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Abstract

We deal with the integral-type operator from Bloch space, logarithmic
Bloch space and Dirichlet space to the Bloch-type space on the unit ball. The
norm of operators from logarithmic Bloch type spaces to weighted- type spaces
are considered. We give the composition of Bloch with bounded analytic and
inner functions, symmetric measures and biBloch mapping. The Bloch-to-
BMOA compositions on complex balls, reverse estimates in logarithmic and
weight Bloch spaces and quadratic integrals are established. The composition
operators from Bloch type spaces to Hardy and Besov spaces are discussed with
the compact and weakly compact composition operators from the Bloch space

into MObius invariant spaces are found.
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Introduction

From logarithmic Bloch-type and mixed-norm spaces to Blochtype spaces. We
introduce the following integral-type operator on the space H(B) of all holomorphic

functions on the unit ball B c C", Pdf’(f)(z) = fol fo(tz)g(tz) %, z € B, where g €
H(B), g(0) = 0 and ¢ is a holomorphic self-map of B.

The construction of an inner function, decreases hyperbolic distances as much as

desired. The problem of constructing functions f;, f, analytic in the unit disc D of the

1

complex plane satisfying |f{ (z) + f;(z)| = ¢ (1—_|Z|)Z € I, is solved for a wide class of

weights v that includes normal weights.

We give Necessary and sufficient conditions for a composition operator Cyf = f o ¢
to be compact on the Bloch space B and on the Little Bloch space B,. Weakly compact
composition operators on B, are shown to be compact. We express the essential norm of a
composition operator on the Bloch space and the Little Bloch space as the asymptotic upper
bound of a quantity involving the inducing map and the Pick-Schwarz Lemma.

We characterize the boundedness and compactness of the following integral-type
operator Ig(f)(z) = f01 Rf (¢(t2))g(tz) %,z € B, where g is a holomorphic function on

the unit ball B < C" such that g(0) = 0, and ¢ is a holomorphic self-map of B. Operator
norm and essential norm of an integral-type operator, recently introduced. Operator norm of
weighted composition operators from the iterated logarithmic Bloch space By,g, , k € N, or
the logarithmic Bloch-type space Biogs B € (0,1], to weighted-type spaces on the unit ball

are calculated.
We obtain sharp reverse estimates for the logarithmic Bloch spaces on the unit disk.

Boundedness and compactness of composition operators from Bloch type spaces to
Hardy spaces and analytic Besov spaces are characterized by function theoretic properties
of their inducing maps. For the case of the Bloch space, the characterizations involve the
hyperbolic versions of Hardy and Besov classes. For V,, B and Qg be the weighted
Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and Q4 are
Mobius invariant, but JV;, is not. We obtain exhaustive results and treat in a unified way the
question of boundedness, compactness, and weak compactness of composition operators
from the Bloch space into any space from a large family of conformally invariant spaces
that includes the classical spaces like BMOA, Q,, and analytic Besov spaces BP.
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Chapter 1
New Integral-Type Operators

We study the boundedness and compactness of the following integral-type operator,
quf(z) = fol f(p(tz))g(tz) %,z € B, where ¢ is a holomorphic self-map of the unit ball

B in C™* and g is a holomorphic function on B such that g(0) = 0. The boundedness and
compactness of the operator from the Bloch space B or the Little Bloch space B, to the
Bloch-type space B, or the Little Bloch-type space B, o, are characterized. We calculate the

essential norm of the operators Pdf’ : B (or By) — B, (or B,,) inan elegant way.

Section (1.1): From Logarithmic Bloch-Type and Mixed-Norm Spaces to
Bloch-Type Spaces

For B = {z € C™:|z| < 1} be the open unit ball in C", D the open unit disk in C,
H. (B) / the class of all holomorphic functions on the unit ball and H* (IB)the space of all
bounded holomorphic functions on B with the norm ||f|l = sup,eglf(2)|. Let z =
(21, ., zp) and w = (wy, ..., wy,) be points in C* and C" and (z, w) = Y150 agz”. For f

W) = ) |Blagz?
|B1z0
be the radial derivative of f, where B = (81,8, -..,B,) is a multi-index |[B] =
(B + ...+ Bn) and zP = z}? ...Zﬁ".
Let u be a strictly positive continuous function (weight) on the unit ball B. A weight u
is called radial if u (z) = u (|z|). For every z € B. Every radial weight u which is non
increasing with respect to |z| and such that |z|li>r§1—o“ (z) = 0 is called typical.

The logarithmic Bloch-type space Bf(‘)gﬁ = Bff)gﬁ (B),a > 0,8 = 0, consists of all f €
H(B) such that
eBla \P
bmﬂf)=SW%aﬂl—LdV<th_VO IR ()] < e
the norm on B;’;gﬁ is introduced ad follows
IIfIIB;;gﬁ = |f(0)] + bap(f) (1)
When g =0, Bff)gﬁ becomes the a -Bloch space B* (see, [19]). Fora = B =1, B{'ggﬁ is

the logarithmic = Bloch space [10], which appeared in characterizing the multipliers of the
Bloch space (see [3] and [9]).
The Little logarithmic Bloch-type space B Bff)gﬁ (B),a > 0,8 =0, consists of all

logﬁ =
fE Bff)gﬁ such that

B/a
lim(1 — |Z|)°‘<In ¢ >|snf(z)| —0

|z]->1-0 1—|z|
The Bloch-type space B, = B, (B)consists of all f € H(B) such that
By (f) = supzep u(2) |9f(2)| <
where u is a weight. With the norm
Iflls, = 1f ()] + BL(f)

the Bloch-type space becomes a Banach space.
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The Little Bloch-type space B, , = B, o(B) is a subspace of B, consisting of all f such
that
limpu(z) |Nf(2)] =0

|z]->1
The weighted space (or weighted-type space) H,” = H,’(B)consists of all f € H(IB) such
that

Iflage = Supgen 1(2) If (@) < o0
where u is a weight.
The Little weighted space H;, = H,,(IB) is a subspace of H,> consisting of all / € H(IB)
such that
lim p(2) [ (2)| = 0

|z]->1

A positive continuous function on ¢ on [0,1] is called normal [11] if there are 6 € [0,1] and
aand b, 0 <a < b such that

$(r) A
: ' 1 li
= is decreasing on [§, 1] and lim (1(—)r)a
r r
iy s ereasing on 6.1 and i (75
If we say that a function v : B — [0, %] is normal we will also assume that it is radial on

B:

=0;

=()oo;

For 0 < p; g < o and ¢ normal, the mixed-norm space H(p, q, ¢) (B) consists of all
functions f € H(B) such that

1 p
”f”H(p,q,db) = (-I() Mg(f: r)qi _(73 d?") <,

=

Where
1

q
M,(f.r) = j FEOldo ©) ]

Forp=qgand ¢(r) = (1 —72)» ,a > —1. the mixed-norm space is equivalent with the
weighted Bergman space A = AP (B) consisting of all £ € H(B) such that

f F@DIPA = 21D dV(z) < oo,
B

Where dV (z) is the Lebesgue volume measure on B.

Let ¢ be a holomorphic self-map of B (usually non-constant) and . For f € H(B) the
corresponding weighted composition operator is defined by

(uC) (@) = u@f(¢(2)),z€ B

It is of interest to provide function-theoretic characterizations for when ¢ and u induce
bounded or compact weighted composition operators on spaces of holomorphic functions
(see, e.g., [12]). For some results, in C™ or related to Bloch-type spaces, see, e.g., [4], [12],
[30].

Let g € H(ID) and ¢ be a holomorphic self-map of D. Products of integral [31] and
composition operators on H(ID) were introduced by Li and Stevi¢ (see [32], [36], as well as
[37] and [38] for a related operator) as follows:

2



¢ (2)

Colof @ = [ 1@ and JyCof @) = [ fo©)g @ @
0 0
In [39] (see also [10], [40], [41]) has extended the second operator in (2) to the unit ball

setting as follows. Assuming that g € H(ID), g(0) = 0 and ¢ is a holomorphic self-map of
B, we define an operator on B in this way:

1 d
HO@ = [ floe)ge S, ren®zen @
0

If n=1,theng € H(D) and g(0) = 0, so that g(z) = zg,(z), for some g, € H(D), by
the change of variable & = tz, it follows that

1 d z
P(f(f)(z)z fo f(go(tz))tzg()?t, jof(fp(())go({)d{-

Thus the operator (3) is a natural extension of the operator J,C, in (2).

For some results on related integral-type operators in C™ see, e.g., [6], [10], [42], [60].
The following research project was initiated in [40].
Let X and Y be two Banach spaces of holomorphic functions on the unit ball in C" (e.g.,

the weighted Bergman space AL , the Bloch-type space B,, , the Hardy space HP, the
weighted space H’, the Besov space BP, BMOA, etc.) Characterize the boundedness,
compactness, essential norms and other operator-theoretic properties of the
operator Pf:X — Y in terms of function-theoretic properties of the inducing functions ¢
and g.

We continue to study operator qu by investigating the boundedness and
compactness of the operator from the logarithmic Bloch-type space Bff) gh or the Little

logarithmic Bloch-type space Bff)gﬁ , 1o the Bloch-type space B, or the Little Bloch-type

space By, . Results complement those ones in [10]. We also extend some results in [40] by
characterizing the boundedness and compactness of the operator Pj from the mixed-norm
space (p, q, ¢) to the Bloch-type space B,, or the Little Bloch-type space B, ;.

We constant are denoted by C, they are positive and may differ from one occurrence
to the other. The notation a < b means that there is a positive constant C suchthat a < Cb.
We say that a =< b, if both a < b and b < a hold.

We present several auxiliary results which will be used in the proofs of the main
results.

Lemma (1.1.1)[1]: Assume a > 0,8 = 0and y = §+ In2.. Then the function

e?\P

h(x) = x% (In?) (4)

Increasing on the interval (0,2).
Proof: we have

eV B-1) e

h'(x) = x*1 (In?) (a InY — ﬁ’)

Now note that

eV (B-1)

x% 1 (In ?) > 0.
When x € (0,2) and that the function



e
H(x) = aln?— B

Is decreasing on (0,2 ), (here we use that y = In2).Hence
Y Y

e e
aln?— ,[>’>aln7— B=aly—In2—-pB/a)=0,x € (0,2)

from which the lemma follows.
The following lemma can be proved similar to Lemma (1.1.1).

Lemma (1.1.2)[1]: Assume a¢ > 0,8 =0andy = g Then the function
eV\F
hy(x) = x© (nlgg) | (5)

IS increasing on the interval (0,1).

By using the L. Hopital rule, as well as some simple estimates, the following lemma
can be proved.
Lemma (1.1.3)[1]: The following statements are true.
(@ Assumea >1and f = 0.Then

X

a 1
Py 7~ Py ﬁ,asx—>1—0
a a
0 (1-0t)« <Inf_t> (a—1)(1 —x)a1 (Inle_x)
(b) Assume a =1and p € (0,1). Then
x dt 1 ebla -k
~ I ) 1-0
. eB/aB 1—,8<n1—x> as x —
— a
1-1t) @nl_J
(c) Assumea =1and f =1.Then
x dt ebla
B~In1_x,asx—>1—0

0 ef/a
(1—aa@n1_J

(difa=1land B >1,o0rac€ (0,1), Then the integral
x dt

Bra\F
0 _ Na e
1-1¢) Onl_J
IS convergent.
Recall that the operator

6,(f) = f(2)

where f are complex-valued functions defined on a domain Q which belong to a Banach
space X, is called the point evaluation functional on X at point z.
The next result gives some estimates for the point evaluation operator on the space Bl";gﬁ :

As usual from these estimates it follows that the point evaluations are bounded functionals
on Bl“gﬁ([B%).

o

Lemma (1.1.4)[1]: Let f € Bl"f)gﬁ([BB).Then



( |f(0)|+|If|IBla , a€(0Dora=15>1,
og

a

B
g
|£(0)] + ||f||Bz)gBmax {1,Inln } a=p=1

1- |zl

B
Fl <] 1O+ Ifle (mlijl),a =1,8€01)

Ifllse
I (0)] + a a>1,=0

B B
_ -1 _ex
(1—|z]= In1 IZ]
\

For some C > 0 independent of f,

Proof. let Z € B. By the definition of the space Bl"f)g,; and the change of variables s = t|z|,
we have that

1 dt 1 |z|dt
If(z) = f(z/2) | = 2Rf(tZ)T < bap(f) 3
1/2 1/2 ca
(1 —t|z])« Inl——t|Z|
121 ds
= b, 6
B(f)jo 5 B (6)
(1-5)%(1In 1e_as
< b | 1 & )
= Dgp . s B
(1—-s)*|In 1e_as

On the other hand, similar to Lemma (1.1.2). in [6] it can be proved that
Mo (F,1/2) < |f(0)| + Cbqp(f), (8)
foreach a > 0and g = 0, and for some C independent of f.
From (7), (8) and Lemma (1.1.3)(d), this lemma follows for the case a € (0,1) ,or a =
land B> 1.ifa = B =1, then from (6) and by direct calculation we obtain

|z e
F@) = G/ < bia(h) | = bys ()
o o (1-25) Inlis MY — g
from which along with (8) the third inequality in this lemma easily follows.
Finally If « =1 and B € (0,1) then we have
d ds byg(f) [ eF F
f @) = F /2] < by p(f) —< 4
0 e 1-6 \1—|z|
(1 - S) Inm
From which a long with (8) the third inequality in this lemma easily follows.
Finally ifa > 1 and g = 0, then by Lemma (1.1.3)(a) and similarly as in the case a >

1 of Lemma (1.1.2). in [6] (see, also Lemma (1.1.1) in [10]), the estimate can be proved,
5




finishing the proof of the lemma.
Lemma (1.1.5)[1]: Assume a > 0and f > 0. A closed set K in Bf;g,; Is compact if and

only if it is bounded and

B/a
limsup(1 — |z])“ (In ¢ > Nf(2z)| =0

|z|—>1f€K 1- |Z|
Lemma (1.1.6)[1]: Assume that ¢ is a holomorphic self-map of B, g € H(B) and g(0) =
0. Then for every f € H(B) it holds
NP (N](2) = fe@)g(2),
The following characterization of compactness can be proved in a standard way (see, e.g.,
the proofs of the corresponding lemmas in [12], [52], [57], [58]).
Lemma (1.1.7)[1]: Assume that ¢ is a holomorphic self-map of B, g € H(B) and g(0) =

0 and u is a weight. Let X be one of the following spaces Bff)g,; ) l‘f)gg,o, H(p,q,¢)and Y

Bjog#o- Then the obperator PJ:X — Y is compact if and only if

a
log3 ’

P(;?:X — Y is bounded and for every 4bounded sequence (fi)ren € X converging to 0
uniformly on compacts of B we have

lim [[PSfel = 0
The following lemma gives us some concrete examples of the functions belonging to
logarithmic Bloch-type spaces.
Lemma (1.1.8)[1]: The following statements are true.
(@) Assume that @ # 1 and B = 0. then

fw(2) =

one of the spaces B

1

” 5 W € B, 9
1-=(z,w)He1 (In—1 — (Z,w))

where y = §+ In2, is a nonconstant function belonging to B
(b) Assume that « = 1 and 8 # 1.then
24 1-F

®
= |In—— ,W € B, 10
1@ = (Ing=p) v (10)
where  y = B + In 2, is a non constant function belonging to B
(c) Assume that « = 1 and § = 1. then

a
logﬁ'

a
logB )

e
1—(Z,W)'W

Where y = 1 + In2, is a non constant function belonging to Bff)g,;.
€y

Moreover, for each w € B, it holds that f,,, f,, *, MSZ) belong to the corresponding Bl‘f)gﬁ
space and for each fixed a and 8

1
supllfyllse , <C, sup|£i”
WEB log WEB

() = Inn € B, (11)

<(C, sup ||fM§2)|

1
Blogﬁ wEeB

<C(C. (12)

Bl
log

Proof: (a) Let w € B be fixed. Then we have

a b/ B i eB/a B
(1-1z]) (In 1— |Z|) () =1 = lz) <In 1- |Z|>




(a—1) —(z, W) p{z,w)

X

B+1
(1 —(z,w))® ( ) —(z,w))« (Inﬁ)
X 2\
(= 12D <’"1 |z|) (1 =1z (’”1 - |z|>
< |la—1]| +

B B B p+1
|1—@m»w<mT{%%W) '1‘@M”W<MT5%%W>

y B
|1 |zI|* (=
S(Ia—1|+ Bey> (i 17) (13)

B
Ins |1—(zw)|( ﬁ)
<la—1]+ Be” -
InT

where in (14) we have used the fact that the function in (4) is increasing on the interval
(0,2). From (13),since 1 - |w| < |1 — (z,w)|,z,w € B and by Lemma (1.1.1), we have that

B B
ea
(1 IzD <1n = |Z|> 9o )

Y \P
5 |1—|Z||a(1”'1i|z|)
<||la—-1|+ o7 -0

B
) 1= wile (In =)

As |z| - 1 — 0, from which it follows that
fw € Blogg o »as desired

(b) for fixed w € B we have

A WU e\
(1 —1z) <1n1_|2|> |inW (Z)| = (1—IZI)<ln1_|Z|>

(1—B)(z,w)
eV B
(1 —<Z,W)) (Inm) ,
S Ger)
<|p -1 (15)
eV B

(1 - (Z,W)) (Inm)

<|p-1] (16)



Where (16) as in (a) we have used the fact that the function in (4) is increasing on the interval

(0,2] from (15) and by the Lemma (1.1.1), we obtain
i

- —1eh (I )
Ta- wh (m =)’

finishing the proof in this case.

(a-1e) (in==) | <18 -

As|z| >1—0ie. fPe BL,

-0

logt,0
_ ¢ @l = (1 ¢ zw)
(=12 (=) [RAP @) = (1= 12D (’"1—|z|) Curmy—a—
—{z,w
(= lzDin =1
< 7 (17)
(1—{(z W))MW
(1 - |z
< —l2l oy (18)
(1= (zw)in =

Where again we have used the fact that function (4) is increasing in (0.2].
From (17), Lemma (1.1.1) and since y > 1 we obtain

(1= k) (in577)
1= ) (1n5757)

(= Iz) (Ing =) I0f, )] < -0,

Aslzl > 17, ie. fy?) € B,

Estimate (12) foIIows from (14) (16), and since

fu©® = D) = 7, £2(0) = Iny.
Finishing the proof of the Iemma

The following theorem summarizes some of the basic properties of the lograthmic
Bloch- type space B;’; s and the Little lograthmic Bloch- type space By z,. it can be
g log

proved.
Proposition (1.1.9)[1]: The following statements are true.

(@  The logarithmic Bloch- type space Bff)g,; Is Banach with the norm given in (1).

(b) B, g 15 aclosed subset of B, oF
(c) Assume f € B ogt- then f EB“ gpo ifand only if hm f = £l 5%

(d) The set of all polynomials is dense in Blo P
gr,o,
(e) Assume f ETB;’(‘)gﬁ.Then foreach [0,1), f; eBl“Og,;,o.
Moreover  IIfill z« , < IIfIl z¢ |,
logP, log

=0
gp,

Lemma (1.1.10)[1]: ([24]). Assume 0 < p,q < oo, and ¢ is normal. Then there is a positive

constant C independent of f, such that



”f”H(p q,9)

lf@l<C - :
/ HUZN(1 — (2777

We characterize the boundedness and compactness of the  operator

PS:BE 5(B) <0r B® g,;lo([B)> ~ B,(B) (or B,o(B)).

Casea>1land g =0

Theorem (1.1.11)[1]: assume thata <1, B = 0,9 € H(B),g(0) = 0, u is a weight, and

@ is a holomorphic self-map self-map of B, then Pq‘,g: Bfég,;(IB%) (or Bl‘f)gﬁ‘o(IB%)) - B, (B)
Is bounded if and only if

Z€B. (19)

M= sup,cp < o (20)

n(z)1g(2)|
eB/a )ﬂ

1 — a—-1 (I -
(= lp@D* (N
And g € H,”. Moreover, Pq;q: Bf;g,;() (or B¢ (IB)) — B, is bounded, then

logB,O
g — 9 -
it el L el U2 (21)

Proof. Assume that (20) holdsand g € H.,.If f € Bff)gﬁ (B) (or Bff)gﬁ O(IB)), then by

Lemma (1.1.6) and 4 we obtain
1571l = sup.esn@lg@f(e@)| < Clifllne ,sup.enn(@)lg(@)

( 1 \

1+ YRR |
\ (1—Iw(z)l)“‘l(ln—l_eko(z)l)/

from which it follows that

(22)

1P < C(M+llgllg) (23)
logh ~TH

Now assume that P(pg:Bff) g o = B, is bounded by taking functions f,, in (9) which
gr,0 u
belong to B;’;gﬁ , and whose norms are bounded according to Lemma (1.1.8), and by

using the boundedness of P(pg : f(‘)gﬁlo — B, we have

g9 9 g
I s, = ool 1o o = W Fpcl,

= sup,eai ()19 DI\ f oy (@W))]
> ,u(w)lg(w)l (24)_

B/a BC )’
1~ le@b** (m=Tomm)

For every w € B, from which (20) direct follows in case
B = 0.

and a > 1 we easily obtain

B

a

Now assume 8 > 0. Then fromy >

B
eg 14 B

<Cc(1-|z|»)*1? (in ¢ )
1—|z| ] — 1—1z?

11— 1zl | in

9



Bla \P
< (20 1(2) 1 - |z 1( ¢ ) (25)

1—|z|
Hence from (24) and (25) we obtain
u(2)g(2)|

c||pd > 26
” || zogBO_)B (1 _| (Z)l)a—l (1n$)ﬁ ( )
Y 1-lo@)
Thus (20) follows.

On the other hand, if we choose the function given by hy(z) =1 € Blog,; , We obtain that
pJ = |lhollge . ||P? > ||PI(h = 0 27
” ® ”Bff)gﬁ,o—>3u [ OllBlogB'()” ® ”Bz,gﬁ_’Bu,O ” (p( O)HBu ||9||HH (27)

From (26) and (27) we obtain
cl|pd >M + . 28
1B |, =M+ Nl (29)

From (32), (28), and since
PJ > ||PJ
|| ®Q ||Blaogﬂ_)Bl‘ ” @ ”Bf;gﬂm,o_)B#
The asymptotic relationships in (21) follow.
We characterize the compactness of the operator Pg logﬁ (or Blogﬁ 0) - B,
Theorem (1.1.12)[1]: Assume thata > 1, § = 0, g € H(IEB) g(0) =0, uisaweight,

and ¢ is a holomorphic self-map of B, and P,: B logt (B) (or Blogh, 0) — B, is bounded
.Then Pg BY ;(B) (or Blogﬁ 0) — B,, is compact if and only if

log
1 \

oim w@ g 1+ — e =0 (29)
\ - wobe (ngey)

Proof. First assume that Pg 73“ ﬁ(]BB) (or Blogﬁ 0) — B,, is compact. If |||l < 1, then

(29) is vacuously satisfied. Hence, assume [|¢llo, = 1 and let (¢(zm))_
Be a sequence in B such that |¢(z,,)| = 1 asm — oo.

(f(p(zm) (Z))z

fm(2) =
" f(p(zm) (QD (Zm))
Where f,, is defined in (9). As in Lemma (1.1.8) it can be seen that (f;,,) ey IS bounded
sequence in Bfﬁ)gﬁ o and that it converges to zero uniformly on compact subsets of B as
m — oo, Hence, by Lemma (1.1.7), it follows that
lim || En]l,, = 0. (31)
u

m-—oo

On the other hand, for each m € N, we have
”P(bgFm”BH = SupZEIBB.u(Z)lg(Z)HFmQD(Z)l

= #(Zm)l(g (Zm))Fm(p(Zm)|- (32)
Letting m — oo in (32) and using (31), we obtain

m € N. (30)

10



(2| )]
(1= lp@ D= (I

lim sup 0. (33)

m—-00o

v B
1- |<p(Z)|2)

From (33), and since in this case

z z
lim sup #(zm)lg (Zm)| 3 > lim supu(z,,)1g9(zn)|.
m—-oo

e (1= lp@)|*)*t (In#;/(z)lz)

We have that

nlliirgo sup .u(Zm) |g(Zm)| = 0. (34)
From (25), (33) and (34) equality (29) easily follows.
Now assume that (29) holds. Since P;’: Bf(‘)g,; (or Bl"(‘)g,; ,0) is bounded, as in Theorem
(1.1.11), we obtain € > 0 from (29) we have that for every there is a such that

[ \

1
u@) g 1+ S NF|<® (35)

| G- le@pe = |

When p < |@(2)]| < 1.

Assume that ||h,,|l,en IS @ bounded sequence in Bf(‘)gﬁ (or Bf{‘)gﬁ’o) say by Lm
converging to 0 uniformly on compacts of B. then, by Lemma (1.1.6) and (1.1.4) and the
fact that g € H;°, we have

185 hnllpe i, = SuPzcan(@1g @I, 0 ()]
ogr,

= Supl(p(z)ISp.u(Z)lg(Z)l|hm§0(z)|

+ Sup|o(2)1>p(2) g (2R, @ (2)]

< ”g”Hﬁo SupIWISplhm(W)l

+C SupmeN”hm“Bz)gB SUP|p(2)|>p u(z) lg(2)|

[ )

1
1+ 2 1= gllnge suppisolhm W] + €L, (36)
B

| G le@pe = |

Letting m — oo. in (36) using the assumption supyy,|<,|hm (w)| = 0 as m — co. The fact
that ¢ is an arbitrary positive number and applying Lemma (1.1.7), the compactness of

the operator. P, By ¢ (BB) (or Bf‘og,;lo) - B, follows.
11



The following theorem characterizes the boundedness of the operator Pj : B, 4

By, butforall a > 0and g = 0.
Theorem (1.1.13)[1]: assume thata > 0, B = 0,9 € H(B), g(0) = 0, u is a weight,
and ¢ is a holomorphic self-map of B, then qu’: Bf;g,g o ~ Byo is bounded if and only if

Py Bjoge0 — By isboundedand g €
Proof. Assume that P,: B 960~ Buo is bounded Then clearly P,;: B
bounded. Taking the test function f (z) = 1 € BY
Conversely, assume P, :
polynomial p, we have
u@|NPIp(2)| = n@|g@p(e@)| < u@Ig@llplle - 0,aslz| > 1.

From which it follows that P)p € B! g0 - Since by Proposition (1.1.9)(d) the set of all
polynomials is dense in Bfgg,;'o, we have that for every f € Bl"(‘)gﬁjo there is a sequence of
polynomials (p,,)men Such that

Jim IIf = pllze , = 0,
From this, and since the operator Pq;g: Bf:)gg o — By is bounded, we have that

g g g
12f = Boomll, <[Pl o If =Pmllsg ;=0

logBO
As m — o . Hence Pq*,g ( f(‘)g,g 0) B,,0- Therefore the operator Pg
bounded.

We characterize the compactness of the operator. Pg logﬁ (B) (or Blogﬁ 0) -

-
,0

gﬁo BM IS

(00
logh,0 We obtain g € H,j,

zogB o — By isboundedand g € H,, then for every

logﬁ 0 BM 1S

B, o-

1,0
Theorem (1.1.14)[1]: Assume thata > 1, = 0,9 € H(B), g(0) =0, u is aweight,
and ¢ is a holomorphic self-map of B, and Pg: o gg(IBB) (or Blogﬁ 0) -

B, 0 is bounded. Then Pg logﬁ(]BB) (or Blogﬁ 0) — By, o is compact if and only if
. 1 \
lim p(2) 19(2) | 1+ | = 0. (37)

Bla  \P
1 — a—l(l e—)/
(1= lo@D* (I T
Proof: Assume that

P(bg: Bl‘f)gﬁ([BB) (07‘ TBZ)gﬁ,O([BB)) — B, is compact and g €

By Theorem (1.1.12) we have that (29) holds.
By (29) we have that, for every € > 0 there exists an r € (0,1) such that

1 \

|,
Bla \P
— a-1 e—
(1= olzl) (1n1_<P|Z|)/

u@lg@| = | 1+ <e

When r < ¢|z| < 1.
since g € H , there exists p € (0,1) such that

12



B
) a-1 eﬁ/“
(lnfte[o,r]1 - t) 1 — t

1
u@lg(@ <e| 1+ ) (38)

Whenp < |z| < 1.
Therefore, when p < |z| < 1and r < ¢|z| < 1, we have that

u@lg@| =1+ \ (39)
(- unal( e
4 <pIZI
On the other hand, if p < |z| < 1and ¢]z| < 1, from (98) we have
1 \
u@lg@| = 1+ z| <e (40)
1 a-1 eb/a
= olanet (m=55) )

Combining (39) and (40), we obtain that

1 \

I
Bla \F
1— a—1 (I e—)
(1= glzD* (Ing—

u@lg2)| = kl + <e (41)

For p < |z| < 1 (42) the condition in (37) follows.
Now assume that (37) holds. Then (20) holds and by the Theorem (1.1.11) we have that

P) ({f: Ifllge , < 1}) is a bounded set in B,,.
log
From the following inequality

u@)|Ne) (@) =u@|g@felz|

[ \

1
< Clifllge u(2)lg@|| 1+ 3 (42)
log B
_ -1 __ €%
\ (1= glzD | Ing— )
And (37) we have more, namely that Pq*,g ({f ”f”Ba < }) is a bounded setin B,

Taking the supremum in (42) over the unit baII in Blogﬁ(or Bl(’gk,o)' Then letting
|z| = 1, using conditions (37) and employing Lemma (1.1.5), we obtain the compactness of
the operator Pq‘,g : fo(‘)gﬁ (or B, ﬁo) — B, 0, as desired.

Case « =1andp € (0,1)
Theorem (1.1.15)[1]: Assume thata =1, B =0, g € H(B),g(0) =0, u isaweight,

and ¢ is a holomorphic self-map of B, and Pg (or BY ) — B, is bounded if

logﬁ logB 0

13



and only if

B \'7F
e
M, = n—— < 0o, 43
g EH.
Moreover, if P Blog,; (or Blogg O) - B, is bounded then

g -_
||PS ”B;,gwu, = My + llgllu

Proof: assume that (43) holdsand g € H
(1.1.5) and (1.1.4) we obtain
1B, = supenn(2)lg(2)fo @)
u

if f € B (or B! ) then by Lemma

7% 0' logP logf,0

B \'F
< CIIfIIB;OgB = sup,ep u(2)|g(2)| <1+ <1n1—8—<p|z|> ) (45)

From which it follow that

)
||P(P ||Bll gﬁ_)Bﬂr

From (47) and (48) we obtain

< (My+llglyg) (46)

1-B

ClIPyll,
ogP’

eB
>
b o, 2 SuPren k@Dlg@I (In70)

So that (43) holds.
On the other hand, if we choose the function given by hy(z) =1 € Bllogﬁ,o we

obtain g € H,’ and that (27) with holds «a = 1.
This along with (49) implies the following inequality
ClIP Ny o = Mt lglig (50)

logP-

THE asymptotic relationship in (44) follow from (46), (50) and the inequality
) g
120, Z W Nss
Theorem (1.1.16)[1]: Assumethata =1, B € (0,1)g € H(B), g(0) = 0, u is a weight,
and ¢ is a holomorphic self-map of B, and Pg B"‘gﬁ (B) (or Blo B 0) — B,, is bounded.

Then P;: Bff)gﬁ(IBa) (or Blogﬁ 0) — B, is compact, if and only if

ef \'7F
I()I . (Z)|9(Z)|( ( W) >=0 (51)

P Blogﬁ (orB ﬁo) — B, is compact if [|¢]|,, < 1.suchthatand g €

gD (2) = (f‘v"(m) (Z))
) (fggl()zm) (‘P (Zm)))

m € N (52)

It can be seen that ( (1)) y Is @ bounded sequence in Bllog,g,o and that it converges to zero
me

14



uniformly on compact subsets of B as m — oo.
Hence by Lemma (1.1.7), it follows that

limp | BYER || =0 (53)
I

On the other hand, for each m € N , we have
|, = supsen u@Ig@I |Fi’ 0@ = u(zm) |9@m)ES 9] (54)
u
Letting in (54) and using (53) we obtain
1-p

. ey
nlllgrgosup#(zm)lg(zm)l(lnw) = 0. (55

From (55), and since in this case

. 14 1-B _
lim sup u(zndlg )| (Inmomm) 2 lim supp(zm)lg Gzl
We have that
lim sup u(zm)1g(zm)| = 0. (56)

From (55), (56) and (48), (51) follows.
Now assume that (51) holds, then for every ¢ > 0 thereisa p € (0,1) such that

ef \'7F
n@lg2)| = <1+ <Inm> > <g, (57)

When p < @|z| < 1. Assume that (h,,) ey IS @ bounded sequence in: Bllogﬁ (or Bllogﬁ,o)

say by L; converging to 0 uniformly on compacts of B then by Lemma (1.1.6) and 4 and
the fact that g € H;°, we have
| 25 ol 0

log

op, = SUPzeB u(@)|g @ hp(02)|

< SUPlo@)1<ph (@19 @ |hm (0())

+ suplp@)1sph (2|9 DI hm (0 ()|
< lgllug supiwisplhm (W) + CsumeN”hm”BllOgB SUP|p(2)|>ph(2)1g(2)]

eﬁ 1-F
(1 + (In—1 — g0|Z|> )
= ||9||H;§°5u27|w|sp|hm(W)| + Cel;y. (58)
From (58) the compactness of the operator : P : Bllogﬁ (or Bllogﬁ,o) — B, Follows as
in the proof of Theorem (1.1.12).

Now we characterize the compactness of the operator Pq;,g : leogﬁ (or Bllogﬁ_o) = B0
Theorem (1.1.17)[1]: Assume that 8 € (0,1), ora =1 and g € H(B),g(0) =0, u isa
weight, and ¢ is a holomorphic self-map of B, and Pq‘,g: Bfﬁ)g,; (B) (or Bl‘f)gﬁ 0) — By IS
compact if and only if

ef '
lim|,u(2)|g(2)] =<1+ (Inl——<P|Z|> > =0 (59)

Proof. Assume that Pq‘,g :Bllog,;(IBB) (or Bllogﬁlo) — B, o is compact. Then the operator

15



Pg Blogﬁ(lBB) (or Blog,; 0) — B, o is compact and g € H;,. By Theorem (1.1.16) we have
that (51) holds. Hence, for every ¢ > 0, there exists an r € (0,1) such that

B \'B
lim|Z|_,1u(z)|g(z)| = (1 + (In 1—8—(,0|Z|> > <¢g

Where r < |(p(Z)| <1
Since g € H.%,, there exist a p € (0,1)such that

AN
u(@1g @) <s<1+ <Inle_ r) ) (60)
When p < |z| < 1.

Therefore, when p < |z| < 1 and r < |@p(z)| < 1, we have that

el 1=F
u(z)|g2)| (1 + (Inm> ) <é&g (61)

On the other hand , if p < |z| < 1.and |@(z)| < r.from (60) we have
el 1-F
n(2)\g (2| (1 + ( —> <e (62)

1-le@)|
Combining (61) and (62), (59) follows, as desired.
Now assume that condition (59) holds. Then (43) holds and by Theorem (1.1.15) we have

that P,/ ({f: If |l 52 , S}) is a bounded set in
log
From the following inequality u(z)|RP)(f)(2)| = u(2)|g@)f¢lzl|

eP 1-F
sC||f||B;OgB,u(z)|g(z)|(1+ (’"1——<p|z|> ) (63)

MO’

And (59) we have more, namely that Pg ({f ”f”Bl }) is a bounded set in B, ,

Taking the supremum in (63) over the unit baII in Bl o (or Blogﬁ) Then letting
|z| = 1, using conditions (59) and employing Lemma (1.1.5), we obtain the compactness
of the operator P(pg : Bllogﬁ (or 73 Bo) — B, 0, as desired.

Casea € (0,1) ora=1and B > 1.

Ifa € (0,1) or @« = 1land B > 1, then from the proofs of Theorems (1.1.11)- (1.1.17)
and Lemma (1.1.4), it is easy to see that the following
Theorem (1.1.18)[1]: Assume that « € (0,1), ora =1 and 8 >1g € H(B),g(0) =0,

u is a weight, and ¢ is a holomorphic self-map of B, and Pg B“gB(IB%) (or Blogﬁ 0) -
B, is bounded. ifand only if g € H7%, if Pg B“g,;(IBB) (or Blo 8 0) is bounded, then
Pg = Pg 0,
125 IIBZWB” 125 ”B;gwu gl

Theorem (1.1.19)[1]: Assume that « € (0,1), ora =1 and 8 >1g € H(B),g(0) =
0, u isaweight, and ¢ is a holomorphic self-map of B, and the
oP,: B“QB(IBB) (or B“gﬁ O) — B, is bounded then the operator

16



Py Bjge (B) (or Blogk, 0) is compact if and only if g € HX,
Theorem (1.1.20)[1]: Assume a € (0,1), ora =1 and B > 1g €EH(B),g(0) =0, u
Is a weight, and ¢ is a holomorphic self-map of B, and Pg log,; (or Blogﬁo) — B, is
bounded. Then Pg log,; (or Bloggo) — B, is compact

|lzi|r£‘1”(z) lg(2)| = 0. (64)
Theorem (1.1.21)[1]: Assume g € H(B), g(0) = 0, u is a weight, and ¢ is a
holomorphic self-map of B, and the operator PJ: B, (or Bloglo) — B, is bounded.

log?t
Then P;: B, 1 (or Bjo g1 ) - B, is compact, if and only if
e
M = su (2)|g(z2)|max {1,Inln —} <
PzeBH ) 1 — |(p(z)|
Moreover, if PJ: B log (or Bloglo) — B, o is bounded, then

1PNy =Rl =M
logl "~H loglo 7K
Theorem (1.1.22)[1]: Assume g € H(B), g(0) = 0, u is aweight, and ¢ isa

holomorphic self-map of B, and the operator Pg B! (or Bloglo) — B, is bounded.

log?!
Then P By, 1 (or B ,0) — B, is compact, if and only if

hm u(z) |g(z)|max (1 In In1 e )I)
Theorem (1.1.23)[1]: Assume g € H{B),g(0) =0, u isaweight,and ¢ isa

holomorphic self-map of B, and the operator P,)’: Bllog (or Bloglo) — By, o is bounded.

Then P, ’Blog (or Bloglo) — By, o Is compact, if and only if

11m u(z) |g(z)|max (1 In In1 e )I) =0

Here we formulate and prove the results regarding the boundedness and compactness
of the operators PJ: H(p, q, ¢) = B, (0rBy).
Theorem (1.1.24)[1]: Suppose 0 < p,q < »,g € H(B), g(0) = 0,¢, is normal, u is a
weight, and ¢ is an analytic self-map of B. Then the operator Pq*,g:H(p, q,¢) > B, is
bounded if and only if
sup u(2)|g(2)|
PN — )2V
Moreover, if the operator Pq‘,g: H(p,q,$) — B, is bounded, then the following asymptomatic
relation holds

M4, =

< 0o, (65)

1P ¢ ”(pq¢)—>B =My (66)
Proof: Assume that Pq;g: H(p,q,$) — B, is bounded, set
1 —w»F

fw(2) = —,Z € B, (67)

dw)(A — (z,w)a ™’
Where w € B and > b.By Lemma (1.1.2) in [47] we have

Supwe[BB”fw”H(p,q@) <C.
For this, the boundeness of
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P(i)gH(p:qrd)) - Bﬂ ) P(i)gfw(o) =0
and by using Lemma (1.1.6), we obtain

NP i grm, Z 1B Foamlly, = supwesr@lg DI fpun (0 @)

> pWIgW) || fpw) (@) ||
pw)lg(w)|

= $0eDU — lpW)Z7e (68)
Taking the supremum over w € B in (68) we obtain
M,<C (69)
Now assume that (65) holds. By Lemma (1.1.6) and inequality (19), it follows that
u@IR(P/F)@D] = u@|f(¢@)|lg()
< Clf gy = u(2)1g(2)| (70)

]
dUp(2) DA — |p(2)?])4
Foreveryz € B and f € H(p,q, ¢)
Using condition (65) in (70) and the fact Pq;qf(O) = (0), it follows that H(p, q, ¢) —

B, is bounded and moreover

1],y 0y S CMa- (71)
From (60) and (71), the asymptotic relationship in (66) follows, as desired.
Theorem (1.1.25)[1]: Suppose 0 < p,q < o0,g € H(B),g(0) = 0,¢, is normal, u is a
weight, and ¢ is an analytic self-map of B. Then the operator Pq*)g:H(p, q,¢) > B, is
compact if and only if Pq;g: H(p,q,$) - B, is bounded and

n(2)g(2)|

im 7
PG lp @D - o)D)
Proof: Assume P):H(p,q,$) — B, is compact, then clearly P;): H(p, q, ¢) - By, is
bounded, let (z;),en be a sequence in B. such that |@(z,)| - 1 ask — oo ifsucha
sequence does not exist then condition (72) is vacuously satisfies).

set E(Z) = f(p(zk)(z);k €N, (73)
Where f,, is defined in (67). from the proof of the Theorem (1.1.24) we know that
SqueN”fk”H(p’q’(p) =C
on the other hand , since 8 > b, we have that

A-leG” _

=0, (72)

lim
koo ¢ (o(z1))
From which it follows that f;.converges to zero uniformly on compact of B as k — co.
By using Lemma (1.1.7) it follows that
lim|| P/ fill, =0, (74)
u

k— oo

We have ~ ~
” P(i)gfk||BH = supZEB,u(z)|§]t( P(,bgfk)(z)|
> u(zi)1g @l |fee(z)]
_ nw(zi) gzl
¢z )11 = |o(z )2/
18
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from (74) and (75), we obtain
li u(z gzl

e S e @Ol — oGP~

From which (72) follows.
Now assume that qu :H(p,q, ) - B, is bounded and that condition (72) holds.
Assume is a bounded sequence condition (72) implies that for every there is a, such that
Z Z &
u(zi)lg ()| < E 76)
¢ -2 L,

Wherever § < |p(2)| < 1.
By using Lemma (1.1.6) and 9, and in equality (76), we obtain

| B Felly, = supzean@|g@fi(o)]

< supen o)< (@19 @ fi (¢ (2))|

+Sup{ze]B%:6<|<p(Z)|<1}.U(Z)|9(Z)||fk(<P(Z))|

< ”g”Hﬁ’S”pIWISé‘lfk(W)l + C“fk“H(p,q,(p)

SUpr e u(2)1g(2)|
(eBo<le@It ¢ (Jp (2D — lp () [2)1/0

< llgllyge suppwis| frwW)] + C.. (77)

Where Pq;g(l) € B, implies g € H;” , in view of the boundedness of the operator
PJ:H(p,q,$) - By
By letting k — oo in (77), using the assumption
lim suppy<slfe W)l =0,
and since €is an arbitrary positive number, we obtain

tim | RE7l, =0,
Hence, by Lemma (1.1.7), the implication follows.
Theorem (1.1.26)[1]: Suppose 0 < p,q < ©,g € H(B), g(0) = 0,¢ isnormal, u isa
weight, and ¢ is an analytical self-map of B, then :p;z: H(p,q,$) — B, is bounded if and
only if pg: H(p, q, $) = B,, is bounded and g € H;%.
Proof. The proof is similar to the proof of Theorem (1.1.13). It should be only noticed that
the set of all polynomials is also dense in the space H(p, q, ¢). We omit the result of the

roof.

Prheorem (1.1.27)[1]: Suppose 0 < p,q < o0,g € H(B),g(0) = 0,¢ isnormal, u is a
weight, and ¢ is an analytical self-map of B, then: pg: H(p,q,$) — B, is compact if and
only if

lim u(z)lg ()| _ 0 (78)

[z]- n
L ole@ DA - lp@)]2)a
Proof: assume that (78) holds. Then Lemmas 6 and 9 imply

u@|R(EL)D)| < Clflluepas k@Dlg@l (79

ol DA — p(2)]?)e
Taking the supremum in (79) over the set ||f || y(p,q,¢) < 1.then letting [z] — 1 and

employing (78) we obtain
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1M SUD| 110051 y(z)|9?(Pq‘,gf)(z)| =0 (80)

[z]>1
From (80) and by using Lemma (1.1.5) the compactness of the operator Pq‘,g :H(p,q,¢) -
B, follows.

Now assume that condition (78) does not hold. If it were, then it would exist ¢, < 0
and a sequence (zi)reny € B, such that hm |zk| = 1 and

u(zk)lg(zk)l
d(o(z DA = lo( 2?4

> g, <0, (81)

for sufficiently large k.
First assume that supyenl@(2,)| < 1. Then by Theorem (1.1.26), we have that g €
H,% and consequently

,li_f){)lo#(zkﬂg(zkﬂ =0
From this, (81) and the normality of ¢ we obtain a contradiction.
Now assume that suprenlg(z)| < 1. Then there is a subsequence of (¢ (z)),

(which we may also denote by (¢(z)),,) such that lim lp(z) = 1. Let (fir), . be
defined as in (73), where B > b. We know that supyen||f|

< -
i Hpa.p = O and fi converges
to 0 uniformly on compact of B as k — oo, hence

im 1B Fll, (82)
On the other hand, from (75) and (81) we have
||ngk|| H(Zk)lg(zk)l 8 <0

B ¢(|§0(Zk)|)(1 — |<P(Zk)2|)n/q =2
for sufficiently large k, WhICh contradicts to (82), finishing the proof of the theorem.
We characterize the boundedness and compactness of the operator
uCp: BE 5 (B) (or Blogﬁo(ﬂ%)) > HP(B) ( orHE(B))
The proofs of these results are similar to those in the previous and the same test functions
are used.
Theorem (1.1.28)[1]: Assume that a > 1, f=>0,u € H(B),u is a weight, ¢ is a

holomorphic self-map of B then uC,: Bff)gﬁ (or B, o 0) — H,, is bounded. Then the

operator uC,: B;’;gﬁ (or B, 9 0) — H,, is compact if and only if

z)|u(z
M, = sup u(2)|u(2)| < o
ZEB (1 0 ()| )00_1(1 ebla )ﬁ
— |p(z no————7
Y - Te@
Andu € H”,
Moreover .if uC: l‘f)g,; (or Blogﬁ 0)—>H % is bounded , then
UCy||.a = || uCpl|.. = M + ||u|| yoo
I <””ngwﬂu I w"ﬂlogﬁaﬂu 5 + llull s

Theorem (1.1.29)[1]: Assume that a > 1, f=>0,u € H(B),u is a weight, ¢ is a
holomorphic self-map of B, and uC(p:Bf‘ogﬁ (orBlog,;O)aHﬁ’ is bounded. Then

uCy: l‘f)gﬁ (or Blogﬁ O) — H; is compact if and only if
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Ilzllr_r}lﬂ(z)|9(z)| (1 + (Inm> > = 0.

Theorem (1.1.30)[1]: Assumethata > 0,8 = H(BB), u is a weight, and ¢ is a holomorphic
self-map of B, then uC,,: — H,” is bounded if and only if.uC,: - Hp is

bounded and u € H,;
Theorem (1.1.31)[1]: Assume that a > 1, B =>0,u € H(B),u is a weight, ¢ is a

holomorphic self-map of B, and the operator uC,: Bl‘f)g (or Blogﬁ 0) — H,” is compact if
and only if

a a
logﬁﬁ logﬁp

1

a-1 eb/a p

1- (0@ (=)
(0@ (=) |
Theorem (1.1.32)[1]: Assume that « =1, B € (0,1),u € H(B),u is a weight, ¢ is a

holomorphic self-map of B. Then uCy,: ff)gg (or Blogﬁ 0) — H,, is bounded if and only
if

= 0.

lim u(2)|lu(z)|| 1+
|z]->1

N

e

Mg = su @) |ul2)] (In —> < o
6 PzepH 1 — |(p(z)|

u € H,.

Moreover , if uC,: Bllogﬁ (or Blo p 0) — H,? is bounded, them

leCollys om, = MuCollys oz, = Mo+ Nl

Theorem (1.1.33)[1]: Assume that «a =1, B € (0,1),u € H(B),u is a weight, ¢ is a
holomorphic self-map of B, and the operator uC, Blogﬁ (or Blogﬁ 0) — H,, is bounded.

Then the operator uC, Blogﬁ (or Blogﬁ 0) — H, is compact if and only if

e -F
|1zl|r—1>11 u(z)|g(2)] (1 + (In m) ) =0

Theorem (1.1.34)[1]: Assume that a =1, B € (0,1),u € H(B), 1 is a weight, ¢ is a
holomorphic self-map of B, and the operator uC, Blogﬁ (or Blog,; 0) — H; is bounded.

Then the operator uC, Blogﬁ (or fBlOgﬁ 0) — H; is compact if and only if

ef N\
Ilzllr—r>11 u(z)|g (2] (1 + (In m) > =0

Theorem (1.1. 35)[1] u € H(B), u is a weight, ¢ is a holomorphic self-map of B, Then

UCy: Bjpg1(0r By, g14) = Hi is bounded if and only if

e
M, = su @) |u(z) max{l,lnln—}< o0
7 pZEIBM’ | | 1 _ |(p(Z)|

Moreover, if uCy: By, (07 B, ,41,,) = HS is bounded, then
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”uc(p“Bllogl’—’Hff = ”uC(p”Bllogl’O_)Hﬁo = M,

Theorem (1.1.36)[1]: Assume that u € H(IB), u is a weight, ¢ is a holomorphic self-map
of B, and the operator uCy,: By, 41 (07 By, 41,4) = H, is bounded. Then the operator
UCy: By, g1 (07 By g1 ) = Hi is compact if and only if

e

z)lu(z)|max i1 Inln—}z 0

WL, K@ max {1 nin s
Theorem (1.1.37)[1]: Assume that u € H([B) U is a weight, ¢ is a holomorphic self-map
of B, and the operator uC,: B log 1 (or Blog 1) = H.% is bounded. Then the operator

UCy: Bjog1 (07 By g1 9) = Hilo is compact if and only if

e
llzllr_r)l1 ,u(z)lu(z)lmax {1, Inin m} =0

Theorem (1.1.38)[1]: Assume that « € (0,1) or a=1and B >1,u€e HMB),u is a

weight, ¢ is a holomorphic self-map of B, then uC,: l‘f)g,; (or Blog,g 0) — H,° is bounded
if and only if u € H,.Morever, if uC,: fj}g,; (or Blog,; 0) — H,” is bounded then
leCollye e = I1eCollys | e = Ml

Theorem (1.1.39)[1]: Assume that ¢ € (0,1) or a=1and §>1,ue€ H(B),u is a
weight, ¢ is a holomorphic self-map of B, and the operator uC: Bf(‘)gﬁ (or Blogﬁ 0) - H,

is bounded. Then the operator uCy: f(‘)gg (or Blogﬁ 0) — H, is compact if and only if

[S%)
u € fy o,

Theorem (1.1.40)[1]: Assume that ¢ € (0,1) ora=1and B >1,u€e H(B),u is a
weight, ¢ is a holomorphic self-map of B, and the operator uC,, Bl gF (or Blogﬁ 0) - H,

is bounded. Then the operator uC,: B;; gF (or B, o8 0) — H, is compact if

“ | m (Z)Iu(Z)I = 0.

Theorem (1.1.41)[1]: Suppose 0 < p, g < oo, u € H(B), ¢ is an analytical self-map of B u
is a weight, and ¢ is an analytic self-map of B. Then the operator uC,: H(p,q.¢) - H;" is

bounded if and only if
1(2)|u(z)|

n
¢Up (2D - |p(2)]?)4
Moreover, if the operator uC,: H(p, q. ¢) — H, is bounded then the following asymptotic

relation holds

MS i= sup,ep

4o gy = M5
Theorem (1.1.42)[1]: Suppose 0 < p, q < oo, u €H(B), ¢, is normal, u is a weight, and ¢ is
an analytic self-map of B. Then the operator uC,: H(p, q. ) - H, is compact if and only
ifuC,: H(p,q.¢) —» Hy; is bounded and

lim u(z)|u(z)| 0

P o@D = lo2))e
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Theorem (1.1.43)[1]: Suppose 0 < p; q < oo, u € H(B), ¢ isnormal, u is a weight, and
@ is an analytic self-map of B. Then uC,: H(p,q,$) — B}, is bounded if and only if
uCy,:H(p,q,¢) - H; is bounded and u € H, .

Theorem (1.1.44)[1]: Suppose 0 < p; q < oo, u € H(B) is normal, u is a weight, and ¢
is an analytic self-map of B. Then uC,: H(p, q, ¢) — B, is compact if and only if

lim u(2)|u(2)| __o.

o@D A - lp@)])T
Section (1.2): From the Bloch Space to Bloch —Type Space on the Unit Ball
For B be the open unit ball in C*, D the open unit disk in C, H. (B) the class of all
holomorphic functions on the unit ball and H* = H*(B) the space of all bounded
holomorphic functions on B with the norm

1flleo = supzemlf (2)].

Letz = (z4,..., z,)and w = (wy, ..., wy,) be points in C*
n
(z,w) = szvt_/k and |z| = +/(z,2) Z aﬁzﬁ.
k=1 |B1=0

For f € H(IB) with the Taylor expansion f (z) = Y20 aﬁzﬁ ,let

@)= ) |flagz?
|B1z0
be the radial derivative of f, where B = (By,82, -.,B,) is a multi-index |B| =

B+ .t Bn)and 2P = 2P 2P (see [77]).
A positive continuous function wu on [0, 1) is called normal [11] if there is § € [0, 1)
andaand b, 0 < a < b such that

r r
(1(5)7*)“ is decreasing on [6.1)and lrl_r)r} (1,u_( 3)‘1 =0,
(Wwr . . o u(r)
—(1 pY? is decreasing on [6.1)and }”l—rgl——r)b =0,

If we say that a function u: B — [0, o) is normal we will also assume that it is radial , that
is ,u(z) = u(|z]),z € B.
The weighted space H,°= H,” (B) consists of all f € H(B) such that

Sup,ep u(2)1f (2)| < co.
where u is normal. For u(z) = (1 — |z]?)? , > 0 we obtain the (classical) weighted space HE"

= Hg> (B). The Little weighted space H,;= H,;(B) is a subspace of H,° consisting of all
f € H(B) such that
limy,o1 p(D)If (2)] = 0.
The Bloch-type space, denoted by B, = B, (1) consists of all f € H(IB) such that
B, (f) = Sup,ep u(2)|Nf (2)] < oo.

where u is normal. With the norm

Iflla, = £ O] + B,(f)

the Bloch-type space becomes a Banach space.
The a-Bloch space B “ is obtained for u(z) = (1 — |z|%)%, a € (0, «) (see, e.g., [76],
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[79], [9]). The Little Bloch-type space B, is a subspace of B, consisting of those f such
that
ll'm|z|_)1,bl(Z)|§Rf (z)| = 0.
Bearing in mind the following asymptotic relation from [60] (see also [4] for the case of the
a-Bloch space)
by (f): = Supzep n(2)|Vf (2)| = Sup,ep u(2)|1Rf (2)| (83)
we see that B, can be defined as the class of all f € H(B) such that b, (f) is finite. Also the
Little Bloch-type space is equivalent with the subspace of B, consisting of all f € H(B) such
that
lim|Z|_)1[l(Z)|Vf (z)| = 0.
From this observation and for some technical benefits, for the norm of the a-Bloch space
we choose the second definition, that is, f € B* if and only if
Ifllzge = |f(0)|+Sup,ep(1 — |2|)¥|Vf(0)] < oo.
If u(z) = (1 —|z|?), then the quantity b, (f) in (83)will be denoted yb (f).
Let ¢ be a holomorphic self map of B . for f € H(B) the composition operator is
defined by C,,f (2) = f(9(2)) (see [47] or [62], [15], [17], [27]).
Let g € H(D) and ¢ be a holomorphic self-map of D. Products of integral and
composition operators on H(ID) were introduced by S. Li and S. Stevic” in a private

communication (see, e.g., [57], [58] and [79], [27]) as follows
@ (2) z

Colof (2) = f F(©9dS and J, Cof (2) = f Fo@)g@de  (84)
0 0

Operators in (84) are extensions of the following integral operators
zZ

T,()(@) = j £ g'(Qdg

0
which was introduced in [78]. Some other results on the operator T 4 can be found, e.g., in
[71]-[73], [78]. For some results on n-dimensional extensions of the operator, see [42]-[45],
[74]-[52], [53], [541, [55], [6]-[58], [60].

One of the interesting questions is to extend operators in (84) in the unit ball settings
and to study their function theoretic properties between spaces of holomorphic functions on
the unit ball in terms of inducing functions.

Assume that g € H(B), g(0) =0 and ¢ is a holomorphic self-map of B, then we introduce
the following operator on the unit ball

! dt
RO@ = [ foe)ge T, ren®aen @5
0

Ifn=1, theng € H(D) and g(0) = 0, so that g(z) = zgo(z), for some go € H(D). By the change
of variable ¢ = tz, it follows that

1 it |
PIf(2) = fO f((p(tz))tzgo(tZ)T = ff(w(i))go(i)df-
0

Thus operator (85) is a natural extension of the second operator in (84).
Here we study the boundedness and compactness of operator Pd;q from the Bloch space

B or the Little Bloch space By to the Bloch-type space B, or the Little Bloch-type space By o.
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We calculate the essential norm of the operators Pj : B (or Bo) — B, (or B,0).
C will denote a positive constant not necessarily the same at each occurrence. The
notation A = B means that there is a positive constant C such that A/C < B < C A.
The following lemmas are used in the proofs.
Lemma (1.2.1)[41]: Suppose g € H(B), g(0) = 0, u is normal and ¢ is a holomorphic self-

map of B. Then the operator Pg¢: B (or By) — B, is compact if and only if Pg¢:
B (or By) — B, isbounded and for any bounded sequence ( fk )ken in B (or Bo) converging
to zero uniformly on compacts of B, we have || PSfy ||s, — 0 ask — co.

The proof of Lemma (1.2.1) follows by standard arguments (see, for example, the
proofs of Proposition 3.11 in [47] and Lemma (1.2.3) in [58]).
Lemma (1.2.2)[41]: Suppose f, g € H(B) and g(0) = 0. Then
NP () (1)) =f (@) 9@
Proof. Assume that the holomorphic function f(¢(z))g(z). has the expansion ¥z agz?,
since g(0) = 0, note that a, = 0, Then

RIPY (] @) =R [, Tpeoap(t2)f T = N(Tpaoihzh) = Tpaoagz”.

Which is what we wanted to prove.
Lemma (1.2.3)[41]: Let, Then the following inequality holds

1 14|z
HOIE ||f||Bmax{1.§1n — |z|}' (86)

Proof. The proof of the lemma follows from the foIIowing inequality

1 1
7 =701 = ‘j (V7 (ez), 2)at] < b(f)j |21;2 =b(f)5In7 t Z;

Where b(f) = sup,eg(1 — |z|>)|Vf(2)I.

We calculate the norm ||| 5, 2N 171l -
0

Theorem (1.2.4)[41]: Assume g € H(IB), g(0) = 0, u is normal and ¢ is a holomorphic self-
map of B. and Pg : B (or BO) — By is bounded then

1 1+]p(2)]
1P ”73—>Bu 1P ” = supzepi(2)1g(z) |max {1-5 lnm . (87)
Proof: if f€ B , then by Lemma (1.2.2) and (86) we obtain
IR, = supzes u(@]|g(@)f (0(2))|
1 1+ |<p(Z)|}
< su Z z)|maxjyl.— In——— . 88
If llzsup,ent(2)|g(2)| { Tl @9
From which it follows that
1 1+|p(2)]
< g —r
(Lo | supZEBu(zNg(znmax{Lz Lol 69

The same inequality holds for Pq‘,g !By - B,
Now we prove the reverse inequality . By taking the function given by f,(z) =1 € B,
and using the boundrdness of Pg : By = B, we obtain

1221, . = Wllegl, . = Iedsl,,

= sup,epi(2)gD||fo(0(2)| = sup,en(2)1g(2)|(90)
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The same inequality holds for
P : BO - Bp.
for w € B, set
1+ (z,w)
"T=zw

fw(z) _I
with in 1 = 0. Since f,,(0) = 0 and

— 2 _ 2 _ 2
(A= 12 W2 = G o) < T e < ™ L o

(91)

A=—lzw?) = 1=willzl = " 1= P

it follows that sup,cg |lfiwllg < 1 and f,, € B,. for each fixed w € B from this and the
boundedness of P(;f’ : B (or By) — B, we have that when ¢@(w) # 0 and for every t €
(0,1) the following inequality holds

171l o 2 > ||B] frowtomlll ,
1+ t{p(2). 0w )>
1 lp(w)|
sup,es u(2)g ()| |In o)
1—-t .
v @ Iw(wlz)lg N
1 1+ tlew
= —ulw w)|lIn——m—— 92
T EWIgWIInT— o (92)
note that (92) obviously holds if ¢(w) = 0.
Letting t — 1 in(92), we obtain that for eachw € B
1+ |pw)l
|2 ||B ey 25 pw)|gw)|in m
from this and since w is an arbitrary element of B, it follows that
1 1+ |p(2)]
g - @ -
||P(p ||BO—>BM =9 5 SUPzeB ,LL(Z)|u(Z)|ITl _ |(p(Z)| (93)
note also that
(172 Y ) (94)
from (90), (93) and (94) we obtain that
|| || || || > su (2)|g(z)| max {1 lln&xw)| (95)
B—Bu — By—Bu — DPzep U ) ) 1—|(p(W)|

from (89) and (95) , equalizes in (87) follows .
Corollary (1.2.5)[41]: Assume g € H(B), g(0) =0, n is normal and ¢ is a holomorphic self-
map of B. Then P(§ : B (or Bg) — B, is bounded if and only if

Sup,epu(2)] g (2) lmax {1% n %} <o, (%)
Proof. Ingqb : B (or By) — B, isbounded, then (96) follows from Theorem (1.2.4). If (96)
holds, then the boundedness of Pg"’ : B (or By) - B, follows from (88).

Here we characterize the boundedness of the operator Pg: By Bpo.
Theorem (1.2.6)[41]: Assume g € H(B), g(0) =0, n is normal and ¢ is a holomorphic self-
map of B. then P(fj : Bo — By is bounded and g € Hj.
Proof. Assume that Pg:B, —B,o Is bounded , then clearly Pg:B, — By is bounded.
Taking the test function f,(z) =1 € B, we obtaing €
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Conversely, assume P(pg: B, —B, Is bounded and g € H;,.Then, for every polynomial p,
we have
u@| R PJp(2)| = w@|g@Dp(e@)| < u@1g@llplleo = 0, as|z| - 1.
Since the set of all polynomial is dense in B, for each f € B, there is a sequence of
polynomials (py)ren Such that
Ili_r)go“f_pk“B =0 (97)
From (97) and since the operator Pq;": By — B,. 1s bounded, it follows that
I25f = Booell,, < I Bl g, IIf = Pillz, = O
As k — oo . Hence P(;f’ (By) € Bu.0.since B, isaclosed sybset of Bu the boundedness
of PJ:By - B, follows.
Let X and Y be Banach spaces, and L : X — Y be a bounded linear operator. The essential
norm of the operator L : X — Y, denoted by ||L|| x -, v, is defined as follows
ILllex -y =inf {|IL + K]|, _, , : K is compact from X to Y},
where ||. || x - ydenote the operator norm.
From this definition and since the set of all compact operators is a closed subset of the
set of bounded operators it follows that operator L is compact if and only if [|L]l, x -y = O..
We prove the main result, namely, we calculate the essential norm of the
operator P,: B (or By) — B, .
Theorem (1.2.7)[41]: Assume g € H(IB), g(0) =0, u is normal, ¢ is a holomorphic self-map
of B and P3: B (or B;) — By.is bounded if gl =1, then

1 1+ |p(2)]
g _ g — ;
[ ||e,BﬁBu = || B ||e,BWBM = S limjge)-15up u(2) 1g(2)] In el (98)
while ||¢]l, < 1, then
g — g —
|| P(P ||€,B—>BM - || P(P ”e,BO—)B# - O (99)
Proof. First assume that [|¢]|| = 1. Set the following family of test functions
A+ wD\T 1+ w7
c = |In———- I ,weB/ [0
It is easy to see that
ppar [ THIWNT )
1£,6(0)] < (In(1 + |w|)?)E In1 ™ < 2¢t1m2
And
lim |££(0)| = 0. (100)
lw|—=1
Farther we have
1 — 2
(1= ZPDIVED] = (e 4 1) S 1D (101)
I-Gwl
(1 + |w|)? 1+ wl\°
<(+DA+|zDw||In———+ 2n| |In—mm— (102)
1— |wl 11— |w]
From (102) it follows that
|lilrn1 supb(f,5) <2(e+1) (103)
wi|—
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And from (101) that m for each fixed w € B/ {0}. f,5 € B,.
Hence (100) and (103) imply
dim lfwllz = 2(e+ 1) (104)
wl|—
Now, assume that (‘p(zk))keN is a sequence in B suchthat |[@(z,)| » 1as k - o note
that from (104) it follows that the sequence F(z) = f;,,)(2), k € N is such that
and that F, converges to zero uniformly on compacts of B as k — c. By Theorem (1.2.7).16
in [9] it follows that Fx — 0 weakly in Bg as k — o. Hence for every compact operator K :
Bo — B, we have that
lim [|KF|l3, = 0 (106)
Assume that K : Bg — B, is an arbitrary compact operator. Then from the boundedness of
PJ :Bo— B, foreachk € N
g g g
VEliallBg + Kl o = 188+ K)EN = (PSR, ~ IKRl,  (107)
Letting k —» o in (107) and using (106) we obtain

lim 1Flls 1B + K1, = lim sup (B Fil,, = 1Kz,
= lim sup Rl
= lim supsup;ep u(2)19(@)||Fi(¢(2)]

> ll1_r)ro10 sup u(Zk)|g(Zk)Fk(€0(Zk))|

+ o (z)|
= 11m sup u(zy)|g(zy)|In ﬁ
From this and (105) we have
|<P(Zk)|
2(s + D||P? + K llmsu A Z In— 108
( )” [0 ||BO—>B pl,l( k)lg( k)l | ( k)l ( )

Taking the infimum in (108) over the set of all compact operators K :Bo — B, and since ¢
IS an arbitrary positive

1 1+ ozl
1271, 50 5, = Jim sup 5 0(zIg (2T 5
Which implies the inequality
1+ |p(2)]
” ”eBO_)B” |<p% e 1§M(Z)g(z)lnm (109)

Now we prove the reverse inequality. Assume that (r;)l € N is a sequence which

increasingly converges to 1. Consider the operators defined by
1

dt
Pl (D@ = [ 9@ f (np@) Tt e (110)
0
By using the mean value theorem and the definition of the Bloch space, we obtain
=C,(1-n)—0 as|l— oo,
Letting | — oo in (111) and (112), using (114) and (115), and then letting p — 1 we
obtain the inequality both equalities in (98) follow.

1, 1teu (@)
SUPfeBifllpe |f () = fOW] = JIn 2= 2w €B

(where ¢,, is the involutive automorphism of B that interchanges 0 and w),
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We have
||P<pg—Prf<p||B_)Bﬂ = supir|ip<1 UPzes LD g(DI|f (0(2)) — f(re(2)|
< supjfii,s1 SUPl() 1ot (@ g (D f (9 () = f(np(2)))
+SUP| flla<1 SUP )15 p NG DN f (9 (2)) — f(rie(2)]
< llgllug supyfizsa Sup|<p(z)|<p|f(<P(Z)) flne@)| (@@11)
|‘/’<p(2) (re(2)]
|‘/’<p(2) (ne@)|

+Sup|<p(z)|>pu(2)lg(2)| = (112)

Since

_ 9@ = Pz (ne(2) — $,94@)(ne(2)
|‘P<p(2)(7”l§0(z))| = 1 — (re @), 0(2),

_le@Ia-n)
" Tonleer - O

1+x
1_

And since the function
h(x) =1In
Is increasing on the interval [0,1), we obtain

(113)

1+ |(p¢(z)(rl(p(z))|
Sup u(@lg(@)|n
lp(2)1>p 1-— |(p(p(z) (TL<P(Z))|

+ [p(2)|
< Supjpz)1>pt(2) g (2)| Inm (114)

Now we estimate the quantity in (111). Let
I = sup| <1 SUPl()Ip|f (9(2)) = f(nip (@)
By using the mean value theorem and the definition of the Bloch space , we obtain
Iy < supjfz<1 SUP|p(2)1<p (1 — 1@ (2) [supw)<,p IV f (W)
1-n
= 2 > sup)irig<1 1f |5
= C,(1-7)—>0 asl - oo, (115)
Letting [l — oo.in (111) and (112) using (114) and (115), and then letting p — co. we obtain
the inequality

: 1 1+ |p(2)]
7 ”e%B |<p%)1|sup w2)g(2) In 1-lp@I

From (109), (116) and since

(116)

I, 5, = IR0, 5, s,

Both equalities in (98) follow.

Now assume ||@||oco < 1, then similar to operators in (110) it is proved that the operator
Pq;" : B (or Bo )— B, is compact, which is equivalent with (99), finishing the proof of the
theorem.

The following result regarding the compactness of the operator P(pg :B (or Bop)— B, is
a direct consequence of Theorem (1.2.7).
Corollary (1.2.8)[41]: Assume g € H(B), g(0) =0, n is normal, ¢ is a holomorphic self-map
of B such that ||¢@|| .= 1, and the operator Pf : B (or By)— By, is bounded. Then the operator
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Py : B (or By)— B, is compact if and only if
1+ |p(2)]
lim Z Z In =
oim H@DNg@In— 0@
We calculate the essential norm of the operator Pq‘,g : B (or By) » B
Theorem (1.2.9)[41]: Assume g € H(IB), g(0) =0, u is normal, ¢ is a holomorphic self-map

of B and the operator P‘ﬁ: B (or By) — By, 0 is bounded then

1. 1+ (2]
| 7| | 7| —

= —=lim,_{ Su VA z)|In
0] e'BO_)B”’O 2 |z]|->1 p,ll( )lg( )l 1 — |(p|Z||

Proof. Since P(;?: B or (By) Bu, 0 is bounded then, then for the test function f,(z) =1 €

B, We obtain that g € H,,".

First assume || o||, < 1. Then, similar to operator (110) it can be proved that is
compact. Hence

(117)

I . (118)

” P ”eB(orBo)—>B " =0.

On the other hand , since || ¢|l, <1 and g € H°° it follow that

| + 16| +lolle
b supu(g DlIn 7w < ’" Tl

From which (118) follow in this case
Now assume |[@|l, =1 it is clear that

1+16@] _ 1+ 16@)|
1—|¢>( )1 = it SUP B9 @lin =50

Assume that (z;),en IS Such a sequence that

. +1p@)] 1+ |p(zi)l
|lzl|r_r>115up n(2)|g(2)] Ianb(z)l = lim u(zlg(zlin =16l

If supren@(zx) < 1, theninview of the fact g € H;® , the last limit is zero.
And consequently the second limit in (119) is also zero. Otherwise, there is a

subsequence (go(zkl))l . such that |¢(zy,)| = las I - oo so that both limit in (119) are
€

m u(2)lg(2)] = 0,;

llzilrglsup u(z)|g2)| In

(119)

equal, that is
. 1+ |¢(2)] . 1+ |¢p(2)]
Jim sup p(2)|g(2)| In T = )] RN HDNg@D I T rolk

From this and by Theorem (1.2.7) the result follows in this case, flnlshing the proof of the
theorem.

Corollary (1.2.10)[41]: Assume g € H(BB), g(0) = 0, u is normal, ¢ is a holomorphic self-
map of B and the operator Pq;g: B (or By) — By, is compact if and only if

| 1+ @)
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Chapter 2
Composition of Blochs with Inner Function and BiBloch Mapping

We show that f is a holomorphic self-map of the open unit discand 1 < p < oo, then
the following are equivalent. hof € H?® for all Bloch functions h,

p
sup fzn <log( : _ Z)de) < oo, fzn (fl (FH2(re®®)(1 - r)dr)p df < oo,

1-|f(re')]

where f* is the hyperbolic derivative of f: f# =|f'|/(1 — |f|?). We give several
applications, we can generalize known characterizations on Bloch-BMO pullbacks.
Section (2.1): Bounded Analytic Functions

By P. Ahern and W. Rudin ([81], [82]), there is extensive research on Bloch-to-
BMOA pullbacks, that is, research on those holomorphic maps f of the unit ball of C" into
the unit disc of C for which the composition operator defined by

Ce(h) =hof

takes Bloch functions to functions of BMOA. See [87] for recent research on Bloch to
BMOA pullbacks.

It is known (see [87]), when n = 1, that one of the necessary and sufficient conditions
for C™to take all Blochs to BMOA is that f be a function of BMOA, , the Yamashita
hyperbolic BMOA class (see [84] and [90] for BMOA and BMOA,).

Theorem (2.1.1)[80]: (Main Result). If £ is a holomorphic self-map of the open unit disc
and 1 < p < oo, then the following are equivalent.
(i)  Cp takes Blochs to H?, that is, h o f € H?P for all Bloch functions h

(i)  f belongs to Yamashita's hyperbolic Hardy class HZ, that is,

2T

1 b
sup, j (log1 — |f(7‘ei9)|2) df < oo,
0

(i) [27 (S 2 (ret®) (1 — r)dr)” d6 < oo,
where f #is the hyperbolic derivative of £: f# = |f'|/(1 — |f]?).

The Bloch space 8B consists of those f holomorphic in the open unit disc D of the
complex plane for which

flls 3= sup zeplf' @I = |2]?) < oo.
We let 1 < p < oo and set for f subharmonic in D

1/p
do
Il = sup, f F(re®)" 5=

then HP = HP (D) consists of those f holomorphlc in D for which [|f|, < oo.see [83] and
[84] for Bloch and H? spaces.
The Yamashita hyperbolic hardy class HY is defined as the set of those holomorphic
self- map f of D for which
lo(Hlp < oo,

where a(z) denotes the hyperbolic distance of z and 0 in D, namely,
1 1+ |z|
o(z) = —logl_| |
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Though H? is not a linear space, it has, as hyperbolic counterparts, many properties
analogous to those of HP?. We let T be the boundary of D and set, following Yamashita,

A(f) = log L and f%*= Il
1—|f|? 1—|fI?
for the holomorphic self-map f of D. Then o(f)?; A(f)P,and (f#)P are subhar-monic

functions, so that their integral means over rT are nondecreasing functions of r: for example,

r - de
[ apre) 27 AN as v 7 1
0

Also, there are corresponding maximal theorems for these Functions: Set
M, (f,0) = sup {/’l(f)(reie)z 0 < r< 1} ;

1My (f,) lle < CpllA(H) I p- (1)
for £ € H? ([88]). The left side of (1) means usual LP(T ) norm. The function f* is the
hyperbolic counterpart of ' and it easily follows that

1 1
El(f)SCf(f)<§l(f)+logz- (2)

Then

And
AP = 4p {(p — DIfI* + 2P 2(F )3, (3)

Where A denotes the Laplacian:
62

A =4 —
0z0z

From (2) and (3), it should be noted that
feHy ifandonlyif [JA(f)l, <
AGAFIPI~DAFIPTH(fH)? (4)
Here and after 1y ~¢ means that either both sides are zero or the quotient /¢ lies between
two positive uniform constants. See, for example, [85], [86], [88], and [89] for the theory of
HY.

We show that f to being a holomorphic self-map of D and denote f,; 0 < r < 1, as
the function de ned by £, (z) = f(rz); z € D. Positive constants depending on p (or q) will
be denoted by C,, (or C,), whose quantities may vary at each occurrence.

For h holomorphic in D, g-function of Paley defined by
1
2

1
9(0) = g()(®) = f|h'|2 (re®)1-ndr|, o0<6<2r. (5
0
Satisfies || g(h) || .o~ hll,if h(0) = 0, ([91]). Consider Green’s theorem of the form

rjnaa—lfdé? = ff AY dxdy

|z|sr
Valid for ¢ € C2(D). if we integrate both sides with respect to dr after dividing them by
r and applying y = A(f)P, then we obtain , by use of (4)

G, = 2P ©)
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1 (Pd
~ o : 77” ff A(OPL(M2(2) dx dy. (6)

lz|<p

_ L —1(£i)2 P
_ angp AP @log Ldxdy.  0<pst

In particular, we see from (6) that f € Hl if and only if
1
o> [[ (7 @log
D |z|

This suggests we de ne the hyperbolic version of g-function using f*. We define
90(8) = g (O = [ (fH? (re?®)(1 —r)dr, 0<6<2m. (7)
It is not surprising to see the absence of the square root in the definition of g, in (7) when
we compare it to that of g- function in (5), because there is a known parallelism (see [89])

between H? and H} .
Theorem (2.1.2)[80]: If 1 < p < oo, then the following are equivalent.
() f €H
(i) g0 (f) € LP(T):
In fact, IA(Ol, ~ lgo(PllL» provided f(0) = 0.
Proof. By (6) and (7), there is nothing to prove when p = 1. We assume 1 < p <
oo, and let L + 1 1.

p q
(i) = (ii) We begin with the identity

dxdy.

2T

do
”gO'”Lp = Sup_[ 90(9) h(@) %

0
where the supremum is taken with respect to all nonnegative trigonometric poly-nomials h

with ||h|l ¢ < 1.. Since (f*)2%is subharmonic, we have
2T
. .ado
(FH2%(r2e'?) < j P(r,6 —t) (f#)z(relg)%.O <r<1l. (8)
0

where P (r, 8)is the Poisson kernel:

B 1—1r2
P(r,6) = 1 — 2rcos@ + r2’
Let u be the Poisson integral of h. Then
2T 2 1
j 9.(8) h(8)do = f f (FH2(re'®) h(B)(1 - r)drdd
0 0 0
2t 1
- f f (FH2(r2e'®) h(9)(1 — r2)2rdrdo
0 0
<2 || M@u@ - 1adxdy 9)
D
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1
< 4ffD (FH2%(2) u(z)logmdxdy

where we changed the order of integration and used (8) in the first inequality.

10 .0 = 1(d .0 . :
If we denote a_z(a— a)anda—z(a—La),z—x+ly, , then it follows

from elementary calculation and (3) that

4(fH%u = AQ(HW) — 4 (0A(fau + IA(f)auw),
So that by (9) we have

2m

f 95(6) h(6)d6
0

Il A(A(f)u)(z>wgidxdy| (10)
D

|z|
_ 1
+ 4UD |0A(f)ou + A(f)ou| (z)logH

Now, using Green's Theorem (as in (6) with p = 1) with limiting process and Hdélder's
inequality, we obtain

<

dxdy = (I) + (II):

2T
() = [tim [ GO (pei®)do - 2nG(FHI©) (11)
0

< 2w ||[A(O]pllully < 2rl|AO -
On the other hand, if we let ¢ be a holomorphic function in D whose real part is u, it then
follows from direct differentiation that

10A(F)| = [0A(H)| = IfI f*

and
_ 1
|ou| = |ou| = §|¢'|
Hence
1
! # _
(D = 4[| 10 @IF@IF@log 7 dxdy
2w 1
< 4[ f|¢’(rei9)| |f (ret®)|f* (re’®)(1 — r)drdo.
0 0

since |f(re®)| < VA(F)(re®) < M2(f,6),, we have, by the Schwarz inequality,

2T

1
un < 4[ M2 (f,0)V 9, (0)g,(6)d0). (12)

0
where g4 (8) is Paley g-function of ¢ . Applying Hélder's inequality with indices 2p, 2p, g
to the right side of (12) and using maximal Theorem (2.1.1), we arrive at

1 1
(D < C IANNZ gs(OIZ gl
From the theory of g-function, we know ||g¢||Lq < Cqll9ll4 and it follows from the theorem

of M. Riesz ([91]) that [[¢]l; < Cq4llullg < Cq. Thus
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(D) < CallANN2 g5 (OIZ (13)

Hence, combining estimates (10), (11), and (13), we have

f 9o (BYR(63d6 < (1) + (D) < 22lAD) lp+ColIADIY 9o (DI
for all posmve trigonometric polynomials h with ||h||q <1. Therefore we obtain

g (Olle < NAE N +Cp A2 Ilga(f)lle, f €Hy (14)
Now we could from (14) that

g (Ollr < ClIAD . (15)

In fact, if f = 0, then there is nothing to prove; otherwise, setting
1

P 2
X() = X(F,pr) = <—”i|q;((]]: )>||||L > O<r<d,
rp

with f,. the place of f becomes

X2(r) <1+ CX(r)
and this means, by comparing the order of X(r), that X(r), 0 < r < 1, does not exceed the
larger root of the equation X* = 1 + C,X: This proves (15) with f,.,0 <r < 1, in place of
f, and so (15) follows by the monotonicity of both sides.
(it) = (i) It follows from (6) that

2m

o [ |
IAGIIE = 2P ) ~ &, [ 5 [ (7472 2G9(pe®)1og - pdp
0

0

3 do
<G, [ MIG0) 0, (NO) 5

0
Holder's inequality and the maximal theorem show the last quantity to be bounded

Co (O IADIE Ml go (Ol e,

so that we have

IAUIIE = 2(HP0) < C(ONAENE  lge (P, (16)
If g, = 0, there remains nothing to prove. Otherwise, under the assumption 0 < ||g,|l» <
oo, by considering the order of
Y(r) =Y (fpr) = 1A/ N1gsFllr )5 0 < 7 < 1
we conclude that Y (r); 0 <r < 1, does not exceed the largest root of the equation

GO
gD,

b p-1

and from this follows
12O, = () lgs (Dl e.
Here, C,,(f) denotes a constant depending on p and f.
The last assertion of Theorem (2.1.2) follows from (15) and (16).
We prove the main theorem, Theorem (2.1.1). By the aid of Theorem (2.1.2), we show
the following.
Theorem (2.1.3)[80]: If 1 < p < oo, then the following are equivalent.
® g, (f) € LP(T).
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(i)  Cr takes Blochs to H?P.
Proof. (i) = (ii) Let h € B. Then

() [ 10 Y1 < IRl S, a7
Hence
2T 1 Pda
| gorl 2 = f f o ' (re®) P~ aar | &
0 0
2T p
do
< Il j j (P2 (rei®)1 —m)r | o
= P Nga I, (18)

Therefore |[h o fll,, < o if g,(f) € LP(T).
(if) = (i) using g-function, (ii) says that
21 1 p

f f(h o f)?(re®®)(1 —r)dr | do < ifh € B. (19)
0
On the other hand, W. Ramey and D. Ullrich ([87], Proposition 5.4) constructed two Bloch
functions h;,j = 1,2, such that
1 — 1z (h @] + [ = 1; z€ D. (20)

From (20) it follows that ((|h} o f] + [hy o fI) = (1 —|f]|*)7?, so that
b 1 p

1

j (hye £ 21— )dr | + j ((hao £)'12 (1 — P)dr
0 ) 0 ,
> 272 j FIPARL o fl + [hy o FD2(L = Pdr

p

2
= J TG | = 2 ey

Now, integrating (21) with respect to df and applying (19) with h;,j = 1,2 in place of h,
we obtain

195 Iy < Cp(llhy o fllzp + Nz fllzp)
This completes the proof

H® denotes, as usual, the space of bounded holomorphic functions on D. A well-
known theorem of deLeeuw and Rudin ([83], Theorem 7.9) says that
21

1
| toa1=7omyz 40 ==
0

is necessary and sufficient for a holomorphic f with ||f|l. = sup,eplf(z)| = 1 to be an
extreme point of the closed unit ball of H*.The following is a direct corollary of Theorem
1.

Corollary (2.1.4)[80]: Let f € H”; ||fllo = 1. Then the following are equivalent.
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(i) f is an extreme point of the closed unit ball of H*.
(ii) h o f & H? for some h € B.
Section (2.2): Bloch Spaces and Symmetric Measures
Let H>*denote the algebra of bounded analytic functions in the unit disc D of the
complex plane C. The well-known Schwarz-Pick theorem asserts that if f € H* with

Iflle = sup{lf(2)|:z€eD}< 1
Then f decreases hyperbolic distances; that is,

f(2) - f(a)
1-fl@f@|~

Forall z,a € D or, infinitesimally,

A=z DI <1-If@I?* forzeD
A function I € H® is called inner if it has radial limits of modulus 1 at almost every point
of the unit circle T. If E c T then |E| denotes its normalized Lebesgue measure. We
introduce several measures on T, but the expression "almost every' always refers to
Lebesgue measure. We assume a knowledge of inner function, such as is to be found in [84].
In particular, we may write | as I=BS

z—a|
1—az

Zy ( Zn— Z
o= [T 6252)
1 |zn | \1 =2, z
n=
Is the Blaschke product associated with the zero set {z,} of I, and

S[ul() = exp j = du®)

Is the singular inner factor associated with the posmve singular measure pu.
The first result is the construction of an inner function | which, in some sense, decreases
hyperbolic distances as much as desired as |z| — 1.
Theorem (2.2.1)[92]: Let ¢:(0,1] — (0, )be a continuous function with
ltl_r)I‘Ol ¢(t) = 0.
Then there exists an inner function | such that
( (- IZIZ)II’(Z)|>

lim

lzI-1 ¢ (1 — [1(2)]?)
We apply this theorem to prove some results on composition operators, Zygmund functions
and the existence of certain singular measures.

Recall that a function, analytic in I, is called a Bloch function if the quantity
Ifllg = sup{(1—|z|*) |f'(2)|:z € D}

is finite. The Banach space of all such functions is the Bloch space, denoted by B with
£ (0)] + |Ifls asnorm. The Little Bloch space B, is the subspace of B consisting of those
f € B for which

Jim (1= 1z)If )] = 0.
The Zygmund class A* = A*(T) is the space of continuous functions F on T for which
sup{|F (e!®*M) + F(e!®=M) — 2F(e'?)|:e® € T} < K|h|
for some constant K. When the quantity above is o(|h|) as h — 0 we say that F is in the

small Zygmund class A*(T). Roughly speaking, Zygmund functions are the primitives of
functions in the Bloch space, namely an analytic function f is in B if and only if
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F(z) = ff(t) dt.

0
belongs to A*(T) for |z| = 1.. Analogous relations hold between B, and A* (see [108]).
Some consequences of Theorem (2.2.1) are as follows. Given a positive continuous
function w: [0,1) — (0. +) with

li = :
lim w(t) = +o

let H(w) denote the Banach space of functions f , analytic in D such that
Ifllw = sup{lf @)|w(|z|)"1:z € D} < oo.

Corollary (2.2.2)[92]: Let w be as above and & > 0 be given. Then there exists a non-
constant inner function | such that the composition operator C (1), defined as

CIDf) =fel
maps H(w) into B,. Moreover C(I) is compact with ||C(D]| < &.

The argument leading from Theorem (2.2.1) to this corollary is very flexible and may
be applied to obtain other results of a similar type. One such result is the following.
Corollary (2.2.3)[92]: Given any sequence {f, } of analytic function in D , there exists an
inner function | such that f,, o I € B, for n = 1,2,3, ...

Another application of Theorem (2.2.1) is as follows.
Corollary (2.2.4)[92]: Let I be a non-constant inner function satisfying

(. (1—|z|2>|1'(z>|>=0

|z1|leni— (1 —|1(2)|?)?

(That is, as the Theorem (2.2.1) with ¢(¢t) = t2). Let J be a measurable subset of T and
set
E=1())
Then the function
F(x) = f;c)(E(eit)dt -
Belong to  A*(R)
Loewner's lemma asserts, with the above notation, that |E| = |J|whenever I(0) = 0

and so, for any inner function

LO<S|E|<1lif0<]|]| <1.
the conclusion of Corollary (2.2.4) was considered in [103] where it was shown that if

F € 2*(R) then|E| =0 or |E| = 1 or dim(0E) = 1.
Thus, if | is as in Corollary (2.2.4), the boundary of the pre-image by I of any Borel set of
positive measure has Hausdorff dimension 1. The inner function | has very wild behavior.
The proof of Theorem (2.2.1) follows from the following two theorems.
Recall that a Blaschke product is called interpolating if

inf,(1 —|z,|®)|B'(z,)| >0,
where {z,} is the zero sequence of B. Such a function cannot belong to B, except when it
has a finite number of zeros.

The function B in Theorem (2.2.10) will in fact be a covering map. Theorem (2.2.10)
permits us to establish Corollaries (2.2.2) and (2.2.3) with Byreplaced by B, but with the
extra conclusion that the corresponding inner function is an interpolating Blaschke product.

Functions in Bymap hyperbolic discs of a fixed diameter into euclidean discs of
diameter tending to O as one approaches T = dID. The second step of our construction
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concerns inner functions which map hyperbolic discs of a fixed diameter into hyperbolic
discs of diameter tending to O as one approaches T.
Theorem (2.2.5)[92]: There exist a non- constant inner function | for which
=1z @)l

B TP (22)
Such an inner function | cannot extend analytically to any point of T . Indeed, if has an
angular derivative at the point & € T , that is, if the quotient

1(z) —1($)

z—¢§

Has a limit when 2z approaches ¢ non-tangentially, then the Julia-Caratheodory lemma
asserts that

(= 1zI)|I'(2)]

e T
Although the inner functions of Theorem (2.2.5) are in B, , they form a strict subclass of
B,. Because there exist inner functions in B, which can be extended analytically to almost
every point of T (see [84]). Inner functions in B, have been considered by Bishop in [95]
and we use some of his ideas.
It is worth mentioning also that the condition (22) in Theorem (2.2.5) has appeared in [19]
In connection with composition operator from B, into itself, Indeed Theorem (2.2.5) in
answer a question in [19] as whether there is a function ¢ in B, with C(¢) compact as
an operator from B, to B, such that ¢ (D) n T is infinite. We may take ¢(z) to be the inner
function 1(z) of Theorem (2.2.5) for which ¢(D) = D. Also, the completely opposite
situation has been considered in [101].
Now suppose that f € H* ,with ||f|lo <1.For a« € T the functions
a+ f(z)
a—f(2)
have positive real part. Hence there exist positive measures g, on T such that the
Herglotz representation

H,(z) = (23)

ReH,(z) = jP(Z,f)Ua(f)

T
holds for all z € D. Here,

= =2
P(z,§) = (1—|z19)[1 -z

denotes the Poisson kernel. It is well known (and easy to prove) that the measure o, is

singular for some a € T if and only if f is inner. Moreover if f and H,, are related by (23)

then

1 - lzPIf @]

lim = 0.

zZ-1m 1= |f(2)?
(1= 1z1)|H, ()]
lim =0
lz|>1 ReH,(z)
So to prove Theorem (2.2.5) it is sufficient to construct a singular measure ¢ such that its

Herglotz transform H satisfies (24).
To avoid endless repetition, J and J’ will henceforth, denote adjacent arcs of T with

If and only if

(24)
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Ji=11.
We have the following.
Theorem (2.2.6)[92]: Let H be analytic in D with ReH(z) > 0 for z € D. Let o be the

corresponding measure on T for which

ReH(z) = f P(z,&)da(§)
T

The following statements are equivalent:
-lzP®)|H' @) _

(@) T en@) 0
. o) _
(b) S0 lim U 1

Positive measures satisfying (b) are called symmetric (see [100]). Thus, to prove Theorem
(2.2.5) it is sufficient to exhibit a positive singular symmetric measure. In fact, such
measures were constructed by L. Carleson in [97] in connection with quasiconformal
mappings. It is also possible to prove Theorem (2.2.5) using a construction of C. Bishop and
the following result.
Here Q denotes the Carleson square
Q= {ziz=re"0¢,1 -] <l|z| < 1}.

Corresponding to an interval J c T.|Q| = |J| and Q" and is the corresponding Carleson
square for J'.

As mentioned above, L, Carleson constructed singular symmetric measures. Indeed, let
w(t) be a continuous incresing function on [0, 1], with w(0) = 0, such that t=/2w(¢t) is
decreasing. Let o be a positive measure on T such that

lo() —aUDI <wl/Da (D).

For any arc J of the unit circle. L. Carleson showed that that the condition

2
jw (t)dt<oo.
t

0

implies that o is absolutely continuous and in fact, its derivative is in L2. Conversely, if

j w?(t) gt = o

t
0

there exists a positive singular measure on T such that
lo() — (D <wliDa().
for any arc J of the unit circle.
A similar situation occurs when looking for the best decay one can have in Schwarz’s
Lemma. Given a positive increasing function w on(0,1] , consider

W(t) =t [ 22 ds + tw(1) fort € (0,1] (25)
Observe that w(t) = w(t) for 0 <t <1, and w(t) < c(e)w(t) if ‘:f_tzis decreasing for

some € > 0.
Theorem (2.2.7)[92]: Let w be a positive continuous function on (0, 1].
a)  Assume that
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J W' (®) dt < oo,

t
0

Then there is no non-constant inner function I such that
(1- IZIZ)& <w(1l—|z|).
1-1(2)]*~
Forall z € D.
(b) Let w be increasing. Assume that there exist constants k and & such that

w(t) <kw(t) if 0 <t <.

And
2
w4(t
f (t) d = oo
t
0
Then there exists a non-constant inner function such that
2y '@ _
(1 — |z )1_“(2)|2 < Cw(l — |z|). For z € D.

Where C is an absolute constant.

For instance the function w(t) = |logt|™% satisfies (a)when a > % and (b) when a <
1
2
The construction of the inner function in part (b) of Theorem (2.2.7) uses symmetric
singular measures. Actually, we need a refinement of the Carleson result, where we assume
the integral condition and that w(t)/tdecreases. This is done by means of Riesz products.
Using Theorem (2.2.7), one can prove versions of Corollaries (2.2.2) and (2.2.3) with 3B,
replaced by the space B,(w) of holomorphic functions f in the unit disc such that
Al @L
w(l —|z|?) i
where w fulfills the conditions in part (b) of Theorem (2.2.7).
Corresponding to the Zygmund class and the Bloch space, there are the Zygmund
measures, that is, positive measures u in T for which
lu() —pGO=00/1) asl|j| - 0.
This condition is equivalent to the fact that the primitive of u is in the Zygmund class.
Piranian [107] and Kahane [104] constructed finite positive singular measures satisfying
lu() —ugdl =o(lJD) aslj| - 0.
We call such measures Kahane measures. Using Theorem (2.2.1) or Theorem (2.2.7) we
will construct measures which are simultaneously symmetric and Kahane. In fact, as is to
be expected from [97] and [104], one is able to replace the o (1) condition by a condition of
the form O(w(|/])) where w fulfills the conditions in part (b) of Theorem (2.2.7). The
point is that we do this in a new and uniform way. In private communications, A. Canton
[96] and F. Nazarov showed us other ways of producing Kahane symmetric measures.
Also, one can establish the following sharp version of Corollary (2.2.4).
The hyperbolic metric in D is the Riemannian metric Ap(z)|dz|, where Ap(z) =
(1—1z|®) .LetQ be ahyperbolic domain, that is, a domain in the complex plane whose
complement has at least two points. Let m: D — Q be a universal covering map. Then Ap
projects to the Poincaré metric Ap(z)|dz| of Q, where

A (n(@). I’ (2)| = Ap(2)
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Schwarz’s lemma asserts that holomorphic mapping f from D into Q decrease hyperbolic
distances, or infinitesimally,
(1 = 12" (2) A (f(2))
Forall zeD.
A holomorphic function from the unit disc into is called inner (into) if

|{ei9: lim f(e'?) exists and belongs to Q = 0}|

r-1

If r is a holomorphic covering map from D into £, then 7 is inner; and as a matter of fact,
If fis any holomorphic function from D into Q which factorizes f = mo b, where b: D -, D
then fis inner (into Q) if and only if b is inner into D (see [99]).

The theorems stated have counterparts in this more general setting. For instance,
Theorem (2.2.7) shows that if Q is a hyperbolic domain and a positive weight satisfies

2
fw (t)dt<00.
t

0

then there is no non-constant inner function I into Q such that
(1 = 12" @)|2e(I(2) < w(l - |2]).
for all z € D. On the other hand, if w fulfills the conditions in part (b) of Theorem (2.2.7),
there exists a non-constant inner function I into Q such that
1- |z|2)|I’(z)|/19(I(Z)) <w(l-—|z]). forz e D]

We prove Theorem (2.2.10) and apply it to establish some results on composition
operators. We contain two proofs of Theorem (2.2.5), using Theorems (2.2.6) and (2.2.28)
respectively. Then we use Theorem (2.2.5) to establish Theorem (2.2.1) and the corollaries
mentioned in this introduction, together with other related results. The proof of Theorem
(2.2.6) and consists of a discretization procedure, which can be adapted to prove Theorem
(2.2.28). As mentioned, this uses some of the ideas of [95]. We prove Theorem (2.2.7). This
uses the existence of singular symmetric measures proved by L. Carleson and a refinement
of Theorem (2.2.6), whose proof is different from the one. Also, several ways of
constructing singular measures which are both symmetric and Kahane are mentioned. We
construct singular symmetric measures using Riesz products.

We learned that Wayne Smith had previously obtained Theorem (2.2.7), and hence
Theorem (2.2.5), by different methods [109].

The proof of Theorem (2.2.10) is based on an estimate of the density of the hyperbolic
metric on plane domains, due to Beardon and Pommerenke [94]. We require only a crude
estimate of this type, for which we present a proof.

Lemma (2.2.8)[92]: Let Q be a domain in D and let f be an analytic function in D with
f(D) c Q. Then, forall z € D,

e
— 1712 ' < i
(1= 1zI)If" (@] < 6 dist(f(2),090) logdist(f(z)’am-
Proof. Let a € dQ be such that dist (f(z),9Q) = |f(z) —a |, and assume first that

1
) —al == 1f@DP).

Then

(1~ 1ZP)If @) < (A= IF @) < HF @) - al = 61/ () — allog s —
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If, on the other hand.

1
f@ —al <A~ 1f@IP). (26)
Then a € D, thatis a € T. Since
1
$(z) = exp (_ 1 :)

D

IS a universal covering map of the punctured unit disc o

there exists a holomorphic

mapping ¢ from D into D satisfying
f-a _
1—af

S o ¢.
A simple calculation shows that
(1 = [w)IS'W)| = 2|S(w)|log|S(w)|~™
for w € D and hence

(1—1zI*) (1 = lal?)

'@ < Q- 1¢@ID)IS"¢(2)]

11— af(2)|?
_ L@ e |f@D=al”
~“li-ar@| t 1-ar@
Thus
/ |1 - af(Z)l e
1 —1zI)If' @] < 21_—|a|2 If (2) — al loglf(z)——al'

and the result follows from (26).
We also use the following elementary result.
Lemma (2.2.9)[92]: Let h:(0,1] - (0,1] be a continuous function. Then there exists a
countable set A € D/{0} whose cluster set is contained in T such that, for all z € D,
dist(z, AUT) < h(1 — |z]).
Theorem (2.2.10)[92]: Let ¢:(0,1] — (0, ) be a continuous function ¢(0*) =0.
Then there exists an interpolating Blaschke product B such that
(1—1z1?)IB"(2)| < ¢(1 - |B(2)])?
For all z € D.
Proof. Given ¢ (t) consider a continuous function h: (0,1] — (0,1] satisfying

6h(t)log% < ().

for all t € (0,1] For the set A of Lemma (2.2.9), let B be a holomorphic universal covering

of D onto Q = ?. . Then Lemmas (2.2.8) and (2.2.9) show that
(1-1zI)IB' @) < ¢(1 - [B(2)|?)

as required and it remains to show that B is an interpolating Blaschke product. Since B €
H®, its radial limit B(¢) for almost every ¢ € T Moreover, since B is a covering B(¢) €
AUT and hence in fact B(¢) € T for almost every & € T since A is countable. Thus B is
inner.

If B had a singular inner factor then there would be at least one value of ¢ € T,
&y say,with

lim B (r&;) = 0.
r—1"

We have arranged that 0 ¢ A and so this cannot happen. Thus B is a Blaschke product.
To prove that it is interpolating it is sufficient to observe that the quantity
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(1 — |z|®)|B’(2)| depends only on B(z).Indeed, if B(a) = B(b) , then there exists an
automorphism ¢ of D such that ¢ (a) = band B o ¢ = B. Hence

(1= 1p1)IB' )] = A = lal®]¢" (@IIB' (D) = (1 — |al>)|B"(@)].

infy{|1 = |2,|*)|B'(z,)|: B'(z,) = 0} = 6 > 0.

for some suitable § as required.

Now suppose that B € H*with k||B|| < 1 It was shown in [19] that the composition
operator C(B)is compact in B if and only if

(1 —12|*)|B'(2)| = o(1)(1 - |B(2)|*)as|B(2)| - 1.

Thus Theorem (2.2.10) has the following corollary.
Corollary (2.2.11)[92]: There exists an interpolating Blaschke product B such that the
composition operator

then

C(B):B—->B, C(B)(f)=f°B.
IS compact.
Next we consider the space H (w)of analytic functions in the unit disc such that the norm

||f||w=sup{ Szl :ZEID}<oo_

|
w(lz|)

Here w denotes a positive continuous function on [0, 1) with tlir?_ w(t) = oo.

Corollary (2.2.12)[92]: For any function w as above and € > 0, there exists an interpolating
Blaschke product B such that the composition operator C(B) maps H(w) into the Bloch
space B and

ICB)(Nlls < ellfllw
Proof. Replacing w by e 1w, one can assume that e = 1, if f € H,, and ||f]l,, = 1, then,
from Cauchy's inequality,

1
(1 - 1zI)If' @] < 4w (IZI +5(1- |Z|)>-

If we choose ¢ (t) so that

1
w<t+§(1—t)>qb(1—t2) < 1.

for 0 <t <1 then ¢(t) » as t —» 0. By Theorem (2.2.10), there exists an interpolating
Blaschke product B such that
(1 - 1z[)IB"(2)| < ¢(1 = [B(2)|*)
for z € D. Hence for all z € D,
(1—-1zI)(feB)'(2) < 1.

Applying [19] or Corollary (2.2.11), one can arrange that the composition operator is

compact.
C(B):H(w) —» 8.

Corollary (2.2.13)[92]: Given a sequence {f,}of functions analytic in D, there exists an
interpolating Blaschke product B such that f,, e B € 8B forn = 1,2,3, ...
Proof. It suffices to observe that there is a function w(r) such that f,, € H(w)for n =
1,2,3, ... instance, we may take

=) swllh@k=r)

We consider the case (t) = ct? . for ¢ > 0, in Theorem (2.2.10); that is, let | be an
inner function satisfying
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1= 1zI(I'(@) < c(1 = [1(2)]?)? (27)
For any a € T consider the holomorphic function
IF,lls < 8c.
Thus the measures g, satisfy the Zygmund condition uniformly in a. In other words, there
Is a constant C; such that
|O-a(i) - O-a(i)l < Cll]l

foralla e TandallJ, J'..

Denote by A(I) the o-algebra generated by the preimages under | of the Lebesgue
measurable sets in T and the sets of measure 0.
Theorem (2.2.14)[92]: Let | be an inner function satisfying (27), and let h € L'(T)be
measurable with respect to the g-algebra A (I) Then the Cauchy transform of h, that is

F(z) = jh(f)flf forz € D.

1-¢&z
T
Now there exists g € L*(T) such that h = g o I and it suffices to show that
2T .
g?)
—_— € B.
_[ I —ef(2) do €
0
We observe that the function
2m (6
)
f(2) =j om0, dé.

0
belongs to H(w)whereb w(t) = (1 —t)~1 . If | is an inner function satisfying (27) then
the proof of Corollary (2.2.12) shows that f o I € B as required.
The following corollary is now immediate.
Corollary (2.2.15)[92]: Under the assumptions of Theorem (2.2.14), the function
X

F(x) = Jh(eit)dt, with h € L.
0
belongs to the Zygmund class A*(R).

a+ f(z)
T l P(2,£)d 0,(6). (28)
Where a € T, f € H*,With ||f|l < 1 and 0,(&) is thr associated positive probability
measure on T. The function is inner if and only if the measure o, is singular for some a €
T. In particular, if o, is singular for some a € T then g, is singular for all « € T. Also, the
support of g, is a finite set if and only if f is a finite Blaschke product. So this condition is
also independent of « € T. However, the fact that o, satisfies some property usually does
not imply that g satisfies the same property if B # a. See [93], where some examples are
considered.

The fact that f satisfies the conclusion of Theorem (2.2.5) can be rephrased in terms
of o,, witha € T.
Proposition (2.2.16)[92]: Suppose that with f € H® with ||f||. < 1.. The following
assertions are equivalent:

a-1zPf' @]
@ lm = rar = ©

ReH,(z) = Re
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dog($)
a(1) [, (1;5)2 as |z| - 1

(b)fT( 2%

(1-1z1*)|He ()| _
© M Rem =
Where f,H, and g, are related by (28).
Proof. Fix a e T.If H, = (a+ f)(a—f)"1 then f = a(H, —1)(H, + 1) *and

4Re H, ) 2aH,,
l—f=7—0 =7
|1+ H,| (H,+ 1)
Thus
H 2f

ReH, 1-—|f|?
Thus condition (a) may be written as

(1 —1z*)|Hy (2)]

m
|z|-1 ReH,(z)
And since
£ d
) =2 [ 2208
. (1 — fz)
And

(1 —1z|*)doa(§)

ReH,(z) = Tj |1 _ f_Z|2
The result follows.

The proof of Theorem (2.2.5) now follows from Proposition (2.2.16), Theorem (2.2.6)
and the existence of singular symmetric measures. We may also prove Theorem (2.2.5) from
the following proposition.

Proposition (2.2.17)[92]: Let o be a positive measure on T and set

S[o1(2) = exp j— do(¢) |

there o is symmetric if and only if

(1 —1z|*)IS[a](2)]

A S @ ogGlol @D
Proof. If
H(z) = f SHZ e zED.
Then
A~ 1zPIsl] (= ZAIH' @)
STo1 @) 10gG o] @D ReH (2)

and the result follows from Theorem (2.2.6).

Note that whenever o is a singular symmetric measure, then Theorem (2.2.5) holds for
= Slo].

There is yet another way of proving Theorem (2.2.5). In [95], Bishop has constructed a
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Blaschke product in B,. In fact, if

p= Y A-1zs,
z,B(z)=0
Then his construction satisfies

1@

Iglr—rgou(Q’) 1 (29)
where, as before, Q and Q' are contiguous Carleson squares of the same size. Applying
Theorem (2.2.28) one can easily show that (29) implies that

-1z _
lzl-1 1 — |B(Z)|2

Observe also that, by Proposition (2.2.16) and Theorem (2.2.6), the corresponding singular
measures o,, with « € Twill be symmetric.

The next corollary follows from Theorem (2.2.5) and Theorem (2.2.1) in [19].
Corollary (2.2.18)[92]: There exists an inner function I such that the composition operator
C(I) maps B into Bycompactly.

We set

1(2) = B(I, (2)).
where B satisfies the hypotheses of Theorem (2.2.10) and I, the hypotheses of Theorem
(2.2.5). Then
A =1z (1= z|)IB" Uy ()]l (2)] - |z|*)115(2)]
¢(1 - |1(2)]?) ¢(1—1BUo (2))I1?) — 1-|l(2I?
Corollaries (2.2.2) and (2.2.3) then follow also from Corollaries (2.2.12) and (2.2.13) by
composing with the same inner function I,. Observe that in any of these results the inner
function whose existence is asserted can be chosen to be singular or a Blaschke product.
Moreover Corollary (2.2.12) and the Remark after Corollary (2.2.13) apply with B replaced
by B,.
Let D be the set of inner functions I for which
LA lZAIr@l
lzl-1— 1 — |I(Z)|2
We note that D is an ideal in the space of inner functions with respect to composition from
the left. Infact, if | € D and ¢ € H™ with ||¢||, < 1.then it follows from Schwarz's lemma
that

-0 as|z| - 1.

A -1z’ U@ _ (A~ 1z ()]
1-|o(I))? = 1-H@P

This shows again that the inner function in Theorem (2.2.5) can be taken to be a singular
inner function as well as a Blaschke product.

The next result asserts that the only primary ideals (with respect to left composition) of
inner functions contained in B, are the ones given by functions in D.
Proposition (2.2.19)[92]: Let | be an inner function such that ¢ oI € B, for any inner
function ¢. Then I € D.
Proof. Itis obvious that I € B,. If I € D then there exists {z,,} c Dsuch that

111i_r>§o] (z,) = 1.

and
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(1= lzaI' )]

1- ”(Zn)lz N

forn = 1,2,3, .... Passing to a subsequence, if necessary, we may assume that {I(z,)} forms

an interpolating sequence for H™. If ¢ is the corresponding interpolating Blaschke product,
then for n = 1,2,3, .... one has

(1= 1zID)|¢'(1(z)| = C.

, , (1 — |z, |21 (2,,)]
(1 =)' EDI|$' (1(z)]| = € o 2 (6.
1- |I(Zn)|
contradicting the fact that ¢ oI € B,,.
It is worth mentioning that there are no ideals with respect to composition from the right
contained in B,,. Indeed if one consider the singular inner function
1+2z
6 = e[ (75|
Then o ¢ does not belong to B, for any non-constant analytic 1 quantity (1 —
1z (@ (@)1 (2)].
Cannot tend to zero, no matter what I is.
However, there do exist non-trivial right ideals. For instance, if a > 0 then the set
(1 - 1z|*)If' (2]
D, = {f:f inner = 0(1)as |z| -
i {f 4 (1-1f @)
Is a bilateral ideals. It is interesting to observe that if f € D,and g€ D,thenfog €
2)a+,6'.
Let us next consider ¢(t) = t2 in Theorem (2.2.1) so that | is an inner function
satisfying

6> 0.

And

=129 )|
1o TP R (30)
Theorem (2.2.20)[92]: Let I be an inner function satisfying (30) and let o, for « € T , be
the corresponding singular measures defined by (28). Then o, are (uniformly in a € T )
Kahan measures, that is

1 ,
|}l|r—r>lo|]_|(0“(,) - Ua(] )) = 0.
Uniformly for a € T.
Proof. It is well known that the Herglotz integral of a positive measure is in 8B if and only
if the measure is Zygmund, and it is in B, if and only if the measure is in the small Zygmund
class (see [108]). So it is sufficient to observe that the functions (a + 1)(a — 1) tare in B,

and

- 0asr—-1.

a+ 1\
Supasup1>|2|21—r(1 - |Z|2) (

—) @
Observe that Proposition (2.2.16) and Theorem (2.2.6) also show that o, are (uniformly in
a € T) symmetric measures.

The following theorem, is established in a similar manner to Theorem (2.2.14) and
Corollary (2.2.15). Recall that given an inner function I, A(I) denotes the o-algebra
generated by the preimages under | of the Lebesgue measurable sets in T and the sets of
measure 0.

Theorem (2.2.21)[92]: Let | be an inner function satisfying (30) and let f € L(T)
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measurable with respect to the ¢ -algebra A(I). Then
(@) the function

Belong to B, and
(b) the function

F(x) = | f(e")dt.
|

Belong to A*T(R).
If one chooses f as the characteristic function of I71(J), one obtains Corollary (2.2.4).
To prove Theorem (2.2.6) we restate condition (a) as

d
fP(Z,f)T(Z(?) =0(1)jP(Z,€)dcr(f) as |z| » 17 (31)
Where i '
_§-z
W28) = 7= em.

It is readily shown that this is equivalent to (a).

Given a point z = re!® € D , denote by J(z) the arc of T with center e!® and
(normalized) length 1-r. Also, givenanarc /] < Tand M > 0 let MJ be the arc of the same
centre and with |[MJ| = M]|J|
Part I (b) = (a). Assume that (b) holds. We first prove the following.

Lemma (2.2.22)[92]: Given € > Othere exist N > 0and § > O suchthatif 1—-6 <
|z| < 1, then

P, §)d0) <& [ PG §)do(®)
T/nj(Z) T
The lemma states, roughly speaking, that contributions to the Poisson integral from far away
do not matter.
Proof. Given ¢ > 0,, choose 6 so that if J is an arc of T with |[J]| < § then

lo() —o(UN| <ea())
loGUJ) =Dl < ea ()

a2k < (2 + &)ka()).
We break the integral on the left into dyadic pieces. Let M denote the integer part of
log,(8/(1 — |z|)), so that 2™ (1 — |z|)~6. Then, using crude estimates we obtain

o (24@) 7 (24()
21— 12 " Ly 2P0 - 122 |

And hence

Hence, if 2%|J| < &, we have

P(z,8)do(§) < C
T/nj(2) k—log, N
Where C is an absolute constant.
The first sum is bounded by
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U(J(Z)) ¢ 2 4 e\ K
/()| ( 4 ) <€fP(z,€)da(€).

k=log,N T
If N is sufficiently large.
Observe now that, for any € > 0.
o) _ ( 4 ).U(Zf)
12— \2+¢/ |2]]?
If |J| is sufficiently small. Iterating this inequality, we obtain
a(]) C( 4 \"

> — 00 asn — oo,
|J]? 2+£)

Thus
o) _

lim = 32

DN (52)
the second sum above can be estimated by

20(T) (1 )
2741 — |z oz L

And from (32) if (1 — |z|) is sufficiently small, this does not exceed

a(]( ))
"1

<& [ PGS,
T
As required.
Now let | > 0 be a small number to be fixed later and divide NJ(z) into N /I arcs each

of length 1(1 — |z|). Call these arcs J, and let the center of each arc be &, = e'®. Then

(f)_ o(Jx) iz S %k
]j et Moty =tk )]f e

< -1l )f'f S = aoe

s4ljp(z,g)da(§)..

Tk
Since [ — &l <1(1—|zDand [&&, — z*|~(& — z). now

N/l
J 2 (sc) z P(z, &) ((/g))
Nj(z) “

< 4l f P(z,8)do(?).

T
The estimate (31) follows on taking such that provided that we can show that
N/

IRLLE |

f P(z,&)do(§). (33)
T
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Forany z € D such that |z| is close enough to 1.
The number of arcs J, is large but independent of z. Hence if |z| is close enough to 1, we
have

€
|O-(]k) - O-(]i)l < Ea(lk)t for 1 < k,] < N/l

We write

N N

I

Zmz 07 = )P D (mZ TE s,
say. =
Now

IT,| <e o) CEjP(Z,f)da(f),
/11 T

where C is an absolute constant, while

o)\ 1 kel
T |]1lz(€ 2 U

since [Ji| = |Ji| for1 <k < N/L. The sum above Is a Riemann sum of the integral

f 1—|z|? at,
NJ(2) (& - Z)Z

which an easy calculation shows to be bounded by I /N. The estimate (33) follows on taking
N large enough since

o)) _o((@)
TAIRSETIG] <ch (2:8)da ),

where C is an absolute constant.
Part Il: (a) = (b). The proof follows closely the arguments of [95]. Consider the pseudo
hyperbolic disc centred at z of radius ¢ < 1, that is,

{fw:p(w,z) < c < 1} where p(w,z) = |1 _ZW|

Integrate (a) from z to w to obtain, forall ¢ < 1,
|[Re H(w) — Re H(z)|
Su
p(w,zI;SC Re H(z)
Thus there exists a function a(r) such that
@a(r)»1 asr-1,
®) |[Re H(w) — Re H(2)|
>uP Re H(z)
Lemma (2.2.23)[92]: Suppose that (a) holds. Then, given N > 1 thereexists § = §(N) €
(0,1) suchthatif 1 — 6§ <|z| < 1,then

C
PG do©) <1 | P9 dotd),
T\NJ(2) T
where C is an absolute constant.
Proof. Let § = 6(N) be a small number, to be fxed later, with § < 1/N.Given z € D,
with 1 — || < &, consider the point

-0 as |z]| » 1.

(34)

p(w,z) < a(|z|)} -0 as |z| » 1.
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zy = (1- N1~ |z])(=/1z).
So, (zy) = NJ(z)and for & € NJ(z) we have

|€ - ZNl < COl%— - le
where C, is an absolute constant. Hence

P(zy,§) > Cy* NP(3,$)
for & & NJ(3).
Now, if § > 0 is sufficiently smalland 1 — § < |z| < 1, we have
1
Re H(z) = 5 Re H(zy)

and hence

f P(z,8)do(é) = ReH(z) = % Re H(zy) = % Cy* N j P(z,&)da(é)

T T\NJ(z)
Lemma (2.2.24)[92]: With the above notation,

o(J(3))
I/ (z)]

Proof. For a given z € D, consider the arc
L={re?:10— argzl < m(1-61-|z])}
where r = r(z)d = §(z) will be chosen later to satisfy

r- 1,§- 0,

— Re H(3)

= 0(1) Re H(z)as |z| = 1~

(1-1z)é
Given ¢ > 0, Lemma (2.2.23) shows that, forany w € L,

- 0,as |z| = 1.

Re H(w) — j P(w,)do(?)| < & Re H(z)

J(@)
provided that (1 — r)/6(1 — |z|) is sufficiently small. Thus

Re H(3) j P(w,&€)da(§)

J(2)

sup -0 as [g]| -1

wer ReH(z)

Integrating along the arc L we obtain

|L| Re H(z) _Zi J J P(w,&)do(é)|dw|| = o(1)|L|ReH (z) as|z| — 1.
7T](Z) L
Now |J(z)|—|L] =61 —|z]) —» Oand

1
— f Pw,&)|dw| - 1as|z| - 17
2T

L

if |0 — argz| <m(1— c)(1—|z]). This shows that for any small number ¢ > 0, we
have

o(J(2)) o1,

W lel-1 ) Re Hz) =

and

o-cY@) _
J@IRe HG) =

52
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Consider the point w such that J(w) = (1 — ¢)J(z), that is,

w=1-00-¢)1-1z])/lzD.
The second inequality gives
a(J(w))

V@ =)~ J(w)||Re H(w) ~

a(](z)) < limsup|, -1 G(](Z)) <
J(z)|Re H(z) J(2)~t (2)|Re H(z)
for any small number ¢ > 0. This proves the lemma.
The proofthat (a) = (b) now follows immediately. For contiguous arcs J, " with centres

z and z’ (and, as always, the same length),
o() o) _|oW) (/") )
Ul ur /1
Lemma (2.2.24) shows that the first two terms are bounded by e(Re H(z) + Re H(3')) .
Also z and z' are within a bounded hyperbolic distance of each other and hence by (34) the
last term is also less than e(Re H(z)). Summing up, we have
a(J)

o) o)
M — T < 4eRe H(z) < SSW

lim SUpP|\w|-1

Thus,

1—c < liminf;,

— Re H(z)

+ |Re H(z) — Re H(3")| .

as required.

Theorem (2.2.25)[92]: Let {f,: z € D} be a family of positive continuous functions on T.
Assume that there exist constants C,M > 0 suchthatforall z e Dandall §;,&, € T we
have

M1 < £ (&) < M,|f,(&) — fz(&)] < 1——|Z|

Assume, further, that o is a symmetric measure on T. Then

1$1 = &2l

Lill

Proof. (This is merely sketched.) As in Lemma (2.2.22) one may replace the integrals in
(35) by integrals on Nj(z) for large N. The Riemann sum argument used to prove that
(b) ) = (a) can now be applied.

Corollary (2.2.26)[92]: Let ¢ be a symmetric measure on T and suppose that f is a
continuous function on T. Then

o lel _ st
i, e l (F ) )Pz, £)do(©) = Tf £
where, as before,
_$—3
Tz(S;) = 1 _Z_fl

Proof. Theorem (2.2.25) can be applied directly if the continuous function satisfies a
Lipschitz condition,

If (&) — f(&) < Clé, — &

on T. Moreover for f = 1 one obtains
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— 13|

lim
|z -1 0(]( ))

P(z,¢€)da(§) = 1. (36)

Consequently,

P(z,§) do(§) < oo.

1—|z|
sup
z €D O'(](Z)) J
Applying the Banach-Steinhaus theorem, we obtain the desired equality for any continuous
function f .
Corollary (2.2.27)[92]: Let o be a symmetric measure on T and f be a continuous function
on T. Then

. J (Fet)©P(3,8)da (@) |d fl
1T T PG O)do(®) j fO%

Proof. It suffices to apply (36) and Corollary (2.2.26).
Observe that by taking f(z) = z, this corollary proves (b) ) = (a) in Theorem (2.2.6).
Theorem (2.2.28)[92]: Given an inner function I, consider the positive measure in DUT,

p= Y (A-1298,+20=0;
z:1(Z)=0
where §, denotes the Dirac mass at z, the sum takes into account the multiplicity of the zeros
of I, and ¢ is the measure associated with the singular part of 1. The following assertions are
equivalent:

(-2 @) _

(a) lim

z—1" 1-— |I'(Z)|2
z:1(Z2)=0
(b)for any € > 0 the following two conditions hold:
: w@Q — 41.rQ
(1.b) }Sl_r)r(l)sup|g|<5 HM(%)'R k|. I)QI < ] 0.
. w H(2Fe/2K10) w@) 1) _
(2.6)  lim supg {Ziy 22ku(Q) 10l <3=o

Proof. This is similar to that of Theorem (2.2.6) and so is only sketched.
Partl: (b) ) = (a). Using the characterization of the inner functions in B, given by Bishop
in [95] one can easily see that I € B,. Hence in proving (a) one may assume that |I(z)| =

%. A computation with logarithmic derivatives shows that

du($)
r(z, )|

1 - 1zD|I'@| = 11(z)] f P(5,) (37)
D

while

1—|1(2)|* ~log II(z)|‘2~f P(z,&)du(é)

D
and it is these last two integrals which one has to compare.

For fixed n > 0, condition (2.b) of Theorem (2.2.28) yieldsan N > 0 such that
| Peow®<n | paow®,

D\NQ(z) D
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if |z| is sufficiently close to 1. For such a z consider the [N /5] disjoint Carleson squares,
Qi say,withk = 1; 2; ...; [N/n], of size n(1 — |z]) contained in NQ(3).

Since I € Byand |1(z)] = % the zeros of I are (hyperbolically) distant from z and we can
assume that the zeros of I in NQ (%) are contained in U, Q. Thus

u(NQ(2)) = i (U Qk>.

k
As in the previous proof, the principal idea is to discretize the integral in (37) and compare

it with an integral with respect to Lebesgue measure. If we write A ~ B to mean

A— Bl < 7 j P(z, O)du(®),

then given points &, € Q, N'T, one can shc?w, as before, that
du($) (@)  uz) 1-|z|°
2. Qf ke RO o » e D e e LY

using (1.b) of Theorem (2.2.28) in the second estimate. Finally, one only has to observe that
the last sum is a Riemann sum for the integral
1-|z|?

2 as

noGnT (& —3)
and that this is bounded by 1/N.
Part Il: (b) ) = (a). As in the proof of Theorem (2.2.6), one can show that, givenn > 0,
there exist N > 0 and d > 0 such that

P(z,©)du(®) < 7 j P(z,O)du(®) 38)

NQ(z)NT D
if 0 < 1—|z| < &.To prove (1.b) of Theorem (2.2.28), it is sufficient to show that, for
any ¢ > 0,

14(2(2))/19(z]) — log l1(z)I'|

z:|1|(z)>¢ log 11(z)|*
The estimate (39) can be proved with the same integration technique used in the
corresponding implication in Theorem (2.2.6). Finally, to prove (2.b) of Theorem (2.2.28)
we use (38) and (39) to show that

- Oas|z| -1 (39)

1(9(=)
) P(z,8)du(§) < 27 0]
D\NO(2)

if u(Q(z)) > €|Q(z)| . One now estimates the left-hand side dyadically to obtain (2.b). The
details are omitted.

The existence of the function H(z) of Theorem (2.2.6) as well as the existence of the
inner function of Theorem (2.2.6) both depend ultimately on the existence of singular
symmetric measures. In connection with the Beurling—Ahlfors extension theorem for quasi-
conformal mappings, L. Carleson has shown [97] that such measures do exist. Indeed if
w(t) is a continuous increasing function on [0, 1] with w(0) = 0, such that t=2/2 w(t) is
decreasing and such that
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2
f i t(t) dt = oo, (40)

0
then there exists a singular measure o on R such that
o(x,x + h)

sup

ver|o(x — hx)
Thus choosing, for instance, w(t) = (log(1/t))~%,witha < %,one obtains a singular

symmetric measure. The integral condition (40) is also necessary for the existence of a
singular measure satisfying (41), as was also established in [97]. Actually, if j is a measure

satisfying (41) and
w(t)
J ” dt < oo,

0
then j is absolutely continuous and its derivative is in L?

loc*
A similar situation occurs for inner functions.
Theorem (2.2.29)[92]: Let w be a positive continuous function on (0, 1). Assume that

j w'® dt < oo.

1| < w(h) for h > 0. (41)

t
0

Then, there is no non-constant inner function I such that
11" (z)]

(1- |Z|2)m <w(l-lzD),

forall z € D.
Proof. Assume that such an inner function I exists. Consider a positive singular measure o

such that
1+ 1z) . [ e+
1_—](‘3) j - dO'(Q)fOTZ € D.

H(Z) = el@ -z
Then, for all z € D we have

0

H'(z)  2I'()
H@ 1-1@)7

So
/ 2 2
(1= gy @ _w?a —lzD
|H (2)]? 1 —|z]?
Therefore log H is an analytic function whose boundary values are of vanishing mean
oscillation (see [84]). In particular, H belongs to the Hardy space HP , for any p < oo.
Since o is a singular measure, Re H(e'®) = 0 for almost every e € T, and this is a
contradiction (see [84]).
Observe that the previous argument also shows, assuming the integral condition on w, that
the only inner functions I satisfying
(1—1z12)I'(z) <w(l—|z|?) forz €D,

are the fnite Blaschke products.
The converse of Theorem (2.2.29) is the following.

We can then use the composition process. Let @ be a positive continuous function
with @(0*) = 0as in Theorem (2.2.5), and let B, be the interpolating Blaschke product of
Theorem (2.2.5).

forz €D.
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Theorem (2.2.30)[92]: With w, By, @ and I as above, set B = B, ° 1. Then
1-|z|%|B'(z
(1= |sl'|B"C)| =o (w(1 —|z]?) as|z| - 1~

o(1—-|B ()3
This permits us to establish the analogues of Corollaries (2.2.2) and (2.2.3) with B, replaced

by
1-1z1)If’
Bo(w) = {f : f analytic in D, l;ilgnl( W(|1Z|_)||Zf|2()Z)| = 0},

assuming always that w satisfies the conditions in Theorem (2.2.32).
As before, the case @(t) = t2 in Theorem (2.2.30) is of special interest. If the inner function
B is such that

S € 1 LG R
lz>1- (1 —|B (2)12)*w(1 — |3|?)
then the corresponding family of positive singular measures o,, with a € T, satisfy,
uniformly in a, the following two conditions simultaneously:
loa(J) — o,UDI < w(lJDoe () (42)
loa ) — o, UDI < w(JD 1,

The point is, however, that starting from a given symmetric measure o, a whole family
{o,: a € T} of singular Kahane symmetric measures, with the additional property that o,
and oz are mutually singular if a # B, can be obtained.

The condition (42) follows from the following refined version of (a) ) = (b) of Theorem
(2.2.6).

Theorem (2.2.31)[92]: Let H be analytic in D with Re H(z) > 0 for z € D. Let ¢ be the
corresponding measure on T for which

Re H(z) = j P(z,&)do (8).

T

0,

Assume that
(1 —1z|*|H' ()]
< —_
Refz) = -z

for all z € D, where a is a positive increasing function on (0, 7z], with a(0™) = 0. Then
lo() —o ()| < Ca(rl/o()

for any sufficiently small arc J of the unit circle.

Proof. We will use the following result due to N. G. Makarov. Given an arc J of the unit

circle, denote by z, the point 7(0) equidistant from the ends of J, where 7 is the

automorphism of the unit disc mapping the arc T n {Re z > 0}onto J. Also, denote the

domaint({z € D: Rez > 0})by A(J)

Lemma [105]. Let b be an analytic function in D, and J an arc of T, and assume that
(1—1212)b"(3) < aforz € DA(),

forsome a < 2.Then

Fl| j [exp(b(s)—b(z;))—l]% = Cla).
]

Considering H,(z) = H(rz) with r < 1, we may assume that H is analytic in a
neighbourhood of the unit disc. Given an arc J of the unit circle, replacing H by H —
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ilm H(z;), we also may assume that H(z;) > 0. Observe that the function b =
log H satisfies

(1-1z1)b'(z) < a(1 —|z]).
Since 1 — |z;| < m|J |, we obtain

I]IJ ke H(f)l L Reti(z))| < cateliDRen(z)
Hence,
|0|]_U|)_Re H(Z])| < Co(mlJDReH(z;).
Since

|IRe H(z;) —Re H(z';) < Cy(a)(m|/|)ReH (z)).
we deduce that
lo() — a(J)| < Csalml/Da()),
Theorem (2.2.32) follows from the following refined version of (b) ) = (a) of Theorem
(2.2.6).
Theorem (2.2.32)[92]: Let w be a positive increasing function on (0, 1), with w(0%) = 0.
Assume that there exist constants k and & such that
w(t) < kw()if |t] < 6,
where w(t) is given by (25), and that
j w2(t)dt
t

0
Then, there exists an inner function I such that

')
RGN
Proof. By the Carleson Theorem when w(t) /t/ 2 decreases, or applying Theorem (2.2.40)
observing that w(t)/t decreases, we see that there exists a positive singular measure ¢ on
T such that

w(l—|z]) forz €D,

lo() — oD =< Cw(JDa (),
for any arc J of the unit circle.
Thus, Theorem (2.2.33) gives

(1~ |2 g < Co(1 = [al) < Cow(1 ~ [a),

forall z € D. So, one canchoose I = (H — 1)(H + 1)t or I = exp(—H).
Theorem (2.2.33)[92]: Let o be a positive measure of the unit circle. Assume that
lo() — o) < a@l]Da(),
for any arc J of the unit circle, where a is a positive increasing function on (0, 1], a(0%) 0.
Then, the function

H(z)f da(f)
satisfies
(1 - |zl?|H' ()] s
ReH (2) <ca(l-|z]).
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for all z € D where

a(t)=tf ()d + ta(1).

t
Proof. Let J and A be arcs of the unit circle, with J < A. L. Carleson observed in [97] that

ifa(d) < % one has
o 1

V) _UI < ca(5 11},
a(d) Al ™ 2
where C is an absolute constant. Actually, if a increases, then the argument of L. Carleson
shows that C = 1. We need more information on the measure o.
Lemma (2.2.34)[92]: Assume that the measure o and the function a satisfy the conditions
of Theorem (2.2.33). Let J and A be arcs of the unit circle, with J c A |A| >
2|/ | and a(A) < =.Then,

° A A
a(]) f 4a(t) a(d) a()) j 4a(t)
—exp| — dt | < < ex

b t ar = P t

Proof. Choose a natural number n suchthat 2" |J | < |A| < 2™ |J|,andarcs] c K, c
K, c...c K, = A, with |K;.41| = 2|K;|,fori = 0; ...; n— 1, and |K,| < 2|/ |. Then
fori = 0;...; n— 1we have

-1

dt

|K; | Kl TOIKG
and
U(Ko) a(/) 17
1+ 2a < < 1+—
I]I 7D 1+ 2a0m) " = Ko = g e
Since,
2 |K;l
. 1 Kl < a(t) dt
7 allKil) < exp f T Zlog2
|K;l
and
21/l
14y alhsen| [ oo
g ol l) = exp J 8og2t
J

the lemma follows.
The following result follows from Lemma (2.2.34).
Lemma (2.2.35)[92]: Under the assumptions of Lemma (2.2.34), one has

|Al
a(J) a(d) < n{a(l) G(A)} exp f 4at(t) g - 1|

Ul 1A Ul 1Al

As in Theorem (2.2.6), to prove Theorem (2.2.33) it is sufficient to show the following
estimate:

£ - I2®) o()
N GRS
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where | = J(z), for all z € D. Consequently, it is sufficient to prove that

v (1- &) Ul
for all z € D. Consider the (signed) measure p = o — 2r +)" 1 |J |71 a(J )|dé]. It is clear
that

¢ da(§) ¢ du(§)

r (1- &) Jr (1- &)
An integration by parts shows that the last integral is bounded by a multiple of |u|(T) +
172 7 mingt, 72 J(r(Cs) 4| + [k(CsP) DDds.
Here if z = re®, (s]),, (sJ)_ denote, respectively, the arcs,
(sNy ={e™P:0 < o <as(1—|zD}, (D= : 0 < ¢ < ns(1

= |z])}
Hence (43) will follow if we prove the following two estimates:
lul(T) < Ca(lJ Iclfj—(llz), (44)
1/1J1
[ min(Ls=3lusn ol ds < ca hoo). (45)
0

Since |u|(T) < o(T) + a())/|]|, (44) follows from the fact that

. a(lJ Da(])
mf] {T} > 0:
Actually, by Lemma (2.2.34), one has

a(]) 1 4a(t) |/
|]_|2 Cy exp (—jm . dt> > C, 2D

because
ftl a(s)ds/s?
exp (ftl 4a(s)ds/s)

limin;

as a simple calculation shows.
Now let us prove (45). One can assume that |J | is small. Observe that u((sJ),) =

a(s):) —% so(J).Thus, for0 < s < 1, Lemma (2.2.35) gives |u(s)) )| <|lo(s]);) —

so(J,) | +s|a(]+)—%a(l)| < Csa(J) [exp (fslljjll/z 4aT(u) du) —1] <
Csa(N((2/s)* WD — 1),
Consequently,

1
f k(s DIds < 3Ca(io().
0

Also, using Lemma (2.2.35), for1 < s < 2 one has

1
lu((sDII< lo((s)4) —sa( )| +sla(y) — EO'UN < 4Ca(|J)a()

and

2
j D DIds < 4Cai)o().
1
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Now, for s > 2, Lemma (2.2.35) gives
WPl S 10D ~ 5oL = 10D~ 500

slJ1/2
< s5(J,) lexp ( f 4at(t) dt) — 1| + sa Do)
1 J1/2
slT| sa(d)
< sa(J,) lexp( f at dt) — 1| + sa(lJ Da().
1]
Setsy = a(|j)~1. Since
Sol J Sol J ﬁ(t Ay
]f tS|Jj| = de<soll) = 1 (46)
we deduce that for 2 < s < s,
sl
kDIl <cso) [ 5 2 (47)
| ]
Consequently, !
0 0 sl |
[utpots—as <oy [ s [ “2aas

2 1 J1/2
Observe that Lemma (2.2.34) and estimates (46) and (47) imply that o((sq/));) <
Csoo(]). Take § > 0 such that a(8) S%.Fors0 < s < §/|J|, Lemma (2.2.34) gives

sl J 1

o((s))+) < ? o((250))+ exp < f T() dt) < Csa())(2s/50)"2
0

Sol J |
Consequently,

/17| (])
j u((sD))ls™3 ds < c—— cayo().

So
Finally, applying (44), one has

/171
1
k(D5 ds < = (amr) +ﬂ> I < S alho).

I
§/171
To prove Corollary (2.2.37) stated in the introduction we will use the following version of
Theorem (2.2.14).
Theorem (2.2.36)[92]: Let I be an inner function satisfying
(1= |z|)II'(3)]
i S e lah,
for all z € D, where a is an increasing function on (0, ), with a(0*) = 0, such that @ <
Ca, where @ is defined in Theorem (2.2.33). Let h € L(T)t be a non-negative function,
measurable with respect to the galgebra A (). Then
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| miasi- [ niggl| < caGen | niag,
J J' J'
for any arc J of the unit circle.

Proof. Take g € L' (T) suchthat h = g o I and consider

B E+3
G(z) = J Ttz g(&)|d¢| for z € D.

Observe that
Re G(I)(z) = j P(z Oh(E)]dE].

Since (1 — |3]* |G'(3) < 2 Re G(3), for ;r” z € D, one deduces that
(1 — 13]*)1(G °D)' ()
Re G(1)(3))
for all z € D. Now, one can apply Theorem (2.2.31).
Corollary (2.2.37)[92]: Let a be a positive increasing function on (0.1] with a(0™) = 0.

assume that 22 s decreasing for some € > 0. Then, the following assertions are equivalent:

t1—£
a) there exist a measurable set E c T, with 0 < |E| < 1, such that the measure yz|d¢|
is a symmetric , that is

< 2a(1 —|z)),

[IEQJI = 1ENSI| < a(UDIEN]]
Foranyarc/ c T:
b)  thereexist ameasurable set E c T, with0 < |E| < 1, such that the measure yy|d¢|
IS a- zygmund , that is

[IEQJI = ENS|| < a(lJDVI

Foranyarc JcT..
) J - t(t) dt = oo,
Proof. Assume (b) holds. Consider the function

H(z) = J :i%zldflforzem)

E
Then (1 — |3])|H'(38) < Ca(l — |z|) for all z € D and hence
a’(1-|z
1-1z|lH@)|*< C 1(_—|Z||D
Now, if (c) does not hold, one would deduce that H has vanishing mean oscillation, which
Is a contradiction.
Assume (c) holds. Apply Theorem (2.2.32) to get an inner function I such that
(1 - |31 ()|
< — :
T IE = a(l1—|z|) forz eD
Then, for any measurable set J of the unit circle, with 0 < |/ | < 1,letE = I71(J) be its
preimage. Now (a) follows from Theorem (2.2.36).
Given f € H*, with || f || < 1, consider the family of positive measures {o,: a € T}
given by

for z € D.
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a+f(z)\ _
Re (a_—f(z)) _ J P(2,6)doa(©).

Let w be an increasing function on (0, 1], with w(0*) = 0. Assume that for some a, € T,
the measure g, satisfies

|0a0 Jg)- Oq, (],)l = W(l]l)o'ao )
for any arc J. Then, there exists a constant C such that
|O-a(]) - O-a(/’)l < CW(UDUaU);
for any arc J and for any a € T. In particular, if w < Cw, the above condition does not
dependona € T.
Another way of constructing a singular symmetric measure is by means of Riesz products.
These are defined on T as the w —limit of the measures

N
|d¢|
. n; —_—
l_[ (1 +Re(a] '3 1)) o
Jj=1
as N — oo. Here a; are complex numbers, |a;| < 1forj = 1; 2; ...; and the integers n;

satisfy n;,, /n; = 3. It is well known that the corresponding measure is singular if

i |a;|” = oo. See [102] for information on Riesz products.
Theorem (2.2.38)[92]: With the above notation assume |a;| < 1foralljand lim a; = 0.

] 2

Then the measure

N
. \ 1d¢]
7N 2 (1+ Re(a; ) 5
J:
IS symmetric.
Proof. Set
k
F. (&) = 1_[ (1 + Re(aj E”f)),Fl =1
j=1
and

1
fi(§) = 5 G §™MFy_1(§).
It is clear that f; is an analytic polynomial whose non-vanishing Fourier coefficients lie in
the interval [2_1 ng, 2_1 3nk] Also Fk - Fk—l = fk + fk'
If f is a continuous function in the unit circle, set

Ifle =D, |fm)]

nez
where
, - 1€
f(n) = f(&)é =
T
are the Fourier coeffcients.
We have
k—1
1 k-2
| | frellpr < 5 |a| (1+ |aj| <2572 |ayl . (48)
j=1
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Lemma (2.2.39)[92]: Let J be a closed arc of the unit circle and k € N. Then the following
estimates hold:

e P k |a]|n]
i <on( 2 )
min |Fy| exp | 2ml/]
] :
e I
[, Fitdo—1]] mk+1]§l;£1 ||
Proof. Considering logarithmic derivatives one gets
k
d . |a-|n-
— log Fi(e® SZ 7
e o] 0, 2

j=1
Now, an integration proves the first estimate.
Replacing o by the Riesz product F; o, one shows that it is sufficient to prove the second
inequality when k = 0. Let x; be the characteristic function of J. Applying the inequality

|2, ()| < < withk # 0,
- Iﬁ

I | —
. N 100 2/ |ay]
o012 g {23 e 1S 2ol ey
]>

k#0 j=1 j=1
A similar argument can be found in [106].
Now, let J be an arc of the unit circle and let ¢ be the common end of J and ' . Take k such

that ngi, < |/ | < ni'.Applying Lemma (2.2.39), one has

o())
I Illj Feic* do = Fe(§).

Here A, = B, meansthat A, /B, — 1ask — oo. Similarly,

a()/U'| = F(&).

and (48), one deduces that

Hence o is symmetric.

Assume that (a;) satisfy the hypothesis of Theorem (2.2.38) and ¥, |aj|2 = oo. Let o be
the corresponding singular symmetric measure. Observe that the measures

. d
o = 1_[ [1+ Re(e'a; &™) lzi

j=1

,wheret € [0,2m),

are also singular and symmetric. Actually the proof of Theorem (2.2.38) shows that
_a(J)
lim =1,
I]|—>0 ()

uniformly int € [0, 2m). Moreover, if t # s, the measures jt and js are mutually singular.
Given a singular symmetric measure o, we can use our composition process to obtain
families of Kahane symmetric measures. If, on the other hand, one attempts to construct a
Kahane measure by means of a Riesz product with n;,; /n; = 3 for all j, then P. Duren

showed that ) |aj|2 < oo S0 the measure is absolutely continuous [98].
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Minor modifications of the proof of Theorem (2.2.38), show that, essentially, the measures
constructed by L. Carleson can also be obtained as Riesz products.
Theorem (2.2.40)[92]: Let w be a positive increasing function on [0,1] such that w(t)/t is

decreasing and
2
t
j i t( ) dt = oo,

0
Then there exists a sequence of non-negative numbers {r}, with X%_, 72 = oo, such that

for any sequence a; of complex numbers, |a;| < r, where k = 0,1; 2; ...; the measure
J associated with the Riesz product

1_[ (=1) (1 + Re (ajfgj))%

satisfies
a(J')
= 1f =w(lJD,
a(/)
for any arc J of the unit circle. Moreover if |a,| = 7, fork = 0; 1; 2; ...; the measure j is
singular.

Proof. We may assume ltir% w(t) = 0. Consider &, = 20"* w(3* ) with k > 0. The
integral condition on w gives
z gf = oo,

k=0
Choose 1, = &, — 371 g_, with k > 1. Observe that r, > 0 because w(t)/t decreases.
k k k-1

Also, ¥'%_, 12 = oo. Let J be an arc of the unit circle, 371 < |J | < 37%. We now use
the notation of the proof of Theorem (2.2.38). There exists a point &, € ] such that

@_i 1 = i -1
Ul ‘|1|]f Fi Fit do = Fi(§) |1|]f F- do.

Now, Lemma (2.2.39) gives

6
G|]_U|)_ Fiedi| = Fi$)) T jakn || < 2ep41 Fi(€ )

Similarly, there exists &, € J' such that
a(J")
— F (&)
TR
Writing t = 4nlJ| ¥f-; |a;]3/ (1 - |aj|)™" , we find that the first estimate of Lemma
(2.2.39) gives

< 2¢€,41F (&)

k
|Fie(&) — Fe(&',)] < Fe(&def— 1) < 15Fk(fk)z r; 397K < 158, Fi (&)
=1

Thus, if k is sufficiently large, one gets

lo] —a(DI < 19&, F(§) I/l < 20&, a(J) < w(lJ])a()).
Replacing 7, by r; = r._y, for k > N, where N is sufficiently large, and 1, = 0if k <
N, we see that the last inequality holds for any arc J of the unit circle.
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Section (2.3): Composition Operators from Bloch Type Spaces to BMOA
The existence of critical Bi Bloch mappings and its applications to Bloch-BMO
pullback problems.

A real function h is said to be almost increasing (resp. almost decreasing) if there is a
constant C > 0 such thaty > x implies h(x) < Ch(y) (resp. h(y) < Ch(x)). A positive almost
increasing function y : [0, ) +— (0, o) will be called almost subnormal if there is 5 >0
such that 1 (x)/x® ,x > 1, is almost decreasing, and

lim e o0tp () = 00, (49)
If y is (strictly) increasing and (49) holds with “almost decreasing” replaced by “non-

increasing”, then y is called subnormal. If in addition there is & > 0 such that
P(x)

x® '
then v is called almost normal. If y is subnormal and (50) holds (for some a > 0) with
“almost increasing” replaced by“non-decreasing”, then y is called normal. The notion of a
normal function was introduced by Shields and Williams [11].
Theorem (2.3.1)[110]: If y is an almost subnormal function, then there exist functions f;, f,
analytic in the unit disk D of the complex plane
such that

x = 1, isalmost increasing, (50)

IF@I+ 1@ =y (=) z€D (51

As usual, the notation A = B means B/C < A <CB for some constant C. The first result of
this kind was proved by Ramey and Ullrich in [121], where the case y(X) = x was considered.
The term BiBloch comes from the fact that the Ramey—Ullrich theorem can be reformulated
in the following way: There is a mapping F : D — C? such that
|(FF)|=@@ - |zD7%, z € D.
The existence of such a critical Bi Bloch mappings, as was shown in [121], plays an
important role in characterizing composition operators from the Bloch space to, e.g.,
BMOA. An extension of the Ramey—UlIrich theorem to the case where (x) = x# , >0,
was proved by Gauthier and Xiao [113] (see also Xiao [124]). In [112], in connection with
a problem on composition operators, Galanopulos considered the case where Y (x) =
x(1 + log x), which was extended to Y(x) = x¥ (1 + log x),y > 0, by Liu and Li
[114]. However in all these cases the function y is normal. Theorem (2.3.1) covers the case
of normal functions, for example
Y(x) = x*(1 +logx)Y, a > 0,y € R,
as well as the case of non-normal functions such as
Y(x) = (1 +logx)’, y > 0.
The hypothesis that y is (almost) normal makes the proof (of (51)) almost identical to the
proof of Ramey—Ullrich Theorem. In the general case, we also start with the idea to represent
f as a sum of two series with Hadamard gaps but it seems that these series must heavily
depend on .
y is assumed to be almost subnormal, that is, it satisfies (49). C or ¢ in the inequalities

denotes a positive constant which is independent of the variables under consideration.

Let H(ID) denote the space of all functions analytic in the unit disc D and let H(D, D) :
= {¢ € H(D): ¢(D) c D}.For afunction ¢ € H(D, D), the composition operator C,
is defined on H(ID) by C,(f)(2) = f (¢(2)). For two function spaces X and Y, let us
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denote C(X,Y ) = {@: C,(X) < Y }. Let B(y) denote the space of those f € H(D)
endowed with the norm
f' @ ;

If llseyy =10 + SupZEDz/J(l/(l ~1zD) < oo,

which reduces to the Bloch space B if y(x) = x. BMOA is the space of f € H(ID) endowed
with the Garsia norm

1
IFIZ = FO)P + supaep | 1FP o dA(z),
f f a€eD f g |O_a(Z)| ( )
where dA denotes the normalized Lebesgue measure on ID and
a—=2Z
9a(2) = 1—az

The space BMOA can be equivalently defined by the requirement f € H? satisfying
supqen(PlI£1?D(0) = [f(@)]?) < oo,

where

2
Plul(a) = — j <<) '?:

The problem of characterizing those @ in C(B,BM0OA), so-called Bloch-BMO pullback
problem, has been considered extensively. See [116]. We consider and resolve an extended
version of the problem on the settings of B (y).

If y is continuous on [1, «), we define the function "y by

1d{|, a € D,u € L'(aD). (52)

P() = 1+]¢2 )log dx.

r P
1
=1+];dpj¢2 T )dx 0<r<1.
0 0

Note that if (x) = x, then

Px) = log 7—
Recall that the function P[u] in (52) is harmonic in D and lim,_;_ P[u](r{) =
u(¢) for almost all { € dD.We use (52) to define the Poisson integral of a measurable
function with values in [0, o]. It can be easily checked for such a function u that u €

L1(0D) if and only if P[u](a) = oo for all (for some) a € D. Theorem (2.3.8) directly
gives
Corollary (2.3.2)[110]: If

f¢<|<p*(<>| )dg| = o,

then ¢ does not map B(Y) |nto BMOA In particular, if

fll)z m) (1— x)dx = (53)
0
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and ¢ maps B(YP) into BMOA, then |@,| < 1a.e.on dD. Also, if (53) holds and ¢ is an
inner function, then ¢ does not map B(YP) into BMOA.

Recall that ¢ € H(ID,DD) is called inner if |@,] =1 a.e.on dD. Noting the inequality

Pl (9. LID](@) = dUe@*1@I*]) = P[dle.l?](@) -
U@ 11(@)?) = P[Plo.1?](@) - Be @),

the following also is an immediate consequence of Theorem (2.3.8).
Corollary (2.3.3)[110]: If ¢ € H(D,D) and @I € C(B(Y), BMOA), where | is an inner
function, then @ € C(B(Y), BMOA).

In Havin [115], Corollary (2.3.3) says that the class C(B(y),BMOA) has the f -
property. We can omit the hypothesis that y is continuous because there is an equivalent,
continuous function ¢ (see Lemma (2.3.6)).

As a further application of Theorem (2.3.8), we have
Corollary (2.3.4)[110]: The inclusion 8B (y) < BMOA is necessarily strict.
Let us denote, for y € R,
<x <o,

Yy () = (1+ log x)Y 1=
Then as a special case of Theorem (2.3.10) we have
Corollary (2.3.5)[110]: The following conditions are equivalent:
(i) B (1) € BMOA.
iy > 1/2.
(iif) H(D, D) < C(B (), BMOA).
The following theorem explains what is happened inthe case y < 1/2.
The special case y = 0 of this theorem was proved by the first author [116].

After assigning to the proofs of Theorems (2.3.1)-(2.3.11), we consider the
boundedness of the composition operators between Lipschitz spaces having general weights.
Little “oh” version of the pullback problem is considered.

It is enough to find g,,9, € H(DD) such that

91 (@) +9: (@) =Y, %€ D. (54)
Also, we may assume £ = 1 in (49): choose an integer M > 0 such that the function

Y(x)YM /x is almost decreasing and put @ = /™. We will find hy, h, € H(D) such that
hy(2) + hy (2) = 901_le| z€D. (55)

Then the functions g, = hYf and g, = h)! satisfy (54).
In order to prove (55) we want to replace ¢ by a function that behaves more regularly.

Lemma (2.3.6)[110]: Let vy satisfy (49) with p = 1, and let
@1(x) = infi,P(0),
1(x) @1 (tx)

@
p,(x) = x supthT = SUP¢sy r x > 1.

Then ¢, satisfies:

(i) ¢, (x) = Y(x) and hence lim,_,,¢@,(x) = .
(il) @, is increasing.

(ill) @, (x)/x is decreasing.

(iv) @, is absolutely continuous.

Proof. The proof is straightforward.
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It follows that in proving (55) we can assume that ¢ satisfies the above four properties.
Also we can assume that ¢ (1) = 1 and that ¢ is strictly increasing since otherwise we can
replace ¢ (x) by p(x) + x/(x + 1).

Let g > 4 be a sufficiently large number, which will be chosen later on. Choose numbers
/1]'- ,j = 1,s0 that

(X)) =q¢ ,j =1,
and then define the sequences {4;} and {li ]}'
4] + 1,

[/AA+1 +1

where [x],x € R, denotes the unique integer suchthatx — 1 < [x] < x. These sequences
have the properties:

Hj+1
Hj
To verify this, observe that 2; < ; = [A}] + 1 < 22; so that

90( +1) 4 (Aj+1) < 290 (Aj+1) < (’1j+1)

o) — Ze(x) T (k) T )

where we have used (ii) and (iii) of Lemma (2.3. 6) In the case of u; we have

Hj+1 \/ 1+1/11+2 ]+2

= ,forj = 1. (56)

)

Ajy
A

IV
N
S

'uj ]+1/1
From (56) we get
A ' [q iy q q
j+n j+n
> = -, 2 - - ) Z 1) 57
w2 e @5 forin &7
and
A < Un < Aps1s forn > 1. (58)
Indeed,
Aj+n _ /1j+n /1j+n
] HUn /1n+1 Hn .
(g)]_ An+1 _ (2)1_1 Ajsn - (g)]_ An+1
27 fpyr N2 14+ JAAye, 2 YNy
=) 3 520 5
2/ 2| A, 4 8
And
Hn+j — Hn+j Hn+1 > (g)j_llirwj > (g)j_l\lln+1/1n+2
/1n+1 Hn+1 An+1 -4 An+1 2 /1n+1
=@ =@
—\4 Apr1  \4 2’

This proves (57). The first inequality of (58) follows simply from

Ao <N Andnyr < [V Anﬂn+1] +1=puy
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while the second inequality of (58) follows from the first of (57) by taking g > 8. Now we
define hyand h, by.

h(z) = 1 +quz’11' and hy(z) = 1 +qu 2 |
. &

We shall first prove for each n > 1 that

1 1
hi(2)| > c ( ), orl——<|z|<1——, 59
|1()| ()0 1—|Z| f An ‘un ( )
And
@12 cp (=), forl—-——<ld <1+ (60)
z)|=>c , forl——<|z| <1- )
2 ¢ 1—|z| Un An+1

which implies one directional validity of (55) in the annulus 1 —1/4; < |z| < 1. Since
the functions h, and h, have finitely many zeroes inthe disk |z| < 1 — 1/4; with h; (0)
=0, h, (0) = 0, we can choose @ € R so that the functions z +~ h,(e*? z) and h, have no
common zeroes in this disk. Thus the desired functions will be h; (e z) and h,,.

Since ¢ (4,) = q", we see that (59) and (60) are equivalent to

1 1

|hi(2) | = cq®, forl— —<|z|< 1- —, (61)
Aln N

|h2(z) | = an, for1 — E < |Z| < 1 — )ln n 1’ (62)

Respectively.
We have, for1 —1/4, < |z| < 1— 1/,un,

7y (@] = cqmlz] =1~ 2 = > @il

j=n+1
;Ln n ° 1 A;

= 11(1 1-) 1 ?— :E: J(l U ) L
1 An q 1 . 1 n
j=n+1

Since the functionx — (1 —1/x)*,x > 1,isincreasingand A, = [A'1]+1 = 2, we
have (1 —1/A,)* > (1 —-1/2)* > 1/4 and

1\ A;

(1 — —) < exp (— —>

fn fn
Ihl(Z)IZq"(l—in—;)— Z qjexp(—ﬁ>
4 q" q-1 Hn

Using (57), we bound the last sum as follows

so that

o

. A; < A; < j-1 |9
E q’ exp (— —’) =q" ) q’exp (— . +"> <q" E q’ exp{— (g) 16
Y Pn - Hn - 2 8
j=n+1 j=1 j=1

Since

(00

: q

i J (L

C}l_fﬁlo _ a exp (2)
j=1

we can choose g > 101 so that
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< gyt |9 1

E J — (= —t<—.
LT @ ,/8 100
]:

Since 1/q™ < 1/100, we have
1 1 1 1 1 1

Combining all these estimates we get (61).
In the case of (62) we have, for 1— Mi <l|z| <1- T

n n+1

n=1 0o
ho@] 2 gl = gl = Y g Jal
j=1 j=n+1
= (1) 75 2 ()
2q"(1-—) - - ) (1~
n q_l e An+1
o) 5 ol
4 q_1 e n+1
1 1 +n
g S ven(-22)
4 q_l = n+1
11 o -1 g
> gt — — —— ) — nz J — (- =
=1 (4 q 1) LA ex”{ @) 2}
]:

Now the proof of (62) can be completed as in the case of (61).
Finally, we have to prove that
1

@) < Co (7=

where h = h, or h,. This can be done in a similar way as in the case of (59) and (60). In fact,
the proof is simpler in that it is valid for all g > 1; namely, we have:
Theorem (2.3.7)[110]: If g > 1, then there is an increasing sequence {4;} of positive

integers such that Y (4;) = q’, and, moreover, the function
fo(2) = 0; = 1q7 z4

) for|z| < 1, for |z| < 1,

satisfies

),|Z| <1

1
@] < fyllaD) < (7=

We also have
O 1
Z q]T]Z Clp(ﬁ),l/z <r<l1
j=1

Consequently, if

- j
gp.a@) = ) —— @)zl < Llal <1,
j=1

A +
then gy, , belongs to B(y) and sup gy q B(Y) < oo.
lals1
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Proof. See [120], where an integrated version is proved as well. For the case of a normal 1,
see [117].
Theorem (2.3.8)[110]: Let ¢ € H(D,D) and let y be continuous. Then ¢ €
C(B(Y),BMOA) if and only if

supaep{P[ P ° 19.1?](@) — P(p@)|*)} < o, (63)
Where

@ *({) = limpsy- @), I¢| = 1.

Proof. Let ® € H(D, D). A standard application of Theorem (2.3.1) (see [116], [121],
[124]) shows that @ € C(B(y), BMOA) if and only if

Q (@): = sup f ®’<Z)2¢2( )l"g| tz)l
D

|@( Ik d4(z) <

a€eD
as well as that

[1Coll = /Q (9),ifQ (), (0) =
Therefore Theorem (2.3.8) is a consequence of the following assertion.
Proposition (2.3.9)[110]: If Q (®),€ H(D, D) and  is continuous, then

1 1
ZJ @’222< )lo dA(z
J PO T=Teer ) e 4 A®
- 2 ~
=P[d c|0«1* | (@ - ¥ (10@I?),a €D. (64)
Proof. Our proof is based on the Green theorem which, in its simplest form, says that if u €
C?(D), then
1 € 1
> J Au(z) log E dA(z) = j u(eQ)|d¢ | — u(0),0 < e <1 (65)
|z|< & oD _
Also, it is not difficult to check that the function t = ¥ (t?),—1 < t < 1,is C?, and that

AG@ -« |0]* = 41112( |®|2)I®|2 (66)
Let Y, (x) = min{y(x),n}. Note that (66) holds wﬂhz,breplaced by y,,. Thus, by (65) and

(66),
1 1
2 J LIS (1—|w(z)|2)log|aa(z>|

|z|< &

_ L [ ideenpias| - b, (o@P) (67)
T2 n " -

Now fix n and let e —» 1~. We apply the monotone convergence theorem on the left-hand
side and the dominated convergence theorem on the right (the function 1,, is bounded) to
conclude that (67) holds for ¢ = 1 and all n. Now let n — oo and apply the monotone
convergence theorem on both sides of (67) (¢ = 1) (which is possible because ,, and 1,
increase with n to ¥ and 1 respectively) to show that (64) holds for a = 0. To complete
the proof we only have to apply this special case to the function @ - oa, and then use the
substitutes z = o,(z)and { » a,({).

Theorem (2.3.10)[110]: The following conditions are equivalent:

(i) B (y) € BMOA.

(ii) f l/)2 ( )(1 — x)dx = oo,
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@iy H(D,D) c C(B () BMOA)

A consequence of Theorem (2.3.10) says that there is no y such that B (w) = BMOA: If B
(v) = BMOA, then the function log ﬁ belongs to B (w) .which implies |ﬁ| < Cy (i)
so that

[ ()a-mur=e

0

Proof. We may assume that y is continuous because B(y) = B(@) ifyp = @. The validity
of the implication (iii) = (i) is a consequence of the fact that the function @(z) = z belongs
to H(D, D). That (ii) implies (iii) follows from Theorem (2.3.8) and the fact that the Poisson
integral of a bounded function (in our case ¥ ) is bounded. Thus it remains to prove that (i)
implies (ii).

By Theorem (2.3.7), there is an increasing sequence {A;} of positive integers such that
Y() = 2/ . Letp, = 1 -1/ Then

1 [o'e) Pn+1

= [ a-sa-([ 23 T )es)a -
= Y 1~ » x)ax = ¢1_x( x)dx
0 n=1 pn
and we have
Pn+1
1
| (=) a - 0dxv?a j (1~ x)dx < €2
1—-x st
Pn Pn
It thus follows that
I <C+C : (68)
Xm

Now we consider the function

j+1+1
f2)= Z“l“ A+l

By Theorem (2.3.7), this function belongs to B(y) and hence, by the hypothesis (i), it
belongs to BMOA. On the other hand, f is represented by a lacunary series, which implies

that
© 2
Z ( n+ 1 ) R

(see [124]). This and (68) prove that (i) implies (ii) see [91].
Theorem (2.3.11)[110]: Let ¢ € H(D, D) and y < 1/2. Then ¢ € B (), BMOA) if and

only i

sup (P[E19.12](@) — E |p(a)|?) < oo,

where

e )1—2)/ 1

(logl_ ’Y<E'

e
log(1 + logl_r), y = 1/2.

Proof. Observe that the function 1) is the unique solution g of the Cauchy problem
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1
9"+ g () = ¥ (=) .9(0) = 19’ O+) = YA O = 7 < 1).(69)
The positivity of g"" (r)r + g’ (r) means that g(r) is convex of log r, i. e., that the function

x — g(e—x),x =0,isconvex. Seta = 1 — 2y.Ifa > 0 take
a

g(r) = (1091 i T) :

Then
17 ! _ 1 e a-1
g (T')T' + g (T) = Qa (1 _ r)z (lOg 1 _ T) h(r)'

-1
where h(r) =1+ 7r + (¢ — Dr (logﬁ) . Noting that « > 0 and that logﬁz
1, we see h(r) = 1. Thus,
1

)2 (i) =9"r + g =g—5z (l"g1 i r)

5 1
=¥y (1 - r) ' (70)
By the uniqueness of the solution of (69) it follows that g = . By (70) Y, = Py sothat
B(y, ) =B(y). We therefore conclude from Theorem (2.3.8) that @ € C(B(¥o),
BMOA) if and only if

sup (Pl g ° 10.1> — g (18(@)]?)) < c.

This proves the theorem inthe case y < 1/2.
Ify = 1/2, we start from the function

e
g(r) = log (1 + log1 — r)
and proceed as above to complete the proof of Theorem (2.3.11).
The space B(y) is closely related to the space

1
o) = { £ € HOD):S ) = o(¢ (= r))}

introduced and studied in [11], [122], [123], [117], [118], [120], [119].

If ¢ satisfies (49) with 8 < 1, then B(y) is contained in the disk algebra A(ID) and can be
identified with a space of analytic functions satisfying a Lipschitz condition on D or 9.
Theorem (2.3.12)[110]: Let v satisfy (49) with 8 < 1, let w(t) = ty(2/t), and let f €
H(ID). Then the following conditions are equivalent:

() f €B).

() f € Aand | f(¢) — f | = Co(I¢ = nl),{,n € ID.

| f@-fwW)< Cow(lz —w|),z,w € D.

See [118], [119] for a general result that involves higher order derivatives. See also [111]
for the case where 1 is almost normal.

The existence of critical Bloch functions as in (51) joined with Theorem (2.3.12)
iImmediately gives the following, where Lip,, (0D) and Lip,, (ID) denote the function spaces
consisting f satisfying (ii) and (iii) of Theorem (2.3.12) respectively.

Theorem (2.3.13)[110]: Let y; ; = 1,2 satisfy (49) with p < 1, let w;(t) = ty;(2/t),
and let f € H(ID). Then the following conditions are equivalent:

() f € C(Lipy, (OD),Lip,, (AD)).

() f € C(Lipy, (D),Lip,, (D).

a—1
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wl(l—l;(znz)
(iii)y sup f(z) ————= <
zeD 1/)2(1 |Z|2)

-zPw,(1- |f(2)I?)
(iv) sup If'(@)] > 217 @Pay(-12P)

The subspace of those f € B(y) for which

'@ = o(¢(ﬁ)> 1zl = 17,

Is denoted by B, (¥). Inthe case Y (x) = x, the space reduces to the Little Bloch space, B,.
It is known and easy to see that B, (y) coincides with the closure in B(y) of the set of all
polynomials.

The space VMOA (of functions of vanishing mean oscillation) is the subspace of BMOA
defined by the requirement

o [ 1@

D
or equivalently that f € H? and
lim (PP (@ = If @F) =
It is known that VMOA coincides with the closure in BMOA of the set of all polynomials.
Theorem (2.3.14)[110]: Let ® € H(D, D). Then @ € C(By(y),VMOA) if and only if @

satisfies (63) and @ € VMOA.
Proof. Assume that Cy maps By () into VMOA. Since the function z ~ z belongs to

By () we have that € VMOA. Let f € B(y). Then f, € By (), where f,(z) = f (pz)
and 0 < p < 1, and therefore, by the hypothesis that Cy maps B, (y) into VMOA, we
have

1
o] 1A@ =0

|f(p®(0)) + sup f |f p@(Z))| p |®(Z)2log| 1()|dA(z)

aeD

“f””B(w) 7h

On the other hand, using the hypothesis that i is almost increasing, one shows that
||fp||B(l])) ||f||B(¢) Combining this with (71) and using Fatou’s lemma, we find that

(71) holds for p = 1, which means that C, acts from B(y)) to BMOA. Now we use
Theorem (2.3.8) to conclude that (63) holds.

Assume, conversely, that @ € VMOA and that (63) is satisfied. Since @ is VMOA and is
bounded we see from the definition of VMOA that @" € VMOA, for every integer n > 0.
This implies that €, maps polynomials into VMOA. Since polynomials are dense in B, (),
it follows that C,, maps B, () into VMOA. This completes the proof.

The argument in the above proof involving (71) actually proves the following:

Theorem (2.3.15)[110]: ¢(By(y), BMOA) = C(B(y), BMOA).
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Chapter 3
Bloch Pull-Backs

We investigate the assertion that if ¢ € B, is a conformai mapping of the unit disk D
into itself whose image ¢(ID) approaches the unit circle T only in a finite number of
nontangential cusps, then Cy is compact on B,,. On the other hand if there is a point of T N

¢ (D) at which ¢ (D) doses not have a cusp, then Cy is not compact. As a consequence, we
obtain a new proof of a recently obtained characterization of the compact composition
operators on Bloch spaces.

Section (3.1): Bounded Mean Oscillation

We consider holomorphic maps:
F:B, - D,

Where B, denote the open unit ball in C. We will say that F has the pull-back property if f o
FBMOA, (B,,) wherever f belong to the Bloch space of D. The pull-back property was first

studied in [125], where Ahern showed that the map F(z) = n2z,z, ... z, has the property.
Ahren was interested in the Fatou theorem: Because the above F has the pull back property
, there exist a function in BMOA, (B,,) with a radial limit at no point of the n-torus |z;| =
|2, = ... = |z,| = 1/v/n(H*®-functions must have limits in a set of full n-dimensional
measure on the torus).)

Although the pull -back property now appears less useful than other techniques in
studying the Fatou theorem for BMOA(see [136]). In [82], Ahern and Rudin posed the
problem of characterizing the maps F having the pull-back property. It seemed puzzling that
the pull-back property was difficult to verify, even for maps as spmple as Ahern’s. Unit
now, only certain homogenous polynomials were known to have the property [125], [82],
[132], [127], [126]. Most of these results are based on the fact that BMOA, (B,,) is the dual
space of H1(B,),and all involve somewhat intricate calculations that depend on the
symmetry of the maps F considered.

We go well beyond the previous results by showing that if F € Lip,(B,,) , then F has
the pull-back property. This theorem should be contrasted with a result of Tomaszewski
[135], which shows that there exist maps F failing to have the pull-back property even
though Fe Lip,(B,,) for some a > 0.

We take a different approach to the pull-back problem: The:” bounded mean
oscillation’” definition of BMOA on dB,, with respect to the usual non isotropic metric) is
used directly, as is the conformal invariance of the Bloch space. This leads to a suggestive
geometrical picture that, while nowhere present in statements or proofs of theorems, was the
starting point for our investigation.

The result that makes everything work is Theorem (3.1.4)(b), which gives an estimate
on who fast the complex tangential derivative of a holomorphic function tends to zero as a
point of maximum modulus set.)

We discuss several necessary and sufficient conditions for a map F to have the pull
back property. We show how some of the techniques can be used to prove a theorem related
to a result of Rudin.

Any unexplained notation will be as in [77], [133].
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We summarize a few facts about the Bloch space that we need in the sequel, most of
which are well known. The Bloch space B(D) consists of those holomorphic functions f on
D for which

Ifllg = supseplf' (@I = |2|?) < co. (1)
This is a Banach space if the norm of f € B(D) is defined to be.
The invariant form of the Schwarz lemma [G.P.2] shows that if
@:D — D is holomorphic, then
If o olls = lIflls (2)
For all f € B(D). Equality in (2) hold in the case ¢ = ¢, where @,.
Is the automorphism of D defined by

( ) _ a—Z
Cal2) = 1 52
Let f € B(D), integrating f’ from 0 to z, one easily see that
2
—_ < < _—
F@ = FOI £ Ifllslog T = If s log T 3)
For all (3) z € D. The identity
1- 92 (B) = oimtt
a (1-lal®)(1-181?)
Together with (2) and (3), show that
If (@) = (B = |f ° pp(@p(a@) — @p(0) )] (4)

Forall a,B €D.

Membership in B(D) is equivalent to a bounded mean oscillation condition with
respect to area measure. We let dA denote Lebseque area measure on C, normalized so that
AD) =1For0<d <2and{ €T.

The unit circle, put
05() ={Z€eD:|1Z-¢ <8}
The average of any f € L1(D,dA) over Qg5(0) = Q is defined by

_LJ dA

Note that (3) implies that every B(D) belong to L*(D, dA).

Throughout ¢ and C will denote numerical constant whose values may change from
line to line.

The expression A(f) = B(f) will mean that therte exist positive constant C and ¢ such
that cB(f) < A(f) < CB(f) for all functions f under consideration.

The following proposition is essentially contained in [128].We supply a proof that does
not depend on the machinery developed.
Proposition (3.1.1)[121]: Suppose f is holomorphic in D and f € L'(D,dA) . Then

1
IFlls =~ supoos fﬂ (f = fo )dA < oo,

Where the supremum is taken over all region Q = Q5(J).
Proof. A straightforward estimate shows that

: Jl ;dA()—l 1y (W(0<8<2) 5
AQ) Jo, 0 T =1z 1 T8 T O = 5)

Suppose f € B(D). Setting Q = Q5(1), we have by (4) that
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(= farda <— (1-5) |da
A(Q)jﬂf_fn éA(mf f—f1-8)

Il | 1 a il .
(0]

A(m %)y P52 -8 1zD)

Since |1 — (1 — 6),| < 28 inQ, (5) shows that the last line is less than or equal to a constant

times ||f|lg for § € (0,1). The fact that the L' — norm of of f — f(0) is less than a
constant times ||f || handles the case § > 1.

For the other direction, note than

dA(z).

JROIES WREY ©)

For all £ holomorphic in. [Recall that A(D) = 1] Applying the appropriate translated and
dilated version of (6) to the function f — f,, we have

(1 —1zDIf" (D] = If — faldA

=,
(1 | |)2 D(z,1-|z|)

§mjﬁ (f — fa)dA,

Where D(z,1 — |z]|) is the disc centered at z of radius 1 — |z| and
Q=050),withd =2(1-1z]),{ = z/|z|.

Another BMO-type condition that characterizes the Bloch space involves H! —norms
over circle internally tangent to the unit circle T. For a € d , define the circle maps y,: D —
D by

Yoa(2) = a+ (1 —|al)z
We let g, = o denote arc length measure on T, normalized so that ¢(T) = 1.
Proposition (3.1.2)[121]: If 0 <& <1 and f is holomorphic in D, then
Ifllg = supe<iai<1llf © Va _f(a)”Hl(D) (7)
Proof. We may take a > 0. Notingthat |1 — ay,| < [1 —a| + [(1 — ¥,)| < 3(1 — a) and

that 1- |ya(ei9)|2 =2a(1l —a)(1 — cosB), we have

[ 1o~ r@ldo <liflls [ 1og 2n-arl” o
r “ =B T 1 —a) (1 - 11D

2T
<Ifla | log s —oosgy
Let C denote the value of the integral in the last line. The above shows that
SUPe<ial<illfr © Ya = fr(@llu1py £ Cellfrlls (8)
Where f,.(z) = f(rz) for0 <r <1, Since ||f-lls = lIfllg as r = 1,(1,10) hold with f
in place of f,.
For the other direction, apply the inequality

FOI< [ Ifldo

T
[valid for all f € HX(D) ] to the functions f oy, — f.(a).
Although Proposition (3.1.2) will not explicitly be used in the proof of the main
theorem, we have included it because it may be helpful to the reader in understanding our
approach to the pull-back problem’ see (13) and (14).
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The above proof can be easily modified to show that Proposition (3.1.2) remains valid
if the H1-norms in (7) are replaced by HP-norms , for any p € (0, ). The following
corollary is the case p = 2, which may be of some independent intrest.

Corollary (3.1.3)[121]: If 0 < ¢ < 1 and f is holomorphic in D, then

0 k) 2 1/2
Iflls = supeciaics (Z (f EL. |a|>k> )

k=1
Rotation —invariant Lebesgue measure on dB,, normalized to have total mass 1. Will

be denoted by 0,, . We write g,, = o when the dimension is clear from context. For
{ €0B, and 0< & < 2,but Q5(0) = {n € dB,: |1 —(n,{)| < &}. Notice that the z;-
projection of Qs5(e;) into D is Qg(1) wheree; = (1,0, ...,0).

The class BMOA (B,, ) consists of the functions g € H*(B,,) for which

1
jg lg — 90| dQ < oo,

lgllgmo = sup

o(Q)
Where g, denotes the average of g over Q and the supremum is taken over all Q = Q5({)

(we have identified g with its boundary.)
BMOA (B,, ) is a Banach space under the norm BMOA (B,, ), and, as is well known [128],
can be identified with the dual space of H(B,).

This duality relation is not important to our approach to the pull-back problem, and will
appear only as a technical devise in extending the n = 2 case of Theorem (3.1.6) to higher
dimensions.

Most of the work will be done for the case n = 2. For any

g € L*(0B,) we have [77]
ja gio= | | gadorda(@), ©
B, p Jr

Where g,(w) = g (a, (1- |a|2)§w) for we T, when g € HY(B,), (9) and the mean
value property give

2
9o = mjﬂ g(a,0)dA(a), (10)

where

Q =0Q0s(e;) and Q= Qs(1).
For K=1,...,n,Dy will denote the holomorphic partial derivative /3, . The class

Lip 1(B) is the set of functions g on B = B,, for which

@) = gw)
Igllips = sup = — == <
The supremum being taken over all z,zw € B with z # w . Note that |[g|lLip1 = [IVgll«
whenever g is holomorphic in , where || ||, denoyes the supremum normon B and Vg =
(D4g,...D,g).

When n =2 we can define a canonical complex tangential derivative by setting

D,g(ry) — Zlng(l‘Z) - <2D18(I‘Z)

For 0<r<1and (€ 0B, D.g(z) isthe complex derivative of g in the direction
orthogonal to z.

)
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Recall that F always denotes a holomorphic map from B,,, into D.

Theorem (3.1.4)[121]: If F € Lip, (B,) then

- Asr — 1, DpF(rQ converges uniformly on dB, to a continuous function D;F(Q)
- There exists a constant C, depending only on ||F||,, such that

IDrF(] = €(1 = [F@QDY?

Forall T € 0B,.
Proof. We will show first that

|IDrF(sQ) — DrF(rQ)| < 2(1 — r)l/zllF”Lip 1 (11)
forall ¢ € 9B, ,whenever 0 <r <s < 1. . Forsimplicity, we take ¢ = ey, sothat Dy =
D,

Because |[D;Flle < [|F||Lip 1, we may apply Cauchy’s estimates in the z,-direction to
obtain.
D, D, F(re,)
Reversing the order of differentiation and then integrating, we find this proves (11) and
hence (a) of the theorem to prove (11) and hence (a) of the theorem.
r € [0,1]setting r = |F(e,)|, we arrive at

Q= Q50
5 =201 -2, =2/l
Yo:D— D

Yoa(2) = a+ (1 —al)z
o,=0 o(T) =1
To prove (b), observe that the invariant Schwarz lemma and the Lipschitz condition on F
imply
|D,F(e,)| < [D,F(eq) — D,F(re;)| + DoF(re;)
< 4|IFllyip (1 =)+ 2(1 = |F(re)) DA —r)71/2
For all r € [0,1], thus by [3.2],
|D,F(e,)| < [D,F(eq) — D,F(re;)| + DoF(re;)
< 4|IFllip (1 =02+ 2(1 = |F(re)) DA —r)71/2
Forall r € [0,1]. setting r = |F(e,)|, we arrive at
ID,F(ey)| < (4||F||Lip1 + 2)(1 — |F(ep)D?
Completing the proof of (b).
(3.1.4) (a) is not new but is included for the sake of completeness. Note that it implies that
the restriction of F to any complex tangential curve in B2 is continuously differentiable.
In fact, F is a good deal smoother than this on such curve according to Stein [134] (see also
[77] or [130]).
Given a complex-valued function g defined on the set E, define
0SCgg = supzyeelg($) — g )|
Corollary (3.1.5)[121]: If F € Lip;(B,) then there exists a constant C, Depending only
on [[Flyjps , such that
osco,F < C(8 + 8/2(1 — [F[QY?)
Forall Qs({) c 0B,.
Proof. For convenience we take ¢ = e;. Define the complex tangential curve y,(t) =
y(t) = (cost,esint)(t € R), where § € R is fixed. Because F is continuously
differentiable along y, Theorem (3.1.4) (b) shows
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b b o\ 1/2
FO®) - Fren) | < [ IprG@)y@ldesc [ (1-1Fp@)) " a
0 0

. 2 1/2
Setting s(t) = (1 —|F(y(®)| ) , We have
[DrF(y(®)] < C

1/2 =
(1= FG®)I%)
Whenever |F(y(t))| < 1. it follows that s(t) < s(0) + Ct, giving

1
Fr®)) = Fep) | = ¢ (b7 + b1 - IF(e)P2)
For small & every point Qs(e;) has Euclidean distance less than & from one of the curve
ve(]0,26%/2]) since F € Lip,(B;) , since the proof of the corollary is complete,
The main result the following theorem.

Theorem (3.1.6)[121]: Suppose that F € Lip,;(B,) and F(0) = 0. Then there exists a
constant €, depending only on ||F||;,,, such that

If ° Fllemoasy = |If llsoy

Is'(®)] =

Forall f € B(D).

The assumption F(0) = 0 is merely a convenience normalization. [If F € Lip,(B,) and
F(0) = 0, Theorem (3.1.6) may be applied to the composition of F with an appropriate
automorphism of D. It then follows that F has the pull-back property, with a constant
depending both on ||F|[;,, and F(0)].

Until further notice we taken n = 2. The higher-dimensional case will follow from this
by a slicing argument. (See Proposition (3.1.10))

To prove Theorem (3.1.6). we need to show the averages

1
FQ)|f°F—(f°F)Q|dQ (12)

are bounded by a constant times || f ||g(py where @ = Q5({). We also need to know that f o

F € H1(B,). To avoid this latter technical detail at the beginning, we assume until further
notice that f € C(D).

The proof of Theorem (3.1.6) comes in two parts, one dealing with “small Q’s”, the
other with “large Q’s”. We start with the smaller Q’s”., which are easier to handle .

Let C denote the constant associated with F by Corollary (3.1.5). Letting c =
1/(9C), we see thatif 0 <& < c(1—[F(Q)]) then F(Qs(Q)) is contained in the disk

A with center F({¢) and radius (1 — F|{|)/2, setting @ = Q5({)we have
1 2
JQ |f o F - <f°F)Q|da§@ fQ |f e F=F(F(©) |do <2 0scuf

a(Q)
The estimate (1) on f' shows that the oscillation of f over A is bounded by an absolute
constant times the Bloch norm of f.

The case & > c(1—|F({)|) is substantially more involved, but there is an
intermediate case that is easily handled. Suppose we know the average (12) are bounded
by a constant (depending only on [|F|[;,, ) times the Bloch norm of f, whenever 6§ >

4(1 — [F($)]) . Then for the range c(1 — |F({)|) £ d < 4(1 —|F({)|) we obtain

1 a(9,)

81




Where Q9 = 05(¢) and Q1 = Qu1-|r)p(¢) - The last expression is then bounded by a
constant (depending only on ||F||;,, times the Bloch norm of f.

It is thus the range &6 > 4(1 — |F({)|) that is trouble some. From now on we take { =
e; with Q = Qs(e;) and Q = Qg5(1) (11), and (12) show that

1
L|f°F_(f°F)Q|daz§mL fT \f o F, — f o F0)|'doydA(a)

1
o(Q)

@ ), VF@O =2 PC0aldAl@)  (13)

[recall the notation F,(w) = F (a,(l — Ialz)zw) w ] Proposition (3.1.1) and (2) show

that the second summand on the right is bounded by an absolute constant times the Bloch
norm of f.
It is thus the Q-averages of

j If o By — f o Ey(0)| doy (14)
T

That we must control. Note the similarity between (14) and (7). In fact, it is not difficult to
convince oneself that « — 1, F, (T)looks more and™ more like a circle with center F,(0) .
This is the geometrical picture mentioned. (it is tempting to think that something like
Littlewood’s subordination principle, combined with Proposition (3.1.2), would now finish
the proof, but we were not able to make this idea work.)

By (4), (14) is less than or equal to

201 - F, (0, i} 201 - RO
Ifla | tog T i 4o = Iflle | loB =y -de (15)

The equality following because log 2|1 — F,(0)E,|? is harmonic on D.
Lemma (3.1.7)[121]: If F € Lip,(B,), then there exist a constant C, depending only on
|FlLip, such that

1 1
log————do <C +1o
jT HCETAD N ®1D,F(a, 0)2(1 — |al?)

Foralla € D.
Proof. By Theorem (3.1.4) (b) and Fatou’s lemma,

J log(1 — |F,])?do =logc + f log|(DyF),|?do =

T T

logc + J lim,_,; log|DyF(ra,r(1 — |a|2)1/2w|2d0(w) >
T

logc + limr_,lsupf log| Dy F (ra, r(1 — |a|2)|1/2w|\2d0(w)
T
Using the definition of D and multiplying by w with the absolute values, the integrand in

the last line becomes
loglwraD,F(ra,v(1 — |a|?)Y?w) — r((1 — |a|)Y?)D,F (ra,r(1 — |a|2)1/zw)|2
Which is a subharmonic function of w. It follows that
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j log(1— |E,|*)do = logc + }?irri sup log|(1 — |a|»)¥2D,F(a, 0)|2
T

= log c + log|(1 — |a|?)¥/?D,F(a, 0)|2
Completing the proof of the lemma.
The next two lemmas will be applied to the one variable function g(a) = F(a, 0).
Lemma (3.1.8)[121]: Suppose g is holomorphic inD, g € Lip 1(D) and ||g|lo <1, , then
there exists a constant € depending only on || g|[.;,,,  such that

L[ log(1 — |g(a)|?)dA(a) < logs + C
A(Q) Jg = '

Forall Q = Qs(1) withd > 4(1—|g(D)] )
Proof. If a € Qg5(1) ,then
1-lg@* <201 = lg@D £2(1 = gD + 1g(1) — g(a)|

o) 1
<2 ((Z) +1gllLip111 —al =26 (Z +11gllLip 1))

Lemma (3.1.9)[121]: Suppose g is holomorphic in D, g € Lip 1(D) and ||g|l <1, and
g(0) = 0, then there exists a constant C > —co depending only on ||g|[.;,,, such that

1 1 , -
mjﬁ og(g')dA=C .

Forall Q= Qs(1) withé>4(1-1g(D)]| )
Proof. First observe that if u is subharmonic and non positive in D, then
1—1\?
SUPo<|z|<rt(2) = (1_+r) jD udA. (16)

Whenever 0 < r < 1. Inequality (16) is clear when r = 0.

The general case follows by applying the case r =0tou composed with
automorphism of D and then changing variables.
Assume to beginwiththat 0<&§ <1 . Set L=]|gll,;», andput ,x=1-4,y=

B
1- 2(L+1)

. By the Schwarz lemma [recall g(0) = 0]|g(x)| < x, Thus
lg() =g =2 19(1) —g(1) —gW)|-x=6/4
Where we have used the hypothesis & > 4(1 — [g(1)]). It follows that |g'| > 1/4 at
some point of [x, y].
Define the automorphism [g’| > 1/4.
() = 1-6+2z
I T C

Note that @(0) =1 — & and (1) = 1; ¢ is a " dilation" that pull G in towards 1.setting
1

r=1- D) and v = {z € D:Rez > 0}, it is not hard to verify that
% yle([0.r]), 07 (Q2s(1)) c V,and |¢'| £ 25 in V.
Now put h = ”;;l and Q = Qg(1) we use the remarks above and (16) (with u = log|h|

) to conclude
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jlogIhIdA floglh olle'|? dA

A(Q) A(Q)

1—1\2
ECJ lOglho{pldAéC(l—-l-T') Sup(o‘r)loglhO(pl

1+7\?
;C( ) [log——logL] :

(Recall that L = ||g’||,) .We are done in the case 0 < & < 1.
The case 0 < 6 < 1 is similar but easier. We need only show

f log|g'|ldA = C .
D

Here we know |g(1)| > 1/2,, which implies that |g(r)| > 1/4, where it r=1—
1/(4(L + 1). It follows that that |g’| is at least %4 somewhere in  [0,r] and now we
apply (16) as before. The proof of the lemma is complete.

Finishing the proof of Theorem (3.1.6) is now a matter tying up some loose ends. We need

to show
1 (1= [Fo(0)[%)
—_— lo dodA(o).
@ )y | o8yt
Is uniformly bounded provided 6 > 4(1 — |F(e,)|), where of course Q = Qg(1) Lemma
(3.1.7) and (3.1.8) show that the above is less than

1
C +10g8+A(Q) log1 al? dA(a) + —= O log D F(a, 0)|2dA(a).
By (5) and Lemma (3.1. 9) this expression is bounded by a constant depending only on
1 1l ipa
We have thus shown
If © Fllzmoacs,) < Clifllsw) (17)

For a constant C depending only on [ |f||.:,1, at least for holomorphic f € C(D). For the
general f € B(D), apply (17) to the dilates f, and take limit s as before (using the fact that
Il = 1Ifllgas 7 > 1).

The proof of Theorem (3.1.6) in the case n = 2 is complete, The next proposition
shows that Theorem (3.1.6) for n > 2 follows from this case.
Proposition (3.1.10)[121]: For n > 2  there exists a constant C,with the following
property: if g is holomorphic in B,,and the BMOA(B,) norm of g on two-dimensional
slices of B,through the origin are bounded by the constant C, thenllgllBMOA(Bn) < C,C.
Proof. Here we use the fact that BMOA is the dual space OF H! : See [128], theorem v].
Thus for any k.

MNgllzmoacs,) = sup |faBk 9Fd0k|
Where the supremum is taken over all holomorphic polynomials P of H! — norm at most
1 such that P(0) = 0. . The proposition now follows the formula

hdo,, = f ho U130, ..,0) doy($ &)AU,  (18)
0B U(n)
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Valid for all integrable on h on dB,, . Here «.(n ) is the complex unitary group on €™ and
dU denotes Haar measure on «(n ), (formula (18) follows from Fubini’s theorem and
proposition 1.4.7 (3) in [77].)
For z,w € D, define
Zw) =1 la — zw|? | 1
=R A D G- wB) BT Te,w)IT
Suppose F: B, — D is holomorphic. It follows from (13)-(15) that if

1
Sup —= jQ o(F(O),F (G, 0)doy(() < o0). (19)

Then

1
Sup @jg (If o F = (f o F)g|dos < )

For every f € B(D) where the suprema are taken over all @ = Qs(e,).

Now if f € B(D) ,then |f(z) — f(w)] is in fact much smaller than ¢ (z, w) for most
Z,wWED.

We find that (19) is a necessary condition for the pull-back problem.

We will give the proof of Theorem (3.1.11) for the case n = 2, when n > 2, the
argument is essentially the same but is somewhat less convenient because of the Jacobian
factor (1 —|2|?*)¥~2 that appears in the higher dimensional analogue of (9) (see [77]).
Theorem (3.1.11)[121]: If f: B, = (D) is a holomorphic, then F has the pull-back property
if and only if

Sup e(F(9), F({¢,mmn)da({) < ) (20)

o (Qn(n)) an(n)
Where the supremum is taken over all @, () c 9B,

Proof. (n =2). We have already seen that (20) is sufficient for the pull-back property. To
show the necessity of (20), first observe that forany g € BMOA(B,) , Bessel’s inequality
shows that

1
e jﬂ jT 19e — 9a (012 doydA(a)

1 :
T jﬂ jT 19 — 90O doydA(@)

1
B mfg |9 — go|” daz < CUllgllsmo)? (21)

Now we have made use of the L? - criterion for membership in BMO: see [84].

Now suppose f:B, — D has the pull-back property. Proposition (3.1.12) shows there
exists a holomorphic map f:D — C? such that
1_|Z|§If (Z)|§1—|z|
Forall z € D . It follows that f o F is a C2-valued element of FBMOA, (B,).

Take n = eq for convenience, and set g = f o F.A . A classical Littlewood-paley

identity [84] shows that
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1
j 190 — 9 (02 do = 2 j 19, (W) 2log — dA(w)
T D w

— 2 [ 1B IDF)e? (1 = a®)iog — dAw)
™
D

|(D,F),(w)|? , 1
o A= [EW)2)? (1—laf )logmdA(W)

= EJD Ah,(w) logmdA(W) (22)

because log|lw| is the fundamental solution for the

1\Y%
N

Where h (W) 10g|m

Laplacian and h,(w) is a subharmonic, a simple dialation argument using Fatou’s lemma
shows that

jAh()l iam()>zj (h — he(0))d —zj (F F(O)))d
D aW Oglwl W: - a a )O-_ TQ ata g,

The last equality above following as in (15) because Log|1 — F,(0)F, |?
Is harmonic on D, thus (21) and (22) show that

1 1
TQ)JQ o(F(O.F ((1'0))‘102(@:@ f f o(F,, F,(0)) doydA(a)

=) [ 19080 dodac

< C(llgllzmo)* £ C.
The proof of Theorem (3.1.11) (for the case n = 2) is completed.
Proposition (3.1.12)[121]: There exist f,g € B(D) such that

If'@)| + 18" (2)| =

1—|z|

Forallz € D. '

Proof. Let f(z) = Zj?';ozq’ , Where g is a large positive integer to be determined. because
f is alacunary power series with bounded coefficients, f € B(D) (See [131]). We first show
that

f'@)| = if1-q*<lzl 1-q*D k=12, (23)

I I
We have

If'(2)| = q* Piks —qulzl‘“ qulzl‘“ =1—11—1II

k+1
forall z € D.Fixaz asin (23), and putx = |z|q . Then

(I-qM*sxs [(1 et/

)

k+1/2]q_1/2

which implies

1/3<x = (1/2)7 """ for k=1
if g is large enough.

We thus have I = ¢*/3, and we easily estimate that
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k-1 qk
1= Z J = .
LT =91
j=0
In 111, note that because the ratio of two successive terms is no larger than the ratio of the

first two terms, the series is dominated by the geometric series having the same first two
terms. Thus

e}

k1 \\J
< qk+1|Z|qk+1Z (qlzl(qk+2 qk+ ))
j=0
I s 2
1= qlz (@) T 1= qara
- e qa/27”

= ( 1_ q(l/z)q3/2_q1/2 .

It follows that

qk qk+1/2 1

! = —_—= 2
PN =4 = 4qi7 = aq 2= o
If g is large enough, for the ranges of k and z specified in (23).
A similar argument shows that if q is a large positive integer and g(z) = X2, 2™/, where
n; is the integer closest to g/* */2, then

g’ @12 if 1- gD Zz1 21 —qg*D, k=1,2,..

We are done unless it happens that f' and g’ have a common zero in {|z| < 1 —g~1},in
which case we can replace g(z) with g(az) for a suitable g with |a|] = 1. Note that
f'(0) = 1.] The proof of Proposition (3.1.12) is complete.

Proposition (3.1.12) may be used to give various other characterizations of the pullback
property. We mention two, omitting the proofs:

(i) A "Garsia-norrn characterization™: F has the pull-back property if and only if

sup P[Q(F, F(@))] () < oo.

a€EB
Here P[] denotes the Poisson-Szego integral, or the "invariant Poisson integral™ as in [77].

(if) A "Carleson-measure characterization": F has the pull-back property if and only if
|V.F|?
(1—|F[?)
Q5(8) _ _ _
where V,, denotes volume measure on C™, V is the complex tangential gradient, and the

supremum is taken over all Q5(&) = {z € B,:|1 —(z,¢) < &8} (This follows from
Proposition (3.1.12) together with the Cadeson-measure characterization of BMOA in terms
of V1 given in I-CC].)

The techniques developed can be used to prove a theorem related to a result of Rudin
(see Theorem 11.4.7 in [77]). We still assume F: B,, — D is holomorphic. Given ¢ € 9B,
the function on D defined by F; (1) = F(A$) (A € D) is called a slice function of F. In the

next theorem we identify F; and F, whenever ¢ = e'on.
Theorem (3.1.13)[121]: Suppose F € Lip,(B,) forsome a > 1/2,and that VF(0) # 0.
Then at most one slice function of F is an extreme point of the closed unit ball of H* (D).

supé " dV, < oo,
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A result of de-Leuw and Rudin 1-D, Theorem 7.9] shows that if g € H*(D) and ||g||. =
1, then g is an extreme point of the closed unit ball of H* (D) if and only if

[ 1001 = Ighydo = - oo @24

T
Thus the modulus of the function F of Theorem (3.1.13) is severely constrained to stay away
from 1, not only in terms of the size of the set where |F| = 1, but also in terms of the rate at
which |F| can tend to 1 in the real tangential directions at a point of the maximum modulus
set of F.
It is easy to see from (24) that if g is not an extreme point of the closed unit ball of H* (D)
and g € Lipy(D) for some a > 0, then the subset of dD where |g| = 1 is a "Carleson set"
(see [77]). Thus Theorem (3.1.13) implies that, except for possibly one complex line through
the origin, the intersection of the set where |F| = 1 with any complex line through the
origin is a Carleson set. Rudin's result yields even more information along these lines, but
apparently our observation about extreme points is new.
We sketch the proof of Theorem (3.1.13).
Assume n = 2 for the moment. Using the fact that F € Lip,(B;) ifand only if [VF(z)| =
0(l — |z])*~1 (see [77]), the proof of Theorem (3.1.4) shows that Theorem (3.1.4) (a) is
still true as stated, and that |[D-F (&) = C(1 — |F(&)|%~/? holds in place of (b). It follows
that log(l — |F|) 2 C; + C,1log|DF|? on 0B,, where C; > — o and C, > 0. Thus the
argument given for Lemma (3.1.7) shows

flog(l CEDdo 2 ¢ + Clog(IDiF(@ 021 — |al®).  (25)
T
Suppose now a = 0 and that F, is an extreme point of the closed unit ball of H* (D) Then
(24) shows the left side of (25) equals —oo, which implies D;F(0,0) = 0.
Now taking n = 2, the above argument shows that if any slice function of F is an extreme
point of the closed unit ball of H* (D) then the first derivatives of F in complex directions
orthogonal to this slice vanish at the origin. Because VF(0) # 0, there can be at most one
such slice.
1. Aresult of Tomaszewski [135] implies that for every n there exists a positive number
a = a(n) and a holomorphic map F: B, - D with F € Lip,(B,) and |F| = 1 ona subset
of dB,, having positive g,,-measure. Because there exist Bloch functions that fail to have a
finite limit along any curve in D tending to a point of dD, such an F trivially fails to have
the pull-back property.
Section (3.2): Compact Composition Operators
For D denote the unit disk in the complex plane. A function f holomorphic in D is
said to belong to the Bloch space B if
supzen(1 — [z|*)|f'(2)] < oo.
And to the Bloch space B,. If

lim (1= |z)If"@)| = 0.
It is well known that B is a Banach space under the norm

Iflls = If O]+ sup,ep(1 — [2ID)If'(@)].
and that B, is a closed subspace of B. Furthermore, B is isometrically isomorphic to the
second dual of B, and the inclusion B, c B corresponds to the canonical imbedding of
B, into B,** [138]. It is a simple consequence of the Schwarz-Pick lemma [137] that a
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holomorphic mapping ¢ of the unit disk into itself induces a bounded composition operator
Cof € fo@ onB. Indeed, if f € B, then
(1 = 1z )@ =1 = 1zD)|f (p)]lg’ (2)]
L 10 - eI (). (26)
= Z - Z Z)).
1= lp@P]'? Y Y
And the Schwarz-Pick lemma guarantees that
1 — |z|?
'"@)| <1 27
Since the identity function f(z) = z belongs to B,, it is clear that ¢ € B, if C, maps
B, into itself. Conversely, if ¢ € B, and f € B, it follows from (26) and (27) that
fo ¢ € B, Indeed, if € >0, there exists § > 0 such that (1 — |z|?)|f’(z)| < e whenever
|z|? > |- 8. In particular, (1 — |z|?)| (f ° $)'(2)]| < € whenever |¢(z)|> > 1— &. On the
other hand, if |¢p(2)|> < 1— 6,
£ Il

(1 = 12N o 0) @] <

and the right-hand side tends to 0 as |z| — 1.

The compact composition operators on B, and on B will be characterized in terms
1-—|z|?
1-lp2)I?
space X to the Banach space Y is weakly compact if T takes bounded sets in X into relatively
weakly compact sets in Y. Gantmacher's theorem [139] asserts that T is weakly compact if
and only if T™*(X**) c Y where T** denotes the second adjoint of T. This theorem and the
characterization of compact operators on B, will be used to show that every weakly

compact composition operator on B, is compact.

To certain univalent functions ¢ which map D into itself. It is known that such
functions belong to B, [141]; and it will be clear from that if |[¢]l, < 1, then Cy is
compact on B, . On the other hand if ||¢|lo = 1 and there is a point of
TN¢(D)at which ¢(ID) does not have a cusp, then C, is not compact. However if
TN¢(ID) consists of only one point at which ¢(ID) has a nontangential cusp, then Cyis

compact on B,,.
Theorem (3.2.2) Gives a precise description of those ¢ which induce compact composition
operators on B, . It will be useful first to give a criterion for compactness in B, .

(1 = IzI)le' (@]

of the quotient l@'(z)|, Abounded linear operator T: X — Y  from the Banach

Lemma (3.2.1)[19]: A closed set K in B, is compact if and only if it is bounded and
satisfies

Lim suprex(1 = z|)|f'(2)| = 0 (28)
Proof. First suppose that K is compact and let € > 0 choose an € /2-
Net fi fo .., fpinK.There is anr, .0 < r< 1, such that (1 — |z|®)|f{(2)] <

g if lzl >r,1<i<nlIffeK|f —fillg <el2
for some f; and so

A = 2D @I < f = fillg + A = 2D @] <e.
Whenever |z| > r . This establishes (28).
On the other hand if K is a closed bounded set which satisfies (28) and (f;,) is a

sequence in K, then by Montel’s theorem there is a subsequence (fnk) which converges
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uniformly on compact subsets of Dto some holomorohic function f . Then also
(f,{k ) converges uniformly to f'on compact subsets of D. By (28), if e >0 thereis an
r,0 < r < 1 ,suchthatforall g €K, Itfollowsthat (1 — |z|®)|g'(2)| <€ /2.if |z| >
r .Since (fnk) converges uniformly to f and (fn’k ) converges uniformly to f' on |z]| <
rit follows that lim supc||fy, — f|l < €. - Since € >0, lim||f, —f||, =0 and
so Kis compact.

Theorem (3.2.2)[19]: If ¢ is a holomorphic mapping of the unit disk D into itself, then ¢
induces a compact composition operator on B, if and only if
N T A
Proof. It follows from Lemma (3.2.1) that C,, is compact on B, if and only if
lim  supjirg< (1 - 1zI)I(f o ) (2)| = 0.

|z| -

But
2 ' 1-|z|? / 2\ £/
(1= 1zIDI(f @) (D] = WW’ @DIA - le@IDIf e,

And
sup|fiig<1(1 = o f'(w)] = 1.

foreach w € D .The theorem follows.

It should be remarked that (29) implies ¢ € B, . A similar condition characterizes
compact composition operators on B.
Theorem (3.2.3)[19]: If ¢ is a holomorphic mapping of the unit disk D into itself, then ¢
induces a compact composition operator on on B if and only if for every € > 0 there exists
r, 0 <r<1,such that

1—|z|?

——|p'z| <e. 30
1—|go(z)|2|(p I (30)
Whenever |@(z)| > r,

Proof. First assume that (30) holds. In order to prove that Cy is compact on B it is enough
to show that if (f,,) is a bounded sequence in B which converges to 0 uniformly on

compact subsets of D , then ||f, e @llg = 0. . Let M = sup,|lf,llg . Given € >0,

therer,0 <r <1 ,suchthat %Iqﬁ’zl < j IF [¢p(z)| > r.Since
1 = 1zZ)](f e ) (@] = 1_—|Z|2|¢'(Z)|(1 — o@D (0(2)]
" 1—|¢(2)|? "
I Sl cd AN
=TT le@E

It follows that (1 — |z|2) (f, ° $)"(z) < g if o) >r.

On the other hand. £, e (0) » 0 And (1 — |w|?) |f,(w)| = 0 uniformly for |w| <
r. Since

(1—1z12) (fre d)' (2) < 1 = o@D )£ (¢ (D).

It follows that for large enough n, |f, o ¢(0)| <§ and (1—1z|%) (f, o @) (2) <§ if

| (2)| < r .Hence ||f,, o ¢|lg < € for large n.
Now assume that (30) fails, Then there exists a subsequence (z,) in D inand e > 0 an
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1—|z,|?
1-|p(zn)I?
necessary it may be assumed that w, = ¢(z,) > wy €T , Let f,,(z) = log —

such that |z,| - 1 and |¢p'(z)| > € for all n. Passing to a subsequence if

Then

(f,,) converges to fy,uniformly on compact subsets of D . On other hand,

ICofa = Cofolly = A = 12al) |(Cofe) @) = (Cofo) ()|

— J— wn o wo

= (1-z,1)l¢’ (Zn)| — lwy|? 1 —wgwy
(1 — |z,

_ an)l\l_— > €

For all n, so Cy f, does not converge to Cy frin norm. Hence Cy is not compact.

It is important to note that although (29) implies (30), since in this case C4, on B is
the second adjoint of Cy on B, , the two conditions are not equivalent, Condition (29)
implies that ¢ € B, , while there certainly exist functions ¢ & B, which satisfy (30).
Indeed, any ¢ for which ||¢]||, < 1 satisfies (30) trivially.

A sequence (w,) in D is said to be n -seperated if p(w,, w,) = |

Wm—Wn

1-Wmwn > n
whenever m # n . Thus an n -seperated sequence consists of points which are uniformly
far apart in the pseudohyperbolic metric on D or Equivalently, the hyperbolic balls
A(w,, 1) ={z|lp(z,w,) <r} are pairwise disjoint for some r >0 . Evidently any
sequence (w,)in D in which satisfies |w,| = 1 possesses an 7 -seperated subsequence
for any n > 0. In particular, if the sequence (w,,) in the proof of Theorem (3.2.3) is n -
seperated, then the calculation in the proof shows that ||Cy fi, — Cefu|| > €n whenever m =

n, so (C¢ f) has no norm convergent subsequences.

Another property of separated sequences is contained in the next proposition. This
proposition is related to some interpolation results of Rochberg [142], [143]. Since the
method of proof is precisely the same as Rochberge’s, a proof will only be sketched.
Proposition (3.2.4)[19]:There is an absolute constant R > 0 such that if (w,) is R-
separated, then for every bounded sequence (A4,) there is an f € 8B such that
(1 — |w,|Df'(w,) = 4, forall n.

The idea of the proof is to consider two operators S: B — [ given by

Sfn= A~ |wn|2)f’(wn)
And T: 1 — B given by

1 (1 — |, |?)?
T(A)(z) = z e
Where 1 = (4,) € [*. The proposmon WI|| follow if it can be shown that,
I —ST|| <1,

for then ST will be invertible and so S will be onto the symbol C will denote a constant
whose value changes from place to place but does not depend on R. Now

— 2)3
(ST =D, = (1 — |wy]?) z Pl )

m (1 - /M_fmwn)4-
m#n

And so it will be enough to estimate

supn(1 = ew]) )

m+#n
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If R> % say, then there is a fixed 6 > 0 such that the Euclidean disk D,, of center wy,

and radius §(1 — |wy|?).

Is containedin the hyperbolic disk and is disjoint from the hyperbolic disk A=
A(wy,, R) and is disjoint from the hyperbolic disks A, forn = m. . Since |1 —Z w,|™*
subharmonic and the radius of D,,is comparable to 1-|wp |2

(1~ lw, 2)° cff 2 —loml” e ay,
A=)t = My A= zuny *

And since |1 — ,z| dominates 1 — |w,,|? on D, |t follows that
A~ fwml®)® _ ﬂ y
A=)t~ M), (- wnz>3 &

And hence
(1_| m|2)3 1- |wn|2

sup, (1 — |w; Z < ﬂ — dx dy;
pn( | Tll) (1 _ men) Umian (1 _ ’blfnZ)3 y

1- |Wn|2

— dx dy;
U}D)/An (1 — wyz)?
The change of variables z = o ms this into

(11— m|2)3
supn(l |Wn|)z mwn) = .Uqumdf dn;

And the last integral can be made arbitrarily small uniformly in n if R is shosen close enough
to 1. This provides the desired estimate.
Since every sequence (w,) with |u,| = 1 contains an R-seperated subsequence

(wy,,) . it follows that there is an f € B such that (1 - |wnk|2)f’(wnk) =1 forallk,
This will be used in the proof of the next theorem.
Theorem (3.2.5)[19]: Every weakly compact composition operator C4 on B, is compact.

Proof. The composition operator C¢: B, = B, Is compact if and only if
— |z|?

z
I?I—uw ¢’ (2)| = 0.

And, according to Gantmacher’s theorem, weakly compact if and only if ~ Cyf € B,for
every f € B . If Cy is not compact, there is an € > 0 and a sequence (zy),|z,| > 1 ,
such that

1- |Zn|2

TaG0E 1 @l 2 e

Forall n, since ¢ € B, |p(z,,)| = 1, , and by passing to a sub-sequence it may be assumed
that (¢ (z,)) is R-seperated. If f € B.,
|2, |2

A= 1zl |( Cof) @] = Tog05 19/ @l (= 196G | (9 @)

>e(1- |¢(Zn)|2)|f,(¢(zn))|
Since (¢(z,)) is R-seperated, an application of Proposition (3.2.4) produces an f € B such

that (1—|¢(Zn)|2)|( C¢f)'(zn)|=1, , for all n, Since (1-
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1222 |( Cof) ()| 2 € and |zl > 1, Cof € By andso  C, is not weakly
compact.
A slight refinement of these arguments will show that a non compact composition
operator on B, must be an isomorphism on a subspace isomorphic to the sequence space
Co. This is not surprising since B, is known to be isomorphic to ¢, .

As remarked any holomorphic mapping ¢ of the unit disk into itself satisfying ||¢ ||, <

1 induces a compact composition operator on B and also on B, if ¢ € B, . On the other
hand it is easy to see that if ¢ has a finite angular derivative at some point of T , then
Cy4 cannot be compact. Indeed, ¢ has an angular derivativeat ¢ € T if the non tangential

limit w = f({) € T exists and if the quotient %?(O converges to some complex

number u as z — ¢ nontangentially. It is known that u # 0, and the Julia-Carathe odory

lemma shows that ———2"
1-|¢p(2)|?

Theorem (3.2.2) or (3.2.3) as appropriate shows that  Cg is not compact.

It turns out, however, that ¢ can push the disk much more sharply into itself and still
induce a non-compact composition operator. The easiest way to see this is to consider
the functions ¢, ,(z) =1 —-A(1 —2)% 0 <A, a < 1.It is easy to see that ¢, , € B, and
that ¢, , maps D onto a region which behaves at 1 like a Stolz angle of opening ma.

If Cy were compact on B,, composition with logi would yield a function in B, , but

an easy calculation shows that this is not so. This leads to the consideration of cusps,
Throughout the reminder of ¢ will denote a univalent mapping of the unit disk D into
itself with image G = ¢ (D).
For simplicity it will be assumed that GNT = {1}.
The region G is said to have a cusp at 1 [141] if
dist (w,0G) = o( |1 — w|) (31)
As w — 1in G. Otherwise G does not have a cusp at 1. The cusp is said to be non tangential
if G lies inside a Stolz angle near |, i.e., there exist r, M > 0 such that
11— wl <M(1-wl?) (32)
If |1 — w| <r,w € G. Finally the following geometric property of the conformal mapping
¢ will be needed. If ¢ is a conformal mapping with domain D.

i(l — 121?19’ (2)| < dist (¢(2),06) < (1 - |z]?)]|¢"(2)|. (33)
This inequality, known as the Koeba distortion theorem, is an elementary consequence of
the Schwarz lemma and Koeb;s one-quarter theorem [140]. It can be used to prove that
bounded univalent functions lie in B,. Indeed, if ¢ & B, ,thereisa § > 0 and a sequence
(z,))inD in with |z,|]->1 and (1-|z,]) |¢'(z,)|>dfor all n. Hence dist

(p(z,),0G) > gso ¢(z,,) has acluster point in G, contradicting the fact that is a proper
map.

Theorem (3.2.6)[19]: If ¢ is univalentand G = ¢(ID) satisfies GNT = {1} but does not
have a cusp at 1, then Cy is not compact on B,

Proof. Since G does not have a cusp at 1, (31) fails. Hence thereisa é > 0 and a sequence
(z,) in D suchthat |z,] > 1 ,but

dist(¢(z,),0G) = 8|1 — ¢(z,)]
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Hence
6(1 - |¢(Zn)|2) < 25(1 - ¢(Zn))
< 2dist(¢(2y,),06) < 2(1 — |z, 9" (z)]

A=zl 0 8
- 2 |¢ (Zn)l =,
|1 - (.b(zn)l 2
Since |z,| = 1, Theorem (3.2.2) shows that Cy is not compact.
The next theorem shows how to produce compact ¢ omposition operators on from
univalent mapping ¢ with [|¢]|, = 1.
Theorem (3.2.7)[19]: If ¢ is univalent and if G has a nontangential cusp at 1 and touches
the unit circle at no other point, then Cg is a compact operator on 3B, .
Proof. As . ¢ € B, , it will be enough to show that

i — |z|? ,
P g Py ¢’ (2)| =0
Since the theorem will then follow from Theorem (3.2.2). Since G has a non-tangential cusp
at 1, there exist r, M > 0 such that
11—l <M(1-wl?)
If [1-—w|<rwe€GaG,Let € >0.Since G has acusp at 1, there isa § > 0 such that

dist(w,0G) < —|1 — w|.

So

—4AM
If |1-w|<d6,weEG.Letn=min(8,7)if |1 — ¢d(z)| < n. It follows that
TP 4dist(9(2),06) _ € 11— ()]
T p@F ¢ =TT IR "¢

On the other hand if |1 — ¢(z)| = n, there is a constant N > 0 such that |¢'(z)| < N by
the smoothness assumption and a p > 0 such that 1 — |¢(2)|? = p. In this case

Aol <A
T lp@p ¢ =510

And this is less than € if |z]? > 1 —%. That complete the proof.

It is possible to describe region G with tangential cusp such that the Riemann mapping
¢:D - G  admits either possibility. Indeed, suppose that h( 8)and ,k( 8) are positive
continuous functions on [0, 8,] with h(8) = 0o(8) and k(8) = 0( 6) . Let

G ={re®®|0 <60 <0p,h(0) <1—7r<h(8)+k(6)}
Then clearly G has a tangential cusp at 1. If k() = o(h(8)), then for w = re® = ¢(2),
(1—1z|®) 19" (2)| < dist(w,dG) < k(0).
and
1—|w|>>1-|w|> k().

So 1_1|:l)|le)|2 |p'(2)| = 0 as |p(z)| = 1, Since ¢ is a univalent , the argument of
Theorem (3.2.7) shows that Cg is compact.

On the other hand if k(8) =2h (9) and w(8) = (1 —2h(8))e?® = ¢(2(8)), then
evidently dist(w(8),dG) > ch(6). For some constant c, and since (1 — |z|%))|¢’(2)| =
dist(¢(z),dG), it follows that 1= llz((gg))llz

Although the condition of Theorem (3.2.2) and (3.2.3) provide succinct analytic
conditions on a function ¢ in order that it induce compact composition operators, it is
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desirable to have more geometric condition. For example, it is clear from that if ¢ is a
conformal mapping which has only a finite number of nontangental cusps on the unit
circle T and no other points of contact, then C, will be compact on B, . This raises the
question of whether or not there is a ¢ € B, such that (D)NT is infinite and Cy is
compact on B,. In this regard, it is known that if ¢ has nontangantial limit of modulus one
on a set of positivemeasure, then ¢ has an angular derivative at some point and so Cy is
not compact [144]. Further information about compact operators considered from a
geometric point of view, especially on H?, can be found in [144] and [145].

Finally, if ¢ € B, and Cy is compact, then Log €EB, forallweT.lIs

1
1-0¢(2)
the converse of this true?

Section (3.3): The Essential Norm of a Composition Operator
For D denote the unit disk in the complex plane. A function f analytic on the unit
disk is said to belong to the Bloch space B if
supp(1 — |z|2)If'(2)| < oo.
and to the Little Bloch space B,, if
Jim (1 = 1z?)If' @) =o.

It is well known and easy to prove that 8B is a Banach space under the norm

IFl = £ O] +supp(1 — |zIP)If' ().
And that B, is a closed subspace of B.
If ¢ is an analytic function on D with ¢ (D) € D , then the equation C,f € f o ¢ defines
a composition operator on C, the space of all holomorphic functions on D . The Pick-

Schwarz Lemma (see [12]) for instances asserts that

L)) <1 (34)
1-lp2)]? -

As noticed in [19] this and the chain rule give an easy proof of the fact that C, acts
boundedly on the Bloch space. In fact we have

(1 = 1z ) @] = (1 = 1zZD)|f (p@)]lp' (2)]
- L @Ia - @ ()
= T 0 lp" (D1 = le@|D)f'(¢(2)).
< supp(1 = 9D A)If (¢ (@)]
= supym)(1 — lw|?)|f'(w)]
< supp(1 = |z|)|f"(2)|
In addition, if C, acts boundedly on B, then ¢ must belong to B,. This follows from the
fact that C,z = . Conversely, if ¢ € B, then from the estimates above it is easy to show
that ¢ induces a continuous operator on B, (see [19]). The main goal is to compute the
essential norm of C,in terms of an asymptotic bound involving the quantity.

We recall that the essential norm of a continuous linear operator T is the distance from
T to the compact operators, that is,

Lol
Z)|.
1= lp@P'?
We recall that the essential norm of a continuous linear operator is the distance from T to
the compact operators, that is
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IT|le = inf{||IT — K]|| : K is compact}.

Notice that ||T||,= 0 if and only if T is compact, so that estimates on ||T||.lead to conditions
for T to be compact. Thus we will obtain a different proof of a recent result of Madigan and
Matheson [19] in which they characterize those ¢ which induces compact composition
operators on B and B, . The fundamental ideas of the proof are those used by J.H. Shapiro
[153] to obtain the essential norm of a composition operator on Hilbert spaces of analytic
functions (Hardy and weighted Bergman spaces) in terms of natural counting functions
associated with ¢. However, since neither B and B, are Hilbert spaces our method differs
In some interesting details from those of Shapiro.

We want to say a word about the well-known heuris-tic principle which states that if
a “big-oh” condition describes a class of bounded operators, then the corresponding “Little-
oh” condition picks out the subclass of compact operators. An excellent example of this
principle in action can be seen in J.H. Shapiro [153] mentioned above. The “big-oh”
condition on Bloch spaces is given by (34). Madigan and Mathe-son were able to prove the
“Little-oh” condition, that is, that a composition operator C, on B, is compact if and only
if

i 1- |z
Ile—rE— 1- |p(2)|? 9" (2)] = 0
They also obtained (with a different proof) that C,, is compact on B if and only if for every
€ > 0 there exists r, 0 <r < 1, such that
11—z |
SUPlo@I>r T 0 ()2 lp'z| <e.

As we will see later the conditions of compactness on B and B, are actually the same. In
fact, the essential norm of a composition operator is indepen-dent of the underlying space
B or B,. This should not cause any surprise. The fact that B is isometrically isomorphic to
the second dual of B, and the inclusion B, c B corresponds to the canonical imbedding
of B, into B, (see [138]) does not affect the computation of the essential norm. This is
exactly what happens if we consider a bounded diagonal operator defined by a bounded
sequence {a, } on the sequence spaces [* and c,, respectively.
Then its essential norm equals lim sup a,, and this quantity is independent of the underlying
space. In fact the proof of the main result is done simultaneously for both B and B,,.
Main Theorem (3.3.1). Suppose that C, defines a continuous operator on B(or on B).

Then

| 1-z2
IColl, = Sll)r{l_suplfp(Z)bTWl(P (2)|. (35)
In particular, C, is compacton B (or By). ifand only if
. 1-z2
lim supjyz)l>s o' (2)] = 0.

so1 1-lp@)[
It is understood that if {z : | @(z)| > s} is the empty set for some 0 < s < 1 the supremum
equals zero. This happens when ¢ (ID)is a relatively compact subset of ID and in this case it
is easy to show that C,is a compact operator.
If ¢ has an angular derivative at a point ¢ € dD, then we can apply the Julia
Carath’eodory Theorem (see [144]) and the Pick-Schwarz
Lemma to obtain
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= lin inf A /) < I L @it
= Imnjy ———5 Z)| = IIm su D a——— Z)| = 1.
2t T=lp@P ¥ T s e T o i

Thus, as an immediate consequence of Theorem (3.3.1) we have ||C

a finite angular derivative.

Before proving Theorem (3.3.1) let us show that for the Little Bloch space By there is
an equivalent formula in terms of another quantity. This a simple consequence of the
following proposition:

Proposition (3.3.2)[146]: Suppose that C ,defines a continuous operator on B,.Then

y 1—|z1> . 1—1z)> | 36
lim Sup|<p(z)|>sw|§0 (2)| = Aim_sup WVP (2)|. (36)

Proof. As remarked in the introduction the fact that C,, acts boundedly on B, implies that
@ € By. If (D) is a relatively compact subset of D, then both limits in (35) are zero and
coincide. So we may suppose that ¢ (D) is not a relatively compact subset of D. Let0<s,
< 1 be any increasing sequence tending to 1. We sett,, = inf{t: |p(2)|>s, forsomez
with |z| > t}. By continuity {t,} also tendsto 1. Since {z : |z| > t,, } = {z : |9 (2)| > s,, and |z|
>t U {z:| ¢ (2)|<s, and |z| > t,} we find that the left hand side of (35) is less than or
equal to the right hand side of (35). On the other hand, we can always find a sequence {z,,}
for which

oll, =1 whenever ¢ has

1i 1- |Zn|2 | ' | 1i 1- |Z|2 | ' |

1m Z = limsu e —— Z

oo 1 — p(z2 ¢ T SRl T T o2 'Y
- -l .
= ISP T e P (37)

Then either there is a subsequence {z,, } such that {|¢(z, )|} — 1 as k — oo, or for every
positive integer n we have | ¢(zy,, )| < s, for some 0 < s< 1.

Clearly, in the former case both limits in (35) coincide. For the latter case we find that
the limit in (36) is zero because ¢ € B,. Since this limit is greater than or equal to the limit
on the left hand side of (35), we find that they are the same again. The proof is now finished.
The lower estimate. First we show that:
1—|z|?

Pl<p(z)|25w|<ﬂ'z|- (38)

Ic,ll, = lim su

Instead of the reproducing kernels used by Shapiro for the Hardy and Berg-man spaces we
will use the sequence {z"},,-,. This sequence converges uniformly on compact subsets of
the unit disk. An elementary computation shows that

2n m — 1,72
n| — 1 — 2 n-1|1 _— ( )
lzMl = max (1 = |21z = ——(—
Observe that for each n > 2 the above maximum is attained at any point

_an1/2
on the circle centered at the origin and of radius r;, = ((ZJ)) . These maxima form a

decreasing sequence which tends to 2/e.Therefore, the sequence {z,},», is bounded away

; . z™m .
from zero. Now we consider the normalized sequence {fn = m} which also tends to zero

uniformly on compact subsets of the unit disk. For each n > 2 we define the
closed annulus 4,, = {zeD: n, < |z| < n, + 1} and compute
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min (1 — |zI)|fy ] = @ = 1 )lfi (ed)|

_<n+ 1) n? 4+ qn \"Y/2 38
“\n+2/\n2+n-2 ' (38)

Observe that these minima tendto 1 asn — oo and for eachn > 2 the minimum above is
attained at any point of the circle centered at the origin and of radius r,,, . For the moment
fix any compact operator K on B, or B. The uniform convergence on compact subsets of
the sequence {f,} to zero and the compactness of K imply that ||Kf,|| — 0. It is easy to
show that if a bounded sequence that is contained in B, converges uniformly on compact
subsets of the unit disk, then it also converges weakly to zero in B, as well as in B. Thus

Ic, — K|k Zlims%p (€, — K)full
> limsup (||Cofull — IKSII)
n

= lim sup ||C(pfn||.

n
Upon taking the infimum of both sides of this inequality over all compact operators K, we
obtain the lower estimate:

”Cq)”e = limstllp ”qufn“
= lim sup sg)p (1 = 1zZI2)|fn (p(@)]|l¢" @)
n

i 1 — |z|?
= l1imsup Su

w o 1 - 9@
Now (39) is greater than or equal to

y 1 — |z|? |
1m su Su

np (p(z)gAn 1 - |§0(Z)|2 4
and (40) is greater than or equal to

1 — |z|?
lim su Su ’(Z) su (1 _ (Z) 2) ! (Z) (41
P T eE @1 s, (= @ (p@)] (41

If o (ID) is a relatively compact subset of D both sides of (37) are zero and there is nothing
to prove. Otherwise we find that min (1 — |@(@)|?)|fy (¢(@))].= sup (1 —

@ (2)€An ©(2)EA,
1z|?)]| £/ (2)]. ()| because the minimum in (38) is attained at any point on the circle
centered at the origin and of radius r;,, ;. Since these minimatendtolasn — oo, it follows
that (41) is equal to

"D = le@DI*)|fy (0(2))].(39)

‘@I = le@1*)|fy (@) (40)

y Ll ) 42)
1m su Su Z .
np (p(z)gAn 1 - le@]? 4

Finally, an easy exercise shows that (42) coincides with the right hand side of (37). To obtain
the upper estimate in the case of the Hardy and Bergman spaces, Shapiro [153] used the
operators P, which take f to the nth partial sum of its Taylor series. On the Hardy space
these operators satisfy: i) Each B, is compact, ii) (I — B,)f tends to zero uniformly on
compact subsets for any f in the Hardy space, and iii) for each n the norm in the Hardy space
of I — P, equals 1. Although each B, is also compact in the Bloch space, and (I — B,))f
tends to zero uniformly on compact subsets for each function f € B, this sequence does not
satisfy anything analogous to iii) above. In fact, ||B,|| = Clog n where C is a universal
constant (see [138]). Therefore, by the reverse triangle inequality ||/ — B,|| = Clog n —
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1. One of the issues here is that in general it is not easy to compute exactly either the norms
of Bloch functions, or the norms of operators defined on Bloch spaces. To obtain the upper

estimate we need the operators K,,,n = 2, which take each function f(z)to f (nT_l z).

Every operator K,, is compact on B (or B,). We also have that (I — K,,)f tends to zero

uniformly on compact subsets of the unit disk for every f € B, and (although we do not

know if lim ||/ — K,|| = 1) we have the following proposition, whose proof is delayed.
n—-oo

This will be accomplished by applying Proposition (3.3.5). Since each L,, is compact so is
CyLy. Therefore

”C<p”e = ||C<p_C<an” = ”Cfp(l - Ln)”-
On the other hand, we have

ot = L]l = sup ¢, = L7
= sup sup (1 — [z1D(U — L)f")(e )le' ()]
. I|f||T1|2IZI<1

— |Z

= sup sup e 0 @I = le@P (@ - L)r) (0 @)[lo'@] 43)

Now fix 0 < s < 1.Then the right hand side of (43) is less than or equal to

1 — |z|? , B ; ) ,
SR b T e P10 2 le@1D|(U - L)F) (0 @)
Lo
+ sup sup e o' @I — le@F)
X |((1

By applying the Pick-Schwarz Lemma in the first term, and the fact that for f in the unit ball
sup (1 — lp@P)|(U = L)f ) (¢ @)

lp(2)|>s
< sup (1= 2 |(U = Lf ) @] < I = Ll
z|I<
to the second term, we find that (44) is less than or equal to

sup sup (1 — Wi |(( = Kn)f) W)

Ifll=1 |wlss
1 — |z|?

+||I = L,|| su su "(2)]. 45
IF=Lall sup— SUb T ToE 1 @ (49

Let us prove that the first term in (45) tends to zero as n — oo. By the triangle inequality
we have that the first term in (45) is less than or equal to

> camsup sup (1= WP |(A = Kn)f) @) (46)

Ifll=1 Iwlss

mz2n
By the triangle inequality again we find that (1 — |w|?) |((I — Km)f)'(w)| is less than
or equal to
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sup sup (1 — |w|?)
Ifll=1 |wlss

1
frw) - f’((l -~ w>|
1
+—sup sup (1 — |w|?)

Miifll=1 |wlss ((1 _nll) W>‘ (47)

By integrating f'’ along the radial segment [(1 — 1/m)w,w] it is easy to see that the first
term in (47) is less than or equal to

1
— sup sup (1 — [w)wl[f"(EW)],  (48)

mifll=1 |wlss
where &(w) belongs to the radial segment [(1 — 1/m)w,w] that is still contained in the
closed disk of radius s. The Cauchy inequalities applied to a circle C(&(w)) centered at £ (w)

and of any fixradius 0 < R < 1 — s yields that (48) is less than or equal to

1
— sup sup (1 — |wl|? )IWI Jmax_ If" (2)I. (49)
MR |fl=1 |wlss

On the other hand, on the unit ball of B (or B,) we have g max If'(2)] < So we

1- ( +R)2"’
find that (49) is less than or equal to
1 1 S
— 1 — < :
mR S0P (U= W=7 S TRT =G 7 B2
Since the second term in (47) is less than 1/m we find that (47) is < C/m, where C only
depends on s. Therefore, we find that (46) is less than or equal to

C c C
2, G S, Gy =y

mza2n mz2n

which tends to zeroasn — oo. Hence, lettingn — oo in (45), applying Proposition (3.3.5)
and putting everything together, the following inequality follows

1 — 2
Ic |l < sup @
e lp(2)|>s 1 - |§0(Z)|

Since s was arbitrary inequality (50) holds.

The proof of Theorem (3.3.1) will be completed once we have proved Proposition
(3.3.5). In order to do this we need some basic facts about Bloch spaces. Recall that dual
space B of B, is isomorphic to the space A® (D) of analytic functions on the unit disk such
that

| 19@1da) < =
D
where dA(z) is Lebesgue area measure on D, normalized to have total mass 1, that is,
dA(z) = = dxdy == pdédpforz = x + iy = peif. This duality is realized by the
integral pairing
(.9 = | @9@) da@
D

(see [154]). Let0 < r < 1befixedand let Kr : B, — B, be the operator which assigns
to each function f the function f(rz). Now, for any f(z) = Yo-o anz™ € B, and any
g(z) = X%, b,z" € A! (D) a straightforward computation shows that

(F2,9@) = ) —= anby = (f(2),9(r2).

n=0
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Thus, the adjoint operator K, : A' (D) —» A! (D) acts in the same way as does K,.. We
also have that the Bloch space B is the dual of A (ID) under the same integral pairing. Thus
in a similar way, it can be shown that the bi-adjoint operator K;;* : B — B of K, is the
operator that assigns to each function f(z) the function f (rz). Thus, we denote K- and K;-*
by K,.. With this we may observe that if we have constructed the sequence {L,,} required by
Proposition (3.3.5) for By, then just considering the bi-adjoint sequence the result follows
for the Bloch space B. This is trivial because L3 = (Zpon ComKn) =
Zmzn Cnm Ky and [[(I — Ln)**” = |[I — Ln”-

To prove Proposition (3.3.5) we also need the following proposition about the
compact operators K.
Proposition (3.3.3)[146]: Forany g € A' (D) we have ||K,g — gl|l = Oasr - 1.
Proof. Let ¢ > 0 be fixed. By the continuity of the integral we canfindans,1 > s > 0,
such that

[ le@ldae <.
|z|>s

Nowrs — sand1/r — lasr — 1. Therefore, the change of variables w = rzand the
above display show that

[ lgeaiaae L I g (W) dAGw) <~ I
|z|>s r rs<|wl|sr r rs<|w]|

for r near enough to 1. On the other hand, since K,g tends to g uniformly on comp
act subsets of the unit diskasr — 17, we have

9| dAW) < =

max 1g(r2) — g()| < 3

|z|<s

for r near enough to 1. Thus for r close to 1 we have

lg(rz) — g(@| = j lg(rz) — g(2)|dA(z) + f lg(rz) — g(2)|dA(2)

|z|<s |z|>s

<fs2 4 j 9@ dAG) + f 9@DIdAG)
|z|>s

3 |z|>s
<£+E +i = ¢
3 3 3 7

Since € was arbitrary, the result follows.

Given two Banach spaces X and Y we denote by L(X,Y ) the Banach space of
bounded operators from X into Y and by K(X,Y ) the Banach space of compact operators
from X into Y. We need a theorem of Mazur that asserts that if a sequence in a Banach space
converges weakly, then some sequence of convex combinations converges in norm (see
[139]). We begin with the following theorem, whose proof was provided by Joel H. Shapiro
(alternatively, in the proof of Proposition (3.3.5), we can use Theorem 1 in [149]).
Theorem (3.3.4)[146]: Suppose X and Y are Banach spaces and {T,,} is a sequence of
compact linear operators from X to . Suppose further that for every y* € Y™ and x™ €
X** we have: (T,; y*,x™*) — 0. Then there is a sequence {S,,} of convex combinations of
the original T,, such that ||S,|| — O.

Proof. Let Q denote the cartesian product of the closed unit ball of Y* and the closed unit
ball of X™*, where each ball has its respective weak star topology. Thus Q is a compact
Hausdorff space. For T € K(X,Y) the function T* : Q — C defined by:
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belongs to C(Q) (see [149]), and the map T* — T~ is an isometry taking a certain closed
subspace of K(Y™*, X*) (namely the weak-star continuous compacts) onto a closed subspace
of C(Q).

By this correspondence and the Hahn-Banach theorem, T,, — 0 weakly in L(Y™, X™)
if and only if T,; tends weakly in C(Q). By the Riesz Representation Theorem and the
Lebesgue bounded convergence theorem, a sequence of functions in C(Q) converges
weakly to zero if and only if it converges pointwise to zero. But the hypothesis on {T,} is
just the statement that 7,y — 0 pointwise on Q. In addition, it follows from the Uniform
Boundedness Principle that supn ||T;,|| < oo, hence because ||T,, || = [T, ]I, the sequence
T,¥ is also bounded. Thus T,;; — 0 weakly in L(Y*, X*) and so by Mazur’s theorem, there is
a sequence of convex combinations || S, || of the original operators {T,}, such that ||S,;|| —
0. Thus also [|S,, || — 0, which is the desired result.

To prove Proposition (3.3.5) we will use the fact that By, is isomorphic to the sequence
space c,. For completeness we include a proof of this fact. Let us consider the function
¢(r) = 1 — r? defined on the interval [0, 1] and let h,,(¢) be the Banach space of
complex-valued functions, u harmonic in the unit disk with the norm

llullg = sup lu(2)|¢(2)

and let hy(¢) be the closed subspace of functions u for which |u(z)|¢(z) — 0as |z| —
17. The space hy(¢) is isomorphic to the sequence space c, (see [122]). Finally, we denote
by Hy(¢) the closed subspace of those functions in hy(¢) that are analytic on the unit disk.
Now, observe that h,(¢) is self-conjugate, that is, u € hy(¢) if and only if its conjugate
u € hy(¢p). This fact along with the Closed Graph Theorem implies that the Riesz
projection P : hy(¢p) — Hy(¢) defined by

1 1
Pu =3 (u + iﬁ)+§ u(0)

Is bounded. Thus we can express ho(¢p) = Hy(¢p) @ kerP.Now, afamous theorem
of Pelczy nski (see [152]) asserts that if F is a complemented subspace of ¢, then either F
Is isomorphic to ¢, or F is of finite dimension. Since H,y(¢) is complemented in a space
isomorphic to c,, it follows that Hy(¢) is isomorphic to c,. Finally, since Hy(¢) is
isometrically isomorphic to B, (consider the map — f'), it follows that B, is isomorphic
to cp.

As mentioned, the following argument was indicated by N. J. Kalton. Some parts of
this argument already appear in [149] (see also [150] and [148]).
Proposition (3.3.5)[146]: There exists a sequence of convex combinations L,, of K,, (L,, =
Ymen CnmKmWith e > 0and Ysn Cum = 1) such that lim Il — Lpll = 1.

The upper estimate. The goal now is to show that
1 — |z|?
C < lim su lo'(2)] . 50
” <p||e s—-17 |<p(z)r|)>s 1 - |(,0(Z)|2 ¢ (30)
Proof. As pointed out before it is enough to prove the result for the Little Bloch space. It

will be sufficient to show that for any € > 0 there exists a convex linear combination L,, of

{K;n}m sn With ||I — Ln|| < 1 + &. Once this is done the proof can be completed by a

simple diagonal argument.

Since B, Is isomorphic to the sequence space c,, James’s Theorem (see [151]) can be

applied to find that there exists a Banach subspace X, < c, such that the Banach-Mazur

distance from B, to X, is strictly less than v1 + €. That is, there is an isomorphism T :
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By — X, suchthat ||T||[IT~t| < V1 + e WedefineT, = TK,T™*: X, - X,. Upon
applying Proposition (3.3.3) we find that

lim ||T,;‘x* —x*|| =0 (51)
n—>00
for each x* € Xj . If B, is the sequence of coordinate projections on c,, then we also have
lim ||[B;x* — x"]] =0 (52)
n—>00

foreach x® € 11 = c,the dual space of c,. Now, if J denotes the inclusion from X, into
co, then JT,, — B,J € K(X,,cy). Furthermore, by applying (51) and (52) the sequence
(JT,, — BJ)*x*,y*™*) tends to zero for y** € X5* and x* € [*. Thus we may apply
Theorem (3.3.4) to see that there exist a sequence of convex combinations of {JT,, — B,J}
that tends to zero in norm. This implies that there are sequences {T,s} and {B;} of convex
combinations of {T,,},, = n and {B,,},,, sn, respectively, such that JT,X — Bf] tends to zero
in norm. Therefore, we have for all sufficiently large n:

=T =a = TN < [1a = BOJI| +|[UTE — BTl < V1 + g
where we have used successively: The fact that J : X, — ¢y is the inclusion map, the
triangle inequality, and the inequality ||[(I — BS)JI| < 1. Finally, if we set L, =
T~ ITET, then

I = Lul| = IT72 0 = TOTI < ITTH|IF = TIITI < 1 + &

that is what we had to prove. The proof of Proposition (3.3.5), and therefore that of Theorem
(3.3.1), is now completed.
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Chapter 4
Integral Operator with Norm and Essential Norm of Some Operators

We study acting from a-Bloch spaces to Bloch-type spaces on B. The Dirichlet
space to the Bloch-type space on the unit ball in C" are calculated here. It is calculated
norm of the product of differentiation and composition operators among these spaces on
the unit disk.

Section (4.1): Bloch-Type Spaces on the Unit Ball

For B be the open unit ball in C", D the open unit disk in C, H (B) the class of
all holomorphic functions on B and H “(B) the class of all bounded holomorphic
functions on B with the norm

Ifllo = supgeglf(z)].
Let z = (zy,....,ny) and w = (W, ..., wy) Ve points in C",(z,w) = Y1_; z; Wy and

|z| =+/(z,2) for f € H(B) with the taylor expansion

F(z) = Z aﬁzﬁ,
B0
Let NF(z) = Zﬁzolﬂlaﬁzﬁ.
Be the radial derivative of f, where B = (81,85 ....,0,) is multi index, |[B] =

(By+ ., +By) and z# = zfl,,, ,[f It is well known [77] that

of
W)= ) 575 = (VD)D)
j=1
A positive continuous function ¢ on [0, 1) is called normal [11] if thereis ¢ € [0, 1) and
aand b,0 <a<b
d()
(1-na
o) o _ .
(1-r? S1(1-mb
The Bloch-type space, denoted by B8, = B, (IB)), consists of all f € H (B) such that
Bu(f) = supzep n(2)|1Nf(2)| < oo,
Where u(z) = u(|z|) and u is normal on [0, 1) [26], [60] with the norm
Iflls, = 1£(0)] + B,(f)
the Bloch-type space becomes a Banach space. When u(z) = (1 — [z[2)*, a € (0, ), the
space becomes the a-Bloch space B* (see, e.g., [2], [76], [6], [7], [8]., [9]). Some other
weighted spaces re-lated to Bloch-type spaces, can be found, for example, in [62], [20],
[159].
The Little Bloch-type space B, , is a subspace of B, consisting of those f € B,
such that

o)
1(-rne

is decreasing on [§,1) and llm

is increasing on [§,1) and 11

lLilrglu(Z) |Nf(2)| =0
Bearing in mind the dollowing asymptotic relation from [60]
by (f) = sup,epn(2)|Vf (2)| = sup,epu(2)|9Nf (2)| (1)
(for the case u(z) = (1 — [z)*, a > 0, see, e.g., [4]) we see that B, can be defined as the
class of all f € H (B) such that b,(f ) is finite. Also the Little Bloch-type space is equivalent
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with the subspace of 3B, consisting of all f € H (B) such that
llzilrglu(Z)IVf(Z)|=0

Assume g € H (B), g(0) = 0 and ¢ is a holomorphic self-map of B. We introduce the
follow-ing integral-type operator on H (IB)

19(F)(2) = f
0

Operator (2) is related to operators

1 d
N@ = [ fengen T,
0

1

d
R (p(t2)g(t) 2 € B @)

and

1 d
LG = | RpEge T
0

acting on H (B)introduced in [48] and [52], as well as the operator T, introduced in [57]
acting on holomorphic functions on the unit polydisk (see, also [58], as well as [44] for a
particular case of the operator). One of motivations for introducing operator I;g stems
from the operator introduced in [37]. Some characterizations of the boundedness and
compactness of these and some other integral-type operators mostly in C", can be found,
for example, in [43]-[46], [47]-[55], [6]-[58], [40]-[158].

Recall that a linear operator L : X — Y, where X and Y are Banach spaces, is compact
if for every bounded sequence (x;)xeny N X, the sequence (L(xx))xen has a convergent
subse-quence. The operator L is said to be weakly compact if for every bounded sequence
(i )ken In X, (LOx))kenhas a weakly convergent subsequence, i.e., there is a

subsequence (ka)keNsuch that for every 4 € Y * , the sequence (A(L(ka)))mEN

converges. A useful characterization for an operator to be weakly compact is the
following Gantmacher’s theorem: L is weakly com-pact if and only if L**(X**) Cc Y, where
L** is the second adjoint of L (see, for example, [156]).

We characterize the boundedness and compactness of Ig from the a-Bloch space (or
the Little a-Bloch space) to the Bloch-type space (or the Little Bloch-type space).

We constant are denoted by C, they are positive and may differ from one
occurrence to the other. If we say that a function u: C = [0, o) is normal we will also
assume that it is radial, that is, u(z) = u(|z|), z € B. The notation a < b means that there
Is a positive constant C such that a < Ch. We say that a < b ifbotha<band b < a
hold.

Several auxiliary results are given. They will be used in the proofs of the main results.

The following lemma follows by standard arguments (see, for example, the
corresponding lemmas in [52], [57], [58]).
Lemma (4.1.1)[155]: Suppose a € (0, «), nis normal, g € H (B), g(0) = 0 and ¢ is an
analytic self-map of B. Then Iff,: BU(OR By) - B, is compact if and only if
I?p: B*(OR By) — Byis bounded and for any bounded sequence (fidken N
BA(OR BJ) converging to zero uniformly on compacts of B as k — o, we have
—”I‘%f"”%u — 0as k — .
Lemma (4.1.2)[155]: Suppose p is normal. A closed set K in B, o is compact if and only
if it is bounded and satisfies
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lim supyei u(z) IRF ()] = 0

The proof of Lemma (4.1.2) follows the lines of the proof of Lemma (4.1.2) in [19], hence
Is omitted.
Lemma (4.1.3)[155]: Assume that f, g € H (B) and g(0) = 0. Then

RIZ () (2) = Nf(e(2))g9(@)
Proof. assume that the holomorphic function 9tf(¢(z))g(z) has the expansion
Yo agz%. Since a #+ 0, we obtain.

1 d a
RPN =R [ D au*F=n| Y wae | = aer

As claimed.
Let Al = AY(B), denote the Bergman space, i.e., the space of all f € H (B) such that

j F DIV (2) < oo
B

where dV (z) is the Lebesgue volume.
The next lemma can be found, for example, in Theorems 7.5 and 7.6 in [9].
Lemma (4.1.4)[155]: Suppose a € (0, o). Then, the following statements are true.
x(B& )= AL
X (Al)* = B¢
x The second dual of B? is B“.
Recall that the duality (B%)* = Al is given by the following integral pairing

(f Qs = N cas [ FG2) TR - 21D AV ()
B

where f € BZ , g € Al, and where c,-; is chosen such that

Cam1 Jg (L= 2|7 dV(Z) =1,
whlile the dgality (AY)* = B%is given by the same integral pairing, where f € A'and g €
AY)" = B2,
(Lerr)1ma (4.1.5)[155]: Suppose 0 < a < o0, , g € H (B), g(0) =0, ¢ is an analytic self-
map of B and X is A Banana space . then Iff,: BY — X is compact if and only if
I5:  B§ — Xis is weakly compact.
Proof. By Lemma (4.1.4) we know that (B%)* = Al. Assume that I;g: BF - X is
compact . By a well-known theorem then this is equivalent with the operator (I;g ) X" -

Al is compact. Now recall that A'  has the Schur property, that is every weakly
convergent sequence in A is norm- convergent (see, for example, [156]). Hence, this is

equivalent with (Igf,’)*:X* - Al is weakly compact, which is equivalent with
(19)": X* - A' is weakly com-pact.
Based on a result from [157], in [113] proved the following result.

Lemma (4.1.6)[155]: Suppose a € (0, «). Then there exist two holomorphic functions fi,
f, € B* (D) such that

106



A=z @D + (2D = 1. (3)
Now we are in a position to formulate and prove the main results.
Theorem (4.1.7)[155]: Suppose a.> 0, pis normal, g € H (B), g(0) =0 and ¢ is an analytic
self-map of B. Then the following statements are equivalent.
(i) 17:B* - B, is bounded.
(i)13:  Bf — By, is bounded

(i)
u(2)1g(2)|p(2)|
M = sup, 4
Pt T o @) ®
Moreover if, if I,): B* — B, is bounded, then
1201l e, = M (5)

Proof. (iii) = (i) By Lemma (4.1.3), the definition of the a-Bloch space and asymptotic
relation-ship (1), we have
_ 1(2)|g(2)|¢p(2)|
k@RI @] = kDIRF (p@) g1 < N llse 755

Forevery z € Band f € B%. From this, by using (4) and since I;zf(O) = 0, it follows
that I;): B* — B, is bounded and that

175

7

lge g, = €M (6)

()=(ii) The implication is obvious.
(i)=(iii) Using the following test functions.
fi(z) = z; € BY, le{l,..,n} (7)
We obtain I, f; € B, for | € {1, ...,n}, that is

113filly = supsen @Ig@Iou(@] S gl gy Wfilloe < o

For each [ € {1, ...,n} and consequently.
n

sup;ep HDIG(DIPD < ) sup,en kD1 DIpr(2)]

=1

n
< |19 Z « < oo, 8
112 N ey, ) Wfille < o0 (8)

=1

Set

£ (2) = 1 — |al? B o
ol = T ape ®)

It is easy to see f, € BE. Morever
M, = supaE]B;”fa”EBa < 2%+ 1
From this and the boundedness of I;lg,: BE > ‘BM it follows that

My||ig]| 2 115 fowlly, = supzen 121G DR fp 0@

- au(2)|g(a)|p(a)|?
(- le@]?)~

BG—~B,

From which it follows that
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u(@1g (@) 2u(2)|g(2)|9(2)|?
Plo@izt T o@D~ Ple@izt " (1 = [p2)[2)*

My, 4
<5 ol ge g, < (10)
On the other hand if, [p(z) < 1/2 by using (8) we obtain
1@DlgDle@)| _
(1 _ |§0(Z)|2)a = SuszIB M(Z)lg(z)ll(p(z)l
Sl %M#Znﬁn%a <w. (D
=1

Condition (4) as well as the inequality
g
M <cl|7| - (12)

Is direct consequence of (10) and (11).
The asymptotic relation in (5). Follows from (6) and (12).
Theorem (4.1.8)[155]: Suppose a.> 0, wis normal, g € H (B), g(0) = 0and ¢ is an analytic
self-map of By — B,,. Then the following statements are equivalent.
(i) 17:8B% - B, is compact
(ii)I;g: BG — B, is compact
(iii) I7: B - B, Is bounded and
- u(2)|g(2)|p(2)|
lp@1-1 (1= |p(2)|2)*
(iv) I;g: B* — B, Is bounded and condition 13 holds.
Proof. First note that in view of Theorem (4.1.8) it follows that (iii) and (iv) are
equivalent.
(i) = (ii) this implication is obvious.
(i) = (i) since 1,9 : B* — B, is compact then clearly 1,9 : Bs* — B, is bounded. Let
(zk)enbe a sequence in B such that |@(zk)| - 1 as k — o if such a sequence
does not exist then condition (13) is vacuously satisfied.

=0; (13)

Set
Fk(Z) = f(p(Zk)'k € N. (14)

where f,is defined in (9). From the proof of Theorem (4.1.7) we see that
sup kenl|Fillge < oo . beside this this Fx converges to zero uniformly on compacts of B
as k — oo.
Lemma (4.1.1) implies

Jim (19, (15)

||I£Fk||Bu = Susz]BB.u(ZHER(Ing)(ZM
> u(zi)|g )| RIS Fe) (0(z1))]

_ au(z,)|g(zy) |<P(Zk)|2|

1—lp(z)|?
From (15), (16) and by using the assumption |¢p(zk )| = 1as k — oo, we obtain

(16)
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li n(zy) |.9(Zk) lp (2] |
im

e G P | D) L

from which (13) follows.

(iif) = (i) Since 1,9 : By* — B, is bounded then condition (8) holds. Let (f; )xen be a
sequence in B% such that sup yenll fillge =: L < oo and f,, — 0 uniformly on compacts
ofBask — oo.

From (13) for every ¢ > 0, there is a ¢ € (0, 1), such that
Z A Z &
w@)|g( )Iw(z)L | <E (17
(1 —lp(2)]?) L

Whenever
Lemma (4.1.3), 1, 17 and 8 yeild.

||1£Fk||3” = Sup zepi(2) |g(Z)‘Rfk(qo(Z)) |

< SUP (emip(es D9 D| [Rfi(0(@) |

+SUP zem:s<lp(2)|< 13 (2)| g (2)] |9%fk(<p(2)) |

< Lgsupiy|<s|V W) + Cll fiell =
u(2)g@)|le(2)]
sup {zeB:65<|p(z)|<1} (1 _ |§0(Z)|2)a

< Lgsulelsslvfk(WN + Ce (18)

where

Lg = sup ,epi(2)|g(2)||p(2)]
The uniform convergence of (f;)xeny on compacts of B along with Cauchy’s estimate
implies(|Vfi|) ken also converges to zero on compacts of B as k — o, hence

Jim suppyi<s Ve (w)[ = 0. (19)

Letting k — co. In (18) and using (19) we obtain
kli_)rr30.sup||lggfk||3# < (,
for each positive ¢. Hence the limit is equal to zero, from which by Lemma (4.1.1) it
follows that the operator I(ﬁ : B* — B, is compact.
Theorem (4.1.9)[155]: Suppose a.> 0, wisnormal, g € H (B), g(0) = 0 and ¢ is an analytic
self-map of B. Then 149 : Bo® — B, is bounded if and only if Ii : By — B, is bounded
and
|Lilr%nl/«t(z)lg(Z)l|<p(Z)| =0 (20)

Proof. First assume I;z : B* — B, is bounded and that condition (20) holds. Then, for
each polynomial p, which obviously belongs to Bo*, we obtain

u@D|RIGp(2) | < @19 @) |Bp(p@) |
< u@lg@Nle@DIlIVpllo - 0.
As |z| = 1 hence Iyp € By,
Since the set of all polynomials is dense in B§, for each f € B§ there a sequence of

polynomials (py)xen-
Such that |f — pglge_o as k — oo, from this and since the operator I;Z:

Theorem (4.1.10)[155]: Suppose o > 0, u is normal, g € H (B), g(0) = 0 and
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¢ is an analytic self map of B Then the following statements are equivalent.
(i) 15:B% > By, is bounded ;
(ii)Ig: B - B, s compact;

(iii) Ig: By — B, o Is compact
(iv) Ig: By = B, o; Is weakly compact
(V) I, (B*) € B,
(vi)
llzilrgllﬂ(Z)lg(Z)lw(Z)l = 0. (21)
And

- 1@lg@Dle )]
o A [p@PE (22)

- r@Ng@Dle )| _ 0; (23)
251 (1= @)D
Proof. (vii) = (ii) assume that (23) holds . By Lemma (4.1.3) and (1) we have
1(2)|g(@)|p2)|
Z)|R Ig z) <C a
From this and (23) it follows that the set I ({f:lIflls« < 1}) is bounded in B,
moreover in B, , . Taking the supremum in (24) over the unit ball of the space B , then
letting |z| — 1 and using (23), we obtain
lim supj e, 1@)|R(I;f)(2)] = 0 (25)

From (25) and by using Lemma (4.1.2) the compactness of the operator I;Z: B - B,
follows.

[D] = (iii) This implication is obvious.

[E] = (iv) Just recall that every compact operator is weakly compact.

[F] = (v) By Lemma (4.1.4) we know that (B§ )= = B¢ . Since Ig maps BF
into B, o and (BF)* = A', we have that (1) )= : (B,,0)* — AL Hence
(Lo (Y = {f, (1) * (h))

For every f € B and h € (B,,) -
On the other hand, by Lemma (4.1.4) we have (41)* = 8% which implies that
(I;g)**: B* - B, . hence every f € B  can be viewed as an element of the space
(AYH)*and

(vii)

(24)

(f(15) () = ((13)" (N, h)
Hence
I2HH) = ((12)7 (), b
For every h € (23”,0)* by a well-known consequence of Hann- Banach theorem we
obtain (I;g)**(f) = I(‘g(f) for every f € Bj.
Since BY is w* dense in B* it follows that (Ig)**(f) = I,(f) forevery f € B*
. Gantmacher’s theorem implies that I;g (B*) c B, as desired .
[G] = (vi) By using the test functions in (7), as in Theorem (4.1.9), it follows

110



that (21) holds. If ||l@|le < 1then (22) is vacuously satisfied. Now assume
llell = 1, and assume to the contrary that the condition (22) does not hold. If it
were, then it would exist &g > 0 and a sequence(zy)rey € B such that
lim |o(z,)| = 1 and

[H]
1z gzl e(z)|

(1= le2)|»)"

> g, >0 (26)

For sufficiently large k.
We may also assume that ¢(z,) — (1,0, ....,0)as k — 0.
By Lemma (4.1.6) there are two functions f;f,8%(ID) such that asymptotic relation (3)
holds,
Let
Fi(z) = fi(z1) and F,(z) = f,(z;) z€ B
Clearly F;, F, € B8%(B) and consequently
IJF, 1 F, € B,,, (27)
On the other hand, by Lemma (4.1.3) and (3) we have
u(z)|N(ISF) ()| + p@|R(IJF,) (2|
= u(zlg @) ||NFro )| + ulz)| gz [ |NF (2 )|
= H(Zk)|g(2k)||€01(Zk)f1'(§01(2k))|
, 1wz gzl o1 ()]
+ u(z z Z VA =
u( k)|g( k)||§01( k)f2(<P1( k)) (1= |o(z)]?)®

_ Cu(zi) gz e(z)| S Ceg
1-lpz)l»H* — 2
for sufficiently large k, which is a contradiction with (27).
[1] = (vii) From (22) it follows that for every ¢ > 0 there is an r € (0, 1) such that

u(z)|g@lle2)] <.

>0 ..

- le@D" (28)
Whenever r < |p(2)| < 1.
From (21) it follows that there is a ¢ € (0,1) such that
u@|g@le@)| < e(1 —rH)“. (29)

When o < |z]| < 1,
If |o(z)] <r and o < |z| < 1, then from (29) we have

n(2)g(@)|e(2)| < 1(2)|g@)|p(2)] <. 30)
(1 -le2)]»)~ (1-r?)e

Now note that (28) holds on the set r |¢(z)] < 1 and ¢ < |z| < 1. From this and (30) the

implication follows.

(i) = (v) This implication is obvious.

(vii) = (1) From (23) it follows that condition (4) holds. Hence by Theorem (4.1.7) it

follows that the operator I;f,’: B* — B, is bounded. On the other hand from (23) and (24) it

follows that for every f € B¢, I;f,f € B, ofrom which the boundedness of Ig: B - B,
follows, finishing the proof of the theorem.
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Section (4.2): An Integral-Type Operator from the Dirichlet Space to the

Bloch-Type Space on the Unit Ball

For B be the open unit ball in C", D the open unit disk in C, H (BB) the class of
all holomorphic functions on B, and H* (IB) the space consisting of all f € H (B) such
that Ifllc = sup,eplf(z)| < oo
For an f € H(B) with the Taylor exoansion f(z) = Y, a,z%, let

NF(z) = Zlalaaza 31D

Be the radial derivative of f, where a(a;, ....,Oécn) Is a multi-index, |a| = a;+ -+ a,
and z% = z{'..z," .Let a!= a;!..ay!

The Dirichlet space D?(B) = D? containsall f(z) Y, a,z% € H(B)

Such that

112 = | (£ (@) +Z'“' 1agl? < o0 (32)

The quantity |[f |2 is anormon D? which for n = 1is equal to usual norm
1

2
1f 2oy (If(O)IZ + jD |f'(z>|2dA(z>> (33)

Where dA(Z) = (i) r dr d@ is the normalized area measure on D.
The inner product, between two functions

@) ) awz® 9@ ) bet" (34)

(.91 = F(0)g(0) Z'“H 7% (35)

]!,
eq(2) Iala!Z' ZEB (36)

and ey(z) = 1, then it is easy to see that the family {e,} is an orthonormal basis for D?,
and hence the reproducing kernel k,, (z) _for D? is given by ([1 ])as follows:

k,(z) =1+ Z /'“"
a+0

where (z,w) ¥'_;zw, is the inner product in C" clearly for each f € D? andw €
B™ the next producmg formula holds:

On D? is defined by

For a #0, let

zZ%w*=1+1In m (37)

fw) =Af, kw) (38)
note that for f = k,, (1.8), we obtain

e
kyW) = llkylls: =In T= w2 (39)

Also, by the Cauchy-Schwarz inequality and (39), we have that, for each f €
D? andw € B
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N

£ = 1kl < el llpe = Ifllpe (In $=7r3)” (40)

Note that inequality (40) is exact since it is attained for

f =K,
The weighted-type space H,”(B) = H,;’([2,3] )consists of all f € H(IB) such that
IFllag 2= supzep u(2)|f (2)| < 0 (41)

Where u is a positive continuous function on B (wright).
The Bloch- type space By, (B) = B, consistsofall f € H(B) such that
IFllz,, = If(0)] + sup,epu(2)|9tf(2)| < (42)
Where u is a (wright).
Let f € H(ID), g(0) = 0 and , ¢ be a holomorphic self-map of B, then the following
integral-type operator:

1 d
HO@ = [ )T reB fenm @3
0

has been recently introduced in [163] and considerably studied (see, e.g [49]-[164]). For
some related operators, see also [165]-[168] and the references therein.

We provide function-theoretic characterizations for when ¢ and g induce bounded
or compact integral-type operator on spaces of holomorphic functions. Majority of only
find asymptotics of operator norm of linear operators. Somewhat concrete but perhaps
more interesting problem is to calculate operator norm of these operators between spaces
of holomorphic functions on various domains. Some results on this problem can be found,
for example, in [26], [169]-[67] (see also) [41], [25]-[178]. In [26], we started with
systematic investigation of methods for calculating operator norms of concrete operators
between spaces of holomorphic function.

We calculate the operator norm as well as the essential norm of the operator Pq‘,g :
D? - B,,, considerably extending our recent result in [179].

We quote several auxiliary results which are used in the proofs of the main results.
Lemma (4.2.1)[160]: (see [163]). Let g € H(B),g(0) = 0, and ¢ be a holomorphic
self-map of B, then

NP () (2) = g@f(e(2) (44)
The next Schwartz-type Lemma ([180]) can be proved in a standard way. Hence, we omit
its proof.
Lemma (4.2.2)[160]: Assume that g € H(IB), g(0) = 0, u is a weight, and ¢ is an analytic
self-map of B, then P; : D? — By, is compact if and only if P; : D? — B, is bounded
and for any bounded sequence (f;,)xen in D? converging to zero uniformly on compacts
of Bask — oo, 0ne has

lim [[25 (R0l = 0. (45)
Lemma (4.2.3)[160]: Assume that g € H(B), g(0) = 0, u is aweight, and ¢ is an analytic
self-map of B,such that ||@||, < 1 and the operator P(‘g : D? - B, is bounded, then
Po : D? — By is compact.
Proof. first note that since P : D? — By, is bounded and f,(z) = 1 € D? by Lemma

(4.2.1), it follows that
gnp(bg(fo) = g€EH
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Now assume that (f,)ey is bounded sequence in D? converging to zero on compacts of
B as k — oo, then we have

127 foll, < Nglly SUPwep)!fi(W)] = 0 (46)
As K € oo, since  @(B) is contained in the ball |W| < ||¢|l, Which is a compact
subset of B, according to the assumption ||¢|| < 1.
Hence by Lemma (4.2.2) the operator qu’ : D2 — B, is compact.
We calculate the operator norm of P(f : D? - By,

Theorem (4.2.4)[160]: Assumethatg € H (B),g(0) = 0,and ¢ isaholomorphic self-

map of B, then
1

181y, = sPaes @9 @I (I T=m) =1L @47)
Proof. Using Lemma (4.2.1), reproducing formula (38) , the Cauchy — Schwarz inequality
, and finally (1.0). We get that, for each f € D> and w € B
uW)| NP W)| = uw)lgw)l|f ()]
= uwgWI|(f, kpw))|
< uIgMINIf llpz2|| ko) || 2 (48)

e 1/2
112 1) lg @)l (I =)

Taking the supremum in (48) over w € B as well as the supremum over the unit ball in
D? and using the fact ) (f)(0) = 0 = 0 for each f € H(B), which follows from the
assumption g(0) = 0, we get

12 ], = L (49)
Now assume that the operator
P):D? - By
is bounded. From (19) we obtain that, for each w € B
1
e 2
(1 =) 1Ny, = Mol e,
> [P kgl (50)

= supsep 1(2)19@||kow) (9(2)]
> ()| gW)l |k (9W))]

From (39) and (50) it follows that

(51)

<1780,
Hence if Pq;": D? — B, is bounded, then from (49) and (51) we obtain (47).
In the case Pq;g: D? — B, is unbounded, the result follows from inequality (49).
Let X and Y be Banach spaces, and let L : X — Y be a bounded linear operator. The
essential norm of the operator L:X — Y, IL|le,x— y, is defined as follows:
ILlle, x— y = inf{||lL + K ||x— y:k is compact from X to Y} (52)
where ||.||x-, ydenote the operator norm.

From this and since the set of all compact operators is a closed subset of the set of

bounded operators, it follows that L is compact if and only if

”L”e, x> v=20 (53)
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We calculate the essential norm of the operator P;: D* - B,
Theorem (4.2.5)[160]: Assume that g € H (B), g(0) = O,uisaweight and ¢ is a
holomorphic self-map of B and Pf: D? > B,, is bounded. If ||¢]| o, <

1,then ||P‘§||e.172—>3u = 0,and if ||p]|, = 1,then
e 1/2

”P(;‘Jg”e'Dz_)Bu = limy (551 sup u(2)g(2)| (In W) (54)

Proof. Since P(;f’: D* - B, is bounded, for the test function f(z) =1, we getg € H,?

(B). If ||plle < 1, then from Lemma (4.2.3) it follows that Pq‘,g: D* — By,is compact

which is equivalent with ||qu’||e'D2_)Bu = 0. On the other hand, it is clear that in this case

the condition |¢(z)| — 1 is vacuous, so that (54) is vacuously satisfied.
Now assume that ||¢|l = 1, and that ((p(zk))kENis a sequence in B such that
| (z,)] — 1 as k — . For w € B fixed, set
In(e/(l —(z, W)))
fW(Z) = 1/2
In(e/(l — |W|2))

By (39), we have that ||, |lp2 = 1, for each w € B. Hence, the sequence (f¢(zk))keN is

such that (fy(z,)) . = 1, for each k € N, and clearly it converges to zero uniformly on

Z€B (55)

compacts of B. From this and by [9], it easily follows that (f,,,))_ — 0 weakly in D?,
as k — oo. Hence, for every compact operator K : D? — B,,, we have that

time o Kyl = 0 (56)

Thus, for every such sequence and for every compact operator
K:D?* - B, we have that

128 faceoll,, ~ lfucally,

” ) “Dz—)BM k ”fqo(Zk)”Dz

= limk—mosup”P(bgf(p(zk)”BM = limk—wosup(zk)|g(zk)fq0(zk) (QU(ZR))| (57)
| e\
= limp_ sup p(z) |9(zi)| (In 1——|w|2)
Taking the infimum in (57) over the set of all compact operators
K:D? - By,

) e 1/2
> limyeo sup p@lg @)1 (In =)~ (58)

1-|w|?

g
121, e,
from which an inequality in (54) follows
We prove the reverse inequality. Assume that (r;);cy IS a sequence of positive
numbers which increasingly converges to 1. Consider the operators defined by

g 1 dt
(P, f)(2) = f fro) gt —,  LEN, (59)
0

Since ||Inelle < 1,by Lemma (4.2.3) , we have that these operators are compact.
Since Pq;g: D? > B, isbounded, then g€ H 7.let p € (0,1), be fixed for a moment
. By Lemma (4.2.1), we get
127 = P [l s, = SUPIFL e 15UPzen (219 (2If 0 (1) = f (g (1))
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< SUp|ify|,<15UPlp(z)I<p K@DII@DIf 0 (2) — f (e (t2))|
+Sup|ip) <1 SUP|p(2)I<p H@DIg(@D)If0(2) — f(rp(t2))| (60)
< llglluxsupygi,, <15UPlp2)1<p | f P (2) = f(riet2))|

+Sup|i), <1 SUPje()I<p DI @If0(2) — f(r2))| (61)
Further we have

a!

If = friige = D el lal?(1 - rie)’

|
< ) lalrlaal® < Il (62)
From (40), (62) and the fact |f(z) — f (rz)al € D? 1
f ) = FEDI < Wfllpz (In =) (63)
In particular
e \z
Fo ~ fre@)| < Ifl: (n 7o) 69
Let

Iy = supp)|_,<15UP|p(z)1<p P (2) — f(rip(2)| (65)
The mean value theorem along with the subharmonicity of the moduli of partial
derivatives of f, well-known estimates among the partial derivatives of analytic functions,
Theorem 6.2, and Proposition 6.2 in [9] , yield

Iy = supyf),._ SUPlp)I<p
(1 =r)le@[supjw i<, [Vf W)| < C,
[n/p]
(1 = )supyfy,,<1 z V)| + supjuisca+py/z [VIPI (W)

j=1

[n/p]
< Cp(l — rl)sup”f”Dle z |ij(0)|
j=1
1/2

+ VIR £ () 2 (1 — Jw]2)? (/P D)
lwl+(3+p/4))
<C,(1-71)—-0, asl — oo, (66)
where dr(z) = dV(z)/(1 — |z|*)**! and dV(z) s the Lebesgue volume measure on
B.
Using (64) in (61), letting [ — o in (60), using (66), and then letting p — 1, the reverse
inequality follows, finishing the proof of the theorem.
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Section (4.3): From Logarithmic Bloch Type Spaces to Weighted-Type
Spaces

For B™ = B B be the open unit ball in the complex vector space C*, B! = D the
unit disk in C, H(X) the class of all holomorphic functions on set X and S(X) the class of
all holomorphic self-maps of X. The expression a = b means that there is a positive
constant C suchthat C™! a<b <ca

Foran f € H(B) with the Taylor expansion f(z) = 218120 aﬂzﬁ, let

R = ) |Blagz”
|B1=0
be the radial derivative of f, where 8 = (B4, 85 ..., Bn) isamulti-index, | B| = B + -+

Bpand zP = zP zPn [11]. Itis easy to see that
Nf(z) =(Vf(2),2)
Where V£ is the complex gradient of function f, that is
af  of
V= (505
aZl aZn
Let k € N, the iterated logarithmic Bloch space Bj,g, = Bjog, (B), which was
introducedin [184], consists of all f € H(B) such that

olK]

1—|z|?

k
biog, (f) = sup,ep(1 — |2]?) Hln[fl
j=1

Nf(z) < oo.
Where el is defined inductively by el! = ¢, el¥] = elk=1 gnd
mlz=Im..Inz
j times
The norm on B, is given by
1fllgyog, = [F ()] + biog, (f) (67)
For k = 1, we obtain the logarithmic Bloch space Bjos, = Bjog -

The logarithmic Bloch space on D appeared in characterizing the multipliers of the
Bloch space (see [3]). For the case of the unit ball see [9].
The Little iterated logarithmic Bloch space Bog, , = Blog,, (B) consist of all fe€

Blog, Such that
elK]

1—|z|?

k
limygj oy (1= [212) | [ [ D) Nf(2) = 0
j=1

A positive continuous function ¢ on the interval [0, 1} is called normal [11] if there are
d €l0,1]andaand,b 0 <a < b such that

() | o)
(1 —T)a [5, 1] llmr_,lm— 0.
¢(r) ¢(r)

=7y [6,1] limy_q a—rp -
Since the function
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k [K]
4 €
wr) = A=) [ml—;
2 1—7r
]:
is normal, by Theorem (4.3.3). in [60] we have that
(k]
e

o | @1 69

On the other hand, by Lemma (4.3.1) in [184] we know that the function

i [kl
e
hi(x) = x | | In[]]T (69)
j=1

k
1f lgyq, = 1f ()| +supsep(l — 1212 HI"U]
j=1

X X
hk (E) hk (X) = hk (E) X € (0,2]
Is increasing on the interval (0.1], from which it easily follows that h, (g) IS increasing

on the interval (0, 2] and h;, (x) = hy G)x € (0,2].
From this, (68) and some simple estimates we have also that

olK]

1—|z|

k
1l = 1 O1+5up,ca(1 = 12D | | [ mD) VF =+ fli,,
j=1

From now on the quantity || f ||§Blogk will be used as the norm on B, (B) and we will
regard that an f € By, (B) belongs to the Little iterated logarithmic bloch space
%logk,O(B) if

i ] 2¢lK]
. _ ] —
Ilelgnl_(l |z]) | 1|In -1z Vf(z)| =0
]:

The weighted- type space H;” = H,;”(B)consist of f € H(B)such that

If s = supsep (DIf (2)] < oo,

Where u is a weight , that is , a positive continuous function on B.

Assume u € H(B) and ¢ € S(B), the weighted composition operator induced by
u and ¢ is defined on H(B) by

(uCyf)(2) = u@f(9(2)

A typical problem is to provide function theoretic characterizations when u and ¢ induce
bounded or compact weighted composition operators between two given spaces of
holomorphic functions. It is also of some interest to calculate operator norm of weighted
composition operators. Some recent results in the area can be found, e.g., in [169], [170],
[182], [183], [37], [64], [26], [65]-[41], [172]-[188], [67], [28], [69], [189].

Motivated by [14], [15], [16], [23] (see also [170], [70]), in [26] we calculated
operator norm of uC,: B(B) (orB,(B)) - H.

Namely, the following formula was proved

luc, | = max {ull . 5upyc 1| N
PUBB) (0rBy(B))—HY w’p o rhzE 1—|p(2)]

If llge = 1f (O)|+sup,ep(1 — |2|)* |Vf(2)] (70)
uCy: SB(IBB)(OTSBO([BB)) — H;°, when
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ol

u(2)|u(2)| 1 1}’ 1)

= maX{”u”Hﬁ: 2 SUpPzeB a—1 (1 _ |(p(Z)|)a_1

but instead of the norm in (70) we have used the following norm

Ifllge = If (O)|+sup,ea(l — |2D* |Vf ()],
on space B2 As it was noticed in [61], this slight change of the definition of norm k _
k%a on space B2 enabled us to calculate norm in (71), which is difficult if normon B 2 is
k _k%a. This shows that calculating operator norms depend much on the choice of the
norms on the spaces which we deal with. There are general formulae for operator norm
of an operator from a general Banach space to a weighted-type space (see, e.g. [183]).
However, they are not proved for any weight, but for a specific type of weights, such as
associated weights (see, e.g. [162]). Hence, it is of some interest to calculate operator
norms when function | in the image space HY is a weight. Motivated by this line of
research here we calculate operator norms of some operators.

Here we calculate operator norm of uCy,: B4, (B) (S’Blogk’o(B)) — H,;°(B). Before

we calculate it we prove an auxiliary result .
Lemma (4.3.1)[181]: Let k € N and f € By,g, (B) Then the following inequality holds

2elkl
flzl < £10] + bjy, (0 ( Intk=1] — Inlk=1l2elkl ), (72)
B 1~ 12|
where
k
, . 2elkl
blog, (1) = supsea(d — Iz | | | V= ) 19/()
j=1

Proof. Using the definition of norm ||. ”§3logk' we have

1 d 1
@ = fOI = || Z(re)de| = || @ren.n
0 0
< b (B 1 |z|dt
— lo Kk, [ ]
g 0 (1— |tZ|)( §?=1In[f] 12—8—:|z|)
(k]
= bllogk, (f) (In[k+1] 1——|Z| - In[k+1] 2e[k]> (73)

From which the lemma easily follows.
Theorem (4.3.2)[181]: Assume k € N,u € H(B) and ¢ € S(B),u is a weight and
uC,: Blogy (B) —» H,” is bounded. Then

||uC<p ” %logk, (OT%Ing,o,)_)Hﬁo

1 (k]
— max {||u||Hﬁo,§supzeB n(2)|u(2)| (In[kﬂ] el In[k+1]2e[k]>} (74)

Proof: if f € Byog, , by Lemma (4.3.1) and the definition of ||. ||5’Blogk,. we get
[uCof || wy = SUPzeB u@[u@f ()| < supsep u(@)u)|If(0)]

2el¥]
+bjog, () <1n[k+11 Tolet Inlk+1] 2e[k]>

lp(2)]
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ESUPZEIBS ,Ll(Z) |‘LL(Z)|

[k+1] 2elk [k+1] [k])
In ——— |n 2e
k( 1-lo(2)] J

lull e,

)

< ||f||g3logk max

from which it follows that

luCollg,,, iz

< max {nunH;o, sup;es 1(2)[u(2)| (In[k“] ?([;Z)l - In[k+”2e“‘]>} (75)
Let fy(z) =1 then ||f0||’%logk=1 and f € By, ,- Hence
ol e = Wollstog, olliColly,
> [uCyfoll, = Ml (76)
For a fixed w € B set
£ (z) = Ikt 280 ikl 77)

1—(z,w)
Since the function hy(x/2) is increasing on the interval (0, 2] we have that

k
. 2elkl
a-izD| [ [mi = | A @
j=1
2 (k]
wl(1 — |z]) [T, IV
- [I]ZI _ 78)
(1= |z, w]) [T, Inl) —28
- —Z, W
' =1 1-1z,w|
i 2eld - 2elkl
wl(1 — |z]) [T§-; InY] T (1—|Z|IW||)]_[§?=1ln[J]1_—
1z [z[[w]
= 2plkl > olk] <1 (79)
(= Jzlwi) iz IV =y 1= @ wil Ty InV =

From this and since f,,(0) = (0) it follows that SupwE]B”fW”%logk < 1, while by letting
|z| - 17 in (78) we get f,, € Byog, , foreachw € B.

This along with the boundedness of uCy:Byog, 0 = H,”, for ¢(w) # 0 and every
r € (0,1) implies

uC uC
L e
u
[k+1] 2el! [K+1] 4 [K]
= su z)|lu(2)| [Inl¥* — In 2e
pZEIB ,Ll( )l ( )l ) _r((P(Z),(P(W))
lp(w)]
[k+1] [k] [k+1]9 ,[k]
> (w)lu(w)l(ln t  _InlX*tli2e > 80
H = tlp(w)] (80)

If ¢ (w) = 0, then (80) obviously holds.
Letting r — 1~ in (80), then talking the supermum over the unit ball B in such
obtained inequality, we get
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ol o

> su @) |ul2)] (In[k+1] —_—
Pze U 1 — |(P(Z)|

From (76) and (81) it follows that

JuCollg,,

—In[k“]Ze[k]) (81)

LY

> max{ ||ul| g, su (z)lu(z)l(ln[k+1]—
{ Hj Pze U 1 — |(P(Z)|

From (75) and (82) and the inequality
[uColl

— In[k+1]2e[k]>} (82)

<
23logk’,o_’HﬁO - ”uC(p”'sBlogk,_)I_Il)f
Formula (74) follows, as desired.
We calculate the norm of the operator DC: Blog (D) (OR SBlogk’,o(D)) - H;°(D).
Theorem (4.3.3)[181]: Assume k € N, u is a weight, ¢ € s(ID), and that the operator
DC,: %logk‘(D) (OR 531ogk,,o(D)) — H,;°(D) is bounded. Then the following formulae

true hold

€0l e =

w(@)e'(2)]
2elkl

1 — @) [T5, InU! ————
Proof: for every f € B,g, and z € Dm, we have

u@|(DC,f)@)| = n@le'@IIf'9@)|
n@)|e'(2)| ,
S oTA] (hdl Blog,

1-— U1 ©
( lp(2)]) H n — |(P(Z)|
Hence, by taking the supremum over z € D and the unit ball in By,g, . We obtain

u@le' (2|
IDC, || S < SUp,cp ST (84)

1—|o@)|T¢. InVl ————
Sl

Since DCy: Byog, 0 = H,~ is bounded , and by using the test functions in (77) for the

casen = 1, we get

(83)

”DC(P”% L% 2 HDC(() (f ow) > = sup,ep 1(2) |@ (Z)f ©o(w) ¢(z)
1081, 0K Towl oW
w w)|Tr
> u( )|<,0( )| — (85)
— k [
(1 rl(P(W)D H]:ll 1 _ Tl(P(W)l

for each @(w) = 0, for some w € D, then since ¢ € H(ID), for ¢(z) Z 0, there is a
sequence (W,)men € D, such that  w,, » w asm — o and ¢(w,,) # 0 for every
m € N consequently , we have that ¢ (w,,) - e(w), ¢’ (w,,) = ¢'(w),as m - o and
from (85) that
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uwim) " (W) |7

(1 - rl(P(Wm) D l_[?:l In[j]

|DC

(86)

@ ” 0 =
%logk’,o—’H,u

2elkl
1- 7/'lq)(Wm)l

For every m € N
By lettingm — o in (20)we get
T M(W)Iw’FW)Ir_
¢ Blog 0~HEY Hle Inlil2elk]
For each w € D such that ¢(w) = 0. Hence, we have that (85) holds for every w € D
letting r — 17 in (85) we obtain

nw)le’ (W)l
2elkl

_ k Ul —=2=
(1 - leW)DII=1 In T— [eW)]
For every w € D, from (84), (87) and since ||DC

<|IpC (87)

o ||%10gk’,0_>H[i°
ollg,py oorg < MPCollg, o (83)

follows.

The logarithmic Bloch-type space %ﬁ)gs = S’Bﬁ)gB(IB%),a > 0,8 =0, which was

introduced in [1] consists of all f € H(IB) such that
bag(f) = supzep(1 — |z])%In

The norm on %ﬁ)gﬁ can be introduced as
Ifllge = IF O]+ bes(f),

but we will here use the following equivalent norm

Il = 1FOI+bap(F)

log

oBla
1—|z|

IRf (2)| < co.

B
Where  bq5(f) = sup,es(1 — |zD* (InZ=) [Vf(2)] < eo.
In the proof of the next result we will need two auxiliary results which are incorporated
in the lemmas which follow.
Lemma (4.3.4)[181]: Let f € B,,,p(B), B € (1,0), then the following inequality holds
b’ p(f) 1= _
FOI<IFOI+2L8 (m2) ™ —(n2e)=# ). (88)

1- 1—-|z|

2e

B
Where  b'p(f) = supsen (1= |2]) (IngZ)” 9/ @)l
Proof: using the definition of space B)ogh in the second equality in (73) we get

If(z) = f(0)| <D’ (f)fl |z|dt
_ <bo ﬁ
’ (1_t|Z|)(1n1_2—i|Z|)
_ bll.ﬁ(f) 2¢ \17F )
- 1-p <(I"1— Izl) — (In2e)! ﬁ).

From which (88) easily follows.
The following lemma was proved in [1].

Lemma (4.3.5)[181]: Assume a > 0,8 = 0and y = g then the function
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eV\F
— a
ha,ﬁ,y(x) =X (In;) .
Is increasing on the interval (0,1]
Theorem (4.3.6)[181]: k€N, p € (0,1),u € H(B),p € S(B)M ,uCyp: Byo,8(B) —
H,;?(B) is bounded then

||uC(p ” Blogp or(%logg,o)—ﬂ,‘f

u(2)|u(2)| (( 2e ) >}
In — (In2e)* B ). (89
-5 \\"T-jer)) ~ In27)j (89)
Proof. If f € B, by Lemma (4.3.4) and the definition of the norm ||. ||§310gB we get

[uCofll, = supses H@|u@F(p()

1-B
1ﬂ(£) (1"1 Eeld)

1-B

= max{llullHﬂo,SuPzeB

< supgep 1(2)|u(2)| (lf(O)I

— (In2e)1F >
1-

n(2)|u(2)| ((1 2e )

<IIfll'y Bmax{nunH;;o,supzema "o
og

— (In2e)1_3>}

from which it follows that

ol o

u(@)u(z)| 2¢ 7P i
ﬁ(( HT(P(ZN) - (In2e)1 >} (90)

Let fo(z) =1 .||f0||’ o =1 and f€EB Hence we have

< max{llullH;;o,SuPzelB%

log Bo-
[uCollg, = Wfollsogeo 1Colly e 2 [1eCofoll o = Tulle O1)

log 0 log ,0
Forafixedw € B

1 2¢ 7P B
fW(Z) :m<(lnm) - (In2e)1 B) (92)

Since by Lemma (4.3.5) the function hy g (x/2),p € (0,1) is increasing on the interval
(0, 2] we have

2¢ P i1 = f2l) (0 22"
(1= |z (In—7—) IVf,(2)| = —“, (93)
( 1 (Z, W)) | (Z W>| (In ZeZ)B
B
|W|(1 — |Z|)( Z) (1 - |z[|w]) (Il’l |Z||W|)
N 3< 1 (94)
|1—|z||w||( <) 11— Gl (In =)
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from this and since f,,(0) = 0. supyegllfwll’y . < 1, while by letting |z] = 17 in (93)

log
we have that f,, € B8 0 for a fixed w € B.

This along with the boundedness of uC,: %logﬁ o = H, for o(w) # 0 and every r €
(0,1) implies

[Colly, o o

uCyfrow)
lp(w)l

)
o)
Hy

1-B

. n(z)u(2)] - 2e
Pzen 1- B 1 — I'((P(Z), (p(W)) |(p(W)|

— (In2e)*B

w(@)u(2)| (( 2e )1‘8 >
>———|((In — (In2e)*~B 95
-5 \"T=rjeemp)  ~ U9 ©)
If ¢(w) =0, then (95) obviously holds. Letting r - 1~ in (95), then taking the
supremum over the unit ball in such obtained inequality. We get

u@u()| <( 2e )1‘6 )
uC > su In — (In2e)*B) (96
[eColly, , e = suPeee =T e (n2e)'~# ) (96)
From (91) and (96) it follows that
ucC
Colly
H@)u(2)| 2e  \'7P X
> %) — _B
> max {IlullHu /SUPzeB —7 5 (In1 — |(P(Z)|) (In2e) (97)

From (90), (97) and the inequality

||uC<p||23logB’0_)Hﬁo < “uc")”%logwﬁ

We calculate norm of DC;: 531og8 (D) OR (551og6,o(D)) - H° (D).
Theorem (4.3.7)[181]: Assume, B € (0,1), u is a weight, ¢ € S(ID) and the operator,
DC,: %logg(]D) (or 231og3,o(”3))) — H;”(ID) is bounded, then the following formulae
true hold
19Cully iz = I0Colly

= sup KDl ()] B (98)

(- lo@D (=)

Proof: for every f €logP andz € D, we have
u(2) |(DCeN) @] = u@le'@IIf ¢

u(@le' (2|
< S 1fllg

(1 - lo@D (Iny—Tors _f;(z)l)

Hence by taking supreme over z € D and the unit ball in SBlogB, we obtain

logB
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IDC, |, jonze S SUPzep alelle’(2) 5 (99)
(1 -lo@D (In =)

By using the test function in (92) for the case n=1, we get

IDColly o 2 Hf ow) || = supzen 1@ |9’ Do) (@)
BlogB.o "ol oo "W
S u(W)I<p (W)Ir2 : (100)
e
(1 =rlew)]) (IHW)

For each @(w) # 0, if @(w) = 0 for some w € D, then since ¢ € H(D), for ¢(z) # 0,
there is a sequence (w,,)meny € D, such that w,, > w as m — oo and @(w,,) # 0, for
every m € N, thus @(w,) = @(Ww), ' (wy) = ¢'(w) as m - oo and from (100) we
have that
pwm) @' (W) |7
B
(1 = rlo@wm)D (In =277

r| Wy

|DC

o (101)

logB 0

For every m € N, by letting m — oo in (101) we get
” uw) o' (w)|r
Pl8 s,oHE  (In2e)P
foreach w € D, @(w) = 0, hence, we have that (100)holds for every w € D letting r —

~in (100) it follows that

|DC

uw) o' (w)|r

Bs||1)c¢||23 R (102)

_ Ze logP,0
@ = lowm)D (N =fo1)
for each w € D, from (99) and (102) and the inequality

DC < |IDC o

10Cly e = IPColly
Formula in (98) follow.
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Chapter 5
Bloch-to-BMOA with Reverse Estimates and Weighted Bloch Spaces

We characterize those ¢ for which the composition operator f — f o ¢ maps the
Bloch space into BMOA. As an application, we study composition operators with values in

the space BMOA. For B®(B,) denote the w-weighted Bloch space in the unit ball B; of

2
C% d > 1. We show that the quadratic integral fxl (‘)T(t) dt,0 < x < 1, governs the radial

divergence and integral reverse estimates in B (B,).
Section (5.1): Compositions on Complex Balls
For H(B,,) denote the space of holomorphic functions in the unit ball B,,, of C™,m =
1.
The Bloch space B(B,,) consists of those functions f € H(B,,) for which
Iflls@,) = O]+ supyep, |Rf (@)|(1 — |w]?) < oo,
Where

SR
Rf (w) = Za)ja—({)_(w), w € B,
j=1 J

is the radial derivative of f. The Hardy space HP(B,),p > 0,n =1, consists of functions
f € H(B,) such that

£ oy = Subocres | IFGOI do(@) < oo
0B

where g, is the normalized Lebesgue measure on the sphere 0B,. Also, we consider
BMOA(B,,), the space of holomorphic functions that have bounded mean oscillation on 0B,,.
Equivalent definitions of BMOA(B,).

Given a holomorphic map ¢ : B, — By, the composition operator C, : H(By,) —
H(B,) is defined by the following identity:

Cof)(2) = f (o), f € HBn), 2z € B,
Various properties of C,, are presented in the monographs [12], [144]. We describe those ¢
for which C,, maps B(B,,) into BMOA(By,).
There is a series of results about the operators under consideration. In particular,
characterizations of the bounded operators C, : B(B;) - BMOA(B,) were obtained in

[121]; see also [195], [196], [198]. The cases n = 1landn = 2 are rather deferent.
Indeed, let ¢ : B, — B, be a holomorphic Lipschitz function of order 1. Then C,, does not
map B(B;) into BMOA(B,) when |l¢|lo = 1 and n =1, but C, maps B(B;) into
BMOA(B,) whenn > 2 (see [194] and [121], respectively). See also [193], [121].

For arbitrary n,m € N, the problem in question was considered only in [193], where
the bounded and compact composition operators C, : B(B,) » BMOA(B,) are

characterized under an additional regularity assumption about ¢. Namely, the operator C,, is
bounded if and only if
(1 - |z|)|Re(2)|?
(1 - lp(2)]?)?
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where v, is Lebesgue measure on B, and v,,(B,) =
We use the Mobius-invariance of the spaces BMOA(B,,) and B(B,,,). So, for z € B,,,
let ¢, denote the involution of B, such that ¢, (0) = z. Let B,,, denote the Bergman metric
on the ball B,,,. The main result is the following theorem.
Recall that the Garsia seminorm on BMOA(B,,) is defined by the identity

11l 5y = SuPscs, SuPo<rer | 1F (6 GO = £ )] don(©),

3By,
Therefore, (11) reduces to the property ||f|l¢,, , < oo when ¢ is replaced by f € H(By)
and S, is replaced by the Euclidean metric. So, as in [196], [90] forn = m = 1, we say
that (11) defines the hyperbolic BMOA class. However, other names have been used for this
class; see [195].

As observed in [193], the implication (1)= (10) holds for all holomorphic maps ¢ :
B, — B, .Hence, Theorem (5.1.3) guarantees that (1) implies (11) for arbitrary ¢ So, one
could expect that (11) implies (1) for all ¢. If this is the case, then it would be interesting to
find a direct proof of the implication in question.

The classical seminorm on BMOA(B,,) is defined by the identity

1
I llswoncs,y = sup—rgs [ I~ f5
Q

where f* is the boundary function of 1, fy is the average of f* over Q, and the supremum
is taken over all quasi-balls Q = Q) = {§ € 0B, : |1 —(n,&)| < r},n € 9B,
The hyperbolic analog of the property ||flzmoacs,) < o is the following one:

Subroneon 35 j b (070 (WT=72) ) don@ < 0. (2

The relations between (11), (2) and S|m|Iar properties will be considered else-where.
Basic properties of B(B,,,) and BMOA(B,,) are collected. Further details are given in [191],
[9]; see also [84] forn=m = 1.

The automorphism group of B, denoted by Aut(B,,), consists of all biholomorphic
mappings from B,, onto B,. Given z € B, the involution (or the Mobius transform) ¢, €
Aut(B,,) is defined for A € B,, as follows:

¢,(1) = —4 when z=0,

z—PA—1—|z|?Q,A

¢z(/1): 1—<A—Z>

when z € B, /{0},

where P,A = |z|7%(1 — z)z, Q,A = A — P,A. To distinguish the involutions of B,,, we
write ¥,,, w € B, inthe place of ¢, ,z € B,,.

The hyperbolic BMOA is defined by (11) in terms of the Bergman metric S,, on B,,,.
Note that
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1+ |1
B (w1, w2) = C log — Iz EZ;I W
wq 2

So, a holomorphic map ¢ : B,, = B,, is in the hyperbolic BMOA if and only if

1
SUPze anup0<r<1 j log 2 do_n(() < . (3)

i 1 o (0(0,00))|
For f € H(Bp) ,put

1 Wy € Bm

V£ ()| = @ —|w®)(Vf ()2 =R f(W)]2), wEe By,
Where

Vf (w) = (aa—f (w), ...,i(w)>
w1 dwy,
Is the complex gradient of f .
Let B(B,,) denote the quotient of B(B,,,) by the space of constant functions.
Then B(B,,) is a Banach space with respect to the following norms:

SUPwes,, IRf (@)1 — |w|?);

SUPwes,, [V (@) — |w|?);

||f||§3(3m) = SquEBmWf (w)|
Clearly, the above expressions are seminorms on B(B,,); these seminorms degenerate
exactly on the constant functions. The main advantage of ||.||§3(Bm) is its Mobius-

invariance. Namely,

If e Yllges,) = Ifllgs,,)

forall Y € Aut(B,),f € B(B).
Also, a function f € H(B,,) belongs to B(B,,)if and only if there exists a Constant C > 0
such that

|f (w1) — fwp)| < CBp(wy, wz) forall wg, wy € By, (4)

For{ € B, andr > 0, put
Qr(c) = {E € 0B, : 11— ((: E)l < T}

Recall that the radial limits |f*({)]| = lir?_lf(r()l are defined for g,,— almost all for every
ro
f € HY(B,)). Let denote the space of functions f € H'(B,,) such that

P do, < oo, (5)

1
FOI +supzeos,rmorgs | IF =15
Q

Where p = 1,Q = Qr(¢) and
1
fQ* = O-n(Q) f* dan
Q

The norm || f[lgmoacs,) is defined as the left-hand side of (5) with p = 1. By the John-
Nirenberg theorem, there exist constants A(n) > 0 and C(n) > 0 such that
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f exp(If* QD don@ < C)  (6)

0B,

for all f € BMOA(B,) with ||fllzgmoa,) < A(n). The John-Nirenberg inequality

guarantees that f € BMOA(B,,) ifand only if f € H?(B,) and (5) holds with p = 2.

The proof of Theorem (5.1.3) will be based on the following fact: (5) holds for p = 1 or
for p=2ifand only if

Wfllgres,y = subzep,|lf © b, — f@Dlur@,) < (7)

For p = 1 or for p = 2. The above seminorms degenerate exactly on the constant
functions. Let BMOA(B,) denote the quotient of BMOA(B,,) by the space of constant
functions.
Then BMOA(B,) is a Banach space with respect to the Garsia norm || - [[gp(g,),p = 1 0r
p = 2.
Ryll and Wojtaszczyk [197] constructed holomorphic polynomials which proved to be
very useful for many problems of function theory in the unit ball. We need the following
improvement of the Ryll-Wojtaszczyk theorem.

Theorem (5.1.1)[190]: ([192]). Let m € N. Then there exists 5= 8(m) € (0,1)and] =
J(m) € N with the following property: For every d € N, there exist holomorphic
homogeneous polynomials Wj [d] of degree d,1 < j < ], such that

||VI/j[d]||Lw(aBm) <1 and (8)

max,<j<;|Wi[d1()| = 8 forall{ € 9By, (9)
Form = 1, itis known that the following lemma holds with J(1) = 1; see [116].

Lemma (5.1.2)[190]: Let m € Nand let 0 < p < . Then there exist constants ]
J(m) € N,t,, > 0 and there exist functions F;, € B(Bp),1 <j < ],0 < x

1, such that ||F || < 1,Fj4x(0) = 0,and

J 1
P 1
Zlej'x(w)l dx = Tm,p (log 1_—|w|2)
0
forallw € B,,.

Proof. Let the constant 6 € (0, 1) and the polynomials W; [d],1 < j < J,d € N, be those
provided by Theorem (5.1.1). For k € Z., let R, denote the Rademacher function:

R, (x) = sign sin(2**'rx), x € [0,1]
For each non- dyadic x € [0,1] , consider the functions

IA I

N

1 (e 0]
Fia(@) = 3 ) ReOW2K](@), @€ By 1<)<]
k=0

Estimate (8) guarantees that

1— ol < e _1-lol*
(1 - (0P| (RF 1, )@)] < —— ) 2¥lo* s ==Y |wl" < 1.
n=1

4
k=0
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Forall w € By, . Observe that F ;,(0) = 0; hence, [|F ;|| | < 1.next

! o P
Cp j|Fj,x(w)|pdx > <Z|Wj[2k](w)|2>
0 k=0

by [91]. Given positive numbers a;, 1 < j < J = J(m), we have

J

2 J
p/2
=1

j=1
Hence,

NS

J 1 o ]
) [ 1@ Pax = Y Wizl
= k=0 j=1

0

Recall that Wj[z"] is a homogeneous polynomial of degree 2% ; thus

o J 0
DY W@ =82 ) el
k=0j=1 k=0

> 52y ” = §%lo 08 I 7 w € B,
By (9). So,
b
J 1 2
ZJ|F()|Pd>521 1\
A 1 r = Cim,p 0g1_|w|2 ’
) Jj=10 '
As required.

Theorem (5.1.3)[190]: Let ¢ : B, — B,, be a holomorphic map, then the following
properties are equivalent:
Cy : B(By) > BMOA(B,) is a bounded operator; (10)

Supzeanup0<r<1 f .Bm (<P(¢Z(T'Z)), <p(Z)) dJn(C) < @, (11)
9B,
Form =1, Theorem (5.1.3) was proved in [195]; see also [121].
Proof. Assume that (10) holds. Note that C,,1 = 1; hence, C,: B(B,,) - BMOA (B,) isa

bounded operator. Using (7) with p = 2, we obtain

supses,subo<r<r [ If 096,00 = 0 0@Fdn@) < Clf s, (12)
dBy,
Let the constant 7 = 7,,, > 0 and the functions Fj,, 1 <j<],0<x <1. Be those

provided by Lemma (5.1.2) for p = 2.Note that ”FJ""”%(B
Recall that ||.llg(s,, is Mo ‘bius-invariant hence, |[Fjx © Yy llg, , < C where the

) SC” x”SB(B )—
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constant C > 0 does notdependonz € B,.Also, we have F; , o P, (9(2)) = F; (0) =
0. Thus, by (12) with f = Fj x o P42,

j |Ff.x ° Yy (2) (<P(¢z(r()))|2 dao, () <C,
0B

forallz € B,, 0<r<1, o<x<1.Hence,

J 1
Ef f |Ff,x ° Vo) (<P(¢Z(r€)))|2 do,(0) dx < C,

j=10 0B,
z€B, 0<r<l1.
Therefore, Fubini’s theorem and Lemma (5.1.2) guarantee that

1
T log do,({) <C, z€ B,
ann 1- |1P<p(z) (<P(¢Z(T§)))|2

o<r<i.
So, we obtain (3) or, equivalently, (11).
To prove the converse implication, assume that (11) holds, that is,

Supses, sup<r<r | Bm($(02G0)),$() don(§) < oo

9B,

Let f € B(Bm). Then

|f (@(P2(r0))) — f (02| = Chn(e(d, (r0)), ¥(2))
By (4). Hence,

SUPzep, SUPo<r<1 Jlf(@(‘bz (TO) - f(‘P(Z))|d0'n(()
0B

< Csupsen, Subosrar | (@@, (), 0() don(@) <
9By,
Using (7) withp =1, we have f o € BMOA(B,). So, (10) holds by the closed graph
theorem. The proof of Theorem (5.1.3) is complete.

The space BMOA(B,,) is not a lattice, so it is not expected that (10) is equivalent to a
restriction on |¢ * ({)|,{ € 0dB,,. However, applying Lemma (5.1.2), we obtain a related
explicit condition, which is necessary for (10).

Proposition (5.1.4)[190]: Let ¢ : B, — By, be a holomorphic map. Assume that C,, :
B(B,,) - BMOA(B,) is a bounded operator. Then there exist constants & =
e(n, m, ||C ) > 0and C = C(n) > 0 such that

1

J exp (elog1 — |<p1*({)|2)§ do,({) < C.

9B,

(p”%—>BMOA
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Proof. The operator C, maps B(B,,) to the Hardy space H?(B,). So, arguing as in the
proof of the implication (10)= (11), we obtain

1
SUPo<r<1 j log > da, ({) < .
1 —
. lp(rd)|

Hence,

1
f log 1 lp*(9)]? don(§) < .

n

By Fatou’s. In particular,

lp™ (D] < 1. (13)

For a,- almosy every ¢ € dB,,. If (13) holds, then
fle* (@) = limys- f(@GD) = (f 2 9)* (. (14)
Forany f € H(B,,)-
Now, let the constant 7 = t,,,; > 0 and the functions F;, € B(By,) ,1<j<],0<
x < 1, be those provided by Lemma (5.1.2) with p = 1.we have, be those provided by
Lemma (5.1.2) with p = 1. We have

||F}:x ° gD”BMOA(Bn) = ”CQD”‘B—)BMOA.

Thus, for § = A(n)||C (14) and (6) guarantee that

-1
¢ ||EB—>BMOA

j exp(8|F; (o * (D)]) don () = j exp(8|Fjxo )" (D) don, (D) < C(n),
9B, ):
1<j<], 0 <x <1,

where the constants A(n) > 0and C(n) > 0 are those provided by the John— Nirenberg
theorem for BMOA(B,,). Therefore,

exp(8|F;x(¢*(()) dx don ()

'M~
O\D—‘

C(n) = J%

0B, J

ZJex

9B, j

- J (1) l 1 do, (0)
> exp| — |lo 0, ().
ST YT or )
By Fubini’s theorem. Jensen’s inequality and Lemma (5.1.2).
Section (5.2): Logarithmic Bloch Spaces
For H (ID) denote the space of holomorphic functions on the unitdisk D = {z € C:
|z] < 1}
The question about reverse estimates naturally arises in the study of the growth spaces
AV (D), where v is a weight function, that is, v: [0, 1) — (0, +«) a non-decreasing,
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continuous, unbounded function. By definition, the growth space A” (D), consists of f €
H (D) such that
lf ()| < Cv(lz]), ze€D, (15)
for some constant C > 0.
In applications, it is useful to have test functions f € AV (D), for which the reverse of
estimate (15) holds, in an appropriate sense. As shown in [200], the required test functions
exist for a sufficiently large class of v. Namely, recall that a weight function v : [0, 1) — (0,
+00) Is called doubling if
v(l—-s/2) <Av(l—5), 0<s<1.
For some constant A > 1.
Theorem (5.2.1)[199]: ([200]) Let wv:[0,1) - (0,4+) be adoupling weight function.
There exist functions f;, f, € AV (D), such that
L@ + 1] = v(|z]), 2 € D. (16)
An assertion similar to Theorem (5.2.1) was also obtained in [110]. The first result of the
above type was proved by Ramey and Ullrich [121] for v(t) = (1 — t?)~1. See [200],
[110] for further references.
Clearly, estimate (16) is sharp since the same weight function v is used in both (15) and (16).
So, it is interesting to find those spaces X < H (D) for which the corresponding lower
and upper estimates are sharp, but different. To the best knowledge of the author, the only
known example of such a space X is the Bloch space B(D).
The Bloch space B(ID). consists of those f € H (ID) for which
Ifllsmy = If (O] + supzep If @IQA — |2]?) < oo
On the one hand , if f € B(D), ||fllgm) < 1, then

<
If(Z)I_Clogl_lzlz, z€D, (17)

for an absolute constant C > 0. On the other hand, the following integral reverse estimate is
known:
Theorem (5.2.2)[199]: (see, e.g., [116]) Let 0 < p < oo. Then there exist functions F,, €
B(D),0 < x < 1,suchthat |[|[Fyllgpy < 1and

1

P 1
2

1

1
lex(z)P’dx = Tp (logl——lle) ,Z €D, (18)
0

For a constant Tp > 0.

1

1 5.
° )zln the lower

1-|z[? 1-|z[?
estimate (18), both (17) and (18) are known to be sharp. To find similar examples, it is
natural to consider the weighted Bloch spaces 8 (D). Given a weight function w, the space
B« (D) consists of f € H (D) such that

/" ()]

Ifllgemy = If (O] + supzep wl@D)]

If w(t) = (1 — t?)71, then B®(D) coincides with B(D) So, for w, (t) = (1 —
t2)~%,a > 0, one may consider the spaces B%« (D) as possible analogs of B(D).
However, if 0 < a < 1, then 8= (D) coincides with the Lipschitz space A*~%(ID); hence,
there are no reverse estimates in this case. If a > 1, then B« (D) coincides with the growth
space AV (D), v,(t) = (1 — tH)1 <

While one has log in the upper estimate (17) and (log
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Therefore, to find appropriate analogs of B(ID), we have to consider sufficiently weak,
say logarithmic, multiplicative perturbations of the weight function w(t) = (1 - t?)1.
For a € R, the logarithmic Bloch space L*®B(ID) consists of those f € H(ID) for which

I llewy = 1 O] + supsen I (I = 1207 (fog =) < o0

-
Note that the function w,(t) = 1_1t2 (log 1—et2) is increasing on [0, 1) When a <
1.If a = 0,, then L*B(ID) coincides with the Bloch space B(DD).
IFa > % then L*B(ID) is a rather small space, in particular L*B(ID) ¢ BMOA(D) (see,

e.g., [201]). So, there are no appropriate reverse estimates in the spaces L*B(D),a < % ,

The main technical result is the following integral reverse estimate for L*B(D),a < %

As shown, the exponent % — a in estimate (30) is sharp. Also if a < 1, f € L*B(ID),
and ||| zgm)y < 1, then we have the following sharp upper estimate:

e 1-a
If (2)] < C, (log T |Z|2) , z € D, (19)

for a constant C, > 0. Therefore, the spaces L*B(D),a < g provide examples of the

phenomenon discussed above for B (ID): while the exponents in (30) and (19) are different,
both (30) and (19) are sharp.

Reverse estimates are known to be useful in the study of concrete linear operators on
the corresponding spaces of holomorphic functions. We consider composition operators.

Given a holomorphic function ¢: D — D, the composition operator ¢: H(ID) —
H(ID) s defined by the formula

Cof(2) = f(e(2) f € HD), zeD.
We study the composition operators from L*B(ID) into the Hardy space H?(ID). As

a by-product, we deduce that the reverse estimate (30) is sharp, up to a multiplicative
constant. Also, we consider the composition operators from L*B(ID) into the space BMOA

(D).

We devoted to the proof of Theorem (5.2.5). Composition operators on the spaces
1
L*B(D), a < >
To prove Theorem (5.2.5), we need two auxiliary lemmas.

Lemma (5.2.3)[199]: (cf. [202]). Let3 > 0, and lett € [0, 1). Then there exists a constant
Cg > 0 such that

)ﬁ 20)

Z(k +1)B-12 1 > Cp (log
k=0

Proof. First, let t € [O, %] Then

1-t

B

- 1
Z(k + 1)F-1 21> 1> (logz T t)
k=0

1) @)

then we have

= (log2)~F (log

1
on+1’

Second, lett € [%,1). Selectn €N suchthat 1 — zin <t<1l--
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Z(k 4 1)B-121
k=0
n 1 2
> Z(k +1)F-t (1 - z_n)
k=0

k_q

n
1
> —Z(k + 1)1,
ek:0

Put S, = E ok + 1)1 Continuation of estimate (2.3) depends on B and uses the
¢ Lk=0

inequality t <1 — which is equivalent to

n+1’

1 B
(logzl—_t) S(Tl+1)ﬁ (23)
If 0 < B < 1,then, by (23)
5>("+1)B>11 1 B—l(l 2 (10g — ’ 24
n= e _e(ogzl—t) BRRS (Ogl—t)' (24)
If B = 1, then, by (23)
n
1
= %Z((k+ D1+ (n+1-k)F?)
k=0
n
1 (m+2)F1 (m+ 1)~
> — >
_Zekz:0 281 T @28 (25)
>1(1z 1 )B—1(21 2)—3(1 ! )ﬁ
=e\20927 ;) T8 °91 ¢

Finally (21), (24) and (25) imply (20) with Cp = i(z log2)~F.
Lemma (5.2.4)[199]: Let a € R. Then there exists a constant C, > 0 such that

(0]

i 21-1 < (1—t)‘1(lo ¢ )_a t €[0,1) (26)
L (ke + D s 91— T
Proof. Put
e O 2K-1 .,
G,(t)=(1-1t)(l ———t?> LaeR,te]0,1
() = (1 =1 (log—) ) T a [0,1)
Forn € N andte[l——,l— +1] wehave
2n 2n
- n\« k-1
_ k—n4 2 _
G, () < C, Z(k) 2k-ny 1
k=1
. 0 2k—1_1
k—n e k—n 1
sc| 2@ 27+ Y @) 2 (1-gm)
k=1 k=n+1
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<C, (i (g)“ 2k-7n 4 i (g)a Zk—nqzk—n'>. 27)

. k=1 k=n+1
Where g = e s € (0,1).
Continuation of estimate (27) depends ona. If a <0, then (—

e~ (k-n) oq
n

G,(t) < C, (Z pk-n 4 Z (e~ N)kng2™" < ¢ <2+Z(2e—“)5 2) ! (28)

k=1 k=n+1
If «a >0, then ,

G, (1) < C, Z n2"7 4 20 z 2k- n+225 2

n

1<k<— 5sk<n
n S
<C, (n““z—Tl + 2¢+1 ¢ Z 25q° ) = CJ. (29)
s=1

It remains to remark that (26) follows from (28) and (29).
We are in position to prove the reverse estimates in the logarithmic Bloch spaces

L*B(D), @ < .
Theorem (5.2.5)[199]: Let a < % and let 0 < p < oo then there exist functions F, €
L*B(D),0 < x < 1 suchthat ||E || jegmp)y < 1 and

1

p

e
jIFx(z)Ip dx | =Z27Tpq (log

1—|z|?

)E_a z €D, (30)

fora constant 7, , > 0.

Proof. Let the constant C, > 0 be that provided by Lemma (5.2.4) for x € [0,1] consider
the following functions :
1 = R(x
k() 221 zeD.

Fy(2) = :
=) = 17, £ e+ D°

Where R, (x) = sign in (28" 1mx) are the Rademacher functions. First , we have F, €
H(D) and

1 ) e \¢ 2k -1
| Eell Loy < 1T ¢, (1 + supzep(1 — |2 )(109 1——|z|2) k_lmm <L

By Lemma (5.2.4), with t = |z|2.Second, by [91]

p
1 d |Z|2(2’<—1) 2
JolF;c(Z)lpdszp,a k_om ’

Applying Lemma (5.2.3) with § = 1 — 2a and t = |z|? , we obtain
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® |Z|2(2k—1) s l 1 1-2a D
—_— _ S , €
L Gc+ 12 = 2“( °91- |z|2) z
Therefore,
: p NG
jo |F (2P dx = 7}, 4 (logl_ |z|2) ,ZED
As require.

As mentioned, reverse estimates are known to be useful in the study of composition
operators (see, e.g., [200], [80], [116]-[121]). We consider operators with values in the
Hardy space H%(ID) and in the space BMOA(D).

Let o denote the normalized Lebesgue measure on the unit circle
T={ € C:|{| =1} o(T) = 1.For0 < p < oo, the Hardy space H” (D) consists
of f €H (D), such that

ey = Subocres [ IFGDIP do(@) < o
T

Given f € H (D), the Littlewood—Paley g-function is defined as follows:
1
2

1
9N = j|f'(r()|2(1—r)dr CET.
0

It is known that f € HP(D) ifandonly if g(f) € L (T) (see, e.g., [91] forp > 1).

Also, recall the definition of the hyperbolic Hardy class H,’f (D) (see, for example,
[204]). For 0 < p < oo, H,f (ID) consists of those holomorphic functions ¢ : D — D for
which

1 p
su lo ) do({) < ©
p0<1'<11]r ( gl_lgo(rz)lz {
Remark that H?? (D) ¢ HP' (D) for 0 < p; < p, < oo.

For > % , we have L* B(D) c BMOA(D) c H?(D), hence, the composition
operator C, maps L% B(D) into H?(D) for any symbol ¢. For o = 0, a description of the
bounded operators C,, : L* B(D) - H?(D) is given in [80]. For arbitrary a < %,we have
the following characterization:

Theorem (5.2.6)[199]: Let a < % ,and let @ : D — DD be a holomorphic mapping. Then
the following properties are equivalent:

Cp, + L*B(D) » H*(D). (31)
Is a bounded operator.(31)
Lo o' r)I? e e 10,
T e T pegE) | et mi @Y
@ € Hy 2% (D). (33)

Proof. Let (31) hold. Applying Theorem (5.2.1), choose f;, f, € L* B(D) that

—2a
H@P +IF@F > 1= 127 (log7=) zeD.
By (31), we have C, f; € H*(D), j = 1,2. Thus,
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2 2
w > |g(C, fl)”mr) + |l9(Cy fZ)“LZ(T)
1

=Lr J(|f1'(‘f’(rf))|2 +1£(eCO)) o' GO = r)drdo(?)
0

(eGP e
3 Of A= TGO (9 T peme) (= arde®),

So, (31) implies (32).
To prove the converse implication, assume that (32) holds.
Given f € L*B(D) and { €T, we have

1

10 GOI?

91O = Wflesor | —(p|<pr(ic)|2>2 (o9 7 =150m) @ -nar
0

Whence, g(C, f) € L*(T) by (32).

Therefore, C, f € H*(D). So, (33)implies (32).

Finally, properties (32) and (33) are equivalent by [203].
Remark that the implication (31) = (33) also follows from Theorem (5.2.5). In fact, a related
argument guarantees that the estimate (30) is sharp.

Assume that there exist functions F, € L* B(ID),0 < x < 1, such that (30) holds
with f > % — ain the place of % - a.Forevery@ € H;_Z“(D), the composition
operator C,, : L* B(D) - H?*(D) is bounded by Theorem (5.2.6). Hence,

2 1 2
([0 I jo l IE (9 (rD)|” do(@)dx

1
2 1 2B
_Lr OjIFx(qo(rC))l dx do({) zcﬁTf (logl_ |<p(r€)|2) do({)

for all € (0,1). In other words, ¢ € H,ZLB (D). Hence, Hi %* (D) = H,Zlﬁ (D) and

28 =1 — 2a.
The space BMOA(D) consists of those f € H?(D) for which
2 2 * 2 1- |a|2
I WEonm) = 1F O + supaen [ 1)) = F@F oz do @) < o
T

where the radial limits f* (¢{) = lim,_,_ f (r{) are defined ¢ — a.e.
By the John—Nirenberg theorem, there exist constants A > 0 and C > 0. Such that

f exp(If* () do (@) < C. 34)

T
Forall f € BMOA(D) with ||f|[smoam) < A.
Recall that L* B(D) ¢ BMOA(D) for a > %.So, if p: D—>D is an arbitrary

holomorphic function and o > % then the composition operator C,, maps L B(D) into
BMOA (D).
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For < -, a theoretical characterization of the bounded composition operators C,, :
L* B(D) - BMOA(D) is given in [110]. Applying Theorem (5.2.5), we obtain an explicit
condition that is necessary for the boundedness of C,, : LY 8(D) —» BMOA(D),a < %
Proposition (5.2.7)[199]: (cf. [190]) Let a < % ,and let @ : D —» D be a holomorphic

function. Assume that C,, : L* B(D) — BMOA(D) is a bounded operator. Then there exist
constants ¢ = > 0 and C > 0 such that

N | =

S(a, ” C(P ||L05 B(D)- BMOA(D)

1
5=

fexp (slogl_ |<Pl*(f)|2) do({) < C.

T
Proof. Since a <% and the operator C, : L% B(D) —» BMOA(DD) is bounded, we have

|p * ()] < 1foro—a.e.{ € T (see [110]). Therefore, forevery f € H (D),

fle*@) = lim fG) = (Fo@) (). o—a.el €T (35)
Let the functions E, € L* B(D),0 < x < 1, be those provided by Theorem (5.2.5) with
p = 1.Then

-1 . . .
Put§ = A|Cy|.. B(DyBMOAD) * VEre A s the constant provided by the John— Nirenberg

theorem . By (35) and (34), we have

j exp(S|E. (¢ (D)]) do(Q) = j exp(8|(F, 0 @) (DN do(Q) <C, 0<x<1.

T T
Finally, applying Fubini’s theorem, Jensen’s inequality, and Theorem (5.2.5), we obtain

1
> j j exp (8|F.(¢7(D)]) dx do(0)
T 0
1

> j exp 6 j (0" (©)] dx | do @)

T 0
1
1 Pl
Zfexp 0T1 4 (logl—|<P*(()|2) dx |do({).
T

As required.
Corollary (5.2.8)[276]: (cf. [202]). Let e > 0, and let t € [0,1). Then there exists a

constant C;,,. > 0 such that
* 1+€

€ .2k—1 1
Z(k + D > 0y, (log — t) (36)
k=0
Proof. First, let t € [O, %] Then

- 1
Z(k +DE 1 >1 > (logz . t)
k=0

1+€
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t)1+e 7

then we have

1
= (log2)~(+e (log T
Second, let t € [l 1). Selectn € N such that 1 — in <t<1-

- - on+1’

k—1 2”—1 n

Z(k+1)et2k‘1>2(k+1)€ (1——) (1——) Z(k+1)6

2;2(k+ 1)e. (38)

Put S, = i h=olk + 1)6 Continuation of estimate (38) depends on (1 + €) and uses

the inequality t <1 — which is equivalent to

1+€

1
(lOgZ 1_—t> < (n+ 1)t (39)

n+1'

If € < 1, then, by (39)

1—€ 1—€

(n+ 1€ 1 1 1
| (D ~Log2) (1ag )
Sp = - (logz = t) . (log 2) log T3 (40)
If € > 0, then, by (39)

1 n
= ZkZO((kH) + (n+1-k)9

1 (n+2)¢  (n+ 1)
> Z—RZ > (41

821+€

1 1 1 1+¢€ 1 0 1 1+€
> 2 (z _ 2 —(1+e)( )
_e(zlogzl_t> e(ZlogZ) logl_t

Finally (37), (40) and (41) imply (36) with C; . = é(z log2)~ (%8,
Corollary (5.2.9)[276]: Let e € R. Then there exists a constant C1__ > 0 such that
2

0 1
2K 1 e \~G-©
z —tzk -1 €A=" H(ogz—) * el @)
Proof. Put

e e 2K—-1 .,
Gi_ (O)=01-10) (logl—t) z—ltz -1 e€eR ,t €[0,1)
=1 (k+1)2"°¢

] we have

Forn € N andte[l—— 1-—

Zn’ 2n+1

o

1
mz—¢ k—n,2k-1
6L (O=Cy, z (7)) 2 -1

k=1
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n 1
n 2- “6 n
< C (Z (— 27" k- n 4 z 2k-ng2"” ) (43)
E_E

1
Where g = e s € (0,1).

i i . n\1-€ (e-1)
Continuation of estimate (43) depends on1 — €. If € < 1, then (Z) <e n <
e(E—l) (k_n), SO

n o
G1-e(t) < Ci—e (2 2k 4 Z (Zee_l)k—nqzk—n >

o k=1 k=n+1

< Ci-c <2 4 2(266_1)1—60[21-6)
, e=0
= Cie (44)
If € >0, then
z —€
Gl+e(t) < C1+e Z nlt€™2 4 plte z 2k-n +z 21—<5qz1
1<k£§ %Sksn €=0
n —€
< Cite (n2+62_5_1 +2%%€ ¢ Z 21-¢q% ) = Cl.. (45)
e=0

It remains to remark that (42) follows from (44) and (45).
Corollary (5.2.10)[276]: Let € < % and let 0 < e < oo then there exist functions F, €

1
L 28(D),0 < x < 1 suchthat ||E]| LE+123(]D)) <1and
2
1

1 1+e .
o _
JIEC(Zs)ll-I-E dx = Z T el 1., (l gl_—llz) ) z; €D, (46)
3 5 5 2 Zg
for a constant T, +€% e > 0.

Proof. Let the constant C:__> 0 be that provided by Corollary (5.2.9) for x € [0,1]
2
consider the following functions :

D F () = T Zz BB e

5—€ K= (k + 1)__6
Where R, (x) = sign in (2k+1nx) are the Rademacher functions. First , we have F, €
H(D) and

IEN s
L 28(D)

@ k _
1 — 2 2 2k-2
< Y 1+ sup (1 —1z]%) log1 | |2 —|z|
%—e zs€D = Zs = (k + 1)——6

<1
by Corollary (5.2.9), with t = |z,|2. Second, by [91]
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1+€

1 e & 2@ \ T
| z RGO edr=a, 4 > (Y —

S k=0 (k + 1)2(2
Applying Corollary (5.2.8) withe =1 and t = |z|? , we obtain

|ZS|2(2 1) 1 2€
») 6.y (oos)” zeo
(k + 1)2(2 . 1— |zl
Therefore,
1 . 1 e(1+¢)
1+€ > +€
J;) Z |Fe(zs)|" "€ dx = T1+e,%—ez (log 1 — |Zs|2) ) zs €D

s s

As require.

Corollary (5.2.11)[276]: Let € < % ,andlet@ : D — D be aholomorphic mapping. Then
the following properties are equivalent:

Cp : L‘“%ﬂs(u)) - H?*(D). (47)
Is a bounded operator (47)
! o' (r)I? e 2G79 .
) D T TePP  Tpgpp) | ATParenm ae)
@ € Hp® (D). (49)

Proof. Let (47) hold. Applying Theorem (5.2.1), choose f3, f, € L_EJ’% B(D) that
2e—1
D RER+1fER = ) (=127 (log ). zen

S S
By (47), we have C, f; € H*(D), j = 1,2. Thus,
o > 9(Co fll 2y, + 9o NI

1- |Zs|2

(T) (T)
1

Z_I _Iz (|f1’(€0(r(s))|2 + |f2'(<.0(7‘(s))|2)I(p’(r(S)Iz(l —r)drdo({)
T 2 4

1
lp’ (rd,)I? e 26-1
ZJT Jz G AIBE <log 1- |<p(r(s)|2)2> (1 =r)drds((y).

So, (47) implies (48).
To prove the converse implication, assume that (48) holds.

Givenf € L —e+g 2 B(D) and {; € T, we have

Z 9*(Cof) s

S
1
2 lp’ (Tcs)lz e 20
=l ”L—e+3w>of Z A G B

Whence, g(C, f) € L*(T) by (48).

Therefore, C,, f € H*(D). So, (48)implies (47).

Finally, properties (48) and (49) are equivalent by [203].
Corollary (5.2.12)[276]: (cf. [190]) Let € < % ,and let ¢ : D - D be a holomorphic
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1
function. Assume that C,, : L™ ¢"28(D) - BMOA(D) is a bounded operator. Then there

C(p||L_6+1 > 0 and e > 0 such that

_ 1
exist constants € = ¢ (E -6 | 2 B(D) (D)
2 - BMOA

€

JZ exp(glogl_l(pl*(cs)lz) do({s) < 1+e.

Proof. Since e < %and the operator C,, : L™ ¢"2 8(D) — BMOA(D) is bounded, we have
Ys l9*({s)| < 1foro—a.e.{; € T (see [110]). Therefore, for every f € H (D),

Y @@ = lm Y fp@i) =) (Fep) (). o-aed €T (50)

S

1
Let the functions E, € L™ "2 8(D),0 < x < 1, be those provided by Corollary (5.2.10)
with e = 0. Then

”fx ° (P”BMOA(D) = ||C(p||L_E+%§B(]D))—>BMOA(D).

-1

Puté = (1+ E)”C"’”L where (1 + €) is the constant provided by the

1 )
~€*2 B(D)->BMOA(D)

John— Nirenberg theorem. By (50) and (34), we have

f exp ) (6]R(0° @) do(Gy) = j exp ) (BI(E o 9)' GIN o) < 1+¢
! ) 0<x<1. ! S

Finally, applying Fubini’s theorem, Jensen’s inequality, and Corollary (5.2.10), we obtain

1
1+eZJJeXp2 (6|E.(¢*(¢)|) dx do ()
T 0 s

1
> j expy (6 j IF. (0" ()] dx | do(S)
T S 0

2| e ) (‘”1%—6 (109 3= |<p1*(<s>|2)€ d’“) 20(6s)

T

As required.
Section (5.3): Quadratic Integrals

For H(B,) denote the space of holomorphic functions on the unit ball B;of CY, d > 1.
Given a gauge function w : (0, 1] — (0, +x), the weighted Bloch space B*(B,) consists of
those f € H(B,) for which

IRf (2)11(1 = |z|)] <o

Il = 1F O] + supsepa™ 7= (5D
Where
d
of
Rf (z) = = (2), €B
f(z sz oz; z Z €EBy

j=1
is the radial derivative of f . B* (B,) is a Banach space with respect to the norm defined by
(51). If =1, then B (By) is the classical Bloch space B (B;). Usually we suppose that
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the gauge function w is increasing; hence, we have B¢ (B;) c B (B,).

The above notation is not completely standard: often the weight #/w (t) is attributed to
B (By).

Assuming that  is sufficiently regular, we show that the quadratic integral

1 2
K@=u@r5fw“)

X
governs the radial divergence and integral reverse estimates in B8 (B,). In both cases, the

solutions are based on the classical Hadamard gap series.

Givenf e H(B,;) and { €0 B;, we say that f has a radial limit at " if there exists a finite
limit f %) = lim,_1- f (r).

Let g, denote the normalized Lebesgue measure on the unit sphere 0By. The radial
convergence or divergence in B (By) is described in terms of (I(0*) by the following
dichotomy:

Remark that the condition | (0+) = « was previously used by Dyakonov [201] to
construct a non-BMO function lying in B (B:) and in all Hardy spaces HP(B1), 0 <p < .

dt, 0<x<1,

Given an unbounded decreasing function v : (0, 1] — (0, +), typical reverse estimates are
obtained in the growth space AY(B), which consists of f € H(B,) such that |f (z)| < C,(1 —
|z|) for all z € B4. Namely, under appropriate restrictions on v, there exists a finite family

{f; Yj=1 € A(By)
such that
1A@+ -+ 1f; @ =2 (1 — |z])
forall z €B, (see, for example, [200]).
For the weighted Bloch space B*(B;) the following result provides integral reverse

estimates related to the function ®z(1 — |z|),z € B, , where

O(x) = dy(x) = 1+ j
X
For w = 1 and for logarithmic functions w, the above estimates were obtained in [190]

and [199], respectively.

We devoted to the radial divergence problem. We prove Theorem (5.3.5) and we
show that estimate (56) is sharp, up to a multi-plicative constant. Applications of Theorem
(5.3.5).

Proposition (5.3.1)[205]: Let @ : (0, 1] — (0, +o©) be an increasing function.

Let I(0+)<oo. Iffe B (By), then f has radial limits o4-almost everywhere.

Let I (0+) = oo and let w(t) / t'¢ be decreasing for some £ > 0. Then the space B (By)
contains a function with no radial limits o4-almost everywhere.

Proof. (i) is a known fact. Indeed, if | (0+) <o and f € B“ (B,), then |[Rf (2)|*(1 — |z]) is a
Carleson measure, hence, f e BMOA(B,). In particular, f has radial limits o; — a.e.
(if) ford =1 Put

dt, 0<x<1.

fl2) = w(27F) sz,z € B,.
kZO ;

Standard arguments guarantee that f € BY (B1). For example, lett € (0, 1] and let ©

% > 1. Observe that
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1
TW ;)
- - - T
because w(t) is increasing. Also,

is adecreasing functionof t = 1.

1 . . . .
Tw (;) /t¢ is an incresing function of T > 1.

w(t)
t1—€

is decreasing therefore,tw (%) ,T = 1, is a normal weight in the sense
of [11]. The derivative f' is represented by a Hadamard gap series, hence, f € B (B:1) (see,
e.g., [206]).

Since w Is increasing, we have

because

z w?(27%) > 1(0 +) = oo. (52)
k=0

Thus, f has no radial limits o; — a.e. by [91].

(if) d = 2 Fix a Ryll-Wojtaszczyk sequence {W [n]}; =1 (see [197]). By definition, W [n]
is a holomorphic homogeneous polynomial of degree n, ||[W [n]|[;~@pp,) =1 and
\W [n]||L*(0B,) = & for a universal constant 6 >0. In particular, (52) guarantees that

z”w(z—k)W[zk]”iz(aBd) =
k=0

Hence, by [77], there exists a sequence {U, }5-,0f unitary operators on €% such that

> W@ H|W2K o U = . (53)
k=0

for o4-almost all { € 0B,. Put

f@ =) 0@ W2k Up(n) 7z € By
k=0

First, fix a point { € 0B; with property (53). Consider the slice-function f; (1) =
f (A0),A € B;. Note that
i) =) a® AeB,
k=0

Where a;, = w2 )W [2¥] o Uy (Q). By (4),we have {a;}y-, & £2.

Thus , fz has no radial limits o; — a.e.by [91]. Since the latter property holds for
o4 —almost all { € 9B, Fubini’s theorem guarantees that f has no radial limits o; — a.e..

Second, recall that ||[W [2¥] o Uk||L°°(aBd) = 1. So, we deduce that f € B (By),

applying the argument to the slice-functions fz , { €9B,.. This ends the proof of Proposition
(5.3.2).

If «w(0+) > 0, then B*(B,) coincides with B (B,;), hence, B*(B;) contains a
function with no radial limits everywhere (see [207], [136]).However, if w(0+) = 0, then
Proposition (5.3.1)(ii) is not improvable in this direction. Indeed, ifw (04+) = Oand f €

B*(B,), then f has radial limits on a set of Hausdorff dimension one (see [208]).

To obtain the hyperbolic analog of B“(B,), replace Rf (z) by
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Ro (2),
1 - le2)|2,

where ¢ : B, - B,,,m,n € N, is a holomorphic mapping. The radial limit ¢*({) is
defined at o,,almost every point of dB,,, hence, it is natural to replace the radial divergence
condition by the following property: |¢*| = 1 g; — a.e., that is, ¢ is inner. While the
problem in the hyperbolic setting is more sophisticated, the following analog of Proposition
(5.3.1) is known, at least forn=m = 1.
Theorem (5.3.2)[205]: ([13)], [92]). Let w : (0,1] — (0, +o0) be an increasing function
(i) Assume that I(0+) < oo and @ : B; — B; is a holomorphic function such that

o' @)~ |z]) _

1-le@| ~

w(1—|z]),z € By,

Then ¢ is not inner.
(ii) Assume that 1(0+) = oo and w(t)/t1~¢ decreases for some & > 0. Then there exists an
inner function ¢ : B; — B; such that
o' @I~ I2D) _
1-|e2)| ~
We apply Theorem (5.3.5) to obtain quantitative versions of Theorem (5.3.2)(i).
Lemma (5.3.3)[205]: Let ® : (0,1] — (0, +c0) be an increasing function. Put

(0]

— k_
Y(r) = 2 w2(2 k)?”z 1, 0<r<li.
k=0

w(1—|z|),z € By,

Then
Y(r)=Cd( —r) foraconstant C = C, > 0.
Proof. Let2™ 1 <1—7r<2™ for somen € Z,. Then
n

29() 2 207 (1) + ) w? @791 -2
k=1

> w?(1) +%z w27 = Cco2™ Y > Ccr(1-1),
k=0

since w is increasing and @ is decreasing.

Also, we need the following improvement of the Ryll-Wojtaszczyk theorem used.
Theorem (5.3.4)[205]: ([192]). Let d € N. Then there exist 56 = 6(d) € (0,1)and] =
J(d) € N with the following property: For every n € N, there exist holomorphic
homogeneous polynomials W; [n] of degree n, 1 <j <, such that

[Wjn]|l,« o5y S Land (54)

max;<j<;|W;i[n](&)| = ¢ forall§ € 9B, (55)
Probably, it is worth mentioning that J(1) = 1.
Theorem (5.3.5)[205]: Let d € N and let 0 < p < . Assume that ® : (0, 1] — (0, +o0)
increases and o (t) / t'® decreases for some £ > 0. Then there exists a constant Ta,pe > 0and

functions Fy, € B (Bg), 0 <y <1, such that ”Fy”sswaad) < 1and

1
2
[ @I dy = tapa @7 @ - 12D (56)
0

Forallz € B,
Proof. Let the constant 6 € (0, 1) and the polynomials W; [n], 1 <j <J, n €N, be those
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provided by Theorem (5.3.4).
For each non-dyadic y €[0, 1], consider the following functions:

Fy() = ) Re W@ MW2F-11(),  z€Bu1<) <]

Where

R (y)sign sin(2**my),  y € [0,1]
Is the Rademacher function.
First, arguing as using estimate (54), we deduce that

”F}',y”%w(Bd) <

1 0o p
Ce f |Fy ()] P dy = (ZIw(Z—")Wj[z" - 1](z)|2>
0 k=0

Second, we obtain

by [91]. Given positive numbers aj,1 < j < J =J(d), we have
p

J J

p
So) <3
j=1 j=1

Hence,
j 1 w ] p
- 2
Zj Fy@[Tdy 2| Y > w? @ w2t - 11|
J= 0 k=0 j=1
Since W; [2F 1,1 < j < J, are homogeneous polynomials of degree 2X — 1, we obtain

oo J

z z (Z_k)le[zk - 1](Z)|2 > 52 Z w? (z—k)|z|2"+2—2
k=071 k=0

> §%2C,®(1 — |z|?), z € B,.
By (55) and Lemma (5.3.3) with r = |z|?. So,
J 1

Cap z J|F}-,yz|2p dy > (6ZCwCD (1- |Z|2))p, Z € By,
j=1o0
Changing the indices of the functions F; ,, and using a new variable of integration, we may
reduce the above sum of integrals to one integral over [0, 1]. So, it remains to verify that
CO(1 — %) = (1 — 1), 0<r<1.
First, if 0 < r < % then®(1 — r) < C, < C,®(1 — r?) for a constant
C, > 0.Second, if0 < € < % then ®(e) — ®(2¢) < w?(2¢) < 3P (2¢), because w
IS increasing. Thus

2
(1 — 7r) < 401 — r¥)for 3 <1< 1.

The proof of Theorem (5.3.5) is finished.
To show that inequality (56) is sharp, we estimate the integral means
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T~

Mt = | [1f GOPdo@ | . 0 <1<t
@By
for the functions f € B(B,).
For w = 1, the following result was obtained in [209] and [210].

Proposition (5.3.6)[205]: Let0 <p<owand let fe€ B®(By) Then

1
My(f, 1) < Cllifll goy®@2(1—7), 0<7r <1 (57)
for a constant C > 0.
Proof. For f € H(Bgj) and 0 < r < 1, we have

1/p
1 2
M, (f,r) < CIf ()] +C j j 2 RFGEO2(L - 0) dt dad(c)\‘

0Bg \0

for a constant C > 0; see, for example, [211].
Iff € B(B,), then, using the defining property (51), we obtain
1 r

T

w?(1—1t)
f r? IRf(red)P(1 = D)t = j IRFEDI(r = Odt < IIflso, , f S
0 0 0

< lIf o 5, @A = 7).
Since |f (0)] < ”f”%“’(Bd)i” sum we obtain the required estimate.

Comparing Proposition (5.3.6) and Theorem (5.3.5), we conclude that the direct
estimate (57) and the reverse estimate (56) are not improvable, up to multiplicative
constants.

Given a gauge function w, the weighted Hardy—Bloch space 8*(B;),0 < p < oo,
consists of those f € H(B,) for which

M, (Rf,r)(1 -1
Ifllsg s = 1f O] + supocr<s ”(wfl z(r) L (58)
Clearly we have B¥(By) < B5(Bg), 0 < p < o, .So0, itis interesting that estimate
(57) is sharp for f € B*(Bgy) and holds for all f € B (By) with p = 2. Namely, we
have the following proposition that was proved in [202] for w = 1.

Proposition (5.3.7)[205]: Let 2 < p < oo and let . Then f € BF (B,), Then

1
Mp(f, r) < C|If|l %w(Bd)(DE(l -r), 0<r<i1, (59)
For a constant C > 0.
2
S
|

Proof. For f € H(Bgj)and 0 < r < 1,, we have
1
Mp(f) < clf@l+c | [| [ 1RFGeI dog@) | 721 - vt
\0 o4 /

For a constant C > 0 (see [212] for d = 1: integration by slices gives the result for d >

N[~

(60)
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1). Now, we argue as in the proof of Proposition (5.3.6). Namelym for f € 8B“(B;) , the
defining property (58) guarantees that

<IN

1

j j RFGEOIP dog(@) | r2(1— t)dt = f MZ(RF,6)(r — )dt
0

0 \ 9By
r

w?(1—1t)
< I Waoca [ g 4 < I aoap® (1= 1)

0
Since |f(0)| < |If1l g»(s,), the proof is finished.
We assume that w: (0,1] = (0,+00) is an increasing function.

Givenaspace X c H(B;) and 0 < g < oo, recall that a positive Borel measure x on
B, is called g-Carleson for X if X < L(Bg, ).

Suppose that w(t)/t1 ¢ decreases for some ¢ > 0. A direct application of Theorem
(5.3.5) gives the following result:
Corollary (5.3.8)[205]: Let 0 < q < and let p be a q-Carleson measure for B®(By).
Then

q
j D2(1 — |z])du(z) < .
Bg
If « is a radial measure, then the above corollary is reversible. Moreover, the
corresponding result holds for all spaces By’ (B;), p > 2.

Proposition (5.3.9)[205]: Let 0 < g < < and let p be a positive measure on [0, 1).
Then the following properties are equivalent:

1
j j FGDIdoy(Ddp(r) <o forall f €BL(B)p =2  (61)

0 0By
1

j j FGrO%do,(O)dp(r) <o forall f € B2(By); (62)

0 0By
1
f O7(1 —r)dp(r) < . (63)
0

Proof. The implication (61)= (62) is trivial, because B, (B;) € By’ (Bg). Next, (62)
implies (63) by Corollary (5.3.8). Finally, Proposition (5.3.7) guaran-tees that (63) implies
62).
( )Let 1,(04) < oo. As observed in [213], the conclusion of Theorem (5.3.2)(i) remain
true if the restriction
lo'@||1 - IzI|
1—-¢(2)

Is replaced by the following weaker assumption:

lo'@||1 - IzI|

1-]e2)|
where Q : (0, 1] — (0, +0) is a bounded measurable function such that

< w(l-|z|).z € By,

Q(1-9@) <w@—|z|),z€B;
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1

Q% (t
IQ=f t()dt=oo.

0
To obtain quantitative results of the above type, we apply Theorem (5.3.5). Also, we make

weaker assumptions about ¢.
So, suppose that Q is increasing and 2(t)/t1¢ is decreasing for some ¢ > 0. Put
1
Q%(t
Do) = 1+ f ®

X
Corollary (5.3.10)[205]: Let ¢ : B1 — B1 be a holomorphic mapping and let 1 <p < co.
Assume that [, (0+) < o,1n = o and

dt, 0<zx<1

1
2P

lo'(rO)|
1-r) f (mﬂ(l — lrd)*Fdoy () <w(l-71r) (64)

1

For 0 < r < I.then

SUPp<r<: j O, (1 = 9O doy (O) < .

9B,
in particular, |¢*| <1 g, — a.e.
Proof. Let the constant Tt =t , o > 0 and the function F, € 8*(B;), 0<y<1, by
those provided by Theorem (5.3.5) for d =1 and for  in place of w.
Since ||Fy||§BQ(B1) <1, ,we have |
' : : ¢ (2)
(5 20) @] = 5 (@)l @] = LA

T lom 2 ~le@D.z €8,

1
, w*({
JM;P((FyOQD),t)(]—t)dtSf? dt < oo.
0

0
We further observe that |E, o ¢ (0)| < C(,)||Fy||BQ s S G and so estimate (60)
guarantees that

leyw(rOIZpdaz(C)SC, 0<y<1 0<r<il1

9B,
for a universal constant C > 0. Hence, applying Fubini’s theorem and Theorem (5.3.5), we
obtain

1
¢z [ [IBoet0" dydo@ = [ 0hU-loGOD do),
dB; 0 9B,
as required.
Corollary (5.3.11)[276]: Let w : (0,1] = (0, +0) be an increasing function.
(i) Let/ (0+) < oo.If f € B (B;14¢), thenf has radial limits o, , .-almost everywhere.

(if) Let 1(04+) = oo and let wl(_tz be decreasing for some & > 0. Then the space
t
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B (B;4¢) contains a function with no radial limits o 4-almost everywhere.
Proof. (i) is a known fact. Indeed, if I (0+) < oand f € BY(B;4), then |Rf(z,)|*(1 —
|z,]) is a Carleson measure, hence, f € BMOA(B,,¢). In particular, f has radial limits

O14¢ — Q. €.
(i) for € = 0 (see [276]).

Put
Z fa) = ZZ (@) 7 2 € By,

Standard arguments guarantee that f e SB‘” (B;1). For example, let t € (0,1] and let t =
i, € = 0. Observe that

1
W (—) is a decreasing function of € > 0.
1+e

because w(t) is increasing. Also,

(1+e)l cw (

) is an incresing function of € = 0.
1+e€

(

( . ) e > 0, is a normal weight in the

sense of [11] The derivative f' is represented by a Hadamard gap series, hence, f €
B (B;) (see, e.g., [206]).
Since w is increasing, we have

2 W2(27%) = 1(0 +) = oo, (65)

Thus, f has no radial limits o, — a.e. by [91]
(i1) for e = 0 (see [276]).

Fix a Ryll-Wojtaszczyk sequence {W [n]};=; (see [197]). By definition, W [n] is a
holomorphic homogeneous polynomial of degree n, [[W [n]||,=@ss,,,) = 1 and
W [n]l|L?(0B,.c) = & forauniversal constant § > 0. In particular, (65) guarantees that

_ 2
Z ”(1)(2 R)W[Zk] ||L2(6Bz+€) -

Hence, by [77], there exists a_sequence {Uy }o-, of unitary operators on C2*€ such that

D) @MW e UG = oo, (66)

for o, -almostall ¢, € 9B,,.. Put

Z fa) = ZZ 0@ W2 Up(z) 2 € By

k=0 r
First, fix a point (r € 0B, with property (66). Consider the series of slice-function

Xr fz. (W) =%, f (A¢),A € By. Note that

Z () = z a2 1 €B,

Where a, =Y, w(7)W[2¥] o Uk({r) By (66), We have {a )i, & €2,
Thus , fz has no radial limits o;-a.e .by [91]. Since the latter property holds for
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0,4+ —almost all ¢, € 0B,,., Fubini’s theorem guarantees that f has no radial limits
Oyt — Q. €.
Second, recall that ||W [2*] Uk||L°°(aB , = 1. So,wededuce that f € B¢ (B,..),
2+€

applying the argument to the slice-functions f; ,{. € dB,,... This ends the proof of
Corollary (5.3.11).
Corollary (5.3.12)[276]: Let w : (0,1] — (0, +0) be an increasing function. Put

Pl-6)= Y 0?21 -6)2"1, e<l

Then
Y(1-€)=(1+¢e)P(e)foraconstant1+ € =C, > 0.
Proof. Let 2~ ("D < ¢ <277 for some n € Z,. Then

2W(1— ) > 202(1) + Z w2 (279 (1 = 271251 > w2(1) 4 - Zw (275

> (1+ e)cp(z <"+1>) > (1+e)®(e),
since w is increasing and @ is decreasing.
Corollary (5.3.13)[276]: Let 1+ € € Nandlet 0 < e < oo. Assume that w : (0,1] —

(0, +) increases and () decreases for some € > 0. Then there exists a constant
(1+€)1+e14ew > 0 and functions F, € B“(Bi4¢), 0 <y < 1, such that
ZT‘ ”FYr”st(Bl_l_e) <1 and

1
z : 2(1+ 2 :
J |Fyr(ZT')| (e dYr = (1 + 6)1+e,1+e,w (;[)1+€ (1 o |ZT|) (67)
0
r

r
Forall z, € B;.,..
Proof. Let the constant § € (0, 1) and the polynomials W, .[n],e = 0,n € N, be those
provided by Theorem (5.3.4).
For each non-dyadic y,- € [0, 1], consider the series of the following functions:

z F1+€;yr(z7‘) = z z RK (yr)w(z_k)W1+e[2k - 1] (Zr): zy € Bl+6' €20,
k=0 r

Tr
where

> R =) signsin@iny),  yelofl,

T T
Is the series of Rademacher functions.
First, arguing estimate (5), we deduce that

Y Nrrerllgoy , S1+€

T
Second, we obtain

1 00
Cl+e f Z |F1+E,yr(zr)|2(1+€)dyr = Z <Z|w(2_k)W1+e[2k - 1](Zr)|2>
0o T

r k=0
by [91]. Given positive numbers a,..,e = 0, we have

1+€
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1+2€ 1+e 1+2€
E § 1+€
( a1+e> < Civerte Aj+te-

€=0 €=0
Hence,
1+2¢ 1
2(1+€)
C1+e,1+e Z jz |F1+e,yr(zr)| dyr
e=00 T
o 1+2€ 1+e
- 2
= (Z > W @9\ Whl2k - 11| )
r k=0 €=0
Since Wy ,[2% — 1],€ = 0, are homogeneous polynomials of degree 2k — 1, we obtain
oo 1+2€ 00
: 2 _ k+2 _
DY) @@ 2 - 1) 262 )Y W Tl
k=0 e=0 r k=0 r

>87C, ) @1 =171, 7 €Bie

T
By (6) and Corollary (5.3.12) with 1 — € = |z,|2. So,

1+2¢ 1
1+e€
Cl+E,1+E Z jz |F1+e,yr Zr|2(1+e) dyr = z (626(»@ (1 - |Zr|2)) y  Zy € Bl+e;
e=0 0 T r

Changing the indices of the functions F; .., _and using a new variable of integration, we
may reduce the above sum of integrals to one integral over [0, 1]. So, it remains to verify
that

(14 e)P(2e — €2) = D(e), e <1.
First, if € < 5 then CD(§+€) < C, < Cw®(§+§e—ez) for a constant C, > 0.
Second, if 0 < € < % then ®(e) — ®(2¢) < w?(2e) < 3d (2¢), because w is
increasing. Thus ®(e) < 40 (2e — €?) fore < %
The proof of Corollary (5.3.13) is finished.
Corollary (5.3.14)[276]: Let 0 <€ < o andlet f € BY(B;4c) Then

1

My e(f,1-6) <A+ llfll go s, 0P2(6), €<1 (68)
for a constant € > 0.
Proof. For f € H(By,,) and € < 1, we have

M1+6(f' 1- 6)
<{@A+9alfOl+@1

1+€

+e)2< | (j (1- e IRf((l—E)tir)Iz(l—t)dt>2 dal+e(cr>)
dB14e \O

T

for a constant e > 0; see, for example, [211].
If f € B*(B;14¢), then, using the defining property (1), we obtain

153



[> a-ormr@-awpra-va= [ 3 Rr@IPa-e-oa
o T 0 r

1—€
2
w“(1-1)
< 2 o — 4t < 2 o _
< Wy, | e < If e g, 0CE)

0
Since |f (0)| < ||f||23w(31+ )in sum we obtain the required estimate.
Corollary (5.3.15)[276]: Let 0 < e < oo and let . Then f € B, . (Bi4¢), Then
1
My e(f,1—€) <A+ ollfll gocs,, P2(e), €=<1, (69)

For a constant € = 0.

Proof. For f € H(By,.)and < 1,, we have
My e(f,1—€) < (1 +e)lf(0)]

N =

2

1 2+e
ra+ay || ( | |Rf((1_E)t(r)|2+6d01+e((r)> Q-2 -vdt | (70)

0 \0Biie

For a constant € > 0 (see [212] for € = 0: integration by slices gives the result for € > 0).
Now, we argue as in the proof of Corollary (5.3.14). Namely, for f € 8B“(B;,.) , the

defining property (8) guarantees that
2
2+e

1
j ). j IRF((1 = )tg)I* dorie(() | (1= €)*(1 -t
0

r 0B14e

=

—€

M, (Rf,)(1 — e — t)dt

Il
o

1-€
w?(1—1)
2
= ”fllz%‘“(BHe) j 1—t¢ dt < Ifl 23‘"(B1+€)(D (e)

0
Since |f(0)] < [IfIl go(s,,,). the proof is finished.

Corollary (5.3.16)[276]: Let 0 < e < oo and let p be a positive measure on [0, 1). Then
the following properties are equivalent:

1
[ ] 2 ra-aerdo. it ) <= forall f € B4, c(B1.0),

0 0Bite T
€ > 0; 71)

1
[ ] 2 11 - aerdogdp &) < forall f € BBru0; (72)

0 0By4e T
1 1+e
f 07 ()dp(1—€) < oo (73)
0

Proof. The implication (71)= (72) is trivial, because B, (B1+¢) € B3 (Bi4+¢). Next, (72)
implies (73) by Corollary (5.3.16). Finally, Corollary (5.3.15) guarantees that (73) implies
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(72).
Corollary (5.3.17)[276]: Let ¢ : B; — B; be aholomorphic mappingand let 0 < € < oo.

Assume that I, (0+) < «,1, = o and
1
2(1+¢€)

e
ez J( ot o) Q1 - lp((1 — )¢+ 9day (3,

1- |§0((1 - E)cr)l

< w(e) (74)
Fore < 1. Then

sp [ DT @31 - o - 95D ) < o

e<1
0B, T

in particular, |¢*| <10, —a.e.
Proof. Let the constant 1 + € = (1 4+ €)114¢ > 0 and the function F,_ € 8%(B;), 0 <
v, < 1, by those provided by Corollary (5.3.13) for e = 0 and for Q in place of w.

Since ¥, ||F,, ||%Q(B)£ 1, , we have
PRI EDWIRCDIHSIED) 2200~ I,
Z, € B;.

So, using (74) and the hypothesis I,,(0+) < oo, we obtam

jz M3(1+6) (Fyr°§0) ,t) (1-t)dt < ]# t <o
0o T

0
We further observe that ¥, |, ° @(0)| < C, Y, ||Fyr||BQ ey S 1HE and so estimate

(70) guarantees that

2(1+€)
]z IE, op(1— ) Vdo(@)<1+e 0<y, <1, e<1
for a universal constant € > 0. Hence, applying Fubini’s theorem and Corollary (5.3.13),

we obtain
1
1+€2 ]JZ |Fyr E)dyrdo-l(cr)
910 T
> j > o (1 lo((L - g)) don(s,),
0By T
as required.
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Chapter 6
Compact and Weakly Compact Composition Operators

We show that the conditions for the hyperbolic Besov classes are then interpreted
geometrically when the symbols are univalent, and strict inclusion between different
hyperbolic Besov classes is shown by an example. We characterize, in function-theoretic
terms, when the composition operator Cf = f o ¢ induced by an analytic self-map ¢ of
the unit disk defines an operator Cy: Ny, — B, B = Qp, N, = Qp Which is bounded resp.
compact. In particular, by combining techniques from both complex and functional analysis,
we show that weak compactness is equivalent to compactness. For the operators into the
corresponding “small” spaces we also characterize the boundedness and show that it is
equivalent to compactness.

Section (6.1): Bloch Type Spaces to Hardy and Besov Spaces

For H(D)be the space of all analtytic function on the unit disk D. very analytic self-map
@:D — D of the unit disk induces through composition a linear composition operator
C, from H (D) toitself. Thus C,, is defined by C,, (f ) = f o ¢ for f € H (D). The study
of composition operators lies at the interface of analytic functions and operator theory.
Many interesting results have been found for composition operators on Hardy and Bergman
spaces see [12], [224], [180], [153], [144] for only a few examples, while the study of
composition operators on other Banach spaces, such as the Bloch space and BMOA, is just
in the beginning. Recently, K. Madigan and A. Matheson characterized the boundedness
and the compactness of C,, on the Bloch space and the Little Bloch space in [19]. After this
work, boundedness and compactness of composition operators from the Bloch space to
some other function spaces, such as Hardy spaces, BMOA, the spaces Q,which are
introduced in [216], and analytic Besov spaces are studied almost simultaneously by [194],
[222], [80], [225], [229], [230]. A common feature is that these results involve the
hyperbolic versions of the corresponding spaces. We consider composition operators from
Bloch type spaces B* to Hardy spaces H Pand analytic Besov type spaces B,,. We recall the
definitions of these spaces here. Let 0 < a < oo An analytic function f on D is said to be in
the a-Bloch space B¢, if

Iflle = sup,eplf'(2)|(1 = |2]*)% < oo

Correspondingly, f is in the Little e -Bloch space By, if

fm 1f (@)1 (1 - |z|)% = 0.

Note that for the case @ = 1, we have B! = 8, the Bloch space and B3= B, , the Little
Bloch space. When 0 < a < 1, the spaces B* and Bg. can be identified with the analytic
Lipschitz space lip,_, and the Little Lipschitz space lip;_,.

For 1 < p < oo we say that an analytic function f on D is in the Hardy space HP if
1/p

2T
1 .
Fllur = suprares | 5 [ 1F(re®) do ) <
0

Finally, let0 < p< o and-1<q< o .Wesaythat f inthe Besov type space B f

1/p

1l = j F' P - 2D%dm@z) | <.
D

pq !
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Where dm(z) denotes the Lebesque area measure on D. We note that B, ,_, = B, the
analytic Besov spaces (see [154] and [234]), for 1 <p < «;B,, = D,. , the weighted
Dirichlet spaces see, for example, [12]; and B, , = P, the Bergman spaces, for 1 < p <
oo, (see [154]).

We have the following

When 1 <p <o , we may define the hyperbolic Besov class BZ’} as the set of
analytic self maps ¢: D — D such that

[ (0" @) @~ la2am) < oo

D
¢'(2)
Where ¢"(z) = ﬁ.

Using B)} we can state the special case of Theorem (6.1.4) for = 1and g = p — 2 inthe
following form

Corollary (6.1.1)[214]: ¢@:D — D Dbe an analytic self map, and let 1 <p < o, . Then
the following statements are equivalent:

(i) B - B, Is bounded
(i) Cyp:B - B, Is compact;
(iii) Cy: By — B, Is bounded.
(iv) Cy: By — B, Is compact

(V) @ E Bg.

We note here that the equivalence of (i),(ii) ;, and (v.) of Corollary (6.1.1) was
independently proved by S. Makhmutov in [225] and M. Tjani in [230], with different
methods.

Theorem (6.1.4). We consider the composition operators from the Bloch space and the Little
Bloch space to the minimal Besov space B;. The equivalence of boundedness and
compactness for composition operators from Bloch type spaces to Besov type spaces which
appears in Theorem (6.1.4) is not an accidental phenomenon. It can be derived from general
Banach space theory. An explanation for the equivalence of (i), (iv) in Theorem (6.1.4) from
the point of view of the general Banach space theory, as well as some more general results
will be given.

We consider composition operators from Bloch type spaces to Hardy spaces. We
assume that the symbol ¢ is univalent and give a geometric criterion for boundedness and
compactness of C, from B and B, to the Besov space By, for 1 < p < oo We then
construct an example for which C,: B - B,,, is compact, but C,: B — B, is not compact,
provided1 < p; < p, < @,

In the following, ‘“ A ~B’’ means that there are two absolute positive constants C; and
C, suchthat C; A<B < (, B.
First of all, let us generalize a result concerning Carleson type measure by J. Arazy, S.
D. Fisher, and J. Peetre in [215]. Let u be a positive Borel measure on the unit disk. For
0 < p < oo we denote D, (u) as the space of analytic functions on D satisfying
1/p

||f||Dp(#) = Jlf'(z)lpdu(z) < oo.
D

157



The following is the result of Theorem (6.1.4) of [215]:
Theorem (6.1.2)[214]: Let u be a positive Borel measure on D. and let 0 < p < o. Then
the inclusion map i: B — D, (u ) is bounded if and only if

J du(z)
(1—1z|*)P
D
We generalize this result to the @ — Bloch spaces for 0 < a < 1

For a proof, we require the following result on gap series, see [91].
Lemma (6.1.5)[214]: Suppose that (n;) is an increasing sequience of positive integers

with Hadamard gaps. That is, nz“ > 1> 1 forall k.
k
Let0 <p < oo.

21

N 1/2
1 )
M‘1<Z|ak|2> < %f Zakemke
k=1

Then there is a constant M > 0 dependingon p and A such that
o k=1

p 1/p N 1/
)| <M (Zlak|2>
k=1
For anyscalars a; ....ay and N =1,2, ...

Theorem (6.1.3)[214]: Let u be a positive Borel measure on D. Let 0 <p < oo and 1 <
f < oo. Then the following statements are equivalent:

(i) BY/F - D,g(u) is bounded.
(ii) BY/F - D,g(u) is compact.
(iii) By"/# - D,p(u) is bounded.
(iv) Bo"/# - D,p(u) is bounded.

O b i <

Note that the absence of 8 in (v) means that if u is independent of § and one of (i)-(iv)holds
for some B,1 < B < oo, then it will hold forall 8,1 < f < co.

Proof. Since it is obvious that (ii) = (i) = (iii) and (ii) = (iv) = (iii) we need only
to prove that (iii) = (v) = (ii) suppose (iii) is true, Let r, € (0,1) satisfyr,, - 1 , and
let

N

[o'e] ) 1 [o'e] | "
fai1(2) = Z apz? = —z 2k(1/8-1) (rne”z) .
k=1 =]
Since 2*0-D/B|q,| > 0as k- oo [8] (see also [235]) we see that f,,; € SB(l)/ﬁ and
| fnillgis < K < oo, ,where K > 0 is a constant independent of n and . Since i:SB(l)/ﬁ -
Dpp(n) s bounded, we know that

| 1@I du@) = Wil < Wl NP < KPP (1)
B

Integrating this inequality with respect to t, applying Fubini’s theorem. Lemma (6.1.5) and
Holder’s inequality we get that

o0 p/2
KPENilI"F > j (ZZZK(rn|z|>2<2"-1>ﬁ> dp(2).
D \k=1

Since
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) 1 1
222" (r |z])2" )ﬁ) AT

(see, [222]) and 1 — (rn|z|)2ﬁ~1 — (r,|z])? we get that
du(z)
< 2P/2 KPB||i||P5.
J A= GnlzD? I

Thus (v) is obtained from thae above inequality and Fatou’s Lemma.
To prove (v) = (ii), suppose (V) is true. Then

d
Wfudllpf i = f F'@IPF du(2) < Ilfill2h s j - |(ZZ|)2)v

Thus: B/F - D,p(u ) is bounded. To see that y; is operator IS moreover compact, let
{fn} € BF besuchthat |If,llg/s < 1. We must show that {C,f,} has a subsequence
that converges in D,g (i) . Itis easy to show that for every f € B/5.
F@I < IF O]+ | fllggs (1 — |2z])7H/

Thus there is a subsequence of {f,,} that converges uniformly on compact subsets of D to
an analytic function f. By passing to this subsequence, we may assume that the
sequence {f,,} itself converges to f. We get also that f € 8'/# and lf llg1/6 < 1. Thus
f =1if € Dpg(u) and it suffices to show that

lim [l fo = fllp, ) = 0-

This is consequence of the Lebesgue Dominated convergence theorem, since
(fu — f )'(z) > 0 pointwise in D and

= £ Y @IPF <278 (IfllE 5 + NFIIEE ) (1= 121277 < 2PP*1(1 = |22)P.
Thus we have shown that (v) implies (ii) and the proof is complete.

Now we can derive our main theorem from Theorem (6.1.3).
Theorem (6.1.4)[214]: Let ¢: D — D be an analytic self map, let 0 <p < o0, -1 < g <
o and 1 < B < oco. Then the following statements are equivalent:

i C,.BYE > B Is bounded
@ rB.q

i C,:BYF - B Is compact;
@ prB.q

(i)  C,87 > By, Is bounded.

(iv) Cy: 23(1)/3 - By q Is compact

o’ 2)[PF (1-1z[2)
™ b aperranem<e

Proof. We make the following change of variables

f I(f o ) @)IPB (1 = |22)9dm(z) = f F WP Gywdm(D).  (2)
D D

where

Gow) = D 19" @IPP2 (1 = |2
p(z)=w
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Let u, be the measure on I) defined by u,(E) = fE G, (W)dm(w). Then, by (2),C,, is
bounded from 8/# to Bz, if and only if the inclusion map :BY# - D,z(u,) is a
bounded operator. By Theorem (6.1.3), this is equivalent to
dug,(w) o
D (1 - |W|2)p
If we change variables back, we get
dpewW) o’ (z)[PF

p A=1wl??P ), (1 —le)*)P

Thus Theorem (6.1.4) is a direct consequence of Theorem (6.1.3).

We extend the result of Corollary (6.1.1) to the case p = 1. Let H® be the space of

all bounded analytic functions f on the unit disk with norm || f||z~ = sup |f(z)]|. We
zeD

may define the hyperbolic Hardy class H* as the set of all analytic self-maps ¢: D — D
satisfying |||y~ < 1, which means that the hyperbolic distance from ¢(z). to 0 is
uniformly bounded.

Recall that the minimal Besov space B, is defined as the set of analytic functions f
on D which are of the forms

f(2) =) A 00,(2) 3)
k=1

where |ay| < 1,04, (2) = (a, — z)/_(l —ayz). and Yp°-; |Ax| < 00.The norm of f is
given by

(1 -39 dm(z) < oo.

Iflls, = inf {>" 12]: (3) holds |
(see [215]). It is known that, if f(0) = f'(0) = 0, then

nﬂmejlf%@um@>
D

(see [215]. It is easy to see that B; € B, ¢ Bfor 1 < 0p < 0. In fact, B, is the minimal
Mobius invariant Banach space and the Bloch space B is the largest Madbius invariant
Banach space under some reasonable assumptions (see [215] and [227]). We give the
following result:
Theorem (6.1.5). Let ¢: D — D be an analytic self map. Then the following statements are
equivalent:

(i) C,: B - By isbounded;

(i) C,: B > By is compact;

(iii)  Cy,:B — By is bounded;

(iv) C,: B2Biscompact;

(v) @ €brand [ lo" @I/ (1-lp)])? dm (2) < oo;

(vi) @ € BynH.
Proof. As before, it is obvious that (ii)= (i) = (iii) and (ii) =(iv) = (iii). Thus the proof
will be complete if we prove (iii) =(vi) = (vi) = (ii).

Suppose (iii) is true. Since f, (z) =z € B,y , we get ¢ = fy o ¢ € B;,. It is obvious

that B; ;H*. Thus Cw : B, N H;’ is bounded. Thus, from the Closed Graph Theorem (6.1.2)
and the fact that B, contains unbounded functions it is easy to see that ¢ € Hp’. Thus we
have got (iii) implies (vi).
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To prove (vi) =(V), let ¢ € By N H;°. Thus ||@]||g~ = § < 1. Since ¢ = B; C By,

we have
lp’ (2)? 1 , M,
A= Te @2 dm(z)<—(1_62)2fD lo'(2)|? dm (Z)S—(1_52)2Soo,
and
jMd (z) < : fl”()ld (2) < M o
Dl_|§0(Z)|2 i 1—462 D v Y T 1-627

So we get that (vi) implies (V).
Finally, suppose that (v) is true. Let f € B,. Without loss of generality, we may
suppose that f(0) = f'(0) = 0. Since || fllg =sup |f" (@)1 —|z|*)? (see for

zeD

example, [154]), by (v) we get
lcofll, <¢ [ 160y @lam @)
1 D

SCU 7" (0@)lle' @ 1dme) + | |f'(<p(z>)||<p"(z>|dm(z)>
D D

lp'(2)|? @' (2)
= Clflle (f 1= |<p(z>|2>2> dm(z) +fD

1-le)I?
< cM|flls.
Thus C, : By — By is bounded. Now by a similar argument as in the proof of Theorem
(6.1.3) we can prove that C,, is moreover compact from B, to B; .We left the details. Thus
(v) implies (ii) and the proof is complete.

The equivalence of boundedness and compactness for composition operators from
Bloch type spaces to Besov type spaces which appears in Theorem (6.1.4) and Theorem
(6.1.5) is not an accidental phenomenon. It can be explained from general Banach space
theory. To see this, let us first look at some basic facts on the a-Bloch spaces.

Lemma (6.1.6). For 0 < a < oo, the dual space of the Little a-Bloch space Bj is
isomorphic with the Bergman space L., and the dual space of L is isomorphic with the a-
Bloch space 8.

For a proof, see [235].

Lemma (6.1.7). The Bergman space L} has the Schur Property, that is, every weakly
con’ergent sequence is norm-convergent.

This is because that the Bergman space L. is isomorphic to the sequence space I* (see [231]
and the later one has the Schur Property (see, for example, [231] or [233]).

Since B4 is the dual of L1, and the point evaluation are continuous in B¢, obviously
we have the following result.

Lemma (6.1.8). In the space B¢, weak-star convergence implies pointwise convergence.
Since B§ is weak-star dense in B* (see, for example, [232]), we can easily prove the
following result using Lemma (6.1.8).
Theorem (6.1.9). (‘‘Big-oh’’ vs “‘Little-oh’’). If Y is a Banach space of analytic functions
and if C, : Bg — Y is bounded, then C;" = C, on B~
The details of the proof are left. As a direct consequence of Theorem (6.1.9) we easily get
Corollary (6.1.10). Let Y be a Banach space of analytic functions on the unit disk D.

(i) IfC,: Bg — Y isbounded, then C,: B* — Y™ is bounded.

dm (z))
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(i) IfC,: BG — Y is compact, then C, : B* - Y™ is compact.
If in the above corollary, Y is a reflexive space, then Y** = Y and we get that C, : B7 - Y
is bounded (compact) if and only if C, : B% - Y is bounded (compact). Since for 1 <
pp < oo, the Besov space B,z 4 is reflexive, being a closed subspace of a reflexive

space LPP (), the equivalence of (i) and (iii) and the equivalence of (ii) and (iv) in Theorem
(6.1.4) are direct consequences of this corollary.

To see how to get the equivalence between boundedness and compactness, we give the
following

Theorem (6.1.11). General compactness theorem. Suppose X or Y is a reflexive space and
Y is a space with the Schur Property. Then every bounded operator T: X — Y is compact.
Proof. If T: X — Y is bounded and X or Y is a reflexive Banach space then T is weakly
compact see, for example, [218].

Since Y has the Schur property, it is clear that T is compact.

As an application we give the following:

Corollary (6.1.12). Let 0 < a < o and let Y be a reflexive Banach space of analytic
functions.

(iy IfT:B§ — Y isabounded operator, then T is also compact.

(i) IfT:B* — Y is a weak-star continuous operator, then T is also compact.
Proof. (i) Suppose T:B% — Y is bounded. By Lemma (6.1.6), T*:Y* - (B$)* = L. is
bounded. Lemma (6.1.7) and Theorem (6.1.11) implies that T* is 0 a compact, and so is T.
(ii) Suppose T: B* — Y is a weak-star continuous operator. Then it is the adjoint of some
bounded operator S: Y* —» (B$)* = L. (see [218].) Note that since. Y is reflexive, the
predual space of Y is same as the dual space Y*. Again, by Theorem (6.1.11), S is compact,
andsoisT.Let1 < p<ooand —1 < g < . As a closed subspace of a reflexive space
L, (1), By 4 is reflexive. Thus, for the case 1 < pf < oo, the equivalence of (iii) and (iv) in
Theorem (6.1.4) is a direct consequence of Corollary (6.1.12)(i). The equivalence of (i) and
(if) in Theorem (6.1.4) for 1 < pB < oo, follows from Corollary (6.1.12) ii and the
following lemma.

Lemma (6.1.13). Let 0 < a < oo and let Y be a reflexive Banach space of analytic
functions. If C, : B* — Y is bounded, then it is weak-star continuous.

Proof. Let C,:B® — Y be bounded. Since By c B*, we see that C, : B* - Y is
bounded. Theorem (6.1.9) implies that C,* = C, on B®. Let f;, — fin the weak-star
topology of B* and let h € Y*. Because C,, : By — Y is bounded, we get that Cy, : Y™ —

(B§ )" is bounded and so C, h € (B§)* = Lg . Thus
lim [(h, Cy (f = ) = lim [(h,C™, (fu = /) = lim [(h,Cg fr = f)] =0
Thus C,, is weak-star continuous.
Similar reasoning also applies to Theorem (6.1.5), and to Theorem (6.1.4) for the case

pB = 1 though the range spaces there are not reflexive. To see this, let ¢, denote the space
of sequences { a,} for which a,, = 0, and, for 0 < p < oo let | denote the space of

sequence an n such that ||{an}||z =>4 la,|P < . The norm of a sequence {a,} is
given by ||{a,.}I|_ = suplaylin ¢, and ||{an}||pin v,
n

Theorem (6.1.14). Let 1 < p < q < 0. Then every bounded operator from [, to L,p is
compact. The same is true for bounded operators from ¢, to 1, .
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For a proof, see [223].

Since the Besov spaces B; and B, , are isomorphic to the Bergman space Lt , which
is isomorphic to (!, and, as the pre-dual space of L}, the a a Little a —Bloch space B is
iIsomorphic to ¢, , we see that the equivalences of (iii) and (iv) in Theorem (6.1.5) and
Theorem (6.1.4) in the case pf8 = 1 are direct consequences of Theorem (6.1.14).

The other equivalences of Theorem (6.1.5) and Theorem (6.1.4) in the case pf =
1 can be also derived from Theorem (6.1.14), although more considerations are needed
here.

We discuss results concerning Hardy spaces. Recently, E. G. Kwon characterized in
[80] the boundedness of the composition operators from the Bloch space B to Hardy spaces
H?? ;1 < p < o . His result involved the hyperbolic Hardy classes H,f . Following S.
Yamashita [204] and [89], an analytic self-map ¢ on the unit disk is said to be in the
hyperbolic Hardy class H? , if

2m

1 p
su lo - ) do < oo.
0<TBJ ( ST lpGre®)?

0
Let @™ = |@'|/(1 — |@|?) be the hyperbolic derivative of the analytic self-map
@:D — D.E.G.Kwon proved the following result in [80].
Theorem (6.1.15). If ¢: D — D is analytic and 1 < p < oo then the following statements
are equivalent:
(1)C,, is bounded from the Bloch space B to H??;

(i) p € HY

(i) f, " (fol (0" (re®®))" 1 - r)dr)p do < oo,
By Theorem (6.1.9) and Corollary (6.1.12), we immediately get the following result.
Theorem (6.1.16). Let ¢: D — D Dbe an analytic self map and let 1 < p < c. Then the
following statements are equivalent:

(i) C,:B — H®*isbounded;

(i) C,:B - H? iscompact;

(iii) C,:By = H?? is bounded;

(ivy C,:B — H? iscompact;

V) @ € Hy;

(vi) fozn (fol p"(re® ) (1 —1) dr)p df < oo,
We note that the case p = 1 has been proved by Wayne Smith and [229].
In [222], H. Jarchow and R. Riedl got a criterion for the composition operators bounded
from an a-Bloch space to a Hardy space. We restate Corollary 4 of [222] as follows:
Theorem (6.1.17). Let ¢: D - D be an analytic self map, let 1 < f <oand 0 < p <
co. Then C, : B***/F — HPF is bounded if and only if

2T 1 1%
su - df < o
osroy fo (1 - |<p(re19>|2)

This result can be improved as follows:
Theorem (6.1.18). Let ¢: D — D be an analytic self-map, let 1 < f < cand 0 < p < oo.
Then the following statements are equivalent:
(i) C,:BYF > HPP isbounded;
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(i) C,:B*YF - HPPis compact;
(i) Cp:By™F — HPE s bounded;
(iv) Cp:By™F — HPP is compact;

- . p
(v)  sup fOZ (1/1 — |<p(re“9)|2) df < oo.
0<r<1
This can be proved either by a similar method as in the proof of Theorem (6.1.4), or,

in the case 1 < pf < oo, directly from Theorem (6.1.4), Theorem (6.1.9) and Corollary
(6.1.12). Note that, however, unlike the Bergman space L. , the Hardy space H! is not
isomorphic to the sequence space I* Zsee [231]. Thus Theorem (6.1.14) cannot be used in
the case H! .

The results of Theorem (6.1.16) can be viewed as the limiting case f — oo of
Theorem (6.1.18). Note that the missing of g in (v) means that if one of (i) — (iv) holds
for some B ,1 < B < oothen it will hold forall 8,1 < f < co.

By Theorem (6.1.5), we see that, if a composition operator C,, : B, — B,is compact, then
|l¢l, . < 1.Since for 1< p < oo, B; © B, © By, we may ask a natural question: for

1 < p < o, are there some analytic self-maps w: D — D such that |||y~ = 1 and C,, :
B — B, are compact? The answer is positive. In fact, for 1 < p; < p, < o, we will
construct an analytic and univalent self map ¢ of D such that [[¢|[y~ = 1,C, : B = B,, is
compact, while C, : B - B, is not compact.
We first give a geometric criterion for a univalent function ¢ € Bg
Theorem (6.1.19). Let ¢: D — D be an analytic and univalent self map, let G = ¢ (D) and
let 1 < p < 0. Then ¢ € B} if and only if.
8s(w)P~2
J (1—|wl|?)
where 6, (w) is the Euclidean distance between w and the boundary of G.
Proof. The result is easily obtained from Corollary (6.1.1) by using the Koebe distortion
theorem which says 85 (¢ (z))~(1 — |z]*)1¢’(2)| see, for exmaple, [144] and changing of
variables ¢(z) = w.
Example (6.1.20). Let 1 < p; < p, < oo, Then there exists an analytic and univalent self-
map ¢ of D such that
M) lellgo=1;
(i) Cy,:B - By, (or B - By,) is compact;
(iii) C,:B — By (or B - Bp,) is not compact.
Proof. Suppose 1< p; <p, <oo. For any integers k> 1, let r,=1-27%,6, =
2 k=1 @11 and let E (k) be the following polar rectangulars in D:
ER)={w=re? €D:ry <7 <141, 0, < 0 <6
Let E be the interior of Uy, E (k) Then E is a simple connected region of zoom lens
shape along the real axis. Let ¢ be a Riemann map from D onto E. We claim that ¢ is the
required map. Obviously, we have |||y~ = 1. Thus, by Corollary (6.1.1), we need only
check the condition (4) in Theorem (6.1.19) for p, and p, we first note that, if w = re'® €
E NnE (k).and 8 = 0, then clearly we have
Sg(w) <r(6, —0).

dm(w) < oo, (4)
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Since for re'® € E(k)we have 1/2< r<1land 1— r>~27%  we get that for
everyp,1 < p < oo,

Tk+1 p—1 Tk+1

r
| Gomptrr [ dr=2v@rozky S g 5)
Tk

Thus, by symmetricity and (5),

‘(W) N 58 A (w)
f (T z>vd’"<w>—z (f) - wip

p-2 © O
= f J iy o=y, 27 [ -or-ta

L1 X
= le 2kP-DgP~1 _ le jo—(0=D/(01=1). (6)
p k=1 P k=1

For completing the proof, we need a lower estimate of I (p). For this E purpose, let E' (k) be
the subset of E' (k) defined by
E(k)={re® €D:ry <7< 11, —0Opy2 < 0 < 112}
and let E’ be the interior of Uy-, E’(k) It is obvious that, for any w = reire'® € E’(k)
Sg(w) = rsin(Oyiz — 0)~1(Ok4r — 6).
Using this estimate and (5), by a similar calculation as in (6), we have, for any p,0 < p <
(00)

)

p 2
Iz(p) = j ﬂ—())dm(w)

z (k + 2)~®-D/@:1-D) ~ Z j— @D/ (01-1) %)

k=
Now (6) and (7) mean that for any p,0 < p < oo,

I:(p) ~ Z - @-D/(@1-1)

k=1

It follows that Iz (p) is finite if p = p, > p; and infinite if p = p; . Thus Corollary

(6.1.1) and Theorem (6.1.19) implies that C, : B — B,,, is compact but C,, : B - B,, is not
compact.

Let E (a,) = Up=; E(n,k).Then each E (a,) is a zoom lens shape region in D

along the radial direction t,, . It is easy to see that, for n;, # n,,E (a,) N E (a,) =@ .Set

(00

G* = El/zu U E(an)

n=1
and let G be the interior of G*. Then G is a simple connected domainin D and 6G N oD =
{ a,}, which is infinite. Let ¢ be a Riemann map from D onto G, then a similar calculation
as in the Example shows that
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52" (w)
(1 — [w[?)P2

E(aq)
Since f = max (2,2 /(p, — 1)) ,we have B (p, — 1) = 2. Note that the integral over
D: is finite. Thus taking the sum of above integrals over n we easily see that

6192
f & A <

andso Cy, : B = By, Is compact But as in the Example we see that for any n,
-2
85> (w)
(1 —w|?)Pa

E(an)
Thus C, : B — B, is not compact.
Wayne Smith pointed out to the author that it is very easy to construct examples for
answering the above question by using [19]. All that is required is to construct a simply
connected subset G of D such that

dm (W),-Vn_ﬁ(pz -1)

dm(w) = o

6e(w)

CET ®
and take a Riemann map ¢ onto G. Theorem (6.1.4) of [19] shows that C,, is w compact on
By, and clearly G can intersect aD in infinitely many points.

In fact, a much stronger example is given by Wayne Smith in [228]. It is proved that
there is an analytic and univalent self-map ¢ of D such that C,, is compact on By, while
@(D) n dD is the whole unit circle dD.

Section (6.2): V', to the Bloch Space to Qp

For A be the unit disk {z € C: |z] < 1} inthe complex plane, and let 7 (A) be the
space of all analytic functions on A.

Any analytic map ¢: A— A gives rise to an operator Cy: 3 (A) » H (A) defined
Cyf = f ° ¢, the composition operator induced by ¢ .

One of the central problems on composition operators is to know when  Cy4 maps
between two subclasses of H (A) and in fact to relate function theoretic properties of ¢
to operator- theoretic properties of Cy . This problem is addressed here for the weighted
Nevanlinna, the Bloch and the @ spaces with respect to boundedness and compactness of
the operator. (See for example [245], [247], [121], [198], [232], and [253] ).

Foreach a € (—1,) , let I, be the space of all functions f € H (A) satisfying

1
To(f) = — [ [log " [F@I] (1 +121) dm(z) < oo

A
Here and after wards, dm means the usual element of the area measure on A, and
logtxislogxif x >1and 0if 0 <x < 1.

From log*x < log(1+x) < 1 + log*x for x = 0 we see that a function f € H (A)
belongs to v, if and only if

W llar, = J[ZOQ(l + f(Z)) 11 = |z|»)% dm(z) < oo.
A
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Obviously,max {[If + glla. Ifgllx, } < Iflla, +llglla,.

Forall f,g € W, . Consequently, V', is not only a vector space but even an algebra.
Further, by setting

de(f,9) =f +glln, .

For f,g € N, we obtain a translation invariant metric on W, . More is true: .|| - is
an F-norm, and under this norm, V', is an F-space, i.e. a complete metrizable topological
vector space (cf.[244]).

The Bloch space B consists of all functions f € H (A) obeying

Ifllg = If0)] + supzea (1 = |2I*)|f"(2)| < oo.

l|.[|g Is anormand makes B a Banach space.

Given w € A, let
w —Z

Pw (Z) = 11—z
Be a Mabius transformation which exchange w and 0. Stroethoff’s idea = in the proof of
theorems 4.1 and 4.2 in [251] yield that f € 7€ (A) lies in B if and only if

SUPwenla (C<pwf - f((‘))) < 00,
That is to say, B is the Mabius bounded subspaces of NV,.
For g € (—1,») , let Qg be the class of all functions f € 7 (A) with

1Fllg, = FCO)1+ supacs [ (G, ) I = 2 dm(2)z < oo
A

Observe thatif f € (=1,0), =0, =1and B € (1,),then 9z = C, D (the classical
Dirichlet space), BMOA and B respectively (cf. [248], [Ba ], [240], [237], [252]. Of course,
Qp is the Mdébius bounded subspaces of the weighted Dirichlet space (see also [238], [239],
[243]. The spaces N, B AND Qp are linked by the inclusions N, > B > Qp . Notice
that B and Qg are Mdbius invariant, but = 7V, is not.

We are going to work with the composition operators sending ‘big’ spaces to ‘small’
spaces since the converse is clear. In fact, C4:B > N, and Cy:Qp — N, are always
compact ([253]), while Cy:Qp — B is compact if and only if |¢Pz§?—>1(1_ 1Z|?)

|9’ (2)| /(1 = |p(2)|>) =0. (cf. [247] and [198].

The main results are the next three theorem. The first concerns boundedness and
compactness of Cy: Ny, = Qp .

Arcs inthe unitcircle dA are setsoftheform I = {z € dA: 6, < argz < 6,} where
0,6, € [0,2m)and 0, < 6, .The length ofanarc I < dAwill be denoted by [I]. The
Carleson box based on an arc 1 is the set

|1] z
S(I)—{zeA.l 27TS|Z|<1,|Z|EI} 9)
Also for an r € (0,1) and an analytic self-map ¢ of A, put Q, = {z € A: |¢p(2)| > r}.
The characteristic function of a set E < A is denoted by 1

The third theorem deals with boundedness and compactness of Cg: NV, — Qg
This requite the Mabius invariant version of the generalized Nevanlinna counting function
(cf. [232]). For B € (0, oo!) and an analytic map ¢: A— A.

Let
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> - 1g@PIF, 2z ¢,
N(ﬁ, w, z, (.b) = P(w)=z
0, z€A/P(A)
We denote positive constants by M, My, M, , M5, ... those constants depend only on
some parameters such as and unless a special remark is made . Also given two families
X = (x(w))weﬂ and y = (y(a)))wEQOf non negative two families real numbers (or

functions) on the given domain Q , we write x =<y if (there exists constant M;, M, > 0
such that ), M;x(w) < y(w) < Myx(w) forall w € Q.
1. Cy: Ny, = B The space H (A) is a Fréchet space with respect to the compact-open
toplpogy, that is, the topology of uniform convergence on compact subsets of A ; in fact
H (A) is even a Fréchet algebra. By Montel’s theorem, bounded sets in H (A) are
relatively compact; accordingly, bounded sequences in F (A) admit convergent
subsequences. Convergence in the space will be reffered to as locally uniform (I, u.)
convergence.

Recall that JV;, is a linear subspace (even a subalgebra) of # (A) . Note that N, is
a topological vector space with respect to the F-norm ||. || 5, . This is in marked contrast to
the situation for the classical Nevanlinna class which is not a topological vector space [249].
Under || 1| 5, ,thetopology of XV, is stronger than that of locally uniform convergence.
This is a simple consequence of the following estimate:

Mollf 1l
log(1+ f(2) < (1— |z])2z*e’

Where M, > 0 is a constant depending only on a.

As in [251], WV, has B as its Mabius bounded subspace.
Proposition (6.2.1)[236]: Let a € (—1,) and f € H (A) . Then the following are
equivalent:

(i)  f belong to B.

(“) Supa)eATa (waAf - f(w)) < 0o,
(“l) Supa)eA”C(pwf - f(w)” Ny < 0o,

Proof. It suffices to show (i) & (iii), for (i) & (ii) can be verified in a similar manner to
proving Theorem 4.1 and 4.2 of [251].
Observe that if f is a Bloch function with |[f||z > 0 thenfor z € A

Ilf s 1+ |z|
— <
|C(po)f(z) f(w)l —_ 2 log 1 _ |Z|’
It follows that for each t > 0,
2(a + 1)t]

mglt] = m{z € A: |C(po)f(Z) — f(w)| >t} < Myexp [_ Iflls

Let now be a Bloch function. We may assume that ||f|[g > 0 . There is a constant M, >
0 depending only on a such that for each w € A

(00]

”C(pwf(z) - f(w)” Ny = f

0

€ N, (10)

mg|t]
1+t

dt < My||fllg (11)

Which proves (iii).
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Suppose conversely that (iii) is true, Let » € (0,1) .If z € Aissuchthat |¢,(z)| <

r then, by (10) and since ¢, is an analytic automorphismof A with pg' = ¢,
M0”C<pwf _f(w)” N,
log(1+ |f(2) — f(w)D) < a_ze . (12)

An application in [251]. The proof is complete.

Note that B has a closed subspace, the Little Bloch space B, of all function obeying f €
B obeying

lim (1 = |z?)If(2)| =o.

It is well known that the polynomials are dense in B, under ||. ||z . We have
Corollary (6.2.2)[236]: Let a € (—1,0) and f € H (A). Then the following are
equivalent:
(i)  f belong to B,-

(i) 11m T, ( ( Couf — f(co))) =0 foreveryp >0,
(iii) |11m ||C(pwf f(a))”
Proof. As in Proposition (6.2. 1) it is enough to verify (i) < (iii) . Suppose that f belong

to B,. By density, givenany € € (0,1) , there is a polynomial P suchthat ||f — Pl|z <
€. Consequently, by (11),

ICou(f = P) = (F =PY@)|| ,, <M, IIf = Pllp < Mye.
This implies (iii), owing to 11m ||C P- P(w)|| = 0.

The converse follows eaS|Iy from (12) and from Theorem (6.2.7) of [251].
Asubset E of 1V, is called bounded if it is bounded for the defining F-norm ||. || »-
Given a Banach space Y ,wesay thatalinearmap T: N, — Y isbounded if T(E) c Y
is bounded for every bounded subset E OF IV, . In addition, we say that T is compact
if T(E)cY isrelatively compact for every bounded set. E c NV, . A useful tool is
the following compactness criterion which follows readily in [245] and [232].
Lemma (6.2.3)[236]: Let a € (—1,0) and Y be a Banach subspace of H (A). with norm
-1l v, - Then Cy, - Ng, — Y is compact if and onlu if forevery s > 0 and every sequences

{fn} satisfies [|fnll », < sand convergesto 0.lu, limn_)oo”C@fn”Y = 0.

Theorem (6.2.4)[236]: Let a € (—1,00) and let ¢: A— A be analytic . Then the following
are equivalent:
()  Cp: N, — Qp  exists as a bounded operator.
(i)  Cy: Ny, — Qp Exists as a comact operator.
(i) Forall ¢ > 0.,
Before giving the second assertion on boundedness and compactness of Cy: B — Q,,, we
explain the necessary notation.
Proof. It suffices to check two implication (i) & (iii) and (iii) < (ii)
(i) < (iii). Let (i) hold. For any ¢ > 0 and w = ¢(z,) (where z, € A is fixed),

consider the test function.
1 _ |w|2 24+

Since
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log(1+x)<1+4+log*x forx=0,

oll s, <+ [ [0 o @] (1 + 1217 dm()

1+a
A
2+«
s 1—|w|?
< 1+C¥+ Cf (m) (1— |Z|2)a dm(z) SM3_
A

Where M; > 0 done not depend on w and it comes from Lemma 4.2.2 of [154]. Because
Cy: Ny, — B is bounded and

2(2 + a)ca_)(l — |a)|2)2+a l < 1 — |w|2 >2+a]
exp |c

fa,)(Z) = (1 _ a_)Z)2(2+“)+1 (1 — a_)Z)2

There is a constant M, > 0 depending only on c and « such that

My = (1= |2M)]|fi ()| 14"
_ 20— 2P’ DI — w]?)** ( 1— o] )
= — 22+a)+1 eXp | — 2
(1-a¢() (1-a¢()

This estimate leads to
(1 = 12,|*)19" (zo)| [ c ] M- 1P (20)17)%+*
T 1p)l? A= 16@)D7e = i)l
Where forces (iii) to hold.
(if) = (ii) Assume that (iii) is valid for all ¢ > 0. Note that if f € 2, then by (10)
and Cauchy’s formula

(14)

N
(1 — |Z|2)2+a (15)

To demonstrate that Cy: NV, — B is compact, we choose, for s > 0 , any sequence {f,}in
Ng, such that || full 5, <s and f, >0 l.u.onA . Then foreach & € (0,1),

SUP|p ()16 (1 — 12]%) |(C¢fn),(z)| < supjpia1s(1 — 192013 |fn (¢(2))]| - 0,n - oo
On the other hand, from (15) and (iii) is turns out that whenever § — 1.

suplg1>s(1 = 1217 |(Cofr) @)

3 (1~ 121)1¢’' @) PrMys

< su ex -

PO T el T - 9@

Combining the above estimates we that ||C<,)fn||B_)0 AS n — oo. Hence (ii) follows from
Lemma (6.2.3). The proof is complete. There is an: analogue of Theorem (6.2.4) for the
Little Bloch space B,.
Corollary (6.2.5)[236]: Let @ € (—1, ) and let ¢ : A— A be analytic. Then the following
are equivalent:
- Cy: Ny, = By exist as a bounded operator.
- Cy: Ny, = B, exist as a compact operator.
-forallc > 0.

2
(- EPIF @I <2 [1FG+270 - 120311 < e
oA

A zPle' @l c
21 1- @2 Pl le@P)Fe
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Proof. It suffices to demonstrate (iii) = (ii) and (i) = (iii) . The first implication
follows easily from the proof of the corresponging case of Theorem (6.2.4). The second will
be verified by contradiction, Suppose that Cy: N, — By is bounded. so ¢ € B, Now, if
(16) is not true for all, ¢ > 0 then there are c,, €y and a sequence {z,} tending to dA such
that ,
(1 - |Zn| )ld),(zn)l Co

e ey o EL A
Since ¢ € B, (17) indicate that {z,,} has a subsequence {z,, } with |¢(z,, )| = 1. Also
since Cy: N, — By is bounded, one has (9) (for all ¢ > 0, which, in particular, produces

the following limit:
2 !
(1 o |an| )|¢ (an)| Co

2 exp 2+a

1—|p(zn,)| (1= 16 (za)")
It is evident that (18) contradicts (17). We are done.
(ii)C, —» B — Qp. We prove Theorem (6.2.8). The proof will borrow a technique from [242].
Before proceeding, we need an inverse inquality for B due to Ramey and Ullrich [121].
Lemma (6.2.6)[236]: There are two functions f;, f, € B such that

inf,ea(1 — 12I)If{ D] + 212 = 1. (19)
For B € (0, )we say that a positive Borel measure on du on A is a § —Carelson measure

suprcaa u(SM))
l1|A

- 0. (18)

provided
Qp space.
Lemma (6.2.7)[236]: Let B € (0,) and let f € H (A) with
durp(2) = If'@DI1°(1 = 1z1)F du (2).
Then f € Qp if andonly if dus s isap - Carleson measure. Moreover,

S(] 1/2
Ifllg, = IF (O +[sup,caA% . (20)

Theorem (6.2.8)[236]: Let 8 € (0,0) and let ¢: A—> A be analytic. Then
(i) Cy:B - Qp exists as a bounded operator if and only if

(1 —1Z1)82|¢' D]’
-8
supycaalll 5!1)[ 1—1¢(2)|?

(i) Cy:B > Qp existsasa compact operator if and only if ¢ € Qg and

ﬁ 2
1-1Z|192|0'(Z
lri_r)I}SUPlcaA”rﬁ f I( 1|—||¢)EZ|()p|2( ) 1o, (z)dm(z) =0.  (22)
S

< oo, This definition was introduced by [239] to characterize the

dm(z) < o (21)

Note that (i) of Theorem (6.2.8) is essentially known (cf. [198]) and is listed here only
for, the sake of completeness. However, (ii) is new and is just what Smith-Zhao did not
figure out. Moreover, if B > 1 then (22) is equivalent to |¢1%r51|1(1 — 1213 19’ (D)|/(1 -

Z

l9p(2)|?) = 0, (cf. [247]).
Proof. From now on, By stands for the unit ball of a given Banach space (X, ||. || x)-

I. Follows obviously from Lemmas (6.2.6) and (6.2.7). The key is to infer (ii).
Sufficiency of (ii). Let ¢ € 9 and let (22) Ahold. We have to show that if {f,} c Bg
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converges to 01.u. on A then {||C¢fn|| 05 } then converges to 0. for each r € (0,1) set

Q, = Qiso {f.1(¢)} tends to 0 uniformly on Q,. Hence by Lemma (6.2.7), for every & >
0 there is an integer N > 1 such that forn > N,

supicon 1P [ (o) @ (= 12115, () du () < & M1,

s(D)
On the other hand, from (22) and the growth of the derivatives of B-function one derivatives

that for every € > 0 there existsa § € (0,1) such that for r € [, 1),

, 2
suprcas 1l [ (o) @ (1 = 121810, @) dm (2) < =
s
Combining the previous inequalities with Lemma (6.2.7) , we obtain ||C¢fn||Q :
;

Necessity of (ii) . This part is more difficult. Let C, - B — Qp be compact. It is clear
that ¢ € Qp . So, we mustshow (22) . Since {z"} is norm bounded in B and it converges
to 01.u. on A, we have ”¢n”93 — 0. Applying by Lemma (6.2.7), we find that for every
€ >0 ,thereisaninteger N > 1 such that forn > N.

n2sup;con |17 j ()22 ¢! @2 — 2128 dm (2) < .

s(D
Thus for each r € (0,1)

N2r2N=2gyp o |1|7B j|¢’(z)|2(1 — |z|?)#1 o,dm (2) < e.

st
Taking r > N~Y/0-1 e get

suprcon 17F j ' (D121 — |21 g, dm () <e.  (23)

s
Keeping (23) in mind we show that for every f € B and forevery € > 0, ,thereisaé =

§(f, €) such that forr € [§.1)

T(f,¢.B-1) = supjcan l1I7F fl(C¢f)'(Z)|2(1 — 211 q,dm (2) <e. (24)

0)
As a matter of fact, if we let f;(z) = f(tz) for f € Bgandt € (0,1) then f; —»

fLuon Aast— 1. Since C(C,—>B— Qp is compact, ||ftoq§—foq§||gﬁ -

Oast — 1. Furthermore, Lemma (6.2.7) yields that for every e > 0 thereisa t € (0,1)
such that

supjcan l117F f|(C¢ft)'(Z) — (Cpft)'(2) "~ 1z1)Pdm (2) < e.

0
Accordingly, by (23),
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TCf,¢,B,7 ) < 2e + 2 supjcap l|7F f|(6¢ft),(z) (1 - 121)P 14, (2)dm (2)
S

<e+2lf{I%  supconlll™? f 9" (@I*(1 — |2|*)P 1, (2)dm (2)
S

< 2e(1 + I 11%).
Since Cg4 sends By to a relatively compact subset of Qp, there exists, for every € > 0, a

finite collection of functions f;, ..., fy in Bg such that for each f € By there is a k €
{1, ..., N} with

suprcon 111 f (Cof) @ — (Cof) (@) 2L = [21D)Pdm (2) < e.

s()
Now (24) is used to deduce that for § = max;<x<y 6(fx, €) and r € [§,1),

supicon 1l [ |y @I A= 121 0, ()dm @) < &

s(D
Thus

2
supfes, SuPiconl1I7F j o) @ (1= 1219)P1 g, (2)dm (2) < 45 (25)
0
An application of Lemma (6.2.6) to (25) implies (22). This concludes the proof.
The space Qp, like B, has a closed subspace Qp o which consists of those f € Qp
satisfying

tim [ |Cgun @ 0= 2P am) =0

A

It is known that Qg = C,VMOA and B, whenever § € (=1.0],f =1 and 8 € (1, )
and, respectively (c.f. [248], [237]). Moreover, the Qg o-version of Lemma (6.2.7) states
. . . - o Mm opgp(s)
that f € Qp o ifand only if duy 5 is a vanishing p-Carelson measure, i.e. W’T =
uniformly for all Carelson boxes S(l1)(cf. [239]).

The purpose of mentioning 9 is to solve another problem in [198]: ©* whenis C, -
By = Qp or Qg ocompact? “ the method of treating Theorem (6.2.8) can be adopted to
provide an answer to this question.

For convenience, let A,= {z € A:|z| > r} where r € (0,1] . We have
Corollary (6.2.9)[236]: Let 8 € (0,] and let ¢: A > A be analytic. Then
(i)  Qp exists as a compact operator if and only if
¢ € Qp and (22) holds.

(i)  Qpo exists as a compact operator if and only if cp € Qp and

1— 2
supicaa I8 | l( 'Z'@;('ﬁli ) 1) dme) = 0. (26)
s



Proof. (i) sufficiency. It follows from Theorem (6.2.8)(ii).

Necessity. Suppose that C, - By — Qp, iscompact. Then ¢ € Qg follows right away.
Note that if f € By then ||f:]lz < lIfllz < 1. Now for a fixed t € (0,1), ,put B, =
{f;:f € Bg} . Then B is a subset of Bg,. By compactness of C,, is arelatively compact
subset of Q. The proof of Theorem (6.2.8) (ii) actually shows that for every & > 0 there
isad € (0,1) (independentof t) (suchthatfor r € [6,1).

supycon l117F f 1(Cof) @|* (1 = 12108 1 o, (2)dm(z) < e.

s(D)
This estimate and Lemma (6.2.6) result in

L [ [16@I0 = 2128
B
suprcaa I S(f)[ - Cg@P

1

And so (26) follows, by Fatou’s lemma.

(i) Sufficiency. Let ¢ € Qg and let ¢ satisfy (26). Suppose that {f,} < B is a dequence
which converges to 01.u.on A . To prove that C, — By — Qp ¢ is compact, it suffices to
verify that 1lli_r)ro10||Cq,fn||Qﬁ = 0. Foreach r € (0,1) put A,= A/A, Since &, isacompact

subset of A {f, (¢)}tend to O uniformly on A, .From ¢ € Qg  and Lemma (6.2.7) it
IS seen that

1g . (2) dm(z) < 2¢;

. _ Y
lim  supicon 11 [ [Cof @ (= 12152 dmz) = 0.
s()
This limit, together with (26), gives 1im||C(pfn||Q =0
n—oo B

Let C, > By = Qp o becompact. Itistrivial todeducethat ¢ € Qg and C,(Bg,)is
a relatively compact subset of Qg o. Givenan & > 0 for every f € Bg_ there are finitely
many functions g, € Qp o such that

suprcon Il j Cof) @ - g, @D A = 2Bdm(z) < ¢

0)
Where we have used Lemma (6.2.7). Consequently, for all r € (0,1)

supicaa 117 [ 1€ @) = ¢, @ (L= 2P 15.6) dm(@) < &

0)
Since gy € Qg thereis r € (0,1) suchthat for r € [6, 1),

/ 2
Suprcos I8 f 9", @D (1 = 1211, (2) dm(z) < ¢

s()
Which implies

_ ENY
sup supyean |18 f I(Cof) @I (1= 121)P 1, (2) dm(z) < 26
J€ Bro s(n
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A careful inspection of the above argument for the necessity of (i) shows that (26) follows
immediately from another application of Lemma (6.2.6) and Fatou’s lemma to the last
inequality. The proof is complete.

We close by an observation on the condition (22). it is clear that (22) holds if

9'@ T
J e o< @7

Shapiro- Taylor [250] showed that (27) forces Cy:D —» D  to be a Hilbert- Schmidt
operator. Tjani [232] pointed out.

That (27) ensures that Cy: B — D is compact. Since D < Qg < B, our conditions (22)
and ¢ € Qp fill up the gap between D and B in the sense of the Hilbert- Schmidt property
and compactness.

4. Cy: Ny — Qp. We show Theorem (6.2.10). A dyadic division of A, quite different from
the one used for Theorem (6.2.4), will be involved to control Theorem (6.2.10).

Following [72], we divide A into dyadic boxes. Let I denote the family of dyadic arcs

in dA, that is, the family of all arcs of the form
{z€dA:2nk/2' <argz < 2m(1+k)/2'},k=0,1,..,2" = 1,1 = 0.1, ...
Givenanarc I c 0dA, let H(I) denote the half of S(I) which is closest to the origin, namely,

H(I) = {z e S(: 1 —% <zl <1- |1|/4n}.
Note that the H(I)'s for I € J are pair wise disjoint and cover A. Fix any enumeration
{H;:j =12,.. } of these sets and select a point a; in each H;. Almost any point would
work, but in order to simplify some parts later on let us agree that a; is the *“ center” of
H; in the sense that |a;|and arg a; bisect the interval of abslute values and the interval
of arguments, respectively , of points in H;.If H; = then H(I) then |I| = 1 — |a; |.
Theorem (6.2.10)[236]: Let a € (—1,%),8 € (0,00) and let ¢:A— A be analytic. Then

the following are equivalent:
(i)  Cp: Ny, — Qp  exists as a bounded operator .

(i) Cp: N, — Qp existsasa compact operator
(i) ¢ €Qp and forallc>0.

|I|—2(a+3)
exp (c|1|2+9) S(L N(B, w,z,¢)dm(z) < . (28)

Comparing Theorem (6.2.10) with Theorem (6.2.4) we find that (28) <(9) when 8 >

SUPp»erSUPIcoA

1.
We devote to the proof of Theorem (6.2.4) and its consequences. The proof of Theorem
(6.2.8). We devoted to proving Theorem (6.2.10) and a further discussion.
Proof. It is enough to verify the implications (i) = (iii) = (ii).
Put
dmg ,4(z) = N(B,w, z, p)dm(z).

With this choice, we establish
1/2

[Caflly, = IF(@)] + supuca | [ 1F() g o 02) 29)
A
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(i) = (iii), Suppose that Cg: NV, — Qp is bounded, Then clearly ¢ is a member of Qg. In
order to show that dmg,, , satisfies (28), fix 6 € [0,2m) and u = [1+ (2m)~*[I]]e".
Consider, for any ¢ > 0, the test function

(1 = Juf?)m-2
= [T

Where m is the smallest integer greater than 2 + a . Then
: emu(1 — [ul>)™™* (1 - ul)mTHE
9,(2) = exp—F— e 1—aznm™ |

Sincelog (14+x)<1+log*x forx=0.

J (1= [ul®)™*7%(1 - |2])”
(1—-uz)m

Once again, this constant M > 0 |s independent of u and it is determined by Lemma 4.2.2

of [154]. Let | be the arc centered at e‘®. Then there is § € (0,1) such that for |I| < &,
Supzesyl1uz| < Mq 1], infresyRel(1 —uz)™] = My |1|™

lgully, < dm(z) < M, (30)

“1+4a

And hence
. , M1~ G+
mfZ'ES(I)l(gu(Z))| = exp(M4|I|2+“))
Where M; > 0 and M, > 0 rely upon § and a only but also give
cm M. = cM,
2Q2m)ym-2-aymFlt T T g (opym-2-apZm
By (29) and since log*x < log(1+ x)on [0, ),

M3=

MZm SsUu
”Cd)gu”Q > 2(3+Z) Bw(b( ())2+a 31)
g ] exp(2My|I]>*®)
Appealing to the closed graph theorem, (31) and (30), one obtain (28) at once. On the other
hand, if [I]| =6 ,then (29) and ¢ € Qp easily imply (28) too.
(iii) = (ii) Assume now that ¢ € Qp and dmg ¢ is such that (28) is valid for all

c >0 .Forevery s> 0 we choose asequence {f,,} in NV, sothat [|f,llze <
s and {f,,} convergesto 01,u.on A on . With the help og the dyadic division
of A ,for f, € Ny leta; € H; let (closure of H;) beapoint where |f;]
attain its maximumon H; . If [is the integer such that H; is contained in

A={zer1-27'< |zl <1 - 270D}

then the set

S;={zen1-2""D < |z| <1-2""*D |argz — arga;| <2771}
Contains adisc A; with center a; and radius comparable to 2~ ! .Note that §; intersects
at most 6 of the sets H,and that 1—|z|?2 = 27! whenever z € S;. Using these

observations, (15) snd the submean value property of |f,/| , we find that to every ¢ € (0,1)
there corresponds an r € (0,1) such that forall f, andall w € A.

f|fn'|2 dmg o, < E SUDzen nar | fn (@ 1Pmg o6 (HiNA,)
. j
i
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< g2(+a) p. Z|f,{(a]’-‘) 2 (1 - |aj|2)4 exp [—CM6 (1 — |aj|2)2+a]
J

< 20y, y j @121 — |21%)? expl—cMg (1 — |z|*)**“Jdm (2)

J Aj

< 20y, » f (£ (2)(1 = 121%)]? expl—cMg (1 — |21*)**“]dm(2)

Jj Hj
< gz(““)Mgf exp[—|cMg—4*T%Mys) (1 — |2|*)*T9)]  dm(2).
A

Since (28) holds forall ¢ > 0 , it follows from picking ¢ > 427* s M,/ M inthe above
estimates that

[ 1521 dimg g < 2040 (32)
Ay
Also since ¢ € Qg, and f,, — Ouniformly on A, to the above & and rthere corresponds an
integer N > 0 suchthat forn > N.

[ 151 g g < ell013, (33)
A

Putting (29), (32) and (33) together produces that [|C,, fn||Q — 0.asn — oo.
8,

We presenta Qg , version of Theorem (6.2.10).

Corollary (6.2.11)[236]: Let a € (—1,0) B € (0,0) and let ¢:A— A and let be
analytic. Then the following are equivalent:

()  Cp: Ny — Qp, existas abounded operator.

(i)  Cp: Ny — Qp o eXist as a compact operator.

(iii) ¢ €Qpo and (28) holds forall c > 0

Proof. It suffices to show (iii) = (i) because (ii) = (i) is trivial and (i) = (iii) follows
from Theorem (6.2.10). So let (iii) be true. Since the poly nomias are dense in N, and in
Qp,0 (this is easily verified via the triangle inequality), if f € IV, then for every € > 0 there
is a polynomial P such that ||f — P||,;, <& . Observe that (iii) asserts boundedness of

Cp: Ny = Qp. So, there is a constant M > 0 suchthat ||Cyf — CyP ”QB < & M also since

@ € Qpo, it follws from the Qg , -version of Lemma (6.2.7) that ¢™ € Qp, for every
integer n > 0. As a result, C,P € Qpothe triangle inequality and the density of the
polynomials in Qg vyield C4P € Qpo . In other words, Cymaps N, into Qg
Furthermore, the last part of the proof of Theorem (6.2.10) shows that Cy: N, = Qp is
compact, that is, (ii) holds.
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Section (6.3): The Bloch Space into Mobius Invariant Spaces

By a self-map of the unit disk D we will mean an analytic function ¢ from the unit
disk I into itself. Every self-map of D induces the composition operator C,, with symbol ¢
by the formula C,(f) = f o ¢ on the set of all analytic functions in D but it is often of
interest to consider C,, as an operator between Banach spaces of analytic functions. For
several classical spaces of analytic functions such as a Hardy space H?, a Bergman space
AP or the Bloch space 3B, any symbol ¢ gives rise to a bounded operator C,from the space
into itself. However, this is not the case for the Dirichlet space or for more general analytic
Besov spaces B?, so the question of deciding which ¢ induce a bounded operator C,, is of
interest. The situation becomes more complicated if we consider composition operator
acting between two deferent spaces.

A related problem is to characterize all compact or weakly compact operators C,
between two given spaces in terms of the symbols.

Criteria for compactness of C,when acting on Hardy and Bergman spaces (due to
J.H. Shapiro and B. MacCluer) are now already considered a classical knowledge; see [12],
[144]. For compact operators acting on B and on the Little Bloch space B, see [19], [146],
and [259]. Related results regarding composition operators from 3B into the Dirichlet space
D or the more general analytic Besov spaces BP can be found in [227], [267], and [214].
Composition operators from B into Hardy spaces were treated in [268] while those from
the Bloch space into the conformally invariant subspaces BMOA and V MOA of Hardy
spaces and other spaces were studied in [232] and [196]. For composition operators from B
into Qp-type spaces see [198]. Weak compactness of composition operators on vector-
valued versions of classical spaces of analytic functions have been considered in [257], for
Example (6.3.9) (6.3.4).

Obviously, there are quite a few on the subject but it turns out that many similar setups
are treated in an isolated way and many proofs are essentially repeated while it looks
desirable to show the “bigger picture”. One purpose is precisely to treat such questions
globally, for those C, that map the Bloch space into other spaces. We would like to
underline that our work also provides new results in the case when the target space is one
of the many rather classical Banach spaces.

We consider the spaces X which are Mobius invariant, i.e., those whose seminorm s
has the following property: s(f co) < Cs(f), f € X, for some fixed constant C and all
disk automorphisms . These spaces were given a systematic treatment in [215] which was
also pioneering in the theory of composition operators acting on them. This family of spaces
includes the Bloch space B, the Little Bloch space B, and analytic Besov spaces denoted
BP. We also mention the important spaces BMOA (a variant of the classical John-Nirenberg
space BMO) and V MOA (introduced by Sarason; see [263]), both Mdbius -invariant
subspaces of the Hardy space H?. The classical Hardy and Bergman spaces, however, do
not satisfy the requirements for belonging to this family.

The question whether the weak compactness of a composition operator acting between
two conformally invariant spaces of analytic functions is actually equivalent to its
compactness has generated considerable interest among the experts. For the composition
operators on BMOA or V MOA or between these spaces, this question was posed (in its
deferent versions) by Bourdon, Cima, and Matheson [244], [258], by Laitila [264], and also
by Tjani. An affirmative answer has been given recently by Laitila, Nieminen, Saksman,
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and Tylli [258], where they used some functional analysis tools such as the Bessaga-
Pelczy nski selection principle.

It is important to notice that there exist weakly compact composition operators acting
on other function spaces which are not compact. An Example (6.3.9) (6.3.4) of such
C, induced by a lense map ¢, was given in [265].

The idea of considering the largest conformally invariant subspace of a given Banach
space of analytic functions has already been considered. Two relevant sources are [256] and
[275]. Significant motivation for the work comes from the approach adopted by Aleman
and Simbotin (Persson); see [255] or [272].

We consider three fairly large families of spaces of analytic functions: the spaces ij
defined in terms of integrability of the derivative of a function with respect to a certain Borel
measure u, their conform ally invariant subspaces M (fo), and the small subspaces M, (fo).
We defer their precise definitions which coincide with those given in [255] or [272]. These
families include various types of well-known spaces:

(i)  the Hardy space H? and all weighted Bergman and Dirichlet-type spaces,

(i)  their Mgbius invariant subspaces such as BMOA, B, analytic Besov spaces, and
Qp spaces, and

(iii)  the small subspaces of the above spaces such as V MOA, B, or @, ,. It should also be
remarked that families of “large” and “small” spaces defined by means of oscillation and
density of polynomials in them (which is also discussed here) were considered in Perfekt’s
[269].

We present a unified approach to charac-terizing all bounded, compact, and weakly
compact composition operators from B into any of the spaces belonging to the family
mentioned above. Our principal result shows that every weakly compact composition
operator from B into any spaceM (D,f ), is actually compact. We also generalize a number
of existing but scattered results and add some new results. For instance, we characterize the
compact and weakly compact operators from the Bloch space into the space BMOA. We do
this by using a combination of complex analysis arguments and Banach space techniques.

Part of the motivation for our approach to compactness comes from Xiao’s treatment
[124].

First of all, we characterize completely and in terms of the hyperbolic derivative of the
symbol ¢ all bounded and compact composition operators C,, from the Bloch space B into
any of the general spaces D}, M (D)), and M,(D,;) considered. It turns out that when-ever
Cp: B - Dﬁ orCy,: B - MO(Dﬁ), the compactness of C; follows “for free” (after
some work).

Our Theorem (6.3.7) describes the compact composition oper-ators from 8B into the
Invariant space M (Dﬁ ) and shows that, in this case, weak compactness is equivalent to
compactness. The proof is based on a theorem of Banach-Saks type from functional analysis
and techniques from function spaces. The result is accompanied by appropriate Example
(6.3.9) (6.3.4)’s.

Another relevant point (Theorem (6.3.13)) is a rigorous and detailed proof that, for all
natural radial measures of certain type, the polynomials are dense in the small subspace
M, (D}f) of the conform ally invariant space M (fo) , in analogy with the classical cases.
This provides a wide range of Examples (6.3.9), (6.3.4) where the separability hypothesis
of our Theorem (6.3.15) is satisfied. This last result characterizes the bounded and compact
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composition operators from the Bloch space B into the small spaces M, (Dﬁ’ ) .
In what follows, D will denote the unit disk in the complex Plane: D = {z € C:

|z| < 1} and dA will denote the normalized Lebesgue area measure on D:
1 1 .
dA(z)=;dxdy=;rdrd9, z=x+yi =re?

By a disk automorphism, we will mean a one-to-one analytic mapping of D onto itself. The
set of all such maps, Aut(ID), is a transitive group under composition. As is well known,
every o € Aut(DD) has the form

a—2z

o(z) = Al —— Al=1, |a|l <1. (34)

An important property of disk automorphisms is that they yield equality in the Schwarz-
Pick lemma:

A —-1z)le'@| =1~ lo@I?, z€D. (35)
We shall always consider a positive Borel measure x on D. A typical Example (6.3.9)
(6.3.4) is
du(z) = (1 — |z1)%dA(2),
a measure which is finite if and only if —1 < a < o0. Another Example (6.3.9) (6.3.4) is

1
du(z) = log“m dA(z),

Note that for z near the unit circle the function log“é behaves asymptotically like

(1 — |z|®»)%. In principle, our measures are not assumed to be of the form h(|z|) dA(2),
where h is some integrable positive function on [0, 1) like in the above Example (6.3.9)
(6.3.4)’s. However, the result will mostly be displayed for measures that satisfy this
assumption.

We will use H (ID) to denote the set of all functions analytic in D. A function f €
H (D) is said to belong to the Bloch space B if its invariant derivative:(1 —
1z|?)|f'(2)| is bounded in D. The name comes from the fact that this quantity does not
change under a composition with any ¢ € Aut(ID) in view of our formula (35). The Bloch
space becomes a Banach space when equipped with the norm

Iflls = If (O] + supzen(1 — 12I2)If' (2.

every function in B satisfies the standard growth condition :
() < (1 4210 |1+Z|>||f|| zeD 36)
= 2 B —g )V e '
Given a positive Borel measure p on D and p € [1, ), we can define the, weighted
Girichlet-types space Dﬁ in the usual way:

D = {f € H®Y:IfIy = IFOF + [ IF'P dye < oo,
D

Consider the point evaluation functional ¢ ,defined by ¢; (f ) = f({),for { € D. It
Is natural to require the following axioms to hold:

D/, is a Banach space;

The point-evaluation functional ¢, is bounded on fo foreach { € D.

In view of the uniform boundedness principle, these two requirements can be
summarized in one single axiom:
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The point-evaluation functional are uniformly bounded on Dﬁ’ on compact subsets of
D.
Following the notation used, for Example (6.3.9) (6.3.4), in [255], we define the Mdbius
invariant subspace M (D}f ) as the space of all functions f in H (ID) such that

£, gy = 1F O + Supsenue [ 1 )P du < e

D
We also define the corresponding Little invariant subspaces:

Mo(DP) = {fe M(DD): j|(foa) Pdu =0,

|0(O)|—>1 UEAut(ID))
A few remarks are in order:

1/p

It is routine to verify that s(f) = supseaut(m) (fD |(f o 0)’|pd,u)

Defines a seminormon M(D}) and |I. ll(op) hes all the properties of a norm.
u

Since {t co0: ¢ € Aut(D)} = Aut(D) holds for any fixed r € Aut(D), it
follows that the s (f o ) = s (f ). In other words, this seminorm is conform ally invariant.

Since the identity map of D is trivially a disk automorphism, it is immediate that
M(D[}) c D). It actually follows from our previous comment that M (D)) is the largest
conformally invariant subspace of D,

Note that we actually require that f € M (D],)is in the definition of Mo (D)} )is since

it is not obvious, even for somewhat special measures
u, that the assumption

jl(fw) Py =0

lo(0) |—>1 aeAut(]D))

Implies that

SUDg e Aut(D) jl(f 00) |Pdu < oo.

D
Assuming the uniform boundedness of point evaluations in D/f on compact subsets

of D, by a standard normal families argument and Fatou’s lemma one can deduce the
completeness of M (D). It is easily checked that M,(D};) is a closed subspace of M (D)),

so it is also complete.

It is not difficult to see that each one of the spaces defined above contains sufficiently
many functions for most “reasonable” measures u. For Example (6.3.9) (6.3.4), if x is a
finite measure then every function analytic in a disk larger than D and centered at the origin
Is readily seen to belong to M (Dﬁ). We shall discuss the membership and density of the
polynomials in M, (D}).

In several only the involutive automorphisms are considered: o,(z) = (a —
z)/(1 — az), a € D,requiring that |a] — 1 in the definitions of the special small
spaces. Here we have opted for the full generality and for considering the entire
automorphism group, which adds certain technical difficulties to some proofs.

An appropriate choice of x in the above definitions of our spaces
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D}, M (D}}),and My(D}) yields a number of well-known spaces of analytic functions in

the disk as special cases. Here is a list of some important Example (6.3.9) (6.3.4)s.
(A) In view of the well-known Littlewood-Paley identity [144]:

1
IF1e = 1FOF +2 [ If' @ log o dAG),
D
the Hardy space H? can be seen as a Dﬁ space by choosing d u (z) = log #dA(z). Its

conformally invariant subspace M (D) is the well-known BMOA space of analytic
functions of bounded mean oscillation and the corresponding space M,(D7) =V MOA, the
space of functions of vanishing mean oscillation; see [263] for more about these space. It
should be remarked that in this case our definition involving all possible disk
automorphisms coincides with the usual one that takes into account only the involutive
automorphisms o, mentioned above in view of rotation invariance of the measure .

(B) The analytic Besov spaces BP,1 < p < oo, are obtained as D,f spaces by choosing
du(z) = (p — DA — |z |*)P72dA(2),1 < p < oo. See [215] or [154] for more about
these spaces. Note that, in this case, combining the simple change of variable w =
d(z),dA(w) = |o'(2)|*dA(z) with (35) shows that

f I(f o 0) @) IPdu(z) = j I ()P du(w).
D D

So it is immediate that here while the corresponding space is trivial (consisting only of
the constant functions).

(c) The Bergman spaces AP,1 < p < oo, can be obtained by taking du(z) =
(1 — |z|*)PdA(z) . Well- known ( but too lengthy to repeat here ) arguments using the
Cauchy integral formula and Minkowski’s inequality in its integral form as in [262] show
that the norm in our definition is equivalent to the standard Bergman norm:

£ + j ' @IP (= |21)PdA() = f f @I dAG).
D D

(meaning that each of the two sides is bounded by a constant multiple of the other, this
multiple being independent of f ). In this case it turns out that M (D/f) = B and MO(DL’) =
B, the Little Bloch space (the closure of polynomials in B), as was shown by Axler [256].
(D) The Q, spaces, defined by Aulaskari, Xiao, and Zhao [216] and studied by other as well
(see [124] for an extensive account), can be seen as M (DZZ) spaces by takingp =

2,du(z) = log® é dA(z),0 < a < oo. An equivalent norm is obtained by choosing
du = (1 —|z|)* dA(z) instead. (Note that we will use the notation Q,rather than the

traditional Q,, because here p = 2 is fixed and the exponent a from the weight is the one that

determines the space.) It is well known that @, coincides as a set with B (but is, of course,
endowed with a deferent norm) whenever o > 1 and with BMOA when « = 1, while it is an

entirely deferent space when 0 < a < 1. The corresponding small space M, (Dﬁ ) Is the space
usually denoted as @, o and
Q10 = V MOA.
The following lemma in the case p = 1 has been proved explicitly by Ramey and Ullrich
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[121] although the argument can probably be traced back to Ahern and Rudin.
Lemma (6.3.1)[254]: Let 1 < p < oo. There exist two functions f and g in the Bloch
space B and a positive constant C such that

C
! p ! p>__
'@ +19 DP 2 G5
forall zin D.

The proof follows by [121]. The key point is to select a partition of the disk into two
sets of concentric annuli centered at the origin and two lacunary series, one of which takes
on large enough values:

F'@l 2=

on the odd-numbered annuli and the other does the same on the even-numbered annuli. This
takes care of the case p = 1, for arbitrary p > 1 the statement follows readily by the
standard inequality (a + b)? < 2P(a® + bP), where a,b = 0.
It will be convenient to use the following version of the hyperbolic derivative of an
analytic self-map @of D:
lp'(2)]

*'@ = T 0r

It should be noted that there is another related quantity also called hyperbolic derivative but
only the above expression will be useful for our purpose.

We state two basic facts which characterize the bounded composition operators from
B into D}f and into M (fo ) respectively. The proofs of such facts are relatively
straightforward and have by now become standard. We record them here only for the sake
of completeness.
Proposition (6.3.2)[254]: The following statements are equivalent:
(@ Cyp:B- D}f;
(b) C, is bounded operator from B into D?;
(c) Dlg#[pdu < oo.
Proof. It suffices to verify the following short chain of implications: (a) = (c) = (b) = (a).
[(a) = (c).]Suppose that f o € Dﬁfor each f in B. Choose two functions f, g €8
and the constant C > 0 as in Lemma (6.3.1). Evaluate them at ¢ (z) to get that

<|f'(e@)|" +]9'(¢@)[", zeD.

C
(1 - le(2)]?)?P
This yields

lez)p
<|lf e <pI| +1lg e <p|IDp<°°-

'[P
¢ | 5= f|f o pI7 lg/IPdp + f|g o gI7 Ig/ P
D

This proves.
Suppose that let f be an arbitrary function In 8B . Then

If'(e@)]|A = le@I*) < liflls

for every z € . This readily implies that
L If o @lP 1o’ Pdp <

o lo®[ P du - NIfIg < oo
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Also, from the growth estimate (36) we obtain

+ [@(0)]
If(e(0)] < (1+—1 8 T 000 (0)|> If 1l

By summing up the last two inequalities, it follows that C ,is bounded as an operator from
B into M (D).

[(b) = (a)]is trivial.
Proposition (6.3.3)[254]: The following statements are equivalent:

(@C,:B —>M(Dﬁ);

(b) C,, is a bounded operator from B into M (Dﬁ );

P
(C) SUP seaut(p) f]D) |(§0 ° 0)#| du < .
Proof. The proof can be worked out along the same lines as that of Proposition (6.3.2), with
the necessary modifications.

It is important to make sure that we are not dealing with trivial situations by displaying
Example (6.3.9) that work in a large number of cases. Here is a very simple Example (6.3.9)
showing that very simple symbols may or may not yield bounded composition operators
from B, our spaces.

Example (6.3.4)[254]: Let 1 < p < oo,du(z) = (1 — |z|)* dA(2),and let p(z) =
Z.
Then the following statements are equivalent:

(@) C,, is bounded as an operator from B into D}f :

(b) C, is bounded as an operator from B into M (Dﬁj ).

oOp—a<l1.
The case of M(D ) is slightly more involved, but still easy to check, in view of the identity
(35):

du(z) dA(z)
jl(go oo‘)#l du = le'#(Z)l du(z) = jm = J (1 —|z|2)P~«

D
Trivial integration in polar coordlnates shows that the last integral converges only for the

range indicated in (c). (Note that this is really a statement about the containments B c
M(D ) but is at the same time an Examples (6.3.9), (6.3.4) for composition operators.)

The case of bounded operators from 8B into the Little Mdbius invariant subspaces
MO (Dﬁ) will be considered together with the compactness question. This is done because
the two turn out to be equivalent and the proof requires other results to be obtained first.

We probably noticed some differences in the formulation of the results and those by
other pertaining to the cases like BMOA or Q,. The reason for this is very simple: these
spaces are obtained in the special case p = 2 when some of our results above can be rewritten
in a different language.
To this end, denote by N, the counting function of ¢:
Ny(w) = [{z € D: ¢(z) = w}|,

understanding 0, 1, 2,. . . ,0 as its possible values. Let us also agree to write A, for the
hyperbolic area of a subset of the disk:
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dA®2)
An(S) = f EoT
S

Lemma (6.3.5)[254]: For arbitrary positive measure p, we have

o> |
Aoz = Al (37)
(1 —lol?) 1— ol
When du = dA, we also have
lo’|? B
D

Formula (37) is a simple consequence of the identity A(u o @) = (4u o @)|¢’|* while (38)
follows from the well-known formula for non-univalent change of variable (see [144] or
[12]).

Taking into account the equivalent forms of writing |@# | from Lemma (6.3.5), it
becomes obvious how the condition (c) in Proposition (6.3.2) and Proposition (6.3.3) can
be rewritten. For Example (6.3.9) (6.3.4), in two special cases we could state our Proposition
(6.3.2) or Proposition (6.3.3) as follows:

For arbitrary p, the composition operator C,, is bounded from B into M(DE) if and only if

1
SUPgeAut(D) j AlogTd,u < 00,

@ ool?
D
C, is bounded from B into DZ (A being the area measure) if and only if

SUPg e Aut(D) f]D) Nyos dAp, = f]D) N,dAp < co.
in view of conformal invariance.

Recall that a bounded linear operator between two Banach spaces is said to be compact
if it takes bounded sets into sets whose closure is compact; equivalently, if for every
bounded sequence in the space the sequence of images has a convergent subsequence in the
norm topology. A bounded operator is weakly compact if it takes bounded sets into sets
whose closure is weakly compact; equivalently, if for every bounded sequence in the space
the sequence of images has a subsequence that converges in the weak topology.
Compactness obviously implies weak compactness.

We will now show that every composition operator from the Bloch space B into any of
our spaces M (Dﬁ) Is compact if and only if it is weakly compact and will also give a

characterization of this property in terms of the symbol ¢ which unifies all previously
obtained results for concrete spaces. In the special case of composition operators from 3B to
Q,, the equivalence of (a) and (c) in Theorem (6.3.7) below has been proved before by
Smith and Zhao [198]; see also [275] or [273]. However, weak compactness was not
considered in these works.

The main novelty of our approach consists of the use of certain techniques usually
employed by the experts in Banach space theory, the main one being a version of the
Banach-Saks theorem. We formulate below the statement needed as a lemma but remark
that it proof relies on some rather non-trivial results. It should be observed that the lemma
Is no longer true (even for composition operators) if we only assume boundedness of the
operator.

Lemma (6.3.6)[254]: Suppose that T is a weakly compact operator from B into an arbitrary
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Banach space Y . Then every bounded sequence (f,), in B has a subsequence (f, ) such
that the arithmetic means of the images T f,,, converge to some element in the norm of Y.
Proof. Recall that the Bloch space is isomorphic to the space of all bounded complex
sequences [”; see Lusky’s [266]. On the other hand, [ is a unital commutative C*-algebra
endowed with the usual operations of coor-dinatewise multiplication and conjugation. The
Gelfand-Naimark Theorem (see [271] where uses the term B* —algebra instead) now
implies that [ is isomorphic to a space of continuous functions on its maximal ideals
(which is a compact Hausdorff space by [271]). Thus, we are allowed to apply a Banach-
Saks type theorem proved in 1979 by Diestel - Seifert and (see [260]) which establishes that
any weakly compact linear operator from a space of continuous functions on a compact
Hausdorft space into an arbitrary Banach space has the Banach-Saks property.
Alternatively, we could have deduced the statement from a more general result of Jarchow
referring directly to the C* — algebras (see also [260]).

Note that the measure x in the theorem below is not required to be of any special form.
In particular, it need not be finite.

For the sake of brevity, throughout the rest we will write simply {|¢ o | > r} to
denotetheset{z € D : |[(p o 0)(2)| > r}.
Theorem (6.3.7)[254]: Let 1 < p < oo. Suppose that C, is a bounded operator from

BtoM (Dﬁ). Then the following statements are equivalent:
(a) C,, is a compact operator B to M (D).
(b) C,, is a weakly compact operator from B to M (D).

(C) limr—>1 SquEAut(ID)) f{|¢0 s o>} |(§0 °° O-)#l pd:u = 0.
Proof. We proceed to prove the statement by proving the implications (c) = (a) = (b) =
().
[(c) = (a).] Suppose (c) holds. It is clear that if (f;,),, is a bounded sequence in the Bloch
space that converges to zero uniformly on compact sets, then lim,,_, . f,,(¢(0)) = 0. Thus,
let us concentrate on the second term that appears in the norm. Fix an arbitrary e > 0. Then
there exists r, € (0, 1) such that

&
Spenewy | 1o NP < (39)
{lgpo > al>70}
Let (f,,), be an arbitrary sequence in B with ||f,|lg < 1 for all n. By a normal families
argument, there exists a subsequence which we denote by (g,,),, which converges uniformly
on compact sets to an analytic function g. From
, lgnlls 1
|.gn(Z)| < 1— |Z|2 < 1= |Z|2’ z €D.

It readily follows that g enjoys the same estimate , hence g € B and ||g|lg < 1. Moreover,

we also have that |g,(w) — g'(w)] < 1_|2w|2 forall w in D , hence

(gn = 9)' ° (9 2 D)IPI(g 2 0)'IP < 27|(p o ) (40)
holds throughout . In order to show that C,,(g,) = C,(g) inthe M (Dﬁ) norm, we
need to show that the integrals

186



j|<gn—g)'o(<poa>|p (o 0)'IP di.
D

are uniformly small independently of o as n — oo. for this purpose , is convenient to split
the above integral into two ( omitting the integrals below):

j - j " j . 1)
D {lpoalsry}  {lpoa|>ro}
By assumption, C,, is bounded from B to M (D) so in view of Proposition (6.3.3), we have

SUPgeAut(D) jl(q)o ° O-)#lpd,ll < M..
D
for some fixed positive constant M. Given ¢ > 0, by virtue of the uniform

convergence: (g, — g)' — 0 on the compact set {z : |z| < 1y}, for large enough n we
have

1(gn —9)" o (@ ea)|?”|(@oa)|P du

{lpoo|sry}
|(¢ o 0)'|P
< (gn —9)' (@ o) d
{lpoo|sry}
€ og)'|P €
_E j |(p o 0)'| du<
2M 1—|(poo)?|P 2
{lpoo|sry}

Thus, for n sufficiently large, the first integral in (41) can be made smaller than < &/2.
The second integral in (41) is smaller than &/2 in view of the inequalities (39) and (40).
This implies that
1€ (9n) = Co (@l ) <
u
for n large enough, as asserted.
(@ = (b)isobvious.
(b) = (c) is the most intricate part of the proof. We follow the steps indicated below.
Step 1: We first show that the weak compactness assumption on C,, implies

lim swoenew | 1o+ o)|Pdp=0. (42)
{lpo - ol>r}

This condition alone is apparently much weaker than (c). However, we will eventually show

that, together with the weak compactness of C,, it actually implies the desired condition (c).

Thus, suppose that C,, is weakly compact from B into M (Dﬁ’ ) but (42) does not hold. Then
we can find a positive number 4, an increasing sequence (p; ); of numbers in (0, 1) such
that lim, p; = 1, and a sequence of disk automorphisms (z; ); such that
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(po = 7)1Pdu=0. (43)

{loe < zjl>ps}
For a positive integer k, let us agree to write
k(k +1)

k = 2

Next, choose recursively a subsequence (m,,),, of the integers in such a way that
my=1,m,>GC,  +n

Once the sequence(m,,)has been fixed, let us choose the subsequence (1;,) of the sequence
(pj); so that

-1
mnr,:"” >Cp, , +1, n=1

This is possible since lim,._,; mnr,:n"_l = m,. Note that then
mnr,:n”_1 >Cp,  tnZ=my_+n> my 4 (44)
Also, let us choose the subsequence (o), of (t;); with the same indices as those of
(r)nWith respect to (p; );.
By applying Lemma (6.3.6) to our weakly compact operator C,,: B - M (D)) and
observing that the sequence (z™» ),, is bounded in the Bloch space, we conclude that there
exists a subsequence (my,, ), 0f (m,,), for which the arithmetic means

1 N

J— mnk

N § @
k=1

converge in the norm of M (D,f ) They actually must tend to zero since they converge to
zero uniformly on compact sets. Hence,

p 1 N P
Nz M, (9" 0 0)
k=1

(@ o= o) [Pdpu.

k=1

Hence
P

[(po - o)|Pdu=0.

lim sup, j

N—->oo
D

N
1
SUp, J Nz My, (p™k-1 0 g)
k=1

D
N
1 my,, —1
sznk((p " oanN)
k=1

N
1
Nz My, (p™me-1 0 0)
k=1

P

[(@eo - o)|Pdu<e.

P

(9o o ony)| du<e. (45)

{|((P° ° O'nN)|>TnN}
For an arbitrary but fixed z such that [(¢ o< gy, )(z)| > 1, , let us use the shorthand

x = |(p o° on, )(2)|. Then, using the triangle inequality for complex numbers, the
obvious inequalities r,, < x < 1, the elementary identity for the sum of the first N — 1

positive integers, and (44), together with the fact that the sequence (Cy); Is increasing and
the obvious inequalities m,,, = m, _ andny = N, it follows that
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N
1 1
N z My, (971 0 0 ) (2) | 2 N (mnk X1 — Z mnkxm"k—1>
k=1 k=1
1 mnN—l mTLN_1
2 5| mn, x"MN-1 — Z jod 71 | = —| my,, xMmN-1 — z j
]:1 j:l
1 m (m + 1) 1
_ My, —1 NN-—1 NN-1 _ My, —1 _
= N (mnk X "N > > > N (mnk x'mN mnN—1)
1 1
My, —1 _ -
= N(mnk XTW T+ ny CmnN_l) = NnN > 1.
Together with (12) , this yields
NP
|(90 o UnN) du < e.

{[(@oony)[>rmy}
Since this must hold for an arbitrary choice of ¢, it contradicts our assumption (43). This
completes the proof that (42) holds.
Step 2: Next, we show that the above condition (42), together with the weak compactness
of C,, implies the following condition

lim Swoenewy | |(Fowe oVIPdu=0, fEB.  (46)
{loo = al>1}
For any constant function the above condition is trivially fulfilled so let f be an arbitrary
but fixed non-constant function in B. Pick an increasing sequence (r;,) convergent to 1. Let
us agree to denote by £, the dilations of f defined in the usual way:
fr(z)=f(rz), 0<r<l. (41)
In view of the obvious inequality:

(1 = 1zl (a2l < A = Inz)If ' 2] < |If lls.

the sequence (f;. ) is a bounded in the Bloch space. Also, it converges to f uniformly on
compact sets. Since the operator C,: B > M (D}f) has the Banach-Saks property (in

reality, it suffices to use the fact that it is weakly compact), there exists a subsequence of
(1), denoted in the same way by an abuse of notation, such that

N
1
=D (e o0) = (Fo0)
et u(o})

Our axiom on boundedness of the point evaluations on fo implies uniform convergence of

%Z’,le(frk ° go)to (f o) . We are, of course, not interested in the trivial case when the

symbol ¢ is a constant function. Since neither of the functions f and ¢ is identically
constant, the same is true of the function f o ¢. Thus, we may select a further subsequence,

denoted again by (1;,) in order not to burden the notation, so that % ’,L’zl(frk ° <p) IS not
identically constant, and since is not ide4ntically constant, this implies

N
1 !
NZ fT'k
k=1
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Given ¢ > 0, there exists a positive integer N such that

N
1
NZ(frk o) — (fop)
=1 M (o))

Moreover, by (42) there exists ry € (0,1) suchthatif ry, <r <1 then

<E
>

&

s, [ Mo oYldu< —p— .
flgo < ol>r} 2”N k=11r

Hence for r, <r <1 and for every disk automorphism o we have

e

|(f e oo)|du
flpo < ol>r}

!

< f ( ifrkwpw)—(fwoa)’ du
ol>r} k=1

{lpo -

=~

| —

N
-[ ( 2 fro e@o 0) du
o|>1} k=

{lpeo - 1
v (ﬁzﬁ’kwpoa)(woa)’
k

{lpe - ol>7} =1
N

1 ! !

= fi (oo 0)ldp < e
k=1 H® {lgo  a|>1}

Taking the supremum over all automorphisms o, we obtain (46).
Step 3: Finally, in order to see that our condition (46) implies

+
=~

=

< du

N ™M™

<g+
-2

liir{ SUPgeAut(D) j [(po - O-)#l Pdu =0,
{lpo = ol>1}
which is (c), it suffices to recall Lemma (6.3.1): there exist functions f and g in B such that

If' @IP+ g’ (2P = m )

By applying this inequality at the point ¢(o(z)) instead of z and then using (46), we see
that (c) follows immediately.

Example (6.3.8)[254]: Let 1 < p < o and let p be an arbitrary measure (not necessarily
finite) that satisfies our axioms. Then for any analytic symbol ¢ such that ¢ (ID) is a compact
subset of I, the operator C,, is compact (equivalently, weakly compact) from B into M
(Dﬁ). Indeed, condition (c) in Theorem (6.3.7) is trivially verified. An obvious Examples
(6.3.9), (6.3.8)is @(z) = az + bwith|a] + |b] < 1,a # 0.

It should be made clear that not every bounded composition operator from B into M
(D}f) will be compact so the above theorem describes a non-trivial situation. Here is a very
simple Examples (6.3.9), (6.3.8).

Example (6.3.9)[254]: Let dp = (1 — |z|>)PdA(2),1 < p = a < o. Then the
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symbol @(z) = (1 + z)/2 induces a bounded composition operators from B into M (Dﬁ)

which is not compact. Indeed, recall first that in this case M (Dﬁ) = B and that every self-

map of the disk induces a bounded com-position operator on B. On the other hand, our
operator is not compact because the sequence (z"),, is bounded in B and converges to zero
uniformly

On compact subsets of the unit disk but evaluation at the points

:_-1-1 yeildS“C(p(Zn)”Qg = Susz]D(1 - |Z|2) ((%) ) ‘ =2

n n+1 2
(E) - z # 0,
Related Example (6.3.9)s of this kind in the specific context of operators from into of @,

type can be found in [258] or [198].
Corollary (6.3.10)[254]: Suppose that the operator C,,: B — M (D};) is bounded. Then
the following assertions are equivalent.
(i) C,:B — M(D])Ilsnot compact.
(ii) There exist a subspace X of B isomorphic to /* sucgh that the restriction of C,to X
IS an isomorphism.
Proof. It suffices to apply the fact already mentioned that B is isomorphic to [® as a
Banach space and the following result (ii): An operator T defined in I* is not weakly
compact if and only if there exists a subspace X of I*isomorphic to I*° and such that is an
iIsomorphism.
It is natural to ask whether there is a version of Proposition (6.3.2) for
Compact operators into D,f such a result can be easily proved by following and
simplyifying an easy part of the proof of Theorem (6.3.7). It also shows that in this case
Example (6.3.9) like the last one are not possible,
Theorem (6.3.11)[254]: Let 1 < p < oo .. If the composition operator C,, is bounded from

B to D, itis also compact
Proof: Let C, be bounded from B into Dﬁ . By Proposition (6.3.2), we know that

J|€0# " dp < oo,
D

Let (7;,), be an increasing sequence with limr, = 1 and define

n
Q,={zeD:|p)| <nr}
Note that Q,, is an ascending chain in the sense of inclusion whose union is D. Denoting
by XQ,, the characteristic function of Q,, , it is clear that |¢@*|” XQ,convergesto |@# |”

pointwise and |(p# |p Xq, - by the Lebesgue domainated convergence theorem, we have

n—oo

lim j|<p#|”d,1 = lim f|<p#|” XQ,dy = f|<p#|” du.
n—oo
Qm D D

This shows that

n—-0o

lim J lo*|” du = 0.
{lol>ry}
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Now one can just retrace the steps of the proof of the implication (¢) = (a) in Theorem
(6.3.7) and simplify them (without taking the supremum and working only with the identity
automorphism) to see that the last condition is sufficient for compactness of C,,.

We characterize the bounded and compact operators from B into the small spaces
M, (fo ). The proof of this characterization will require some “obvious” properties such as
separability of M, (D}f )which are well known to hold in the classical “Little spaces” like
VMOA, By, and Q,,. For Example (6.3.9), this property is fulfilled whenever the
polynomials are dense in the space. However, in our general context separability has to be
checked and it turns out that a complete and rigorous proof of this fact is somewhat
involved.

In what follows, we shall typically (but not exclusively) consider positive measures u
of the form du(z) = h(|z|) dA(z),where h € [0,1) = [0,0)is an integrable
function. Moreover, we shall assume that there exist positive constants « and C such that

h(lo(2)]) < Ch(|zD|a"(2)|* (48)
forallz € Dand all ¢ € Aut(D). Then the induced measure y is finite. We will refer to
such u as the radial measure induced by h. We remind the reader that the definitions of all
classical conformally invariant spaces involve measures of this type.

Let us agree to write

he = (hola])|o'|*7P (49)
Using the standard change of variable: z = ¢(w),dA(z) = |0’ (w)|*dA(w) itis easy to
verify the identity

j I(f o 0™ @IP du(z) = j /(@) ko (@)dA(w) (50)
for every function I?in M(D}). 0

The first natural question is: when does M, (D}f). contain the polynomials?

Proposition (6.3.12)[254]: Let u be a radial measure induced by an integrable, non-
negative, radial function h. Then the following statements are equivalent:

(@)  The identity function, given by f (z) = z,belongs to My(D},).
(b)  All polynomials belong to My (D).
(¢)  The following two conditions hold simultaneously

SUpg f ho (w)dA(w) < oo, (51)
D

fh(,(w)dA(w) = 0.

aeAut(]g)rﬁla(O) -1
Proof. Formula (50) readily that implied thﬂg identity function, given by f (z) = z belong to
Mo(D}) ifand only if and (51) holds.
Trivially, if all polynomials belong to Mo(Dﬁ) then so does f (z) = z.
If the identity is in Mo (D)) then (51) holds, and choosing f (z) = z™ we get

SUpg f |(f ea™V)'|P du = sup, J If'|P hydA < nPsup, f hydA < o.
D D D
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and

. o —1\/|p — . I} p
Jm [ G eeyPar= lim [ @ he(@)dA@)
D D

<nP 1j = 0.
<n IUl&)r)rll_)1 f hs(w)dA(w) =0
D

It is easy to see that |o~1(0)] —» 1 if and only if |6(0)| — 1. Recalling also the obvious
factthat {o™1: o € Aut(D)} = Aut(D), the statement follows.

Theorem (6.3.13)[254]: Let pu be a radial measure induced by an integrable, non-negative,
radial function h that satisfies (48); suppose also that the identity function belongs to

Mo(D}). Let the dilations f, be defined as in (47). Then the following statements are
equivalent:

(a) The function f belongs to My(D)));

O Lm|If = frlly(op)

(c) f belongs to the closure of the polynomials in My (D).
Proof. Our proof will consist of proving the chain of implications (a) = (b) =(c) = (a).
[(@) = (b)]. Let f € My(D]). The key points is that, by assumption, the identity
belongs to M,(D[) Also, all dilations f, have a continuous derivative in the closed disk.

However, we will need a uniform bound on their norms in terms of f. Using the Poisson’s
kernel, we can rewrite the function £, as

fr(z) = —j (ZE) 2| gl.

|1- rEI
Thus
2

— T
fr(2) = — j £ (28 ——— |,

|11
Fixo € Aut(D).GivenA € T, letus defme 0,(2) := 0(Az),z € D. Then, applying the
equality (50) and Minkowski’s inequality,
1

2 2
J (fooo ) Pdu | = f £ |P hy dA
D D L
/ " ’
1 —r2
- %I\ f £f (za | reae
1
1 P
< L f &' (D) |P hy ()dAZ) | ——— |
ZT[ s |1_rz|
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1 1 —r?
= J J|f’(w)|pha§,(a))dA(z) — |dg]
T D

p
1 f s f F@P h (w)dA(w)\ 170 gy
2 J ParerT ) oA |1 £12

1/p

1
= SUPer f|fr(w)|pha}\(w)dA(w) _11_[ |—_
D

= Supjer j I (60)Phy (0)dA(w)

That is, forall o € Aut(ID) and all we have that

f I(fy 0 0™ |P dut < supyer j I(fy 0 oY) [P dp (52)

It now follows that ||ﬂ||ﬂ,\);(D£) < ||f||M(D}‘j) since fr(Oﬂ)) = f (0).

In the special case when ¢ is chosen to be the identity, a close inspection of the above
long chain of inequalities shows that

RN R (53)

D D
Using the description (34) of the group of disk automorphisms, it is easy to see that for
every function f € My(D}) we have

Il
e

lim | supjer j |(f ooy’ (54)

lo(0)|-1

Assume the contrary of what we want to prove. lim,._q ||f — fr”MO(DP) + 0.
u

Then there exist a constant 6 > 0, a sequence of positive numbers rn 2 1, and a

sequence of automorphisms of the unit disk (a,,),, such that
1/p

fl(f ooy ) = (fooy)'[Pdu| =36. (55)
D

For all n.

After passing to a subsequence, we may assume that the sequence (o,,), converges
uniformly on compact subsets of the unit disk. By a corollary to Hurwitz’s theorem, it
converges either to a constant 1 € T or to an automorphism ¢. We analyze the two cases
separately.

Case 1. Suppose that d,(0) = Awith |1] = 1;then |a, (0)] — 1. By (54), we can find
ny € N such that
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1/p
p p < o)
u 4

SUpPjet J|(f°0-n_j),
D

foralln > ngy, where g, ,(z) = 0,(Az) as before. From here we deduce by (52) that
1

p

f |(f ooz - (frnoa,zl)'|pdu
D

1 1
) P P
= f|(frn°ff£1)| du | + fl(fw;l)’lpdu
D D
1/p
1\ |P )
< 2 Supjer j | (foan',l) du <§,
D

which is in contradiction with (55).
Case 2. Suppose g,, — o uniformly on compact sets, 0 € Aut(D). Then there exists r €
(0,1) such that |o,;1(0)] < rforalln € w. Thus,

T oY@l =

1+r_| On NN =100
holds for all z € . Taking « to be the same constant as in (48), denote by D the following
finite positive constant:

1_r2—p+a 1—71 2-p+a
-max{(iz) (5
{1+r 1+r

Extend h to D radially by defining h(z) = h(|z|). By formula (50) and our hypotheses on
h, we have

[ ooy = oo [ du= [1r = £l hoy da
D D
<cC j IF'(@) = £ @)]” h(lwD)lohw)]> P dA(w)
D
<cD j (@) - £ ()] h(lw]) dA(w)
D
<0, | (17 @I - |, @) b da@w),
D

Notice that |f'|Ph belongs to L* (D, dA) because f € M,(D}) and |frn|ph also belongs to

LY(D, dA) by (53). Since | fr., | converges pointwise to |f’|, Fatou’s lemma and again (53)
together imply that
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[ 1771 < timg int [ |2 dn < timo sup [ If " = [ 117 du,
D D D D

Thus

tima [\ du= [ 117 de (56)
D D

In summary, we know the following:
M) = £ = f'["he, < CDL(|£L |7 + If'1P)h  holds throughout D;
(i)|f. = f'|"hs, — O pointwise in D as n — oo:
i) (£ |” + If'1P)h > 21f'|Ph poinywise in D ;
@) [ (IFL ]+ If'IP)hdA — [ 2If'[PhdA by (23).

Thus, we are allowed to apply the well-known generalization of the Lebesgue dominated
convergence theorem usually called Pratt’s lemma [270], obtaining

1|\p
[1oaaty = Groaa) | au= [1f'= £ hopda~0, noeo
D D

which again yields a contradiction. This concludes our proof that (a) = (b).
[(b) = (c).] Fixr € (0,1).Since f, isanalytic ina larger disk centered at the origin, there
exists a sequence of polynomials (p,,),, such that p,,(0) = f (0) and
M, == sup{|fi'z — p,(2)|:z€ D} >0 as n - oo.
thus,

=1y =1/ l r P
swpo [10F 207 = (oo™ P die = sup, [ [ff =9, | o da
D D

< Mg SUp, J h, dA = MﬁllzllpM(Dﬁ).
D

Therefore, lim,|| f, — pn||M(D£) = 0 and f, belongs to the closure of the polynomials

in M(D}f)) forallr > 1.
Since

limeoallf = fillygor) = O,
the function f also belongs to the closure of the polynomials
We would like to remark that here our inspiration for the above result comes from [274].
Since we are considering compositions with all automorphisms, there are some technical
difficulties involved. The radial character of the measure x does not seem to guarantee all
rotation-invariant properties to hold so it appears necessary to consider the supremum over
all compositions with rotations as we have done above or to use some similar argument in
order to complete the proof.
Corollary (6.3.14)[254]: Let p a radial measure induced by a positive, radial, inte-grable
function h that satisfies (48). If the identity function is in M (D, )then the polynomials are

dense in My (D},). In particular, the Banach space M (D}, )is separable.
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We a characterization of bounded and compact com-position operators from the
Bloch space into the small spaces.

Theorem (6.3.15)[254]: Let 1 < p < co. Assume that the Banach space M (Dy,) is separable.
Let gbe an analytic self-map of the unit disk. Then the following statements are equivalent
(@) C,: B = My(D]) is a bounded operator.
(b) C,: B = My(D)) is a compact operator.
(c) Both conditions.

f|(§0°0)#| du = 0 and sup j|(<poa)#|pd,u < oo,

I0(0)|—>1
geAut (D) S

Are fulfilled.
Proof. We will first show that the conditions (a) and (b) are equivalent and then also that
(a) is equivalent to (c).
[(b) = (@)] is trivial.
[(a) = (b).] As was already remarked, B is isomorphic to I°see, e.g.,
[266]. Therefore every bounded operator from B into a separable Banach space is weakly
compact (see [261], for Example (6.3.9)). In Particular, every bounded operator from B
into My(D}}) is weakly compact.
Since MO(DfZ) is a subspace ofM(DZZ), it follow that C,:B — M(Dﬁ) is also a

weakly compact operator. By Theorem (6.3.7), it is compact.

[(d) = (c)] By Lemma (6.3.1), there exist f,g € B and a positive constant C such that

If' @I+ 19" (@)|P = forall z € D. (57)

C
(1-[z|®)?P’
Thus, given ¢ € Aut (ID) , we have that
(Fepeo)lP+ilgegea)lP=(f"cgeol’ +lg'epe0ilpeo)l

=T llpo PP
[(poa) P = Cl(poa)t
Since C, maps the Bloch space into MO(Dﬁ) . The functions f o ¢ and g o ¢ belong to
Mo(D}) so from the above inequalities we deduce that

i o #|P =
A [ 160 oo P an = o

D
By (a), the operator C,,: 8 — M (D] is bounded and, by Proposition (6.3.3), we have

supy [ |(p o 0)[" du < oo
D
[(c)=(a)]. Applying again Proposition (6.3.3), we conclude that the composition operator

C,is bounded from the Bloch space into M, (Dﬁ). It is only left to prove that the range of
C, is contained in the Little space M, (Dﬁ). To this end, suppose f € B. Then

b
(FopooP = If2p o) Pllpoo) P < T Lo o)
= If151Cp o )7
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By our assumption (c), it follows that

j|(f o0 Pdu =

Hence f o ¢ € My(D}), This complete the proof.

IG(O)I -1
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List of Symbols

Symbol Page
Byo: Little Bloch-type space 1
H™: essential Hardy space 1
sup: supremum 1
AP: Bergman space 2
HP: Hardy space 3
Hp: Weighted Hardy space 3
BP: Besov space 3
BMOA: Bounded mean oscillation of analytic function 3
max: maximum 17
min: minimum 23
H?: Hilbert space 33
dim: dimension 38
inf: infimum 38
Re: Real 40
dist: distance 42
L Lebesgue space on the line 45
loc: local 56
a.e: almost everywhere 68
Lip: Lipschitz 74
VMOA: vanishing mean oscillation of analytic function 75
0sC: oscillation 80
L?: Hilbert space 85
£%: sequence space 96
ker: kernel 102
L%: essential Lebesgue space 129
L9: Dual of Lebesgue space 149
By 4 Besov type space 156
v Bergman space 157
tp: Banach space of sequence 163
£y Dual of Banach space of sequence 163
H: Hardy space 164
arg: argument 167
lu: Locally uniform 168
Aut: Automorphism 180
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