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Abstract 

A characterization of product and multi-paraproducts of bounded mean 

oscillations with upper bound for multi-parameter and higher order Journé 

commutators are studied. We describe an algorithm of nonlinear piecewise 

polynomial approximations by refinable functions, of functions of the classes 

𝑊𝑝
𝛼 and multivariate bound variation spaces of Wiener-Young type. We show 

the classes and maximal function characterization of Hardy spaces associated 

with operators, nonnegative self-adjoint operators satisfying Gaussian estimates 

with characterizations of Hardy and bounded mean oscillations by weak 

factorizations and commutators. 
 

  



IV 

 الخلاصة
 

قمنا بدراسة التشخيص للضرب ومتعدد ضرب الفقرات لترجحات الوسط 

الرتبة العليا. رني ذات يالمعامل ومبدلات جو-المحدود مع الحد الأعلى لأجل متعدد

التعريف غير الخطية بواسطة  ةتم وصف خوارزمية لتقريبات كثيرة الحدود متعدد

𝑊𝑝دوال قابلة التحسن ولدوال لعائلات 
𝛼  وفضاءات التغير المحدود متعدد

ئلات وتشخيص الدالة الأعظمية اينق. أوضحنا الع-نرالمتغيرات لنوع واي

 ةالذاتي غير السالب-مؤثرات المرافقلفضاءات هاردي المشاركة مع المؤثرات و

المحققة تقديرات جاوسيان مع التشخيصات لهاردي ومرجحات الوسط المحدود 

 بواسطة التحليل إلى عوامل ضعيفة ومبدلات.
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Introduction 

We establish 𝑎 commutator estimate which allows one to concretely 

identify the product BMO space, BMO(𝑹+
2 × 𝑹+

2 ), of A. Chang and R. 

Fefferman, as an operator space on 𝐿2(𝑹2) . The one-parameter analogue of this 

result is 𝑎 well-known theorem of Nehari[9].  

We present a newly-developed version of the Up-and-Down Algorithm 

(UDA) designed for nonlinear approximation by piecewise polynomials. 

Several almost optimal results are obtained about 𝑁-term nonlinear 

approximation by dilated integer translates of a refinable function.  

Let 𝐿 be the infinitesimal generator of an analytic semigroup on 𝐿2(ℝ𝑛) 

with suitable upper bounds on its heat kernels. In Auscher, Duong, and 

McIntosh (2005) and Duong and Yan (2005), a Hardy space 𝐻𝐿
1(ℝ𝑛) and a 

BMOL(ℝ
𝑛) space associated with the operator 𝐿 were introduced and studied. 

We define a class of 𝐻𝐿
𝑝
(ℝ𝑛) spaces associated with the operator 𝐿 for a range 

of 𝑝 <  1 acting on certain spaces of Morrey-Campanato functions defined in 

New Morrey-Campanato spaces associated with operators and applications by 

Duong and Yan (2005), and they generalize the classical 𝐻𝑝(ℝ𝑛) spaces. Let 𝐿 

be a generator of a semigroup satisfying the Gaussian upper bounds. A new 

BMO𝐿 space associated with 𝐿 was recently introduced in [70] and [71]. We 

discuss applications of the new BMO𝐿 spaces in the theory of singular 

integration.  

We show that the product BMO space can be characterized by iterated 

commutators of a large class of Calder´on–Zygmund operators. The proof 

introduces some new paraproducts which have BMO estimates. We characterize 

𝐿𝑝 boundedness of iterated commutators of multiplication by a symbol function 

and tensor products of Riesz and Hilbert transforms. We obtain a two-sided 

norm estimate that shows that such operators are bounded on 𝐿𝑝  if and only if 

the symbol belongs to the appropriate multiparameter BMO class. We extend 

the results to a much more intricate situation; commutators of multiplication by 

a symbol function and paraproduct-free Journé operators. We show that the 

boundedness of these commutators is also determined by the inclusion of their 

symbol function in the same multiparameter BMO class.  

We investigate the order of approximation of functions of the Sobolev-

Slobodecki1̆ classes 𝑊𝑝
𝑎(𝑄𝑚)(𝑄𝑚is the 𝑚-dimensional unit cube) by 

piecewise-polynomial functions. The named space denoted by 𝑉𝑝𝑞
𝑘  consists of 

𝐿𝑞 functions on [0, 1)𝑑 of bounded p-variation of order 𝑘 ∈ ℕ. It generalizes 
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the classical spaces 𝑉𝑝(0, 1) (=  𝑉𝑝∞
1 )  and BV ([0, 1)𝑑) (𝑉1𝑞

1  where 𝑞 ∶=
𝑑

𝑑−1
) 

and is closely related to several important smoothness spaces, e.g., to Sobolev 

spaces over 𝐿𝑝, BV and BMO and to Besov spaces.  

For a nonnegative, self-adjoint operator satisfying Gaussian estimates on 

𝐿2(ℝ𝑛). We give an atomic decomposition for the Hardy spaces 𝐻𝐿,max 
𝑝

(ℝ𝑛) in 

terms of the nontangential maximal functions associated with the heat 

semigroup of self-adjoint operator. We provide a deeper study of the Hardy and 

BMO spaces associated to the Neumann Laplacian 𝛥𝑁 . For the Hardy space 

𝐻𝛥𝑁
1 (ℝ𝑛) (which is a proper subspace of the classical Hardy space 𝐻1(ℝ𝑛)) we 

demonstrate that the space has equivalent norms in terms of Riesz transforms, 

maximal functions, atomic decompositions, and weak factorizations.   
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Chapter 1 

Characterization with Multi-Parameter 

 

We discuss 𝑎 situation governed by 𝑎 two- parameter family of dilations, and so the 

spaces 𝐻1 and 𝐵𝑀𝑂 have 𝑎 more complicated structure. We show that the classical 

Coifman-Meyer theorem holds on any polydisc 𝑻𝑑 of arbitrary dimension 𝑑 ≥ 1. 

Section (1.1): Product BMO by Commutators 

 

Here 𝑹+
2denotes the upper half-plane and 𝐵𝑀𝑂(𝑹+

2 × 𝑹+
2 ) is defined to be the dual 

of the real-variable Hardy space 𝐻1 on the product domain 𝑹+
2 × 𝑹+

2 . There are several 

equivalent ways to define this latter space, see [6] for the various characterizations. We 

will be more interested in the bi-holomorphic analogue of 𝐻1, which can be defined in 

terms of the boundary values of bi-holomorphic functions on 𝑹+
2 × 𝑹+

2 and will be denoted 

throughout by 𝐻1(𝑹+
2 × 𝑹+

2 ) cf.[11].  

In one variable, the space 𝐿2(𝑹) decomposes as the direct sum 𝐻2(𝑹)⨁𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 

where 𝐻2(𝑹) is defined as the boundary values of functions in 𝐻2(𝑹+
2 ) and 𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

denotes the space of complex conjugate of functions in 𝐻2(𝑹+
2 ). The space 𝐿2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ , there- 

fore, decomposes as the direct sum of the four spaces 𝐻2(𝑹)⨂𝐻2(𝑹),𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅⨂𝐻2(𝑹), 

𝐻2(𝑹)⨂𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅⨂𝐻2(𝑹) ̅̅ ̅̅ ̅̅ ̅̅ ̅, where the tensor products are the Hilbert space 

tensor products. Let 𝑃±,± denote the orthogonal projection of 𝐿2(𝑹2) onto the 

holomorphic/anti-holomorphic subspaces, in the first and second variables, respectively, 

and let 𝐻𝑗 denote the one-dimensional Hilbert transform in the 𝑗th variable, 𝑗 = 1, 2. In 

terms of the projections 𝑃±,±  

𝐻1 = 𝑃+,+ + 𝑃+,− − 𝑃−,+ − 𝑃−,−and 𝐻2 = 𝑃+,+ + 𝑃−,+ − 𝑃+,− − 𝑃−,−. 

The nested commutator deternfined by the function 𝑏 is tile operator [[𝑀𝑏 , 𝐻1], 𝐻2] acting 

on 𝐿2(𝑹2), where, for 𝑎 function 𝑏 on the plane, we define 𝑀𝑏𝑓 ≔ 𝑏𝑓. 
 In terms of the projections𝑃±±, it takes the form  

1

4
[[𝑀𝑏 , 𝐻1], 𝐻2] = 𝑃+,+𝑀𝑏𝑃−,− − 𝑃+,−𝑀𝑏𝑃−,+ − 𝑃−,+𝑀𝑏𝑃+,− + 𝑃−,−𝑀𝑏𝑃+,+.          (1) 

Ferguson and Sadosky [5] established the inequality ‖[[𝑀𝑏 , 𝐻1], 𝐻2]‖𝐿2 ≤ 𝑐‖𝑏‖𝐵𝑀𝑂. The 

main result is the converse inequality.  

Theorem (1.1.1)[1]: There is 𝑎 constant 𝑐 > 0 such that ‖𝑏‖𝐵𝑀𝑂 ≤

𝑐‖[[𝑀𝑏, 𝐻1], 𝐻2]‖𝐿2→𝐿2 for all functions 𝑏 in 𝐵𝑀𝑂(𝑹+
2 × 𝑹+

2 ).  

As A. Chang and R. Fefferman have established for us, the structure of the space 𝐵𝑀𝑂 is 

more complicated in the two-parameter setting, requiring 𝑎 more subtle approach to this 

theorem, despite the superficial similarity of the results to the one-parameter setting. The 

proof relies on three key ideas. The first is the dyadic characterization of the 𝐵𝑀𝑂 norm 

given in [2]. The second is a variant of Journ’s lemma, [6]. The third idea is that we have 

the estimates, the second of which was shown in [5],  

‖𝑏‖𝐵𝑂𝑀(rec) ≤ 𝑐‖[[𝑀𝑏 , 𝐻1], 𝐻2]‖𝐿2→𝐿2 ≤ 𝑐
′‖𝑏‖𝐵𝑀𝑂. 

An unpublished example of𝐿. Carleson shows that the rectangular 𝐵𝑀𝑂 norm is not 

comparable to the 𝐵𝑀𝑂 norm, [4]. We may assume that the rectangular 𝐵𝑀𝑂 norm of the 

function 𝑏 is small. Indeed, this turns out to be an essential aspect of tile argument.  
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From Theorem (1.1.1) we deduce 𝑎 weak factorization for the (biholomorphic) space 

𝐻1(𝑹+
2 × 𝑹+

2 ). The idea is that if the function 𝑏 has biholomorphic extension to 𝑹+
2 ×

𝑹+
2 then for fimctions 𝑓, 𝑔 ∈ 𝐿2(𝑹2),  

1

4
〈[[𝑀𝑏, 𝐻1], 𝐻2]𝑓, 𝑔〉 = 〈𝑏, 𝑃−,−𝑓̅̅ ̅̅ ̅̅ ̅𝑃+,+𝑔〉. 

So in this case, the operator norm of the nested commutator[[𝑀𝑏, 𝐻1], 𝐻2]is comparable to 

the dual norm  

‖𝑏‖∗ ≔ sup|〈𝑓𝑔, 𝑏〉|, 

where the supremum above is over all pairs 𝑓, 𝑔 in the unit ball of 𝐻2(𝑹+
2 × 𝑹+

2 ). On the 

other hand, since‖𝑏‖𝐵𝑀𝑂 and‖[[𝑀𝑏, 𝐻1], 𝐻2]‖𝐿2→𝐿2  are comparable, the dual norm above 

satisfies  

‖𝑏‖∗~sup|〈ℎ, 𝑏〉|, 
where the supremum is over all functions ℎ in the unit ball of𝐻1(𝑹+

2 × 𝑹+
2 ). 

Corollary (1.1.2)[1]: Let h be in𝐻1(𝑹+
2 × 𝑹+

2 ) with‖ℎ‖1 = 1. Then there exist functions 

(𝑓𝑗), (𝑔𝑗) ⊆ 𝐻
2(𝑹+

2 × 𝑹+
2 )such that ℎ = ∑ 𝑓𝑗𝑔𝑗

∞
𝑗=1 and∑ ‖𝑓𝑗‖2

‖𝑔𝑗‖2
∞
𝑗=1 ≤ 𝑐.  

We remark that the weak factorization above implies the analogous factorization for𝐻1 of 

the bidisk. Indeed, for all1 ≤ 𝑝 < ∞, the map𝑢𝑝: 𝐻
𝑝(𝑹+

2 × 𝑹+
2 ) → 𝐻𝑝(𝐷2) defined by  

(𝑢𝑝𝑓)(𝒵,𝑤) = 𝜋
2/𝑝 (

2𝑖

1 − 𝒵
)
2/𝑝

(
2𝑖

1 − 𝑤
)
2/𝑝

𝑓(𝛼(𝒵), 𝛼(𝑤)), 𝛼(𝜆) ≔ 𝑖
1 + 𝜆

1 − 𝜆
, 

is an isometry with isometric inverse 

(𝑢𝑝
−1𝑔)(𝒵,𝑤) = 𝜋−2/𝑝 (

1

𝒵 + 𝑖
)
2/𝑝

(
1

𝑤 + 𝑖
)
2/𝑝

𝑔(𝛽(𝒵), 𝛽(𝑤)), 𝛽(𝜆) ≔
𝜆 − 𝑖

𝜆 + 𝑖
. 

The dual formulation of weak factorization for𝐻1(𝐷2) is 𝑎 Nehari theorem for the bidisk. 

Specifically, if𝑏 ∈ 𝐻2(𝐷2) then the little Hankel operator with symbol 𝑏 is densely 

defined on𝐻2(𝐷2) by the formula  

Γ𝑏𝑓 = 𝑃−,−(�̅�𝑓). 
By 

‖Γ𝑏‖ = ‖[[𝑀�̅� , 𝐻1], 𝐻1]‖𝐿2→𝐿2                                                 (1) 

and thus, by Theorem(1.1.1), ‖Γ𝑏‖is comparable to ‖𝑏‖𝐵𝑀𝑂, which, by definition, is just 

the norm of 𝑏 acting on 𝐻1(𝐷2). So the boundedness of the Hankel operator Γ𝑏 implies 

that there is a function 𝜙 ∈ 𝐿∞(𝑇2) such that 𝑃+,+𝜙 = 𝑏. Several variations and 

complements on these themes in the one-parameter setting have been obtained by 

Coifman, Rochberg and Weiss [3].  
We give the one-dimensional preliminaries for the proof of Theorem(1.1.1), and 

devoted to the proof of Theorem (1.1.1). One final remark about notation 𝐴 ≲ 𝐵 means 

that there is an absolute constant 𝐶 for which 𝐴 ≤ 𝐶𝐵, 𝐴 ≈ 𝐵 means that 𝐴 ≲ 𝐵 and 𝐵 ≲
𝐴. 

We are indebted to Andreas Seeger.  

Several factors conspire to make the one-dimensional case easier than the higher- 

dimensional case. Before proceeding with the higher-dimensional case, we make several 

comments about the one-dimensional case, comments that extend and will be useful.  
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Let 𝐻 denote the Hilbert transform in one variable,𝑃+ =
1

2
(𝐼 + 𝐻) be the projection of 

𝐿2(𝑹)onto the positive frequencies, and 𝑃− is
1

2
(𝐼 − 𝐻)the projection onto the negative 

frequencies. We shall in particular rely upon the following basic computation: 
1

2
[𝑀𝑏 , 𝐻]�̅� = 𝑃−|𝑃−𝑏|

2 − 𝑃+|𝑃+𝑏|
2.                                        (2) 

The frequency distribution of |𝑃−𝑏|
2is symmetric since it is real-valued. Thus, 

‖𝑏‖4
2 ≲ ‖𝑃−|𝑃−𝑏|

2 − 𝑃+|𝑃+𝑏|
2‖2 ≤ ‖[𝑀𝑏 , 𝐻]‖2→2‖𝑏‖2. 

Moreover, if 𝑏 is supported on an interval 𝐼, we see that 

‖𝑏‖2 ≤ |𝐼|
1/4‖𝑏‖4 ≲ |𝐼|

1/4‖[𝑀𝑏, 𝐻]‖2→2
1/2
‖𝑏‖2

1/2
, 

 which is the BMO estimate on 𝐼. We seek an extension of this estimate in the two- 

parameter setting.  

We use a wavelet proof of Theorem (1.1.1), and specifically use a wavelet with 

compact frequency support constructed by Y. Meyer[8]. There is 𝑎 Schwartz function 𝑤 

with these properties:  

(a) ‖𝑤‖2 = 1. 

(b) �̂�(𝜉) is supported on[
2

3
,
8

3
] together with the symmetric interval about0.  

(c) 𝑃±𝑤 is a Schwartz function. We have  

|𝑤(𝑥)|, |𝑃±𝑤(𝑥)| ≲ (1 + |𝑥|)
−𝑛, 𝑛 ≥ 1. 

Let 𝒟 denote a collection of dyadic intervals on 𝑹. For any interval 𝐼, let 𝑐(𝐼) denote its 

center, and define 

𝑤𝐼(𝑥) ≔
1

√|𝐼|
𝑤 (
𝑥 − 𝑐(𝐼)

|𝐼|
). 

Set 𝑤𝐼
± ≔ 𝑃±𝑤𝐼. The central facts that we need about the functions {𝑤𝐼: 𝐼 ∈ 𝒟} are these: 

First, that these functions are an orthonormal basis on 𝐿2(𝑹). Second, that we have the 

Littlewood-Paley inequalities, valid on all 𝐿𝑝 , though 𝑝 = 4 will be of special significance 

for us. These inequalities are 

‖𝑓‖𝑝 ≈ ‖[∑
|〈𝑓, 𝑤𝐼〉|

2

|𝐼|
𝐼∈𝒟

1𝐼]

1/2

‖

𝑝

, 1 < 𝑝 < ∞.                    (3) 

Third, that the functions 𝑤𝐼 have good localization properties in the spatial variables. That 

is,  

|𝑤𝐼(𝑥)|, |𝑤𝐼
±(𝑥)| ≲ |𝐼|−1/2𝜒1(𝑥)

𝑛, 𝑛 ≥ 1,                              (4) 

where 𝜒𝐼(𝑥) ≔ (1 + dist(𝑥, 𝐼)/|𝐼|)−1. We find the compact localization of the wavelets in 

frequency to be very useful. The price we pay for this utility below is the careful 

accounting of "Schwartz tails" we shall make in the main argument. Fourth, we have the 

identity below for the commutator of one 𝑤𝐼 with 𝑎 𝑤𝐽. Observe that since 𝑃+ is one half 

of 𝐼 + 𝐻, it suffices to replace 𝐻 by 𝑃+ in the definition of the commutator. 

𝑤𝐼,𝐽 ≔ [𝑤𝐼 , 𝑃+]𝑤𝐽̅̅ ̅ = 𝑤𝐼𝑤𝐽
−̅̅ ̅̅ − 𝑃+𝑤𝐼𝑤𝐽̅̅ ̅ = 𝑃−𝑤𝐼𝑤𝐽

−̅̅ ̅̅ − 𝑃+𝑤𝐼𝑤𝐽
+̅̅ ̅̅ = 𝑃−𝑤𝐼

−𝑤𝐼𝑤𝐽
−̅̅ ̅̅ − 𝑃+𝑤𝐼

+𝑤𝐽
+̅̅ ̅̅  

= {

0      if|𝐼| ≥ 4|𝐽|,                   

𝑃−|𝑤𝐼
−|2 − 𝑃+|𝑤𝐼

+|2 if𝐼 = 𝐽,

𝑤𝐼
−𝑤𝐽

−̅̅ ̅̅ − 𝑤𝐼
+𝑤𝐽

+̅̅ ̅̅ if|𝐽| ≥ 4|𝐼|.

                              (5) 
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 From this we see 𝑎 useful point concerning orthogonality. For intervals 𝐼, 𝐼′, 𝐽 and 𝐽′, 
assume|𝐽| ≥ 8|𝐼|, and likewise for𝐼′and𝐽′. Then 

supp(𝑤𝐼 , 𝐽̂ ) ∩ supp(𝑤𝐼′ , 𝐽
′̂)= ∅, |𝐼′| ≥ 8|𝐼|.                    (6) 

 Indeed, this follows from 𝑎 direct calculation. The positive frequency support of 𝑤𝐼
+𝑤𝐽

+̅̅ ̅̅ is 

contained in the interval [(3|𝐼|)−1, 8(3|𝐼|)−1]. Under the conditions on 𝐼 and 𝐼′, the 

frequency supports are disjoint.  

𝐵𝑀𝑂(𝑹+
2 × 𝑹+

2 ) will denote the 𝐵𝑀𝑂 of two parameters (or product 𝐵𝑀𝑂) defined 

as the dual of (real)𝐻1(𝑹+
2 × 𝑹+

2 ). The following characterization of the space 𝐵𝑀𝑂(𝑹+
2 ×

𝑹+
2 ) is due to A. Chang and R. Fefferman [2].  

The relevant class of rectangles is ℛ = 𝒟 × 𝒟 all rectangles which are products of dyadic 

intervals. These are indexed by 𝑅 ∈ ℛ. For such a rectangle, write it as a product 𝑅1 × 𝑅2 

and then define  

𝜐𝑅(𝑥1, 𝑥2) = 𝑤𝑅1(𝑥1)𝑤𝑅2(𝑥2). 

A function 𝑓 ∈ 𝐵𝑀𝑂(𝑹+
2 × 𝑹+

2 )and only if  

sup
𝑈
[|𝑈|−1∑|〈𝑓, 𝜐𝑅〉|

2

𝑅⊂𝑈

]

1/2

< ∞. 

Here, the sum extends over those rectangles 𝑅 ∈ ℛ, and the supremum is over all open 

sets inthe plane of finite measure. Note that the supremum is taken over a much broader 

class of sets than merely rectangles in the plane. We denote this supremum as‖𝑓‖𝐵𝑀𝑂. In 

this definition, if the supremum over 𝑈 is restricted to just rectangles, this defines the 

"rectangular 𝐵𝑀𝑂" space, and we denote this restricted supremum as‖𝑓‖𝐵𝑀𝑂(𝑟𝑒𝑐) . 

We make a further comment on the 𝐵𝑀𝑂 condition. Suppose that for 𝑅 ∈ ℛ, we have 

non-negative constants 𝑎𝑅  for which  

∑ 𝑎𝑅
𝑅⊂𝑈

≤ |𝑈|, 

for all open sets 𝑈 in the plane of finite measure. Then, we have the John-Nirenberg 

inequality  

‖∑|𝑅|−1𝑎𝑅1𝑅
𝑅⊂𝑈

‖

𝑝

≲ |𝑈|1/𝑝, 1 < 𝑝 < ∞. 

See [2]. This, with the Littlewood-Paley inequalities, will be used several times below, and 

referred to as the John-Nirenberg inequalities.  

The function 𝑏 may be taken to be of Schwartz class. By multiplying 𝑏 by 𝑎 

constant, we can assume that the 𝐵𝑀𝑂 norm of 𝑏 is one. Set 𝐵2→2.to be the operator norm 

of [[𝑀𝑏 , 𝐻1]𝐻2]. We provide 𝑎 lower bound for 𝐵2→2. Let 𝑈 be an open set of finite 

measure for which we have the equality  

∑|〈𝑏, 𝜐𝑅〉|
2

𝑅⊂𝑈

= |𝑈|. 

As 𝑏 is of Schwartz class, such 𝑎 set exists. By invariance under dilations by 𝑎 factor of 

two, we can assume that
1

2
≤ |𝑈| ≤ 1. In several estimates below, the measure of 𝑈 enters. 

 An essential point is that we may assume that the rectangular 𝐵𝑀𝑂 norm of 𝑏 is at most 

𝜀. The reason for this is that we have the estimate‖𝑏‖𝐵𝑀𝑂(𝑟𝑒𝑐) ≲ 𝐵2→2. See[5]. Therefore, 
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for 𝑎 small constant 𝜀 to be chosen below, we can assume that ‖𝑏‖𝐵𝑀𝑂(𝑟𝑒𝑐) ≲ 𝜀, for 

otherwise we have 𝑎 lower bound on 𝐵2→2.  
Associated to the set 𝑈 is 𝑎 set 𝑉 which contains 𝑈 and has the properties specified in 

Lemma (1.1.3)[1]: It is critical that the measure of 𝑉 be only slightly larger than the 

measure of 𝑈, or more exactly,|𝑉| < (1 + 𝛿)|𝑈|, for 𝑎 choice of 0 < 𝛿 < 1 to be 

specified.  

Define  

𝜇(𝑅) ≔ sup{𝜇: 𝜇𝑅 ⊂ 𝑉} , 𝑅 ⊂ 𝑈. 
The quantity𝜇(𝑅) #(R) measures how deeply 𝑎 rectangle 𝑅 is inside 𝑉. This quantity 

enters into the essential Journ’s lemma, see [7].  

In the argument below, we will be projecting 𝑏 onto subspaces spanned by collections of 

wavelets. These wavelets are in turn indexed by collections of rectangles. Thus, for 𝑎 

collection 𝒜 ⊆ ℛ, let us denote  

𝑏𝒜 ≔ ∑(𝑏, 𝜐𝑅)

𝑅∈𝒜

𝜐𝑅 . 

The relevant collections of rectangles are defined as  

𝒰 ≔ {𝑅 ∈ ℛ: 𝑅 ⊂ 𝑈}, 
𝒱 = {𝑅 ∈ ℛ − 𝒰:𝑅 ⊂ 𝑉}, 

𝒲 = ℛ −𝒰 − 𝒱. 

For functions 𝑓 and 𝑔, we set{𝑓, 𝑔} ≔ [[𝑀𝑓, 𝐻1], 𝐻2] �̅�.  

We will demonstrate that for all 𝛿, 𝜀 > 0 there is 𝑎 constant 𝐾𝛿 > 0 so that  

(i) ‖{𝑏𝒱 , 𝑏𝒰}‖
2
≲ 𝛿1/4, 

(ii) ‖{𝑏𝒲 , 𝑏𝒰}‖
2
≤ 𝐾𝛿𝜀

1/3. 

Furthermore, we will show that 1 ≲ ‖{𝑏𝒰 , 𝑏𝒰}‖
2
. Since 𝑏 = 𝑏𝒰 + 𝑏𝒱 + 𝑏𝒲 , ‖𝑏𝒰‖

2
≲

1 and 𝛿, 𝜀 > 0 are arbitrary, 𝑎 lower bound on 𝐵2→2 will follow from an appropriate 

choice of 𝛿 and 𝜀. To be specific, one concludes the argument by estimating  

1 ≲ ‖{𝑏𝒰, 𝑏𝒰}‖
2
≲ ‖{𝑏𝒰 + 𝑏𝒱 , 𝑏𝒰}‖

2
+ 𝛿1/4

≲ ‖{𝑏𝒰 + 𝑏𝒱 + 𝑏𝒲 , 𝑏𝒰}‖
2
+ 𝛿1/4 + 𝐾𝛿𝜀

1/3 ≲ 𝐵2→2 + 𝛿
1/4 + 𝐾𝛿𝜀

1/3. 

Implied constants are absolute. Choosing 𝛿 first and then 𝜀appropriately small supplies 

𝑎 lower bound on 𝐵2→2.  

The estimate 1 ≲ ‖{𝑏𝒰 , 𝑏𝒰}‖
2
relies on the John-Nirenberg inequality and the two- 

parameter version of (2), namely  
1

4
[[𝑀𝑏 , 𝐻1], 𝐻2]�̃� = 𝑃+,+|𝑃+,+𝑏|

2
− 𝑃+,−|𝑃+,−𝑏|

2
− 𝑃−,+|𝑃−,+𝑏|

2
+ 𝑃−,−|𝑃−,−𝑏|

2
. 

 This identity easily follows from the one-variable identities. Here 𝑃±,± denotes the 

projection onto the positive/negative frequencies in the first and second variables. These 

projections are orthogonal and moreover, since|𝑃±,±𝑏|
2
is real-valued we have 

that‖𝑃±,±|𝑃±,±𝑏|
2
‖
2
≥
1

4
‖|𝑃±,±𝑏|

2
‖
2
Therefore,‖𝑏𝒰‖

4

2
≲ ‖{𝑏𝒰, 𝑏𝒰}‖

2
.  It follows that  

1 ≲ ‖𝑏𝒰‖
2
= [∑|〈𝑏, 𝜐𝑅〉|

2

𝑅∈𝒰

]

1/2

≲ ‖[∑
|〈𝑏, 𝜐𝑅〉|

2

|𝑅|
𝑅∈𝒰

1𝑅]

1/2

‖

4

≲ ‖𝑏𝒰‖
4
1

≲ ‖{𝑏𝒰, 𝑏𝒰}‖
2

1/2
. 
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The estimate (i) relies on the estimate |𝑉| < (1 + 𝛿)|𝑈|. Now, if 𝑅 ∈ 𝒱, then 𝑅 ⊂ 𝑉 and 

since b has BMO norm one, it follows that 

|𝑈| + ‖𝑏𝒱‖
2

2
= ∑ |〈𝑏, 𝜐𝑅〉|

2

𝑅∈𝒰∪𝒱

≤ (1 + 𝛿)|𝑈|. 

 Hence‖𝑏𝒱‖
2
≲ 𝛿1/2. Yet the 𝐵𝑀𝑂 norm of 𝑏𝒱can be no more than that of 𝑏, which is to 

say one. Interpolating norms we see that‖𝑏𝒱‖
4
≲ 𝛿1/4, and so  

‖{𝑏𝒱 , 𝑏𝒰}‖
2
≲ ‖𝑏𝒱‖

4
≲ ‖𝑏𝒰‖

4
𝛿1/4. 

We now turn to the estimate(ii). 𝑏𝒰and 𝑏𝒲 live on disjoint sets. But in this 

argument we are trading off precise Fourier support of the wavelets for imprecise spatial 

localization, that is the "Schwartz tails" problem. Accounting for this requires 𝑎 careful 

analysis, invoking several subcases.  

A property of the commutator that we will rely upon is that it controls the geometry 

of 𝑅 and 𝑅′. Namely, {𝜐𝑅′ , 𝜐𝑅} ≠ 0 if and only if writing 𝑅 = 𝑅1 × 𝑅2 and likewise for𝑅′, 

we have for both 𝑗 = 1,2, |𝑅𝑗
′| ≤ 4|𝑅𝑗|. This follows immediately from our one-

dimensional calculations, in particular (5). We abbreviate this condition on 𝑅 and 𝑅′ as 

𝑅′ ≲ 𝑅 and restrict our attention to this case. Orthogonality also enters into the argument. 

Observe the following. For rectangles 𝑅𝑘 , �̃�𝑘 , 𝑘 = 1,2, with �̃�𝑘 ≲ 𝑅𝑘, and for 𝑗 = 1 or𝑗 =
2,  

if8|�̃�𝑗
1| ≤ |𝑅𝑗

1| and 8|�̃�𝑗
2| < |𝑅𝑗

2|, then〈𝜐�̃�1𝜐𝑅1̅̅ ̅̅ , 𝜐�̃�2𝜐𝑅2̅̅ ̅̅ 〉 = 0.          (7) 

This follows from applying (6) in the 𝑗th coordinate.  

Therefore, there are different partial orders on rectangles that are relevant to our argument. 

They are:   

(a) 𝑅′ < 𝑅 if and only if 8|𝑅𝑗
′| ≤ |𝑅𝑗|for 𝑗 = 1 and 𝑗 = 2.   

(b) For 𝑗 = 1 or 𝑗 = 2, define 𝑅′ <𝑗 𝑅 if and only if 𝑅′ ≲ 𝑅 and 8|𝑅𝑗
′| ≤ |𝑅𝑗| but 𝑅′ ≮ 𝑅. 

(c) 𝑅′ ≃ 𝑅 if and only if 
1

4
|𝑅𝑗| ≤ |𝑅𝑗

′| ≤ |𝑅𝑗|for𝑗 = 1 and𝑗 = 2.  

These four partial orders divide the collection {(𝑅′, 𝑅): 𝑅′ ∈ 𝒲, 𝑅 ∈ 𝒰,𝑅′ ≲ 𝑅} into four 

subclasses which require different arguments.  

In each of these four arguments, we have recourse to this definition. Set𝒰𝑘, for 𝑘 =
0, 1, 2, . .., to be those rectangles in 𝒰 with 2−𝑘−1 < 𝜇(𝑅) ≤ 2𝑘 , 𝑅 ∈ 𝒰𝑘 . Journe’s lemma 

enters into the considerations. Let 𝒰′ ⊂ 𝒰𝑘be 𝑎 collection of rectangles which are 

pairwise incomparable with respect to inclusion. For this latter collection, we have the 

inequality  

∑ |𝑅|

𝑅∈𝒰′

≤ 𝐾𝛿2
𝛿/100 |⋃ 𝑅

𝑅∈𝒰′

| .                                        (8) 

See Journe’s [7]. This together with the assumption that 𝑏 has small rectangular 𝐵𝑀𝑂 

norm gives us  

‖𝑏𝒰𝑘‖
𝐵𝑀𝑂

≤ 𝐾𝛿2
𝑘/100𝜀.                                                  (9) 

This interplay between the small rectangular 𝐵𝑀𝑂 norm and Journe’'s lemma is 𝑎 decisive 

feature of the argument.  

Essentially, the decomposition into the collections 𝒰𝑘 is a spatial decomposition of 

the collection 𝒰. A corresponding decomposition of 𝒲 enters in. Yet the definition of this 

class differs slightly depending on the partial order we are considering.  
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For 𝑅′ ∈ 𝒲 and 𝑅 ∈ 𝒰 the term {𝜐𝑅
′
, 𝜐𝑅}is 𝑎 linear combination of  

𝜐𝑅′𝐻2𝐻1𝜐𝑅̅̅ ̅, 𝐻2(𝜐𝑅′𝐻1𝜐𝑅̅̅ ̅), (𝐻1𝜐𝑅′)(𝐻2𝜐𝑅̅̅ ̅), 𝐻1𝐻2(𝜐𝑅′𝜐𝑅̅̅ ̅). 
Consider the last term. As we are to estimate an 𝐿2-norm, the leading operators 𝐻1𝐻2 can 

be ignored. Moreover, the essential properties of wavelets used below still hold for the 

conjugates and Hilbert transforms of the same. These properties are Fourier localization 

and spatial localization. Similar comments apply to the other three terms, and so the 

arguments below applies to each type of term above.  

We consider the case of 𝑅′ < 𝑅 for 𝑅′ ∈ 𝒲 and ∈ 𝒰 . The sums we consider are 

related to the following definition. Set  

𝑏𝑡𝑟𝑢𝑛
𝒰𝑘 (𝑥) ≔ sup

𝑅′
|| ∑ 〈𝑏, 𝜐𝑅〉𝜐𝑅(𝑥)

𝑅∈𝒰𝑘
𝑅′<𝑅

||. 

We consider the maximal truncation of the sum over all choices of dimensions of the 

rectangles in the sum. Thus, this sum is closely related to the strong maximal function 𝑀 

applied to 𝑏𝒰𝑘, so that in particular we have the estimate below, which relies upon(9):  

‖𝑏𝑡𝑟𝑢𝑛
𝒰𝑘 ‖

𝑝
≲ 𝜀2

𝑘
100, 1 < 𝑝 < ∞. 

(By 𝑎 suitable definition of the strong maximal function𝑀, one can deduce this inequality 

from the 𝐿𝑝-bounds for 𝑀.) We apply this inequality far away from the set 𝑈. For the 

set𝑊𝜆 = 𝑅
2 −⋃ 𝜆𝑅, 𝜆𝑅∈𝒰𝑘 > 1, we have the inequality  

‖𝑏𝑡𝑟𝑢𝑛
𝒰𝑘 ‖

𝐿𝑝(𝑊)
≲ 𝜀2

𝑘
100𝜆−100, 1 < 𝑝 < ∞.                                        (10) 

We shall need 𝑎 refined decomposition of the collection 𝒲, the motivation for which is 

the following calculation. Let 𝒲′ ⊂ 𝒲. For 𝑛 = (𝑛1, 𝑛2) ∈ 𝒁
2, set  

𝒲′(𝑛) ≔ {𝑅′ ∈ 𝒲′: |𝑅𝑗
′| = 2𝑛𝑗 , 𝑗 = 1,2}. 

In addition, let   

𝐵(𝒲′, 𝑛) ≔ ∑ ∑ 〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ 𝜐𝑅′𝜐𝑅
𝑅∈𝒰𝑘
𝑅′<𝑅

𝑅′∈𝒲′(𝑛)

. 

And set 𝐵(𝒲′) = ∑ 𝐵(𝒲′, 𝑛)𝑛∈𝒁2 . 
Then, in view of (7), we see that 𝐵(𝒲′, 𝑛) and 𝐵(𝒲′, 𝑛′)are orthogonal if 𝑛 and 𝑛′differ 

by at least three in either coordinate. Thus,  

‖∑ 𝐵(𝒲′, 𝑛)

𝑛∈𝒁2

‖

2

2

≤ 3 ∑‖𝐵(𝒲′, 𝑛)‖2
2

𝑛∈𝒁2

. 

The rectangles 𝑅′ ∈ 𝒲(𝑛)are all translates of one another. Thus, taking advantage of the 

rapid spatial decay of the wavelets, we can estimate  

‖𝐵(𝒲′, 𝑛)‖2
2 ≲ ∑ ∫|

|〈𝑏, 𝜐𝑅′〉|

√|𝑅′|
(𝜒𝑅′ ∗ 1𝑅′)𝑏𝑡𝑟𝑢𝑛

𝒰𝑘 |

2

𝑅′∈𝒲(𝑛)

𝑑𝑥. 

In this display, we let 𝜒(𝑥1, 𝑥2) = (1 + 𝑥1
2 + 𝑥2

2)−10and for rectangles 𝑅, 𝜒𝑅(𝑥1, 𝑥2) =
𝜒(𝑥1|𝑅1|

−1, 𝑥2|𝑅2|
−1). Note that 𝜒𝑅 depends only oil the dimensions of 𝑅 and not its 

location.  

Continuing, note the trivial inequality∫(𝜒𝑅 ∗ 𝑓)
2𝑔𝑑𝑥 ≲ ∫|𝑓|2 𝜒𝑅 ∗ 𝑔𝑑𝑥. We. can estimate  
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‖𝐵(𝒲′)‖2
2 ≲ ∑ |〈𝑏, 𝜐𝑅′〉|

2 {|𝑅′|−1∫ 𝑀(|𝑏𝑡𝑟𝑢𝑛
𝒰𝑘 |

2
)

 

𝑅′
𝑑𝑥}

𝑅′∈𝒲′

                    (11) 

≲ | ⋃ 𝑅′

𝑅′∈𝒲′

| sup
𝑅′∈𝒲′

avg(𝑅′). 

Here we take avg(𝑅′) ≔ |𝑅′|−1 ∫ 𝑀 (|𝑏𝑡𝑟𝑢𝑛
𝒰𝑘 |

2
)

 

𝑅′
.  

The terms avg(𝑅′) are essentially of the order of magnitude 𝜀2 times the scaled  distance 

between 𝑅′ and the open set 𝑈. To make this precise requires 𝑎 decomposition of the 

collection 𝒲. 
For integers 𝑙 > 𝑘 and 𝑚 ≥ 0, set 𝒲(𝑙,𝑚)to be those 𝑅′ ∈ 𝒲 which satisfy these three 

conditions: 

(a) First, avg(𝑅′) ≤ 𝜀22−4𝑙if 𝑚 = 0 and 𝜀22−4𝑙+𝑚−1 < avg(𝑅′)𝜀22−4𝑙+𝑚 if 𝑚 > 0. 

(b) Second, there is an 𝑅 ∈ 𝒰𝑘 with 𝑅′ < 𝑅 and 𝑅′ ⊂ 2𝑙+1𝑅. 
(c) Third, for every 𝑅 ∈ 𝒰𝑘with𝑅′ < 𝑅, we have 𝑅′ ⊄ 2𝑙+1𝑅. Certainly, this collection of 

rectangles is empty if 𝑙 ≤ 𝑘.  
We see that  

| ⋃ 𝑅′

𝑅′∈𝒲(𝑙,𝑚)

| ≲ min(22/𝑝, 2−𝑚𝑝/2) , 1 < 𝑝 < ∞. 

The first estimate follows since the rectangles 𝑅′ ∈ 𝒲(𝑙,𝑚) are contained in the set 

{𝑀1𝑈 ≥ 2
−2𝑙−1}. The second estimate follows from (10).  

But then from (11) we see that for 𝑚 > 0,  

‖𝐵(𝒲(𝑙,𝑚))‖
2

2
≲ 𝜀22−4𝑙+𝑚min(22/𝑝, 2−𝑚𝑝/2) ≲ 𝜀22−(𝑚+𝑙)/10. 

In the case that 𝑚 = 0, we have the bound 22𝑙𝑝. This is obtained by taking the minimum 

to be 22𝑙𝑝 for 𝑝 =
5

4
 and 0 < 𝑚 <

11

8
𝑙. For 𝑚 ≥

11

8
𝑙take the minimum to be 2−𝑚𝑝/2 with 

𝑝 = 4.  
This last estimate is summable over 0 < 𝑘 < 𝑙 and 0 < 𝑚 to at most ≲ 𝜀, and so 

completes this case.  

We treat the case of 𝑅′ <1 𝑅, while the case of 𝑅′ <2 𝑅 is the same by symmetry. 

The structure of this partial order provides some orthogonality in the first variable, leaving 

none in the second variable. Bounds for the expressions from the second variable are 

derived from 𝑎 cognate of 𝑎 Carleson measure estimate.  

There is 𝑎 basic calculation that we perform for 𝑎 subset 𝒲′ ⊂ 𝒲. For an integer 𝑛′ ∈

𝒁define𝒲′(𝑛′) ≔ {𝑅′ ∈ 𝒲′: |𝑅1
′ | = 2𝑛

′
}and 

𝐵(𝒲′, 𝑛′) ≔ ∑ ∑ 〈𝑏, 𝜐𝑅′〉, 〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ 𝜐𝑅′𝜐𝑅̅̅ ̅
𝑅∈𝒰𝑘
𝑅′<1𝑅

𝑅′∈𝒲′(𝑛′)

. 

Recalling(7), if 𝑛′and 𝑛" differ by more than 3, then𝐵(𝒲′, 𝑛′) and 𝐵(𝒲′, 𝑛") are 

orthogonal.  

Observe that for 𝑅′ and 𝑅 as in the sum defining 𝐵(𝒲′, 𝑛), we have the estimate  

|𝜐𝑅′(𝑥)𝜐𝑅̅̅ ̅(𝑥)| ≲ (|𝑅||𝑅
′|)−

1
2 dist(𝑅′, 𝑅)1000 𝜒𝑅′ ∗ 1𝑅′(𝑥), 𝑥𝑹

2.                       (12) 
In this display, we are using the same notation as before,𝜒(𝑥1, 𝑥2) = (1 + 𝑥1

2 + 𝑥2
2)−10and 

for rectangles 𝑅, 𝜒𝑅(𝑥1, 𝑥2) = 𝜒(𝑥1|𝑅1|
−1, 𝑥2|𝑅2|

−1). In addition, dist(𝑅′, 𝑅) ≔
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𝑀1𝑅(𝑐(𝑅
′)), with 𝑐(𝑅′) being the center of 𝑅′. (This distance is more properly the 

inverse of 𝑎 distance that takes into account the scale of the rectangle 𝑅.) Now define  

𝛽(𝑅′) ≔ ∑ |𝑅|−12|〈𝑏, 𝜐𝑅〉|

𝑅∈𝒰
𝑅′<1𝑅

dist(𝑅′, 𝑅)1000 .                    (13) 

The main point of these observations and definitions is this. For the function 𝐵(𝒲′) ≔
∑ 𝐵(𝒲′, 𝑛′)𝑛′∈𝒁 , we have  

‖𝐵(𝒲′)‖2
2 ≲ ‖𝐵(𝒲′, 𝑛′)‖2

2 

≲ ∑ ∫ [ ∑ |〈𝑏, 𝜐𝑅′〉|𝛽(𝑅
′)|𝑅′|−1/2𝜒𝑅′ ∗ 1𝑅′

𝑅′∈𝒲′(𝑛′)

]

2
 

𝑹2
𝑛′∈𝒁

𝑑𝑥 

≲ ∑ ∫ [ ∑ |〈𝑏, 𝜐𝑅′〉|𝛽(𝑅
′)|𝑅′|−1/21𝑅′

𝑅′∈𝒲′(𝑛′)

]

2
 

𝑹2𝑛′∈𝒁

𝑑𝑥. 

At this point, it occurs to one to appeal to the Carleson measure property associated to the 

coefficients |〈𝑏, 𝜐𝑅′〉||𝑅
′|−1/2. This necessitates that one proves that the coefficients 𝛽(𝑅′) 

satisfy 𝑎 similar condition, which doesn't seem to be true in general. A slightly weaker 

condition is however true.  

To get around this difficulty, we make 𝑎 further diagonalization of the terms 𝛽(𝑅′) above. 

For integers 𝜈 ≥ 𝜈0, 𝜇 ≥ 1and 𝑎 rectangle 𝑅′ ∈ 𝒲, consider rectangles 𝑅 ∈ 𝒰𝑘such that 

𝑅′ <1 𝑅, 2
−𝜐 ≤ dist(𝑅′. 𝑅) ≤ 2−𝜐+1, 2𝜇|𝑅′| = |𝑅|. 

 (The quantity 𝜐0 depends upon the particular subcollection 𝒲′ we are considering.) We 

denote one of these rectangles as𝜋(𝑅′).  
An important geometrical fact is this. We have𝜋(𝑅′) ⊂ 2𝜐+𝜇+10𝑅1

′ × 2𝜐+10𝑅2
′  and 

in particular, this last rectangle has measure≲ 22𝜐+𝜇|𝑅′|.  
Therefore, there are at most 𝑂(22𝜐) possible choices for 𝜋(𝑅′). (Small integral 

powers of 2𝜐 are completely harmless because of the large power ofdist(𝑅′. 𝑅) that 

appears in (13).)  
We bound this next expression by 𝑎 term which includes 𝑎 power of 𝜀, 𝑎 small 

power of 2𝜐 and 𝑎 power of 2−𝜇. Define  

𝑆(𝒲′, 𝜈, 𝜇) ≔ ∑ ∫ [ ∑
|〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝜋(𝑅′)〉|

√|𝑅′||𝜋(𝑅′)|
𝜒𝑅′ ∗ 1𝑅′

𝑅′∈𝒲′(𝑛′)

]

2
 

𝑹2𝑛′∈𝒁

𝑑𝑥 

≲ ∑ ∫ [ ∑
|〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝜋(𝑅′)〉|

√|𝑅′||𝜋(𝑅′)|
1𝑅′

𝑅′∈𝒲′(𝑛′)

]

2
 

𝑹2
𝑛′∈𝒁

𝑑𝑥 

= ∑ ∑
|〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝜋(𝑅′)〉|

√|𝑅′||𝜋(𝑅′)|
𝑅′∈𝒲′(𝑛′)𝑛′∈𝒁

∑ √
|𝑅′′|

|𝜋(𝑅′′)|
|〈𝑏, 𝜐𝑅′′〉〈𝑏, 𝜐𝜋(𝑅′′)〉|

𝑅′′∈𝒲′(𝑛′)

𝑅′′⊂𝑅′

. 

The innermost sum can be bounded this way. First‖𝑏‖𝐵𝑀𝑂(𝑟𝑒𝑐) ≤ 𝜀, so that  

∑ |〈𝑏, 𝜐𝑅′′〉|
2 ≤ 𝜀2|𝑅′|

𝑅′′⊂𝑅′

. 

Second, by our geometrical observation about 𝜋(𝑅′),  
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∑
|𝑅′′|

|𝜋(𝑅′′)|
|〈𝑏, 𝜐𝜋(𝑅′′)〉|

2
≲ 𝜀222𝜐|𝑅′|

𝑅′′⊂𝑅′

. 

In particular, the factor 2𝑢does not enter into this estimate.  

This means that  

𝑆(𝒲, 𝜈, 𝜇) ≲ 𝜀222𝜐 ∑ √
|𝑅′|

|𝜋(𝑅′)|
|〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝜋(𝑅′)〉|

𝑅′∈𝒲′

≲ 𝜀222𝜐−𝜇/2 [ ∑ |〈𝑏, 𝜐𝑅′〉|
2

𝑅′∈𝒲′

∑ |〈𝑏, 𝜐𝑅〉|
2

𝑅∈𝒰𝑘

]

1/2

≲ 𝜀222𝜐−𝜇/2 | ⋃ 𝑅′

𝑅′∈𝒲′

|

1/2

. 

The point of these computations is that 𝑎 further trivial application of the Cauchy-Schwarz 

inequality proves that  

‖𝐵(𝒲′)‖2 ≲ 𝜀2
−100𝜈0 | ⋃ 𝑅′

𝑅′∈𝒲′

|

1/4

, 

where 𝜈0 is the largest integer such that for all 𝑅′ ∈ 𝒲′ and 𝑅 ∈ 𝒰𝑘, we have 

dist(𝑅′, 𝑅) ≤ 2−𝜈0 .  
We shall complete by decomposing 𝒲 into subcollections for which this last estimate is 

summable to 𝜀2−𝑘. Indeed, take 𝒲𝜐 to be those 𝑅′ ∈ 𝒲 with 𝑅′ ⊄ 2𝜐𝑅 for all 𝑅 ∈ 𝒰𝑘 

with 𝑅′ <1 𝑅. And there is an 𝑅 ∈ 𝒰𝑘 with 𝑅′ ⊂ 2𝜐+1𝑅 and 𝑅′ <1 𝑅. Certainly, we need 

only consider 𝜐 ≥ 𝑘.  
It is clear that this decomposition of 𝒲 will conclude the treatment of this partial 

order.  

We now consider the case of 𝑅′ ≃ 𝑅, which is less subtle as there is no 

orthogonality to exploit and the Carleson measure estimates are more directly applicable. 

We prove the bound  

‖ ∑ ∑ 〈𝑏, 𝜐𝑅′〉〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ 𝜐𝑅′𝜐𝑅̅̅ ̅
𝑅∈𝒰
𝑅′≃𝑅

𝑅′∈𝒲

‖

2

≲ 𝐾𝛿𝜀
1/3. 

The diagonalization in space takes two different forms. For 𝜆 ≥ 2𝑘and 𝑅 ∈ 𝒰𝑘set 

𝜎(𝜆, 𝑅)to be 𝑎 choice of 𝑅′ ∈ 𝒲 with 𝑅′ ≃ 𝑅 and 𝑅′ ⊂ 2𝜆𝑅. (The definition is vacuous 

for 𝜆 < 2𝑘.) It is clear that we need only consider ≃ 𝜆2choices of these functions 

𝜎(𝜆, . ): 𝒰𝑘 → 𝒲. There is an 𝐿1-estimate which allows one to take advantage of the 

spatial separation between 𝑅 and 𝜎(𝜆, 𝑅):  

‖∑ 〈𝑏, 𝜐𝜎(𝜆,𝑅)〉〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ 𝜐𝜎(𝜆,𝑅)𝜐𝑅̅̅ ̅

𝑅∈𝒰𝑘

‖

1

≲ 𝜆−100 ∑ |〈𝑏, 𝜐𝜎(𝜆,𝑅)〉〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ |

𝑅∈𝒰𝑘

 

≲ 𝜆−100 [ ∑ |〈𝑏, 𝜐𝜎(𝜆,𝑅)〉|
2

𝑅∈𝒰𝑘

∑ |〈𝑏, 𝜐𝑅〉|
2

𝑅∈𝒰𝑘

]

1/2

 

≲ 𝐾𝛿𝜀𝜆
−90. 

This estimate uses (9) and is 𝑎 very small estimate.  
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To complete this case we need to provide an estimate in 𝐿4. Here, we can be quite 

inefficient. By Cauchy-Schwarz and the Littlewood-Paley inequalities,  

‖∑〈𝑏, 𝜐𝜎(𝜆,𝑅)〉〈𝑏, 𝜐𝑅〉̅̅ ̅̅ ̅̅ ̅̅ 𝜐𝜎(𝜆,𝑅)𝜐𝑅̅̅ ̅

𝑅∈𝒰

‖

4

 

≲ ‖[∑|〈𝑏, 𝜐𝜎(𝜆,𝑅)〉𝜐𝜎(𝜆,𝑅)|
2

𝑅∈𝒰

]

1
2

‖

4

‖[∑|〈𝑏, 𝜐𝑅〉𝜐𝑅̅̅ ̅|
2

𝑅∈𝒰

]

1
2

‖

4

≲ 𝜆. 

This follows directly from the 𝐵𝑀𝑂 assumption on𝑏. Our proof is complete.  

Let 𝑈 be an open set of finite measure in the plane. Let ℛ(𝑈)be all dyadic 

rectangles inℛthat are contained in 𝑈. For each 𝑅 ∈ ℛ(𝑈)and open set 𝑉 ⊃ 𝑈, set  

𝜇(𝑉; 𝑅) = sup{𝜇 > 0: 𝜇𝑅 ⊂ 𝑉}. 
The form of Journs lemma we need is  

Lemma (1.1.4)[1]: For each 0 < 𝛿 < 1and open set 𝑈 of finite measure in the plane, there 

is 𝑎 set 𝑉 ⊃ 𝑈 for which|𝑉| < (1 + 𝛿)|𝑈|, and for all0 < 𝜀 < 1, there is 𝑎 constant𝐾𝛿,𝜀so 

that for any subset ℛ′ ⊂ ℛ(𝑈) such that 𝑅 ⊄ 𝑅′for any two rectangles𝑅 ≠ 𝑅′ ∈ ℛ′, we 

have the inequality  

∑ 𝜇(𝑉; 𝑅)−𝜀|𝑅|

𝑅∈ℛ′

≤ 𝐾𝛿,𝜀 |⋃ 𝑅

𝑅∈ℛ′

| .                                        (14) 

Journ~'s lemma is the central tool in verifying the Carleson measure condition, and points 

to the central problem in two dimensions: that there can be many rectangles close to the 

boundary of an open set.  

Among the references we could find in the literature[7], [10], the form of Journ~'s lemma 

cited and proved take the set 𝑉 to be{𝑀1𝑈 >
1

2
} , whizch only satisfies|𝑉| < 𝐾|𝑈|. 

Proof. There are two stages of the proof, with the first stage being the specification of the 

set 𝑉. This must be done with some care, and in 𝑎 manner that depends upon𝛿 > 0. Let us 

illustrate the difficulty.  

At first guess, one would take𝑉:= {𝑀1𝑈 > 1 − 𝛿}, with 𝑀 being the strong maximal 

function. But the problem is that the strong maximal function is not bounded on 𝐿1(𝑹2),so 

it can't possibly satisfy the desired inequality on its measure.  

It is then tempting to define 𝑉 as some variant of the one-dimensional maximal function. 

While this maximal function is bounded on 𝐿1(𝑅), as 𝑎 map into 𝐿1,∞(𝑹), the norm is 

known to exceed one.  

The dyadic maximal function, however, maps 𝐿1into 𝐿1,∞with norm one. This well known 

fact we shall utilize in 𝑎 slightly more general form. Define 𝑎 grid to be 𝑎 collection ℐ of 

intervals in the real line for which for all 𝐼, 𝐼′ ∈ ℐ, 𝐼 ∩ 𝐼′ ∈ {∅, 𝐼, 𝐼′}. For 𝑎 collection of 

intervals ℐ , not necessarily 𝑎 grid, set  

𝑀ℐ𝑓(𝑥) ≔ sup
𝐼∈ℐ
1𝐼(𝑥)|𝐼|

−1∫𝑓(𝑦)
 

𝐼

𝑑𝑦. 

Then, for any grid ℐ ,𝑀ℐ maps 𝐿1(𝑹)into𝐿1,∞(𝑹) with norm one. This is in particular true 

for the dyadic grid 𝒟. 
Now, let us take 0 < 𝛿 < 1, and in particular take 𝛿 = (2𝑑 + 1)−1 for integer 𝑑. 

We define shifted dyadic grids, modifying an observation due to 𝑀. Christ. For integers 

0 ≤ 𝑏 < 𝑑, and 𝛼 ∈ {±(2𝑑 + 1)−1}, let  
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𝒟𝑑,𝑏,𝛼 ≔ {2𝑘𝑑+𝑏 ((0,1) + 𝑗 + (−1)𝑘𝛼) : 𝑘 ∈ 𝒁, 𝑗 ∈ 𝒁}. 

One checks that this is 𝑎 grid. Indeed, it suffices to assume𝛼 = (2𝑑 + 1)−1, and that𝑏 =
0. Checking the grid structure can be done by induction. And it suffices to check that the 

intervals in 𝒟𝑑,0,𝛼of length one are 𝑎 union of intervals in 𝒟𝑑,𝑏,𝛼 of length 2−𝑑. One need 

only check this for the interval (0,1) + 𝛼. But certainly  

(0,1) +
1

2𝑑 + 1
=⋃(0, 2−𝑑)

2𝑑

𝑗=1

+ 𝑗2−𝑑 −
1

2𝑑(2𝑑 + 1)
 

=⋃(
1

2𝑑(2𝑑 + 1)
,
1

2𝑑 + 1
)

2𝑑

𝑗=1

+
𝑗

2𝑑
. 

What is more important concerns the collections 𝒟𝑑 ≔ ⋃ ⋃ 𝒟𝑑,𝑏,𝛼
𝑑−1
𝑏=0𝛼 .For each dyadic 

interval 𝐼 ∈ 𝒟, 𝐼 ± 𝛿|𝐼| ∈ 𝒟𝑑. (The problem we are avoiding here is that the dyadic grid 

distinguishes dyadic rational points. At the point 0, for instance, observe that for all 

integers𝑘, (1 + 𝛿)(0,1) ⊄ (0, 2𝑘), regardless of how big 𝑘 is.) Moreover, the maximal 

function 𝑀𝒟𝑑  maps 𝐿1 into 𝐿1,∞ with norm at most 2𝑑 ≃ log 𝛿. 

We may define 𝑉. For 𝑎 collection of intervals ℐ  and 𝑗 = 𝑙, 2, set 𝑀𝑗
ℐto be the 

maximal function associated to ℐ, computed in the coordinate 𝑗. Initially, we use only the 

dyadic grids, setting  

𝑉0 =⋃{𝑀𝑖
𝒟1{𝑀𝑗1𝑈 > 1 − 𝛿} > 1 − 𝛿}

𝑖≠𝑗

. 

It is clear that|𝑉0| < (1 + 𝐾𝛿)|𝑈|. Invoking the collections 𝒟𝑑, set  

𝑉 =⋃{𝑀𝑖
𝒟𝑑1{𝑀𝑗

𝒟𝑑1𝑉0 > 1 − 𝛿} > 1 − 𝛿}

𝑖≠𝑗

. 

Then|𝑉| < (1 + 𝐾𝛿 log 𝛿−1)|𝑈|, and we will work with this choice of 𝑉.  
The additional important property that 𝑉 has can be formulated this way. For all dyadic 

rectangles𝑅 = 𝑅1 × 𝑅2 ⊂ 𝑉0, the four rectangles  

(𝑅1 ± 𝛿|𝑅1|) × (𝑅2 ± 𝛿|𝑅2|) ⊂ 𝑉.                                        (15) 
This follows immediately from the construction of the shifted dyadic grids. The first stage 

of the proof is complete.  

In the second stage, we verify(14). A typical proof of Journ~'s lemma shows that the 

rectangles in ℛ′ have logarithmic overlap, measured in terms of log 𝜇(𝑉; 𝑈). We adopt 

that method of proof. Fix 𝑎 subsetℛ′ ⊂ ℛ(𝑈)satisfying the incomparability condition of 

the lemma, and fix 𝜇 ≥ 1. Set S to be those rectangles in ℛ′ with 𝜇 ≤ 𝜇(𝑅) ≤ 2𝜇. It 

suffices to show that  

∑|𝑅|

𝑅∈𝑆

≲ (1 + log 𝜇)2 |⋃𝑅

𝑅∈𝑆

|. 

For then this estimate is summed over 𝜇 ∈ {2𝑘: 𝑘 ∈ 𝒁}. 
In showing this estimate, we can further assume for all𝑅, 𝑅′ ∈ 𝑆, writing𝑅 = 𝑅1 × 𝑅2and 

likewise for 𝑅′, that if for 𝑗 = 𝑙, 2, |𝑅𝑗| > |𝑅𝑗
′|then|𝑅𝑗| > 16𝜇6

−1|𝑅𝑗
′|. This is done by 

restricting log2|𝑅𝑗|to be in an arithmetic progression of difference ≃ log 𝜇𝛿−1. This 

necessitates the division of all rectangles into≲ (1 + log 𝜇𝛿−1)2 subclasses, and so we 

prove the bound above without the logarithmic term.  
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We define a bad class of rectangles ℬ = ℬ(𝑆) as follows. For 𝑗 = 𝑙, 2, let ℬ𝑗(𝑆) be those 

rectangles 𝑅 for which there are rectangles  

𝑅1, 𝑅2, … , 𝑅𝑘 ∈ 𝑆 − {𝑅}, 

so that for each1 ≤ 𝑘 ≤ 𝐾, |𝑅𝑗
𝑘| > |𝑅𝑗|and  

|𝑅 ∩⋃𝑅𝑘
𝐾

𝑘=1

| > (1 −
1

10
𝛿) |𝑅|. 

Thus 𝑅 ∈ ℬ𝑗if it is nearly completely covered by dyadic rectangles in the 𝑗 th direction of 

the plane. Set ℬ(𝑆) = ℬ1(𝑆) ∪ ℬ2(𝑆). It follows that if 𝑅 ∉ ℬ(𝑆), it is not covered in both 

the vertical and horizontal directions, hence  

|𝑅 ∩ ⋂ (𝑅′)𝑐

𝑅′∈𝑆−{𝑅}

| ≥
𝛿2

100|𝑅|
. 

And so  

∑ |𝑅|

𝑅∈𝑆−ℬ(𝑆)

≤ 100𝛿2 |⋃𝑅

𝑅∈𝑆

|. 

Thus, it remains to consider the set of rectanglesℬ1(𝑆) andℬ2(𝑆). Observe that for any 

collection 𝑆′ℬ𝑗(𝑆
;) ⊂ 𝑆′, as follows immediately from the definition. Hence 

ℬ1 (ℬ2(ℬ1(𝑆))) ⊂ ℬ1(ℬ1(𝑆)). And we argue that this last set is empty. As our definition 

of 𝑉 and 𝜇(𝑉; 𝑅) is symmetric with respect to the coordinate axes, this is enough to finish 

the proof.  

We argue that ℬ1(ℬ1(𝑆)) is empty by contradiction. Assume that 𝑅 is in this collection. 

Consider those rectangles 𝑅′ in ℬ1(𝑆) for which (i)|𝑅1
′ | > |𝑅1|and (ii)𝑅′ ∩ 𝑅 ≠ ∅ Then  

|𝑅 ∩ ⋃ 𝑅′

𝑅′∈ℬ1(𝑆)

| ≥ (1 −
1

10
𝛿) |𝑅|. 

Fix one of these rectangles 𝑅′ with|𝑅1
′ | being minimal. We then claim that 8𝜇𝑅′ ⊂ 𝑉, 

which contradicts the assumption that 𝜇(𝑉; 𝑅′)is no more than 2𝜇.  
Indeed, all the rectangles in ℬ1(𝑆) are themselves covered by dyadic rectangles in 

the first coordinate axis. We see that the the set{𝑀2
𝒟1𝑈 > 1 − 𝛿}contains the dyadic 

rectangle 𝑅1
" × 𝑅2, in which 𝑅2 is the second coordinate interval for the rectangle 𝑅 and 𝑅1

"  

is the dyadic interval that contains 𝑅1
′  and has measure 8𝜇𝛿−1|𝑅1

′ | ≤ |𝑅1
"| < 16𝜇𝛿−1|𝑅1

′ |. 

That is, 𝑅1
" × 𝑅2 is contained in 𝑉0. And the dimensions of this rectangle are very much 

bigger than those of 𝑅. Applying (15), the rectangles(𝑅1
" ± |𝑅1

"|) × 𝑅2 ± 𝛿|𝑅2|are 

contained in 𝑉. And since 8𝜇𝑅′ is contained in one of these last four rectangles, we have 

contradicted the assumption that 𝜇(𝑉; 𝑅′) < 2𝜇.  
Section (1.2): Multi-Parameter Paraproducts 

For 𝑛 ≥ 1 let𝑚(= 𝑚(𝜏))in 𝐿∞(ℝ𝑛) be 𝑎 bounded function, smooth away from the 

origin and satisfying  

|𝜕𝛼𝑚(𝜏)| ≲
1

|𝜏||𝛼|
                                                                (16) 

for sufficiently many multi-indices 𝛼. Denote by 𝑇𝑚
(1)

 the 𝑛-linear operator defined by 
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𝑇𝑚
(1)(𝑓1, … , 𝑓𝑛)(𝑥) = ∫ 𝑚(𝜏)𝑓1̂(𝜏1)…𝑓�̂�(𝜏𝑛)𝑒

2𝜋𝑖𝑥(𝜏1+⋯+𝜏𝑛)𝑑𝜏
 

ℝ𝑛
               (17) 

where 𝑓1, … , 𝑓𝑛 are Schwartz functions on the real lineℝ. The following statement of 

Coifman and Meyer is 𝑎 classical theorem in Analysis [13], [17], [15].  

Theorem (1.2.1)[12]:  𝑇𝑚
(1)

 maps 𝐿𝑝1 × …× 𝐿𝑝𝑛 → 𝐿𝑝 boundedly, as long as 1 <

𝑝1, . . , 𝑝𝑛 ≤ ∞,
1

𝑝1
+⋯+

1

𝑝𝑛
=
1

𝑝
 and 0 < 𝑝 < ∞.  

In [18] we considered the bi-parameter analogue of 𝑇𝑚
(1)

 defined as follows. Let 𝑚(=

(𝛾, 𝜂)) in 𝐿∞(ℝ2𝑛) be 𝑎 bounded function, smooth away from the subspaces {𝛾 = 0} ∪
{𝜂 = 0}and satisfying  

|𝜕𝛾
𝛼𝜕𝜂
𝛽
𝑚(𝛾, 𝜂)| ≲

1

|𝛾||𝛼|
1

|𝜂||𝛽|
                                             (18) 

for sufficiently many multi-indices 𝛼 and 𝛽.  

Denote by 𝑇𝑚
(2)

 the 𝑛-linear operator defined by 

𝑇𝑚
(2)(𝑓1, … , 𝑓𝑛)(𝑥)

= ∫ 𝑚(𝛾, 𝜂)𝑓2̂(𝛾1, 𝜂1)… 𝑓�̂�(𝛾𝑛 , 𝜂𝑛)
 

ℝ2𝑛
× 𝑒2𝜋𝑖𝑥[(𝛾1,𝜂1)+⋯+(𝛾𝑛,𝜂𝑛)]𝑑𝛾𝑑𝜂,     (19) 

where 𝑓1, … , 𝑓𝑛 are Schwartz functions on the planeℝ𝑛. The following theorem has been 

proven in [18].  

Theorem (1.2.2)[12]: 𝑇𝑚
(2)

 maps 𝐿𝑝1 ×…× 𝐿𝑝𝑛 → 𝐿𝑝 boundedly, as long as 1 <

𝑝1, . . , 𝑝𝑛 ≤ ∞, 
1

𝑝1
+⋯+

1

𝑝𝑛
=
1

𝑝
 and 0 < 𝑝 < ∞. 

We generalize Theorem (1.2.2) to the 𝑑-parameter setting, for any 𝑑 ≥ 1.  

In general, if 𝜉1 = (𝜉1
𝑖)
𝑖=1

𝑑
, … , 𝜉𝑛 = (𝜉𝑛

𝑖 )
𝑖=1

𝑑
are 𝑛 generic vectors in ℝ𝑑, they 

naturally generate the following 𝑑 vectors inℝ𝑛 which we will denote by 𝜉1̅ =

(𝜉𝑗
1)
𝑗=1

𝑛
, … , 𝜉𝑑̅̅ ̅ = (𝜉𝑗

𝑑)
𝑗=1

𝑛
. As before, let 𝑚(= 𝑚(𝜉) = 𝑚(𝜉̅))in 𝐿∞(ℝ𝑑𝑛)be 𝑎 bounded 

symbol, smooth away from the subspaces {𝜉1̅ = 0} ∪ …∪ {𝜉𝑑̅̅ ̅ = 0}and satisfying 

|𝜕
𝜉1̅̅ ̅
𝛼1 …𝜕

𝜉𝑑̅̅̅̅
𝛼𝑑𝑚(𝜉̅)| ≲∏

1

|𝜉�̅�|
|𝛼𝑖|

𝑑

𝑖=1

                                             (20) 

for sufficiently many multi-indices 𝛼1, … , 𝛼𝑑. Denote by 𝑇𝑚
(𝑑)

 the 𝑛-linear operator defined 

by 

𝑇𝑚
(𝑑)(𝑓1, … , 𝑓𝑛)(𝑥) = ∫ 𝑚(𝜉)𝑓1̂(𝜉1)…𝑓�̂�(𝜉𝑛)

 

ℝ𝑑𝑛
𝑒2𝜋𝑖𝑥(𝜉1+⋯+𝜉𝑛)𝑑𝜉               (21) 

where𝑓1, … , 𝑓𝑛 are Schwartz functions onℝ𝑑. The main theorem is the following.  

Theorem (1.2.3)[12]:  𝑇𝑚
(𝑑)

 maps𝐿𝑝1 ×…× 𝐿𝑝𝑛 → 𝐿𝑝 boundedly, as long as1 <

𝑝1, . . , 𝑝𝑛 ≤ ∞,
1

𝑝1
+⋯+

1

𝑝𝑛
=
1

𝑝
and0 < 𝑝 < ∞. 

Classically,[2, 7, 5] an estimate as the one in Theorem (1.2.1) is proved by using the 𝑇(1) 
theorem of David and Journ´e[19] together with the Caldero´n- Zygmund decomposition. 

In particular, the theory of BMO functions and Carleson measures is involved.  

On the other hand, it is well known [2], [16] that in the multi-parameter setting all these 

results and concepts are much more delicate (BMO, John-Nirenberg inequality, Caldero´n-
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Zygmund decomposition). To overcome these difficulties, in [18] we had to develop 𝑎 

completely new approach to prove Theorem(1.2.2). This approach relied on the one 

dimensional BMO theory and also on Journe’s lemma [16],[1], but did not extend to prove 

the general 𝑑-parameter case.  

The novelty is that it simplifies the method introduced in [18] and this simplification 

works equally well in all dimensions. It turned out that one doesn’t need to rely on any 

knowledge of BMO, Carleson measures or Journ´e’s lemma in order to prove the estimates 

in Theorem(1.2.3). 
 We shall rely on [18] and we chose to present the argument in the same bi-linear bi-

parameter setting (so both 𝑛 and 𝑑 will be equal to 2). However, it will be clear from the 

proof that its extension to the 𝑛-linear 𝑑-parameter case is straightforward.  

We recall the discretization procedure from [18] which reduces the study of our 

operator to the study of some general multi-parameter paraproducts. We present the proof 

of our main theorem, Theorem (1.2.3) and we give 𝑎 proof of Lemma (1.2.6) which plays 

an important role in our simplified construction. 

As we promised, assume throughout that 𝑛 = 𝑑 = 2. In this case, our operator𝑇𝑚
(𝑑)

 

can be written as 

𝑇𝑚
(2)(𝑓, 𝑔)(𝑥) = ∫ 𝑚(𝛾, 𝜂)𝑓(𝛾1, 𝜂1)𝑔(𝛾2, 𝜂2)𝑒

2𝜋𝑖𝑥[(𝛾1,𝜂1)+(𝛾2,𝜂2)]𝑑𝛾𝑑𝜂
 

ℝ4
. (22) 

In [18], we decomposed the operator 𝑇𝑚
(2)

 into smaller pieces, well adapted to its bi-

parameter structure. This allowed us to reduce its analysis to the analysis of some simpler 

discretized dyadic paraproducts. We will recall their definitions below.  

An interval 𝐼 on the real line ℝ is called dyadic if it is of the form 𝐼 = 2𝑘[𝑛, 𝑛 + 1] for 

some 𝑘, 𝑛 ∈ ℤ. If 𝜆, 𝑡 ∈ [0,1] are two parameters and 𝐼 is as above, we denote by 𝐼𝜆,𝑡 the 

interval 𝐼𝜆,𝑡 = 2
𝑘+𝜆[𝑛 + 𝑡, 𝑛 + 𝑡 + 1]. 

Definition (1.2.4)[12]: For 𝐽 ⊆ ℝ an arbitrary interval, we say that 𝑎 smooth function Φ𝐽 

is 𝑎 bump adapted to 𝐽, if and only if the following inequalities hold  

|Φ𝐽
(𝑙)(𝑥)| ≤ 𝐶𝑙,𝛼

1

|𝐽|𝑙
1

(1 +
dist(𝑥, 𝐽)
|𝐽|

)
𝛼 ,                              (23) 

for every integer 𝛼 ∈ ℕ and for sufficiently many derivatives 𝑙 ∈ ℕ. IfΦ𝐽is 𝑎 bump adapted 

to 𝐽, we say that |𝐽|−1/2Φ𝐽 is an 𝐿2-normalized bumpadapted to 𝐽. 

For 𝜆, t1, t2, t3 ∈ [0,1] and 𝑗 ∈ { 1,2,3} we define the discretized dyadic paraproduct 

∏  
𝑗
𝜆,t1,t2,t3

of “type𝑗” by  

∏  (𝑓, 𝑔)
𝑗

𝜆,t1,t2,t3

=∑
1

|𝐼|1/2
〈𝑓, Φ𝐼𝜆,𝑡1

1 〉 〈𝑔,Φ𝐼𝜆,𝑡2
2 〉 Φ𝐼𝜆,𝑡3

3

𝐼∈𝒟

,               (24) 

where 𝑓, 𝑔 are complex-valued measurable functions on ℝ and Φ𝐼𝜆,𝑡𝑖
1 ,ti are 𝐿2-normalized 

bumps adapted to 𝐼𝜆,𝑡𝑖with the additional property that ∫ Φ𝐼𝜆,𝑡𝑖
𝑖 (𝑥)𝑑𝑥

 

ℝ
= 0 for 𝑖 ≠ 𝑗, 𝑖 =

1 ,2,3. 𝒟 is an arbitrary finite set of dyadic intervals and by〈. , . 〉 ·,· we denoted the 

complex scalar product.  

Similarly, for𝜆, 𝑡1⃗⃗⃗ ⃗, 𝑡2⃗⃗⃗⃗ , 𝑡3⃗⃗⃗⃗ ∈ [0,1]
2 and 𝑗 ∈ {1,2,3}2, we define the discretized dyadic bi-

parameter paraproduct of “type 𝑗” 
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Π
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗
= Π

𝜆′,𝑡1
′ ,𝑡2
′ ,𝑡3
′

𝑗′
⨂Π

𝜆",𝑡1
" ,𝑡2
" ,𝑡3
"

𝑗"
 

by 

Π
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗 (𝑓, 𝑔) = ∑
1

|𝑅|1/2
〈𝑓, Φ𝑅

�⃗⃗⃗�,𝑡1⃗⃗ ⃗⃗ ⃗

1 〉 〈𝑔, Φ𝑅
�⃗⃗⃗�,𝑡2⃗⃗ ⃗⃗ ⃗

2 〉Φ𝑅
�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3

𝑅∈�⃗⃗⃗�

,               (25) 

where this time 𝑓, 𝑔 are complex-valued measurable functions on ℝ2, 𝑅 = 𝐼 × 𝐽 are dyadic 

rectangles and Φ𝑅
�⃗⃗⃗�,𝑡𝑖⃗⃗⃗⃗

𝑖  are given by 

Φ𝑅
�⃗⃗⃗�,𝑡𝑖⃗⃗⃗⃗

𝑖 = Φ𝐼
𝜆′,𝑡𝑖

′
𝑖 ⨂Φ𝐽

𝜆",𝑡𝑖
"

𝑖  

 for 𝑖 = 1 ,2,3. In particular, if 𝑖 ≠ 𝑗′ then ∫ Φ𝐽
𝜆′,𝑡𝑖

′
𝑖 (𝑥)𝑑𝑥

 

ℝ
= 0 and if 𝑖 ≠ 𝑗" then 

∫ Φ𝐽
𝜆",𝑡𝑖

"

𝑖 (𝑥)𝑑𝑥
 

ℝ
= 0 �⃗⃗⃗� is an arbitrary finite collection of dyadic rectangles. We will also 

denote byΛ
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗 (𝑓, 𝑔, ℎ) the trilinear form given by 

Λ
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗 (𝑓, 𝑔, ℎ) = ∫ Π
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗
 

ℝ2
(𝑓, 𝑔)(𝑥, 𝑦)ℎ(𝑥, 𝑦)𝑑𝑥𝑑𝑦.               (26) 

In [18] we showed that Theorem(1.2.2) can be reduced to the following Proposition. 

Proposition (1.2.5)[12]:  Fix𝑗 ∈ {1,2,3}2and let 1 < 𝑝, 𝑞 < ∞ be two numbers arbitrarily 

close to1. Let also, 𝑓 ∈ 𝐿𝑝 , ‖𝑓‖𝑝 = 1, 𝑔 ∈ 𝐿
𝑞 , ‖𝑔‖𝑞 = 1and𝐸 ⊆ ℝ2,|𝐸| = 1. Then, there 

exists 𝑎 subset 𝐸′ ⊆ 𝐸 with |𝐸′|~1 such that  

|Λ
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗 (𝑓, 𝑔, ℎ)| ≲ 1                                                            (27) 

 uniformly in the parameters𝜆, 𝑡1⃗⃗⃗ ⃗, 𝑡2⃗⃗⃗⃗ , 𝑡3⃗⃗⃗⃗ ∈ [0,1]
2, whereℎ ≔ 𝜒𝐸′ . 

It is therefore enough to prove the above Proposition(1.2.5), in order to complete the 

proof of our main Theorem(1.2.2). Since all the cases are similar, we assume as in [18] 

that 𝑗 = (1,2). 
To construct the desired set 𝐸′, we need to recall the “maximal-square”, “square-maximal” 

and “square-square” functions considered in [18].  

For (𝑥, 𝑦) ∈ ℝ2 define 

𝑀𝑆(𝑓)(𝑥, 𝑦) = sup
𝐼

1

|𝐼|1/2
( ∑ sup

�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗

|〈𝑓, Φ𝑅
�⃗⃗⃗�,𝑡𝑖⃗⃗⃗⃗

1 〉|
2

|𝐽|
𝜒𝐽(𝑦)

𝐽:𝑅=𝐼×𝐽∈�⃗⃗⃗�

)𝜒𝐼(𝑥),       (28) 

𝑆𝑀(𝑔)(𝑥, 𝑦) =

(

 
 
 
 

∑
sup𝐽:𝑅=𝐼×𝐽∈�⃗⃗⃗�𝑠𝑢𝑝�⃗⃗⃗�,𝑡2⃗⃗⃗⃗⃗

|〈𝑔, Φ𝑅
�⃗⃗⃗�,𝑡2⃗⃗ ⃗⃗ ⃗

2 〉|
2

|𝐽|
𝜒𝐽(𝑦)

|𝐼|
𝐼

𝜒𝐼(𝑥)

)

 
 
 
 

1/2

   (29) 

and  

𝑆𝑆(ℎ)(𝑥, 𝑦) = (∑ sup
�⃗⃗⃗�,𝑡3⃗⃗⃗⃗⃗

|〈ℎ, Φ𝑅
�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3 〉|
2

|𝑅|
𝜒𝑅(𝑥, 𝑦)

𝑅∈�⃗⃗⃗�

)

1/2

.               (30) 

Then, we also recall (see[19]) the bi-parameter Hardy-Littlewood maximal function 
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𝑀𝑀(𝐹)(𝑥, 𝑦) = sup
(𝑥,𝑦)∈𝐼×𝐽

1

|𝐼||𝐽|
∫ |𝐹(𝑥′, 𝑦′)|
 

𝐼×𝐽

𝑑𝑥′𝑑𝑦′ .               (31) 

The following simple estimates explain the appearance of these functions. In particular, we 

will see that our desired bounds in Theorem (1.2.2) can be easily obtained as long as all 

the indices involved are strictly between 1 and ∞. 

 We start by recalling the following basic inequality, [18]. If Π1 is 𝑎 one-parameter 

paraproduct of “type1” given by  

Π1(𝑓1, 𝑓2) = ∑
1

|𝐼|1/2
𝐼

〈𝑓1, Φ𝐼
1〉〈𝑓2, Φ𝐼

2〉Φ𝐼
3                                 (32) 

then we can write 

|Λ1(𝑓1, 𝑓2, 𝑓3)| = |∫Π
1(𝑓1, 𝑓2)(𝑥)𝑓3(𝑥)𝑑𝑥

 

ℝ

| ≲ ∑
1

|𝐼|1/2
𝐼

|〈𝑓1, Φ𝐼
1〉||〈𝑓2, Φ𝐼

2〉||〈𝑓3, Φ𝐼
3〉|

= ∫ (∑
|〈𝑓1, Φ𝐼

1〉|

|𝐼|1/2
|〈𝑓2, Φ𝐼

2〉|

|𝐼|1/2
|〈𝑓3, Φ𝐼

3〉|

|𝐼|1/2
𝐼

𝜒𝐼(𝑥))
 

ℝ

𝑑𝑥 

≲ ∫𝑀(𝑓1)(𝑥)𝑆(𝑓2)(𝑥)𝑆(𝑓3)(𝑥)
 

ℝ

𝑑𝑥   .                                                       (33) 

where 𝑀 denotes the Hardy-Littlewood maximal function and 𝑆 is the square function of 

Littlewood and Paley. In particular, we easily see that Π1: 𝐿𝑝 × 𝐿𝑞 → 𝐿𝑟for any 1 <
𝑝, 𝑞, 𝑟 < ∞ satisfying 1/𝑝 + 1/𝑞 = 1/𝑟 . Analogous estimates hold for any other type of 

paraproducts Π𝑗  for 𝑗 = 1 ,2,3. 

Similarly, for the bi-parameter paraproduct Π(1,2) of “type(1,2)” formally defined by 

Π(1,2) = Π1⨂Π2one obtains the inequalities  

|Λ(1,2)(𝑓1, 𝑓2, 𝑓3)| = |∫Π
(1,2)(𝑓1, 𝑓2)(𝑥, 𝑦)𝑓3(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 

ℝ

| 

≲ ⋯ ≲ ∫ 𝑀𝑆(𝑓1)(𝑥, 𝑦)𝑆𝑀(𝑓2)(𝑥, 𝑦)𝑆(𝑓3)(𝑥, 𝑦)
 

ℝ2
𝑑𝑥𝑑𝑦.               (34) 

and analogous estimates hold for any other type of paraproducts Π𝑗for𝑗 ∈ {1,2,3}2. It is 

important that all these𝑀𝑆, 𝑆𝑀 and 𝑆𝑆 functions are bounded on 𝐿𝑝  for any 1 < 𝑝 < ∞ . 

We recall the proof of this fact here (see[18]). We start with 𝑆𝑀(𝑓2)(𝑥, 𝑦). It can be 

written as  

𝑆𝑀(𝑓2)(𝑥, 𝑦) =

(

 
 
 

∑

sup𝐽
|〈𝑓2, Φ𝐼

2⨂Φ𝐽
2〉|
2

|𝐽|
𝜒𝐽(𝑦)

|𝐼|
𝐼

𝜒𝐼(𝑥)

)

 
 
 

1/2

(35) 

≲ (∑𝑀(
〈𝑓2, Φ𝐼

2〉

|𝐼|
1/2 )

2

𝐼

(𝑦)𝜒𝐼(𝑥))

1/2

 

where 𝐼 and𝐽 are the intervals where the corresponding supremums over𝜆, 𝑡2 ∈ [0,1]
2 in 

(29) are attained. 
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In particular, by using Fefferman-Stein[14] and Littlewood-Paley [19] inequalities, we 

have 

 

‖𝑆𝑀(𝑓2)‖𝑝 ≲ ‖‖(∑𝑀(
〈𝑓2, Φ𝐼

2〉

|𝐼|
1/2

)

2

𝐼

(𝑦)𝜒𝐼(𝑥))

1/2

‖‖

𝑝

                              (36) 

≲ ‖(∑
|〈𝑓2, Φ𝐼

2〉|
2

|𝐼|
𝐼

(𝑦)𝜒𝐼(𝑥))

1/2

‖

𝑝

≲ ‖𝑓2‖𝑝 

for any 1 < 𝑝 < ∞. Then, we observe that the 𝑀𝑆 function is pointwise smaller than 𝑎 

certain 𝑆𝑀 type function and hence bounded on 𝐿𝑝 , while the 𝑆𝑆 function is 𝑎 classical 

double square function and its boundedness on 𝐿𝑝  spaces is well known, [2]. As 𝑎 

consequence, it follows as before that Π1: 𝐿𝑝 × 𝐿𝑞 → 𝐿𝑟as long as 1 < 𝑝, 𝑞, 𝑟 < ∞ with 

1/𝑝 + 1/𝑞 = 1/𝑟. 
It remains to prove Proposition(1.2.5). First, we state the following Lemma.  

It is the main new ingredient which allows us to simplify our previous argument in 

[18]. Using it, we can decompose our trilinear form in(25) as 

Λ
�⃗⃗⃗�,𝑡1⃗⃗⃗⃗⃗,𝑡2⃗⃗⃗⃗⃗,𝑡3⃗⃗⃗⃗⃗

𝑗 (𝑓, 𝑔, ℎ) = ∑ 2−1000|�⃗⃗�|

�⃗⃗�∈ℕ2

∑
1

|𝑅|
1
2

〈𝑓, Φ𝑅
�⃗⃗⃗�,𝑡1⃗⃗ ⃗⃗ ⃗

1 〉 〈𝑔, Φ𝑅
�⃗⃗⃗�,𝑡2⃗⃗ ⃗⃗ ⃗

2 〉 〈ℎ, Φ𝑅
�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3,�⃗⃗� 〉 ,

𝑅∈�⃗⃗⃗�

(37) 

where the new functions Φ𝑅
�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3,�⃗⃗�
have basically the same structure as the old Φ𝑅

�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3 but they 

also have the additional property that supp (Φ𝑅
�⃗⃗⃗�,𝑡1⃗⃗ ⃗⃗ ⃗

3,�⃗⃗� ) ⊆ 2�⃗⃗�𝑅�⃗⃗⃗�,𝑡3⃗⃗⃗⃗⃗
. We denoted by2�⃗⃗�𝑅�⃗⃗⃗�,𝑡3⃗⃗⃗⃗⃗

≔

2𝑘1𝐼𝜆′,𝑡3′ × 2
𝑘2𝐼𝜆",𝑡3" , �⃗⃗� =

(𝑘1, 𝑘3)and|�⃗⃗�| = 𝑘1 + 𝑘2. 

Fix now 𝑓, 𝑔, 𝐸, 𝑝, 𝑞 as in Proposition(1.2.5). For each �⃗⃗� ∈ ℕ2 define 

Ω−5|�⃗⃗�| = {(𝑥, 𝑦) ∈ ℝ
2: 𝑀𝑆(𝑓)(𝑥, 𝑦) > 𝐶25|�⃗⃗�|}               (38) 

⋃{(𝑥, 𝑦) ∈ ℝ2: 𝑆𝑀(𝑔)(𝑥, 𝑦) > 𝐶25|�⃗⃗�|}. 

Also, define  

Ω̃−5|�⃗⃗�| = {(𝑥, 𝑦) ∈ ℝ
2:𝑀𝑀 (χΩ̃

−5|�⃗⃗⃗�|
) (𝑥, 𝑦) >

1

100
}               (39) 

and then 

Ω̃̌−5|�⃗⃗�| = {(𝑥, 𝑦) ∈ ℝ
2:𝑀𝑀 (χΩ̃

−5|�⃗⃗⃗�|
) (𝑥, 𝑦) >

1

2|�⃗⃗�|
} . (40) 

Finally, we denote by  

Ω = ⋃ Ω̃−5|�⃗⃗�|
�⃗⃗�∈ℕ2

. 

It is clear that |Ω| < 1/2 if 𝐶 is 𝑎 big enough constant, which we fix from now on. Then, 

define 𝐸′ ≔ 𝐸 \Ω and observe that|𝐸′| ∼ 1. We now want to show that the corresponding 

expression in(27) is 𝑂(1) uniformly in the parameters 𝜆, 𝑡1⃗⃗⃗ ⃗, 𝑡2⃗⃗⃗⃗ , 𝑡3⃗⃗⃗⃗ ∈ [0,1]
2. Since our 

argument will not depend on these parameters, we can assume for simplicity that they are 
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all zero and in this case we will write Φ𝑅
𝑖  instead of Φ𝑅

�⃗⃗⃗�,𝑡𝑖⃗⃗⃗⃗

𝑖 for 𝑖 = 1 ,2 and Φ𝑅
3,�⃗⃗�

instead of 

𝑐.  

Fix then �⃗⃗� ∈ ℕ2 and look at the corresponding inner sum in (37). We split it into 

two parts as follows. Part 𝐼 sums over those rectangles 𝑅 with the property that  

𝑅 ∩ Ω̃
−5|�⃗⃗�|
𝑐 ≠ ∅                                                            (41) 

while Part II sums over those rectangles with the property that 

𝑅 ∩ Ω̃
−5|�⃗⃗�|
𝑐 = ∅.                                                            (42) 

We observe that Part II is identically equal to zero, because if 𝑅 ∩ Ω̃
−5|�⃗⃗�|
𝑐 ≠ ∅ then 𝑅 ⊆

Ω̃−5|�⃗⃗�| and in particular this implies that 2�⃗⃗�𝑅 ⊆ Ω̃̃−5|�⃗⃗�| which is 𝑎 set disjoint from 𝐸′. It is 

therefore enough to estimate Part I only. This can be done by using the technique 

developed in [18].  

Since if 𝑅 ∩ Ω̃
−5|�⃗⃗�|
𝑐 ≠ ∅, it follows that 

|𝑅 ∩ Ω−5|�⃗⃗�||

|𝑅|
<
1

100
or equivalently, |𝑅 ∩ Ω

−5|�⃗⃗�|
𝑐 | >

99

100
|𝑅|. 

We describe three decomposition procedures, one for each function 𝑓, 𝑔, ℎ. Later on, we 

will combine them, in order to handle our sum. First, define 

Ω−5|�⃗⃗�|+1 = {(𝑥, 𝑦) ∈ ℝ
2:𝑀𝑆(𝑓)(𝑥, 𝑦) >

𝐶25|�⃗⃗�|

21
} 

and set 

T−5|�⃗⃗�|+1 = {𝑅 ∈ �⃗⃗⃗�: |𝑅 ∩ Ω−5|�⃗⃗�|+1| >
1

100
|𝑅|}, 

then define 

Ω−5|�⃗⃗�|+2 = {(𝑥, 𝑦) ∈ ℝ
2:𝑀𝑆(𝑓)(𝑥, 𝑦) >

𝐶25|�⃗⃗�|

22
} 

and set 

T−5|�⃗⃗�|+2 = {𝑅 ∈ �⃗⃗⃗�\T−5|�⃗⃗�|+1: |𝑅 ∩ Ω−5|�⃗⃗�|+2| >
1

100
|𝑅|}, 

and so on. The constant 𝐶 > 0 is the one in the definition of the set𝐸′ above. 

Since there are finitely many rectangles, this algorithm ends after a while, producing the 

sets {Ω𝑛} and{T𝑛} such that �⃗⃗⃗� = ⋃ T𝑛𝑛 . 
Independently, define 

Ω
−5|�⃗⃗�|+1
′ = {(𝑥, 𝑦) ∈ ℝ2: 𝑆𝑀(𝑔)(𝑥, 𝑦) >

𝐶25|�⃗⃗�|

21
} 

and set 

T
−5|�⃗⃗�|+1
′ = {𝑅 ∈ �⃗⃗⃗�: |𝑅 ∩ Ω

−5|�⃗⃗�|+1
′ | >

1

100
|𝑅|}, 

then define 

Ω
−5|�⃗⃗�|+2
′ = {(𝑥, 𝑦) ∈ ℝ2: 𝑆𝑀(𝑔)(𝑥, 𝑦) >

𝐶25|�⃗⃗�|

22
} 

and set 
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T
−5|�⃗⃗�|+2
′ = {𝑅 ∈ �⃗⃗⃗�\T

−5|�⃗⃗�|+1
′ : |𝑅 ∩ Ω

−5|�⃗⃗�|+2
′ | >

1

100
|𝑅|}, 

and so on, producing the sets {Ω𝑛
′ } and {T𝑛

′ } such that �⃗⃗⃗� = ⋃ T𝑛
′

𝑛 . We would like to have 

such 𝑎 decomposition available for the function ℎ also. To do this, we first need to 

construct the analogue of the set Ω−5|�⃗⃗�|, for it. Pick 𝑁 > 0 𝑎 big enough integer such that 

for every 𝑅 ∈ �⃗⃗⃗� we have|𝑅 ∩ Ω−𝑁
" | >

99

100
|𝑅|where we defined  

Ω−𝑁
′′ = {(𝑥, 𝑦) ∈ ℝ2: 𝑆𝑆 �⃗⃗�(ℎ)(𝑥, 𝑦) > 𝐶2𝑁}. 

Here 𝑆𝑆 �⃗⃗� denotes the same “square-square” function defined in (30) but with the 

functions Φ𝑅
�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3,�⃗⃗�
 instead of Φ𝑅

�⃗⃗⃗�,𝑡3⃗⃗ ⃗⃗ ⃗

3 . Then, similarly to the previous algorithms, we define 

Ω−𝑁+1
′′ = {(𝑥, 𝑦) ∈ ℝ2: 𝑆𝑆 �⃗⃗�(ℎ)(𝑥) >

𝐶2𝑁

21
} 

and set 

T−𝑁+1
" = {𝑅 ∈ �⃗⃗⃗�: |𝑅 ∩ Ω−𝑁+1

" | >
1

100
|𝑅|}, 

then define  

Ω−𝑁+2
′′ = {𝑥 ∈ ℝ2: 𝑆𝑆 �⃗⃗�(ℎ)(𝑥) >

𝐶2𝑁

22
} 

and set 

T−𝑁+2
" = {𝑅 ∈ �⃗⃗⃗�\T−𝑁+1

" : |𝑅 ∩ Ω−𝑁+2
" | >

1

100
|𝑅|}, 

and so on, constructing the sets {Ω𝑛
" } and {T𝑛

"} such that �⃗⃗⃗� = ⋃ T𝑛
"

𝑛 .  

Then we write Part 𝐼 as  

∑ ∑
1

|𝑅|3/2
|〈𝑓, Φ𝑅

1 〉||〈𝑔, Φ𝑅
2〉||〈ℎ, Φ𝑅

3〉|

𝑅∈𝑇𝑛1,𝑛2,𝑛3𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

,               (43) 

where 𝑇𝑛1,𝑛2,𝑛3 ≔ 𝑇𝑛1 ∩ T𝑛2
′ ∩ T𝑛3

" . Now, if 𝑅 belongs to 𝑇𝑛1,𝑛2,𝑛3 this means in particular 

that 𝑅 has not been selected at the previous 𝑛1 − 1, 𝑛2 − 1 and 𝑛3 − 1 steps respectively, 

which means that 

|𝑅 ∩ Ω𝑛1−1| <
1

100
|𝑅|, |𝑅 ∩ Ω𝑛2−1

′ | <
1

100
|𝑅|and|𝑅 ∩ Ω𝑛3−1

" | <
1

100
|𝑅| 

or equivalently, 

|𝑅 ∩ Ω𝑛1−1
𝑐 | >

99

100
|𝑅|, |𝑅 ∩ Ω𝑛2−1

′𝑐 | >
99

100
|𝑅|and|𝑅 ∩ Ω𝑛3−1

"𝑐 | <
99

100
|𝑅|. 

But this implies that 

|𝑅 ∩ Ω𝑛1−1
𝑐 ∩ Ω𝑛2−1

′𝑐 ∩ Ω𝑛3−1
"𝑐  | >

97

100
|𝑅|.                             (44) 

In particular, using (44), the term in (43) is smaller than 

∑ ∑
1

|𝑅|3/2
|〈𝑓, Φ𝑅

1 〉||〈𝑔, Φ𝑅
2〉||〈ℎ,Φ𝑅

3〉|

𝑅∈𝑇𝑛1,𝑛2,𝑛3𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

× |𝑅 ∩ Ω𝑛1−1
𝑐 ∩ Ω𝑛2−1

′𝑐 ∩ Ω𝑛3−1
"𝑐  | 
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= ∑ ∫ ∑
1

|𝑅|3/2
|〈𝑓,Φ𝑅

1 〉||〈𝑔,Φ𝑅
2〉|

𝑅∈𝑇𝑛1,𝑛2,𝑛3

 

Ω𝑛1−1
𝑐 ∩Ω𝑛2−1

′𝑐 ∩Ω𝑛3−1
"𝑐

𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

× |〈ℎ, Φ𝑅
3〉|𝜒𝑅(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

≲ ∑ ∫ 𝑀𝑆(𝑓)(𝑥, 𝑦)𝑆𝑀(𝑔)(𝑥, 𝑦)
 

Ω𝑛1−1
𝑐 ∩Ω𝑛2−1

′𝑐 ∩Ω𝑛3−1
"𝑐 ∩Ω𝑇𝑛1,𝑛2,𝑛3𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

× 𝑆𝑆 �⃗⃗�(ℎ)(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

≲ ∑ 2−𝑛12−𝑛22−𝑛3 |Ω𝑇𝑛1,𝑛2,𝑛3 |

𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

,                                                   (45) 

 Where 

Ω𝑇𝑛1,𝑛2,𝑛3 ≔ ⋃ 𝑅

𝑅∈𝑇𝑛1,𝑛2,𝑛3

. 

On the other hand we can write 

|Ω𝑇𝑛1,𝑛2,𝑛3 | ≤ |Ω𝑇𝑛1 | ≤ |{
(𝑥, 𝑦) ∈ ℝ2: 𝑀𝑀 (𝜒Ω𝑛1)

(𝑥, 𝑦) >
1

100
}| 

≲ |Ω𝑛1| = |{{(𝑥, 𝑦) ∈ ℝ
2:𝑀𝑆(𝑓)(𝑥, 𝑦) >

𝐶

2𝑛1
}}| ≲ 2𝑛1𝑝. 

Similarly, we have 

|Ω𝑇𝑛1,𝑛2,𝑛3 | ≲ 2
𝑛2𝑞 

 and also 

|Ω𝑇𝑛1,𝑛2,𝑛3 | ≲ 2
𝑛2𝛼, 

for every 𝛼 > 1. Here we used the fact that all the operators 𝑆𝑀, 𝑀𝑆,𝑆𝑆 �⃗⃗�, 𝑀𝑀 are 

bounded on 𝐿𝑠 (independently of �⃗⃗�) as long as 1 < 𝑠 < ∞ and also that|𝐸′|~1. In 

particular, it follows that  

|Ω𝑇𝑛1,𝑛2,𝑛3 | ≲ 2
𝑛1𝑝𝜃12𝑛2𝑞𝜃22𝑛3𝛼𝜃3                                         (47) 

for any 0 ≤ 𝜃1, 𝜃2, 𝜃3 < 1, such that 𝜃1 + 𝜃2 + 𝜃3 = 1. 
Now we split the sum in (45) into 

∑ 2−𝑛12−𝑛22−𝑛3 |Ω𝑇𝑛1,𝑛2,𝑛3 |

𝑛1,𝑛2>−5|�⃗⃗�|

𝑛3>−𝑁

+ ∑ 2−𝑛12−𝑛22−𝑛3 |Ω𝑇𝑛1,𝑛2,𝑛3 |

𝑛1,𝑛2>−5|�⃗⃗�|

0>𝑛3>−𝑁

. (47) 

To estimate the first term in (47) we use the inequality (46) in the particular case 𝜃1 =
𝜃2 = 1/2, 𝜃3 = 0, while to estimate the second term we use (46) for 𝜃𝑗, 𝑗 = 1 ,2,3 such 

that 1 −  𝑝𝜃1 > 0, 1 − 𝑞𝜃2 > 0 and 𝛼𝜃3 − 1 >  0. With these choices, the sum in (47) is 

𝑂 (210|�⃗⃗�|) and this makes the expression in(37) to be 𝑂(1), after summing over�⃗⃗� ∈ ℕ2. 

This completes our proof.  

It is now clear that our argument works equally well in all dimensions. In the general case, 

exactly as in [18], one first reduces the study of the operator 𝑇𝑚
(𝑑)

 to the study of generic 

𝑑-parameter dyadic paraproducts Π𝑗 for 𝑗 = (𝑗1, . . , 𝑗𝑑) ∈ {1,2,3}
𝑑formally defined 

byΠ𝑗 = Π𝑗1⨂…⨂Π𝑗𝑑 . Then, one observes as before, by using the linear theory and 

Fefferman- Stein inequality, that all the corresponding “square and maximal” type 
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functions which naturally appear in inequalities analogous to (33), (34) are bounded in 𝐿𝑝  

for 1 < 𝑝 < ∞ (in fact, as before, it is enough to observe this in the 𝑆𝑆. . . 𝑆𝑀𝑀. . . 𝑀 case, 

because all the other expressions are pointwise smaller quantities).  

Having all these ingredients. Finally, the 𝑛-linear case follows in the same way. 

Lemma (1.2.6)[12]:  Let 𝐽 ⊆ ℝ be an arbitrary interval. Then, every bump function ∅𝐽 

adapted to 𝐽 can be written as  

∅𝐽 =∑ 2−1000𝑘∅𝐽
𝑘

𝑘∈ℕ

                                                            (48) 

where for each 𝑘 ∈ ℕ,∅𝐽
𝑘 is also 𝑎 bump adapted to 𝐽 but with the additional property that 

supp(∅𝐽
𝑘) ⊆ 2𝑘𝐽. Moreover, if we assume ∫ ∅𝐽(𝑥)

 

𝑅
𝑑𝑥 = 0 then all the functions ∅𝐽

𝑘 can 

be chosen so that∫ ∅𝐽
𝑘(𝑥)

 

ℝ
𝑑𝑥 = 0 for every 𝑘 ∈ ℕ. 

Proof. Fix 𝐽 ⊆ ℝ an interval and let 𝜙𝐽 be 𝑎 bump function adapted to 𝐽. Consider𝜓 𝑎 

smooth function such that supp(𝜓) ⊆ [−1/2,1/2] and 𝜓 = 1 on[ −1/4,1/4]. If 𝐼 ⊆ ℝ is 

𝑎 generic interval with center 𝑥𝐼, we denote by𝜓𝐼the function defined by 

𝜓𝐼(𝑥) = 𝜓 (
𝑥 − 𝑥𝐼
|𝐼|

).                                                                (49) 

Since  

1 = 𝜓𝐽 + (𝜓2𝐽 − 𝜓𝐽) + (𝜓22𝐽 − 𝜓2𝐽) + ⋯ 

it follows that 

𝜙𝐽 = 𝜙𝐽. 𝜓𝐽 +∑𝜙𝐽

∞

𝑘=1

. (𝜓2𝑘𝐽 − 𝜓2𝑘−1𝐽)

= 𝜙𝐽. 𝜓𝐽 +∑2−1000𝑘
∞

𝑘=1

. [2−1000𝑘𝜙𝐽. (𝜓2𝑘𝐽 − 𝜓2𝑘−1𝐽)] ≔ ∑2−1000𝑘𝜙𝐽
𝑘

∞

𝑘=0

 

and it is easy to see that all the𝜙𝐽
𝑘 functions are bumps adapted to𝐽, having the property 

that supp(𝜙𝐽
𝑘) ⊆ 2𝑘𝐽. 

Suppose now that in addition we have∫ 𝜙𝐽(𝑥)𝑑𝑥
 

ℝ
= 0. This time, we write  

𝜙𝐽 = 𝜙𝐽. 𝜓𝐽 + 𝜙𝐽. (1 − 𝜓𝐽) 

= [𝜙𝐽. 𝜓𝐽 − (
1

∫ 𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫𝜙𝐽(𝑥)𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

) . 𝜓𝐽] 

+[(
1

∫ 𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫𝜙𝐽(𝑥)𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

) . 𝜓𝐽 + 𝜙𝐽(1 − 𝜓𝐽)] 

≔ 𝜙𝐽
0 + 𝑅𝐽

0. 

Clearly, by construction we have that ∫ 𝜙𝐽
0(𝑥)𝑑𝑥

 

ℝ
= 0and therefore  

∫𝑅𝐽
0(𝑥)𝑑𝑥

 

ℝ

= 0. 

Moreover, 𝜙𝐽
0 is 𝑎 bump adapted to the interval 𝐽 having the property that supp(𝜙𝐽

0) ⊆ 𝐽. 

On the other hand, since 

|
1

∫ 𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫𝜙𝐽(𝑥)𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

| = 
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= |
1

∫ 𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫ 𝜙𝐽(𝑥)𝑑𝑥 (1 − 𝜓𝐽(𝑥))
 

ℝ

𝑑𝑥| ≲ 2−1000                (50) 

follows that‖𝑅𝐽
0‖
∞
≲ 2−1000.  

Then, we perform 𝑎 similar decomposition for the “rest function”𝑅𝐽
0, but this time we 

localize it on the larger interval 2𝐽. We have 

𝑅𝐽
0 = 𝑅𝐽

0. 𝜓2𝐽 + 𝑅𝐽
0. (1 − 𝜓2𝐽) 

= [𝑅𝐽
0. 𝜓2𝐽 − (

1

∫ 𝜓𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫ 𝑅𝐽
0(𝑥)𝜓2𝐽(𝑥)𝑑𝑥

 

ℝ

) . 𝜓2𝐽] 

+[(
1

∫ 𝜓2𝐽(𝑥)𝑑𝑥
 

ℝ

. ∫𝑅𝐽
0(𝑥)𝜓2𝐽(𝑥)𝑑𝑥

 

ℝ

) .𝜓2𝐽 + 𝑅𝐽
0. (1 − 𝜓2𝐽)] 

≔ 2−1000𝜙𝐽
1 + 𝑅𝐽

1. 

As before, we observe that ∫ 𝜙𝐽
1(𝑥)𝑑𝑥

 

ℝ
= 0and also∫ 𝑅𝐽

1(𝑥)𝑑𝑥
 

ℝ
= 0. Moreover, 𝜙𝐽

1is 𝑎 

bump adapted to 𝐽 whose support lies in 2𝐽 and‖𝑅𝐽
1‖
∞
≲ 2−1000.2. Iterating this procedure 

𝑁 times, we obtain the decomposition 

𝜙𝐽 =∑2−1000𝑘𝜙𝐽
𝑘

𝑁

𝑘=0

+ 𝑅𝐽
𝑁                                       (51) 

where all the functions 𝜙𝐽
𝑘 are bumps adapted to𝐽 with∫ 𝜙𝐽

𝑘(𝑥)𝑑𝑥
 

ℝ
= 0and supp(𝜙𝐽

𝑘) ⊆

2𝑘𝐽, while‖𝑅𝐽
𝑁‖
∞
≲ 2−1000𝑁.  

This completes the proof of the Lemma.  
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Chapter 2 

Algorithm and Nonlinear 𝑵-Term Approximation 

 

We establish the order of approximation by this algorithm in weighted 𝐿𝑞-spaces. 

We show an associated with a finite mask and a rather general matrix dilation 𝐴 ∈

𝐺𝐿𝑛(ℤ). 

Section (2.1): Nonlinear Approximation by Piecewise Polynomials 

The UDA was firstly developed for nonlinear approximation by compactly 

supported refinable functions, see [21] and [23]. We present its version intended for 

approximation by piecewise polynomials. We believe that this modification of the UDA 

will have important applications to Numerical Analysis and deserves to be presented to 

experts in this field. On the other hand, an approximation theorem to be proved in the 

present has important applications to Approximation theory. One can derive from it the 

corresponding optimal approximation results for functions from Besov spaces (see [22]). 

The algorithm considered makes use of 𝑎 collection 𝒯 ≔ {𝒯𝑗; 𝑗 ∈ ℤ+} of subsequent 

subdivisions of measurable set Ω ⊂ ℝ𝑑. This collection is equipped with the structure of 

ordered tree. The input of the algorithms consists of an integer 𝑁 ≥ 1and 𝑎 set function 

 

𝐹: 𝒯 → 𝑋, 
where 𝑋 is 𝑎 subspace of polynomials inℝ𝑑. The output is 𝑎 function 

𝐹𝑁: 𝒯 → 𝑋 

such that 

supp 𝐹𝑁 ≔ {𝜔 ∈ 𝒯; 𝐹𝑁(𝜔) ≠ 0} ≤ 4𝑁. 
Using this we then introduce an approximation aggregate 

𝑇𝑁(𝐹) ≔∑𝐹𝑁(𝜔)𝜒𝜔
𝜔

,                                                (1) 

where𝜒𝜔here and below stands for the Characteristic function of𝜔 ⊂ ℝ𝑑 . 
If, in particular,𝑋:= 𝒫𝑠,𝑑, the space of polynomials of degree 𝑠 inℝ𝑑, the aggregate𝑇𝑁(𝐹) 
becomes 𝑎 piecewise polynomial of degree 𝑠 with 4𝑁 “pieces”. 

However,supp 𝑇𝑁(𝐹)does not form 𝑎 subdivision ofΩ and therefore these pieces relate to 

subsets that may differ from subsets 𝜔 ∈ 𝒯. 
We present the description of the algorithm. We apply the algorithm to establish 𝑎 

general approximation theorem for functions 𝑓 ∈ 𝐿𝑝(Ω), 0 < 𝑝 < ∞,presented in 𝑎 form 

𝑓 = ∑ 𝑓𝜔𝜒𝜔
𝜔∈𝒯

(convergence in𝐿𝑝). 

In this case the aforementioned function 𝐹 is defined by 𝐹(𝜔) ≔ 𝑓𝜔, 𝜔 ∈ 𝒯,and we 

estimate the rate of approximation of 𝑓 by 𝑇𝑁(𝐹)in 𝑎 weighted 𝐿𝑝-norm,𝑝 < 𝑞 ≤ ∞.In the 

subsequent [22], this theorem is applied to derive the corresponding approximation results 

for Besov spaces. The aggregate(1) in this case yields an optimal in order rate of 

approximation showing the efficiency of the algorithm. 

We begin with the introduction of 𝑎 tree of subdivisions 𝒯. Let Ω be a subset of ℝ𝑑 

with finite 𝑑-measure|Ω|,and 𝒯 is 𝑎 collection of subsets of Ω.𝒯 is called 𝑎 tree of 

subdivisions for Ω, if the following holds. 

(i) Every 𝜔′,𝜔" ∈ 𝒯either nonoverlap, i.e., 
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|𝜔′⋂𝜔"| = 0, 
or one of them is contained in the other. This condition introduces an ordered tree structure 

on 𝒯. Actually, we regard subsets of 𝒯 as vertices and connect 𝜔′, 𝜔" ∈ 𝒯by the edge 

directed from 𝜔′ to 𝜔"(written 𝜔′ → 𝜔") if 𝜔′ ⊂ 𝜔"and there is no set of 𝒯 situated 

between them different from𝜔′ and𝜔". 
Assume that Ω ∈ 𝒯. Then 𝒯 is an ordered tree with the root Ω. Hence each 𝜔 ∈ 𝒯can be 

connected with Ω by 𝑎 unique array. In other words, there is 𝑎 collection{𝜔𝑗: 1 ≤ 𝑗 ≤

𝑛} ⊂ 𝒯 such that 𝜔1 → 𝜔2 → ⋯ → 𝜔𝑛(i.e., this collection is an array), and𝜔1 = 𝜔 and 

𝜔𝑛 = Ω. Because of uniqueness of this array one can correctly define 𝑎 height ℎ: 𝒯 → ℤ+ 

letting 

ℎ(𝜔) ≔ (card𝐴) − 1,                                        (2) 
where 𝐴 is the array connecting 𝜔 and Ω. Specially,ℎ(Ω) = 0. 
Set now for 𝑗 ∈ ℤ+ 

𝒯𝑗 ≔ {𝜔 ∈ 𝒯: ℎ(𝜔) = 𝑗}.                                 (3) 

These form 𝑎 partition of 𝒯: 

𝒯𝑗⋂𝒯𝑗′ = 𝜙, if𝑗 ≠ 𝑗
′and𝒯 = ⋃ 𝒯𝑗

𝑗∈ℤ+

.                                 (4) 

(ii) For every 𝑗 ∈ ℤ+ 

supp𝒯𝑗 ≔ ⋃𝜔

𝜔∈𝒯

= Ω.                                        (5) 

In other words,{𝒯𝑗}is 𝑎 sequence of consequent subdivisions of Ω. 

To formulate the last condition one set 

𝑆(𝜔) ≔ {𝜔′ ∈ 𝒯:𝜔′ → 𝜔}.                                     (6) 
In accordance with the terminology of Graph Theory, each element of this set is 𝑎 son of 

𝜔(and 𝜔 is its father). 

(iii) There is 𝑎 constant 𝐶(𝒯) such that for every𝜔 ∈ 𝒯 

1 < card𝑆(𝜔) ≤ 𝐶(𝒯).                                                                  (7) 
Definition (2.1.1)[20]: A collection 𝒯 of subsets of Ω is said to be a tree of subdivision, if 

it meets the conditions (i)-(iii). 

Let 𝑤:𝒯 → ℝ+be 𝑎 weight, and 0 < 𝑝 ≤ ∞. Introduce 𝑎 space ℓ𝑝
𝑤(𝒯; 𝑋) of 

functions 𝐹: 𝒯 → ℝ defined by the quasinorm 

‖𝐹‖𝑝,𝑤 ≔ {∑ (𝑤(𝜔) sup
𝜔
|𝐹(𝜔)|)

𝑝

𝜔∈:𝒯

}

1
𝑝

.                                 (8) 

Note that the 𝜔-term of this sum with unbounded 𝜔 is finite, only if the polynomial 𝐹(𝜔) 
is constant (or 𝑤(𝜔) = 0). To avoid unnecessary complications we assume that Ω is 

bounded. 

The input of the algorithm comprises 𝑎 fixed 𝐹 ∈ ℓ𝑝
𝑤(𝒯; 𝑋)and integer 𝑁 ≥ 1. Because of 

homogeneity of(8) we can and do assume that 

‖𝐹‖𝑝,𝑤 = 1.                                                                   (9) 

Given 𝐹, we introduce 𝑎 cost function ℐ: 2𝒯ℝ+by 

ℐ(𝑆) = ℐ(𝐹; 𝑆) ≔ {∑ (𝑤(𝜔) sup
𝜔
|𝐹(𝜔)|)

𝑝

𝜔∈𝑆

}.                                 (10) 
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Specially, for the subset 

𝒯(𝜔) ≔ {𝜔′ ∈ 𝒯:𝜔′ ⊂ 𝜔}                                         (11) 
we simplify this notation by setting 

ℐ(𝜔) ≔ ℐ(𝒯(𝜔)).                                                        (12) 

Note thatℐ(𝜔) ≠ ℐ({𝜔}) ≔ (𝑤(𝜔)|𝑓(𝜔)|)𝑝, and 

ℐ(Ω) = 1,                                                                  (13) 
See (8) and (9). 
We first introduce the subtree 

𝒢𝑁 ≔ {𝜔 ∈ 𝒯: ℐ(𝜔) ≥ 𝑁−1}.                                 (14) 
𝒢𝑁is nonempty and has the root Ω by (13). Since 𝒯 is an ordered set, the set ℳ𝑁 of  

minimal elements of 𝒢𝑁 is well-defined. Hence for each 𝜔 ∈ ℳ𝑁and every its son 𝜔′ 
ℐ(𝜔) ≥ 𝑁−1, while ℐ(𝜔′) < 𝑁−1.                                 (15) 

Numerate the elements ofℳ𝑁in some order 

ℳ𝑁 ≔ {𝜔𝑗
min: 1 ≤ 𝑗 ≤ 𝑚𝑁}.                                 (16) 

Since the subsets of ℳ𝑁 nonoverlap, we have 

1 = ℐ(Ω) ≥∑ℐ(𝜔𝑗
min)

𝑗

≥ 𝑚𝑁/𝑁, 

whence 

𝑚𝑁 ≤ 𝑁.                                                                  (17) 
We partition 𝒢𝑁in order to obtain 𝑎 collection of (basic) arrays ℬ𝑁. An algorithm 

fulfilling this operation is the main part of our construction. 

In its description we will use the notation 

[𝜔,𝜔′] ≔ {𝜔1 → 𝜔2 → ⋯ → 𝜔𝑛}                                 (18) 
for the array connecting 𝜔(= 𝜔1) and𝜔′(= 𝜔𝑛). We also introduce an “open from the 

top” subarray of this array setting 

[𝜔, 𝜔′) ≔ [𝜔,𝜔′]\{𝜔′}.                                 (19) 
At the first stage we introduce 𝑎 partition of 𝒢𝑁 into 𝑎 collection 𝒜 ≔ {𝐴𝑗: 0 ≤ 𝑗 ≤ 𝑚𝑁} 

of (“big”) arrays satisfying the following conditions: 

(𝑎) {𝐴𝑗: 0 ≤ 𝑗 ≤ 𝑖} is 𝑎 partition of the set 

𝒢𝑁
𝑖 ≔⋃[𝜔𝑠

min, Ω],

𝑠≤𝑖

0 ≤ 𝑖 ≤ 𝑚𝑁; 

(𝑏) each 𝐴𝑖has 𝑎 form 

𝐴𝑖 = [𝜔𝑖
min, 𝜔), 

where𝜔 belongs to some𝐴𝑖′with𝑖′ < 𝑖. This 𝜔 is called 𝑎 contact element and is denoted 

by𝜔𝑖
𝑐; hence 

𝐴𝑖 = [𝜔𝑖
min, 𝜔𝑖

𝑐), 1 ≤ 𝑖 ≤ 𝑚𝑁.                                 (20) 

Since 𝒢𝑁
𝑖 = 𝒢𝑁 , if𝑖 = 𝑚𝑁, the collection 𝒜 = {𝐴𝑗: 0 ≤ 𝑗 ≤ 𝑚𝑁}forms the desired partition 

of the subtree 𝒢𝑁. Besides,𝒜 determines the set of contact elements 

𝐶𝑁 ≔ {𝜔𝑖
𝑐} ∪ {Ω}.                                                                  (21) 

As we shall see, some of these may coincide and therefore  

card 𝐶𝑁 ≤ 𝑚𝑁 + 1,                                                                  (22) 
where the inequality may be strict. 

In order to introduce 𝒜 we use induction on𝑗 starting with 

𝐴0 ≔ {Ω} and 𝐴1 ≔ [𝜔1
min, Ω]\𝐴0 = [𝜔1

min, Ω). 
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Assume now that we have determined the arrays𝐴𝑖 , 𝑖 = 0,1, … , 𝑗, satisfying the conditions 

(𝑎) and (𝑏) with 𝑖 ≤ 𝑗. Define 

𝐴𝑗+1 ≔ [𝜔𝑗+1
min, Ω]\(⋃𝐴𝑖

𝑖≤𝑗

). 

Then{𝐴𝑖: 0 ≤ 𝑖 ≤ 𝑗 + 1}is Clearly 𝑎 partition of 𝒢𝑁
𝑗+1

. Show that 𝐴𝑗+1 has 𝑎 form(20). In 

fact, consider the intersection of [𝜔𝑗+1
min, Ω]with each[𝜔𝑖

min, Ω],𝑖 ≤ 𝑗. Since𝒢𝑁 is 𝑎 tree with 

the rootΩ, this intersection is of 𝑎 form[𝜔𝑖 , Ω], and{𝜔𝑖: 1 ≤ 𝑖 ≤ 𝑗} is 𝑎 subset of the 

array[𝜔𝑗+1
min, Ω]. Hence this subset inherits the linear order of the last array. If𝜔𝑖0is the 

smallest element of{𝜔𝑖} with respect to this order, then 

𝐴𝑗+1 ≔ [𝜔𝑗+1
min, Ω]\ (⋃𝐴𝑖

𝑖≤𝑗

) = [𝜔𝑗+1
min, Ω]\(⋃[𝜔𝑖

min, Ω]

𝑖≤𝑗

) = [𝜔𝑗+1
min, 𝜔𝑖0). 

Moreover,𝜔𝑖0 ∈ ⋃ 𝐴𝑖𝑖≤𝑗 . Hence the induction is complete. 

We proceed the refinement of 𝒢𝑁 subdividing each array𝐴𝑗 by the elements of the set 

𝐴𝑗⋂𝐶𝑁, 𝑗 ≥ 1. We introduce 𝑎 collection of “open from the top” subarrays[𝜔′, 𝜔") where 

𝜔′ is either 𝑎 minimal or contact element, and𝜔"is 𝑎 contact one. The set of these 

subarrays one denotes by ℛ𝑁. According to its definition 

suppℛ𝑁 ≔ ⋃ 𝑅

𝑅∈ℛ𝑁

= 𝒢𝑁\{Ω}                                 (23) 

and different elements of ℛ𝑁 do not overlap, i.e., ℛ𝑁 is 𝑎 partition of (23). 

At the final stage we complete the partition algorithm subdividing each sub-array 𝑅 ∈ ℛ𝑁 

into “basic” arrays as follows. 

Let 𝜔−(𝑅) and 𝜔+(𝑅) be, respectively, the bottom and top endpoints of 𝑅, i.e., 

𝑅 = [𝜔−(𝑅), 𝜔+(𝑅)].                                                                  (24) 
One defines inductively 𝑎 collection{𝜔ℓ

𝑅: 1 ≤ ℓ ≤ ℓ𝑅}beginning with 𝜔1
𝑅 ≔ 𝜔−(𝑅). If 𝜔ℓ

𝑅  

has been determined, we Choose 𝜔ℓ+1
𝑅 as an element from (𝜔ℓ

𝑅, 𝜔+(𝑅)] satisfying the 

conditions 

ℐ([𝜔ℓ
𝑅 , 𝜔ℓ+1

𝑅 ]) ≥ 𝑁−1 and ℐ([𝜔ℓ
𝑅, 𝜔ℓ+1

𝑅 )) < 𝑁−1, 
and then set 

𝐵ℓ
𝑅 ≔ [𝜔ℓ

𝑅 , 𝜔ℓ+1
𝑅 ).                                                                  (25) 

This element may not exist in the next cases: 

(𝑎)        𝜔ℓ
𝑅 = 𝜔+(𝑅) or ℐ([𝜔ℓ

𝑅 , 𝜔+(𝑅)]) < 𝑁
−1. 

We define 𝜔ℓ+1
𝑅  as the father of 𝜔+(𝑅)and set 

  

𝐵ℓ
𝑅 ≔ [𝜔ℓ

𝑅, 𝜔ℓ+1
𝑅 )(= [𝜔ℓ

𝑅, 𝜔+(𝑅)]). 

(𝑏)      𝜔ℓ
𝑅 ≠ 𝜔+(𝑅) and ℐ({𝜔ℓ

𝑅}) ≥ 𝑁−1. 

We define 𝜔ℓ+1
𝑅 as the father of 𝜔ℓ

𝑅  and introduce 𝐵ℓ
𝑅by(25). 

In this case 𝜔ℓ+1
𝑅 ∈ 𝑅, and the procedure can be continued. Note also that now 𝐵ℓ

𝑅  

consists of 𝑎 single point, 𝐵ℓ
𝑅 = {𝜔ℓ

𝑅}. 

Completing the procedure one obtains the partition{𝐵ℓ
𝑅: 1 ≤ ℓ ≤ ℓ𝑅}of 𝑅 into the basic 

arrays 𝐵ℓ
𝑅. By their definition 
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ℐ(𝐵ℓ
𝑅{𝜔ℓ

𝑅}) < 𝑁−1.                                                                  (26) 

Note that the argument in(26) is an empty set, if 𝐵ℓ
𝑅 is 𝑎 singleton. Besides, for ℓ <

ℓ𝑅and card(𝐵ℓ
𝑅) > 1 

ℐ(�̂�ℓ
𝑅) ≥ 𝑁−1,                                                                  (27) 

provided that�̂�ℓ
𝑅 ≔ 𝐵ℓ

𝑅 ∪ {𝜔ℓ+1
𝑅 },if 𝐵ℓ

𝑅 is not 𝑎 singleton, and �̂�ℓ
𝑅 = 𝐵ℓ

𝑅, otherwise. 

Collecting all the basic arrays for all 𝑅 ∈ ℛ𝑁, we lastly obtain the desired set of the basic 

arrays 

ℬ𝑁 ≔ {𝐵ℓ
𝑅: 1 ≤ ℓ ≤ ℓ𝑅, 𝑅 ∈ ℛ𝑁}. 

Proposition (2.1.2)[20]: (𝑎) ℬ𝑁 is 𝑎 partition of the set𝒢𝑁\{Ω}. 
(𝑏) For each 𝐵 ≔ [𝜔−(𝐵), 𝜔+(𝐵)]fromℬ𝑁 

ℐ((𝜔−(𝐵), 𝜔+(𝐵)]) < 𝑁
−1.                                 (28) 

(𝑐) It is true that 

card ℬ𝑁 ≤ 4𝑁 + 1.                                 (29) 
Proof. (𝑎) follows from (23) and the definition of 𝐵𝑅

ℓ . 
(𝑏) follows from (26), since the argument in(28) is 𝐵\{𝜔−(𝐵)}. 

(𝑐) Using(27) and noting that the mutiplicity of the cover of 𝑅 by {�̂�ℓ
𝑅} is at most 2, one 

has 

𝑁−1(ℓ𝑅 − 1) ≤ ∑ ℐ(�̂�ℓ
𝑅)

ℓ𝑅−1

ℓ=1

< 2ℐ(𝑅). 

This implies, see(13), 

∑ (ℓ𝑅 − 1)

𝑅∈ℛ𝑁

< 2𝑁 ∑ ℐ(𝑅)

𝑅∈ℛ𝑁

≤ 2𝑁ℐ(𝒢𝑁) ≤ 2𝑁, 

whence 

card(ℬ𝑁) = ∑ ℓ𝑅
𝑅ℛ𝑁

< 2𝑁 + card(ℛ𝑁). 

By the definition ofℛ𝑁 

card(ℛ𝑁) ≤ card(𝐶𝑁) + card(𝑀𝑁) ≤ 2𝑁 + 1. 
see(17) and(22). 
Combining the last estimates we get(29).  
The output of the algorithm is 𝑎 function𝐹𝑁 on𝒯 defined as follows. 

If 𝜔 ≔ 𝜔−(𝐵), the bottom endpoint of 𝑎 basic array𝐵 ∈ ℬ𝑁,then 

𝐹𝑁(𝜔) ≔ (∑ 𝐹(𝜔′)

𝜔′∈𝐵

)𝜒𝜔.                                 (30) 

We also let 𝐹𝑁(Ω) ≔ 𝐺(Ω)𝜒Ω. 
For all other 𝜔 ∈ 𝒯we let 

𝐹𝑁(𝜔) ≔ 0.                                                                  (31) 
Hence𝐹𝑁(𝜔)(𝑥) is 𝑎 polynomial from 𝑋, if 𝑥 ∈ 𝜔, and 

supp 𝐹𝑁 ⊂ {𝜔−(𝐵 ): 𝐵 ∈ ℬ𝑁} ∪ {Ω}.                                 (32) 
            Let 𝒯 and 𝑋 be defined as above. We introduce, first, 𝑎 subspace of𝐿𝑝(Ω),0 < 𝑝 <

∞, consisting of functions 𝑓 that can be presented in 𝑎 form 

𝑓 = ∑ 𝑓𝜔𝜒𝜔
𝜔∈𝒯

(convergence in 𝐿𝑝)                                   (33) 
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with suitable 𝑓𝜔 ∈ 𝑋. 
Then we define the space 𝐵𝑝

𝑤(𝒯)by finiteness of the Banach norm (quasinorm, if 𝑝 < 1) 

|𝑓|𝐵𝑝𝑤(𝒯) ≔ inf {∑ (𝑤(𝜔) sup
𝜔
|𝑓𝜔|)

𝑝

𝜔∈𝒯

}

1
𝑝

,                                 (34) 

where the infimum is taken over all decompositions (33). 
Here𝑤:𝒯 → ℝ+is 𝑎 given weight Assume now that for some 𝑝 < 𝑞 ≤ ∞ the following 

embedding" 

𝐵𝑝
𝑤(𝒯) ⊂ 𝐿𝑞(𝑑𝜇)                                                                  (35) 

holds with embedding constant 𝐶𝑒𝑚. Here 𝜇 is 𝑎 Borel measure supported by Ω. 

Under this assumption the following is true. 

Theorem (2.1.3)[20]:  Given 𝑓 ∈ 𝐵𝑝
𝑤(𝒯) and integer 𝑁 ≥ 1, there is an 𝑁-term linear 

combination 

𝑇𝑁(𝑓) ≔∑𝑓𝜔𝜒𝜔
𝜔

 

with suitable𝑓𝜔 ∈ 𝑋and𝜔 ∈ 𝒯such that 

‖𝑓 − 𝑇𝑁(𝑓)‖𝐿𝑞(𝑑𝜇) ≤ 𝐶𝑁
1
𝑞−
1
𝑝|𝑓|𝐵𝑝𝑤(𝒯).                                 (36) 

Besides, 

‖𝑇𝑁(𝑓)‖𝐿𝑞(𝑑𝜇) ≤ 𝐶|𝑓|𝐵𝑝𝑤(𝒯).                                 (37) 

Here the constant 𝐶 depends only on 𝐶𝑒𝑚, 𝐶(𝒯), see(7), and𝑝∗ ≔ min(1, 𝑝). 
Proof. Assume that(33) is an 𝜀-optimal decomposition for 𝑓, i.e., 

(∑ (𝑤(𝜔) sup
𝜔
|𝑓𝜔|)

𝑝

𝜔∈𝒯

)

1
𝑝

≤ (1 + 𝜀)|𝑓|𝐵𝑝𝑤(𝒯).                                 (38) 

Without loss of generality we assume that 

∑ (𝑤(𝜔) sup
𝜔
|𝑓𝜔|)

𝑝

𝜔∈𝒯

= 1.                                 (39) 

Define now 𝑎 function𝐹: 𝒯 → 𝑋 by letting 

𝐹(𝜔) ≔ 𝑓𝜔 , 𝜔 ∈ 𝒯.                                      (40) 
By(39), this 𝐹 satisfies(9) and we take it and an integer 𝑁 ≥ 1 as the input of the 

algorithm. As the output we obtain the function 𝐹𝑁, see(30) and(31) for 𝐹(𝜔) ≔ 𝑓𝜔 . In 

turn, 𝐹𝑁 gives rise to required approximation aggregate 

𝑇4𝑁+1(𝑓) ≔ 𝑓Ω𝜒Ω + ∑ (∑ 𝑓𝜔
𝜔∈𝐵

)

𝐵∈ℬ𝑁

𝜒𝜔−(𝐵).                                 (41) 

Let us show that(41) provides the desired rate of approximation to the function 𝑓 in 

𝐿𝑞(𝑑𝜇). Set 

𝜙(𝑆) ≔ ∑𝑓𝜔𝜒𝜔
𝜔∈𝑆

, 𝑓 ⊂ 𝒯,                                 (42) 

and simplify this notation for 𝑆: 𝒯(𝜔), see(11), by setting 

𝜙(𝜔) ≔ 𝜙(𝒯(𝜔))𝜔 ∈ 𝒯.                                 (43) 

Note that 𝜙(𝜔) ≠ 𝜙({𝜔}) ≔ 𝑓𝜔𝜒𝜔. 
Proposition(2.1.2) and(42) imply 
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𝑓−𝑇4𝑁+1(𝑓) = ∑ 𝜙∗(𝐵) + 𝜙(𝒯\𝒢𝑁)

𝐵∈ℬ𝑁

,                                  (44) 

where we let 

𝜙∗(𝐵) ≔ 𝜙(𝐵) − (∑ 𝑓𝜔
𝜔∈𝐵

) 𝜒𝜔−(𝐵) = ∑ 𝑓𝜔𝜒𝜔\𝜔−(𝐵)
𝜔∈𝐵

.                          (45) 

Applying to(44) the 𝐿𝑞(𝑑𝜇)-norm, we get for 𝐶 ≔ max (1, 2
1

𝑞
−1
) 

‖𝑓−𝑇4𝑁+1(𝑓)‖𝑞 ≤ 𝐶(𝐽1 + 𝐽2),                                 (46) 

 Where 

𝐽1 ≔ ‖∑ 𝜙∗(𝐵)

𝐵∈ℬ𝑁

‖

𝑞

, 𝐽2 ≔ ‖𝜙(𝒯\𝐺𝑁)‖𝑞.                                 (47) 

In order to obtain the required estimate for 𝐽1, show that for different 𝐵, 𝐵′ from ℬ𝑁 

|supp 𝜙∗(𝐵) ∩ supp 𝜙∗(𝐵′)| = 0.                                 (48) 
Let, first, their top endpoints 𝜔+(𝐵) and 𝜔+(𝐵

′) nonoverlap. Since by(45) 
supp 𝜙∗(𝐵) ⊂ 𝜔+(𝐵)\𝜔−(𝐵)                                 (49) 

and the similar is true forsupp 𝜙∗(𝐵′), these supports nonoverlap. 

In the remaining case the biggest set of one of them, say 𝜔+(𝐵), embeds in the smallest 

set of the other 𝜔−(𝐵
′). Hence supp 𝜙∗(𝐵) ⊂ 𝜔+(𝐵) ⊂ 𝜔−(𝐵

′), while by(49) 
supp 𝜙∗(𝐵′) ⊂ 𝜔+(𝐵

′)\𝜔−(𝐵
′). Thus in this case(48) holds, as well. 

Applying (48), we get 

𝐽1 = { ∑ ‖𝜙∗(𝐵)‖𝑞
𝑞

𝐵∈ℬ𝑁

}

1
𝑞

. 

Using now embedding (35) and remembering the definition of the cost function I, see 

(10), we have 

‖𝜙∗(𝐵)‖𝑞 ≤ ‖ ∑ |𝑓𝜔|𝜒𝜔
𝜔∈𝐵\{𝜔−(𝐵)}

‖

𝑞

≤ 𝐶𝑒𝑚 { ∑ (𝑤(𝜔) sup
𝜔
|𝑓𝜔|)

𝑝

𝜔∈𝐵\{𝜔−(𝐵)}

}

1
𝑝

= 𝐶𝑒𝑚ℐ(𝐵\{𝜔−(𝐵)}). 
Combining this and (28) and (29), we have 

𝐽1 ≤ 𝐶𝑒𝑚 { ∑ ℐ(𝐵\{𝜔−(𝐵)})
−
𝑞
𝑝

𝐵∈ℬ𝑁

}

1
𝑞

≤ 𝐶𝑒𝑚𝑁
−
1
𝑝 card (ℬ𝑁)

1
𝑞 ≤ 4

1
𝑞𝐶𝑒𝑚𝑁

1
𝑞−
1
𝑝 

According to (38) and (39) this can be rewritten as 

𝐽1 ≤ 4
1
𝑞(1 + 𝜀)−1𝐶𝑒𝑚𝑁

1
𝑞
−
1
𝑝.                                        (50) 

To carry out the similar estimate for 𝐽2 we introduce a collection {𝐻𝑗} of subsets of the set 

𝑇0 ∶=  𝒯 𝒢𝑁⁄                                                                        (51) 
which meets the following conditions. 

(a) For every 𝑗 
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ℐ(𝐻𝑗) <
𝐶(𝒯)

𝑁
.                                                   (52) 

(b) It is true that 

card ({𝐻𝑗})  ≤ 𝑁 + 1.                                    (53) 

An algorithm of nonlinear approximation by piecewise polynomials 

 (c) {𝐻𝑗}is a partition of 𝑇0(∶=  𝒯 𝐺𝑁⁄ ). 

We introduce the required collection by induction. In this part of proof we use the 

following notation: for every  𝑇 ⊂ 𝒯 and 𝜔 ∈ 𝒯 

 

𝑇(𝜔) ∶=  {𝜔′ ∈ 𝑇 ∶  𝜔′  ⊂ 𝜔}. 
We begin with the set 

{𝜔 ∈ 𝒯: ℐ(𝑇0(𝜔)) ≥ 𝑁
−1} 

 

Since ℐ(𝑇0(𝜔)) ≤ ℐ(𝜔) → 0 as |𝜔| → 0, see (12) and (13), this set is either empty or 

finite. In the former case we obtain the desired (trivial) partition putting 𝐻1 ≔ 𝑇0. 

Then ℐ(𝐻1) = ℐ(𝑇0(Ω)) < 𝑁
−1, and (52) is true. Otherwise, 𝑇0 contains an element 𝜔1 

of minimal measure. Since for each 𝜔 ∈ 𝑇0 
 

ℐ(𝑇0(𝜔)) ≤ ℐ(𝜔) < 𝑁
−1, 

 

this 𝜔1 ∉ 𝑇0. Hence we have the disjoint decomposition of 𝑇0(𝜔1): 

𝑇0(𝜔1) = ⋃ 𝑇0(𝜔)

𝜔∈𝑆(𝜔1)

; 

recall that 𝑆(𝜔1)is the set of the sons of 𝜔1, see (6). Besides, minimality of 𝜔1, implies 

for each 𝜔 ∈ 𝑆(𝜔1), 

ℐ(𝑇0(𝜔)) < 𝑁
−1 

Hence it is true that 

ℐ(𝑇0(𝜔1)) = ∑ ℐ(𝑇0(𝜔))

𝜔∈𝑆(𝜔1)

<
card (𝑆(𝜔1))

𝑁
≤
𝐶(𝒯)

𝑁
 

see (7). Introduce now 𝐻1 by 

𝐻1 ≔ 𝑇0(𝜔1). 
Then 𝐻1 satisfies (52). To introduce the next set we put 𝑇1 ∶= 𝑇0\𝐻1 and consider the set 

{𝜔 ∈ 𝒯: 𝑇1(𝜔) ≥ 𝑁
−1}. 

If it is empty, put 𝐻2 ≔ 𝑇1 to obtain the desired partition {𝐻1, 𝐻2} of 𝑇0. 
Otherwise, this set contains an element 𝜔2 of minimal measure. As before 𝜔2 ∉ 𝑇0(∶=
 𝒯 𝐺𝑁⁄ ).  and therefore 

ℐ(𝑇1(𝜔2)) <
𝐶(𝒯)

𝑁
 

Letting 𝐻2 ≔ 𝑇1(𝜔2) we obtain the desired subset satisfying (52) and not intersecting 𝐻1. 
Besides, 

 

ℐ(𝐻𝑖) ≔  ℐ(𝑇𝑖−1(𝜔𝑖)) ≥ 𝑁
−1, 𝑖 = 1,2. 

Proceeding in this way, we lastly obtain the partition {𝐻𝑗: 1 ≤ 𝑗 ≤ 𝑛 + 1} of  𝑇0 satisfying 

the condition (52). Besides,𝐻𝑖 ≔ 𝑇𝑖−1(𝜔𝑖), 1 ≤ 𝑖 ≤ 𝑛, and therefore 
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ℐ(𝐻𝑖) ≥
1

𝑁
, 1 ≤ 𝑖 ≤ 𝑛. 

This implies 

 

𝑛

𝑁
≤∑ℐ(𝐻𝑖)

𝑛

𝑖=1

≤ ℐ(𝐹0) ≤ ℐ(Ω) = 1, 

and the condition (53) holds as well. 

  Using now the partition introduced, we estimate 𝐽2 as follows. By the definition of 𝐻𝑗 

their supports do not overlap: 

 

|(supp𝐻𝑗) ∩ (supp𝐻𝑗′)| = 0, 𝑗 ≠ 𝑗′ 

Recall that supp𝐻 ≔  ⋃ 𝜔𝜔∈𝐻 , 𝐻 ⊂ 𝒯. Besides, supp𝐻𝑗 = supp𝜙(𝐻𝑗)see (42). 

Hence 

 

𝐽2 ≔ ‖𝜙(𝒯\𝒢𝑁)‖𝑞 = ‖ ∑ 𝜙(𝐻𝑗)

𝑗≤𝑛+1

‖

𝑞

= { ∑ ‖𝜙(𝐻𝑗)‖𝑞
𝑞

𝑗≤𝑛+1

}

1
𝑞

. 

By the embedding (35) and the inequality (52), and the definitions (10) and 

(34) of, respectively, ℐ and the quasinorm of 𝐵𝑝
𝑤(𝒯) we then have 

 

‖𝜙(𝐻𝑗)‖𝑞
 
≤ 𝐶𝑒𝑚ℐ(𝐻𝑗)

1
𝑝 < 𝐶𝑒𝑚𝐶(𝒯)

1
𝑝𝑁

−
1
𝑝. 

 

Together with the previous identity and (53) this yields 

𝐽2 ≤ 𝐶𝑒𝑚𝐶(𝒯)
1
𝑝𝑁

−
1
𝑝(𝑛 + 1)

1
𝑞 ≤ 2

1
𝑞𝐶𝑒𝑚𝐶(𝒯)

1
𝑝𝑁

1
𝑞
−
1
𝑝. 

 

Combining this with (38), (49) and (46), we get the inequality 

‖𝑓 − 𝑇4𝑁+1(𝑓)‖𝑞 ≤ 𝐶𝑁
1
𝑝−
1
𝑞|𝑓|𝐵𝑝𝑤(𝒯) 

This clearly implies the required assertion (36) 
It remains to establish the second assertion of the theorem, see (37) By(41) and 

Proposition(2.1.2) 

‖𝑇4𝑁+1(𝑓)‖𝑞 = ‖𝑓Ω𝜒Ω + ∑ (∑ 𝑓𝜔
𝜔∈𝐵

)

𝐵∈ℬ𝑁

𝜒𝜔−(𝐵)‖

𝑞

≤ ‖ ∑ |𝑓𝜔|

𝜔∈𝒢𝑁

𝜒𝜔‖

𝑞

. 

Estimating the right hand side by the embedding inequality in (35) and then making use 

of the inequality (38) we have 

‖𝑇4𝑁+1(𝑓)‖𝑞 ≤ 𝐶𝑒𝑚 { ∑ (𝑤(𝜔) sup
𝜔
|𝑓𝜔|)

𝑝

𝜔∈𝒢𝑁

}

1
𝑝

≤ 𝐶𝑒𝑚(1 + 𝜀)
−1|𝑓|𝐵𝑝𝑤(𝒯). 

The proof of Theorem(2.1.3) is completed. 
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Section (2.2): Refinable Functions 

Approximation by nonlinear finite parametric manifolds has turned out to be very 

important in several areas of analysis. For example, in approximation by rational functions 

and by splines with free knots in approximation theory; asymptotics of eigenvalues in 

operator theory; 𝐾-divisibility and related topics in interpolation space theory; data 

compression in signal and image processing; and finite element methods in numerical 

analysis. This field has become more and more unified, and nowadays the phrase 

“nonlinear approximation” applies to 𝑎 quickly developing theory with its own notions 

and methods. See [30], [34], [35], [27], [38], [47], [50], which cover different aspects of 

this theory and its applications.  

The present considers 𝑎 problem of 𝑁-term nonlinear approximation that dates back 

to the classical [49] by E. Schmidt published in 1887. The subsequent development of this 

part of the theory was essentially influenced by [33] of 𝑀. Birman and 𝑀. Solomyak. The 

problem under consideration can be presented, in general, in the following way. Given 𝑎 

complicated function 𝑓 (an image, 𝑎 solution of an ODE or PDE, etc.) and 𝑎 library ℒ of 

simpler functions, one tries to approximate 𝑓 by an 𝑁-term linear combination of functions 

in ℒ with (nearly) optimal degree of approximation. All these functions are elements of 

some normed space 𝑋, and approximation is measured by the norm of 𝑋. Usually, the 

choice of the library is dictated by the context of the original problem. (For instance, when 

we are working with finite element methods, ℒ consists of piecewise polynomials. 

Alternatively, for numerical harmonic analysis, we can use 𝑎 library of wavelets, and so 

on.) This means that, in general, the functions in ℒ are not well fitted to singularities of the 

target function 𝑓, which may prevent us from effectively using linear methods to resolve 

the approximation problem. It may happen that 𝑋 is contained in 𝑎 larger space 𝑌 whose 

topologyor metric is insensitive to the singularities of 𝑓. This may enable effective linear 

approximation of 𝑓 to be achieved in 𝑌, and, imply that there exists an infinite series 

composed of scalar multiples of elements of the library ℒ and such that it converges fairly 

rapidly to 𝑓 in𝑌. If this happens, then we use the terms of that series to find an 𝑁-term 

linear combination of elements of ℒ that is well adapted to 𝑓 and in fact provides 

approximation of 𝑓 in 𝑋 that is comparable with the approximation of 𝑓 in 𝑌. We can be 

achieved by the use of the classical “greedy” algorithm (choose the 𝑁 terms in the series 

whose coefficients have the largest absolute values). This simple method is miraculously 

successful whenever it can invoke the assistance of 𝑎 powerful tool, the Caldero´n–

Zygmund theory. However this assistance is not available when we wish to work in 𝑎 

number of function spaces important for applications (𝐿1 and 𝐿∞ spaces, Hölder spaces, 

etc.). We will apply 𝑎 different algorithm, which allows us to achieve the desired result for 

𝑎 large class of function spaces. This approach was developed in an algorithmic form in 

collaboration with Inna Kozlov (see, [20]), by using ideas suggested in [28] by Irina 

Irodova. Here we consider the application of this algorithm to the case of the library ℒ𝜑 ≔

{𝜑𝑗𝑘: 𝑗 ∈ ℤ, 𝑘 ∈ ℤ
𝑛} of “matrix dilated” and translated copies of 𝑎 bounded refinable 

function 𝜑:ℝ𝑛 → ℝ. Specifically, we have 𝜑𝑗𝑘(𝑥): 𝜑(𝐴
𝑗𝑥 − 𝑘)for some matrix 𝐴. The 

function 𝜑 is required to satisfy 𝑎 scaling equation with respect to the matrix 𝐴 and some 

finite mask 𝑚.  
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The function 𝑓 is assumed to belong to a “bad” space 𝐿𝑝(ℝ
𝑛) with 0 < 𝑝 < ∞, but to 

have a “sparse” expansion 

𝑓 =∑𝑐𝑗𝑘𝜑𝑗𝑘                                                        (54) 

that converges in 𝐿𝑝. Here “sparse” means that 

|𝑓|𝑝𝑞 ≔ {∑(|det 𝐴|
−𝑗
𝑞 |𝑐𝑗𝑘|)

𝑝

𝑗,𝑘

}

1
𝑝

 

 is finite for some 𝑝 < 𝑞 ≤ ∞. Our algorithm processes the coefficients of the 

expansion(54) to produce an 𝑁-term linear combination 𝑓𝑁 of functions 𝜑𝑗𝑘 that provides 

the desired approximation in 𝑎 “good” space𝐿𝑞(ℝ
𝑛). In fact, we obtain  

‖𝑓 − 𝑓𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛|𝑓|𝑝𝑞 , 

where 𝑠, 𝑝 and 𝑞 are related by  

𝑠

𝑛
=
1

𝑝
−
1

𝑞
, 

and 𝑝 ≤ 1 if 𝑞 = ∞. 

A simple modification of this algorithm enables us to obtain the same rate of 

approximation also when 
𝑠

𝑛
>
1

𝑝
−
1

𝑞
. Finally, the algorithm is applied to the case where 𝐿𝑞 

is replaced by 𝑎 Sobolev space (simultaneous approximationof 𝑓 and its derivatives) and 

to vector-valued refinable functions (in particular, to piecewise polynomial approximation 

of Birman–Solomyak type). The refinable function 𝜑 appearing in these results is assumed 

to be stable and colorable. The former property is fulfilled, e.g., whenever the set{𝜑(𝑥 −
𝑘): 𝑘 ∈ ℤ𝑛} forms a Riesz basis for the 𝐿2-closure of its linear span. The latter property is 

fulfilled, e.g., whenever the dilation matrix 𝐴 associated with 𝜑 diagonalizes over the field 

ℚ, or whenever 𝐴 is related to the mask 𝑚 for 𝜑 by 

|det 𝐴| = # supp𝑚. 

For the first time, approximation of the type considered in the present was studied in the 

fundamental [39], 𝑞 < ∞, and [40], 𝑞 = ∞, by R. DeVore, V. Popov, and their 

collaborators. They dealt with 𝑎 smooth compactly supported regular function 𝜑 (i.e., with 

the dilation 𝐴: 𝑥 ⟼ 2𝑥) whose integer translates are locally linearly independent. 

Independently, and at about the same time, 𝑎 similar result was presented in [28] for the 

special case of multivariate 𝐵-splines. The approximated functions belong to the Besov 

space𝐵𝑞
𝑠(ℝ𝑛). The results of the present include the above two cases, along with many 

others (anisotropic Besov spaces, simultaneous approximation, wavelets, box splines and 

piecewise polynomial approximation, approximation by fractal functions, etc.). All these 

versions may be useful in applications to image processing, where each type of image 

singularity (edges, fractals, etc.) requires 𝑎 flexible choice of the corresponding libraries.  

We give 𝑎 detailed description of the approximation algorithm used in these proofs. 
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The notation introduced here will be used throughout. 

(A) Self-affine regions. Let 𝐴 be an (𝑛 × 𝑛)-matrix with integral entries (we write 𝐴 ∈

𝑀𝑛(ℤ)). Throughout 𝐴 is assumed to be expanding, i.e., it has 𝑛 eigenvalues with moduli 

larger than 1. Such 𝑎 matrix will be called 𝑎 dilation. Given 𝑎 dilation 𝐴 and 𝑎 digit set 

𝒟:= {𝑑1, . . . , 𝑑𝑁} ⊂ ℤ
𝑛, we define 𝑎 self-affine set 𝑇 = 𝑇(𝐴, 𝒟) as 𝑎 nonempty compact 

solution of the set-valued equation 

𝐴(𝑇) = ⋃(𝑇 + 𝑑)(= 𝑇 + 𝒟)

𝑑∈𝒟

.                                                (55) 

In accordance with Hutchinson’s theorem [41], there is 𝑎 unique compact set satisfying 

(55). It can be found by iterations of 𝑎 set-valued map 𝑆:= 𝑆(𝐴, 𝒟) given by  

𝑆(Ω) ≔ ⋃𝐴−1(Ω + 𝑑),

𝑑∈𝒟

 Ω ⊂ ℝ𝑛 .                        (56) 

In fact, for an arbitrary nonempty bounded set Ω we have  

𝑇(𝐴, 𝒟) = lim
𝑗→∞

𝑆𝑗(Ω) ,                                                (57) 

with convergence in the Hausdorff metric. This immediately yields the radix representation 

of the self-affine set: 

𝑇(𝐴,𝒟) = {∑𝐴−𝑗𝑑𝑗
𝑗∈ℕ

: 𝑑𝑗 ∈ 𝒟}.                                                (58) 

 𝐴 straightforward consequence of (55) and (58) is formulated below.  

We only deal with self-affine sets of positive Lebesque measure. They will be called 

self-affine regions for the reason explained by the next important result (see [51] and [42]).  

If the set 𝑇:= 𝑇(𝐴, 𝒟) is of positive measure, then 𝑇 is the closure of its interior 𝑇0, 𝑇 =
�̅�0, and its boundary 𝜕𝑇: = 𝑇 \𝑇0 has Lebesque measure zero.  

The following examples clarify and motivate the basic definition.  

Example (2.2.1)[24]:  (Tiles). 𝐴 self-affine region 𝑇: = 𝑇(𝐴, 𝒟)is called 𝑎 tile if translates 

𝑇 + 𝑑 with distinct 𝑑 ∈ 𝒟 are essentially disjoint. This means that|(𝑇 + 𝑑) ∩ (𝑇 + 𝑑′)|is 

zero if 𝑑 ≠ 𝑑′. Tiles arise in many contexts of analysis including subdivision schemes, 

multivariate wavelet systems, non-Fourier harmonic analysis, and Markov partitions (see 

[46], [52] and [51]). In the case of 𝑎 tile, relation(55) implies that 

#𝒟 = |det 𝐴|.                                                                        (59) 

 In its turn, this implies that|𝑇|is an integer if 𝑇 is 𝑎 region (see [46]). Condition (59) is 

not sufficient for the positivity of|𝑇|. The simplest sufficient condition for this requires 

that𝒟 be 𝑎 complete residue system for the factor groupℤ𝑛/𝐴(ℤ𝑛); see [25]. For each tile 

𝑇 there is 𝑎 translation set 𝒦 ⊂ ℤ𝑛 such that the family {𝑇 + 𝑘: 𝑘 ∈ 𝒦}is essentially 



36 

disjoint and its union isℝ𝑛 (in other words,𝑇 tilesℝ𝑛). If|𝑇| = 1, then the translation set is 

ℤ𝑛 (see [46]). 

 In most cases, the boundaries of tiles are fractals, i.e., their Hausdorff dimension dim𝐻is 

strictly larger than the topological one. 𝐴 remarkable example is the so-called “twin 

dragon” associated with 𝐴 ≔ (
1 −1
1 1

) and 𝒟 ≔ {(
0
0
) , (
1
0
)} (see, e.g., [51], where 

dim𝐻𝑇(𝑇, 𝒟) ≈ 1.523. 

Example (2.2.2)[24]: Let𝐵 ∈ 𝑀𝑛(ℤ),|dim𝐵| = 1, and let𝑀𝑖 ≥ 2and𝑁𝑖 ≥ 1be integers, 

1 ≤ 𝑖 ≤ 𝑛. Then the parallelotope  

Π ≔ 𝐵 (∏[0, 𝑁𝑖]

𝑛

𝑖=1

)                                                (60) 

with vertices inℤ𝑛 is 𝑎 self-affine region associated with 

𝐴 ≔ 𝐵diag(𝑀1, … ,𝑀𝑛) 𝐵
−1   and 𝒟;= 𝐵 (∏𝐽𝑖

𝑛

𝑖=1

) ∩ ℤ𝑛, 

where𝐽𝑖 ≔ [0, (𝑀𝑖 − 1)𝑁𝑖], 1 ≤ 𝑖 ≤ 𝑛. 

It is easy to check that Π is 𝑎 tile only for 𝑁𝑖 = 1 and 𝑀𝑖 = 2,1 ≤  𝑖 ≤ 𝑛. In this case Π is 

the image of the unit cube[0,1]𝑛 under the action of 𝐵, the set 𝒟 is the set of vertices of 

this cube, and𝐴:= 2𝐼:= diag(2, . . . ,2). Since|Π| = 1, the translation set isℤ𝑛.  

(B) The digraphs 𝐺𝑟(𝐴,𝒟). Any self-affine set 𝑇(𝐴, 𝒟) gives rise to adigraph 𝐺𝑟(𝐴, 𝒟) in 

the following way. We introduce 𝑎 sequence of subsets of ℤ𝑛 given by  

𝒟0 ≔ 𝒟,𝒟𝑗 ≔ {∑𝐴𝑖𝑑𝑖

𝑗−1

𝑖=0

: 𝑑𝑖 ∈ 𝒟} , 𝑗 ∈ ℕ.                        (61) 

 Then the set of vertices of 𝐺𝑟:= 𝐺𝑟(𝐴,𝒟)  is given by  

𝒱 ≔ 𝒱(𝐴, 𝒟) ≔ {𝑇𝑗𝑘: 𝑗 ∈ ℤ+, 𝑘 ∈ 𝒟𝑗},                        (62) 

Where 

𝑇𝑗𝑘 ≔ 𝐴
−𝑗(𝑇 + 𝑘), 𝑗 ∈ ℤ, 𝑘 ∈ ℤ𝑛 .                                                (63) 

 Note that 𝒱  is 𝑎 ℤ+-graded set, the graduation of which is given by heightℎ, i.e.,  

ℎ(𝑇𝑗𝑘) ≔ 𝑗.                                                                        (64) 

In its turn, this yields 𝑎 partition of𝒱 into the subsets  

𝒱𝑗 ≔ {𝑇𝑗𝑘: 𝑘 ∈ 𝒟𝑗}, 𝑗 ∈ ℤ+.                                                (65) 

Hence, for 𝑇′ ∈ 𝒱𝑗we obtain  
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𝑇′ = 𝐴−𝑗 (𝑇 +∑𝐴𝑖𝑑𝑖

𝑗−1

𝑖=0

)                                                (66) 

with suitable digits𝑑𝑖 ∈ 𝒟. Applying(55), we get  

𝑇′ = ⋃𝐴−𝑗−1(𝑇 + 𝑑 +∑𝐴𝑖𝑑𝑖−1

𝑗

𝑖=1

)

𝑑∈𝒟

.                        (67) 

The subsets occurring in this union will be called the children of 𝑇′(and 𝑇′is their parent), 

and will be denoted by 𝑐ℎ(𝑇′). Observe that a child may have more than one parent. 

Now, let 𝑇′, 𝑇" ∈ 𝒱. These vertices determine an edge directed form 𝑇′to 𝑇"if 𝑇′is 𝑎 child 

of 𝑇". This edge will be denoted by 𝑇′ → 𝑇", and the set of these edges by ℰ ≔ ℰ(𝐴,𝒟). 

Thus, we have introduced the required digraph (directed graph) 𝐺𝑟:= 𝐺𝑟(𝐴,𝒟). In what 

follows we use the standard terminology of graph theory (see, e.g., [48]). In particular, 𝑎 

directed edge is named an arc, and its endpoints 𝑇′ and 𝑇"are the tail and head, 

respectively. In accordance with its definition, the digraph 𝐺𝑟(𝐴, 𝒟) has no loops (an edge 

joining 𝑎 vertex to itself) and no pairs of arcs with the same tail and head. Such a digraph 

is called to be strict (or simplicial).  

𝐴 sequence 𝑃:= {𝑇1, . . . , 𝑇𝑚} ⊂ 𝒱 is 𝑎 path (or trail) if no vertex occurs in 𝑃 more than 

once, and adjacent vertices are joined by an arc. If, moreover, 𝑇1 → 𝑇𝑚+1, 1 ≤  𝑖 < 𝑚 , 

this 𝑃 is called 𝑎 directed path, and consequently 𝑇1and 𝑇𝑚 are its tail and head. In this 

case we use the notation 

𝑇𝑝
− ≔ 𝑇1(tail), 𝑇𝑝

+ ≔ 𝑇𝑚(head).                                                (68) 

Vertices 𝑇′and 𝑇"are connected by 𝑎 (directed) path 𝑃:= {𝑇1, . . . , 𝑇𝑚} if 𝑇
′ = 𝑇1 and 𝑇" =

𝑇𝑚 (consequently, if 𝑇′ = 𝑇𝑃
−and 𝑇" = 𝑇𝑃

+). If 𝑇′ = 𝑇𝑃
− and 𝑇′ = 𝑇"for 𝑎 suitable directed 

path 𝑃, then 𝑇′is called an off spring of 𝑇"and 𝑇"is its ancestor. The following result, the 

proof of which is straightforward, collects the basic properties of the object introduced. 

Proposition (2.2.3)[24]:  (a) The degree of each verte𝑥1 of 𝐺𝑟(𝐴, 𝒟) = (ℰ,𝒱) equals#𝒟. 

(𝑏) 𝐴 vertex𝑇′ ∈ 𝒱, regarded as 𝑎 set, is the union of all its off springs of the same height. 

In particular, 

𝑇′ = ⋃ 𝑇"

𝑇"∈𝑐ℎ(𝑇′)

.                                                (69) 

 (c) Each𝑇′is connected with the set 𝑇:= 𝑇(𝐴,𝒟).  

Since the vertices of 𝐺𝑟(𝐴,𝒟) are subsets of ℝ𝑛, the set inclusion order gives rise to 

another digraph structure on 𝒱. In this case 𝑇′,𝑇"in 𝒱 are connected by an edge directed 

from 𝑇′ to 𝑇"if 𝑇′ ⊂ 𝑇"and there is no other vertex situated in-between. We denote this 

digraph by 𝐺𝑟0 = (𝒱0, ℰ0). Then 𝒱0 = 𝒱, but, in general, the set of edges ℰ is 𝑎 proper 

subset of ℰ0. Compatibility of the digraph structure of 𝐺𝑟(𝐴, 𝑇) with the set inclusion 
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order is crucial for our approach. Below we introduce 𝑎 class of self-affine regions for 

which this property is fulfilled in 𝑎 sense. For this, we recall the notion of 𝑎 coloring of 𝑎 

graph. This is 𝑎 function defined on the set of vertices and with values in 𝑎 finite set. The 

elements of this set are regarded as “colors”.  

Definition (2.2.4)[24]: 𝐴 graph whose vertices are measurable subsets of ℝ𝑛 is spatially 

colorable if there is 𝑎 coloring of this graph satisfying the following condition. Any two 

vertices 𝜐, 𝑤 of the same color are either essentially disjoint(|𝜐 ∩ 𝑤| = 0), or𝜐 ⊂ 𝑤, or 

𝑤 ⊂ 𝜐. 

The minimum of colors required in this definition is called the (spatial) chromatic number 

of this graph. For the digraph 𝐺𝑟(𝐴,𝒟) this number is denoted by 𝜒(𝐴,𝒟). If 𝐺𝑟0(𝐴, 𝒟) is 

spatially colorable, then, clearly, so is 𝐺𝑟(𝐴, 𝒟). Moreover, in this case almost each point 

of ℝ𝑛 is contained in at most 𝜒(𝐴, 𝒟)subsets in 𝒱𝑗, because these are colored 

by 𝜒(𝐴, 𝒟)colors, and the distinct subsets of the same color and height are essentially 

disjoint. In other words, the multiplicity 

𝜇(𝒱𝑗) ≔ ess sup
𝑥∈ℝ𝑛

( ∑ 1𝑇′(𝑥)

𝑇′∈𝒱𝑗

) 

does not exceed 𝜒(𝐴,𝒟). We conjecture that the converse is also true, i.e.,sup𝑗𝜇(𝒱𝑗) < ∞ 

implies 𝜒(𝐴,𝒟) < ∞. It is easily seen that this supremum is finite. Consequently, we 

conjecture that each digraph 𝐺𝑟(𝐴, 𝐷) is spatially colorable.  

More examples with an effective upper bound for the chromatic number will be discussed 

in detail. 

Example (2.2.5)[24]: If 𝑇(𝐴, 𝒟) is 𝑎 tile, then  

𝜒(𝐴, 𝒟) = 1.                                                (70) 

In fact, in this case 𝐺𝑟(𝐴, 𝒟) = 𝐺𝑟0(𝐴, 𝒟) is 𝑎 rooted tree with the root 𝑇(𝐴, 𝒟).  

Example (2.2.6)[24]: Assume that 𝐺𝑟(𝐴,𝒟) has the following property: if the heights of 

two vertices 𝑇′, 𝑇′ ∈ 𝒱 differ by one, and|𝑇′ ∩ 𝑇"| ≠ 0, then the smaller vertex is 𝑎 subset 

of the bigger. 

In this case 𝐺𝑟(𝐴,𝒟) = 𝐺𝑟0(𝐴,𝒟) and 𝜒(𝐴, 𝒟) < ∞. Since the intersection of subsetsin 𝒱𝑗  

is 𝑎 union of subsets in 𝒱𝑗+1,𝑗 ∈ ℤ+, it is natural to name such 𝑎 self-affine region 𝑇(𝐴,𝒟) 

asemitile.  

Example (2.2.7)[24]: The self-affine region of Example (2.2.2) is spatially colorable if the 

greatest common divisors (𝑀𝑖 , 𝑁𝑖) of 𝑀𝑖 , 𝑁𝑖  are 1 (see Proposition(2.2.32)). 

(C) Refinable functions. A refinable function 𝜑:ℝ𝑛 → ℝ associated with 𝑎 dilation 𝐴 and 

mask 𝑚:ℤ𝑛 → ℝis 𝑎 solution of the scaling equation  

𝜑(𝑥) = ∑ 𝑚(𝑘)𝜑(𝐴𝑥 − 𝑘)

𝑘∈ℤ𝑛

, 𝑥 ∈ ℝ𝑑 .                        (71) 
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𝐴 rather complete account of properties of regular refinable functions, i.e., such that 𝐴: =
2𝐼:= diag(2, . . . ,2), was presented in [36]. Some of these properties can be established in 

the general case by the same arguments. In particular, this concerns the properties listed. 

Throughout, the mask 𝑚 is assumed to be finite, i.e., 

# supp𝑚 ≔ #{𝑘 ∈ ℤ𝑛: 𝑚(𝑘) ≠ 0} < ∞.                        (72) 

This implies immediately that 𝜑 is compactly supported. 

We also assume that 𝜑 is 𝑎 bounded and nontrivial solution of(71), i.e., 

‖𝜑‖∞ ≔ ess sup
ℝ𝑛

|𝜑| < ∞ and|supp𝜑| ≠ 0,                        (73) 

where supp 𝜑 : = {𝑥 ∈ ℝ𝑛: 𝜑(𝑥) ≠ 0}. 

We introduce 𝑎 library ℒφ by 

ℒφ ≔ {𝜑𝑗𝑘(𝑥) ≔ 𝜑(𝐴𝑗𝑥 − 𝑘): 𝑗 ∈ ℤ, 𝑘 ∈ ℤ𝑛}.                        (74) 

Since supp𝜑𝑗𝑘 = 𝐴
𝑗(supp𝜑 + 𝑘), we have 

|supp 𝜑𝑗𝑘| = |det 𝐴|
𝑗|supp𝜑|.                                                (75) 

Now, from(71) we derive 𝑎 similar “𝑗th level” scaling equation,𝑗 ∈ ℕ.For this, we extend 

the mask 𝑚 from ℤ𝑛 (identified with{1} × ℤ𝑛) toℤ × ℤ𝑛by setting  

𝑚∗(𝑗, 𝑘) = 0  if𝑗 ≤ 0, 𝑘 ∈ ℤ𝑛, 

and defining 𝑚∗(𝑗, 𝑘) for 𝑗 > 1 by the chain rule:  

𝑚∗(𝑗, 𝑘): = ∑ 𝑚(𝑘")𝑚∗(𝑗 − 1, 𝑘)

𝑘=𝐴𝑘′+𝑘"

.                        (76) 

This extension is well defined because the mask is finite. 

Using this and applying the scaling equation (71) repeatedly, we obtain 

𝜑 = ∑ 𝑚∗(𝑗, 𝑘)𝜑𝑗𝑘
𝑘∈ℤ𝑛

, 𝑗 ≥ 1.                                                (77) 

 Equation (71) also implies the embedding 

𝐴(supp 𝜙) ⊂ supp 𝜑 + supp𝑚.                                                (78) 

In the following cases, equality occurs here (and supp 𝜑 is 𝑎 self-affine region associated 

with 𝐴 and 𝒟 ≔ supp𝑚). 

 (𝑎) The mask is nonnegative (hence, 𝜑 ≥ 0 a.e.).  

(𝑏) The family of integer translates {𝜑(𝑥 − 𝑘): 𝑘 ∈ ℤ𝑛} is locally linearly independent, 

i.e., the nonzero restrictions of these translates to an arbitrary open cube are linearly 

independent. 

In general, supp 𝜑 is not 𝑎 self-affine region, but it is related to such 𝑎 region in the 

following way. 
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 Proposition (2.2.8)[24]: If 𝒟 ⊃ supp𝑚, then 

supp 𝜑 ⊂ 𝑇(𝐴,𝒟).                                                (79) 

Proof: Using the set-valued operation 𝑆 with 𝒟 ⊃ supp𝑚, from(78) we deduce that 

supp 𝜑 ⊂  𝑆(supp𝜑). 

 Iterating and applying(57), we obtain 

supp 𝜑 ⊂ 𝑆𝑗(supp 𝜑) → 𝑇(𝐴, supp𝑚), 𝑗 → ∞ . 

Definition (2.2.9)[24]: A refinable function𝜑 with dilation 𝐴 and mask 𝑚 is said to be 

colorable if there is 𝑎 digit set 𝒟 such thatsupp𝑚 ⊂ 𝒟 and 

𝜒(𝐴, 𝒟) < ∞. 

We put 

𝜒(𝜑):= 𝑖𝑛𝑓𝜒(𝐴, 𝒟): supp𝑚 ⊂ 𝒟.                                                (80) 

 Example (2.2.10)[24]: Let 𝑇:= 𝑇(𝐴, 𝒟) be 𝑎 tile, and let 𝜑 ≔ 1𝑇 be the characteristic 

function of 𝑇. Then 

𝜑(𝑥) = ∑𝜑(𝐴𝑥 − 𝑘)

𝑘∈𝒟

 

almost everywhere (see Example(2.2.1)). Since in this casesupp𝑚 = 𝒟and 𝜒(𝐴,𝐷) = 1, 

such 𝜑 is 𝑎 colorable refinable function with 𝜒(𝜑) = 1. 

Example (2.2.11)[24]: Suppose the dilation 𝐴 of 𝜑 is ℤ-similar to 𝑎 diagonal matrix 

whose eigenvalues are rational numbers.  

Now we define yet another notion used. 

Definition (2.2.12)[24]: A refinable function 𝜑 is 𝑝-stable,0 < 𝑝 ≤ ∞, if for each 

sequence 𝜆 ≔ {𝜆(𝑘): 𝑘 ∈ ℤ𝑛} ⊂ ℝ we have 

𝐶1‖𝜆‖𝑝 ≤ ‖∑𝜆(𝑘)𝜑(𝑥 − 𝑘)‖
𝑝
≤ 𝐶2‖𝜆‖𝑝                        (81) 

with 𝐶1, 𝐶2 > 0 independent of 𝜆. 

Since in our case 𝜑 is bounded and compactly supported, the right inequality is trivially 

true for all 𝑝. It is well known (see Lemma(2.2.20)) that in this case the left inequality is 

true for all 𝑝 provided it is valid for one. For this reason, we shall call such 𝜑 𝑎 stable 

refinable function (i.e., this term means that 𝜑 is bounded, compactly, supported, and 𝑝-

stable). 

Proposition (2.2.13)[24]: Assume that𝜑 is stable. Then its extended mask(76) satisfies  

sup
𝑗,𝑘
|𝑚∗(𝑗, 𝑘)| < ∞.                                                (82) 

Proof: Using the ∞-stability of𝜑 and(77), we get 
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|𝑚∗(𝑗, 𝑘)| ≤ 𝐶 ‖∑𝑚∗(𝑗, 𝑘)𝜑(𝑥 − 𝑘)

𝑘

‖

∞

= 𝐶 ‖∑𝑚∗(𝑗, 𝑘)𝜑(𝐴𝑗𝑥 − 𝑘)

𝑘

‖

∞

= 𝐶‖𝜑‖∞ 

with 𝐶 independent of 𝑗 and 𝑘.  

Remark (2.2.14)[24]: (𝑎) 𝐴 compactly supported 𝜑 ∈ 𝐿𝑝(ℝ
𝑛)satisfies the 𝑝-stability 

condition in(81) if and only if for each𝜉 ∈ (ℝ𝑛)∗ there exists 𝑘 ∈ ℤ𝑛 such that  

�̂�(𝜉 + 2𝜋𝑘) ≠ 0.                                                (83) 

Here �̂� stands for the Fourier transform of 𝜑; see [44]. 

(𝑏) If the set of integer translates of 𝜑 ∈ 𝐿∞(ℝ
𝑛)is locally linearly independent, then 𝜑 is 

stable; see [39]. 

We recall the notion of the Strang–Fix condition for 𝑎 regular refinable function. A 

function 𝜑 satisfies this condition with respect to 𝑎 finite-dimensional translation invariant 

subspace 𝑃 of polynomials if for each 𝑝 ∈ 𝑃 and suitable constants 𝜆(𝑘) we have 

𝑝(𝑥) = ∑ 𝜆(𝑥)𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

. 

For 𝜑 compactly supported, this is equivalent to the condition that 

(𝐷ℓ�̂�)(2𝜋𝑘) = 0, 𝑘 ∈ ℤ𝑛\{0}, 

 for all ℓ ∈ ℤ+
𝑛  such that 𝑥ℓ ∈ 𝑃 (see [36]). For the general case of 𝜑 associated with an 

arbitrary dilation and 𝑎 finite mask, the corresponding condition was presented in [𝐽] (see 

also [37]).  

(D) 𝐵(𝜑)-spaces. Using the library ℒ𝜑 (see(74)), for 0 < 𝑝 < ∞ we introduce the linear 

space Σ𝑝(𝜑), of measurable (classes of) functions on ℝ𝑛 represented as  

𝑓 =∑𝑐𝑗𝑘𝜑𝑗𝑘 (convergence in 𝐿𝑝).                                                (84) 

Assuming that 𝜑 is compactly supported, for𝑓 ∈ Σ𝑝(𝜑) we set 

‖𝑓‖𝐵𝑝𝑠(𝜑) ≔ inf {∑(|supp𝜑𝑗𝑘|
1
𝑞|𝑐𝑗𝑘|)

𝑝

𝑗,𝑘

}

1
𝑝

,                        (85) 

 where the infimum is taken over all expansions as in(84), and 𝑠 > 0,0 < 𝑝 < 𝑞 ≤ ∞ are 

related by 

𝑠

𝑛
=
1

𝑝
−
1

𝑞
.                                                                        (86) 

It is readily seen that (85) yields 𝑎 Banach (quasi)norm on the linear space 𝐵𝑝
𝑠(𝜑) of all 

𝑓 ∈ Σ𝑝(𝜑) with finite(85). 

More generally, we define the space 𝐵𝑝
𝑠𝜃(𝜑)by the quasinorm 
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‖𝑓‖𝐵𝑝𝑠𝜃(𝜑) ≔ inf

{
 
 

 
 

∑ (∑|𝑐𝑗𝑘|. (|supp 𝜑𝑗𝑘|
𝜇
)
𝑝

𝑗∈ℤ

)

𝜃
𝑝

𝑘∈ℤ𝑛

}
 
 

 
 

1
𝜃

,                        (87) 

where the infimum is taken over all expansions(84). Here0 < 𝜃 , 𝑝 ≤ ∞ , 𝑠 > 0, and  

𝜇:=
𝑠

𝑛
−
1

𝑝
 .  

Clearly, this coincides with 𝐵𝑝
𝑠(𝜑) if 𝜃 = 𝑝. We only deal with the latter space and with 

the space 𝐵𝑝
𝑠∞(𝜑) defined by 

‖𝑓‖𝐵𝑝𝑠∞(𝜑) inf (sup
𝑗,𝑘
(|𝑐𝑗𝑘||supp 𝜑𝑗𝑘|

𝜇
)). 

These definitions and notation are motivated by the following result of [39]; 𝑎 partial case 

of multivariate 𝐵-splines was proved independently in [28]. 

Theorem(2.2.15)[24]: Assume that 𝜑 is 𝑎 bounded regular refinable function of finite 

mask and obeying the following conditions: 

(𝑎) The set {𝜑(𝑥 − 𝑘): 𝑘 ∈ ℤ𝑛} is locally linearly independent. 

(𝑏) For some 𝑟 > 𝑠, the function𝜑is subject to the Strang–Fix condition with respect to 

the space of polynomials of degree less than𝑟.  

Then, up to equivalence of (quasi)norms, 

𝐵𝑝
𝑠𝜃(𝜑) = 𝐵𝑝

𝑠𝜃(ℝ𝑛). 

Using 𝑎 “pseudonorm” associated with 𝐴 (see [45]), one can define 𝑎 generalized Besov 

space 𝐵𝑝
𝑠,𝐴(ℝ𝑛)and conjecture 𝑎 similar result. Such 𝑎 pseudonorm is 𝑎 nonnegative 

function 𝜈 ≔ 𝜈𝐴onℝ𝑛 satisfying the conditions 

(𝑎) 𝜈(−𝑥) = 𝜈(𝑥) , and 𝜈(𝑥) = 0 if and only if 𝑥 = 0; 

(𝑏) 𝜈(𝐴𝑥) = |det 𝐴|
1

𝑛𝜈(𝑥). 

For instance, if 𝐴:= diag(𝑀1, . . . ,𝑀𝑛),|𝑀𝑖|  >  1, then 

 𝜈(𝑥): =  ∑|𝑥𝑖|
𝑎𝑖

𝑛

𝑖=1

,                                                                      (88) 

Where 

𝑎𝑖 ≔
log|det 𝐴|

𝑛 log𝑀𝑖
 

In particular, 𝜈 is equivalent to the standard norm if 𝐴 is isotropic, i.e., ℤ-similar to 𝑎 

diagonal matrix with all eigenvalues of the same modulus. 
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The required Besov space is defined via its (quasi)norm 

‖𝑓‖𝐵𝑝
𝑠,𝐴 ≔ {‖𝑓‖𝑝 + ∫ (

𝜔𝑟
𝐴(𝑡; 𝑓; 𝐿𝑝)

𝑡𝑠
)

𝑝
𝑑𝑡

𝑡

 

ℝ+

}

1
𝑝

, 

where𝑟 > 𝑠and 

𝜔𝑟
𝐴(𝑡; 𝑓; 𝐿𝑝): = sup

𝜈(𝑥)≤𝑡
‖∆𝑥
𝑟𝑓‖𝑝. 

Since all pseudonorms associated with 𝐴 are equivalent (see [45]), this space does not 

depend on the choice of 𝜈 (up to equivalence of (quasi)norms). 

It can be shown that, if 𝜈 is as in(88) and 𝑟 > 𝑠 max 𝑎𝑖, then the space 𝐵𝑝
𝑠,𝐴(ℝ𝑛) coincides 

with the anisotropic Besov space 𝐵𝑝
𝑠1,…,𝑠𝑛(ℝ𝑛), where 𝑠𝑖 ≔ 𝑠𝑎𝑖.This leads to the following 

conjecture. If 𝜑 is stable and 𝑟 is sufficiently large, then 

𝐵𝑝
𝑠,𝐴(ℝ𝑛) = 𝐵𝑝

𝑠(𝜑). 

This conjecture can be extended to the case where 𝑠 ≤ 0 and 𝑝 ≥ 1. Now 𝐵𝑝
𝑠(𝜑)is 𝑎 space 

of tempered distributions defined by formula(85) where the infimum is taken over all 

expansions(84) with convergence in the sense of distributions. The remaining space is 

defined via the norm 

‖𝑓‖𝐵𝑝
𝑠,𝐴 ≔ {∑(𝑎𝑠𝑗‖𝜃𝑗 ∗ 𝑓‖𝑝)

𝑝

𝑘∈ℤ

}

1
𝑝

, 

where 𝑎:= |det 𝐴|
1

𝑛, �̂�𝑗(𝜉): = 𝜃(𝐵
𝑗 , 𝜉),𝜉 ∈ (ℝ𝑛)∗, 𝐵: = 𝐴𝑇, and 𝜃 is 𝑎 nonnegative 𝐶0

∞-

function supported on {𝑥 ∈ ℝ𝑛: 𝑎−1 < 𝜈𝐵(𝑥) < 𝑎 }. Recall that 𝑠, 𝑝, 𝑞 are related by(86), 
so that 0 < 𝑞 ≤ 𝑝 in this case.  

For 𝐴:= 2𝐼, this definition gives the standard Besov space 𝐵𝑝
𝑠(ℝ𝑛), 1 ≤ 𝑝 ≤ ∞(see, e.g., 

[32]), while for 𝐴:= diag(𝑀1, . . . , 𝑀𝑛) it determines the corresponding anisotropic Besov 

space 𝐵𝑝
𝑠1,…,𝑠𝑛(ℝ𝑛) with 𝑠𝑖 ∈ ℝ,1 ≤  𝑝 ≤ ∞ . The problem presented by the conjecture 

above, along with other properties of the scale{𝐵𝑝
𝑠(𝜑)}, will be studied elsewhere. 

𝜑 is 𝑎 nontrivial bounded refinable function with 𝑎 given dilation 𝐴 and 𝑎 finite 

mask 𝑚. We recall that the extended mask𝑚∗is defined by (76). The libraryℒ𝜑 ≔

{𝜑𝑗𝑘; 𝑗 ∈ ℤ, 𝑘 ∈ ℤ
𝑑}generated by this𝜑 can be graded as follows: 

ℒ𝜑 ≔⋃ℒ𝜑(𝑁)

∞

𝑁=1

,                                    (89) 

where ℒ𝜑(𝑁) is the family of all 𝑁-term linear combinations of 𝜑𝑗𝑘. 

Now, assume that 
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(𝑎) 𝜑 is a stable and colorable refinable function (see Definitions(2.2.9) and(2.2.12)); (𝑏) 
the numbers 0 < 𝑝 < 𝑞 ≤ ∞ and 𝑠 > 0 are related by 

𝑠

𝑛
=
1

𝑝
−
1

𝑞
,                                                      (90) 

and 𝑝 ≤ 1 if 𝑞 = ∞. Under these assumptions, the following is true. 

To formulate 𝑎 consequence of Theorem (2.2.27), we introduce the best 

approximation 

ℰ𝑁(𝑓; 𝐿𝑞): = inf{‖𝑓 − 𝑓𝑁‖𝑞𝑓𝑁 ∈ ℒ𝜑(𝑁)}.                  (91) 

Suppose that assumption(𝑎) of Theorem(2.2.27) is fulfilled, but assumption (90) is 

replaced by 

𝑠

𝑛
>
1

𝑝
−
1

𝑞
                                                (92) 

with 0 < 𝑝 < 𝑞 ≤ ∞and 𝑠 > 0. 

 Under these assumptions, the following is true (see [39], [40]). 

Here, the crucial point is the so-called Bernstein’s inequality, which was first 

introduced and named after 𝑆. Bernstein in [26] devoted to approximation by rational 

functions with free poles. This inequality must look like this:  

‖𝑓‖𝐵𝑝𝑠 (𝜑) ≤ 𝐶𝑁
−
𝑠
𝑛‖𝑓‖𝑞 , 𝑓 ∈ ℒ𝜑(𝑁),                               (93) 

with 𝐶 independent of 𝑓 and 𝑁 and 𝑠, 𝑝, 𝑞 related by(90). 

This inequality can also be established. We shall study this issue in 𝑎 forthcoming. 

Remark (2.2.16)[24]: Let 𝐴 be diagonalizable with the eigenvalues 𝑀𝑖 > 1,1 ≤ 𝑖 ≤ 𝑛. 
Assume that for some 𝜎 > 0 the numbers 

ℓ𝑖 ≔
𝜎 log|det 𝐴|

log𝑀𝑖
, 1 ≤ 𝑖 ≤ 𝑛,                      (94) 

 are integers. In this case 

𝜎 = 〈ℓ̅〉 ≔ (
1

𝑛
∑

1

𝑀𝑖

𝑛

𝑖=1

)

−1

 

is the harmonic mean of ℓ̅ ≔ (ℓ1, . . , ℓ𝑛). Assume that the numbers 𝑝, 𝑞, 𝑠 satisfy the 

condition 

𝑠 − 𝜎

𝑛
=
1

𝑝
−
1

𝑞
> 0                                        (95) 

and that 𝑝 ≤ 1 if 𝑞 = ∞. Then the assertions of Theorem(2.2.27) and Corollary(2.2.30) 
remain true if we replace the 𝐿𝑞-norm by the anisotropic Sobolev norm 
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‖𝑓‖
𝑊𝑞
ℓ̅,𝐴: = ∑‖𝐷𝑖

ℓ𝑖𝑓‖
𝑞

𝑛

𝑖=1

,                                        (96) 

where 𝐷𝑖 is the derivative in the direction determined by the 𝑖th eigenvector of 𝐴. Of 

course, we assume that, moreover, 𝜑 belongs to 𝑊𝑞
ℓ̅,𝐴(ℝ𝑛). 

In this case the method yields simultaneous approximation of 𝑓 and its derivatives 

by𝑓𝑁and the corresponding derivatives of 𝑓𝑁. 

𝐴 similar version of Theorem(2.2.29) is also true under the condition 

𝑠 − 𝜎

𝑛
>
1

𝑝
−
1

𝑞
> 0.                                        (97) 

In the isotropic case, i.e., for 𝑎 diagonalized dilation with equal eigenvalues, all the results 

stated above are valid for the isotropic Sobolev space 𝑊𝑞
ℓ; in this case 𝜎 = ℓ. 

Simple changes in the proofs of the main results that lead to simultaneous approximation 

are discussed. 

We present two results facilitating the proof of Theorem (2.2.27). 

Let 𝐺𝑟 = (𝒱, ℰ) be 𝑎 digraph whose vertices are subsets of ℝ𝑛, and let 𝑐: 𝒱 → 𝑅 be 

its coloring. For 𝑎 color 𝛾 ∈ Γ, set  

𝒱(𝛾);= {𝜐 ∈ 𝒱: 𝑐(𝜐) = 𝛾}.                                                (98) 

The elements of this set are named 𝛾-vertices. The family {𝒱(𝛾): 𝛾 ∈ Γ} forms 𝑎 partition 

of𝒱, 

𝒱 =∐𝒱(𝛾)

𝛾∈Γ

.                                                        (99) 

Here and below ∐ stands for disjoint union. 

 A vertex 𝜐 ∈ 𝒱(𝛾) is called 𝑎 𝛾-root if𝜐is not 𝑎 subset of another 𝛾-vertex. The collection 

of 𝛾-roots is denoted by ℛ(𝛾). 

Given 𝑎 𝛾-root𝑅, we introduce the set 

𝒱𝑅(𝛾) ≔ {𝜐 ∈ 𝒱(𝛾): 𝜐 ⊂ 𝑅}.                                        (100) 

Proposition (2.2.17)[24]: Let 𝐺𝑟:= 𝐺𝑟(𝐴, 𝒟) be the spatially colorable digraph of 𝑎 self-

affine set 𝑇: 𝑇(𝐴, 𝒟)with the set of vertices 𝒱 and the set of edges ℰ. There exists 𝑎 

coloring 𝑐: 𝒱 → Γ such that the following is true: 

(𝑎) two distinct 𝛾-roots are essentially disjoint, i.e., their intersection is of measure zero; 

(𝑏) each 𝒱𝑅(𝛾)is 𝑎 tree with respect to the set inclusion order; 

(𝑐) the family{𝒱𝑅(𝛾): 𝑅 ∈ ℛ(𝛾}forms 𝑎 partition of 𝒱(𝛾): 

𝒱(𝛾) = ∐ 𝒱𝑅(𝛾)

𝑅∈ℛ(𝛾)

.                                        (101) 
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Proof: Fix 𝑎 coloring 𝑐: 𝒱 → Γ satisfying the condition of Definition(2.2.4). Then any two 

vertices of the same color are either essentially disjoint, or the smaller of them is 𝑎 subset 

of the larger. This immediately implies assertions (𝑎) and(𝑐). Now, equip𝒱𝑅(𝛾)with the 

set inclusion order structure. This gives rise to 𝑎 digraph 𝐺𝑟𝑅(𝛾) ≔ (𝒱𝑅(𝛾)ℰ𝑅(𝛾)), with 

the set of edges defined as follows. 

𝐴 pair𝑇′, 𝑇" ∈ 𝒱𝑅(𝛾)is an edge directed from 𝑇′ to 𝑇" if 𝑇′ ⊂ 𝑇"and there are no other 

vertices of𝒱𝑅(𝛾)in-between. 

To establish assertion(𝑏), it suffices to show that every two vertices 𝑇′, 𝑇" ∈ 𝒱𝑅(𝛾)can be 

joined by 𝑎 unique (undirected) path. For this, we choose 𝑎 vertex �̃� ∈ 𝒱𝑅(𝛾)of largest 

height containing 𝑇′and 𝑇". Since all vertices of𝒱𝑅(𝛾) are subsets of𝑅, it does exist. Now 

we set 𝑇1: = 𝑇
′and let 𝑇2 be 𝑎 parent of 𝑇1. The latter is unique, because each distinct 𝛾-

root containing 𝑇1 should either be 𝑎 subset of 𝑇2 or contain 𝑇2. Let 𝑇3 be the parent of 𝑇2 

and so on up to𝑇𝑛; all these are of the same height as 𝑇. Since|�̃� ∩ 𝑇𝑛| > |𝑇
′| > 0, one of 

them is 𝑎 subset of the other. But their heights are equal, whence�̃� = 𝑇𝑛. In the same way 

we define 𝑎 sequence �̂�1 ≔ 𝑇", �̂�2, … , �̂�𝑚 = �̃�. Then the sequence{𝑇1, … , 𝑇2, �̂�𝑚−1, … , �̂�1}is 

𝑎 unique path connecting 𝑇′with 𝑇".Consequently,𝐺𝑟𝑅(𝛾) is 𝑎 tree, and it is rooted in𝑅, 

since all vertices of𝒱𝑅(𝛾) are subsets of 𝑅 ∈ 𝒱𝑅(𝛾). 

Let ℱ ≔ {𝐹𝑗; 𝑗 ∈ ℤ}be 𝑎 family of subspaces of𝐿𝑝(ℝ
𝑛) , 0 < 𝑝 ≤ ∞, satisfying the 

conditions 

𝐹𝑗 ⊂ 𝐹𝑗+1, 𝑗 ∈ ℤ, and sup
𝑗
𝐸𝑗(𝑓) ≠ 0 if 𝑓 ≠ 0.                        (102) 

Here the best approximation 𝐸𝑗(𝑓)is given by 

𝐸𝑗(𝑓) ≔ inf
𝑔∈𝐹𝑗

‖𝑓 − 𝑔‖𝑝 .                                        (103) 

We introduce an approximation space 𝒜𝑝
𝑠 (ℱ), 𝑠 > 0, by the quasinorm 

‖𝑓‖𝒜𝑝𝑠 (ℱ) ≔ {∑(𝑎𝑗𝑠𝐸𝑗(𝑓))
𝑝

𝑗∈ℤ

}

1
𝑝

,                                (104) 

where 𝑎 > 1 is fixed. Let 𝑝 < 𝑞 ≤ ∞be defined by the relation  

𝑠

𝑛
=:
1

𝑝
−
1

𝑞
,                                                        (105) 

and assume that 𝑝 ≤ 1 if 𝑞 = ∞.Also, assume that 

‖𝑓‖∞ ≤ 𝐶𝑎
𝑗𝑛
𝑝 ‖𝑓‖𝑝, 𝑓 ∈ 𝐹𝑗, 𝑗 ∈ ℤ,                                (106) 

with 𝑎 constant independent of 𝑓 and 𝑗. 

Under these assumptions, the following is true. 

Theorem (2.2.18)[24]:  𝒜𝑝
𝑠 (ℱ) ⊂ 𝐿𝑞(ℝ

𝑛). 
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For the proof, see [22].  

From this result we deduce the corresponding embedding for the space 𝐵𝑝
𝑠(𝜑). For this, 

we need to present 𝐵𝑝
𝑠(𝜑)as an approximation space(104) with 𝑎 suitable approximation 

family ℱ. Let ℱ𝑗 be the linear subspace of 𝐿𝑞(ℝ
𝑛)formed by the functions represented as 

𝑓 = ∑ 𝑐𝑗(𝑘)𝜑𝑗𝑘
𝑘∈ℤ𝑛

(convergence in 𝐿𝑝).                                (107) 

The scaling equation(71) implies thatℱ𝑗 ⊂ ℱ𝑗+1. Below we also prove that for 𝑎 ≔

|det 𝐴|
1

𝑛we have 

‖𝑓‖∞ ≤ 𝑐𝑎
𝑗𝑛
𝑝 ‖𝑓‖𝑝, 𝑓 ∈ 𝐹𝑗 , 𝑗 ∈ ℤ,                                   (108) 

with 𝑎 constant independent of 𝑓 and𝑗. This implies that the supremum in(102) is equal to 

the 𝑝-norm of𝑓. Hence, the family ℱ of the subspaces 𝐹𝑗 chosen above satisfies 

condition(102). Let an approximation space 𝒜𝑝
𝑠𝜃(ℱ),0 < 𝜃,𝑝 ≤ ∞, 𝑠 > 0, be introduced 

by 

‖𝑓‖𝒜𝑝𝑠𝜃(ℱ) ≔ {∑(𝑎𝑗𝑠𝐸𝑗(𝑓))
𝜃

𝑗∈ℤ

}

1
𝜃

,                                   (109) 

where 𝑎 ≔ |det 𝐴|
1

𝑛. 

Note that 𝒜𝑝
𝑠𝑝(ℱ)coincides with the space 𝒜𝑝

𝑠 (ℱ)of(104). The next result compares the 

space(109) with that in(87). 

Proposition (2.2.19)[24]:  If𝜑is stable, then 

𝒜𝑝
𝑠𝜃(ℱ) = 𝐵𝑝

𝑠𝜃(𝜑).                                                (110) 

Proof. By [29] (for the particular case under consideration see also [30]), for ℱ 

satisfying(102) the equivalence 

‖𝑓‖𝒜𝑝𝑠𝜃(ℱ) ≈ inf {∑(𝑎𝑗𝑠‖𝑓𝑗 − 𝑓𝑗−1‖)
𝜃

𝑗∈ℤ

}

1
𝜃

                                   (111) 

is valid uniformly in𝑓 ∈ 𝒜𝑝
𝑠𝜃(ℱ). Here the infimum is taken over all expansions  

𝑓 =∑(𝑓𝑗 − 𝑓𝑗−1)

𝑗∈ℤ

(convergence in 𝐿𝑝) 

with 𝑓𝑗 ∈ ℱ𝑗 . Since for such𝑓𝑗we have 

𝑓𝑗 − 𝑓𝑗−1 =∑𝑐𝑗(𝑘)𝜑𝑗𝑘 
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(see(107) and(71)), the set of these expansions for 𝑓 coincides with that involved in the 

definition of 𝐵𝑝
𝑠𝜃(𝜑)(see(87)). 

We show that if 𝜇:= 𝑠 −
𝑛

𝑝
, then 

𝑎𝑗𝑠‖𝑓𝑗 − 𝑓𝑗−1‖𝑝
≤ 𝐶 {∑(|supp𝜑𝑗𝑘|

𝜇
|𝑐𝑗(𝑘)|)

𝑝

𝑘∈ℤ

}

1
𝑝

.                                   (112) 

Raising to the power𝜃and summing over 𝑗, and then applying(111) and(87), we obtain 

‖𝑓‖𝒜𝑝𝑠𝜃(ℱ) ≤ 𝐶‖𝑓‖𝐵𝑝𝑠𝜃(𝜑).                                   (113) 

Next, 𝑎 change of variables reduces(112) to the case where 𝑗 = 0, that is, to the inequality 

‖∑ 𝑐(𝑘)𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

‖

𝑝

≤ 𝐶 {∑|𝑥(𝑘)|𝑝

𝑘∈ℤ

}

1
𝑝

, 

  which is true by the stability of 𝜑(see(81)). Since the stability of𝜑provides the inequality 

reverse to(112), we also have 

‖𝑓‖𝐵𝑝𝑠𝜃(𝜑) ≤ 𝐶‖𝑓‖𝒜𝑝𝑠𝜃(ℱ). 

Together with(113), this completes the proof of the proposition to within inequality 

(108). By 𝑎 change of variables, the latter reduces to the estimate  

‖∑ 𝑐(𝑘)𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

‖

∞

≤ 𝐶 ‖∑ 𝑐(𝑘)𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

‖

𝑝

.                           (114) 

For the proof of(114) we need the following fact. 

Lemma (2.2.20)[24]: The family{supp 𝜑(𝑥 − 𝑘): 𝑘 ∈ ℤ𝑛} = {𝑘 + supp 𝜑: 𝑘 ∈ ℤ𝑛}is 𝐶-

disjoint with 𝐶 = 𝐶(𝜑). 2 

Proof:  Let 

𝑚(𝜑) ≔ ess sup
𝑥

(∑ 1supp𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

) 

be the multiplicity of this family. Since 𝜑 is compactly supported,𝑚(𝜑) < ∞. Then the 

result in [31] implies that the family under consideration is 𝐶-disjoint with 𝐶 ≤
𝐶(𝑛)𝑚(𝜑). 

 Using this lemma and the stability of 𝜑(see(81)), we now bound the left-hand side 

of(114) by 

𝐶(𝜑) sup
𝑘
|𝑐(𝑘)| ≤ 𝐶(𝜑) {∑ |𝑐(𝑘)|𝑝

𝑘∈ℤ𝑛

}

1
𝑝

≤ 𝐶1(𝜑) ‖∑ 𝑐(𝑘)𝜑(𝑥 − 𝑘)

𝑘∈ℤ𝑛

‖

𝑝
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 Proposition(2.2.19) is established. 

 Now(110) and(108) allow us to apply Theorem(2.2.18) in order to obtain the required 

result. 

Corollary (2.2.21)[24]: If𝑠, 𝑝, 𝑞 satisfy the condition of Theorem(2.2.18) (see(105)), 
then  

𝐵𝑝
𝑠(𝜑) ⊂ 𝐿𝑞(ℝ

𝑛). 

Remark (2.2.22)[24]: We shall use this embedding in the form of the inequality 

‖∑ 𝑐(𝑗, 𝑘)𝜑𝑗𝑘
𝑘∈ℤ𝑛

‖

𝑞

≤ 𝐶 {∑(|𝑐(𝑗, 𝑘)|. |supp 𝜑𝑗𝑘|
1
𝑞)

𝑝

𝑗,𝑘

}

1
𝑝

,                       (115) 

which follows from the definition of the (quasi)norm in𝐵𝑝
𝑠(𝜑)(see(85)). 

That is, it can be divided into at most C subfamilies of pairwise essentially disjoint 

subsets. 

Remark (2.2.23)[24]: Let 𝐴, ℓ̅, and 𝜑 be as in Remark(2.2.16). Then an analog of 

inequality (108)looks like this: 

‖𝑓‖
𝑊𝑞
ℓ̅ ≤ 𝑐𝑎

𝑗𝑛(
1
𝑝+𝜎

)
‖𝑓‖𝑝, 𝑗 ∈ ℤ 

 (see(96) and(94)). In its turn, this leads to the inequality 

‖∑𝑐(𝑗, 𝑘)𝜑𝑗𝑘
𝑗,𝑘

‖

𝑊𝑞
ℓ̅

≤ 𝐶 {∑(|𝑐(𝑗, 𝑘)||supp 𝜑𝑗𝑘|
1
𝑞)

𝑝

𝑗,𝑘

}

1
𝑝

                        (116) 

 with 𝑠, 𝜎, 𝑝, 𝑞 related by(98). 

Reducing Theorem (2.2.27) to 𝑎 special case. Let 𝑓 ∈ 𝐵𝑝
𝑠(𝜑). In what follows we assume, 

as we may, that 

1

2
≤ ‖𝑓‖𝐵𝑝𝑠 (𝜑) < 1,                                                         (117) 

and therefore (see(85)), there is 𝑎 representation 

𝑓 =∑𝑐𝑗𝑘𝜑𝑗𝑘
𝑗,𝑘

(convergence in 𝐿𝑝)                        (118) 

 such that  

𝜈(𝑓): = {∑(|𝑐𝑗𝑘|. |supp𝜑𝑗𝑘|
1
𝑞)

𝑝

𝑗,𝑘

}

1
𝑝

= 1.                                (119) 
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The required reduction of Theorem(2.2.27) will be attained in two steps.  

We show that Theorem(2.2.27) can be derived from the following result. 

Proposition (2.2.24)[24]: Suppose that conditions (𝑎) and(𝑏) of Theorem(2.2.27) are 

fulfilled. Also, assume that 𝑎 function 𝑔 has 𝑎 representation of the type(118) with 

coefficients 𝑑𝑗𝑘 satisfying the conditions 

𝜈(𝑔):= {∑(|𝑑𝑗𝑘|. |supp 𝜑𝑗𝑘|
1
𝑞)

𝑝

𝑗,𝑘

}

1
𝑝

< ∞,                        (120) 

supp 𝑑 ≔ {(𝑗, 𝑘): 𝑑𝑗𝑘 ≠ 0} ⊂ {(𝑗, 𝑘): supp𝜑𝑗𝑘 ⊂ supp 𝜑}.                        (121) 

 Then for each integer 𝑁 ≥ 1 there is 𝑎 linear combination 𝑔𝑁 ∈ ℒ𝑀(𝜑) such that  

supp𝑔𝑁 ⊂ supp 𝜑,                                                (122) 

𝑀 ≤ 𝐶𝑁𝜈(𝑔)
𝑝, in particular, 𝑔𝑁 = 0if 𝑀 < 1,                        (123) 

‖𝑔 − 𝑔𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛𝜈(𝑔).                                        (124) 

Here and in the sequel 𝐶 stands for 𝑎 constant depending only on 𝜑 and 𝑝∗ ≔ min(1, 𝑝). 
This 𝐶 may change from line to line. 

We show that this proposition implies Theorem(2.2.27). Suppose 𝜑 and 𝑓 satisfy the 

conditions of that theorem and(117)– (119) are fulfilled. Given 𝑁 ≥ 1, we choose the 

largest 𝑗0 ∈ ℤ such that 

∑ ∑(|𝑐𝑗𝑘||supp 𝜑𝑗𝑘|)
𝑝

𝑗≤𝑗0𝑘∈ℤ𝑛

≤ 𝑁
−(1−

𝑝
𝑞
)
. 

Set𝑓− ≔ ∑ ∑  𝑗≤𝑗0𝑘 and𝑓+ ≔ 𝑓−𝑓−. Together with the embedding(115) and 

conditions(119) and(117), this choice of𝑗0leads to the inequalities 

‖𝑓−‖𝑞 ≤ 𝐶‖𝑓−‖𝐵𝑝𝑠 (𝜑) ≤ 𝐶𝜈(𝑓−)
1
𝑝 ≤ 𝐶𝑁

1
𝑞−
1
𝑝 ≤ 2𝐶𝑁−

𝑠
𝑛‖𝑓‖𝐵𝑝𝑠 (𝜑). 

Hence, it suffices to prove the result for the function𝑓+. Since the assumptions and claims 

of Theorem(2.2.27) are invariant under the transformation𝐹(𝑥) → |det 𝐴|
−
𝑗0
𝑞 𝐹(𝐴−𝑗0𝑥), 

we may assume that 𝑗0 = 0. Then 

𝑓+ = ∑ 𝑔𝑘
𝑘∈ℤ𝑛

,                                                                (125) 

 Where 

𝑔𝑘 =∑𝑐𝑗𝑘, 𝜑𝑗𝑘 ,                                                (126) 
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 with(𝑗, 𝑘′)running over the set{(𝑗, 𝑘′): supp 𝜑𝑗𝑘′ ⊂ supp 𝜑0𝑘}.After shifting by 𝑘, the 

function 𝑔𝑘  will satisfy the assumptions of Proposition(2.2.24). This implies the existence 

of 𝑎 linear combination 𝑔𝑁,𝑘 ∈ ℒ𝑀𝑘(𝜑)such that 

supp 𝑔𝑁,𝑘 ⊂ supp 𝑔𝑘 (⊂ supp𝜑0𝑘),                                        (127) 

𝑀𝑘 ≤ 𝐶𝑁𝜈(𝑔𝑘)
𝑝,                                        (128) 

‖𝑔𝑘 − 𝑔𝑁,𝑘‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛𝜈(𝑔𝑘).                                        (129) 

Now we set 

𝑓𝑁 ≔∑𝑔𝑁,𝑘
𝑘

. 

Since the family {supp 𝑔𝑘: 𝑘 ∈ ℤ
𝑛}is 𝐶-disjoint (see(127) and Lemma(2.2.20)), 

relations(125)– (129) imply that 

‖𝑓+ − 𝑓𝑁‖𝑞 ≤ 𝐶 {∑‖𝑔𝑘 − 𝑔𝑁,𝑘‖𝑞
𝑞

𝑘

}

1
𝑞

≤ 𝐶𝑁−
𝑠
𝑛 {∑𝜈(𝑔𝑘)

𝑞

𝑘

}

1
𝑞

. 

The definition of 𝑔𝑘  and the Jenssen inequality yield  

{∑𝜈(𝑔𝑘)
𝑞

𝑘

}

1
𝑞

≤ {∑(|𝑐𝑗𝑘||supp 𝜑𝑗𝑘|
1
𝑞)

𝑝

𝑘,𝑗

}

1
𝑝

= 𝜈(𝑓+). 

Since 𝜈(𝑓+) ≤ 𝜈(𝑓) = 1 ≤ 2‖𝑓‖𝐵𝑝𝑠 (𝜑)(see(117)), the linear combination𝑔𝑁 approximates 

𝑓 = 𝑓+ + 𝑓− in 𝐿𝑝(ℝ
𝑛)with the required rate. Moreover, by(128), the number of its terms 

is at most ∑ 𝑀𝑘 ≤ 𝐶𝑁𝑘 ∑𝜈(𝑔𝑘)
𝑝 = 𝐶𝑁𝜈(𝑓+)

𝑝 ≤ 𝐶𝑁. Thus, Proposition (2.2.24) implies 

Theorem(2.2.27) 

In its turn, Proposition(2.2.24) is 𝑎 consequence of the result presented below. 

Suppose 𝜑 satisfies the conditions of Theorem(2.2.27).Then there is 𝑎 digit set 𝒟 ⊃
supp𝑚such that the chromatic number of 𝑇:= 𝑇(𝐴,𝒟) is bounded, and 

𝜒(𝜑) = 𝜒(𝐴, 𝒟) < ∞.                                        (130) 

Recall that for this 𝑇 we have  

supp 𝜑 ⊂ 𝑇,                                                        (131) 

Whence 

supp 𝜑𝑗𝑘 ⊂ 𝑇𝑗𝑘 ≔ 𝐴−𝑗(𝑇 + 𝑘).                        (132) 

We apply Proposition(2.2.17) to the partition of 𝒱 into the collection of trees 𝒱𝑅(𝛾) with 

𝑅 ∈ ℛ(𝛾) and 𝛾 belonging to the set Γ of colors. Here 𝒱 is the set of vertices of the 

digraph 𝐺𝑟:= 𝐺𝑟(𝐴, 𝒟). We shall index the functions 𝜑𝑗𝑘and the coefficients 𝑐𝑗𝑘 of the 

corresponding expansions by the subscripts 𝑇′ ∈ 𝒱, setting 
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𝜑𝑇′ ≔ 𝜑𝑗𝑘  and𝑐𝑇′ ≔ 𝑐𝑗𝑘 if 𝑇
′ = 𝑇𝑗𝑘.                                (133) 

We formulate 𝑎 result implying Proposition(2.2.24). 

Proposition (2.2.25)[24]: Suppose that conditions(𝑎) and(𝑏) of Theorem(2.2.27) are 

fulfilled. Also, assume that 𝑎 function 𝑔 admits 𝑎 representation 

𝑔 = ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈𝒱

                                                (134) 

such that 

𝜈(𝑔) ≔ {∑ (|𝑑𝑇′||supp 𝜑𝑇′|
1
𝑞)

𝑝

𝑇′∈𝜈

}

1
𝑝

< ∞,                        (135) 

and, moreover, 

supp 𝑑 ≔ {𝑇′ ∈ 𝒱: 𝑑𝑇′ ≠ 0} ⊂ 𝒱𝑅(𝛾)                        (136) 

for 𝑎 given 𝛾-root 𝑅.  

Then for every 𝑁 ≥ 1 there is 𝑎 linear combination𝑔𝑁 ∈ ℒ𝑀(𝜑)such that 

supp 𝑔𝑁 ⊂ 𝑅,                                                        (137) 

𝑀 ≤ 𝐶𝑁𝜈(𝑔)𝑝 ,                                                        (138) 

𝑔𝑁 = 0 if 𝑁𝜈(𝑔)
𝑝 < 1,                                        (139) 

‖𝑔 − 𝑔𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛𝜈(𝑔),                                                        (140) 

provided 𝑔𝑁 ≠ 0. We derive Proposition (2.2.24) from Proposition (2.2.25). Assume that 

𝑎 function 𝑔 satisfies the hypothesis of Proposition (2.2.24). Using the notation introduced 

above and condition(121), we can rewrite the representation for 𝑔 as  

𝑔 = ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈𝒱

.                                                        (141) 

This is possible because 

𝒱 = {𝑇𝑗𝑘: supp𝜑𝑗𝑘 ⊂ supp 𝜑} 

(see(131) and(132)). Inequality(120) can be rewritten in 𝑎 similar way. Using the 

partition(99) of the set 𝒱, we write 

𝑔 =∑𝑔𝛾
𝛾∈Γ

,                                                                (142) 

where𝑔𝛾is given by 

𝑔𝛾 = ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈𝒱(𝛾)

.                                                                (143) 
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If we prove Proposition(2.2.24) for each function 𝑔𝛾, then(142) allows us to establish the 

same for the function 𝑔 up to the multiplicative constant #Γ. Since all the assertions of that 

proposition are homogeneous, without loss of generality we may assume that 

𝜈(𝑔𝛾) = 1,                                                                (144) 

 and derive the desired result for this𝑔𝛾. Using the partition(101) of𝒱(𝛾), we obtain 

𝑔𝛾 = ∑ 𝑔𝛾,𝑅
𝑅∈ℛ(𝛾)

,                                                                (145) 

where𝑔𝛾,𝑅 is given by 

𝑔𝛾,𝑅: = ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈𝒱𝑅(𝛾)

.                                                        (146) 

Each function 𝑔𝛾,𝑅 satisfies the assumptions of Proposition(2.2.25), and we conclude that 

for each 𝑁 ≥ 1 there is 𝑎 linear combination𝑔𝑁,𝛾,𝑅 ∈ ℒ𝑀(𝛾,𝑅)(𝜑)such that the following is 

true: 

supp 𝑔𝑁,𝛾,𝑅 ⊂ supp 𝑔𝛾,𝑅 ,                                        (147) 

𝑀(𝛾, 𝑅) ≤ 𝐶𝑁𝜈(𝑔𝛾,𝑅)
𝑝
< 1,                                        (148) 

‖𝑔𝛾,𝑅 − 𝑔𝑁,𝛾,𝑅‖𝑞
≤ 𝐶𝑁−

𝑠
𝑛𝜈(𝑔𝛾,𝑅),                                (149) 

provided𝑔𝑁,𝛾,𝑅 ≠ 0. 

Letℛ+andℛ0be, respectively, the sets of all 𝑅 ∈ ℛ(𝛾)such that𝑔𝑁,𝛾,𝑅 ≠ 0and𝑔𝑁,𝛾,𝑅 = 0. 

We define the required approximant by the formula 

𝑔𝑁,𝛾,𝑅 ≔ ∑ 𝑔𝑁,𝛾,𝑅
𝑅∈ℛ+

.                                        (150) 

Then, by(147) and(132), 

supp(𝑔𝛾,𝑅 − 𝑔𝑁,𝛾,𝑅) ⊂ supp 𝑔𝛾,𝑅 ⊂⋃{𝑇′: 𝑇′ ∈ 𝒱𝑅(𝛾)}. 

The latter union is 𝑎 subset of the 𝛾-root 𝑅 (see(100)), and the set of all these 𝛾-roots is 

essentially pairwise disjoint. Consequently, the family {supp(𝑔𝛾,𝑅 − 𝑔𝑁,𝛾,𝑅) : 𝑅 ∈

ℛ(𝛾)}has the same property. This implies the identity 

‖𝑔𝛾 − 𝑔𝑁,𝛾‖𝑞 = { ∑ ‖𝑔𝛾 − 𝑔𝑁,𝛾,𝑅‖𝑞
𝑞

𝑅∈ℛ+

+ ‖∑ 𝑔𝛾,𝑅
𝑅∈ℛ0

‖

𝑞

𝑞

}

1
𝑞

.                (151) 

The first sum is estimated by applying(149) and then Jenssen’s inequality. This and(144) 
yield the desired inequality 



54 

∑  

𝑅∈ℛ+

≤ 𝐶𝑁−
𝑠
𝑛 { ∑ 𝜈(𝑔𝛾,𝑅)

𝑝

𝑅∈ℛ+

}

1
𝑝

≤ 𝐶𝑁−
𝑠
𝑛(𝑔𝛾) = 𝐶𝑁

−
𝑠
𝑛.                        (152) 

To estimate the second sum in(151) by the same bound, we enumerate all 𝑅 ∈ ℛ0 in a 

sequence{𝑅𝑖: 𝑖 ∈ ℕ} such that the numbers 𝜈𝑖 ≔ 𝜈(𝑔𝛾,𝑅𝑖)become monotone nonincreasing. 

Then we choose an interval 𝐼1 ≔ (0, 𝑖1] with 𝑖1 ∈ ℤ+such that 

∑𝜈𝑖
𝑃

𝑖∈𝐼1

< 𝑁−1, 

 While 

∑𝜈𝑖
𝑝

𝑖∈𝐼1
+

≥ 𝑁−1 

 for 𝐼2
+ ≔ [0, 𝑖1 + 2]. The interval 𝐼1 may be empty; in this case 𝐼1

+ ∩ ℕ = {𝑖1 + 1}.Also, it 

may happen that 𝐼1 = (0, +∞)and in this case 𝐼1
+ = ∅. If 𝐼1

+is nonempty, we continue this 

construction by choosing an interval 𝐼2 ≔ [𝑖1 + 2, 𝑖2] such that 

∑𝜈𝑖
𝑝

𝑖∈𝐼2

< 𝑁−1, 

while 

∑𝜈𝑖
𝑝

𝑖∈𝐼2
+

≥ 𝑁−1 

for 𝐼2
+ ≔ [𝑖1 + 2, 𝑖2 + 1].Since∑𝜈𝑖

𝑝
≤ 𝜈(𝑔𝛾)

𝑝
= 1, this procedure yields 𝑎 finite set of 

subsequent intervals 𝐼1, 𝐼1
+, … , 𝐼ℓ, 𝐼ℓ

+, where 𝐼ℓ is unbounded, 𝐼ℓ
+ = ∅, and 𝐼𝑚

+\𝐼𝑚contains 

the only integer 𝑖𝑚
+ ≔ 𝑖𝑚 + 1,1 ≤ 𝑚 < ℓ. 

For these intervals we have 

∑ 𝜈𝑖
𝑝

𝑖∈𝐼𝑚

< 𝑁−1, ∑ 𝜈𝑖
𝑝

𝑖∈𝐼𝑚
+

≥ 𝑁−1                                        (153) 

with 1 ≤ 𝑚 ≤ ℓ in the first inequality and 1 ≤ 𝑚 < ℓ in the second. Observe also that the 

definition of ℛ0 and(148) imply that 

𝜈𝑖 < 𝑁
−
1
𝑝, 𝑖 ∈ ℕ.                                                        (154) 

Now we set 

𝜓𝑚 ≔ ∑ 𝑔𝛾,𝑅𝑖
𝑖∈𝐼𝑚

, 𝜓𝑚
+ ≔ 𝑔𝛾,𝑅

𝑖𝑚
+ , 1 ≤ 𝑚 ≤ ℓ. 

Since the supports of these functions are pairwise essentially disjoint, we have     
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‖∑ 𝑔𝛾,𝑅
𝑅∈ℛ0

‖

𝑞

= {∑‖𝜓𝑚‖𝑞
𝑞

ℓ

𝑚=1

+ ∑‖𝜓𝑚
+‖𝑞

𝑞

ℓ

𝑚=1

}

1
𝑞

. 

Applying the embedding(115) to each term on the right, we bound this quantity by  

𝐶 {∑ 𝜈(𝜓𝑚
+ )𝑞

ℓ

𝑚=1

+ ∑‖𝜓𝑚‖𝑞
𝑞

ℓ

𝑚=1

}

1
𝑞

. 

Inequality(153) implies the estimate 

∑ 𝜈(𝜓𝑚)
𝑞

ℓ

𝑚=1

= ∑ (∑ 𝜈𝑖
𝑝

𝑖∈𝐼𝑚

)

𝑞
𝑝ℓ

𝑚=1

≤ ℓ𝑁
−
𝑞
𝑝, 

while(154) yields 

∑‖𝜓𝑚
+‖𝑞

𝑞

ℓ

𝑚=1

= ∑ 𝜈
𝑖𝑚
+
𝑞

ℓ

𝑚=1

< ℓ𝑁
−
𝑞
𝑝. 

To estimateℓ , we use the second inequality in(153) to obtain 

(ℓ − 1)𝑁
−1
≤ ∑ ∑ 𝜈𝑖

𝑝

𝑖∈𝐼𝑚
+𝑚<ℓ

≤∑𝜈𝑖
𝑝

∞

𝑖=1

≤ 1, 

whenceℓ ≤ 𝑁 + 1. 

Collecting all these inequalities, we get 

‖∑ 𝑔𝛾,𝑅
𝑅∈ℛ0

‖

𝑞

≤ 𝐶 (ℓ𝑁
−
𝑞
𝑝)

1
𝑞
≤ 𝐶𝑁

1
𝑞−
1
𝑝 = 𝐶𝑁−

𝑠
𝑑. 

  Together with(152), this proves the required estimate(124) for 𝑔𝛾 .  

Now we estimate the number of terms in the linear combination 𝑔𝑁,𝛾.  

𝑀(𝛾) ≔ ∑ 𝑀(𝛾, 𝑅)

𝑅∈ℛ+

≤ 𝐶𝑁 ∑ 𝜈(𝑔𝛾,𝑅)
𝑝

𝑅∈ℛ(𝛾)

= 𝐶𝑁𝜈(𝑔𝛾,𝑅)
𝑝
= 𝐶𝑁. 

Thus, assertion(123) is also true for 𝑔𝛾 . 

We define the required approximant 𝑔𝑁 for the function 𝑔 as in(142) by setting  

𝑔𝑁 =∑𝑔𝑁,𝛾
𝛾∈Γ
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(see(150)). Then inequalities(138) and(140) for 𝑔𝛾and the linear combination 𝑔𝑁,𝛾 

imply the same results for 𝑔 and 𝑔𝑁 with an additional factor of#Γ. Consequently,(123) 
and(124) are true in this case, and it remains to check(122). By(147) and(142),  

supp𝑔𝑁 ⊂⋃supp 𝑔𝛾,𝑅
𝛾∈Γ

⊂⋃ ⋃ supp 𝑔𝛾,𝑅
𝑅∈ℛ(𝛾)𝛾

. 

In its turn, supp 𝑔𝛾,𝑅is 𝑎 subset of the set ⋃{supp 𝜑𝑇′ : 𝑇
′ ∈ 𝒱𝑅(𝛾)}(see(146)), and the 

union of all 𝛾-roots 𝑅,𝛾 ∈ Γ, coincides with the set 𝒱 of all vertices; see 

Proposition(2.2.17).  

Finally, 𝒱 = {𝑇′: supp 𝜑𝑇′ ⊂ supp 𝜑}, whencesupp𝑔𝛾 ⊂ supp 𝜑, and we see that  

supp𝑔𝑁 ⊂ supp 𝜑. 

This proves the final assertion(122) of Proposition(2.2.24). 

We introduce 𝑎 nonlinear method of approximation that will be used in the proof of 

Proposition(2.2.25). The input of the corresponding approximation algorithm consists of 

an integer 𝑁 ≥ 1 and 𝑎 function 

𝑑: 𝑇′ → 𝑑𝑇′ ∈ ℝ, 𝑇
′ ∈ 𝒱𝑅(𝛾),                                (155) 

satisfying the condition 

𝜈(𝑑) ≔ { ∑ (|𝑑𝑇′||supp 𝜑𝑇′|
1
𝑞)

𝑝

𝑇′∈𝒱𝑅(𝛾)

}

1
𝑝

< ∞.                        (156) 

Recall that 𝒱𝑅(𝛾) is the set of vertices of the tree 𝐺𝑟𝑅(𝛾) = (𝒱𝑅(𝛾), ℰ𝑅(𝛾))rooted at 𝑅 

(see Proposition(2.2.17)(𝑏)). 

Given 𝑁 and the function 𝑑, we introduce the cost functionℐdefined on the subsets 

Ω ⊂ 𝒱𝑅(𝛾)by 

ℐ(Ω) ≔ ∑ (|𝑑𝑇′||supp 𝜑𝑇|
1
𝑞)

𝑝

𝑇′∈Ω

.                                (157) 

For the subset 

𝒱𝑅(𝛾; 𝑇
′) ≔ {𝑇" ∈ 𝒱𝑅(𝛾): 𝑇

" ⊂ 𝑇′}                                        (158) 

with𝑇′ ∈ 𝒱𝑅(𝛾), we simplify this notation as follows: 

ℐ(𝑇′) ≔ ℐ(𝒱𝑅(𝛾; 𝑇
′)).                                                (159) 

Note that ℐ(𝑇′) ≠ ℐ({𝑇′})and 

ℐ(𝑇) = 𝜈(𝑑)𝑝 < ∞.                                                (160) 

It is readily seen that(158) is the set of vertices of 𝑎 subtree of the tree 𝒯𝑅(𝛾)with the root 

𝑇′. 

Now, assuming that 𝑁 is such that 
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ℐ(𝑅) ≥ 𝑁−1,                                                                (161) 

we define 𝑎 set 𝐺𝑁 ⊂ 𝒱𝑅(𝛾)by 

𝐺𝑁 ≔ {𝑇′ ∈ 𝒱𝑅(𝛾): ℐ(𝑇
′) ≥ 𝑁−1}.                                (162) 

Since ℐ(𝑇′) ≥ ℐ(𝑇") if𝑇" ⊂ 𝑇′, this 𝐺𝑁 is the set of vertices of 𝑎 subtree of 𝐺𝑟𝑅(𝛾), which 

is finite because ℐ(𝑇′) → 0,|𝑇′| → 0(see(160)). Finally,𝑅 ∈ 𝐺𝑁 by(161), and itis the root 

of that subtree. 

Using the set inclusion order on 𝐺𝑁, we introduce the set ℳ𝑁 of minimal elements of 𝐺𝑁. 

Minimality implies that, if 𝑇′ ∈ ℳ𝑁 and 𝑇" is an off spring of 𝑇′, then (in𝐺𝑟𝑅(𝛾)) 

ℐ(𝑇′) ≥ 𝑁−1, whileℐ(𝑇") < 𝑁−1                        (163) 

We enumerate the elements of ℳ𝑁 in some order: 

ℳ𝑁 ≔ {𝑇𝑗
min: 1 ≤ 𝑗 ≤ 𝑚𝑁}.                                        (164) 

Being vertices of the tree 𝐺𝑟𝑅(𝛾), these elements are either essentially disjoint, or one 

embeds into the other. The latter is impossible because of minimality (see (163)). 
Consequently, the subsets of ℳ𝑁 are pairwise (essentially) disjoint. This implies that 

𝜈(𝑑)𝑝 = ℐ(𝑅) ≥∑ℐ(𝑇𝑗
min)

𝑗

≥
𝑚𝑁
𝑁
, 

Whence 

𝑚𝑁 ≤ 𝑁𝜈(𝑑)
𝑝 .                                                        (165) 

We partition 𝐺𝑁 to obtain 𝑎 collectionℬ𝑁 of directed paths (called basic paths). In 

the description of the corresponding partition algorithm, we shall use the following 

notation. 

Let 𝑇1 and 𝑇2 be the tail and the head (respectively) of 𝑎 directed path 𝑃 in the tree 

𝐺𝑟𝑅(𝛾). Since 𝑃 is uniquely determined by its endpoints, we write 𝑃 ≔ [𝑇1, 𝑇2]. We recall 

(see(68)) that the endpoints of 𝑃 are denoted by 𝑇𝑃
− and 𝑇𝑃

+. So,𝑃 ≔ [𝑇𝑃
−, 𝑇𝑃

+].We also 

introduce subpaths of 𝑃 “open from the head or tail” by setting  

[𝑇𝑃
−, 𝑇𝑃

+): = 𝑃\{𝑇𝑃
+}and (𝑇𝑃

−, 𝑇𝑃
+] ≔ 𝑃\{𝑇𝑃

−}, 

and so forth. We start with splitting𝐺𝑁into 𝑎 collection 𝒜 ≔ {𝐴𝑗: 0 ≤ 𝑗 ≤ 𝑚𝑁}of “long” 

paths satisfying the following conditions. 

(𝑎) The subcollection{𝐴𝑗: 0 ≤ 𝑗 ≤ 𝑖}is 𝑎 partition of the set 

𝐺𝑁
𝑖 ≔⋃|𝑇𝑗

min, 𝑅|

𝑗≤1

, 𝑖 ≤ 𝑚𝑁. 

(𝑏) Each long path 𝐴𝑗 with 𝑗 ≥ 1 is of the form𝐴𝑗 = [𝑇𝑗
min, 𝑇′), where 𝑇′belongs to 𝑎 

suitable 𝐴𝑗 with 𝑗′ < 𝑗. This 𝑇′ is called 𝑎 contact vertex and is denoted by 𝑇𝑗
c. Thus, 

𝐴𝑗 ≔ [𝑇𝑗
min, 𝑇𝑗

c), 1 ≤ 𝑗 ≤ 𝑚𝑁.                                                (166) 
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Since 𝐺𝑁
𝑖 = 𝐺𝑁 for 𝑖 ≔ 𝑚𝑁, the collection 𝒜 forms the desired partition of the subtree 𝐺𝑁. 

Moreover,𝒜 determines the set of contact vertices 

𝐶𝑁 ≔ {𝑇𝑖
𝑐} ∪ {𝑅}.                                                        (167) 

Some of these may coincide; therefore, the inequality 

#𝐶𝑁 ≤ 𝑚𝑁 + 1,                                                (168) 

can be strict. 

In order to introduce 𝒜, we use induction on 𝑗, starting with 

𝐴0: = {𝑅} and𝐴1[𝑇1
min, 𝑅]\𝐴0[𝑇1

min, 𝑅). 

Next, assuming that some 𝐴𝑖 satisfying(𝑎)and(𝑏)has been determined for 𝑖 = 0 ,1, . . . , 𝑗, 

we introduce 𝐴𝑗+1 by 𝐴𝑗+1 ≔ [𝑇𝑗+1
min, 𝑅]\(⋃ 𝐴𝑖𝑖≤𝑗 ). Then, clearly, the collection{𝐴𝑖: 0 ≤

𝑖 ≤ 𝑗 + 1} forms 𝑎 partition of 𝐺𝑁
𝑗+1

. We show that 𝐴𝑗+1is of the form(166). Indeed, 

consider the intersection of[𝑇𝑗+1
min, 𝑅]with each path[𝑇𝑖

min, 𝑅], 𝑖 ≤ 𝑗. Since 𝐺𝑁 is 𝑎 tree 

rooted at 𝑅, this intersection is of the form [𝑇𝑖, 𝑅], and the set of the tails{𝑇𝑖: 1 ≤  𝑖 ≤ 𝑗} is 

𝑎 subset of the path[𝑇𝑗+1
min, 𝑅]. Therefore, the set of tails inherits thelinear order of this 

path. If 𝑇𝑖0is the smallest element of {𝑇𝑖}with respect to this order, then 

𝐴𝑗+1 = [𝑇𝑗+1
min, 𝑅]\(⋃[𝑇𝑖

min, 𝑅]

𝑖≤𝑗

) = [𝑇𝑗+1
min, 𝑇𝑖0). 

Moreover, 𝑇𝑖0 ∈ ⋃ 𝐴𝑖𝑖≤𝑗 , which completes the induction. 

We refine 𝐺𝑁 by subdividing each long path 𝐴𝑗 with the help of the contact vertices 

belonging to 𝐴𝑗 ∩ 𝐶𝑁. In this way we introduce 𝑎 collection of subpaths[𝑇′. 𝑇"), where 

𝑇′is either 𝑎 minimal element, or a contact vertex, and 𝑇"is a contact vertex. The set of 

such “intermediate” subpaths is denoted by 𝒫𝑁. In accordance with this definition, we 

have 

supp𝒫𝑁 ≔⋃{𝑃: 𝑃 ∈ 𝒫𝑁} = 𝐺𝑁\{𝑅},                        (169) 

and different subpaths in 𝒫𝑁 do not intersect. In other words, 𝒫𝑁 is 𝑎 partition of 𝐺𝑁\{𝑅}. 

We complete the partition of 𝐺𝑁 by subdividing each subpath  𝑃 ∈ 𝒫𝑁  into basic 

paths as follows. 

Inductively, we define 𝑎 collection of vertices{𝑇ℓ(𝑃) ∈ 𝑃: 1 ≤ ℓ ≤ ℓ𝑃}  beginning 

with𝑇1(𝑃) ≔ 𝑇𝑃
−. If𝑇ℓ(𝑃)has been determined, then we choose𝑇ℓ+1(𝑃)as 𝑎 vertex 

in(𝑇ℓ(𝑃), 𝑇𝑃
+]satisfying 

ℐ([𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)]) ≥ 𝑁
−1, whileℐ([𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃))) < 𝑁

−1. 

Using this, we define 𝑎 basic path 𝐵ℓ(𝑃)by 

𝐵ℓ(𝑃) ≔ [𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)).                                        (170) 
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The vertex 𝑇ℓ+1(𝑃)can be undetermined in the following two cases. 

(𝑎) The vertex 𝑇ℓ(𝑃)coincides with the head 𝑇𝑃
+, orℐ([𝑇ℓ(𝑃), 𝑇𝑃

+]) < 𝑁−1. 

Then we define 𝑇ℓ+1(𝑃)as 𝑎 parent of 𝑇𝑃
+; in the subtree𝐺𝑁this parent is unique. 

(𝑏) The vertex 𝑇ℓ(𝑃)is distinct from 𝑇𝑃
+, butℐ({𝑇ℓ(𝑃)}) ≥ 𝑁

−1. 

Then we define 𝑇ℓ+1(𝑃)as 𝑎 parent of 𝑇ℓ(𝑃). 

In the two cases above, we introduce the basic path 𝐵ℓ(𝑃) by the same formula (170). 
Observe that in case(𝑎) we have 

𝐵ℓ(𝑃) = [𝑇ℓ(𝑃), 𝑇𝑃
+], 

and the procedure is completed with ℓ𝑃 ≔ ℓ. 

In case(𝑏), the basic path 𝐵ℓ(𝑃)is the singleton{𝑇ℓ(𝑃)}, while 𝑇ℓ+1(𝑃) still belongs to 𝑃 

and the procedure can be continued. 

Completing the procedure, we arrive at the partition{𝑇ℓ(𝑃): 1 ≤ ℓ ≤ ℓ𝑃}of 𝑃 into the basic 

paths 𝐵ℓ(𝑃) ≔ [𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)). Their definition implies that 

ℐ(𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)) < 𝑁
−1                                        (171) 

for ℓ ≤ ℓ𝑃, and 

ℐ([𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)]) ≥ 𝑁
−1                                                (172) 

for ℓ ≤ ℓ𝑃, provided𝐵ℓ(𝑃) ≔ [𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃))contains more than one vertex. For 𝑎 

singleton𝐵ℓ(𝑃): = {𝑇ℓ(𝑃)}the first inequality makesno sense, while the second becomes 

ℐ(𝐵ℓ(𝑃)) ≥ 𝑁
−1.                                                (173) 

Collecting all the basic paths of all 𝑃 ∈ 𝒫, we introduce the desired set 

ℬ𝑁 ≔ {𝐵ℓ(𝑃): 1 ≤ ℓ ≤ ℓ𝑃, 𝑃 ∈ 𝒫𝑁}.                                                (174) 

The following result describes its main features. 

Proposition (2.2.26)[24]: (𝑎) 𝐵𝑁 is 𝑎 partition of the set 𝐺𝑁\{𝑅}into directed paths. 

(𝑏) For each 𝐵:= [𝑇𝐵
−, 𝑇𝐵

+] in ℬ𝑁we have 

ℐ((𝑇𝐵
−, 𝑇𝐵

+]) < 𝑁−1.                                        (175) 

(𝑐) The cardinality of ℬ𝑁satisfies 

#ℬ𝑁 ≤ (4𝑁 + 1)𝜈(𝑑)
𝑝.                                                (176) 

Proof:  (𝑎)follows from(169)and the definition of the basic paths;(𝑏) follows from(171), 

because (𝑇𝐵
−, 𝑇𝐵

+] = (𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃))provided 𝐵 ≔ 𝐵ℓ(𝑃). To prove (𝑐), note that the 

family {[𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)]: 1 ≤ ℓ ≤ ℓ𝑃}covers 𝑃 with multiplicity of at most 2.Therefore, 

by (172), 

𝑁−1(ℓ𝑃 − 1) ≤ ∑ ℐ([𝑇ℓ(𝑃), 𝑇ℓ+1(𝑃)])

ℓ<ℓ𝑃

≤ 2ℐ(𝑃), 
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which leads to the inequality 

#ℬ𝑁 = ∑ ℓ𝑃
𝑃∈𝒫𝑁

≤ 2𝑁 ∑ ℐ(𝑃)

𝑃∈𝒫𝑁

+ (#𝒫𝑁). 

By the definitions of the cost function I (see(157)) and the partition𝒫𝑁, the first term on 

the right is at most 

2𝑁ℐ(𝐺𝑁) ≤ 2𝑁ℐ(𝑅) = 2𝑁𝜈(𝑑)
𝑝 

(see(160)). Moreover, by(165) and(168),  

#𝒫𝑁 ≤ (#𝐶𝑁) + (#𝑀𝑁) ≤ (2𝑁 + 1)𝜈(𝑑)
𝑝 . 

Combining these inequalities, we get the desired estimate(176).  

We define the required approximant 𝑔𝑁. First, we consider the (trivial) case of 𝑁 ≥
1 satisfying 

ℐ(𝑅) < 𝑁−1;                                                                 (177) 

then the required approximant is given simply by 

𝑔𝑁 ≔ 0.                                                                (178) 

 Otherwise, the family ℬ𝑁 is determined, and each basic path 𝐵 ∈ ℬ𝑁 gives rise to 𝑎 part 

of the linear combination 𝑔𝑁 as follows. 

For𝑇′ ∈ 𝐵, let𝑗 denote the heightℎ(𝑇′) (see(11)). Then  

𝑗 ≤ 𝑗𝐵: =  ℎ(𝑇𝐵
−).  

Identity(24) yields 

𝜑𝑇′ = ∑ 𝑚(𝑇′, 𝑇")𝜑𝑇"

ℎ(𝑇")=𝑗𝐵

                                        (179) 

With 

𝑚(𝑇′, 𝑇") ≔ 𝑚∗(𝑗𝐵 − 𝑗, 𝑘)for𝑇
" ≔ 𝑇𝑗𝐵,𝑘,                        (180) 

Each vertex 𝑇"occurring here is an off spring of 𝑇′in the digraph 𝐺𝑟(𝐴, 𝒟). This and (179) 

imply the embeddings  

supp 𝜑𝑇′ ⊂⋃{supp 𝜑𝑇" : 𝑚(𝑇
′, 𝑇") ≠ 0} 

⊂⋃{𝑇": 𝑇"is an offspring of 𝑇′} = 𝑇′. 

In particular, 

supp 𝜑𝑇" ⊂ supp 𝜑𝑇′ ⊂ 𝑇
′ ⊂ 𝑇𝐵

+,                                (181) 

provided 𝑚(𝑇′, 𝑇") ≠ 0 and 𝑇′ ∈ 𝐵. 

Now, for each 𝑇′ ∈ 𝐵 we define 𝑎 function 𝜙𝑇′by 
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𝜙𝑇′ ≔∑ 𝑚(𝑇′, 𝑇")𝜑𝑇"

𝑇"

,                                        (182) 

where𝑇"runs over the set of indices in(179) satisfying 

|supp 𝜑𝑇" ∩ 𝑇𝐵
−| ≠ 0.                                                (183) 

This definition and(181) yield 

supp(𝜑𝑇′ − 𝜙𝑇′) ⊂ 𝑇𝐵
+\𝑇𝐵

−.                                        (184) 

Now we are in 𝑎 position to introduce the output of the algorithm, namely, the linear 

combination𝑔𝑁 given by 

𝑔𝑁 ≔ 𝑑𝑅𝜑𝑅 + ∑ ∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈𝐵𝐵∈ℬ𝑁

.                                        (185) 

 This completes the construction of the algorithm. 

Theorem (2.2.27)[24]: For each 𝑓 ∈ 𝐵𝑝
𝑠(𝜑) and each integer 𝑁 ≥ 1, there is 𝑎 function 

𝑓𝑁 ∈ ℒ𝜑(𝑁)such that 

‖𝑓 − 𝑓𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛‖𝑓‖𝐵𝑝𝑠(𝜑),                                    (186) 

where 𝐶 is 𝑎 constant depending only on 𝜑 and 𝑝∗: = min(1, 𝑝). 

Proof. Suppose 𝑔 satisfies the assumptions of Proposition(2.2.25). In particular, 

𝑔 = ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈𝒱𝑅(𝛾)

,                                                                                (187) 

where the coefficients are such that 

𝜈(𝑔) ≔ {∑(|𝑑𝑇′||supp 𝜑𝑇′|
1
𝑞)

𝑝

𝑇′

}

1
𝑝

< ∞.                                        (188) 

Furthermore, 0 < 𝑝 < 𝑞 ≤ ∞are related by 

𝑠

𝑛
=
1

𝑝
−
1

𝑞
,                                                                (189) 

where 𝑝 ≤ 1 if 𝑞 = ∞. 

Since the assumptions of Theorem(2.2.27) are also fulfilled, we have 

‖∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈Ω

‖

𝑞

≤ 𝐶 {∑ (|𝑑𝑇′||supp 𝜑𝑇′|
1
𝑞)

𝑝

𝑇′∈Ω

}

1
𝑝

< ∞.                       (190) 

(see(115) and(189)).  

We begin at once with the nontrivial case of 𝑁 ≥ 1 satisfying 
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𝑁𝜈(𝑔)𝑝 ≥ 1.                                                                      (191) 

 Taking such 𝑁 and the function𝑑: 𝑇′ → 𝑑𝑇′defined by the expansion(187)as aninput of 

our algorithm, we have ℐ(𝑅) = 𝜈(𝑑)𝑝 = 𝜈(𝑔)𝑝 ≥ 𝑁−1. Then condition (160) is satisfied, 

and the output of the algorithm gives the linear combination 𝑔𝑁 defined by(185). 
By(181), we havesupp 𝑔𝑁 ⊂ 𝑅, and this proves the first assertion of Proposition (2.2.25) 
(see(137)).  

To prove the second, we first estimate the number 𝑀(𝐵) of terms in the linear combination 

∑ 𝑑𝑇′𝜙𝑇′𝑇′∈𝐵 . In accordance with(182) and(183), each term of 𝜙𝑇′with𝑇′ ∈ 𝐵is 𝑎 linear 

combination of functions 𝜑𝑇", where 𝑇"runs over the set  

�̃� ≔ {𝑇" ∈ 𝒱: |supp 𝜑𝑇" ∩ 𝑇𝐵
−| ≠ 0, ℎ(𝑇") = 𝑗𝐵};                                   (192) 

recall that 𝑗𝐵 ≔ ℎ(𝑇𝐵
−). Hence, 𝑀(𝐵) ≤ #�̃�; the subsets of �̃�, in turn, are colored by at 

most 𝜒(𝜑) colors, and those of the same color (and height) do not essentially intersect. 

Therefore, #𝐵 ≤  𝜒(𝜑). Together with(176), this implies that the number of terms in 

(185) is at most 1 + (#ℬ𝑁)𝜒(𝜑) ≤ 𝐶𝑁𝜈(𝑑)
𝑝. It remains to estimate the error function 𝑔 −

𝑔𝑁. For this, we put 

𝐹(Ω) ≔ ∑ 𝑑𝑇′𝜑𝑇′

𝑇′∈Ω

, Ω ⊂ 𝒱𝑅(𝛾).                                   (193) 

For the set 𝒱𝑅(𝛾; 𝑇
′) ≔ {𝑇" ∈ 𝒱𝑅(𝛾): 𝑇

" ⊂ 𝑇′}with 𝑇′ ∈ 𝒱𝑅(𝛾), we simplify this notation 

by putting 

𝐹(𝑇′) ≔ 𝐹(𝒱𝑅(𝛾; 𝑇
′)).                                   (194) 

Since ℬ𝑁 is 𝑎 partition of 𝐺𝑁\{𝑅}, the error function can be written as 

𝑔 − 𝑔𝑁 = ∑ 𝐹∗(𝐵)

𝐵∈ℬ𝑁

+ 𝐹(𝐺𝑁
𝑐 ),                                   (195) 

 where 𝐺𝑁
𝑐 ≔ 𝒱𝑅(𝛾)\𝐺𝑁and  

𝐹∗(𝐵) ≔ 𝐹(𝐵) − ∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈B

.                                   (196) 

Taking the 𝐿𝑞-norm in(195), we obtain 

‖𝑔 − 𝑔𝑁‖𝑞 ≤ 𝐶(𝐽1 + 𝐽2),                                   (197) 

 where 𝐶 depends on 𝑞∗ ≔ min(1, 𝑞), and the 𝐽𝑘 are given by 

𝐽1 ≔ ‖∑ 𝐹∗(𝐵)

𝐵∈ℬ𝑁

‖

𝑞

, 𝐽2 ≔ ‖𝐹(𝐺𝑁
𝑐 )‖𝑞. 

If we prove that 𝐽𝑘 ≤ 𝐶𝑁
−
𝑠

𝑑𝜈(𝑔),𝑘 = 1,2, then the desired inequality(140) and 

Proposition(2.2.25) will be established. 

In order to estimate 𝐽1, we show that for distinct paths 𝐵, 𝐵′ in ℬ𝑁 we have 
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|supp 𝐹∗(𝐵) ∩ supp 𝐹∗(𝐵′)| = 0.                                   (198) 

First, suppose that the heads 𝑇𝐵
+ and 𝑇𝐵′

+  are essentially disjoint sets. Since 

𝐹∗(𝐵) = ∑ 𝑑𝑇′(𝜑𝑇′ − 𝜙𝑇′)

𝑇′∈B

,                                   (199) 

the embedding(184) implies that 

supp 𝐹∗(𝐵) ⊂ 𝑇𝐵
+\𝑇𝐵

−,                                   (200) 

 and 𝑎 similar inclusion is true for the second support. Hence,(198) is fulfilled in this case. 

Now, if 𝑇𝐵
+ and 𝑇𝐵′

+  essentially intersect, then the head of one, say 𝑇𝐵′
+ , embeds into the tail 

𝑇𝐵
−of the other. Indeed, the basic paths 𝐵and𝐵′are disjoint parts of 𝑎 long path 𝐴𝑗 ∈ 𝒜 in 

this case. Consequently, supp 𝐹∗(𝐵′) ⊂ 𝑇𝐵′
+ ⊂ 𝑇𝐵

−, while, by(200), the second support is 

𝑎 subset of 𝑇𝐵
+\𝑇𝐵

−. Thus,(198) is fulfilled in this case as well. 

Applying(198), we get𝐽1 = {∑ ‖𝐹∗(𝐵)‖𝑞
𝑞

𝐵∈𝐵𝑁 }
1

𝑞. We show that 

‖𝐹∗(𝐵)‖𝑞 ≤ 𝐶𝑁
1
𝑝;                                                                       (201) 

 combined with(176) and(189), this yields the required estimate of𝐽1:  

𝐽1 ≤ 𝐶𝑁
1
𝑝𝜈(𝑔)(#ℬ𝑁)

1
𝑞 ≤ 𝐶𝑁−

𝑠
𝑛𝜈(𝑔).                                   (202) 

To prove(201), note that 𝜙𝑇′ = 𝜑𝑇𝐵−if𝑇′ = 𝑇𝐵
− (see(182)). Hence, the vertex 𝑇′ in(199) 

runs over the set 𝐵−:= 𝐵{𝑇𝐵
−}, and we can write 

‖𝐹∗(𝐵)‖𝑞 ≤ 𝐶(𝑞) {‖𝐹(𝐵
−)‖𝑞 + ‖ ∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈𝐵−

‖

𝑞

}.                                   (203) 

We bound the right-hand side of(203) by 𝐶ℐ(𝐵−)
1

𝑝. Since 𝐵− ≔ (𝑇𝐵
−, 𝑇𝐵

+], 
assertion(175) implies that ℐ(𝐵−) ≤ 𝑁−1. Therefore, the above bound for(203) gives the 

required inequality(201) and proves estimate(202) for 𝐽1. In the subsequent 

considerations, the embedding(190) will be used in the equivalent form involving the cost 

functionℐ (see(157)): 

‖∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈Ω

‖

𝑞

≤ 𝑐ℐ(Ω)
1
𝑝.                                   (204) 

This immediately yields 

‖𝐹(𝐵−)‖𝑞 ≤ 𝑐ℐ(𝐵
−)
1
𝑝.                                   (205) 

To estimate the second term in(203), we use(182) and(192) to write 

∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈𝐵−

= ∑ ( ∑ 𝑚(𝑇′, 𝑇")𝑑𝑇′

𝑇′∈𝐵−

)𝜑𝑇"

𝑇"∈�̃�

.                                   (206) 
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 By Proposition(2.2.13), we have|𝑚(𝑇′, 𝑇")| ≤ ‖𝑚∗‖∞ < ∞, and it has already been 

proved that #�̃� ≤ 𝜒(𝜑). Therefore, application of the embedding(205) to the right-hand 

side of(206) yields 

‖ ∑ 𝑑𝑇′𝜙𝑇′

𝑇′∈𝐵−

‖

𝑞

≤ 𝐶‖𝑚∗‖∞𝜒(𝜑) { ∑ |𝑑𝑇′|

𝑇′∈𝐵−

} |supp 𝜑𝑇𝐵−|
1
𝑞.                      (207) 

Here we have taken into account the fact that|supp 𝜑𝑇"| = |supp 𝜑𝑇𝐵−|if𝑇
" ∈ �̃�. Now, 

suppose that 𝑝 ≤ 1 (hence,𝑞 = ∞). Applying Jenssen’s inequality, we bound the right-

hand side of(207) by {∑ |𝑑𝑇′|
𝑝

𝑇′∈𝐵− }
1

𝑝 = 𝐶ℐ(𝐵−)
1

𝑝 . For 𝑝 ≤ 1, this and (203)imply the 

required inequality 

‖𝐹∗(𝐵)‖𝑞 ≤ 𝐶ℐ(𝐵
−)
1
𝑝.                                   (208) 

If 𝑝 > 1 (and 𝑞 < ∞), we present the path 𝐵 as 𝑎 sequence 𝑇1 ⊂ 𝑇2 ⊂···⊂ 𝑇ℓwith 𝑇1 = 𝑇𝐵
− 

and 𝑇ℓ = 𝑇𝐵
+. The heights of consequent vertices of 𝐵 differ at least by 1. Therefore, 

|supp𝜑𝑇𝑖+1|/|supp 𝜑𝑇𝑖| ≥ |det 𝐴| =: 𝑎. 

This and Hölder’s inequality lead to the following bound for the right-hand side of(207): 

𝐶 {∑|𝑑𝑇𝑖||supp 𝜑𝑇𝑖|
1
𝑞

𝑖>1

. 𝑎
−
1
𝑞} ≤ 𝐶 {∑(|𝑑𝑇𝑖||supp 𝜑𝑇𝑖|

1
𝑞)

𝑝

𝑖>1

}

1
𝑝

{∑𝑎
−
𝑖𝑝′

𝑞

𝑖>1

}

1
𝑝′

 

≤ 𝐶ℐ(𝐵−)
1
𝑝, 

Thus,(208) is also true in this case. 

It remains to estimate the term 𝐽2 in(197) in 𝑎 similar way. For this, we use 𝑎 lemma, the 

proof of which will be presented later on. 

Now, we derive the desired bound for 𝐽2 ≔ ‖𝐹(𝐺𝑁
𝑐 )‖𝑞. Assertion(𝑏) of the lemma implies 

that 

|supp𝐹(𝑆𝑗) ∩ supp 𝐹(𝑆𝑗′)| = 0 if𝑖 ≠ 𝑗
′and𝑗, 𝑗′ < ℓ. 

Together with assertion(𝑎), this yields 

𝐽2 ≤ 𝐶 (∑‖𝐹(𝑆𝑗)‖𝑞
𝑞

𝑗

)

1
𝑞

. 

Next,(204) and(209) imply the inequality 

‖𝐹(𝑆𝑗)‖𝑞
≤ 𝐶ℐ(𝑆𝑗)

1
𝑝 ≤ 𝐶𝑁

−
1
𝑝. 

 Combining this with(210), we obtain 
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𝐽2 ≤ 𝐶𝑁
1
𝑞−
1
𝑝𝜈(𝑔) = 𝐶𝑁−

𝑠
𝑛𝜈(𝑔). 

 Thus, Proposition(2.2.25) is proved. 

Lemma (2.2.28)[24]: There is 𝑎 collection 𝑆 ≔ {𝑆𝑗: 1 ≤ 𝑗 ≤ ℓ}of subsets of 𝐺𝑁
𝑐with the 

following properties: 

(𝑎) 𝑆 is a partition of 𝐺𝑁
𝑐 ; 

(𝑏) if 𝑇 and 𝑇" belong to distinct subsets of 𝑆\{𝑆ℓ}, they are essentially disjoint; 

(𝑐) for each 𝑆𝑗 ∈ 𝑆 we have 

ℐ(𝑆𝑗) ≤
𝐶

𝑁
;                                                                      (209) 

 (𝑑) the following inequality is valid: 

#𝑆 ≤ (𝑁 + 1)𝜈(𝑔)𝑝.                                   (210) 

Proof. We use the following notation. 

Let𝑇′be 𝑎 vertex of 𝐺𝑟 = (𝒱, ℰ)(it may be out of the set of vertices𝒱𝑅(𝛾)). If Ωis 𝑎 subset 

of𝐺𝑁
𝑐 ⊂ 𝒱𝑅(𝛾), we put 

Ω(𝑇′) ≔ {𝑇" ∈ Ω: 𝑇" ⊂ 𝑇′}.                                                                      (211) 

 Note that 𝑇′may fail to belong to this set, and that 

Ω(𝑅) = Ω.                                                                      (212) 

Now we define the first element𝑆1of𝑆. For this, we introduce the set 

Ω1 ≔ {𝑇′ ∈ 𝒱: ℐ(𝐺𝑁
𝑐 (𝑇′)) ≥ 𝑁−1}.                                   (213) 

Since, for𝑇′ ∈ 𝒱𝑅(𝛾), 

ℐ(𝐺𝑁
𝑐 (𝑇′)) ≤ ℐ(𝑇′) → 0as |𝑇′| → 0 

(see(157) and (159)), the set introduced above is empty or finite. In the former case we 

obtain the required partition of 𝐺𝑁
𝑐  by putting 

𝑆1 ≔ 𝐺𝑁
𝑐and𝑆 ≔ {𝑆1}. 

Since 𝑅 is not an element of the (empty) set Ω1, we have 

ℐ(𝑆1) = ℐ(𝑇
′) < 𝑁−1 

(see(212) and(213)). 

Now, suppose Ω1 ≠ 𝜙. Then there is an element T1 ∈ Ω1of the largest (finite) height, say 

ℎ(𝑇1) ≔ 𝑗max. Since 

ℐ(𝐺𝑁
𝑐 (𝑇′)) ≤ ℐ(𝑇′) < 𝑁−1                                   (214) 

(see(159)), 𝑇1 does not belong to 𝐺𝑁
𝑐 . It follows that 
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Ω1(𝑇1) ⊂ ⋃ Ω1(𝑇
′)

𝑇′∈𝐸(𝑇1)

,                                   (215) 

where the set of indices is given by 

𝐸(𝑇1): = {𝑇
′ ∈ 𝒱: |𝑇′ ∩ 𝑇1| ≠ 0 and ℎ(𝑇

′) = 𝑗max + 1}.                                   (216) 

Indeed, choose𝑇"inΩ1(𝑇1)and show that 𝑇" ∈ Ω1(𝑇
′)for 𝑎 suitable 𝑇′ ∈ 𝐸(𝑇1). Let 𝑇′′′be 

the ancestor of𝑇"in the digraph 𝐺𝑟 = ( 𝒱, ℰ)sharing its height with 𝑇1.Since ℎ(𝑇") >

ℎ(𝑇1) = ℎ(𝑇
′′′′), the set 𝑇"is 𝑎 subset of 𝑎 child 𝑇′of 𝑇′′′. Since 𝑇"is also 𝑎 subset of 𝑇1, 

we have 

|𝑇1 ∩ 𝑇
′| > |𝑇"| > 0andℎ(𝑇′) = ℎ(𝑇′′′) + 1 = 𝑗max + 1. 

Thus,𝑇′ ∈ 𝐸(𝑇1), and 𝑇"embeds in 𝑇′ and is an element of Ω1(𝑇1) ⊂ Ω1. Then, by the 

definition(211), 𝑇"belongs to Ω1(𝑇
′), which proves(215).  

By the maximality of ℎ(𝑇1), we haveℐ(Ω1(𝑇1)) < 𝑁
−1 for each𝑇′ ∈ 𝐸(𝑇1) (see(213)); 

hence, 

ℐ(Ω1(𝑇1)) ≤ ∑ ℐ(Ω1(𝑇
′))

𝑇′∈𝐸(𝑇1)

<
#𝐸(𝑇1)

𝑁
. 

 To estimate the cardinality of 𝐸(𝑇1), observe that its subsets are colored in at most 𝜒(𝜑) 
colors, and that distinct subsets of the same color and height are essentially disjoint. 

Applying the result of [31], we obtain#𝐸(𝑇1) ≤ 𝐶(𝑛)𝜒(𝜑). If we define 𝑆1 ∈ 𝑆 by𝑆1 ≔

Ω1(𝑇1), then the last two inequalities yield ℐ(𝑆1) ≤
𝐶

𝑁
, i.e.,𝑆1satisfies (209). 

To introduce the next element of the collection 𝑆, we put Ω2 ≔ 𝐺𝑁
𝑐\𝑆1and considerthe set 

Ω3 ≔ {𝑇′ ∈ 𝒱;Ω2(𝑇
′) ≥ 𝑁−1}. If this set is empty, then 𝑆2 ≔ Ω2 and 𝑆 ≔ {𝑆1, 𝑆2}. Since 

𝑅 ∉ Ω3 ≠ ∅, we haveℐ(𝑆2) = ℐ(Ω2(𝑅)) < 𝑁
−1, and (209) is fulfilled for 𝑆. 

Now, suppose that the finite setΩ3is not empty, and let 𝑇2 be its vertex of maximal height. 

Then, as before, 

ℐΩ2(𝑇2) <
#𝐸(𝑇2)

𝑁
≤
𝐶

𝑁
, 

and we put 𝑆2 ≔ Ω2(𝑇2). Again,(209) is true for 𝑆2. Moreover, by definition, the 𝑆𝑗  

satisfy  

ℐ(𝑆𝑗) ≔ ℐ (Ω𝑗(𝑇𝑗)) ≥ 𝑁
−1, 𝑗 = 1,2. 

Proceeding in this way, we arrive at the partition𝑆{𝑆𝑗: 1 ≤ 𝑗 ≤ ℓ} of 𝐺𝑁
𝑐  satisfying 

condition(209). We have 𝑆𝑗 ≔ Ω𝑗(𝑇𝑗),1 ≤ 𝑗 < ℓ, whence 

ℐ(𝑆𝑗) ≥ 𝑁
−1, 1 ≤ 𝑗 < ℓ. 

This implies the inequality 
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(ℓ − 1)𝑁−1 ≤∑ℐ(𝑆𝑗)

ℓ−1

𝑗=1

≤ ℐ(𝐺𝑁
𝑐 ) ≤ 𝜈(𝑔)𝑝, 

and combining this with(191), we obtain(210). 

It remains to check assertion(𝑏). Note that 𝑆 is 𝑎 partition of 𝐺𝑁
𝑐 ⊂ 𝒱𝑅(𝛾), and the subsets 

of 𝒱𝑅(𝛾)are either essentially disjoint, or one is 𝑎 subset of the other. Therefore, we must 

show that the latter is impossible for 𝑇′, 𝑇"belonging to distinct 𝑆𝑗 with 𝑗 < ℓ.But if 𝑇′ and 

𝑇" with 𝑇′ ⊂ 𝑇" belong to distinct collections 𝑆𝑗 ≔ Ω𝑗(𝑇𝑗) with 𝑗 < ℓ, then 𝑇′ belongs to 

their intersection (see(209)), which is empty. This contradiction proves(𝑏). 

The proof of Proposition(2.2.25) (and the main theorem) is complete. 

Theorem (2.2.29)[24]: For each 𝑁 ≥ 1 and each 𝑓 ∈ 𝐵𝑝
𝑠∞(𝜑), there is𝑓𝑁 ∈ ℒ𝜑(𝑁) such 

that  

‖𝑓 − 𝑓𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛‖𝑓‖𝐵𝑝𝑠∞(𝜑)                              (217) 

with 𝐶 = 𝐶(𝜑, 𝑝∗). 

Proof. Theorem (2.2.29) given 𝑓 ∈ 𝐵𝑝
𝑠∞(𝜑)with 

𝑠

𝑛
>
1

𝑝
−
1

𝑞
> 0                                                (218) 

and𝑁 ≥ 1, we must find 𝑓𝑁 ∈ ℒ𝜑(𝑀)such that 

‖𝑓 − 𝑓𝑁‖𝑞 ≤ 𝐶𝑁
−
𝑠
𝑛‖𝑓‖𝐵𝑝𝑠∞(𝜑)                        (219) 

and, moreover, 

𝑀 ≤ 𝐶𝑁.                                                (220) 

As in the proof of Theorem(2.2.27) (see Proposition(2.2.24)), we reduce the required 

result to the case of 𝑓 having 𝑎 representation 

𝑓 =∑𝑐𝑗𝑘𝜑𝑗𝑘
𝑗,𝑘

,                                                                        (221) 

where𝑗, 𝑘 run over the set 

{𝑗 ∈ ℤ+, 𝑘 ∈ ℤ
𝑛: supp 𝜑𝑗𝑘 ⊂ supp 𝜑}.                        (222) 

Furthermore, we may assume that, uniformly in 𝑓, 

‖𝑓‖𝐵𝑝𝑠∞(𝜑) ≈ sup
𝑗,𝑘
|𝑐𝑗𝑘||supp 𝜑𝑗𝑘|

𝜇
                        (223) 

with𝜇 ≔
1

𝑝
−
𝑠

𝑛
(see(77)). 

By Proposition(2.2.19), putting 𝑎 ≔ |det 𝐴|
1

𝑛, we have 
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sup
𝑗≥0
𝑎𝑗𝑠𝐸𝑗(𝑓) ≈ sup

𝑗,𝑘
|𝑐𝑗𝑘 |supp 𝜑𝑗𝑘|

𝜇
,                                                (224) 

provided 𝑓 is of the form(221) with 𝑗, 𝑘 in the set(222). Because of this choice of𝑓, the 

best approximation𝐸𝑗(𝑓)is now the distance in 𝐿𝑝(ℝ
𝑛)from𝑓 to the linear span𝐹𝑗

0 ≔

span{𝜑𝑗𝑘: supp 𝜑𝑗𝑘 ⊂ supp 𝜑}. Clearly, the dimension of this space is bounded by 

𝐶(𝑛)𝑚𝑗(𝜑)
|supp𝜑|

|supp𝜑|
= 𝐶(𝑛)𝑚𝑗(𝜑)𝑎

𝑗𝑛, where 𝑚𝑗(𝜑)is the multiplicity of the family of 

supp 𝜑𝑗𝑘 ⊂ supp𝜑(see Lemma(2.2.20)). Since 𝑚𝑗(𝜑) = 𝑚0(𝜑), we have 

dim𝐹𝑗
0 ≤ 𝐶𝑎𝑗𝑛 , 𝑗 ∈ ℤ+.                                                (225) 

Let𝑓𝑗 be an optimal element of 𝐹𝑗
0, i.e., 

𝐸𝑗(𝑓) = ‖𝑓 − 𝑓𝑗‖𝑝.                                                
(226) 

We choose 𝐽 ∈ ℤ+such that 

𝑎𝐽𝑛 ≤ 𝑁 < 𝑎(𝐽+1)𝑛                                                (227) 

and then set𝑔𝐽 ≔ 𝑓 − 𝑓𝐽. By this definition, 

𝐸𝑗(𝑔𝐽) = {
𝐸𝐽(𝑓) if𝑗 ≤ 𝐽,

𝐸𝑗(𝑓) if𝑗 > 𝐽.
                                                (228) 

Let 𝜎 be defined by 

𝜎

𝑛
≔
1

𝑝
−
1

𝑞
.                                                                        (229) 

By(218),𝜎 < 𝑠, so that 𝐵𝑝
𝑠∞(𝜑) ⊂ 𝐵𝑝

𝜎(𝜑). Applying Theorem(2.2.27) in combination 

with Proposition (2.2.19) to 𝑔𝐽 ∈ 𝐵𝑝
𝜎(𝜑), we obtain 

‖𝑔𝐽 − 𝑔𝑁,𝐽‖𝑞 ≤ 𝐶𝑁
−
𝜎
𝑛 {∑ (𝑎𝑖𝜎𝐸𝑗(𝑝))

𝑝

𝑗∈ℤ+

}

1
𝑝

 

with 𝑎 suitable approximant 𝑔𝑁,𝐽belonging toℒ𝜑(𝑁). 

Putting 𝑓𝑁 ≔ 𝑓𝐽 + 𝑔𝐽,𝑁 and using(228), we rewrite this as 

‖𝑓 − 𝑓𝑁‖𝑞 ≤ 𝐶𝑁
−
𝜎
𝑛 {∑(𝑎𝑗𝜎𝐸𝑗(𝑓))

𝑝

𝑗≥𝐽

}

1
𝑝

. 

Since the sum on the right-hand side is bounded by 𝐶𝑎−𝐽(𝑠−𝜎)sup−𝑗 ≥ 0𝑎
𝑗𝑠𝐸𝑗(𝑓), and this 

quantity, in turn, is less than 𝐶𝑁−
𝑠−𝜎

𝑛 ‖𝑓‖𝐵𝑝𝑠∞(𝜑) by (223), (224), and(227), we obtain the 

required estimate(219). To complete the proof, it remains to use (225) and(227) to 

conclude that the number 𝑀 of terms in the linear combination𝑓𝑁is at most𝑁 + 𝐶𝑎𝐽𝑛 ≤
𝐶𝑁. So,(220) is also true. 
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Corollary (2.2.30)[24]: Under the assumptions of Theorem(2.2.27), but with𝑝 < 1 if𝑞 =
∞, the inequality 

{∑(𝑁
𝑠
𝑛 ∈ ℰ𝑁(𝑓; 𝐿𝑞))

𝑝

𝑁−1

𝑁≥1

}

1
𝑝

≤ 𝐶‖𝑓‖𝐵𝑝𝑠 (𝜑)                       (230) 

 is true with 𝐶 = 𝐶(𝜑, 𝑝∗).  

Proof. We deduce the claim of this corollary from Theorem(2.2.27) by real interpolation. 

For this, we use an interpolation theorem for the approximation scale 𝒜𝑝
𝑠𝜃(ℱ)introduced 

by (109). This result was proved for regular refinable functions in [39]. The general case 

is derived by the same argument. Thus, the following is true: 

(𝒜𝑝0
𝑠0𝜃0(ℱ),𝒜𝑝1

𝑠1𝜃1(ℱ))
𝜆𝑝
= 𝒜𝑝

𝑠𝑝(ℱ),                                                (231) 

 where𝑠: = (1 − 𝜆)𝑠0 + 𝜆𝑠1and 

1

𝑝
≔
1 − 𝜆

𝑝0
+
𝜆

𝑝1
=
1 − 𝜆

𝜃0
+
𝜆

𝜃1
. 

Proposition(2.2.19) allows us to rewrite this as 

(𝐵𝑝0
𝑠0𝜃0(𝜑), 𝐵𝑝1

𝑠1𝜃1(𝜑))
𝜆𝑝
= 𝐵𝑝

𝑠(𝜑).                                                (232) 

 Now we introduce 𝑎 new scale of approximation spaces 𝒩𝑝
𝑠𝜃(𝜑) determined by the 

approximation family{ℒ𝜑(𝑁): 𝑁 ∈ ℕ}(see(89)and(91)). Thus, 

‖𝑓‖𝒩𝑝𝑠𝜃(𝜑) ≔ {∑𝑁−1 (𝑁
𝑠
𝑛ℰ𝑁(𝑓; 𝐿𝑞))

𝜃

𝑁≥1

}

1
𝑝

. 

 In these terms, Theorem(2.2.27) can be rewritten as the embedding 

𝐵𝑝
𝑠(𝜑) ⊂ 𝒩𝑞

𝑠∞(𝜑),                                                (233) 

Where 

𝑠

𝑛
=
1

𝑝
−
1

𝑞
, and 𝑝 ≤ 1 if 𝑞 = ∞.                                                (234) 

Let 𝑝 > 1, and let 𝑝, 𝑞, 𝑠 satisfy(234). We choose 𝑝0, 𝑝1 > 1 so close to 𝑝 that 
1

𝑝
=
1−𝜆

𝑝0
+

𝜆

𝑝1
 for suitable 0 < 𝜆 < 1, and that 

𝑠𝑖

𝑛
≔

1

𝑝𝑖
−
1

𝑞
, 𝑖 = 0,1, be strictly positive. By(234), 𝑠 =

(1 − 𝜆)𝑠0 + 𝜆𝑠1. Applying(233) with these 𝑠𝑖, 𝑝𝑖 and 𝑞, 𝑖 = 0,1, and then using(232), we 

obtain 

𝐵𝑝
𝑠(𝜑) ⊂ (𝒩𝑞

𝑠0∞(𝜑),𝒩𝑞
𝑠1∞(𝜑))

𝜆𝑝
. 

By the Peetre–Sparr theorem (see, e.g., [32]), the right-hand side is equal to𝒩𝑞
𝑠𝑝(𝜑), i.e., 
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𝐵𝑝
𝑠(𝜑) ⊂ 𝒩𝑞

𝑠𝑝(𝜑). 

Recalling the definition of the (quasi)norm of 𝒩𝑞
𝑠𝑝(𝜑), we obtain the required inequality  

{∑ (𝑁
𝑠
𝑛ℰ𝑁(𝑓; 𝐿𝑞))

𝑝

𝑁−1

𝑁≥1

}

1
𝑝

≤ 𝐶‖𝑓‖𝐵𝑝𝑠 (𝜑) 

in the case where 𝑝 > 1. 

In the case of 𝑝 < 1 the proof is similar. 

Here we summarize the conclusions presented in Remarks(2.2.16) and(2.2.23). 
The dilation 𝐴 is now diagonalizable with integral eigenvalues𝑀𝑖 > 1 and with 

eigenvectors ei forming 𝑎 basis ofℝ𝑛. We assume that𝜑 ∈ 𝑊∞
ℓ̅,𝐴(ℝ𝑛); here 

‖𝑓‖
𝑊∞
ℓ̅,𝐴(ℝ𝑛)

≔∑∑‖𝐷𝑖
𝑘𝑖𝑓‖

𝑞

ℓ𝑖

𝑘𝑖=0

𝑛

𝑖=1

,                                                (235) 

where1 ≤ 𝑞 ≤ ∞ ,ℓ̅ ∈ ℤ+
𝑛 , and𝐷𝑖 stands for the derivative in the direction 𝑒𝑖. Note that 𝜑 

with such 𝐴 is colorable (see Example(2.2.7)). We set 

𝜎 ≔ 〈ℓ̅〉 ≔ (
1

𝑛
∑

1

ℓ𝑖

𝑛

𝑖=1

)

−1

 

and assume thatℓ̅and 𝐴 are related by 

ℓ𝑖

〈ℓ̅〉
=
log|det 𝐴|

𝑛 log𝑀𝑖
, 1 ≤ 𝑖 ≤ 𝑛.                        (236) 

Changing the proof of Theorem(2.2.27) in only one point, namely, replacing the 𝐿𝑞-norm 

in inequality(108) by the norm(235) (see Remark(2.2.23)), we arrive in this setup at the 

next result. 

Theorem (2.2.31)[24]: Under the above assumptions on the stable refinable 𝜑 and on 𝐴 

andℓ̅, the following is true. 

Suppose that 𝑠 > 0, ℓ̅, and0 < 𝑝 < 𝑞 ≤ ∞satisfy 

𝑠 − 〈ℓ̅〉

𝑛
=
1

𝑝
−
1

𝑞
                                                (237) 

and that 𝑝 ≤ 1 if 𝑞 = ∞. 

Then for each integer 𝑁 ≥ 1 and 𝑓 ∈ 𝐵𝑝
𝑠(𝜑)there is an approximant 𝑓𝑁 ∈ ℒ𝜑(𝑁) such that 

‖𝑓 − 𝑓𝑁‖𝑊𝑞
ℓ̅,𝐴(ℝ𝑛)

≤ 𝐶𝑁−
𝑠−〈ℓ̅〉
𝑛 ‖𝑓‖𝐵𝑝𝑠(𝜑)                        (238) 

 with 𝐶 independent of 𝑓 and𝑁. 



71 

If 𝐴 is isotropic, i.e., for𝑀𝑖 = 𝑀,1 ≤  𝑖 ≤ 𝑛 , the assumption(236) is clearly true. In this 

case, the space𝑊𝑞
ℓ̅,𝐴

can be replaced by the Sobolev space𝑊𝑞
ℓ. 

In the case of the dilation 𝐴; the result will be presented in 𝑎 forthcoming. Hence, in 

this case we have 

𝐵𝑝
𝑠(𝜑) = 𝐵𝑝

�̅�(ℝ𝑛), 

 where𝑠 = (𝑠1, … , 𝑠𝑛)is defined by𝑠𝑖 ≔
log|det𝐴|

𝑛 log𝑀𝑖
,1 ≤ 𝑖 ≤ 𝑛, and𝐵𝑝

�̅�(ℝ𝑛) is the standard 

anisotropic Besov space determined by the partial moduli of continuity of orders𝑘𝑖 > 𝑠𝑖. 

Note that𝑠 = 〈�̅�〉 ≔ (
1

𝑛
∑

1

𝑠𝑖

𝑛
𝑖=1 )

−1
; therefore, inequality(238) can be rewritten as 

‖𝑓 − 𝑓𝑁‖𝑊𝑞
ℓ̅,𝐴(ℝ𝑛)

≤ 𝐶𝑁−
〈�̅�〉−〈ℓ̅〉
𝑛 ‖𝑓‖𝐵𝑝�̅� (ℝ𝑛). 

 Finally, in the case where 1 < 𝑞 < ∞, application of the Mikhlin–Hörmander multiplier 

theorem allows us to replace 𝑊𝑞
ℓ̅,𝐴(ℝ𝑛)by the standard anisotropic Sobolev space𝑊𝑞

ℓ̅(ℝ𝑛). 

The method of the proof remains valid for vector-valued𝜑 ϕ. In this case𝜑:ℝ𝑛 →
ℝℓis 𝑎 bounded nontrivial solution of the equation 

𝜑(𝑥) =∑𝑚(𝑘)𝜑(𝑥 − 𝑘)

𝑘

 

with finite mask𝑚:ℝ𝑛 → 𝑀ℓ(ℝ), where the target space is the linear space of real matrices 

of size ℓ × ℓ. The definitions of the stability and colorability of 𝜑 requires trivial 

modifications, while the decomposition of 𝑓 ∈ 𝐿𝑝(ℝ
𝑛),0 < 𝑝 < ∞, that was used to 

introduce 𝐵𝑝
𝑠(𝜑), is now written as 

𝑓 =∑𝑎𝑗𝑘
𝑗,𝑘

. 𝜑𝑗𝑘 , 

where the 𝑎𝑗𝑘are vectors in ℝℓ and 𝑥 · 𝑦 is the scalar product in this space. The following 

example shows that the case under consideration includes the piecewise polynomial 

extension of the Birman–Solomyak result ([33]). 

Let �⃗� ≔ (𝑝1, … , 𝑝ℓ)with ℓ = ℓ(𝑘, 𝑛)be 𝑎 vector-valued function on ℝ𝑛whose 

components form 𝑎 basis in the space 𝒫𝑘(ℝ
𝑛)of polynomials in 𝑥1, … , 𝑥𝑛of degree 𝑘 − 1. 

It is easily seen that the function 

�⃗⃗� = 1[0,1]𝑛 . �⃗� 

satisfies the scaling equation 

�⃗⃗�(𝑥) =
1

2𝑛
∑ 𝑚(𝑘)�⃗⃗�(2𝑥 − 𝑘)

𝑘∈{0,1}𝑛

, 

where 𝑚(𝑘) is the (ℓ × ℓ)-matrix representing the operator 𝑥 ⟼
1

2
(𝑥 + 𝑘)in the basis 

{𝑝1, … , 𝑝ℓ} of the space𝒫𝑘(ℝ
𝑛). 
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It is clear that �⃗⃗� is stable and colorable. Consequently, in this case the analog of 

Theorem(2.2.29) states that for 𝑓 ∈ 𝐵𝑝
𝑠(𝜑)there is 𝑎 piecewise polynomial 𝑓𝑁 =

∑ 𝑝𝑄1𝑄𝑄∈𝜋  of degree 𝑘 − 1, where 𝜋 is an 𝑁-term collection of dyadic subcubes of [0,1]𝑛, 

that approximates 𝑓 with the approximation rate𝑂 (𝑁−
𝑠

𝑛). 

Let 𝜑 be an (𝐴,𝑚)-refinable function. In accordance with Definition(2.2.9), its 

colorability depends on the existence of 𝑎 spatially colorable 𝑇(𝐴, 𝒟) with 𝒟 ⊃ supp𝑚. 

Therefore, 𝑎 crucial point is to find 𝑎 fairly large class of such sets. Here we introduce two 

such classes; weuse methods of coloring related to geometric and algebraic properties of 

the data(𝐴,𝑚). 

Let 𝑇:= 𝑇(𝐴, 𝒟) be 𝑎 tile (see Example(2.2.1)). In this case the digraph𝐺𝑟(𝐴, 𝒟)is 

𝑎 tree rooted at𝑇, and its structure comes from the set inclusion order. Therefore,𝐺𝑟(𝐴, 𝒟) 
is spatially colorable by 𝑎 single color, i.e., 𝜒(𝐴, 𝒟) = 1. 

Now, let 𝑇: = 𝑇(𝐴, 𝒟) be 𝑎 semitile (see Example(2.2.6)). Thus, each pair of vertices in 

𝒱:= 𝒱(𝐴,𝒟) with heights differing by one is either (essentially) disjoint, or the smaller is 

𝑎 subset of the larger. Let 𝜇𝑗be the multiplicity of the family{𝑇𝑗𝑘: 𝑘 ∈ ℤ
𝑛}. Then, by 𝑎 

change of variable, we obtain 

𝜇𝑗 ≔ ess sup
𝑥

{∑ 1𝑇(𝐴
𝑗𝑥 − 𝑘)

𝑘∈ℤ𝑛

} = 𝜇0 < ∞. 

By [31], this family is 𝑎 union of at most 𝐶(𝑛)𝜇0disjoint subfamilies. In other words, this 

family can be colored in at most 𝐶(𝑛)𝜇0colors in such 𝑎 way that the subsets of the same 

color be disjoint. Using this coloring for each level {𝑇𝑗𝑘 ∈ 𝒱}of height 𝑗, we obtain the 

required result. 

The same approach shows that 𝐺𝑟(𝐴, 𝒟) is spatially colorable under the following weaker 

assumption: for every 𝑇′, 𝑇” ∈ 𝒱(𝐴, 𝒟) with heights differing by 𝑎 fixed 𝑗0 ≥ 0 𝑇′and𝑇”are 

either disjoint, or the smaller is 𝑎 subset of the larger. 

In this case we use the previous set of colors, say Γ, to turn it into 𝑎 new one, defined 

asΓ × {0,1,… , 𝑗0 − 1}. 

It can be shown that the class of digraphs introduced below can also be spatially colored in 

this way. However, we present another method, which yields an efficient estimate for 

𝜒(𝐴, 𝒟). 

Let Π be the parallelotope of Example(2.2.2) (see(60)). Thus, Π ≔ 𝐵(∏ [0, 𝑁𝑖]
𝑛
𝑖=1 ), 

where 𝐵 ∈ 𝑀𝑛(ℤ) is 𝑎 unimodular matrix. ThenΠ =  𝑇(𝐴, 𝒟), where 

𝐴 ≔ 𝐵 diag(𝑀1, … ,𝑀𝑛) 𝐵
−1  and𝒟 ≔ 𝐵(∏𝐽𝑖

𝑛

𝑖=1

) ∩ ℤ𝑛. 

We recall that 𝑁𝑖 ≥ 1, 𝑀𝑖 ≥ 2 are integers and 𝐽𝑖 ≔ [0, (𝑀𝑖 − 1)𝑁𝑖]. 

Proposition (2.2.32)[24]:  Assume that the greatest common divisor of𝑀𝑖and𝑁𝑖satisfies  
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(𝑀𝑖 , 𝑁𝑖) = 1 , 1 ≤  𝑖 ≤ 𝑛. 

Then 

 𝜒(𝐴, 𝒟) ≤ 𝑁1…𝑁𝑛 . 

Proof: We begin with the following result, which is 𝑎 straightforward consequence of the 

definitions. 

Lemma (2.2.33)[24]: (𝑎) Let 𝑇(𝐴𝑖, 𝒟𝑖),1 ≤ 𝑖 ≤ 𝑚, be 𝑎 family of self-affine sets, and let 

𝐴:= diag(𝐴1, … , 𝐴𝑚) , 𝒟:=∏𝒟𝑖

𝑚

𝑖=1

. 

Then 

χ(A, 𝒟) ≤∏χ(𝐴𝑖 , 𝒟𝑖)

𝑚

𝑖=1

. 

(𝑏) Let 𝐵 ∈ 𝑀𝑛(ℤ) be unimodular. Then 

𝜒(𝐵𝐴𝐵−1, 𝐵𝒟) = 𝜒(𝐴, 𝒟). 

Using this, we reduce the proof of the general result to the following lemma, which was 

proved for 𝑀 = 2 in [40]. 

Lemma (2.2.34)[24]:  DenoteΠ:= [0,𝑁], 𝐴:= [𝑀], and𝒟:= [0, (𝑀 − 1)𝑁] ∩ ℤ, and let 

𝑁 ≥ 1 and 𝑀 ≥ 2 be integers. Assume that 

 (𝑁,𝑀) = 1 .                                                                        (239) 

Then Π = 𝑇(𝐴, 𝒟) is spatially colorable in at most 𝑁 colors. 

Proof: By the Gauss lemma, each 𝑘 ∈ ℤ has 𝑎 unique representation 𝑘 = 𝑀𝑘′ + 𝑁ℓ with 

𝑘′ ∈ ℤ andℓ ∈ {0,1, … ,𝑀 − 1}. Applying this to 𝑘′ and so on, for 𝑥 ≔ 𝑀−𝑗𝑘with𝑘 ∈
ℤ,𝑗 ∈ ℤ+, we obtain aunique representation 

𝑥 = 𝑘0(𝑥) + 𝑁∑ℓ𝑖(𝑥)𝑀
−𝑖

𝑗

𝑖=1

 

with𝑘0(𝑥) ∈ ℤ andℓ𝑖(𝑥) ∈ { 0,1, . . . ,𝑀 − 1}. 

Now we define 𝑎 function 𝑐 on the set{𝑥 ≔ 𝑘𝑀−𝑗: 𝑘 ∈ ℤ, 𝑗 ∈ ℤ+}by 

𝑐(𝑥) ≡ 𝑘0(𝑥)(𝑁), 𝑐(𝑥) ∈ {0,1, . . . , 𝑁 − 1}. 

By this definition, 

𝑐(𝑘𝑀−𝑗) = 𝑐(𝑘′𝑀−𝑗)if and only if𝑘 ≡ 𝑘′(𝑁).                        (240) 

In this case 𝑎 vertex 𝐼 of the digraph𝐺𝑟(𝐴, 𝒟) is an interval of the form 𝑀−𝑗[𝜐, 𝜐 + 𝑁] 
with suitable 𝜐 ∈ ℤ and𝑗 ∈ ℤ+; therefore, the endpoints 𝑥𝐼 , 𝑦𝐼  of that interval satisfy the 

condition 𝑐(𝑥𝐼) = 𝑐(𝑦𝐼).We define the desired coloring of 𝐺𝑟(𝐴, 𝒟) by letting 
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𝑐(𝐼): = 𝑐(𝑥𝐼) 

and show that the condition of Definition(2.2.9) is satisfied. Let 𝐼 ≔ 𝑀−𝑗[𝜐, 𝜐 + 𝑁]  and 

𝐼′ ≔ 𝑀−𝑗
′
[𝜐′, 𝜐′ + 𝑁]be vertices of this digraph sharing the same color, and let 𝑗 ≥

𝑗′.Consider the lattice 

𝐿:= {(𝑀𝑗−𝑗
′
𝜐 + 𝑁𝑘)𝑀−𝑗: 𝑘 ∈ ℤ}. 

Since𝑐(𝜐𝑀−𝑗) = 𝑐(𝜐′𝑀−𝑗
′
), the congruence𝑀𝑗−𝑗

′
𝜐 ≡ 𝜐′(𝑁)is true (see(239) and(240)). 

Therefore, 𝐿 contains all points 𝑦 ≔ 𝑘𝑀−𝑗with 𝑘 ∈ ℤ, and 𝑐(𝑦) =  𝑐(𝑥𝐼′)(= 𝑐(𝐼
′)). The 

endpoints 𝑥𝐼 , 𝑦𝐼 of 𝐼 are points of this type and hence belong to 𝐿. Since the length of 𝐼 is 

equal to the step of 𝐿, and the endpoints of 𝐼′are also in𝐿, there are only two possibilities: 

either 𝑥𝐼 , 𝑦𝐼 ∈ 𝐼
′and then 𝐼 ⊂ 𝐼′, or these endpoints do not belong to the interior 

of𝐼′and|𝐼′ ∩ 𝐼| = 0. Consequently, 𝐺𝑟(𝐴,𝒟) is spatially colorable, and 

𝜒(𝐴, 𝒟) ≤ #image(𝑐) = 𝑁. 

Suppose the dilation𝐴 of𝜑is diagonalized with eigenvalues𝜆𝑖 and 

eigenvectors𝜐𝑖 , 1 ≤ 𝑖 ≤ 𝑛. 

Proposition (2.2.35)[24]:  If𝜆𝑖 ∈ ℚ,1 ≤ 𝑖 ≤ 𝑛, then 𝜑 is colorable. 

Proof:  Let𝜆𝑖 ≔
𝑚𝑖

𝑑
, 𝑚𝑖, 𝑑 ∈ ℤ. Replacing 𝐴 by 𝑎 ℤ-similar matrix, we may assume that 

𝜆𝑖 > 1, so that 𝑀𝑖 > 𝑑 ≥ 1. By our assumptions, all vectors 𝜐𝑖 can be taken in ℤ𝑛, and 

they form 𝑎 basis ofℝ𝑛. Consider the parallelepiped 

Π ≔ {∑𝑐𝑖𝜐𝑖

𝑛

𝑖=1

: 0 ≤ 𝑐𝑖 ≤ 𝑑𝑁𝑖} 

 with integers 𝑁𝑖 to be chosen later. Then 𝐴𝜐𝑖 ≔
𝑚𝑖

𝑑
, 𝜐𝑖, whence 

 

𝐴(Π) = {∑𝑐𝑖𝜐𝑖

𝑛

𝑖=1

: 0 ≤ 𝑐𝑖 ≤ 𝑀𝑖𝑁𝑖} = ⋃(Π + 𝑑)

𝑑∈𝒟

, 

where the digit set 𝒟 is given by 

𝒟 ≔ {∑𝑐𝑖𝜐𝑖

𝑛

𝑖=1

∈ ℤ𝑛: 𝑐𝑖 ∈ [0, (𝑀𝑖 − 1)𝑁𝑖] ∩ ℤ} 

with𝑀𝑖 ≔ 𝑚𝑖 − 𝑑 + 1(≥ 1). 

In other words, Π = 𝑇(𝐴, 𝒟). Now we choose 𝑁𝑖 such that(𝑁𝑖 ,𝑀𝑖) = 1,1 ≤ 𝑖 ≤ 𝑛. Then, 

by Proposition (2.2.32), 

𝜒(𝐴, 𝒟) ≤ 𝑁1 ··· 𝑁𝑛 . 

Taking 𝑁𝑖 sufficiently large and shifting by 𝑎 suitable vector 𝜐 ∈ ℤ𝑛, we reduce the general 

statement to the case of 𝑚 satisfying 
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supp𝑚 ⊂ 𝒟 + 𝜐. 

Since𝑇(𝐴, 𝒟 + 𝜐) = 𝑇(𝐴, 𝒟) + 𝐴(𝐼 − 𝐴)−1𝜐 (see (58)), the refinable function 𝜑 

associated with(𝐴,𝑚) is colorable (see Definition(2.2.9)).   
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Chapter 3 

Classes of Hardy Spaces and Comparison of the Classical BMO 

 

We establish a duality theorem between the 𝐻𝐿
𝑝
(ℝ𝑛) spaces and the Morrey-

Campanato spaces. We obtain the boundedness of fractional integrals on 𝐻𝐿
𝑝
(ℝ𝑛) and give 

the inclusion between the classical 𝐻𝑝(ℝ𝑛) spaces and the 𝐻𝐿
𝑝
(ℝ𝑛) spaces associated with 

operators. We obtain BMO𝐿 estimates and interpolation results for fractional powers, 

purely imaginary powers and spectral multipliers of self adjoint operators. We also 

demonstrate that the space BMO𝐿 might coincide with or might be essentially different 

from the classical BMO space. 

Section (3.1): Operators with Duality Theorem and Applications 

The continues 𝑎 line of study in[58], [70] and[71], where 𝑎 class of the Hardy 

spaces 𝐻𝐿
1(ℝ𝑛)and the 𝐵𝑀𝑂𝐿(ℝ

𝑛) spaces associated with operators were introduced and 

developed, and they generalize the classical Hardy space 𝐻1(ℝ𝑛)and the 𝐵𝑀𝑂 space. For 

the basic facts about the classical Hardy and 𝐵𝑀𝑂 spaces on Euclidean spaces ℝ𝑛, see, for 

examples,[61], [74], [75], [19], [84] and[86]. 
Suppose that 𝐿 is 𝑎 linear operator on 𝐿2(ℝ𝑛) which generates an analytic semi-group 

𝑒−𝑡𝐿 with 𝑎 kernel 𝑝𝑡(𝑥, 𝑦) satisfying an upper bound, that is, there exist positive 

constants 𝑚 and 𝜖 such that for all 𝑥, 𝑦 ∈ ℝ𝑛 and for all 𝑡 > 0, 

|𝑝𝑡(𝑥, 𝑦)| ≤
𝑐𝑡𝜖/𝑚

(𝑡1/𝑚 + |𝑥 − 𝑦|)𝑛+𝜖
.                                          (1) 

In[58], Auscher, Duong and McIntosh defined a Hardy space 𝐻𝐿
1(ℝ𝑛) associated with the 

operator 𝐿 as the class of all functions on ℝ𝑛for which 𝑆𝐿(𝑓) ∈ 𝐿
1(ℝ𝑛)where 

𝑆𝐿(𝑓)(𝑥) = (∫ ∫ |𝑄𝑡𝑚𝑓(𝑦)|
2

 

|𝑦−𝑥|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1/2

,                     (2) 

and 𝑄𝑡 = 𝑡𝐿𝑒
−𝑡𝐿. They then obtained 𝑎 molecular chfaracterization for functions in 

𝐻𝐿
1(ℝ𝑛) by using the theory of tent spaces developed in [62] and [63]. 

A new function space 𝐵𝑀𝑂𝐿(ℝ
𝑛) associated with the operator 𝐿 was introduced in[70]. 

We say that a function 𝑓 (with suitable bounds on growth) is in 𝐵𝑀𝑂𝐿(ℝ
𝑛) if 

sup
𝐵

1

|𝐵|
∫ |𝑓(𝑥) − 𝑒−𝑡𝐵𝐿𝑓(𝑥)|
 

𝐵

𝑑𝑥 < ∞,                                          (3) 

Where 𝑡𝐵 = 𝑟𝐵
𝑚, and 𝑟𝐵 is the radius of the ball 𝐵. It was proved in[71] that if 𝐿 has 𝑎 

bounded holomorphic functional calculus on 𝐿2 and the kernel 𝑝𝑡(𝑥, 𝑦) of the semi-group 

𝑒−𝑡𝐿satisfies an upper bound(1), then the space 𝐵𝑀𝑂𝐿∗(ℝ
𝑛)is the dual space of Hardy 

space𝐻𝐿
1(ℝ𝑛)in which𝐿∗ denotes the adjoint operator of 𝐿. 

This gives 𝑎 generalization of the duality of 𝐻1(ℝ𝑛)and 𝐵𝑀𝑂(ℝ𝑛)of Fefferman and 

Stein([74]). Indeed, 𝑎 valid choice of 𝑒−𝑡𝐿in(2) and (3) is the Poisson semigroup𝑒−𝑡√∆, 
which is defined by 

𝑒−𝑡√∆𝑓(𝑥) = ∫ 𝑝𝑡(𝑥 − 𝑦)𝑓(𝑦)𝑑𝑦
 

ℝ𝑛
, 𝑡 > 0, where 𝑝𝑡(𝑥) =

𝑐𝑛𝑡

(𝑡2 + |𝑥|2)(𝑛+1)/2
. 

For this choice of 𝑒−𝑡√∆, the spaces 𝐻
√∆
1 (ℝ𝑛) and 𝐵𝑀𝑂√∆(ℝ

𝑛)coincide with the classical 

Hardy 𝐻1(ℝ𝑛)and 𝐵𝑀𝑂 spaces, respectively ([58] and [70]). 
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For more properties of the space 𝐻𝐿
1(ℝ𝑛)and the 𝐵𝑀𝑂𝐿(ℝ

𝑛) space, see [58], [70], [71], 

[66] and[65]. 

Our concern is to introduce 𝑎 class of Hardy spaces 𝐻𝐿
𝑝(ℝ𝑛) associated with 𝐿 for 𝑎 

range of 𝑝 < 1 and study their duals. 

(i) To define the space 𝐻𝐿
𝑝(ℝ𝑛)for 𝑝 < 1, we use 𝑎 space 𝔏𝐿(𝛼, 2, 𝑠) of Morrey-

Campanato functions introduced in [72] that plays the role of the space 𝑆 of test functions 

on ℝ𝑛. It turns out that given an operator 𝐿 with 𝑎 bounded holomorphic functional 

calculus in 𝐿2(ℝ𝑛), which generates 𝑎 semigroup with upper bounds (1) on its heat 

kernels, the Hardy space 𝐻𝐿
𝑝(ℝ𝑛)can be defined as the collection of all continuous linear 

functionals 𝑓 on 𝔏𝐿∗ (
1

𝑝
− 1,2, [

𝑛(
1

𝑝
−1)

𝑚
])satisfying 𝑆𝐿(𝑓) ∈ 𝐿

𝑝(ℝ𝑛). Note that the spaces 

𝐻
√∆

𝑝 (ℝ𝑛) and 𝔏√∆(𝛼, 2, 𝑠) coincide with the classical 𝐻𝑝(ℝ𝑛)and the Morrey-Campanato 

spaces 

𝐿(𝛼, 2, 𝑠) (= Λ𝑛𝛼(ℝ
𝑛)of Lipschitz), respectively (see [66]). 

(ii) As in[58] , we give 𝑎 molecular decomposition for function 𝑓 in the𝐻𝐿
𝑝(ℝ𝑛)spaces by 

using certain estimates on area integrals and tent spaces (see Proposition(3.1.6)). 

(iii) We establish 𝑎 duality theorem, which says that the dual space of 𝐻𝐿
𝑝(ℝ𝑛) is 𝔏𝐿∗ (

1

𝑝
−

1,2, 𝑠), by applying the results, together with some estimates of the tent spaces and 

Carleson measures. With 𝑎 choice of 𝑒−𝑡√Δ, gives the classical result of the duality of 

𝐻𝑝(ℝ𝑛)and 𝐿 (
1

𝑝
− 1,2, 𝑠)for 𝑝 < 1 (see, for example, Theorem 2.7 of [86] and [69]). 

(iv) We give applications, which include the boundedness of fractional integrals on the 

spaces 𝐻𝐿
𝑝(ℝ𝑛)and the inclusion between the classical spaces 𝐻𝑝(ℝ𝑛)and the 

𝐻𝐿
𝑝(ℝ𝑛)spaces associated with some differential operators. 

In [56] and [55], the Hardy space associated with an elliptic second-order 

divergence operator 𝐿 was introduced by using the Poisson semigroup of 𝐿. In[73], Hardy 

spaces associated with Schrödinger operators were studied. In comparison with the 

classical 𝐻𝑝(ℝ𝑛)spaces, an important feature of the 𝐻𝐿
𝑝(ℝ𝑛)spaces is that they tightly 

connect the operators considered, which may be an effective 

tool in the study of singular integral operators associated with the operator𝐿; see 

[58], [65], [68], [70] and [71]. 
The letter “𝑐” will denote (possibly different) constants that are independent of the 

essential variables. 

We start with 𝑎 review of some definitions of holomorphic functional calculi 

introduced by McIntosh [79]. Let 0 ≤  𝜔 < 𝜈 < 𝜋. We define the closed sector in the 

complex planeℂ 

𝑆𝜔 = {𝒵 ∈ ℂ: |arg 𝒵| ≤ 𝜔} ∪ {0} 
and denote the interior of 𝑆𝜔by 𝑆𝜔

0 . 
We employ the following subspaces of the space 𝐻(𝑆𝜈

0) of all holomorphic functions on 

𝑆𝜈
0: 

𝐻∞(𝑆𝜈
0) = {𝑏 = 𝐻(𝑆𝜈

0): ‖𝑏‖∞ < ∞}, 
where‖𝑏‖∞ = sup{|𝑏(𝒵)|: 𝒵 ∈ 𝑆𝜈

0}and 

Ψ(𝑆𝜈
0) = {𝜓 ∈ 𝐻(𝑆𝜈

0): ∃𝑠 > 0, |𝜓(𝒵)| ≤ 𝑐|𝒵|𝑠(1 + |𝒵|2𝑠)−1}. 
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Given 0 ≤ 𝜔 < 𝜋, 𝑎 closed operator 𝐿 in 𝐿2(ℝ𝑛)is said to be of type 𝜔 if 𝜎(𝐿) ⊂ 𝑆𝜔, and 

for each 𝜈 > 𝜔, there exists 𝑎 constant 𝑐𝜈 such that 

‖(𝐿 − 𝜆𝐼)−1‖2,2 ≤ 𝑐𝜈|𝜆|
−1, 𝜆 ∉ 𝑆𝜈. 

If 𝐿 is of type 𝜔 and 𝜓 ∈ 𝛹(𝑆𝜈
0), we define 𝜓(𝐿) ∈ 𝐿(𝐿2 , 𝐿2) by 

𝜓(𝐿) =
1

2𝜋𝑖
∫ (𝐿 − 𝜆𝐼)−1𝜓(𝜆)
 

Γ

𝑑𝜆, 

where Γ is the contour {𝜉 = 𝑟𝑒±𝑖𝜃: 𝑟 ≥ 0} parametrized clockwise around𝑆𝜔, and 𝜔 <
𝜃 < 𝜈. Clearly, this integral is absolutely convergent in ℒ(𝐿2, 𝐿2) (which is the class of all 

bounded linear operators on 𝐿2(ℝ𝑛) ), and it is straightforward to show, using Cauchy’s 

theorem, that the definition is independent of the choice of𝜃 ∈ (𝜔, 𝜈). If, in addition, 𝐿 is 

one-one and has dense range and if 𝑏 ∈ 𝐻∞(𝑆𝜈
0), then 𝑏(𝐿) can be defined by 

𝑏(𝐿) = [𝜓(𝐿)]−1(𝑏𝜓)(𝐿)where 𝜓(𝒵) = 𝒵(1 + 𝒵)−2. 
It can be shown that 𝑏(𝐿) is 𝑎 well-defined linear operator in𝐿2(ℝ𝑛). We say that𝐿 has 𝑎 

bounded 𝐻∞-calculus in 𝐿2(ℝ𝑛)provided there exists𝑐𝜈,2 > 0such that𝑏(𝐿) ∈ ℒ(𝐿2 , 𝐿2) 
and 

‖𝑏(𝐿)‖2,2 ≤ 𝑐𝜈,2‖𝑏‖∞, ∀𝑏 ∈ 𝐻∞(𝑆𝜈
0). 

An important feature of this functional calculus is the following convergence lemma. 

Lemma (3.1.1)[53]: (Convergence lemma). Let 𝑋 be 𝑎 complex Banach space. Given0 ≤
𝜔 < 𝜈 ≤  𝜋, let 𝐿 be an operator of type ω on 𝑋 which is one-to-one with dense domain 

and range. Suppose{𝑓𝛼}is 𝑎 uniformly bounded net in 𝐻∞(𝑆𝜈
0), which converges to 𝑓 ∈

𝐻∞(𝑆𝜈
0)uniformly on compact subsets of 𝑆𝜈

0, such that {𝑓𝛼(𝐿)} is𝑎 uniformly bounded net 

in the space ℒ(𝑋, 𝑋) of continuous linear operators on 𝑋. 

Then 𝑓(𝐿) ∈ ℒ(𝑋, 𝑋), 𝑓𝛼(𝐿)𝑢 → 𝑓(𝐿)𝑢 for all 𝑢 ∈ 𝑋 and‖𝑓(𝐿)‖ ≤ sup𝛼‖𝑓𝛼(𝐿)‖. 
For the proof of Lemma (3.1.1), see[79] and[54]. 

Let 𝐿 be 𝑎 linear operator of type 𝜔 on 𝐿2(ℝ𝑛)with𝜔 < 𝜋/2, hence 𝐿 generates 𝑎 

holomorphic semigroup 𝑒−𝒵𝐿, 0 ≤ |Arg(𝒵)| < 𝜋/2 − 𝜔. 
Assume the following two conditions. 

Assumption(𝒂). Assume that for each 𝑡 > 0, the distribution kernel 𝑝𝑡(𝑥, 𝑦) of 𝑒−𝑡𝐿 
belongs to 𝐿∞(ℝ𝑛 × ℝ𝑛)and satisfies the estimate 

|𝑝𝑡(𝑥, 𝑦)| ≤ ℎ𝑡(𝑥, 𝑦) 
for 𝑥, 𝑦 ∈ ℝ𝑛 , where ℎ𝑡(𝑥, 𝑦) is given by 

ℎ𝑡(𝑥, 𝑦) = 𝑡
−𝑛/𝑚𝑔 (

|𝑥, 𝑦|

𝑡1/𝑚
),                                          (4) 

in which 𝑚 is 𝑎 positive constant and 𝑔 is 𝑎 positive, bounded, decreasing function 

satisfying 

lim
𝑟→∞

𝑟𝑛+𝜖 𝑔(𝑟) = 0                                                               (5) 

Assumption(𝒃). The operator 𝐿 is one-one and has dense range in 𝐿2(ℝ𝑛). Also,𝐿 has 𝑎 

bounded 𝐻∞-calculus in 𝐿2(ℝ𝑛). 
Now, we give some consequences of the assumptions (𝑎) and (𝑏) which will be used 

later. 

First, if {𝑒−𝑡𝐿}𝑡>0is 𝑎 bounded analytic semigroup on𝐿2(ℝ𝑛)whose kernel 𝑝𝑡(𝑥, 𝑦) 
satisfies the estimates(4) and(5), then for any 𝑘 ∈ ℕ, the time derivatives of 𝑝𝑡  satisfy 

|𝑡𝑘
𝜕𝑘𝑝𝑡(𝑥, 𝑦)

𝜕𝑡𝑘
| ≤

𝑐

𝑡𝑛/𝑚
𝑔 (
|𝑥 − 𝑦|

𝑡1/𝑚
) for all 𝑡 > 0 and almost all 𝑥, 𝑦 ∈ ℝ𝑛               (6) 
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For each 𝑘 ∈ ℕ, the function 𝑔 might depend on 𝑘 but it always satisfies (5). See Theorem 

6.17 of[80] and[60]. 
Secondly, 𝐿 has 𝑎 bounded 𝐻∞-calculus in 𝐿2(ℝ𝑛)if and only if for any nonzero function 

𝜓 ∈ 𝛹(𝑆𝜈
0), 𝐿 satisfies the square function estimate and its reverse 

𝑐1‖𝑓‖𝐿2 ≤ (∫ ‖𝜓𝑡(𝐿)‖𝐿2
2 𝑑𝑡

𝑡

∞

0

)

1/2

≤ 𝑐1‖𝑓‖𝐿2                     (7) 

for some 0 < 𝑐1 ≤ 𝑐2 < ∞, where 𝜓𝑡(𝜉) = 𝜓(𝑡𝜉). Note that different choices of 𝜈 > 𝜔 

and 𝜓 ∈ 𝛹(𝑆𝜈
0) lead to equivalent quadratic norms of 𝑓. 

As noted in[79], positive self-adjoint operators satisfy the quadratic estimate(7). So do 

normal operators with spectra in 𝑎 sector and maximal accretive operators. For definitions 

of these classes of operators, see [91]. 
We now define the class of functions that the operators 𝑒−𝑡𝐿act upon. For any 𝛽 >

0, 𝑎 function 𝑓 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑛)is said to be 𝑎 function of 𝛽-type if 𝑓 satisfies 

(∫
|𝑓(𝑥)|2

1 + |𝑥|𝑛+𝛽
𝑑𝑥

 

ℝ𝑛
)

1/2

≤ 𝑐 < ∞.                                          (8) 

We denote byℳ𝛽the collection of all functions of 𝛽-type. If 𝑓 ∈ ℳ𝛽 , the norm of𝑓 

inℳ𝛽is denoted by 

‖𝑓‖ℳ𝛽
= inf{𝑐 ≥ 0: holds}. 

It is easy to see that ℳ𝛽 is a Banach space under the norm‖𝑓‖ℳ𝛽
. For any given operator 

𝐿, we let 

𝜃(𝐿) = sup{𝜖 > 0: holds} .                                                          (9) 
and denote by 

ℳ = {

ℳ𝜃[𝐿], if 𝜃(𝐿) < ∞;

⋃ ℳ𝛽

𝛽:0<𝛽<∞

 if 𝜃(𝐿) < ∞.                                          (10) 

Note that if 𝐿 = ∆ is the Laplacian on ℝ𝑛, then 𝜃(∆) = ∞. When 𝐿 = √∆, we have 

𝜃(√∆) = 1. 

Given an integer 𝑠 ∈ ℤ+, for any(𝑥, 𝑡) ∈ ℝ+
𝑛+1and for 𝑓 ∈ ℳ, we denote 

𝑃𝑠,𝑡𝑓(𝑥) = 𝑓(𝑥) − (𝐼 − 𝑒
−𝑡𝐿)𝑠+1𝑓(𝑥) and 𝑄𝑠,𝑡𝑓(𝑥) = 𝑡

𝑠+1𝐿𝑠+1𝑒−𝑡𝐿𝑓(𝑥).           (11) 
See[59] and[77]. In particular, if 𝑠 = 0, we denote by 

𝑃𝑡𝑓 = 𝑃0,𝑡𝑓 = 𝑒
−𝑡𝐿𝑓and 𝑄𝑡𝑓 = 𝑄0,𝑡𝑓 = 𝑡𝐿𝑒

−𝑡𝐿𝑓.                     (12) 

Since 𝑓 ∈ ℳ, by the estimate(6) the operators 𝑃𝑠,𝑡𝑓 and 𝑄𝑠,𝑡𝑓 are well defined. 

Moreover, the kernel 𝑝𝑠,𝑡(𝑥, 𝑦) (resp.𝑞𝑠,𝑡(𝑥, 𝑦)) of 𝑃𝑠,𝑡(resp. 𝑄𝑠,𝑡) satisfies 

|𝑝𝑠,𝑡𝑚(𝑥, 𝑦)| ≤ 𝑐𝑠𝑡
−𝑛𝑔 (

|𝑥 − 𝑦|

𝑡
) |. |𝑞𝑠,𝑡𝑚(𝑥, 𝑦)| ≤ 𝑐𝑠𝑡

−𝑛𝑔 (
|𝑥 − 𝑦|

𝑡
)|,           (13) 

where the function 𝑔 satisfies the condition(5). This property is the same as the 

estimate(6). 
The following definition was introduced in[72], which generalizes the classical 

Morrey-Campanato spaces 𝐿(𝛼, 𝑞, 𝑠). For the basic facts about the spaces 𝐿(𝛼, 𝑞, 𝑠), 
see[76] and[86]. 

Definition (3.1.2)[53]: Suppose0 ≤ 𝛼 < 𝜃(𝐿)/𝑛,1 ≤ 𝑞 < ∞ and𝑠 ≥ [
𝑛𝛼

𝑚
], the integral 

part of
𝑛𝛼

𝑚
. We say that 𝑓 ∈ ℳ is in𝔏𝐿(𝛼, 𝑞, 𝑠), the spaces of Morrey-Campanato type 
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associated with{𝑒−𝑡𝐿}𝑡>0, if there exists 𝑎 positive constant 𝑐 such that for any ball 𝐵 

ofℝ𝑛, 
 

[|𝐵|−1∫|𝑓(𝑥) − 𝑃𝑠,𝑡𝐵𝑓(𝑥)|
𝑞
𝑑𝑥

 

𝐵

]

1/𝑞

≤ 𝑐|𝐵|𝛼,                                (14) 

where 𝑡𝐵 = 𝑟𝐵
𝑚, and𝑟𝐵equals to the radius of the ball 𝐵. 

The smallest bound 𝑐 satisfying condition(14) is then taken to be the norm of𝑓 in this 

space and is denoted by‖𝑓‖𝔏𝐿(𝛼,𝑞,𝑠). 

Note that(𝔏𝐿(𝛼, 𝑞, 𝑠), ‖∙‖𝔏𝐿(𝛼,𝑞,𝑠))is 𝑎 seminormed vector space, with the seminorm 

vanishing on the space𝒦(𝐿,𝑠), defined by 

𝒦(𝐿,𝑠) = {𝑓 ∈ ℳ:𝑃𝑠,𝑡𝑓(𝑥) = 𝑓(𝑥)for almost all 𝑥 ∈ ℝ
𝑛for all 𝑡 > 0}. 

The 𝔏𝐿(𝛼, 𝑞, 𝑠)space is understood to be modulo 𝒦(𝐿,𝑠). See [71] for 𝑎 discussion of the 

dimensions of 𝒦(𝐿,0)when 𝐿 is 𝑎 second order elliptic operator of divergence form or 𝑎 

Schrödinger operator. 

Now, we give some important properties of the spaces𝔏𝐿(𝛼, 𝑞, 𝑠)where 0 < 𝛼 <

𝜃(𝐿)/𝑛,1 ≤ 𝑞 < ∞ and 𝑠 ≥ [
𝑛𝛼

𝑚
]. 

First, for each1 ≤ 𝑞 < ∞, the space 𝔏𝐿(0, 𝑞, 0)is 𝑎 variant of the new 𝐵𝑀𝑂𝐿space 

introduced in[70], and it generalizes the classical 𝐵𝑀𝑂 space. If 𝜃(𝐿) = ∞, then the 

spaces 𝔏𝐿(𝛼, 𝑞, 𝑠)are well defined for all0 ≤ 𝛼 < ∞, 1 ≤ 𝑞 < ∞ and𝑠 ≥ [
𝑛𝛼

𝑚
]. In 

particular, if 𝐿 is the Laplacian on ℝ𝑛, then the classical Morrey-Campanato spaces 

𝐿(𝛼, 𝑞, 2𝑠) coincide with our spaces 𝔏∆(𝛼, 𝑞, 𝑠). See[66]. 

Secondly, if 𝑓 ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠)for0 < 𝛼 < 𝜃(𝐿)/𝑛,1 ≤  𝑞 < ∞ and𝑠 ≥ [
𝑛𝛼

𝑚
], then 

(𝑎) for every 𝑡 > 0 and every 𝐾 > 1, there exists 𝑎 constant 𝑐 > 0 such that for almost all 

𝑥 ∈ ℝ𝑛, 
|𝑃𝑠,𝑡𝑓(𝑥) − 𝑃𝑠,𝐾𝑡𝑓(𝑥)| ≤ 𝑐(𝐾𝑡)

𝑛𝛼/𝑚‖𝑓‖𝔏𝐿(𝛼,𝑞,𝑠);                      (15) 

(𝑏) For any 𝛿 > 𝑛𝛼 and any𝑥 ∈ ℝ𝑛, there exists 𝑎 constant𝑐𝛿 which depends on 𝛿 such 

that 

∫
|𝑓(𝑦) − 𝑃𝑠,𝑡𝑓(𝑦)|

(𝑡1/𝑚 + |𝑥 − 𝑦|)𝑛+𝛿

 

ℝ𝑛
𝑑𝑦 ≤ 𝑐𝛿𝑡

(𝑚𝛼−𝛿)/𝑚‖𝑓‖𝔏𝐿(𝛼,𝑞,𝑠).                     (16) 

For the proofs of (𝑎) and(𝑏), see Propositions2.5 and 2.7 of [72], respectively. 

Proposition (3.1.3)[53]: Let0 < 𝛼 < 𝜃(𝐿)/𝑛,1 ≤ 𝑞 < ∞ and 𝑠 ≥ [
𝑛𝛼

𝑚
]. 

(i) If 𝑞𝑡(𝑥, 𝑦) denotes the kernel of the operator 𝑄𝑡, then for each𝑦 ∈ ℝ𝑛, 𝑞𝑡(∙, 𝑦) ∈
𝔏𝐿(𝛼, 𝑞, 𝑠). Similarly, for each 𝑥 ∈ ℝ𝑛,𝑞𝑡(𝑥,∙) ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠). 
(ii) If𝑓 ∈ 𝐿2(ℝ𝑛), then for each 𝑡 > 0,𝑄𝑡𝑓 ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠), and also, 𝑄𝑡

∗𝑓 ∈ 𝔏𝐿∗(𝛼, 𝑞, 𝑠). 
Proof: In order to prove that for each 𝑦 ∈ ℝ𝑛,𝑞𝑡(∙, 𝑦) ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠), by Definition(3.1.2) 
it suffices to verify that for any ball 𝐵 of ℝ𝑛 , 

∫|𝑞𝑡(𝑥, 𝑦) − 𝑃𝑠,𝑡𝐵(𝑞𝑡(∙, 𝑦))(𝑥)|
𝑞

 

𝐵

𝑑𝑥 = ∫ |(𝐼 − 𝑒−𝑡𝐵𝐿)𝑠+1(𝑞𝑡(∙, 𝑦))(𝑥)|
𝑞

 

𝐵

𝑑𝑥 

≤ 𝑐|𝐵|𝑞𝛼+1,                                                     (17) 
where 𝑡𝐵 = 𝑟𝐵

𝑚, and 𝑟𝐵 equals the radius of the ball 𝐵. 

Let us prove(17). Noting that 𝐼 − 𝑒−𝑡𝐵𝐿 = −∫
𝑑

𝑑𝑟
𝑒−𝑟𝐿

𝑡𝐵
0

𝑑𝑟 = ∫ 𝐿𝑒−𝑟𝐿
𝑡𝐵
0

𝑑𝑟, we have 
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(𝐼 − 𝑒−𝑡𝐵𝐿)𝑠+1(𝑡𝐿𝑒−𝑡𝐿) = ∫ …
𝑡𝐵

0

∫
𝑡

(𝑡 + 𝑟1 +⋯+ 𝑟𝑠+1)
𝑠+2

𝑡𝐵

0

 

× 𝑄𝑠+1, (𝑡 + 𝑟1 +⋯+ 𝑟𝑠+1)𝑑𝑟1…𝑑𝑟𝑠+1. 
 From(13), the operator(𝐼 − 𝑒−𝑡𝐵𝐿)𝑠+1(𝑡𝐿𝑒−𝑡𝐿)has an associated kernel 𝐾𝑠,𝑡(𝑥, 𝑦)which 

satisfies 

 

|𝐾𝑠,𝑡(𝑥, 𝑦)| 

≤ 𝑐𝑠+1∫ …
𝑡𝐵

0

∫
𝑡

(𝑡 + 𝑟1 +⋯+ 𝑟𝑠+1)
𝑠+2+

𝑛
𝑚

𝑡𝐵

0

 

× 𝑔 (
|𝑥 − 𝑦|

(𝑡 + 𝑟1 +⋯+ 𝑟𝑠+1)
1/𝑚
)𝑑𝑟1…𝑑𝑟𝑠+1 

≤ 𝑐(𝑠, 𝑡)∫ …
𝑡𝐵

0

∫
𝑡

(𝑡 + 𝑟1 +⋯+ 𝑟𝑠+1)
𝑠+2

𝑡𝐵

0

𝑑𝑟1…𝑑𝑟𝑠+1 

≤ 𝑐′(𝑠, 𝑡)∫
𝑟𝑠+1

(𝑡 + 𝑟)𝑠+1
𝑑𝑟

𝑟

𝑡𝐵

0

 

for some constant 𝑐(𝑠, 𝑡) dependent on 𝑠 and 𝑡. We observe that𝑛𝛼 ≤  𝑚(𝑠 + 1), and then 
𝑟

𝑡+𝑟
≤ 𝑐(𝑡)𝑟

𝑛𝛼

𝑚(𝑠+1). Therefore, 

|𝐾𝑠,𝑡(𝑥, 𝑦)| ≤ 𝑐
′(𝑠, 𝑡)𝑐(𝑡)𝑠+1∫ 𝑟

𝑛𝛼
𝑚(𝑠+1)

.(𝑠+1) 𝑑𝑟

𝑟

𝑡𝐵

0

≤ 𝑐 ∫ 𝑟
𝑛𝛼
𝑚
𝑑𝑟

𝑟

𝑡𝐵

0

≤ 𝑐𝑡𝐵

𝑛𝛼
𝑚 ≤ 𝑐|𝐵|𝛼, 

which gives the desired estimate(17), and then𝑞𝑡(∙, 𝑦) ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠)for each 𝑦 ∈ ℝ𝑛. 
Similarly, for each 𝑥 ∈ ℝ𝑛,𝑞𝑡(𝑥,∙) ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠). Also for𝑓 ∈ 𝐿2(ℝ𝑛) , we have that 𝑄𝑡𝑓 ∈
𝔏𝐿(𝛼, 𝑞, 𝑠)with‖𝑄𝑡𝑓‖𝔏𝐿(𝛼,𝑞,𝑠) ≤ 𝑐‖𝑓‖2and𝑄𝑡

∗𝑓𝔏𝐿∗(𝛼, 𝑞, 𝑠) ≤ 𝑐‖𝑓‖2 with 

‖𝑄𝑡
∗𝑓‖𝔏𝐿∗(𝛼,𝑞,𝑠) ≤ 𝑐‖𝑓‖2. 

We now introduce the dual space(𝔏𝐿(𝛼, 𝑞, 𝑠))
′
with0 < 𝛼 < 𝜃(𝐿)/𝑛,1 ≤  𝑞 < ∞and𝑠 ≥

[
𝑛𝛼

𝑚
]consisting of all linear functionalsℓfrom𝔏𝐿(𝛼, 𝑞, 𝑠)to ℂwith the property that there 

exists 𝑎 finite constant 𝑐 such that for all 𝑔 ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠), 
|ℓ(𝑔)| ≤ 𝑐‖𝑔‖𝔏𝐿(𝛼,𝑞,𝑠).                                                               (18) 

We denote by〈𝑓, 𝑔〉the natural pairing of elements 𝑓 ∈ (𝔏𝐿(𝛼, 𝑞, 𝑠))
′
and 𝑔 ∈ 𝔏𝐿(𝛼, 𝑞, 𝑠). 

It follows from Proposition(3.1.3) that for all𝑓 ∈ (𝔏𝐿(𝛼, 𝑞, 𝑠))
′
with0 < 𝛼 < 𝜃(𝐿)/𝑛,1 ≤

𝑞 < ∞ and𝑠 ≥ [
𝑛𝛼

𝑚
],〈𝑓, 𝑞𝑡(. , 𝑦)〉 is well defined. Similarly, for all𝑓 ∈ (𝔏𝐿∗(𝛼, 𝑞, 𝑠))

′
 with 

0 < 𝛼 < 𝜃(𝐿)/𝑛, 1 ≤ 𝑞 < ∞ and 𝑠 ≥ [
𝑛𝛼

𝑚
], 〈𝑓, 𝑞𝑡(𝑥, . )〉is well defined. In the following, 

we will denote𝑄𝑡𝑓(𝑥) = 〈𝑓, 𝑞𝑡(𝑥, . )〉. Also, for any ∈ (𝔏𝐿∗(𝛼, 𝑞, 𝑠))
′
, we observe that for 

any𝑔 ∈ 𝐿2(ℝ𝑛), 
|〈𝑄𝑡𝑓, 𝑔〉| = |〈𝑓, 𝑄𝑡

∗𝑔〉| ≤ 𝑐‖𝑄𝑡
∗𝑔‖𝔏𝐿∗(𝛼,𝑞,𝑠) ≤ 𝑐‖𝑔‖2, 

and thus𝑄𝑡𝑓 ∈ 𝐿
2(ℝ𝑛). These will often be used. 

In what follows,ℝ+
𝑛−1will denote the upper half-space in ℝ𝑛+1. The notation 

𝛤(𝑥) = {(𝑦, 𝑡) ∈ ℝ+
𝑛+1: |𝑥 − 𝑦| < 𝑡} denotes the standard cone (of aperture 1) with vertex 

𝑥 ∈ ℝ𝑛. For any closed subset 𝐹 ⊂ ℝ𝑛, ℛ(𝐹) will be the union of all cones with vertices 

in 𝐹, i.e., ℛ(𝐹) = ⋃ Γ(𝑥)𝑥∈𝐹 . If 𝑂 is an open subset of ℝ𝑛, then the “tent” over 𝑂, denoted 

by �̂�, is given as �̂� = [ℛ(𝑂𝑐)]𝑐 . 
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We continue with the assumption that the operator 𝐿 satisfies the assumptions (𝑎) 
and (𝑏). Given 𝑎function𝑓 ∈ 𝐿1(ℝ𝑛), the area integral function𝑆𝐿(𝑓) associated with an 

operator 𝐿 is defined by 

𝑆𝐿(𝑓)(𝑥) = (∫ |𝑄𝑚𝑓(𝑦)|
2
𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

Γ(𝑥)

)

1/2

.                                  (19) 

It follows from the assumption (𝑏) of 𝐿 that the area integral function 𝑆𝐿(𝑓) is bounded on 

𝐿2(ℝ𝑛). It was proved in Theorem 6 of[58] that there exist constants 𝑐1, 𝑐2 such that0 <
𝑐1 ≤ 𝑐2 < ∞ and 

𝑐1‖𝑓‖𝑝 ≤ ‖𝑆𝐿(𝑓)‖𝑝 ≤ 𝑐2‖𝑓‖𝑝                                (20) 

for all𝑓 ∈ 𝐿𝑝(ℝ𝑛),1 < 𝑝 < ∞. See also [67] and [90]. 

By duality, the operator 𝑆𝐿∗(𝑓)also satisfies the estimate(20), where 𝐿∗is the adjoint 

operator of 𝐿. 
The following definition was introduced in [58]. We say that 𝑓 ∈ 𝐿𝑝(ℝ𝑛) belongs 

to 𝑎 Hardy space associated with an operator 𝐿 (abbreviated as 𝐻𝐿
1) if 𝑆𝐿(𝑓) ∈ 𝐿

1(ℝ𝑛), 
and define its norm by 

‖𝑓‖𝐻𝐿1 =
‖𝑆𝐿‖𝐿1 . 

Note that if 𝐿 = ∆ is the Laplacian on ℝ𝑛, then the classical space 𝐻1(ℝ𝑛) coincides with 

the spaces 𝐻∆
1(ℝ𝑛)and 𝐻

√∆
1 (ℝ𝑛)and their norms are equivalent. See[74]and[19]. 

For 𝑎 measurable function 𝑔(𝑦, 𝑡) defined on ℝ+
𝑛−1, we will denote 

𝒜(𝑔)(𝑥) = (∫ |𝑔(𝑦, 𝑡)|2
𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

Γ(𝑥)

)

1/2

                                (21) 

and for 0 < 𝑝 ≤ 1, 

𝐶𝑝(𝑔)(𝑥) = sup
𝑥∈𝐵

1

|𝐵|
1
𝑝−
1
2

(∫ |𝑔(𝑦, 𝑡)|2
𝑑𝑦𝑑𝑡

𝑡

 

�̂�

)

1/2

.                                (22) 

Following[63], the “tent space” 𝑇2
𝑝
is defined as the space of functions 𝑔 such that 𝒜(𝑔) ∈

𝐿𝑝(ℝ𝑛), when 0 < 𝑝 < ∞. The resulting equivalence classes are then equipped with the 

norm‖|𝑔|‖𝑇2
𝑝 = ‖𝒜‖𝑝. When 𝑝 = ∞, 𝑇2

∞is the class of 𝑔 for which 𝐶1(𝑔)  ∈ 𝐿
∞(ℝ𝑛), 

and its norm is defined by ‖𝐶1(𝑔) ‖∞. For 0 < 𝑝 ≤ 1 we denote 𝑇2
𝑝,∞

by 

𝑇2
𝑝,∞
= {𝑔: ‖𝐶𝑝(𝑔) ‖∞  < ∞}. 

Obviously, 𝑇2
1,∞ = 𝑇2

∞.We observe that 𝑓 ∈ 𝐻𝐿
1(ℝ𝑛)if and only if𝑄𝑡𝑚𝑓 ∈ 𝑇2

1, 

i.e.,𝒜(𝑄𝑡𝑚𝑓) = 𝑆𝐿(𝑓) ∈ 𝐿
1. From this point of view, we now introduce the Hardy 

spaces𝐻𝐿
𝑝(ℝ𝑛)for 𝑝 < 1associated with the semigroup{𝑒−𝑡𝐿}𝑡>0. 

Definition (3.1.4)[53]: Suppose 
𝑛

𝑛+𝜃(𝐿)
< 𝑝 < 1 and𝑠0 = [

𝑛(
1

𝑝
−1)

𝑚
]. The generalized Hardy 

space𝐻𝐿
𝑝(ℝ𝑛)associated with the semigroup{𝑒−𝑡𝐿}𝑡>0 is the subspace of the dual 

space(𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0))

′

of 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0), defined as the completion of 

𝐷𝑝 ≔ {𝑓 ∈ 𝐿
2(ℝ𝑛):𝒜(𝑄𝑡𝑚𝑓) ∈ 𝐿

𝑝(ℝ𝑛)},
𝑛

𝑛 + 𝜃(𝐿)
< 𝑝 < 1, 

in the quasi-norm 

‖𝑓‖𝐻𝐿𝑃 =
‖𝒜(𝑄𝑡𝑚𝑓)‖𝐿𝑝 . 
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We will abuse language and say 𝒜(𝑄𝑡𝑚𝑓)(𝑥)is the area integral function associated with 

the semigroup{𝑒−𝑡𝐿}𝑡>0, and still denoted by𝑆𝐿(𝑓). 
(i) Note first that smooth functions with compact support do not necessarily belong to 

𝐻𝐿
𝑝(ℝ𝑛)in general. If 𝑓 ∈ 𝐻𝐿

𝑝(ℝ𝑛), it follows from Theorem(3.1.10)below that 𝑓 satisfies 

the cancellation condition 

∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
= 0 

for all𝑔 ∈ 𝒦(𝐿∗,𝑠0), where𝒦(𝐿∗,𝑠0)is given by 

𝒦(𝐿∗,𝑠0) = {𝑔 ∈ ℳ:𝑃𝑠0,𝑡
∗ 𝑔(𝑥)for almost all 𝑥 ∈ ℝ𝑛 for all 𝑡 > 0}. 

See [71] for 𝑎 discussion of the dimensions of 𝒦(𝐿∗,0)when 𝐿 is 𝑎 second order elliptic 

operator of divergence form or 𝑎 Schrödinger operator. 

(ii) If 𝜃(𝐿) = ∞, then the spaces 𝐻𝐿
𝑝(ℝ𝑛)are well defined for all 0 < 𝑝 ≤ 1. Atypical 

example of 𝜃(𝐿)  = ∞ is when the kernel 𝑝𝑡(𝑥, 𝑦) of 𝑒−𝑡𝐿 satisfies 𝑎 Gaussian upper 

bound, that is, 

|𝑝𝑡(𝑥, 𝑦)| ≤
𝐶

𝑡𝑛/2
𝑒−𝑐

|𝑥−𝑦|2

𝑡                                           (23) 

for 𝑥, 𝑦 ∈ ℝ𝑛  and all 𝑡 > 0. 
(iii) We now give 𝑎 list of examples of 𝐻𝐿

𝑝(ℝ𝑛)in different settings. 

(𝛼) Let𝑝 ≤ 1. The classical 𝐻𝑝(ℝ𝑛)and the 𝐻∆
𝑝(ℝ𝑛)spaces coincide, and their quasi-

norms are equivalent. See[74] and[19]. 

(𝛽) Let𝐴 = ((𝑎𝑖𝑗(𝑥))
1≤𝑖,𝑗≤𝑛

be an 𝑛 × 𝑛 matrix with entries𝑎𝑖𝑗 ∈ 𝐿
∞(ℝ𝑛 , ℂ) 

satisfying𝑅𝑒 ∑𝑎𝑖𝑗(𝑥)𝜉𝑖𝜉𝑗 ≥ 𝜆|𝜉|
2 for all𝑥 ∈ ℝ𝑛,𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑛) ∈ ℂ

𝑛and some𝜆 > 0. 

We define 𝑎 divergence form operator 

𝐿𝑓 ≡ −div(𝐴𝛻𝑓), 
which we interpret in the usual weak sense via 𝑎 sesquilinear form. 

Note that the Gaussian bound(23) on the heat kernel𝑒−𝑡𝐿is true when 𝐴 has real entries, or 

when 𝑛 = 1, 2 in the case of complex entries. See [57]. 
(𝛾) Let𝑉 ∈ 𝐿𝑙𝑜𝑐

1 (ℝ𝑛)be 𝑎 nonnegative function on ℝ𝑛. The Schrödinger operator with 

potential 𝑉 is defined by 

𝐿 = −∆ + 𝑉(𝑥) on ℝ𝑛 , 𝑛 ≥ 3. 
From the Feynman-Kac formula, it is well known that the kernels 𝑝𝑡(𝑥, 𝑦) of the 

semigroup 𝑒−𝑡𝐿satisfy the estimate 

0 ≤ 𝑝𝑡(𝑥, 𝑦) ≤
1

(4𝜋𝑡)𝑛2
𝑒−
|𝑥−𝑦|2

4𝑡 . 

However, unless 𝑉 satisfies additional conditions, the heat kernel can be 𝑎 discontinuous 

function of the space variables, and the Hölder continuous estimates may fail to hold. See, 

[64] and [73]. 
Note that in [62], [63], the tent spaces give 𝑎 natural and simple approach to the 

atomic decomposition of functions in the classical 𝐻𝑝(ℝ𝑛)spaces by using the area 

integral functions and the connection with the theory of the Carleson measures. We will 

adopt the same approach of tent spaces to obtain 𝑎 molecular decomposition for Hardy 

spaces 𝐻𝐿
𝑝(ℝ𝑛). We now assume that 
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𝑛

𝑛 + 𝜃(𝐿)
< 𝑝 < 1, 𝑠0 = [

𝑛 (
1
𝑝
− 1)

𝑚
] and 𝑠 ≥ 𝑠0.                     (24) 

In the following, for any given 𝑝 as in(24), we let𝜖in(5) be 𝑎 constant such that(i) 𝜖 >

𝑛 (
1

𝑝
− 1)and thus

𝑛

𝑛+𝜖
< 𝑝; (ii) 𝑚(𝑠0 +  1) > 𝜖 unless stated otherwise. 

Following[63], 𝑎 function 𝑎(𝑥, 𝑡) is called 𝑎 𝑇2
𝑝

-atom,0 < 𝑝 ≤ 1, if 

(i) the function 𝑎(𝑡, 𝑥) is supported in �̂�(for some ball 𝐵 ⊂ ℝ𝑛); and 

(ii) ∫ |𝑎(𝑡, 𝑥)|2
 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ |𝐵|1−2/𝑝. 

Proposition (3.1.5)[53]: (𝑎) Suppose 1 < 𝑝 < ∞ . The following inequality holds, 

whenever𝑓 ∈ 𝑇2
𝑝

and𝑔 ∈ 𝑇2
𝑝′

with
1

𝑝
+
1

𝑝′
= 1, 

∫ |𝑓(𝑦, 𝑡)𝑔(𝑦, 𝑡)|
𝑑𝑦𝑑𝑡

𝑡

 

ℝ+
𝑛+1

≤ ∫ 𝒜(𝑓)(𝑥)𝒜(𝑔)(𝑥)𝑑𝑥
 

ℝ𝑛
. 

(𝑏) Assume0 < 𝑝 ≤ 1. Every element 𝑓 ∈ 𝑇2
𝑝
can be written as𝑓 = ∑ 𝜆𝑗𝑎𝑗, where 𝑎𝑗 are 

𝑇2
𝑝

 atoms, 𝜆𝑗 ∈ ℂ, and ∑|𝜆𝑗|
𝑝
≤ 𝑐‖𝑓‖

𝑇2
𝑝
𝑝
. 

(𝑐) If 0 < 𝑝 ≤ 1, then the dual space of 𝑇2
𝑝
is𝑇2

𝑝,∞
. More precisely, the pairing〈𝑓, 𝑔〉 →

∫ 𝑓(𝑥, 𝑡)𝑔(𝑥, 𝑡)
𝑑𝑥𝑑𝑡

𝑡

 

ℝ+
𝑛+1 realizes 𝑇2

𝑝,∞
as equivalent to the dual of 𝑇2

𝑝
. 

Proof: For the proofs of (𝑎) and(𝑏), we refer to (43) and Proposition 5 of[63], 
respectively. 

Let us show thatℓ ∈ (𝑇2
𝑝
)
′
can be represented by 𝑎 function𝑔 ∈ 𝑇2

𝑝,∞
. Following Theorem 

1 of [63], we observe that if 𝐾 is 𝑎 compact set of ℝ+
𝑛+1and 𝑓 is supported in 𝐾 with𝑓 ∈

𝐿2(𝐾), then 𝑓 ∈ 𝑇2
𝑝
with‖𝑓‖𝑇2

𝑝 ≤ 𝑐𝐾‖𝑓‖𝐿2(𝐾)for all 0 < 𝑝 ≤ 1. Thusℓinduces 𝑎 bounded 

linear function on 𝐿2(𝐾)and is thus representable by 𝑔𝑘 ∈ 𝐿
2(𝐾). Taking an increasing 

family of such 𝐾 that exhausts ℝ+
𝑛+1gives a function 𝑔 ∈ 𝐿𝑙𝑜𝑐

2 (ℝ+
𝑛+1)such thatℓ(𝑓) =

∫ 𝑓(𝑥, 𝑡)𝑔(𝑥, 𝑡)
𝑑𝑥𝑑𝑡

𝑡

 

ℝ+
𝑛+1 whenever 𝑓 ∈ 𝑇2

𝑝
and 𝑓 has compact support𝐾. Testingℓagainst all 

possible atoms leads by the converse Schwartz’s inequality to|𝐵|
1−

2

𝑝 ∫ |𝑔(𝑥, 𝑡)|2
 

�̂�
𝑑𝑥𝑑𝑡/

𝑡 ≤ ‖ℓ‖2for all𝐵, i.e. ‖𝐶𝑝(𝑔)‖∞ ≤
‖ℓ‖ as desired. This representation ofℓis then 

extendable to all of𝑇2
𝑝

, since the subspace of 𝑓 with compact support is dense in𝑇2
𝑝

. The 

proof of Proposition(3.1.5) is complete. 

Let 𝑚 be the constant in(4). For any given𝑝 < 1, we choose𝑠0and 𝑠 the integers in(24). 
Let𝑐𝑚,𝑠be 𝑎 constant such that 

𝑐𝑚,𝑠∫ 𝑡𝑚(𝑠+2)𝑒−2𝑡
𝑚
(1 − 𝑒−𝑡

𝑚
)
𝑠0+1

𝑑𝑡/𝑡
∞

0

= 1.                     (25) 

We say that 𝑎 function 𝛼(𝑥) is 𝑎 (𝑝, 𝑠)-molecule if 

𝛼(𝑥) = 𝜋𝐿(𝑎)(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝑎(𝑡, . ))(𝑥)
∞

0

𝑑𝑡

𝑡
,                     (26) 

where 𝑎(𝑡, 𝑥) is 𝑎 𝑇2
𝑝
-atom supported in the tent�̂�of some ball 𝐵 ⊂ ℝ𝑛, and 

𝑎(𝑡, 𝑥)satisfies the condition∫ |𝑎(𝑡, 𝑥)|2𝑑𝑥𝑑𝑡/𝑡
 

�̂�
≤ |𝐵|1−2/𝑝. 
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Proposition (3.1.6)[53]: Suppose 
𝑛

𝑛+𝜃(𝐿)
< 𝑝 ≤ 1. For any𝑓 ∈ 𝐻𝐿

𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), there 

exist (𝑝, 𝑠)-molecules𝛼𝑘(𝑥)and numbers𝜆𝑘(𝑘 = 0,1,2,… ) such that 

𝑓(𝑥) =∑𝜆𝑘𝛼𝑘
𝑘

(𝑥).                                                                                    (27) 

The sequence 𝜆𝑘 satisfies∑ |𝜆𝑘|
𝑝

𝑘 ≤ 𝑐‖𝑓‖
𝐻𝐿
𝑝
𝑝

.Conversely, every sum(27) 

satisfies ‖𝑓‖
𝐻𝐿
𝑝

𝑝
≤ 𝑐∑ |𝜆𝑘|

𝑝
𝑘 . 

Proof: Let 𝑐𝑚,𝑠 be 𝑎 constant in(25). Consider the identity: 

1 = 𝑐𝑚,𝑠∫ (𝑡𝑚(𝑠+1)𝒵(𝑠+1)𝑒−𝑡
𝑚𝒵(1 − 𝑒−𝑡

𝑚𝒵)
𝑠0+1

) (𝑡𝑚𝒵𝑒−𝑡
𝑚𝒵)

𝑑𝑡

𝑡

∞

0

, 

which is valid for all 𝒵 ≠ 0in 𝑎 sector 𝑆𝜇
0 with 𝜇 ∈ (𝜔, 𝜋). As 𝑎 consequence of 𝐻∞-

functional calculus for 𝐿 and the convergence Lemma(3.1.1), one has 

𝑓(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑄𝑡𝑚𝑓(𝑥)
∞

0

𝑑𝑡

𝑡
,                                          (28) 

where this integral converges strongly in 𝐿2(ℝ𝑛). See [54] and[79]. For any 𝑓 ∈
𝐻𝐿
𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), we let 𝐹(𝑥, 𝑡) = (𝑄𝑡𝑚𝑓)(𝑥).We then apply (𝑏) of Proposition(3.1.5) 

to 𝑄𝑡𝑚𝑓to obtain 

𝑓(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝑄𝑡𝑚𝑓)(𝑥)
∞

0

𝑑𝑡

𝑡

=∑𝜆𝑘
𝑘

𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝑎𝑘(𝑡, . ))(𝑥)
∞

0

𝑑𝑡

𝑡
=∑𝜆𝑘𝛼𝑘

𝑘

(𝑥), 

where the sequence 𝜆𝑘 satisfies∑ |𝜆𝑘|
𝑝

𝑘 ≤ 𝑐‖𝑄𝑡𝑚(𝑓)‖𝑇2
𝑝
𝑝
≤ 𝑐‖𝑓‖

𝐻𝐿
𝑝
𝑝

. This proved, 

when𝑓 ∈ 𝐻𝐿
𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), possesses 𝑎 (𝑝, 𝑠)-molecule decomposition. 

Conversely, by the definition 𝐻𝐿
𝑝(ℝ𝑛), it suffices to verify that for any (𝑝, 𝑠)-molecule 

𝛼(𝑥), we have 

‖𝑆𝐿(𝛼)‖𝑝 ≤ 𝑐,                                                               (29) 

where 𝑐 is 𝑎 positive constant independent of 𝛼. 

Assume that 𝛼(𝑥) = 𝜋𝐿(𝑎) where 𝑎 = 𝑎(𝑡, 𝑥) is 𝑎 usual 𝑇2
𝑝
-atom supported in�̂�(for some 

𝐵 = 𝐵(𝒵0, 𝑟𝐵) ⊂ ℝ
𝑛). One writes 

‖𝑆𝐿(𝛼)‖𝐿𝑝
𝑝
= ∫ |𝑆𝐿(𝛼)(𝑥)|

𝑝
 

4𝐵

𝑑𝑥 + ∫ |𝑆𝐿(𝛼)(𝑥)|
𝑝

 

(4𝐵)𝑐
𝑑𝑥 = 𝐼 + 𝐼𝐼. 

Using Hölder’s inequality and estimate(20), one obtains 

∫ |𝑆𝐿(𝛼)(𝑥)|
𝑝

 

4𝐵

𝑑𝑥 ≤ |4𝐵|1−
𝑝
2‖𝑆𝐿(𝜋𝐿(𝑎))‖𝐿2

𝑝
≤ 𝑐|𝐵|1−

𝑝
2‖𝜋𝐿(𝑎)‖𝐿2

𝑝
 

≤ 𝑐|𝐵|1−
𝑝
2‖|𝑎|‖

𝑇2
2
𝑝
≤ 𝑐. 

We now estimate the term 𝐼𝐼. Firstly, we will show that there exists 𝑎 constant 𝑐 > 0 such 

that for any 𝑥 ∉ 4𝐵, 

𝑆𝐿
2(𝛼)(𝑥) ≤ 𝑐𝑟𝐵

2𝜖|𝐵|
2−
2
𝑝|𝑥 − 𝒵0|

−2(𝑛+𝜖).                                          (30) 
Let us prove(30). For 𝑘 = 0,… , 𝑠0 + 1, we denote 

Ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)𝑓(𝑦) = (𝑡𝑚 + (𝑘 + 1)𝜈𝑚)𝑠+2 (

𝑑𝑠+2𝑃𝑟
𝑑𝑟𝑠+2

|
𝑟=𝑡𝑚+(𝑘+1)𝜈𝑚

𝑓) (𝑦) 
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By (6), the kerne Ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)(𝑥, 𝑦) of Ψ𝑡,𝜈

𝑘 (𝐿, 𝑠)satisfies 

|Ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)(𝑥, 𝑦)| ≤ 𝑐𝑘

(𝑡 + 𝜈)𝜖

(𝑡 + 𝜈 + |𝑦 − 𝒵|)𝑛+𝜖
. 

Since(𝐼 − 𝑃𝑠0,𝑡𝑚) = ∑ (−1)𝑘𝐶𝑠0+1
𝑘 𝑒−𝑘𝑡

𝑚𝐿𝑠0+1
𝑘=0 , we obtain 

𝑆𝐿
2(𝛼)(𝑥) = (𝑆𝐿 (∫ 𝑄𝑠,𝜈𝑚(𝐼 − 𝑃𝑠0,𝜈𝑚)(𝑎(𝜈, . ))

∞

0

𝑑𝜈

𝑣
))

2

(𝑥) 

= ∫ [∫ ∑(−1)𝑘𝐶𝑠0+1
𝑘

𝑡𝑚𝜈𝑚(𝑠+1)

(𝑡𝑚 + (𝑘 + 1)𝜈𝑚)𝑠+2

𝑠0+1

𝑘=0

𝑟𝐵

0

× Ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)(𝑎(𝜈, . ))(𝑦)

𝑑𝜈

𝜈
]

2

𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

Γ(𝑥)

 

≤ 𝑐 ∑ ∫ [∫ ∫
𝑡𝑚𝜈𝑚(𝑠+1)

(𝑡𝑚 + (𝑘 + 1)𝜈𝑚)𝑠+2

 

𝐵

𝑟𝐵

0

|Ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)(𝑦, 𝒵)𝑎(𝜈, 𝒵)|

𝑑𝒵𝑑𝜈

𝜈
]

2
𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

Γ(𝑥)

𝑠0+1

𝑘=0

 

≤ 𝑐∫ ∫ [∫
𝑡𝑚𝜈𝑚(𝑠+1)

(𝑡 + 𝜈)𝑚(𝑠+2)
(𝑡 + 𝜈)𝜖|𝑎(𝜈, 𝒵)|

(𝑡 + 𝜈 + |𝑦 − 𝒵|)𝑛+𝜖
𝑑𝒵𝑑𝜈

𝜈

 

�̂�

]

2 

|𝑥−𝑦|<𝑡

𝑟𝐵

0

𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

+𝑐∫ ∫ [∫
𝑡𝑚𝜈𝑚(𝑠+1)

(𝑡 + 𝜈)𝑚(𝑠+2)
(𝑡 + 𝜈)𝜖|𝑎(𝜈, 𝒵)|

(𝑡 + 𝜈 + |𝑦 − 𝒵|)𝑛+𝜖
𝑑𝒵𝑑𝜈

𝜈

 

�̂�

]

2 

|𝑥−𝑦|<𝑡

∞

𝑟𝐵

𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

= 𝐼𝐼1 + 𝐼𝐼2, respectively. 
We only consider term 𝐼𝐼2 since the estimate of term 𝐼𝐼1is much simpler. For 𝑥 ∉ 4𝐵 and 

𝑡 ≥ 𝑟𝐵, we set 𝐵 = 𝐵1 ∪ 𝐵2, where𝐵1 = 𝐵 ∩ {𝒵: |𝑦 − 𝒵| ≤
|𝑥−𝒵0|

2
}. For any 𝒵 ∈

𝐵1and|𝑦 − 𝑥| <  𝑡, we have 

|𝑥 − 𝒵0||𝑦 − 𝑥| + |𝑦 − 𝒵| + |𝒵 − 𝒵0| ≤ 𝑡 +
|𝑥 − 𝒵0|

2
+ 𝑟𝐵 ≤ 2𝑡 +

|𝑥 − 𝒵0|

2
,       (31) 

which implies𝑡 ≥ |𝑥 − 𝒵0|/4, and then (𝑡 + 𝑠 + |𝑦 − 𝒵|) ≥ |𝑥 − 𝒵0|/4. Obviously, for 

any𝒵 ∈ 𝐵2 and|𝑦 − 𝑥| < 𝑡, we also have(𝑡 + 𝑠 + |𝑦 − 𝒵|) ≥ |𝑥 − 𝒵0|/2. Those, 

together with 

(𝑡 + 𝜈)𝜖.
𝑡𝑚𝜈𝑚(𝑠+1)

(𝑡 + 𝜈)𝑚(𝑠+2)
≤ 𝑡𝜖 (

𝜈

𝑡
)
𝑚(𝑠+1)

 

and 𝑚(𝑠 + 1) > 𝜖, give 

𝐼𝐼2 ≤ 𝑐 ∫ ∫ [∫ 𝜈𝑚(𝑠+1)𝑡𝜖−𝑚(𝑠+1)|𝑎(𝜈, 𝒵)|
𝑑𝒵𝑑𝜈

𝜈

 

�̂�

]

2 

|𝑥−𝑦|<𝑡

∞

𝑟𝐵

𝑑𝑦𝑑𝑡

𝑡𝑛+1
|𝑥 − 𝒵0|

−2(𝑛+𝜖) 

≤ 𝑐|𝐵|∫ ∫ 𝜈2𝑚(𝑠+1)𝑡2𝜖−2𝑚(𝑠+1)
𝑑𝜈𝑑𝑡

𝜈

𝑟𝐵

0

∞

𝑟𝐵

∫|𝑎(𝜈, 𝒵)|2
𝑑𝒵𝑑𝜈

𝜈

 

�̂�

|𝑥 − 𝒵0|
−2(𝑛+𝜖) 

≤ 𝑐|𝐵|
2−
2
𝑝∫ ∫ 𝜈2𝑚(𝑠+1)𝑡2𝜖−2𝑚(𝑠+1)

𝑑𝜈𝑑𝑡

𝜈

𝑟𝐵

0

∞

𝑟𝐵

|𝑥 − 𝒵0|
−2(𝑛+𝜖) 

≤ 𝑐𝑟𝐵
2𝜖+2𝑛−

2𝑛
𝑝 |𝑥 − 𝒵0|

−2(𝑛+𝜖). 

Estimate(30) then follows readily. Since𝑝(𝑛 + 𝜖) > 𝑛, we obtain 

∫ |𝑆𝐿(𝛼)(𝑥)|
𝑝

 

(4𝐵)𝑐
𝑑𝑥 ≤ 𝑐𝑟𝐵

𝑝𝜖+𝑛𝑝−𝑛
∫ |𝑥 − 𝒵0|

−(𝑛+𝜖)𝑝
 

(4𝐵)𝑐
𝑑𝑥 ≤ 𝑐. 

Combining estimates of 𝐼 and𝐼𝐼, we obtain(29), and then the proof of Proposition (3.1.6) 
is complete. 
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Now, let 𝑇2,𝑐
𝑝

 be the set of all 𝑓 ∈ 𝑇2
𝑝
with compact support in ℝ+

𝑛+1. Consider the 

operator𝜋𝐿initially defined on 𝑇2,𝑐
𝑝

by 

𝜋𝐿(𝑓)(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝑓(. , 𝑡))(𝑥)
𝑑𝑡

𝑡

∞

0

,                         (32) 

where𝑐𝑚,𝑠is 𝑎 constant in (25). Note that for any compact set 𝐾 inℝ+
𝑛+1,  

∫ |𝑓(𝑥, 𝑡)|2𝑑𝑥𝑑𝑡
 

𝐾

≤ 𝑐(𝐾, 𝑝)‖𝒜(𝑓)‖𝑝
2  

for all 𝑝 > 0. See page 306 of[63]. This and the estimate (7) imply that the integral (32) 

is well defined, and 𝜋𝐿(𝑓) ∈ 𝐿
2(ℝ𝑛)for all 𝑓 ∈ 𝑇𝑐,2

𝑝
. 

Lemma (3.1.7)[53]: The operator 𝜋𝐿, initially defined on 𝑇𝑐,2
𝑝

, extends to 𝑎 bounded linear 

operator from 

(𝑎) 𝑇2
𝑝
to 𝐿𝑝if 1 < 𝑝 < ∞; 

(𝑏) 𝑇2
𝑝
to 𝐻𝐿

𝑝
if

𝑛

𝑛+𝜃(𝐿)
< 𝑝 ≤ 1. 

Proof. The property (𝑏) is contained in the second part of Proposition (3.1.6). We now 

verify the property(𝑎). From Proposition(3.2.5) and estimate (20), we have 

|∫ 𝜋𝐿(𝑓)(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
| ≤ 𝑐 |∫ 𝑓(𝑥, 𝑡) (𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚))

∗
𝑔(𝑥)

 

ℝ+
𝑛+1

𝑑𝑥𝑑𝑡

𝑡
| 

≤ 𝑐 |∫ 𝒜(𝑓)(𝑥)𝒜 ((𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚))
∗
𝑔) (𝑥)

 

ℝ𝑛
𝑑𝑥| 

≤ 𝑐‖𝒜(𝑓)‖𝑝 ‖𝒜 ((𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚))
∗
𝑔)‖

𝑝′
 

≤ 𝑐‖|𝑓|‖𝑇2
𝑝‖𝑔‖𝑝′ 

for any𝑔 ∈ 𝐿𝑝
′
,
1

𝑝
+
1

𝑝′
= 1. Hence, we obtain‖𝜋𝐿(𝑓)‖𝑝 ≤ 𝑐‖|𝑓|‖𝑇2

𝑝 . 

We next state the following 𝐻𝐿
𝑝
-estimate for functions in the space 𝐻𝐿

𝑝(ℝ𝑛). For its proof, 

it is similar to that of the second part of Proposition(3.1.6).  

Proposition (3.1.8)[53]: Suppose
𝑛

𝑛+𝜃(𝐿)
< 𝑝 ≤ 1 and 𝑠0 = [

𝑛(
1

𝑝
−1)

𝑚
]. For any 𝐿2-function 𝑓 

supported on 𝐵, the function(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓belongs to 𝐻𝐿
𝑝(ℝ𝑛), and there exists 𝑎 positive 

constant 𝑐 such that 

‖(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓‖𝐻𝐿
𝑝 ≤ 𝑐|𝐵|

1
𝑝
−
1
2‖𝑓‖𝐿2 , 

where 𝑟𝐵 is the radius of the ball 𝐵. 
We assume that the operator 𝐿 satisfies the assumptions(𝑎) and (𝑏). It was proved 

in Theorem3.1 of [71] that the dual space of 𝐻𝐿
1(ℝ𝑛)is the space 𝐵𝑀𝑂𝐿∗(ℝ

𝑛) in which 

𝐿∗is the adjoint operator of 𝐿. The aim is to prove the following theorem. 

Recall that 𝑎 measure 𝜇 in ℝ+
𝑛+1is a Carleson measure 𝑉𝛽of order of 𝛽 ≥ 1 if there 

is 𝑎 positive constant 𝑐 such that for each ball 𝐵 on ℝ𝑛,  

 𝜇(�̂�) ≤ 𝑐|𝐵|𝛽,                                                         (33) 

where �̂�is the tent over 𝐵. The smallest bound 𝑐 in (33) is defined to be the norm of𝜇, and 

denoted by|‖𝜇‖|𝑉𝛽 . See, for example, page338, Chapter XV, of [85]. 
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Proposition (3.1.9)[53]: Suppose 0 < 𝛼 < 𝜃(𝐿)/𝑛 and𝑠 ≥ 𝑠0 = [
𝑛𝛼

𝑚
]. If 𝑓 ∈ 𝔏𝐿(𝛼, 2, 𝑠0), 

then the measure 

𝜇𝑓(𝑥, 𝑡) = |𝑄𝑠,𝑡𝑚(ℐ − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)|
2 𝑑𝑥𝑑𝑡

𝑡
 

is 𝑎 Carleson measure 𝑉2𝛼+1 with |‖𝜇𝑓‖|𝑉(2𝛼+1)
≤ 𝑐‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)

2 . 

Proof: Given 0 < 𝛼 < 𝜃(𝐿)/𝑛, we let𝜖 in (5) be the constant such that 𝑛𝛼 < 𝜖 < 𝜃(𝐿) 
and 𝑚(𝑠 + 1) > 𝜖. In order to prove Proposition(3.1.9), it suffices to prove that there 

exists 𝑎 positive constant 𝑐 > 0 such that for any ball 𝐵 = 𝐵(𝑥𝐵, 𝑟𝐵) onℝ𝑛, 

∫∫ |𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)

2 .                (34) 

Note that(𝐼 − 𝑃𝑠0,𝑡𝑚) = (𝐼 − 𝑃𝑠0,𝑡𝑚)(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚) + 𝑃𝑠0,𝑟𝐵𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚). Hence, estimate 

(34) will follow from the following estimates (35) and (36): 

∫∫|𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)

2          (35) 

and 

∫∫|𝑄𝑠,𝑡𝑚𝑃𝑠0,𝑟𝐵𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)

2 .            (36) 

To prove(35), let us introduce the square function 𝒢𝑓, given by 

𝒢(𝑓)(𝑥) = (∫ |𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)|
2

∞

0

𝑑𝑡

𝑡
)

1/2

. 

From (7), the function 𝒢(𝑓)is bounded on 𝐿2(ℝ𝑛). Let𝑏1 = (𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓𝜒2𝐵, and𝑏2 =

(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓𝜒(2𝐵)𝑐. Using property(15)of 𝔏𝐿(𝛼, 2, 𝑠0), we obtain 

∫∫|𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑏1(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ ‖𝒢(𝑏1)‖2

2 ≤ 𝑐‖𝑏1‖𝐿2(ℝ𝑛)
2

= 𝑐∫ |(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓(𝑥)|
2

 

2𝐵

𝑑𝑥

≤ 𝑐 (∫ |(𝐼 − 𝑃𝑠0,𝑟2𝐵𝑚 )𝑓(𝑥)|
2

 

2𝐵

𝑑𝑥 + |𝐵|. sup
𝑥∈2𝐵

|𝑃𝑠0,𝑟𝐵𝑚𝑓(𝑥) − 𝑃𝑠0,𝑟2𝐵𝑚𝑓(𝑥)|
2
) 

≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)
2 .                                                                                   (37) 

On the other hand, for any 𝑥 ∈ 𝐵 and 𝑦 ∈ (2𝐵)𝑐, one has|𝑥 − 𝑦| ≥ 𝑟𝐵. And then by 

estimate (13) and property (iv) of 𝔏𝐿(𝛼, 2, 𝑠0),  

|𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑏2(𝑥)| ≤ 𝑐∫
𝑡𝜖

(𝑡 + |𝑥 − 𝑦|)𝑛+𝜖

 

ℝ𝑛\2𝐵

|(ℐ − 𝑃𝑠0,𝑟𝐵𝑚)𝑓(𝑦)|𝑑𝑦 

≤ 𝑐 (
𝑡

𝑟𝐵
)
𝜖

∫
𝑟𝐵
𝜖

(𝑟𝐵 + |𝑥 − 𝑦|)
𝑛+𝜖

 

ℝ𝑛
|(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑓(𝑦)|𝑑𝑦 

≤ 𝑐|𝐵|2𝛼 (
𝑡

𝑟𝐵
)
𝜖

‖𝑓‖𝔏𝐿(𝛼,2,𝑠0) 

since𝑛𝛼 < 𝜖. Therefore, 

∫∫|𝑄𝑠0,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑏2(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ 𝑐|𝐵|2𝛼

1

𝑟𝐵
2𝜖∫∫ 𝑡

2𝜖
𝑑𝑥𝑑𝑡

𝑡

 

�̂�

‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)
2  

≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)
2 . 

This, together with the estimate (37), gives the estimate (35). 
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Let us prove(36). For 𝑘 = 1, 2,… , 𝑠0 + 1, we denote by 

ψ𝑡,𝑟𝐵
𝑘 𝑓(𝑥) = (𝑘𝑟𝐵

𝑚 + 𝑡𝑚)𝑠+1 (
𝑑𝑠+1𝑃𝜈
𝑑𝜈𝑠+1

 |𝜈=𝑘𝑟𝐵𝜖+𝑡𝑚𝑓) (𝑥). 

From (13), the kernel ψ𝑡,𝑟𝐵
𝑘 (𝑥, 𝑦) of ψ𝑡,𝑟𝐵

𝑘 satisfies 

|ψ𝑡,𝑟𝐵
𝑘 (𝑥, 𝑦)| ≤ 𝑐𝑘

𝑟𝐵
𝜖

(𝑟𝐵 + 𝑡 + |𝑥 − 𝑦|)
𝑛+𝜖
. 

Since 𝑃𝑠0,𝑟𝐵𝑚𝑓(𝑥) = ∑ (−1)𝑘+1𝐶𝑠0+1
𝑘 𝑒−𝑘𝑟𝐵

𝑚𝐿𝑓(𝑥)
𝑠0+1
𝑘=1 , from property (16) of 𝔏𝐿(𝛼, 2, 𝑠0) 

together with 𝑛𝛼 < 𝜖, we have 

|𝑄𝑠,𝑡𝑚𝑃𝑠0,𝑟𝐵𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)| 

= |∑(−1)𝑘+1𝐶𝑠0+1
𝑘

𝑡𝑚(𝑠+1)

(𝑘𝑟𝐵
𝑚 + 𝑡𝑚)𝑠+1

ψ𝑡,𝑟𝐵
𝑘 (𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)

𝑠0+1

𝑘=1

| 

≤ 𝑐 (
𝑡

𝑟𝐵
)
𝑚(𝑠+1)−𝜖

∫
𝑡𝜖

(𝑡 + |𝑥 − 𝑦|)𝑛+𝜖

 

ℝ𝑛
|(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑦)|𝑑𝑦 

≤ 𝑐𝑡𝑛𝛼/𝑚 (
𝑡

𝑟𝐵
)
𝑚(𝑠+1)−𝜖

‖𝑓‖𝔏𝐿(𝛼,2,𝑠0),   ∀0 < 𝑡 ≤ 𝑡𝐵. 

Therefore, by using the condition 𝑚(𝑠 + 1) > 𝜖, 

∫∫ |𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥)|
2

 

�̂�

𝑑𝑥𝑑𝑡

𝑡
≤ 𝑐∫∫ 𝑡2𝑛𝛼/𝑚−1 (

𝑡

𝑟𝐵
)
𝑚(𝑠+1)−𝜖

𝑑𝑥𝑑𝑡‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)
2

 

�̂�

≤ 𝑐|𝐵|2𝛼+1‖𝑓‖𝔏𝐿(𝛼,2,𝑠0)
2 , 

which gives the proof of (34), and therefore the proof of Proposition (3.1.9).  

Theorem (3.1.10)[53]: Suppose
𝑛

𝑛+𝜃(𝐿)
< 𝑝 < 1 and𝑠0 = [

𝑛(
1

𝑝
−1)

𝑚
]. Then, the dual space of 

the 𝐻𝐿
𝑝(ℝ𝑛)space is the𝔏𝐿∗ (

1

𝑝
− 1,2, 𝑠0)space, in the following sense. 

(i) Suppose 𝑓 ∈ 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0). Then the linear functional ℓ given by 

ℓ(𝑔) = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
,                                                (38) 

initially defined on the dense subspace 𝐻𝐿
𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), has 𝑎 unique extension 

to𝐻𝐿
𝑝(ℝ𝑛). 

(ii) Conversely, every continuous linear functionalℓ on the 𝐻𝐿
𝑝(ℝ𝑛)space can be realized 

as above, i.e., there exists 𝑓 ∈ 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0). such that (38) holds and 

‖𝑓‖
𝔏𝐿∗(

1

𝑝
−1,2,𝑠0)

≤ 𝑐‖ℓ‖. 

Proof: Suppose 𝑓 ∈ 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0)and 𝑏 is 𝑎 (𝑝, 𝑠)-molecule of 𝐻𝐿

𝑝(ℝ𝑛). Without loss 

of generality, we assume that 

𝑏(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠,𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(𝑎(𝑡, . ))(𝑥)
∞

0

𝑑𝑡

𝑡
, 

where 𝑎(𝑡, 𝑥) is 𝑎 usual 𝑇2
𝑝

-atom supported in�̂� (for some𝐵 = 𝐵(𝒵0, 𝑟𝐵) ⊂ ℝ
𝑛), and𝑐𝑚,𝑠is 

the constant in (25). We can apply the same argument as in Theorem 5.1 of [71] to obtain 

the following identity: 
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∫ 𝑏(𝑥)𝑓(𝑥)𝑑𝑥
 

ℝ𝑛
= 𝑐𝑚,𝑠∫ 𝑎(𝑡, 𝑥)𝑄𝑠,𝑡𝑚

∗ (𝐼 − 𝑃𝑠,𝑡𝑚
∗ )𝑓(𝑥)

𝑑𝑥𝑑𝑡

𝑡

 

ℝ+
𝑛+1

. 

The details are omitted here. This, together with Proposition(3.1.9), shows that 

|∫ 𝑏(𝑥)𝑓(𝑥)𝑑𝑥
 

ℝ𝑛
| ≤ 𝑐|‖𝑎‖|𝑇22 (∫ |𝑄𝑠,𝑡𝑚

∗ (𝐼 − 𝑃𝑠0,𝑡𝑚
∗ )𝑓(𝑥)|

2 𝑑𝑥𝑑𝑡

𝑡

 

�̂�

)

1/2

≤ 𝑐|𝐵|
1
2−
1
𝑝|𝐵|

1
𝑝−1+

1
2 

≤ 𝑐.                                                                                                                                (39) 
For any𝑔 ∈ 𝐻𝐿

𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), it follows from Proposition (3.1.6) that there exist (𝑝, 𝑠)-
molecules 𝛼𝑘(𝑥) and numbers 𝜆𝑘(𝑘 = 0,1,2, … . )such that𝑔(𝑥) = ∑ 𝜆𝑘𝛼𝑘(𝑥)𝑘 . The 

sequence𝜆𝑘 satisfies∑ |𝜆𝑘|
𝑝

𝑘 ≤ 𝑐‖𝑔‖
𝐻𝐿
𝑝

𝑝
. Hence by (39) we obtain 

|∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
| ≤ ∑|𝜆𝑘| |∫ 𝛼𝑘(𝑥)𝑓(𝑥)𝑑𝑥

 

ℝ𝑛
|

𝑘

≤ 𝑐∑|𝜆𝑘|

𝑘

≤ 𝑐 (∑|𝜆𝑘|
𝑝

𝑘

)

1𝑝

≤ 𝑐‖𝑔‖𝐻𝐿
𝑝 . 

This proves (i). 
Let us prove(ii). Note that by (𝑏), for everyℎ𝑡(𝑥) ∈ 𝑇2

𝑝
, 

ℛ(ℎ𝑡)(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)(ℎ𝑡)(𝑥)
𝑑𝑡

𝑡

∞ 

0

∈ 𝐻𝐿
𝑝
, 

 where 𝑐𝑚,𝑠 is 𝑎 constant in (25). Therefore, for each continuous linear functional ℓ on the 

𝐻𝐿
𝑝(ℝ𝑛)space, we obtain 

|(ℓ ∘ ℛ)(ℎ𝑡)| = |ℓ𝜊ℛ(ℎ𝑡)| ≤ ‖ℓ‖𝐻𝐿
𝑝
→ℂ‖ℛ(ℎ𝑡)‖𝐻𝐿

𝑝 ≤ ‖ℓ‖𝐻𝐿
𝑝
→ℂ‖ℛ‖𝑇2

𝑝
→𝐻𝐿

𝑝‖ℎ𝑡‖𝑇2
𝑝 

for all ℎ𝑡(𝑥) ∈ 𝑇2
𝑝
. It then follows from (𝑐) of Proposition (3.1.5) that there exists 𝑎 

function 𝒵𝑡(𝑥) ∈ 𝑇2
𝑝,∞

such that 

(ℓ𝜊ℛ)(ℎ𝑡) = ∫ 𝒵𝑡(𝑥)ℎ𝑡(𝑥)
𝑑𝑥𝑑𝑡

𝑡

 

ℝ+
𝑛+1

.                                (40) 

On the other hand, by(28) we have that for any 𝑔 ∈ 𝐻𝐿
𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), 

𝑔(𝑥) = 𝑐𝑚,𝑠∫ 𝑄𝑠𝑡𝑚(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑄𝑡𝑚𝑔(𝑥)
𝑑𝑡

𝑡

∞ 

0

. 

 This shows that for each continuous linear functional ℓ on the 𝐻𝐿
𝑝(ℝ𝑛)space, we have that 

for all𝑔 ∈ 𝐻𝐿
𝑝(ℝ𝑛), 

ℓ(𝑔) = lim
𝑘→∞

ℓ(𝑔𝑘) = lim
𝑘→∞

ℓ𝜊ℛ𝜊𝑄𝑡𝑚(𝑔𝑘) = ℓ𝜊ℛ𝜊𝑄𝑡𝑚(𝑔),                                (41) 

where{𝑔𝑘}𝑘is 𝑎 family of functions satisfying 𝑔𝑘 ∈ 𝐻𝐿
𝑝(ℝ𝑛) ∩ 𝐿2(ℝ𝑛)and lim

𝑘→∞
𝑔𝑘 = 𝑔. 

From(40) and(41), we have that for all 𝑔 ∈ 𝐻𝐿
𝑝(ℝ𝑛), there exists 𝑎 function 𝒵𝑡(𝑥) ∈

𝑇2
𝑝,∞

 such that 

ℓ(𝑔) = 𝑙𝜊ℛ𝜊𝑄𝑡𝑚(𝑔) = ∫ 𝒵𝑡(𝑥)𝑄𝑡𝑚𝑔(𝑥)
𝑑𝑥𝑑𝑡

𝑡

 

ℝ+
𝑛+1

= ∫ (∫ 𝑄𝑡𝑚
∗ 𝒵𝑡(𝑥)

𝑑𝑡

𝑡

∞ 

0

)
 

ℝ𝑛
𝑔(𝑥)𝑑𝑥 

 =
def∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥

 

ℝ𝑛
,                                                                          (42) 

where 𝑓(𝑥) = ∫ 𝑄𝑡𝑚
∗ 𝒵𝑡(𝑥)

𝑑𝑡

𝑡

∞ 

0
. 

We now prove that 𝑓 ∈ 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0). For any ball 𝐵 = 𝐵(𝑥𝐵 , 𝑟𝐵), it follows from 

(42) and Proposition (3.1.8) that we obtain 
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(∫ |𝑓 − 𝑃𝑠0,𝑟𝐵𝑚
∗ 𝑓|

2
𝑑𝑥

 

𝐵 

)

1/2

= sup
‖𝑔‖𝐿2(𝐵)≤1

|∫ (𝑓(𝑥) − 𝑃𝑠0,𝑟𝐵𝑚
∗ 𝑓(𝑥)) 𝑔(𝑥)𝑑𝑥

 

ℝ𝑛
| 

= sup
‖𝑔‖𝐿2(𝐵)≤1

|∫ 𝑓(𝑥)(𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
| 

≤ sup
‖𝑔‖𝐿2(𝐵)≤1

|ℓ ((𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑔)| 

≤ ‖ℓ‖ sup
‖𝑔‖𝐿2(𝐵)≤1

‖ℓ ((𝐼 − 𝑃𝑠0,𝑟𝐵𝑚)𝑔)‖𝐻𝐿
𝑝
 

≤ 𝑐‖ℓ‖|𝐵|
1
2+
(
1
𝑝−1

)
. 

This proves𝑓 ∈ 𝔏𝐿∗ (
1

𝑝
− 1,2, 𝑠0) with‖𝑓‖

𝑓∈𝔏𝐿∗(
1

𝑝
−1,2,𝑠0)

≤ 𝑐‖ℓ‖, and then the proof of 

Theorem (3.1.10) is complete. 

As 𝑎 consequence of Theorem(3.1.10), we have the following corollary. 

Corollary (3.1.11)[53]: Suppose that the operator 𝐿 satisfies the assumptions (𝑎) and (𝑏). 

Let 0 < 𝛼 < 𝜃(𝐿)/𝑛 and𝑠 ≥ 𝑠0 = [
𝑛𝛼

𝑚
]. Then the spaces 𝔏𝐿(𝛼, 2, 𝑠) and 

𝔏𝐿(𝛼, 2, 𝑠0)coincide, and their norms are equivalent. 

Proof: Suppose
𝑛

𝑛+𝜃(𝐿)
< 𝑝 < 1and𝑠 ≥ 𝑠0 = [

𝑛(
1

𝑝
−1)

𝑚
]. As in Definition(3.1.4), we define 

𝐻𝐿∗
𝑝,𝑠(ℝ𝑛)as the collection of all continuous linear functionals on 𝔏𝐿(

1

𝑝
− 1, 2, 𝑠) 

satisfying𝑄𝑡𝑚
∗ 𝑓 ∈ 𝑇2

𝑝
, and thus𝐻𝐿∗

𝑝 (ℝ𝑛) = 𝐻𝐿∗
𝑝,𝑠0(ℝ𝑛). Similarly to the proof of 

Proposition(3.1.6), 𝑎 molecular characterization(27) also holds for functions in 

𝐻𝐿∗
𝑝,𝑠(ℝ𝑛). Hence, the spaces 𝐻𝐿∗

𝑝,𝑠(ℝ𝑛)and 𝐻𝐿∗
𝑝 (ℝ𝑛)coincide, and their quasi-norms are 

equivalent. On the other hand, the same argument as in the proof of Theorem (3.1.10) 

shows that the dual space of 𝐻𝐿∗
𝑝,𝑠(ℝ𝑛)is the space 𝔏𝐿(

1

𝑝
− 1, 2, 𝑠) For the proof, we omit 

details here. This, together with Theorem(3.1.10), gives Corollary(3.1.11). 
We continue with the assumptions that the operator 𝐿 satisfies the assumptions(𝑎) 

and (𝑏). For 0 < 𝛼 <
𝑛

𝑚
, we consider the generalized fractional integrals𝐿−𝛼 associated 

with the operator𝐿, defined by 

𝐿−𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫ 𝑡𝛼−1𝑒−𝑡𝐿𝑓(𝑥)𝑑𝑡
∞

0

,                                                (43) 

whereΓ(𝛼) is an appropriate constant. Note that if 𝐿 is the Laplacian−∆ onℝ𝑛, then 𝐿𝛼is 

the classical fractional integral. See, for example, Chapter 5 in[82]. 

For 1 < 𝑝 < ∞, we let𝐻𝐿
𝑝(ℝ𝑛) = 𝐿𝑝(ℝ𝑛)(by (20)). The following theorem generalizes 

Theorem (3.1.10) of Taibleson-Weiss([86]). 

Theorem (3.1.12)[53]: Suppose
𝑛

𝑛+𝜃(𝐿)
< 𝑝1 < ∞,0 < 𝛼 <

𝑛

𝑚
 and 

1

𝑝2
=

1

𝑝1
−
𝑚𝛼

𝑛
, then the 

fractional integral 𝐿𝛼maps𝐻𝐿
𝑝1(ℝ𝑛)continuously into 𝐻𝐿

𝑝2(ℝ𝑛). If we replace 

𝐻𝐿
∞(ℝ𝑛)with𝐵𝑀𝑂𝐿(ℝ

𝑛), the result holds for 𝛼 =
𝑛

𝑚𝑝1
.  

Proof: For any given𝑝1, we let 𝜖 in (5) be the constant such that𝜖 < 𝜃(𝐿) and 
𝑛

𝑛+𝜖
< 𝑝1. 

The result will follow from the repeated application four cases below. 

Case I. 1 < 𝑝1 < 𝑝2 < ∞. This is 𝑎 well-known result of TheoremII. 2.7, page 12 of[88]. 
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Case II. 𝑝1 ≤ 1 < 𝑝2 and0 < 𝛼 <
𝑛

𝑚
 . Choose𝑠0 = [

𝑛(
1

𝑝1
−1)

𝑚
]and𝑠 ≥ [𝛼 +

𝜖

𝑚
]. If 𝑏(𝑥) =

∫ 𝑄𝑠,𝑡𝑚(ℐ − 𝑃𝑠0,𝑡𝑚)(𝑎(𝑡, . ))(𝑥)
∞

0
𝑑𝑡/𝑡, and 𝑎(𝑡, 𝑥) is 𝑎 usual𝑇2

𝑝1-atom supported in �̂�(for 

some𝐵 = 𝐵(𝒵0, 𝑟𝐵) ⊂ ℝ
𝑛), we will show that‖𝐿−𝛼(𝑏)‖𝑝2 ≤ 𝑐. 

Case III. 𝑝1 < 𝑝2 ≤ 1 and0 < 𝛼 <
𝑛

𝑚
. If 𝑏 is 𝑎 (𝑝1, 𝑠)-molecule as in CaseII, we will show 

that‖𝑆𝐿(𝐿
−𝛼(𝑏))‖

𝑝2
≤ 𝑐. 

Case IV. 𝑝 > 1 and𝛼 =
𝑛

𝑚
. We need to show that𝐿

−
𝑛

𝑚𝑝: 𝐿𝑝(ℝ𝑛) → 𝐵𝑀𝑂𝐿(ℝ
𝑛) 

continuously. By Theorem 3.1 of [71], 𝐵𝑀𝑂𝐿(ℝ
𝑛) = (𝐻𝐿∗

1 (ℝ𝑛))
′
in which𝐿∗is the adjoint 

operator of𝐿, and from Cases I and II we have the desired result by duality. We give the 

details for Cases II and III. 

Proof of Case II. Let 2 < 𝑞2 < ∞ such that
1

𝑝1
−

1

𝑝2
=
1

2
−

1

𝑞2
=
𝑚𝛼

𝑛
. We write 

‖𝐿−𝛼(𝑏)‖𝑝2 ≤ (∫ |𝐿−𝛼(𝑏)(𝑥)|𝑝2𝑑𝑥
 

4𝐵

)

1/𝑝2

+ (∫ |𝐿−𝛼(𝑏)(𝑥)|𝑝2𝑑𝑥
 

(4𝐵)𝑐
)

1/𝑝2

= 𝐼 + 𝐼𝐼. 

Note that
1

𝑝1
−

1

𝑝2
=
1

2
−

1

𝑞2
=
𝑚𝛼

𝑛
. Using Hölder’s inequality, Case I and (𝑎) of 

Lemma(3.1.7), we obtain 

𝐼 ≤ |𝐵|
1
𝑝2
−
1
𝑞2‖𝐿−𝛼(𝑏)‖𝑞2 ≤ 𝑐|𝐵|

1
𝑝1
−
1
2‖𝑏‖2 ≤ 𝑐|𝐵|

1
𝑝1
−
1
2‖𝑎‖𝑇22 ≤ 𝑐. 

We now estimate the termII. We will show that there exists 𝑎 constant 𝑐 > 0such that for 

any𝑥 ∉ 4𝐵, 

|𝐿−𝛼(𝑏)(𝑥)| ≤ 𝑐𝑟𝐵
𝜖+𝑚𝛼+𝑛−

𝑛
𝑝1|𝑥 − 𝒵0|

−(𝑛+𝜖).                                (44) 

Let us prove(44). For any 𝑘 = 0, … , 𝑠0 + 1, we denote by 

ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)𝑓(𝑥) = (−1)𝑠+1(𝑡𝑚 + (𝑘 + 1)𝜈𝑚)𝑠+1 (

𝑑𝑠+1𝑃𝑟
𝑑𝑟𝑠+1

 |𝑟=𝑡𝑚+(𝑘+1)𝜈𝑚𝑓) (𝑥). 

Note that(𝐼 − 𝑃𝑠0,𝑡𝑚)𝑓(𝑥) = ∑ (−1)𝑘𝐶𝑠0+1
𝑘 𝑒−𝑘𝑡

𝑚𝐿𝑓(𝑥)
𝑠0+1
𝑘=0 . This, together with property 

(13) and the fact that for 𝑥 ∉ 4𝐵 and 𝑦 ∈ 𝐵,|𝑥 − 𝑦| > 2|𝑥 − 𝒵0|, yields 

|𝐿−𝛼(𝑏)(𝑥)| ≤ 𝑐 |∫ ∫ 𝑡𝛼𝑒−𝑡𝐿𝑄𝑠,𝜈𝑚(ℐ − 𝑃𝑠0,𝑡𝑚)𝑎(𝜈, . )(𝑥)
∞

0

𝑑𝜈

𝑣

𝑑𝑡

𝑡

∞

0

| 

≤ 𝑐 ∑ |∫ ∫ ∫
𝜈𝑚(𝑠+1)𝑡𝑚𝛼

((𝑘 + 1)𝜈𝑚 + 𝑡𝑚)
𝑠+1

 

𝐵

∞

0

∞

0

× ψ𝑡,𝜈
𝑘 (𝐿, 𝑠)(𝑥, 𝑦)𝑎(𝜈, 𝑦)𝑑𝑦

𝑑𝜈

𝑣

𝑑𝑡

𝑡
|

𝑠0+1

𝑘=0

 

≤ 𝑐∫ ∫
𝜈𝑚(𝑠+1)𝑡𝑚𝛼

(𝜈 + 𝑡)𝑚(𝑠+1)

∞

0

.
(𝑡 + 𝜈)𝜖

(𝑡 + 𝜈 + |𝑥, 𝑦|)𝑛+𝜖
|𝑎(𝜈, 𝑦)|𝑑𝑦

𝑑𝜈

𝑣

𝑑𝑡

𝑡

∞

0

 

≤ 𝑐∫ ∫
𝜈𝑚(𝑠+1)𝑡𝑚𝛼

(𝜈 + 𝑡)𝑚(𝑠+1)−𝜖

 

�̂�

|𝑎(𝜈, 𝑦)|
𝑑𝑦𝑑𝜈

𝑣

𝑑𝑡

𝑡
|𝑥 − 𝒵0| 

−(𝑛+𝜖)
𝑟𝐵

0

 

≤ 𝑐∫ ∫
𝜈𝑚(𝑠+1)𝑡𝑚𝛼

(𝜈 + 𝑡)𝑚(𝑠+1)−𝜖

 

�̂�

|𝑎(𝜈, 𝑦)|
𝑑𝑦𝑑𝜈

𝑣

𝑑𝑡

𝑡
|𝑥 − 𝒵0| 

−(𝑛+𝜖)
∞

𝑟𝐵

 

= 𝐼𝐼1 + 𝐼𝐼2. 
We only estimate the term 𝐼𝐼2since the estimate of the term 𝐼𝐼1is much simpler. 

Using Hölder’s inequality and the condition𝑚(𝑠 + 1) > 𝜖 +𝑚𝛼, we obtain 
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𝐼𝐼2 ≤ 𝑐|𝐵|
1/2∫ (∫ 𝜈2(𝜖+𝑚𝛼) (

𝜈

𝑡
)
2(𝑚(𝑠+1)−𝜖−𝑚𝛼)𝑟𝐵 

0

𝑑𝜈

𝑣
)

1/2∞

𝑟𝐵

𝑑𝑡

𝑡
 

× |‖𝑎‖|𝑇22|𝑥 − 𝒵0| 
−(𝑛+𝜖) 

≤ 𝑐𝑟𝐵
𝑚(𝑠+1)+𝑛−

𝑛
𝑝1|𝑥 − 𝒵0| 

−(𝑛+𝜖)∫ 𝑡𝜖+𝑚𝛼−𝑚
(𝑠+1)

𝑑𝑡
𝑡

∞

𝑟𝐵

 

≤ 𝑐𝑟𝐵
𝜖+𝑚𝛼+𝑛−

𝑛
𝑝1|𝑥 − 𝒵0| 

−(𝑛+𝜖). 

Similarly, we have that 𝐼𝐼1 ≤ 𝑐𝑟𝐵
𝜖+𝑚𝛼+𝑛−

𝑛

𝑝1|𝑥 − 𝒵0| 
−(𝑛+𝜖), and then the estimate (44) is 

obtained. Hence, 

∫ |𝐿−𝛼(𝑏)(𝑥)|𝑝2𝑑𝑥
 

(4𝐵)𝑐
≤ 𝑐𝑟𝐵

(𝜖+𝑚𝛼+𝑛−
𝑛
𝑝1
)𝑝2
∫ |𝑥 − 𝒵0| 

−(𝑛+𝜖)𝑝2

 

(4𝐵)𝑐
𝑑𝑥 

≤ 𝑐𝑟𝐵
𝑚𝛼𝑝2+𝑛− 

𝑝2𝑛
𝑝1 ≤ 𝑐. 

This completes the proof of Case II. 
Proof of Case III. We write 

‖𝑆𝐿(𝐿
−𝛼(𝑏))‖

𝑝2
≤ 𝑐 (∫ |𝑆𝐿(𝐿

−𝛼(𝑏))(𝑥)|
𝑝2
𝑑𝑥

 

4𝐵

)

1/𝑝2

 

+𝑐 (∫ |𝑆𝐿(𝐿
−𝛼(𝑏))(𝑥)|

𝑝2
𝑑𝑥

 

(4𝐵)𝑐
)

1/𝑝2

 

= 𝐼 + 𝐼𝐼. 
Since the area integral function 𝑆𝐿is bounded on𝐿𝑟 for all 1 < 𝑟 < ∞, by Case I we have 

𝐼 ≤ 𝑐|𝐵|
1

𝑝2

1

𝑞2‖𝐿−𝛼(𝑏)‖𝐿𝑞2 ≤ 𝑐.  
We now estimate the term 𝐼𝐼. As in CaseII, it suffices to show that there exists 𝑎 constant 

𝑐 > 0 such that for any 𝑥 ∉ 2𝑐1, 

𝑆𝐿(𝐿
−𝛼(𝑏))(𝑥) ≤ 𝑐𝑟𝐵

𝜖+𝑚𝛼+𝑛− 
𝑛
𝑝1|𝑥 − 𝒵0| 

−(𝑛+𝜖).                                (45) 

Let us prove(45). For any 𝑘 = 0, … , 𝑠0 + 1, we denote by 

ψ𝑡,𝜈,𝛾
𝑘 (𝐿, 𝑠)𝑓(𝑥) = (𝑡𝑚 + 𝜈𝑚 + (𝑘 + 1)𝛾𝑚)𝑠+2 (

𝑑𝑠+2𝑃𝑟
𝑑𝑟𝑠+2

 |𝑟=𝑡𝑚+𝜈𝑚+(𝑘+1)𝛾𝑚𝑓) (𝑥) 

and 

h𝑡,𝜈,𝛾,𝑘
𝑚,𝛼,𝑠 =

𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)

(𝑡𝑚 + 𝜈𝑚 + (𝑘 + 1)𝛾𝑚)𝑠+2
≤ 𝑐

𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)
. 

From estimate(13), we obtain that the kernelψ𝑡,𝜈,𝛾(𝐿, 𝑠)(𝑦, 𝒵)of the operator 

ψ𝑡,𝜈,𝛾(𝐿, 𝑠)satisfies 

|ψ𝑡,𝜈,𝛾
𝑘 (𝐿, 𝑠)(𝑦, 𝒵)| ≤ 𝑐

(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾 + |𝑦 − 𝒵|)𝑛+𝜖
. 

We then obtain 

S𝐿
2(𝐿−𝛼(𝑏))(𝑥) 

≤ 𝑐 (𝑆𝐿 (∫ ∫ 𝜈𝛼𝑒−𝜈𝐿𝑄𝑠,𝛾𝑚(𝐼 − 𝑃𝑠0,𝛾𝑚)
𝑠0+1

(𝑎(𝛾, . ))
∞

0

𝑑𝜈

𝑣

𝑑𝛾

𝛾

∞

0

))

2

(𝑥) 
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≤ ∑ 𝑐𝑘

𝑠0+1

𝑘=0

∫ [∫ ∫ h𝑡,𝜈,𝛾,𝑘
𝑚,𝛼,𝑠 ψ𝑡,𝜈,𝛾

𝑘 (𝐿, 𝑠)(𝑎(𝛾, . ))(𝑦)
𝑟𝐵

0

𝑑𝜈𝑑𝛾

𝑣𝛾

∞

0

]

2 

Γ(𝑥)

𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

≤ 𝑐∫ ∫  
 

|𝑦−𝑥|<𝑡

𝑟𝐵

0

 

× [∫ ∫
𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)(𝑡 + 𝜈 + 𝛾 + |𝑦 − 𝒵|)𝑛+𝜖
|𝑎(𝛾, 𝒵)|

 

�̂�

𝑑𝒵𝑑𝜈𝑑𝛾

𝑣𝛾

𝑟𝐵

0

]

2
𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

+𝑐∫ ∫  
 

|𝑦−𝑥|<𝑡

𝑟𝐵

0

 

× [∫ ∫
𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)(𝑡 + 𝜈 + 𝛾 + |𝑦 − 𝒵|)𝑛+𝜖
|𝑎(𝛾, 𝒵)|

 

�̂�

𝑑𝒵𝑑𝜈𝑑𝛾

𝑣𝛾

∞

𝑟𝐵

]

2
𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

+𝑐∫ ∫  
 

|𝑦−𝑥|<𝑡

∞

𝑟𝐵

 

× [∫ ∫
𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)(𝑡 + 𝜈 + 𝛾 + |𝑦 − 𝒵|)𝑛+𝜖
|𝑎(𝛾, 𝒵)|

 

�̂�

𝑑𝒵𝑑𝜈𝑑𝛾

𝑣𝛾

𝑟𝐵

0

]

2
𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

 

+𝑐∫ ∫  
 

|𝑦−𝑥|<𝑡

∞

𝑟𝐵

 

× [∫ ∫
𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)(𝑡 + 𝜈 + 𝛾 + |𝑦 − 𝒵|)𝑛+𝜖
|𝑎(𝛾, 𝒵)|

 

�̂�

𝑑𝒵𝑑𝜈𝑑𝛾

𝑣𝛾

∞

𝑟𝐵

]

2
𝑑𝑦𝑑𝑡

𝑡𝑛+1
 

=  𝐼𝐼1 +  𝐼𝐼2 +  𝐼𝐼3 +  𝐼𝐼4. 
Let us estimate the term 𝐼𝐼4 . The same argument as in(31) shows that for 𝑥 ∉ 4𝐵, 𝑡 ≥
𝑟𝐵, 𝒵 ∈ 𝐵2and|𝑦 − 𝑥| < 𝑡, we have(𝑡 + 𝑠 + |𝑦 − 𝒵|) ≥ 𝑐|𝑥 − 𝒵0|. Those, together with 

the fact that 

𝑡𝑚𝜈𝑚𝛼𝛾𝑚(𝑠+1)(𝑡 + 𝜈 + 𝛾)𝜖

(𝑡 + 𝜈 + 𝛾)𝑚(𝑠+2)
≤ (𝑡𝜈)−𝛽𝛾𝜖+𝑚𝛼+2𝛽, 

where𝛽 = (𝑚(𝑠 + 1) − 𝑚𝛼 − 𝜖)/2 > 0, show that 

𝐼𝐼4 ≤ 𝑐 ∫ [∫ ∫
1

𝜈𝛽
𝛾𝜖+𝑚𝛼+2𝛽|𝑎(𝛾, 𝒵)|

 

�̂�

𝑑𝒵𝑑𝜈𝑑𝛾

𝑣𝛾

∞

𝑟𝐵

]

2∞ 

𝑟𝐵

𝑑𝑦𝑑𝑡

𝑡1+2𝛽
|𝑥 − 𝒵0|

−2(𝑛+𝜖) 

≤ 𝑐|𝐵|∫ [∫ (∫ 𝛾2(𝜖+𝑚𝛼+2𝛽)
𝑑𝛾

𝛾

𝑟𝐵 

0

)

1/2
𝑑𝜈

𝜈1+𝛽

∞

𝑟𝐵

]

2
∞ 

𝑟𝐵

𝑑𝑡

𝑡1+2𝛽
‖|𝑎|‖𝑇22

2  

× |𝑥 − 𝒵0|
−2(𝑛+𝜖) 

≤ 𝑐𝑟𝐵
2(𝑛+𝜖+𝑚𝛼− 

𝑛
𝑝1
+2𝛽)

∫ [∫
𝑑𝜈

𝜈1+𝛽

∞

𝑟𝐵

]

2
𝑑𝑡

𝑡1+2𝛽
|𝑥 − 𝒵0|

−2(𝑛+𝜖)
∞ 

𝑟𝐵

 

≤ 𝑐𝑟𝐵
2(𝜖+𝑚𝛼)+2𝛽−

2𝑛
𝑝1 |𝑥 − 𝒵0|

−2(𝑛+𝜖). 

The same argument as above shows that 𝐼1 +  𝐼𝐼2 +  𝐼𝐼3  ≤ 𝑐𝑟𝐵
2(𝜖+𝑚𝛼)+2𝑛−

2𝑛

𝑝1 ×

|𝑥 − 𝑧0|
−2(𝑛+𝜖) . This proves (45), and gives the desired estimate 
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∫ |𝑆𝐿(𝐿
−𝛼(𝑏))(𝑥)|

𝑝2
𝑑𝑥

 

(4𝐵)𝑐
≤  𝑐. 

The proof of Case III is obtained. Hence, the proof of Theorem (3.1.12) is complete.  

Assume that 𝐿 is a linear operator of type 𝜔 on 𝐿2(ℝ𝑛) with 𝜔 <  𝜋/2, hence (−𝐿) 
generates an analytic semigroup 𝑒−𝑧𝐿, 0 ≤  |Arg(𝑧)|  < 𝜋/2 −  𝜔. We assume that for 

each 𝑡 > 0, the kernel 𝑝𝑡(𝑥, 𝑦) of 𝑒−𝑡𝐿 is a Hölder continuous function in 𝑥, 𝑦 and there 

exist positive constants 𝑚 and 0 < 𝛾 ≤  1 such that for all 𝑡 >  0, and 𝑥, 𝑦, ℎ ∈ ℝ𝑛, 

|𝑝𝑡(𝑥, 𝑦)| ≤ 𝑐
𝑡1 𝑚⁄

(𝑡1 𝑚⁄ + |𝑥 − 𝑦|)𝑛+1
,                                                  (46) 

|𝑝𝑡(𝑥 + ℎ, 𝑦) − 𝑝𝑡(𝑥, 𝑦)| + |𝑝𝑡(𝑥, 𝑦 + ℎ) − 𝑝𝑡(𝑥, 𝑦)|

≤ 𝑐|ℎ|𝛾
𝑡1 𝑚⁄

(𝑡1 𝑚⁄ + |𝑥 − 𝑦|)𝑛+1+𝛾
(47) 

whenever 2|ℎ|  ≤ 𝑡1 𝑚⁄  +  |𝑥 − 𝑦|; and 

∫ 𝑝𝑡(𝑥, 𝑦)𝑑𝑥
 

ℝ𝑛
= ∫ 𝑝𝑡(𝑥, 𝑦)𝑑𝑦

 

ℝ𝑛
=  1, ∀𝑡 >  0.                  (48) 

We have the following equivalence between the 𝐻𝑝(ℝ𝑛) spaces and the 𝐻𝐿
𝑝
(ℝ𝑛) spaces 

associated with operators. 

 

Theorem (𝟑. 𝟏. 𝟏𝟑): Assume that 𝐿 satisfies the assumptions (46), (47) and (48). 

Then for 
𝑛

𝑛+𝛾
 <  𝑝 ≤ 1, the spaces 𝐻𝑝(ℝ𝑛) and 𝐻𝐿

𝑝
(ℝ𝑛) coincide, and their quasinorms 

are equivalent. 

  As a consequence, for 0 < 𝛼 <
𝛾

𝑛
 , the classical Morrey-Campanato spaces 

𝐿(𝛼, 2, 0) and the spaces 𝔏𝐿(𝛼, 2, 0) coincide, and their norms are equivalent. 

 

Proof: We remark that for 𝐿 satisfying (46), (47) and (48), our proof below shows that 𝐿 

has a bounded holomorphic functional calculus on 𝐿2 because the area integral functions 

𝑆𝐿 and 𝑆𝐿∗ are bounded on 𝐿2 in which 𝐿∗ is the adjoint operator of 𝐿. See Theorem 3 of 

[81]. 

  Let 𝑞𝑡(𝑥, 𝑦) denote the kernel of the operator 𝑄𝑡 = 𝑡
𝑑

𝑑𝑡
𝑒−𝑡𝐿. From Lemma 6.10 of [71], 

we have the following estimates: for any 0 < 𝛾1 <  𝛾 and 0 < 𝛽1 < 1, there exist 

constant 𝑐 >  0 such that for all 𝑡 >  0, and 𝑥, 𝑦, ℎ ∈ ℝ𝑛 , 

|𝑞𝑡(𝑥, 𝑦)| ≤ 𝑐
𝑡𝛽1 𝑚⁄

(𝑡1 𝑚⁄ + |𝑥 − 𝑦|)𝑛+𝛽1
,  

|𝑞𝑡(𝑥 + ℎ, 𝑦) − 𝑞𝑡(𝑥, 𝑦)| + |𝑞𝑡(𝑥, 𝑦 + ℎ) − 𝑞𝑡(𝑥, 𝑦)| ≤ 𝑐|ℎ|
𝛾1

𝑡𝛽1 𝑚⁄

(𝑡1 𝑚⁄ + |𝑥 − 𝑦|)𝑛+𝛽1+𝛾1
 

whenever 2|ℎ|  ≤  𝑡1 𝑚⁄ + |𝑥 − 𝑦|; and 

∫ 𝑞𝑡(𝑥, 𝑦)𝑑𝑥
 

ℝ𝑛
= ∫ 𝑞𝑡(𝑥, 𝑦)𝑑𝑦

 

ℝ𝑛
=  0, ∀𝑡 >  0. 

 

It then follows from a standard harmonic analysis argument that 𝐻𝐿
𝑝(ℝ𝑛) = 𝐻 

𝑝(ℝ𝑛) for  
𝑛

𝑛+𝛾
< 𝑝 ≤  1. See, for example, Chapter XIV, in [85]. Hence, the proof of Theorem 

(3.1.13) is complete.  
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To begin with, let us recall some basic facts about the Neumann Laplacian ∆𝑁onℝ𝑛, which 

was studied in[65]. In what follows,ℝ+
𝑛denotes the upper-half space inℝ𝑛, i.e., 

ℝ+
𝑛 = {(𝑥′, 𝑥𝑛)|∈ ℝ

𝑛: 𝑥′ = (𝑥1, … , 𝑥𝑛−1) ∈ ℝ
𝑛−1, 𝑥𝑛 > 0}. 

Similarly, ℝ−
𝑛denotes the lower-half space inℝ𝑛 . 

We denote by∆𝑁+ (resp. ∆𝑁−) the Neumann Laplacian onℝ+
𝑛(resp. on ℝ−

𝑛). See page 57 

of[83]. The Neumann Laplacians are self-adjoint and positive definite operators. Using the 

spectral theory one can define the semigroup{exp(−𝑡∆𝑁+)}𝑡≥0
(resp. {exp(−𝑡∆𝑁−)}𝑡≥0

) 

generated by the operator ∆𝑁+(resp. ∆𝑁−). For any f defined onℝ𝑛, we set 

𝑓− = 𝑓|ℝ−𝑛   and 𝑓+ = 𝑓|ℝ+𝑛 , 

where𝑓|ℝ+𝑛  and𝑓|ℝ−𝑛are restrictions of the function 𝑓 toℝ+
𝑛andℝ−

𝑛 , respectively. 

We let∆𝑁 be the uniquely determined unbounded operator acting on𝐿 
2(ℝ𝑛) such that 

(∆𝑁𝑓)+ = ∆𝑁+𝑓+ and (∆𝑁𝑓)− = ∆𝑁−𝑓−                   (49) 

for all 𝑓: ℝ𝑛⟼ℝ  such that 𝑓+ ∈ 𝑊
1,2(ℝ+

𝑛) and  𝑓− ∈ 𝑊
1,2(ℝ−

𝑛). Then, ∆𝑁 is a positive 

definite self-adjoint operator and let 𝑝𝑡(𝑥, 𝑦) be the heat kernel of the 

semigroup exp(−𝑡∆𝑁). By (49), we have 

(exp(−𝑡∆𝑁) 𝑓)+ = exp(−𝑡∆𝑁+) 𝑓+ and  (exp(−𝑡∆𝑁) 𝑓)− = exp(−𝑡∆𝑁−) 𝑓−       (50) 

Moreover, we have 

𝑝𝑡(𝑥, 𝑦) =
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛+𝑦𝑛|

2

4𝑡 )𝐻(𝑥𝑛 , 𝑦𝑛),              (51) 

where 𝐻: ℝ →  {0, 1} is the Heaviside function, given by 𝐻(𝑡) =  0 if 𝑡 <  0;  1 if 

𝑡 ≥  0. See [65]. 
We show the following proposition. 

Proposition (3.1.14)[53]: Suppose 
𝑛

𝑛+1
<  𝑝 ≤  1. The operator ∆𝑁 satisfies the 

assumptions (𝑎) and (𝑏). Moreover, we have 𝐻 ∆𝑁
𝑝
(ℝ𝑛)

⊂
≠
𝐻  
𝑝(ℝ𝑛). That is, 𝐻 ∆𝑁

𝑝
(ℝ𝑛) is a 

proper subspace of the classical 𝐻  
𝑝(ℝ𝑛) space. 

Proof:  Since ∆𝑁 is a self-adjoint positive definite operator, hence it has a bounded 𝐻∞-

calculus in 𝐿2(ℝ𝑛). From the equation (50), ∆𝑁 generates the conservative semigroup 

𝑒−𝑡∆𝑁  that is  𝑒−𝑡∆𝑁(1)  =  1 for all 𝑡 >  0, which satisfies the assumptions (a) and (b). 
This gives that 

𝐻 ∆𝑁
𝑝 (ℝ𝑛) ⊆ 𝐻  

𝑝(ℝ𝑛),         
𝑛

𝑛 + 1
< 𝑝 ≤ 1, 

On the other hand, from Theorem 4.1 of [65] and Proposition 5.3 of [72], this 

operator∆𝑁generates the spaces 𝔏∆𝑁(𝛼, 2, 0)with 0 ≤ 𝛼 < 𝑛−1  such that 

(i) 𝐿(𝛼, 2, 0) ⊆ 𝔏∆𝑁(𝛼, 2, 0). 

(ii) We have 𝑓(𝑥) = log|𝑥| 𝜒{𝑥:𝑥∈ℝ+𝑛}(𝑥) ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛), however,𝑓 ∉ 𝐵𝑀𝑂(ℝ𝑛). 

(iii) For 0 ≤ 𝛼 < 𝑛−1 , we have 𝑓(𝑥) = 𝑒−|𝑥|
2
𝜒{𝑥:𝑥∈ℝ+𝑛}(𝑥) ∈ 𝔏∆𝑁(𝛼, 2, 0), however, 𝑓 ∉

𝐿(𝛼, 2, 0). 
From the properties (i), (ii) and (iii) above, we have that 𝔏(𝛼, 2, 0) is 𝑎 proper subspace 

of 𝔏∆𝑁(𝛼, 2, 0). Proposition (3.1.14) then follows from Theorem (3.1.10) and the fact that 

(𝐻𝑝)′ = 𝐿 (
1

𝑝
− 1,2,0) (see, for example, Theorem2.7 of [86]) (see [89]). 
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Section (3.2): The BMO Spaces Associated with Operators and Applications 

The classical space of functions of bounded mean oscillation (𝐵𝑀𝑂) plays 𝑎 crucial 

role in modern harmonic analysis. See for examples [74], [75], [82] and [19]. In the case 

of the Euclidean space ℝ𝑛, 𝑎 function 𝑓 is said to in 𝐵𝑀𝑂(ℝ𝑛) if 

‖𝑓‖𝐵𝑀𝑂(ℝ𝑛) = sup
𝑄

1

|𝑄|
∫ |𝑓(𝑥) − 𝑓𝑄|
 

𝑄

𝑑𝑥 < ∞.                      (52) 

where 𝑓𝑄 denotes the average value of 𝑓 on the cube 𝑄 and the supremum is taken over all 

cubes 𝑄 in ℝ𝑛 . 
An important application of the theory of 𝐵𝑀𝑂 spaces is the following interpolation result. 

Proposition (3.2.1)[65]: If 𝑇 is 𝑎 bounded sublinear operator from 𝐿2(ℝ𝑛)to 𝐿2(ℝ𝑛), and 

𝑇 is bounded from 𝐿∞(ℝ𝑛) to 𝐵𝑀𝑂(ℝ𝑛), then 𝑇 is bounded from 𝐿𝑝(ℝ𝑛)to𝐿𝑝(ℝ𝑛) for all 

2 < 𝑝 < ∞. 
It is well known that Caldero´n-Zygmund operators (such as the Hilbert transform on the 

real line, the Riesz transforms on ℝ𝑛, or the purely imaginary powers of the Laplacian on 

ℝ𝑛) do not map the space 𝐿∞into 𝐿∞, but the standard conditions on their kernels ensure 

that they map 𝐿∞ into the 𝐵𝑀𝑂 space boundedly, hence we can apply Proposition(3.2.1) 
to obtain 𝐿𝑝 boundedness of these operators for 𝑝 > 2. The 𝐵𝑀𝑂 space is 𝑎 natural 

substitute of the space 𝐿∞in the theory of Calder´on-Zygmund singular integrals. 

We study of singular integral operators corresponding to spectral multiplier of an 

operator 𝐿 which generates 𝑎 semigroup with appropriate kernel bounds, see[70]. Such 

multipliers do not always map 𝐿∞ or appropriate 𝐿𝑝 spaces into the classical 𝐵𝑀𝑂 space, 

see Example (3.2.18) below. Hence the classical 𝐵𝑀𝑂 space is not necessarily 𝑎 suitable 

space to study such singular integrals. To study these rough operators, we introduced 𝑎 

new𝐵𝑀𝑂𝐿space associated with an operator 𝐿. To explain our approach to 𝐵𝑀𝑂𝐿 space 

associated with an operator let us recall that the space of 𝐵𝑀𝑂 functions can be 

characterized by the Carleson measure estimate as follows: 

Proposition (3.2.2)[65]: A function 𝑓 is in 𝐵𝑀𝑂 if and only if 𝑓 satisfies 

∫
|𝑓(𝑥)|

1 + |𝑥|𝑛+1

 

ℝ𝑛
𝑑𝑥 < ∞, 

and 

𝜇𝑓(𝑥, 𝑡) = |𝑡
𝜕

𝜕𝑡
𝑒−𝑡√∆𝑓(𝑥)|

2 𝑑𝑥𝑑𝑡

𝑡
 

 is 𝑎 Carleson measure. 

One can see from the characterization in Proposition(3.2.2) that the 𝐵𝑀𝑂 space is 

associated with the Laplace operator on ℝ𝑛and it seems to be natural idea to replace the 

Laplace operator ∆ by more general operators operator 𝐿, see also [74] and[29]. 
We use equivalent approach, see Definition(3.2.5) below. In this definition the 

𝐵𝑀𝑂𝐿 space associated with 𝐿 is defined by using the function 𝑒−𝑡𝑄𝐿𝑓to replace the 

average 𝑓𝑄 in Definition(3.2.4) of 𝐵𝑀𝑂 where the value 𝑡𝑄 is scaled to the length of the 

sides of 𝑄. We discuss various examples which shows that Definition(3.2.5) is an effective 

tool in study of singular integrals operators associated with the operator 𝐿. See [58], [95] 

and[99] for other ideas related to generalization of the 𝐵𝑀𝑂 space and 𝐵𝑀𝑂 spaces 

associated with an operator𝐿. 
Many important features of the classical 𝐵𝑀𝑂 space are retained by the new 𝐵𝑀𝑂𝐿spaces 

such as the John-Nirenberg inequality and duality between the Hardy space and the 𝐵𝑀𝑂𝐿 



98 

space. See[70] and[71]. One of these important features is that the interpolation property 

in Proposition(3.2.1) is still valid if the classical space 𝐵𝑀𝑂 is replaced by the𝐵𝑀𝑂𝐿space 

associated with an operator𝐿. Indeed, the following result is proved in[70] 
(Theorem(3.2.19)). 
Proposition (3.2.3)[65]:  Let 𝜒 be 𝑎 space of homogeneous type. If 𝑇 is 𝑎 bounded 

sublinear operator from 𝐿2(𝜒) to 𝐿2(𝜒), and 𝑇 is bounded from 𝐿∞(𝜒)into 𝐵𝑀𝑂𝐿(𝜒), then 

𝑇 is bounded from 𝐿𝑝(𝜒) to 𝐿𝑝(𝜒)for all 2 < 𝑝 < ∞. 
A natural question arising from Proposition(3.2.3) is to compare the classical 𝐵𝑀𝑂 space 

and the 𝐵𝑀𝑂𝐿  space associated with an operator 𝐿. We study this question systematically 

and we show that depending on the choice of the operator 𝐿, all the following cases are 

possible 

 Case1: 𝐵𝑀𝑂 ≅ 𝐵𝑀𝑂𝐿; 
Case2: 𝐵𝑀𝑂 ⊆ 𝐵𝑀𝑂𝐿  and𝐵𝑀𝑂 ≠ 𝐵𝑀𝑂𝐿; 
Case3: 𝐵𝑀𝑂𝐿 ⊆ 𝐵𝑀𝑂and𝐵𝑀𝑂𝐿 ≠ 𝐵𝑀𝑂; 
Case4: 𝐵𝑀𝑂 ⊈ 𝐵𝑀𝑂𝐿 and 𝐵𝑀𝑂𝐿 ⊈ 𝐵𝑀𝑂. 
For other results related to Cases 1 and 2 see Proposition 2.5 of [70], [71] and 

Proposition(3.2.8) of[78]. We show that if 𝑓 ∈ 𝐿𝑛/𝛼(ℝ𝑛) and 𝐿−𝛼𝑓 < ∞almost 

everywhere then𝐿−𝛼𝑓 ∈ 𝐵𝑀𝑂𝐿. We construct an example of a function 𝑓 ∈ 𝐿𝑝(ℝ) and an 

operator 𝐿 such that 𝐿
−
1

2𝑝𝑓 ∈ 𝐵𝑀𝑂𝐿 but 𝐿
−
1

2𝑝𝑓 ∉ 𝐵𝑀𝑂. This shows that the new 𝐵𝑀𝑂𝐿 

space does make a difference in estimates of singular integrals. We obtain sharp estimates 

of the 𝐿∞ to 𝐵𝑀𝑂𝐿  norm of the purely imaginary powers 𝐿𝑖𝑠 of 𝑎 self adjoint operator 𝐿. 

We also obtain the 𝐵𝑀𝑂 type estimates for spectral multipliers of 𝑎 self adjoint operator 𝐿 

and for maximal operators sup𝑡>0|𝐹(𝑡𝐿)| corresponding to 𝐿 and appropriate functions 𝐹. 

𝐿𝑝boundedness of these operators,2 < 𝑝 < ∞, then follows from Proposition(3.2.3). 
We begin by recalling the definitions of various 𝐵𝑀𝑂 spaces on the usual upper-

half space in ℝ𝑛. For any subset 𝐴 ⊂ ℝ𝑛 and a function 𝑓:ℝ𝑛 → ℂ by 𝑓|𝐴we denote the 

restriction of 𝑓 to the set 𝐴. Next we set 

ℝ+
𝑛 = {(𝑥′, 𝑥𝑛) ∈ ℝ

𝑛: 𝑥′ = (𝑥1, … , 𝑥𝑛−1) ∈ ℝ
𝑛−1, 𝑥𝑛 > 0}. 

Definition (3.2.4)[65]: 𝐴 function 𝑓 on ℝ+
𝑛 is said to be in 𝐵𝑀𝑂𝑟(ℝ+

𝑛) if there exists 𝐹 ∈
𝐵𝑀𝑂(ℝ𝑛) such that𝐹|ℝ+𝑛 = 𝑓. If 𝑓 ∈ 𝐵𝑀𝑂𝑟(ℝ+

𝑛), we set 

‖𝑓‖𝐵𝑀𝑂𝑟(ℝ+𝑛) = inf{‖𝐹‖𝐵𝑀𝑂(ℝ+𝑛): 𝐹|ℝ+𝑛 = 𝑓}. 

 A function 𝑓 on ℝ+
𝑛belongs to 𝐵𝑀𝑂𝒵(ℝ+

𝑛) if the function 𝐹 defined by 

𝐹(𝑥) = {
𝑓(𝑥)if𝑥 ∈ ℝ+

𝑛 ;

0   if𝑥 ∉ ℝ+
𝑛 ,
                                                                  (53) 

 belongs to 𝐵𝑀𝑂(ℝ𝑛). If 𝑓 ∈ 𝐵𝑀𝑂𝒵(ℝ+
𝑛), we set‖𝑓‖𝐵𝑀𝑂𝒵(ℝ+𝑛) = ‖𝐹‖𝐵𝑀𝑂𝒵(ℝ+𝑛). Compare 

Section4.5.1, page221 of [105] and Section5.4 of[93]. In order to analyze the spaces 

𝐵𝑀𝑂𝑟(ℝ+
𝑛) and 𝐵𝑀𝑂𝒵(ℝ+

𝑛), let us introduce the following notations, see[61]. For any 

𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ
𝑛, we set�̃�(𝑥′, 𝑥𝑛). If 𝑓 is any function defined on ℝ+

𝑛 , its even extension 

𝑓𝑒 is defined onℝ𝑛by 

𝑓𝑒(𝑥) = {
𝑓(𝑥)if𝑥 ∈ ℝ+

𝑛 ;

𝑓(�̃�)if𝑥 ∈ ℝ−
𝑛 ,

 

and its odd extension𝑓𝑜is defined by 

𝑓𝑜(𝑥) = {
𝑓(𝑥) if𝑥 ∈ ℝ+

𝑛 ;

−𝑓(�̃�)if𝑥 ∈ ℝ−
𝑛 ,

 

Where 



99 

ℝ−
𝑛 = {(𝑥′, 𝑥𝑛) ∈ ℝ

𝑛: 𝑥′ = (𝑥1, … , 𝑥𝑛−1) ∈ ℝ
𝑛−1, 𝑥𝑛 < 0}. 

For any function𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ+

𝑛), we define 

‖𝑓‖𝐵𝑀𝑂𝑒(ℝ+𝑛) = ‖𝑓𝑒‖𝐵𝑀𝑂(ℝ𝑛) and ‖𝑓‖𝐵𝑀𝑂𝑜(ℝ+𝑛) = ‖𝑓𝑜‖𝐵𝑀𝑂(ℝ𝑛) 

and we denote by𝐵𝑀𝑂𝑒(ℝ+
𝑛)and𝐵𝑀𝑂𝑜(ℝ+

𝑛)the corresponding Banach spaces. 

We will see that𝐵𝑀𝑂𝑒(ℝ+
𝑛)is suitable for the analysis of the Neumann Laplacian 

onℝ+
𝑛whereas𝐵𝑀𝑂𝑜(ℝ+

𝑛)is suitable for the study of the Dirichlet Laplacian onℝ+
𝑛 . See 

Proposition(3.2.9) below. 

In what follows,𝑄 = 𝑄[𝑥𝑄 , 𝑙𝑄]denotes 𝑎 cube of ℝ𝑛centered at 𝑥𝑄 and of the side 

length𝑙𝑄. Given any cube 𝑄, we denote the reflection of 𝑄 across 𝜕ℝ+
𝑛by 

�̃� = {(𝑥′, 𝑥𝑛) ∈ ℝ
𝑛, (𝑥′, −𝑥𝑛) ∈ 𝑄}.                                                                  (54) 

Let 𝑄+ = 𝑄 ∩ℝ+
𝑛  and 𝑄− = 𝑄 ∩ ℝ−

𝑛̅̅ ̅̅  where ℝ−
𝑛̅̅ ̅̅ = {(𝑥′, 𝑥𝑛) ∈ ℝ

𝑛: 𝑥′ =
(𝑥1, … , 𝑥𝑛−1) ∈ ℝ

𝑛−1, 𝑥𝑛 < 0}. If both 𝑄− and 𝑄+are not empty, we then define  

{
�̂�− = {(𝑥

′, 𝑥𝑛): 𝑥
′ ∈ 𝑄 ∩ ℝ𝑛−1, −𝑙𝑄 < 𝑥𝑛 ≤ 0},

�̂�+ = {(𝑥
′, 𝑥𝑛): 𝑥

′ ∈ 𝑄 ∩ ℝ𝑛−1, 0 < 𝑥𝑛 ≤ 𝑙𝑄}.
                                            (55) 

Obviously, we have the following properties: 

(i) 𝑄− ⊆ �̂�−, 𝑄+ ⊆ �̂�+and thus 𝑄 ⊆ (�̂�− ∪ �̂�+); 

 (ii) |𝑄| = |�̂�−| = |�̂�+|. 
These will be often used in the sequel. 

By ∆𝑛,𝑁+(and ∆𝑛,𝑁−) we denote the Neumann Laplacian on ℝ+
𝑛(and on ℝ−

𝑛  

respectively). Similarly by ∆𝑛,𝐷+(and ∆𝑛,𝐷−) we denote the Dirichlet Laplacian on ℝ+
𝑛(and 

on ℝ−
𝑛 respectively). 

The Dirichlet and Neumann Laplacian are positive definite self-adjoint operators. By the 

spectral theorem one can define the semigroups generated by these operators  

{exp(−𝑡∆𝑛,𝐷+): 𝑡 ≥ 0} and {exp(−𝑡∆𝑛,𝑁+): 𝑡 ≥ 0}. By 𝑝𝑡,∆𝑛,𝐷+
(𝑥, 𝑦) and 𝑝𝑡,∆𝑛,𝑁+

(𝑥, 𝑦) we 

denote the heat kernels corresponding to the semigroups generated by ∆𝑛,𝐷+ and ∆𝑛,𝑁+ 

respectively. 

For 𝑛 = 1 by the reflection method (see for example [83]) we obtain 

𝑝𝑡,∆𝑛,𝐷+
(𝑥, 𝑦) =

1

(4𝜋𝑡)1/2
(𝑒−

|𝑥1−𝑦1|
2

4𝑡 − 𝑒−
|𝑥1−𝑦1|

2

4𝑡 ). 

Then for 𝑛 ≥ 2 

𝑝𝑡,∆𝑛,𝐷+
(𝑥, 𝑦) = (𝑝𝑡,∆1,𝐷+

(𝑥𝑛, 𝑦𝑛)) (𝑝𝑡,∆𝑛−1(𝑥
′, 𝑦′)) 

=
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′,𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 − 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 ),                      (56) 

 where 𝑝𝑡,∆𝑛−1(𝑥, 𝑦)is the heat kernel corresponding to the standard Laplace operator 

acting on ℝ𝑛−1. Applying the reflection method also to the Neumann Laplacian we obtain 

(see [83])  

𝑝𝑡,∆𝑛,𝑁+
(𝑥, 𝑦) = (𝑝𝑡,∆1,𝑁+

(𝑥𝑛 , 𝑦𝑛)) (𝑝𝑡,∆𝑛−1(𝑥
′, 𝑦′)) 

=
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′,𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 − 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 ).                      (57) 
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We skip the index 𝑛 and we denote the Dirichlet and Neumann Laplacian 

by∆𝐷+and∆𝑁+. Note that by(56) 

exp(−𝑡∆𝐷+)𝑓(𝑥) = ∫ 𝑝𝑡,∆𝐷+
(𝑥, 𝑦)𝑓(𝑦)

 

ℝ+
𝑛

𝑑𝑦 

=
1

(4𝜋𝑡)
𝑛
2

∫ 𝑒−
|𝑥−𝑦|2

4𝑡 𝑓𝑜(𝑦)𝑑𝑦
 

ℝ𝑛
 

= exp(−𝑡∆)𝑓𝑜(𝑥) (58) 
for 𝑥 ∈ ℝ+

𝑛and all 𝑡 > 0.Similarly 

exp(−𝑡∆𝑁+)𝑓(𝑥) = ∫ 𝑝𝑡,∆𝑁+
(𝑥, 𝑦)𝑓(𝑦)

 

ℝ+
𝑛

𝑑𝑦 =
1

(4𝜋𝑡)
𝑛
2

∫ 𝑒−
|𝑥−𝑦|2

4𝑡 𝑓𝑒(𝑦)𝑑𝑦
 

ℝ𝑛
 

= exp(−𝑡∆)𝑓𝑒(𝑥)                                                                              (59) 
for 𝑥 ∈ ℝ+

𝑛and all 𝑡 > 0. 
Next for any function 𝑓 on ℝ𝑛, we set 

𝑓− = 𝑓|ℝ−𝑛and 𝑓+ = 𝑓|ℝ+𝑛 . 

Now let ∆𝑁 be the uniquely determined unbounded operator acting on 𝐿2(ℝ𝑛)such that 
(∆𝑁𝑓)+ = ∆𝑁+𝑓+and(∆𝑁𝑓)− = ∆𝑁−𝑓−                                            (60) 

for all 𝑓:ℝ𝑛 → ℝ such that 𝑓+ ∈ 𝑊
1,2(ℝ+

𝑛)and𝑓− ∈ 𝑊
1,2(ℝ−

𝑛). Then, ∆𝑁is 𝑎 positive 

definite self-adjoint operator. By(60) 
(exp(−𝑡∆𝑁)𝑓)+ = exp(−𝑡∆𝑁+)𝑓+ 

and (exp(−𝑡∆𝑁)𝑓)− = exp(−𝑡∆𝑁−)𝑓− .                                            (61) 

Let 𝑝𝑡,∆𝑁(𝑥, 𝑦)be the heat kernel of exp(−𝑡∆𝑁). By(61) and(57) we obtain 

𝑝𝑡,∆𝑁(𝑥, 𝑦) =
1

(4𝜋𝑡)𝑛/2
𝑒−
|𝑥′,𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 )𝐻(𝑥𝑛 − 𝑦𝑛),               (62) 

where 𝐻:ℝ → {0,1} is the Heaviside function given by 

𝐻(𝑡) = {
0 if 𝑡 < 0;
0 if 𝑡 ≥ 0.

                                            (63) 

Similarly we define the Dirichlet Laplacian on ℝ𝑛by the formula 

(∆𝐷𝑓)+ = ∆𝐷+𝑓+and(∆𝐷𝑓)− = ∆𝐷−𝑓−                                            (64) 

for all 𝑓: ℝ𝑛 → ℝ such that 𝑓+ ∈ 𝑊0
1,2(ℝ+

𝑛) and 𝑓− ∈ 𝑊0
1,2(ℝ−

𝑛). Then, ∆𝐷is 𝑎 positive 

definite self-adjoint operator. By(64) 
(exp(−𝑡∆𝐷)𝑓)+ = exp(−𝑡∆𝐷+)𝑓+ 

and (exp(−𝑡∆𝐷)𝑓)− = exp(−𝑡∆𝐷−)𝑓− .                                            (65) 

Hence by (56) the kernel 𝑝𝑡,∆𝐷(𝑥, 𝑦)of the operator exp(−𝑡∆𝐷)is given by 

𝑝𝑡,∆𝐷(𝑥, 𝑦) =
1

(4𝜋𝑡)𝑛/2
𝑒−
|𝑥′,𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛+𝑦𝑛|

2

4𝑡 )𝐻(𝑥𝑛 − 𝑦𝑛).                      (66) 

Finally we define the Dirichlet-Neumann Laplacian by the formula 
(∆𝐷𝑁𝑓)+ = ∆𝑁+𝑓+and(∆𝐷𝑁𝑓)− = ∆𝐷−𝑓−                                            (67) 

for all 𝑓: ℝ𝑛 → ℝ such that 𝑓+ ∈ 𝑊
1,2(ℝ+

𝑛)and 𝑓− ∈ 𝑊0
1,2(ℝ−

𝑛). By (67)  
(exp(−𝑡∆𝐷𝑁)𝑓)+ = exp(−𝑡∆𝑁+)𝑓+ 

and (exp(−𝑡∆𝐷𝑁)𝑓)− = exp(−𝑡∆𝐷−)𝑓− .                      (68) 

Hence by (56) and(57), the kernel 𝑝𝑡,∆𝐷𝑁(𝑥, 𝑦)ofexp(−𝑡∆𝐷𝑁)is given by 
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𝑝𝑡,∆𝐷𝑁(𝑥, 𝑦) =
1

(4𝜋𝑡)𝑛/2
𝑒−
|𝑥′,𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + (2𝐻(𝑥𝑛) − 1)𝑒
−
|𝑥𝑛+𝑦𝑛|

2

4𝑡 )𝐻(𝑥𝑛

− 𝑦𝑛). (69) 
Let us note that 

 (𝛼) All the operators ∆, ∆𝑁+ , ∆𝐷+ , ∆𝑁−, ∆𝐷−and∆𝐷, ∆𝑁, ∆𝐷𝑁 are self-adjoint and they 

generate bounded analytic positive semigroups acting on all 𝐿𝑝spaces for1 ≤  𝑝 ≤ ∞ ; 
(𝛽) Suppose that𝑝𝑡,𝐿(𝑥, 𝑦)is the kernel corresponding to the semigroup generated by 𝐿 and 

that 𝐿 is one of the operators listed in(𝛼). Then the kernel 𝑝𝑡,𝐿(𝑥, 𝑦)satisfies Gaussian 

bounds, that is 

|𝑝𝑡,𝐿(𝑥, 𝑦)| ≤
𝐶

𝑡𝑛/2
𝑒−𝑐

|𝑥−𝑦|2

𝑡                                             (70) 

for all 𝑥, 𝑦 ∈ Ω, where Ω = ℝ𝑛 for ∆, ∆𝐷, ∆𝑁, ∆𝐷𝑁;Ω = ℝ+
𝑛 for∆𝑁+, ∆𝐷+and Ω = ℝ−

𝑛  

for∆𝑁− , ∆𝐷− . 

(𝛾) If𝐿 is one of the operators ∆, ∆𝑁+ , ∆𝑁−and∆𝑁, then𝐿 conserves probability, that is 

exp(−𝑡𝐿) 𝕝 = 𝕝. 
This conservative property does not hold for ∆𝐷, ∆𝐷+ , ∆𝐷−and ∆𝐷𝑁. 

Suppose that Ω ⊂ ℝ𝑛 is an open subset of ℝ𝑛. Suppose that 𝐿 is 𝑎 linear operator on 

𝐿2(Ω) which generates an analytic semigroup 𝑒−𝑡𝐿with 𝑎 kernel𝑝𝑡(𝑥, 𝑦) satisfying 

Gaussian upper bound(70). 
We define 

ℳ(Ω) = {𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (Ω): ∃𝑑 > 0,∫

|𝑓(𝑥)|2

1 + |𝑥|𝑛+𝑑

 

Ω

𝑑𝑥 < ∞}. 

Note that in virtue of the Gaussian bounds(70) we can extend the action of the semigroup 

operatorsexp(−𝑡𝐿) to the space ℳ(Ω), that is we can define exp(−𝑡𝐿) 𝑓 for all 𝑓 ∈
ℳ(Ω). By 𝐵(𝑥, 𝑟) we denote the ball in Ω with respect to the Euclidean distance restricted 

to Ω that is 

 𝐵(𝑥, 𝑟) = {𝑦 ∈ Ω: |𝑥 − 𝑦| < 𝑟}. 
The following 𝐵𝑀𝑂𝐿(Ω) space associated with an operator 𝐿 was introduced in [70]. 
Definition (3.2.5)[65]:  We say that 𝑓 ∈ ℳ(Ω) is of bounded mean oscillation associated 

with an operator 𝐿 (abbreviated as𝐵𝑀𝑂𝐿(Ω)) if 

‖𝑓‖𝐵𝑀𝑂𝐿(Ω) = sup
𝐵(𝑦,𝑟)

1

|𝐵(𝑦, 𝑟)|
∫ |𝑓(𝑥) − exp(−𝑟2𝐿) 𝑓(𝑥)|
 

𝐵(𝑦,𝑟)

𝑑𝑥 < ∞,              (71) 

where the supremum is taken over all balls 𝐵(𝑦, 𝑟) in Ω. The smallest bound for which 

(71) is satisfied is then taken to be the norm of 𝑓 in this space, and is denoted 

by‖𝑓‖𝐵𝑀𝑂𝐿(Ω) . 

Remark (3.2.6)[65]: (i) Note that(𝐵𝑀𝑂𝐿(Ω), ‖∙‖𝐵𝑀𝑂𝐿(Ω))is 𝑎 semi-normed vector space, 

with the semi-norm vanishing on the kernel space𝒦𝐿defined by 

𝒦𝐿 = {𝑓 ∈ ℳ(Ω); exp(−𝑡𝐿) 𝑓 = 𝑓, ∀𝑡 > 0}. 
The class of functions of𝐵𝑀𝑂𝐿(Ω) (modulo𝒦𝐿) is 𝑎 Banach space. See Section 6 of [71] 
for 𝑎 discussion on the dimension of the space 𝒦𝐿 of 𝐵𝑀𝑂𝐿(ℝ

𝑛) when 𝐿 is 𝑎 second 

order divergence form elliptic operator or a Schrödinger operator. In the sequel by 

𝐵𝑀𝑂𝐿(Ω) we always denote the space 𝐵𝑀𝑂𝐿(Ω)(modulo 𝒦𝐿) and we skip (modulo 𝒦𝐿) 

to simplify notation. 
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(ii) Similarly to the classical 𝐵𝑀𝑂 space, it is easy to check that 𝐿∞(Ω) ⊂ 𝐵𝑀𝑂𝐿(Ω) with 

‖𝑓‖𝐵𝑀𝑂𝐿(Ω) ≤ 2‖𝑓‖𝐿∞ . 

 (iii) The classical 𝐵𝑀𝑂 space (modulo all constant functions) and the 𝐵𝑀𝑂∆(ℝ
𝑛) space 

(modulo all harmonic functions) coincide, and their norms are equivalent. See [15]. 
(iv) Note that the Euclidean distance in Definition(3.2.5) can be replaced by any 

equivalent distance. That is if there exists 𝑐 > 0 such that 𝑐−1|𝑥 − 𝑦| ≤ 𝑑(𝑥, 𝑦) ≤
𝑐|𝑥 − 𝑦|then one can take in(71) the supremum over all balls𝐵𝑑(𝑥, 𝑟) with respect to the 

metric𝑑. In particular ifΩ = ℝ𝑛,Ω = ℝ+
𝑛orΩ = ℝ−

𝑛 , one can take the supremum over all 

cubes 𝑄 such that𝑄 ⊂ Ω in(71), i.e., we can define equivalent norm in𝐵𝑀𝑂𝐿(Ω)by the 

formula 

‖𝑓‖𝐵𝑀𝑂𝐿(ℝ𝑛) = sup
𝑄

1

|𝑄|
∫ |𝑓(𝑥) − exp(−𝑙𝑄

2𝐿) 𝑓(𝑥)|
 

𝑄

𝑑𝑥 < ∞,                      (72) 

where𝑙𝑄is the side length of 𝑄 and the supremum is taken over all cubes 𝑄 ⊂ Ω. The 

following proposition is essentially equivalent to Proposition(3.2.8) of [78]. 

Proposition (3.2.7)[65]: Assume that for every 𝑡 > 0, 𝑒−𝑡𝐿(𝕝) = 𝕝almost every-where, 

that is,∫ 𝑝𝑡,𝐿(𝑥, 𝑦)
 

ℝ𝑛
𝑑𝑦 = 1for almost all 𝑥 ∈ ℝ𝑛. Then, we have𝐵𝑀𝑂(ℝ𝑛) ⊂

𝐵𝑀𝑂𝐿(ℝ
𝑛), and there exists 𝑎 positive constant 𝑐 > 0 such that 

‖𝑓‖𝐵𝑀𝑂𝐿(ℝ𝑛) ≤ 𝑐‖𝑓‖𝐵𝑀𝑂(ℝ𝑛).                                            (73) 

However, the converse inequality does not hold in general. 

We remark that condition 𝑒−𝑡𝐿(𝕝) = 𝕝, is necessary for(73). Indeed, (73) implies 

‖𝕝‖𝐵𝑀𝑂𝐿(ℝ𝑛) = 0. Hence 𝑒−𝑡𝐿(𝕝) = 𝕝 almost everywhere for all𝑡 > 0, 

We describe the equivalence between the 𝐵𝑀𝑂 spaces on the half space and 𝐵𝑀𝑂 

spaces corresponding to the Neumann and Dirichlet Laplacian. 

 Proposition (3.2.8)[65]: (i) The spaces 𝐵𝑀𝑂𝑟(ℝ+
𝑛)and 𝐵𝑀𝑂𝑒(ℝ+

𝑛)coincide, and their 

norms are equivalent. 

(ii) The spaces 𝐵𝑀𝑂𝒵(ℝ+
𝑛) and 𝐵𝑀𝑂𝑜(ℝ+

𝑛)coincide, and their norms are equivalent. 

Proof:  Following[61], for any function 𝑓 ∈ 𝐿1(ℝ+
𝑛)we set 

‖𝑓‖𝐻𝑒1(ℝ+𝑛) = ‖𝑓𝑒‖𝐻1(ℝ𝑛) and‖𝑓‖𝐻𝑜1(ℝ+𝑛) = ‖𝑓𝑜‖𝐻1(ℝ𝑛)                      (74) 

and by𝐻𝑒
1(ℝ+

𝑛)and𝐻𝑜
1(ℝ+

𝑛)we denote the corresponding Banach spaces. It follows from 

Corollaries1.6, 1.8 of[61] and Proposition32 of[93] that the dual space of 𝐻𝑒
1(ℝ+

𝑛)is the 

space𝐵𝑀𝑂𝑟(ℝ+
𝑛)and the dual space of 𝐻𝑜

1(ℝ+
𝑛)is the space 𝐵𝑀𝑂𝒵(ℝ+

𝑛). See also[55]. 
The inclusion 𝐵𝑀𝑂𝑒(ℝ+

𝑛) ⊆ 𝐵𝑀𝑂𝑟(ℝ+
𝑛)is obvious. Hence to prove (i) it is enough to 

show that𝐵𝑀𝑂𝑟(ℝ+
𝑛) ⊆ 𝐵𝑀𝑂𝑒(ℝ+

𝑛). Let𝑓 ∈ 𝐵𝑀𝑂𝑟(ℝ+
𝑛). To see that𝑓 ∈ 𝐵𝑀𝑂𝑒(ℝ+

𝑛), by 

the definition it reduces to proving 𝑓𝑒 ∈ 𝐵𝑀𝑂(ℝ
𝑛) where 𝑓𝑒 is the even extension of 𝑓. 

For any 𝑔(𝑥)  ∈ 𝐻1(ℝ𝑛)n), we denote by 𝑔(𝑥) = 𝑔(�̃�) where�̃� = (𝑥′, −𝑥𝑛). 

Since(𝐻𝑒
1(ℝ+

𝑛))
′
= 𝐵𝑀𝑂𝑟(ℝ+

𝑛), we have 

|∫ 𝑓𝑒(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ𝑛
| = |∫ 𝑓𝑒(𝑥)𝑔(𝑥)𝑑𝑥

 

ℝ−
𝑛

+ ∫ 𝑓𝑒(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ+
𝑛

|

= |∫ 𝑓(𝑥)(𝑔(�̃�) + 𝑔(𝑥))𝑑𝑥
 

ℝ+
𝑛

| ≤ 𝑐‖𝑓‖𝐵𝑀𝑂𝑟(ℝ+𝑛)‖𝑔 + 𝑔‖𝐻𝑒1(ℝ+𝑛)

≤ 𝑐‖𝑓‖𝐵𝑀𝑂𝑟(ℝ+𝑛)‖𝑔‖𝐻1(ℝ𝑛) 

This shows that𝐵𝑀𝑂𝑟(ℝ+
𝑛) ⊂ 𝐵𝑀𝑂𝑒(ℝ+

𝑛), and proves(i). 
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We now prove(ii). The inclusion 𝐵𝑀𝑂𝒵(ℝ+
𝑛) ⊆ 𝐵𝑀𝑂𝑜(ℝ+

𝑛)is obvious. Let 𝑓 ∈
𝐵𝑀𝑂𝑜(ℝ+

𝑛)and thus 𝑓𝑜 ∈ 𝐵𝑀𝑂(ℝ
𝑛). To see that 𝑓 ∈ 𝐵𝑀𝑂𝒵(ℝ+

𝑛), it reduces to proving 

𝑓 ∈ (𝐻𝑜
1(ℝ+

𝑛))
′
since 𝐵𝑀𝑂𝒵(ℝ+

𝑛) = (𝐻𝑜
1(ℝ+

𝑛))
′
. If𝑔 ∈ 𝐻𝑜

1(ℝ+
𝑛), then𝑔𝑜 ∈ 𝐻

1(ℝ𝑛). Hence 

|∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
 

ℝ+
𝑛

| =
1

2
|∫ 𝑓𝑜(𝑥)𝑔𝑜(𝑥)𝑑𝑥
 

ℝ−
𝑛

| 

≤ 𝑐‖𝑓𝑜‖𝐵𝑀𝑂(ℝ𝑛)‖𝑔𝑜‖𝐻1(ℝ𝑛) ≤ 𝑐‖𝑓‖𝐵𝑀𝑂(ℝ+𝑛)‖𝑔‖𝐻1(ℝ+𝑛). 

This shows that 𝐵𝑀𝑂𝑜(ℝ+
𝑛) ⊂ 𝐵𝑀𝑂𝒵(ℝ+

𝑛), and proves(ii).  
We use Proposition(3.2.8) to obtain the following result. 

Proposition (3.2.9)[65]: (i) The spaces 𝐵𝑀𝑂∆𝐷+
(ℝ+
𝑛), 𝐵𝑀𝑂𝒵(ℝ+

𝑛) and 𝐵𝑀𝑂𝑜(ℝ+
𝑛) 

coincide, and their norms are equivalent. 

 (ii) The spaces𝐵𝑀𝑂∆𝑁+
(ℝ+
𝑛), 𝐵𝑀𝑂𝑟(ℝ+

𝑛)and𝐵𝑀𝑂𝑒(ℝ+
𝑛)coincide, and their norms are 

equivalent. 

Proof: We first prove(i). Let𝑓 ∈ 𝐵𝑀𝑂𝒵(ℝ+
𝑛). By Proposition (3.2.8) we have that 𝑓 ∈

𝐵𝑀𝑂𝑜(ℝ+
𝑛)and then 𝑓𝑜 ∈ 𝐵𝑀𝑂(ℝ

𝑛). To prove𝑓 ∈ 𝐵𝑀𝑂∆𝐷+
(ℝ+
𝑛), it suffices to show that 

for any cube 𝑄 ⊆ ℝ+
𝑛 , 

∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2∆𝐷+𝑓(𝑥)| 𝑑𝑥

 

𝑄

≤ 𝑐|𝑄|‖𝑓‖𝐵𝑀𝑂𝒵(ℝ+𝑛).                              (75) 

By(73) and Propositions(3.2.8) 
1

|𝑄|
∫ |𝑓(𝑥) − 𝑒−𝑙𝑄

2∆𝐷+𝑓(𝑥)| 𝑑𝑥
 

𝑄

=
1

|𝑄|
∫ |𝑓(𝑥) − 𝑒−𝑙𝑄

2∆𝑓𝑜(𝑥)| 𝑑𝑥
 

𝑄

≤ 𝑐‖𝑓𝑜‖𝐵𝑀𝑂(ℝ𝑛)

≤ 𝑐‖𝑓‖𝐵𝑀𝑂𝑜(ℝ+𝑛) ≤ 𝑐‖𝑓‖𝐵𝑀𝑂𝒵(ℝ+𝑛). 

This proves(75). 
Next assume that𝑓 ∈ 𝐵𝑀𝑂∆𝐷+

(ℝ+
𝑛). By Proposition(3.2.8), 𝑓 ∈ 𝐵𝑀𝑂𝒵(ℝ+

𝑛)or 

equivalently 𝑓𝑜 ∈ 𝐵𝑀𝑂(ℝ
𝑛). Note that by(58) it is enough to prove that for any cube𝑄 ⊆

ℝ𝑛 , 

∫ |𝑓𝑜(𝑥) − 𝑒
−𝑙𝑄
2∆𝑓𝑜(𝑥)| 𝑑𝑦

 

𝑄

≤ 𝑐|𝑄|‖𝑓‖𝐵𝑀𝑂∆𝐷+(ℝ+
𝑛).                              (76) 

We now verify(76). Let us examine the cubes 𝑄. 
Case1: If𝑄 ⊆ ℝ−

𝑛 , then for any 𝑥 ∈ 𝑄, 

−exp(−𝑙𝑄
2∆𝐷+) 𝑓(�̃�) = exp(−𝑙𝑄

2∆) 𝑓𝑜(𝑥) 

 and�̃� ∈ �̂� ⊆ ℝ+
𝑛 (here �̃� is 𝑎 cube defined in(54)). Note also that|�̃�| = |𝑄|.Hence  

∫ |𝑓𝑜(𝑥) − 𝑒
−𝑙𝑄
2∆𝑓𝑜(𝑥)| 𝑑𝑦

 

𝑄

= ∫ |𝑓𝑜(�̃�) − 𝑒
−𝑙
�̃�
2∆𝐷+𝑓(�̃�)| 𝑑𝑥

 

�̃�

 

≤ 𝑐|𝑄|‖𝑓‖𝐵𝑀𝑂∆𝐷+(ℝ+
𝑛). 

Case2: If 𝑄 ∩ ℝ−
𝑛 ≠ ∅ and 𝑄 ∩ ℝ+

𝑛 ≠ ∅, then let �̂�− and �̂�+ be the two cubes as in (55). 
By(58) and Proposition(3.2.8), 

∫ |𝑓𝑜(𝑥) − 𝑒
−𝑙𝑄
2∆𝑓𝑜(𝑥)| 𝑑𝑦

 

𝑄

= ∫ |𝑓𝑜(𝑥) − 𝑒
−𝑙
�̃�
2∆
𝑓𝑜(𝑥)| 𝑑𝑥

 

𝑄−∪𝑄+

 

≤ 2∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2∆𝐷+𝑓(𝑥)| 𝑑𝑥

 

�̂�+

≤ 2|𝑄|‖𝑓‖𝐵𝑀𝑂∆𝐷+(ℝ+
𝑛). 

 Case3: If 𝑄 ⊆ ℝ+
𝑛 , then𝑒−𝑙𝑄

2∆𝑓𝑜(𝑥) = 𝑒
−𝑙𝑄
2∆𝐷+𝑓(𝑥)for any𝑥 ∈ 𝑄. Hence  
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∫ |𝑓𝑜(𝑥) − 𝑒
−𝑙𝑄
2∆𝑓𝑜(𝑥)| 𝑑𝑥

 

𝑄

≤ |𝑄|‖𝑓‖𝐵𝑀𝑂∆𝐷+(ℝ+
𝑛). 

The estimate(76) follows readily. This shows that𝑓𝑜 ∈ 𝐵𝑀𝑂(ℝ
𝑛)so𝑓 ∈ 𝐵𝑀𝑂𝒵(ℝ+

𝑛). 
The proof of (ii) is similar to the proof of (i) so we skip it.  

In 𝑎 similar way as for the upper-half space, we can define the space 𝐵𝑀𝑂∆𝐷−
(ℝ−
𝑛) and 

𝐵𝑀𝑂∆𝑁−
(ℝ−
𝑛)associated with the Dirichlet and Neumann Laplacian ∆𝐷−,∆𝑁−on the lower-

half space ℝ−
𝑛 . 

The same argument as in Proposition (3.2.9) gives the following proposition. 

Proposition (3.2.10)[65]: (i) The spaces 𝐵𝑀𝑂∆𝐷−
(ℝ−
𝑛), 𝐵𝑀𝑂𝒵(ℝ−

𝑛) and 𝐵𝑀𝑂𝑜(ℝ−
𝑛) 

coincide, and their norms are equivalent. 

(ii) The spaces 𝐵𝑀𝑂∆𝐷−
(ℝ−
𝑛), 𝐵𝑀𝑂𝑟(ℝ−

𝑛) and 𝐵𝑀𝑂𝑒(ℝ−
𝑛)coincide, and their norms are 

equivalent. 

We mention that all cases of relation between the classical 𝐵𝑀𝑂 and the new 𝐵𝑀𝑂 

spaces are possible. The following theorem provides simple example to prove this 

statement. 

Proposition (3.2.11)[65]: The 𝐵𝑀𝑂 spaces corresponding to the operators ∆𝑁, ∆𝐷 and 

∆𝑁𝐷 can be described in the following way: 

𝐵𝑀𝑂∆𝑁(ℝ
𝑛) = {𝑓 ∈ ℳ(ℝ𝑛): 𝑓+ ∈ 𝐵𝑀𝑂𝑟(ℝ+

𝑛)and 𝑓− ∈ 𝐵𝑀𝑂𝑟(ℝ−
𝑛)}; 

𝐵𝑀𝑂∆𝐷(ℝ
𝑛) = {𝑓 ∈ ℳ(ℝ𝑛): 𝑓+ ∈ 𝐵𝑀𝑂𝒵(ℝ+

𝑛)and 𝑓− ∈ 𝐵𝑀𝑂𝒵(ℝ−
𝑛)}; 

𝐵𝑀𝑂∆𝐷𝑁(ℝ
𝑛) = {𝑓 ∈ ℳ(ℝ𝑛): 𝑓+ ∈ 𝐵𝑀𝑂𝑟(ℝ+

𝑛)and 𝑓− ∈ 𝐵𝑀𝑂𝒵(ℝ−
𝑛)}. 

 Proof: In the following proof 𝐿 is one of the operators ∆𝑁, ∆𝐷or∆𝐷𝑁. If𝐿 = ∆𝑁, then we 

denote by 𝐿+ = ∆𝐷+and 𝐿− = ∆𝑁− . Similarly if 𝐿 = ∆𝐷then 𝐿+ = ∆𝐷+and𝐿− = ∆𝐷− . 

Finally for 𝐿 = ∆𝐷𝑁 we let 𝐿+ = ∆𝑁+and 𝐿− = ∆𝐷−. 

By (61), (65) and(68) 
(exp(−𝑡𝐿)𝑓)+ = exp(𝑡𝐿+) 𝑓+and(exp(−𝑡𝐿)𝑓)− = exp(𝑡𝐿−) 𝑓−          (77) 

for any of the three considered operators. Hence for any cube 𝑄 ⊂ ℝ𝑛 we have  

∫ |𝑓 − 𝑒−𝑙𝑄
2 𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄

= ∫ |𝑓− − 𝑒
−𝑙𝑄
2 𝐿−𝑓−(𝑥)| 𝑑𝑥

 

𝑄∩ℝ−
𝑛

 

+∫ |𝑓+ − 𝑒
−𝑙𝑄
2 𝐿+𝑓+(𝑥)| 𝑑𝑥

 

𝑄∩ℝ+
𝑛

.                            (78) 

In virtue of Propositions |(3.2.9) and (3.2.10) it is enough to show that  

𝐵𝑀𝑂𝐿(ℝ
𝑛) = {𝑓 ∈ ℳ(ℝ𝑛): 𝑓+ ∈ 𝐵𝑀𝑂𝐿+(ℝ+

𝑛)and𝑓− ∈ 𝐵𝑀𝑂𝐿−(ℝ−
𝑛)} 

Assume now that 𝑓 ∈ ℳ(ℝ𝑛) such that𝑓− ∈ 𝐵𝑀𝑂𝐿−(ℝ−
𝑛)and𝑓+ ∈ 𝐵𝑀𝑂𝐿+(ℝ+

𝑛). In order 

to prove 𝑓 ∈ 𝐵𝑀𝑂𝐿(ℝ
𝑛), it suffices to prove that for any cube𝑄 ⊆ ℝ𝑛 ,  

∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄

≤ 𝑐 (‖𝑓−‖𝐵𝑀𝑂𝐿−(ℝ−
𝑛) + ‖𝑓+‖𝐵𝑀𝑂𝐿+(ℝ+

𝑛)). 

As in the proof of Proposition(3.2.9), we consider the following three cases of 𝑄.  
Case1: If 𝑄 ⊆ ℝ−

𝑛 , then by(78) 

∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2 𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄

= ∫ |𝑓−(𝑥) − 𝑒
−𝑙𝑄
2 𝐿−𝑓−(𝑥)| 𝑑𝑥

 

𝑄

≤ 𝑐|𝑄|‖𝑓−‖𝐵𝑀𝑂𝐿−(ℝ−
𝑛). 

Case2: If 𝑄 ∩ ℝ−
𝑛 = ∅ and 𝑄 ∩ ℝ+

𝑛 = ∅, then let�̃�−and�̃�+be the cubes as in(55). By(78) 

∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄

= ∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄−∪𝑄+
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≤ ∫ |𝑓− − 𝑒
−𝑙𝑄
2𝐿−𝑓−(𝑥)| 𝑑𝑥

 

�̃�−

+ ∫ |𝑓+ − 𝑒
−𝑙𝑄
2 𝐿+𝑓+(𝑥)| 𝑑𝑥

 

�̃�+

 

≤ 𝑐|𝑄| (‖𝑓−‖𝐵𝑀𝑂𝐿−(ℝ−
𝑛) + ‖𝑓+‖𝐵𝑀𝑂𝐿+(ℝ+

𝑛)). 

Case3: If 𝑄 ⊆ ℝ−
𝑛 , then by(80) 

∫ |𝑓(𝑥) − 𝑒−𝑙𝑄
2 𝐿𝑓(𝑥)| 𝑑𝑥

 

𝑄

= ∫ |𝑓+ − 𝑒
−𝑙𝑄
2 𝐿+𝑓+(𝑥)| 𝑑𝑥

 

𝑄

≤ 𝑐|𝑄|‖𝑓+‖𝐵𝑀𝑂∆𝑁+(ℝ+
𝑛). 

Hence 𝑓 ∈ 𝐵𝑀𝑂𝐿(ℝ
𝑛). 

 We now assume that 𝑓 ∈ 𝐵𝑀𝑂𝐿(ℝ
𝑛). By (78), we have that 

𝑓− ∈ 𝐵𝑀𝑂𝐿−(ℝ−
𝑛)and 𝑓+ ∈ 𝐵𝑀𝑂𝐿+(ℝ+

𝑛) 

Now Proposition(3.2.11) is 𝑎 straightforward consequence of Propositions(3.2.9) 
and(3.2.10).  
The logarithmic function is 𝑎 simple example that typifies some of the essential properties 

of the classical space 𝐵𝑀𝑂. For example if we define function log: ℝ𝑛 → ℝ by the 

formula log𝑒(𝑥) = log|𝑥𝑛|for all 𝑥 ∈ ℝ𝑛 and log(𝑥) = 𝐻(𝑥𝑛) log|𝑥𝑛|, where 𝐻 is the 

Heaviside function then 

log𝑒 ∈ 𝐵𝑀𝑂(ℝ𝑛) 
log ∉ 𝐵𝑀𝑂(ℝ𝑛).                                                            (79) 

See, for examples, Chapter IV of [19] and page217 of[85] . 
Theorem (3.2.12)[65]: In the notation described above the following inclusions hold  

𝐵𝑀𝑂∆𝐷(ℝ
𝑛)  ≠
⊂ 𝐵𝑀𝑂(ℝ𝑛)  ≠

⊂ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛).                                        (80) 

That is, the classical 𝐵𝑀𝑂 space is 𝑎 proper subspace of 𝐵𝑀𝑂∆𝑁(ℝ
𝑛), and 𝐵𝑀𝑂∆𝐷(ℝ

𝑛)is 

𝑎 proper subspace of 𝐵𝑀𝑂. 

 Moreover, we have 

𝐵𝑀𝑂(ℝ𝑛) ⊈ 𝐵𝑀𝑂∆𝐷(ℝ
𝑛) 𝑎𝑛𝑑 𝐵𝑀𝑂∆𝐷(ℝ

𝑛) ⊈ 𝐵𝑀𝑂(ℝ𝑛).                    (81) 

Proof: It is 𝑎 straight for ward consequence of Definition(3.2.4) that if 𝑓+ ∈ 𝐵𝑀𝑂𝒵(ℝ+
𝑛) 

and 𝑓− ∈ 𝐵𝑀𝑂𝒵(ℝ−
𝑛)then 𝑓 ∈ 𝐵𝑀𝑂. It also follows from Definition(3.2.4)that if 𝑓 ∈

𝐵𝑀𝑂 then 𝑓+ ∈ 𝐵𝑀𝑂𝑟(ℝ+
𝑛) and 𝑓− ∈ 𝐵𝑀𝑂𝑟(ℝ−

𝑛). Hence it follows from 

Theorem(3.2.12) and Propositions (3.2.9) and (3.2.10) that 

𝐵𝑀𝑂∆𝐷(ℝ
𝑛) ⊂ 𝐵𝑀𝑂(ℝ𝑛) ⊂ 𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 

 To prove that the above inclusions are proper we note that by(79) and Definition(3.2.4) 
log+ ∉ 𝐵𝑀𝑂𝒵(ℝ+

𝑛)and log+ ∈ 𝐵𝑀𝑂𝑟(ℝ+
𝑛), 

where log+ is the restriction oflog𝑒toℝ+
𝑛 . Next if log−is the restriction oflog𝑒toℝ−

𝑛  then 

log− ∉ 𝐵𝑀𝑂𝒵(ℝ−
𝑛)and log− ∈ 𝐵𝑀𝑂𝑟(ℝ−

𝑛). 
 Hence 

log𝑒 ∈  𝐵𝑀𝑂 and log𝑒 ∉ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). 

Similarly 

log ∉ 𝐵𝑀𝑂and log ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛) 

This ends the proof of(77). Finally to prove (78) we note that 𝐵𝑀𝑂∆𝐷𝑁(ℝ
𝑛)and log ∉

𝐵𝑀𝑂∆𝐷𝑁(ℝ
𝑛). 

Corollary (3.2.13)[65]:  (i) The dual space of 𝐻∆
1(ℝ𝑛)is the space𝐵𝑀𝑂∆(ℝ

𝑛). 
(ii) The dual spaces of 𝐻∆𝐷

1 (ℝ𝑛), 𝐻∆𝑁
1 (ℝ𝑛)or𝐻∆𝐷𝑁

1 (ℝ𝑛)are the spaces 𝐵𝑀𝑂∆𝐷(ℝ
𝑛), 

𝐵𝑀𝑂∆𝑁(ℝ
𝑛) or 𝐵𝑀𝑂∆𝐷𝑁(ℝ

𝑛), respectively. 
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(iii) For the Neumann Laplacian ∆𝑁onℝ𝑛, we have that𝐻∆𝑁
1 (ℝ𝑛)  ≠

⊂𝐻1(ℝ𝑛)and 

𝐻∆𝑁
1 (ℝ𝑛) ≠ ∅. That is, 𝐻∆𝑁

1 (ℝ𝑛)is 𝑎 proper subspace of the classical Hardy space 

𝐻1(ℝ𝑛). 
For any 0 < 𝛼 < 𝑛,the fractional powers 𝐿−𝛼/2of 𝐿 is defined by 

𝐿−𝛼/2𝑓(𝑥) =
1

Γ(𝛼/2)
∫ 𝐿−𝛼/2−1𝑒−𝑡𝐿𝑓(𝑥)
∞

0

𝑑𝑡.                              (82) 

We assume that the semigroup𝑒−𝑡𝐿has 𝑎 kernel 𝑝𝑡(𝑥, 𝑦) which satisfies the upper 

bound(70) so|𝐿−𝛼/2𝑓(𝑥)| ≤ 𝑐ℐ𝛼(|𝑓|)(𝑥)for all 𝑥 ∈ ℝ𝑛, where  

ℐ𝛼𝑓(𝑥) = ∫
𝑓(𝑦)

|𝑥 − 𝑦|𝑛−𝛼

 

ℝ𝑛
𝑑𝑦, 0 < 𝛼 < 𝑛. 

is the classical fractional powers of the Laplacian ∆ onℝ𝑛. Let us recall that the 

semigroup{exp(−𝑡𝐿): 𝑡 > 0} acting on 𝐿𝑝(ℝ𝑛) is equicontinuous on𝐿𝑝(ℝ𝑛)if 
sup𝑡>0‖𝑒

−𝑡𝐿‖𝐿𝑝→𝐿𝑝 < ∞. Note that all the semigroups which we consider here are 

equicontinuous on all 𝐿𝑝(ℝ𝑛)for 1 ≤ 𝑝 ≤ ∞. We need the following Hardy-Littlewood-

Sobolev theorem. See [88]. 

Proposition (3.2.14)[65]: Suppose that 𝑒−𝑡𝐿is 𝑎 semigroup which is equicontinuous on 

𝐿1(ℝ𝑛)and𝐿∞(ℝ𝑛). Also suppose that 

𝑝𝑡(𝑥, 𝑥) ≤ 𝑡
−𝑛/2. 

Then for 0 < 𝛼 < 𝑛 , 

(i) for 1 < 𝑝 <
𝑛

𝛼
and

1

𝑞
=
1

𝑝
−
𝑛

𝛼
 , we have 

‖𝐿−𝛼/2𝑓‖
𝐿𝑞
≤ 𝑐𝑝,𝑞‖𝑓‖𝐿𝑝; 

(ii) 𝐿−𝛼/2is of weak-type (1, 𝑞), that is, for any 𝜆 > 0, we have 

|{𝑥: |𝐿−𝛼/2𝑓(𝑥)| > 𝜆}| ≤ 𝑐 (
‖𝑓‖𝐿1

𝜆
)

𝑞

, 

 where𝑞 = (1 −
𝛼

𝑛
)
−1
. 

 Let us consider the limiting case 𝑞 = ∞ in Proposition(3.2.14). It is wellknown that for 

every 𝑓 ∈ 𝐿−𝛼/2 (ℝ𝑛), either ℐ𝛼𝑓 ≡ ∞ or ℐ𝛼𝑓 ∈ 𝐵𝑀𝑂(ℝ
𝑛)with 

‖ℐ𝛼𝑓‖𝐵𝑀𝑂(ℝ𝑛) ≤ 𝑐‖𝑓‖
𝐿
−
𝛼
2
                                                  (83) 

see [85]. 

An example of ℐ𝛼𝑓 ≡ ∞is given by𝑓(𝑥) = |𝑥|−𝛼log−1|𝑥|𝜒{𝑥:|𝑥|≥2}. The following result 

generalizes estimates (83). 
Lemma (3.2.15)[65]: Assume that the semigroup 𝑒−𝑡𝐿has 𝑎 kernel 𝑝𝑡(𝑥, 𝑦) which 

satisfies upper bound(70). Then for0 < 𝛼 < 𝑛, the difference operator(𝐼 − 𝑒−𝑡𝐿)𝐿−𝛼/2 has 

an associated kernel𝐾𝛼,𝑡(𝑥, 𝑦)which satisfies 

|𝐾𝛼,𝑡(𝑥, 𝑦)|
𝑐

|𝑥 − 𝑦|𝑛−𝛼
𝑡

|𝑥 − 𝑦|2
for some constant 𝑐 > 0.                    (84) 

Proof: Note that 

𝐼 − 𝑒−𝑡𝐿 = ∫
𝑑

𝑑𝑟
𝑒−𝑟𝐿

𝑡

0

= −∫ 𝐿𝑒−𝑟𝐿
𝑡

0

𝑑𝑟. 

 Hence by (82)  
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(𝐼 − 𝑒−𝑡𝐿)𝐿−𝛼/2 =
1

Γ(𝛼/2)
∫ ∫ (𝜐

𝑑

𝑑𝑢
𝑒−𝜐𝐿)|

𝜐=𝑟+𝑠

∞

0

1

𝑟 + 𝑠

𝑑𝑠𝑑𝑟

𝑠−𝛼/2+1

𝑡

0

. 

By Lemma2.5 of [60], the kernel of the operator 𝜐
𝑑

𝑑𝜐
𝑒−𝜐𝐿has Gaussian upper bound(70). 

Hence, the operator(𝐼 − 𝑒−𝑡𝐿)𝐿−𝛼/2 has an associated kernel 𝐾𝛼,𝑡(𝑥, 𝑦)which satisfies 

|𝐾𝛼,𝑡(𝑥, 𝑦)| ≤ 𝑐∫ ∫
1

(𝑟 + 𝑠)𝑛/2
𝑒−𝑐1

|𝑥−𝑦|2

𝑟+𝑠

∞

0

1

𝑟 + 𝑠

𝑑𝑠𝑑𝑟

𝑠−𝛼/2+1

𝑡

0

 

≤ 𝑐∫ ∫
1

(𝑟 + 𝑠)𝑛/2
𝑒−𝑐1

|𝑥−𝑦|2

𝑟+𝑠

𝑟

0

1

𝑟 + 𝑠

𝑑𝑠𝑑𝑟

𝑠−𝛼/2+1

𝑡

0

 

+𝑐∫ ∫
1

(𝑟 + 𝑠)𝑛/2
𝑒−𝑐1

|𝑥−𝑦|2

𝑟+𝑠

∞

𝑟

1

𝑟 + 𝑠

𝑑𝑠𝑑𝑟

𝑠−𝛼/2+1

𝑡

0

 

= I + II. 
 Let us estimate term 𝐼. Note that0 < 𝑠 < 𝑟. We have 

I ≤ 𝑐∫ ∫ 𝑟−𝑛/2𝑒−𝑐2
|𝑥−𝑦|2

𝑟

𝑟

0

𝑑𝑠𝑑𝑟

𝑟𝑠−𝛼/2+1

𝑡

0

 

=
𝑐

|𝑥 − 𝑦|𝑛−𝛼
∫ 𝑟(𝛼−𝑛−2)𝑒−𝑐2𝑟

−1
𝑡|𝑥−𝑦|2

0

𝑑𝑟 ≤
𝑐

|𝑥 − 𝑦|𝑛−𝛼
𝑡

|𝑥 − 𝑦|2
, 

 where the last inequality follows from 𝑟(𝛼−𝑛−2)/2𝑒−𝑐𝑟
−1
≤ 𝑐for some positive constant 𝑐. 

On the other hand, using the condition 0 < 𝛼 < 𝑛 we obtain 

II ≤ 𝑐 ∫ ∫ 𝑠−
𝑛
2𝑒−𝑐2

|𝑥−𝑦|2

𝑠

∞

𝑟

𝑑𝑠𝑑𝑟

𝑠−𝛼/2+2

𝑡

0

≤
𝑐𝑡

|𝑥 − 𝑦|𝑛+2−𝛼
∫ 𝑠(𝛼−𝑛−4)/2𝑒−𝑐2𝑠

−1
𝑑𝑠

∞

0

 

≤
𝑐

|𝑥 − 𝑦|𝑛−𝛼
𝑡

|𝑥 − 𝑦|2
. 

Therefore, condition(84) is satisfied and the proof of Lemma(3.2.15) is complete.  

Theorem (3.2.16)[65]: Assume that the semigroup𝑒−𝑡𝐿 has 𝑎 kernel 𝑝𝑡(𝑥, 𝑦) which 

satisfies the upper bound(70). If 𝑓 ∈ 𝐿−𝛼/2 (ℝ𝑛) and 𝐿−𝛼/2𝑓 < ∞ almost everywhere, 

then 𝐿−𝛼/2 𝑓 ∈ 𝐵𝑀𝑂𝐿(ℝ
𝑛) with 

‖𝐿−𝛼/2 𝑓‖
𝐵𝑀𝑂𝐿(ℝ

𝑛)
≤ 𝑐‖𝑓‖𝑛/𝛼 

for 0 < 𝛼 < 𝑛, where the positive constant 𝑐 depends only on 𝛼 and 𝑛. 
Suppose that 𝑇 is 𝑎 bounded operator on𝐿2(Ω). We say that 𝑎 measurable 

function𝐾𝑇: Ω
2 → ℂis the (singular) kernel of 𝑇 if 

〈𝑇𝑓1, 𝑓2〉 = ∫ 𝑇𝑓1(𝑥)𝑓2̅(𝑥)𝑑𝑥
 

Ω

= ∫ ∫𝐾𝑇(𝑥, 𝑦)𝑓1(𝑦)𝑓2(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥𝑑𝑦.
 

Ω

 

Ω

                    (85) 

for all 𝑓1, 𝑓2 ∈ 𝐶𝑐(Ω)(for all𝑓1, 𝑓2 ∈ 𝐶𝑐(Ω)such thatsupp 𝑓1 ∩ supp 𝑓2 = ∅ respectively). 

In order to prove Theorem (3.2.16), we need the following estimate on the kernel 

𝐾𝛼,𝑡(𝑥, 𝑦)of the operator(𝐼 − 𝑒−𝑡𝐿)𝐿−𝛼/2(see also [98]). 

Proof: In virtue of the definition of 𝐵𝑀𝑂𝐿(ℝ
𝑛), it suffices to prove there exists 𝑎 constant 

𝐶 > 0 such that that for any ball 𝐵(𝑥, 𝑟) with radius 𝑟 centered at 𝑥 
1

|𝐵(𝑥, 𝑟)|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿−𝛼/2𝑓(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 ≤ 𝐶‖𝑓‖𝐿−𝑛/𝛼                     (86) 

for all 𝑓 ∈ 𝐿𝑛/𝛼 (ℝ𝑛). Set𝑓1(𝑦) = 𝑓(𝑦)if |𝑥 −  𝑦| ≤ 2𝑟 and𝑓1(𝑦) = 0 otherwise. Next, 

put𝑓2 = 𝑓 − 𝑓1. Note that 
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1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿−𝛼/2𝑓(𝑦)|𝑑𝑦
 

𝐵(𝑥,𝑟)

 

≤
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿−𝛼/2𝑓1(𝑦)|𝑑𝑦
 

𝐵(𝑥,𝑟)

+
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿−𝛼/2𝑓2(𝑦)|𝑑𝑦
 

𝐵(𝑥,𝑟)

 

= I + II, 
Where|𝐵| = |𝐵(𝑥, 𝑟)|. To estimate the first term note that, by Hölder’s inequality‖𝑓1‖𝐿𝑝 ≤
𝑐|𝐵(𝑥, 𝑟)|1/𝑝−𝛼/𝑛‖𝑓‖𝐿−𝑛/𝛼. for all 1 < 𝑝 < 𝑛/𝛼. Next, set1/𝑞 = 1/𝑝 − 𝛼/𝑛. By 

Proposition(3.2.14) 

I ≤
1

|𝐵|1/𝑞
‖(𝐼 − 𝑒−𝑟

2𝐿)𝐿−𝛼/2𝑓1‖𝐿𝑞 ≤ 𝑐
1

|𝐵|1/𝑞
‖𝐿−𝛼/2𝑓1‖𝐿𝑞  

≤ 𝑐
1

|𝐵|1/𝑞
‖𝑓1‖𝐿𝑝 ≤ 𝑐

1

|𝐵|1/𝑞
‖𝑓‖𝐿𝑛/𝛼 . 

 To estimate the second term note that if𝑦 ∈ 𝐵(𝑥, 𝑟) , then by Lemma(3.2.15) 

|(𝐼 − 𝑒−𝑟
2𝐿)𝐿−𝛼/2𝑓2(𝑦)| ≤ ∫ |𝐾𝛼,𝑟2(𝑥, 𝒵)||𝑓(𝒵)|𝑑𝒵

 

𝐵(𝑥,2𝑟)𝑐
 

≤ 𝑐∑∫
1

|𝑥 − 𝒵|𝑛−𝛼
𝑟2

|𝑥 − 𝒵|2

 

2𝑘𝑟≤|𝑥−𝒵|<2𝑘+1𝑟

∞

𝑘=1

|𝑓(𝒵)|𝑑𝒵 

≤ 𝑐∑22𝑘
1

|𝐵(𝑥, 𝑟2𝑘+1)|1−𝛼/𝑛

∞

𝑘=1

∫ |𝑓(𝒵)|𝑑𝒵
 

𝐵(𝑥,𝑟2𝑘+1)

 

≤ 𝑐∑22𝑘‖𝑓‖𝐿𝑛/𝛼

∞

𝑘=1

≤ 𝑐‖𝑓‖𝐿𝑛/𝛼 . 

Combining the above estimates, we obtain(86). 
 Remark(3.2.17)[65]: (i) Under the extra assumption that for each𝑡 > 0, the kernel 

𝑝𝑡(𝑥, 𝑦) of 𝑒−𝑡𝐿is 𝑎 Hölder continuous function in𝑥, it can be proved that for 𝑓 ∈
𝐿𝑛/𝛼 (ℝ𝑛), either 𝐿𝛼/2𝑓 ≡ ∞or 𝐿𝑛/𝛼𝑓 ∈ 𝐵𝑀𝑂𝐿  (ℝ

𝑛)with 

‖𝐿𝑛/𝛼𝑓‖
𝐵𝑀𝑂𝐿 (ℝ

𝑛)
‖𝑓‖𝐿𝑛/𝛼 . 

 (ii) We now give 𝑎 list of examples of operators 𝐿 satisfying the assumptions in 

Proposition (3.2.14) and Theorem(3.2.16). 
(𝛼) The operator ∆𝑁,∆𝐷 or ∆𝐷𝑁; 

(𝛽) Let 𝑉 ∈ 𝐿loc
1  (ℝ𝑛)be 𝑎 nonnegative function on ℝ𝑛(𝑛 ≥ 3). The Schrödinger operator 

with potential 𝑉 is defined by 

𝐿 =  −∆ + 𝑉 (𝑥) on ℝ𝑛 .                                                  (87) 
From the Feynman-Kac formula, it is well-known that the kernels 𝑝𝑡(𝑥, 𝑦) of the 

semigroup 𝑒−𝑡𝐿satisfy the estimate 

0 ≤ 𝑝𝑡(𝑥, 𝑦) ≤
1

(4𝜋𝑡)𝑛2
𝑒−
|𝑥−𝑦|2

4𝑡 .                                                            (88) 

However, unless 𝑉 satisfies additional conditions, the heat kernel can be 𝑎 discontinuous 

function of the space variables and the Hölder continuous estimates may fail to hold. See, 

for example,[11]. 
We note that the corresponding result in Theorem 1 of [99] is 𝑎 special case of 

Theorem(3.2.16). 
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(𝛾) Let𝐴 = (𝑎𝑖𝑗(𝑥))
1≤𝑖,𝑗≤𝑛

be an𝑛 × 𝑛 matrix with complex entries 𝑎𝑖𝑗 ∈ 𝐿
∞(ℝ𝑛) 

satisfying𝜆|𝜉|2 ≤ 𝑅𝑒∑𝑎𝑖𝑗(𝑥) 𝜉𝑖𝜉𝑗for all𝑥 ∈ ℝ𝑛,𝜉 = (𝜉1𝜉2, … , 𝜉𝑛) ∈ ℂ
𝑛 and some 𝜆 > 0. 

Let 𝑇 be the divergence form operator 

𝐿𝑓 ≡ −div(𝐴∇𝑓), 
which we interpret in the usual weak sense via 𝑎 sesquilinear form. It is known that 

Gaussian bound(70) on the heat kernel 𝑒−𝑡𝐿is true when 𝐴 has real entries, or when 𝑛 =
1, 2 in the case of complex entries. See, for example,[57]. 

The following example complements Theorems(3.2.12) and(3.2.16). It also 

provides 𝑎 convincing justification of introduction of the 𝐵𝑀𝑂𝐿 spaces. 

Example (3.2.18)[65]: Let ∆𝑁 be the Neumann Laplacian onℝ. Then, there exists 𝑎 

function 𝑓 ∈ 𝐿1/𝛼 (ℝ) such that∆𝑁
−𝛼/2

𝑓(𝑥) < ∞for almost every 𝑥 ∈ ℝ, ∆𝑁
−𝛼/2

𝑓 ∈

𝐵𝑀𝑂∆𝑁(ℝ)and 

‖∆𝑁
−𝛼/2

𝑓‖
𝐵𝑀𝑂∆𝑁(ℝ)

≤ 𝑐‖𝑓‖𝐿𝑛/𝛼 .                        (89) 

 However, ∆𝑁
−𝛼/2

𝑓 ∉ 𝐵𝑀𝑂(ℝ). 

Proof: For any0 < 𝛼 < 1, we let 

𝑓(𝑥) = −
1

𝑥𝛼 log 𝑥
𝜒{0<𝑥≤1/2}(𝑥).                                    (90) 

 Then 

∫|𝑓(𝑦)|1/𝛼
 

ℝ

𝑑𝑦 = ∫
1

𝑦(log 𝑦−1)1/𝛼

1/2

0

𝑑𝑦 = (1 − 𝛼)𝛼−1(log 2)1/𝛼−1 < ∞. 

 This proves that 𝑓 ∈ 𝐿1/𝛼 (ℝ). It can be verified thatℐ𝛼𝑓(𝑥) < ∞a.e.. Also, we have 

that∆𝑁
−𝛼/2

𝑓(𝑥) < ∞a.e.. Hence, 

(𝑎) ℐ𝛼𝑓(𝑥) ∈ 𝐵𝑀𝑂(ℝ)with‖ℐ𝛼𝑓‖𝐵𝑀𝑂(ℝ) ≤ 𝑐‖𝑓‖𝐿𝑛/𝛼 . See [31, page221]. 

(𝑏) By Theorem(3.2.16), we have that∆𝑁
−𝛼/2

𝑓 ∈ 𝐵𝑀𝑂∆𝑁(ℝ)with estimate(89). We now 

prove ∆𝑁
−𝛼/2

𝑓 ∉ 𝐵𝑀𝑂(ℝ). Denote by𝑘𝛼
𝑁(𝑥, 𝑦)the kernel of the fractional 

power∆𝑁
−𝛼/2

of∆𝑁. By(62) and(82) 

𝑘𝛼
𝑁(𝑥, 𝑦) =

1

𝛾(𝛼)
(

1

|𝑥 − 𝑦|1−𝛼
+

1

|𝑥 + 𝑦|1−𝛼
)𝐻(𝑥𝑦),                        (91) 

where 𝐻 is the Heaviside function (63). By(91) 

∆𝑁
−𝛼/2

𝑓(𝑥) = {
0             if𝑥 ≤ 0;
ℐ𝛼(𝑓𝑒)(𝑥)if𝑥 > 0,

                                    (92) 

where𝑓𝑒 ∈ 𝐿
1/𝛼(ℝ)is given by the formula𝑓𝑒(𝑥) = −

1

|𝑥|𝛼 log|𝑥|
𝜒{|𝑥|≤1/2}(𝑥). 

For any𝑘 ≥ 5, we denote𝑄𝑘 = [−1/𝑘, 1/𝑘]. Next if 0 < 𝑥 < 𝑦 < 1/2,then|𝑥 − 𝑦| < |𝑦|. 
Hence 

 

∆𝑁
−𝛼/2

𝑓(𝑥) =
1

𝛾(𝛼)
∫

1

|𝑥 − 𝑦|1−𝛼

1/2

−1/2

𝑓𝑒(𝑦)𝑑𝑦 

≥ −
1

𝛾(𝛼)
∫

1

|𝑥 − 𝑦|1−𝛼
1

𝑦𝛼 log 𝑦

1/2

𝑥

𝑑𝑦 
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≥ −
1

𝛾(𝛼)
∫

1

𝑦 log 𝑦

1/2

𝑥

𝑑𝑦 

≥
1

𝛾(𝛼)
(log (log

1

𝑥
) − log(log 2)), 

which yields 

𝑚𝑄𝑘(∆𝑁
−𝛼/2

𝑓) =
1

|𝑄𝑘|
∫ ∆𝑁

−𝛼/2
𝑓(𝑦)𝑑𝑦

 

𝑄𝑘

 

≥
1

2𝛾(𝛼)
∫ (log (log

1

𝑦
) − log(log 2))

1/𝑘

0

𝑑𝑦 

≥
1

2𝛾(𝛼)
(log(log 𝑘) − log(log 2)). 

Therefore, from(92) we obtain 
1

|𝑄𝑘|
∫ |∆𝑁

−𝛼/2
𝑓(𝑦) − 𝑚𝑄𝑘(∆𝑁

−𝛼/2
𝑓)| 𝑑𝑥

 

𝑄𝑘

 

=
𝑘

2
∫ |∆𝑁

−𝛼/2
𝑓(𝑥) − 𝑚𝑄𝑘(∆𝑁

−𝛼/2
𝑓)| 𝑑𝑥

1/𝑘 

0

+
𝑘

2
∫ |𝑚𝑄𝑘(∆𝑁

−𝛼/2
𝑓)| 𝑑𝑥

0 

−1/𝑘

 

≥
1

2
|𝑚𝑄𝑘(∆𝑁

−𝛼/2
𝑓)| 

≥
1

4𝛾(𝛼)
(log(log 𝑘) − log(log 2)). 

Note that the last term in the above inequality tends to ∞ as 𝑘 → ∞. Hence 

sup
𝑄

1

𝑄
∫ |∆𝑁

−𝛼/2
𝑓(𝑥) − 𝑚𝑄(∆𝑁

−𝛼/2
𝑓)| 𝑑𝑥

 

𝑄

= ∞, 

where the supremum is taken over all cubes 𝑄 of ℝ. Therefore ∆𝑁
−𝛼/2

𝑓 ∉ 𝐵𝑀𝑂(ℝ).  
We apply the technique of 𝐵𝑀𝑂𝐿 spaces to discuss optimal 𝐿𝑝 estimates for the 

imaginary powers of the operator 𝐿. We refer readers to [96], [100] for related results 

concerning imaginary powers of self-adjoint operators. 

Let us recall that if 𝐿 is 𝑎 self-adjoint positive definite operator on𝐿2(ℝ𝑛). Then 𝐿 admits 

the spectral resolution: 

𝐿 = ∫ 𝜆𝑑𝐸𝐿(𝜆)
∞

0

, 

where the𝐸𝐿(𝜆)are spectral projectors. For any bounded Borel function 𝐹: [0,∞) → ℂ, we 

define the operator 𝐹(𝐿) by the formula 

𝐹(𝐿) = ∫ 𝐹(𝜆)𝑑𝐸𝐿(𝜆)
∞

0

.                                    (93) 

In particular 

𝐿𝑖𝑠 = ∫ 𝐿𝑖𝑠𝑑𝐸(𝑡)
∞

0

. 

By spectral theory‖𝐿𝑖𝑠‖
𝐿2→𝐿2

= 1 for all 𝑠 ∈ ℝ. In the following theorem we obtain sharp 

estimates for the 𝐿∞ → 𝐵𝑀𝑂𝐿 norm of the operators 𝐿𝑖𝑠 . 
Theorem (3.2.19)[65]: Assume that the heat kernel 𝑝𝑡(𝑥, 𝑦) corresponding to the self-

adjoint operator 𝐿 satisfies upper bound(70). Then 



111 

‖𝐿𝑖𝑠𝑓‖
𝐵𝑀𝑂𝐿 (ℝ

𝑛)
≤ 𝑐(1 + |𝑠|)𝑛/2‖𝑓‖𝐿∞  

 for all𝑠 ∈ ℝ . 

Proof: It is enough to show that for any ball 𝐵(𝑥, 𝑟) with radius 𝑟 centered at𝑥, there 

exists 𝑎 constant 𝐶 > 0 such that 
1

|𝐵(𝑥, 𝑟)|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿𝑖𝑠𝑓(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 ≤ 𝐶(1 + |𝑠|)𝑛/2‖𝑓‖𝐿∞ .            (94) 

To prove(94), for any 𝑓 ∈ 𝐿∞(ℝ𝑛), we set 𝜃 = (1 + |𝑠|)𝑛/2, 𝑓1(𝑦) = 𝑓(𝑦) if |𝑥 − 𝑦| ≤
𝜃1𝑟 and 𝑓1(𝑦) = 0 otherwise. Next, we put 𝑓2 = 𝑓 − 𝑓1. Note that 

1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿𝑖𝑠𝑓(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 ≤
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿𝑖𝑠𝑓1(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 

+
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐿𝑖𝑠𝑓2(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 

I + II, 
where|𝐵| = |𝐵(𝑥, 𝑟)|. To estimate the term 𝐼 we note that, by Hölder’s inequality 

‖𝑓1‖𝐿2 ≤ |𝐵(𝑥, 𝜃
1𝑟)|1/2‖𝑓‖𝐿∞  

≤
|𝐵(𝑥, 𝑟)|

1
2

𝜃
𝑛
2

‖𝑓‖𝐿∞ = |𝐵|
1/2(1 + |𝑠|)𝑛/2‖𝑓‖𝐿∞ . 

Then 

I ≤ |𝐵|1/2‖(𝐼 − 𝑒−𝑟
2𝐿)𝐿𝑖𝑠𝑓1‖𝐿2 ≤ c|𝐵|

1/2‖𝐿𝑖𝑠𝑓1‖𝐿2  

≤ 𝑐|𝐵|
1
2‖𝑓1‖𝐿2 ≤ 𝑐(1 + |𝑠|)

𝑛/2‖𝑓‖𝐿∞ . 
To estimate the term 𝐼𝐼 we note that if 𝑦 ∈ 𝐵(𝑥, 𝑟) , then 

|(𝐼 − 𝑒−𝑟
2𝐿)𝐿𝑖𝑠𝑓2(𝑦)| ≤ ∫ |𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)||𝑓(𝒵)|𝑑𝒵

 

𝐵(𝑥,𝜃−1𝑟)𝑐
 

≤ ‖𝑓‖𝐿∞ sup
𝑥∈Ω,𝑟>0

∫ |𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)||𝑓(𝒵)|𝑑𝒵
 

𝐵(𝑥,𝜃−1𝑟)𝑐
, 

  where 𝐾𝑖𝑠,𝑟2(𝑦, 𝒵) is the kernel of the operator(𝐼 − 𝑒−𝑟
2𝐿)𝐿𝑖𝑠. Hence the proof of 

Theorem (3.2.19) reduces to the following Lemma.  

Lemma (3.2.20)[65]: Assume that 𝐿 is 𝑎 self-adjoint operator and its heat kernel 𝑝𝑡(𝑥, 𝑦) 
satisfies the Gaussian bound(70). Then the associated kernel 𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)of the 

operator(𝐼 − 𝑒−𝑟
2𝐿)𝐿𝑖𝑠 satisfies 

∫ |𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)|𝑑𝒵
 

𝐵(𝑥,𝜃−1𝑟)𝑐
≤ 𝑐(1 + |𝑠|)𝑛/2 

 for all 𝑠 ∈ ℝ and 𝑟 > 0.  
The proof of Lemma(3.2.20) is 𝑎 minor modification of the proof of estimates(68) 

of [104].  
Theorem (3.2.19) applied to the standard Laplace operator gives the following 

estimates. 

Corollary (3.2.21)[65]: If ∆ is the standard Laplace operator acting onℝ𝑛 then 

‖∆𝑖𝑠𝑓‖
𝐵𝑀𝑂 (ℝ𝑛)

≤ 𝑐(1 + |𝑠|)𝑛/2‖𝑓‖𝐿∞                         (95) 

for all𝑠 ∈ ℝ. 
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Proof: Corollary(3.2.21) is 𝑎 straightforward consequence of Theorem(3.2.19) and the 

equivalence of the classical 𝐵𝑀𝑂 space and𝐵𝑀𝑂∆. 

Remark(3.2.22)[65]: For the standard Laplace operator one can explicitly compute the 

kernel |𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)|and check that 

∫ |𝐾𝑖𝑠,𝑟2(𝑦, 𝒵)|𝑑𝒵
 

𝐵(𝑥,𝜃−1𝑟)𝑐
≥ 𝑐(1 + |𝑠|)𝑛/2 log(1 + |𝑠|). 

See[104]. Hence one has to replace 𝐵(𝑥, 2𝑟) by𝐵(𝑥, 𝜃−1𝑟)𝑐to obtain estimates without 

the additional logarithmic term. As in[104] (Theorem1) one can show that the norm 

of‖∆𝑖𝑠𝑓‖
𝐿∞→𝐵𝑀𝑂 (ℝ𝑛)

≥ 𝑐(1 + |𝑠|)𝑛/2. Hence the estimates in Theorem (3.2.19) and 

Corollary(3.2.21) are sharp. Even for the Laplace operator, our estimate(95) is stronger 

than any other known estimates of 𝐿∞ → 𝐵𝑀𝑂 norm of the imaginary powers of the 

Laplace operator. 

Theorem 2 of[104] says that if 𝐿 satisfies assumption of Theorem(3.2.19) then the 

following estimates of the weak type(1,1) norm of the imaginary powers of𝐿 holds 

‖𝐿𝑖𝑠‖
𝐿1→𝐿1,∞

≤ 𝑐(1 + |𝑠|)𝑛/2                                    (96) 

Note, however, that the week type(1,1) norm is not subadditive so despite its name is not 

𝑎 norm. Whereas‖∙‖𝐿∞→𝐵𝑀𝑂𝐿, the norm of linear operators form𝐿∞to 𝐵𝑀𝑂𝐿, is 𝑎 proper 

norm. This difference is crucial for the results which we discuss next. 

Suppose that𝐹:ℝ → ℂ. Let us recall that the Mellin transform of the function 𝐹 is defined 

by 

𝑚(𝑢) =
1

2𝜋
∫ 𝐹(𝜆)𝜆−1−𝑖𝑢𝑑𝜆
∞

0

, 𝑢 ∈ ℝ. 

Moreover the inverse transform is given by the following formula 

𝐹(𝜆) = ∫𝑚(𝑢)𝜆𝑖𝑢𝑑𝑢,
 

ℝ

 𝜆 ∈ [0,∞). 

 Next we define the maximal operator 𝐹∗(𝐿) by the formula 

𝐹∗(𝐿)𝑓(𝐿) = sup
𝑡>0
|𝐹(𝑡𝐿)𝑓(𝑥)|, 

where 𝑓 ∈ 𝐿𝑝 (Ω) for some1 ≤  𝑝 ≤ ∞. 
Corollary (3.2.23)[65]: Assume that 𝐿 is 𝑎 self-adjoint operator acting on 𝐿2 (ℝ𝑛) and 

that the heat kernel 𝑝𝑡(𝑥, 𝑦) of the operator 𝐿 satisfies upper bound(70). Suppose also 

that𝐹:ℝ → ℂis 𝑎 bounded Borel function such that 

∫|𝑚(𝑢)|(1 + |𝑠|)𝑛/2𝑑𝑢
 

ℝ

= 𝐶𝐹,𝑛 ≤ ∞ 

where 𝑚 is the Mellin transform of 𝐹. Then𝐹(𝐿) and𝐹∗(𝐿) are bounded operators 

from𝐿∞to𝐵𝑀𝑂𝐿and 

‖∙‖𝐿∞→𝐵𝑀𝑂𝐿‖∙‖𝐿∞→𝐵𝑀𝑂𝐿 ≤ 𝑐𝐶𝐹,𝑛. 

Proof:  Note that 

𝐹(𝑡𝐿) = ∫ 𝐹(𝑡𝜆)𝑑𝐸𝐿(𝜆)
∞

0

∫ ∫𝑚(𝑢)(𝑡𝜆)𝑖𝑢
 

ℝ

𝑑𝑢𝑑𝐸𝐿(𝜆)
∞

0

 

∫ ∫ 𝑚(𝑢)(𝑡𝜆)𝑖𝑢
∞ 

0

𝑑𝐸𝐿(𝜆)𝑑𝑢
 

ℝ

= ∫𝑚(𝑢)𝑡𝑖𝑢𝐿𝑖𝑢
 

ℝ

𝑑𝑢. 

 Hence 



113 

sup
𝑡>0
|𝐹(𝑡𝐿)𝑓(𝑥)| ≤ ∫ |𝑚(𝑢)||𝐿𝑖𝑢𝑓(𝑥)|

 

ℝ

𝑑𝑢 

 And 

‖𝐹∗(𝐿)𝑓‖𝐵𝑀𝑂𝐿 ≤ ∫|𝑚(𝑢)|‖𝑓‖𝐿∞‖𝐿
𝑖𝑢‖

𝐿∞→𝐵𝑀𝑂𝐿

 

ℝ

𝑑𝑢 

≤ 𝑐‖𝑓‖𝐿∞∫ |𝑚(𝑢)|(1 + |𝑢|)
𝑛/2

 

ℝ

𝑑𝑢. 

The inequality‖𝐹(𝐿)‖𝐿∞→𝐵𝑀𝑂𝐿 ≤ ‖𝐹
∗(𝐿)‖𝐿∞→𝐵𝑀𝑂𝐿is an obvious conse-quence of the 

definition of𝐹∗(𝐿).  
We discuss an application of 𝐵𝑀𝑂𝐿(Ω) technique to the theory of Hörmander 

spectral multipliers. If 𝐹(𝐿) is the operator defined by (93) then by 𝐾𝐹(𝐿)we denote the 

kernel associated with𝐹(𝐿). See(84) of [70]. 

 Theorem (3.2.24)[65]: Suppose that‖𝐹(𝐿)‖𝐿∞ ≤ 𝐶1, and that 

sup
𝑟>0

sup
𝑦∈Ω

∫ |𝐾
𝐹(𝐿)(𝐼−𝑒−𝑟

2𝐿)
(𝑥, 𝑦)| 𝑑𝑥

 

𝐵(𝑥,𝑟)𝑐
≤ 𝐶1.                        (97) 

Then 

‖𝐹(𝐿)‖𝐿∞→𝐵𝑀𝑂𝐿 ≤ 𝑐𝐶1. 

Proof: We note again that it is enough to show that for any ball 𝐵(𝑥, 𝑟) with radius 𝑟 
centered at𝑥, there exists 𝑎 constant 𝐶 > 0 such that 

1

|𝐵(𝑥, 𝑟)|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐹(𝐿)𝑓(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 ≤ 𝑐𝐶1‖𝑓‖𝐿∞ .            (98) 

To prove(98) for any 𝑓 ∈ 𝐿∞(ℝ𝑛)we set𝑓1(𝑦) = 𝑓(𝑦)if|𝑥 − 𝑦| ≤ 2𝑟 and𝑓1(𝑦) = 0 

otherwise. Next, we put𝑓2 = 𝑓 − 𝑓1. Note that 
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐹(𝐿)(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 ≤ 

≤
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐹(𝐿)𝑓1(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 

+
1

|𝐵|
∫ |(𝐼 − 𝑒−𝑟

2𝐿)𝐹(𝐿)𝑓2(𝑦)|
 

𝐵(𝑥,𝑟)

𝑑𝑦 

= I + II, 
where|𝐵| = |𝐵(𝑥, 𝑟)|. To estimate the term 𝐼 we note that, by Hölder’s inequality 

‖𝑓1‖𝐿2 ≤ |𝐵(𝑥, 2𝑟)|
1/2‖𝑓‖𝐿∞ ≤ 𝑐|𝐵(𝑥, 2𝑟)|

1/2‖𝑓‖𝐿∞ . 
 Then 

1 ≤ |𝐵|−1/2‖(𝐼 − 𝑒−𝑟
2𝐿)𝐹(𝐿)𝑓1‖𝐿2  

≤ 𝑐|𝐵|−1/2‖𝐹(𝐿)𝑓1‖𝐿2  

≤ 𝑐|𝐵|−1/2𝐶1‖𝑓1‖𝐿2 
≤ 𝑐𝐶1‖𝑓1‖𝐿∞ . 

To estimate the term 𝐼𝐼 we note that if𝑦 ∈ 𝐵(𝑥, 𝑟), then 

|(𝐼 − 𝑒−𝑟
2𝐿)𝐹(𝐿)𝑓2(𝑦)| ≤ ∫ |𝐾

(𝐼−𝑒−𝑟
2𝐿)𝐹(𝐿)

(𝑦, 𝒵)| |𝑓(𝒵)|𝑑𝒵
 

𝐵(𝑦,𝑟)𝑐

≤ ‖𝑓‖𝐿∞ sup
𝑥∈Ω,r>0

∫ |𝐾
(𝐼−𝑒−𝑟

2𝐿)𝐹(𝐿)
(𝑦, 𝒵)|

 

𝐵(𝑥,𝑟)𝑐
𝑑𝒵 ≤ 𝑐𝐶1‖𝑓1‖𝐿∞  
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  In the standard theory of Hörmander spectral multipliers one usually begins with proving 

weak type (1,1) estimates for 𝑎 spectral multiplier𝐹(𝐿). Next 𝐹(𝐿) is bounded on𝐿2 by 

the spectral theorem so continuity of the operator 𝐹(𝐿) on𝐿𝑝  spaces for 1 < 𝑝 < ∞ 

follows from the Marcinkiewicz interpolation theorem. One can use Theorem(3.2.24) and 

Proposition(3.2.3) to obtain an alternative proof of boundedness of 𝐹(𝐿) on an𝐿𝑝  space 

for1 < 𝑝 < ∞. Of course continuity of 𝐹(𝐿) as an operator from𝐿∞to𝐵𝑀𝑂𝐿 is of 

independent interest even if we already know that 𝐹(𝐿) is of weak type(1,1). 
The Hörmander type spectral multipliers is 𝑎 very broad subject. For example such 

multipliers were studied in [92], [94], [97], [101], [102], [103]. One can use 

Theorem(3.2.24) to show that all spectral multipliers of weak type(1,1) which are 

discussed in [92], [94], [97], [101], [102], [103] are also bounded from𝐿∞to𝐵𝑀𝑂𝐿. As an 

example we discuss the following𝐵𝑀𝑂𝐿  versions of Theorem3.1 of[97].Let us recall that 

if 𝐹:ℝ → ℂ then 

‖𝐹‖𝑊𝑠
𝑝 = ‖(𝐼 + ∆)𝑛/2𝐹‖

𝐿𝑝(ℝ)
. 

Theorem (3.2.25)[65]: Suppose that 𝐿 is 𝑎 self-adjoint operator acting on𝐿2(Ω), Ω ⊂ ℝ𝑛 

and that the heat kernel 𝑝𝑡(𝑥, 𝑦)of 𝐿 satisfies the Gaussian bound(19) and that 𝜂 ∈
𝐶𝑐
∞(ℝ+). Then for every 𝑠 > 𝑛/ 2 and for all Borel bounded function 𝐹 such 

thatsup𝑡>0‖𝜂𝛿𝑡𝐹‖𝑊𝑠∞ < ∞the operator 𝐹(𝐿) is bounded on 𝐿𝑝(Ω) for all 1 < 𝑝 < ∞. 

Moreover 

‖𝐹(𝐿)‖𝐿∞→𝐵𝑀𝑂𝐿 ≤ 𝐶𝑠 (sup
𝑡>0
‖𝜂𝛿𝑡𝐹‖𝑊𝑠∞) 𝑓𝑜𝑟 𝑎𝑙𝑙𝑠 >

𝑛

2
.                              (99) 

 Proof: Note that by[97], we have 

sup
𝑟>0
sup
𝑦∈Ω

∫ |𝐾
𝐹(𝐿)(𝐼−𝑒−𝑟

2𝐿)
(𝑥, 𝑦)| 𝑑𝑥

 

𝐵(𝑥,𝑟)𝑐
≤ 𝐶𝑠 (sup

𝑡>0
‖𝜂𝛿𝑡𝐹‖𝑊𝑠∞). 

Hence Theorem (3.2.25) is 𝑎 straightforward consequence of Theorem (3.2.24).  
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Chapter 4 

Upper Bound and Higher Order Journé Commutators 

 

The result follows from a new proof of boundedness of iterated commutators in 

terms of the BMO norm of their symbol functions, using Hytönen’s representation 

theorem of Calder´on– Zygmund operators as averages of dyadic shifts. The tensor 

products of Riesz transforms are a representative testing class for Journé operators. 

Previous results in this direction do not apply to tensor products and only to Journé 

operators which can be reduced to Calderón–Zygmund operators. Upper norm estimates of 

Journé commutators are new even in the case of no iterations. Lower norm estimates for 

iterated commutators only existed when no tensor products were present. In the case of 

one dimension, lower estimates were known for products of two Hilbert transforms, and 

without iterations. New methods using Journé operators are developed to obtain these 

lower norm estimates in the multi-parameter real variable setting. 

Section (4.1): Multi-Parameter Iterated Commutators 

In [111] the product BMO space on ℝ𝑑1⊗···⊗ ℝ𝑑𝑡 was characterized by the multi-

parameter iterated commutators of Riesz transforms. This extended to the product setting 

the classical results of R. R. Coifman, R. Rochberg, and G. Weiss [3], a characterization of 

classical BMO in terms of boundedness on 𝐿2(ℝ𝑑)of the commutator of a singular integral 

operator with 𝑎 multiplication operator, which by duality also implies 𝑎 weak factorization 

result of 𝐻1(ℝ𝑑). 
In the multi-parameter setting, let 𝑀𝑏 be the operator of pointwise multiplication by 𝑏 ∈

𝐵𝑀𝑂prod(ℝ
�⃗�). Let 𝑇𝑖 be the Calder´on–Zygmund operators on ℝ𝑑𝑖. One seeks to 

characterize product BMO in terms of commutators in the sense that  

‖𝑏‖𝐵𝑀𝑂prod ≤ ‖[… [[𝑀𝑏, 𝑇1]𝑇2] … , 𝑇𝑡]‖𝐿2→𝐿2 ≲
‖𝑏‖𝐵𝑀𝑂prod , 

where the first and second inequality will be referred to as lower bound and upper bound, 

respectively. 

In the case of Hilbert transform, the above result in bi-parameter setting was proved by 

S.H. Ferguson and M. T. Lacey in [1], where the upper bound was first shown by S. H. 

Ferguson and C. Sadosky [5]. 

M. Lacey and E. Terwilleger [113] then extended the result to the multi-parameter 

setting. The Riesz transform result was proved by M. T. Lacey, S. Petermichl, 𝐽. 𝐶. Pipher, 

and B. D. Wick in [111], where they obtained 𝑎 more general upper bound result for any 

Calder´on– Zygmund operators of convolution type with high degree of smoothness. Later 

on in[112]they simplified the proof of the upper bound for Riesz transforms by means of 

dyadic shifts. S. Petermichl [108] proved the lower bound for 𝑎 larger class of Calder´on– 

Zygmund operators satisfying certain criteria. 

We show the upper bound for any given collection of Calder´on–Zygmund operators. As 𝑎 

corollary, we prove new characterizations of product BMO in terms of commutators of 

Calder´on–Zygmund operators. 

The main theorem is the following: 

Theorem (4.1.1)[106]: Let 𝑏 ∈ 𝐵𝑀𝑂prod(ℝ
�⃗�) and (𝑇𝑖)1≤𝑖≤𝑡 be a collection of Calder´on–

Zygmund operators, with each 𝑇𝑖 acting on parameter 𝑖 of ℝ�⃗� = ℝ𝑑1 ⊗···⊗ ℝ𝑑𝑡 . Then, 

‖[… [[𝑀𝑏 , 𝑇1]𝑇2]… , 𝑇𝑡]‖𝐿2→𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂prod , 
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where 𝐶 depends only on 𝑑 and ∏ ‖𝑇𝑖‖𝐶𝑍
𝑡
𝑖=1 . 

One of the interesting results implied directly by the theorem is that 𝑎 perturbation of 𝑎 

collection of operators characterizing product BMO still characterizes product BMO. In 

other words, characterizing families such as the Riesz transforms are stable under small 

perturbations in the sense that the Calder´on–Zygmund operator norm of the perturbation 

terms are small. We organize this observation into the following corollary. 

Corollary (4.1.2)[106]: Let (𝑇𝑖,𝑠𝑖)1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖
be a family of Calder´on– Zygmund 

operators characterizing the space 𝐵𝑀𝑂prod(ℝ
�⃗�), that is,∃𝐶1, 𝐶2 > 0, such that  

𝐶1‖𝑏‖𝐵𝑀𝑂prod ≤ sup
1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖

‖[… [[𝑀𝑏, 𝑇1,𝑠1]𝑇2,𝑠2]… , 𝑇𝑡,𝑠𝑡]‖𝐿2→𝐿2
≤ 𝐶2‖𝑏‖𝐵𝑀𝑂prod . 

Then, ∃𝜖 > 0 such that for any family of Calder´on–Zygmund operators (𝑇𝑖,𝑠𝑖
′ )

1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖
 

satisfying ‖𝑇𝑖,𝑠𝑖
′ ‖

𝐶𝑍
≤ 𝜖, the family (𝑇𝑖,𝑠𝑖 + 𝑇𝑖,𝑠𝑖

′ )
1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖

still characterizes 

𝐵𝑀𝑂prod (ℝ
�⃗�). 

In particular, since Calder´on–Zygmund operators form 𝑎 linear space, whose norm can be 

made arbitrarily small by multiplying 𝑎 small constant, it means that once we have 𝑎 

collection of operators characterizing BMO, we automatically obtain infinitely many 

collections of operators which also characterize BMO. More specifically, 

let(𝑇𝑖,𝑠𝑖)1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖
be 𝑎 family as in the corollary above, for any arbitrary family of 

Calder´on–Zygmund operators(𝑇𝑖,𝑠𝑖
′ )

1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖
, there exist 𝜖1, . . . , 𝜖𝑡 > 0 such that for 

any 0 < 𝑐𝑖 < 𝜖𝑖, 1 ≤ 𝑖 ≤ 𝑡, the family (𝑇𝑖,𝑠𝑖 + 𝑐𝑖𝑇𝑖,𝑠𝑖
′ )

1≤𝑖≤𝑡,1≤𝑠𝑖≤𝑛𝑖
 characterizes 

𝐵𝑀𝑂prod (ℝ
�⃗�). 

We proof of the main theorem is the representation theorem by 𝑇. 𝑃. Hytönen[109], 
which states that any Calder´on–Zygmund operator can be represented as an average of 

dyadic shift operators with respect to 𝑎 probabilistic measure on 𝑎 collection of dyadic 

grids. While the earliest version of this theorem appeared in[110], here we choose to 

apply 𝑎 slightly different one given in[109]. In our proof, we will reduce the problem to 

the upper bound for commutators with dyadic shifts. This is the first use of Hytönen’s 

representation theorem to commutator theory. The novelty of this approach to the upper 

bound is twofold. First, the commutators with dyadic shifts which have infinite complexity 

in our case, are carefully studied and effectively reduced to paraproducts and another class 

of bounded operators. In contrast to typical methods dealing with multi-parameter theory, 

this allows our argument to be iterated. Second, new paraproducts and 𝑎 similar type of 

operators are introduced, and this is where the delicate estimates in product theory are 

required. 

We recall several preliminary results on dyadic shifts, representation theorem, and 

multiparameter paraproducts. A full proof of the main theorem in its one-parameter case is 

introduced, while the proof of the main theorem in arbitrarily many parameters is 

presented. 
We give some essential background for the proof of the main theorem. 

Recall that while the standard dyadic grid is defined as 

𝔇0 ≔ {2−𝑘([0,1)
𝑑
+𝑚): 𝑘 ∈ ℤ,𝑚ℤ𝑑}, 
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for any parameter𝜔(𝜔𝑗)𝑗∈ℤ ∈
({0,1}𝑑)ℤ, one can define an associated shifted dyadic grid 

as 

𝔇𝜔 ≔ {𝐼+̇𝜔: 𝐼 ∈ 𝔇0}, 
 Where 

𝐼+̇𝜔 ≔ 𝐼 + ∑ 2−𝑗𝜔𝑗
𝑗:2−𝑗<ℓ(𝐼)

. 

 For 𝑎 fixed shifted grid 𝔇𝜔 and 𝑖, 𝑗 ∈ ℤ+, 𝑎 dyadic shift operator 𝑆𝜔
𝑖𝑗

is defined to be 

bounded on𝐿2with operator norm less than1. Specifically, 

𝑆𝜔
𝑖𝑗
𝑓 ≔ ∑ ∑ ∑ 𝑎𝐼𝐽𝐾〈𝑓, ℎ𝐼〉ℎ𝐽

𝐽∈𝔇𝜔,𝐽⊂𝐾

ℓ(𝐽)=2−𝑗ℓ(𝐾)

𝐼∈𝔇𝜔,𝐼⊂𝐾

ℓ(𝐼)=2−𝑗ℓ(𝐾)
𝐾∈𝔇𝜔

 

=:∑ ∑ 𝑎𝐼𝐽𝐾〈𝑓, ℎ𝐼〉ℎ𝐽

(𝑖,𝑗)

𝐼,𝐽⊂𝐾𝐾

, 

with|𝑎𝐼𝐽𝐾| ≤ |𝐼|
1/2|𝐽|1/2/|𝐾|.𝑆𝜔

𝑖𝑗
is called cancellative if all the Haar functions in the 

definition are cancellative, otherwise, it is called non- cancellative. 

Recall that in one dimension, any dyadic interval I is associated with 𝑎 cancellative Haar 

functionℎ𝐼
0 = |𝐼|−1/2(𝜒𝐼𝑙 − 𝜒𝐼𝑟)and 𝑎 noncancellative oneℎ𝐼

1 = |𝐼|−1/2𝜒𝐼. While in 𝑑 

dimensions, each cube𝐼 =  𝐼1 ×···× 𝐼𝑑 is associated with2𝑑Haar functions: 

ℎ𝐼
𝜖(𝑥) = ℎ𝐼1×…×𝐼𝑑

(𝜖1,…,𝜖𝑑)(𝑥1, … , 𝑥𝑑) =∏ℎ𝐼𝑖
𝜖𝑖(𝑥𝑖)

𝑑

𝑖=1

, 𝜖 ∈ {0,1}𝑑, 

whereℎ𝐼
1is called noncancellative, while all the other2𝑑 − 1Haar functions ℎ𝐼

𝜖 for  𝜖 ∈
{0,1}𝑑\{1}are cancellative. Note that all the cancellative Haar functions for 𝑎 fixed grid 

form an orthonormal basis of 𝐿2(ℝ𝑑). We usually suppress the parameter𝜖to abbreviate 

the notation. 

We now introduce T. P. Hytönen’s representation theorem, 𝑎 key tool in our proof. 

Interested readers can find its proof and 𝑎 more detailed discussion in[109] and[110]. The 

operator 𝑇 mentioned in the following will denote 𝑎 Calder´on–Zygmund operator 

associated with 𝑎 𝛿-standard kernel K. T. P. Hytönen[109] proved the following theorem. 

Theorem (4.1.3)[106]: Let 𝑇 be 𝑎 Calder´on–Zygmund operator, then it has an expansion, 

say for𝑓, 𝑔 ∈  𝐶0
∞(ℝ𝑑), 

〈𝑔, 𝑇𝑓〉 = 𝑐. ‖𝑇‖𝐶𝑍. 𝔼𝜔 ∑ 2−max(𝑖,𝑗)𝛿/2〈𝑔, 𝑆𝜔
𝑖𝑗
𝑓〉

∞

𝑖,𝑗=0

, 

where 𝑐 is 𝑎 dimensional constant and 𝑆𝜔
𝑖𝑗

is 𝑎 dyadic shift of parameter(𝑖, 𝑗) on the dyadic 

grid 𝒟𝜔; all of them except possibly 𝑆𝜔
00are cancellative. 

According to the proof of Theorem(4.1.3), in the representation of any 𝑇, only 𝑆𝜔
00 may be 

noncancellative, and if this is the case, only one of {ℎ𝐼}, {ℎ𝐽} in its definition is 

noncancellative, i.e. 𝑆𝜔
00 is 𝑎 paraproduct with some BMO symbol a satisfying ‖𝑎‖𝐵𝑀𝑂 ≤

1 and 𝑎𝐼 = 〈𝑎, ℎ𝐼〉|𝐼|
−1/2,∀ 𝐼 ∈ 𝒟. 

Recall that 𝑎 multi-parameter paraproduct associated with function 𝑏 can be viewed 

as 𝑎 bilinear operator which is defined as 
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𝐵0(𝑏, 𝑓) = ∑ 𝛽𝑅
𝑅∈𝔇

�⃗⃗⃗�

〈𝑏, ℎ𝑅
𝜖1〉〈𝑓, ℎ𝑅

𝜖2〉ℎ𝑅
𝜖3|𝑅|−

1
2, 

where 𝜖𝑗 ∈ {0,1}
�⃗�, 𝔇�⃗�denotes the tensor product of dyadic grids, and{𝛽𝑅}𝑅is 𝑎 sequence 

satisfying|𝛽𝑅| ≤ 1. Note that ℎ𝑅
𝜖𝑗

is cancellative if and only if𝜖𝑗 ≠ 1⃗⃗. According to 

Journ´e[16] and later on improved by𝐶. Muscalu, 𝐽. Pipher, T. Tao, and C. Thiele [18], 

[12], one has the following boundedness result. 

Theorem (4.1.4)[106]: Let 𝑑 = (𝑑1, … , 𝑑𝑡) and 𝜖𝑗(𝜖𝑗,1, … , 𝜖𝑗,𝑡). If𝜖𝑗 ≠ 1⃗⃗and∀ 1 ≤ 𝑠 ≤ 𝑡, 

there is at most one of 𝑗 = 2,3 such that 𝜖𝑗,𝑠 = 1⃗⃗, then the operator𝐵0satisfies 

𝐵0: 𝐵𝑀𝑂prod (ℝ
�⃗�) × 𝐿2 (ℝ�⃗�) → 𝐿2 (ℝ�⃗�). 

We present a detailed proof of the main theorem in the one-parameter setting, which 

will later on be utilized to prove the multi-parameter result. As an essential part of the 

proof, delicate estimates of new paraproducts and 𝑎 new operator 𝑃 will be introduced. 

Given 𝑎 BMO function 𝑏 and 𝑎 Calder´on–Zygmund operator T, one could represent the 

commutator[𝑏, 𝑇] as an average of[𝑏, 𝑆𝜔
𝑖𝑗
] due to Theorem (4.1.3). Then, inorder to prove 

the upper bound inequality, it suffices to prove that for any 𝑓 ∈  𝐶0
∞(ℝ𝑑), 

‖∑ 2−max(𝑖,𝑗)𝛿/2
∞

𝑖,𝑗=0

[𝑏, 𝑆𝜔
𝑖𝑗
]‖

𝐿2

≲ ‖𝑏‖𝐵𝑀𝑂‖𝑓‖𝐿2                      (1) 

uniformly in 𝜔. In the following we will write𝑆𝑖𝑗for short as the argument doesn’t depend 

on 𝜔 explicitly. 

As 𝑎 crucial ingredient in our argument, two kinds of paraproduct-like operators need to 

be introduced. 

The first one is the bilinear operator𝐵𝑘which could be viewed as 𝑎 generalized dyadic 

paraproduct: 

𝐵𝑘(𝑏, 𝑓) ≔∑𝛽𝐼〈𝑏, ℎ𝐼(𝑘)〉〈𝑏, ℎ𝐼〉ℎ𝐼|𝐼
(𝑘)|

−
1
2

𝐼

, 

where{𝛽𝐼}𝐼is 𝑎 sequence satisfying|𝛽𝐼| ≤ 1, 𝑘 ≥ 0 is an arbitrary integer, and𝐼(𝑘) denotes 

the 𝑘-th dyadic ancestor of𝐼. Note that when 𝑘 = 0, this is exactly the classical 

paraproduct that we have introduced at the end of the previous, whose boundedness is 

stated in Theorem (4.1.4). Lemma (4.1.6) below shows that such boundedness holds 

uniformly for any 𝐵𝑘 . 

The second one is the trilinear operator 𝑃 defined as 

𝑃(𝑏, 𝑎, 𝑓)∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼〉|𝐼|
−1

𝐼

∑〈𝑎, ℎ𝐽〉ℎ𝐽
𝐽:𝐽⊊𝐼

, 

which will be proved to be bounded on𝐵𝑀𝑂 × 𝐵𝑀𝑂 × 𝐿2 → 𝐿2 in Lemma(4.1.7). 
The main theorem we will prove is the following: 

Theorem (4.1.5)[106]: For cancellative dyadic shift 𝑆𝑖𝑗, [𝑏, 𝑆𝑖𝑗]𝑓 can be represented as 𝑎 

finite linear combination of the following terms: 

𝑆𝑖𝑗(𝐵𝑘(𝑏, 𝑓)), 𝐵𝑘(𝑏, 𝑆
𝑖𝑗𝑓),                                                (2) 

where the integer 𝑘 is such that 0 ≤ 𝑘 ≤ max(𝑖, 𝑗)and the total number of terms is 

bounded by 𝐶(1 + max(𝑖, 𝑗)) for some universal dimensional constant 𝐶. 
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For noncancellative dyadic shift 𝑆00(dyadic paraproduct) with symbol 𝑎, [𝑏, 𝑆00]𝑓 can be 

represented as 𝑎 finite linear combination of the following terms: 

𝑆00(𝐵0(𝑏, 𝑓)), 𝐵0(𝑏, 𝑆
00𝑓), 𝑃(𝑏, 𝑎, 𝑓), 𝑃∗(𝑏, 𝑎, 𝑓),                (3) 

where𝑃∗is understood as the adjoint of 𝑃 with b and 𝑎 fixed, and the total number of terms 

is bounded by 𝑎 universal dimensional constant. 

Lemma (4.1.6)[106]: Given 𝑏 ∈ 𝐵𝑀𝑂(ℝ𝑑) and 𝑘 ≥ 0, let 

𝐵𝑘(𝑏, 𝑓) ≔∑𝛽𝐼〈𝑏, ℎ𝐼(𝑘)〉〈𝑏, ℎ𝐼〉ℎ𝐼|𝐼
(𝑘)|

−
1
2

𝐼

, 

where all the Haar functions are cancellative. Then‖𝐵𝑘(𝑏, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂‖𝑓‖𝐿2  with 𝑎 

constant independent of𝑘. 
Before we proceed to its proof, note that for the application to our problem, there is no 

need to include cases when some of the Haar functions in 𝐵𝑘  are noncancellative 

according to the remark above. Hence, 𝐵𝑘(𝑏, 𝑓) is in fact 𝑎 martingale transform whose 

uniform boundedness follows directly from the observation|〈𝑏, ℎ𝐼(𝑘)〉|/|𝐼
(𝑘)|

−1/2
≤

‖𝑏‖𝐵𝑀𝑂. However, we will present 𝑎 different proof via square function in the following, 

which will provide some insight into the estimates of some other operators and the multi-

parameter analogs of the result, where noncancellative Haar functions have to be taken 

into account. 

Proof:  For any𝑔 ∈ 𝐿2(ℝ𝑑), 

〈𝐵𝑘(𝑏, 𝑓), 𝑔〉 = 〈𝑏,∑𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐼
(𝑘)|

−
1
2

𝐼

〉. 

It thus suffices to show that 

 

 

‖∑𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐼
(𝑘)|

−
1
2

𝐼

‖

𝐻1

≲ ‖𝑓‖𝐿2‖𝑔‖𝐿2 , 

which is equivalent to 

‖𝑆 (∑𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐼
(𝑘)|

−
1
2

𝐼

)‖

𝐿1

≲ ‖𝑓‖𝐿2‖𝑔‖𝐿2 , 

where in the above 𝑆 denotes the dyadic square function. To see this, write 

𝑆 (∑𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐼
(𝑘)|

−
1
2

𝐼

)

2

 

=∑( ∑ 𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐽|
−
1
2

𝐼:𝐼(𝑘)=𝐽

)

2

𝐽

𝜒𝐽
|𝐽|

 

which together with‖. ‖ℓ2 ≤ ‖. ‖ℓ1and Cauchy–Schwarz inequality implies 

𝑆 (∑𝛽𝐼〈𝑓, ℎ𝐼〉〈𝑔, ℎ𝐼〉ℎ𝐼(𝑘)|𝐼
(𝑘)|

−
1
2

𝐼

) 
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≤∑( ∑ |〈𝑓, ℎ𝐼〉||〈𝑔, ℎ𝐼〉|

𝐼:𝐼(𝑘)=𝐽

𝜒𝐽
|𝐽|
)

𝐽

 

≤∑( ∑ |〈𝑓, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽

)

1
2

𝐽

( ∑ |〈𝑔, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽

)

1
2
𝜒𝐽
|𝐽|

 

≤ (∑ ∑ |〈𝑓, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽𝐽

𝜒𝐽
|𝐽|
)

1
2

(∑ ∑ |〈𝑔, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽𝐽

𝜒𝐽
|𝐽|
)

1
2

 

=: (𝑆(𝑘)𝑓)(𝑆(𝑘)𝑔), 

where the operator 𝑆(𝑘)𝑓 ≔ (∑ ∑ |〈𝑓, ℎ𝐼〉|
2|𝐽|2𝐼:𝐼(𝑘)=𝐽𝐼 𝜒𝐽)

1/2
. We claim that 𝑆(𝑘): 𝐿2 → 𝐿2 

with norm bounded by 𝑎 dimensional constant, which does not depend on 𝑘. This 

guarantees that our estimate of 𝐵𝑘  becomes independent of 𝑘. Combining this with another 

use of Cauchy– Schwarz will complete the proof. 

To show the claim, denote 𝛼𝐽 = (∑ |〈𝑓, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽 )
1/2

for any 𝐽 and define 𝐹(𝑥) =

∑ 𝛼𝐽ℎ𝐽𝐽 (𝑥). Then 

‖𝑆(𝑘)𝑓‖
𝐿2
2
= ‖‖(∑𝛼𝐽

2
𝜒𝐽
|𝐽|

𝐽

)

1
2

‖‖

𝐿2

2

= ‖𝑆𝐹‖𝐿2
2 ≲ ‖𝐹‖𝐿2

2  

=∑𝛼𝐽
2

𝐽

=∑ ∑ |〈𝑓, ℎ𝐼〉|
2

𝐼:𝐼(𝑘)=𝐽𝐽

=∑|〈𝑓, ℎ𝐼〉|
2

𝐼

= ‖𝑓‖𝐿2
2 , 

where the second to last equality holds because that cube 𝐼 in the previous summation 

ranges over all the dyadic cubes exactly once. 

Lemma (4.1.7)[106]: For tri-linear operator 

𝑃(𝑏, 𝑎, 𝑓) ≔∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼〉|𝐼|
−1

𝐼

∑〈𝑎, ℎ𝐽〉ℎ𝐽
𝐽:𝐽⊊𝐼

, 

there holds 

‖𝑃(𝑏, 𝑎, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂‖𝑎‖𝐵𝑀𝑂‖𝑓‖𝐿2. 
Proof: The idea of the proof is to employ the 𝐻1-BMO duality and the square function 

characterization of 𝐻1. For any normalized test function 𝑔 ∈ 𝐿2,  

〈𝑃(𝑏, 𝑎, 𝑓), 𝑔〉 = 〈𝑏,∑〈𝑓, ℎ𝐼〉|𝐼|
−1ℎ𝐽

𝐼

∑〈𝑎, ℎ𝐽〉〈𝑔, ℎ𝐽〉

𝐽:𝐽⊊𝐼

〉. 

To see where the BMO norm of 𝑎 comes into play, observe that for any fixed 𝐼 and some 

1 < 𝑝 < 2, 

|∑ 〈𝑎, ℎ𝐽〉〈𝑔, ℎ𝐽〉

𝐽:𝐽⊊𝐼

| = |∑ 〈𝑎, ℎ𝐽〉ℎ𝐽 , 𝑔𝜒𝐼
𝐽:𝐽⊊𝐼

| 

≤ ‖∑ 〈𝑎, ℎ𝐽〉ℎ𝐽
𝐽:𝐽⊊𝐼

‖

𝐿𝑝
′

‖𝑔𝜒𝐼‖𝐿𝑝  
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≲ ‖‖(∑ |〈𝑎, ℎ𝐽〉|
2

𝐽:𝐽⊊𝐼

𝜒𝐽
|𝐽|
)

1
2

‖‖

𝐿𝑝
′

‖𝑔𝜒𝐼‖𝐿𝑝  

≲ ‖𝑎‖𝐵𝑀𝑂|𝐼|
1/𝑝′‖𝑔𝜒𝐼‖𝐿𝑝 = ‖𝑎‖𝐵𝑀𝑂|𝐼|(〈|𝑔|

𝑝〉𝐼)
1/𝑝, 

where the last inequality follows from John–Nirenberg inequality. 

Therefore, 

𝑆 (∑〈𝑓, ℎ𝐼〉|𝐼|
−1ℎ𝐽

𝐼

∑〈𝑎, ℎ𝐽〉〈𝑔, ℎ𝐽〉

𝐽:𝐽⊊𝐼

) 

= (∑|〈𝑓, ℎ𝐼〉|
2|𝐼|−2

𝐼

(∑ 〈𝑎, ℎ𝐽〉〈𝑔, ℎ𝐽〉

𝐽:𝐽⊊𝐼

)

2

𝜒𝐼
|𝐼|
)

1
2

 

≤ ‖𝑎‖𝐵𝑀𝑂 (∑|〈𝑓, ℎ𝐼〉|
2

𝐼

(〈|𝑔|𝑝〉𝐼)
2/𝑝
𝜒𝐼
|𝐼|
)

1
2

 

≤ ‖𝑎‖𝐵𝑀𝑂 (∑|〈𝑓, ℎ𝐼〉|
2

𝐼

sup
𝐼:𝑥∈𝐼

(〈|𝑔|𝑝〉𝐼)
2/𝑝
𝜒𝐼
|𝐼|
)

1
2

 

≤ ‖𝑎‖𝐵𝑀𝑂𝑀(|𝑔|
𝑝)1/𝑝𝑆(𝑓), 

where M is the Hardy–Littlewood maximal function which is bounded on 𝐿𝑝 , 1 <  𝑝 < ∞. 

Hence, 

‖𝑃(𝑏, 𝑎, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂‖𝑎‖𝐵𝑀𝑂𝑀(|𝑔|
𝑝)1/𝑝‖𝑆(𝑓)‖𝐿2  

≲ ‖𝑏‖𝐵𝑀𝑂‖𝑎‖𝐵𝑀𝑂‖𝑓‖𝐿2 . 
 Now we turn to the proof of Theorem(4.1.5) and the strategy is the following. First, we 

decompose 𝑏 and 𝑓 using Haar bases. Second, we split the sum into several parts and 

represent each of them as 𝑎 linear combination of terms in Theorem (4.1.5).  

To start with, one decomposes[𝑏, 𝑆𝑖𝑗]𝑓as 

[𝑏, 𝑆𝑖𝑗]𝑓 = ∑〈𝑏, ℎ𝐽〉〈𝑓, ℎ𝐽〉[ℎ𝐽 , 𝑆
𝑖𝑗]

𝐼,𝐽

ℎ𝐽 

=∑〈𝑏, ℎ𝐽〉〈𝑓, ℎ𝐽〉 (ℎ𝐼 , 𝑆
𝑖𝑗ℎ𝐽 − 𝑆

𝑖𝑗(ℎ𝐼ℎ𝐽)) =: I + II

𝐼,𝐽

, 

where in the following I and II will be referred to as first term and second term, 

respectively. In order to further organize the sum and extract the correct paraproduct 

structure, even in the simplest one-parameter case, one needs to divide up the sum into 

many different parts, depending on the relative sizes of𝐼, 𝐽. 

Let’s first look at the case when 𝑆𝑖𝑗 is cancellative, meaning that all the Haar 

functions appearing are cancellative. Hence, 

[𝑏, 𝑆𝑖𝑗]𝑓 =∑〈𝑏, ℎ𝐽〉〈𝑓, ℎ𝐽〉

𝐼,𝐽

(ℎ𝐽 ∑ 𝑎𝐽𝐽′𝐽(𝑖)ℎ𝐽′

(𝑗)

𝐽′⊂𝐽(𝑖)

−∑ ∑ 𝑎𝐼′′𝐽′′𝐾〈ℎ𝐼ℎ𝐽 , ℎ𝐼′′〉ℎ𝐽′′

(𝑖,𝑗)

𝐼′′,𝐽′′⊂𝐾𝐾

). 
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First, we claim that it suffices to consider the part 𝐼 ⊂ 𝐽(𝑖). Indeed, it is obvious that 

when𝐼 ∩ 𝐽(𝑖) = ∅, both terms in the parentheses are zero. Furthermore, by the cancellation 

structure of the commutator, when 𝐼 ⊋ 𝐽(𝑖), the term[ℎ𝐼 , 𝑆
𝑖𝑗]ℎ𝐼 is also zero. To see this, as 

ℎ𝐼 is constant on 𝐽(𝑖), fixing an arbitrary𝑥0 ∈ 𝐽
(𝑖)implies  

ℎ𝐼𝑆
𝑖𝑗ℎ𝐽 − 𝑆

𝑖𝑗(ℎ𝐼ℎ𝐽) = ℎ𝐼(𝑥0)𝑆
𝑖𝑗(ℎ𝐼(𝑥0)ℎ𝐽) = 0. 

Note that for the case(𝑖, 𝑗) ≠ (0,0), this is the only part of the proof where one needs the 

particular cancellation of the commutator structure. Next, we represent the first term and 

the second term separately. 

Based on the discussion above, for any 𝑖, 𝑗, the first term containing ℎ𝐼𝑆
𝑖𝑗ℎ𝐽 is equal 

to 

∑ ∑ 〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐽〉ℎ𝐼
𝐼:𝐼⊂𝐽(𝑖)𝐽

∑ 𝑎𝐽𝐽′𝐽(𝑖)ℎ𝐽′

𝐽′:𝐽′⊂𝐽(𝑖)

ℓ(𝐽′)=2𝑖,𝑗ℓ(𝐽)

. 

 Introducing index 𝐾 = 𝐽(𝑖)allows us to rewrite this as 

∑ ∑ ∑ 〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐽〉ℎ𝐼
𝐼:𝐼⊂𝐾

(𝑖)

𝐽:𝐽⊂𝐾𝐾

∑ 𝑎𝐽𝐽′𝐾ℎ𝐽′

(𝑖)

𝐽′:𝐽′⊂𝐾

 

∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

( ∑ ∑ ∑ 𝑎𝐽𝐽′𝐾〈𝑓, ℎ𝐽〉ℎ𝐽′

(𝑖)

𝐽′:𝐽′⊂𝐾

(𝑖)

𝐽:𝐽⊂𝐾𝐾:𝐾⊃𝐼

). 

 Comparing the inner parentheses to the definition of 𝑆𝑖𝑗 suggests that the expression 

above is equal to 

∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

∑ 〈𝑆𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐽′

𝐽′:𝐽′(𝑗)⊃𝐼

 

=∑ ∑ 〈𝑏, ℎ𝐼〉〈𝑆
𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐼ℎ𝐽′

𝐽′:𝐽′⊋𝐼𝐼

 

+∑ ∑ 〈𝑏, ℎ𝐼〉〈𝑆
𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐼ℎ𝐽′

𝐽′:𝐽′⊂𝐼⊂𝐽′(𝑗)𝐼

=: I + II. 

Note that there are only parts I and II left because of the supports of Haar functions. For 

partI, one writes 

I = ∑〈𝑏, ℎ𝐼〉ℎ𝐼 ( ∑ 〈𝑆𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐽′

𝐽′:𝐽′⊋𝐼

)

𝐼

=∑〈𝑏, ℎ𝐼〉ℎ𝐼〈𝑆
𝑖𝑗𝑓, ℎ𝐼

𝐼〉ℎ𝐼
𝐼

𝐼

=∑〈𝑏, ℎ𝐼〉〈𝑆
𝑖𝑗𝑓, ℎ𝐼

𝐼〉ℎ𝐼|𝐼|
−
1
2

𝐼

, 

 which is of type 𝐵0〈𝑏, 𝑆
𝑖𝑗𝑓〉. In order to deal with partII, observe that it can be 

decomposed into finitely many pieces depending on the relative sizes of 𝐼 and𝐽′, i.e. 

II = ∑∑〈𝑏, ℎ𝐽′(𝑘)〉〈𝑆
𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐽′(𝑘)ℎ𝐽′

𝐽′

𝑗

𝑘=0
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= ∑∑𝛽𝐽′〈𝑏, ℎ𝐽′(𝑘)〉〈𝑆
𝑖𝑗𝑓, ℎ𝐽′〉ℎ𝐽′|𝐽

′(𝑘)|
−
1
2

𝐽′

𝑗

𝑘=0

= ∑𝐵𝑘(𝑏, 𝑆
𝑖𝑗𝑓)

𝑗

𝑘=0

, 

where𝛽𝐽′ ∈ {1, −1}and 0 ≤ 𝑘 ≤ 𝑗. Note that the sum at the end contains only 1 + 𝑗 ≤ 1 +

max(𝑖, 𝑗) terms. Therefore, the representation of the first term is demonstrated. 

Now we turn to the second term that contain 𝑆𝑖𝑗(ℎ𝐼ℎ𝐽). Due to the supports of Haar 

functions, this part is nontrivial only when 𝐼 ∩ 𝐽 ≠ ∅. Hence, one can split this term into 

three parts: 𝐼 ⊊ 𝐽, 𝐼 = 𝐽, and 𝐽 ⊊ 𝐼 ⊂ 𝐽(𝑖). 
For 𝐼 ⊊ 𝐽, note that the second term becomes 

𝑆𝑖𝑗 (∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐽〉ℎ𝐼ℎ𝐽
𝐼⊊𝐽

) = 𝑆𝑖𝑗 (∑〈𝑏, ℎ𝐼〉ℎ𝐼∑〈𝑏, ℎ𝐼〉ℎ𝐽
𝐼⊊𝐽𝐼

) 

= 𝑆𝑖𝑗 (∑〈𝑏, ℎ𝐼〉ℎ𝐼〈𝑓, ℎ𝐼
𝐼〉ℎ𝐼

𝐼

𝐼

) 

= 𝑆𝑖𝑗 (∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼
𝐼〉ℎ𝐼|𝐼|

−
1
2

𝐼

), 

which is 𝑆𝑖𝑗(𝐵0(𝑏, 𝑓)). 

As the diagonal part 𝐼 = 𝐽 is obviously of the form 𝑆𝑖𝑗(𝐵0(𝑏, 𝑓))already, we move on to 

the last piece 𝐽 ⊊ 𝐼 ⊂ 𝐽(𝑖), which can be written as 

𝑆𝑖𝑗 (∑ ∑ 〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼〉ℎ𝐼ℎ𝐽
𝐼:𝐽⊊𝐼⊂𝐽(𝑖)𝐽

). 

Observe that what’s inside the parentheses is of an almost identical form as part II that 

appeared at the end of the discussion of the first term except that 𝑗 is changed to 𝑖 and that 

𝑓 takes the place of 𝑆𝑖𝑗𝑓. Hence, the same reasoning implies that it is 𝑎 sum of at most 𝑖 ≤

max(𝑖, 𝑗) terms of 𝑆𝑖𝑗(𝐵𝑘(𝑏, 𝑓)),1 ≤ 𝑘 ≤ 𝑖.This proves the representation of the second 

term as well as completes the discussion of the case when 𝑆𝑖𝑗is cancellative. 

It suffices to assume that 

𝑆00𝑓 =∑𝑎𝐼〈𝑓, ℎ𝐼
𝐼〉ℎ𝐼

𝐼

, 

where𝑎𝐼 ≔ 〈𝑎𝐼 , ℎ𝐼〉|𝐼|
−1/2with‖𝑎‖𝐵𝑀𝑂 ≤ 1. Because if we switch the positions of 

cancellative and noncancellative Haar functions, what we obtain is none other than its 

adjoint. Moreover, for the Haar expansion 

[𝑏, 𝑆00]𝑓 = ∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐽〉[ℎ𝐼 , 𝑆
00]ℎ𝐽

𝐼,𝐽

, 

it is not hard to see, according to a discussion similar to the one at the beginning of the 

case(𝑖, 𝑗) ≠ (0,0), that one needs only to consider the part 𝐼 ⊂ 𝐽 thanks to the commutator 

structure. We then split the sum into two parts: 𝐼 ⊊ 𝐽 and 𝐼 = 𝐽. 
We consider the first term containing ℎ𝐼𝑆

00ℎ𝐽and the second term containing 

𝑆00(ℎ𝐼ℎ𝐽) separately, without need to exploit more of the cancellation of the commutator. 

The second term can be dealt with exactly the same as how we treated the  𝐼 ⊊ 𝐽 part of the 
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second term in the case(𝑖, 𝑗) ≠ (0,0), which we omit. To study the first term, one observes 

that for any ℎ𝐽,  

𝑆00ℎ𝐽 =∑𝑎𝐼〈ℎ𝐽 , ℎ𝐼
𝐼〉ℎ𝐼

𝐼⊊𝐽

=∑𝑎𝐼|𝐼|
1
2ℎ𝐼ℎ𝐽

𝐼⊊𝐽

. 

Hence, the first term becomes 

∑ ∑ 〈𝑏, ℎ𝐼〉ℎ𝐼〈𝑓, ℎ𝐽〉𝑎𝐼′|𝐼
′|
1
2ℎ𝐼′ℎ𝐽

𝐼:𝐼′⊊𝐽

=

𝐽

∑ ∑ +

𝐼⊂𝐼′⊊𝐽𝐽

∑ ∑ =:

𝐼′⊊𝐼⊊𝐽𝐽

𝐼 + 𝐼𝐼. 

One writes 

𝐼 = ∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

( ∑ ∑ 𝑎𝐼′〈𝑓, ℎ𝐽〉ℎ𝐽|𝐼
′|
1
2ℎ𝐼′

𝐽:𝐼′⊊𝐽𝐼′:𝐼⊂𝐼′

) 

=∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

( ∑ 𝑎𝐼′|𝐼
′|
1
2ℎ𝐼′〈𝑓, ℎ𝐽〉ℎ𝐼′

1

𝐼′:𝐼⊂𝐼′

) 

=∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

( ∑ 𝑎𝐼′〈𝑓, ℎ𝐼
1〉ℎ𝐼′

𝐼′:𝐼⊂𝐼′

) 

=∑〈𝑏, ℎ𝐼〉ℎ𝐼
𝐼

( ∑ 𝑎𝐼′〈𝑆
00𝑓, ℎ𝐼′〉ℎ𝐼′

𝐼′:𝐼⊂𝐼′

) 

=∑〈𝑏, ℎ𝐼〉ℎ𝐼〈𝑆
00𝑓, ℎ𝐼〉

𝐼

ℎ𝐼 +∑〈𝑏, ℎ𝐼〉ℎ𝐼〈𝑆
00𝑓, ℎ𝐼

1〉ℎ𝐼
1

𝐼

 

=∑𝛽𝐼〈𝑏, ℎ𝐼〉〈𝑆
00𝑓, ℎ𝐼〉ℎ𝐼

𝜖|𝐼|
1
2

𝐼

+∑〈𝑏, ℎ𝐼〉〈𝑆
00𝑓, ℎ𝐼

1〉|𝐼|−
1
2

𝐼

, 

which is the sum of two 𝐵0(𝑏, 𝑆
00𝑓) with 𝛽𝐼 ∈ {1, −1}. 

To deal with partII, observe that 

II = ∑〈𝑏, ℎ𝐼〉ℎ𝐼𝑎𝐼′|𝐼
′|
1
2ℎ𝐼′〈𝑓, ℎ𝐼

1〉ℎ𝐼
1

𝐼′⊊𝐼

, 

by first summing over index𝐽. Thus, 

II = ∑ 𝑎𝐼′|𝐼
′|
1
2ℎ𝐼′

𝐼′⊊𝐼

( ∑ 〈𝑏, ℎ𝐼〉|𝐼|
−
1
2〈𝑓, ℎ𝐼

1〉ℎ𝐼
𝐼:𝐼⊋𝐼′

) 

=:∑𝑎𝐼′|𝐼
′|
1
2ℎ𝐼′

𝐼′

∑ 〈𝑆𝑏𝑓, ℎ𝐼〉ℎ𝐼
𝐼:𝐼⊋𝐼′

 

=∑𝑎𝐼′〈𝑆𝑏𝑓, ℎ𝐼
1〉ℎ𝐼′

𝐼′

= 𝑆00〈𝑆𝑏𝑓〉, 

where the operator𝑆𝑏𝑓 ≔ ∑ 〈𝑏, ℎ𝐼〉|𝐼|
−1/2〈𝑓, ℎ𝐼

1〉ℎ𝐼𝐼 is 𝑎 classical para-product  𝐵0(𝑏, 𝑓), 
and this completes the discussion of part𝐼 ⊊ 𝐽. 

In this special case, what we try to decompose becomes 

∑ ∑ 〈𝑏, ℎ𝐼
𝜖〉〈𝑓, ℎ𝐼

𝜖′〉 (ℎ𝐼
𝜖𝑆00ℎ𝐼

𝜖′ − 𝑆00(ℎ𝐼
𝜖ℎ𝐼
𝜖′))

𝜖,𝜖′∈{0,1}𝑑{1⃗⃗⃗}𝐼

.                (4) 

Here, in order to avoid possible confusion, we wrote out the sum over index𝜖, 𝜖′, 

explicitly. Recall that for each cube I, there are2𝑑different Haar functions 
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associated:{ℎ𝐼
𝜖}, 𝜖 ∈ {0,1}𝑑, and the Haar function is noncancellative if and only if  𝜖 = 1⃗⃗. 

First, it is useful to observe that if𝜖 ≠ 𝜖′, [ℎ𝐼
𝜖 , 𝑆00]ℎ𝐼

𝜖′ = 0. Indeed, for any fixed 𝐼 and𝜖, 𝜖′, 

ℎ𝐼
𝜖𝑆00ℎ𝐼

𝜖′ = ∑ 𝑎𝐽|𝐽|
1
2ℎ𝐽(ℎ𝐼

𝜖ℎ𝐼
𝜖′)

𝐽:𝐽⊊𝐼

, 

and 

𝑆00(ℎ𝐼
𝜖ℎ𝐼
𝜖′) = ∑ 𝑎𝐽|𝐽|

−
1
2ℎ𝐽 (∫ℎ𝐼

𝜖ℎ𝐼
𝜖′

 

1

)

𝐽:𝐽⊃𝐼

+ ∑ 𝑎𝐽|𝐽|
1
2ℎ𝐽(ℎ𝐼

𝜖ℎ𝐼
𝜖′)

𝐽:𝐽⊊𝐼

. 

 As 𝑎 result of cancellation and the fact that∫ ℎ𝐼
𝜖ℎ𝐼
𝜖′ 

1
is nonzero if and only if𝜖 = 𝜖′, 

i.e. ℎ𝐼
𝜖ℎ𝐼
𝜖′ = |𝐼|−1𝜒𝐼 , [ℎ𝐼

𝜖 , 𝑆00]ℎ𝐼
𝜖′ ≠ 0only when 𝜖 = 𝜖′.Therefore, one can safely suppress 

the dependence on𝜖 when studying this part of the sum. 

Furthermore, it is easily seen that the second term containing𝑆00(ℎ𝐼ℎ𝐼)here can be 

estimated exactly the same as before, it thus suffices to deal with the first term 

containingℎ𝐼𝑆
00ℎ𝐼, which is equal to 

∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼〉ℎ𝐼𝑆
00ℎ𝐼

𝐼

=∑〈𝑏, ℎ𝐼〉〈𝑓, ℎ𝐼〉|𝐼|
−1

𝐼

∑(𝑎, ℎ𝐽)ℎ𝐽
𝐽:𝐽⊊𝐼

 

= 𝑃(𝑏, 𝑎, 𝑓), 
hence the proof is complete. 

We present the proof of the main theorem in the general setting by iterating the one-

parameter result, i.e. Theorem(4.1.5). For the sake of brevity, we consider the bi-

parameter case as an example, while the strategy can be easily generalized to work for 

arbitrarily many parameters. We show that the commutator can be represented as a finite 

linear combination of the bi-parameter analogs of terms in Theorem (4.1.5),for which one 

needs to define and estimate the following new bi-parameter operators, including all the 

possible “tensor products” of the one-parameter operators 𝐵𝑘  and 𝑃. 
Lemma (4.1.8)[106]: Given𝑏 ∈ 𝐵𝑀𝑂𝑝𝑟𝑜𝑑(ℝ

𝑛 × ℝ𝑛)and integers 𝑘, 𝑙 ≥ 0, define the 

following operators 

𝐵𝑘,𝑙(𝑏, 𝑓) = ∑𝛽𝐼1𝐼2 〈𝑏, ℎ𝐼1
(𝑘)⨂𝑢

𝐼2
(𝑙)〉 〈𝑓, ℎ𝐼1

𝜖1⨂𝑢𝐼2
𝜖2 〉

𝐼1,𝐼2

ℎ𝐼1
𝜖1
′

⨂𝑢𝐼2
𝜖2
′

|𝐼1
(𝑘)|

−
1
2
|𝐼2
(𝑙)|

−
1
2
, 

where𝛽𝐼1𝐼2  is 𝑎 sequence satisfying|𝛽𝐼1𝐼2| ≤ 1. When 𝑘 > 0, all the Haar functions in the 

first variable are cancellative, while when 𝑘 = 0, there is at most one of ℎ𝐼
𝜖 , ℎ𝐼

𝜖′being 

noncancellative. The same assumption goes for the second variable. Then,‖𝐵𝑘,𝑙(𝑏, 𝑓)‖𝐿2 ≲

‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2with 𝑎 constant independent of 𝑘, 𝑙. 

In the above, we use𝑢𝐼2to denote Haar functions in the second variable, for any dyadic 

cube 𝐼2 ⊂ ℝ
𝑚. 

 Note that when 𝑘 = 𝑙 = 0, 𝐵𝑘,𝑙becomes the classical bi-parameter 𝐵0. When all the Haar 

functions are cancellative, the proof of the lemma proceeds exactly the same as its one-

parameter counterpart, except that one needs bi-parameter dyadic square function as 

majorization instead. Therefore in the following, we will only prove the lemma assuming 

that 𝑘 = 0, 𝑙 > 0, and ℎ𝐼1
𝜖1 = ℎ𝐼1

1  is the only noncancellative Haar. Note that in the setting 

of arbitrarily many parameters, parallel results still hold. 
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Proof: We are going to follow the strategy in the proof of Lemma(4.1.6) and use hybrid 

maximal-square functions as majorization. 

Pairing 𝐵0,𝑙(𝑏, 𝑓)with 𝑎 normalized 𝐿2 function 𝑔 and applying the product 𝐻1-BMO 

duality, it suffices to show that 

‖𝑆𝑆(∑𝛽𝐼1𝐼2〈𝑏, ℎ𝐼1
1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉ℎ𝐼1⨂𝑢𝐼2

(𝑙)

𝐼1,𝐼2

|𝐼1|
−
1
2 |𝐼2

(𝑙)
|
−
1
2
)‖

𝐿1

≲ ‖𝑓‖𝐿2, 

where 𝑆𝑆 is the dyadic double square function whose𝐿1norm characterizes product 𝐻1. To 

see this, one calculates 

𝑆𝑆 (∑𝛽𝐼1𝐼2〈𝑏, ℎ𝐼1
1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉ℎ𝐼1⨂𝑢𝐼2

(𝑙)

𝐼1,𝐼2

|𝐼1|
−
1
2 |𝐼2

(𝑙)
|
−
1
2
)

2

 

=∑( ∑ 〈𝑓, ℎ𝐼1
1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉

𝐽1:𝐽2
(𝑙)
=𝐼2

|𝐼1|
−
1
2|𝐼2|

−
1
2)

2

𝐼1,𝐼2

𝜒𝐼1⨂𝜒𝐼2
|𝐼1||𝐼2|

 

≤∑(∑ ∑ sup
𝐼1

(〈〈𝑓, 𝑢𝐽2〉2〉𝐼1)〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)

2

𝐼1

𝜒𝐼1
|𝐼1|
, 

where the last inequality follows from‖∙‖ℓ2 ≤ ‖∙‖ℓ1, and〈∙〉𝐼1denotes the average value 

over 𝐼1. Then the above is controlled by 

∑(∑ ∑ 𝑀1(〈𝑓, 𝑢𝐽2〉2)〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)

2

𝐼1

𝜒𝐼1
|𝐼1|
, 

where 𝑀1 is the Hardy–Littlewood maximal function in the first variable. Next, Cauchy–

Schwarz inequality implies that 

≤∑(∑ ∑ 𝑀1(〈𝑓, 𝑢𝐽2〉2)
2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)

𝐼1

 

× (∑ ∑ |〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉|
2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)
𝜒𝐼1
|𝐼1|

 

= (∑ ∑ 𝑀1(〈𝑓, 𝑢𝐽2〉2)
2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

) 

× (∑∑ ∑ |〈𝑔, ℎ𝐼1⨂𝑢𝐼2〉|
2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼1⨂𝜒𝐼2
|𝐼1||𝐼2|

𝐼2𝐼1

) =: I. II. 

 II could be written as the square of 𝑆𝑆 acting on 𝑎 normalized 𝐿2 function, similarly as the 

last part of the proof of Lemma (4.1.6).For 𝐼, Fefferman–Stein inequality implies that 



127 

‖𝐼
1
2‖
𝐿2(ℝ𝑛×ℝ𝑚)

=

(

 
 
∫ ‖‖(∑ ∑ 𝑀1(〈𝑓, 𝑢𝐽2〉2)

2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)

1
2

‖‖

𝐿2(ℝ𝑛)

2

 

ℝ𝑚
𝑑𝑥2

)

 
 

1
2

 

≲

(

 
 
∫ ‖‖(∑ ∑ |〈𝑓, 𝑢𝐽2〉2|

2

𝐽2:𝐽2
(𝑙)
=𝐼2

𝜒𝐼2
|𝐼2|

𝐼2

)

1
2

‖‖

𝐿2(ℝ𝑛)

2

 

ℝ𝑚
𝑑𝑥2

)

 
 

1
2

 

≲ (∫ ‖𝑓(. , 𝑥2)‖𝐿2(ℝ𝑛)
2

 

ℝ𝑚
𝑑𝑥2)

1
2

= ‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚), 

where once again the last inequality is due to the same argument in the last part of the 

proof of Lemma(4.1.6),thus the proof is complete. 

Lemma (4.1.9)[106]: Given𝑏, 𝑎 ∈ 𝐵𝑀𝑂𝑝𝑟𝑜𝑑(ℝ
𝑛 × ℝ𝑚), define 

𝑃𝑃(𝑏, 𝑎, 𝑓): = ∑〈𝑏, ℎ𝐼1⨂𝑢𝐼2〉〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉

𝐼1,𝐼2

|𝐼1|
−1|𝐼2|

−1 

× ∑ ∑ 〈𝑎, ℎ𝐼1⨂𝑢𝐼2〉ℎ𝐼1⨂𝑢𝐼2
𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

, 

and let 𝑃𝑃1be its partial adjoint in the first variable with 𝑏, 𝑎 fixed. Then,  

‖𝑃𝑃(𝑏, 𝑎, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2 ,                           (5) 

‖𝑃𝑃1(𝑏, 𝑎, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2 .                        (6) 

Recall that for 𝑎 bi-parameter singular integral 𝑇, its partial adjoint 𝑇1 is defined via  

〈𝑇(𝑓1⨂𝑓2), 𝑔1⨂𝑔2〉 = 〈𝑇1(𝑔1⨂𝑓2), 𝑓1⨂𝑔2〉. 
It is known that the𝐿2boundedness of 𝑇 does not imply the 𝐿2 bound- edness of𝑇1 (see [16] 

or [114] for 𝑎 detailed discussion and counterexamples). Hence, in the following, we need 

to prove the boundedness of 𝑃𝑃 and 𝑃𝑃1 separately. 

Proof: We first note that the proof of 𝑃𝑃 is essentially the same as Lemma 

(4.1.7).Inthebi-parametersetting, one needs to use the double square function 𝑆𝑆 to 

characterize product 𝐻1and the strong maximal function 𝑀𝑆 as majorization. The key 

observation is that there holds the following bi-parameter John–Nirenberg inequality 

(see[107]): 

‖(∑|〈𝑎, ℎ𝑅〉|
2

𝑅⊂Ω

𝜒𝑅
|𝑅|
)

1
2

‖

𝐿𝑝

≤ ‖𝑎‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑 |Ω|
1/𝑝, 1 < 𝑝 < ∞ , 

whereΩis any open set in ℝ𝑛 × ℝ𝑚 of finite measure, and 𝑅 denotes dyadic rectangles. It 

thus easy to verify that 𝑎 same argument as in Lemma(4.1.7) implies (5). The estimate 

of(6) involves the hybrid maximal-square functions, which we have seen in the proof of 

Lemma (4.1.9).Tobespecific, let 𝑔 ∈ 𝐿2be 𝑎 normalized test function, 



128 

〈𝑃𝑃1(𝑏, 𝑎, 𝑓), 𝑔〉

= 〈𝑏,∑|𝐼1|
−1|𝐼2|

−1

𝐼1,𝐼2

ℎ𝐼1⨂𝑢𝐼2

× ∑ ∑ 〈𝑎, ℎ𝐽1⨂𝑢𝐽2〉

𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

〈𝑓, ℎ𝐽1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐽2〉〉. 

Note that by bi-parameter John–Nirenberg inequality, 

| ∑ ∑ 〈𝑎, ℎ𝐽1⨂𝑢𝐽2〉

𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

〈𝑓, ℎ𝐽1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐽2〉| 

= | ∑ ∑ 〈𝑎, ℎ𝐽1⨂𝑢𝐽2〉

𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

〈〈𝑓, 𝑢𝐼2〉2⨂〈𝑔, 𝑢𝐼2〉1, ℎ𝐼1⨂𝑢𝐽2〉| 

≤ ‖𝑎‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑 |𝐼1||𝐼2|(〈|〈𝑓, 𝑢𝐼2〉2|
𝑝
〉𝐼1)

1/𝑝
(〈|〈𝑔, ℎ𝐼1〉1|

𝑝
〉𝐼2)

1/𝑝
, 

for some1 < 𝑝 < 2. Hence, 

𝑆𝑆 (∑|𝐼1|
−1|𝐼2|

−1

𝐼1,𝐼2

ℎ𝐼1⨂𝑢𝐼2 × ∑ ∑ 〈𝑎, ℎ𝐽1⨂𝑢𝐽2〉

𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

〈𝑓, ℎ𝐽1⨂𝑢𝐼2〉〈𝑔, ℎ𝐼1⨂𝑢𝐽2〉) 

≤ ‖𝑎‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑 (∑(〈|〈𝑓, 𝑢𝐼2〉2|
𝑝
〉𝐼1)

2/𝑝
(〈|〈𝑔, ℎ𝐼1〉1|

𝑝
〉𝐼2)

2/𝑝

𝐼1,𝐼2

𝜒𝐼1⨂𝜒𝐼2
|𝐼1||𝐼2|

)

1
2

 

≤ ‖𝑎‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑 (∑𝑀1(|〈𝑓, 𝑢𝐼2〉2|
𝑝
)
2/𝑝

𝐼2

𝜒𝐼2
|𝐼2|
)

1/2

× (∑𝑀2(|〈𝑔, ℎ𝐼2〉1|
𝑝
)
2/𝑝

𝐼1

𝜒𝐼1
|𝐼1|
)

1/2

. 

 

 The two terms on the last line above can be viewed as generalized hybrid maximal-square 

functions, whose boundedness is easy to obtain. For example, 

 

‖(∑𝑀1(|〈𝑓, 𝑢𝐼2〉2|
𝑝
)
2/𝑝

𝐼2

𝜒𝐼2
|𝐼2|
)

1/2

‖

𝐿2

 

=

(

 
 
∫ ‖‖(∑𝑀1(|〈𝑓, 𝑢𝐼2〉2|

𝑝
)
2/𝑝

𝐼2

𝜒𝐼2
|𝐼2|
)

1
2

‖‖

𝐿2(ℝ𝑚)

2

𝑑𝑥1

 

ℝ𝑛

)

 
 

1
2

 

= (∫ ∑𝑀1(|〈𝑓, 𝑢𝐼2〉2|
𝑝
)
2/𝑝

𝐼2

𝑑𝑥1

 

ℝ𝑛
)

1
2
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≲ (∑∫ |〈𝑓, 𝑢𝐼2〉2|
2
𝑑𝑥1

 

ℝ𝑛𝐼2

)

1
2

= ‖𝑓‖𝐿2 . 

Therefore,‖𝑃𝑃1(𝑏, 𝑎, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑎‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2 . 

In addition to the above two types of operators, in the bi-parameter setting, 𝑎 new type of 

operator that mixes the paraproduct and 𝑃 arise naturally in our argument. We show that 

they have the following uniform 𝐵𝑀𝑂 estimates.  

Lemma (4.1.10)[106]: Given𝑏 ∈ 𝐵𝑀𝑂𝑝𝑟𝑜𝑑(ℝ
𝑛 ×ℝ𝑚),𝑎1 ∈ 𝐵𝑀𝑂(ℝ𝑛), and𝑎2 ∈

𝐵𝑀𝑂(ℝ𝑚). For integers𝑘, 𝑙 ≥ 0, define 

𝐵𝑃𝑘(𝑏, 𝑎
2 , 𝑓): = ∑𝛽𝐼1 〈𝑏, ℎ𝐼1

(𝑘)⨂𝑢𝐼2〉 〈𝑓, ℎ𝐼1
𝜖1⨂𝑢𝐼2〉

𝐼1,𝐼2

|𝐼1
(𝑘)
|
−
1
2 |𝐼2|

−1ℎ𝐼1
𝜖1
′

 

× ∑ 〈𝑎2, 𝑢𝐽2〉2ℎ𝐽2
𝐽2:𝐽2⊊𝐼2

 

𝑃𝐵𝑙(𝑏, 𝑎
1, 𝑓): = ∑𝛽𝐼2 〈𝑏, ℎ𝐼1⨂𝑢𝐼2

(𝑙)〉 〈𝑓, ℎ𝐼1⨂𝑢𝐼2
𝜖2〉

𝐼1,𝐼2

|𝐼1|
−1 |𝐼2

(𝑙)
|
−
1
2
ℎ𝐼2
𝜖2
′

 

× ∑ 〈𝑎1, 𝑢𝐽1〉1ℎ𝐽1
𝐽1:𝐽1⊊𝐼1

, 

where𝛽𝐼1 , 𝛽𝐼2are sequences satisfying|𝛽𝐼1|, |𝛽𝐼2| ≤ 1. When𝑘 > 0, all the Haar functions in 

the first variable are cancellative, while when𝑘 = 0, there is at most one ofℎ𝐼1
𝜖1 , ℎ𝐼1

𝜖1
′

being 

noncancellative. The same assumption goes for the second variable. Then, there holds 

‖𝐵𝑃𝑘(𝑏, 𝑎
2 , 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑎

2‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2 , 

‖𝑃𝐵𝑙(𝑏, 𝑎
1, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑎

1‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2 . 

Proof: By symmetry, it suffices to estimate 𝑃𝐵𝑙 . The strategy is similar as before: 𝑎 square 

function argument encoding the product 𝐵𝑀𝑂 estimate of𝑏, combined with 𝑎 John–

Nirenberg inequality taking advantage of the 𝐵𝑀𝑂 estimate of𝑎1. Note that the arguments 

slightly vary depending on whether noncancellative Haar functions appear. Taking 𝑔 such 

that‖𝑔‖𝐿2 ≤ 1, 
〈𝑃𝐵𝑙(𝑏, 𝑎

1, 𝑓), 𝑔〉

= 〈𝑏,∑〈𝑓, ℎ𝐼1⨂𝑢𝐼2
𝜖2〉

𝐼1,𝐼2

|𝐼1|
−1 |𝐼2

(𝑙)|
−
1
2
ℎ𝐼1⨂𝑢𝐼2

(𝑙)

× ∑ 〈𝑎1, ℎ𝐽1〉1 〈𝑔, ℎ𝐼1⨂𝑢𝐼2
𝜖2
′

〉

𝐽1:𝐽1⊊𝐼1

〉. 

 𝐴 similar application of John–Nirenberg inequality as before implies that 

𝑆𝑆(∑〈𝑓, ℎ𝐼1⨂𝑢𝐼2
𝜖2〉

𝐼1,𝐼2

|𝐼1|
−1 |𝐼2

(𝑙)|
−
1
2
ℎ𝐼1⨂𝑢𝐼2

(𝑙) × ∑ 〈𝑎1, ℎ𝐽1〉1 〈𝑔, ℎ𝐼1⨂𝑢𝐼2
𝜖2
′

〉

𝐽1:𝐽1⊊𝐼1

) 
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≤ ‖𝑎1‖𝐵𝑀𝑂 (∑(∑ 〈𝑓, ℎ𝐼1⨂𝑢𝐼2
𝜖2〉 (〈|〈𝑔, 𝑢𝐼2

𝜖2
′

〉2|
𝑝

〉𝐼1)

1
𝑝

(𝑙)

𝐼2⊂𝐽2

)

2

𝐼1,𝐽2

𝜒𝐼1⨂𝜒𝐽2
|𝐼1||𝐽2|

)

1
2

.  (7) 

(𝑎) Case𝑙 > 0. 
In this case, all the Haar functions that appear are cancellative, hence by omitting the 

dependence on𝜖2, 𝜖2
′and applying Cauchy–Schwarz inequality, there holds  

(7) ≤ ‖𝑎1‖𝐵𝑀𝑂 (∑(∑ |〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉|
2

(𝑙)

𝐼2⊂𝐽2

)

𝐼1,𝐽2

× (∑ (〈|〈𝑔, 𝑢𝐼2〉2|
𝑝
〉𝐼1)

2/𝑝
(𝑙)

𝐼2⊂𝐽2

)
𝜒𝐼1⨂𝜒𝐽2
|𝐼1||𝐽2|

)

1
2

 

≤ ‖𝑎1‖𝐵𝑀𝑂 (∑(∑ ∑ |〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉|
2

(𝑙)

𝐼2⊂𝐽2

𝜒𝐼1
|𝐼1|

𝐼1

)

𝐽2

× (∑ 𝑀1(|〈𝑔, 𝑢𝐼2〉2|
𝑝
)
2/𝑝

(𝑙)

𝐼2⊂𝐽2

)
𝜒𝐽2
|𝐽2|
)

1
2

. 

which by‖∙‖ℓ2 ≤ ‖∙‖ℓ1and another use of Cauchy–Schwarz is bounded by  

‖𝑎1‖𝐵𝑀𝑂 (∑∑ ∑ |〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉|
2

(𝑙)

𝐼2⊂𝐽2𝐽2𝐼1

𝜒𝐼1⨂𝜒𝐽2
|𝐼1||𝐽2|

)

1
2

 

× (∑ ∑ 𝑀1(|〈𝑔, 𝑢𝐼2〉2|
𝑝
)
2/𝑝

(𝑙)

𝐼2⊂𝐽2

𝜒𝐽2
|𝐽2|

𝐽2

)

1
2

. 

Therefore, 𝑎 similar double square function and hybrid maximal-square function argument 

as in Lemma(4.1.8) and Lemma(4.1.9)implies that 

(7) ≲ ‖𝑎1‖𝐵𝑀𝑂‖𝑓‖𝐿2‖𝑔‖𝐿2 .  

 (𝑏) Case 𝑙 = 0 and𝜖2 = 1⃗⃗ . 

In this case, 

(7) = ‖𝑎1‖𝐵𝑀𝑂 (∑(〈〈𝑓, ℎ𝐼2〉1〉𝐼1)(〈|〈𝑔, 𝑢𝐼2〉2|
𝑝
〉𝐼1)

2/𝑝

𝐼1,𝐼2

𝜒𝐼1⨂𝜒𝐼2
|𝐼1||𝐼2|

)

1
2

 .  

≤ (∑𝑀2(〈𝑓, ℎ𝐼2〉1)
2

𝐼1

𝜒𝐼1
|𝐼1|
)

1
2

(∑𝑀1(|〈𝑔, 𝑢𝐼2〉2|
𝑝
)
2
𝑝

𝐼2

𝜒𝐼2
|𝐼2|
)

1
2

. 

Which shows that 

‖(7)‖𝐿1 ≲ ‖𝑎
1‖𝐵𝑀𝑂‖𝑓‖𝐿2‖𝑔‖𝐿2 . 

(𝑐) Case 𝑙 = 0 and𝜖2
′ = 1⃗⃗. This last case can be dealt with similarly by noticing that 

(7) = ‖𝑎1‖𝐵𝑀𝑂 (∑|〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉|
2
(〈|〈𝑔〉𝐼2|

𝑝
〉𝐼1)

2/𝑝

𝐼1,𝐼2

𝜒𝐼1⨂𝜒𝐼2
|𝐼1||𝐼2|

)

1
2

.  

≤ ‖𝑎1‖𝐵𝑀𝑂(𝑀1(|𝑀2(𝑔)|
𝑝))

1/𝑝
𝑆𝑆(𝑓). 

 The boundedness of𝑀1and𝑀2in each variable implies that  
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‖(𝑀1(|𝑀2(𝑔)|
𝑝))

1/𝑝
‖
𝐿2
≲ ‖𝑔‖𝐿2 . 

To conclude, we’ve demonstrated in each case that 

‖𝑃𝐵𝑙(𝑏, 𝑎
1, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑎

1‖𝐵𝑀𝑂𝑝𝑟𝑜𝑑‖𝑓‖𝐿2  

which completes the proof. 

Now let’s proceed with the proof of Theorem(4.1.1).Using Theorem(4.1.3) twice for both 

variables we have 

[[𝑏, 𝑇1], 𝑇2]𝑓 = 𝑐‖𝑇1‖𝐶𝑍𝑐‖𝑇2‖𝐶𝑍𝔼𝜔1𝔼𝜔2 

× ∑ ∑ 2−max
(𝑖1𝑗1)

𝛿
22−max

(𝑖2𝑗2)
𝛿
2

∞

𝑖2𝑗2=0

∞

𝑖1𝑗1=0

[[𝑏, 𝑆𝜔1
𝑖1𝑗1], 𝑆𝜔2

𝑖2𝑗2] 𝑓.                        (8) 

 Since our estimate in the following doesn’t depend on the parameters 𝜔1, 𝜔2 explicitly, 

we will omit them in the notation. Our goal is to prove that 

‖[[𝑏, 𝑆1
𝑖1𝑗1], 𝑆2

𝑖2𝑗2] 𝑓‖
𝐿2(ℝ𝑛×ℝ𝑚)

 

≲ (1 + max(𝑖1, 𝑗1))(1 + max(𝑖2, 𝑗2))‖𝑏‖𝐵𝑀𝑂prod(ℝ𝑛×ℝ𝑚)‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚), 

which can be achieved by showing that any[[𝑏, 𝑆1
𝑖1𝑗1], 𝑆2

𝑖2𝑗2] 𝑓can be represented as 𝑎 finite 

linear combination of the following terms and their adjoints (which is understood as the 

adjoint operator with𝑏, 𝑎𝑖 fixed): 

𝐵𝑘,𝑙(𝑏, 𝑆1
𝑖1𝑗1𝑆2

𝑖2𝑗2 , 𝑓), 𝑆1
𝑖1𝑗1 (𝐵𝑘,𝑙(𝑏, 𝑆2

𝑖2𝑗2 , 𝑓)),                (9) 

𝐵𝑃𝑘(𝑏, 𝑎
2 , 𝑆1

𝑖1𝑗1𝑓)    𝑃𝐵𝑙(𝑏, 𝑎
1, 𝑆2

𝑖2𝑗2𝑓).                        (10) 

𝑃𝑃(𝑏, 𝑎1⨂𝑎2 , 𝑓)    𝑃𝑃1(𝑏, 𝑎
1⨂𝑎2 , 𝑓),                                (11) 

where 𝑘, 𝑙 ≥ 0, and 𝑎𝑖 is the 𝐵𝑀𝑂 symbol of the dyadic shift 𝑆00if it appears in the 𝑖-th 

variable. The total number of terms in the representation is no greater than 𝐶(1 +
max(𝑖1, 𝑗1))(1 + max(𝑖2, 𝑗2))for some universal constant 𝐶. Note that for 𝑎1 ∈
𝐵𝑀𝑂(ℝ𝑚) and 𝑎2 ∈ 𝐵𝑀𝑂(ℝ𝑚), there holds 𝑎1⨂𝑎2 ∈ 𝐵𝑀𝑂prod(ℝ

𝑛 × ℝ𝑚). Hence, 

implied by Theorem(4.1.4), Lemma(4.1.8), Lemma(4.1.9), and Lemma(4.1.10), the 𝐿2 

norm of all of the terms above are uniformly bounded, independent of 𝑘, 𝑙 in particular. 

To derive the desired representation, we argue by an iteration of Theorem(4.1.5). 

In the case when both 𝑆1
𝑖1𝑗1 and 𝑆2

𝑖2𝑗2  are cancellative, only operators 𝐵𝑘,𝑙 need to be 

involved. In order to make the notations clear, in the following, we will use 𝐵𝑙
𝜏 to denote 

the one-parameter paraproducts that appeared for the 𝜏-th variable, where 𝑘 ≥ 0 and𝜏 =
1,2. Calculation shows that 

[[𝑏, 𝑆1
𝑖1𝑗1], 𝑆2

𝑖2𝑗2] 𝑓 = ∑∑〈𝑏, ℎ𝐼1⨂𝑢𝐼2〉〈𝑓, ℎ𝐽1⨂𝑢𝐽2〉[ℎ𝐼1 , 𝑆1
𝑖1𝑗1]ℎ𝐽1

𝐼2:𝐽2𝐼1:𝐽1

⨂[𝑢𝐼2 , 𝑆2
𝑖2𝑗2]𝑢𝐽2 , 

which by iteration equals 

∑(∑ 𝐵𝑘,𝑡1
1 (〈𝑏, 𝑢𝐼2〉2, 𝑆1

𝑖1𝑗1(〈𝑓, 𝑢𝐽2〉2))

𝑡1∈Λ1𝐼1:𝐽1

+ ∑ 𝑆1
𝑖1𝑗1 (𝐵𝑘,𝑡2

1 (〈𝑏, 𝑢𝐼2〉2, 〈𝑓, 𝑢𝐽2〉2))

𝑡2∈Λ2

)⨂([𝑢𝐼2 , 𝑆2
𝑖2𝑗2]𝑢𝐽2), 
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 where𝐵𝑘,𝑡𝑖
1 are paraproducts of type𝐵𝑘

1in the first variable, and for each 𝑡𝑖 , 𝑘 is an arbitrary 

nonnegative integer. 

 Note that in the first parentheses we have a finite linear combination of terms that have 

already been studied, and all of the index set Λ𝑖 satisfy|Λ𝑖| ≤ 𝐶(1 +max(𝑖1, 𝑗1)), 𝑖 = 1,2. 

Since the terms inside the first parentheses can be treated similarly, let’s study one of the 

terms 𝐵𝑘,𝑡1
1 as an example. We will also omit the subscript 𝑡1 as the choice is arbitrary. 

Then, the sum corresponding to 𝐵𝑘
1 is equal to 

∑𝐵𝑘
1 (〈𝑏, 𝑢𝐼2〉2, 𝑆1

𝑖1𝑗1(〈𝑓, 𝑢𝐽2〉2))

𝐼1,J1

⨂([𝑢𝐼2 , 𝑆2
𝑖2𝑗2]𝑢𝐽2) 

= ∑∑𝛽𝐼1 〈𝑏, ℎ𝐼1
(𝑘)⨂𝑢𝐼2〉 〈𝑆1

𝑖1𝑗1(𝑓), ℎ𝐼1
𝜖1⨂𝑢𝐽2〉ℎ𝐼1

𝜖1
′

|𝐼1
𝑘|
−
1
2

𝐼1𝐼2:𝐽2

⨂([𝑢𝐼2 , 𝑆2
𝑖2𝑗2]𝑢𝐽2) 

=∑𝛽𝐼1ℎ𝐼1
𝜖1
′

|𝐼1
𝑘|
−
1
2⨂([〈𝑏, ℎ

𝐼1
(𝑘)〉1 , 𝑆1

𝑖1𝑗1] 〈𝑆1
𝑖1𝑗1𝑓, ℎ𝐼1

𝜖1〉1)

𝐼1

 

=∑𝛽𝐼1ℎ𝐼1
𝜖1
′

|𝐼1
𝑘|
−
1
2⨂(∑ 𝐵𝑙,𝑠1

2 (〈𝑏, ℎ
𝐼1
(𝑘)〉1 , 𝑆2

𝑖2𝑗2(〈𝑆1
𝑖1𝑗1(𝑓), ℎ𝐼1

𝜖1〉1))

𝑠1∈Γ1𝐼1

+ ∑ 𝑆2
𝑖2𝑗2 (𝐵𝑙,𝑠2

2 (〈𝑏, ℎ
𝐼1
(𝑘)〉1 , 〈𝑆1

𝑖1𝑗1(𝑓), ℎ𝐼1
𝜖1〉1))

𝑠2∈Γ2

) 

where𝐵𝑙,𝑠𝑖
2  are paraproducts of type 𝐵𝑙

2 in the second variable, and all the index 

setsΓ𝑖satisfy|Γ𝑖| ≤ 𝐶(1 + max(𝑖2, 𝑗2)), 𝑖 = 1,2. Again, since all the terms in the 

parentheses are similar, we only consider one of𝐵𝑙,𝑠2
2 and omit the subscript𝑠2. This is 𝑎 

mixed case, and all the other combinations follow similarly. Thus, noticing that 

∑𝛽𝐼1ℎ𝐼1
𝜖1
′

|𝐼1
𝑘|
−
1
2⨂𝑆2

𝑖2𝑗2 (𝐵𝑙
2 (〈𝑏, ℎ

𝐼1
(𝑘)〉1 , 〈𝑆1

𝑖1𝑗1(𝑓), ℎ𝐼1
𝜖1〉1))

𝐼1

 

= 𝑆2
𝑖2𝑗2 (∑𝛽𝐼1𝛽𝐼2 〈𝑏, ℎ𝐼1

(𝑘)⨂𝑢
𝐼2
(𝑙)〉 〈𝑆1

𝑖1𝑗1𝑓, ℎ𝐼1
𝜖1⨂𝑢𝐼2

𝜖2〉

𝐼1,𝐼2

ℎ𝐼1
𝜖1
′

⨂𝑢𝐼2
𝜖2
′

|𝐼1
(𝑘)|

−
1
2
|𝐼2
(𝑙)|

−
1
2
)(12) 

is exactly𝑆2
𝑖2𝑗2 (𝐵𝑘,𝑙(𝑏𝑆1

𝑖1𝑗1𝑓)), where 𝐵𝑘,𝑙is the bi-parameter para- product we’ve studied 

in Lemma(4.1.8),and the only case involving non-cancellative Haar functions is when the 

corresponding 𝑘 or 𝑙 is 0. We therefore obtain the desired representation of this term. All 

the other terms can be treated similarly, by noticing that paraproducts𝐵𝑘,𝑙can be obtained 

by combining𝐵𝑘
1 and𝐵𝑙

2 through the same process described above. And it is easily seen 

that the total number of terms is bounded by(1 + max(𝑖1, 𝑗1))(1 + max(𝑖2, 𝑗2))up to 𝑎 

dimensional constant. 

We assume that 𝑆2
00𝑓 = ∑ 〈𝑎2 , 𝑢𝐼2〉2|𝐼2|

−1/2〈𝑓, 𝑢𝐼2
1 〉2𝑢𝐼2𝐼2 .Following from 

Theorem(4.1.5), in the first variable, the commutator can be represented as 𝑎 linear 

combination of paraproducts, i.e. 

[[𝑏, 𝑆1
𝑖1𝑗1], 𝑆2

00] 𝑓 
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= ∑ ∑ 〈𝑏, ℎ𝐼1⨂𝑢𝐼2〉〈𝑓, ℎ𝐽1⨂𝑢𝐽2〉[ℎ𝐼1 , 𝑆1
𝑖1𝑗1]ℎ𝐽1

𝐼2⊂𝐽2𝐼1⊂𝐽1
(𝑖1)

⨂[𝑢𝐼2 , 𝑆2
00]𝑢𝐽2  

= ∑ ( ∑ 𝐵𝑘,𝑡1
1 (〈𝑏, 𝑢𝐼2〉2, 𝑆1

𝑖1𝑗1(〈𝑓, 𝑢𝐽2〉2))

𝑡1∈Λ1𝐼1⊂𝐽1

+ ∑ 𝑆1
𝑖1𝑗1 (𝐵𝑘,𝑡2

1 (〈𝑏, 𝑢𝐼2〉2, 〈𝑓, 𝑢𝐽2〉2))

𝑡2∈Λ2

)⨂([𝑢𝐼2 , 𝑆2
00]𝑢𝐽2). 

 Recall that by Theorem(4.1.5), in the one-parameter setting, the noncan- cellative dyadic 

shift𝑆00can be represented as 𝑎 finite linear combination of paraproducts (corresponding 

to the sum over𝐼 ⊊ 𝐽and the second term in the sum over𝐼 = 𝐽) and operator 𝑃 

(corresponding to the first term in the sum over𝐼 = 𝐽). Hence, 

∑ 𝐵𝑘,𝑡1
1 (〈𝑏, 𝑢𝐼2〉2, 𝑆1

𝑖1𝑗1(〈𝑓, 𝑢𝐽2〉2))

𝐼2⊂𝐽2

⨂([𝑢𝐼2 , 𝑆2
00]𝑢𝐽2) 

=∑𝛽𝐼1ℎ𝐼1
𝜖1
′

|𝐼1
(𝑘)
|
−
1
2
⨂([〈𝑏, ℎ

𝐼1
(𝑘)〉1 , 𝑆2

00] , 〈𝑆1
𝑖1𝑗1𝑓, ℎ𝐼1

𝜖1〉1)

𝐼1

 

=∑𝛽𝐼1ℎ𝐼1
𝜖1
′

|𝐼1
(𝑘)|

−
1
2
⨂(∑ 𝐵𝑙,𝑠1

2 (〈𝑏, ℎ
𝐼1
(𝑘)〉1 , 𝑆2

𝑖2𝑗2(〈𝑆1
𝑖1𝑗1(𝑓), ℎ𝐼1

𝜖1〉1))

𝑠1∈Γ1𝐼1

+ ∑ 𝑆2
𝑖2𝑗2 (𝐵𝑙,𝑠2

2 (〈𝑏, ℎ
𝐼1
(𝑘)〉1 , 〈𝑆1

𝑖1𝑗1(𝑓), ℎ𝐼1
𝜖1〉1))

𝑠2∈Γ2

+ 𝑃 (〈𝑏, ℎ
𝐼1
(𝑘)〉1 , 𝑎

2, 〈𝑆1
𝑖1𝑗1𝑓, ℎ𝐼1

𝜖1〉1)) 

= (∑ 𝐵𝑘,0,,𝑠1(𝑏, 𝑆1
𝑖1𝑗1𝑆2

00𝑓)

𝑠1∈Γ1

) + (∑ 𝑆2
00 (𝐵𝑘,0,,𝑠2(𝑏, 𝑆1

𝑖1𝑗1𝑓))

𝑠2∈Γ2

) 

+𝐵𝑃𝑘(𝑏, 𝑎
2, 𝑆1

𝑖1𝑗1𝑓). 
 Similarly, the other term can be treated exactly the same: 

∑ 𝑆1
𝑖1𝑗1 (𝐵𝑘,𝑡2

1 (〈𝑏, 𝑢𝐼2〉2, 〈𝑓, 𝑢𝐽2〉2))

𝐼2⊂𝐽2

⨂[𝑢𝐼2 , 𝑆2
00]𝑢𝐽2  

= (∑ 𝑆1
𝑖1𝑗1 (𝐵𝑘,0,,𝑠1(𝑏, 𝑆2

00𝑓))

𝑠1∈Γ1

) + (∑ 𝑆1
𝑖1𝑗1𝑆2

00 (𝐵𝑘,0,,𝑠2(𝑏, 𝑓))

𝑠2∈Γ2

) 

+𝑆1
𝑖1𝑗1(𝐵𝑃𝑘(𝑏, 𝑎

2 , 𝑓)). 
The desired representation is hence obtained. Note that by symmetry and duality, this 

implies the boundedness of other types of the mixed cases as well. 

[[𝑏, 𝑆1
00], 𝑆2

00]𝑓 
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= ∑ ∑ 〈𝑏, ℎ𝐼1〉1[ℎ𝐼1 , 𝑆1
00]𝑢𝐽1

𝐼2⊂𝐽2𝐼1⊂𝐽1

⨂[ℎ𝐼2 , 𝑆2
00]𝑢𝐽2 . 

First, we deal with the case when both𝑆1
00and𝑆2

00are of the same type, for instance, 

𝑆1
00𝑓 ≔∑〈𝑎1 , ℎ𝐼1〉1

𝐼1

|𝐼1|
−
1
2〈𝑓, ℎ𝐼1

1 〉ℎ𝐼1 , 

𝑆2
00𝑓 ≔∑〈𝑎2, 𝑢𝐼2〉2

𝐼2

|𝐼2|
−
1
2〈𝑓, 𝑢𝐼2

1 〉2𝑢𝐼2 . 

Observe that compared, after decomposing the commutator in each variable into 

paraproducts and operator 𝑃, the only new case that arises here is the “tensor product” of 

operator 𝑃 in both variables, which is equalto 

∑〈𝑏, ℎ𝐼1⨂𝑢𝐼2〉〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉

𝐼1,𝐼2

|𝐼1|
−1|𝐼2|

−1 

× ∑ ∑ 〈𝑎1⨂𝑎2 , ℎ𝐽1⨂𝑢𝐽2〉ℎ𝐽1⨂𝑢𝐽2
𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

 

= 𝑃𝑃(𝑏, 𝑎1⨂𝑎2 , 𝑓). 

 Second, we discuss the case when𝑆1
00and𝑆2

00are of different types, for instance, 

𝑆1
00𝑓 ≔∑〈𝑎1 , ℎ𝐼1〉1

𝐼1

|𝐼1|
−
1
2〈𝑓, ℎ𝐼1〉ℎ𝐼1

1 , 

𝑆2
00𝑓 ≔∑〈𝑎2, 𝑢𝐼2〉2

𝐼2

|𝐼2|
−
1
2〈𝑓, 𝑢𝐼2

1 〉2𝑢𝐼2 . 

It is implied by Theorem(4.1.5) that in the first variable, the commutator is 𝑎 linear 

combination of paraproducts and operator 𝑃∗. Therefore, the only new case that arises here 

in the representation is 𝑃∗in the first variable mixed with 𝑃 in the second variable, which is 

∑〈𝑏, ℎ𝐼1⨂𝑢𝐼2〉

𝐼1,𝐼2

|𝐼1|
−1|𝐼2|

−1 × ∑ ∑ 〈𝑎1⨂𝑎2 , ℎ𝐽1⨂𝑢𝐽2〉〈𝑓, ℎ𝐼1⨂𝑢𝐼2〉ℎ𝐽1⨂𝑢𝐽2
𝐽2:𝐽2⊊𝐼2𝐽1:𝐽1⊊𝐼1

= 𝑃𝑃1(𝑏, 𝑎
1⨂𝑎2, 𝑓). 

Hence the main theorem in the bi-parameter setting is proved. As 𝑎 final remark, the proof 

in the multi-parameter setting proceeds exactly the same as this one. Clearly, in the desired 

representation of commutators with dyadic shifts, one needs to involve 𝑎 larger number of 

basic operators which mix together 𝐵𝑘  and 𝑃 in each variable, but the uniform 

boundedness of such operators can all be obtained similarly as in Lemmas 

(4.1.8), (4.1.9),and(4.1.10). 
Section (4.2): Characterizations of Multi-Parameter BMO 

As dual of the Hardy space𝐻1, the classical space of functions of bounded mean 

oscillation, BMO, arises naturally in many endpoint results in analysis, partial differential 

equations and probability. When entering 𝑎 setting with several free parameters, 𝑎 large 

variety of spaces are encountered, some of which lose the feature of mean oscillation 

itself. We are interested in characterizations of multi-parameter BMO spaces through 

boundedness of commutators. 

A classical result of Nehari [9] shows that 𝑎 Hankel operator with anti-analytic symbol 𝑏 

mapping analytic functions into the space of anti-analytic functions by 𝑓 ⟼ 𝑃−𝑏𝑓 is 

bounded with respect to the 𝐿2 norm if and only if the symbol belongs to BMO. This 
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theorem has an equivalent formulation in terms of the boundedness of the commutator of 

the multiplication operator with symbol function 𝑏 and the Hilbert transform[𝐻, 𝑏] =
𝐻𝑏 − 𝐻𝑏. 
Ferguson–Sadosky in [5] and later Ferguson–Lacey in their ground breaking [1] study the 

symbols of bounded ‘big’ and ‘little’ Hankel operators on the bidisk through commutators 

of the tensor product or of the iterated form 

[𝐻1, 𝐻2, 𝑏], and [𝐻1[𝐻2, 𝑏]]. 

 Here 𝑏 = 𝑏(𝑥1, 𝑥2)and the 𝐻𝑘 are the Hilbert transforms acting in the 𝑘th variable. 𝐴 full 

characterization of different two-parameter BMO spaces, Cotlar–Sadosky’s little BMO and 

Chang–Fefferman’s product BMO space, is given through these commutators. 

Through the use of completely different real variable methods, in [3] Coifman– 

Rochberg–Weiss extended Nehari’s one-parameter theory to real analysis in the sense that 

the Hilbert transform was replaced by Riesz transforms. These one-parameter resultsi [3] 

were treated in the multi-parameter setting in Lacey–Petermichl–Pipher–Wick [111]. Both 

the upper and lower estimate have proofs very different from those in one parameter. In 

addition, in both cases it is observed that the Riesz transforms are 𝑎 representative testing 

class in the sense that BMO also ensures boundedness for (iterated) commutators with 

more general Calderón–Zygmund operators, a result now known in  full generality due 

to Dalenc–Ou [106]. Notably the Riesz commutator has found striking applications to 

compensated compactness and div-curl lemmas,[118], [122]. 

Our extension to the multi-parameter setting is two-fold. On the one hand we replace the 

Calderón–Zygmund operators by Journé operators𝐽𝑖 and on the other hand we also iterate 

the commutator: 

[𝐽1, … , [𝐽𝑡, 𝑏] … ]. 
We prove the remarkable fact that 𝑎 multi-parameter BMO class still ensures bound- 

edness in this situation and that the collection of tensor products of Riesz transforms 

remains the representative testing class. The BMO class encountered is 𝑎 mix of little 

BMO and product BMO that we call 𝑎 little product BMO. Its precise form depends upon 

the distribution of variables in the commutator. In this case, lower estimates were only 

known in the case of the double Hilbert transform[5]. The sufficiency of the little BMO 

class for boundedness of Journé commutators had never been observed. 

It is 𝑎 general fact that two-sided commutator estimates have an equivalent formulation in 

terms of weak factorization. We find the preduals of our little product BMO spaces and 

prove 𝑎 corresponding weak factorization result. Necessity of the little product BMO 

condition is shown through 𝑎 lower estimate on the commutator. There is 𝑎 sharp contrast 

when tensor products of Riesz transforms are considered instead of multiple Hilbert 

transforms and when iterations are present. 

In the Hilbert transform case, Toeplitz operators with operator symbol arise naturally. 

Using Riesz transforms inℝ𝑑as 𝑎 replacement, there is an absence of analytic structure and 

tools relying on analytic projection or orthogonal spaces are not readily available. We 

overcome part of this difficulty through the use of Calderón–Zygmund operators whose 

Fourier multiplier symbols are adapted to cones. This idea is inspired by[111]. Such 

operators are also mentioned in [128]. A class of operators of this type classifies little 

product BMO through two-sided commutator estimates, but it does not allow the passage 

to 𝑎 classification through iterated commutators with tensor products of Riesz transforms. 
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In 𝑎 second step, we find it necessary to consider upper and lower commutator estimates 

using 𝑎 well-chosen family of Journé operators that are not of tensor product type. 

Through geometric considerations and an averaging procedure of zonal harmonics on 

products of spheres, we construct the multiplier of 𝑎 special Journé operator that preserves 

lower commutator estimates and resembles the multiple Hilbert transform: it has large 

plateaus of constant values and is a polynomial in multiple Riesz transforms. We expect 

that this construction allows other applications. 

There is an increase in difficulty when the dimension is greater than two, due to the simpler 

structure of the rotation group on𝕊1. In higher dimension, there is𝑎 rise in difficulty when 

tensor products involve more than two Riesz transforms. The actual passage to the Riesz 

transforms requires 𝑎 stability estimate in commutator norms for certain multi-parameter 

singular integrals in terms of the mixed BMO class. We prove 𝑎 qualitative upper estimate 

for iterated commutators using paraproduct free Journé operators. We make use of recent 

versions of𝑇(1)theorems in this setting. These recent advances are different from the 

corresponding theorem of Journé[16]. The results we allude to have the additional feature 

of providing 𝑎 convenient representation formula for bi-parameter in[123] and even 

multi-parameter in[125] Calderón–Zygmund operators by dyadic shifts. 

This contains some review on Hardy spaces in several parameters as well as some 

new definitions and lemmas relevant to us. 

We describe the elements of product Hardy space theory, as developed by Chang 

and Fefferman as well as Journé. By this we mean the Hardy spaces associated with 

domains like the poly-disk orℝ𝑑 ≔ ⨂𝑠=1
𝑡 ℝ𝑑𝑠for𝑑 = (𝑑1, … , 𝑑𝑡). While doing so, we 

typically do not distinguish whether we are working on ℝ𝑑 or 𝕋𝑑. In higher dimensions, 

the Hilbert transform is usually replaced by the collection of Riesz transforms. 

The (real) one-parameter Hardy space𝐻𝑅𝑒
1 (ℝ𝑑)denotes the class of functions with the 

norm 

∑‖𝑅𝑗𝑓‖1

𝑑

𝑗=0

 

where𝑅𝑗 denotes the 𝑗th Riesz transform or the Hilbert transform if the dimension is one. 

Here and below we adopt the convention that𝑅0, the 0th Riesz transform, is the identity. 

This space is invariant under the one-parameter family of isotropic dilations, while the 

product Hardy space𝐻𝑅𝑒
1 (ℝ𝑑)is invariant under dilations of each coordinate separately. 

That is, it is invariant under 𝑎 𝑡 parameter family of dilations, hence the terminology 

‘multi-parameter’ theory. One way to define 𝑎 norm on 𝐻𝑅𝑒
1 (ℝ𝑑)is 

‖𝑓‖𝐻1~ ∑ ‖
𝑡
⨂
𝑙 = 1

𝑅𝑙,𝑗𝑙𝑓‖

1

.

0≤𝑗𝑙≤𝑑𝑙

 

 𝑅𝑙,𝑗𝑙 is the Riesz transform in the 𝑗𝑙th direction of the 𝑙th variable, and the 0th Riesz 

transform is the identity operator. 

The dual of the real Hardy space𝐻𝑅𝑒
1 (ℝ𝑑)∗is𝐵𝑀𝑂(ℝ𝑑), the 𝑡-fold product 𝐵𝑀𝑂 space. It 

is 𝑎 theorem of S.-Y. Chang and R. Fefferman [2], [107] that this space has 𝑎 

characterization in terms of 𝑎 product Carleson measure. 

Define 
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‖𝑏‖𝐵𝑀𝑂(ℝ𝑑) ≔ sup
𝑈⊂ℝ𝑑

(|𝑈|−1∑ ∑ |〈𝑏, 𝑤𝑅
𝜀〉|2

𝜀∈sig𝑑𝑅⊂𝑈

)

1
2

.                        (13) 

Here the supremum is taken over all open subsets 𝑈 ⊂ ℝ𝑑with finite measure, and we use 

𝑎 wavelet basis 𝑤𝑅
𝜖 adapted to rectangles 𝑅 = 𝑄1 × …× 𝑄𝑡, where each 𝑄𝑙 is a cube. The 

superscript 𝜖 reflects the fact that multiple wavelets are associated to any dyadic cube, 

see[111] for details. The fact that the supremum admits all open sets of finite measure 

cannot be omitted, as Carleson’s example shows[117]. This fact is responsible for some of 

the difficulties encountered when working with this space. 

Theorem(4.2.1)[115]: (Chang, Fefferman). We have the equivalence of norms 

‖𝑏‖
(𝐻𝑅𝑒

1 (ℝ𝑑))
∗‖𝑏‖𝐵𝑀𝑂(ℝ𝑑). 

That is, 𝐵𝑀𝑂(ℝ𝑑)is the dual to𝐻𝑅𝑒
1 (ℝ𝑑). 

This 𝐵𝑀𝑂norm is invariant under 𝑎 𝑡-parameter family of dilations. Here the dilations are 

isotropic in each parameter separately. See also[4] and[121]. 
Following[119] and[5], we recall some facts about the space little𝐵𝑀𝑂, often 

written as ‘bmo’, and its predual. 𝐴 locally integrable function𝑏:ℝ𝑑 = ℝ𝑑1 ×…×ℝ𝑑𝑠 →
ℂis in bmo if and only if 

‖𝑏‖𝑏𝑚𝑜 = sup
𝑄=𝑄1×…×𝑄𝑠

|𝑄|−1∫|𝑏(𝑥) − 𝑏𝑄|

 

𝑄

< ∞ 

Here the 𝑄𝑘 are 𝑑𝑘-dimensional cubes and𝑏𝑄denotes the average of b over 𝑄.  

It is easy to see that this space consists of all functions that are uniformly in 𝐵𝑀𝑂 in each 

variable separately. Let𝑥�̂� = (𝑥1, … , 𝑥𝜐−1, ; 𝑥𝜐+1, … , 𝑥𝑠). Then𝑏(𝑥�̂�)is 𝑎 function in𝑥𝜐only 

with the other variables fixed. Its 𝐵𝑀𝑂 norm in𝑥𝜐is 

‖𝑏(𝑥�̂�)‖𝐵𝑀𝑂 = sup
𝑄𝜐

|𝑄𝜐|
−1 ∫|𝑏(𝑥) − 𝑏(𝑥�̂�)𝑄𝜐|

 

𝑄𝜐

𝑑𝑥𝜐 

and the little 𝐵𝑀𝑂 norm becomes 

‖𝑏‖𝑏𝑚𝑜 = max
𝜐
{sup
𝑥�̂�

‖𝑏(𝑥�̂�)‖𝐵𝑀𝑂}. 

 On the bi-disk, this becomes 

‖𝑏‖𝑏𝑚𝑜 = max
𝜐
{sup
𝑥1

‖𝑏(𝑥1, . )‖𝐵𝑀𝑂 , sup
𝑥2

‖𝑏(𝑥2, . )‖𝐵𝑀𝑂}, 

the space discussed in[5]. Here, the pre-dual is the space𝐻1(𝕋)⨂𝐿1(𝕋) + 𝐿1(𝕋)⨂𝐻1(𝕋). 
All other cases are an obvious generalization, at the cost of notational inconvenience. 

We define 𝑎 𝐵𝑀𝑂 space which is in between little 𝐵𝑀𝑂 and product𝐵𝑀𝑂. As 

mentioned, we aim at characterizing 𝐵𝑀𝑂 spaces consisting for example of those 

functions 𝑏(𝑥1, 𝑥2, 𝑥3)qsuch that 𝑏(𝑥1, . , . ) and 𝑏(. , . , 𝑥3)qare uniformly in product 𝐵𝑀𝑂 

in the remaining two variables.  

Definition(4.2.2)[115]: Let 𝑏:ℝ𝑑 → ℂ with 𝑑 = (𝑑1, … , 𝑑𝑡). Take 𝑎 partition ℐ =
{𝐼𝑠: 𝐼 ≤ 𝑠 ≤ 𝑙} of {1,2, … , 𝑡}so that ∪̇1≤𝑠≤𝑙 𝐼𝑠 = {1,2,… , 𝑡}. We say that 𝑏 ∈ 𝐵𝑀𝑂ℐ(ℝ

𝑑) if 
for any choices 𝜐 = (𝜐𝑠), 𝜐𝑠 ∈ 𝐼𝑠, 𝑏is uniformly in product 𝐵𝑀𝑂 in the variables indexed 

by𝜐𝑠. We call 𝑎 𝐵𝑀𝑂space of this type 𝑎 ‘little product 𝐵𝑀𝑂’. If for any𝑥 = (𝑥1, … , 𝑥𝑡) ∈



138 

ℝ𝑑, we define𝑥�̂�by removing those variables indexed by 𝜐𝑠, the little product 𝐵𝑀𝑂 norm 

becomes 

‖𝑏‖𝐵𝑀𝑂ℐ = max𝜐
{sup
𝑥�̂�

‖𝑏(𝑥�̂�)‖𝐵𝑀𝑂} 

 where the 𝐵𝑀𝑂 norm is product 𝐵𝑀𝑂 in the variables indexed by𝜐𝑠 . 
For example, when𝑑 = (1,1,1) = 1, when𝑡 = 3 and 𝑙 = 2 with𝐼1 = (13)and𝐼2 = (2), 
writing ℐ = (13)(2) the space𝐵𝑀𝑂(13)(2)(𝕋

1)arises, which consists of those functions 

that are uniformly in product 𝐵𝑀𝑂 in the variables(1,2)and(3,2) respectively, as 

described above. Moreover, as degenerate cases, it is easy to see 

that𝐵𝑀𝑂(12…𝑡)and𝐵𝑀𝑂(1)(2)…(𝑡)are exactly little 𝐵𝑀𝑂 and product 𝐵𝑀𝑂 respectively, the 

spaces we are familiar with.  

Little product 𝐵𝑀𝑂 spaces on𝕋𝑑can be defined in the same way. Now we find the predual 

of𝐵𝑀𝑂(13)(2), which is 𝑎 good model for other cases. We choose the order of variables 

most convenient for us. 

Theorem (4.2.3)[115]: The pre-dual of the space𝐵𝑀𝑂(13)(2)(𝕋
1)is equal to the space 

𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋) + 𝐿1(𝕋)⨂𝐻𝑅𝑒

1 (𝕋(1.1)) 

≔ {𝑓 + 𝑔: 𝑓 ∈ 𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋)𝑎𝑛𝑑𝑔 ∈ 𝐿1(𝕋)⨂𝐻𝑅𝑒

1 (𝕋(1.1))}. 

Proof: The space 

𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋) = {𝑓 ∈ 𝐿1(𝕋3): , 𝐻2𝑓𝐻1𝐻2𝑓, 𝐿

1(𝕋3)} 

 equipped with the norm‖𝑓‖ = ‖𝑓‖1 + ‖𝐻1𝑓‖1 + ‖𝐻2𝑓‖1 + ‖𝐻1𝐻2𝑓‖1is 𝑎 Banach 

space. Let𝑊1 = 𝐿1(𝕋3) × 𝐿1(𝕋3) × 𝐿1(𝕋3) × 𝐿1(𝕋3)equipped with the norm 

‖(𝑓1, 𝑓2, 𝑓3, 𝑓4)‖𝑊1 = ‖𝑓1‖1 + ‖𝑓2‖1 + ‖𝑓3‖1 + ‖𝑓4‖1. 

 Then we see that𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋)is isomorphically isometric to the closed subspace 

𝑉 = {(𝑓, 𝐻1(𝑓), 𝐻2(𝑓),𝐻1𝐻2(𝑓)): 𝑓 ∈ 𝐻
1(𝕋(1.1))⨂𝐿1(𝕋3)} 

of𝑊1. Now, the dual of𝑊1is equal to𝑊∞ = 𝐿∞(𝕋3) × 𝐿∞(𝕋3) × 𝐿∞(𝕋3) ×
𝐿∞(𝕋3)equipped with the norm‖(𝑔1, 𝑔2 , 𝑔3 , 𝑔4)‖∞ = max{‖𝑔𝑖‖∞: 1 ≤ 𝑖 ≤ 4}so the dual 

space of 𝑉 is equal to the quotient of𝑊∞by the annihilator 𝑈 of the subspace 𝑉 in𝑊∞. 

But, using the fact that the Hilbert transforms are self-adjoint up to 𝑎 sign change, we see 

that 

𝑈 = {(𝑔1, 𝑔2 , 𝑔3 , 𝑔4): 𝑔1 +𝐻1𝑔2 +𝐻2𝑔3 + 𝐻1𝐻2𝑔4 = 0} 
and so: 

𝑉∗ ≅ 𝑊∞/𝑈 ≅ lm𝜃 

where 

𝜃(𝑔1, 𝑔2, 𝑔3, 𝑔4): 𝑔1 + 𝐻1𝑔2 + 𝐻2𝑔3 +𝐻1𝐻2𝑔4 = 0 

since𝑈 = 𝑘𝑒𝑟(𝜃). But  

lm(𝜃) = 𝐿∞(𝕋3) + 𝐻1(𝐿
∞(𝕋3)) + 𝐻2(𝐿

∞(𝕋3)) + 𝐻1 (𝐻2(𝐿
∞(𝕋3))) 

is equal to the functions that are uniformly in product 𝐵𝑀𝑂 in variables1 and2. Using the 

same reasoning we see that the dual of 𝐿1(𝕋)⨂𝐻𝑅𝑒
1 (𝕋(1.1))is equal to 𝐿∞(𝕋3) +

𝐻2(𝐿
∞(𝕋3)) + 𝐻3(𝐿

∞(𝕋3)) + 𝐻2𝐻3(𝐿
∞(𝕋3)), which is equal to the space of functions 

that are uniformly in product 𝐵𝑀𝑂 in variables 2 and 3. Now, we consider the ‘𝐿1 sum’ of 

the spaces𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋)and𝐿1(𝕋)⨂𝐻𝑅𝑒

1 (𝕋(1.1)) ; that is 

𝑀(13)(2) = {(𝑓, 𝑔): 𝑓 ∈ 𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋); 𝑔 ∈ 𝐿1(𝕋)⨂𝐻𝑅𝑒

1 (𝕋(1.1))} 

equipped with the norm 
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‖(𝑓, 𝑔)‖ = ‖𝑓‖𝐻𝑅𝑒1 (𝕋(1.1))⨂𝐿1(𝕋)
+ ‖𝑔‖𝐿1(𝕋)⨂𝐻𝑅𝑒1 (𝕋(1.1))

. 

We see that, if𝜙:𝑀(13)(2) → 𝐿
1(𝕋3)is defined by𝜙(𝑓, 𝑔) = 𝑓 + 𝑔, then the image of𝜙is 

isometrically isomorphic to the quotient of𝑀(13)(2)by the space 

𝑁 = {(𝑓, 𝑔) ∈ 𝑀(13)(2): 𝑓 + 𝑔 = 0} 

= {(𝑓,−𝑓): 𝑓 ∈ 𝐻𝑅𝑒
1 (𝕋(1.1))⨂𝐿1(𝕋) ∩ 𝐿1(𝕋)⨂𝐻𝑅𝑒

1 (𝕋(1.1))}. 

 Now, recall that the dual of the quotient 𝑀/𝑁 is equal to the annihilator of𝑁. It is easy to 

see that the annihilator of 𝑁 is equal to the set of ordered pairs(𝜙, 𝜙) qwith𝜙in the 

intersection of the duals of the two spaces. Thus the dual of the image of𝜃is equal 

to𝐵𝑀𝑂(13)(2)(ℝ
𝑑). The norm of an element in the predual is equal to its norm as an 

element of the double dual which is easily computed. Following this example, the reader 

may easily find the correct formulation for the predual of other little product 𝐵𝑀𝑂 spaces 

as well those in several variables, replacing the Hilbert transform by all choices of Riesz 

transforms. For instance, one can prove that the predual of the space𝐵𝑀𝑂(13)(2)(ℝ
𝑑)is 

equal to 𝐻𝑅𝑒
1 (ℝ(𝑑1,𝑑2))⨂𝐿1(ℝ𝑑3) + 𝐿1(ℝ𝑑1)⨂𝐻𝑅𝑒

1 (ℝ(𝑑2,𝑑3)). 

We characterize the boundedness of commutators of the form[𝐻2[𝐻3𝐻1, 𝑏]], bss as 

operators on𝐿2(𝕋3). In the case of the Hilbert transform, this case is representative of the 

general case and provides 𝑎 starting point that is easier to read because of the simplicity of 

the expression of products and sums of projection onto orthogonal subspaces. Its general 

form can be found at the beginning. 
Now let 𝑏 ∈ 𝐿1(𝕋𝑛)and let 𝑃 and 𝑄 denote orthogonal projections onto subspaces 

of 𝐿2(𝕋𝑛). We shall describe relationships between functions in the little product BMO𝑠 
and several types of projection-multiplication operators. These will be Hilbert transform-

type operators of the form 𝑃 − 𝑃⊥; and iterated Hankel or Toeplitz type operators of the 

form 𝑄⊥𝑏𝑄(Hankel), 𝑃𝑏𝑃(Toeplitz),𝑃𝑄⊥𝑏𝑄𝑃 (mixed), where 𝑏 means the (not 𝑎 priori 

bounded) multiplication operator 𝑀𝑏on 𝐿2(𝕋𝑛). 
We shall use the following simple observation concerning Hilbert transform type operators 

again and again: 

Corollary(4.2.4)[115]: We have the following two-sided estimate 

‖𝑏‖𝐵𝑀𝑂(13)(2) ≲ ‖[𝐻2[𝐻3𝐻1, 𝑏]]‖𝐿2(𝕋3)→𝐿2(𝕋3) ≲ ‖𝑏‖𝐵𝑀𝑂(13)(2). 

It will be useful to denote by 𝑄13 orthogonal projection on the subspace of functions 

which are either analytic or anti-analytic in the first and third variables; 𝑄13 = 𝑃1𝑃3 +
𝑃1
⊥𝑃3

⊥. Then the projection 𝑄13
⊥  onto the orthogonal of this subspace is defined by 𝑄13

⊥ =
𝑃1
⊥𝑃3 + 𝑃1𝑃3

⊥. We reformulate properties (ii) and (iii) in the statement of Theorem (4.2.3) 

in terms of Hankel Toeplitz type operators. 

Lemma (4.2.5)[115]: We have the following algebraic facts on commutators and 

projection operators. 

(i) The commutators[𝐻2[𝐻1, 𝑏]]and[𝐻2[𝐻3, 𝑏]]are bounded on𝐿2(𝕋3)if and only if the 

operators𝑃𝑖𝑃2𝑏𝑃𝑖
⊥𝑃2

⊥, 𝑃𝑖
⊥𝑃2𝑏𝑃𝑖𝑃2

⊥𝑏𝑃𝑖
⊥𝑃2, 𝑃𝑖

⊥𝑃2
⊥𝑏𝑃𝑖𝑃2with𝑖 ∈ {1,3}are bounded on 𝐿2(𝕋3). 

(ii) The commutator[𝐻2[𝐻3𝐻1, 𝑏]]is bounded on𝐿2(𝕋3)if and only if all four operators 

𝑃2𝑄13𝑏𝑄13
⊥ 𝑃2

⊥, 𝑃2
⊥𝑄13

⊥ 𝑏𝑄13𝑃2, 𝑃2𝑄13
⊥ 𝑏𝑄13𝑃2

⊥, 𝑃2
⊥𝑄13𝑏𝑄13

⊥ 𝑃2are bounded on 𝐿2(𝕋3). 
Proof:  Using Remark1 it is easy to see that 

[𝐻2[𝐻1, 𝑏]] = 4((𝑃2𝑃1𝑏𝑃1
⊥𝑃2

⊥ − 𝑃2𝑃1
⊥𝑏𝑃1𝑃2

⊥) − (𝑃2
⊥𝑃1𝑏𝑃1

⊥𝑃2 − 𝑃2
⊥𝑃1

⊥𝑏𝑃1𝑃2)) 

and that the corresponding equation for[𝐻2[𝐻3, 𝑏]], bss is also true. This, along with the 

observation that the ranges of all arising summands are mutually orthogonal, gives 
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assertion (i). To prove (ii) we just notice that𝐻1𝐻3 = 𝑄13 − 𝑄13
⊥ is 𝑎 Hilbert transform type 

operator which permits us to repeat the above argument replacing 𝑃1 by𝑄13. 
The following lemma will allow us to insert an additional Hilbert transform into the 

commutator without reducing the norm. 

Lemma (4.2.6)[115]: ‖𝑃3𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3‖𝐿2→𝐿2 = ‖𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2‖𝐿2→𝐿2 . 
Proof: The inequality≤ is trivial, since𝑃3is 𝑎 projection which commutes with𝑃1

⊥ and𝑃2
⊥. 

To see≥, notice that𝑃3𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3is 𝑎 Toeplitz operator with symbol𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2. 
So‖𝑃3𝑃1

⊥𝑃2
⊥𝑏𝑃1𝑃2𝑃3‖ = sup𝑥3‖𝑃1

⊥𝑃2
⊥𝑏(. , . , 𝑥3)𝑃1𝑃2‖. The latter is just‖𝑃1

⊥𝑃2
⊥𝑏𝑃1𝑃2‖. 

For convenience we include 𝑎 sketch of the facts about Toeplitz operators we use. 

Compare [116]. Let 𝑊3 be the operator of multiplication by𝒵3,𝑊3(𝑓) = 𝒵3𝑓, acting 

on𝐿2(𝕋3). If we define𝐵 = 𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2 as well as 

𝐴𝑛 = 𝑊3
∗𝑛(𝑃3𝑃1

⊥𝑃2
⊥𝑏𝑃1𝑃2𝑃3)𝑊3

𝑛 and 𝐶𝑛 = 𝑊3
𝑛(𝑃3

⊥𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3
⊥)𝑊3

∗𝑛 

as operators acting on𝐿2(𝕋3)then the sequences𝐴𝑛and𝐶𝑛converge to 𝐵 in the strong 

operator topology: it is easy to see that𝑊3,𝑊3
∗; and𝑃3commute with𝑃1, 𝑃2, 𝑃1

⊥and𝑃2
⊥. The 

multiplier 𝑏 satisfies the equation𝑊3
∗𝑛𝑏𝑊3

∗𝑛 = 𝑏and 𝑊3
∗𝑊3

∗𝑛 = 𝐼𝑑. So we see that 

𝐴𝑛 = 𝑃1
⊥𝑃2

⊥(𝑊3
∗𝑛𝑃3𝑊3

𝑛)𝑏𝑃1𝑃2(𝑊3
∗𝑛𝑃3𝑊3

𝑛). 
But if𝑓 ∈ 𝐿2(𝕋3), then, since𝑊3

𝑛is 𝑎 unitary operator: 

‖𝑊3
∗𝑛𝑃3𝑊3

𝑛(𝑓) − 𝑓‖ = ‖𝑃3𝑊3
𝑛(𝑓) −𝑊3

𝑛(𝑓)‖ = ‖(𝑃3 − 𝐼)(𝑊3
𝑛)(𝑓)‖ → 0 (𝑛 → ∞), 

as tail of 𝑎 convergent Fourier series. This means that𝑊3
∗𝑛𝑃3𝑊3

𝑛converges to the identity 

in the strong operator topology. Thus, for each 𝑓 ∈ 𝐿2(𝕋3)we have‖(𝐴𝑛 − 𝐵)(𝑓)‖ → 0.So 

‖𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2‖ ≤ sup
𝑛∈ℕ
‖𝑊3

∗𝑛(𝑃3𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3)𝑊3
𝑛‖ 

≤ ‖𝑃3𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3‖. 
We show the proof of the main theorem. 

Theorem (4.2.7)[115]: Let 𝑏 ∈ 𝐿1(𝕋3). Then the following are equivalent with linear 

dependence on the respective norms. 

(i) 𝑏 ∈ 𝐵𝑀𝑂(13)(2). 

(ii) The commutators[𝐻2[𝐻1, 𝑏]]and[𝐻2[𝐻3, 𝑏]]are bounded on𝐿2(𝕋3). 

(iii) The commutator[𝐻2[𝐻3𝐻1, 𝑏]]is bounded on 𝐿2(𝕋3). 

Proof: We show (i)⟺(ii) and (ii)⟺(iii). 
(i)⟺(ii). Consider𝑓 = 𝑓(𝑥1, 𝑥2) and𝑔 = 𝑔(𝑥3). Then  

[𝐻2, [𝐻1, 𝑏]](𝑓𝑔) = 𝑔. [𝐻2, [𝐻1, 𝑏]](𝑓). 

So‖[𝐻2, [𝐻1, 𝑏]](𝑓𝑔)‖𝐿2(𝕋3)
2

= ‖𝐹𝑔‖𝐿2(𝕋)
2 where𝐹(𝑥2) = ‖[𝐻2[𝐻1, 𝑏]](𝑓)‖𝐿2(𝕋2). The map 

𝑔 ⟼ 𝐹𝑔 has 𝐿2(𝕋)operator norm‖𝐹‖∞. Now change the roles of 𝑥1 and 𝑥3. The 

Ferguson–Lacey equivalences‖[𝐻2[𝐻𝑖 , 𝑏]]‖~‖𝑏‖𝐵𝑀𝑂give the desired result. 

(ii)⟹(iii). Boundedness of the commutators[𝐻2, [𝐻1, 𝑏]]and[𝐻2, [𝐻3, 𝑏]]implies the 

boundedness of the mixed commutator[𝐻2, [𝐻1𝐻3, 𝑏]]by the identity [𝐻2, [𝐻1𝐻3, 𝑏]] =

𝐻1[𝐻2, [𝐻3, 𝑏]] + [𝐻2, [𝐻1, 𝑏]]𝐻3. 

(iii)⟹(ii). This part relies on Lemma(4.2.6). We wish to conclude from the boundedness 

of[𝐻2, [𝐻3𝐻1, 𝑏]]the boundedness of[𝐻2, [𝐻1, 𝑏]]and[𝐻2, [𝐻3, 𝑏]]. To see boundedness 

of[𝐻2, [𝐻1, 𝑏]]let us look at one of the Hankels from Lemma (4.2.5). Lemma(4.2.6) 

shows that𝑃2
⊥𝑃1

⊥𝑏𝑃2𝑃1is bounded if and only if the operator𝑃3𝑃1
⊥𝑃2

⊥𝑏𝑃1𝑃2𝑃3is. And the 

latter is an operator found in the list from part(ii) of Lemma(4.2.5). The analogous 

reasoning shows that all eight Hankels in1 are bounded and so(ii) is proved. 
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We are again in ℝ𝑑 with 𝑑 = (𝑑1, … , 𝑑𝑡) and a partition ℐ = (𝐼𝑠)1≤𝑠≤𝑙 of{1, … , 𝑡}. 

We show the following characterization theorem of the space 𝐵𝑀𝑂ℐ(ℝ
𝒅). 

Such two-sided estimates also hold in 𝐿𝑝 for 1 < 𝑝 < ∞. From the inductive nature 

of our arguments, it will also be apparent that the characterization holds when we consider 

intermediate cases, meaning commutators with any fixed number of Riesz transforms in 

each iterate. Below we state our most general two-sided estimate through Riesz 

transforms. 

Theorem (4.2.8)[115]: Let1 < 𝑝 < ∞. Under the same assumptions as Corollary(4.2.9) 
and for any fixed 𝒏 = (𝑛𝑠) where1 ≤ 𝑛𝑠 ≤ |𝐼𝑠|, we have the two-sided estimate  

‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅) ≲ sup
𝑗
‖[𝑹1,𝑗(1) , … , [𝑹𝑙,𝑗(𝑙), 𝑏] … ]‖

𝐿𝑝(ℝ𝒅)⟲
≲ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅) 

where𝒋(𝑠) = (𝑗𝑘)𝑘∈𝐼𝑠 , 0 ≤ 𝑗𝑘 ≤ 𝑑𝑘and for each𝑠, there are ns non-zero choices. 𝐴 Riesz 

transform in direction 0 is understood as the identity. 

For 𝑝 = 2 and 𝒏 = 𝟏this is the equivalence (i) ⟺ (ii) and for𝒏 = (|𝐼1|, … , |𝐼1|)it is the 

equivalence(i) ⟺ (iii) from Theorem(4.2.16). 
Our main focus on 𝑎 two-sided estimate when 𝒏 = (|𝐼1|, … , |𝐼1|) n when the tensor 

product is a paraproduct-free Journé operator: 

Corollary (4.2.9)[115]: Let 𝒋 = (𝑗1, … , 𝑗𝑡)with1 ≤ 𝑗𝑘 ≤ 𝑑𝑘and let for each1 ≤ 𝑠 ≤

𝑙, 𝒋(𝑠) = (𝑗𝑘)𝑘∈𝐼𝑠be associated 𝑎 tensor product of Riesz transforms𝑹𝑠,𝒋(𝑠) = ⨂𝑘∈𝐼𝑠𝑅𝑘,𝑗𝑘 ; 

here the 𝑅𝑘,𝑗𝑘are 𝑗𝑘th Riesz transforms acting on functions defined on the 𝑘th variable. We 

have the two-sided estimate 

‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅) ≲ sup
𝑗
‖[𝑹1,𝑗(1) , … , [𝑹𝑙,𝑗(𝑙), 𝑏] … ]‖

𝐿𝑝(ℝ𝒅)⟲
≲ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅). 

The statements above also serve as the statement of the general case for products of 

Hilbert transforms. In fact, when any 𝑑𝑘 = 1just replace the Riesz transforms by the 

Hilbert transform in that variable. We consider the case 𝑑𝑘 ≥ 2 for 1 ≤ 𝑘 ≤ 𝑡and thus 

iterated commutators with tensor products of Riesz transforms only. The special case 

when 𝑑𝑘 = 1 for some 𝑘 is easier but requires extra care for notation. 

The proof in the Hilbert transform case relied heavily on analytic projections and 

orthogonal spaces, 𝑎 feature that we do not have when working with Riesz transforms. We 

are going to simulate the one-dimensional case by 𝑎 two-step passage via intermediary 

Calderón–Zygmund operators whose multiplier symbols are adapted to cones. 

In dimension𝑑𝑘 ≥ 2, 𝑎 cone𝐶 ⊂ ℝ𝑑with cubic base is given by the data(𝜉, 𝑄) where 𝜉 ∈
𝕊𝑑−1is the direction of the cone and the cube𝑄 ⊂ 𝜉⊥centered at the origin is its aperture. 

The cone consists of all vectors𝜃that take the form(𝜃𝜉𝜉, 𝜃⊥) where𝜃𝜉 = 〈𝜃, 𝜉〉and𝜃⊥ ∈

𝜃𝜉𝑄. By 𝜆𝐶 we mean the dilated cone with data(𝜉, 𝜆𝑄). 

𝐴 cone 𝐷 with ball base has data(𝜉, 𝑟)for0 < 𝑟 < 𝜋/2and𝜉 ∈ 𝕊𝑑−1and consists of the 

vectors{𝜂 ∈ ℝ𝑑: 𝑑(𝜉, 𝜂/‖𝜂‖) ≤ 𝑟}where 𝑑 is the geodesic distance (with distance of 

antipodal points being 𝜋). 

Given any cone 𝐶 or𝐷, we consider its Fourier projection operator defined via𝑃�̂�𝑓 = 𝜒𝐶𝑓. 

When the apertures are cubes, such operators are combinations of Fourier projections onto 

half spaces and as such admit uniform𝐿𝑝bounds. Among others, this fact made cubic cones 

necessary in the considerations in[111] and[108] that we are going to need. For further 

technical reasons in the proof these operators are not quite good enough, mainly because 

they are not of Calderón–Zygmund type. For 𝑎 given cone𝐶, consider 𝑎 Calderón–
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Zygmund operator𝑇𝐶 with 𝑎 kernel𝐾𝐶whose Fourier symbol 𝐾�̂� ∈ 𝐶
∞ and satisfies the 

estimate 𝜒𝐶 ≤ 𝐾�̂� ≤ 𝜒(1+𝜏)𝐶. This is accomplished by mollifying the symbol 𝜒𝐶 of the 

cone projection associated to cone 𝐶 on 𝕊𝑑−1 and then extending radially. We use the 

same definition for 𝑇𝐷. 
Given a collection of cones 𝐶 = (𝐶𝑘)we denote by 𝑇𝐶, 𝑃𝐶the corresponding tensor product 

operators. 

In[111]it has been proved that Calderón–Zygmund operators adapted to certain cones of 

cubic aperture classify product 𝐵𝑀𝑂 via commutators. As part of the argument, it was 

observed that test functions with opposing Fourier supports made the commutator large. 

In[108] 𝑎 refinement was proven, that will be helpful to us. We prefer to work with cones 

with round base. Lower bounds for such commutators can be deduced from the assertion 

of the main theorem in[108], but we need to preserve the information on the Fourier 

support of the test function in order to succeed with our argument. Information on this test 

function is instrumental to our argument: it reduces the terms arising in the commutator to 

those resembling Hankel operators. We have the following lemma, very similar to that 

in[111], [108], the only difference being that the cones are based on balls instead of cubes. 

Lemma (4.2.10)[115]: For every parameter1 ≤ 𝑘 ≤ 𝑡there exist 𝑎 finite set of directions 

Υ𝑘 ∈ 𝕊
𝑑𝑘−1 and an aperture 0 < 𝑟𝑘 < 𝜋/2so that, for every symbol 𝑏 belonging to product 

𝐵𝑀𝑂, there exist cones 𝐷𝑘 = 𝐷(𝜉𝑘 , 𝑟𝑘) with 𝜉𝑘 ∈ Υ𝑘as well as 𝑎 normalized test function 

𝑓 = ⨂𝑘=1
𝑡 𝑓𝑘 whose components have Fourier support in the opposing cones 

‖[𝑇1,𝐷1 … , [𝑇𝑡,𝐷𝑡 , 𝑏] … ]𝑓‖2
≳ ‖𝑏‖𝐵𝑀𝑂

(1)…(𝑡)(ℝ𝑑)
. 

The stress is on the fact that the collection is finite, somewhat specific and serves all 

admissible product 𝐵𝑀𝑂 functions. 

Proof: The lemma in[108] supplies us with the sets of directionsΥ𝑘as well as cones of 

cubic aperture𝑄𝑘and 𝑎 test function 𝑓 supported in the opposing cones. Now choose the 

aperture𝑟𝑘large enough so that(1 + 𝜏)𝐶(𝜉𝑘 , 𝑄𝑘) ⊂ 𝐷(𝜉𝑘 , 𝑟𝑘). Then we have the 

commutator estimate 

‖[𝑇1,𝐷1 … , [𝑇𝑡,𝐷𝑡 , 𝑏] … ]𝑓‖2
≳ ‖𝑏‖𝐵𝑀𝑂

(1)…(𝑡)(ℝ𝑑)
. 

In fact, both commutators with cones 𝐶 and 𝐷 are𝐿2bounded and reduce 

to‖𝑇𝐷(𝑏𝑓)‖2or‖𝑇𝐶(𝑏𝑓)‖2respectively thanks to the opposing Fourier support of 𝑓. 

Observe that𝑇𝐶(𝑏𝑓) = 𝑇𝐷(𝑏𝑓) = 𝑇𝐷(𝑇𝐶(𝑏𝑓)). With‖𝑇𝐶‖2→2 ≤ 1, we see that 

‖𝑇𝐷(𝑏𝑓)‖2 ≥ ‖𝑇𝐶(𝑏𝑓)‖2. 
Using this 𝑎 priori lower estimate, we are going to prove the lemma below.  

Lemma (4.2.11)[115]: Let𝐷𝑘for1 ≤ 𝑘 ≤ 𝑡denote any cones with respect to the kth 

variable. Let𝑇𝐷𝑘denote the adapted Calderón–Zygmund operators. Let 𝐾 be any proper 

subset of{𝑘: 1 ≤ 𝑘 ≤ 𝑡}, let𝐷𝐾 = ⨂𝑘∈𝐾𝐷𝑘and𝑇𝐷𝑘 the associated tensor product of 

Calderón–Zygmund operators. Let𝑃𝐷𝐾
𝜎 be 𝑎 tensor product of projection operators on 

cones𝐷(𝜉𝑘 , 𝑟𝑘)or opposing cones𝐷(−𝜉𝑘 , 𝑟𝑘). Let𝑗 ∉ 𝐾. Then 

‖𝑇𝐷𝑘𝑇𝐷𝑗𝑏𝑃𝐷𝐾
𝜎 𝑃𝐷𝑗‖𝐿2(ℝ𝑑)⟲

= ‖𝑇𝐷𝑘𝑏𝑃𝐷𝐾
𝜎 ‖

𝐿2(ℝ𝑑)⟲
. 

Proof: We will establish this by composing some unilateral shift operators and studying 

their Fourier transform in the 𝑗 variable. Let𝜉𝑗denote the direction of the cone𝐷𝑗, for any 𝑙 

define the shift operator 
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𝑆𝑙𝑔(𝑥𝑗) = ∫ 𝑔(𝜂𝑗)𝑒
2𝜋𝑖(𝑙𝜉𝑗+𝜂𝑗)𝑥𝑗

 

ℝ
𝑑𝑗

𝑑𝜂𝑗 . 

𝑆𝑙is 𝑎 translation operator on the Fourier side along the direction𝜉𝑗of the cone𝐷𝑗. It is not 

hard to observe that𝑆𝑙
∗ = 𝑆−𝑙. Now define 

𝐴𝑙 = 𝑆−𝑙𝑇𝐷𝐾𝑇𝐷𝑗𝑏𝑃𝐷𝐾
𝜎 𝑃𝐷𝑗𝑆𝑙, and 𝐵 = 𝑇𝐷𝐾𝑏𝑃𝐷𝐾

𝜎 . 

We will prove that as𝑙 → +∞,𝐴𝑙 → 𝐵in the strong operator topology. As in the argument 

in Lemma(4.2.6), this together with the fact that𝑆𝑙is an isometry will complete the proof. 

To see the convergence, let’s first remember that𝑆𝑙only acts on the 𝑗 variable, and one 

always has the identities 

𝑆𝑙𝑆−𝑙 = 𝐼𝑑and 𝑆−𝑙𝑏𝑆𝑙 = 𝑏. 
This implies 

𝐴𝑙 = 𝑇𝐷𝐾 (𝑆−𝑙𝑇𝐷𝑗𝑆𝑙) (𝑆−𝑙𝑏𝑆𝑙)𝑃𝐷𝐾
𝜎 (𝑆−𝑙𝑃𝐷𝑗𝑆𝑙) 

= 𝑇𝐷𝐾 (𝑆−𝑙𝑇𝐷𝑗𝑆𝑙) 𝑏𝑃𝐷𝐾
𝜎 (𝑆−𝑙𝑃𝐷𝑗𝑆𝑙). 

We claim that both𝑆−𝑙𝑇𝐷𝑗𝑆𝑙and𝑆−𝑙𝑃𝐷𝑗𝑆𝑙converge to the identity operator in the strong 

operator topology, which then implies that𝐴𝑙 → 𝐵as𝑙 → ∞. We will only prove𝑆−𝑙𝑇𝐷𝑗𝑆𝑙 →

𝐼𝑑as the second limit is almost identical. Observe that‖𝑆−𝑙𝑇𝐷𝑗𝑆𝑙𝑓 − 𝑓‖ = ‖(𝑇𝐷𝑗 −

𝐼) 𝑆𝑙𝑓‖. Given any𝐿2function 𝑓 and any fixed large𝑙 ≥ 0. Consider the 𝑓 with frequencies 

supported inℝ𝑑1 × …× (𝐷𝑗 − 𝑙𝜉𝑗) × …× ℝ
𝑑𝑡 . In this case,𝑆𝑙𝑓has Fourier support inℝ𝑑1 ×

…× 𝐷𝑗 × …×ℝ
𝑑𝑡where the symbol of𝑇𝐷𝑗equals1. Thus, for such𝑓, we have𝑆−𝑙𝑇𝐷𝑗𝑆𝑙𝑓 =

𝑓. The setsℝ𝑑1 ×…× (𝐷𝑗 − 𝑙𝜉𝑗) × …× ℝ
𝑑𝑡exhaust the frequency space. With‖𝑇𝐷𝑗 −

𝐼‖
2→2

≤ 1the operators𝑆−𝑙𝑇𝐷𝑗𝑆𝑙converge to the Identity in the strong operator topology, 

and the lemma is proved. Observe that the aperture of the cone𝐷𝑗is not relevant to the 

proof. 

We proceed with the proof of the lower estimate for cone transforms. 

Lemma (4.2.12)[115]: Let us suppose we are inℝ𝑑with𝒅 = (𝑑1, … , 𝑡)and 𝑎 partitionℐ =
(𝐼𝑠)1≤𝑠≤𝑙. For every1 ≤ 𝑘 ≤ 𝑡there exists 𝑎 finite set of directionsΥ𝑘 ∈ 𝕊

𝑑𝑘−1and an 

aperture rkso that the following hold for all𝑏 ∈ 𝐵𝑀𝑂ℐ(ℝ
𝒅): 

(i) For every1 ≤ 𝑠 ≤ 𝑙there exists 𝑎 coordinate𝜐𝑠 ∈ 𝐼𝑠and 𝑎 direction𝜉𝜐𝑠 ∈ Υ𝜐𝑠  and so that 

with the choice of cone𝐷𝜐𝑠 = 𝐷(𝜉𝜐𝑠 , 𝑟𝜐𝑠)and arbitrary𝐷𝑘for coordinates𝑘 ∈ 𝐼𝑠\{𝜐𝑠}and 

if𝐷𝑠denotes their tensor product, then we have  

‖[𝑇1,𝐷1 … , [𝑇𝑙,𝐷𝑙 , 𝑏] … ]‖2→2
≳ ‖𝑏‖𝐵𝑀𝑂

ℐ(ℝ𝑑)
. 

(ii) The test function𝑓 = ⨂𝑘=1
𝑡 𝑓𝑘which gives us 𝑎 large𝐿2norm in(i) has Fourier supports 

of the𝑓𝑘contained in𝐷(−𝜉𝑘 , 𝑟𝑘) when𝑘 = 𝜐𝑠and in𝐷𝑘otherwise. Before we can begin with 

the proof of Lemma(4.2.12), we will need 𝑎 real variable version of the facts on Toeplitz 

operators used earlier. 

Proof. For 𝑎 given symbol𝑏 ∈ 𝐵𝑀𝑂ℐ , there exist for all1 ≤ 𝑠 ≤ 𝑙 coordinates𝝊 =
(𝜐𝑠), 𝜐𝑠 ∈ 𝐼𝑠and 𝑎 choice of variables not indexed by𝜐𝑠 , 𝒙�̂�

0so that up to an arbitrarily small 

error 

‖𝑏‖𝐵𝑀𝑂ℐ = ‖𝑏(𝒙�̂�
0)‖

𝐵𝑀𝑂(𝜐1)…(𝜐𝑙)
. 
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By Lemma(4.2.10), there exist cones𝐷𝜐𝑠 = 𝐷(𝜉𝜐𝑠 , 𝑟𝜐𝑠)with directions𝜉𝜐𝑠 ∈ Υ𝜐𝑠and 𝑎 

normalized test function𝑓𝐻in variables 𝜐𝑠with opposing Fourier support such that we have 

the lower estimate 

‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏(𝒙�̂�

0)]… ] (𝑓𝐻)‖
𝐿2(ℝ𝑑𝜐)

≳ ‖𝑏(𝒙�̂�
0)‖

𝐵𝑀𝑂(𝜐1)…(𝜐𝑙)
 

whereℝ𝑑𝜐 = ℝ𝑑𝜐1 × ℝ𝑑𝜐𝑙 . 
We now consider the commutator with the same cones but with full symbol𝑏 = 𝑏(. , … , . ). 
Due to the lack of action on the variables not indexed by𝜐𝑠, in the commutator, we have 

[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏] … ] (𝑓𝐻𝑔) = 𝑔. [𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙

, 𝑏] … ] (𝑓𝐻) 

for 𝑔 that only depends upon variables not indexed by𝜐𝑠. Again using that multiplication 

operators in 𝐿2 have norms equal to the 𝐿∞ norm of their symbol, for the ‘worst’ 𝐿2-

normalized 𝑔 we have 

‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏] … ] (𝑓𝐻𝑔)‖

𝐿2(ℝ𝑑)
 

= sup
𝒙�̂�

‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏(𝒙�̂�

0)]… ] (𝑓𝐻)‖
𝐿2(ℝ𝑑𝜐)

 

≥ ‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏(𝒙�̂�

0)]… ] (𝑓𝐻)‖
𝐿2(ℝ𝑑𝜐)

 

≳ ‖𝑏(𝒙�̂�
0)‖

𝐵𝑀𝑂(𝜐1)…(𝜐𝑙)
(ℝ𝑑𝜐)

= ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝑑). 

Note that the test function 𝑔 can be chosen with well distributed Fourier transform. Take 

any cones in the variables not indexed by𝜐𝑠and let 𝑫 denote the tensor product of their 

projections.𝑓𝑇 = 𝑃𝐷𝑔. Notice that  

‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏] … ] (𝑓𝐻𝑓𝑇)‖ ≳ ‖[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙

, 𝑏] … ] (𝑓𝐻𝑔)‖ 

with constants depending upon how small the aperture of the chosen cones is. Notice that 

the test function𝑓 ≔ 𝑓𝐻𝑓𝑇has the Fourier support as required in part (2) of the statement 

of Lemma(4.2.12). 
Now build cones𝐷𝑠from the𝐷𝜐𝑠and the other chosen cones𝐷𝑘as well as operators𝑇𝑠,𝑫𝑠. 

Notice that the commutators [𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏] … ]and[𝑇1,𝑫1, … , [𝑇𝑙,𝑫𝑙, 𝑏] … ]reduce 

significantly when applied to 𝑎 test function 𝑓 with Fourier support like ours. When the 

operators𝑇𝜐𝑠,𝐷𝜐𝑠or any tensor product𝑇𝑠,𝐷𝑠fall directly on𝑓, the contribution is zero due to 

opposing Fourier supports of the test function and the symbols of the operators. The only 

terms left in the commutators [𝑇1,𝑫1, … , [𝑇𝑙,𝑫𝜐𝑙
, 𝑏] … ] (𝑓) and 

[𝑇𝜐1,𝐷𝜐1 , … , [𝑇𝜐𝑙,𝐷𝜐𝑙
, 𝑏] … ] (𝑓)have the form⊗𝑠 𝑇𝑠,𝑫𝑠(𝑏𝑓)and⊗𝑠 𝑇𝜐𝑠,𝐷𝜐𝑠

(𝑏𝑓) respectively. 

By repeated use of Lemma(4.2.11) we have the operator norm estimates for any symbol 

𝑏, valid on the subspace of functions with Fourier support as described 

for𝑓‖⊗𝑠 𝑇𝑠,𝑫𝑠𝑏‖𝐿2→𝐿2
= ‖⊗𝑠 𝑇𝜐𝑠,𝐷𝜐𝑠𝑏‖𝐿2→𝐿2

. We conclude that 𝑎 normalized test 

function 𝑓 with Fourier support as described in the statement (ii) of Lemma (4.2.12) 

exists, so that‖⊗𝑠 𝑇𝑠,𝑫𝑠(𝑏𝑓)‖2
≳ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝑑). In particular, we get the desired estimate 

in(i). 
We pass directly to 𝑎 lower commutator estimate for tensor products of Riesz 

transforms from that for tensor products of cone operators. Just using tensor products of 

operators adapted to cones merely gives us some lower bound where we are unable to 
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control that 𝑎 Riesz transform does appear in every variable such as required in(iii) of 

Theorem(4.2.16). The reason for this will become clear as we advance in the argument. 

Instead of using operators 𝑇𝑠,𝑫𝑠directly, we will build upon them more general multi-

parameter Journé type cone operators not of tensor product type that we now describe. 

We explain the multiplier we need for 𝑖 copies of𝕊𝑑−1when all dimensions are the 

same. We will explain how to pass to the case of i copies of varying dimension 𝑑𝑘below. 

A picture illustrating a base case, a product of two 1-spheres. 

For 0 < 𝑏 < 𝑎 < 1, let 𝜑: [−1,1] → [−1,1]be a smooth function with 𝜑(𝑥) = 1 when 

𝑎 ≤ 𝑥 ≤ 1 and 𝜑(𝑥) = 0 when 𝑏 ≥ 𝑥 ≥ 0. And let 𝜑 be odd, meaning antisymmetric 

about 𝑡 = 0. The function 𝜑 gives rise to 𝑎 zonal function with pole 𝜉1on the first copy of 

𝕊𝑑−1, denoted by𝐶1(𝜉1; 𝜂1). This is the multiplier of 𝑎 one-parameter Calderón– Zygmund 

operator adapted to a cone 𝐷(𝜉1, 𝑟) for 𝑟 = 𝜋/2(1 − 𝑎). For 𝑖 > 1 we define 

𝐶𝑘(𝜉1, … , 𝜉𝑘; 𝜂1, … , 𝜂𝑘) for 1 < 𝑘 ≤ 𝑖 inductively. In what follows, expectation is taken 

with respect to traces of surface measure. When 𝜂𝑖 = ±𝜉𝑖, then conditional expectation is 

over 𝑎 one-point set. 

𝐶𝑘(𝜉1, … , 𝜉𝑘; 𝜂1, … , 𝜂𝑘) 

= 𝔼𝑎𝑘−1(𝐶𝑘−1(𝜉1, … , 𝑎𝑘−1; 𝜂1, … , 𝜂𝑘−1)|𝑑(𝑎𝑘−1, 𝜉𝑘−1) = 𝑑(𝜂𝑘 , 𝜉𝑘)).  

If the dimensions are not equal take 𝑑 = max𝑑𝑗 and imbed 𝕊𝑑𝑗−1 into 𝕊𝑑−1by the map 

𝜉 (𝜉1, … , 𝜉𝑑𝑗) ⟼ (𝜉1, … , 𝜉𝑑𝑗 , 0, … ,0). Obtain in this manner the function 𝐶𝑖 and then 

restrict to the original number of variables when the dimension is smaller than 𝑑. 
The multiplier 𝑱 = 𝐶𝑖(𝝃; . )gives rise to 𝑎 multi-parameter Calderón–Zygmund operator of 

convolution type (but not of tensor product type), 𝑻𝐽 = 𝑻𝐶𝑖(𝝃;.). In fact, it is defined 

through principal value convolution against a kernel 𝑲𝐽 = 𝑲𝐶𝑖(𝝃;.)(𝑥1, … , 𝑥𝑖)such that 

∀𝑙: ∫ 𝑲𝐽(𝑥1, … , 𝑥𝑖)𝑑𝑥𝑙

 

𝛼<|𝑥𝑙|<𝛽

= 0, ∀0 < 𝛼 < 𝛽, 𝑥𝑗 ∈ ℝ
𝑑𝑗fixed∀𝑗 ≠ 𝑙 

|
𝜕|𝑛|

𝜕𝑥1
𝑛1 …𝜕𝑥𝑖

𝑛𝑖 𝑲𝐽(𝑥1, … , 𝑥𝑖)| ≤ 𝐴𝑛|𝑥1|
−𝑑1−𝑛1… |𝑥𝑖|

−𝑑𝑖−𝑛𝑖 , 𝑛𝑗 ≥ 0. 

This kind of operator is 𝑎 special case of the more general, non-convolution type 

discussed. It has many other nice features that will facilitate our passage to Riesz 

transforms. One of them is its very special representation in terms of homogeneous 

polynomials, the other one 𝑎 lower commutator estimate in terms of the𝐵𝑀𝑂ℐnorm. 

In order to proceed with the proof of these lemmas, we will use some well known 

facts about zonal harmonics. Fix 𝑎 pol𝜉 ∈ 𝕊𝑑−1. The zonal harmonic with pole𝜉 of degree 

𝑛 is written as𝑍𝜉
(𝑛)(𝜂). With𝑡 = 〈𝜉, 𝜂〉 ∈ [−1,1], one writes𝑍𝜉

(𝑛)(𝜂) = 𝑃𝑛(𝑡)where𝑃𝑛is the 

Legendre polynomial of degree𝑛. It is common to suppress the dependence on 𝑑 in the 

notation for𝑍𝜉
(𝑛)

and𝑃𝑛 . 

𝑍𝜉
(𝑛)

are reproducing for spherical harmonics of degree𝑛, 𝑌(𝑛). When𝑌(𝑛)is harmonic and 

homogeneous of degree 𝑛 with𝑌(𝑛)(𝜉) = 1 and𝑌(𝑛)(𝑅𝜂) = 𝑌(𝑛)(𝜂)for any rotation𝑅 ∈

𝒪(𝑑) with 𝑅𝜉 = 𝜉, then𝑌(𝑛) = 𝑍𝜉
(𝑛). 

The lemma below will aid us in understanding the special form of the functions𝐶𝑖. 
 Lemma (4.2.13)[115]: Let𝜉1, 𝜉2 ∈ 𝕊

𝑑−1. We have 
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𝑍𝜉1
(𝑛)(𝜂1)𝑍𝜉2

(𝑛)(𝜂2) = 𝔼𝑎1 (𝑍𝜉1
(𝑛)(𝑎1)|𝑑(𝜉1, 𝑎1) = 𝑑(𝜉2, 𝜂2)) 

= 𝔼𝑎2 (𝑍𝜂2
(𝑛)(𝑎2)|𝑑(𝜉2, 𝑎2) = 𝑑(𝜉1, 𝜂1)). 

Proof: The first equality is 𝑎 change of variable, thanks to symmetry of the zonal 

harmonic in its variables and invariance with respect to action of the measure preserving 

elements of the orthogonal group fixing poles𝜉1or𝜉2, that we now detail. By 𝑎 rotation in 

one of the spheres, assume𝜉1, 𝜉2 = 𝜉. Take 𝑎 small ball  

𝐵𝜉,𝜂1(𝑎2
0; 𝜀2) = {𝑎2: 𝑑(𝑎2, 𝑎2

0) < 𝜀2} ∩ {𝑎2: 𝑑(𝑎2, 𝜉) = 𝑑(𝜂1, 𝜉)}. 

Note{𝑎2: 𝑑(𝑎2, 𝜉) = 𝑑(𝜂1, 𝜉)}~𝕊
𝑑−2 . Every𝑎2 ∈ 𝐵𝜉,𝜂1(𝑎2

0; 𝜀2)gives rise to 𝑎 canonical 

orthogonal map𝜎𝑎2along geodesics in 𝑎 scaled copy of𝕊𝑑−2. Lifted to𝕊𝑑−1, these are 

orthogonal maps fixing 𝜉. Let 𝜎0 fix 𝜉 and map 𝑎2
0 to 𝜂1. Let 𝑎1

0 = 𝜎0(𝜂2). We observe 

that {𝜎0𝜎𝑎2(𝜂2): 𝑎2 ∈ 𝐵𝜉,𝜂1(𝑎2
0; 𝜀2)} = 𝐵𝜉,𝜂2(𝑎1

0; 𝜀1)with 𝜀1 so that  

ℙ(𝑑(𝑎2, 𝑎2
0) < 𝜀2|𝑑(𝜉, 𝑎2) = 𝑑(𝜉, 𝜂1)) = ℙ(𝑑(𝑎1, 𝑎1

0) < 𝜀1|𝑑(𝜉, 𝑎1) = 𝑑(𝜉, 𝜂2)) 

Together with the symmetry and the rotation property 𝑍𝜂
(𝑛)(𝑎) = 𝑍𝑎

(𝑛)(𝜂) = 𝑍𝜎(𝑎)
(𝑛) (𝜎(𝜂)) 

we obtain the first equality. 

For fixed 𝑎1, the function 𝑍𝜂1
(𝑛)
(𝑎1) = 𝑍𝑎1

(𝑛)
(𝜂1) is a function harmonic in ℝ𝑑, 𝑛-

homogeneous. These properties are preserved when taking expectation in 𝑎1. So the 

expression 𝔼(𝑍𝜂1
(𝑛)
(𝑎1)|𝑑(𝜉1, 𝑎1) = 𝑑(𝜉2, 𝜂2)) remains harmonic (regarded as a function 

in ℝ𝑑), 𝑛-homogeneous. From the form 𝔼(𝑍𝜂2
(𝑛)(𝑎2)|𝑑(𝜉2, 𝑎2) = 𝑑(𝜉1, 𝜂1)), we learn that 

its restriction to 𝕊𝑑−1 depends only upon𝑑(𝜉1, 𝜂1). This implies that it is a constant 

multiple of the zonal harmonic with pole 𝜉1. Exchanging the roles of 𝜂1 and 𝜂2gives  

𝔼 (𝑍𝜂1
(𝑛)(𝑎1)|𝑑(𝜉1, 𝑎1) = 𝑑(𝜉2, 𝜂2)) = 𝑐𝑛𝑍𝜉1

(𝑛)
(𝜂1)𝑍𝜉2

(𝑛)
(𝜂2) 

When assuming the normalization 𝑍𝜉
(𝑛)(𝜉) = 1 then 𝑐𝑛 = 1. 

This is a generalization of the classical symmetrizing of the cosinus sum formula 

1 2⁄ (cos(𝑥 + 𝑦) + cos(𝑥 − 𝑦)) = cos(𝑥) cos(𝑦) 

Lemma (4.2.14)[115]: Let𝐶𝑖be 𝑎 multiplier in⊗𝑘=1
𝑖 ℝ𝑑𝑘as described above, with any 

fixed direction and aperture. Let 𝑚 be an integer of order𝑑 = max𝑑𝑘. For any𝛿 > 0, the 

function Cihas an approximation by 𝑎 polynomial𝐶𝑖
𝑁in the∏ 𝑑𝑘

𝑖
𝑘=1 variables 

{Π𝑘:1≤𝑘≤𝑖𝜂𝑘 , 𝑗𝑘|1 ≤ 𝑗𝑘 ≤ 𝑑𝑘}so that‖𝐶𝑖 − 𝐶𝑖
𝑁‖
𝐶𝑚(𝕊𝑑𝑘−1)

< 𝛿in each variable separately. 

𝐶𝑚indexes the norm of uniform convergence on functions that are 𝑚 times continuously 

differentiable. On the space side, 𝐶𝑖
𝑁corresponds to an operator that is 𝑎 polynomial in 

Riesz transforms of the variables⊗𝑘 𝑅𝑘,𝑗𝑘 . 

Proof. It is well known that zonal harmonic series have convergence proper-ties when 

representing smooth zonal functions similar to that of the Fourier transform. For any given 

𝑚 and sufficiently smooth 𝜑 of the type described above, then  

𝐶1(𝜉1; 𝜂1) = ∑𝜑𝑛𝑍𝜉1
(𝑛)
(𝜂1)

𝑛

 

where the convergence is 𝐶𝑚-uniform. The degree of smoothness required for 𝜑 to obtain 

convergence in the 𝐶𝑚 in the above expression depends upon 𝑚 and the dimension 𝑑. For 

our purpose, we choose 𝑚 ≥ 𝑑. 
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Let us denote this function’s representation of degree 𝑁 by a series of zonal harmonics by 

𝐶1
(𝑁)(𝜉1; 𝜂1).  

𝐶1
(𝑁)(𝜉1; 𝜂1) = ∑ 𝜑𝑛𝑍𝜉1

(𝑛)
(𝜂1)

𝑛≤𝑁

 

 

For every 𝛿 > 0 there exists 𝑁 so that we have the estimate  

‖𝐶1
(𝑁)(𝜉1; 𝜂1) − 𝐶1(𝜉1; 𝜂1)‖

𝐶𝑚(𝕊𝑑1−1)
< 𝛿 

In the case of icopies of spheres, we define 𝐶𝑖
(𝑁)

inductively in the same manner as 𝐶𝑖. Let 

us for the moment make all dimensions equal using the argument discussed above. So we 

set 

𝐶𝑘
(𝑁)
(𝜉1, … , 𝜉𝑘;𝜂1, … , 𝜂𝑘) 

= 𝔼𝛼𝑘−1(𝐶𝑘−1
(𝑁)
(𝜉1, … , 𝑎𝑘−1;𝜂1, … , 𝜂𝑘−1)|𝑑(𝑎𝑘−1, 𝜉𝑘−1) = 𝑑(𝜂𝑘 , 𝜉𝑘)) 

We claim the identity  

𝐶𝑖
(𝑁)(𝜉; 𝜂1, … , 𝜂𝑖) = ∑ 𝜑𝑛

𝑛≤𝑁

∏𝑍𝜉𝑘
(𝑛)
(𝜂𝑘)

𝑖

𝑘=1

                                  (14) 

This is trivially true for 𝑖 = 1. For 𝑖 > 1induct on the number of parameters:  

𝐶𝑖
(𝑁)(𝜉; 𝜂1, … , 𝜂𝑖) 

= 𝔼𝛼𝑖−1(𝐶𝑖−1(𝜉1, … , 𝑎𝑖−1;𝜂1, … , 𝜂𝑖−1)|𝑑(𝑎𝑖−1, 𝜉𝑖−1) = 𝑑(𝜂𝑖 , 𝜉𝑖)) 

= 𝔼𝛼𝑖−1(∑ 𝜑𝑛
𝑛≤𝑁

∏𝑍𝜉𝑘
(𝑛)(𝜂𝑘)

𝑖

𝑘=1

|𝑑(𝑎𝑖−1, 𝜉𝑖−1) = 𝑑(𝜂𝑖 , 𝜉𝑖)) 

= ∑ 𝜑𝑛
𝑛≤𝑁

∏𝑍𝜉𝑘
(𝑛)(𝜂𝑘)

𝑖

𝑘=1

𝔼𝛼𝑖−1(𝑍𝜉𝑖−1
(𝑛) |𝑑(𝑎𝑖−1, 𝜉𝑖−1) = 𝑑(𝜂𝑖 , 𝜉𝑖)) 

= ∑ 𝜑𝑛
𝑛≤𝑁

∏𝑍𝜉𝑘
(𝑛)(𝜂𝑘)

𝑖

𝑘=1

 

 

The first equality is the definition of 𝐶𝑖
(𝑁)

, the second one is the induction hypothesis and 

the last an application of Lemma8. 

It follows that neither 𝐶𝑖 nor 𝐶𝑖
(𝑁)

depend on the order chosen in their definition and  

𝐶𝑖(𝜉; 𝜂1, … , 𝜂𝑖) = ∑ 𝜑𝑛
𝑛≤𝑁

∏𝑍𝜉𝑘
(𝑛)(𝜂𝑘)

𝑖

𝑘=1

 

 

where the convergence is in 𝐶𝑚 in each variable. 

Next, we study the terms arising in multipliers of the form 𝐶𝑖
(𝑁)

. When all dimen-sions are 

equal, indeed, ∑ 𝜑𝑛𝑛≤𝑁 ∏ 𝑍𝜉𝑘
(𝑛)(𝜂𝑘)

𝑖
𝑘=1  has the important property that, as a product of 𝑛-

homogeneous polynomials, has only terms of the form  

∏𝜂𝑘
𝛼𝑘

𝑖

𝑘=1

=∏(∏ 𝜂𝑘,𝑗𝑘
𝛼𝑘,𝑗𝑘

𝑑

𝑗𝑘=1

)

𝑖

𝑘=1
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where 𝜂𝑘 ∈ 𝕊
𝑑−1and 𝛼𝑘 = 𝛼𝑘,𝑗𝑘  are multi-indices with |𝛼𝑘| = ∑ 𝛼𝑘,𝑗𝑘𝑗𝑘

 for all 𝑘. This 

form is inherited by 𝐶𝑖
(𝑁)

 with varying 𝑛. It shows that 𝐶𝑖
(𝑁)

 is indeed a polynomial in the 

variables∏ 𝜂𝑘,𝑘𝑘
𝑖
𝑘=1 . When the dimensions 𝑑𝑘 are not equal, observe that by restricting 

back to the original number of variables, we certainly lose harmonicity of the polynomials, 

but not n-homogeneity or the required form of our polynomials. 

Lemma (4.2.15)[115]: We are inℝ𝒅with partitionℐ = (𝐼𝑠)1≤𝑠≤𝑙. LetΥconsist of vectors𝝃 =
(𝜉)𝑘=1

𝑡 with𝜉𝑘 ∈ Υ𝑘 . LetΥ(𝑠)consist of𝛏(𝑠)=(𝜉𝑘)𝑘∈𝐼𝑠 . Let us consider the class of Journé 

type cone multipliers𝑱𝑠 = 𝐶𝑖𝑠(𝛏
(𝑠); . )of aperture rs with associated multi-parameter 

Calderón–Zygmund operators𝑻𝑠,𝑱𝑠. Then we have the two-sided estimate 

‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝑑) ≲ sup
𝝃∈𝚼
‖[𝑻1,𝑱1 , … , [𝑻𝑙,𝑱𝑙, 𝑏] … ]‖𝐿𝑝(ℝ𝒅)⟲

≲ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅). 

Proof. By Lemma (4.2.12) we know that for each parameter 1 ≤ 𝑠 ≤ 𝑙 there exists a 

tensor product of cones 𝐷𝑠 =⊗𝑘∈𝐼𝑠 𝐷(𝜉𝑘 , 𝜏𝑘) with 𝜏𝑘 ≔ ∑ 𝜏𝑘 < 𝜋 2⁄𝑘∈𝐼𝑠  and 𝜉𝑘 ∈ 𝛶𝑘 and 

test functions fssupported as described in Lemma(4.2.12) part (ii)so that  

‖[𝑇1𝐷1 , … , [𝑇𝑙𝐷𝑙 , 𝑏] … ](𝑓)‖2
≳ ‖𝑏‖𝐵𝑀𝑂𝐼(ℝ𝑑) 

where 𝑓 =⊗𝑠=1
𝑙 𝑓𝑠. We make a remark about the apertures 𝑟𝑠. Let 𝑑(∙,∙) denote geodesic 

distance on 𝕊𝑑−1, where antipodal points have distance 𝜋. Let 𝝃(𝒔) be the set of directions 

of 𝑫𝒔. Remember that according to Lemma(4.2.12), one component had a specific 

direction 𝜉𝑣
(𝑠)
∈ 𝛶𝑣 and possibly large aperture with(1 + 𝜏)𝜏𝑣

(𝑠)
< 𝜋 2⁄ . Let us choose the 

other directions arbitrarily but with apertures 𝜏�̂�
(𝑠)

small enough so that (1 + 𝜏)(𝜏𝑣
(𝑠) +

(𝑖 − 1)𝜏�̂�
(𝑠)
) < 𝜋 2⁄ . Now choose an aperture 𝑟𝑠 < 𝜋 2⁄  so that (1 + 𝜏)(𝜏𝑣

(𝑠)
+

(𝑖 − 1)𝜏�̂�
(𝑠)
) < 𝑟𝑠 < 𝜋 2⁄ . 

Writing 𝑖𝑠 = |𝐼𝑠|, we find Journé type cone multipliers 𝑱𝒔 = 𝑪𝒊𝒔(𝝃
(𝒔);∙) ¨qaccording to the 

construction above with center 𝝃(𝒔) and aperture 𝑟𝑠 . 
We are going to observe that 𝑱𝒔 = 1on 𝑠𝑝𝑡(𝑫𝒔) and 𝑱𝒔 = −1 on the Fourier support of 𝑓𝑠. 
Let us drop the dependence on 𝑠 for the moment. We see in an inductive manner that 

𝐶𝑖(𝝃;∙) takes the value 1 in a certain ℓ1 ball of radius 𝑟 < 𝜋 2⁄ centered at 𝝃. We show that  

∏𝑑(𝜉𝑘 , 𝜂𝑘)

𝑘

< 𝑟 ⟹ 𝐶𝑖(𝜉; 𝜂1, … , 𝜂𝑖) = 1 

When 𝑖 = 1, the assertion is obviously true: 𝑑(𝜉1, 𝜂1) < 𝑟 ⟹ 𝐶1(𝜉1; 𝜂1) = 1 by the 

choice of 𝜑, rand definition of 𝐶1. For 𝑖 > 1, we proceed by induction. As-sume that 

∑ 𝑑(𝜉𝑘 , 𝜂𝑘)
𝑖−1
𝑘=1 < 𝑟 implies 𝐶𝑖−1(𝜉1, … , 𝜉𝑖−1;𝜂1, … , 𝜂𝑖−1) = 1. Let us assume that 

∑ 𝑑(𝜉𝑘 , 𝜂𝑘)
𝑖
𝑘=1 < 𝑟. Remembering the definition of 𝐶𝑖(𝝃;∙)  we assume𝑑(𝑎𝑖−1, 𝜉𝑖−1) =

𝑑(𝜂𝑖 , 𝜉𝑖). By the triangle inequality ∑ 𝑑(𝜉𝑘 , 𝜂𝑘)
𝑖−1
𝑘=1 + 𝑑(𝑎𝑖−1, 𝜂𝑖−1) ≤ ∑ 𝑑(𝜉𝑘 , 𝜂𝑘)

𝑖−2
𝑘=1 +

𝑑(𝑎𝑖−1, 𝜉𝑖−1) + 𝑑(𝜉𝑖−1, 𝜂𝑖−1) = ∑ 𝑑(𝜉𝑘 , 𝜂𝑘)
𝑖
𝑘=1 < 𝑟 So  

𝐶𝑖−1(𝜉1, … , 𝑎𝑖−1;𝜂1, … , 𝜂𝑖−1) = 1 

for all 𝑎𝑖−1 relevant to the conditional expectation in the definition of 𝐶𝑖(𝝃;∙) . The 

statement for 𝐼 follows. 

Since 𝐶𝑖(𝝃;∙)  does not depend upon the order of the variables in its construction, we are 

also able to see exactly as done above that when 𝜎𝑘 = −1for exactly one choice of 𝑘, 

then∑ 𝑑(𝜎𝑘𝜉𝑘 , 𝜂𝑘)𝑘 < 𝑟 ⟹ 𝐶𝑖(𝜉, 𝜂1, … , 𝜂𝑖) = −1. Consider associated multi-parameter 
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Calderón–Zygmund operators 𝑻𝑠,𝑱𝒔 and 𝐼𝑑𝑠 =⊗𝑘∈𝐼𝑠
𝐼𝑑𝑘and 𝐼𝑑𝑘 the identity on the 

kthvariable. Now 

 

[𝑇1,𝐽1, … [𝑇1,𝐽1, 𝑏] … ](𝑓) = [𝑇1,𝐽1 + 𝐼𝑑1, … , [𝑇𝑙,𝐽𝑙 + 𝐼𝑑𝑙, 𝑏] … ](𝑓)

=⊗𝑠=1
𝑙 (𝑇𝑠,𝐽𝑠 + 𝐼𝑑𝑠)(𝑏𝑓). 

 

With ‖⊗𝑠=1
𝑙 (𝑇𝑠,𝐽𝑠 + 𝐼𝑑𝑠)(𝑏𝑓)‖2

≥ ‖⊗𝑠=1
𝑙 𝑇𝑠,𝐷𝑠(𝑏𝑓)‖2

 and ⊗𝑠=1
𝑙 𝑇𝑠,𝐷𝑠(𝑏𝑓) =

[𝑇1,𝐷1 , … [𝑇1,𝐷1 , 𝑏] … ](𝑓) we get the desired lower bound on the Journé commuta-tor as 

claimed. 

Let us illustrate the base case (𝕊1)2by a picture. The picture is simplified in the 

sense that the odd function  𝜑 above is replaced by an indicator function of an interval. 

 

 

 
 

Cone functions based on the oblique strips containing 𝝃 are averaged. In the two-

dimensional case, 𝕊1, expectation is over a one or two point set only. The rectangle around 

𝝃 with sides parallel to the axes representing 𝕊1illustrates the support of the tensor product 

of cone operators with direction 𝝃. The longer side is the aperture that arises from the 

Hankel part. The short sides can be chosen freely as they arise from the Toeplitz part and 

are chosen small so that the rectangle fits into the oblique square. The other small 

rectangle corresponds to the Fourier support of the test function 𝑓. 

Theorem (4.2.16)[115]: The following are equivalent with linear dependence of the 

respective norms. 

 (i) 𝑏 ∈ 𝐵𝑀𝑂ℐ(ℝ
𝒅). 

(ii) All commutators of the form[𝑅𝑘1,𝑗𝑘1 , … , [𝑅𝑘𝑙,𝑗𝑘𝑙
, 𝑏] … ]are bounded in 

𝐿2(ℝ𝒅)where𝑘𝑠 ∈ 𝐼𝑠 and𝑅𝑘𝑠 ,𝑗𝑘𝑠 is the one-parameter Riesz transform in direction 𝑗𝑘𝑠 .  

(iii) All commutators of the form[𝑹1,𝑗(1) , … , [𝑹𝑙,𝑗(𝑙), 𝑏] … ]are bounded in 𝐿2(ℝ𝒅) 

where𝒋(𝑠) = (𝑗𝑘)𝑘∈𝐼𝑠 , 1 ≤ 𝑗𝑘 ≤ 𝑑𝑘and the operators𝑹𝑠,𝒋(𝑠)are 𝑎 tensor product of Riesz 

transforms𝑹𝑠,𝒋(𝑠) = ⨂𝑘∈𝐼𝑠𝑅𝑘,𝑗𝑘 . 

Proof. In contrast to the Hilbert transform case, both lower bounds require separate proofs. 

This is a notable difference that stems from the loss of orthogonal subspaces in 

conjunction with the special form of the Hilbert transform only seen in one variable. It 

does not seem possible to get a lower estimate (iii)⟺(ii)directly. 

(i)⟺(ii). The upper bound (i)⟹(ii)is an easy consequence of the upper estimates of 

iterated commutators of single Riesz transforms. The lower bound (ii)⟹(i)follows from a 
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standard fact on multipliers in combination with the main result in [111], the two-sided 

estimate for iterated commutators with Riesz transforms, similar to the first arguments 

used in 4. 

(i)⟺(iii). The upper bound (i)⟹(iii)follows from the tensor product structure and use of 

the little product BMO norm. The lower bound (iii)⟹(i)uses the considerations leading up 

to this proof: Suppressing again the dependence on s, we see that the multiplier 𝐶𝑖 is an 

odd, smooth, bounded function in each 𝜂𝑘 when the other variables are fixed. Furthermore, 

since 𝜑, written as a function of 𝑡 = 〈𝜉, 𝜂〉  is odd with respect to 𝑡 = 0, the above series 

has 𝜑𝑛 ≠ 0 at most when 𝑛 is odd and thus 𝑍𝜉
(𝑛)

is odd. So 𝐶𝑖
(𝑁)

is as a sum of odd 

functions odd. 

We see that 𝑻𝑱, the Journé operator associated to the cone 𝑱 = 𝐶𝑖(𝝃; ∙) as well as the 

operator associated to 𝐶𝑖
(𝑁)(𝝃; ∙) are paraproduct free. In fact, applied to a test function 

𝑓 =⊗𝑘 𝑓𝑘 with 𝑓𝑘 acting on the 𝑘th variable and where 𝑓𝑙 = 1for some lgives 𝑻𝑱(𝑓) = 0. 

To see this, apply the multiplier 𝐶𝑖
(𝑁)(𝝃; ∙) in the lvariable (acting on 1) first, leaving the 

other Fourier variables fixed. The multiplier function  

𝜂𝑙 ⟼ 𝐶𝑖
(𝑁)(𝝃;  𝜂1, … , 𝜂𝑖) = ∑ 𝜑𝑛𝑍𝜉𝑙

(𝑛)
(𝜂𝑙)

𝑛≤𝑁

∏ 𝑍𝜉𝑘
(𝑛)
(𝜂𝑘)

𝑖

𝑘≠𝑙,𝑘=1

 

is, as a sum of odd functions, odd on 𝕊𝑑𝑙−1, bounded by 1 and uniformly smooth for all 

choices of 𝜂𝑘 with 𝑘 ≠ 𝑙. As such it gives rise to a paraproduct free convolution type 

Calderón–Zygmund operator in the lth variable whose values are multi-parameter 

multiplier operators. 

Due to the convergence properties proved above, the difference  

𝐶𝑖(𝝃; ∙) − 𝐶𝑖
(𝑁)(𝝃; ∙) 

gives rise to a paraproduct free Journé operator with Calderón–Zygmund norm depending 

on 𝑁. This is seen by an application of an appropriate version of the Marcinkievicz 

multiplier theorem. 

By our stability result on Journé commutators, Corollary(4.2.20), there exist for all 1 ≤

𝑠 ≤ 𝑙 integers 𝑁𝑠 so that 𝐶𝑠
(𝑁𝑠)(𝝃𝒔; ∙) with 𝜉𝑘 ∈ 𝛶𝑘 is a characterizing set of operators via 

commutators for 𝐵𝑀𝑂𝐼(ℝ
𝑑). This is a finite set of possibilities because of the universal 

choice of the rsand finiteness of the set 𝜰. Using the multi-parameter ana-log of the 

observation [𝐴𝐵, 𝑏] = 𝐴[𝐵, 𝑏] + [𝐴, 𝑏]𝐵 and the special form of the 𝐶𝑠
(𝑁𝑠)(𝝃; ∙) leaves us 

with the desired lower bound: Observe that when [𝐴𝐵, 𝑏] has large 𝐿2 norm then either 

[𝐴, 𝑏] or [𝐵, 𝑏] has a fair share of the norm. We use this argument finitely many times in a 

row for operators that are polynomials in tensor products of Riesz transforms ⊗𝑘∈𝐼𝑠
𝑅𝑘,𝑗𝑘 . 

This finishes (iii)⇒(i). 

We remark that there are two cases of dimension greater than 1, where the proof 

simplifies. In the case of arbitrarily many copies of ℝ2, one can work with the multi-

plicative structure of complex numbers and avoid the symmetrizing procedure to obtain 

cone functions with the appropriate polynomial approximations. If the dimensions are 

arbitrary, but only tensor products of two Riesz transforms arise, one can avoid part of the 

construction above by using the addition formula for zonal harmonics. 

We are interested in upper bounds for commutator norms by means of little product 

BMO norms of the symbol. In the case of the Hilbert transform, we have seen that these 
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estimates, even in the iterated case, are straightforward. Other streamlined proofs exist for 

Hilbert or Riesz transforms when considering dyadic shifts of complexity one, see [126], 

[127] and [112]. When considering more general Calderón–Zygmund operators, the 

arguments required are more difficult, in each case. The first classical upper bound goes 

back to [3], where an estimate for one-parameter commutators with convolution type 

Calderón–Zygmund operators is given. Next, [111] includes a technical estimate for the 

multi-parameter case for such Calderón–Zygmund operators with a high enough degree of 

smoothness. This smoothness assumption was removed in [106]thanks to an approach 

using the representation formula for Calderón–Zygmund operators by means of infinite 

complexity dyadic shifts [110]. This last proof also gives a control on the norm of the 

commutators which depends on the Calderón–Zygmund norm of the operators themselves, 

a fact we will employ later. Below, we give an estimate by little product BMO when the 

Calderón–Zygmund operators are of Journé type and cannot be written as a tensor product. 

While this estimate is interesting in its own right, remember that it is also essential for our 

characterization result, the lower estimate. The first generation of multi-parameter singular 

integrals that are not of tensor product type goes back to Fefferman [120]and was 

generalized by Journé in [16]to the non-convolution type in the framework of his 𝑇𝑞
𝑝1  

theorem in this setting. Much later, Journé’s 𝑇𝑞
𝑝1  theorem was revisited, for example in 

[123], [124], [125]. See also [114] for some difficulties related to this subject. The 

references [123]in the bi-parameter case and [125]in the general multi-parameter case 

include a representation formula by means of adapted, infinite complexity dyadic shifts. 

While these representation formulae look complicated, they have a feature very useful to 

us. ‘Locally’, in a dyadic sense, they look as if they were of tensor product type, a feature 

we will exploit in the argument below. We start with the simplest bi-parameter case with 

no iterations and make comments about the generalization. 

The class of bi-parameter singular integral operators treated is that of any paraproduct free 

Journé type operator (not necessarily a tensor product and not necessarily of convolution 

type) satisfying a certain weak boundedness property, which we define as follows: 

Definition (4.2.17)[115]: A continuous linear mapping 𝑇: 𝐶0
∞(ℝ𝑛) ⊗ 𝐶0

∞(ℝ𝑚)  →
[𝐶0
∞(ℝ𝑛) ⊗ 𝐶0

∞(ℝ𝑚)]′is called a paraproduct free bi-parameter Calderón–Zygmund 

operator if the following conditions are satisfied: 

(i) 𝑇 is a Journé type 𝑏𝑖-parameter 𝛿-singular integral operator, i.e. there exists a pair 

(𝐾1, 𝐾2) of 𝛿𝐶𝑍– 𝛿-standard kernels so that, for all 𝑓1, 𝑔1 ∈ 𝐶0
∞(ℝ𝑛) and 𝑓2, 𝑔2 ∈ 𝐶0

∞(ℝ𝑚)   

〈𝑇(𝑓1⊗𝑓2), 𝑔1⊗𝑔2〉 = ∫𝑓1(𝑦1)〈𝐾1(𝑥1, 𝑦1)𝑓2, 𝑔2〉𝑔1(𝑥1)𝑑𝑥1𝑑𝑦1 

when 𝑠𝑝𝑡𝑓1 ∩ 𝑠𝑝𝑡𝑔1 = ∅,  

〈𝑇(𝑓1⊗𝑓2), 𝑔1⊗𝑔2〉 = ∫𝑓2(𝑦2)〈𝐾2(𝑥2, 𝑦2)𝑓1, 𝑔1〉𝑔2(𝑥2)𝑑𝑥2𝑑𝑦2 

when 𝑠𝑝𝑡𝑓2 ∩ 𝑠𝑝𝑡𝑔2 = ∅. 

(ii) 𝑇 satisfies the weak boundedness property |〈𝑇(𝜒𝐼⊗𝜒𝐽), 𝜒𝐼⊗𝜒𝐽〉| ≲ |𝐼||𝐽|, for any 

cubes 𝐼 ⊂ ℝ𝑛, 𝐽 ∈ ℝ𝑚. 

(iii) 𝑇 is paraproduct free in the sense that 𝑇(1 ⊗∙) =  𝑇(∙⊗ 1) = 𝑇∗(1⊗∙) =
𝑇∗(∙⊗ 1) = 0. 

Recall that a 𝛿𝐶𝑍– 𝛿-standard kernel is a vector valued standard kernel taking values in the 

Banach space consisting of all Calderón–Zygmund operators. It is easy to see that an 

operator defined as above satisfies all the characterizing conditions in Martikainen [123], 
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hence is 𝐿2 bounded and can be represented as an average of bi-parameter dyadic shift 

operators together with dyadic paraproducts. Moreover, since Tis paraprod-uct free, one 

can conclude from observing the proof of Martikainen’s theorem, that all the dyadic shifts 

in the representation are cancellative. 

The base case from which we pass to the general case below, is the following: 

Theorem (4.2.18)[115]: Let 𝑇 be a paraproduct free 𝑏𝑖-parameter Calderón–Zygmund 

operator, and 𝑏 be a little bmo function, there holds  

‖[𝑏, 𝑇]‖𝐿2(ℝ𝑛×ℝ𝑚) ≲ ‖𝑏‖𝑏𝑚𝑜(ℝ𝑛×ℝ𝑚) 

where the underlying constant depends only on the characterizing constants of 𝑇. 

Proof: According to the discussion above, for any sufficiently nice functions 𝑓, 𝑔, one has 

the following representation:  

〈𝑇𝑓, 𝑔〉 = 𝐶𝔼𝜔1𝔼𝜔2 ∑ ∑ 2−max (𝑖1,𝑗1)2−max (𝑖2,𝑗2)〈𝑆𝑖1𝑗1𝑖2𝑗2𝑓, 𝑔〉

∞

𝑖2,𝑗2=0

∞

𝑖1,𝑗1=0

 

where expectation is with respect to a certain parameter of the dyadic grids. The dyadic 

shifts 𝑆𝑖1𝑗1𝑖2𝑗2  are defined as 

𝑆𝑖1𝑗1𝑖2𝑗2𝑓 

≔ ∑ ∑ ∑ ∑ 𝑎𝐼1𝐽1𝐾1𝐼2𝐽2𝐾2〈𝑓, ℎ𝐼1 ⊗ℎ𝐼2〉
𝐼2,𝐽2⊂𝐾2,𝐼2,𝐽2⊂𝐷2
ℓ(𝐼2)=2

−𝑖2ℓ(𝐾2)

ℓ(𝐽2)=2
−𝑗2ℓ(𝐾2)

𝐾2∈𝐷2𝐼1,𝐽1⊂𝐾1,𝐼1,𝐽1⊂𝐷1
ℓ(𝐼1)=2

−𝑖1ℓ(𝐾1)

ℓ(𝐽1)=2
−𝑗1ℓ(𝐾1)

ℎ𝐽1 ⊗ℎ𝐽2
𝐾1∈𝐷1

 

=∑ ∑ ∑ ∑ 𝑎𝐼1𝐽1𝐾1𝐼2𝐽2𝐾2〈𝑓, ℎ𝐼1 ⊗ℎ𝐼2〉

𝐼2,𝐽2⊂𝐾2𝐾2𝐼1,𝐽1⊂𝐾1

ℎ𝐽1 ⊗ℎ𝐽2
𝐾1

 

The coefficients above satisfy 𝑎𝐼1𝐽1𝐾1𝐼2𝐽2𝐾2 ≤
√|𝐼1||𝐽1||𝐼2||𝐽2|

|𝐾1||𝐾2|
, which also guarantees the 

normalization ‖𝑆𝑖1𝑗1𝑖2𝑗2‖
𝐿2→𝐿2

≤ 1. Moreover, since 𝑇 is paraproduct free, all the Haar 

functions appearing above are cancellative.  

 It thus suffices to show that for any dyadic grids 𝐷1, 𝐷2and fixed 𝑖1,  𝑗1, 𝑖2,  𝑗2 ∈ ℕ, one 

has  

‖[𝑏, 𝑆𝑖1𝑗1𝑖2𝑗2]𝑓‖
𝐿2
≲ (1 +max (𝑖1, 𝑗1))(1 + max (𝑖2, 𝑗2))‖𝑏‖𝑏𝑚𝑜‖𝑓‖𝐿2 

as the decay factor  2−max (𝑖1,𝑗1)2−max (𝑖2,𝑗2)in (iii)will guarantee the convergence of the 

series. 

To see [2], one decomposes band a 𝐿2test function fusing Haar bases:  

[𝑏, 𝑆𝑖1𝑗1𝑖2𝑗2]𝑓 = ∑∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1⊗ℎ𝐽2〉[ℎ𝐼1 ⊗ℎ𝐼2 , 𝑆
𝑖1𝑗1𝑖2𝑗2]

𝐽1,𝐽2𝐼1,𝐼2

ℎ𝐽1 ⊗ℎ𝐽2  

A similar argument to that in [106], implies that [ℎ𝐼1 ⊗ℎ𝐼2 , 𝑆
𝑖1𝑗1𝑖2𝑗2]ℎ𝐽1 ⊗ℎ𝐽2  is nonzero 

only if 𝐼1 ⊂ 𝐽1
(𝑖1)or 𝐼2 ⊂ 𝐽2

(𝑖2), where 𝐽1
(𝑖1)denotes the 𝑖1 th dyadic ancestor of 𝐽1, similarly 

for 𝐽2
(𝑖2). Hence, the sum can be decomposed into three parts: 𝐼1 ⊂ 𝐽1

(𝑖1) and 𝐼2 ⊂ 𝐽2
(𝑖2) 

(regular), 𝐼1 ⊋ 𝐽1
(𝑖1)and 𝐼2 ⊋ 𝐽2

(𝑖2), and 𝐼2 ⊂ 𝐽2
(𝑖2) (mixed). 

Regular case (1): Following [106], one can decompose the arising sum into sums of 

classical bi-parameter dyadic paraproducts 𝐵0(𝑏, 𝑓) and its slightly revised version 

𝐵𝑘𝑙(𝑏, 𝑓): for any integers 𝑘, 𝑙 ≥ 0, 𝐵𝑘𝑙 is the 𝑏𝑖-parameter dyadic paraproduct defined as  
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𝐵𝑘𝑙(𝑏, 𝑓) = ∑𝛽𝐼𝐽〈𝑏, ℎ𝐼(𝑘)⊗𝑢𝐽(𝑙)〉〈𝑓, ℎ𝐼
𝜖1⊗𝑢𝐽

𝜖2〉ℎ𝐼
𝜖1
′

⊗𝑢𝐽
𝜖2
′

|𝐼(𝑘)|
−1 2⁄

|𝐽(𝑙)|
−1 2⁄

𝐼,𝐽

 

where 𝛽𝐼𝐽 is a sequence satisfying |𝛽𝐼𝐽| ≤ 1. When 𝑘 > 0, all Haar functions in the first 

variable are cancellative, while when 𝑘 = 0, there is at most one of ℎ𝐼
𝜖1 , ℎ𝐼

𝜖1
′

 being 

noncancellative. The same assumption goes for the second variable. Observe that when 

𝑘 = 𝑙 = 0, 𝐵𝑘𝑙 becomes the classical paraproduct 𝐵0. It is proved in [106]in Lemma4.1 

that  

‖𝐵𝑘𝑙(𝑏, 𝑓)‖𝐿2 ≲ ‖𝑏‖𝐵𝑀𝑂‖𝑓‖𝐿2  
with a constant independent of 𝑘, land the product BMO norm on the right hand side. 

Then since little BMO functions are contained in product BMO, this part can be 

controlled. More specifically, write 

[𝑏, 𝑆𝑖1𝑗1𝑖2𝑗2]𝑓

= ∑∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉

𝐽1,𝐽2

ℎ𝐼1 ⊗ℎ𝐼2𝑆
𝑖1𝑗1𝑖2𝑗2(ℎ𝐽1 ⊗ℎ𝐽2)

𝐼1,𝐼2

−∑∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉

𝐽1,𝐽2

𝑆𝑖1𝑗1𝑖2𝑗2(ℎ𝐼1ℎ𝐽1 ⊗ℎ𝐼2ℎ𝐽2)

𝐼1,𝐼2

= 𝐼 + 𝐼𝐼 

then one can estimate term 𝐼 and 𝐼𝐼 separately. According to the definition of dyadic shifts, 

term 𝐼 is equal to  

∑ ∑ ∑ 〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉

𝐼2:𝐼2⊂𝐽2
(𝑖1)𝐼1:𝐼2⊂𝐽1

(𝑖1)𝐽1,𝐽2

ℎ𝐼1 ⊗ℎ𝐼2 . 

(

  
 

∑ ∑ 𝑎
𝐽1,𝐽1

′ ,𝐽1
(𝑖1),𝐽2,𝐽2

′ ,𝐽2
(𝑖2)

𝐽2
′ :𝐽2
′⊂𝐽2

(𝑖2)

ℓ(𝐽2
′)=2𝑖2−𝑗2ℓ(𝐽2)

𝐽1
′ :𝐽1
′⊂𝐽1

(𝑖1)

ℓ(𝐽1
′)=2𝑖1−𝑗1ℓ(𝐽1)

ℎ𝐽1′ ⊗ℎ𝐽2′

)

  
 

 

= ∑ ∑ ∑ ∑ ∑ 〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉ℎ𝐼1 ⊗ℎ𝐼2.
𝐼2:𝐼2⊂𝐾2𝐼1:𝐼1⊂𝐾1

(𝑖2)

𝐽2:𝐽2⊂𝐾2

(𝑖1)

𝐽1:𝐽1⊂𝐾1𝐾1,𝐾2

 

( ∑ ∑ 𝑎𝐽1,𝐽1′ ,𝐾1,𝐽2,𝐽2′ ,𝐾2

(𝑗2)

𝐽2
′ :𝐽2
′⊂𝐾2

(𝑗1)

𝐽1
′ :𝐽1
′⊂𝐾1

ℎ𝐽1′ ⊗ℎ𝐽2′) 

=∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉ℎ𝐼1 ⊗ℎ𝐼2
𝐼1,𝐼2

∑ ∑ ∑ 𝑎𝐽1,𝐽1′ ,𝐾1,𝐽2,𝐽2′ ,𝐾2〈𝑓, ℎ𝐽1⊗ℎ𝐽2〉ℎ𝐽1′ ⊗ℎ𝐽2′

(𝑖2,𝑗2)

𝐽1,𝐽2
′⊂𝐾2

(𝑖1,𝑗1)

𝐽1,𝐽1
′⊂𝐾1𝐾1⊃𝐼1

𝐾2⊃𝐼2

 

=∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉ℎ𝐼1 ⊗ℎ𝐼2
𝐼1,𝐼2

∑ ∑ 〈𝑆𝑖1𝑗1𝑖2𝑗2𝑓, ℎ𝐽1′ ⊗ℎ𝐽2′ 〉

𝐽2
′ :𝐽2
′⊂𝐼2

ℎ𝐽1′ ⊗ℎ𝐽2′

𝐽1
′ :𝐽1
′⊂𝐼1

 

Because of the supports of Haar functions, the inner sum above can be further decom-

posed into four parts, where  

𝐼 = ∑ ∑ ∑  

𝐽2
′⊋𝐼2

     

𝐽1
′⊋𝐼1𝐼1,𝐼2
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𝐼𝐼 = ∑ ∑ ∑  

𝐽2
′ :𝐽2
′⊂𝐼2⊂𝐽2

(𝑗2)𝐽1
′⊋𝐼1𝐼1,𝐼2

 

𝐼𝐼𝐼 = ∑ ∑ ∑  

𝐽2
′⊋𝐼2𝐽1

′ :𝐽1
′⊂𝐼1⊂𝐽1

(𝑗1)𝐼1,𝐼2

 

𝐼𝑉 = ∑ ∑ ∑  

𝐽2
′ :𝐽2
′⊂𝐼2⊂𝐽2

(𝑗2)𝐽1
′⊂𝐼1⊂𝐽1

(𝑗1)𝐼1,𝐼2

 

Hence, using the same technique as in [106], one has 

𝐼 = ∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉 〈𝑆
𝑖1𝑗1𝑖2𝑗2𝑓, ℎ𝐽1′

1 ⊗ℎ𝐽2′
2 〉

𝐼1,𝐼2

ℎ𝐼1⊗ℎ𝐼2|𝐼1|
−1 2⁄ |𝐼2|

−1 2⁄  

which is a bi-parameter paraproduct 𝐵0(𝑏, 𝑓). Moreover, one has 

𝐼𝐼 = ∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉ℎ𝐼1 ⊗ℎ𝐼2 ∑ 〈𝑆𝑖1𝑗1𝑖2𝑗2𝑓, ℎ𝐼1
1 ⊗ℎ𝐽2′ 〉

𝐽2
′ :𝐽2
′⊂𝐼2⊂𝐽2

(𝑗2)𝐼1,𝐼2

|𝐼1|
−1 2⁄ ℎ𝐽2′  

where constants 𝛽𝐽2′ ∈ {1, −1}, and 𝐵0𝑙 are the generalized bi-parameter paraproducts of 

type (0, 𝑙) whose 𝐿2 → 𝐿2 operator norm is uniformly bounded by ‖𝑏‖BMO product BMO. 

Similarly, one can show that  

𝐼𝐼𝐼 = ∑𝐵𝑘0(𝑏, 𝑆
𝑖1𝑗1𝑖2𝑗2𝑓)

𝑗1

𝑘=0

   𝐼𝑉 = ∑∑𝐵𝑘𝑙(𝑏, 𝑆
𝑖1𝑗1𝑖2𝑗2𝑓)

𝑗2

𝑙=0

𝑗1

𝑘=0

 

Since ‖𝑏‖BMO ≲ ‖𝑏‖bmo , all the forms above are 𝐿2 bounded. This completes the 

discussion of term 𝐼. 
To get an estimate of term 𝐼𝐼, we need to decompose it into finite linear combinations of 

𝑆𝑖1𝑗1𝑖2𝑗2𝐵𝑘𝑙(𝑏, 𝑓). By linearity, one can write 𝑆𝑖1𝑗1𝑖2𝑗2  on the outside from the begin-ning, 

and we will only look at the inside sum. One splits for example the sum regarding the first 

variable into three parts: . If we split the second variabl𝐼1 ⊊ 𝐽1, 𝐼1 = 𝐽1 , 𝐽1 ⊊ 𝐼1 ⊂ 𝐽1
(𝑖1)e as 

well, there are nine mixed parts, and it’s not hard to show that each of them can be 

represented as a finite sum of 𝐵𝑘𝑙(𝑏, 𝑓). We omit the details. 

Let’s call the second and the third ‘mixed’ parts, and as the two are symmetric, it 

suffices to look at the second one, i.e. 𝐼1 ⊂ 𝐽1
(𝑖1), 𝐼2 ⊋ 𝐽2

(𝑖2). In the first variable, we still 

have the old case 𝐼1 ⊂ 𝐽1
(𝑖1) that appeared in [106], so morally speaking, we only need to 

nicely play around with the stronger little BMO norm to handle the second variable. For 

any fixed 𝐼1, 𝐽1, 𝐼2, 𝐽2, since 𝐼2 ⊋ 𝐽2
(𝑖2), the definition of dyadic shifts implies that  

ℎ𝐼1 ⊗ℎ𝐼2𝑆
𝑖1𝑗1𝑖2𝑗2(ℎ𝐽1 ⊗ℎ𝐽2) = ℎ𝐼1𝑆

𝑖1𝑗1𝑖2𝑗2(ℎ𝐽1 ⊗ℎ𝐼2ℎ𝐽2) 

and  

𝑆𝑖1𝑗1𝑖2𝑗2(ℎ𝐼1ℎ𝐽1 ⊗ℎ𝐼2ℎ𝐽2) = ℎ𝐼2𝑆
𝑖1𝑗1𝑖2𝑗2(ℎ𝐼1ℎ𝐽1⊗ℎ𝐽2) 

 

Hence, we still have cancellation in the second variable, which converts the mixed case to 

∑ ∑ 〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉[ℎ𝐼1 , 𝑆
𝑖1𝑗1𝑖2𝑗2]

𝐼2⊋𝐽2
(𝑖2)

(ℎ𝐽1 ⊗ℎ𝐼2ℎ𝐽2)

𝐼1⊂𝐽1
(𝑖1)
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= ∑ ∑〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉[ℎ𝐼1 , 𝑆
𝑖1𝑗1𝑖2𝑗2](ℎ𝐽1 ∑ 〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉

𝐼2⊋𝐽2
(𝑖2)

⊗ℎ𝐼2ℎ𝐽2)

𝐽2𝐼1⊂𝐽1
(𝑖1)

 

= ∑ ∑〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉[ℎ𝐼1 , 𝑆
𝑖1𝑗1𝑖2𝑗2] (ℎ𝐽1 ⊗ 〈𝑏, ℎ𝐼1 ⊗ℎ

𝐽2
(𝑗2)
1 〉 ⊗ ℎ

𝐽2
(𝑗2)
1 ℎ𝐽2)

𝐽2𝐼1⊂𝐽1
(𝑖1)

 

= ∑ ∑〈𝑏, ℎ𝐼1 ⊗ℎ𝐼2〉 |𝐽2
(𝑗2)|

−1 2⁄
〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉[ℎ𝐼1 , 𝑆

𝑖1𝑗1𝑖2𝑗2](ℎ𝐽1⊗ℎ𝐽2)

𝐽2𝐼1⊂𝐽1
(𝑖1)

 

= ∑ ∑〈〈𝑏〉
𝐽2
(𝑗2) , ℎ𝐼1〉1 〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉[ℎ𝐼1 , 𝑆

𝑖1𝑗1𝑖2𝑗2](ℎ𝐽1 ⊗ℎ𝐽2)

𝐽2𝐼1⊂𝐽1
(𝑖1)

 

where 〈𝑏〉
𝐽2
(𝑖2)denotes the average value of bon 𝐽2

(𝑖2), which is a function of only the first 

variable. 

In the following, we will once again estimate the first term and second term of the 

commutator separately, and the 𝐿2norm of each of them will be proved to be bounded 

by ‖𝑏‖bmo‖𝑓‖𝐿2. 
a) First term. 

By definition of the dyadic shift, the first term is equal to  

∑ ∑〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 ℎ𝐼1〈𝑓, ℎ𝐽1⊗ℎ𝐽2〉

𝐽2𝐼1⊂𝐽1
(𝑖1)

 

( ∑ ∑ 𝑎
𝐽1,𝐽1

′ ,𝐽1
(𝑖1),𝐽2,𝐽2

′ ,𝐽2
(𝑖2)ℎ𝐽1′ ⊗ℎ𝐽2′

𝐽2
′ :𝐽2
′⊂𝐽2

(𝑖2)

ℓ(𝐽2
′)=2𝑖2−𝑗2ℓ(𝐽2)

𝐽1
′ :𝐽1
′⊂𝐽1

(𝑖1)

ℓ(𝐽1
′)=2𝑖1−𝑗1ℓ(𝐽1)

) 

which by reindexing 𝐾1 ≔ 𝐽1
(𝑖1)is the same as  

∑〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 ℎ𝐼1

𝐼1,𝐽2

∙ ∑ ∑ ∑ ∑ 𝑎
𝐽1,𝐽1

′ ,𝐾1,𝐽2,𝐽2
′ ,𝐽2
(𝑖2)

(𝑗2)

𝐽2
′⊂𝐽2

(𝑖2)

(𝑗1)

𝐽1
′⊂𝐾1

(𝑖1)

𝐽1⊂𝐾1

〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉ℎ𝐽1′ ⊗ℎ𝐽2′

𝐾1:𝐾1⊃𝐼1

 

= ∑ 〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 ℎ𝐼1

𝐼1,𝐽2

∑ ℎ𝐽1′ ⊗ 〈𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2

𝐽1
′ :𝐽1
′(𝑗1)⊃𝐼1

 

where the inner sum is the orthogonal projection of the image of 〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2under 

𝑆𝑖1𝑗1𝑖2𝑗2  onto the span of  {ℎ𝐽1′ }such that 𝐽1
′(𝑗1) ⊃ 𝐼1. Taking into account the supports of the 

Haar functions in the first variable, one can further split the sum into two parts where 

𝐼 = ∑ ∑  

𝐼1⊊𝐽1
′𝐽2

             𝐼𝐼 = ∑ ∑  

𝐽1
′⊂𝐼1⊂𝐽1

′(𝑖1)𝐽2

 

Summing over 𝐽1
′  first implies that 

𝐼 = ∑∑ 

𝐼1

〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 ℎ𝐼1〈𝑆

𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2
𝐽2

 

=∑𝐵0(〈𝑏〉𝐽2
(𝑖2) , 𝑆

𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2))

𝐽2
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where 𝐵𝑜(𝑏, 𝑓) ≔ ∑ 〈𝑏, ℎ𝐼〉 〈𝑓, ℎ1
𝐼

〉 ℎ𝐼|𝐼|
−1 2⁄

𝐼 is a classical one-parameter paraproduct in the 

first variable. Note that its 𝐿2 norm is bounded by ‖𝑏‖BMO ‖𝑓‖𝐿2. Moreover, according to 

the definition of 𝑆𝑖1𝑗1𝑖2𝑗2, for any fixed 𝐽2 

𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2) = ∑ 〈𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2⊗ℎ𝐽2′

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

(𝑗2)

 

In other words, 𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2) only lives on the span of {ℎ𝐽2′ : 𝐽2
′(𝑗2) = 𝐽2

(𝑖2)}. 

Hence, by linearity there holds  

𝐼 = ∑ ∑  

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

(𝑗2)

𝐵0 (〈𝑏〉𝐽2
(𝑖2) , 〈𝑆

𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2) ⊗ ℎ𝐽2′

𝐽2

 

∑(𝐵0(〈𝑏〉𝐽2
(𝑖2) , 〈𝑆

𝑖1𝑗1𝑖2𝑗2( ∑  

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

(𝑗2)

(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2) ⊗ ℎ𝐽2′

𝐽2

 

Thus, orthogonality in the second variable implies that  

‖𝐼‖𝐿2(ℝ𝑛×ℝ𝑚)
2

=∑‖(𝐵0(〈𝑏〉𝐽2
(𝑖2) , 〈𝑆

𝑖1𝑗1𝑖2𝑗2( ∑  

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

(𝑗2)

(〈𝑓, ℎ𝐽2〉2
𝐽2

⊗ℎ𝐽2), ℎ𝐽1′ 〉2)‖

𝐿2(ℝ𝑛×ℝ𝑚)

2

 

≲∑‖𝐵0(〈𝑏〉𝐽2
(𝑖2)‖

𝐵𝑀𝑂(ℝ𝑛)

2
‖〈𝑆𝑖1𝑗1𝑖2𝑗2( ∑  

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

(𝑗2)

(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉2)‖

𝐿2(ℝ𝑛×ℝ𝑚)

2

𝐽2

 

 

Observing that ‖〈𝑏〉
𝐽2
′(𝑗2)‖

𝐵𝑀𝑂(ℝ𝑛)
≤ 〈‖𝑏‖𝐵𝑀𝑂(ℝ𝑛)〉𝐽2

′(𝑗2) ≤ ‖𝑏‖𝑏𝑚𝑜, one has  

≤ ‖𝑏‖𝑏𝑚𝑜
2 ∑‖〈𝑆𝑖1𝑗1𝑖2𝑗2 ( ∑ 〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2

𝐽2:𝐽2
𝑖2=𝐽2

′(𝑗2)

) , ℎ𝐽2′ 〉2‖

𝐿2(ℝ𝑛)

2

𝐽2
′

 

= ‖𝑏‖𝑏𝑚𝑜
2 ‖∑〈𝑆𝑖1𝑗1𝑖2𝑗2 ( ∑ 〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2

𝐽2:𝐽2
𝑖2=𝐽2

′(𝑗2)

) , ℎ𝐽2′ 〉2
𝐽2
′

‖

𝐿2(ℝ𝑛×ℝ𝑚)

2

 

 Note that the sum in the 𝐿2 norm is in fact very simple: 

∑〈𝑆𝑖1𝑗1𝑖2𝑗2 ( ∑ 〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2
𝐽2:𝐽2

𝑖2=𝐽2
′(𝑗2)

) , ℎ𝐽2′ 〉2
𝐽2
′

⊗ℎ𝐽2′  
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=∑ ∑ 〈𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽2′ 〉2⊗ℎ𝐽2′

𝐽2
′ :𝐽2
′(𝑗2)=𝐽2

′(𝑗2)𝐽2

 

=∑𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2)

𝐽2

= 𝑆𝑖1𝑗1𝑖2𝑗2(𝑓) 

Hence, the uniform boundedness of the 𝐿2 → 𝐿2 operator norm of dyadic shifts implies 

that  

‖𝐼‖𝐿2(ℝ𝑛×ℝ𝑚)
2 ≲ ‖𝑏‖𝑏𝑚𝑜

2 ‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚)
2  

In order to handle 𝐼𝐼, we split it into a finite sum depending on the levels of 𝐼1upon 𝐽1
′ , 

which leads to  

𝐼𝐼 = ∑∑∑〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐽1

′(𝑘)〉1
𝑗1
′𝑗2

𝑗1

𝑘=0

ℎ
𝐽1
′(𝑘)ℎ𝐽1′ ⊗ 〈𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉1 

= ∑∑∑𝛽𝐽1′ ,𝑘 |𝐽1
′(𝑘)
|
−1 2⁄

〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐽1

′(𝑘)〉1
𝑗1
′𝑗2

𝑗1

𝑘=0

ℎ
𝐽1
′(𝑘)ℎ𝐽1′ ⊗ 〈𝑆𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2), ℎ𝐽1′ 〉1 

∑∑𝐵𝑘(〈𝑏〉𝐽2
(𝑖2) , 𝑆

𝑖1𝑗1𝑖2𝑗2(〈𝑓, ℎ𝐽2〉2⊗ℎ𝐽2))

𝑗2

𝑗1

𝑘=0

 

where 𝐵𝑘(𝑏, 𝑓) ≔ ∑ 𝛽𝐼,𝑘〈𝑏, ℎ𝐼(𝑘)〉〈𝑓, ℎ𝐼〉ℎ𝐼|𝐼
(𝑘)|

−1 2⁄

𝐼  is a generalized one-parameter 

paraproduct studied in [106], whose 𝐿2 norm is uniformly bounded by ‖𝑏‖BMO ‖𝑓‖𝐿2, 
independent of 𝑘 and the coefficients 𝛽𝐼,𝑘 ∈ {−1,1}. Then one can proceed as in part 𝐼 to 

conclude that  

‖𝐼𝐼‖𝐿2(ℝ𝑛×ℝ𝑚) ≲ (1 + 𝐽1)‖𝑏‖𝑏𝑚𝑜‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚) 

which together with the estimate for part 𝐼 implies that  

‖𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚‖𝐿2(ℝ𝑛×ℝ𝑚) ≲ (1 + 𝑗1)‖𝑏‖𝑏𝑚𝑜‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚) 

 

b) Second term. 

As the second term by linearity is the same as  

𝑆𝑖1𝑗1𝑖2𝑗2(∑ ∑ 〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 〈𝑓, ℎ𝐽1 ⊗ℎ𝐽2〉

𝐼1⊂𝐽1
(𝑖1)

ℎ𝐼1ℎ𝐽1⊗ℎ𝐽2
𝐽2

) 

the 𝐿2 → 𝐿2boundedness of the shift implies that it suffices to estimate the 𝐿2 norm of the 

term inside the parentheses. Since 𝐼1 ∩ 𝐽1 ≠ ∅, one can further split the sum into two parts:  

𝐼 ≔∑ ∑  

𝐼1⊊𝐽1𝐽2

, 𝐼𝐼 ≔∑ ∑  

𝐼1⊂𝐽1⊂𝐽1
(𝑖1)𝐽2

 

Summing over 𝐽1first implies that  

𝐼 = ∑∑〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐼1〉1 〈𝑓, ℎ𝐼1

1 ⊗ℎ𝐽2〉

𝐼1

ℎ𝐼1ℎ𝐼1
1 ⊗ℎ𝐽2

𝐽2

=:∑𝐵0 (〈𝑏〉𝐽2
(𝑖2) , 〈𝑓, ℎ𝐽2〉2) ⊗ ℎ𝐽2

𝐽2

 

where 𝐵𝑜(𝑏, 𝑓) ≔ ∑ 〈𝑏, ℎ𝐼〉 〈𝑓, ℎ1
𝐼

〉 ℎ𝐼|𝐼|
−1 2⁄

𝐼 is a classical one-parameter paraproduct in the 

first variable. Hence,  
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‖𝐼‖𝐿2(ℝ𝑛×ℝ𝑚)
2 =∑‖𝐵0 (〈𝑏〉𝐽2

(𝑖2) , 〈𝑓, ℎ𝐽2〉2)‖
𝐿2(ℝ𝑛)

2

𝐽2

≲∑‖〈𝑏〉
𝐽2
(𝑖2)‖

𝐵𝑀𝑂(ℝ𝑛)

2
‖〈𝑓, ℎ𝐽2〉2‖𝐿2(ℝ𝑛)

2

𝐽2

≤ ‖𝑏‖𝑏𝑚𝑜
2 ∑‖〈𝑓, ℎ𝐽2〉2‖𝐿2(ℝ𝑛)

2

𝐽2

= ‖𝑏‖𝑏𝑚𝑜
2 ‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚)

2  

For part 𝐼𝐼, note that it can be decomposed as  

𝐼𝐼 = ∑∑∑〈〈𝑏〉
𝐽2
(𝑖2) , ℎ𝐽1

(𝑘)〉1 〈𝑓, ℎ𝐽1⊗ℎ𝐽2〉

𝐽1

ℎ
𝐽1
(𝑘)ℎ𝐽1 ⊗ℎ𝐽2

𝐽2

𝑖1

𝑘=0

 

∑∑∑𝛽𝐽1,𝑘 |𝐽1
(𝑘)|

−1 2⁄
〈〈𝑏〉

𝐽2
(𝑖2) , ℎ𝐽1

(𝑘)〉1 〈〈𝑓, ℎ𝐽2〉2, ℎ𝐽1〉1
𝐽1

ℎ𝐽1⊗ℎ𝐽2
𝐽2

𝑖1

𝑘=0

 

∑∑𝐵,𝑘(〈𝑏〉𝐽2
(𝑖2) , 〈𝑓, ℎ𝐽2〉2) ⊗ ℎ𝐽2

𝐽2

𝑖1

𝑘=0

 

 

 

where coefficients 𝛽𝐽1𝑘 ∈ {1, −1} and the 𝐿2 norm of the generalized paraproduct 𝐵𝑘  is 

uniformly bounded as mentioned before. Therefore, the same argument as for part 𝐼 shows 

that  

‖𝐼𝐼‖𝐿2(ℝ𝑛×ℝ𝑚) ≲ (1 + 𝑖1)‖𝑏‖𝑏𝑚𝑜‖𝑓‖𝐿2(ℝ𝑛×ℝ𝑚) 

which completes the discussion of the second term, and thus proves that the mixed case is 

bounded. 

The upper bound result we just proved can be extended toℝ𝑑, to arbitrarily many 

parameters and an arbitrary number of iterates in the commutator. To do this, consider 

multi-parameter singular integral operators studied in[125], which satisfy 𝑎 weak bound- 

edness property and are paraproduct free, meaning that any partial adjoint of 𝑇 is zero if 

acting on some tensor product of functions with one of the components being 1. And 

consider 𝑎 little product 𝐵𝑀𝑂 function𝑏 ∈ 𝐵𝑀𝑂ℐ(ℝ
𝑑). One can then prove 

Theorem (4.2.19)[115]: Let us considerℝ𝒅, 𝒅 = (𝑑1, … , 𝑑𝑡)with 𝑎 partition ℐ =
(𝐼𝑠)1≤𝑠≤𝑙of {1, … , 𝑡}as discussed before. Let𝑏 ∈ 𝐵𝑀𝑂ℐ(ℝ

𝑑)and let𝑇𝑠denote 𝑎 multi-

parameter paraproduct free Journé operator acting on functions defined ⊗𝑘∈𝐼𝑠 ℝ
𝑑𝑘. Then 

we have the estimate below 

‖[𝑇1, … , [𝑇𝑙, 𝑏] … ]‖𝐿2(ℝ𝒅)⟲ ≲ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅). 

The part of the proof that targets the Journé operators proceeds exactly the same as the bi-

parameter case with the multi-parameter version of the representation theorem proven 

in[125]. Certainly, as the number of parameters increases, more mixed cases will appear. 

However, if one follows the corresponding argument above for each variable in each case, 

it is not hard to check that eventually, the boundedness of the arising paraproducts is 

implied exactly by the little product 𝐵𝑀𝑂 norm of the symbol. The difficulty of higher 

iterates is overcome in observing that the commutator splits into commutators with no 

iterates, as was done in [106]. The assumption that the operators be paraproduct free is 

sufficient for our lower estimate. The general case is currently under investigation. 
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Important to our arguments for lower bounds with Riesz transforms is the corollary below, 

which follows from the control on the norm of the estimate in Theorem(4.2.19) by an 

application of triangle inequality. It is 𝑎 stability result for characterizing families of 

Journé operators.  

Corollary (4.2.20)[115]: Let for every 1 ≤ 𝑠 ≤ 𝑙 be given 𝑎 collection𝜏𝑠 = {𝑇𝑠,𝑗𝑠}of 

paraproduct free Journé operators on ⊗𝑘∈𝐼𝑠
ℝ𝑑𝑘 that characterize𝐵𝑀𝑂ℐ(ℝ

𝑑) via 𝑎 two-

sided commutator estimate 

‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝑑) ≲ sup
𝑗
‖[𝑇1,𝐽1 , … , [𝑇𝑙,𝐽𝑙 , 𝑏] … ]‖𝐿2(ℝ𝒅)⟲

≲ ‖𝑏‖𝐵𝑀𝑂ℐ(ℝ𝒅). 

Then there exists 𝜀 > 0 such that for any family of paraproduct free Journé operators𝜏𝑠
′ =

{𝑇𝑠,𝑗𝑠
′ } with characterizing constants‖𝑇𝑠,𝑗𝑠

′ ‖
𝐶𝑍
≤ 𝜀, the family{𝑇𝑠,𝑗𝑠 + 𝑇𝑠,𝑗𝑠

′ }still 

characterizes 𝐵𝑀𝑂ℐ(ℝ
𝑑). 

It is well known, that theorems of this form have an equivalent formulation in the 

language of weak factorization of Hardy spaces. We treat the model caseℝ𝑑 =

ℝ(𝑑1,𝑑2,𝑑3)and𝐵𝑀𝑂(13)(2)(ℝ
𝑑)only for sake of simplicity. The other statements are an 

obvious generalization. For the corresponding collections of Riesz transforms ℛ𝑘,𝑗𝑘and 

𝑏 ∈ 𝐵𝑀𝑂(13)(2)(ℝ
𝑑),1 ≤ 𝑠 ≤ 3, by unwinding the commutator one can define the 

operator Π𝑗 such that 

〈[𝑅2,𝑗2 , [𝑅1,𝑗1𝑅3,𝑗3 , 𝑏]] 𝑓, 𝑔〉𝐿2 = 〈𝑏, Π𝑗(𝑓, 𝑔)〉𝐿2 . 

 Consider the Banach space𝐿2 ∗ 𝐿2of all functions in𝐿1(ℝ𝑑)of the form𝑓 =

∑ ∑ Π𝑗(𝜙𝑖
𝑗
, 𝜓𝑖
𝑗
)𝑖𝑗 normed by 

‖𝑓‖𝐿2∗𝐿2 = inf {∑∑‖𝜙𝑖
𝑗
‖
2
‖𝜓𝑖

𝑗
‖
2

𝑖𝑗

} 

with the infimum running over all possible decompositions of𝑓. Applying 𝑎 duality 

argument and the two-sided estimate in Corollary (4.2.20) we are going to prove the 

following weak factorization theorem. 

Theorem(4.2.21)[115]: 𝐻𝑅𝑒
1 (ℝ(𝑑1,𝑑2))⨂𝐿1(ℝ𝑑3) + 𝐿1(ℝ𝑑1)⨂𝐻𝑅𝑒

1 (ℝ(𝑑2,𝑑3)) coincides 

with the space 𝐿2 ∗ 𝐿2. In other words, for any 𝑓 ∈ 𝐻𝑅𝑒
1 (ℝ(𝑑1,𝑑2))⨂𝐿1(ℝ𝑑3) +

𝐿1(ℝ𝑑1)⨂𝐻𝑅𝑒
1 (ℝ(𝑑2,𝑑3)) there exist sequences 𝜙𝑖

𝑗
, 𝜓𝑖
𝑗
∈ 𝐿2 such that 

‖𝑓‖~∑ ∑ ‖𝜙𝑖
𝑗
‖
2
‖𝜓𝑖

𝑗
‖
2𝑖𝑗 . 

Proof: Let’s first show that𝐿2 ∗ 𝐿2is 𝑎 subspace of𝐻𝑅𝑒
1 (ℝ(𝑑1,𝑑2))⨂𝐿1(ℝ𝑑3) +

𝐿1(ℝ𝑑1)⨂𝐻𝑅𝑒
1 (ℝ(𝑑2,𝑑3)). Recalling the remark after Theorem(4.2.3), this is the same as to 

show∀𝑓 ∈ 𝐿2 ∗ 𝐿2,𝑓is 𝑎 bounded linear functional on𝐵𝑀𝑂(13)(2)(ℝ
𝑑). This follows from 

the upper bound on the commutators since 

〈𝑏,∑∑Π𝑗(𝜙𝑖
𝑗
, 𝜓𝑖
𝑗
)

𝑖𝑗

〉 = ∑∑〈[𝑅2,𝑗2 , [𝑅1,𝑗1𝑅3,𝑗3 , 𝑏]] 𝜙𝑖
𝑗
, 𝜓𝑖
𝑗〉

𝑖𝑗

. 

Now we are going to show 

sup
𝑓∈𝐿2∗𝐿2

{|∫𝑓𝑏| : ‖𝑓‖𝐿2∗𝐿2 ≤ 1}~‖𝑏‖𝐵𝑀𝑂(13)(2) 

which gives the equivalence of𝐻𝑅𝑒
1 (ℝ(𝑑1,𝑑2))⨂𝐿1(ℝ𝑑3) + 𝐿1(ℝ𝑑1)⨂𝐻𝑅𝑒

1 (ℝ(𝑑2,𝑑3)) norm 

and the𝐿2 ∗ 𝐿2norm, thus showing that the two spaces are the same. 
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To see this, note that the direction≲is trivial, and the direction≳is implied by the lower 

bound of commutators. For any𝑏 ∈ 𝐵𝑀𝑂(13)(2)(ℝ
𝑑), there exists 𝑗 such 

that‖𝑏‖𝐵𝑀𝑂(13)(2) ≲ ‖[𝑅2,𝑗2 , [𝑅1,𝑗1𝑅3,𝑗3 , 𝑏]]‖. Hence, there exist 𝜙, 𝜓 ∈ 𝐿2with norm1 such 

that 

‖𝑏‖𝐵𝑀𝑂(13)(2) ≲ |〈[𝑅2,𝑗2 , [𝑅1,𝑗1𝑅3,𝑗3, 𝑏]] 𝜙, 𝜓〉| = |〈𝑏, Π𝑗(𝜙, 𝜓)〉| ≤ 𝐿𝐻𝑆, 

 which completes the proof.  
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Chapter 5 

Nonlinear Piecewise Polynomial Approximation 

 

We consider uniform approximation and approximation in the metric of the 

spaces𝐿𝑞,𝜎 = 𝐿𝑞(𝑄
𝑚; 𝜎), where 𝑞 > 1 and 𝜎 is 𝑎 finite Borel measure. We show that the 

main approximation result concerns the space 𝑉𝑝𝑞
𝑘  of smoothness 𝑠: = 𝑑 (

1

𝑝
−
1

𝑞
) ∈  (0, 𝑘]. 

It asserts the following: Let 𝑓 ∈ 𝑉𝑝𝑞
𝑘  be of smoothness 𝑠 ∈  (0, 𝑘], 1 ≤  𝑝 <  𝑞 <  ∞ and 

𝑁 ∈ ℕ. There exist a family ∆𝑁 of 𝑁 dyadic subcubes of [0, 1)𝑑 and a piecewise 

polynomial 𝑔𝑁 over ∆𝑁 of degree 𝑘 −  1 such that ‖𝑓 − 𝑔‖ ≤ 𝐶𝑁−
𝑠

𝑑|𝑓|𝑉𝑝𝑞𝑘  . This implies 

similar results for the above mentioned smoothness spaces, in particular, solves the going 

back to the 1967 Birman–Solomyak [147] problem of approximation of functions from 

𝑊𝑝
𝑘([0, 1)𝑑 ) in 𝐿𝑞([0, 1)

𝑑) whenever 
𝑘

𝑑
=
1

𝑝
−
1

𝑞
 and 𝑞 <  ∞. 

Section (5.1): Functions of the Classes 𝑾𝒑
𝜶 

For the approximation device we use functions which become polynomials of some 

fixed degree 𝑙 = 𝑙(𝛼)on each of the cubes in 𝑎 suitable partitioning of 𝑄𝑚into cubes. The 

partition according to which we construct the approximating piecewise-polynomial 

function is not fixed in advance; only the number of cubes in it is restricted. The partition 

itself is chosen (according to the formulation of the problem) as 𝑎 function either of the 

function being approximated or of the measure 𝜎. Naturally such 𝑎 choice makes possible 

𝑎 better rate of approximation. Indeed, as one of the results, the rate of approximation 

obtained in the uniform metric for 𝑝𝑎 > 𝑚 is the same as that for functions which have 

smoothness of order 𝛼 in the classical sense. 

The problem investigated arose first in connection with the development of the theory of 

double Stieltjes operator integrals [130]-[133]. Estimates of singular numbers of integral 

operators acting from the space 𝐿2,𝜎into another space 𝐿2,𝜏are of considerable value for 

this theory. The specific problem is that we need estimates not depending (in the usual 

sense) on the measures 𝜎 and 𝜏. The method of approximation presented here was in fact 

developed with the aim of investigating integral operators. 

 This method of approximation found another application in the theory of double Stieltjes 

operator integrals in so-called "interpolation in smoothness" (see [133]). Here the basic 

approximation results can be used directly, without the corresponding theorems on integral 

operators. We note that new results in the multidimensional problem of multipliers in𝑙𝑝 

spaces (see[132], [133]) are 𝑎 consequence of "interpolation in smoothness". 

It has also become clear that the proposed untraditional tool for approximation is also 

useful 𝑖𝑜 other problems. First of all, with it we can find the exact order of 𝜖-entropy of 

the unit sphere 1) 𝑆𝑊𝑝
𝑎(𝑄𝑚), 𝑝𝑎 > 𝑚, as 𝑎 compactum in 𝐶(𝑄𝑚). 

It is known [134] that the 𝜖-entropy of the sphere 𝑆𝐶𝑎(𝑄𝑚) as 𝑎 compactum in 𝐶(𝑄𝑚)has 

order𝜖−𝑚
𝑎−1

. In this case "strong" and "weak" norms are similar in nature, so that we can 

use relatively simple approximation methods for estimating entropy. Sometimes we are 

concerned with estimating the entropy of the set 𝑆𝑊𝑝
𝑎(𝑄𝑚)in the metric of the space 

𝐶(𝑄𝑚). The norms in 𝑊𝑝
𝑎(𝑄𝑚)and in 𝐶(𝑄𝑚)ate different in nature, and the norm 

in𝐶(𝑄𝑚)is essentially more "restrictive" than the norm in 𝐿𝑝(𝑄
𝑚). As 𝑎 result the 
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classical linear approximation methods do not lead to an exact result in this case. The 

approximation method proposed makes it possible to find the precise order of 𝜖-entropy, 

which again turns out to be 𝑒−𝑚
𝑎−1

. 
All the results obtained, in the final analysis, based on one special theorem on set 

functions. The proof of this theorem rests on 𝑎 detailed investigation of 𝑎 certain concrete 

algorithm for partitions of the cube 𝑄𝑚. When applied to approximation theory, this 

algorithm generates 𝑎 tool for approximations which is closely linked with the 

peculiarities in the formulation of the problem, which makes possible 𝑎 good rate of 

approximations. 

We study the classes 𝑊𝑝
𝑎 . We use only 𝑎 few properties of these spaces: imbedding 

theorems in the spaces 𝐶 and 𝐿𝑝, and also the property of homogeneity of the principal 

term of the norm with respect to similarity transformations of the region. As 𝑎 result of 

this all the results also hold for other functional classes having the same properties. In 

particular, this refers to the spaces 𝐻𝑝
𝑎 of S. M. Nikol'skii and 𝐵𝑝

𝑎of O. V. Besov (see 

e.g.[135]). 
In the case 𝑚 = 1 the theorems on approximation carry over to classes of functions 

of bounded 𝛽-variation. These results are of definite interest for estimating singular 

numbers of integral operators. Besides the results relating to the theory of approximation, 

estimates of e-entropy are also presented. Applications of the basic results to estimating 

singular numbers of integral operators are treated in [136]. 
We prove the basic theorem on partition functions. We derive theorems on 

approximation of functions of the class 𝑊𝑝
𝑎 . We obtain analogous results for functions of 

bounded 𝛽-variation. We give estimates of the 𝜖-entropy of the set 𝑆𝑊𝑝
𝑎(𝑄𝑚)in𝐶(𝑄𝑚) for 

𝑝𝑎 > 𝑚 and in𝐿𝑝(𝑄
𝑚)for 𝑝𝑎 < 𝑚, 𝑞 <  𝑚𝑝(𝑚 − 𝑝𝑎)−1. 

Results for the case 𝑝𝑎 > 𝑚 (though more important) were published without proof in 

[137] 
Let 𝑅𝑚be the 𝑚-dimensional Euclidean space of points (vectors)𝑥 = (𝑥1, … , 𝑥𝑚), 

|𝑥|the length of the vector𝑥. If 𝑘 = (𝑘1, … , 𝑘𝑚)is 𝑎 multi-index (all𝑘𝑖. are integers,𝜅 > 0), 

then𝑥𝑘 = ∏ 𝑥𝑖
𝑘𝑖𝑚

𝑖=1 ,|𝑘| = ∑ 𝑘𝑖
𝑚
𝑖=1 . Let𝐷𝑘denote the differentiation operator: 

𝐷𝑥 =
𝜕|𝑥|

𝜕𝑥1
𝑥1 …𝜕𝑥𝑚

𝑥𝑚
. 

 Let∆⊂ 𝑅𝑚be 𝑎 cube with edges parallel to the coordinate axes,𝑝 > 1, 𝑎 > 0,[𝑎] the 

integral part of𝑎, 𝜃 = 𝑎 − [𝑎]. We introduce the spaces 𝐿𝑝(∆), 𝐿∞(∆), 𝐶(∆), 𝐶
𝑎(∆)in the 

usual manner. We use𝑊𝑝
𝑎(∆)to denote the Sobolev-Slobodeckn space (see e.g.[135]). The 

norm in𝑊𝑝
𝑎(∆)is defined by 

‖𝑢‖𝑊𝑝𝛼(∆) = ‖𝑢‖𝐿𝑝(∆) + ‖𝑢‖𝐿𝑝𝛼(∆).                                                        (1) 

where for integral𝛼 

‖𝑢‖𝐿𝑝𝛼(∆)
𝑝

= ∑ ∫|𝐷𝑥𝑢|𝑝
 

∆|𝑥|=𝛼

𝑑𝑥,                                          (2) 

 and for nonintegral𝛼 

‖𝑢‖𝐿𝑝𝛼(∆)
𝑝

= ∑ ∫∫
|𝐷𝑥𝑢(𝑥) − 𝐷𝑥𝑢(𝑦)|𝑝

|𝑥 − 𝑦|𝑝𝜃+𝑚

 

∆

 

∆|𝑥|=𝛼

𝑑𝑥𝑑𝑦.                            (3) 
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Below𝑄𝑚is the halfopen unit cube0 ≤ 𝑥𝑖 < 1(𝑖 = 1,… ,𝑚)of the space𝑅𝑚; if∆= 𝑄𝑚the 

symbol ∆will be omitted in the notation for spaces and their corresponding norms. The 

seminorm ‖∙‖𝐿𝑝𝛼(∆)has the property of homogeneity with respect to similarity 

transformations of the cube∆. Indeed, let∆= 𝑥0 + ℎ𝑄
𝑚, suppose𝑢 ∈ 𝑊𝑝

𝛼and𝜐 is the 

function defined for 𝑥 ∈ ∆by𝜐(𝑥) = 𝑢(ℎ−1(𝑥 − 𝑥0)). Then𝜐 ∈ 𝑊𝑝
𝑎(∆)and 

‖𝜐‖𝐿𝑝𝛼(∆) = ℎ
𝑚𝑝−1−𝛼‖𝑢‖𝐿𝑝𝛼 .                                                        (4) 

In the one-dimensional case, besides the classes𝑊𝑝
𝑎(∆)we shall also consider classes of 

functions of bounded 𝛽-variation. The function 𝑢 given on the (possibly infinite) interval 

Δ ⊂ 𝑅1belongs to the class𝑉𝛽(∆) of functions of bounded 𝛽-variation (𝛽 ≥ 1)if the 

quantity 

‖𝑢‖
𝑉𝛽
𝜊(∆)
𝑝

= sup∑|𝑢(𝑥𝑘) − 𝑢(𝑥𝑘−1)|
𝛽

𝑛

𝑘=1

 

is finite; here the least upper bound is taken relative to all possible finite sets of points𝑥0 <
𝑥1 < ⋯… < 𝑥𝑛from the interval∆. The class𝑉𝛽(∆)is 𝑎 Banach space relative to the norm 

‖𝑢‖𝑉𝛽(∆) = ‖𝑢‖𝑉𝛽
𝜊(∆) + sup

𝑥∈∆
|𝑢(𝑥)|.                                          (5) 

Every function 𝑢 ∈ 𝑉𝛽(∆)has limits from the left and from the right at each point of the 

interval Δ. To simplify the exposition we normalize the functions of bounded 𝛽-variation, 

making them continuous from the right, and restrict consideration to classes 𝑉𝛽(Δ)for 

intervalsΔwhich are halfopen from the right. (In particular, if the left end of the intervalΔ 

is infinite, then we include the improper end𝑥 = −∞in the interval∆, using as the 

value𝑢(−∞)the corresponding limit.) We note another obvious property of the classes 𝑉𝛽- 

their invariance with respect to monotonic replacements of the independent variable. 

We recall the definition of e-entropy and the 𝑛-diameter of 𝑎 compact set in 𝑎 normed 

linear space (see[134], [138]). Let 𝑋 be 𝑎 Banach space and suppose the set𝐾 ⊂ 𝑋is 

compact. Let𝔑𝜖(𝐾; 𝑋)be the minimal number of elements of the 𝜖-net of the set 𝛫 in the 

metric of the space𝑋; the 𝜖-entropy of the set 𝛫 in 𝑋 is the quantity 

ℋ𝜀(𝐾; 𝑋) = log2𝒩𝜀(𝐾; 𝑋). 
The number 

𝑑𝑛(𝐾; 𝑋) = log sup
𝑥∈𝐾

min
𝑦∈𝐿𝑛

‖𝑥 − 𝑦‖ 

is called the 𝜂-diameter of the set 𝛫 in 𝑋; the inf is taken relative to all possible re-

dimensional hyperplanes𝐿𝑛 ⊂ 𝑋. 
If 𝛾 is 𝑎 Banach space compactly imbedded in 𝑋 and𝛫 = 𝑆𝑌, then we write 

ℋ𝜖(𝑌; 𝑋)instead ofℋ𝜖(𝑆𝑌; 𝑋)and𝑑𝑛(𝑌; 𝑋)instead of𝑑𝑛(𝑆𝑌; 𝑋). 
We use the following notation for the constants encountered in the various estimates. 

Constants whose values are not essential are denoted by the letter 𝑐 with no subscript, and 

essential constants are denoted by 𝐶 with subscripts. Also we write𝑓 ≍ 𝑔if 𝑓 ≤ 𝑐gandg ≤
𝑐𝑓. 

Let 𝛯 be 𝑎 partition of the cube 𝑄𝑚 into 𝑎 finite number of halfopen ro-dimensional 

cubes∆𝑘; let |𝛯|be the number of cubes in the partition 𝛯. We write𝛯 = {∆𝑘}(𝑘 =
1, … , |𝛯|)and ∆𝑘∈ 𝛯. A partition 𝛯′ obtained from 𝑎 by dividing certain cubes∆𝑘∈ 𝛯 

into2𝑚different cubes is called an elementary extension of the partition𝛯. Below 𝑎 basic 

role is played by the classℜ of all partitions which can be obtained from the trivial 
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partition 𝛯0(|𝛯0| = 1)by 𝑎 finite number of elementary extensions. The symbol𝛯0will 

always denote the trivial partition. 

Let 𝐽 be a nonnegative function of half open cubes ∆⊂ 𝑄𝑚, semiadditive from below in 

the following sense: if the cube ∆⊂ 𝑄𝑚is decomposed into 𝑎 finite number of disjoint 

cubes ∆𝑗, then∑ 𝐽(∆𝑗)𝑗 ≤ 𝐽(∆). Let|∆|be the Euclidean volume of the cube ∆,𝑎 > 0 some 

number. Set 

g𝑎(𝐽; ∆) = |∆|
𝑎𝐽(∆)(∆⊂ 𝑄𝑚) 

and consider the following function of partitions 𝛯 of the cube 𝑄𝑚: 
𝐺𝑎(𝐽; 𝛯) = max

∆∈𝛯
g𝑎(𝐽; ∆).                                          (6) 

The basic goal is to estimate the quantity min|𝛯|≤𝑛𝐺𝑎(𝐽; 𝛯), depending on 𝑛. To obtain 

such an estimate we construct 𝑎 special sequence of partitions. This sequence is 

constructed by the method of "successive division." Indeed, the first step is to divide the 

cube 𝑄𝑚 into 2𝑚 different cubes. Then we again partition that cube ∆ for which the 

quantity g𝑎(𝐽; ∆) is maximal into 2𝑚cubes. This process is continued and we obtain 𝑎 

sequence of partitions for which we can give 𝑎 good estimate of the rate of decrease of the 

quantity (6). The considerations presented below follow basically from this procedure- 

There is 𝑎 difference, however, in that we allow simultaneous division of several cubes of 

one partition. 

Thus, let 𝐽 be a given function semiadditive from below and with it associate 𝑎 sequence 

of partitions {𝛯𝑖}0
∞which is constructed as follows. We start with the trivial partition 𝛯0. 

Suppose the partition 𝛯𝑖 has already been constructed and let ∆𝑗∈ 𝛯𝑖(𝑗 = 1,… , 𝑠𝑖) be those 

cubes of the partition 𝛯𝑖 for which 

g𝑎(𝐽; ∆𝑗) ≥ 2
−𝑚𝑎𝐺𝑎(𝐽; 𝛯𝑖)(𝑗 = 1,… , 𝑠𝑖).                            (7) 

Then as 𝛯𝑖+1 we take the elementary extension of the partition 𝛯𝑖 obtained by dividing 

these cubes. Thus 𝑠𝑖 is the number of cubes in the partition 𝛯𝑖 which were divided in 

passing to 𝛯𝑖+1. It is clear that 𝛯𝑖 ∈ ℜ(𝑖 = 0,1, … ). 
The sequence of partitions𝛯𝑖obtained by this construction is denoted as follows: 

{𝛯𝑖}0
∞ = 𝑇𝑎(𝐽). 

For the quantities characterizing the sequence𝑇𝑎(𝐽), we use the notation 

𝑛𝑖 = 𝑛𝑖(𝐽; 𝑎) = |𝛯𝑖|(𝛯𝑖 ∈ 𝑇𝑎(𝐽)),                                          (8) 

𝛿𝑖 = 𝛿𝑖(𝐽; 𝑎) = 𝐺𝑎(𝐽; 𝛯𝑖) = max
∆∈𝛯𝑖

|∆|𝑎 𝐽(∆) (𝛯𝑖 ∈ 𝑇𝑎(𝐽)).                            (9) 

It is clear that 𝑛0 = 1and 

n𝑖+1 ≤ 2
𝑚𝑛𝑖(𝑖 = 0,1, … ).                                          (10) 

Theorem (5.1.1)[129]: For every function 𝐽 semiadditive from below and for each natural 

number𝑛 there is a partition 𝛯 ∈ ℜof the cube 𝑄𝑚such that |𝛯| ≤ 𝑛and 

𝐺𝑎(𝐽; 𝛯) ≤ 𝐶1𝑛
−(𝑎+1)𝐽(𝑄𝑚),                                          (11) 

where the constant 𝐶1 = 𝐶2(𝑎,𝑚)does not depend on the function𝐽. 
The validity of Theorem (5.1.1) stems from the following assertion. 

Lemma (5.1.2)[129]: Suppose the cube ∆⊂ 𝑄𝑚is divided into 2𝑚 different cubes 

∆𝑗(𝑗 = 1,… , 2
𝑚). Then 

max
𝑗
g𝑎(𝐽; ∆𝑗) ≤ 2

−𝑚𝑎g𝑎(𝐽; ∆). 

Lemma (5.1.3)[129]: Let 𝑠 be a natural number and let 𝑥𝑗 > 0, 𝛾𝑗 > 0(𝑗 = 1, … , 𝑠)be 

numbers satisfying the relationships 
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∑𝑥𝑖

𝑠

𝑗=1

≤ 1,∑𝑦𝑖

𝑠

𝑗=1

≤ 1, 𝑥𝑖𝑦𝑖
𝑎 ≥ 𝑏(𝑗 = 1, … , 𝑠). 

for some 𝑎 > 0, 𝑏 > 0. Then 𝑏 ≥ 𝑠−(𝑎+1). 
Lemma (5.1.2) is obvious and Lemma (5.1.3) is proved with the help of elementary work 

with extrema. 

Theorem (5.1.4)[129]: For every function 𝐽 semiadditive from below the quantities 

𝑛𝑖(𝐽; 𝑎) and 𝛿𝑖(𝐽; 𝑎)are related by the inequality 

𝛿𝑖 ≤ 𝐶2𝑛𝑖
−(𝑎+1)(𝑖 = 0,1, … ),                                          (12) 

where the constant 𝐶2 = 𝐶2(𝑎,𝑚) does not depend on 𝐽. 
Proof. Without loss of generality we assume 𝐽(𝑄𝑚) ≤ 1. We investigate certain properties 

of the sequences(8) and(9). It follows from Lemma(5.1.2) and the inequality(7) that 

𝛿𝑖+1 ≤ 2
−𝑚𝑎𝛿𝑖(𝑖 = 0,1, … ),                            (13) 

Another inequality for the quantities 𝛿𝑖  follows from Lemma (5.1.3). Namely, setting 

𝑥𝑗 =  𝐽(∆𝑗), 𝑦𝑗 =  |∆𝑗| (𝑗 =  1, … , 𝑠𝑗)and taking account of (7), we find that the conditions 

of the lemma are satisfied for 𝑏 = 2−𝑚𝑎𝛿𝑖. Hence  

                         𝛿𝑖 ≤ 2
𝑚𝑎𝑠𝑖

−(𝑎+1)
      (𝑖 = 0,1 , … )                                           · (14) 

We note the obvious relationships 

𝑛0 = 1,   𝑠𝑖 ≤ 𝑛𝑖 , 𝑛𝑖+1 − 𝑛𝑖 = (2
𝑚 − 1)𝑠𝑖, 

           𝑛𝑖 ≤ 2
𝑚∑𝑠𝑗

𝑖−1

𝑗=0

        (𝑖 = 1, 2, . . . ).                                           (15) 

Let 𝑘 ≥  𝑖 ≥ 0; from (13) and (14) we obtain that 

𝛿𝑘 ≤ 2
−(𝑘−𝑖−1)𝑚𝑎𝑠𝑖

−(𝑎+1)
 

Hence for every 𝑖 (0 ≤ 𝑖 ≤ 𝑘) 

𝑠𝑖 ≤ 2
−(𝑘−𝑖−1)𝑚𝑎(𝑎+1)−1𝛿𝑘

−(𝑎+1)−1
                                (16) 

Further, for 𝑘 ≥  1, taking account of (15) and (16), we find that 

 𝑛𝑘 ≤ 2
𝑚𝛿𝑘

−(𝑎+1)−1∑2−(𝑘−𝑖−1)𝑚𝑎(𝑎+1)
−1

𝑘−1

𝑖=0

= 2𝑚𝛿𝑘
−(𝑎+1)−1∑2−𝑗𝑚𝑎(𝑎+1)

−1

𝑘−1

𝑗=0

< 2𝑚[1 − 2−𝑚𝑎(𝑎+1)
−1
]
−1
𝛿𝑘
−(𝑎+1)−1 . 

Thus for 𝑘 ≥ 1 

𝛿𝑘 ≤ 𝐶2𝑛𝑘
−(𝑎+1) ,                                                    (17) 

where the constant 

𝐶2 = 2
𝑚(𝑎+1)[1 − 2−𝑚𝑎(𝑎+1)

−1
]
−(𝑎+1)

 

does not depend on 𝐽. It is also obvious that (17) holds for 𝑘 =  0 too. Thus Theorem 

(5.1.4)has been proved.  

The considerations are of an "entropic" nature. We let 𝔍 denote the set of all 

functions 𝐽 semiadditive from below which satisfy the condition 𝐽(𝑄𝑚)  ≤  1. We combine 

the functions 𝐽 ∈ 𝔍 which are close in a certain sense into a class and estimate the number 

of such classes. Together with the sequences (8), (9) we also consider the sequence of 

numbers: 

𝛿𝑖 = 𝛿𝑖(𝐽; 𝑎) = 𝐶2 min
0≤𝑗≤𝑖

[2−𝑎𝑚(𝑖−𝑗)𝑛𝑗
−(𝑎+1)]    (𝑖 = 0, 1, … ).                 (18) 
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It follows from (13) and (12) that 

 𝛿𝑖 ≤ 𝛿𝑖        (𝑖 = 0,1, … ).                                                             (19) 
It is also clear that 

𝛿𝑖 ≤ 𝐶2𝑛𝑗
−(𝑎+1)

     (𝑖 = 0, 1, … ).                                                             (20) 

Thus the sequence (18) majorizes (9) and satisfies an inequality analogous to (12). 

Together with  the sequence {𝛿𝑖} behaves more regularly than the sequence {𝛿𝑖}: the 

following inequalities hold for it: 

2−(𝑎+1)𝑚𝛿𝑖 ≤ 𝛿𝑖+1 ≤ 2
−𝑎𝑚𝛿𝑖  .                                              (21) 

Indeed, 

𝛿𝑖+1 = 𝐶2 min
0≤𝑗≤𝑖+1

[2−𝑎𝑚(𝑖−𝑗+1)𝑛𝑗
−(𝑎+1)

] = min
 
[2−𝑎𝑚𝛿𝑖; 𝐶2𝑛𝑖+1

−(𝑎+1)
]. 

The right inequality in (21) now follows immediately; it remains to refer to (10) and (20) 
to derive the left inequality.  

  Now let 𝜂 be a fixed number (0 < 𝜂 ≤ 𝐶2). Let 𝑇𝑎
𝜂
 denote the interval {Ξ𝑖}0

𝑘 of the 

sequence 𝑇𝑎(𝐽), where the number 𝑘 is determined by the conditions 

 𝛿𝑘 < 𝜂 ≤ 𝛿𝑘−1.                                                               (22) 
We shall assume that the functions 𝐽, 𝐽′ ∈ 𝔍 belong to the same class if and only if 

𝑇𝑎
𝜂(𝐽) = 𝑇𝑎

𝜂(𝐽′). 
The number of classes into which the set 𝔍 can be separated here is denoted by 𝑁(𝑎;  𝜂). 
Lemma (5.1.5)[129]:  The estimate  

log2𝑁(𝑎;  𝜂) ≤ 𝐶3𝜂
−(𝑎+1)−1 , 𝐶3 = 𝐶3(𝑎,𝑚).                               (23) 

holds for all values of 𝜂, 0 <  𝜂 ≤ 𝐶2 .  

Proof:  Let {Ξ𝑖}0
𝑘 be a finite sequence of partitions such that {Ξ𝑖}0

𝑘 = 𝑇𝑎
𝜂(𝐽) for at least one 

function 𝐽 ∈ 𝔍 .Then according to (10), (20) and (22) we obtain 

𝑛𝑘 ≤ 2
𝑚 𝑛𝑘−1 ≤ 2

𝑚(𝐶2𝛿𝑘−1
−1 )

(𝑎+1)−1

≤ (𝐶2𝜂
−1)(𝑎+1)

−1
.                (24) 

First of all we estimate the number of different sequences 𝑛𝑖 = |Ξ𝑖| (𝑖 = 1,… , 𝑘) whose 

last terms satisfy (24). We use 𝑛∗ to denote the integral part of the number 

2𝑚(𝐶2𝜂
−1)(𝑎+1)

−1
 . Writing 𝑛∗ in the form 

𝑛∗ = 1 +∑(𝑛𝑖 − 𝑛𝑖−1) + (𝑛
∗ − 𝑛𝑘)

𝑘

𝑖=1

, 

we see that the number of such sequences does not exceed the number of representations 

of the number 𝑛∗ − 1 in the form of a sum of positive integral terms; here representations 

which differ in the order of terms are considered different. The number of such 

representations is equal to 2𝑛
∗−2 (see for example [139]).  

  Let {𝑛𝑖}0
𝑘 (𝑛𝑘 ≤ 𝑛

∗) be a fixed sequence of the form under consideration. We estimate 

the number of all possible sequences of partitions {Ξ𝑖}0
𝑘 = 𝑇𝑎

𝜂
(𝐽) for which |Ξ𝑖| = 𝑛𝑖. For 

this we note that if the partition Ξ𝑖   (𝑖 =  0, 1, … , 𝑘 − 1) is already fixed, then the partition 

Ξ𝑖+1 is uniquely determined by which 𝑠𝑖 = (𝑛𝑖+1 − 𝑛𝑖)(2
𝑚 − 1)−1 of the cubes of the 

partition Ξ𝑖 (from the overall number of cubes 𝑛𝑖) are decomposed in passing to Ξ𝑖+1. The 

number of possible variants here is equal to (
𝑛𝑖
𝑠𝑖
) < 2𝑛𝑖 . Hence the number of all 

sequences of partitions of the form under consideration with a fixed sequence of numbers 

{𝑛𝑖}0
𝑘 is less than 

2𝑛0+𝑛1+⋯+𝑛𝑘−1. 
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We note that from the definition (18) of the number 𝛿𝑘−1 we obtain the inequalities  

𝑛𝑖 ≤ (𝐶2𝛿𝑘−1
−1 )

(𝑎+1)−1

2−(𝑘−1−𝑖)𝑚𝑎(𝑎+1)
−1
   (𝑖 = 0,1, … , 𝑘 − 1). 

Hence we find that 

∑𝑛𝑖

𝑘−1

𝑖=0

≤ (𝐶2𝛿𝑘−1
−1 )

(𝑎+1)−1

∑2−𝑖𝑚𝑎(𝑎+1)
−1

𝑘−1

𝑖=0

< 𝐶3
′𝛿𝑘−1
−(𝑎+1)−1

,                  (25) 

where 𝐶3
′ = 𝐶2

(𝑎+1)−1[1 − 2−𝑚𝑎(𝑎+1)
−1
]
−1

 Combining the estimates and taking account of 

(22), we find that 

log2𝑁(𝑎;  𝜂) ≤ 𝑛
∗ − 2 + 𝐶3

′𝛿𝑘−1
−(𝑎+1)−1

< [𝐶3
′ + 2𝑚𝐶2

(𝑎+1)−1
] 𝜂−(𝑎+1)

−1
. 

Thus inequality (23) is obtained for 𝐶3
 = 𝐶3

′ + 2𝑚𝐶2
(𝑎+1)−1

. The lemma is proved. 

We turn to a discussion of Theorem (5.1.1). The condition 𝑎 >  0 in it is essential; 

in fact if, for example, 𝐽 is a point load type of function, then the estimate (11) is not true 

for 𝑎 =  0. In the one- dimensional case, a modification of Theorem (5.1.1), valid also for 

𝑎 =  0, is possible. This modification will be needed in studying functions of bounded 𝛽-

variation. Here, however, we cannot even restrict ourselves to partitions of the class ℜ. As 

a result of this the considerations.  

On the other hand, failure of the condition Ξ ∈ ℜ leads to an improvement of the 

constant in (11): an analogous estimate holds for 𝐶1 = 1 and is attained for the function 

𝐽(𝛥) = |𝛥|.We note that for 𝑚 = 1 we cannot obtain the estimate (11) with 𝐶1 = 1 even 

by passing to a wider class of partitions.  

Thus, let 𝑚 =  1 and 𝑄1 =  [0, 1). We write 𝐽[𝑥′, 𝑥′′) instead of 𝐽([𝑥′, 𝑥′′)) for 

every interval [𝑥′, 𝑥′′) ⊂ 𝑄1. In view of the condition of semiadditivity, the function 

𝜓(𝑡) =  𝐽[𝑡, 𝑥′′) does not increase on (𝑥 , 𝑥′′), is bounded, and consequently has a 

finite limit as 𝑡 →  𝑥′ + 0 which we denote by 𝐽[𝑥′, 𝑥′′). Obviously 𝐽[𝑥′, 𝑥′′) ≤
𝐽[𝑥′, 𝑥′′).  

 Theorem (5.1.6)[129]:  Suppose the nonnegative function 𝐽, semiadditive from below, of 

half op en intervals 𝛥 ⊂ 𝑄1 is continuous from the left: 
𝐽[𝑥′, 𝑡) → 𝐽[𝑥′, 𝑥′′)    𝑎𝑠    𝑡 →  𝑥′′ − 0. 

For every such function and arbitrary 𝑎 ≥ 0 for each natural number η there is a partition 

Ξ of the interval 𝑄1 such that |Ξ| ≤ 𝑛 and 

𝐺𝑎(𝐽; Ξ) ≤ 𝑛
−(𝑎+1)𝐽(𝑄1).                                                (26) 

   The proof is by induction, assuming 𝐽[0, 1)  =  1. For 𝑛 = 1 the inequality (26) is 

obvious. Suppose the assertion of the theorem is true for some 𝑛 ≥ 1; we shall show that 

then it also holds for 𝑛 + 1. First of all we note that if we take [0, 𝑥0) for the basic interval, 

then (26) becomes 

𝐺𝑎(𝐽; Ξ) ≤ 𝑛
−(𝑎+1)𝑥0

𝑎𝐽[0, 𝑥0). 
We introduce the notation 𝜙(𝑥) = 𝐽[0, 𝑥) and consider the function 

𝜑(𝑥) − (
𝑛

𝑛 + 1
)
𝑎+1

𝑥−𝑎. 

Since this function is continuous from the left, does not increase and changes sign in the 

interval (0, 1), there is a point 𝑥0 ∈  (0, 1) such that 

𝜑(𝑥0) ≤ (
𝑛

𝑛 + 1
)
𝑎+1

𝑥0
−𝑎 ≤ 𝜑(𝑥0 + 0). 
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In accord with the induction hypothesis, we can divide the interval [0, 𝑥0) into halfopen 

intervals  ∆1, … , ∆𝑘(𝑘 ≤ 𝑛) so that 

max
𝑖=1,..,𝑘

𝑔𝑎(𝐽; ∆𝑖) ≤ 𝑛
−(𝑎+1)𝑥0

𝑎𝜑(𝑥0) ≤ (𝑛 + 1)
−(𝑎+1).               (27)  

Further, from the inequality 

𝜙(𝑥) + 𝐽[𝑥, 1) ≤ 1, 
passing to the limit as 𝑥 → 𝑥0 + 0, we find that 

𝜑(𝑥0 + 0) + 𝐽[𝑥0, 1) ≤ 1. 
Hence 

𝐽[𝑥0, 1) ≤ 1 − 𝜑(𝑥0 + 0) ≤ 1 − (
𝑛

𝑛 + 1
)
𝑎+1

𝑥0
−𝑎. 

It is an elementary matter to verify that for 𝑥0 ∈  (0, 1) the right side of the last inequality 

does not exceed (𝑛 + 1)−(𝑎+1)(1 − 𝑥0)
−𝑎, and consequently 

(1 − 𝑥0)
−𝑎𝐽[𝑥0, 1) ≤ (𝑛 + 1)

−(𝑎+1).                                (28) 
The inequalities (27) and (28) show that the partition of the interval [0, 1) into intervals 

∆1, … , ∆𝑘 , [𝑥0, 1) is the desired one. Thus the induction has been verified and the theorem 

proved.  

  We note that under the conditions of the theorem it is possible to relax the requirement 

that the function 𝐽 be continuous from the left. An inequality of the form (26) remains 

valid but with a factor 𝑐 > 1 on the right-hand side.  

  The basic difference between the inequalities (26) and (11) is that the function 𝐽 is 

replaced by 𝐽 on the left-hand side. As an example of a point load type function shows, for 

𝑎 = 0 this is essential.  

We investigate the rate of approximation of functions of the class 𝑊𝑝
𝑎 by piecewise 

polynomial functions. The degree 𝑙 of the approximating polynomials is fixed, with 𝑙 =
 𝑎 −  1 for integral 𝑎 and 𝑙 =  [𝑎 ] for nonintegral 𝑎. Below we use the notation 𝜔 =
𝑎𝑚−1 and, when 𝑝𝜔 ≤  1, 𝑞∗ =  𝑝(1 −  𝜌𝜔)−1. Here 𝑞∗ is the so-called limit exponent in 

the theorem of imbedding of the space 𝑊𝑝
𝑎  into the space 𝐿𝑞. As usual, we set 𝑞∗ = ∞ 

when 𝜌𝜔 =  1.  

Let 𝛥 ⊂ 𝑄𝑚  be a cube. With every function 𝑢 ∈ 𝑊𝑝
𝑎(∆) we associate a polynomial 

𝑟 of degree 𝑙 satisfying the conditions 

∫𝑥𝑥𝑟(𝑥)𝑑𝑥

 

∆

= ∫𝑥𝑥𝑢(𝑥)𝑑𝑥

 

∆

  (|𝑥| ≤ 𝑙).                                          (29) 

Conditions (29) obviously determine 𝑟 uniquely. Set 𝑟 = 𝑃∆𝑢; thus 𝑃∆ is a linear 

projection operator mapping the space 𝑊𝑝
𝑎(∆)  onto the finite-dimensional space of 

polynomials of degree 𝑙 in 𝑚 variables. The dimensionality of this space is denoted by 𝜈 =
 𝑣(𝑚, 𝑙).  
  We note the following simple assertions. 

 Lemma (5.1.7)[129]: When 𝜌𝜔 > 1 for every function 𝑢 ∈ 𝑊𝑝
𝑎(∆) the following 

inequality is satisfied:  

‖𝑢 − 𝑃∆𝑢‖𝐶(∆) ≤ 𝐶4|∆|
𝜔−𝑝−1‖𝑢‖𝐿𝑝𝑎(∆),                                   (30) 

where the constant 𝐶4 = 𝐶4(𝑝, 𝑎,𝑚) does not depend on 𝛥. 

   Lemma (5.1.8)[129]: When 𝜌𝜔 ≤ 1 and 𝑞 < 𝑞∗ for every function 𝑢 ∈ 𝑊𝑝
𝑎(∆) the 

following inequality is satisfied:  
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‖𝑢 − 𝑃∆𝑢‖𝐿𝑞(∆) ≤ 𝐶5|∆|
𝑞−1−𝑞∗−1‖𝑢‖𝐿𝑝𝑎(∆),                      (31) 

where the constant 𝐶5 = 𝐶5(𝑝, 𝑞, 𝑎,𝑚) does not depend on 𝛥.  

  For the proof of both assertions we first consider the case in which 𝛥 = 𝑄𝑚 . We 

introduce a new norming in the space 𝑊𝑝
𝑎 : 

‖𝑢‖𝑊𝑝𝑎 = ∑ | ∫𝑥𝑥𝑢(𝑥)𝑑𝑥

 

𝑄𝑚

| + ‖𝑢‖𝐿𝑝𝑎

|𝑥|≤𝑙

. 

Equivalence of the norms ‖|∙|‖𝑊𝑝𝑎  and ‖∙‖𝑊𝑝𝑎 follows from considerations of S. L. Sobolev 

[140] for integral 𝑎 and can be proved quite analogously for nonintegral 𝑎. It follows from 

conditions (29) that 

‖|𝑢 − 𝑃𝑄𝑚𝑢|‖𝑊𝑝𝑎
= ‖𝑢‖𝐿𝑝𝑎 . 

The theorem of imbedding of the space 𝑊𝑝
𝑎  into the space 𝐶 (for 𝜌𝜔 > 1) and into 𝐿𝑞 (for 

𝜌𝜔 ≤ 1) shows that the inequality (30) or, respectively, (31), is satisfied in the cube 

𝛥 = 𝑄𝑚 . To pass to an arbitrary cube 𝛥 we need to implement the similarity 

transformation and for this use the property of homogeneity (1.4) of the seminorm 

‖∙‖𝐿𝑝𝑎(∆) .Thus Lemmas (5.1.7) and (5.1.8) are proved. 

Let Ξ be a partition of the (halfopen) cube 𝑄𝑚 into halfopen cubes. We use 𝒫(Ξ;  𝑙) 
to denote the linear set of all functions whose restriction to each of the cubes ∆∈ Ξ is a 

polynomial of degree 𝑙. We introduce the projection operator 𝑃Ξ defined as follows: 𝜐 =
𝑃Ξ𝑢 is the function of the class 𝒫(Ξ;  𝑙) coinciding with the polynomial 𝑃∆ 𝑢 on each 

cube 𝛥 ∈ 𝛯.  

  Theorem (5.1.9)[129]: For every function 𝑢 ∈ 𝑊𝑝
𝑎(𝜌𝜔 > 1) and for every natural 𝑛 

there is a partition Ξ ∈ ℜ of the cube 𝑄𝑚 such that |Ξ| ≤ 𝑛  and 

‖|𝑢 − 𝑃Ξ𝑢|‖𝐿∞ ≤ 𝐶6𝑛
−𝜔‖𝑢‖𝐿𝑝𝛼 , 𝐶6 = 𝐶6(𝑝, 𝛼,𝑚).                   (32) 

Proof:  Let Ξ be an arbitrary partition of 𝑄𝑚 into cubes and 𝜐 = 𝑃Ξ𝑢. Then, according to 

(30), 

sup
𝑥∈𝑄𝑚

|𝑢(𝑥) − 𝜐(𝑥)| ≤ 𝐶4 [max
∆∈Ξ
|∆|𝑝𝜔−1 ‖𝑢‖𝐿𝑝𝑎(∆)

𝑝
]
𝑝−1

.                  (33) 

We consider the following function 𝐽𝑢 (𝛥) of cubes 𝛥 ⊂ 𝑄𝑚 ∶ 

𝐽𝑢(∆) = ‖𝑢‖𝐿𝑝𝑎(∆)
𝑝

.                                                            (34) 

The function 𝐽𝑢 is semiadditive from below and additive  1) for integral 𝑎.  

  In the square brackets on the right-hand side of (33) we have the partition function 

𝐺𝑝𝜔−1(𝐽𝑢; Ξ) constructed from the function (34). By Theorem (5.1.1) there exists a 

partition Ξ ∈ ℜ of the cube 𝑄𝑚 for which |Ξ| ≤ 𝑛 and 

𝐺𝑝𝜔−1(𝐽𝑢; Ξ) ≤ 𝐶1𝑛
−𝑝𝜔𝐽𝑢(𝑄

𝑚). 

The last inequality together with (33) leads to the estimate (34) with constant 𝐶6 =

𝐶4𝐶1
𝑝−1

. The theorem is proved.  

Theorem (5.1.10)[129]: Let 𝜌𝜔 ≤ 1, 𝑞 < 𝑞∗. For every function 𝑢 ∈ 𝑊𝑝
𝑎 and every 

natural number 𝑛 there is a partition Ξ ∈ ℜ of the cube 𝑄𝑚 such that |Ξ| ≤ 𝑛 and 

‖|𝑢 − 𝑃Ξ𝑢|‖𝐿𝑞 ≤ 𝐶7𝑛
−𝜔‖𝑢‖𝐿𝑝𝛼 ,    𝐶7 = 𝐶7(𝑝, 𝑞, 𝛼,𝑚).                              (35) 

Proof. Consider the partition function 𝐺𝑎(𝐽𝑢; Ξ) with 𝑎 = 𝑝(𝑞−1 − 𝑞∗−1). According to 

Theorem (5.1.1) there is a partition Ξ ∈ ℜ for which |Ξ| ≤ 𝑛 and 
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𝐺𝑎(𝐽𝑢;  Ξ) =
max
∆∈ Ξ

|∆|𝑝(𝑞
−1−𝑞∗−1)‖𝑢‖

𝐿𝑝(∆)
𝛼
𝑝

≤  𝐶1𝑛
−𝑝(𝜔+𝑞−1)‖𝑢‖𝐿𝑝𝛼

𝑝
 . 

Taking Lemma (5.1.8) into account for this partition Ξ and the function 𝑣 = 𝑃Ξ𝑢, we find 

that 

‖𝑢 − 𝑣‖𝐿𝑝𝛼
𝑝
= ∑‖𝑢 − 𝑣‖𝐿𝑞(∆)

𝑝

∆∈Ξ

≤  |Ξ|𝐶5
𝑞[𝐺𝑎(𝐽𝑢;  Ξ)]

𝑞𝑝−1  

≤ |Ξ|𝐶5
𝑞
𝐶1
𝑞𝑝−1

𝑛−(𝑞𝜔+1)‖𝑢‖𝐿𝑝𝛼
𝑝
≤ [𝐶7𝑛

−𝜔‖𝑢‖𝐿𝑝𝛼]
𝑞
, 

where 𝐶7 =  𝐶1
𝑝−1
𝐶5. The theorem is proved. 

Now let 𝜎 be a finite Borel measure defined on subsets of 𝑄𝑚. We consider 

approximation of functions from 𝑊𝑝
𝛼 in the metric of 𝐿𝑞,𝜎 = 𝐿𝑞(𝑄

𝑚;  𝜎), 𝑞 ≥ 1. In 

contrast to Theorem (5.1.9) and (5.1.10), we are here concerned with the rate of 

approximation which can be attained by choosing partitions not depending on the function 

𝑢 (but depending, generally speaking, on the measure 𝜎). 

       Let 𝔐 be the set of all finite Borel measures on 𝑄𝑚 satisfying the condition 𝜎(𝑄𝑚) ≤
1. By 𝔐𝜆(1 ≤ 𝜆 < ∞) we denote the set of all absolutely continuous measures 𝜎 on 𝑄𝑚 

whose density 𝑑𝜎 𝑑𝑥⁄  belongs to the space 𝐿𝜆 and satisfies the condition 

∫ (
𝑑𝜎

𝑑𝑥
)

𝜆

𝑑𝑥

𝑄𝑚

≤ 1                                                                     (36) 

Theorem (5.1.11)[129]:   Let 𝑝𝜔 > 1. For every Borel measure 𝜎 ∈ 𝔐 and every natural 

𝑛 there exists a partition Ξ ∈ ℜ of the cube 𝑄𝑚 such that following inequality is satisfied: 

‖𝑢 − 𝑃Ξ𝑢‖𝐿𝑞,𝜎 ≤  𝐶8𝑛
−𝛾‖𝑢‖𝐿𝑝𝛼 , 𝐶8 = 𝐶8(𝑝, 𝑞, 𝛼,𝑚),                (37) 

where 𝛾 =  𝜔 when 𝑝 ≥ 𝑞 and 𝛾 = 𝜔 − 𝑝−1 + 𝑞−1 when 𝑝 < 𝑞. The consent 𝐶8 does not 

depend on 𝜎. 

Proof:  It is suffices to give the reasoning for the case 𝑞 ≥ 𝑝 since the validity of the 

assertion of the theorem for 𝑞 < 𝑝 follows in an obvious way from the assertion for 𝑞 = 𝑝. 

        Thus let Ξ be an arbitrary partition of 𝑄𝑚 into (half open) cubes). For every function 

𝑢 ∈ 𝑊𝑝
𝛼 and the function 𝑣 = 𝑃Ξ𝑢 by Lemma (5.1.7) we have 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤  ∑
sup
x ∈ ∆

|𝑢 − 𝑣|𝑞𝜎(∆)

∆∈Ξ

≤ 𝐶4
𝑞
∑|∆|(𝜔−𝑝

−1)𝑞

∆∈Ξ

‖𝑢‖𝐿𝑝𝛼(∆)
𝑞

𝜎(∆). 

When 𝑝 ≤ 𝑞 we have 

∑‖𝑢‖𝐿𝑝𝛼(∆)
𝑞

∆∈Ξ

≤  [∑‖𝑢‖𝐿𝑝𝛼(∆)
𝑞

∆∈Ξ

]

𝑞𝑝−1

≤ ‖𝑢‖𝐿𝑝𝛼
𝑞
.                                 (38) 

Consequently 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤  𝐶4
𝑞‖𝑢‖𝐿𝑝𝛼

𝑞
∙
max
∆∈ Ξ

{|∆|(𝜔−𝑝
−1)𝑞𝜎(∆)}. 

Now we apply Theorem (5.1.1) to the function 𝐺𝑎(𝜎;  Ξ) with 𝑎 = (𝜔 − 𝑝−1)𝑞, which 

leads to (37). The theorem is proved. 

      The following theorem extended our result to the case 𝑝𝜔 ≤ 1.  Naturally here 

inequality (37) may not be true for arbitrary measures. It remains valid, however, for 

absolutely continuous measures whose density is summable when raised to a sufficiently 

high degree. 

    Theorem (5.1.12)[129]: Let 𝑝𝜔 ≤ 1 and 

𝜆−1 + 𝑞𝑞∗−1 < 1.                                                      (39) 



171 

Then for every measure 𝜎 ∈ 𝔐𝜆 and every natural 𝑛 there exists a partition Ξ ∈ ℜ of the 

cube 𝑄𝑚 such that |Ξ| ≤ 𝑛 and for every function 𝑢 ∈ 𝑊𝑝
𝛼 the inequality (37) is satisfied 

with some constant 𝐶8 = 𝐶8
′(𝑝, 𝑞, 𝜆, 𝛼,𝑚) not depending on 𝜎. 

       Proof:  For every cube ∆ ⊂ 𝑄𝑚 and for 𝑣 = 𝑃∆𝑢 we find, by Lemma (5.1.8), that 

∫|𝑢 − 𝑣|𝑞𝑑𝜎

 

∆

=  ∫|𝑢 − 𝑣|𝑞
𝑑𝜎

𝑑𝑥

 

∆

≤ {∫|𝑢 − 𝑣|𝑞(1−𝜆
−1)−1𝑑𝑥

 

∆

}

1−𝜆−1

{∫ (
𝑑𝜎

𝑑𝑥
)

𝜆

𝑑𝑥

 

Δ

}

𝜆−1

 

≤ 𝑐|Δ|1−𝜆
−1−𝑞𝑞∗−1‖𝑢‖𝐿𝑝𝛼(∆)

𝑞
{∫ (

𝑑𝜎

𝑑𝑥
)

𝜆

𝑑𝑥

 

Δ

}

𝜆−1

. 

Hence for every partition Ξ of 𝑄𝑚 into cubes, for an arbitrary function 𝑢 ∈ 𝑊𝑝
𝛼 and for the 

function 𝑣 = 𝑃Ξ𝑢 we obtain 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤ 𝑐∑|Δ|1−𝜆
−1−𝑞𝑞∗−1‖𝑢‖𝐿𝑝𝛼(∆)

𝑞

∆∈Ξ

{∫ (
𝑑𝜎

𝑑𝑥
)

𝜆

𝑑𝑥

 

Δ

}

𝜆−1

 .                   (40) 

Now assume that 𝑞 ≤ 𝑝. We note for 𝑞 ≤ 𝑝 

∑‖𝑢‖𝐿𝑝𝛼(∆)
𝑞

∆∈Ξ

≤ |Ξ|1−𝑞𝑝
−1
{∑‖𝑢‖𝐿𝑝𝛼(∆)

𝑞

∆∈Ξ

}

𝑞𝑝−1

≤ |Ξ|1−𝑞𝑝
−1
‖𝑢‖𝐿𝑝𝛼

𝑞
.                        (41) 

Together with (40) this leads to the inequality 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤ 𝑐 |Ξ|1−𝑞𝑝
−1
‖𝑢‖𝐿𝑝𝛼

𝑞 max
∆∈ Ξ

{|Δ|1−𝜆
−1−𝑞𝑞∗−1 ∫(

𝑑𝜎

𝑑𝑥
)

𝜆

𝑑𝑥

 

Δ

}

𝜆−1

              (42) 

This choice of partition Ξ is made according to Theorem (42) leads directly to (37) if we 

take into account (36) and the fact that |Ξ| ≤ 𝑛. 

          The case 𝑞 > 𝑝 is considered analogously. The inequality (38) is to be used in place 

of (41). the theorem is proved. 

We make several remarks. 

Remark (5.1.13)[129]: If under conditions of Theorems (5.1.11) and (5.1.12) we allow 

independence of partition Ξ from the function 𝑢, then we can replace (37) by the inequality 

‖𝑢 − 𝑃Ξ𝑢‖𝐿𝑞,𝜎 ≤ 𝑐𝑛
−𝜔‖𝑢‖𝐿𝑝𝛼 .                                             (43) 

Under the conditions of Theorem (5.1.12) this follows directly from (32); under the 

condition of Theorem (5.1.12) it can be derived easily from (35). A comparison of (43) 

and (37) shows that passing to a method of partitions which does not depend on the 

function 𝑢 yields a worse resut only for 𝑞 > 𝑝.  

     Theorems on approximation of functions of the classes 𝑉𝛽(𝛽 ≥ 1) (Theorems (5.1.15) 

– (5.1.17)) are proved by the same procedure, on the basis of Theorem (5.1.15). We note 

that the first two theorems (Theorems (5.1.15), (5.1.16)) are easy to prove directly without 

using theorems on partition functions. 

        We restrict consideration to functions 𝑢 ∈ 𝑉𝛽 which are normalized to continuity 

from the right, and we assume the basis interval (denoted by 𝑋) to be halfopen. 

With every function 𝑢 ∈ 𝑉𝛽(𝑋) we associate a function 𝐼𝑢 of halfopen intervals ∆∈

𝑋 by the rule 

𝐼𝑢(∆) = ‖𝑢‖ ∘
𝑉𝛽(∆)

𝛽
.                                                       (44) 
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This function plays the same role in the investigation of the classes 𝑉𝛽 as the function (34) 

for the classes 𝑊𝑝
𝛼. The function (44) is obviously semiadditive from below. In view of 

the assumed normalization of the function 𝑢 ∈ 𝑉𝛽 the following assertion is also true. 

Lemma (5.1.14)[129]:  Suppose the function 𝑢 ∈ 𝑉𝛽(𝑋) is continuous from the right and 

𝐼𝑢 is continuous from the left, and the function 𝐼𝑢 generated by it according to the 

definition coincides with 𝐼𝑢. 

        Proof:  Let ∆= [𝑥′, 𝑥′′) ⊂ 𝑋. For a given 𝜖 > 0 there is a system of points 𝑥′ ≤
 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 < 𝑥

′′ for which 

∑|𝑢(𝑥𝑘) − 𝑢(𝑥𝑘−1)|
𝛽

𝑛

𝑘=1

> 𝐼𝑢(∆) − 𝜖.                                 (45) 

In view of the continuity from the right of the function 𝑢, we can assume that 𝑥0 > 𝑥
′ in 

(45). For every 𝑥 ∈ (𝑥𝑚, 𝑥
′′) it follows from (45) that  

𝐼𝑢(∆) −  𝜀 < ‖𝑢‖ ∘
𝑉𝛽([𝑥0,𝑥𝑛])

𝛽
≤  𝐼𝑢[𝑥

′, 𝑥) ≤ 𝐼𝑢(∆). 

Analogously for 𝑥 ∈ (𝑥′, 𝑥0] we find that 

𝐼𝑢(∆) −  𝜀 < ‖𝑢‖∘
𝑉𝛽([𝑥0,𝑥𝑛])

𝛽
≤ 𝐼𝑢[ 𝑥, 𝑥

′′) ≤ 𝐼𝑢(∆). 

Both assertions of the lemma follows from these inequalities. 

1. Let ∆= [𝑥′, 𝑥′′) ⊂ 𝑋 be an interval. The role of inequality (30) for the functions 𝑢 ∈
𝑉𝛽(𝑋) is played by the obvious inequality 

sup
x ∈ ∆

|𝑢(𝑥) − 𝑢(𝑥′)| ≤ ‖𝑢‖ ∘
𝑉𝛽(∆)

.                                     (46) 

Let Ξ be a partition of the basis interval 𝑋 into intervals Δ𝑖 = [𝑥𝑖−1, 𝑥𝑖) (𝑖 = 1, … , |Ξ|). Let 

𝑃Ξ denote the operator which associates with the function 𝑢 ∈ 𝑉𝛽(𝑋) the piecewise-

constant function 𝑣 ∈ 𝒫(Ξ; 0) assuming the constant value equal to 𝑢(𝑥𝑖−1) in each 

interval Δ𝑖 ∈ Ξ. 

      Theorem (5.1.15)[129]:  Let 𝑋 = [𝑏′, 𝑏′′) be a finite of infinite interval. For every 

function 𝑢 ∈ 𝑉𝛽(𝑋) continuous from the right and every natural number 𝑛 there is a 

partition Ξ of the interval 𝑋 into half open intervals such that |Ξ| ≤ 𝑛 and  

‖𝑢 − 𝑃Ξ𝑢‖𝐿∞(∆) ≤ 𝑛
−𝛽−1‖𝑢‖∘

𝑉𝛽(𝐿)
. 

     Proof: As a result of the invariance of the classes 𝑉𝛽 with respect to monotonic 

replacement of the independent variable, we assume that 𝑋 = 𝑄1 = [0, 1). Let Ξ be a 

partition of the interval 𝑄1 into halfopen intervals. From inequality (46) for every function 

𝑢 ∈ 𝑉𝛽 and the function 𝑣 = 𝑃Ξ𝑢 we obtain that  

sup
x ∈ X

|𝑢(𝑥) − 𝑣(𝑥)| ≤ [
max
∆∈ Ξ

𝐼𝑢(∆)]
𝛽−1

= [𝐺0(𝐼𝑢; Ξ) ]
𝛽−1.                   (47) 

       Lemma (5.1.14) shows that Theorem (5.1.6) applies to the function 𝐼𝑢. Indeed, there 

exists a partition Ξ of the interval 𝑄1 into halfopen intervals such that |Ξ| ≤ 𝑛 and 

𝐺0(𝐼𝑢; 𝛯) = 𝐺0(𝐼𝑢;  𝛯) ≤  𝑛
−1𝐼𝑢(𝑄

1). 
The last inequality together with (47) proves the theorem. 

        Now let 𝜎 be a Borel measure defined on subsets of the interval 𝑋 and satisfying the 

condition 𝜎(𝑋) ≤ 1. If the measure 𝜎 is considered on halfopen intervals ∆= [𝑥′, 𝑥′′) ⊂
𝑋, then in view of the complete additivity of the measure, the function 𝜎(∆) = 𝜎[𝑥′, 𝑥′′) is 
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continuous from the left. It is also clear that the corresponding function �̃�(∆) coincides 

with the measure of the interval (𝑥′, 𝑥′′), i.e. �̃�[𝑥′, 𝑥′′) = 𝜎(𝑥′, 𝑥′′). 
      In the following theorem we estimate the rate of approximation of functions of the 

class 𝑉𝛽(𝑋) by piecewise-constant functions in the metric of the space 𝐿𝑞,𝜎 =

𝐿𝑞(𝑋;  𝜎), 𝑞 ≥ 1. 

Theorem (5.1.16)[129]:  Let 𝑋 = [𝑏′, 𝑏′′) be a finite or infinite interval. For every Borel 

measure 𝜎 (𝜎(𝑋) ≤ 1) and every natural number 𝑛 there exists a partition Ξ of the interval 

𝑋 into halfopen intervals such that |Ξ| ≤ 𝑛 and for every function 𝑢 ∈ 𝑉𝛽(𝑋) continuous 

from the right we have  

‖𝑢 − 𝑃Ξ𝑢‖𝐿𝑞,𝜎 ≤  𝑛
−∗∗∗∗‖𝑢‖ ∘

𝑉𝛽(X)
,∗∗∗∗ = min(𝛽−1, 𝑞−1). 

Proof: As in the proof of the preceding theorem, it suffices to consider the case 𝑋 = 𝑄1. 

Let Ξ be some partition of the interval 𝑄1. For every function 𝑢 ∈ 𝑉𝛽 and the function 𝑣 =

𝑃Ξ𝑢 form (46) we find that 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤  ∑
sup
x ∈ ∆

|𝑢(𝑥) − 𝑣(𝑥)|𝑞�̃�(∆)

∆∈Ξ

≤ ∑‖𝑢‖∘
𝑉𝛽(∆)

𝑞
�̃�(∆)

∆∈Ξ

.                (48) 

(We note that in (48) it was possible to replace 𝜎(∆) by �̃�(∆) because the function 𝑢 − 𝑣 

vanishes at the left end interval ∆∈ Ξ.) From (48) we find that when 𝑞 ≤  𝛽 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤ [max
∆∈Ξ

�̃�(∆)] |Ξ|1−𝑞𝛽
−1
[∑‖𝑢‖∘

𝑉𝛽(∆)

𝛽

∆∈Ξ

]

𝑞𝛽−1

 

≤ [max
∆∈Ξ

�̃�(∆)] |Ξ|1−𝑞𝛽
−1
‖𝑢‖∘

𝑉𝛽(∆)

𝑞
 

And when 𝑞 > 𝛽 

‖𝑢 − 𝑣‖𝐿𝑞,𝜎
𝑞

≤ [max
∆∈Ξ

�̃�(∆)] [∑‖𝑢‖∘
𝑉𝛽(∆)

𝛽

∆∈Ξ

]

𝑞𝛽−1

≤  [max
∆∈Ξ

�̃�(∆)] ‖𝑢‖∘
𝑉𝛽(∆)

𝑞
. 

Now we have only to note that by Theorem (5.1.6) applied (with 𝑎 = 0 ) to the function 

𝐽 = 𝜎, there is a partition 𝛯(|𝛯| ≤ 𝑛) such that  

max
∆∈Ξ

�̃�(∆) ≤  𝑛−1. 

The theorem is proved. 

For the function 𝑢 ∈ 𝑉𝛽(𝑋)⋂𝐶
𝜇(𝑋) the assertion of Theorem (5.1.16) can be 

somewhat strengthened in the case where the interval 𝑋 is finite. To simplify the statement 

we assume that 𝑋 = 𝑄1. As a result of the obvious imbedding  𝐶𝜇 ⊂ 𝑉𝛽 for 𝛽 =

max(1, 𝜇−1), it makes sense to consider the given problem only under the condition 0 <
𝜇 < 𝛽−1. 
Theorem (5.1.17)[129]: Suppose 𝑋 = 𝑄1 and the exponents 𝜇, 𝛽 and 𝑞 satisfy the 

condition 1 ≤ 𝛽 < 𝑞, 0 < 𝜇 < 𝛽−1. For every Borel measure 𝜎(𝜎(𝑄1) ≤ 1) and every 

natural number 𝑛 there is a partition Ξ of the interval 𝑄1 into halfopen intervals so that 

|Ξ| ≤ 𝑛 and for every function 𝑢 ∈ 𝑉𝛽 ∩ 𝐶
𝜇 we have 

‖𝑢 − 𝑃Ξ‖𝐿𝑞,𝜎 ≤ 𝑛
−𝜌𝐿1−𝛽𝑞

−1
‖𝑢‖ ∘

𝑉𝛽

𝛽𝑞−1
, 𝜌 = 𝜇(1 − 𝛽𝑞−1) + 𝑞−1, 

where 𝐿 is the Hölder constant of the function 𝑢. 

Proof: Let Ξ be a partition of the interval 𝑄1 into intervals ∆𝑘= [𝑥𝑘−1, 𝑥𝑘), 0 = 𝑥0 < 𝑥1 <
⋯ < 𝑥|Ξ| = 1. We have 
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‖𝑢 − 𝑃Ξ𝑢‖𝐿𝑞,𝜎
𝑞

≤∑
sup
x ∈ ∆𝑘

|𝑢(𝑥) − 𝑢(𝑥𝑘−1) |
𝑞�̃�(∆𝑘)

|Ξ|

𝑘=1

 

≤ ∑
sup
x ∈ ∆𝑘

|𝑢(𝑥) − 𝑢(𝑥𝑘−1) |
𝛽𝐿𝑞−𝛽|∆𝑘|

𝜇(𝑞−𝛽)�̃�(∆𝑘)

|Ξ|

𝑘=1

≤ 

≤ 𝐿𝑞−𝛽∑‖𝑢‖∘
𝑉𝛽(∆)

𝛽 |∆𝑘|
𝜇(𝑞−𝛽)�̃�(∆𝑘)

|Ξ|

𝑘=1

≤ 𝐿𝑞−𝛽 [max
𝑘
|∆𝑘|

𝜇(𝑞−𝛽)�̃�(∆𝑘)] ∙ ‖𝑢‖ ∘
𝑉𝛽

𝛽
. 

Now it remains to choose the partition Ξ according to Theorem (5.1.6), which is to be 

applied to the function 𝐽 = 𝜎 with 𝑎 = 𝜇(𝑞 − 𝛽). The theorem is proved. 

The class of function 𝒫(Ξ; 𝑙) is a linear set of dimentionality |Ξ| ∙ 𝑣. As a result of 

this, Theorem (5.1.11) and (5.1.12) can be interpreted in terms of 𝑛-diameters. Indeed, we 

have the following assertion. 

       Theorem (5.1.18)[129]: Under the conditions of Theorem (5.1.11) or (5.1.12) the 𝑛-

diameters 𝑑𝑛 of the set 𝑆𝑊𝑝
𝑎  in the metric of the space 𝐿𝑞,𝜎 satisfy the inequality 

𝑑𝑛(𝑊𝑝
𝑎 ; 𝐿𝑞,𝜎) ≤ 𝑐𝑛

−𝛾,                                                (49) 

Where the exponent 𝛾 is the same as in (37) and the constant 𝑐 does not depend on 𝜎. 

         We also note that in Theorem (5.1.11) and (5.1.12) a linear approximation operator 

(the operator 𝑃Ξ) is constructed for which (49) is realized. Thus (49) is actually valid for 

linear 𝑛-diameters of 𝑆𝑊𝑝
𝑎  in the metric of 𝐿𝑞,𝜎. 

        All of the above also holds for the classes 𝐻𝑝
𝑎 and 𝐵𝑝

𝑎. 

        The approximation method used for the proof of Theorems (5.1.9) and (5.1.10) is 

different: there the partition Ξ depends on the function being approximated, and 

consequently the class of functions used for approximation is nonlinear. As a consequence 

of this 𝐶 or 𝐿𝑞. However, an analysis of the method of proof of these two theorems allows 

us to estimate another metric characteristic of the set 𝑆𝑊𝑝
𝑎 − its 𝜖-entropy. 

Theorem (5.1.19)[129]:  For the 𝜖-entropy of the set 𝑆𝑊𝑝
𝑎  in the metric of 𝐿𝑞 we have 

(for sufficiently small 𝜖 > 0) the estimate 

ℋ𝜀(𝑊𝑝
𝑎 ;  𝐿𝑞) ≤ 𝑐𝜀

−𝜔−1 .                                             (50) 

Here 1 ≤ 𝑞 ≤ ∞ for 𝑝𝜔 > 1 and 1 ≤ 𝑞 ≤ 𝑞∗ for 𝑝𝜔 ≤ 1. 

         First of all we explain the general plan of the proof. The set 𝑆𝑊𝑝
𝑎  is first divided into 

classes, with each class comprising those functions whose approximation with a given 

accuracy requires, according to Theorem (5.1.9) or (5.1.10), the same sequence of 

partitions. The number of classes is estimated on the basis Lemma (5.1.5), after which we 

want to estimate the 𝜖-entropy of each class. Suppose a sequence of partitions {Ξ𝑖}0
𝑘 

corresponds to certain class. A crude method for calculating 𝜖-entropies (approximation of 

the function 𝑢 by the function 𝑃Ξ𝑢 and estimation of the 𝜖-entropy of the unit sphere of the 

finite-dimentional space 𝒫(Ξ; 𝐿)) leads to an axcessive estimate. The method does not take 

into account that the polynomials 𝑃Δ′𝑢 and 𝑃Δ′′𝑢 for neighbouring cubes Δ′, Δ′′ ∈ Ξ𝑘  

cannot differ form each other very strongly. We will take into account the closeness of 

such polynomials 𝑃Δ′𝑢 and 𝑃Δ′′𝑢 as follows. We consider all piecewise-polynomial 

approximations 𝑃Ξ𝑖𝑢(𝑖 = 0,1,… , 𝑘), and in passing form the number 𝑖 to the number 𝑖 + 1 

we make use of the fact that for cubes ∆′, ∆′′∈ Ξ𝑖+1 contained in the same cube ∆∈ Ξ𝑖, 
both polynomials 𝑃∆′𝑢 and 𝑃∆′′𝑢 differ little from 𝑃∆𝑢. 
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In the proof of Theorem (5.1.19) we require preliminary estimates in a special 

metric related to a fixed partition. Let Ξ be some partition of the cube 𝑄𝑚. For the function 

𝑢 ∈ Lq, along with the usual norm of the space 𝐿𝑞, we consider the norm 

‖𝑢‖𝑞,Ξ ≤ ‖𝑢‖𝐿𝑞 ≤ |Ξ|
𝑞−1‖𝑢‖𝑞,Ξ,                                           (51) 

Which become equalities when 𝑞 = ∞. If Ξ′ is an extension of Ξ then 

‖𝑢‖𝑞,Ξ′ ≤  ‖𝑢‖𝑞,Ξ. 

We establish two auxiliary assertions. 

         Lemma (5.1.20)[129]: Let Ξ be a partition of the cube 𝑄𝑚 and �̃� = �̃�(Ξ; 𝑙,𝑀) be 

the set of functions 𝑣 ∈ 𝒫(Ξ; 𝑙) satisfy the condition 

‖𝑣‖𝑞,Ξ ≤ 𝑀.                                                                         (52) 

Then for every 𝜖 ≤ 𝑀 we have 

𝒩𝜀(�̃�; 𝐿𝑞,Ξ) ≤  𝐶9
|Ξ|(𝑀𝜀−1)𝑣|Ξ|,                                                      (53) 

Where the constant 𝐶9 =  𝐶9(𝑚, 𝑙, 𝑞) does not depend on Ξ. 

          Proof: Let ℛ = ℛ(∆; 𝑙, 𝑀) be the set of polynomials 𝑟 of degree 𝑚 variables satisfy 

the condition  

‖𝑟‖𝐿𝑞(∆) ≤ 𝑀.                                                                       (54) 

For every 𝜖 ≤ 𝑀 we have  

𝒩𝜀 (ℛ; 𝐿𝑞(∆)) ≤  𝐶9(𝑀𝜀
−1)𝑣.                                              (55) 

Indeed, for the case ∆= 𝑄𝑚 inequality (55) follows from the fact that the norm ‖ ∙ ‖𝐿𝑞(∆) 

on the finite-dimensional (𝑣-dimensional) space of polynomials is equivalent to the 

Euclidian norm on the space of coefficients. To pass to an arbitrary cube it suffices to male 

a transformation of the independent variables, which does  not affect the size of the 

constant 𝐶9. 
        Condition (52) obviously implies condition (54) for polynomials 𝑟 obtained by 

restricting the functions 𝑣 ∈ �̃� to some cube ∆∈ Ξ. Here estimate (53) is easily obtained 

from (55). indeed, the required 𝜖-net is the set  �̃� can be formed by means of all possible 

“pasting together” of elements of 𝜖-nets constructed in the set ℛ(∆; 𝑙,𝑀) for all cubes ∆∈
Ξ. The lemma is proved. 

        Assume that {Ξ𝑖}0
𝑘 ⊂ ℜ is a sequence of partitions of the cube 𝑄𝑚 where each 

partition Ξ𝑖 is an extinction of the preceding partition Ξ𝑖−1. As usual, we write |Ξ𝑖| = 𝑛𝑖∗. 
let 𝜁𝑖 be numbers satisfying the conditions  

𝑏𝜁𝑖 ≤ 𝜁𝑖+1 ≤ 𝜁𝑖  (𝑏 > 0; 𝑖 = 0, 1, … , 𝑘 − 1),                                (56) 
And let �̂�𝑖 ⊂ 𝒫(Ξ𝑖; 𝑙)  (𝑖 = 0, 1, … , 𝑘) be certain sets of piecewise-polynomial functions, 

where �̂�𝑖 is the 2𝜁𝑖- net for the set �̂�𝑖+1 in the metric of 𝐿𝑞,Ξ𝑖+1  (𝑖 = 0, 1,… , 𝑘 − 1). 

Lemma (5.1.21)[129]:  Under the above assumptions we have  

𝒩𝜁𝑖(�̂�𝑖; 𝐿𝑞,Ξ𝑖) ≤  𝐶10
𝑛1+⋯+𝑛𝑖𝒩𝜁𝑖  (�̂�0; 𝐿𝑞) (𝑖 = 1, … , 𝑘).                           (57) 

The constant 𝐶10 = 𝐶10(𝑚, 𝑙, 𝑞, 𝑏)  does not depend on the sequence of partitions being 

considered or on the numbers 𝜁𝑖. 

Proof:  For every element 𝑣 ∈ �̂�𝑖+1 there is an element 𝑣 ∈ 𝑉𝑖 we obtain 

‖𝑣 − 𝑣‖𝑞,Ξ𝑖+1 ≤ ‖𝑣 − 𝑣
′‖𝑞,Ξ𝑖+1 + ‖𝑣

′ − 𝑣‖𝑞,Ξ𝑖 ≤ 3𝜁𝑖. 

On the strength of Lemma (5.1.20) we can construct a 𝜁𝑖+1- net 𝑍𝑖+1, in the set 

�̃�(Ξ𝑖+1; 𝑙, 3𝜁𝑖) whose cardinality does not exceed the equality 

𝐶9
𝑛𝑖+1(3𝜁𝑖𝜁𝑖+1

−1 ) 𝑣𝑛𝑖+1 ≤  𝐶10
𝑛𝑖+1    (𝐶10 = 𝐶93

𝑣𝑏−𝑣). 
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Since 𝑣 − 𝑣 ∈ �̃�(Ξ𝑖+1; 𝑙, 3𝜁𝑖) for some element 𝑧 ∈ 𝑍𝑖+1 we have 

‖𝑣 − 𝑣 − 𝑧‖𝑞,Ξ𝑖+1 ≤  𝜁𝑖+1. 

All possible elements of the form 𝑣 + 𝑧, where 𝑣 ∈ 𝑉𝑖, 𝑧 ∈ 𝑍𝑖+1, form 𝜁𝑖+1- net for the set 

�̂�𝑖+1 relative to the metric of the space 𝐿𝑞,Ξ𝑖+1 . The cardinality of this net is estimated, 

obviously, by the quantity 

𝐶10
𝑛𝑖+1𝒩𝜁𝑖(�̂�𝑖;  𝐿𝑞,Ξ𝑖 ) . 

Thus we have obtained the estimate  

𝒩𝜁𝑖+1(�̂�𝑖+1;  𝐿𝑞,Ξ𝑖+1 ) ≤ 𝐶10
𝑛𝑖+1  𝒩𝜁𝑖(�̂�𝑖;  𝐿𝑞,Ξ𝑖 ), 

From which (57) follows. The lemma is proved. 

We proceed to the proof of Theorem (5.1.19). We use the notation 𝒯𝑎
𝜂(𝐽), (8), (9), 

(18), and relate it to the partition functions 𝐽 = 𝐽𝑢 defined by the formula (34). In the case 

𝑝𝜔 > 1 it obviously suffices to prove the theorem for 𝑞 = ∞. 

       Let 𝜂 be a fixed number, 0 < 𝜂 ≤ 𝐶2. Set 𝑎 = 𝑝𝜔 − 1 for 𝑝𝜔 > 1 and 𝑎 =
𝑝(𝑞−1 − 𝑞∗−1) for 𝑝𝜔 ≤ 1. 𝑞 < 𝑞∗. Divide the set 𝑆𝑊𝑝

𝑎 into classes, associating two 

functions 𝑢1, 𝑢2 ∈ 𝑆𝑊𝑝
𝑎  with the same if and only if  𝒯𝑎

𝜂
(𝐽𝑢1) = 𝒯𝑎

𝜂
(𝐽𝑢2). The number of 

distinct classes obviously does not exceed the number 𝑁(𝑎, 𝜂). on the strength of Lemma 

(5.1.5), the latter can be estimated as follows: 

log2𝑁(𝑎, 𝜂) ≤ 𝐶3𝜂
−(𝑎+1)−1    (0 < 𝜂 ≤ 𝐶2)                                          (58) 

Now we estimate the entropy of each of the classes. We use �̂� to denote some class. With 

all functions 𝑢 ∈ �̂�  we associate the same sequence of partitions {Ξ𝑖}0
𝑘 = 𝒯𝑎

𝜂(𝐽) and also 

the same sequence of numbers 𝛿𝑖 = 𝛿𝑖(𝐽𝑢; 𝑎) (𝑖 = 0,1, … , 𝑘). The number 𝑘 is determined 

by (22). 

      Using the notation (9), (34)  we observe that we can write the assertions of Lemmas 

(5.1.7) (the case 𝑞 = ∞) and (5.1.8) (the case 𝑞 < 𝑞∗) in the form  

‖𝑢 − 𝑃Ξ𝑖𝑢‖𝑞,Ξ𝑖 
≤ 𝐶11𝛿𝑖

𝑝−1(𝑖 = 0, 1, … , 𝑘).                                 (59) 

Here 𝐶11 = 𝐶4 for 𝑞 = ∞ and 𝐶11 = 𝐶5 for 𝑞 < 𝑞∗. Taking (19) into account, we obtain 

the relationships 

‖𝑢 − 𝑃Ξ𝑖𝑢‖𝑞,Ξ𝑖 
≤ 𝜁𝑖  (𝜁𝑖 = 𝐶11𝛿𝑖

𝑝−1
; 𝑖 = 0,1, … , 𝑘)                                 (60) 

Which are somewhat cruder but will be more convenient below. We set �̂�𝑖 = 𝑃Ξ𝑖�̂� and 

note that the sets �̂�𝑖 and the numbers 𝜁𝑖 satisfy the conditions of Lemma (5.1.21). Indeed, 

from (60) we find that 

‖𝑃Ξ𝑖𝑢 − 𝑃Ξ𝑖+1𝑢‖𝑞,Ξ𝑖+1 
≤  ‖𝑢 − 𝑃Ξ𝑖+1𝑢‖𝑞,Ξ𝑖+1 

+ ‖𝑢 − 𝑃Ξ𝑖𝑢‖𝑞,Ξ𝑖 
 

≤ 𝜁𝑖+1 + 𝜁𝑖 ≤ 2𝜁𝑖. 
The inequalities (56) are obviously satisfied in the view of (21). 

       We estimate the quantity 𝔑𝜁0(�̂�0;  𝐿𝑞). Since 𝑃Ξ0 = 𝑃𝑄𝑚  and 𝛿0 = 𝐶2, from (60) and 

the imbedding theorem we obtain 

‖𝑃𝑄𝑚𝑢‖𝐿𝑞
≤ 𝐶11𝐶3

𝑝−1
+ ‖𝑢‖𝑆𝑊𝑝𝑎 ≤ 𝐶11𝐶2

𝑝−1
+ 𝐶11‖𝑢‖𝑆𝑊𝑝𝑎 ≤ 𝐶11 (𝐶2

𝑝−1
+ 1). 

It follows from (55) that  

𝒩2𝜁𝑘(�̂�;  𝐿𝑞,Ξ𝑘 ) ≤ 𝒩𝜁𝑘(�̂�; 𝐿𝑞,Ξ𝑘 ) ≤ 𝐶12𝐶10
𝑛1+⋯+𝑛𝑘 .                              (61) 

According to (25), (21) and (22)  

𝑛1 +⋯+ 𝑛𝑘 ≤ 𝐶3
′𝛿𝑘
−(𝑎+1)−1 ≤ 2𝑚𝐶3

′𝛿𝑘−1
−(𝑎+1)−1 ≤ 2𝑚𝐶3

′𝜂−(𝑎+1)
−1
. 
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Hence and from (61) we obtain an estimate of the form 

ℋ2𝜁𝑘(�̂�;  𝐿𝑞,Ξ𝑘 ) ≤ 𝐶13𝜂
−(𝑎+1)−1 .                                              (62) 

     To obtain the final result we have to pass to estimating the entropy in the original 

metric, i.e. in the metric of 𝐿𝑞. Setting 𝜖𝑘 = 2𝜁𝑘𝑛𝑘
𝑞−1

 and comparing (62) and (51), we 

obtain  

ℋ𝜀𝑘(�̂�;  𝐿𝑞 ) ≤ 𝐶13𝜂
−(𝑎+1)−1 . 

Further, it follows from (24) and (22) that 

𝜀𝑘 ≤ 𝑐𝛿𝑘
𝑝−1
𝜂−(𝑎+1)

−1
≤ 𝑐𝜂𝑝

−1−𝑞−1(𝑎+1)−1 . 
Thus 

ℋ𝜀(�̂�;  𝐿𝑞 ) ≤ 𝐶13𝜂
−(𝑎+1)−1 ,                                                             (63) 

where 

𝜀 = 𝑐𝜂𝑝
−1−𝑞−1(𝑎+1)−1 . 

Finally, combining the inequalities (63) and (58), we arrive at the estimate  

ℋ𝜀(𝑆𝑊𝑝
𝑎 ;  𝐿𝑞 ) ≤ 𝑐𝜀

[𝑝−1−𝑞−1(𝑎+1)−1]−1 . 

It is easy to see that the last inequality coincides with the estimate (50). Indeed, the 

relationship 𝑝−1(𝑎 + 1)−1 − 𝑞−1 = 𝜔 holds for both 𝑞 = ∞, 𝑎 = 𝑝𝜔 − 1 and for 𝑞 <
𝑞∗, 𝑎 = 𝑝(𝑞−1 − 𝑞∗−1), 𝑞∗ = 𝑝(1 − 𝑝𝜔)−1. The theorem is proved. 

     We note that we can establish the estimates 

ℋ𝜀(𝐻𝑝
𝑎;  𝐿𝑞 ) ≤ 𝑐𝜀

−𝜔−1 ,ℋ𝜀(𝐵𝑝
𝑎;  𝐿𝑞 ) ≤ 𝑐𝜀

−𝜔−1 

is exactly the same way. 

Corollary(5.1.22)[129]: When 𝑝𝜔 > 1 the relationship ℋ𝜀(𝑊𝑝
𝑎;  𝐶) ≍ 𝜖−𝜔

−1
 holds. 

      Indeed, the estimate from above obviously coincides with the estimate (50) for 𝑞 = ∞. 

The estimate from below for integral 𝑎 follows from the inclusion 𝐶𝑎 ⊂ 𝑊𝑝
𝑎 and the 

inequality obtained in [134]: 

ℋ𝜀(𝐶
𝑎; 𝐶) ≥ 𝑐𝜀−𝜔

−1
.                                                                      (64) 

For nonintegral 𝑎 the class 𝐶𝑎 is not in 𝑊𝑝
𝑎 . However, in this case we can also obtain the 

required estimate below of ℋ𝜀(𝑊𝑝
𝑎 ;  𝐶) with the help of the system of functions which 

was used in [134] to obtain (64). 

In conclusion we make some remarks about our estimates for e-entropy and 

rcdiameters. For simplicity we restrict consideration to the case of the sphere 

𝑆𝑊2
1(𝑄1)considered in the metric of𝑐(𝑄1). 

The inclusions 

𝑆𝑐1 ⊂ 𝑆𝑊2
1 ⊂ 𝑆𝑐

1
2⁄  

imply the inequalities 

ℋ𝜀(𝐶
1; 𝐶) ≤ ℋ𝜀(𝑊2

1; 𝐶) ≤ ℋ𝜀 (𝐶
1
2⁄ ; 𝐶), 

𝑑𝑛(𝐶
1; 𝐶) ≤ 𝑑𝑛(𝑊2

1; 𝐶) ≤ 𝑑𝑛 (𝐶
1
2⁄ ; 𝐶). 

Above we saw that the quantityℋ𝜀(𝑊2
1; 𝐶)has the same order of magnitude as ℋ𝜀(𝐶

1; 𝐶): 
ℋ𝜀(𝑊2

1; 𝐶) ≍ ℋ𝜀(𝐶
1; 𝐶) ≍ 𝜀−1. 

As for the re-diameters, the precise order of𝑑𝑛(𝑊2
1; 𝐶) is unknown. The most natural 

assumption is 

𝑑𝑛(𝑊2
1; 𝐶) ≍ 𝑑𝑛 (𝐶

1
2⁄ ; 𝐶) ≍ 𝑛−

1
2⁄ .                            (65) 
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This would mean that from the point of view of approximation by linear sets in the metric 

of the space 𝐶 the sphere𝑆𝑊2
1is not better than the widest set𝑆𝐶

1
2⁄ · At the same time, 

from the point of view of 𝜖-entropy, the sphere 𝑆𝑊2
1 is constructed essentially like the 

narrowest set 𝑆𝐶1. We note that for several other metric characteristics-n-diameters in the 

sense of I. M. Gelf and (see [141])- relationships of the form (65) are indeed valid. 

 

Section (5.2): Multivariate BV Spaces of a Wiener–L. Young 

In the first, the 1967 pioneering [147], asserts the following:  

Theorem (5.2.1)[142]: Given 𝑓 ∈ 𝑊𝑝
𝑘([0,1)𝑑), 𝑁 ∈ ℕ and 1 ≤ 𝑝 < 𝑞 < ∞ satisfying  

𝑘

𝑑
>
1

𝑝
−
1

𝑞
 

there exist a partition ∆𝑁 of [0,1)𝑑 into at most N dyadic subcubes and a piecewise 

polynomial 𝑔𝑁 on ∆𝑁 of degree 𝑘 − 1 such that 

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝐶𝑁
−𝑘 𝑑⁄ sup

|𝛼|=𝑘
‖𝐷𝛼𝑓‖𝑝 ;                         (66) 

the constant 𝐶 > 0 is independent of 𝑓 and 𝑁 and 𝐶 → ∞ as 𝑞 tends to the Sobolev 

limiting exponent 𝑞∗ ≔ (
1

𝑝
−
𝑘

𝑑
)
−1

.  

  Using the compactness argument from [147] one can prove that validity of (66) for 𝑞 =
𝑞∗ implies (incorrect) compactness of embedding 𝑊𝑝

𝑘 ⊂ 𝐿𝑞∗ .This leads to the following:  

For the special case 𝑘 = 𝑝 = 1, 𝑑 = 2 the answer was given in [151] by A. Cohen, 

DeVore, Petrushev and Hong Xu; the case 𝑑 > 2 was than proved by Wojtaszczyk [156]. 

The result states: 
Theorem (5.2.2)[142]: Given 𝑓 ∈ 𝑊1

1([0,1)𝑑), 𝑑 > 2, and 𝑁 ∈ ℕ there exist a partition 

∆𝑁 of [0,1)𝑑 into at most 𝑁 𝑑-rings (differences of two dyadic subcubes) and a piecewise 

constant function 𝑔𝑁 on ∆𝑁 such that  

‖𝑓 − 𝑔𝑁‖𝑞∗ ≤ 𝐶(𝑑)𝑁
−1 𝑑⁄ sup

|𝛼|=𝑘
‖𝐷𝛼𝑓‖1 ;                        (67) 

Hereafter 𝑐(𝑥, 𝑦, . . . ) denotes a positive constant depending only on the parameters in the 

parentheses. 

We achieved by using the 𝐵𝑉 spaces of integrable on [0,1)𝑑functions of arbitrary 

smoothness introduced in [149]. To motivate the definition of the corresponding space 

denoted by 𝑉𝑝𝑞
𝑘  we begin with a model case, the Wiener–𝐿. Young space 𝑉𝑝, whose 

associated seminorm is presented in the following equivalent form: 

var𝑝𝑓 ∶=  sup
∆
(∑𝑜𝑠𝑐(𝑓; 𝐼)𝑝

𝐼∈∆

)

1 𝑝⁄

                                                (68) 

 where ∆ runs over disjoint families of intervals 𝐼 = [𝑎, 𝑏) ⊂ [0,1) and  

𝑜𝑠𝑐(𝑓; 𝐼) ≔  sup
𝑥,𝑦∈𝐼

|𝑓(𝑥) − 𝑓(𝑦)| .                                  (69) 

To obtain the required seminorm of 𝑉𝑝𝑞
𝑘 denoted by var𝑝

𝑘(∙; 𝐿𝑞) we replace in (68) intervals 

by cubes 𝑄 ⊂ [0,1)𝑑, in (69) the first difference by the 𝑘-th one, and the uniform norm by 

𝐿𝑞 norm. This gives the following: 

 Definition (5.2.3)[142]: The seminorm 𝑓 ↦ var𝑝
𝑘(𝑓; 𝐿𝑞) is a function on 𝐿𝑞([0,1)

𝑑)given 

by 
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var𝑝
𝑘(𝑓; 𝐿𝑞): =  sup

∆
{∑𝑜𝑠𝑐𝑞

𝑘(𝑓; 𝑄)𝑝

𝑄∈∆

}

1 𝑝⁄

                               (70) 

 where ∆ runs over disjoint families of cubes 𝑄 ⊂ [0,1)𝑑 and  

𝑜𝑠𝑐𝑞
𝑘(𝑓; 𝑄) ≔ sup

ℎ∈ℝ𝑑
‖∆ℎ
𝑘‖
𝐿𝑞(𝑄𝑘ℎ)

;                    (71) 

 here ∆ℎ
𝑘≔ ∑ (−1)𝑛−𝑗 (

𝑘
𝑗
) 𝛿𝑗ℎ

𝑘
𝑗=0  and 𝑄𝑘ℎ ∶= {𝑥 ∈ ℝ

𝑑; 𝑥 + 𝑗ℎ ∈ 𝑄, 𝑗 =  0,1, . . . , 𝑘}.  

  The important characteristic of the space 𝑉𝑝𝑞
𝑘 is its smoothness introduced by the 

following:  
Definition (5.2.4)[142]: Smoothness of the space 𝑉𝑝𝑞

𝑘 denoted by 𝑠(𝑉𝑝𝑞
𝑘 ) is a real number 

given by 

𝑠(𝑉𝑝𝑞
𝑘 ) ≔ 𝑑 (

1

𝑝
−
1

𝑞
).                                                   (72) 

 This concept is closely related to differential and approximation properties of 𝑉𝑝𝑞
𝑘  

functions. In fact, a function with 𝑠(𝑉𝑝𝑞
𝑘 ) = 𝑠 belongs to the Taylor class 𝑇𝑞

𝑠(𝑥) a.e. if 0 <

𝑠 < 𝑘 and 𝑡𝑞
𝑘(𝑥) a.e. if 𝑠 = 𝑘, see [27]. Moreover, as we will see, its order of 𝑁-term 

approximation in 𝐿𝑞([0,1)
𝑑) by piecewise polynomial is 𝑁−𝑠 𝑑⁄  for 0 < 𝑠 ≤  𝑘.  

  In particular, the proof of Theorem (5.2.23) is based on the equality 

𝑉𝑝𝑞∗
𝑘 = 𝑊𝑝

𝑘  

and the fact that 

𝑠(𝑉𝑝𝑞∗
𝑘 ) ≔ 𝑑 (

1

𝑝
−
1

𝑞∗
) = 𝑘   

 that allow to derive it directly from the corresponding result for 𝑉𝑝𝑞∗
𝑘 .  

The main result, Theorem (5.2.23), is formulated along with its consequences 

describing similar approximation results for classical smoothness spaces.  
We prove properties of 𝑉𝑝𝑞

𝑘  spaces essential for the proof of Theorem (5.3.2). The 

first result asserts that a function 𝑓 ∈ 𝑉𝑝𝑞
𝑘  can be weakly approximated in 𝐿𝑞 by 𝐶∞ 

functions whose (𝑘, 𝑝)-variations are bounded by var𝑝
𝑘(𝑓; 𝐿𝑞 For the special case of the 

space 𝐵𝑉 ([0,1)𝑑) (= 𝑉1 𝑑 𝑑−1⁄
1 ), see, e.g., [157].  

The second result estimates polynomial approximation of order 𝑘 − 1 for 𝑓 ∈
𝑉𝑝𝑞
𝑘 (𝑄′\𝑄′′) via its (𝑘, 𝑝)-variation; here 𝑄′′ ≠

⊂𝑄′are dyadic cubes.  

The latter result essentially uses a cover lemma proved in collaboration with 𝑉. 

Dolnikov; its proof is presented.  

The main result, Theorem (5.2.22), and its consequences for the classical 

smoothness spaces. The approximation algorithm used in the construction of the family of 

dyadic cubes for Theorem (5.2.22).  

  Its primary version was developed to prove the similar to Theorem (5.2.23) result for the 

𝑁-term approximation of functions from Besov spaces by 𝐵–splines; the result is 

announced in [145] and proved in [28].  

  The special case of Theorem (5.2.22) for functions with absolutely continuous (𝑘, 𝑝)- 
variation was proved a long time ago and announced in [150]. This result allows to prove 

all consequences of Theorem (5.2.22) presented but only much later he derive Theorem 

(5.2.22) from this special case.  
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  A cube denoted by 𝑄, 𝑄′, 𝐾 etc. is a set of ℝ𝑑 homothetic to the (half–open) unit cube 

𝑄𝑑 ≔ [0,1)𝑑.                                                                  (73) 
𝒟(𝑄) denotes the family of dyadic cubes of 𝑄, i.e., cubes of the form 

 𝐾 ≔ 2−𝑗(𝑄 + 𝛼)                                                                     (74) 
where 𝑗 ∈ ℤ+ ∶= {0,1,2, . . . , } and 𝛼 ∈ ℤ𝑑 .  
  Further, 𝒫𝑙 = 𝒫𝑙(ℝ

𝑑) is the space of polynomials in 𝑥 ≔ (𝑥1, 𝑥2, . . . , 𝑥𝑑) of degree 𝑙 
while 𝒫𝑙(∆) denotes the space of piecewise polynomials on a set ∆ ⊂ 𝒟(𝑄) of degree 𝑙. 
  In other words,  

 𝒫𝑙(∆) ≔  {𝑓 ∈ 𝐿∞(𝑄); 𝑓 = ∑𝑃𝐾 . 1𝐾
𝐾∈∆

}                     (75) 

where {𝑃𝐾}𝐾∈∆  ⊂ 𝒫𝑙.  
Stipulation (5.2.5)[142]: We drop the symbol 𝑄𝑑 from the next notations writing, e.g., 𝒟, 

𝑉𝑝𝑞
𝑘 , 𝐿𝑞 instead of 𝒟(𝑄𝑑), 𝑉𝑝𝑞

𝑘 (𝑄𝑑), 𝐿𝑞(𝑄
𝑑), if it does not lead to misunderstanding. 

     The first consequence of the main result, Theorem (5.2.23), immediately follows from 

Theorem(5.2.22)(𝑎) and the inequality 

var𝑝
𝑘(𝑓; 𝐿𝑞∗) ≤ 𝑐 {

|𝑓|𝑊𝑝𝑘     if  𝑝 > 1

|𝑓|𝐵𝑉𝑘     if   𝑝 = 1,
                                 (76) 

here 𝑐 =  𝑐(𝑘, 𝑑, 𝑞∗) and 𝑞∗ ∶= (
𝑘

𝑑
−
1

𝑝
)
−1
.  

   This and analogous embedding results for Besov spaces.  

  Let now �̇�𝑝
𝜆𝜃 ≔ �̇�𝑝

𝜆𝜃(𝑄𝑑) be the homogeneous Besov space defined by the seminorm 

|𝑓|𝐵𝑝𝜆𝜃 ≔ {∫ (
𝜔𝑘(𝑡; 𝑓; 𝐿𝑝)

𝑡𝜆
)

𝜃
𝑑𝑡

𝑡

1

0

}

1 𝜃⁄

                                 (77) 

where 𝑘 =  𝑘(𝜆): = min{𝑛 ∈  ℕ; 𝑛 > 𝜆}  and 𝜔𝑘(∙; 𝑓; 𝐿𝑝)is the 𝑘-th modulus of continuity 

of 𝑓 ∈ 𝐿𝑝, see e.g., [154] or [152] for its definition.  

  The first result concerns the “diagonal” Besov space �̇�𝑝
𝜆 ≔ �̇�𝑝

𝜆𝑝
 , 1 ≤  𝑝 < ∞.  

Definition (5.2.6)[142]: (𝑘, 𝑝)-variation of a function 𝑓 ∈ 𝐿𝑞
𝑙𝑜𝑐(ℝ𝑑)is a set-function on 

subsets 𝑆 ⊂ ℝ𝑑with nonempty interior given by 

var𝑝
𝑘(𝑓; 𝑆; 𝐿𝑞) ≔  sup

∆
{∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)

𝑝

𝑄∈∆

}

1 𝑝⁄

                     (78)  

where ∆ runs over all disjoint families of cubes 𝑄 ⊂ 𝑆. 
  Equivalence of this definition to the previous one follows from the main result of [148] 

implying, e.g., the next two-sided inequality with constants depending only on 𝑘:  
𝑜𝑠𝑐𝑝

𝑘(𝑓; 𝑄; 𝐿𝑞)  ≈  𝐸𝑘(𝑓; 𝑄; 𝐿𝑞).  

It should be pointed out that in what follows all definitions and results involving the space 

𝑉𝑝𝑞
𝑘 use Definition (5.2.6). In particular, the associated seminorm of this space is  

‖𝑓‖𝑉𝑝𝑞𝑘 ≔ sup
∆
{∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)

𝑝

𝑄∈∆

}

1 𝑝⁄

 

where ∆ runs over all disjoint families of 𝑄 ⊂ 𝑄𝑑 .  
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We present some basic properties of (𝑘, 𝑝)-variation starting with those following 

directly from Definition (5.2.6).  
Proposition (5.2.7)[142]: (Subadditivity). Let {𝑆𝑖} be a disjoint families of measurable 

sets with nonempty interiors. Then  

{∑var𝑝
𝑘(𝑓; 𝑆𝑖; 𝐿𝑞)

𝑝

𝑖

}

1 𝑝⁄

≤ var𝑝
𝑞
(𝑓;⋃𝑆𝑖

𝑖

; 𝐿𝑞)

 

.                                (79) 

 (Lower semicontinuity) If {𝑓𝑗} converges in 𝐿𝑞 to a function 𝑓, then  

 var𝑝
𝑘(𝑓; 𝑆; 𝐿𝑞)

  ≤ lim
𝑗→∞̅̅ ̅̅ ̅̅ ̅

var𝑝
𝑘(𝑓𝑗; 𝑆; 𝐿𝑞)

   .                                    (80) 

Proof: Let ∆ ≔  {𝑄} be a disjoint family of cubes and 

 var𝑝
𝑘(𝑓; ∆; 𝐿𝑞)

 : = {∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)
𝑝

𝑄∈∆

}

1 𝑝⁄

.                                 (81) 

If {∆𝑖} is disjoint and  ⋃ 𝑄𝑄∈∆𝑖 ⊂ 𝑆𝑖 , then 

∑var𝑝
𝑘(𝑓; ∆𝑖; 𝐿𝑞)

𝑝

𝑖

=∑var𝑝
𝑘 (𝑓;⋃∆𝑖 ; 𝐿𝑞)

𝑝

𝑖

≤ var𝑝
𝑞
(𝑓;⋃𝑆𝑖

𝑖

; 𝐿𝑞)

 

 

and it remains to take supremum over each ∆𝑖 to prove (79). The property (80) is proved 

similarly. 

  A more substantive property of (𝑘, 𝑝)-variation gives the next result.  

Proposition (5.2.8)[142]: Let a 𝐶∞ function f belong to the space 𝑉𝑝𝑞
𝑘  of smoothness 𝑠 ≤

𝑘. Then uniformly in 𝑆 

 lim
|𝑆|→0

var𝑝
𝑘(𝑓; 𝑆; 𝐿𝑞)                                                             (82) 

Hereafter |𝑆| denotes the Lebesgue d-measure of 𝑆. 

Proof: Let ∆ be a disjoint family of cubes 𝑄 ⊂ 𝑆. By the Taylor formula  

𝐸𝑘(𝑓; 𝑄; 𝐿𝑞) ≤ |𝑄|
1 𝑞⁄ 𝐸𝑘(𝑓; 𝑄; 𝐶) ≤ 𝑐(𝑘, 𝑑)|𝑄|

1 𝑞⁄ +𝑘 𝑑⁄ max
|𝛼|=𝑘

max
𝑄
|𝐷𝛼𝑓| ; 

this implies 

var𝑝
𝑘(𝑓; ∆; 𝐿𝑞) ≤ 𝑐(𝑘, 𝑑) {∑|𝑄|

𝑝(
1
𝑞+
𝑘
𝑑
)

𝑄∈∆

}

1 𝑝⁄

|𝑓|𝐶𝑘(𝑄𝑑). 

Since 𝑝 (
1

𝑞
+
𝑘

𝑑
) ≥ 𝑝 (

1

𝑞
+
𝑠

𝑑
) = 1, the sum here is bounded by {∑ |𝑄| 𝑄∈∆ }

1 𝑝⁄
≤ |𝑆|1 𝑝⁄ , 

and therefore  

var𝑝
𝑘(𝑓; 𝑆; 𝐿𝑞) ≔ sup

∆
var𝑝

𝑘(𝑓; ∆; 𝐿𝑞)  → 0 𝑎𝑠 |𝑆| → 0. 

Since the space V𝑝𝑞
𝑘  is, in general, nonseparable, 𝐶∞ approximated functions form a 

proper subspace of V𝑝𝑞
𝑘 . However, a weaker form of 𝐶∞approximation is true. 

Theorem (5.2.9)[142]: Let a function 𝑓 belong to V𝑝𝑞
𝑘  if 𝑞 < ∞ and to V𝑝∞

𝑘 ⋂𝐶(ℝ𝑑), 

other-wise. Assume that 𝑄 is a subcube of 𝑄𝑑 such that  

𝑑𝑖𝑠𝑡(𝑄;ℝ\𝑄𝑑) > 0.                                                 (83) 
Then there exists a sequence {𝑓𝑗} ⊂ 𝐶

∞(ℝ𝑑) such that 

 lim
𝑗→∞

𝑓𝑗 =  𝑓 (𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑖𝑛 𝐿𝑞(𝑄))                                     (84)  

and, moreover, 
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sup
𝑗
var𝑝

𝑘(𝑓𝑗; 𝑄; 𝐿𝑞)  ≤ var𝑝
𝑘(𝑓; 𝐿𝑞). 

Proof: Let 𝑓𝜀 be a regularizer of f given by  

𝑓𝜀(𝑥): = ∫𝑓(𝑥 − 𝜀𝑦)𝜑(𝑦)𝑑𝑦

 

𝑄𝜀

,      𝑥 ∈  𝑄,                                  (85)  

where 𝜑 ∈ 𝐶∞(ℝ𝑑) is a test function, i.e.,  

𝜑 ≥ 0,∫𝜑𝑑𝑥 = 1 and 𝑠𝑢𝑝𝑝 𝜑 ⊆ [−1,1]𝑑;                                  (86)  

here 𝜀 >  0 is such that 

  𝑄𝜀: =  𝑄 + [−𝜀, 𝜀]
𝑑 ⊆ 𝑄𝑑 ,                                                 (87) 

see (83).  
   Now (86) and the Minkowski inequality yield 

‖𝑓 − 𝑓𝜀‖𝐿𝑞(𝑄) ≤ sup
|𝑦|≤1

‖𝑓(∙ −𝜀𝑦) − 𝑓‖𝐿𝑞(𝑄). 

Since the right-hand side tends to 0 as 𝜀 →  0 for 𝑞 < ∞ and for 𝑞 =  ∞if 𝑓 ∈ 𝐶(ℝ𝑑), 
(84) follows.  

  To proceed we need the following:  
Lemma (5.2.10)[142]: It is true that 

𝐸𝑘(𝑓𝜀 ; 𝑄; 𝐿𝑞) ≤ ∫ 𝐸𝑘(𝑓𝜀; 𝑄 − 𝜀𝑦; 𝐿𝑞)𝜑(𝑦)𝑑𝑦

 

|𝑦|≤1

.                                (88) 

Proof. It suffices to prove (88) for 𝑞 < ∞ and then pass 𝑞 to +∞.  

   Let 𝑞 < ∞ and 𝑞′ denote the conjugate exponents. By 𝒫𝑘−1
⊥ (𝑄) we denote the set of 

functions 𝑔 ∈ 𝐿𝑞′(ℝ
𝑑) such that 

 ‖𝑔‖𝐿𝑞′ =  1, 𝑠𝑢𝑝𝑝 𝑔 ⊂  𝑄,∫ 𝑥
𝛼𝑔(𝑥)𝑑𝑥 = 0,   |𝛼| ≤  𝑘 − 1.                 (89) 

By the duality of 𝐿𝑞 and 𝐿𝑞′   

𝐸𝑘(𝑓𝜀; 𝑄; 𝐿𝑞) = sup {∫𝑓𝜀𝑔𝑑𝑥
 

𝑄

; 𝑔 ∈ 𝒫𝑘−1
⊥ (𝑄)}.                   (90) 

On the other hand,  

|∫ 𝑓𝜀𝑔𝑑𝑥

 

𝑄

| ≤ ∫ | ∫ 𝑓(𝑥)𝑔(𝑥 + 𝜀𝑦)𝑑𝑥

 

𝑄−𝜀𝑦

| 𝜑(𝑦)𝑑𝑦

 

ℝ𝑑

                 (91) 

 and the function 𝑥 ↦ 𝑔(𝑥 + 𝜀𝑦), 𝑥 ∈ 𝑄, clearly, belongs to the set 𝒫𝑘−1
⊥ (𝑄 −

𝜀𝑦).Therefore for every polynomial m of degree 𝑘 − 1  

∫ 𝑓(𝑥)𝑔(𝑥 + 𝜀𝑦)𝑑𝑥

 

𝑄−𝜀𝑦

= ∫ 𝑓(𝑥)(𝑔 −𝑚)(𝑥 + 𝜀𝑦)𝑑𝑥

 

𝑄−𝜀𝑦

. 

Combining this with (91) and using the Hölder inequality we obtain  

|∫ 𝑓𝜀𝑔𝑑𝑥

 

𝑄

| ≤ ∫𝜑(𝑦)‖𝑓 −𝑚‖𝐿𝑞(𝑄−𝜀𝑦)‖𝑔‖𝐿𝑞′(ℝ
𝑑)𝑑𝑦

 

ℝ𝑑

. 

Taking here infimum over all polynomials m and then supremum over all 𝑔 ∈ 𝒫𝑘−1
⊥ (𝑄) we 

get by (90)  
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𝐸𝑘(𝑓𝜀; 𝑄; 𝐿𝑞) ≤ ∫𝐸𝑘(𝑓𝜀 ; 𝑄 − 𝜀𝑦; 𝐿𝑞)𝜑(𝑦)𝑑𝑦

 

ℝ𝑑

. 

The proof is complete. 

To this end, first we estimate var𝑝
𝑘(𝑓; ∆; 𝐿𝑞), see (81), for the disjoint family of cubes 

of 𝑄. Due to (88) the Minkowski inequality gives for such ∆  

var𝑝
𝑘(𝑓𝜀; ∆; 𝐿𝑞) ≤ ∫var𝑝

𝑘(𝑓; ∆ − 𝜀𝑦; 𝐿𝑞)𝜑(𝑦)𝑑𝑦

 

ℝ𝑑

. 

Since ∆ − 𝜀𝑦 ∶= {�̂� − 𝜀𝑦; �̂� ∈ ∆} is the disjoint family of cubes containing for small 𝜀 

in 𝑄𝑑, the right-hand side is bounded by var𝑝
𝑘(𝑓; 𝐿𝑞).Taking then supremum over all such 

∆, we obtain the inequality  

var𝑝
𝑘(𝑓𝜀 ; 𝑄; 𝐿𝑞) ≤ var𝑝

𝑘(𝑓; 𝐿𝑞) 

  Unfortunately, the corresponding extension theorem is unknown though it exists for some 

spaces  𝑉𝑝𝑞
𝑘 , e.g., for 𝑠( 𝑉𝑝𝑞

𝑘 ) = 𝑘. The special case of the last assertion for the space 

𝐵𝑉 (𝑄𝑑) and even for more general class of domains is presented, e.g., in [157].  

This remark leads to the following:  
Conjecture. For every 𝑓 ∈   𝑉𝑝𝑞

𝑘  there is a sequence {𝑓𝑗} ⊂ 𝐶
∞(ℝ𝑑) such that  

‖𝑓 − 𝑓𝑗‖𝐿𝑞
→ 0 as   𝑗 → ∞  

and, moreover, 

 lim
𝑖→∞

var𝑝
𝑘(𝑓𝑗; 𝐿𝑞) ≤ var𝑝

𝑘(𝑓; 𝐿𝑞)                                    (92) 

Theorem (5.2.11)[142]: Let 𝑄 ⊂ 𝑄∗  be dyadic subcubes of 𝑄𝑑. Then it is true that  

𝐸𝑘(𝑓; 𝑄
∗\𝑄; 𝐿𝑞) ≤ 𝑐(𝑘, 𝑑)var𝑝

𝑘(𝑓; 𝑄∗\𝑄; 𝐿𝑞).                   (93) 

Lemma (5.2.12)[142]: Let 𝑆1, 𝑆2 ⊂ ℝ
𝑑 be subsets of finite measure such that for 𝜀 >  0  

|𝑆1⋂𝑆2| ≥ 𝜀 ∙ min
𝑖=0,1

{|𝑆𝑖|} .                                                (94) 

Then the following is true:  

𝐸𝑘(𝑓; 𝑆1⋃𝑆2; 𝐿𝑞) ≤ 𝑐𝜀
−𝑘+1∑𝐸𝑘(𝑓; 𝑆𝑗; 𝐿𝑞)

1

𝑖=0

.                  (95) 

For the proof see, e.g., [143]. 
Lemma (5.2.13)[142]: Let {𝑆𝑗}1≤𝑗≤𝑁 be a family of subsets in ℝ𝑑 of finite measure such 

that for some 𝜀 > 0  

|𝑆𝑗⋂𝑆𝑗+1| ≥ 𝜀 min
 
{|𝑆𝑗|, |𝑆𝑗+1|} ,   1 ≤ 𝑗 < 𝑁.                                 (96) 

Then it is true that 

𝐸𝑘 (𝑓;⋃𝑆𝑗

𝑁

𝑗=1

; 𝐿𝑞) ≤ 𝑐∑𝐸𝑘(𝑓; 𝑆𝑗; 𝐿𝑞)

𝑁

𝑗=1

.                                 (97) 

where 𝑐 = (𝑐(𝑘, 𝑑)𝜀−𝑘+1)𝑁−1. 
Proof (induction on 𝑵). For 𝑁 = 2 the result follows from (95). Now assume that (97) 
holds for 𝑁 ≥ 2 and prove it for 𝑁 + 1.  

  Setting 𝑆𝑀 ≔ ⋃ 𝑆𝑗
𝑀
𝑗=1  we get from (94)  

|𝑆𝑁⋂𝑆𝑁+1| ≥ 𝜀|𝑆𝑁⋂𝑆𝑁+1| ≥ 𝜀 min{|𝑆𝑁|, |𝑆𝑁+1|} = 𝜀 min{|𝑆
𝑁|, |𝑆𝑁+1|}. 

Further, Lemma (5.2.12) implies 
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𝐸𝑘 (𝑓;⋃ 𝑆𝑗

𝑁+1

𝑗=1

; 𝐿𝑞) ≤ 𝑐(𝑘, 𝑑)𝜀
−𝑘+1 (𝐸𝑘(𝑓; 𝑆

𝑁; 𝐿𝑞) + 𝐸𝑘(𝑓; 𝑆𝑁+1; 𝐿𝑞)).   

while the induction hypothesis gives 

𝐸𝑘(𝑓; 𝑆
𝑁; 𝐿𝑞) ≤ (𝑐(𝑘, 𝑑)𝜀

−𝑘+1)𝑁−1∑𝐸𝑘(𝑓; 𝑆𝑗; 𝐿𝑞)

𝑁

𝑗=1

. 

Combining these we get the result for 𝑁 +  1. 

Theorem (5.2.14)[142]: There exists a cover 𝒦 of 𝑄∗\𝑄 by cubes such that the following 

holds: 
 For every overlapping pair 2 𝐾1, 𝐾2 ∈ 𝒦  

 |𝐾1⋂𝐾2| ≥
1

2
min{|𝐾1|, |𝐾2|},                                 (98) 

 and, moreover,  

card 𝒦 ≤ 4(2𝑑 − 1).                                                 (99) 
Now we complete the proof of Theorem (5.2.11). 
By Lemma (5.2.13) and Theorem (5.2.14) we have 

𝐸𝑘(𝑓; 𝑄
∗\𝑄; 𝐿𝑞) ≤ (𝑐(𝑘, 𝑑)2

𝑘−1)4(2
𝑑−1) ∑ 𝐸𝑘(𝑓; 𝐾; 𝐿𝑞)

𝐾∈𝒦

. 

Moreover, by the definition of (𝑘, 𝑝)-variation, see (78), 

𝐸𝑘(𝑓; 𝐾; 𝐿𝑞) ≤ var𝑝
𝑘(𝑓; 𝑄∗\𝑄; 𝐿𝑞).     

for every 𝐾 ∈ 𝒦. 

  Together with the previous inequality this gets the required result 

𝐸𝑘(𝑓; 𝑄
∗\𝑄; 𝐿𝑞) ≤ 𝑐(𝑘, 𝑑) var𝑝

𝑘(𝑓; 𝑄∗\𝑄; 𝐿𝑞).     

We begin with part (𝑎) of this result and then derive from (𝑎) part (𝑏). 
Let 𝑓 ∈ 𝑉𝑝𝑞

𝑘 (≔ 𝑉𝑝𝑞
𝑘 (𝑄𝑑))  where 

1 ≤ 𝑝 < 𝑞 <  ∞, 𝑑 ≥  2 and 0 < 𝑠 ∶=  𝑠(𝑉𝑝𝑞
𝑘 ) ≤ 𝑘.                                (100) 

Without loss of generality we assume that 

|𝑓|𝑉𝑝𝑞𝑘 = 1.                                                                 (101) 

  Under these assumptions given 𝑁 ∈ ℕ we prove existence of a cover ∆𝑁 of 𝑄𝑑 by at 

most 𝑁 dyadic cubes and a piecewise polynomial 𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁) such that 

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄ .                                                 (102) 

First, let  𝐶∞(ℝ𝑑) ∩ 𝑉𝑝𝑞
𝑘 . The proof of (102) for this case begins with the construction of 

the cover ∆𝑁. This will be obtained by the algorithm presented now. 

The important ingredient of the algorithm is a weight 𝑊 defined on the 𝜎-algebra 

𝐴(𝒟) generated by dyadic cubes of 𝑄𝑑. This by definition is a function 𝑊 ∶  𝐴(𝒟)  →  ℝ+ 

satisfying the conditions. 

   (Subadditivity) For a disjoint family {𝑆𝑖}  ⊂ 𝐴(𝒟) 

∑𝑊(𝑆𝑖) ≤ 𝑊 (⋃𝑆𝑖).                                         (103) 

(Absolute continuity) 
lim
|𝑆|→0

𝑊(𝑆) = 0.                                                               (104) 

We normalize 𝑊 by 

 𝑊(𝑄𝑞) =  1.                                                                 (105) 
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To prove Theorem (5.2.22)(𝑎) for 𝑓 ∈ 𝑉𝑝𝑞
𝑘⋂𝐶∞  we define a weight 𝑊 by 

𝑊(𝑆) ∶=  var𝑝
𝑘(𝑓; 𝑆; 𝐿𝑞)

𝑝
, 𝑆 ∈ 𝐴(𝒟).                                (106)  

Due to Propositions (5.2.7), (5.2.8)and (101) satisfies the required properties (103)- (105).  

In the construction of the algorithm we essentially exploit the canonical graph 

structure of the set 𝒟 regarding as the vertex set while the edge set consists of pairs 

{𝑄′, 𝑄} ⊂ 𝒟 such that 𝑄′ ⊂ 𝑄 and |𝑄′|  = 2−𝑑|𝑄|. In this case, we use the notation 𝑄′ →
𝑄 and call 𝑄′ the son of 𝑄 and 𝑄 the father of 𝑄′.  
  The set of all 2𝑑 sons of 𝑄 is denoted by 𝒟1(𝑄). This clearly is the uniform partition of 𝑄 

into 2𝑑 congruent subcubes.  

  Further, a path in the graph 𝒟 is a sequence  

 𝑃 ∶= {𝑄1 → 𝑄2 → ⋯ → 𝑄𝑛}.                                  (107) 
The vertices (cubes) 𝑄1, 𝑄𝑛 are called the tail and the head of 𝑃, respectively. Moreover, 

we use the notations 

  𝑃 ≔  [𝑄1, 𝑄𝑛], 𝑄1 =: 𝑇𝑃  = : 𝑃
−1, 𝑄𝑛 =:𝐻𝑃 =: 𝑃

+.                                (108) 
It is readily seen that the following is true.  

Proposition (5.2.15)[142]: If 𝑄′ ⊂  𝑄 are dyadic cubes of 𝒟, there exists a unique path 

joining 𝑄′ and 𝑄.  

  In terms of Graph Theory, 𝒟 is a rooted tree with the root 𝑄𝑑.  

  More generally, the set 𝒟(𝑄) of all dyadic subcubes of 𝑄 ∈ 𝒟 is a rooted tree with the 

root 𝑄.  

  For 𝑁 ∈ ℕ and W given by (106) the subset of “bad” cubes of 𝒟 is defined by 

 𝐺𝑁 ∶=  {𝑄 ∈ 𝒟;  𝑊(𝑄)  ≥  𝑁
−1};                                 (109) 

clearly, 𝑄𝑑 ∈ 𝐺𝑁, see (105), and GN is finite, see (104).  
  The algorithm gives the following partition of 𝐺𝑁 into the set of (basic) paths, see 

Proposition II. 1 of Appendix II for the proof.  

Proposition (5.2.16)[142]: There exists partition ℬ𝑁 of the set 𝐺𝑁\{𝑄
𝑑} into 𝑁 paths such 

that  

 𝑊(𝐻𝐵 \𝑇𝐵) < 𝑁
−1,   𝐵 ∈ ℬ𝑁,                                 (110) 

and, moreover, 

  card ℬ𝑁  ≤ 3𝑁 + 1.                                                 (111) 
Now we decompose the remaining part of 𝒟 

 𝐺𝑁
𝑐 ∶=  𝒟\𝐺𝑁.                                                               (112) 

  To this end we define the boundary of 𝐺𝑁 denoted by 𝜕𝐺𝑁 that consists of all maximal 

cubes of 𝐺𝑁
𝑐  with respect to the set–inclusion order.  

  In other words, every 𝑄′  ∈ 𝒟 containing 𝑄 ∈ 𝜕𝐺𝑁
 (⊂  𝐺𝑁

𝑐 ) as a proper subset belongs 

to 𝐺𝑁
 . In particular, if 𝑄+ is the father of 𝑄 ∈ 𝜕𝐺𝑁

 , then  

 𝑊(𝑄) < 𝑁−1 and  𝑊(𝑄+)  ≥  𝑁−1.                                 (113) 
Proposition (5.2.17)[142]: (𝑎) The family {𝒟(𝑄); 𝑄 ∈ 𝜕𝐺𝑁} is disjoint and  

 𝐺𝑁
𝑐 =  ⋃ 𝒟(𝑄)

𝑄∈𝜕𝐺𝑁

 ,                                                 (114) 

i.e, the family is a partition of 𝐺𝑁
𝑐 .  

   (𝑏) The following is true  

 card(𝜕𝐺𝑁) ≤ 2
𝑑𝑁.                                                (115) 

Proof:  (𝑎) Maximal cubes are pairwise disjoint. Hence, 𝜕𝐺𝑁 is a disjoint family. 
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     Further, cubes 𝑄 ∈ 𝜕𝐺𝑁  are roots of the trees 𝒟(𝑄) from (114). Since the roots are 

disjoint, the corresponding trees are as well, i.e., {𝒟(𝑄); 𝑄 ∈ 𝜕𝐺𝑁} is a disjoint family.  

  To prove that the family is a partition of 𝐺𝑁
𝑐  we check that every 𝑄′ ∈ 𝐺𝑁

𝑐   belongs to 

some 𝒟(𝑄) where 𝑄 ∈ 𝜕𝐺𝑁
  .  

  Let 𝑄′ =:  𝑄1 → 𝑄2 → ⋯ → 𝑄𝑑 be the path joining 𝑄′ and 𝑄𝑑, and 𝑄𝑖, 𝑖 ≥  2, be the 

smallest cube of the path belonging to 𝐺𝑁. Then its son 𝑄𝑖−1 belongs to 𝐺𝑁
𝑐 , i.e., 𝑄𝑖−1 is 

maximal, and 𝑄′ ∈ 𝒟(𝑄𝑖−1) as required. 

   (𝑏) Let 𝑄+ be the father of 𝑄 ∈ 𝜕𝐺𝑁 and (𝜕𝐺𝑁)
+ ∶=  {𝑄+; 𝑄 ∈ 𝜕𝐺𝑁}. Since 𝑄+is 

unique, the set (𝜕𝐺𝑁)
+is disjoint.  

  Further, every father has 2𝑑 sons and therefore  

 card(𝜕𝐺𝑁)
  ≤ 2𝑑  card(𝜕𝐺𝑁)

+.                                  (116) 
Finally, (113), subadditivity of 𝑊 and (105) imply  

𝑁−1 card (𝜕𝐺𝑁)
+ <  ∑ 𝑊(𝑄) 

𝑄∈(𝜕𝐺𝑁)
+

 ≤ 𝑊(𝑄𝑑)  =  1.                   (117) 

This and (116) give (115). 
Finally, the required cover ∆𝑁 is given by  

 ∆𝑁∶=  {𝑄
𝑑}⋃(⋃ {𝑇𝐵, 𝐻𝐵}

𝐵∈ℬ𝑁

⋃𝒟1(𝑇𝐵)

 

)

 

 .                               (118) 

Due to (111)  
 card ∆𝑁≤  1 +  2(3𝑁 + 1) + 2

𝑑(3𝑁 + 1) =: 𝑐(𝑑)𝑁.                              (119) 
We define the required 𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁) using to this end polynomials of best 

approximation determined by  

‖𝑓 −𝑚𝑠‖𝐿𝑞(𝑆) = 𝐸𝑘(𝑓; 𝑆; 𝐿𝑞).                                     (120) 

Further, we use for brevity the following notations 

  𝑀𝑄 ∶= ∑ 𝑚𝑄′ ∙ 1𝑄′ −𝑚𝑄 ∙ 1𝑄
𝑄′∈𝒟1(𝑄)

  , 𝑄 ∈ 𝒟;                                 (121) 

and, moreover,  

 𝐵+ ∶=  𝐻𝐵,    𝐵
0  ∶=  𝐻𝐵\𝑇𝐵,   𝐵

− ∶= 𝑇𝐵.                                  (122) 
Using this we write  

𝑔𝑁 ≔ 𝑚𝑄𝑑 + ∑ [(𝑚𝐵+ −𝑚𝐵0) ∙ 1𝐵+ + (𝑚𝐵0 − 𝑚𝐵−) ∙ 1𝐵− +𝑀𝐵−]

𝐵∈ℬ𝑁

.          (123) 

  This clearly is a piecewise polynomial of degree 𝑘 − 1 over ∆𝑁, see (118). 

   Let us note that for 𝐵 being a singleton 𝐵±  = {𝐵}, 𝐵0 =  ∅, i.e., the corresponding terms 

in (123) and (118) equal 𝑀𝐵 and {{𝐵},𝒟1({𝐵})}, respectively.  

   Theorem (5.2.22)(𝑎) will be derived from the next key result.  

To introduce the family ∆𝑁 we use the algorithm for the weight 𝑊 given by (106).  

  Since 𝑊 satisfies the assumptions of Proposition (5.2.16), see (103)– (105), it 

determines the finite set 𝐺𝑁 ⊂ 𝒟, and the algorithm gives the partition ℬ𝑁 of 𝐺𝑁\{𝑄
𝑑} into 

the basic paths which in turn determines the required cover ∆𝑁, see (118) and (119).  

  To estimate 𝑓 − 𝑔𝑁 we need a suitable presentation of this difference; the next lemmas 

are used for its derivation.  
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Lemma (5.2.18)[142]: Let 𝑓 ∈ 𝐿𝑞(𝑄) ∩ 𝐶(ℝ
𝑑), 1 ≤ 𝑞 ≤  ∞, 𝑄 ∈ 𝒟. Then the following 

holds  

𝑓 =  𝑚𝑄 + ∑ 𝑀𝑄′

𝑄′∈𝒟(𝑄)

                                    (124)  

with convergence in 𝐿𝑞(𝑄). 

Proof:  Let 𝒟𝑗(𝑄), 𝑗 ∈ ℤ, be the partition of 𝑄 into 2𝑗𝑑 congruent (dyadic) cubes, 

e.g., 𝒟0(𝑄) = {𝑄} and 𝒟1(𝑄) is the set of sons for 𝑄. Then 𝑃𝑗 ∈ 𝒫𝑘−1 (𝒟𝑗(𝑄)) is defined 

by 

𝑃𝑗 ≔ ∑ 𝑚𝑄′ ∙ 1𝑄′

𝑄′∈𝒟𝑗(𝑄)

.                                                 (125) 

We show that 

  𝑓 − 𝑚𝑄 =∑(𝑃𝑗+1 − 𝑃𝑗)

𝑗≥0

 (convergence in 𝐿𝑞(𝑄)).                                   (126) 

 

Let 𝑠𝑛 be the 𝑛-th partial sum of the series (126). Then 

 

𝑓 − 𝑚𝑄 − 𝑠𝑛 = 𝑓 − 𝑃𝑛−1 = ∑ (𝑓 −𝑚𝑄′) ∙

𝑄′∈𝒟𝑛(𝑄)

1𝑄′ . 

 

This and (120) imply that 

‖𝑓 − 𝑚𝑄 − 𝑠𝑛‖𝑞 = { ∑ ‖𝑓 −𝑚𝑄′‖𝐿𝑞(𝑄′)
𝑞

𝑄′∈𝒟𝑛(𝑄)

}

1 𝑞⁄

= { ∑ 𝐸𝑘(𝑓; 𝑄
′; 𝐿𝑞)

𝑄′∈𝒟𝑛(𝑄)

}

1 𝑞⁄

. 

By Theorem 4 of [149] the right–hand side is bounded by 

𝑐(𝑘, 𝑑)𝜔𝑘 (𝑓;
|𝑄|1 𝑑⁄

2𝑛
; 𝐿𝑞(𝑄)) . Since this bound tends to 0 as 𝑛 → ∞ for 𝑞 < ∞ and for 

𝑞 =  ∞ and 𝑓 ∈ 𝐶(ℝ𝑑), (126) is proved. Using now notations (121) and (125) we obtain 

𝑃𝑗+1 − 𝑃𝑗 = ∑ 𝑀𝑄′

𝑄′∈𝒟𝑗(𝑄)

. 

Summing over 𝑗 ≥ 0 and using (126) we then have 

 

𝑓 − 𝑚𝑄 =∑ ∑ 𝑀𝑄′

𝑄′∈𝒟𝑗(𝑄)𝑗≥0

= ∑ 𝑀𝑄′

𝑄′∈𝒟(𝑄)

. 

The proof is complete. 

    Now we apply (124) for 𝑄 = 𝑄𝑑 and present 𝒟 = 𝒟(𝑄𝑑) as follows: 

 

𝒟 = (∑ ∑𝑄

𝑄∈𝐵𝐵∈ℬ𝑁

)⋃( ∑ 𝒟(𝑄)

𝑄∈𝜕𝐺𝑁

), 

see Proposition (5.2.16) and (114). This then implies the identity 
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𝑓 − 𝑚𝑄𝑑 =  ∑ ∑𝑀𝑄
𝑄∈𝐵𝐵∈ℬ𝑁

+ ∑ ∑ 𝑀𝑄′

𝑄′∈𝒟(𝑄)𝑄∈𝜕𝐺𝑁

. 

 

Rewriting the second sum here by (124) we have 

𝑓 −𝑚𝑄𝑑 = ∑ ∑𝑀𝑄
𝑄∈𝐵𝐵∈ℬ𝑁

+ ∑ (𝑓 −𝑚𝑄) ∙ 1𝑄
𝑄∈𝜕𝐺𝑁

. 

Subtracting from here equality (123) for 𝑔𝑁 we obtain the required presentation  

 𝑓 − 𝑔𝑁  = ∑ 𝑆𝐵
𝐵∈ℬ𝑁

 + ∑ (𝑓 −𝑚𝑄) ∙ 1𝑄
𝑄∈𝜕𝐺𝑁

;                                  (127) 

here we set 

𝑆𝐵 = ∑ 𝑀𝑄
𝑄∈𝐵\{𝐵−}

− [(𝑚𝐵+ −𝑚𝐵0) ∙ 1𝐵+ + (𝑚𝐵0 −𝑚𝐵−) ∙ 1𝐵−].                  (128) 

  The next result gives the basic presentation of 𝑆𝐵. 

Lemma (5.2.19)[142]: The following is true  

𝑆𝐵 = ∑ ∑ (𝑚𝐵0 −𝑚𝑄′) ∙ 1𝑄′

𝑄′∈𝒟1(𝑄)\𝐵𝑄∈𝐵\{𝐵−}

.                                    (129) 

Proof:  We begin with the identity  

∑ 𝑀𝑄
𝑄∈𝐵\{𝐵−}

= ∑ ∑ [(𝑚𝑄′ −𝑚𝐵+) ∙ 1𝑄′ + (𝑚𝐵− −𝑚𝐵+) ∙ 1𝐵−]

𝑄′∈𝒟1(𝑄)\𝐵𝑄∈𝐵\{𝐵−}

.   (130) 

proved by induction on card 𝐵.  

  Let 𝐵 ∶=  [𝑄1, 𝑄𝑛]  = {𝑄1 → 𝑄2 → ⋯ → 𝑄𝑛}, i.e., 𝐵− ∶= 𝑄1, 𝐵
+ ∶= 𝑄𝑛 . Since 𝒟1(𝑄)\𝐵 

for 𝑄 ∈ 𝐵 \{𝐵−} consists of all sons of 𝑄 excluding the son belonging to 𝐵,  

𝒟1(𝑄𝑖)\𝐵 = 𝒟1(𝑄𝑖){𝑄𝑖−1}, 𝑖 ≥ 2. 
Denoting the right–hand side by 𝒟 

∗(𝑄𝑖)we then rewrite (130) as follows. 

∑𝑀𝑄𝑖

𝑛

𝑖=2

=∑ ∑ [(𝑚𝑄 −𝑚𝑄𝑛) ∙ 1𝑄 + (𝑚𝑄1 −𝑚𝑄𝑛) ∙ 1𝑄1]

𝑄∈𝒟1
∗(𝑄𝑖)

𝑛

𝑖=2

               (131) 

For 𝑛 = 2 the right–hand side of (131) equals  

∑ [(𝑚𝑄 −𝑚𝑄2) ∙ 1𝑄] + (𝑚𝑄1 −𝑚𝑄2) ∙ 1𝑄1
𝑄∈𝒟1

∗(𝑄2)

≔ ∑ 𝑚𝑄 ∙ 1𝑄 −𝑚𝑄2 ( ∑ 1𝑄 + 1𝑄1
𝑄∈𝒟1

∗(𝑄2)

)

𝑄∈𝒟1
 (𝑄2)

.  

Since 𝒟1
∗(𝑄2)is a partition of 𝑄2 \𝑄1, the sum in the parentheses equals 1𝑄2 \𝑄1 + 1𝑄1 =

1𝑄2 . Hence, the right–hand side here equals 𝑀𝑄2 , see (121), as required. 

 

  Now let (130) hold for all paths of cardinality 𝑛 ≥ 2. To prove it for n + 1 we write 

(131) for the n-term path {𝑄2 → … →  𝑄𝑛+1}and add to it (131) for 𝑛 = 2 written 

equivalently as follows: 
𝑚𝑄2 = 

   ∑ (𝑚𝑄 −𝑚𝑄𝑛+1) ∙ 1𝑄 + (𝑚𝑄𝑛+1 −𝑚𝑄2) ∙ 1𝑄2 + (𝑚𝑄1 −𝑚𝑄𝑛+1) ∙ 1𝑄1
𝑄∈𝒟1

∗(𝑄2)
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Together with the equality 

∑𝑀𝑄𝑖

𝑛+1

𝑖=3

= ∑ ∑ (𝑚𝑄 −𝑚𝑄𝑛+1) ∙ 1𝑄 + (𝑚𝑄2 −𝑚𝑄𝑛+1) ∙ 1𝑄2
𝑄∈𝒟1

∗(𝑄𝑖)

𝑛+1

𝑖=3

(132) 

this gives 

∑𝑀𝑄𝑖

𝑛+1

𝑖=2

= ∑ ∑ (𝑚𝑄 −𝑚𝑄𝑛+1) ∙ 1𝑄 + 𝑅

𝑄∈𝒟1
∗(𝑄𝑖)

𝑛+1

𝑖=2

               (133) 

where we set  

𝑅 ≔  (𝑚𝑄𝑛+1 −𝑚𝑄2) ∙ 1𝑄2 + (𝑚𝑄1 −𝑚𝑄𝑛+1) ∙ 1𝑄1 + (𝑚𝑄2 −𝑚𝑄𝑛+1) ∙ 1𝑄2  

= (𝑚𝑄1 −𝑚𝑄𝑛+1) ∙ 1𝑄1 . 

Hence, (133) proves the required equality (130) for 𝑛 +  1.  
  Now we transform (131) by adding and subtracting 𝑚𝐵0(≔  𝑚𝑄𝑛\𝑄1).  

This gives  

∑𝑀𝑄𝑖

𝑛+1

𝑖=2

=∑ ∑ (𝑚𝑄 −𝑚𝐵0) ∙ 1𝑄 + (𝑚𝐵0 −𝑚𝑄𝑛)

𝑄∈𝒟1
∗(𝑄𝑖)

𝑛

𝑖=2

∑ ∑ 1𝑄 + (𝑚𝑄1 −𝑚𝐵0)

𝑄∈𝒟1
∗(𝑄𝑖)

𝑛

𝑖=2

∙ 1𝑄1 + (𝑚𝐵0 −𝑚𝑄𝑛) ∙ 1𝑄1 . 

Since the second sum here equals n ∑ 1𝑄𝑖\𝑄𝑖−1
𝑛
𝑖=2 = 1𝑄𝑛\𝑄1  and, in the chosen notations, 

see (128), 

 𝑆𝐵 ∶= ∑𝑀𝑄𝑖 − (𝑚𝑄𝑛 −𝑚𝐵0) ∙ 1𝑄𝑛 − (𝑚𝐵0 −𝑚𝑄1) ∙ 1𝑄1

𝑛

𝑖=2

               (134) 

these two equalities give 

𝑆𝐵 ∶=∑[ ∑ (𝑚𝑄 −𝑚𝐵0) ∙ 1𝑄
𝑄∈𝒟1

∗(𝑄𝑖)

] + 𝑅

𝑛

𝑖=2

 

where the remainder 𝑅 equals  

𝑅 ≔ [(𝑚𝐵0 −𝑚𝑄𝑛) ∙ 1𝑄𝑛\𝑄1 + (𝑚𝐵0 −𝑚𝑄𝑛) ∙ 1𝑄1 + (𝑚𝑄1 −𝑚𝐵0) ∙ 1𝑄1]

− [(𝑚𝑄𝑛 −𝑚𝐵0) ∙ 1𝑄𝑛 + (𝑚𝐵0 −𝑚𝑄1) ∙ 1𝑄1].                                  (135) 

Since the square parentheses here annihilate, 𝑅 =  0.The identity (129) is proved. 

Proposition (5.2.20)[142]: Let 𝑓 ∈ 𝑉𝑝𝑞
𝑘 ∩ 𝐶∞(ℝ𝑑) where 𝑑, 𝑝, 𝑞, 𝑠 = 𝑠(𝑉𝑝𝑞

𝑘 ) satisfy (100) 

and (101). Given 𝑁 ∈ ℕ there exist a cover   ∆𝑁⊂ 𝒟 of 𝑄𝑑 and a piecewise polynomial 

𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁)such that  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄                                  (136) 

and, moreover,  

card ∆𝑁≤ 𝑐(𝑑)𝑁.                                                (137) 
Proof. We should prove that for 𝑓 ∈ 𝑉𝑝𝑞

𝑘 ∩ 𝐶∞(ℝ𝑑)  

 ‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄ .                                                 (138) 

Due to the presentation (127)  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ ‖∑ 𝑆𝐵
𝐵∈ℬ𝑁

‖

𝑞

+ ‖ ∑ (𝑓 −𝑚𝑄) ∙ 1𝑄
𝑄∈𝜕𝐺𝑁

‖

𝑞

                (139) 

and it remains to estimate each term of the sum. 
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 Lemma (5.2.21)[142]: (𝑎) Supports of the functions 𝑆𝐵, 𝐵 ∈ ℬ𝑁, are disjoint.  

(𝑏) It is true that  

 ‖𝑆𝐵‖𝑞 ≤ 𝑐(𝑘, 𝑑)var𝑝
𝑘(𝑓; 𝐵+\𝐵−; 𝐿𝑞).                                       (140) 

Proof. (𝑎) Since 𝑠𝑢𝑝𝑝 𝑆𝐵 = 𝐵
+\𝐵−, see Lemma (5.2.19), the supports of 𝑆𝐵 and 𝑆�̃� are 

disjoint if their heads are. Otherwise, one of these (dyadic) cubes, say, �̃�+, embeds into the 

other. Then �̃�+ embeds into the tail 𝐵− of the path 𝐵. Hence, 𝑠𝑢𝑝𝑝 𝑆�̃�  does not 

intersect 𝑠𝑢𝑝𝑝 𝑆𝐵 = 𝐵
+\𝐵−. 

    (𝑏) By identity (129)  

 𝑆𝐵 = ∑ ∑ (𝑚𝐵0 − 𝑓 + 𝑓 − 𝑚𝑄′) ∙ 1𝑄′

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

 

where for brevity we set 𝐵∗ ∶=  𝐵\{𝐵−}.  
Further, we have  

𝑆𝐵 = (𝑚𝐵0 − 𝑓) ∑ ∑ 1𝑄 

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

+ ∑ ∑ (𝑓 −𝑚𝑄′)1𝑄′

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

. 

Since the family⋃ 𝒟1
∗(𝑄)𝑄∈𝐵∗  is a partition of 𝐵+\𝐵−,the sum of indicators here equals 

1𝐵+\𝐵− and the equality implies  

‖𝑆𝐵‖𝑞 ≤ ‖𝑓 − 𝑚𝐵0‖𝐿𝑞(𝐵+\𝐵−) + (∑ ∑ ‖𝑓 − 𝑚𝑄′‖
𝑞

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

)

1 𝑞⁄

= 𝐸𝑘(𝑓; 𝐵
+\𝐵−; 𝐿𝑞) + (∑ ∑ 𝐸𝑘(𝑓; 𝑄

′; 𝐿𝑞)

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

)

1 𝑞⁄

. 

By the Jenssen inequality the second term is bounded by  

(∑ ∑ 𝐸𝑘(𝑓; 𝑄
′; 𝐿𝑞)

𝑝

𝑄′∈𝒟1
∗(𝑄)

 

𝑄∈𝐵∗

)

1 𝑝⁄

. 

Since the family ⋃ 𝒟1
∗(𝑄)𝑄∈𝐵∗  is a partition of 𝐵+\𝐵−,this sum is bounded by 

var𝑝
𝑘(𝑓; 𝐵+\𝐵−; 𝐿𝑞), see the definition of (𝑘, 𝑝)–variation in (78).  

  Moreover, by Theorem (5.2.11)  
‖𝑓 − 𝑚𝐵0‖𝐿𝑞(𝐵0) ≔ 𝐸𝑘(𝑓; 𝐵

+\𝐵−) ≤ 𝑐(𝑘, 𝑑) ∙ var𝑝
𝑘(𝑓; 𝐵+\𝐵−; 𝐿𝑞). 

Combining this with the previous inequality we obtain (140). Now we use Lemma 

(5.2.21) to estimate the first term in (139). We have 

‖ ∑ 𝑆𝐵
𝐵∈ℬ𝑁

‖

𝑞

≤ { ∑ ‖𝑆𝐵‖𝑞
𝑞

𝐵∈ℬ𝑁

}

1 𝑞⁄

≤ 𝑐(𝑘, 𝑑){ ∑ var𝑝
𝑘(𝑓; 𝐵+\𝐵−; 𝐿𝑞)

𝑞

𝐵∈ℬ𝑁

}

1 𝑞⁄

. 

Moreover, by the definition of the weight 𝑊, see (106), and the inequality (110) of 

Proposition (5.2.16) 

var𝑝
𝑘(𝑓; 𝐵+\𝐵−; 𝐿𝑞) ≔ 𝑊(𝐵+\𝐵−)1 𝑝⁄ ≤ 𝑁−1 𝑝⁄ . 

Combining with the previous inequality and using (111) we finally have the required 

estimate  
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‖ ∑ 𝑆𝐵
𝐵∈ℬ𝑁

‖

𝑞

≤ 𝑐(𝑘, 𝑑)(𝑁−𝑞 𝑝⁄  card ℬ𝑁)
1 𝑞⁄
≤ 𝑐(𝑘, 𝑑) (𝑁−𝑞 𝑝⁄ (3𝑁 + 1))

1 𝑞⁄

≤ 𝑐1(𝑘, 𝑑)𝑁
−1 𝑝⁄ +1 𝑞⁄ ≔ 𝑐1(𝑘, 𝑑)𝑁

−𝑠 𝑑⁄ . 
It remains to obtain the similar bound for the sum over boundary 𝜕𝐺𝑁 in (139). Due to 

Proposition (5.2.17) and (113) 𝜕𝐺𝑁 is disjoint and, moreover, 

 var𝑝
𝑘(𝑓; 𝑄; 𝐿𝑞)

𝑝
 =:𝑊(𝑄) <  𝑁−1  

for every 𝑄 ∈ 𝜕𝐺𝑁.  
  This immediately implies 

‖ ∑ (𝑓 −𝑚𝑄) ∙ 1𝑄
𝑄∈𝜕𝐺𝑁

‖

𝑞

= {∑‖𝑓 − 𝑚𝑄‖𝐿𝑞(𝑄)
𝑞

}
1 𝑞⁄

≔ { ∑ 𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)
𝑞

𝑄∈𝜕𝐺𝑁

}

1 𝑞⁄

≤  { ∑ var𝑝
𝑘(𝑓; 𝑄; 𝐿𝑞)

𝑞 𝑝⁄

𝑄∈𝜕𝐺𝑁

}

1 𝑝⁄

≤ 𝑁−1 𝑝⁄ (card 𝐺𝑁)
1 𝑞⁄ . 

Since card 𝐺𝑁 ≤ 2
𝑑𝑁, see (115), this finally gives 

‖ ∑ (𝑓 − 𝑚𝑄) ∙ 1𝑄
𝑄∈𝜕𝐺𝑁

‖

𝑞

≤ 2𝑑/𝑞𝑁−𝑠 𝑑⁄  

as required.  

Proposition (5.2.20) is proved. 

Theorem (5.2.22)[142]: (𝑎) Let 𝑓 ∈ 𝑉𝑝𝑞
𝑘 (𝑄𝑑) where the smoothness 𝑠 ≔  𝑠(𝑉𝑝𝑞

𝑘 ), see 

(72), and 𝑑, 𝑝, 𝑞 be such that  

 𝑑 ≥  2, 0 < 𝑠 ≤ 𝑘  𝑎𝑛𝑑   1 ≤  𝑝 < 𝑞 < ∞.                                 (141) 
Given 𝑁 ∈ ℕ there exist a cover ∆𝑁 ⊂ 𝒟(𝑄

𝑑) of 𝑄𝑑 with card ∆𝑁≤ 𝑁 and 𝑔𝑁 ∈
𝒫𝑘−1(∆𝑁) such that  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑑)𝑁
−𝑠 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘 .                                    (142) 

The same is true for 𝑞 = ∞, i.e., for 𝑠/𝑑 = 1/𝑝, if f is uniformly continuous on 𝑄𝑑. 

 (𝑏) The cover ∆𝑁 can be replaced by a partition of 𝑄𝑑into at most 𝑁 dyadic 𝑑-rings.  

Proof: (a). We derive the result from Theorem (5.2.9) and Proposition (5.2.20). 
    Let 𝑄 ∶=  [1 − 𝛿, 𝛿), 𝛿 > 0, and 𝑓 ∈ 𝑉𝑝𝑞

𝑘  if 𝑞 < ∞ and 𝑓 ∈ 𝑉𝑝𝑞
𝑘 ∩ 𝐶(ℝ𝑑) if 𝑞 = ∞.Given 

𝜀 >  0 Theorem (5.2.23) then yields a function 𝑓𝜀 ∈ 𝐶
∞(ℝ𝑑) such that  

     ‖𝑓 − 𝑓𝜀‖𝐿𝑞(𝑄) ≤ 𝜀                                          (143) 

and, moreover, 

var𝑝
𝑘(𝑓𝜀 ; 𝑄; 𝐿𝑞)

 
≤ |𝑓|𝑉𝑝𝑞𝑘 .                                         (144) 

  Since Proposition (5.2.20) is homothety–invariant, it remains true for 𝑄 substituted for 

𝑄𝑑. Hence, given 𝑁 ∈ ℕ  there exist a cover e ∆̃𝑁⊂ 𝒟(𝑄) of 𝑄 and a piecewise 

polynomiale 𝑔𝑁 ∈  𝒫𝑘−1(∆̃𝑁) such that  

‖𝑓𝜀 − 𝑔𝑁‖𝐿𝑞(𝑄) ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄ var𝑝

𝑘(𝑓; 𝑄; 𝐿𝑞)
 
                      (145) 

and, moreover,  

  card ∆̃𝑁≤ 𝑐(𝑑)𝑁.                                                          (146) 
Now let ℎ be a homothety mapping 𝑄onto 𝑄𝑑, i.e., 
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ℎ(𝑥) ≔  
𝑥 − 𝛿𝑒

1 − 2𝛿
, 𝑥 ∈ ℝ𝑑 , 

where 𝑒 ∶=  (1, . . . ,1).  
Then ∆𝑁≔  ℎ(∆̃𝑁)  ⊂ 𝒟(≔  𝒟(𝑄𝑑)) is a cover of 𝑄𝑑 satisfying  

 card ∆𝑁= card ∆̃𝑁≤  𝑐(𝑑)𝑁;                                       (147) 
moreover, 𝑔𝑁 ≔ 𝑔𝑁 ∘ ℎ

−1 is a piecewise polynomial from 𝒫𝑘−1(∆𝑁). 
  We will show that for 𝑓 ∈ 𝑉𝑝𝑞

𝑘  with 𝑞 < ∞ and for 𝑓 ∈ 𝑉𝑝∞
𝑘 ⋂𝐶(ℝ𝑑) 

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘 ;                                        (148)   

this clearly implies Theorem (5.2.23)(𝑎) for 𝑁 ≥  𝑐(𝑑), see (147).  

Let ℎ∗𝑔 ∶=  𝑔 ∘ ℎ−1, 𝑔 ∈ 𝐿𝑞(𝑄
𝑑). Then ℎ∗ ∶  𝐿𝑞(𝑄

𝑑) → 𝐿𝑞(𝑄) and ‖ℎ∗‖ = (1 − 2𝛿)𝑑 𝑞⁄ .  

Further, we write  

‖𝑓 − 𝑔𝑁‖𝑞 ≤  ‖(𝑓 ∘ ℎ − 𝑓𝜀) ∘ ℎ
−1‖𝑞 + ‖(𝑓𝜀 − 𝑔𝑁) ∘ ℎ

−1‖𝑞

≤ (1 − 2𝛿)𝑑 𝑞⁄ (‖𝑓 − 𝑓𝜀‖𝐿𝑞(𝑄) + ‖𝑓 − 𝑓 ∘ ℎ‖𝐿𝑞(𝑄) + ‖𝑓𝜀 − 𝑔𝑁‖𝐿𝑞(𝑄)). 

By (145) and (144) the third term in the parentheses is bounded by 𝑐(𝑘, 𝑑)𝑁−𝑠 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘  

while the first tends to 0 as 𝜀 →  0, see (143), and the second does as 𝛿 →  0 for 𝑞 < ∞, 
and also for 𝑞 =  ∞, if 𝑓 is uniformly continuous on 𝑄.  

  This proves (148) and +Theorem (5.2.23)(𝑎) for 𝑁 ≥  𝑐(𝑑).  
  To obtain the result for 1 ≤  𝑁 <  𝑐(𝑑) we simply set ∆𝑁≔ {𝑄𝑑}and 𝑔𝑁 ≔ 𝑚𝑄𝑑.Then  

‖𝑓 − 𝑔𝑁‖𝑞 = 𝐸𝑘(𝑓; 𝑄
𝑑; 𝐿𝑞) < 𝑐(𝑑)

𝑠 𝑑⁄ 𝑁−𝑠 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘  

and, moreover, card ∆𝑁= 1 ≤ 𝑁.  

This gives Theorem (5.2.22)(𝑎) for all 𝑁 ≥  1.  

(b). We establish the analog of Theorem (5.2.22)(𝑎) with a partition of 𝑄𝑑 into d-rings of 

cardinality at most 𝑐(𝑑)𝑁.  

  To this end we write the piecewise polynomial 𝑔𝑁 of Theorem (5.2.22)(𝑎), see (123), in 

the form  

𝑔𝑁 ≔ 𝑚𝑄𝑑 + ∑ 𝑃𝑄 ∙ 1𝑄
𝑄∈∆𝑁

                                     (149)   

where 𝑃𝑄 ∈ 𝒫𝑘−1 and  

∆𝑁≔ ⋃ ({𝐻𝐵, 𝑇𝐵}⋃𝒟1(𝐵
−)

 

)

𝐵∈ℬ𝑁

,  

see (118).  
  First, we assume that ∆𝑁 covers 𝑄𝑑. If ∆𝑁 is not a partition (otherwise, the result is 

clear), it contains at least one tower  

𝑇 ∶=  {𝑄1
⊂
≠
 . . .
⊂
≠
 𝑄𝑛} ⊂  ∆𝑁.  

This means that for every 0 ≤ 𝑖 ≤ 𝑛 there is no 𝑄 ∈ ∆𝑁 such that 𝑄𝑖
⊂
≠
𝑄
⊂
≠
𝑄𝑖+1; here 𝑄0 ≔

 ∅, 𝑄𝑛+1 ≔ 𝑄
𝑑; hence, the bottom 𝑄1 ≠  ∅and the top 𝑄𝑛 are, respectively, minimal and 

maximal cubes of 𝑇 closest to 𝑄𝑑.  

  According to this definition (∆𝑁\𝑇) ∪ {𝑄𝑛} still covers 𝑄𝑑. Moreover, the tops of 

different towers do not intersect.  

  These, in particular, imply that if 𝑇𝑗, 1 ≤ 𝑗 ≤ 𝑚, are all towers of ∆𝑁 and 𝑄(𝑇𝑗) are their 

tops, then  
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(∆𝑁\⋃𝑇𝑗

𝑚

𝑗=1

)⋃ (⋃𝑄(𝑇𝑗)

𝑚

𝑗=1

) 

is a partition of 𝑄𝑑. Hence, it suffices to subdivide each 𝑄(𝑇𝑗) into a set of 𝑑-rings whose 

cardinality equals card 𝑇𝑗. We do this for 𝑚 = 1 and then repeat the procedure for the 

remaining towers.  

  Now let 𝑇 ∶= {𝑄1
⊂
≠
…
⊂
≠
𝑄𝑛} be the single tower of ∆𝑁. Setting 

𝑅𝑖 ≔ 𝑄𝑖\𝑄𝑖−1,   1 ≤ 𝑖 ≤ 𝑛,  
where 𝑅1 = 𝑄1 as 𝑄0 ∶=  ∅, we obtain the partition ℛ𝑛 ∶=  {𝑅𝑖}1≤𝑖≤𝑛 of 𝑄𝑛 ∶=  𝑄(𝑇) into 

𝑑-rings.  

  Further, we define the family of polynomials {𝑃𝑅𝑖} ⊂ 𝒫𝑘−1 given by𝑃𝑅𝑖 ≔ (∑ 𝑃𝑄𝑗
𝑛
𝑗=𝑖 ) ∙

1𝑅𝑗 , 1 ≤ 𝑖 ≤ 𝑛. These definitions imply the identity 

∑𝑃𝑄𝑖

𝑛

𝑖=1

∙ 1𝑄𝑖 = ∑ 𝑃𝑅

 

𝑅∈ℛ𝑛

∙ 1𝑅.                                          (150) 

Moreover, the 𝑇 is single in ∆𝑁, hence, ℛ𝑛⋃( ∆𝑁\𝑇) is a partition of 𝑄𝑑 into ≤  𝑛 + (𝑁 −
𝑛) = 𝑁 𝑑-rings while the piecewise polynomial  

𝑔𝑁 ≔ 𝑚𝑄𝑑 + ∑ 𝑃𝑅

 

𝑅∈ℛ𝑛

∙ 1𝑅 + ∑ 𝑃𝑄

 

𝑄∈∆𝑁\𝑇

∙ 1𝑄  

belongs to  𝒫𝑘−1(ℛ𝑛⋃( ∆𝑁\𝑇)) and equals 𝑔𝑁 by (150) and (149).  

  This gives the result for ∆𝑁 being a cover of 𝑄𝑑.  

  Now suppose that ∆𝑁 is not a cover of 𝑄𝑑. Then 𝒟1(𝑄
𝑑)⋂𝐺𝑁

𝑐 ≠  ∅, sinceotherwise 

𝒟1(𝑄
𝑑) ⊂  𝐺𝑁, i.e., every son of 𝑄𝑑 is the head of a basic path. By thedefinition of ∆𝑁, see 

(118), this implies that 𝒟1(𝑄
𝑑) ⊂  ∆𝑁, i.e., ∆𝑁 is a cover of 𝑄𝑑, a contradiction. 

   Further, the set of heads 𝒟1(𝑄
𝑑)⋂𝐺𝑁

 is contained in ∆𝑁⊂  𝒟 \{𝑄
𝑑}, and, moreover, it is 

nonempty as for otherwise ∆𝑁= {𝑄
𝑑}.  

  Hence, the set 

∆̃𝑁≔ ∆𝑁⋃(𝒟1(𝑄
𝑑)⋂𝐺𝑁

𝑐 ) 

is a cover of 𝑄𝑑 and its cardinality is bounded by  

𝑁 + card 𝒟1(𝑄
𝑑) − 1 = 𝑁 + 2𝑑 − 1 ≤ 2𝑑𝑁 

  To complete the proof it suffices to modify the 𝑔𝑁 to obtain e  𝑔𝑁 ∈

𝒫𝑘−1 (∆𝑁⋃( 𝒟1(𝑄
𝑑)⋂𝐺𝑁

𝑐 )) such that  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑠 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘 .                                          (151)  

We define 𝑔𝑁 by  

𝑔𝑁 ≔ 𝑔𝑁 + ∑ (𝑚𝑄 −𝑚𝑄𝑑) ∙ 1𝑄
𝑄∈𝒟1(𝑄

𝑑)⋂𝐺𝑁
𝑐

 

and then prove (151).  
  Substituting here 𝑔𝑁 by the right–hand side of (149) and using the notations  

𝑆 ≔  ⋃ 𝑄

𝑄∈∆𝑁

, ∆̃ ≔ 𝒟1(𝑄
𝑑)⋂𝐺𝑁

𝑐
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we have 

𝑔𝑁 ≔ 𝑔𝑁 ∙ 1𝑆 + (∑𝑚𝑄 ∙ 1𝑄
𝑄∈∆̃

) ∙ 1𝑄𝑑\𝑆. 

This, in turn, implies  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ ‖𝑓 − 𝑔𝑁‖𝑞 + ‖∑(𝑓 − 𝑚𝑄) ∙ 1𝑄
𝑄∈∆̃

‖

𝑞

. 

The first summand is clearly bounded by the right–hand side of (151). 
Moreover, the second one equals  

(∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)
𝑞

𝑄∈∆̃

)

1 𝑞⁄

≤ {∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)
𝑝

𝑄∈∆̃

}

1 𝑝⁄

≤ {∑var𝑝
𝑘(𝑓; 𝑄; 𝐿𝑞)

𝑝

𝑄∈∆̃

}

1 𝑝⁄

=: {∑𝑊(𝑄)

𝑄∈∆̃

}

1 𝑝⁄

. 

Since ∆̃⊂ 𝐺𝑁
𝑐 , every 𝑊(𝑄) < 𝑁−1.  

Theorem (5.2.23)[142]: (𝑎) Given 𝑓 ∈ 𝑊𝑝
𝑘([0,1)𝑑), 𝑘 ∈ ℕ and 1 ≤  𝑝 < 𝑞∗  < ∞ such 

that  
𝑘

𝑑
=  
1

𝑝
−
1

𝑞∗
 , 𝑑 ≥  2,  

there exist a cover ∆𝑁 of [0,1)𝑑 by at most 𝑁 dyadic subcubes and a family of 

polynomials {𝑃𝑄}𝑄∈∆𝑁 ⊂  𝒫𝐾−1 (of degree 𝑘 − 1) such that 

‖𝑓 − ∑ 𝑃𝑄. 1𝑄
𝑄∈∆𝑁

‖

𝑞∗

≤ 𝑐(𝑘, 𝑑)𝑁−𝑘 𝑑⁄ sup
|𝛼|=𝑘

‖𝐷𝛼𝑓‖𝑝 .                      (152) 

(𝑏) For 𝑝 ∶= 1, hence, 𝑞∗ =
𝑑

𝑑−𝑘
 the previous holds for 𝑓 ∈ 𝐿1 , whose derivatives of order 

𝑘 are bounded Radon measures. 

   The associated seminorm of the latter function space denoted by 𝐵𝑉𝑘([0,1)𝑑) is given 

by  

|𝑓|𝐵𝑉𝑘 ≔ sup
|𝛼|=𝑘

var
[0,1)𝑑

(𝐷𝛼𝑓).                                    (153) 

Proof.  We obtain this result from Theorem (5.2.22) with 𝑠(𝑉𝑝𝑞
𝑘 ) = 𝑘 and 𝑞 < ∞. It 

asserts in this case that under the assumptions  

 𝑑 ≥ 2, 1 ≤  𝑝 < 𝑞 < ∞  and  
𝑘

𝑑
=
1

𝑝
−
1

𝑞
                   (154) 

there exist a cover ∆𝑁⊂ 𝒟 of 𝑄𝑑 of at most 𝑁 cubes and 𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁) such that  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝑘 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘 .                                          (155)  

It remains to replace here |𝑓|𝑉𝑝𝑞𝑘  by the Sobolev seminorm |𝑓|𝑊𝑝𝑘(𝑄𝑑) if 𝑝 > 1 and by the 

𝐵𝑉𝑘(𝑄𝑑) seminorm if 𝑝 = 1. This substitution is justified by the two–sided inequality 

 |𝑓|𝑉𝑝𝑞𝑘 ≈ {
|𝑓|𝑊𝑝𝑘    if  𝑝 >  1,

|𝑓|𝐵𝑉 𝑘  if  𝑝 =  1,
                                      (156)  
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where constants are independent of 𝑓, see Theorems 4 and 12 from [149]. The proof is 

complete.  

Theorem (5.2.24)[142]: Let 𝑓 ∈  �̇�𝑝
𝜆 and 𝑑, 𝑝, 𝑞, 𝜆 be such that  

𝑑 ≥  2,1 ≤  𝑝 < 𝑞 < ∞   and   
𝜆

𝑑
=
1

𝑝
−
1

𝑞
 .  

Given 𝑁 ∈ ℕ there exist a cover ∆𝑁⊂ 𝒟 of 𝑄𝑑 by at most 𝑁 cubes and 𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁) 
such that  

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝜆 𝑑⁄ |𝑓|𝐵𝑝𝜆 . 

 

   The second result concerns approximation in the uniform norm (𝑞 = ∞).  
The named object is a set-function defined by (70) with 𝑄𝑑 substituted for a 

measurable set 𝑆 ⊂ ℝ𝑑 of nonempty interior.  

In fact, we replace 𝑜𝑠𝑐𝑝
𝑘 by local best approximation, a set-function given for 𝑓 ∈

𝐿𝑞
𝑙𝑜𝑐(ℝ𝑑) and 𝑆 ⊂ ℝ𝑑by  

𝐸𝑘(𝑓; 𝑆; 𝐿𝑞) ≔  inf
𝑚∈𝒫𝑘−1

 
‖𝑓 −𝑚‖𝐿𝑞(𝑆). 

Proof. We should prove the analog of the previous result for the homogeneous Besov 

�̇�𝑝
𝜆 (𝑄), 𝜆 >  0, 𝑄 ⊂ ℝ𝑑 , whose associated seminorm is given by 

|𝑓|𝐵𝑝𝜆 (𝑄) ≔ { ∫ (
𝜔𝑘 (𝑓; 𝑡; 𝐿𝑝(𝑄))

𝑡𝜆
)

𝜆

𝑑𝑡

𝑡

|𝑄|1 𝑑⁄

0

}

1 𝑝⁄

                    (157) 

where 𝑘 =  𝑘(𝜆) ∶= min{𝑛 ∈ ℕ; 𝑛 > 𝜆}. 
  We derive this from Theorem (5.2.22) with 𝑠(𝑉𝑝𝑞

𝑘 ) = 𝜆, 𝑘 = 𝑘(𝜆) and 𝑞 < ∞. Hence,in 

this case, 

   1 ≤  𝑝 < 𝑞 < ∞,   
𝜆

𝑑
=
1

𝑝
−
1

𝑞
 ,                                      (158) 

and Theorem (5.2.22) gives under these assumptions the inequality 

‖𝑓 − 𝑔𝑁‖𝑞 ≤ 𝑐(𝑘, 𝑑)𝑁
−𝜆 𝑑⁄ |𝑓|𝑉𝑝𝑞𝑘 .                                          (159) 

with the corresponding 𝑔𝑁 ∈ 𝒫𝑘(𝜆)−1(∆𝑁) and ∆𝑁. 

  It remains to replace here |𝑓|𝑉𝑝𝑞𝑘  by |𝑓|𝐵𝑝𝜆 (𝑄𝑑). 

  To this end we use the classical embedding theorem that under the assumptions 

(158) gives the inequality 

𝐸𝑘(𝑓; 𝑄; 𝐿𝑞) ≤  𝑐(𝑑, 𝜆, 𝑞)|𝑓|𝐵𝑝𝜆  (𝑄)                                      (160)  

see Remark (5.2.26) below for details. 

  Now let ∆∶= {𝑄} be a disjoint family of cubes from 𝑄𝑑. Then (160) implies 

(∑𝐸𝑘(𝑓; 𝑄; 𝐿𝑞)
𝑝

𝑄∈∆

)

1 𝑝⁄

≤ 𝑐(𝑑, 𝜆, 𝑞) (∑(|𝑓|𝐵𝑝𝜆 (𝑄))
𝑝

𝑄∈∆

)

1 𝑝⁄

 

Due to Lemma 2 from [27] the sum in the right–hand side is bounded by 𝑐(𝑑, 𝑞)|𝑓|𝐵𝑝𝜆 (𝑄𝑑). 

Taking supremum over ∆ we then obtain the required inequality 

|𝑓|𝑉𝑝𝑞𝑘  ≤ 𝑐(𝑘, 𝜆, 𝑞)|𝑓|𝐵𝑝𝜆 (𝑄𝑑)                                         (161)  

and prove Theorem (5.2.24). 
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Theorem (5.2.25)[142]:  Let 𝑓 ∈ �̇�𝑝
𝜆1  and  

𝑑 ≥  2,1 ≤  𝑝 < ∞   and   
𝜆

𝑑
=
1

𝑝
 .  

Given 𝑁 ∈ ℕ there exist ∆𝑁⊂ 𝒟 of satisfying the condition of Theorem (5.2.24) and 

𝑔𝑁 ∈ 𝒫𝑘−1(∆𝑁) such that  

‖𝑓 − 𝑔𝑁‖∞ ≤ 𝑐(𝜆, 𝑑)𝑁
−𝜆 𝑑⁄ |𝑓|

𝐵𝑝
𝜆1 . 

Proof. Now we deal with the homogeneous space �̇�𝑝
𝜆1(𝑄) 

whose associated seminorm is given by 

|𝑓|𝐵𝑝𝜆1 (𝑄) ≔ ∫
𝜔𝑘 (𝑓; 𝑡; 𝐿𝑝(𝑄))

𝑡𝜆+1
𝑑𝑡

|𝑄|1 𝑑⁄

0

                                    (162) 

where 𝑘 = 𝑘(𝜆). 
   We prove, under the conditions 

   1 ≤  𝑝 < 𝑞 = ∞, 𝑑 ≥ 2  and    
𝜆

𝑑
=
1

𝑝
 ,                   (163) 

existence of the corresponding ∆𝑁 and 𝑔𝑁 ∈ 𝒫𝑘(∆𝑁) such that the next inequality is true: 

‖𝑓 − 𝑔𝑁‖∞ ≤ 𝑐(𝑑, 𝜆, 𝑝)𝑁
−𝜆 𝑑⁄ |𝑓|𝐵𝑝𝜆1(𝑄𝑑);                                           (164)   

 

here 𝑘 = 𝑘(𝜆). 

  Due to (163) 𝜆 =
𝑑

𝑝
≤ 𝑑 and therefore 𝑘(𝜆)  ≤ 𝑑 + 1. Since norms ‖𝑓‖𝐵𝑝𝜆1(𝑄) ≔

‖𝑓‖𝐿𝑝(𝑄) + |𝑓|𝐵𝑝𝜆1(𝑄) with different  𝑘 ≥ 𝑘(𝜆) are equivalent, it suffices to prove (164) for 

𝑘 ∶=  𝑑 + 1 instead of 𝑘(𝜆). 

  We derive (164) from Theorem (5.2.22)(𝑎) with 𝑠(𝑉𝑝𝑞
𝑘 ) = 𝜆 and 𝑞 = ∞. This requires 

the embedding 

 �̇�𝑝
𝜆1(𝑄𝑑) ⊂  𝑉𝑝∞

𝑘 (𝑄𝑑)⋂𝐶(ℝ𝑑),                                      (165) 

 

because Theorem (5.2.22) with 𝑞 = ∞ holds only for 𝑓 ∈ 𝑉𝑝∞
𝑘 ⋂𝐶(ℝ𝑑).But 𝐶(ℝ𝑑) 

in(165) can be removed as condition (163) implies that 𝐵𝑝
𝜆1(𝑄𝑑) ⊂ 𝐶(ℝ𝑑)|𝑄𝑑 , see,e.g., 

[32]. By a reason explained later we begin with the case 

 �̇�𝑝
𝜆1(ℝ𝑑) ⊂  𝑉𝑝∞

𝑘 (ℝ𝑑),    𝑘 = 𝑑 +  1, 𝜆 =
𝑑

𝑝
.                        (166) 

This will be proved for 𝑝 = 1 and ∞ while the general case will be then derived from 

those by the method of real interpolation.  

  If 𝑝 = 1, then (163) implies 𝜆 = 𝑑 and 𝑘(𝜆) = 𝑑 + 1; moreover, by definition �̇�1
𝜆1 =

�̇�1
𝜆. In this case (160) is still true, i.e., we have  

𝐸𝑑+1(𝑓; 𝑄; 𝐿∞) ≤ 𝑐(𝑘, 𝑑)|𝑓|𝐵1𝑑(𝑄),                    (167) 

see Remark (5.2.26) below.  

  Using the argument used in the proof of (161) we obtain from (167) the required 

inequality 

|𝑓|𝑉1∞𝑑+1(ℝ𝑑) ≤ 𝑐(𝑑)
|𝑓|𝐵1𝑑(ℝ𝑑) 

This proves (166) for 𝑝 = 1.  
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  Now let 𝑝 =  ∞, hence, 𝜆 =
𝑑

𝑝
=  0. The arising space �̇�∞

01(ℝ𝑑) is defined by the 

seminorm 

|𝑓|𝐵∞01(ℝ𝑑) ≔∑‖𝑓 ∗ 𝜑𝑗‖𝐿∞(ℝ𝑑)
𝑗∈ℤ

 

where {𝜑𝑗} is a sequence of test functions, satisfying, in particular, the condition  

𝑓 =∑𝑓 ∗ 𝜑𝑗
𝑗

 

with convergence in the distributional sense, see, e.g., [32].  

  This implies 

|𝑓|𝑉∞∞𝑑+1(ℝ𝑑) ≔ sup
𝑄⊂ℝ𝑑

𝐸𝑑(𝑓; 𝑄; 𝐿∞) ≤ ‖𝑓‖𝐿∞(ℝ𝑑) ≤∑‖𝑓 ∗ 𝜑𝑗‖𝐿∞(ℝ𝑑)
𝑗

= |𝑓|𝐵∞01(ℝ𝑑) 

  Hence, we prove (166) for 𝑝 = ∞ as well.  

  Interpolating the embeddings obtained we then have 

(�̇�∞
01, �̇�1

𝑑1)𝜃𝑝 ⊂ (𝑉∞∞
𝑑+1, 𝑉1∞

𝑑+1)
𝜃𝑝
;                                         (168) 

hereafter ℝ𝑑 is omitted for brevity.  

  Taking 𝜃 ∶=  
𝜆

𝑑
=
1

𝑝
 we obtain for the left–hand side the embedding 

 �̇�𝑝
𝜆1 ⊂  (�̇�∞

01, �̇�1
𝑑1)

𝜃𝑝
                                                            (169) 

see [155].  

  Now we show that the right–hand side is contained in 𝑉𝑝∞
𝑑+1(ℝ𝑑) with 𝑝 ≔

𝜆

𝑑
. 

  Let ℰ ∶  𝐿∞(ℝ
𝑑)  → 𝑙∞(∆) be a map given by 

 ℰ: 𝑓 ↦ (𝐸𝑑(𝑓; 𝑄; 𝐿∞))𝑄∈∆;  

here ∆ is a disjoint family of cubes 𝑄 ⊂ ℝ𝑑.  

  By definition 

‖ℰ(𝑓)‖𝑙𝑝(∆) ≔ (∑𝐸𝑑(𝑓; 𝑄; 𝐿∞)
𝑝

𝑄∈∆

)

1 𝑝⁄

≤ |𝑓|𝑉𝑝∞𝑑+1(ℝ𝑑), 

i.e., ℰ maps 𝑉𝑝∞
𝑑+1(ℝ𝑑)into 𝑙𝑝(∆) and ‖ℰ‖ ≤ 1, 1 ≤ 𝑝 ≤ ∞.  

  Interpolating this sublinear operator by the real method we obtain  

‖ℰ(𝑓)‖(𝑙∞(∆),𝑙1(∆))𝜃𝑝
≤ |𝑓|(𝑉∞∞𝑑+1,𝑉1∞𝑑+1)𝜃𝑝

, 

see, e.g., [146] for validity of the interpolation result for sublinear operators. Moreover, 

(𝑙∞(∆), 𝑙1(∆))𝜃𝑝with 𝜃 =
1

𝑝
  equals 𝑙𝑝(∆), see, e.g., [32]. Together with the previous this 

implies  

(∑𝐸𝑑(𝑓; 𝑄; 𝐿∞)
𝑝

𝑄∈∆

)

1 𝑝⁄

≤ |𝑓|(𝑉∞∞𝑑+1,𝑉1∞𝑑+1)𝜃𝑝
 

where =
1

𝑝
=
𝜆

𝑑
 .  

  Taking here supremum over all ∆ we obtain the embedding 

(𝑉∞∞
𝑑+1, 𝑉1∞

𝑑+1)
𝜃𝑝
⊂ 𝑉𝑝∞

𝑑+1 , 

 implying the required embedding (166).  
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  To derive from (166) the similar embedding for 𝑄𝑑 we use a bounded linear extension 

operator 

 𝐸𝑥𝑡 ∶  �̇�𝑝
𝜆1(𝑄𝑑) → �̇�𝑝

𝜆1 (ℝ𝑑),  

with ‖𝐸𝑥𝑡‖ ≤ 𝑐(𝜆, 𝑑), see, e.g., [143], and the restriction operator  

𝑅𝑒𝑠 ∶  𝑉𝑝∞
𝑑+1(ℝ𝑑)  →  𝑉𝑝∞

𝑑+1 (𝑄𝑑).  

  Denoting the embedding operator in (166) by 𝑈 and composing it with the now 

introduced ones we obtain the operator 𝑈𝑄𝑑 ∶=  𝐸𝑥𝑡 𝜊 𝑈 𝜊 𝑅𝑒𝑠 that embeds �̇�𝑝
𝜆1(𝑄𝑑) into 

𝑉𝑝∞
𝑑+1 (𝑄𝑑)with the embedding constant ‖𝐸𝑥𝑡‖ ≤ 𝑐(𝑑, 𝜆). 

  This proves the required inequality (165) and, therefore, Theorem (5.2.25).  

Remark (5.2.26)[142]: We prove inequalities (160) and (167).  
  Let 𝑓 ∈ 𝐿𝑝(𝑄), 1 ≤  𝑝 < 𝑞 ≤ ∞, and 𝑚𝑄  ∈ 𝒫𝑘−1 be the best approximation of 𝑓 

in 𝐿𝑝(𝑄). Setting for brevity 

𝜔(𝑡): =  𝜔𝑘 (𝑓; 𝑡; 𝐿𝑝(𝑄)) , 𝑡 >  0,      

we estimate the nonincreasing rearrangement of 𝑓 −𝑚𝑄 as follows 

(𝑓 − 𝑚𝑄)
∗
(𝑡) ≤ 𝑐(𝑘, 𝑑) ∫

𝜔(𝑢1 𝑑⁄ )

𝑢1+1 𝑝⁄
𝑑𝑢

|𝑄|

𝑡 2⁄

,    𝑡 ≤ |𝑄|,                      (170) 

see [27].  

Taking𝐿𝑞–norm and applying the Hardy inequality we have 

‖𝑓 − 𝑚𝑄‖𝐿𝑞(𝑄)
= ‖(𝑓 −𝑚𝑄)

∗
‖
𝐿𝑞(0,|𝑄|)

≤ 𝑐(𝑘, 𝑑)‖ℋ1 𝑞⁄ ‖(∫ (
𝜔(𝑢1 𝑑⁄ )

𝑢1 𝑝⁄ −1 𝑞⁄
)

𝑞

𝑑𝑢

|𝑄|

0

)

1 𝑞⁄

                                    (171) 

where ℋ𝜇 , 𝜇 >  0,  is the Hardy operator given by 

ℋ𝜇𝑔(𝑡) ≔ 𝑡𝜇∫
𝑔(𝑢)

𝑢𝜇
𝑑𝑢

𝑢

|𝑄|

𝑡

. 

Since  ‖ℋ𝜇‖ < ∞ for µ >  0, inequality (171) is true for 1/𝑞 > 0, i.e., for 𝑞 <  ∞.  

  Since 
1

𝑝
−
1

𝑞
=
𝜆

𝑑
, the integral in (171) is bounded by 

𝑑1 𝑞⁄ ( ∫ (
𝜔(𝑡)

𝑡𝜆
)

𝑞
𝑑𝑡

𝑡

|𝑄|1 𝑑⁄

0

)

1 𝑞⁄

≤ 𝑐(𝑘, 𝜆)𝑑1 𝑞⁄ ( ∫ (
𝜔(𝑡)

𝑡
)

𝑝
𝑑𝑡

𝑡

|𝑄|1 𝑑⁄

0

)

1 𝑝⁄

= 𝑐(𝑘, 𝑑, 𝜆)|𝑓|𝐵𝑝𝜆(𝑄). 

Hence, for 𝑞 < ∞ 

‖𝑓 − 𝑚𝑄‖𝐿𝑞(𝑄)
≤ 𝑐(𝑘, 𝑑, 𝜆)|𝑓|𝐵𝑝𝜆(𝑄) 

which implies (160) as the left–hand side is clearly bigger than 𝐸𝑘(𝑓; 𝑄; 𝐿𝑞). 

   For 𝑞 = ∞ we pass in (170) to the limit as 𝑡 → 0+  to obtain 

‖𝑓 −𝑚𝑄‖𝐿∞(𝑄)
= lim
𝑡→0
(𝑓 −𝑚𝑄)

∗
(𝑡) ≤ 𝑐(𝑘, 𝑑, 𝜆) ∫

𝜔(𝑢1 𝑑⁄ )

𝑢1 𝑝⁄
𝑑𝑢

𝑢

|𝑄|

0

= 𝑑 ∙ 𝑐(𝑘, 𝑑)|𝑓|𝐵𝑝𝜆1(𝑄) 

Hence, (167) follows. 
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First, let 𝑄 be a dyadic subcube of 𝑄∗ such that 

     dist(𝑄, ℝ𝑑  \𝑄∗)  >  0.                                       (172) 
The general result will be reduced to this case. 
Theorem (5.2.27). Let (172) hold. There exists a cover 𝒦 of 𝑄∗\𝑄 by cubes 6 such that 

for every overlapping 7 pair {𝒦1, 𝒦2} ⊂  𝒦  

 |𝒦1⋂𝒦2| ≥
1

2
min
𝑖=1,2

|𝒦𝑖|                                         (173) 

and, moreover,  

 card 𝒦 =  4(2𝑑 − 1).                                        (174) 
Proof. Without loss of generality we assume that 𝑄∗ = 𝑄𝑑 ≔ [0,1)𝑑. By (172) the 

dyadic cube 𝑄 is contained in one of sons of 𝑄𝑑, say, in [1/2𝑒, 𝑒) ∶= ∏ [1 2⁄ , 1)𝑑
𝑖=1 , 𝑒 ∶=

 (1,1, . . . ,1). Denoting 𝑄 ∶= ∏ [𝑎𝑖 , 𝑏𝑖)
𝑑
𝑖=1  we, in particular, have 

  0 <  1 − 𝑎𝑖  ≤ 1 2⁄ ,   1 ≤ 𝑖 ≤ 𝑑.                                        (175) 
  Now let 𝜋 denote a partition of 𝑄𝑑 by hyperplanes passing through the vertex 𝑎 ∈  𝑄 and 

parallel to the coordinate hyperplanes. It consists of 2𝑑 parallelotopes every of which 

consists a single vertex 𝜀 ∈ {0,1}𝑑 of 𝑄𝑑. We enumerate elements of 𝜋 by these vertices, 

so that 𝜋 ∶=  {Π𝜀}𝜀 ∈{0,1}𝑑  and 𝜀 is contained in the closure of 𝑄𝑑⋂Π𝜀. Then Π𝜀 and Π𝜀′  

have a (unique) common face whenever 𝜀, 𝜀′ differ by a single coordinate. Moreover, the 

edge [𝜀, 𝜀′) of 𝑄𝑑 is orthogonal to this face and intersects Π𝜀 and Π𝜀′ .  
  Let 𝐺(𝜋) denote a graph with the vertex set 𝜋 =  {Π𝜀}and the edges consisting of pairs 

{Π𝜀 , Π𝜀′  } with a common face. The bijection 𝜑 ∶  Π𝜀⟷  𝜀 is an isomorphism of 𝐺(𝜋) 
onto the hypercube graph Γ𝑑 whose vertices and edges are those of the cube 𝑄𝑑.  

  In fact, 𝜀 = 𝜑(Π𝜀) and 𝜀′ = 𝜑(Π𝜀′) are joined by an edge in Γ𝑑 whenever ε differs from 

𝜀′ by a single coordinate, i.e., whenever Π𝜀 and Π𝜀′  have a common face and therefore are 

joined by an edge in 𝐺(𝜋).  
  Further, the graph Γ𝑑 has a Hamiltonian cycle, i.e., a cycle that visits each vertex of Γ𝑑 

exactly once, see, e.g., [153]. Therefore, 𝐺(𝜋) also has such a cycle denoted by 𝒞(𝜋). 

  Now we apply this construction to the parallelotope Π𝑒 ≔ ∏ [𝑎𝑖 , 1)
𝑑
𝑖=1   containing 𝑄 =

[𝑎, 𝑏) ∶= ∏ [𝑎𝑖 , 𝑏𝑖)
𝑑
𝑖=1  and the vertex 𝑏 substituting for that of 𝑎. This gives a partition �̂� of 

Π𝑒 into 2𝑑 parallelotopes one of which is 𝑄. Then we enumerate them by the vertex set 𝑉 

of Π𝑒 such thatb �̂� = {Π𝑣}𝑣∈𝑉 and 𝑣 belong to the closure of Π𝑣⋂ Π𝑒, e.g., Π𝑎 =  𝑄.  

  Using the partition �̂� we, as above, define the graph 𝐺(�̂�) isomorphic to Γ𝑑 and denote by 

𝒞(�̂�)the corresponding Hamiltonian cycle. Hence, Π𝑣 , Π𝑣′ are neighbours in 𝒞(�̂�) if they 

have a common face orthogonal to [𝑣, 𝑣′].  
  Now we define a new graph 𝐺 with the vertex set 

𝑉 (𝐺) ∶= (𝜋\{Π𝑒})⋃(�̂�\{Π𝑎})  

where Π𝑎 =  𝑄, and with the edge set 𝐸(𝐺) of two parts. 

  The first consists of edges from 𝐺(𝜋) and 𝐺(�̂�) such that both of their endpoints belong 

to either 𝜋\{Π𝑒}or �̂�\{Π𝑎} 
  The second part is as follows. 

  Let Π𝜀 , Π𝜀′ from 𝒞(𝜋) have common faces with Π𝑒(∈ 𝒞(�̂�)). Since Π𝑒 ∶=  [𝑎, 𝑒), the 

vertex 𝑎 ∈ 𝑄 belongs to Π𝜀 and to Π𝜀′ . Therefore there exist parallelotopes Π𝑣 and Π𝑣′ 
from �̂� each having one of faces common with that of 𝑄 and another 

containing in Π𝜀 and Π𝜀′, respectively. 
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  Then the pairs {Π𝜀 , Π𝑣}, {Π𝜀′ , Π𝑣′} from 𝑉 (𝐺) form the remaining part of edges from 

𝐸(𝐺). 
  It is now the matter of definition to check that 

𝒞 = 𝒞1⋃𝒞2 ≔ (𝒞(𝜋)\{Π𝑒})⋃(𝒞(�̂�)\{𝑄}) 

is a Hamiltonian cycle in 𝐺. 

  Now we construct the desired cover 𝒦 of 𝑄𝑑  \ 𝑄 beginning first with extension 

of each parallelotope of 𝒞𝑖, 𝑖 =  1, 2, to a cube contained in 𝑄𝑑 \ 𝑄. 

  We begin with the set 

𝒞1 ∶=  {Π𝜀;  𝜀 ∈  {0,1}
𝑑\ {𝑒}} 

containing 2𝑑 −  1 elements. 

Let Π𝜀 ≔ ∏ [𝑎𝑖
𝜀 , 𝑏𝑖

𝜀) 𝑑
𝑖=1 and 𝑙𝜀 be the maximal edgelength of Π𝜀. Since by the definition of 

Π𝜀 every edge [𝑎𝑖
𝜀 , 𝑏𝑖

𝜀) equals either 𝐴𝑖 ≔ [0, 𝑎𝑖
 )or 𝐵𝑖 ≔ [𝑎𝑖

 , 1) and |𝐴𝑖|  ≥ |𝐵𝑖|, see 

(𝐼. 4), the maximal edge of Π𝜀, say, [𝑎𝑖0
𝜀 , 𝑏𝑖0

𝜀 ), has the form 

[𝑎𝑖0
𝜀 , 𝑏𝑖0

𝜀 ) = 𝐴𝑖0 = [0, 𝑎𝑖0
 ) .                                          (176)  

Now we extend Π𝜀 to a cube replacing every edge [𝑎𝑖
𝜀 , 𝑏𝑖

𝜀) = 𝐴𝑖 by [�̂�𝑖
𝜀 , �̂�𝑖

𝜀) ≔ [0, 𝑎𝑖0
 ) 

and every edge equal to 𝐵𝑖 by [�̂�𝑖
𝜀 , �̂�𝑖

𝜀) ≔ [1 − 𝑎𝑖0
 , 1) . 

  In this way, we obtain the cube 

𝑄𝜀 ≔ ∏[�̂�𝑖
𝜀, �̂�𝑖

𝜀)

𝑑

𝑖=1

 ⊂  𝑄𝑑 

of edgelength 𝑎𝑖0  that contains Π𝜀 and, moreover, is contained in 𝑄𝑑 \ Π𝜀 . 

  In fact, the projections of 𝑄𝜀 and Π𝑒 on the 𝑥𝑖0 – axis are [�̂�𝑖
𝜀 , �̂�𝑖

𝜀) = [0, 𝑎𝑖0
 ) , see (176), 

and [𝑎𝑖0
 , 1) respectively, that do not intersect. 

  Thus, we have  

⋃𝒞1 =⋃𝑄𝜀
𝜀≠𝑒

, 𝑄𝜀 ⊃ Π𝜀 ,   𝜀 ≠ 𝑒, 

where ⋃𝒞1 ≔ ⋃{Π; Π ∈ 𝒞1}. 
 

  Further, we cover ⋃𝒞2 similarly. By definition 

 

𝒞2 = {Π𝑣 ≔ ∏[𝑎𝑖
𝑣 , 𝑏𝑖

𝑣)

𝑑

𝑖=1

; 𝑣 ∈ 𝑉\{𝑎}} 

where [𝑎𝑖
𝑣, 𝑏𝑖

𝑣) equals either 𝐴𝑖: =  [𝑏𝑖 , 1) or 𝐵𝑖 ≔ [𝑎𝑖
 , 𝑏𝑖

 ). 
  Let us show that |𝐴𝑖|  ≥ |𝐵𝑖|. In fact, 𝑄 is a dyadic cube, say, 𝑄 ≔ 2−𝑛(𝛼 + 𝑄𝑑), 
𝛼 ∈ ℤ+

𝑑  , and therefore |𝐵𝑖| = 2
−𝑛 while |𝐴𝑖| = 1 − 𝑏𝑖 = 2

−𝑛(2𝑛 − 𝛼𝑖 − 1) ≥ 2
−𝑛 

as 𝑏𝑖 < 1. 

  Then the maximal edge of Π𝑣, say, [𝑎𝑖0
𝑣 , 𝑏𝑖0

𝑣 ) = 𝐵𝑖 has the form 

[𝑎𝑖0
𝑣 , 𝑏𝑖0

𝑣 ) = 𝐴𝑖0
 = [𝑏𝑖0

 , 1)(177). 

  Now we extend  Π𝑣 replacing every [𝑎𝑖
𝑣 , 𝑏𝑖

𝑣) = 𝐴𝑖
  by [�̂�𝑖

𝑣, �̂�𝑖
𝑣) = [1 − 𝑙𝑣, 1) and every 

[𝑎𝑖
𝑣 , 𝑏𝑖

𝑣) = 𝐵𝑖
  by [𝑏𝑖

 , 𝑏𝑖
 − 𝑙𝑣); here 𝑙𝑣 = 1 − 𝑏𝑖0

  is the maximal edgelength of  Π𝑣. 

  In this way, we obtain the cube 
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 𝑄𝑣 ∶=∏[�̂�𝑖
𝑣, �̂�𝑖

𝑣)

𝑑

𝑖=1

⊂ 𝑄𝑑 

of volume (𝑙𝑣)𝑑 that contains  Π𝑣 and, moreover, is contained in 𝑄𝑑  \ 𝑄. 

  In fact, the embedding  Π𝑣 ⊂ 𝑄𝑣  follows from the inequality 𝑎𝑖 ≥ �̂�𝑖
𝑣 ≔ 𝑏𝑖 − 𝑙

𝑣 

equivalent to 

|𝐵𝑖| = 𝑏𝑖 − 𝑎𝑖 ≤ |𝐴𝑖| ≤ 𝑙
𝑣 

Further, 𝑄𝑣⋂𝑄 =  ∅, as the projections on the 𝑥𝑖0 – axis of these cubes [𝑎𝑖0
𝑣 , 𝑏𝑖0

𝑣 ) =

[𝑏𝑖0
 , 1) and [𝑎𝑖0

 , 𝑏𝑖0
 ), respectively, do not intersect. 

  Thus, we have 

⋃𝒞2  ⊂∏𝑄𝑣
𝑣≠𝑎

 ⊂ 𝑄 \ 𝑄𝑑   and  Π𝑣 ⊂ 𝑄𝑣 . 

This gives the family ℱ ≔ {𝑄𝜀} ∪ {𝑄𝑣} of 2(2𝑑 − 1) cubes that cover the 𝑑-ring 𝑄𝑑\𝑄 

such that 𝑄𝜀, 𝑄𝑣  are uniquely defined by the corresponding Π𝜀 ⊃ 𝑄𝜀 , Π𝑣 ⊃ 𝑄𝑣   from the 

Hamiltonian cycle 𝒞. 

  Further, we enumerate the cycle 𝒞 by integers to obtain 

𝒞 =  {Π𝑖;  1 ≤ 𝑖 ≤  2 ∙ 2
𝑑 − 1} 

where Π𝑖 ≔ Π1 for 𝑖 = 2 ∙ 2𝑑  −  1, such that Π𝑖 , Π𝑖+1 are neighbours in 𝒞. Hence, they 

adjoint to some edge of 𝑄𝑑 denoted by [𝑣𝑖, 𝑣𝑖+1) such that a small shift along this edge of 

the smaller parallelotope remains in  Π𝑖⋃  Π𝑖+1 ⊂  𝑄
𝑑 \ 𝑄. 

  Now let {𝑄𝑖;  1 ≤  𝑖 ≤ 2 ∙ 2
𝑑  −  1} where 𝑄𝑖 ≔ 𝑄1 for 𝑖 = 2 ∙ 2𝑑 −  1 and the 

numeration of the family ℱ is induced by that of 𝒞. 

  Then by the definition of cubes from ℱ the following is true. 

(𝑎)⋃ 𝑄𝑖𝑖  covers  𝑄𝑑\ 𝑄; 
(𝑏) cubes  𝑄𝑖 ⊃ Π𝑖 , 𝑄𝑖+1   ⊃ Π𝑖+1  adjoint to the edge [𝑣𝑖 , 𝑣𝑖+1)and the shift along this 

edge of the smaller one, say 𝑄𝑖, by its length remains in 𝑄𝑖+1 ⊂ 𝑄
𝑑\ 𝑄. 

 

  Let then 𝑄𝑖+1 2⁄ denote the image of 𝑄𝑖 under such a shift by the one–half of 

its length. Then the cover 𝒦 ∶=  {𝑄𝑖 , 𝑄𝑖+1 2⁄ } of 𝑄𝑑  \ 𝑄 consists of 4(2𝑑 −  1) cubes 

satisfying the inequality 

|𝑄𝑗⋂𝑄𝑖+1 2⁄ | ≥  1/2min{|𝑄𝑗  |, |𝑄𝑖+1 2⁄ |} 

for 𝑗 =  𝑖, 𝑖 +  1. 
  Hence, Theorem (5.2.27) is proved for 𝑄 contained in the interior of 𝑄𝑑, see (172). 

We describe the algorithm giving as output the cover ∆𝑁 in Theorem (5.2.22). In 

what follows, we freely use terms and definitions, e.g., weight, dyadic tree 𝒟 ∶=
 𝒟(𝑄𝑑), paths etc. Proofs of some statements below will be left to the reader (all of them 

are presented in details in [24]). 
  Let 𝑊 ∶  𝐴(𝒟)  →  ℝ+ be a subadditive absolutely continuous weight normed by the 

condition 

 𝑊(𝑄𝑑) =  1.                                                          (178) 
  Then the set 

 𝐺𝑁 ∶=  {𝑄 ∈  𝒟;𝑊(𝑄)  ≥ 𝑁
−1}, 𝑁 ∈ ℕ,                                       (179) 

is a finite rooted subtree of 𝒟 with the root 𝑄𝑑. Hence, every path connecting 

𝑄 ∈ 𝐺𝑁 and 𝑄𝑑 is unique and belongs to𝐺𝑁. 
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  Further, let 𝐺𝑁
min   be the set of minimal elements of 𝐺𝑁 with respect to the set–inclusion 

order. 

  Hence, every 𝑄 ∈ 𝐺𝑁 contains properly some minimal cube and a son 𝑄′ of such a cube 

satisfies 

𝑊(𝑄′)  < 𝑁−1. 
  In particular, 𝐺𝑁

min   is disjoint and as every disjoint subset of 𝐺𝑁
  has at most 𝑁 elements. 

  Somehow enumerating 𝐺𝑁
min   , say, 

𝐺min
𝑁 ≔ {𝑄𝑖}1≤𝑖≤𝑚𝑁 

where 

𝑚𝑁: =  𝑐𝑎𝑟𝑑 𝐺𝑁
min  ≤ 𝑁,                                       (180) 

we then denote by 𝐿𝑖 a (unique) path in 𝐺𝑁 joining 𝑄𝑖 and 𝑄𝑑. 

By the definition of 𝐺𝑁
min   

𝐺𝑁 =⋃𝐿𝑖

𝑚𝑁

𝑖=1

.                                         (181)  

We divide each 𝐿𝑖 into more small paths 

𝑃𝑖 ≔ 𝐿𝑖\⋃𝐿𝑗

𝑖−1

𝑗=0

, 1 ≤ 𝑖 ≤ 𝑚𝑁 

where 𝐿0 ∶=  {𝑄
𝑑}. 

Lemma (5.2.28)[142]:  ([24]) (𝑎) Family {𝑃𝑖}1≤𝑖≤𝑚𝑁  is a partition of 𝐺𝑁
  \{𝑄𝑑}. 

(𝑏) Every Pi is of the form 

𝑃𝑖 ≔ [𝑄𝑖 , 𝑄𝑖
𝑐) ≔ [𝑄𝑖 , 𝑄𝑖

𝑐]\{𝑄𝑖
𝑐}                                    (182)  

where 𝑄𝑖
𝑐 is the tail of a path 𝐿𝑖⋂𝐿𝑗 with 𝑗 <  𝑖. 

  The set 

𝒞𝑁 ≔ {𝑄𝑑}⋃{𝑄𝑖
𝑐}1≤𝑖≤𝑚𝑁  

contains at most 𝑚𝑁 +  1 elements called contact cubes. 

  Now we refine 𝐺𝑁 subdividing each 𝑃𝑖 by contact cubes from 𝑃𝑖⋂𝒞𝑁. In this way, we 

define a set of subpaths [𝑄′, 𝑄′′) where 𝑄′ is either a minimal cube or a contact cube, and 

𝑄′′ is a contact cube. 

  Denoting the set of these subpaths by 𝒫𝑁 we obtain from (180) 
𝑐𝑎𝑟𝑑 𝒫𝑁  ≤  2𝑚𝑁 + (𝑚𝑁 + 1) =  3𝑚𝑁 +  1.                         (183)  

Finally, we divide each path 𝑃 ∈ 𝒫𝑁 in the required basic paths. To this end, we use an 

auxiliary weight defined on paths 𝑃 =  [𝑇𝑃 , 𝐻𝑃] of D by 

 �̃�(𝑃): =  𝑊(𝐻𝑃  \ 𝑇𝑃 ).                                            (184) 
Now we define for each 𝑃 ∈ 𝒫𝑁a family of vertices (cubes) {𝑄𝑖(𝑃) ∈ 𝑃; 1 ≤ 𝑖 ≤ 𝑖𝑝} using 

induction on 𝑖. 
  We begin with 𝑄1(𝑃) ∶= 𝑇𝑃  and then having 𝑄𝑖(𝑃) define 𝑄𝑖+1(𝑃) as a vertex in the 

half–open from the left path 

(𝑄𝑖(𝑃), 𝐻𝑃] ∶=  [𝑄𝑖(𝑃), 𝐻𝑃] \ {𝑄𝑖(𝑃)} 
satisfying the conditions 

�̃�([𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)]) ≥  𝑁
−1, 

�̃�([𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)))  < 𝑁
−1. 

Then we define the i-th basic path 𝐵𝑖(𝑃) by setting 
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 𝐵𝑖(𝑃): =  [𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)).                                         (185) 

The vertex 𝑄𝑖+1(𝑃) may be undetermined, if 

�̃�([𝑄𝑖(𝑃),𝐻𝑃])  < 𝑁
−1 

In this case, we complete induction setting 𝑖𝑃 ∶=  𝑖 and defining 𝐵𝑖(𝑃) to be equal to 

[𝑄𝑖(𝑃), 𝐻𝑃]. However, to preserve formula (185) for this case, we define 𝑄𝑖+1(𝑃) as the 

father of 𝐻𝑃 . Denoting it, say,  𝐻𝑃
+(∈ 𝑃) we define 𝐵𝑖(𝑃)for this case by (𝐼𝐼. 8) with 

𝑄𝑖+1(𝑃) ≔ 𝐻𝑃
+  and ∶= 𝑖𝑃 . 

  Hence, the induction has been completed with 𝑄𝑖+1(𝑃) =  𝐻𝑃
  or 𝑄𝑖+1(𝑃) =  𝐻𝑃

+   for =

𝑖𝑃 . In this way, we obtain a partition of 𝑃 by subpaths 𝐵𝑖(𝑃) ≔ [𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)), 1 ≤

𝑖 ≤ 𝑖𝑃  . Let us single out that if 𝑄𝑖+1 =  𝐻𝑃
+ , then 𝐵𝑖(𝑃) may be a singleton {𝐻𝑝}. 

  By definition these subpaths satisfy 

�̃�([𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)]) <  𝑁
−1,  

(186) 
�̃�([𝑄𝑖(𝑃𝑖), 𝑄𝑖+1(𝑃)))  ≥ 𝑁

−1 

for 1 ≤ 𝑖 ≤ 𝑖𝑃 − 𝜀𝑃  where 𝜀𝑃  ∶= 0 if 𝑄𝑖𝑃+1 = 𝐻𝑃
+ and 𝜀𝑃 ∶=  1 otherwise; in the first 

case, only the first of inequalities (186) holds. 

  Collecting all the basic paths we obtain the refinement of 𝒫𝑁 given by 

 

ℬ𝑁 ∶=  {𝐵𝑖(𝑃);  1 ≤ 𝑖 ≤ 𝑖𝑃 , 𝑃 ∈ 𝒫𝑁}.                                  (187) 
  The next result (Proposition (5.2.16)) gives the output of the algorithm. 

Proposition (5.2.29)[142]: (𝑎) ℬ𝑁 is a partition of 𝐺𝑁\ {𝑄
𝑑}. 

    (𝑏) For every 𝐵 =  [𝑇𝑃, 𝐻𝑃]  ∈ ℬ𝑁 

 𝑊(𝐻𝑃\ 𝑇𝑃) ∶= �̃�(𝐵) < 𝑁
−1.                                 (188) 

(𝑐) The following is true 

card  ℬ𝑁 ≤  3𝑁 + 1.                                                (189) 
Proof. (𝑎) ℬ𝑁 is a refinement of the partition 𝒫𝑁, hence, it is also a partition. 

   (𝑏) is given by the first inequality in (186) and the definition of 𝐵𝑖(𝑃). 
   (𝑐) Let {𝑃𝑖} be a strictly monotone sequence of subpaths in a path 𝑃, i.e.. the head of 𝑃𝑖 
is a proper subset of the tail of 𝑃𝑖+1. Then by the definition of �̃�, see 

(184),  

∑�̃�(𝑃𝑖)

𝑖

≤ 𝑊(𝐻𝑃\𝑇𝑃). 

Now let 𝐵𝑖(𝑃) ∶=  [𝑄𝑖(𝑃), 𝑄𝑖+1(𝑃)), 1 ≤  𝑖 ≤ 𝑖𝑃 , be the partition of 𝑃 ∈ 𝒫𝑁 into the 

basic paths. By the second inequality (186) 

(𝑖𝑃 − 𝜀𝑃)𝑁
−1 ≤ ∑ �̃�([𝑄𝑖 , 𝑄𝑖+1])

𝑖𝑃−𝜀𝑃

𝑖=1

.                                 (190) 

Since the sequence {[𝑄𝑖 , 𝑄𝑖+1]}1 ≤ 𝑖≤𝑖𝑃−𝜀𝑃 has multiplicity 2, it can be divided into two 

strictly monotone subsequences. Hence, the right–hand side of (190) is bounded by 

2𝑊(𝐻𝑃\𝑇𝑃). This implies 

card ℬ𝑁 = ∑ 𝑖𝑃
𝑃∈𝒫𝑁

≤ 2𝑁 ∑ 𝑊(𝐻𝑃)

𝑃∈𝒫𝑁

+ ∑ 𝜀𝑃
𝑃∈𝒫𝑁

 

Since the set {𝐻𝑃}𝑃∈𝒫𝑁  is disjoint, ∑ 𝑊(𝐻𝑃)𝑃∈𝒫𝑁
≤ 𝑊(𝑄𝑑) =  1. 

Further, 𝜀𝑃 =  1 if and only if the endpoint of 𝐵𝑖(𝑃) with 𝑖 = 𝑖𝑃  is 𝐻𝑃
+ . By the 
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definition of 𝒫𝑁 every head 𝐻𝑃 of 𝑃 ∈ 𝒫𝑁 is a contact cube. Hence, 

∑ 𝜀𝑃
𝑃∈𝒫𝑁

≤ card 𝒞𝑁 ≤ 𝑚𝑁 + 1 ≤ 𝑁 + 1, 

see (180). 

Combining this with the previous estimates we finally get 

 

card ℬ𝑁 ≤  2𝑁 +  𝑁 + 1 =  3𝑁 +  1. 
  



205 

Chapter 6 

Maximal Function Characterization for Hardy Spaces and of 𝑯𝜟𝑵
𝟏 (ℝ𝒏) and 

𝐁𝐌𝐎𝜟𝑵(ℝ
𝒏) 

 

We show the characterizations of Hardy spaces associated to self-adjoint operator, 

via atomic decomposition or the nontangential maximal functions. The proof is based on a 

modification of a technique due to A. Calderón [163]. While for the space BMO𝛥𝑁(ℝ
𝑛) 

(which contains the classical BMO(ℝ𝑛)) we show that it can be characterized in terms of 

the action of the Riesz transforms associated to the Neumann Laplacian on 𝐿∞(ℝ𝑛) 
functions and in terms of the behavior of the commutator with the Riesz transforms. The 

results obtained extend many of the fundamental results known for 𝐻1(ℝ𝑛) and 

BMO(ℝ𝑛). 

Section (6.1): Associated to Nonnegative Self-Adjoint Operators Satisfying Gaussian 

Estimates 

We development of Hardy spaces on Euclidean spaces ℝ𝑛 in the 1960s played an 

important role in modern harmonic analysis and applications in partial differential 

equations. Let us recall the definition of the Hardy spaces (see [165], [167], [74], [176], 

[177], [19], [84]). Consider the Laplace operator 𝛥 = −∑ 𝜕𝑥𝑖
2𝑛

𝑖=1  the Euclidean spaces ℝ𝑛. 

For 0 < 𝑝 < ∞, the Hardy space 𝐻𝑝(ℝ𝑛)is defined as the space of tempered distribution 

𝑓 ∈ 𝐿1(ℝ𝑛) for which the area integral function of 𝑓 satisfying  

𝑆𝑓(𝑥) ∶= (∫ ∫ |𝑡2Δ𝑒−𝑡
2Δ𝑓(𝑦)|

2 𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

|𝑦−𝑥|<𝑡

∞

0

)

1 2⁄

                                       (1) 

belongs to 𝐿𝑝(ℝ𝑛). If this is the case, define  

               ‖𝑓‖𝐻𝑝(ℝ𝑛) ≔ ‖𝑆𝑓‖𝐿𝑝(ℝ𝑛)                                                     (2) 

When 𝑝 > 1, 𝐻𝑝(ℝ𝑛) = 𝐿𝑝(ℝ𝑛). For 𝑝 ≤ 1, the space 𝐻𝑝(ℝ𝑛) involves many different 

characterizations. For example, if 𝑓 ∈ 𝐿1(ℝ𝑛), then  

𝑓 ∈ 𝐻𝑝(ℝ𝑛)
(𝑖)
⇔ sup

𝑡>0
|𝑒−𝑡

2Δ𝑓(𝑥)| ∈ 𝐿𝑝(ℝ𝑛)               

                
(𝑖𝑖)
⇔ sup

|𝑦−𝑥|<𝑡
|𝑒−𝑡

2Δ𝑓(𝑦)| ∈ 𝐿𝑝(ℝ𝑛) 

                                      
(𝑖𝑖𝑖)
⇔ 𝑓 ℎ𝑎𝑠 𝑎 (𝑝, 𝑞) 𝑎𝑡𝑜𝑚𝑖𝑐 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  

                                     𝑓 =∑𝜆𝑗𝑎𝑗

∞

𝑗=0

 𝑤𝑖𝑡ℎ ∑|𝜆𝑗|
𝑝

∞

𝑗=0

< ∞                                      (3) 

Recall that a function a supported in ball 𝐵 of ℝ𝑛 is called a (𝑝, 𝑞) −atom, 0 < 𝑝 ≤ 1 ≤

𝑞 ≤ ∞, 𝑝 < 𝑞, if ‖𝑎‖𝐿𝑞(𝐵) ≤ |𝐵|
1

𝑞
−
1

𝑝, and ∫ 𝑥𝛼𝑎(𝑥)𝑑𝑥
 

𝐵
= 0, where 𝛼 is a multi-index of 

order |𝛼|  ≤ [𝑛(
1

𝑝
− 1)], the integer part of 𝑛(

1

𝑝
− 1)(see [165], [176], [19]). 

The theory of classical Hardy spaces has been very successful and fruitful in the past 

decades. However, there are important situations in which the standard theory of Hardy 

spaces is not applicable, including certain problems in the theory of partial differential 

equation which involve generalizing the Laplacian. There is a need to consider Hardy 

spaces that are adapted to a linear operator 𝐿, similarly to the way that the standard theory 
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of Hardy spaces isadapted to the Laplacian. See [58], [160], [161], [168], [71], [169], 

[171], [172], [173], [174], [53]. 

We assume that 𝐿 is a densely-defined operator on 𝐿2(ℝ𝑛)and satisfies the 

following properties: 

 (H1) 𝐿 is a non-negative self-adjoint operator on 𝐿2(ℝ𝑛); 
(H2)The kernel of 𝑒−𝑡𝐿, denoted by 𝑝𝑡(𝑥, 𝑦), is a measurable function on ℝ𝑛 × ℝ𝑛 and 

satisfies a Gaussian upper bound, that is  

(𝐺𝐸)   |𝑝𝑡(𝑥, 𝑦)| ≤ 𝐶𝑡
−𝑛 2⁄ exp (−

|𝑥 − 𝑦|2

𝑐𝑡
) 

for all 𝑡 > 0, and 𝑥, 𝑦 ∈ ℝ𝑛, where 𝐶 and 𝑐 are positive constants. 

Given a function 𝑓 ∈ 𝐿2(ℝ𝑛), consider the following area function 𝑆𝐿𝑓associated to the 

heat semigroup generated by 𝐿 

    𝑆𝐿𝑓(𝑥) ≔ (∫ ∫ |𝑡2L𝑒−𝑡
2L𝑓(𝑦)|

2 𝑑𝑦𝑑𝑡

𝑡𝑛+1

 

|𝑦−𝑥|<𝑡

∞

0

)

1 2⁄

 , 𝑥 ∈ ℝ𝑛                      (4)   

Under the assumptions (H1) and (H2) of an operator 𝐿, it is known that the null space 

𝑁(𝐿) = {0}(see [171]) and the function 𝑆𝐿 is bounded on 𝐿𝑝(ℝ𝑛), 1 < 𝑝 < ∞ and  

               ‖𝑆𝐿𝑓‖𝐿𝑝(ℝ𝑛) ≃ ‖𝑓‖𝐿𝑝(ℝ𝑛) 

See [159], [58]. 

Definition (6.1.1)[158]: Suppose that an operator 𝐿 satisfies(H1)–(H2). Given 0 < 𝑝 ≤ 1. 

The Hardy space 𝐻𝐿,𝑠
𝑝
(ℝ𝑛) is defined as the completion of {𝑓 ∈ 𝐿2(ℝ𝑛) ∶ ‖𝑆𝐿𝑓‖𝐿𝑝(ℝ𝑛) <

∞} with norm  

‖𝑓‖𝐻𝐿,𝑠
𝑝
(ℝ𝑛) ≔ ‖𝑆𝐿𝑓‖𝐿𝑝(ℝ𝑛) 

To describe an atomic character of the Hardy spaces, let us recall the notion of a (𝑝, 𝑞,𝑀)-
atom associated to an operator 𝐿 [160], [168], [171]. 

Definition (6.1.2)[158]: Given 0 < 𝑝 ≤ 1 ≤ 𝑞 ≤ ∞, 𝑝 < 𝑞 and 𝑀 ∈ ℕ, a function 𝑎 ∈
𝐿2(ℝ𝑛)is called a (𝑝, 𝑞,𝑀) −atom associated to the operator 𝐿 if there exist a function 𝑏 ∈
𝐷(𝐿𝑀)and a ball 𝐵 ⊂ ℝ𝑛 such that 

(i) 𝑎 = 𝐿𝑀𝑏; 

(ii) 𝑠𝑢𝑝𝑝𝐿𝑘𝑏 ⊂ 𝐵, 𝑘 = 0,1, . . . , 𝑀; 

(iii) ‖(𝑟𝐵
2𝐿)𝑘𝑏‖

𝐿𝑞(ℝ𝑛)
≤ 𝑟𝐵

2𝑀|𝐵|1/𝑞−1/𝑝, 𝑘 = 0, 1, . . . , 𝑀. 

The atomic Hardy space 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛) is defined as follows.  

Definition (6.1.3)[158]: We will say that 𝑓 = ∑𝜆𝑗𝑎𝑗 is an atomic (𝑝, 𝑞,𝑀)-representation 

(of 𝑓) if {𝜆𝑗}𝑗=0
∞ ∈ ℓ𝑝, each 𝑎𝑗 is a (𝑝, 𝑞,𝑀) −atom, and the sum converges in 𝐿2(ℝ𝑛). Set  

𝐻𝐿,at,q,M
𝑝 (ℝ𝑛): = {𝑓: 𝑓 ℎ𝑎𝑠 𝑎𝑡𝑜𝑚𝑖𝑐 (𝑝, 𝑞.𝑀) − 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛} 

with the norm ‖𝑓‖𝐻𝐿,at,q,M
𝑝 (ℝ𝑛)given by  

inf {(∑|𝜆𝑗|
𝑝

∞

𝑗=0

)

1 𝑝⁄

: 𝑓 = ∑𝜆𝑗𝑎𝑗

∞

𝑗=0

𝑖𝑠 𝑎𝑛 𝑎𝑡𝑜𝑚𝑖𝑐 (𝑝, 𝑞.𝑀) − 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 } 

The space 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛)  is then defined as the completion of 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛) with respect to 

this norm. 

Obviously, 𝐻𝐿,at,q2,M
𝑝

(ℝ𝑛) ⊆ 𝐻𝐿,at,q1,M
𝑝

(ℝ𝑛) when 1 ≤ 𝑞1 ≤ 𝑞2 ≤ ∞. Under the 

assumption that an operator 𝐿 satisfies conditions(H1)–(H2), 𝑆.Hofmann, 𝐺. 𝐿𝑢, 𝐷.Mitrea, 
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𝑀.Mitrea and obtained a (1, 2,𝑀) −atomic decomposition of the Hardy space 𝐻𝐿,S
1 (ℝ𝑛) , 

and showed that for every integer 𝑀 ≥ 1, the spaces 𝐻𝐿,S
1 (ℝ𝑛) and 𝐻𝐿,at,2,M

1 (ℝ𝑛) coincide 

(see [171]). In particular,  

‖𝑓‖𝐻𝐿,S
1 (ℝ𝑛) ≈ ‖𝑓‖𝐻𝐿,at,2,M1 (ℝ𝑛) 

A proof of an equivalence between the spaces 𝐻𝐿,S
𝑝
(ℝ𝑛) and 𝐻𝐿,at,2,M

𝑝
(ℝ𝑛)for 𝑝 < 1was 

shown by Duong and Li in [168], and by Jiang and Yang in [175]. 

Given a function 𝑓 ∈ 𝐿2(ℝ𝑛), consider the non-tangential maximal function associated to 

the heat semigroup generated by the operator 𝐿,  

𝑓𝐿
∗(𝑥) ≔ sup

|𝑦−𝑥|<𝑡
|𝑒−𝑡

2𝐿𝑓(𝑦)| 

We may define the spaces 𝐻𝐿,max
𝑝

(ℝ𝑛), 0 < 𝑝 ≤ 1as the completion of {𝑓 ∈

𝐿2(ℝ𝑛) : ‖𝑓𝐿
∗‖𝐿𝑝(ℝ𝑛) < ∞}with respect to 𝐿𝑝-norm of the non-tangential maximal 

function; i.e.,  

‖𝑓‖𝐻𝐿,max
𝑝

(ℝ𝑛) ≔ ‖𝑓𝐿
∗‖𝐿𝑝(ℝ𝑛) 

It can be verified (see [171], [168]) that for all 𝑞 > 𝑝 with 1 ≤ 𝑞 ≤ ∞ and every number 

𝑀 >
𝑛

2
(
1

𝑝
− 1), any (𝑝, 𝑞, 𝑀)-atom ais in 𝐻𝐿,max

𝑝
(ℝ𝑛) and so the following continuous 

inclusion holds:  

          𝐻𝐿,at,q,M
𝑝 (ℝ𝑛) ⊆ 𝐻𝐿,max

𝑝 (ℝ𝑛)                                            (5) 

A natural question is to show the following continuous inclusion: 𝐻𝐿,max
𝑝

(ℝ𝑛) ⊆

𝐻𝐿,at,q,M
𝑝

(ℝ𝑛). It is known that the inclusion 𝐻𝐿,max
𝑝

(ℝ𝑛) ⊆ 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛). holds for certain 

operators including Schrödinger operators with nonnegative potentials via particular PDE 

technique (see [169], [74], [171], [172]). However, this question is still open assuming 

merely that an operator 𝐿 satisfies(H1)–(H2). We give an affirmative answer to this 

question to get an atomic decomposition directly from 𝐻𝐿,max
𝑝

(ℝ𝑛). 

We should mention that using the theory of tent spaces, a (𝑝, 2,𝑀)-atomic 

decomposition of the Hardy space 𝐻𝐿,S
𝑝
(ℝ𝑛)in terms of area functions was given in [168], 

[171]. We shall use a different argument to build a (𝑝,∞,𝑀)-atomic decomposition of the 

Hardy spaces 𝐻𝐿,max
𝑝

(ℝ𝑛) in terms of maximal functions. Our proof is based on a 

modification of a technique due to A. 

 Calderón [163], where a decomposition of the function 𝐹(𝑥, 𝑡) = 𝑓 ∗ 𝜑𝑡(𝑥) associated 

with the distribution 𝑓 was given, and convolution operation of the function 𝐹 played an 

important role in the proof. In our setting, there is, however, no analogue of convolution 

operation of the function 𝑡2𝐿𝑒−𝑡
2𝐿𝑓(𝑥), we have to modify Calderón’s construction and 

the geometry in conducting the analysis (see Fig.1). On the other hand, we do not assume 

that the heat kernel 𝑝𝑡(𝑥, 𝑦) satisfies the standard regularity condition, thus standard 

techniques of Calderón–Zygmund theory ([164], [19]) are not applicable. The lacking of 

smoothness of the kernel will be overcome in Proposition (6.1.7) below by using some 

estimates on heat kernel bounds, finite propagation speed of solutions to the wave 

equations and spectral theory of non-negative self-adjoint operators. 

Throughout, the letter “c” and “C” will denote (possibly different) constants that are 

independent of the essential variables. 
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Recall that, if 𝐿 is a nonnegative, self-adjoint operator on 𝐿2(ℝ𝑛), and 𝐸𝐿(𝜆) 
denotes a spectral decomposition associated with 𝐿, then for every bounded 𝐵 orel 

function 𝐹: [0,∞) → ℂ, one defines the operator 𝐹(𝐿): 𝐿2(ℝ𝑛) → 𝐿2(ℝ𝑛) by the formula  

𝐹(𝐿) ≔ ∫ 𝐹(𝜆)𝑑𝐸𝐿(𝜆)
∞

0

                                                               (6) 

    In particular, the operator 𝑐𝑜𝑠(𝑡√𝐿)is then well-defined on 𝐿2(ℝ𝑛). Moreover, it 

follows from [166]that the integral kernel 𝐾𝑐𝑜𝑠(𝑡√𝐿) of 𝑐𝑜𝑠(𝑡√𝐿) satisfies 

supp 𝐾𝑐𝑜𝑠(𝑡√𝐿) ⊆ {(𝑥, 𝑦) ∈ ℝ
𝑛 × ℝ𝑛: |𝑥 − 𝑦| ≤ 𝑡}                    (7) 

the Fourier inversion formula, whenever 𝐹 is an even bounded Borel function with the 

Fourier transform of 𝐹, �̂� ∈ 𝐿1(ℝ), we can write 𝐹(√𝐿)in terms of 𝑐𝑜𝑠(𝑡√𝐿). Concretely, 

by recalling (6) we have  

𝐹(√𝐿) = (2𝜋)−1∫ �̂�(𝑡) cos(𝑡√𝐿) 𝑑𝑡
∞

−∞

 

which, when combined with (7), gives  

𝐾𝐹(√𝐿)(𝑥, 𝑦) = (2𝜋)
−1∫ �̂�(𝑡)𝐾cos(𝑡√𝐿)(𝑥, 𝑦)𝑑𝑡

 

|𝑡|≥|𝑥−𝑦|
                     (8) 

Lemma (6.1.4)[158]: Let 𝜑 ∈ 𝐶0
∞(ℝ) be even, 𝑠𝑢𝑝𝑝𝜑 ⊂ (−1, 1). Let 𝛷 denote the 

Fourier transform of 𝜑. Then for every 𝜅 = 0, 1, 2, . . ., and for every 𝑡 > 0, the kernel 

𝐾(𝑡2𝐿)𝜅𝛷(𝑡√𝐿)(𝑥, 𝑦) of the operator (𝑡2𝐿)𝜅𝛷(𝑡√𝐿) which was defined by the spectral the-

ory, satisfies  

supp 𝐾(𝑡2𝐿)𝜅𝛷(𝑡√𝐿) ⊆ {(𝑥, 𝑦) ∈ ℝ
𝑛 × ℝ𝑛: |𝑥 − 𝑦| ≤ 𝑡}                                      (9) 

and  

              |𝐾(𝑡2𝐿)𝜅𝛷(𝑡√𝐿)| ≤ 𝐶𝑡
−𝑛                                            (10) 

for all 𝑥, 𝑦 ∈ ℝ𝑛. 

Proof:  For the proof, we refer it to [170]and [171].  

Lemma (6.1.5)[158]:  Assume that an operator 𝐿 satisfies(H1)–(H2). Let 𝑅 > 0, 𝑠 > 0. 

Then for any  𝜖 > 0, there exists a constant 𝐶 = 𝐶(𝑠, 𝜖) such that  

∫ |𝐾𝐹(√𝐿)(𝑥, 𝑦)|
2
(1 + 𝑅|𝑥 − 𝑦|)𝑠𝑑𝑦

 

ℝ𝑛
≤ 𝐶𝜖ℝ

𝑛‖𝐹𝑅 ∙‖
𝐶
𝑠
2
+𝜖
(ℝ)

2  

for all 𝐹 ∈ 𝐶
𝑠

2
+𝜖(ℝ) with 𝑠𝑢𝑝𝑝 𝐹 ⊆ [0, 𝑅], where 𝐶𝜖 is a constant independent of 𝐹and 𝑅. 

Proof:  For the proof, see Lemma 7.18, [80]. See also [97].  

Next we show the following result. 

Lemma (6.1.6)[158]: Assume that an operator 𝐿 satisfies(H1)–(H2). Let 𝜓𝑖 ∈ 𝑆(ℝ) be 

even functions, 𝜓𝑖(0)  = 0, 𝑖 = 1, 2. Then for every 𝜂 > 0, there exists a positive constant 

𝐶 = 𝐶(𝑛, 𝜂, 𝜓1, 𝜓2) such that the kernel 𝐾𝜓1(𝑠√𝐿)𝜓2(𝑡√𝐿)(𝑥, 𝑦)𝑜𝑓 𝜓1(𝑠√𝐿)𝜓2(𝑡√𝐿) 

satisfies 

‖𝐾𝜓1(𝑠√𝐿)𝜓2(𝑡√𝐿)(𝑥, 𝑦)‖ ≤  𝐶 ( 
𝑚𝑖𝑛(𝑠, 𝑡)

𝑚𝑎𝑥(𝑠, 𝑡) 
 )

𝑚𝑎𝑥(𝑠, 𝑡)𝜂

(𝑚𝑎𝑥(𝑠, 𝑡)  +  |𝑥 −  𝑦|)𝑛+𝜂
      (11) 

for all 𝑡 > 0 and 𝑥, 𝑦 ∈ ℝ𝑛 . 

Proof: By symmetry, it suffices to show that if 𝑠 ≤ 𝑡, then  

|𝐾𝜓1(𝑠√𝐿)𝜓2(𝑡√𝐿)(𝑥, 𝑦)| ≤ 𝐶 (
𝑠

𝑡
)

𝑡𝜂

(𝑡 + |𝑥 − 𝑦|)𝑛+𝜂
                        (12) 
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To do this, we fix 𝑠, 𝑡 > 0 and let 𝛹(𝑡𝑥) =
𝑡

𝑠
𝜓1(𝑠𝑥)𝜓2(𝑡𝑥), and so 𝜓1(𝑠√𝐿)𝜓2(𝑡√𝐿) =

𝑠

𝑡
𝛹(𝑡√𝐿). Let us show that  

|𝐾𝜓(𝑡√𝐿)(𝑥, 𝑦)| ≤ 𝐶𝑡
−𝑛, 𝑥, 𝑦 ∈ ℝ𝑛                                                      (13) 

Indeed, for any 𝜅 ∈ 𝑁, we have the relationship  

(𝐼 + 𝑡2𝐿)−𝜅 =
1

(𝜅 − 1)!
∫ 𝑒−𝑢𝑡

2𝐿𝑒−𝑢𝑢𝑘−1𝑑𝑢
∞

0

                                         (14) 

and so when 𝜅 > 𝑛/4,  

‖(𝐼 + 𝑡2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛) ≤
1

(𝜅 − 1)!
∫ ‖𝑒−𝑢𝑡

2𝐿‖
𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛)

𝑒−𝑢𝑢𝑘−1𝑑𝑢
∞

0

≤ 𝐶𝑡−𝑛 2⁄  

Now ‖(𝐼 + 𝑡2𝐿)−𝜅‖𝐿1(ℝ𝑛)→𝐿2(ℝ𝑛) = ‖(𝐼 + 𝑡
2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛) ≤ 𝐶𝑡

−𝑛 2⁄ , and so  

‖𝜓(𝑡√𝐿)‖
𝐿1(ℝ𝑛)→𝐿∞(ℝ𝑛)

≤ ‖(𝐼 + 𝑡2𝐿)2𝜅𝜓(𝑡√𝐿)‖
𝐿2(ℝ𝑛)→𝐿2(ℝ𝑛)

‖(𝐼 + 𝑡2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛)
2  

Since 𝜓1 ∈ 𝑆(𝑅) and 𝜓1(0) = 0, we have that (𝑠𝜆)−1𝜓1(𝑠𝜆) = ∫ 𝜓1
′ (𝑠𝜆𝑦)𝑑𝑦

1

0
∈ 𝐿∞(ℝ), 

and then the 𝐿2 operator norm of the last term is equal to the 𝐿∞(ℝ) norm of the function 

(1 + 𝑡2|𝜆|)2𝑚𝛹 (𝑡√|𝜆|) = [
𝜓1(𝑠√|𝜆|)

𝑠√|𝜆|
] [(1 + 𝑡2|𝜆|)2𝑚 (𝑡√|𝜆|) 𝜓2(𝑡√|𝜆|)] 

which is uniformly bounded in 𝑡 > 0. This implies that (13) holds. 

Next, we write 𝐹(𝑡𝜆)  = 𝛹(𝑡𝜆)(1 + 𝑡2𝜆2)𝑚, where 𝑚 > 𝑛/2. Then we have 𝛹(𝑡√𝐿) =

𝐹(𝑡√𝐿)(1 + 𝑡2𝐿)−𝑚. From (14), it can be verified that for 𝑚 > 𝑛/2, there exist some 

positive constants 𝐶 and csuch that for every 𝑡 > 0, the kernel 𝐾(1+𝑡2𝐿)−𝑚(𝑥, 𝑦) of the 

operator (1 + 𝑡2𝐿)−𝑚 satisfies 

|𝐾(1+𝑡2)−𝑚(𝑥, 𝑦)| ≤
𝐶

𝑡𝑛
exp (−

|𝑥 − 𝑦|

𝑐𝑡
) 

which, in combination with (1 +
|𝑥−𝑦|

𝑡
) ≤ (1 +

|𝑥−𝑧|

𝑡
)(1 +

|𝑦−𝑧|

𝑡
), shows  

|(1 +
|𝑥 − 𝑦|

𝑡
)

𝑛+𝜂

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)| 

= (1 +
|𝑥 − 𝑦|

𝑡
)

𝑛+𝜂

|∫ 𝐾𝐹(𝑡√𝐿)(𝑥, 𝑧)𝐾(1+𝑡2𝐿)−𝑚(𝑧, 𝑦)
 

ℝ𝑛
𝑑𝑧| 

≤ 𝐶𝑡𝑛∫ |𝐾𝐹(𝑡√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑦|

𝑡
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛
 

By symmetry, estimate (12) will be proved if we show that 

∫ |𝐾𝐹(𝑡√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑧|

𝑡
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛
≤ 𝐶                                           (15) 

Let 𝜑 ∈ 𝐶𝑐
∞(0,∞) be a non-negative function satisfying supp 𝜑 ⊆ [

1

4
, 1]and let 𝜑0 = 1 −

∑ 𝜑(2−ℓ𝜆)∞
ℓ=1 . So,  

𝜑0(𝜆) +∑𝜑(2−ℓ𝜆)

∞

ℓ=1

= 1, ∀𝜆 > 0 
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Let 𝐹0(𝑡𝜆) denote the function 𝜑0(𝑡𝜆)𝐹(𝑡𝜆) and for ℓ ≥ 1, 𝐹ℓ(𝑡𝜆): = 𝜑(2−ℓ𝑡𝜆)𝐹(𝑡𝜆). 
From (31), the proof of (31) reduces to estimate the following:  

∫ |𝐾𝐹(𝑡√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑧|

𝑡
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛

≤ 𝐶 + ∫ |𝐾𝐹0(𝑡√𝐿)(𝑥, 𝑧)|
2
(1 +

|𝑥 − 𝑧|

𝑡
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛

+∑∫ |𝐾𝐹ℓ(𝑡√𝐿)(𝑥, 𝑧)| (
|𝑥 − 𝑧|

𝑡
)

𝑛+𝜂

𝑑𝑧
 

|𝑥−𝑧|≥𝑡

∞

ℓ=1

=: 𝐶 +∑𝐼ℓ

∞

ℓ=0

                     (16) 

By Lemma(6.1.5) 

𝐼0 ≤ 𝐶𝑡
𝑛 2⁄ (∫ |𝐾𝐹0𝑡√𝐿(𝑥, 𝑧)|

2
(1 +

|𝑥 − 𝑧|

𝑡
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)1 2⁄ ≤ 𝐶‖𝛿1 𝑡⁄ 𝐹

0(𝑡 ∙)‖
𝐶
3
2
𝑛+2𝜂+1

 

Since 𝜓1 ∈ 𝑆(ℝ) and 𝜓1(0) = 0, we have that (𝑠𝜆)−1𝜓1(𝑠𝜆)  = ∫ 𝜓1
′ (𝑠𝜆𝑦)𝑑𝑦

1

0
∈ 𝑆(𝑅). 

Then we have 

𝐼0 ≤ 𝐶‖𝜑0(𝜆)𝛹(𝜆)(1 + 𝜆
2)𝑚‖

𝐶
3
2
𝑛+2𝜂+1

= ‖𝜑0(𝜆) ∫ 𝜑1
′ (𝑠 𝜆𝑦 𝑡⁄ )𝑑𝑦

1

0

[𝜆𝜑2(𝜆)(1 + 𝜆
2)𝑚]‖

𝐶
3
2
𝑛+2𝜂+1

≤ 𝐶              (17) 

For the term 𝐼ℓ, we use Lemma(6.1.5) again to obtain 

𝐼ℓ ≤ 𝐶𝑡
𝑛 2⁄ (∫ |𝐾𝐹ℓ𝑡√𝐿(𝑥, 𝑧)|

2
(
|𝑥 − 𝑧|

𝑡
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)1 2⁄

≤ 𝐶𝑡𝑛 2⁄ 2−ℓ(3𝑛+2𝜂+1 2⁄ )(∫ |𝐾𝐹ℓ𝑡√𝐿(𝑥, 𝑧)|
2
(1 +

2ℓ|𝑥 − 𝑧|

𝑡
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)1 2⁄

≤ 𝐶2−ℓ(3𝑛+2𝜂+1 2⁄ )2ℓ𝑛 2⁄ ‖𝛿2ℓ 𝑡⁄ 𝐹
ℓ(𝑡 ∙)‖

𝐶
3
2
𝑛+2𝜂+1

 

It can be verified that for 𝜓𝑖 ∈ 𝑆(𝑅), 𝑖 = 1, 2,  

‖𝜑𝛿2ℓ𝐹‖
𝐶
3
2
𝑛+2𝜂+1

= ‖𝜑(𝜆)∫ 𝜑1
′ (2ℓ𝑠 𝜆𝑦 𝑡⁄ )𝑑𝑦

1

0

[2ℓ𝜆𝜑2(2
ℓ𝜆)(1 + 22𝑙𝜆2)𝑚]‖

𝐶
3
2
𝑛+2𝜂+1

≤ 𝐶2ℓ
(
3
2
𝑛+2𝜂+1)2−2ℓ 

which gives  

∑𝐼ℓ

∞

ℓ=1

≤ 𝐶∑𝐶2−ℓ(3𝑛+2𝜂+1) 2⁄ 2ℓ𝑛 2⁄ 2ℓ
(
3
2
𝑛+2𝜂+1)2−2ℓ

∞

ℓ=1

 

≤ 𝐶∑2−𝑛ℓ
∞

ℓ=1

≤ 𝐶                                                                                (18) 

Putting (17)and (18)into (16), estimate (15)follows readily. The proof of Lemma(6.1.6)is 

complete.  

We devoted to the proof of Theorem(6.1.8), which give a (𝑝,∞,𝑀)-atomic 

representation for the Hardy spaces 𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛). To do it, we begin with the following 

proposition. 

Proposition (6.1.7)[158]: Let 0 < 𝑝 ≤ 1. Let 𝐿 be a non-negative self-adjoint operator on 

𝐿2(ℝ𝑛) satisfying Gaussian estimate (GE). Let 𝜑𝑖 ∈ 𝑆(ℝ) be even functions with 𝜑𝑖(0) =
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1 and 𝛼𝑖 > 0 , 𝑖 = 1, 2. Then there exists a constant 𝐶 = 𝐶(𝑛, 𝜑1, 𝜑2, 𝛼1, 𝛼2) such that for 

every 𝑓 ∈ 𝐿2(ℝ𝑛), the functions 𝜑𝑖,𝐿,𝛼
∗ 𝑓 = 𝑠𝑢𝑝|𝑦 − 𝑥| < 𝛼𝑡|𝜑𝑖(𝑡√𝐿)𝑓(𝑦)|, 𝑖 = 1,2, 

satisfy  

‖𝜑1,𝐿,𝛼1
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
≤ 𝐶‖𝜑2,𝐿,𝛼2

∗ 𝑓‖
𝐿𝑝(ℝ𝑛)

                                       (19) 

As a consequence, for any even function 𝜑 ∈ 𝑆(ℝ) with 𝜑(0) = 1 and 𝛼 > 0,  

𝐶−1‖𝑓𝐿
∗‖𝐿𝑝(ℝ𝑛) ≤ ‖𝜑𝐿,𝛼

∗ 𝑓‖
𝐿𝑝(ℝ𝑛)

≤ ‖𝑓𝐿
∗‖𝐿𝑝(ℝ𝑛) 

Proof: Recall that for any 0 < 𝛼2 ≤ 𝛼1,  

‖𝜑1,𝐿,𝛼1
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
≤ 𝐶 (1 +

𝛼1
𝛼2
)
𝑛 𝑝⁄

‖𝜑𝐿,𝛼2
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
 

for any 𝜑 ∈ 𝑆(ℝ) ([164]). Now, we let 𝜓(𝑥) ∶= 𝜙1(𝑥) − 𝜙2(𝑥), and then the proof of 

(19)reduces to show that 

‖𝜑𝐿,𝛼1
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
≤ 𝐶‖𝜑2,𝐿,1

∗ 𝑓‖
𝐿𝑝(ℝ𝑛)

                                        (20) 

Let us show (20). Let 𝛹(𝑥) = 𝑥2𝜅𝛷(𝑥) where 𝛷(𝑥) is the function as in 

Lemma(6.1.4)and 2𝜅 > (𝑛 + 1)/𝑝. By the spectral theory ([53]), we have  

𝑓 = 𝐶𝛹,𝜑2∫ 𝛹(𝑠√𝐿)𝜑2(𝑠√𝐿)𝑓
𝑑𝑠

𝑠

∞

0

 

Therefore, 

𝜓(𝑡√𝐿)𝑓(𝑥) = 𝐶 ∫ (𝜓(𝑡√𝐿)𝛹(𝑠√𝐿))𝜑2(𝑠√𝐿)𝑓(𝑥)
𝑑𝑠

𝑠

∞

0

 

 

Let us denote the kernel of 𝜓(𝑡√𝐿)𝛹(𝑠√𝐿) by 𝐾𝜓(𝑡√𝐿)𝛹(𝑠√𝐿)(𝑥, 𝑦). Then for 𝜆 ∈ (
𝑛

𝑝
, 2𝜅),  

sup
|𝜔|<𝑡

|𝜓(𝑡√𝐿)𝑓(𝑥 − 𝜔)| = 𝐶 sup
|𝜔|<𝑡

|∫ 𝐾𝜓(𝑡√𝐿)𝛹(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)𝜑2(𝑠√𝐿)𝑓(𝑧)
𝑑𝑧𝑑𝑠

𝑠

 

ℝ+
𝑛+1

| 

≤ 𝐶 sup
|𝜔|<𝑡

∫ |𝐾𝜓(𝑡√𝐿)𝛹(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆

× |𝜑2(𝑠√𝐿)𝑓(𝑧)| (1 +
|𝑥 − 𝑧|

𝑠
)

−𝜆
𝑑𝑧𝑑𝑠

𝑠
 

≤ sup
𝑠,𝑧
|𝜑2(𝑠√𝐿)𝑓(𝑧)| (1 +

|𝑥 − 𝑧|

𝑠
)

−𝜆

× sup
|𝜔|<𝑡

∫ |𝐾𝜓(𝑡√𝐿)𝛹(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆
𝑑𝑧𝑑𝑠

𝑠
                (21) 

Next we will prove that  

sup
|𝜔|<𝑡

∫ |𝐾𝜓(𝑡√𝐿)𝛹(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆
𝑑𝑧𝑑𝑠

𝑠
 ≤ 𝐶                       (22) 

Once estimate (22)is shown, (20)follows. Indeed, it follows from (21), (22)and the 

condition 𝜆 ∈ (
𝑛

𝑝
, 2𝜅) that  
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‖𝜑𝐿,𝛼1
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
= ‖ sup

|𝜔|<𝑡
|𝜓(𝑡√𝐿)𝑓(𝑥 − 𝜔)|‖

𝐿𝑥
𝑝
(ℝ𝑛)

≤ 𝐶 ‖sup
𝑧,𝑠
|𝜑2(𝑠√𝐿)𝑓(𝑧)| (1 +

|𝑥 − 𝑧|

𝑠
)

−𝜆

‖

𝐿𝑥
𝑝
(ℝ𝑛)

≤ 𝐶 ‖ sup
|𝑦−𝑥|<𝑡

|𝜑2(𝑡√𝐿)𝑓(𝑦)|‖
𝐿𝑥
𝑝
(ℝ𝑛)

= 𝐶‖𝜑2,𝐿,1
∗ 𝑓‖

𝐿𝑝(ℝ𝑛)
 

where we used Theorem 2.4 of [164]in the second inequality. 

Let us prove (22). Note that |𝑤| < 𝑡. We write 

𝜓(𝑡√𝐿)Ψ(𝑠√𝐿) =

{
 

 (
𝑠

𝑡
)
2𝑘

[𝜓(𝑡√𝐿)(𝑡√𝐿)2𝑘ϕ(𝑠√𝐿)]  𝑖𝑓 𝑠 ≤ 𝑡

(
𝑡

𝑠
)
2

[(𝑡√𝐿)−2𝜓(𝑡√𝐿)(𝑠√𝐿)2𝑘+2ϕ(𝑠√𝐿)], 𝑖𝑓 𝑠 > 𝑡

 

We then apply Lemma(6.1.6)to obtain that for 𝜂 ∈ (𝜆, 2𝜅),  

|𝐾𝜓(𝑡√𝐿)Ψ(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)| ≤ 𝐶𝑚𝑖𝑛 ((
𝑠

𝑡
)
2𝑘

, (
𝑡

𝑠
)
2

)
max(𝑠, 𝑡)𝜂

(max(𝑠, 𝑡) + |𝑥 − 𝜔 − 𝑧|)𝑛+𝜂
 

This, together with the fact that 

∫
max(𝑠, 𝑡)𝜂

(max(𝑠, 𝑡) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

(1 +
|𝑢|

𝑠
)

𝜆

𝑑𝑢 ≤ ∫
max(𝑠, 𝑡)𝜂

(max(𝑠, 𝑡) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

𝑑𝑢 

Shows  

 ∫ |𝐾𝜓(𝑡√𝐿)Ψ(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ 
𝑛

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆

𝑑𝑧

≤ 𝐶𝑚𝑖𝑛 ((
𝑠

𝑡
)
2𝑘

, (
𝑡

𝑠
)
2

) [1

+ ∫
max(𝑠, 𝑡)𝜂

(max(𝑠, 𝑡) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

(1 +
|𝑢|

𝑠
)

𝜆

𝑑𝑢)]                         (23) 

To estimate the integrals over |𝑢| ≥ 𝑠, we note that if 𝑠 ≥ 𝑡, then we use the fact 

that 𝜂 > 𝜆 and 𝑠 + |𝑢 − 𝑤|  ≥ 𝑡 + |𝑢 − 𝑤|  ≥ |𝑤|  + |𝑢 − 𝑤|  ≥ |𝑢| to obtain  

∫
𝑠𝜂

(𝑡 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

(1 +
|𝑢|

𝑠
)

𝜆

𝑑𝑢 ≤ 2𝜆∫
𝑠𝜂

(𝑡 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

|𝑢|

𝑠𝜆

𝜆

𝑑𝑢

≤ ∫
𝑠𝜂

𝑡 + |𝑢|𝑛+𝜂

 

|𝑢|≥𝑠

|𝑢|

𝑠𝜆

𝜆

𝑑𝑢 ≤ 𝐶                                                                          (24) 

 

If 𝑠 < 𝑡, then it follows from the fact that 𝑡 + |𝑢 − 𝑤| ≥ |𝑤| + |𝑢 − 𝑤| ≥ |𝑢| and η>λ,  

∫
𝑡𝜂

(𝑡 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

(1 +
|𝑢|

𝑠
)

𝜆

𝑑𝑢 ≤ 2𝜆∫
𝑡𝜂

(𝑡 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥𝑠

|𝑢|

𝑠𝜆

𝜆

𝑑𝑢

≤ ∫
𝑡𝜂

𝑡 + |𝑢|𝑛+𝜂

 

|𝑢|≥𝑠

|𝑢|

𝑠𝜆

𝜆

𝑑𝑢 ≤ 𝐶 (
𝑡

𝑠
)
𝜂

                                                              (25) 

Putting estimates (24)and (25)into (23), we have obtained that for any |𝑤| < 𝑡,  
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 ∫ |𝐾𝜓(𝑡√𝐿)Ψ(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ 
𝑛

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆

𝑑𝑧

≤ 𝐶𝑚𝑖𝑛 ((
𝑠

𝑡
)
2𝑘

, (
𝑠

𝑡
)
2

) [1 +max (1. (
𝑡

𝑠
)
𝜂

)] ≤ 𝐶𝑚𝑖𝑛 ((
𝑠

𝑡
)
2𝑘−𝜂

, (
𝑡

𝑠
)
2

) 

Observe that 𝜂 < 2𝜅. It follows  

sup
|𝜔|<𝑡

∫ |𝐾𝜓(𝑡√𝐿)Ψ(𝑠√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

𝑠
)

𝜆
𝑑𝑧𝑑𝑠

𝑠
 

≤ 𝐶∫ min ((
𝑠

𝑡
)2𝑘−𝑛, (

𝑡

𝑠
)2)
𝑑𝑠

𝑠
≤ 𝐶

∞

0

 

which shows estimate (22), and the proof of Proposition (6.1.7) is end.  

Theorem (6.1.8)[158]:  Suppose that an operator 𝐿 satisfies(H1)and(H2). Fix 0 < 𝑝 ≤ 1. 

For all 𝑞 > 𝑝 with 1 ≤ 𝑞 ≤ ∞ and for all integers 𝑀 >
𝑛

2
(
1

𝑝
− 1), we have that 

𝐻𝐿,max
𝑝

(ℝ𝑛) ⊆ 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛), and hence by (5),  

𝐻𝐿,max
𝑝

(ℝ𝑛) ≃ 𝐻𝐿,at,q,M
𝑝

(ℝ𝑛) 

Proof. It suffices to show that for 𝑓 ∈ 𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛) ∩ 𝐿2(ℝ𝑛), fhas a (𝑝,∞,𝑀)atomic 

representation. We start with a suitable version of the Calderón repro-ducing formula. Let 

𝛷 be a function defined in Lemma(6.1.4), and set 𝛹(𝑥) ∶= 𝑥2𝑀𝛷(𝑥), 𝑥 ∈ ℝ. By the 

spectral theory ([91]), for every 𝑓 ∈ 𝐿2(ℝ𝑛) one can write  

𝑓 = cΨ∫ Ψ(𝑡√𝐿)𝑡2𝐿𝑒−𝑡
2𝐿
𝑑𝑡

𝑡

∞

0

= lim
𝜖→0
∫ Ψ(𝑡√𝐿)𝑡2𝐿𝑒−𝑡

2𝐿
𝑑𝑡

𝑡

1 𝜖⁄

𝜖

                     (26) 

with the integral converging in 𝐿2(ℝ𝑛). 
Set  

𝜂(𝑥) = cΨ∫ 𝑡2𝑥2Ψ(𝑡𝑥)𝑒−𝑡
2𝑥2
𝑑𝑡

𝑡

∞

1

= cΨ∫ 𝑦Ψ(𝑦)𝑒−𝑦
2
𝑑𝑦,

∞

𝑥

𝑥 ≠ 0 

with 𝜂(0) = 1. It follows that 𝜂 ∈ 𝑆(𝑅)is an even function, and  

𝜂(𝑎𝑥) − 𝜂(𝑏𝑥) = cΨ∫ 𝑡2𝑥2Ψ(𝑡𝑥)𝑒−𝑡
2𝑥2𝑓

𝑑𝑡

𝑡

𝑏

𝑎

 

By the spectral theory ([91]) again, one has  

cΨ∫ Ψ(𝑡√𝐿)𝑡2𝐿𝑒−𝑡
2𝐿𝑓
𝑑𝑡

𝑡

𝑏

𝑎

= 𝜂(𝑎√𝐿)𝑓(𝑥) − 𝜂(𝑏√𝐿)𝑓(𝑥)                    (27) 

Define,  

𝑀𝐿𝑓(𝑥) ≔ sup
|𝑥−𝑦|<5√𝑛𝑡

(|𝑡2𝐿𝑒−𝑡
2𝐿𝑓(𝑦)| + |𝜂(𝑡√𝐿)𝑓(𝑦)|) 

By Proposition(6.1.7), it follows that  

‖𝑀𝐿𝑓‖𝐿𝑝(ℝ𝑛) ≤ 𝐶‖𝑓‖𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛),   0 < 𝑝 ≤ 1 

Recall that ℝ+
𝑛+1denotes the upper half-space in ℝ𝑛+1. If 𝑂 is an open subset of ℝ𝑛, then 

the “tent” over 𝑂, denoted by �̂�, is given as �̂�: = {(𝑥, 𝑡) ∈ ℝ𝑛 + 1+: 𝐵(𝑥, 4√𝑛𝑡) ⊂ 𝑂}. 
For 𝑖 ∈ ℤ, we define the family of sets 𝑂𝑖: = {𝑥 ∈ ℝ

𝑛:𝑀𝐿𝑓(𝑥) > 2
𝑖}. Now let {𝑄𝑖𝑗}𝑗 be a 

Whitney decomposition of 𝑂𝑖 such that 𝑂𝑖  =∪𝑗 𝑄𝑖𝑗 and let �̂�𝑖 be a tent region. Set �̅� =

(1,···, 1) ∈ ℝ𝑛. For every 𝑖, 𝑗, we define  

�̃�𝑖𝑗 ≔ {(𝑦, 𝑡) ∈ ℝ+
𝑛+1: 𝑦 + 3𝑡�̅� ∈ 𝑄𝑖𝑗}                                       (28) 
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It can be verified that �̂�𝑖 ⊂∪𝑗 �̃�𝑖𝑗. Indeed, for each (𝑦0,  𝑡0) ∈ �̂�𝑖, we have that 

𝐵(𝑦0, 4√𝑛𝑡0) ⊂ 𝑂𝑖. Let �̃�0: = 𝑦0 + 3�̅�𝑡0. Observe that �̃�0 ∈ 𝐵(𝑦0, 4√𝑛𝑡0)and then �̃�0 ∈

𝑂𝑖. Then there exists some 𝑄𝑖𝑗0 ⊂ 𝑂𝑖 such that �̃�0 ∈ 𝑄𝑖𝑗0, hence (𝑦0, 𝑡0) ∈ �̃�𝑖𝑗0 and �̂�𝑖 ⊂

⋃ �̃�𝑖𝑗𝑗 . Note that �̃�𝑖𝑗 ∩ �̃�𝑖𝑗′ = ∅ when 𝑗 ≠ 𝑗′. We obtain an decomposition for ℝ+
𝑛+1 as 

follows:  

ℝ+
𝑛+1 =∪𝑖 𝑂�̂� =∪𝑖 𝑂�̂� 𝑂𝑖+1̂⁄ =∪𝑖∪𝑗 𝑇𝑖𝑗 

where  

𝑇𝑖𝑗 ≔ �̃�𝑖𝑗 ∩ 𝑂�̂� 𝑂𝑖+1̂⁄  

Using the formula (26), one can write  

𝑓 =∑𝑐ΨΨ(𝑡√𝐿)(𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓)

𝑖𝑗

𝑑𝑡

𝑡
 

with the sum converging in 𝐿2(ℝ𝑛), where 𝜆𝑖𝑗: = 2
𝑖|𝑄𝑖𝑗|

1/𝑝, 𝑎𝑖𝑗: = 𝐿
𝑀𝑏𝑖𝑗, and  

𝑏𝑖𝑗 ≔ (𝜆𝑖𝑗)
−1𝑐Ψ∫ 𝑡2𝑀𝜙(𝑡√𝐿)(𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡

2𝐿𝑒−𝑡
2𝐿𝑓)

𝑑𝑡

𝑡

∞

0

 

Let us show that the sum (29) converges in 𝐿2(ℝ𝑛). Indeed, since for each 𝑓 ∈ 𝐿2(ℝ𝑛),  

(∫ |𝑡2𝐿𝑒−𝑡
2√𝐿𝑓(𝑦)|

2 𝑑𝑦𝑑𝑡

𝑡

 

ℝ+
𝑛+1

)1 2⁄ ≤ 𝐶‖𝑓‖𝐿2(ℝ𝑛) 

we use (29)to obtain  

‖ ∑ 𝜆𝑖𝑗𝑎𝑖𝑗
|𝑖|>𝑁1,|𝑗|>𝑁2

‖

𝐿2(ℝ𝑛)

 

= 𝑐𝛹 ‖ ∑ ∫ 𝐾(𝑡2𝐿)𝑀𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛+1|𝑖|>𝑁1,|𝑗|>𝑁2

‖

𝐿2(ℝ
𝑛
)

 

≤ sup
‖𝑔‖2≤1

∑ ∫ |(𝑡2𝐿)𝑀𝜙(𝑡√𝐿)(𝑥, 𝑦)𝑔(𝑦)𝑡2𝐿𝑒−𝑡
2√𝐿𝑓(𝑦)|

𝑑𝑦𝑑𝑡

𝑡

 

𝑡𝑖𝑗|𝑖|>𝑁1,|𝑗|>𝑁2

 

≤ 𝐶( ∑ ∫ |𝑡2𝐿𝑒−𝑡
2√𝐿𝑓(𝑦)|

2 𝑑𝑦𝑑𝑡

𝑡

 

𝑡𝑖𝑗|𝑖|>𝑁1,|𝑗|>𝑁2

)1 2⁄ ⟶ 0 

as 𝑁1 → ∞, 𝑁2 → ∞. 
Next, we will show that, up to a normalization by a multiplicative constant, the 𝑎𝑖𝑗 are 

(𝑝,∞,𝑀) −atoms. Once the claim is established, we shall have  

∑|𝜆𝑖𝑗|
𝑝

𝑖,𝑗

=∑2𝑖𝑝|𝑄𝑖𝑗|

𝑖,𝑗

≤ 𝐶∑2𝑖𝑝|𝑂𝑖|

𝑖

≤ 𝐶‖𝑓‖
𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛)

𝑝
 

as desired. 

We prove that for every 𝑖, 𝑗, the function 𝐶−1𝑎𝑖𝑗 is a (𝑝,∞,𝑀)-atom as-sociated 

with the cube 30𝑄𝑖𝑗 for some constant 𝐶. Observe that if (𝑦, 𝑡) ∈ 𝑇𝑖𝑗, then 𝐵(𝑦, 4√𝑛𝑡) ∈

𝑂𝑖. Denote by �̃�: = 𝑦 + 3𝑡�̅�, and so �̃� ∈ 𝑄𝑖𝑗 and 𝐵(�̃�, √𝑛𝑡) ∈ 𝑂𝑖 . The fact that 𝑄𝑖𝑗 is the 

Whitney cube of Oiimplies that 5𝑄𝑖𝑗 ∩ 𝑂𝑖
𝑐 ≠ ∅. Denote the side length of 𝑄𝑖𝑗 by ℓ(𝑄𝑖𝑗). It 

then follows that 𝑡 ≤ 3ℓ(𝑄𝑖𝑗). Since 𝑦 + 3�̅�𝑡 ∈ 𝑄𝑖𝑗, we have that 𝑦 ∈ 20𝑄𝑖𝑗. From 

Lemma(6.1.4), the integral kernel 𝐾(𝑡2𝐿)𝑘𝛷(𝑡√𝐿) of the operator (𝑡2𝐿)𝑘𝛷(𝑡√𝐿) satisfies  
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𝑠𝑢𝑝𝑝𝐾(𝑡2𝐿)𝐾𝛹(𝑡√𝐿) ⊆ {(𝑥, 𝑦) ∈ ℝ
𝑛 × ℝ𝑛: |𝑥 − 𝑦| ≤ 𝑡} 

This concludes that for every 𝑘 = 0,1,···,𝑀  

𝑠𝑢𝑝𝑝(𝐿𝐾𝑏𝑖𝑗) ⊆ 30𝑄𝑖𝑗 

It remains to show that ‖(ℓ(𝑄𝑖𝑗)
2𝐿)𝑘𝑏𝑖𝑗‖𝐿∞(ℝ𝑛) ≤ 𝐶(ℓ(𝑄𝑖𝑗))

2𝑀|𝑄𝑖𝑗|
−1 𝑝⁄

, 𝑘 = 0, 1,···,𝑀. 

When 𝐾 = 0, 1,···, 𝑀 − 1, it reduces to show  

|∫ ∫ 𝐾𝑡2𝑀𝐿𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

∞

0

| ≤ 𝐶2𝑖ℓ(𝑄𝑖𝑗)
2(𝑀−𝐾)

.   (30) 

Indeed, if 𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 1, then (𝑦, 𝑡)  ∈ (𝑂𝑖+1̂)
𝑐, and so 𝐵(𝑦, 4√𝑛𝑡)  ∩ (𝑂𝑖+1)

𝑐 ≠ ∅. Let 

�̅� ∈ 𝐵(𝑦, 4√𝑛𝑡)  ∩ (𝑂𝑖+1)
𝑐. We have that |𝑡2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)| ≤ 𝑀𝐿𝑓(�̅�) ≤ 2
𝑖+1. By 

Lemma(6.1.4), 

|∫ ∫ 𝐾𝑡2𝑀𝐿𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

∞

0

|

≤ 𝐶2𝑖 |∫ 𝑡2(𝑀−𝑘)∫ |𝐾(𝑡2𝐿)𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)|𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝒷(𝑄𝑖𝑗)

0

|

≤ 𝐶2𝑖 ∫ 𝑡2(𝑀−𝑘)
𝑑𝑡

𝑡

𝒷(𝑄𝑖𝑗)

0

≤ 𝐶2𝑖ℓ(𝑄𝑖𝑗)
2(𝑀−𝐾) 

 since 𝐾 = 0,1,···, 𝑀 − 1. 

Now we consider the case 𝑘 = 𝑀. The proof is based on a modification of a technique due 

to A. Calderón [163]. In this case, we need to prove that for every 𝑖, 𝑗,  

|∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

∞

0

| < 𝐶2𝑖             (31) 

To show (31), we fix 𝑥 and let 𝑑(𝑥, 𝑄𝑖𝑗) < 30√𝑛ℓ(𝑄𝑖𝑗). We claim the following result: 

(P1)The properties of the set defining 𝜒𝑇𝑖𝑗(𝑦, 𝑡) imply that there exist 

intervals (0, 𝑏0), (𝑎1, 𝑏1),···, (𝑎𝑁, ∞), 0 < 𝑏0 ≤ 𝑎1 < 𝑏1 ≤···≤ 𝑎𝑁, 1 ≤ 𝑁 ≤ 2𝑛 + 2 such 

that for 𝑙 = 0, 1,···, 𝑁 − 1, there hold 𝑎𝑙+1 ≤ 3
2𝑛+2𝑏𝑙 and 

(a)𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 0 for 𝑡 > 𝑎𝑁; 

(b)either 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 0 or 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) for all 

𝑡 ∈ (𝑎𝑙 , 𝑏𝑙); 
(c)either 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 0 or 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) for all 

𝑡 ∈ (0, 𝑏0). 

Assuming this claim (P1)for the moment, we observe that for 𝑑(𝑥, 𝑄𝑖𝑗)  < 30√𝑛ℓ(𝑄𝑖𝑗), 

one can write  

∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

∞

0

= {∫  
𝑏0

0

+ ∑∫  
𝑏𝑙

𝑎𝑙

𝑁−1

𝑙=1

}∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

+∑∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝑎𝑙+1

𝑏𝑙

𝑁−1

𝑙=0

= 𝐼1(𝑥) + 𝐼2(𝑥)                                                                                                       (32) 
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 To estimate 𝐼1(𝑥), we note that if 𝑎𝑙 ≤ 𝑎 < 𝑏 ≤ 𝑏𝑙 or 0 ≤ 𝑎 < 𝑏 ≤ 𝑏0, then one has 

either  

∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝑏

𝑎

 

or by (27),  

∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝑏

𝑎

= ∫ 𝛹(𝑡√𝐿)𝑡2𝐿𝑒−𝑡
2𝐿𝑓(𝑥)

𝑑𝑡

𝑡

𝑏

𝑎

= 𝜂(𝑎√𝐿)𝑓(𝑥) − 𝜂(𝑏√𝐿)𝑓(𝑥) 

Observe that for each 𝑎 ≤ 𝑡 ≤ 𝑏, if |𝑥 − 𝑦| < 𝑡, then 𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 1. This tells us that 

(𝑦, 𝑡) ∈ (𝑂𝑖+1̂)
𝑐, hence 𝐵(𝑦, 4√𝑛𝑡) ∩ (𝑂𝑖+1)

𝑐 ≠ ∅. Assume that �̅� ∈ 𝐵(𝑦, 4√𝑛𝑡) ∩

(𝑂𝑖+1)
𝑐. From this, we have that |𝑥 − �̅�| ≤ |𝑥 − 𝑦| +|𝑦 − �̅�| < 5√𝑛𝑡 and 𝑀𝐿𝑓(�̅�) ≤

2𝑖+1. It implies that |𝜂(𝑡√𝐿)𝑓(𝑥)| ≤ 𝑀𝐿𝑓(�̅�) ≤ 𝐶2
𝑖+1for every 𝑎 ≤ 𝑡 ≤ 𝑏. Therefore, 

|𝜂(𝑎√𝐿)𝑓(𝑥)| ≤ 𝐶2𝑖+1 and |𝜂(𝑏√𝐿)𝑓(𝑥)| ≤ 𝐶2𝑖+1, and so |𝐼1(𝑥)|  ≤ 𝐶2
𝑖+1. 

Consider 𝐼2(𝑥). If 𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 1, then (𝑦, 𝑡) ∈ (�̂�𝑖+1)
𝑐. Thus 𝐵(𝑦, 4√𝑛𝑡) ∩ (𝑂𝑖+1)

𝑐 = ∅. 

Assume that �̅� ∈ 𝐵(𝑦, 4√𝑛𝑡) ∩ (𝑂𝑖+1)
𝑐. We have that |𝑡2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)| ≤ 𝑀𝐿𝑓(�̅�) ≤ 2
𝑖+1. 

This, together with 𝑎𝑙+1 ≤ 𝑐𝑏𝑙, implies that  

|∫ ∫ 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 𝑡)𝑡
2𝐿𝑒−𝑡

2𝐿𝑓(𝑦)𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝑎𝑙+1

𝑏𝑙

|

≤ 2𝑖+1 |∫ ∫ |𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)| 𝑑𝑦
𝑑𝑡

𝑡

 

ℝ𝑛

𝑐𝑏𝑙

𝑏𝑙

| ≤ 𝐶2𝑖+1∫
1

𝑡
𝑑𝑡

𝑐𝑏𝑙

𝑏𝑙

≤ 𝐶2𝑖+1                                                                                                         (33) 
which yields that |𝐼2(𝑥)| ≤ 𝐶2

𝑖+1. 

Combining (32)and (33), we obtain (31). It follows that ‖𝑎𝑖𝑗‖𝐿∞(ℝ𝑛) ≤ 𝐶|𝑄𝑖𝑗|
−1 𝑝⁄ . Up to a 

normalization by a multiplicative constant, the 𝑎𝑖𝑗 are (𝑝,∞,𝑀)-atoms. 

It remains to prove the claim(P1). Note that 𝒳𝑇𝑖𝑗(𝑦, 𝑡) = 𝜒𝑂�̂�(𝑦, 𝑡) ·  𝜒(𝑂𝑖+1̂)𝑐(𝑦, 𝑡)  ·

𝜒𝑄𝑖�̃�(𝑦, 𝑡); Assume that 𝑄𝑖𝑗 = {(𝑦1,···, 𝑦𝑛) ∶ 𝑐𝑙 ≤ 𝑦𝑙 ≤ 𝑑𝑙, 𝑙 = 1,···, 𝑛}. Then  

 

χ�̌�𝑖𝑗(𝑦, 𝑡) =∏𝜒{𝑐𝑙≤𝑦𝑙+3𝑡≤𝑑𝑙}(𝑦, 𝑡)

𝑛

𝑙=1

=∏𝜒{𝑦𝑙+3𝑡≥𝑐𝑙}(𝑦, 𝑡)𝜒{𝑦𝑙+3𝑡≤𝑑𝑙}(𝑦, 𝑡)

𝑛

𝑙=1

 

 

 
Fig. (1)[158]: The case of 𝑥𝑙 < 𝑐𝑙. 
Let 𝜒𝑙(𝑦, 𝑡) be one of the characteristic functions 𝜒{𝑦𝑙+3𝑡≥𝑐𝑙}(𝑦, 𝑡), 𝜒{𝑦𝑙+3𝑡≤𝑑𝑙}(𝑦, 𝑡), 

𝜒𝑂�̂�(𝑦, 𝑡) and 𝜒(𝑂𝑖+1̂)𝑐(𝑦, 𝑡). We will show the following property: 
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(P2)There exist numbers 𝑏𝑙 and 𝑎𝑙+1with 0 < 𝑏𝑙 ≤ 𝑎𝑙+1 and 𝑎𝑙+1 ≤ 3𝑏𝑙 such that for 

every 𝑥, either 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 0 or 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) for all 

tin each of the intervals complementary to (𝑏𝑙 , 𝑎𝑙+1). And for at least one of 

𝜒𝑙(𝑦, 𝑡), 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 0 for 𝑡 > 𝑎𝑙+1. 

Then the same holds for 𝜒𝑇𝑖𝑗(𝑦, 𝑡) = ∏ 𝜒𝑙(𝑦, 𝑡)𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)
2𝑛+2
𝑙=1  in each of the intervals 

complementary to the union of the intervals (𝑏𝑙 , 𝑎𝑙+1), which is what was asserted in the 

claim. Thus we merely have to prove(P2). To do this, we consider four cases. 

Case 1. 𝜒𝑙(𝑦, 𝑡) = 𝜒{𝑦𝑙 + 3𝑡 ≥ 𝑐𝑙}(𝑦, 𝑡). 
In this case, since 𝑠𝑢𝑝𝑝𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) ⊆ {𝑦: |𝑥 − 𝑦| ≤ 𝑡}, we have that 

supp𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) ⊆ {𝑦: 𝑥𝑙 − 𝑡 ≤ 𝑦𝑙 ≤ 𝑥𝑙 + 𝑡}. If 𝑥𝑙 ≥ 𝑐𝑙, then 𝑦𝑙 + 3𝑡 ≥ 𝑥𝑙 + 2𝑡 ≥

𝑐𝑙 for any 𝑡 > 0. This yields  

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦), 𝑡 > 0. 

If 𝑥𝑙 < 𝑐𝑙, then we choose 𝑏𝑙 =
𝑐𝑙−𝑥𝑙

4
and 𝑎𝑙+1 =

𝑐𝑙−𝑥𝑙

2
 (see Fig.1). 

In the case of t <bl, we have 𝑦𝑙 + 3𝑡 ≤ 𝑥𝑙 + 4𝑡 < 𝑐𝑙, which implies that 

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 𝑡) = 0. In the case of 𝑡 > 𝑎𝑙+1, we have 𝑦𝑙 + 3𝑡 ≥ 𝑥𝑙 + 2𝑡 > 𝑐𝑙. 

This implies that 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦). 

Case 2. 𝜒𝑙(𝑦, 𝑡) = 𝜒{𝑦𝑙 + 3𝑡 ≤ 𝑑𝑙}(𝑦, 𝑡). 
 Since 𝑠𝑢𝑝𝑝𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) ⊆ {𝑦: |𝑥 − 𝑦| ≤ 𝑡}, we have that 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) ⊆ {𝑦: 𝑥𝑙 − 𝑡 ≤

𝑦𝑙 ≤ 𝑥𝑙 + 𝑡} . When 𝑥𝑙 ≥ 𝑑𝑙, we have that 𝑦𝑙 + 3𝑡 ≥ 𝑥𝑙 + 2𝑡 > 𝑑𝑙 for any 𝑡 > 0. This 

tells us  

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 0,    𝑓𝑜𝑟 𝑡 > 0 

When 𝑥𝑙 < 𝑑𝑙, we choose 𝑏𝑙 =
𝑑𝑙−𝑥𝑙

4
 and 𝑎𝑙+1 =

𝑑𝑙−𝑥𝑙

2
. If 𝑡 < 𝑏𝑙 , then 𝑦𝑙 + 3𝑡 ≤ 𝑥𝑙 + 4𝑡 <

𝑑𝑙, which implies that 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦). If 𝑡 > 𝑎𝑙+1, then 𝑦𝑙 + 3𝑡 ≥

𝑥𝑙 + 2𝑡 > 𝑑𝑙. From this, we have that 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 0. 

Case 3. 𝜒𝑙(𝑦, 𝑡) = 𝜒 + 𝑂𝑖(𝑦, 𝑡). 

In this case, we choose 𝑏𝑙 =
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐) and 𝑎𝑙+1 =
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐). Let |𝑥 − 𝑦| < 𝑡. If 𝑡 <
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then 𝑑(𝑦, 𝑂𝑖
𝑐)  ≥ 𝑑(𝑥, 𝑂𝑖

𝑐) − |𝑥 − 𝑦| > 5√𝑛𝑡 − 𝑡 ≥ 4√𝑛𝑡. This tells us  

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦) 

for 𝑡 <
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐). If 𝑡 >
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then 𝑑(𝑦, 𝑂𝑖
𝑐) ≤ 𝑑(𝑥, 𝑂𝑖

𝑐)  + 𝑑(𝑥, 𝑦) < (2√𝑛 +

1)𝑡 < 4√𝑛𝑡. Hence, if 𝑡 >
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then  

𝐾𝛹(𝑡√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 𝑡) = 0 

Case 4. 𝜒𝑙(𝑦, 𝑡) = 𝜒(𝑂𝑖+1̂)
𝑐(𝑦, 𝑡). 

In this case, we can choose 𝑏𝑙 =
1

5√𝑛
𝑑(𝑥, 𝑂𝑖+1

𝑐 ) and 𝑎𝑙+1 =
1

2√𝑛
𝑑(𝑥, 𝑂𝑖+1

𝑐 ). The proof can 

be an adaptation of the proof as in Case 3, and we omit the detail here. 

This concludes the proof of the property(P2). We have obtained the claim(P1), and then 

the proof of Theorem(6.1.8)is complete.  

As a consequence of Theorem(6.1.8), we have the following equivalent characterization 

for functions in 𝐻𝐿,𝑎𝑡,𝑞,𝑀
𝑝

(ℝ𝑛). 
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Corollary (6.1.9)[158]: Suppose that an operator 𝐿 satisfies (H1)–(H2). Fix 0 < 𝑝 ≤ 1. 

For all 𝑞 > 𝑝 with 1 ≤ 𝑞 ≤ ∞ and for all integers 𝑀 >
𝑛

2
(
1

𝑝
− 1), if 𝑓 ∈ 𝐿2(ℝ𝑛), then the 

following conditions on fare equivalent: 

(i) 𝑓 ∈ 𝐻𝐿,𝑎𝑡,𝑞,𝑀
𝑝

(ℝ𝑛); 

(ii) Given 𝛼 > 0, 𝜑𝐿,𝛼
∗ 𝑓 = sup

|𝑦−𝑥|<𝛼𝑡
|𝜙(𝑡√𝐿)𝑓(𝑦)|  ∈ 𝐿𝑝(ℝ𝑛) for some even function 

𝜑 ∈ 𝑆(𝑅), 𝜑(0) = 1; 

(iii) 𝐺𝐿
∗(𝑓) = sup

𝜙∈𝐴
sup

|𝑦−𝑥|<𝑡
|𝜑(𝑡√𝐿)𝑓(𝑦)| ∈ 𝐿𝑝(ℝ𝑛),  

𝐴 = {𝜑 ∈ 𝐿 (ℝ): 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝜑(0) ≠ 0,∫ (1 + |𝑥|)𝑁∑|
𝑑𝑘

𝑑𝑥𝑘
𝜑(𝑥)|

2

𝑘≤𝑁

𝑑𝑥
 

ℝ

≤ 0} 

where 𝑁 is a large number depending only on 𝑝 and 𝑛. 

Proof:  The proof follows the line of (ii)⇒(i) ⇒(iii)⇒(ii). From Theorem(6.1.8)and 

Proposition(6.1.7), it tells us an implication (ii) ⇒(i). The proof of (i) ⇒(iii) will be an 

adaptation of the proof of the earlier known implication of (i) ⇒(ii) (see [171]). Obviously, 

(iii)⇒(ii). This proves Corollary(6.1.9).  

We consider an electromagnetic Laplacian  

𝐿 = (𝑖∇ − 𝐴(𝑥))2 + 𝑉(𝑥),   𝑛 ≥ 3 

Recall that a measurable function 𝑉on ℝ𝑛 is in the Kato class when 

lim
𝑟↓0
sup
𝑥
∫

|𝑉(𝑦)|

|𝑥 − 𝑦|𝑛−2

 

|𝑥−𝑦|<𝑟

𝑑𝑦 = 0 

while the Kato norm is defined by 

‖𝑉‖𝐾 = sup
𝑥
∫

|𝑉(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦 = 0 

Proposition (6.1.10)[158]: Consider an electromagnetic Laplacian  

𝐿 = (𝑖∇ − 𝐴(𝑥))2 + 𝑉(𝑥),   𝑛 ≥ 3 

Assume that 𝐴 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑛 , ℝ𝑛), and the positive and negative parts 𝑉± of 𝑉 satisfy 𝑉+ is of 

Kato class, ‖𝑉−‖𝐾 < 𝑐𝑛 = 𝜋
𝑛/2 𝛤(𝑛/2 − 1)⁄ . Then for every integer 𝑀 >

𝑛

2
(
1

𝑝
− 1), the 

spaces 𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛) and 𝐻𝐿,at,∞,M
𝑝

(ℝ𝑛) coincide. In particular,  

‖𝑓‖𝐻𝐿,𝑚𝑎𝑥
𝑝

(ℝ𝑛) ≈ ‖𝑓‖𝐻𝐿,at,∞,M
𝑝

(ℝ𝑛) 

Proof: It is known (see [162]) that under assumptions of Proposition(6.1.10), the operator 

𝐿 has a unique nonnegative self-adjoint extension, and 𝑒−𝑡𝐿 is an integral operator whose 

kernel satisfies the Gaussian estimate (H2). Now Proposition(6.1.10)is a straightforward 

consequence of Theorem(6.1.8).  

Corollary (6.1.11)[183]: Assume that an operator 𝐿 satisfies(H1)–(H2). Let 𝜓𝑖 ∈ 𝑆(ℝ) be 

even functions, 𝜓𝑖(0)  = 0, 𝑖 = 1, 2. Then for every 𝜂 > 0, there exists a positive constant 

𝐶 = 𝐶(𝑛, 𝜂, 𝜓1, 𝜓2) such that the kernel 𝐾
𝜓1((1+2𝜖)√𝐿)𝜓2((1+𝜖)√𝐿)

(𝑥, 𝑦) of 𝜓1((1 +

2𝜖)√𝐿)𝜓2((1 + 𝜖)√𝐿) satisfies 

‖𝐾𝜓1((1+2𝜖)√𝐿)𝜓2((1+𝜖)√𝐿)(𝑥, 𝑦)‖

≤  𝐶 ( 
min(1 + 2𝜖, 1 + 𝜖)

max(1 + 2𝜖, 1 + 𝜖)
 )

𝑚𝑎𝑥(1 + 2𝜖, 1 + 𝜖)𝜂

(max(1 + 2𝜖, 1 + 𝜖) + |𝑥 −  𝑦|)𝑛+𝜂
        (34) 

for all 𝜖 ≥ 0 and 𝑥, 𝑦 ∈ ℝ𝑛. 
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Proof: By symmetry, it suffices to show that if 𝜖 ≥ 0, then  

|𝐾𝜓1((1+𝜖)√𝐿)𝜓2((1+2𝜖)√𝐿)(𝑥, 𝑦)| ≤ 𝐶 (
1 + 𝜖

1 + 2𝜖
)

(1 + 2𝜖)𝜂

(1 + 2𝜖 + |𝑥 − 𝑦|)𝑛+𝜂
                    (35) 

To do this, we fix 𝜖 > 0 and let 𝛹((1 + 𝜖)𝑥) =
1+𝜖

1+2𝜖
𝜓1((1 + 2𝜖)𝑥)𝜓2((1 + 𝜖)𝑥), and so 

𝜓1((1 + 2𝜖)√𝐿)𝜓2((1 + 𝜖)√𝐿) =
1+2𝜖

1+𝜖
𝛹((1 + 𝜖)√𝐿). Let us show that  

|𝐾𝜓((1+𝜖)√𝐿)(𝑥, 𝑦)| ≤ 𝐶(1 + 𝜖)
−𝑛, 𝑥, 𝑦 ∈ ℝ𝑛                                                         (36) 

Indeed, for any 𝜅 ∈ 𝑁, we have the relationship  

(𝐼 + (1 + 𝜖)2𝐿)−𝜅 =
1

(𝜅 − 1)!
∫ 𝑒−𝑢(1+𝜖)

2𝐿𝑒−𝑢𝑢𝑘−1𝑑𝑢
∞

0

                                            (37) 

and so when 𝜅 > 𝑛/4,  

‖(𝐼 + (1 + 𝜖)2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛) ≤
1

(𝜅 − 1)!
∫ ‖𝑒−𝑢(1+𝜖)

2𝐿‖
𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛)

𝑒−𝑢𝑢𝑘−1𝑑𝑢
∞

0

≤ 𝐶(1 + 𝜖)−𝑛 2⁄  

Now ‖(𝐼 + (1 + 𝜖)2𝐿)−𝜅‖𝐿1(ℝ𝑛)→𝐿2(ℝ𝑛) = ‖(𝐼 + (1 + 𝜖)
2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛) ≤

𝐶(1 + 𝜖)−𝑛 2⁄ , and so  

‖𝜓((1 + 𝜖)√𝐿)‖
𝐿1(ℝ𝑛)→𝐿∞(ℝ𝑛)

≤ ‖(𝐼 + (1 + 𝜖)2𝐿)2𝜅𝜓((1

+ 𝜖)√𝐿)‖
𝐿2(ℝ𝑛)→𝐿2(ℝ𝑛)

‖(𝐼 + (1 + 𝜖)2𝐿)−𝜅‖𝐿2(ℝ𝑛)→𝐿∞(ℝ𝑛)
2  

Since 𝜓1 ∈ 𝑆(𝑅) and 𝜓1(0) = 0, we have that ((1 + 2𝜖)𝜆)−1𝜓1((1 + 2𝜖)𝜆) =

∫ 𝜓1
′ ((1 + 2𝜖)𝜆𝑦)𝑑𝑦

1

0
∈ 𝐿∞(ℝ), and then the 𝐿2 operator norm of the last term is equal to 

the 𝐿∞(ℝ) norm of the function 

(1 + (1 + 𝜖)2|𝜆|)2𝑚𝛹 ((1 + 𝜖)√|𝜆|)

= [
𝜓1((1 + 2𝜖)√|𝜆|)

(1 + 2𝜖)√|𝜆|
] [(1 + (1 + 𝜖)2|𝜆|)2𝑚 ((1 + 𝜖)√|𝜆|)𝜓2 ((1

+ 𝜖)√|𝜆|)] 

which is uniformly bounded in 𝜖 ≥ 0. This implies that (36) holds. 

Next, we write 𝐹((1 + 𝜖)𝜆)  = 𝛹((1 + 𝜖)𝜆)(1 + (1 + 𝜖)2𝜆2)𝑚, where 𝑚 > 𝑛/2. Then 

we have 𝛹((1 + 𝜖)√𝐿) = 𝐹((1 + 𝜖)√𝐿)(1 + (1 + 𝜖)2𝐿)−𝑚. From (37), it can be verified 

that for 𝑚 > 𝑛/2, there exist some positive constants 𝐶 and csuch that for every 𝜖 ≥ 0, the 

kernel 𝐾(1+(1+𝜖)2𝐿)−𝑚(𝑥, 𝑦) of the operator (1 + (1 + 𝜖)2𝐿)−𝑚 satisfies 

|𝐾(1+(1+𝜖)2)−𝑚(𝑥, 𝑦)| ≤
𝐶

(1 + 𝜖)𝑛
exp (−

|𝑥 − 𝑦|

𝑐(1 + 𝜖)
) 

which, in combination with (1 +
|𝑥−𝑦|

1+𝜖
) ≤ (1 +

|𝑥−𝑧|

1+𝜖
)(1 +

|𝑦−𝑧|

1+𝜖
), shows  

|(1 +
|𝑥 − 𝑦|

1 + 𝜖
)

𝑛+𝜂

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)| 

= (1 +
|𝑥 − 𝑦|

1 + 𝜖
)

𝑛+𝜂

|∫ 𝐾𝐹((1+𝜖)√𝐿)(𝑥, 𝑧)𝐾(1+(1+𝜖)2𝐿)−𝑚(𝑧, 𝑦)
 

ℝ𝑛
𝑑𝑧| 
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≤ 𝐶(1 + 𝜖)𝑛∫ |𝐾𝐹((1+𝜖)√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑦|

1 + 𝜖
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛
 

By symmetry, estimate (35) will be proved if we show that 

∫ |𝐾𝐹((1+𝜖)√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑧|

1 + 𝜖
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛
≤ 𝐶                                              (38) 

Let 𝜑 ∈ 𝐶𝑐
∞(0,∞) be a non-negative function satisfying supp 𝜑 ⊆ [

1

4
, 1]and let 𝜑0 = 1 −

∑ 𝜑(2−ℓ𝜆)∞
ℓ=1 . So,  

𝜑0(𝜆) +∑𝜑(2−ℓ𝜆)

∞

ℓ=1

= 1, ∀𝜆 > 0 

Let 𝐹0((1 + 𝜖)𝜆) denote the function 𝜑0((1 + 𝜖)𝜆)𝐹((1 + 𝜖)𝜆) and for ℓ ≥ 1, 𝐹ℓ((1 +
𝜖)𝜆): = 𝜑(2−ℓ(1 + 𝜖)𝜆)𝐹((1 + 𝜖)𝜆). From (36), the proof of (38) reduces to estimate the 

following:  

∫ |𝐾𝐹((1+𝜖)√𝐿)(𝑥, 𝑧)| (1 +
|𝑥 − 𝑧|

1 + 𝜖
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛

≤ 𝐶 +∫ |𝐾𝐹0((1+𝜖)√𝐿)(𝑥, 𝑧)|
2
(1 +

|𝑥 − 𝑧|

(1 + 𝜖)
)

𝑛+𝜂

𝑑𝑧
 

ℝ𝑛

+∑∫ |𝐾𝐹ℓ((1+𝜖)√𝐿)(𝑥, 𝑧)| (
|𝑥 − 𝑧|

1 + 𝜖
)

𝑛+𝜂

𝑑𝑧
 

|𝑥−𝑧|≥1+𝜖

∞

ℓ=1

=: 𝐶 +∑𝐼ℓ

∞

ℓ=0

          (39) 

By Lemma (6.1.5) 

𝐼0 ≤ 𝐶(1 + 𝜖)
𝑛 2⁄ (∫ |𝐾𝐹0(1+𝜖)√𝐿(𝑥, 𝑧)|

2
(1 +

|𝑥 − 𝑧|

1 + 𝜖
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)

1 2⁄

≤ 𝐶‖𝛿1 (1+𝜖)⁄ 𝐹0((1 + 𝜖) ∙)‖
𝐶
3
2
𝑛+2𝜂+1

 

Since 𝜓1 ∈ 𝑆(ℝ) and 𝜓1(0) = 0, we have that ((1 + 2𝜖)𝜆)−1𝜓1((1 + 2𝜖)𝜆)  =

∫ 𝜓1
′ ((1 + 2𝜖)𝜆𝑦)𝑑𝑦

1

0
∈ 𝑆(𝑅). Then we have 

𝐼0 ≤ 𝐶‖𝜑0(𝜆)𝛹(𝜆)(1 + 𝜆
2)𝑚‖

𝐶
3
2
𝑛+2𝜂+1

= ‖𝜑0(𝜆)∫ 𝜑1
′ ((1 + 2𝜖) 𝜆𝑦 (1 + 𝜖)⁄ )𝑑𝑦

1

0

[𝜆𝜑2(𝜆)(1 + 𝜆
2)𝑚]‖

𝐶
3
2
𝑛+2𝜂+1

≤ 𝐶                                                                                                                             (40) 
For the term 𝐼ℓ, we use Lemma (6.1.5) again to obtain 

𝐼ℓ ≤ 𝐶(1 + 𝜖)
𝑛 2⁄ (∫ |𝐾𝐹ℓ(1+𝜖)√𝐿(𝑥, 𝑧)|

2
(
|𝑥 − 𝑧|

1 + 𝜖
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)

1 2⁄

≤ 𝐶(1

+ 𝜖)𝑛 2⁄ 2−ℓ(3𝑛+2𝜂+1 2⁄ ) (∫ |𝐾𝐹ℓ(1+𝜖)√𝐿(𝑥, 𝑧)|
2
(1 +

2ℓ|𝑥 − 𝑧|

1 + 𝜖
)

3𝑛+2𝜂+1

𝑑𝑧
 

ℝ𝑛
)

1 2⁄

≤ 𝐶2−ℓ(3𝑛+2𝜂+1 2⁄ )2ℓ𝑛 2⁄ ‖𝛿2ℓ (1+𝜖)⁄ 𝐹ℓ((1 + 𝜖) ∙)‖
𝐶
3
2
𝑛+2𝜂+1

 

It can be verified that for 𝜓𝑖 ∈ 𝑆(𝑅), 𝑖 = 1, 2,  

‖𝜑𝛿2ℓ𝐹‖
𝐶
3
2
𝑛+2𝜂+1
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= ‖𝜑(𝜆)∫ 𝜑1
′ (2ℓ(1 + 2𝜖) 𝜆𝑦 (1 + 𝜖)⁄ )𝑑𝑦

1

0

[2ℓ𝜆𝜑2(2
ℓ𝜆)(1 + 22𝑙𝜆2)𝑚]‖

𝐶
3
2
𝑛+2𝜂+1

≤ 𝐶2ℓ
(
3
2𝑛+2𝜂+1

)
2−2ℓ 

which gives  

∑𝐼ℓ

∞

ℓ=1

≤ 𝐶∑𝐶2−ℓ(3𝑛+2𝜂+1) 2⁄ 2ℓ𝑛 2⁄ 2
ℓ(
3
2
𝑛+2𝜂+1)

2−2ℓ
∞

ℓ=1

≤ 𝐶∑2−𝑛ℓ
∞

ℓ=1

≤ 𝐶             (41) 

Putting (40)and (41)into (39), estimate (38)follows readily. The proof of Corollary 

(6.1.11) is complete.  

Corollary (6.1.12)[183]: Let 0 ≤ 𝜖 < 1. Let 𝐿 be a non-negative self-adjoint operator on 

𝐿2(ℝ𝑛) satisfying Gaussian estimate (GE). Let 𝜑𝑖 ∈ 𝑆(ℝ) be even functions with 𝜑𝑖(0) =
1 and 𝛼𝑖 > 0 , 𝑖 = 1, 2. Then there exists a constant 𝐶 = 𝐶(𝑛, 𝜑1, 𝜑2, 𝛼1, 𝛼2) such that for 

every 𝑓 ∈ 𝐿2(ℝ𝑛), the functions 𝜑𝑖,𝐿,𝛼
∗ 𝑓 = sup|𝑦 − 𝑥| < 𝛼1+𝜖|𝜑𝑖((1 + 𝜖)√𝐿)𝑓(𝑦)|, 𝑖 =

1,2, satisfy  

‖𝜑1,𝐿,𝛼1
∗ 𝑓‖

𝐿1−𝜖(ℝ𝑛)
≤ 𝐶‖𝜑2,𝐿,𝛼2

∗ 𝑓‖
𝐿1−𝜖(ℝ𝑛)

                                          (42) 

As a consequence, for any even function 𝜑 ∈ 𝑆(ℝ) with 𝜑(0) = 1 and 𝛼 > 0,  

𝐶−1‖𝑓𝐿
∗‖𝐿1−𝜖(ℝ𝑛) ≤ ‖𝜑𝐿,𝛼

∗ 𝑓‖
𝐿1−𝜖(ℝ𝑛)

≤ ‖𝑓𝐿
∗‖𝐿1−𝜖(ℝ𝑛) 

Proof: Recall that for any 0 < 𝛼2 ≤ 𝛼1,  

‖𝜑1,𝐿,𝛼1
∗ 𝑓‖

𝐿1−𝜖(ℝ𝑛)
≤ 𝐶 (1 +

𝛼1
𝛼2
)

𝑛
1−𝜖
‖𝜑𝐿,𝛼2

∗ 𝑓‖
𝐿1−𝜖(ℝ𝑛)

 

for any 𝜑 ∈ 𝑆(ℝ) ([164]). Now, we let 𝜓(𝑥) ∶= 𝜙1(𝑥) − 𝜙2(𝑥), and then the proof of 

(42)reduces to show that 

‖𝜑𝐿,𝛼1
∗ 𝑓‖

𝐿1−𝜖(ℝ𝑛)
≤ 𝐶‖𝜑2,𝐿,1

∗ 𝑓‖
𝐿1−𝜖(ℝ𝑛)

                                                       (43) 

Let us show (43). Let 𝛹(𝑥) = 𝑥2𝜅𝛷(𝑥) where 𝛷(𝑥) is the function as in Lemma (6.1.4) 

and 2𝜅 >
𝑛+1

1−𝜖
. By the spectral theory ([53]), we have  

𝑓 = 𝐶𝛹,𝜑2∫ 𝛹((1 + 2𝜖)√𝐿)𝜑2((1 + 2𝜖)√𝐿)𝑓
𝑑(1 + 2𝜖)

1 + 2𝜖

∞

0

 

Therefore, 

𝜓((1 + 𝜖)√𝐿)𝑓(𝑥)

= 𝐶 ∫ (𝜓((1 + 𝜖)√𝐿)𝛹((1 + 2𝜖)√𝐿)) 𝜑2((1 + 2𝜖)√𝐿)𝑓(𝑥)
𝑑(1 + 2𝜖)

1 + 2𝜖

∞

0

 

 

Let us denote the kernel of 𝜓((1 + 𝜖)√𝐿)𝛹((1 + 2𝜖)√𝐿) by 𝐾𝜓((1+𝜖)√𝐿)𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦). 

Then for 𝜆 ∈ (
𝑛

1−𝜖
, 2𝜅),  

sup
|𝜔|<(1+𝜖)

|𝜓((1 + 𝜖)√𝐿)𝑓(𝑥 − 𝜔)|

= 𝐶 sup
|𝜔|<1+𝜖

|∫ 𝐾𝜓((1+𝜖)√𝐿)𝛹((1+2𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)𝜑2((1
 

ℝ+
𝑛+1

+ 2𝜖)√𝐿)𝑓(𝑧)
𝑑𝑧𝑑(1 + 2𝜖)

1 + 2𝜖
| 
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≤ 𝐶 sup
|𝜔|<1+𝜖

∫ |𝐾𝜓((1+𝜖)√𝐿)𝛹((1+2𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

𝜆

× |𝜑2((1 + 2𝜖)√𝐿)𝑓(𝑧)| (1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

−𝜆
𝑑𝑧𝑑(1 + 2𝜖)

1 + 2𝜖
 

≤ sup
1+2𝜖,𝑧

|𝜑2 ((1 + 2𝜖)√𝐿) 𝑓(𝑧)| (1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

−𝜆

× sup
|𝜔|<1+𝜖

∫ |𝐾
𝜓((1+𝜖)√𝐿)𝛹((1+2𝜖)√𝐿)

(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1

+
|𝑥 − 𝑧|

1 + 2𝜖
)

𝜆
𝑑𝑧𝑑(1 + 2𝜖)

1 + 2𝜖
                                                                         (44) 

Next we will prove that  

sup
|𝜔|<1+𝜖

∫ |𝐾𝜓((1+𝜖)√𝐿)𝛹((1+2𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

𝜆
𝑑𝑧𝑑(1 + 2𝜖)

1 + 2𝜖
 ≤ 𝐶    (45) 

Once estimate (45)is shown, (43)follows. Indeed, it follows from (44), (45)and the 

condition 𝜆 ∈ (
𝑛

1−𝜖
, 2𝜅) that  

‖𝜑𝐿,𝛼1
∗ 𝑓‖

𝐿1−𝜖(ℝ𝑛)
= ‖ sup

|𝜔|<1+𝜖
|𝜓((1 + 𝜖)√𝐿)𝑓(𝑥 − 𝜔)|‖

𝐿𝑥
1−𝜖(ℝ𝑛)

≤ 𝐶 ‖ sup
𝑧,1+2𝜖

|𝜑2((1 + 2𝜖)√𝐿)𝑓(𝑧)| (1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

−𝜆

‖

𝐿𝑥
1−𝜖(ℝ𝑛)

≤ 𝐶 ‖ sup
|𝑦−𝑥|<1+𝜖

|𝜑2((1 + 𝜖)√𝐿)𝑓(𝑦)|‖
𝐿𝑥
1−𝜖(ℝ𝑛)

= 𝐶‖𝜑2,𝐿,1
∗ 𝑓‖

𝐿1−𝜖(ℝ𝑛)
 

where we used Theorem 2.4 of [164]in the second inequality. 

Let us prove (45). Note that |𝑤| < 1 + 𝜖. We write 

𝜓((1 + 𝜖)√𝐿)Ψ((1 + 2𝜖)√𝐿)

=

{
 
 

 
 

(
1 + 𝜖

1 + 2𝜖
)
2𝑘

[𝜓((1 + 2𝜖)√𝐿)((1 + 2𝜖)√𝐿)2𝑘ϕ((1 + 𝜖)√𝐿)]  if 𝜖 ≥ 0

(
1 + 𝜖

1 + 2𝜖
)
2

[((1 + 𝜖)√𝐿)−2𝜓((1 + 𝜖)√𝐿)((1 + 2𝜖)√𝐿)2𝑘+2ϕ((1 + 2𝜖)√𝐿)], if 𝜖 > 0

 

We then apply Corollary (6.1.11) to obtain that for 𝜂 ∈ (𝜆, 2𝜅),  

|𝐾𝜓((1+𝜖)√𝐿)Ψ((1+2𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|

≤ 𝐶𝑚𝑖𝑛 ((
1 + 2𝜖

1 + 𝜖
)
2𝑘

, (
1 + 𝜖

1 + 2𝜖
)
2

)
max(1 + 2𝜖, 1 + 𝜖)𝜂

(max(1 + 2𝜖, 1 + 𝜖) + |𝑥 − 𝜔 − 𝑧|)𝑛+𝜂
 

This, together with the fact that 

∫
max(1 + 2𝜖, 1 + 𝜖)𝜂

(max(1 + 2𝜖, 1 + 𝜖) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+2𝜖

(1 +
|𝑢|

1 + 2𝜖
)

𝜆

𝑑𝑢

≤ ∫
max(1 + 2𝜖, 1 + 𝜖)𝜂

(max(1 + 2𝜖, 1 + 𝜖) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+2𝜖

𝑑𝑢 

Shows  
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 ∫ |𝐾𝜓((1+𝜖)√𝐿)Ψ((1+2𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ 
𝑛

(1 +
|𝑥 − 𝑧|

1 + 2𝜖
)

𝜆

𝑑𝑧

≤ 𝐶𝑚𝑖𝑛 ((
1 + 2𝜖

1 + 𝜖
)
2𝑘

, (
1 + 𝜖

1 + 2𝜖
)
2

) [1

+ ∫
max(1 + 2𝜖, 1 + 𝜖)𝜂

(max(1 + 2𝜖, 1 + 𝜖) + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+2𝜖

(1

+
|𝑢|

1 + 2𝜖
)

𝜆

𝑑𝑢)]                                                                                         (46) 

 

To estimate the integrals over |𝑢| ≥ 1 + 2𝜖, we note that if 𝜖 ≥ 0, then we use the fact 

that 𝜂 > 𝜆 and 1 + 2𝜖 + |𝑢 − 𝑤|  ≥ 1 + 𝜖 + |𝑢 − 𝑤|  ≥ |𝑤|  + |𝑢 − 𝑤|  ≥ |𝑢| to obtain  

∫
(1 + 2𝜖)𝜂

(1 + 𝜖 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+2𝜖

(1 +
|𝑢|

1 + 2𝜖
)

𝜆

𝑑𝑢

≤ 2𝜆∫
(1 + 2𝜖)𝜂

(1 + 𝜖 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+2𝜖

|𝑢|𝜆

(1 + 2𝜖)𝜆
𝑑𝑢

≤ ∫
(1 + 2𝜖)𝜂

1 + 𝜖 + |𝑢|𝑛+𝜂

 

|𝑢|≥1+2𝜖

|𝑢|𝜆

(1 + 2𝜖)𝜆
𝑑𝑢 ≤ 𝐶                                            (47) 

If 𝜖 > 0, then it follows from the fact that 1 + 2𝜖 + |𝑢 − 𝑤| ≥ |𝑤| + |𝑢 − 𝑤| ≥ |𝑢| and 

𝜂 > 𝜆,  

∫
(1 + 2𝜖)𝜂

(1 + 2𝜖 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+𝜖

(1 +
|𝑢|

1 + 𝜖
)

𝜆

𝑑𝑢

≤ 2𝜆∫
(1 + 2𝜖)𝜂

(1 + 2𝜖 + |𝑢 − 𝜔|)𝑛+𝜂

 

|𝑢|≥1+𝜖

|𝑢|𝜆

(1 + 𝜖)𝜆
𝑑𝑢

≤ ∫
(1 + 2𝜖)𝜂

1 + 2𝜖 + |𝑢|𝑛+𝜂

 

|𝑢|≥1+𝜖

|𝑢|𝜆

(1 + 𝜖)𝜆
𝑑𝑢

≤ 𝐶 (
1 + 2𝜖

1 + 𝜖
)
𝜂

                                                                                        (48) 

Putting estimates (47)and (48)into (46), we have obtained that for any |𝑤| < 1 + 2𝜖,  

 ∫ |𝐾𝜓((1+2𝜖)√𝐿)Ψ((1+𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ 
𝑛

(1 +
|𝑥 − 𝑧|

1 + 𝜖
)

𝜆

𝑑𝑧

≤ 𝐶𝑚𝑖𝑛 ((
1 + 𝜖

1 + 2𝜖
)
2𝑘

, (
1 + 𝜖

1 + 2𝜖
)
2

) [1 + max (1. (
1 + 2𝜖

1 + 𝜖
)
𝜂

)]

≤ 𝐶𝑚𝑖𝑛 ((
1 + 𝜖

1 + 2𝜖
)
2𝑘−𝜂

, (
1 + 2𝜖

1 + 𝜖
)
2

) 

Observe that 𝜂 < 2𝜅. It follows  

sup
|𝜔|<1+2𝜖

∫ |𝐾𝜓((1+2𝜖)√𝐿)Ψ((1+𝜖)√𝐿)(𝑥 − 𝜔, 𝑧)|
 

ℝ+
𝑛+1

(1 +
|𝑥 − 𝑧|

1 + 𝜖
)

𝜆
𝑑𝑧𝑑(1 + 𝜖)

1 + 𝜖
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≤ 𝐶∫ min ((
1 + 𝜖

1 + 2𝜖
)2𝑘−𝑛, (

1 + 2𝜖

1 + 𝜖
)2)
𝑑(1 + 𝜖)

1 + 𝜖
≤ 𝐶

∞

0

 

which shows estimate (45), and the proof of Corollary (6.1.12) is end.  

Corollary (6.1.13)[183]:  Suppose that an operator 𝐿 satisfies(H1)and(H2). For all 0 ≤

𝜖 ≤ ∞ and for all integers 𝑀 >
𝑛

2
(
𝜖

1−𝜖
), we have that 𝐻𝐿,max

1−𝜖 (ℝ𝑛) ⊆ 𝐻𝐿,𝑎(1+𝜖),1+𝜖,𝑀
1−𝜖 (ℝ𝑛), 

and hence by (6),  

𝐻𝐿,𝑚𝑎𝑥
1−𝜖 (ℝ𝑛) ≃ 𝐻𝐿,𝑎(1+𝜖),1+𝜖,𝑀

1−𝜖 (ℝ𝑛). 

Proof. It suffices to show that for 𝑓 ∈ 𝐻𝐿,𝑚𝑎𝑥
1−𝜖 (ℝ𝑛) ∩ 𝐿2(ℝ𝑛), 𝑓 has a (1 − 𝜖,∞,𝑀)atomic 

representation. We start with a suitable version of the Calderón repro-ducing formula. Let 

𝛷 be a function defined in Lemma (6.1.4), and set 𝛹(𝑥) ∶= 𝑥2𝑀𝛷(𝑥), 𝑥 ∈ ℝ. By the 

spectral theory ([91]), for every 𝑓 ∈ 𝐿2(ℝ𝑛) one can write  

𝑓 = cΨ∫ Ψ((1 + 2𝜖)√𝐿)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿
𝑑(1 + 2𝜖)

1 + 2𝜖

∞

0

= lim
𝜖→0
∫ Ψ((1 + 2𝜖)√𝐿)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)

2𝐿
𝑑(1 + 2𝜖)

1 + 2𝜖

1 𝜖⁄

𝜖

         (49) 

with the integral converging in 𝐿2(ℝ𝑛). 
Set  

𝜂(𝑥) = cΨ∫ (1 + 2𝜖)2𝑥2Ψ((1 + 2𝜖)𝑥)𝑒−(1+2𝜖)
2𝑥2
𝑑(1 + 2𝜖)

1 + 2𝜖

∞

1

= cΨ∫ 𝑦Ψ(𝑦)𝑒−𝑦
2
𝑑𝑦,

∞

𝑥

𝑥 ≠ 0 

with 𝜂(0) = 1. It follows that 𝜂 ∈ 𝑆(𝑅)is an even function, and  

𝜂(𝑎𝑥) − 𝜂(𝑏𝑥) = cΨ∫ (1 + 2𝜖)2𝑥2Ψ((1 + 2𝜖)𝑥)𝑒−(1+2𝜖)
2𝑥2𝑓

𝑑(1 + 2𝜖)

1 + 2𝜖

𝑏

𝑎

 

By the spectral theory ([91]) again, one has  

cΨ∫ Ψ((1 + 2𝜖)√𝐿)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓
𝑑(1 + 2𝜖)

1 + 2𝜖

𝑏

𝑎

= 𝜂(𝑎√𝐿)𝑓(𝑥) − 𝜂(𝑏√𝐿)𝑓(𝑥)                                                    (50) 
Define,  

𝑀𝐿𝑓(𝑥) ≔ sup
|𝑥−𝑦|<5√𝑛(1+2𝜖)

(|(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)| + |𝜂 ((1 + 2𝜖)√𝐿) 𝑓(𝑦)|) 

By Corollary (6.1.12), it follows that  

‖𝑀𝐿𝑓‖𝐿1−𝜖(ℝ𝑛) ≤ 𝐶‖𝑓‖𝐻𝐿,𝑚𝑎𝑥1−𝜖 (ℝ𝑛),   0 ≤ 𝜖 < 1 

 

Recall that ℝ+
𝑛+1denotes the upper half-space in ℝ𝑛+1. If 𝑂 is an open subset of ℝ𝑛, then 

the “tent” over 𝑂, denoted by �̂�, is given as �̂�: = {(𝑥, 1 + 2𝜖) ∈ ℝ𝑛 +

1+:𝐵(𝑥, 4√𝑛(1 + 2𝜖)) ⊂ 𝑂}. For 𝑖 ∈ ℤ, we define the family of sets 𝑂𝑖: = {𝑥 ∈

ℝ𝑛:𝑀𝐿𝑓(𝑥) > 2
𝑖}. Now let {𝑄𝑖𝑗}𝑗 be a Whitney decomposition of 𝑂𝑖 such that 𝑂𝑖  =

∪𝑗 𝑄𝑖𝑗  and let �̂�𝑖 be a tent region. Set �̅� = (1,···, 1) ∈ ℝ𝑛. For every 𝑖, 𝑗, we define  

�̃�𝑖𝑗 ≔ {(𝑦, 1 + 2𝜖) ∈ ℝ+
𝑛+1: 𝑦 + 3(1 + 2𝜖)�̅� ∈ 𝑄𝑖𝑗}                                       (51) 

It can be verified that �̂�𝑖 ⊂∪𝑗 �̃�𝑖𝑗. Indeed, for each (𝑦0,  (1 + 2𝜖)0) ∈ �̂�𝑖, we have that 

𝐵(𝑦0, 4√𝑛(1 + 2𝜖)0) ⊂ 𝑂𝑖. Let �̃�0: = 𝑦0 + 3�̅�(1 + 2𝜖)0. Observe that �̃�0 ∈
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𝐵(𝑦0, 4√𝑛(1 + 2𝜖)0)and then �̃�0 ∈ 𝑂𝑖. Then there exists some 𝑄𝑖𝑗0 ⊂ 𝑂𝑖 such that �̃�0 ∈

𝑄𝑖𝑗0 , hence (𝑦0 , (1 + 2𝜖)0) ∈ �̃�𝑖𝑗0 and �̂�𝑖 ⊂ ⋃ �̃�𝑖𝑗𝑗 . Note that �̃�𝑖𝑗 ∩ �̃�𝑖𝑗′ = ∅ when 𝑗 ≠ 𝑗′. 

We obtain an decomposition for ℝ+
𝑛+1 as follows:  

ℝ+
𝑛+1 =∪𝑖 𝑂�̂� =∪𝑖 𝑂�̂� 𝑂𝑖+1̂⁄ =∪𝑖∪𝑗 𝑇𝑖𝑗 

where  

𝑇𝑖𝑗 ≔ �̃�𝑖𝑗 ∩ 𝑂�̂� 𝑂𝑖+1̂⁄  

Using the formula (49), one can write  

𝑓 =∑𝑐ΨΨ((1 + 2𝜖)√𝐿) (𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓)

𝑖𝑗

𝑑(1 + 2𝜖)

1 + 2𝜖
      (52) 

with the sum converging in 𝐿2(ℝ𝑛), where 𝜆𝑖𝑗: = 2
𝑖|𝑄𝑖𝑗|

1

1−𝜖, 𝑎𝑖𝑗: = 𝐿
𝑀𝑏𝑖𝑗, and  

𝑏𝑖𝑗 ≔ (𝜆𝑖𝑗)
−1𝑐Ψ∫ (1 + 2𝜖)2𝑀𝜙 ((1 + 2𝜖)√𝐿) (𝒳𝑇𝑖𝑗(𝑦, 1

∞

0

+ 2𝜖)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓)

𝑑(1 + 2𝜖)

(1 + 2𝜖)
 

Let us show that the sum (52) converges in 𝐿2(ℝ𝑛). Indeed, since for each 𝑓 ∈ 𝐿2(ℝ𝑛),  

(∫ |(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2√𝐿𝑓(𝑦)|

2 𝑑𝑦𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ+
𝑛+1

)

1 2⁄

≤ 𝐶‖𝑓‖𝐿2(ℝ𝑛) 

we use (52)to obtain  

‖ ∑ 𝜆𝑖𝑗𝑎𝑖𝑗
|𝑖|>𝑁1,|𝑗|>𝑁2

‖

𝐿2(ℝ𝑛)

= 𝑐𝛹 ‖ ∑ ∫ 𝐾((1+2𝜖)2𝐿)𝑀𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1
 

ℝ𝑛+1|𝑖|>𝑁1,|𝑗|>𝑁2

+ 2𝜖)(1 + 2𝜖)2 × 𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)𝑑𝑦

𝑑(1 + 2𝜖)

1 + 2𝜖
‖

𝐿2(ℝ𝑛)

 

≤ sup
‖𝑔‖2≤1

∑ ∫ |((1 + 2𝜖)2𝐿)𝑀𝜙 ((1 + 2𝜖)√𝐿) (𝑥, 𝑦)𝑔(𝑦)
 

(1+2𝜖)𝑖𝑗|𝑖|>𝑁1,|𝑗|>𝑁2

× (1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2√𝐿𝑓(𝑦)|

𝑑𝑦𝑑(1 + 2𝜖)

1 + 2𝜖
 

≤ 𝐶 ( ∑ ∫ |(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2√𝐿𝑓(𝑦)|

2 𝑑𝑦𝑑(1 + 2𝜖)

1 + 2𝜖

 

(1+2𝜖)𝑖𝑗|𝑖|>𝑁1,|𝑗|>𝑁2

)

1 2⁄

⟶ 0 

as 𝑁1 → ∞, 𝑁2 → ∞. 
Next, we will show that, up to a normalization by a multiplicative constant, the 𝑎𝑖𝑗 are 

(1 − 𝜖,∞,𝑀) −atoms. Once the claim is established, we shall have  

∑|𝜆𝑖𝑗|
1−𝜖

𝑖,𝑗

=∑2𝑖(1−𝜖)|𝑄𝑖𝑗|

𝑖,𝑗

≤ 𝐶∑2𝑖(1−𝜖)|𝑂𝑖|

𝑖

≤ 𝐶‖𝑓‖
𝐻𝐿,𝑚𝑎𝑥
1−𝜖 (ℝ𝑛)

1−𝜖  

as desired. 
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Let us now prove that for every 𝑖, 𝑗, the function 𝐶−1𝑎𝑖𝑗 is a (1 − 𝜖,∞,𝑀)-atom as-

sociated with the cube 30𝑄𝑖𝑗 for some constant 𝐶. Observe that if (𝑦, 1 + 2𝜖) ∈ 𝑇𝑖𝑗, then 

𝐵(𝑦, 4√𝑛(1 + 2𝜖)) ∈ 𝑂𝑖. Denote by �̃�: = 𝑦 + 3(1 + 2𝜖)�̅�, and so �̃� ∈ 𝑄𝑖𝑗 and 

𝐵(�̃�,√𝑛(1 + 2𝜖)) ∈ 𝑂𝑖. The fact that 𝑄𝑖𝑗 is the Whitney cube of 𝑂𝑖 implies that 5𝑄𝑖𝑗 ∩

𝑂𝑖
𝑐 ≠ ∅. Denote the side length of 𝑄𝑖𝑗 by ℓ(𝑄𝑖𝑗). It then follows that 1 + 2𝜖 ≤ 3ℓ(𝑄𝑖𝑗). 

Since 𝑦 + 3�̅�(1 + 2𝜖)  ∈ 𝑄𝑖𝑗, we have that 𝑦 ∈ 20𝑄𝑖𝑗. From Lemma (6.1.4), the integral 

kernel 𝐾((1+2𝜖)2𝐿)𝑘𝛷((1+2𝜖)√𝐿) of the operator ((1 + 2𝜖)2𝐿)𝑘𝛷((1 + 2𝜖)√𝐿) satisfies  

supp𝐾((1+2𝜖)2𝐿)𝐾𝛹((1+2𝜖)√𝐿) ⊆ {(𝑥, 𝑦) ∈ ℝ
𝑛 ×ℝ𝑛: |𝑥 − 𝑦| ≤ 1 + 2𝜖} 

This concludes that for every 𝑘 = 0,1,···,𝑀  

supp(𝐿𝐾𝑏𝑖𝑗) ⊆ 30𝑄𝑖𝑗 

It remains to show that ‖(ℓ(𝑄𝑖𝑗)
2𝐿)𝑘𝑏𝑖𝑗‖𝐿∞(ℝ𝑛) ≤ 𝐶(ℓ(𝑄𝑖𝑗))

2𝑀|𝑄𝑖𝑗|
−
1

1−𝜖, 𝑘 = 0, 1,···, 𝑀. 

When 𝐾 = 0, 1,···, 𝑀 − 1, it reduces to show  

|∫ ∫ 𝐾(1+2𝜖)2𝑀𝐿𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1
 

ℝ𝑛

∞

0

+ 2𝜖)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)𝑑𝑦

𝑑(1 + 2𝜖)

1 + 2𝜖
|

≤ 𝐶2𝑖ℓ(𝑄𝑖𝑗)
2(𝑀−𝐾)

.                                                                                   (53) 

Indeed, if 𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 1, then (𝑦, 1 + 2𝜖)  ∈ (𝑂𝑖+1̂)
𝑐, and so 𝐵(𝑦, 4√𝑛(1 + 2𝜖))  ∩

(𝑂𝑖+1)
𝑐 ≠ ∅. Let �̅� ∈ 𝐵(𝑦, 4√𝑛(1 + 2𝜖))  ∩ (𝑂𝑖+1)

𝑐. We have that |(1 +

2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)| ≤ 𝑀𝐿𝑓(�̅�) ≤ 2

𝑖+1. By Lemma (6.1.4), 

|∫ ∫ 𝐾(1+2𝜖)2𝑀𝐿𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1
 

ℝ𝑛

∞

0

+ 2𝜖)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)𝑑𝑦

𝑑(1 + 2𝜖)

1 + 2𝜖
|

≤ 𝐶2𝑖 |∫ (1
𝒷(𝑄𝑖𝑗)

0

+ 2𝜖)2(𝑀−𝑘)∫ |𝐾((1+2𝜖)2𝐿)𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)|𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛
|

≤ 𝐶2𝑖 ∫ (1 + 2𝜖)2(𝑀−𝑘)
𝑑(1 + 2𝜖)

1 + 2𝜖

𝒷(𝑄𝑖𝑗)

0

≤ 𝐶2𝑖ℓ(𝑄𝑖𝑗)
2(𝑀−𝐾) 

 since 𝐾 = 0,1,···, 𝑀 − 1. 

Now we consider the case 𝑘 = 𝑀. The proof is based on a modification of a technique due 

to A. Calderón [163]. In this case, we need to prove that for every 𝑖, 𝑗,  

|∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓(𝑦)𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

∞

0

|

< 𝐶2𝑖                                                                                                                          (54) 

To show (54), we fix 𝑥 and let 𝑑(𝑥, 𝑄𝑖𝑗) < 30√𝑛ℓ(𝑄𝑖𝑗). We claim the following result: 

(P1)The properties of the set defining 𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) imply that there exist 

intervals (0, 𝑏0), (𝑎1, 𝑏1),···, (𝑎𝑁, ∞), 0 < 𝑏0 ≤ 𝑎1 < 𝑏1 ≤···≤ 𝑎𝑁, 1 ≤ 𝑁 ≤ 2𝑛 + 2 such 

that for 𝑙 = 0, 1,···, 𝑁 − 1, there hold 𝑎𝑙+1 ≤ 3
2𝑛+2𝑏𝑙 and 
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(a)𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 0 for 1 + 2𝜖 > 𝑎𝑁; 

(b)either 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 0 or 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) =

𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦) for all 1 + 2𝜖 ∈ (𝑎𝑙 , 𝑏𝑙); 

(c)either 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 0 or 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) =

𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦) for all 1 + 2𝜖 ∈ (0, 𝑏0). 

Assuming this claim (P1)for the moment, we observe that for 𝑑(𝑥, 𝑄𝑖𝑗)  < 30√𝑛ℓ(𝑄𝑖𝑗), 

one can write  

∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓(𝑦)𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

∞

0

= {∫  
𝑏0

0

+ ∑∫  
𝑏𝑙

𝑎𝑙

𝑁−1

𝑙=1

}∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1
 

ℝ𝑛

+ 2𝜖)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)𝑑𝑦

𝑑(1 + 2𝜖)

1 + 2𝜖

+ ∑∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1
 

ℝ𝑛

𝑎𝑙+1

𝑏𝑙

𝑁−1

𝑙=0

+ 2𝜖)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)𝑑𝑦

𝑑(1 + 2𝜖)

1 + 2𝜖
= 𝐼1(𝑥) + 𝐼2(𝑥)                                                                                                  (55) 

 To estimate 𝐼1(𝑥), we note that if 𝑎𝑙 ≤ 𝑎 < 𝑏 ≤ 𝑏𝑙 or 0 ≤ 𝑎 < 𝑏 ≤ 𝑏0, then one has 

either  

∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓(𝑦)𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

𝑏

𝑎

 

or by (50),  

∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓(𝑦)𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

𝑏

𝑎

= ∫ 𝛹((1 + 2𝜖)√𝐿)(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑥)

𝑑(1 + 2𝜖)

1 + 2𝜖

𝑏

𝑎

= 𝜂(𝑎√𝐿)𝑓(𝑥) − 𝜂(𝑏√𝐿)𝑓(𝑥) 

Observe that for each 𝑎 ≤ 1 + 2𝜖 ≤ 𝑏, if |𝑥 − 𝑦| < 1 + 2𝜖, then 𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 1. 

This tells us that (𝑦, 1 + 2𝜖) ∈ (𝑂𝑖+1̂)
𝑐, hence 𝐵(𝑦, 4√𝑛(1 + 2𝜖)) ∩ (𝑂𝑖+1)

𝑐 ≠ ∅. 

Assume that �̅� ∈ 𝐵(𝑦, 4√𝑛(1 + 2𝜖)) ∩ (𝑂𝑖+1)
𝑐. From this, we have that |𝑥 − �̅�| ≤ |𝑥 −

𝑦| +|𝑦 − �̅�| < 5√𝑛(1 + 2𝜖) and 𝑀𝐿𝑓(�̅�) ≤ 2
𝑖+1. It implies that |𝜂((1 + 2𝜖)√𝐿)𝑓(𝑥)| ≤

𝑀𝐿𝑓(�̅�) ≤ 𝐶2
𝑖+1for every 𝑎 ≤ 1 + 2𝜖 ≤ 𝑏. Therefore, |𝜂(𝑎√𝐿)𝑓(𝑥)| ≤ 𝐶2𝑖+1 and 

|𝜂(𝑏√𝐿)𝑓(𝑥)| ≤ 𝐶2𝑖+1, and so |𝐼1(𝑥)|  ≤ 𝐶2
𝑖+1. 

Consider 𝐼2(𝑥). If 𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 1, then (𝑦, 1 + 2𝜖) ∈ (�̂�𝑖+1)
𝑐 . Thus 

𝐵(𝑦, 4√𝑛(1 + 2𝜖)) ∩ (𝑂𝑖+1)
𝑐 = ∅. Assume that �̅� ∈ 𝐵(𝑦, 4√𝑛(1 + 2𝜖)) ∩ (𝑂𝑖+1)

𝑐. We 

have that |(1 + 2𝜖)2𝐿𝑒−(1+2𝜖)
2𝐿𝑓(𝑦)| ≤ 𝑀𝐿𝑓(�̅�) ≤ 2

𝑖+1. This, together with 𝑎𝑙+1 ≤ 𝑐𝑏𝑙, 
implies that  
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|∫ ∫ 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖)(1 + 2𝜖)
2𝐿𝑒−(1+2𝜖)

2𝐿𝑓(𝑦)𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

𝑎𝑙+1

𝑏𝑙

|

≤ 2𝑖+1 |∫ ∫ |𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)| 𝑑𝑦
𝑑(1 + 2𝜖)

1 + 2𝜖

 

ℝ𝑛

𝑐𝑏𝑙

𝑏𝑙

|

≤ 𝐶2𝑖+1∫
1

1 + 2𝜖
𝑑(1 + 2𝜖)

𝑐𝑏𝑙

𝑏𝑙

≤ 𝐶2𝑖+1                                                   (56) 

which yields that |𝐼2(𝑥)| ≤ 𝐶2
𝑖+1. 

Combining (55) and (56), we obtain (54). It follows that ‖𝑎𝑖𝑗‖𝐿∞(ℝ𝑛)
≤ 𝐶|𝑄𝑖𝑗|

−
1

1−𝜖. 

Up to a normalization by a multiplicative constant, the 𝑎𝑖𝑗 are (1 − 𝜖,∞,𝑀)-atoms. 

It remains to prove the claim(P1). Note that 𝒳𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = 𝜒𝑂�̂�(𝑦, 1 + 2𝜖) ·

 𝜒(𝑂𝑖+1̂)𝑐(𝑦, 1 + 2𝜖)  · 𝜒𝑄𝑖�̃�(𝑦, 1 + 2𝜖); Assume that 𝑄𝑖𝑗 = {(𝑦1,···, 𝑦𝑛) ∶ 𝑐𝑙 ≤ 𝑦𝑙 ≤ 𝑑𝑙 , 𝑙 =

1,···, 𝑛}. Then  

 

χ�̌�𝑖𝑗(𝑦, 1 + 2𝜖) =∏𝜒{𝑐𝑙≤𝑦𝑙+3(1+2𝜖)≤𝑑𝑙}(𝑦, 1 + 2𝜖)

𝑛

𝑙=1

=∏𝜒{𝑦𝑙+3(1+2𝜖)≥𝑐𝑙}(𝑦, 1 + 2𝜖)𝜒{𝑦𝑙+3(1+2𝜖)≤𝑑𝑙}(𝑦, 1 + 2𝜖)

𝑛

𝑙=1

 

 

 
Fig. (1)[183]: The case of 𝑥𝑙 < 𝑐𝑙. 
Let 𝜒𝑙(𝑦, 1 + 2𝜖) be one of the characteristic functions 𝜒{𝑦𝑙+3(1+2𝜖)≥𝑐𝑙}(𝑦, 1 +

2𝜖), 𝜒{𝑦𝑙+3(1+2𝜖)≤𝑑𝑙}(𝑦, 1 + 2𝜖), 𝜒𝑂�̂�(𝑦, 1 + 2𝜖)𝑎𝑛𝑑 𝜒(𝑂𝑖+1̂)𝑐(𝑦, 1 + 2𝜖). We will show the 

following property: 

(P2)There exist numbers 𝑏𝑙 and 𝑎𝑙+1with 0 < 𝑏𝑙 ≤ 𝑎𝑙+1 and 𝑎𝑙+1 ≤ 3𝑏𝑙 such that for 

every 𝑥, either 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 2𝜖) = 0 or 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 2𝜖) =

𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦) for all tin each of the intervals complementary to (𝑏𝑙 , 𝑎𝑙+1). And for at 

least one of 𝜒𝑙(𝑦, 1 + 2𝜖), 𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 2𝜖) = 0 for 1 + 2𝜖 > 𝑎𝑙+1. 

Then the same holds for 𝜒𝑇𝑖𝑗(𝑦, 1 + 2𝜖) = ∏ 𝜒𝑙(𝑦, 1 + 2𝜖)𝐾𝛹((1+2𝜖)√𝐿)(𝑥, 𝑦)
2𝑛+2
𝑙=1  in each 

of the intervals complementary to the union of the intervals (𝑏𝑙 , 𝑎𝑙+1), which is what was 

asserted in the claim. Thus we merely have to prove(P2). To do this, we consider four 

cases. 

Case 1. 𝜒𝑙(𝑦, 1 + 𝜖) = 𝜒{𝑦𝑙 + 3(1 + 𝜖) ≥ 𝑐𝑙}(𝑦, 1 + 𝜖). 
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In this case, since supp𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦) ⊆ {𝑦: |𝑥 − 𝑦| ≤ (1 + 𝜖)}, we have that 

supp𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦) ⊆ {𝑦: 𝑥𝑙 − (1 + 𝜖) ≤ 𝑦𝑙 ≤ 𝑥𝑙 + 1 + 𝜖}. If 𝑥𝑙 ≥ 𝑐𝑙, then 𝑦𝑙 + 3(1 +

𝜖) ≥ 𝑥𝑙 + 2(1 + 𝜖) ≥ 𝑐𝑙 for any 𝜖 ≥ 0. This yields  

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) = 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦), 𝜖 ≥ 0. 

If 𝑥𝑙 < 𝑐𝑙, then we choose 𝑏𝑙 =
𝑐𝑙−𝑥𝑙

4
and 𝑎𝑙+1 =

𝑐𝑙−𝑥𝑙

2
 (see Fig.1). 

In the case of (1 + 𝜖)  < 𝑏𝑙, we have 𝑦𝑙 + 3(1 + 𝜖) ≤ 𝑥𝑙 + 4(1 + 𝜖) < 𝑐𝑙, which implies 

that 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑇𝑖𝑗(𝑦, 1 + 𝜖) = 0. In the case of 1 + 𝜖 > 𝑎𝑙+1, we have 𝑦𝑙 +

3(1 + 𝜖) ≥ 𝑥𝑙 + 2(1 + 𝜖) > 𝑐𝑙. This implies that 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) =

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦). 

Case 2. 𝜒𝑙(𝑦, 1 + 𝜖) = 𝜒{𝑦𝑙 + 3(1 + 𝜖) ≤ 𝑑𝑙}(𝑦, 1 + 𝜖). 
Since supp𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦) ⊆ {𝑦: |𝑥 − 𝑦| ≤ 1 + 𝜖}, we have that 

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦) ⊆ {𝑦: 𝑥𝑙 − (1 + 𝜖) ≤ 𝑦𝑙 ≤ 𝑥𝑙 + 1 + 𝜖} . When 𝑥𝑙 ≥ 𝑑𝑙, we have that 

𝑦𝑙 + 3(1 + 𝜖) ≥ 𝑥𝑙 + 2(1 + 𝜖) > 𝑑𝑙 for any 𝜖 ≥ 0. This tells us  

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) = 0, for 𝜖 ≥ 0 

When 𝑥𝑙 < 𝑑𝑙, we choose 𝑏𝑙 =
𝑑𝑙−𝑥𝑙

4
 and 𝑎𝑙+1 =

𝑑𝑙−𝑥𝑙

2
. If 1 + 𝜖 < 𝑏𝑙, then 𝑦𝑙 + 3(1 +

𝜖) ≤ 𝑥𝑙 + 4(1 + 𝜖) < 𝑑𝑙, which implies that 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) =

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦). If 1 + 𝜖 > 𝑎𝑙+1, then 𝑦𝑙 + 3(1 + 𝜖)  ≥ 𝑥𝑙 + 2(1 + 𝜖) > 𝑑𝑙. From this, 

we have that 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) = 0. 

Case 3. 𝜒𝑙(𝑦, 1 + 𝜖) = 𝜒 + 𝑂𝑖(𝑦, 1 + 𝜖). 

In this case, we choose 𝑏𝑙 =
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐) and 𝑎𝑙+1 =
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐). Let |𝑥 − 𝑦| < 1 + 𝜖. 

If 1 + 𝜖 <
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then 𝑑(𝑦, 𝑂𝑖
𝑐)  ≥ 𝑑(𝑥, 𝑂𝑖

𝑐) − |𝑥 − 𝑦| > 5√𝑛(1 + 𝜖) − (1 + 𝜖) ≥

4√𝑛(1 + 𝜖). This tells us  

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) = 𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦) 

for 1 + 𝜖 <
1

5√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐). If 1 + 𝜖 >
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then 𝑑(𝑦, 𝑂𝑖
𝑐) ≤ 𝑑(𝑥, 𝑂𝑖

𝑐)  + 𝑑(𝑥, 𝑦) <

(2√𝑛 + 1)(1 + 𝜖)  < 4√𝑛(1 + 𝜖). Hence, if 1 + 𝜖 >
1

2√𝑛
𝑑(𝑥, 𝑂𝑖

𝑐), then  

𝐾𝛹((1+𝜖)√𝐿)(𝑥, 𝑦)𝜒𝑙(𝑦, 1 + 𝜖) = 0 

Case 4. 𝜒𝑙(𝑦, 1 + 𝜖) = 𝜒(𝑂𝑖+1̂)
𝑐(𝑦, 1 + 𝜖). 

In this case, we can choose 𝑏𝑙 =
1

5√𝑛
𝑑(𝑥, 𝑂𝑖+1

𝑐 ) and 𝑎𝑙+1 =
1

2√𝑛
𝑑(𝑥, 𝑂𝑖+1

𝑐 ). The 

proof can be an adaptation of the proof as in Case 3, and we omit the detail here. 

This concludes the proof of the property (P2). We have obtained the claim (P1), and then 

the proof of Corollary (6.1.13) is complete.  

Corollary (6.1.14)[183]: Suppose that an operator 𝐿 satisfies (H1)–(H2). Fix 0 ≤ 𝜖 < 1. 

For all 𝜖 > 0 with 0 ≤ 𝜖 ≤ ∞ and for all integers 𝑀 >
𝑛

2
(
𝜖

1−𝜖
), if 𝑓 ∈ 𝐿2(ℝ𝑛), then the 

following conditions on fare equivalent: 

(i) 𝑓 ∈ 𝐻𝐿,𝑎(1+𝜖),1+𝜖,𝑀
1−𝜖 (ℝ𝑛); 

(ii) Given 𝛼 > 0, 𝜑𝐿,𝛼
∗ 𝑓 = sup

|𝑦−𝑥|<𝛼(1+𝜖)
|𝜙((1 + 𝜖)√𝐿)𝑓(𝑦)|  ∈ 𝐿1−𝜖(ℝ𝑛) for some 

even function 𝜑 ∈ 𝑆(𝑅), 𝜑(0) = 1; 
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(iii) 𝐺𝐿
∗(𝑓) = sup

𝜙∈𝐴
sup

|𝑦−𝑥|<1+𝜖
|𝜑((1 + 𝜖)√𝐿)𝑓(𝑦)| ∈ 𝐿1−𝜖(ℝ𝑛),  

𝐴 = {𝜑 ∈ 𝐿 (ℝ): even function with 𝜑(0) ≠ 0,∫ (1 + |𝑥|)𝑁∑|
𝑑𝑘

𝑑𝑥𝑘
𝜑(𝑥)|

2

𝑘≤𝑁

𝑑𝑥
 

ℝ

≤ 0} 

where 𝑁 is a large number depending only on 1 − 𝜖 and 𝑛. 

Proof:  The proof follows the line of (ii)⇒(i) ⇒(iii)⇒(ii). From Corollary (6.1.13) and 

Corollary (6.1.12), it tells us an implication (ii) ⇒(i). The proof of (i) ⇒(iii) will be an 

adaptation of the proof of the earlier known implication of (i) ⇒(ii) (see [171]). Obviously, 

(iii)⇒(ii). This proves Corollary (6.1.14).  

We consider an electromagnetic Laplacian  

𝐿 = (𝑖∇ − 𝐴(𝑥))2 + 𝑉(𝑥),   𝑛 ≥ 3 

Recall that a measurable function 𝑉on ℝ𝑛 is in the Kato class when 

lim
𝑟↓0
sup
𝑥
∫

|𝑉(𝑦)|

|𝑥 − 𝑦|𝑛−2

 

|𝑥−𝑦|<𝑟

𝑑𝑦 = 0 

while the Kato norm is defined by 

‖𝑉‖𝐾 = sup
𝑥
∫

|𝑉(𝑦)|

|𝑥 − 𝑦|𝑛−2
𝑑𝑦 = 0 

Corollary (6.1.15)[183]: Consider an electromagnetic Laplacian  

𝐿 = (𝑖∇ − 𝐴(𝑥))2 + 𝑉(𝑥),   𝑛 ≥ 3 

Assume that 𝐴 ∈ 𝐿𝑙𝑜𝑐
2 (ℝ𝑛 , ℝ𝑛), and the positive and negative parts 𝑉± of 𝑉 satisfy 𝑉+ is of 

Kato class, ‖𝑉−‖𝐾 < 𝑐𝑛 = 𝜋
𝑛/2 𝛤(𝑛/2 − 1)⁄ . Then for every integer 𝑀 >

𝑛

2
(
𝜖

1−𝜖
), the 

spaces 𝐻𝐿,𝑚𝑎𝑥
1−𝜖 (ℝ𝑛) and 𝐻𝐿,at,∞,M

1−𝜖 (ℝ𝑛) coincide. In particular,  

‖𝑓‖𝐻𝐿,𝑚𝑎𝑥1−𝜖 (ℝ𝑛) ≈ ‖𝑓‖𝐻𝐿,at,∞,M1−𝜖 (ℝ𝑛) 

Proof: It is known (see [162]) that under assumptions of Corollary (6.1.15), the operator 𝐿 

has a unique nonnegative self-adjoint extension, and 𝑒−(1+𝜖)𝐿 is an integral operator 

whose kernel satisfies the Gaussian estimate (H2). Now Corollary (6.1.15) is a 

straightforward consequence of Corollary (6.1.13).  

Section (6.2): Weak Factorizations and Commutators 

The spaces 𝐻1(ℝ𝑛) and 𝐵𝑀𝑂(ℝ𝑛) are fundamental function spaces in harmonic 

analysis. The work of Fefferman and Stein, [74], provides a duality relationship between 

𝐻1(ℝ𝑛)and 𝐵𝑀𝑂(ℝ𝑛). And, further provides characterizations of these spaces in terms of 

maximal functions, square functions, and Riesz transforms. While the work of Coifman, 

Rochberg and Weiss, [3], provides 𝑎 connection between weak factorization of the Hardy 

spaces, commutators with Riesz transforms and 𝐵𝑀𝑂(ℝ𝑛). We provide similar 

connections for 𝐻1and 𝐵𝑀𝑂 spaces adapted to 𝑎 particular linear differential operator. 

There is 𝑎 substantial literature related to 𝐻1and 𝐵𝑀𝑂 spaces adapted to 𝑎 linear operator 

𝐿 on 𝐿2(ℝ𝑛)which generates an analytic semigroup 𝑒−𝑡𝐿on 𝐿1(ℝ𝑛) with 𝑎 kernel 𝑝𝑡(𝑥, 𝑦) 
satisfying an upper bound. That is, operators 𝐿 for which the kernel of the semigroup 

𝑝𝑡(𝑥, 𝑦) there exists positive constants 𝑚 and𝜖such that for all 𝑥, 𝑦 ∈ ℝ𝑛 and for all𝑡 > 0: 

|𝑝𝑡(𝑥, 𝑦) | ≤
𝐶𝑡

𝜖
𝑚

(𝑡
1
𝑚 + |𝑥 − 𝑦|)

𝑛+𝜖 .                                        (57) 
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 In[58], Auscher, Duong, and McIntosh defined a Hardy space 𝐻𝐿
1(ℝ𝑛)associated with 

such operators 𝐿 as the class of all functions 𝑓 ∈ 𝐿1(ℝ𝑛) for which 𝑆𝐿 ∈ 𝐿
1(ℝ𝑛), where 

𝑆𝐿(𝑓)is Littlewood–Paley area function defined as follows.  

𝑆𝐿(𝑓)(𝑥) = (∫ ∫ |𝒬𝑡𝑚𝑓(𝑦)|
2

 

|𝑦−𝑥|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1
2

,                       (58) 

with 𝒬𝑡 = 𝑡𝐿𝑒
−𝑡𝐿. The 𝐻𝐿

1(ℝ𝑛)norm of 𝑓 is defined as‖𝑓‖𝐻𝐿1(ℝ𝑛) = ‖𝑆𝐿
(𝑓)‖𝐿1(ℝ𝑛). In 

[70], [71], Duong and Yan defined the function space𝐵𝑀𝑂𝐿(ℝ
𝑛)associated with an 

operator𝐿. They then go on to prove that if 𝐿 has 𝑎 bounded holomorphic functional 

calculus on𝐿2(ℝ𝑛)and the kernel 𝑝𝑡(𝑥, 𝑦) of the semigroup 𝑒−𝑡𝐿 satisfies the upper 

bound(57), then the space 𝐵𝑀𝑂𝐿∗(ℝ
𝑛) is the dual space of Hardy space 𝐻𝐿

1(ℝ𝑛) in which 

𝐿∗ denotes the adjoint operator of 𝐿. This gives 𝑎 generalization of the duality of 𝐻1(ℝ𝑛) 

and 𝐵𝑀𝑂(ℝ𝑛)of Fefferman and Stein [74]. Later, the theory of function spaces associated 

with operators has been developed and generalized to many other different settings, see 

[160], [168], [172], [171], [174].  

The choice of 𝐿 = ∆ gives rise to the spaces to the classical spaces𝐻1(ℝ𝑛)and 𝐵𝑀𝑂(ℝ𝑛). 

While the choice of the semigroup 𝑒−𝑡𝐿is the Poisson semigroup 𝑒−𝑡√∆(here 𝑚 = 2), 

given by 

𝑒−𝑡√∆𝑓(𝑥) = ∫𝑝𝑡(𝑥 − 𝑦)𝑓(𝑦)

 

ℝ𝑛

𝑑𝑦, 𝑡 > 0, 𝑝𝑡(𝑥) =
𝑐𝑛𝑡

(𝑡2 + |𝑥|2)
𝑛+1
2

        (59) 

 yields the spaces 𝐻
√∆
1 (ℝ)and 𝐵𝑀𝑂√∆(ℝ)coincide with the classical Hardy space and 

𝐵𝑀𝑂 space, respectively (see[58] and[70]). 
In [65], Deng, Duong, Sikora, and Yan further considered the comparison of 

𝐵𝑀𝑂𝐿(ℝ
𝑛)and 𝐵𝑀𝑂(ℝ𝑛). By considering the Neumann Laplacian 𝐿 = ∆𝑁, they obtained 

that 

𝐵𝑀𝑂(ℝ𝑛) ⊊ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). 

Recently, in[53] Yan introduced 𝑎 class of𝐻𝐿
𝑝(ℝ𝑛)for 𝑎 range of 𝑝 ≤ 1 by using the 

Littlewood–Paley area function𝑆𝐿(𝑓). In particular, Yan showed that 

𝐻∆𝑁
𝑝 (ℝ𝑛) ⊊ 𝐻𝑝(ℝ𝑛),

𝑛

𝑛 + 1
< 𝑝 ≤ 1. 

We carry out 𝑎 deeper study of the spaces 𝐻∆𝑁
1 (ℝ𝑛) and 𝐵𝑀𝑂∆𝑁(ℝ

𝑛). Interestingly, 

we show that these spaces behave in an analogous fashion as the standard Hardy 

space𝐻1(ℝ𝑛)and 𝐵𝑀𝑂(ℝ𝑛). 

We first explicitly compute the Riesz transforms𝑅𝑁 = ∇∆𝑁
−
1

2 associated to the Neumann 

Laplacian. Because of the close connection between the Laplacian and Neumann 

Laplacian, we find in Proposition(6.2.4) that the Riesz transforms associated to the 

Neumann Laplacian are given by an additive perturbation of the standard Riesz 

transforms. We show that, similar to the classical Hardy space, the space𝐻∆𝑁
1 (ℝ𝑛)can be 

characterized by the radial and non-tangential maximal functions, by the Riesz transforms, 

and by atoms, all of which are defined in terms of the Neumann Laplacian ∆𝑁. To be more 

precise, we denote by𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛)the Hardy space defined via the radial maximal 

function associated with∆𝑁, and analogously by𝐻∆𝑁,∗
1 (ℝ𝑛),  𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧

1 (ℝ𝑛) and 
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𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛) the Hardy spaces via non-tangential maximal functions, Riesz transforms 

and atoms, respectively. Then we have the following characterizations. 

Theorem (6.2.1)[178]: Let all notation be the same as above. We have 

𝐻∆𝑁
1 (ℝ𝑛) = 𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ𝑛) = 𝐻∆𝑁,∗
1 (ℝ𝑛) = 𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧

1 (ℝ𝑛) = 𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛) 

 and with equivalent norms  

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≈ ‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ𝑛) ≈ ‖𝑓‖𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ𝑛) ≈ ‖𝑓‖𝐻∆𝑁,𝑎𝑡𝑜𝑚

1 (ℝ𝑛)

≈ ‖𝑓+,𝑒‖𝐻1(ℝ𝑛) + ‖𝑓−,𝑒‖𝐻1(ℝ𝑛). 

Here 𝑓±,𝑒is the even extension of the restriction of 𝑓 fromℝ±
𝑛 . Namely,𝑓 ∈ 𝐻∆𝑁

1 (ℝ𝑛)if and 

only if 𝑓+,𝑒 ∈ 𝐻
1(ℝ𝑛)and𝑓−,𝑒 ∈ 𝐻

1(ℝ𝑛). 

We also obtain 𝑎 Fefferman–Stein decomposition of 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)in terms of the action 

of the Riesz transforms associated to the Neumann Laplacian on 𝐿∞(ℝ𝑛) functions. 

We then further show the connection between𝐵𝑀𝑂∆𝑁(ℝ
𝑛),𝐻∆𝑁

1 (ℝ𝑛), commutators of 

functions in 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)and Riesz transforms𝑅𝑁relative to∆𝑁 , and 𝑎 weak factorization 

of the space𝐻∆𝑁
1 (ℝ𝑛). We have the following theorem. 

Theorem (6.2.2)[178]: For 1 ≤ 𝑙 ≤ 𝑛, letΠ𝑙(ℎ, 𝑔) = ℎ. 𝑅𝑁,𝑙
∗ (𝑔) − 𝑔. 𝑅𝑁,𝑙(ℎ), where𝑅𝑁,𝑙 =

𝜕

𝜕𝑥1
∆𝑁
−
1

2is the 𝑙-th Riesz transform associated to the Neumann Laplacian and𝑅𝑁,𝑙
∗  is the 

adjoint operator of𝑅𝑁,𝑙. Then for any𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛) there exists sequences{𝜆𝑗

∗} ∈ ℓ1and 

functions 𝑔𝑗
𝑘 , ℎ𝑗

𝑘 ∈ 𝐿∞(ℝ𝑛)with compact supports such that𝑓 = ∑ ∑ 𝜆𝑗
𝑘∞

𝑗=1
∞
𝑘=1 Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘). 

Moreover, we have that: 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≈ inf {∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑗=1

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑘=1

: 𝑓∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗 , ℎ𝑗)

∞

𝑗=1

∞

𝑘=1

}. 

We then obtain the following new characterization of𝐵𝑀𝑂∆𝑁(ℝ
𝑛)in terms of the 

commutators with the Riesz transforms associated to∆𝑁. 
We point out that Theorem(6.2.2) and Theorem(6.2.27) can be extended to work for 

𝐿𝑝(ℝ𝑛) when 1 < 𝑝 < ∞. 

For0 < 𝛼 < 𝑛, the fractional operator ∆𝑁
−𝛼/2

of the operator∆𝑁is defined by 

∆𝑁
−𝛼/2

𝑓(𝑥) =
1

Γ(𝛼/2)
∫ 𝑒−𝑡∆𝑁(𝑓)(𝑥)

∞

0

𝑑𝑡

𝑡1−𝛼/2
. 

We collect the background for the Neumann Laplacian and the associated Riesz 

transforms. The related Hardy and BMO spaces associated to ∆𝑁are studied and their basic 

properties are collected. In particular, we demonstrate a collection of equivalent norms for 

𝐻∆𝑁
1 (ℝ𝑛), Theorem (6.2.18), and show the Fefferman–Stein decomposition of 

𝐵𝑀𝑂∆𝑁(ℝ
𝑛)holds, Corollary (6.2.19). We provide the proof of Theorems (6.2.2) and 

(6.2.27). The letter “𝐶” will denote, possibly different, constants that are independent of the 

essential variables. 

We now recall some notation and basic facts introduced in [65]. For any subset 𝐴 ⊂
ℝ𝑛and 𝑎 function𝑓:ℝ𝑛 → ℂ by𝑓|𝐴we denote the restriction of 𝑓 to 𝐴. Next we setℝ+

𝑛 =
{(𝑥′, 𝑥𝑛) ∈ ℝ

𝑛: 𝑥′ = (𝑥1, … , 𝑥𝑛−1) ∈ ℝ
𝑛−1, 𝑥𝑛 > 0}. For any function 𝑓 onℝ𝑛, we set 

𝑓+ = 𝑓|ℝ+𝑛and𝑓− = 𝑓|ℝ−𝑛 . 
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For any 𝑥 = (𝑥′, 𝑥𝑛) ∈ ℝ
𝑛we set�̃� = (𝑥′ − 𝑥𝑛). If 𝑓 is any function defined onℝ+

𝑛 , its 

even extension defined onℝ𝑛is 

𝑓𝑒(𝑥) = 𝑓(𝑥), if 𝑥 ∈ ℝ+
𝑛 ; 𝑓𝑒(𝑥) = 𝑓(�̃�), if𝑥 ∈ ℝ−

𝑛 .                       (60) 
We denote by ∆𝑛the Laplacian on ℝ𝑛. Next we recall the Neumann Laplacian on 

ℝ+
𝑛  and ℝ−

𝑛 . 
Consider the Neumann problem on the half line(0,∞) (see [181]):  

{

𝑤𝑡 − 𝑤𝑥𝑥 = 0 for0 < 𝑥 < ∞, 0 < 𝑡 < ∞,

𝑤(𝑥, 0) = 𝜙(𝑥),                                             

𝑤𝑥(0, 𝑡) = 0.                                                 
                       (61) 

Denote this corresponding Laplacian by ∆1,𝑁+. According to [181], we see that 

𝑤(𝑥, 𝑡) = 𝑒−𝑡∆1,𝑁+(𝜙)(𝑥). 
For 𝑛 > 1, we write ℝ+

𝑛 = ℝ𝑛−1 ×ℝ+. And we define the Neumann Laplacian on ℝ+
𝑛by 

∆𝑛,𝑁+= ∆𝑛−1 + ∆1,𝑁+ , 

 where∆𝑛−1is the Laplacian on ℝ𝑛−1 and ∆1,𝑁+is the Laplacian corresponding to (61). 

Similarly we can define Neumann Laplacian ∆𝑛,𝑁−onℝ−
𝑛 . 

We skip the index 𝑛, we denote by ∆ the Laplacian on ℝ𝑛, denote the Neumann 

Laplacian on ℝ+
𝑛  by ∆𝑁+, and Neumann Laplacian on ℝ−

𝑛  by ∆𝑁−. 

The Laplacian and Neumann Laplacian ∆𝑁±are positive definite self-adjoint operators. By 

the spectral theorem one can define the semigroups generated by these operators 

{exp(−𝑡∆), 𝑡 ≥ 0}and {exp(−𝑡∆𝑁±), 𝑡 ≥ 0}. By 𝑝𝑡(𝑥, 𝑦), 𝑝𝑡,∆𝑁+
(𝑥, 𝑦) and 𝑝𝑡,∆𝑁−

(𝑥, 𝑦) we 

denote the heat kernels corresponding to the semigroups generated by ∆,∆𝑁+ ,and ∆𝑁−, 

respectively. Then we have 

𝑝𝑡(𝑥, 𝑦) =
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥−𝑦|2

4𝑡 . 

From the reflection method (see [181]), we get  

𝑝𝑡,∆𝑁+
(𝑥, 𝑦) =

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 ) , 𝑥, 𝑦 ∈ ℝ+
𝑛 ; 

𝑝𝑡,∆𝑁−
(𝑥, 𝑦) =

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 ) , 𝑥, 𝑦 ∈ ℝ−
𝑛 . 

For any function 𝑓 onℝ+
𝑛 , we have 

exp(−𝑡∆𝑁+) 𝑓(𝑥) = exp(−𝑡∆) 𝑓𝑒(𝑥) 

 for all 𝑡 ≥ 0 and 𝑥 ∈ ℝ+
𝑛 . Similarly, for any function 𝑓 onℝ−

𝑛 ,  

exp(−𝑡∆𝑁−) 𝑓(𝑥) = exp(−𝑡∆) 𝑓𝑒(𝑥) 

for all 𝑡 ≥ 0 and 𝑥 ∈ ℝ−
𝑛 . 

Now let ∆𝑁be the uniquely determined unbounded operator acting on𝐿2(ℝ𝑛) such that 

(∆𝑁𝑓)+ = ∆𝑁+𝑓+ and(∆𝑁𝑓)− = ∆𝑁−𝑓−                             (62) 

 for all 𝑓:ℝ𝑛 → ℝ such that𝑓+ ∈ 𝑊
1,2(ℝ+

𝑛)and𝑓− ∈ 𝑊
1,2(ℝ−

𝑛). Then∆𝑁is 𝑎 positive self-

adjoint operator and 

(exp(−𝑡∆𝑁) 𝑓)+ = exp(−𝑡∆𝑁+) 𝑓+and(exp(−𝑡∆𝑁) 𝑓)− = exp(−𝑡∆𝑁−) 𝑓−.  

The heat kernel ofexp(−𝑡∆𝑁), denoted by𝑝𝑡,∆𝑁(𝑥, 𝑦), is then given as: 
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𝑝𝑡,∆𝑁(𝑥, 𝑦) =
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 )𝐻(𝑥𝑛𝑦𝑛),           (63) 

where𝐻:ℝ{0,1}is the Heaviside function given by 

 𝐻(𝑡) = 0, if 𝑡 < 0; 𝐻(𝑡) = 1 , if 𝑡 ≥ 0.                        (64) 
Let us note that 

(𝛼) All the operators∆, ∆𝑁+, ∆𝑁−, and∆𝑁are self-adjoint and they generate bounded 

analytic positive semigroups acting on all𝐿𝑝(ℝ𝑛)spaces for1 ≤ 𝑝 ≤ ∞ ; (𝛽) Suppose 

that𝑝𝑡,𝐿(𝑥, 𝑦)is the kernel corresponding to the semigroup generated by one of the 

operators 𝐿 listed in(𝛼). Then the kernel 𝑝𝑡,𝐿(𝑥, 𝑦) satisfies Gaussian bounds: 

|𝑝𝑡,𝐿(𝑥, 𝑦)| ≤
𝐶

𝑡
𝑛
2

𝑒−𝑐
|𝑥−𝑦|2

𝑡 ,                                              (65) 

 for all𝑥, 𝑦 ∈ Ω, whereΩ = ℝ𝑛for∆, ∆𝑁; Ω = ℝ+
𝑛 for∆𝑁+and Ω = ℝ−

𝑛for∆𝑁− . 

Next we consider the smoothness property of the heat kernel for∆,∆𝑁+, and∆𝑁−. 

Proposition (6.2.3)[178]: Suppose that 𝐿 is one of the operators∆𝑁+ , ∆𝑁−and∆𝑁. Then for 

𝑥, 𝑥′, 𝑦 ∈ ℝ+
𝑛(or∈ ℝ−

𝑛) with|𝑥 − 𝑥′| ≤
1

2
|𝑥 − 𝑦|, we have 

|𝑝𝑡,𝐿(𝑥, 𝑦) − 𝑝𝑡,𝐿(𝑥
′, 𝑦)| ≤ 𝐶

|𝑥 − 𝑥′|

(√𝑡 + |𝑥 − 𝑦|)

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+1 ;       (66) 

Symmetrically, for 𝑥, 𝑦, 𝑦′ ∈ ℝ+
𝑛(or∈ ℝ−

𝑛) with|𝑦 − 𝑦′| ≤
1

2
|𝑥 − 𝑦|,we have  

|𝑝𝑡,𝐿(𝑥, 𝑦) − 𝑝𝑡,𝐿(𝑥, 𝑦
′)| ≤ 𝐶

|𝑦 − 𝑦′|

(√𝑡 + |𝑥 − 𝑦|)

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+1 .             (67) 

Proof: Suppose𝑥, 𝑦 ∈ ℝ+
𝑛 . Then for𝑖 = 1 , . . . , 𝑛 − 1 , we have 

𝜕

𝜕𝑥𝑖
𝑝𝑡,∆𝑁+

(𝑥, 𝑦) = −
(𝑥𝑖 − 𝑦𝑖)

2𝑡

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 ). 

Moreover, 

𝜕

𝜕𝑥𝑛
𝑝𝑡,∆𝑁+

(𝑥, 𝑦) = −
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
+ 𝑒−

|𝑥𝑛−𝑦𝑛|
2

4𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
). 

Then we obtain that 

|∇𝑥𝑝𝑡,∆𝑁+
(𝑥, 𝑦)|

2
 

= ∑ |
𝜕

𝜕𝑥𝑖
𝑝𝑡,∆𝑁+

(𝑥, 𝑦)|

2𝑛−1

𝑖=1

+ |
𝜕

𝜕𝑥𝑛
𝑝𝑡,∆𝑁+

(𝑥, 𝑦)|

2

 

≤∑
(𝑥𝑖 − 𝑦𝑖)

2

4𝑡2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥′−𝑦′|

2

2𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 + 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡 )

2𝑛−1

𝑖=1

 

+2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥′−𝑦′|

2

2𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
)

2

 

+2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥′−𝑦′|

2

2𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
)

2
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≤ 𝐶∑
(𝑥𝑖 − 𝑦𝑖)

2

𝑡2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥−𝑦|2

2𝑡 + 2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥′−𝑦′|

2

2𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
)

2𝑛

𝑖=1

 

≤ 𝐶
|𝑥 − 𝑦|2

𝑡2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥−𝑦|2

2𝑡 + 2
1

(4𝜋𝑡)𝑛
𝑒−
|𝑥−𝑦|2

4𝑡 (𝑒−
|𝑥𝑛−𝑦𝑛|

2

8𝑡
(𝑥𝑛 − 𝑦𝑛)

2𝑡
)

2

 

≤ 𝐶
𝑡

(𝑡 + |𝑥 − 𝑦|2)𝑛+2
. 

Hence, it is easy to verify that 

|∇𝑥𝑝𝑡,∆𝑁+
(𝑥, 𝑦)| ≤ 𝐶

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+2 

and similarly we can obtain that 

|∇𝑥𝑝𝑡,∆𝑁+
(𝑥, 𝑦)| ≤ 𝐶

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+2, 

which implies that 

|𝑝𝑡,∆𝑁+
(𝑥, 𝑦) − 𝑝𝑡,∆𝑁+

(𝑥′, 𝑦)| ≤ 𝐶
|𝑥′ − 𝑥|

(√𝑡 + |𝑥 − 𝑦|)

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+1 

 for𝑥, 𝑥′, 𝑦 ∈ ℝ+
𝑛  with|𝑥 − 𝑥′| ≤

1

2
|𝑥 − 𝑦|, and 

|𝑝𝑡,∆𝑁+
(𝑥, 𝑦) − 𝑝𝑡,∆𝑁+

(𝑥, 𝑦′)| ≤ 𝐶
|𝑦 − 𝑦′|

(√𝑡 + |𝑥 − 𝑦|)

√𝑡

(√𝑡 + |𝑥 − 𝑦|)
𝑛+1 

for 𝑥, 𝑥′, 𝑦 ∈ ℝ+
𝑛with|𝑦 − 𝑦′| ≤

1

2
|𝑥 − 𝑦|. 

We can obtain similar estimates for the heat semigroup of∆𝑁−and∆𝑁. 

A fundamental object in our study are the Riesz transforms associated to the 

Neumann Laplacian. Recall that the Riesz transforms associated to the Neumann 

Laplacian are given by:𝑅𝑁 = ∇∆𝑁
−
1

2. We collect the formula for these kernels in the 

following proposition. 

Proposition (6.2.4)[178]: Denote by𝑅𝑁,𝑗(𝑥, 𝑦)the kernel of the 𝑗-th Riesz 

transform
𝜕

𝜕𝑥𝑗
∆𝑁
−
1

2 of∆𝑁. Then for1 ≤  𝑗 ≤ 𝑛 − 1 and for𝑥, 𝑦 ∈ ℝ+
𝑛we have: 

𝑅𝑁,𝑗(𝑥, 𝑦) = −𝐶𝑛(
𝑥𝑖 − 𝑦𝑖
|𝑥 − 𝑦|𝑛+1

+
𝑥𝑖 − 𝑦𝑖

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 − 𝑦𝑛|2)
𝑛+1
2

) 

And 

𝑅𝑁,𝑛(𝑥, 𝑦) = −𝐶𝑛 (
𝑥𝑖 − 𝑦𝑖
|𝑥 − 𝑦|𝑛+1

+
𝑥𝑛 + 𝑦𝑛

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

), 

where𝐶𝑛 =
Γ(
𝑛+1

2
)

𝜋
𝑛+1
2

.Similar expressions also hold for𝑅𝑁,𝑗(𝑥, 𝑦), 𝑗 = 1 , . . . , 𝑛, when 𝑥, 𝑦 ∈

ℝ−
𝑛 . 

Proof: Working from the definition of the square root of∆𝑁, i.e., 
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Δ𝑁
−
1
2 =

1

Γ (
1
2
)
∫ 𝑒−𝑡∆𝑁

𝑑𝑡

√𝑡

∞

0

, 

we have that for1 ≤ 𝑗 ≤ 𝑛 − 1: 

𝑅𝑁,𝑗(𝑥, 𝑦) =
1

Γ (
1
2
)

𝜕

𝜕𝑥𝑗
∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)

𝑑𝑡

√𝑡

∞

0

 

=
1

Γ (
1
2
)

𝜕

𝜕𝑥𝑗
(∫

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥−𝑦|2

4𝑡
𝑑𝑡

√𝑡

∞

0

+ ∫
1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
𝑑𝑡

√𝑡

∞

0

) 

= −
Γ (
𝑛 + 1
2
)

(𝜋)
𝑛+1
2

(
𝑥𝑖 − 𝑦𝑖
|𝑥 − 𝑦|𝑛+1

+
𝑥𝑖 − 𝑦𝑖

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

). 

For 𝑗 = 𝑛 and for 𝑥, 𝑦 ∈ ℝ+
𝑛we again observe: 

𝑅𝑁,𝑛(𝑥, 𝑦) =
√𝜋

2

𝜕

𝜕𝑥𝑛
∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)

𝑑𝑡

√𝑡

∞

0

 

= −
Γ (
𝑛 + 1
2
)

(𝜋)
𝑛+1
2

(
𝑥𝑛 − 𝑦𝑛
|𝑥 − 𝑦|𝑛+1

+
𝑥𝑛 − 𝑦𝑛

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

). 

We next make the observation that kernels 𝑅𝑁,𝑗(𝑥, 𝑦)are Calderón–Zygmund kernels. 

Proposition (6.2.5)[178]: Denote by 𝑅𝑁(𝑥, 𝑦)the kernel of the vector of Riesz transforms 

∇∆𝑁
−
1

2.Then: 

𝑅𝑁(𝑥, 𝑦) = (𝑅𝑁,1(𝑥, 𝑦), … , 𝑅𝑁,𝑛(𝑥, 𝑦))𝐻(𝑥𝑛, 𝑦𝑛),                       (68) 

with𝐻(𝑡) the Heaviside function defined in(64). Moreover, we have that  

|𝑅𝑁(𝑥, 𝑦)| ≤ 𝐶𝑛
1

|𝑥 − 𝑦|2
, 

And 

|𝑅𝑁(𝑥, 𝑦) − 𝑅𝑁(𝑥0, 𝑦)| + |𝑅𝑁(𝑥, 𝑦) − 𝑅𝑁(𝑦, 𝑥0)| ≤ 𝐶
|𝑥 − 𝑥0|

|𝑥 − 𝑦|𝑛+1
 

for𝑥, 𝑥0 ∈ ℝ+
𝑛  (or 𝑥, 𝑥0, 𝑦 ∈ ℝ−

𝑛 )with|𝑥 − 𝑥0| ≤
1

2
|𝑥 − 𝑦|. 

Proof: We first claim that for𝑗 = 1 , . . . , 𝑛, and𝑥, 𝑦 ∈ ℝ+
𝑛(or 𝑥, 𝑦 ∈ ℝ−

𝑛 )  

|𝑅𝑁,𝑗(𝑥, 𝑦)| ≤ 𝐶𝑛
1

|𝑥 − 𝑦|𝑛
. 

In fact, from Proposition(6.2.4), it is direct that for1 ≤  𝑗 ≤ 𝑛 − 1, 

|𝑥𝑗 − 𝑦𝑗|

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

≤
|𝑥𝑗 − 𝑦𝑗|

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

≤
1

|𝑥 − 𝑦|𝑛
 

and for𝑗 = 𝑛, 

|𝑥𝑛 − 𝑦𝑛|

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

≤
|𝑥𝑗 − 𝑦𝑗|

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|2)
𝑛+1
2

≤
1

|𝑥 − 𝑦|𝑛
, 
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where we use the fact that 𝑥, 𝑥0, 𝑦 ∈ ℝ+
𝑛  (or 𝑥, 𝑥0, 𝑦 ∈ ℝ−

𝑛 )and hence𝑥𝑗 − 𝑦𝑗 >

|𝑥𝑗 − 𝑦𝑗|for1 ≤  𝑗 ≤ 𝑛. 

Similarly, by considering the estimates for the terms
𝜕

𝜕𝑥𝑗
𝑅𝑁,𝑗(𝑥, 𝑦)and 

𝜕

𝜕𝑥𝑗
𝑅𝑁,𝑗(𝑥, 𝑦), we 

obtain that 

|𝑅𝑁,𝑗(𝑥, 𝑦) − 𝑅𝑁,𝑗(𝑥0, 𝑦)| + |𝑅𝑁,𝑗(𝑥, 𝑦) − 𝑅𝑁,𝑗(𝑦, 𝑥0)| ≤ 𝐶
|𝑥 − 𝑥0|

|𝑥 − 𝑦|𝑛+1
 

for 𝑥, 𝑥0, 𝑦 ∈ ℝ+
𝑛  (or 𝑥, 𝑥0, 𝑦 ∈ ℝ−

𝑛)with|𝑥 − 𝑥0| ≤
1

2
|𝑥 − 𝑦|. 

For 0 < 𝛼 < 𝑛, denote by𝐾(𝑥, 𝑦) the kernel of the classical fractional operator 

∆−𝛼/2, which is defined by 

∆−𝛼/2𝑓(𝑥) =
1

Γ(𝛼/2)
∫ 𝑒−𝑡Δ𝑓(𝑥)

𝑑𝑡

𝑡1−𝛼/2

∞

0

. 

 We know that 

𝐾(𝑥, 𝑦) =
𝐶𝑛,𝛼

|𝑥 − 𝑦|𝑛−𝛼
, 

Where𝐶𝑛,𝛼 =
Γ(
𝑛

2
−
𝛼

2
)

Γ(
𝛼

2
)

1

𝜋
𝑛

2
2𝛼

. It is well known that when𝑏 ∈ 𝐵𝑀𝑂(ℝ𝑛), the 

commutator[𝑏, ∆−𝛼/2] is bounded from 𝐿𝑝(ℝ𝑛)to𝐿𝑞(ℝ𝑛)for1 < 𝑝 <  𝑛/𝛼 and1/𝑞 =

1/𝑝 − 𝛼/𝑛. See[179]. 

Proposition (6.2.6)[178]: Denote by 𝐾𝑁(𝑥, 𝑦)the kernel of the fractional operator∆𝑁
−𝛼/2

. 
The 𝑥, 𝑦 ∈ ℝ+

𝑛we have: 

𝐾𝑁(𝑥, 𝑦) = 𝐾(𝑥, 𝑦) + 𝐾𝑁(𝑥, 𝑦) 
with 

𝐾𝑁(𝑥, 𝑦) ≔ 𝐶𝑛,𝛼 =
1

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|
2)
𝑛
2−
𝛼
2

. 

Similar expressions for 𝐾𝑁(𝑥, 𝑦) when 𝑥, 𝑦 ∈ ℝ−
𝑛  also hold. 

Proof:  For 𝑥, 𝑦 ∈ ℝ+
𝑛 , working from the fraction of the square root of ∆𝑁we have that: 

 

𝐾𝑁(𝑥, 𝑦) =
1

Γ(𝛼/2)
∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)

𝑑𝑡

𝑡1−𝛼/2

∞

0

 

=
1

Γ(𝛼/2)
∫

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥−𝑦|2

4𝑡

∞

0

𝑑𝑡

𝑡1−𝛼/2
+

1

Γ(𝛼/2)
∫

1

(4𝜋𝑡)
𝑛
2

𝑒−
|𝑥′−𝑦′|

2

4𝑡 𝑒−
|𝑥𝑛−𝑦𝑛|

2

4𝑡
𝑑𝑡

𝑡1−𝛼/2

∞

0

 

= 𝐶𝑛,𝛼 (
1

|𝑥 − 𝑦|𝑛−𝛼
+

1

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|
2)
𝑛
2
−
𝛼
2

) 

= 𝐾(𝑥, 𝑦) + 𝐾𝑁(𝑥, 𝑦), 
where we set 

𝐾𝑁(𝑥, 𝑦) = 𝐶𝑛,𝛼
1

(|𝑥′ − 𝑦′|2 + |𝑥𝑛 + 𝑦𝑛|
2)
𝑛
2−
𝛼
2

. 

We now recall the definition and some fundamental properties of𝐵𝑀𝑂∆𝑁(ℝ
𝑛) 

from[5]. 
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Define 

ℳ = {𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ𝑛): ∃𝑑 > 0𝑠. 𝑡. ∫

|𝑓(𝑥)|2

1 + |𝑛|𝑛+𝑑

 

ℝ𝑛

𝑑𝑥 < ∞}. 

Definition (6.2.7)[178]: ([65]). We say that𝑓 ∈ ℳ is of bounded mean oscillation 

associated with∆𝑁, abbreviated as𝐵𝑀𝑂∆𝑁(ℝ
𝑛), if  

‖𝑓‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛) = sup

𝐵(𝑦,𝑟)

1

|𝐵(𝑦, 𝑟)|
∫ |𝑓(𝑥) − exp(−𝑟2∆𝑁) 𝑓(𝑥)|

 

𝐵(𝑦,𝑟)

𝑑𝑥 < ,         (69) 

where the supremum is taken over all balls𝐵(𝑦, 𝑟) inℝ𝑛. The smallest bound for 

which(69) is satisfied is then taken to be the norm of f in this space, and is denoted 

by‖𝑓‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛). 

Definition (6.2.8)[178]: ([65]). 𝐴 function𝑓 onℝ+
𝑛  said to be in𝐵𝑀𝑂𝑟(ℝ+

𝑛)if there exists 

𝐹 ∈ 𝐵𝑀𝑂(ℝ𝑛)such that𝐹|ℝ+𝑛 = 𝑓. If𝑓 ∈ 𝐵𝑀𝑂𝑟(ℝ+
𝑛), then we set  

‖𝑓‖𝐵𝑀𝑂𝑟(ℝ+𝑛) = inf{‖𝐹‖𝐵𝑀𝑂𝑟(ℝ+𝑛): 𝐹|ℝ+𝑛 = 𝑓}. 

Definition (6.2.9)[178]:  ([65]). For any function𝑓 ∈ 𝐿𝑙𝑜𝑐
1 (ℝ+

𝑛), define  

‖𝑓‖𝐵𝑀𝑂𝑒(ℝ+𝑛) = ‖𝑓𝑒‖𝐵𝑀𝑂(ℝ+𝑛), 

where𝑓𝑒is defined in(60). We denote by𝐵𝑀𝑂𝑒(ℝ+
𝑛)the corresponding Banach space. 

Similarly we can define the spaces𝐵𝑀𝑂𝑟(ℝ−
𝑛)and𝐵𝑀𝑂𝑒(ℝ−

𝑛). 
Proposition (6.2.10)[178]: ([65]). The spaces𝐵𝑀𝑂𝑟(ℝ+

𝑛)and𝐵𝑀𝑂𝑒(ℝ+
𝑛) coincide, and 

their norms are equivalent. Similar result holds for𝐵𝑀𝑂𝑟(ℝ−
𝑛)and 𝐵𝑀𝑂𝑒(ℝ+

𝑛). 
Proposition (6.2.11)[178]: ([65]). The Neumann 𝐵𝑀𝑂 space𝐵𝑀𝑂∆𝑁(ℝ

𝑛) can be 

described in the following way: 

𝐵𝑀𝑂∆𝑁(ℝ
𝑛) = {𝑓 ∈ ℳ: 𝑓+ ∈ 𝐵𝑀𝑂𝑟(ℝ+

𝑛)𝑎𝑛𝑑𝑓− ∈ 𝐵𝑀𝑂𝑟(ℝ−
𝑛)}. 

As 𝑎 consequence of the results from[65]listed above, we obtain that𝑓 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)if 

and only if𝑓+,𝑒, 𝑓−,𝑒 ∈ 𝐵𝑀𝑂(ℝ
𝑛). 𝐴 final key fact that plays 𝑎 role in our analysis is the 

duality between𝐵𝑀𝑂∆𝑁(ℝ
𝑛) and 𝐻∆𝑁

1 (ℝ𝑛). 

Proposition (6.2.12)[178]: ([65]). The dual space of𝐻∆𝑁
1 (ℝ𝑛)is𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 

We provide 𝑎 deeper study of the space𝐻1(ℝ𝑛). We first provide several equivalent 

characterizations of𝐻∆𝑁
1 (ℝ𝑛). To do so, we need the following definitions of the Hardy 

space associated to∆𝑁 in terms of the radial maximal function, the non-tangential maximal 

function, the Riesz transforms, and atoms. As one might expect, these definitions all turn 

out to be equivalent as shown below in Theorem(6.2.18). 

Definition (6.2.13)[178]: We define𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛) = {𝑓𝐿1(ℝ𝑛): 𝑓∆𝑁

+ ∈ 𝐿1(ℝ𝑛)}with the 

norm ‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛) = ‖𝑓∆𝑁

+ (ℝ𝑛)‖
𝐿1(ℝ𝑛)

, where𝑓∆𝑁
+ (𝑥) = sup

𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)|. 

Definition (6.2.14)[178]: We define𝐻∆𝑁,∗
1 (ℝ𝑛) = {𝑓𝐿1(ℝ𝑛): 𝑓∆𝑁

∗ ∈ 𝐿1(ℝ𝑛)}with the norm 

‖𝑓‖𝐻∆𝑁,∗
1 (ℝ𝑛) = ‖𝑓∆𝑁

+ (ℝ𝑛)‖
𝐿1(ℝ𝑛)

, where𝑓∆𝑁
∗ (𝑥) = sup

𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)|. 

 Definition (6.2.15)[178]: We define 

𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ𝑛) = {𝑓𝐿1(ℝ𝑛):

𝜕

𝜕𝑥𝑙
∆𝑁
+(ℝ𝑛)𝑓 ∈ 𝐿1(ℝ𝑛)for 1 ≤ 𝑙 ≤ 𝑛}. 

with the norm𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ𝑛) = ‖𝑓‖𝐿1(ℝ𝑛) + ∑ ‖

𝜕

𝜕𝑥𝑙
∆𝑁
+(ℝ𝑛)‖

𝐿1(ℝ𝑛)

𝑛
𝑖=1   
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Next we define the atoms for𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛), which we adapt from 𝑎 very recent result of 

Song and Yan[158]. 
Definition (6.2.16)[178]: Given𝑀 ∈ ℕ . We say that 𝑎 function𝑎(𝑥)  ∈ 𝐿∞(ℝ𝑛) is an 

𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛)-atom, if there exist 𝑎 function 𝑏 in the domain of∆𝑁

𝑀and 𝑎 ball 𝐵 ⊂ ℝ𝑛such 

that 

(i) 𝑎 = ∆𝑁
𝑀𝑏; 

(ii) supp ∆𝑁
𝑘 𝑏 ⊂ 𝐵, 𝑘 = 0,1, … ,𝑀; 

    (iii)     ‖(𝑟𝐵
2∆𝑁)

𝑘𝑏‖
𝐿∞(ℝ𝑛)

𝑟𝐵
2𝑀|𝐵|−1, 𝑘 = 0,1, … ,𝑀; 

Definition (6.2.17)[178]: We say that𝑓 = ∑ 𝜆𝑗𝑎𝑗𝑗 is an atomic representation of𝑓 if {𝜆𝑗} ∈

ℓ1, each 𝑎𝑗 is an 𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛)atom, and the sum converges in𝐿2(ℝ𝑛). Set 

𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛) = {𝑓 ∈ 𝐿2(ℝ𝑛): 𝑓has an atomic representation } 

 with the norm‖𝑓‖�̃�∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛)given by 

inf {∑|𝜆𝑗|

𝑗

: 𝑓 =∑𝜆𝑗𝑎𝑗
𝑗

is an atomic representation }. 

 The space𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛)is defined as the completion of𝐻∆𝑁,𝑎𝑡𝑜𝑚

1 (ℝ𝑛)with respect to this 

norm. 

We now collection the equivalence of all these definitions and moreover provide 𝑎 link 

between𝐻1(ℝ𝑛)and𝐻∆𝑁
1 (ℝ𝑛). 

Theorem (6.2.18)[178]: Let all the notation be as above. Then, 

𝐻∆𝑁
1 (ℝ𝑛) = 𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ𝑛) = 𝐻∆𝑁,∗
1 (ℝ𝑛) = 𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧

1 (ℝ𝑛) = 𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ𝑛) 

and they have equivalent norms 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≈ ‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ𝑛)‖𝑓‖𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ𝑛)‖𝑓‖𝐻∆𝑁,𝑎𝑡𝑜𝑚

1 (ℝ𝑛) 

≈ ‖𝑓+,𝑒‖𝐻1(ℝ𝑛) + ‖𝑓−,𝑒‖𝐻1(ℝ𝑛). 

Namely,𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛)if and only if𝑓+,𝑒 ∈ 𝐻

1(ℝ𝑛)and𝑓−,𝑒 ∈ 𝐻
1(ℝ𝑛). 

Proof: We recall that the Hardy space associated with∆𝑁is defined as the set of functions 

{𝑓 ∈ 𝐿1(ℝ𝑛): ‖𝑆∆𝑁(𝑓)‖𝐿1(ℝ𝑛)
< ∞}in the norm of‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛) = ‖𝑆∆𝑁(𝑓)‖𝐿1(ℝ𝑛)
 where 

𝑆∆𝑁(𝑓)(𝑥) = (∫ ∫ |𝑄𝑡2𝑓(𝑦)|
2 

|𝑦−𝑥|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛+1
)

1

2
, and𝑄𝑡2 = 𝑡

2∆𝑁 exp(−𝑡
2∆𝑁). 

We now consider the operator𝑄𝑡 = 𝑡∆𝑁 exp(−𝑡∆𝑁) = −𝑡
𝑑

𝑑𝑡
exp(−𝑡∆𝑁)for any 𝑡 > 0(see 

[71]). Then we have 

𝑄𝑡2𝑓(𝑥) = 𝑡
2∆𝑁 exp(−𝑡

2∆𝑁) 𝑓(𝑥) = ∫−
𝑡

2

𝜕

𝜕𝑡
𝑝𝑡2,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦.

 

ℝ𝑛

 

From the definition of𝑝𝑡,∆𝑁(𝑥, 𝑦), see(63), we have that for any 𝑥 ∈ ℝ+
𝑛 , 

𝑡2∆𝑁 exp(−𝑡
2∆𝑁) 𝑓(𝑥) = ∫−

𝑡

2

𝜕

𝜕𝑡
𝑝𝑡2,∆𝑁(𝑥, 𝑦)𝑓+(𝑦)𝑑𝑦

 

ℝ+
𝑛

 

= ∫−
𝑡

2

𝜕

𝜕𝑡
𝑝𝑡2(𝑥, 𝑦)𝑓+,𝑒(𝑦)𝑑𝑦

 

ℝ𝑛

 

= 𝑡2∆ exp(−𝑡2∆𝑁) 𝑓+,𝑒(𝑥). 
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Similarly, for any 𝑥 ∈ ℝ−
𝑛  , we have𝑡2∆𝑁 exp(−𝑡

2∆𝑁) 𝑓(𝑥) =
𝑡2∆ exp(−𝑡2∆) 𝑓−,𝑒(𝑥).Moreover, by 𝑎 change of variable, 

𝑡2∆𝑁 exp(−𝑡
2∆𝑁) 𝑓(𝑥) = −𝑡

2∆ exp(−𝑡2∆) 𝑓+,𝑒(�̃�)for any 𝑡 > 0, 𝑥 ∈ ℝ+
𝑛 ;          (70) 

𝑡2∆𝑁 exp(−𝑡
2∆𝑁) 𝑓(𝑥) = −𝑡

2∆ exp(−𝑡2∆) 𝑓−,𝑒(�̃�)for any 𝑡 > 0, 𝑥 ∈ ℝ−
𝑛  

Then from(70) we have 

𝑆∆𝑁(𝑓)(𝑥)
2 = ∫ ∫ |𝑡2∆𝑁 exp(−𝑡

2∆𝑁) 𝑓(𝑥)|
2

 

|𝑥−𝑦|<𝑡,𝑦∈ℝ+
𝑛

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

+∫ ∫ |𝑡2∆𝑁 exp(−𝑡
2∆𝑁) 𝑓(𝑥)|

2

 

|𝑥−𝑦|<𝑡,𝑦∈ℝ+
𝑛

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

= ∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓+,𝑒(𝑦)|
2

 

|𝑥−𝑦|<𝑡,𝑦∈ℝ+
𝑛

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

+∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓−,𝑒(𝑦)|
2

 

|𝑥−𝑦|<𝑡,𝑦∈ℝ−
𝑛

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

=
1

2
(∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓+,𝑒(𝑦)|

2

 

|𝑥−𝑦|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛

+∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓−,𝑒(𝑦)|
2

 

|𝑥−𝑦|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
), 

which implies that𝑆∆𝑁(𝑓)(𝑥) ≤
√2

2
(𝑆(𝑓+,𝑒)(𝑥) + 𝑆(𝑓−,𝑒)(𝑦)). Conversely, 

𝑆(𝑓+,𝑒)(𝑥)
2 = ∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓+,𝑒(𝑦)|

2

 

|𝑥−𝑦|<𝑡

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

= 2∫ ∫ |𝑡2∆ exp(−𝑡2∆) 𝑓+,𝑒(𝑦)|
2

 

|𝑥−𝑦|<𝑡,𝑦∈ℝ+
𝑛

∞

0

𝑑𝑦𝑑𝑡

𝑡𝑛
 

≤ 2𝑆∆𝑁(𝑓)(𝑥)
2. 

Similarly we have 𝑆(𝑓−,𝑒)(𝑥)
2 ≤ 2𝑆∆𝑁(𝑓)(𝑥)

2. Hence, we obtain that 𝑆(𝑓+,𝑒)(𝑥) +

𝑆(𝑓−,𝑒)(𝑥) ≤ 2√2𝑆∆𝑁(𝑓)(𝑥). As 𝑎 consequence, we have 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) = ∫|𝑆∆𝑁(𝑓)(𝑥)|

 

ℝ𝑛

𝑑𝑥 ≈ ∫|𝑆(𝑓+,𝑒)(𝑥)|

 

ℝ𝑛

𝑑𝑥 + ∫|𝑆(𝑓−,𝑒)(𝑥)|

 

ℝ𝑛

𝑑𝑥 

= ‖𝑓+,𝑒‖𝐻1(ℝ𝑛) + ‖𝑓−,𝑒‖𝐻1(ℝ𝑛).                                                                (71) 

Next we turn to 𝐻∆𝐷,𝑚𝑎𝑥
1 (ℝ𝑛). From(63) we can see that for any 𝑡 ≥ 0 and𝑥 ∈ ℝ+

𝑛 ,  

exp(−𝑡2∆𝑁) 𝑓(𝑥) = ∫𝑝𝑡2,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

= ∫𝑝𝑡2,∆𝑁(𝑥, 𝑦)𝑓+(𝑦)𝑑𝑦.

 

ℝ+
𝑛
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= ∫𝑝𝑡2(𝑥, 𝑦)𝑓+,𝑒(𝑦)𝑑𝑦

 

ℝ𝑛

= exp(−𝑡2∆)𝑓+,𝑒(𝑥). 

Similarly,exp(−𝑡2∆𝑁) 𝑓(𝑥) = exp(−𝑡
2∆)𝑓+,𝑒(𝑥)for any 𝑡 ≥ 0 and 𝑥 ∈ ℝ−

𝑛 . Thus,  

sup
𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)| = sup

𝑡>0
|exp(−𝑡2∆)𝑓+,𝑒(𝑥)| for any𝑥 ∈ ℝ+

𝑛 ;                  (72) 

sup
𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)| = sup

𝑡>0
|exp(−𝑡2∆)𝑓−,𝑒(𝑥)| for any𝑥 ∈ ℝ−

𝑛 . 

Again, by 𝑎 change of variable, we have that 

exp(−𝑡2∆𝑁) 𝑓(𝑥) = −exp(−𝑡
2∆)𝑓+,𝑒(�̃�)for any 𝑡 > 0, 𝑥 ∈ ℝ+

𝑛 ;                  (73) 

exp(−𝑡2∆𝑁) 𝑓(𝑥) = − exp(−𝑡
2∆) 𝑓−,𝑒(�̃�)for any 𝑡 > 0, 𝑥 ∈ ℝ−

𝑛 . 

Then, for any 𝑓 ∈ 𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛), from(72) and(73) we can obtain that 

‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛) = ∫|𝑓∆𝑁

+ (𝑥)|

 

ℝ+
𝑛

𝑑𝑥 + ∫|𝑓∆𝑁
+ (𝑥)|

 

ℝ−
𝑛

𝑑𝑥                                          (74) 

= ∫sup
𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)|

 

ℝ+
𝑛

𝑑𝑥 + ∫ sup
𝑡>0
|exp(−𝑡2∆𝑁) 𝑓(𝑥)|

 

ℝ−
𝑛

𝑑𝑥 

= ∫sup
𝑡>0
|exp(−𝑡2∆)𝑓+,𝑒(𝑥)|

 

ℝ+
𝑛

𝑑𝑥 + ∫ sup
𝑡>0
|exp(−𝑡2∆)𝑓−,𝑒(𝑥)|

 

ℝ−
𝑛

𝑑𝑥 

=
1

2
( ∫ sup

𝑡>0
|exp(−𝑡2∆)𝑓+,𝑒(𝑥)|

 

ℝ𝑛

𝑑𝑥 + ∫ sup
𝑡>0
|exp(−𝑡2∆) 𝑓−,𝑒(𝑥)|

 

ℝ𝑛

𝑑𝑥) 

=
1

2
(‖(𝑓+,𝑒)

+
‖
𝐿1(ℝ𝑛)

+ ‖(𝑓−,𝑒)
+
‖
𝐿1(ℝ𝑛)

) 

=
1

2
(‖𝑓+,𝑒‖𝐻1(ℝ𝑛) + ‖𝑓−,𝑒‖𝐻1(ℝ𝑛)), 

where 𝑓+(𝑥) = sup
𝑡>0
|𝑝𝑡2 ∗ 𝑓(𝑥)|is the classical maximal function as defined in (74). 

Thus(74) yields that 𝑓 ∈ 𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ𝑛)if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ𝑛)and 𝑓−,𝑒 ∈

𝐻1(ℝ𝑛).We now consider the Hardy space 𝐻∆𝑁,∗
1 (ℝ𝑛)via the non-tangential maximal 

function. Note that 

𝑓∆𝑁
∗ (𝑥) = sup

|𝑥−𝑦|<𝑡
|exp(−𝑡2∆𝑁) 𝑓(𝑦)| 

≤ sup
|𝑥−𝑦|<𝑡,𝑦∈ℝ+

𝑛
|exp(−𝑡2∆𝑁) 𝑓(𝑦)| + sup

|𝑥−𝑦|<𝑡,𝑦∈ℝ−
𝑛
|exp(−𝑡2∆𝑁) 𝑓(𝑦)| 

≤ sup
|𝑥−𝑦|<𝑡,𝑦∈ℝ+

𝑛
|exp(−𝑡2∆) 𝑓+,𝑒(𝑦)| + sup

|𝑥−𝑦|<𝑡,𝑦∈ℝ−
𝑛
|exp(−𝑡2∆)𝑓−,𝑒(𝑦)| 

≤ sup
|𝑥−𝑦|<𝑡

|exp(−𝑡2∆) 𝑓+,𝑒(𝑦)| + sup
|𝑥−𝑦|<𝑡

|exp(−𝑡2∆) 𝑓−,𝑒(𝑦)| 

= (𝑓+,𝑒)
∗
(𝑥) + (𝑓−,𝑒)

∗
(𝑥), 

where 𝑓∗(𝑥) = sup
|𝑥−𝑦|<𝑡

|𝑝𝑡2 ∗ 𝑓(𝑦)|is the classical non-tangential maximal function. Hence 

‖𝑓∆𝑁
∗ (𝑥)‖

𝐿1(ℝ𝑛)
≤ ‖(𝑓+,𝑒)

∗
‖
𝐿1(ℝ𝑛)

+ ‖(𝑓−,𝑒)
∗
‖
𝐿1(ℝ𝑛)

 . Moreover, we have  

(𝑓+,𝑒)
∗
(𝑥) = sup

|𝑥−𝑦|<𝑡
|exp(−𝑡2∆)𝑓+,𝑒(𝑦)| 

≤ sup
|𝑥−𝑦|<𝑡,𝑦∈ℝ+

𝑛
|exp(−𝑡2∆) 𝑓+,𝑒(𝑦)| + sup

|𝑥−𝑦|<𝑡,𝑦∈ℝ−
𝑛
|exp(−𝑡2∆)𝑓−,𝑒(𝑦)| 



242 

≤ 2 sup
|𝑥−𝑦|<𝑡

|exp(−𝑡2∆𝑁) 𝑓(𝑦)| 

≤ 2𝑓∆𝑁
∗ (𝑥) 

Thus, ‖(𝑓+,𝑒)
∗
‖
𝐿1(ℝ𝑛)

≤ 2‖𝑓∆𝑁
∗ (𝑥)‖

𝐿1(ℝ𝑛)
. Similarly we obtain ‖(𝑓−,𝑒)

∗
‖
1
≤

2‖𝑓∆𝑁
∗ (𝑥)‖

𝐿1(ℝ𝑛)
. This implies that 

‖𝑓∆𝑁
∗ (𝑥)‖

1
≈ ‖(𝑓+,𝑒)

∗
‖
𝐿1(ℝ𝑛)

+ ‖(𝑓−,𝑒)
∗
‖
𝐿1(ℝ𝑛)

.                       (75) 

Thus,(75) yields that 𝑓 ∈ 𝐻∆𝑁,∗
1 (ℝ𝑛)if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ𝑛)and 𝑓−,𝑒 ∈ 𝐻
1(ℝ𝑛).As 

for the Riesz transform characterization of the Hardy space𝐻∆𝑁
1 (ℝ𝑛), it suffices to note that 

when 𝑥 ∈ ℝ+
𝑛 , 

∇∆𝑁
−
1
2𝑓(𝑥) = ∫𝐾𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

= ∫𝑅𝑁(𝑥, 𝑦)𝑓+(𝑦)𝑑𝑦

 

ℝ+
𝑛

= ∫𝑅(𝑥, 𝑦)𝑓+,𝑒(𝑦)𝑑𝑦

 

ℝ𝑛

 

= ∇∆𝑁
−
1
2𝑓+,𝑒(𝑥) 

and that when 𝑥 ∈ ℝ−
𝑛 ,  

∇∆𝑁
−
1
2𝑓(𝑥) = ∇∆𝑁

−
1
2𝑓−,𝑒(𝑥). 

Thus, 𝑓 ∈ 𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ𝑛)if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ𝑛)and𝑓−,𝑒 ∈ 𝐻
1(ℝ𝑛). 

Finally, for the atomic decomposition, in Song and Yan[158], they already obtained 

that𝐻∆𝑁,∗
1 (ℝ𝑛) = 𝐻∆𝑁,𝑎𝑡𝑜𝑚

1 (ℝ𝑛). See [158] for this fact. 

We now prove the Fefferman–Stein type representation for the space 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). 

Corollary (6.2.19)[178]: The following are equivalent for 𝑎 function𝑏: 

(i) 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛); 

(ii) There exists 𝑏0 , 𝑏1, … , 𝑏𝑛 ∈ 𝐿
∞(ℝ𝑛)such that 𝑏 = 𝑏0 + ∑ 𝑅𝑁,𝑗

∗ 𝑏𝑗
𝑛
𝑗=1 , where 𝑅𝑁,𝑗

∗ is 

the adjoint operator of 𝑅𝑁,𝑗. 

Proof. The proof is as in[74]. Let 𝐵 = ⨁𝑗=0
𝑛 𝐿1(ℝ𝑛)and norm 𝐵 by ∑ ‖𝑓‖𝐿1(ℝ𝑛)

𝑛
𝑗=0 . We 

have that 𝐵∗ = ⨁𝑗=0
𝑛 𝐿∞(ℝ𝑛). Let 𝑆 be the subspace of 𝐵 given by 

𝑆 = {(𝑓, 𝑅𝑁,1𝑓, … , 𝑅𝑁,𝑛𝑓): 𝑓 ∈ 𝐿
1(ℝ𝑛)}. 

 We have that 𝑆 is 𝑎 closed subspace and that𝑓 → (𝑓, 𝑅𝑁,1𝑓,… , 𝑅𝑁,𝑛𝑓)is 𝑎 isometry of 

𝐻∆𝑁
1 (ℝ𝑛) to 𝑆. Linear functionals on 𝑆 and 𝐻∆𝑁

1 (ℝ𝑛)can be identified in an obvious way, 

hence any continuous linear functional on 𝐻∆𝑁
1 (ℝ𝑛)can be extended by Hahn-Banach to 𝑎 

continuous linear functional on 𝐵 and can be identified with a vector of 

functions(𝑏0, 𝑏1, … , 𝑏𝑛)with each 𝑏𝑗 ∈ 𝐿
∞(ℝ𝑛). 

We use this conclusion in the following way. Let ℓ be 𝑎 continuous linear functional on 

𝐻∆𝑁
1 (ℝ𝑛). Then by Proposition(6.2.12) there is 𝑎 function 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ

𝑛)so that:  

∫𝑓(𝑥)𝑏(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥

 

ℝ𝑛

= ℓ(𝑓). 

However, by the discussion above, and by restricting the extended linear functional back 

to 𝐻∆𝑁
1 (ℝ𝑛)we have for(𝑓, 𝑅𝑁,1𝑓,… , 𝑅𝑁,𝑛𝑓) = (𝑓0, … , 𝑓𝑛): 

ℓ(𝑓) =∑ ∫𝑓𝑗(𝑥)𝑏𝑗(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

 

ℝ𝑛

𝑛

𝑗=0

. 
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 Using the definition of the 𝑓𝑗 = 𝑅𝑁,𝑗𝑓 we see that:  

ℓ(𝑓) ∫ 𝑓(𝑥) (𝑏0(𝑥) +∑𝑅𝑁,𝑗
∗ 𝑏𝑗(𝑥)

𝑛

𝑗=1

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑑𝑥

 

ℝ𝑛

. 

This then gives the decomposition that any 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)can be written as: 

𝑏 = 𝑏0 +∑𝑅𝑁,𝑗
∗ 𝑏𝑗

𝑛

𝑗=1

 

with 𝑏𝑗 ∈ 𝐿
∞(ℝ𝑛). 

For the converse, we simply observe that from our Theorem(6.2.18), we obtained that ℝ𝑛 

maps 𝐻∆𝑁
1 (ℝ𝑛) to 𝐿1(ℝ𝑛). Hence, the boundedness of the Riesz transform 𝑅𝑁

∗  from 

𝐿∞(ℝ𝑛) to 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)follows from duality of 𝐻∆𝑁

1 (ℝ𝑛) with 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). We then 

have that any 𝑏 that can be written as: 

𝑏 = 𝑏0 +∑𝑅𝑁,𝑗
∗ 𝑏𝑗

𝑛

𝑗=1

 

with𝑏𝑗 ∈ 𝐿
∞(ℝ𝑛)must belong to𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 

 We next note that𝐻∆𝑁
1 (ℝ𝑛)is 𝑎 proper subspace of the classical 𝐻1(ℝ𝑛), which was 

proved by Yan in [53] from the viewpoint of the semigroup generated by ∆𝑁. And we now 

give 𝑎 direct proof and provide 𝑎 specific function 𝑓 which lies in 𝐻1(ℝ𝑛)but does not 

belong to 𝐻∆𝑁
1 (ℝ𝑛). 𝐴 related claim is made in [65]. 

Theorem (6.2.20)[178]: ([53]). 𝐻∆𝑁
1 (ℝ𝑛) ⊊ 𝐻1(ℝ𝑛). 

Proof: We first show that the containment 𝐻∆𝑁
1 (ℝ𝑛) ⊂ 𝐻1(ℝ𝑛)holds. This follows 

directly from the fact that corresponding 𝐵𝑀𝑂 spaces norm the𝐻1spaces, namely that: 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≈ sup

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)≤1
|〈𝑓, 𝑏〉𝐿2(ℝ

𝑛)|. 

An identical statement holds for𝐻1(ℝ𝑛)and𝐵𝑀𝑂(ℝ𝑛). As shown in[65], 𝐵𝑀𝑂(ℝ𝑛) ⊊
𝐵𝑀𝑂∆𝑁(ℝ

𝑛), and so we have 

‖𝑓‖𝐻1(ℝ𝑛) ≈ sup
‖𝑏‖𝐵𝑀𝑂(ℝ𝑛)≤1

|〈𝑓, 𝑏〉𝐿2(ℝ
𝑛)| ≤ sup

‖𝑏‖𝐵𝑀𝑂∆𝑁
(ℝ𝑛)≤1

|〈𝑓, 𝑏〉𝐿2(ℝ
𝑛)| ≈ ‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛). 

This gives the containment,𝐻∆𝑁
1 (ℝ𝑛) ⊂ 𝐻1(ℝ𝑛). 

We now show that there exists 𝑎 function 𝑓 ∈ 𝐻1(ℝ𝑛)but 𝑓 ∉ 𝐻∆𝑁
1 (ℝ𝑛). For the sake of 

simplicity, we just consider the example in dimension 1. 
Define 

𝑓(𝑥) ≔
𝜒[0,1](𝑥)

√2
−
𝜒[−1,0](𝑥)

√2
. 

It is easy to see that𝑓(𝑥) is supported in[−1, 1], and∫ 𝑓(𝑥)𝑑𝑥
 

ℝ
= 0.Moreover, we have  

‖𝑓‖𝐿2(ℝ𝑛) = 1. 

These implies that 𝑓 is an atom of 𝐻1(ℝ), which shows that 𝑓 ∈ 𝐻1(ℝ). From the 

definition of 𝑓, we obtain that 𝑓+(𝑥)
𝜒[0,1](𝑥)

√2
, and the even extension is  

𝑓+,𝑒(𝑥)
𝜒[−1,1](𝑥)

√2
. 
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But, then it is immediate that 𝑓+,𝑒 ∉ 𝐻
1(ℝ)since∫ 𝑓+,𝑒(𝑥)𝑑𝑥

 

ℝ𝑛
≠ 0. One can also prove 

this by using the equivalent definition of 𝐻1(ℝ)via the radial maximal function. Similarly 

we have these estimates for 𝑓−,𝑒. Hence,𝑓+,𝑒 ∉ 𝐻
1(ℝ)and 𝑓−,𝑒 ∉ 𝐻

1(ℝ), which, combining 

the result in Theorem(6.2.18), implies that 𝑓 ∉ 𝐻∆𝑁
1 (ℝ). 

Finally, we provide 𝑎 description of the atoms in 𝐻∆𝑁
1 (ℝ𝑛)that connects back to the atom 

in 𝐻1(ℝ𝑛). 
Proposition (6.2.21)[178]: Suppose 𝑎(𝑥) is an 𝐻∆𝑁

1 (ℝ𝑛)-atom supported in 𝐵 ⊂ ℝ𝑛. Then 

we have 

∫ 𝑎(𝑥)𝑑𝑥
 

ℝ𝑛
= 0.                                              (76) 

 Moreover, if 𝐵 ∩ {𝑥 ∈ ℝ𝑛: 𝑥𝑛 = 0} ≠ ∅, we denote𝐵+ = 𝐵 ∩ ℝ+
𝑛and𝐵− = 𝐵 ∩ ℝ−

𝑛 . Then 

we have 

∫ 𝑎(𝑥)𝑑𝑥
 

𝐵+

= ∫ 𝑎(𝑥)𝑑𝑥
 

𝐵−

= 0.                                              (77) 

 Proof: First note that from Theorem(6.2.20),𝐻∆𝑁
1 (ℝ𝑛) ⊊ 𝐻1(ℝ𝑛). Since 𝑎(𝑥) is an 

𝐻∆𝑁
1 (ℝ𝑛) atom, we have𝑎(𝑥) ∈ 𝐻1(ℝ𝑛), and hence(76) holds, where we use [180]. 

Second, suppose 𝐵 ∩ {𝑥 ∈ ℝ𝑛: 𝑥𝑛 = 0} ≠ ∅. Then we define 𝑎+(𝑥) = 𝑎(𝑥)|𝐵+and 

𝑎−(𝑥) = 𝑎(𝑥)|𝐵−. Since 𝑎(𝑥) ∈ 𝐻∆𝑁
1 (ℝ𝑛), from Theorem(6.2.18) we obtain that both 

𝑎+,𝑒(𝑥) and 𝑎−,𝑒(𝑥)are in 𝐻1(ℝ𝑛), which implies that 

∫𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ𝑛

= ∫𝑎−,𝑒(𝑥)𝑑𝑥

 

ℝ𝑛

= 0. 

 Next we claim that∫ 𝑎+,𝑒(𝑥)𝑑𝑥
 

ℝ𝑛
= 0. In fact,  

∫𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ𝑛

= ∫𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ+
𝑛

+ ∫𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ−
𝑛

= 2 ∫𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ+
𝑛

. 

Hence,∫ 𝑎+,𝑒(𝑥)𝑑𝑥
 

ℝ𝑛
= 0 implies that∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ𝑛
= 0, i.e., ∫ 𝑎(𝑥)𝑑𝑥

 

𝐵+
= 0. Similarly 

we obtain that∫ 𝑎(𝑥)𝑑𝑥
 

𝐵−
= 0. Hence(77) holds. 

We turn to proving Theorem(6.2.2). There are two parts to this Theorem, and upper 

and lower bound, and we focus first on the (easier) upper bound. 

 Recall that, for notational simplicity, we are letting 

Π𝑙(ℎ, 𝑔) ≔ ℎ. 𝑅𝑁,𝑙
∗ (𝑔) − 𝑔. 𝑅𝑁,𝑙(ℎ), 

 where𝑅𝑁,𝑙 =
𝜕

𝜕𝑥𝑙
∆𝑁
−
1

2 for1 ≤ 𝑙 ≤ 𝑛. We now prove the following theorem. 

Theorem (6.2.22)[178]: If 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛), then for 1 ≤ 𝑙 ≤ 𝑛, the commutator  

[𝑏, R𝑁,𝑙](𝑓)(𝑥) = 𝑏(𝑥)𝑏, R𝑁,𝑙(𝑓)(𝑥) − R𝑁,𝑙(𝑏𝑓)(𝑥) 

is 𝑎 bounded map on𝐿2(ℝ𝑛), with operator norm  

‖[𝑏, R𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 

Proof: Suppose 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). Then according to [65], we have that 

𝑏+,𝑒(𝑥)𝐵𝑀𝑂(ℝ
𝑛) and 𝑏−,𝑒(𝑥)𝐵𝑀𝑂(ℝ

𝑛), and moreover,  

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛) ≈ ‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ𝑛). 

For every𝑓 ∈ 𝐿2(ℝ𝑛), we have  
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‖[𝑏, R𝑁,𝑙](𝑓)‖𝐿2(ℝ𝑛)
2

= ∫[𝑏, R𝑁,𝑙](𝑓)(𝑥)
2𝑑𝑥

 

ℝ+
𝑛

+ ∫[𝑏, R𝑁,𝑙](𝑓)(𝑥)
2𝑑𝑥

 

ℝ−
𝑛

=: 𝐼 + 𝐼𝐼. 

For the term𝐼, note that when 𝑥 ∈ ℝ+
𝑛 , we have  

[𝑏, R𝑁,𝑙](𝑓)(𝑥) = 𝑏(𝑥)𝑏, R𝑁,𝑙(𝑓)(𝑥) − R𝑁,𝑙(𝑏𝑓)(𝑥)

= 𝑏+,𝑒(𝑥)𝑅𝑙(𝑓+,𝑒)(𝑥) − 𝑅𝑙(𝑏+,𝑒𝑓+,𝑒)(𝑥) = [𝑏+,𝑒, R𝑙](𝑓+,𝑒)(𝑥), 
which implies that 

𝐼 = ∫[𝑏, R𝑁,𝑙](𝑓)(𝑥)
2𝑑𝑥

 

ℝ+
𝑛

= ∫[𝑏+,𝑒, R𝑙](𝑓+,𝑒)(𝑥)
2𝑑𝑥

 

ℝ+
𝑛

 

≤ ∫[𝑏+,𝑒, R𝑙](𝑓+,𝑒)(𝑥)
2𝑑𝑥

 

ℝ𝑛

 

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
2

‖𝑓+,𝑒‖𝐿2(ℝ𝑛)
2

, 

 whereR𝑙is the classical 𝑙-th Riesz transform
𝜕

𝜕x𝑙
∆−

1

2. 

For the last estimate we use the result [3], which applies since we know from that R𝑁,𝑙is a 

Calderón–Zygmund kernel. Similarly we can obtain that 

𝐼𝐼 ≤ 𝐶‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
2

‖𝑓−,𝑒‖𝐿2(ℝ𝑛)
2

. 

Combining the estimates for 𝐼 and 𝐼𝐼 above, we obtain that  

‖[𝑏, R𝑁,𝑙](𝑓)‖𝐿2(ℝ𝑛)
2

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
2

‖𝑓+,𝑒‖𝐿2(ℝ𝑛)
2

+ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
2

‖𝑓−,𝑒‖𝐿2(ℝ𝑛)
2

 

≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)

2 (‖𝑓+,𝑒‖𝐿2(ℝ𝑛)
2

+ ‖𝑓−,𝑒‖𝐿2(ℝ𝑛)
2

) 

≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)

2 ‖𝑓‖𝐿2(ℝ𝑛)
2 , 

which yields that‖[𝑏, R𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛).  

Theorem (6.2.23)[178]:  Let 𝑔, ℎ ∈ 𝐿∞(ℝ𝑛)with compact supports. Then for1 ≤ 𝑙 ≤ 𝑛,  
‖Π𝑙(ℎ, 𝑔)‖𝐻∆𝑁

1 (ℝ𝑛) ≤ 𝐶‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛). 

Proof. By the duality result of [65], stated in Proposition(6.2.12), we know that 

𝐻∆𝑁
1 (ℝ𝑛) ∗ = 𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 𝐴 simple duality computation shows for 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)and 

for any 𝑔, ℎ ∈ 𝐿∞(ℝ𝑛)with compact supports: 

〈𝑏, Π𝑙(𝑔, ℎ)〉𝐿2(ℝ𝑛) = 〈𝑏, R𝑁,𝑙
∗ (𝑔)ℎ − R𝑁,𝑙(ℎ)𝑔〉𝐿2(ℝ𝑛) = 〈𝑔, [𝑏, R𝑁,𝑙(ℎ)]ℎ〉𝐿2(ℝ𝑛). 

Thus, from Theorem(6.2.22), we obtain that 

|〈𝑏, Π𝑙(𝑔, ℎ)〉𝐿2(ℝ𝑛)| ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛). 

This, together with the duality of 𝐻∆𝑁
1 (ℝ𝑛)with 𝐵𝑀𝑂∆𝑁(ℝ

𝑛)shows that Π𝑙(𝑔, ℎ)is in 

𝐻∆𝑁
1 (ℝ𝑛). And then by testing Π𝑙(𝑔, ℎ)against 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ

𝑛)functions, we find:  

‖Π𝑙(𝑔, ℎ)‖𝐻∆𝑁
1 (ℝ𝑛) ≈ sup

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)≤1
|〈Π𝑙(𝑔, ℎ), 𝑏〉𝐿2(ℝ𝑛)| 

≤ 𝐶‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛) sup
‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛)≤1
‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛) 

≤ 𝐶‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛). 

The proof of the lower bound is more algorithmic in nature and follows 𝑎 proof 

strategy developed by Uchiyama in[182]. We begin with 𝑎 fact that will play 𝑎 prominent 
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role in the algorithm below. It is 𝑎 modification of 𝑎 related fact for the standard Hardy 

space 𝐻1(ℝ𝑛). 
Lemma (6.2.24)[178]: Suppose 𝑓 is 𝑎 function satisfying:∫ 𝑓(𝑥)𝑑𝑥

 

ℝ𝑛
= 0, and|𝑓(𝑥)| ≤

𝜒𝐵(𝑥0,1)(𝑥) + 𝜒𝐵(𝑦0,1)(𝑥), where|𝑥0 − 𝑦0| ≔ 𝑀 > 10. Then we have  

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≤ 𝐶𝑛 log𝑀.                                              (78) 

Proof: First note that 

𝑓∆𝑁
+ (𝑥) = sup

𝑡>0
|𝑒−𝑡∆𝑁𝑓(𝑥)| = sup

𝑡>0
| ∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

| sup
𝑡>0

∫|𝑝𝑡,∆𝑁(𝑥, 𝑦)|𝑑𝑦

 

ℝ𝑛

≤ 𝐶. 

Hence, we obtain that 

∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,5)

+ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑦0,5)

≤ 𝐶𝑛. 

 Now it suffices to estimate 

∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

ℝ𝑛\(𝐵(𝑥0,5)∪𝐵(𝑦0,5))

. 

To see this, we write it as 

∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

ℝ𝑛/𝐵(𝑥0,2𝑀)

+ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵(𝑦0,5))

=: 𝐼 + 𝐼𝐼. 

 We now estimate the term𝐼. First note that from Hölder’s regularity(67) of the heat kernel 

𝑝𝑡,∆𝑁(𝑥, 𝑦), we have 

|𝑝𝑡,∆𝑁(𝑥, 𝑦) − 𝑝𝑡,∆𝑁(𝑥, 𝑥0)| ≤ 𝐶 (
|𝑦 − 𝑥0|

√𝑡 + |𝑥 − 𝑥0|
)

√𝑡

(√𝑡 + |𝑥 − 𝑥0|)
𝑛+1 

 for|𝑦 − 𝑥0| < √𝑡. Moreover, when|𝑦 − 𝑥0| ≥ √𝑡 , we have  

|𝑝𝑡,∆𝑁(𝑥, 𝑦) − 𝑝𝑡,∆𝑁(𝑥, 𝑥0)| ≤ |𝑝𝑡,∆𝑁(𝑥, 𝑦)| + |𝑝𝑡,∆𝑁(𝑥 − 𝑥0)|

≤ 𝐶
𝑒−|𝑥,𝑥0|

2/𝑐𝑡

𝑡𝑛/2
+
𝑒−|𝑥−𝑦|

2/𝑐𝑡

𝑡𝑛/2
 

≤ 𝐶 (
|𝑦 − 𝑥0|

√𝑡
)
𝑒−|𝑥,𝑥0|

2/𝑐𝑡

𝑡𝑛/2
 

≤ 𝐶 (
|𝑦 − 𝑥0|

√𝑡 + |𝑥 − 𝑥0|
)

√𝑡

(√𝑡 + |𝑥 − 𝑥0|)
𝑛+1. 

Now note that from the cancellation condition of 𝑓 and Hölder’s regularity of the heat 

kernel 𝑝𝑡(𝑥, 𝑦)as above, we have 

𝑓∆𝑁
+ (𝑥) = sup

𝑡>0
| ∫[𝑝𝑡,∆𝑁(𝑥, 𝑦) − 𝑝𝑡,∆𝑁(𝑥, 𝑥0)]𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

| 

≤ 𝐶 sup
𝑡>0

∫ (
|𝑦 − 𝑥0|

√𝑡 + |𝑥 − 𝑥0|
)

√𝑡

(√𝑡 + |𝑥 − 𝑥0|)
𝑛+1

 

𝐵(𝑥0,1)∪𝐵(𝑦0,1)

𝑑𝑦 

≤ 𝐶𝑛
|𝑦0 − 𝑥0|

|𝑥 − 𝑥0|
𝑛+1

= 𝐶𝑛
𝑀

|𝑥 − 𝑥0|
𝑛+1
. 
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As 𝑎 consequence, we obtain that 

𝐼 ≤ ∫ 𝐶𝑛
𝑀

|𝑥 − 𝑥0|
𝑛+1

𝑑𝑥 ≤ 𝐶𝑛

 

ℝ𝑛/𝐵(𝑥0,2𝑀)

. 

We now turn to the term 𝐼𝐼. Note that when 𝑥 ∈ 𝐵(𝑥0, 2𝑀)\(𝐵(𝑥0, 5) ∪ 𝐵(𝑦0 , 5)), we 

have 

| ∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

| ≤ ∫ |𝑝𝑡,∆𝑁(𝑥, 𝑦)|𝑑𝑦

 

𝐵(𝑥0,1)

+ ∫ |𝑝𝑡,∆𝑁(𝑥, 𝑦)|𝑑𝑦

 

𝐵(𝑦0,1)

. 

When 𝑡 > 1, from the size estimate of the heat kernel𝑝𝑡,∆𝑁(𝑥, 𝑦), we have 

| ∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

| ≤ 𝐶
1

|𝑥 − 𝑥0|
𝑛
+ 𝐶

1

|𝑥 − 𝑦0|
𝑛
. 

When 𝑡 ≤ 1, similarly we obtain that 

| ∫ 𝑝𝑡,∆𝑁(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

 

ℝ𝑛

| ≤ 𝐶
1

|𝑥 − 𝑥0|
𝑛+1 + 𝐶

1

|𝑥 − 𝑦0|
𝑛+1 ≤ 𝐶

1

|𝑥 − 𝑥0|
𝑛 + 𝐶

1

|𝑥 − 𝑦0|
𝑛. 

Thus, 

𝐼𝐼 ≤ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵(𝑦0,5))

 

≤ 𝐶 ∫
1

|𝑥 − 𝑥0|
𝑛 +

1

|𝑥 − 𝑦0|
𝑛

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵(𝑦0,5))

𝑑𝑥 

≤ 𝐶𝑛 log𝑀. 
Combining all the estimates above, we obtain that 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) = ‖𝑓∆𝑁

+ ‖
𝐿1(ℝ𝑛)

≤ 𝐶𝑛 log𝑀. 

Suppose 1 ≤ 𝑙 ≤ 𝑛. Ideally, given an 𝐻∆𝑁
1 (ℝ𝑛)-atom 𝑎, we would like to find 𝑔, ℎ ∈

𝐿2(ℝ𝑛)such that Π𝑙(𝑔, ℎ) = 𝑎pointwise. While this can’t be accomplished in general, the 

Theorem below shows that it is “almost” true. 

Theorem (6.2.25)[178]: Suppose1 ≤ 𝑙 ≤ 𝑛. For every 𝐻∆𝑁
1 (ℝ𝑛)-atom 𝑎(𝑥) and for all 

𝜀 > 0 there exist 𝑎 large positive number 𝑀 and 𝑔, ℎ ∈ 𝐿∞(ℝ𝑛)with compact supports 

such that:  

‖𝑎 − Π𝑙(ℎ, 𝑔)‖𝐻∆𝑁
1 (ℝ𝑛) < 𝜀 

and‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛) ≤ 𝐶𝑀
𝑛 . 

Proof: Let 𝑎(𝑥) be an 𝐻∆𝑁
1 (ℝ𝑛)-atom, supported in𝐵(𝑥0, 𝑟).We first consider the 

construction of the bilinear form Π𝑙(ℎ, 𝑔)for1 ≤ 𝑙 ≤ 𝑛 − 1 and the approximation to𝑎(𝑥). 
To begin with, for the ball 𝐵(𝑥0, 𝑟), we now consider the following cases: Case1:𝑥0,𝑛 ≥ 0; 

Case 2:𝑥0,𝑛 < 0. 

We first consider Case1. To begin with, fix𝜀 > 0. Choose 𝑀 ∈ [100,∞)sufficiently large 

so that 
log𝑀

𝑀
< 𝜀. Now select𝑦0 ∈ ℝ+

𝑛 in the following way: for 1 ≤ 𝑖 ≤ 𝑛, choose 𝑦0,𝑖 >  0 

such that𝑦0,𝑖 − 𝑥0,𝑖 =
𝑀𝑟

√𝑛
 , where 𝑥0,𝑖(reps. 𝑦0,𝑖) is the ith coordinate of 𝑥0(reps 𝑦0). 
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Note that for this 𝑦0, it is clear that 𝐵(𝑦0, 𝑟) ⊂ ℝ+
𝑛and we have|𝑥0 − 𝑦0| = 𝑀𝑟. Moreover, 

for any 𝑦 ∈ 𝐵(𝑦0, 𝑟), we also have|𝑥0 − 𝑦| >
𝑀𝑟

2
. We set  

𝑔(𝑥) ≔ 𝜒𝐵(𝑦0,𝑟)(𝑥)andℎ(𝑥) ≔
𝑎(𝑥)

𝑅𝑁,𝑙
∗ 𝑔(𝑥0)

.                       (79) 

We first claim that 

|𝑅𝑁,𝑙
∗ 𝑔(𝑥0)| ≥ 𝐶𝑀

−𝑛, 1 ≤ 𝑙 ≤ 𝑛 − 1.                       (80) 

In fact, for𝑙 = 1 , . . . , 𝑛 − 1, from Proposition (6.2.4), we have 

𝑅𝑁,𝑙
∗ 𝑔(𝑥0) = | ∫ 𝑅𝑁,𝑙(𝑦, 𝑥0)𝑑𝑦

 

𝐵(𝑦0,𝑟)

| 

= 𝐶𝑛 || ∫

(

 
𝑦𝑙 − 𝑥0,𝑙
|𝑥0 − 𝑦|

𝑛+1
+

𝑦𝑙 − 𝑥0,𝑙

(|𝑥0
, − 𝑦′|

2
+ |𝑥0,𝑛 + 𝑦𝑛|

2
)

𝑛+1
2
)

 𝑑𝑦

 

𝐵(𝑦0,𝑟)

|| 

= 𝐶𝑛|𝑦𝑙 − 𝑥0,𝑙| || ∫

(

 
1

|𝑥0 − 𝑦|
𝑛+1 +

1

(|𝑥0
, − 𝑦′|

2
+ |𝑥0,𝑛 + 𝑦𝑛|

2
)

𝑛+1
2
)

 𝑑𝑦

 

𝐵(𝑦0,𝑟)

|| 

≥ 𝐶𝑀𝑟 ∫
1

|𝑥0 − 𝑦|
𝑛+1 𝑑𝑦

 

𝐵(𝑦0,𝑟)

≥ 𝐶𝑀−𝑛. 

As 𝑎 consequence, we get that the claim(80) holds. 

As for Case2, we handle it in 𝑎 symmetric way as follows. Fix 𝜀 > 0. Choose 𝑀 ∈

[100 , ∞) sufficiently large so that
log𝑀

𝑀
< 𝜀. Now select 𝑦0 ∈ ℝ+

𝑛  in the following way: for 

1 ≤ 𝑖 ≤ 𝑛, choose 𝑦0,𝑖 > 0 such that 𝑦0,𝑖 − 𝑥0,𝑖 = −
𝑀𝑟

√𝑛
. Note that for this 𝑦0, it is clear 

that 𝐵(𝑦0 , 𝑟) ⊂ ℝ−
𝑛and we have|𝑥0 − 𝑦0| = 𝑀𝑟. Moreover, for any 𝑦 ∈ 𝐵(𝑦0, 𝑟), we also 

have |𝑥0 − 𝑦| >
𝑀𝑟

2
. We now define the functions 𝑔 and ℎ as in(79), and the following the 

same estimates, we can obtain that the claim(80) holds. 

From the definitions of the functions 𝑔 and ℎ, we obtain that supp𝑔(𝑥) = 𝐵(𝑦0 , 𝑟) and 

suppℎ(𝑥) = 𝐵(𝑥0, 𝑟). Moreover, from(80) we obtain that 

‖𝑔‖𝐿2(ℝ𝑛) ≈ 𝑟
𝑛
2 and‖ℎ‖𝐿2(ℝ𝑛) =

1

|𝑅𝑁,𝑙𝑔(𝑥0)|
‖𝑎‖𝐿2(ℝ𝑛) ≤ 𝐶𝑀

𝑛𝑟−
𝑛
2 . 

Hence‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛) ≤ 𝐶𝑀
𝑛 . Now write 

𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥)) = 𝑎(𝑥)

𝑅𝑁,𝑙
∗ 𝑔(𝑥0) − 𝑅𝑁,𝑙

∗ 𝑔(𝑥0)

𝑅𝑁,𝑙
∗ 𝑔(𝑥0)

− 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥) 

=:𝑊1(𝑥) + 𝑊2(𝑥). 
 By definition, it is obvious that 𝑊1(𝑥) is supported on 𝐵(𝑥0, 𝑟) and 𝑊2(𝑥) is supported 

on 𝐵(𝑦0, 𝑟). 
We first turn to 𝑊1(𝑥). For𝑥 ∈ 𝐵(𝑥0, 𝑟), 

|𝑊1(𝑥)| = |𝑎(𝑥)|
|𝑅𝑁,𝑙
∗ 𝑔(𝑥0) − 𝑅𝑁,𝑙

∗ 𝑔(𝑥)|

𝑅𝑁,𝑙
∗ 𝑔(𝑥0)
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≤ 𝐶𝑀𝑛‖𝑎‖𝐿∞(ℝ𝑛) ∫ |𝑅𝑁,𝑙(𝑦, 𝑥0) − 𝑅𝑁,𝑙(𝑦, 𝑥)|𝑑𝑦

 

𝐵(𝑦0,𝑟)

 

≤ 𝐶
𝑀𝑛

𝑟𝑛
∫

|𝑥 − 𝑥0|

|𝑥 − 𝑦|𝑛+1

 

𝐵(𝑦0,𝑟)

𝑑𝑦 

≤ 𝐶
1

𝑀𝑟𝑛
. 

 Hence|𝑊1(𝑥)| ≤ 𝐶
1

𝑀𝑟𝑛
𝜒𝐵(𝑥0,𝑟)(𝑥). 

We next estimate 𝑊2(𝑥). From the definition of 𝑔(𝑥), we have 

|𝑊2(𝑥)| = 𝜒𝐵(𝑦0,𝑟)(𝑥)|𝑅𝑁,𝑙ℎ(𝑥)| 

= 𝜒𝐵(𝑦0,𝑟)(𝑥)
1

|𝑅𝑁,𝑙
∗ 𝑔(𝑥0)|

| ∫ 𝑅𝑁,𝑙ℎ(𝑥, 𝑦)𝑎(𝑦)𝑑𝑦

 

𝐵(𝑦0,𝑟)

| 

= 𝜒𝐵(𝑦0,𝑟)(𝑥)
1

|𝑅𝑁,𝑙
∗ 𝑔(𝑥0)|

| ∫ 𝑅𝑁,𝑙(𝑥, 𝑦)𝑎+(𝑦)𝑑𝑦

 

𝐵(𝑦0,𝑟)

|, 

where the last equality follows from the fact that 𝑥 ∈ 𝐵(𝑦0, 𝑟) ⊂ ℝ+
𝑛and from the 

definition of the Riesz kernel 𝑅𝑁(𝑥, 𝑦) as in(68). Hence, from the cancellation property of 

𝑎+(𝑦), we get 

|𝑊2(𝑥)| = 𝜒𝐵(𝑦0,𝑟)(𝑥)
1

|𝑅𝑁,𝑙
∗ 𝑔(𝑥0)|

| ∫ (𝑅𝑁,𝑙(𝑥, 𝑦) − 𝑅𝑁,𝑙(𝑥, 𝑥0)) 𝑎+(𝑦)𝑑𝑦

 

𝐵(𝑥0,𝑟)

| 

≤ 𝐶𝜒𝐵(𝑦0,𝑟)(𝑥)𝑀
𝑛 ∫ ‖𝑎‖𝐿∞(ℝ𝑛)

|𝑦 − 𝑥0|

|𝑥 − 𝑥0|
𝑛+1 𝑑𝑦

 

𝐵(𝑥0,𝑟)

 

≤
𝐶

𝑀𝑛
𝜒𝐵(𝑦0,𝑟)(𝑥). 

Combining the estimates of 𝑊1 and 𝑊2, we obtain that 

|𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥))| ≤

𝐶

𝑀𝑛
(𝜒𝐵(𝑥0,𝑟)(𝑥) + 𝜒𝐵(𝑦0,𝑟)(𝑥)).  (81) 

Next we point out that  

∫ [𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥))] 𝑑𝑥

= ∫𝑎(𝑥)𝑑𝑥 − ∫(ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥)) 𝑑𝑥 = 0,           (82) 

since 𝑎(𝑥) has cancellation (Proposition(6.2.21)) and the second integral equals 0 just by 

the definitions of 𝑔 and ℎ. 
Then the size estimate(81) and the cancellation(82), together with Lemma(6.2.24), imply 

that  

‖𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥))‖

𝐻∆𝑁
1 (ℝ𝑛)

≤ 𝐶
log𝑀

𝑀
≤ 𝐶𝜖. 

 This proves the result for 1 ≤ 𝑙 ≤ 𝑛 − 1. We now consider the bilinear form Π𝑙(𝑔, ℎ)and 

its approximation to 𝑎(𝑥). Again, for the ball 𝐵(𝑥0, 𝑟), we now consider the following 

cases: Case1:𝑥0, 𝑛 ≥ 0;Case2: 𝑥0,𝑛, < 0. It suffices to consider the Case 1 since the other 
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can be handled symmetrically. In this case, for 𝑥0with𝑥0,𝑛 ≥ 0, choose 𝑦0 such that 𝑦0,𝑖 −

𝑥0,𝑖 =
𝑀𝑟

√𝑛
 for 𝑖 = 1 , . . . , 𝑛. We now define the functions 𝑔 and ℎ as in(79). This, together 

with Proposition(6.2.4), yields  

𝑅𝑁,𝑙
∗ 𝑔(𝑥) | ∫ 𝑅𝑁,𝑙(𝑥, 𝑥0)𝑑𝑦

 

𝐵(𝑥0,𝑟)

| 

= 𝐶𝑛 || ∫

(

 
𝑦𝑛 − 𝑥0,𝑛
|𝑥0 − 𝑦|

𝑛+1
+

𝑥0,𝑛 − 𝑦𝑛

(|𝑥0
, − 𝑦′|

2
+ |𝑥0,𝑛 + 𝑦𝑛|

2
)

𝑛+1
2
)

 𝑑𝑦

 

𝐵(𝑦0,𝑟)

|| 

≥ 𝐶𝑛 | ∫
𝑦𝑛 − 𝑥0,𝑛
|𝑥0 − 𝑦|

𝑛+1
𝑑𝑦

 

𝐵(𝑦0,𝑟)

| 

= 𝐶𝑛|𝑦𝑛 − 𝑥0,𝑛| | ∫
1

|𝑥0 − 𝑦|
𝑛+1 𝑑𝑦

 

𝐵(𝑦0,𝑟)

| 

≥ 𝐶𝑀𝑛 . 
Here, we obtain that the claim(80) holds for these 𝑔 andℎ. 
Now following the approximation as that for𝑅𝑁,𝑙with1 ≤ 𝑙 ≤ 𝑛 − 1, we obtain that 

‖𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,𝑙
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,𝑙ℎ(𝑥))‖

𝐻∆𝑁
1 (ℝ𝑛)

≤ 𝐶
log𝑀

𝑀
≤ 𝐶𝜖.                 (83) 

With this approximation result, we can now prove the main Theorem(6.2.2), restated 

below for the convenience of the reader. 

Theorem (6.2.26)[178]: Suppose1 ≤ 𝑙 ≤ 𝑛. For any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛)there exists sequences 

{𝜆𝑗
𝑘} ∈ ℓ1 and functions 𝑔𝑗

𝑘 , ℎ𝑗
𝑘 ∈ 𝐿∞(ℝ𝑛)with compact supports such that 

𝑓 = ∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1

. 

Moreover, we have that: 

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≈ inf {∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑗=1

∞

𝑘=1

: 𝑓 = ∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗 , ℎ𝑗)

∞

𝑗=1

∞

𝑘=1

}. 

Proof: By Theorem(6.2.23) we have that ‖Π𝑙(𝑔, ℎ)‖𝐻∆𝑁
1 (ℝ𝑛) ≤ 𝐶‖𝑔‖𝐿2(ℝ𝑛)‖ℎ‖𝐿2(ℝ𝑛), it is 

immediate that we have for any representation of 𝑓 = ∑ ∑ 𝜆𝑗
𝑘Π𝑙(𝑔𝑗 , ℎ𝑗)

∞
𝑗=1

∞
𝑘=1  that  

‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛) ≤ 𝐶 inf {∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑗=1

∞

𝑘=1

: 𝑓 = ∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1

}. 

We turn to show that the other inequality hold and that it is possible to obtain such 𝑎 

decomposition for any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛). By the atomic decomposition for 𝐻∆𝑁

1 (ℝ𝑛), 

Theorem(6.2.18), for any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛)we can find 𝑎 sequence{𝜆𝑗

𝑘} ∈ ℓ1and sequence of 

𝐻∆𝑁
1 (ℝ𝑛)-atoms 𝑎𝑗

1so that 𝑓 = ∑ 𝜆𝑗
𝑘𝑎𝑗
1∞

𝑗=1 and∑ |𝜆𝑗
𝑘|∞

𝑗=1 ≤ 𝐶0‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛). 
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We explicitly track the implied absolute constant𝐶0appearing from the atomic 

decomposition since it will play 𝑎 role in the convergence of the approach. Fix𝜀 > 0 so 

that 𝜀𝐶0 < 1. Then we also have 𝑎 large positive number 𝑀 with 
log𝑀

𝑀
< 𝜀. We apply 

Theorem (6.2.25) to each atom 𝑎𝑗
1. So there exists 𝑔𝑗

𝑘 , ℎ𝑗
𝑘 ∈ 𝐿∞(ℝ𝑛)with compact supports 

and satisfying‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

≤ 𝐶𝑀𝑛 and  

‖𝑎𝑗
1 − Π𝑙(𝑔𝑗

1, ℎ𝑗
1)‖

𝐻∆𝑁
1 (ℝ𝑛)

< 𝜀∀𝑗. 

Now note that we have 

𝑓 =∑𝜆𝑗
1𝑎𝑗
1

∞

𝑗=1

=∑𝜆𝑗
1Π𝑙(𝑔𝑗

1, ℎ𝑗
1)

∞

𝑗=1

+∑𝜆𝑗
1 (𝑎𝑗

1 − Π𝑙(𝑔𝑗
1, ℎ𝑗

1))

∞

𝑗=1

≔ 𝑀1 + 𝐸1. 

Observe that we have 

‖E1‖𝐻∆𝑁
1 (ℝ𝑛) ≤∑|𝜆𝑗

1|‖𝑎𝑗
1 − Π𝑙(𝑔𝑗

1, ℎ𝑗
1)‖

𝐻∆𝑁
1 (ℝ𝑛)

∞

𝑗=1

≤ 𝜀∑|𝜆𝑗
1| ≤ 𝜀𝐶0‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛)

∞

𝑗=1

. 

We now iterate the construction on the function E1. Since E1 ∈ 𝐻∆𝑁
1 (ℝ𝑛), we can apply 

the atomic decomposition in 𝐻∆𝑁
1 (ℝ𝑛), Theorem(6.2.20), to find 𝑎 sequence{𝜆𝑗

𝑘} ∈ ℓ1and 

𝑎 sequence of 𝐻∆𝑁
1 (ℝ𝑛)-atoms {𝑎𝑗

2}so that 𝐸1 = ∑ 𝜆𝑗
𝑘𝑎𝑗
2∞

𝑗=1  and 

∑|𝜆𝑗
2| ≤ 𝐶0‖𝐸1‖𝐻∆𝑁

1 (ℝ𝑛)

∞

𝑗=1

≤ 𝜀𝐶0
2‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛). 

Again, we will apply Theorem (6.2.25) to each atom𝑎𝑗
2. So there exist 𝑔𝑗

2, ℎ𝑗
2 ∈ 𝐿∞(ℝ𝑛) 

with compact supports and satisfying‖𝑔𝑗
2‖
𝐿2(ℝ𝑛)

‖ℎ𝑗
2‖
𝐿2(ℝ𝑛)

≤ 𝐶𝑀𝑛and  

‖𝑎𝑗
2 − Π𝑙(𝑔𝑗

2 , ℎ𝑗
2)‖

𝐻∆𝑁
1 (ℝ𝑛)

< 𝜀, ∀𝑗 . 

We then have that: 

𝐸1 =∑𝜆𝑗
2𝑎𝑗
2

∞

𝑗=1

=∑𝜆𝑗
2Π𝑙(𝑔𝑗

2 , ℎ𝑗
2)

∞

𝑗=1

+∑𝜆𝑗
2 (𝑎𝑗

2 − Π𝑙(𝑔𝑗
2, ℎ𝑗

2))

∞

𝑗=1

≔ 𝑀2 + 𝐸2. 

But, as before observe that 

‖E2‖𝐻∆𝑁
1 (ℝ𝑛) ≤∑|𝜆𝑗

2|‖𝑎𝑗
2 − Π𝑙(𝑔𝑗

2 , ℎ𝑗
2)‖

𝐻∆𝑁
1 (ℝ𝑛)

∞

𝑗=1

≤ 𝜀∑|𝜆𝑗
2| ≤ (𝜀𝐶0)

2‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛)

∞

𝑗=1

. 

And, this implies for 𝑓 that we have: 

𝑓 =∑𝜆𝑗
1𝑎𝑗
1

∞

𝑗=1

=∑𝜆𝑗
1Π𝑙(𝑔𝑗

1, ℎ𝑗
1)

∞

𝑗=1

+∑𝜆𝑗
1 (𝑎𝑗

1 − Π𝑙(𝑔𝑗
1, ℎ𝑗

1))

∞

𝑗=1

 

= 𝑀1 + 𝐸1 = 𝑀1 +𝑀2 + 𝐸2 = ∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

2

𝑘=1

+ 𝐸2. 

Repeating this construction for each 1 ≤ 𝑘 ≤ 𝐾 produces functions 𝑔𝑗
𝑘 , ℎ𝑗

𝑘 ∈ 𝐿∞(ℝ𝑛)with 

compact supports and satisfying‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

≤ 𝐶𝑀𝑛 for all 𝑗, sequences{𝜆𝑗
𝑘} ∈

ℓ1 with ‖{𝜆𝑗
𝑘}‖

ℓ1
≤ 𝜀𝑘−1𝐶0

2‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛), and 𝑎 function𝐸𝐾 ∈ 𝐻∆𝑁

1 (ℝ𝑛) with 

‖𝐸𝐾‖𝐻∆𝑁
1 (ℝ𝑛)(𝜀𝐶0)

𝐾‖𝑓‖𝐻∆𝑁
1 (ℝ𝑛)so that 
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𝑓 = ∑∑𝜆𝑗
𝑘Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1

+ 𝐸𝐾 . 

Passing 𝐾 → ∞gives the desired decomposition of 𝑓 = ∑ ∑ 𝜆𝑗
𝑘Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)∞

𝑗=1
∞
𝑘=1 . We also 

have that: 

∑∑|𝜆𝑗
𝑘|

∞

𝑗=1

∞

𝑘=1

≤ ∑𝜀−1(𝜀𝐶0)
𝑘‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛)

∞

𝑘=1

=
𝐶0

1 − 𝜀𝐶0
‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛). 

Finally, we have 

Theorem (6.2.27)[178]: Suppose 𝑏 ∈∪𝑝≥1 𝐿𝑙𝑜𝑐
𝑝 (ℝ𝑛). 

If 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
𝑛), then for1 ≤ 𝑙 ≤ 𝑛, the commutator  

[𝑏, 𝑅𝑁,𝑙](𝑓)(𝑥) = 𝑏(𝑥)𝑅𝑁,𝑙(𝑓)(𝑥) − 𝑅𝑁,𝑙(𝑏𝑓)(𝑥) 

is 𝑎 bounded map on 𝐿2(ℝ𝑛), with operator norm  

‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛). 

Conversely, for1 ≤ 𝑙 ≤ 𝑛, if [𝑏, 𝑅𝑁,𝑙]are bounded on 𝐿2(ℝ𝑛) then 𝑏 is in 

𝐵𝑀𝑂∆𝑁(ℝ
𝑛)and‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛) ≤ 𝐶‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖.  

Proof. The upper bound in this theorem is contained in Theorem (6.2.23). For the lower 

bound, we first note that from Theorem(6.2.18), 𝐻∆𝑁
1 (ℝ𝑛)has equivalent characterizations 

via atoms, which shows that 𝐻∆𝑁
1 (ℝ𝑛) ∩ 𝐿𝑐

∞(ℝ𝑛)is dense in 𝐻∆𝑁
1 (ℝ𝑛)with respect to the 

𝐻∆𝑁
1 (ℝ𝑛)norm, where we use 𝐿𝑐

∞(ℝ𝑛)to denote the 𝐿∞function with compact supports. 

Then using the weak factorization in Theorem(6.2.2) we have that for 𝑓 ∈ 𝐻∆𝑁
1 (ℝ𝑛) ∩

𝐿𝑐
∞(ℝ𝑛), 

|〈𝑏, 𝑓〉𝐿2(ℝ𝑛)| ≤ ∑∑|𝜆𝑗
𝑘||〈𝑏, Π𝑙(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)〉𝐿2(ℝ𝑛)|

∞

𝑗=1

∞

𝑘=1

= ∑∑|𝜆𝑗
𝑘||〈𝑔𝑗

𝑘 , [𝑏, 𝑅𝑁,𝑙]ℎ𝑗
𝑘〉𝐿2(ℝ𝑛)|

∞

𝑗=1

∞

𝑘=1

. 

Hence we have that 

|〈𝑏, 𝑓〉𝐿2(ℝ𝑛)| ≤ ∑∑|𝜆𝑗
𝑘|‖[𝑏, 𝑅𝑁,𝑙](ℎ𝑗

𝑘)‖
𝐿2(ℝ𝑛)

∞

𝑗=1

‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑘=1

≤ ‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑗=1

‖ℎ𝑗
𝑘‖
𝐿2(ℝ𝑛)

∞

𝑘=1

≤ 𝐶‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖‖𝑓‖𝐻∆𝑁

1 (ℝ𝑛). 

By the duality between 𝐵𝑀𝑂∆𝑁(ℝ
𝑛)and 𝐻∆𝑁

1 (ℝ𝑛)we have that: 

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛) ≈ sup

‖𝑓‖
𝐻∆𝑁
1 (ℝ𝑛)≤1

|〈𝑏, 𝑓〉𝐿2(ℝ𝑛)| ≤ 𝐶‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
2(ℝ𝑛) → 𝐿2(ℝ𝑛)‖ 

Theorem (6.2.28)[178]: If 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
𝑛), then for1 < 𝛼 < 𝑛 , the commutator  

[𝑏, ∆𝑁
−𝛼/2

](𝑓)(𝑥) = 𝑏(𝑥)∆𝑁
−𝛼/2(𝑓)(𝑥) − ∆𝑁

−𝛼/2(𝑏𝑓)(𝑥) 

is 𝑎 bounded map from𝐿𝑝(ℝ𝑛)to 𝐿𝑞(ℝ𝑛)with operator norm  

‖[𝑏, ∆𝑁
−𝛼/2

]: 𝐿𝑝(ℝ𝑛) → 𝐿𝑞(ℝ𝑛)‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛), 

where 1 < 𝑝 <
𝑛

𝛼
 and

1

𝑞
=
1

𝑝
−
𝛼

𝑛
. 
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Proof. Suppose 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
𝑛). Then according to [65], we have that 𝑏+,𝑒 ∈

𝐵𝑀𝑂∆𝑁(ℝ
𝑛) and 𝑏−,𝑒 ∈ 𝐵𝑀𝑂∆𝑁(ℝ

𝑛), and moreover,  

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛) ≈ ‖𝑏+,𝑒‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛)
‖𝑏−,𝑒‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛)
. 

For every 𝑓 ∈ 𝐿𝑝(ℝ𝑛), we have  

‖[𝑏, ∆𝑁
−𝛼/2

](𝑓)‖
𝐿𝑞(ℝ𝑛)

𝑞
= ∫[𝑏, ∆𝑁

−𝛼/2
](𝑓)(𝑥)𝑞

 

ℝ+
𝑛

𝑑𝑥 + ∫[𝑏, ∆𝑁
−𝛼/2

](𝑓)(𝑥)𝑞
 

ℝ−
𝑛

𝑑𝑥 =: 𝐼 + 𝐼𝐼. 

For the term 𝐼, note that when 𝑥 ∈ ℝ+
𝑛 , we have 

[𝑏, ∆𝑁
−𝛼/2

](𝑓)(𝑥) = 𝑏(𝑥)∆𝑁
−𝛼/2(𝑓)(𝑥) − ∆𝑁

−𝛼/2(𝑏𝑓)(𝑥) 

= 𝑏+,𝑒(𝑥)∆
−𝛼/2(𝑓+,𝑒)(𝑥) − ∆

−𝛼/2(𝑏+,𝑒𝑓+,𝑒)(𝑥) 

= [𝑏+,𝑒, ∆
−𝛼/2](𝑓+,𝑒)(𝑥), 

 which implies that 

𝐼 = ∫[𝑏, ∆−𝛼/2](𝑓)(𝑥)𝑞
 

ℝ+
𝑛

𝑑𝑥 = ∫[𝑏+,𝑒, ∆
−𝛼/2](𝑓+,𝑒)(𝑥)

𝑞

 

ℝ+
𝑛

𝑑𝑥 

≤ ∫[𝑏+,𝑒, ∆
−𝛼/2](𝑓+,𝑒)(𝑥)

𝑞

 

ℝ𝑛

𝑑𝑥 

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
𝑞

‖𝑓+,𝑒‖𝐿𝑝(ℝ𝑛)
𝑞

. 

For the last estimate we use the result [3], which applies since we know from that 𝑅𝑁,𝑙is 𝑎 

Calderón–Zygmund kernel. Similarly we can obtain that 

𝐼𝐼 ≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)
𝑞

‖𝑓+,𝑒‖𝐿𝑝(ℝ𝑛)
𝑞

. 

 Combining the estimates for 𝐼 and 𝐼𝐼 above, we obtain that 

‖[𝑏, ∆𝑁
−𝛼/2

](𝑓)‖
𝐿𝑝(ℝ𝑛)

𝑞
≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ𝑛)

𝑞
‖𝑓+,𝑒‖𝐿𝑝(ℝ𝑛)

𝑞
+ 𝐶‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ𝑛)

𝑞
‖𝑓−,𝑒‖𝐿𝑝(ℝ𝑛)

𝑞
 

𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)

𝑞
(‖𝑓+,𝑒‖𝐿𝑝(ℝ𝑛)

𝑞
+ ‖𝑓−,𝑒‖𝐿𝑝(ℝ𝑛)

𝑞
) 

𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
𝑛)

𝑞 ‖𝑓‖𝐿𝑝(ℝ𝑛)
𝑞

, 

which yields that‖[𝑏, 𝑅𝑁,𝑙]: 𝐿
𝑝(ℝ𝑛) → 𝐿𝑞(ℝ𝑛)‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

𝑛).  

Corollary (6.2.29)[183]: Suppose that 𝐿 is one of the operators ∆𝑁+ , ∆𝑁−and ∆𝑁.  

Then for 𝑥, 𝑥′, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

(or ∈ ℝ−
(1+2𝜖)) with |𝑥 − 𝑥′| ≤

1

2
|𝜖|, we have 

|(1 + 𝜖)(1+𝜖),𝐿(𝑥, 𝑥 + 𝜖) − (1 + 𝜖)(1+𝜖),𝐿(𝑥
′, 𝑥 + 𝜖)| ≤ 𝐶

|𝑥 − 𝑥′|√1 + 𝜖

(√1 + 𝜖 + |𝜖|)
(3+2𝜖)

; (84) 

Symmetrically, for  𝑥, (𝑥 + 𝜖), (𝑥 + 𝜖)′ ∈ ℝ+
(1+2𝜖)

(or∈ ℝ−
(1+2𝜖)) with |(𝑥 + 𝜖) −

(𝑥 + 𝜖)′| ≤
1

2
|𝜖|, we have  

|(1 + 𝜖)(1+𝜖),𝐿(𝑥, 𝑥 + 𝜖) − (1 + 𝜖)(1+𝜖),𝐿(𝑥
′, 𝑥 + 𝜖)|

≤ 𝐶
|(𝑥 + 𝜖) − (𝑥 + 𝜖)′|√(1 + 𝜖)

(√(1 + 𝜖) + |𝜖|)
3+2𝜖 .                                                        (85) 

Proof: Suppose 𝑥, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

. Then for 𝑖 = 1 , . . . ,2𝜖 , we have 
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𝜕

𝜕𝑥𝑖
(1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥, 𝑥 + 𝜖)

= −
(𝑥𝑖 − (𝑥 + 𝜖)𝑖)

2(1 + 𝜖)

1

(4𝜋(1 + 𝜖))
(1+2𝜖)
2

𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

4(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)

+ 𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖) ). 

Moreover, 
𝜕

𝜕𝑥(1+2𝜖)
(1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥, 𝑥 + 𝜖)

= −
1

(4𝜋(1 + 𝜖))(
1+2𝜖
2
)
𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

4(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
(𝑥(1+2𝜖) − (𝑥 + 𝜖)(1+2𝜖))

2(1 + 𝜖)

+ 𝑒
−
|𝑥(1+2𝜖)+(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
(𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)

2(1 + 𝜖)
). 

Then we obtain that 

|∇𝑥(1 + 𝜖)(1+𝜖),∆𝑁+
(𝑥, (𝑥 + 𝜖))|

2
 

=∑|
𝜕

𝜕𝑥𝑖
(1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥, (𝑥 + 𝜖))|

22𝜖

𝑖=1

+ |
𝜕

𝜕𝑥(1+2𝜖)
(1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥, (𝑥 + 𝜖))|

2

 

≤∑
(𝑥𝑖 − (𝑥 + 𝜖)𝑖)

2

4(1 + 𝜖)2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

2(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)

2𝜖

𝑖=1

+ 𝑒
−
|𝑥(1+2𝜖)+(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖) )

2

 

+2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

2(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
(𝑥(1+2𝜖) − (𝑥 + 𝜖)(1+2𝜖))

2(1 + 𝜖)
)

2

 

+2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

2(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)+(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
(𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖))

2(1 + 𝜖)
)

2

 

≤ 𝐶 ∑
(𝑥𝑖 − (𝑥 + 𝜖)𝑖)

2

(1 + 𝜖)2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝜖|2

2(1+𝜖)

1+2𝜖

𝑖=1

+ 2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

2(1+𝜖) (𝑒
−
|𝑥(1+2𝜖)+(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
(𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖))

2(1 + 𝜖)
)

2
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≤ 𝐶
|𝜖|2

(1 + 𝜖)2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝜖|2

2(1+𝜖)

+ 2
1

(4𝜋(1 + 𝜖))(1+2𝜖)
𝑒
−
|𝜖|2

4(1+𝜖)(𝑒
−
|𝑥(1+2𝜖)+(𝑥+𝜖)(1+2𝜖)|

2

8(1+𝜖)
(𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖))

2(1 + 𝜖)
)

2

≤ 𝐶
(1 + 𝜖) 

(1 + 𝜖 + 𝜖2)
. 

Hence, it is easy to verify that 

|∇𝑥(1 + 𝜖)(1+𝜖),∆𝑁+
(𝑥, (𝑥 + 𝜖))| ≤ 𝐶

√(1 + 𝜖)

(√(1 + 𝜖) + |𝜖|)
(3+2𝜖) 

and similarly we can obtain that 

|∇(𝑥+𝜖)(1 + 𝜖)(1+𝜖),∆𝑁+
(𝑥, (𝑥 + 𝜖))| ≤ 𝐶

√(1 + 𝜖)

(√(1 + 𝜖) + |𝜖|)
(3+2𝜖), 

which implies that 

|(1 + 𝜖)(1+𝜖),∆𝑁+
(𝑥, (𝑥 + 𝜖)) − (1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥′, (𝑥 + 𝜖))|

≤ 𝐶
|𝑥′ − 𝑥|√(1 + 𝜖)

(√(1 + 𝜖) + |𝜖|)
(4+2𝜖) 

 for 𝑥, 𝑥′, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

 with |𝑥 − 𝑥′| ≤
1

2
|𝜖|, and 

|(1 + 𝜖)(1+𝜖),∆𝑁+
(𝑥, (𝑥 + 𝜖)) − (1 + 𝜖)(1+𝜖),∆𝑁+

(𝑥, (𝑥 + 𝜖)′)|

≤ 𝐶
|(𝑥 + 𝜖) − (𝑥 + 𝜖)′|√(𝑥 + 𝜖)

(√𝑥 + 𝜖 + |𝜖|)
(4+2𝜖)

 

for 𝑥, 𝑥′, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖) 

with |(𝑥 + 𝜖) − (𝑥 + 𝜖)′| ≤
1

2
|𝜖|. 

Corollary (6.2.30)[183]: Denote by 𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖))the kernel of the 𝑗-th Riesz 

transform 
𝜕

𝜕𝑥𝑗
∆𝑁
−
1

2 of ∆𝑁. Then for 1 ≤  𝑗 ≤ 2𝜖 and for 𝑥, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

we have: 

𝑅𝑁,𝑗(𝑥, 𝑥 + 𝜖)

= −𝐶(1+2𝜖)(
𝑥𝑖 − (𝑥 + 𝜖)𝑖
|𝜖|(2+2𝜖)

+
𝑥𝑖 − (𝑥 + 𝜖)𝑖

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) − (𝑥 + 𝜖)1+2𝜖)|
2
)
(1+𝜖)

) 

and 
𝑅𝑁,(1+2𝜖)(𝑥, (𝑥 + 𝜖))

= −𝐶(1+2𝜖)(
𝑥𝑖 − (𝑥 + 𝜖)𝑖
|𝜖|(2+2𝜖)

+
𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖)), 
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where 𝐶(1+2𝜖) =
Γ(1+𝜖)

𝜋(1+𝜖)
. Similar expressions also hold for 𝑅𝑁,𝑗(𝑥, 𝑥 + 𝜖), 𝑗 = 1 , . . . , (1 +

2𝜖), when 𝑥, (𝑥 + 𝜖) ∈ ℝ−
(1+2𝜖). 

Proof: Working from the definition of the square root of∆𝑁, i.e., 

Δ𝑁
−
1
2 =

1

Γ (
1
2
)
∫ 𝑒−(1+𝜖)∆𝑁

𝑑(1 + 𝜖)

√(1 + 𝜖)

∞

0

, 

we have that for 1 ≤ 𝑗 ≤ 2𝜖: 

𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖)) =
1

Γ (
1
2
)

𝜕

𝜕𝑥𝑗
∫(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))

𝑑(1 + 𝜖)

√(1 + 𝜖)

∞

0

 

=
1

Γ (
1
2
)

𝜕

𝜕𝑥𝑗
(∫

1

(4𝜋(1 + 𝜖))
(1+2𝜖)
2

𝑒
−
|𝜖|2

4(1+𝜖)
𝑑(1 + 𝜖)

√(1 + 𝜖)

∞

0

+∫
1

(4𝜋(1 + 𝜖))
(1+2𝜖)
2

𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

4(1+𝜖) 𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
𝑑(1 + 𝜖)

√(1 + 𝜖)

∞

0

) 

= −
Γ(1 + 𝜖)

(𝜋)(1+𝜖)
(
𝑥𝑖 − (𝑥 + 𝜖)𝑖
|𝜖|(2+2𝜖)

+
𝑥𝑖 − (𝑥 + 𝜖)𝑖

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖)). 

For 𝑗 = (1 + 2𝜖) and for 𝑥, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖) 

we again observe: 

𝑅𝑁,(1+2𝜖)(𝑥, (𝑥 + 𝜖)) =
√𝜋

2

𝜕

𝜕𝑥(1+2𝜖)
∫(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))

𝑑(1 + 𝜖)

√(1 + 𝜖)

∞

0

 

= −
Γ(1 + 𝜖)

(𝜋)(1+𝜖)
(
𝑥(1+2𝜖) − (𝑥 + 𝜖)(1+2𝜖)

|𝜖|(2+2𝜖)

+
𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖)

). 

We next make the observation that kernels𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖))are Calderón–Zygmund 

kernels. 

Corollary (6.2.31)[183]: Denote by 𝑅𝑁(𝑥, (𝑥 + 𝜖))  kernel of the vector of Riesz 

transforms ∇∆𝑁
−
1

2.Then: 

𝑅𝑁(𝑥, (𝑥 + 𝜖))

= (𝑅𝑁,1(𝑥, (𝑥 + 𝜖)), … , 𝑅𝑁,(1+2𝜖)(𝑥, (𝑥 + 𝜖)) )

× 𝐻(𝑥(1+2𝜖), (𝑥 + 𝜖)(1+2𝜖)),                                                                     (86) 

with 𝐻(1 + 𝜖) the Heaviside function defined in (64). Moreover, we have that  

|𝑅𝑁(𝑥, (𝑥 + 𝜖))| ≤ 𝐶(1+2𝜖)
1

|𝜖|(1+2𝜖)
, 

and 
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|𝑅𝑁(𝑥, (𝑥 + 𝜖)) − 𝑅𝑁(𝑥0 , (𝑥 + 𝜖))| + |𝑅𝑁(𝑥, (𝑥 + 𝜖)) − 𝑅𝑁((𝑥 + 𝜖), 𝑥0)| ≤ 𝐶
|𝑥 − 𝑥0|

|𝜖|(2+2𝜖)
 

for 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

 (or 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ−
(1+2𝜖)) with |𝑥 − 𝑥0| ≤

1

2
|𝜖|. 

Proof: We first claim that for 𝑗 = 1 , . . , (1 + 2𝜖), and 𝑥, (1 + 𝜖) ∈ ℝ+
(1+2𝜖)

(or 𝑥, (𝑥 + 𝜖) ∈

ℝ−
(1+2𝜖))  

|𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖))| ≤ 𝐶(1+2𝜖)
1

|𝜖|(1+2𝜖)
. 

In fact, from Corollary (6.2.30), it is direct that for 1 ≤  𝑗 ≤ 2𝜖, 

|𝑥𝑗 − (𝑥 + 𝜖)𝑗|

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖)

≤
|𝑥𝑗 − (𝑥 + 𝜖)𝑗|

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖) ≤

1

|𝜖|(1+2𝜖)
 

and for 𝑗 = (1 + 2𝜖), 

|𝑥(1+2𝜖) − (𝑥 + 𝜖)(1+2𝜖)|

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖)

≤
|𝑥𝑗 − (𝑥 + 𝜖)𝑗|

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)
(1+𝜖) ≤

1

|𝜖|(1+2𝜖)
, 

where we use the fact that 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

 (or 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ−
(1+2𝜖)) and hence  

 𝑥𝑗 − (𝑥 + 𝜖)𝑗 > |𝑥𝑗 − (𝑥 + 𝜖)𝑗| for 1 ≤  𝑗 ≤ 1 + 2𝜖. 

Similarly, by considering the estimates for the terms 
𝜕

𝜕𝑥𝑗
𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖)) and  

𝜕

𝜕𝑥𝑗
𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖)), we obtain that 

|𝑅𝑁,𝑗(𝑥, (𝑥 + 𝜖)) − 𝑅𝑁,𝑗(𝑥0, (𝑥 + 𝜖))| + |𝑅𝑁,𝑗((𝑥 + 𝜖), 𝑥) − 𝑅𝑁,𝑗((𝑥 + 𝜖), 𝑥0)|

≤ 𝐶
|𝑥 − 𝑥0|

|𝜖|(2+2𝜖)
 

For 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ+
(2+2𝜖)

 (or 𝑥, 𝑥0, (𝑥 + 𝜖) ∈ ℝ−
(2+2𝜖)) with |𝑥 − 𝑥0| ≤

1

2
|𝜖|. 

 

Corollary (6.2.32)[183]: Denote by 𝐾𝑁(𝑥, (𝑥 + 𝜖))the kernel of the fractional 

operator ∆𝑁
−(1+𝜖)/2

. Then 𝑥, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

 we have: 

𝐾𝑁(𝑥, (𝑥 + 𝜖)) = 𝐾(𝑥, (𝑥 + 𝜖)) + 𝐾𝑁(𝑥, (𝑥 + 𝜖)) 
with 

𝐾𝑁(𝑥, (𝑥 + 𝜖)) ≔ 𝐶(1+2𝜖),(1+𝜖) =
1

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)

𝜖
2

. 

Similar expressions for 𝐾𝑁(𝑥, (𝑥 + 𝜖)) when 𝑥, (𝑥 + 𝜖) ∈ ℝ−
(1+2𝜖) also hold. 

Proof:  For 𝑥, (𝑥 + 𝜖) ∈ ℝ+
(1+2𝜖)

, working from the fraction of the square root of ∆𝑁we 

have that: 
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𝐾𝑁(𝑥, (𝑥 + 𝜖)) =
1

Γ((1 + 𝜖)𝜖/2)
∫(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))

𝑑(1 + 𝜖)

(1 + 𝜖)−
𝜖
2

∞

0

=
1

Γ((1 + 𝜖)/2)
∫

1

(4𝜋(1 + 𝜖))
(1+2𝜖)
2

𝑒
−
|𝜖|2

4(1+𝜖)

∞

0

𝑑(1 + 𝜖)

(1 + 𝜖)−
𝜖
2

+
1

Γ((1 + 𝜖)/2)
∫

1

(4𝜋(1 + 𝜖))
(1+2𝜖)
2

𝑒
−
|𝑥′−(𝑥+𝜖)′|

2

4(1+𝜖) 𝑒
−
|𝑥(1+2𝜖)−(𝑥+𝜖)(1+2𝜖)|

2

4(1+𝜖)
𝑑(1 + 𝜖)

(1 + 𝜖)−
𝜖
2

∞

0

 

= 𝐶(1+2𝜖),(1+𝜖)(
1

|𝜖|𝜖
+

1

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)

𝜖
2

) 

= 𝐾(𝑥, (𝑥 + 𝜖)) + 𝐾𝑁(𝑥, (𝑥 + 𝜖)), 
where we set 

𝐾𝑁(𝑥, (𝑥 + 𝜖)) = 𝐶(1+2𝜖),(1+𝜖)
1

(|𝑥′ − (𝑥 + 𝜖)′|2 + |𝑥(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|
2
)

𝜖
2

. 

Corollary (6.2.33)[183]: Let all the notation be as above. Then, 

𝐻∆𝑁
1 (ℝ(1+2𝜖)) = 𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ(1+2𝜖)) = 𝐻∆𝑁,∗
1 (ℝ(1+2𝜖)) = 𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧

1 (ℝ(1+2𝜖))

= 𝐻∆𝑁,𝑎𝑡𝑜𝑚
1 (ℝ(1+2𝜖)) 

and they have equivalent norms 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≈ ‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥

1 (ℝ(1+2𝜖))‖𝑓‖𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ(1+2𝜖))‖𝑓‖𝐻∆𝑁,𝑎𝑡𝑜𝑚

1 (ℝ(1+2𝜖)) 

≈ ‖𝑓+,𝑒‖𝐻1(ℝ(1+2𝜖)) + ‖𝑓−,𝑒‖𝐻1(ℝ(1+2𝜖)). 

Namely, 𝑓 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖))if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ(1+2𝜖))and 𝑓−,𝑒 ∈ 𝐻
1(ℝ(1+2𝜖)). 

Proof: We recall that the Hardy space associated with ∆𝑁 is defined as the set of 

functions {𝑓 ∈ 𝐿1(ℝ(1+2𝜖)): ‖𝑆∆𝑁(𝑓)‖𝐿1(ℝ(1+2𝜖))
< ∞} in the norm of ‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖)) =

‖𝑆∆𝑁(𝑓)‖𝐿1(ℝ(1+2𝜖)) 
where 𝑆∆𝑁(𝑓)(𝑥) = (∫ ∫ |𝑄(1+𝜖)2𝑓((𝑥 + 𝜖))|

2 

|𝜖|>−
1

2

∞

0

𝑑(𝑥+𝜖)𝑑(1+𝜖)

(1+𝜖)(2+2𝜖)
)

1

2
, 

and 𝑄(1+𝜖)2 = (1 + 𝜖)
2∆𝑁 exp(−(1 + 𝜖)

2∆𝑁). 

We now consider the operator 𝑄(1+𝜖) = (1 + 𝜖)∆𝑁 exp(−(1 + 𝜖)∆𝑁) = −(1 +

𝜖)
𝑑

𝑑(1+𝜖)
exp(−(1 + 𝜖)∆𝑁) for any 𝜖 > −1 (see [71]). Then we have 

𝑄(1+𝜖)2𝑓(𝑥) = (1 + 𝜖)
2∆𝑁 exp(−(1 + 𝜖)

2∆𝑁) 𝑓(𝑥)

= ∫ −
(1 + 𝜖)

2

𝜕

𝜕(1 + 𝜖)
(1 + 𝜖)(1+𝜖)2,∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥

 

ℝ(1+2𝜖)

+ 𝜖). 
From the definition of (1 + 𝜖)(1+𝜖)𝜖,∆𝑁(𝑥, (𝑥 + 𝜖)), see(2.4), we have that for any 𝑥 ∈

ℝ+
(1+2𝜖)

, 
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(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)
2∆𝑁) 𝑓(𝑥)

= ∫ −
(1 + 𝜖)

2

𝜕

𝜕(1 + 𝜖)
(1 + 𝜖)(1+𝜖)2,∆𝑁(𝑥, (𝑥 + 𝜖))𝑓+((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ+
(1+2𝜖)

 

= ∫ −
(1 + 𝜖)

2

𝜕

𝜕(1 + 𝜖)
(1 + 𝜖)(1+𝜖)2(𝑥, (𝑥 + 𝜖))𝑓+,𝑒((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

 

= (1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆𝑁) 𝑓+,𝑒(𝑥). 

Similarly, for any 𝑥 ∈ ℝ−
(1+2𝜖) , we have  

(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)
2∆𝑁) 𝑓(𝑥) = (1 + 𝜖)

2∆ exp(−(1 + 𝜖)2∆) 𝑓−,𝑒(𝑥). 
Moreover, by a change of variable, 

(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)
2∆𝑁) 𝑓(𝑥)

= −(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆) 𝑓+,𝑒(�̃�) for any 𝜖 > −1,

𝑥 ∈ ℝ+
(1+2𝜖);                                                                                                  (87) 

(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)
2∆𝑁) 𝑓(𝑥) = −(1 + 𝜖)

2∆ exp(−(1 + 𝜖)2∆)𝑓−,𝑒(�̃�) for any  

𝜖 > −1, 𝑥 ∈ ℝ−
(1+2𝜖) 

Then from(87) we have 

𝑆∆𝑁(𝑓)(𝑥)
2 = ∫ ∫ |(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)

2∆𝑁) 𝑓(𝑥

 

|𝜖|>−
1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

∞

0

+ 𝜖)|2
𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

+∫ ∫ |(1 + 𝜖)2∆𝑁 exp(−(1 + 𝜖)
2∆𝑁) 𝑓(𝑥 + 𝜖)|

2

 

|𝜖|>−
1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

= ∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆)𝑓+,𝑒(𝑥 + 𝜖)|
2

 

|𝜖|>−
1
2
,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

+∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆) 𝑓−,𝑒((𝑥 + 𝜖))|
2

 

|𝜖|>−
1
2
,(𝑥+𝜖)∈ℝ−

(1+2𝜖)

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

=
1

2
(∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆)𝑓+,𝑒((𝑥 + 𝜖))|

2

 

|𝜖|>−
1
2

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)

+ ∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆)𝑓−,𝑒((𝑥 + 𝜖))|
2

 

|𝜖|>−
1
2

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
), 

which implies that 𝑆∆𝑁(𝑓)(𝑥) ≤
√2

2
(𝑆(𝑓+,𝑒)(𝑥) + 𝑆(𝑓−,𝑒)((𝑥 + 𝜖))). Conversely, 
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𝑆(𝑓+,𝑒)(𝑥)
2 = ∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆)𝑓+,𝑒((𝑥 + 𝜖))|

2

 

|𝜖|>−
1
2

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

= 2∫ ∫ |(1 + 𝜖)2∆ exp(−(1 + 𝜖)2∆) 𝑓+,𝑒((𝑥 + 𝜖))|
2

 

|𝜖|>−
1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

∞

0

𝑑(𝑥 + 𝜖)𝑑(1 + 𝜖)

(1 + 𝜖)(1+2𝜖)
 

≤ 2𝑆∆𝑁(𝑓)(𝑥)
2. 

Similarly we have 𝑆(𝑓−,𝑒)(𝑥)
2 ≤ 2𝑆∆𝑁(𝑓)(𝑥)

2. Hence, we obtain that 𝑆(𝑓+,𝑒)(𝑥) +

𝑆(𝑓−,𝑒)(𝑥) ≤ 2√2𝑆∆𝑁(𝑓)(𝑥). As a consequence, we have 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) = ∫ |𝑆∆𝑁(𝑓)(𝑥)|

 

ℝ(1+2𝜖)

𝑑𝑥                           (88) 

≈ ∫ |𝑆(𝑓+,𝑒)(𝑥)|

 

ℝ(1+2𝜖)

𝑑𝑥 + ∫ |𝑆(𝑓−,𝑒)(𝑥)|

 

ℝ(1+2𝜖)

𝑑𝑥 

= ‖𝑓+,𝑒‖𝐻1(ℝ(1+2𝜖)) + ‖𝑓−,𝑒‖𝐻1(ℝ(1+2𝜖)). 

Next we turn to 𝐻∆𝐷,𝑚𝑎𝑥
1 (ℝ(1+2𝜖)). From (63) we can see that for any 𝜖 > −1 and 𝑥 ∈

ℝ+
(1+2𝜖)

,  

exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥) = ∫ (1 + 𝜖)(1+𝜖)2,∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

= ∫ (1 + 𝜖)(1+𝜖)2,∆𝑁(𝑥, (𝑥 + 𝜖))𝑓+((𝑥 + 𝜖))𝑑(𝑥 + 𝜖).

 

ℝ+
(1+2𝜖)

 

= ∫ (1 + 𝜖)(1+𝜖)2(𝑥, (𝑥 + 𝜖))𝑓+,𝑒((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

= exp(−(1 + 𝜖)2∆) 𝑓+,𝑒(𝑥). 

Similarly, exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥) = exp(−(1 + 𝜖)
2∆) 𝑓+,𝑒(𝑥)for any 𝜖 > −1 and 𝑥 ∈

ℝ−
(1+2𝜖). Thus,  

sup
𝜖>−1

|exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥)| = sup
𝜖>−1

|exp(−(1 + 𝜖)2∆) 𝑓+,𝑒(𝑥)| for any,

𝑥 ∈ ℝ+
(1+2𝜖)

;                                                                                                  (89) 

sup
𝜖>−1

|exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥)| = sup
𝜖>−1

|exp(−(1 + 𝜖)2∆)𝑓−,𝑒(𝑥)| for any 𝑥 ∈ ℝ−
(1+2𝜖). 

Again, by a change of variable, we have that 

exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥) = − exp(−(1 + 𝜖)
2∆) 𝑓+,𝑒(�̃�) for any 𝜖 > −1,

𝑥 ∈ ℝ+
(1+2𝜖);                                                                                                              (90) 

exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥) = − exp(−(1 + 𝜖)
2∆) 𝑓−,𝑒(�̃�)for any 𝜖 > −1, 𝑥 ∈ ℝ−

(1+2𝜖). 

Then, for any𝑓 ∈ 𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ(1+2𝜖)), from(89) and(90) we can obtain that 

‖𝑓‖𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ(1+2𝜖)) = ∫ |𝑓∆𝑁

+ (𝑥)|

 

ℝ+
(1+2𝜖)

𝑑𝑥 + ∫ |𝑓∆𝑁
+ (𝑥)|

 

ℝ−
(1+2𝜖)

𝑑𝑥                             (91) 
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= ∫ sup
𝜖>−1

|exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥)|

 

ℝ+
(1+2𝜖)

𝑑𝑥 + ∫ sup
𝜖>−1

|exp(−(1 + 𝜖)2∆𝑁) 𝑓(𝑥)|

 

ℝ−
(1+2𝜖)

𝑑𝑥 

= ∫ sup
𝜖>−1

|exp(−(1 + 𝜖)2∆)𝑓+,𝑒(𝑥)|

 

ℝ+
(1+2𝜖)

𝑑𝑥 + ∫ sup
𝜖>−1

|exp(−(1 + 𝜖)2∆) 𝑓−,𝑒(𝑥)|

 

ℝ−
(1+2𝜖)

𝑑𝑥 

=
1

2
( ∫ sup

𝜖>−1
|exp(−(1 + 𝜖)2∆) 𝑓+,𝑒(𝑥)|

 

ℝ(1+2𝜖)

𝑑𝑥

+ ∫ sup
𝜖>−1

|exp(−(1 + 𝜖)2∆) 𝑓−,𝑒(𝑥)|

 

ℝ(1+2𝜖)

𝑑𝑥) 

=
1

2
(‖(𝑓+,𝑒)

+
‖
𝐿1(ℝ(1+2𝜖))

+ ‖(𝑓−,𝑒)
+
‖
𝐿1(ℝ(1+2𝜖))

) 

=
1

2
(‖𝑓+,𝑒‖𝐻1(ℝ(1+2𝜖)) + ‖𝑓−,𝑒‖𝐻1(ℝ(1+2𝜖))), 

Where 𝑓+(𝑥) = sup
𝜖>−1

|(1 + 𝜖)(1+𝜖)2 ∗ 𝑓(𝑥)|is the classical maximal function as defined. 

Thus (91) yields that 𝑓 ∈ 𝐻∆𝑁,𝑚𝑎𝑥
1 (ℝ(1+2𝜖)) if and only if 𝑓+𝑒 ∈ 𝐻

1(ℝ(1+2𝜖)) and  𝑓−,𝑒 ∈

𝐻1(ℝ(1+2𝜖)). 

We now consider the Hardy space 𝐻∆𝑁,∗
1 (ℝ(1+2𝜖)) via the non-tangential maximal 

function. Note that 

𝑓∆𝑁
∗ (𝑥) = sup

|𝜖|>−
1
2

|exp(−(1 + 𝜖)2∆𝑁) 𝑓((𝑥 + 𝜖))| 

≤ sup
|𝜖|>−

1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

|exp(−(1 + 𝜖)2∆𝑁) 𝑓((𝑥 + 𝜖))|

+ sup
|𝜖|<(1+𝜖),(𝑥+𝜖)∈ℝ−

(1+2𝜖)
|exp(−(1 + 𝜖)2∆𝑁) 𝑓((𝑥 + 𝜖))| 

≤ sup
|𝜖|>−

1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

|exp(−(1 + 𝜖)2∆)𝑓+,𝑒((𝑥 + 𝜖))|

+ sup
|𝜖|>−

1
2
,(𝑥+𝜖)∈ℝ−

(1+2𝜖)

|exp(−(1 + 𝜖)2∆) 𝑓−,𝑒((𝑥 + 𝜖))| 

≤ sup
|𝜖|>−

1
2

|exp(−(1 + 𝜖)2∆) 𝑓+,𝑒((𝑥 + 𝜖))| + sup
|𝜖|>−

1
2

|exp(−(1 + 𝜖)2∆) 𝑓−,𝑒((𝑥 + 𝜖))| 

= (𝑓+,𝑒)
∗
(𝑥) + (𝑓−,𝑒)

∗
(𝑥), 

where 𝑓∗(𝑥) = sup
|𝜖|>−

1

2

|(1 + 𝜖)(1+𝜖)2 ∗ 𝑓((𝑥 + 𝜖))| is the classical non-tangential maximal 

function. Hence ‖𝑓∆𝑁
∗ (𝑥)‖

𝐿1(ℝ(1+2𝜖))
≤ ‖(𝑓+,𝑒)

∗
‖
𝐿1(ℝ(1+2𝜖))

+ ‖(𝑓−,𝑒)
∗
‖
𝐿1(ℝ(1+2𝜖))

 . 

 Moreover, we have  

(𝑓+,𝑒)
∗
(𝑥) = sup

|𝜖|>−
1
2

|exp(−(1 + 𝜖)2∆) 𝑓+,𝑒((𝑥 + 𝜖))| 
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≤ sup
|𝜖|>−

1
2,(𝑥+𝜖)∈ℝ+

(1+2𝜖)

|exp(−(1 + 𝜖)2∆)𝑓+,𝑒((𝑥 + 𝜖))|

+ sup
|𝜖|>−

1
2
,(𝑥+𝜖)∈ℝ−

(1+2𝜖)

|exp(−(1 + 𝜖)2∆) 𝑓+,𝑒((𝑥 + 𝜖))| 

≤ 2 sup
|𝜖|>−

1
2

(1 + 𝜖)2|exp(−∆𝑁) 𝑓((𝑥 + 𝜖))| ≤ 2𝑓∆𝑁
∗ (𝑥) 

Thus, ‖(𝑓+,𝑒)
∗
‖
𝐿1(ℝ(1+2𝜖))

≤ 2‖𝑓∆𝑁
∗ (𝑥)‖

𝐿1(ℝ(1+2𝜖))
. 

 Similarly we obtain ‖(𝑓−,𝑒)
∗
‖
1
≤ 2‖𝑓∆𝑁

∗ (𝑥)‖
𝐿1(ℝ(1+2𝜖))

. This implies that 

‖𝑓∆𝑁
∗ (𝑥)‖

1
≈ ‖(𝑓+,𝑒)

∗
‖
𝐿1(ℝ(1+2𝜖))

+ ‖(𝑓−,𝑒)
∗
‖
𝐿1(ℝ(1+2𝜖))

.                                         (92) 

Thus,(92) yields that 𝑓 ∈ 𝐻∆𝑁,∗
1 (ℝ(1+2𝜖)) if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ(1+2𝜖)) and 𝑓−,𝑒 ∈

𝐻1(ℝ(1+2𝜖)). 

As for the Riesz transform characterization of the Hardy space 𝐻∆𝑁
1 (ℝ(1+2𝜖)), it suffices to 

note that when 𝑥 ∈ ℝ+
(1+2𝜖)

, 

∇∆𝑁
−
1
2𝑓(𝑥) = ∫ 𝐾𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

= ∫ 𝑅𝑁(𝑥, (𝑥 + 𝜖))𝑓+((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ+
(1+2𝜖)

= ∫ 𝑅(𝑥, (𝑥 + 𝜖))𝑓+,𝑒((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

 

= ∇∆𝑁
−
1
2𝑓+,𝑒(𝑥) 

and that when 𝑥 ∈ ℝ−
(1+2𝜖),  

∇∆𝑁
−
1
2𝑓(𝑥) = ∇∆𝑁

−
1
2𝑓−,𝑒(𝑥). 

Thus, 𝑓 ∈ 𝐻∆𝑁,𝑅𝑖𝑒𝑠𝑧
1 (ℝ(1+2𝜖))if and only if 𝑓+,𝑒 ∈ 𝐻

1(ℝ(1+2𝜖))and 𝑓−,𝑒 ∈ 𝐻
1(ℝ(1+2𝜖)). 

Corollary (6.2.34)[183]: The following are equivalent for a function 𝑏: 

(i) 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)); 

(ii) There exists 𝑏0 , 𝑏1, … , 𝑏(1+2𝜖) ∈ 𝐿
∞(ℝ(1+2𝜖))such that 𝑏 = 𝑏0 + ∑ 𝑅𝑁,𝑗

∗ 𝑏𝑗
(1+2𝜖)
𝑗=1 , 

where 𝑅𝑁,𝑗
∗ is the adjoint operator of 𝑅𝑁,𝑗. 

Proof. The proof is as in[74]. Let𝐵 = ⨁𝑗=0
(1+2𝜖)

𝐿1(ℝ(1+2𝜖)) and norm 𝐵 by 

∑ ‖𝑓‖𝐿1(ℝ(1+2𝜖))
(1+2𝜖)
𝑗=0 . We have that 𝐵∗ = ⨁𝑗=0

(1+2𝜖)
𝐿∞(ℝ(1+2𝜖)). Let 𝑆 be the subspace of 

𝐵 given by 

𝑆 = {(𝑓, 𝑅𝑁,1𝑓, … , 𝑅𝑁,(1+2𝜖)𝑓): 𝑓 ∈ 𝐿
1(ℝ(1+2𝜖))}. 

 We have that 𝑆 is 𝑎 closed subspace and that 𝑓 → (𝑓, 𝑅𝑁,1𝑓, … , 𝑅𝑁,(1+2𝜖)𝑓) is 𝑎 isometry 

of 𝐻∆𝑁
1 (ℝ(1+2𝜖)) to 𝑆. Linear functionals on 𝑆 and 𝐻∆𝑁

1 (ℝ(1+2𝜖))can be identified in an 

obvious way, hence any continuous linear functional on 𝐻∆𝑁
1 (ℝ(1+2𝜖))can be extended by 

Hahn-Banach to a continuous linear functional on 𝐵 and can be identified with a vector of 

functions (𝑏0, 𝑏1, … , 𝑏(1+2𝜖)) with each 𝑏𝑗 ∈ 𝐿
∞(ℝ(1+2𝜖)). 
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We use this conclusion in the following way. Let ℓ be a continuous linear functional 

on 𝐻∆𝑁
1 (ℝ(1+2𝜖)). Then by Proposition (6.2.12) there is a function 𝑏 ∈ BMO∆𝑁(ℝ

(1+2𝜖)) 

so that:  

∫ 𝑓(𝑥)𝑏(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥

 

ℝ(1+2𝜖)

= ℓ(𝑓). 

However, by the discussion above, and by restricting the extended linear functional back 

to 𝐻∆𝑁
1 (ℝ(1+2𝜖)) we have for (𝑓, 𝑅𝑁,1𝑓,… , 𝑅𝑁,(1+2𝜖)𝑓) = (𝑓0, … , 𝑓(1+2𝜖)): 

ℓ(𝑓) = ∑ ∫ 𝑓𝑗(𝑥)𝑏𝑗(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥

 

ℝ(1+2𝜖)

(1+2𝜖)

𝑗=0

. 

 Using the definition of the 𝑓𝑗 = 𝑅𝑁,𝑗𝑓  we see that:  

ℓ(𝑓) = ∫ 𝑓(𝑥)(𝑏0(𝑥) + ∑ 𝑅𝑁,𝑗
∗ 𝑏𝑗(𝑥)

(1+2𝜖)

𝑗=1

)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑑𝑥

 

ℝ(1+2𝜖)

. 

This then gives the decomposition that any 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖))can be written as: 

𝑏 = 𝑏0 + ∑ 𝑅𝑁,𝑗
∗ 𝑏𝑗

1+2𝜖

𝑗=1

 

with 𝑏𝑗 ∈ 𝐿
∞(ℝ(1+2𝜖)). 

For the converse, we simply observe that from our Corollary (6.2.33), we obtained that 𝑅𝑁 

maps 𝐻∆𝑁
1 (ℝ(1+2𝜖))to 𝐿1(ℝ(1+2𝜖)). Hence, the boundedness of the Riesz transform 𝑅𝑁  

∗  

from 𝐿∞(ℝ(1+2𝜖)) to 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) follows from duality of 𝐻∆𝑁

1 (ℝ(1+2𝜖)) with 

BMO∆𝑁(ℝ
(1+2𝜖)). We then have that any 𝑏 that can be written as: 

𝑏 = 𝑏0 + ∑ 𝑅𝑁,𝑗
∗ 𝑏𝑗

(1+2𝜖)

𝑗=1

 

with 𝑏𝑗 ∈ 𝐿
∞(ℝ(1+2𝜖)) must belong to BMO∆𝑁(ℝ

(1+2𝜖)). 

Corollary (6.2.35)[183]: ([53]).𝐻∆𝑁
1 (ℝ(1+2𝜖)) ⊊ 𝐻1(ℝ(1+2𝜖)). 

Proof: We first show that the containment 𝐻∆𝑁
1 (ℝ(1+2𝜖)) ⊂ 𝐻1(ℝ(1+2𝜖))holds.  

This follows directly from the fact that corresponding BMO spaces norm the 𝐻1spaces, 

namely that: 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≈ sup

‖𝑏‖
𝐵𝑀𝑂∆𝑁

(ℝ(1+2𝜖))
≤1
|〈𝑓, 𝑏〉𝐿2(ℝ

(1+2𝜖))|. 

An identical statement holds for 𝐻1(ℝ(1+2𝜖))and 𝐵𝑀𝑂(ℝ(1+2𝜖)). As shown in[65], 

𝐵𝑀𝑂(ℝ(1+2𝜖)) ⊊ 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)), and so we have 

‖𝑓‖𝐻1(ℝ(1+2𝜖)) ≈ sup
‖𝑏‖

𝐵𝑀𝑂(ℝ(1+2𝜖))
≤1
|〈𝑓, 𝑏〉𝐿2(ℝ

(1+2𝜖))|

≤ sup
‖𝑏‖

𝐵𝑀𝑂∆𝑁
(ℝ(1+2𝜖))

≤1
|〈𝑓, 𝑏〉𝐿2(ℝ

(1+2𝜖))| ≈ ‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)). 

This gives the containment, 𝐻∆𝑁
1 (ℝ(1+2𝜖)) ⊂ 𝐻1(ℝ(1+2𝜖)). 
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We now show that there exists a function 𝑓 ∈ 𝐻1(ℝ(1+2𝜖))but𝑓 ∉ 𝐻∆𝑁
1 (ℝ(1+2𝜖)). For the 

sake of simplicity, we just consider the example in dimension 1. 
Define 

𝑓(𝑥) ≔
𝜒[0,1](𝑥)

√2
−
𝜒[−1,0](𝑥)

√2
. 

It is easy to see that 𝑓(𝑥) is supported in [−1, 1], and∫ 𝑓(𝑥)𝑑𝑥
 

ℝ
= 0. Moreover, we have  

‖𝑓‖𝐿2(ℝ(1+2𝜖)) = 1. 

These implies that 𝑓 is an atom of 𝐻1(ℝ), which shows that 𝑓 ∈ 𝐻1(ℝ).  

From the definition of 𝑓, we obtain that 𝑓+(𝑥)
𝜒[0,1](𝑥)

√2
, and the even extension is  

𝑓+,𝑒(𝑥)
𝜒[−1,1](𝑥)

√2
. 

But, then it is immediate that𝑓+,𝑒 ∉ 𝐻
1(ℝ) since∫ 𝑓+,𝑒(𝑥)𝑑𝑥

 

ℝ(1+2𝜖)
≠ 0. One can also 

prove this by using the equivalent definition of 𝐻1(ℝ) via the radial maximal function. 

Similarly we have these estimates for 𝑓−,𝑒. Hence, 𝑓+,𝑒 ∉ 𝐻
1(ℝ)and𝑓−,𝑒 ∉ 𝐻

1(ℝ), which, 

combining the result in Corollary (6.2.33) implies that 𝑓 ∉ 𝐻∆𝑁
1 (ℝ). 

Finally, we provide a description of the atoms in 𝐻∆𝑁
1 (ℝ(1+2𝜖))that connects back to the 

atom in 𝐻1(ℝ(1+2𝜖)) (see [178]). 

Corollary (6.2.36)[183]: Suppose 𝑎(𝑥) is an 𝐻∆𝑁
1 (ℝ(1+2𝜖))-atom supported in 𝐵 ⊂

ℝ(1+2𝜖). Then we have 

∫ 𝑎(𝑥)𝑑𝑥
 

ℝ(1+2𝜖)
= 0.                                                                           (93) 

 Moreover, if 𝐵 ∩ {𝑥 ∈ ℝ(1+2𝜖): 𝑥(1+2𝜖) = 0} ≠ ∅, we denote 𝐵+ = 𝐵 ∩

ℝ+
(1+2𝜖)     

and𝐵− = 𝐵 ∩ ℝ−
(1+2𝜖). Then we have 

∫ 𝑎(𝑥)𝑑𝑥
 

𝐵+

= ∫ 𝑎(𝑥)𝑑𝑥
 

𝐵−

= 0.                                                              (94) 

 Proof: First note that from Corollary (6.2.35), 𝐻∆𝑁
1 (ℝ(1+2𝜖)) ⊊ 𝐻1(ℝ(1+2𝜖)). Since 𝑎(𝑥) 

is an 𝐻∆𝑁
1 (ℝ(1+2𝜖)) atom, we have 𝑎(𝑥) ∈ 𝐻1(ℝ(1+2𝜖)), and hence (93) holds, where we 

use [180]. 

Second, suppose 𝐵 ∩ {𝑥 ∈ ℝ(1+2𝜖): 𝑥(1+2𝜖) = 0} ≠ ∅.  

Then we define 𝑎+(𝑥) = 𝑎(𝑥)|𝐵+and 𝑎−(𝑥) = 𝑎(𝑥)|𝐵−. 

Since 𝑎(𝑥) ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖)), from Corollary (6.2.33) we obtain that both 

𝑎+,𝑒(𝑥) and 𝑎−,𝑒(𝑥) are in 𝐻1(ℝ(1+2𝜖)),  
which implies that 

∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ(1+2𝜖)

= ∫ 𝑎−,𝑒(𝑥)𝑑𝑥

 

ℝ(1+2𝜖)

= 0. 

 Next we claim that∫ 𝑎+,𝑒(𝑥)𝑑𝑥
 

ℝ(1+2𝜖)
= 0. In fact,  

∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ(1+2𝜖)

= ∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ+
(1+2𝜖)

+ ∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ−
(1+2𝜖)

= 2 ∫ 𝑎+,𝑒(𝑥)𝑑𝑥

 

ℝ+
(1+2𝜖)

. 

Hence, 
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 ∫ 𝑎+,𝑒(𝑥)𝑑𝑥
 

ℝ(1+2𝜖)
= 0 

 implies that ∫ 𝑎+,𝑒(𝑥)𝑑𝑥
 

ℝ(1+2𝜖)
= 0, i.e. ∫ 𝑎(𝑥)𝑑𝑥

 

𝐵+
= 0. Similarly we obtain 

that ∫ 𝑎(𝑥)𝑑𝑥
 

𝐵−
= 0. Hence(94) holds. 

Corollary (6.2.37)[183]: If 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)), then for 0 ≤ 𝜖 ≤ 2𝜖, the commutator  

[𝑏, R𝑁,(1+𝜖)](𝑓)(𝑥) = 𝑏(𝑥)𝑏, R𝑁,(1+𝜖)(𝑓)(𝑥) − R𝑁,(1+𝜖)(𝑏𝑓)(𝑥) 

is a bounded map on 𝐿2(ℝ(1+2𝜖)), with operator norm  

‖[𝑏, R𝑁,(1+𝜖)]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖)). 

Proof: Suppose 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)). Then according to [65], we have 

that 𝑏+,𝑒(𝑥)𝐵𝑀𝑂(ℝ
(1+2𝜖))and 𝑏−,𝑒(𝑥)𝐵𝑀𝑂(ℝ

(1+2𝜖)), and moreover,  

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) ≈ ‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖)). 

For every𝑓 ∈ 𝐿2(ℝ(1+2𝜖)), we have  

‖[𝑏, R𝑁,(1+𝜖)](𝑓)‖𝐿2(ℝ(1+2𝜖))
2

= ∫ [𝑏, R𝑁,(1+𝜖)](𝑓)(𝑥)
2𝑑𝑥

 

ℝ+
(1+2𝜖)

+ ∫ [𝑏, R𝑁,(1+𝜖)](𝑓)(𝑥)
2𝑑𝑥

 

ℝ−
(1+2𝜖)

=: 𝐼 + 𝐼𝐼. 

For the term 𝐼, note that when 𝑥 ∈ ℝ+
(1+2𝜖)

, we have  

[𝑏, R𝑁,(1+𝜖)](𝑓)(𝑥) = 𝑏(𝑥)𝑏, R𝑁,(1+𝜖)(𝑓)(𝑥) − R𝑁,(1+𝜖)(𝑏𝑓)(𝑥) 

= 𝑏+,𝑒(𝑥)𝑅(1+𝜖)(𝑓+,𝑒)(𝑥) − 𝑅(1+𝜖)(𝑏+,𝑒𝑓+,𝑒)(𝑥) = [𝑏+,𝑒, R(1+𝜖)](𝑓+,𝑒)(𝑥), 

which implies that 

𝐼 = ∫ [𝑏, R𝑁,(1+𝜖)](𝑓)(𝑥)
2𝑑𝑥

 

ℝ+
(1+2𝜖)

= ∫ [𝑏+,𝑒, R(1+𝜖)](𝑓+,𝑒)(𝑥)
2𝑑𝑥

 

ℝ+
(1+2𝜖)

≤ ∫ [𝑏+,𝑒, R(1+𝜖)](𝑓+,𝑒)(𝑥)
2𝑑𝑥

 

ℝ(1+2𝜖)

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))
2

‖𝑓+,𝑒‖𝐿2(ℝ(1+2𝜖))
2

, 

 Where R(1+𝜖)is the classical (1 + 𝜖)-th Riesz transform 
𝜕

𝜕x(1+𝜖)
∆−

1

2. 

For the last estimate we use the result [3], which applies since we know from that 

R𝑁,(1+𝜖) is a Calderón–Zygmund kernel. Similarly we can obtain that 

𝐼𝐼 ≤ 𝐶‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))
2

‖𝑓−,𝑒‖𝐿2(ℝ(1+2𝜖))
2

. 

Combining the estimates for 𝐼 and 𝐼𝐼 above, we obtain that  

‖[𝑏, R𝑁,(1+𝜖)](𝑓)‖𝐿2(ℝ(1+2𝜖))
2

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))
2

‖𝑓+,𝑒‖𝐿2(ℝ(1+2𝜖))
2

+ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))
2

‖𝑓−,𝑒‖𝐿2(ℝ(1+2𝜖))
2

 

≤ 𝐶‖𝑏‖
𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))
2 (‖𝑓+,𝑒‖𝐿2(ℝ(1+2𝜖))

2
+ ‖𝑓−,𝑒‖𝐿2(ℝ(1+2𝜖))

2
) 

≤ 𝐶‖𝑏‖
𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))
2 ‖𝑓‖

𝐿2(ℝ(1+2𝜖))
2 , 

which yields that 

‖[𝑏, R𝑁,(1+𝜖)]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖)). 
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Corollary (6.2.38)[183]:  Let 𝑔, ℎ ∈ 𝐿∞(ℝ(1+2𝜖))with compact supports. Then for 0 ≤

𝜖 ≤ 2𝜖,  

‖Π(1+𝜖)(ℎ, 𝑔)‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

≤ 𝐶‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)). 

Proof. By the duality result of [65], stated in Proposition (6.2.12), we know 

that 𝐻∆𝑁
1 (ℝ(1+2𝜖)) ∗ = BMO∆𝑁(1 + 2𝜖). 𝐴 simple duality computation shows for 𝑏 ∈

𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) and for any 𝑔, ℎ ∈ 𝐿∞(ℝ(1+2𝜖))with compact supports: 

〈𝑏, Π(1+𝜖)(𝑔, ℎ)〉𝐿2(ℝ(1+2𝜖)) = 〈𝑏, R𝑁,(1+𝜖)
∗ (𝑔)ℎ − R𝑁,(1+𝜖)(ℎ)𝑔〉𝐿2(ℝ(1+2𝜖))

= 〈𝑔, [𝑏, R𝑁,1+𝜖(ℎ)]ℎ〉𝐿2(ℝ(1+2𝜖)). 

Thus, from Corollary (6.2.37) , we obtain that 

|〈𝑏, Π1+𝜖(𝑔, ℎ)〉𝐿2(ℝ(1+2𝜖))| ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖))‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)). 

This, together with the duality of 𝐻∆𝑁
1 (ℝ(1+2𝜖))with 𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))shows that 

Π(1+𝜖)(𝑔, ℎ)is in 𝐻∆𝑁
1 (ℝ(1+2𝜖)).  

And then by testing Π(1+𝜖)(𝑔, ℎ)against 𝑏 ∈ 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) functions, we find:  

‖Π(1+𝜖)(𝑔, ℎ)‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

≈ sup
‖𝑏‖

𝐵𝑀𝑂∆𝑁
(ℝ(1+2𝜖))

≤1
|〈Π(1+𝜖)(𝑔, ℎ), 𝑏〉𝐿2(ℝ(1+2𝜖))| 

≤ 𝐶‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)) sup
‖𝑏‖

𝐵𝑀𝑂∆𝑁
(ℝ(1+2𝜖))

≤1
‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖)) 

≤ 𝐶‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)). 

Corollary (6.2.39): Suppose 𝑓 is a function satisfying:∫ 𝑓(𝑥)𝑑𝑥
 

ℝ(1+2𝜖)
= 0, and  |𝑓(𝑥)| ≤

𝜒𝐵(𝑥0,1)(𝑥) + 𝜒𝐵((𝑥+𝜖)0,1)(𝑥), where |𝑥0 − (𝑥 + 𝜖)0| ≔ 𝑀 > 10. Then we have 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≤ 𝐶(1+2𝜖) log𝑀.                                                 (95) 

Proof: First note that 

𝑓∆𝑁
+ (𝑥) = sup

𝜖>−1
|𝑒−(1+𝜖)∆𝑁𝑓(𝑥)|

= sup
𝜖>−1

| ∫ (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

|

≤ sup
𝜖>−1

∫ |(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))|𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

≤ 𝐶. 

Hence, we obtain that 

∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,5)

+ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵((𝑥+𝜖)0,5)

≤ 𝐶(1+2𝜖). 

 Now it suffices to estimate 

∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

ℝ(1+2𝜖)\(𝐵(𝑥0,5)∪𝐵((𝑥+𝜖)0,5))

. 

To see this, we write it as 
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∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

ℝ(1+2𝜖)

𝐵(𝑥0,2𝑀)

+ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵((𝑥+𝜖)0,5))

=: 𝐼 + 𝐼𝐼. 

 

 We now estimate the term 𝐼. First note that from Hölder’s regularity (85) of the heat 

kernel (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, 𝑥 + 𝜖), we have 

|(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖)) − (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, 𝑥0)|

≤ 𝐶 (
|(𝑥 + 𝜖) − 𝑥0|

√(1 + 𝜖) + |𝑥 − 𝑥0|
)

√(1 + 𝜖)

(√(1 + 𝜖) + |𝑥 − 𝑥0|)
(2+2𝜖) 

 for |(𝑥 + 𝜖) − 𝑥0| < √(1 + 𝜖). Moreover, when |(𝑥 + 𝜖) − 𝑥0| ≥ √(1 + 𝜖) , we have  

|(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖)) − (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, 𝑥0)|

≤ |(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))| + |(1 + 𝜖)(1+𝜖),∆𝑁(𝑥 − 𝑥0)|

≤ 𝐶
𝑒−|𝑥−𝑥0|

2/𝑐(1+𝜖)𝑒−|𝜖|
2/𝑐(1+𝜖)

(1 + 𝜖)(1+2𝜖)/2
≤ 𝐶 (

|(𝑥 + 𝜖) − 𝑥0|

√(1 + 𝜖)
)
𝑒−|𝑥−𝑥0|

2/𝑐(1+𝜖)

(1 + 𝜖)(1+2𝜖)/2

≤ 𝐶
|(𝑥 + 𝜖) − 𝑥0|√(1 + 𝜖)

(√(1 + 𝜖) + |𝑥 − 𝑥0|)
(3+2𝜖). 

Now note that from the cancellation condition of 𝑓 and Hölder’s regularity of the heat 

kernel (1 + 𝜖)(1+𝜖)(𝑥, 𝑥 + 𝜖) as above, we have 

𝑓∆𝑁
+ (𝑥) = sup

𝜖>−1
| ∫ [(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖)) − (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, 𝑥0)]𝑓((𝑥

 

ℝ(1+2𝜖)

+ 𝜖))𝑑(𝑥 + 𝜖)| 

≤ 𝐶 sup
𝜖>−1

∫
|(𝑥 + 𝜖) − 𝑥0|√(1 + 𝜖)

(√(1 + 𝜖) + |𝑥 − 𝑥0|)
(3+2𝜖)

 

𝐵(𝑥0,1)∪𝐵((𝑥+𝜖)0,1)

𝑑(𝑥 + 𝜖) 

≤ 𝐶(1+2𝜖)
|(𝑥 + 𝜖)0 − 𝑥0|

|𝑥 − 𝑥0|
(2+2𝜖)

= 𝐶(1+2𝜖)
𝑀

|𝑥 − 𝑥0|
(2+2𝜖)

. 

As a consequence, we obtain that 

𝐼 ≤ ∫ 𝐶(1+2𝜖)
𝑀

|𝑥 − 𝑥0|
(2+2𝜖) 𝑑𝑥 ≤ 𝐶(1+2𝜖)

 

ℝ(1+2𝜖)/𝐵(𝑥0,2𝑀)

. 

We now turn to the term𝐼𝐼. Note that when 𝑥 ∈ 𝐵(𝑥0, 2𝑀)\(𝐵(𝑥0, 5) ∪ 𝐵((𝑥 + 𝜖)0, 5)), 
we have 
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| ∫ (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

|

≤ ∫ |(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))|𝑑(𝑥 + 𝜖)

 

𝐵(𝑥0,1)

+ ∫ |(1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))|𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,1)

. 

When 𝜖 > 0, from the size estimate of the heat kernel (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖)), we 

have 

| ∫ (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

|

≤ 𝐶
1

|𝑥 − 𝑥0|
(1+2𝜖) + 𝐶

1

|𝑥 − (𝑥 + 𝜖)0|
(1+2𝜖). 

When 𝜖 ≤ 0, similarly we obtain that 

| ∫ (1 + 𝜖)(1+𝜖),∆𝑁(𝑥, (𝑥 + 𝜖))𝑓((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

ℝ(1+2𝜖)

|

≤ 𝐶
1

|𝑥 − 𝑥0|
(2+2𝜖) + 𝐶

1

|𝑥 − (𝑥 + 𝜖)0|
(2+2𝜖)

≤ 𝐶
1

|𝑥 − 𝑥0|
(1+2𝜖) + 𝐶

1

|𝑥 − (𝑥 + 𝜖)0|
(1+2𝜖). 

Thus, 

𝐼𝐼 ≤ ∫ 𝑓∆𝑁
+ (𝑥)𝑑𝑥

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵((𝑥+𝜖)0,5))

 

≤ 𝐶 ∫
1

|𝑥 − 𝑥0|
(1+2𝜖) +

1

|−𝜖)0|
(1+2𝜖)

 

𝐵(𝑥0,2𝑀)\(𝐵(𝑥0,5)∪𝐵((𝑥+𝜖)0,5))

𝑑𝑥 

≤ 𝐶(1+2𝜖) log𝑀. 

 

Combining all the estimates above, we obtain that 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) = ‖𝑓∆𝑁

+ ‖
𝐿1(ℝ(1+2𝜖))

≤ 𝐶(1+2𝜖) log𝑀. 

Corollary (6.2.40)[183]: Suppose 0 ≤ 𝜖 ≤ 2𝜖. For every 𝐻∆𝑁
1 (ℝ(1+2𝜖))-atom 𝑎(𝑥) and 

for all 𝜀 > 0 there exist a large positive number 𝑀 and 𝑔, ℎ ∈ 𝐿∞(ℝ(1+2𝜖)) with compact 

supports such that:  

‖𝑎 − Π(1+𝜖)(ℎ, 𝑔)‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

< 𝜀 

and ‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)) ≤ 𝐶𝑀
(1+2𝜖). 

Proof: Let 𝑎(𝑥) be an 𝐻∆𝑁
1 (ℝ(1+2𝜖))-atom, supported in 𝐵(𝑥0, 𝑟).We first consider the 

construction of the bilinear form Π(1+𝜖)(ℎ, 𝑔) for 𝜖 ≥ 0 and the approximation to 𝑎(𝑥). To 
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begin with, for the ball 𝐵(𝑥0, 𝑟), we now consider the following cases: Case1:𝑥0,(1+2𝜖) ≥

0; Case2:𝑥0,(1+2𝜖) < 0. 

We first consider Case1. To begin with, fix 𝜀 > 0. Choose 𝑀 ∈ [100,∞) sufficiently large 

so that 
log𝑀

𝑀
< 𝜀. Now select (𝑥 + 𝜖)0 ∈ ℝ+

(1+2𝜖)
in the following way: for 0 ≤ 𝑖 − 1 ≤ 2𝜖, 

choose  (𝑥 + 𝜖)0,𝑖 >  0 such that (𝑥 + 𝜖)0,𝑖 − 𝑥0,𝑖 =
𝑀𝑟

√(1+2𝜖)
 , where 𝑥0,𝑖 (reps. (𝑥 + 𝜖)0,𝑖) 

is the ith coordinate of 𝑥0(reps.(𝑥 + 𝜖)0). 

Note that for this (𝑥 + 𝜖)0, it is clear that 𝐵((𝑥 + 𝜖)0, 𝑟) ⊂ ℝ+
(1+2𝜖)

and we have |𝑥0 −
(𝑥 + 𝜖)0| = 𝑀𝑟. Moreover, for any (𝑥 + 𝜖) ∈ 𝐵((𝑥 + 𝜖)0, 𝑟), we also have |𝑥0 − (𝑥 +

𝜖)| >
𝑀𝑟

2
. We set  

𝑔(𝑥) ≔ 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)   and    ℎ(𝑥) ≔
𝑎(𝑥)

𝑅𝑁,1+𝜖
∗ 𝑔(𝑥0)

.             (96) 

We first claim that 

|𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0)| ≥ 𝐶𝑀

−(1+2𝜖), 0 ≤ 𝜖 ≤ 2𝜖 .                    (97) 

In fact, for (1 + 𝜖) = 1 , . . . , 2𝜖, from Corollary (6.2.30), we have 

𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0) = | ∫ 𝑅𝑁,(1+𝜖)((𝑥 + 𝜖), 𝑥0)𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

| 

= 𝐶(1+2𝜖) | ∫ (
(𝑥 + 𝜖)(1+2𝜖) − 𝑥0,(1+2𝜖)
|𝑥0 − (𝑥 + 𝜖)|

(2+2𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

+
(𝑥 + 𝜖)(1+2𝜖) − 𝑥0,(1+2𝜖)

(|𝑥0
, − (𝑥 + 𝜖)′|

2
+ |𝑥0,(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|

2
)
(1+𝜖))𝑑(𝑥 + 𝜖)| 

= 𝐶(1+2𝜖)|(𝑥 + 𝜖)(1+2𝜖)

− 𝑥0,(1+2𝜖)| | ∫ (
1

|𝑥0 − (𝑥 + 𝜖)|
(2+2𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

+
1

(|𝑥0
, − (𝑥 + 𝜖)′|

2
+ |𝑥0,(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|

2
)
(1+𝜖)

)𝑑(𝑥 + 𝜖)| 

≥ 𝐶𝑀𝑟 ∫
1

|𝑥0 − (𝑥 + 𝜖)|
(2+2𝜖) 𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

≥ 𝐶𝑀−(1+2𝜖). 

As a consequence, we get that the claim(97) holds. 

As for Case2, we handle it in a symmetric way as follows. Fix 𝜀 > 0. Choose𝑀 ∈

[100 , ∞) sufficiently large so that 
log𝑀

𝑀
< 𝜀. Now select (𝑥 + 𝜖)0 ∈ ℝ+

(1+2𝜖)
in the 

following way: for 0 ≤ 𝑖 − 1 ≤ 2𝜖, choose (𝑥 + 𝜖)0,𝑖 > 0 such that (𝑥 + 𝜖)0,𝑖 − 𝑥0,𝑖 =

−
𝑀𝑟

√(1+2𝜖)
. Note that for this (𝑥 + 𝜖)0, it is clear that 𝐵((𝑥 + 𝜖)0, 𝑟) ⊂ ℝ−

(1+2𝜖)and we 
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have |𝑥0 − (𝑥 + 𝜖)0| = 𝑀𝑟. Moreover, for any (𝑥 + 𝜖) ∈ 𝐵((1 + 2𝜖)0, 𝑟), we also 

have |𝑥0 − (𝑥 + 𝜖)| >
𝑀𝑟

2
. We now define the functions 𝑔 and ℎ as in(56), and the 

following the same estimates, we can obtain that the claim(97) holds. 

From the definitions of the functions 𝑔 andℎ, we obtain that supp 𝑔(𝑥) = 𝐵((𝑥 + 𝜖)0, 𝑟) 
and supp ℎ(𝑥) = 𝐵(𝑥0, 𝑟). Moreover, from(97) we obtain that 

‖𝑔‖𝐿2(ℝ(1+2𝜖)) ≈ 𝑟
(1+2𝜖)
2  and ‖ℎ‖𝐿2(ℝ(1+2𝜖)) =

1

|𝑅𝑁,(1+𝜖)𝑔(𝑥0)|
‖𝑎‖𝐿2(ℝ(1+2𝜖))

≤ 𝐶𝑀(1+2𝜖)𝑟−
(1+2𝜖)
2 . 

Hence ‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+2𝜖)) ≤ 𝐶𝑀
(1+2𝜖). Now write 

𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+𝜖)ℎ(𝑥))

= 𝑎(𝑥)
𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0) − 𝑅𝑁,(1+𝜖)

∗ 𝑔(𝑥)

𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0)

− 𝑔(𝑥)𝑅𝑁,(1+𝜖)ℎ(𝑥) 

=:𝑊1(𝑥) + 𝑊2(𝑥). 
 By definition, it is obvious that 𝑊1(𝑥)is supported on 𝐵(𝑥0, 𝑟) and 𝑊2(𝑥) is supported 

on 𝐵((𝑥 + 𝜖)0, 𝑟). 
We first turn to 𝑊1(𝑥). For 𝑥 ∈ 𝐵(𝑥0, 𝑟), 

|𝑊1(𝑥)| = |𝑎(𝑥)|
|𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0) − 𝑅𝑁,(1+𝜖)

∗ 𝑔(𝑥)|

𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥0)

≤ 𝐶𝑀(1+2𝜖)‖𝑎‖𝐿∞(ℝ(1+2𝜖)) ∫ |𝑅𝑁,(1+𝜖)((𝑥 + 𝜖), 𝑥0)

 

𝐵((𝑥+𝜖)0,𝑟)

− 𝑅𝑁,(1+𝜖)((𝑥 + 𝜖), 𝑥)|𝑑(𝑥 + 𝜖) ≤ 𝐶
𝑀(1+2𝜖)

𝑟(1+2𝜖)
∫

|𝑥 − 𝑥0|

|𝜖|(2+2𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

𝑑(𝑥 + 𝜖)

≤ 𝐶
1

𝑀𝑟(1+2𝜖)
. 

 Hence |𝑊1(𝑥)| ≤ 𝐶
1

𝑀𝑟(1+2𝜖)
𝜒𝐵(𝑥0,𝑟)(𝑥). 

We next estimate 𝑊2(𝑥). From the definition of 𝑔(𝑥), we have 

 

|𝑊2(𝑥)| = 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)|𝑅𝑁,(𝑥+𝜖)ℎ(𝑥)| 

= 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)
1

|𝑅𝑁,(𝑥+𝜖)
∗ 𝑔(𝑥0)|

| ∫ 𝑅𝑁,(𝑥+𝜖)ℎ(𝑥, (𝑥 + 𝜖))𝑎((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

| 

= 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)
1

|𝑅𝑁,(𝑥+𝜖)
∗ 𝑔(𝑥0)|

| ∫ 𝑅𝑁,(1+𝜖)(𝑥, (𝑥 + 𝜖))𝑎+((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

|, 

 

where the last equality follows from the fact that 𝑥 ∈ 𝐵((𝑥 + 𝜖)0, 𝑟) ⊂ ℝ+
(1+2𝜖)

and from 

the definition of the Riesz kernel 𝑅𝑁(𝑥, (𝑥 + 𝜖)) as in (86). Hence, from the cancellation 

property of 𝑎+((𝑥 + 𝜖)), we get 
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|𝑊2(𝑥)| = 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)
1

|𝑅𝑁,(1+2𝜖)
∗ 𝑔(𝑥0)|

| ∫ (𝑅𝑁,(1+2𝜖)(𝑥, (𝑥 + 𝜖))

 

𝐵(𝑥0,𝑟)

− 𝑅𝑁,(1+2𝜖)(𝑥, 𝑥0)) 𝑎+((𝑥 + 𝜖))𝑑(𝑥 + 𝜖)| 

≤ 𝐶𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)𝑀
(1+2𝜖) ∫ ‖𝑎‖𝐿∞(ℝ(1+2𝜖))

|(𝑥 + 𝜖) − 𝑥0|

|𝑥 − 𝑥0|
(2+2𝜖)

𝑑(𝑥 + 𝜖)

 

𝐵(𝑥0,𝑟)

 

≤
𝐶

𝑀𝑟(1+2𝜖)
𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥). 

Combining the estimates of 𝑊1and 𝑊2, we obtain that 

|𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+𝜖)ℎ(𝑥))|

≤
𝐶

𝑀(1+2𝜖)
(𝜒𝐵(𝑥0,𝑟)(𝑥) + 𝜒𝐵((𝑥+𝜖)0,𝑟)(𝑥)).                                         (98) 

Next we point out that  

∫[𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+2𝜖)ℎ(𝑥))] 𝑑𝑥 

= ∫𝑎(𝑥)𝑑𝑥 − ∫(ℎ(𝑥)𝑅𝑁,(1+2𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+2𝜖)ℎ(𝑥)) 𝑑𝑥 = 0,           (99) 

 

since 𝑎(𝑥) has cancellation (Corollary (6.2.36)) and the second integral equals 0 just by 

the definitions of 𝑔 and ℎ. 
Then the size estimate(98) and the cancellation(99), together with Corollary (6.2.39), 

imply that  

‖𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+𝜖)ℎ(𝑥))‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

≤ 𝐶
log𝑀

𝑀
≤ 𝐶𝜖. 

 This proves the result for 0 ≤ 𝜖 ≤ 2𝜖 − 1.  

We now consider the bilinear form Π(1+𝜖)(𝑔, ℎ)and its approximation to 𝑎(𝑥). 

Again, for the ball 𝐵(𝑥0, 𝑟), we now consider the following cases: Case1: 𝑥0,(1+2𝜖) ≥

0; Case2: 𝑥0,(1+2𝜖) < 0. 

 It suffices to consider the Case 1 since the other can be handled symmetrically. In 

this case, for 𝑥0with 𝑥0,(1+2𝜖) ≥ 0, choose (𝑥 + 𝜖)0 such that (𝑥 + 𝜖)0,𝑖 − 𝑥0,𝑖 =
𝑀𝑟

√(1+2𝜖)
 

for  𝑖 = 1 , . . . , 1 + 2𝜖. We now define the functions 𝑔 and ℎ as in (96). This, together 

with Corollary (6.2.30), yields  

𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) | ∫ 𝑅𝑁,(1+𝜖)(𝑥, 𝑥0)𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

|

= 𝐶(1+2𝜖) | ∫ (
(𝑥 + 𝜖)(1+2𝜖) − 𝑥0,(1+2𝜖)
|𝑥0 − (𝑥 + 𝜖)|(2+2𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

+
𝑥0,(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)

(|𝑥0
, − (𝑥 + 𝜖)′|

2
+ |𝑥0,(1+2𝜖) + (𝑥 + 𝜖)(1+2𝜖)|

2
)
(1+𝜖)

)𝑑(𝑥 + 𝜖)| 
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≥ 𝐶(1+2𝜖) | ∫
(𝑥 + 𝜖)(1+2𝜖) − 𝑥0,(1+2𝜖)
|𝑥0 − (𝑥 + 𝜖)|(2+2𝜖)

𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

|

= 𝐶(1+2𝜖)|(𝑥 + 𝜖)(1+2𝜖) − 𝑥0,(1+2𝜖)| | ∫
1

|𝑥0 − (𝑥 + 𝜖)|2+2𝜖
𝑑(𝑥 + 𝜖)

 

𝐵((𝑥+𝜖)0,𝑟)

| ≥ 𝐶𝑀(1+2𝜖). 

Here, we obtain that the claim(97) holds for these 𝑔 and ℎ. 
Now following the approximation as that for 𝑅𝑁,(1+𝜖)with 0 ≤ 𝜖 ≤ −1 + 2𝜖, we obtain 

that 

‖𝑎(𝑥) − (ℎ(𝑥)𝑅𝑁,(1+𝜖)
∗ 𝑔(𝑥) − 𝑔(𝑥)𝑅𝑁,(1+𝜖)ℎ(𝑥))‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

≤ 𝐶
log𝑀

𝑀
≤ 𝐶𝜖.   (100) 

With this approximation result, we can now prove the main Theorem (6.2.2), restated 

below (see [178]). 

Corollary (6.2.41)[183]: Suppose 0 ≤ 𝜖 ≤ 2𝜖 For any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖)) there exists 

sequences {𝜆𝑗
𝑘} ∈ ℓ1and functions 𝑔𝑗

𝑘 , ℎ𝑗
𝑘 ∈ 𝐿∞(ℝ(1+2𝜖))with compact supports such that 

𝑓 = ∑∑𝜆(1+𝜖)
𝑘 Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1

. 

Moreover, we have that: 

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

≈ inf {∑∑|𝜆𝑗
𝑘|‖𝑔𝑗

𝑘‖
𝐿2(ℝ(1+2𝜖))

‖ℎ𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

∞

𝑗=1

∞

𝑘=1

: 𝑓

= ∑∑𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗 , ℎ𝑗)

∞

𝑗=1

∞

𝑘=1

}. 

Proof: By Corollary (6.2.38) we have that  ‖Π(1+𝜖)(𝑔, ℎ)‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

≤

𝐶‖𝑔‖𝐿2(ℝ(1+2𝜖))‖ℎ‖𝐿2(ℝ(1+𝜖)), it is immediate that we have for any representation of 𝑓 =

∑ ∑ 𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗 , ℎ𝑗)

∞
𝑗=1

∞
𝑘=1  that  

‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≤ 𝐶 inf

{
 
 

 
 ∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

‖ℎ𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

∞

𝑗=1

∞

𝑘=1

: 𝑓 = ∑∑𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1 }
 
 

 
 

. 

We turn to show that the other inequality hold and that it is possible to obtain such a 

decomposition for any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖)). By the atomic decomposition for 𝐻∆𝑁

1 (ℝ(1+2𝜖)), 

Corollary (6.2.33) for any 𝑓 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖))we can find a sequence {𝜆𝑗

1} ∈ ℓ1and 

sequence of  𝐻∆𝑁
1 (ℝ(1+2𝜖))-atoms 𝑎𝑗

1 so that 𝑓 = ∑ 𝜆𝑗
1𝑎𝑗
1 ∞

𝑗=1 and ∑ |𝜆𝑗
1|∞

𝑗=1 ≤

𝐶0‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)).  

We explicitly track the implied absolute constant 𝐶0appearing from the atomic 

decomposition since it will play a role in the convergence of the approach. Fix 𝜀 > 0 so 
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that 𝜀𝐶0 < 1. Then we also have a large positive number 𝑀 with 
log𝑀

𝑀
< 𝜀. We apply 

Corollary (6.2.40) to each atom 𝑎𝑗
1. So there exists 𝑔𝑗

1, ℎ𝑗
1 ∈ 𝐿∞(ℝ(1+2𝜖))with compact 

supports and satisfying  ‖𝑔𝑗
1‖
𝐿2(ℝ(1+2𝜖))

‖ℎ𝑗
1‖
𝐿2(ℝ(1+2𝜖))

≤ 𝐶𝑀(1+2𝜖)and  

‖𝑎𝑗
1 − Π(1+𝜖)(𝑔𝑗

1, ℎ𝑗
1)‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

< 𝜀∀𝑗. 

Now note that we have 

𝑓 =∑𝜆𝑗
1𝑎𝑗
1

∞

𝑗=1

=∑𝜆𝑗
1Π(1+𝜖)(𝑔𝑗

1, ℎ𝑗
1)

∞

𝑗=1

+∑𝜆𝑗
1 (𝑎𝑗

1 − Π(1+𝜖)(𝑔𝑗
1, ℎ𝑗

1))

∞

𝑗=1

≔ 𝑀1 + 𝐸1. 

Observe that we have 

‖E1‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≤∑|𝜆𝑗

1|‖𝑎𝑗
1 − Π(1+𝜖)(𝑔𝑗

1, ℎ𝑗
1)‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

∞

𝑗=1

≤ 𝜀∑|𝜆𝑗
1| ≤ 𝜀𝐶0‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖))

∞

𝑗=1

. 

We now iterate the construction on the function E1. Since E1 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖)), we can 

apply the atomic decomposition in 𝐻∆𝑁
1 (ℝ(1+2𝜖)), Corollary (6.2.33), to find a 

sequence{𝜆𝑗
𝑘} ∈ ℓ1and a sequence of 𝐻∆𝑁

1 (ℝ(1+2𝜖))-atoms {𝑎𝑗
2} so that  𝐸1 = ∑ 𝜆𝑗

𝑘𝑎𝑗
2∞

𝑗=1  

and 

∑|𝜆𝑗
2| ≤ 𝐶0‖𝐸1‖𝐻∆𝑁

1 (ℝ(1+2𝜖))

∞

𝑗=1

≤ 𝜀𝐶0
2‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖)). 

Again, we will apply Corollary (6.2.40) to each atom 𝑎𝑗
2. So there exist 𝑔𝑗

2, ℎ𝑗
2 ∈

𝐿∞(ℝ(1+2𝜖)) with compact supports and satisfying 

‖𝑔𝑗
2‖
𝐿2(ℝ(1+2𝜖))

‖ℎ𝑗
2‖
𝐿2(ℝ(1+2𝜖))

≤ 𝐶𝑀(1+2𝜖) 

and  

‖𝑎𝑗
2 − Π(1+𝜖)(𝑔𝑗

2, ℎ𝑗
2)‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

< 𝜀, ∀𝑗 . 

We then have that: 

𝐸1 =∑𝜆𝑗
2𝑎𝑗
2

∞

𝑗=1

=∑𝜆𝑗
2Π(1+𝜖)(𝑔𝑗

2 , ℎ𝑗
2)

∞

𝑗=1

+∑𝜆𝑗
2 (𝑎𝑗

2 − Π(1+𝜖)(𝑔𝑗
2, ℎ𝑗

2))

∞

𝑗=1

≔ 𝑀2 + 𝐸2. 

But, as before observe that 

‖E2‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≤∑|𝜆𝑗

2|‖𝑎𝑗
2 − Π(1+𝜖)(𝑔𝑗

2, ℎ𝑗
2)‖

𝐻∆𝑁
1 (ℝ(1+2𝜖))

∞

𝑗=1

≤ 𝜀∑|𝜆𝑗
2| ≤ (𝜀𝐶0)

2‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖))

∞

𝑗=1

. 

And, this implies for 𝑓 that we have: 
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𝑓 =∑𝜆𝑗
1𝑎𝑗
1

∞

𝑗=1

=∑𝜆𝑗
1Π(1+𝜖)(𝑔𝑗

1, ℎ𝑗
1)

∞

𝑗=1

+∑𝜆𝑗
1 (𝑎𝑗

1 − Π(1+𝜖)(𝑔𝑗
1, ℎ𝑗

1))

∞

𝑗=1

= 𝑀1 + 𝐸1

= 𝑀1 +𝑀2 + 𝐸2 = ∑∑𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

2

𝑘=1

+ 𝐸2. 

Repeating this construction for each 1 ≤ 𝑘 ≤ 𝐾 produces functions 

𝑔𝑗
𝑘 , ℎ𝑗

𝑘 ∈ 𝐿∞(ℝ(1+2𝜖)) 

with compact supports and satisfying 

‖𝑔𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

‖ℎ𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

≤ 𝐶𝑀(1+2𝜖) 

for all 𝑗, sequences 

{𝜆𝑗
𝑘} ∈ ℓ1 with ‖{𝜆𝑗

𝑘}‖
ℓ1
≤ 𝜀𝑘−1𝐶0

2‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)), 

and 𝑎 function 𝐸𝐾 ∈ 𝐻∆𝑁
1 (ℝ(1+2𝜖)) with 

‖𝐸𝐾‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) ≤ (𝜀𝐶0)

𝐾‖𝑓‖𝐻∆𝑁
1 (ℝ(1+2𝜖)) 

so that 

𝑓 = ∑∑𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)

∞

𝑗=1

∞

𝑘=1

+ 𝐸𝐾 . 

Passing 𝐾 → ∞ gives the desired decomposition of 𝑓 = ∑ ∑ 𝜆𝑗
𝑘Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)∞

𝑗=1
∞
𝑘=1 . We 

also have that: 

∑∑|𝜆𝑗
𝑘|

∞

𝑗=1

∞

𝑘=1

≤∑𝜀−1(𝜀𝐶0)
𝑘‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖))

∞

𝑘=1

=
𝐶0

1 − 𝜀𝐶0
‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖)). 

Finally, we dispense with the proof of Corollary (6.2.42) (see [178]). 

Corollary (6.2.42)[183]: Suppose 𝑏 ∈∪𝜖≥0 𝐿𝑙𝑜𝑐
(1+𝜖)

(ℝ(1+2𝜖)). 

If 𝑏 is in 𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)), then for 𝜖 ≥ 0, the commutator  

[𝑏, 𝑅𝑁,(1+𝜖)](𝑓)(𝑥) = 𝑏(𝑥)𝑅𝑁,(1+𝜖)(𝑓)(𝑥) − 𝑅𝑁,(1+𝜖)(𝑏𝑓)(𝑥) 

is a bounded map on 𝐿2(ℝ(1+2𝜖)), with operator norm  

‖[𝑏, 𝑅𝑁,1+𝜖]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖ ≤ 𝐶‖𝑏‖BMO∆𝑁(ℝ

(1+2𝜖)). 

Conversely, for 𝜖 ≥ 0, if [𝑏, 𝑅𝑁,1+𝜖] are bounded on 𝐿2(ℝ(1+2𝜖)) then  

𝑏 is in BMO∆𝑁(ℝ
(1+2𝜖))and ‖𝑏‖BMO∆𝑁(ℝ

(1+2𝜖)) ≤ 𝐶 ‖
[𝑏, 𝑅𝑁,1+𝜖]: 𝐿

2(ℝ(1+2𝜖))

→ 𝐿2(ℝ(1+2𝜖))
‖. 

We point out that Theorem (6.2.2) and Corollary (6.2.42) can be extended to work for 

𝐿(1+𝜖)(ℝ(1+2𝜖)) when 0 < 𝜖 < ∞. 

For 𝜖 ≥ 0, the fractional operator ∆𝑁
−(1+𝜖)/2

of the operator∆𝑁is defined by 

∆𝑁
−(1+𝜖)/2

𝑓(𝑥) =
1

Γ((1 + 𝜖)/2)
∫ 𝑒−(1+𝜖)∆𝑁(𝑓)(𝑥)

∞

0

𝑑(1 + 𝜖)

(1 + 𝜖)−𝜖/2
. 

Proof. The upper bound in this theorem is contained in Corollary (6.2.38). 

 For the lower bound, we first note that from Corollary (6.2.33), 𝐻∆𝑁
1 (ℝ(1+2𝜖)) has 

equivalent characterizations via atoms, which shows that  

𝐻∆𝑁
1 (ℝ(1+2𝜖)) ∩ 𝐿𝑐

∞(ℝ(1+2𝜖)) 
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is dense in 𝐻∆𝑁
1 (ℝ(1+2𝜖)) with respect to the 𝐻∆𝑁

1 (ℝ(1+2𝜖)) norm, where we use 

𝐿𝑐
∞(ℝ(1+2𝜖)) to denote the𝐿∞function with compact supports. 

       Then using the weak factorization in Theorem (6.2.2) we have that for 𝑓 ∈

𝐻∆𝑁
1 (ℝ(1+2𝜖)) ∩ 𝐿𝑐

∞(ℝ(1+2𝜖)), 

|〈𝑏, 𝑓〉𝐿2(ℝ(1+2𝜖)| ≤ ∑∑|𝜆𝑗
𝑘| |〈𝑏, Π(1+𝜖)(𝑔𝑗

𝑘 , ℎ𝑗
𝑘)〉𝐿2(ℝ(1+2𝜖))|

∞

𝑗=1

∞

𝑘=1

= ∑∑|𝜆𝑗
𝑘| |〈𝑔𝑗

𝑘 , [𝑏, 𝑅𝑁,(1+𝜖)]ℎ𝑗
𝑘〉𝐿2(ℝ(1+2𝜖))|

∞

𝑗=1

∞

𝑘=1

. 

Hence we have that 

|〈𝑏, 𝑓〉𝐿2(ℝ(1+2𝜖)| ≤ ∑∑|𝜆𝑗
𝑘|‖[𝑏, 𝑅𝑁,(1+𝜖)](ℎ𝑗

𝑘)‖
𝐿2(ℝ(1+2𝜖)

∞

𝑗=1

‖𝑔𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖)

∞

𝑘=1

 

≤ ‖[𝑏, 𝑅𝑁,(1+𝜖)]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖∑∑|𝜆𝑗

𝑘|‖𝑔𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

∞

𝑗=1

‖ℎ𝑗
𝑘‖
𝐿2(ℝ(1+2𝜖))

∞

𝑘=1

 

≤ 𝐶‖[𝑏, 𝑅𝑁,(1+𝜖)]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖‖𝑓‖𝐻∆𝑁

1 (ℝ(1+2𝜖)). 

By the duality between BMO∆𝑁(ℝ
(1+2𝜖))and 𝐻∆𝑁

1 (ℝ(1+2𝜖))we have that: 

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) ≈ sup

‖𝑓‖
𝐻∆𝑁
1 (ℝ(1+2𝜖))≤1

|〈𝑏, 𝑓〉𝐿2(ℝ(1+2𝜖))|

≤ 𝐶‖[𝑏, 𝑅𝑁,(1+𝜖)]: 𝐿
2(ℝ(1+2𝜖)) → 𝐿2(ℝ(1+2𝜖))‖ 

 

Corollary (6.2.43)[183]: If 𝑏 is in BMO∆N(ℝ
(1+2𝜖)), then for 𝜖 > 0 , the commutator  

[𝑏, ∆𝑁
−(1+𝜖)/2

] (𝑓)(𝑥) = 𝑏(𝑥)∆𝑁
−(1+𝜖)/2(𝑓)(𝑥) − ∆𝑁

−(1+𝜖)/2(𝑏𝑓)(𝑥) 

is a bounded map from 𝐿1+𝜖(ℝ1+2𝜖) to 𝐿
(
1+3𝜖+2𝜖2

𝜖
)
(ℝ(1+2𝜖))with operator norm  

‖[𝑏, ∆𝑁
−(1+𝜖)/2

] : 𝐿1+𝜖(ℝ(1+2𝜖)) → 𝐿
(
1+3𝜖+2𝜖2

𝜖
)
(ℝ(1+2𝜖))‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖)), 

where 𝜖 ≥ 0. 

Proof. Suppose 𝑏 is in BMO∆𝑁(ℝ
(1+2𝜖)). Then according to [65], we have that 𝑏+,𝑒 ∈

𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖))and 𝑏−,𝑒 ∈ 𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖)), and moreover,  

‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ
(1+2𝜖)) ≈ ‖𝑏+,𝑒‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))
‖𝑏−,𝑒‖𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))
. 

For every 𝑓 ∈ 𝐿(1+𝜖)(ℝ(1+2𝜖)), we have  

‖[𝑏, ∆𝑁
−(1+𝜖)/2

](𝑓)‖

𝐿
(
1+3𝜖+2𝜖2

𝜖
)
(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖 )

= ∫ [𝑏, ∆𝑁
−(1+𝜖)/2

](𝑓)(𝑥)
(
1+3𝜖+2𝜖2

𝜖 )

 

ℝ+
(1+2𝜖)

𝑑𝑥

+ ∫ [𝑏, ∆𝑁
−(1+𝜖)/2

](𝑓)(𝑥)
(
1+3𝜖+2𝜖2

𝜖 )

 

ℝ−
(1+2𝜖)

𝑑𝑥 =: 𝐼 + 𝐼𝐼. 



276 

For the term𝐼, note that when 𝑥 ∈ ℝ+
(1+2𝜖)

, we have 

[𝑏, ∆𝑁
−(1+𝜖)/2

] (𝑓)(𝑥) = 𝑏(𝑥)∆𝑁
−(1+𝜖)/2(𝑓)(𝑥) − ∆𝑁

−(1+𝜖)/2(𝑏𝑓)(𝑥) 

= 𝑏+,𝑒(𝑥)∆
−(1+𝜖)/2(𝑓+,𝑒)(𝑥) − ∆

−(1+𝜖)/2(𝑏+,𝑒𝑓+,𝑒)(𝑥) 

= [𝑏+,𝑒, ∆
−(1+𝜖)/2](𝑓+,𝑒)(𝑥), 

 which implies that 

𝐼 = ∫ [𝑏, ∆−(1+𝜖)/2](𝑓)(𝑥)
(
1+3𝜖+2𝜖2

𝜖
)

 

ℝ+
(1+2𝜖)

𝑑𝑥

= ∫ [𝑏+,𝑒, ∆
−(1+𝜖)/2](𝑓+,𝑒)(𝑥)

(
1+3𝜖+2𝜖2

𝜖
)

 

ℝ+
(1+2𝜖)

𝑑𝑥

≤ ∫ [𝑏+,𝑒, ∆
−(1+𝜖)/2](𝑓+,𝑒)(𝑥)

(
1+3𝜖+2𝜖2

𝜖
)

 

ℝ(1+2𝜖)

𝑑𝑥

≤ 𝐶‖𝑏+,𝑒‖
𝐵𝑀𝑂(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
‖𝑓+,𝑒‖

𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
. 

For the last estimate we use the result [3], which applies since we know from 

that 𝑅𝑁,(1+𝜖) is a Calderón–Zygmund kernel. Similarly we can obtain that 

𝐼𝐼 ≤ 𝐶‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
‖𝑓−,𝑒‖𝐿2(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
. 

 Combining the estimates for 𝐼 and 𝐼𝐼 above, we obtain that 

 

‖[𝑏, ∆𝑁
−(1+𝜖)/2

] (𝑓)‖
𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)

≤ 𝐶‖𝑏+,𝑒‖𝐵𝑀𝑂(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
‖𝑓+,𝑒‖𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)

+ 𝐶‖𝑏−,𝑒‖𝐵𝑀𝑂(ℝ(1+𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
‖𝑓−,𝑒‖𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)

 

≤ 𝐶‖𝑏‖
𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)

(‖𝑓+,𝑒‖
𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
+ ‖𝑓−,𝑒‖

𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
) 

≤ 𝐶‖𝑏‖
𝐵𝑀𝑂∆𝑁(ℝ

(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)

‖𝑓‖
𝐿(1+𝜖)(ℝ(1+2𝜖))

(
1+3𝜖+2𝜖2

𝜖
)
, 

which yields that 

‖[𝑏, 𝑅𝑁,(1+𝜖)]: 𝐿
(1+𝜖)(ℝ(1+2𝜖)) → 𝐿

(
1+3𝜖+2𝜖2

𝜖
)
(ℝ(1+𝜖))‖ ≤ 𝐶‖𝑏‖𝐵𝑀𝑂∆𝑁(ℝ

(1+𝜖)). 
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List of Symbols 
Symbol  Page 

𝐻1: Hardy space 1 

BMO: Bounded mean oscillation 1 

𝐿2: Hilbert space 1 

𝐻2: Hardy space 1 

⨁: Direct sum 1 

⨂: tensor product 1 

sup: supremum 2 

𝐻𝑝: Hardy space 2 

𝐿∞: essential Lebesgue space 2 

dist: distance 3 

supp: support 4 

rec: rectangles 4 

𝐿𝑝: Lebesgue space 7 

trun: truncation 7 

𝐿1: Lebesgue space on the line 11 

𝐿𝑞: Dual of Lebesgue space 17 

𝑆𝑆: square-square 20 

𝑈𝐷𝐴: Up-and-Down Algorithm 24 

card: cardinality 25 

em: embedding 29 

det: determinant 34 

dim: dimension 36 

diag: dimension 36 

Gr: diagonal 36 

ess: Essential 38 

𝐵𝑝
𝑠: Besov space 42 

𝑊𝑞
ℓ: Sobolev space 45 

ℓ𝑝: garach space of sequences  58 

arg: argument 76 

loc: local 78 

inf: infimum 78 

prod: product 114 

max: maximum 131 

Im: Imaginary 137 

ker: kernel 137 

spt: spectral 150 

min: minimum 163 

𝑉𝑝
𝛼: Sobolev-Slobodeckii classes 169 

𝐵𝑉: Bounded Variation 177 

var: variation 177 

Osc: oscillation 177 

ext: extension 197 

Res: Residue 197 
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