il = {Z (wlw) sgp|F(w>|)p}p. ©

we:T
Note that the w-term of this sum with unbounded w is finite, only if the polynomial F(w)

is constant (or w(w) = 0). To avoid unnecessary complications we assume that Q is
bounded.
The input of the algorithm comprises a fixed F € £ (7; X)and integer N > 1. Because of

homogeneity of(8) we can and do assume that

”F”p,w =1L 9
Given F, we introduce a cost function 7: 2 R . by
p
9(5) = I(F; S) = {Z (w(a)) suplF(w)l) } (10)
w
WES
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Specially, for the subset

T(w) ={w e€T: 0 c w} (11)
we simplify this notation by setting
I(w) = I(T (w)). (12)
Note that7(w) # I({w}) = (W(w)|f (w)])?, and
Q) =1, (13)
See (8) and (9).
We first introduce the subtree
Gy = {w €T:7(w) = N1} (14)

Gyis nonempty and has the root Q by (13). Since T is an ordered set, the set M of
minimal elements of Gy is well-defined. Hence for each w € Myand every its son o'

J(w) = N1, while 7(w") < N1 (15)
Numerate the elements of M, in some order _
My = {01 <j <my}. (16)

Since the subsets of M nonoverlap, we have

1=3(Q) = z I(wf™) = my/N,
J
whence
my < N. (17)
We partition Gyin order to obtain a collection of (basic) arrays By. An algorithm
fulfilling this operation is the main part of our construction.
In its description we will use the notation
lw, '] ={w; = w; = -+ = Wy} (18)
for the array connecting w(= w,) andw’ (= w,,). We also introduce an “open from the
top” subarray of this array setting
[w,0") = [w, 0 \{w'}. (19)
At the first stage we introduce a partition of Gy into a collection A := {Aj: 0<)< mN}
of (“big”) arrays satisfying the following conditions:
(@) {4;:0 < j < i} is a partition of the set

Gl = U[w?’in,ﬂ],o < i< my;
S<i

(b) each A;has a form

A = [w{ni“,w),
wherew belongs to someA; withi’ < i. This w is called a contact element and is denoted
bywy ; hence

A; = oM™ wf),1<i < my. (20)
Since G = Gy, ifi = my, the collection A = {4;:0 < j < my Jforms the desired partition
of the subtree G, . Besides,-A determines the set of contact elements

Cy = {wf} u {a}. (21)
As we shall see, some of these may coincide and therefore
cardCy <my +1, (22)

where the inequality may be strict.
In order to introduce A we use induction onj starting with

Ay = {0} and 4, = [0, Q]\4, = [w]", Q).
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Assume now that we have determined the arraysA;,i = 0,1, ..., j, satisfying the conditions
(a) and (b) with i < j. Define

Aper = [opim o\ [ ] 4 |
i<j
Then{A4;:0 < i < j + 1}is Clearly a partition of g“l Show that A;,; has a form(20). In
fact, consider the intersection of [w/1, Q]with each[w[™™, Q].i < j. SinceGy is a tree with
the rootQ), this intersection is of a form[w;, Q], and{w;: 1 < i <j} is a subset of the
array[w'?, Q]. Hence this subset inherits the linear order of the last array. Ifw; is the

smallest element of{w; } with respect to this order, then

Ay = [omn o)\ [ | a: ) = [opmal\[ | Jlorn ] ) = [of o).
i<j i<j
Moreover,w; € U;<;A;. Hence the induction is complete.
We proceed the refinement of Gy subdividing each arrayA; by the elements of the set

AjNCy, j = 1. We introduce a collection of “open from the top” subarrays [a)’, w") where

w’ is either a minimal or contact element, andw'is a contact one. The set of these
subarrays one denotes by R, . According to its definition

supp Ry = U R = Gy\{Q} (23)
RERy
and different elements of R, do not overlap, i.e., Ry is a partition of (23).
At the final stage we complete the partition algorithm subdividing each sub-array R € Ry
into “basic” arrays as follows.
Let w_(R) and w . (R) be, respectively, the bottom and top endpoints of R, i.e.,
R = [w_(R), w;(R)]. (24)
One defines inductively a collection{wf: 1 < ¢ < #R}beginning with wf = w_(R). If w§
has been determined, we Choose w5, as an element from (wf, w, (R)] satisfying the
conditions
1([0f, wfia]) = N7 and 9([wf, why,)) < N7
and then set
B} = 0§, wiy1). (25)
This element may not exist in the next cases:
(a) wf = wy(R) or I([wf, w,(R)]) < N7
We define wf, ; as the father of w,. (R)and set

BE = [f, wf.)(= [0f, @, (B)]).

(b) wf #w,(R)andI({wf}) =N

We define wf, ;as the father of w§ and introduce Bfby(25).

In this case wh,, € R, and the procedure can be continued. Note also that now BJ
consists of a single point, Bf = {w}}.

Completing the procedure one obtains the partition{Bf: 1<¢< {’R}of R into the basic
arrays Bf. By their definition
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I(BH{wf}) < N7 (26)
Note that the argument in(26) is an empty set, if BY is a singleton. Besides, for £ <
¢Rand card(Bf) > 1
J(Bf) = N1, (27)
provided thatBf = Bf U {wf,},if Bf is not a singleton, and By = BY, otherwise.
Collecting all the basic arrays for all R € R, we lastly obtain the desired set of the basic
arrays
By ={B/:1< ¢ <R R € Ry}
Proposition (2.1.2)[20]: (a) By is a partition of the setG, \{Q}.
(b) For each B := [w_(B), w,(B)]fromBy
I((w_(B), w,(B)]) < N7L. (28)
(c) Itis true that
card By < 4N + 1. (29)
Proof. (a) follows from (23) and the definition of B%.
(b) follows from (26), since the argument in(28) is B\{w_(B)}.
(c) Using(27) and noting that the mutiplicity of the cover of R by {B’ff} Is at most 2, one
has
fr—1
N7 1(tr—1) < Z 3(Bf) < 23(R).
=1
This implies, see(13), !

Z (br —1) < 2N 2 9(R) < 2N7(Gy) < 2N,

REfRN RERN
whence
card(By) = z fr < 2N + card(Ry).
RRy
By the definition of Ry

card(Ry) < card(Cy) + card(My) < 2N + 1.
see(17) and(22).
Combining the last estimates we get(29).
The output of the algorithm is a functionF, onJ" defined as follows.
If w :== w_(B), the bottom endpoint of a basic arrayB € By ,then

Fy(w) = (Z F(w'))xw. (30)
w'EB

We also let Fy (Q) == G(Q) xq.
For all other w € Twe let

Fy(w) = 0. (31)
HenceFy (w)(x) is a polynomial from X, if x € w, and
supp Fy € {w_(B ):B € By} U {Q}. (32)

Let T and X be defined as above. We introduce, first, a subspace ofL,(2),0 < p <
oo, consisting of functions f that can be presented in a form

f= z fwXw (convergence in L) (33)

wET

28



with suitable f,, € X.

Then we define the space By’ (T")by finiteness of the Banach norm (quasinorm, if p < 1)
1

oy = inf{Z (w(@) sgp|fw|)p}5, (39

weET
where the infimum is taken over all decompositions (33).

Herew:T — R,is a given weight Assume now that for some p < q < oo the following
embedding"

BY (T) < Ly(dp) (35)
holds with embedding constant C,,,,. Here u is a Borel measure supported by (.
Under this assumption the following is true.
Theorem (2.1.3)[20]: Given f € By’(7) and integer N = 1, there is an N-term linear
combination

V() = ) fulla

with suitablef,, € Xandw € 7" such that

1 1
If = Tn(Olliyaw < CN PIf gy (36)
Besides,
ITw(FlLy@aw < Clf Iy (37)

Here the constant C depends only on C,,,, C(T), see(7), andp* := min(1, p).
Proof. Assume that(33) is an e-optimal decomposition for f, i.e.,
1

p\P
(2 (w(w) suplz, ) ) < (1 +)If gy (. (38)
eT @
Without loss of generalﬁy we assume that
p
> (w@suplf,l) =1. (39)
wW€ET @

Define now a functionF: 7 — X by letting

Flw) =f,weT. (40)
By(39), this F satisfies(9) and we take it and an integer N > 1 as the input of the
algorithm. As the output we obtain the function F, see(30) and(31) for F(w) = f,,. In
turn, Fy gives rise to required approximation aggregate

T4N+1(f) = fﬂ)(Q + z (Z fw)Xw_(B)- (41)

BEBN wWEB
Let us show that(41) provides the desired rate of approximation to the function f in

Lq(du). Set

) = ) fokw,f T, (42)
and simplify this notation for S: T (w), see(11), byws,eégtting
d(w) = (T (w))w € T. (43)

Note that ¢ (w) # ¢({w}) = fuXe-
Proposition(2.1.2) and(42) imply
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FTiva ()= ) ¢°(B)+6T\Gw), (44)

where we let
¢*(B) = (p(B) - (Z fa)))(co_(B) = Z fa)Xa)\a)_(B)- (4‘5)
wWEB wWEB )
Applying to(44) the L,(du)-norm, we get for C :== max (1, 25_1)
If-Tan+1(Ollg < CU1 +J2), (46)
Where
> o ®)| 2= 1@\l (47)
BEBN q
In order to obtain the required estimate for J,, show that for different B, B’ from B
|supp ¢*(B) N supp ¢*(B')| = 0. (48)
Let, first, their top endpoints w, (B) and w, (B") nonoverlap. Since by(45)
supp ¢*(B) © w,(B)\w-(B) (49)

and the similar is true forsupp ¢*(B"), these supports nonoverlap.

In the remaining case the biggest set of one of them, say w, (B), embeds in the smallest
set of the other w_(B'). Hence supp¢*(B) c w,.(B) c w_(B"), while by(49)
supp ¢*(B") € w,(B")\w_(B"). Thus in this case(48) holds, as well.

Applying (48), we get

Q|-

DN A

Using now embedding (35) and remembering the definition of the cost function I, see

(10), we have
1

p
p
I6°Bllg < || D Malto]| <Cem] D (wl@)suplfyl)
weB\[o—(B)} ; weB\[w_(B)} ©
= CemI (B\{w-(B)}).
Combining this and (28) and (29), we have
q 5 1 1 11
J1 < Com Z IB\(w_(BY) P\ < CopN P card (By)T < 49C,, NT P
BEBy
According to (38) and (39) this can be rewrltten as
Ji < 4q(1 +e)” 1Cequ 5 (50)
To carry out the similar estimate for J, we introduce a collection {H;} of subsets of the set
To:= T/Gn (51)

which meets the following conditions.
(a) Forevery j
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C(T

I(H,) < % (52)

(b) It is true that
card ({H;}) <N+ 1. (53)

An algorithm of nonlinear approximation by piecewise polynomials
(c) {H,}is a partition of To(:= T/Gy).
We introduce the required collection by induction. In this part of proof we use the
following notation: forevery Tc T and w € T

T(w):={w €T: ' cw}
We begin with the set
{w € T:9(Ty(w)) = N~1}

Since j(TO(w)) < J(w) = 0 as|w| = 0, see (12) and (13), this set is either empty or
finite. In the former case we obtain the desired (trivial) partition putting H, = T,.
Then7(H,) = J(To(Q)) < N1, and (52) is true. Otherwise, T, contains an element w;
of minimal measure. Since for each w € T,

I(To(w)) < I(w) < N7Y,

this w, & T,. Hence we have the disjoint decomposition of Ty (w,):

o) = | ] To;
weS(wq)
recall that S(w,)is the set of the sons of w;, see (6). Besides, minimality of w,, implies
for each w € S(w,),
I(To(w)) < N1
Hence it is true that

1(To(@n) = Y I(To@) <

weS(wq)

card (S(w1)) - C(T)
N -~ N

see (7). Introduce now H, by
H; = To(wq).
Then H; satisfies (52). To introduce the next set we put T; := T,\H; and consider the set
{weT:Ty(w) = N1},
If it is empty, put H, := T; to obtain the desired partition {H,, H,} of T,.
Otherwise, this set contains an element w, of minimal measure. As before w, & Ty(:=
T/Gy). and therefore
C(T)

.7(T1((1)2)) < T

Letting H, := T;(w,) we obtain the desired subset satisfying (52) and not intersecting H;.
Besides,

JH) = I(Ti_(w)) =N, i=12
Proceeding in this way, we lastly obtain the partition {H;: 1 < j < n + 1} of T satisfying
the condition (52). Besides,H; = T;_;(w;), 1 < i < n, and therefore
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This implies

% < Z I(Hy) < I(Fp) < 7(Q) = 1,

=1
and the condition (53) holds as well.
Using now the partition introduced, we estimate J, as follows. By the definition of H;
their supports do not overlap:

|(supp Hj) N (supp H;)| =0,  j#j'
Recall that supp H := Ug,ey w,H C T. Besides, supp H; = supp ¢ (H;)see (42).
Hence

= le@\Gwlly = || Y. o(1)|| = 2||¢<H)||

jsn+1 jsn+1

By the embedding (35) and the inequality (52), and the definitions (10) and
(34) of, respectively, 7 and the quasinorm of B, (7") we then have

L 11
||¢(HJ)||q = Cemg(Hj)p < CemC(T)PN p,

Together with the previous identity and (53) this yields
N 1 1 111
]2 < CemC(T)EN_E(n + 1)6 < ZacemC(T)ENa_E

Combining this with (38), (49) and (46), we get the inequality
11

If = Tan+1(Fllg < CNP 4| flpw(r)
This clearly implies the required assertion (36)
It remains to establish the second assertion of the theorem, see (37) By(41) and
Proposition(2.1.2)

ITanss (Pl = || foga + (Z fw>xw_(3) D ol to
q

BEBN wWEB (J)EgN

Estimating the right hand side by the embedding inequallty in (35) and then making use

of the inequality (38) we have
1

p
”T4N+1(f)”q < Cem § (W(w) Sup|fw|) < Cop(1 + 8)_1|f|31\5v(g~).
w
WEGN

The proof of Theorem(2.1.3) is completed.
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Section (2.2): Refinable Functions

Approximation by nonlinear finite parametric manifolds has turned out to be very
important in several areas of analysis. For example, in approximation by rational functions
and by splines with free knots in approximation theory; asymptotics of eigenvalues in
operator theory; K-divisibility and related topics in interpolation space theory; data
compression in signal and image processing; and finite element methods in numerical
analysis. This field has become more and more unified, and nowadays the phrase
“nonlinear approximation” applies to a quickly developing theory with its own notions
and methods. See [30], [34], [35], [27], [38], [47], [50], which cover different aspects of

this theory and its applications.

The present considers a problem of N-term nonlinear approximation that dates back
to the classical [49] by E. Schmidt published in 1887. The subsequent development of this
part of the theory was essentially influenced by [33] of M. Birman and M. Solomyak. The
problem under consideration can be presented, in general, in the following way. Given a
complicated function f (an image, a solution of an ODE or PDE, etc.) and a library £ of
simpler functions, one tries to approximate f by an N-term linear combination of functions
in £ with (nearly) optimal degree of approximation. All these functions are elements of
some normed space X, and approximation is measured by the norm of X. Usually, the
choice of the library is dictated by the context of the original problem. (For instance, when
we are working with finite element methods, £ consists of piecewise polynomials.
Alternatively, for numerical harmonic analysis, we can use a library of wavelets, and so
on.) This means that, in general, the functions in £ are not well fitted to singularities of the
target function f, which may prevent us from efrectively using linear methods to resolve

the approximation problem. It may happen that X is contained in a larger space Y whose
topologyor metric is insensitive to the singularities of f. This may enable effective linear
approximation of f to be achieved in Y, and, imply that there exists an infinite series
composed of scalar multiples of elements of the library £ and such that it converges fairly
rapidly to f inY. If this happens, then we use the terms of that series to find an N-term
linear combination of elements of L that is well adapted to f and in fact provides
approximation of f in X that is comparable with the approximation of f in Y. We can be
achieved by the use of the classical “greedy” algorithm (choose the N terms in the series
whose coeficients have the largest absolute values). This simple method is miraculously
successful whenever it can invoke the assistance of a powerful tool, the Caldero’n—
Zygmund theory. However this assistance is not available when we wish to work in a
number of function spaces important for applications (L, and L., spaces, Holder spaces,
etc.). We will apply a disferent algorithm, which allows us to achieve the desired result for
a large class of function spaces. This approach was developed in an algorithmic form in
collaboration with Inna Kozlov (see, [20]), by using ideas suggested in [28] by Irina
Irodova. Here we consider the application of this algorithm to the case of the library £, :=
{(pjk: JEZkE€E Z”} of “matrix dilated” and translated copies of a bounded refinable
function @: R™ — R. Specifically, we have @i (x): 9(4/x — k)for some matrix A. The
function ¢ is required to satisfy a scaling equation with respect to the matrix A and some
finite mask m.
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The function f is assumed to belong to a “bad” space L,(R"™) with 0 < p < oo, but to
have a “sparse” expansion

f= (54)

that converges in L,,. Here “sparse” means that

—_j p
1f lpg = z<|detA| q |cjk|>

jk

S|

is finite for some p < q < oco. Our algorithm processes the coefficients of the
expansion(54) to produce an N-term linear combination fy of functions ¢, that provides
the desired approximation in a “good” spaceL,(R™). In fact, we obtain

S
If = fullg < CN 7 flpq,
where s, p and q are related by

3w
S| -
Q|-

andp < 1ifq = oo.

A simple modification of this algorithm enables us to obtain the same rate of
approximation also when % > % — 2. Finally, the algorithm is applied to the case where L,

is replaced by a Sobolev space (simultaneous approximationof f and its derivatives) and
to vector-valued refinable functions (in particular, to piecewise polynomial approximation
of Birman—Solomyak type). The refinable function ¢ appearing in these results is assumed
to be stable and colorable. The former property is fulfilled, e.g., whenever the set{¢p(x —
k): k € Z™} forms a Riesz basis for the L,-closure of its linear span. The latter property is
fulfilled, e.g., whenever the dilation matrix A associated with ¢ diagonalizes over the field
Q, or whenever A is related to the mask m for ¢ by

|det A| = # supp m.

For the first time, approximation of the type considered in the present was studied in the
fundamental [39], g < oo, and [40], g = o, by R. DeVore, V. Popov, and their
collaborators. They dealt with a smooth compactly supported regular function ¢ (i.e., with
the dilation A: x +— 2x) whose integer translates are locally linearly independent.
Independently, and at about the same time, a similar result was presented in [28] for the
special case of multivariate B-splines. The approximated functions belong to the Besov
spaceBg (R™). The results of the present include the above two cases, along with many
others (anisotropic Besov spaces, simultaneous approximation, wavelets, box splines and
piecewise polynomial approximation, approximation by fractal functions, etc.). All these
versions may be useful in applications to image processing, where each type of image
singularity (edges, fractals, etc.) requires a flexible choice of the corresponding libraries.

We give a detailed description of the approximation algorithm used in these proofs.
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The notation introduced here will be used throughout.

(A) Self-afine regions. Let A be an (n X n)-matrix with integral entries (we write A €

M, (Z)). Throughout A is assumed to be expanding, i.e., it has n eigenvalues with moduli
larger than 1. Such a matrix will be called a dilation. Given a dilation A and a digit set
D:={d4,...,dy} € Z", we define a self-afine set T = T'(4,D) as a nonempty compact

solution of the set-valued equation

A(T) = U(T+d)(= T +D). (55)

deD

In accordance with Hutchinson’s theorem [41], there is a unique compact set satisfying
(55). It can be found by iterations of a set-valued map S: = S(4, D) given by

S(Q) = U AQ +d), A C R™ (56)
deD
In fact, for an arbitrary nonempty bounded set Q we have
T(A,D) = lim 5/(Q), (57)
Jj—o©

with convergence in the Hausdorff metric. This immediately yields the radix representation
of the self-afine set:

T(4,D) ={> A7id;:d; €D, (58)

A straightforward consequence of (55) and (58) is formulated below.

We only deal with self-affine sets of positive Lebesque measure. They will be called
self-affine regions for the reason explained by the next important result (see [51] and [42]).

If the set T: = T (4, D) is of positive measure, then T is the closure of its interior T°, T =
T, and its boundary dT: = T \T° has Lebesque measure zero.

The following examples clarify and motivate the basic definition.

Example (2.2.1)[24]: (Tiles). A self-afine region T: = T (A, D)is called a tile if translates

T + d with distinct d € D are essentially disjoint. This means that|(T + d) N (T + d')]is
zero if d # d’. Tiles arise in many contexts of analysis including subdivision schemes,
multivariate wavelet systems, non-Fourier harmonic analysis, and Markov partitions (see
[46], [52] and [51]). In the case of a tile, relation(55) implies that

#D = |det A|. (59)

In its turn, this implies that|T|is an integer if T is a region (see [46]). Condition (59) is
not sufficient for the positivity of|T|. The simplest suficient condition for this requires

thatD be a complete residue system for the factor groupZ™/A(Z™"); see [25]. For each tile
T there is a translation set K < Z™ such that the family {T + k: k € }is essentially
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disjoint and its union isR™ (in other words,T tilesR™). If|T| = 1, then the translation set is
Z™ (see [46]).

In most cases, the boundaries of tiles are fractals, i.e., their Hausdorff dimension dimgis

strictly larger than the topological one. A remarkable example is the so-called “twin

dragon” associated with A = (1 _1) and D := {(0) (1)} (see, e.g., [51], where
1 1 0/’'\0 ’ ’ ’

dimy T(T,D) ~ 1.523.

Example (2.2.2)[24]: LetB € M,,(Z),|dim B| = 1, and letM; > 2andN; > 1be integers,

1 < i < n. Then the parallelotope
n
M:=B (H[o, Ni]> (60)

i=1

with vertices inZ" is a self-afine region associated with

n
A = Bdiag(My,...,M,) B~ and D;=B <nli> Nz
i=1

where/; :== [0, (M; — 1)N;],1 < i < n.

It is easy to check that IT is a tile only for N; = 1 and M; = 2,1 < i < n. In this case II is
the image of the unit cube[0,1]™ under the action of B, the set D is the set of vertices of
this cube, andA: = 21: = diag(2,...,2). Since|Il| = 1, the translation set isZ".
(B) The digraphs Gr(A,D). Any self-afine set T (A, D) gives rise to adigraph Gr(4,D) in
the following way. We introduce a sequence of subsets of Z™ given by
j-1
Dy =1D,D; = ZAidi:dieD ,j € N. (61)

=0

Then the set of vertices of Gr: = Gr(A4,D) is given by

V i=V(4,D) = {Ty:j € Z,, k € D;}, (62)
Where
Tix =A(T+k),jE€Lkel (63)
Note that V is a Z,-graded set, the graduation of which is given by heighth, i.e.,
h(Tjx) = J. (64)
In its turn, this yields a partition ofV into the subsets
V; = {Tj:k € D;},j € Z,. (65)

Hence, for T' € V;we obtain
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j—1
T'"=A7(T+ z Ald; (66)
i=0
with suitable digitsd; € D. Applying(55), we get

j
T' = U AT Y T+d+ ZAidi_l : (67)

deD i=1

The subsets occurring in this union will be called the children of T'(and T'is their parent),
and will be denoted by ch(T"). Observe that a child may have more than one parent.

Now, let T’,T" € V. These vertices determine an edge directed form T'to T if T'is a child
of T". This edge will be denoted by T’ — T, and the set of these edges by £ := (4, D).

Thus, we have introduced the required digraph (directed graph) Gr:= Gr(4,D). In what
follows we use the standard terminology of graph theory (see, e.g., [48]). In particular, a
directed edge is named an arc, and its endpoints T’ and T are the tail and head,
respectively. In accordance with its definition, the digraph Gr (A, D) has no loops (an edge
joining a vertex to itself) and no pairs of arcs with the same tail and head. Such a digraph
Is called to be strict (or simplicial).

A sequence P:={Ty,..., Ty} €V is a path (or trail) if no vertex occurs in P more than
once, and adjacent vertices are joined by an arc. If, moreover, Ty - T)piq, 1< i <m
this P is called a directed path, and consequently T,and T, are its tail and head. In this
case we use the notation

T, = Ty(tail), T, = T,,(head). (68)

Vertices T'and T are connected by a (directed) path P:= {Ty,..., T, } if T’ =T, and T =
T,, (consequently, if T’ = Tpand T = TF). f T’ = Ty and T’ = T for a suitable directed
path P, then T'is called an off spring of T and T is its ancestor. The following result, the
proof of which is straightforward, collects the basic properties of the object introduced.

Proposition (2.2.3)[24]: (a) The degree of each vertex® of Gr(4, D) = (E,V) equals#D.

(b) A vertexT' € V, regarded as a set, is the union of all its off springs of the same height.

In particular,
T' = U T (69)

T ech(T")
(c) EachT'is connected with the set T: = T (A4, D).

Since the vertices of Gr(A4,D) are subsets of R", the set inclusion order gives rise to
another digraph structure on V. In this case T',T in V are connected by an edge directed
from T’ to T'if T' < T and there is no other vertex situated in-between. We denote this
digraph by Gry = (Vy, Ey). Then V, = V, but, in general, the set of edges £ is a proper
subset of £,. Compatibility of the digraph structure of Gr(A4,T) with the set inclusion
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order is crucial for our approach. Below we introduce a class of self-afine regions for

which this property is fulfilled in a sense. For this, we recall the notion of a coloring of a
graph. This is a function defined on the set of vertices and with values in a finite set. The
elements of this set are regarded as “colors”.

Definition (2.2.4)[24]: A graph whose vertices are measurable subsets of R™ is spatially
colorable if there is a coloring of this graph satisfying the following condition. Any two
vertices v, w of the same color are either essentially disjoint(Jv nw| = 0), orv c w, or
w C .

The minimum of colors required in this definition is called the (spatial) chromatic number
of this graph. For the digraph Gr(A,D) this number is denoted by x4 ). If G15(4,D) is
spatially colorable, then, clearly, so is Gr(A, D). Moreover, in this case almost each point
of R™ is contained in at most x(A4,D)subsets in V;, because these are colored

by x(4,D)colors, and the distinct subsets of the same color and height are essentially
disjoint. In other words, the multiplicity

,u(V]) = ess sup z 1,(x)
X€ER™

/
T EV]'

does not exceed x(4, D). We conjecture that the converse is also true, i.e.,sup;u(V;) < o
implies y(A,D) < oo. It is easily seen that this supremum is finite. Consequently, we
conjecture that each digraph Gr (A4, D) is spatially colorable.

More examples with an efrective upper bound for the chromatic number will be discussed
in detail.

Example (2.2.5)[24]: If T(A,D) is a tile, then
x(4,D) = 1. (70)
In fact, in this case Gr(A,D) = Gry(A, D) is a rooted tree with the root T (4, D).

Example (2.2.6)[24]: Assume that Gr(A, D) has the following property: if the heights of
two vertices T/, T’ € V differ by one, and|T' n T"| = 0, then the smaller vertex is a subset
of the bigger.

In this case Gr(4,D) = Gry(A4,D) and x(A4,D) < . Since the intersection of subsetsin V;
is a union of subsets in V;,4,j € Z,, it is natural to name such a self-afine region T'(4, D)
asemitile.

Example (2.2.7)[24]: The self-afine region of Example (2.2.2) is spatially colorable if the
greatest common divisors (M;, N;) of M;, N; are 1 (see Proposition(2.2.32)).

(C) Refinable functions. A refinable function ¢: R™ — R associated with a dilation A and
mask m: Z™ — Ris a solution of the scaling equation

o(x) = Z m()e(Ax — k), x € R, 71)
kezm"
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A rather complete account of properties of regular refinable functions, i.e., such that A: =
2I: = diag(2,...,2), was presented in [36]. Some of these properties can be established in
the general case by the same arguments. In particular, this concerns the properties listed.

Throughout, the mask m is assumed to be finite, i.e.,

#suppm = #{k € Z": m(k) # 0} < oo. (72)
This implies immediately that ¢ is compactly supported.
We also assume that ¢ is a bounded and nontrivial solution of(71), i.e.,

l¢llw = ess sup|p| < o and|supp ¢| # 0, (73)
]RTL

where supp ¢ : = {x € R": ¢p(x) # 0}.
We introduce a library £, by
Ly = {(pjk(x) = @(Alx —k):j €Lk € Z"}. (74)
Since suppg ;i = Al (suppg + k), we have

|supp ¢ji| = Idet Al |supp o|. (75)

Now, from(71) we derive a similar “jth level” scaling equation,j € N.For this, we extend
the mask m from Z" (identified with{1} x Z™) toZ x Z™by setting

m*(j, k) =0 ifj < 0,k € Z",
and defining m*(j, k) for j > 1 by the chain rule:
m*(j, k): = 2 m(k Ym*( — 1,k). (76)
k=Ak'+k’
This extension is well defined because the mask is finite.
Using this and applying the scaling equation (71) repeatedly, we obtain
o=y mG R, =1, (77)

kezn
Equation (71) also implies the embedding

A(supp ¢) < supp ¢ + supp m. (78)

In the following cases, equality occurs here (and supp ¢ is a self-afine region associated
with A and D := supp m).

(a) The mask is nonnegative (hence, ¢ > 0 a.e.).

(b) The family of integer translates {¢@(x — k): k € Z"} is locally linearly independent,
I.e., the nonzero restrictions of these translates to an arbitrary open cube are linearly
independent.

In general, supp ¢ is not a self-affine region, but it is related to such a region in the
following way.
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Proposition (2.2.8)[24]: If D © supp m, then
supp ¢ € T(4,D). (79)
Proof: Using the set-valued operation S with D > supp m, from(78) we deduce that

supp ¢ < S(supp @).
Iterating and applying(57), we obtain

supp ¢ C Sj(supp @) = T(A,suppm),j > .

Definition (2.2.9)[24]: A refinable functiong with dilation A and mask m is said to be
colorable if there is a digit set D such thatsupp m < D and

X(A,D) < oo,
We put
x(@p):=infy(A,D): suppm c D. (80)

Example (2.2.10)[24]: Let T:=T(A,D) be a tile, and let ¢ := 1, be the characteristic
function of T. Then

p) = Y plax— k)

k€D

almost everywhere (see Example(2.2.1)). Since in this casesuppm = Dand y(4,D) =1,
such @ is a colorable refinable function with y(¢) = 1.

Example (2.2.11)[24]: Suppose the dilation A of ¢ is Z-similar to a diagonal matrix
whose eigenvalues are rational numbers.

Now we define yet another notion used.
Definition (2.2.12)[24]: A refinable function ¢ is p-stable,0 < p < oo, if for each
sequence A := {A(k): k € Z"} c R we have
Gl < || 20e@ -0 < clal, (81)
p

with C,, C, > 0 independent of A.

Since in our case ¢ is bounded and compactly supported, the right inequality is trivially
true for all p. It is well known (see Lemma(2.2.20)) that in this case the left inequality is
true for all p provided it is valid for one. For this reason, we shall call such ¢ a stable
refinable function (i.e., this term means that ¢ is bounded, compactly, supported, and p-
stable).

Proposition (2.2.13)[24]: Assume that is stable. Then its extended mask(76) satisfies

sup|m”(j, k)| < co. (82)
Jik

Proof: Using the co-stability ofep and(77), we get
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|1n*(j,k)|:§ C =C

e}

= Cllelle

[}

> m Gk = k)
k

z m*(j, k)p(Alx — k)
k

with C independent of j and k.

Remark (2.2.14)[24]: (a) A compactly supported ¢ € L,(R")satisfies the p-stability
condition in(81) if and only if for eaché € (R™)* there exists k € Z™ such that

P& + 2nk) + 0. (83)
Here { stands for the Fourier transform of ¢; see [44].

(b) If the set of integer translates of ¢ € L., (R™)is locally linearly independent, then ¢ is
stable; see [39].

We recall the notion of the Strang—Fix condition for a regular refinable function. A
function ¢ satisfies this condition with respect to a finite-dimensional translation invariant
subspace P of polynomials if for each p € P and suitable constants A(k) we have

pe) = ) Apkx - k).

kezm

For ¢ compactly supported, this is equivalent to the condition that
(D*9)(2rk) = 0,k € ZM\{0},

for all £ € Z? such that x* € P (see [36]). For the general case of ¢ associated with an

arbitrary dilation and a finite mask, the corresponding condition was presented in [J] (see
also [37]).

(D) B(g)-spaces. Using the library £, (see(74)), for 0 < p < oo we introduce the linear
space X, (@), of measurable (classes of) functions on R™ represented as

f= Z Cjk@ji (convergence in Ly). (84)
Assuming that ¢ is compactly supported, forf € Z,(¢) we set
1
EAN S
If1IB3(p) = inf z <|Supp <ij|q|Cjk|> : (85)

Jk
where the infimum is taken over all expansions as in(84), and s > 0,0 <p < q < oo are
related by
s 1 1
—=———, (86)
n p q
It is readily seen that (85) yields a Banach (quasi)norm on the linear space B, (¢) of all
f € Z,(¢) with finite(85).

More generally, we define the space B;Q (¢)by the quasinorm
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|~

A
P

||f||3§9(<p) = inf Z Z|Cjk|- (|supp <ij|”)p ) (87)

kezr \ jeZ

where the infimum is taken over all expansions(84). Here0 < 8 ,p < o0 ,s > 0, and

s 1

ﬂZZE—E.

Clearly, this coincides with B;(¢) if 8 = p. We only deal with the latter space and with
the space B;*(¢) defined by

, I
o e (sl lsupp o) )
J,
These definitions and notation are motivated by the following result of [39]; a partial case
of multivariate B-splines was proved independently in [28].

Theorem(2.2.15)[24]: Assume that ¢ is a bounded regular refinable function of finite
mask and obeying the following conditions:

(a) The set {o(x — k): k € Z"} is locally linearly independent.

(b) For some r > s, the functiongis subject to the Strang—Fix condition with respect to
the space of polynomials of degree less thanr.

Then, up to equivalence of (quasi)norms,
B3 (¢) = By’ (R™).

Using a “pseudonorm” associated with A (see [45]), one can define a generalized Besov

space B;'A(]R%”)and conjecture a similar result. Such a pseudonorm is a nonnegative

function v := v,0nR" satisfying the conditions
(a) v(—x) = v(x),and v(x) = 0 ifand only if x = 0;

1
(b) v(Ax) = |det A|nv(x).
For instance, if A: = diag(M4, ..., M,,),|M;| > 1, then

v@i= )l (88)
i=1

Where
_ log|det A|

a; =

nlog M;

In particular, v is equivalent to the standard norm if A is isotropic, i.e., Z-similar to a
diagonal matrix with all eigenvalues of the same modulus.
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The required Besov space is defined via its (quasi)norm
1

A fiLy)\ de)?
11l g = {nfnp gl (M) {} ,

+

wherer > sand

a);“l(t; f; Lp): = Ssup ”AZpr

v(x)<t

Since all pseudonorms associated with A are equivalent (see [45]), this space does not
depend on the choice of v (up to equivalence of (quasi)norms).

It can be shown that, if v is as in(88) and r > s max a;, then the space BS'A(IR%") coincides
with the anisotropic Besov space Bgl"“'sn (R™), where s; := sa;.This leads to the following
conjecture. If ¢ is stable and r is sufficiently large, then

By (R™) = BS(¢).

This conjecture can be extended to the case where s < 0 and p > 1. Now B (¢)is a space
of tempered distributions defined by formula(85) where the infimum is taken over all
expansions(84) with convergence in the sense of distributions. The remaining space is
defined via the norm

"

Ifllgsa = {z (a6 * f||p)p} ,

k€Z

1 ,
where a:= |detA[~, 8;(§):=6(B/,§),6 € (R™)*, B:= AT, and 6 is a nonnegative Cg°-
function supported on {x € R™:a"! < vz(x) < a}. Recall that s, p, g are related by(86),
so that 0 < g < p in this case.

For A: = 21, this definition gives the standard Besov space B;(R"),1 < p < oo(see, e.g.,
[32]), while for A: = diag(M,,..., M,,) it determines the corresponding anisotropic Besov
space B,"""(R™) with s; € R,1 < p < co. The problem presented by the conjecture

above, along with other properties of the scale{B; (<p)}, will be studied elsewhere.

@ 1S a nontrivial bounded refinable function with a given dilation A and a finite
mask m. We recall that the extended maskm®is defined by (76). The libraryL, :=

{(pjk;j € Z, k € Z%}generated by thisp can be graded as follows:

£, = J£,m, (89)
N=1

where L, (N) is the family of all N-term linear combinations of ¢ ;.

Now, assume that
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(a) ¢ is a stable and colorable refinable function (see Definitions(2.2.9) and(2.2.12)); (b)
the numbers 0 < p < g < o« and s > 0 are related by

s 1 1

no 5 - E, (90)
and p < 1 if g = co. Under these assumptions, the following is true.

To formulate a consequence of Theorem (2.2.27), we introduce the best
approximation

5N(fi Lq): = inf{llf — fullgfn € L(p(N)}- (91)

Suppose that assumption(a) of Theorem(2.2.27) is fulfilled, but assumption (90) is
replaced by

>——= (92)

with0 < p < q < ocand s > 0.
Under these assumptions, the following is true (see [39], [40]).

Here, the crucial point is the so-called Bernstein’s inequality, which was first
introduced and named after S. Bernstein in [26] devoted to approximation by rational
functions with free poles. This inequality must look like this:

S
If sy = CN 2lifllq. f € Lo (N), (93)
with C independent of f and N and s, p, q related by(90).
This inequality can also be established. We shall study this issue in a forthcoming.

Remark (2.2.16)[24]: Let A be diagonalizable with the eigenvalues M; > 1,1 <i < n.
Assume that for some o > 0 the numbers

__olog|detA| l<i< 94
LT logM; =t=n (94)
are integers. In this case

n -1
(7= 12 1
T T\l
=1
is the harmonic mean of £ = (#,..,%,). Assume that the numbers p,q,s satisfy the
condition

s—oc 1 1

=——-=>0 (95)
n P q

and that p < 1 if g = co. Then the assertions of Theorem(2.2.27) and Corollary(2.2.30)

remain true if we replace the L,-norm by the anisotropic Sobolev norm
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n
IFlz0:= D DAl (96)
i=1

where D; is the derivative in the direction determined by the ith eigenvector of A. Of
course, we assume that, moreover, ¢ belongs to Wq{"A(R”).

In this case the method yields simultaneous approximation of f and its derivatives
byfyand the corresponding derivatives of f.
A similar version of Theorem(2.2.29) is also true under the condition
s—oc 1 1
>——=>0. (97)
n P q

In the isotropic case, i.e., for a diagonalized dilation with equal eigenvalues, all the results
stated above are valid for the isotropic Sobolev space W,’: in this case o = ¢.

Simple changes in the proofs of the main results that lead to simultaneous approximation
are discussed.

We present two results facilitating the proof of Theorem (2.2.27).

Let Gr = (V, ) be a digraph whose vertices are subsets of R™, and let c:V — R be
its coloring. For a color y € T, set

V(y);={veV:icv) =y} (98)

The elements of this set are named y-vertices. The family {V(y):y € I'} forms a partition
ofV,

V= UV()/). (99)

Here and below [] stands for disjoint union.

A vertex v € V(y) is called a y-root ifuis not a subset of another y-vertex. The collection
of y-roots is denoted by R(y).

Given a y-rootR, we introduce the set
Vr(y) ={v € V(y):v c R} (100)

Proposition (2.2.17)[24]: Let Gr: = Gr(A, D) be the spatially colorable digraph of a self-
afine set T: T(A,D)with the set of vertices V and the set of edges £. There exists a

coloring c: V — T such that the following is true:

(a) two distinct y-roots are essentially disjoint, i.e., their intersection is of measure zero;
(b) each Vi (y)is a tree with respect to the set inclusion order;

(c) the family{V (y): R € R(y}forms a partition of V(y):

v = | | mw. (101)
RER(Y)
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Proof: Fix a coloring c: V — T satisfying the condition of Definition(2.2.4). Then any two
vertices of the same color are either essentially disjoint, or the smaller of them is a subset
of the larger. This immediately implies assertions (a) and(c). Now, equipVg(y)with the
set inclusion order structure. This gives rise to a digraph Grg(y) == (Vg (y)Er(y)), with
the set of edges defined as follows.

A pairT’,T" € Vi(y)is an edge directed from T’ to T if T' < T and there are no other
vertices of Vi (y)in-between.

To establish assertion(b), it sufices to show that every two vertices T',T" € Vg (y)can be

joined by a unique (undirected) path. For this, we choose a vertex T € Vi (y)of largest
height containing T'and T". Since all vertices ofVz(y) are subsets ofR, it does exist. Now
we set T;: = T'and let T, be a parent of T;. The latter is unique, because each distinct y-
root containing T, should either be a subset of T, or contain T,. Let T be the parent of T,

and so on up toT,,; all these are of the same height as T. Since|T N Tn| > |T'| > 0, one of
them is a subset of the other. But their heights are equal, whenceT = T,,. In the same way
we define a sequence Ty := T, Ty, ..., Ty, = T. Then the sequence{Ty, ..., Ty, Tm—1, ..., T1 }is
a unique path connecting T'with T .Consequently,Grz(y) is a tree, and it is rooted inR,
since all vertices of V; (y) are subsets of R € Vi (y).

Let F := {F;; j € Z}be a family of subspaces ofL,(R™) , 0 < p < oo, satisfying the
conditions

F; € Fj,1,j € Z,and sup E;(f) # 0if f # 0. (102)
]
Here the best approximation E;(f)is given by
B = inf If = gllp. (103)
We introduce an approximation space A3 (F), s > 0, by the quasinorm
1
. p
fllaser =1 D (PE(N) ¢ (104)
JEL
where a > 1 is fixed. Let p < q < oobe defined by the relation
s 1 1
—=;——-, (105)
n p q
and assume that p < 1 if g = o.Also, assume that
jn
”f”oo < CaP ”f”p;f € F}'] € Z, (106)

with a constant independent of f and j.
Under these assumptions, the following is true.
Theorem (2.2.18)[24]: A, (F) < Ly (R™).
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For the proof, see [22].

From this result we deduce the corresponding embedding for the space B;(¢). For this,
we need to present B, (¢)as an approximation space(104) with a suitable approximation
family F. Let F; be the linear subspace of L, (R™)formed by the functions represented as

f= Z cj(k)@jx (convergence in L,). (107)
keZ™

The scaling equation(71) implies thatF; c F;,,. Below we also prove that for a :=

1
|det A|»we have

jn
Iflleo < caP lIf Il f € F,j €7, (108)

with a constant independent of f and;j. This implies that the supremum in(102) is equal to
the p-norm off. Hence, the family F of the subspaces F; chosen above satisfies

condition(102). Let an approximation space :Aff (F),0<6,p <o, s> 0, be introduced
by
1
6
o 0
Il =1 (FEPD) ¢ (109)
jez
1
where a := |det A|n.

Note that c/l,f,’” (F)coincides with the space A3 (F)of(104). The next result compares the
space(109) with that in(87).

Proposition (2.2.19)[24]: Ifeis stable, then
A (F) = B3 (). (110)

Proof. By [29] (for the particular case under consideration see also [30]), for F
satisfying(102) the equivalence

1
0

I lLagory = inf4 ) (@1f; = fal)” (111

Jer

is valid uniformly inf € Jlf;e (F). Here the infimum is taken over all expansions

f= Z(f] = fj_l) (convergence in L)

Jer

with fj €F;. Since for suchfjwe have

fi=fia= ) 600
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(see(107) and(71)), the set of these expansions for f coincides with that involved in the
definition of B3? (¢)(see(87)).

We show that if u: = s — g, then
1

p
5 = L, = | samm o 00| 112)

k€eZ
Raising to the power@8and summing over j, and then applying(111) and(87), we obtain

1 llso ey < ClFllpsopy (113)

Next, a change of variables reduces(112) to the case where j = 0, that is, to the inequality
1

< C{ZIx(k)Ip}p,

k€Z

PIRIGLIERTS

kezn

p

which is true by the stability of ¢(see(81)). Since the stability ofpprovides the inequality
reverse to(112), we also have

||f||359(¢) = C”f”ﬂ;ﬁ(y:)-
Together with(113), this completes the proof of the proposition to within inequality
(108). By a change of variables, the latter reduces to the estimate

<C . (114)

PIIGLIERT)

KEL" p

PIEGLIERT)

kez™

For the proof of(114) we need the following fact.

Lemma (2.2.20)[24]: The family{supp ¢(x — k): k € Z"} = {k + supp ¢: k € Z"}is C-
disjoint with C = C(¢). 2

Proof: Let
m(¢g) = ess sup ( z Lsuppo(x — k)>
X

kezn

be the multiplicity of this family. Since ¢ is compactly supported,m(¢) < . Then the
result in [31] implies that the family under consideration is C-disjoint with C <

C()m(e).

Using this lemma and the stability of ¢(see(81)), we now bound the left-hand side
of(114) by

b1

PIIGIIERTD

kezn p

C(@) suple()] < C(p) {Z |c(k>|P} A
k

kez™
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Proposition(2.2.19) is established.

Now(110) and(108) allow us to apply Theorem(2.2.18) in order to obtain the required
result.

Corollary (2.2.21)[24]: Ifs,p, q satisfy the condition of Theorem(2.2.18) (see(105)),
then

B; (@) c Ly (R™).
Remark (2.2.22)[24]: We shall use this embedding in the form of the inequality

Z c(, )i
q

kezn

1
1\7 )P
<c Z(|c(i,k>|.|supp<p,-k|q> , (115)

Jk

which follows from the definition of the (quasi)norm inBj (¢)(see(85)).

That is, it can be divided into at most C subfamilies of pairwise essentially disjoint
subsets.

Remark (2.2.23)[24]: Let A,¢, and ¢ be as in Remark(2.2.16). Then an analog of
inequality (108)looks like this:

. (1
jnl=+o ,
£l < e & fl,j e 2

(see(96) and(94)). In its turn, this leads to the inequality
1

p

1\ P
zc(i, K)ok <C z<|c(j,k)||supp <ij|q> (116)
Jk qu) Jk
with s, g, p, q related by(98).

Reducing Theorem (2.2.27) to a special case. Let f € B;(¢). In what follows we assume,
as we may, that

1
> = Ifllss) < 1, (117)
and therefore (see(85)), there is a representation
f= z Cjk@ji (convergence in L) (118)
ik
such that
1
17 )"
v(f):= Z (chkl- |supp <p,-k|"> = 1. (119)
j.k
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The required reduction of Theorem(2.2.27) will be attained in two steps.
We show that Theorem(2.2.27) can be derived from the following result.

Proposition (2.2.24)[24]: Suppose that conditions (a) and(b) of Theorem(2.2.27) are
fulfilled. Also, assume that a function g has a representation of the type(118) with
coefficients d;, satisfying the conditions

1

1\ P p

v(g):= Z ('djk|- |supp <p,-k|q> < o, (120)

Jk
supp d = {(j, k): dji # 0} < {(, k): Supp@; C supp o} (121)

Then for each integer N > 1 there is a linear combination gy € L,,(¢) such that
supp gy < supp ¢, (122)
M < CN, (g)?,in particular, gy = 0if M < 1, (123)
S

lg — gnllg < CN " 7v(g). (124)

Here and in the sequel C stands for a constant depending only on ¢ and p* := min(1, p).
This € may change from line to line.

We show that this proposition implies Theorem(2.2.27). Suppose ¢ and f satisfy the
conditions of that theorem and(117)-(119) are fulfilled. Given N > 1, we choose the

largest j, € Z such that
_(1-P
Z z(|0jk||5upp o)l <N (-9,

kELM j<j,
Setf_ == Y Xj<j, andfy = f_f_.  Together  with the embedding(115) and
conditions(119) and(117), this choice ofj,leads to the inequalities

1 11 S
If~llg < Cllf-llBg(py < Cv(f2)P < CN4 P < 2CN 2| f I g5 -

Hence, it suffices to prove the result for the functionf,. Since the assumptions and claims

_lo .
of Theorem(2.2.27) are invariant under the transformationF (x) — |det A| ¢ F (A~ /ox),
we may assume that j, = 0. Then

fr = z Ik (125)
kezn
Where
Ik = Z Cikr Pk » (126)
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with(j, k")running over the set{(j, k"):supp ¢’ C supp @ }.After shifting by k, the
function g;, will satisfy the assumptions of Proposition(2.2.24). This implies the existence
of a linear combination gy , € Ly, (¢)such that

Supp gy x < supp gx (S supp @ox), (127)
Mk S CNV(gk)p, (128)

S
lgie = gnkll, = CN TRV (gio). (129)

Now we set

fn = z IN k-
k

Since the family {supp gx:k € Z"}is C-disjoint (see(127) and Lemma(2.2.20)),
relations(125)- (129) imply that
1 1
q q s q
Ifs = fullg = C Ellgk —gngell,f SCNTm zv(gk)q -
k k
The definition of g, and the Jenssen inequality yield

{Zv(gk)q} = 2<|Cjkllsupp<p,-k|‘J> = v(f,).
k k,j

Since v(fy) < v(f) = 1 < 2|l g5y (see(117)), the linear combinationgy approximates

f = fy+ f= in L,(R™)with the required rate. Moreover, by(128), the number of its terms
is at most Y, M, < CN Y v(gy)? = CNv(f,)? < CN. Thus, Proposition (2.2.24) implies
Theorem(2.2.27)

In its turn, Proposition(2.2.24) is a consequence of the result presented below.

Suppose ¢ satisfies the conditions of Theorem(2.2.27).Then there is a digit set D >
supp msuch that the chromatic number of T: = T (A, D) is bounded, and

x(@) = x(4,D) < co. (130)
Recall that for this T we have
suppp < T, (131)
Whence
supp @i © Ty = A7/ (T + k). (132)

We apply Proposition(2.2.17) to the partition of V into the collection of trees V;(y) with
R € R(y) and y belonging to the set I' of colors. Here Vis the set of vertices of the

digraph Gr:= Gr(A,D). We shall index the functions ¢;.and the coeficients c;, of the
corresponding expansions by the subscripts T' € V, setting
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@r = @jx andcyr = ¢ if T' = Ty (133)
We formulate a result implying Proposition(2.2.24).

Proposition (2.2.25)[24]: Suppose that conditions(a) and(b) of Theorem(2.2.27) are
fulfilled. Also, assume that a function g admits a representation

9= dror (134)
T'ev
such that
1
1\P)P
v(@) =1 > (Idrlisupp@p[) { <eo (135)
T'ev
and, moreover,
suppd :={T' € V:d; # 0} c Vr(y) (136)

for a given y-root R.

Then for every N > 1 there is a linear combinationgy € Ly, (¢)such that

supp gy C R, (137)
M < CNv(g)P?, (138)
gy = 0if Nv(g)? < 1, (139)
S
lg — gnllg < CN"nv(g), (140)

provided gy # 0. We derive Proposition (2.2.24) from Proposition (2.2.25). Assume that
a function g satisfies the hypothesis of Proposition (2.2.24). Using the notation introduced
above and condition(121), we can rewrite the representation for g as

9= drgm. (141)
T'ev
This is possible because
V = {Tjx: suppe;x < supp ¢}

(see(131) and(132)). Inequality(120) can be rewritten in a similar way. Using the
partition(99) of the set 1V, we write

g = Z 9y (142)
Yer
whereg, is given by
g= ) dvor. (143)
T'eV(y)
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If we prove Proposition(2.2.24) for each function g,,, then(142) allows us to establish the

same for the function g up to the multiplicative constant #I'. Since all the assertions of that
proposition are homogeneous, without loss of generality we may assume that

v(gy) =1, (144)
and derive the desired result for thisg, . Using the partition(101) ofV(y), we obtain
9y = Z 9y.r, (145)
RER(Y)
whereg, r is given by
Gri= ) dpgr. (146)
T'€VR(Y)

Each function g, r satisfies the assumptions of Proposition(2.2.25), and we conclude that
for each N > 1 there is a linear combinationgy , r € Ly, r)(@)such that the following is
true:

SUPP gn,y,r © SUPP Gy,r (147)

M(@y,R) < CNv(g,z)" <1, (148)
S

”gy,R - gN,y,R”q < CN—EV(Q)/,R)» (149)

providedgy , r # 0.

LetR,andR,be, respectively, the sets of all R € R(y)such thatgy, g # 0andgy, r = 0.
We define the required approximant by the formula

INyR = Z INy R (150)

Then, by(147) and(132),

supp(gy.r — In.y.,r) € SUPP gy .k C U{T’: T' € Ve(¥)}.

The latter union is a subset of the y-root R (see(100)), and the set of all these y-roots is
essentially pairwise disjoint. Consequently, the family {supp(gyz —9gn,r):R €
R(y)}has the same property. This implies the identity

| =

a\q

loy =anyll, =3 D gy —gmpalll+ || D avel - asD

RER, RER, ¢

The first sum is estimated by applying(149) and then Jenssen’s inequality. This and (144)
yield the desired inequality
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1
v
_s p _s _s
> =Nl Y v(ge)p <CNTa(g)=CNR (152)

To estimate the second sum in(151) by the same bound, we enumerate all R € R, in a
sequence{R;: i € N} such that the numbers v; := v(gy,Ri)become monotone nonincreasing.
Then we choose an interval I; := (0, i;] with i; € Z,such that

ZV{J < N1

icl,

ZVipZN_l

ot
ierf

While

for I :=[0,i; + 2]. The interval I, may be empty; in this case I] N N = {i; + 1}.Also, it
may happen that I; = (0, +c0)and in this case I; = @. If I} is nonempty, we continue this
construction by choosing an interval I, := [i; + 2,i,] such that

zvf <N7L

icl,

ZvipZN_l

ierf

while

for I = [i; +2,i, + 1].SinceX v’ < v(g,)" = 1, this procedure yields a finite set of
subsequent intervals Iy, I, ..., I,,I;, where I, is unbounded, I; = @, and I}\I,contains
the only integer it =i, + 1,1 <m < 4.

D <N Y WP 2N (153)

€Ly, €L}

For these intervals we have

with 1 < m < £ in the first inequality and 1 < m < £ in the second. Observe also that the
definition of R, and(148) imply that

1
v; <N P,i eN. (154)

Now we set

ll)m = Z g‘y,Ri’ll};l = gy'Riin’l <m¢< f.

i€l

Since the supports of these functions are pairwise essentially disjoint, we have
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Q|-

£ £
> aval =1 D lly + > il
q m=1 m=1

RER,

Applying the embedding(115) to each term on the right, we bound this quantity by

1
? ¢ q
4> v+ ) Il
m=1 m=1
Inequality(153) implies the estimate
q
? i P .
z v()? = Z z vl | <ON P,
m=1 m=1 \i€l,

while(154) yields

4 4 q
Dy = > v < enw.
m
m=1 m

=1

To estimate# , we use the second inequality in(153) to obtain

-V < z zvfszvaL
i=1

m<¢ iely,
whencef < N + 1.
Collecting all these inequalities, we get
1
_4\q 11 s
z 9y R SC({’N P) < CN4 p=CN 4.

RER, ‘

Together with(152), this proves the required estimate(124) for g,,.
Now we estimate the number of terms in the linear combination gy .

M(y) = Z M(y,R) < CN Z v(gyr)" = CNv(gyr)" = CN.
RER, RER(Y)

Thus, assertion(123) is also true for g,.

We define the required approximant g, for the function g as in(142) by setting

In = Z Iny

yer

55



(see(150)). Then inequalities(138) and(140) for g,and the linear combination gy,

imply the same results for g and g, with an additional factor of#I'. Consequently,(123)
and(124) are true in this case, and it remains to check(122). By(147) and(142),

Ssupp gn < U Supp gy,r - U U Supp gy r-

Yer Y ReR(y)

In its turn, supp g, ris a subset of the set U{supp @/ : T’ € Vr(y)}(see(146)), and the
union of all y-roots R,y €T, coincides with the set V of all vertices; see
Proposition(2.2.17).

Finally, V = {T": supp @' € supp ¢}, whencesupp g, < supp ¢, and we see that
Supp gy « supp .
This proves the final assertion(122) of Proposition(2.2.24).

We introduce a nonlinear method of approximation that will be used in the proof of
Proposition(2.2.25). The input of the corresponding approximation algorithm consists of
an integer N > 1 and a function

d:T' > d € R T € Vi(y), (155)
satisfying the condition
1
1\P P
v =1 > (Idpllsupperli) ¢ <o (156)
T'€VR(Y)

Recall that Vg(y) is the set of vertices of the tree Grz(y) = (Vi(y), Er(y))rooted at R
(see Proposition(2.2.17)(b)).

Given N and the function d, we introduce the cost functionJdefined on the subsets
Q c Vr(y)by
1. P

1@ = ) (Idplisupp gr7) . (157)
T'eQ
For the subset
Ve T) ={T" € Vg():T < T'} (158)
withT' € V,(y), we simplify this notation as follows:
IT) =I(Vr(y; ). (159)
Note that 7(T") # 7({T'})and
IJ(T) = v(d)P < oo, (160)

It is readily seen that(158) is the set of vertices of a subtree of the tree 7 (y)with the root
T

Now, assuming that N is such that
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J(R) = N1, (161)
we define a set Gy < Vi (y)by
Gy ={T' €Vr(y):9(T") = N~ 1}. (162)

Since 7(T") = J(T") ifT" < T, this Gy is the set of vertices of a subtree of Grg(y), which
is finite because J(T') — 0,|T'| — 0(see(160)). Finally,R € Gy by(161), and itis the root
of that subtree.

Using the set inclusion order on Gy, we introduce the set M, of minimal elements of Gy .
Minimality implies that, if T’ € My and T is an offspring of T', then (inGry (¥))
J(T") = N~Lwhiled(T") < N7? (163)
We enumerate the elements of M}, in some order:
My = {T"™1 < j <my}. (164)

Being vertices of the tree Gry(y), these elements are either essentially disjoint, or one
embeds into the other. The latter is impossible because of minimality (see (163)).
Consequently, the subsets of M, are pairwise (essentially) disjoint. This implies that

V(P =I(R) 2 ) (1) = 2

]
Whence

my < Nv(d)P. (165)

We partition G, to obtain a collectionB, of directed paths (called basic paths). In
the description of the corresponding partition algorithm, we shall use the following
notation.

Let T, and T, be the tail and the head (respectively) of a directed path P in the tree
Grg(y). Since P is uniquely determined by its endpoints, we write P := [T;, T,]. We recall
(see(68)) that the endpoints of P are denoted by T5 and T7. So,P := [T5, T5].We also
introduce subpaths of P “open from the head or tail” by setting

[Tp,T¢):= P\{T }and (Tp, T5 ] = P\{Tp },

and so forth. We start with splittingGyinto a collection A = {4;:0 < j < my}of “long”
paths satisfying the following conditions.

(a) The subcollection{Aj: 0<j< i}is a partition of the set
Gi = U|iji“,R|,i < my.
js1

(b) Each long path A; with j > 1 is of the form4; = [T/™",T"), where T'belongs to a
suitable A; with j* < j. This T' is called a contact vertex and is denoted by T;". Thus,

A= [T <) < my (166
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Since G}, = Gy for i == my, the collection A forms the desired partition of the subtree G.
Moreover,A determines the set of contact vertices

Cy = {T} U {R}. (167)
Some of these may coincide; therefore, the inequality
#HCy <my + 1, (168)

can be strict.
In order to introduce A, we use induction on j, starting with
Ag: = {R} andA, [T, R|\A4,[T{™™, R).

Next, assuming that some A; satisfying(a)and(b)has been determined for i = 0,1,..., ],
we introduce Ajq by Ajyq = [T R|\(Uic;j 4;). Then, clearly, the collection{4;: 0 <
i <j+ 1} forms a partition of G,{,“. We show that A;,,is of the form(166). Indeed,
consider the intersection of[T/7}", R|with each path[T{™",R],i <. Since Gy is a tree
rooted at R, this intersection is of the form [T}, R], and the set of the tails{T;: 1 < i < j}is
a subset of the path[T/T", R]. Therefore, the set of tails inherits thelinear order of this

path. If T; is the smallest element of {T;}with respect to this order, then

Ajpr = [T R\ U[Timin»R] = [T T, )-

i<j
Moreover, T;, € U;<; 4;, which completes the induction.

We refine Gy by subdividing each long path A; with the help of the contact vertices
belonging to A; N Cy. In this way we introduce a collection of subpaths|[T’.T"), where

T'is either a minimal element, or a contact vertex, and T is a contact vertex. The set of
such “intermediate” subpaths is denoted by Py. In accordance with this definition, we
have

supp Py = U{P:P € Py} = Gy\{R}, (169)

and difrerent subpaths in Py do not intersect. In other words, Py is a partition of Gy \{R}.

We complete the partition of G, by subdividing each subpath P € Py into basic
paths as follows.

Inductively, we define a collection of vertices{T,(P) € P:1 < ¢ < {¥p} beginning
withT, (P) = Tp. IfT,(P)has been determined, then we chooseT,,,(P)as a vertex
in(T,(P), T ]satisfying

I([Te(P), Tp11(P)]) = N~%, whiled ([T, (P), Tp11(P))) < N~
Using this, we define a basic path B,(P)by
By(P) = [To(P), Tp41(P)). (170)
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The vertex Ty, 1 (P)can be undetermined in the following two cases.

(a) The vertex T,(P)coincides with the head T, ord([T,(P),TA]) < N~
Then we define T, ;(P)as a parent of T ; in the subtreeGythis parent is unique.
(b) The vertex T,(P)is distinct from T#, but ({T,(P)}) = N1,

Then we define Ty, (P)as a parent of T,(P).

In the two cases above, we introduce the basic path B,(P) by the same formula (170).
Observe that in case(a) we have

B,(P) = [T,(P), T7 ],
and the procedure is completed with £, = #.

In case(b), the basic path B,(P)is the singleton{T,(P)}, while T,,,(P) still belongs to P
and the procedure can be continued.

Completing the procedure, we arrive at the partition{T,(P): 1 < £ < #p}of P into the basic
paths B,(P) := [T;(P), Tp41(P)). Their definition implies that

I(Te(P), Tp41(P)) < N7* (171)
for £ < #p, and
I([Tp(P), Tp41(P)]) = N7* (172)

for £ < ¢p, providedB,(P) = [T,(P), Ty41(P))contains more than one vertex. For a
singletonB,(P): = {T,(P) }the first inequality makesno sense, while the second becomes

J(B,(P)) = N7 (173)
Collecting all the basic paths of all P € P, we introduce the desired set
By = {B,(P):1 < £ < £p,P € Py}. (174)
The following result describes its main features.
Proposition (2.2.26)[24]: (a) By is a partition of the set Gy \{R}into directed paths.
(b) For each B: = [T;,T4] in Bywe have
3((Tg, TF]) < N. (175)
(¢) The cardinality of Bysatisfies
#By < (4N + 1)v(d)P. (176)

Proof: (a)follows from(169)and the definition of the basic paths;(b) follows from(171),
because (T, Tg1 = (T,(P), Tey1(P))provided B := B,(P). To prove (c), note that the
family {[T,(P),T,+1(P)]:1 < ¢ < ¥p}covers P with multiplicity of at most 2.Therefore,
by (172),

N7 =D < ) IATHP) o (PYD < 27(P),

£<tp
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which leads to the inequality

#B = z £y < 2N z I(P) + (#Py).

PEPy PEPy

By the definitions of the cost function I (see(157)) and the partition?y, the first term on
the right is at most

2N7(Gy) < 2NI(R) = 2Nv(d)P
(see(160)). Moreover, by(165) and(168),
#Py < (#Cy) + (#My) < (2N + 1Dv(ad)P.
Combining these inequalities, we get the desired estimate(176).

We define the required approximant g, . First, we consider the (trivial) case of N >
1 satisfying

J(R) <N} (177)
then the required approximant is given simply by
gy = 0. (178)

Otherwise, the family By is determined, and each basic path B € By, gives rise to a part
of the linear combination g, as follows.

ForT' € B, letj denote the heighth(T") (see(11)). Then

j <Jpi= h(T7).
Identity(24) yields
Pr = z m(T", T )@ (179)
h(T")=jB
With
m(T',T") = m*(jg — j, k)forT = Tip koo (180)

Each vertex T occurring here is an off spring of T'in the digraph Gr(4, D). This and (179)
imply the embeddings

supp @’ C U{supp o :m(T',T") # 0}
c U{T": T'is an offspring of T'} = T
In particular,
supp ¢, C supp ¢ € T' € Tg, (181)
provided m(T',T") # 0and T’ € B.

Now, for each T’ € B we define a function ¢,by
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b = Z m(T", T ), (182)

=
whereT "runs over the set of indices in(179) satisfying
|supp @, N Tz | # 0. (183)
This definition and(181) yield
supp(pr' — ¢77) € T \Tg . (184)

Now we are in a position to introduce the output of the algorithm, namely, the linear
combinationg, given by

gn = drpp + z z dri . (185)
BEBN T'€B
This completes the construction of the algorithm.

Theorem (2.2.27)[24]: For each f € B;(¢) and each integer N > 1, there is a function
fn € L,(N)such that

S
If = fullg < CNRIfllgs e (186)

where C is a constant depending only on ¢ and p*: = min(1, p).
Proof. Suppose g satisfies the assumptions of Proposition(2.2.25). In particular,

g = Z dTIgoTI’ (187)
T'eVR(Y)

where the coefficients are such that

1
1\P)P
v(@) =1 (ldplisupp prrf) | < oo (188)
TI
Furthermore, 0 < p < q < ooare related by
s 1 1
—=——c, (189)
n p q

wherep < 1if g = co.

Since the assumptions of Theorem(2.2.27) are also fulfilled, we have

1
1\P)P
drop| <ci (Idrllsupporin) | < oo (190)

T'eQ q T'eQ
(see(115) and(189)).

We begin at once with the nontrivial case of N > 1 satisfying
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Nv(g)? > 1. (191)

Taking such N and the functiond: T’ — d;rdefined by the expansion(187)as aninput of
our algorithm, we have 7(R) = v(d)? = v(g)? = N~1. Then condition (160) is satisfied,
and the output of the algorithm gives the linear combination gy defined by(185).
By(181), we havesupp gy € R, and this proves the first assertion of Proposition (2.2.25)
(see(137)).

To prove the second, we first estimate the number M (B) of terms in the linear combination
Yrreg drrpr. In accordance with(182) and(183), each term of ¢ withT' € Bis a linear
combination of functions ¢, where T runs over the set

B:={T" e€V:|suppo, NnTz|#0,h(T") = jp} (192)

recall that jz := h(T7). Hence, M(B) < #B; the subsets of B, in turn, are colored by at
most x(¢) colors, and those of the same color (and height) do not essentially intersect.
Therefore, #B < y(¢). Together with(176), this implies that the number of terms in
(185) is at most 1 + (#By) x(@) < CNv(d)P. It remains to estimate the error function g —
gy - For this, we put

F@) = ) dppp, 0 V). (193)
T'eQ
For the set Vr(y; T') == {T" € Vr(y): T" < T'}with T' € Vx(y), we simplify this notation
by putting

F(T") = F(Ve(;T"). (194)
Since By, is a partition of G, \{R}, the error function can be written as
9g—9n = z F*(B) + F(Gy), (195)
where Gy = Vr(y)\Gyand
F{(B)=F(B) = ) dpdpr. (196)
T'eB
Taking the Lg-norm in(195), we obtain
lg —agnllg < CU1 +J2), (197)

where C depends on ¢* := min(1, q), and the J, are given by

L=\ @ = IFGEDI,

BEBy a

If we prove that ]RSCN_gv(g),k=1,2, then the desired inequality(140) and
Proposition(2.2.25) will be established.

In order to estimate /;, we show that for distinct paths B, B’ in By we have
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|supp F*(B) nsupp F*(B")| = 0. (198)

First, suppose that the heads T3 and T, are essentially disjoint sets. Since

F*(B) = z dpi (@rr — o), (199)
T'eB
the embedding(184) implies that
supp F*(B) c T \Tg, (200)

and a similar inclusion is true for the second support. Hence,(198) is fulfilled in this case.
Now, if T# and TB+, essentially intersect, then the head of one, say T;,, embeds into the tail
Ty of the other. Indeed, the basic paths BandB’are disjoint parts of a long path A; € A in
this case. Consequently, supp F*(B") c T4, < Tz, while, by(200), the second support is
a subset of T \T5 . Thus,(198) is fulfilled in this case as well.

Applying(198), we get/; = {pep, IF*(B)II3}e. We show that

1
IF*(B)ll, < CNP; (201)
combined with(176) and(189), this yields the required estimate of/,:

1 1 s
J1 < CNPv(g) (#By)4 < CN nv(g). (202)

To prove(201), note that ¢y = @7 ifT" = Ty (see(182)). Hence, the vertex T' in(199)
runs over the set B~: = B{Tz }, and we can write

z dri s

! —
T'€B q

IF*(B)llg = C(@{IIF(BDlq + (203)

We bound the right-hand side of(203) by CJ(B~)». Since B~ := (Tz,T{l,
assertion(175) implies that 7(B~) < N~1. Therefore, the above bound for(203) gives the
required inequality(201) and proves estimate(202) for J;. In the subsequent
considerations, the embedding(190) will be used in the equivalent form involving the cost
functionJ (see(157)):

< cﬂ(Q)%. (204)

z dT’¢T’
T'eQ q

This immediately yields

1
IF(B)Ily < cI(BT)P. (205)

To estimate the second term in(203), we use(182) and(192) to write

Z dprppr = z ( z m(T’,T")dTr><pT". (206)

T'eB~ T'€eB \T'eB~
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By Proposition(2.2.13), we have|m(T',T")| < [Im*|l, < o, and it has already been
proved that #B < y(¢). Therefore, application of the embedding(205) to the right-hand
side of(206) yields

1
z dropr|| < C”m*”oo)(((p){ z |dT’|} |Supp <PT§|q- (207)
T'€B~ q T'€B~
Here we have taken into account the fact that|supp ¢,-| = |supp ¢ |ifT" € B. Now,

suppose that p < 1 (hence,q = ). Applying Jenssen’s inequality, we bound the right-
1 1
hand side of(207) by {37rep-1d|P}» = CI(B™)? . For p < 1, this and (203)imply the
required inequality
1
IF*(B)llg < CI(BT)P. (208)

If p > 1 (and g < o), we present the path B as a sequence T; ¢ T, c---C Tywith T; = Tz
and T, = T4 . The heights of consequent vertices of B differ at least by 1. Therefore,

|supp goTi+1|/|supp goTi| > |detA| =:a.
This and Holder’s inequality lead to the following bound for the right-hand side of(207):

1 1
11 1\P)P _ip' )P’
el ltnllsowont.a il <l (il or ) | o]
i>1 i>1 i>1
1
< CI(B7)p,

Thus,(208) is also true in this case.

It remains to estimate the term J, in(197) in a similar way. For this, we use a lemma, the
proof of which will be presented later on.

Now, we derive the desired bound for J, := ||F(Gg)ll,. Assertion(b) of the lemma implies
that

|supp F(S;) n supp F(S;/)| = 0ifi # j'andj,j’ < 4.

Together with assertion(a), this yields

1
q
Lc| D IFE)IE) -
J
Next,(204) and(209) imply the inequality
1 1
IF($)Il, < ca(s,)P < eNP.
Combining this with(210), we obtain
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11 s
J, < CN4a py(g) = CN nv(g).

Thus, Proposition(2.2.25) is proved.

Lemma (2.2.28)[24]: There is a collection S := {S;: 1 < j < £}of subsets of G§with the
following properties:

(a) S is a partition of Gg;
(b) if T and T belong to distinct subsets of S\{S,}, they are essentially disjoint;

(c) foreach S; € S we have

7(s;) < ¢ ; (209)
N
(d) the following inequality is valid:
#S < (N + 1)v(g)P. (210)
Proof. We use the following notation.

LetT'be a vertex of Gr = (V, £)(it may be out of the set of verticesV, (y)). If Qis a subset
ofGy < Vr(y), we put

Q) ={T" euT cT'}. (211)
Note that T'may fail to belong to this set, and that
Q(R) = Q. (212)
Now we define the first elementS; ofS. For this, we introduce the set
Q, ={T" e v:3(G4(T")) = N71}. (213)

Since, forT' € Vi (y),
3(G5(T")) <I(T") - Oas |T'| - 0

(see(157) and (159)), the set introduced above is empty or finite. In the former case we
obtain the required partition of G5 by putting

S, = GxandS = {S;}.
Since R is not an element of the (empty) set Q,, we have

735) =3(T")< N1
(see(212) and(213)).

Now, suppose Q; # ¢. Then there is an element T; € Q,of the largest (finite) height, say
h(Ty) = jax- Since

J(GE(TN) <I(T") < N7? (214)
(see(159)), T; does not belong to G . It follows that
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Q,(Ty) U Q,(T"), (215)
T'€E(Ty)

where the set of indices is given by
E(M):={T' €V:|T'nTy| # 0and h(T") = jiax + 1}. (216)

Indeed, chooseT 'in€, (T;)and show that T" € Q,(T")for a suitable T’ € E(T,). Let T""'be
the ancestor ofT"in the digraph Gr = (V, &)sharing its height with T,.Since h(T") >

h(Ty) = h(T"""), the set T'is a subset of a child T'of T""". Since T is also a subset of T;,
we have

IT, N T'| > |T"| > 0andh(T") = h(T"") + 1 = jax + 1.

Thus,T' € E(T,), and T embeds in T’ and is an element of Q,(T;) c Q. Then, by the
definition(211), T belongs to Q,(T"), which proves(215).

By the maximality of h(T;), we haved(Q,(T,)) < N~! for eachT’ € E(T,) (see(213));
hence,

H#E (T
7(Q,(T)) < Z 7(Q,(T") < (1).

N
T'€E(Ty)

To estimate the cardinality of E(T;), observe that its subsets are colored in at most y(¢)
colors, and that distinct subsets of the same color and height are essentially disjoint.

Applying the result of [31], we obtain#E (T;) < C(n)x(¢). If we define S; € S byS; =
Q, (T,), then the last two inequalities yield 7(S;) < % i.e.,S;satisfies (209).

To introduce the next element of the collection S, we put Q, = Gy \S;and considerthe set
Qs = {T' € V;Q,(T") = N~1}. If this set is empty, then S, := Q, and S := {S;, S,}. Since
R ¢ Qs # @, we haveJ(S,) = 7(Q;(R)) < N1, and (209) is fulfilled for S.

Now, suppose that the finite set;is not empty, and let T, be its vertex of maximal height.
Then, as before,

HE
3Q,(T,) <

and we put S, := Q,(T,). Again,(209) is true for S,. Moreover, by definition, the S;
satisfy

1(5;) =7 (9(1))) = N1 =12,

Proceeding in this way, we arrive at the partitionS{szl <j S{’} of Gy satisfying
condition(209). We have S; = Q;(T;),1 < j < ¢, whence

I(S)=N1L1<j<?
This implies the inequality
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£-1

(6= DNt < Y 9(S)) < IGH) < v(g),

j=1
and combining this with(191), we obtain(210).

It remains to check assertion(b). Note that S is a partition of G5 < Vi(y), and the subsets
of Vi (y)are either essentially disjoint, or one is a subset of the other. Therefore, we must
show that the latter is impossible for T’, T belonging to distinct S; with j < £.But if T’ and

T" with T’ c T" belong to distinct collections S; := Q;(T;) with j < ¢, then T’ belongs to
their intersection (see(209)), which is empty. This contradiction proves(b).

The proof of Proposition(2.2.25) (and the main theorem) is complete.
Theorem (2.2.29)[24]: For each N > 1 and each f € B;*(¢), there isfy € L,(N) such
that

If = fullg < CN Al fllgsgy (217)
with C = C(p,p").
Proof. Theorem (2.2.29) given f € B, (¢)with

s 1 1
-—>—-——=>0 (218)
n p (q
andN = 1, we must find fy € £,(M)such that
S
If = fullg < CN2IIfllpgeo(p) (219)
and, moreover,
M < CN. (220)

As in the proof of Theorem(2.2.27) (see Proposition(2.2.24)), we reduce the required
result to the case of f having a representation

f= Z CikPjk» (221)
Jk
wherej, k run over the set
{j € Zy, k € Z™: supp @j, C supp <p}. (222)

Furthermore, we may assume that, uniformly in f,

u
IfllBgeo(p) = 5}11?|Cjk||supp P (223)
withy = 2 — Z(see(77 )
pi= 2= (see(77)).
1
By Proposition(2.2.19), putting a := |det A|», we have
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- u
s'u(I)) a’’E;(f) = S}11P|cjk |supp (pjk| , (224)
.]Z ]l

provided f is of the form(221) with j, k in the set(222). Because of this choice off, the
best approximationE;(f)is now the distance in L,(R")fromf to the linear spanFj0 =

Span{(pjk:supp @jk € supp <p}. Clearly, the dimension of this space is bounded by

C(n)mj(q))% = C(m)m;(p)a/™, where m;(¢)is the multiplicity of the family of

supp @jx C supp ¢(see Lemma(2.2.20)). Since m;(¢) = my(¢), we have
dimF < Ca/™,j € Z,. (225)
Letf; be an optimal element of F?, i.e.,
5 =f = £l (226)
We choose ] € Z.such that
a/" < N < qUton (227)
and then setg; := f — f;. By this definition,
E;(f)ifj <],

E; = . 228
J(g]) {E](f) ifj > J. ( )
Let o be defined by

o 1 1

—=——— (229)

n p q

By(218),0 <s, so that B;*(¢) c By (¢). Applying Theorem(2.2.27) in combination
with Proposition (2.2.19) to g; € Bf (¢), we obtain

|-

_g ; p
lgs = gnsll, < v > (@)
JEL4

with a suitable approximant gy ;belonging toL, (N).

Putting fy = f; + g, v and using(228), we rewrite this as

S|

_g : p
If = fullg < N3 > (B ()
jz]
Since the sum on the right-hand side is bounded by Ca=/¢~®sup_j > OafSEj (f), and this

S—0

quantity, in turn, is less than CN_T”f”st)co((p) by (223), (224), and(227), we obtain the

required estimate(219). To complete the proof, it remains to use (225) and(227) to
conclude that the number M of terms in the linear combinationfyis at mostN + Ca/™ <
CN. S0,(220) is also true.
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Corollary (2.2.30)[24]: Under the assumptions of Theorem(2.2.27), but withp < 1 ifqg =

oo, the inequality
s p
{Z (Nﬁ € &x(fs Lq)> Nt
N=1

Is true with C = C(¢, p").

=

< Cliflisy (e (230)

Proof. We deduce the claim of this corollary from Theorem(2.2.27) by real interpolation.
For this, we use an interpolation theorem for the approximation scale c/lf," (F)introduced

by (109). This result was proved for regular refinable functions in [39]. The general case
Is derived by the same argument. Thus, the following is true:

(A (T),cﬂzllgl(}"))l = AT (F), (231)

wheres: = (1 — A)s, + As;and
1 1-2 42 1- A A

_|_
p  po P b 91
Proposition(2.2.19) allows us to rewrite this as

(B (). 851" (), = B5(p). (232)

Now we introduce a new scale of approximation spaces Np59(<p) determined by the
approximation family{£,,(N): N € N}(see(89)and(91)). Thus,

1

0\p
S
1 llpvse () = zN‘1<Nn8N(f; Lq)> } .
Nz1
In these terms, Theorem(2.2.27) can be rewritten as the embedding
By (@) © Ng%(9), (233)
Where
s 1 1
—=———,andp < 1ifq = oo. (234)
n - p q
Let p > 1, and let p, q, s satisfy(234). We choose p,, p; > 1 so close to p that 1 = p;l +
0
2 for suitable 0 < 4 < 1, and that = n = pi — i = 0,1, be strictly positive. By(234) s =

(1 — A)sy + As;. Applying(233) with these s;, p; and g, i = 0,1, and then using(232), we
obtain

B3(¢) C (N;°°°(<p>,N;1°°(<p>)Ap
By the Peetre—Sparr theorem (see, e.g., [32]), the right-hand side is equal to]\qup (p), ie.,
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By (9) € NP ().

Recalling the definition of the (quasi)norm of J\qup (¢), we obtain the required inequality

in the case where p > 1.

1
p
< Clifllsy(e

In the case of p < 1 the proof is similar.

Here we summarize the conclusions presented in Remarks(2.2.16) and(2.2.23).
The dilation A is now diagonalizable with integral eigenvaluesM; > 1 and with

eigenvectors ei forming a basis of R™. We assume thatgp € Wof’A(lR{"); here

n i
1 lyzacen = . > lIDEF]

i=1k;=0

(235)

ql

wherel < g < o0 £ € Z%, andD; stands for the derivative in the direction e;. Note that ¢
with such A is colorable (see Example(2.2.7)). We set

o=

i=1

-1

and assume thatfand A are related by
¢;  log|detA| L <

_—=— <
() nlogM; '~ — b=n (236)

Changing the proof of Theorem(2.2.27) in only one point, namely, replacing the L,-norm

in inequality (108) by the norm(235) (see Remark(2.2.23)), we arrive in this setup at the
next result.

Theorem (2.2.31)[24]: Under the above assumptions on the stable refinable ¢ and on A
and?, the following is true.

Suppose that s > 0, ¢, and0 < p < q < oosatisfy
s—(¢) 1 1

—— = (237)
n P q

and thatp < 1 if g = co.
Then for each integer N > 1 and f € B, (@)there is an approximant fy € L, (N) such that

_s—(&)
17 = Fillyzagam < CN 5 I lsgco (238)

with C independent of f andN.
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If A is isotropic, i.e., forM; = M,1 < i < n, the assumption(236) is clearly true. In this
case, the spacel/l/(f'Acan be replaced by the Sobolev spacqu{’ :

In the case of the dilation A; the result will be presented in a forthcoming. Hence, in
this case we have

B3 () = B3(R™),

wheres = (sy, ..., s,)is defined bys; = 1:%':?;',1 <i<n, andBS(R™) is the standard
anisotropic Besov space determined by the partial moduli of continuity of ordersk; > s;.

-1
Note thats = (3) := (% ?:15) ; therefore, inequality(238) can be rewritten as

_(5)=(®)
I = fullyyzaggny < CN ™7 Il ey
Finally, in the case where 1 < q < o, application of the Mikhlin—Hormander multiplier
theorem allows us to replace qu'A(R") by the standard anisotropic Sobolev spacqu*’ (R™).

The method of the proof remains valid for vector-valuede ¢. In this casep: R" —
R¥is a bounded nontrivial solution of the equation

P = ) m)p(x - k)
k

with finite maskm: R™ — M,(IR), where the target space is the linear space of real matrices
of size £ X £. The definitions of the stability and colorability of ¢ requires trivial
modifications, while the decomposition of f € L,(R™),0 < p < oo, that was used to

introduce B, (¢), is now written as
f= Z Ak - Pjk»

Jj.k
where the aj,are vectors in R? and x - y is the scalar product in this space. The following

example shows that the case under consideration includes the piecewise polynomial
extension of the Birman—Solomyak result ([33]).

Let p == (py, ..., pp)With £ = £(k,n)be a vector-valued function on R™whose
components form a basis in the space P, (R™)of polynomials in x4, ..., x,,of degree k — 1.
It is easily seen that the function

‘ﬁ = 1[0,1]"-ﬁ

satisfies the scaling equation

R 1 .
ORES Z m()F2x — k),
ke{o0,1}"

where m(k) is the (£ x £)-matrix representing the operator x +— %(x + k)in the basis
{p1, ..., pp} Of the spaceP, (R™).
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It is clear that ¢ is stable and colorable. Consequently, in this case the analog of
Theorem(2.2.29) states that for f € B;(¢)there is a piecewise polynomial fy =
YoenPolo of degree k — 1, where m is an N-term collection of dyadic subcubes of [0,1]",

that approximates f with the approximation rateO (N 7).

Let ¢ be an (A4, m)-refinable function. In accordance with Definition(2.2.9), its
colorability depends on the existence of a spatially colorable T (A4, D) with D S supp m.
Therefore, a crucial point is to find a fairly large class of such sets. Here we introduce two
such classes; weuse methods of coloring related to geometric and algebraic properties of
the data(4, m).

Let T: = T (A, D) be a tile (see Example(2.2.1)). In this case the digraphGr (4, D)is
a tree rooted atT', and its structure comes from the set inclusion order. Therefore,Gr(A, D)
Is spatially colorable by a single color, i.e., y(4,D) = 1.

Now, let T: = T (A, D) be a semitile (see Example(2.2.6)). Thus, each pair of vertices in
V:=7V(A,D) with heights differing by one is either (essentially) disjoint, or the smaller is

a subset of the larger. Let u;be the multiplicity of the family{T;;: k € Z"}. Then, by a
change of variable, we obtain

Hj = ess sup{z 1T(ij — k)} = Uo < 0.
X

kezm

By [31], this family is a union of at most C (n)u,disjoint subfamilies. In other words, this
family can be colored in at most C(n)ugcolors in such a way that the subsets of the same
color be disjoint. Using this coloring for each level {Tjk € V}of height j, we obtain the
required result.

The same approach shows that Gr(A, D) is spatially colorable under the following weaker
assumption: for every T',T" € V(4, D) with heights differing by a fixed j, = 0 T'andT are
either disjoint, or the smaller is a subset of the larger.

In this case we use the previous set of colors, say T, to turn it into a new one, defined
asI'x {0,1, ..., jo — 1}.

It can be shown that the class of digraphs introduced below can also be spatially colored in
this way. However, we present another method, which yields an eficient estimate for

x(4,D).

Let IT be the parallelotope of Example(2.2.2) (see(60)). Thus, IT := B([]j=,[0, N;]),
where B € M,,(Z) is a unimodular matrix. ThenIl = T (A4, D), where

n
A = B diag(My, ..., M;,) B~ andD := B (ﬂk) nz"
i=1

We recall that N; > 1, M; > 2 are integers and J; := [0, (M; — 1)N;].

Proposition (2.2.32)[24]: Assume that the greatest common divisor ofM;andN;satisfies
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(Mi?Ni) = 1,1 <i<n
Then
X(A, D) < N1 NTL

Proof: We begin with the following result, which is a straightforward consequence of the
definitions.

Lemma (2.2.33)[24]: (a) Let T(A4;,D;),1 < i < m, be a family of self-afine sets, and let

m
A: = diag(44, ..., 4,,) ,D: = 1_[ D;.
i=1

Then

X(A,D) < 1_[ X(4;,Dy).
i=1

(b) Let B € M,,(Z) be unimodular. Then
X(BAB™1,BD) = x(4,D).

Using this, we reduce the proof of the general result to the following lemma, which was
proved for M = 2 in [40].

Lemma (2.2.34)[24]: Denotell: = [0,N], A:= [M], andD: = [0,(M — 1)N] N Z, and let
N =1 and M > 2 be integers. Assume that

(NM)=1. (239)
Then IT = T (A, D) is spatially colorable in at most N colors.

Proof: By the Gauss lemma, each k € Z has a unique representation k = Mk’ + N¢ with
k' € Z and? € {0,1,..., M — 1}. Applying this to k' and so on, for x := M~/kwithk €
Z,j € 7., we obtain aunique representation

Jj
X = ko(x) + N Z £,(OM™
i=1

withk,(x) € Z and#;(x) € {0,1,...,M — 1}.
Now we define a function ¢ on the set{x :== kM~/:k € Z,j € Z, }by
c(x) = ko(x)(N),c(x) €{0,1,...,N — 1}.
By this definition,
c(kM‘j) = c(k’M‘j)if and only ifk = k'(N). (240)

In this case a vertex I of the digraphGr(4, D) is an interval of the form M~/[v,v + N]
with suitable v € Z andj € Z,; therefore, the endpoints x;, y, of that interval satisfy the
condition c(x;) = c(y;).We define the desired coloring of Gr (4, D) by letting
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c(D):= c(xp)
and show that the condition of Definition(2.2.9) is satisfied. Let I :== M~ /[v,v + N] and

I':= M~/ [v',v" + N]be vertices of this digraph sharing the same color, and let j >
j'.Consider the lattice

L:={(M/~'v + Nk)M~T: k € Z}.

Sincec(uM ™) = ¢(v'M~1"), the congruenceM’ /v = v’ (N)is true (see(239) and(240)).
Therefore, L contains all points y :== kM ~/with k € Z, and c¢(y) = c(x;)(= c¢(")). The
endpoints x;, y; of I are points of this type and hence belong to L. Since the length of I is
equal to the step of L, and the endpoints of I'are also inL, there are only two possibilities:
either x;,y; € I'and then I < I’, or these endpoints do not belong to the interior
of/'and|I' n I| = 0. Consequently, Gr(A, D) is spatially colorable, and
X(4,D) < #image(c) = N.

Suppose the dilationA  ofpis diagonalized with eigenvaluesd; and
eigenvectorsv;, 1 < i < n.
Proposition (2.2.35)[24]: 1fA; € Q,1 < i < n, then ¢ is colorable.

Proof: LetA; := %,mi,d € Z. Replacing A by a Z-similar matrix, we may assume that

A; > 1, so that M; > d > 1. By our assumptions, all vectors v; can be taken in Z", and
they form a basis of R™. Consider the parallelepiped

n
I1:= {z CiUl':O < Ci < le}

i=1

with integers N; to be chosen later. Then Av; = %, v;, whence

n

A(H) = {Z CiV; . 0< Ci < MiNi

i=1

= Ja+ao,

aeD

where the digit set D is given by

n
D = z C;V; € Z": C; € [0, (ML - 1)Nl] N Z}

i=1

In other words, IT = T(A4,D). Now we choose N; such that(N;,M;) = 1,1 <i < n. Then,
by Proposition (2.2.32),

X(4,D) < N; -+ N,,.
Taking N; sufaciently large and shifting by a suitable vector v € Z™, we reduce the general

statement to the case of m satisfying
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suppm € D + v.

SinceT(4,D +v) =T(A4,D)+ A(I — A)"'v (see (58)), the refinable function ¢
associated with(A4, m) is colorable (see Definition(2.2.9)).
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Chapter 3
Classes of Hardy Spaces and Comparison of the Classical BMO

We establish a duality theorem between the Hf(]R”) spaces and the Morrey-
Campanato spaces. We obtain the boundedness of fractional integrals on H? (R™) and give
the inclusion between the classical H? (R™) spaces and the H? (R™) spaces associated with
operators. We obtain BMO; estimates and interpolation results for fractional powers,
purely imaginary powers and spectral multipliers of self adjoint operators. We also
demonstrate that the space BMO,; might coincide with or might be essentially different
from the classical BMO space.

Section (3.1): Operators with Duality Theorem and Applications

The continues a line of study in[58],[70] and[71], where a class of the Hardy
spaces Hi(R™)and the BMO, (R™) spaces associated with operators were introduced and
developed, and they generalize the classical Hardy space H!(R™)and the BMO space. For
the basic facts about the classical Hardy and BMO spaces on Euclidean spaces R", see, for
examples,[61],[74],[75],[19], [84] and[86].
Suppose that L is a linear operator on L?(R™) which generates an analytic semi-group
et with a kernel p.(x,y) satisfying an upper bound, that is, there exist positive
constants m and e such that for all x,y € R™ and forall t > 0,

Cte/m
PV S Ty D

In[58], Auscher, Duong and Mclntosh defined a Hardy space H:(R™) associated with the
operator L as the class of all functions on R™for which S, (f) € L*(R™)where

i dydt\'"*
SL<f)(x)=(j0 J ||Qt,,lf(y>|2,j+f> , @
y—x|<t

and Q, = tLe L. They then obtained a molecular chfaracterization for functions in
HL(R™) by using the theory of tent spaces developed in [62] and [63].

A new function space BMO; (R™) associated with the operator L was introduced in[70].
We say that a function f (with suitable bounds on growth) is in BMO, (R") if

1
J |f (x) — e f ()| dx < oo, (3)
B

sup —-
s |Bl
Where tz = rg*, and rg is the radius of the ball B. It was proved in[71] that if L has a
bounded holomorphic functional calculus on L? and the kernel p,(x,y) of the semi-group
e Lsatisfies an upper bound(1), then the space BMO,-(R™)is the dual space of Hardy
spaceH: (R™)in whichL* denotes the adjoint operator of L.
This gives a generalization of the duality of H1(R™)and BMO(R™)of Fefferman and

Stein([74]). Indeed, a valid choice of e~£in(2) and (3) is the Poisson semigroupe‘t‘/z,
which is defined by

VA B B _ Cnpt
e ) = [ puCe=9)f Gy, > 0, where () = s

For this choice of e~tV2 the spaces H\l/z(]R”) and BMO z(R™)coincide with the classical
Hardy H1(R™)and BMO spaces, respectively ([58] and [70]).
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For more properties of the space Hi(R™)and the BMO, (R™) space, see [58], [70], [71],
[66] and[65].

Our concern is to introduce a class of Hardy spaces Hf (R™) associated with L for a
range of p < 1 and study their duals.
(i) To define the space Hf(IR{")for p <1, we use a space &;(«,2,s) of Morrey-
Campanato functions introduced in [72] that plays the role of the space S of test functions
on R™. It turns out that given an operator L with a bounded holomorphic functional
calculus in L?(R™), which generates a semigroup with upper bounds (1) on its heat
kernels, the Hardy space Hf (R™)can be defined as the collection of all continuous linear

n(%—l)

functionals f on ;- (% -1,2, [TDsatisfying S.(f) € LP(R™). Note that the spaces

H\’;Z(IR”) and 8 z(a,2,s) coincide with the classical H? (R™)and the Morrey-Campanato

spaces
L(a,2,s) (= A, (R™)of Lipschitz), respectively (see [66]).

(i) As in[58] , we give a molecular decomposition for function £ in theH? (R™)spaces by
using certain estimates on area integrals and tent spaces (see Proposition(3.1.6)).

(iii) We establish a duality theorem, which says that the dual space of H” (R™) is £, (% —

1,2,5), by applying the results, together with some estimates of the tent spaces and

Carleson measures. With a choice of e~tVA, gives the classical result of the duality of
HP(R™)and L (i — 1,2,s)for p < 1 (see, for example, Theorem 2.7 of [86] and [69]).

(iv) We give applications, which include the boundedness of fractional integrals on the
spaces Hf([R")and the inclusion between the classical spaces HP(R™)and the
H} (R™)spaces associated with some differential operators.

In [56] and [55], the Hardy space associated with an elliptic second-order
divergence operator L was introduced by using the Poisson semigroup of L. In[73], Hardy
spaces associated with Schrodinger operators were studied. In comparison with the
classical HP (R™)spaces, an important feature of the H} (R™)spaces is that they tightly
connect the operators considered, which may be an effective
tool in the study of singular integral operators associated with the operatorL; see
[58],[65],[68],[70] and [71].

The letter “c” will denote (possibly different) constants that are independent of the
essential variables.

We start with a review of some definitions of holomorphic functional calculi
introduced by Mclintosh [79]. Let 0 < w < v < m. We define the closed sector in the
complex planeC

S, ={Z € C:|larg Z| < w} U {0}
and denote the interior of S, by S2.
We employ the following subspaces of the space H(S?) of all holomorphic functions on
S92
Hoo (Sy) = {b = H(S)): ||bllo < o0},
where||b]l = sup{|b(Z)|: Z € S%}and
W(Sy) = {Y € H(S):35 > 0,[Y(2)] < c|Z|°(1 + |Z]*)71}.
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Given 0 < w < m, a closed operator L in L2(R™)is said to be of type w if 0(L) < S,,, and
for each v > w, there exists a constant c,, such that

(L =AD" 2 < cplA7H 2 €S,
If L is of type w and ¥ € ¥ (SY), we define (L) € L(L?, L*) by

— 1 -1
W) = 5 | L= D@ dz

where T is the contour {& = re*®:r > 0} parametrized clockwise aroundS,,, and w <
0 < v. Clearly, this integral is absolutely convergent in £(L?, L?) (which is the class of all
bounded linear operators on L?(R"™) ), and it is straightforward to show, using Cauchy’s
theorem, that the definition is independent of the choice of6 € (w, v). If, in addition, L is
one-one and has dense range and if b € H,(S?), then b(L) can be defined by
b(L) = [Y(L)](by)(L)where Y(2) = Z(1 + Z)72.
It can be shown that b(L) is a well-defined linear operator inL*(R™). We say thatL has a
bounded H,,-calculus in L*(R™)provided there existsc,, > Osuch thatb(L) € L(L?, L?)
and
16l < cy2llblle, Vb € Hu(SO).

An important feature of this functional calculus is the following convergence lemma.
Lemma (3.1.1)[53]: (Convergence lemma). Let X be a complex Banach space. Given0 <
w <v < m, let L be an operator of type @ on X which is one-to-one with dense domain
and range. Suppose{f,}is a uniformly bounded net in H,(S?), which converges to f €
H, (S2)uniformly on compact subsets of S?, such that {f,,(L)} isa uniformly bounded net
in the space L(X, X) of continuous linear operators on X.
Then f(L) € L(X,X), f, (L)u - f(L)u forall u € X and||f (L)|| < sup,|llf,(L)]l-
For the proof of Lemma (3.1.1), see[79] and[54].

Let L be a linear operator of type w on L?(R™)withw < m/2, hence L generates a
holomorphic semigroup e %%, 0 < |Arg(2)| < m/2 — w.
Assume the following two conditions.
Assumption(a). Assume that for each t > 0, the distribution kernel p,(x,y) of e~ t*
belongs to L (R™ x R™)and satisfies the estimate

lpe (X, Y)| < he(x,y)
for x, y € R™, where h;(x,y) is given by

_ lx, |
he(x,y) =t ”/m9<t1/m : (4)

In which m is a positive constant and g is a positive, bounded, decreasing function
satisfying

lim "€ g(r) = 0 (5)
r—o0o
Assumption(b). The operator L is one-one and has dense range in L?(R™). Also,L has a
bounded H,,-calculus in L2 (R™).
Now, we give some consequences of the assumptions (a) and (b) which will be used
later.
First, if {e },.o0is a bounded analytic semigroup onL?(R™whose kernel p.(x,y)
satisfies the estimates(4) and(5), then for any k € N, the time derivatives of p, satisfy
1 9pe 6 y) <, lx —
atk tn/m tl/m

> forall t > 0 and almost all x,y € R" (6)
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For each k € N, the function g might depend on k but it always satisfies (5). See Theorem
6.17 of[80] and[60].

Secondly, L has a bounded H.-calculus in L2 (R™)if and only if for any nonzero function
Y € Y(SY), L satisfies the square function estimate and its reverse

. de\ 2
cllfllz < (f ||1/Jt(L)||]22 Tt> < c1lIfll 2 (7)
0

for some 0 < ¢; < ¢, < oo, where Y,(&) = Y (t&). Note that different choices of v > w
and ¢ € ¥(SD) lead to equivalent quadratic norms of £.
As noted in[79], positive self-adjoint operators satisfy the quadratic estimate(7). So do
normal operators with spectra in a sector and maximal accretive operators. For definitions
of these classes of operators, see [91].
We now define the class of functions that the operators e ~*‘act upon. For any § >
0, a function f € L%,.(R™)is said to be a function of B-type if f satisfies
F@1E \Y
(fandx> < c < oo, (8)
We denote byMjthe collection of all functions of g-type. If f € M}, the norm off
inMpis denoted by
”f”MB = inf{c = 0:holds}.
It is easy to see that M} is a Banach space under the norm||f||Mﬁ. For any given operator
L, we let
0(L) = sup{e > 0:holds}. 9)
and denote by
MQ[L],ifQ(L) < o0;

M= U My ifO(L) < o. (10)
B:0<f <00
Note that if L = A is the Laplacian on R", then 8(A) = co. When L = +/A, we have

o(Va) = 1.
Given an integer s € Z*, for any(x, t) € R%**!and for f € M, we denote
Poof () = f(x) — (I — e )*1f(x) and Qs f () = 5 L5 e~ f (). (11)
See[59] and[77]. In particular, if s = 0, we denote by
Pif = Pocf = e~ fand Q.f = Qocf = tLe "™ f. (12)
Since f € M, by the estimate(6) the operators Ps . f and Qs .f are well defined.
Moreover, the kernel pg . (x, y) (resp.qs ¢(x,y)) of P .(resp. Qs ¢) satisfies

o (lx=yl _ lx — ]
|[ps.em (e, y)| < cst ”9< [ |gsem G, Y| < est™g — | (13)

where the function g satisfies the condition(5). This property is the same as the
estimate(6).

The following definition was introduced in[72], which generalizes the classical
Morrey-Campanato spaces L(a,q,s). For the basic facts about the spaces L(a,q,s),
see[76] and[86].

Definition (3.1.2)[53]: Suppose0 < a < 6(L)/n,1 < q < o ands > [%] the integral
part of%. We say that f € M is ing;(a,q,s), the spaces of Morrey-Campanato type
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associated with{e L}, ,, if there exists a positive constant ¢ such that for any ball B
ofR™,

1/q
[IBI*J |f (%) —Ps,th(x)qux < ¢|B|%, (14)
B

where tz = r§*, andrgequals to the radius of the ball B.
The smallest bound c satisfying condition(14) is then taken to be the norm off in this
space and is denoted by||fl¢, (aq.5)-
Note that(8,(a,q,s), ||-||53L(a,q,s))is a seminormed vector space, with the seminorm
vanishing on the spaceX; ), defined by

Ks) ={f € M:Ps.f(x) = f(x)for almost all x € R™for all t > 0}.
The £, (a, q,s)space is understood to be modulo X ). See [71] for a discussion of the
dimensions of X, oywhen L is a second order elliptic operator of divergence form or a
Schrddinger operator.
Now, we give some important properties of the spacesf;(a,q,s)where 0 < a <
O(L)/n,1<qg<ooands > [%]
First, for eachl < g < o, the space £,(0,q,0)is a variant of the new BMO,space
introduced in[70], and it generalizes the classical BMO space. If 8(L) = oo, then the
spaces £;(a,q,s)are well defined for all0 < a <o, 1<qg <o ands > [T;n—a] In

particular, if L is the Laplacian on R", then the classical Morrey-Campanato spaces
L(a, q, 2s) coincide with our spaces £,(a, q, s). See[66].
Secondly, if f € £, (a,q,s)for0 < a < 6(L)/n,1 < q < oo ands > [%] then
(a) for every t > 0 and every K > 1, there exists a constant ¢ > 0 such that for almost all
x € R",

|Ps,tf(x) - Ps,th(x)l < C(Kt)na/mllfllﬁL(a,q,s); (15)
(b) For any § > na and anyx € R", there exists a constantcs which depends on § such
that

f) = Pocf(y) -
j | 5t/ O dy < cst™* O™ fllg, @q.5)- (16)
R

n (£ + |x — y|)n*o
For the proofs of (a) and(b), see Propositions2.5 and 2.7 of [72], respectively.
Proposition (3.1.3)[53]: Let0 < a < 8(L)/n,1 < g < cands = [%]
(i) If g:(x,y) denotes the kernel of the operator Q., then for eachy € R", q.(-,y) €
2, (a, q,s). Similarly, for each x € R"*,q.(x,") € £,(a,q,s).
(ii) Iff € L2(R™), then for each t > 0,Q,f € £,(a, q,s), and also, Q; f € £,-(a, q, s).
Proof: In order to prove that for each y € R",q.(-,y) € £,(a, q,s), by Definition(3.1.2)
it suffices to verify that for any ball B of R",

f |a:(x,9) = Py (0:C) )] dx = f (1 — et81)*1(q,(, ) () |* dx
B B

< c|B[9**, (17)
where tg = 4", and rz equals the radius of the ball B.
Let us prove(17). Noting that I — e 8L = — fOtB%e‘rL dr = fotB Le™"" dr, we have
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(1 _ e—tBL)S+1(tLe—tL) — ftB...ftB t
0 0 (t +1r+ e+ 7ﬂs+1)s+2

X Qs+1, (t +r -t T‘S+1)d7'1 e AT 41.
From(13), the operator(I — e~t8L)s*1(¢Le~*)has an associated kernel K .(x, y)which
satisfies

|Ks,t(x: y)|

tp tp t
< CS“[ f 7
0 0 (t4r+ e +15) M
lx =yl
g( dry ..d7rgyq

(t+r 4+ 1 )V™

t

< c(s, t)J dry ...dr.
0 0 (t+7”1 +o g )2t st

< ( ) j S+1 d,r
t —_—
c (t + r)5+1 r
for some constant c(s,t) dependent on s and t. We observe thatna < m(s + 1), and then

t+r
r
|Kse(x,9)| < ¢'(s,D)c(0)s+ f eI Z <o | e — <ot < clBI,
’ 0 r r

which gives the desired estimate(17), and theng; (-, y) € £;(a, q, s)for each y € R™.
Similarly, for each x € R",q,(x,") € £,(a, q,s). Also forf € L?(R™) , we have that Q,f €
L, g, )WithlQeflle, g5 < cllflandQ; f&-(a, q, ) < cllfll2 with

10 fllg,e@aqs) < clifll2

We now introduce the dual space(g,(a,q,s)) with0 < @ < 6(L)/n,1 < q < coands =

— < c(t)rm<S+1> Therefore,
tp na d B na dr na
C .[
0

[Y;—a]consisting of all linear functionals¢fromg; («, q,s)to Cwith the property that there
exists a finite constant ¢ such that for all g € £;(a, q, s),

[£(@| < cllglle,(a.q.5): (18)
We denote by(f, g)the natural pairing of elements f € (&, (a, q,s))'and g € &.(a,q,s).
It follows from Proposition(3.1.3) that for allf € (2,(a, q,s)) With0 < a < 6(L)/n,1 <

q < oo ands > [%],(f, q:(.,¥)) is well defined. Similarly, for allf € (2,-(a,q,s)) with
0<a<B(L)/n 1<q<ooands 2|2 (f,q.(x,.))is well defined. In the following,

we will denoteQ, f(x) = (f, q.(x,.)). Also, for any € (2,-(a,q,s))’, we observe that for
anyg € L*(R™),
Qe f, 9 = [f, Qe )l < cllQz gllg,.(aqs) < cllgllz,

and thusQ, f € L*(R™). These will often be used.

In what follows,R%?~will denote the upper half-space in R™*1. The notation
r'(x) ={(y,t) € R**:|x — y| < t} denotes the standard cone (of aperture 1) with vertex
x € R™. For any closed subset F < R™, R(F) will be the union of all cones with vertices
inF,i.e., R(F) = Uyer'(x). If O is an open subset of R™, then the “tent” over O, denoted
by O, is givenas 0 = [R(0°)]°.
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We continue with the assumption that the operator L satisfies the assumptions (a)
and (b). Given afunctionf € L*(R™), the area integral functionS, (f) associated with an
operator L is defined by

1/2
.06 = 0O Gy ) (19)

It follows from the assumption (b) of L that the area integral function S, (f) is bounded on
L*(R™). It was proved in Theorem 6 of[58] that there exist constants c,, ¢, such that0 <
c; < ¢, <oand
cllfll, < USLHlp < clifll (20)

forallf € LP(R"),1 < p < . See also [67] and [90].
By duality, the operator S;-(f)also satisfies the estimate(20), where L*is the adjoint
operator of L.

The following definition was introduced in [58]. We say that f € LP(R™) belongs
to a Hardy space associated with an operator L (abbreviated as H}) if S, (f) € L1(R™),
and define its norm by

Wfllpgz = 1ISLll e
Note that if L = A is the Laplacian on R", then the classical space H1(R™) coincides with
the spaces H; (R™)and H\l/Z(R")and their norms are equivalent. See[74]and[19].

For a measurable function g(y, t) defined on R, we will denote

dydt\ "
A(g)(x) = (j gy, )| ti+1> 21
I'(x)
and for0 <p < 1,
dydt
Cp(g)(x) = sup— 1<j lg (v, )| > : (22)
XEB |B|p 2

Following[63], the “tent space” T, is defined as the space of functions g such that A(g) €
LP(R™), when 0 < p < . The resulting equivalence classes are then equipped with the
norm|||g|||T2p = |[|All,. When p = o, T,%is the class of g for which C;(g) € L*(R"),

and its norm is defined by ||C;(9) |le- FOr 0 < p < 1 we denote T *by

17 ={g: 6@ |, < e}
Obviously, T,"® = T;°.We observe that f € HX(R™)if and only ifQmf € TS,
i.e., AQmf) =S, (f) € L*. From this point of view, we now introduce the Hardy
spacesH; (R™)for p < lassociated with the semigroup{e ~*“} ;5.

n(%—l)
9( ) m

spaceH? (R™)associated with the semigroup{e~*‘},., is the subspace of the dual

Definition (3.1.4)[53]: Suppose <p<1landsy,= [ ] The generalized Hardy

space(ﬁL ( -1,2, SO)) of ;- ( - 1,2, So) defined as the completion of

D, = {f € *(R™): A(Q,nf) € LP(R™)},

in the quasi-norm

n
- 1,
TR

If Iz = ACQem e
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We will abuse language and say A(Q.mf)(x)is the area integral function associated with
the semigroup{e ~*‘},-,, and still denoted bysS, (f).
(i) Note first that smooth functions with compact support do not necessarily belong to
HP (R™)in general. If f € HF (R™), it follows from Theorem(3.1.10)below that f satisfies
the cancellation condition

]Rnf (x)g(x)dx =0
forallg € ;- s,), WhereJ((;- ¢ yis given by

Karsy) = {g € M Pg +g(x)for almostall x € R" forall ¢t > 0}.
See [71] for a discussion of the dimensions of K- oywhen L is a second order elliptic
operator of divergence form or a Schrodinger operator.
(ii) If 8(L) = oo, then the spaces HY (R™)are well defined for all 0 < p < 1. Atypical
example of (L) = o is when the kernel p,(x,y) of e L satisfies a Gaussian upper
bound, that is,
C lx—y|?

—C

lp(x, y)| < e (23)

forx,y € R" and all t > 0.

(iii) We now give a list of examples of H” (R™)in different settings.

(a) Letp < 1. The classical HP(R™)and the Hf(R")spaces coincide, and their quasi-
norms are equivalent. See[74] and[19].

(B) LetA:((aij(x)) be an mnXxn matrix with entriesa;; € L”(R", C)

1<i,jsn
satisfyingRe ¥, a;;(x)§;&; = A|¢]* for allx € R™.¢& = (§3,&,,...,&,) € C"and somel > 0.
We define a divergence form operator
Lf = —div(AVf),
which we interpret in the usual weak sense via a sesquilinear form.
Note that the Gaussian bound(23) on the heat kernele ~tLis true when A has real entries, or
when n = 1, 2 in the case of complex entries. See [57].
(y) LetV € L},.(R™be a nonnegative function on R™. The Schrodinger operator with
potential V is defined by
L=—-A+V(x)onR",n > 3.
From the Feynman-Kac formula, it is well known that the kernels p;(x,y) of the
semigroup e~ ‘‘satisfy the estimate
lx—yI

0<p(x,y) < We_ 4t

However, unless V' satisfies additional conditions, the heat kernel can be a discontinuous
function of the space variables, and the Holder continuous estimates may fail to hold. See,
[64] and [73].

Note that in [62],[63], the tent spaces give a natural and simple approach to the
atomic decomposition of functions in the classical HP (R™)spaces by using the area
integral functions and the connection with the theory of the Carleson measures. We will
adopt the same approach of tent spaces to obtain a molecular decomposition for Hardy
spaces Hf (R™). We now assume that

2
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Tl(g—l

<p<lsy= and s = s,. (24)

n

n+ 6(L)
In the following, for any given p as in(24), we letein(5) be a constant such that(i) € >
n (% - 1)and thusi < p; (ii)) m(sy + 1) > € unless stated otherwise.
Following[63], a function a(x, t) is called a TP -atom,0 < p < 1, if
(i) the function a(t, x) is supported in B(for some ball B ¢ R™); and
(ii) [la(t, )2 == < B2/,
Proposition (3.1.5)[53]: (a) Suppose 1 <p <o . The following inequality holds,

wheneverf € TYandg € sz’with% + 5 =1,

dyd
f If (v, t)g(y, t)| yTt < | Af)x)A(g)(x)dx.
]R2+1 R"

(b) Assume0 < p < 1. Every element f € T can be written asf = X A;aj, where a; are
T} atoms, A; € C, and Z|/1j|p < c||f||?;§,.

(c) If 0 <p <1, then the dual space of TFisT"®. More precisely, the pairing(f, g) —
fRﬁ“ flx,)g(x,t) @realizes TP *as equivalent to the dual of T .

Proof: For the proofs of (a) and(b), we refer to (43) and Proposition 5 of[63],
respectively.

Let us show that? € (T} )'can be represented by a functiong € T;**. Following Theorem
1 of [63], we observe that if K is a compact set of R?*1and f is supported in K withf €
L*(K), then f € szwithIIfIIsz < ckllfllzgeyfor all 0 < p < 1. Thusfinduces a bounded
linear function on L?(K)and is thus representable by g, € L?(K). Taking an increasing
family of such K that exhausts R%?*1gives a function g € L%, .(R%*1)such that?(f) =

fmﬂ;“ flx,t)g(x,t) #whenever f € TPand f has compact supportK. Testing#against all

2
possible atoms leads by the converse Schwartz’s inequality t0|B|1_5 fél g(x,t)|? dxdt/
t < ||€||*for allB, i.e. ||Cp(g)||0o < |[€]| as desired. This representation offis then

extendable to all ofT}, since the subspace of f with compact support is dense inT. The
proof of Proposition(3.1.5) is complete.

Let m be the constant in(4). For any givenp < 1, we choosesy,and s the integers in(24).
Letc,, sbe a constant such that

cm,Sf s+ =2t (1 — e‘tm)50+1dt/t = 1. (25)
0
We say that a function a(x) is a (p, s)-molecule if
«® dt
a(x) = 1, (@) (%) = Cms f Quen(l = Poyen) (@t )0 (26)
0

where a(t,x) is a T[-atom supported in the tentBof some ball B < R™, and
a(t, x)satisfies the condition [, |a(t, x)|*dxdt/t < |B|*~2/P.
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Proposition (3.1.6)[53]: Suppose ro <P <1 For anyf € H?(R™) n L*(R™), there
exist (p, s)-moleculesay (x)and numbersA, (k = 0,1,2, ...) such that

FG) = ) et (). @7)
k

The  sequence A satisfies),, |4, |P < c||f||2p.Converser, every  sum(27)
L
satisfies ||f||flp < c Yl Ak l?.
L
Proof: Let ¢, ; be a constant in(25). Consider the identity:
1= Cm'sfo (tm(s+1)z(s+1)e t Z(l—e t Z) 0 )(the t Z)T’

which is valid for all Z # 0in a sector S[} with u € (w,m). As a consequence of H-
functional calculus for L and the convergence Lemma(3.1.1), one has

«© d
f(x) = Cm,sj Qs,tm(l - Pso,tm)thf(x) Tt: (28)
0

where this integral converges strongly in L*(R™). See [54]and[79]. For any f €
HP(R™) n L2(R™), we let F(x,t) = (Q:mf)(x).We then apply (b) of Proposition(3.1.5)
to Q,m f1o obtain

” d
flx) = Cm,Sf Qs,tm(l o Pso,tm)(thf)(X)Tt
0
” d
= z Ak Cm,S -[ QS,tm(I - Pso’tm)(ak (t, . ))(X) ?t = Z Ak“k (x)’
k 0 -

where the sequence 2, satisfiesZkl)lklpSc||th(f)||’;pScllfllflp. This proved,
2 L

whenf € HY (R™) n L*(R™), possesses a (p, s)-molecule decomposition.
Conversely, by the definition H} (R™), it suffices to verify that for any (p,s)-molecule
a(x), we have

ISL(@llp, < ¢, (29)
where c is a positive constant independent of a.
Assume that a(x) = m;(a) where a = a(t, x) is a usual T} -atom supported inB (for some
B = B(Z,,15) € R™). One writes

IS, @I = [ Is@@Pdx+ [ Is@@Pdx=1+11
4B (4B)¢

Using Holder’s inequality and estimate(20), one obtains

_p _p
IS @GP dx < [4B1* 2|, (m (@)|]} < clBI* Zlim ()17,
4B

4
1__
< c|BI"2[llalll7; < c.

We now estimate the term 1. Firstly, we will show that there exists a constant ¢ > 0 such

that for any x & 4B,
2

SZ(@)(x) < crg€|B|" P |x — Zo| 2O, (30)
Let us prove(30). For k = 0, ..., 5o + 1, we denote
WE L) () = (™ + (ke + Dv™)s+2 ( f ) )
r=tM+(k+1)y™

ds+2Pr

dT‘s+2
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By (6), the kerne W[, (L, s) (x,y) of WK, (L, s)satisfies

(t +v)€
|Lptkv(l‘ls)(x’y)| = Ck t+v+|y— Z|)n+e
Since(l — P, pm) = X320 (—1)*Ck ;e 7¥™L, we obtain

2
d
SE(CZ)(X) = (SL (f Qs'vm(l — PSO'vm)(a(V,.)) 71/)) (X)
0

So+1 2

tMy m(s+1) dv dydt
- _f;(x) lf z( 1)k So+1 (tm + (k + 1)vm)s+2 X th V(L S)(a(v ))(y) v Fn+l
So+1
° ¢mymls+1) dzdv]” dydt
=¢ Z fr(x) U f (™ + (k + Dvm)s+2 ey L$)0 2)atr. 2)] ] el

- Cf f [ tmymSHD (t +v)€la(v, 2)] dZdv] dydt
peyl<e g €+ VD (E+v + ]y —ZDm*e v | o
tmymG+) (¢ +)¢la(v, 2)| dZdv] dydt

+Cj fx yl<t [.[]; (t+v)mS+D (t+ v+ |y —Z)re v ] g+l

= [1; + II,, respectively.
We only consider term I1, since the estimate of term I1;is much simpler. For x & 4B and

t>1rg, we set B=B;UB,, whereBlan{Z:ly—leﬁ}. For any Z €
B;and|y — x| < t, we have
|x — Z| |x — Z|
lx = Zolly — x|+ |y —Z|+ |2 -2yl <t + > +TBS2t+T' (31)

which impliest > |x — Z,|/4, and then (t + s+ |y — Z|) = |x — Z,|/4. Obviously, for
anyZ € B, and|ly—x|<t, we also have(t +s+|y—2Z|) = |x —Z,|/2. Those,
together with

mvm(s+1) pm(s+1)

(t+v)S. (t + V)m(s+2) =t (?)

and m(s + 1) > e, give

I, < CJ J [J m(s+1)te—m(s+1)|a(viz)|
[x— y|<t
< ClBl J J VZm(s+1)t26—2m(s+1) dthf |a(v, Z)lz dZ;/dv |x _ Z0|—2(n+6)

dZdv]® dydt B
] 1 |x _Zol 2(n+e)

< ClBl J f 2m(s+1)t26 2m(s+1) d11//dt |x _ Z0|—2(n+6)
2n
2e+2n—=—~
< CTBE T lx — Z,|72(n+e),

Estimate(30) then follows readily. Sincep(n + €) > n, we obtain
f 1S, (@ (OIP dx < crPeHmPn f It — Z, |-+ OP dx < c.
(4B)°¢ (4B)°¢
Combining estimates of I andil, we obtain(29), and then the proof of Proposition (3.1.6)
Is complete.
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Now, let Tz",’c be the set of all f € szwith compact support in R%**1, Consider the
operatorm; initially defined on T, by

« dt
T[L(f)(x) = Cm,sj Qs,tm(l - Pso,tm)(f(-'t))(x) T' (32)
0
wherec,, sis a constant in (25). Note that for any compact set K inR’*?,

f I G, )2dxdt < c(K, D) AP

for all p > 0. See page 306 of[63]. This and the estimate (7) imply that the integral (32)
is well defined, and 7, (f) € L2(R™)for all f € T7,.

Lemma (3.1.7)[53]: The operator m;, initially defined on TC’?Z, extends to a bounded linear
operator from

(@) TPto LPif 1 < p < oo;

(b) TPto HLpifn+Z S<p=<L

Proof. The property (b) is contained in the second part of Proposition (3.1.6). We now
verify the property(a). From Proposition(3.2.5) and estimate (20), we have

* dxdt
| megeax £ t) (Qum(l = Py en)) 9G0)
RTL

R+ "
L ANEA ((@5.m(1 = Poyem)) 9) () dx
ST () )

< clilfllzzllglly
for anyg € LP’,%+ pi = 1. Hence, we obtain||, ()l < clllf1ll7-

<c

<c

pl

We next state the following H} -estimate for functions in the space H} (R™). For its proof,
it is similar to that of the second part of Proposition(3.1.6).

n "(%_1)
n+6(L) m

supported on B, the function(l — Pso,rgl) fbelongs to HY (R™), and there exists a positive
constant ¢ such that

Proposition (3.1.8)[53]: Suppose <p<landsy= [ ] For any L2-function f

11
1C = Peyrp)f,pp < clBIPZIIf N2,

where 1 is the radius of the ball B.

We assume that the operator L satisfies the assumptions(a) and (b). It was proved
in Theorem3.1 of [71] that the dual space of HI(R™)is the space BMO,-(R™) in which
L*is the adjoint operator of L. The aim is to prove the following theorem.

Recall that a measure u in R?*tis a Carleson measure VP of order of 8 > 1 if there
IS a positive constant ¢ such that for each ball B on R™,

u(B) < c|B|*, (33)
where Bis the tent over B. The smallest bound c in (33) is defined to be the norm ofyu, and
denoted byl|||u|ll, 5. See, for example, page338, Chapter XV, of [85].
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Proposition (3.1.9)[53]: Suppose 0 < @ < 8(L)/n ands = s, = [— If f € 8,.(,2,s),

then the measure
2 dxdt

,uf(x: t) = |Qs tm(g PSO tm)f(x)|
is a Carleson measure V2%*1 with |”'“f”|v<2“+1) < c||f||gL(a,2,SO).

Proof: Given 0 < a < 8(L)/n, we lete in (5) be the constant such that na < € < 8(L)
and m(s + 1) > €. In order to prove Proposition(3.1.9), it suffices to prove that there
exists a positive constant ¢ > 0 such that for any ball B = B(xg,r5) onR",

fféle,tm(I - Pso,tm)f(x) 22

Note that(I — Py wm) = (I = Pg em)(I = Ps,rm ) + P .m(I — Pg, om). Hence, estimate
(34) will follow from the following estimates (35) and (36):

dxdt
f fAIQs,tm(I—PSO,tm)(I— sorg ) F ] —<c|B|2“+1||f||gL(a250) (35)
B

(34)

and

> dxdt
JJ |QS thSO 7‘3 Pso'tm)f(x)| T = C|B|2a+1”f”523L(a,2,so)' (36)

To prove(35), let us introduce the square function Gf, given by

® d
G(HG) = ( j |Qs.em(I = Py, tm)f(x>|2—t>

From (7), the function G(f)is bounded on L?(R™). Leth; = (I — Py ,)f x2p, andb, =
(1- Ps,rm )fX(ZB)C Using property(lS)of L, (a,2,s,), we obtain

Héle,tm(l - Pso,tm)bl(x)| T < lgbII5 < C||b1||Lz(Rn)
= [ |0-Pyp)r@f ax
2B

c( (I = P, v )fCO|” dx + IBI. sup |Pg, o f () = P, pn f (%)) )
2B XE2B

< c|BIP** IS, 2,50 (37)
On the other hand, for any x € B and y € (2B)¢, one has|x — y| = rg. And then by
estimate (13) and property (iv) of £, (a, 2, sg),

t6
|Qs.em(I = Pg, om)by ()| < c fRn\ZB G

t\€ r§
=¢ <E> fRn (TB + |x — yl)n"'f |(I - PSo,TE”)f(dey

t €
< c|B|*® (—) £ |l e, (a2.50)
Tp

yl)n+6 |(‘7 o PSO'TgL)f(dey

sincena < €. Therefore,

2 dxdt 1 dxdt
f f |Qso tm(I so tm)bz(x)l |B|2aﬁf fA t2€ t ||f”523L(a,2,so)
B B

< C|B|2a+1”f”%L(a,2,so)'
This, together with the estimate (37), gives the estimate (35).
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Let us prove(36). Fork = 1,2, ...,s, + 1, we denote by

ds+1p
lllt rBf(X) = (krg" + tm)s+1<d s+1 lv=erg +tmf> (x).
From (13), the kernel q;t,rB (x,y) of L|Jt'rBsatISfI6‘S
s

K <
(W, G| < ek oy e

Since Py ,mf(x) = ZS"“( 1)"+1CS’f)+1e‘krB Lf(x), from property (16) of £, (a,2,s,)
together with na < €, we have
|Qs,tmpso,r£‘(1 - Pso,tm)f(x)|

tm(s+1)

= Z( 1)k+1CSk +1 (kTBT;n n tm)s+1 lIJ{“C,TB(I - PSO,tm)f(x)
k=1

So+1

t m(s+1)—e te
=¢ (_> JRn (t + |x — y|)nte |(I - Pso,tm)f(Y)|dy

p
t >m(s+1)—e

< ctha/m (T_ ”f”EL(a,Z,so)r V0 <t < tg.
B

Therefore, by using the condition m(s + 1) > ¢,

5 dxdt L/t m(s+1)—e
f fA|QS’tm(1—PSO,tm)f(x)| —<c j j gna/m1 (=) dxdtlf 113, (gm0
B B B

< cIBIP**MIfIIE, 2,50
which gives the proof of (34), and therefore the proof of Proposition (3.1.9).

n(%—l)

Theorem (3.1.10)[53]: Suppose 9( 3

the HY (R™)space is theg, - ( - 1,2, sg)space in the following sense.

<p<1ands, = [ ] Then, the dual space of

(i) Suppose f € &= ( -1,2, 50) Then the linear functional ¢ given by

t(g) = | flg)dx, (38)
]Rn

initially defined on the dense subspace Hf(IR{”)nLZ(]R{"), has a unique extension
toH} (R™).

(ii) Conversely, every continuous linear functional£ on the Hf (R™)space can be realized
as above, i.e., there existsf € ;- ( - 1,2, so) such that (38) holds and

1Flly.(3-12,) < €l
Proof: Suppose f € £;- ( - 1,2, so)and b is a (p,s)-molecule of Hp(]R”) Without loss
of generality, we assume that
o dt
b(x) =y f Quen(1 = Py (a(t, )0
0

where a(t,x) is a usual sz-atom supported inB (for someB = B(Z,,15) € R"), andcy, sis
the constant in (25). We can apply the same argument as in Theorem 5.1 of [71] to obtain
the following identity:
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i . dxdt
b()f(0)dx = cpps j at, Qe (1 = Pien)f () =
R" ]R2+1

The details are omitted here. This, together with Proposition(3.1.9), shows that

dxdt\"? 11 1.1
b(x)f (x)dx| < clllalllrz (JA Q:'tm(I_P;O'tm)f(x)F X > 1
B

< c|B|? P|B|P "2
R t

<c. (39)
For anyg € HY (R™) n L2(R™), it follows from Proposition (3.1.6) that there exist (p, s)-
molecules a;(x) and numbers A,(k = 0,1,2,....)such thatg(x) = Y Axax(x). The
sequenceA,, satisfies) ;|4 |P < cllgllzp. Hence by (39) we obtain
L

1p
SZMkl Sczllkl SC(ZMRP’)
K

k k
< cligllp.

() g(dx j e (O f () dx
[Rn Rn

This proves (i).
Let us prove(ii). Note that by (b), for everyh,(x) € T7,

e dt
RUIE) = s [ Quenll = Poyem) (hI@)  € HY,
where c,, ¢ is a constant in (25). T%erefore, for each continuous linear functional £ on the
HP (R™)space, we obtain
| o RY(h)| = [£oR(| < Nellyr IR e < Il gr RN p e el o
for all hy(x) € TY. It then follows from (c) of Proposition (3.1.5) that there exists a
function Z,(x) € T} *such that

dxdt
(3072)(’11:):] Zt(x)ht(x) P
Rll+1

On the other hand, by(28) we have that for any g € H} (R™) n L?(R"),

*® dt
g(X) = Cm,sj Qstm(l — PSO’tm)thg(X) T
0

This shows that for each continuous linear functional € on the Hf (R™)space, we have that
for allg € H} (R™),

¢(g) = lim £(g,) = lim foRoQ;m(gy) = LoR0Q:m(g), (41)
where{g, }xis a family of functions satisfying g, € HY (R™) n LZ(Rn)andllijgo Jk=J.
From(40) and(41), we have that for all g € H (R™), there exists a function Z,(x) €
T} such that

dxdt < dt
£(g) = loRoQm(g) = JIR{"“ Z(x)Qemg(x) : = fRn <L thZt(x) T)g(x)dx

(40)

def | f(x)g(x)dx, (42)
]Rn

0 % d
where f(x) = [~ Q/mZ(x) Tt
We now prove that f € £;- (%— 1,2,50). For any ball B = B(xg,1g), it follows from
(42) and Proposition (3.1.8) that we obtain
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1/2
<L |f—P;O,rglf|2dx) = sup

”g ”LZ(B)S]'

J. (F00 =i pf @) g2

= sup f(x)(I—PSO'r?)g(x)dx
”.g”LZ(B)Sl R"
< sup |€((I =Py i
||g||Lz<IZ)S1 (( oTB )g)|
< || e((1-P; m
Il "g”i‘:g)SJ (= Psyrp)a)

1 1
< clienat e
This provesf € £, (% - 1,2, So) with|| 1|

feEL*(i—l,z,so) < c||?||, and then the proof of

Theorem (3.1.10) is complete.
As a consequence of Theorem(3.1.10), we have the following corollary.
Corollary (3.1.11)[53]: Suppose that the operator L satisfies the assumptions (a) and (b).

let 0<a<@(L)/n ands=sy,= [%] Then the spaces £;(a,2,s) and
£, (a, 2, sp)coincide, and their norms are equivalent.

(i)

n
n+6(L)

Proof: Suppose <p<lands = s, = [ ] As in Definition(3.1.4), we define

HY(R™)as the collection of all continuous linear functionals on EL(%—l,Z,s)

satisfyingQ;mf € T}, and thusH;.(R™) = H°(R™). Similarly to the proof of
Proposition(3.1.6), a molecular characterization(27) also holds for functions in
H;”’(R™). Hence, the spaces H..”(R™and H}.(R™)coincide, and their quasi-norms are
equivalent. On the other hand, the same argument as in the proof of Theorem (3.1.10)
shows that the dual space of Hﬁ’S(R")is the space £, (% —1,2,s) For the proof, we omit
details here. This, together with Theorem(3.1.10), gives Corollary(3.1.11).

We continue with the assumptions that the operator L satisfies the assumptions(a)
and (b). For 0 < a < % we consider the generalized fractional integralsL™* associated

with the operatorL, defined by
1 [0 0]
L™ %f(x :—f t* le~th f(x)dt, 43
O =t ) f@) (43)

wherel'(a) is an appropriate constant. Note that if L is the Laplacian—A onR™, then L%is
the classical fractional integral. See, for example, Chapter 5 in[82].
For 1 <p < oo, we letH! (R™) = LP (R™)(by (20)). The following theorem generalizes
Theorem (3.1.10) of Taibleson-Weiss([86]).

1 1 ma

— == then the

: n n
Theorem (3.1.12)[53]: Supposen+9(L) <p1 <o,0<a< — and =

fractional integral L*mapsH,*(R™)continuously into HI2(R™). If we replace
H° (R™)withBMO,, (R™), the result holds for a = z

mpy
Proof: For any givenp,, we let € in (5) be the constant such thate < (L) and i < p;.

The result will follow from the repeated application four cases below.
Case l. 1 < p; < p, < oo, This is a well-known result of TheoremlIl. 2.7, page 12 of[88].
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——1
Case Il. p; <1< p, and0 < a <% . Chooses, = [%]ands > [a + —] If b(x) =

f0°° Qsm(3 — P, om)(a(t,.))(x) dt/t, and a(t,x) is a usualT, *-atom supported in B(for
someB = B(Z,, 1) € R™), we will show that|[L~*(b)||,,, <

Caselll.p; <p, <land0 < a < % If b is a (p,, s)-molecule as in Casell, we will show
that||s, (L~ *@)][, <¢c

Case IV. p>1 anda=%. We need to show thatL ms: LP(R™) —» BMO,(R")

continuously. By Theorem 3.1 of [71], BMO,(R™) = (HLl*(]R")) in whichL*is the adjoint
operator ofL, and from Cases I and II we have the desired result by duality. We give the
details for Cases II and III.

1 1 1

Proof of Case Il. Let 2 < g, < oo such that— — — = = — = = 2% We write
D1 D2 2 qz n

1/p, 1/p,
IL=*(D)lp, < ( |L—“(b)(x)|pzdx> + ( j |L‘“(b)(x)|p2dx> =141
4B (

4B)¢
Note that———=-—2=2% Using Holders inequality, Case I and (a) of
P1 P2 2 q; n

Lemma(3.1.7), we obtain
1 1 1 1 1 1

I < |B[Pz %||L~*(b)|lq, < c|B[Pr 2|Ibll, < c|B|Px 2|lallp < c.
We now estimate the termII. We will show that there exists a constant ¢ > 0Osuch that for
anyx & 4B,

E+ma+n—£
IL=*(b)(x)| < cry Piix — Z,|~(+e), (44)

Let us prove(44). Forany k =0, ..., s, + 1, we denote by
s+1
P

d
W (L FG) = (FDHE™ + (k + 1)vm>s+1< 7t - tm+<k+1>vmf> ().

Note that(l — Py m)f (x) = Xp2a(—1)*CE ;e ¥ L f(x). This, together with property
(13) and the fact that for x € 4B and y € B, |x —y| > 2|x — Z,], yields
dvdt

LGS e|[ [ et 0um(1  Pryer)at )0 T F

S°+1 m(s+1)tma dv dt
<c j j j XUy (L) (6, Y)a, y)dy ——
(Ck + Dym + £m)°
3 J J yMms+1) ma (t + V)€ (v y)|d dv dt
¢ O+ O"CHD (¢ +v + |x,yprre YN

ymerDeme dydv dt —-(n+e)
<CJ J (v + t)ms+1)- cla(v,y)| |x— Z,|

yms+1)pma dydv dt o)
<c j | & F o e 2 = 2o

=11; +11,.
We only estimate the term I1,since the estimate of the term I1,is much simpler.
Using Holder’s inequality and the conditionm(s + 1) > € + ma, we obtain
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t v t
X [llalllzzlx — Zo| =€

oo o 1/2
I1, < c|B|*/? J ( J 7 erma) (K)Z(m(m) e d_"> dt
s 0

n
m(s+1)+n—— oo _ dt
<cr Pi|x — Z,| ~(+O) f perma-m(s+1)3

B

e+ma+n——

< ety p1|x _ Z | —(n+e)

o e+ma+n——
Similarly, we have that I1; < cr, Pllx — Zo| ™€) and then the estimate (44) is

obtained. Hence,

|x — Zy| ~(OP2 gy

(e+ma+n—;l—1)p2 j

f |IL=%(b)(x)|P2dx < cry
(4B)¢

(4B)°¢
map,+n— 22%
< cry P <.
This completes the proof of Case II.

Proof of Case III. We write

1/p2
I, <[ 5.0 e@)eola)
4B

1/p,
te ( j |SL(L‘“(b))(x)|p2dx>
(4B)¢

=1+1I.
Since the area integral function S;is bounded onL” for all 1 < r < oo, by Case I we have

11
I < c|B|p29z||L™*(b) || a2 < c.
We now estimate the term II. As in Casell, it suffices to show that there exists a constant
¢ > 0 such that for any x & 2¢,,

E-}-T)’L(Z-FTL—l
S (L™*(B))(x) < cry, Piix — Z,| ~(+9), (45)
Let us prove(45). Forany k =0, ..., s, + 1, we denote by

S+2P
Pk, (L) () = (E™ +v™ + (k + 1)y™)s+?2 ( Tz |r=tmavmagerymf ) (x)

and
hmas B tmvmay <. ym(s+1)
tv,y,k = (tm +ym 4 (k + 1)ym)s+2 - (t +v+ y)m(s+2)'
From estimate(13), we obtain that the kernely,,,,(L,s)(y,Z)of the operator

Wty (L, s)satisfies

m(s+1) tmyma

(t+v+y)e<
t+v+y+ly—2zPhnte

Wy (L9, 2)| < ¢

We then obtain
SZ2(L™%(b)) (x)

00 00 Sot dv d
<c (SL (j j v“e‘VLQS,ym(I — Pso'ym) 1(a(y,.) vv y>> (x)
o Jo

93



Sot+1 2
“ ("B dvdy|” dydt
<o ([ st w0 S| O
&= Jre) Lo Jo vy |t
B
< cf f
0 ly—x|<t
2
y J‘rBJ‘ tMyMay ST (¢ 4y 4 y)E . 2)| dZdvdy| dydt
0 g(t+v+]/)m(s+2)(t+1/+)/+ |y_z|)n+e aty, tnt1
B
+cj f
0 ly—x|<t
y f”f tMyMmay ST (¢ 4y 4 y)E a0y, 2)| dZdvdy ? dydt
i 8 E+V+PTE D H vty + [y -z T gy | e
+cj j
rg Y|y—-x|<t
2
y frBf tMyMay ST (¢ 4y 4 y)E a0y, 2)| dZdvdy| dydt
0 g(t+v+]/)m(s+2)(t+1/+)/+ |y_Z|)TL+E aty, tn+1
+cj j
rg Y|y—x|<t
2
jooj tMyMay ST (¢ 4y 4 y)E a0y, 2)| dZdvdy| dydt
X ,
e 8 CHV AP Dk vy + [y —Zhmre =

= I, + II, + Il + II,.
Let us estimate the term I1, . The same argument as in(31) shows that for x ¢ 4B,t >
rg, Z € Byand|y — x| < 't, we have(t +s+ |y — Z|) = c|x — Z,|. Those, together with
the fact that
tmvmaym(s+1)(t +v+ )/)E
(t+v+y)ms+2)
whereff = (m(s + 1) — ma — €)/2 > 0, show that
dZdvdyr dydt

(00 (00 1
_ ,etma+2p _
mse| U [ e iatn 2N = B

2
o [ poo f (Tp dy\"? dv | dt
< c|B| j j (f y2<f+m“+2ﬁ>—> llal |2
o [TB . v y1tB| {1+28 T:

% |x _ Zol—Z(n+6)
2(n+€+ma— 1+2ﬁ) @ * dv 2 dt
< (] -z -2(n+¢)
=g -frB [-fTB v1+B] ti+2h |x Ol

2n
2(6+ma)+2[3—ﬁlx B ZO|_2(n+6)_

< (tv)—ﬁye+ma+2ﬁ’

Zol—z(n+e)

< cry

2(6+ma)+2n—2—n
The same argument as above shows that I+ Il + II3 < cry PLx

|x — zo| 72"+ | This proves (45), and gives the desired estimate
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j |SL(L'“(b))(x)|p2dx < c.
(4B)°

The proof of Case III is obtained. Hence, the proof of Theorem (3.1.12) is complete.

Assume that L is a linear operator of type w on L?(R™) with w < m/2, hence (—L)
generates an analytic semigroup e %%, 0 < |Arg(z)| < m/2 — w. We assume that for
eacht > 0, the kernel p,(x,y) of e~t is a Holder continuous function in x,y and there
exist positive constants m and 0 <y < 1suchthat forallt > 0,and x,y,h € R",

tl/m
tl/m + |x _ yl)n+1’
) Ipe(x + h,y) — peCe, Y| + |pe(x,y + h) — pe(x, y)|
tl m
(t1/m + |x _ yl)n+1+y (47)
whenever 2|h| < tY™ 4+ |x —y|; and

f pe(x, y)dx = j pe(x,y)dy =1,  vt> 0. (48)
R™ R™

We have the following equivalence between the HP (R™) spaces and the H? (R™) spaces
associated with operators.

e (x, ¥)| < ‘T (46)

< c|h|¥

Theorem (3. 1.13): Assume that L satisfies the assumptions (46), (47) and (48).
Then forniw < p <1, the spaces HP(R") and H? (R™) coincide, and their quasinorms
are equivalent.
As a consequence, for0 < a < % , the classical Morrey-Campanato spaces
L(a,2,0) and the spaces £; («, 2, 0) coincide, and their norms are equivalent.

Proof: We remark that for L satisfying (46), (47) and (48), our proof below shows that L
has a bounded holomorphic functional calculus on L? because the area integral functions
S, and S;+ are bounded on L? in which L* is the adjoint operator of L. See Theorem 3 of
[81].

Let g,(x,y) denote the kernel of the operator Q; = t%e‘“. From Lemma 6.10 of [71],

we have the following estimates: for any 0 <y; < y and 0 < f; <1, there exist

constant ¢ > O suchthatforallt > 0,and x,y,h € R",
tﬁ1/m

T =y

|qt(x1 )’)l <
tﬁl/m
(7™ + x — ymhn

lq:(x + h,y) — q:Ce, )| + 1qc(x, ¥y + h) — qc(x, y)| < c|h|™
whenever 2|h| < tY™ + |x — y|; and

J q¢(x,y)dx =f q:(x,y)dy = 0, vt > 0.
R R"

It then follows from a standard harmonic analysis argument that H? (R™) = HP(R™) for

n%y<p < 1. See, for example, Chapter XIV, in [85]. Hence, the proof of Theorem

(3.1.13) is complete.
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To begin with, let us recall some basic facts about the Neumann Laplacian AyonR™, which
was studied in[65]. In what follows, R’ denotes the upper-half space inR", i.e.,
R? = {(x',x,)|€ R":x" = (x4, ..., Xp_1) € R* 1, x, > 0}.
Similarly, R™denotes the lower-half space inR™.
We denote byAy, (resp. Ay_) the Neumann Laplacian onR%(resp. on R”). See page 57
of[83]. The Neumann Laplacians are self-adjoint and positive definite operators. Using the
spectral theory one can define the semigroup{exp(—tAN+)}t20(resp. {exp(_tAN—)}tZO)
generated by the operator Ay, (resp. Ay_). For any f defined onR", we set
f-=flgn and fi = fgn,

wheref|gr andf |gnare restrictions of the function f toR}andR”, respectively.
We letAy be the uniquely determined unbounded operator acting onL? (R™) such that

Anf)y = Ay, f+ and (Anf)- =An_f- (49)
for all f:R™ +— R such that f, € W12(R%) and f. € WY2(R™). Then, Ay is a positive
definite self-adjoint operator and let p;(x, y) be the heat kernel of the
semigroup exp(—tAy). By (49), we have

(exp(—tAy) f)+ = exp(—tAy,) fy and (exp(—tAy) f)_ = exp(—tAy ) f-  (50)
Moreover, we have

( ) 1 |x,_y,|2 ( X0 —Ynl? |xn+Yn
Pe\X,y) = e

2
me 4t i t+e 4t | > H (¢, yn), (51)
(4mt)2
where H: R — {0, 1} is the Heaviside function, givenby H(t) = 0ift < 0; 1if
t > 0. See [65].
We show the following proposition.

Proposition (3.1.14)[53]: Suppose% < p < 1. The operatorA, satisfies the
assumptions (a) and (b). Moreover, we have HIZN(]R“);HP (R™). That is, H}; (R™) is a

proper subspace of the classical H? (R™) space.

Proof: Since Ay is a self-adjoint positive definite operator, hence it has a bounded H,,-
calculus in L2(R™). From the equation (50), Ay generates the conservative semigroup
e N thatis e ®~ (1) = 1 for all t > 0, which satisfies the assumptions (a) and (b).
This gives that

n
H} (R™) € HP(R™), —<P<1L
On the other hand, from Theorem 4.1 of [65] and Proposition 5.3 of [72], this

operatorAygenerates the spaces £, (a,2,0)with 0 < a < n~1 such that

() L(a,2,0) € £4,(a,2,0).

(i) We have f(x) = log|x| x(xxerny(x) € BMO,, (R™), however,f ¢ BMO(R™).

(iif) For 0 < @ <n™t, we have f(x) = e™*I" ¥ ermy () € 84, (a, 2,0), however, f ¢
L(a,2,0).

From the properties (i), (ii) and (iii) above, we have that £(«, 2,0) is a proper subspace
of £, (a,2,0). Proposition (3.1.14) then follows from Theorem (3.1.10) and the fact that

(HP) =L (% - 1,2,0) (see, for example, Theorem2.7 of [86]) (see [89]).
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Section (3.2): The BMO Spaces Associated with Operators and Applications

The classical space of functions of bounded mean oscillation (BMO) plays a crucial
role in modern harmonic analysis. See for examples [74], [75], [82] and [19]. In the case
of the Euclidean space R", a function f is said to in BMO (R") if

1
I lamacer = supor fQ 1FGO) = fo| dx < o. (52)

where f, denotes the average value of f on the cube Q and the supremum is taken over all
cubes Q in R™,

An important application of the theory of BMO spaces is the following interpolation result.
Proposition (3.2.1)[65]: If T is a bounded sublinear operator from L?(R™)to L?(R"™), and
T is bounded from L*(R™) to BMO(R™"), then T is bounded from LP (R™)toLP (R™) for all
2<p<oo,

It is well known that Caldero’n-Zygmund operators (such as the Hilbert transform on the
real line, the Riesz transforms on R", or the purely imaginary powers of the Laplacian on
R™) do not map the space L*into L, but the standard conditions on their kernels ensure
that they map L into the BMO space boundedly, hence we can apply Proposition(3.2.1)
to obtain LP boundedness of these operators for p > 2. The BMO space is a natural
substitute of the space L*in the theory of Calder’on-Zygmund singular integrals.

We study of singular integral operators corresponding to spectral multiplier of an
operator L which generates a semigroup with appropriate kernel bounds, see[70]. Such
multipliers do not always map L™ or appropriate LP spaces into the classical BMO space,
see Example (3.2.18) below. Hence the classical BMO space is not necessarily a suitable
space to study such singular integrals. To study these rough operators, we introduced a
newBMO, space associated with an operator L. To explain our approach to BMO; space
associated with an operator let us recall that the space of BMO functions can be
characterized by the Carleson measure estimate as follows:

Proposition (3.2.2)[65]: A function f is in BMO if and only if f satisfies
[ o
an L+ [x[F S
and

d Z dxdt
= — ptVvA
e (x, t) |t6te VAf(x) n

Is a Carleson measure.

One can see from the characterization in Proposition(3.2.2) that the BMO space is
associated with the Laplace operator on R™and it seems to be natural idea to replace the
Laplace operator A by more general operators operator L, see also [74] and[29].

We use equivalent approach, see Definition(3.2.5) below. In this definition the
BMO, space associated with L is defined by using the function e~felfto replace the
average f, in Definition(3.2.4) of BMO where the value ¢, is scaled to the length of the
sides of Q. We discuss various examples which shows that Definition (3.2.5) is an effective
tool in study of singular integrals operators associated with the operator L. See [58], [95]
and[99] for other ideas related to generalization of the BMO space and BMO spaces
associated with an operatorL.

Many important features of the classical BMO space are retained by the new BMO, spaces
such as the John-Nirenberg inequality and duality between the Hardy space and the BMO,,
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space. See[70] and[71]. One of these important features is that the interpolation property
in Proposition(3.2.1) is still valid if the classical space BMO is replaced by theBMO, space
associated with an operatorL. Indeed, the following result is proved in[70]
(Theorem(3.2.19)).

Proposition (3.2.3)[65]: Let y be a space of homogeneous type. If T is a bounded
sublinear operator from L?(x) to L?(x), and T is bounded from L®(y)into BMO, (x), then
T is bounded from LP (y) to LP ())forall 2 < p < oo.

A natural question arising from Proposition(3.2.3) is to compare the classical BMO space
and the BMO, space associated with an operator L. We study this question systematically
and we show that depending on the choice of the operator L, all the following cases are
possible

Casel: BMO = BMO;;

Case2: BMO < BMO; andBMO # BMO;

Case3: BMO;, € BMOandBMO; # BMO;

Case4: BMO &€ BMO, and BMO, € BMO.

For other results related to Cases 1 and 2 see Proposition 2.5 of [70], [71] and
Proposition(3.2.8) of[78]. We show that if f € L™*(R™ and L %f < coalmost
everywhere thenL™%f € BMO,. We construct an example of a function f € LP(R) and an

operator L such that L 2rf € BMO, but L 2»f ¢ BMO. This shows that the new BMO,
space does make a difierence in estimates of singular integrals. We obtain sharp estimates

of the L* to BMO, norm of the purely imaginary powers LS of a self adjoint operator L.
We also obtain the BMO type estimates for spectral multipliers of a self adjoint operator L
and for maximal operators sup;so|F (tL)| corresponding to L and appropriate functions F.
LPboundedness of these operators,2 < p < oo, then follows from Proposition(3.2.3).

We begin by recalling the definitions of various BMO spaces on the usual upper-
half space in R™. For any subset A ¢ R™ and a function f: R® — C by f|,we denote the
restriction of f to the set A. Next we set

R%? = {(x',x,)) € R":x" = (x4, ..., X,—1) € R* 1, x, > 0}.
Definition (3.2.4)[65]: A function f on R%is said to be in BMO,. (R}) if there exists F €
BMO (R™) such thatF|gn = f. If f € BMO,.(R}), we set

||f||BMor(1R1‘) = inf{”F”BMo(M): F|Rﬁ = f}
A function f on R} belongs to BMO4(R") if the function F defined by
_ (f(x)ifx € RY;

Fx) _{ 0 ifx ¢ R”, (53)
belongs to BMO(R™). If f € BMOz(RY}), we set||f | gmo,mn) = [IFllzmo,mny. Compare
Section4.5.1, page221 of [105] and Section5.4 of[93]. In order to analyze the spaces
BMO,(R%}) and BMO4(R?%), let us introduce the following notations, see[61]. For any
x = (x',x,) € R", we set¥(x’, x,,). If f is any function defined on R?, its even extension
f. is defined onR™by

_ (f()ifx € RY;
fe(x) = {f(az)ifx € R®,
and its odd extensionf,is defined by
_ (fx)ifx € RY;
fo(x) = {— f(®)ifx € R",
Where
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={(x",x,) E R"x" = (xq, ..., x,—1) € R*" 1 x, <0}

For any functlonf € L}, .(R%), we define

”f”BMOe(]R ) = ”fe”BMO(]Rn) and ”f”BMOO(]R ) = ”fo”BMO(R”)
and we denote byBM O, (R")andBM O, (IR" )the corresponding Banach spaces.
We will see thatBMO,(R%)is suitable for the analysis of the Neumann Laplacian
onR}whereasBM O, (R )is suitable for the study of the Dirichlet Laplacian onR". See
Proposition(3.2.9) below.
In what follows,Q = Q[x, ly|denotes a cube of R"centered at x, and of the side
lengthl,. Given any cube @, we denote the reflection of Q across IR’ by

Q = {(x",x,) ER™, (x',—x,) € Q). o (54)

Let Q,=QNR} and Q_=QnNnR® where R”={(x',x,) € R":x" =

(x4, oo, Xp_1) € R" 1 x, < 0}. If both Q_ and Q. are not empty, we then define
0_ = {(x', x,):x' € Q NR" 1, —lp <x, < 0},
{ Qy ={(x',x):x’ €EQNR"L,0<x, < lQ}.
Obviously, we have the following properties:
() Q- <€0-,Q; € Qsand thus Q € (Q— U Q+);
(i) Q1 = |Q-| = Q4.
These will be often used in the sequel.

By Apn,(and A,y ) we denote the Neumann Laplacian on RI(and on RZ
respectively). Similarly by A, 5, (and A, ,_) we denote the Dirichlet Laplacian on R (and
on R™respectively).

The Dirichlet and Neumann Laplacian are positive definite self-adjoint operators. By the
spectral theorem one can define the semigroups generated by these operators
{exp(—tAn’DJr): t >0} and {exp(—tAn,M): t > 0}. By Pty (x,y) and Pty (x,y) we
denote the heat kernels corresponding to the semigroups generated by A, . and A, v,

respectively.
For n = 1 by the reflection method (see for example [83]) we obtain

1 |2y —y41? |y =4l
pt'ATl,D+ (xl y) = (47Tt)1/2 e 4t — € 4t .

(55)

Then forn > 2

Pea,p, (X Y) = (pt,Am (X, yn)) (pt,An_l (', y’))

1 |x,'y,|2 |Xn=Ynl? _|xn_3’n|2

= —e 4t (e~ 4t —e a4t ) (56)
(4mt)2

where p.a _ (x,y)is the heat kernel corresponding to the standard Laplace operator

acting on R™~1, Applying the reflection method also to the Neumann Laplacian we obtain
(see [83])

Peany, (%Y) = (pml,m (X, yn)) (pmn_l (', y’))

1 |x,'y,|2 |Xn=Ynl? _|xn_3’n|2
= —e 4t (e~ 4t —e a4t _ (57)
(4mt)2
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We skip the index n and we denote the Dirichlet and Neumann Laplacian
byAp, andAy, . Note that by(56)

exp(=t8p,)f 0O = [ pea,, C0)f () dy
Rn

+

1 _x=y|?
= nf e 4 fo(Y)dy
(4mt)2 'R
= exp(—tA)f,(x) (58)
for x € R}and all t > 0.Similarly

1 lx—y|?
exp(—tAy,)f(x) = f Pray, o Wf ) dy = n j e” 4t f,(y)dy
RY (4mt)2 /R"
= exp(—tA)f,(x) (59)
for x € R%tand all t > 0.
Next for any function f on R", we set
f- = flgnand f; = f|1R§2-

Now let Ay be the uniquely determined unbounded operator acting on L?(R™)such that

(Anf)y = AN+f+and(ANf)— =Ayn_f- (60)
for all f:R™ - R such that f, € WY2(R%)andf. € WY2(R™). Then, Ayis a positive
definite self-adjoint operator. By(60)

(exp(—tAN) )4 = eXp(—tAN+)f+

and (exp(—tAy)f)_ = exp(—tAN_)f_. (61)
Let p;a, (x, y)be the heat kernel of exp(—tAy). By(61) and(57) we obtain
1 |x,'y,|2 |2 =y |? |2 =y |?
Peay(,y) = @2 ® e 4 +e A JH(xu =), (62)
where H: R — {0,1} is the Heaviside function given by
_(0ift < 0;
HO ={gitr s o (63)
Similarly we define the Dirichlet Laplacian on R"by the formula
(Apf)y = AD+f+and(ADf)— =Ap_f- (64)

for all f:R™ — R such that f, € W,"*(R%) and f_. € W,"*(R™). Then, Apis a positive
definite self-adjoint operator. By(64)

(exp(~tAp)f)s = exp(—thp, )f:

and (exp(—tAp)f)_ = exp(—tAp )f-. (65)
Hence by (56) the kernel p; 5, (x, y)of the operator exp(—tAp)is given by
1 e M R PR e
Dea, (X, ¥) = We 4t e 4t  +e 4t H(x, — y,). (66)
Finally we define the Dirichlet-Neumann Laplacian by the formula
(Apnf)+ = Ay, frand(Apnf)- = Ap_f- (67)

for all f: R™ — R such that f, € W2(R%)and f_ € W,"*(R™). By (67)
(exp(—tApn)f)+ = exp(_tAN+)f+

and (exp(—tApy)f)_ = exp(—tAp_ )f-. (68)
Hence by (56) and(57), the kernel p, 5, (x, y)ofexp(—tApy)is given by
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1 |x"y,|2 |Xn=ynl? _|xn+Yn|2
pt,ADN(x;y)=W€ it (e” 4t + (2H(x,) — e~ 4 |H(x,

- yn)- (69)
Let us note that
(a) All the operators A, Ay, ,Ap, ,Ay_,Ap_andAp, Ay, Apy are self-adjoint and they
generate bounded analytic positive semigroups acting on all LPspaces forl < p < oo ;
(B) Suppose thatp, ; (x, ¥)is the kernel corresponding to the semigroup generated by L and
that L is one of the operators listed in(a). Then the kernel p; ;(x, y)satisfies Gaussian
bounds, that is
C  _ =y

penCey)| < Zme™ T (70)
for all x,y €Q, where Q=R" for AAp, Ay, Apy;Q = Rifordy, ,Ap and Q = RE
forAy ,Ap .
(v) IfL is one of the operators A, Ay ,Ay_andAy, thenL conserves probability, that is

exp(—tL) 1 =1.

This conservative property does not hold for Ap, Ap_, Ap_and Apy.

Suppose that Q c R"™ is an open subset of R™. Suppose that L is a linear operator on
L?>(Q) which generates an analytic semigroup e *with a kernelp,(x,y) satisfying
Gaussian upper bound(70).

We define
If ()2
M(Q) = {f € L}OC(Q): ad > O,Lmdx < 00}
Note that in virtue of the Gaussian bounds(70) we can extend the action of the semigroup
operatorsexp(—tL) to the space M (Q), that is we can define exp(—tL) f for all f €
M (Q). By B(x,r) we denote the ball in Q with respect to the Euclidean distance restricted
to Q that is
Bx,r)={yeQ:|x—y|<r}
The following BMO, () space associated with an operator L was introduced in [70].
Definition (3.2.5)[65]: We say that f € M (Q) is of bounded mean oscillation associated
with an operator L (abbreviated asBMO; (Q)) if
— 2
Ifllsmo, ) = SUP B G B(W)If(x) exp(—71°L) f(x)| dx < oo, (71)

where the supremum is taken over all balls B(y,r) in Q. The smallest bound for which
(71) is satisfied is then taken to be the norm of f in this space, and is denoted

byl f | 5mo, @) -
Remark (3.2.6)[65]: (i) Note that(BMO, (), ||l zmo,y)is @ semi-normed vector space,
with the semi-norm vanishing on the kernel spaceX; defined by

K, ={f €e M(Q); exp(—tL) f = f,Vt > 0}.
The class of functions of BMO, () (moduloX;) is a Banach space. See Section 6 of [71]
for a discussion on the dimension of the space K; of BMO,(R™) when L is a second
order divergence form elliptic operator or a Schrodinger operator. In the sequel by
BMO, () we always denote the space BMO; (Q)(modulo %) and we skip (modulo %;)
to simplify notation.
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(ii) Similarly to the classical BMO space, it is easy to check that L () € BMO, () with
W lemo, ) < 21111

(iii) The classical BMO space (modulo all constant functions) and the BM0O,(R™) space
(modulo all harmonic functions) coincide, and their norms are equivalent. See [15].

(iv) Note that the Euclidean distance in Definition(3.2.5) can be replaced by any
equivalent distance. That is if there exists ¢ >0 such that ¢ i|x —y| < d(x,y) <
c|x — y|then one can take in(71) the supremum over all ballsB%(x, r) with respect to the
metricd. In particular ifQ = R",Q = R}orQ = R”, one can take the supremum over all
cubes Q such thatQ < Q in(71), i.e., we can define equivalent norm inBMO; ()by the
formula

Ifl _ if| () — exp(=L2L) ()] dx < (72)
f BMOL(]Rn)_SléplQl Qfx exXp(—io f(x)|dx )

wherel,is the side length of @ and the supremum is taken over all cubes @ < Q. The
following proposition is essentially equivalent to Proposition(3.2.8) of [78].
Proposition (3.2.7)[65]: Assume that for every t > 0, e tL(1) = lalmost every-where,
that is, [, e (x,y) dy = 1for almost all x € R*. Then, we haveBMO(R™) c
BMO,; (R™), and there exists a positive constant ¢ > 0 such that
If lzmo, ) < cllflzmowm)- (73)
However, the converse inequality does not hold in general.
We remark that condition e *L(1) =1, is necessary for(73). Indeed, (73) implies
Il gpo, rmy = 0. Hence e tL(1) = 1 almost everywhere for allt > 0,
We describe the equivalence between the BMO spaces on the half space and BMO
spaces corresponding to the Neumann and Dirichlet Laplacian.
Proposition (3.2.8)[65]: (i) The spaces BMO, (R%)and BMO,(R" )coincide, and their
norms are equivalent.
(ii) The spaces BMO4(R") and BMO, (R™ )coincide, and their norms are equivalent.
Proof: Following[61], for any function f € L*(R")we set
If lazwny = Wfellarwmy andll fllgzwry = 1follar@m (74)
and byH!(R™)andHl(R™)we denote the corresponding Banach spaces. It follows from
Corollaries1.6, 1.8 of[61] and Proposition32 0f[93] that the dual space of HZ(R%)is the
spaceBMO,.(R%)and the dual space of H2(R%)is the space BMO,(R™). See also[55].
The inclusion BMO,(R"%) <€ BMO, (R")is obvious. Hence to prove (i) it is enough to
show thatBMO, (R} )C BMO,(R%}). Letf € BMO,.(R%). To see thatf € BMO,(R"%), by
the definition it reduces to proving f, € BMO(R™) where f, is the even extension of f.
For any g(x) € HY(RMn), we denote by §(x)=g(%) wherex = (x',—x,).
Since(HZ (R" )) = BMO,(R%), we have

fe()g@)dx| = || fo(x)g)dx + | fe(x)g(x)dx
R R7

RZ

fO(g® + g())dx| < clif lzmo,p)llg + gllmzweny
RY

< clIfllemo, )| gl 2 mmy
This shows thatBMO,.(R%?) ¢ BMO,(R"%), and proves(i).
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We now prove(ii). The inclusion BMO4(R%}) € BMO,(R%)is obvious. Let f €
BMO, (]R")and thus f, € BMO(R™). To see that f € BMO4(R"), it reduces to proving

f € (HA(R?)) since BMO(R™) = (HX(R?)) . Ifg € HA(R?), theng, € H'(R™). Hence

fGgdx| =[] fo(x)go(x)dx
R7 R™

2

< C”fo”BMO(]R”)”go“Hl(]Rn) < C||f||BM0(1R{”)||9||H1(1R12)-
This shows that BMO,(R”}) € BMO4(R"), and proves(ii).
We use Proposition(3.2.8) to obtain the following result.
Proposition (3.2.9)[65]: (i) The spaces BMO,, (IR ), BMO4z(R%}) and BMO,(R%)

coincide, and their norms are equivalent.
(ii) The spacesBMOAN (R%), BMO,.(R%)andBM O, (R )coincide, and their norms are

equivalent.
Proof: We first prove(i). Letf € BMO4(R"). By Proposition (3.2.8) we have that f €
BMO,(R%})and then f, € BMO(R™). To provef € BMO,, (IR ), it suffices to show that

for any cube Q € R%,
fQ G0 — e84 £ ()] dx < clQIFllsmoycany (75)
By(73) and Propositions(3.2.8)
1 2 1 2
il jQ [rG) = eBton fOo| dx = 1 jQ |F () = e7'e%f, ()| dx < clify lpaoqm

< clifllemo,rry < cllf lzmoy mn)-
This proves(75).
Next assume thatfeBMOAD (R%). By Proposition(3.2.8), f € BMOyz(R"})or

equivalently f, € BMO(R™). Note that by(58) it is enough to prove that for any cubeQ <

R",
[ 1o = 71, 0] dy < clelfllamo,, e (76)
Q +

We now verify(76). Let us examine the cubes Q.
Casel: IfQ < R”, then for any x € Q,

—exp(—134p,) f(X) = exp(—134) f,(x)
and% € Q < R (here Q is a cube defined in(54)). Note also that|@| = |Q|.Hence
[ 1ot = e p) dy = [ |60 - e 80 p)]ax
Q g

< clQllIflsmoy,, mp)-

Case2: If Q NR™ # @ and Q N R? # @, then let §_ and Q. be the two cubes as in (55).
By(58) and Proposition(3.2.8),

J, oo =il ay= |

Q-UQ,4
Case3: If Q € R?, thene 02 f, (x) = e 6%+ £ (x)for anyx € Q. Hence

£,(0) — e 7ot ()| dx

<2 |76 - et (0| dx < 21011 lowo, >
Q4
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[ 1 - e @5,00| ax < 1011 lawo,, e
Q +

The estimate(76) follows readily. This shows thatf, € BMO(R")sof € BMO4(R").

The proof of (ii) is similar to the proof of (i) so we skip it.

In a similar way as for the upper-half space, we can define the space BM0,, (R") and
BMO0,, (R™)associated with the Dirichlet and Neumann Laplacian A,_,Ay_on the lower-
half space R”.

The same argument as in Proposition (3.2.9) gives the following proposition.

Proposition (3.2.10)[65]: (i) The spaces BMO,, (R"), BMOz(R%) and BMO,(R")
coincide, and their norms are equivalent.

(ii) The spaces BMO,, (R2), BMO,(R") and BMO,(R")coincide, and their norms are

equivalent.

We mention that all cases of relation between the classical BMO and the new BMO
spaces are possible. The following theorem provides simple example to prove this
statement.

Proposition (3.2.11)[65]: The BMO spaces corresponding to the operators Ay, A, and
Ayp can be described in the following way:
BMO,,(R") = {f € M(R"): f, € BMO,(R})and f_ € BMO,.(R*)};
BMO,,(R™) = {f € M(R"): f, € BMOz(R%})and f_ € BMOz(R")};
BMO,,, (R") = {f € M(R"): f, € BMO,(R%})and f_ € BMOz(R")}.
Proof: In the following proof L is one of the operators Ay, AporApy. IfL = Ay, then we
denote by L, =Ap.and L_=Ay_. Similarly if L =Apthen L, =Ap andL_ = A .
Finally for L = Apy welet L, = Ay and L_ = A .
By (61), (65) and(68)

(exp(—tL)f), = exp(tL,) frand(exp(—tL)f)- = exp(tL_) f- (77)
for any of the three considered operators. Hence for any cube Q < R™ we have

j |f — e—zéLf(x)| dx = j f - e—l(ZQL_f_(x)| dx
Q QNR"

+.j~ f+ —-3‘45L+f;(x)|dx. (78)
QNRY

In virtue of Propositions |(3.2.9) and (3.2.10) it is enough to show that

BMO,(R™) = {f e M(R™): f, € BMO,, (RD)andf- € BMO,_(R™)}
Assume now that f € M (R") such thatf_ € BMO,_(R%)andf, € BMO, (RT). In order
to prove f € BMO, (R™), it sufices to prove that for any cubeQ < R",

jQ |G = e~8L£ ()| dx < ¢ (I Nawo,_cany + I1f+llswo,, amy )

As in the proof of Proposition(3.2.9), we consider the following three cases of Q.
Casel: If Q < R, then by(78)

f |f () — et £ ()| dx = f |£-C0) — e~k £.(x)| dx < clQINIf-llsmo,_cum-

Q Q

Case2: If Q N R™ = ¢ and Q N R% = @, then letQ_andQ ., be the cubes as in(55). By(78)
[Jreo-ettr)ax=[  |rw-ebire|ax
Q Q

-UQ+

104




<[ |r-etipeofars [ - et ) ax
Q- Q+
< clQ1 (If-Nemo,_qny + Ifellzmo,, )
Case3: If Q € R™, then by(80)

j |f(x) _ e'léLf(x)| dx = j |f+ — e‘léL+f+(x)| dx < C|Q|||f+||BM0AN+(RE)'
0 Q

Hence f € BMO,(R").
We now assume that f € BMO, (R™). By (78), we have that
f- € BMO,_(R™)and f, € BMO, (R%})
Now Proposition(3.2.11) is a straightforward consequence of Propositions(3.2.9)
and(3.2.10).
The logarithmic function is a simple example that typifies some of the essential properties
of the classical space BMO. For example if we define function log: R™ - R by the
formula log®¢(x) = log|x,|for all x € R" and log(x) = H(x,) log|x,|, where H is the
Heaviside function then
logé € BMO(R"™)
log € BMO(R™). (79)
See, for examples, Chapter IV of [19] and page217 of[85] .
Theorem (3.2.12)[65]: In the notation described above the following inclusions hold
BMO,_ (R™)s BMO(R™)g BMO,, (R™). (80)
That is, the classical BMO space is a proper subspace of BMO,, (R™), and BMO,, (R™)is
a proper subspace of BMO.
Moreover, we have
BMO(R™) ¢ BMO,, (R™) and BMO,_(R™) ¢ BMO(R™). (81)
Proof: It is a straight for ward consequence of Definition(3.2.4) that if f, € BMO,(R%})
and f_ € BMOyz(R™)then f € BMO. It also follows from Definition(3.2.4)that if f €
BMO then f, € BMO,(R}) and f.€ BMO,(R™). Hence it follows from
Theorem(3.2.12) and Propositions (3.2.9) and (3.2.10) that
BMO,, (R™) c BMO(R™) € BMO,, (R™).
To prove that the above inclusions are proper we note that by (79) and Definition(3.2.4)
log, € BMO;(R?})and log, € BMO,.(R%}),
where log. is the restriction oflog®toR’ . Next if log_is the restriction oflog®toR” then
log_ € BMOz(R")and log_ € BMO,.(R").
Hence
log® € BMO and log® € BM0O,, (R™).
Similarly
log € BMOand log € BM0O,, (R™)
This ends the proof of(77). Finally to prove (78) we note that BMO, , (R™)and log ¢
BMO,, (R™).
Corollary (3.2.13)[65]: (i) The dual space of Hi (R™)is the spaceBMO,(R™).
(i) The dual spaces of Hy (R™), Hy (R™orH; (R™are the spaces BMO, (R™),
BMO,, (R™) or BMO,,, (R™), respectively.
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(iii) For the Neumann Laplacian AyonR™, we have thatHAlN(]R")iHl(]Rn)and
HjN(JR") # @. That is, H&N(R")is a proper subspace of the classical Hardy space
HY(R™).

For any 0 < a < n,the fractional powers L~%/20f L is defined by

L=%2f(x) = F(al/Z) OwL‘“/Z‘le‘th(x) dt. (82)

We assume that the semigroupe **has a kernel p.(x,y) which satisfies the upper
bound(70) so|L~*/2f (x)| < cI,(If ) (x)for all x € R™, where

f)
Jof(x) = fRany,O <a<n

is the classical fractional powers of the Laplacian A onR™. Let us recall that the
semigroup{exp(—tL):t > 0} acting on LP(R™) is equicontinuous onL?(R")if
supesolle "L pop < . Note that all the semigroups which we consider here are
equicontinuous on all LP (R™)for 1 < p < oo. We need the following Hardy-Littlewood-
Sobolev theorem. See [88].

Proposition (3.2.14)[65]: Suppose that e~tLis a semigroup which is equicontinuous on
LY(R™)andL® (R™). Also suppose that

pe(x,x) < t72,

Thenfor0 < a <n,
(i) forl<p< gandé =1_" \wehave
=, o < cpallfllv;
(i) L™%*2is of weak-type (1, q), that is, for any 1 > 0, we have

q
[/ ()] > )| < c(”f A”ﬂ) ,

whereq = (1 — %) :
Let us consider the limiting case g = oo in Proposition(3.2.14). It is wellknown that for
every f € L=%2 (R™), either 7,f = oo or 7,f € BMO(R™)with

1Faflsmowmy < clifIl e (83)
see [85].
An example of J,f = oois given byf (x) = |x|~*log ™ |x|x(x.x|22;- The following result
generalizes estimates (83).
Lemma (3.2.15)[65]: Assume that the semigroup e t‘has a kernel p.(x,y) which
satisfies upper bound(70). Then for0 < a < n, the difference operator(I — e ~t£)L=%/2 has

an associated kernelK,, , (x, y)which satisfies

Cc t
|Ko e, 9)| P p— for some constant ¢ > 0. (84)
Proof: Note that
t d t
[—e b= —e Tl = —f Le "L dr.
o dr 0

Hence by (82)
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1 dsdr
] — —tL L= al2 _ f f _ —UL) )
(I=e™™) F(a/Z) Yau® verts T +557%/2+1
By Lemma2.5 of [60], the kernel of the operator vae‘“Lhas Gaussian upper bound(70).

Hence, the operator(I — e ~*1)L=%/2 has an associated kernel K, . (x, y)which satisfies
X - Cllx -yI> 1 dsdr
| a,t(x,)’)l = Cfo fo (r _|_S)n/2 s r+ ss-a/2+1
Ix=yI* 1 dsdr

<c A Trgs

fo fo +omz© r+ss74/2+1
N f f Cllx -yI? 1 dsdr
C r+s
0 ) (r+ s)”/2 r+ ss~a/2+1

=1+ 1L
Let us estimate term I. Note that0 < s < r. We have

I—yF dsdr
I= CJ J rs—a/2+1
Cc tlx ylz t
— (a—n-2) ,—c,r
= r e~ dr <
|x — I"‘“f lx =y |x — y|*
where the last inequality follows from r@"=2)/2¢=cm™" < for some positive constant c.
On the other hand, using the condition 0 < a < n we obtain
t [e'e) A2 o]
I < CJ f S_%e_‘:le Syl dsdr - ct f (amn-)/2 s g
0 Jr

S—a/2+2 - |x _y|n+2—a 0

c t

Tl =y x =y

Therefore, condition(84) is satisfied and the proof of Lemma(3.2.15) is complete.
Theorem (3.2.16)[65]: Assume that the semigroupe™tL has a kernel p.(x,y) which
satisfies the upper bound(70). If f € L=%/? (R™) and L™*2f < oo almost everywhere,
then L=%/2 f € BMO, (R™) with

127 Lo, amy < €N e
for 0 < a < n, where the positive constant ¢ depends only on a and n.
Suppose that T is a bounded operator onL?(Q). We say that a measurable
functionK;: Q% — Cis the (singular) kernel of T if

(Tfo, fo) = jﬂ TF,Of (0 dx = fﬂ fﬂ Ky (o, 9 f; ) dxcdy. (85)

forall f, f, € C.(Q)(for allf;, f, € C.(Q)such thatsupp f; N supp f, = @ respectively).
In order to prove Theorem (3.2.16), we need the following estimate on the kernel

K, (x,y)of the operator(I — e *£)L=%*/2(see also [98]).
Proof: In virtue of the definition of BMO, (R™), it sufices to prove there exists a constant
C > 0 such that that for any ball B(x, r) with radius r centered at x

IBTl,r)I B(x,r)K’ — e L) dy < ClIfll e (86)
for all f € L* (R™). Setf,(y) = f(y)if |x — y| < 2r andf;(y) = 0 otherwise. Next,
putf, = f — f;. Note that
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1
| 1= e L F )|y
|B| B(x,r)
1 1
< — |(I - e'rzL)L'“/Zfl(y)|dy + —
|B| B(x,r) |B| B(x,1)
=141,
Where|B| = |B(x,r)|. To estimate the first term note that, by Holder’s inequality||f; || .» <
c|BCx, )|YP~% M| f| ~nsa. for all 1<p<n/a. Next, setl/q=1/p—a/n. By
Proposition(3.2.14)

1 1
[ < B |(1 - e—rzL)L—a/zflnLq <c T Lo/,

(1 — e ™ L)L=/2 £, ()| dy

1
< Clm—l/q”ﬁ”m < C1gji/a 1 f 1l e
To estimate the second term note that ify € B(x,r) , then by Lemma(3.2.15)

(=m0 < [ |Kan@DIIF@)Idz
B(x,2r)¢
2

- sz = If (2)|dZ
k=1 2kr<|x—z|<2k+1r |x - Zln a |x — le f

= 1
<c z 22k j (2)|dZ
|B(x, r2k+1)|1—a/n B(x,r2k+1)|f |

k=1

(09)
<c ) 2K llywe < cllf e
k=1

Combining the above estimates, we obtain(86).
Remark(3.2.17)[65]: (i) Under the extra assumption that for eacht > 0, the kernel
p:(x,y) of e tlis a Holder continuous function inx, it can be proved that for f €
L™ (R™), either L*/2f = ooor L™*f € BMO; (R™)with
1277 F 1 g, I v

(i) We now give a list of examples of operators L satisfying the assumptions in
Proposition (3.2.14) and Theorem(3.2.16).
(a) The operator Ay,Ap OF Apy;
(B) Let V € Li,. (R™)be a nonnegative function on R"(n > 3). The Schrédinger operator
with potential V is defined by

L= —-A+V(x)onR" (87)
From the Feynman-Kac formula, it is well-known that the kernels p;(x,y) of the
semigroup e~ ‘Lsatisfy the estimate

lx—yI

0<p(x,y) < We_ 4t

However, unless V satisfies additional conditions, the heat kernel can be a discontinuous
function of the space variables and the HOlder continuous estimates may fail to hold. See,
for example,[11].
We note that the corresponding result in Theorem 1 of [99] is a special case of
Theorem(3.2.16).

(88)
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W) LetA=(aij(x))1<ij<nbe ann X n matrix with complex entries a;; € L”(R")

satisfyingA|¢]? < Re ¥ a;;(x) &;¢;for allx € R™ ¢ = (§;&,, ...,&,) € C" and some 1 > 0.
Let T be the divergence form operator
Lf = —div(AVf),

which we interpret in the usual weak sense via a sesquilinear form. It is known that
Gaussian bound(70) on the heat kernel e t~is true when A has real entries, or when n =
1, 2 in the case of complex entries. See, for example,[57].

The following example complements Theorems(3.2.12) and(3.2.16). It also
provides a convincing justification of introduction of the BMO, spaces.
Example (3.2.18)[65]: Let Ay be the Neumann Laplacian onR. Then, there exists a

function f € LY% (R) such thatAy™*f(x) < cofor almost every x € R,Ay%*f €
BMO0,, (R)and
A2 < na. 89
65, < @
However, Ay*/*f & BMO(R).
Proof: Forany0 < a < 1, we let
f(x) = Ty logx)({0<xs1/2}(x)- (90)
Then
1/2 1
Ve g =f dy = (1 — a)a*(log2)"/*™! < o,
lef(y)I y . Y(logy-Di/a y=(1-a)a"*(log2) 0

This proves that f € LY/% (R). It can be verified that7,f(x) < coa.e.. Also, we have
thatA;,“/ ?f(x) < oa.e.. Hence,

(@) Jof (x) € BMO(ROWith[l9ef lsmo) < cllf Il wa. See [31, page221].

(b) By Theorem(3.2.16), we have thatA, @/2 f € BMO,, (R)with estimate(89). We now

prove “/ ’f ¢ BMO(R). Denote bykN(x,y)the kernel of the fractional
powerAN“/ %ofAy. By(62) and(82)
1 1 1
N —
) = sy (e ) MO ov
where H is the Heaviside function (63). By(91)
a/Z ifx < 0;
F@ = {1 0ot > 6, (92)

wheref, € L%(R)is given by the formulaf,(x) = —mxmﬂ/z}(x).

For anyk > 5, we denoteQ, = [—1/k,1/k]. Next if 0 < x <y < 1/2then|x — y| < |y|.
Hence

1/2

a/Z
= 1/2—|x_ = o)y

fl/z 1 1 d
Y@ ), Tx—yl"ey«logy
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1 (Y2 1
— d
V(Of)fx ylogy >

1 1
>—(lo (10 —)—10 log 2 )
y(a)( g(log g(log2)

which yields

- 1 _
ka(A Pf) = o | 8y
|Qk| Qk

1/k

1
lo lo ) log(log 2 )d
Zy(a) g gy g(log2) | dy

1
> 27 (@) (log(log k) — log(log 2)).

Therefore, from(92) we obtain

WlklfQ |A;,“/2f(y) _ ka(A;,“/Zf)| dx
<5 b - ma (s e 5[ (05

=7 |ka( _a/zf)|

> (log(log k) — log(log 2)).
4y( ) gllog gllog
Note that the last term in the above inequality tends to o« as k — co. Hence

sup Aa/z fx)—m Aa/zf dx = oo,
o). o(8"7)]

a/2

where the supremum is taken over all cubes Q of R. Therefore A,/ “f & BMO(R).

We apply the technique of BMO, spaces to discuss optimal LP estimates for the
imaginary powers of the operator L. We refer readers to [96], [100] for related results
concerning imaginary powers of self-adjoint operators.

Let us recall that if L is a self-adjoint positive definite operator onL?(R™). Then L admits
the spectral resolution:

L= j AdE, (1),
0

where theE; (4)are spectral projectors. For any bounded Borel function F: [0, ) — C, we
define the operator F (L) by the formula

F(L) = f CFQAE, (). (93)
In particular "
Ls = f OOLiSdE(t).
By spectral theory||L*|| ,_ , = 1 for all soe R. In the following theorem we obtain sharp

estimates for the L — BMO, norm of the operators L.
Theorem (3.2.19)[65]: Assume that the heat kernel p;(x,y) corresponding to the self-
adjoint operator L satisfies upper bound(70). Then

110



15 1 g, ey < €L+ ISD™2 11 N0
foralls e R.
Proof: It is enough to show that for any ball B(x,r) with radius r centered atx, there
exists a constant C > 0 such that
1 _ ,-T%L\yis n/2

B Sy~ IO dy < CA DAl (90
To prove(94), for any f € L*(R™), we set 8 = (1 + |sD?, f(y) = f(y) if |x —y| <
61r and f;(y) = 0 otherwise. Next, we put f, = f — f;. Note that

1 .
—| | —e L) dy < (1 = e )£ dy
|B| B(x,r) |B| B(x,r)
1
+— |(1 —e™ " L)Llsfz()’)| dy
|B| B(x,1)
[+1I,

where|B| = |B(x,r)|. To estimate the term I we note that, by H6lder’s inequality
I|f1I|Lz < |B(x, 0 )2 f |l

B
l (xﬂ )l Il = IBIY2(1 + [sD™2||f || o
62
Then
[ < |B|1/2||(I _ e—T'ZL)LiS]Cl”L2 < C|B|1/2||Li5f1||L2

1
< c|BI2lfill 2 < @+ IsD™2(If |l .
To estimate the term 11 we note that if y € B(x, ) , then

(- n00 < | s Kar 0 D@z

<l sw [ [KupO2|If@az,
xXEN,T>0 B(x,0-1r)¢
where K;;,2(y,2) is the kernel of the operator(l —e™""L)L'S. Hence the proof of

Theorem (3.2.19) reduces to the following Lemma.
Lemma (3.2.20)[65]: Assume that L is a self-adjoint operator and its heat kernel p,(x, y)
satisfies the Gaussian bound(70). Then the associated kernel K,2(y,Z2)of the

operator([ — e~ L)L sasfes
J |Kis,r2(y,Z)|dZ < c(1 + |S|)n/2
B(x,0-1r)¢

foralls e Randr > 0.

The proof of Lemma(3.2.20) is a minor modification of the proof of estimates(68)
of [104].

Theorem (3.2.19) applied to the standard Laplace operator gives the following
estimates.
Corollary (3.2.21)[65]: If A is the standard Laplace operator acting onR™ then

185 F || o ey < €L+ ISD™?1f 0 (95)
for alls € R.
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Proof: Corollary(3.2.21) is a straightforward consequence of Theorem(3.2.19) and the
equivalence of the classical BMO space andBMO,.
Remark(3.2.22)[65]: For the standard Laplace operator one can explicitly compute the

kernel |K ;s ,2(y, Z)|and check that
[ [KerO2)]az 2 e+ Is)210g(1 + 15D
B(x,0~1r)¢

See[104]. Hence one has to replace B(x,2r) byB(x,8 1r)‘to obtain estimates without
the additional logarithmic term. As in[104] (Theorem1) one can show that the norm
of||Aisf||LoquM0(Rn) > c(1+ |s|)™?. Hence the estimates in Theorem (3.2.19) and
Corollary(3.2.21) are sharp. Even for the Laplace operator, our estimate(95) is stronger
than any other known estimates of L — BMO norm of the imaginary powers of the
Laplace operator.
Theorem 2 of[104] says that if L satisfies assumption of Theorem(3.2.19) then the
following estimates of the weak type(1,1) norm of the imaginary powers ofL holds
L] 1 ne0 < €1+ [sP2 (96)
Note, however, that the week type(1,1) norm is not subadditive so despite its name is not
a norm. Whereas||*|| ,«_,gmo,, the norm of linear operators formL®to BMO,,, is a proper
norm. This difference is crucial for the results which we discuss next.
Suppose thatF: R — C. Let us recall that the Mellin transform of the function F is defined
by

1 r® .
m() = > j FOA-1-d3 u € R,
0

Moreover the inverse transform is given by the following formula
F(A) = j m@Atdu, A € [0, 00).
R

Next we define the maximal operator F*(L) by the formula

F*(L)f (L) = sup|F (L) f (x)],

t>0
where f € LP (Q) for somel < p < oo,
Corollary (3.2.23)[65]: Assume that L is a self-adjoint operator acting on L? (R™) and
that the heat kernel p,(x,y) of the operator L satisfies upper bound(70). Suppose also
thatF: R — Cis a bounded Borel function such that

[ Im@a1CL + 15D 2du = o < o
R

where m is the Mellin transform of F. ThenF(L) andF*(L) are bounded operators
fromL*toBMO; and

"Il o= pmo, Il o —Bmo, < cCron-
Proof: Note that

F(tL) = j

0

j j T G ()™ dE, (D) du = f m Q) L oy,
R Y0 R

RN E, () f ) f M) (L) dudE, (1)
0 R

Hence
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sup|F(¢L)f ()] < fR|m<u>||wa(x>| du

t>0

And
”F*(L)f”BMOL < lem(u)l||f||L°0||Liu||L°o_)BM0L du

< cllfll j m@) (L + [u)™? du.
R

The inequality||F(L)|[~-pmo, < IIF*(L)|I~5pmo,is an obvious conse-quence of the
definition of F*(L).

We discuss an application of BMO, () technique to the theory of H&rmander
spectral multipliers. If F(L) is the operator defined by (93) then by K(L)we denote the
kernel associated withF (L). See(84) of [70].

Theorem (3.2.24)[65]: Suppose that||F(L)]|| .~ < C;, and that

sup su K 2 (x, )‘deC. 97)
T>133/€8J3(x,r)c F(L)(I—e ZL) y 1

”F(L)”L°°—>BMOL < c(j.
Proof: We note again that it is enough to show that for any ball B(x,r) with radius r
centered atx, there exists a constant C > 0 such that
1 -r2L
B ] B(ml(l e T FWf W] dy < cCillfll= (98)
To prove(98) for any f € L*(R™)we setf;(y) = f(y)iflx —y| <2r andf;(y) =0
otherwise. Next, we putf, = f — f;. Note that

|(1 = e ™) FL)Y )| dy <

Then

m B(x,r)
1
<— (I — e ™ FWfH O] dy
|f| B(x,r)
+— (1 — e L) F(L ()] dy
|B| B(x,1)

=141,
where|B| = |B(x,r)|. To estimate the term I we note that, by Holder’s inequality
Ifillze < 1BGx, 20) 12| f o < ¢l B(x, 20) V2| £ 0.
Then
1< [BI7Y2||(1 — e )FWf
< c|BI"Y2|F (L) fill 2
< c|BI7V2CIfull 2

< cCqllf1ll .
To estimate the term I1 we note that ify € B(x,r), then

(=AM < [ (e 00 2| IF D12

B(y,r)¢

<Ifll sup f
xX€EN,r>0 B(x,r)¢

Koty 2| 42 < cCillflie

113



In the standard theory of HOormander spectral multipliers one usually begins with proving
weak type (1,1) estimates for a spectral multiplierF(L). Next F(L) is bounded onL? by
the spectral theorem so continuity of the operator F(L) onLP spaces for 1 <p < o
follows from the Marcinkiewicz interpolation theorem. One can use Theorem(3.2.24) and
Proposition(3.2.3) to obtain an alternative proof of boundedness of F(L) on anLP space
forl < p < oo. Of course continuity of F(L) as an operator fromL*toBMO; is of
independent interest even if we already know that F (L) is of weak type(1,1).

The Hormander type spectral multipliers is a very broad subject. For example such
multipliers were studied in [92], [94], [97], [101], [102], [103]. One can use
Theorem(3.2.24) to show that all spectral multipliers of weak type(1,1) which are
discussed in [92], [94], [97], [101], [102], [103] are also bounded fromL*toBMO,. As an
example we discuss the followingBMO, versions of Theorem3.1 of[97].Let us recall that
if F: R — C then

||F||Wsp = ”(I + A)n/ZF”Lp(]Rg)'

Theorem (3.2.25)[65]: Suppose that L is a self-adjoint operator acting onL?((), & ¢ R®
and that the heat kernel p;(x,y)of L satisfies the Gaussian bound(19) and that n €
CF(R,). Then for every s>mn/2 and for all Borel bounded function F such
thatsup,s¢l|n6: F |l < oothe operator F(L) is bounded on LP(Q) for all 1 <p < oo,
Moreover

n
IF Wm0, < Cs (suplnd: Fluge) for alls >3, (99)
>
Proof: Note that by[97], we have
dx < C (supllnd Fllys )

Sup sup j
>0 y€eq B(x,r)¢ t>0

Hence Theorem (3.2.25) is a straightforward consequence of Theorem (3.2.24).

KF(L)(I—e_rZL) (xr y)
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Chapter 4
Upper Bound and Higher Order Journé Commutators

The result follows from a new proof of boundedness of iterated commutators in
terms of the BMO norm of their symbol functions, using HytOnen’s representation
theorem of Calder’on— Zygmund operators as averages of dyadic shifts. The tensor
products of Riesz transforms are a representative testing class for Journé operators.
Previous results in this direction do not apply to tensor products and only to Journé
operators which can be reduced to Calderon—-Zygmund operators. Upper norm estimates of
Journé commutators are new even in the case of no iterations. Lower norm estimates for
iterated commutators only existed when no tensor products were present. In the case of
one dimension, lower estimates were known for products of two Hilbert transforms, and
without iterations. New methods using Journé operators are developed to obtain these
lower norm estimates in the multi-parameter real variable setting.

Section (4.1): Multi-Parameter Iterated Commutators

In [111] the product BMO space on R%: ®---® R% was characterized by the multi-
parameter iterated commutators of Riesz transforms. This extended to the product setting
the classical results of R. R. Coifman, R. Rochberg, and G. Weiss [3], a characterization of
classical BMO in terms of boundedness on L?(R%)of the commutator of a singular integral
operator with a multiplication operator, which by duality also implies a weak factorization
result of H*(R%).
In the multi-parameter setting, let M, be the operator of pointwise multiplication by b €

BMoprod([R&). Let T; be the Calder'on-Zygmund operators on R%. One seeks to
characterize product BMO in terms of commutators in the sense that

1Bl 5mo0 0 < |l [[Mp, TIT2] o, Te]|| 22 S 1B llBMO 100
where the first and second inequality will be referred to as lower bound and upper bound,
respectively.
In the case of Hilbert transform, the above result in bi-parameter setting was proved by
S.H. Ferguson and M. T. Lacey in [1], where the upper bound was first shown by S. H.
Ferguson and C. Sadosky [5].

M. Lacey and E. Terwilleger [113] then extended the result to the multi-parameter
setting. The Riesz transform result was proved by M. T. Lacey, S. Petermichl, J. C. Pipher,
and B. D. Wick in [111], where they obtained a more general upper bound result for any
Calder’on— Zygmund operators of convolution type with high degree of smoothness. Later
on in[112]they simplified the proof of the upper bound for Riesz transforms by means of
dyadic shifts. S. Petermichl [108] proved the lower bound for a larger class of Calder on—
Zygmund operators satisfying certain criteria.

We show the upper bound for any given collection of Calder’'on—Zygmund operators. As a
corollary, we prove new characterizations of product BMO in terms of commutators of
Calder’on—Zygmund operators.

The main theorem is the following:

Theorem (4.1.1)[106]: Let b € BMOProd(]R&) and (T;),<;<; be a collection of Calder on-

Zygmund operators, with each T; acting on parameter i of RY = R% ®-® R%. Then,

[ [[My, TT2] oo, Te] |l 22 S 1Bl BMO,, o0
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where C depends only on d and T Tl ¢z

One of the interesting results implied directly by the theorem is that a perturbation of a
collection of operators characterizing product BMO still characterizes product BMO. In
other words, characterizing families such as the Riesz transforms are stable under small
perturbations in the sense that the Calder’on—Zygmund operator norm of the perturbation
terms are small. We organize this observation into the following corollary.

Corollary (4.1.2)[106]: Let (T;s,) be a family of Calder'on—- Zygmund

1<ist,1ss;sn;
operators characterizing the space BM0pr0d(Rd), that is,3Cy, C, > 0, such that
Clllb”BMOprod < 1sisf'11155isni ” [ [[Mb: T1,51]T2,sz] ---;Tt,st]

Then, 3e > 0 such that for any family of Calder’on-Zygmund operators (TL-’

'Si)lsist,lssisni

o < Collblluoygg:

satisfying  [|Ti5|| , <€ the family (Ti,si+Tifsi)lsist1$isnistill characterizes

BMOproq (RY).

In particular, since Calder on-Zygmund operators form a linear space, whose norm can be
made arbitrarily small by multiplying a small constant, it means that once we have a
collection of operators characterizing BMO, we automatically obtain infinitely many
collections of operators which also characterize BMO. More specifically,
Iet(Ti,Sl.)mq ..., be a family as in the corollary above, for any arbitrary family of

Calder’on-Zygmund operators(Ti’

'Si)lsist,lssisni
any 0<c¢;<e¢, 1<i<t, the family (T;, +c¢T/,) characterizes

1<ist,1ss;<n;

, there exist €4,...,€; > 0 such that for

BMOproq (RY).

We proof of the main theorem is the representation theorem by T. P. Hyténen[109],
which states that any Calder’'on—-Zygmund operator can be represented as an average of
dyadic shift operators with respect to a probabilistic measure on a collection of dyadic
grids. While the earliest version of this theorem appeared in[110], here we choose to
apply a slightly difrerent one given in[109]. In our proof, we will reduce the problem to

the upper bound for commutators with dyadic shifts. This is the first use of HytOnen’s
representation theorem to commutator theory. The novelty of this approach to the upper
bound is twofold. First, the commutators with dyadic shifts which have infinite complexity
In our case, are carefully studied and efrectively reduced to paraproducts and another class

of bounded operators. In contrast to typical methods dealing with multi-parameter theory,
this allows our argument to be iterated. Second, new paraproducts and a similar type of
operators are introduced, and this is where the delicate estimates in product theory are
required.

We recall several preliminary results on dyadic shifts, representation theorem, and
multiparameter paraproducts. A full proof of the main theorem in its one-parameter case is
introduced, while the proof of the main theorem in arbitrarily many parameters is
presented.

We give some essential background for the proof of the main theorem.

Recall that while the standard dyadic grid is defined as

0 := {27%([0,)% + m): k € Z,mZ%},
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for any parametera)(a)j)jEZ € ({0,1}*)Z, one can define an associated shifted dyadic grid

as
® = {l+w:I € D},
Where

I+w:=1+ z 27w,
j27i<(D) 3
For a fixed shifted grid D and i,j € Z,, a dyadic shift operator S.is defined to be
bounded onL?with operator norm less than1. Specifically,

Sci)]f = Z z z ap(f, hidly

KeD® IeD?IcK  JeDY,JcK
e(D=2"J¢(K) £())=2"J£(K)
@)
=5Z z al]K(fr h1>h],
N K IJcK
with|ay x| < [11*21]1/2/1K|.S;]is called cancellative if all the Haar functions in the
definition are cancellative, otherwise, it is called non- cancellative.
Recall that in one dimension, any dyadic interval | is associated with a cancellative Haar
functionhf = |I17*/%(x;, — x;.)and a noncancellative onehj = [I|™*/?y;. While in d
dimensions, each cubel = I; x---X I is associated WichdHaar functions:

RE() = h(L 0 (xy, o, %g) = Hhe‘(x) e €{0,1}¢,

wherehlis called noncancellative, while all the otherzd — 1Haar functions hy for €€
{0,1}%\{1}are cancellative. Note that all the cancellative Haar functions for a fixed grid
form an orthonormal basis of L?(R%). We usually suppress the parametereto abbreviate
the notation.

We now introduce T. P. HytOnen’s representation theorem, a key tool in our proof.
Interested readers can find its proof and a more detailed discussion in[109] and[110]. The
operator T mentioned in the following will denote a Calder’'on-Zygmund operator
associated with a §-standard kernel K. T. P. Hytdnen[109] proved the following theorem.
Theorem (4.1.3)[106]: Let T be a Calder’on-Zygmund operator, then it has an expansion,
say forf, g € C(RY),

(9.Tf) = e ITllez By, ) 27 mW8/2(g,51p),
i,j=0

where c is a dimensional constant and S,/ is a dyadic shift of parameter(i, j) on the dyadic
grid D?; all of them except possibly S2%are cancellative.
According to the proof of Theorem(4.1.3), in the representation of any T, only S2° may be
noncancellative, and if this is the case, only one of {h;},{h;} in its definition is
noncancellative, i.e. S2° is a paraproduct with some BMO symbol a satisfying ||allgyo <
1and a; = {(a, A)|I|~ i/2 VvIeED.

Recall that a multi-parameter paraproduct associated with function b can be viewed
as a bilinear operator which is defined as
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€ € € —1
Bo(b.f) = D Br (b hXf hIRIRIZ,

RE@E
where ¢; € {0,1}4, Ddenotes the tensor product of dyadic grids, and{Bz}zis a sequence

satisfying|Bg| < 1. Note that h;jis cancellative if and only ife; + 1. According to

Journ“e[16] and later on improved byC. Muscalu, /. Pipher, T. Tao, and C. Thiele [18],
[12], one has the following boundedness result.

Theorem (4.1.4)[106]: Let d = (dy, ..., d,) and €;(€;y, ..., €;¢). Ife; # Tandv 1 < s < t,
there is at most one of j = 2,3 such that ¢; ; = 1, then the operatorB,satisfies
Bo: BMOproq (R?) x 17 (RY) > 12 (R%).
We present a detailed proof of the main theorem in the one-parameter setting, which
will later on be utilized to prove the multi-parameter result. As an essential part of the

proof, delicate estimates of new paraproducts and a new operator P will be introduced.
Given a BMO function b and a Calder’on—-Zygmund operator T, one could represent the

commutator[b, T] as an average of[b, S(f)j] due to Theorem (4.1.3). Then, inorder to prove
the upper bound inequality, it sufices to prove that for any f € C{°(R%),

(0]

. 2mma @2 [, sA) s Wblwollflle &
i,j=0 2
uniformly in w. In the following we will writeS¥for short as the argument doesn’t depend
on w explicitly.

As a crucial ingredient in our argument, two kinds of paraproduct-like operators need to
be introduced.

The first one is the bilinear operatorB,which could be viewed as a generalized dyadic

paraproduct:
1
B, f) =y Bilb,higo)b, k|10 2,
I

where{p,};is a sequence satisfying|B;| < 1, k = 0 is an arbitrary integer, and/® denotes
the k-th dyadic ancestor ofl. Note that when k = 0, this is exactly the classical
paraproduct that we have introduced at the end of the previous, whose boundedness is
stated in Theorem (4.1.4). Lemma (4.1.6) below shows that such boundedness holds
uniformly for any B.

The second one is the trilinear operator P defined as

P(b,af) ) (b hXF R D (@ hyhy,

i JJGI
which will be proved to be bounded onBMO x BMO x L? — L? in Lemma(4.1.7).
The main theorem we will prove is the following:
Theorem (4.1.5)[106]: For cancellative dyadic shift S¥, [b,SY]f can be represented as a
finite linear combination of the following terms:

SY(By (b, )), B (b, SYf), )
where the integer k is such that 0 < k < max(i,j)and the total number of terms is
bounded by C (1 + max(i, j)) for some universal dimensional constant C.
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For noncancellative dyadic shift S°°(dyadic paraproduct) with symbol a, [b, S°°]f can be
represented as a finite linear combination of the following terms:

SOO(BO(be))' Bo(b, SOOf)’ P(b' a, f)' P*(br a, f)r (3)
whereP*is understood as the adjoint of P with b and a fixed, and the total number of terms
Is bounded by a universal dimensional constant.

LLemma (4.1.6)[106]: Given b € BMO(R%) and k > 0, let

1
Bi(b,f) = ) itb, hugo)b, k) [109] 2
I

where all the Haar functions are cancellative. Then||B, (b, f)llz < lIbllgmollfll 2z with a
constant independent ofk.

Before we proceed to its proof, note that for the application to our problem, there is no
need to include cases when some of the Haar functions in B, are noncancellative

according to the remark above. Hence, By (b, f) is in fact a martingale transform whose
. . . -1/2

uniform boundedness follows directly from the observation|(b, h;go)|/|1®| " <

bl gar0- However, we will present a different proof via square function in the following,

which will provide some insight into the estimates of some other operators and the multi-
parameter analogs of the result, where noncancellative Haar functions have to be taken
into account.

Proof: Foranyg € L?(R%),

1
(Br(b,f),g) = (b;z Bi{f, Xy, hl>hl(k) |1(k) |_2>-
I

It thus suffices to show that

S Ifllzllgllez,

Hl

1
Z Bilf, i g, hYhyo [T 2
7

which is equivalent to
S F Nz llgll 2,

1
s (2 Bidf, i) g, hydhy o |1 2)
i L

where in the above S denotes the dyadic square function. To see this, write

1\’
S(Z Bidf X g, hydhygo | 1) 2)
1

2

N e A

/1
] \n®=j
which together with||. || 2 < ||. || ,sand Cauchy—Schwarz inequality implies

1
s (Z Bidf, i), hydhyo | 199 2)
1
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<> D KmKg R
]

ey J1
1 1
2 2
=20 2 wemE ) () Kemr)
] \n:1®=j LI =g
1 1
2
<) . mIR T Z Q. Mol
] nI®= LI =g
- (sr)(59)

where the operator S®f := (2 2160 = I(f, h,)|2|]|2)(])1/2. We claim that S®); [2 — 2
with norm bounded by a dimensional constant, which does not depend on k. This

guarantees that our estimate of B, becomes independent of k. Combining this with another
use of Cauchy— Schwarz will complete the proof.

To show the claim, denote a; = (Z,:,ac):]l(f,h,)lz)l/zfor any J and define F(x) =

Y ash; (x). Then
2

11 1y
2
2 X
Is®r|Z, = Eaf = nsEuE s wenz
Zaf =3 K= 2|<f rI? = NI,
] LI®=j

where the second to last equality holds because that cube I in the previous summation
ranges over all the dyadic cubes exactly once.
Lemma (4.1.7)[106]: For tri-linear operator

P(ba,f) = Zw BRI Y G, by,

JI&I

IP(b, a, Iz = [Ibllmollall sroll 1l 2
Proof: The idea of the proof is to employ the H'-BMO duality and the square function

characterization of H. For any normalized test function g € L2,

(P(b,a.f),9) = (b Z(f Ry ) (a,hy)g, by,
IS
To see where the BMO norm of a comes into play, observe that for any fixed I and some
1<p<?

there holds

= Z (@ hy)hy, g,

JIS!
z (@, h,)h,

JJ&I

> (@ h)gty)

JJGI

lgx:ll.»

I
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= ZI( h]>| I]I lgx:lle

Tl ,
LP

S ”allBMOlIll/p,”gXI”Lp = ||a||BM0|I|(<|g|p>1)1/p.
where the last inequality follows from John—Nirenberg inequality.

Therefore,

Z(f ROy ) (), hy)

JI&1

|=

2 2

sz WP > (ahy)a.ty) | T

JJ&I
1

< llall gmo (EW R)IZ (1 gIPy)?P |1|>

1

< llallzmo (sz, hp)|? sup((|9|p)z)2/p |I|>
I

I:x€l

< |lallsmoM (gP)PS(f),
where M is the Hardy—L.ittlewood maximal function which is bounded on LP,1 < p < oo,
Hence,

1P(b, @, Iz S Ibllsmollall oM UgIP)YPUS (Ol

S |Ibllsmollall gmoll £l 2-
Now we turn to the proof of Theorem(4.1.5) and the strategy is the following. First, we

decompose b and f using Haar bases. Second, we split the sum into several parts and
represent each of them as a linear combination of terms in Theorem (4.1.5).
To start with, one decomposes|b, S¥|fas

b, sY]f = ZU?» hyXf, )y, SY] by
1

J
= > (b ty)f ) (hy STy = SU(Rihy)) =1 +11
1]
where in the following I and II will be referred to as first term and second term,
respectively. In order to further organize the sum and extract the correct paraproduct
structure, even in the simplest one-parameter case, one needs to divide up the sum into

many difierent parts, depending on the relative sizes ofI, J.

Let’s first look at the case when SY is cancellative, meaning that all the Haar
functions appearing are cancellative. Hence,

) @
b Sl] Z(b h])<f h]> h] Z a”,](i)h], —z Z aIH]HK<hIh], hlu)h]u ]
J'ej® K 1I'")J'cK
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First, we claim that it sufices to consider the part I c J@. Indeed, it is obvious that

whenI n J® = @, both terms in the parentheses are zero. Furthermore, by the cancellation
structure of the commutator, when I 2 J®, the term[h,, SY]h, is also zero. To see this, as
h, is constant on J®, fixing an arbitraryx, € | Dimplies
hSYh; — SY(hyhy) = hy(xo)SY (b (xo)hy) = 0.

Note that for the case(i, j) # (0,0), this is the only part of the proof where one needs the
particular cancellation of the commutator structure. Next, we represent the first term and
the second term separately.

Based on the discussion above, for any i, j, the first term containing h;S”h; is equal

Z Z (b:h1>(frh]>h1 z a]]I](i)h]I.

] I:IC](i) ]’:]’c](i)
L(=24¢())
Introducing index K = J®allows us to rewrite this as

to

(D) @
z z z (b, by {Xf, )y z ajyghy
K J:JcK LiIcK J'J'cK
@ O

Z(b hp)hy 2 2 2 a]]K(f h]>h]

K:K>lI J:JcK J':]'cK
Comparing the inner parentheses to the definition of S¥ suggests that the expression
above is equal to

zw )R 2 (SUF, by )by

7'y Wor

2 D, 0SSyt

I Jj'21

+z Z (b, yWSUf, hyrYhyhyr =1+ 11,
I jy'cic)’®
Note that there are only parts I and II left because of the supports of Haar functions. For
partl, one writes

= Zw |, (SUF Ry | = D (b bk i
I

Jh'2I
1
= Z“" RNSYF R

..I
which is of type By(b,S"f). In order to deal with partll, observe that it can be
decomposed into finitely many pieces depending on the relative sizes of I and/’, i.e

=" (b, hyao XS F, hydhyaohy

k=0 J'
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] 1 ]
= > Bpb ) SUF 92 = )" B (b,5UF),
k=0 J’ k=0
wheref;: € {1, —1}and 0 < k < j. Note that the sum at the end contains only 1+ j < 1 +
max(i, j) terms. Therefore, the representation of the first term is demonstrated.

Now we turn to the second term that contain S*(h;h;). Due to the supports of Haar
functions, this part is nontrivial only when I nJ # @. Hence, one can split this term into
three parts: I € J,1 =J,andJ € I c J@.

For I < J, note that the second term becomes

SUL D bty | =S5 (> (b i)y D (b by

1<) 1 1<)

= SU (Z(b, hp)hi(f, hth)

I

= U (2(19; hXf, h§>h1|1|_%>»
which is SY(By (b, f)). I

As the diagonal part I = J is obviously of the form S¥ (B, (b, f))already, we move on to
the last piece J € I < J®, which can be written as

S ) b f bk |
] 1:jgIicj®
Observe that what’s inside the parentheses is of an almost identical form as part II that
appeared at the end of the discussion of the first term except that j is changed to i and that
f takes the place of SU f. Hence, the same reasoning implies that it is a sum of at most i <
max(i,j) terms of Sif(Bk(b,f)),l < k < i.This proves the representation of the second
term as well as completes the discussion of the case when S¥is cancellative.
It sufices to assume that

SOf =3 a(f kb,
I

wherea; = {(a;, h;)|I|~Y?with||a||gyo < 1. Because if we switch the positions of
cancellative and noncancellative Haar functions, what we obtain is none other than its
adjoint. Moreover, for the Haar expansion

[5,S%1F = > (b ki), i) [hs, Sy,
L]

it is not hard to see, according to a discussion similar to the one at the beginning of the
case(i,j) # (0,0), that one needs only to consider the part I c J thanks to the commutator
structure. We then split the sum into two parts: I & Jand [ = J.

We consider the first term containing h;S Ooh]and the second term containing
SOO(h,h]) separately, without need to exploit more of the cancellation of the commutator.
The second term can be dealt with exactly the same as how we treated the I & J part of the
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second term in the case(i,j) # (0,0), which we omit. To study the first term, one observes
that for any h;,

1
SOOh] = Z a1<h], h;)hl = Z a1|1|2h1h].
I<] 1]
Hence, the first term becomes

> <b,h,>h,<f,h,>a,,u'|%h,,h,_Z y +Z S =it

J ILI'gj Icr'gj I'eigj
One writes

1= b | YD antf Iy
1

Iicl' j.I'gj

= >, h,>h,< D
I

I:1cr’

= Z(b, hz)h1< Z ap{f, h11>h1’>
I

I':1cr’

_ z(b,h,)h,( 2

I':1cr’

2<b hi)hi(S*OF ) by + z<b hi)ha(S°°F, A}

1
ap|l'|Zhy(f, h,)h,%)

ap <500fr hy >h1’>

Zmb RS BRI 12 +2<b RSO R

which is the sum of two B, (b, S°°f) with 5, € {1, —1}.
To deal with partll, observe that

1
1= > (b, hdhyay |12yt Bt

I'el
by first summing over index/. Thus,

1= z Cl]’”’l%hl’ ( Z (b, h1>|l|_%<f; h11>h1>

I'el L1221

1
= apll'Zhy Y (Spf )y

I Lir

_ Z ay(Spf, Kty = SOS, f),

II
where the operatorS, f = ¥ (b, h,)|I|~Y/?(f, h})h,is a classical para-product B, (b, f),
and this completes the discussion of part/ & J.
In this special case, what we try to decompose becomes

D D AR (hisOne - s (hshs)). @
I ¢e'ef0,1}4{1}
Here, in order to avoid possible confusion, we wrote out the sum over indexe,¢€’,
explicitly. Recall that for each cube |1, there are2difierent Haar functions
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associated:{h{}, e € {0,1}4, and the Haar function is noncancellative if and only if € = 1.
First, it is useful to observe that ife = €', [k, S°°ThE = 0. Indeed, for any fixed I ande, €/,

! l !
heSO0RE = Z a2k, (hhS),
TSI

! _1 !/ l !
SO0(nehs') = Z o172k, (j he e ) 4 z a1z (hSRS).
1

J: ]l JJ&I
As a result of cancellation and the fact thatf1 hehe'is nonzero if and only ife = €',

and

i.e. h€hE = |I|71y,, [hE, SO°1hE = Oonly when e = €'.Therefore, one can safely suppress
the dependence one when studying this part of the sum.

Furthermore, it is easily seen that the second term containingS°°(h;h;)here can be
estimated exactly the same as before, it thus sufices to deal with the first term

containingh; S°°h;, which is equal to
Z(b Bf )y Sy = Z(b RGE RN D (a, )y

JJSI
= P(b a f),
hence the proof is complete.

We present the proof of the main theorem in the general setting by iterating the one-
parameter result, i.e. Theorem(4.1.5). For the sake of brevity, we consider the bi-
parameter case as an example, while the strategy can be easily generalized to work for
arbitrarily many parameters. We show that the commutator can be represented as a finite
linear combination of the bi-parameter analogs of terms in Theorem (4.1.5),for which one
needs to define and estimate the following new bi-parameter operators, including all the
possible “tensor products” of the one-parameter operators B, and P.

Lemma (4.1.8)[106]: Givenb € BMO,,,q(R™ x R™)and integers k,l = 0, define the
following operators
1 1
Bk’l(b' )= z '81112 (b, hlik)®ulél)> {f, hlell®ulz€2> hl€11®ulez2 I§R)| i |I§l)| 2'
11,1,
whereg; ;, is a sequence satisfying|ﬁ,1,2| < 1. When k > 0, all the Haar functions in the

first variable are cancellative, while when k = 0, there is at most one of hj, hf'being
noncancellative. The same assumption goes for the second variable. Then, || By, (b, f)]| > <

||b||BM0pmd || £ 1| ;zwith a constant independent of k, L.

In the above, we useu,,to denote Haar functions in the second variable, for any dyadic
cube I, c R™,

Note that when k = [ = 0, B, ;becomes the classical bi-parameter B,. When all the Haar
functions are cancellative, the proof of the lemma proceeds exactly the same as its one-
parameter counterpart, except that one needs bi-parameter dyadic square function as
majorization instead. Therefore in the following, we will only prove the lemma assuming

that k = 0,1 > 0, and hfll = h}l Is the only noncancellative Haar. Note that in the setting
of arbitrarily many parameters, parallel results still hold.
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Proof: We are going to follow the strategy in the proof of Lemma(4.1.6) and use hybrid
maximal-square functions as majorization.
Pairing B, ;(b, f)with a normalized L* function g and applying the product H'-BMO

duality, it sufaces to show that

1

1 =
SS| D Brurytb, b, ®ui, g, by, @, Yy, ®u,0 11 Z [P 21 S 11fl,

14,1, 1

where SS is the dyadic double square function whoseLnorm characterizes product H*. To

see this, one calculates

2
1

1 =
SS| D By (b, b, @ Xg, by, @, Yoy, @0 1,172 [157)] 2
11'12
2

1o 1) x,®x
= Z z <fl h111®u12><'g’ h11®u12> |Il| 2|12| ’ |;1 ||I I|2
11142

)
2

Ivla \jy:5;° =1
XI X1,
SZ Z 2 Sup(<<fru12>z>11)<9'h11®u12 Tl BT
I || | 4]

l
I \ 2 .0y,

where the last inequality follows froml||-||,= < |||z, and(-); denotes the average value
over I;. Then the above is controlled by

2

Z Z z M1(<f u]2>2)(g,hll up, |)§Iz| |X[_11|’

Iy L2, ]él)—lz

where M, is the Hardy—Littlewood maximal function in the first variable. Next, Cauchy—
Schwarz inequality implies that

SZ Z Z M1(<f:u]2>2)2%

l
Iy L g, ]g)_lz

2 X1, | X1
X Z Z (g, h1, ®uy,)| ﬁ ﬁ
0) 2 1

12 ]2 ]2 _12
2 X1,

= z z M1(<f:u]2>2) m

l
Iz, fg)—lz

2 X1, X1
ZZ Z |(g,h,1 Iz>| ”1”122 =:L.1I

Lo L g,yP=p,
I1 could be written as the square of SS acting on a normalized L? function, similarly as the
last part of the proof of Lemma (4.1.6).For I, Fefferman—Stein inequality implies that
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N =

1
12

L% (R*xR™) -
2 ppiP=1,

2 2
= JRm Z z M1(<f,u]2>2)2% dx2>

L% (R™)
1

" 12 L
2
me Z Z [(fouy,)2 g dxz\‘

|2
2 =1,

N

L%(R™)

| =

2
S (f ”f(-,xz)”]Z}(Rn) dx2> = ||f||L2(Ranm)»
]RTI‘L

where once again the last inequality is due to the same argument in the last part of the
proof of Lemma(4.1.6),thus the proof is complete.
Lemma (4.1.9)[106]: Givenb,a € BMO,,,4(R™ x R™), define

PP(b,a,f):= z<b; hy, ®u;, Xf, hy, ®uy,) ||~ H It

11,1,

X z z (a, hj, Qup,)h; Quy,,

J1: 1€l J2: 2SI
and let PP;be its partial adjoint in the first variable with b, a fixed. Then,

IPP(b,a, )2 = [1bllzmoy,oq 1Pl MO, 001 f 12, (5)

IPP1(b, @, F)ll 2 S 11bllamo,,oq 1P BMO 00 IS Il 2- (6)
Recall that for a bi-parameter singular integral T, its partial adjoint T, is defined via
(T(f1®12),9199,) = (T1(g1®12), f1®72).
It is known that theL?boundedness of T does not imply the L? bound- edness ofT; (see [16]
or [114] for a detailed discussion and counterexamples). Hence, in the following, we need
to prove the boundedness of PP and PP, separately.
Proof: We first note that the proof of PP is essentially the same as Lemma
(4.1.7).Inthebi-parametersetting, one needs to use the double square function SS to
characterize product H'and the strong maximal function Mg as majorization. The key
observation is that there holds the following bi-parameter John—Nirenberg inequality

(see[107]):
1

2
(Z l{a, hR)PW) < ||a||BM0pmd|Q|1/p, 1<p< o,
)

LP
whereQis any open set in R™ X R™ of finite measure, and R denotes dyadic rectangles. It
thus easy to verify that a same argument as in Lemma(4.1.7) implies (5). The estimate
of(6) involves the hybrid maximal-square functions, which we have seen in the proof of
Lemma (4.1.9). Tobespecific, let g € L?be a normalized test function,
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(PP,(b,a,f),9)
= (b, ) LML @,

11,1,

X ) iy, ®u) by ®u g, by, Bu,))

_ Jih &l J2: 2% )
Note that by bi-parameter John—Nirenberg inequality,

2 Z (a, h]1®u]2><f’ h]1®u12><g’hl1®u]2)

J1: 1S J2: )2 S0,

DD (e ®u) (S )@ g, ), by, Buy,)

J1: 1S J2 2SI,

1/
< Nallmoyoq A (4F w2 P0) " (€GP,
for somel < p < 2. Hence,

1/p
)

)

SS{ D LI Ry ®uyy x> (@ hy, @) (f, by, ®up )X, by, @)
II JuJiS1h ]2 2
1
2
2/p X1,9X1,

< llallswo,,,, 2(<|<f,u,2>2|”>,1)2/p(<|<g,h,1>1|”>,2) TN

11,1,

1/2

2P Xiy

< ||a||BMOpmd ZMl(l(f’ ulZ)le) |1
I

1/2
2P Xy
L]

X z M2(|(g, h12)1|p)
I

The two terms on the last line above can be viewed as generalized hybrid maximal-square
functions, whose boundedness is easy to obtain. For example,

1/2
ZM1(|<f;u12>2|p)2/p%
I 2
( "
2
=1 L2 maCiep o™ dx, |
\ 2 L?(R™)

([ e nly”
R™ 4
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1
2

> |l ) =0l

Therefore,||PPy (b, a, f)ll 2 S ”b”BMOpmd”a||BM0pmd”f”L2-

In addition to the above two types of operators, in the bi-parameter setting, a new type of
operator that mixes the paraproduct and P arise naturally in our argument. We show that
they have the following uniform BMO estimates.

Lemma (4.1.10)[106]:  Givenb € BMO,,,q(R™ X R™),a' € BMO(R™), anda® €
BMO(R™). For integersk,l > 0, define

BP(b,a?, f): = Z Br, (b, hyao®@u) (f, b @uy,)

11,1,
E 2
(Cl YUy, )2 h]2

J2: 2 Sl

1
PB;(b,al, f): = Z B, (b, h,1®uléz)) (f, h,1®ule22> 11,71 |1§l)| 2 hfzz

11112
X Z (ab, u, hhy,

J1:J1G1
wherep, , B;, are sequences satisfying|1ﬂ,11|, |B1,| < 1. Whenk > 0, all the Haar functions in
the first variable are cancellative, while whenk = 0, there is at most one th,ell, hlel1 being
noncancellative. The same assumption goes for the second variable. Then, there holds
1BP(b,a?, f)ll 2
I1PB,(b,a*, Iz S 1bllmo,, o0 118 1580 ,y0q If Il 2-
Proof: By symmetry, it sufices to estimate PB,;. The strategy is similar as before: a square
function argument encoding the product BMO estimate ofb, combined with a John-
Nirenberg inequality taking advantage of the BMO estimate ofa®. Note that the arguments

slightly vary depending on whether noncancellative Haar functions appear. Taking g such
thatllgll> < 1,

(PBy(b, a", ), g)
= (b, ) {f, by, ®uf) L7 |1°] T

1.1,
X >t k) (g, hy, ®uf))

J1:J1&h

A similar application of John—Nirenberg inequality as before implies that

1
K| 2 —1 €]
1£ )| |12| 1hI€11

D11 BM0,10q 187 1 BMO o 1 f 1l 20

N\ N

1
SS| D (b, @u LI I PRy ®@u x D (e g, (g, @ug)

11,1, J1: 1€
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1
2

@ 2
p\ X,9x),
< lallamo | Y D f ke, @) (<feg )| >11)” ] @
I1,]2 \12€]J2 1z

(a) Casel > 0.
In this case, all the Haar functions that appear are cancellative, hence by omitting the
dependence one,, e;and applying Cauchy—Schwarz inequality, there holds

D 0,
2/p \ X1,8X),
@) < la oo Z Z|(f,h,1®u12)|2 x Z((I(g,u12>2|p),1 P |IIWZJ>
1
2

I1,]2 \I2C]J> <),

) )

2 X1, 2/p \ X P
< ||a1"BMO z z z |(f,h,1®u12)| “1' X Z M1(|(g,u12)2| ) ﬁ

J2 I I, L,

which by||-[|,2 < ||| ,2and another use of Cauchy—Schwarz is bounded by
0

x1®x2
latllawo | ), ) D 10 ks, @) i ||12]

Iy J» ICJ;

D

z z M1(|(g,u,2)2| ) o fjjzl

J2 1<)
Therefore, a similar double square function and hybrid maximal-square function argument
as in Lemma(4.1.8) and Lemma(4.1.9)implies that

. (7) < lla* llzmollfll 211 gl 22
(b) Casel =0ande, =1.
In this case,

1
2

X
) = el | - (4F ki Y (g o ) Fete

1,1,
1 1

2

Z Mz((f» h12>1)2 |);I11| z M1(|<9: u12)2| )p ﬁlzl
I

Which shows that

Dl s Nlallsmollf 2 llgll e
(c) Case l = 0 ande; = 1. This last case can be dealt with similarly by noticing that
1

2

X
) = lalowo | ) |¢f b, @i (tade [0) " T
1,1,
< [la |l sw0 (M1 (1Mo (9) ) P SSCF).

The boundedness ofM;andM,in each variable implies that
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1/p
” (M1(|M2 (9) |p))
To conclude, we’ve demonstrated in each case that

I1PB,(b,a*, Iz S 1bllsmo,, o018 11Bm0 00 If 112
which completes the proof.
Now let’s proceed with the proof of Theorem(4.1.1).Using Theorem(4.1.3) twice for both
variables we have

<
LS lglle

|[b, T1], T2|f = clITLIICZcITL I CZE,, E,,

- - N PN - .
—max(iy j1)5o—max(izj2)5 i1] i2]
O D s e T RS P
i1j1=012j,=0 . .
Since our estimate in the following doesn’t depend on the parameters w,, w, explicitly,
we will omit them in the notation. Our goal is to prove that

i1J1] cl2J2
15 % V] -
< (1 + max(iy, j1))(1 + maX(injZ))”b”BMOProd(]R{nX]R{m)”f”LZ(]RnX]R{m)'
which can be achieved by showing that any[[b, 5;1’1],5212’2] fcan be represented as a finite

linear combination of the following terms and their adjoints (which is understood as the
adjoint operator withb, a* fixed):

Bk,l(br Sli1f152izj2’f)’ Sliljl (Bk,l(br Szizjz;f)); (9)
BPy(b,a%, S f) PB,(b,at,S2f). (10)
PP(b,a'®a?,f) PP(b,a'®a? f), (11)

where k,1 > 0, and a’ is the BMO symbol of the dyadic shift S°0if it appears in the i-th
variable. The total number of terms in the representation is no greater than C(1 +
max(iy, j1))(1 + max(i,, j,))for some universal constant C. Note that for al €
BMO(R™) and a* € BMO(R™), there holds a'®a* € BMO,;oq(R™ X R™). Hence,
implied by Theorem(4.1.4), Lemma(4.1.8), Lemma(4.1.9), and Lemma(4.1.10), the L?
norm of all of the terms above are uniformly bounded, independent of k, [ in particular.

To derive the desired representation, we argue by an iteration of Theorem(4.1.5).

In the case when both S;*/* and S,?% are cancellative, only operators B, ; need to be
involved. In order to make the notations clear, in the following, we will use B} to denote
the one-parameter paraproducts that appeared for the z-th variable, where k > 0 andt =
1,2. Calculation shows that

[[b, Siljl],szizjz] f == Z Z(b, h11®u12)(f, h]1®u]2>[h11,51i1j1]h]1 ®[u12,52izj2]u]2,
I1:]1 I2:)>
which by iteration equals

ST B, (o s (1F1,0))

11:]1 t1€A1

n z Sliljl (B;%,tz(<b»u12>2:(f:uh)z)) ®([u12,52izjz]u]2)'
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WhereB,%,tiare paraproducts of typeBjin the first variable, and for each t;, k is an arbitrary

nonnegative integer.

Note that in the first parentheses we have a finite linear combination of terms that have
already been studied, and all of the index set A; satisfy|A;| < C(1 + max(iy, 1)), i = 1,2.
Since the terms inside the first parentheses can be treated similarly, let’s study one of the
terms B,%,tlas an example. We will also omit the subscript t; as the choice is arbitrary.

Then, the sum corresponding to Bj is equal to

Z Bl (b, us)2, 17 ({1 y,)2)) @ ([, 72 )

11,1
., ' 1 .,
= 2D B o) (51 (), @ ] ([ 51 )
I:]; I

, _1 7 . " .
= 2 B11h1611|lf| 2® (I:(b’ hlik)>1 ’Siljljl <Si1]1f’ h[€11>1)
I

/ _1 . .
= | Y a2, (10 kg SER(SHE 05 )
Iy

s1€l

+ 3 st (B, (g s 0),))
S,€l'y
WhererSi are paraproducts of type B{ in the second variable, and all the index
setsI;satisfy|T;| < C(1 + max(iy, j,)),i = 1,2. Again, since all the terms in the
parentheses are similar, we only consider one ofoSZand omit the subscripts,. This is a
mixed case, and all the other combinations follow similarly. Thus, noticing that

/ I ..
> B RS (58 (e 55000
I

_1 -1
Ifk)| 2|I§l)| 2 (12)

=57 D BBy, (b by 0o ®u,0) (S, hT@US?) b @us
I,I
is exactlys,?’? (Bk,l(bslllj1 f )) where By ,is the bi-parameter para- product we’ve studied

in Lemma(4.1.8),and the only case involving non-cancellative Haar functions is when the
corresponding k or [ is 0. We therefore obtain the desired representation of this term. All
the other terms can be treated similarly, by noticing that paraproducts B, ;can be obtained
by combiningB: andB} through the same process described above. And it is easily seen
that the total number of terms is bounded by(1 + max(iy, j;))(1 + max(iy, j,))up to a
dimensional constant.

We assume that S9°f =3 (a%uy )|l "Y3(f, ui,),u,, Following  from
Theorem(4.1.5), in the first variable, the commutator can be represented as a linear
combination of paraproducts, i.e.

[b,56,537] 1
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_ z Z(b,h,1®u,2)(f,h]1®u]2)[h,1,51i1j1]h]1®[u12,S§°]u]2

I C]iil) I,<J,

= 3 D Bl (Bou)e S u,)2))

1] \t1€4A4

+ 3 S0 (B (bw)a (F)2)) | @ S50,
t,EA,
Recall that by Theorem(4.1.5), in the one-parameter setting, the noncan- cellative dyadic
shifts%°can be represented as a finite linear combination of paraproducts (corresponding
to the sum over/ & Jand the second term in the sum overl =J) and operator P
(corresponding to the first term in the sum over/ = J). Hence,

Z Bict, ((b: up, )2 Sy ((F, ”JQZ)) ®([w,, 53°]u,)

<),

!

_ E €1

- .811]’111
Iy

E’

— § 1

- ﬁllhll
I3

Il(k)|_% Q ([(b, hlik»l ,SZOO] ’ <51i1j1f; h1611>1)

1
11(")| ‘® 2 B, ((b,hék))l,SQZ’Z((S;“l(f),hff)l))

s1€l'7

S, €I’y

(g S A,

= z Bk,O,,Sl (b, Sliljlsg()f) + Z 5200 (Bk,O,,Sz (b;Sliljlf))

s.€ly S2€Il;
+BPy(b,a? ;"' f).
Similarly, the other term can be treated exactly the same:

Z S{t (B, (b ), A 10)2) ) ®[uay, S0y,

;<]
= D S (Bros, 35PD) |+ [ D 5152 (Bios, 5. )
s,€ly S2€I
+5;1(BP(b,a?, ).

The desired representation is hence obtained. Note that by symmetry and duality, this
implies the boundedness of other types of the mixed cases as well.

[[b, 521, 58°|f
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= > ) by, 59T, ®[h,, 580,

L] L),
First, we deal with the case when bothS2%andS?%are of the same type, for instance,

SO = Z<a |1 20F, By

S3°f = Z<a ) 1ol 2, 0l ),

Observe that compared, after decomposmg the commutator in each variable into
paraproducts and operator P, the only new case that arises here is the “tensor product” of
operator P in both variables, which is equalto

D (b, by, @, )(f, by, @) I LI

11,1,

% Z Z (a'®a?, by, ®u,)hy, uy,
J1J1S11 J2: 2 Sl
= PP(b,a'®a? f).
Second, we discuss the case whenSP%andS3 are of different types, for instance,

S90f = z<a i 1248, by DA,

S°f = 2<a u12)2|12|__<f u12>2u12

It is implied by Theorem(4.1.5) that in the first variable, the commutator is a linear
combination of paraproducts and operator P*. Therefore, the only new case that arises here
in the representation is P*in the first variable mixed with P in the second variable, which is

Z(b» hy, @up, ) |17 1|71 % z z (a'®a?, by, @uj, Xf, hy, ®uyp,)hy, Quy,
I,I; J1: 1S 222 &1
= PP,(b,a'®a? f).
Hence the main theorem in the bi-parameter setting is proved. As a final remark, the proof
in the multi-parameter setting proceeds exactly the same as this one. Clearly, in the desired
representation of commutators with dyadic shifts, one needs to involve a larger number of
basic operators which mix together B, and P in each variable, but the uniform
boundedness of such operators can all be obtained similarly as in Lemmas
(4.1.8), (4.1.9),and(4.1.10).
Section (4.2): Characterizations of Multi-Parameter BMO
As dual of the Hardy spaceH!, the classical space of functions of bounded mean

oscillation, BMO, arises naturally in many endpoint results in analysis, partial difrerential

equations and probability. When entering a setting with several free parameters, a large
variety of spaces are encountered, some of which lose the feature of mean oscillation
itself. We are interested in characterizations of multi-parameter BMO spaces through
boundedness of commutators.

A classical result of Nehari [9] shows that a Hankel operator with anti-analytic symbol b
mapping analytic functions into the space of anti-analytic functions by f + P_bf is
bounded with respect to the L? norm if and only if the symbol belongs to BMO. This
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theorem has an equivalent formulation in terms of the boundedness of the commutator of
the multiplication operator with symbol function b and the Hilbert transform[H, b] =
Hb — Hb.

Ferguson—Sadosky in [5] and later Ferguson—Lacey in their ground breaking [1] study the
symbols of bounded ‘big’ and ‘little’ Hankel operators on the bidisk through commutators
of the tensor product or of the iterated form

[H,, H,, b], and [Hy[H,, b]].

Here b = b(x4, x,)and the H,, are the Hilbert transforms acting in the kth variable. A full
characterization of difrerent two-parameter BMO spaces, Cotlar—Sadosky’s little BMO and

Chang—Fefrerman’s product BMO space, is given through these commutators.

Through the use of completely difrerent real variable methods, in [3] Coifman-

Rochberg—Weiss extended Nehari’s one-parameter theory to real analysis in the sense that
the Hilbert transform was replaced by Riesz transforms. These one-parameter resultsi [3]
were treated in the multi-parameter setting in Lacey—Petermichl-Pipher—Wick [111]. Both
the upper and lower estimate have proofs very difrerent from those in one parameter. In

addition, in both cases it is observed that the Riesz transforms are a representative testing
class in the sense that BMO also ensures boundedness for (iterated) commutators with
more general Calderon—Zygmund operators, a result now known in  full generality due
to Dalenc—Ou [106]. Notably the Riesz commutator has found striking applications to
compensated compactness and div-curl lemmas,[118], [122].

Our extension to the multi-parameter setting is two-fold. On the one hand we replace the
Calderon—Zygmund operators by Journé operatorsj; and on the other hand we also iterate
the commutator:

Ulr e []tr b] ]

We prove the remarkable fact that a multi-parameter BMO class still ensures bound-
edness in this situation and that the collection of tensor products of Riesz transforms
remains the representative testing class. The BMO class encountered is a mix of little
BMO and product BMO that we call a little product BMO. Its precise form depends upon
the distribution of variables in the commutator. In this case, lower estimates were only
known in the case of the double Hilbert transform[5]. The suficiency of the little BMO

class for boundedness of Journé commutators had never been observed.

It is a general fact that two-sided commutator estimates have an equivalent formulation in
terms of weak factorization. We find the preduals of our little product BMO spaces and
prove a corresponding weak factorization result. Necessity of the little product BMO
condition is shown through a lower estimate on the commutator. There is a sharp contrast
when tensor products of Riesz transforms are considered instead of multiple Hilbert
transforms and when iterations are present.

In the Hilbert transform case, Toeplitz operators with operator symbol arise naturally.
Using Riesz transforms inR%as a replacement, there is an absence of analytic structure and
tools relying on analytic projection or orthogonal spaces are not readily available. We
overcome part of this dificulty through the use of Calderon—-Zygmund operators whose

Fourier multiplier symbols are adapted to cones. This idea is inspired by[111]. Such
operators are also mentioned in [128]. A class of operators of this type classifies little
product BMO through two-sided commutator estimates, but it does not allow the passage
to a classification through iterated commutators with tensor products of Riesz transforms.
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In a second step, we find it necessary to consider upper and lower commutator estimates
using a well-chosen family of Journé operators that are not of tensor product type.
Through geometric considerations and an averaging procedure of zonal harmonics on
products of spheres, we construct the multiplier of a special Journé operator that preserves
lower commutator estimates and resembles the multiple Hilbert transform: it has large
plateaus of constant values and is a polynomial in multiple Riesz transforms. We expect
that this construction allows other applications.

There is an increase in dificulty when the dimension is greater than two, due to the simpler

structure of the rotation group onSt. In higher dimension, there isa rise in dificulty when
tensor products involve more than two Riesz transforms. The actual passage to the Riesz
transforms requires a stability estimate in commutator norms for certain multi-parameter
singular integrals in terms of the mixed BMO class. We prove a qualitative upper estimate
for iterated commutators using paraproduct free Journé operators. We make use of recent
versions ofT (1)theorems in this setting. These recent advances are difrerent from the

corresponding theorem of Journé[16]. The results we allude to have the additional feature
of providing a convenient representation formula for bi-parameter in[123] and even
multi-parameter in[125] Calderon—Zygmund operators by dyadic shifts.

This contains some review on Hardy spaces in several parameters as well as some
new definitions and lemmas relevant to us.

We describe the elements of product Hardy space theory, as developed by Chang
and Fefrerman as well as Journé. By this we mean the Hardy spaces associated with
domains like the poly-disk orR? := ®:_,R%ford = (dy, ...,d,). While doing so, we
typically do not distinguish whether we are working on R% or T<. In higher dimensions,
the Hilbert transform is usually replaced by the collection of Riesz transforms.

The (real) one-parameter Hardy spaceH3,(R%)denotes the class of functions with the

norm
d
L
j=0

whereR; denotes the jth Riesz transform or the Hilbert transform if the dimension is one.
Here and below we adopt the convention thatR,, the 0th Riesz transform, is the identity.
This space is invariant under the one-parameter family of isotropic dilations, while the
product Hardy spaceHz,(R%)is invariant under dilations of each coordinate separately.
That is, it is invariant under a t parameter family of dilations, hence the terminology
‘multi-parameter’ theory. One way to define a norm on Hz,(R%)is
t
I~ Y || ® Ruyf
0<j;=d; =1 1

R, ;is the Riesz transform in the j;th direction of the [th variable, and the Oth Riesz
transform is the identity operator.
The dual of the real Hardy spaceH3},(R%)*isBMO(R%), the t-fold product BMO space. It
IS a theorem of S.-Y. Chang and R. Fefirerman [2], [107] that this space has a
characterization in terms of a product Carleson measure.
Define
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1

2
Ibllamoguey = sup (10172 > [b,wh)? | . (13)
UcRe RcCU g€sigy

Here the supremum is taken over all open subsets U c R%with finite measure, and we use
a wavelet basis w§ adapted to rectangles R = Q4 X ... X Q;, where each Q; is a cube. The
superscript € reflects the fact that multiple wavelets are associated to any dyadic cube,
see[111] for details. The fact that the supremum admits all open sets of finite measure
cannot be omitted, as Carleson’s example shows[117]. This fact is responsible for some of
the difficulties encountered when working with this space.

Theorem(4.2.1)[115]: (Chang, Fefrerman). We have the equivalence of norms
”b”(HI%e(]Rd))*”b”BMO(Rd)'

That is, BMO (R%)is the dual toH}, (R®).
This BMOnorm is invariant under a t-parameter family of dilations. Here the dilations are
isotropic in each parameter separately. See also[4] and[121].

Following[119] and[5], we recall some facts about the space littleBMO, often
written as ‘bmo’, and its predual. A locally integrable functionb: R = R%* x ... x R% —
Cis in bmo if and only if

Blmo = _sup 1017 [ 6G) = b| <
Q=0Q1X...XQg 0

Here the Qy are dy-dimensional cubes andb,denotes the average of b over Q.

It is easy to see that this space consists of all functions that are uniformly in BMO in each

variable separately. Letxy = (x4, ..., Xy—1,; Xp+1, --» Xs). Thenb(xz)is a function inx,only

with the other variables fixed. Its BMO norm inx,,is

I6Ceo)lawo = supl@, |~ |16 = byl d,
v Qu
and the little BMO norm becomes

bl pmo = ml?x {Sup”b(xa)”BMo}-

X3
On the bi-disk, this becomes

bl pmo = mj‘X {supllb(x1, lsmo » supllb(xy, -)”BMO}'

X1 X5
the space discussed in[5]. Here, the pre-dual is the spaceH*(T)QL(T) + L} (T)QH(T).
All other cases are an obvious generalization, at the cost of notational inconvenience.

We define a BMO space which is in between little BMO and productBMO. As
mentioned, we aim at characterizing BMO spaces consisting for example of those
functions b(x4, x,, x3)qsuch that b(x,,.,.) and b(.,., x3)gare uniformly in product BMO
In the remaining two variables.

Definition(4.2.2)[115]: Let b:R%Y - C with d = (dy,...,d,). Take a partition J =
{Is1 <s<1}of{1,2,..,t}s0 that U o I = {1,2, ..., t}. We say that b € BMO,(R?) if
for any choices v = (v,), v, € I, bis uniformly in product BMO in the variables indexed
byv,. We call a BMOspace of this type a ‘little product BMO’. If for anyx = (x4, ..., x;) €
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R%, we definex;by removing those variables indexed by v, the little product BMO norm
becomes
bl zro, = max {S}Clp”b(xﬁ)”BMO}
where the BMO norm is product BMO in the variables indexed byw.
For example, whend = (1,1,1) =1, whent = 3and [ =2 withl; = (13)andl, = (2),
writing 7 = (13)(2) the spaceBMO 13y, (TH)arises, which consists of those functions
that are uniformly in product BMO in the variables(1,2)and(3,2) respectively, as
described above. Moreover, as degenerate cases, it is easy to see
thatBM O, nandBMO ) (y).. (rare exactly little BMO and product BMO respectively, the
spaces we are familiar with.
Little product BMO spaces onT%can be defined in the same way. Now we find the predual
0ofBMO(13)(2), Which is a good model for other cases. We choose the order of variables
most convenient for us.
Theorem (4.2.3)[115]: The pre-dual of the spaceBMO 432 (T")is equal to the space
Hio(TAV)®LH(T) + L1 (T)@Hg, (TV)
={f + g: f € H}.(TY)®L (Tandg € L*(T)®Hp,(TAD)}.
Proof: The space
Hho(TED)QLY(T) = {f € L*(T®):, Hof Hy Hy f, L*(T?)}
equipped with the norm|IfIl = lIf|ly + lIHyfll, + IIHof |ly + [|HyH,fllis a Banach
space. LetWw! = L1(T3) x L}(T3) x L}(T?) x L1(T?)equipped with the norm
(1 for for f) llwy, = Il falla + Nf2lls + 1 f3lln + (1 falls
Then we see thatH3, (TMV)®L (T)is isomorphically isometric to the closed subspace
V= {(f» H1(f):H2(f);H1H2(f)):f € HI(T(I'I))®LI(T3)}
ofwl., Now, the dual ofWlis equal toW* = L®(T3) x L*(T3) x L®(T?) x
L* (T3)equipped with the norm||(g1, 92, 93, 9a) llco = max{||g;lle: 1 < i < 4}so the dual
space of I/ is equal to the quotient of W by the annihilator U of the subspace V inW .
But, using the fact that the Hilbert transforms are self-adjoint up to a sign change, we see
that

U=1{(91,92,93,94): 91 + Hi g, + Hy g3 + H{H,g, = 0}
and so:

V =W>*/U=1m6
where

0(91, 92,93, 94): 91 + H1g> + Hyg3 + HiHyg, = 0
sinceU = ker(0). But

Im(6) = L=(T?) + Hy (L°(T)) + Hy (L2 (T%)) + Hy (H,(L2(T)))
Is equal to the functions that are uniformly in product BMO in variables1 and2. Using the
same reasoning we see that the dual of L*(T)®Hp,(TV)is equal to L*(T3) +
Ho(L*(T®)) + H3(L*(T?)) + H,H3(L”(T?)), which is equal to the space of functions
that are uniformly in product BMO in variables 2 and 3. Now, we consider the ‘L! sum’ of
the spacesHz,(T®D) QL (T)and L (T)®Hp, (TV) ; that is

Mase) = {(f.9): f € He(TOV)®L (T); g € L'(T)@H (T}
equipped with the norm
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I DI = I llyy revygrieny + 191, (ra)
We see that, ifg: M3y = L'(T?)is defined by(f, g) = f + g, then the image ofgis
isometrically isomorphic to the quotient of M, 3y,by the space

N ={(f,9) € Mus)):f +9g =0}
= {(f,—f): f € Hi(TOD)®L(T) N L (T)®Hp, (TED)}.

Now, recall that the dual of the quotient M /N is equal to the annihilator ofN. It is easy to
see that the annihilator of N is equal to the set of ordered pairs(¢, ¢) qwithgin the
intersection of the duals of the two spaces. Thus the dual of the image offis equal
toBMO(13)(2p(R%). The norm of an element in the predual is equal to its norm as an
element of the double dual which is easily computed. Following this example, the reader
may easily find the correct formulation for the predual of other little product BMO spaces
as well those in several variables, replacing the Hilbert transform by all choices of Riesz
transforms. For instance, one can prove that the predual of the spaceBMO(lg)(z)(]R{d)is
equal to Hi,(R@4)QL(R%) + LY (R¥)@Hp, (R@243)),

We characterize the boundedness of commutators of the form|[H,[HsH;, b]|, bss as
operators onL?(T3). In the case of the Hilbert transform, this case is representative of the
general case and provides a starting point that is easier to read because of the simplicity of
the expression of products and sums of projection onto orthogonal subspaces. Its general
form can be found at the beginning.

Now let b € L1(T™)and let P and Q denote orthogonal projections onto subspaces
of L2(T™). We shall describe relationships between functions in the little product BMOs
and several types of projection-multiplication operators. These will be Hilbert transform-
type operators of the form P — P+; and iterated Hankel or Toeplitz type operators of the
form Q1hQ(Hankel), PbP(Toeplitz),PQ+bQP (mixed), where b means the (not a priori
bounded) multiplication operator M,on L*(T™).

We shall use the following simple observation concerning Hilbert transform type operators
again and again:
Corollary(4.2.4)[115]: We have the following two-sided estimate

”b”BMO(13)(2) = ||[H2[H3H1' b]]||L2(T3)—>L2(T3) = ||b||BMO(13)(2)'
It will be useful to denote by Q,5; orthogonal projection on the subspace of functions
which are either analytic or anti-analytic in the first and third variables; Q,3 = P;P; +
Pi-P3. Then the projection Qi3 onto the orthogonal of this subspace is defined by Qi =
PitP; + P, P5. We reformulate properties (ii) and (iii) in the statement of Theorem (4.2.3)
in terms of Hankel Toeplitz type operators.
Lemma (4.2.5)[115]: We have the following algebraic facts on commutators and
projection operators.
(i) The commutators|H,[Hy, b]]|and[H,[H;, b]]are bounded onL?(T®)if and only if the
operatorsP;P,bP;- Py, P;* P,bP;P;-bP;- P,, P;- Ps-bP; P,withi € {1,3}are bounded on L?(T3).
(if)y The commutator|[H,[H3Hy, b]]is bounded onL?(T®)if and only if all four operators
P,Q13bQi3P5, Py Qi3bQ13P,, P,Qi3bQ13P5, P Q13b Qi3 Pyare bounded on L (T?).
Proof: Using Remark1 it is easy to see that

[H,[H,,b]| = 4((P,PbP{Py — P,PibP P}) — (PyPibPiP, — Py P{bPP;))
and that the corresponding equation for[H2 [H3,b]], bss is also true. This, along with the
observation that the ranges of all arising summands are mutually orthogonal, gives
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assertion (i). To prove (ii) we just notice thatH, H; = Q;3 — Q13is a Hilbert transform type
operator which permits us to repeat the above argument replacing P; byQ5.
The following lemma will allow us to insert an additional Hilbert transform into the
commutator without reducing the norm.
Lemma (4.2.6)[115]: ||P3Pi- P> bP; P,Ps |22 = ||P{P3bPi Pyl 2o 2.
Proof: The inequality< is trivial, sincePsis a projection which commutes withP;- andPy.
To see>, notice thatP;Pi-P;-bP,P,Psis a Toeplitz operator with symbolP; Py bP;P,.
So||P3Pi Py bPy P, Ps|| = sup, ||PiPyb(.,.,x3)P;P,|l. The latter is just||Pi"PybP;P,||.
For convenience we include a sketch of the facts about Toeplitz operators we use.
Compare [116]. Let W5 be the operator of multiplication byZ; W5(f) = Z5f, acting
onL?(T3). If we defineB = Pj P5; bP, P, as well as

A, = W3™(P3P{ Py bP,P,P;)W3 and C,, = WI'(P3 P P5bP, P,P3-)W;™
as operators acting onL?(T3)then the sequencesA,andC,converge to B in the strong
operator topology: it is easy to see thatW;,W5'; andP;commute withP;, P,, Pi-andP;-. The
multiplier b satisfies the equationW3 " bW5;™ = band W W3™ = Id. So we see that

Ay = P Py (W3 PsW3)bPy P, (W5 PsW3Y).

But iff € L*(T?3), then, sinceW3tis a unitary operator:

IW; PsWR(F) = fIl = IPsWE(F) = WEOI = I(Ps = DW= 0 (n - 00),
as tail of a convergent Fourier series. This means thatW3;™ P;W3'converges to the identity
in the strong operator topology. Thus, for each f € L2(T3)we have||(4,, — B)(f)|| = 0.So

|Pi-P5bP P, || < sup||W3™ (P3P Py bPy P, P) W3]
neN

< ||PsP;-P5bPi P, Ps]|.

We show the proof of the main theorem.
Theorem (4.2.7)[115]: Let b € L}(T3). Then the following are equivalent with linear
dependence on the respective norms.
(I) b e BM0(13)(2).
(i) The commutators|[H,[Hy, b]|and[H,[H3, b]]are bounded onL?(T3).
(iii) The commutator[H,[H3H,, b]]is bounded on L?(T3).
Proof: We show (i) (ii) and (ii)<(iii).
(iye(ii). Considerf = f(xq,x,) andg = g(x3). Then

[Hz, [leb]](fg) =J- [Hz, [Hlib]](f)
So||[H,, [Hy, b]](fg)||iz(1r3) = ||F9||1242(T)WhereF(x2) = ||[H,[H,, b]](f)”Lz(Tz)' The map
g — Fg has L?(T)operator norm||F|l.. Now change the roles of x; and x3;. The
Ferguson-Lacey equivalences||[H,[H;, b]]||~Ib |l zmogive the desired result.
(ii)=(iii). Boundedness of the commutators|H,, [Hy,b]]and[H,, [Hs, b]|implies the
boundedness of the mixed commutator|[H,, [HyHs, b]|by the identity [H,, [HyHs,b]] =
H,[H,, [Hs, b]| + [H,, [Hy, b]|Hs.
(iti)=(ii). This part relies on Lemma(4.2.6). We wish to conclude from the boundedness
of[H,, [H3H,, b]|the boundedness of[H,, [Hy, b]]and[H,, [H3, b]]. To see boundedness
of[Hz, [H, b]]let us look at one of the Hankels from Lemma (4.2.5). Lemma(4.2.6)
shows thatPs-Pi-bP,P,is bounded if and only if the operatorP;P;-Ps-bP;P,P;is. And the

latter is an operator found in the list from part(ii) of Lemma(4.2.5). The analogous
reasoning shows that all eight Hankels in1 are bounded and so(ii) is proved.
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We are again in R® with d = (d4, ..., d,) and a partition 7 = (I);<s<; Of{1, ..., t}.
We show the following characterization theorem of the space BMO;(R?).

Such two-sided estimates also hold in LP for 1 < p < co. From the inductive nature
of our arguments, it will also be apparent that the characterization holds when we consider
intermediate cases, meaning commutators with any fixed number of Riesz transforms in
each iterate. Below we state our most general two-sided estimate through Riesz
transforms.

Theorem (4.2.8)[115]: Letl < p < oo. Under the same assumptions as Corollary(4.2.9)
and for any fixed n = (ny) wherel < ny < |I,|, we have the two-sided estimate

||b||BM07(Rd) S SI}p ”[RLj(l), [Rl'j(z),b] '"]”LP(R"’)O

wherej®) = (ji)rer,, 0 < jix < dgand for eachs, there are ns non-zero choices. 4 Riesz
transform in direction 0 is understood as the identity.

S ”b”BMOg(]Rd)

For p = 2 and n = 1this is the equivalence (i) < (ii) and forn = (|14, ..., |I;]it is the
equivalence(i) & (iii) from Theorem(4.2.16).
Our main focus on a two-sided estimate whenn = (|14, ...,|I;]) n when the tensor

product is a paraproduct-free Journé operator:
Corollary (4.2.9)[115]: Let j = (j,...,jo)withl < j, < d,and let for eachl <s <
Lj® = (idker,be associated a tensor product of Riesz transformsR ;) = ®xer,Rujy

here the R ; are jith Riesz transforms acting on functions defined on the kth variable. We
have the two-sided estimate

”b”BMOg(IRd) s Sljl_p ”[Rl,j(l)' e) [Rl,j(z),b] ] L (R0 < ||b||BM07(Rd).

The statements above also serve as the statement of the general case for products of
Hilbert transforms. In fact, when any d, = 1just replace the Riesz transforms by the
Hilbert transform in that variable. We consider the case d, =2 for 1 < k < tand thus
iterated commutators with tensor products of Riesz transforms only. The special case
when d;, = 1 for some k is easier but requires extra care for notation.

The proof in the Hilbert transform case relied heavily on analytic projections and

orthogonal spaces, a feature that we do not have when working with Riesz transforms. We
are going to simulate the one-dimensional case by a two-step passage via intermediary
Calderon—Zygmund operators whose multiplier symbols are adapted to cones.
In dimensiond, = 2, a coneC c R%with cubic base is given by the data(&, Q) where & €
S%-1is the direction of the cone and the cubeQ c &*centered at the origin is its aperture.
The cone consists of all vectorsfthat take the form(6¢¢,6,) whereg = (9, &)andd, €
6:Q. By AC we mean the dilated cone with data(¢, Q).

A cone D with ball base has data(&,r)for0 < r < m/2andé € S 1and consists of the
vectors{n € R%:d(&,n/lInll) < riwhere d is the geodesic distance (with distance of
antipodal points being ).

Given any cone C orD, we consider its Fourier projection operator defined viaP.f = x.f.
When the apertures are cubes, such operators are combinations of Fourier projections onto
half spaces and as such admit uniformL? bounds. Among others, this fact made cubic cones
necessary in the considerations in[111] and[108] that we are going to need. For further
technical reasons in the proof these operators are not quite good enough, mainly because
they are not of Calderon—Zygmund type. For a given coneC, consider a Calderon—
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Zygmund operatorT. with a kernelK.whose Fourier symbol K, € C® and satisfies the
estimate y. < K; < Xa+7)c- This is accomplished by mollifying the symbol y. of the
cone projection associated to cone € on $%~1 and then extending radially. We use the
same definition for Tp.

Given a collection of cones C = (C,)we denote by T, P-the corresponding tensor product
operators.

In[111]it has been proved that Calderon-Zygmund operators adapted to certain cones of
cubic aperture classify product BMO via commutators. As part of the argument, it was
observed that test functions with opposing Fourier supports made the commutator large.
IN[108] a refinement was proven, that will be helpful to us. We prefer to work with cones
with round base. Lower bounds for such commutators can be deduced from the assertion
of the main theorem in[108], but we need to preserve the information on the Fourier
support of the test function in order to succeed with our argument. Information on this test
function is instrumental to our argument: it reduces the terms arising in the commutator to
those resembling Hankel operators. We have the following lemma, very similar to that
in[111], [108], the only difference being that the cones are based on balls instead of cubes.
Lemma (4.2.10)[115]: For every parameterl < k < tthere exist a finite set of directions
Y, € S%*~1 and an aperture 0 < r;, < 7/2s0 that, for every symbol b belonging to product
BMO, there exist cones Dy, = D(&, ) with &, € Y, as well as a normalized test function
f = ®%_, fr whose components have Fourier support in the opposing cones

||[T1,D1 . [Tt,Dt' b] ]f||2 2 ”b”BMO(l)(t)(]Rd)

The stress is on the fact that the collection is finite, somewhat specific and serves all
admissible product BMO functions.

Proof: The lemma in[108] supplies us with the sets of directionsY,as well as cones of
cubic apertureQ,and a test function f supported in the opposing cones. Now choose the
aperturerilarge enough so that(1 + 7)C(&, Q) € D(&,1,). Then we have the
commutator estimate

I[T1.p, - [Tt b ]f”z < ”b”BMO(l)...(t)(Rd)'

In fact, both commutators with cones C and D areL?bounded and reduce
to||Tp (bf)||,0rl|T-(bf)|| respectively thanks to the opposing Fourier support of f.

Observe  thatT(bf) = Tp(bf) = Tp(Tc(bf)). With||T¢ll,2 <1, we see that
ITo (bOl2 = [T (bl

Using this a priori lower estimate, we are going to prove the lemma below.
Lemma (4.2.11)[115]: LetD,forl < k < tdenote any cones with respect to the kth
variable. LetT,, denote the adapted Calderon—-Zygmund operators. Let K be any proper

subset of{k:1 < k <t}, letDx = QyexDrandTp, the associated tensor product of
Calderon-Zygmund operators. LetPg be a tensor product of projection operators on
conesD (&, i, )or opposing conesD (—é,,,1). Letj € K. Then

|0 To, P8, P,

Lz(Rd)O = ||TDk PgK”LZ(Rd)O'
Proof: We will establish this by composing some unilateral shift operators and studying
their Fourier transform in the j variable. Let¢;denote the direction of the coneD;, for any [

define the shift operator
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S$19(x;) = f g(n)e?™Wrmi) dy ;.
RY

S;is a translation operator on the Fourier side along the direction¢;of the coneD;. It is not
hard to observe thatS;” = S_;. Now define

Al = S—lTDKTDijgKPDjSl' and B = TDKngK'
We will prove that asl — +o,A; — Bin the strong operator topology. As in the argument
in Lemma(4.2.6), this together with the fact thatS;is an isometry will complete the proof.
To see the convergence, let’s first remember thatS;only acts on the j variable, and one
always has the identities

SlS—l = Idand S—lel = b.

This implies

A; =Tp, (S—lTDjSl) (S_1bSPp, (S—IPDjSl)

= Tp, (S-1T0;S1) bPS, (S_1P,S1).
We claim that bothS_lTDjSlandS_lPDjSlconverge to the identity operator in the strong
operator topology, which then implies thatA; — Basl — co. We will only proveS_;Tp,S; =

Idas the second limit is almost identical. Observe that”S_lTDjSlf—f” = ||(TD].—

I) Slf”. Given anyL*function f and any fixed largel > 0. Consider the f with frequencies

supported inR%: x ... x (D; — I€;) x ...x R%:. In this case,S; fhas Fourier support inR%: x
WX Dj XX R%where the symbol ofTDjequaIsl. Thus, for suchf, we haveS_lTDjSlf =

f. The setsR% x ...x (D; — ;) x ... x R%exhaust the frequency space. With”TDj —

I || < 1the operatorsS_;Tp S;converge to the Identity in the strong operator topology,
2-2

and the lemma is proved. Observe that the aperture of the coneD;is not relevant to the
proof.

We proceed with the proof of the lower estimate for cone transforms.

Lemma (4.2.12)[115]: Let us suppose we are inR%withd = (d4, ..., t)and a partition =
(Is)1<s<;. FoOr everyl < k < tthere exists a finite set of directionsY, € S%*~1and an
aperture rkso that the following hold for allb € BMO;(R?):

(i) For everyl < s < lthere exists a coordinatevg € Isand a directions, €Y, and so that

with the choice of coneD, = D(fvs,rvs)and arbitraryD, for coordinatesk € I.\{v,}and
iIfD,denotes their tensor product, then we have

||[T1,D1 ey [Tl,Dl’ b] ---]”2_)2 = ”b”BMOj(Rd)'

(ii) The test functionf = ®%_, fywhich gives us a largeL?norm in(i) has Fourier supports
of thef, contained inD (—&,, 1) whenk = v.and inD,otherwise. Before we can begin with
the proof of Lemma(4.2.12), we will need a real variable version of the facts on Toeplitz
operators used earlier,

Proof. For a given symbolb € BMO,, there exist for alll <s <[ coordinatesv =
(vs), g € Iand a choice of variables not indexed bywvs, x3so that up to an arbitrarily small
error

1Blsmo, = 16Ce3) o,
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By Lemma(4.2.10), there exist conesD, = D(§,,n, )with directions§, €Y, and a
normalized test functionfyin variables vgwith opposing Fourier support such that we have
the lower estimate

17000y [Toun BGR)] -] i)

whereR% = R%1 x R%.
We now consider the commutator with the same cones but with full symbolb = b(,, ...,.).
Due to the lack of action on the variables not indexed byuvy, in the commutator, we have

(7,00, 0+ | Tongy b] = | (19D = 9| Tor00,5 o [ Tuyp b] - | i)
for g that only depends upon variables not mdexed byvs. Again using that multiplication

operators in L? have norms equal to the L norm of their symbol, for the ‘worst’ L*-
normalized g we have

R LG P

7,00, [Touon ] -] )

L?(R4)
= S,lc{p || [TU1'Dv1' e [TUI'Dul’ b(x%)] ] (fu) 12(Re)
2 ||[Torpyys o | Tonpny PG| - | (i) ()

= ||b(x%)||BMO(U1)___(UI)(RdU) = ”b”BMOg(]Rd)-

Note that the test function g can be chosen with well distributed Fourier transform. Take
any cones in the variables not indexed byvgand let D denote the tensor product of their
projections. f; = Ppg. Notice that

[[72.00,0 o [Tuvn 0] - | Gat]| 2 |[Toryr o [Toon ] - | o)
with constants depending upon how small the aperture of the chosen cones is. Notice that
the test functionf := fy frhas the Fourier support as required in part (2) of the statement
of Lemma(4.2.12).
Now build conesDsfrom theD, and the other chosen conesDyas well as operatorsTy p .

Notice that the commutators [TUI,DUI, [Tvlval’b] ...]and[TLDl, e, |Typ, b] ... ]reduce
significantly when applied to a test function f with Fourier support like ours. When the
operatorsT,_p, OF any tensor productTy p,_fall directly onf, the contribution is zero due to
opposing Fourler supports of the test function and the symbols of the operators. The only
terms left in the commutators [T1 Dy - [TZD ,b] ] () and

[Tvl,Dul' [Tvl:Dvl’b] ] (f)have the form®; T p (bf)and @ T Vs,Dy, (bf) respectively.

By repeated use of Lemma(4.2.11) we have the operator norm estimates for any symbol

b, valid on the subspace of functions with Fourier support as described

forf||®s Tsp bl , .= ”(X)S Ty p We conclude that a normalized test
g L%>L S*Hug L2—>L2

function f with Fourier support as described in the statement (ii) of Lemma (4.2.12)
exists, so that||®; Ts,,,s(bf)”2 2 |Ibll g, (re)- In particular, we get the desired estimate
in(i).

We pass directly to a lower commutator estimate for tensor products of Riesz
transforms from that for tensor products of cone operators. Just using tensor products of
operators adapted to cones merely gives us some lower bound where we are unable to

144




control that a Riesz transform does appear in every variable such as required in(iii) of
Theorem(4.2.16). The reason for this will become clear as we advance in the argument.
Instead of using operators T p directly, we will build upon them more general multi-
parameter Journé type cone operators not of tensor product type that we now describe.

We explain the multiplier we need for i copies ofS?~*when all dimensions are the

same. We will explain how to pass to the case of i copies of varying dimension d; below.
A picture illustrating a base case, a product of two 1-spheres.
For 0<b<a<l, let ¢:[-1,1] » [—1,1]be a smooth function with ¢(x) = 1 when
a<x<1andp(x)=0 when b=>x=>0. And let ¢ be odd, meaning antisymmetric
about t = 0. The function ¢ gives rise to a zonal function with pole & on the first copy of
$4-1 denoted byC, (&1;14). This is the multiplier of a one-parameter Calderén— Zygmund
operator adapted to a cone D(é;,r) for r=mn/2(1 —a). For i >1 we define
Cr(&1, ., &5y, ., M) for 1 < k < i inductively. In what follows, expectation is taken
with respect to traces of surface measure. When n; = +¢;, then conditional expectation is
over a one-point set.

Ck(flr '"rfk; N1, '"'nk)
=Eq,_, (Cr1(&rr s @rm1i N, oo M)A (g1, Ek—1) = d (e, &)
If the dimensions are not equal take d = maxg, and imbed S%~1! into $¢~'by the map

E(El, ...,édj) — (51, e $dp 0,...,0). Obtain in this manner the function C; and then

restrict to the original number of variables when the dimension is smaller than d.

The multiplier J = C;(§;.)gives rise to a multi-parameter Calderén-Zygmund operator of
convolution type (but not of tensor product type), T; = T¢,,). In fact, it is defined
through principal value convolution against a kernel K; = K¢ z,y(xy, ..., x;)such that

vi: j K;(xy,...,x)dx; = 0,V0<a <p,x; € R%fixedVj #
a<l|x;|<p

glnl
— —dq,— —di—n:
ax™  gx Kj(xq, o, )| < Aplxg |77 x| 747 m; =0,

1 i
This kind of operator is a special case of the more general, non-convolution type

discussed. It has many other nice features that will facilitate our passage to Riesz
transforms. One of them is its very special representation in terms of homogeneous
polynomials, the other one a lower commutator estimate in terms of theBMO,;norm.

In order to proceed with the proof of these lemmas, we will use some well known
facts about zonal harmonics. Fix a polé € $4~1. The zonal harmonic with pole& of degree

n is written asZé")(n). Witht = (¢,n) € [-1,1], one Wl’iteSZén) (n) = P,(t)whereP,is the
Legendre polynomial of degreen. It is common to suppress the dependence on d in the
notation forZ §")andPn.

Z§")are reproducing for spherical harmonics of degreen, Y ™. WhenY ™is harmonic and
homogeneous of degree n withY ™ (&) = 1 andY ™ (Rn) = Y™ (n)for any rotationR €
0(d) with RE = &, theny ™ = z{”,

The lemma below will aid us in understanding the special form of the functionsc;.
Lemma (4.2.13)[115]: Let&,, &, € S~ We have
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2800280 ) = Bg, (287 @01d(Ear) = dEormy) )

= Eq, (23 (a,)|d (&2, 02) = (&1, m0))-
Proof: The first equality is a change of variable, thanks to symmetry of the zonal
harmonic in its variables and invariance with respect to action of the measure preserving
elements of the orthogonal group fixing polesé;oré,, that we now detail. By a rotation in
one of the spheres, assumeé,, &, = &. Take a small ball

Bf,nl(ag; &) = {ay:d(ay, a3) < &} n{ay:d(a,, &) = dm,, 8}
Note{a,: d(a,, &) = d(n,,8)}~S?"% . Everya, € Bg,, (a3; &;)gives rise to a canonical
orthogonal mapa,,along geodesics in a scaled copy of$42, Lifted toS?~1, these are
orthogonal maps fixing &. Let ¢° fix & and map a3 to n,. Let a? = 6°(#,). We observe
that {o%0,,(12): a, € B, (a3; &)} = Bep, (al; &) With &, so that
P(d(ay, a3) < &|d(€, ax) = d(§,m,)) = P(d(ay,a?) < &ld(§, a;) = d(§, 7))

Together with the symmetry and the rotation property Z,(,")(a) =ZM @) = Zg(lzl) (c(m))
we obtain the first equality.

For fixed a;, the function Zr(;?(%) = Z(g'll)(nl) is a function harmonic in R%, n-
homogeneous. These properties are preserved when taking expectation in a,. So the
expression [E(Z,S’I‘)(alﬂd(fl, a,) = d(&,,1n,)) remains harmonic (regarded as a function

in R%), n-homogeneous. From the form ]E(Z,(,’zl)(az)|d(fz, a,) = d(é1,11)), we learn that

its restriction to S?~! depends only upond(&;,7n,). This implies that it is a constant
multiple of the zonal harmonic with pole &;. Exchanging the roles of n, and n,gives

E (257 (a)|dGra) = dm2)) = enZgl ()Z() (12)

When assuming the normalization Zé") (¢) =1thenc, =1.

This is a generalization of the classical symmetrizing of the cosinus sum formula
1/2 (cos(x + y) + cos(x — y)) = cos(x) cos(y)

Lemma (4.2.14)[115]: LetC;be a multiplier in®%_, R%as described above, with any

fixed direction and aperture. Let m be an integer of orderd = max,, . For any§ > 0, the

function Cihas an approximation by a polynomialCYin the[]}_, dvariables

{My1<k<iMioJi |1 < Jie < diJso that||C; — CiN||Cm(Sdk_1) < &in each variable separately.

C™indexes the norm of uniform convergence on functions that are m times continuously
differentiable. On the space side, C}¥corresponds to an operator that is a polynomial in
Riesz transforms of the variables@y Ry, -

Proof. It is well known that zonal harmonic series have convergence proper-ties when
representing smooth zonal functions similar to that of the Fourier transform. For any given
m and sufficiently smooth ¢ of the type described above, then

C1(Em) = Z <Pnzgl) (M)

where the convergence is C™-uniform. The degree of smoothness required for ¢ to obtain
convergence in the C™ in the above expression depends upon m and the dimension d. For
our purpose, we choose m > d.
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Let us denote this function’s representation of degree N by a series of zonal harmonics by

e (& m).
C1(N)(51FTI1) = z (an(n) (M1)

nsnN

For every § > 0 there exists N so that we have the estimate
||61(N)(f12771) - C1(f1i771)||

Cm(Sdl—l)

In the case of icopies of spheres, we define Ci(N )inductively in the same manner as C;. Let
us for the moment make all dimensions equal using the argument discussed above. So we

set
C,EN)(fl, e Sl ---;Uk)

= Eq, 1(CV, (&1, o) @11 s M )| A (@1, Exm1) = d (s 1))
We claim the identity

i

cM &y, ) = Z Pn HZ(”)(nk)

n<nN k=1
This is trivially true for i = 1. For i > 1linduct on the number of parameters:

cM &y, o)
= [Ea 1(Cl 1(5(1:-- al 1771r- » Ni— l)ld(al lifl 1) :d(nufl))

= Eqa () qonl_[zg?(nk) (a1, €2 = A1 60))

n<N

= o ﬂz(”(nk) Eoa (287 14(@1-0,§1-0) = A0 £0)

ns<N
z Pn 1_[ Zén) (nk)

nsN

(14)

The first equality is the definition of Ci(N), the second one is the induction hypothesis and

the last an application of Lemma8.

It follows that neither C; nor C(N)depend on the order chosen in their definition and

Ci(§5my, umi) = z Pn HZgj)(nk)

nsN k=

where the convergence is in C™ in each variable.

Next, we study the terms arising in multipliers of the form C(N) When all dimen-sions are
equal, indeed, ¥,<y @n [Tk 12¢ (”)(nk) has the important property that, as a product of n-

homogeneous polynomials, has onIy terms of the form

[ 1] ] Hni‘"”‘
k=1

k=1 jk=
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where 7, € $%'and a; = a;;, are multi-indices with |a| =X ;, ay j, for all k. This
form is inherited by Ci(N) with varying n. It shows that Ci(N) Is indeed a polynomial in the
variablesl'[};zlnk,kk. When the dimensions d; are not equal, observe that by restricting
back to the original number of variables, we certainly lose harmonicity of the polynomials,
but not n-homogeneity or the required form of our polynomials.

Lemma (4.2.15)[115]: We are inR®with partition7 = (I,);<s<;. LetYconsist of vectorsé =
(©)k=1WithE, € Y. LetYSconsist ofg)=(&;) e, . Let us consider the class of Journé

type cone multipliers/, =Cis(£(s);.)of aperture rs with associated multi-parameter
Calderon-Zygmund operatorsT; . Then we have the two-sided estimate

”b"BMOg(]Rd) = ?ég”[Tl,h' o [Tl,]z' b] '"]”LP(]R{")O S ”b”BMog(Rd)'

Proof. By Lemma (4.2.12) we know that for each parameter 1 < s <[ there exists a
tensor product of cones Dy =Q®ye;, D (k, Tk) With Ty := Yye, Tk < 7/2 and & € ¥, and
test functions fssupported as described in Lemma(4.2.12) part (ii)so that

710, o [ Tipp ] - JOI, 2 1B gps0, (et
where f =®L_, f.. We make a remark about the apertures r;. Let d(,) denote geodesic

distance on $¢~1, where antipodal points have distance . Let &) be the set of directions
of D,. Remember that according to Lemma(4.2.12), one component had a specific

direction éﬁs) € Y,, and possibly large aperture with(1 + r)rf,s) < m/2. Let us choose the

other directions arbitrarily but with apertures rés)small enough so that (1 +r)(r1(,s) +

(i — 1)11%5)) <m/2. Now choose an aperture 7, <m/2 so that (1+ T)(Tf,s) +
(i — 1)11%5)) <r,<m/2.

Writing i, = |I|, we find Journé type cone multipliers J = C,-S(E(S);-) “gaccording to the
construction above with center &%) and aperture ;.

We are going to observe that J, = 1on spt(Dy) and J¢ = —1 on the Fourier support of f..
Let us drop the dependence on s for the moment. We see in an inductive manner that
C;(&;") takes the value 1 in a certain #* ball of radius r < m/2centered at &. We show that

[ [¢Gemo <r=ctem o =1

k

When i =1, the assertion is obviously true: d(é,n,) <r = C;(é;;1m1) =1 by the
choice of ¢, rand definition of C;. For i > 1, we proceed by induction. As-sume that

v L d (&) <r implies Ci_4(&y, ., &_1My, o Mi_1) = 1. Let us assume that
i _,d(& ) < r. Remembering the definition of C;(&;) we assumed(a;_q,&;—1) =
d(n;,§;). By the triangle inequality Y35 d(§x mi) + d(ai—1,mi-1) < iy d(Gpeomp) +
d(ai—1,§i-1) + d(§i—1,Mi-1) = Xk=1d (i) <7 SO

Ci—1(f1» e Q1511 ---:Th‘—1) =1

for all a;_, relevant to the conditional expectation in the definition of C;(&;-) . The
statement for I follows.
Since C;(&;-) does not depend upon the order of the variables in its construction, we are
also able to see exactly as done above that when g, = —1for exactly one choice of k,
thend. d (0 &k, ) <17 = Ci(&,1m4, ..., m;) = —1. Consider associated multi-parameter
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Calderon-Zygmund operators T, and Id; =Qye;, Idgand Id, the identity on the
kthvariable. Now

Ty [Toy, b) - |(F) = [Toy, + 1dy, ..., [Ty, + 1dy, B] ... ] (F)
=Q®}-1 (Ts;, + 1ds)(bf).

With || ®5=; (Ts, + Ids)(bf)”2 > || ®¢=1 Ts,Ds(bf)”2 and  ®5=; Tsp,(bf) =
[T, - |Top,, b] - ](f) we get the desired lower bound on the Journé commuta-tor as
claimed.

Let us illustrate the base case (S!)?by a picture. The picture is simplified in the
sense that the odd function ¢ above is replaced by an indicator function of an interval.

Sl

Cone functions based on the oblique strips containing & are averaged. In the two-
dimensional case, S, expectation is over a one or two point set only. The rectangle around
& with sides parallel to the axes representing Stillustrates the support of the tensor product
of cone operators with direction &. The longer side is the aperture that arises from the
Hankel part. The short sides can be chosen freely as they arise from the Toeplitz part and
are chosen small so that the rectangle fits into the oblique square. The other small
rectangle corresponds to the Fourier support of the test function f.

Theorem (4.2.16)[115]: The following are equivalent with linear dependence of the
respective norms.

(i) b € BMO,y(R?).
(ii) All  commutators of the form[Rkl,jkl, [Rkl:jkl'b] ...]are bounded in
L*(R?)wherek; € I; andR,_, is the one-parameter Riesz transform in direction j.

(iii) All commutators of the form[RLl-(l),...,[Rl’ja),b] ...]are bounded in LZ(]Rd)

wherej® = (jidrer, 1 < ji < dyand the operatorsR, ;ware a tensor product of Riesz
transformsRS,j(s) = Qrer, R j, -

Proof. In contrast to the Hilbert transform case, both lower bounds require separate proofs.
This is a notable difference that stems from the loss of orthogonal subspaces in
conjunction with the special form of the Hilbert transform only seen in one variable. It
does not seem possible to get a lower estimate (iii) < (ii)directly.

() (ii). The upper bound (i)=(ii)is an easy consequence of the upper estimates of
iterated commutators of single Riesz transforms. The lower bound (ii)=(i)follows from a
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standard fact on multipliers in combination with the main result in [111], the two-sided
estimate for iterated commutators with Riesz transforms, similar to the first arguments
used in 4.

(i) (iii). The upper bound (i)=(iii)follows from the tensor product structure and use of
the little product BMO norm. The lower bound (iii)=(i)uses the considerations leading up
to this proof: Suppressing again the dependence on s, we see that the multiplier C; is an
odd, smooth, bounded function in each n, when the other variables are fixed. Furthermore,

since ¢, written as a function of t = (&, n) is odd with respect to t = 0, the above series

has ¢, # 0 at most when n is odd and thus Zé")is odd. So Cl.(N)is as a sum of odd

functions odd.
We see that T}, the Journé operator associated to the cone J = C;(§; -) as well as the

operator associated to Ci(N) (&; -) are paraproduct free. In fact, applied to a test function
f =@ fx with f; acting on the kth variable and where f; = 1for some lgives T;(f) = 0.

To see this, apply the multiplier Ci(N)(f; -) in the lvariable (acting on 1) first, leaving the
other Fourier variables fixed. The multiplier function

l

= ¢V ) = Y ez | | 2P0
ns<N k+lk=1
is, as a sum of odd functions, odd on $%~*, bounded by 1 and uniformly smooth for all
choices of n, with k # [. As such it gives rise to a paraproduct free convolution type
Calderon—Zygmund operator in the Ith variable whose values are multi-parameter
multiplier operators.
Due to the convergence properties proved above, the difference
Ci(&) —cM(E )

gives rise to a paraproduct free Journé operator with Calderén—-Zygmund norm depending
on N. This is seen by an application of an appropriate version of the Marcinkievicz
multiplier theorem.
By our stability result on Journé commutators, Corollary(4.2.20), there exist for all 1 <

s < [ integers Ny so that CS(NS)(fs; -) with &, € Y}, is a characterizing set of operators via
commutators for BMO,;(R%). This is a finite set of possibilities because of the universal
choice of the rsand finiteness of the set ¥. Using the multi-parameter ana-log of the

observation [AB, b] = A[B, b] + [A, b]B and the special form of the CS(NS)(f; -) leaves us
with the desired lower bound: Observe that when [AB, b] has large L? norm then either
[A, b] or [B, b] has a fair share of the norm. We use this argument finitely many times in a
row for operators that are polynomials in tensor products of Riesz transforms ®¢;. Ry j, -
This finishes (iii)=(i).
We remark that there are two cases of dimension greater than 1, where the proof
simplifies. In the case of arbitrarily many copies of R?, one can work with the multi-
plicative structure of complex numbers and avoid the symmetrizing procedure to obtain
cone functions with the appropriate polynomial approximations. If the dimensions are
arbitrary, but only tensor products of two Riesz transforms arise, one can avoid part of the
construction above by using the addition formula for zonal harmonics.

We are interested in upper bounds for commutator norms by means of little product
BMO norms of the symbol. In the case of the Hilbert transform, we have seen that these
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estimates, even in the iterated case, are straightforward. Other streamlined proofs exist for
Hilbert or Riesz transforms when considering dyadic shifts of complexity one, see [126],
[127] and [112]. When considering more general Calderon-Zygmund operators, the
arguments required are more difficult, in each case. The first classical upper bound goes
back to [3], where an estimate for one-parameter commutators with convolution type
Calderén-Zygmund operators is given. Next, [111] includes a technical estimate for the
multi-parameter case for such Calderon—-Zygmund operators with a high enough degree of
smoothness. This smoothness assumption was removed in [106]thanks to an approach
using the representation formula for Calderon—-Zygmund operators by means of infinite
complexity dyadic shifts [110]. This last proof also gives a control on the norm of the
commutators which depends on the Calderon-Zygmund norm of the operators themselves,
a fact we will employ later. Below, we give an estimate by little product BMO when the
Calderén—Zygmund operators are of Journé type and cannot be written as a tensor product.
While this estimate is interesting in its own right, remember that it is also essential for our
characterization result, the lower estimate. The first generation of multi-parameter singular
integrals that are not of tensor product type goes back to Fefferman [120]and was
generalized by Journé in [16]to the non-convolution type in the framework of his Tfl

theorem in this setting. Much later, Journé’s Tf ' theorem was revisited, for example in
[123], [124], [125]. See also [114] for some difficulties related to this subject. The
references [123]in the bi-parameter case and [125]in the general multi-parameter case
include a representation formula by means of adapted, infinite complexity dyadic shifts.
While these representation formulae look complicated, they have a feature very useful to
us. ‘Locally’, in a dyadic sense, they look as if they were of tensor product type, a feature
we will exploit in the argument below. We start with the simplest bi-parameter case with
no iterations and make comments about the generalization.

The class of bi-parameter singular integral operators treated is that of any paraproduct free
Journé type operator (not necessarily a tensor product and not necessarily of convolution
type) satisfying a certain weak boundedness property, which we define as follows:
Definition (4.2.17)[115]: A continuous linear mapping T:Cy°(R™) @ C5°(R™) —
[Cs°(R™) ® C°(R™)]'is called a paraproduct free bi-parameter Calderén-Zygmund
operator if the following conditions are satisfied:

(i) T is a Journé type bi-parameter §-singular integral operator, i.e. there exists a pair

(K1, K;) of 5CZ- §-standard kernels so that, for all f;, g; € C;°(R™) and f5, g, € Cy;°(R™)

(T(f1®12),91 ® g2) = ff1(}’1)<K1(x1:}’1)f2r92)91(x1)dx1d3’1
when sptf; N sptg, = 0,
(T(f1® f2),91 ® g2) = ffz(}’2)<K2(x2:}’2)f1r91)92(x2)dx2d3’2

when sptf, N sptg, = @.

(if) T satisfies the weak boundedness property |(T()(, ®)(]),)(, & x| < |1]|]], for any
cubes I c R™, J € R™,

(ili) T is paraproduct free in the sense that T1 ®)=T(R 1) =T"(1Q") =
T*(®Q 1) = 0.

Recall that a §CZ- §-standard kernel is a vector valued standard kernel taking values in the
Banach space consisting of all Calderon—Zygmund operators. It is easy to see that an
operator defined as above satisfies all the characterizing conditions in Martikainen [123],
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hence is L? bounded and can be represented as an average of bi-parameter dyadic shift
operators together with dyadic paraproducts. Moreover, since Tis paraprod-uct free, one
can conclude from observing the proof of Martikainen’s theorem, that all the dyadic shifts
in the representation are cancellative.
The base case from which we pass to the general case below, is the following:
Theorem (4.2.18)[115]: Let T be a paraproduct free bi-parameter Calderon—Zygmund
operator, and b be a little bmo function, there holds

B, T1ll 2 wrxrmy S 1Dl pmomrxrm)
where the underlying constant depends only on the characterizing constants of T.
Proof: According to the discussion above, for any sufficiently nice functions f, g, one has
the following representation:

e}

(Tf,g) = CE,, E,, Z Z g-max(ivjn)g-max(iz2)(Sisiiizlz f, g)
) 1 2 )

i ) A il'j1=0 i2'j2=0 B . . .
where expectation is with respect to a certain parameter of the dyadic grids. The dyadic
shifts St1Jit2)2 gre defined as

Si1j1i2j2f
= Z Z 2 z a11]1K112]2K2<f’ h11 X hlz> hh ® h]z
K1ED1 11']1CK1111!]1CD1 KzEDZ IZ!]ZCKZ'IZ']ZCDZ
2(1)=2"14(K,) 2(1)=2""2¢(K>)
2(J)=2"714(Ky) 2(J2)=2772£(K>)

B Z Z z z an 1,k Lk Ao By, @ b)) by, @ hy,

K, 11,J1€Ky K; I,],CK,
NanalsA

Letiliel
normalization ||S‘111‘212||L2_)L2 < 1. Moreover, since T is paraproduct free, all the Haar
functions appearing above are cancellative.

It thus suffices to show that for any dyadic grids D,, D,and fixed i, j;,i5, j, € N, one
has

The coefficients above satisfy a; ; k1,7,x, < , which also guarantees the

[[b, 57222 |f|| , < (1 + max(iy, j)) (1 + max(iz, ) bl pmoll f1I 2
as the decay factor 2~max(inj1)p-max(2j2)in (jii)will guarantee the convergence of the
series.
To see [2], one decomposes band a L?test function fusing Haar bases:

[b,Siljlizjz]f - Z Z (b, hll ® h12><f’ h]1 ® h]2>[hl1 ® hlz’Siljlizjz] h]1 ® h]z
11,13 J1.J2 S
A similar argument to that in [106], implies that [h;, & h; ,S"/122|h; @ hy, is nonzero

only if I; c]l(il)or I, c]Z(iZ), where ]fl)denotes the i, th dyadic ancestor of J;, similarly

for ]gZ). Hence, the sum can be decomposed into three parts: I, c]fl) and I, c]z(iZ)
(regular), I ;]f‘l)and I, ;]SZ), and I, c]z(‘2) (mixed).
Regular case (1): Following [106], one can decompose the arising sum into sums of

classical bi-parameter dyadic paraproducts By(b, f) and its slightly revised version
By (b, f): for any integers k,l > 0, By is the bi-parameter dyadic paraproduct defined as
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’ ! -1/2 -1/2
By (b, f) = Z Biyb, iy @ wyXf byt & u}gzﬂlfl X u]EZ [169] 7O
L]

where B, is a sequence satisfying |f;;| < 1. When k > 0, all Haar functions in the first

variable are cancellative, while when k = 0, there is at most one of h;*, h;* being
noncancellative. The same assumption goes for the second variable. Observe that when
k =1=0, By; becomes the classical paraproduct B,. It is proved in [106]in Lemma4.1
that

IBri(b, Iz = Ibllmollf 1l 2
with a constant independent of k, land the product BMO norm on the right hand side.
Then since little BMO functions are contained in product BMO, this part can be
controlled. More specifically, write

[b’Si1j1izj2]f
- z 2<b' hll X h12><f’ h]1 X h]2> h11 Y h125i1]'1i2]'2 (hh X h]z)
11'12 ]1!]2
a z 2<b' hll ® h12><f’ h]1 ® h]2>Si1j1i2j2 (hl1h]1 ® hlzhfz) =1+1
11,13 J1,)2

then one can estimate term I and I1 separately. According to the definition of dyadic shifts,
term I is equal to

Z z z (b,h;, & hi, {f, h;, ® hj,) by, Q hy,.

Judz 1, ey 1y e ) 0

I 1
a r @ r (i h I h I
Z z ]1!]1!]&11)!]2!]2)1512) ]1 ® ]2/'

]:,L]:,LC]:(Lll) ]éjécjélZ)

2(j)=2i1=J1e(jy) £(J3)=2t2"J2¢(J,)
(i) (i)

=3 > > ) b @ fhy, ® by hy ® hy,

K1,K3 J1:J1CKy J2:)2CK; Il €Ky I €K,
U1 (U2)

Z Z a]1;]i»K1JzJé.K2 h]{ X h]é

J1:J1CKq J5:)5CK,
(ilvjl) (iZ!jZ)

= ZU)' hy, & h,)h, @ hy, z Z z A gk g sk oy @ Ry )by @ by,

Iyl ?g? J1.J1CK1 J1,J5CK,
2 2
_ Z(b, by ® hy)hy, ® hy, Z Z (Stiriziaf, by @ hyr) by @ by,
Iy,1, J1:J1€1y ]33,

Because of the supports of Haar functions, the inner sum above can be further decom-

posed into four parts, where
=222,

Il 1214 J521
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N

Iulz 121 gl g el g U2

III=Z

1,1, ]{;]{cllc]gl) Jo2I,

w=>y >
U2)

I, 12] cl C](J1) Jh: ]2C12C]2
Hence, using the same technique as in [106], one has

I = Z(b, h;, ® hy,) (Shhtalzf, h]li 03¢ h]2£> h;, ® hy, 1|21, |~1/2
11,1
which is a bi-parameter paraproduct B, (b, f). Moreover, one has

W= by, @ hihyy @y, D (SUhizief bl @ by |7 /2hy,

Il J3: ]2C12C]§]2)

where constants ;; € {1,—1}, and B, are the generalized bi-parameter paraproducts of
type (0,1) whose L? — L? operator norm is uniformly bounded by ||b||gmo product BMO.

Similarly, one can show that
i J2

Il = Z BkO(b 5111112]2]") 1V = z szl(b 511111212]")

=0 [=0
Since ||bllgmo S ||b||bm0, all the forms above are L? bounded. This completes the

discussion of term 1.
To get an estimate of term I, we need to decompose it into finite linear combinations of
Sti2)2 B, (b, f). By linearity, one can write Si/1t2J2 on the outside from the begin-ning,
and we will only look at the inside sum. One splits for example the sum regarding the first
variable into three parts: . If we split the second variabll; € J;,1, =/, ,J1 € 1 c](ll)e as
well, there are nine mixed parts, and it’s not hard to show that each of them can be
represented as a finite sum of By; (b, f). We omit the details.

Let’s call the second and the third ‘mixed’ parts, and as the two are symmetric, it

suffices to look at the second one, i.e. I; c]fl), I, Q]éiZ). In the first variable, we still

have the old case I; © ](‘1) that appeared in [106], so morally speaking, we only need to
nicely play around with the stronger little BMO norm to handle the second variable. For
any fixed Iy, ], 1,,J,, since I, 2 <2, the definition of dyadic shifts implies that
h11 ® hlzslljllzj2 (h]1 X h]z) = hI1Si1j1i2j2 (hh X hIzhfz)
and
Stttz (hy, hy, @ hy,hy,) = hy, S"22(hy by, @ hy,)

Hence, we still have cancellation in the second variable, which converts the mixed case to

Z (b, hIl ® h12><f’ h]1 ® h]2>[h11’5i1j1i2j2] (hh X hlzhfz)

(i2)

(i1) 1,2)%

11C]1
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D 2Py @, SV by > (b hy, ® hy) ® by

I1C](i1) J2 jglz)
= D D fhy, @ by, S (g, @ (b, @ h) @ Bl
I c](ll) I
Z E(b hll ® hlz (]2) <f’ h]1 X h]2>[hl1’si1j1i2j2](hf1 X h]z)
I C](11) J2
z z ((b>]§j2)' h11>1 {f, h]1 ® h]2>[h11’5i1j1i2j2](h]1 ® h]z)
() J,
Iicj;

(i)

where (b) (lz)denotes the average value of bon J,27, which is a function of only the first

variable.

In the following, we will once again estimate the first term and second term of the
commutator separately, and the L?norm of each of them will be proved to be bounded
by l1bllbmoll 1l 2-

a) First term.

By definition of the dyadic shift, the first term is equal to

D D b )y by (f By, ® )

Ilcjiil) J2

’ / ! h !
( Z z ]1]1]?1)]2]21512) 1® ]2)

D J4: by

e(J1)=21177120) €(J3)=2"2772¢()3)
which by reindexing K; = jl(ll)is the same as
(i) U (J2)

PRCTSISHISD WD NP Z &y g oy, @ By @

1,,]> K1:K121 J1 €Ky ]1CK1] c]
- z {(b) G, huy )1 Z hyy @ (S"RR2((f, hy,), @ by, ), By )
I1,]2 Ji: ]1(]1)311

where the inner sum is the orthogonal projection of the image of (f,h; ), ® hj under

ShatzJ2 onto the span of {h;:}such that 7190 5 1. Taking into account the supports of the
Haar functions in the first variable, one can further split the sum into two parts where

BRSNS,

]2 11 ]2 ]1C11C] (11)
Summing over J; first implies that

I'= Z Z (b)), by )y hi (SHIR2((f hy,)a @ hy,) by

2 LI

= " BoC(b), 0 SR (U ) @ By,)
J2
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where B, (b, f) == Y ;(b, h;) {f, h1) h;|1]1~Y/2is a classical one-parameter paraproduct in the
1

first variable. Note t'hat' its L2 norm is bounded by ||b||gmo IIf|l.2. Moreover, according to
the definition of S*1/:'2J2 for any fixed J,

Si1]'1i2]'2((f, h]2>2 X h]z) = Z (Siljlizjz ((f, h]2>2 X h]z)’ h]{)z X hjé

]é:];(]2)=]§]2)

In other words, S'/1272((f, h; ), ® hy,) only lives on the span of {hjé;jé(jz) = giz)}.
Hence, by linearity there holds
= Z z B, (b )i (S ((f, by )o @ By, ), b)) @ hy,

A ]é:],(]2)=]§]2)

2

Z(Bo«b)]giz), (Stulatelz( Z ((f )2 ® y,) hyp)a) ® By,
J2

]é_]’(jz)zj(jz)
J2 2
Thus, orthogonality in the second variable implies that

L

= > |@Bottt) st S (g,

J» ]éJ;UZ):];jZ)
2
® hjz)l h]i>2)
L2(R™"XR™)
2
2 .
S z ||BO(<b>](i2) (5'11]112]2( z (<f’ h]2>2 ® hfz)' hH)Z)
2 "BMO(R™) (D G2
J2 Joidy ¥ =52 L2(R™"XR™)
Observing that ||(b>]l(j2) < (”b”BMO(Rn)>]/(j2) < |[bllpmo. ONE has
2 BMO(R™) 2
2
< WblEmo ) |[S550202 [ > (o) @ by, | By,
7 Jpi2=102 2(RM)
2
= ”b”%mo Z (Siljlizjz z (f; h]2>2 X h]z ’ hjé)Z
J2 Jaidt=1, 7 L2 (R"XR™)

Note that the sum in the L? norm is in fact very simple:

Z (Si1j1i2j2 Z (f, h]2>2 X h]z ) h]£>2 03¢ h]é
J3

]2 :];2 :];(12)
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_ Z Z (Shhtel2((f,hy), @ hy,), hyr), @ hyy
JB I ]’(12) ]’(12)
2

ZSMJHZJZ((}C h] )2 ® h]z) 511111212 (f)

Hence, the uniform boundedness of the L? — L? operator norm of dyadic shifts implies
that

||I||22(Rnxﬂgm) S ||b||129mo||f||]%2(ugnxngm)
In order to handle II, we split it into a finite sum depending on the levels of I,upon J;,
which leads to

1
= Z Z Z <<b>]§i2)' h]i(k)h h]i(k)hfi ® (St (<f: hi), @ hjz); hyrh

kO]Z ]1

z z z By |]1(k)| ((b)};iz),h]i(kﬁl hyrohy; @ (Sthie2((f, hy,), @ Ry, ), by

k=0 j, 1

2 D B(by 0, SHHI (), ® )

k=0 j,
where By (b, f) = X Brilb, ki X[, h,)h,|1(")|_1 * is a generalized one-parameter
paraproduct studied in [106], whose L? norm is uniformly bounded by ||bllgmo IIf|l.z,
independent of k and the coefficients S, , € {—1,1}. Then one can proceed as in part / to
conclude that

12 mexmmy S (1 4+ JOUD I pmo ll F1l 2 (mrxcmem)
which together with the estimate for part I implies that

|first term|| 2 gnxgmy S (1 + jOUb N pmollf | 2 wnxmm)

b) Second term.
As the second term by linearity is the same as

Si1j1i2j2(z Z ((b>]§i2); h11>1 (f, h]1 X h]z> h11h11 ® hfz)
Iz Ilcj:(lil)

the L? — L?boundedness of the shift implies that it suffices to estimate the L? norm of the
term inside the parentheses. Since I; N J; # @, one can further split the sum into two parts:

BRI

J2 L& J2 11C]1C]§i1)
Summing over J,first implies that

=0 By by (b, @ hy,) by, i, @ By, = 2 Bo ({b),60 (fhy)2) ® hy,
J2 It
where B, (b, f) := %.1(b, h;) {f, hs) h;|1|~2is a classical one parameter paraproduct in the
I

first variable. Hence,
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I —— }]wown@vhmg

Z ”(b) (i2)

—nwmammﬁww)
For part 11, note that it can be decomposed as

1= 22 oo oy, @ by o, @

=0 J; J1

ZZE&¢W| (4B g, 00 (4 By By Dy By, @

=0 J J1

L*(R™)
e 1 1022y < B0 D Dol
J2

ZE}AWWMHwﬁ®%

=0 J;

where coefficients B; , € {1,—1} and the L> norm of the generalized paraproduct By is
uniformly bounded as mentioned before. Therefore, the same argument as for part I shows
that

1| 2(mrxmrmy S (1 + i) Dl pmo I f Il L2rrxrmy
which completes the discussion of the second term, and thus proves that the mixed case is
bounded.
The upper bound result we just proved can be extended toR%, to arbitrarily many
parameters and an arbitrary number of iterates in the commutator. To do this, consider
multi-parameter singular integral operators studied in[125], which satisfy a weak bound-
edness property and are paraproduct free, meaning that any partial adjoint of T is zero if
acting on some tensor product of functions with one of the components being 1. And
consider a little product BMO functionb € BM0O;(R%). One can then prove
Theorem (4.2.19)[115]: Let us considerRY, d = (dy, ..., d,)with a partition 7 =
(I$)1<s<;0f {1,...,t}as discussed before. Letb € BMO;(R%)and letT,denote a multi-
parameter paraproduct free Journé operator acting on functions defined ¢, R%. Then
we have the estimate below

” [Tlr Ly [Tl: b] "']”LZ(Rd)O = ”bllBMOj(]Rd)'

The part of the proof that targets the Journé operators proceeds exactly the same as the bi-
parameter case with the multi-parameter version of the representation theorem proven
in[125]. Certainly, as the number of parameters increases, more mixed cases will appear.
However, if one follows the corresponding argument above for each variable in each case,
it is not hard to check that eventually, the boundedness of the arising paraproducts is
implied exactly by the little product BMO norm of the symbol. The dificulty of higher

iterates is overcome in observing that the commutator splits into commutators with no
iterates, as was done in [106]. The assumption that the operators be paraproduct free is
suficient for our lower estimate. The general case is currently under investigation.
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Important to our arguments for lower bounds with Riesz transforms is the corollary below,
which follows from the control on the norm of the estimate in Theorem(4.2.19) by an
application of triangle inequality. It is a stability result for characterizing families of
Journé operators.

Corollary (4.2.20)[115]: Let for every 1 <s <1 be given a collectionts = {T ; }of
paraproduct free Journé operators on @, R% that characterizeBM0,(R%) via a two-
sided commutator estimate

”bllBMOg(Rd) = Sljl,p”[TLh' o [Tl,fz'b] '"]”LZ(Rd)O S ”b”BMOg(]Rd)'
Then there exists € > 0 such that for any family of paraproduct free Journé operatorstg =
{T¢;,} with characterizing ~constants||T;; || <& the family{Ts; +Tg; }still
characterizes BMO;(R%).

It is well known, that theorems of this form have an equivalent formulation in the
language of weak factorization of Hardy spaces. We treat the model caseR¢ =
R(4142:8)andBMO 132y (R®)only for sake of simplicity. The other statements are an
obvious generalization. For the corresponding collections of Riesz transforms R, ; and
b € BMO(13y2)(R?),1 < s <3, by unwinding the commutator one can define the
operator I1; such that

([Raju [RujRs 1, ]| £ 902 = (b, T, )i
Consider the Banach spacel? = L?of all functions inL'(R%)of the formf =
¥ 2:1;(¢!, ] )normed by

I llz.ize = inf3 > g/, !,
i

J
with the infimum running over all possible decompositions off. Applying a duality
argument and the two-sided estimate in Corollary (4.2.20) we are going to prove the
following weak factorization theorem.

Theorem(4.2.21)[115]:  Hp,(RU4r¥)QLL(R%) + L' (R“)QHRE, (R@243))  coincides
with the space L?=I2. In other words, for any f € Hi,(R@r4)QLI(R%) +
LH(RYM)QHE,(R@243))  there  exist  sequences /ol el?  such  that
11~ X5 Zall o [l 17 1,

Proof: Let’s first show thatl? = [%is a subspace ofHp,(R(@r42))@LI(R%) +
LY (R*)®H},(R@243)), Recalling the remark after Theorem(4.2.3), this is the same as to

showVf € L? x L?fis a bounded linear functional onBMO 43y (R%). This follows from
the upper bound on the commutators since

(b, ) > (&8 =D ) ([Resyr[RujRagob]] 6w
j i j i

Now we are going to show

sup ([ o] 01 < 1} <l

which gives the equivalence ofH3,(R@4))QL(R%) + LY (R*)@H3,(R“@243)) norm
and theL? = L2norm, thus showing that the two spaces are the same.
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To see this, note that the directions<is trivial, and the direction=is implied by the lower
bound of commutators. For anyb € BMO( 3 (R%), there exists j such

that||b||3M0(13)(2) < ” [RZJ-Z, [Rl,leg,jg,b]] ” Hence, there exist ¢,y € L2with norm1 such
that

1Bl 200y S [{|Rasi [RusRa gy b]| &3] = (6,110, 9))] < LS,
which completes the proof.
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Chapter 5
Nonlinear Piecewise Polynomial Approximation

We consider uniform approximation and approximation in the metric of the
spacesL, , = L,(Q™; o), where q > 1 and o is a finite Borel measure. We show that the

main approximation result concerns the space Vp’; of smoothness s: = d (% — é) € (0, k].

It asserts the following: Let f € Vp’g be of smoothness s € (0,k], 1 < p < q < o and
N € N. There exist a family Ay of N dyadic subcubes of [0,1)¢ and a piecewise

polynomial g, over Ay of degree k — 1 such that ||f — g|| < CN‘Elflvécq . This implies

similar results for the above mentioned smoothness spaces, in particular, solves the going
back to the 1967 Birman—Solomyak [147] problem of approximation of functions from

k dy d E_1_1
Wy ([0,1)% ) in L,([0,1) )wheneverd—p qandq < oo,

Section (5.1): Functions of the Classes W

For the approximation device we use functions which become polynomials of some
fixed degree [ = I(a)on each of the cubes in a suitable partitioning of Q" into cubes. The
partition according to which we construct the approximating piecewise-polynomial
function is not fixed in advance; only the number of cubes in it is restricted. The partition
itself is chosen (according to the formulation of the problem) as a function either of the
function being approximated or of the measure ¢. Naturally such a choice makes possible
a better rate of approximation. Indeed, as one of the results, the rate of approximation
obtained in the uniform metric for pa > m is the same as that for functions which have
smoothness of order « in the classical sense.
The problem investigated arose first in connection with the development of the theory of
double Stieltjes operator integrals [130]-[133]. Estimates of singular numbers of integral
operators acting from the space L, ;into another space L, .are of considerable value for
this theory. The specific problem is that we need estimates not depending (in the usual
sense) on the measures ¢ and t. The method of approximation presented here was in fact
developed with the aim of investigating integral operators.
This method of approximation found another application in the theory of double Stieltjes
operator integrals in so-called "interpolation in smoothness™ (see [133]). Here the basic
approximation results can be used directly, without the corresponding theorems on integral
operators. We note that new results in the multidimensional problem of multipliers ini,,
spaces (see[132], [133]) are a consequence of "interpolation in smoothness".
It has also become clear that the proposed untraditional tool for approximation is also
useful io other problems. First of all, with it we can find the exact order of e-entropy of
the unit sphere SWF(Q™), pa > m, as a compactum in C(Q™).
It is known [134] that the e-entropy of the sphere SC%(Q™) as a compactum in C(Q™)has

ordere™™*"". In this case "strong" and "weak" norms are similar in nature, so that we can
use relatively simple approximation methods for estimating entropy. Sometimes we are
concerned with estimating the entropy of the set SW,*(Q™)in the metric of the space

C(Q™). The norms in W, (Q™)and in C(Q™)ate different in nature, and the norm
inC(Q™)is essentially more "restrictive” than the norm in L,(Q™). As a result the
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classical linear approximation methods do not lead to an exact result in this case. The
approximation method proposed makes it possible to find the precise order of e-entropy,

-1

which again turns out to be e ™™"

All the results obtained, in the final analysis, based on one special theorem on set
functions. The proof of this theorem rests on a detailed investigation of a certain concrete
algorithm for partitions of the cube Q™. When applied to approximation theory, this
algorithm generates a tool for approximations which is closely linked with the
peculiarities in the formulation of the problem, which makes possible a good rate of
approximations.

We study the classes W,*. We use only a few properties of these spaces: imbedding
theorems in the spaces C and L,, and also the property of homogeneity of the principal
term of the norm with respect to similarity transformations of the region. As a result of
this all the results also hold for other functional classes having the same properties. In
particular, this refers to the spaces Hy of S. M. Nikol'skii and Bjof O. V. Besov (see
e.g.[135]).

In the case m = 1 the theorems on approximation carry over to classes of functions
of bounded pg-variation. These results are of definite interest for estimating singular
numbers of integral operators. Besides the results relating to the theory of approximation,
estimates of e-entropy are also presented. Applications of the basic results to estimating
singular numbers of integral operators are treated in [136].

We prove the basic theorem on partition functions. We derive theorems on
approximation of functions of the class WW}*. We obtain analogous results for functions of
bounded g-variation. We give estimates of the e-entropy of the set SW,*(Q™)inC(Q™) for
pa > mand inL,(Q™)for pa < m, g < mp(m —pa)™".

Results for the case pa > m (though more important) were published without proof in
[137]

Let R™be the m-dimensional Euclidean space of points (vectors)x = (xy, ..., X;,,),

|x|the length of the vectorx. If k = (k4, ..., k,,)iS a multi-index (allk;. are integers,x > 0),

thenx® = [T, x/%,|k| = Y™, k;. LetD*denote the differentiation operator:
D* — J|x|
Oyt ..o

LetAc R™be a cube with edges parallel to the coordinate axes,p > 1,a > 0,[a] the
integral part ofa, & = a — [a]. We introduce the spaces L, (A), L, (4), C(4),C*(A)in the
usual manner. We uselW},* (A)to denote the Sobolev-Slobodeckn space (see e.g.[135]). The
norm inW,*(A)is defined by

lullwg@y = lNlullL, @) + llullga). (D

where for integrala

el = Y [ 15l dx, @

lx|=a A
and for nonintegrala
|D*u(x) — D*u(y)|?
P _
lx|=a A A
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BelowQ™is the halfopen unit cube0 < x; < 1(i = 1, ..., m)of the spaceR™; ifA= Q™the
symbol Awill be omitted in the notation for spaces and their corresponding norms. The
seminorm  [||[,zhas the property of homogeneity with respect to similarity

transformations of the cubeA. Indeed, letA= x, + hQ™, supposeu € Wy*andv is the
function defined for x € Abyv(x) = u(h™*(x — x,)). Thenv € W,*(A)and

_ pmp -«
Iolligqay =A™ lull,g. @)

In the one-dimensional case, besides the classeslt,* (A)we shall also consider classes of
functions of bounded f-variation. The function u given on the (possibly infinite) interval
A c R;belongs to the classVz(A) of functions of bounded p-variation (f = 1)if the
guantity

n
el y = st D [ut) = uCric- I
k=1

is finite; here the least upper bound is taken relative to all possible finite sets of pointsx, <
xy < -+ ... < xpfrom the intervalA. The classVz (A)is a Banach space relative to the norm

lully ) = llullyey + suplu)l. (5)
B XEA

Every function u € Vz(A)has limits from the left and from the right at each point of the
interval A. To simplify the exposition we normalize the functions of bounded S-variation,
making them continuous from the right, and restrict consideration to classes Vj(A)for
intervalsAwhich are halfopen from the right. (In particular, if the left end of the intervalA
Is infinite, then we include the improper endx = —ooin the intervalA, using as the
valueu(—oo)the corresponding limit.) We note another obvious property of the classes V-
their invariance with respect to monotonic replacements of the independent variable.
We recall the definition of e-entropy and the n-diameter of a compact set in a normed
linear space (see[134],[138]). Let X be a Banach space and suppose the setK c Xis
compact. Let9t.(K; X)be the minimal number of elements of the e-net of the set K in the
metric of the spaceX; the e-entropy of the set K in X is the quantity
H.(K;X) =log,N.(K; X).

The number

d,(K;X) =logsup rxéiLnllx — |l

x€K YELn
is called the n-diameter of the set K in X; the inf is taken relative to all possible re-

dimensional hyperplanesL,, c X.

If ¥y is a Banach space compactly imbedded in X andK = SY, then we write
H.(Y; X)instead of H.(SY; X)andd,,(Y; X)instead ofd,,(SY; X).

We use the following notation for the constants encountered in the various estimates.
Constants whose values are not essential are denoted by the letter ¢ with no subscript, and
essential constants are denoted by C with subscripts. Also we writef = gif f < cgandg <
cf.

Let = be a partition of the cube Q™ into a finite number of halfopen ro-dimensional
cubesAy; let |Z|be the number of cubes in the partition . We writeZ = {A}(k =
1,..,|ZDand A, € E. A partition £’ obtained from a by dividing certain cubesA,€ =
into2™different cubes is called an elementary extension of the partitionz. Below a basic
role is played by the class®R of all partitions which can be obtained from the trivial
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partition Z,(|Z,| = 1)by a finite number of elementary extensions. The symbolZ,will
always denote the trivial partition.
Let / be a nonnegative function of half open cubes Ac Q™, semiadditive from below in
the following sense: if the cube Ac Q™is decomposed into a finite number of disjoint
cubes 4;, thean](Aj) < J(A). Let|A|be the Euclidean volume of the cube A,a > 0 some
number. Set

g.(J; 8) = |A]%(A)(Ac Q™)
and consider the following function of partitions = of the cube Q™:

Go(U; E) = rglearx gaU; D). (6)

The basic goal is to estimate the quantity minz<,G,(J; £), depending on n. To obtain
such an estimate we construct a special sequence of partitions. This sequence is
constructed by the method of "successive division." Indeed, the first step is to divide the
cube Q™ into 2™ different cubes. Then we again partition that cube A for which the
quantity g,(J;A) is maximal into 2™cubes. This process is continued and we obtain a
sequence of partitions for which we can give a good estimate of the rate of decrease of the
quantity (6). The considerations presented below follow basically from this procedure-
There is a difference, however, in that we allow simultaneous division of several cubes of
one partition.
Thus, let J be a given function semiadditive from below and with it associate a sequence
of partitions {Z;}3’which is constructed as follows. We start with the trivial partition Z,.
Suppose the partition Z; has already been constructed and let A;€ Z;(j = 1, ..., s;) be those
cubes of the partition =; for which

8.3 4)) 227G, (;EN( = 1, ..., 5)). (7)
Then as Z;,; we take the elementary extension of the partition Z; obtained by dividing
these cubes. Thus s; is the number of cubes in the partition =; which were divided in
passing to =;, ;. Itis clear that =; € R(i = 0,1, ...).
The sequence of partitions=;obtained by this construction is denoted as follows:

{E}5 = Ta (D).

For the guantities characterizing the sequenceT, (J), we use the notation

n; =n(;a) = |151(5; € T,(D), (8)
§ = 6;U; @) = Go(; &) = max|A|*J (8) (&; € T,(D). 9

It is clear that n, = 1and
N1 < 2™n;(i = 0,1, ..). (10)

Theorem (5.1.1)[129]: For every function J semiadditive from below and for each natural
numbern there is a partition = € Rof the cube Q™such that |Z| < nand

Go(J; &) < Cin~ @Dy (Q™), (11)
where the constant C; = C,(a, m)does not depend on the functionj.
The validity of Theorem (5.1.1) stems from the following assertion.
Lemma (5.1.2)[129]: Suppose the cube Ac Q™is divided into 2™ different cubes
Ai(G=1,..,2™). Then

m]ax gq(/; Aj) < 27™Mag (J; Q).
Lemma (5.1.3)[129]: Let s be a natural number and let x; >0, y; > 0(j =1, ...,s)be
numbers satisfying the relationships
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N

S
in < 1,Zyi <1lLxy!=b(G=1,..,5).
j=1 j=1
forsome a > 0, b > 0. Then b > s~@* D),
Lemma (5.1.2) is obvious and Lemma (5.1.3) is proved with the help of elementary work
with extrema.
Theorem (5.1.4)[129]: For every function J semiadditive from below the quantities
n;(J; a) and 6;(J; a)are related by the inequality
8; < Cn7 (i =0,1,..), (12)
where the constant C, = C,(a, m) does not depend on J.
Proof. Without loss of generality we assume J(Q™) < 1. We investigate certain properties
of the sequences(8) and(9). It follows from Lemma(5.1.2) and the inequality(7) that
8;01 <27M45,(i = 0,1,...), (13)
Another inequality for the quantities §; follows from Lemma (5.1.3). Namely, setting
xi = J(4),y; = |4;| G = 1,...,s;)and taking account of (7), we find that the conditions
of the lemma are satisfied for b = 27™4§;. Hence
& < 2mas” @ (i =0,1,..) L (14)
We note the obvious relationships
npg=1 s;<nyn —n = 2" = Dsy,

-1
niszmzsj (i=12..). (15)
=0

Letk > i > 0; from (13) and (14) we obtain that
8, < 2—(k—i—1)masi—(a+1)
Hence forevery i (0 <i < k)
5. < 2—(k—i—1)ma(a+1)‘15}:(a+1)_1 (16)
l —

Further, for k > 1, taking account of (15) and (16), we find that

k-1 k-1

n, < 2m6k—(a+1)_1 Z 2—(k—i—1)ma(a+1)‘1 — Zm(5~k—(a+1)_1 Z 2—jma(a+1)‘1
._0 '=

= Jj=0
< Zm[l _ 2—ma(a+1)‘1]_16k—(a+1)_1.
Thusfork > 1
8 < Con Y, (17)

where the constant

C, = 2m(a+1)[1 _ 2—ma(a+1)‘1]_(a+1)
does not depend on /. It is also obvious that (17) holds for k = 0 too. Thus Theorem
(5.1.4)has been proved.

The considerations are of an "entropic" nature. We let § denote the set of all
functions J semiadditive from below which satisfy the condition J(Q™) < 1. We combine
the functions J € 5 which are close in a certain sense into a class and estimate the number
of such classes. Together with the sequences (8), (9) we also consider the sequence of
numbers:

§i=6,U;) = C; min |27amE=Dn D] (i =0,1,.). (18)
<j<i
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It follows from (13) and (12) that
5 <6 (i=01,..). (19)
It is also clear that
§ <Y (i=0,1,..). (20)
Thus the sequence (18) majorizes (9) and satisfies an inequality analogous to (12).
Together with the sequence {4;} behaves more regularly than the sequence {8;}: the
following inequalities hold for it:
2-(@tmg. < §,,, < 279M5; (21)
Indeed,

. - [— 7 - 1 . - 1
51+1 C, Oglslir},_l [2 am(i J+1)nj (a+ )] — min [2 amgl, C,n l+a+ )]

The right inequality in (21) now follows immediately; it remains to refer to (10) and (20)
to derive the left inequality.
Now let n be a fixed number (0 <7 < C,). Let T, denote the interval {E;}¥ of the
sequence T, (J), where the number k is determined by the conditions
Sk < n < Sk—l' (22)
We shall assume that the functions J,J' € J belong to the same class if and only if
1) =T ().
The number of classes into which the set J can be separated here is denoted by N (a; n).
Lemma (5.1.5)[129]: The estimate
log, N(a; ) < Can™ @™, ¢3= C3(a,m). (23)
holds for all values ofn,0 < n < C,.
Proof: Let {Z;}X be a finite sequence of partitions such that {Z;}& = T,/ (J) for at least one
function /] € § .Then according to (10), (20) and (22) we obtain

~ _1 -—
e < 2™ gy < 27(C,673) YT < (G @™ (24)
First of all we estimate the number of different sequences n; = |Z;| (i = 1, ..., k) whose
last terms satisfy (24). We use n* to denote the integral part of the number

2m(C,m~H@D™  Writing n* in the form

n* —1+Z(nl ni_) + (=),

we see that the number of such sequences does not exceed the number of representations
of the number n* — 1 in the form of a sum of positive integral terms; here representations
which differ in the order of terms are considered different. The number of such
representations is equal to 2™ =2 (see for example [139]).

Let {n;}¥ (n, < n*)be a fixed sequence of the form under consideration. We estimate
the number of all possible sequences of partitions {Z;}k = T,/ (J) for which |E;| = n;. For
this we note that if the partition £; (i = 0,1, ...,k — 1) is already fixed, then the partition
E;.1 is uniquely determined by which s; = (n;4; —n;)(2™ — 1)~ of the cubes of the
partition =; (from the overall number of cubes n;) are decomposed in passing to Z;,,. The

n.
number of possible variants here is equal to (S‘) < 2™, Hence the number of all
l

sequences of partitions of the form under consideration with a fixed sequence of numbers

{n;}¥ is less than
2n0+n1+"‘+nk_1
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We note that from the definition (18) of the number &,_, we obtain the inequalities

~ _1 - —_—
n; < (626,;_11)(““) 2-(k-1=Dma(@+D™ (j = 0,1, ...,k — 1).
Hence we find that

k-1 k-1

~ -1 . - ~__ -
Zni < (625,;_11)(61-'-1) z 2—ima(a+1) 1 < Cé6k_(6i+1) 1’ (25)
i=0 i=0

- —1q-1
where ¢} = ¢{**D7[1 — 27ma@+D™] ™" Combining the estimates and taking account of
(22), we find that

log,N(a; n) <n*—2+ c?')Sk—_(c;H)‘l < [Cg n 2m62(a+1)_1] (@D

Thus inequality (23) is obtained for C; = C3 + 2’"62(““)_1. The lemma is proved.

We turn to a discussion of Theorem (5.1.1). The condition a > 0 in it is essential;
in fact if, for example, J is a point load type of function, then the estimate (11) is not true
for a = 0. In the one- dimensional case, a modification of Theorem (5.1.1), valid also for
a = 0, is possible. This modification will be needed in studying functions of bounded -
variation. Here, however, we cannot even restrict ourselves to partitions of the class R. As
a result of this the considerations.

On the other hand, failure of the condition = € R leads to an improvement of the
constant in (11): an analogous estimate holds for C; = 1 and is attained for the function
J(4) = |4|.We note that for m = 1 we cannot obtain the estimate (11) with C; = 1 even
by passing to a wider class of partitions.

Thus, let m = 1 and Q' = [0,1). We write J[x',x") instead of J([x',x"")) for

every interval [x’,x"") c Q2. In view of the condition of semiadditivity, the function

Y(t) = J[t,x'") does not increase on (x,x’"), is bounded, and consequently has a

finite limit as t - x’ + 0 which we denote by J[x’,x"). Obviously J[x’,x"") <

][xI, X" .

Theorem (5.1.6)[129]: Suppose the nonnegative function J, semiadditive from below, of
half op en intervals A < Q? is continuous from the left:
JIx',t) > J[x',x") as t - x""—0.
For every such function and arbitrary a = 0 for each natural number 1 there is a partition
= of the interval Q1 such that || < n and
G, (J;E) < n=(@ Dy (QM). (26)

The proof is by induction, assuming J[0,1) = 1. For n =1 the inequality (26) is
obvious. Suppose the assertion of the theorem is true for some n > 1; we shall show that
then it also holds for n + 1. First of all we note that if we take [0, x,) for the basic interval,
then (26) becomes

G,(J; B) < n~@DxaJ[0, x,).

We introduce the notation ¢(x) = J[0, x) and consider the function
n a+1

_ -a
o (25) e
Since this function is continuous from the left, does not increase and changes sign in the

interval (0, 1), there is a point x, € (0, 1) such that
a+1

n
@ (xo) < (n—-l-l) X0 < p(xy +0).
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In accord with the induction hypothesis, we can divide the interval [0, x,) into halfopen
intervals A4, ..., Ar(k < n) so that
max ga(;8) < n~ @ Dxp(xy) < (n+ 1)~ @D, (27)
i=1,.,

Further, from the inequality
¢(x) +J[x,1) <1,
passing to the limit as x — x, + 0, we find that
@(xg +0) + J[x0,1) < 1.

Hence
a+1

Tl D <1—@l+0)<1— (%) x5 e

It is an elementary matter to verify that for x, € (0, 1) the right side of the last inequality
does not exceed (n + 1)~V (1 — x,)~%, and consequently

(1 - %)%, 1) < (n+ 1)~(@*D, (28)
The inequalities (27) and (28) show that the partition of the interval [0, 1) into intervals
A4, ..., Ay, [x0,1) is the desired one. Thus the induction has been verified and the theorem
proved.

We note that under the conditions of the theorem it is possible to relax the requirement
that the function J be continuous from the left. An inequality of the form (26) remains
valid but with a factor ¢ > 1 on the right-hand side.

The basic difference between the inequalities (26) and (11) is that the function J is
replaced by J on the left-hand side. As an example of a point load type function shows, for
a = 0 this is essential.

We investigate the rate of approximation of functions of the class W,* by piecewise
polynomial functions. The degree [ of the approximating polynomials is fixed, with [ =
a— 1 for integral a and [ = [a] for nonintegral a. Below we use the notation w =
am~! and, whenpw < 1,¢* = p(1 — pw)~1. Here g* is the so-called limit exponent in
the theorem of imbedding of the space W into the space L,. As usual, we set " = o
when pw = 1.

Let A c Q™ be a cube. With every function u € W,*(A) we associate a polynomial
r of degree [ satisfying the conditions

jxxr(x)dx = jxxu(x)dx (x| < D). (29)

A A
Conditions (29) obviously determine r uniquely. Setr = Pyu; thus P, is a linear

projection operator mapping the space W,'(A) onto the finite-dimensional space of
polynomials of degree [ in m variables. The dimensionality of this space is denoted by v =
v(m, ).

We note the following simple assertions.

Lemma (5.1.7)[129]: When pw > 1 for every function u € W;*(A) the following

inequality is satisfied:
llu = Paull ey < CalAl® ™ llull aay, (30)
where the constant C, = C4,(p, a, m) does not depend on 4.
Lemma (5.1.8)[129]: When pw <1 and q < gq* for every function u € W,*(A) the
following inequality is satisfied:
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1

Il — Paully, ) < CslAIT =7 full g a), (31)
where the constant Cs = Cs(p, g, a, m) does not depend on 4.

For the proof of both assertions we first consider the case in which4 = Q™ . We
introduce a new norming in the space W;*:

lullwg = Z jxxu(x)dx + llullg.

x|t |Qm
Equivalence of the norms |||-|||W51 and ”'”Wé‘ follows from considerations of S. L. Sobolev

[140] for integral a and can be proved quite analogously for nonintegral a. It follows from
conditions (29) that

e = Pl = lcls,
The theorem of imbedding of the space W into the space C (for pw > 1) and into L, (for
pw < 1) shows that the inequality (30) or, respectively, (31), is satisfied in the cube
A =Q™. To pass to an arbitrary cube 4 we need to implement the similarity

transformation and for this use the property of homogeneity (1.4) of the seminorm
Il .8 ay - Thus Lemmas (5.1.7) and (5.1.8) are proved.

Let = be a partition of the (halfopen) cube Q™ into halfopen cubes. We use P(E; )
to denote the linear set of all functions whose restriction to each of the cubes A€ E is a
polynomial of degree [. We introduce the projection operator Pz defined as follows: v =
Pzu is the function of the class P(E; ) coinciding with the polynomial P,u on each
cube 4 € =.
Theorem (5.1.9)[129]: For every function u € W,*(pw > 1) and for every natural n
there is a partition = € R of the cube Q™ such that |Z| < n and
llu = Peullly,, < Cen™®llullLg, Cs = Co(p, @, m). (32)
Proof: Let = be an arbitrary partition of Q™ into cubes and v = Pzu. Then, according to
(30),

-1

p
sup [u() ~v()| < Gy [maxlaPe™ ully | (33)
XE m =
We consider the following function J,, (4) of cubes 4 ¢ Q™ :
Ju(Q) = ”u”f%(A)- (34)

The function J,, is semiadditive from below and additive  for integral a.

In the square brackets on the right-hand side of (33) we have the partition function
Gpw-1Uw; E) constructed from the function (34). By Theorem (5.1.1) there exists a
partition £ € R of the cube Q™ for which |Z| < n and

Gpw—l(lu; E) = Cln_pw]u(Qm)-
The last inequality together with (33) leads to the estimate (34) with constant Cg =
C,CP™". The theorem is proved.
Theorem (5.1.10)[129]: Let pw < 1,q < q". For every function u € W, and every
natural number n there is a partition £ € ‘R of the cube Q™ such that |Z] < n and
Il = Peullly, < Cn~llullg, € = C(,q,am). (35)

Proof. Consider the partition function G,(J,; E) with a = p(q~! — ¢*~1). According to
Theorem (5.1.1) there is a partition = € R for which |Z| < n and
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max
Gallui B) = pe 2 |APE

Taking Lemma (5.1.8) into account for this partition = and the function v = Pzu, we find
that

—1_ %=1 _ -1
TONully < CuP@ra I y|P, .
p(8) p

lu =il = Dl = vl oy < 2165 1Ga0as P

A€E
-1 q
< [BICIC =@ D ullfy < [Cn@lullg]

where C, = Cf _1C5. The theorem is proved.

Now let o be a finite Borel measure defined on subsets of Q™. We consider
approximation of functions from Wj* in the metric of L,, = L,(Q™; 0),q = 1. In
contrast to Theorem (5.1.9) and (5.1.10), we are here concerned with the rate of
approximation which can be attained by choosing partitions not depending on the function
u (but depending, generally speaking, on the measure o).

Let 90t be the set of all finite Borel measures on Q™ satisfying the condition a(Q™) <
1. By M, (1 < 1 < =) we denote the set of all absolutely continuous measures o on Q™
whose density do/dx belongs to the space L, and satisfies the condition

j (d—a)l dx <1 (36)

dx
Qm

Theorem (5.1.11)[129]: Let pw > 1. For every Borel measure ¢ € 9t and every natural
n there exists a partition £ € R of the cube Q™ such that following inequality is satisfied:
”u - PEu”Lq,U < CBn_y”u”L%l CS = CS(p' q,Q, m): (37)
wherey = wwhenp >qgandy = w —p~ 1+ q~* when p < q. The consent Cg does not
depend on o.
Proof: It is suffices to give the reasoning for the case g = p since the validity of the
assertion of the theorem for g < p follows in an obvious way from the assertion for g = p.
Thus let = be an arbitrary partition of Q™ into (half open) cubes). For every function
u € W, and the function v = Pzu by Lemma (5.1.7) we have

llu — vllgq'a < z <€ AIu —v|%0(A) < CQZ|A|(w —p~1)q ||u||La(A)J(A)_

AeE A€eE
When p < q we have
p~1
< q
D lullg < [Znunm)] < lullf, (38)
A€E AEE

Consequently
max

e =vllf, | < Clllullfy - pe 5{1AI@P 0}
Now we apply Theorem (5.1.1) to the functlon G,(o; E) with a = (w — p~1)q, which
leads to (37). The theorem is proved.

The following theorem extended our result to the case pw < 1. Naturally here
inequality (37) may not be true for arbitrary measures. It remains valid, however, for
absolutely continuous measures whose density is summable when raised to a sufficiently
high degree.

Theorem (5.1.12)[129]: Let pw < 1 and
A1+ qq 1 < 1. (39)
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Then for every measure o € I, and every natural n there exists a partition = € ‘R of the
cube Q™ such that |£|] < n and for every function u € W,* the inequality (37) is satisfied
with some constant Cg = Cg(p, q, A, @, m) not depending on a.

Proof: For every cube A ¢ Q™ and for v = Pyu we find, by Lemma (5.1.8), that

d 1-A71 d 1 A-1
o 1 o
jlu—vlqda = jlu— UWE < {flu—vl‘m"1 R 1dx} {j (ﬁ) dx}

A A A

A

A-1
< A 1—1_1 do_ Ad
< cla| Tl [ () axp

A
Hence for every partition £ of Q™ into cubes, for an arbitrary function u € W,* and for the

function v = Pzu we obtain

1 do* A
e = vl < e Y IR0 j(ﬁ) dx! (40)

A€E A
Now assume that g < p. We note for g < p

—1

D lellfg ey < 121" {znunm} < (217 Jull,. (41)
A€EE A€EE
Together with (40) this leads to the inequality

-1 -1 *—1 do A 1
lu=vlf,, < c 2 fullf ;“ea’;{mw o [(Z) dx} (42)
A
This choice of partition £ is made according to Theorem (42) leads directly to (37) if we
take into account (36) and the fact that |Z| < n.
The case g > p is considered analogously. The inequality (38) is to be used in place
of (41). the theorem is proved.
We make several remarks.
Remark (5.1.13)[129]: If under conditions of Theorems (5.1.11) and (5.1.12) we allow
independence of partition = from the function u, then we can replace (37) by the inequality
lu = Pgully,, < cn™flullq. (43)
Under the conditions of Theorem (5.1.12) this follows directly from (32); under the
condition of Theorem (5.1.12) it can be derived easily from (35). A comparison of (43)
and (37) shows that passing to a method of partitions which does not depend on the
function u yields a worse resut only for g > p.

Theorems on approximation of functions of the classes Vz(f = 1) (Theorems (5.1.15)
—(5.1.17)) are proved by the same procedure, on the basis of Theorem (5.1.15). We note
that the first two theorems (Theorems (5.1.15), (5.1.16)) are easy to prove directly without
using theorems on partition functions.

We restrict consideration to functions u € Vp which are normalized to continuity
from the right, and we assume the basis interval (denoted by X) to be halfopen.
With every function u € V3 (X) we associate a function I, of halfopen intervals A€

X by the rule

L) = |lull? . (44)
V()
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This function plays the same role in the investigation of the classes Vg as the function (34)
for the classes W,*. The function (44) is obviously semiadditive from below. In view of
the assumed normalization of the function u € Vg the following assertion is also true.
Lemma (5.1.14)[129]: Suppose the function u € Vz(X) is continuous from the right and
I, is continuous from the left, and the function I, generated by it according to the
definition coincides with I,,.

Proof: Let A= [x',x"") c X. For a given € > 0 there is a system of points x' <
Xo < xp << x, <x'for Which

me) ~ UG )IF > L) — €. (45)

In view of the continuity from the right of the function u, we can assume that x, > x' in
(45). For every x € (x,,,x"") it follows from (45) that

I,(0) — & < |lull? < I[x',x) < I(A).
V g(xo.xn))
Analogously for x € (x’, x,] we find that
I,(0) — & < |[ull? < L[xx") <1,0).
v p(lxo.xn])

Both assertions of the lemma follows from these inequalities.

1. Let A= [x',x"") c X be an interval. The role of inequality (30) for the functions u €

Vz(X) is played by the obvious inequality
el —uGx)| < lully (46)

Let E be a partition of the basis interval X into intervals A; = [x;_,x;) (i = 1, ...,|E|). Let
Pz denote the operator which associates with the function u € Vz(X) the piecewise-
constant function v € P(Z;0) assuming the constant value equal to u(x;_;) in each
interval A; € E.

Theorem (5.1.15)[129]: Let X = [b’,b"") be a finite of infinite interval. For every
function u € Vz(X) continuous from the right and every natural number n there is a
partition E of the interval X into half open intervals such that |Z| < n and

_ <n B
Ihe = Peuly i <l

Proof: As a result of the invariance of the classes V; with respect to monotonic
replacement of the independent variable, we assume that X = Q* =[0,1). Let E be a
partition of the interval Q* into halfopen intervals. From inequality (46) for every function
u € Vg and the function v = Pzu we obtain that

S G —v@) < [ @] = Gl D 1P (47)
Lemma (5.1. 14) shows that Theorem (5.1.6) applies to the function I,,. Indeed, there
exists a partition Z of the interval Q! into halfopen intervals such that |Z| < n and
GO(iu; g) = GO(Iu; F) < n_llu(Ql)-
The last inequality together with (47) proves the theorem.
Now let o be a Borel measure defined on subsets of the interval X and satisfying the
condition o(X) < 1. If the measure o is considered on halfopen intervals A= [x',x") c
X, then in view of the complete additivity of the measure, the function o(A) = a[x’,x"") is
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continuous from the left. It is also clear that the corresponding function 6(A) coincides
with the measure of the interval (x',x"), i.e. 6[x',x") = a(x’,x"").

In the following theorem we estimate the rate of approximation of functions of the
class Vz(X) by piecewise-constant functions in the metric of the space L,, =
Lo(X; 0),q = 1.

Theorem (5.1.16)[129]: Let X = [b’,b"") be a finite or infinite interval. For every Borel
measure o (¢ (X) < 1) and every natural number n there exists a partition Z of the interval
X into halfopen intervals such that |E| < n and for every function u € V3 (X) continuous
from the right we have

lu = Psully,, < n

—****l

fully wxxs = min(™ 7).

Proof: As in the proof of the preceding theorem, it suffices to consider the case X = Q*.
Let Z be some partition of the interval Q1. For every function u € Vp and the function v =
Pzu form (46) we find that
lu=vlf,, < > 0 @ - vl5@) < Enun‘z 6. (8)
q,0 e X E A = VB(A)
(We note that in (48) it was possible to replace a(A) by cr(A) because the function u — v
vanishes at the left end interval A€ Z.) From (48) we find that when g < S8

ap™*
= vl , < [maxa@)] =08 [znunv ]
BW)

A€EE
< |max 5] [21"9 7 jull?
V@)
And when g > 8
ap™t
lu = vl < [maxa@)] [ full? ] < [max5@)] Il
AE= V) V)

Now we have only to note that by Theorem (5.1.6) applied (with a = 0) to the function
] = o, there is a partition Z(|Z]| < n) such that

max6(A) < n
A€E

-1

The theorem is proved.

For the function u € Vz(X)NC#(X) the assertion of Theorem (5.1.16) can be
somewhat strengthened in the case where the interval X is finite. To simplify the statement
we assume that X = Q1. As a result of the obvious imbedding CH c Vg for g =
max(1, 1), it makes sense to consider the given problem only under the condition 0 <
u<p .

Theorem (5.1.17)[129]: Suppose X = Q! and the exponents u, and g satisfy the
condition 1 < B < q,0 <u < B~L For every Borel measure o(a(Q) < 1) and every
natural number n there is a partition £ of the interval Q! into halfopen intervals so that
|E] < n and for every function u € Vg N C* we have
_ —py1-Bq~t Ba~t  _ -1 -1
lu = Pell,,, <nPL IIuI|; p=ul=Bq ) +q ",
B
where L is the Holder constant of the function wu.
Proof: Let E be a partition of the interval Q1 into intervals A= [x,_1, %), 0 = x5 < x; <
-~ < x)g| = 1. We have
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—
-
—

sup -
hu = Peullf,, < ) oA GO — ulrie—) 195(a)
k=1
IZ]
sup _ P -
< ) xe a Ju0) —ule-y) PLI7F1A,MOPa(ay) <
k=1

|E]
<1 ullf 18 HO PG < 1978 [maxi 8 D) | -l
= Ve & Ve
Now it remains to choose the partition = according to Theorem (5.1.6), which is to be
applied to the function J = o with a = u(q — B). The theorem is proved.

The class of function P(E;1) is a linear set of dimentionality |Z| - v. As a result of
this, Theorem (5.1.11) and (5.1.12) can be interpreted in terms of n-diameters. Indeed, we
have the following assertion.

Theorem (5.1.18)[129]: Under the conditions of Theorem (5.1.11) or (5.1.12) the n-
diameters d,, of the set SW," in the metric of the space L, ,, satisfy the inequality
dn(Wa; Lq,a) <cn’?, (49)
Where the exponent y is the same as in (37) and the constant ¢ does not depend on ¢.

We also note that in Theorem (5.1.11) and (5.1.12) a linear approximation operator
(the operator Pg) is constructed for which (49) is realized. Thus (49) is actually valid for
linear n-diameters of SW,* in the metric of L ,.

All of the above also holds for the classes H, and By

The approximation method used for the proof of Theorems (5.1.9) and (5.1.10) is
different: there the partition Z depends on the function being approximated, and
consequently the class of functions used for approximation is nonlinear. As a consequence
of this C or L,. However, an analysis of the method of proof of these two theorems allows
us to estimate another metric characteristic of the set SW," — its e-entropy.

Theorem (5.1.19)[129]: For the e-entropy of the set SW,* in the metric of L, we have
(for sufficiently small e > 0) the estimate

H (W& Ly) < ce™@ ™ (50)
Herel<g<ooforpw >1land1<q < q" forpw < 1.

First of all we explain the general plan of the proof. The set SW;* is first divided into
classes, with each class comprising those functions whose approximation with a given
accuracy requires, according to Theorem (5.1.9) or (5.1.10), the same sequence of
partitions. The number of classes is estimated on the basis Lemma (5.1.5), after which we
want to estimate the e-entropy of each class. Suppose a sequence of partitions {Z;}k
corresponds to certain class. A crude method for calculating e-entropies (approximation of
the function u by the function Pzu and estimation of the e-entropy of the unit sphere of the
finite-dimentional space P (Z; L)) leads to an axcessive estimate. The method does not take
into account that the polynomials Pu and Ppru for neighbouring cubes A, A" € &
cannot differ form each other very strongly. We will take into account the closeness of
such polynomials P,ru and P,ru as follows. We consider all piecewise-polynomial
approximations Pz u(i = 0,1, ..., k), and in passing form the number i to the number i + 1
we make use of the fact that for cubes A’,A"'€ E;,, contained in the same cube A€ &;,
both polynomials P,r,, and P, differ little from Pju.
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In the proof of Theorem (5.1.19) we require preliminary estimates in a special
metric related to a fixed partition. Let = be some partition of the cube Q™. For the function
u € Lg, along with the usual norm of the space L, we consider the norm

lullgz < llully, < [E]? ullgz, (51)
Which become equalities when g = oo. If ' is an extension of Z then
lullgz < llullge
We establish two auxiliary assertions.
Lemma (5.1.20)[129]: Let E be a partition of the cube Q™ and P = P(E; [, M) be
the set of functions v € P (E; ) satisfy the condition
Ivllge < M. (52)
Then for every e < M we have
Ne(Bs Lgz) < CFl(me=1y¥E, (53)
Where the constant Cq = Co(mm, [, q) does not depend on Z.
Proof: Let R = R(A; [, M) be the set of polynomials r of degree m variables satisfy
the condition
7l 0y < M. (54)
For every e < M we have
Ny (R Lg(B) < Co(Me™)". (55)
Indeed, for the case A= Q™ inequality (55) follows from the fact that the norm || - || Ly(d)

on the finite-dimensional (v-dimensional) space of polynomials is equivalent to the
Euclidian norm on the space of coefficients. To pass to an arbitrary cube it suffices to male
a transformation of the independent variables, which does not affect the size of the
constant Co.

Condition (52) obviously implies condition (54) for polynomials r obtained by
restricting the functions v € P to some cube A€ Z. Here estimate (53) is easily obtained
from (55). indeed, the required e-net is the set P can be formed by means of all possible
“pasting together” of elements of e-nets constructed in the set R(A; 1, M) for all cubes Ae
=. The lemma is proved.

Assume that {Z;}¥ c R is a sequence of partitions of the cube Q™ where each
partition Z; is an extinction of the preceding partition Z;_,. As usual, we write |Z;| = n;-.
let ¢; be numbers satisfying the conditions

b{; <{;1<¢ (b>0;i=0,1,..,k— 1), (56)
And let P, c P(E; 1) (i=0,1,...,k) be certain sets of piecewise-polynomial functions,
where P; is the 2¢;- net for the set #;., in the metric of L,z (i =0,1,...,k — 1).
Lemma (5.1.21)[129]: Under the above assumptions we have
N (PisLgz,) < Crot NG (Poi Lg) =1, ..., k). (57)
The constant C,, = C,o(m,[,q,b) does not depend on the sequence of partitions being
considered or on the numbers ;.
Proof: For every element v € P;., there is an element ¥ € V; we obtain
v = Bllgz,, < v =vllgz,, + IV = dllgz, < 3¢
On the strength of Lemma (5.1.20) we can construct a ;.- net Z;,4, in the set
P(Ei+1; 1, 3¢;) whose cardinality does not exceed the equality
Co ™ (3¢iGin) "M+t < Cigtt (Cro = Co3"b7Y).
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Since v — 7 € P(E;41; 1, 3(;) for some element z € Z;,, we have
lv =5 = zllgz,, < Gir-
All possible elements of the form ¥ + z, where ¥ € V;, z € Z;, 1, form {;, ;- net for the set
P; .4 relative to the metric of the space Lqz,,, - The cardinality of this net is estimated,
obviously, by the quantity
CnH-l‘N% (:Pl' Lq 1)
Thus we have obtained the estimate
Nfi+1(jji+1’ B +1) = Cnlﬂ Nfi (jjl'; Lq,E‘.i )'

From which (57) follows. The Iemma IS proved.

We proceed to the proof of Theorem (5.1.19). We use the notation Ta" (), (8), (9),
(18), and relate it to the partition functions J = J,, defined by the formula (34). In the case
pw > 1 it obviously suffices to prove the theorem for g = oo,

Let n be a fixed number, 0 <n<C,. Set a=pw—1 for pw>1 and a=
p(g~' —q1) for pw < 1.9 < q*. Divide the set SW,* into classes, associating two
functions u,, u, € SW;* with the same if and only if 7,'(J,,) = 7,'(J.,,)- The number of
distinct classes obviously does not exceed the number N(a,n). on the strength of Lemma
(5.1.5), the latter can be estimated as follows:

logz N(a,m) < C3n~ @™ (0<n<Cp) (58)
Now we estimate the entropy of each of the classes. We use S to denote some class. With
all functions u € § we associate the same sequence of partitions {£;}% = 7.7 (J) and also
the same sequence of numbers &; = §;(J,;; a) (i = 0,1, ..., k). The number k is determined
by (22).
’ (Us)ing the notation (9), (34) we observe that we can write the assertions of Lemmas
(5.1.7) (the case g = ) and (5.1.8) (the case g < q”) in the form

lu=Podll,, < Cuud? =01, 0. (59)
Here C;; = C, for ¢ = o and C;; = Cs for g < q*. Taking (19) into account, we obtain
the relationships
-1
lu =Pl . <3 (¢i=cCus? 5i=01,..k) (60)

Which are somewhat cruder but will be more convenient below. We set P; = P5i§ and

note that the sets #; and the numbers ¢; satisfy the conditions of Lemma (5.1.21). Indeed,
from (60) we find that

||P~u Pz u|| < |u Pz, u|| _ +||u—P5iu|| .
q4,%i4+1 q,=

S lg B, it
< (iv1 TG = 20
The inequalities (56) are obviously satisfied in the view of (21).
We estimate the quantity 9t; (#,; L,). Since Pz, = Pym and &, = C,, from (60) and
the imbedding theorem we obtain
|Pgrull, < €aCd™ + lullswg < €€l + Cullullows < Cua (€3 +1))

It follows from (55) that
J\fok(g; Lq ) = ka(? Ly, ) = C12(y n1+ -, (61)
According to (25), (21) and (22)
g+ oy < G387 < 2meys YT < amegyt@r™
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Hence and from (61) we obtain an estimate of the form
Hor (S5 Lys, ) < Cran™ @07 (62)
To obtain the final result we have to pass to estimating the entropy in the original
metric, i.e. in the metric of L,. Setting €, = Zian'l and comparing (62) and (51), we
obtain
He (S Ly) < Cran~ @07,
Further, it follows from (24) and (22) that

g < 8P @D < eppTi-a @)
Thus
Ho(S; Ly) < Cyan~ @D, (63)
where
g=cnp ~q (a7

Finally, combining the inequalities (63) and (58), we arrive at the estimate
H(SWE; Lq) < celp™'=a @)
It is easy to see that the last inequality coincides with the estimate (50). Indeed, the
relationship p~*(a+1)"t —q 1 = w holds for both g = ©,a = pw —1 and for q <
q,a=p(@t—q"1),q" = p(1 —pw)~L. The theorem is proved.
We note that we can establish the estimates
H (HS; Ly) < ce @\ H,(BE Ly) < ce™@”
Is exactly the same way.
Corollary(5.1.22)[129]: When pw > 1 the relationship H,(W,%; €) = e~ holds.
Indeed, the estimate from above obviously coincides with the estimate (50) for g = oo.
The estimate from below for integral a follows from the inclusion C* c W;* and the
inequality obtained in [134]:
H.(C%C) = ce™® ", (64)
For nonintegral a the class C* is not in WW,". However, in this case we can also obtain the
required estimate below of }fg(Wpa; C) with the help of the system of functions which
was used in [134] to obtain (64).

In conclusion we make some remarks about our estimates for e-entropy and
rcdiameters. For simplicity we restrict consideration to the case of the sphere
SWi(QY)considered in the metric ofc(Q1).

The inclusions
Sctcsw} c Sc'/2

imply the inequalities

(€0 < H (W3 0) < 3 (¢ /25 €),

dn(Ch C) < dy(W35C) < dy (CV35C)).
Above we saw that the quantityH . (W,; C)has the same order of magnitude as H,.(C?; C):

H (W3 C) = H(CY;C) = e~

As for the re-diameters, the precise order ofd,,(Wy; C) is unknown. The most natural
assumption is

d (W} C)=d, (C1/2; C) =n~/2, (65)
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This would mean that from the point of view of approximation by linear sets in the metric

of the space C the sphereSW.jis not better than the widest setSC /2. At the same time,
from the point of view of e-entropy, the sphere SW.! is constructed essentially like the
narrowest set SC. We note that for several other metric characteristics-n-diameters in the
sense of 1. M. Gelf and (see [141])- relationships of the form (65) are indeed valid.

Section (5.2): Multivariate BV Spaces of a Wiener—L. Young
In the first, the 1967 pioneering [147], asserts the following:
Theorem (5.2.1)[142]: Given f € W,*([0,1)4),N e Nand 1 < p < g < oo satisfying

k S 1 1
d p q
there exist a partition Ay of [0,1)% into at most N dyadic subcubes and a piecewise

polynomial gy on Ay of degree k — 1 such that

If = gullg < CNT¥/ sup ID°Fl, (66)
a|l=
the constant € > 0 is independent of f and N and C — oo as q tends to the Sobolev
limiting exponent q¢* = (1—5)_1
g exp a=\;"3)

Using the compactness argument from [147] one can prove that validity of (66) for g =
q* implies (incorrect) compactness of embedding Wp" C Lg+ .This leads to the following:
For the special case k = p = 1,d = 2 the answer was given in [151] by A. Cohen,
DeVore, Petrushev and Hong Xu; the case d > 2 was than proved by Wojtaszczyk [156].
The result states:
Theorem (5.2.2)[142]: Given f € W{([0,1)%),d > 2, and N € N there exist a partition
Ay of [0,1)% into at most N d-rings (difrerences of two dyadic subcubes) and a piecewise
constant function g, on Ay such that
If = gnllg: < C(ANT sup IDf I (67)

Hereafter c(x,y,...) denotes a positive constant depending only on the parameters in the
parentheses.

We achieved by using the BV spaces of integrable on [0,1)%functions of arbitrary
smoothness introduced in [149]. To motivate the definition of the corresponding space
denoted by Vp’; we begin with a model case, the Wiener—L. Young space V;,, whose
associated seminorm is presented in the following equivalent form:

1/p
var,f := sup (Z osc(f; I)p> (68)
A
IEA
where A runs over disjoint families of intervals I = [a, b) c [0,1) and
osc(f;1) = sup|f(x) — fF(M)]. (69)

x,yEI
To obtain the required seminorm of V,}ﬁ,denoted by varz’,f(-; Lq) we replace in (68) intervals

by cubes Q < [0,1)%, in (69) the first difference by the k-th one, and the uniform norm by
Lq norm. This gives the following:

Definition (5.2.3)[142]: The seminorm f + varj (f; L,) is a function on L, ([0,1)%)given
by
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1/p
varg(f;L,): = sup {z osc¥(f; Q)p} (70)
Q€A

where A runs over disjoint families of cubes Q < [0,1)¢ and

oscq (f; Q) = sup [1A5]], o, 7

here Aki= ¥k_o(—~1)n (f) §nand Q= {x € RGx +jh€Q, j = 01,...,k}.

The important characteristic of the space Vp’;is its smoothness introduced by the
following:
Definition (5.2.4)[142]: Smoothness of the space V% denoted by s(V,%) is a real number
given by
1 1

s() =a(5—2) (72)

This concept is closely related to difrerential and approximation properties of Vp’;
functions. In fact, a function with s(Vp’g) = s belongs to the Taylor class T; (x) a.e. if 0 <
s <k and tg(x) a.e. if s = k, see [27]. Moreover, as we will see, its order of N-term
approximation in L, ([0,1)%) by piecewise polynomial is N=S/dfor0 < s < k.

In particular, the proof of Theorem (5.2.23) is based on the equality

vE . =wk
Pq P
and the fact that
kY. (L ) _
s(Voqr) =d (p )=k
that allow to derive it directly from the corresponding result for Vp"q*.

The main result, Theorem (5.2.23), is formulated along with its consequences
describing similar approximation results for classical smoothness spaces.

We prove properties of Vp’; spaces essential for the proof of Theorem (5.3.2). The
first result asserts that a function f € Vp’fl can be weakly approximated in L, by C®
functions whose (k, p)-variations are bounded by var’g (f; Lq For the special case of the
space BV ([0,1)%) (= V;'q/q-1), €€, €.9.,[157].

The second result estimates polynomial approximation of order k —1 for f €
Ve (Q'\Q") via its (k, p)-variation; here Q"' Q'are dyadic cubes.

The latter result essentially uses a cover lemma proved in collaboration with I/.
Dolnikov; its proof is presented.

The main result, Theorem (5.2.22), and its consequences for the classical
smoothness spaces. The approximation algorithm used in the construction of the family of
dyadic cubes for Theorem (5.2.22).

Its primary version was developed to prove the similar to Theorem (5.2.23) result for the
N-term approximation of functions from Besov spaces by B-splines; the result is
announced in [145] and proved in [28].

The special case of Theorem (5.2.22) for functions with absolutely continuous (k, p)-
variation was proved a long time ago and announced in [150]. This result allows to prove
all consequences of Theorem (5.2.22) presented but only much later he derive Theorem
(5.2.22) from this special case.
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A cube denoted by Q, Q', K etc. is a set of R% homothetic to the (half-open) unit cube

Q% = [0,1)%. (73)
D(Q) denotes the family of dyadic cubes of Q, i.e., cubes of the form
K=270Q+a) (74)

where j € Z, :={0,1,2,...,}and a € Z%.

Further, P, = P,(R%) is the space of polynomials in x :== (xy,x,,...,x,4) of degree I
while P;(A) denotes the space of piecewise polynomials on a set A € D(Q) of degree L.

In other words,

Pi(D) = {f € Lo(Q); f = Z Pg. 1K} (75)
where {Px}ker < P;. o~

Stipulation (5.2.5)[142]: We drop the symbol Q¢ from the next notations writing, e.g., D,
V%, Lg instead of D(Q?), Vi (@), L, (Q%), if it does not lead to misunderstanding.

The first consequence of the main result, Theorem (5.2.23), immediately follows from
Theorem(5.2.22)(a) and the inequality

1) =<|

~1
here c = c(k,d,q*) and q* := (S — %) :

This and analogous embedding results for Besov spaces.
Let now B’w Bw(Qd) be the homogeneous Besov space defined by the seminorm

1/6
1 t:f;L d
flpo = { jO (W) tt} 77

where k = k(1):=min{n € N;n > 2} and w(:; f; L, )is the k-th modulus of continuity
of f € L,, see e.g., [154] or [152] for its definition.

The first result concerns the “diagonal” Besov space B’-l = B < p < oo,
Definition (5.2.6)[142]: (k, p)-variation of a functlon fe€ LZOC(IR{d)ls a set-function on
subsets § ¢ R%with nonempty interior given by

|f|Wz;‘ if p>1

76
Iflgye if p=1, (76)

Apl

1/p
vary (f S; Lq) = sup {Z E.(f; Q; Lq)p} (78)
Qen
where A runs over all disjoint families of cubes Q c S.

Equivalence of this definition to the previous one follows from the main result of [148]
implying, e.g., the next two-sided inequality with constants depending only on k:

oscy(f; Qs Lg) = Ewn(f;Q;Lg).

It should be pointed out that in what follows all definitions and results involving the space
vk hguse Definition (5.2.6). In particular, the associated seminorm of this space is

1/p
IFllg, = sup {Z E(f; Q; qu}

Q€A
where A runs over all disjoint families of Q c Q<.
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We present some basic properties of (k,p)-variation starting with those following
directly from Definition (5.2.6).
Proposition (5.2.7)[142]: (Subadditivity). Let {S;} be a disjoint families of measurable
sets with nonempty interiors. Then

{Zvar,’;(f;si;Lq)p} < var] ( USL,L> (79)

l
(Lower semicontinuity) If {f;} converges in L, to a function f, then

Varp(f S;Lg) < llm var (fj;S; Ly) . (80)
Proof: Let A := {Q} be a disjoint family of cubes and

1/p
vark(f; A; L) : = {Z Ee(f: Qi L) } . 81)
Q€A

If {A;} is disjointand Ugea, @ © S; , then

z varg (f; Aj; Lg)P Z vary (f; U A;; Lq)p < var] (f; U Si; Lq>

i l
and it remains to take supremum over each A; to prove (79). The property (80) is proved
similarly.
A more substantive property of (k, p)-variation gives the next result.
Proposition (5.2.8)[142]: Let a C* function f belong to the space V% of smoothness s <
k. Then uniformly in S
llm | vary k(f;S; Lg) (82)

Hereafter |S| denotes the Lebesgue d -measure of S.
Proof: Let A be a disjoint family of cubes Q c S. By the Taylor formula
Ei(f3 Qi Lq) < 1Q1VE(f; 0; €) < ek, )] QI T/ max max| D*f|;
al=

this implies

1 k)P
varg (f;8;Lg) < c(k, d) {Zlle(aJra)} flck(qa)-
oeh )
. 1 k 1 . 1
Since p(5+5) > p(5+§) =1, the sum here is bounded by {¥,ealQl} P <|s|VP,
and therefore
Var’g(f; S: Lq) = sgpvar{,f(f; A; Lq) - 0as|S| - 0.

Since the space V,’,‘q is, in general, nonseparable, C* approximated functions form a
proper subspace of V,’,‘q. However, a weaker form of C “approximation is true.
Theorem (5.2.9)[142]: Let a function f belong to Vi, if ¢ < o and to Vi, NC(R%),
other-wise. Assume that Q is a subcube of Q¢ such that

dist(Q; R\Q%) > 0. (83)
Then there exists a sequence {f;} C*°(R%) such that
lim f; = f (convergence in L (Q)) (84)

]—)OO

and, moreover,
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sup varg (fi; Q;Ly) < varg(f;Lg)-
j

Proof: Let f, be a regularizer of f given by

fi= [ fa- ey, x € o (85)
Qe
where ¢ € C®(R%) is a test function, i.e.,
Q= 0,[ odx = 1 and supp ¢ < [-1,1]% (86)
here € > 0 is such that
Q= Q+ [~&¢]* € Q% (87)

see (83).
Now (86) and the Minkowski inequality yield
Ilf — fs”Lq(Q) < |51|1p1||f( —&y) — f”Lq(Q)-
y|<
Since the right-hand side tends to 0 as ¢ — 0 for g < o and for g = oif f € C(R%),
(84) follows.

To proceed we need the following:
Lemma (5.2.10)[142]: It is true that

Blfi@ilg) < | Bl @ - evilg)o(dy. (88)
lyl<1
Proof. It sufaces to prove (88) for g < oo and then pass q to +o.

Let g < o0 and q’ denote the conjugate exponents. By P, (Q) we denote the set of
functions g € L, (R?) such that

lgll, = Lsupp g < Q[ x%gGdx =0, lal < k=1 (89
By the duality of L, and L

Ex(f:; Qs Ly) = sup {Lﬁ:gdx;g € fpkl-l(Q)}- (90)
On the other hand,

[ rax|< [| [ reog+enax|omay (91)

Q R4 |Q—cy

and the function x » g(x +ey),x € Q, clearly, belongs to the set Pi_,(Q —
gy).Therefore for every polynomial m of degree k — 1

J f)gx +ey)dx = f f)(g —m)(x + ey)dx.

Q-¢&y Q-¢y
Combining this with (91) and using the Holder inequality we obtain

[ rgax| < [ 0IF = mll 0 enllall, uyd
Q R4

Taking here infimum over all polynomials m and then supremum over all g € P;,(Q) we

get by (90)
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Ex(f;Q;Ly) < fEk(fg: Q —ey;Ly)p(y)dy.
R

The proof is complete.
To this end, first we estimate vark(f;A;L,), see (81), for the disjoint family of cubes
of Q. Due to (88) the Minkowski inequality gives for such A

varg (fo; 85 Lg) < jvarp(f A —ey;Ly)o()dy.
R4
Since A — ey :={Q — ey; Q € A} is the disjoint family of cubes containing for small &
in Q¢, the right-hand side is bounded by var’g (f; Lq).Taking then supremum over all such
A, we obtain the inequality
varg (f; Q; Ly) < varg(f;Lg)

Unfortunately, the corresponding extension theorem is unknown though it exists for some
spaces V5, e.g., fors(Vyo) = k. The special case of the last assertion for the space
BV (Q%) and even for more general class of domains is presented, e.g., in [157].

This remark leads to the following:
Conjecture. For every f € V% there is a sequence {f;} c C*(R%) such that

lr=£ill, > 0as j— o
and, moreover,

lll_)rglo vary, (f], ) < vary, (f Lq) (92)
Theorem (5.2.11)[142]: Let Q < Q* be dyadic subcubes of Q¢. Then it is true that
E(f;Q°\Q; L) < c(k, d)vark(f;Q"\Q; L,). (93)
Lemma (5.2.12)[142]: Let S;, S, © R? be subsets of finite measure such that for ¢ > 0
51Nz | = & - min{|S;[}. (94)
Then the following is true:
1
Er(f; $:USy; L) < ce‘k“z Ec(f3 S, (95)

For the proof see, e.g., [143].
Lemma (5.2.13)[142]: Let {S;}1<j<y be a family of subsets in R? of finite measure such
that for some ¢ > 0

|S;iNSj1| = emin{|S;|, [S;+1|}, 1<j<N. (96)
Then it is true that
N N
f;USj;Lq < cZEk(f;sj;Lq). (97)
— =

where ¢ = (c(k,d)e FtHN-1,
Proof (induction on N). For N = 2 the result follows from (95). Now assume that (97)
holds for N > 2 and prove it for N + 1.
Setting S™ == UJL; S; we get from (94)
ISVNSy11l = €lSyNSy 1] = e min{|Syl, [Sy111} = e min{| SV, [Sy1 13-
Further, Lemma (5.2.12) implies
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N+1

Ex| f3 U SjiLg | < c(k,d)e™ (Ek(f? SN;Lq) + Ex(f3 Sn+us Lq))-
j=1
while the induction hypothesis gives
N
Ee(f; SN Lo) < (c(k, d)e"‘“)”‘lz Ee(f:S L)
j=1

Combining these we get the result for N + 1.

Theorem (5.2.14)[142]: There exists a cover K of Q*\Q by cubes such that the following
holds:

For every overlapping pair 2 K;,K, € K

1
|K1NK,| = Emin{“{ﬂ: K>}, (98)

and, moreover,

card X < 4(2¢ - 1). (99)
Now we complete the proof of Theorem (5.2.11).
By Lemma (5.2.13) and Theorem (5.2.14) we have

Ee(F0\Q; Lg) < (el D200 N B (£K5 L),
KeX
Moreover, by the definition of (k, p)-variation, see (78),

Ex(f;K; Ly) < varg(f; Q"\Q; Ly).
forevery K € K.
Together with the previous inequality this gets the required result
E(f;Q"\Q; Ly) < c(k,d) vark(f; Q"\Q; Ly).
We begin with part (a) of this result and then derive from (a) part (b).
Let f € VS (= V35(Q)) where

1<p<q< od=2and0<s:=s(If) <k (100)
Without loss of generality we assume that
Flyg, = 1. (101)

Under these assumptions given N € N we prove existence of a cover Ay of Q¢ by at
most N dyadic cubes and a piecewise polynomial gy € P,_;(Ay) such that
If = gnllq < clk, d)N~5/4, (102)
First, let C®(R?) N V5. The proof of (102) for this case begins with the construction of
the cover Ay. This will be obtained by the algorithm presented now.

The important ingredient of the algorithm is a weight W defined on the o-algebra
A(D) generated by dyadic cubes of Q<. This by definition is a function W : A(D) — R,
satisfying the conditions.

(Subadditivity) For a disjoint family {S;} < A(D)

Z W(S) < W (U 50). (103)

(Absolute continuity)

|}si|mo W(S) = 0. (104)
We normalize W by
w9 = 1. (105)
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To prove Theorem (5.2.22)(a) for f € XNC* we define a weight W by
W(S) := vark(f;S;Ly)",S € A(D). (106)
Due to Propositions (5.2.7), (5.2.8)and (101) satisfies the required properties (103)- (105).
In the construction of the algorithm we essentially exploit the canonical graph
structure of the set D regarding as the vertex set while the edge set consists of pairs
{Q’,Q} c Dsuch that Q' < Q and |Q’| = 27%|Q]|. In this case, we use the notation Q' —
Q and call Q' the son of Q and Q the father of Q’.
The set of all 2¢ sons of Q is denoted by D, (Q). This clearly is the uniform partition of Q
into 2¢ congruent subcubes.
Further, a path in the graph D is a sequence
P:={Q > Q; » - - Qn} (107)
The vertices (cubes) Q, Q,, are called the tail and the head of P, respectively. Moreover,
we use the notations
P = [Ql! Qn]: Ql = TP = P_lr Qn =:I_IP = P+' (108)
It is readily seen that the following is true.
Proposition (5.2.15)[142]: If Q' ¢ Q are dyadic cubes of D, there exists a unique path
joining Q" and Q.
In terms of Graph Theory, D is a rooted tree with the root Q<.
More generally, the set D(Q) of all dyadic subcubes of Q € D is a rooted tree with the
root Q.
For N € N and W given by (106) the subset of “bad” cubes of D is defined by
Gy:={QED; WWQ) = N} (109)
clearly, Q¢ € Gy, see (105), and GN is finite, see (104).
The algorithm gives the following partition of G, into the set of (basic) paths, see
Proposition I1. 1 of Appendix II for the proof.
Proposition (5.2.16)[142]: There exists partition By of the set Gy \{Q?} into N paths such
that

W(Hg \Tg) < N~!, B€E By, (110)
and, moreover,
card By <3N + 1. (111)
Now we decompose the remaining part of D
Gy = D\Gy. (112)

To this end we define the boundary of G, denoted by dG, that consists of all maximal
cubes of Gy with respect to the set—inclusion order.

In other words, every Q' € D containing Q € dGy(< Gy) as a proper subset belongs
to Gy. In particular, if Q% is the father of Q € 0Gy, then

W(Q)<Ntand W(@Q*t) = N7 L. (113)
Proposition (5.2.17)[142]: (a) The family {D(Q); Q € dGy} is disjoint and
6= |J @, (114)
QEIGy

I.e, the family is a partition of G .
(b) The following is true
card(dGy) < 29N. (115)
Proof: (a) Maximal cubes are pairwise disjoint. Hence, dGy is a disjoint family.
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Further, cubes Q € dGy are roots of the trees D(Q) from (114). Since the roots are
disjoint, the corresponding trees are as well, i.e., {D(Q); Q € dGy} is a disjoint family.

To prove that the family is a partition of G5 we check that every Q' € G belongs to
some D(Q) where Q € 906Gy .

Let Q' =: Q; » Q, — - > Q4 be the path joining Q' and Q¢, and Q;,i > 2, be the
smallest cube of the path belonging to Gy. Then its son Q;_; belongs to Gy, i.e., Q;_; is
maximal, and Q" € D(Q,_) as required.

(b) Let Q% be the father of Q € Gy and (0Gy)* := {Q*;Q € dGy}. Since Qtis
unique, the set (aGy)™is disjoint.

Further, every father has 2¢ sons and therefore

card(dGy) < 2% card(dGy)™. (116)
Finally, (113), subadditivity of W and (105) imply
N1 card (3Gy)* < z W(Q) <w@Q) = 1. 117)
Qe(aGy)*

This and (116) give (115).
Finally, the required cover Ay is given by

avi= 3| J{ | s 3| a0 ). (118)

BEBy
Due to (111)
card Ay< 1+ 2(3N +1) + 243N + 1) =:c(d)N. (119)
We define the required gy € Pr_1(Ay) using to this end polynomials of best
approximation determined by

If = msllo,cs) = E(f3 S Lg)- (120)
Further, we use for brevity the following notations
Myi= ) mg-lg—mg-1g ,Q€D; (121)
Q'eD,(Q)
and, moreover,
Bt := Hg, B° := Hz\Tg, B~ :=Ts;. (122)
Using this we write
gn = Mpa + z [(mg+ —mpo) - 15+ + (Mgo — mpg-) - 15- + Mp-]. (123)

BEBy
This clearly is a piecewise polynomial of degree k — 1 over Ay, see (118).

Let us note that for B being a singleton B* = {B},B® = @, i.e., the corresponding terms
in (123) and (118) equal My and {{B}, D, ({B})}, respectively.

Theorem (5.2.22)(a) will be derived from the next key result.

To introduce the family A, we use the algorithm for the weight W given by (106).

Since W satisfies the assumptions of Proposition (5.2.16), see (103)-(105), it
determines the finite set Gy < D, and the algorithm gives the partition By of G5 \{Q%} into
the basic paths which in turn determines the required cover Ay, see (118) and (119).

To estimate f — gy we need a suitable presentation of this difference; the next lemmas

are used for its derivation.
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Lemma (5.2.18)[142]: Let f € L,(Q) N C(RY,1 <q < o,Q € D. Then the following
holds

f=me+ ) My (124)

Q'eD(Q)
with convergence in L, (Q).

Proof: LetD;(Q),j € Z, be the partition of Q into 274 congruent (dyadic) cubes,
e.g., Do(Q) = {Q} and D, (Q) is the set of sons for Q. Then P; € Py_, (Dj(Q)) is defined
by

Pj = Z le ) 1Q’ (125)
Q'eD;(Q)
We show that
f—mg= Z(Pjﬂ - P) (convergence in Lq(Q)). (126)

j=0

Let s,, be the n-th partial sum of the series (126). Then

fomg=sa=f=Poa= Y (f-mg)-1q.

Q'eDn(Q)
This and (120) imply that
1/q 1/q
I = m=sll, =1 Do I =moll} oot =1 D, E(FiQiLy
Q'€DA(Q) Q'€DL(Q)
By Theorem 4 of [149] the right—hand side is bounded by
1/d
c(k,d)wy <f;%;Lq(Q)> . Since this bound tends to 0 as n —» o for g < oo and for

g = o and f € C(R%), (126) is proved. Using now notations (121) and (125) we obtain
Pas=B= ) Mg
Q'eD;(Q)
Summing over j > 0 and using (126) we then have

fome=S S Mp= S

j=0 Q'eD;(Q) Q'eD(Q)
The proof is complete.
Now we apply (124) for Q = Q% and present D = D(Q%) as follows:

= > Yel|lJ| D r@)

BEBy QEB QEAGy
see Proposition (5.2.16) and (114). This then implies the identity
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fome= Y S 3 e

BEBy QEB Q€GN Q'€D(Q)

Rewriting the second sum here by (124) we have

fomgu= Y > Mg+ > (f-mg)-1q

BEBy QEB QEGy
Subtracting from here equality (123) for gy we obtain the required presentation

f_gN:ZSB'l' Z(f—mQ)'lqi (127)
BEBy Q€AGy
here we set
SB = z MQ — [(mB+ —_ mBO) . 1B+ + (mBO —_ mB—) ' 1B—]. (128)

Q€B\{B-}
The next result gives the basic presentation of Sg.
Lemma (5.2.19)[142]: The following is true

Sg = Z z (mpo —myr) - 1¢r. (129)

QeB\{B-}Q'€D;1(Q)\B
Proof: We begin with the identity

D oMe= > > [(mg—mg) g+ (mgm —mg) - 15-]. (130)

QeB\{B-} QeB\[B-}Q'eD;(Q)\B
proved by induction on card B.

Let B := [Q1,Qu] ={Q1~ Q2 — - > Qu},ie,B™ := Qy, B := Q. Since D;(Q)\B
for Q € B \{B™} consists of all sons of Q excluding the son belonging to B,

D1(Q\B = D1 (Q{Qi-1}, 1 = 2.
Denoting the right—hand side by D*(Q;)we then rewrite (130) as follows.
n n

z Mo, = z Z [(mg —mg,) - 1q + (Mg, —=my,) " 1¢] (131)
i=2 i=2 Q€D;(Qy)
For n = 2 the right—hand side of (131) equals
[(mq —mg,) - 1o| + (Mg, —my,) - 1,
Q€D;(Q2)

= Z mgo - 1g —my, Z 1o +1g, |-
Q€D,(Q7) Q€eD;(Q2)
Since D1(Q>)is a partition of @, \Q,, the sum in the parentheses equals 1,,q, + 1o, =
14,- Hence, the right-hand side here equals M, , see (121), as required.

Now let (130) hold for all paths of cardinality n > 2. To prove it for n + 1 we write
(131) for the n-term path {Q, = .. = Q,41}and add to it (131) for n = 2 written
equivalently as follows:

Mo, =

(mQ o an+1) ' 1Q + (an+1 o sz) ' 1Qz + (le - an+1) ' 1Q1
QEDI(Q2)
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Together with the equality

n+1 n+1

Z MQi = Z Z (mQ o an+1) ' 1Q + (sz o an+1) ) 1Qz (132)
i=3

o i=3 Q€D;(Q)
this gives
n+1 n+1

Z Mo, = Z z (mg —=mg,,,) 1o + R (133)

i=2 Q€D;(Qy)
where we set
R = (an+1 o sz) ' 1Q2 + (mQ1 o an+1) . 1Q1 + (sz o an+1) . 1Q2
= (le o an+1) ' 1Q1'
Hence, (133) proves the required equality (130) forn + 1.
Now we transform (131) by adding and subtracting mgo(:= mg_\o,)-

This gives

n+1 n n

z Mo, = Z Z (mg —mpo) - 1g + (mpo — mon)z z 1o + (mg, —mp)
i=2 i=2 Q€D;(Qy) i=2 Q€D1(Qy)

1, + (mpo —mg,) - 1,
Since the second sum here equals n Yi-, 19.0,., = 1g,\0, @nd, in the chosen notations,
see (128),

n
Sp 1= Z Mo, = (Mg, —mpo) - 1g, = (mgo —my,) " 1o, (134)
i=2
these two equalities give

SB:ZZ[ z (mQ—mBo)-lQ + R

QEDI(Q)
where the remainder R equals
R = |(mgo —myg,) - 1g,\0, + (Mo —mg,) - 1o, + (Mg, — mpo) - 1¢,]

= [(mq, =mpo) - 1q, + (mpo —mg,) - 1o,] (135)
Since the square parentheses here annihilate, R = 0.The identity (129) is proved.
Proposition (5.2.20)[142]: Let f € V% n C®(R?) where d,p, q,s = s(V,5) satisfy (100)
and (101). Given N € N there exist a cover Ayc D of Q¢ and a piecewise polynomial
gn € Py_1(Ap)such that

If = gnllq < cUe, N/ (136)
and, moreover,
card Ay< c(d)N. (137)
Proof. We should prove that for f € V% n €% (R%)
If — gnllg < clk, N5/, (138)
Due to the presentation (127)
If =anllg < || D Ss|| +|| D (F=mo)-1 (139)
BEBy q QEAGy q

and it remains to estimate each term of the sum.
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Lemma (5.2.21)[142]: (a) Supports of the functions Sg, B € By, are disjoint.
(b) Itis true that

ISglly < c(k, d)varg (f; B¥\B™; Ly). (140)
Proof. (a) Since supp Sy = B*\B~, see Lemma (5.2.19), the supports of S; and S5 are
disjoint if their heads are. Otherwise, one of these (dyadic) cubes, say, B*, embeds into the
other. Then B* embeds into the tail B~ of the path B. Hence, supp Sz does not
intersect supp Sz = BY\B~.

(b) By identity (129)

SB:Z Z (mBo—f-l-f—le)'lQr
Q€B* Q'eDi(Q)
where for brevity we set B* := B\{B™}.
Further, we have

SBz(mBO_f)Z Z 1Q+Z Z (f —mg)1yr.

Q€EB* Q'€Di(Q) Q€B* Q'eDi(Q)
Since the familyUyep- D1(Q) is a partition of B¥\B~,the sum of indicators here equals

1p+ p- and the equality implies
1/q

q
I1Sallg < If = maollyamas +( Y. . llf = mel
Q€EB* Q'eDi(Q)
1/q

= Ex(f; BY\B™;Ly) + Z Z E.(f;Q';Ly)
QE€B” Q'eD;(Q)
By the Jenssen inequality the second term is bounded by
1/p

/ p
Ek(f; Q ;Lq)
Q€B* Q'€D;(Q)
Since the family Ugep-Di(Q) is a partition of B*\B7,this sum is bounded by
Var’g (f; BY\B~; Lg), see the definition of (k, p)-variation in (78).
Moreover, by Theorem (5.2.11)
lIf = mpoll, g0y = Ex(f; BY\B™) < c(k,d) - varg (f; BY\B™; Lg).
Combining this with the previous inequality we obtain (140). Now we use Lemma

(5.2.21) to estimate the first term in (139). We have
1/q 1/q

Doss|| =3 D Usalgt < ctod)] Y vark(£BN\B L)
BEBy q BEBy BEBy
Moreover, by the definition of the weight W, see (106), and the inequality (110) of
Proposition (5.2.16)

vark(f; BY\B~;L,) = W(B*\B™)Y/P < N~V/P,
Combining with the previous inequality and using (111) we finally have the required
estimate
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1/q
z Sell < c(k, d)(N—q/p card BN)l/q <c(k,d) (N—Q/p(gN + 1))
BEBy
< ¢, (k, d)N~VP*/a .= ¢ (k,d)N~5/4,
It remains to obtain the similar bound for the sum over boundary dGy in (139). Due to
Proposition (5.2.17) and (113) dGy is disjoint and, moreover,

vark(f;Q; Ly)” =W (Q) < N1
for every Q € dGy.
This immediately implies

1/q
/q
D (=) i Dl -mll o} =1 . mrioiL)’
QETGy Q€dGy
1/p
< z varg (f; Q; Lq)Q/p < N~YP(card Gy)/14.
QEBGN

Since card Gy < 29N, see (115), this finally gives

z (f - mQ) ' 1Q < Zd/qN_S/d

QEIGy q

as required.
Proposition (5.2.20) is proved.
Theorem (5.2.22)[142]: (a) Let f € 5 (Q%) where the smoothness s == s(V5), see
(72), and d, p, g be such that

d >20<s<kand 1 < p<gq<oo. (141)
Given N € N there exist a cover Ay c D(Q%) of Q¢ with card Ay< N and gy €
Pr_1(Ap) such that

If = gnllg < c(DN/9|f e (142)
The same is true for ¢ = oo, i.e., for s/d = 1/p, if f is uniformly continuous on Q<.
(b) The cover Ay can be replaced by a partition of Q¢into at most N dyadic d-rings.
Proof: (a). We derive the result from Theorem (5.2.9) and Proposition (5.2.20).
LetQ := [1—6,6),6 > 0,and f € )% if g < o and f € V5 n C(R?) if ¢ = o0.Given
e > 0 Theorem (5.2.23) then yields a function £, € C*(R%) such that
I f _f:.»:“Lq(Q) =€ (143)
and, moreover,
vary (fe; Qi Lg) < Ifly . (144)
Since Proposition (5.2.20) is homothety—invariant, it remains true for Q substituted for
Q%. Hence, given N € N there exist a cover e Ayc D(Q) of Q and a piecewise
polynomiale gy € P,_,(Ay) such that
Ife = GnllL o) < cCk, N~/ Ovarf(f; Q; Ly) (145)
and, moreover,
card Ay< c(d)N. (146)
Now let h be a homothety mapping Qonto Q¢, i.e.,
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x — de

h(x) = T

x € RY,

where e := (1,...,1).
Then Ay:= h(Ay) < D(:= D(Q?Y)) is a cover of Q¢ satisfying
card Ay= card Ay< c(d)N; (147)
moreover, gy = gy ° h™1 is a piecewise polynomial from P, _; (Ay).
We will show that for f € V5 with ¢ < oo and for f € VX, NC(RY)
If = gnllg < cle, N9 fl (148)
this clearly implies Theorem (5.2.23)(a) for N = c(d), see (147).
Leth*g := goh™,g € L,(Q%). Then h* : L,(Q%) - L,(Q) and [|h*]| = (1 — 28)%/1.
Further, we write
If —gnllg < I(foh=f) e h g + I(fe — gn) e A7
< (0= 28 (IIf = fell oy + IIf = £ o hlly@ + Ife = Gnlli,@ )
By (145) and (144) the third term in the parentheses is bounded by c(k, d)N‘S/dlflvlgcq

while the first tends to 0 as € — 0, see (143), and the second doesas 6§ — 0 for g < oo,
and also for g = oo, if f is uniformly continuous on Q.

This proves (148) and +Theorem (5.2.23)(a) for N = c(d).

To obtain the result for 1 < N < c(d) we simply set Ay:= {Q%}and gy = mga.Then

If = gnllg = Ex(f; Q% Lg) < c(d)/ N~/ f ¢
and, moreover, card Ay=1 < N.
This gives Theorem (5.2.22)(a) forall N > 1.
(b). We establish the analog of Theorem (5.2.22)(a) with a partition of Q¢ into d-rings of
cardinality at most c(d)N.
To this end we write the piecewise polynomial g, of Theorem (5.2.22)(a), see (123), in
the form

gn = Mepa + Z PQ . 1Q (149)
Q€lAy
where Py € Pj_; and
av=| ) s 13| 2a8 ),
BEBy

see (118).
First, we assume that Ay covers Q4. If Ay is not a partition (otherwise, the result is
clear), it contains at least one tower

(= (=
T := {Q1¢ ---¢Qn} < Ay.
. . cC C
This means that for every 0 < i < n there isno Q € Ay such that QiiQiQiH; here Q, =

®, Q,+1 == Q%; hence, the bottom Q, # @and the top Q,, are, respectively, minimal and
maximal cubes of T closest to Q.

According to this definition (AN\T) U {Q,} still covers Q¢. Moreover, the tops of
different towers do not intersect.

These, in particular, imply that if T;, 1 < j < m, are all towers of Ay and Q(T;) are their
tops, then
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AN\LmJTj | OQ(TJ-)
j=1 j=1

is a partition of Q<. Hence, it sufices to subdivide each Q(T;) into a set of d-rings whose
cardinality equals card T;. We do this for m = 1 and then repeat the procedure for the
remaining towers.

Now let T := {Qli iQn} be the single tower of Aj,. Setting

Ri = Qi\Qi-1, 1=i<n,

where Ry = Q4 as Q, := @, we obtain the partition R,, := {R;}1<i<n Of Q,, := Q(T) into
d-rings.

Further, we define the family of polynomials {Pg } © Px_; given byPg, = (Z?:iPQj) -
1 Rj) 1 < i < n. These definitions imply the identity

n
ZPQi g, = z Pp - 1g. (150)
i=1

RER,
Moreover, the T is single in Ay, hence, R,,U( Ay\T) is a partition of Q¢ into < n + (N —
n) = N d-rings while the piecewise polynomial

gN::de+sz'1R+ z PQ'lQ

RER, QEAN\T
belongs to ?k_l(RnU( AN\T)) and equals gy by (150) and (149).

This gives the result for Ay being a cover of Q¢.

Now suppose that Ay is not a cover of Q4. Then D;(QY)NGE # @, sinceotherwise
D,(Q%) c Gy, i.e., every son of Q¢ is the head of a basic path. By thedefinition of Ay, see
(118), this implies that D;(Q%) c Ay, i.e., Ay is a cover of Q¢, a contradiction.

Further, the set of heads D;(Q%)NGyis contained in Ayc D \{Q%}, and, moreover, it is
nonempty as for otherwise Ay= {Q%}.

Hence, the set
Byi= oy | J2a@D( )60

is a cover of Q¢ and its cardinality is bounded by
N +cardD;(Q%) —1=N+2%4—-1< 29N
To complete the proof it sufices to modify the g, to obtain e Jn €
Pre—1 (AnU(D1(QHNGE) ) such that
If = gnllg < cCe, N4 |f | . (151)
We define Gy by
In = 9n + Z (mQ - de) ' 1Q
Q€eD;1 (QHNGEK

and then prove (151).
Substituting here g, by the right—hand side of (149) and using the notations

s=|Jo  E=pi0H[ )6k
Q€hy
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we have

This, in turn, implies

If = Gillg <11 = awllg + || D (F = mg) - 14
Q€A q
The first summand is clearly bounded by the right—hand side of (151).
Moreover, the second one equals

1/q 1/p 1/p
ZEk(f;Q;Lq)q < ZEk(f;Q;Lq)p < zvar{;(f;Q;Lq)p
Qel Q€A Qeh
1/p
=43 W@
Q€A

Since Ac G§, every W(Q) < N~ 1.
Theorem (5.2.23)[142]: (a) Given f € WF([0,1)?),k e Nand 1 < p < g* < o such
that

k _ 1 1 i 2

d p q’'
there exist a cover Ay of [0,1)% by at most N dyadic subcubes and a family of
polynomials {Pyp}geay, © Px-1 (of degree k — 1) such that

f- Z Po.1o|| < cCk, dNTK/2 sup [|DEF]L,. (152)
Q€hy q* la|=k
(b) Forp :=1, hence, ¢g* = ﬁ the previous holds for f € L, , whose derivatives of order
k are bounded Radon measures.
The associated seminorm of the latter function space denoted by BV*([0,1)9) is given
by
= sup var (D*f). 153
flaye = sup var, (D) (153)

Proof. We obtain this result from Theorem (5.2.22) with s(1)5) =k and g < co. It
asserts in this case that under the assumptions

k1 1
d=>2, 1 <p<gq < oo and E=E—a (154)
there exist a cover Ayc D of Qd of at most N cubes and gy € P_1(Ay) such that
If = gnllg < cCle, ONT/2F] (155)

It remains to replace here |f|Vécq by the Sobolev seminorm |f|WZ;<(Qd) if p > 1 and by the

BV¥(Q%) seminorm if p = 1. This substitution is justified by the two—sided inequality

s Uit 1
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where constants are independent of f, see Theorems 4 and 12 from [149]. The proof is
complete.
Theorem (5.2.24)[142]: Let f € B} and d,p, q, be such that

d>21<p<g< d 11
=21 <p<qg<o and —=-——-—.
d p q
Given N € N there exist a cover Ayc D of Q¢ by at most N cubes and gy € P,_1(Ay)
such that

If = gnllg < cle, N2 f|a.

The second result concerns approximation in the uniform norm (q = o).

The named object is a set-function defined by (70) with Q¢ substituted for a
measurable set § ¢ R of nonempty interior.

In fact, we replace osc,’; by local best approximation, a set-function given for f €
L¢(R%) and S < Ry

Ex(f;SiLq) = méglf_lllf —mllL,(s)-

Proof. We should prove the analog of the previous result for the homogeneous Besov
B} (@),2> 0,Q c R% whose associated seminorm is given by

oI/ A
. Wy (f: t; Lp(Q)) dt
|f|B;} @ = j ) 3 (157)
0
where k = k(1) := min{n € N;n > 1}
We derive this from Theorem (5.2.22) with s(Vp’f]) = Ak =k(A) and g < oo. Hence,in
this case,

1/p

1<p<g< 11 (158)
— OO’ - =—-—-— )
| Pt aTy g
and Theorem (5.2.22) gives under these assumptions the inequality
If = gnllg < cC, ON|f] (159)

with the corresponding gy € Py 1)-1(Ay) and Ay.
It remains to replace here |f|V,§‘q by IfIB{} %):

To this end we use the classical embedding theorem that under the assumptions
(158) gives the inequality

E(f;Q; Lg) < ¢(d, 2,0)If 13 g (160)
see Remark (5.2.26) below for details.

Now let A:= {Q} be a disjoint family of cubes from Q¢. Then (160) implies
1/p 1/p

Z Ek(f; Q;Lq)p <c(d,4q) Z (|f|Bzf} (Q))p

Q€A Q€A
Due to Lemma 2 from [27] the sum in the right—hand side is bounded by c(d, q)IfIB% (0d)-
Taking supremum over A we then obtain the required inequality
|f|V15€q S C(k! Al Q)lleI/} (Qd) (161)
and prove Theorem (5.2.24).
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Theorem (5.2.25)[142]: Let f € B;l and

d=>21<p< d r_1
0 —_—=—,
>21<p and - >
Given N € N there exist Ayc D of satisfying the condition of Theorem (5.2.24) and
gn € Pr_1(Ap) such that

If = gulleo < ¢ DNTHEf | .

Proof. Now we deal with the homogeneous space BI;“ Q)

whose associated seminorm is given by
lI*/d

wi (f3t Ly (Q)
|f|B{}1 @ = j k( t/1+1p )dt (162)
0

where k = k(4).
We prove, under the conditions

A
1 <p<qg=oo, d =2 and -3 (163)

=S| -

existence of the corresponding Ay and gy € P (Ay) such that the next inequality is true:
If — gnllew < c(d, 4, P)N_’leflggl(Qd): (164)

here k = k(A).

Due to (163) 1= g <d and therefore k(1) <d+ 1. Since norms ||f||3g1(Q) =
IfllL, ) + IfIBél(Q) with different k > k(A) are equivalent, it suffices to prove (164) for
k := d + 1 instead of k(A4).

We derive (164) from Theorem (5.2.22)(a) with s(V;%) = 2 and g = oo. This requires
the embedding

B € [ | c®d, (165)

because Theorem (5.2.22) with g = oo holds only for f € ;% N C(RY).But C(R%)
in(165) can be removed as condition (163) implies that BZ;“(Qd) c C(Rd)|Qd, see,e.g.,
[32]. By a reason explained later we begin with the case

A1 d k d d

BF'(RY) c VS (RY), k=d + 1,/1=5. (166)

This will be proved for p = 1 and oo while the general case will be then derived from
those by the method of real interpolation.

If p =1, then (163) implies 2 = d and k(1) = d + 1; moreover, by definition B! =
BZ. In this case (160) is still true, i.e., we have

Eq11(f3 Q5 Le) < c(k, DIf |paey (167)

see Remark (5.2.26) below.

Using the argument used in the proof of (161) we obtain from (167) the required
inequality

flvazi(ray < c(@If |pa(ray

This proves (166) for p = 1.
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Now let p = oo, hence, 1 =§= 0. The arising space B2'(R%) is defined by the
seminorm

|f1po1(ra) = Z”f * ‘Pj”Loo(Rd)
JEL
where {¢;} is a sequence of test functions, satisfying, in particular, the condition

f=Zf*<p,-

]

with convergence in the distributional sense, see, e.g., [32].

This implies

|f|V°g;ro1(Rd) = quﬂgd E;(f;0; L) < ||f||L°o(]Rd) < Z”f * (pj”Loo(]R{d) = |f|ng(Rd)
° j
Hence, we prove (166) for p = oo as well.
Interpolating the embeddings obtained we then have
(B, BiYgp < (VIS V), ; (168)

hereafter R is omitted for brevity.

Taking 6 := % = %we obtain for the left—hand side the embedding
Byt < (B&L B, (169)
see [155].
Now we show that the right-hand side is contained in V21 (R%) with p := %.
Let £ : Lo, (R%) — I, (A) be a map given by
Ef v (Ea(f5 Q5 Leo))gens
here A is a disjoint family of cubes Q c R%.

By definition
1/p

IED @ = | Y Eals QL) | < Iflygssuay
Q€A

i.e., € maps V& (RY)into 1,(A) and [|E]l £ 1,1 < p < co.

Interpolating this sublinear operator by the real method we obtain

IE @)y, S vz vgn), -
see, e.g., [146] for validity of the interpolation result for sublinear operators. Moreover,
(1o, (D), ll(A))epwith 0 =% equals L, (4), see, e.g., [32]. Together with the previous this
implies
1/p

E Ed(f; Q; Loo)p < |f|(Vd+1 V1d+1)
[ceXe oy (o) gp
Q€A

1
where = >
Taking here supremum over all A we obtain the embedding

d+1 yyd+1 a+1
(Vs Viat)g, © Vst
implying the required embedding (166).
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To derive from (166) the similar embedding for Q¢ we use a bounded linear extension
operator
Ext : BJ'(Q%) - By (RY),
with ||[Ext|| < c(4, d), see, e.g., [143], and the restriction operator
Res : VI (RY) — R (QD).

Denoting the embedding operator in (166) by U and composing it with the now
introduced ones we obtain the operator U,a := Ext o U o Res that embeds BZ;“ (QY) into
VAt (@Mwith the embedding constant || Ext|| < c(d, 2).

This proves the required inequality (165) and, therefore, Theorem (5.2.25).

Remark (5.2.26)[142]: We prove inequalities (160) and (167).

Let f €L,(Q),1 < p<q=<o, and my € P,_; be the best approximation of f

in L,(Q). Setting for brevity

w(t): = wy (f;t;Lp(Q)),t > 0,

we estimate the nonincreasing rearrangement of f — m,, as follows

* ol o)
(f — mg) (t)sC(k,d)j S du, t<lol (170)
t/2

see [27].
TakingL,—norm and applying the Hardy inequality we have

I = mell, g, = (7 ~m

L,(0,1Q1)
ol 1/q

1/d
< c(k, d)||7y /4 | j(%) du 171)

0
where 3, u > 0, is the Hardy operator given by
el

H,g(t) = t”j
t
Since ||}[ || < oo for p > 0, inequality (171) is true for 1/q > 0, i.e., for ¢ < oo.

Smce - — 5 == the integral in (171) is bounded by
|1/d 1/q lo|1/@ 1/p

w(®)\?dt w(®)\F dt
ol [ (%) %) sewnen| [ (F2)5) =ctaninge
0 0

Hence, for g <

gu) du
ub u’

||f - mQ”Lq(Q) = C(k’ d’/l)llef}(Q)
which implies (160) as the left-hand side is clearly bigger than Ej (f; @; Lg).
For g = oo we pass in (170) to the limitas t — 0% to obtain

ol
o) du
If —=mqll, @ llm(f my) () < c(k, d, A)f — a5 = 4 ek DIf g

t—

Hence, (167) follows.
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First, let Q be a dyadic subcube of Q* such that
dist(Q, R \Q*) > 0. (172)
The general result will be reduced to this case.
Theorem (5.2.27). Let (172) hold. There exists a cover  of Q*\Q by cubes ° such that
for every overlapping 7 pair {¥;, %,} ¢ X

| K1 NK,| =

Nlr—\

min| 7 (173)

and, moreover,
card X = 4(2% — 1). (174)
Proof. Without loss of generality we assume that Q* = Q¢ = [0, 1)d By (172) the
dyadic cube @ is contained in one of sons of Q¢, say, in [1/2e,e) :=[[%,[1/2,1), e :
(1,1,...,1). Denoting Q := []i= 1[al,b ) we, in particular, have
0<1—-aq; <1/2, 1<i<d. (175)
Now let 7 denote a partition of Q¢ by hyperplanes passing through the vertex a € Q and
parallel to the coordinate hyperplanes. It consists of 2¢ parallelotopes every of which
consists a single vertex £ € {0,1}% of Q4. We enumerate elements of = by these vertices,
so that w := {II.}, €(0,1}¢ and ¢ is contained in the closure of Q¢NII,. Then I, and I,/

have a (unique) common face whenever ¢, ¢’ difrer by a single coordinate. Moreover, the

edge [, £) of Q¢ is orthogonal to this face and intersects IT, and I1, .

Let G(m) denote a graph with the vertex set m = {IlI.}and the edges consisting of pairs
{Il, I, } with a common face. The bijection ¢ : Il <= & is an isomorphism of G ()
onto the hypercube graph T, whose vertices and edges are those of the cube Q<.

In fact, e = @(I1;) and &' = @(I1,/) are joined by an edge in I; whenever ¢ differs from

¢’ by a single coordinate, i.e., whenever Il and Il have a common face and therefore are
joined by an edge in G ().

Further, the graph I'; has a Hamiltonian cycle, i.e., a cycle that visits each vertex of T,
exactly once, see, e.g., [153]. Therefore, G () also has such a cycle denoted by C ().

Now we apply this construction to the parallelotope I, := [[%,[a;, 1) containing Q =
[a,b) := [1%,[a;, b;) and the vertex b substituting for that of a. This gives a partition 7 of
I, into 22 parallelotopes one of which is Q. Then we enumerate them by the vertex set V
of I, such thatb 7 = {I1,,},e and v belong to the closure of I1,N I1,, e.g., [, = Q.

Using the partition T we, as above, define the graph G (@) isomorphic to I'; and denote by
C(#)the corresponding Hamiltonian cycle. Hence, I1,,, I, are neighbours in C(#) if they
have a common face orthogonal to [v, v'].

Now we define a new graph G with the vertex set

V (G) = (m\{Il.}) U(ﬁ\{ﬂa})
where I1, = @, and with the edge set E(G) of two parts.

The first consists of edges from G () and G (7) such that both of their endpoints belong
to either m\{I1, }or 7#\{I1,}

The second part is as follows.

Let I, I,s from C(m) have common faces with I1,(€ C(&)). SinceIl, := [a,e), the
vertex a € Q belongs to Il and to I1,s . Therefore there exist parallelotopes I1,, and I,
from 7 each having one of faces common with that of Q and another
containing in I, and I1,, respectively.
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Then the pairs {Ilg, I1,}, {Il,/, I1,,,} from V (G) form the remaining part of edges from
E(G).
It is now the matter of definition to check that

c=c | Je = conmp| Jemen
Is a Hamiltonian cycle in G.
Now we construct the desired cover K of Q¢ \ Q beginning first with extension

of each parallelotope of C;,i = 1,2, to a cube contained in Q¢ \ Q.
We begin with the set
C; = {ll;; e € {0,13%\ {e}}

containing 2¢ — 1 elements.
Let IT, :== [1%,[af, bf) and I¢ be the maximal edgelength of I1,. Since by the definition of
I, every edge [af,b;) equals either A; := [0,a;)or B; := [a;,1) and |4;| = |B;|, see
(1.4), the maximal edge of T1,, say, [af , b; ), has the form

[a‘l?o’bigo) = Aio = [0’ aio) ' (176)
Now we extend II, to a cube replacing every edge [af, bf) = 4; by [af,bf) = [0, a;, )
and every edge equal to B; by [af,b]) =[1—a;,1) .

In this way, we obtain the cube
d

Q.= | [las.5) < ¢

i=1
of edgelength a;  that contains II, and, moreover, is contained in Q4 \ I1..

In fact, the projections of Q, and I, on the x; —axis are [af,bf) = [0,a; ) , see (176),
and [a; , 1) respectively, that do not intersect.

Thus, we have
Ue=Jo0:om, e=e

E¥e
where U C; == U{IL; 11 € C,}.

Further, we cover U C, similarly. By definition

d
C, = {Hv = n[a}’, b});v e V\{a}}

i=1
where [af, b;) equals either A;: = [b;,1) or B; := [a;, b;).

Let us show that |4;] = |B;|. In fact, Q is a dyadic cube, say, Q := 27"(a + Q%),
a €Z% , and therefore |B;|=2"" while |4;|=1—-b;=2""Q2"—a;—1)=>2""
ash; < 1.

Then the maximal edge of I, say, |a? , b} ) = B; has the form

[af,, b}) = Ay, = [b,,, 1)(A77).

Now we extend I, replacing every [a?,b}) = A; by [a¥,bY) = [1 —1”,1) and every
[a7, bi") = B; by [b;, b; — I”); here [ = 1 — b;_is the maximal edgelength of TI,,.

In this way, we obtain the cube
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i=1
of volume (1) that contains IT,, and, moreover, is contained in Q¢ \ Q.

In fact, the embedding II, c Q, follows from the inequality a; = aj == b; — "
equivalent to

|Bil = by —a; < |4 <17

Further, Q,NQ = @, as the projections on the x; — axis of these cubes [af,b}) =
|b;,1) and [a; , b; ), respectively, do not intersect.

Thus, we have

| Je. e[ o covet and m, co,

This gives the family F := {Q.} U {Q,} of 2(2% — 1) cubes that cover the d-ring Q¢\Q
such that Q,, Q,, are uniquely defined by the corresponding Il > Q,, I, > Q,, from the
Hamiltonian cycle C.

Further, we enumerate the cycle C by integers to obtain

C={;1<i<2-2¢-1}

where IT; := 1, for i =2 -2% — 1, such that IT;, I1;,, are neighbours in C. Hence, they
adjoint to some edge of Q¢ denoted by [v;, v;,4) such that a small shift along this edge of
the smaller parallelotope remains in I1; U ;.; € Q%\ Q.

Now let {Q; 1 <i <2-2% — 1}where Q;:=Q; for i =2 -2%— 1 and the
numeration of the family F is induced by that of C.

Then by the definition of cubes from F the following is true.
(a) U; Q; covers Q*\ Q;
(b) cubes Q; o 11;,Q;4; D 1I;,; adjoint to the edge [v;, v;+1)and the shift along this
edge of the smaller one, say Q;, by its length remains in Q;,,; < Q%\ Q.

Let then Q;+1/,denote the image of Q; under such a shift by the one—half of
its length. Then the cover X := {Q;, Q;+1/2} of Q% \ Q consists of 4(2% — 1) cubes
satisfying the inequality
1Q;NQi+1/2]1 2 1/2min{|Q; |, |Qi+1/21}
forj =i,i + 1.
Hence, Theorem (5.2.27) is proved for Q contained in the interior of Q¢, see (172).

We describe the algorithm giving as output the cover Ay in Theorem (5.2.22). In
what follows, we freely use terms and definitions, e.g., weight, dyadic tree D :=
D(Q%), paths etc. Proofs of some statements below will be left to the reader (all of them
are presented in details in [24]).

Let W: A(D) — R, be a subadditive absolutely continuous weight normed by the
condition
we" = 1. (178)
Then the set
Gy := {Q € D;W(Q) =N"1},N €N, (179)
is a finite rooted subtree of D with the root Q¢. Hence, every path connecting
Q € Gy and Q¢ is unique and belongs toGy.
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Further, let Gi"™ be the set of minimal elements of G, with respect to the set—inclusion
order.
Hence, every Q € G, contains properly some minimal cube and a son Q' of such a cube
satisfies
w(@"H <N~ L
In particular, GF™ is disjoint and as every disjoint subset of G, has at most N elements.
Somehow enumerating G | say,
Ggin = {Qi}lsiSmN
where
my:= card G < N, (180)
we then denote by L; a (unique) path in Gy joining Q; and Q2.
By the definition of Gn

my
Gy = U L;. (181)
i=1
We divide each L; into more small paths
i-1
po=tA| Jy 1 <ism,
j=0

where L, := {Q%}.
Lemma (5.2.28)[142]: ([24]) (a) Family {P;}1<i<m,, is a partition of G \{0%}.
(b) Every Pi is of the form
P; = [Q;, Q7)) = [Q; QF I\{Q;’} (182)
where Qf is the tail of a path L;NL; with j < 1.
The set

ew =104 | [0S stz
contains at most my + 1 elements called contact cubes.

Now we refine G, subdividing each P; by contact cubes from P;NCy. In this way, we
define a set of subpaths [Q’, Q") where Q' is either a minimal cube or a contact cube, and
Q"' is a contact cube.

Denoting the set of these subpaths by P, we obtain from (180)

card Py < 2my+ (my+1) = 3my + 1. (183)
Finally, we divide each path P € Py in the required basic paths. To this end, we use an
auxiliary weight defined on paths P = [T, ,Hp] of D by
W(P):= W(Hp \Tp). (184)
Now we define for each P € Pya family of vertices (cubes) {Q;(P) € P; 1 < i < i} using
induction on i.

We begin with Q;(P) := Tp and then having Q;(P) define Q;,,(P) as a vertex in the

half—open from the left path

(Qi(P), Hp] := [Qi(P), Hp] \ {Q:(P)}

W([Q:i(P), Qs1(P)D) = N7,
W([Q:(P), Qi+1(P))) <N7™.
Then we define the i-th basic path B;(P) by setting

satisfying the conditions
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B;(P):= [Q:(P), Qi+1(P)). (185)
The vertex Q;,.,(P) may be undetermined, if

W([Qi(P),Hp]) <N7!
In this case, we complete induction setting ip := i and defining B;(P) to be equal to
[Q; (P), Hp]. However, to preserve formula (185) for this case, we define Q;,,(P) as the
father of H, . Denoting it, say, Hp (€ P) we define B;(P)for this case by (II.8) with
Qi+1(P) == Hp and:=ip.

Hence, the induction has been completed with Q;.,(P) = Hp or Q;,;(P) = HZ for =
ip . In this way, we obtain a partition of P by subpaths B;(P) = [Q;(P), Q;4+1(P)),1 <
i <ip .Letussingle outthat if Q;;; = Hp , then B;(P) may be a singleton {H,,}.

By definition these subpaths satisfy

W([Qi(P), Qi1 (P)D) < N1,
(186)
W ([Qi(P), Qi+1(P))) = N1
for 1<i<ip—ep Where gp :=0if Q;,,1 = HF and &p := 1 otherwise; in the first
case, only the first of inequalities (186) holds.
Collecting all the basic paths we obtain the refinement of Py given by

By = {Bi(P); 1<i<ip,P €Py} (187)
The next result (Proposition (5.2.16)) gives the output of the algorithm.
Proposition (5.2.29)[142]: (a) By is a partition of G\ {Q%}.
(b) Forevery B = [Tp,Hp] € By
W(Hp\Tp) :=W(B) < N™L. (188)
(¢) The following is true
card By < 3N + 1. (189)
Proof. (a) By is a refinement of the partition Py, hence, it is also a partition.
(b) is given by the first inequality in (186) and the definition of B;(P).
(c) Let {P;} be a strictly monotone sequence of subpaths in a path P, i.e.. the head of P;
is a proper subset of the tail of P;, . Then by the definition of I/, see
(184),

> W(P) < WHAT)

i
Now let B;(P) := [Q;(P),Qi+1(P)),1 < i <ip , be the partition of P € Py into the
basic paths. By the second inequality (186)
iP_EP

(ip —ep)N7' < z W ([Q:, Qi41])- (190)
i=1

Since the sequence {[Q;, Qi+1]}1<i<i,—e, has multiplicity 2, it can be divided into two
strictly monotone subsequences. Hence, the right-hand side of (190) is bounded by
2W (Hp\Tp). This implies

card By = Z ip < 2N Z W (Hp) + Z Ep

PEPy PEPy PEPy
Since the set {Hp}pep,, is disjoint, Ypep, W(Hp) < W(Q?) = 1.
Further, ep = 1 if and only if the endpoint of B;(P) with i = ip is Hf . By the
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definition of Py every head Hp of P € Py is a contact cube. Hence,

Z ep<cardCy <my+1<N+1,
PEPy

see (180).

Combining this with the previous estimates we finally get

cardBy < 2N+ N+1 = 3N+ 1.
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Chapter 6
Maximal Function Characterization for Hardy Spaces and of H},N (R™) and

BMO, (R™)

We show the characterizations of Hardy spaces associated to self-adjoint operator,
via atomic decomposition or the nontangential maximal functions. The proof is based on a
modification of a technique due to A. Calderon [163]. While for the space BMO,, (R™)
(which contains the classical BMO(IR™)) we show that it can be characterized in terms of
the action of the Riesz transforms associated to the Neumann Laplacian on L*(R"™)
functions and in terms of the behavior of the commutator with the Riesz transforms. The
results obtained extend many of the fundamental results known for H(R™) and
BMO(R™).

Section (6.1): Associated to Nonnegative Self-Adjoint Operators Satisfying Gaussian
Estimates

We development of Hardy spaces on Euclidean spaces R™ in the 1960s played an
important role in modern harmonic analysis and applications in partial differential
equations. Let us recall the definition of the Hardy spaces (see [165], [167], [74], [176],
[177], [19], [84]). Consider the Laplace operator 4 = — Y7 ; 87, the Euclidean spaces R™.
For 0 < p < oo, the Hardy space HP (R™)is defined as the space of tempered distribution
f € LY(R™) for which the area integral function of f satisfying

1/2
@ _ 2 dydt
Sf(X) = (j j |t2Ae tZAf(y)| tn+1>
0 ly—x|<t
belongs to LP (R™). If this is the case, define
If lzerry = ISFlLp vy (2)
When p > 1, HP(R") = LP(R™). For p < 1, the space HP(R™) involves many different
characterizations. For example, if f € L1(R™), then
®
f € HP(R™) S sup|e‘t2Af(x)| € LP(R™)
S sup e ()] € PR

ly—x|<t

(1

(iii)
;)f has a (p, q) atomic decomposztlon

f= ZAaJ wzth2|/1| < oo 3)

Recall that a function a supported in baII B of R" |s called a(p,g)—atom, 0<p<1<
1 1

q<o,p<gq,ifllallag < |Ble », and [,x%a(x)dx = 0, where a is a multi-index of

order |a| < [n(% — 1)], the integer part of n(% — 1)(see [165], [176], [19]).

The theory of classical Hardy spaces has been very successful and fruitful in the past
decades. However, there are important situations in which the standard theory of Hardy
spaces is not applicable, including certain problems in the theory of partial differential
equation which involve generalizing the Laplacian. There is a need to consider Hardy
spaces that are adapted to a linear operator L, similarly to the way that the standard theory
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of Hardy spaces isadapted to the Laplacian. See [58], [160], [161], [168], [71], [169],
[171], [172], [173], [174], [53].

We assume that L is a densely-defined operator on L?*(R™)and satisfies the
following properties:
(H1) L is a non-negative self-adjoint operator on L?(R™);
(H2)The kernel of e~t, denoted by p,(x,y), is a measurable function on R™ x R™ and
satisfies a Gaussian upper bound, that is

x — 2
(GE) Ipe(x,y)| < Ct™ 2 exp (—l Ctyl >
forall t > 0, and x, y € R", where C and c are positive constants.

Given a function f € L?(R™), consider the following area function S, fassociated to the
heat semigroup generated by L

°° ) dydt\"’”
S.f(x) = (fo fl | |t2Le—t Lf(y)|2 tT};lt) ,x € R" (4)
y—x|<t

Under the assumptions (H1) and (H2) of an operator L, it is known that the null space
N(L) = {0}(see [171]) and the function S, is bounded on L? (R™), 1 < p < oo and

”SLf”Lp(Rn) = ”f“Lp(]Rn)

See [159], [58].
Definition (6.1.1)[158]: Suppose that an operator L satisfies(H1)—(H2). Given 0 < p < 1.
The Hardy space st([R") is defined as the completion of {f € L*(R™) : [ISLf || »gn) <
oo} with norm

1F e ny = ISLFllpny
To describe an atomic character of the Hardy spaces, let us recall the notion of a (p, q, M)-
atom associated to an operator L [160], [168], [171].
Definition (6.1.2)[158]: Given 0 <p<1<g <o, p<gq and M € N, a function a €
L*(R™)is called a (p, q, M) —atom associated to the operator L if there exist a function b €
D(ILM)and a ball B ¢ R™ such that

(i) a=IMp;
(i) suppl*h c B,k =0,1,..., M;
(i) [|[ZL)*b|| < rgM|B|M4-1/P k = 0,1,..., M.

LI(R™) =
The atomic Hardy space Hf,at,q,M(]R%") is defined as follows.

Definition (6.1.3)[158]: We will say that f = ¥, 4;a; is an atomic (p, q, M)-representation
(of ) if {A;}7%o € ¢*, each a; is a (p, q, M) —atom, and the sum converges in L?>(R™). Set
Hf’at,q,M(]R{"): = {f: f has atomic (p,q. M) — representation}

: s
with the norm ”f”Hf,at,q,M (R™)given by
1/p

o

inf lejlp f = Z Aja;is an atomic (p,q. M) — representation

J=0 J=0

(00

The space Hﬁat,q,M(R") Is then defined as the completion of Hﬁat,q,M(Rn) with respect to
this norm.
Obviously, H[ .o m(R™) S H} o w(R™) when 1<gq; <q,<o. Under the

assumption that an operator L satisfies conditions(H1)—(H2), S.Hofmann, G. Lu, D.Mitrea,
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M .Mitrea and obtained a (1, 2, M) —atomic decomposition of the Hardy space HLl,S(JR") :
and showed that for every integer M > 1, the spaces H s(R™) and H .., y(R™) coincide
(see [171]). In particular,

1z (R = Df g, (R™)
A proof of an equivalence between the spaces H ¢(R™) and HJ . , y(R™for p < 1was
shown by Duong and Li in [168], and by Jiang and Yang in [175].
Given a function f € L?(R™), consider the non-tangential maximal function associated to
the heat semigroup generated by the operator L,

fiG) = sup le=t"Lf ()]

y—x|<t
We may define the spaces HﬁmaX(Rn), 0 <p < 1las the completion of {f €

L*(R™) : |If |l prny < co}with respect to LP-norm of the non-tangential maximal
function; i.e.,

||f||1-1£max(uzzn) = |Ifz e wmy
It can be verified (see [171], [168]) that for all ¢ > p with 1 < g < oo and every number

M > %(%— 1), any (p,q, M)-atom ais in HﬁmaX(R") and so the following continuous

inclusion holds:

Hl arqm(R") € HE pran(R™) (5)
A natural question is to show the following continuous inclusion: Hp .. (R™) S

H} arqm(R™). It is known that the inclusion H . (R™) € H[ . . y(R™). holds for certain

operators including Schrédinger operators with nonnegative potentials via particular PDE
technique (see [169], [74], [171], [172]). However, this question is still open assuming
merely that an operator L satisfies(H1)—(H2). We give an affirmative answer to this
question to get an atomic decomposition directly from HﬁmaX(Rn).

We should mention that using the theory of tent spaces, a (p,2, M)-atomic
decomposition of the Hardy space HZS(R”)in terms of area functions was given in [168],

[171]. We shall use a different argument to build a (p, oo, M)-atomic decomposition of the
Hardy spaces HZmaX(R”) in terms of maximal functions. Our proof is based on a

modification of a technique due to A.

Calderon [163], where a decomposition of the function F(x,t) = f * ¢,(x) associated
with the distribution f was given, and convolution operation of the function F played an
important role in the proof. In our setting, there is, however, no analogue of convolution

operation of the function t2Le "L f(x), we have to modify Calderon’s construction and
the geometry in conducting the analysis (see Fig.1). On the other hand, we do not assume
that the heat kernel p;(x,y) satisfies the standard regularity condition, thus standard
techniques of Calderon—Zygmund theory ([164], [19]) are not applicable. The lacking of
smoothness of the kernel will be overcome in Proposition (6.1.7) below by using some
estimates on heat kernel bounds, finite propagation speed of solutions to the wave
equations and spectral theory of non-negative self-adjoint operators.

Throughout, the letter “c” and “C” will denote (possibly different) constants that are
independent of the essential variables.
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Recall that, if L is a nonnegative, self-adjoint operator on L?*(R™), and E.(A)
denotes a spectral decomposition associated with L, then for every bounded B orel
function F: [0, ) — C, one defines the operator F(L): L*(R™) - L2(R") by the formula

F(L) = j FQ)AEL (D) ©)
0

In particular, the operator cos(tvL)is then well-defined on L?(R™). Moreover, it
follows from [166]that the integral kernel K ¢z, Of cos(tVL) satisfies

supp K cos(evzy € {(6,y) € R" X R™: [x — y| < ¢} (7)
the Fourier inversion formula, whenever F is an even bounded Borel function with the
Fourier transform of F, F € L*(R), we can write F(+/L)in terms of cos(tVL). Concretely,
by recalling (6) we have

F(V1) = (2m)! jooﬁ(t) cos(tVL) dt

which, when combined with (7), gives
Koy () = (2m)7! j F (K cos(eyr) (2 Yt (8)

lelz]x—yl

Lemma (6.1.4)[158]: Let ¢ € Cy,°(R) be even, suppp c (—1,1). Let @ denote the
Fourier transform of ¢. Then for every k = 0,1, 2,..., and for every t > 0, the kernel
K ¢21ycoeyny (% ¥) of the operator (t2L)*®(tv/L) which was defined by the spectral the-
ory, satisfies

Supp K ;21 y¢e eIy S {(x,y) ER" X R™ |x —y| < t} (9
and

|K(t2L)K(D(t\/Z)| S Ct_n (10)

forall x,y € R".
Proof: For the proof, we refer it to [170]and [171].

Lemma (6.1.5)[158]: Assume that an operator L satisfies(H1)—(H2). Let R > 0, s > 0.
Then for any € > 0, there exists a constant C = C(s, €) such that

2
— s n .12
| [Keem@en| @+ Rix=yiedy < crrirR 2.,

forall F € C2"¢(R) with supp F < [0, R], where C. is a constant independent of Fand R.
Proof: For the proof, see Lemma 7.18, [80]. See also [97].

Next we show the following result.
Lemma (6.1.6)[158]: Assume that an operator L satisfies(H1)-(H2). Let y; € S(R) be
even functions, ¥;(0) = 0,i = 1, 2. Then for every n > 0, there exists a positive constant

C=C(nny, ;) such that the kermel Ky iy, vy (6 Y)of W1(sVD), (tVL)
satisfies

||K ” < C ( min(s, t) ) max(s,t)" 1
s (VD (VD (O V|| = max(s,t) / (max(s,t) + |x — y|)n+" (1D
forallt > 0and x,y € R™.
Proof: By symmetry, it suffices to show that if s < t, then
S t"
|K1/’1(S\/Z)1/J2(f\/z)(x’ y)l =C (Z) (t + |x — yl)n+77 (12)
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To do this, we fix s,t > 0 and let ¥(tx) = §¢1(SX)¢2 (tx), and S0 P4 (sVL)Y,(tVL) =
%'P(tx/f). Let us show that

Ky <ct™,  xyeR" (13)
Indeed, for any k¥ € N, we have the relationship
1 (00)
(I+t2L)* = & 1)'f e Ut Lgmuyk-1gy (14)
EESTOA

and so when k > n/4,

1 [00]
21\— —ut?L —u,, k-1 -n/2
I+ D)™ ez @ryor= @y < G, fo le ™l o gy oy~ < CET

NOW ”(1 + tZL)_K”Ll(Rn)_)LZ(Rn) = ”(I + tZL) K”Lz(]Rn)—)Lw(]Rn) S Ct_n/z, and SO
||lp(t\/z)||L1(]Rn)_)LOO(RTL)
—K||2
< ||a + 2Ly eV, wyozan U+ 2L) 7N 2 gy oo ey

Since ; € S(R) and 1;(0) = 0, we have that (sA) 1y, (sA) = fol Yi(sAy)dy € L®(R),
and then the L? operator norm of the last term is equal to the L (R) norm of the function

Pl /__ U [t + 21202 (eI (1D

which is uniformly bounded in t > 0. This implies that (13) holds.
Next, we write F(tA) = Y (tA)(1 + t2A*)™, where m > n/2. Then we have ¥ (tVL) =

F(tVL)(1 + t2L)™™. From (14), it can be verified that for m > n/2, there exist some
positive constants C and csuch that for every t > 0, the kernel K q.2;y-m(x,y) of the

operator (1 + t2L)~™ satisfies

(@ + 22y (¢/12]) =

Ix -yl
o)
which, in combination with (1 + @) < (1 +222hq 4 22 Z') shows

x = y1\"""

n+n
X —
<| | t}’l)

x —y\"""
< n
<C(Ct fRn |KF(t\/Z)(x,Z)| (1 + " > dz
By symmetry, estimate (12) will be proved if we show that
<
JRn |K pevm) (2. 2)| (1 T dz < C (15)

Let ¢ € C°(0,0) be a non-negative function satisfying supp ¢ < [%, 1]and let ¢ =1 —
221 0(274A). So,

C
|K (1402)-m(x, y)| < n €% p(—

Ix z|

j Kp(evr) (x, 2)K (14¢21)-m(2,y) dz
Rn

0o() + Z 02 ) =1, VA>0
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Let FO(tA) denote the function ¢q(tA)F(tA) and for £ > 1, FE(tA): = @ (2 °tA)F(tA).
From (13), the proof of (15) reduces to estimate the following:

j]Rn |KF(t\/Z)(x, Z)| (1 n |X ; z|)"+n .

n+n
2 |x — z|
<C +j |KFo(tﬁ)(X,Z)| 1+ ; dz
Rn

+ZJ|‘ y F"(t\/_)(x Z)| ( a _Z|> dz =:C +ZI{; (16)
= lx—zl2

By Lemma(6.1.5)

, Ix — 2| 3n+2n+1
Iy < Ctn/z(f |K poryp (%, 2))| (1 +— > dz)"/? < C[|81/FO ()] znranen
]RTL
Since ¥, € S(R) and 1, (0) = 0, we have that (sA) 1y, (s1) = fo Yi(sAy)dy € S(R).
Then we have
I < Clleo YDA+ 2™ 5,510

<C (17)

96D fo o1(s Ay/t)dy Ao (D + 22)™]

For the term I,, we use Lemma(6.1.5) again to obtain

I, < Ct™?( j |K peryz(x, 2)| ( ) dz)1/?
IRTL

C§n+2n+1

t

5 2£|X . Zl 3n+2n+1
< cen/2pmtGnrtL/2)( j |K peryz (%, 2)] (1 +— > dz)'/?
<C2" {’(3n+2n+1/2)2{’n/2||6 ¢/t F{’(t )”
It can be verified that for y; € S(R),i =1, 2,

1
o) J p1(2%s 2, /t)dy [2f2¢,(2¢2) (1 + 2212%)™|

n+2n+1

||¢62€F||C§n+2n+1 =

contant
<2 ( n+2n+1)2 20
which gives
Z I, < Cz C2—tBn+2n+1)/29n/27 ( n+2n+1)2 20
=1
< Cz 27 < (¢ (18)

Putting (17)and (18)into (16) estlmate (15)follows readily. The proof of Lemma(6.1.6)is
complete.

We devoted to the proof of Theorem(6.1.8), which give a (p, o, M)-atomic
representation for the Hardy spaces Hﬁmax(]R”). To do it, we begin with the following
proposition.

Proposition (6.1.7)[158]: Let 0 < p < 1. Let L be a non-negative self-adjoint operator on
L*(R™) satisfying Gaussian estimate (GE). Let ¢; € S(R) be even functions with ¢;(0) =
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land a; > 0,i = 1,2. Then there exists a constant C = C(n, ¢4, ¢, a1, @,) such that for

every f € L*(R™), the functions ¢, of = suply —x| < ale:;(VDf QI @ =12
satisfy

f”Lp(]Rn) S f”Lp(Rn) (19)

As a consequence, for any even function ¢ € S(R) with ¢(0) =1 and a > 0,
CHIfE N r mry < ||§0z,af”Lp(]Rn) < 1fL llpmmy

Proof: Recall that forany 0 < a, < a;4,

n/p
i ey <€ (1422)

for any ¢ € S(R) ([164]). Now, we let Y(x) := ¢p,(x) — ¢,(x), and then the proof of
(19)reduces to show that

f ”Lp(]Rn)

f”Lp(Rn) = C||(p;,L,1f”Lp(Rn) (20)

Let us show (20). Let ¥(x) =x?*®(x) where @(x) is the function as in
Lemma(6.1.4)and 2k > (n + 1) /p. By the spectral theory ([53]) we have

f=Coy, jo W (sVL) s (sVL )f—

Therefore,

® d
weDfe) = ¢ | (WVDP (VD)) oo (VDI )

Let us denote the kernel of Y (tVL)W (sVL) bY Ky, iyw(syy (% ¥)- Then for 1 € (E 2K),

d d
j Kw(tv_)w(sf)(x w, Z)<P2(S\/—)f(z) zds

sup |1/J(t\/_)f(x — w)| =C sup

lw|<t
< C sup J
lw|<t ]R:_H'l

% 02 (sVD)f )| (1 £

x — 2|\
Kl/)(t\/Z)‘I’(S\/Z)(x - “)'Z)| <1 + S >
z|>_'1 dzds

S

-2
< sup|p, (sVL)f (2)| (1 + x ;Z|>

J X ( )|<1 N |x—z|>'1 dzds (21
X Su X—Ww,Z
Next we will prove that
A
f K ( )|(1+|x_z|> dzds _ . 22)
Su X— W,z =
oloe Sy | D)) S s

Once estimate (22)is shown, (20)follows. Indeed, it follows from (21), (22)and the
condition 1 € (g, 2k) that
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Sup. [W(EVLf (x — w)|

Lar | o any = o

_ Z|>—ﬂ

<C|l sup lo2(tVD)f ) = CllozLaf o geny
ly=xI< L2 (R™)

where we used Theorem 2.4 of [164]in the second inequality.

Let us prove (22). Note that |w| < t. We write

C)" VDD o(VD)] if s <t
Y(eVL)®(sVL) =1 . > t
() [ (VD 26T if s> ¢
We then apply Lemma(6.1.6)to obtain that for n € (4, 2k),

< C ||sup|p2(sVD)f (2)] (1 + x

LE(R™)

K | < cmi (s)Zk (t)z max(s,t)"
PeVDwE/n (T @ 2)] < Cmin t/ '\s/ J(max(s,t) + |x — w — z[)"*"
This, together with the fact that
max(s, t)" max(s, t)"
f (s, ) (1 +u> du <j (s, 1) du
|ul=s lul=s

(max(s,t) + [u — w[)™*" S (max(s,t) + |lu — w|)*"

Shows

jx — z|\"
s\2k o rty?
<o) ()]
min (8|

max(s, t)" |ul
* Ju,>s (max(s, t) + |u — w|)™+7 (1 + —> du )] (23)

To estimate the integrals over |u| = s, we note that if s > t, then we use the fact
thatn > A and s + |u —w| >t +|u —w| =|w| +|u —w| = |u| to obtain

A
j s 1_|_|| g <21f s Iuld
fulzs (T + |u — @)™+ v= t+ |u—wphrt1 st

lulzs

A
sj LA U A (24)
|u|25t + |U,|n+n S/1

If s < t, then it follows from the fact that t + |[u —w| = |w| + |[u — w| = |u| and n>A,
2

t" ul\* t" lul

f 1 +— du < 2’1[ du

ujzs (€ + | — @)™+ - ulzs (€ + [u — @)™ sA
<f th Iul’ld - C(t)” .
< s £+ [u|7*n 52 ux= S (25)

Putting estimates (24)and (25)into (23), we have obtained that for any |w| < t,
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- zl\'

om0 . 5 (7 )

Observe that n < 2k. It follows

2
sup f K G- z)|< |x—z|> dzds
|w|<t - Y(AVL) P (VL) S
S t . ds

< : “N2k—n N2y T <

< cfo min(()?", (1) =< ¢
which shows estimate (22), and the proof of Proposition (6.1.7) is end.
Theorem (6.1.8)[158]: Suppose that an operator L satisfies(H1)and(H2). Fix 0 < p < 1.

For all g >p with 1<q <o and for all integers M>§(%—1), we have that
(R™) < Lat om(R™), and hence by (5),

Lmax(Rn) = ath(Rn)
Proof. It suffices to show that for f € HY __(R™) n L*(R™), fhas a (p, oo, M)atomic

(
,ymax
representation. We start with a suitable version of the Calderon repro-ducing formula. Let

@ be a function defined in Lemma(6.1.4), and set ¥(x) := x*®(x),x € R. By the

spectral theory ([91]), for every f € L?(R™) one can write
1/€

° dt dt
f=cy J ‘P(t\/f)tZLe_tzLT = lim w(tVL)t2Le 'L = - (26)
0 €

with the integral converging in L?(R™).
Set

S

L max

o

n(x) = quj
1
with n(0) = 1. It follows that n € S(R)is an even function, and

b
n(ax) —n(bx) = Clpj tzxz‘P(tx)e_tzxzf?
By the spectral theory ([91]) again, one has ’
b
Cy j Wtﬁ)tZLe-f“f% = 1(aVL)f () — n(bVL)f (x) 27)

dt *®
tzxz‘P(tx)e_tzsz = clp] Y¥(e Y dy,x #0
X

Define,

M f(x) = sup (|t2Le L )| + [n(tVDF )|

|x—y|<5vVnt

By Proposition(6.1.7), it follows that
1M fllpny < Clif gy~ gny 0<P <1

Recall that R%*1denotes the upper half-space in R**L. If 0 is an open subset of R™, then
the “tent” over O, denoted by O, is given as 0:= {(x,t) € R® + 1+: B(x, 4V/nt) c 0}.
For i € Z, we define the family of sets 0;: = {x € R™: M, f(x) > 2'}. Now let {Q;;}; be a
Whitney decomposition of O; such that 0; =U; Q;; and let 0; be a tent region. Set é =
(1,---,1) € R™. For every i, j, we define

Qij ={(y,t) e Ri*':y + 3te € Q;;} (28)
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It can be verified that O; cu; Q;;. Indeed, for each (y°, t°) € 0;, we have that
B(y°, 4vVnt%) c 0;. Let 7°: = y° + 3&t°. Observe that 7#° € B(y°, 4vVnt9)and then 7° €
0;. Then there exists some Q;;, < 0; such that ° € Q;;,, hence (y°,t%) € Q;;, and 0; c
U; Q;;. Note that Q;; N Q;;» = @ when j # j'. We obtain an decomposition for R}*! as
follows:

R} =u; 0, =U; 0,/0,41 =U;U; Tj;
where
= Qij N 01/01+1
Using the formula (26), one can write

dt
f= Z ey W (VD) (XTyy(y, ) Le ™1 ) —
with the sum converging in L*(R™), where 1;;: = 2'|Q;;|*/?, a;;: = Lb;;, and
*® dt
by = Ca e [ MBODXTy 0,08 Le )
0
Let us show that the sum (29) converges in L*(R™). Indeed, since for each f € L*(R"),
_ 2dydt
(| |etLe=Er o =2 < Clif lzcam

n+1
R

we use (29)to obtain

Aijaij
[i|>Ny,|j|>N, L2(R™)

dt
—all Y[ Kemen@EnXT0. 00t 0y S
lil>NLTj1>N, R 2(R")

dyd
< sup J @DV g0 Le )| 2

MgN22 1o N T 1w, 7t
< C( Z |t2Le_t2\/_f(y)| )1/2 0
li1>Ny,[j1>N, *tU
as N; » oo, N, — oo,
Next, we will show that, up to a normalization by a multiplicative constant, the a;; are
(p, o0, M) —atoms. Once the claim is established, we shall have

E /1 E zlp Q <C E le 0 <C f n
as desired.

We prove that for every i,j, the function C‘laij Is a (p, o0, M)-atom as-sociated
with the cube 30Q;; for some constant C. Observe that if (y,t) € T;;, then B(y, 4+/nt) €
0;. Denote by y:=y + 3te, and so ¥ € Q;; and B(J, Vnt) € 0;. The fact that Q;j is the
Whitney cube of Oiimplies that 5Q;; N 07 # @. Denote the side length of Q;; by £(Q;;). It
then follows that t < 3¢(Q;;). Since y +3eét € Q;;, we have that y € 20Q;;. From

Lemma(6.1.4), the integral kernel K ;2;ykq ¢z Of the operator (t?L)*® (tV1) satisfies
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suppK 2pycp vy € {06, y) € R X R™: |x —y| < t}
This concludes that for every k = 0,1,---, M
supp (L¥b;;) € 30Q;;
It remains to show that {|(£(Qy)?L)*bij| e my < Ce(Qy)™|Qy;| VP =01 M.
When K =0,1,--,M — 1, it reduces to show
2(M-K)

27 ,—t?L dt i
K y2m kg oy (6 X T (v, )t Le f(y)dyT < €2'2(Q;;) . (30)

Indeed, if xT;;(y,t) =1, then (y,t) € (0,41)¢, and so B(y,4vnt) N (0;41)¢ # @. Let

X € B(y,4Vnt) N (0;41)°. We have that [t2Le t'Lf(y)| < M, f(%) <2!*!. By
Lemma(6.1.4),

K y2m kg oy (6 XT3 (3, t)tZLe-tsz(wdy—

. dt
< (2

4(Qij) —
Jo £ )_[ |K(t 21)Ky (eI (%) y)|dy

@) dt
< cztj t2(M-k) — — < C214(Q;)*™M—5)
0

sinceK =0,1,-, M — 1.
Now we consider the case k = M. The proof is based on a modification of a technique due
to A. Calderdn [163]. In this case, we need to prove that for every i, j,

dt .
Kooyt 6 VXT3, t)tZLe—tsz(y)alyT < C2! (31)

To show (31), we fix x and let d(x, Q;;) < 30\/H£(Qij). We claim the following result:
(P1)The properties of the set defining xT;;(y,t) imply that there exist
intervals (0, by), (aq, b1), -, (ay,©),0 < by < a; < by <+<ay,1<N<2n+2 such
that for [ = 0, 1,--, N — 1, there hold a;;; < 32"*2p, and

(a)Kq,(tﬁ)(x, xTij(y,t) = 0fort > ay;

(beither Ky .y, )XTij(,t) =0 0F Ko ypy (6, XT3 (v, 8) = Ky (2, y) for all
t € (al, bl)’

(c)either Ky @y (6 )xTij (v, ) = 0 or Ky (6 Y)xTi(0, 1) = Ky (eypy (x,y) for all
t € (0,by).

Assuming this claim (P1)for the moment, we observe that for d(x, Q;;) < 30Vné(Q;)),
one can write

K‘P(tx/f)(x' Y)XTU(}’: t)t Le f(y)dyT
0 R"

be NZ1 p
’ : 27 ,—t%L dt
- +Z Kooy (6 V)X T (0, O Le ™ ()dy =
a; R"”

ar+1 2 it
ZL J Koty (o )XTi (0, O Le™ Hf () dy

= Il(x) + I (x) (32)
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To estimate I,(x), we note that if q; <a<b<b; or 0<a<b < by, then one has
either

’ 27 ,—t2L dt
j j Ky eypy) (6, ¥)XTij(y, t)t"Le f(y)dyT
a JR"
or by (27),

’ dt (" dt
f ] Kyt (6 V) XTy (0, Ot Le™ L f () dy — = j w(tVL)tPLe™Hf () —
a JR" a

= n(aVI)F GO — n(bV)f ()

Observe that for each a <t < b, if [x —y| <t, then xT;;(y,t) = 1. This tells us that
(y,t) € (0,51)¢, hence B(y,4vnt) N (0;41)¢ # @. Assume that X € B(y,4vnt) N
(0;+1)¢. From this, we have that |x — x| < |x —y| +|y — X| < 5vVnt and M, f(x) <
2F1 1t implies that [p(tVL)f(x)| < M f (%) < C2'*for every a < t < b. Therefore,
In(aVD)f(x)| < €2 and [n(bVL)f (x)| < €27, and so [ (x)| < €27,

Consider I,(x). If xT;;(y,t) =1, then (y,t) € (0;41)¢. Thus B(y, 4Vnt) N (0;41)° = 0.
Assume that & € B(y, 4vnt) N (0;41)¢. We have that |t2Le "L f ()| < M, f (%) < 2i*1.
This, together with a;,; < cb;, implies that

ar41 ) ey dt
J j Kyeyoy (6, ) XTij(y, t)t Le f(y)dyT
b; R™
< (211 f ?dt

ch; dt
j j |K w(evT) Y)| dy—
b; R™ b;

< C2i*t (33)
which yields that |I,(x)| < €2+,
Combining (32)and (33), we obtain (31). It follows that ||aij||L°°(]Rn) < C|Q,I"V?. Uptoa
normalization by a multiplicative constant, the a;; are (p, oo, M)-atoms.
It remains to prove the claim(P1). Note that XT;;(y,t) = x5.(¥,t) - X7 t) -
X, (v, t); Assume that Q;; = {(y1,¥n) t cr Sy < di, 1 =1,-+,n}. Then

cb;
< 2i+1

n n
Xél] (y’ t) = 1_[)({615371+3t5d1}(y' t) = HX{yﬁBthl}(yi t)X{yl+3tSdl}(y' t)
=1 =1

Qr’;‘
Fig. (1)[158]: The case of x; < c;.
Let x;(y,t) be one of the characteristic functions xgy,+3t=c3(V,t), Xiy,+3tay (1),
Xo. (v, t) and x 5 (v, t). We will show the following property:
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(P2)There exist numbers b; and a;,,with 0 < b; < a;,; and a;,; < 3b; such that for
every x, either Kq,(tﬁ)(x, Yxi(y,6) =0 0r Ky gz (6, V) X1(¥, £) = Ky pypy (%, y) for all
tin each of the intervals complementary to (b;,a;4+1). And for at least one of
X, 0), Ky oy o Wiy, t) = 0fort > ayy.
Then the same holds for xT;;(y,t) = IT727% xi(y, ) Ky (ryz (%, ¥) in each of the intervals
complementary to the union of the intervals (b;, a;,1), which is what was asserted in the
claim. Thus we merely have to prove(P2). To do this, we consider four cases.
Case 1. y;(y,t) = x{y; + 3t = ¢;}(y, t).
In this case, since SuppK.P(t\/Z)(x, y)S{y:|lx—y|<t}, we have that
supqu,(t\/z)(x, yE{yix;—t<y <x+t}. If x;,=¢, theny, +3t>x;+2t >
c; for any t > 0. This yields

Ky, ) = Ky, y), > 0.

If x; < ¢, then we choose b; = 2-~and a;,; = ==~ (see Fig.1).

2
In the case of t <bl, we have y,+3t<x;+4t <c;, which implies that

Ky @y (6 y)xTij(y,t) = 0. In the case of t > a;,, we have y, + 3t = x; + 2t > ¢;.
This implies that Ko@), t) = Ky (%, ).

Case 2. y;(y,t) = x{y; + 3t < d;}(y, v).

Since suppKW(tﬁ)(x, y) € {y:|x — y| < t}, we have that Kl,,(t\/z)(x, y)S{yix;—t<
y; < x;+t} . When x; > d;, we have that y; + 3t > x; + 2t > dl for any t > 0. This
tells us

Klp(tﬁ)(x,y))(l(y, t)=0, fort>0
When x; < d,, we choose b; = % and a; ., = dl;xl. Ift < b, theny, + 3t < x; + 4t <
d;, which implies that Ky @y (6 X107, 1) = Ky ey (%, ¥). Ift > a;.q, then y, + 3t >
x; + 2t > d;. From this, we have that Ky @yt 6oy xi(v,t) = 0.
Case 3. x; (v, t) = x + 0; (¥, ©).
In this case, we choose b; = %d(x, O7)and a;;4 = %d(x, O0f). Let|x —y| <t.Ift <
%d(x, 09), then d(y, 0F) = d(x,0F) — |x —y| > 5Vnt — t > 4v/nt. This tells us

KW(tﬁ)(x» Nxa.t) = Ky v (x,y)
for t < %d(x, 09). If t > %d(x, 05), then d(y, 0F) < d(x,08) +d(x,y) < (2Vn +

i 1 c
1t < 4+/nt. Hence, ift > S d(x 0p), then

Ky@yny o y)xi(y,t) =0

Case 4. x,(v,t) = x(04 1), 1).

In this case, we can choose b; = %d(x, 0/,,) and a;;4 = %d(x, 0;,1). The proof can
be an adaptation of the proof as in Case 3, and we omit the detail here.

This concludes the proof of the property(P2). We have obtained the claim(P1), and then
the proof of Theorem(6.1.8)is complete.

As a consequence of Theorem(6.1.8), we have the following equivalent characterization
for functions in H} ;, , 1 (R™).
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Corollary (6.1.9)[158]: Suppose that an operator L satisfies (H1)-(H2). Fix 0 < p < 1.
For all ¢ > p with 1 < g < oo and for all integers M > %(% — 1), if f € L*(R™), then the

following conditions on fare equivalent:
(i) fe€ Hgat,q,m(R"):
(i) Givena >0, ¢ of = | sulp lp (VL) f(y)| € LP(R™) for some even function
y—x|<at
¢ € S(R), (0) = 1,
(i) Gi(f) =sup sup |p(tVD)f ()| € LP(R™M),
PEA |y—x|<t
k

d
W{p(x) dx < 0}

A ={p € L (R): even function with ¢(0) # 0,] 1+ |xPV Z
R

k=<N

where N is a large number depending only on p and n.
Proof: The proof follows the line of (ii)=(i) =(iii)=(ii). From Theorem(6.1.8)and
Proposition(6.1.7), it tells us an implication (ii) =(i). The proof of (i) =(iii) will be an
adaptation of the proof of the earlier known implication of (i) =(ii) (see [171]). Obviously,
(ii)=(ii). This proves Corollary(6.1.9).
We consider an electromagnetic Laplacian

L=(G{V—-—A(X)*+V(x), n=3

Recall that a measurable function Von R" is in the Kato class when
j V)l 3

lim sup ————dy =0

o x Jiy y|<r|x — y|n2
while the Kato norm is defined by

WVl = jl v (y|>| _dy =0

Proposition (6.1.10)[158]: Consider an electromagnetic Laplacian
L=({V—-—A(X)*+V(x), n=3

Assume that A4 € L%,.(R", R™), and the positive and negative parts V.. of V satisfy V, is of

Kato class, ||[V_|lx < ¢, = t™?/I'(n/2 —1). Then for every integer M > %(% — 1), the

spaces HY

max(R™) and HLp,at,OO,M(R") coincide. In particular,

IF gy = Ifllg

Lat,oom(R™)
Proof: It is known (see [162]) that under assumptions of Proposition(6.1.10), the operator
L has a unique nonnegative self-adjoint extension, and et~ is an integral operator whose
kernel satisfies the Gaussian estimate (H2). Now Proposition(6.1.10)is a straightforward
consequence of Theorem(6.1.8).
Corollary (6.1.11)[183]: Assume that an operator L satisfies(H1)-(H2). Let y; € S(R) be
even functions, ¥;(0) = 0,i = 1, 2. Then for every n > 0, there exists a positive constant

C =C(n,n,Y1,¥,) such that the kernel Klpl((1+26)\/Z)l/JZ((1+6)\/Z)(x' y) of ¥,((1+

26)VD)YP,((1 + €)VL) satisfies

1K, @z vy Co N

< min(1 + 2¢,1 + €) max(1 + 2¢,1 + €)"

- max(1 + 26,1+ ¢) /J(max(1+ 26,1+ €) + |x — y)n*"
foralle = 0and x,y € R".

(34)
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Proof: By symmetry, it suffices to show that if € > 0, then
1+e€ (14 2e)"
Ky, (@+renDusar2ovp M| < € (1 n 26) 012 =y

To do this, we fix e > 0 and let ¥ ((1 + €)x) = e

(35)
zpl((l + 2e)x)yY,((1 + €)x), and so

Y1 ((1 + 26)VL)Y,((1 + e)VL) = 1+2E‘z”((l + e)\/—) Let us show that
|K¢((1+6)\/—)(x,y)| <C(1+e)™, x,y €R" (36)
Indeed, for any k¥ € N, we have the relationship
1 (0.0)
I 1 ZL K — f —u(1+€)’L ,—u, k-1 7
I+ (1 +6e)L) (K_l)!oe e *u"“"*du (37)

and so when k > n/4,
1 ® 2
27\— —u(1 L -u, k-1
10+ A+ Pl immn < G, jo le ™+ ) o gy ooy
<C(14e)™?
Now U+ (1 + L) Il wrysrzwny = 1T+ (1 + €)2L) ™|l 2mrysio@mny <
C(1+€)™™2, and so
||l/)((1 + E)ﬁ)HLl(Rn)—)Lw(Rn)
< ||+ @+ )Pyl
—K112

+ E)\/Z)”LZ(IR’I)—)LZ(R")”(I + (1 + E)ZL) K”Lz(Rn)qu(Rn)
Since ¥, € S(R) and ,(0) =0, we have that ((1+ 2e)2) ,((1+2€)1) =
fol Yi((1 + 26)Ay)dy € L (R), and then the L? operator norm of the last term is equal to
the L* (IR) norm of the function

@+ (1+ 2™ ((1 + e)V17)

Y1((1 + 2€)/121) m
[ EEENT] [+ @+ o2 (@ +eyial) . (a

+ E)M)]

which is uniformly bounded in € > 0. This implies that (36) holds.

Next, we write F((1+¢€)1) =P ((1+ e)A)(1 + (1 + €)?4*)™, where m >n/2. Then
we have ¥ ((1 + €)VL) = F((1 + e)VL)(1 + (1 + €)?L)™™. From (37), it can be verified
that for m > n/2, there exist some positive constants C and csuch that for every e > 0, the
kernel K (14 (14+¢)2)-m(x, y) of the operator (1 + (1 + €)2L)™™ satisfies

lx -yl

T (A+e)m c(1 + e))
X Zl)(l + ) shows

|K(1+(1+e) 2)-m (X, )| < p(—

which, in combination with (1 + - yl) <(1+

x —y[\"""
‘(1 T Tre ) qu((m)m(x.y)‘

1’1+7]
x_
=<1+I yI)
1+ €

f KF((1+6)\/Z) (x, Z)K(1+(1+6)2L)‘m (z, J’) dz
Rn
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x —y\"""
<C(1+en JRn |K e ey (0 2)| (1 too)  dz
By symmetry, estimate (35) will be proved if we show that
|X . Zl n+n
jRn |KF((1+E)ﬁ)(x,z)| (1 + 1T e dz<C (38)

Let ¢ € CZ°(0,00) be a non-negative function satisfying supp ¢ < [%, 1]land let ¢y =1 —
Yl 9(272). So,

0o (1) + Z 02N =1, V1>0
=1

Let FO((1 + €)A) denote the function ¢q((1 + €)A)F((1 + €)A) and for £ > 1, F*((1 +
A= @27t + €)D)F((1 + €)A). From (36), the proof of (38) reduces to estimate the
following:

n+n
|x — 2|
jRn|KF((1+e)‘/Z)(x'Z)| 1+ T dz
n+n
x — 2|

2
< K 1
= C + fRn | FO((1+€)\/Z)(X' Z)| ( + (1 n E) dZ

- lx —z|\"" =
+ Zf, |K pe (o) 2 2)| ( . dz =:C + Z I, (39
=1

x—z|=1+e€ £=0
By Lemma (6.1.5)

3n+2n+1 1/2
n/2 2 |x - Zl
[h<C(A+e) |KF0(1+E)\/E(x,Z)| 1+ e dz
Rn

S C||61/(1+5)F0((1 t€) .)”C%n+2n+1
Since ¥, € S(R) and ;(0) =0, we have that ((1+ 2e)D) 1Y, ((1+ 26)A) =
[, Wi ((1 + 2€)Ay)dy € S(R). Then we have
Iy < Cllo(MP (D1 + Az)mllc

%n+2n+1

1
0o () j o1 (1 +20) A, /(1 + ©)dy [Ag, (D) (1 + 22)™]
0 C

<C (40)
For the term I,, we use Lemma (6.1.5) again to obtain

3n+2n+1 1/2
n/2 2 (lx — 2| d
Rn

<cQ

2%\ — 2| 3n+2n+1 1/2
1 )29 —£@n+2n+1/2) J K X,z ol | dz
) R"| F"(1+e)x/i( )| 1+¢

Sn+2m+1

< (2-tBn+2n+1/2)9én/2 ”52{,/(1%)}7#((1 +6e))
It can be verified that for y; € S(R),i =1, 2,
||(p62€F||C%n+2n+1

3
e+l
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H<p(/1) j 1(2°(1 +2€) 4,/(1 + €))dy [22¢,(2°2) (1 + 222)™]

cz n+2n+1

<C2 ( n+2n+1)2_2f
which glves

ZI{’ < Cz C2~ {’(3n+2n+1)/22{’n/22 ( n+277+1)2 24 < Cz 2= —nf <C (41)

o=
Puttmg (40)and (41)|nto (39), estimate (38)follows readily. The proof of Corollary

(6.1.11) is complete.

Corollary (6.1.12)[183]: Let 0 < € < 1. Let L be a non-negative self-adjoint operator on
L*(R™) satisfying Gaussian estimate (GE). Let ¢; € S(R) be even functions with ¢;(0) =
land a; > 0,i = 1,2. Then there exists a constant C = C(n, ¢4, ¢, @1, a,) such that for
every f € L*(R™), the functions gozL'af =sup|y — x| < aq4¢|@; ((1 + E)\/Z)f(y)l, i =

1,2, satisfy

| f”Ll E(Rn) ”(pZLazf”Ll €(RM) (42)
As a consequence, for any even function go € S(R) with <p(0) =1land a > 0,

CTHIf N e mny <
Proof: Recall that forany 0 < a, < a4,

1= G(Rn) ”fL ”L1 G(Rn)
L
1-

f||L1 €(R™) ~ C(l + 2) ||(pL azf”Ll €(R™)

for any ¢ € S(R) ([164]). Now, we let ¥ (x) := ¢p,(x) — ¢,(x), and then the proof of
(42)reduces to show that

L1 E(Rn) (43)
Let us show (43). Let V(x) = xz"cb(x) where @(x) is the function as in Lemma (6.1.4)
and 2k > 711—: By the spectral theory ([53]), we have

f= clp,(,,zJ Y((1+26)VL)p,((1 + 2e)VL)f —————=

f”Ll E(Rn)

d(1+ 2e)

1+ 2¢
Therefore,

P((1+ VL) (%)

d(1 + 2
- cjo (w(@ + VDP((@ + 26)VL)) 02((1 + 26 VD) f (1) ———— (1 +2€)

1+ 2¢

Let us denote the kernel of 1 ((1 + e)VL)¥W (1 + 26)VL) by Ky (11 enDyw(1s2epDy 6 ¥)-
Then for 1 € (L 2K),

sup [p((1 + 6)\/—)f(x — w)|

lwl<(1+€)

=C sup

lwl<1+e

+ 26)VL)f (2)

fRnH Ky(arenDw(ar2enn) & — 0 2)92((
n

dzd(1 + 2¢)
1+ 2¢
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|x — Z|>
<(C su j K x—w,z)|{1+
|w|<})+e R7H1 I/J((1+(:‘)\/Z)'P((1+26)\/Z)( )| < 1+ 2e
“dzd(1 + 2¢)

|<pz((1+26)\/—)f(z)|<1+1+_2 ') T+ 2

-1
|x — z|
< 1+2 1
< sup [¢; (1 + 260V £ (2)| ( T30
X IwS|2})+e fR”“ Kw((1+e)ﬁ)w((1+26)x/f)(x —w,2) <1
n
Ix — z\* dzd (1 + 2¢) "
1+ 2¢ 1+ 2¢ (44)
Next we will prove that
Ix — z[\" dzd (1 + 2¢)
|wS|l<1F+eflRﬁ+1 Ky(aronDn(araonn &~ @ 2| (147 T2e) 1+2e ¢

Once estimate (45)is shown, (43)follows. Indeed, it follows from (44), (45)and the
condition A € (1%6, 2k) that

Sup W+ VL) (x — )|

wl<l+e

f”Ll_e(Rn) - Ll—G(Rn)

2
< C|| sup |@2((1 + 2e)VL)f (2)] (1 T |1 + 2 |>

z,14+2€
Ly ¢(R™)

<C| sup | (A + VD ()|

ly—x|<1+e

= C”(p;,L,lf”Ll—E(Rn)
Ly ¢(R™)
where we used Theorem 2.4 of [164]in the second inequality.
Let us prove (45). Note that |[w| < 1 + €. We write

W((1 +eVL)¥((1 + 26)VL)

( 14 ¢e\%*
j (1 T 2¢ ) [ (1 +2e)VL)((1 + 26)VL)* d((1 + €)VL)] ife 2 0
(e ) 1@ + VD 2p((1 + VI + 20VEY*+2((1 + 2D ife > 0

We then apply Corollary (6.1.11) to obtain that for n € (4, 2k),
|[KyparenDwarzevn® = ©,2)|

, 14+ 2e\%* /1 1+4€\2 max(1 + 2¢,1 + )"
< Cmin ( ) ,( )

1+€ 14 2¢ (max(1+2¢,1+€) + |[x — w — z])"t7
This, together with the fact that
max(1 + 2¢,1 4+ €)" |ul A
f|u|21+26 (max(1 + 26,1+ €) + |[u — w| )" <1 i 26> du
max(1 + 2¢,1 + )"
- ‘[|u|21+26 (max(1+ 26,1+ €) + |u — w|)™*7"

du

Shows
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A
|x — z|
jRn|K¢(<1+e)¢z)mp((1+z€>m(x - ,2)| (1 t1r2e) ¥

< Cmin ((1 + ZE)Zk ( 1+e€ )2> .

- 1+e€ "\1+ 2¢

N f max(1 + 2¢,1 + €)" <1
luz12e (Max(l +2¢, 1+ €) + [u — w[)™*"

Jul )A
+ du)

4
14 2¢ (46)

To estimate the integrals over |u| = 1 + 2¢, we note that if € > 0, then we use the fact
thatn >Aand 1+ 2e+|u —w| 21+¢€ +|u —w| = |w| + |u —w| = |u| to obtain

(14 2€)" ] \*
j —(1+ du
lulz1+ze L+ €+ [u—w[)* 1+ 2¢

(1 + Zf)n |u|A
< zlf
lujz1ze (L H €+ [u— )7 (1 + 2€)*
f (14 2e)" lu|?
ulz142e 1+ €+ [ul™7 (1 + 2€)?
If € > 0, then it follows from the fact that 1 + 2¢ + |u — w| = |w| + |u — w]| = |u| and
n>a

du

<

du<C (47)

j (1+ 2¢)" L Ad
wiise A+ 26+ lu—wD\" " T+e)
1+ 2e)" ult
< ZAJ ( ) ; |ul du
ulz1+e (1 + 26 + [u — 0)™7 (1 + €)
< J (1+2e)" Jul*
" Jusree 1+ 26 + Jum (1 + &)

<C<1+26>’7 18
o 1+e¢€ (48)

Putting estimates (47)and (48)into (46), we have obtained that for any |w| < 1 + 2e,

A
|x — z|
J Ky (rzenmywiareny & — @, Z)|<1+ dz
2k

< Cmi (1+E 1+e - 1+26)’7
= Ln 1+2€ 1+26 max 1+e

< Cmi (1+6)2k’7 1+Ze)
=tmni12 1+e

Observe that n < 2k. It follows

du

L x— A dzd(1 + €
g fw"{w«m@f peren® @1 T )
+

lwl<1+2€
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° 1+e€ 1+2e, d(1+¢€)
SC : 2k—n, 2 <
jo rnlrl((1+26) (1+e)) 1+e€

which shows estimate (45), and the proof of Corollary (6.1.12) is end.
Corollary (6.1.13)[183]: Suppose that an operator L satisfies(H1)and(H2). For all 0 <

€ < oo and for all integers M > g(i) we have that Hi 16 (R™) € HE 564 o 10em (R,
and hence by (6),

HLl,Zleax(Rn) = Hl},:z€1+e),1+e,M (Rn)'
Proof. It suffices to show that for f € H} 5. (R™) N L*(R™), f has a (1 — €, oo, M )atomic
representation. We start with a suitable version of the Calderdn repro-ducing formula. Let
@ be a function defined in Lemma (6.1.4), and set ¥(x) := x*®(x),x € R. By the
spectral theory ([91]), for every f € L?(R™) one can write

e 2 d(1+2
f= cq,f W((1+ 26)VL)(1 + 2€)%Le~(1+2) L4+ 2€)
0 1+ 2e
1/e d(1+ 2¢)
— T 27 ,—(1+426)?L N\~ " =+J
lim E W((1+26)VL)(1 + 2€)?Le e (49)
with the integral converging in L?(R™).
Set
® 2.2d(1+ 2¢€)
— 2.2 —(1+2€)°x
n(x) cq;fl (14 2e)°x*P((1 + 2¢e)x)e 1T 2¢
= cqjj y¥(y)e Y dy,x # 0
X
with n(0) = 1. It follows that n € S(R)is an even function, and
b 2.2 A1+ 2¢)
n(ax) — n(bx) = c\p-[ (14 26)%x2W((1 + 2€)x)e~(1+26)°x fm
a
By the spectral theory ([91]) again, one has
b 2, d(1+2
Cy J W((1+ 26)VL)(1 + 2¢€)%2Le~(1+26)°L fu
a 1+ 2¢
= n(aVL)f () = n(bVL)f (x) (50)
Define,
MfG)= sup (|1 +26)2Le” 2L f(y)] + |n (1 + 2eVD) F(3)] )

[x—y|<5,/n(1+2€)
By Corollary (6.1.12), it follows that

”MLf“Ll‘E(]R") < C”f”Hl%,;nEax(Rn)’ 0<e<l1

Recall that R%*1denotes the upper half-space in R™*1. If O is an open subset of R", then
the “tent” over O, denoted by O, is given as O0:={(x,1+2¢) ER™ +
14+:B(x,4/n(1+ 2¢)) c 0}. For i€ Z, we define the family of sets 0;:={x €
R™: M, f(x) > 2'}. Now let {Q;j}; be a Whitney decomposition of 0; such that 0; =
U; Q;; and let 0; be a tent region. Set & = (1,-+-,1) € R™. For every i, j, we define

Qi ={(r,14+26) e RT* 1y + 3(1 + 26)e € Q;;} (51)
It can be verified that 0; cu; Q;;. Indeed, for each (¥°, (1 + 2¢)?) € 0;, we have that
B(y° 4yn(1+26)°) c0;. Let $%=y%+3e&(1+2¢)° Observe that §°€
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B(y°, 4yn(1 + 2¢)®)and then 7° € 0;. Then there exists some Q;;, < 0; such that j° €
Qij,. hence (¥°, (1 + 2¢)°) € Q;;, and 0; < U, Q;;. Note that Q;; N Q;;» = @ when j # j'.
We obtain an decomposition for R?** as follows:
RY =U; 0, =U; 0,/0,41 =U;U; T}
where
Tij = Qij N 0,/041
Using the formula (49), one can write

f= Z cy'¥ ((1 + 26)\/Z) (XT;;(y, 1+ 26)(1 + ZE)ZLe_(HZG)sz)M
ij

1+ 2e (52)

. 1
with the sum converging in L*(R™), where A;;: = 2'|Q;;|1=¢, a;;: = L" b;;, and

bij = (ﬂ,ij)_chp Jooo(l + 26)2M¢ ((1 + Zf)ﬁ) (XTLJ(}/, 1

) d(l+2
+ 2€)(1 + 2€)2Le~(1+26) L) —((1 n 25)

Let us show that the sum (52) converges in L*(R™). Indeed, since for each f € L*(R"),

/2

2dyd(1 + 26)\*

(j yd( + 6)> < ClIf ll2aem
Rz-l-l

1+ 2¢
we use (52)to obtain

(1 + 26)2Le~(1+29™VE £ (y)|

Aijaij

[i|>Ny,|jI>N, L2(R™)

= Cy z jn+1K((1+26)2L)M1P((1+2€)\/Z)(x’ VIXTi;(y,1
[i[>N4,ljI>N,
d(1 + 2€)

2 1+ 26)2 x L, —(1+26)%L d
+ 2€)(1 + 2¢) e fO)dy 1T 2¢

L*(R™)
< sup (@ + 262100 (@ + 26VI) ()9 )

<1 .. . p
||g||2 |l|>N1,|]|>N2 (1+26)U

dyd(1 + 2¢
x (1+ ZE)ZLe_(1+26)2‘/Zf(y)| ya( )

1+ 2¢
2dyd(1 + 2¢)

<C (1 + 2€)2Le~1+20*VL g (4) — 0
(1+26)ij| | 1+ 2e

1/2

[i|>Ny,|jI>N,
as N; » oo, N, — oo,
Next, we will show that, up to a normalization by a multiplicative constant, the a;; are
(1 — €, 00, M) —atoms. Once the claim is established, we shall have

1-€ P4 Fra -
Dl =) 21090, < € ) 20910 < CIFIGES g
i) i 7 ’
as desired.
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Let us now prove that for every i,j, the function C‘laij Is a (1 —¢,00, M)-atom as-
sociated with the cube 30Q;; for some constant C. Observe that if (y,1 + 2¢) € T;;, then
B(y,4\n(1+2¢€)) € 0;. Denote by j:=y+3(1+2€)e, and so ye€Q; and
B(¥,{/n(1 + 2¢€)) € 0;. The fact that Q;; is the Whitney cube of 0; implies that 5Q;; N
0; # @. Denote the side length of Q;; by £(Q;;). It then follows that 1 + 2e < 3£(Q;;).
Since y +3é(1 + 2¢) € Q;;, we have that y € 20Q;;. From Lemma (6.1.4), the integral
kernel K (1, 2¢y21yka((1426)0T) OF the operator ((1 + 2€)2L)*@((1 + 2€)VL) satisfies
SUPPK (112602 w 1420wy S {6 ¥) € R® X R™: [x —y| < 1 + 2¢}
This concludes that for every k = 0,1,---, M
supp(L“b;;) € 30Q;;

1

It remains to show that ||(€(Qij)2L)kbij||Lw(Rn) < C(Q )™M Qi e k= 0,1, M.
When K = 0,1,--,M — 1, it reduces to show

fo f]Rzn K (11262 K ((14+26)VT) (6 ¥)XT; (v, 1
d(1+ 2€)
1426
< c2ie(Q;,)* ™. (53)
Indeed, if xT;;(y,1+ 2€) = 1, then (y, 1 + 2€) € (0,41)¢, and s0 B(y, 4/n(1 + 2€)) N

(0;41)°#®. Let x€B(y4yn(1+2¢)) N(0;41)¢. We have that |1+
2€)2Le~(129°Lf(y)| < M, f(%) < 2i*1. By Lemma (6.1.4),

+26)(1 + 2€)2Le~A+2°LF(3)dy

jo jRn K (1+2e)Mixw 26 (6 YIXT(, 1

d(1l + 2¢
+26)(1 + 2€)2Le~(1+26)°L f(y)dy(H—Ze)
| @i

< (2! J (1

0

B d(1 + 2¢)
+2€)*™ k)J |K((1+26)2L)KW((1+26)ﬁ)(x' y)|dy 1+ 2¢

]Rn
d(1+ 2¢)

Crt@ip)
< CZlf (1 + 2¢€)>M-K)
0

sinceK =0,1,---,M — 1.
Now we consider the case k = M. The proof is based on a modification of a technique due
to A. Calderdn [163]. In this case, we need to prove that for every i, j,

d(1+ 2¢)

i .. 27 ,—(14+2€)>L
j(; fRn Kya+2eyn) ) XTi(v, 1+ 2€)(1 + 2€)°Le L f(y)dy 1T 26

< Cc2 (54)
To show (54), we fix x and let d(x, Q;;) < 30\/ﬁ{’(Qij). We claim the following result:
(P1)The properties of the set defining xT;;(y,1+ 2¢) imply that there exist
intervals (0, by), (aq, b1),, (ay,©),0 < by <a; < b; <+<ay,1<N<2n+2 such
that for L = 0, 1,--, N — 1, there hold a;;, < 32"*2p, and
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@Ky 1+2evD) o WXTij(y, 1 + 2€) = 0 for 1 + 2€ > ay;

(b)either Ky 1126y 0 WIXTij (v, 1 +2€) =0 0or Ky (142090 YXT1; (v, 1 + 2€) =
Ky 1+2epypy (%, y) forall 1 + 2¢e € (a;, by);

(C)either Ky ((1426)viy (0 YIXTij(y, 14+ 2€) =0 0r Ky 1426v0) (0 YIXT1; (v, 1+ 2€) =
Ky (1+2epymy (%, y) forall 1 + 2e € (0, by).

Assuming this claim (P1)for the moment, we observe that for d(x, Q;;) < 30\/E€(Ql-j),
one can write

® _ 2
[ ] Kuraonp @ X501 + 2601 + 2602160429 ()
0 R™

N-1

SIS

=1

d(1+ 2e)
1+ 2

b,
J }JR Ky(a420vp) 6 W XTi(y, 1
a; n

d(1 + 2e)

+26)(1 + 2€)2Le~+20°LF(3)dy P

N ar+1
+ zf J KW((1+2€)\/Z)(x'y)XTij(yr1
= /b, R™

d(1+ 2e
+2€)(1 + 2€)2Le~+29°L £ (y)dy —(1 — )

=L(x) + I, (x) (55)
To estimate I,(x), we note that if q; <a<b<b; or 0<a < b < by, then one has
either

b
|| Kuuzonn @ XT5001 + 2601 + 26216042 )y
a R"
or by (50),
b
|| Kuuuzonn@ X501 + 2601 + 26216042 )y
a R"

d(1+ 2¢)
1+ 2e

d(1 + 2¢)
1+ 2¢

d(1 + 2¢)
1+ 2¢

b
= J W (1 + 26)VL)(1 + 2€)2Le~A+29°Lf ()

a
=n(aVL)f(x) —=n(bVL)f (x)
Observe that for each a <1+ 2e < b, if |x —y| <1+ 2¢, then xT;;(y, 1+ 2¢) = 1.
This tells us that (y,1+ 2¢€) € (0,41)¢, hence B(y,4vn(1+ 2€)) N (0;41)¢ = 0.
Assume that ¥ € B(y, 4Vn(1 + 2€)) n (0;,1)¢. From this, we have that |x — x| < |x —
y| +|y — x| < 5vn(1 + 2¢) and M, f (%) < 211, 1t implies that [n((1 + 2e)VL) f(x)| <
M, f(x) < C2'*or every a <1+ 2e <b. Therefore, |n(avVL)f(x)| < C2'*' and
In(bVLD)f ()| < €2i*1, and so |I;(x)| < C2i*T,

Consider IL,(x). If xTi;(y,14+2¢)=1, then (y,1+ 2¢)€ (0;41)°. Thus
B(y,4vn(1 + 2€)) N (0;4,)¢ = @. Assume that X € B(y,4vn(1 + 2¢€)) N (0;4,)°. We
have that |(1 + 2€)2Le~(+2°LF(y)| < M, f(%) < 2'*1. This, together with a;,, < cby,
implies that
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d(1+ 2¢)
1+ 2¢

a1
_ 2
j j Ky ar2eDy G XT;(, 1+ 2€) (1 + 2€)*Le =27 £ (y)dy
b R"”

l
¢bi d(1 + 2¢)
K W |dy ————
jb l JRJ w(r2ewr) 0 V)| Y — -
Cbl 1
< czi+1f d(1+ 2¢) < c21 56
b, 1+ 2¢ ( €) (56)
which yields that |1,(x)| < €21,
1
Combining (55) and (56), we obtain (54). It follows that ||aij||L°°(]Rn) < C|Q;j| .
Up to a normalization by a multiplicative constant, the a;; are (1 — ¢, oo, M))-atoms.
It remains to prove the claim(P1). Note that XT;;(y,1+ 2¢) = x5:(y, 1 + 2¢) -
X1+ 2€) ‘XQT,(J’: 1+ 2¢€); Assume that Q;; = {(y1, )i <y <d,l=
1,---,n}. Then

< 2i+1

n
Xéij(y’ 1+ 26) = HX{CISyl+3(1+Ze)sdl}(Yr 1+ 26)
=1

n
= X{yl+3(1+26)2cl}()’r 1+ 26))({3/1+3(1+26)sdl}(y; 1+ 2e)
=1

Q-ij

Rﬂ
Qr’;‘
Fig. (1)[183]: The case of x; < c;.
Let x;(v,1+2¢) be one of the characteristic functions g, 13142623V, 1+
2€), Xy, +3(1426)<d;} (V) 1 + 2€), x5. (v, 1 + 2€)and x g 7)c (¥, 1 + 2¢). We will show the

following property:
(P2)There exist numbers b; and a;,,with 0 < b; < a;,; and a;44 < 3b; such that for

every x, either Kq,((1+2€)\/z)(x, Yxi(y, 1+ 2€) = 00r Ky (14260001 (v, 1 + 2€) =
Kya+2epyp) % ¥) for all tin each of the intervals complementary to (b;, a;,,). And for at
least one of x;(, 1 + 2€), Ky ((1426)vzy (6 W X1(v, 1 + 2€) = 0 for 1 + 2¢ > a;44.

Then the same holds for xT;;(y, 1 + 2€) = [TI27 % i (v, 1 + 2€) Ky (142691 (¥, ¥) in each

of the intervals complementary to the union of the intervals (b;, a;;1), which is what was
asserted in the claim. Thus we merely have to prove(P2). To do this, we consider four
cases.

Casel. yy(v,1+¢e)=x{y;, +3(1+¢€) =}y, 1+¢€).
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In this case, since SuppK'P((1+e)\/Z)(x' y)S{y:lx —y| < (1 +¢€)}, we have that
suppKW((1+e)ﬁ)(x, YE{yix;—(1+e)<y;<x;+1+¢€}. Ifx; =¢, theny, +3(1 +
€) =x;+ 2(1+€) =c; forany e = 0. This yields

Ko(aren) NN 1+ 6 = Ky(argvp)(x,¥), €20

If x; < ¢, then we choose b, = *-~and a;,; = =~ (see Fig.1).

2
In the case of (1 +¢€) < b;, we have y; + 3(1 +€) < x; + 4(1 + €) < ¢;, which implies

that Ky q4+eyvpy (6 ¥)xTi;(v,1+€) =0. In the case of 1+€>a;,, We have y, +
3(1+€)=zx+2(1+¢€)>c. This implies that Kyqioypoxn(,1+e€) =
KW((1+e)ﬁ)(x» ).

Case 2. y;(y,1+€)=x{y; +3(1+¢) <d;}(y, 1 +¢).

Since supqu,((He)\/Z)(x, y) S {y:|x—y| <1+ €}, we have that
KW((1+e)ﬁ)(x,y) C{yix;—(l+e) <y, <x;+1+€} . When x; > d;, we have that
vi+3(1+¢€)=x;+2(1+¢€)>dlforany e = 0. This tells us

K.I,((1+€)\/Z)(x,y))(l(y,1+e) =0, fore >0
When x; < d;, we choose b; = dl;xl and a;.q = %. If 1+ €< b, then y, +3(1 +
) <x+4(1+¢€)<d;, which implies that KyqieypoyIn(y,1+¢€) =
Ky a+evn) 0 Y). If 14+€>a;,q,theny, +3(1+€) = x;+2(1 + €) > d;. From this,
we have that Ky 146y (X V)xi(y, 1 +€) = 0.

Case3. y;(y,1+€)=x+0;,(y,1 + ¢).

In this case, we choose b; = %d(x, 0;) and a;41 = %d(x, 07). Let [x —y|<1+e€.

Ifl1+e< %d(x, 0f), then d(y,0f) =d(x,0f) — |x —y| >5vn(1+e)—(1+¢€) =
4\/n(1 + €). This tells us

Kooy X1, 1+ €) = Ky 146y (X, ¥)
for 1+e< %d(x, 09). 1f1+¢€> %d(x, 0), then d(y, 0) < d(x, 0F) +d(x,y) <

2Vn + 1)(1+€) <4vn(l+€). Hence, if 1 + € > %d(x, 05), then

Kooy oy, 1+€) =0
Case 4. ;(y, 1+ €) = x(011)° (¥, 1 + €). ) )
In this case, we can choose b, =ﬁd(x, 0/,1) and a;41 = ﬁd(x' 0{,1). The

proof can be an adaptation of the proof as in Case 3, and we omit the detail here.

This concludes the proof of the property (P2). We have obtained the claim (P1), and then
the proof of Corollary (6.1.13) is complete.

Corollary (6.1.14)[183]: Suppose that an operator L satisfies (H1)—(H2). Fix 0 < e < 1.

For all e > O with 0 < e < oo and for all integers M > %(i) if £ € L2(R™), then the
following conditions on fare equivalent:

(l) f € Hg,a€1+e),1+e,M(Rn);

(i) Given a >0, pj.f= sup |p((1+VL)f ()| € L"¢(R™) for some

ly—x|<a(1+€)
even function ¢ € S(R), ¢(0) = 1;
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(i) Gi(f)=sup sup |p((1+eVLf )| € L'(RM),

PEA |y—x|<1l+e€

A ={p € L (R): even function with ¢(0) # 0,[ 1+ |xPV Z
R k=N

dk
ﬁfﬂ(x)

dx < 0}

where N is a large number depending only on 1 — € and n.
Proof: The proof follows the line of (ii)=(i) =(iii)=(ii). From Corollary (6.1.13) and
Corollary (6.1.12), it tells us an implication (ii) =(i). The proof of (i) =(iii) will be an
adaptation of the proof of the earlier known implication of (i) =(ii) (see [171]). Obviously,
(ii1)=(ii). This proves Corollary (6.1.14).
We consider an electromagnetic Laplacian
L=({V—AX)*+V(x), n=3
Recall that a measurable function Von R" is in the Kato class when
f V)l B
lim sup ————dy =0
x—yl<r 1% = ¥["72

rl0
while the Kato norm is defined by

Vy)l
Wil = sup [ L2 2y =0
Corollary (6.1.15)[183]: Consider an electromagnetlc Laplac:lan
L=({V—-—A(X)*+V(x), n=3
Assume that 4 € L?,.(R", R™), and the positive and negative parts V.. of V satisfy V, is of
Kato class, ||V_||x < ¢, = n™?/I'(n/2 —1). Then for every integer M > — ( ) the
spaces H}' 5. (R™) and HL,atooM(]R") coincide. In particular,

”f”H,} € x(R™) ~ ”f”HLatooM(R )

Proof: It is known (see [162]) that under assumptions of Corollary (6.1.15), the operator L
has a unique nonnegative self-adjoint extension, and e~*€L js an integral operator
whose kernel satisfies the Gaussian estimate (H2). Now Corollary (6.1.15) is a
straightforward consequence of Corollary (6.1.13).
Section (6.2): Weak Factorizations and Commutators

The spaces HX(R™) and BMO(R™) are fundamental function spaces in harmonic
analysis. The work of Fefferman and Stein, [74], provides a duality relationship between

HY(R™and BMO(R™). And, further provides characterizations of these spaces in terms of
maximal functions, square functions, and Riesz transforms. While the work of Coifman,
Rochberg and Weiss, [3], provides a connection between weak factorization of the Hardy
spaces, commutators with Riesz transforms and BMO(R™). We provide similar

connections for Hand BMO spaces adapted to a particular linear diferential operator.

There is a substantial literature related to Hand BMO spaces adapted to a linear operator

L on L?>(R™)which generates an analytic semigroup e~tton L*(R™) with a kernel p.(x,y)

satisfying an upper bound. That is, operators L for which the kernel of the semigroup

p: (x,y) there exists positive constants m andesuch that for all x, y € R™ and for allt > 0:
€

Ctm

IpeCey) | < — (57)

n+e
tm + |x — yl)
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In[58], Auscher, Duong, and Mclntosh defined a Hardy space H}(R™)associated with
such operators L as the class of all functions f € L*(R") for which S, € L*(R™), where

S (f)is Littlewood—Paley area function defined as follows.
1

2
dydt
tn+1

s ={[ | 1emror
0 |y—-x|<t

with @, = tLe™t. The HI(R™)norm of f is defined as||fllgzrey = ISL O 2 wmy- In
[70], [71], Duong and Yan defined the function spaceBMO; (IR™)associated with an
operatorL. They then go on to prove that if L has a bounded holomorphic functional
calculus onL?(R™)and the kernel p.(x,y) of the semigroup e L satisfies the upper
bound(57), then the space BMO,-(R") is the dual space of Hardy space H.(R™) in which
L* denotes the adjoint operator of L. This gives a generalization of the duality of H1(R™)
and BMO (R™)of Fefrerman and Stein [74]. Later, the theory of function spaces associated

with operators has been developed and generalized to many other difrerent settings, see

[160], [168], [172], [171], [174].
The choice of L = A gives rise to the spaces to the classical spacesH!(R™)and BMO (R").

While the choice of the semigroup e tLis the Poisson semigroup e‘t‘/ﬂ(here m = 2),
given by

: (58)

eBf@ = [p- @ ane> 0p ) =—2r (59)
R" (€ + |x|?) 2
yields the spaces H\l/Z(IR%)and BMO z(R)coincide with the classical Hardy space and
BMO space, respectively (see[58] and[70]).
In [65], Deng, Duong, Sikora, and Yan further considered the comparison of
BMO; (R™)and BMO (R™). By considering the Neumann Laplacian L = Ay, they obtained
that
BMO(R™) & BMO,, (R™).

Recently, in[53] Yan introduced a class ofH} (R™)for a range of p < 1 by using the
Littlewood—Paley area functionS, (f). In particular, Yan showed that

n
HY (R™) ¢ HP(R"),——<p < 1.
b (R™) € HP(R™),—— <p
We carry out a deeper study of the spaces HAlN(IR”) and BMO,, (R™). Interestingly,

we show that these spaces behave in an analogous fashion as the standard Hardy
spaceH1(R™)and BMO (R™).

1
We first explicitly compute the Riesz transformsRy = VA, * associated to the Neumann
Laplacian. Because of the close connection between the Laplacian and Neumann
Laplacian, we find in Proposition(6.2.4) that the Riesz transforms associated to the
Neumann Laplacian are given by an additive perturbation of the standard Riesz
transforms. We show that, similar to the classical Hardy space, the spaceHAlN (R™)can be
characterized by the radial and non-tangential maximal functions, by the Riesz transforms,
and by atoms, all of which are defined in terms of the Neumann Laplacian Ay. To be more
precise, we denote byHAlN,max(]R{”)the Hardy space defined via the radial maximal

function associated withAy, and analogously byH; .(R™), Hj gies,(R™) and
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Hj, atom (R™) the Hardy spaces via non-tangential maximal functions, Riesz transforms

and atoms, respectively. Then we have the following characterizations.
Theorem (6.2.1)[178]: Let all notation be the same as above. We have

HAlN(]Rn) = HAlN,max(Rn) = HAlN,*(Rn) = HKN,Riesz(Rn) = HAlN,atom(Rn)
and with equivalent norms
Iz @y = Wbz ey = WA ey = Wl vy

~ ||f+'e||H1(]Rn) + ”f_'e”Hl(]Rn)'
Here f, .is the even extension of the restriction of f fromR%. Namely,f € HAlN (R™)if and
only if f . € H'(R™)andf_ ., € H'(R™).
We also obtain a Fefferman-Stein decomposition of BM0,, (R™)in terms of the action

of the Riesz transforms associated to the Neumann Laplacian on L* (R™) functions.
We then further show the connection betweenBMOAN(R"),HAlN(lR"), commutators of

functions in BM0,, (R™)and Riesz transformsRrelative toAy , and a weak factorization
of the spaceH;  (R™). We have the following theorem.
Theorem (6.2.2)[178]: For 1 < I < n, letll;(h, g) = h.Ry;(g) — g.Ry,(h), whereRy ; =

%Afis the [-th Riesz transform associated to the Neumann Laplacian andRy, is the
1

adjoint operator ofRy;. Then for anyf € Hy (R™) there exists sequences{A;} € ¢*and
functions g, hf € L (R™)with compact supports such thatf = Y5, 352, A7 11, (), hf).
Moreover, we have that:

1Ny cary = 06 > TG o g 1 gy D Y AT 1)
k=1j=1

k=1j=1
We then obtain the following new characterization ofBM0O,, (R™)in terms of the

commutators with the Riesz transforms associated toAy,.
We point out that Theorem(6.2.2) and Theorem(6.2.27) can be extended to work for
LP(R™) when1 < p < oo.
For0 < a < n, the fractional operator A;,“/ %of the operatorAyis defined by
L
F(a/Z)0

We collect the background for the Neumann Laplacian and the associated Riesz
transforms. The related Hardy and BMO spaces associated to Ayare studied and their basic
properties are collected. In particular, we demonstrate a collection of equivalent norms for

HjN(]R{"), Theorem (6.2.18), and show the Fefferman—Stein decomposition of
BMO,, (R™)holds, Corollary (6.2.19). We provide the proof of Theorems (6.2.2) and
(6.2.27). The letter “C” will denote, possibly difrerent, constants that are independent of the

essential variables.

We now recall some notation and basic facts introduced in [65]. For any subset A c
R™and a functionf: R™ — C byf|,we denote the restriction of f to A. Next we setR" =
{(x", x,) € R":x" = (xq, ..., x,—1) € R"1 x,, > 0}. For any function f onR", we set

f+ = flrrandf_ = f|gn.
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For any x = (x', x;;) € R"we set¥ = (x' — x,,). If f is any function defined onR?%, its
even extension defined onR™is
fo(x) = f(x),ifx € RY; f.(x) = f(X),ifx € R™. (60)
We denote by A, the Laplacian on R™. Next we recall the Neumann Laplacian on
R} and R™.
Consider the Neumann problem on the half line(0, o) (see [181]):
Wi — Wy = 0for0 < x < 00,0 <t < oo,
w(x,0) = ¢(x), (61)
w,(0,t) = 0.
Denote this corresponding Laplacian by A, y, . According to [181], we see that
w(x, t) = e 41N+ () (x).
Forn > 1, we write R = R""! x R, . And we define the Neumann Laplacian on R by
An,N+= Apq+ Al,N+r
whereA,,_is the Laplacian on R®! and Aq n,is the Laplacian corresponding to (61).
Similarly we can define Neumann Laplacian A, y_OnRZ.
We skip the index n, we denote by A the Laplacian on R", denote the Neumann
Laplacian on R% by Ay, and Neumann Laplacian on RZ by Ay .
The Laplacian and Neumann Laplacian Ay, are positive definite self-adjoint operators. By
the spectral theorem one can define the semigroups generated by these operators
{exp(—tA),t = 0}and {exp(—tANi), t > 0}. By p:(x,y), Ptay, (x,y) and p,a, (x,y) we
denote the heat kernels corresponding to the semigroups generated by A,Ay ,and Ay _,
respectively. Then we have

1 Cx=yl?
pt (x, y) = n e 4t
(4mt)2
From the reflection method (see [181]), we get
1 |x,_y,|2 |2t =y |? |27 =y [?
Pt,AN+(x»)’)= € 4t (e a4t +e 4t >,x,y€]R%”;
(4mt)2
1 |x,_y,|2 |26 =y |? |2t —ym [?
pt,AN_(x: y) = e 4t (e 4t t+e 4t >,x,y € R™.
(4mt)2

For any function f onR”}, we have
exp(—tAy,) f(x) = exp(—tA) f, (x)
forall t = 0 and x € R%. Similarly, for any function f onR”,
exp(—tAy_) f(x) = exp(—tA) f, (x)
forallt > 0 and x € R,
Now let Aybe the uniquely determined unbounded operator acting onL? (R™) such that
(Anf)s = AN+f+ and(Ayf)_ = Ay_f- (62)
for all £:R™ - R such thatf, € W12(R%)andf_ € W12(R™). ThenAyis a positive self-
adjoint operator and
(exp(—tAy) f); = exp(—tAy,) frand(exp(—tAy) f)_ = exp(—tAy_) f-.
The heat kernel ofexp(—tAy), denoted byp, », (x, ), is then given as:
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1 e A P N R PO o
Peay (6 y) = me 4 (e 4 +e 4t JH(xu)n), (63)
(4mt)2
whereH: R{0,1}is the Heaviside function given by

H(t) =0,ift <0;H(t) = 1,ift > 0. (64)
Let us note that
(a) All the operatorsA, Ay, Ay_, andAyare self-adjoint and they generate bounded
analytic positive semigroups acting on allLP (R™)spaces forl < p < oo ; (B) Suppose
thatp, ; (x,y)is the kernel corresponding to the semigroup generated by one of the
operators L listed in(a). Then the kernel p, ; (x, y) satisfies Gaussian bounds:

C _ lx=yl|?
|Pt,L(x,Y)|S—Ee T, (65)
t2

for allx, y € Q, whereQ = R™forA, Ay; Q = RiforAy, and Q = R fordy_.
Next we consider the smoothness property of the heat kernel forA,Ay , andAy .
Proposition (6.2.3)[178]: Suppose that L is one of the operatorsAy_ ,Ay_andAy. Then for

x,x,y € R%(ore R™) with|x — x'| < ~|x — y|, we have
lx — x| vt
+1’
(\/?‘l‘ |x —J’|) (\/?+ | —yl)n
Symmetrically, for x,y,y" € R%(ore R™) with|y — y'| < %Ix — y|,we have
ly —y'l vt
+1-
(Ve + Ix —yl) (Ve + |x —yl)n
Proof: Supposex,y € R}. Thenfori =1,...,n—1, we have
0 X;i — Vi 1 |x’_y,|2 |2 =y [? % —Yn|?
— P, (6,Y) = _( i — Y1) —e 4t (e it + e at )
axl- + 2t (47Tt)§

|pt,L(x; y) — pt,L(x,:y)| <C (66)

|peLCey) — oo,y < C (67)

Moreover,

0 1 |x’—y’|2 |%n—=Vnl? (x.. — 1Xn=vnl? (x.. —
a_pt,AN+ (xl )’) = — € 4t (e 4t (nz—yn)+ e_T( 7’I.2 yn))
o (4mt)z t t

Then we obtain that

2
|VDey, 69
n—1 0
= Z |a_xl_pt,AN+ (,y)
i=1
n-1

12 2
(xi - yi)Z 1 |x -y | |2Xn—ynl? |2Xn=ynl?
< 2t 4t 4t
- Z 4t2  (4me)n € ¢ te
1 |x,_y,|2 |xn_yn|2 (xn — yn) 2
e 2t e 4t _—
(4mt)n 2t
1 |x,_y,|2 |xn_yn|2 (xn — yn) 2
e 2t e 4t _—
(4mt)n 2t

2
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n ’ 12 2
(x; —y)* 1 _lx=yl? 1 x| n=yal? (x,, — y,,)
= Cz 2t +2 2t it . Jn/
= t2 (47Tt)"e e
i=

(4me)n ¢ 2t
lx—y|? 1 _lx—yl? 1 [x—yl|? [Xn=ynl® (X, — V) ?
< 2t 2 4t 8t —
=t t2  (4mt)n ¢ + (4mt)n ¢ ¢ 2t
t
<C :
(¢ + |x —y|?)m+2
Hence, it is easy to verify that
Vit
prt,A (x, y) S C ¥2
Fan, 03) Ve+Ix—yl)"
and similarly we can obtain that
Vit
prt,A (x, :V) S C +27
| Ny | (\/E + |x _ yl)n
which implies that
|x" — x| NG

(x,y) — xy)|=scC
|pt,AN+ Y) = Ptay, XY | (\/?+ Ix _yl) (\/f+ Ix—yl)n+1

forx, x',y € R} with|x — x'| < ~|x — y|, and
ly =yl Vit
(Ve+Ix—yl) (Ve + Ix —yl)nJr1

|pt,AN+ (x,y) — Ptay, (x,y')| <C

for x,x,y € Riwithly —y'| <= |x - yl.
We can obtain similar estimates for the heat semigroup ofA,_andA.

A fundamental object in our study are the Riesz transforms associated to the
Neumann Laplacian. Recall that the Riesz transforms associated to the Neumann

1

Laplacian are given by:Ry = VA,?. We collect the formula for these kernels in the

following proposition.
Proposition (6.2.4)[178]: Denote byRy ;j(x,y)the kernel of the j-th Riesz

transform-=A 2 ofAy. Then forl < j <n — 1 and forx, y € R%we have:

Oy
]

Xi —Ji Xi —Yi

RNJ(x' y) =—Cy lx — y[*+1 + n+1
(lx, - y,|2 + |xn - ynlz) 2
And
Xi — Vi Xn + Y,
RN,n(x: y) = _Cn |x l_ylnl+1 + - - n+1 )

(lx, _y,|2 + |xn -I_ynlz)T

()

whereC,, = =45

T 2
R

Proof: Working from the definition of the square root ofAy, i.e.,

Similar expressions also hold forRy ;(x,y),j =1,...,n, when x,y €
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we have that forl < j <n —1:

Ry (6.7) 1 0 ( )dt
N6 y) = —3= o= fpt,AN X,y) =
r(z) s Ve

1 0 f 1 _|x_3/|2 dt 4 ‘ 1 |x’_y,|2 lxn—ynl?® dt
e — 4t — e 4t e 4t —
NG, n€ j m
r (E) i \o (éint)Z Vvt o (4mt)?2 vt
n+
r ( 2 ) Xi — Vi Xi — Vi

NSt |x_y|n+1+ n+i |
(m) 2 (x" =y + |xn + yul?) 2
For j = n and for x, y € Rtwe again observe:
Vi 9
Ryn(x,y) = > axn Pt AN(X 3’) \/—
0

r‘(n_2|_1) Xn =~ Yn Xn =~ Yn

n+1 lx — y[n*1 + n+i |
(T[) (lx’_y,|2+ |xn+Yn|2) 2

We next make the observation that kernels Ry ;(x, y)are Calderon-Zygmund kernels.
Proposition (6.2.5)[178]: Denote by Ry (x, y)the kernel of the vector of Riesz transforms
1

VANZ.Then:

Ry(6,¥) = (Rua (63, s Ry, ) HCn, i), (68)
withH (t) the Heaviside function defined in(64). Moreover, we have that

IRy, Y| < Crim—,
N y Tllx_ylz
And

|x — xo
| |n+1

|Ry(x,¥) — Ry (x0, ¥)| + |Ry(x,¥) — Ry(y, x0)| < C

forx, xo € R} (or x,xo,y € R)with|x — x,| < = |x —yl.
Proof: We first claim that forj = 1,...,n, andx y € R}(orx,y € R"*)

Ryi(x, Y| < Cpi——.
|Rw,; (x, ) "x — y|n
In fact, from Proposition(6.2.4), it is direct that forl1 < j <n —1,
. — Y . — 1
% — ¥l < % — v <

I 1|2 2—n+1_ ! AV 2_n+1_|x_y|n
(lx _yl +|xn+yn|)2 (lx _:V| +|xn+yn|)2
and forj = n,

|xn_yn| < |xj_yj| < 1
ntl — n+l — lx — y|™
(lx’_y,|2+|xn+yn|2) 2 (lx,_y’|2+ |xn+yn|2) 2
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where we use the fact thatx,x,,y € R} (orx,xo,¥ € R')and hencex; —y; >
|x] y]|for1 < j<n

Similarly, by considering the estimates for the terms Ry j(x,y)and —RN](x y), we
J Xj

obtain that
|Rn,j(,¥) — Ry i (x0, Y)| + |Rn,j(x,¥) — Ry j (v, x0)| < C

for x,xq,y € R} (or x, x0,y € R®)with|x — x| < 5 |x —yl.

For 0 < a < n, denote byK(x,y) the kernel of the classical fractional operator
A~%/2 which is defined by

|x —x0|
|x — y|n+t

1 dt
A—a/Z — —tA )
f(x) F(a/Z) e f(x) tl—a/z
0
We know that
CTl,(l
K(x,y) = Xy
r(2_&
WhereC,, , = 52(2)2)#120[. It is well known that whenb € BMO(R"), the
2 2

commutator[b, A=*/2] is bounded from LP(R™)toL?(R™)forl <p < n/a andl/q =
1/p — a/n. See[179].

Proposition (6.2.6)[178]: Denote by Ky (x, y)the kernel of the fractional operatorA;,“/ 2,
The x,y € Rtwe have:

Ky(x,y) = K(x,¥) + Ky(x, )

1

with

KN(x: y) = Cn,a = n_a
(Ix" =y + |xn + yul?)2 2
Similar expressions for Ky (x,y) when x,y € R also hold.
Proof: For x,y € R%, working from the fraction of the square root of A,we have that:

1 dt
Ky(x,y) = F(a—/z)j Peay (%, y)tl——“/z

2
|x,_y,| |xn_yn|2 dt
4t 4t _—
e tl—a/z

Ix—yl2 dt

F(a/Z)J (4nt)z et [(a/ z)f (47tt)2

_c, ( 1 s 1 )
— yln—-a na
=Y =y 12+ oy + yal2)Z2
= K(x,y) + Ky(x,y),

1

where we set

KN(xx y) = Llna n a
(lx, - y,|2 + |xn + ynlz)i_?
We now recall the definition and some fundamental properties ofBM0O,, (R™)
from[5].
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Define
f ()|
{f € LlOC(Rn):Hd > (s. t. fmdx < oog.
RTL

Definition (6.2.7)[178]: ([65]). We say thatf € M is of bounded mean oscillation
associated withA,, abbreviated asBMOAN (R™), if

Il > = $0p s ) yj £ G) = exp(—r28y) fOldx <, (69)

where the supremum is taken over all ballsB(y,r) inR™. The smallest bound for
which(69) is satisfied is then taken to be the norm of f in this space, and is denoted
byllf Il smoy,, (rm)-

Definition (6.2.8)[178]: ([65]). A functionf onR" said to be inBMO,. (R%)if there exists
F € BMO(R™)such thatF|gn = f. Iff € BMO,.(RY}), then we set

I flemo,mny = lnf{”F”BMOr(]R%n) Flgn = fl
Definition (6.2.9)[178]: ([65]). For any functionf € L} .(R%), define
”f”BMOe(]Rn) ”fe“BMO(]R )

wheref,is defined in(60). We denote byBMO, (R} )the corresponding Banach space.
Similarly we can define the spacesBMO,.(R™)andBM O, (R™).
Proposition (6.2.10)[178]: ([65]). The spacesBMO, (R")andBMO (R%) coincide, and
their norms are equivalent. Similar result holds forBMO,.(R™)and BMO, (R"}).
Proposition (6.2.11)[178]: ([65]). The Neumann BMO spaceBMO,,(R™) can be
described in the following way:

BMO,,(R™) = {f € M:f, € BMO,(RD)andf- € BMO,(R™)}.
As a consequence of the results from[65]listed above, we obtain thatf € BMO,, (R™)if
and only iff, ., f~ . € BMO(R"). A final key fact that plays a role in our analysis is the
duality betweenBMO, ,(R™) and Hy, (R™).
Proposition (6.2.12)[178]: ([65]). The dual space ofHAlN(IR{")isBMOAN (R™).

We provide a deeper study of the spaceH!(R™). We first provide several equivalent
characterizations OfH&N(]R"). To do so, we need the following definitions of the Hardy
space associated toAy in terms of the radial maximal function, the non-tangential maximal
function, the Riesz transforms, and atoms. As one might expect, these definitions all turn
out to be equivalent as shown below in Theorem(6.2.18).

Definition (6.2.13)[178]: We defineHy .0, (R™) = {fL'(R™): f5f € L'(R™)}with the
norm ”f”HAlN,max(Rn) = ”fAJ,rV(Rn)”Ll(Rn), WherefAJ;,(x) = 5£1>1£3|9Xp(—t2AN)f(x)|-
Definition (6.2.14)[178]: We defineH, (R™) = {fL*(R™): f5 € L'(R™)}with the norm
”f”HAlN,*(R") = ||fAJ;V(R”)||L1(Rn), wherefy (x) = sup|exp(—t2Ay) f(x)].

>0
Definition (6.2.15)[178]: We define

1 n 1 n a
HAN,Riesz(]R ) = fL (R )a_
Xy

with the normH; . ries, (R™) = ||f Il 1 wmy + X1y

A (R f € LL(RM)for1 <1< n}.

9
™ Ay (R™)
x| LL(R™)
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Next we define the atoms forHy .., (R™), which we adapt from a very recent result of
Song and Yan[158].
Definition (6.2.16)[178]: GivenM € N . We say that a functiona(x) € L*(R™) is an
HjN,max(]R")-atom, if there exist a function b in the domain ofA¥and a ball B ¢ R™such
that

(i) a=ANp;

(i) suppAkbc B k=0,1,.., M;

(i) [|CFAN D oo gy 57 IBI 7 Kk = 0,1, ..., M;
Definition (6.2.17)[178]: We say thatf = ¥; A;a;is an atomic representation of f if {1;} €
21, each a; is an Hy, q, (R™)atom, and the sum converges inL?(R™). Set
HAlN,atom(R”) = {f € L?*(R™): fhas an atomic representation }

with the norm||f|| HAlN’atom(Rn)given by

inf z|/1j| f = Z Aja; is an atomic representation
J J

The spaceHy  qcom (R™)is defined as the completion of Ay .atom (R™Mwith respect to this
norm.
We now collection the equivalence of all these definitions and moreover provide a link
betweenH' (R™)andH,, (R™).
Theorem (6.2.18)[178]: Let all the notation be as above. Then,
H&N(Rn) = H&N,max(Rn) - HAIN,*(Rn) - HAIN,Riesz(]Rn) = HAlN,atom(]Rn)
and they have equivalent norms
”f”HAlN(R") ~ ”f”HAlN,max(Rn)”f”HAlN,Riesz(Rn)”f”HAlN,atom(Rn)
~ ||f+'e||H1(R") + ”f—,e”Hl(Rn)'
Namely,f € Hy (R™)ifand only iff, ., € H*(R™)andf_ . € H'(R™).
Proof: We recall that the Hardy space associated withAyis defined as the set of functions
{f € L'(R™): ”SAN(f)”Ll(Rn) < oo}in the norm ofIflly; @) = ||SAN(f)||L1(]Rn) where
1

2 dydt

San () = (J37 f <l Qe f OIP 25, andQez = £2Ay exp(—t24y).
We now consider the operatorQ, = tAy exp(—tAy) = —t%exp(—tAN)for any t > 0(see
[71]). Then we have

t d
Qe2f(x) = t?Ay exp(=t?Ay) f(x) = f —EaPtZ,AN(xr y)f(y)dy.
Rn

From the definition ofp, 5, (x,y), see(63), we have that for any x € RY,
t d
2 exp(=t700) F0) = [ =5 2rpesa, G0 )y
R}

t 0
— [ ~Sope iy
Rn

= t?Aexp(—t*Ay) fi o (x).
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Similarly, for any x € R" : we havet?Ay exp(—t2Ay) f(x) =
t*Aexp(—t?A) f_ .(x).Moreover, by a change of variable,
t?Ay exp(—t?Ay) f(x) = —t?Aexp(—t2A) fy (Dforany t > 0,x € RY; (70)
t2Ay exp(—t?Ay) f(x) = —t?Aexp(—t2A) f_(X)forany t > 0,x € R®
Then from(70) we have

e}

Sy (N2 = f j 1620y exp(=t2Ay) £ (0> 2
0 [|x-yl<tyeR}

dydt

dydt

[t?Ay exp(—t?Ay) f(x)|?
[x—yl<tyeR}

fi
Z{jk
|

zdydt

[x—y|<t,yeR®
zdydt

+ |t2A exp(—t2A) £,

[x—y|<t,yeR™

0
1 [0 0]
=§j j |t2A exp(—t
0

lx-yl<t

2 ydt

+jo j |t2A exp(—t2A) £,

0 |x—yl<t

2 dydt

)

which implies thatS, , () (x) < \/73 (S(f+,e)(x) + S(f_,e)(y)). Conversely,

oo

B 2 dydt
5(f+,e)(:)2 - j ) l| <t|t
= zJ J |¢ ? ydt

0 [x—yl<tyeR%}

< 28y, (F) ()2,
Similarly we have S(f-.)(x)? < 25,,(f)(x)>. Hence, we obtain thatS(f;.)(x) +
S(f-e)(x) < 2v2S,, () (x). As a consequence, we have

T j 150, (1)) dx = f 1S(Fee) ()] dx + f IS(f-) )| dx

||f+ e” H1(RM) + ”f ” H1(R") (71)
Next we turn to HAD,max(]R{”) From(63) we can see that for any t > 0 andx € RY,

exp(—t2Ay) f(x) = f Pees (oY) f()dy = f pezs. Go )+ (D dy.

R™ R7
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- J Pe2 (X, Y)f+,e (N dy = exp(=t?A) f o ().

R‘n
Similarly,exp(—t2Ay) f(x) = exp(—t24) fy .(x)forany t = 0 and x € R™. Thus,

suplexp(—t2Ay) f(x)| = sup|exp( t2A) fy o (x)| for anyx € R;
t>0

suplexp(—t2Ay) f(x)| = sup|exp( t2A) f_ (x)| for anyx € R”.
>0

Again, by a change of variable, we have that
exp(—t?Ay) f(x) = —exp(—t*A) fy .(Dforany t > 0,x € RY;
exp(—t?Ay) f(x) = —exp(—t*A) f_ (X)forany t > 0,x € R”.
Then, forany f € Hy a0, (R™), from(72) and(73) we can obtain that

g ey = [ 1O+ [ 113 G0

R™ Rn
= fsuplexp(—tzAN)f(x)l dx + jsup|exp(—t2AN)f(x)| dx
£>0 £>0
R™ Rn
= j sup|exp(—t24) f; . (x)| dx + .[ sup|exp(—t24A) f_ (x)| dx
£>0 2, >0
+ —_—

1
=— j sup|exp(—t2A) fr.e (x)| dx + .[ sup|exp(—t2A) f_,e(x)| dx
2 150 150

1
—§(|l(f+,e)+ sy ”(f"e)+ Ll(R”))
= §(||f+,e||H1(Rn) + ||f-,e||H1(Rn)),

(72)

(73)

(74)

where f*(x) = sup|ps2 * f(x)|is the classical maximal function as defined in (74).

t>0

Thus(74) yields that f € Hi 0, (RMif and only if f,. € H'(RMand f_, €
H(R™).We now consider the Hardy space HAlN,*(IR{”)via the non-tangential maximal

function. Note that
fan, () = sup lexp(=t?Ay) f (V)

|[x—y|<t

<  sup |exp(—=t?AN) fO)|+  sup  |exp(=t?AyN) f(Y)]
|x—yl<t,yeR} |x—y|<t,yERP
< sup |exp(—t28)fr .|+ sup |exp(—t24) f_ ()|
[x—yl<t,yeR} |x—y|<t,yeR™?
< sup |exp(—t24) fy (M| + sup lexp(—t2A) £ ()]
lx-yl<t lx— y<t

= (f+.e) (x) + (f—,e) (x),

where f*(x) = sup |p.2 * f(y)lis the classical non-tangential maximal function. Hence

lx—-yl<t
* (x)”Ll(]Rn) < ||(f+,e L1(R™) LR
(fre) ) = sup |exp(=t?4) fy ()]
lx—yl<t

< sup fexp(=t?8) fr |+  sup |exp(=t?A) £ (¥)]
|x—y|<tyeR} lx—yl<t,yeRD
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<2 sup |exp(—t?Ay) f(¥)I

lx-yl<t
< 2fx, (%)

Similarly  we  obtain

Thus, ||(f+,e
weal|

ThIS implies that

\ (x)”l ~ ||(f+,e Ll(]Rn) Ll(]Rn)' (75)
Thus,(75) yields that f € Hy . (R™)if and only if f, . € H'(R™)and f_. € H'(R™).As
for the Riesz transform characterization of the Hardy spaceHAlN (R™), it sufices to note that

when x € RY,
1

VA2 (x) = f Kn(o,y)f(y)dy = j Ry(x,y)f+(y)dy = j Ry f+e(V)dy

R ]R:_l R™
1

= VA2 fy o (x)

LY(RY)'

LY(RM)’

and that when x € R",
1 1

VA2 f(x) = VA2 f_ . (x).

Thus, f € Hy pies;RMif and only if £, . € H'(R™)andf_ . € H'(R™).
Finally, for the atomic decomposition, in Song and Yan[158], they already obtained
thatHy . (R™) = Hy arom (R™). See [158] for this fact.
We now prove the Fefferman-Stein type representation for the space BMO,, (R™).
Corollary (6.2.19)[178]: The following are equivalent for a functionb:

() b€ BMO,,(R™);

(ii) There exists by, by, ..., b, € L*(R™)such that b = by + Y.j=; Ry jb;, where Ry jis

the adjoint operator of Ry ;.
Proof. The proof is as in[74]. Let B = @] oL}(R™)and norm B by Yi=ollfll 1y We
have that B* = @7_,L”(R"). Let S be the subspace of B given by

S ={(f,Ry1f, - Rynf):f € L*(RM}.

We have that S is a closed subspace and thatf — (f,Ry1f, ..., Ry.f)is a isometry of
H;,(R™) to S. Linear functionals on S and H; (R™)can be identified in an obvious way,
hence any continuous linear functional on HAlN(IR”)can be extended by Hahn-Banach to a
continuous linear functional on B and can be identified with a vector of
functions(by, by, ..., b, )with each b; € L*(R™).
We use this conclusion in the following way. Let £ be a continuous linear functional on
HjN (R™). Then by Proposition(6.2.12) there is a function b € BMO,, (R™)so that:

f FCOB@dx = £(f).

However, by the discussion above, and by restricting the extended linear functional back
to Hy (R™we have for(f, Ry 1f, ..., Rynf) = (for wes fo):
n

1= [ feonGx
j=0Rn
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Using the definition of the f; = Ry ;f we see that:

o) j F) | b+ Riy by () |
R J=1

This then gives the decomposition that any b € BMO,,, (R™)can be written as:
n

b=by+ ) Riby
j=1
with b; € L* (R™).
For the converse, we simply observe that from our Theorem(6.2.18), we obtained that R"
maps HAlN(IR”) to L'(R™). Hence, the boundedness of the Riesz transform Rj; from
L*(R™) to BMO,, (R™")follows from duality of Hy (R™) with BMO,, (R™). We then
have that any b that can be written as:

n
b=by+ ) Riby
=1

withb; € L*(R™)must belong toBMO,, (]R").]

We next note thatHgN([R")is a proper subspace of the classical H1(R™), which was
proved by Yan in [53] from the viewpoint of the semigroup generated by Ay. And we now
give a direct proof and provide a specific function f which lies in H*(R™)but does not
belong to HjN([R"). A related claim is made in [65].

Theorem (6.2.20)[178]: ([53]). Hy, (R™) & H*(R™).

Proof: We first show that the containment HAIN (R™) c HY(R™holds. This follows
directly from the fact that corresponding BMO spaces norm the Hspaces, namely that:

£ ez ey = sup [{f, b) 2 (R™)].

|b| BMOAN(]Rn)Sl
An identical statement holds forH!(R™)andBMO (R™). As shown in[65], BMO(R") &
BMO,, (R™), and so we have

Ifllgrgmy = sup  [{f,b)2(R™)| < sup 1, D)2 (R~ MIf llgz ey

blipmorm)=1 ”b”BMOAN(lR")Sl
This gives the containment,HAlN(R") c HY(RM).
We now show that there exists a function f € HX(RMbut f ¢ HAlN(]Rn). For the sake of
simplicity, we just consider the example in dimension 1.

Define
Flx) = X[0,1] (x) _ X[-1,0] (x)-
V2 V2
It is easy to see thatf (x) is supported in[—1, 1], andef(x)dx = 0.Moreover, we have
If 1l zmy = 1.

These implies that f is an atom of H(R), which shows that f € HX(R). From the

definition of f, we obtain that £, (x) X[Oj_( a2

fre() =—F—

and the even extension is
X[-1,1] (x)
V2
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But, then it is immediate that f, , € H*(R)since fRn f+e(x)dx # 0. One can also prove
this by using the equivalent definition of H*(R)via the radial maximal function. Similarly
we have these estimates for f_ .. Hence,f, . ¢ H*(R)and f_ . & H'(R), which, combining
the result in Theorem(6.2.18), implies that f ¢ Hy (R).

Finally, we provide a description of the atoms in HjN (R™)that connects back to the atom
in H1(R™).

Proposition (6.2.21)[178]: Suppose a(x) is an HAlN (R™)-atom supported in B ¢ R™. Then
we have

f a(x)dx = 0. (76)
RTL

Moreover, if B N {x € R": x,, = 0} # @, we denoteB, = B N RYandB_ = B N R™. Then
we have

J a(x)dx =j a(x)dx = 0. (77)
B

B_
Proof: First note that from 'I'+heorem(6.2.20),HA1N(IR") ¢ HY(R™). Since a(x) is an
Hj, (R™) atom, we havea(x) € H'(R™), and hence(76) holds, where we use [180].
Second, suppose B N{x € R™:x, =0} # @. Then we define a,(x) = a(x)|p,and
a_(x) =a(x)|g . Since a(x) € HAlN(]R"), from Theorem(6.2.18) we obtain that both
a;o(x) and a_ ,(x)are in H*(R™), which implies that

ja+,e(x)dx = ja_,e(x)dx = 0.
Rn Rn
Next we claim that [, a,. . (x)dx = 0. In fact,

ja+,e(x)dx = ja+,e(x)dx+ jate(x)dx =2 fa+,e(x)dx.

R R” R™ R
Hence, [, ;0 (x)dx = 0 implies that [, a, .(x)dx = 0, i.e., fB+ a(x)dx = 0. Similarly
we obtain thatf, a(x)dx = 0. Hence(77) holds.

We turn to proving Theorem(6.2.2). There are two parts to this Theorem, and upper
and lower bound, and we focus first on the (easier) upper bound.
Recall that, for notational simplicity, we are letting

IM;(h, g) = h.Ry;(g) — g.Ry,(h),
1
whereRy ; = %ANZ forl <l < n. We now prove the following theorem.
l

Theorem (6.2.22)[178]: If b € BMO,, (R™), then for 1 < [ < n, the commutator
[b, Ry ] () (x) = b(x)b, Ry 1, (f)(x) — Ry 1 (bf) (x)
is a bounded map onL?(R™), with operator norm
I[b, Ry o]: 2(R™) = LR < ClIbllsmo, , mm)-
Proof: Suppose b is in BMO,, (R™). Then according to [65], we have that
by .(x)BMO(R™) and b_ ,(x)BMO (R™), and moreover,
”b”BMOAN(]R{n) ~ ||b+'e||BMO(]R{”) ”b—,e ||BM0(RTL)'
For everyf € L?(R™), we have
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”[b; RN,l](f)||i2(Rn) = J[b» RN,l](f)(x)zdx + f[b' RN,l](f)(x)zdx =:1+1I.
R" R™

For the termI, note that when x € R%, we have
[B, Ry 1 ] (F)(x) = b(x)b, Ry 1 () (x) — Ry (bf) (x)
= b+,e(x)Rl(f+,e)(x) - Rl(b+,ef+,e)(x) = [b+,e: Rl](f+,e)(x);

which implies that

[= [ R (Y@ dx = [ [beeR](Fre) @)

R R

< [ R (fre)@)dn

R"
< Clby.|

2 2
BMO(R™) ||f+;e ||L2 (RM)’
1

whereR;is the classical [-th Riesz transformaiX Az,
l

For the last estimate we use the result [3], which applies since we know from that R ;is a
Calderén—-Zygmund kernel. Similarly we can obtain that

2 2
1< Cllb- e o am 1-ell 2 gany

Combining the estimates for I and 11 above, we obtain that
2 2

2 2 2
”[b, RN,l](f)“LZ(Rn) = C”b""e”BMO(IR")”f""e”Lz(IR") + C||b+'e||BMO(]Rn)”f_'e”Lz(]Rn)

< ClbIE o, vy (el 2 + el sony)
< ClIbIGmoy, ey 1 22y
which yields that||[b, Ry, ]: L2(R™) - L2(R™)|| < ClIbllsmo,, rm.
Theorem (6.2.23)[178]: Let g, h € L*(R™)with compact supports. Then forl <[ < n,
I (R, Dl @y = Cllgllz e 1~z @eny.
Proof. By the duality result of [65], stated in Proposition(6.2.12), we know that
HjN(lR%”) * = BMO0,,(R™). A simple duality computation shows for b € BMO,, (R™)and
for any g, h € L (R™)with compact supports:
(b, 11;(g, h))LZ(Rn) = (b, R}kv,z(g)h - RN,z(h)9>L2(R") = (9, [b; RN,l(h)]h>L2(Rn)'
Thus, from Theorem(6.2.22), we obtain that
(b, 11,(g, M) 2mmy| < ClIbllsmo, , &l gllzmmy 1Rl 2 gemy-
This, together with the duality of H&N(Rn)with BMO,, (R™)shows that II;(g, h)is in
H&N (R™). And then by testing I1;(g, h)against b € BMO,, (R™)functions, we find:

I, (g, h)”HAlN(Rn) ~ sup |<Hl(g: h):b>L2(Rn)|

I b"BMOAN(]Rn)Sl
< C”.g”LZ(IR")”h”LZ(]R{n) sup “b”BMOAN(R”)

BMO,, (RM)=1

< Cllgll 2 wmy 1 Rll 12 gy
The proof of the lower bound is more algorithmic in nature and follows a proof
strategy developed by Uchiyama in[182]. We begin with a fact that will play a prominent
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role in the algorithm below. It is a modification of a related fact for the standard Hardy
space H1(R™M).

Lemma (6.2.24)[178]: Suppose f is a function satisfying:fRnf(x)dx =0, and|f (x)| <
XB(xo1)(X) + XB(y,1) (%), Where|xy — yo| == M > 10. Then we have

”f”HAlN(]Rn) < Cn logM (78)
Proof: First note that
far (x) = sup|e ™ f (x)| = sup f Peay (6 ¥)f (¥)dy|sup j Peay M) |dy < C.
t>0 t>0 R t>0 R

Hence, we obtain that

i+ [ g @drsc,

B(xO'S) B(yO'S)
Now it sufrces to estimate

+
fan, (x)dx.
R™\(B(x,5)UB(,,5))
To see this, we write it as
far (x)dx + j fah (O)dx =:1+11.
R™/B(x¢,2M) B(x0,2M)\(B(x0,5)UB(¥,,5))
We now estimate the terml. First note that from Holder’s regularity (67) of the heat kernel
De.ay (X, ), We have
ly — xol Vt
|pt,A (x,y) — Peay (%, xo)l < C(
N N Vit + |x — x| (\/f+|x—x0|)n+1

for|y — xo| < +/t. Moreover, when|y — x,| = +/t , we have

|pt,AN(xJ )’) - pt,AN(xr x())l < |pt’AN(X, y)| + |pt,AN(x — X0)|
e~ lxxol? /et p=lx—yl?/ct

=C t‘n/Z + tn/Z
_ —|x,xq|%/ct
<C ly —xol\ e
\/E tn/Z

SC( ly — %o > Vit -
Vt + |x — x| (\/f+|x—x0|)n+1

Now note that from the cancellation condition of f and Holder’s regularity of the heat
kernel p,(x, y)as above, we have

far (x) = sup

f [P, (6 ¥) = Den, o x0) | F ) dy

t>0
. Ji
0 B, 1)UB(D) X =%l (Ve + x = xol)
— X M
<c, lyvo ol ¢, -
|x_x0|n+1 |x_x0|n+1
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As a consequence, we obtain that

M
I < j Cnmdx < Cn-
R"/B(x,2M)
We now turn to the term II. Note that when x € B (xy, 2M)\(B(xo,5) U B(¥,,5)), we

have

f Peay 6V f()dy| < f |Peay (¥ |dy + j |Peay (9| dy.
R™ B(x4,1) B(¥o,1)
When t > 1, from the size estimate of the heat kernelp, ,, (x,y), we have
1
, dy|<C + C :
an PG| = O+ =
When t < 1, similarly we obtain that
[P D] < b e b e
J Poan eI = Oy o = g T eyl
Thus,
+
11 < j fa,, (x)dx
B (x0,2M)\(B(x0,5)UB(0,5))
<cC j ! + L d
= X
lx = xol™  |x = yol™

B (x0,2M)\(B(%,5)UB(0,5))
< C,logM.
Combining all the estimates above, we obtain that
”f”HAlN(IRn) = ”fA-lI_V”Ll(Rn) < Cn logM.
Suppose 1 < I < n. ldeally, given an HAlN(]R")—atom a, we would like to find g,h €

L?>(R™)such that IT;(g, h) = apointwise. While this can’t be accomplished in general, the
Theorem below shows that it is “almost”™ true.
Theorem (6.2.25)[178]: Supposel < [ < n. For every HAlN(R")-atom a(x) and for all

g > 0 there exist a large positive number M and g, h € L*(R™)with compact supports
such that:

la — 1, (h, g)”HAlN(R") <é&
andllgll .z llhll 2 gy < CM™.
Proof: Let a(x) be an HAlN(R")-atom, supported inB(xg, 7). We first consider the

construction of the bilinear form IT;(h, g)forl <1 <n — 1 and the approximation toa(x).
To begin with, for the ball B(x,, ), we now consider the following cases: Case1:x,,, = 0;
Case 2:xp, < 0.

We first consider Casel. To begin with, fixe > 0. Choose M € [100, oo)sufrciently large

so that M%M < &. Now selecty, € R’in the following way: for 1 < i < n, choose y,; > 0

M where Xo,i(reps. yo ;) is the ith coordinate of x,(reps yy).

such thatyy ; — x0; = N
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Note that for this y,, it is clear that B(y,, ) € R}and we have|x, — y,| = Mr. Moreover,
Mr
forany y € B(y,,r), we also have|x, — y| > - We set
a(x)

TTIEN) (79)

9(x) = Xp(y,m(*¥)andh(x) =
We first claim that

Ry glx)|=cmM™,  1<i<n-1. (80)
In fact, forl = 1,...,n — 1, from Proposition (6.2.4), we have

Rig@o) =| [ Runxdy
3(3/0'7”)

Y — Xo, Y1~ Xo, \
=C, f l— 31{}-1 + : - n+l dy
|xo — ¥l )12 2\ 2 /
B(¥o,r) (|x0 —y'|" + |xon + | )

il
)

= C’fllyl - xO,ll f |x0 _ y|n+1 +

B(yo,1) (|x0 _ y,|2 n |x0,n + yn|2)T

1
>CM ———dy=>CM™.
= f o =y =
B(yo,1)
As a consequence, we get that the claim(80) holds.

As for Case2, we handle it in a symmetric way as follows. Fix € > 0. Choose M €

[100, o) sufaciently large so thatb%M < €. Now select y, € R? in the following way: for

1 <i < n, choose y,; > 0 such that yg; — x¢; = —%. Note that for this y,, it is clear

that B(y,, ) < R"and we have|x, — yo| = Mr. Moreover, for any y € B(y,,r), we also
have |x, — y| > ? We now define the functions g and h as in(79), and the following the

same estimates, we can obtain that the claim(80) holds.
From the definitions of the functions g and h, we obtain that suppg(x) = B(y,,r) and
supph(x) = B(xy, ). Moreover, from(80) we obtain that

n n
gl gy =~ 72 andllAl 2gany = lallzqam < CM™r 2.

|RN,19(XO)|
Hence|lgllzrm) Il Al 2 gy < CM™. Now write
a(x) — (h(x)RX/,zg(x) - g(x)RN,zh(X)) =a(x)

=. Wl(X) + Wz(.X).
By definition, it is obvious that W; (x) is supported on B(x,,1) and W, (x) is supported

on B(y,, 7).
We first turn to W, (x). Forx € B(x,, 1),

W1 ()| = la(x)]

R;/,lg(xo) - R;/,lg(xo)
R;I,lg(xo)

— g(xX)Ry 1h(x)

|RE,19(XO) - R;I,lg(x)|
R;I,lg (%0)
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< CMn||a||L°°(1R1") f |RN,1()’, Xo) — RN,l(y, x)|dy

B(yo,r)
CM” f lx — x| d
- TTL |x_y|n+1 y
B(yo.,7)
c 1
- Mrmn

1

Hence|W1 (xX)| < € —— X (X

We next estimate W, (x). From the definition of g (x), we have
W, (x)| = XB(yo,1) (x)|RN,lh(x)|

1

TP — Ry h(x,y)a(y)dy
Ry.9 (x0)| "

B(yO'r)

= XB(y,,1) (x)

1
T~ Ry (x, y)a, (y)dy
Ry, g(x ’
N,lg( 0)| B(yO'r)
where the last equality follows from the fact that x € B(y,,r) € R%tand from the
definition of the Riesz kernel Ry (x, y) as in(68). Hence, from the cancellation property of

a, (y)1 we get

= XB(y,,1) (x)

~

1
IW2001 = Xm0 - | (Rualey) = R x0)) as )y
(x0,7)
ly — xol
< Ctaur M | lallimqan 2 dy
B(xo,7)
Mn Tn XB(or) (x).

Combining the estimates of W, and W,, we obtain that

C
|a() = (REIRY 19 () = g(IRN A )| < 22 (X500 (O + X3y @) (B1)
Next we point out that

[ [a60 = (hGORA9 ) — gCORNCO) ] dx
= [aGodx - [ (r@Riug0) - g@IRAG) dx =0, (@2

since a(x) has cancellation (Proposition(6.2.21)) and the second integral equals 0 just by
the definitions of g and h.

Then the size estimate(81) and the cancellation(82), together with Lemma(6.2.24), imply
that

lo
oG = (reORY9 ) - @Ry @), < C—F— < Ce

This proves the result for 1 < I < n — 1. We now consider the bilinear form I1;(g, h)and
its approximation to a(x). Again, for the ball B(x,, ), we now consider the following
cases: Casel:xy,n = 0;Case2: xq,, < 0. It sufices to consider the Case 1 since the other
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can be handled symmetrically. In this case, for xywithx,, = 0, choose y, such that y, ; —

Xoi = % fori =1,...,n. We now define the functions g and h as in(79). This, together

with Proposition(6.2.4), yields

Ry 19 (x) J. Ry (x, x0)dy

B(XO,T')
Yn — Xon Xom — Yn \
= Cy — o T it |4
|xo — ¥l ' 12 2\ 2
BGor) (|xo -y | + |x0,n + yn| )
Yn — Xon
>C ——d
") Ty
3(3/0'7‘)
1
= Cnb’n - xO,n| |x _ y|n+1 dy
B(yO'r)
> CM™"

Here, we obtain that the claim(80) holds f_or these g andh.
Now following the approximation as that forRy ;withl <[ <n — 1, we obtain that

”a(x)-(h(x)REJg(x)—-g(x)RNJh(x))|H&(Rn) log M

<C M < Ce. (83)
With this approximation result, we can now prove the main Theorem(6.2.2), restated
below for the convenience of the reader.
Theorem (6.2.26)[178]: Supposel <[ < n. For any f € HjN(lR{")there exists sequences

{2F} € €* and functions g, hf € L*(R™)with compact supports such that

f=> > Al nb).
k=1 j=1

Moreover, we have that:

1Nz s = 063 Y > AN o g 1 gy £ = Y D ATy y)
j=1 k=1j=1

k=1j
Proof: By Theorem(6.2.23) we have that ||Hl(g,h)||HA1 &™) = Cllgllz@m Rl 2 gny, itis
N
immediate that we have for any representation of f = Y37, X%, A711,(g;, h;) that

: k k k L k k 1k
1Ny ey < €03 > TGS N g 1 oy = . D 25T (g, )
k=1j=1 k=1j=1
We turn to show that the other inequality hold and that it is possible to obtain such a
decomposition for any f € HAlN(]R”). By the atomic decomposition for HAlN(]Rn),

Theorem(6.2.18), for any f € H; (R™)we can find a sequence{Af} € £*and sequence of
Hj (R™)-atoms a;so that f = 352, AfafandX 2, |4F| < C()”f”HAlN(Rn).

250



We explicitly track the implied absolute constantCyappearing from the atomic
decomposition since it will play a role in the convergence of the approach Fixe > 0 so

that eC, < 1. Then we also have a large positive number M wit

Theorem (6.2.25) to each atom a . S0 there exists gj , hj’-‘ € L” (]R”)Wlth compact supports
and satisfying||g; || , ]R")” ||L2 ey < CM™ and
1 31
”a] H (g]’h])”HAlN(]Rn) < EV]'.
Now note that we have

f= Z Ajaj = z/’l}nl(g}, hi) + ZA} (aj1 —1,(g}, h ) i= M, + E.
= j=1 j=1

Observe that we have

(00] (0¢]

1 1 141 1
IExllz mny < Zlﬂj llaj - Hl(gf’hj)||HA1N(Rn) = Ezp‘f' < €Collf Mg, rny-
j=1 j=1
We now iterate the construction on the function E;. Since E; € HAlN(lR"), we can apply
the atomic decomposition in HAlN(]R"), Theorem(6.2.20), to find a sequence{l}‘} € £1and

a sequence of Hy (R™)-atoms {a7}so that E; = X%, Afa? and

N1 < CollExllyg gy < €CEIF Ny cany

j=1
Again, we will apply Theorem (6.2.25) to each atomay. So there exist g7, h7 € L*(R™)

with compact supports and satisfying|| g7 || , Rn)||h2||L2 &y < CMMand

||aJ —1II (‘g]’ J )”HAIN(Rn) <§g, VJ
We then have that

E, = 2,122 zzzn(gj, )+Z)12 —1,(g? h?)) = M, + E,.

But, as before observe that

(00]

||E2||HA1N(Rn)SzMﬂ”ajz—Hl(g], sy < Z|Az|<(gco)2||f||HA -

And, this implies for f that we have

f= Z ._Z)lll'[(g], )+Z/11 a; —l'[(g], )

_M1+E1 M1+M2+E2—zzﬂkn(g]’ )+E2
=1j=
Repeating this construction for each 1 < k < K produces functions g}‘, h]’-‘ € L” (R™)with

compact supports and satisfying||g}‘||L2(Rn)||h]’-‘||L2(Rn) < CM™ for all j, sequences{A}} €
e with {47}, < € CRIfllug, @m,  and @ functionEy € H (R™)  with
K
||EK||HA1N(Rn)(ECo) ”f”HAlN(R")SO that
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f= Z Z A1, (g}, hf) + Ex.

k=1j=1
Passing K — oogives the desired decomposition of f = Y7, 52, A1, (g, hf). We also
have that:

e}

(0.0] (00] B CO
Z zl)l]kl < Z € 1(€CO)k”f”HA1N(an) =1 ec. eCy “f“HAlN(]Rgn).

k=1j=1 k=1
Finally, we have
Theorem (6.2.27)[178]: Suppose b €EU,5, L} (R™).

loc
If b is in BMO,,(R™), then forl < [ < n, the commutator

[b» RNl](f)(x) = b(x)RN,l(f)(x) - RN,l(bf) (x)
is a bounded map on L?(R™), with operator norm

”[b» RN,l]iLZ(Rn) - LZ(Rn)” < C”b”BMOAN(]Rn)'
Conversely, forl<l<n, if [b,Ry;Jare bounded on L*(R™) then b is in
BMO,, (RMand||bllsmo,, ) < C||[b, Ry,i]: L2(R™) — L2 (RM)]].
Proof. The upper bound in this theorem is contained in Theorem (6.2.23). For the lower
bound, we first note that from Theorem(6.2.18), H AlN(IR")haS equivalent characterizations
via atoms, which shows that HAlN(]R") N LY (R™)is dense in HAlN (R™)with respect to the
HjN (R™)norm, where we use Ly (R™)to denote the L*function with compact supports.
Then using the weak factorization in Theorem(6.2.2) we have that for f € HAlN(R") N
Lz (R™),

[, zam| < D PG N zam] = D > A11KGE [b Rz |
k=1j=1

k=1j=1
Hence we have that

|(b»f>L2(R")| = z zlljk”'[b’ RN,I](hJI'()”LZ(Rn) ||gﬂ|L2(R”)
k=1 j=1

< [I[b Rl 2R = 2R DS G5 gy 1]
k=1j=1

S C” [b, RN,l]: LZ (Rn) i LZ (Rn) ” ”f”HAlN(Rn)
By the duality between BM0, ,(R™)and H; (R™)we have that:
16llsmo,, &my = sup (b, fliz@m| < C[[[b, Ry, ]: L2(R™) > L2(RM)]|

f”Hi (RM)=1
N
Theorem (6.2.28)[178]: If b is in BMO,,(R™), then forl < a < n , the commutator
|6, 83| (F) () = b)AT2(F) () — A2 (bf) (x)
is a bounded map fromLP (R™)to L7 (IR™)with operator norm
|2, 23%%]: L2 (R™) > L9@®R™) || < ClIblI s, aeny
1 a

1
Where1<p<2and—=———.
a q 1Y n
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Proof. Suppose b is in BMO,,(R"). Then according to [65], we have that b, , €
BMO,, (R™) and b_, € BMO,,(R™), and moreover,

”b”BMOAN(]Rn) ~ ”b""e”BMOAN(]R“)”b_'e”BMOAN(]R")'
For every f € LP(R™), we have

lb. A_a/z](f)” f[b, Ay 2| () ()7 dx + j[b,A,‘V“/Z](f)(x)q dx =1 +11.

R" R
For the term I, note that when x € R%}, we have

|5, 832| (PG = bGIAT* ()G = A2 B G
= b+,e(x)A_a/2 (f+,e) (x) — A9/ (b+,ef+,e) (x)
= [b+,er A_a/z] (f+,e) (x),

LI(R™)

which implies that

= (64~ dx = [ [bee 4] (fre)@) d

R R

< j (b e A72] (£, ) (1) dx

= C||b+ e”BMO(]R") ”f+ e ||Lp(Rn)
For the last estimate we use the result [3], which applies since we know from that Ry ;is a
Calderén—-Zygmund kernel. Similarly we can obtain that

II'= C||b+ e”BMO(R”) ”f+ €||Lp(Rn)
Combining the estimates for I and I1 above, we obtain that

I[6. 250 +C||b_

ellgarocam 1 F-ell

C”b”BMOA (R™) (||f+ €||Lp(Rn) + ”f—,e”Zp(Rn))
ClBN a0, ey 1 1o gy
which yields that||[b, Ry ]: LP (R™) - Lq(R”)” < ClIbllsmoy , (mm)-
Corollary (6.2.29)[183]: Suppose that L is one of the operators Ay, ,Ay_and Ay,
Then for x, x’, (x + €) € RU 29 (or € RA+29) with |x — x'| < = —|el, we have

LP(R™) — ” +e||BMO(R")||f+e”LP(Rn)

, lx —x'|V1+ €
|(1 + ) areL(x +6) —(1+6€) (g4 (X, x + e)| <C Gize)’ ; (84)
(V1+e+lel)

Symmetrically,  for x, (x + €), (x + €)' € RV (ore RA+29)  with  |(x +€) —
(x+e)| < %Iel, we have
|1+ a+eL(nx+6) — (14 €) gt (x', x + e

|(x+e) —(x+e)|vA+e (85)
(,/(1+6 +|e|) "

Proof: Suppose x, (x + €) € ]R{Sr“ze). Thenfori =1,...,2¢ , we have
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0
Fr (1 +6&)a+roay, (x,x +€)
l

2 2
o _ x'=(x+e)’ X420~ (+€) 1426 |
_ _(xl (x +¢€);) 1 5 ¢ | 4(1+e) | e = 4(1+e) =
1+2€
20+€)  4r1+e) 2
|x(1+26)_(x+6)(1+26)|2
+e 4(1+€)
Moreover,
1+ 6€)a+eay, (ox+6€)
ax(1+26) (A bny
r_ 112 _ 2
L e e ~ (4 9a)

1+ 2¢
(4 (1 + E))( 2 )

2
o+t ¢
+e L e L (12 + (& + O arae)
2(1+¢)

2(1+¢)

Then we obtain that
2
[92(1 + ©a4eray, 6 (x + )

2€ ) ,
0 9
N Z a_xi(l O areay, 6 (x+ )| + ‘m (1 +E)a+epay, (6, (x +€)
=1
2€ L N2 |x’—(x+e)ﬂ2 |x( 6)—(x+e)( eﬂz
S z (xl (x + E)l) 1 e 2(1+E) o 1+2 4(1+6) 142
. 4(1+€)?2 (4n(1+¢))At2e)
i=
2
|x(1+25)+(x+5)(1+25)|2
+e 4(1+e)
2
|x’—(x+e)'|2 |x(1+ze)—(x+e)(1+ze)|2 ( _ + )
+2 ! e 20+e) e 4(1+e) X(1+26) = (X + €)(142¢)
(4m(1 + €))@+26) TGRS
2
I _ Vi 2 2
49 1 , |x 2((16:66)) | , |x(1+2€)1-((f::))(1+26)| (x(1+26) +(x + 6)(1+26))
(4r(1 + €))1+26) TGRS
1+2
<c ig G — G+ )7 1 ire
e
T4 (1t (n(1+e)0re
1=
2
I _ Vi 2 2
+ 2 1 e |x 2((;::66)) | e |x(1+2€)1-((f:66))(1+26)| (x(1+26) + (x + 6)(1+26))
(4m(1 + )12 TGRS
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lel? 1 e

<C “2(1+e)

(1+e)2 (4n(1 +e)+20 °

2
2
2

+2 . S Tre | FusotCrunol (x40 + (¢ + Oize)

(4m(1 + €))1+29 2(1+e)

1+

<o 2*9

(1+€e+€?)

Hence, it is easy to verify that

V(@A +e)
A+ +1e)) ™

V(@A +e)
(3+2¢€)’
(V@ +e€) +lel)
which implies that

|1+ O reay, 06 G + ) = (1 + O argay, & (x + )
lx" — x|/ (1 +€)
<C
(4+2¢€)
(V@ +e) +lel)
(1+2¢)

for x,x', (x + €) € R} with |x—x’|S%|e|,and
(1 +E)areay, (0 (x+€) = (1 +)area,, & (x+6))
<c l[(x+€e)—(x+e)|J(x+¢€)
- (Vi ¥e+ )
forx,x’,(x +€) € ]R%ErHZE) with [(x +€) — (x + €)'| < %Iel.
Corollary (6.2.30)[183]: Denote by Ry ;(x, (x + €))the kernel of the j-th Riesz
1

|Vx(1 + E)(1+€)'AN+ (x, (x + 6))| <C

and similarly we can obtain that

Vs + Oreay, (6 (x+ )| < C

transform %A;ﬁ of Ay. Thenfor 1 < j < 2e and for x, (x + €) € R{"*“we have:

X

j
Ry j(x,x + €)

_ xi—(x+e€) x; — (x +€);
— T H(1+2e) le|@+20)

(1+¢€)
(lx’ —(xte*+ |x(1+26) - (x+ E)1+26)|2)

and
Ry, (1426 (x, (x + €))

_ xi—(x+¢€);
— T ~(1+2¢) le|2+26)

X(1+2¢) T (x + E)(1+26)

(Ix" = G+ 12 + [xaze) + (x + ) 20|

+

2)(1+e) ’

255



where Ciy1z¢) = F((lltf)) Similar expressions also hold for Ry ;(x,x +€),j=1,...,(1+

2¢€), when x, (x + €) € RA+26),
Proof: Working from the definition of the square root ofAy, i.e.,

A;%— 1 fe_(He)ANd(l-Fe)’
r(3)s Ja+e)

we have that for 1 < j < 2e:
1 0 d(l+e¢)

Ry j(x,(x +€)) = —1— (1 + &) areray(x (x +€))

R o

1 0 f 1 _Lel®_d(1+¢)

N =

“4(1+e)

+€e
)61 (47‘[(1+6))12) v +e)

(00]

1 |9‘C'—(x+6)'|2 |x(1+2€)_(x+6)(1+26)|2 d(1+e€)
f Va9

e 4(1+e) o 4(1+¢)

Urn(1+e€)) 2z e V(1 +e)

FA+e)| x;— (x+e€); x; — (x + €);
o () (1+6) le|2+2€) + (l
X

'—(x+e€)|2+]| + (x + | e
(x +¢) X(1+2¢€) (x E)(1+26)

For j = (1 + 2¢) and for x, (x + €) € R{' "> we again observe:

N d(1+ €
Ry (1426 (%, (x + €)) = W (1+ &) a+eyayx (x + €6) ——
X(1+26) 5 (1+¢)

B F(1+e€) | xas2e) — (X + E) (1426
(7‘[)(1+E) |E|(2+26)

X(142¢) T (X + €) 1426

(lx’ —(xt+e)|*+ |x(1+26) + (x + 6)(1+26)|
We next make the observation that kernelsRy ;(x, (x + €))are Calderon-Zygmund
kernels.
Corollary (6.2.31)[183]: Denote by Ry(x,(x +¢€)) kernel of the vector of Riesz
1
transforms VA, 2. Then:
Ry(x, (x + €))

= (Ry1(t, (x + €), ., Ry (1420 (x, (x + ) )

X H(X(1+26), (x + 6)(1-}-26)), (86)
with H(1 + €) the Heaviside function defined in (64). Moreover, we have that

1
IRy (x, (x + €))] < Ca+2¢) le|(1+2¢€)’

_|_

2)(1+6)

and
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|x — %o
IRy (x, (x + €)) — Ry(xo, (x + €))| + |Ry(x, (x + €)) — Ry((x + €),x0)| < C|e|(2—+26)
for x, xy, (x + €) € Rf”e) (or x, xg, (x + €) € RET29) with |x — x| < %Iel.
Proof: We first claim that forj = 1,..,(1 + 2¢),and x, (1 +¢€) € RSHZE)(OF x,(x+e€)E€
R(_1+26))
1
|RN,j(xr (X + E))' < C(1+26) |€|(1—+26)

In fact, from Corollary (6.2.30), it is direct that for 1 < j < 2¢,
|xj —(x+ e)j|

2\ (1t+€)
(lx’ —(x+e)|*+ |x(1+2€) + (x + E)(1+Ze)| )

|xj—(x+e)j| 1

= 2)(1+e) = |E|(1+26)

(lx’ —(x+e)|*+ |x(1+2e) + (x + E)(1+2€)|
and for j = (1 + 2¢),
|x(1+26) —(x+ E)(1+2€)|

2
(Ix = G + €)' 12 + |xcuaze + (x + O aaze)
- |xj—(x+e)j| - 1 ’
- . o 2\ (1+e) — |E|(1+26)
(Ix = G+ /12 + |xaze) + @ + Oaaze| )
where we use the fact that x, xo, (x + €) € R{ 29 (or x, xo, (x + €) € RA+29) and hence
xi—(x+e)> |xj—(x+e)j|f0r1S j <1+ 2e.

Similarly, by considering the estimates for the terms %RN,j(x,(x+e)) and
]

)(1+e)

a% Ry j (x, (x + €)), we obtain that

]

|RN,j(x, (x + €)) — Ry, j(xo, (x + )|+ |RN.J'((X +€),x) - Ry,j(Cx + €),%o)|
<C |x — xo
= |E|(2+26)

For x, xo, (x + €) € R¥?9 (or x, x, (x + €) € RZ*20) wiith |x — x,| < %lel.

Corollary (6.2.32)[183]: Denote by Ky(x,(x + €))the kernel of the fractional
operator Ay 972 Then x, (x + €) € R we have:
Ky(x,(x +€)) = K(x, (x + €)) + Ky(x, (x + €))

with

~ 1

Ky(x, (x +€)) = C(1+26),(1+6) = 5 €

’ ’ 2
(|X —(x+e)*+ |x(1+26) + (x + 6)(1+2e)| )

Similar expressions for Ky (x, (x + €)) when x, (x + €) € R2+2€ also hold.
Proof: Forx,(x+¢€) € ]R{Er“ze), working from the fraction of the square root of Aywe
have that:
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Ky(x, (x +€)) = ad +E)

r(+ E)E/Z) J 1+ &) areayx (x +€) —=

(14+¢€) 2
j w40+
e ——
(1+26) _€
e 6)/ 2 (41 + e)) (1+6)7
|x’—(x+e)’|2 |x(1+25)—(x+6)(1+2e)|2
F - z f (1+2e) e A1te) I(1+e) d(l—-l-e)e
@+ 6)/ ) Ar(l+e) 2 (1+e€)72
1 1
= C1+26),(1+6) el + €

(lx’ —(x+e)|*+ |x(1+2e) + (x + E)(1+26)|2)2
= K(x, (x + €)) + Ky (x, (x + €)),
where we set
EN(x; (x+e)= Clav2e),(1+6) - €
(I = @+ )'12 + [Xaze) + @ + Oaaze]| )’
Corollary (6.2.33)[183]: Let all the notation be as above. Then,
H&N(R(1+26)) _ H&N’max(R(1+2€)) _ H&N’*(R(1+26)) _ HAIN,RieSZ(]R(l+26))
= H&N,atom(R(l-l_ze))
and they have equivalent norms
If sz wavzoy = Wfllmg o) lfllag o mave)lifllg o, ravze)

~ ||f+’e||H1(R(1+26)) + ||f—,e||H1(R(1+26))'
Namely, f € Hy (RO*29)ifand only if £, , € H*(R(*29)and f_, € H'(R(1+29),
Proof: We recall that the Hardy space associated with Ay is defined as the set of

functions {f € L*(R*29): ||S,, (D < oo} in the norm of [Ifll,: (ga+ee) =
N

L1(R(1+25))

1
?dtodro)):

||SAN(f)||L1(R(1+2€))Where SAN(f)(x) = (f() J‘|E|>_%|Q(1+6)2f((x + 6))| (1+6)(2+26)

and Q1462 = (1 +€)*Ay exp(—(1 + €)*Ap).

We now consider the operator Qi 4¢) = (1 + €)Ayexp(—(1+e€)Ay) = —-(1+
€) e exp(—(1 + €)Ay) forany e > —1 (see [71]). Then we have

Q(1+e)2f(x) = (1+€e)*Ayexp(—(1 + €)*Ay) f(x)
(1+e¢) 0
= [ s (1 Oeerna (G + ) (& + O)dx
R(1+26€)
+ €).
From the definition of (1 + €)(14¢)en, (x, (x + €)), see(2.4), we have that for any x €
RS-1+26):
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(14 €)?Ayexp(—(1 + €)2Ay) f(x)

(14+e) 0
- (f R : 3ot Dareray(x &+ )L (G + O)dlx +)
R+1+26
(1+e¢) 0
N (j )_ 2 d(1+e) (1 + )rer(x, (x + ) fre((x +€)d(x + €)
R(1+2€

= (1 +e)*Aexp(—(1 + €)?Ap) fr(0).
Similarly, for any x € RA+2€) | we have
(14 e)*Ayexp(—(1 +€)*Ay) f(x) = (1 + €)*Aexp(—(1 + €)A) f_ . (x).
Moreover, by a change of variable,
(1+€e)?Ayexp(—(1 + €)?Ay) f(x)
= —(1+€e)?Aexp(—(1 + €)?A) f, (%) forany € > —1,

x € R(*%9; (87)
(1+e)*Ayexp(—(1 +€)*Ay) f(x) = —(1 + €)*Aexp(—(1 + €)?A) f_ (%) for any
e>—1,x € RA+26)

Then from(87) we have

(0.0]

(D07 = f f (1 + €)2Ay exp(—(1+ €)Ay) f(x
0 |€|>—%,(x+e)eR(+1+26)
d(x + &)d(1 +¢)
1+ 6)(1+2€)

+e)|?

r d(x + €)d(1 + €)
+Oj 1 j ( )I(l + €)2Ay exp(—(1 + €)2Ay) f(x + €)]? 7000
|e|>—§,(x+e)EIR+1+26
r 2 d(x + €)d(1 + €)
= j J |(1+ €)?Aexp(—(1 + €)2A) fy o (x + €)| 1+ 607
0 |€|>—%,(x+e)€IRS_1+2€)
[ d(x +€)d(1+
+j J |(1+ €)?Aexp(—(1 + €)?A) f_o((x + 6))|2 (?1 +62)(§+26) €)
0

|€|>—%,(x+e)elR(_1+2€)

1 ‘ d(x+e)d(1+¢€)
= —<j J 1|(1 + €)?Aexp(—(1 + €)2A) fr o ((x + e))|2 ?1 +€€)(1+26)6

2

0 ol
lel>-3

(1 + 6) (1+2¢€)
0

[ 10+ oo+ ot £ e+ e TR 6)>,
1

|E|>_E

which implies that Sy, () (x) < g(S(ﬁ,e)(x) +S(fe)((x + e))). Conversely,
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‘ d d(1
S(f+,e)(x)2 — j |(1 + e)ZA exp(—(1 + E)ZA) f+,e((x + 6))|2 (?1++€E))(§+21_) 2

0

IEI>_E

d d(1
) zj j (1 + )?Aexp(—(1+ €)%A) fi o((x + e))|2 (?1++Ee))(§+;) 2

0 |e|>—%,(x+e)e]Rg1+26)

< 285, ()2
Similarly we have S(f_.)(x)? < 2S,, (f)(x)?. Hence, we obtain that S(f,.)(x) +
S(fe)(x) < 2328, (f)(x). As a consequence, we have

g ewzoy = | 150, (PG| (88)
R(1+2€)
< [ straelax | Is(ram]dx
R(1+2€) R(1+26)

= ||f+’e||H1(R(1+26)) + ||f—,e||H1(R(1+ze))-

Next we turn to Hy a0, (R+2€). From (63) we can see that for any e > —1 and x €
H§(1+2€)
+ )

exp(—(1 + €)%Ay) £ (x) = j (1+ O areray (6 (x + EDF((x + )d(x + )
R(1+2€)

= [ A+ O G+ DA+ A+ O

(1+26)
Ry

= [ e (6 + el + DA+ ) = exp(=(1+€20) fo o)
(1+2€)
Simil%rly, exp(—(1 + €)2Ay) f(x) = exp(—(1 + €)?A) fy o (x)for any € > —1 andx €

R(+26) Thus,
sup |exp(—(1 + €)?Ay) f(x)| = sup1|exp(—(1 + €)2A) f o(x)| for any,
€>—

e>—1
x € R(*%9; (89)

sup |exp(—(1 + €)?Ay) f(x)| = sup |exp(—(1 + €)?A) f_(x)| for any x € RU+29),
e>—1 e>—1
Again, by a change of variable, we have that

exp(—(1 + €)?Ay) f(x) = —exp(—(1 + €)2A) f, (%) forany € > —1,
x € R(*29; (90)
exp(—(1 + €)2Ay) f(x) = —exp(—(1 + €)?A) f_ ,(X)for any € > —1,x € RU+26),
Then, for anyf € Hi  nq(RF29), from(89) and(90) we can obtain that

g ooy = | i GOl + [ |fi 0ol ax (91)
RS-HZE) R(+29)
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sup |exp(—(1 + €)?Ay) f(x)| dx + f sup |exp(—(1 + €)?Ay) f(x)| dx

2 e>-1 o e>—1
RS_-'- €) ]R(_+ €)

sup |exp(—(1 + €)2A) fy o (x)| dx + f sup |exp(—(1 + €)?4) f_ . (x)| dx
r+20) e>-1 r(1+29 e>-1
U @

1
5| | su lexp(-1+ €78) £ dx

€>
R(1+2€)

+ f sup |exp(—(1 + €)2A) f_,e(x)| dx
R(1+2€) €>-1

1
- E<||(f+,e)+ L1 (RO+29)) + ||(f_'e)+

1
2

L1 (R(1+2€)) >

(T P 3 .|

Where f+(x) = Sup1|(1 + &)+ * f (x)|is the classical maximal function as defined.
€>—

Thus (91) yields that f € H} nq (R+29)) if and only if f,, € H*(R®*29) and f_, €
Hl(R(1+26))_

We now consider the Hardy space Hj .(RU*29)via the non-tangential maximal
function. Note that

fa, (x) = sup lexp(=(1 + €)?Ay) f((x + €))
|e|>—§

< sup lexp(—=(1 + €)?Ay) f((x + €))]

|e|>—%,(x+e)EIR(+1+26)

+ sup lexp(=(1 + €)?Ay) f((x + €))]

|E|<(1+E),(x+E)E]R(_1+26)

< sup lexp(=(1 + €)A) fy o ((x + €))]

|€|>—%,(x+e)€IRS_1+ZE)
+ sup |lexp(=(1 + €)?A) f_ . ((x + €)))|
|e|>—%,(x+e)e]l&(_1+26)
< sup |exp(—(1+€)%A) foo(Cc + )| + sup [exp(=(1+€)%) f-o((x + &)
lel>~3 lel>—5
= (fre) ) + (foe) (),

where f*(x) = sup |[(1 + €)(14¢2 * f((x + €))| is the classical non-tangential maximal
lel>—>

fEN(x)”E(R(Hze)) = ||(f+.€)*
Moreover, we have

(f+,e)*(x) = sup1|exp(—(1 +€)2A) fr o ((x + €)|

|6|>—§

function. Hence | (ra+29) T 1(Fe)”

L1(RO+29)) *
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< sup |exp(—(1 + E)ZA) f+,e((x + 6))|

|e|>—%,(x+e)e]Rg_1+26)

+ sup |lexp(=(1 + €)%A) fi o ((x + )

|e|>—%,(x+e)€]1&(_1+26)

<2 sup (1+e)?|lexp(—Ay) f((x +€)| < 2y, (x)
|e|>—§

TS, | F1e) T < 215 s gy

Similarly we obtain ||(f_.) ||, < 2] ng(x)”Ll(R(HZE))' This implies that
|fA*N(x)”1 ~ ||(f+,e) L1(RO+26)) + ”(f—,e)
Thus,(92) yields that f € Hy ,(RC*29)if and only if £, € H*(R®*?9)and f_, €
Hl(R(1+26)).

As for the Riesz transform characterization of the Hardy space Hj (R(*2€)), it sufices to
R(1+26)
+ )

A

Ll(]R(1+26))' (92)

note that when x €
1

VA2 f(x) = j KnCe, (x + €)f((x + €))d(x + €)
R(1+2€)

~ [ R G A+ )G+ O

(1+2¢)
R+

- j R(x, (x + ) fy.e((x + €))d(x + €)

R(1+26)
1

= VA, fro(x)

and that when x € R2+2€),
1 1

VA F () = VAPS o ().
Thus, f € Hy pies,(R1+29)if and only if f, . € H'(R(*29)and £, € H*(R(*29),
Corollary (6.2.34)[183]: The following are equivalent for a function b:
() b€ BMO,, (RO*29);
(i) There exists by, by, ..., brisze) € L2(RO*29)such that b = b + X257 Ry, by,
where Ry, ;is the adjoint operator of Ry ;.
Proof. The proof is as in[74]. LetB = @}326) [}(RO*29) and norm B by

25-1:;26)” fll 1 (ra+20y. We have that B* = EB](:QZG)L‘” (RA+29)). Let S be the subspace of
B given by
S = {(f» Ryf, ""RN,(1+26)f):f € Ll(R(HZE))}-

We have that S is a closed subspace and that f — (f, Ry+f, ...,RN,(1+26)f) IS a isometry
of Hy (R(*29) to S. Linear functionals on S and H; (R@*29)can be identified in an
obvious way, hence any continuous linear functional on H; (R(*2€))can be extended by
Hahn-Banach to a continuous linear functional on B and can be identified with a vector of
functions (bg, by, ..., b142¢)) With each b; € L (R(+29),
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We use this conclusion in the following way. Let £ be a continuous linear functional
on Hy (R®*2€)). Then by Proposition (6.2.12) there is a function b € BMO,, (R**29))
so that:

f)b()dx = £(f).

R(1+2€)

However, by the discussion above, and by restricting the extended linear functional back
to Hy, (RU*29)) we have for (f, Ry 1f, -, Ry,c1i426)f ) = (for 0 fras2e)):

(1+2¢)
£(f) = Z f £ )by (x)dx.
Jj=0 R@1+26)
Using the definition of the f; = Ry ;f we see that:
(1+2¢)
£(f) = J f)| bo(x) + Z R;,Jb](x) dx.

R(1+26) Jj=1

This then gives the decomposition that any b € BMO,, (R®+2€))can be written as:
1+2€

b=by+ ) Rib
=
with b; € L®(R(1+29)),

For the converse, we simply observe that from our Corollary (6.2.33), we obtained that Ry
maps Hy (RO+2€)to L1 (R(+2€)). Hence, the boundedness of the Riesz transform Ry
from L? (R(A+29)) to BMO,, (RA*29) follows from duality of Hi (RC*29) with

BMO,, (R™*2€)). We then have that any b that can be written as:
(1+2¢)

b = by + 2 R}, by

with b; € L (R1*2€)) must belong to BMO, (R(“Zf))
Corollary (6.2.35)[183]: ([53]).HAN(]R(1+26)) ¢ H(RO*29),
Proof: We first show that the containment HAlN (IR(“ZE)) c Hl(R(HZG))hOIdS.

This follows directly from the fact that corresponding BMO spaces norm the H!spaces,
namely that:

“f”HAlN(R(Hze)) =~ sup |<f'b>L2 (R(1+26))|.

b”BMOAN(IR(HZE))Sl
An identical statement holds for H*(R(+2€))and BMO(R(™*+29)). As shown in[65],
BMO(R(*29) ¢ BMO, (R®+29)), and so we have

||f||H1(R(1+26)) =~ sup |<f’b>L2 (R(1+26))|
| BMO(]R(l"'ZE))S
< osuwp [ D)(REF) |~ NIflly @)

”b”BMOAN(R(l"'ze))S

This gives the containment, Hy (R(*29) ¢ H(R(*29)),
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We now show that there exists a function f € H*(RM*29)butf ¢ H; (R(+29)). For the

sake of simplicity, we just consider the example in dimension 1.
Define

_ XJo, 1](x) _Xl- 10](x)

It is easy to see that f(x) is supported in [—1, 1], andf]Rf(x)dx = 0. Moreover, we have

||f||Lz(R(1+ze)) = 1.
These implies that f is an atom of H*(R), which shows that f € H1(R).

From the definition of f, we obtain that £, (x) Xlo.1) )

o
fre(X) —F%—

X[-1,11%) (x)
V2

But, then it is immediate thatf, ., & H'(R) since fR<1+26> fre(x)dx # 0. One can also

prove this by using the equivalent definition of H1(R) via the radial maximal function.

Similarly we have these estimates for f_,. Hence, f, . € H'(R)andf_ . & H'(R), which,

combining the result in Corollary (6.2.33) implies that f & HAlN(lRD.

Finally, we provide a description of the atoms in H; (R(*2€))that connects back to the

atom in H1(R(*29)) (see [178]).

Corollary (6.2.36)[183]: Suppose a(x) is an H; (R(*+29))-atom supported in B c

R*2€) Then we have

, and the even extension is

J a(x)dx = 0. (93)
R(1+26)
Moreover, if BN {x € RO*29: x5, =0} # 0, we denote B, = B n
RU*?9 andB_ = B n R+29)_ Then we have
J a(x)dx =j a(x)dx = 0. (94)
B B_

+

Proof: First note that from Corollary (6.2.35), Hy (R(**29) ¢ H(R(*29). Since a(x)
is an Hy (R(*2€)) atom, we have a(x) € Hl(R(“Zf)), and hence (93) holds, where we
use [180].

Second, suppose B N {x € R*29):x;,, = 0} # @.

Then we define a, (x) = a(x)|pg,and a_(x) = a(x)|p_.

Since a(x) € HY (RA*29) from Corollary (6.2.33) we obtain that both
a; o(x) and a_.(x) are in H*(R(1+29)),

which implies that

ayo(x)dx = f a_.(x)dx = 0.
R(@+26€) R(1+26€)
Next we claim that [;,;.,e a4 (x)dx = 0. In fact,
a;e(x)dx = f ayo(x)dx + f ayo(x)dx =2 f ay o (x)dx.
R(1+26€) RS-1+26) r(1+26) RS_1+26)
Hence,
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J a;e(x)dx =0

]R(1+26)

implies that [o(;.,¢ @t e(x)dx = 0, i.e. [, a(x)dx = 0. Similarly we obtain
+

that [, a(x)dx = 0. Hence(94) holds.

Corollary (6.2.37)[183]: If b € BMO, ,(R(+29)), then for 0 < e < 2¢, the commutator
|b, Ry, 116 ] () (X) = b(x)b, Ry (1:06) () (%) = Ry (146)(bf) (%)
is a bounded map on L% (R(*+2€)), with operator norm
I[B, Ry, 1)) L2 (RE¥29) — L2(REF2D)|| < Cllbll gy, (mars20.
Proof: Suppose b is inBMO, (RU*29). Then according to [65], we have
that by o (x)BMO(R®*29)and b_ ,(x)BMO(R™+2€)), and moreover,

||b||BMOAN(R(1+26)) ~ ||b+,e||BM0(]R(1+26))”b—,e”BMO(]R(l+2€))'
For everyf € L*(R(*29)), we have

116 Rl (D) oo

= f [b» RN,(1+6)](f)(x)2dx + .[ [b; RN,(1+E)](f)(x)2dx =:1+1I.

RS_1+26) R(_1+26)

For the term I, note that when x € R{"™*?), we have
[b» RN,(1+e)](f)(x) = b(x)b, Ry, (1+6) () - Ry, (1+6) (bf)(x)

= b+,e(x)R(1+e)(f+,e)(x) - R(1+e) (b+,ef+,e)(x) = [b+,e» R(1+e)](f+,e)(x):
which implies that

I = j [b, Ry, 146 ] () () ?dx = j [bs e Raave)| (fr.e) () ?dx
IR(1+26) IR(1+25)

+ +
< J [b+,er R(1+e)](f+,e)(x)2dx < C”b+,e”;M0(R(1+26)) ||f+,e||i2 (R(1+ze))r
R(1+26€)

Where Rq4¢is the classical (1 + €)-th Riesz transform 0

_L
Az,
0X(1+e) :
For the last estimate we use the result [3], which applies since we know from that
Ry (1+¢) Is @ Calderon—Zygmund kernel. Similarly we can obtain that

2 2
Im=c ||b_,e ||BM0(]R(1+26)) ||f—.e ”LZ (]}g(1+2€))'
Combining the estimates for I and I1 above, we obtain that

2
” [b' RN:(1+€)](f)||L2(R(1+26))
2 2 2 2
< Cllbs el pomarzonllfvellzmareay + Clbrellpyomarce) el zmareey

< C”b”éMOAN(R(1+2€)) (||f+,e||12J2(R(1+26)) + ||f—,e||iZ(R(1+26)))

< C||b||gM0AN(R(1+ze))|lf 172 (ma+20y,
which yields that
||[b, sz,(1+e)]:l'2 (R(Hze)) - L? (R(Hze))” < C”b”BMoAN(R(“ZG))-
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Corollary (6.2.38)[183]: Let g,h € L”(RX+29))with compact supports. Then for 0 <
€ < 2¢,
||H(1+e)(h; g)”HA1 (]R(1+26)) < C”g”Lz(R(HZe))||h||L2(R(1+25)).
N

Proof. By the duality result of [65], stated in Proposition (6.2.12), we know
that Hy (RU*2€)) * = BMO,, (1 + 2€). A simple duality computation shows for b €
BMO,, (R1*2€)) and for any g, h € L (R(+2€))with compact supports:

(b, (146 (9, M) 12 (ra+20) = (B, Ry 146 (@)h = Ry 116) (R 9) 12 (rar+20)

= (g, [b, RN'1+€(h)]h>L2(]R(1+ZE)).
Thus, from Corollary (6.2.37) , we obtain that
|(b, M14e(g, M)z (raveey| < C||b||BM0AN(R<1+ze)) 191l 2 (ra+zen 1Rl 2 (me2+209).

This, together with the duality of H; (R(*2€)with BMO,, (R?*2€))shows that
Me1+6) (g, Wis in Hy (RO+29)),
And then by testing T;4¢ (g, h)against b € BMO, (R®*2€)) functions, we find:

||l_[(1+€) (g, h) ||HA1N(R(1+26)) ~ sup |(H(1+6) (g, h), b)LZ(R(1+26))

||b”BMOAN(]R(1+2€))S1

< C”g”LZ(R(1+Ze))”h”LZ(R(1+26)) b sup <1||b||BM0AN(R(1+2€))
BMOAN(]R(l-}-ZG))_

< Cllgll 2 (rarzen Al 2 (ga+2e.
Corollary (6.2.39): Suppose f is a function satisfying:fR(me)f(x)dx =0, and |f(x)] <
XB(x1) (%) F XB((x+e),,1) (%), Where |xo — (x + €)o] := M > 10. Then we have
”f”HAlN(R(HZE)) < C(142¢) log M. (95)
Proof: First note that
fAJIrV(x) = S>upl|e_(1+E)ANf(x)|
o>

= Es>u_p1 J 1+ 6)(1+e),AN(X, (x+e)f((x+e€))d(x+e¢€)
R(1+2€)

< sup J |(1+ €)areyay, (. (x + €))|d(x + €) < C.
€E>—
R(1+26)

Hence, we obtain that

fdr+ [ £ 00dx < Cune,
B(Xo,S) B((x+€)0'5)
Now it suffices to estimate

far (x)dx.
RO+2€\(B(x0,5)UB((x+€)0,5))
To see this, we write it as
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fit (X)dx + f far ()dx =:1+1I1.
R(1+26) B (x0,2M)\(B(x,5)UB((x+€),5))
B(xo,2M)

We now estimate the term I. First note that from Holder’s regularity (85) of the heat
kernel (1 + €)(14+¢)a, (%, x + €), We have

|(1 + &) arepay O (x + ) — (1 + €)14e)n, (%, %0)|
<C< |(x + €) — %o > V(@ +e)
< m_l_lx_xol (m_l_lx_xol)(zne)
for |(x + €) — xo| < /(1 + €). Moreover, when |(x + €) — x| = /(1 + €) , we have
|(1+ €)arepay (%, (x +€) — (1 + €) 1460, (6 %0)|
< |1+ ) arepay @ (x + )| + [(1 + ) 1reyn, (x — X0)|
e—Ix—xoIz/c(1+e)e—|e|2/c(1+e) (l(x +e€)— x0|> e—Ix—xOIZ/c(1+e)

m (1 + E)(1+26)/2

=C (1 + E)(1+Ze)/2

|(x +€) — x|/ (1 +€)
(,/(1 +ée)+ |x — xol)(3+2€)

Now note that from the cancellation condition of f and Holder’s regularity of the heat
kernel (1 + €) (146 (x, x + €) as above, we have

far, (x) = sup J [(1+ E)a+eray 6 (x +€) — (1 + €)(14e)n, x0) |f ((x

e>—1
R(1+26€)

+¢€))d(x +¢€)

< C sup J |(x + €) — x|/ (1 + €)
B = (3+2¢)
>t B(x,1)UB((x+€)p,1) (\/ (1 + 6) + |x — x0|)

|(x + €)o — X0l _ M

= C(1+26) |x — x| 2+20) - C(1+26) |x — x| 2+26)
As a consequence, we obtain that

d(x +€)

I <

C(1+26) |x — x0|(2+26) dx < C(1+26)-

R(1+2€) /B(x,,2M)
We now turn to the termiI. Note that when x € B (xo, 2M)\(B (0, 5) U B((x + €),, 5)),
we have
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|+ Ouion G+ G+ )di+ )
R(1+2€)

= J |(1 + E)(1+e),AN(x; (x + E))|d(x +¢€)
B(x0,1)

+ f |(1 + e)(1+6)'AN(x, (x + e))|d(x + €).
B((x+€)p,1)
When e > 0, from the size estimate of the heat kernel (1 + €)(14¢)a, (x, (x + €)), we

have

| 0+ Oui0n, GG+ G+ MdG+

R(1+2€)
1 1

o= %0729 e (x + )l
When € < 0, similarly we obtain that

<C

|+ Oneon, o G+ NFGx+ DA+ )

R(1+2€)

<C 1 +C !

T e — x| 329 |x — (x + €),](?+2¢)

<C +C .
|x — x| (1+2€) |x — (x + €)](1+2¢)

Thus,
I < far (x)dx
B(x0,2M)\(B(x(,5)UB((x+€),,5))

1 1
lx — x,|(1+2) + |—€),](1+26)
B(x0,2M)\(B(x(,5)UB((x+€),,5))
< C(1+2¢) log M.

<C dx

Combining all the estimates above, we obtain that
”f”HAlN(]R{(HZE)) = ||fA+1-V||L1(R(1+Ze)) = C(1+26) log M.
Corollary (6.2.40)[183]: Suppose 0 < € < 2¢. For every Hi (R(*29)-atom a(x) and

for all € > 0 there exist a large positive number M and g,h € L% (R(“Zf)) with compact
supports such that:

||a - H(1+6) (hr g)”HAlN(]R(H'ZE)) <¢g
and ”g”LZ(R(1+26))||h||L2(R(1+26)) < cM@t2e),

Proof: Let a(x) be an H (R(*29)-atom, supported in B(x,, 7). We first consider the
construction of the bilinear form I11..(h, g) for e = 0 and the approximation to a(x). To
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begin with, for the ball B(x,,), we now consider the following cases: Casel:x (142¢) =
0; Case2:xg,(142¢) < 0.

We first consider Casel. To begin with, fix € > 0. Choose M € [100, oo) sufciently large
logM
M
choose (x + €)o; > 0 such that (x + €)g; — xg; =

< &. Now select (x + €), € Rf”e)in the following way: for 0 < i — 1 < Z2e,

Mr
V(1+2€)

so that
, Where xg ; (reps. (x + €)g,;)

Is the ith coordinate of x,(reps.(x + €)y).

Note that for this (x + €),, it is clear that B((x + €),,7) C ]Rgr“ze)and we have |x, —
(x + €)| = Mr. Moreover, for any (x + €) € B((x + €),,7), we also have |x, — (x +
e)| > % We set

a(x)
(x)=y (x) and h(x) = ——F—. 96
g B((x+€)o7) Riy 1200 (0) (96)
We first claim that
IRy (1169 (x)| = CM~0+26), 0 <€ < 2e. (97)
Infact, for (14+€)=1,...,2¢, from Corollary (6.2.30), we have
Ry (1+6)9(x0) = j Ry,146)((x + €),x0)d(x + €)
B((x+€)q,7)
—c (X + €)(142¢) — X0,(142¢)
(1+2€) lxo — (x + 6)|(2+26)
B((x+€)q,1)
(X + €)(142¢) — X0,(142¢)
+ 5 NS d(x +¢€)
(lxb —x+e)| + |x0,(1+26) + (x + 5)(1+2e)| )
= C(1+2€)|(x + €)(1+2¢)
1
- X(),(1+2€)| |x0 —(x+ E)|(2+26)
B((x+€)q,7)
1
+ 5 N d(x +¢€)
(lxb —x+e)| + |x0,(1+26) + (x + 6)(1+26)| )

1

>CM
= o — (x + )[G+29
B((x+€)o,1)
As a consequence, we get that the claim(97) holds.

As for Case2, we handle it in a symmetric way as follows. Fix ¢ > 0. ChooseM €
[100,0) sufrciently large so thatb%M <é&. Now select (x +¢€), € Rf”@in the
following way: for 0 <i—1 < 2¢, choose (x + €)q; > 0 such that (x + €)g; — xg; =

\/%. Note that for this (x + €),, it is clear that B((x + €)o,7) € R&*2€and we

d(x + €)= cM~(1+20),
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have |x, — (x + €)o| = Mr. Moreover, for any (x+¢€) € B((1+ 2¢€),,7), we also
have |x, — (x + €)| >%. We now define the functions g and h as in(56), and the

following the same estimates, we can obtain that the claim(97) holds.
From the definitions of the functions g andh, we obtain that supp g(x) = B((x + €),,7)

and supp h(x) = B(xy, ). Moreover, from(97) we obtain that
1+2¢€)

(+2¢)
||g||L2(R(1+2e)) ~r 2 and ||h||Lz(R(1+2e)) =

||a|| 2(R(1+26€)
|RN,(1+e)g(x0)| a )

(1+2¢)
< CM(1+2€)T' 2

Hence ||g”L2(R(1+26))”h”LZ(]R(1+26)) < CM(1+26) Now write

a(x) = (h(ORy, 1409 () = GGORN,a+eh(0))
R; (x9) — Rx (x)
= a(x) N,(1+e)g* 0 N,(1+6)9
RN,(1+e)g(xo)
=. Wl(X) + Wz(x)
By definition, it is obvious that W (x)is supported on B(x,,7) and W, (x) is supported
on B((x + €)g,7).
We first turn to W; (x). For x € B(x,, 1),
|R;r,1 9(x0) — Ry 1 g(x)|
W1 ()] = la(x)| —2 L0

N (1+e)g(xo)

- g(x)RN,(1+e)h(x)

< CM(1+2€)||a||LOO(R(1+26)) j |RN,(1+E) ((X + E),XO)

B((x+€)q,1)
(1+2¢) |X _ |

0
—Ryaro((x+6e),0)|dx+e)<C mersry |6|(2—+26)d(x + €)
B((x+€)q,7)

1
Hence IWl(X)I < Cm)@(xo,r)(x).
We next estimate W, (x). From the definition of g (x), we have

|W2 (x) | = XB((x+€)o,1) (x) |RN.(x+€) h(x) |
1

RN,(X+6)h(xl (X + 6))a((x + 6))d(x + E)

B((x+€)q,7)

= XB((x+¢€),, r)( )

N, (x+e)g( 0)|

1
RN,(1+6)(x, (x + e))a+((x + e))d(x +€)

~

= XB((x+€)o,r) (%)

N, (x+6)g( 0)|

B((x+€)g,7)
where the last equality follows from the fact that x € B((x + €),,7) © Rf“e)and from

the definition of the Riesz kernel Ry (x, (x + €)) as in (86). Hence, from the cancellation
property of a, ((x + €)), we get
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1

(RN,(1+26) (x, (x + €))
T)

W2 ()| = Xp(xte)yr) (X)

R;I,(1+25)g(x0)| B(xy

— Riy 14260, %0) ) @, ((x + €))d(x + €)

|(x + €) — x|
< Cxp(xreygr)(@)MIHZO f llall o (rrvze) X — % [2729 d(x +€)
B(For) °
< 3y rae Xt eon ().
Combining the estimates of W, and W,, we obtain that
|[a(0) = (AR} (1169 () = 9EORN 10 h (D) )|
< /29 (XB(xo,r) () + XB(+e)o) (X))- (98)

Next we point out that
[ [aG) = (hIRi 409G = 9GIRx 1120k ()] d

= j a(x)dx — f (h(x)R;I,(1+26)g(x) - g(x)RN,(1+Ze)h(x)) dx =0, (99)

since a(x) has cancellation (Corollary (6.2.36)) and the second integral equals 0 just by
the definitions of g and h.

Then the size estimate(98) and the cancellation(99), together with Corollary (6.2.39),
imply that

|2G0) = (AR}, (1469 () — 9 RN,146h ()]

This proves the result for 0 < € < 2e — 1.

We now consider the bilinear form I, (g, h)and its approximation to a(x).
Again, for the ball B(x,,7), we now consider the following cases: Casel: xq (14+2¢) =
0; Case2: xg,(142¢) < 0.

It sufices to consider the Case 1 since the other can be handled symmetrically. In
this case, for xowith x 142¢) = 0, choose (x + €), such that (x + €)q; — xo; = ar

VJ(1+2¢€)
for i=1,...,14+ 2e. We now define the functions g and h as in (96). This, together

with Corollary (6.2.30), yields

log M
) <C < Ce.
H, (RO+29) M

Ry (1469 (x) Ry 1+6)(x, x0)d(x + €)

B((x+€)q,1)

(X + €)(142¢) — Xo,(1426)
|xo — (x + €)|(2+2€)

= C(1+26)
B((x+€)q,7)

Xo,(1+2¢) T (x + 6)(1+25)

(lxb —(x+ 6)'|2 + |xo,(1+25) + (x + 6)(1+25)|2
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(X + €)(142¢) — Xo,(1426)
%o — (x + €)|3*2€)

= Crit2¢) d(x +€)

B((x+6)0,7")

d(x + €)| = cM+20),

= C(1+26)|('x + 6)(1+26) - xO,(1+26)|

o= Gt O
B((x+€)o,1)

Here, we obtain that the claim(97) holds for these g and h.
Now following the approximation as that for Ry ;4¢With0 < € < —1 + 2¢, we obtain

that
. log M

2t = (REORY 1169 = 9CIRN 110k @)1 sy < €7 = Ce (100)
AN

With this approximation result, we can now prove the main Theorem (6.2.2), restated
below (see [178]).

Corollary (6.2.41)[183]: Suppose 0 < e < 2¢ For any f € Hy (R®*29))there exists
sequences {1} € #*and functions g] , hk € L*(R@+2€))with compact supports such that

f= Z Z Marolare (9] hf).
k=1 j=1
Moreover, we have that:

£z (rr+20)

~ inf

NgE

DN [ N 1

1j=1

=) D MMaio(gphy)
k=1j=1

Proof: By Corollary (6.2.38) we have that ||H(1+6)(g,h)||H1 (rE+20)
Ay

k

Cllgll 2(ra+eoylIhll 2(ga+ey, it is immediate that we have for any representation of f =
Tt B ATl (9, hy) tha

(0e] (0e] \
ZZ PG e 115 v
If Nz, (RO¥29) < Cinf 4 517 s
= Z Z Af IICERS) (91 g
\ k=1j=1 J

We turn to show that the other inequality hold and that it is possible to obtain such a
decomposition for any f € H; (R(*+2€)). By the atomic decomposition for H; (R(+2€)),

Corollary (6.2.33) for any f € Hj (R*?)we can find a sequence {4} € £'and
sequence  of Hi (R(U*29)-atoms af so  thatf = X2, Afaf and X2, |4f| <
Coll Il (ra+zer)-

We explicitly track the implied absolute constant Cyappearing from the atomic
decomposition since it will play a role in the convergence of the approach. Fix e > 0 so
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that eC, < 1. Then we also have a large positive number M wit

Corollary (6.2.40) to each atom a;. So there exists gj, h; € L°°(]R(1+26))W|th compact
supports and satisfying || g;|| < cM(+29and

LZ(R(1+26))” J ||L2(R(1+26)) =
” a; H(1+e)(gp ])”HA1N(]R(1+26)) < v
Now note that we have

2/11 1= Z/l Deire (g}, hY) +z/11 ~ v (gh i) = My +E;.

Observe that we have

||E1||HA1N(R(1+ze)) < ZM}'”CI} — (146 (9}: hjl)”HAlN(R(HZE))

(00]
<& > 13} < eCollllyy movao
=1

We now iterate the construction on the function E;. Since E; € Hy, (R(*29), we can
apply the atomic decomposition in Hi (R(*29)) Corollary (6.2.33), to find a
sequence{;} € ¢*and a sequence of Hy (R(*29))-atoms {a?}so that E; = Y72, Afa
and

(0.0]

D 121 < CollEsll gy mo2e) < eCIIfllyy (airvao)

j=1
Again, we will apply Corollary (6.2.40) to each atoma;. So there exist g7, h? €
L* (R(*29)) with compact supports and satisfying

||g]2||L2(R(1+26))|| J ||L2(R(1+2e)) —= CM(1+2€)

and
”afz - H(1+E) (gjz’ h]'z)”HAlN(R(HZE)) <§g, Vj'
We then have that:

E, = 2/12 7 2’1“(1%)(91' )+Z’1 —M1+e(g7.h )) = M, + E;.

j=1
But, as before observe that

||E2||HA1N(R(1+26)) < ;l)lfl”af — H(1+e)(9]2'r hjz)”HAlN(R(Hze))

<& Y || < CCIf g, maseoy

And, this implies for f that we have:
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f= 2t = Aaio(gh i)+ ) A (af — Mg (gl 1)) = My + By

j=1

2 (o]
=M, +M,+E, = z AT 146(gf hf) + Ea.
k=1j=1

Repeating this construction for each 1 < k < K produces functions
g;(, h]k € LOO(R(1+2€))
with compact supports and satisfying

—~
1]
[y
~
1]
[N

”g;(||L2(]R(1+26))||h]k||L2(]R(1+26)) < CM(1+26)

for all j, sequences
K : K k—
(a7} € 1 with [[{7}]] , < 71 CENf Nl (marvaon,
and a function E € Hy (R(*29)) with
1Ekllng (ma+2er) < (€Co)If g (mereaer)
so that

k=1j=1
Passing K — oo gives the desired decomposition of f = 352, 752, AT (14¢)(gf, hf). We
also have that:

(e} (e} ) 3 (¢} B ) ) CO
21 < D &7 0 Il (wer2e) = T gg Il (e,
k=1 j=1 k

=1
Finally, we dispense with the proof of Corollary (6.2.42) (see [178]).
Corollary (6.2.42)[183]: Suppose b €U LLF9 (RO+29)),

loc

If b is in BMO,, (RO*29)), then for e > 0, the commutator
[b» RN,(1+€)](f)(x) = b(x)RN,(1+6) () — Ry, (1+6 (bf)(x)
is a bounded map on L?(R(+29)), with operator norm
||[b, RN,1+6]:L2(]R(1+26)) - ]2 (R(1+ze))” < C”b”BMoAN(R(“ZE))-

Conversely, for € > 0, if [b, Ry 1] are bounded on L?(R(*29)) then
b, RN,1+6]: LZ (]R(1+26))

N LZ (]R(1+26))
We point out that Theorem (6.2.2) and Corollary (6.2.42) can be extended to work for
LA*+O(RA+2€) when 0 < € < oo.

For e > 0, the fractional operator A;,(“e)/ ?of the operatorAyis defined by

1 r d(1+ €)
I((1+ e)/2)f ¢ 1 +e)<2
Proof. The upper bound in this theorem is cor(')ltained in Corollary (6.2.38).

For the lower bound, we first note that from Corollary (6.2.33), H&N(R(“ze)) has

equivalent characterizations via atoms, which shows that
HAl (R(1+26)) N L?(R(1+26))
N
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is dense inHj (R*29) with respect to the Hy (R™*2€)norm, where we use

L? (R1+29) to denote theL®function with compact supports.
Then using the weak factorization in Theorem (6.2.2) we have that for f €
H& (R(1+26)) N L%O(R(1+2€))
N

|(b, 2 (RO+26)| =

3

k=1j=1

D 0.0 (6, B Diearaoy
k=1j=1

)
2.

|A]k| |<g;{’ [b’ RN,(1+€)]h]I'(>L2(]R(1+26)) .
Hence we have that

|(b, f)Lz (]R(1+26)

Z Z Ak'” b Ry (1+6)](hk)”L2(]R(1+2e) ”gJ ||L2(R(1+2€)
k=1j=1

< M Al 22R029) = 2RSS b1 g 1 g

k=1j=1
< C”[b, RN,(l_l_e)]:LZ (R(1+2€)) — L? (R(1+26))||||f||HA1N(R(1+z.s)).

By the duality between BMO,, (R**29)and Hy (R*2€))we have that:

1Bllpyo,, (miszey = sup  [(b, f)a(pasae
N f”HiN(]R(1+26))51

< C||[b, Ry, c1+6]: P (REF29) - [2(ROF29)||

Corollary (6.2.43)[183]: If b is in BMO,, (R(*+29)), then for e > 0, the commutator
|6, 8,5% 92| () @) = bAT 2 () () — a2 (b)) ()

1+3€e+2€2
is a bounded map from L1*€(R1*2€) to L< ¢ >(R(l+26))with operator norm
1+3€e+2€?

[b, A;/(HE)/Z] :L1+E(]R(1+ZE)) N L(T)(R(Hze))

where € > 0.
Proof. Suppose b is in BMO,, (R®*29). Then according to [65], we have that b, , €

BMO,, (RO*29)and b_ , € BMO,,(R®*29), and moreover,

< C”b”BMOAN(]R(“’Ze))'

”b”BMOAN([R{(“ZE)) ~ ||b+,e||BM0AN(R(1+ze))”b—,e”BMOAN(R(HZe))'
For every f € LATO(RA+29)) we have

Il 592

L

1+3e+2€2
(f>(R(1+ZE))
1+3€e+2
— J [b A (1+6)/2](f)(x)( Ee E)dx
R-(+-1+26)
1+3€+2€?

+ J- [b A (1+6)/2](f)(x)( € )dx =:1+1I.

R(_1+26)
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For the term!, note that when x € R "€, we have
|6, 835792 () @) = bAT 2 () () — a2 (b ()

= b+,e(x)A_(1+€)/2 (f+,e)(x) — A~(Fe)/2 (b+,ef+,e)(x)
= (b4, 87O (fy ) (),

which implies that
1+3€+2€?

I = f[b,A‘(”e)/Z](f)(x)( € )dx
RS-H-ZE)
1+3€+2€2

— f[b+,e,A_(1+e)/2](f+,e)(x)( € )dx
Rg-1+26)
1+3€e+2€2

< [ eeamor)n el Dax

R(1+2€)

<1+3€+2€ ) <1+36+26 )

= C” +.e ||BMO(R(1+26)) ||f+ e ||L(1+6)(R(1+26))

For the last estimate we use the result [3], which applies since we know from
that Ry (14+¢) is @ Calderén-Zygmund kernel. Similarly we can obtain that
<1+3e+262> <1+3E+262>

I < C”b—,e”BMO(R(HZE))”f—.ean(R(HZG)) '

Combining the estimates for I and /I above, we obtain that

i y 1+3E+2€ )
1+€)/2
” [b A ](f)| L(1+6)(R(1+26))
1+3€e+2€ 1+3€e+2€
llll o el
<1+3E+26 ) <1+3€+26 )
+ C”b— e||BM0(R(1+E))||f ||L(1+E)(R(1+26))
<1+3€+26 ) <1+3E+26 ) <1+3€+26 )
C“b“BMO (RO+29)) (||f+ e||L(1+€)(R(1+26)) ”f ||L(1+6)(R(1+26))>
1+36+26 1+3€e+2€?

BMO (R(1+2€)) ”f ”L(1+e) (R(1+26))

which yields that
1+3€+2€2

e B R ()

< C”b”BMOAN(]R{(“E))'
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L?: Hilbert space 1
H?: Hardy space 1
®: Direct sum 1
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sup: supremum 2
HP: Hardy space 2
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LP: Lebesgue space 7
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Lt Lebesgue space on the line 11
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card cardinality 25
em: embedding 29
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prod: product 114
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