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III 

Abstract 

We deal with the integral–type operator from Bloch space, logarithmic 

Bloch space and Dirichlet space to the Bloch-type space on the unit ball. The 

norm of operators from logarithmic Bloch type spaces to weighted- type spaces 

are considered. We give the composition of Bloch with bounded analytic and 

inner functions, symmetric measures and biBloch mapping. The Bloch-to-

BMOA compositions on complex balls, reverse estimates in logarithmic and 

weight Bloch spaces and quadratic integrals are established. The composition 

operators from Bloch type spaces to Hardy and Besov spaces are discussed with 

the compact and weakly compact composition operators from the Bloch space 

into Möbius invariant spaces are found. 

  



IV 

 الخلاصة
 

التكامل من فضاء بلوش وفضاء بلوش اللوغريثمي وفضاء -تعاملنا مع مؤثر نوع

بلوش على كرة الوحدة. قمنا باعتبار النظيم للمؤثرات من الفضاءات -ديرشليت إلى الفضاء نوع

اء التركيب لبلوش طبقاً للدوال نوع بلوش اللوغريثمي إلى فضاءات النوع المرجح. تم اعط

التحليلية المحدودة والداخلة والقياسات المتماثلة وراسم بلوش الثنائي. تم تأسيس تركيبات 

على الكرات المركبة والتقديرات العكسية في فضاءات بلوش  BMOA-إلى-بلوش

فضاءات من الاللوغريثمية والمرجحة وتكاملات الدرجة الثانية. قمنا بمناقشة مؤثرات التركيب 

نوع بلوش إلى فضاءات هاردي وبيسوف مع ايجاد التراص ومؤثرات التركيب المتراصة 

  الضعيفة من فضاء بلوش إلى الفضاءات اللامتغيرة موبيوس.
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Introduction 

From logarithmic Bloch-type and mixed-norm spaces to Blochtype spaces. We 

introduce the following integral-type operator on the space 𝐻(𝔹) of all holomorphic 

functions on the unit ball 𝔹 ⊂ ℂ𝑛, 𝑃𝜙
𝑔(𝑓)(𝑧) = ∫  

1

0
𝑓𝜙(𝑡𝑧)𝑔(𝑡𝑧)

𝑑𝑡

𝑡
, 𝑧 ∈ 𝔹, where 𝑔 ∈

𝐻(𝔹), 𝑔(0) = 0 and 𝜙 is a holomorphic self-map of 𝔹.  

The construction of an inner function, decreases hyperbolic distances as much as 

desired. The problem of constructing functions 𝑓1, 𝑓2 analytic in the unit disc 𝔻 of the 

complex plane satisfying |𝑓1
′(𝑧) + 𝑓2

′(𝑧)| = 𝜓 (
1

1−|𝑧|
) , 𝑧 ∈ 𝔻, is solved for a wide class of 

weights 𝜓 that includes normal weights.  

We give Necessary and sufficient conditions for a composition operator 𝐶𝜙𝑓 = 𝑓 ∘ 𝜙 

to be compact on the Bloch space ℬ and on the Little Bloch space ℬ0. Weakly compact 

composition operators on ℬ0 are shown to be compact. We express the essential norm of a 

composition operator on the Bloch space and the Little Bloch space as the asymptotic upper 

bound of a quantity involving the inducing map and the Pick-Schwarz Lemma. 

We characterize the boundedness and compactness of the following integral-type 

operator 𝐼𝜙
𝑔(𝑓)(𝑧) = ∫  

1

0
ℛ𝑓(𝜙(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡
, 𝑧 ∈ 𝔹, where 𝑔 is a holomorphic function on 

the unit ball 𝔹 ⊂ ℂ𝑛 such that 𝑔(0)  =  0, and 𝜙 is a holomorphic self-map of 𝔹. Operator 

norm and essential norm of an integral-type operator, recently introduced. Operator norm of 

weighted composition operators from the iterated logarithmic Bloch space ℬlog𝑘  , 𝑘 ∈ ℕ, or 

the logarithmic Bloch-type space ℬlog𝛽  , 𝛽 ∈ (0,1], to weighted-type spaces on the unit ball 

are calculated.  

We obtain sharp reverse estimates for the logarithmic Bloch spaces on the unit disk. 

Boundedness and compactness of composition operators from Bloch type spaces to 

Hardy spaces and analytic Besov spaces are characterized by function theoretic properties 

of their inducing maps. For the case of the Bloch space, the characterizations involve the 

hyperbolic versions of Hardy and Besov classes. For 𝒩𝛼 , ℬ and 𝑄𝛽 be the weighted 

Nevanlinna space, the Bloch space and the 𝑄 space, respectively. Note that ℬ and 𝑄𝛽 are 

Möbius invariant, but 𝒩𝛼 is not. We obtain exhaustive results and treat in a unified way the 

question of boundedness, compactness, and weak compactness of composition operators 

from the Bloch space into any space from a large family of conformally invariant spaces 

that includes the classical spaces like BMOA, 𝑄𝛼, and analytic Besov spaces 𝐵𝑝.  
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Chapter 1 

New Integral–Type Operators 
 

We study the boundedness and compactness of the following integral-type operator, 

𝑃𝜙
𝑔
𝑓(𝑧) = ∫  

1

0
𝑓(𝜙(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡
, 𝑧 ∈ 𝐵, where 𝜙 is a holomorphic self-map of the unit ball 

𝔹 in ℂ𝑛 and 𝑔 is a holomorphic function on 𝔹 such that 𝑔(0) = 0. The boundedness and 

compactness of the operator from the Bloch space ℬ or the Little Bloch space ℬ0 to the 

Bloch-type space ℬ𝜇 or the Little Bloch-type space ℬ𝜇,0, are characterized. We calculate the 

essential norm of the operators 𝑃𝜙
𝑔
∶ ℬ (or ℬ0)  → ℬ𝜇  (or ℬ𝜇,0) in an elegant way. 

Section (1.1):  From Logarithmic Bloch-Type and Mixed-Norm Spaces to 

Bloch-Type Spaces 
For B = {𝑧 ∈ ℂ𝑛: |𝑧| < 1} be the open unit ball in ℂ𝑛, 𝔻 the open unit disk in ℂ, 

H. (𝔹) / the class of all holomorphic functions on the unit ball and 𝐻∞(𝔹)the space of all 

bounded holomorphic functions on 𝔹 with the norm ‖𝑓‖∞ = 𝑠𝑢𝑝𝑧∈𝔹|𝑓(𝑧)|. Let 𝑧 =
(𝑧1, … , 𝑧𝑛) and 𝑤 = (𝑤1, … , 𝑤𝑛) be points in ℂ𝑛 and ℂ𝑛 and 〈𝑧, 𝑤〉 =  ∑  𝑎𝛽𝑧

𝛽
|𝛽|≥0 . For f 

ℜ𝑓(𝑧) = ∑ |𝛽|𝑎𝛽𝑧
𝛽

|𝛽|≥0

 

be the radial derivative of 𝑓, where  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑛) is a multi-index |𝛽| =

(𝛽1 +  …+ 𝛽𝑛) and 𝑧𝛽 =  𝑧1
𝛽2 …𝑧𝑛

𝛽𝑛 . 

       Let 𝜇 be a strictly positive continuous function (weight) on the unit ball 𝔹. A weight 𝜇  

is called radial if 𝜇 (𝑧) =  𝜇 (|𝑧|). For every 𝑧 ∈  𝔹. Every radial weight 𝜇 which is non 

increasing with respect to |𝑧| and such that lim
|𝑧|→1−0

𝜇 (𝑧) = 0  is called typical. 

       The logarithmic Bloch-type space ℬ
𝑙𝑜𝑔𝛽
𝛼 = ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹), 𝛼 > 0, 𝛽 ≥ 0, consists of all f ∈

𝐻(𝔹) such that 

𝑏𝛼,𝛽(𝑓) ≔ 𝑠𝑢𝑝𝑧∈ 𝔹(1 − |𝑧|)
𝛼 (𝐼𝑛

𝑒𝛽/𝛼

1 − |𝑧|
)

𝛽

|ℜ𝑓 (𝑧)| < ∞. 

the norm on ℬ
𝑙𝑜𝑔𝛽
𝛼  is introduced ad follows  

‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼 =  |𝑓(0)| + 𝑏𝛼,𝛽(𝑓)                                             (1) 

When 𝛽 = 0, ℬ
𝑙𝑜𝑔𝛽
𝛼  becomes the 𝛼 -Bloch space ℬ𝛼 (see, [19]). For 𝛼 =  𝛽 = 1, ℬ

𝑙𝑜𝑔𝛽
𝛼  is 

the logarithmic = Bloch space [10], which appeared in characterizing the multipliers of the 

Bloch space (see [3] and [9]). 

The Little logarithmic Bloch-type space ℬ
𝑙𝑜𝑔𝛽
𝛼 = ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹), 𝛼 > 0, 𝛽 ≥ 0,  consists of all  

𝑓 ∈ ℬ
𝑙𝑜𝑔𝛽
𝛼   such that 

lim (1 − |𝑧|)α
|𝑧|→1−0

(𝐼𝑛
𝑒𝛽/𝛼

1 − |𝑧|
) |𝔑𝑓(𝑧)| = 0 

The Bloch-type space ℬ𝜇 = ℬ𝜇(𝔹)consists of all 𝑓 ∈ 𝐻(𝔹) such that 

ℬ𝜇(𝑓) = supz∈𝔹  𝜇(𝑧) |𝔑𝑓(𝑧)| < ∞ 

where 𝜇 is a weight. With the norm 

‖𝑓‖ℬ𝜇 =  |𝑓(0)| + ℬ𝜇(𝑓) 

the Bloch-type space becomes a Banach space. 
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The Little Bloch-type space ℬ𝜇,0 = ℬ𝜇,0(𝔹)  is a subspace of ℬ𝜇 consisting of all 𝑓 such 

that 

lim 𝜇(𝑧) |𝔑𝑓(𝑧)|
|𝑧|→1

= 0 

The weighted space (or weighted-type space) 𝐻𝜇
∞ = 𝐻𝜇

∞(𝔹)consists of all 𝑓 ∈ 𝐻(𝔹) such 

that 

‖𝑓‖𝐻𝜇∞ =  supz∈𝔹  𝜇(𝑧) |𝑓(𝑧)| < ∞ 

where 𝜇 is a weight. 

The Little weighted space 𝐻𝜇,0
∞  =  𝐻𝜇,0

∞ (𝔹)  is a subspace of 𝐻𝜇
∞ consisting of all 𝑓 ∈ 𝐻(𝔹) 

such that 

lim 𝜇(𝑧) |𝑓(𝑧)|
|𝑧|→1

= 0 

A positive continuous function on 𝜙 on [0,1] is called normal [11] if there are 𝛿 ∈ [0,1] and 

a and b, 0 < a < b such that 
𝜙(𝑟)

(1 − 𝑟)𝑎
 is decreasing on [𝛿, 1] and lim

𝑟→1

𝜙(𝑟)

(1 − 𝑟)𝑎
= 0 ; 

𝜙(𝑟)

(1 − 𝑟)𝑏
 is increasing on [𝛿, 1] and lim

𝑟→1

𝜙(𝑟)

(1 − 𝑟)𝑏
= 0∞ ; 

If we say that a function  𝑣 ∶  𝔹 → [0,∞] is normal we will also assume that it is radial on 

𝔹: 

       For 0 < p; q < ∞ and 𝜙 normal, the mixed-norm space 𝐻(𝑝, 𝑞, 𝜙) (𝔹) consists of all 

functions 𝑓 ∈ 𝐻(𝔹) such that 

‖𝑓‖𝐻(𝑝,𝑞,𝜙) =   (∫ 𝑀𝑞
𝑝(𝑓, 𝑟)

𝜙𝑝(𝑟)

1 − 𝑟

1

0

 𝑑𝑟)

1
𝑝

< ∞ , 

Where 

𝑀𝑞(𝑓, 𝑟) =   (∫ |𝑓(𝑟𝜉)|𝑞𝑑𝜎
𝑠

 (𝜁))

1
𝑞

 , 

For p = q and 𝜙(𝑟) =  (1 − 𝑟2)
𝛼+1

𝑝   , 𝛼 > −1. the mixed-norm space is equivalent with the 

weighted Bergman space 𝐴𝛼
𝑝
=  𝐴𝛼

𝑝(𝔹) consisting of all 𝑓 ∈ 𝐻(𝔹) such that 

∫ |𝑓(𝑧)|𝑝(1 − |𝑧|2)𝛼

𝔹

𝑑𝑉(𝑧) < ∞, 

Where 𝑑𝑉(𝑧)  is the Lebesgue volume measure on 𝔹.  
       Let 𝜑  be a holomorphic self-map of 𝔹 (usually non-constant) and . For 𝑓 ∈ 𝐻(𝔹) the 

corresponding weighted composition operator is defined by 

(𝑢𝐶𝜑)(𝑓)(𝑧) = 𝑢(𝑧)𝑓(𝜑(𝑧)), 𝑧 ∈ 𝔹 

It is of interest to provide function-theoretic characterizations for when 𝜑 and u induce 

bounded or compact weighted composition operators on spaces of holomorphic functions 

(see, e.g., [12]). For some results, in ℂ𝑛 or related to Bloch-type spaces, see, e.g., [4], [12], 

[30]. 

       Let 𝑔 ∈ 𝐻(𝔻) and 𝜑 be a holomorphic self-map of 𝔻. Products of integral [31] and 

composition operators on 𝐻(𝔻) were introduced by Li and Stevi¢ (see [32], [36], as well as 

[37] and [38] for a related operator) as follows: 
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𝐶𝜑𝐽𝑔𝑓(𝑧) =  ∫ 𝑓(𝜁)𝑔′(𝜁)𝑑𝜁  𝑎𝑛𝑑  
𝜑(𝑧)

0

𝐽𝑔𝐶𝜑𝑓(𝑧) =  ∫ 𝑓(𝜑(𝜁))𝑔′(𝜁)𝑑𝜁.
𝑧

0

            (2) 

In [39] (see also [10], [40], [41]) has extended the second operator in (2) to the unit ball 

setting as follows. Assuming that 𝑔 ∈ 𝐻(𝔻), 𝑔(0) = 0 𝑎𝑛𝑑 𝜑 is a holomorphic self-map of 

𝔹, we define an operator on 𝔹 in this way: 

𝑃𝜑
𝑔(𝑓)(𝑧) =  ∫ 𝑓(𝜑(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡
 ,   

1

0

𝑓 ∈ 𝐻(𝔹), 𝑧 ∈ 𝔹.            (3) 

 If  𝑛 = 1, then 𝑔 ∈ 𝐻(𝔻) and  𝑔(0) = 0, so that 𝑔(𝑧) = 𝑧𝑔0(𝑧), for  some 𝑔0 ∈ 𝐻(𝔻), by 

the change  of variable 𝜉 = 𝑡𝑧 , it follows that 

𝑃𝜑
𝑔(𝑓)(𝑧) =  ∫ 𝑓(𝜑(𝑡𝑧))𝑡𝑧𝑔0

𝑑𝑡

𝑡
 ,   

1

0

∫ 𝑓(𝜑(𝜁))𝑔0(𝜁)𝑑𝜁
𝑧

0

. 

Thus the operator (3) is a natural extension of the operator 𝐽𝑔𝐶𝜑 ' in (2). 

       For some results on related integral-type operators in ℂ𝑛 see, e.g., [6], [10], [42], [60]. 

The following research project was initiated in [40]. 

       Let X and Y be two Banach spaces of holomorphic functions on the unit ball in ℂn (e.g., 

the weighted Bergman space Aα
p

 , the Bloch-type space ℬμ , the Hardy space 𝐻𝑝 , the 

weighted space Hμ
∞, the Besov space Bp, BMOA, etc.) Characterize the boundedness, 

compactness, essential norms and other operator-theoretic properties of the 

operator  Pφ
g
: X → Y  in terms of function-theoretic properties of the inducing functions φ 

and g. 

We continue to study operator   𝑃𝜑
𝑔

 by investigating the boundedness and 

compactness of the operator from the logarithmic Bloch-type space ℬ
𝑙𝑜𝑔𝛽
𝛼  or the Little 

logarithmic Bloch-type space ℬ
𝑙𝑜𝑔𝛽,0
𝛼  to the Bloch-type space ℬ𝜇 or the Little Bloch-type 

space ℬ𝜇,0 . Results complement those ones in [10]. We also extend some results in [40] by 

characterizing the boundedness and compactness of the operator   𝑃𝜑
𝑔

 from the mixed-norm 

space (𝑝, 𝑞, 𝜙) to the Bloch-type space ℬ𝜇 or the Little Bloch-type space ℬ𝜇,0 . 

We constant are denoted by C, they are positive and may differ from one occurrence 

to the other. The notation 𝑎 ≼ 𝑏 means that there is a positive constant  ∁ such that   𝑎 ≤ ∁𝑏. 

We say that 𝑎 ≍ 𝑏, if both 𝑎 ≼ 𝑏 and 𝑏 ≼ 𝑎 hold. 

We present several auxiliary results which will be used in the proofs of the main 

results. 

Lemma (1.1.1)[1]: Assume 𝛼 > 0, 𝛽 ≥ 0 𝑎𝑛𝑑 𝛾 ≥
𝛽

𝛼
+  𝐼𝑛2.. Then the function 

ℎ(𝑥) =  𝑥𝛼 (𝐼𝑛
𝑒𝛾

𝑥
)

𝛽

                                                                        (4) 

Increasing on the interval (0,2). 
Proof: we have 

ℎ′(𝑥) = 𝑥𝛼−1 (𝐼𝑛
𝑒𝛾

𝑥
)

(𝛽−1)

(𝛼 𝐼𝑛
𝑒𝛾

𝑥
−  𝛽) 

Now note that 

𝑥𝛼−1 (𝐼𝑛
𝑒𝛾

𝑥
)

(𝛽−1)

> 0. 

When 𝑥 ∈ (0,2) and that the function  
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𝐻(𝑥) =  𝛼 𝐼𝑛
𝑒𝛾

𝑥
−  𝛽 

Is decreasing on (0,2 ), (here we use that 𝛾 ≥ 𝐼𝑛2).Hence 

𝛼 𝐼𝑛
𝑒𝛾

𝑥
−  𝛽 > 𝛼 𝐼𝑛

𝑒𝛾

2
−  𝛽 =  𝛼(𝛾 − 𝐼𝑛2 − 𝛽/𝛼) ≥ 0, 𝑥 ∈ (0,2) 

from which the lemma follows. 

       The following lemma can be proved similar to Lemma (1.1.1). 

Lemma (1.1.2)[1]: Assume 𝛼 > 0, 𝛽 ≥ 0 and 𝛾 ≥
𝛽

𝛼
 . Then the function 

ℎ1(𝑥) =  𝑥
𝛼  (In

𝑒𝛾

𝑥
)

𝛽

.                                                         (5) 

 is increasing on the interval (0,1). 

       By using the L. Hopital rule, as well as some simple estimates, the following lemma 

can be proved. 

Lemma (1.1.3)[1]: The following statements are true. 

(a) Assume 𝛼 > 1 and 𝛽 ≥ 0. Then 

∫
𝛼

(1 − 𝑡)𝛼  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑡
)
𝛽

𝑥

0

∼
1

(𝛼 − 1)(1 − 𝑥)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑥
)
𝛽
, 𝑎𝑠 𝑥 → 1 − 0 

(b) Assume 𝛼 = 1 and 𝛽 ∈ (0,1). Then 

∫
𝑑𝑡

(1 − 𝑡)𝛼  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑡
)
𝛽

𝑥

0

∼
1

1 − 𝛽
 (𝐼𝑛

𝑒𝛽/𝛼

1 − 𝑥
)

1− 𝛽

, 𝑎𝑠 𝑥 → 1 − 0 

(c) Assume 𝛼 = 1 and 𝛽 = 1. Then 

∫
𝑑𝑡

(1 − 𝑡)𝛼  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑡
)
𝛽

𝑥

0

∼ 𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑥
, 𝑎𝑠 𝑥 → 1 − 0 

(d) if 𝛼 =  1 and 𝛽 > 1 , or 𝛼 ∈ (0,1), Then the integral  

∫
𝑑𝑡

(1 − 𝑡)𝛼  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑡
)
𝛽

𝑥

0

. 

is convergent. 

       Recall that the operator 

𝛿𝑧(𝑓) = 𝑓(𝑧) 
 

where f are complex-valued functions defined on a domain Ω  which belong to a Banach 

space X, is called the point evaluation functional on X at point z. 

The next result gives some estimates for the point evaluation operator on the space ℬ
𝑙𝑜𝑔𝛽
𝛼  .       

As usual from these estimates it follows that the point evaluations are bounded functionals 

on ℬ
𝑙𝑜𝑔𝛽
𝛼 (𝔹). 

Lemma (1.1.4)[1]: Let 𝑓 ∈ ℬ
𝑙𝑜𝑔𝛽
𝛼 (𝔹).Then  
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|𝑓(𝑧)| ≤ 𝐶

{
 
 
 
 
 
 

 
 
 
 
 
 

|𝑓(0)| + ‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼    𝛼 ∈ (0,1) 𝑜𝑟 𝛼 = 1, 𝛽 > 1,

|𝑓(0)| + ‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼 𝑚𝑎𝑥 {1, 𝐼𝑛𝐼𝑛

𝑒
𝛽
𝛼

1 − |𝑧|
}  𝛼 = 𝛽 = 1

|𝑓(0)| + ‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼 (𝐼𝑛

𝑒
𝛽
𝛼

1 − |𝑧|
) , 𝛼 = 1 , 𝛽 ∈ (0,1)

|𝑓(0)| +

‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼

(1 − |𝑧|)𝛼−1(𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝑧|
)

𝛽   , 𝛼 > 1 , 𝛽 ≥ 0 

,  

For some 𝐶 > 0 independent of 𝑓, 
 

Proof. let 𝑍 ∈ 𝔹. By the definition of the space ℬ
𝑙𝑜𝑔𝛽
𝛼  and the change of variables 𝑠 = 𝑡|𝑧|, 

we have that 

|𝑓(𝑧) − 𝑓(𝑧/2) | =  |∫ 𝔑𝑓(𝑡𝑧)
𝑑𝑡

𝑡

1

1/2

| ≤  𝑏𝛼,𝛽(𝑓)∫
|𝑧|𝑑𝑡

(1 − 𝑡|𝑧|)𝛼 (𝐼𝑛
𝑒
𝛽
𝛼

1 − 𝑡|𝑧|
)

1

1/2

 

= 𝑏𝛼,𝛽(𝑓)∫
𝑑𝑠

(1 − 𝑠)𝛼 (𝐼𝑛
𝑒
𝛽
𝛼

1 − 𝑠
)

𝛽

|𝑧|

0

                                                  (6) 

≤  𝑏𝛼,𝛽(𝑓)∫
𝑑𝑠

(1 − 𝑠)𝛼 (𝐼𝑛
𝑒
𝛽
𝛼

1 − 𝑠
)

𝛽

1

0

                                                   (7) 

On the other hand, similar to Lemma (1.1.2). in [6] it can be proved that  

𝑀∞(𝐹, 1/2) ≤ |𝑓(0)| +  𝐶𝑏𝛼,𝛽(𝑓),                                       (8) 

for each   𝛼 > 0 and 𝛽 ≥ 0, and  for some 𝐶 independent of 𝑓.  
       From (7), (8) and Lemma (1.1.3)(d), this lemma follows for the case α ∈ (0,1) , or α =
1 and β > 1. if 𝛼 =  𝛽 = 1 , then from (6) and by direct calculation we obtain 

|𝑓(𝑧) − 𝑓(𝑧/2)| ≤ 𝑏1,1(𝑓)∫
𝑑𝑠

(1 − 𝑠) 𝐼𝑛
𝑒

1 − 𝑠

=  𝑏1,1(𝑓)
𝑒

1 − |𝑧|

|𝑧|

0

 

from which along with (8) the third inequality in this lemma easily follows. 

       Finally If  𝛼 = 1 and  𝛽 ∈ (0,1) then we have  

|𝑓(𝑧) − 𝑓(𝑧/2)| ≤ 𝑏1,𝛽(𝑓)∫
𝑑𝑠

(1 − 𝑠) 𝐼𝑛
𝑒𝛽

1 − 𝑠

≤ 
𝑏1,𝛽(𝑓)

1 − 𝛽
(

𝑒𝛽

1 − |𝑧|
)

1−𝛽|𝑧|

0

 

 From which a long with (8) the third inequality in this lemma easily follows. 

       Finally if 𝛼 > 1 𝑎𝑛𝑑 𝛽 ≥ 0 , then by Lemma (1.1.3)(a) and similarly as in the case 𝑎 >
 1 of Lemma (1.1.2). in [6] (see, also Lemma (1.1.1) in [10]), the estimate can be proved, 
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finishing the proof of the lemma. 

Lemma (1.1.5)[1]: Assume  𝛼 > 0 and 𝛽 ≥ 0. A closed set 𝐾 in ℬ
𝑙𝑜𝑔𝛽
𝛼  is compact if and 

only if it is bounded and 

lim sup(1 − |𝑧|)α
|𝑧|→1𝑓∈𝐾

(𝐼𝑛
𝑒𝛽/𝛼

1 − |𝑧|
) |𝔑𝑓(𝑧)| = 0 

Lemma (1.1.6)[1]: Assume that 𝜑 is a holomorphic self-map of 𝔹 , 𝑔 ∈ 𝐻(𝔹) and 𝑔(0) =
0. Then for every 𝑓 ∈ 𝐻(𝔹) it holds 

𝔑[𝑃𝜑
𝑔(𝑓)](𝑧) = 𝑓(𝜑(𝑧))𝑔(𝑧), 

The following characterization of compactness can be proved in a standard way (see, e.g., 

the proofs of the corresponding lemmas in [12], [52], [57], [58]). 

Lemma (1.1.7)[1]: Assume that 𝜑 is a holomorphic self-map of  𝔹 , 𝑔 ∈ 𝐻(𝔹) and 𝑔(0) =
0  and 𝜇 is a weight.  Let X be one of the following spaces ℬ

𝑙𝑜𝑔𝛽
𝛼  , ℬ

𝑙𝑜𝑔𝛽,0 
𝛼 , H(p, q , 𝜙) and Y 

one of the spaces ℬ
𝑙𝑜𝑔𝛽
𝛼  , ℬ

𝑙𝑜𝑔𝛽,0 
𝛼 . Then the o6perator 𝑃𝜑

𝑔
: 𝑋 →  𝑌 is compact if and only if 

𝑃𝜑
𝑔
: 𝑋 →  𝑌 is bounded and for every 4bounded sequence (𝑓𝑘)𝑘∈ℕ ⊂ X converging to 0 

uniformly on compacts of 𝔹 we have 

lim
𝑘→∞

‖𝑃𝜑
𝑔
𝑓𝑘‖𝛾

= 0 

The following lemma gives us some concrete examples of the functions belonging to 

logarithmic Bloch-type spaces. 

Lemma (1.1.8)[1]: The following statements are true. 

(a) Assume that  𝛼 ≠ 1 𝑎𝑛𝑑 𝛽 ≥ 0. then 

𝑓𝑤(𝑧)  =  
1

(1 − 〈𝑧,𝑤〉)𝛼−1  (𝐼𝑛
𝑒𝛾

1 − 〈𝑧,𝑤〉
)
𝛽
,     𝑤 ∈ 𝔹,                         (9) 

where 𝛾 ≥
𝛽

𝛼
+  𝐼𝑛2, is a nonconstant function  belonging to ℬ

𝑙𝑜𝑔𝛽
𝛼 : 

(b) Assume that   𝛼 = 1 and 𝛽 ≠ 1.then 

𝑓𝑤
(1)(𝑧)  =  (𝐼𝑛

𝑒𝛾

1 − 〈𝑧, 𝑤〉
)

1−𝛽

, 𝑤 ∈ 𝔹,                     (10) 

where 𝛾 ≥ 𝛽 + 𝐼𝑛 2,  is a non constant function belonging to ℬ
𝑙𝑜𝑔𝛽
𝛼  . 

(c) Assume that 𝛼 = 1 and 𝛽 = 1. then 

𝑓𝑤
(2)(𝑧)  =  𝐼𝑛𝐼𝑛

𝑒𝛾

1 − 〈𝑧, 𝑤〉
, 𝑤 ∈ 𝔹,                   (11) 

Where 𝛾 ≥ 1 + 𝐼𝑛2, is a non constant function belonging to ℬ
𝑙𝑜𝑔𝛽
𝛼 . 

Moreover, for each w ∈ 𝔹, it holds that 𝑓𝑤 , 𝑓𝑤
(1), 𝑓𝑤

(2) belong  to the corresponding ℬ
𝑙𝑜𝑔𝛽
𝛼  

space and  for each fixed 𝛼 and 𝛽  

sup
𝑤∈𝔹

‖𝑓𝑤‖ℬ
𝑙𝑜𝑔𝛽
𝛼 ≤ ∁ ,   sup

𝑤∈𝔹
‖𝑓𝑤

(1)
‖
ℬ
𝑙𝑜𝑔𝛽
1

≤ ∁ ,   sup
𝑤∈𝔹

‖𝑓𝑤
(2)
‖
ℬ
𝑙𝑜𝑔1
1

≤∁.                 (12)  

Proof: (a) Let 𝑤 ∈ 𝔹 be fixed. Then we have 

 

(1 − |𝑧|)𝛼  (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝑧|
)

𝛽

|𝔑𝑓𝑤(𝑧)| = (1 − |𝑧|)
𝛼  (𝐼𝑛

𝑒𝛽/𝛼

1 − |𝑧|
)

𝛽
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× ||
(𝛼 − 1) − 〈𝑧, 𝑤〉

(1 − 〈𝑧, 𝑤〉)𝛼  (𝐼𝑛
𝑒𝛾

1 − 〈𝑧, 𝑤〉
)
𝛽
−

𝛽〈𝑧, 𝑤〉

(1 − 〈𝑧, 𝑤〉)𝛼  (𝐼𝑛
𝑒𝛾

1 − 〈𝑧, 𝑤〉
)
𝛽+1|| 

≤ |𝛼 − 1| 

(1 − |𝑧|)𝛼 (𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝑧|
)

𝛽

|1 − 〈𝑧, 𝑤〉|𝛼 (𝐼𝑛
𝑒
𝛽
𝛼𝛾

1 − 〈𝑧, 𝑤〉
)

𝛽
+ 𝛽

(1 − |𝑧|)𝛼 (𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝑧|
)

𝛽

|1 − 〈𝑧, 𝑤〉|𝛼 (𝐼𝑛
𝑒
𝛽
𝛼𝛾

1 − 〈𝑧,𝑤〉
)

𝛽+1
 

≤ (|𝛼 − 1| +  
𝛽

𝐼𝑛
𝑒𝛾

2

) 
|1 − |𝑧||

𝛼
(𝐼𝑛

𝑒𝛾

1 − |𝑧|
)

|1 − 〈𝑧, 𝑤〉|𝛼 (𝐼𝑛
𝑒𝛾

|1 − 〈𝑧,𝑤〉|
)
𝛽

𝛽

                                    (13) 

≤ |𝛼 − 1| + 
𝛽

𝐼𝑛
𝑒𝛾

2

                                                                                                         (14) 

where in (14) we have used the fact that the function in (4) is increasing on the interval 
(0,2). From (13), since 1 - |𝑤| ≤ |1 − 〈𝑧, 𝑤〉|, 𝑧, 𝑤 ∈ 𝔹 and by Lemma (1.1.1), we have that  

(1 − |𝑧|)𝛼  (𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝑧|
)

𝛽

|𝔑𝑓𝑤(𝑧)| 

≤ (|𝛼 − 1| + 
𝛽

𝐼𝑛
𝑒𝛾

2

) 
|1 − |𝑧||

𝛼
(𝐼𝑛

𝑒𝛾

1 − |𝑧|
)
𝛽

|1 − 〈𝑧, 𝑤〉|𝛼 (𝐼𝑛
𝑒𝛾

|1 − 〈𝑧,𝑤〉|
)
𝛽
→ 0  

As |𝑧| → 1 − 0, from which it follows that 

 𝑓𝑤 ∈ ℬ𝑙𝑜𝑔𝛽,0
𝛼   , 𝑎𝑠 𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

(b) for fixed 𝑤 ∈ 𝔹  we have 

(1 − |𝑧|) (𝐼𝑛
𝑒𝛽

1 − |𝑧|
)

𝛽

|𝔑𝑓𝑤
(1)(𝑧)| =  (1 − |𝑧|) (𝐼𝑛

𝑒𝛽

1 − |𝑧|
)

𝛽

 

||
(1 − 𝛽)〈𝑧, 𝑤〉

(1 − 〈𝑧, 𝑤〉) (𝐼𝑛
𝑒𝛾

|1 − 〈𝑧, 𝑤〉|
)
𝛽|| 

≤ |𝛽 − 1|
(1 − |𝑧|) (𝐼𝑛

𝑒𝛾

1 − |𝑧|
)
𝛽

(1 − 〈𝑧, 𝑤〉) (𝐼𝑛
𝑒𝛾

1 − 〈𝑧,𝑤〉
)
𝛽
                              (15) 

≤ |𝛽 − 1|                                                                                     (16) 
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Where (16) as in (a) we have used the fact that the function in (4) is increasing on the interval  

(0,2] from (15) and by the Lemma (1.1.1), we obtain 

(1 − |𝑧|) (𝐼𝑛
𝑒

1 − |𝑧|
)
𝛽

|𝔑𝑓𝑤
(1)(𝑧)| ≤ |𝛽 − 1|

(1 − |𝑧|) (𝐼𝑛
𝑒𝛽

1 − |𝑧|
)

𝛽

(1 − |𝑤|) (𝐼𝑛
𝑒𝛾

1 − |𝑤|
)
𝛽
→ 0 

As |𝑧| → 1 − 0𝑖. 𝑒.   𝑓𝑤
(2)
∈      ℬ𝑙𝑜𝑔1,0

1  finishing the proof in this case. 

(1 − |𝑧|) (𝐼𝑛
𝑒

1 − |𝑧|
) |𝔑𝑓𝑤

(2)(𝑧)| =  (1 − |𝑧|) (𝐼𝑛
𝑒

1 − |𝑧|
) |

〈𝑧,𝑤〉

(1 − 〈𝑧,𝑤〉)𝐼𝑛
𝑒𝛾

1 − 〈𝑧,𝑤〉

| 

≤
(1 − |𝑧|)𝐼𝑛

`𝑒
1 − |𝑧|

(1 − 〈𝑧, 𝑤〉)𝐼𝑛
𝑒𝛾

1 − 〈𝑧, 𝑤〉

                                        (17) 

≤
(1 − |𝑧|)𝐼𝑛

`𝑒𝛾

1 − |𝑧|

(1 − 〈𝑧, 𝑤〉)𝐼𝑛
𝑒𝛾

1 − |𝑧|

≤ 1.                                      (18) 

Where again we have used the fact that function (4) is increasing in (0.2]. 

       From (17), Lemma (1.1.1) and since   𝛾 > 1  we obtain  

(1 − |𝑧|) (𝐼𝑛
𝑒

1 − |𝑧|
) |𝔑𝑓𝑤 (𝑧)| ≤

(1 − |𝑧|) (𝐼𝑛
𝑒𝛾

1 − |𝑧|
) 

(1 − |𝑤|) (𝐼𝑛
𝑒𝛾

1 − |𝑤|
)
→ 0, 

As |𝑧| → 1−, 𝑖. 𝑒. 𝑓𝑤
(2)
∈ ℬ𝑙𝑜𝑔1,0.

1  

Estimate (12) follows from (14), (16), and since  

𝑓𝑤(0) =
1

𝛾𝛽
, 𝑓𝑤
(1)(0) =  𝛾1−𝛽, , 𝑓𝑤

(2)(0) = 𝐼𝑛𝛾.  

Finishing the proof of the lemma. 

       The following theorem summarizes some of the basic properties of the lograthmic 

Bloch- type space    ℬ
𝑙𝑜𝑔𝛽
𝛼  and the Little lograthmic Bloch- type space ℬ

𝑙𝑜𝑔𝛽,0
𝛼 . it can be 

proved. 

Proposition (1.1.9)[1]: The following statements are true. 

(a) The logarithmic Bloch- type space  ℬ
𝑙𝑜𝑔𝛽
𝛼   is Banach with the norm given in (1). 

(b) ℬ
𝑙𝑜𝑔𝛽,0
𝛼  Is a closed subset of   ℬ

𝑙𝑜𝑔𝛽,
𝛼  

(c) Assume  𝑓 ∈ ℬ
𝑙𝑜𝑔𝛽
𝛼 . then   𝑓 ∈ ℬ

𝑙𝑜𝑔𝛽,0
𝛼  if and only if  lim

𝑟→1−
‖𝑓 − 𝑓𝑟‖   ℬ

𝑙𝑜𝑔𝛽,

𝛼 = 0 

(d) The set of all polynomials is dense in    ℬ
𝑙𝑜𝑔𝛽,0,
𝛼  

(e) Assume  𝑓 ∈ ℬ
𝑙𝑜𝑔𝛽
𝛼 . Then for each   [0,1), 𝑓𝑟  ∈ ℬ𝑙𝑜𝑔𝛽,0

𝛼 .  

Moreover        ‖𝑓𝑟‖   ℬ
𝑙𝑜𝑔𝛽,

𝛼 ≤ ‖𝑓‖   ℬ
𝑙𝑜𝑔𝛽,

𝛼

 

 

Lemma (1.1.10)[1]: ([24]). Assume 0 < p, q < ∞, and ϕ is normal. Then there is a positive 

constant C independent of 𝑓, such that 
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|𝑓(𝑧)| ≤ 𝐶
‖𝑓‖𝐻(𝑝,𝑞,𝜙)

𝜙(|𝑧|)(1 − |𝑧|2)𝜂/𝑞
, 𝑧 ∈ 𝔹.                            (19) 

We characterize the boundedness and compactness of the operator  

𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)) → ℬ𝜇(𝔹) (𝑜𝑟 ℬ𝜇,0(𝔹)). 

Case 𝛼 > 1 and 𝛽 ≥ 0 

Theorem (1.1.11)[1]: assume that 𝛼 < 1,   𝛽 ≥ 0, 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇 is a weight, and 

𝜑 is a holomorphic self-map self-map of 𝔹, then 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)) → ℬ𝜇(𝔹) 

is bounded if and only if 

𝑀 ≔ sup𝑧∈𝔹
 

𝜇(𝑧)|𝑔(𝑧)|

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽 < ∞                   (20) 

And 𝑔 ∈ 𝐻𝜇
∞. Moreover, 𝑃𝜑

𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)) → ℬ𝜇 is bounded, then 

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≍ ‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽𝑚,0
𝛼 →ℬ𝜇

≍ 𝑀 + ‖𝑔‖𝐻𝜇∞.                (21)  

Proof. Assume that (20) holds and 𝑔 ∈ 𝐻𝜇
∞, . 𝐼𝑓  𝑓 ∈  ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)), then by 

Lemma (1.1.6) and 4 we obtain 

‖𝑃𝜑
𝑔
𝑓‖

ℬ𝜇
=  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)𝑓(𝜑(𝑧))| ≤ 𝐶‖𝑓‖ℬ

𝑙𝑜𝑔𝛽
𝛼 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)| 

(

 
 
1 +

1

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽

)

 
 
                                (22) 

 from which  it follows that   

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≤ 𝐶 (𝑀 + ‖𝑔‖𝐻𝜇∞)                               (23) 

Now  assume that 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇 is bounded by taking  functions 𝑓𝑤 in (9)  which 

belong to ℬ
𝑙𝑜𝑔𝛽,0
𝛼  and  whose  norms are bounded according to Lemma (1.1.8), and by  

using the boundedness of 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇, we have  

𝐶‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≥ ‖𝑓𝜑(𝑤)‖ℬ𝑙𝑜𝑔
‖𝑃𝜑

𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0

𝛼 →ℬ𝜇
≥ ‖𝑃𝜑

𝑔
𝑓𝜑(𝑤)‖ℬ𝜇

 

= 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)||𝑓𝜑(𝑤)(𝜑(𝑤))| 

≥
𝜇(𝑤)|𝑔(𝑤)|

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|2
)
𝛽( )

.                      (24). 

For every 𝑤 ∈ 𝔹, from which (20) direct follows in case 

 𝛽 = 0. 

Now assume 𝛽 > 0. Then from 𝛾 >
𝛽

𝛼
 and 𝛼 > 1 we easily obtain 

|1 − |𝑧||
𝛼−1

(𝑖𝑛
𝑒
𝛽
𝛼

1 − |𝑧|
)

𝛽

≤ 𝐶(1 − |𝑧|2)𝛼−1 (𝑖𝑛
𝑒𝛾

1 − |𝑧|2
)

𝛽
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≤ 𝐶2𝛼−1 (
𝛾𝛼

𝛽
)
𝛽

(1 − |𝑍|)𝛼−1 (𝑖𝑛
𝑒𝛽/𝛼

1 − |𝑧|
)

𝛽

             (25) 

Hence from (24) and (25) we obtain 

𝐶‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0

𝛼 →ℬ𝜇
≥

𝜇(𝑧)|𝑔(𝑧)|

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽                       (26) 

Thus (20) follows. 

On the other hand, if we choose the function given by ℎ0(𝑧) ≡ 1 ∈ ℬ𝑙𝑜𝑔𝛽,,0 
𝛼  we obtain that  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0
𝛼 →ℬ𝜇

= ‖ℎ0‖ℬ
𝑙𝑜𝑔𝛽,0
𝛼 ‖𝑃𝜑

𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇,0

≥ ‖𝑃𝜑
𝑔(ℎ0)‖ℬ𝜇

= ‖𝑔‖𝐻𝜇∞                         (27) 

From (26) and (27) we obtain  

𝐶‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0
𝛼 →ℬ𝜇

≥ 𝑀 + ‖𝑔‖𝐻𝜇∞                                            (28) 

From (32), (28), and since  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≥ ‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽𝑚,0
𝛼 →ℬ𝜇

 

The asymptotic relationships in (21) follow. 

We characterize the compactness of the operator 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 

Theorem (1.1.12)[1]: Assume that 𝛼 > 1, 𝛽 ≥ 0, 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇 is a weight, 

and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 is bounded 

.Then 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 is compact if and only if 

lim
|𝜑(𝑧)|→1

𝜇(𝑧) |𝑔(𝑧)|

(

 
 
1 +

1

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽

)

 
 
= 0                      (29) 

Proof. First assume that 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇  is compact. If ‖𝜑‖∞ < 1, then 

(29) is vacuously satisfied. Hence, assume ‖𝜑‖∞ = 1 and let (𝜑(𝑧𝑚))𝑚∈ℕ. 

       Be a sequence in 𝔹 such that |𝜑(𝑧𝑚)| → 1 as 𝑚 → ∞. 

𝑓𝑚(𝑧) =
(𝑓𝜑(𝑧𝑚)(𝑧))

2

𝑓𝜑(𝑧𝑚)(𝜑(𝑧𝑚))
  𝑚 ∈ ℕ.                                         (30) 

Where 𝑓𝑤  is defined in (9). As in Lemma (1.1.8) it can be seen that (𝑓𝑚)𝑚∈ℕ is bounded 

sequence in ℬ
𝑙𝑜𝑔𝛽,0
𝛼 , and that it converges to zero uniformly on compact subsets of 𝔹 as 

𝑚 → ∞.  Hence, by Lemma (1.1.7), it follows that 

lim
𝑚→∞

‖𝑃𝜑
𝑔
𝐹𝑚‖ℬ𝜇

=  0.                                          (31) 

On the other hand, for each 𝑚 ∈ ℕ, we have   

‖𝑃𝜑
𝑔
𝐹𝑚‖ℬ𝜇

= 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)||𝐹𝑚𝜑(𝑧)| 

≥ 𝜇(𝑧𝑚)|(𝑔(𝑧𝑚))𝐹𝑚𝜑(𝑧𝑚)|.                                      (32) 

Letting 𝑚 → ∞ in (32) and using (31), we obtain 
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lim
𝑚→∞

𝑠𝑢𝑝
𝜇(𝑧𝑚)|𝑔(𝑧𝑚)|

(1 − |𝜑(𝑧)|2)𝛼−1 (𝐼𝑛
𝑒𝛾

1 − |𝜑(𝑧)|2
)
𝛽( )

= 0.                    (33) 

 

From (33), and since in this case  

lim
𝑚→∞

𝑠𝑢𝑝
𝜇(𝑧𝑚)|𝑔(𝑧𝑚)|

(1 − |𝜑(𝑧)|2)𝛼−1 (𝐼𝑛
𝑒𝛾

1 − |𝜑(𝑧)|2
)
𝛽
≥ lim
𝑚→∞

𝑠𝑢𝑝𝜇(𝑧𝑚)|𝑔(𝑧𝑚)|. 

 

We have that  

 

lim
𝑚→∞

sup 𝜇(𝑧𝑚)|𝑔(𝑧𝑚)| = 0.                                             (34) 

From (25), (33) and (34) equality (29) easily follows. 

       Now assume that (29) holds. Since 𝑃𝜑
𝑔
: 𝐵
log𝛽  
𝛼 (or 𝐵

log𝛽  ,0
𝛼 ) is bounded, as in Theorem 

(1.1.11), we obtain 𝜖 > 0 from (29) we have that for every   there is a such that  

 𝜇(𝑧) |𝑔(𝑧)|

(

 
 
 
 
 

1 +
1

(1 − |𝜑(𝑧)|)𝛼−1(𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝜑(𝑧)|
)

𝛽

)

 
 
 
 
 

< 𝜀.                 (35)         

When 𝜌 <  |𝜑(𝑧)| < 1. 

       Assume that  ‖ℎ𝑚‖𝑚∈ℕ   is a bounded sequence in  ℬ
𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 )   say by Lm 

converging to 0 uniformly on compacts of 𝐵. then, by Lemma (1.1.6) and (1.1.4) and the 

fact that 𝑔 ∈ 𝐻𝜇
∞, we have  

‖𝑃𝜑
𝑔
ℎ𝑚‖ℬ

𝑙𝑜𝑔𝛽,

𝛼 →ℬ𝜇
= 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚𝜑(𝑧)| 

≤ 𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚𝜑(𝑧)| 

+ 𝑠𝑢𝑝|𝜑(𝑧)|>𝜌𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚𝜑(𝑧)|  

≤ ‖𝑔‖𝐻𝜇∞  𝑠𝑢𝑝|𝑤|≤𝜌|ℎ𝑚(𝑤)| 

+𝐶 𝑠𝑢𝑝𝑚∈ℕ‖ℎ𝑚‖ℬ
𝑙𝑜𝑔𝛽,

𝛼 𝑠𝑢𝑝|𝜑(𝑧)|>𝜌 𝜇(𝑧) |𝑔(𝑧)| 

(

 
 
 
 
 

1 +
1

(1 − |𝜑(𝑧)|)𝛼−1(𝐼𝑛
𝑒
𝛽
𝛼

1 − |𝜑(𝑧)|
)

𝛽

)

 
 
 
 
 

≤   ‖𝑔‖𝐻𝜇∞  𝑠𝑢𝑝|𝑤|≤𝜌|ℎ𝑚(𝑤)| + 𝜀𝐿.   (36) 

 

Letting 𝑚 → ∞. in (36) using the assumption 𝑠𝑢𝑝|𝑤|≤𝜌|ℎ𝑚(𝑤)| → 0 as 𝑚 → ∞. The fact 

that  𝜀 is  an arbitrary positive  number and  applying Lemma (1.1.7), the compactness of 

the operator. 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 follows. 
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The following theorem characterizes the boundedness of the operator 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 →

ℬ𝜇,0   but for all   𝛼 > 0 𝑎𝑛𝑑 𝛽 ≥ 0. 

Theorem (1.1.13)[1]: assume that 𝛼 > 0,   𝛽 ≥ 0, 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a weight, 

and  𝜑 is a holomorphic self-map of 𝔹, then  𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇,0 is bounded if and only if  

𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇 is bounded and  𝑔 ∈ 𝐻𝜇,0

∞ . 

Proof. Assume that  𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇,0 is bounded. Then clearly 𝑃𝜑

𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇  is 

bounded. Taking the test function  𝑓 ̂(𝑧) ≡ 1 ∈ ℬ
𝑙𝑜𝑔𝛽,0
𝛼  we obtain 𝑔 ∈ 𝐻𝜇,0.

∞  

Conversely, assume 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇  is bounded and  𝑔 ∈ 𝐻𝜇,0

∞   then for every 

polynomial p, we have 

 𝜇(𝑧)|𝔑 𝑃𝜑
𝑔
𝑝(𝑧)| =  𝜇(𝑧)|𝑔(𝑧)𝑝(𝜑(𝑧))| ≤  𝜇(𝑧)|𝑔(𝑧)|‖𝑝‖∞ → 0, 𝑎𝑠|𝑧| → 1. 

From which it follows that   𝑃𝜑
𝑔
𝑝 ∈ ℬ

𝑙𝑜𝑔𝛽,0
𝛼   . Since by Proposition (1.1.9)(d) the set of all 

polynomials is dense in  ℬ
𝑙𝑜𝑔𝛽,0
𝛼 , we have that for every f ∈ ℬ

𝑙𝑜𝑔𝛽,0
𝛼   there is a sequence of 

polynomials  (𝑝𝑚)𝑚∈ℕ  such that 

lim
𝑚→∞

‖𝑓 − 𝑝𝑚‖ℬ
𝑙𝑜𝑔𝛽
𝛼 , =     0, 

From this, and since the operator 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇 is bounded, we have that  

‖ 𝑃𝜑
𝑔
𝑓 −  𝑃𝜑

𝑔
𝑝𝑚‖ℬ𝜇

≤ ‖ 𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0

𝛼 →ℬ𝜇
‖𝑓 − 𝑝𝑚‖ℬ

𝑙𝑜𝑔𝛽
𝛼 , → 0 

As  𝑚 → ∞  . Hence   𝑃𝜑
𝑔
 (ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) ⊆.ℬ𝜇,0. Therefore the operator  𝑃𝜑

𝑔
: ℬ

𝑙𝑜𝑔𝛽,0
𝛼 → ℬ𝜇  is 

bounded.  

We characterize the compactness of the operator. 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽,
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) →

ℬ𝜇,0. 

Theorem (1.1.14)[1]: Assume that 𝛼 > 1,   𝛽 ≥ 0, 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a weight, 

and 𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 

ℬ𝜇,0 is bounded. Then 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇,0 is compact if and only if 

lim
|𝑧|→1

𝜇(𝑧) |𝑔(𝑧)|

(

 
 
1 +

1

(1 − |𝜑(𝑧)|)𝛼−1 (𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽

)

 
 
= 0.                (37) 

Proof: Assume that  

𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)) → ℬ𝜇,0   𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡  𝑎𝑛𝑑 𝑔 ∈ 𝐻𝜇,0

∞ . 

By Theorem (1.1.12) we have that (29) holds. 

       By (29) we have that, for every 𝜀 > 0   there exists an 𝑟 ∈ (0,1)  such that  

𝜇(𝑧)|𝑔(𝑧)|  =

(

 
 
1 +  

1

(1 − 𝜑|𝑧|)𝛼−1  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝜑|𝑧|
)
𝛽

)

 
 
,     < 𝜀 

When  𝑟 < 𝜑|𝑧| < 1.   
since  𝑔 ∈ 𝐻𝜇

∞ , there exists  𝜌 ∈ (0,1) such that  
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𝜇(𝑧)|𝑔(𝑧)| < 𝜀 

(

 
 
1 +  

1

(𝑖𝑛𝑓𝑡∈[𝑜,𝑟]1 − 𝑡)
𝛼−1

 (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝑡
)
𝛽

)

 
 

−1

,                       (38)  

When 𝜌 < |𝑧| < 1. 
       Therefore, when   𝜌 < |𝑧| < 1 𝑎𝑛𝑑   𝑟 < 𝜑|𝑧| < 1, we have that 

𝜇(𝑧)|𝑔(𝑧)|  =

(

 
 
1 +  

1

(1 − 𝜑|𝑧|)𝛼−1  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝜑|𝑧|
)
𝛽

)

 
 
    < 𝜀                 (39) 

On the other hand, if   𝜌 < |𝑧| < 1 𝑎𝑛𝑑   𝜑|𝑧| ≤ 1, from (98) we have 

𝜇(𝑧)|𝑔(𝑧)|  =

(

 
 
1 +  

1

(1 − 𝜑|𝑧|)𝛼−1  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝜑|𝑧|
)
𝛽

)

 
 
    < 𝜀                (40) 

Combining (39) and (40), we obtain that  

𝜇(𝑧)|𝑔(𝑧)|  =

(

 
 
1 +  

1

(1 − 𝜑|𝑧|)𝛼−1  (𝐼𝑛
𝑒𝛽/𝛼

1 − 𝜑|𝑧|
)
𝛽

)

 
 
    < 𝜀               (41) 

For 𝜌 < |𝑧| < 1 (42) the condition in (37) follows. 

       Now assume that (37) holds. Then (20) holds and by the Theorem (1.1.11) we have that 

𝑃𝜑
𝑔
 ({𝑓: ‖𝑓‖ℬ

𝑙𝑜𝑔𝛽
𝛼 ≤ 1}) is a bounded set in ℬ𝜇. 

       From the following inequality 

𝜇(𝑧)|𝔑𝑃𝜑
𝑔(𝑓)(𝑧)|  = 𝜇(𝑧)|𝑔(𝑧)𝑓𝜑|𝑧|| 

≤ 𝐶‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
𝛼 𝜇(𝑧)|𝑔(𝑧)|

(

 
 
 
 
 

1 +  
1

(1 − 𝜑|𝑧|)𝛼−1  (𝐼𝑛
𝑒
𝛽
𝛼

1 − 𝜑|𝑧|
)

𝛽

)

 
 
 
 
 

                      (42) 

And (37) we have more, namely that  𝑃𝜑
𝑔
 ({𝑓: ‖𝑓‖ℬ

𝑙𝑜𝑔𝛽
𝛼 ≤ 1}) is a bounded set in  ℬ𝜇,0. 

       Taking the supremum in (42) over the unit ball in  ℬ
𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ𝑙𝑜𝑔𝑘,0). Then letting    

|𝑧| → 1, using conditions (37) and employing Lemma (1.1.5), we obtain the compactness of 

the operator  𝑃𝜑
𝑔
 ∶  ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟  ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇,0 , as desired. 

Case  𝛼 = 1 and 𝛽 ∈ (0,1) 
Theorem (1.1.15)[1]: Assume that 𝛼 = 1,   𝛽 ≥ 0, 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a weight, 

and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇, is bounded if 



14 

and only if 

𝑀1 ≔ 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)| (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

< ∞,              (43) 

𝑔 ∈ 𝐻𝜇
∞. 

Moreover, if    𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇,   is bounded then  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
1 →ℬ𝜇,

≍ 𝑀1 + ‖𝑔‖𝐻𝜇∞  

Proof: assume that (43) holds and 𝑔 ∈ 𝐻𝜇,0
∞ , if f ∈ ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) then by Lemma 

(1.1.5) and (1.1.4) we obtain 

‖𝑃𝜑
𝑔
𝑓‖

ℬ𝜇,
=  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)𝑓𝜑(𝑧)| 

 

≤ 𝐶‖𝑓‖ℬ
𝑙𝑜𝑔𝛽
1 =  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|  (1 +  (𝐼𝑛

𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

)  (45) 

From which it follow that  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
1 →ℬ𝜇,

≤ 𝐶 (𝑀1 + ‖𝑔‖𝐻𝜇,∞)                                                   (46) 

From (47) and (48) we obtain  

𝐶‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0
1 →ℬ𝜇,

≥  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|  (𝐼𝑛
𝑒𝛽

1−𝜑|𝑧|
)
1−𝛽

 

So that (43) holds. 

       On the other hand, if we choose the function given by  ℎ0(𝑧) ≡ 1 ∈ ℬ𝑙𝑜𝑔𝛽,0
1    we 

obtain 𝑔 ∈ 𝐻𝜇,
∞ and that (27) with holds   𝛼 = 1. 

This along with (49) implies the following inequality 

𝐶‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0
1 →ℬ𝜇,

≥ 𝑀1 + ‖𝑔‖𝐻𝜇,∞                                                 (50) 

THE asymptotic relationship in (44) follow from (46), (50) and the inequality  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
1 →ℬ𝜇,

≥ ‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽,0
1 →ℬ𝜇,

 

Theorem (1.1.16)[1]: Assume that 𝛼 = 1,   𝛽 ∈ (0,1)𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇 is a weight, 

and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 is bounded. 

Then 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 is compact, if and only if 

lim
|𝜑(𝑧)|→1

𝜇(𝑧) |𝑔(𝑧)| (1 + (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) = 0                               (51) 

𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇 is compact if ‖𝜑‖∞ < 1. such that and 𝑔 ∈ 𝐻𝜇,0

∞  

Fm
(1)(z) =

(fφ(zm)
(1) (z))

2

(fφ(zm)
(1) (φ(zm)))

m ∈ ℕ                                          (52) 

 

It can be seen that (Fm
(1))

m∈ℕ
 is a bounded sequence in  ℬ

𝑙𝑜𝑔𝛽,0
1   and that it converges to zero 
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uniformly on compact subsets of 𝔹 as 𝑚 → ∞. 
Hence by Lemma (1.1.7), it follows that  

lim𝑚→∞ ‖𝑃𝜑
𝑔
Fm
(1)
‖
ℬ𝜇
= 0                                                 (53) 

On the other hand, for each m ∈ ℕ  , we have  

‖𝑃𝜑
𝑔
Fm
(1)
‖
ℬ𝜇
= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)| |Fm

(1)
 𝜑(𝑧)| ≥ 𝜇(𝑧𝑚) |𝑔(𝑧𝑚)Fm

(1)
 𝜑(𝑧)| (54) 

Letting in (54) and using (53) we obtain  

lim
𝑚→∞

𝑠𝑢𝑝𝜇(𝑧𝑚)|𝑔(𝑧𝑚)| (𝐼𝑛
𝑒𝛾

1 − |𝜑(𝑧)|2
)

1−𝛽

=  0.        (55) 

From (55), and since in this case 

lim
𝑚→∞

𝑠𝑢𝑝 𝜇(𝑧𝑚)|𝑔(𝑧𝑚)| (𝐼𝑛
𝑒𝛾

1−|𝜑(𝑧)|2
)
1−𝛽

≥ lim
𝑚→∞

𝑠𝑢𝑝𝜇(𝑧𝑚)|𝑔(𝑧𝑚)|. 

We have that  

lim
𝑚→∞

𝑠𝑢𝑝 𝜇(𝑧𝑚)|𝑔(𝑧𝑚)| = 0.                                           (56) 

From (55), (56) and (48), (51) follows. 

       Now assume that (51) holds, then for every 𝜀 > 0   there is a 𝜌 ∈ (0,1)  such that   

𝜇(𝑧)|𝑔(𝑧)|  = (1 +  (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

) ,     < 𝜀,               (57) 

When  𝜌 < 𝜑|𝑧| < 1.  Assume that (ℎ𝑚)𝑚∈ℕ  is a bounded sequence in: ℬ
𝑙𝑜𝑔𝛽
1 (𝑜𝑟  ℬ

𝑙𝑜𝑔𝛽,0
1 ) 

say by  𝐿1   converging to 0 uniformly on compacts of 𝔹 then by Lemma (1.1.6) and 4 and 

the fact that  𝑔 ∈ 𝐻𝜇
∞, we have 

‖  𝑃𝜑
𝑔
ℎ𝑚‖ℬ

𝑙𝑜𝑔𝛽
1 → ℬ𝜇

= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚(𝜑(𝑧))| 

≤ 𝑠𝑢𝑝|𝜑(𝑍)|≤𝜌𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚(𝜑(𝑧))| 

+   𝑠𝑢𝑝|𝜑(𝑍)|>𝜌𝜇(𝑧)|𝑔(𝑧)||ℎ𝑚(𝜑(𝑧))|                      

≤ ‖𝑔‖𝐻𝜇∞𝑠𝑢𝑝|𝑤|≤𝜌|ℎ𝑚(𝑤)| + 𝐶𝑠𝑢𝑝𝑚∈ℕ‖ℎ𝑚‖ℬ
𝑙𝑜𝑔𝛽
1  𝑠𝑢𝑝|𝜑(𝑍)|>𝜌𝜇(𝑧)|𝑔(𝑧)| 

(1 + (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

) 

≤ ‖𝑔‖𝐻𝜇∞𝑠𝑢𝑝|𝑤|≤𝜌|ℎ𝑚(𝑤)| +  𝐶𝜀𝐿1.                          (58) 

From (58) the compactness of the operator ∶    𝑃𝜑
𝑔
 ∶  ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟  ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇 Follows as 

in the proof of Theorem (1.1.12). 

       Now we characterize the compactness of the operator 𝑃𝜑
𝑔
 ∶  ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟  ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇,0 

 

Theorem (1.1.17)[1]: Assume that 𝛽 ∈ (0,1),  or 𝛼 = 1  and   𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a 

weight, and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇,0 is 

compact if and only if 

lim|𝑧|→1𝜇(𝑧)|𝑔(𝑧)|  = (1 +   (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

)     = 0                    (59) 

Proof. Assume that 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
1 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇,0 is compact. Then the operator 
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𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
1 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇,0 is compact and 𝑔 ∈ 𝐻𝜇,0

∞ . By Theorem (1.1.16) we have 

that (51) holds. Hence, for every 𝜀 > 0, there exists an 𝑟 ∈ (0,1) such that 

𝑙𝑖𝑚|𝑧|→1𝜇(𝑧)|𝑔(𝑧)|  = (1 +  (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

)     < 𝜀 

Where 𝑟 < |𝜑(𝑧)| < 1. 
       Since 𝑔 ∈ 𝐻𝜇,0

∞ , there exist 𝑎 𝜌 ∈ (0,1)such that  

𝜇(𝑧)|𝑔(𝑧)|  < 𝜀 (1 +  (𝐼𝑛
𝑒𝛽

1 − 𝑟
)

1−𝛽

)

−1

                        (60) 

When 𝜌 < |𝑧| < 1. 
       Therefore, when 𝜌 < |𝑧| < 1 𝑎𝑛𝑑 𝑟 < |𝜑(𝑧)| < 1, we have that  

𝜇(𝑧)|𝑔(𝑧)|  (1 +  (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) < 𝜀             (61) 

On the other hand , if 𝜌 < |𝑧| < 1.and |𝜑(𝑧)| ≤ 𝑟.from (60) we have 

𝜇(𝑧)|𝑔(𝑧)| (1 +  (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) < 𝜀            (62) 

Combining (61) and (62), (59) follows, as desired. 

Now assume that condition (59) holds. Then (43) holds and by Theorem (1.1.15) we have 

that 𝑃𝜑
𝑔
({𝑓: ‖𝑓‖ℬ

𝑙𝑜𝑔𝛽
1 ≤}) is a bounded set in 𝜇 

From the following inequality  𝜇(𝑧)|𝔑𝑃𝜑
𝑔(𝑓)(𝑧)|  = 𝜇(𝑧)|𝑔(𝑧)𝑓𝜑|𝑧|| 

≤ 𝐶‖𝑓‖ℬ
𝑙𝑜𝑔𝛽,

1 𝜇(𝑧)|𝑔(𝑧)| (1 +  (𝐼𝑛
𝑒𝛽

1 − 𝜑|𝑧|
)

1−𝛽

)                (63) 

And (59) we have more, namely that  𝑃𝜑
𝑔
 ({𝑓: ‖𝑓‖ℬ

𝑙𝑜𝑔𝛽,

1 ≤ 1}) is a bounded set in  ℬ𝜇,0. 

       Taking the supremum in (63) over the unit ball in  ℬ
𝑙𝑜𝑔𝛽
1 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,
1 ) Then letting    

|𝑧| → 1 , using conditions (59) and employing Lemma (1.1.5), we obtain the compactness 

of the operator  𝑃𝜑
𝑔
 ∶  ℬ

𝑙𝑜𝑔𝛽
1 (𝑜𝑟  ℬ

𝑙𝑜𝑔𝛽,0
1 ) → ℬ𝜇,0 , as desired. 

Case 𝛼 ∈ (0,1)  or 𝛼 = 1 and  𝛽 > 1. 
       If 𝛼 ∈ (0,1) 𝑜𝑟 𝛼 = 1𝑎𝑛𝑑  𝛽 > 1, then from the proofs of Theorems (1.1.11)- (1.1.17) 

and Lemma (1.1.4), it is easy to see that the following 

Theorem (1.1.18)[1]: Assume that 𝛼 ∈ (0,1),  or 𝛼 = 1  and  𝛽 > 1 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0,

𝜇  is a weight, and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) →

ℬ𝜇 is bounded.  if and only if 𝑔 ∈ 𝐻𝜇,0
∞ , if 𝑃𝜑

𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) is bounded, then 

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≍ ‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≍ ‖𝑔‖𝐻𝜇∞. 

Theorem (1.1.19)[1]: Assume that  𝛼 ∈ (0,1),  or 𝛼 = 1  and  𝛽 > 1 𝑔 ∈ 𝐻(𝔹), 𝑔(0) =
0, 𝜇  is a weight, and  𝜑 is a holomorphic self-map of 𝔹, and the 

𝑜𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇 is bounded then the operator  
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𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) is compact if and only if 𝑔 ∈ 𝐻𝜇,0

∞ , 

Theorem (1.1.20)[1]: Assume 𝛼 ∈ (0,1),  or 𝛼 = 1  and  𝛽 > 1𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  

is a weight, and  𝜑 is a holomorphic self-map of 𝔹, and 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇, is 

bounded. Then 𝑃𝜑
𝑔
: ℬ

𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → ℬ𝜇, is compact 

lim
|𝑧|→1

𝜇(𝑧) |𝑔(𝑧)| = 0.                                            (64) 

Theorem (1.1.21)[1]: Assume 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇 is a weight, and 𝜑 is a 

holomorphic self-map of 𝔹, and the operator   𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇,0 is bounded. 

Then 𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇,0 is compact, if and only if 

𝑀 ≔ 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|𝑚𝑎𝑥 {1, 𝐼𝑛𝐼𝑛
𝑒

1 − |𝜑(𝑧)|
} < ∞ 

Moreover, if  𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇,0  is bounded, then  

‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔1
1 →ℬ𝜇

≍ ‖𝑃𝜑
𝑔
‖
ℬ
𝑙𝑜𝑔1,0
1 →ℬ𝜇

≍ 𝑀3 

Theorem (1.1.22)[1]: Assume 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a weight, and  𝜑 is a 

holomorphic self-map of 𝔹, and the operator 𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇 is bounded. 

Then 𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ
𝑙𝑜𝑔 ,0
1 ) → ℬ𝜇 is compact, if and only if 

lim
|𝑧|→1

𝜇(𝑧) |𝑔(𝑧)|𝑚𝑎𝑥 (1, 𝐼𝑛 𝐼𝑛
1

1−|𝜑(𝑧)|
) = 0. 

Theorem (1.1.23)[1]: Assume 𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜇  is a weight, and  𝜑 is a 

holomorphic self-map of 𝔹, and the operator 𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇,0 is bounded. 

Then 𝑃𝜑
𝑔
: ℬ𝑙𝑜𝑔1

1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0
1 ) → ℬ𝜇,0 is compact, if and only if 

lim
|𝑧|→1

𝜇(𝑧) |𝑔(𝑧)|𝑚𝑎𝑥 (1, 𝐼𝑛 𝐼𝑛
1

1−|𝜑(𝑧)|
) = 0. 

       Here we formulate and prove the results regarding the boundedness and compactness 

of the operators 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇(𝑜𝑟ℬ𝜇,0). 

Theorem (1.1.24)[1]: Suppose 0 < 𝑝, 𝑞 < ∞,𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜙, is normal, μ is a 

weight, and 𝜑 is an analytic self-map of 𝔹. Then the operator 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is 

bounded if and only if 

𝑀4 ≔ 𝑠𝑢𝑝𝑧∈𝔹
𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)2|)𝑛/𝑞
< ∞,                              (65) 

Moreover, if the operator 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is bounded, then the following asymptomatic 

relation holds 

‖𝑃𝜑
𝑔
‖
(𝑝,𝑞,𝜙)→ℬ𝜇

≍ 𝑀4                                                    (66) 

Proof:  Assume that 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is bounded, set 

𝑓𝑤(𝑧) =  
(1 − |𝑤|2)𝛽

𝜙(𝑤)(1 − 〈𝑧, 𝑤〉)
𝜂
𝑞
+𝛽
, 𝑧 ∈ 𝔹,                               (67) 

Where 𝑤 ∈ 𝔹  𝑎𝑛𝑑 𝛽 > 𝑏.By Lemma (1.1.2) in [47] we have 

𝑠𝑢𝑝𝑤∈𝔹‖𝑓𝑤‖𝐻(𝑝,𝑞,𝜙) ≤ 𝐶. 

 For this, the boundeness of 
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  𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇   ,   𝑃𝜑

𝑔
𝑓𝑤(0) = 0 

 and by using Lemma (1.1.6), we obtain  

𝐶‖𝑃𝜑
𝑔
‖
𝐻(𝑝,𝑞,𝜙)→ℬ𝜇

≥ ‖𝑃𝜑
𝑔
𝑓𝜑(𝑤)‖ℬ𝜇

= 𝑠𝑢𝑝𝑤∈𝔹𝜇(𝑧)|𝑔(𝑧)|‖𝑓𝜑(𝑤)(𝜑(𝑍))‖  

≥ 𝜇(𝑤)|𝑔(𝑤)| ‖𝑓𝜑(𝑤)(𝜑(𝑤))‖ 

=  
𝜇(𝑤)|𝑔(𝑤)|

𝜙(|𝜑(𝑤)|)(1 − |𝜑(𝑤)2|)𝜂/𝑞
                                           (68) 

Taking the supremum over 𝑤 ∈ 𝔹 in (68) we obtain 

𝑀4 ≤ 𝐶                                         (69) 
 Now assume that (65) holds. By Lemma (1.1.6) and inequality (19), it follows that 

𝜇(𝑧)|𝔑(𝑃𝜑
𝑔
𝑓)(𝑧)| =  𝜇(𝑧)|𝑓(𝜑(𝑧))||𝑔(𝑧)| 

≤ 𝐶‖𝑓‖𝐻(𝑝,𝑞,𝜙) =  
𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)2|)
𝜂
𝑞

                              (70) 

For every 𝑧 ∈ 𝔹  𝑎𝑛𝑑 𝑓 ∈ 𝐻(𝑝, 𝑞, 𝜙) 

       Using condition (65) in (70) and the fact 𝑃𝜑
𝑔
𝑓(0) = (0), it follows that 𝐻(𝑝, 𝑞, 𝜙) →

ℬ𝜇 is bounded  and moreover 

 ‖𝑃𝜑
𝑔
‖
𝐻(𝑝,𝑞,𝜙)

≤ 𝐶𝑀4.                                (71) 

From (60) and (71), the asymptotic relationship in (66) follows, as desired. 

Theorem (1.1.25)[1]: Suppose 0 < 𝑝, 𝑞 < ∞,𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜙, is normal, 𝜇 is a 

weight, and 𝜑 is an analytic self-map of 𝔹. Then the operator 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is 

compact if and only if  𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is bounded and  

lim
|𝜑(𝑧)|→1

𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)2|)
𝑛
𝑞

= 0,                          (72) 

Proof:  Assume 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is compact, then clearly 𝑃𝜑

𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is 

bounded, let (𝑧𝑘)𝑘∈ℕ be a sequence in 𝔹. such that |𝜑(𝑧𝑘)| → 1 as 𝑘 → ∞ if such a 

sequence does not exist then condition (72) is vacuously satisfies). 

𝑠𝑒𝑡   𝑓�̂�(𝑧) =  𝑓𝜑(𝑧𝑘)(𝑧), 𝑘 ∈ ℕ,                         (73) 

Where 𝑓𝑤 is defined in (67). from the proof of the Theorem (1.1.24) we know that  

𝑠𝑢𝑝𝑘∈ℕ‖𝑓�̂�‖𝐻(𝑝,𝑞,𝜙) ≤ 𝐶 

on the other hand , since 𝛽 > 𝑏, we have  that 

lim
𝑘→∞

(1 − |𝜑(𝑧𝑘)|
2)

𝜙(𝜑(𝑧𝑘))

𝛽

= 0, 

From which it follows that 𝑓�̂�converges to zero uniformly on compact of 𝔹 𝑎𝑠 𝑘 → ∞.  
       By using Lemma (1.1.7) it follows that   

lim
𝑘→∞

‖  𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇

= 0,                                                 (74) 

 We have  

‖  𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇

= 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝔑(  𝑃𝜑
𝑔
𝑓�̂�)(𝑧)| 

≥ 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)| |𝑓�̂�𝜑(𝑧𝑘)| 

=  
𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|

𝜙(|𝜑(𝑧𝑘)|(1 − |𝜑(𝑧𝑘)|
2)𝜂/𝑞

                                 (75) 
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from (74) and (75), we obtain 

lim
𝑘→∞

𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|

𝜙(|𝜑(𝑧𝑘)|(1 − |𝜑(𝑧𝑘)|
2)𝜂/𝑞

= 0. 

From which (72) follows. 

       Now assume that 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇 is bounded and that condition (72) holds. 

Assume is a bounded sequence condition (72) implies that for every there is a, such that 
𝜇(𝑧𝑘)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|(1 − |𝜑(𝑧)|2)𝜂/𝑞
<
𝜀

𝐿2
                                      (76) 

Wherever 𝛿 < |𝜑(2)| < 1. 
       By using Lemma (1.1.6) and 9, and in equality (76), we obtain  

‖  𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇

=  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)𝑓𝑘(𝜑(𝑧))| 

≤ 𝑠𝑢𝑝{𝑧∈𝔹:|𝜑(𝑍)|≤𝛿}𝜇(𝑧)|𝑔(𝑧)||𝑓𝑘(𝜑(𝑧))| 

+𝑠𝑢𝑝{𝑧∈𝔹:𝛿<|𝜑(𝑍)|<1}𝜇(𝑧)|𝑔(𝑧)||𝑓𝑘(𝜑(𝑧))| 

≤ ‖𝑔‖𝐻𝜇∞𝑠𝑢𝑝|𝑤|≤𝛿|𝑓𝑘(𝑤)| +  𝐶‖𝑓𝑘‖𝐻(𝑝,𝑞,𝜙) 

𝑠𝑢𝑝{𝑧∈𝔹:𝛿<|𝜑(𝑍)|<1}
𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|2)𝜂/𝑄
 

≤ ‖𝑔‖𝐻𝜇∞𝑠𝑢𝑝|𝑤|≤𝛿|𝑓𝑘(𝑤)| + 𝐶𝜀.                             (77) 

Where  𝑃𝜑
𝑔(1) ∈ ℬ𝜇 implies  𝑔 ∈ 𝐻𝜇

∞ , in view of the boundedness of the operator 

𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇. 

By letting 𝑘 → ∞ in (77), using the assumption 

lim
𝑘→∞

𝑠𝑢𝑝|𝑤|≤𝛿|𝑓𝑘(𝑤)| 
 
= 0, 

  and since 𝜀is an arbitrary positive number, we obtain  

lim
𝑘→∞

‖  𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇

 
= 0, 

Hence, by Lemma (1.1.7), the implication follows. 

Theorem (1.1.26)[1]: Suppose 0 < 𝑝, 𝑞 < ∞,𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜙 is normal, 𝜇  is a 

weight, and 𝜑 is an analytical self-map of 𝔹, then :𝑝𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇,0 is bounded if and 

only if 𝑝𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇, is bounded and 𝑔 ∈ 𝐻𝜇,0

∞ . 

Proof. The proof is similar to the proof of Theorem (1.1.13). It should be only noticed that 

the set of all polynomials is also dense in the space 𝐻(𝑝, 𝑞, 𝜙). We omit the result of the 

proof. 

Theorem (1.1.27)[1]: Suppose 0 < 𝑝, 𝑞 < ∞,𝑔 ∈ 𝐻(𝔹), 𝑔(0) = 0, 𝜙 is normal, 𝜇  is a 

weight, and 𝜑 is an analytical self-map of 𝔹, then: 𝑝𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇,0 is compact if and 

only if 

lim
⌈𝑧⌉→1

𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|2)
𝑛
𝑞

= 0                                            (78) 

Proof: assume that (78) holds. Then Lemmas 6 and 9 imply 

𝜇(𝑧)|𝔑(𝑃𝜑
𝑔
𝑓)(𝑧)| ≤ ∁‖𝑓‖𝐻(𝑝,𝑞,𝜙)

𝜇(𝑧)|𝑔(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|2)
𝑛
𝑞

.             (79) 

Taking the supremum in (79) over the set ‖𝑓‖𝐻(𝑝,𝑞,𝜙) ≤ 1.then letting ⌈𝑧⌉ → 1 and 

employing (78) we obtain 
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lim
⌈𝑧⌉→1

 𝑠𝑢𝑝‖𝑓‖𝐻(𝑝,𝑞,𝜙)≤1 𝜇(𝑧)|𝔑(𝑃𝜑
𝑔
𝑓)(𝑧)| = 0                          (80) 

 From (80) and by using Lemma (1.1.5) the compactness of the operator 𝑃𝜑
𝑔
: 𝐻(𝑝, 𝑞, 𝜙) →

ℬ𝜇,0 follows. 

       Now assume that condition (78) does not hold. If it were, then it would exist 𝜀0 < 0  

and a sequence (𝑧𝑘)𝑘∈𝑁 ∈ 𝔹, such that lim
𝐾→∞

|𝑧𝑘| = 1 and 

𝜇( 𝑧𝑘)|𝑔( 𝑧𝑘)|

𝜙(|𝜑( 𝑧𝑘)|)(1 − |𝜑( 𝑧𝑘)
2|)𝑛/𝑞

≥ 𝜀0 < 0,                          (81) 

for sufficiently large k. 

       First assume that 𝑠𝑢𝑝𝑘∈ℕ|𝜑(𝑧𝑘)| < 1 . Then by Theorem (1.1.26), we have that 𝑔 ∈
𝐻𝜇,0
∞  and consequently 

lim
𝑘→∞

𝜇( 𝑧𝑘)|𝑔( 𝑧𝑘)| = 0 

From this, (81) and the normality of 𝜙 we obtain a contradiction. 

       Now assume that 𝑠𝑢𝑝𝑘∈ℕ|𝜑(𝑧𝑘)| < 1. Then there is a subsequence of (𝜑(𝑧𝑘))𝑘∈ℕ 

(which we may also denote by (𝜑(𝑧𝑘))𝑘∈ℕ) such that lim
𝑘→∞

|𝜑(𝑧𝑘)| = 1. Let (𝑓�̂�)𝑘∈ℕ be 

defined as in (73), where  𝛽 > 𝑏. We know that 𝑠𝑢𝑝𝑘∈ℕ‖𝑓�̂�‖𝐻(𝑝,𝑞,𝜑) ≤ ∁, 𝑎𝑛𝑑 𝑓�̂� converges 

to 0 uniformly on compact of 𝔹 as  𝑘 → ∞, hence 

lim
𝑘→∞

‖𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇,

= 0.                                                  (82) 

On the other hand, from (75) and (81) we have 

‖𝑃𝜑
𝑔
𝑓�̂�‖ℬ𝜇,

≥
𝜇( 𝑧𝑘)|𝑔( 𝑧𝑘)|

𝜙(|𝜑( 𝑧𝑘)|)(1 − |𝜑( 𝑧𝑘)
2|)𝑛/𝑞

≥
𝜀0
2
< 0 

for sufficiently large k, which contradicts to (82), finishing the proof of the theorem. 

We characterize the boundedness and compactness of the operator  

𝑢𝐶𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝔹) (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 (𝔹)) → 𝐻𝜇

∞(𝔹) (    𝑜𝑟𝐻𝜇,0
∞ (𝔹)) 

The proofs of these results are similar to those in the previous and the same test functions  

are used. 

Theorem (1.1.28)[1]: Assume that 𝛼 > 1 , 𝛽 ≥ 0, 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a 

holomorphic self-map of 𝔹 then 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is bounded. Then the 

operator  𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is compact if and only if   

𝑀5 ≔ sup
𝑧∈𝔹

 
𝜇(𝑧)|𝑢(𝑧)|

(1 − |𝜑(𝑧)| )
∞−1

(𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽
<  ∞ 

And 𝑢 ∈ 𝐻𝜇
∞, 

       Moreover .if   𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 , 𝑡ℎ𝑒𝑛  

‖  𝑢∁𝜑‖ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≍ ‖  𝑢∁𝜑‖ℬ
𝑙𝑜𝑔𝛽
𝛼 →ℬ𝜇

≍ 𝑀5 + ‖𝑢‖𝐻𝜇,∞  

Theorem (1.1.29)[1]: Assume that 𝛼 > 1 , 𝛽 ≥ 0, 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a 

holomorphic self-map of 𝔹, and 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇

∞ is bounded. Then 

𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is compact if and only if 
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lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)| (1 + (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) =  0. 

 

Theorem (1.1.30)[1]: Assume that 𝛼 > 0 , 𝛽 ≥ 𝐻(𝔹), 𝜇 is a weight, and 𝜑 is a holomorphic 

self-map of 𝔹, then   𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽,0
𝛼 → 𝐻𝜇

∞ is bounded if and only if.𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽,0
𝛼 → 𝐻𝜇

∞ is 

bounded and 𝑢 ∈ 𝐻𝜇,0
∞ . 

Theorem (1.1.31)[1]: Assume that 𝛼 > 1, 𝛽 ≥ 0, 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a 

holomorphic self-map of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇

∞ is compact if 

and only if 

lim
|𝑧|→1

𝜇(𝑧)|𝑢(𝑧)|

(

 
 
1 +

1

1 − (𝜑(𝑧))
𝛼−1

(𝐼𝑛
𝑒𝛽/𝛼

1 − |𝜑(𝑧)|
)
𝛽

)

 
 
=  0. 

Theorem (1.1.32)[1]: Assume that 𝛼 = 1, 𝛽 ∈ (0,1), 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a 

holomorphic self-map of 𝔹. Then  𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is bounded if and only 

if   

𝑀6 ≔ 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑢(𝑧)| (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

<  ∞ 

𝑢 ∈ 𝐻𝜇
∞. 

Moreover , if 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
1 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
1 ) → 𝐻𝜇

∞ is bounded, them 

‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔𝛽
1 →ℬ𝜇

≍  ‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔𝛽,0
1 →ℬ𝜇

≍ 𝑀6 + ‖𝑢‖𝐻𝜇∞ . 

Theorem (1.1.33)[1]: Assume that 𝛼 = 1 , 𝛽 ∈ (0,1), 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a 

holomorphic self-map of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is bounded. 

Then the operator  𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is compact if and only if   

lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)| (1 + (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) = 0 

Theorem (1.1.34)[1]: Assume that 𝛼 = 1 , 𝛽 ∈ (0,1), 𝑢 ∈ 𝐻(𝔹), 𝜇  is a weight, 𝜑 is a 

holomorphic self-map of 𝔹, and the operator  𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is bounded. 

Then the operator  𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is compact if and only if   

lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)| (1 + (𝐼𝑛
𝑒𝛽

1 − |𝜑(𝑧)|
)

1−𝛽

) = 0 

Theorem (1.1.35)[1]: 𝑢 ∈ 𝐻(𝔹), 𝜇 is a weight, 𝜑 is a holomorphic self-map of 𝔹, Then 

𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇
∞ is bounded if and only if 

𝑀7 ≔ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)|max {1, 𝐼𝑛𝐼𝑛
𝑒

1 − |𝜑(𝑧)|
} <  ∞ 

Moreover, if 𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇
∞ is bounded, then  
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‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔1,
1 →𝐻𝜇

∞ ≍ ‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔1,0
1 →𝐻𝜇

∞ ≍ 𝑀7 

Theorem (1.1.36)[1]: Assume that 𝑢 ∈ 𝐻(𝔹), 𝜇  is a weight, 𝜑 is a holomorphic self-map 

of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇,
∞ is bounded. Then the operator 

𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇,0
∞  is compact if and only if 

lim
|𝜑(𝑧)|→1

𝜇(𝑧)|𝑢(𝑧)|𝑚𝑎𝑥 {1, 𝐼𝑛𝐼𝑛
𝑒

1 − |𝜑(𝑧)|
} = 0 

Theorem (1.1.37)[1]: Assume that 𝑢 ∈ 𝐻(𝔹), 𝜇  is a weight, 𝜑 is a holomorphic self-map 

of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇,0
∞  is bounded. Then the operator 

𝑢∁𝜑: ℬ𝑙𝑜𝑔1
1 (𝑜𝑟 ℬ𝑙𝑜𝑔1,0

1 ) → 𝐻𝜇,0
∞  is compact if and only if 

lim
|𝑧|→1

𝜇(𝑧)|𝑢(𝑧)|𝑚𝑎𝑥 {1, 𝐼𝑛𝐼𝑛
𝑒

1 − |𝜑(𝑧)|
} = 0 

Theorem (1.1.38)[1]: Assume that 𝛼 ∈ (0,1)  or   𝛼 = 1  𝑎𝑛𝑑 𝛽 > 1 , 𝑢 ∈ 𝐻(𝔹), 𝜇 is a 

weight, 𝜑 is a holomorphic self-map of 𝔹, then 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇

∞ is bounded 

if and only if 𝑢 ∈ 𝐻𝜇,0
∞ .Morever, if 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽

𝛼 (𝑜𝑟 ℬ
𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇

∞ is bounded then  

‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔𝛽
𝛼 →𝐻𝜇

∞ ≍ ‖𝑢∁𝜑‖ℬ
𝑙𝑜𝑔1,0
1 →𝐻𝜇

∞ ≍ ‖𝑢‖𝐻𝜇∞. 

Theorem (1.1.39)[1]: Assume that 𝛼 ∈ (0,1)  or   𝛼 = 1 and 𝛽 > 1 , 𝑢 ∈ 𝐻(𝔹), 𝜇  is a 

weight, 𝜑 is a holomorphic self-map of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  

is bounded. Then the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  is compact if and only if 

𝑢 ∈ 𝐻𝜇,0
∞ , 

 

Theorem (1.1.40)[1]: Assume that 𝛼 ∈ (0,1)  or 𝛼 = 1 and 𝛽 > 1 , 𝑢 ∈ 𝐻(𝔹), 𝜇 is a 

weight, 𝜑 is a holomorphic self-map of 𝔹, and the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞  

is bounded. Then the operator 𝑢∁𝜑: ℬ𝑙𝑜𝑔𝛽
𝛼 (𝑜𝑟 ℬ

𝑙𝑜𝑔𝛽,0
𝛼 ) → 𝐻𝜇,0

∞    is compact if 

lim
(𝜑|𝑧|)→1

𝜇(𝑧)|𝑢(𝑧)| = 0. 

Theorem (1.1.41)[1]: Suppose 0 < p, q < ∞, u ∈ H(𝔹), 𝜙 is an analytical self-map  of  𝔹  𝜇 

is a weight, and 𝜑 is an analytic self-map of 𝔹. Then the operator 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞. 𝜙) → 𝐻𝜇
∞ is 

bounded if and only if  

𝑀𝑆 ≔ 𝑠𝑢𝑝𝑧∈𝔹
𝜇(𝑧)|𝑢(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|2)
𝑛
𝑞

<  ∞ 

Moreover, if the operator 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞. 𝜙) → 𝐻𝜇
∞ is bounded then the following asymptotic 

relation holds 

‖𝑢𝐶𝜑‖𝐻(𝑝,𝑞.𝜙)→𝐻𝜇∞
≍ 𝑀𝑆 . 

Theorem (1.1.42)[1]: Suppose 0 < p, q < ∞, u ∈H(𝔹), 𝜙, is normal, 𝜇 is a weight, and 𝜑 is 

an analytic self-map of 𝔹. Then the operator 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞. 𝜙) → 𝐻𝜇
∞ is compact if and only 

if 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞. 𝜙) → 𝐻𝜇
∞ is bounded and 

lim
⌈𝑧⌉→1

𝜇(𝑧)|𝑢(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|)
𝑛
𝑞

= 0 
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Theorem (1.1.43)[1]: Suppose 0 <  𝑝;  𝑞 <  ∞, 𝑢 ∈ 𝐻(𝔹) , 𝜙 is normal, 𝜇 is a weight, and 

𝜑 is an analytic self-map of 𝔹. Then 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇,0
∞  is bounded if and only if 

𝑢𝐶𝜑: 𝐻(𝑝, 𝑞, 𝜙) → 𝐻𝜇
∞ is bounded and 𝑢 ∈ 𝐻𝜇,0

∞  .   

Theorem (1.1.44)[1]: Suppose 0 <  𝑝;  𝑞 <  ∞, 𝑢 ∈  𝐻(𝔹) is normal, 𝜇 is a weight, and 𝜑 

is an analytic self-map of 𝔹. Then 𝑢𝐶𝜑: 𝐻(𝑝, 𝑞, 𝜙) → ℬ𝜇,0
∞  is compact if and only if 

lim
⌈𝑧⌉→1

𝜇(𝑧)|𝑢(𝑧)|

𝜙(|𝜑(𝑧)|)(1 − |𝜑(𝑧)|)
𝑛
𝑞

= 0. 

Section (1.2): From the Bloch Space to Bloch –Type Space on the Unit Ball 
For 𝔹 be the open unit ball in ℂ𝑛, 𝔻 the open unit disk in  ℂ, H. (𝔹)  the class of all 

holomorphic functions on the unit ball  and 𝐻∞ = 𝐻∞(𝔹) the space of all bounded 

holomorphic functions on 𝔹 with the norm 

‖𝑓‖∞ = 𝑠𝑢𝑝𝑧∈𝔹|𝑓(𝑧)|. 
  Let 𝑧 = (𝑧1, … , 𝑧𝑛 ) and 𝑤 =  (𝑤1, … , 𝑤𝑛) be points in ℂ𝑛  

〈𝑧, 𝑤〉 =  ∑ 𝑧𝑘�̅�𝑘 𝑎𝑛𝑑 |𝑧| =  √(𝑧, 𝑧) ∑  𝑎𝛽𝑧
𝛽

|𝛽|≥0

𝑛

𝑘=1

. 

For 𝑓 ∈ 𝐻(𝔹)  with the Taylor expansion 𝑓 (𝑧) = ∑ 𝑎𝛽𝑧
𝛽

|𝛽|≥0  , 𝑙𝑒𝑡 

ℜ𝑓 (𝑧) = ∑ |𝛽|𝑎𝛽𝑧
𝛽

|𝛽|≥0

 

  be the radial derivative of 𝑓, where  𝛽 = (𝛽1, 𝛽2, … , 𝛽𝑛) is a multi-index |𝛽| =

(𝛽1 +  …+ 𝛽𝑛) and 𝑧𝛽 =  𝑧1
𝛽1 …𝑧𝑛

𝛽𝑛 . (see [77]). 

       A positive continuous function  𝜇 on [0, 1) is called normal [11] if there is 𝛿 ∈ [0, 1) 
and a and b , 0 < 𝑎 < 𝑏 such that  

 
(𝜇)𝑟

(1 − 𝑟)𝑎
 is decreasing on  [𝛿. 1)𝑎𝑛𝑑 lim

𝑟→1

𝜇(𝑟)

(1 − 𝑟)𝑎
= 0, 

(𝜇)𝑟

(1 − 𝑟)𝑏
 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛  [𝛿. 1)𝑎𝑛𝑑 lim

𝑟→1

𝜇(𝑟)

(1 − 𝑟)𝑏
= 0, 

If we say that a function  𝜇: 𝔹 → [0,∞)  is normal we will also assume that it is radial , that 

is ,𝜇(𝑧) = 𝜇 (|𝑧|), 𝑧 ∈ 𝔹. 
       The weighted space 𝐻𝜇

∞= 𝐻𝜇
∞(𝔹) consists of all 𝑓 ∈ 𝐻(𝔹) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑆𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑓(𝑧)| < ∞. 
where μ is normal. For μ(z) = (1 − |z|2)β , β > 0 we obtain the (classical) weighted space 𝐻𝛽

∞ 

= 𝐻𝛽
∞ (𝔹). The Little weighted space 𝐻𝜇,0

∞ = 𝐻𝜇,0
∞ (𝔹) is a subspace of 𝐻𝜇

∞ consisting of all  

f ∈ H(𝔹) such that 

𝑙𝑖𝑚|𝑧|→1 𝜇(𝑧)|𝑓 (𝑧)| =  0. 

The Bloch-type space, denoted by ℬ𝜇 = ℬ𝜇(𝜇) consists of all f ∈ H(𝔹) such that 

ℬ𝜇(𝑓) = 𝑆𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝔑𝑓(𝑧)| < ∞. 

 

where 𝜇 is normal. With the norm 

‖𝑓‖ℬ𝜇 = |𝑓(0)| + ℬ𝜇(𝑓) 

the Bloch-type space becomes a Banach space. 

       The α-Bloch space B α is obtained for 𝜇(𝑧)  = (1 − |𝑧|2)𝛼 , α ∈ (0, ∞) (see, e.g., [76], 
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[79], [9]). The Little Bloch-type space Bμ,0 is a subspace of Bμ consisting of those 𝑓 such 

that    

𝑙𝑖𝑚|𝑧|→1𝜇(𝑧)|𝔑𝑓 (𝑧)| =  0. 
Bearing in mind the following asymptotic relation from [60] (see also [4] for the case of the 

α-Bloch space) 

𝑏𝜇(𝑓): = 𝑆𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|∇𝑓(𝑧)| ≍ 𝑆𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|ℜ𝑓(𝑧)|                 (83) 

we see that 𝐵𝜇 can be defined as the class of all f ∈ H(B) such that 𝑏𝜇(𝑓) is finite. Also the 

Little Bloch-type space is equivalent with the subspace of Bμ consisting of all f ∈ H(B) such 

that 

𝑙𝑖𝑚|𝑧|→1𝜇(𝑧)|∇𝑓 (𝑧)| =  0. 

From this observation and for some technical benefits, for the norm of the α-Bloch space 

we choose the second definition, that is, f ∈ Bα if and only if 

‖𝑓‖ℬ𝛼 = |𝑓(0)|+𝑆𝑢𝑝𝑧∈𝔹(1 − |𝑧|
2)𝛼|∇𝑓(0)| < ∞. 

If    𝜇(𝑧) =  (1 − |𝑧|2), then the quantity 𝑏𝜇(𝑓) in (83)will be denoted 𝑦𝑏(𝑓). 

       Let 𝜑 be a holomorphic self map of 𝔹 . for   f ∈ H(𝔹)  the composition operator is 

defined by 𝐶𝜑𝑓(𝑧) = 𝑓(𝜑(𝑧))  (see [47] or [62], [15], [17], [27]). 

       Let g ∈ H(𝔻) and ϕ be a holomorphic self-map of 𝔻. Products of integral and 

composition operators on H(𝔻) were introduced by S. Li and S. Stevic´ in a private 

communication (see, e.g., [57], [58] and [79], [27]) as follows 

𝐶𝜑𝐽𝑔𝑓(𝑧) =  ∫ 𝑓(𝜁)𝑔(𝜁)𝑑𝜁

𝜑(𝑧)

0

  𝑎𝑛𝑑  𝐽𝑔 𝐶𝜑𝑓(𝑧) =  ∫ 𝑓(𝜑(𝜁))𝑔(𝜁)𝑑𝜁

𝑧

0

           (84)  

Operators in (84) are extensions of the following integral operators 

𝑇𝑔(𝑓)(𝑧) =  ∫𝑓(𝜁)

𝑧

0

𝑔′(𝜁)𝑑𝜁 

which was introduced in [78]. Some other results on the operator T g can be found, e.g., in 

[71]–[73], [78]. For some results on n-dimensional extensions of the operator, see [42]–[45], 

[74]–[52], [53], [54], [55], [6]–[58], [60]. 

      One of the interesting questions is to extend operators in (84) in the unit ball settings 

and to study their function theoretic properties between spaces of holomorphic functions on 

the unit ball in terms of inducing functions. 

       Assume that g ∈ H(𝔹), g(0) = 0 and ϕ is a holomorphic self-map of 𝔹, then we introduce 

the following operator on the unit ball 

 

𝑃𝜑
𝑔(𝑓)(𝑧) =  ∫ 𝑓(𝜑(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡
 ,   

1

0

𝑓 ∈ 𝐻(𝔹), 𝑧 ∈ 𝔹         (85) 

If n = 1, then g ∈ H(D) and g(0) = 0, so that g(z) = zg0(z), for some g0 ∈ H(D). By the change 

of variable ζ = tz, it follows that 

𝑃𝜑
𝑔
𝑓(𝑧) =  ∫ 𝑓(𝜑(𝑡𝑧))𝑡𝑧𝑔0(𝑡𝑧)

𝑑𝑡

𝑡
= ∫𝑓(𝜑(𝜁))𝑔0(𝜁)𝑑𝜁

𝑧

0

1

0

. 

Thus operator (85) is a natural extension of the second operator in (84). 

      Here we study the boundedness and compactness of operator 𝑃𝜙
𝑔

 from the Bloch space 

B or the Little Bloch space B0 to the Bloch-type space 𝐵𝜇 or the Little Bloch-type space Bμ,0. 
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We calculate the essential norm of the operators 𝑃𝜙
𝑔

 : B (or B0) → Bμ  (or Bμ,0). 

C will denote a positive constant not necessarily the same at each occurrence. The 

notation 𝐴 ≍ 𝐵 means that there is a positive constant C such that 𝐴/𝐶 ≤ 𝐵 ≤ 𝐶 𝐴. 
      The following lemmas are used in the proofs. 

Lemma (1.2.1)[41]: Suppose g ∈ H(B), g(0) = 0, μ is normal and ϕ is a holomorphic self-

map of B. Then the operator 𝑃𝑔
𝜙
∶  𝐵 (or 𝐵0)  →  𝐵𝜇 is compact if and only if 𝑃𝑔

𝜙
∶

 𝐵 (𝑜𝑟 𝐵0)  →  𝐵𝜇 is bounded and for any bounded sequence ( fk )k∈N in B (or B0) converging 

to zero uniformly on compacts of 𝔹, we have ‖ Pφ
g
fk ‖Bμ → 0 as k → ∞. 

       The proof of Lemma (1.2.1) follows by standard arguments (see, for example, the 

proofs of Proposition 3.11 in [47] and Lemma (1.2.3) in [58]). 

Lemma (1.2.2)[41]: Suppose f , g ∈ H(B) and g(0) = 0. Then 

𝔑𝑃𝜑
𝑔(𝑓) ( f )(z) =𝑓(𝜑(𝑧)) g(z). 

Proof. Assume that the holomorphic function 𝑓(𝜑(𝑧))𝑔(𝑧). has the expansion ∑ 𝑎𝛽𝑧
𝛽

𝛽 , 

since 𝑔(0) = 0, note that 𝑎0 = 0, Then 

𝔑[𝑃𝜑
𝑔(𝑓)] (z) = 𝔑 ∫ ∑ 𝑎𝛽(𝑡𝑧)

𝛽
𝛽≠0

1

0

𝑑𝑡

𝑡
=  𝔑(∑

𝑎𝛽

|𝛽|
𝑧𝛽𝛽≠0 ) =  ∑ 𝑎𝛽𝑧

𝛽
𝛽≠0 . 

Which is what we wanted to prove. 

Lemma (1.2.3)[41]: Let, Then the following inequality holds 

|𝑓(𝑧)| ≤ ‖𝑓‖ℬ𝑚𝑎𝑥 {1.
1

2
𝐼𝑛
1 + |𝑧|

1 − |𝑧|
}.                           (86) 

Proof. The proof of the lemma follows from the following inequality 

|𝑓(𝑧) − 𝑓(0)| = ∫ا  〈∇𝑓(𝑡𝑧), 𝑧̅〉𝑑𝑡| ≤ 𝑏(𝑓)∫
|𝑧| 𝑑𝑡

1 − |𝑧|2𝑡2

1

0

= 𝑏(𝑓)
1

2
𝐼𝑛
1 + (𝑧)

1 − (𝑧)
,

 

1

0

 

Where 𝑏(𝑓) = supz∈𝔹(1 − |𝑧|
2)|∇𝑓(𝑧)|. 

We calculate the norm ‖𝑃𝜑
𝑔
‖
ℬ→ 𝐵𝜇

and ‖𝑃𝜑
𝑔
‖
ℬ0→ 𝐵𝜇

. 

Theorem (1.2.4)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal and ϕ is a holomorphic self-

map of B. and Pφ
g
 : B (or B0) → Bμ is bounded then 

‖𝑃𝜑
𝑔
‖
ℬ→ 𝐵𝜇

=  ‖𝑃𝜑
𝑔
‖
ℬ0→ 𝐵𝜇

= 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|𝑚𝑎𝑥 {1.
1

2
 𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
}.        (87) 

Proof: if  f ∈ ℬ  , then by Lemma (1.2.2) and (86) we obtain  

‖𝑃𝜑
𝑔
‖
𝐵𝜇 
=  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)𝑓(𝜑(𝑧))| 

≤ ‖𝑓‖ℬ𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|max {1.
1

2
 𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
} .         (88) 

From which it follows that  

‖𝑃𝜑
𝑔
‖
𝐵 → 𝐵𝜇  

≤  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|max {1.
1

2
 𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
}.        (89) 

      The same inequality holds for   𝑃𝜑
𝑔

 : 𝐵0  →  𝐵𝜇 

Now we prove the reverse inequality . By taking  the function given by 𝑓0(𝑧) ≡ 1 ∈ ℬ0    

and using the boundrdness of  𝑃𝜑
𝑔

 : 𝐵0  →  𝐵𝜇  we obtain  

‖𝑃𝜑
𝑔
‖
𝐵 → 𝐵𝜇  

=  ‖𝑓0‖ℬ‖𝑃𝜑
𝑔
‖
𝐵 → 𝐵𝜇  

≥ ‖𝑃𝜑
𝑔
𝑓0‖ 𝐵𝜇  

 

=  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)||𝑓0(𝜑(𝑧))| =  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|(90) 
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The same inequality holds for 

𝑃𝜑
𝑔
∶  𝐵0 →  𝐵𝜇. 

for  𝑤 ∈ 𝔹, set 

 𝑓𝑤(𝑧) =  
1

2
𝐼𝑛
1 + 〈𝑧,𝑤〉

1 − 〈𝑧,𝑤〉
                                                        (91) 

with in 1 = 0. Since 𝑓𝑤(0) = 0 and 

(1 − |𝑧|2) |∇𝑓𝑤(𝑧)| =  
(1 − |𝑧|2)|𝑤|

(1 − |𝑧, 𝑤|2)
 ≤

1 − |𝑧|2

1 − |𝑤|2|𝑧|2
≤ 𝑚𝑖𝑛 {1.

1 − |𝑧|2

1 − |𝑤|2
}  

it follows that  𝑠𝑢𝑝𝑧∈𝔹  ‖𝑓𝑤‖ℬ ≤ 1 𝑎𝑛𝑑 𝑓𝑤 ∈ ℬ0.  for each fixed  𝑤 ∈ 𝔹 from this  and the 

boundedness of   𝑃𝜑
𝑔

 : B (or 𝐵0) → 𝐵𝜇  we have that when  𝜑(𝑤) ≠ 0 and for every 𝑡 ∈

(0,1) the following inequality holds 

‖𝑃𝜑
𝑔
‖
𝐵 0→ 𝐵𝜇  

≥ ‖𝑃𝜑
𝑔
𝑓𝑟𝜑(𝑤)/|𝜑(𝑤)|‖ 𝐵𝜇  

=  

𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|
1

2
|𝐼𝑛

1 + 𝑡 〈𝜑(𝑧).
𝜑(𝑤)
|𝜑(𝑤)|

〉

1 − 𝑡 〈𝜑(𝑧).
𝜑(𝑤)
|𝜑(𝑤)|

〉
| 

≥
1

2 
𝜇(𝑤)|𝑔(𝑤)|𝐼𝑛

1 + 𝑡|𝜑(𝑤)|

1 − 𝑡|𝜑(𝑤)|
                          (92) 

note that (92)  obviously holds if   𝜑(𝑤) = 0. 
Letting 𝑡 → 1 in (92), we obtain that for each 𝑤 ∈ 𝔹 

‖𝑃𝜑
𝑔
‖
𝐵0 → 𝐵𝜇  

≥
1

2 
𝜇(𝑤)|𝑔(𝑤)|𝐼𝑛

1 + |𝜑(𝑤)|

1 − |𝜑(𝑤)|
. 

from this and since w  is an arbitrary element of  𝔹, it follows that 

‖𝑃𝜑
𝑔
‖
𝐵0 → 𝐵𝜇  

≥
1

2 
𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)|𝐼𝑛

1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
.                     (93) 

note also that  

‖𝑃𝜑
𝑔
‖
𝐵 → 𝐵𝜇  

≥ ‖𝑃𝜑
𝑔
‖
𝐵0 → 𝐵𝜇  

                                                               (94) 

from (90), (93) and (94) we obtain that  

‖𝑃𝜑
𝑔
‖
𝐵 → 𝐵𝜇  

≥ ‖𝑃𝜑
𝑔
‖
𝐵0 → 𝐵𝜇  

≥ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)| 𝑚𝑎𝑥 {1.
1

2
𝐼𝑛
1 + |𝜑(𝑤)|

1 − |𝜑(𝑤)|
}    (95) 

from (89) and (95) , equalizes in (87) follows . 

 Corollary (1.2.5)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal and ϕ is a holomorphic self-

map of B. Then Pφ
g
 : B (or B0) → Bμ is bounded if and only if 

𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)|𝑚𝑎𝑥 {1.
1

2
 𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
} < ∞.                      (96) 

Proof. If 𝑃𝑔
𝜙
∶  𝐵 (𝑜𝑟 𝐵0)  →  𝐵𝜇 is bounded, then (96) follows from Theorem (1.2.4). If (96) 

holds, then the boundedness of 𝑃𝑔
𝜙
∶  𝐵 (𝑜𝑟 𝐵0)  →  𝐵𝜇  follows from (88). 

       Here we characterize the boundedness of the operator   𝑷𝝋
𝒈
: 𝓑𝟎 Bμ.0. 

Theorem (1.2.6)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal and ϕ is a holomorphic self-

map of 𝔹. then Pφ
g
 : B0 → Bμ is bounded and g ∈ H𝛍.𝟎

∞ . 

Proof.   Assume  that  Pφ
g
: ℬ0  →Bμ.0 Is bounded , then clearly   Pφ

g
: ℬ0  → Bμ is bounded. 

Taking the test function 𝑓0(𝑧) = 1 ∈ ℬ0   we obtain g ∈ 𝐻𝜇.0
∞ . 
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Conversely, assume   𝑃𝜑
𝑔
: ℬ0  →Bμ. Is bounded and  g ∈ 𝐻𝜇.0

∞ .Then, for every polynomial 𝑝, 

we have 

𝜇(𝑧)| 𝔑 𝑃𝜑
𝑔
𝑝(𝑧)| =  𝜇(𝑧)|𝑔(𝑧)𝑝(𝜑(𝑧))| ≤  𝜇(𝑧)|𝑔(𝑧)|‖𝑝‖∞ → 0,   𝑎𝑠 |𝑧| → 1. 

Since the set of all polynomial is dense in  ℬ0 for each  𝑓 ∈ ℬ0 there is a sequence of 

polynomials  (𝑝𝑘)𝑘∈ℕ  such that 

lim
𝑘→∞

‖𝑓 − 𝑝𝑘‖ℬ =  0                                       (97) 

From (97) and since the operator 𝑃𝜑
𝑔
: ℬ0 → Bμ. is bounded, it follows that  

‖  𝑃𝜑
𝑔
𝑓 −   𝑃𝜑

𝑔
𝑝𝑘‖𝐵𝜇.

≤ ‖  𝑃𝜑
𝑔
‖
ℬ0→ 𝐵𝜇.

‖𝑓 − 𝑝𝑘‖ℬ0 → 0. 

As  𝑘 → ∞ . Hence     𝑃𝜑
𝑔(ℬ0) ⊂ 𝐵𝜇. 0 . since Bμ.0    is a closed sybset of 𝐵𝜇  the boundedness 

of    𝑃𝜑
𝑔
: ℬ0 → Bμ,0  follows. 

      Let X and Y be Banach spaces, and L : X → Y be a bounded linear operator. The essential 

norm of the operator L : X → Y , denoted by ‖𝐿‖𝑒,𝑋 → 𝑌, is defined as follows 

‖𝐿‖𝑒,𝑋 → 𝑌 = inf  {‖𝐿 + 𝐾‖𝑋 → 𝑌 : 𝐾 is compact from X to Y}, 

where ‖. ‖𝑋 → 𝑌denote the operator norm. 

       From this definition and since the set of all compact operators is a closed subset of the 

set of bounded operators it follows that operator L is compact if and only if  ‖𝐿‖𝑒,𝑋 → 𝑌 = 0.. 
We prove the main result, namely, we calculate the essential norm of the 

operator  𝑃𝜑
𝑔
: ℬ (𝑜𝑟 ℬ0) → Bμ . 

Theorem (1.2.7)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal, ϕ is a holomorphic self-map 

of 𝔹 and Pφ
g
: ℬ (or ℬ0)  →  Bμ. is bounded if 

 
‖φ‖

∞
= 1, then 

‖  𝑃𝜑
𝑔
‖
𝑒,ℬ→ℬ𝜇

=  ‖  𝑃𝜑
𝑔
‖
𝑒,ℬ0→ℬ𝜇 

= 
1

2
lim|φ(z)|→1 sup 𝜇(𝑧) |𝑔(𝑧)| 𝐼𝑛

1 + |𝜑(𝑧)|

1 − |𝜑|𝑧||
 

.   (98) 

while  ‖𝜑‖∞ < 1, then 

‖  𝑃𝜑
𝑔
‖
𝑒,ℬ→ℬ𝜇

=  ‖  𝑃𝜑
𝑔
‖
𝑒,ℬ0→ℬ𝜇 

= 0.                                               (99) 

Proof. First assume that  ‖𝜑‖∞ = 1. Set the following family of test functions 

𝑓𝑤
𝜀(𝑤) =  (𝐼𝑛

(1 + |𝑤|)2

1 − 〈𝑧, 𝑤〉
)

𝜀+1

(𝐼𝑛
1 + |𝑤|

1 − |𝑤|
)

−𝜀

, 𝑤 ∈ 𝔹/  [0] 

It is easy to see that  

|𝑓𝑤
𝜀(0)| ≤  (𝐼𝑛(1 + |𝑤|)2)𝜀+1 (𝐼𝑛

1 + |𝑤|

1 − |𝑤|
)

−𝜀

≤  2𝜀+1𝐼𝑛2 

And  

lim
|𝑤|→1

|𝑓𝑤
𝜀(0)| = 0.                                            (100) 

Farther we have  

(  1 − |𝑧|2)|∇𝑓𝑤
𝜀(𝑧)| 

 

= (𝜀 + 1)
(1 − |𝑧|2)|𝑤|

|1 − 〈𝑧, 𝑤〉|

 

                   (101) 

≤ (𝜀 + 1)(1 + |𝑧|)|𝑤| (𝐼𝑛
(1 + |𝑤|)2

1 − |𝑤|
+ 2𝜋)

𝜀

(𝐼𝑛
1 + |𝑤|

|1 − |𝑤||
)

−𝜀  

     (102) 

From (102) it follows that 

lim
|𝑤|→1

sup 𝑏(𝑓𝑤
𝜀) ≤ 2(𝜀 + 1)                                       (103) 
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And from (101) that m for each fixed 𝑤 ∈ 𝔹/ {0}. 𝑓𝑤
𝜀 ∈ ℬ0. 

Hence (100) and (103) imply 

 lim
|𝑤|→1

‖𝑓𝑤
𝜀‖ℬ ≤ 2(𝜀 + 1)                                 (104) 

Now, assume that  (𝜑(𝑧𝑘))𝑘∈ℕ is a sequence in 𝔹   such that |𝜑(𝑧𝑘)| → 1 𝑎𝑠 𝑘 → ∞    note 

that from (104) it follows that the sequence  𝐹𝑘(𝑧) =  𝑓𝜑(𝑧𝑘)
𝜀 (𝑧),    𝑘 ∈ ℕ is such that  

lim
𝑘→∞

‖𝐹𝑘‖ℬ ≤ 2(𝜀 + 1)                                 (105) 

and that Fk converges to zero uniformly on compacts of 𝔹 as k → ∞. By Theorem (1.2.7).16 

in [9] it follows that Fk → 0 weakly in B0 as k → ∞. Hence for every compact operator K : 

B0 → Bμ we have that 

lim
𝑘→∞

‖𝐾𝐹𝑘‖ℬ𝜇 = 0                                                (106) 

Assume that K : B0 → Bμ is an arbitrary compact operator. Then from the boundedness of 

𝑃𝜑
𝑔

 : B0 → Bμ for each 𝑘 ∈ ℕ 

‖𝐹𝑘‖ℬ‖𝑃𝜑
𝑔
+ 𝐾‖

𝐵0 → 𝐵𝜇 
≥ ‖(𝑃𝜑

𝑔
+ 𝐾)(𝐹𝑘)‖ 𝐵𝜇 

≥ ‖𝑃𝜑
𝑔
𝐹𝑘‖𝐵𝜇

− ‖𝐾𝐹𝑘‖𝐵𝜇          (107) 

Letting  𝑘 → ∞     in (107) and using (106) we obtain  

lim
𝑘→∞

‖𝐹𝑘‖ℬ‖𝑃𝜑
𝑔
+ 𝐾‖

𝐵0 → 𝐵𝜇
≥ lim
𝑘→∞

𝑠𝑢𝑝 (‖𝑃𝜑
𝑔
𝐹𝑘‖𝐵𝜇

− ‖𝐾𝐹𝑘‖𝐵𝜇) 

= lim
𝑘→∞

𝑠𝑢𝑝 ‖𝑃𝜑
𝑔
𝐹𝑘‖𝐵𝜇

 

= lim
𝑘→∞

sup𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)||𝐹𝑘(𝜑(𝑧))| 

≥ lim
𝑘→∞

𝑠𝑢𝑝 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)𝐹𝑘(𝜑(𝑧𝑘))| 

= lim
𝑘→∞

𝑠𝑢𝑝 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|𝐼𝑛
1 + |𝜑(𝑧𝑘)|

1 − |𝜑(𝑧𝑘)|
 

From this and (105) we have 

2(𝜀 + 1)‖𝑃𝜑
𝑔
+ 𝐾‖

𝐵0 → 𝐵𝜇 
≥ lim
𝑘→∞

𝑠𝑢𝑝 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)| 𝐼𝑛
1 + |𝜑(𝑧𝑘)|

1 − |𝜑(𝑧𝑘)|
                (108) 

Taking the infimum in (108) over the set of all compact operators K : B0 → Bμ  and since ε  

is an arbitrary positive 

‖𝑃𝜑
𝑔
‖
𝑒,𝐵0 → 𝐵𝜇 

≥ lim
𝑘→∞

𝑠𝑢𝑝
1

2
𝜇(𝑧𝑘)𝑔(𝑧𝑘)𝐼𝑛

1 + |𝜑(𝑧𝑘)|

1 − |𝜑(𝑧𝑘)|
 

Which implies the inequality 

‖𝑃𝜑
𝑔
‖
𝑒,𝐵0 → 𝐵𝜇 

≥ lim
|𝜑(𝑧)|→1

1

2
𝜇(𝑧)𝑔(𝑧)𝐼𝑛

1 + |𝜑(𝑧)|

1 − |𝜑(𝑧𝑘)|
                      (109) 

Now we prove the reverse inequality. Assume that (𝑟𝑙 )𝑙 ∈ 𝑁 is a sequence which 

increasingly converges to 1. Consider the operators defined by 

𝑃𝑟𝑙𝜑
𝑔 (𝑓)(𝑧) =  ∫𝑔(𝑡𝑧)

1

0

𝑓 (𝑟𝑙𝜑(𝑡𝑧))
𝑑𝑡

𝑡
. 𝑙 ∈ ℕ.                           (110) 

By using the mean value theorem and the definition of the Bloch space, we obtain 

= Cρ (1 − rl ) → 0  as l → ∞. 

       Letting l → ∞ in (111) and (112), using (114) and (115), and then letting ρ → 1 we 

obtain the inequality both equalities in (98) follow. 

𝑠𝑢𝑝𝑓∈ℬ,‖𝑓‖ℬ≤1|𝑓(𝑧) − 𝑓(𝑤)| =  
1

2
𝐼𝑛

1+|𝜑𝑤(𝑧)|

1−|𝜑𝑤(𝑧)|
 .     𝑧, 𝑤 ∈ 𝔹 

(where 𝜑𝑤 is the involutive automorphism of 𝐵 that interchanges 0 and 𝑤), 
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We have  

‖𝑃𝜑
𝑔
−𝑃𝑟𝑙𝜑

𝑔
‖
ℬ→𝐵𝜇

=𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)||𝑓(𝜑(𝑧)) − 𝑓(𝑟𝑙𝜑(𝑧))| 

  ≤ 𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌𝜇(𝑧)|𝑔(𝑧)||𝑓(𝜑(𝑧)) − 𝑓(𝑟𝑙𝜑(𝑧))| 

+𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑆𝑢𝑝|𝜑(𝑧)|>𝜌𝜇(𝑧)|𝑔(𝑧)||𝑓(𝜑(𝑧)) − 𝑓(𝑟𝑙𝜑(𝑧))| 

≤ ‖𝑔‖𝐻𝜇∞    𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌|𝑓(𝜑(𝑧)) − 𝑓(𝑟𝑙𝜑(𝑧))|      (111) 

+𝑆𝑢𝑝|𝜑(𝑧)|>𝜌𝜇(𝑧)|𝑔(𝑧)|
1

2
𝐼𝑛
|𝜑𝜑(𝑧)(𝑟𝑙𝜑(𝑧))|

|𝜑𝜑(𝑧)(𝑟𝑙𝜑(𝑧))|
.                        (112) 

Since 

|𝜑𝜑(𝑧)(𝑟𝑙𝜑(𝑧))| =  |
𝜑(𝑧) − 𝑃𝜑(𝑧)(𝑟𝑙𝜑(𝑧)) − 𝑆𝑞𝒬𝜑(𝑍)(𝑟𝑙𝜑(𝑧)) 

1 − 〈𝑟𝑙𝜑(𝑧), 𝜑(𝑧)〉,
| 

    =  
| 𝜑(𝑧)|(1 − 𝑟𝑙)

1 − 𝑟𝑙| 𝜑(𝑧)|
2 ≤ | 𝜑(𝑧)|,                                

And since the function  

ℎ(𝑥) = 𝐼𝑛 
1 + 𝑥

1 − 𝑥
.                                                 (113) 

is increasing on the interval [0,1), we obtain 

𝑆𝑢𝑝|𝜑(𝑧)|>𝜌 𝜇(𝑧)|𝑔(𝑧)|𝐼𝑛
1 + |𝜑𝜑(𝑧)(𝑟𝑙𝜑(𝑧))|

1 − |𝜑𝜑(𝑧)(𝑟𝑙𝜑(𝑧))|
 

≤ 𝑆𝑢𝑝|𝜑(𝑧)|>𝜌𝜇(𝑧)|𝑔(𝑧)| 𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
                               (114) 

Now we estimate the quantity in (111). Let  

𝐼𝑙 ≔ 𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌|𝑓(𝜑(𝑧)) − 𝑓(𝑟𝑙𝜑(𝑧))| 

By using the mean value theorem and the definition of the Bloch space , we obtain  

𝐼𝑙 ≤  𝑠𝑢𝑝‖𝑓‖ℬ≤1 𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌(1 − 𝑟𝑙)|𝜑(𝑧)|𝑠𝑢𝑝|𝑤|≤𝜌|∇𝑓(𝑤)| 

≤ 𝜌
1 − 𝑟𝑙
1 − 𝜌2

𝑠𝑢𝑝‖𝑓‖ℬ≤1 ‖𝑓‖ℬ 

=  𝐶𝜌(1 − 𝑟𝑙) → 0   𝑎𝑠 𝑙 → ∞.               (115) 

Letting 𝑙 → ∞. in (111) and (112) using (114) and (115), and then letting 𝜌 → ∞.   we obtain 

the inequality 

‖𝑃𝜑
𝑔
‖
𝑒,ℬ→ℬ𝜇

≤ lim
|𝜑(𝑧)→1|

𝑠𝑢𝑝
1

2
 𝜇(𝑧)𝑔(𝑧) 𝐼𝑛

1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
.         (116) 

From (109), (116) and since 

‖𝑃𝜑
𝑔
‖
𝑒,ℬ→ℬ𝜇

≥ ‖𝑃𝜑
𝑔
‖
𝑒,ℬ0→ℬ𝜇

 

Both equalities in (98) follow. 

       Now assume ‖𝜑‖∞ <  1, then similar to operators in (110) it is proved that the operator 

𝑃𝜑
𝑔

 : B (or B0 )→ Bμ is compact, which is equivalent with (99), finishing the proof of the 

theorem. 

       The following result regarding the compactness of the operator 𝑃𝜑
𝑔

 : B (or B0 )→ Bμ is 

a direct consequence of Theorem (1.2.7). 

Corollary (1.2.8)[41]: Assume g ∈ H(B), g(0) = 0, μ is normal, ϕ is a holomorphic self-map 

of B such that ‖φ‖∞= 1, and the operator Pφ
g
 : B (or 𝐵0)→ 𝐵𝜇 is bounded. Then the operator 
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Pφ
g
 : B (or 𝐵0)→ 𝐵𝜇 is compact if and only if 

lim
|𝜑(𝑧𝑘)|→1

𝜇(𝑧)|𝑔(𝑧)|𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
= 0.                             (117) 

We calculate the essential norm of the operator   𝑃𝜑
𝑔
: ℬ (𝑜𝑟 ℬ0) → 𝐵𝜇,0. 

Theorem (1.2.9)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal, ϕ is a holomorphic self-map 

of 𝔹  and the operator   Pφ
g
: ℬ (or ℬ0)  →  Bμ, 0  is bounded then  

‖  𝑃𝜑
𝑔
‖
𝑒,ℬ→ℬ𝜇,0 

=  ‖  𝑃𝜑
𝑔
‖
𝑒,ℬ0→ℬ𝜇,0 

=  
1

2
lim|z|→1 𝑠𝑢𝑝 𝜇(𝑧) |𝑔(𝑧)|𝐼𝑛

1 + |𝜑(𝑧)|

1 − |𝜑|𝑧||
.   (118) 

Proof. Since 𝑃𝜑
𝑔
: ℬ or (ℬ0) 𝐵𝜇, 0 is bounded then, then for the test function  𝑓0(𝑧) ≡ 1 ∈

ℬ0 we obtain that 𝑔 ∈ 𝐻𝜇
∞. 

       First assume  ‖ ∞‖∞ < 1. Then, similar to operator (110) it can be proved that is 

compact. Hence  

‖𝑃𝜑
𝑔
‖
𝑒,ℬ(𝑜𝑟ℬ0 )→ℬ𝜇,0 

= 0. 

On the other hand , since  ‖ 𝜑‖∞ < 1   and 𝑔 ∈ 𝐻𝜇
∞, it follow that  

lim
|𝑧|→1

𝑠𝑢𝑝𝜇(𝑧)|𝑔(𝑧)|𝐼𝑛
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
≤ 𝐼𝑛

1 + ‖𝜑‖∞ 

1 − ‖𝜑‖∞
lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)| = 0, ; 

From which (118) follow in this case  

       Now assume  ‖𝜑‖∞ = 1  , it is clear that 

lim
|𝑧|→1

𝑠𝑢𝑝 𝜇(𝑧)|𝑔(𝑧)| 𝐼𝑛
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
≥ lim
|𝜙(𝑧)|→1

𝑠𝑢𝑝 𝜇(𝑧)|𝑔(𝑧)|𝐼𝑛 
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
 

Assume that  (𝑧𝑘)𝑘∈ℕ   is such a sequence that 

lim
|𝑧|→1

𝑠𝑢𝑝 𝜇(𝑧)|𝑔(𝑧)| 𝐼𝑛
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
= lim
𝑘→∞

 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|𝐼𝑛 
1 + |𝜙(𝑧𝑘)|

1 − |𝜙(𝑧𝑘)|
           (119) 

If  𝑠𝑢𝑝𝑘∈ℕ𝜑(𝑧𝑘) < 1,  then in view of the fact  𝑔 ∈ 𝐻𝜇
∞  , the last limit is zero. 

       And consequently the second limit in (119) is also zero. Otherwise, there is a 

subsequence (𝜑(𝑧𝑘𝑙))𝑙∈ℕ
   such that   |𝜑(𝑧𝑘𝑙)| → 1𝑎𝑠 𝑙 → ∞  so that both limit in (119) are 

equal, that is  

lim
|𝑧|→1

𝑠𝑢𝑝 𝜇(𝑧)|𝑔(𝑧)| 𝐼𝑛
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
= lim
|𝜙(𝑧)|→1

 𝜇(𝑧)|𝑔(𝑧)|𝐼𝑛 
1 + |𝜙(𝑧)|

1 − |𝜙(𝑧)|
 . 

From this and by Theorem (1.2.7) the result follows in this case, finishing the proof of the 

theorem.  

Corollary (1.2.10)[41]: Assume g ∈ H(𝔹), g(0) = 0, μ is normal, 𝜙 is a holomorphic self-

map of 𝔹  and the operator   𝑃𝜑
𝑔
: ℬ (𝑜𝑟 ℬ0) → ℬ𝜇,0 is compact if and only if   

lim
|𝑧|→1

𝜇(𝑧) |𝑔(𝑧)|𝐼𝑛
1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
= 0. 
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Chapter 2 

Composition of Blochs with Inner Function and BiBloch Mapping 

 

 We show that 𝑓 is a holomorphic self-map of the open unit disc and 1 ≤ 𝑝 < ∞, then 

the following are equivalent. ℎ ∘ 𝑓 ∈ 𝐻2𝑝 for all Bloch functions ℎ, 

sup
𝑟
∫ (log

1

(1 − |𝑓(𝑟𝑒𝑖𝜃)|
2
)
𝑝 𝑑𝜃)

𝑝
2𝜋

0
< ∞, ∫  

2𝜋

0
(∫  

1

0
(𝑓#)2(𝑟𝑒𝑖𝜃)(1 −  𝑟)𝑑𝑟)

𝑝
𝑑𝜃 < ∞, 

where 𝑓# is the hyperbolic derivative of 𝑓: 𝑓# = |𝑓′|/(1 − |𝑓|2). We give several 

applications, we can generalize known characterizations on Bloch-BMO pullbacks. 

Section (2.1): Bounded Analytic Functions  
By P. Ahern and W. Rudin ([81], [82]), there is extensive research on Bloch-to-

BMOA pullbacks, that is, research on those holomorphic maps f of the unit ball of 𝐶𝑛 into 

the unit disc of 𝐶 for which the composition operator defined by 

𝐶𝑓(ℎ) = ℎ ∘ 𝑓 

takes Bloch functions to functions of BMOA. See [87] for recent research on Bloch to 

BMOA pullbacks. 

       It is known (see [87]), when n = 1, that one of the necessary and sufficient conditions 

for 𝐶𝑛 to take all Blochs to 𝐵𝑀𝑂𝐴 is that f be a function of 𝐵𝑀𝑂𝐴𝜎  , the Yamashita 

hyperbolic 𝐵𝑀𝑂𝐴 class (see [84] and [90] for 𝐵𝑀𝑂𝐴 and 𝐵𝑀𝑂𝐴𝜎). 

Theorem (2.1.1)[80]: (Main Result). If 𝑓 is a holomorphic self-map of the open unit disc 

and 1 ≤  𝑝 <  ∞, then the following are equivalent. 

(i) 𝐶𝑓 takes Blochs to 𝐻2𝑝, that is, ℎ ∘ 𝑓 ∈ 𝐻2𝑝 for all Bloch functions ℎ 

(ii) f  belongs to Yamashita's hyperbolic Hardy class 𝐻𝜎
𝑃, that is,  

        𝑠𝑢𝑝𝑟 ∫ (log
1

1 − |𝑓(𝑟𝑒𝑖𝜃)|2
)
𝑝

2𝜋

0

𝑑𝜃 < ∞. 

(iii) ∫ (∫ (f⋕)2
1

0
(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟)

𝑝2𝜋

0
𝑑𝜃 < ∞. 

where 𝑓 # is the hyperbolic derivative of 𝑓: 𝑓 #   =   |𝑓′|/(1 − |𝑓|2). 
       The Bloch space 𝔅 consists of those f holomorphic in the open unit disc D of the 

complex plane for which 

‖𝑓‖𝔅 ∶=  𝑠𝑢𝑝 𝑧∈𝐷|𝑓
′(𝑧)|(1 −  |𝑧|2) <  ∞. 

We let 1 ≤ 𝑝 < ∞    and set for f subharmonic in D 

‖𝑓‖𝑝 ∶=  𝑠𝑢𝑝 𝑟 (∫ |𝑓(𝑟𝑒
𝑖𝜃)|

𝑝

2𝜋

0

𝑑𝜃

2𝜋
)

1/𝑝

. 

then 𝐻𝑝 = 𝐻𝑝(𝐷) consists of those 𝑓 holomorphic in 𝐷 for which ‖𝑓‖𝑝 < ∞ . see [83]  and 

[84]  for Bloch and 𝐻𝑝 spaces. 

       The Yamashita hyperbolic hardy class 𝐻𝜎
𝑝

 is defined as the set of those holomorphic 

self- map 𝑓 of 𝐷 for which 

‖𝜎(𝑓)‖𝑝 < ∞, 

where  𝜎(𝑧)  denotes the hyperbolic distance of z and 0 in D, namely, 

𝜎(𝑧) =
1

2
𝑙𝑜𝑔

1 + |𝑧|

1 − |𝑧|
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Though 𝐻𝜎
𝑝
 is not a linear space, it has, as hyperbolic counterparts, many properties 

analogous to those of 𝐻𝑝. We let T be the boundary of D and set, following Yamashita, 

𝜆(𝑓) = log
1

1 − |𝑓|2
  𝑎𝑛𝑑     𝑓⋕ =

|𝑓′|

1 − |𝑓|2
    

for the holomorphic self-map f of D. Then 𝜎(𝑓)𝑝;  𝜆(𝑓)𝑝, 𝑎𝑛𝑑 (𝑓#)𝑝 are subhar-monic 

functions, so that their integral means over 𝑟𝑇 are nondecreasing functions of 𝑟: for example, 

∫ 𝜆(𝑓)𝑝(𝑟𝑒𝑖𝜃) 
𝑑𝜃

2𝜋

2𝜋

0

↗   ‖𝜆(𝑓)‖𝑝
𝑝
  𝑎𝑠  𝑟 ↗  1 

Also, there are corresponding maximal theorems for these Functions: Set 

𝑀𝜆 (𝑓, 𝜃 )  =  𝑠𝑢𝑝  {𝜆(𝑓)(𝑟𝑒
𝑖𝜃) ∶  0 ≤   𝑟 <  1}  ; 

Then  

‖𝑀𝜆 (𝑓, . ) ‖𝐿𝑝 ≤ 𝐶𝑝‖𝜆(𝑓)‖𝑃.                            (1) 

for 𝑓 ∈ 𝐻𝜎
𝑝

 ([88]). The left side of (1) means usual 𝐿𝑝(𝑇 ) norm. The function  𝑓⋕ is the 

hyperbolic counterpart of 𝑓′ and it easily follows that 
1

2
 𝜆(𝑓) ≤ 𝜎(𝑓) <

1

2
 𝜆(𝑓) + 𝑙𝑜𝑔2.                         (2) 

And  

∆(𝜆(𝑓)𝑝) = 4𝑝 {(𝑝 − 1)|𝑓|2 + 𝜆(𝑓)}𝜆(𝑓)𝑝−2(𝑓⋕)2,              (3) 
Where ∆  denotes the Laplacian: 

∆  = 4 
𝜕2

𝜕𝑧𝜕𝑧
. 

From (2) and (3), it should be noted that  

𝑓 ∈ 𝐻𝜎
𝑝

     if and only if    ‖𝜆(𝑓)‖𝑝 < ∞ 

∆(𝜆(𝑓)𝑝)~∆𝜆(𝑓)𝑝−1(𝑓⋕)2                                         (4) 
Here and after 𝜓~𝜙  means that either both sides are zero or the quotient 𝜓/𝜙 lies between 

two positive uniform constants. See, for example, [85], [86], [88], and [89] for the theory of 

𝐻𝜎
𝑝
. 

We show that 𝑓 to being a holomorphic self-map of D and denote 𝑓𝑟 ;  0 ≤  𝑟 ≤  1, as 

the function de ned by 𝑓𝑟 (z) = 𝑓(𝑟𝑧);  𝑧 ∈ 𝐷. Positive constants depending on p (or q) will 

be denoted by 𝐶𝑝 (𝑜𝑟 𝐶𝑝), whose quantities may vary at each occurrence. 

       For h holomorphic in D, g-function of Paley defined by 

𝑔(𝜃) ≔ 𝑔(ℎ)(𝜃) = (∫|ℎ′|2
1

0

(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟)

1
2

, 0 ≤ 𝜃 < 2𝜋.            (5) 

Satisfies ‖𝑔(ℎ)‖𝐿𝑝~‖ℎ‖𝑝𝑖𝑓 ℎ(0) = 0, ([91]). Consider Green’s theorem of the form 

𝑟 ∫
𝜕𝜓

𝜕𝑟
𝑑𝜃 =  ∬ ∆𝜓 𝑑𝑥𝑑𝑦

|𝑧|≤𝑟

2𝜋

0

 

Valid for  𝜓 ∈ 𝐶2(𝐷). if we integrate  both sides with respect to  dr after dividing them  by  

r  and applying   𝜓 = 𝜆(𝑓)𝑝, then we obtain , by use of (4) 

 ‖𝜆(𝑓𝜌)‖𝑝
𝑝
−  𝜆(𝑓)𝑝(0) 
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~
1

2𝜋
∫
𝑑𝑟

𝑟

𝜌

0

∬ 𝜆(𝑓)𝑝−1(𝑓⋕)2(𝑧)

|𝑧|<𝜌

𝑑𝑥 𝑑𝑦.                            (6) 

=  
1

2𝜋
∬ 𝜆(𝑓)𝑝−1(𝑓⋕)2(𝑧)𝑙𝑜𝑔

𝜌

|𝑧|
|𝑧|<𝜌

𝑑𝑥 𝑑𝑦.             0 ≤ 𝜌 ≤ 1. 

In particular, we see from (6) that 𝑓 ∈  𝐻𝜎
1 if and only if 

∞ >∬ (𝑓⋕)2

𝐷

(𝑧)𝑙𝑜𝑔
1

|𝑧|
𝑑𝑥𝑑𝑦. 

This suggests we de ne the hyperbolic version of g-function using 𝑓⋕. We define 

 𝑔𝜎(𝜃) ≔ 𝑔𝜎(𝑓)(𝜃) = ∫ (𝑓
⋕)2

1

0
(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟,     0 ≤ 𝜃 < 2𝜋.                   (7) 

It is not surprising to see the absence of the square root in the definition of 𝑔𝜎  in (7) when 

we compare it to that of g- function in (5), because there is a known parallelism (see [89]) 

between 𝐻2 𝑎𝑛𝑑 𝐻𝜎
1 . 

Theorem (2.1.2)[80]:    𝐼𝑓   1  ≤  𝑝 <  ∞, then the following are equivalent. 

(i) 𝑓 ∈  𝐻𝜎
𝑝
  

(ii) 𝑔𝜎  (𝑓)  ∈  𝐿
𝑝(𝑇 ):  

      In fact, ‖𝜆(𝑓)‖𝑝 ∼  ‖𝑔𝜎(𝑓)‖𝐿𝑝    𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑓(0)  =  0. 

Proof. By (6) and (7), there is nothing to prove when p = 1. We assume 1 <  𝑝 <

 ∞, 𝑎𝑛𝑑 𝑙𝑒𝑡 
1

𝑝
 +  

1

𝑞
 =  1. 

(i) ⟹ (ii) We begin with the identity 

‖𝑔𝜎‖𝐿𝑝 = 𝑠𝑢𝑝∫ 𝑔𝜎(𝜃)

2𝜋

0

ℎ(𝜃)
𝑑𝜃

2𝜋
. 

where the supremum is taken with respect to all nonnegative trigonometric poly-nomials h 

with ‖ℎ‖𝐿𝑞 ≤ 1. . Since (𝑓⋕)2is subharmonic, we have 

(𝑓⋕)2(𝑟2𝑒𝑖𝜃) ≤ ∫ 𝑃(𝑟, 𝜃 − 𝑡)

2𝜋

0

(𝑓⋕)2(𝑟𝑒𝑖𝜃)
𝑑𝜃

2𝜋
. 0 ≤ 𝑟 < 1.        (8) 

where P (𝑟, 𝜃)is the Poisson kernel: 

𝑃(𝑟, 𝜃) =  
1 − 𝑟2

1 − 2𝑟𝑐𝑜𝑠𝜃 + 𝑟2.
. 

Let 𝑢 be the Poisson integral of ℎ. Then 

∫ 𝑔𝜎(𝜃)

2𝜋

0

ℎ(𝜃)𝑑𝜃 =  ∫ ∫(𝑓⋕)2(𝑟𝑒𝑖𝜃)

1

0

2𝜋

0

 ℎ(𝜃)(1 − 𝑟)𝑑𝑟𝑑𝜃

=  ∫ ∫(𝑓⋕)2(𝑟2𝑒𝑖𝜃)

1

0

2𝜋

0

 ℎ(𝜃)(1 − 𝑟2)2𝑟𝑑𝑟𝑑𝜃 

≤ 2∬ (𝑓⋕)2(𝑧)
𝐷

𝑢(𝑧)(1 − |𝑧|2)𝑑𝑥𝑑𝑦                        (9) 
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≤ 4∬ (𝑓⋕)2(𝑧)
𝐷

𝑢(𝑧)𝑙𝑜𝑔
1

|𝑧|
𝑑𝑥𝑑𝑦 

where we changed the order of integration and used (8) in the  first inequality. 

       If we denote    𝜕 =
1

2
(
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑥
) 𝑎𝑛𝑑 𝜕 =

1

2
(
𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑥
) , 𝑧 = 𝑥 + 𝑖𝑦,    , then it follows 

from elementary calculation and (3) that 

4(𝑓⋕)2𝑢 = ∆(𝜆(𝑓)𝑢) − 4 (𝜕𝜆(𝑓)𝜕𝑢 + �̅�𝜆(𝑓)𝜕𝑢), 

So that by (9) we have  

∫ 𝑔𝜎(𝜃)

2𝜋

0

ℎ(𝜃)𝑑𝜃 

≤ |∬ ∆(𝜆(𝑓)𝑢)(𝑧)𝑙𝑜𝑔
1

|𝑧|
𝑑𝑥𝑑𝑦

𝐷

|                              (10) 

+ 4∬  |𝜕𝜆(𝑓)𝜕𝑢 + �̅�𝜆(𝑓)𝜕𝑢|
𝐷

(𝑧)𝑙𝑜𝑔
1

|𝑧|
𝑑𝑥𝑑𝑦 =  (𝐼)  +  (𝐼𝐼): 

Now, using Green's Theorem (as in (6) with p = 1) with limiting process and Hölder's 

inequality, we obtain 

(𝐼) =  |lim
𝜌→1

∫ (𝜆(𝑓)𝑢)

2𝜋

0

(𝜌𝑒𝑖𝜃)𝑑𝜃 − 2𝜋(𝜆(𝑓)𝑢)(0)|                     (11) 

≤ 2𝜋 ‖𝜆(𝑓)‖𝑝‖𝑢‖𝑞 ≤ 2𝜋‖𝜆(𝑓)‖𝑝. 

On the other hand, if we let 𝜙 be a holomorphic function in D whose real part is u, it then 

follows from direct differentiation that 

|𝜕𝜆(𝑓)| = |�̅�𝜆(𝑓)| =  |𝑓| 𝑓⋕ 

and  

|𝜕𝑢| =  |�̅�𝑢| =  
1

2
|𝜙′| 

Hence  

(𝐼𝐼) ≤ 4∬ |𝜙′(𝑧)||𝑓(𝑧)|𝑓⋕(𝑧)𝑙𝑜𝑔
1

|𝑧|
𝑑𝑥𝑑𝑦

𝐷

 

≤ 4∫ ∫|𝜙′(𝑟𝑒𝑖𝜃)|

1

0

|𝑓(𝑟𝑒𝑖𝜃)|𝑓⋕
2𝜋

0

(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟𝑑𝜃. 

Since |𝑓(𝑟𝑒𝑖𝜃)| ≤ √𝜆(𝑓)(𝑟𝑒𝑖𝜃) ≤ 𝑀
𝜆

1

2(𝑓, 𝜃),, we have, by the Schwarz inequality, 

(𝐼𝐼) ≤ 4∫ 𝑀
𝜆

1
2

2𝜋

0

(𝑓, 𝜃)√𝑔𝜎(𝜃)𝑔𝜙(𝜃)𝑑𝜃).                                      (12) 

where 𝑔𝜙(𝜃) is Paley g-function of 𝜙 . Applying Hölder's inequality with indices 2p, 2p, q 

to the right side of (12) and using maximal Theorem (2.1.1), we arrive at 

(𝐼𝐼)   ≤ 𝐶𝑝 ‖𝜆(𝑓)‖𝑝

1
2  ‖𝑔𝜎(𝑓)‖𝐿𝑝

1
2 ‖𝑔𝜙‖𝐿𝑞

. 

From the theory of g-function, we know ‖𝑔𝜙‖𝐿𝑞
≤ 𝐶𝑞‖𝜙‖𝑞 and it follows from the theorem 

of M. Riesz ([91]) that ‖𝜙‖𝑞 ≤ 𝐶𝑞‖𝑢‖𝑞 ≤ 𝐶𝑞. Thus 
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(𝐼𝐼) ≤ 𝐶𝑞‖𝜆(𝑓)‖𝑝

1
2‖𝑔𝜎(𝑓)‖𝐿𝑝

1
2                       (13) 

Hence, combining estimates (10), (11), and (13), we have 

∫ 𝑔𝜎(𝜃)ℎ

2𝜋

0

(𝜃)𝑑𝜃 ≤ (𝐼) + (𝐼𝐼) ≤ 2𝜋‖𝜆(𝑓)‖𝑝+𝐶𝑝‖𝜆(𝑓)‖𝑝
1/2‖𝑔𝜎(𝑓)‖𝐿𝑝

1/2
 

for all positive trigonometric polynomials h with ‖ℎ‖𝑞 ≤ 1. Therefore we obtain 

‖𝑔𝜎(𝑓)‖𝐿𝑝 ≤ ‖𝜆(𝑓)‖𝑝+𝐶𝑝‖𝜆(𝑓)‖𝑝

1
2‖𝑔𝜎(𝑓)‖𝐿𝑝

1
2 , 𝑓 ∈ 𝐻𝜎

𝑝
                   (14) 

Now we could from (14) that  

‖𝑔𝜎(𝑓)‖𝐿𝑝 ≤ 𝐶𝑝‖𝜆(𝑓)‖𝑝.                                        (15) 

In fact, if f  ≡ 0, then there is nothing to prove; otherwise, setting 

𝑋(𝑟) =  𝑋(𝑓, 𝑝, 𝑟) =  (
‖𝑔𝜎(𝑓)‖𝐿𝑝.
‖𝜆(𝑓𝑟)‖𝑝

)

1
2

, 0 < 𝑟 < 1,  

with 𝑓𝑟 the place of f becomes 

𝑋2(𝑟) ≤ 1 + 𝐶𝑝𝑋(𝑟) 

and this means, by comparing the order of X(r), that X(r), 0 < r < 1, does not exceed the 

larger root of the equation X2 = 1 + 𝐶𝑝𝑋: This proves (15) with 𝑓𝑟 , 0 ≤ 𝑟 <  1, in place of 

f, and so (15) follows by the monotonicity of both sides. 

(ii) ⟹ (i) It follows from (6) that 

‖𝜆(𝑓𝑟)‖𝑝
𝑝
− 𝜆(𝑓)𝑝(0) ∼ 𝐶𝑝∫

𝑑𝜃

2𝜋
∫(𝑓⋕)2
𝑟

0

2𝜋

0

𝜆(𝑓)𝑝−1(𝜌𝑒𝑖𝜃)𝑙𝑜𝑔
𝑟

𝜌
𝜌𝑑𝜌 

≤ 𝐶𝑝∫ 𝑀
𝜆

1
2(𝑓𝑟 , 𝜃)

2𝜋

0

𝑔𝜎(𝑓)(𝜃)
𝑑𝜃

2𝜋
. 

Hölder's inequality and the maximal theorem show the last quantity to be bounded 

𝐶𝑝(𝑓) ‖𝜆(𝑓𝑟)‖𝑝
𝑝−1‖𝑔𝜎(𝑓)‖𝐿𝑝. 

so that we have 

‖𝜆(𝑓𝑟)‖𝑝
𝑝
−  𝜆(𝑓)𝑝(0) ≤   𝐶𝑝(𝑓)‖𝜆(𝑓𝑟)‖𝑝

𝑝−1‖𝑔𝜎(𝑓)‖𝐿𝑝.                       (16) 

If 𝑔𝜎 ≡ 0 , there remains nothing to prove. Otherwise, under the assumption 0 < ‖𝑔𝜎‖𝐿𝑝 <
 ∞, by considering the order of 

𝑌 (𝑟)  =  𝑌 (𝑓, 𝑝, 𝑟)  =  ‖𝜆(𝑓𝑟)‖𝑝/‖𝑔𝜎(𝑓𝑟)‖𝐿𝑝  ) ;  0 <  𝑟 <  1; 

we conclude that Y (r); 0 < r < 1, does not exceed the largest root of the equation 

𝑌𝑝 −
𝜆(𝑓)𝑝(0)

‖𝑔𝜎(𝑓)‖𝐿𝑝
𝑝

.

= 𝐶𝑝𝑌
𝑝−1 

and from this follows 

‖𝜆(𝑓)‖𝑝   ≤  𝐶𝑝(𝑓) ‖𝑔𝜎(𝑓)‖𝐿𝑝. 

Here, 𝐶𝑝(𝑓) denotes a constant depending on p and f. 

       The last assertion of Theorem (2.1.2) follows from (15) and (16). 

We prove the main theorem, Theorem (2.1.1). By the aid of Theorem (2.1.2), we show 

the following. 

Theorem (2.1.3)[80]: If 1 ≤ 𝑝 < ∞, then the following are equivalent. 

(i) 𝑔𝜎  (𝑓)  ∈  𝐿
𝑝(𝑇 ). 
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(ii) 𝐶𝑓 takes Blochs to 𝐻2𝑝 . 

Proof.  (i) ⟹ (ii)  Let  ℎ ∈  𝐵. Then 

|(𝐶𝑓ℎ)
′
| |(ℎ ∘ 𝑓)′| ≤ ‖ℎ‖𝔅𝑓

⋕.                                         (17) 

Hence  

‖𝑔ℎ∘𝑓‖𝐿2𝑃
2𝑝

= ∫ (∫|(ℎ ∘ 𝑓)′(𝑟𝑒𝑖𝜃)|
2
(1 − 𝑟)𝑑𝑟

1

0

)

𝑝2𝜋

0

𝑑𝜃

2𝜋
 

≤  ‖ℎ‖𝔅
2𝑝
∫ (∫(𝑓⋕)2(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟

1

0

)

𝑝

𝑑𝜃

2𝜋

2𝜋

0

 

= ‖ℎ‖𝔅
2𝑝‖𝑔𝜎(𝑓)‖𝐿𝑝

𝑝
                                                              (18) 

Therefore ‖ℎ ∘ 𝑓‖2𝑝 < ∞  𝑖𝑓 𝑔𝜎(𝑓) ∈ 𝐿
𝑝(𝑇). 

(ii) ⟹ (i) using 𝑔-function, (ii) says that 

∫ (∫(ℎ ∘ 𝑓)′|2(𝑟𝑒𝑖𝜃)(1 − 𝑟)𝑑𝑟

1

0

)

𝑝2𝜋

0

𝑑𝜃 < ∞  if ℎ ∈ 𝔅.                       (19) 

On the other hand, W. Ramey and D. Ullrich ([87], Proposition 5.4) constructed two Bloch 

functions ℎ𝑗, 𝑗 =  1,2, such that 

(1 − |𝑧|2)(|ℎ1
′ (𝑧)|  +  |ℎ2

′ (𝑧)|)  ≥  1;   𝑧 ∈  𝐷.                                     (20) 
       From (20) it follows that ((|ℎ1

′ ∘ 𝑓|  +  |ℎ2
′ ∘ 𝑓|)   ≥  (1 − |𝑓|2)−1, so that 

(∫|(ℎ1∘ 𝑓)
′|2

1

0

(1 − 𝑟)𝑑𝑟)

𝑝

+ (∫|(ℎ2∘ 𝑓)
′|2

1

0

(1 − 𝑟)𝑑𝑟)

𝑝

 

≥  2−2𝑝 (∫|𝑓′|2(|ℎ1
′ ∘ 𝑓|  +  |ℎ2

′ ∘ 𝑓|)2(1 − 𝑟)𝑑𝑟

1

0

)

2

 

≥ 2−2𝑝   (∫
|𝑓′|2

(1 − |𝑓|2)2

1

0

(1 − 𝑟)𝑑𝑟)

𝑝

=  2−2𝑝𝑔𝜎
𝑝(𝑓)                       (21) 

Now, integrating (21) with respect to 𝑑𝜃 and applying (19) with ℎ𝑗 , 𝑗 =  1,2 in place of ℎ, 

we obtain 

‖𝑔𝜎(𝑓)‖𝑝 ≤ 𝐶𝑝(‖ℎ1 ∘ 𝑓‖2𝑝 + ‖ℎ2 ∘ 𝑓‖2𝑝) 

This completes the proof 

𝐻∞ denotes, as usual, the space of bounded holomorphic functions on D. A well-

known theorem of deLeeuw and Rudin ([83], Theorem 7.9) says that 

∫ 𝑙𝑜𝑔
1

1 − |𝑓(𝑒𝑖𝜃)|2
 𝑑𝜃 = ∞.

2𝜋

0

 

is necessary and sufficient for a holomorphic  𝑓 𝑤𝑖𝑡ℎ ‖𝑓‖∞ = 𝑠𝑢𝑝𝑧∈𝐷|𝑓(𝑧)| = 1 to be an 

extreme point of the closed unit ball of  𝐻∞.The following is a direct corollary of Theorem 

1. 

Corollary (2.1.4)[80]: Let 𝑓 ∈ 𝐻∞;  ‖𝑓‖∞ =  1. Then the following are equivalent. 
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(i) 𝑓 is an extreme point of the closed unit ball of 𝐻∞. 

(ii) ℎ ∘ 𝑓 ∉ 𝐻2 for some ℎ ∈ ℬ. 

Section (2.2): Bloch Spaces and Symmetric Measures 
       Let 𝐻∞denote the algebra of bounded analytic functions in the unit disc 𝔻 of the 

complex plane ℂ. The well-known Schwarz-Pick theorem asserts that if 𝑓 ∈ 𝐻∞ with 

‖𝑓‖∞ = 𝑠𝑢𝑝{|𝑓(𝑧)|: 𝑧 ∈ 𝔻} ≤ 1 

Then 𝑓 decreases hyperbolic distances; that is,  

|
𝑓(𝑧) − 𝑓(𝑎)

1 − 𝑓(𝑎)̅̅ ̅̅ ̅̅ 𝑓(𝑧)
| ≤ |

𝑧 − 𝑎

1 − �̅�𝑧
| 

For all 𝑧, 𝑎 ∈ 𝔻  or, infinitesimally, 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ 1 − |𝑓(𝑧)|2   𝑓𝑜𝑟 𝑧 ∈ 𝔻 

A function 𝐼 ∈ 𝐻∞ is called inner if it has radial limits of modulus 1 at almost every point 

of the unit circle 𝕋. If 𝐸 ⊂ 𝕋 then |𝐸| denotes its normalized Lebesgue measure. We 

introduce several measures on 𝕋, but the expression `almost every' always refers to 

Lebesgue measure. We assume a knowledge of inner function, such as is to be found in [84]. 

In particular, we may write I as I=BS 

𝐵(𝑧) =  ∏
𝑧𝑛̅̅ ̅

|𝑧𝑛|
(
𝑧𝑛 − 𝑧

1 − 𝑧𝑛̅̅ ̅ 𝑧
)

∞

𝑛=1

 

Is the Blaschke product associated with the zero set  {𝑧𝑛}  of I, and  

𝑆 = 𝑆[𝜇](𝑧) = 𝑒𝑥𝑝 {−∫
𝜉 + 𝑧

𝜉 −  𝑧
𝕋

𝑑𝜇(𝜉)} 

is the singular inner factor associated with the positive singular measure 𝜇. 

The first result is the construction of an inner function I which, in some sense, decreases 

hyperbolic distances as much as desired as |𝑧| → 1. 

Theorem (2.2.1)[92]:  Let     𝜙: (0,1] → (0,∞)be a continuous function with 

lim
𝑡→0

𝜙(𝑡) = 0. 

Then there exists an inner function I such that 

( lim
|𝑧|→1−

(1 − |𝑧|2)|𝐼′(𝑧)|

𝜙(1 − |𝐼(𝑧)|2)
) 

We apply this theorem to prove some results on composition operators, Zygmund functions 

and the existence of certain singular measures. 

       Recall that a function, analytic in 𝔻, is called a Bloch function if the quantity 

‖𝑓‖𝔅 =  𝑠𝑢𝑝{(1 − |𝑧|
2) |𝑓′(𝑧)|: 𝑧 ∈ 𝔻} 

is finite. The Banach space of all such functions is the Bloch space, denoted by 𝔅 with 

|𝑓(0)| + ‖𝑓‖𝔅  as norm. The Little Bloch space 𝔅0 is the subspace of 𝔅 consisting of those 

𝑓 ∈ 𝔅 for which 

lim
|𝑧|→1−

(1 − |𝑧|2)|𝑓′(𝑧)| = 0. 

     The Zygmund class Λ∗ = Λ∗(𝕋)  is the space of continuous functions F on 𝕋 for which 

sup{|𝐹(𝑒𝑖(𝜃+ℎ)) + 𝐹(𝑒𝑖(𝜃−ℎ)) − 2𝐹(𝑒𝑖𝜃)|: 𝑒𝑖𝜃 ∈ 𝕋 } ≤ 𝐾|ℎ| 

for some constant K. When the quantity above is 𝑜(|ℎ|) 𝑎𝑠 ℎ → 0 we say that F is in the 

small Zygmund class 𝜆∗(𝕋). Roughly speaking, Zygmund functions are the primitives of 

functions in the Bloch space, namely an analytic function 𝑓 is in 𝔹 if and only if  
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𝐹(𝑧) =  ∫𝑓(𝑡)

𝑧

0

𝑑𝑡. 

belongs to Λ∗(𝕋) for |𝑧| = 1.. Analogous relations hold between 𝔅0 and 𝜆∗ (see [108]). 

       Some consequences of Theorem (2.2.1) are as follows. Given a positive continuous 

function 𝑤: [0,1) → (0. +∞) with  

lim
𝑡→1

𝑤(𝑡) =  +∞. 

let 𝐻(𝑤)  denote the Banach space of functions 𝑓 , analytic in 𝔻 such that 

‖𝑓‖𝑤 =  𝑠𝑢𝑝{|𝑓(𝑧)| 𝑤(|𝑧|)
−1: 𝑧 ∈ 𝔻} < ∞. 

 

Corollary (2.2.2)[92]: Let w be as above and   𝜀 > 0  be given. Then there exists a non-

constant inner function I such that the composition operator 𝐶(𝐼), defined as   

𝐶(𝐼)(𝑓) = 𝑓 ∘ 𝐼 
maps 𝐻(𝑤) into 𝔅0. Moreover 𝐶(𝐼) is compact with ‖𝐶(𝐼)‖ < 𝜀. 
       The argument leading from Theorem (2.2.1) to this corollary is very flexible and may 

be applied to obtain other results of a similar type. One such result is the following. 

Corollary (2.2.3)[92]:  Given any sequence {𝑓𝑛} of analytic function  in  𝔻  , there exists an 

inner function I such that 𝑓𝑛 ∘ 𝐼 ∈ 𝔅0 𝑓𝑜𝑟  𝑛 = 1,2,3, …. 
Another application of Theorem (2.2.1) is as follows. 

Corollary (2.2.4)[92]:  Let I be a non-constant inner function satisfying 

( lim
|𝑧|→1−

(1 − |𝑧|2)|𝐼′(𝑧)|

(1 − |𝐼(𝑧)|2)2
) = 0.  

(That is, as the Theorem (2.2.1) with 𝜙(𝑡) = 𝑡2). Let J be  a measurable subset of  𝕋  and 

set  

𝐸 = 𝐼−1(𝐽) 
Then the function 

                                   𝐹(𝑥) = ∫ 𝜒𝐸(𝑒
𝑖𝑡)𝑑𝑡

𝑥

0
  - 

Belong  to 𝜆∗(ℝ) 
            L�̈�ewner's lemma asserts, with the above notation, that |𝐸| = |𝐽|whenever 𝐼(0) = 0 

and so, for any inner function  

 𝐼, 0 < |𝐸| < 1 𝑖𝑓 0 < |𝐽| < 1. 
the conclusion of Corollary (2.2.4) was considered in [103] where it was shown  that if 

𝐹 ∈ 𝜆∗(ℝ)  𝑡ℎ𝑒𝑛|𝐸| = 0  𝑜𝑟 |𝐸| = 1 𝑜𝑟 dim(𝜕𝐸) = 1. 
Thus, if I is as in Corollary (2.2.4), the boundary of the pre-image by I of any Borel set of 

positive measure has Hausdorff dimension 1. The inner function I has very wild behavior. 

The proof of Theorem (2.2.1) follows from the following two theorems. 

       Recall that a Blaschke product is called interpolating if 

𝑖𝑛𝑓𝑛(1 − |𝑧𝑛|
2)|𝐵′(𝑧𝑛)| > 0, 

where {𝑧𝑛}  is the zero sequence of B. Such a function cannot belong to 𝔅0 except when it 

has a finite number of zeros. 

        The function B in Theorem (2.2.10) will in fact be a covering map. Theorem (2.2.10) 

permits us to establish Corollaries (2.2.2) and (2.2.3) with 𝔅0replaced by ℬ, but with the 

extra conclusion that the corresponding inner function is an interpolating Blaschke product. 

       Functions in 𝔅0map hyperbolic discs of a fixed diameter into euclidean discs of 

diameter tending to 0 as one approaches 𝕋 = 𝜕𝔻. The second step of our construction 
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concerns inner functions which map hyperbolic discs of a fixed diameter into hyperbolic 

discs of diameter tending to 0 as one approaches 𝕋. 

Theorem (2.2.5)[92]: There exist a non- constant inner function I for which  

lim
|𝑧|→1−

(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
= 0.                                               (22) 

Such an inner function I cannot extend analytically to any point of  𝕋  . Indeed, if has an 

angular derivative at the point  𝜉 ∈ 𝕋  , that is, if the quotient 
𝐼(𝑧) − 𝐼(𝜉)

𝑧 − 𝜉
 

Has a limit when  𝑧 approaches 𝜉 non-tangentially, then the Julia-Caratheodory lemma 

asserts that 

lim
𝑧→𝜉

(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
> 0. 

Although the inner functions of Theorem (2.2.5) are in  𝔅0 , they form a strict subclass of 

𝔅0. Because there exist inner functions in  𝔅0 which can be extended analytically to almost 

every point of 𝕋 (see [84]). Inner functions in 𝔅0 have been considered by Bishop in [95] 

and we use some of his ideas. 

It is worth mentioning also that the condition (22) in Theorem (2.2.5) has appeared in [19] 

in connection with composition operator from 𝔅0 into itself, Indeed Theorem (2.2.5) in 

answer a question in [19] as whether  there is a function  𝜙  in   𝔅0 with 𝐶(𝜙) compact as 

an operator from 𝔅0 to 𝔅0 such that 𝜙(𝔻)̅̅ ̅̅ ̅̅ ̅ ∩ 𝕋 is infinite. We may take 𝜙(𝑧) to be the inner 

function 𝐼(𝑧) of Theorem (2.2.5) for which 𝜙(𝔻)̅̅ ̅̅ ̅̅ ̅ =  �̅�. Also, the completely opposite 

situation has been considered in [101]. 

Now suppose  that  𝑓 ∈ 𝐻∞  , with   ‖𝑓‖∞ ≤ 1 . For  𝛼 ∈ 𝕋  the functions  

𝐻𝛼(𝑧) =
𝛼 + 𝑓(𝑧)

𝛼 − 𝑓(𝑧)
                                                             (23) 

have positive real part. Hence there exist positive measures 𝜎𝛼 on T such that the 

Herglotz representation 

𝑅𝑒𝐻𝛼(𝑧) =  ∫ 𝑃(𝑧, 𝜉)

𝕋

𝜎𝛼(𝜉) 

holds for all 𝑧 ∈ 𝔻. Here, 

 𝑃(𝑧, 𝜉) =  (1 − |𝑧|2)|1 − 𝜉̅𝑧|
−2

 

denotes the Poisson kernel. It is well known (and easy to prove) that the measure 𝜎𝛼 is 

singular for some 𝛼 ∈ 𝕋 if and only if 𝑓 is inner. Moreover if 𝑓 and 𝐻𝛼 are related by (23) 

then 

lim
|𝑧|→1−

(1 − |𝑧|2)|𝑓′(𝑧)|

1 − |𝑓(𝑧)|2
= 0. 

If and only if  

lim
|𝑧|→1

(1 − |𝑧|2)|𝐻𝛼
′(𝑧)|

𝑅𝑒𝐻𝛼(𝑧)
= 0.                                             (24) 

So to prove Theorem (2.2.5) it is sufficient to construct a singular measure 𝜎 such that its 

Herglotz transform H satisfies (24). 

       To avoid endless repetition, 𝐽 and 𝐽′ will henceforth, denote adjacent arcs of 𝕋 with 
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|𝐽 | = |𝐽′ | . 
We have the following. 

Theorem (2.2.6)[92]: Let H be analytic in 𝔻 with 𝑅𝑒𝐻(𝑧) > 0  𝑓𝑜𝑟 𝑧 ∈ 𝔻. Let 𝜎 be the 

corresponding measure on 𝕋 for which 

𝑅𝑒𝐻(𝑧) =  ∫ 𝑃(𝑧, 𝜉)

𝕋

𝑑𝜎(𝜉) 

The following statements are equivalent: 

(a)                                   lim
|𝑧|→1−

(1−|𝑧|2)|𝐻′(𝑧)|

𝑅𝑒𝐻(𝑧)
= 0 

(b)                                           lim
|𝐽|→0

𝜎(𝐽)

𝜎(𝐽′)
= 1 

Positive measures satisfying (b) are called symmetric (see [100]). Thus, to prove Theorem 

(2.2.5) it is sufficient to exhibit a positive singular symmetric measure. In fact, such 

measures were constructed by L. Carleson in [97] in connection with quasiconformal 

mappings. It is also possible to prove Theorem (2.2.5) using a construction of C. Bishop and 

the following result. 

Here  𝒬 denotes the Carleson square 

𝒬 =  {𝑧: 𝑧 =  𝑟𝑒𝑖𝜃, 𝜃𝜖𝐽, 𝐼 − |𝐽| ≤ |𝑧| < 1}. 

Corresponding to an interval   𝐽 ⊂ 𝕋. |𝒬| = |𝐽| 𝑎𝑛𝑑 𝒬′ and is the corresponding Carleson 

square for 𝐽′. 
    As mentioned above, L, Carleson constructed singular symmetric measures. Indeed, let 

𝑤(𝑡) be a continuous incresing function on [0, 1], with 𝑤(0) = 0, such that 𝑡−1/2𝑤(𝑡) is 

decreasing. Let 𝜎 be a positive measure on 𝕋 such that  

|𝜎(𝐽) − 𝜎(𝐽′)| ≤ 𝑤(|𝐽|)𝜎(𝐽). 
For any arc J of the unit circle. L. Carleson showed that that the condition 

∫
𝑤2(𝑡)

𝑡
𝑑𝑡 < ∞.

0

 

 

implies that 𝜎 is absolutely continuous and in fact, its derivative is in 𝐿2. Conversely, if    

∫
𝑤2(𝑡)

𝑡
𝑑𝑡 = ∞.

0

 

there exists a positive singular measure on 𝕋 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 
|𝜎(𝐽) − 𝜎(𝐽′)| ≤ 𝑤(|𝐽|)𝜎(𝐽). 

for any arc J of the unit circle. 

     A similar situation occurs when looking for the best decay one can have in Schwarz’s 

Lemma. Given a positive increasing function  𝑤 𝑜𝑛(0,1]   , consider 

�̃�(𝑡) = 𝑡 ∫
𝑤(𝑠)

𝑆2
1

𝑡
𝑑𝑠 + 𝑡𝑤(1)  𝑓𝑜𝑟 𝑡 ∈ (0,1]                         (25)   . 

Observe that �̃�(𝑡) ≥ 𝑤(𝑡) for 0 < 𝑡 < 1, and �̃�(𝑡) ≤ 𝑐(𝜀)𝑤(𝑡) if 
𝑤(𝑡)

𝑡1−𝜀
is decreasing for 

some 𝜀 > 0. 
Theorem (2.2.7)[92]: Let 𝑤 be a positive continuous function on (0, 1]. 

a) Assume that 
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∫
𝑤2(𝑡)

𝑡
0

𝑑𝑡 < ∞. 

Then there is no non-constant inner function I such that 

(1 − |𝑧|2)
|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
≤ 𝑤(1 − |𝑧|). 

 For all  𝑧 ∈ 𝔻. 
(b) Let 𝑤 be increasing. Assume that there exist constants 𝑘 and  𝛿 such that 

𝑤(𝑡) ≤ 𝑘𝑤(𝑡)  𝑖𝑓 0 < 𝑡 < 𝛿. 
And 

∫
𝑤2(𝑡)

𝑡
0

𝑑𝑡 = ∞. 

Then there exists a non-constant inner function such that 

(1 − |𝑧|2)
|𝐼′(𝑧)|

1−|𝐼(𝑧)|2
≤ 𝐶𝑤(1 − |𝑧|).               For  𝑧 ∈ 𝔻. 

Where 𝐶 is an absolute constant. 

For instance the function  𝑤(𝑡) =  |log 𝑡|−𝛼 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 (𝑎)𝑤ℎ𝑒𝑛 𝛼 >
1

2
 𝑎𝑛𝑑 (𝑏) 𝑤ℎ𝑒𝑛 𝛼 ≤

1

2
. 

    The construction of the inner function in part (b) of Theorem (2.2.7) uses symmetric 

singular measures. Actually, we need a refinement of the Carleson result, where we assume 

the integral condition and that 𝑤(𝑡)/𝑡decreases. This is done by means of Riesz products. 

Using Theorem (2.2.7), one can prove versions of Corollaries (2.2.2) and (2.2.3) with 𝔅0 

replaced by the space 𝔅0(𝑤) of holomorphic functions 𝑓 in the unit disc such that 

lim
(1 − |𝑧|2)|𝑓′(𝑧)|

𝑤(1 − |𝑧|2)
= 0.. 

where 𝑤 fulfills  the conditions in part (b) of Theorem (2.2.7). 

      Corresponding to the Zygmund class and the Bloch space, there are the Zygmund 

measures, that is, positive measures 𝜇 in 𝕋 for which 

|𝜇(𝐽) − 𝜇(𝐽′)| = 𝑂(|𝐽|)   𝑎𝑠 |𝐽| → 0. 
This condition is equivalent to the fact that the primitive of 𝜇 is in the Zygmund class. 

Piranian [107] and Kahane [104] constructed finite positive singular measures satisfying 

|𝜇(𝐽) − 𝜇(𝐽′)| = 𝑜(|𝐽|)   𝑎𝑠 |𝐽| → 0. 
We call such measures Kahane measures. Using Theorem (2.2.1) or Theorem (2.2.7) we 

will construct measures which are simultaneously symmetric and Kahane. In fact, as is to 

be expected from [97] and [104], one is able to replace the o (1) condition by a condition of 

the form  𝑂(𝑤(|𝐽|))    where w fulfills the conditions in part (b) of Theorem (2.2.7). The 

point is that we do this in a new and uniform way. In private communications, A. Canton 

[96] and F. Nazarov showed us other ways of producing Kahane symmetric measures. 

        Also, one can establish the following sharp version of Corollary (2.2.4). 

        The hyperbolic metric in 𝔻 is the Riemannian metric λ𝔻(z)|dz|, where  λ𝔻(z) =
 (1 − |z|2)   . Let Ω  be a hyperbolic domain, that is, a domain in the complex plane whose 

complement has at least two points. Let  π:𝔻 → Ω   be a universal covering map. Then λ𝔻  

projects to the Poincar�́� metric  λ𝔻(z)|dz|  of  Ω , where 

λΩ(π(z)). |π
′(z)| = λ𝔻(z)  
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Schwarz’s lemma asserts that holomorphic mapping 𝑓 from 𝔻  into Ω decrease hyperbolic 

distances, or infinitesimally, 

(1 − |z|2)|f ′(z)|λΩ(f(z)) 

For all     z ∈ 𝔻.  
A holomorphic function from the unit disc into is called inner (into) if 

|{𝑒𝑖𝜃 : lim
𝑟→1

𝑓(𝑒𝑖𝜃) 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 Ω = 0.}| 

If 𝜋 is a holomorphic covering map from 𝔻 into Ω, then 𝜋 is inner; and as a matter of fact, 

if f is any holomorphic function from 𝔻 into Ω which factorizes 𝑓 =  𝜋 ∘ 𝑏, where 𝑏: 𝔻 →, 𝔻 

then f is inner (into Ω) if and only if  b is inner into 𝔻 (see [99]). 

       The theorems stated have counterparts in this more general setting. For instance, 

Theorem (2.2.7) shows that if Ω is a hyperbolic domain and a positive weight satisfies 

∫
𝑤2(𝑡)

𝑡
0

𝑑𝑡 < ∞. 

 

then there is no non-constant inner function 𝐼 into Ω such that 

(1 − |𝑧|2)|𝐼′(𝑧)|𝜆Ω(𝐼(𝑧)) ≤ 𝑤(1 − |𝑧|). 

for all 𝑧 ∈ 𝔻. On the other hand, if w fulfills the conditions in part (b) of Theorem (2.2.7), 

there exists a non-constant inner function I into Ω such that 

(1 − |𝑧|2)|𝐼′(𝑧)|𝜆Ω(𝐼(𝑧)) ≤ 𝑤(1 − |𝑧|).  for 𝑧 ∈ 𝔻.] 
We prove Theorem (2.2.10) and apply it to establish some results on composition 

operators. We contain two proofs of Theorem (2.2.5), using Theorems (2.2.6) and (2.2.28) 

respectively. Then we use Theorem (2.2.5) to establish Theorem (2.2.1) and the corollaries 

mentioned in this introduction, together with other related results. The proof of Theorem 

(2.2.6) and consists of a discretization procedure, which can be adapted to prove Theorem 

(2.2.28). As mentioned, this uses some of the ideas of [95]. We prove Theorem (2.2.7). This 

uses the existence of singular symmetric measures proved by L. Carleson and a refinement 

of Theorem (2.2.6), whose proof is different from the one. Also, several ways of 

constructing singular measures which are both symmetric and Kahane are mentioned. We 

construct singular symmetric measures using Riesz products. 

We learned that Wayne Smith had previously obtained Theorem (2.2.7), and hence 

Theorem (2.2.5), by different methods [109]. 

       The proof of Theorem (2.2.10) is based on an estimate of the density of the hyperbolic 

metric on plane domains, due to Beardon and Pommerenke [94]. We require only a crude 

estimate of this type, for which we present a proof. 

Lemma (2.2.8)[92]: Let Ω be a domain in 𝔻 and let f be an analytic function in 𝔻 with 

𝑓(𝔻) ⊂ Ω. Then, for all 𝑧 ∈ 𝔻, 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ 6 𝑑𝑖𝑠𝑡(𝑓(𝑧), 𝜕Ω) log
𝑒

𝑑𝑖𝑠𝑡(𝑓(𝑧), 𝜕Ω)
. 

Proof. Let  𝑎 ∈ 𝜕Ω be such that dist  (𝑓(𝑧), 𝜕Ω) = |𝑓(𝑧) − 𝑎   |, and assume first that 

|𝑓(𝑧) − 𝑎| ≥
1

4
(1 − |𝑓(𝑧)|2). 

Then 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ (1 − |𝑓(𝑧)|2) ≤ 4|𝑓(𝑧) − 𝑎| ≤ 6|𝑓(𝑧) − 𝑎|log
𝑒

|𝑓(𝑧) − 𝑎|
. 
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   If, on the other hand. 

|𝑓(𝑧) − 𝑎| <
1

4
(1 − |𝑓(𝑧)|2).                                          (26) 

Then  𝑎 ∈ 𝔻 , that is 𝑎 ∉ 𝕋. Since 

𝑆(𝑧) = 𝑒𝑥𝑝 (−
1 + 𝑧

1 − 𝑧
) 

is a universal covering map of the punctured unit disc 
𝔻

{0}
, there exists a holomorphic 

mapping 𝜙 from 𝔻 into 𝔻 satisfying 
𝑓 − 𝑎

1 − �̅�𝑓
= 𝑆 ∘ 𝜙. 

  A simple calculation shows that 

(1 − |𝑤|2)|𝑆′(𝑤)| = 2|𝑆(𝑤)| log|𝑆(𝑤)|−1. 
for 𝑤 ∈ 𝔻 and hence 

(1 − |𝑧|2) (1 − |𝑎|2)

|1 − �̅�𝑓(𝑧)|2
|𝑓′(𝑧)| ≤ (1 − |𝜙(𝑧)|2)|𝑆′𝜙(𝑧)| 

=  2 |
𝑓(𝑧) − 𝑎

1 − �̅�𝑓(𝑧)
| log |

𝑓(𝑧) − 𝑎

1 − �̅�𝑓(𝑧)
|

−1

. 

Thus 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ 2
|1 − �̅�𝑓(𝑧)|

1 − |𝑎|2
 |𝑓(𝑧) − 𝑎| log

𝑒

|𝑓(𝑧) − 𝑎|
. 

and the result follows from (26). 

       We also use the following elementary result. 

Lemma (2.2.9)[92]:  Let  ℎ: (0,1] → (0,1]  be a continuous function. Then there exists a 

countable set Λ ⊂ 𝔻/{0}  whose cluster set is contained in 𝕋 such that, for all 𝑧 ∈ 𝔻, 

dist(𝑧, Λ⋃𝕋) ≤ ℎ(1 − |𝑧|). 
Theorem (2.2.10)[92]: Let   𝜙: (0,1] → (0,∞)  be a continuous function 𝜙(0+)  = 0.  

Then there exists an interpolating Blaschke product B such that  

(1 − |𝑧|2)|𝐵′(𝑧)| ≤ 𝜙(1 − |𝐵(𝑧)|)2 

For all 𝑧 ∈ 𝔻. 
Proof. Given 𝜙(𝑡) consider a continuous function ℎ: (0,1] → (0,1] satisfying 

6ℎ(𝑡)𝑙𝑜𝑔
𝑒

ℎ(𝑡)
≤  𝜙(𝑡 ). 

for all 𝑡 ∈ (0,1] For the set Λ of Lemma (2.2.9), let B be a holomorphic universal covering 

of 𝔻 onto Ω =
𝔻

Λ
. . Then Lemmas (2.2.8) and (2.2.9) show that 

 (1 − |𝑧|2)|𝐵′(𝑧)| ≤ 𝜙(1 − |𝐵(𝑧)|2) 
as required and it remains to show that B is an interpolating Blaschke product. Since 𝐵 ∈
𝐻∞, its radial limit 𝐵(𝜉)  for almost every 𝜉 ∈ 𝕋 Moreover, since B is a covering 𝐵(𝜉) ∈
Λ⋃𝕋 and hence in fact 𝐵(𝜉) ∈ 𝕋 for almost every  𝜉 ∈ 𝕋 since Λ is countable. Thus B is 

inner. 

       If B had a singular inner factor then there would be at least one value of 𝜉 ∈ 𝕋,  

𝜉0 𝑠𝑎𝑦,𝑤𝑖𝑡ℎ  
lim
𝑟→1−

𝐵 (𝑟𝜉0) = 0. 

        We have arranged that 0 ∉ Λ and so this cannot happen. Thus B is a Blaschke product. 

To prove that it is interpolating it is sufficient to observe that the quantity 
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(1 − |𝑧|2)|𝐵′(𝑧)| depends only on 𝐵(𝑧). Indeed, if 𝐵(𝑎) = 𝐵(𝑏) , then there exists an 

automorphism 𝜙 of 𝔻  such that 𝜙 (𝑎) =  𝑏 and  𝐵 ∘ 𝜙 ≡ 𝐵. Hence 

(1 − |𝑏|2)|𝐵′(𝑏)| = (1 − |𝑎|2)|𝜙′(𝑎)||𝐵′(𝑏)| = (1 − |𝑎|2)|𝐵′(𝑎)|. 
𝑡ℎ𝑒𝑛  

infn{|1 − |𝑧𝑛|
2)|𝐵′(𝑧𝑛)| : 𝐵

′(𝑧𝑛) = 0} ≥ 𝛿 > 0.  
for some suitable 𝛿 as required. 

       Now suppose that 𝐵 ∈ 𝐻∞with 𝑘‖𝐵‖∞! ≤ 1 It was shown in [19] that the composition 

operator 𝐶(𝐵)is compact in 𝔅 if and only if 

(1 − |𝑧|2)|𝐵′(𝑧)| = 𝑜(1)(1 − |𝐵(𝑧)|2)𝑎𝑠|𝐵(𝑧)| → 1.  
Thus Theorem (2.2.10) has the following corollary. 

Corollary (2.2.11)[92]: There exists an interpolating Blaschke product B such that the 

composition operator 

𝐶(𝐵): 𝔅 → 𝔅,   𝐶(𝐵)(𝑓) = 𝑓 ∘ 𝐵. 
is compact. 

      Next we consider the space 𝐻(𝑤)of analytic functions in the unit disc such that the norm 

‖𝑓‖𝑤 = 𝑠𝑢𝑝 {
𝑓|𝑧|

𝑤(|𝑧|)
: 𝑧 ∈ 𝔻} < ∞. 

Here w denotes a positive continuous function on [0, 1) with lim
𝑡→1−

𝑤(𝑡) = ∞.  

Corollary (2.2.12)[92]: For any function 𝑤 as above and 𝜀 > 0, there exists an interpolating 

Blaschke product B such that the composition operator 𝐶(𝐵) maps 𝐻(𝑤) into the Bloch 

space 𝔅 and 

‖𝐶(𝐵)(𝑓)‖𝔅 ≤ 𝜀‖𝑓‖𝑤 

Proof. Replacing 𝑤 by 𝜀−1𝑤, one can assume that 𝜀 = 1,  if 𝑓 ∈ 𝐻𝑤 𝑎𝑛𝑑 ‖𝑓‖𝑤 = 1, then, 

from Cauchy's inequality, 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ 4𝑤 (|𝑧| +
1

2
(1 − |𝑧|)). 

If we choose 𝜙(𝑡) so that 

𝑤(𝑡 +
1

2
(1 − 𝑡))𝜙(1 − 𝑡2) ≤ 1. 

for 0 ≤ t < 1 then 𝜙(𝑡) → as 𝑡 → 0. By Theorem (2.2.10), there exists an interpolating 

Blaschke product B such that 

(1 − |𝑧|2)|𝐵′(𝑧)| ≤ 𝜙(1 − |𝐵(𝑧)|2) 
for 𝑧 ∈ 𝔻. Hence for all  𝑧 ∈ 𝔻, 

(1 − |𝑧|2)(𝑓 ∘ 𝐵)′(𝑧) ≤ 1. 
      Applying [19] or Corollary (2.2.11), one can arrange that the composition operator is 

compact. 

𝐶(𝐵): 𝐻(𝑤) → 𝔅. 
Corollary (2.2.13)[92]: Given a sequence {𝑓𝑛}of functions analytic in 𝔻, there exists an 

interpolating Blaschke product B such that 𝑓𝑛 ∘ 𝐵 ∈ 𝔅 𝑓𝑜𝑟 𝑛 = 1,2,3, …   

Proof. It suffices to observe that there is a function 𝑤(𝑟) such that 𝑓𝑛 ∈ 𝐻(𝑤)𝑓𝑜𝑟 𝑛 =
1,2,3, … instance, we may take 

(𝑟) =  ∑ 𝑠𝑢𝑝{|𝑓𝑛(𝑧)|: |𝑧| = 𝑟}
𝑛<(1−𝑟)−1

. 

We consider the case (𝑡) = 𝑐𝑡2 . for c > 0, in Theorem (2.2.10); that is, let I be an 

inner function satisfying 
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 (1 − |𝑧|2)(𝐼′(𝑧)) ≤ 𝑐(1 − |𝐼(𝑧)|2)2                                   (27) 

For any 𝛼 ∈ 𝕋 consider the holomorphic function 

‖𝐹𝛼‖𝔅 ≤ 8𝑐. 
Thus the measures 𝜎𝛼 satisfy the Zygmund condition uniformly in 𝛼. In other words, there 

is a constant 𝐶1 such that 

|𝜎𝛼(𝑗) − 𝜎𝛼(𝑗)| ≤ 𝐶1|𝐽| 
for all 𝛼 ∈ 𝕋 and all 𝐽, 𝐽′.. 
       Denote by 𝒜(𝐼) the 𝜎-algebra generated by the preimages under I  of the Lebesgue 

measurable sets in 𝕋 and the sets of measure 0. 

Theorem (2.2.14)[92]: Let I be an inner function satisfying (27), and let  ℎ ∈ 𝐿1(𝕋)be 

measurable with respect to the 𝜎-algebra 𝒜(𝐼) Then the Cauchy transform of h, that is 

𝐹(𝑧) =  ∫
ℎ(𝜉)𝑑𝜉

𝐼 − 𝜉̅𝑍
  𝑓𝑜𝑟 𝑧 ∈ 𝔻

𝑇

. 

Now there exists 𝑔 ∈ 𝐿1(𝕋) such that h = 𝑔 ∘ 𝐼 and it suffices to show that 

∫
𝑔(𝑒𝑖𝜃 )

𝐼 − 𝑒𝑖𝜃𝐼(𝑧)
  𝑑𝜃 ∈ 𝔅.

2𝜋

0

 

We observe that the function 

𝑓(𝑧) = ∫
𝑔(𝑒𝑖𝜃 )

𝐼 − 𝑒𝑖𝜃𝑧
  𝑑𝜃.

2𝜋

0

 

belongs to 𝐻(𝑤)𝑤ℎ𝑒𝑟𝑒𝑏 𝑤(𝑡) = (1 − 𝑡)−1 . If I is an inner function satisfying (27) then 

the proof of Corollary (2.2.12) shows that 𝑓 ∘ 𝐼 ∈ 𝔅 as required. 

       The following corollary is now immediate. 

Corollary (2.2.15)[92]:  Under the assumptions of Theorem (2.2.14), the function 

𝐹(𝑥) =  ∫ ℎ( 𝑒𝑖𝑡)𝑑𝑡, 𝑤𝑖𝑡ℎ ℎ ∈ 𝐿1.

𝑥

0

 

belongs to the Zygmund class Λ∗(ℝ). 

𝑅𝑒𝐻𝛼(𝑧) = 𝑅𝑒
𝛼 + 𝑓(𝑧)

𝛼 − 𝑓(𝑧)
=  ∫ 𝑃(𝑧, 𝜉)𝑑

𝕋

𝜎𝛼(𝜉).                            (28) 

Where 𝛼 ∈ 𝕋, 𝑓 ∈ 𝐻∞, 𝑊𝑖𝑡ℎ ‖𝑓‖∞ ≤ 1 𝑎𝑛𝑑 𝜎𝛼(𝜉) is thr associated positive probability 

measure on 𝕋. The function is inner if and only if the measure 𝜎𝛼 is singular for some 𝛼 ∈
𝕋. In particular, if 𝜎𝛼 is singular for some  𝛼 ∈ 𝕋 then 𝜎𝛼 is singular for all 𝛼 ∈ 𝕋. Also, the 

support of 𝜎𝛼 is a finite set if and only if f is a finite Blaschke product. So this condition is 

also independent of 𝛼 ∈ 𝕋. However, the fact that 𝜎𝛼 satisfies some property usually does 

not imply that 𝜎𝛽 satisfies the same property if 𝛽 ≠ 𝛼. See [93], where some examples are 

considered. 

The fact that f satisfies the conclusion of Theorem (2.2.5) can be rephrased in terms 

of  𝜎𝛼,  with 𝛼 ∈ 𝕋. 
Proposition (2.2.16)[92]: Suppose that   with   𝑓 ∈ 𝐻∞   𝑤𝑖𝑡ℎ ‖𝑓‖∞ ≤ 1. . The following 

assertions are equivalent: 

(a)  lim
|𝑧|→1

(1−|𝑧|2)|𝑓′(𝑧)|

1−|𝑓(𝑧)|2
= 0. 
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(b) |∫
�̅�𝑑𝜎𝛼(𝜉)

(1−�̅�𝑧)
2𝑇
| =  𝜎(1) ∫

𝑑𝜎𝛼(𝜉)

(1−�̅�𝑧)
2   𝑎𝑠 |𝑧| → 1

𝑇
 

(c) lim
|𝑧|→1−

(1−|𝑧|2)|𝐻𝛼
′ (𝑧)|

𝑅𝑒𝐻𝛼(𝑧)
= 0. 

Where 𝑓,𝐻𝛼 and 𝜎𝛼 are related by (28). 

Proof. Fix  𝛼 ∈ 𝕋 . If   𝐻𝛼 = (𝛼 + 𝑓)(𝛼 − 𝑓)
−1, then  𝑓 =  𝛼(𝐻𝛼 − 1)(𝐻𝛼 + 1)

−1and  

1 − 𝑓 =
4𝑅𝑒 𝐻𝛼
|1 + 𝐻𝛼|

2 .       𝑓
′ =

2𝛼𝐻𝛼
′

(𝐻𝛼 + 1)
2 

Thus  
|𝐻𝛼

′ |

𝑅𝑒 𝐻𝛼
=

2|𝑓′|

1 − |𝑓|2
′ 

Thus condition (a) may be written as  

lim
|𝑧|→1

(1 − |𝑧|2)|𝐻𝛼
′ (𝑧)| 

𝑅𝑒𝐻𝛼(𝑧)
 =  0. 

And since  

𝐻𝛼
′ (𝑧) = 2 ∫

𝜉̅𝑑𝜎𝛼(𝜉)

(1 − 𝜉̅𝑧)
2

𝑇

, 

And   

𝑅𝑒𝐻𝛼(𝑧) =  ∫
(1 − |𝑧|2)𝑑𝜎𝛼(𝜉)

|1 − 𝜉̅𝑧|
2 .

.𝑇

 

The result follows. 

       The proof of Theorem (2.2.5) now follows from Proposition (2.2.16), Theorem (2.2.6) 

and the existence of singular symmetric measures. We may also prove Theorem (2.2.5) from 

the following proposition. 

Proposition (2.2.17)[92]: Let 𝜎 be a positive measure on 𝕋 and set 

𝑆[𝜎](𝑧) = exp(−∫
𝜉 + 𝑧

𝜉 − 𝑧
𝕋

 𝑑𝜎(𝜉 )). 

there 𝜎 is symmetric if and only if  

lim
|𝑧|→1−

(1 − |𝑧|2)|𝑆[𝜎](𝑧)|

|𝑆[𝜎](𝑧)| log(𝑆[𝜎](𝑧)−1)
  =  0. 

Proof. If  

𝐻(𝑧) =  ∫
𝜉 + 𝑧

𝜉 − 𝑧
  𝑑𝜎(𝜉) 𝑧 ∈ 𝔻

𝑇

. 

Then  

(1 − |𝑧|2)|𝑆[𝜎](𝑧)|

|𝑆[𝜎](𝑧)| log(𝑆[𝜎](𝑧)−1)
=  
(1 − |𝑧|2)|𝐻′(𝑧)|

𝑅𝑒𝐻(𝑧)
 

and the result follows from Theorem (2.2.6). 

       Note that whenever 𝜎 is a singular symmetric measure, then Theorem (2.2.5) holds for 

=  𝑆[𝜎] . 
       There is yet another way of proving Theorem (2.2.5). In [95], Bishop has constructed a  
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Blaschke product in  𝔅0. In fact, if  

𝜇 =  ∑ (1 − |𝑧|2)𝛿𝑧
𝑧,𝐵(𝑧)=0

.  

Then his construction  satisfies  

lim
|𝒬|→0

𝜇(𝒬)

𝜇(𝒬′)
 =  1.                                                (29) 

where, as before, Q and 𝒬′ are contiguous Carleson squares of the same size. Applying 

Theorem (2.2.28) one can easily show that (29) implies that 

lim
|𝑧|→1

(1 − |𝑧|2)|𝐵′(𝑧)|

1 − |𝐵(𝑧)|2
= 0. 

Observe also that, by Proposition (2.2.16) and Theorem (2.2.6), the corresponding singular 

measures 𝜎𝛼, with 𝛼 ∈ 𝕋will be symmetric. 

       The next corollary follows from Theorem (2.2.5) and Theorem (2.2.1) in [19]. 

Corollary (2.2.18)[92]: There exists an inner function I such that the composition operator 

𝐶(𝐼) 𝑚𝑎𝑝𝑠   𝔅 into 𝔅0compactly. 

We set 

𝐼(𝑧) = 𝐵(𝐼0 (𝑧) ). 
    where B satisfies the hypotheses of Theorem (2.2.10) and 𝐼0 the hypotheses of Theorem 

(2.2.5). Then 

(1 − |𝑧|2)|𝐼′(𝑧)|

𝜙(1 − |𝐼(𝑧)|2)
=
(1 − |𝑧|2)|𝐵′(𝐼0 (𝑧) )||𝐼0

′(𝑧)|

𝜙(1 − |𝐵(𝐼0 (𝑧) )|
2)

≤
(1 − |𝑧|2)|𝐼0

′(𝑧)|

1 − |𝐼0 (𝑧)|
2 → 0  𝑎𝑠 |𝑧| → 1.  

Corollaries (2.2.2) and (2.2.3) then follow also from Corollaries (2.2.12) and (2.2.13) by 

composing with the same inner function 𝐼0. Observe that in any of these results the inner 

function whose existence is asserted can be chosen to be singular or a Blaschke product. 

Moreover Corollary (2.2.12) and the Remark after Corollary (2.2.13) apply with 𝔅 replaced 

by  𝔅0. 

       Let 𝒟  be the set of inner  functions I for which  

lim
|𝑧|→1−

(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
= 0. 

We note that 𝒟 is an ideal in the space of inner functions with respect to composition from 

the left. In fact, if I ∈ 𝒟 𝑎𝑛𝑑 𝜙 ∈ 𝐻∞ with ‖𝜙‖∞ ≤ 1. then it follows from Schwarz's lemma 

that 
(1 − |𝑧|2)|𝜙′(𝐼(𝑧))||𝐼′(𝑧)|

1 − |𝜙(𝐼(𝑧))|
2 ≤

(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
 

This shows again that the inner function in Theorem (2.2.5) can be taken to be a singular 

inner function as well as a Blaschke product. 

       The next result asserts that the only primary ideals (with respect to left composition) of 

inner functions contained in 𝔅0 are the ones given by functions in D. 

Proposition (2.2.19)[92]: Let I be an inner function such that 𝜙 ∘ 𝐼 ∈ 𝔅0 for any inner 

function 𝜙. Then 𝐼 ∈ 𝒟. 

Proof.  It is obvious that 𝐼 ∈ 𝔅0. If 𝐼 ∈ 𝒟 then there exists {𝑧𝑛} ⊂ 𝔻such that 

lim
𝑛→∞

𝐼 (𝑧𝑛) = 1. 

and 
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(1 − |𝑧𝑛|
2)|𝐼′(𝑧𝑛)|

1 − |𝐼(𝑧𝑛)|
2 ≥ 𝛿 > 0. 

for 𝑛 = 1,2,3, …. Passing to a subsequence, if necessary, we may assume that {𝐼(𝑧𝑛)} forms 

an interpolating sequence for 𝐻∞. If 𝜙 is the corresponding interpolating Blaschke product, 

then for 𝑛 = 1,2,3, …. one has 

(1 − |𝐼(𝑧𝑛)|
2)|𝜙′(𝐼(𝑧𝑛))| ≥ 𝐶. 

And  

(1 − |𝐼(𝑧𝑛)|
2)|𝐼′(𝑧𝑛)||𝜙

′(𝐼(𝑧𝑛))| ≥ 𝐶
(1 − |𝑧𝑛|

2)|𝐼′(𝑧𝑛)|

1 − |𝐼(𝑧𝑛)|
2 ≥ 𝐶𝛿. 

contradicting the fact that    𝜙 ∘ 𝐼 ∈ 𝔅0. 
       It is worth mentioning that there are no ideals with respect to composition from the right 

contained in 𝔅0. Indeed if one consider the singular inner function  

𝜙(𝑧) = 𝑒𝑥𝑝 [− (
1 + 𝑧

1 − 𝑧
)]. 

Then 𝐼 ∘ 𝜙  does not belong to 𝔅0 for any non-constant analytic 1 quantity (1 −
|𝑧|2)|𝐼′(𝜙(𝑧))||𝜙′(𝑧)|. 
Cannot tend to zero, no matter what 𝐼 is. 

   However, there do exist non-trivial right ideals. For instance, if   𝛼 ≥ 0   then the set  

𝒟𝛼 =  {𝑓: 𝑓 𝑖𝑛𝑛𝑒𝑟 
(1 − |𝑧|2)|𝑓′(𝑧)|

(1 − |𝑓(𝑧)|)
= 𝑂(1)𝑎𝑠 |𝑧| →} 

Is a bilateral ideals. It is interesting to observe that if   𝑓 ∈ 𝒟𝛼 and    𝑔 ∈ 𝒟𝛼 then 𝑓 ∘ 𝑔 ∈
𝒟𝛼+𝛽. 

       Let us next consider  𝜙(𝑡) =  𝑡2 in Theorem (2.2.1) so that I is an inner function 

satisfying 

lim
|𝑧|→1−

(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼(𝑧)|2
= 0.                                              (30) 

Theorem (2.2.20)[92]: Let I be an inner function satisfying (30) and let 𝜎𝛼, for 𝛼 ∈ 𝕋 , be 

the corresponding singular measures defined by (28). Then 𝜎𝛼 are (uniformly in  𝛼 ∈ 𝕋 ) 

Kahan measures, that is  

lim
|𝐽|→0

1

|𝐽|
(𝜎𝛼(𝐽) − 𝜎𝛼(𝐽

′)) =  0 . 

Uniformly for 𝛼 ∈ 𝕋. 
Proof. It is well known that the Herglotz integral of a positive measure is in 𝔅 if and only 

if the measure is Zygmund, and it is in 𝔅0 if and only if the measure is in the small Zygmund 

class (see [108]). So it is sufficient to observe that the functions (𝛼 + 1)(𝛼 − 1)−1are in  𝔅0  

and 

sup𝛼sup1>|𝑧|≥1−𝑟(1 − |𝑧|
2) |(

𝛼 + 𝐼

𝛼 − 𝐼
)
′

(𝑧)| → 0  𝑎𝑠  𝑟 → 1. 

Observe that Proposition (2.2.16) and Theorem (2.2.6) also show that 𝜎𝛼  are (uniformly in 

𝛼 ∈ 𝕋)  symmetric measures. 

       The following theorem, is established in a similar manner to Theorem (2.2.14) and 

Corollary (2.2.15). Recall that given an inner function 𝐼,𝒜(𝐼) denotes the 𝜎-algebra 

generated by the preimages under I of the Lebesgue measurable sets in 𝕋 and the sets of 

measure 0. 

Theorem (2.2.21)[92]: Let I be an inner function satisfying (30) and let 𝑓 ∈ 𝐿1(𝕋) 
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measurable with respect to the 𝜎 -algebra   𝒜(𝐼). Then 

(a)  the function 

𝐺(𝑧) =  ∫
𝑓(𝜉) 𝑑𝜉

1 − 𝜉̅𝑧
𝑇

. 

Belong to 𝔅0, and 

(b)  the function 

𝐹(𝑥) =  ∫ 𝑓( 𝑒𝑖𝑡)𝑑𝑡.

𝑥

0

. 

Belong to 𝜆∗𝕋(ℝ). 
If one chooses 𝑓 as the characteristic function of 𝐼−1(𝐽), one obtains Corollary (2.2.4). 

       To prove Theorem (2.2.6) we restate condition (a) as  

∫ 𝑃 (𝑧, 𝜉 )
𝑑𝜎(𝜉)

𝜏(𝑧, 𝜉 )
𝑇

= 𝑜(1)∫ 𝑃 (𝑧, 𝜉 )𝑑𝜎(𝜉)

𝑇

  𝑎𝑠 |𝑧| → 1−              (31) 

Where  

𝜏(𝑧, 𝜉 ) =  
𝜉 − 𝑧

1 − 𝑧̅𝜉
(𝜉 ∈ 𝕋). 

It is readily shown that this is equivalent to (a). 

       Given a point z =  𝑟𝑒𝑖𝜃 ∈ 𝔻  , denote by 𝐽(𝑧)  the arc of 𝕋 with center 𝑒𝑖𝜃  and  

(normalized) length  1-r . Also, given an arc 𝐽 ⊂ 𝕋and M > 0 let MJ be the arc of the same 

centre and with |𝑀𝐽| =  𝑀|𝐽| 
Part I: (b) ⟹ (a). Assume that (b) holds. We first prove the following. 

Lemma (2.2.22)[92]: Given 𝜀 > 0 there exist 𝑁 >  0 and 𝛿 >  0 such that if  1 − 𝛿 <
|𝑧| < 1, then 

∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉) < 𝜀 ∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉)

𝕋𝕋/𝑛𝑗(𝑍)

 

The lemma states, roughly speaking, that contributions to the Poisson integral from far away 

do not matter. 

Proof. Given 𝜀 > 0,, choose 𝛿 so that if 𝐽 is an arc of  𝕋 with |𝐽| < 𝛿  𝑡ℎ𝑒𝑛  
|𝜎(𝐽) − 𝜎(𝐽′)| < 𝜀𝜎(𝐽) 

And hence  

|𝜎(𝐽⋃𝐽′) − 𝜎(𝐽′)| < 𝜀𝜎(𝐽) 
Hence, if   2𝑘|𝐽| < 𝛿, we have  

𝜎(2𝑘𝐽) < (2 + 𝜀)𝑘𝜎(𝐽). 
We break the integral on the left into dyadic pieces. Let M denote the integer part of 

𝑙𝑜𝑔2(𝛿/(1 − |𝑧|)), so that 2𝑀(1 − |𝑧|)~𝛿. Then, using crude estimates we obtain 

∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉) ≤ 𝐶 ( ∑
𝜎 (2𝑘𝐽(𝑧))

22𝑘(1 − |𝑧|2)

𝑀

𝑘−log2𝑁

+ ∑
𝜎 (2𝑘𝐽(𝑧))

22𝑘(1 − |𝑧|2)
𝑘>𝑀

)

𝕋/𝑛𝑗(𝑍)

. 

Where 𝐶 is an absolute constant. 

       The first sum is bounded by 
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𝜎(𝐽(𝑧))

|𝐽(𝑧)|
∑ (

2 + 𝜀

4
)
𝑘

< 𝜀 ∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉).

𝕋

∞

𝑘=𝑙𝑜𝑔2𝑁

 

If 𝑁 is sufficiently large. 

       Observe now that, for any 𝜀 > 0. 
𝜎(𝐽)

|𝐽|2
≥ (

4

2 + 𝜀
)
𝜇(2𝐽)

|2𝐽|2
 

If  |𝐽|  is sufficiently small. Iterating this inequality, we obtain 

𝜎(𝐽)

|𝐽|2
> 𝐶 (

4

2 + 𝜀
)
𝑛

→ ∞ 𝑎𝑠 𝑛 → ∞. 

Thus   

lim
|𝐽|→𝔻

𝜎(𝐽)

|𝐽|2
= ∞.                                     (32) 

the second sum above can be estimated by  
2𝜎(𝕋)

22𝑀4(1 − |𝑧|)
~
𝜎

𝛿2
(1 − |𝑧|). 

And from (32) if  (1 − |𝑧|) is sufficiently small, this does not exceed 

𝜀
𝜎(𝐽(𝑧))

1 − |𝑧|
< 𝜀 ∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉).

𝕋

 

As required. 

       Now let l > 0 be a small number to be fixed later and divide 𝑁𝐽(𝑧) into 𝑁/𝑙 arcs each 

of length 𝑙(1 − |𝑧|). Call these arcs 𝐽𝑘 and let the center of each arc be  𝜉𝑘 = 𝑒
𝑖𝜃.  Then 

∫ 𝑃(𝑧, 𝜉)
𝑑𝜎(𝜉)

𝜏(𝑧, 𝜉)
− 𝑃(𝑧, 𝜉𝑘)

𝜎(𝐽𝑘)

𝜏(𝑧, 𝜉𝑘)
𝐽𝑘

≤ (1 − |𝑧|2) ∫ |
𝜉

(𝜉 − 𝑧)2
−

𝜉𝑘
(𝜉𝑘 − 𝑧)

2|

𝐽𝑘

𝑑𝜎(𝜉) 

≤ (1 − |𝑧|2) ∫
|𝜉 − 𝜉𝑘|

|𝜉 − 𝑧|2
|𝜉𝜉𝑘 − 𝑧

2|

|𝜉𝑘 − 𝑧|
2

𝐽𝑘

𝑑𝜎(𝜉) 

≤ 4𝑙 ∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉). .

𝐽𝑘

 

Since   |𝜉 − 𝜉𝑘| < 𝑙(1 − |𝑧|)and    |𝜉𝜉𝑘 − 𝑧
2|~(𝜉𝑘 − 𝑧). now  

| ∫ 𝑃(𝑧, 𝜉)
𝑑𝜎(𝜉)

𝜏(𝑧, 𝜉)
−∑𝑃(𝑧, 𝜉𝑘)

𝜎(𝐽𝑘)

𝜏(𝑧, 𝜉𝑘)

𝑁/𝑙

𝑘=1𝑁𝐽(𝑧)

| 

≤ 4𝑙 ∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉).

𝕋

 

The estimate (31) follows on taking such that provided that we can show that  

|∑𝑃(𝑧, 𝜉𝑘)
𝜎(𝐽𝑘)

𝜏(𝑧, 𝜉𝑘)

𝑁/𝑙

𝑘=1

| ≤
1

𝑁
∫ 𝑃(𝑧, 𝜉)𝑑𝜎(𝜉).

𝕋

                                  (33) 
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For any  𝑧 ∈ 𝔻 such that |𝑧|  is close enough to 1. 
The number of arcs 𝐽𝑘 is large but independent of 𝑧. Hence if |𝑧| is close enough to 1, we 

have 

|𝜎(𝐽𝑘) − 𝜎(𝐽𝑖)| <
𝜖

2𝜋
𝜎(𝐽𝑘), for  1 ≤ 𝑘, 𝑗 ≤ 𝑁/𝑙. 

We write 

∑𝑃(𝑧, 𝜉𝑘)

𝑁
𝑙

𝑘=1

𝜎(𝐽𝑘)

𝜏(𝑧, 𝜉)
= ∑𝑃(𝑧, 𝜉𝑘)

𝑁
𝑙

𝑘=1

𝜎(𝐽𝑘) − 𝜎(𝐽1)

𝜏(𝑧, 𝜉)
+ 𝜎(𝐽1)∑

𝑃(𝑧, 𝜉𝑘)

𝜏(𝑧, 𝜉)

𝑁
𝑙

𝑘=1

= 𝕋1 + 𝕋2, 

say. 

Now 

|𝕋1| < 𝜖
𝜎(𝐽1)

|𝐽1|
< 𝐶𝜖∫𝑃(𝑧, 𝜉)𝑑𝜎(𝜉)

𝕋

 , 

where 𝐶 is an absolute constant, while 

𝕋2 =
𝜎(𝐽1)

|𝐽1|
∑

1 − |𝑧|2

(𝜉𝑘 − 𝑧)
2
𝜉𝑘|𝐽_𝑘|

𝑁
𝑙

𝑘=1

 

since |𝐽𝑘| = |𝐽1| for 1 ≤ 𝑘 ≤ 𝑁/𝑙. The sum above is a Riemann sum of the integral  

∫
1 − |𝑧|2

(𝜉 − 𝑧)2
𝑑𝜉

𝑁𝐽(𝑧)

, 

which an easy calculation shows to be bounded by 
𝑙

1
/𝑁. The estimate (33) follows on taking 

𝑁 large enough since 

𝜎(𝐽1)

|𝐽1|
< 2

𝜎(𝐽(𝑧))

|𝐽(𝑧)|
< 𝐶 ∫𝑃(𝑧, 𝜉)𝑑𝜎(𝜉)

𝕋

, 

where 𝐶 is an absolute constant. 

Part II: (a) ⇒ (b). The proof follows closely the arguments of [95]. Consider the pseudo 

hyperbolic disc centred at 𝑧 of radius 𝑐 < 1, that is, 

{𝑤: 𝜌(𝑤, 𝑧) < 𝑐 < 1}  where  𝜌(𝑤, 𝑧) = |
𝑤 − 𝑧

1 − 𝑧̅𝑤
|. 

Integrate (a) from 𝑧 to 𝑤 to obtain, for all 𝑐 <  1, 

sup
𝜌(𝑤,𝑧)≤𝑐

|Re 𝐻(𝑤) − Re 𝐻(𝑧)|

Re 𝐻(𝑧)
→ 0  as   |𝑧| → 1. 

Thus there exists a function 𝑎(𝑟) such that  

 

(a) 𝑎(𝑟) → 1   as  𝑟 → 1,                                                                                 

(b) sup {
|Re 𝐻(𝑤) − Re 𝐻(𝑧)|

Re 𝐻(𝑧)
: 𝜌(𝑤, 𝑧) < 𝑎(|𝑧|)} → 0  as  |𝑧| → 1.

              (34) 

Lemma (2.2.23)[92]: Suppose that (a) holds. Then, given 𝑁 >  1 there exists 𝛿 =  𝛿(𝑁) ∈
(0,1) such that if 1 −  𝛿 < |𝓏|  <  1, then  

∫  

 

𝕋\𝑁𝐽(𝓏)

 𝑃(𝓏, 𝜉) 𝑑𝜎(𝜉) <
𝐶

𝑁
 ∫  

 

𝕋

𝑃(𝓏, 𝜉) 𝑑𝜎(𝜉),  

where 𝐶 is an absolute constant.  

Proof. Let 𝛿 = 𝛿(𝑁) be a small number, to be fxed later, with 𝛿 <  1/𝑁. Given 𝓏 ∈ 𝔻, 
with 1 − |𝓏|  <  𝛿, consider the point  
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𝓏𝑁 = (1 −  𝑁(1 − |𝓏|))(𝓏/|𝓏|).  

So, (𝓏𝑁) ≡  𝑁𝐽(𝓏) and for 𝜉 ∉  𝑁𝐽(𝓏) we have  

|𝜉 − 𝓏𝑁|  <  𝐶0|𝜉 − 𝓏|,  
where 𝐶0 is an absolute constant. Hence  

𝑃(𝓏𝑁 , 𝜉) >  𝐶0
−2 𝑁𝑃(𝓏, 𝜉) 

for 𝜉 ∉ 𝑁𝐽(𝓏).  
Now, if 𝛿 >  0 is sufficiently small and 1 −  𝛿 < |𝓏|  <  1, we have  

𝑅𝑒 𝐻(𝓏) ≥
1

2
 𝑅𝑒 𝐻(𝓏𝑁) 

and hence  

∫  

 

𝕋

 𝑃(𝓏, 𝜉)𝑑𝜎(𝜉) =  𝑅𝑒 𝐻(𝓏 ) ≥
1

2
 𝑅𝑒 𝐻(𝓏𝑁) ≥

1

2
 𝐶0
−2 𝑁 ∫  

 

𝕋\𝑁𝐽(𝓏)

𝑃(𝓏, 𝜉)𝑑𝜎(𝜉) 

Lemma (2.2.24)[92]: With the above notation,  

|
𝜎(𝐽(𝓏))

|𝐽(𝓏)|
−  𝑅𝑒 𝐻(𝓏)| = 𝑜(1) 𝑅𝑒 𝐻(𝓏)𝑎𝑠 |𝓏| → 1 .̅  

Proof. For a given 𝓏 ∈ 𝔻, consider the arc  

𝐿 = {𝑟𝑒𝑖𝜃 ∶ |𝜃 −  𝑎𝑟𝑔 𝓏|  <  𝜋(1 − 𝛿)(1 − |𝓏|)}  
where 𝑟 =  𝑟(𝓏)𝛿 = 𝛿(𝓏) will be chosen later to satisfy  

𝑟 →  1, 𝛿 →  0,
1 − 𝑟

(1 − |𝓏|)𝛿
→ 0, 𝑎𝑠 |𝓏| → 1 .̅ 

Given 𝜀 >  0, Lemma (2.2.23) shows that, for any 𝑤 ∈  𝐿, 

|𝑅𝑒 𝐻(𝑤)  − ∫  

 

𝐽(𝓏)

 𝑃(𝑤, 𝜉)𝑑𝜎(𝜉)|   <  𝜀 𝑅𝑒 𝐻(𝓏) 

provided that (1 −  𝑟)/𝛿(1 − |𝓏|) is sufficiently small. Thus  

sup
𝑤 ∈ 𝐿

1

𝑅𝑒𝐻(𝓏)
 |𝑅𝑒 𝐻(𝓏) ∫  

 

𝐽(𝓏)

 𝑃(𝑤, 𝜉)𝑑𝜎(𝜉)|  → 0   as   |𝓏| → 1  ̅ 

Integrating along the arc 𝐿 we obtain  

||𝐿| 𝑅𝑒 𝐻(𝓏) −
1

2𝜋
∫  

 

𝐽(𝓏)

∫  

 

𝐿

𝑃(𝑤, 𝜉)𝑑𝜎(𝜉)|𝑑𝑤|| = 𝜊(1)|𝐿|𝑅𝑒𝐻 (𝓏) 𝑎𝑠|𝓏|  → 1  ̅.  

Now |𝐽(𝓏)| − |𝐿|  = 𝛿(1 − |𝓏|) →  0 and  

1

2𝜋
 ∫  

 

𝐿

 𝑃(𝑤, 𝜉)|𝑑𝑤| → 1 𝑎𝑠 |𝓏| → 1  ̅ 

if |𝜃 −  𝑎𝑟𝑔 𝓏| < 𝜋 (1 −  𝑐)(1 − |𝓏|). This shows that for any small number 𝑐 >  0, we 

have  

lim 𝑖𝑛𝑓|𝓏|→1
𝜎(𝐽(𝓏))

|𝐽(𝓏)|𝑅𝑒 𝐻(𝓏)
≥  1 −  𝑐  

and  

lim 𝑠𝑢𝑝|𝓏|→1
𝜎((1 − 𝑐)𝐽(𝓏)) 

|𝐽(𝓏)|𝑅𝑒 𝐻(𝓏)
≤  1 −  𝑐.  
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Consider the point 𝑤 such that 𝐽(𝑤) = (1 −   𝑐)𝐽(𝓏), that is,  

𝑤 = (1 − (1 −  𝑐)(1 − |𝓏|))(𝓏/|𝓏|).  
The second inequality gives  

lim 𝑠𝑢𝑝|𝑤|→1
𝜎(𝐽(𝑤))

|𝐽(1 − 𝑐)−1|𝐽(𝑤)||𝑅𝑒 𝐻(𝑤)
≤  1 −  𝑐.   

Thus,  

1 −  𝑐 ≤    lim 𝑖𝑛𝑓|𝓏|→1
𝜎(𝐽(𝓏))

|𝐽(𝓏)|𝑅𝑒 𝐻(𝓏)
≤   lim 𝑠𝑢𝑝|𝓏|→1

𝜎(𝐽(𝓏))

|𝐽(𝓏)−1|𝐽(𝓏)||𝑅𝑒 𝐻(𝓏)
 ≤  1,  

for any small number 𝑐 >  0. This proves the lemma.  

The proof that (𝑎)  ⟹  (𝑏) now follows immediately. For contiguous arcs 𝐽, 𝐽′ with centres 

𝓏 and 𝓏′ (and, as always, the same length),  

|
𝜎(𝐽)

|𝐽|
−
𝜎(𝐽′)

|𝐽′|
|   ≤ |

𝜎(𝐽)

|𝐽|
− 𝑅𝑒 𝐻(𝓏)|   + |

𝜎(𝐽′)

|𝐽|
− 𝑅𝑒 𝐻(𝓏′)| + |𝑅𝑒 𝐻(𝓏) − 𝑅𝑒 𝐻(𝓏′)|  . 

Lemma (2.2.24) shows that the first two terms are bounded by 𝜀(𝑅𝑒 𝐻(𝓏) + 𝑅𝑒 𝐻(𝓏′)) .  
Also 𝓏 and 𝓏′ are within a bounded hyperbolic distance of each other and hence by (34) the 

last term is also less than 𝜀(𝑅𝑒 𝐻(𝓏)). Summing up, we have  

|
𝜎(𝐽)

|𝐽|
−
𝜎(𝐽′)

|𝐽′|
|           <  4𝜀 𝑅𝑒 𝐻(𝓏) <  5𝜀 

𝜎(𝐽)

|𝐽|
,  

as required.  

Theorem (2.2.25)[92]: Let {𝑓𝓏 : 𝓏 ∈ 𝔻} be a family of positive continuous functions on 𝕋. 
Assume that there exist constants 𝐶,𝑀 >  0 such that for all 𝓏 ∈ 𝔻 and all 𝜉1, 𝜉2  ∈  𝕋 we 

have  

𝑀−1 ≤ 𝑓𝓏(𝜉1) ≤ 𝑀, | 𝑓𝓏(𝜉1) − 𝑓𝓏(𝜉2)| ≤
𝐶

1 − |𝓏|
 |𝜉1 − 𝜉2|. 

Assume, further, that 𝜎 is a symmetric measure on 𝕋. Then  

lim
|𝓏|→ 1

{(
1

𝜎(𝐽(𝓏))
∫  

 

𝕋

  𝑓𝓏(𝜉)𝑃(𝓏, 𝜉)𝑑𝜎(𝜉)) / (
1

|𝐽(𝓏)|
𝑓𝓏(𝜉)𝑃(𝓏, 𝜉)

|𝑑𝜉|

2𝜋
)} = 1.   (35) 

Proof. (This is merely sketched.) As in Lemma (2.2.22) one may replace the integrals in 

(35) by integrals on 𝑁𝐽(𝓏) for large 𝑁. The Riemann sum argument used to prove that 

(𝑏) ) ⟹ (𝑎) can now be applied.  

Corollary (2.2.26)[92]: Let 𝜎 be a symmetric measure on 𝕋 and suppose that 𝑓 is a 

continuous function on 𝕋. Then  

lim
|𝓏| →1

1 − |𝓏|

𝜎(𝐽(𝓏))
∫  

 

𝕋

(𝑓 °𝜏𝓏)(𝜉)𝑃(𝓏, 𝜉)𝑑𝜎(𝜉) =  ∫  

 

𝕋

  𝑓𝓏(𝜉)
|𝑑𝜉|

2𝜋
 

where, as before,  

𝜏𝓏(𝜉) =  
𝜉 − 𝓏

1 − 𝓏𝜉̅̅ ̅
. 

Proof. Theorem (2.2.25) can be applied directly if the continuous function satisfies a 

Lipschitz condition,  

|𝑓(𝜉1) − 𝑓(𝜉2) ≤  𝐶|𝜉1 − 𝜉2|  
on 𝕋. Moreover for 𝑓 ≡  1 one obtains  
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lim
|𝓏| →1

1 − |𝓏|

𝜎(𝐽(𝓏))
∫  

 

𝕋

𝑃(𝓏, 𝜉)𝑑𝜎(𝜉) = 1.                    (36) 

Consequently,  

𝑠𝑢𝑝
 𝓏 ∈𝔻

 
1 − |𝓏|

𝜎(𝐽(𝓏))
∫  

 

𝕋

𝑃(𝓏, 𝜉) 𝑑𝜎(𝜉) < ∞.  

Applying the Banach-Steinhaus theorem, we obtain the desired equality for any continuous 

function 𝑓 .  
Corollary (2.2.27)[92]: Let 𝜎 be a symmetric measure on 𝕋 and 𝑓 be a continuous function 

on 𝕋. Then  

lim
|𝓏| →1

∫  
 

𝕋
(𝑓 °𝜏𝓏)(𝜉)𝑃(𝓏, 𝜉)𝑑𝜎(𝜉)

∫  
 

𝕋
𝑃(𝓏, 𝜉)𝑑𝜎(𝜉)

= ∫  𝑓(𝜉)

 

𝕋

|𝑑𝜉|

2𝜋
. 

Proof. It suffices to apply (36) and Corollary (2.2.26).  

Observe that by taking 𝑓(𝓏) = �̅�, this corollary proves (𝑏) ) ⟹ (𝑎) in Theorem (2.2.6).  

Theorem (2.2.28)[92]:  Given an inner function I, consider the positive measure in 𝔻⋃𝕋, 

𝜇 =  ∑ (1 − |𝑧|2)𝛿𝑧
𝑧:𝐼(𝑍)=0

+ 2𝜎 = 0; 

where 𝛿𝑧 denotes the Dirac mass at z, the sum takes into account the multiplicity of the zeros  

of I, and 𝜎 is the measure associated with the singular part of I. The following assertions are 

equivalent: 

(𝑎)                                 lim
𝑧→1−

∑
(1 − |𝑧|2)|𝐼′(𝑧)|

1 − |𝐼′(𝑧)|2
𝑧:𝐼(𝑍)=0

= 0 

(b)for any 𝜀 > 0 the following two conditions hold: 

(1. 𝑏)           lim
𝛿→0

𝑠𝑢𝑝|𝒬|<𝛿 [|
𝜇(𝒬)

𝜇(𝒬)′
− 1| :

𝜇(𝒬)

|𝒬|
<
1

𝜀
] = 0. 

(2. 𝑏)        lim
𝑁→∞

𝑠𝑢𝑝𝒬 {∑
𝜇(2𝑘𝒬/2𝑘−1𝒬)

22𝑘𝜇(𝒬)
:
𝜇(𝒬)

|𝒬|
<
1

𝜀

∞
𝑘=𝑁 } = 0. 

Proof. This is similar to that of Theorem (2.2.6) and so is only sketched.  

Part I: (𝑏) ) ⟹ (𝑎). Using the characterization of the inner functions in ℬ0 given by Bishop 

in [95] one can easily see that 𝐼 ∈ ℬ0. Hence in proving (a) one may assume that |𝐼(𝓏)| ≥
1

2
. A computation with logarithmic derivatives shows that  

(1 − |𝓏|2)|𝐼′(𝓏)| = |𝐼(𝓏)|  |∫  

 

�̅�

 𝑃(𝓏, 𝜉)  
𝑑𝜇(𝜉)

𝑟(𝓏, 𝜉)
| .                             (37) 

while  

1 − |𝐼(𝓏)|2 ~𝑙𝑜𝑔 |𝐼(𝓏)|−2~ ∫  

 

�̅�

 𝑃(𝓏, 𝜉)𝑑𝜇(𝜉)  

and it is these last two integrals which one has to compare.  

For fixed 𝜂 >  0, condition (2.b) of Theorem (2.2.28) yields an 𝑁 >  0 such that  

∫  

 

�̅�\𝑁𝒬(𝓏)

𝑃(𝓏, 𝜉)𝑑𝜇(𝜉) < 𝜂 ∫  

 

𝔻

 𝑃(𝓏, 𝜉)𝑑𝜇(𝜉),   
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if |𝓏| is sufficiently close to 1. For such a z consider the [𝑁/𝜂] disjoint Carleson squares, 

𝒬𝑘  say, with 𝑘 =  1;  2; . . . ;   [𝑁/𝜂], of size 𝜂(1 − |𝓏|) contained in 𝑁𝒬(𝓏).  

Since 𝐼 ∈ ℬ0 and |𝐼(𝓏)| ≥
1

2
 , the zeros of 𝐼 are (hyperbolically) distant from 𝓏  and we can 

assume that the zeros of 𝐼 in 𝑁𝒬(𝓏) are contained in ⋃   𝑘  𝒬𝑘 . Thus 

𝜇(𝑁𝒬(𝓏)) = 𝜇 (⋃  

 

𝑘

 𝒬𝑘). 

As in the previous proof, the principal idea is to discretize the integral in (37) and compare 

it with an integral with respect to Lebesgue measure. If we write 𝐴 ~ 𝐵 to mean  

|𝐴 −  𝐵| ≤  𝜂 ∫  

 

�̅�

 𝑃(𝓏, 𝜉)𝑑𝜇(𝜉),  

then given points 𝜉𝑘  ∈ 𝒬𝑘 ∩ 𝕋, one can show, as before, that  

∑ 

 

𝑘

 ∫  

 

𝒬𝑘

 𝑃(𝓏, 𝜉)
𝑑𝜇(𝜉)

𝜏(𝓏, 𝜉)
 ~∑  

 

𝑘

𝑃(𝓏, 𝜉𝑘)
𝜇(𝒬𝑘)

𝜏(𝓏, 𝜉𝑘)
~
𝜇(𝓏)

|𝒬(𝓏)|
 ∑

1 − |𝓏|2

(𝜉𝑘 − 𝓏)(1 − 𝓏𝜉̅̅ ̅)
|𝒬𝑘| 

 

𝑘

 

using (1.b) of Theorem (2.2.28) in the second estimate. Finally, one only has to observe that 

the last sum is a Riemann sum for the integral  

∫  

 

𝑁𝒬(𝓏)∩𝕋

 
1 − |𝓏|2

(𝜉 − 𝓏)
2
 
 
𝑑𝜉  

and that this is bounded by 1/𝑁.  
Part II: (𝑏) ) ⟹ (𝑎). As in the proof of Theorem (2.2.6), one can show that, given 𝜂 >  0, 
there exist 𝑁 >  0 and 𝑑 >  0 such that  

∫  

 

𝑁𝒬(𝓏)∩𝕋

𝑃(𝓏, 𝜉)𝑑𝜇(𝜉) <  𝜂 ∫  

 

�̅�

   𝑃(𝓏, 𝜉)𝑑𝜇(𝜉)                                  (38) 

if 0 <  1 − |𝓏|  <  𝛿. To prove (1.b) of Theorem (2.2.28), it is sufficient to show that, for 

any 𝜀 >  0,  

sup
 𝓏:|𝐼|(𝓏)>𝜀

   
|𝜇(𝒬(𝓏))/|𝒬(𝓏|) −  𝑙𝑜𝑔 |𝐼(𝓏)|1| 

𝑙𝑜𝑔 |𝐼(𝓏)|1
  →  0 𝑎𝑠 |𝓏| → 1  ̅                                  (39) 

The estimate (39) can be proved with the same integration technique used in the 

corresponding implication in Theorem (2.2.6). Finally, to prove (2.b) of Theorem (2.2.28) 

we use (38) and (39) to show that  

∫  

 

�̅�\𝑁𝒬(𝓏)

𝑃(𝓏, 𝜉)𝑑𝜇(𝜉) < 2𝜂
𝜇(𝒬(𝓏))

|𝒬(𝓏)|
 

if 𝜇(𝒬(𝓏)) > 𝜀|𝒬(𝓏)| . One now estimates the left-hand side dyadically to obtain (2.b). The 

details are omitted.  

The existence of the function 𝐻(𝓏) of Theorem (2.2.6) as well as the existence of the 

inner function of Theorem (2.2.6) both depend ultimately on the existence of singular 

symmetric measures. In connection with the Beurling−Ahlfors extension theorem for quasi-

conformal mappings, L. Carleson has shown [97] that such measures do exist. Indeed if 

𝑤(𝑡) is a continuous increasing function on [0, 1] with 𝑤(0) =  0, such that 𝑡−1/2  𝑤(𝑡) is 

decreasing and such that  
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∫  

 

0

 
𝑤2(𝑡)

𝑡
 𝑑𝑡 = ∞,                                                    (40) 

then there exists a singular measure 𝜎 on ℝ such that  

sup
𝑥 ∈ℝ

|
𝜎(𝑥, 𝑥 +  ℎ)

𝜎(𝑥 −  ℎ, 𝑥)
−  1|   ≤  𝑤(ℎ) 𝑓𝑜𝑟 ℎ >  0.                                  (41) 

Thus choosing, for instance, 𝑤(𝑡) = (log(1/𝑡))−𝑎 , with 𝑎 ≤
1

2
 , one obtains a singular 

symmetric measure. The integral condition (40) is also necessary for the existence of a 

singular measure satisfying (41), as was also established in [97]. Actually, if j is a measure 

satisfying (41) and  

  ∫  

 

0

 
𝑤2(𝑡)

𝑡
 𝑑𝑡 < ∞,  

then j is absolutely continuous and its derivative is in 𝐿𝑙𝑜𝑐
2 .  

A similar situation occurs for inner functions.  

Theorem (2.2.29)[92]: Let 𝑤 be a positive continuous function on (0, 1). Assume that  

  ∫  

 

0

 
𝑤2(𝑡)

𝑡
 𝑑𝑡 < ∞.  

Then, there is no non-constant inner function 𝐼 such that  

(1 − |𝓏|2)
|𝐼′(𝓏)|

(1 − |𝓏|2)
 ≤ 𝑤(1 − |𝓏 |) ,  

for all 𝓏 ∈ 𝔻.  
Proof. Assume that such an inner function 𝐼 exists. Consider a positive singular measure 𝜎 

such that  

𝐻(𝓏) =
1 +  𝐼(𝓏)

1 −  𝐼(𝓏)
†   ∫  

 2𝜋

0

 
𝑒𝑖𝜃 + 𝓏

𝑒𝑖𝜃 − 𝓏
  𝑑𝜎(𝜃)𝑓𝑜𝑟 𝓏 ∈ 𝔻.  

Then, for all 𝓏 ∈ 𝔻 we have  
𝐻′(𝓏)

𝐻 (𝓏)
=

2𝐼′(𝓏)

1 −  𝐼(𝓏)2
.  

So 

(1 − |𝓏|2)
|𝐻′(𝓏)|2

|𝐻 (𝓏)|2
≤
𝑤2(1 − |𝓏|)

1 − |𝓏|2
 𝑓𝑜𝑟 𝓏 ∈ 𝔻. 

Therefore log 𝐻 is an analytic function whose boundary values are of vanishing mean 

oscillation (see [84]). In particular, 𝐻 belongs to the Hardy space 𝐻𝑝  , for any 𝑝 <  ∞. 

Since 𝜎 is a singular measure, 𝑅𝑒 𝐻(𝑒𝑖𝜃) =  0 for almost every 𝑒𝑖𝜃 ∈ 𝕋, and this is a 

contradiction (see [84]).  

Observe that the previous argument also shows, assuming the integral condition on w, that 

the only inner functions 𝐼 satisfying  

(1 − |𝓏|2)𝐼′(𝓏) ≤ 𝑤(1 − |𝓏 |2)  𝑓𝑜𝑟 𝓏 ∈ 𝔻,  
are the fnite Blaschke products.  

The converse of Theorem (2.2.29) is the following.  

We can then use the composition process. Let ∅ be a positive continuous function 

with ∅(0+) =  0 as in Theorem (2.2.5), and let 𝐵0 be the interpolating Blaschke product of 

Theorem (2.2.5).  
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Theorem (2.2.30)[92]: With 𝑤, 𝐵0, ∅ and 𝐼 as above, set 𝐵 = 𝐵0 ° 𝐼. Then  

(1 − |𝓏|2|𝐵′(𝓏)| 

∅(1 − |𝐵 (𝓏)|2)
=∘ (𝑤(1 − |𝓏 |2

 
) 𝑎𝑠|𝓏|  → 1 .̅  

This permits us to establish the analogues of Corollaries (2.2.2) and (2.2.3) with ℬ0 replaced 

by  

ℬ0(𝑤) = {𝑓 ∶  𝑓 𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐 𝑖𝑛 𝔻, lim
|𝓏|→ 1

(1 − |𝓏|2)|𝑓′(𝓏)|

𝑤(1 − |𝓏|2)
=  0},  

assuming always that 𝑤 satisfies the conditions in Theorem (2.2.32).  

As before, the case ∅(𝑡) = 𝑡2 in Theorem (2.2.30) is of special interest. If the inner function 

𝐵 is such that  

lim
|𝓏|→ 1−

 
(1 − |𝓏|2|𝐵′(𝓏)| 

(1 − |𝐵 (𝓏)|2)2𝑤(1 − |𝓏|2)
= 0,  

then the corresponding family of positive singular measures 𝜎𝑎, with 𝑎 ∈ 𝕋, satisfy, 

uniformly in a, the following two conditions simultaneously:  

|𝜎𝑎(𝐽) − 𝜎𝑎(𝐽
′)| ≤ 𝑤(|𝐽|)𝜎𝑎(𝐽)                                                    (42) 

|𝜎𝑎(𝐽) − 𝜎𝑎(𝐽
′)|  ≤ 𝑤(|𝐽|) |𝐽|,  

The point is, however, that starting from a given symmetric measure 𝜎, a whole family 

{𝜎𝑎: 𝑎 ∈ 𝕋} of singular Kahane symmetric measures, with the additional property that 𝜎𝑎 

and 𝜎𝛽 are mutually singular if 𝑎 ≠  𝛽, can be obtained.  

The condition (42) follows from the following refined version of (𝑎) ) ⟹ (𝑏) of Theorem 

(2.2.6).  

Theorem (2.2.31)[92]: Let 𝐻 be analytic in 𝔻 with 𝑅𝑒 𝐻(𝓏) >  0 for 𝓏 ∈ 𝔻. Let 𝜎 be the 

corresponding measure on 𝕋 for which  

𝑅𝑒 𝐻(𝓏) = ∫  

 

𝕋

 𝑃(𝓏, 𝜉)𝑑𝜎 (𝜉). 

Assume that  

(1 − |𝓏|2|𝐻′(𝓏)|

𝑅𝑒𝐻(𝓏)
 ≤ 𝑎(1 − |𝓏|). 

for all 𝓏 ∈ 𝔻, where a is 𝑎 positive increasing function on (0, 𝜋], with 𝑎(0+) =  0. Then  

|𝜎 (𝐽) − 𝜎 (𝐽
′)| <  𝐶𝑎(𝜋|𝐽|)𝜎(𝐽)  

for any sufficiently small arc 𝐽 of the unit circle.  

Proof. We will use the following result due to N. G. Makarov. Given an arc 𝐽 of the unit 

circle, denote by 𝓏𝐽  the point 𝜏(0) equidistant from the ends of 𝐽, where 𝜏 is the 

automorphism of the unit disc mapping the arc 𝕋 ∩ {𝑅𝑒 𝓏 >  0}onto 𝐽. Also, denote the 

domain 𝜏({𝓏 ∈ 𝔻: 𝑅𝑒 𝓏 >  0})by ∆(𝐽 )  
Lemma [105]. Let 𝑏 be an analytic function in �̅�, and 𝐽 an arc of 𝕋, and assume that  

(1 − |𝓏|2)𝑏′(𝓏) ≤  𝑎 𝑓𝑜𝑟 𝓏 ∈ 𝔻∆(𝐽 ),  
for some 𝑎 <  2. Then  

|
1

|𝐽 |
 ∫  

 

𝐽

 [exp (𝑏(𝜉) − 𝑏(𝓏𝐽)) − 1]
|𝑑𝜉|

2𝜋
|  ≤  𝐶(𝑎).  

Considering 𝐻𝑟(𝓏) = 𝐻(𝑟𝓏) with 𝑟 <  1, we may assume that 𝐻 is analytic in a 

neighbourhood of the unit disc. Given an arc 𝐽 of the unit circle, replacing 𝐻 by 𝐻 −
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𝑖𝐼𝑚 𝐻(𝓏𝐽), we also may assume that 𝐻(𝓏𝐽)  >  0. Observe that the function 𝑏 =

 𝑙𝑜𝑔 𝐻 satisfies  

(1 − |𝓏|2)𝑏′(𝓏) ≤  𝑎(1 − |𝓏|).  
Since 1 − |𝓏𝐽|  ≤  𝜋|𝐽 |, we obtain  

|
1

|𝐽 |
 ∫  

 

𝐽

 𝑅𝑒 𝐻(𝜉)
|𝑑𝜉|

2𝜋
− 𝑅𝑒𝐻(𝓏𝐽)|  ≤  𝐶𝑎(𝜋|𝐽|)𝑅𝑒𝐻(𝓏𝐽).  

Hence,  

|
𝜎(𝐽)

|𝐽 |
− 𝑅𝑒 𝐻(𝓏𝐽)|    ≤  𝐶𝑎(𝜋|𝐽|)𝑅𝑒𝐻(𝓏𝐽).  

Since  

|𝑅𝑒 𝐻(𝓏𝐽) − 𝑅𝑒 𝐻(𝓏
′
𝐽)  ≤  𝐶2(𝑎)(𝜋|𝐽|)𝑅𝑒𝐻(𝓏𝐽).   

we deduce that  

|𝜎(𝐽) −  𝜎(𝐽′)| ≤  𝐶3𝑎(𝜋|𝐽|)𝜎(𝐽), 
Theorem (2.2.32) follows from the following refined version of (𝑏) ) ⇒  (𝑎) of Theorem 

(2.2.6).  

Theorem (2.2.32)[92]: Let 𝑤 be a positive increasing function on (0, 1), with 𝑤(0+) =  0. 
Assume that there exist constants 𝑘 and 𝛿 such that  

�̃�(𝑡) ≤  𝑘𝑤(𝑡)𝑖𝑓 |𝑡|  <  𝛿,  
where �̃�(𝑡) is given by (25), and that  

∫  

 

0

 
𝑤2(𝑡)𝑑𝑡

𝑡
= ∞.  

Then, there exists an inner function 𝐼 such that  

(1 − |𝓏|2)
|𝐼′(𝓏)|

1 − |𝐼(𝓏)|2
≤ 𝑤(1 − |𝓏 | )  𝑓𝑜𝑟 𝓏 ∈ 𝔻,  

Proof. By the Carleson Theorem, when 𝑤(𝑡)/𝑡1/ 2 decreases, or applying Theorem (2.2.40) 

observing that �̃�(𝑡)/𝑡   decreases, we see that there exists a positive singular measure 𝜎 on 

𝕋 such that  

|𝜎(𝐽) −  𝜎(𝐽′)| ≤  𝐶𝑤(|𝐽|)𝜎(𝐽),  
for any arc 𝐽 of the unit circle.  

Thus, Theorem (2.2.33) gives  

(1 − |𝓏|2)
|𝐻′(𝓏)|

𝑅𝑒𝐻(𝓏)
 ≤ 𝐶1�̃�(1 − |𝓏|) ≤ 𝐶2𝑤(1 − |𝓏|), 

for all 𝓏 ∈ 𝔻. So, one can choose 𝐼 = (𝐻 −  1)(𝐻 +  1)−1 or 𝐼 = exp (−𝐻). 
Theorem (2.2.33)[92]: Let 𝜎 be a positive measure of the unit circle. Assume that  

|𝜎(𝐽) −  𝜎(𝐽′)| ≤  𝑎(𝜋|𝐽|)𝜎(𝐽),  
for any arc 𝐽 of the unit circle, where 𝑎 is a positive increasing function on (0, 1], 𝑎(0+) 0. 
Then, the function  

𝐻(𝓏) ∫  

 

𝕋

 
𝜉 + 𝓏

𝜉 − 𝓏
  𝑑𝜎(𝜉) 

satisfies  

(1 − |𝓏|2|𝐻′(𝓏)|

𝑅𝑒𝐻(𝓏)
 ≤ 𝐶�̃�(1 − |𝓏|).  
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for all 𝓏 ∈ 𝔻 where  

�̃�(𝑡) = 𝑡 ∫  

 1

𝑡

𝑎(𝑠)

𝑠2
 𝑑𝑠 +  𝑡𝑎(1).  

Proof. Let 𝐽 and ∆ be arcs of the unit circle, with 𝐽 ⊂ ∆. L. Carleson observed in [97] that 

if 𝑎(∆) <
1

2
 , one has  

|
𝜎(𝐽 )

𝜎(∆)
−
|𝐽 |

|∆|
| ≤ 𝐶𝑎 (

1

2
 |∆|),  

where 𝐶 is an absolute constant. Actually, if 𝑎 increases, then the argument of L. Carleson 

shows that 𝐶 =  1. We need more information on the measure 𝜎. 

Lemma (2.2.34)[92]: Assume that the measure 𝜎 and the function a satisfy the conditions 

of Theorem (2.2.33). Let 𝐽 and ∆ be arcs of the unit circle, with  𝐽 ⊂  ∆, |∆| ≥

 2|𝐽 | and 𝑎(∆) <
1

8
 . Then,  

𝜎(𝐽)

|𝐽|
exp (− ∫  

|∆|

|𝐽|

4𝑎(𝑡)

𝑡
 𝑑𝑡) ≤

𝜎(∆)

|∆|
≤
𝜎(𝐽)

|𝐽|
 𝑒𝑥𝑝 (∫  

|∆|

|𝐽|

4𝑎(𝑡)

𝑡
 𝑑𝑡).  

Proof. Choose a natural number 𝑛 such that 2𝑛 |𝐽 |  < |∆|  <  2𝑛+1 |𝐽 |, and arcs 𝐽 ⊂  𝐾0 ⊂
 𝐾1 ⊂ . . . ⊂  𝐾𝑛 =  ∆, with |𝐾𝑖+1| = 2|𝐾𝑖|, for 𝑖 =  0; . . . ;  𝑛 −  1, and |𝐾0|  ≤  2|𝐽 | . Then 

for 𝑖 =  0; . . . ;  𝑛 −  1 we have  

𝜎(𝐾𝑖)

|𝐾𝑖|
(1 +

1

2
 𝑎(|𝐾𝑖|))

−1

 ≤
𝜎(𝐾𝑖+1)

|𝐾𝑖+1|
 ≤
𝜎(𝐾𝑖 )

|𝐾𝑖 |
 (1 +

1

2
 𝑎(|𝐾𝑖|))   

and  
𝜎(𝐽)

|𝐽|
(1 +  2𝑎(|𝐽|))

−1
 ≤
𝜎(𝐾0)

|𝐾0|
 ≤
𝜎(𝐽)

|𝐽|
(1 +

17

8
 𝑎(|𝐽 |))   

Since,  

1 +
1

2
 𝑎(|𝐾𝑖|) ≤ exp ( ∫  

2 |𝐾𝑖|

|𝐾𝑖|

𝑎(𝑡)

𝑡

𝑑𝑡

2𝑙𝑜𝑔2
 )   

and  

1 +
17

8
 𝑎(|𝐽 |) ≤ exp ( ∫  

2 |𝐽|

|𝐽|

17𝑎(𝑡)

8(𝑙𝑜𝑔2)𝑡
 𝑑𝑡 )  

the lemma follows.  

The following result follows from Lemma (2.2.34).  

Lemma (2.2.35)[92]: Under the assumptions of Lemma (2.2.34), one has  

|
𝜎(𝐽)

|𝐽|
−
𝜎(∆)

|∆|
| ≤ 𝑚𝑖𝑛 {

𝜎(𝐽)

|𝐽|
,
𝜎(∆)

|∆|
} [exp (∫  

|∆|

|𝐽|

4𝑎(𝑡)

𝑡
 𝑑𝑡) − 1].  

As in Theorem (2.2.6), to prove Theorem (2.2.33) it is sufficient to show the following 

estimate:  

∫  
 

𝕋

 
𝜉̅(1 − |𝓏|2)

(1 − 𝜉̅𝓏)
2  𝑑𝜎(𝜉) ≤ 𝐶�̃�(|𝐽| )  

𝜎(𝐽)

|𝐽|
 ,  
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where 𝐽 =  𝐽(𝓏), for all 𝓏 ∈ 𝔻. Consequently, it is sufficient to prove that  

∫  
 

𝕋

 
𝜉̅ 𝑑𝜎(𝜉)

(1 − 𝜉̅𝓏)
2  ≤ 𝐶�̃�(|𝐽| ) 

𝜎(𝐽)

|𝐽|
                                  (43) 

for all 𝓏 ∈ 𝔻. Consider the (signed) measure 𝜇 = 𝜎 − (2𝜋 +)−1 |𝐽 |−1 𝜎(𝐽 )|𝑑𝜉|. It is clear 

that  

∫  
 

𝕋

 
𝜉̅ 𝑑𝜎(𝜉)

(1 − 𝜉̅𝓏)
2 = ∫  

 

𝕋

 
𝜉̅ 𝑑𝜇(𝜉)

(1 − 𝜉̅𝓏)
2 

An integration by parts shows that the last integral is bounded by a multiple of |𝜇|(𝕋) +

|𝐽|−2 ∫  
1/|𝐽| 

0
 min {1, 𝑠−3 }(|𝜇((𝑠𝐽)+| + |𝜇((𝑠𝐽)−)|)𝑑𝑠.  

Here if 𝓏 =  𝑟𝑒𝑖𝑡 , (𝑠𝐽)+, (𝑠𝐽)− denote, respectively, the arcs, 

(𝑠𝐽)+ = {𝑒
𝑖(𝑡+𝜑) ∶  0 ≤  𝜑 ≤  𝜋𝑠(1 − |𝓏|)}, (𝑠𝐽)− = {𝑒

𝑖(𝑡−𝜑)  ∶  0 ≤  𝜑 ≤  𝜋𝑠(1

= |𝓏|)}  
Hence (43) will follow if we prove the following two estimates:  

|𝜇|(𝕋) ≤  𝐶�̃�(|𝐽 |
𝜎(𝐽)

|𝐽|2
,                                                    (44) 

∫  
1/|𝐽| 

0

min{1, 𝑠−3} |𝜇(𝑠𝐽)+)| 𝑑𝑠 ≤  𝐶�̃�(|𝐽 |)𝜎(𝐽).                                   (45) 

Since |𝜇|(𝕋) ≤  𝜎(𝕋) + 𝜎( 𝐽)/|𝐽| , (44) follows from the fact that  

𝑖𝑛𝑓𝐽  {
𝑎(|𝐽 |)𝜎(𝐽)

|𝐽 |2
}   >  0:  

Actually, by Lemma (2.2.34), one has  

𝜎(𝐽)

|𝐽| 
≥  𝐶1 𝑒𝑥𝑝 (−∫  

1

|𝐽| 

4𝑎(𝑡)

𝑡
 𝑑𝑡) ≥  𝐶2  

|𝐽|

�̃�(|𝐽|) 
  

because  

𝑙𝑖𝑚 𝑖𝑛𝑡 → 0    
∫  
1

𝑡
𝑎(𝑠)𝑑𝑠/𝑠2

𝑒𝑥𝑝 (∫  
1

𝑡
 4𝑎(𝑠)𝑑𝑠/𝑠)

   >  0,  

as a simple calculation shows.  

Now let us prove (45). One can assume that |𝐽 | is small. Observe that 𝜇((𝑠𝐽)+) =

𝜎(𝑠𝐽)+ ) −
1

2
 𝑠𝜎(𝐽) . Thus, for 0 <  𝑠 <  1, Lemma (2.2.35) gives |𝜇(𝑠𝐽)+)| ≤|𝜎(𝑠𝐽)+ ) −

𝑠𝜎(𝐽+) |  + 𝑠|𝜎(𝐽+) −
1

2
𝜎(𝐽)|  ≤  𝐶𝑠𝜎(𝐽) [𝑒𝑥𝑝 (∫  

|𝐽| 

𝑠|𝐽|/2 
 
4𝑎(𝑢)

𝑢
  𝑑𝑢)

 

− 1]      ≤

 𝐶𝑠𝜎(𝐽)((2/𝑠)4𝑎(| 𝐽|) − 1). 
Consequently,  

∫  
1

0

|𝜇((𝑠𝐽)+)|𝑑𝑠 ≤  3𝐶𝑎(|𝐽|)𝜎(𝐽).  

Also, using Lemma (2.2.35), for 1 <  𝑠 <  2 one has  

|𝜇((𝑠𝐽)+)|≤  |𝜎((𝑠𝐽)+) − 𝑠𝜎(𝐽+)|+𝑠|𝜎(𝐽+) −
1

2
𝜎(𝐽)| ≤ 4𝐶𝑎(|𝐽|)𝜎(𝐽)   

and  

∫  
2

1

|𝜇(𝑠𝐽)+)|𝑑𝑠 ≤  4𝐶𝑎(|𝐽|)𝜎(𝐽). 
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Now, for 𝑠 >  2, Lemma (2.2.35) gives  

|𝜇((𝑠𝐽)+| ≤ |𝜎((𝑠𝐽)+) −  𝑠𝜎(𝐽)|+ −  𝑠|𝜎(𝐽+) −
1

2
𝜎(𝐽)|  

≤ 𝑠𝜎(𝐽+) [𝑒𝑥𝑝 ( ∫  

𝑠| 𝐽 |/ 2

| 𝐽 |/ 2

 
4𝑎(𝑡)

𝑡
 𝑑𝑡) −  1 ]  +  𝑠𝑎(|𝐽 |)𝜎(𝐽)  

≤  𝑠𝜎(𝐽+) [exp( ∫  

𝑠| 𝐽 |

| 𝐽 |

 
4𝑎(𝑡)

𝑡
 𝑑𝑡) − 1]  +  𝑠𝑎(|𝐽 |)𝜎(𝐽). 

Set 𝑠0 =  �̃�(|𝐽 |)
−1 . Since  

∫  

𝑠0| 𝐽 |

| 𝐽 |

𝑎(𝑡)

𝑡
 𝑑𝑡 ≤ ∫  

�̃�(𝑡)

𝑡
 𝑑𝑡 ≤

𝑠0| 𝐽 |

| 𝐽 |

𝑠0|𝐽|  
�̃�(|𝐽|)

|𝐽|
= 1                     (46) 

we deduce that for 2 <  𝑠 <  𝑠0 ,  

|𝜇((𝑠𝐽)+)| ≤ 𝐶𝑠𝜎(𝐽) ∫  
𝑎(𝑡)

𝑡
 𝑑𝑡

𝑠| 𝐽 |

| 𝐽 |

.                                  (47) 

Consequently,  

∫|𝜇((𝑠𝐽)+)|𝑠
−3𝑑𝑠 ≤ 𝐶𝜎(𝐽)

𝑠0

2

∫  

∞

2

𝑠−2 ∫  
𝑎(𝑡)

𝑡
 𝑑𝑡

𝑠| 𝐽 |

| 𝐽 |/2

𝑑𝑠 

Observe that Lemma (2.2.34) and estimates (46) and (47) imply that 𝜎((𝑠0 𝐽)+) ≤

 𝐶𝑠0 𝜎(𝐽). Take 𝛿 >  0 such that 𝑎(𝛿) ≤
1

8
 . For 𝑠0  <  𝑠 <  𝛿/|𝐽|, Lemma (2.2.34) gives  

𝜎((𝑠𝐽)+) ≤
2𝑠

𝑠0
 𝜎((2𝑠0 𝐽)+ 𝑒𝑥𝑝 ( ∫  

4𝑎(𝑡)

𝑡
 𝑑𝑡

𝑠| 𝐽 |

𝑠0| 𝐽 |

) ≤  𝐶𝑠𝜎(𝐽)(2𝑠/𝑠0)
1/2 ∶  

Consequently,  

∫  

𝛿/| 𝐽 |

𝑠0

|𝜇((𝑠𝐽)+)|𝑠
−3 𝑑𝑠 ≤ 𝐶

𝜎(𝐽)

𝑠0
= 𝐶�̃�(|𝐽|)𝜎(𝐽). 

Finally, applying (44), one has  

∫  

1/| 𝐽 |

𝛿/| 𝐽 |

|𝜇((𝑠𝐽)+)|𝑠
−3 𝑑𝑠 ≤

1

𝛿2
(𝜎(𝕋) +

𝜎(𝐽)

|𝐽|
) |𝐽|2 ≤

𝐶

𝛿2
�̅�(|𝐽|)𝜎(𝐽). 

To prove Corollary (2.2.37) stated in the introduction we will use the following version of 

Theorem (2.2.14).  

Theorem (2.2.36)[92]: Let 𝐼 be an inner function satisfying  
(1 − |𝓏|2)|𝐼′(𝓏)|

1 − |𝐼(𝓏)|2 
≤  𝑎(1 − |𝓏|),  

for all 𝓏 ∈ 𝔻, where 𝑎 is an increasing function on (0, 𝜋), with 𝑎(0+) =  0, such that �̃�  ≤
 𝐶𝑎, where �̃� is defined in Theorem (2.2.33). Let ℎ ∈  𝐿1(𝕋)† be a non-negative function, 

measurable with respect to the 𝜎algebra 𝒜(𝐼). Then  
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| ∫  

 

𝐽

 ℎ |𝑑𝜉| −  ∫  

 

𝐽′

 ℎ |𝑑𝜉||  ≤ 𝐶𝑎(𝜋|𝐽|) ∫  

 

𝐽′

 ℎ |𝑑𝜉|,  

for any arc 𝐽 of the unit circle.  

Proof. Take 𝑔 ∈  𝐿1 (𝕋) such that ℎ =  𝑔 ∘  𝐼 and consider  

𝐺(𝓏) =  ∫  

 

𝕋

𝜉 + 𝓏

𝜉 + 𝓏
 𝑔(𝜉)|𝑑𝜉| 𝑓𝑜𝑟 𝓏 ∈ 𝔻.  

Observe that  

𝑅𝑒 𝐺(𝐼)(𝓏) = ∫  

 

𝕋

 𝑃(𝓏, 𝜉)ℎ(𝜉)|𝑑𝜉|.  

Since (1 − |𝓏|2 |𝐺′(𝓏) ≤  2 𝑅𝑒 𝐺(𝓏), for all 𝓏 ∈ 𝔻, one deduces that 

(1 − |𝓏|2 
  )|(𝐺 °𝐼)′(𝓏)|

𝑅𝑒 𝐺(𝐼)(𝓏))
 ≤  2𝑎(1 − |𝓏|), 

for all 𝓏 ∈ 𝔻. Now, one can apply Theorem (2.2.31).  

Corollary (2.2.37)[92]: Let α be a positive increasing function on (0.1] with 𝛼(0−) = 0. 

assume that 
𝛼(𝑡)

𝑡1−𝜀
 is decreasing for some 𝜀 > 0. Then, the following assertions are equivalent: 

a) there exist   a measurable  set 𝐸 ⊂ 𝕋, with 0 < |𝐸| < 1,  such that  the measure 𝜒𝐸|𝑑𝜉| 
is α symmetric , that is 

||𝐸⋂𝐽| − |𝐸⋂𝐽′|| ≤ 𝛼(|𝐽|)|𝐸⋂𝐽| 

For any arc 𝐽 ⊂ 𝕋: 
b) there exist   a measurable  set 𝐸 ⊂ 𝕋, with 0 < |𝐸| < 1, such that  the measure 𝜒𝐸|𝑑𝜉| 
is 𝛼- zygmund , that is  

||𝐸⋂𝐽| − |𝐸⋂𝐽′|| ≤ 𝛼(|𝐽|)|𝐽| 

For any arc      𝐽 ⊂ 𝕋:. 

c) ∫
𝛼2(𝑡)

𝑡0
𝑑𝑡 = ∞. 

Proof. Assume (b) holds. Consider the function  

𝐻(𝓏) =  ∫  

 

𝐸

 
𝜉 + 𝓏

𝜉 + 𝓏
|𝑑𝜉| 𝑓𝑜𝑟 𝓏 ∈ 𝔻  

Then (1 − |𝓏|)|𝐻′(𝓏) ≤  𝐶𝑎(1 − |𝓏|) for all 𝓏 ∈ 𝔻 and hence  

(1 − |𝓏||𝐻′(𝓏)|2 ≤   𝐶 
𝑎2 (1 − |𝓏|)

1 − |𝓏|
 𝑓𝑜𝑟 𝓏 ∈ 𝔻.  

Now, if (c) does not hold, one would deduce that 𝐻 has vanishing mean oscillation, which 

is a contradiction.  

Assume (c) holds. Apply Theorem (2.2.32) to get an inner function 𝐼 such that  

(1 − |𝓏|
2)𝐼′(𝓏)|

1 − |𝐼(𝓏)|2
 ≤  𝑎(1 − |𝓏|) 𝑓𝑜𝑟 𝓏 ∈ 𝔻.  

Then, for any measurable set 𝐽 of the unit circle, with 0 < |𝐽 |  <  1, let 𝐸 =  𝐼−1(𝐽 ) be its 

preimage. Now (a) follows from Theorem (2.2.36).  

Given 𝑓 ∈  𝐻∞, with || 𝑓 ||
 
∞ ≤ 1, consider the family of positive measures {𝜎𝑎: 𝑎 ∈ 𝕋} 

given by  
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𝑅𝑒 (
𝑎 + 𝑓(𝓏)

𝑎 −  𝑓(𝓏)
 )  = ∫  

 

𝕋

𝑃(𝓏, 𝜉)𝑑𝜎𝑎(𝜉).  

Let 𝑤 be an increasing function on (0, 1], with 𝑤(0+) =  0. Assume that for some 𝑎0 ∈ 𝕋, 
the measure 𝜎𝑎0  satisfies  

|𝜎𝑎0  (𝐽 ) − 𝜎𝑎0  (𝐽
′)|  ≤ 𝑤(|𝐽|)𝜎𝑎0  (𝐽)  

for any arc 𝐽. Then, there exists a constant 𝐶 such that  

|𝜎𝑎(𝐽) − 𝜎𝑎(𝐽
′)|  ≤  𝐶�̃�(|𝐽|)𝜎𝑎(𝐽), 

for any arc 𝐽 and for any 𝑎 ∈ 𝕋. In particular, if �̃�  ≤  𝐶𝑤, the above condition does not 

depend on 𝑎 ∈ 𝕋. 

Another way of constructing a singular symmetric measure is by means of Riesz products. 

These are defined on 𝕋 as the 𝑤 −limit of the measures  

∏ 

𝑁

𝑗=1

(1 + 𝑅𝑒(𝑎𝑗  𝜉
𝑛𝑗))

|𝑑𝜉|

2𝜋
  

as 𝑁 → ∞. Here 𝑎𝑗 are complex numbers, |𝑎𝑗|  ≤  1 for 𝑗 =  1;  2; . . . ; and the integers 𝑛𝑗  

satisfy 𝑛𝑗+1 /𝑛𝑗  ≥  3. It is well known that the corresponding measure is singular if 

∑  ∞
𝑗=1   |𝑎𝑗|

2
=  ∞. See [102] for information on Riesz products.  

Theorem (2.2.38)[92]: With the above notation assume |𝑎𝑗|  <  1 for all 𝑗 and lim
𝑗 →∞

 𝑎𝑗 =  0. 

Then the measure  

𝜎 = lim
𝑁 →∞

 ∑  

𝑁

𝑗=1

 (1 + 𝑅𝑒(𝑎𝑗  𝜉
𝑛𝑗)) 

|𝑑𝜉|

2𝜋
   

is symmetric.  

Proof. Set  

𝐹𝑘(𝜉) =  ∏  

𝑘

𝑗=1

(1 +  𝑅𝑒(𝑎𝑗  𝜉
𝑛𝑗)) , 𝐹1 ≡  1  

and  

𝑓𝑘(𝜉) =
1

2
  𝑎𝑘  𝜉

𝑛𝑘𝐹𝑘−1(𝜉).  

It is clear that 𝑓𝑘 is an analytic polynomial whose non-vanishing Fourier coefficients lie in 

the interval [2−1 𝑛𝑘 , 2
−1 3𝑛𝑘]. Also 𝐹𝑘 − 𝐹𝑘−1 = 𝑓𝑘 + 𝑓�̅� .  

If 𝑓 is a continuous function in the unit circle, set  

|| 𝑓||
 
𝑙1 =   ∑  

 

𝑛∈ℤ

 |𝑓(𝑛)|   

where  

𝑓(𝑛) =   ∫  

 

𝕋

 𝑓(𝜉)𝜉̅𝑛  
|𝑑𝜉|

2𝜋
  

are the Fourier coeffcients.  

We have  

| |𝑓𝑘||
 
𝑙1  ≤

1

2
 |𝑎𝑘|  ∏ 

𝑘−1

𝑗=1

(1 + |𝑎𝑗| ≤ 2
𝑘−2 |𝑎𝑘| .                                (48) 
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Lemma (2.2.39)[92]: Let 𝐽 be a closed arc of the unit circle and 𝑘 ∈ ℕ. Then the following 

estimates hold:  

max
𝐽
 |𝐹𝑘|

min
𝐽
  |𝐹𝑘|   

 ≤ exp (2𝜋|𝐽|   ∑  

𝑘

𝑗=1

|𝑎𝑗|𝑛𝑗

1 − |𝑎𝑗|
 ) 

|∫  
 

𝐽
 𝐹𝑘
−1 𝑑𝜎 − |𝐽|| ≤

6

𝜋𝑛𝑘+1
sup
𝑗 ≥ 𝑘+1

  |𝑎𝑗|.  

Proof. Considering logarithmic derivatives one gets  

|
𝑑

𝑑𝑡
  𝑙𝑜𝑔 𝐹𝑘(𝑒

𝑖𝑡)| ≤ ∑ 

𝑘

𝑗=1

|𝑎𝑗|𝑛𝑗

1 − |𝑎𝑗|
 . 

Now, an integration proves the first estimate.  

Replacing 𝜎 by the Riesz product 𝐹𝑘
−1𝜎 , one shows that it is sufficient to prove the second 

inequality when 𝑘 =  0. Let 𝑥𝐽 be the characteristic function of 𝐽. Applying the inequality  

|�̂�𝐽 (𝑘)| ≤
1

𝜋|𝑘|
 ≤  𝑤𝑖𝑡ℎ 𝑘 ≠  0,  

and (48), one deduces that  

|𝜎(𝐽) − |𝐽 ||  ≤ ∑  

𝑘≠0

|�̂�(𝑘)| |�̂�𝐽(𝑘) ≤|
4

𝜋
∑  

∞

𝑗=1

||𝑓𝑗||
𝑙1

𝑛𝑗
   ≤

1

𝜋
∑ 

∞

𝑗=1

 
2𝑗|𝑎𝑗|

𝑛𝑗
 ≤

6

𝜋𝑛1
sup
𝑗 ≥ 1

 |𝑎𝑗|.  

A similar argument can be found in [106]. 

Now, let 𝐽 be an arc of the unit circle and let 𝜉 be the common end of 𝐽 and ′ . Take 𝑘 such 

that 𝑛𝑘+1
−1  ≤ |𝐽  |  <  𝑛𝑘

−1 . Applying Lemma (2.2.39), one has  

𝜎(𝐽)

|𝐽|
=
1

|𝐽 |
 ∫  

 

 𝐽

 𝐹𝑘𝐹𝑘
−1 𝑑𝜎 ≅  𝐹𝑘(𝜉).  

Here 𝐴𝑘  ≅  𝐵𝑘  means that 𝐴𝑘 /𝐵𝑘  →  1 as 𝑘 →  ∞. Similarly,  

𝜎(𝐽′ )/|𝐽′ |  ≅  𝐹𝑘(𝜉).  
Hence 𝜎 is symmetric.  

Assume that (𝑎𝑗) satisfy the hypothesis of Theorem (2.2.38) and ∑    |𝑎𝑗|
2
=  ∞. Let 𝜎 be 

the corresponding singular symmetric measure. Observe that the measures 

𝜎𝑡 = ∏ 

∞

𝑗=1

 [1 +  𝑅𝑒(𝑒𝑖𝑡𝑎𝑗 𝜉
𝑛𝑗)
|𝑑𝜉|

2𝜋
 , where 𝑡 ∈ [0, 2𝜋),  

are also singular and symmetric. Actually the proof of Theorem (2.2.38) shows that 

lim
| 𝐽|→0

𝜎𝑡(𝐽 )

𝜎𝑡(𝐽
′)
=  1, 

uniformly in 𝑡 ∈ [0, 2𝜋). Moreover, if 𝑡 ≠  𝑠, the measures jt and js are mutually singular.  

Given a singular symmetric measure 𝜎, we can use our composition process to obtain 

families of Kahane symmetric measures. If, on the other hand, one attempts to construct a 

Kahane measure by means of a Riesz product with 𝑛𝑗+1 /𝑛𝑗  ≥  3 for all 𝑗, then P. Duren 

showed that ∑     |𝑎𝑗|
2
 <  ∞ so the measure is absolutely continuous [98].  
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Minor modifications of the proof of Theorem (2.2.38), show that, essentially, the measures 

constructed by L. Carleson can also be obtained as Riesz products. 

Theorem (2.2.40)[92]: Let 𝑤 be a positive increasing function on [0,1] such that 𝑤(𝑡)/𝑡 is 

decreasing and  

∫  

 

0

  
𝑤2(𝑡)

𝑡
 𝑑𝑡 =  ∞.  

Then there exists a sequence of non-negative numbers {𝑟𝑘}, with ∑  ∞
 𝑘=0  𝑟𝑘

2 = ∞, such that 

for any sequence 𝑎𝑘 of complex numbers, |𝑎𝑘|  ≤  𝑟𝑘 where 𝑘 =  0, 1;  2; . . . ; the measure 

j associated with the Riesz product  

∏ 

∞

(𝑗=1)
   (1 +  𝑅𝑒 (𝑎𝑗𝜉

3𝑗))
|𝑑𝜉|

2𝜋
  

satisfies  

|
𝜎(𝐽′)

𝜎(𝐽)
− 1|  ≤ 𝑤(|𝐽|), 

for any 𝑎𝑟𝑐 𝐽 of the unit circle. Moreover if |𝑎𝑘| =  𝑟𝑘 for 𝑘 = 0;  1;  2; . . . ; the measure j is 

singular.  

Proof. We may assume lim
𝑡→0
 𝑤(𝑡) =  0. Consider 𝜀𝑘 =  20

−1 𝑤(3−𝑘−1) with 𝑘 >  0. The 

integral condition on 𝑤 gives  

∑ 

∞

𝑘=0

  𝜀𝑘
2 =  ∞.  

Choose 𝑟𝑘 =  𝜀𝑘 − 3
−1 𝜀𝑘−1 with 𝑘 ≥  1. Observe that 𝑟𝑘  ≥  0 because 𝑤(𝑡)/𝑡 decreases. 

Also, ∑  ∞
𝑘=1 𝑟𝑘

2 =  ∞. Let 𝐽 be an arc of the unit circle, 3−𝑘−1  ≤ |𝐽 |  <  3−𝑘 . We now use 

the notation of the proof of Theorem (2.2.38). There exists a point 𝜉𝑘  ∈  𝐽 such that  

 
𝜎(𝐽 )

|𝐽|
=
1

|𝐽|
 ∫  

 

𝐽

 𝐹𝑘 𝐹𝑘
−1 𝑑𝜎 = 𝐹𝑘(𝜉𝑘) 

1

|𝐽|
 ∫  

 

𝐽

 𝐹𝑘
−1 𝑑𝜎.   

Now, Lemma (2.2.39) gives  

|
𝜎(𝐽)

|𝐽 |
−  𝐹𝑘𝜉𝑘| ≤  𝐹𝑘(𝜉𝑗) 

6

𝜋
  sup
𝑗≥ 𝑘+1

   |𝑎𝑗|  ≤  2𝜀𝑘+1 𝐹𝑘(𝜉
 
𝑘
).  

Similarly, there exists 𝜉𝑘
′  ∈  𝐽′  such that  

|
𝜎(𝐽′)

|𝐽 |
− 𝐹𝑘(𝜉𝑘

′ )| ≤ 2𝜀𝑘+1𝐹𝑘(𝜉𝑘
′ )  

Writing 𝑡 =  4𝜋|𝐽|  ∑  𝑘
𝑗=1   |𝑎𝑗|3

𝑗  (1 − |𝑎𝑗|)
−1
  , we find that the first estimate of Lemma 

(2.2.39) gives  

|𝐹𝑘(𝜉𝑘) − 𝐹𝑘(𝜉
′
𝑘)|  ≤  𝐹𝑘(𝜉𝑘)(𝑒

𝑡 −  1) ≤ 15𝐹𝑘(𝜉𝑘)∑  

𝑘

𝑗=1

𝑟𝑗 3
𝑗−𝑘  ≤  15𝜀𝑘 𝐹𝑘(𝜉𝑘).  

Thus, if 𝑘 is sufficiently large, one gets  

|𝜎𝐽 − 𝜎(𝐽′)|  ≤   19𝜀𝑘 𝐹𝑘(𝜉𝑘) |𝐽| ≤  20𝜀𝑘  𝜎(𝐽)  ≤  𝑤(|𝐽| )𝜎(𝐽).  
Replacing 𝑟𝑘 by 𝑟𝑘

′ =  𝑟𝑘−𝑁, for 𝑘 >  𝑁, where 𝑁 is sufficiently large, and 𝑟𝑘
′ =  0 if 𝑘 <

 𝑁, we see that the last inequality holds for any arc 𝐽 of the unit circle. 
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Section (2.3): Composition Operators from Bloch Type Spaces to BMOA 
The existence of critical Bi Bloch mappings and its applications to Bloch-BMO 

pullback problems. 

       A real function h is said to be almost increasing (resp. almost decreasing) if there is a 

constant 𝐶 >  0 such that y > x implies h(x) ≤ Ch(y) (resp. h(y) ≤ Ch(x)). A positive almost 

increasing function 𝜓 ∶  [0,∞)  ⟼  (0,∞) will be called almost subnormal if there is β >0 

such that 𝜓(𝑥)/𝑥𝛽  , 𝑥 ≥  1, is almost decreasing, and  

lim𝑥→∞𝜓(𝑥) = ∞.                                                 (49) 
If ψ is (strictly) increasing and (49) holds with “almost decreasing” replaced by “non-

increasing”, then 𝜓 is called subnormal.  If in addition there is α > 0 such that 

                 
𝜓(𝑥)

𝑥𝛼
,    𝑥 ≥  1, is almost increasing,                               (50) 

then 𝜓 is called almost normal. If ψ is subnormal and (50) holds (for some α > 0) with 

“almost increasing” replaced by“non-decreasing”, then ψ is called normal. The notion of a 

normal function was introduced by Shields and Williams [11]. 

Theorem (2.3.1)[110]: If ψ is an almost subnormal function, then there exist functions f1, f2 

analytic in the unit disk D of the complex plane 

such that 

‖𝑓1
′(𝑧)‖ + |𝑓2

′(𝑧)|  ≍ 𝜓 (
1

1 − |𝑧|
) ,       𝑧 ∈  𝐷.                    (51) 

As usual, the notation A ≍ B means B/C ≤ A ≤CB for some constant C. The first result of 

this kind was proved by Ramey and Ullrich in [121], where the case ψ(x) = x was considered. 

The term BiBloch comes from the fact that the Ramey–Ullrich theorem can be reformulated 

in the following way: There is a mapping   F : 𝔻 → ℂ2 such that 

|(𝐹′(𝑧))| ≍ (1 − |𝑧|)−1,     𝑧 ∈  𝔻. 
The existence of such a critical Bi Bloch mappings, as was shown in [121], plays an 

important role in characterizing composition operators from the Bloch space to, e.g., 

BMOA. An extension of the Ramey–Ullrich theorem to the case where (𝑥)  =  𝑥𝛽  , β >0, 

was proved by Gauthier and Xiao [113] (see also Xiao [124]). In [112], in connection with 

a problem on composition operators, Galanopulos considered the case where 𝜓(𝑥)  =
 𝑥(1 +  𝑙𝑜𝑔 𝑥), which was extended to 𝜓(𝑥)  =  𝑥𝛾  (1 +  𝑙𝑜𝑔 𝑥), 𝛾 >  0, by Liu and Li 

[114]. However in all these cases the function ψ is normal. Theorem (2.3.1) covers the case 

of normal functions, for example 

𝜓(𝑥)  =  𝑥𝛼(1 + log 𝑥)𝛾 ,   𝛼 >  0, 𝛾 ∈  ℝ, 
as well as the case of non-normal functions such as 

𝜓(𝑥)  =  (1 + log 𝑥)𝛾 ,    𝛾 >  0. 
The hypothesis that ψ is (almost) normal makes the proof (of (51)) almost identical to the 

proof of Ramey–Ullrich Theorem. In the general case, we also start with the idea to represent 

f as a sum of two series with Hadamard gaps but it seems that these series must heavily 

depend on ψ. 

 ψ is assumed to be almost subnormal, that is, it satisfies (49). C or c in the inequalities 

denotes a positive constant which is independent of the variables under consideration. 

       Let H(𝔻) denote the space of all functions analytic in the unit disc 𝔻 and let 𝐻(𝔻,𝔻) ∶
=  {𝜑 ∈  𝐻(𝔻): 𝜑(𝔻)  ⊂  𝔻}. 𝐹𝑜𝑟 𝑎function 𝜑 ∈  𝐻(𝔻,𝔻), the composition operator 𝐶𝜑 

is defined on H(𝔻) by 𝐶𝜑( 𝑓 )(𝑧)  =  𝑓 (𝜑(𝑧)). For two function spaces X and Y , let us 
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𝑑𝑒𝑛𝑜𝑡𝑒 𝐶(𝑋, 𝑌 )  =  {𝜑: 𝐶𝜑(𝑋)  ⊂  𝑌 }.  Let 𝔅(ψ) denote the space of those 𝑓 ∈  𝐻(𝔻) 

endowed with the norm 

 ‖𝑓‖𝔅(𝜓)  ∶= |𝑓(0)| + 𝑠𝑢𝑝𝑧∈𝔻
|𝑓′(𝑧)|

𝜓(1/(1 −  |𝑧|2))
< ∞,3  

which reduces to the Bloch space 𝔅 if ψ(x) = x. BMOA is the space of 𝑓 ∈  𝐻(𝔻) endowed 

with the Garsia norm 

‖𝑓‖∗
2  ∶= |𝑓(0)|2 + 𝑠𝑢𝑝𝑎∈𝔻 ∫|𝑓

′(𝑧)|2

𝔻

𝑙𝑜𝑔
1

|𝜎𝑎(𝑧)|
  𝑑𝐴(𝑧), 

where dA denotes the normalized Lebesgue measure on 𝔻 and  

𝜎𝑎(𝑧) =
𝑎 − 𝑧

1 − �̅�𝑧
. 

The space BMOA can be equivalently defined by the requirement 𝑓 ∈  𝐻2 satisfying  

𝑠𝑢𝑝𝑎∈𝔻(𝑃[|𝑓∗|
2])(0) − |𝑓(𝑎)|2) < ∞, 

where 

𝑃[𝑢](𝑎)  =  
1

2𝜋
∫ 𝑢(𝜁)

𝜕𝔻

1 − |𝑎|2

|𝑎 − 𝜁|2
  |𝑑𝜁 |,   𝑎 ∈  𝔻, 𝑢 ∈  𝐿1(𝜕𝔻).            (52) 

The problem of characterizing those 𝜑 𝑖𝑛 𝐶(𝔅, 𝐵𝑀𝑂𝐴), so-called Bloch-BMO pullback 

problem, has been considered extensively. See [116]. We consider and resolve an extended 

version of the problem on the settings of 𝔅 (ψ). 

If ψ is continuous on [1,∞), we define the function ˜𝜓 by 

�̅�(𝑟) = 1 + ∫𝜓2
𝑟

0

(
1

1 − 𝑥
) 𝑙𝑜𝑔

𝑟

𝑥
𝑑𝑥. 

= 1 + ∫
1

𝜌
𝑑𝜌∫𝜓2 (

1

1 − 𝑥
)𝑑𝑥,    0 ≤ 𝑟 ≤ 1

𝜌

0

 𝑟

0

. 

Note that if 𝜓(𝑥)  =  𝑥, then 

�̅�(𝑥)  = 𝑙𝑜𝑔
𝑒

1 − 𝑟
 

Recall that the function P[u] in (52) is harmonic in 𝔻 and lim𝑟→1− 𝑃[𝑢](𝑟𝜁)  =
 𝑢(𝜁 ) 𝑓𝑜𝑟 𝑎𝑙𝑚𝑜𝑠𝑡 𝑎𝑙𝑙 𝜁 ∈  𝜕𝐷. We use (52) to define the Poisson integral of a measurable 

function with values in [0, ∞]. It can be easily checked for such a function u that 𝑢 ∉
 𝐿1(𝜕𝐷) if and only if 𝑃[𝑢](𝑎) = ∞ for all (for some) 𝑎 ∈  𝔻. Theorem (2.3.8) directly 

gives 

Corollary (2.3.2)[110]: If 

∫ �̃�(|𝜑 ∗ (𝜁 )|2)|𝑑𝜁| = ∞,

𝜕𝔻

 

then φ does not map 𝔅(ψ) into BMOA. In particular, if 

∫𝜓2 (
1

1 −  𝑥
) (1 −  𝑥)𝑑𝑥 = ∞

1

0

                                           (53) 
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and φ maps 𝔅(ψ) into BMOA, then |φ∗|  <  1 a. e. on ∂𝔻. Also, if (53) holds and φ is an 

inner function, then φ does not map 𝔅(ψ) into BMOA. 

    Recall that 𝜑 ∈  𝐻(𝔻,𝔻)   is called inner if |𝜑∗|   = 1 𝑎. 𝑒. 𝑜𝑛 𝜕𝔻. Noting the inequality 

𝑃[�̃�(|𝜑∗ 𝐼∗|
2)](𝑎) − �̃�(|𝜑(𝑎)|2|𝐼(𝑎)|2|) =  𝑃[�̃�|𝜑∗|

2](𝑎)  − �̃� 

(|𝜑(𝑎)|2|𝐼(𝑎)|2) ≥ 𝑃[�̃�|𝜑∗|
2](𝑎) − �̃�(|𝜑(𝑎)|2), 

the following also is an immediate consequence of Theorem (2.3.8). 

Corollary (2.3.3)[110]: If φ ∈  H(𝔻,𝔻)   and φI ∈  C(𝔅(ψ), BMOA), where I is an inner 

function, then φ ∈  C(𝔅(ψ), BMOA). 
        In Havin [115], Corollary (2.3.3) says that the class 𝐶(𝔅(𝜓), 𝐵𝑀𝑂𝐴) has the f -

property. We can omit the hypothesis that ψ is continuous because there is an equivalent, 

continuous function ϕ (see Lemma (2.3.6)). 

       As a further application of Theorem (2.3.8), we have 

Corollary (2.3.4)[110]: The inclusion 𝔅 (ψ)  ⊂ BMOA is necessarily strict. 

       Let us denote, for γ ∈ ℝ, 

𝜓𝛾 (𝑥)  =  
𝑥

(1 + 𝑙𝑜𝑔 𝑥)𝛾
 , 1 ≤ 𝑥 < ∞. 

Then as a special case of Theorem (2.3.10) we have 

Corollary (2.3.5)[110]: The following conditions are equivalent: 

(i) 𝔅 (𝜓𝛾) ⊂ BMOA. 

(ii) 𝛾 >  1/2. 

(iii) 𝐻(𝔻,𝔻) ⊂ C(𝔅 (𝜓𝛾),BMOA). 

The following theorem explains what is happened in the case 𝛾 ≤  1/2. 

The special case 𝛾 =  0 of this theorem was proved by the first author [116]. 

       After assigning to the proofs of Theorems (2.3.1)–(2.3.11), we consider the 

boundedness of the composition operators between Lipschitz spaces having general weights. 

Little “oh” version of the pullback problem is considered. 

       It is enough to 𝑓𝑖𝑛𝑑 𝑔1, 𝑔2  ∈  𝐻(𝔻) such that 

𝑔1 (z) + 𝑔2 (z)  ≍ ψ 
1

1−|𝑧|
  , 𝑧 ∈  𝔻.                              (54) 

Also, we may assume β = 1 in (49): choose an integer M > 0 such that the function 

𝜓(𝑥)1/𝑀/𝑥 is almost decreasing and put 𝜑 =  𝜓1/𝑀. We will find ℎ1, ℎ2  ∈  𝐻(𝔻) such that 

ℎ1(z) + ℎ2 (z)  ≍ 𝜑
1

1−|𝑧|
  , z ∈ 𝔻.                              (55) 

Then the functions 𝑔1  = ℎ1
𝑀  𝑎𝑛𝑑    𝑔2  = ℎ2

𝑀   satisfy (54). 

       In order to prove (55) we want to replace 𝜑 by a function that behaves more regularly. 

Lemma (2.3.6)[110]: Let ψ satisfy (49) with β = 1, and let 

𝜑1(𝑥) =  𝑖𝑛𝑓𝑡≥𝑥𝜓(𝑡), 

𝜑2(𝑥) =  𝑥 𝑠𝑢𝑝𝑡≥𝑥
𝜑1(𝑥)

𝑡
= 𝑠𝑢𝑝𝑡≥𝑥

𝜑1(𝑡𝑥)

𝑡
, 𝑥 ≥ 1. 

Then 𝜑2 satisfies: 
(i) 𝜑2(𝑥)  ≍  𝜓(𝑥) and hence 𝑙𝑖𝑚𝑥→∞𝜑2(𝑥) = ∞. 
(ii) 𝜑2 is increasing. 

(iii) 𝜑2(𝑥)/𝑥 is decreasing. 
(iv) 𝜑2 is absolutely continuous. 

Proof. The proof is straightforward.  
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     It follows that in proving (55) we can assume that 𝜑 satisfies the above four properties. 

Also we can assume that 𝜑(1)  =  1 and that 𝜑 is strictly increasing since otherwise we can 

replace 𝜑(𝑥) 𝑏𝑦 𝜑(𝑥) +  𝑥/(𝑥 + 1). 
      Let q > 4 be a sufficiently large number, which will be chosen later on. Choose numbers 

𝜆𝑗
′  , 𝑗 ≥  1, 𝑠𝑜 𝑡ℎ𝑎𝑡 

𝜙(𝜆𝑗
′) = 𝑞𝑗   , 𝑗 ≥  1, 

and then define the sequences {𝜆𝑗} 𝑎𝑛𝑑 {𝜇𝑗}: 

𝜆𝑗  = [𝜆𝑗
′] + 1, 

𝜇𝑗  =  [ √𝜆𝑗𝜆𝑗 + 1 ]  +  1, 

where [𝑥], 𝑥 ∈  ℝ, denotes the unique integer such that 𝑥 − 1 <  [𝑥] ≤  𝑥. These sequences 

have the properties: 
𝜆𝑗+1

𝜆𝑗
≥
𝑞

2
 ,

𝜇𝑗+1

𝜇𝑗
≥
𝑞

4
    , 𝑓𝑜𝑟 𝑗 ≥  1.                                 (56) 

To verify this, observe that 𝜆𝑗
′ ≤ 𝜆𝑗 =  [𝜆𝑗

′] + 1 ≤ 2𝜆𝑗
′  so that 

𝑞 =  
𝜑(𝜆𝑗+1

′ )

𝜑(𝜆𝑗
′)

≤
𝜆𝑗𝜑 (𝜆𝑗+1

)

𝜆𝑗
′𝜑(𝜆𝑗)

≤ 2
𝜑 (𝜆

𝑗+1
)

𝜑(𝜆𝑗)
≤ 2

 (𝜆𝑗+1)

(𝜆𝑗)
 

where we have used (ii) and (iii) of Lemma (2.3.6). In the case of 𝜇𝑗 we have 

𝜇𝑗+1

𝜇𝑗
≥
√𝜆𝑗+1𝜆𝑗+2

2√𝜆𝑗+1𝜆𝑗
=
1

2
√
𝜆𝑗+2

𝜆𝑗
≥
𝑞

4
. 

From (56) we get 
𝜆𝑗+𝑛

𝜇𝑛
≥ (

𝑞

2
)
𝑗−1

√
𝑞

8
,    

𝜇𝑗+𝑛

𝜆𝑛+1
≥ (

𝑞

4
)
𝑗−1

√
𝑞

2
,  𝑓𝑜𝑟 𝑗, 𝑛 ≥  1,                            (57) 

and 

𝜆𝑛  <  𝜇𝑛  < 𝜆𝑛+1,         𝑓𝑜𝑟 𝑛 ≥  1.                            (58) 
Indeed, 

𝜆𝑗+𝑛

𝜇𝑛
=
𝜆𝑗+𝑛

𝜆𝑛+1

𝜆𝑗+𝑛

𝜇𝑛
 

(
𝑞

2
)
𝑗−1 𝜆𝑛+1

𝜇𝑛+1
= (

𝑞

2
)
𝑗−1 𝜆𝑗+𝑛

1 + √𝜆𝑛𝜆𝑛+1
 ≥ (

𝑞

2
)
𝑗−1 𝜆𝑛+1

2√𝜆𝑛𝜆𝑛+1
 

= (
𝑞

2
)
𝑗−1 1

2
 √
𝜆𝑛+1
𝜆𝑛

≥ (
𝑞

4
)
𝑗−1

√
𝑞

8
, 

And 

𝜇𝑛+𝑗

𝜆𝑛+1
=  
𝜇𝑛+𝑗

𝜇𝑛+1

𝜇𝑛+1
𝜆𝑛+1

≥ (
𝑞

4
)
𝑗−1 𝜇𝑛+𝑗

𝜆𝑛+1
≥ (

𝑞

2
)
𝑗−1√𝜆𝑛+1𝜆𝑛+2

𝜆𝑛+1
  

≥ (
𝑞

4
)
𝑗−1

√
𝜆𝑛+2
𝜆𝑛+1

≥ (
𝑞

4
)
𝑗−1

√
𝑞

2
, 

This proves (57). The first inequality of (58) follows simply from 

𝜆𝑛  < √𝜆𝑛𝜆𝑛+1 < [√𝜆𝑛𝜆𝑛+1] + 1 =  𝜇𝑛 
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while the second inequality of (58) follows from the first of (57) by taking q > 8. Now we 

𝑑𝑒𝑓𝑖𝑛𝑒 ℎ1𝑎𝑛𝑑 ℎ2 by. 

ℎ1(𝑧) = 1 +∑𝑞𝑗
∞

𝑗=1

𝑧𝜆𝑗   𝑎𝑛𝑑 ℎ2(𝑧) = 1 +∑𝑞𝑗
∞

𝑗=1

𝑧𝜇𝑗  . 

We shall first prove for each n ≥ 1 that 

|ℎ1(𝑧)| ≥ 𝑐𝜑 (
1

1 − |𝑧|
) ,   𝑓𝑜𝑟 1 −

1

𝜆𝑛
≤ |𝑧| ≤ 1 −

1

𝜇𝑛
,                      (59) 

And  

|ℎ2(𝑧)| ≥ 𝑐𝜑 (
1

1 − |𝑧|
) ,   𝑓𝑜𝑟 1 −

1

𝜇𝑛
≤ |𝑧| ≤ 1 −

1

𝜆𝑛+1
,                  (60) 

which implies one directional validity of (55) in the annulus 1 − 1/𝜆1  ≤  |𝑧| ≤  1. Since 

the functions ℎ1 𝑎𝑛𝑑 ℎ2 have finitely many zeroes in the disk |𝑧|  <  1 −  1/𝜆1 with ℎ1 (0) 

= 0, ℎ2 (0) = 0, we can choose θ ∈ R so that the functions 𝑧 ↦  ℎ1(𝑒
𝑖𝜃 𝑧) and ℎ2 have no 

common zeroes in this disk. Thus the desired functions will be ℎ1(𝑒
𝑖𝜃 𝑧)  and ℎ2. 

Since 𝜑(𝜆𝑛)  ≍ 𝑞
𝑛, we see that (59) and (60) are equivalent to 

|ℎ1(𝑧) | ≥ 𝑐𝑞
𝑛 , for 1 − 

1

𝜆𝑛
≤ |𝑧| ≤  1 − 

1

𝜇𝑛
,                     (61) 

|ℎ2(𝑧) | ≥ 𝑐𝑞
𝑛 , for 1 − 

1

𝜇𝑛
≤ |𝑧| ≤  1 −

1

𝜆𝑛 + 1,
              (62) 

Respectively. 

       We have, for 1 − 1/𝜆𝑛 ≤  |𝑧|  ≤  1 − 1/𝜇𝑛, 

|ℎ1(𝑧)| ≥ 𝑐𝑞
𝑛|𝑧| − 1 −∑𝑞𝑗

𝑛−1

𝑗=1

− ∑ 𝑞𝑗|𝑛|𝜆𝑗
∞

𝑗=𝑛+1

 

≥ 𝑞𝑛 (1 −
1

𝜆𝑛
)
𝜆𝑛

− 1 −
𝑞𝑛

𝑞 − 1
− ∑ 𝑞𝑗 (1 −

1

𝜇𝑛
)
𝜆𝑗.

∞

𝑗=𝑛+1

 

Since the function 𝑥 ⟼  (1 − 1/𝑥)𝑥, 𝑥 >  1, is increasing and 𝜆1  =  [𝜆
′1] + 1 ≥  2, we 

have (1 − 1/𝜆𝑛)
𝜆𝑛 ≥ (1 − 1/𝜆1)

𝜆1  ≥  1/4 and 

(1 −
1

𝜇𝑛
)
𝜆𝑗

≤ 𝑒𝑥𝑝 (−
𝜆𝑗

𝜇𝑛
) 

so that 

|ℎ1(𝑧) | ≥ 𝑞
𝑛 (
1

4
−
1

𝑞𝑛
−

1

𝑞 − 1
) − ∑ 𝑞𝑗

∞

𝑗=𝑛+1

𝑒𝑥𝑝 (−
𝜆𝑗

𝜇𝑛
) 

Using (57), we bound the last sum as follows 

∑ 𝑞𝑗
∞

𝑗=𝑛+1

𝑒𝑥𝑝 (−
𝜆𝑗

𝜇𝑛
) = 𝑞𝑛∑𝑞𝑗𝑒𝑥𝑝

∞

𝑗=1

(−
𝜆𝑗+𝑛

𝜇𝑛
) ≤ 𝑞𝑛∑𝑞𝑗  𝑒𝑥𝑝 {−(

𝑞

2
)
𝑗−1

√
9

8
} .

∞

𝑗=1

 

Since 

lim
𝑞→∞

∑𝑞𝑗  𝑒𝑥𝑝 {−(
𝑞

2
)
𝑗−1

√
9

8
} = 0.

∞

𝑗=1

 

we can choose q > 101 so that 
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∑𝑞𝑗  𝑒𝑥𝑝 {−(
𝑞

2
)
𝑗−1

√
9

8
} <

1

100
.

∞

𝑗=1

 

Since 1/𝑞𝑛 < 1/100, we have 
1

4
−
1

𝑞𝑛
−

1

𝑞 − 1
>
1

4
−

1

100
−

1

100
. 

Combining all these estimates we get (61). 

       In the case of (62) we have, for 1− 
1

𝜇𝑛
≤ |𝑧| ≤ 1 −

1

𝜆𝑛+1
, 

|ℎ2(𝑧)| ≥ 𝑞
𝑛|𝑧|𝜇𝑛 −∑𝑞𝑗

𝑛=1

𝑗=1

− ∑ 𝑞𝑗
∞

𝑗=𝑛+1

|𝑧|𝜇𝑗   

≥ 𝑞𝑛 (1 −
1

𝜇𝑛
)
𝜇𝑛

−
𝑞𝑛

𝑞 − 1
− ∑ 𝑞𝑗

∞

𝑗=𝑛+1

(1 −
1

𝜆𝑛+1
)
𝜇𝑗

 

≥ 𝑞𝑛 (
1

4
−

1

𝑞 − 1
) − ∑ 𝑞𝑗

∞

𝑗=𝑛+1

𝑒𝑥𝑝 (−
𝜇𝑗

𝜆𝑛+1
) 

=  𝑞𝑛 (
1

4
−

1

𝑞 − 1
) − 𝑞𝑛∑𝑞𝑗

∞

𝑗=1

𝑒𝑥𝑝 (−
𝜇𝑗+𝑛

𝜆𝑛+1
) 

≥ 𝑞𝑛 (
1

4
−

1

𝑞 − 1
) − 𝑞𝑛∑𝑞𝑗

∞

𝑗=1

𝑒𝑥𝑝 {− (
𝑞

4
)
𝑗−1

√
𝑞

2
} 

Now the proof of (62) can be completed as in the case of (61). 

Finally, we have to prove that 

|ℎ(𝑧)| ≤ 𝐶𝜑 (
1

1 − |𝑧|
)   for |𝑧| < 1, for   |𝑧|  <  1, 

where h = ℎ1 or ℎ2. This can be done in a similar way as in the case of (59) and (60). In fact, 

the proof is simpler in that it is valid for all q > 1; namely, we have: 

Theorem (2.3.7)[110]: If 𝑞 >  1, then there is an increasing sequence {𝜆𝑗} of positive 

integers such that 𝜓(𝜆𝑗)  ≍ 𝑞
𝑗, and, moreover, the function 

𝑓𝜓(𝑧) = ∞𝑗 = 1𝑞
𝑗  𝑧𝜆𝑗    

satisfies 

|𝑓𝜓(𝑧)| ≤ 𝑓𝜓(|𝑧|)  ≤ 𝐶𝜓 (
1

1 − |𝑧|
) , |𝑧| < 1. 

We also have  

∑ 

∞

 𝑗=1

 𝑞𝑗  𝑟𝜆𝑗 ≥  𝑐𝜓 (
1

1 −  𝑟
)  , 1/2 <  𝑟 <  1.  

Consequently, if  

𝑔𝜓, 𝑎(𝑧) = ∑  

∞

 𝑗=1

𝑞𝑗

𝜆𝑗  +  1
  (�̅�𝑧 )𝜆𝑗+1, |𝑧|  <  1, |𝑎|  ≤ 1,  

then 𝑔𝜓,𝑎 belongs to ℬ(𝜓) and sup
|𝑎|≤1

 𝑔𝜓,𝑎 ℬ(𝜓)  <  ∞.  
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Proof. See [120], where an integrated version is proved as well. For the case of a normal 𝜓, 

see [117].  

Theorem (2.3.8)[110]: Let φ ∈  H(𝔻,𝔻)  and let ψ be continuous. Then φ ∈
 C(𝔅(ψ), BMOA) if and only if 

𝑠𝑢𝑝𝑎∈𝐷{𝑃[ �̃�  ∘ |𝜑∗|
2](𝑎) − �̃�(|𝜑(𝑎)|2)} < ∞,                             (63) 

Where 

𝜑 ∗ (𝜁 ) =  𝑙𝑖𝑚𝑟→1− 𝜑(𝑟𝜁),   |𝜁|  =  1. 
Proof. Let ∅ ∈  𝐻(𝔻,𝔻). A standard application of Theorem (2.3.1) (see [116], [121], 

[124]) shows that ∅ ∈  𝐶(ℬ(𝜓), BMOA) if and only if  

𝑄 (∅):= sup
𝑎∈𝔻

   ∫  

 

𝔻

 ∅′(𝑧)2 𝜓2  (
1

1 − |∅(𝑧)|2
 )  𝑙𝑜𝑔

1

|𝜎𝑎(𝑧)|
 𝑑 𝐴(𝑧)  <  ∞, 

as well as that  

||𝐶∅||  ≍  √𝑄 (∅), if 𝑄 (∅), (0)  =  0.  

Therefore Theorem (2.3.8) is a consequence of the following assertion.  

Proposition (2.3.9)[110]: If 𝑄 (∅), ∈  𝐻(𝔻,𝔻) and 𝜓 is continuous, then  

2 ∫  

 

𝔻

 |∅′(𝑧)|2 𝜓2  (
1

1 − |∅(𝑧)|2
 )  𝑙𝑜𝑔

1

|𝜎𝑎(𝑧)|
 𝑑 𝐴(𝑧)  

=  𝑃 [ �̃�  ◦ |∅ ∗ |
2
 
  ]  (𝑎)  −  �̃�  (|∅(𝑎)|2) , 𝑎 ∈ 𝔻.                      (64)  

Proof. Our proof is based on the Green theorem which, in its simplest form, says that if 𝑢 ∈
 𝐶2(𝔻), then  

1

2
  ∫  

 

|𝑧|< 𝜀

∆𝑢(𝑧) log  
𝜀

|𝑧|
   𝑑 𝐴(𝑧) =

1

2𝜋
   ∫  

 

𝜕𝔻

 𝑢(𝜀𝜁)|𝑑𝜁 | −  𝑢(0), 0 < 𝜀 < 1  (65)  

Also, it is not difficult to check that the function 𝑡 ↦  �̃�(𝑡2),−1 <  𝑡 <  1, is 𝐶2, and that  

∆(�̃�  ◦ |∅|2    =  4𝜓2 (
1

1 − |∅|2 
) |∅′|2 .                             (66)  

Let 𝜓𝑛(𝑥)  =  𝑚𝑖𝑛{𝜓(𝑥), 𝑛}. Note that (66) holds with 𝜓 replaced by 𝜓𝑛. Thus, by (65) and 

(66),  

2 ∫  

 

|𝑧|< 𝜀

|∅′(𝑧)|2 𝜓2  (
1

1 − |∅(𝑧)|2
 )  𝑙𝑜𝑔

1

|𝜎𝑎(𝑧)|

=
1

2𝜋
∫  

 

𝜕𝔻

�̃�𝑛(|∅(𝜀𝜉)|
2)|𝑑𝜁 |  −  �̃�𝑛  (|∅(0)|

2) .                            (67)  

Now fix 𝑛 and let 𝜀 →  1−. We apply the monotone convergence theorem on the left-hand 

side and the dominated convergence theorem on the right (the function �̃�𝑛 is bounded) to 

conclude that (67) holds for 𝜀 =  1 and all 𝑛. Now let 𝑛 →  ∞ and apply the monotone 

convergence theorem on both sides of (67) (ε = 1) (which is possible because 𝜓𝑛 and �̃�𝑛 

increase with n to 𝜓 and �̃�  respectively) to show that (64) holds for 𝑎 =  0. To complete 

the proof we only have to apply this special case to the function ∅◦ σa, and then use the 

substitutes 𝑧 ↦  𝜎𝑎(𝑧) and 𝜁 ↦  𝜎𝑎(𝜁).  
Theorem (2.3.10)[110]: The following conditions are equivalent: 

(i) 𝔅 (ψ) ⊂ BMOA. 

(ii) ∫ 𝜓2 (
1

1− 𝑥
) (1 −  𝑥)𝑑𝑥 = ∞.                                   

1

0
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(iii) 𝐻(𝔻,𝔻) ⊂ 𝐶(𝔅 (𝜓)BMOA) 
A consequence of Theorem (2.3.10) says that there is no ψ such that 𝔅 (ψ) = BMOA: If 𝔅 

(ψ) = BMOA, then the function log 
1

1−𝑧
  belongs to 𝔅 (ψ) .which implies |

1

1−𝑧
| ≤ 𝐶𝜓 (

1

1−𝑧
)  

so that 

∫𝜓2 (
1

1 −  𝑥
) (1 −  𝑥)𝑑𝑥 = ∞.

1

0

 

Proof. We may assume that 𝜓 is continuous because ℬ(𝜓)  =  ℬ(𝜑) if 𝜓 ≍  ∅. The validity 

of the implication (iii) ⇒ (i) is a consequence of the fact that the function ∅(𝑧)  =  𝑧 belongs 

to 𝐻(𝔻,𝔻). That (ii) implies (iii) follows from Theorem (2.3.8) and the fact that the Poisson 

integral of a bounded function (in our case �̃� ) is bounded. Thus it remains to prove that (i) 

implies (ii).  

By Theorem (2.3.7), there is an increasing sequence {𝜆𝑗} of positive integers such that 

𝜓(𝜆𝑗)  ≍  2
𝑗  . Let 𝜌𝑛  =  1 − 1/𝜆𝑛+1. Then  

𝐼 ∶=  ∫  

1

0

 𝜓2  (
1

1 −  𝑥 
) (1 −  𝑥)𝑑𝑥 = (∫  

𝜌2

0

   +  ∑  

∞

𝑛=1

 ∫  

𝜌𝑛+1

𝜌𝑛

) 𝜓2 (
1

1 −  𝑥
 ) (1 −  𝑥)𝑑𝑥  

and we have  

∫  

𝜌𝑛+1

𝜌𝑛

𝜓2 (
1

1 −  𝑥
 ) (1 −  𝑥)𝑑𝑥 𝜓2(𝜆𝑛+2) ∫  

1

𝑝𝑛

 (1 −  𝑥)𝑑𝑥 ≤ 𝐶22𝑛
1

𝜆𝑛+1
2  

  .  

It thus follows that  

𝐼 ≤ 𝐶 +  𝐶∑  

∞

𝑛=1

22𝑛

𝜆𝑛+1
2   .                                                                     (68)  

Now we consider the function  

𝑓 (𝑧) =∑ 

∞

𝑗=1

 
2𝑗

𝜆𝑗+1 +  1
  𝑧𝜆𝑗+1+1.  

By Theorem (2.3.7), this function belongs to ℬ(𝜓) and hence, by the hypothesis (i), it 

belongs to BMOA. On the other hand, 𝑓 is represented by a lacunary series, which implies 

that  

∑ 

∞

𝑛=1

 (
2𝑛

𝜆𝑛+1
)

2

 ≍ ||𝑓||
∗

2
 <  ∞  

(see [124]). This and (68) prove that (i) implies (ii) see [91].  

Theorem (2.3.11)[110]: Let φ ∈  H(𝔻,𝔻) and γ ≤ 1/2. Then φ ∈ 𝔅 (ψγ), BMOA) if and 

only 𝑖 

sup
𝑎∈𝔻

 (𝑃[𝐹𝛾|𝜙∗|
2](𝑎) − 𝐹𝛾|𝜙(𝑎)|

2) < ∞, 

where 

𝐹𝛾  (𝑟) = {
(log

𝑒

1 − 𝑟
)
1−2𝛾

 ,   𝛾 <
1

2
,

 𝑙𝑜𝑔(1 + log
𝑒

1 − 𝑟
),       𝛾 =  1/2.

 

Proof. Observe that the function �̃� is the unique solution g of the Cauchy problem  
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𝑔′′(𝑟)𝑟 +  𝑔′ (𝑟)  =  𝜓2  (
1

1 −  𝑟
)  , 𝑔(0)  =  1, 𝑔′ (0+)  =  𝜓(1)2 (0 ≤  𝑟 <  1). (69)  

The positivity of 𝑔′′(𝑟)𝑟 +  𝑔′ (𝑟) means that 𝑔(𝑟) is convex of log 𝑟, 𝑖. 𝑒., that the function 

𝑥 ⟼  𝑔(𝑒 − 𝑥), 𝑥 ≥ 0, is convex. Set 𝛼 =  1 −  2𝛾 . If 𝛼 >  0 take  

𝑔(𝑟)  = (𝑙𝑜𝑔
𝑒

1 −  𝑟
)
𝛼

 .  

Then  

𝑔′′(𝑟)𝑟 +  𝑔′(𝑟) =  𝛼
1

(1 −  𝑟)2
 (𝑙𝑜𝑔

𝑒

1 −  𝑟
)
𝛼−1

 ℎ(𝑟),  

where ℎ(𝑟)  =  1 +  𝑟 +  (𝛼 −  1)𝑟 (𝑙𝑜𝑔
𝑒

1−𝑟
 )
−1
. Noting that 𝛼 >  0 and that 𝑙𝑜𝑔

𝑒

1−𝑟
≥

 1, we see ℎ(𝑟)  ≍  1. Thus,  

𝜓0
2 (

1

1 −  𝑟
)  ∶=  𝑔′′(𝑟)𝑟 +  𝑔′(𝑟) ≍

1

(1 −  𝑟)2
 (𝑙𝑜𝑔

𝑒

1 −  𝑟
)
𝛼−1

 

=  𝜓𝛾
2  (

1

1 −  𝑟
)   .                                                                                             (70) 

By the uniqueness of the solution of (69) it follows that 𝑔 =  �̃�0. By (70) 𝜓𝛾   ≍  𝜓0 so that 

ℬ(𝜓𝛾 )  = ℬ(𝜓0). We therefore conclude from Theorem (2.3.8) that ∅ ∈  𝒞(ℬ(𝜓0), 

BMOA) if and only if  

sup
𝑎∈𝔻

   ( 𝑃[  𝑔 ◦ |∅∗|
2  −  𝑔  (|∅(𝑎)|2))  <  ∞.  

This proves the theorem in the case 𝛾 <  1/2.  
If 𝛾 =  1/2, we start from the function  

𝑔(𝑟) =  𝑙𝑜𝑔 (1 +  𝑙𝑜𝑔
𝑒

1 −  𝑟 
)  

and proceed as above to complete the proof of Theorem (2.3.11).  

The space ℬ(𝜓) is closely related to the space  

𝐻∞(𝜓) = { 𝑓 ∈  𝐻(𝔻): 𝑓 (𝑧) =  𝑂 ( 𝜓 (
1

1 −  𝑟
))}   

introduced and studied in [11], [122], [123], [117], [118], [120], [119].  

If 𝜓 satisfies (49) with 𝛽 <  1, then ℬ(𝜓) is contained in the disk algebra 𝐴(𝔻) and can be 

identified with a space of analytic functions satisfying a Lipschitz condition on 𝔻 or 𝜕𝔻. 
Theorem (2.3.12)[110]: Let 𝜓 satisfy (49) with 𝛽 <  1, let 𝜔(𝑡)  =  𝑡𝜓(2/𝑡), and let 𝑓 ∈
 𝐻(𝔻). Then the following conditions are equivalent:  

(i) 𝑓 ∈ ℬ(𝜓).  
(ii) 𝑓 ∈  𝐴(𝔻) and | 𝑓 (𝜁)  −  𝑓 (𝜂)|  ≤ 𝐶𝜔(|𝜁 −  𝜂|), 𝜁, 𝜂 ∈  𝜕𝔻.  
(iii) | 𝑓 (𝑧)  −  𝑓 (𝑤)| ≤  𝐶𝜔(|𝑧 −  𝑤|), 𝑧, 𝑤 ∈  𝔻.  
See [118], [119] for a general result that involves higher order derivatives. See also [111] 

for the case where 𝜓 is almost normal.  

The existence of critical Bloch functions as in (51) joined with Theorem (2.3.12) 

immediately gives the following, where 𝐿𝑖𝑝𝜔(𝜕𝔻) and 𝐿𝑖𝑝𝜔(𝔻) denote the function spaces 

consisting f satisfying (ii) and (iii) of Theorem (2.3.12) respectively. 

Theorem (2.3.13)[110]: Let 𝜓𝑗,𝑗  =  1, 2 satisfy (49) with 𝛽 <  1, let 𝜔𝑗(𝑡)  =  𝑡𝜓𝑗(2/𝑡), 

and let 𝑓 ∈  𝐻(𝔻). Then the following conditions are equivalent:  

(i) 𝑓 ∈  𝒞(𝐿𝑖𝑝𝜔1  (𝜕𝔻 ), 𝐿𝑖𝑝𝜔2  (𝜕𝔻)).  

(ii) 𝑓 ∈  𝒞(𝐿𝑖𝑝𝜔1  (𝔻), 𝐿𝑖𝑝𝜔2  (𝔻)). 
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 (iii) sup
𝑧∈𝔻

 𝑓(𝑧)
𝜓1(

1

1−| 𝑓(𝑧)|
2
 

)

𝜓2(
1

1−|𝑧|2
 ) 
 <  ∞.  

(iv) sup
𝑧∈𝔻

 |𝑓′(𝑧)|  
1 − | 𝑧|2𝜔1(1 −   |𝑓(𝑧)|

2)

1 − | 𝑓 (𝑧)|2𝜔2(1 − |𝑧|
2)
 <  ∞.  

The subspace of those 𝑓 ∈ ℬ(𝜓) for which  

|𝑓′(𝑧)|  =  𝑜 ( 𝜓 (
1

1 − |𝑧|2
 )) , |𝑧|  →  1−,  

is denoted by ℬ0(𝜓). In the case 𝜓(𝑥)  =  𝑥, the space reduces to the Little Bloch space, ℬ0. 
It is known and easy to see that ℬ0(𝜓) coincides with the closure in ℬ(𝜓) of the set of all 

polynomials.  

The space VMOA (of functions of vanishing mean oscillation) is the subspace of BMOA 

defined by the requirement  

𝑙 lim
|𝑎|→1

−  ∫  

 

𝔻

| 𝑓′ ((𝑧))|
2
 𝑙𝑜𝑔 

1

|𝜎𝑎(𝑧)|
 𝑑 𝐴(𝑧)  =  0,  

or equivalently that 𝑓 ∈  𝐻2 and  

lim
|𝑎|→1

  ( 𝑃 [ |𝑓∗|
2] (𝑎)  − |𝑓 (𝑎)|2)  =  0.  

It is known that VMOA coincides with the closure in BMOA of the set of all polynomials. 

Theorem (2.3.14)[110]: Let ∅ ∈  𝐻(𝔻,𝔻). Then ∅ ∈  𝒞(ℬ0(𝜓),VMOA) if and only if ∅ 

satisfies (63) and ∅ ∈ VMOA.  

Proof. Assume that 𝐶∅ maps ℬ0(𝜓) into VMOA. Since the function 𝑧 ↦  𝑧 belongs to 

ℬ0(𝜓) we have that ∅ ∈ VMOA. Let 𝑓 ∈ ℬ(𝜓). Then 𝑓𝜌  ∈ ℬ0(𝜓), where 𝑓𝜌(𝑧)  =  𝑓 (𝜌𝑧) 

and 0 <  𝜌 <  1, and therefore, by the hypothesis that 𝒞∅ maps ℬ0(𝜓) into VMOA, we 

have  

|𝑓 ( 𝜌∅(0))|
2
 + sup

𝑎∈𝔻
  ∫  

 

𝔻

| 𝑓′ (𝜌∅(𝑧))|
2
 𝜌2 | ∅′(𝑧)2 𝑙𝑜𝑔

1

|𝜎𝑎(𝑧)|
 𝑑 𝐴(𝑧)

≤  𝐶 ||𝑓𝜌||
ℬ(𝜓)

2
.                                                                                    (71) 

On the other hand, using the hypothesis that 𝜓 is almost increasing, one shows that 

||𝑓𝜌||
ℬ(𝜓)

≤  𝐶 ||𝑓||
ℬ(𝜓)

. Combining this with (71) and using Fatou’s lemma, we find that 

(71) holds for 𝜌 =  1, which means that 𝐶𝜑 acts from ℬ(𝜓) to BMOA. Now we use 

Theorem (2.3.8) to conclude that (63) holds.  

Assume, conversely, that ∅ ∈ VMOA and that (63) is satisfied. Since ∅ is VMOA and is 

bounded we see from the definition of VMOA that ∅𝑛  ∈ VMOA, for every integer 𝑛 ≥  0. 
This implies that 𝒞𝜑 maps polynomials into VMOA. Since polynomials are dense in ℬ0(𝜓), 

it follows that 𝒞𝜑 maps ℬ0(𝜓) into VMOA. This completes the proof.  

The argument in the above proof involving (71) actually proves the following:  

Theorem (2.3.15)[110]: 𝒞(ℬ0(𝜓), 𝐵𝑀𝑂𝐴)  =  𝒞(ℬ(𝜓), 𝐵𝑀𝑂𝐴).  
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Chapter 3 

Bloch Pull-Backs 
 

 We investigate the assertion that if 𝜙 ∈ ℬ0 is a conformai mapping of the unit disk 𝔻 

into itself whose image 𝜙(𝔻) approaches the unit circle 𝕋 only in a finite number of 

nontangential cusps, then 𝐶𝜙 is compact on ℬ0. On the other hand if there is a point of 𝕋 ∩

𝜙(𝔻)̅̅ ̅̅ ̅̅ ̅ at which 𝜙(𝔻) doses not have a cusp, then 𝐶𝜙 is not compact. As a consequence, we 

obtain a new proof of a recently obtained characterization of the compact composition 

operators on Bloch spaces. 

Section (3.1): Bounded Mean Oscillation  
We consider holomorphic maps:  

𝐹: 𝐵𝑛 → 𝐷,  
Where 𝐵𝑛denote the open unit ball in 𝐶. We will say that F has the pull-back property if 𝑓 ∘
𝐹𝐵𝑀𝑂𝐴, (𝐵𝑛) wherever 𝑓 belong to the Bloch space of D. The pull-back property was first 

studied in [125], where Ahern showed that the map  𝐹(𝑧) =  𝑛
𝑛

2𝑧1𝑧2…𝑧𝑛 has the property. 

Ahren was interested in the Fatou theorem: Because  the above  F has  the pull back property 

,  there exist a function in 𝐵𝑀𝑂𝐴, (𝐵𝑛) with a radial limit  at no point  of the  𝑛-torus  |𝑧1| =

 |𝑧2| =  … =  |𝑧𝑛| = 1/√𝑛(𝐻∞-functions  must have limits in a set  of full 𝑛-dimensional 

measure on the torus).) 

       Although the pull -back property now appears less useful than other techniques in 

studying the Fatou theorem for 𝐵𝑀𝑂𝐴(see [136]). In [82], Ahern and Rudin posed the 

problem of characterizing the maps F having the pull-back property. It seemed puzzling that 

the pull-back property was difficult to verify, even for maps as spmple as Ahern’s. Unit 

now, only certain homogenous polynomials were known to have the property [125], [82], 

[132], [127], [126]. Most of these results are based on the fact that 𝐵𝑀𝑂𝐴, (𝐵𝑛) is the dual 

space of 𝐻1(𝐵𝑛), and all involve somewhat intricate calculations that depend on the 

symmetry of the maps F considered.  

We go well beyond the previous results by showing that if 𝐹 ∈ 𝐿𝑖𝑝1(𝐵𝑛) , then F has 

the pull-back property. This theorem should be contrasted with a result of Tomaszewski 

[135], which shows that there exist maps F failing to have the pull-back property even 

though  F∈ 𝐿𝑖𝑝𝛼(𝐵𝑛) for some 𝛼 > 0. 

       We take a different approach to the pull-back problem: The:’ bounded mean 

oscillation’’ definition of 𝐵𝑀𝑂𝐴  on 𝜕𝐵𝑛 with respect to the usual non isotropic metric) is 

used directly, as is the conformal invariance of the Bloch space. This leads to a suggestive 

geometrical picture that, while nowhere present in statements or proofs of theorems, was the 

starting point for our investigation. 

       The result that makes everything work is Theorem (3.1.4)(b), which gives an estimate 

on who fast the complex tangential derivative of a holomorphic function tends to zero as a 

point of maximum modulus set.) 

We discuss several necessary and sufficient conditions for a map F to have the pull 

back property. We show how some of the techniques can be used to prove a theorem related 

to a result of Rudin. 

Any unexplained notation will be as in [77], [133]. 
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We summarize a few facts about the Bloch space that we need in the sequel, most of 

which are well known. The Bloch space 𝔅(𝐷) consists of those holomorphic functions 𝑓 on 

𝐷 for which 

‖𝑓‖𝔅 =  𝑠𝑢𝑝𝑧∈𝐷|𝑓
′(𝑧)|(1 − |𝑧|2) < ∞.                        (1) 

This is a Banach space if the norm of 𝑓 ∈ 𝔅(𝐷) is defined to be.  

        The invariant form of the Schwarz lemma [G.P.2] shows that if 

𝜑:𝐷 →   𝐷 is holomorphic, then 

‖𝑓 ∘ 𝜑‖𝔅 ≤ ‖𝑓‖𝔅                                                               (2) 

For all 𝑓 ∈ 𝔅(𝐷). Equality in (2) hold in the case 𝜑 = 𝜑𝛼  where 𝜑𝛼 . 
       Is the automorphism of 𝐷 defined by  

𝜑𝛼(𝑧) =  
𝛼 − 𝑧

1 − 𝛼𝑧
 

Let 𝑓 ∈ 𝔅(𝐷), integrating 𝑓′ from  0 to z, one easily see that  

|𝑓(𝑧) − 𝑓(0)| ≤ ‖𝑓‖𝔅𝑙𝑜𝑔
1

1 − |𝑧|
≤ ‖𝑓‖𝔅 log

2

1 − |𝑧|2
                 (3) 

For all (3) 𝑧 ∈ 𝐷. The identity 

1- |𝜑𝛼(𝛽)|
2 =  

|1−𝛼𝛽|2

(1−|𝛼|2)(1−|𝛽|2)
 

Together with (2) and (3), show that  

|𝑓(𝛼) − 𝑓(𝛽)| =  |𝑓 ∘ 𝜑𝛽(𝜑𝛽(𝛼) − 𝜑𝛽(0) )|                         (4) 

For all    𝛼, 𝛽 ∈ 𝐷. 
       Membership in 𝔅(𝐷)  is equivalent to a bounded mean oscillation condition with 

respect to area measure. We let 𝑑𝐴 denote Lebseque area measure on 𝐶, normalized so that 

 𝐴(𝐷) = 1.For 0 < 𝛿 ≤ 2 and 𝜁 ∈ 𝑇. 

The unit circle, put  

Ω𝛿(𝜁) = {𝑍 ∈ 𝐷: |𝑍 − 𝜁| < 𝛿} 
The average of any  𝑓 ∈ 𝐿1(𝐷, 𝑑𝐴) over Ω𝛿(𝜁) = Ω is defined by  

𝑓Ω = 
1

𝐴(Ω)
∫ 𝑓𝑑𝐴
 

Ω

. 

Note that (3) implies that every 𝔅(𝐷) 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝐿1(𝐷, 𝑑𝐴). 
       Throughout 𝑐 and 𝐶 will denote numerical   constant whose values may change from 

line to line. 

       The expression 𝐴(𝑓) ≈ 𝐵(𝑓) will mean that therte exist positive constant C and c such 

that   𝑐𝐵(𝑓) ≤ 𝐴(𝑓) ≤ 𝐶𝐵(𝑓) for all functions 𝑓 under consideration. 

       The following proposition is essentially contained in [128].We supply a proof that does 

not depend on the machinery developed. 

Proposition (3.1.1)[121]: Suppose 𝑓 is holomorphic in 𝐷 and 𝑓 ∈ 𝐿1(𝐷, 𝑑𝐴)  . Then  

‖𝑓‖𝔅 ≈ 𝑠𝑢𝑝
1

𝐴(Ω)
∫ (𝑓 − 𝑓Ω )𝑑𝐴 < ∞
 

Ω

, 

Where the supremum is taken over all region Ω = Ω𝛿(𝜁). 
Proof.  A straightforward estimate shows that  

1

𝐴(Ω𝛿)
∫ 𝑙𝑜𝑔

1

(1 − |𝑧|2)Ω𝛿

𝑑𝐴(𝑧) = log
1

𝛿
+ 𝑜(1)(0 < 𝛿 ≤ 2)                          (5) 

Suppose 𝑓 ∈ 𝔅(𝐷). Setting Ω = Ω𝛿(1), we have by (4) that 
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1

𝐴(Ω)
∫ (𝑓 − 𝑓Ω )𝑑𝐴 <
 

Ω

2

𝐴(Ω)
∫ |𝑓 − 𝑓(1 − 𝛿) |𝑑𝐴
Ω

 

≤
2

𝐴(Ω)
‖𝑓‖𝔅∫ log

2|1 − (1 − 𝛿)𝑧|
2

𝛿(2 − 𝛿)(1 − |𝑧|2)
𝑑𝐴(𝑧).

Ω

 

Since  |1 − (1 − 𝛿)𝑧| ≤ 2𝛿 in Ω, (5) shows that the last line is less than or equal to a constant 

times ‖𝑓‖𝔅 for 𝛿 ∈ (0,1). The fact that the 𝐿1 − norm of 𝑜𝑓   𝑓 − 𝑓(0)  is less than a 

constant times ‖𝑓‖𝔅  handles the case 𝛿 ≥ 1. 

       For the other direction, note than  

|𝑓′(0)| ≤ ∫ |𝑓|
𝐷

𝑑𝐴                              (6) 

For all 𝑓 holomorphic in. [Recall that 𝐴(𝐷)  = 1] Applying the appropriate translated and 

dilated version of (6) to the function 𝑓 − 𝑓Ω, we have  

(1 − |𝑧|)|𝑓′(𝑧)| ≤
1

(1 − |𝑧|)2
∫ |𝑓 − 𝑓Ω|
𝐷(𝑧,1−|𝑧|)

𝑑𝐴 

≤
4

𝐴(Ω)
∫ (𝑓 − 𝑓Ω )𝑑𝐴
Ω

, 

Where 𝐷(𝑧, 1 − |𝑧|)  is the disc centered at z of radius  1 − |𝑧| and 

Ω = Ω𝛿(𝜁), with 𝛿 = 2( 1 − |𝑧|), 𝜁 = 𝑧/|𝑧|. 
       Another BMO-type condition that characterizes the Bloch space involves   𝐻1 −norms 

over circle internally tangent to the unit circle T. For 𝛼 ∈ 𝑑  , define the circle maps 𝛾𝛼: �̅� →
�̅� 𝑏𝑦 

𝛾𝛼(𝑧) =  𝛼 + (1 − |𝛼|)𝑧 

We let  𝜎1 = 𝜎 denote arc length measure on T, normalized so that 𝜎(𝑇) = 1. 
Proposition (3.1.2)[121]:  If  0 < 𝜀 < 1   and 𝑓 is holomorphic in 𝐷, then  

‖𝑓‖𝔅 ≈ 𝑠𝑢𝑝𝜀<|𝛼|<1‖𝑓 ∘ 𝛾𝛼 − 𝑓(𝛼)‖𝐻1(𝐷)                                 (7) 

Proof. We may take  𝛼 > 0. Noting that  |1 − 𝛼𝛾𝛼| ≤ |1 − 𝛼| + |(1 − 𝛾𝛼)| ≤ 3(1 − 𝛼) and 

that 1- |𝛾𝛼(𝑒
𝑖𝜃)|

2
= 2𝛼(1 − 𝛼)(1 − 𝑐𝑜𝑠𝜃), we have 

∫ |𝑓 ∘ 𝛾𝛼 − 𝑓(𝛼)|
𝑇

𝑑𝜎 ≤ ‖𝑓‖𝔅∫ log
2|1 − 𝛼𝛾𝛼|

2

(1 − 𝛼2)(1 − |𝛾𝛼|
2)
𝑑𝜎.

T

 

≤ ‖𝑓‖𝔅∫ 𝑙𝑜𝑔
9

𝜀(1 − 𝑐𝑜𝑠𝜃)

2𝜋

0

𝑑𝜃 

Let 𝐶 denote the value of the integral in the last line. The above shows that  

sup𝜀<|𝛼|<1‖𝑓𝑅 ∘ 𝛾𝛼 − 𝑓𝑟(𝛼)‖𝐻1(𝐷) ≤ 𝐶𝜀‖𝑓𝑟‖𝔅                         (8) 

Where 𝑓𝑟(𝑧) = 𝑓(𝑟𝑧)  for 0 < 𝑟 < 1 ,   Since ‖𝑓𝑟‖𝔅 → ‖𝑓‖𝔅 𝑎𝑠 𝑟 → 1, (1,10) hold with 𝑓 

in place of 𝑓𝑟 . 
       For the other direction, apply the inequality 

|𝑓′(0)| ≤ ∫ |𝑓|
𝑇

𝑑𝜎 

[valid for all  𝑓 ∈ 𝐻1(𝐷) ] to the functions 𝑓 ∘ 𝛾𝛼 − 𝑓𝑟(𝛼). 
       Although Proposition (3.1.2) will not explicitly be used in the proof of the main 

theorem, we have included it because it may be helpful to the reader in understanding our 

approach to the pull-back problem’ see (13) and (14). 
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       The above proof can be easily modified to show that Proposition (3.1.2) remains valid 

if the 𝐻1-norms in (7) are replaced by 𝐻𝑝-norms   , for any    𝑝 ∈ (0,∞). The following 

corollary is the case 𝑝 = 2, which may be of some independent intrest. 

Corollary (3.1.3)[121]: If  0 < 𝜀 < 1 and 𝑓 is holomorphic in D, then  

‖𝑓‖𝔅 ≈ 𝑠𝑢𝑝𝜀<|𝛼|<1 (∑(
𝑓(𝑘)(𝛼)

𝑘!
(1 − |𝛼|)𝑘)

2∞

𝑘=1

)

1/2

 

       Rotation –invariant Lebesgue measure on 𝜕𝐵𝑛  normalized to have total mass 1. Will 

be denoted by 𝜎𝑛    . We write 𝜎𝑛 =  𝜎 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒  dimension is clear from context. For 

𝜁 ∈ 𝜕𝐵𝑛   and  0 < 𝛿 ≤ 2 , 𝑏𝑢𝑡 𝒬𝛿(𝜁) =  {𝜂 ∈ 𝜕𝐵𝑛: |1 − 〈𝜂, 𝜁〉| < 𝛿}. Notice that the 𝑧1- 

projection of 𝒬𝛿(𝑒1) 𝑖𝑛𝑡𝑜 𝐷  𝑖𝑠  Ω𝛿(1)  where 𝑒1 = (1, 0, … ,0). 
       The class BMOA (𝐵𝑛 ) consists of the functions   𝑔 ∈ 𝐻1(𝐵𝑛) for which 

‖𝑔‖𝐵𝑀𝑂 = sup
1

𝜎(𝒬)
∫ |𝑔 − 𝑔𝒬|
𝒬

𝑑𝒬 < ∞,  

Where 𝑔𝒬   denotes the average of 𝑔 over 𝒬 and the supremum is taken over all  𝒬 = 𝒬𝛿(𝜁)  

(we have identified 𝑔 with its boundary.) 

BMOA (𝐵𝑛 )  is a Banach space under the norm BMOA (𝐵𝑛 ), and, as is well known [128], 

can be identified with the dual space of  𝐻1(𝐵𝑛). 
       This duality relation is not important to our approach to the pull-back problem, and will 

appear only as a technical devise in extending the 𝑛 = 2 case of Theorem (3.1.6) to higher 

dimensions. 

 Most of the work will be done for the case 𝑛 = 2. For any 

𝑔 ∈ 𝐿1(𝜕𝐵2)   we have [77] 

∫ 𝑔𝑑𝜎
𝜕𝐵2

= ∫ ∫ 𝑔𝛼𝑑𝜎1𝑑𝐴(𝛼)
𝑇𝐷

,                                         (9) 

Where 𝑔𝛼(𝑤) = 𝑔 (𝛼, (1 − |𝛼|
2)

1

2𝑤) for 𝑤 ∈ 𝑇 , when  𝑔 ∈ 𝐻1(𝐵𝑛), (9) and the mean  

value property give  

𝑔𝒬 =   
2

𝐴(Ω)
∫ 𝑔(𝛼, 0)𝑑𝐴(𝛼)
Ω

,                                         (10) 

where 

𝒬 = 𝒬𝛿(𝑒1)   𝑎𝑛𝑑    Ω =  Ω𝛿(1). 
       For  K = 1, … , n, Dk will denote the holomorphic partial derivative /𝜕𝑍𝐾 . The class 

Lip 1(B)  is the set of functions 𝑔 on 𝐵 = 𝐵𝑛 for which  

 

‖𝑔‖𝐿𝑖𝑝 1 = 𝑠𝑢𝑝
|𝑔(𝑧) − 𝑔(𝑤)|

|𝑧 − 𝑤|
< ∞, 

The supremum being taken over all z, w ∈  B  with  z ≠ w  . Note that  ‖g‖Lip 1 = ‖∇g‖∞ 

whenever 𝑔 is holomorphic in  , where ‖ ‖∞  denoyes the supremum norm on 𝐵 and ∇g =
 (D1g,…Dng ). 
When  n = 2 we can define a canonical complex tangential derivative by setting 

Drg(rζ) − ζ1D2g(rζ) − ζ2D1g(rζ) 

For  0 < 𝑟 < 1  𝑎𝑛𝑑   𝜁 ∈ 𝜕B2: Drg(z)   is the complex derivative of 𝑔 in the direction   

orthogonal to z. 
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Recall that F always denotes a holomorphic map from Bn, into D. 

Theorem (3.1.4)[121]: If  𝐹 ∈ Lip1 (B2)  then 

-  As r → 1,   DTF(rζ) converges uniformly on ∂B2 to a continuous function  DTF(ζ) 
- There exists a constant C, depending only on ‖F‖Lip1such that 

|𝐷𝑇𝐹(𝜁)| ≤ 𝐶(1 − |F(ζ)|)
1/2 

For all  ζ ∈ ∂B2. 
Proof. We will show first that 

|DTF(sζ) − DTF(rζ)| ≤ 2(1 − r)
1/2‖F‖Lip 1                                            (11) 

 for all ζ ∈ ∂B2  , whenever   0 ≤ r < 𝑠 < 1.  . For simplicity, we take  ζ =  e1, so that DT =

 D2. 
       Because   ‖D1F‖∞ ≤ ‖F‖Lip 1, we may apply Cauchy’s estimates in the z2-direction to 

obtain. 

D2 D1.F(re1) 
Reversing the order of differentiation and then integrating, we find this proves (11) and 

hence (a) of the theorem to prove (11) and hence (a) of the theorem. 

r ∈ [0,1]setting r = |F(e1)|, we arrive at  

Ω = Ωδ(ζ) 
δ = 2(1 − |z|), ζ = z/|z| 

γα: D → D 

γα(z) = α + (1 − |α|)z 
σ1= σ   σ(T) = 1 

To prove (b), observe that the invariant Schwarz lemma and the Lipschitz condition on 𝐹 

imply 

|D2F(e1)| ≤ |D2F(e1) − D2F(re1)| + D2F(re1) 

≤ 4‖F‖Lip 1(1 − r)
1/2 + 2(1 − |F(re1)|)(1 − 𝑟)

−1/2 

 For all r ∈ [0,1], thus by [3.2],  

|D2F(e1)| ≤ |D2F(e1) − D2F(re1)| + D2F(re1) 

≤ 4‖F‖Lip 1(1 − r)
1/2 + 2(1 − |F(re1)|)(1 − 𝑟)

−1/2 

For all  r ∈ [0,1].  setting r = |F(e1)|, we arrive at 

|D2F(e1)| ≤ (4‖F‖Lip1 + 2)(1 − |F(e1)|)
1/2 

Completing the proof of (b). 

 (3.1.4) (a) is not new but is included for the sake of completeness. Note that it implies that 

the restriction of F to any complex tangential curve in 𝜕𝐵2  is continuously differentiable. 

In fact, F is a good deal smoother than this on such curve according to Stein [134] (see also 

[77] or [130]). 

Given a complex-valued function 𝑔 defined on the set 𝐸, define 

oscEg =  supζ,η∈E|𝑔(𝜁) − 𝑔(𝜂)| 

Corollary (3.1.5)[121]: If  𝐹 ∈ 𝐿𝑖𝑝1(𝐵2)   then there exists a constant C, Depending only 

on  ‖F‖Lip1  , such that  

osc𝒬δ(ζ)F ≤ C(δ + δ
1/2(1 − |F(ζ)|)1/2) 

For all 𝑄𝛿(𝜁) ⊂ 𝜕𝐵2 . 
Proof. For convenience we take  𝜁 =  𝑒1. Define the complex tangential curve 𝛾𝜃(𝑡) =

 𝛾(𝑡) =  (cos 𝑡, 𝑒𝑖𝜃 sin 𝑡)(𝑡 ∈ 𝑅), where 𝜃 ∈ 𝑅  is fixed. Because 𝐹 is continuously 

differentiable along  𝛾, Theorem (3.1.4) (b) shows 



81 

|𝐹(𝛾(𝑏)) − 𝐹(𝛾(𝑒1)) | ≤ ∫ |𝐷𝑇𝐹(𝛾(𝑡))||𝛾
′(𝑡)|

𝑏

0

𝑑𝑡 ≤ 𝐶 ∫ (1 − |𝐹(𝛾(𝑡))|
2
)
1/2𝑏

0

𝑑𝑡 

Setting 𝑠(𝑡) =  (1 − |𝐹(𝛾(𝑡))|
2
)
1/2

, we have 

|𝑠′(𝑡)| ≤  
|𝐷𝑇𝐹(𝛾(𝑡))|

(1 − |𝐹(𝛾(𝑡))|
2
)
1/2 ≤  𝐶. 

Whenever |𝐹(𝛾(𝑡))| < 1. it follows that 𝑠(𝑡) ≤  𝑠(0) + 𝐶𝑡, giving 

|𝐹(𝛾(𝑏)) − 𝐹(𝑒1) | ≤ 𝐶 (𝑏
2 + 𝑏(1 − |𝐹(𝑒1)|

1
2) 

For small δ every point 𝒬δ(𝑒1)  has Euclidean distance less than  δ from one of the curve  

𝛾𝜃([0,2𝛿
1/2]) since 𝐹 ∈ 𝐿𝑖𝑝1(𝐵2) , since    the proof of the corollary is complete,  

       The main result the following theorem. 

Theorem (3.1.6)[121]: Suppose that  𝐹 ∈ 𝐿𝑖𝑝1(𝐵𝑛)   and  𝐹(0) = 0. Then there exists a 

constant 𝐶, depending only on ‖𝐹‖𝐿𝑖𝑝1 , such that  

‖𝑓 ∘ 𝐹‖𝐵𝑀𝑂𝐴(𝐵) ≤  ‖𝑓‖𝔅(𝐷) 

For all  𝑓 ∈ 𝔅(𝐷). 
      The assumption 𝐹(0) = 0 is merely a convenience normalization. [If 𝐹 ∈ 𝐿𝑖𝑝1(𝐵𝑛) and 

𝐹(0) ≠ 0, Theorem (3.1.6) may be applied to the composition of F with an appropriate 

automorphism of D. It then follows that F has the pull-back property, with a constant 

depending both on  ‖𝐹‖𝐿𝑖𝑝1  and 𝐹(0)]. 

       Until further notice we taken 𝑛 = 2. The higher-dimensional case will follow from this 

by a slicing argument. (See Proposition (3.1.10)) 

To prove Theorem (3.1.6). we need to show the averages 
1

𝜎(𝒬)
|𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬|𝑑𝒬                                             (12) 

are bounded by a constant times ‖𝑓‖𝔅(𝐷) where 𝒬 = 𝒬𝛿(𝜁). We also need to know  that 𝑓 ∘

𝐹 ∈ 𝐻1(𝐵2). To avoid this latter technical detail at the beginning, we assume until further 

notice that 𝑓 ∈ 𝐶(�̅�). 
       The proof of Theorem (3.1.6) comes in two parts, one dealing with “small Q’s”, the 

other with “large Q’s”. We start with the smaller Q’s”., which are  easier  to handle .  

       Let C denote the constant associated with F by Corollary (3.1.5). Letting     𝑐 =

 1/(9𝐶), we see   that if   0 < 𝛿 ≤  𝑐(1 − |𝐹(𝜁)|) 𝑡ℎ𝑒𝑛   𝐹( 𝒬𝛿(𝜁)) is contained in the disk  

∆ with center  𝐹(𝜁) and radius (1 − 𝐹|𝜁|)/2, setting  𝒬 = 𝒬𝛿(𝜁)we have  

1

𝜎(𝒬)
 ∫ |𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬|
𝒬

𝑑𝜎 ≤
2

𝜎(𝒬)
 ∫ |𝑓 ∘ 𝐹 − 𝑓(𝐹(𝜁)) |
𝒬

𝑑𝜎 ≤ 2 𝑜𝑠𝑐∆𝑓 

The estimate (1) on  𝑓′ shows that the oscillation of  𝑓 over ∆ is bounded by an absolute 

constant times the Bloch norm of  𝑓. 
       The case  𝛿 >  𝑐(1 − |𝐹(𝜁)|)  is substantially more involved, but there is an 

intermediate case  that is easily  handled. Suppose we know the average (12) are bounded 

by a constant (depending only on ‖𝐹‖𝐿𝑖𝑝1  ) times the Bloch norm of 𝑓 , whenever 𝛿 >

4(1 − |𝐹(𝜁)|)  . Then for the range  𝑐(1 − |𝐹(𝜁)|) ≤ 𝛿 ≤ 4(1 − |𝐹(𝜁)|)  we  obtain 

1

𝜎(𝒬)
 ∫ |𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬|
𝒬

𝑑𝜎 ≤
𝜎(𝒬1)

𝜎(𝒬)

2

𝜎(𝒬1)
 ∫ |𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬1|
𝒬1

𝑑𝜎, 
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Where   𝒬 = 𝒬𝛿(𝜁) 𝑎𝑛𝑑 𝒬1 = 𝒬4(1−|𝐹(𝜁)|)(𝜁)  . The last expression is then bounded by a 

constant (depending only on  ‖𝐹‖𝐿𝑖𝑝1   times the Bloch norm of  𝑓. 

It is thus the range  𝛿 > 4(1 − |𝐹(𝜁)|)  that is trouble some. From now on  we take  𝜁 =
 𝑒1  𝑤𝑖𝑡ℎ 𝒬 = 𝒬𝛿(𝑒1)  𝑎𝑛𝑑  Ω = Ω𝛿(1) (11), and (12) show that  

1

𝜎(𝒬)
 ∫ |𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬|
𝒬

𝑑𝜎2 ≤
1

𝐴(Ω)
 ∫ ∫ 𝑓ا| ∘ 𝐹𝛼

𝑇

−  𝑓 ∘ 𝐹𝛼0)|ا
Ω

𝑑𝜎1𝑑𝐴(𝛼) 

+
1

𝐴(Ω)
∫ |𝑓𝐹(𝛼, 0) − (𝑓 ∘ 𝐹)(. ,0)Ω|
𝒬

𝑑𝐴(𝛼)      (13) 

[recall the notation  𝐹𝛼(𝑤) = 𝐹 (𝛼, (1 − |𝛼|
2)

1

2𝑤)   𝑤 ] Proposition  (3.1.1) and (2)  show 

that the second summand on  the right is bounded by  an absolute constant times the Bloch 

norm of 𝑓. 
       It is thus the  Ω-averages of 

∫ |𝑓 ∘ 𝐹𝛼 − 𝑓 ∘ 𝐹𝛼(0)|
𝑇

𝑑𝜎1                         (14) 

That we must control. Note the similarity between (14) and (7). In fact, it is not difficult to 

convince oneself that 𝛼 → 1, 𝐹𝛼(𝑇)looks more and` more like a circle with center  𝐹𝛼(0)  . 
This is the geometrical picture mentioned. (it is tempting to think that something like 

Littlewood’s  subordination principle, combined with  Proposition (3.1.2), would now finish  

the proof, but we were not able  to make this idea work.) 

    By (4), (14) is less than or equal to 

‖𝑓‖𝔅∫ log
2|1 − 𝐹𝛼̅̅ ̅(0)𝐹𝛼|

2

, (1 − |𝐹𝛼(0)|
2) (1 − |𝐹𝛼|

2)
𝑑𝜎.

T

= ‖𝑓‖𝔅∫ log
2|1 − 𝐹𝛼(0)|

2

(1 − |𝐹𝛼|
2)

𝑑𝜎.
T

   (15) 

The equality following because   log 2|1 − 𝐹𝛼̅̅ ̅(0)𝐹𝛼|
2  is harmonic on �̅�. 

Lemma (3.1.7)[121]: If  𝐹 ∈ 𝐿𝑖𝑝1(𝐵2), then there exist a constant C, depending only on    

‖𝐹‖𝐿𝑖𝑝1, such that  

∫ log
1

(1 − |𝐹𝛼|
2)
𝑑𝜎 ≤

T

𝐶 + log
1

|𝐷1𝐹(𝛼, 0)|
2(1 − |𝛼|2)

 

For all 𝛼 ∈ 𝐷. 

Proof.  By Theorem (3.1.4) (b) and Fatou’s lemma, 

∫ log(1 − |𝐹𝛼|)
2𝑑𝜎 ≥

T

log 𝑐 + ∫ log|(𝐷𝑇𝐹)𝛼|
2𝑑𝜎 =

T

 

log 𝑐 + ∫ limr→1 log|𝐷𝑇𝐹(𝑟𝛼, 𝑟(1 − |𝛼|
2)1/2𝑤|

2
𝑑𝜎(𝑤) ≥ ا

 

T

 

log 𝑐 + limr→1𝑠𝑢𝑝∫  log|𝐷𝑇𝐹(𝑟𝛼, 𝑟(1 − |𝛼|
2)|1/2𝑤|ا

2
𝑑𝜎(𝑤)

𝑇

  

Using the definition of 𝐷𝑇 and multiplying by 𝑤  with the absolute values, the integrand in 

the last line becomes 

log|𝑤𝑟𝛼𝐷2𝐹(𝑟𝛼, 𝑟(1 − |𝛼|
2)1/2𝑤) − 𝑟((1 − |𝛼|2)1/2)𝐷1𝐹(𝑟𝛼, 𝑟(1 − |𝛼|

2)1/2𝑤)|
2
 

Which is a subharmonic function of  𝑤. It follows that  
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∫ 𝑙𝑜𝑔(1 − |𝐹𝛼|
2)𝑑𝜎 ≥ 𝑙𝑜𝑔𝑐 + lim

𝑅→1
sup  𝑙𝑜𝑔|(1 − |𝛼|2)1/2𝐷1𝐹(𝛼, 0)|

2

𝑇

 

=  log 𝑐 +  log|(1 − |𝛼|2)1/2𝐷1𝐹(𝛼, 0)|
2
 

Completing the proof of the lemma. 

       The next two lemmas will be applied to the one variable function 𝑔(𝛼) = 𝐹(𝛼, 0). 
Lemma (3.1.8)[121]: Suppose g is holomorphic in D,  𝑔 ∈ 𝐿𝑖𝑝 1(𝐷)  and ‖𝑔‖∞ ≤1 , , then  

there exists a constant   𝐶   depending only on ‖𝑔‖𝐿𝑖𝑝 1,       such that 

1

𝐴(Ω)
∫ log(1 − |𝑔(𝛼)|2)𝑑𝐴(𝛼) ≤  𝑙𝑜𝑔𝛿 + 𝐶  .
 

Ω

 

 For all Ω =  Ω𝛿(1)   𝑤𝑖𝑡ℎ 𝛿 > 4(1 − |𝑔(1)| ) 

Proof. If   α ∈ Ω𝛿(1)   , then 

1 − |𝑔(𝛼)|2 ≤ 2(1 − |𝑔(𝛼)|) ≤ 2(1 − |𝑔(1)|) + |𝑔(1) − 𝑔(𝛼)| 

≤ 2((
𝛿

4
) + ‖𝑔‖𝐿𝑖𝑝 1|1 − 𝛼| ≤ 2𝛿 (

1

4
+ ‖𝑔‖𝐿𝑖𝑝 1)) 

 Lemma (3.1.9)[121]: Suppose 𝑔 is holomorphic in D,  𝑔 ∈ 𝐿𝑖𝑝 1(𝐷)  and ‖𝑔‖∞ ≤1 , and 

𝑔(0)  = 0, then  there exists a constant   𝐶 > −∞  depending only on ‖𝑔‖𝐿𝑖𝑝 1,       such that  

1

𝐴(Ω)
∫ log(𝑔′)𝑑𝐴 ≥ 𝐶  .
Ω

 

 For all     Ω =  Ω𝛿(1)   𝑤𝑖𝑡ℎ 𝛿 > 4(1 − |𝑔(1)| ) 

 Proof. First observe that if u is subharmonic and non positive in D, then  

𝑠𝑢𝑝0≤|𝑧|≤𝑟𝑢(𝑧) ≤ (
1 − 𝑟

1 + 𝑟
)
2

∫ 𝑢𝑑𝐴
𝐷

.                                      (16) 

Whenever 0 ≤ 𝑟 < 1. Inequality (16) is clear when  𝑟 = 0. 

       The general case follows by applying the case  𝑟 = 0 𝑡𝑜 𝑢  composed with 

automorphism of D and then changing variables. 

Assume to begin with that    0 < 𝛿 < 1  .  Set  L = ‖𝑔‖𝐿𝑖𝑝 1,         and put    , 𝑥 = 1 − 𝛿, 𝑦 =

1 −
𝛿

2(𝐿+1)
. By the Schwarz lemma  [recall g(0) = 0]|𝑔(𝑥)| ≤ 𝑥, 𝑇ℎ𝑢𝑠  

|𝑔(𝑦) − 𝑔(𝑥)| ≥ |𝑔(1) − 𝑔(1) − 𝑔(𝑦)| − 𝑥 ≥ 𝛿/4 

Where we have used the hypothesis    𝛿 > 4(1 − |𝑔(1)|). It follows that |𝑔′| ≥ 1/4   at 

some point of  [𝑥, 𝑦]. 
       Define the automorphism |𝑔′| ≥ 1/4. 

𝜑(𝑧) =
1 − 𝛿 + 𝑧

1 + (1 − 𝛿)𝑧
 

Note that φ(0) = 1 − δ and φ(1) = 1;  φ is a " dilation" that pull G in towards 1.setting  

r = 1 −
1

(2(L+1))
 and  v = { z ∈ D: Rez > 0}, it is not hard to verify that  

[x, y]φ([0. r]), φ−1(Ωδ(1)) ⊂ V, and |φ′| ≤ 2𝛿 in 𝑉. 

Now put h =
g′

‖g′‖∞
  and Ω = Ωδ(1)   we use the remarks above and (16) (with u = log|h| 

) to conclude 
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1

𝐴(Ω)
∫ 𝑙𝑜𝑔|ℎ|
Ω

𝑑𝐴 ≥
1

𝐴(Ω)
∫ 𝑙𝑜𝑔|ℎ ∘ 𝜑||𝜑′|2

𝑉

𝑑𝐴 

≥ 𝐶∫ 𝑙𝑜𝑔|ℎ ∘ 𝜑|
𝐷

𝑑𝐴 ≥ 𝐶 (
1 − 𝑟

1 + 𝑟
)
2

sup(0,r) 𝑙𝑜𝑔|ℎ ∘ 𝜑|  

≥ 𝐶 (
1 + 𝑟

1 − 𝑟
)
2

[log
1

4
− 𝑙𝑜𝑔 𝐿] . 

(Recall that L = ‖g′‖∞) .We are done in the case 0 < 𝛿 < 1. 
       The case  0 ≤ δ ≤ 1 is similar but easier. We need only show  

∫ log |𝑔′|𝑑𝐴 ≥ 𝐶  .
D

 

Here we know |g(1)| > 1/2,, which implies that |g(r)| > 1/4, where it r = 1 −
1/(4(L + 1). It follows that that |g′|   is at least ¼ somewhere in     [0, r]  and now  we 

apply (16)  as before. The proof of the lemma is complete. 

  Finishing the proof of Theorem (3.1.6) is now a matter tying up some loose ends. We need 

to show  

1

𝐴(Ω)
∫ ∫ log

(1 − |Fα(0)|
2)

(1 − |Fα|
2)T

dσdA(α).
Ω

 

Is uniformly bounded provided δ > 4(1 − |F(e1)|), where of course    Ω =  Ωδ(1) Lemma 

(3.1.7) and (3.1.8)  show that the above  is less than  

C + logδ +
1

𝐴(Ω)
∫ log

1

1 − |α|2
 dA(α)+ 

1

𝐴(Ω)
∫ 𝑙𝑜𝑔

1

|𝐷1𝐹(𝛼, 0)|
2
𝑑𝐴(𝛼)

ΩΩ

. 

By (5) and Lemma (3.1.9), this expression is bounded by a constant depending only on 

‖𝑓‖𝐿𝑖𝑝1 

We have thus shown 

‖𝑓 ∘ 𝐹‖𝐵𝑀𝑂𝐴(𝐵2) ≤ 𝐶‖𝑓‖𝔅(𝐷)                                  (17) 

 For a constant C depending only on   ‖𝑓‖𝐿𝑖𝑝1, at least for holomorphic 𝑓 ∈ 𝐶(�̅�). For the 

general 𝑓 ∈ 𝔅(𝐷), apply (17)  to the dilates 𝑓𝑟 and take limit 𝑠 as before (using the  fact that 

‖𝑓𝑟‖𝔅 → ‖𝑓‖𝔅as 𝑟 → 1). 

       The proof of Theorem (3.1.6) in the case 𝑛 = 2  is complete, The next proposition 

shows that Theorem (3.1.6) for  𝑛 > 2  follows from this case. 

Proposition (3.1.10)[121]: For 𝑛 > 2    there exists a  constant 𝐶𝑛with the following 

property: if g is holomorphic in 𝐵𝑛and the BMOA(𝐵2)   norm of g on two-dimensional 

slices of  𝐵𝑛through the origin are bounded by the constant C, then‖𝑔‖𝐵𝑀𝑂𝐴(𝐵𝑛) ≤ 𝐶𝑛𝐶. 

Proof. Here we use the fact that BMOA is the dual space 0F 𝐻1  : See [128], theorem v]. 

Thus for any k. 

. ‖𝑔‖𝐵𝑀𝑂𝐴(𝐵𝑘) ≈ 𝑠𝑢𝑝 |∫ 𝑔�̅�𝑑𝜎𝑘𝜕𝐵𝑘
| 

Where the supremum is taken over all holomorphic polynomials P of 𝐻1 − 𝑛𝑜𝑟𝑚  at most 

1 such that  𝑃(0) = 0.  . The proposition now follows the formula  

∫ ℎ𝑑𝜎𝑛 = ∫ ∫ ℎ ∘ 𝑈(𝜁1, 𝜁2, 0, … ,0)
𝜕𝐵𝑛𝔘(𝑛)𝜕𝐵𝑛

𝑑𝜎2(𝜁1, 𝜁2)𝑑𝑈,            (18) 
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Valid for all integrable on  ℎ 𝑜𝑛 𝜕𝐵𝑛 . Here 𝓊(𝑛 ) is the complex unitary group on 𝐶𝑛 and 

𝑑𝑈 denotes Haar measure on 𝓊(𝑛 ), (formula (18) follows from Fubini’s theorem and 

proposition 1.4.7 (3) in [77].) 

       For 𝑧, 𝑤 ∈ 𝐷, define 

𝜚 (𝑧,𝑤) = log
|𝑎 − 𝑧̅𝑤|2

(1 − |𝑧|2) (1 − |𝑤|2)
= log

1

1 − |𝜑𝑧(𝑤)|
1 

Suppose 𝐹: 𝐵2 → 𝐷 is holomorphic. It follows from (13)-(15) that if  

Sup 
1

𝜎(𝒬)
∫ 𝜚(𝐹(𝜁), 𝐹(𝜁1, 0)𝑑𝜎2(𝜁) < ∞)
𝒬

.                     (19) 

Then  

Sup 
1

𝜎(𝒬)
∫ (|𝑓 ∘ 𝐹 − (𝑓 ∘ 𝐹)𝒬|𝑑𝜎2 < ∞)
𝒬

 

For every  𝑓 ∈ 𝔅(𝐷)  where the suprema are taken over all 𝒬 = 𝒬𝛿(𝑒1). 
       Now if 𝑓 ∈ 𝔅(𝐷)  , then |𝑓(𝑧) −  𝑓(𝑤)|  is in fact much smaller than 𝜚 (𝑧, 𝑤) for most 

𝑧, 𝑤 ∈ 𝐷. 
We find that (19) is a necessary condition for the  pull-back problem. 

        We will give the proof of Theorem (3.1.11) for the case 𝑛 = 2, when 𝑛 > 2, the 

argument is essentially the same but is somewhat less convenient because of the  Jacobian 

factor   (1 − |𝜆|2)𝑁−2  that appears in the higher dimensional analogue of (9) (see [77]). 

Theorem (3.1.11)[121]: If 𝑓: 𝐵𝑛 → (𝐷) is a holomorphic , then F has the pull-back property 

if and only if  

Sup 
1

𝜎 (𝒬𝜂(𝜂))
∫ 𝜚(𝐹(𝜁), 𝐹(〈𝜁, 𝜂〉𝜂)𝑑𝜎(𝜁) < ∞)
𝒬𝜂(𝜂)

         (20) 

Where the supremum is taken over all  𝒬𝜂(𝜂) ⊂ 𝜕𝐵𝑛 

Proof. (n =2). We have already  seen that (20) is sufficient for the pull-back property. To 

show the necessity of (20), first observe that for any   𝑔 ∈ 𝐵𝑀𝑂𝐴(𝐵2) , Bessel’s inequality 

shows that  

1

𝐴(Ω)
∫ ∫ |𝑔𝛼 − 𝑔𝛼(0)|

2

𝑇Ω

𝑑𝜎1𝑑𝐴(𝛼) 

≤
1

𝐴(Ω)
∫ ∫ |𝑔𝛼 − 𝑔𝒬(0)|

2

𝑇Ω

𝑑𝜎1𝑑𝐴(𝛼) 

=  
1

𝜎(Ω)
∫ |𝑔 − 𝑔𝒬|

2

Ω

𝑑𝜎2 ≤ 𝐶(‖𝑔‖𝐵𝑀𝑂)
2                                    (21) 

Now we have made use of the  𝐿2 - criterion for membership in 𝐵𝑀𝑂: see [84]. 

       Now suppose  𝑓: 𝐵2 → 𝐷  has the pull-back property. Proposition (3.1.12) shows there 

exists a holomorphic map  𝑓: 𝐷 → 𝐶2  such that 
1

1 − |𝑧|
≤ |𝑓′(𝑧)| ≤

𝐶

1 − |𝑧|
 

For all 𝑧 ∈ 𝐷 . It follows that  𝑓 ∘ 𝐹  is a 𝐶2-valued element of 𝐹𝐵𝑀𝑂𝐴, (𝐵2). 
       Take  𝜂 = 𝑒 1  for convenience, and set 𝑔 = 𝑓 ∘ 𝐹. 𝐴  . A classical Littlewood-paley 

identity [84] shows that  
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∫ |𝑔𝛼 − 𝑔𝛼(0)|
2

𝑇

𝑑𝜎 = 2∫ |𝑔𝛼
′ (𝑤)|2𝑙𝑜𝑔

1

𝑤
𝑑𝐴(𝑤)

𝐷

 

=  2∫ |𝑓′(𝐹𝛼(𝑤))|
2
|(𝐷2𝐹)𝛼(𝑤)|

2 (1 − |𝛼|2)𝑙𝑜𝑔
1

|𝑤|𝐷

𝑑𝐴(𝑤) 

≥ 2∫
|(𝐷2𝐹)𝛼(𝑤)|

2

(1 − |𝐹𝛼(𝑤)|
2)2𝐷

(1 − |𝛼|2)𝑙𝑜𝑔
1

|𝑤|
𝑑𝐴(𝑤) 

=  
1

2
∫ ∆ℎ𝛼(𝑤)
𝐷

𝑙𝑜𝑔
1

|𝑤|
𝑑𝐴(𝑤)                                                    (22) 

Where ℎ𝛼(𝑤) = log |
1

1−|𝐹𝛼(𝑤)|
2
| because log|𝑤| is the fundamental solution for the 

Laplacian and ℎ𝛼(𝑤) is a subharmonic, a simple dialation argument using Fatou’s lemma 

shows that  

∫ ∆ℎ𝛼(𝑤)
𝐷

𝑙𝑜𝑔
1

|𝑤|
𝑑𝐴(𝑤) ≥ 2∫ (ℎ𝛼 − ℎ𝛼(0))𝑑𝜎 = 2∫ 𝜚(𝐹𝛼 , 𝐹𝛼(0))

𝑇

)
𝑇

𝑑𝜎, 

The last equality above following as in (15) because 𝐿𝑜𝑔|1 − 𝐹𝛼(0)𝐹𝛼|
2  

Is harmonic on �̅�, thus (21) and (22) show that  

1

𝜎(𝒬)
∫ 𝜚(𝐹(𝜁), 𝐹(𝜁1, 0))
𝒬

𝑑𝜎2(𝜁) =
1

𝐴𝒬
∫ ∫ 𝜚(𝐹𝛼 , 𝐹𝛼(0))

𝑇Ω

𝑑𝜎1𝑑𝐴(𝛼) 

    ≤
1

𝐴Ω
∫ ∫ |𝑔𝛼 , 𝑔𝛼(0)|

2

𝑇Ω

𝑑𝜎1𝑑𝐴(𝛼) 

         ≤ 𝐶(‖𝑔‖𝐵𝑀𝑂)
2 ≤ 𝐶. 

 The proof of Theorem (3.1.11) (for the case 𝑛 = 2) is completed. 

Proposition (3.1.12)[121]: There exist 𝑓, 𝑔 ∈  𝔅(𝐷) such that  

|f ′(z)| + |g′(z)| ≥
1

1 − |z|
. 

For all 𝑧 ∈  𝐷. 

Proof.  Let 𝑓(𝑧) =  ∑ 𝑧𝑞
𝑗∞

𝑗=0 , where 𝑞 is a large positive integer to be determined. because 

𝑓 is a lacunary power series with bounded coefficients, 𝑓 ∈ 𝔅(𝐷) (See [131]). We first show 

that 

|𝑓′(𝑧)| ≥
𝑐

1 − |𝑧|
   𝑖𝑓 1 − 𝑞−𝑘 ≤ |𝑧| ≤ 1 − 𝑞−(𝑘+1/2), 𝑘 = 1,2, ..             (23) 

We have  

|𝑓′(𝑧)| ≥ 𝑞𝑘|𝑧|𝑞
𝑘
−∑𝑞𝑗|𝑧|𝑞𝑗
𝑘−1

𝑗=0

−∑𝑞𝑗|𝑧|𝑞𝑗
∞

𝑘+1

= I − II − III 

for all 𝑧 ∈  𝐷. Fix a 𝑧 as in (23), and put 𝑥 = |𝑧|𝑞
𝑘
. Then 

(𝐼 − 𝑞−𝑘)𝑞
𝑘
≦ 𝑋 ≦  [(1 − 𝑞−(𝑘+1 2⁄ ))

𝑞𝑘 +1 2⁄

]
𝑞−1 2⁄

, 

which implies 

1/3 ≦ 𝑥 ≦ (1 2⁄ )𝑞
−1 2⁄

           𝑓𝑜𝑟   𝑘 ≧ 1 

if 𝑞 is large enough. 

We thus have 𝐼 ≧  𝑞𝑘/3, and we easily estimate that 
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II ≦ ∑𝑞𝑗
𝑘−1

𝑗=0

≦
𝑞𝑘

𝑞 − 1
. 

In III, note that because the ratio of two successive terms is no larger than the ratio of the 

first two terms, the series is dominated by the geometric series having the same first two 

terms. Thus 

III ≦  𝑞𝑘+1|𝑧|𝑞
𝑘+1
∑(𝑞|𝑧|

(𝑞𝑘+2−𝑞
𝑘+1

)
)
𝑗∞

𝑗=0

 

      =
𝑞𝑘+1|𝑧|𝑞

𝑘+1

1 − 𝑞|𝑧|
(𝑞𝑘+2−𝑞

𝑘+1
)
= 𝑞𝑘

𝑞𝑥𝑞

1 − 𝑞𝑥𝑞
2−𝑞

 

≦  𝑞𝑘
𝑞(1 2⁄ )𝑞

1 2⁄

1 − 𝑞(1 2⁄ )𝑞3 2⁄ −𝑞1 2⁄  . 

It follows that 

|𝑓′(𝑧)| =
𝑞𝑘

4
=
𝑞𝑘+1 2⁄

4𝑞1 2⁄
≧

1

4𝑞1 2⁄ (1 − |𝑧|)
 

if 𝑞 is large enough, for the ranges of 𝑘 and 𝑧 specified in (23). 

A similar argument shows that if 𝑞 is a large positive integer and 𝑔(𝑧) =  ∑ 𝑧𝑛𝑗∞
𝑗=0 , where 

𝑛𝑗 is the integer closest to 𝑞𝐽+ 1/2, then 

|𝑔′(𝑧)| ≧
𝑐

1 − |𝑧|
   if    1 − 𝑞−(𝑘+1 2⁄ ) ≦ |𝑍| ≦  1 − 𝑞−(𝑘+1),     𝑘 = 1, 2,…. 

We are done unless it happens that 𝑓′ and 𝑔′ have a common zero in {|𝑧|  <  1 − 𝑞−1}, in 

which case we can replace 𝑔(𝑧) with 𝑔(𝛼𝑧) for a suitable 𝑔 with |𝛼|  =  1. Note that 

𝑓′(0)  =  1.] The proof of Proposition (3.1.12) is complete. 

Proposition (3.1.12) may be used to give various other characterizations of the pullback 

property. We mention two, omitting the proofs: 

(i) A "Garsia-norrn characterization": 𝐹 has the pull-back property if and only if 

sup
𝛼∈𝐵

𝑃[𝑄(𝐹, 𝐹(𝑎))] (𝑎)  <  ∞. 

Here 𝑃[∙] denotes the Poisson-Szegö integral, or the "invariant Poisson integral" as in [77]. 

(ii) A "Carleson-measure characterization": 𝐹 has the pull-back property if and only if 

sup 𝛿−𝑛 ∫
|∇𝑇𝐹|

2

(1 − |𝐹|2)
𝑑𝑉𝑛

 

Ω𝛿(𝜉)

< ∞, 

where 𝑉𝑛 denotes volume measure on 𝐶𝑛, ∇𝑇 is the complex tangential gradient, and the 

supremum is taken over all Ω𝛿(𝜉)  =  {𝑧 ∈  𝐵𝑛: |1 − 〈𝑧, 𝜉〉  <  𝛿}. (This follows from 

Proposition (3.1.12) together with the Cadeson-measure characterization of BMOA in terms 

of ∇T given in I-CC].) 

       The techniques developed can be used to prove a theorem related to a result of Rudin 

(see Theorem 11.4.7 in [77]). We still assume 𝐹: 𝐵𝑛 → 𝐷 is holomorphic. Given 𝜉 ∈  𝜕𝐵𝑛, 
the function on 𝐷 defined by 𝐹𝜉(𝜆) =  𝐹(𝜆𝜉) (𝜆 ∈ 𝐷) is called a slice function of 𝐹. In the 

next theorem we identify 𝐹𝜉 and 𝐹𝑛 whenever 𝜉 =  𝑒𝑖𝜃𝜂. 

Theorem (3.1.13)[121]: Suppose 𝐹 ∈  Lip𝛼(𝐵𝑛) for some 𝛼 >  1/2, and that ∇𝐹(0)  ≠  0. 
Then at most one slice function of 𝐹 is an extreme point of the closed unit ball of 𝐻∞(𝐷). 
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A result of de-Leuw and Rudin I-D, Theorem 7.9] shows that if 𝑔 ∈ 𝐻∞(𝐷) and ‖𝑔‖∞ =
1, then 𝑔 is an extreme point of the closed unit ball of 𝐻∞(𝐷) if and only if 

∫ log(1 − |𝑔|)𝑑𝜎

 

𝑇

= − ∞.                                             (24) 

Thus the modulus of the function F of Theorem (3.1.13) is severely constrained to stay away 

from 1, not only in terms of the size of the set where |𝐹| = 1, but also in terms of the rate at 

which |𝐹| can tend to 1 in the real tangential directions at a point of the maximum modulus 

set of 𝐹. 
It is easy to see from (24) that if 𝑔 is not an extreme point of the closed unit ball of 𝐻∞(𝐷) 
and 𝑔 ∈  Lipα(𝐷) for some 𝛼 > 0, then the subset of 𝜕𝐷 where |𝑔| = 1 is a "Carleson set" 

(see [77]). Thus Theorem (3.1.13) implies that, except for possibly one complex line through 

the origin, the intersection of the set where |𝐹|  =  1 with any complex line through the 

origin is a Carleson set. Rudin's result yields even more information along these lines, but 

apparently our observation about extreme points is new. 

We sketch the proof of Theorem (3.1.13). 

Assume 𝑛 =  2 for the moment. Using the fact that 𝐹 ∈  Lip𝛼(𝐵2) if and only if |∇𝐹(𝑧)| =
𝑂(𝑙 − |𝑧|)𝛼−1 (see [77]), the proof of Theorem (3.1.4) shows that Theorem (3.1.4) (a) is 

still true as stated, and that |𝐷𝑇𝐹(𝜉)  ≦  𝐶(1 − |𝐹(𝜉)|
𝛼−1/2 holds in place of (b). It follows 

that log(𝑙 − |𝐹|) ≧ 𝐶1 + 𝐶21 log|𝐷𝑇𝐹|
2 on 𝜕𝐵2 , where 𝐶1  >  − ∞ and 𝐶2  >  0. Thus the 

argument given for Lemma (3.1.7) shows 

∫log(1 − |𝐹𝛼|) 𝑑𝜎

 

𝑇

≧ 𝐶1 + 𝐶2 log(|𝐷1𝐹(𝛼, 0)|
2(1 − |𝛼|2)).            (25) 

Suppose now 𝛼 =  0 and that 𝐹𝑜 is an extreme point of the closed unit ball of 𝐻∞(𝐷) Then 

(24) shows the left side of (25) equals −∞, which implies 𝐷1𝐹(0, 0) = 0. 
Now taking 𝑛 ≧  2, the above argument shows that if any slice function of 𝐹 is an extreme 

point of the closed unit ball of 𝐻∞(𝐷) then the first derivatives of 𝐹 in complex directions 

orthogonal to this slice vanish at the origin. Because ∇𝐹(0)  ≠  0, there can be at most one 

such slice. 

       1. A result of Tomaszewski [135] implies that for every n there exists a positive number 

𝛼 =  𝛼(𝑛) and a holomorphic map 𝐹: 𝐵𝑛 → 𝐷 with 𝐹 ∈  Lip𝛼(𝐵𝑛) and |𝐹|  =  1 on a subset 

of 𝜕𝐵𝑛 having positive 𝜎𝑛-measure. Because there exist Bloch functions that fail to have a 

finite limit along any curve in 𝐷 tending to a point of 𝜕𝐷, such an 𝐹 trivially fails to have 

the pull-back property. 

Section (3.2): Compact Composition Operators 
For 𝔻 denote the unit disk in the complex plane. A function f holomorphic in  𝔻  is 

said to belong to the Bloch space 𝔅 if 

                       𝑠𝑢𝑝𝑧∈𝔻(1 −  |𝑧|
2)|𝑓′(𝑧)| <  ∞. 

And to the Bloch space  𝔅0. If 

lim
|𝑧|→1

(1 − |𝑧|2)|𝑓′(𝑧)| = 0. 

It is well known that 𝔅 is a Banach space under the norm 

‖𝑓‖𝔅  =  |𝑓(0)| + 𝑠𝑢𝑝𝑧∈𝔻(1 − |𝑧|
2)|𝑓′(𝑧)|. 

and that  𝔅0 is a closed subspace of 𝔅. Furthermore, 𝔅 is isometrically isomorphic to the 

second dual of  𝔅0 and the inclusion  𝔅0 ⊂ 𝔅 corresponds to the canonical imbedding of 

 𝔅0 into  𝔅0** [138]. It is a simple consequence of the Schwarz-Pick lemma [137] that a 
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holomorphic mapping 𝜙 𝑜f the unit disk into itself induces a bounded composition operator 

𝐶𝜑𝑓 ∈ 𝑓 ∘ 𝜑  𝑜𝑛 𝔅. Indeed, if   𝑓 ∈ 𝔅, then 

(1 − |𝑧|2)|(𝑓 ∘ 𝜑)′(𝑧)| = (1 − |𝑧|2)|𝑓′(𝜑(𝑧))||𝜑′(𝑧)| 

= 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|(1 − |𝜑(𝑧)|2)𝑓′(𝜑(𝑧)).      (26) 

And the Schwarz-Pick lemma guarantees that 

1 −  |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| ≤ 1                                              (27) 

Since the identity function 𝑓(𝑧)  =  𝑧 belongs to  𝔅0, it is clear that  𝜙 ∈ 𝔅0   if 𝐶𝜙 maps 

 𝔅0 into itself. Conversely, if  𝜙 ∈ 𝔅0 and  𝑓 ∈ 𝔅0, it follows from (26) and (27) that 

𝑓 ∘  𝜙 ∈ 𝔅0. Indeed, if  𝜖 > 0, there exists 𝛿 > 0 such that (1 − |𝑧|2)|𝑓′(𝑧)|  < 𝜖 whenever 

|𝑧|2 > l- 𝛿. In particular, (1 − |𝑧|2)| (𝑓 ∘ 𝜙)′(𝑧)| < 𝜖 whenever |𝜙(𝑧)|2  >  l −  𝛿. On the 

other hand, if |𝜙(𝑧)|2  ≤  l −  𝛿, 

(1 − |𝑧|2)|(𝑓 ∘ 𝜑)′(𝑧)| ≤
‖𝑓‖𝔅
𝛿

(1 −  |𝑧|2)|𝜑′(𝑧)| 

and the right-hand side tends to 0 as |𝑧| → 1.  
The compact composition operators on  𝔅0 and on 𝔅 will be characterized in terms 

of the quotient 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|,  A bounded linear operator 𝑇: 𝑋 →   𝑌      from the Banach 

space X to the Banach space Y is weakly compact if T takes bounded sets in X into relatively 

weakly compact sets in Y. Gantmacher's theorem [139] asserts that T is weakly compact if 

and only if   𝑇∗∗(𝑋∗∗) ⊂ 𝑌 where T** denotes the second adjoint of T. This theorem and the 

characterization of compact operators on  𝔅0 will be used to show that every weakly 

compact composition operator on  𝔅0 is compact. 

To certain univalent functions 𝜙 which map 𝔻 into itself. It is known that such 

functions belong to  𝔅0 [141]; and it will be clear from that if ‖𝜙‖∞  <  1, then 𝐶𝜙 is 

compact on  𝔅0 . On the other hand if ‖𝜙‖∞ =  1 and there is a point of 

𝕋⋂𝜙(𝔻)𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝜙(𝔻) does not have a cusp, then 𝐶𝜙 is not compact. However if 

𝕋⋂𝜙(𝔻) consists of only one point at which 𝜙(𝔻) has a nontangential cusp, then 𝐶𝜙is 

compact on  𝔅0. 

Theorem (3.2.2) Gives a precise description of those  𝜙  which induce compact composition 

operators on   𝔅0 . It will be useful first to give a criterion for compactness in  𝔅0 . 

 

Lemma (3.2.1)[19]: A closed set 𝐾 in  𝔅0 is compact if and only if it is bounded and 

satisfies 

lim 
|𝑧|→1

𝑠𝑢𝑝𝑓∈𝐾(1 − |𝑧|
2)|𝑓′(𝑧)| = 0                               (28) 

Proof. First suppose that 𝐾 is compact and let  𝜖 > 0 choose an  𝜖 /2- 

Net 𝑓1,     𝑓2, … ,      𝑓𝑛  𝑖𝑛 𝐾. 𝑇here is an r, .0 <  𝑟 <  1, such that (1 −  |𝑧|2)|𝑓1
′(𝑧)| <

𝜖

2
  𝑖𝑓 |𝑧| > 𝑟, 1 ≤ 𝑖 ≤ 𝑛. 𝐼𝑓 𝑓 ∈ 𝐾, ‖𝑓 − 𝑓𝑖‖𝔅 < 𝜖 /2 

for some 𝑓𝑖 and so  

(1 − |𝑧|2)|𝑓′(𝑧)| ≤ ‖𝑓 − 𝑓𝑖‖𝔅 + (1 − |𝑧|
2)|𝑓1

′(𝑧)| < 𝜖. 
Whenever  |𝑧| > 𝑟  . This establishes (28). 

       On the other hand if K is a closed bounded set which satisfies (28) and (𝑓𝑛)   is a 

sequence in K, then by Montel’s theorem there is a subsequence (𝑓𝑛𝑘)  which converges 
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uniformly on compact subsets of 𝔻 to some holomorohic function  𝑓 . Then also 

(𝑓𝑛𝑘
′  ) converges uniformly to  𝑓′on compact subsets of  𝔻. By (28), if  𝜖 > 0    there is an  

𝑟, 0 <  𝑟 <  1  , such that for all   𝑔 ∈ 𝐾,  It follows that  (1 − |𝑧|2)|𝑔′(𝑧)| < 𝜖 /2. if   |𝑧| >

𝑟   .Since   (𝑓𝑛𝑘) converges uniformly to 𝑓 and (𝑓𝑛𝑘
′  ) converges uniformly to 𝑓′  on   |𝑧| ≤

𝑟, 𝑖𝑡    follows that  lim 𝑠𝑢𝑝𝑘→∞‖𝑓𝑛𝑘 − 𝑓‖𝔅
≤ 𝜖.   . Since  𝜖 > 0, lim

𝑘→∞
‖𝑓𝑛𝑘 − 𝑓‖𝔅

= 0   and 

so  K is compact. 

Theorem (3.2.2)[19]: If  𝜙 is a holomorphic mapping of the unit disk 𝔻 into itself , then 𝜙 

induces a compact composition operator on   𝔅0 if and only if  

lim 
|𝑧|→1

1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|   =  0.                                (29) 

Proof.  It follows from Lemma (3.2.1) that  𝐶𝜑  is compact on  𝔅0 if and only if 

lim
|𝑧|→1

𝑠𝑢𝑝‖𝑓‖𝔅≤1(1 – |𝑧|
2)|(𝑓 ∘ 𝜑)′(𝑧)| = 0. 

But 

(1 – |𝑧|2)|(𝑓 ∘ 𝜑)′(𝑧)| =  
1 – |𝑧|2

1 – |𝜑(𝑧)|2
|𝜑′(𝑧)|(1 – |𝜑(𝑧)|2)|𝑓′𝜑(𝑧)|, 

And  

 𝑠𝑢𝑝‖𝑓‖𝔅≤1(1 − |𝜔|
2)|𝑓′(𝜔)| = 1. 

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝜔 ∈ 𝔻    . The theorem follows. 
    It should be remarked that (29) implies   𝜙 ∈ 𝔅0  . A similar condition characterizes 

compact composition operators on 𝔅. 
Theorem (3.2.3)[19]: If 𝜙  is a holomorphic mapping of the unit disk 𝔻 into itself, then  𝜙  

induces  a compact composition operator on on 𝔅 if and only if for every 𝜖 > 0 there exists 

r,  0 < r < 1, such that 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′𝑧| < 𝜖.                                                  (30) 

Whenever |𝜑(𝑧)| > 𝑟, 
Proof. First assume that (30) holds. In order to prove that 𝐶𝜙 is compact on 𝔅  it is enough 

to show that if (𝑓𝑛)  is a bounded sequence in  𝔅   which converges to 0 uniformly on 

compact subsets of 𝔻  , then ‖𝑓𝑛 ∘ 𝜑‖𝔅 → 0.   . Let 𝑀 = 𝑠𝑢𝑝𝑛‖𝑓𝑛‖𝔅   . Given  𝜖 > 0,    

there 𝑟, 0 < 𝑟 < 1       , such that   
1−|𝑧|2

1−|𝜑(𝑧)|2
|𝜙′𝑧| <

𝜖

2𝑀
  IF |𝜙(𝑧)| > 𝑟. 𝑆𝑖𝑛𝑐𝑒  

(1 − |𝑧|2)|(𝑓𝑛 ∘ 𝜙)
′(𝑧)| =  

1 − |𝑧|2

1 − |𝜙(𝑧)|2
|𝜙′(𝑧)|(1 − |𝜙(𝑧)|2)|𝑓𝑛

′(𝜙(𝑧))| 

≤ 𝑀
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|. 

It follows that   (1 − |𝑧|2) (𝑓𝑛 ∘ 𝜙)
′(𝑧) <

𝜖

2
 𝑖𝑓 |𝜙(𝑧)| > 𝑟 .  

       On the other hand. 𝑓𝑛 ∘ 𝜙(0) → 0   And  (1 − |𝓌|2) |𝑓𝑛
′(𝜔)| → 0 uniformly for |𝜔| ≤

𝑟. Since  

(1 − |𝑧|2) (𝑓𝑛 ∘ 𝜙)
′(𝑧) ≤ (1 − |𝜙(𝑧)|2)|𝑓𝑛

′(𝜙(𝑧))|. 
 

It follows that for large enough 𝑛, |𝑓𝑛 ∘ 𝜙(0)| <
𝜖

2
  and (1 − |𝑧|2) (𝑓𝑛 ∘ 𝜙)

′(𝑧) <
𝜖

2
  if 

|𝜙(𝑧)| ≤ 𝑟 .Hence ‖𝑓𝑛 ∘ 𝜑‖𝔅 < 𝜖  for large 𝑛. 
       Now assume that (30) fails, Then there exists a subsequence (𝑧𝑛) 𝑖𝑛 𝔻 in and 𝜖 > 0  an   
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such that |𝑧𝑛| → 1  and  
1−|𝑧𝑛|

2

1−|𝜙(𝑧𝑛)|
2
|𝜙′(𝑧)| > 𝜖  for all n. Passing to a subsequence if 

necessary it may be assumed that  𝜔𝑛 = 𝜙(𝑧𝑛) → 𝜔0 ∈ 𝕋  , Let 𝑓𝑛(𝑧) = 𝑙𝑜𝑔
1

1−�̅�𝑛𝑧
. Then 

(𝑓𝑛)  converges to  𝑓0𝑛uniformly on compact subsets of 𝔻 . On other hand, 

‖𝐶𝜙𝑓𝑛 − 𝐶𝜙𝑓0‖𝔅
≥ (1 − |𝑧𝑛|

2) |(𝐶𝜙𝑓𝑛)
′
(𝑧𝑛) − (𝐶𝜙𝑓0)

′
(𝑧𝑛)| 

=  (1 − |𝑧𝑛|
2)|𝜙′(𝑧𝑛)| |

�̅�𝑛

1 − |𝓌𝑛|
2
−

�̅�0

1 − �̅�0𝓌𝑛
| 

=  
(1 − |𝑧𝑛|

2)

1 − |𝓌𝑛|
2
|𝜙′(𝑧𝑛)| |

�̅�𝑛 − �̅�0

1 − �̅�0𝓌𝑛
| > 𝜖. 

For all n, so 𝐶𝜙𝑓𝑛  does not converge to 𝐶𝜙𝑓𝑛in norm. Hence 𝐶𝜙  is not compact. 

       It is important to note that although (29) implies (30), since in this case 𝐶𝜙  on   𝔅 is 

the second adjoint of 𝐶𝜙  on 𝔅0   , the two conditions are not equivalent, Condition (29) 

implies  that  𝜙 ∈ 𝔅0 , while there certainly exist functions   𝜙 ∉ 𝔅0  which satisfy (30). 

Indeed, any  𝜙 for which ‖𝜙‖∞ < 1  satisfies (30) trivially. 

        A sequence (𝜔𝑛)  in 𝔻  is said to be  𝜂 -seperated if  𝜌(𝜔𝑛 , 𝜔𝑚) = |
𝜔𝑚−𝜔𝑛

1−�̅�𝑚𝜔𝑛
| > 𝜂 

whenever 𝑚 ≠ 𝑛  . Thus an   𝜂 -seperated sequence consists of points which are uniformly 

far apart in the pseudohyperbolic metric on 𝔻 or Equivalently, the  hyperbolic balls 

∆(𝜔𝑛, 𝑟) = {𝑧|𝜌(𝑧, 𝜔𝑛) < 𝑟}   are pairwise disjoint for some 𝑟 > 0  . Evidently any 

sequence (𝜔𝑛)𝑖𝑛 𝔻 in which satisfies |𝜔𝑛| → 1  possesses an   𝜂 -seperated subsequence 

for any 𝜂 > 0. In particular, if the sequence  (𝜔𝑛) in the proof of Theorem (3.2.3) is 𝜂 -

seperated, then the calculation in the proof shows that ‖𝐶𝜙𝑓𝑚 − 𝐶𝜙𝑓𝑛‖ > 𝜖𝜂 whenever 𝑚 ≠

𝑛,  so (𝐶𝜙𝑓𝑛)  has no norm convergent subsequences. 

       Another property of separated sequences is contained in the next proposition. This 

proposition is related to some interpolation results of Rochberg [142], [143]. Since the 

method of proof is precisely the same as Rochberge’s, a proof will only be sketched. 

Proposition (3.2.4)[19]:There is an absolute constant 𝑅 > 0  such that if  (𝜔𝑛) is R- 

separated, then for every bounded sequence (𝜆𝑛) there is an 𝑓 ∈ 𝔅 such that    

(1 − |𝜔𝑛|
2)𝑓′(𝜔𝑛) = 𝜆𝑛 for all n. 

       The idea of the proof is to consider two operators 𝑆: 𝔅 → 𝑙∞ given by  

𝑆(𝑓)𝑛 = (1 − |𝓌𝑛|
2)𝑓′(𝓌𝑛) 

And 𝑇: 𝑙∞ → 𝔅 given by 

𝑇(𝜆)(𝑧) = ∑ 𝜆𝑛
1

3�̅�𝑛

(1 − |𝓌𝑛|
2)3

(1 − �̅�𝑛𝑧)
3 .

∞

𝑛=1

 

Where  𝜆 =  (𝜆𝑛) ∈ 𝑙
∞. The proposition will follow if it can be shown that, 

 ‖𝐼 − 𝑆𝑇‖ < 1, 
for then 𝑆𝑇 will be invertible and so 𝑆 will be onto  the symbol 𝐶 will denote a constant 

whose value changes from place to place but does not depend on 𝑅. Now  

(𝑆𝑇 − 𝐼)(𝜆)𝑛 =  (1 − |𝓌𝑛|
2) ∑ 𝜆𝑚
𝑚≠𝑛

(1 − |𝓌𝑛|
2)3

(1 − �̅�𝑚𝓌𝑛)
4. 

And so it will be enough to estimate  

supn(1 − |𝓌𝑛|) ∑
(1 − |𝓌𝑚|

2)3

(1 − �̅�𝑚𝓌𝑛)
4

m≠n
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If  R >
i

2
, say, then there is a fixed δ > 0 such that the Euclidean disk  Dm of center  ωm 

and radius δ(1 − |ωm|
2). 

       Is containedin the hyperbolic disk   and is disjoint from the hyperbolic disk  ∆m=
 ∆(ωm, R) and is disjoint from the hyperbolic disks  ∆n for n ≠ m.   . Since |1 − z̅ ωn|

−4  is 

subharmonic and the radius of Dmis comparable to 1-|ωm|
2. 

(1 − |𝓌𝑛|
2)3

(1 − �̅�𝑚𝓌𝑛)
4 ≤ 𝐶∬

1− |𝓌𝑚|
2

(1 − 𝑧̅ 𝓌𝑛)
4

𝐷𝑚

𝑑𝑥 𝑑𝑦; 

And  since  |1 − �̅�𝑛𝑧|  dominates 1 − |𝑤𝑚|
2 on Dm , it follows that  

(1 − |𝓌𝑚|
2)3

(1 − �̅�𝑚𝓌𝑛)
4
≤ 𝐶∬

1

(1 − �̅�𝑛𝑧)
3

𝐷𝑚

𝑑𝑥 𝑑𝑦; 

And hence 

supn(1 − |𝓌𝑛|) ∑
(1 − |𝓌𝑚|

2)3

(1 − �̅�𝑚𝓌𝑛)
4

m≠n

≤ C∬
1− |𝓌𝑛|

2

(1 − �̅�𝑛𝑧)
3

∪𝑚≠𝑛𝐷𝑚

𝑑𝑥 𝑑𝑦; 

≤∬
1− |𝓌𝑛|

2

(1 − �̅�𝑛𝑧)
3

𝔻/∆𝑛

𝑑𝑥 𝑑𝑦; 

The change of variables 𝑧 =
𝓌𝑛+𝜁

1+ �̅�𝑛𝜁
.   turns this into 

supn(1 − |𝓌𝑛|) ∑
(1 − |𝓌𝑚|

2)3

(1 − �̅�𝑚𝓌𝑛)
4

m≠n

≤ C∬
1

|1 + �̅�𝑛𝜁||𝜁|>𝑅

𝑑𝜉 𝑑𝜂; 

And the last integral can be made arbitrarily small uniformly in 𝑛 if R is shosen close enough 

to 1. This provides the desired estimate. 

       Since every sequence (𝓌𝑛)  with  |𝓌𝑛| → 1 contains an R-seperated subsequence 

(𝓌𝑛𝑘)  , it follows that there is an 𝑓 ∈ 𝔅 such that  (1 − |𝓌𝑛𝑘|
2
) 𝑓′(𝓌𝑛𝑘) = 1  for all k, 

This will be used in the proof of the next theorem. 

Theorem (3.2.5)[19]: Every weakly compact composition operator 𝐶𝜙  on 𝔅0   is compact. 

Proof. The composition operator    𝐶𝜙: 𝔅0 → 𝔅0  is compact if and only if  

lim
|𝑍|→1

1 − |𝑧|2

1 − |𝜙(𝑧)|2
 |𝜙′(𝑧)| = 0. 

And, according   to Gantmacher’s theorem, weakly compact if and only if     𝐶𝜙𝑓 ∈ 𝔅0for 

every 𝑓 ∈ 𝔅 . If 𝐶𝜙 is not compact, there is an  𝜖 > 0  and a sequence   (𝑧𝑛), |𝑧𝑛| → 1  , 

such  that  

1 −   |𝑧𝑛|
2

1 − |𝜙(𝑧𝑛)|
2  |𝜙

′(𝑧𝑛)| ≥ 𝜖, 

 For all n, since 𝜙 ∈ 𝔅0, |𝜙(𝑧𝑛)| → 1,  , and by passing to a sub-sequence it may be assumed 

that (𝜙(𝑧𝑛))  is R-seperated. If   𝑓 ∈ 𝔅. , 

(1 −   |𝑧𝑛|
2) |(   𝐶𝜙𝑓)

′
(𝑧𝑛)| =

1 −   |𝑧𝑛|
2

1 − |𝜙(𝑧𝑛)|
2  |𝜙

′(𝑧𝑛)| (1 − |𝜙(𝑧𝑛)|
2) |𝑓′(𝜙(𝑧𝑛))| 

  ≥ 𝜖 (1 − |𝜙(𝑧𝑛)|
2)|𝑓′(𝜙(𝑧𝑛))|. 

Since  (𝜙(𝑧𝑛)) is R-seperated, an application of Proposition (3.2.4) produces an 𝑓 ∈ 𝔅 such 

that   (1 − |𝜙(𝑧𝑛)|
2) |(   𝐶𝜙𝑓)

′
(𝑧𝑛)| = 1,   , for all 𝑛, Since     (1 −
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   |𝑧𝑛|
2) |(   𝐶𝜙𝑓)

′
(𝑧𝑛)| ≥ 𝜖 𝑎𝑛𝑑 |𝑧𝑛| → 1,    𝐶𝜙𝑓 ∉ 𝔅0  𝑎𝑛𝑑 so    𝐶𝜙 is not weakly 

compact. 

       A slight refinement of these arguments will show that a non compact composition 

operator on  𝔅0 must be an isomorphism on a subspace isomorphic to the sequence  space  

𝑐0. This is not surprising since 𝔅0  is known to be isomorphic to 𝑐0 . 

 

       As remarked any holomorphic mapping 𝜙 of the unit disk into itself satisfying ‖𝜙‖∞ <
1 induces a compact composition operator on 𝔅 and also on 𝔅0   if 𝜙 ∈ 𝔅0  . On the other 

hand it is easy to see  that if 𝜙  has a finite angular derivative at some  point of  𝕋 ,  then 

   𝐶𝜙  cannot  be compact. Indeed, 𝜙 has an angular derivative at 𝜁 ∈ 𝕋    if the non tangential 

limit 𝜔 = 𝑓(𝜁) ∈ 𝕋      exists and if the quotient 
𝑓(𝑧)− 𝑓(𝜁)

𝑧−𝜁
 converges to some complex 

number 𝜇  𝑎𝑠   𝑧 → 𝜁     nontangentially. It is known that 𝜇 ≠ 0, and the Julia-Carathe ́odory 

lemma shows that 
1−   |𝑧|2

1−|𝜙(𝑧)|2
|𝜙′(𝑧𝑛)|  converges to  𝜁�̅�𝜇 ≠ 0  non tangentially. Applying 

Theorem (3.2.2) or (3.2.3) as appropriate shows that    𝐶𝜙 is not compact. 

       It turns out, however, that 𝜙 can push the disk much more sharply into itself and still 

induce a non-compact composition operator. The  easiest  way  to see  this  is to consider  

the functions 𝜙𝜆,𝛼(𝑧) = 1 − 𝜆(1 − 𝑧)
𝛼, 0 < 𝜆, 𝛼 < 1. 𝐼𝑡 𝑖𝑠  easy to see that 𝜙𝜆,𝛼 ∈ 𝔅0   and 

that 𝜙𝜆,𝛼  maps  𝔻  onto a region  which  behaves  at 1 like  a Stolz angle  of opening 𝜋𝛼. 

If 𝐶𝜙 were compact on 𝔅0, composition with log
1

1−𝑧
   would yield a function in 𝔅0  , 𝑏𝑢𝑡  

an easy calculation shows that this is not so. This leads to the consideration of cusps,  

     Throughout the reminder of 𝜙  will denote a univalent mapping of the unit disk 𝔻   into 

itself with image 𝐺 = 𝜙(𝔻). 
For simplicity it will be assumed that �̅�⋂𝕋 = {1}. 
The region 𝐺 is said to have a cusp at 1 [141] if 

𝑑𝑖𝑠𝑡 (𝜔, 𝜕𝐺) = 𝑜( |1 − 𝜔|)                                            (31) 
As 𝜔 → 1 𝑖𝑛 𝐺. Otherwise 𝐺 does not have a cusp at 1. The cusp is said to be non tangential 

if 𝐺 lies inside a Stolz angle near l, i.e., there exist 𝑟,𝑀 > 0 such that 

|1 − 𝜔| ≤ 𝑀(|1 − 𝜔|2)                                           (32) 
If |1 − 𝜔| < 𝑟, 𝜔 ∈ 𝐺.  Finally the following geometric property of the conformal mapping 

𝜙  will be needed. If 𝜙 is a conformal mapping with domain 𝔻. 
1

4
(1 − |𝑧|2)|𝜙′(𝑧)| ≤ 𝑑𝑖𝑠𝑡 (𝜙(𝑧), 𝜕𝐺) ≤ (1 −   |𝑧|2)|𝜙′(𝑧)|.                  (33)  

This inequality, known as the Koeba distortion theorem, is an elementary consequence of 

the Schwarz lemma and Koeb;s one-quarter theorem [140]. It can be used to prove that 

bounded univalent functions lie in 𝔅0. Indeed, if  𝜙 ∉ 𝔅0    , there is a  𝛿 > 0 and a sequence 
(𝑧𝑛) 𝑖𝑛 𝔻 in with |𝑧𝑛| → 1  and (1 − |𝑧𝑛|)  |𝜙′(𝑧𝑛)| > 𝛿 for all n. Hence dist 

(𝜙(𝑧𝑛), 𝜕𝐺) >
𝛿

4
𝑠𝑜 𝜙(𝑧𝑛)    has a cluster point in G, contradicting the fact that   is a proper 

map. 

Theorem (3.2.6)[19]: If  𝜙 is univalent and   𝐺 = 𝜙(𝔻) satisfies �̅�⋂𝕋 = {1} but does not 

have a cusp at 1, then 𝐶𝜙 is not compact on 𝔅0. 

Proof. Since 𝐺 does not have a cusp at 1, (31) fails. Hence there is a 𝛿 > 0   and a sequence 
(𝑧𝑛) in 𝔻  such that  |𝑧𝑛| → 1    , but 

𝑑𝑖𝑠𝑡(𝜙(𝑧𝑛), 𝜕𝐺) ≥ 𝛿|1 − 𝜙(𝑧𝑛)| 
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Hence 

𝛿(1 − |𝜙(𝑧𝑛)|
2) ≤ 2𝛿(1 − 𝜙(𝑧𝑛)) 

≤ 2𝑑𝑖𝑠𝑡(𝜙(𝑧𝑛), 𝜕𝐺) ≤ 2(1 − |𝑧𝑛|
2)|𝜙′(𝑧𝑛)| 

So 

(1 − |𝑧𝑛|
2)

|1 − 𝜙(𝑧𝑛)|
2
|𝜙′(𝑧𝑛)| ≥

𝛿

2
, 

Since |𝑧𝑛| → 1, Theorem (3.2.2) shows that 𝐶𝜙 is not compact. 

       The next theorem shows how to produce compact c omposition operators on from 

univalent mapping  𝜙 with ‖𝜙‖∞ = 1. 
Theorem (3.2.7)[19]: If 𝜙  is univalent and if G has a nontangential cusp at 1 and touches 

the unit circle at no other point, then    𝐶𝜙 is a compact operator on   𝔅0  . 

Proof. As   .  𝜙 ∈ 𝔅0 , it will be enough to show that 

lim
|𝑍|→1

1 − |𝑧|2

1 − |𝜙(𝑧)|2
 |𝜙′(𝑧)| = 0. 

Since the theorem will then follow from Theorem (3.2.2). Since G has a non-tangential cusp 

at 1, there exist   r, M > 0 such that  

|1 − 𝜔| ≤ 𝑀(|1 − 𝜔|2) 
If   |1 − 𝜔| < 𝑟, 𝜔 ∈ 𝐺, Let  𝜖 > 0. Since 𝐺 has a cusp at 1, there is a 𝛿 > 0 such that  

𝑑𝑖𝑠𝑡(𝜔, 𝜕𝐺) ≤
𝜖

4𝑀
|1 − 𝜔|. 

If  |1 − 𝜔| < 𝛿 , 𝜔 ∈ 𝐺. Let 𝜂 = min(𝛿, 𝑟) 𝑖𝑓 |1 − 𝜙(𝑧)| < 𝜂. It follows that  

 
1 − |𝑧|2

1 − |𝜙(𝑧)|2
 |𝜙′(𝑧)| ≤

4𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝐺)

1 − |𝜙(𝑧)|2
≤
𝜖

𝑀

|1 − 𝜙(𝑧)|

1 − |𝜙(𝑧)|2
≤ 𝜖. 

On the other hand if  |1 − 𝜙(𝑧)| ≥ 𝜂, there is a constant 𝑁 > 0 such that |𝜙′(𝑧)| ≤ 𝑁 by 

the smoothness assumption and a 𝜌 > 0 such that 1 − |𝜙(𝑧)|2 ≥ 𝜌. In this case  

1 − |𝑧|2

1 − |𝜙(𝑧)|2
 |𝜙′(𝑧)| ≤

𝑁

𝜌
(1 − |𝑧|2). 

 And this is less than  𝜖 𝑖𝑓 |𝑧|2 > 1 −
𝜌𝜖

𝑁
. That complete the proof. 

      It is possible to describe region G with tangential cusp such that the Riemann mapping 

𝜙:𝔻 → 𝐺       admits either possibility. Indeed, suppose that  ℎ( 𝜃)𝑎𝑛𝑑 , 𝑘( 𝜃)  are positive 

continuous functions on  [0, 𝜃0] with ℎ( 𝜃) = 𝑜( 𝜃) and 𝑘( 𝜃) = 𝑜( 𝜃) . Let  

𝐺 = {𝑟𝑒𝑖𝜃|0 <𝜃 < 𝜃0, ℎ( 𝜃) < 1 − 𝑟 < ℎ( 𝜃) + 𝑘( 𝜃)} 

Then clearly G has a tangential cusp at 1. If   𝑘( 𝜃) = 𝑜(ℎ(𝜃)),  then for 𝜔 = 𝑟𝑒𝑖𝜃 = 𝜙(𝑧), 
( 1 − |𝑧|2) |𝜙′(𝑧)|  ≤ 𝑑𝑖𝑠𝑡(𝜔, 𝜕𝐺) ≤ 𝑘( 𝜃). 

and 

1 − |𝜔|2 ≥ 1 − |𝜔| >  ℎ(𝜃). 

So  
1−|𝑧|2

1−|𝜙(𝑧)|2
 |𝜙′(𝑧)| → 0  𝑎𝑠  |𝜙(𝑧)| → 1, Since 𝜙  is a univalent , the argument  of  

Theorem (3.2.7) shows that  𝐶𝜙 is compact. 

On the other hand if 𝑘(𝜃) = 2ℎ (𝜃) and 𝜔(𝜃) = (1 − 2ℎ(𝜃)) 𝑒𝑖𝜃 =  𝜙(𝑧(𝜃)), then  

evidently  𝑑𝑖𝑠𝑡(𝜔(𝜃), 𝜕𝐺) > 𝑐ℎ(𝜃). For some constant 𝑐, and since  (1 − |𝑧|2))|𝜙′(𝑧)| ≥

 𝑑𝑖𝑠𝑡(𝜙(𝑧), 𝜕𝐺), it follows that  
1−|𝑧(𝜃)|2

1−|𝜔(𝜃)|2
 |𝜙′(𝑧(𝜃))| ≥

𝑐

4
. and so 𝐶𝜙 is not compact.  

       Although the condition of Theorem (3.2.2) and (3.2.3) provide succinct analytic 

conditions on a function  𝜙 in order that it induce compact composition operators, it is 
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desirable to have more geometric condition. For example, it is clear from that if  𝜙 is a 

conformal mapping which has only a finite number of nontangental cusps on the unit 

circle 𝕋   and no other points of contact, then  𝐶𝜑 will be compact on  𝔅0 . This raises the 

question of whether or not there is a 𝜙 ∈ 𝔅0 such that 𝜙(𝔻)⋂𝕋 is infinite and  𝐶𝜙  is 

compact on  𝔅0. In this regard, it is known that if  𝜙 has nontangantial limit of modulus one 

on  a set of positivemeasure, then 𝜙  has an  angular derivative at some point and so 𝐶𝜙 is 

not compact [144]. Further information about compact operators considered from a 

geometric point of view, especially on 𝐻2, can be found in [144] and [145]. 

       Finally, if  𝜙 ∈ 𝔅0  and  𝐶𝜙  is compact, then   Log 
1

1−�̅�𝜙(𝑧)
∈ 𝔅0      for all 𝜔 ∈ 𝕋. Is 

the converse of this true? 

Section (3.3): The Essential Norm of a Composition Operator 
For 𝔻 denote the unit disk in the complex plane. A function 𝑓 analytic on the unit 

disk is said to belong to the Bloch space 𝔅 if 

𝑠𝑢𝑝𝔻(1 − |𝑧|
2)|𝑓′(𝑧)| <  ∞. 

and to the Little Bloch space 𝔅0 if 

lim
|𝑧|→1−

(1 − |𝑧|2)|𝑓′(𝑧)| = 0. 

It is well known and easy to prove that 𝔅 is a Banach space under the norm 

 

‖𝑓‖  =  |𝑓(0)| + 𝑠𝑢𝑝𝔻(1 − |𝑧|
2)|𝑓′(𝑧)|. 

And that 𝔅0 is a closed subspace of 𝔅.  
If  𝜑 is an analytic function on 𝔻 with  𝜑(𝔻) ⊂ 𝔻   , then the equation 𝐶𝜑𝑓 ∈ 𝑓 ∘ 𝜑  defines 

a composition operator on 𝐶𝜑 the space of all holomorphic functions on 𝔻  . The Pick-

Schwarz Lemma (see [12]) for instances asserts that 
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| ≤ 1.                                                (34) 

As noticed in [19] this and the chain rule give an easy proof of the fact that 𝐶𝜑   acts 

boundedly on the Bloch space. In fact we have 

(1 − |𝑧|2)|(𝑓 ∘ 𝜑)′(𝑧)| = (1 − |𝑧|2)|𝑓′(𝜑(𝑧))||𝜑′(𝑧)| 

=  
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|(1 − |𝜑(𝑧)|2)𝑓′(𝜑(𝑧)). 

≤  𝑠𝑢𝑝𝔻(1 − |𝜑(𝑧)|
2)|𝑓′(𝜑(𝑧))| 

      =  𝑠𝑢𝑝𝜑(𝔻)(1 − |𝜔|
2)|𝑓′(𝜔)| 

≤ 𝑠𝑢𝑝𝔻(1 − |𝑧|
2)|𝑓′(𝑧)| 

In addition, if 𝐶𝜑 acts boundedly on  𝔅0 then 𝜑 must belong to  𝔅0. This follows from the 

fact that  𝐶𝜑𝑧 = 𝜑. Conversely, if 𝜑 ∈ 𝔅0, then from the estimates above it is easy to show 

that 𝜑  induces a continuous operator on  𝔅0 (see [19]). The main goal is to compute the 

essential norm of 𝐶𝜑in terms of an asymptotic bound involving the quantity. 

       We recall that the essential norm of a continuous linear operator T is the distance from 

T to the compact operators, that is, 

1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|. 

We recall that the essential norm of a continuous linear operator is the distance from T to 

the compact operators, that is  
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‖𝑇‖𝑒 =  𝑖𝑛𝑓{‖𝑇 − 𝐾‖ ∶  𝐾 is compact}. 
Notice that ‖𝑇‖𝑒= 0 if and only if T is compact, so that estimates on ‖𝑇‖𝑒lead to conditions 

for T to be compact. Thus we will obtain a different proof of a recent result of Madigan and 

Matheson [19] in which they characterize those 𝜑 which induces compact composition 

operators on 𝔅 and 𝔅0  . The fundamental ideas of the proof are those used by J.H. Shapiro 

[153] to obtain the essential norm of a composition operator on Hilbert spaces of analytic 

functions (Hardy and weighted Bergman spaces) in terms of natural counting functions 

associated with 𝜑. However, since neither 𝔅 and 𝔅0 are Hilbert spaces our method differs 

in some interesting details from those of Shapiro. 

We want to say a word about the well-known heuris-tic principle which states that if 

a “big-oh” condition describes a class of bounded operators, then the corresponding “Little-

oh” condition picks out the subclass of compact operators. An excellent example of this 

principle in action can be seen in J.H. Shapiro [153] mentioned above. The “big-oh” 

condition on Bloch spaces is given by (34). Madigan and Mathe-son were able to prove the 

“Little-oh” condition, that is, that a composition operator  𝐶𝜑 on   𝔅0  is compact if and only 

if 

lim
|𝑧|→1−

1 – |𝑧|2

1 – |𝜑(𝑧)|2
|𝜑′(𝑧)| = 0 

They also obtained (with a different proof) that 𝐶𝜑 is compact on 𝔅 if and only if for every 

ε > 0 there exists r, 0 < r < 1, such that 

𝑠𝑢𝑝|𝜑(𝑧)|>𝑟
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′𝑧| < 𝜀. 

As we will see later the conditions of compactness on 𝔅 and 𝔅0 are actually the same. In 

fact, the essential norm of a composition operator is indepen-dent of the underlying space 

𝔅 or 𝔅0. This should not cause any surprise. The fact that 𝔅 is isometrically isomorphic to 

the second dual of   𝔅0 and the inclusion  𝔅0 ⊂ 𝔅 corresponds to the canonical imbedding 

of  𝔅0 into  𝔅0
** (see [138]) does not affect the computation of the essential norm. This is 

exactly what happens if we consider a bounded diagonal operator defined by a bounded 

sequence {𝑎𝑛} on the sequence spaces 𝑙∞ and 𝑐0, respectively. 

Then its essential norm equals 𝑙𝑖𝑚 𝑠𝑢𝑝 𝑎𝑛 and this quantity is independent of the underlying 

space. In fact the proof of the main result is done simultaneously for both 𝔅 and 𝔅0. 

Main Theorem (3.3.1). Suppose that 𝐶𝜑 defines a continuous operator on 𝔅(or on  𝔅0). 

Then 

‖𝐶𝜑‖𝑒
= lim
𝑠→1−

𝑠𝑢𝑝|𝜑(𝑧)|>𝑟
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|.                                         (35) 

In particular, 𝐶𝜑 𝑖𝑠  compact on  𝔅 (or  𝔅0).   if and only if 

lim
𝑠→1−

𝑠𝑢𝑝|𝜑(𝑧)|>𝑠
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| = 0. 

It is understood that if {z : | 𝜑(𝑧)| > s} is the empty set for some 0 < s < 1 the supremum 

equals zero. This happens when 𝜑(𝔻)is a relatively compact subset of 𝔻 and in this case it 

is easy to show that 𝐶𝜑is a compact operator. 

       If 𝜑 has an angular derivative at a point 𝜉 ∈  𝜕𝔻, then we can apply the Julia 

Carath´eodory Theorem (see [144]) and the Pick-Schwarz 

Lemma to obtain 
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1 =   lim  
𝑧→𝜉

𝑖𝑛𝑓
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| ≤ lim 

𝑠→1−
𝑠𝑢𝑝|𝜑(𝑧)|>𝑠

1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| ≤ 1. 

Thus, as an immediate consequence of Theorem (3.3.1) we have ‖𝐶𝜑‖𝑒
 = 1 whenever 𝜑 has 

a finite angular derivative. 

       Before proving Theorem (3.3.1) let us show that for the Little Bloch space B0 there is 

an equivalent formula in terms of another quantity. This a simple consequence of the 

following proposition: 

Proposition (3.3.2)[146]: Suppose that 𝐶 𝜑defines a continuous operator on 𝔅0.Then 

 lim
𝑠→1−

𝑠𝑢𝑝|𝜑(𝑧)|>𝑠
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)| = lim

|𝑍|→1−
𝑠𝑢𝑝 

1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′(𝑧)|.           (36) 

Proof. As remarked in the introduction the fact that 𝐶𝜑 acts boundedly on 𝔅0 implies that 

𝜑 ∈ 𝔅0. If 𝜑(𝔻) is a relatively compact subset of 𝔻, then both limits in (35) are zero and 

coincide. So we may suppose that 𝜑(𝔻) is not a relatively compact subset of  𝔻. Let 0 < 𝑠𝑛 

< 1 be any increasing sequence tending to 1. We set 𝑡𝑛  =  𝑖𝑛𝑓{𝑡 ∶  |𝜑(z)| > 𝑠𝑛   for some z 

with |z| > t}. By continuity {𝑡𝑛} also tends to 1. Since {z : |z| > 𝑡𝑛 } = {z : |𝜑(z)| > 𝑠𝑛 and |z| 

> 𝑡𝑛} ∪ {z : | 𝜑 (z)| ≤ 𝑠𝑛 and |z| > 𝑡𝑛} we find that the left hand side of (35) is less than or 

equal to the right hand side of (35). On the other hand, we can always find a sequence {𝑧𝑛} 

for which 

 lim
𝑛→∞

1 − |𝑧𝑛|
2

1 − |𝜑(𝑧𝑛)|
2
|𝜑′𝑧𝑛| = lim

𝑠→1
𝑠𝑢𝑝|𝑧|>𝑠

1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′𝑧| 

=  lim
|𝑧|→1−

𝑠𝑢𝑝
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′𝑧|.                           (37) 

Then either there is a subsequence {𝑧𝑛𝑘 } such that {|𝜑(𝑧𝑛𝑘)|} → 1 as k → ∞, or for every 

positive integer n we have | 𝜑(𝑧𝑛𝑘)| ≤ 𝑠0 for some 0 < 𝑠0< 1. 

       Clearly, in the former case both limits in (35) coincide. For the latter case we find that 

the limit in (36) is zero because 𝜑 ∈ 𝔅0. Since this limit is greater than or equal to the limit 

on the left hand side of (35), we find that they are the same again. The proof is now finished. 

The lower estimate. First we show that: 

‖𝐶𝜑‖𝑒
≥ lim
𝑠→1−

  𝑠𝑢𝑝|𝜑(𝑧)|≥𝑠
1 − |𝑧|2

1 − |𝜑(𝑧)|2
|𝜑′𝑧|.                       (38) 

Instead of the reproducing kernels used by Shapiro for the Hardy and Berg-man spaces we 

will use the sequence {𝑧𝑛}𝑛≥2. This sequence converges uniformly on compact subsets of 

the unit disk. An elementary computation shows that 

‖𝑧𝑛‖  = max
𝔻
 (1 −  |𝑧|2)|𝑛𝑧𝑛−1|  =

2𝑛

𝑛 +  1
(
𝑛 −  1

𝑛 +  1
)

(𝑛−1)/2

. 

Observe that for each 𝑛 ≥  2 the above maximum is attained at any point 

on the circle centered at the origin and of radius 𝑟𝑛  = (
(𝑛−1)

𝑛+1
)
1/2

 . These maxima form a 

decreasing sequence which tends to 2/𝑒.Therefore, the sequence {𝑧𝑛}𝑛≥2 is bounded away 

from zero. Now we consider the normalized sequence {𝑓𝑛  =
𝑧𝑛

‖𝑧𝑛‖
} which also tends to zero 

uniformly on compact subsets of the unit disk. For each 𝑛 ≥  2 we define the 

closed annulus 𝐴𝑛  =  {𝑧 ∈ 𝔻 ∶  𝑟𝑛 ≤  |𝑧| ≤  𝑟𝑛 + 1} and compute 
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min
𝐴𝑛

 (1 −  |𝑧|2)|𝑓𝑛
′ (𝑧)|  =  (1 −  𝑟𝑛+1

2 )|𝑓𝑛
′(𝑟𝑛+1)|

= (
𝑛 +  1

𝑛 +  2
) (

𝑛2  +  𝑛

𝑛2  +  𝑛 −  2
)

(𝑛−1)/2

.                                                          (38) 

Observe that these minima tend to 1 as 𝑛 →  ∞ and for each 𝑛 ≥  2 the minimum above is 

attained at any point of the circle centered at the origin and of radius 𝑟𝑛+1. For the moment 

fix any compact operator 𝐾 on ℬ0 or ℬ. The uniform convergence on compact subsets of 

the sequence {𝑓𝑛} to zero and the compactness of 𝐾 imply that ‖𝐾𝑓𝑛‖  →  0. It is easy to 

show that if a bounded sequence that is contained in ℬ0 converges uniformly on compact 

subsets of the unit disk, then it also converges weakly to zero in ℬ0 as well as in ℬ. Thus  

‖𝐶𝜑  −  𝐾‖𝑘 ≥ lim sup
𝑛
 ‖(𝐶𝜑  −  𝐾)𝑓𝑛‖ 

 ≥ lim sup
𝑛
 (‖𝐶𝜑𝑓𝑛‖ − ‖𝐾𝑓𝑛‖) 

=  lim sup
𝑛
  ‖𝐶𝜑𝑓𝑛‖.  

Upon taking the infimum of both sides of this inequality over all compact operators K, we 

obtain the lower estimate:  

‖𝐶𝜑‖𝑒
 ≥  lim sup

𝑛
 ‖𝐶𝜑𝑓𝑛‖  

=  lim sup
𝑛
 sup
𝔻
  (1 −  |𝑧|2 )|𝑓𝑛

′ (𝜑(𝑧))||𝜑′(𝑧)| 

=  lim sup
𝑛
 sup
𝔻
 
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|(1 −  |𝜑(𝑧)|2 )|𝑓𝑛

′  (𝜑(𝑧))|. (39)  

Now (39) is greater than or equal to  

lim sup
𝑛
 sup
𝜑(𝑧)∈𝐴𝑛

   
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|(1 −  |𝜑(𝑧)|2 )|𝑓𝑛

′ (𝜑(𝑧))|              (40)  

and (40) is greater than or equal to  

 lim sup
𝑛
 sup
𝜑(𝑧)∈𝐴𝑛

   
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)| sup

𝜑(𝑧)∈𝐴𝑛

(1 − |𝜑(𝑧)|2 )|𝑓𝑛
′ (𝜑(𝑧))|. (41)  

If 𝜑(𝔻) is a relatively compact subset of 𝔻 both sides of (37) are zero and there is nothing 

to prove. Otherwise we find that min
𝜑(𝑧)∈𝐴𝑛

(1 − |𝜑(𝑧)|2 )|𝑓𝑛
′ (𝜑(𝑧))|. =  sup

𝜑(𝑧)∈𝐴𝑛

(1 −

 |𝑧|2 )| 𝑓𝑛
′(𝑧)|. (z)| because the minimum in (38) is attained at any point on the circle 

centered at the origin and of radius 𝑟𝑛+1. Since these minima tend to 1 as 𝑛 →  ∞, it follows 

that (41) is equal to  

 lim sup
𝑛
 sup
𝜑(𝑧)∈𝐴𝑛

   
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)| .                    (42)  

Finally, an easy exercise shows that (42) coincides with the right hand side of (37). To obtain 

the upper estimate in the case of the Hardy and Bergman spaces, Shapiro [153] used the 

operators 𝑃𝑛 which take f to the nth partial sum of its Taylor series. On the Hardy space 

these operators satisfy: i) Each 𝑃𝑛 is compact, ii) (𝐼 −  𝑃𝑛)𝑓 tends to zero uniformly on 

compact subsets for any f in the Hardy space, and iii) for each n the norm in the Hardy space 

of 𝐼 −  𝑃𝑛 equals 1. Although each 𝑃𝑛 is also compact in the Bloch space, and (𝐼 −  𝑃𝑛)𝑓 

tends to zero uniformly on compact subsets for each function 𝑓 ∈ ℬ, this sequence does not 

satisfy anything analogous to iii) above. In fact, ‖𝑃𝑛‖  ≥  𝐶 log 𝑛  where 𝐶 is a universal 

constant (see [138]). Therefore, by the reverse triangle inequality ‖𝐼 −  𝑃𝑛‖ ≥  𝐶 log  𝑛 −
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 1. One of the issues here is that in general it is not easy to compute exactly either the norms 

of Bloch functions, or the norms of operators defined on Bloch spaces. To obtain the upper 

estimate we need the operators 𝐾𝑛, 𝑛 ≥  2, which take each function 𝑓(𝑧) to 𝑓 (
𝑛−1

𝑛
 𝑧). 

Every operator 𝐾𝑛 is compact on ℬ (or ℬ0). We also have that (𝐼 −  𝐾𝑛)𝑓 tends to zero 

uniformly on compact subsets of the unit disk for every 𝑓 ∈ ℬ, and (although we do not 

know if lim
𝑛→∞

  ‖𝐼 −  𝐾𝑛‖  =  1) we have the following proposition, whose proof is delayed.  

This will be accomplished by applying Proposition (3.3.5). Since each 𝐿𝑛 is compact so is 

𝐶𝜑𝐿𝑛. Therefore 

‖𝐶𝜑‖𝑒
≤  ‖𝐶𝜑 − 𝐶𝜑𝐿𝑛‖  =  ‖𝐶𝜑(𝐼 −  𝐿𝑛)‖.  

On the other hand, we have  

‖𝐶𝜑(𝐼 −  𝐿𝑛)‖  = sup
‖𝑓‖=1

  ‖𝐶𝜑(𝐼 −  𝐿𝑛)𝑓‖  

= sup
‖𝑓‖=1

 sup
|𝑧|<1 

 (1 −  |𝑧|2)((𝐼 −  𝐿𝑛)𝑓
′)(𝜑 (𝑧))|𝜑′(𝑧)| 

= sup
‖𝑓‖=1

 sup
|𝑧|<1 

 
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|(1 −  |𝜑(𝑧)|2) |((𝐼 −  𝐿𝑛)𝑓

 )
′
(𝜑 (𝑧))| |𝜑′(𝑧)|  (43) 

Now fix 0 <  𝑠 <  1.Then the right hand side of (43) is less than or equal to  

sup
‖𝑓‖=1

 sup
|𝜑(𝑧)|≤𝑠 

 
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|(1 −  |𝜑(𝑧)|2) |((𝐼 −  𝐿𝑛)𝑓

 )
′
(𝜑 (𝑧))|  

+  sup
‖𝑓‖=1

 sup
|𝜑(𝑧)|≤𝑠 

 
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|(1 −  |𝜑(𝑧)|2)

× |((𝐼 

−  𝐿𝑛)𝑓
 )
′
(𝜑 (𝑧))|.                                                                                     (44) 

By applying the Pick-Schwarz Lemma in the first term, and the fact that for f in the unit ball  

sup
|𝜑(𝑧)|>𝑠 

  (1 −  |𝜑(𝑧)|2) |((𝐼 −  𝐿𝑛)𝑓
 )
′
(𝜑 (𝑧))|  

≤  sup
|𝑧|<1 

  (1 −  |𝑧|2) |((𝐼 −  𝐿𝑛)𝑓
 )
′
(𝑧)| ≤ ‖𝐼 − 𝐿𝑛‖  

to the second term, we find that (44) is less than or equal to 

sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2) |((𝐼 −  𝐾𝑚)𝑓)
′
(𝑤)|  

+‖𝐼 − 𝐿𝑛‖ sup
|𝑧|<1 

  sup
|𝜑(𝑧)|≤𝑠 

 
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|.      (45) 

Let us prove that the first term in (45) tends to zero as 𝑛 →  ∞. By the triangle inequality 

we have that the first term in (45) is less than or equal to  

 ∑  

𝑚≥𝑛

 𝑐𝑛,𝑚 sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2) |((𝐼 −  𝐾𝑚)𝑓)
′
(𝑤)|.                    (46) 

By the triangle inequality again we find that (1 − |𝑤|2) |((𝐼 −  𝐾𝑚)𝑓)
′
(𝑤)| is less than 

or equal to 
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sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2) |𝑓′ (𝑤) − 𝑓′ ((1 −
1

𝑚
)  𝑤)|      

+
1

𝑚
sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2) |𝑓′ ((1 −
1

𝑚
)  𝑤)| .                                  (47) 

By integrating 𝑓′′ along the radial segment [(1 −  1/𝑚)𝑤, 𝑤] it is easy to see that the first 

term in (47) is less than or equal to  
1

𝑚
 sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2)|𝑤||𝑓′′(𝜉(𝑤))|, (48)  

where 𝜉(𝑤) belongs to the radial segment [(1 −  1/𝑚)𝑤,𝑤] that is still contained in the 

closed disk of radius s. The Cauchy inequalities applied to a circle 𝐶(𝜉(𝑤)) centered at 𝜉(𝑤) 
and of any fix radius 0 <  𝑅 <  1 −  𝑠 yields that (48) is less than or equal to  

1

𝑚𝑅
 sup
‖𝑓‖=1

 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2)|𝑤| max
|𝑧|=𝑠+𝑅

  |𝑓′ (𝑧)|.                    (49)  

On the other hand, on the unit ball of ℬ (or ℬ0) we have max
|𝑧|=𝑠+𝑅

 |𝑓′(𝑧)| ≤
1

1−(𝑠+𝑅)2
 . So we 

find that (49) is less than or equal to  
1

𝑚𝑅
 sup
|𝑤|≤𝑠

  (1 −  |𝑤|2)|𝑤|
1

1 − (𝑠 +  𝑅)2
 ≤

1

𝑚𝑅

𝑠

1 −  (𝑠 +  𝑅)2
 .  

Since the second term in (47) is less than 1/𝑚 we find that (47) is ≤  𝐶/𝑚, where 𝐶 only 

depends on 𝑠. Therefore, we find that (46) is less than or equal to  

∑  

𝑚≥𝑛

 𝑐𝑛,𝑚  
𝐶

𝑚
  ≤  ∑  

𝑚≥𝑛

 𝑐𝑛,𝑚
𝐶

𝑛
 =
𝐶

𝑛
  

which tends to zero as 𝑛 →  ∞. Hence, letting 𝑛 →  ∞ in (45), applying Proposition (3.3.5) 

and putting everything together, the following inequality follows 

‖𝐶𝜑‖𝑒
 ≤ sup

|𝜑(𝑧)|>𝑠
  
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|. 

Since s was arbitrary inequality (50) holds.  

The proof of Theorem (3.3.1) will be completed once we have proved Proposition 

(3.3.5). In order to do this we need some basic facts about Bloch spaces. Recall that dual 

space ℬ0
∗ of ℬ0

  is isomorphic to the space 𝐴1 (𝔻) of analytic functions on the unit disk such 

that  

∫  
𝔻

 |𝑔(𝑧)| 𝑑𝐴(𝑧)  <  ∞  

where 𝑑𝐴(𝑧) is Lebesgue area measure on 𝔻, normalized to have total mass 1, that is, 

𝑑𝐴(𝑧) =
1

𝜋
 𝑑𝑥𝑑𝑦 =

1

𝜋
 𝜌𝑑𝜃𝑑𝜌 for 𝑧 =  𝑥 +  𝑖𝑦 =  𝜌𝑒𝑖𝜃. This duality is realized by the 

integral pairing  

〈𝑓, 𝑔〉  =  ∫  
𝔻

 𝑓(𝑧)𝑔(𝑧) 𝑑𝐴(𝑧) 

 (see [154]). Let 0 <  𝑟 <  1 be fixed and let 𝐾𝑟 ∶  ℬ0
  →  ℬ0

  be the operator which assigns 

to each function 𝑓 the function 𝑓(𝑟𝑧). Now, for any 𝑓(𝑧)  =  ∑  ∞
𝑛=0  𝑎𝑛𝑧

𝑛  ∈  ℬ0
  and any 

𝑔(𝑧)  =  ∑  ∞
𝑛=0  𝑏𝑛𝑧

𝑛  ∈  𝐴1 (𝔻) a straightforward computation shows that  

〈𝑓(𝑟𝑧), 𝑔(𝑧)〉  =  ∑  

∞

𝑛=0

𝑟𝑛

𝑛 +  1
  𝑎𝑛 �̅�𝑛  =  〈𝑓(𝑧), 𝑔(𝑟𝑧)〉.  
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Thus, the adjoint operator 𝐾𝑟
∗ ∶  𝐴1 (𝔻)  →  𝐴1 (𝔻) acts in the same way as does 𝐾𝑟. We 

also have that the Bloch space ℬ 
  is the dual of 𝐴1 (𝔻) under the same integral pairing. Thus 

in a similar way, it can be shown that the bi-adjoint operator 𝐾𝑟
∗∗ ∶  ℬ 

  →  ℬ 
  of 𝐾𝑟 is the 

operator that assigns to each function 𝑓(𝑧) the function 𝑓(𝑟𝑧). Thus, we denote 𝐾𝑟
∗ and 𝐾𝑟

∗∗ 

by 𝐾𝑟. With this we may observe that if we have constructed the sequence {𝐿𝑛} required by 

Proposition (3.3.5) for ℬ0, then just considering the bi-adjoint sequence the result follows 

for the Bloch space B. This is trivial because 𝐿𝑛
∗∗  = (∑  𝑚≥𝑛  𝑐𝑛,𝑚 𝐾𝑛)

∗∗
 =

 ∑  𝑚≥𝑛  𝑐𝑛,𝑚 𝐾𝑛 and ‖(𝐼 −  𝐿𝑛)
∗∗‖  =  ‖𝐼 −  𝐿𝑛‖.  

To prove Proposition (3.3.5) we also need the following proposition about the 

compact operators 𝐾𝑟.  

Proposition (3.3.3)[146]: For any 𝑔 ∈  𝐴1 (𝔻) we have ‖𝐾𝑟𝑔 −  𝑔‖  →  0 as 𝑟 →  1−.  
Proof. Let 𝜀 >  0 be fixed. By the continuity of the integral we can find an 𝑠, 1 >  𝑠 >  0, 

such that  

∫  
|𝑧|>𝑠

 |𝑔(𝑧)|𝑑𝐴(𝑧) <
𝜀

3
 . 

 Now 𝑟𝑠 →  𝑠 and 1/𝑟 →  1 as 𝑟 →  1. Therefore, the change of variables 𝑤 =  𝑟𝑧 and the 

above display show that  

∫  
|𝑧|>𝑠

 |𝑔(𝑟𝑧)|𝑑𝐴(𝑧) =
1

𝑟
 ∫  
𝑟𝑠<|𝑤|≤𝑟

 |𝑔(𝑤)| 𝑑𝐴(𝑤) ≤
1

𝑟
 ∫  
𝑟𝑠<|𝑤|

 |𝑔(𝑤)| 𝑑𝐴(𝑤) <
𝜀

3
  

for 𝑟 near enough to 1. On the other hand, since 𝐾𝑟𝑔 tends to 𝑔 uniformly on comp                                                                                                                                                                                                                                                   

act subsets of the unit disk as 𝑟 →  1− , we have  

max
|𝑧|≤𝑠

  |𝑔(𝑟𝑧) − 𝑔(𝑧)| <
𝜀

3
  

for 𝑟 near enough to 1. Thus for 𝑟 close to 1 we have  

‖𝑔(𝑟𝑧) −  𝑔(𝑧)‖  =  ∫  
|𝑧|≤𝑠

 |𝑔(𝑟𝑧) −  𝑔(𝑧)|𝑑𝐴(𝑧) + ∫  
|𝑧|>𝑠

 |𝑔(𝑟𝑧) −  𝑔(𝑧)|𝑑𝐴(𝑧)

<
𝜀

3
 𝑠2  +  ∫  

|𝑧|>𝑠

 |𝑔(𝑧)|𝑑𝐴(𝑧) + ∫  
|𝑧|>𝑠

 |𝑔(𝑟𝑧)|𝑑𝐴(𝑧) 

<
𝜀

3
 +
𝜀

3
 +
𝜀

3
 =  𝜀.  

Since ε was arbitrary, the result follows.  

Given two Banach spaces 𝑋 and 𝑌 we denote by 𝐿(𝑋, 𝑌 ) the Banach space of 

bounded operators from 𝑋 into 𝑌 and by 𝐾(𝑋, 𝑌 ) the Banach space of compact operators 

from 𝑋 into 𝑌. We need a theorem of Mazur that asserts that if a sequence in a Banach space 

converges weakly, then some sequence of convex combinations converges in norm (see 

[139]). We begin with the following theorem, whose proof was provided by Joel H. Shapiro 

(alternatively, in the proof of Proposition (3.3.5), we can use Theorem 1 in [149]).  

Theorem (3.3.4)[146]: Suppose 𝑋 and 𝑌 are Banach spaces and {𝑇𝑛} is a sequence of 

compact linear operators from 𝑋 to  . Suppose further that for every 𝑦∗  ∈  𝑌∗ and 𝑥∗∗  ∈
 𝑋∗∗ we have: 〈𝑇𝑛

∗ 𝑦∗ , 𝑥∗∗〉  →  0. Then there is a sequence {𝑆𝑛} of convex combinations of 

the original 𝑇𝑛 such that ‖𝑆𝑛‖  →  0.  
Proof. Let 𝑄 denote the cartesian product of the closed unit ball of 𝑌∗ and the closed unit 

ball of 𝑋∗∗, where each ball has its respective weak star topology. Thus 𝑄 is a compact 

Hausdorff space. For 𝑇 ∈  𝐾(𝑋, 𝑌 ) the function 𝑇 ∗̂ ∶  𝑄 → ℂ defined by:  

𝑇 ∗̂((𝑦∗ , 𝑥∗∗))  =  〈𝑇∗ 𝑦∗ , 𝑥∗∗〉  (=  𝑥∗∗(𝑇∗ (𝑦∗))) (𝑥∗∗  ∈  𝑋∗∗ and 𝑦∗ ∈  𝑌∗)  
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belongs to 𝐶(𝑄) (see [149]), and the map 𝑇∗  →  𝑇 ∗̂ is an isometry taking a certain closed 

subspace of 𝐾(𝑌∗ , 𝑋∗) (namely the weak-star continuous compacts) onto a closed subspace 

of 𝐶(𝑄).  
By this correspondence and the Hahn-Banach theorem, 𝑇𝑛

∗  →  0 weakly in 𝐿(𝑌∗ , 𝑋∗) 
if and only if 𝑇𝑛

∗̂ tends weakly in 𝐶(𝑄). By the Riesz Representation Theorem and the 

Lebesgue bounded convergence theorem, a sequence of functions in 𝐶(𝑄) converges 

weakly to zero if and only if it converges pointwise to zero. But the hypothesis on {𝑇𝑛
∗} is 

just the statement that 𝑇𝑛
∗̂  →  0 pointwise on 𝑄. In addition, it follows from the Uniform 

Boundedness Principle that supn ‖𝑇𝑛‖  <  ∞, hence because ‖𝑇𝑛‖  =  ‖𝑇𝑛
∗‖, the sequence 

𝑇𝑛
∗̂ is also bounded. Thus 𝑇𝑛

∗̂  →  0 weakly in 𝐿(𝑌∗ , 𝑋∗) and so by Mazur’s theorem, there is 

a sequence of convex combinations ‖𝑆𝑛
∗‖ of the original operators {𝑇𝑛

∗}, such that ‖𝑆𝑛
∗‖  →

 0. Thus also ‖𝑆𝑛‖  →  0, which is the desired result.  

To prove Proposition (3.3.5) we will use the fact that ℬ0 is isomorphic to the sequence 

space 𝑐0. For completeness we include a proof of this fact. Let us consider the function 

𝜙(𝑟)  =  1 −  𝑟2 defined on the interval [0, 1] and let ℎ∞(𝜙) be the Banach space of 

complex-valued functions, 𝑢 harmonic in the unit disk with the norm  

‖𝑢‖𝜙  = sup
𝔻
  |𝑢(𝑧)|𝜙(𝑧)  

and let ℎ0(𝜙) be the closed subspace of functions 𝑢 for which |𝑢(𝓏)|𝜙(𝓏)  →  0 as |𝓏|  →
 1−. The space ℎ0(𝜙) is isomorphic to the sequence space 𝑐0 (see [122]). Finally, we denote 

by 𝐻0(𝜙) the closed subspace of those functions in ℎ0(𝜙) that are analytic on the unit disk. 

Now, observe that ℎ0(𝜙) is self-conjugate, that is, 𝑢 ∈  ℎ0(𝜙) if and only if its conjugate 

�̅�  ∈  ℎ0(𝜙). This fact along with the Closed Graph Theorem implies that the Riesz 

projection 𝑃 ∶  ℎ0(𝜙)  →  𝐻0(𝜙) defined by  

𝑃 𝑢 =
1

2
 (𝑢 +  𝑖�̅�) +

1

2
 𝑢(0) 

is bounded. Thus we can express ℎ0(𝜙)  =  𝐻0(𝜙)  ⊕  𝑘𝑒𝑟𝑃. Now, a famous theorem 

of Pelczy´nski (see [152]) asserts that if 𝐹 is a complemented subspace of 𝑐0, then either 𝐹 

is isomorphic to 𝑐0 or 𝐹 is of finite dimension. Since 𝐻0(𝜙) is complemented in a space 

isomorphic to 𝑐0, it follows that 𝐻0(𝜙) is isomorphic to 𝑐0. Finally, since 𝐻0(𝜙) is 

isometrically isomorphic to ℬ0 (consider the map  →  𝑓′ ), it follows that ℬ0 is isomorphic 

to 𝑐0.  
As mentioned, the following argument was indicated by N. J. Kalton. Some parts of 

this argument already appear in [149] (see also [150] and [148]).  

Proposition (3.3.5)[146]: There exists a sequence of convex combinations 𝐿𝑛 of 𝐾𝑛 (𝐿𝑛  =
∑  𝑚≥𝑛  𝑐𝑛,𝑚𝐾𝑚 with 𝑐𝑚,𝑛  >  0 and ∑  𝑚≥𝑛  𝑐𝑛,𝑚  =  1) such that lim

𝑛→∞
  ‖𝐼 −  𝐿𝑛‖  =  1.  

The upper estimate. The goal now is to show that  

 ‖𝐶𝜑‖𝑒
 ≤ lim

𝑠→1−
 sup
|𝜑(𝑧)|>𝑠

  
1 −  |𝑧|2

1 − |𝜑(𝑧)|2
 |𝜑′(𝑧)|  .                     (50) 

Proof. As pointed out before it is enough to prove the result for the Little Bloch space. It 

will be sufficient to show that for any 𝜀 >  0 there exists a convex linear combination 𝐿𝑛 of 

{𝐾𝑚}𝑚 ≥𝑛 with ||𝐼 −  𝐿𝑛||  <  1 +  𝜀. Once this is done the proof can be completed by a 

simple diagonal argument.  

Since ℬ0 is isomorphic to the sequence space 𝑐0, James’s Theorem (see [151]) can be 

applied to find that there exists a Banach subspace 𝑋0  ⊂  𝑐0 such that the Banach-Mazur 

distance from ℬ0 to 𝑋0 is strictly less than √1 +  𝜀. That is, there is an isomorphism 𝑇 ∶
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ℬ0  →  𝑋0 such that ||𝑇||||𝑇−1||  <  √1 +  𝜀. We define 𝑇𝑛  =  𝑇𝐾𝑛𝑇
−1 ∶  𝑋0  →  𝑋0. Upon 

applying Proposition (3.3.3) we find that  

lim
𝑛→∞

 ||𝑇𝑛
∗𝑥∗  −  𝑥∗||  =  0                                               (51) 

for each 𝑥∗  ∈  𝑋0
∗ . If 𝑃𝑛 is the sequence of coordinate projections on 𝑐0, then we also have  

lim
𝑛→∞

 ||𝑃𝑛
∗𝑥∗   −  𝑥∗ ||   =  0                                                        (52) 

for each 𝑥∗   ∈  𝑙 1 =  𝑐0
∗ the dual space of 𝑐0. Now, if 𝐽 denotes the inclusion from 𝑋0 into 

𝑐0, then 𝐽𝑇𝑛 − 𝑃𝑛𝐽 ∈  𝐾(𝑋0, 𝑐0). Furthermore, by applying (51) and (52) the sequence 

〈(𝐽𝑇𝑛  − 𝑃𝑛𝐽)
∗𝑥∗ , 𝑦∗∗〉 tends to zero for 𝑦∗∗  ∈  𝑋0

∗∗ and 𝑥∗  ∈  𝑙1 . Thus we may apply 

Theorem (3.3.4) to see that there exist a sequence of convex combinations of {𝐽𝑇𝑛  −  𝑃𝑛𝐽} 
that tends to zero in norm. This implies that there are sequences {𝑇𝑛

𝑐} and {𝑃𝑛
𝑐} of convex 

combinations of {𝑇𝑚}𝑚 ≥ 𝑛 and {𝑃𝑚}𝑚 ≥𝑛, respectively, such that 𝐽𝑇𝑛
𝑐  −  𝑃𝑛

𝑐𝐽 tends to zero 

in norm. Therefore, we have for all sufficiently large 𝑛:  

||𝐼 −  𝑇𝑛
𝑐||  = ||𝐽(𝐼 −  𝑇𝑛

𝑐 )||  ≤ ||(𝐼 −  𝑃𝑛
𝑐  )𝐽||  + ||𝐽𝑇𝑛

𝑐  −  𝑃𝑛
𝑐𝐽||  ≤  √1 +  𝜀,  

where we have used successively: The fact that 𝐽 ∶  𝑋0  →  𝑐0 is the inclusion map, the 

triangle inequality, and the inequality ||(𝐼 −  𝑃𝑛
𝑐 )𝐽||  ≤  1. Finally, if we set 𝐿𝑛  =

 𝑇−1𝑇𝑛
𝑐𝑇, then  

||𝐼 −  𝐿𝑛||  = ||𝑇
−1 (𝐼 −  𝑇𝑛

𝑐 )𝑇||  ≤ ||𝑇−1||||𝐼 −  𝑇𝑛
𝑐||||𝑇||  <  1 +  𝜀  

that is what we had to prove. The proof of Proposition (3.3.5), and therefore that of Theorem 

(3.3.1), is now completed.  



104 

Chapter 4 

Integral Operator with Norm and Essential Norm of Some Operators 
 

We study acting from 𝛼-Bloch spaces to Bloch-type spaces on 𝔹. The Dirichlet 

space to the Bloch-type space on the unit ball in ℂ𝑛 are calculated here. It is calculated 

norm of the product of differentiation and composition operators among these spaces on 

the unit disk. 

Section (4.1): Bloch–Type Spaces on the Unit Ball 
For 𝔹 be the open unit ball in Cn, 𝔻   the open unit disk in C, H (𝔹) the class of 

all holomorphic functions on 𝔹 and H ∞( 𝔹) the class of all bounded holomorphic 

functions on 𝔹 with the norm 

‖f‖∞ =  supz∈𝔹|f(z)|. 
Let 𝑧 = (𝑧1, … . , 𝑛𝑛) and 𝑤 = (𝑤1, … . , 𝑤𝑛) ve points in Cn, 〈𝑧, 𝑤〉 = ∑ 𝑧𝑘

n
k=1 𝑤𝑘 and 

|𝑧| = √(𝑧, 𝑧) for 𝑓 ∈  𝐻(𝔹) with the taylor expansion   

  𝐹(𝑧) = ∑𝑎𝛽𝑧
𝛽

𝛽≥0

, 

Let 𝔑𝐹(𝑧) = ∑ |𝛽|𝑎𝛽𝑧
𝛽

𝛽≥0 . 

Be the radial derivative of f, where 𝛽 = (𝛽1, 𝛽2… . , 𝛽𝑛) is multi index, |𝛽| =

(𝛽1+⋯ . ,+𝛽𝑛) and  𝑧𝛽 = 𝑧1
𝛽1 , , , 𝑧𝑛

𝛽𝑛 . It is well known [77] that 

𝔑𝐹(𝑧) =∑𝑧𝑗
𝜕𝑓

𝜕 𝑧𝑗
𝑗=1

(𝑧) = (∇𝑓(𝑧), 𝑧) 

A positive continuous function φ on [0, 1) is called normal   [11] if there is δ ∈ [0, 1) and 

a and 𝑏, 0 < 𝑎 < 𝑏 
𝜙(𝑟)

(1−𝑟)𝑎
  𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 [𝛿, 1)  𝑎𝑛𝑑  lim

𝑟→1

𝜙(𝑟)

(1−𝑟)𝑎
  = 0; 

𝜙(𝑟)

(1−𝑟)𝑏
   𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑜𝑛 [𝛿, 1)  𝑎𝑛𝑑  lim

𝑟→1

𝜙(𝑟)

(1−𝑟)𝑏
  = ∞; 

The Bloch-type space, denoted by 𝔅𝜇 = 𝔅𝜇(𝔹)), consists of all f ∈ H (B) such that 

𝔅𝜇(𝑓) =  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝔑𝑓(𝑧)| < ∞, 

Where 𝜇(𝑧) = 𝜇(|𝑧|)   and 𝜇 is normal on [0, 1) [26], [60] with the norm  

‖𝑓‖𝔅𝜇 = |𝑓(0)| + 𝔅𝜇(𝑓) 

the Bloch-type space becomes a Banach space. When μ(z) = (1 − |z|2)α , α ∈ (0, ∞), the 

space becomes the α-Bloch space 𝔅𝛼 (see, e.g., [2], [76], [6], [7], [8], [9]). Some other 

weighted spaces re-lated to Bloch-type spaces, can be found, for example, in [62], [20], 

[159]. 

The Little Bloch-type space 𝔅𝜇,0 is a subspace of 𝔅𝜇 consisting of those f ∈ 𝔅𝜇 

such that 

lim
|𝑧|→1

𝜇(𝑧) |𝔑𝑓(𝑧)| = 0 

Bearing in mind the dollowing asymptotic relation from [60] 

𝑏𝜇(𝑓) ≔ 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|∇𝑓(𝑧)| ≍ 𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝔑𝑓(𝑧)|                  (1) 

(for the case μ(z) = (1 − |z|2)α , α > 0, see, e.g., [4]) we see that 𝔅𝜇 can be defined as the 

class of all f ∈ H (𝔹) such that bμ(f ) is finite. Also the Little Bloch-type space is equivalent 
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with the subspace of 𝔅𝜇 consisting of all f ∈ H (𝔹) such that 

lim
|𝑧|→1

𝜇(𝑧) |∇𝑓(𝑧)| = 0 

Assume g ∈ H (𝔹), g(0) = 0 and ϕ is a holomorphic self-map of 𝔹. We introduce the 

follow-ing integral-type operator on H (𝔹) 

𝐼𝜑
𝑔(𝑓)(𝑧) =   ∫ 𝔑𝑓(𝜑(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡

1

0

, 𝑧 ∈ 𝔹                 (𝟐) 

Operator (2) is related to operators 

𝑇𝑔(𝑓)(𝑧) =   ∫ 𝑓(𝑡𝑧)𝔑𝑔(𝑡𝑧)
𝑑𝑡

𝑡

1

0

,  

and 

𝐼𝑔(𝑓)(𝑧) =   ∫ 𝔑𝑓(𝑡𝑧)𝑔(𝑡𝑧)
𝑑𝑡

𝑡

1

0

 

acting on 𝐻 (𝔹)introduced in [48] and [52], as well as the operator 𝑇𝑔 introduced in [57] 

acting on holomorphic functions on the unit polydisk (see, also [58], as well as [44] for a 

particular case of the operator). One of motivations for introducing operator 𝐼𝜑
𝑔

 stems 

from the operator introduced in [37]. Some characterizations of the boundedness and 

compactness of these and some other integral-type operators mostly in Cn, can be found, 

for example, in [43]–[46], [47]–[55], [6]–[58], [40]–[158]. 

       Recall that a linear operator L : X → Y , where X and Y are Banach spaces, is compact 

if for every bounded sequence (𝑥𝑘)𝑘∈ℕ     in X, the sequence (L(𝑥𝑘))𝑘∈ℕ has a convergent 

subse-quence. The operator L is said to be weakly compact if for every bounded sequence 
(𝑥𝑘)𝑘∈ℕ in X, (L(𝑥𝑘))𝑘∈ℕhas a weakly convergent subsequence, i.e., there is a 

subsequence       (𝑥𝑘𝑚)𝑘∈ℕ
such that for every Λ ∈ Y ∗ , the sequence (𝛬(𝐿(𝑥𝑘𝑚)))

𝑚∈𝑁
 

converges. A useful characterization for an operator to be weakly compact is the 

following Gantmacher’s theorem: L is weakly com-pact if and only if L∗∗(X∗∗) ⊂ Y , where 

L∗∗ is the second adjoint of L (see, for example, [156]). 

       We characterize the boundedness and compactness of 𝐼𝜑
𝑔

 from the α-Bloch space (or 

the Little α-Bloch space) to the Bloch-type space (or the Little Bloch-type space). 

We constant are denoted by C, they are positive and may differ from one 

occurrence to the other. If we say that a function 𝜇: ℂ → [0,∞) is normal we will also 

assume that it is radial, that is, 𝜇(𝑧) = 𝜇(|𝑧|), 𝑧 ∈  𝔹. The notation 𝑎 ≼ 𝑏 means that there 

is a positive constant C such that 𝑎 ≤ 𝐶𝑏. We say that 𝑎 ≍ 𝑏  if both 𝑎 ≼ 𝑏 and 𝑏 ≼ 𝑎 

hold. 

       Several auxiliary results are given. They will be used in the proofs of the main results. 

       The following lemma follows by standard arguments (see, for example, the 

corresponding lemmas in [52], [57], [58]). 

Lemma (4.1.1)[155]: Suppose α ∈ (0, ∞), μ is normal, g ∈ H (𝔹), g(0) = 0 and ϕ is an 

analytic self-map of B. Then Iφ
g
: 𝔅α( OR    𝔅0

α) → 𝔅μis compact if and only if 

Iφ
g
: 𝔅α( OR    𝔅0

α) → 𝔅μis bounded and for any bounded sequence       (fk)k∈ℕ in 

𝔅α( OR    𝔅0
α) converging to zero uniformly on compacts of 𝔹 as k → ∞, we have 

_‖𝐼𝜑
𝑔
𝑓𝑘‖𝔅𝜇

→ 0as k → ∞. 

Lemma (4.1.2)[155]: Suppose μ is normal. A closed set K in Bμ,0 is compact if and only 

if it is bounded and satisfies 
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lim
|𝑧|→1

𝑠𝑢𝑝𝑓∈𝑘 𝜇(𝑧) |𝔑𝐹(𝑧)| = 0 

The proof of Lemma (4.1.2) follows the lines of the proof of Lemma (4.1.2) in [19], hence 

is omitted. 

Lemma (4.1.3)[155]: Assume that f, g ∈ H (𝔹) and g(0) = 0. Then 

ℜ𝐼𝜑
𝑔(𝑓)(𝑧) =   𝔑𝑓(𝜑(𝑧))𝑔(𝑧) 

Proof. assume that the holomorphic function  𝔑𝑓(𝜑(𝑧))𝑔(𝑧)  has the expansion  

∑ 𝑎𝛼𝑧
𝛼

𝛼 . Since  𝛼 ≠ 0, we obtain. 

ℜ[𝐼𝜑
𝑔(𝑓)](𝑧) = 𝔑  ∫ ∑𝑎𝛼(𝑡𝑧)

𝛼

𝛼

1

0

𝑑𝑡

𝑡
= 𝔑 (∑

𝑎𝛼
|𝛼|
𝑧𝛼

𝛼

) =∑𝑎𝛼𝑧
𝛼

𝛼

 

As claimed. 

       Let A1 = A1(𝔹), denote the Bergman space, i.e., the space of all f ∈ H (𝔹) such that 

∫ |𝑓(𝑧)|𝑑𝑉(𝑧) < ∞
𝔹

 

where 𝑑𝑉 (𝑧) is the Lebesgue volume. 

       The next lemma can be found, for example, in Theorems 7.5 and 7.6 in [9]. 

Lemma (4.1.4)[155]: Suppose α ∈ (0, ∞). Then, the following statements are true. 

x ( 𝔅0
𝛼 )∗ = A1.  

x (A1)∗ = Bα  

x The second dual of 𝐵𝛼
0 is 𝐵𝛼.  

Recall that the duality (𝔅0
𝛼)∗ = 𝐴1 is given by the following integral pairing 

〈𝑓, 𝑔〉𝛼−1 =  lim
𝑟→1−0

𝑐𝛼−1∫ 𝑓(𝑟𝑧)

𝔹

𝑔(𝑟𝑧)(1 − |𝑧|2)𝛼−1𝑑𝑉(𝑍) 

where f ∈  𝔅0
𝛼 , g ∈ A1, and where cα−1 is chosen such that 

𝑐𝛼−1 ∫ (1 − |𝑧|2)𝛼−1
𝔹

  𝑑𝑉(𝑍) = 1, 

while the duality (𝐴1)∗ = 𝔅𝛼is given by the same integral pairing, where f ∈ A1 and g ∈ 

(𝐴1)∗ = 𝔅𝛼. 
Lemma (4.1.5)[155]:  Suppose 0 < 𝛼 < ∞, , g ∈ H (𝔹), g(0) = 0, ϕ is an analytic self-

map of 𝔹 and X is A Banana space . then Iφ
g
:      𝔅0

α → X is compact if and only if 

Iφ
g
:      𝔅0

α → Xis is weakly compact. 

Proof. By Lemma (4.1.4) we know that (𝔅0
𝛼)∗ = 𝐴1. Assume that  𝐼𝜑

𝑔
:      𝔅0

𝛼 → 𝑋  is 

compact . By a well–known theorem then this is equivalent with the operator  (𝐼𝜑
𝑔
)
∗
: 𝑋∗ →

𝐴1 is compact. Now recall that 𝐴1   has the Schur property, that is every weakly 

convergent sequence in 𝐴1   is norm- convergent (see, for example, [156]). Hence, this is 

equivalent with (𝐼𝜑
𝑔
)
∗
: 𝑋∗ → 𝐴1    is weakly compact, which is equivalent with 

(𝐼𝜑
𝑔
)
∗
: 𝑋∗ → 𝐴1    is weakly com-pact. 

Based on a result from [157], in [113] proved the following result. 

 

Lemma (4.1.6)[155]: Suppose α ∈ (0, ∞). Then there exist two holomorphic functions f1, 

f2 ∈ Bα (D) such that 



107 

(1 − |𝑧|2)𝛼(|𝑓1
′(𝑧)|) + (|𝑓2

′(𝑧)|) ≍ 1.                                   (3) 
       Now we are in a position to formulate and prove the main results.  

Theorem (4.1.7)[155]: Suppose α > 0, μ is normal, g ∈ H (𝔹), g(0) = 0 and ϕ is an analytic 

self-map of 𝔹. Then the following statements are equivalent. 

(i) 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇 is bounded. 

(ii) 𝐼𝜑
𝑔
:      𝔅0

𝛼 → 𝔅𝜇 is bounded  

(iii)  

𝑀 ≔ 𝑠𝑢𝑝𝑧∈𝔹
𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
< ∞.                                (4) 

Moreover if, if 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇 is bounded, then 

‖𝐼𝜑
𝑔
‖
𝔅𝛼→𝔅𝜇

≍ 𝑀                                   (5) 

Proof. (iii) ⇒ (i) By Lemma (4.1.3), the definition of the α-Bloch space and asymptotic 

relation-ship (1), we have 

𝜇(𝑧)|𝔑(𝐼𝜑
𝑔
𝑓)(𝑧)| = 𝜇(𝑧)|𝔑𝑓(𝜑(𝑧))||𝑔(𝑧)| ≤ 𝐶‖𝑓‖𝔅𝛼

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
. 

For every 𝑧 ∈  𝔹 and 𝑓 ∈ 𝔅𝛼. From this, by using (4) and since 𝐼𝜑
𝑔
𝑓(0) = 0 , it follows 

that 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇 is bounded and that  

‖𝐼𝜑
𝑔
‖
𝔅𝛼→𝔅𝜇

≍ 𝐶𝑀                                                 (6) 

(i)⇒(ii)  The implication is obvious. 

(ii)⇒(iii)   Using the following test functions. 

  𝑓𝑙(𝑧) =   𝑧𝑙 ∈ 𝔅0
𝛼, 𝑙 ∈ {1,… , 𝑛}                                        (7) 

We obtain 𝐼𝜑
𝑔
𝑓𝑙 ∈ 𝔅𝜇 for 𝑙 ∈ {1, … , 𝑛}, that is 

‖𝐼𝜑
𝑔
𝑓𝑙‖𝔅𝜇

= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|𝜑𝑙(𝑧)| ≤ ‖𝐼𝜑
𝑔
‖
𝔅𝛼→𝔅𝜇

‖𝑓𝑙‖𝔅𝛼 < ∞ 

For each 𝑙 ∈ {1, … , 𝑛} and consequently. 

𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)| ≤ ∑𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|𝜑𝑙(𝑧)|

𝑛

𝑙=1

 

≤ ‖𝐼𝜑
𝑔
‖
𝔅𝛼→𝔅𝜇

∑‖𝑓𝑙‖𝔅𝛼 < ∞.

𝑛

𝑙=1

                  (8) 

Set  

𝑓�̂�(𝑧) =  
1 − |𝑎|2

(1 − 〈𝑧, 𝑎〉)𝛼
, 𝑎 ∈ 𝔹                                (9) 

It is easy to see 𝑓�̂� ∈  𝔅0
𝛼. Morever  

𝑀1 ≔ 𝑠𝑢𝑝𝑎∈𝔹‖𝑓�̂�‖𝔅𝛼 ≤ 𝛼2
𝛼+1 + 1. 

From this and the boundedness of 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇  it follows that 

𝑀1‖𝐼𝜑
𝑔
‖
     𝔅0

𝛼→𝔅𝜇
≥ ‖𝐼𝜑

𝑔
 𝑓𝜑(𝑎)‖𝔅𝜇

=  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)|ℜ𝑓𝜑(𝑎)𝜑(𝑧)| 

≥
𝛼𝜇(𝑧)|𝑔(𝑎)|𝜑(𝑎)|2

(1 − |𝜑(𝑎)|2)𝛼
 

From which it follows that 
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𝑠𝑢𝑝
|𝜑(𝑧)|≥

1
2

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
≤ 𝑠𝑢𝑝

|𝜑(𝑧)|≥
1
2

2𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|2

(1 − |𝜑(𝑧)|2)𝛼
 

≤
𝑀1
𝛼
‖𝐼𝜑
𝑔
‖
     𝔅0

𝛼→𝔅𝜇
< ∞                       (10) 

On the other hand if , |𝜑(𝑧) ≤ 1/2   by using (8) we obtain  
𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
≤
4𝛼

3𝛼
𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)|  

≤
4𝛼

3𝛼
‖𝐼𝜑
𝑔
‖
     𝔅0

𝛼→𝔅𝜇
∑‖𝑓𝑙‖𝔅𝛼 < ∞.

𝑛

𝑙=1

             (11) 

Condition (4) as well as the inequality 

𝑀 ≤ 𝐶‖𝐼𝜑
𝑔
‖
     𝔅0

𝛼→𝔅𝜇
                                              (12) 

Is direct consequence of (10) and (11). 

       The asymptotic relation in (5). Follows from (6) and (12). 

Theorem (4.1.8)[155]: Suppose α > 0, μ is normal, g ∈ H (𝔹), g(0) = 0 and ϕ is an analytic 

self-map of      𝔅0
α → 𝔅μ. Then the following statements are equivalent. 

(i) 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇   is compact  

(ii) 𝐼𝜑
𝑔
:      𝔅0

𝛼 → 𝔅𝜇   𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

(iii) 𝐼𝜑
𝑔
:      𝔅0

𝛼 → 𝔅𝜇  Is bounded and  

lim
|𝜑(𝑧)|→1

 
𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
= 0 ;                         (13) 

(iv) 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇  Is bounded and condition 13 holds. 

Proof. First note that in view of Theorem (4.1.8) it follows that (iii) and (iv) are 

equivalent. 

(i) ⇒ (ii) this implication is obvious. 

(ii) ⇒ (iii) since Iϕ
g : B0

α → Bμ is compact then clearly  Iϕ
g : B0

α → Bμ is bounded. Let 

(𝑧𝑘)𝑘∈ℕbe a sequence in 𝔹 such that  |𝜑(𝑧𝑘)| → 1 𝑎𝑠 𝑘 → ∞  if such a sequence 

does not exist then condition (13) is vacuously satisfied. 

Set  

𝐹𝑘(𝑧) = 𝑓𝜑(𝑧𝑘), 𝑘 ∈ ℕ.                            (14) 

 

where 𝑓𝑤is defined in (9). From the proof of Theorem (4.1.7) we see that 

𝑠𝑢𝑝 𝑘∈ℕ‖𝐹𝑘‖ℬ𝛼 < ∞ . beside this  this Fk converges to zero uniformly on compacts of B 

as k → ∞. 

Lemma (4.1.1) implies 

lim
𝑘→∞  

‖𝐼𝜑
𝑔
𝐹𝑘‖ℬ𝜇

                                      (15) 

‖𝐼𝜑
𝑔
𝐹𝑘‖ℬ𝜇

=  𝑠𝑢𝑝 𝑧∈𝔹𝜇(𝑧)|ℜ(𝐼𝜑
𝑔
𝐹𝑘)(𝑧)| 

≥ 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||ℜ(𝐼𝜑
𝑔
𝐹𝑘)(𝜑(𝑧𝑘))| 

=
𝛼𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|𝜑(𝑧𝑘)|

2|

1 − |𝜑(𝑧𝑘)|
2                      (16) 

From (15), (16) and by using the assumption |𝜙(𝑧𝑘 )|  →  1 𝑎𝑠 𝑘 →  ∞, we obtain 
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lim
𝑘→∞  

𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|𝜑(𝑧𝑘)| |

(1 − |𝜑(𝑧𝑘)|
2)𝛼

= 0 

from which (13) follows. 

(iii) ⇒ (i) Since Iϕ
g : B0

α → Bμ is bounded then condition (8) holds. Let (𝑓𝑘 )𝑘∈𝑁 be a 

sequence in 𝐵𝛼 such that 𝑠𝑢𝑝 𝑘∈ℕ‖𝑓𝑘‖ℬ𝛼  =: 𝐿 < ∞ and 𝑓𝑘  →  0 uniformly on compacts 

of B as 𝑘 →  ∞. 
       From (13) for every ε > 0, there is a δ ∈ (0, 1), such that 

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)| |

(1 − |𝜑(𝑧)|2)𝛼
<
𝜀

𝐿
,                                      (17) 

Whenever  

       Lemma (4.1.3), 1, 17 and 8 yeild. 

‖𝐼𝜑
𝑔
𝐹𝑘‖ℬ𝜇

= 𝑠𝑢𝑝 𝑧∈𝔹𝜇(𝑧) |𝑔(𝑧)ℜ𝑓𝑘(𝜑(𝑧)) | 

≤ 𝑠𝑢𝑝 {𝑧∈𝔹:|𝜑(𝑧)|≤𝛿}𝜇(𝑧)|𝑔(𝑧)| |ℜ𝑓𝑘(𝜑(𝑧)) | 

+𝑠𝑢𝑝 {𝑧∈𝔹:𝛿<|𝜑(𝑧)|<1}𝜇(𝑧)|𝑔(𝑧)| |ℜ𝑓𝑘(𝜑(𝑧)) | 

≤ 𝐿𝑔𝑠𝑢𝑝|𝑤|≤𝛿|∇𝑓𝑘(𝑤)| + 𝐶‖𝑓𝑘‖ℬ𝛼   

𝑠𝑢𝑝 {𝑧∈𝔹:𝛿<|𝜑(𝑧)|<1}
𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
 

≤ 𝐿𝑔𝑠𝑢𝑝|𝑤|≤𝛿|∇𝑓𝑘(𝑤)| + 𝐶𝜀                                                    (18) 

where 

𝐿𝑔 = 𝑠𝑢𝑝 𝑧∈𝔹𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)| 

The uniform convergence of (𝑓𝑘)𝑘∈𝑁 on compacts of B along with Cauchy’s estimate 

implies(|∇𝑓𝑘|)𝑘∈ℕ also converges to zero on compacts of 𝔹 𝑎𝑠 𝑘 → ∞, ℎ𝑒𝑛𝑐𝑒  
lim
𝑘 → ∞.

𝑠𝑢𝑝|𝑤|≤𝛿 |∇𝑓𝑘(𝑤)| = 0.                                      (19) 

Letting k → ∞. In (18) and using (19) we obtain  

lim
𝑘 → ∞.

𝑠𝑢𝑝‖𝐼𝜑
𝑔
𝑓𝑘‖ℬ𝜇

≤ 𝐶𝜀 

for each positive ε. Hence the limit is equal to zero, from which by Lemma (4.1.1) it 

follows that the operator 𝐼𝜑
𝑔

 : Bα → ℬ𝜇 is compact. 

Theorem (4.1.9)[155]: Suppose α > 0, μ is normal, g ∈ H (B), g(0) = 0 and ϕ is an analytic 

self-map of B. Then Iϕ
g : B0

α → Bμ,0 is bounded if and only if Iφ
g

 : B0
α → ℬμis bounded 

and 

lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)| = 0                                (20) 

Proof. First assume 𝐼𝜑
𝑔

 : Bα → ℬ𝜇 is bounded and that condition (20) holds. Then, for 

each polynomial p, which obviously belongs to B0
α, we obtain 

𝜇(𝑧)|ℜ𝐼𝜑
𝑔
𝑝(𝑧) | ≤ 𝜇(𝑧)|𝑔(𝑧)| |ℜ𝑝(𝜑(𝑧)) | 

≤  𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)|‖∇𝑝‖∞ → 0. 
As |𝑧| → 1 hence 𝐼𝜑

𝑔
𝑝 ∈ ℬ𝜇,0. 

Since the set of all polynomials is dense in ℬ0
𝛼, for each 𝑓 ∈ ℬ0

𝛼 there a sequence  of 

polynomials (𝑝𝑘)𝑘∈ℕ. 

Such that |𝒇 − 𝒑𝒌|𝓑𝜶→𝟎  as 𝑘 → ∞, from this and since the operator 𝐼𝜑
𝑔
: 

Theorem (4.1.10)[155]: Suppose α > 0, μ is normal, g ∈ H (B), g(0) = 0 and 
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ϕ is an analytic self map of 𝔹 Then the following statements are equivalent. 

(i) 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇,0         is bounded ;  

(ii) 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇,0        𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡; 

(iii) 𝐼𝜑
𝑔
:      𝔅0

𝛼 → 𝔅𝜇,0     Is  𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

(iv) 𝐼𝜑
𝑔
:      𝔅0

𝛼 → 𝔅𝜇,0; Is  𝑤𝑒𝑎𝑘𝑙𝑦 𝑐𝑜𝑚𝑝𝑎𝑐𝑡 

(v) 𝐼𝜑
𝑔(𝔅𝛼) ⊂ 𝔅𝜇,0 

(vi)  

lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)| = 0.                                 (21) 

And 

lim
|𝜑(𝑧)|→1

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
= 0                                  (22) 

   (vii) 

lim
|𝑧|→1

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
= 0 ;                                (23) 

Proof. (vii) ⟹ (𝑖𝑖) assume that (23) holds . By Lemma (4.1.3) and (1) we have  

𝜇(𝑧)|ℜ(𝐼𝜑
𝑔
𝑓)(𝑧)| ≤ 𝐶‖𝑓‖𝔅𝛼

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
                   (24) 

From this and (23) it follows that the set  𝐼𝜑
𝑔({𝑓: ‖𝑓‖𝔅𝛼 ≤ 1})   is bounded in  𝔅𝜇, 

moreover in 𝔅𝜇,0  . Taking the supremum in (24) over the unit ball of the space 𝔅𝛼  , then 

letting  |𝑧| → 1  and using (23), we obtain 

lim
|𝑧→1|

𝑠𝑢𝑝‖𝑓‖𝔅𝛼≤1 𝜇(𝑧)|ℜ(𝐼𝜑
𝑔
𝑓)(𝑧)| = 0                            (25) 

From (25) and by using Lemma (4.1.2) the compactness of the operator 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇,0 

follows. 

[D] ⇒ (iii) This implication is obvious.  

[E] ⇒ (iv) Just recall that every compact operator is weakly compact.  

[F] ⇒ (v) By Lemma (4.1.4) we know that (𝔅0
𝛼 )∗∗ = 𝔅𝛼 . Since 𝐼𝜑

𝑔
 maps 𝔅0

𝛼 

into 𝔅𝜇,0 and (𝔅0
𝛼)∗ = A1, we have that (𝐼𝜑

𝑔
 )∗ : (𝔅𝜇,0)∗ → A1. Hence  

〈𝐼𝜑
𝑔(𝑓)ℎ〉 =  〈𝑓, (𝐼𝜑

𝑔
) ∗ (ℎ)〉 

For every 𝑓 ∈ 𝔅0
𝛼  𝑎𝑛𝑑 ℎ ∈ (𝔅𝜇,0)

∗
. 

On the other hand, by Lemma (4.1.4) we have   (𝐴1)∗ = 𝔅𝛼  which implies that  

(𝐼𝜑
𝑔
)
∗∗
: 𝔅𝛼 → 𝔅𝜇,0. hence every 𝑓 ∈ 𝔅0

𝛼     can be viewed as an element of   the space 

(𝐴1)∗and   

〈𝑓(𝐼𝜑
𝑔
)
∗
(ℎ)〉 =  〈(𝐼𝜑

𝑔
)
∗∗
(𝑓), ℎ〉 

Hence 

〈𝐼𝜑
𝑔(𝑓)(ℎ)〉 =  〈(𝐼𝜑

𝑔
)
∗∗
(𝑓), ℎ〉 

For every ℎ ∈ (𝔅𝜇,0)
∗
   by a well–known consequence of Hann- Banach theorem we 

obtain  (𝐼𝜑
𝑔
)
∗∗
(𝑓) =  𝐼𝜑

𝑔(𝑓) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑓 ∈ 𝔅0
𝛼. 

       Since  𝔅0
𝛼 is 𝑤∗  dense in 𝔅𝛼  it follows that (𝐼𝜑

𝑔
)
∗∗
(𝑓) =  𝐼𝜑

𝑔(𝑓)    for every 𝑓 ∈ 𝔅𝛼   

. Gantmacher’s theorem implies that  𝐼𝜑
𝑔(𝔅𝛼) ⊂ 𝔅𝜇,0 as desired . 

[G] ⇒ (vi) By using the test functions in (7), as in Theorem (4.1.9), it follows 
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that (21) holds. If ‖𝜑‖∞ < 1 then (22) is vacuously satisfied. Now assume 

‖𝜑‖∞ = 1, and assume to the contrary that the condition (22) does not hold. If it 

were, then it would exist ε0 > 0 and a sequence(𝑧𝑘)𝑘∈ℕ ⊂ 𝔹 such that 

lim
𝑘→∞

|𝜑(𝑧𝑘)| = 1 𝑎𝑛𝑑  

 

[H]  
𝜇(𝑧𝑘)|𝑔(𝑧𝑘)|𝜑(𝑧𝑘)|

(1 − |𝜑(𝑧)|2)𝛼
≥ 𝜀0 > 0                                 (26) 

For sufficiently large 𝑘. 
       We may also assume that 𝜑(𝑧𝑘) → (1,0, … . ,0)𝑎𝑠 𝑘 → 0. 
By Lemma (4.1.6) there are two functions  𝑓1𝑓2𝔅

𝛼(𝔻)   such that asymptotic relation (3) 

holds, 

Let   

𝐹1(𝑧) =  𝑓1(𝑧1)  𝑎𝑛𝑑 𝐹2(𝑧) =  𝑓2(𝑧1) 𝑧 ∈ 𝔹 

Clearly 𝐹1, 𝐹2 ∈ 𝔅
𝛼(𝔹) and consequently  

𝐼𝜑
𝑔
𝐹1, 𝐼𝜑

𝑔
𝐹2 ∈ 𝔅𝜇,0 

,                                              (27) 

On the other hand, by Lemma (4.1.3) and (3) we have 

𝜇(𝑧𝑘)|𝔑(𝐼𝜑
𝑔
𝐹1)(𝑧𝑘)| + 𝜇(𝑧)|𝔑(𝐼𝜑

𝑔
𝐹2)(𝑧𝑘)|

=  𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝔑𝐹1𝜑(𝑧𝑘)| + 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝔑𝐹2𝜑(𝑧𝑘)|

=  𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝜑1(𝑧𝑘)𝑓1
′(𝜑1(𝑧𝑘))|

+ 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝜑1(𝑧𝑘)𝑓2
′(𝜑1(𝑧𝑘)) ≍

𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝜑1(𝑧𝑘)|

(1 − |𝜑(𝑧𝑘)|
2)𝛼

≍
𝐶𝜇(𝑧𝑘)|𝑔(𝑧𝑘)||𝜑(𝑧𝑘)|

(1 − |𝜑(𝑧𝑘)|
2)𝛼

≥
𝐶𝜀0
2
> 0… 

for sufficiently large k, which is a contradiction with (27). 

[I] ⇒ (vii) From (22) it follows that for every ε > 0 there is an r ∈ (0, 1) such that 
𝜇(𝑧)|𝑔(𝑧)||𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
< 𝜀.                                                (28) 

Whenever 𝑟 ≤ |𝜑(𝑧)| < 1. 
       From (21) it follows that there is a 𝜎 ∈ (0,1) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡     

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)| ≤ 𝜀(1 − 𝑟2)𝛼.                                     (29) 
When 𝜎 < |𝑧| < 1, 
       If |𝜑(𝑧)| ≤ 𝑟   𝑎𝑛𝑑 𝜎 < |𝑧| < 1, then from (29) we have 

𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − |𝜑(𝑧)|2)𝛼
≤
𝜇(𝑧)|𝑔(𝑧)|𝜑(𝑧)|

(1 − 𝑟2)𝛼
< 𝜀.                     (30) 

Now note that (28) holds on the set r |ϕ(z)| < 1 and σ < |z| < 1. From this and (30) the 

implication follows. 

(i) ⇒ (v) This implication is obvious. 

(vii) ⇒ (i) From (23) it follows that condition (4) holds. Hence by Theorem (4.1.7) it 

follows that the operator 𝐼𝜑
𝑔
: 𝔅𝛼 → 𝔅𝜇is bounded. On the other hand from (23) and (24) it 

follows that for every 𝑓 ∈ 𝔅𝛼, 𝐼𝜑
𝑔
𝑓 ∈  𝔅𝜇,0from which the boundedness of 𝐼𝜑

𝑔
: 𝔅𝛼 → 𝔅𝜇,0 

follows, finishing the proof of the theorem. 
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Section (4.2): An Integral-Type Operator from the Dirichlet Space to the 

Bloch-Type Space on the Unit Ball 
For 𝔹 be the open unit ball in Cn, 𝔻   the open unit disk in C, H (𝔹) the class of 

all holomorphic functions on 𝔹, and 𝐻∞(𝔹) the space consisting of all f ∈ H (𝔹) such 

that            ‖f‖∞ =  supz∈𝔹|f(z)| < ∞ 

For an f ∈ H(𝔹)  with the Taylor exoansion f(z) = ∑ aαz
α, letα  

𝔑𝐹(𝑧) =∑|𝛼|𝑎𝛼𝑧
𝛼                            

𝛼

                   (31) 

Be the radial derivative of 𝑓, where 𝛼(𝛼1, … . , 𝛼𝑛) is a multi-index, |𝛼| = 𝛼1+⋯+ 𝛼𝑛   

and  𝑧𝛼 =  𝑧1
𝛼1 …𝑧𝑛

𝛼𝑛  . 𝐿𝑒𝑡  𝛼! =  𝛼1! …𝛼𝑛! 

The Dirichlet space  𝒟2(𝔹) =  𝒟2   contains all  𝑓(𝑧)  ∑ 𝑎𝛼𝑧
𝛼 ∈ 𝐻(𝔹)𝛼  

Such that  

‖𝑓‖𝒟2
2 ∶= |(𝑓(0))|

2
+∑|𝛼|

𝛼!

|𝛼|!
𝑎

|𝑎𝑎|
2 < ∞                          (32) 

The quantity ‖𝑓‖𝒟2  is a norm on  𝒟2 which for 𝑛 = 1is equal to usual norm  

‖𝑓‖𝒟2(𝔻)   (|𝑓(0)|
2 + ∫ |𝑓′(𝑧)|2𝑑𝐴(𝑍)

𝔻

)

1
2

                (33) 

Where  𝑑𝐴(𝑍) =   (
1

𝜋
) 𝑟 𝑑𝑟 𝑑𝜃 is the normalized area measure on 𝔻. 

       The inner product, between two functions  

 𝑓(𝑧)  ∑ 𝑎𝛼𝑧
𝛼        

𝛼
  𝑔(𝑧)   ∑ 𝑏𝛼𝑧

𝛼

𝛼
                         (34) 

On 𝒟2  is defined by  

(𝑓, 𝑔)| ≔  𝑓(0)𝑔(0)   ∑|𝛼|
𝛼!

|𝛼|!
𝛼

𝑎𝛼�̅�𝛼                   (35) 

For 𝛼 ≠0, let  

𝑒𝛼(𝑧)  √
|𝛼|!

|𝛼|𝛼!
𝑧𝛼,    𝑧 ∈ 𝔹                                            (36) 

and 𝑒0(𝑧) ≡ 1, then it is easy to see that the family {𝑒𝛼}   is an orthonormal basis for 𝒟2, 

and hence the reproducing kernel 𝑘𝑤(𝑧)_ for 𝒟2 is given by ([1])as follows: 

𝑘𝑤(𝑧) = 1 +   ∑√
|𝛼|!

|𝛼|𝛼!
𝑧𝛼

𝛼≠0

𝑤𝛼 = 1 + 𝐼𝑛    
1

(1 − (𝑧,𝑤))
                   (37) 

where 〈𝑧, 𝑤〉  ∑ 𝑧𝑗𝑤𝑗̅̅ ̅
𝑛
𝑗=1  is the inner product in ℂ𝑛 clearly for each  𝑓 ∈ 𝒟2   𝑎𝑛𝑑 𝑤 ∈

𝔹𝑚 the next producing formula holds:  

𝑓(𝑤)  = 〈𝑓, 𝑘𝑤〉                                              (38) 
note that for 𝑓 =  𝑘𝑤(1.8), we obtain 

𝑘𝑤(𝑤) =   ‖𝑘𝑤‖𝒟2
2  = 𝐼𝑛  

𝑒

1 − |𝑤|2
        (39) 

Also, by the Cauchy-Schwarz inequality and (39), we have that, for each   𝑓 ∈
𝒟2  𝑎𝑛𝑑 𝑤 ∈ 𝔹 
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|𝑓(𝑤)| =  |〈𝑓, 𝑘𝑤〉| ≤ ‖𝑓‖𝒟2‖𝑘𝑤‖𝒟2 = ‖𝑓‖𝒟2  (𝐼𝑛  
𝑒

1 − |𝑤|2
)

1
2
      (40) 

Note that inequality (40) is exact since it is attained for 

 𝑓 =  𝐾𝑤 . 
The weighted-type space 𝐻𝜇

∞(𝔹) = 𝐻𝜇
∞([2,3] )consists of all 𝑓 ∈ 𝐻(𝔹) such that 

‖𝐹‖𝐻𝜇∞ ∶=  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑓(𝑧)| < ∞                             (41) 

Where 𝜇  is a positive continuous function on  𝔹  (wright). 

       The Bloch- type space  ℬℳ(𝔹)  =  ℬℳ   consists of all   𝑓 ∈ 𝐻(𝔹) such that 

‖𝐹‖ℬℳ   ∶=  |𝑓(0)|  +  𝑠𝑢𝑝𝑧∈𝔹𝜇(𝑧)|𝔑𝑓(𝑧)| < ∞                            (42) 

Where 𝜇  is a (wright). 

       Let 𝑓 ∈ 𝐻(𝔻), 𝑔(0) = 0 𝑎𝑛𝑑 , ϕ be a holomorphic self-map of 𝔹, then the following 

integral-type operator: 

𝑃𝜑
𝑔(𝑓)(𝑧) =   ∫ 𝑓(𝜑(𝑡𝑧))𝑔(𝑡𝑧)

𝑑𝑡

𝑡

1

0

, 𝑧 ∈ 𝔹,   𝑓 ∈ 𝐻(𝔹)            (43) 

has been recently introduced in [163] and considerably studied (see, e.g [49]-[164]). For 

some related operators, see also [165]–[168] and the references therein. 

We provide function-theoretic characterizations for when ϕ and g induce bounded 

or compact integral-type operator on spaces of holomorphic functions. Majority of only 

find asymptotics of operator norm of linear operators. Somewhat concrete but perhaps 

more interesting problem is to calculate operator norm of these operators between spaces 

of holomorphic functions on various domains. Some results on this problem can be found, 

for example, in [26], [169]–[67] (see also) [41], [25]–[178]. In [26], we started with 

systematic investigation of methods for calculating operator norms of concrete operators 

between spaces of holomorphic function. 

We calculate the operator norm as well as the essential norm of the operator 𝑃𝜑
𝑔
∶

 𝒟2 → ℬℳ, considerably extending our recent result in [179]. 

We quote several auxiliary results which are used in the proofs of the main results. 

Lemma (4.2.1)[160]: (see [163]). Let 𝑔 ∈  𝐻(𝐵), 𝑔(0)  =  0, and 𝜙 be a holomorphic 

self-map of  𝔹, then         

𝔑𝑃𝜑
𝑔(𝑓)(𝑧) =  𝑔(𝑧)𝑓(𝜑(𝑧))                         (44) 

The next Schwartz-type Lemma ([180]) can be proved in a standard way. Hence, we omit 

its proof. 

Lemma (4.2.2)[160]: Assume that g ∈ H(𝔹), g(0) = 0, 𝜇 is a weight, and 𝜑 is an analytic 

self-map of 𝔹, then Pφ
g
∶  𝒟2 → ℬℳ is compact if and only if Pφ

g
∶  𝒟2 → ℬℳ is bounded 

and for any bounded sequence (𝑓𝑘)𝑘∈𝑁 in 𝒟2 converging to zero uniformly on compacts 

of 𝔹 as 𝑘 →  ∞, one has 

lim
𝑘→∞

‖𝑃𝜑
𝑔(𝑓𝑘)‖ℬμ

= 0.                                                   (45) 

Lemma (4.2.3)[160]: Assume that g ∈ H(𝔹), g(0) = 0, 𝜇 is a weight, and 𝜙 is an analytic 

self-map of 𝔹,such that ‖φ‖∞  < 1  and the operator Pφ
g
∶  𝒟2 → ℬℳ  is bounded, then 

Pφ
g
∶  𝒟2 → ℬℳ is compact.  

Proof. first note that since Pφ
g
∶  𝒟2 → ℬℳ  is bounded and f0(z) ≡ 1 ∈ 𝒟

2 by Lemma 

(4.2.1), it follows that 

𝔑𝑃𝜑
𝑔(𝑓0) =  𝑔 ∈ 𝐻𝜇

∞ 
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Now assume that (fk)k∈ℕ is bounded sequence in  𝒟2 converging to zero on compacts of 

B as k → ∞, then we have  

‖𝑃𝜑
𝑔(𝑓𝑘)‖ℬℳ

≤  ‖𝑔‖𝐻𝜇𝑋  𝑆𝑈𝑃𝑊∈𝜑(𝔹)|𝑓𝑘(𝑊)| → 0               (46) 

As 𝐾 ∈ ∞, since    𝜑(𝔹)     is contained in the ball  |𝑊|  ≤ ‖𝜑‖∞ which is a compact 

subset of  𝔹, according to the assumption ‖𝜑‖∞ < 1. 

Hence by Lemma (4.2.2) the operator 𝑃𝜑
𝑔
∶  𝒟2 → ℬℳ  is compact. 

We calculate the operator norm of 𝑃𝜑
𝑔
∶  𝒟2 → ℬℳ  

Theorem (4.2.4)[160]: Assume that 𝑔 ∈  𝐻 (𝐵), 𝑔(0)  =  0, and 𝜑 is a holomorphic self-

map of  𝔹, then 

‖𝑃𝜑
𝑔
‖
𝒟2→ℬℳ

= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑔(𝑧)| (𝐼𝑛  
𝑒

1 − |𝑤|2
)

1
2
=: 𝐿             (47) 

Proof. Using Lemma (4.2.1), reproducing formula (38) , the Cauchy – Schwarz inequality 

, and finally (1.0). We get that, for each 𝑓 ∈ 𝒟2 𝑎𝑛𝑑   𝑤 ∈ 𝔹 

𝜇(𝑤)|𝔑𝑃𝜑
𝑔(𝑤)| =  𝜇(𝑤)|𝑔(𝑤)||𝑓(𝜑(𝑤))| 

= 𝜇(𝑤)|𝑔(𝑤)||〈𝑓, 𝑘𝜑(𝑤)〉| 

≤ 𝜇(𝑤)|𝑔(𝑤)|‖𝑓‖𝒟2‖𝑘𝜑(𝑤)‖𝒟2
                 (48) 

‖𝑓‖𝒟2  𝜇(𝑤)|𝑔(𝑤)| (𝐼𝑛  
𝑒

1 − |𝑤|2
)
1/2

 

Taking the supremum in (48) over w ∈ B as well as the supremum over the unit ball in 

𝓓𝟐 and using the fact        𝑃𝜑
𝑔(𝑓)(0) = 0 = 0 for each 𝑓 ∈ 𝐻(𝔹), which follows from the 

assumption g(0) = 0, we get 

   ‖𝑃𝜑
𝑔
‖
𝒟2→ℬℳ

≤   𝐿.                                         (49) 

Now assume that the operator 

𝑃𝜑
𝑔
: 𝒟2 → ℬℳ 

is bounded. From (19) we obtain that, for each w ∈ B 

(𝐼𝑛  
𝑒

1 − |𝑤|2
)

1
2
‖𝑃𝜑

𝑔
‖
𝒟2→ℬℳ

=  ‖𝑘𝜑(𝑤)‖𝒟2
‖𝑃𝜑

𝑔
‖
𝒟2→ℬℳ

 

≥ ‖𝑃𝜑
𝑔
𝑘𝜑(𝑤)‖ℬℳ

                                  (50) 

  =  𝑠𝑢𝑝𝑧∈𝔹  𝜇(𝑧)|𝑔(𝑧)||𝑘𝜑(𝑤) (𝜑(𝑧))| 

≥ 𝜇(𝑧)|𝑔(𝑤)||𝑘𝜑(𝑤) (𝜑(𝑤))| 

From (39) and (50) it follows that 

𝐿 ≤ ‖𝑃𝜑
𝑔
‖
𝒟2→ℬℳ

                                  (51) 

Hence if 𝑃𝜑
𝑔
: 𝒟2 → ℬℳ  is bounded, then from (49) and (51) we obtain (47).  

In the case     𝑃𝜑
𝑔
: 𝒟2 → ℬℳ is unbounded, the result follows from inequality (49). 

Let X and Y be Banach spaces, and let L : X → Y be a bounded linear operator. The 

essential norm of the operator 𝐿: 𝑋 →    𝑌,   ‖𝐿‖𝑒,𝑋→   𝑌, is defined as follows:  

‖𝐿‖𝑒,   𝑋→   𝑌 = inf{‖𝐿 + 𝐾 ‖𝑋→   𝑌: 𝑘  is compact from 𝑋 to 𝑌}        (52) 
where ‖. ‖𝑋→   𝑌denote the operator norm. 

       From this and since the set of all compact operators is a closed subset of the set of 

bounded operators, it follows that L is compact if and only if 

‖𝐿‖𝑒,   𝑋→   𝑌 = 0                                                     (53) 
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We calculate the essential norm of the operator 𝑃𝜑
𝑔
: 𝒟2 → ℬ𝜇 

Theorem (4.2.5)[160]: Assume that g ∈ H (B), g(0) = 0,μ is a weight  and ϕ is a 

holomorphic self-map of  𝔹  and Pφ
g
: 𝒟2 → ℬμ is bounded. If ‖φ‖∞ <

1, then ‖Pφ
g
‖
e,𝒟2→ℬμ

= 0 , and if ‖φ‖∞ = 1, then 

‖𝑃𝜑
𝑔
‖
𝑒,𝒟2→ℬ𝜇

=  lim|𝜑(𝑧)|→1 𝑠𝑢𝑝 𝜇(𝑧)|𝑔(𝑧)| (𝐼𝑛  
𝑒

1 − |𝜑(𝑧)|2
)
1/2

          (54) 

Proof. Since   𝑃𝜑
𝑔
: 𝒟2 → ℬ𝜇 is bounded, for the test function   f(z) ≡ 1, we get g ∈ 𝐻𝜇

∞ 

(B). If ‖𝜑‖∞ < 1, then from Lemma (4.2.3) it follows that 𝑃𝜑
𝑔
: 𝒟2 → ℬ𝜇is compact 

which is equivalent with ‖𝑃𝜑
𝑔
‖
𝑒,𝒟2→ℬ𝜇

= 0. On the other hand, it is clear that in this case 

the condition |𝜙(𝑧)| → 1 is vacuous, so that (54) is vacuously satisfied. 

       Now assume that ‖𝜑‖∞ = 1, and that (𝜑(𝑧𝑘))𝑘∈ℕis a sequence in 𝔹 such that 

|𝜙(𝑧𝑘)| → 1  as k → ∞. For w ∈ 𝔹 fixed, set 

𝑓𝑤(𝑧) =  
𝐼𝑛(𝑒/(1 − 〈𝑧, 𝑤〉))

𝐼𝑛(𝑒/(1 − |𝑤|2))
1/2
   𝑧 ∈ 𝔹                    (55) 

By (39),  we have that ‖𝑓𝑤‖𝒟2 = 1 , for each w ∈ B. Hence, the sequence (𝑓𝜑(𝑧𝑘))𝑘∈ℕ
 is 

such that (𝑓𝜑(𝑧𝑘))𝒟2
= 1 , for each k ∈ N, and clearly it converges to zero uniformly on 

compacts of 𝔹. From this and by [9], it easily follows that (𝑓𝜑(𝑧𝑘))_ → 0 weakly in 𝒟2, 

as k → ∞. Hence, for every compact operator K : 𝒟2 → ℬ𝜇, we have that 

𝑙𝑖𝑚𝑘→∞‖𝐾𝑓𝜑(𝑧𝑘)‖ℬ𝜇
= 0.                   (56) 

Thus, for every such sequence and for every compact operator 

𝐾: 𝒟2 → ℬ𝜇, we have that  

‖𝑃𝜑
𝑔
+ 𝑘‖

𝒟2→ℬℳ
≥ 𝑙𝑖𝑚𝑘→∞𝑠𝑢𝑝

‖𝑃𝜑
𝑔
𝑓𝜑(𝑧𝑘)‖ℬℳ

− ‖𝑘𝑓𝜑(𝑧𝑘)‖ℬℳ
 

‖𝑓𝜑(𝑧𝑘)‖𝒟2
 

= 𝑙𝑖𝑚𝑘→∞𝑠𝑢𝑝‖𝑃𝜑
𝑔
𝑓𝜑(𝑧𝑘)‖ℬℳ

≥ 𝑙𝑖𝑚𝑘→∞𝑠𝑢𝑝(𝑧𝑘)|𝑔(𝑧𝑘)𝑓𝜑(𝑧𝑘)(𝜑(𝑧𝑘))|        (57) 

=  𝑙𝑖𝑚𝑛→∞ sup  𝜇(𝑧𝑘) |𝑔(𝑧𝑘)| (𝐼𝑛  
𝑒

1 − |𝑤|2
)

1
2
 

Taking the infimum in (57) over the set of all compact operators  

𝐾: 𝒟2 → ℬℳ 

‖𝑃𝜑
𝑔
‖
𝑒,𝒟2→ℬℳ

≥ limn→∞ 𝑠𝑢𝑝 𝜇(𝑧𝑘)|𝑔(𝑧𝑘)| (𝐼𝑛  
𝑒

1−|𝑤|2
)
1/2
         (58)  

from which an inequality in (54) follows 

We prove the reverse inequality. Assume that (𝑟1)𝑙∈ℕ is a sequence of positive 

numbers which increasingly converges to 1. Consider the operators defined by 

(𝑃𝑟𝑙𝜑
𝑔
𝑓)(𝑧) =  ∫ 𝑓(𝑟𝑙𝜑(𝑡𝑧))

1

0

𝑔(𝑡𝑧)
𝑑𝑡

𝑡
, 𝑙 ∈ ℕ.                          (59) 

Since ‖𝑟𝑙𝜑‖∞ <   1, by Lemma (4.2.3) , we have that these operators are compact. 

Since 𝑃𝜑
𝑔
: 𝒟2 → ℬ𝜇  is bounded, then    𝑔 ∈ 𝐻 𝜇

∞. 𝑙𝑒𝑡      𝜌 ∈ (0,1), be fixed for a moment 

. By Lemma (4.2.1), we get 

‖𝑃𝜑
𝑔
− 𝑃𝑟𝑙𝜑

𝑔
 ‖
𝒟2→ℬℳ

= sup‖𝑓‖𝒟2≤1𝑠𝑢𝑝𝑧∈𝔹 𝜇
(𝑧𝑘)|𝑔(𝑧𝑘)|𝑓𝜑(𝑧𝑘) − 𝑓(𝑟𝑙𝜑(𝑡𝑧))| 
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≤ sup‖𝑓‖𝒟2≤1𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌 𝜇
(𝑧)|𝑔(𝑧)|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑡𝑧))| 

+sup‖𝑓‖𝒟2≤1  𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌 𝜇
(𝑧)|𝑔(𝑧)|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑡𝑧))|  (60) 

≤ ‖𝑔‖𝐻𝜇𝑋sup‖𝑓‖𝒟2≤1𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌
|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑡𝑧))| 

+sup‖𝑓‖𝒟2≤1  𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌 𝜇
(𝑧)|𝑔(𝑧)|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑡𝑧))|  (61)      

Further we have  

‖𝑓 − 𝑓𝑟 ‖𝒟2
2 =  ∑|𝛼|

𝛼!

|𝛼|!
𝛼

|𝑎𝛼|
2(1 − 𝑟|𝛼|)

2
 

≤∑|𝛼|
𝛼!

|𝛼|!
𝛼

|𝑎𝛼|
2 ≤ ‖𝑓‖𝒟2                             (62) 

From (40), (62) and the fact |𝑓(𝑧) − 𝑓(𝑟𝑧)| ∈ 𝒟2 

|𝑓(𝑧) − 𝑓(𝑟𝑧)| ≤ ‖𝑓‖𝒟2 (𝐼𝑛  
𝑒

1−|𝑧|2
)

1

2
                (63)    

In particular  

|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑧))| ≤ ‖𝑓‖𝒟2 (𝐼𝑛  
𝑒

1 − |𝜑(𝑧)|2
)

1
2
            (64) 

Let  

𝐼𝑙 ≔ sup‖𝑓‖𝒟2≤1𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌
|𝑓𝜑(𝑧) − 𝑓(𝑟𝑙𝜑(𝑧))|                (65) 

The mean value theorem along with the subharmonicity of the moduli of partial 

derivatives of 𝑓, well-known estimates among the partial derivatives of analytic functions, 

Theorem 6.2, and Proposition 6.2 in [9] , yield 

 

𝐼𝑙 ≤ sup‖𝑓‖𝒟2≤1𝑠𝑢𝑝|𝜑(𝑧)|≤𝜌 

(1 − 𝑟1)|𝜑(𝑧)|𝑠𝑢𝑝|𝑤|≤𝜌|∇𝑓(𝑤)| ≤ 𝐶𝜌 

(1 − 𝑟𝑙)sup‖𝑓‖𝒟2≤1(∑ |∇jf(0)| + 𝑠𝑢𝑝|𝑤|≤(1+𝜌)/2

[n/p]

j=1

|∇|n/p|+1f(w)|) 

≤ 𝐶𝜌(1 − 𝑟𝑙)sup‖𝑓‖𝒟2≤1(∑ |∇jf(0)|

[n/p]

j=1

+ ∫ |∇[n/p]+1

|w|+(3+ρ/4))

𝑓(𝑤)|2 (1 − |w|2)2([n/p]+1)dτ(w))

1/2

 

≤ 𝐶𝜌(1 − 𝑟𝑙) → 0,   as 𝑙 → ∞,                                                  (66) 

where 𝑑𝑟(𝑧) = 𝑑𝑉(𝑧)/(1 − |𝑧|2)𝑛+1 and 𝑑𝑉(𝑧)     is the Lebesgue volume measure on 

𝔹. 

Using (64) in (61), letting 𝑙 → ∞    in (60), using (66), and then letting ρ → 1, the reverse 

inequality follows, finishing the proof of the theorem. 
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Section (4.3): From Logarithmic Bloch Type Spaces to Weighted-Type 

Spaces 
For 𝔹𝑛 = 𝔹 B be the open unit ball in the complex vector space ℂ𝑛, 𝔹1 =  𝔻 the 

unit disk in ℂ, 𝐻(𝑋) the class of all holomorphic functions on set X and 𝑆(𝑋) the class of 

all holomorphic self-maps of X. The expression 𝑎 ≍ 𝑏 means that there is a positive 

constant 𝐶 such that 𝐶−1    𝑎 ≤ 𝑏 ≤ 𝑐𝑎 

       For an 𝑓 ∈ 𝐻(𝔹)    with the Taylor expansion 𝑓(𝑧) =  ∑ 𝑎𝛽𝑧
𝛽

|𝛽|≥0 , let 

𝔑𝑓(𝑧) =  ∑ |𝛽|𝑎𝛽𝑧
𝛽

|𝛽|≥0

 

be the radial derivative of f, where 𝛽 =  (𝛽1, 𝛽2… ,𝛽𝑛) is a multi-index, | 𝛽| =  𝛽1 +⋯+

𝛽𝑛 and  𝑧𝛽 = 𝑧1
𝛽1 …𝑧𝑛

𝛽𝑛 . [11]. It is easy to see that 

𝔑𝑓(𝑧) = 〈∇𝑓(𝑧), 𝑧̅〉 
Where ∇𝑓 is the complex gradient of function 𝑓, that is 

∇𝑓 =  (
𝜕𝑓

𝜕𝑧1
, … ,

𝜕𝑓

𝜕𝑧𝑛
) 

Let k ∈ ℕ, the iterated logarithmic Bloch space 𝔅logk = 𝔅logk(𝔹), which was 

introducedin [184], consists of all 𝑓 ∈ 𝐻(𝔹) such that    

𝑏logk(𝑓) = 𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|
2) (∏𝐼𝑛[𝑗]

𝑒[𝑘]

1 − |𝑧|2

𝑘

𝑗=1

) 

𝔑𝑓(𝑧) < ∞. 

Where  𝑒[𝑘] is defined inductively by 𝑒[1] = 𝑒, 𝑒[𝑘] =  𝑒[𝑘−1]  𝑎𝑛𝑑  

𝐼𝑛[𝑗] 𝑧 = 𝐼𝑛 … 𝐼𝑛𝑧⏟    
j times

 

The norm on 𝔅logk   is given by  

‖𝑓‖𝔅logk
=  [𝑓(0)] + blogk(𝑓)                                    (67) 

For k = 1, we obtain the logarithmic Bloch space 𝔅log1 =  𝔅log . 

       The logarithmic Bloch space on D appeared in characterizing the multipliers of the 

Bloch space (see [3]). For the case of the unit ball see [9]. 

The Little iterated logarithmic Bloch space 𝔅logk,0 = 𝔅logk,0(𝔹)   consist of all      f ∈

𝔅logk  such that 

lim|𝑧|→1(1 − |𝑧|
2) (∏In[𝑗]

𝑒[𝑘]

1 − |𝑧|2

𝑘

𝑗=1

)  𝔑𝑓(𝑧) = 0 

A positive continuous function 𝜙 on the interval [0, 1} is called normal [11] if there are 

 𝛿 ∈ [0,1] 𝑎𝑛𝑑 𝑎 𝑎𝑛𝑑 , 𝑏  0 < 𝑎 <  𝑏   such that 
𝜙(𝑟)

(1 − 𝑟)𝑎
     [𝛿, 1]  𝑙𝑖𝑚𝑟→1

𝜙(𝑟)

(1 − 𝑟)𝑎
= 0. 

𝜙(𝑟)

(1 − 𝑟)𝑏
     [𝛿, 1]  𝑙𝑖𝑚𝑟→1

𝜙(𝑟)

(1 − 𝑟)𝑏
= ∞ 

Since the function  
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𝑤(𝑟) =  (1 − 𝑟2)∏𝐼𝑛[𝑗]
𝑒[𝑘]

1 − 𝑟2

𝑘

𝑗=1

. 

is normal, by Theorem (4.3.3). in [60] we have that 

‖𝑓‖𝔅logk
≍ |𝑓(0)|+𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|

2) (∏𝐼𝑛[𝑗]
𝑒[𝑘]

1 − |𝑧|2

𝑘

𝑗=1

) |∇𝑓(𝑧)|           (68) 

On the other hand, by Lemma (4.3.1) in [184] we know that the function 

ℎ𝑘(𝑥) = 𝑥∏𝐼𝑛[𝑗]
𝑒[𝑘]

𝑥

𝑘

𝑗=1

                                            (69) 

ℎ𝑘 (
𝑥

2
)    ℎ𝑘(𝑥) ≍ ℎ𝑘 (

𝑥

2
)   𝑥 ∈ (0,2] 

Is increasing on the interval (0.1], from which it easily follows that  ℎ𝑘 (
𝑥

2
)  is increasing 

on the interval (0, 2] and ℎ𝑘(𝑥) ≍ ℎ𝑘 (
𝑥

2
) , 𝑥 ∈ (0,2]. 

       From this, (68) and some simple  estimates we have also that  

‖𝑓‖𝔅logk
≍  |𝑓(0)|+𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|) (∏𝐼𝑛[𝑗]

𝑒[𝑘]

1 − |𝑧|

𝑘

𝑗=1

) |∇𝑓(𝑧)| = :   ‖𝑓‖𝔅logk
′  

From now on the quantity ‖𝑓‖𝔅logk
′  will be used as the norm on  𝔅logk(𝔹)  and we will 

regard that an f ∈ 𝔅logk(𝔹)  belongs to the Little iterated logarithmic bloch space 

𝔅logk,0(𝔹) if  

lim
|𝑧|→1−

(1 − |𝑧|) (∏𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |𝑧|

𝑘

𝑗=1

) |∇𝑓(𝑧)| = 0 

The weighted- type space 𝐻𝜇
∞ = 𝐻𝜇

∞(𝔹)𝑐𝑜𝑛𝑠𝑖𝑠𝑡 𝑜𝑓 𝑓 ∈ 𝐻(𝔹)such that 

‖𝑓‖𝐻𝜇∞ ≔ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑓(𝑧)| < ∞, 

Where 𝜇  is a weight , that is , a positive continuous function on 𝔹. 
       Assume 𝑢 ∈ 𝐻(𝔹)    𝑎𝑛𝑑 𝜑 ∈ 𝑆(𝔹), the weighted composition operator induced by 

𝑢 and 𝜙 is defined on 𝐻(𝔹) by 

(𝑢𝐶𝜑𝑓)(𝑧) = 𝑢(𝑧)𝑓(𝜑(𝑧)) 

A typical problem is to provide function theoretic characterizations when u and 𝜙 induce 

bounded or compact weighted composition operators between two given spaces of 

holomorphic functions. It is also of some interest to calculate operator norm of weighted 

composition operators. Some recent results in the area can be found, e.g., in [169], [170], 

[182], [183], [37], [64], [26], [65]–[41], [172]–[188], [67], [28], [69], [189]. 

       Motivated by [14], [15], [16], [23] (see also [170], [70]), in [26] we calculated 

operator norm of 𝑢𝐶𝜑: 𝔅(𝔹)(𝑜𝑟𝔅0(𝔹)) → 𝐻𝜇
∞. 

       Namely, the following formula was proved 

‖𝑢𝐶𝜑‖𝔅(𝔹)(𝑜𝑟𝔅0(𝔹))→𝐻𝜇∞
= max {‖𝑢‖𝐻𝜇∞ ,

1

2
𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)|

1 + |𝜑(𝑧)|

1 − |𝜑(𝑧)|
} 

‖𝑓‖𝔅α
′ ≔ |𝑓(0)|+𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|

2)𝛼 |∇𝑓(𝑧)|                        (70) 

𝑢𝐶𝜑: 𝔅(𝔹)(𝑜𝑟𝔅0(𝔹)) → 𝐻𝜇
∞, when 
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‖𝑢𝐶𝜑‖𝔅𝛼(𝑜𝑟𝔅0
𝛼)→𝐻𝜇

∞

= max {‖𝑢‖𝐻𝜇𝑥 ,
1

2
𝑠𝑢𝑝𝑧∈𝔹  

𝜇(𝑧)|𝑢(𝑧)|

𝛼 − 1
 

1

(1 − |𝜑(𝑧)|)𝛼−1
− 1},                (71) 

but instead of the norm in (70) we have used the following norm 

‖𝑓‖𝔅𝛼 ≔ |𝑓(0)|+𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|)
𝛼 |∇𝑓(𝑧)|, 

on space Ba. As it was noticed in [61], this slight change of the definition of norm k _ 

k0
Ba on space Ba enabled us to calculate norm in (71), which is difficult if norm on B a is 

k _ k0
Ba.   This shows that calculating operator norms depend much on the choice of the 

norms on the spaces which we deal with. There are general formulae for operator norm 

of an operator from a general Banach space to a weighted-type space (see, e.g. [183]). 

However, they are not proved for any weight, but for a specific type of weights, such as 

associated weights (see, e.g. [162]). Hence, it is of some interest to calculate operator 

norms when function l in the image space H1
l is a weight. Motivated by this line of 

research here we calculate operator norms of some operators. 

        Here we calculate operator norm of 𝑢𝐶𝜑: 𝔅logk(B) (𝔅logk,0(B)) → 𝐻𝜇
∞(B). Before 

we calculate it we prove an auxiliary result . 

Lemma (4.3.1)[181]: Let  k ∈ ℕ  and  f ∈ 𝔅logk(𝔹)Then the following inequality holds 

𝑓|𝑧| ≤  𝑓|0| + blogk,
′ (f) (In[k=1]

2e[k]

1 − |z|
− In[k=1]2e[k]),                (72) 

where 

blogk,
′ (𝑓) = 𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|) (∏𝐼𝑛[𝑗]

2𝑒[𝑘]

1 − |𝑧|

𝑘

𝑗=1

) |∇𝑓(𝑧)| 

Proof. Using the definition of norm  ‖. ‖𝔅logk,
′ , we have 

|𝑓(𝑧) −  𝑓(0)| =  |∫
𝑑

𝑑𝑡
(𝑓(𝑡𝑧))𝑑𝑡

1

0

| = |∫ 〈∇𝑓(𝑡𝑧), 𝑧̅〉
1

0

| 

≤  blogk,
′ (f)∫

|z|dt

(1 − |𝑡𝑧|) (∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − 𝑡|𝑧|
𝑘
𝑗=1 )

1

0

 

=  blogk,
′ (f) (In[k+1]  

2𝑒[𝑘]

1 − |𝑧|
− In[k+1] 2e[k])              (73) 

From which the lemma easily follows.  

Theorem (4.3.2)[181]: Assume 𝑘 ∈ ℕ, 𝑢 ∈ 𝐻(𝔹) and 𝜑 ∈ 𝑆(𝔹), 𝜇 is a weight and 

𝑢𝐶𝜑: 𝔅logk,(𝔹) → 𝐻𝜇
∞ is bounded. Then 

‖𝑢𝐶𝜑‖𝔅logk,(𝑜𝑟𝔅logk,0,)→𝐻𝜇
∞ 

= max {‖𝑢‖𝐻𝜇∞ ,
1

2
𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)| (𝐼𝑛

[𝑘+1]
2𝑒[𝑘]

1 − |𝜑(𝑧)|
− 𝐼𝑛[𝑘+1]2e[k])} (74) 

Proof: if   𝑓 ∈ 𝔅logk,   , by Lemma (4.3.1) and the definition of  ‖. ‖𝔅logk,
′ . we get  

‖𝑢𝐶𝜑𝑓‖𝐻𝜇𝑥
=  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)𝑓(𝜑(𝑧))| ≤ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)||𝑓(0)| 

+blogk,
′ (f) (In[k+1]  

2𝑒[𝑘]

1 − |𝜑(𝑧)|
− In[k+1] 2e[k]) 
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≤ ‖f‖𝔅logk,
max

{
 
 

 
 ‖𝑢‖𝐻𝜇∞ ,

1

2
𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)|

(In[k+1]
2e[k]

1 − |φ(z)|
− In[k+1]2e[k])

}
 
 

 
 

; 

from which it follows that  

‖𝑢𝐶𝜑‖𝔅logk,→𝐻𝜇
∞ 

≤ max {‖𝑢‖𝐻𝜇∞ , 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)| (In
[k+1]

2e[k]

1 − |φ(z)|
− In[k+1]2e[k])} (75) 

Let  f0(z) ≡ 1  then       ‖𝑓0‖
′
𝔅logk

=1   and  𝑓 ∈ 𝔅logk,.0 . Hence  

‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞  =        ‖𝑓0‖

′
𝔅logk,,0

‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞ 

≥ ‖𝑢𝐶𝜑𝑓0‖𝐻𝜇𝑥
= ‖𝑢‖𝐻𝜇𝑥                                         (76) 

For a fixed 𝑤 ∈ 𝔹 set 

   fw(z) =  In
[k+1] 2e[k]

1−〈z,w〉
− In[k+1]2e[k]                       (77) 

Since the function  hk(x/2) is increasing on the interval (0, 2] we have that  

(1 − |𝑧|) (∏𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |𝑧|

𝑘

𝑗=1

) |∇𝑓𝑤(𝑧)|

=  
|𝑤|(1 − |𝑧|)∏ 𝐼𝑛[𝑗]

2𝑒[𝑘]

1 − |𝑧|
𝑘
𝑗=1

(1 − |𝑧, 𝑤|)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |𝑧, 𝑤|
𝑘
𝑗=1

.                             (78) 

≤
|𝑤|(1 − |𝑧|)∏ 𝐼𝑛[𝑗]

2𝑒[𝑘]

1 − |𝑧|
𝑘
𝑗=1

(1 − |𝑧||𝑤||)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |𝑧|, |𝑤|
𝑘
𝑗=1

.
(1 − |𝑧||𝑤||)∏ 𝐼𝑛[𝑗]

2𝑒[𝑘]

1 − |𝑧||𝑤|
𝑘
𝑗=1

|1 − 〈𝑧,𝑤〉|∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

|1 − 〈𝑧, 𝑤〉|
𝑘
𝑗=1

≤ 1.   (79) 

From this and since 𝑓𝑤(0) = (0) it follows that 𝑠𝑢𝑝𝑤∈𝔹‖𝑓𝑤‖𝔅logk
′ ≤ 1,  while by letting 

|𝑧| → 1− in (78) we get  𝑓𝑤 ∈ 𝔅logk,.0  for each 𝑤 ∈ 𝔹. 

       This along with the boundedness of  𝑢𝐶𝜑: 𝔅logk,,0  → 𝐻𝜇
∞
 
, for 𝜑(𝑤) ≠ 0 and every 

𝑟 ∈ (0,1) implies  

‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞    ≥ ‖𝑢𝐶𝜑𝑓𝑟𝜑(𝑤)

|𝜑(𝑤)|

‖

𝐻𝜇
∞

 

= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)| |In
[k+1]

2e[k]

1 −
r〈φ(z), φ(w)〉
|φ(w)|

− In[k+1]2e[k]| 

≥ 𝜇(𝑤)|𝑢(𝑤)| (In[k+1]
2e[k]

1 − r|φ(w)|
In[k+1]2𝑒[𝑘])             (80) 

If 𝜑(𝑤) = 0, then (80) obviously holds. 

       Letting 𝑟 → 1−  in (80), then talking the supermum over the unit ball 𝔹 in such 

obtained inequality, we get  
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‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞    

≥ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)| (In
[k+1]

2e[k]

1 − |φ(z)|
−In[k+1]2𝑒[𝑘])              (81) 

From (76) and (81) it follows that  

‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞    

≥ max {‖𝑢‖𝐻𝜇∞, 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)| (In
[k+1]

2e[k]

1 − |φ(z)|
− In[k+1]2e[k])}  (82) 

From (75) and (82) and the inequality  

‖𝑢𝐶𝜑‖𝔅logk,,0→𝐻𝜇
∞ ≤ ‖𝑢𝐶𝜑‖𝔅logk,→𝐻𝜇

𝑥 

Formula (74) follows, as desired. 

We calculate the norm of the operator DCφ: 𝔅logk,(𝐷)  (𝑂𝑅 𝔅logk,,0(𝐷)) → 𝐻𝜇
∞(𝐷). 

Theorem (4.3.3)[181]: Assume 𝑘 ∈ ℕ, 𝜇 is a weight, 𝜑 ∈ 𝑠(𝔻), and that the operator  

DCφ: 𝔅logk,(𝐷)  (𝑂𝑅 𝔅logk,,0(𝐷)) → 𝐻𝜇
∞(𝐷) is bounded. Then the following formulae 

true hold 

‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ = ‖DCφ‖𝔅logk,,→𝐻𝜇

𝑋 

=  𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝜑′(𝑧)|

1 − |φ(z)|∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |φ(z)|
𝑘
𝑗=1

       (83) 

Proof:  for every 𝑓 ∈ 𝔅logk, and 𝑧 ∈ 𝔻𝑚,  we have 

𝜇(𝑧)|(𝐷𝐶𝜑𝑓)(𝑧)| =  𝜇(𝑧)|φ
′(z)||f ′φ(z)| 

≤
𝜇(𝑧)|𝜑′(𝑧)|

(1 − |φ(z)|)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |φ(z)|
𝑘
𝑗=1

‖𝑓‖′𝔅logk,,
 

Hence, by taking the supremum over  𝑧 ∈ 𝔻   and the unit ball in  𝔅logk,, .  we obtain  

‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ ≤  𝑠𝑢𝑝𝑧∈𝔹  

𝜇(𝑧)|𝜑′(𝑧)|

1 − |φ(z)|∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |φ(z)|
𝑘
𝑗=1

       (84) 

Since DCφ: 𝔅logk,,0 → 𝐻𝜇
∞ is bounded , and by using  the test  functions in (77) for the 

case 𝑛 = 1, we get  

‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ ≥ ‖DCφ (fr φ(w)|φ(w)|

 )‖

𝐻𝜇
∞

= 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧) |𝜑
′(𝑧)f

r
φ(w)
|φ(w)|

φ(z)| 

≥
𝜇(𝑤)|𝜑′(𝑤)|𝑟

(1 − r|φ(w)|)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − 𝑟|φ(w)|
𝑘
𝑗=1

                              (85) 

for each φ(w) = 0,  for some w ∈ 𝔻, then since φ ∈ H(𝔻), for φ(z) ≢ 0, there is  a 

sequence (𝑤𝑚)𝑚∈ℕ ⊂ 𝔻  , such that    𝑤𝑚 → 𝑤 as 𝑚 → ∞ and 𝜑(𝑤𝑚) ≠ 0  for every 

𝑚 ∈ ℕ consequently , we have that 𝜑(𝑤𝑚) → φ(w), 𝜑′(𝑤𝑚) → φ′(w), as 𝑚 → ∞ and 

from (85) that 
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‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ ≥   

𝜇(𝑤𝑚)|𝜑
′(𝑤𝑚)|𝑟

(1 − r|φ(𝑤𝑚)|)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − 𝑟|φ(𝑤𝑚)|
𝑘
𝑗=1

       (86) 

For every 𝑚 ∈ ℕ 

       By letting 𝑚 → ∞    𝑖𝑛 (20)𝑤𝑒 𝑔𝑒𝑡   

‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ ≥  

𝜇(𝑤)|𝜑′(𝑤)|𝑟

∏ 𝐼𝑛[𝑗]2𝑒[𝑘]𝑘
𝑗=1

. 

For each 𝑤 ∈ 𝔻 such that 𝜑(𝑤) = 0. Hence, we have that (85) holds for every 𝑤 ∈ 𝔻 

letting     𝑟 → 1− in (85) we obtain    

𝜇(𝑤)|𝜑′(𝑤𝑚)|

(1 − |φ(𝑤)|)∏ 𝐼𝑛[𝑗]
2𝑒[𝑘]

1 − |φ(𝑤)|
𝑘
𝑗=1

≤ ‖DCφ‖𝔅logk,,0→𝐻𝜇
∞                 (87) 

For every 𝑤 ∈ 𝔻, from (84), (87) and since ‖DCφ‖𝔅logk,,0→𝐻𝜇
∞ ≤ ‖DCφ‖𝔅logk,,→𝐻𝜇

∞ (83) 

follows. 

       The logarithmic Bloch-type space 𝔅
logβ
𝛼 =  𝔅

logβ
𝛼 (𝔹), 𝛼 > 0, 𝛽 ≥ 0, which was 

introduced in [1] consists of all 𝑓 ∈ 𝐻(𝔹) such that 

𝑏𝛼,𝛽(𝑓) ≔ 𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|)
𝛼𝐼𝑛

𝑒𝛽/𝛼

1 − |𝑧|
|ℝ𝑓(𝑧)| < ∞. 

The norm on 𝔅
logβ
𝛼     𝑐𝑎𝑛 𝑏𝑒 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑒𝑑 𝑎𝑠 

 ‖𝑓‖𝔅
logβ
𝛼 =  |𝑓(0)| + 𝑏𝛼,𝛽(𝑓), 

but we will here use the following  equivalent  norm  

‖𝑓‖′𝔅
logβ
𝛼 = |𝑓(0)| + 𝑏′𝛼,𝛽(𝑓) 

Where        𝑏′𝛼,𝛽(𝑓) ≔ 𝑠𝑢𝑝𝑧∈𝔹(1 − |𝑧|)
𝛼 (𝐼𝑛

2𝑒

1−|𝑧|
)
𝛽
|∇𝑓(𝑧)| < ∞. 

In the proof of the next result we will need two auxiliary results which are incorporated 

in the lemmas which follow. 

Lemma (4.3.4)[181]: Let f ∈  𝔅logβ(𝐵), 𝛽 ∈ (1,0), then the following inequality holds 

|𝑓(𝑧)| ≤ |𝑓(0)| +
𝑏′𝛼,𝛽(𝑓)

1−𝛽
((𝐼𝑛

2𝑒

1−|𝑧|
)
1−𝛽

− (𝐼𝑛2𝑒)1−𝛽 ) .             (88)  

Where         𝑏′𝛼,𝛽(𝑓) =  𝑠𝑢𝑝𝑧∈𝔹 (1 − |𝑧|) (𝐼𝑛
2𝑒

1−|𝑧|
)
𝛽
|∇𝑓(𝑧)|. 

Proof: using the definition of space 𝔅logβ  in the second equality in (73) we get  

|𝑓(𝑧) − 𝑓(0)| ≤ 𝑏′𝛼,𝛽(𝑓)∫
|𝑧|𝑑𝑡

(1 − 𝑡|𝑧|) (𝐼𝑛
2𝑒

1 − 𝑡|𝑧|
)
𝛽

1

0

 

=
𝑏′1,𝛽(𝑓)

1 − 𝛽
 ((𝐼𝑛

2𝑒

1 − |𝑧|
)
1−𝛽

− (𝐼𝑛2𝑒)1−𝛽 ), 

From which (88) easily follows. 

The following lemma was proved in [1]. 

Lemma (4.3.5)[181]: Assume 𝛼 > 0, 𝛽 ≥ 0 𝑎𝑛𝑑 𝛾 ≥
𝛽

𝛼
. 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
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ℎ𝛼,𝛽,𝛾(𝑥) =  𝑥
𝛼 (𝐼𝑛

𝑒𝛾

𝑥
)

𝛽

. 

Is increasing  on the interval (0,1] 

Theorem (4.3.6)[181]: 𝑘 ∈ ℕ, 𝛽 ∈ (0,1), 𝑢 ∈ 𝐻(𝔹), 𝜑 ∈ 𝑆(𝔹)𝑀 , uCφ: 𝔅logβ(𝐵)   →

𝐻𝜇
∞(𝐵) is bounded then  

‖𝑢𝐶𝜑‖𝔅logβ  𝑜𝑟(𝔅logβ,0)→𝐻𝜇
∞    

= max {‖𝑢‖𝐻𝜇∞ , 𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
((In

2e

1 − |φ(z)|
)
1−β

− (In2e)1−β)}.  (89) 

Proof. If 𝑓 ∈ 𝔅logβ, by Lemma (4.3.4) and the definition of the norm ‖. ‖𝔅logβ  
′  we get 

‖𝑢𝐶𝜑𝑓‖𝜇
   =  𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)𝑓(𝜑(𝑧))| 

≤ 𝑠𝑢𝑝𝑧∈𝔹 𝜇(𝑧)|𝑢(𝑧)|  (|𝑓(0)|
𝑏′1,𝛽(𝑓)

1 − 𝛽
(𝐼𝑛

2𝑒

1 − |𝑧|
)

1−𝛽

− (𝐼𝑛2𝑒)1−𝛽 ) 

≤ ‖𝑓‖′
𝔅
logβ

max {‖𝑢‖𝐻𝜇∞ , 𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
((In

2e

1 − |φ(z)|
)
1−β

− (In2e)1−β)} 

from which it follows that 

‖𝑢𝐶𝜑‖𝔅logβ  ≤→𝐻𝜇∞
 

≤ max {‖𝑢‖𝐻𝜇∞ , 𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
((In

2e

1 − |φ(z)|
)
1−β

− (In2e)1−β)}  (90) 

Let 𝑓0(𝑧) ≡ 1   . ‖𝑓0‖
′
𝔅
logβ

= 1   𝑎𝑛𝑑   𝑓 ∈ 𝔅
logβ,0

 . Hence we have  

‖𝑢𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ = ‖𝑓0‖

′
logβ,0 ‖𝑢𝐶𝜑‖𝔅

logβ,0
→𝐻𝜇

∞ ≥ ‖𝑢𝐶𝜑𝑓0‖𝐻𝜇∞
= ‖𝑢‖𝐻𝜇∞  (91) 

For a fixed 𝑤 ∈ 𝔹 

fw(z) =
1

1 − β
((In

2e

1 − 〈z,w〉
)
1−β

− (In2e)1−β)                  (92) 

Since by Lemma (4.3.5) the function  ℎ1,𝛽,1(𝑥/2), 𝛽 ∈ (0,1)   is increasing on the interval 

(0, 2] we have  

(1 − |z|) (In
2e

1 − 〈z, w〉
)
β

|∇fw(z)| =  
|w|(1 − |z|) (In

2e
1 − z

)
β

|1 − 〈z, w〉| (In
2e
1 − z

)
β
,           (93) 

≤
|w|(1 − |z|) (In

2e
1 − z

)
β

|1 − |z||w|| (In
2e
1 − z

)
β
.
(1 − |z||w|) (In

2e
1 − |z||w|

)
β

|1 − 〈z, w〉| (In
2e

|1 − 〈z,w〉|
)
β
≤ 1.    (94) 
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from this and since 𝑓𝑤(0) = 0.   𝑠𝑢𝑝𝑤∈𝔹‖𝑓𝑤‖
′
𝔅
logβ

≤ 1, while by letting |𝑧| → 1− in (93) 

we have that 𝑓𝑤 ∈ 𝔅logβ,0 for a fixed 𝑤 ∈ 𝔹. 

This along with the boundedness of 𝑢𝐶𝜑: 𝔅logβ ,0 → 𝐻𝜇
∞, for 𝜑(𝑤) ≠ 0 and every 𝑟 ∈

(0,1) implies 

‖𝑢𝐶𝜑‖𝔅logβ,0  ≤→𝐻𝜇∞
≥  ‖𝑢𝐶𝜑𝑓𝑟𝜑(𝑤)

|𝜑(𝑤)|

‖

𝐻𝜇
∞

, 

𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
||(In

2e

1 −
r〈φ(z), φ(w)〉

|φ(w)|
)

1−β

− (In2e)1−β|| 

≥
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
((In

2e

1 − r |φ(w)|
)
1−β

− (In2e)1−β)                              (95) 

If 𝜑(𝑤) = 0, then (95) obviously holds. Letting 𝑟 →  1− in (95), then taking the 

supremum over the unit ball in such obtained inequality. We get 

‖𝑢𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ ≥ 𝑠𝑢𝑝𝑧∈𝔹  

𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
((In

2e

1 − |φ(z)|
)
1−β

− (In2e)1−β)  (96) 

From (91) and (96) it follows that  

‖𝑢𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞  

≥ max  {‖𝑢‖𝐻𝜇∞ , 𝑠𝑢𝑝𝑧∈𝔹  
𝜇(𝑧)|𝑢(𝑧)|

1 − 𝛽
(In

2e

1 − |φ(z)|
)
1−β

− (In2e)1−β}  (97) 

From (90), (97) and the inequality 

‖𝑢𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ ≤ ‖𝑢𝐶𝜑‖𝔅

logβ
→𝐻𝜇

∞  

We calculate norm of DCφ: 𝔅logβ(𝐷)  𝑂𝑅 (𝔅logβ,0(𝐷)) → 𝐻𝜇
∞(𝐷). 

Theorem (4.3.7)[181]: Assume, 𝛽 ∈ (0,1), 𝜇 is a weight, 𝜑 ∈ 𝑆(𝔻) and the operator, 

DCφ: 𝔅logβ(𝔻) (𝑜𝑟 𝔅logβ,0(𝔻))   → 𝐻𝜇
∞(𝔻) is bounded, then the following formulae 

true hold 

‖𝐷𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ = ‖DCφ‖𝔅

logβ
 →𝐻𝜇

∞

 

 

= sup
𝑧∈𝔻

  
𝜇(𝑧)|𝜑′(𝑧)|

(1 − |φ(z)|) (In
2e

1 − |φ(z)|
)
β
(98) 

Proof: for every   𝑓 ∈ logβ   and z ∈ 𝔻, we have  

𝜇(𝑧) |(DCφf)(z)| =  𝜇(𝑧)|𝜑
′(𝑧)||𝑓′φ(z)| 

≤
𝜇(𝑧)|𝜑′(𝑧)|

(1 − |φ(z)|) (In
2e

1 − |φ(z)|
)
β
‖𝑓‖

𝔅
logβ

 

Hence by taking supreme over  𝑧 ∈ 𝔻 and the unit ball in   𝔅
logβ

, we obtain  
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‖𝐷𝐶𝜑‖𝔅
logβ

→𝐻𝜇
∞ ≤ 𝑠𝑢𝑝𝑧∈𝔻  

𝜇(𝑧)|𝜑′(𝑧)|

(1 − |φ(z)|) (In
2e

1 − |φ(z)|
)
β
           (99) 

By using the test function in (92) for the case n=1 , we get    

‖𝐷𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ ≥ ‖𝑓𝑟 φ(w)|φ(w)|

‖

𝐻𝜇
∞

= 𝑠𝑢𝑝𝑧∈𝔻 𝜇(𝑧) |𝜑
′(𝑧)𝑓′

𝑟
φ(w)
|φ(w)|

(φ(z))| 

≥
𝜇(𝑤)|𝜑′(𝑤)|𝑟

(1 − r|φ(w)|) (In
2e

1 − |φ(w)|
)
β
                                     (100) 

For each φ(w) ≠ 0, if φ(w) = 0 for some w ∈ 𝔻, then since φ ∈ H(𝔻), for φ(z) ≢ 0, 
there is a sequence (𝑤𝑚)𝑚∈ℕ ⊂ 𝔻, such that 𝑤𝑚 → 𝑤 as 𝑚 → ∞  and φ(wm) ≠ 0, for 

every 𝑚 ∈ ℕ, thus φ(wm) →  φ(w),φ′(wm) → φ′(w) as 𝑚 → ∞ and from (100) we 

have that  

‖𝐷𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ ≥ 𝑠𝑢𝑝𝑧∈𝔻  

μ(wm)|𝜑
′(wm)|𝑟

(1 − r|φ(wm)|) (In
2e

1 − r|wm|
)
β
     (101) 

For every 𝑚 ∈ ℕ,  by letting 𝑚 → ∞ in (101) we get 

‖𝐷𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞

μ(w)|𝜑′(w)|𝑟

(In2e)β
, 

for each w ∈ 𝔻,φ(w) = 0, hence, we have that (100)holds for every  w ∈ 𝔻 letting  r →
1− in (100) it follows that 

μ(w)|𝜑′(w)|𝑟

(1 − |φ(wm)|) (In
2e

1 − |φ(w)|
)
β
≤ ‖𝐷𝐶𝜑‖𝔅

logβ,0
→𝐻𝜇

∞           (102) 

for each w ∈ 𝔻, from (99) and (102) and the inequality 

‖𝐷𝐶𝜑‖𝔅
logβ,0

→𝐻𝜇
∞ ≤  ‖𝐷𝐶𝜑‖𝔅

logβ
→𝐻𝜇

∞ , 

Formula in (98) follow.  
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Chapter 5 

Bloch-to-BMOA with Reverse Estimates and Weighted Bloch Spaces 
 

        We characterize those 𝜙 for which the composition operator 𝑓 →  𝑓 ∘ 𝜙 maps the 

Bloch space into BMOA. As an application, we study composition operators with values in 

the space BMOA. For ℬ𝜔(𝐵𝑑) denote the 𝜔-weighted Bloch space in the unit ball 𝐵𝑑 of 

ℂ𝑑 , 𝑑 ≥  1. We show that the quadratic integral ∫  
1

𝑥

𝜔2(𝑡)

𝑡
 𝑑𝑡, 0 < 𝑥 <  1, governs the radial 

divergence and integral reverse estimates in ℬ𝜔(𝐵𝑑). 

Section (5.1): Compositions on Complex Balls 
       For 𝐻(𝐵𝑚) denote the space of holomorphic functions in the unit ball 𝐵𝑚 𝑜𝑓 ℂ

𝑚, 𝑚 ≥
 1. 
      The Bloch space 𝔅(𝐵𝑚)  consists of those functions 𝑓 ∈  𝐻(𝐵𝑚) for which 

‖𝑓‖𝔅(𝐵𝑚) =  |𝑓(0)| + 𝑠𝑢𝑝𝜔∈𝐵𝑚|ℛ𝑓(𝜔)|(1 − |𝜔|
2) < ∞, 

Where 

ℛ𝑓(𝜔) =  ∑𝜔𝑗
𝜕𝑓

𝜕𝜔𝑗
(𝜔),       𝜔 ∈ 𝐵𝑚

𝑚

𝑗=1

, 

is the radial derivative of f . The Hardy space 𝐻𝑝(𝐵𝑛), 𝑝 >  0, 𝑛 ≥ 1, consists of functions 

𝑓 ∈  𝐻(𝐵𝑛) such that 

 

‖𝑓‖𝐻𝑝(𝐵𝑛)
𝑝

=   𝑠𝑢𝑝0<𝑟<1 ∫|𝑓(𝑟𝜁)|𝑝

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁) < ∞, 

where 𝜎𝑛 is the normalized Lebesgue measure on the sphere ∂Bn. Also, we consider 

BMOA(𝐵𝑛), the space of holomorphic functions that have bounded mean oscillation on ∂𝐵𝑛. 

Equivalent definitions of BMOA(𝐵𝑛). 

       Given a holomorphic map 𝜑 ∶  𝐵𝑛  → 𝐵𝑚, the composition operator 𝐶𝜑 ∶  𝐻(𝐵𝑚)  →

 𝐻(𝐵𝑛) is defined by the following identity: 

 

(𝐶𝜑𝑓 )(𝑧)  =  𝑓 (𝜑(𝑧)), 𝑓 ∈  𝐻(𝐵𝑚),         𝑧 ∈  𝐵𝑛 . 

Various properties of 𝐶𝜑 are presented in the monographs [12], [144]. We describe those 𝜑 

for which 𝐶𝜑 maps 𝔅(𝐵𝑚) 𝑖𝑛𝑡𝑜 𝐵𝑀𝑂𝐴(𝐵𝑛). 

       There is a series of results about the operators under consideration. In particular, 

characterizations of the bounded operators 𝐶𝜑 ∶  𝔅(𝐵1) →  𝐵𝑀𝑂𝐴(𝐵𝑛) were obtained in 

[121]; see also [195], [196], [198]. The cases 𝑛 =  1 𝑎𝑛𝑑 𝑛 ≥  2 are rather deferent.       

Indeed, let 𝜑 ∶ 𝐵𝑛  →  𝐵1 be a holomorphic Lipschitz function of order 1. Then 𝐶𝜑 does not 

map 𝔅(𝐵1) into 𝐵𝑀𝑂𝐴(𝐵𝑛) when ‖𝜑‖∞  =  1 and 𝑛 = 1, but 𝐶𝜑 maps 𝔅(𝐵1) into 

𝐵𝑀𝑂𝐴(𝐵𝑛) when 𝑛 ≥  2 (see [194] and [121], respectively). See also [193], [121]. 

       For arbitrary 𝑛,𝑚 ∈  ℕ, the problem in question was considered only in [193], where 

the bounded and compact composition operators 𝐶𝜑 ∶  𝔅(𝐵𝑚) →  𝐵𝑀𝑂𝐴(𝐵𝑛) are 

characterized under an additional regularity assumption about 𝜑. Namely, the operator 𝐶𝜑 is 

bounded if and only if  
(1 − |𝑧|2)|ℛ𝜑(𝑧)|2

(1 − |𝜑(𝑧)|2)2
𝑑𝑣𝑛(𝑧)  𝑖𝑠 𝑎 𝑐𝑎𝑟𝑒𝑙𝑠𝑜𝑛 𝑚𝑒𝑠𝑢𝑟𝑒,         (1) 
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where 𝑣𝑛 𝑖s Lebesgue measure on 𝐵𝑛 and 𝑣𝑛(𝐵𝑛)  =  1. 

           We use the Möbius-invariance of the spaces 𝐵𝑀𝑂𝐴(𝐵𝑛) and 𝔅(𝐵𝑚). So, for 𝑧 ∈ 𝐵𝑛, 

let 𝜑𝑧 denote the involution of 𝐵𝑛such that 𝜑𝑧 (0) = z. Let 𝐵𝑚 denote the Bergman metric 

on the ball 𝐵𝑚. The main result is the following theorem. 

       Recall that the Garsia seminorm on 𝐵𝑀𝑂𝐴(𝐵𝑛) is defined by the identity 

‖𝑓‖𝐺1(𝐵𝑛) = 𝑠𝑢𝑝𝑧∈𝐵𝑛  𝑠𝑢𝑝0<𝑟<1 ∫ |𝑓 (𝜙𝑧 (𝑟𝜁))

𝜕𝐵𝑛

 −  𝑓 (𝑧)| 𝑑𝜎𝑛(𝜁). 

Therefore, (11) reduces to the property ‖𝑓‖𝐺1(𝐵𝑛)  <  ∞ when 𝜑 is replaced by 𝑓 ∈  𝐻(𝐵𝑛) 

and 𝛽𝑚 is replaced by the Euclidean metric. So, as in [196], [90] for 𝑛 =  𝑚 =  1, we say 

that (11) defines the hyperbolic BMOA class. However, other names have been used for this 

class; see [195]. 

       As observed in [193], the implication (1)⇒ (10) holds for all holomorphic maps 𝜑 ∶
 𝐵𝑛  →  𝐵𝑚 . Hence, Theorem (5.1.3) guarantees that (1) implies (11) for arbitrary 𝜑 So, one 

could expect that (11) implies (1) for all 𝜑. If this is the case, then it would be interesting to 

find a direct proof of the implication in question. 

 

       The classical seminorm on 𝐵𝑀𝑂𝐴(𝐵𝑛) is defined by the identity 

‖𝑓‖BMOA(𝐵𝑛)  = sup
1

𝜎𝑛(𝒬)
∫|𝑓∗ − 𝑓𝒬

∗| 𝑑𝜎𝑛 .

𝒬

 

where 𝑓∗ is the boundary function of 𝑓 , 𝑓𝒬
∗ is the average of 𝑓∗ over 𝑄, and the supremum 

is taken over all quasi-balls 𝑄 =  𝑄𝑟(𝜂)  =  {𝜉 ∈  𝜕𝐵𝑛 ∶  |1 − 〈𝜂, 𝜉〉 |  <  𝑟}, 𝜂 ∈  𝜕𝐵𝑛. 

       The hyperbolic analog of the property ‖𝑓‖𝐵𝑀𝑂𝐴(𝐵𝑛)  <  ∞ is the following one: 

 

𝑠𝑢𝑝𝑟>0,𝜂∈𝜕𝐵𝑛
1

𝒬𝑟(𝜂)
∫ 𝛽𝑚 (𝜑

∗(𝜁), 𝜑 (𝜂√1 − 𝑟2))

𝒬𝑟(𝜂)

𝑑𝜎𝑛(𝜁) < ∞.     (2) 

The relations between (11), (2) and similar properties will be considered else-where. 

Basic properties of 𝔅(𝐵𝑚) and 𝐵𝑀𝑂𝐴(𝐵𝑛) are collected. Further details are given in [191], 

[9]; see also [84] for n = m = 1. 

       The automorphism group of 𝐵𝑛 denoted by Aut(𝐵𝑛), consists of all biholomorphic 

mappings from 𝐵𝑛 onto 𝐵𝑛. Given 𝑧 ∈  𝐵𝑛, the involution (or the Möbius transform) 𝜙𝑧 ∈
𝐴𝑢𝑡(𝐵𝑛) is defined for 𝜆 ∈  𝐵𝑛 𝑎𝑠 follows: 

𝜙𝑧(𝜆) =  −𝜆   𝑤ℎ𝑒𝑛  𝑧 = 0, 

𝜙𝑧(𝜆) =
𝑧 − 𝑃𝑧𝜆 − √1 − |𝑧|

2𝒬𝑧𝜆

1 − 〈𝜆 − 𝑧〉
     𝑤ℎ𝑒𝑛 𝑧 ∈ 𝐵𝑛/{0}, 

 

where 𝑃𝑧𝜆 =  |𝑧|
−2〈𝜆 − 𝑧〉𝑧,  𝒬𝑧𝜆 =   𝜆 − 𝑃𝑧𝜆. To distinguish the involutions of  𝐵𝑚, we 

write 𝜓𝜔, 𝜔 ∈  𝐵𝑚 in the place of 𝜑𝑧  , 𝑧 ∈  𝐵𝑛. 

 

       The hyperbolic BMOA is defined by (11) in terms of the Bergman metric  𝛽𝑚 𝑜𝑛 𝐵𝑚. 

Note that 
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𝛽𝑚(𝜔1, 𝜔2) = 𝐶 𝑙𝑜𝑔 
1 + |𝜓𝜔1(𝜔2)|

1 − |𝜓𝜔1(𝜔2)|
, 𝜔1, 𝜔2 ∈ 𝐵𝑚  

So, a holomorphic map 𝜑 ∶  𝐵𝑛  →  𝐵𝑚 is in the hyperbolic BMOA if and only if 

𝑠𝑢𝑝𝑧∈ 𝐵𝑛𝑠𝑢𝑝0<𝑟<1 ∫ 𝑙𝑜𝑔
1

1 − |𝜓𝜑(𝑧) (𝜑(𝜙𝑧(𝑟𝜁)))|
2  𝑑𝜎𝑛(𝜁) < ∞.

𝜕𝐵𝑛

                         (3)  

       For   𝑓 ∈  𝐻(𝐵𝑚)  , put 

 

|∇ ̃f (𝜔)|
2
=  (1 − |𝜔|2)(|∇f (𝜔)|2 −|ℛ f (𝜔)|2),    𝑤 ∈ 𝐵𝑚, 

Where 

∇f (𝜔) =  (
𝜕𝑓

𝜕𝜔1
(𝜔), … ,

𝜕𝑓

𝜕𝜔𝑚
(𝜔)) 

is the complex gradient of 𝑓 . 

       Let �̃�(𝐵𝑚) denote the quotient of  𝔅(𝐵𝑚) by the space of constant functions. 

             Then �̃�(𝐵𝑚) is a Banach space with respect to the following norms: 

𝑠𝑢𝑝𝜔∈𝐵𝑚  |𝑅𝑓 (𝜔)|(1 − |𝜔|
2); 

𝑠𝑢𝑝𝜔∈𝐵𝑚  |𝛻𝑓 (𝜔)|(1 − |𝜔|
2); 

‖𝑓‖�̃�(𝐵𝑚) = 𝑠𝑢𝑝𝜔∈𝐵𝑚|∇̃f (𝜔)| 

Clearly, the above expressions are seminorms on 𝔅(𝐵𝑚); these seminorms degenerate 

exactly on the constant functions.  The main advantage of ‖ . ‖�̃�(𝐵𝑚) is its Möbius-

invariance. Namely, 

‖𝑓 ∘ 𝜓‖�̃�(𝐵𝑚) = ‖𝑓‖�̃�(𝐵𝑚) 

 

for all  𝜓 ∈  𝐴𝑢𝑡(𝐵𝑚), 𝑓 ∈  𝔅(𝐵𝑚). 
Also, a function 𝑓 ∈  𝐻(𝐵𝑚) belongs to 𝔅(𝐵𝑚)if and only if there exists a Constant 𝐶 > 0  

such that 

|𝑓(𝜔1) − 𝑓(𝜔2)| ≤ 𝐶𝛽𝑚(𝜔1, 𝜔2)  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜔1, 𝜔2 ∈ 𝐵𝑚.            (4) 
 

       For 𝜁 ∈ 𝜕𝐵𝑛.  and 𝑟 > 0, put 

𝒬𝑟(𝜁) =  {𝜉 ∈ 𝜕𝐵𝑛.: |1 − 〈𝜁, 𝜉〉| < 𝑟} 
 

Recall that the radial limits  |𝑓∗(𝜁)| =  lim
𝑟→1−

|𝑓(𝑟𝜁)| are defined for 𝜎𝑛– almost all for every 

𝑓 ∈ 𝐻1(𝐵𝑛). Let denote the space of functions  𝑓 ∈ 𝐻1(𝐵𝑛.) such that  

|𝑓(0)|𝑝 + 𝑠𝑢𝑝𝜁∈𝜕𝐵𝑛,𝑟>0
1

𝜎𝑛(𝒬)
 ∫|𝑓∗ − 𝑓𝒬

∗|
𝑝

𝒬

𝑑𝜎𝑛 < ∞.                            (5) 

Where  𝑝 =  1, 𝑄 =  𝑄𝑟(𝜁)  and 

𝑓𝒬
∗ =  

1

𝜎𝑛(𝒬)
∫ 𝑓∗ 𝑑𝜎𝑛
𝒬

 

The norm ‖𝑓‖𝐵𝑀𝑂𝐴(𝐵𝑛) is defined as the left-hand side of (5) with  𝑝 =  1.  By the John-

Nirenberg theorem, there exist constants 𝐴(𝑛)  >  0 𝑎𝑛𝑑 𝐶(𝑛)  >  0 such that 
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∫ 𝑒𝑥𝑝(|𝑓∗(𝜁)|)

𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁) ≤ 𝐶(𝑛)            (6) 

 

for all 𝑓 ∈  𝐵𝑀𝑂𝐴(𝐵𝑛)  with ‖𝑓‖𝐵𝑀𝑂𝐴(𝐵𝑛)  ≤  𝐴(𝑛). The John-Nirenberg inequality 

guarantees that 𝑓 ∈ 𝐵𝑀𝑂𝐴(𝐵𝑛) if and only if  𝑓 ∈  𝐻2(𝐵𝑛) and (5) holds with  𝑝 =  2. 
    The proof of Theorem (5.1.3) will be based on the following fact: (5) holds for p = 1 or 

for p = 2 if and only if 

‖𝑓‖𝐺𝑝(𝐵𝑛) = 𝑠𝑢𝑝𝑧∈𝐵𝑛‖𝑓 ∘ 𝜙𝑧 −  𝑓(𝑧)‖𝐻𝑝(𝐵𝑛) < ∞             (7) 

For 𝑝 =  1 or for 𝑝 =  2. The above seminorms degenerate exactly on the constant 

functions.  Let 𝐵𝑀𝑂𝐴(𝐵𝑛) denote the quotient of 𝐵𝑀𝑂𝐴(𝐵𝑛) by the space of constant 

functions. 

Then 𝐵𝑀𝑂𝐴(𝐵𝑛) is a Banach space with respect to the Garsia norm ‖ · ‖𝐺𝑝(𝐵𝑛), 𝑝 =  1 or 

𝑝 =  2. 

       Ryll and Wojtaszczyk [197] constructed holomorphic polynomials which proved to be 

very useful for many problems of function theory in the unit ball. We need the following 

improvement of the Ryll–Wojtaszczyk theorem.  

 

Theorem (5.1.1)[190]: ([192]). Let 𝑚 ∈  ℕ. Then there exists δ = δ(m)  ∈  (0, 1) and J =
 J(m)  ∈ ℕ with the following property: For every d ∈  ℕ, there exist holomorphic 

homogeneous polynomials Wj [d] of degree d, 1 ≤  j ≤  J, such that 

‖𝑊𝑗[𝑑]‖𝐿∞(𝜕𝐵𝑚)
≤ 1      𝑎𝑛𝑑                                            (8) 

𝑚𝑎𝑥1≤𝑗≤𝐽|𝑊𝑗[𝑑](𝜁)| ≥ 𝛿   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜁 ∈ 𝜕𝐵𝑚.                       (9) 

       For 𝑚 =  1, it is known that the following lemma holds with  𝐽(1)  =  1; see [116]. 

 

 

Lemma (5.1.2)[190]: Let m ∈  ℕand let 0 <  p <  ∞. Then there exist constants J =
 J(m)  ∈  ℕ, τm,p  >  0 and there exist functions F j,x ∈  𝔅(Bm), 1 ≤  j ≤  J, 0 ≤  x ≤

 1, such that ‖Fj,x‖𝔅(Bm)
 ≤  1, Fj,x(0)  =  0, and 

∑∫|𝐹 𝑗,𝑥(𝜔)|
𝑃

1

0

𝐽

𝑗=1

𝑑𝑥 ≥ 𝜏𝑚,𝑝 (𝑙𝑜𝑔
1

1 − |𝜔|2
)

𝑝
2
 

for all 𝑤 ∈  𝐵𝑚. 

Proof. Let the constant δ ∈ (0, 1) and the polynomials 𝑊𝑗  [𝑑], 1 ≤  𝑗 ≤  𝐽, 𝑑 ∈  ℕ, be those 

provided by Theorem (5.1.1). 𝐹𝑜𝑟 𝑘 ∈  ℤ+, let 𝑅𝑘denote the Rademacher function: 

𝑅𝑘(𝑥) = 𝑠𝑖𝑔𝑛 sin(2
𝑘+1𝜋𝑥) , 𝑥 ∈ [0,1] 

For each non- dyadic 𝑥 ∈ [0,1]  , consider the functions 

𝐹 𝑗,𝑥(𝜔) =  
1

4
 ∑𝑅𝑘(𝑥)

∞

𝑘=0

𝑊𝑗[2
𝑘](𝜔),    𝜔 ∈ 𝐵𝑚 , 1 ≤ 𝑗 ≤ 𝐽. 

Estimate (8) guarantees that 

(1 − |𝜔|2)|(ℛ𝐹 𝑗,𝑥)(𝜔)| ≤
1 − |𝜔|2

4
∑2𝑘|𝜔|2

𝑘

∞

𝑘=0

≤
1 − |𝜔|2

4
∑|𝜔|𝑛
∞

𝑛=1

≤ 1. 
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For all  𝜔 ∈ 𝐵𝑚 . Observe that  𝐹 𝑗,𝑥(0) = 0;  hence , ‖𝐹 𝑗,𝑥‖𝔅(𝐵𝑚)
≤ 1. next 

𝐶𝑝   ∫|𝐹 𝑗,𝑥(𝜔)|
𝑝
𝑑𝑥 ≥ (∑|𝑊𝑗[2

𝑘](𝜔)|
2

∞

𝑘=0

)

𝑝
21

0

 

by [91]. Given positive numbers 𝑎𝑗  ,    1 ≤  𝑗 ≤  𝐽 =  𝐽(𝑚), we have 

(∑𝑎𝑗

𝐽

𝑗=1

)

𝑝
2

  ≤ 𝐶𝑝,𝑚∑𝑎𝑗
𝑝/2

𝐽

𝑗=1

. 

Hence, 

𝐶𝑝,𝑚∑∫ |𝐹 𝑗,𝑥(𝜔)|
𝑝
𝑑𝑥 ≥ (∑∑|𝑊𝑗[2

𝑘](𝜔)|
2

𝐽

𝑗=1

∞

𝑘=0

)

𝑝
21

0

𝐽

𝑗=1

 

 

Recall that  𝑊𝑗[2
𝑘]  is a homogeneous polynomial of degree 2𝑘  ; thus 

∑∑|𝑊𝑗[2
𝑘](𝜔)|

2

𝐽

𝑗=1

∞

𝑘=0

≥ 𝛿2∑|𝜔|2
𝑘+1

∞

𝑘=0

 

 

≥ 𝛿2 ∑
|𝜔|2𝑛

𝑛
∞
𝑛=1 = 𝛿2 log

1

1−|𝜔|2
,  𝜔 ∈ 𝐵𝑚, 

By (9). So, 

∑∫ |𝐹 𝑗,𝑥(𝜔)|
𝑝
𝑑𝑥 ≥

1

0

(
𝛿2

𝐶𝑚,𝑝
log

1

1 − |𝜔|2
)

𝑝
2𝐽

𝑗=1

,  

As required. 

Theorem (5.1.3)[190]: Let  𝜑 ∶ 𝐵𝑛  →  𝐵𝑚 be a holomorphic map, then the following 

properties are equivalent: 

𝐶𝜑 ∶  𝔅(𝐵1) →  𝐵𝑀𝑂𝐴(𝐵𝑛) 𝑖𝑠 𝑎 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟;     (10) 

𝑠𝑢𝑝𝑧∈𝐵𝑛𝑠𝑢𝑝0<𝑟<1   ∫ 𝛽𝑚 (𝜑(𝜙𝑧(𝑟𝜁)), 𝜑(𝑧))

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁) < ∞, (11) 

For m = 1, Theorem (5.1.3) was proved in [195]; see also [121]. 

Proof. Assume that (10) holds. Note that 𝐶𝜑1 =  1; hence, 𝐶𝜑: �̃�(𝐵𝑚) → 𝐵𝑀𝑂�̃� (𝐵𝑛)  is a 

bounded operator. Using (7) with  𝑝 =  2, we obtain  

𝑠𝑢𝑝𝑧∈𝐵𝑛𝑠𝑢𝑝0<𝑟<1 ∫|𝑓 ∘ 𝜑 ∘ 𝜙𝑧(𝑟𝜁) − 𝑓 ∘ 𝜑(𝑧)|
2𝑑𝜎𝑛(𝜁)

𝜕𝐵𝑛

≤ 𝐶‖𝑓‖�̃�(𝐵𝑚)
2 .          (12) 

Let the constant 𝜏 =  𝜏𝑚,2 > 0   and the functions 𝐹𝑗,𝑥, 1 ≤ 𝑗 ≤ 𝐽, 0 ≤ 𝑥 ≤ 1. Be  those 

provided by Lemma (5.1.2) for 𝑝 = 2.Note that ‖𝐹𝑗,𝑥‖�̃�(𝐵𝑚)
 ≤ 𝐶‖𝐹𝑗,𝑥‖�̃�(𝐵𝑚)

≤ 𝐶.  

Recall that ‖. ‖�̃�(𝐵𝑚) is Mo ̈bius-invariant hence, ‖𝐹𝑗,𝑥 ∘ 𝜓𝜑(𝑧)‖�̃�(𝐵𝑚)
≤ 𝐶 where the 
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constant 𝐶 > 0  does not depend on 𝑧 ∈  𝐵𝑛. Also, we have 𝐹𝑗,𝑥 ∘ 𝜓𝜑(𝑧)(𝜑(𝑧)) = 𝐹𝑗,𝑥(0)  =

 0. Thus, by (12) with 𝑓 =  𝐹𝑗,𝑥 ∘ 𝜓𝜑(𝑧), 

∫ |𝐹𝑗,𝑥 ∘ 𝜓𝜑(𝑧) (𝜑(𝜙𝑧(𝑟𝜁)))|
2

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁)  ≤ 𝐶, 

for all 𝑧 ∈  𝐵𝑛, 0 < 𝑟 < 1  ,    𝑜 ≤ 𝑥 ≤ 1. Hence, 

∑∫ ∫ |𝐹𝑗,𝑥 ∘ 𝜓𝜑(𝑧) (𝜑(𝜙𝑧(𝑟𝜁)))|
2

𝜕𝐵𝑛

1

0

𝐽

𝑗=1
 

𝑑𝜎𝑛(𝜁) 𝑑𝑥 ≤ 𝐶, 

𝑧 ∈ 𝐵𝑛,    0 < 𝑟 < 1. 
Therefore, Fubini’s theorem and Lemma (5.1.2) guarantee that 

𝜏 ∫ log
1

1 − |𝜓𝜑(𝑧) (𝜑(𝜙𝑧(𝑟𝜁)))|
2      

      

𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁) ≤ 𝐶,    𝑧 ∈ 𝐵𝑛,
 

0 < 𝑟 < 1.. 

So, we obtain (3) or, equivalently, (11). 

      To prove the converse implication, assume that (11) holds, that is, 

𝑠𝑢𝑝𝑧∈𝐵𝑛  𝑠𝑢𝑝0<𝑟<1 ∫ 𝛽𝑚 (𝜙(𝜑𝑧(𝑟𝜁)), 𝜙(𝑧)) 𝑑𝜎𝑛(𝜁)

𝜕𝐵𝑛

 <  ∞. 

 

Let 𝑓 ∈  𝔅(𝐵𝑚). Then 

 

 

|𝑓 (𝜑(𝜙𝑧(𝑟𝜁)))  −  𝑓 (𝜑(𝑧))|  ≤  𝐶𝛽𝑚(𝜑(𝜙𝑧 (𝑟𝜁)), 𝜑(𝑧)) 
By (4). Hence,  

𝑠𝑢𝑝𝑧∈𝐵𝑛   𝑠𝑢𝑝0<𝑟<1 ∫|𝑓(𝜑(𝜙𝑧 (𝑟𝜁)) − 𝑓(𝜑(𝑧))|𝑑𝜎𝑛(𝜁)

𝜕𝐵𝑛

 

≤ 𝐶𝑠𝑢𝑝𝑧∈𝐵𝑛  𝑠𝑢𝑝0<𝑟<1 ∫ 𝛽𝑚(𝜑(𝜙𝑧 (𝑟𝜁)), 𝜑(𝑧))

𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁)   <  ∞. 

Using (7) with p = 1, we have    𝑓 ∘ 𝜑 ∈  𝐵𝑀𝑂𝐴(𝐵𝑛). So, (10) holds by the closed graph 

theorem. The proof of Theorem (5.1.3) is complete. 

       The space 𝐵𝑀𝑂𝐴(𝐵𝑛) is not a lattice, so it is not expected that (10) is equivalent to a 

restriction on |𝜙 ∗ (𝜁)|, 𝜁 ∈  𝜕𝐵𝑛. However, applying Lemma (5.1.2), we obtain a related 

explicit condition, which is necessary for (10). 

Proposition (5.1.4)[190]: Let φ ∶  Bn  →  Bm be a holomorphic map. Assume that Cφ ∶

 𝔅(Bm)  →  BMOA(Bn) is a bounded operator. Then there exist constants ε = 

ε(n,m, ‖Cφ‖𝔅 → BMOA
)  >  0 and C =  C(n)  >  0 such that 

∫ 𝑒𝑥𝑝 (𝜀 log
1

1 − |𝜑∗(𝜁)|2
)

1
2

𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁) ≤ 𝐶. 
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Proof.  The operator 𝐶𝜑 𝑚𝑎𝑝𝑠 𝔅(𝐵𝑚) to the Hardy space 𝐻2(𝐵𝑛). So, arguing as in the 

proof of the implication (10)⇒ (11), we obtain 

𝑠𝑢𝑝0<𝑟<1 ∫ log
1

1 − |𝜑(𝑟𝜁)|2
𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁) < ∞. 

Hence, 

 

∫ log 
1

1 − |𝜑∗(𝜁)|2
𝜕𝐵𝑛

𝑑𝜎𝑛(𝜁) < ∞. 

By Fatou’s. In particular, 

|𝜑∗(𝜁)| < 1.                                                      (13) 
 

For 𝜎𝑛- almosy every 𝜁 ∈ 𝜕𝐵𝑛. If (13) holds, then 

𝑓(𝜑∗(𝜁)) = 𝑙𝑖𝑚𝑟→1−   𝑓(𝜑(𝑟𝜁)) =  (𝑓 ∘ 𝜑)
∗(𝜁).                    (14) 

For any 𝑓 ∈ 𝐻(𝐵𝑚). 
     Now, let the constant  𝜏 =  𝜏𝑚.1 > 0 and the functions   𝐹𝑗,𝑥 ∈ 𝔅(𝐵𝑚) , 1 ≤ 𝑗 ≤ 𝐽, 0 ≤

𝑥 ≤ 1, be those provided by Lemma (5.1.2) with 𝑝 = 1.we have, be those provided by 

Lemma (5.1.2) with  𝑝 = 1. We have     

‖𝐹𝑗,𝑥 ∘ 𝜑‖𝐵𝑀𝑂𝐴(𝐵𝑛)
≤ ‖𝐶𝜑‖𝔅→𝐵𝑀𝑂𝐴

. 

Thus, for   𝛿 = 𝐴(𝑛)‖𝐶𝜑‖𝔅→𝐵𝑀𝑂𝐴
−1

 (14) and (6) guarantee that 

∫ exp(𝛿|𝐹𝑗,𝑥(𝜑 ∗ (𝜁))|) 𝑑𝜎𝑛(𝜁)

𝜕𝐵𝑛

= ∫ 𝑒𝑥𝑝(𝛿|𝐹𝑗,𝑥∘ 𝜑)
∗(𝜁)|)

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁) ≤  𝐶(𝑛),   

1 ≤  𝑗 ≤  𝐽, 0 ≤  𝑥 ≤  1, 
where the constants 𝐴(𝑛)  >  0 𝑎𝑛𝑑 𝐶(𝑛)  >  0 are those provided by the John– Nirenberg 

theorem for 𝐵𝑀𝑂𝐴(𝐵𝑛). Therefore, 

 

𝐶(𝑛) ≥ ∫
1

𝐽
∑∫𝑒𝑥𝑝(𝛿|𝐹𝑗,𝑥(𝜑

∗(𝜁))

1

0

 𝑑𝑥 𝑑𝜎𝑛(𝜁)

𝐽

𝑗=1𝜕𝐵𝑛

 

≥ ∫ 𝑒𝑥𝑝(
𝛿

𝐽
∑∫ |𝐹𝑗,𝑥(𝜑

∗(𝜁))

1

0

𝐽

𝑗=1

 𝑑𝑥)

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁) 

≥ ∫ 𝑒𝑥𝑝(
𝜏𝛿

𝐽
√𝑙𝑜𝑔

1

1 − |(𝜑∗(𝜁)|2
)

𝜕𝐵𝑛

 𝑑𝜎𝑛(𝜁). 

By Fubini’s theorem. Jensen’s inequality and Lemma (5.1.2). 

Section (5.2): Logarithmic Bloch Spaces 
       For 𝐻 (𝔻) denote the space of holomorphic functions on the unit disk 𝔻 =  {𝑧 ∈  ℂ ∶
 |𝑧|  <  1}. 
       The question about reverse estimates naturally arises in the study of the growth spaces 

𝐴𝑣 (𝔻), where v is a weight function, that is, 𝑣: [0, 1) → (0, +∞) a non-decreasing, 
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continuous, unbounded function. By definition, the growth space 𝐴𝑣 (𝔻),  consists 𝑜𝑓 𝑓 ∈
 𝐻 (𝔻) such that 

|𝑓(𝑧)| ≤ 𝐶𝑣(|𝑧|), 𝑧 ∈ 𝔻,                                       (15) 
for some constant C > 0. 

In applications, it is useful to have test functions f ∈ 𝐴𝑣 (𝔻),  for which the reverse of 

estimate (15) holds, in an appropriate sense. As shown in [200], the required test functions 

exist for a sufficiently large class of v. Namely, recall that a weight function v : [0, 1) → (0, 

+∞) is called doubling if 

𝑣(1 − 𝑠/2) < 𝐴𝑣(1 − 𝑠),   0 < 𝑠 ≤ 1. 
For some constant 𝐴 > 1. 
Theorem (5.2.1)[199]:  ([200]) Let  𝑣: [0,1) → (0, +∞)   be adoupling weight function. 

There exist functions 𝑓1, 𝑓2 ∈ 𝐴𝑣 (𝔻),     such that  

|𝑓1(𝑧)| + |𝑓2(𝑧)| ≥ 𝑣(|𝑧|), 𝑧 ∈ 𝔻.                                    (16) 
An assertion similar to Theorem (5.2.1) was also obtained in [110]. The first result of the 

above type was proved by Ramey and Ullrich [121] for 𝑣(𝑡)  =  (1 − 𝑡2)−1. See [200], 

[110] for further references. 

Clearly, estimate (16) is sharp since the same weight function v is used in both (15) and (16). 

  So, it is interesting to find those spaces 𝑋 ⊂  𝐻 (𝔻) for which the corresponding lower 

and upper estimates are sharp, but different. To the best knowledge of the author, the only 

known example of such a space X is the Bloch space 𝔅(𝔻). 
 The Bloch space 𝔅(𝔻). consists of those f ∈ H (𝔻) for which 

‖𝑓‖𝔅(𝔻)  =  |𝑓 (0)|  +  𝑠𝑢𝑝𝑧∈𝔻 |𝑓
′ (𝑧)|(1 −  |𝑧|2)  <  ∞. 

On the one hand , if  𝑓 ∈ 𝔅(𝔻), ‖𝑓‖𝔅(𝔻) ≤ 1,  then  

|𝑓(𝑧)| ≤ 𝐶 𝑙𝑜𝑔
𝑒

1 − |𝑧|2
,         𝑧 ∈ 𝔻,                            (17) 

for an absolute constant C > 0. On the other hand, the following integral reverse estimate is 

known: 

Theorem (5.2.2)[199]: (see, e.g., [116]) Let 0 <  p <  ∞. Then there exist functions F𝓍  ∈
 𝔅(𝔻), 0 ≤  x ≤  1, such that ‖F𝓍‖𝔅(𝔻)  ≤  1 and 

(∫|𝐹𝓍(𝑧)|
𝑝𝑑𝓍

1

0

)

1
𝑃

≥  𝜏𝑝 (log
1

1 − |𝑧|2
)

1
2
, 𝑧 ∈ 𝔻,                            (18) 

For a constant   𝜏𝑝 > 0. 

       While one has log
𝑒

1−|𝑧|2
 in the upper estimate (17) and    (log

1

1−|𝑧|2
)

1

2
in the lower 

estimate (18), both (17) and (18) are known to be sharp. To find similar examples, it is 

natural to consider the weighted Bloch spaces 𝔅𝜔(𝔻). Given a weight function w, the space 

𝔅𝜔(𝔻) consists of f ∈ 𝐻 (𝔻) such that 

‖𝑓‖𝔅𝜔(𝔻)  =  |𝑓 (0)|  +  𝑠𝑢𝑝𝑧∈𝔻  
|𝑓′ (𝑧)|

 𝜔|(𝑧)|
 <  ∞. 

If 𝑤(𝑡)  =  (1 − 𝑡2)−1, then 𝔅𝜔(𝔻) coincides with 𝔅(𝔻) So, for 𝑤𝛼 (𝑡)  =  (1 −
 𝑡2)−𝛼 , 𝛼 >  0, one may consider the spaces 𝔅𝜔𝛼  (𝔻) as possible analogs of 𝔅(𝔻). 
However, if 0 < α < 1, then 𝔅𝜔𝛼  (𝔻)  coincides with the Lipschitz space 𝛬1−𝛼(𝔻); hence, 

there are no reverse estimates in this case. If α > 1, then 𝔅𝜔𝛼  (𝔻) coincides with the growth 

space 𝐴𝑣𝛼 (𝔻), 𝑣𝛼(𝑡)  =  (1 − 𝑡
2)1−𝛼. 
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       Therefore, to find appropriate analogs of 𝔅(𝔻), we have to consider sufficiently weak, 

say logarithmic, multiplicative perturbations of the weight function 𝑤(𝑡) =  (1 – 𝑡2)−1. 

       For  𝛼 ∈ ℝ, the logarithmic Bloch space 𝐿𝛼𝔅(𝔻) consists of those 𝑓 ∈ 𝐻(𝔻)  for which 

‖𝑓‖ 𝐿𝛼𝔅(𝔻)  =  |𝑓 (0)|  + 𝑠𝑢𝑝𝑧∈𝔻 |𝑓
′ (𝑧)|(1 − |𝑧|2) (𝑙𝑜𝑔

𝑒

1 − |𝑧|2
)
𝛼

< ∞. 

Note that the function  𝜔𝛼(𝑡) =  
1

1−𝑡2
(𝑙𝑜𝑔

𝑒

1−𝑡2
)
−𝛼

  is increasing on [0, 1) When 𝛼 ≤

1. 𝐼𝑓 𝛼 = 0,, then 𝐿𝛼𝔅(𝔻) coincides with the Bloch space 𝔅(𝔻). 

       IF 𝛼 >
1

2
, then 𝐿𝛼𝔅(𝔻) is a rather small space, in particular 𝐿𝛼𝔅(𝔻) ⊂ BMOA(𝔻) (see, 

e.g., [201]). So, there are no appropriate reverse estimates in the spaces 𝐿𝛼𝔅(𝔻), 𝛼 <  
1

2
 , . 

The main technical result is the following integral reverse estimate for  𝐿𝛼𝔅(𝔻), 𝛼 <  
1

2
. 

As shown, the exponent 
1

2
− 𝛼 in estimate (30) is sharp. Also if 𝛼 < 1, 𝑓 ∈ 𝐿𝛼𝐵(𝔻), 

and ‖𝑓‖ 𝐿𝛼𝔅(𝔻) ≤ 1, then we have the following sharp upper estimate: 

|𝑓(𝑧)| ≤ 𝐶𝛼 (𝑙𝑜𝑔
𝑒

1 − |𝑧|2
)
1−𝛼

, 𝑧 ∈ 𝔻,                               (19) 

for a constant 𝐶𝛼  >  0. Therefore, the spaces 𝐿𝛼𝐵(𝔻), 𝛼 <  
1

2
 , provide examples of the 

phenomenon discussed above for 𝔅 (𝔻): while the exponents in (30) and (19) are different, 

both (30) and (19) are sharp. 

       Reverse estimates are known to be useful in the study of concrete linear operators on 

the corresponding spaces of holomorphic functions. We consider composition operators. 

       Given a holomorphic function 𝜑: 𝔻 → 𝔻, the composition operator 𝜑: 𝐻(𝔻) →
𝐻(𝔻)  s defined by the formula 

𝐶𝜑 𝑓 (𝑧)  =  𝑓 (𝜑(𝑧)),   𝑓 ∈  𝐻 (𝔻),   𝑧 ∈ 𝔻. 

We study the composition operators from 𝐿𝛼𝔅(𝔻) into the Hardy space 𝐻2(𝔻). As 

a by-product, we deduce that the reverse estimate (30) is sharp, up to a multiplicative 

constant. Also, we consider the composition operators from 𝐿𝛼𝔅(𝔻)  into the space BMOA 

(𝔻). 

We devoted to the proof of Theorem (5.2.5). Composition operators on the spaces 

𝐿𝛼𝔅(𝔻), 𝛼 <  
1

2
. 

       To prove Theorem (5.2.5), we need two auxiliary lemmas. 

Lemma (5.2.3)[199]:  (cf. [202]). Let β >  0, and let t ∈ [0, 1). Then there exists a constant 

Cβ  >  0 such that 

∑(𝑘 + 1)𝛽−1
∞

𝑘=0

𝑡2
𝑘−1 ≥ 𝐶𝛽 (𝑙𝑜𝑔

1

1 − 𝑡
)
𝛽

                      (20) 

Proof. First, let   𝑡 ∈ [0,
1

2
]. Then 

∑(𝑘 + 1)𝛽−1
∞

𝑘=0

𝑡2
𝑘−1 ≥ 1 ≥ (𝑙𝑜𝑔2

1

1 − 𝑡
)
𝛽

 

= (log 2)−𝛽 (𝑙𝑜𝑔
1

1 − 𝑡
)
𝛽

. (21) 

Second, let 𝑡 ∈  [ 
1

2
, 1). Select n ∈ N such that  1 − 

1

2𝑛
   ≤ t ≤ 1 - −

1

2𝑛+1
, then we have 
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∑(𝑘 + 1)𝛽−1
∞

𝑘=0

𝑡2
𝑘−1 

≥ ∑(𝑘 + 1)𝛽−1
𝑛

𝑘=0  

(1 −
1

2𝑛
)
2𝑘−1

 

≥ (1 −
1

2𝑛
)
2𝑛−1

∑(𝑘 + 1)𝛽−1
𝑛

𝑘=0

             (22) 

≥
1

𝑒
∑(𝑘 + 1)𝛽−1
𝑛

𝑘=0

. 

Put  𝑆𝑛 = 
1

𝑒
∑ (𝑘 + 1)𝛽−1𝑛
𝑘=0   . Continuation of estimate (2.3) depends on  𝛽  and uses the 

inequality  𝑡 ≤ 1 −
1

2𝑛+1,
, which  is equivalent to 

(𝑙𝑜𝑔2
1

1 − 𝑡
)
𝛽

≤ (𝑛 + 1)𝛽            (23) 

If 0 < 𝛽 ≤ 1, then, by (23) 

𝑆𝑛 ≥
(𝑛 + 1)𝛽

𝑒
≥
1

𝑒
(𝑙𝑜𝑔2

1

1 − 𝑡
)
𝛽

=
1

𝑒
(log 2)−𝛽 (𝑙𝑜𝑔

1

1 − 𝑡
)
𝛽

.          (24) 

If 𝛽 ≥ 1, then, by (23) 

𝑆𝑛 =  
1

2𝑒
∑((𝑘 + 1)𝛽−1
𝑛

𝑘=0

+ (𝑛 + 1 − 𝑘)𝛽−1) 

≥
1

2𝑒
∑

(𝑛 + 2)𝛽−1

2𝛽−1
≥
(𝑛 + 1)𝛽

𝑒2𝛽

𝑛

𝑘=0

              (25) 

≥
1

𝑒
(
1

2
𝑙𝑜𝑔2

1

1 − 𝑡
)
𝛽

=
1

𝑒
(2 log 2)−𝛽 (𝑙𝑜𝑔

1

1 − 𝑡
)
𝛽

 

         Finally (21), (24) and (25) imply (20) with 𝐶𝛽 =
1

𝑒
(2 log 2)−𝛽. 

Lemma (5.2.4)[199]:  Let 𝛼 ∈ ℝ. Then there exists a constant 𝐶𝛼 > 0    such that  

∑
2𝐾 − 1

(𝑘 + 1)𝛼
𝑡2

𝑘−1−1 ≤

∞

𝐾=1

𝐶𝛼(1 − 𝑡)
−1 (𝑙𝑜𝑔

𝑒

1 − 𝑡
)
−𝛼

, 𝑡 ∈ [0,1)            (26) 

Proof. Put 

𝐺𝛼(𝑡) = (1 − 𝑡) (𝑙𝑜𝑔
𝑒

1 − 𝑡
)
𝛼

∑
2𝐾 − 1

(𝑘 + 1)𝛼
𝑡2

𝑘−1−1,

∞

𝐾=1

𝛼 ∈ ℝ  , 𝑡 ∈ [0,1) 

      For 𝑛 ∈ ℕ  and 𝑡 ∈ [1 −
1

2𝑛
, 1 −

1

2𝑛+1
], we have 

𝐺𝛼(𝑡) ≤ 𝐶𝛼 (∑(
𝑛

𝑘
)
𝛼

∞

𝑘=1

2𝑘−𝑛𝑡2
𝑘−1
− 1

≤ 𝐶𝛼 (∑(
𝑛

𝑘
)
𝛼

∞

𝑘=1

2𝑘−𝑛 + ∑ (
𝑛

𝑘
)
𝛼

∞

𝑘=𝑛+1

2𝑘−𝑛 (1 −
1

2𝑛+1
)

2𝑘−1−1

) 
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≤ 𝐶𝛼 (∑(
𝑛

𝑘
)
𝛼

2𝑘−𝑛 + ∑ (
𝑛

𝑘
)
𝛼

∞

𝑘=𝑛+1

2𝑘−𝑛𝑞2
𝑘−𝑛
,

𝑛

𝑘=1

).                          (27) 

Where 𝑞 =  𝑒−
1

8 ∈ (0,1). 

       Continuation of estimate (27) depends on 𝛼. If 𝛼 ≤ 0, then (
𝑛

𝑘
)
𝛼
≤ 𝑒−𝛼 

𝑘−𝑛

𝑛 ≤

𝑒−𝛼 (𝑘−𝑛), so 

𝐺𝛼(𝑡) ≤ 𝐶𝛼 (∑2𝑘−𝑛
𝑛

𝑘=1

+ ∑ (2𝑒−𝛼)𝑘−𝑛𝑞2
𝑘−𝑛

∞

𝑘=𝑛+1

 ≤ 𝐶𝛼 (2 +∑(2𝑒−𝛼)𝑠𝑞2
𝑠

∞

𝑠=1

) = 𝐶𝛼
′ .  (28) 

If  𝛼 ≥ 0, 𝑡ℎ𝑒𝑛  ,  

𝐺𝛼(𝑡) ≤ 𝐶𝛼 ( ∑ 𝑛𝛼2− 
𝑛
2 + 2𝛼

1≤𝑘≤
𝑛
2

∑ 2𝑘− 𝑛 +
𝑛
2
≤𝑘≤𝑛

∑2𝑠𝑞2
𝑠

∞

𝑠=1

) 

≤ 𝐶𝛼 (𝑛
𝛼+12− 

𝑛
2−1 + 2𝛼+1 +∑2𝑠𝑞2

𝑠

∞

𝑠=1

) =  𝐶𝛼
′′.                         (29) 

It remains to remark that (26) follows from (28) and (29). 

        We are in position to prove the reverse estimates in the logarithmic Bloch spaces 

𝐿𝛼𝔅(𝔻), 𝛼 <
1

2
.  

Theorem (5.2.5)[199]: Let  𝛼 <  
1

2
 and let 0 < 𝑝 < ∞ then there exist functions  𝐹𝑥 ∈ 

 𝐿𝛼𝔅(𝔻), 0 ≤ 𝑥 ≤ 1 such that  ‖𝐹𝑥‖ 𝐿𝛼𝔅(𝔻) ≤ 1 and 

(∫|𝐹𝑥(𝑧)|
𝑝

1

0

𝑑𝑥)

1
𝑝

≥ 𝜏𝑝,𝛼 (𝑙𝑜𝑔
𝑒

1 − |𝑧|2
)

1
2−𝛼

 𝑧 ∈ 𝔻,                (30) 

for a constant 𝜏𝑝,𝛼  >  0. 

Proof. Let the constant 𝐶𝛼 > 0 be that provided by Lemma (5.2.4) for  𝓍 ∈ [0,1]  consider 

the following functions : 

𝐹𝓍(𝑧) =  
1

1 + 𝐶𝛼
∑

𝑅𝑘(𝓍)

(𝑘 + 1)𝛼
𝑧2

𝑘−1,       𝑧 ∈ 𝔻.

∞

𝐾=0

 

Where 𝑅𝑘(𝓍) =  sign in  (2𝑘+1𝜋𝓍) are the Rademacher functions. First , we have  𝐹𝓍 ∈
𝐻(𝔻)  and 

‖𝐹𝓍‖𝐿𝛼𝔅(𝔻) ≤
1

1 + 𝐶𝛼
(1 + 𝑠𝑢𝑝𝑧∈𝔻(1 − |𝑧|

2) (𝑙𝑜𝑔
𝑒

1 − |𝑧|2
)
𝛼

∑
2𝑘 − 1

(𝑘 + 1)𝛼

∞

𝑘=1

|𝑧|2𝑘−2) ≤ 1. 

By Lemma (5.2.4), with 𝑡 = |𝑧|2.Second, by [91] 

∫ |𝐹𝑥(𝑧)|
𝑝

1

0

𝑑𝑥 ≥ 𝐴𝑝,𝛼 (∑
|𝑧|2(2

𝑘−1)

(𝑘 + 1)2𝛼

∞

𝑘=0

)

𝑝
2

,  

 

Applying Lemma (5.2.3) with 𝛽 = 1 − 2𝛼  and  𝑡 = |𝑧|2 , we obtain  
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∑
|𝑧|2(2

𝑘−1)

(𝑘 + 1)2𝛼

∞

𝑘=0

≥ 𝐶1−2𝛼 (𝑙𝑜𝑔
1

1 − |𝑧|2
)
1−2𝛼

,    𝑧 ∈ 𝔻 

Therefore, 

∫ |𝐹𝑥(𝑧)|
𝑝

1

0

𝑑𝑥 ≥ 𝜏𝑝,𝛼
𝑝
(𝑙𝑜𝑔

1

1 − |𝑧|2
)
(
1
2−𝛼

)𝑝

, 𝑧 ∈ 𝔻 

As require. 

       As mentioned, reverse estimates are known to be useful in the study of composition 

operators (see, e.g., [200], [80], [116]–[121]). We consider operators with values in the 

Hardy space 𝐻2(𝔻) and in the space BMOA(𝔻). 

       Let σ denote the normalized Lebesgue measure on the unit circle  

𝕋 = {𝜁 ∈  ℂ ∶  |𝜁|  =  1};  𝜎(𝕋)  =  1.For 0 <  𝑝 <  ∞,  the Hardy space 𝐻𝑃(𝔻) consists 

of f ∈ H (𝔻), such that 

‖𝑓‖
𝐻𝑃(𝔻)

𝑝
=  𝑠𝑢𝑝0<𝑟<1∫|𝑓(𝑟𝜁)|

𝑝

𝕋

𝑑𝜎(𝜁) < ∞. 

Given f ∈ H (𝔻), the Littlewood–Paley g-function is defined as follows: 

𝑔(𝑓)(𝜁) =  (∫|𝑓′(𝑟𝜁)|2(1 − 𝑟)𝑑𝑟

1

0

)

1
2

, 𝜁 ∈ 𝕋. 

It is known that 𝑓 ∈  𝐻𝑃(𝔻)  if and only if 𝑔(𝑓 )  ∈  𝐿𝑝 (𝕋) (see, e.g., [91] for 𝑝 >  1). 

       Also, recall the definition of the hyperbolic Hardy class 𝐻ℎ
𝑝
 (𝔻) (see, for example, 

[204]). For 0 <  𝑝 <  ∞, 𝐻ℎ
𝑝
 (𝔻) consists of those holomorphic functions 𝜑 ∶  𝔻 → 𝔻 for 

which 

𝑠𝑢𝑝0<𝑟<1∫ (𝑙𝑜𝑔
1

1 − |𝜑(𝑟𝜁)|2
)
𝑝

𝑑𝜎(𝜁) < ∞
𝕋

 

Remark that 𝐻ℎ
𝑝2
 (𝔻)  ⊊  𝐻ℎ

𝑝1
 (𝔻) 𝑓𝑜𝑟 0 <  𝑝1  <  𝑝2  <  ∞. 

       For   >   
1

2
 , we have 𝐿𝛼  𝔅(𝔻)   ⊂  𝐵𝑀𝑂𝐴(𝔻)  ⊂  𝐻2(𝔻), hence, the composition 

operator 𝐶𝜑 maps 𝐿𝛼  𝔅(𝔻) into 𝐻2(𝔻) for any symbol 𝜑. For α = 0, a description of the 

bounded operators 𝐶𝜑 ∶ 𝐿
𝛼  𝔅(𝔻)  →  𝐻2(𝔻) is given in [80]. For arbitrary  𝛼 <  

1

2
 , we have 

the following characterization: 

Theorem (5.2.6)[199]: Let  α <
1

2
 , and let φ ∶  𝔻 →  𝔻 be a holomorphic mapping. Then 

the following properties are equivalent: 

𝐶𝜑   ∶   𝐿
𝛼  𝔅(𝔻)  →   𝐻2(𝔻).                               (31) 

is a bounded operator.(31) 

∫
|𝜑′(𝑟𝜁)|2

(1 − |𝜑(𝑟𝜁)|2)2
(𝑙𝑜𝑔

𝑒

1 − |𝜑(𝑟𝜁)|2
)
−2𝛼1

0

 (1 − 𝑟)𝑑𝑟 ∈ 𝐿1(𝕋);                (32) 

        𝜑 ∈  𝐻ℎ
1−2𝛼 (𝔻).                                                     (33) 

Proof. Let (31) hold. Applying Theorem (5.2.1), choose f1, f2  ∈ 𝐿𝛼  𝔅(𝔻) that 

|𝑓1
′(𝑧)|2 + |𝑓2

′(𝑧)|2 ≥ (1 − |𝑧|2)−2 (𝑙𝑜𝑔
𝑒

1 − |𝑧|2
)
−2𝛼

,                    𝑧 ∈ 𝔻. 

By (31), we have 𝐶𝜑 𝑓𝑗   ∈  𝐻
2(𝔻), 𝑗 =  1, 2. Thus, 
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∞ >  ‖𝑔(𝐶𝜑 𝑓1)‖𝐿2(𝕋)
2

 +  ‖𝑔(𝐶𝜑 𝑓2)‖𝐿2(𝕋)
2

 

= ∫ ∫(|𝑓1
′(𝜑(𝑟𝜁))|

2
+ |𝑓2

′(𝜑(𝑟𝜁))|
2
)

1

0
𝕋

|𝜑′(𝑟𝜁)|2(1 − 𝑟)𝑑𝑟𝑑𝜎(𝜁) 

≥ ∫ ∫
|𝜑′(𝑟𝜁)|2

(1 − |𝜑(𝑟𝜁)|2)2

1

0
𝕋

(𝑙𝑜𝑔
𝑒

(1 − |𝜑(𝑟𝜁)|2)2
)
−2𝛼

(1 − 𝑟)𝑑𝑟𝑑𝜎(𝜁). 

So, (31) implies (32). 

       To prove the converse implication, assume that (32) holds.  

       Given 𝑓 ∈   𝐿𝛼  𝔅(𝔻) and ζ ∈ T, we have 

𝑔2(𝐶𝜑𝑓)(𝜁) ≤ ‖𝑓‖𝐿𝛼 𝔅(𝔻)
2 ∫

|𝜑′(𝑟𝜁)|2

(1 − |𝜑(𝑟𝜁)|2)2
(𝑙𝑜𝑔

𝑒

1 − |𝜑(𝑟𝜁)|2
)
−2𝛼

(1 − 𝑟)𝑑𝑟.

1

0

 

Whence,  𝑔(𝐶𝜑 𝑓 ) ∈  𝐿
2(𝕋) by (32). 

       Therefore, 𝐶𝜑 𝑓 ∈  𝐻
2(𝔻).  So, (33)implies (32). 

       Finally, properties (32) and (33) are equivalent by [203]. 

Remark that the implication (31) ⇒ (33) also follows from Theorem (5.2.5). In fact, a related 

argument guarantees that the estimate (30) is sharp. 

       Assume that there exist functions 𝐹𝓍  ∈  𝐿
𝛼  𝔅(𝔻), 0 ≤  𝑥 ≤  1, such that (30) holds 

with 𝛽 ≥  
1

2
 −  𝛼 in the place of  

1

2
 –  𝛼 . 𝐹𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜑 ∈  𝐻ℎ

1−2𝛼 (𝔻)
, the composition 

operator 𝐶𝜑 ∶ 𝐿
𝛼  𝔅(𝔻)  →  𝐻2(𝔻) is bounded by Theorem (5.2.6). Hence, 

‖𝐶𝜑‖𝐿𝛼 𝔅(𝔻) → 𝐻2(𝔻)
2

≥ ∫ ∫|𝐹𝑥(𝜑(𝑟𝜁))|
2

𝕋

1

0

𝑑𝜎(𝜁)𝑑𝑥 

= ∫ ∫|𝐹𝑥(𝜑(𝑟𝜁))|
2

1

0
𝕋

𝑑𝑥 𝑑𝜎(𝜁) ≥ 𝐶𝛽 ∫ (𝑙𝑜𝑔
1

1 − |𝜑(𝑟𝜁)|2
)
2𝛽

𝕋

𝑑𝜎(𝜁) 

for all 𝑟 ∈  (0, 1). In other words, 𝜑 ∈  𝐻ℎ
2𝛽
 (𝔻). Hence, 𝐻ℎ

1−2𝛼 (𝔻)  =  𝐻ℎ
2𝛽
 (𝔻) and 

2𝛽 =  1 −  2𝛼. 
       The space BMOA(𝔻) consists of those 𝑓 ∈ 𝐻2(𝔻) for which 

‖𝑓‖BMOA(𝔻)
2 = |𝑓(0)|2 + 𝑠𝑢𝑝𝛼∈𝔻∫|𝑓

∗(𝜁) − 𝑓(𝑎)|2
1 − |𝑎|2

|𝜁 − 𝑎|2
𝑑𝜎(𝜁) < ∞,

𝕋

 

where the radial limits 𝑓∗ (𝜁)  =  𝑙𝑖𝑚𝑟→1− 𝑓 (𝑟𝜁) are defined 𝜎 − 𝑎. 𝑒. 
       By the John–Nirenberg theorem, there exist constants A > 0 and C > 0. Such that 

∫ 𝑒𝑥𝑝(|𝑓∗(𝜁)|)

𝕋

𝑑𝜎(𝜁) ≤ 𝐶.                          (34) 

For all   𝑓 ∈ BMOA(𝔻)  𝑤𝑖𝑡ℎ ‖𝑓‖BMOA(𝔻) ≤ 𝐴. 

       Recall that 𝐿𝛼  𝔅(𝔻)  ⊂  BMOA(𝔻) for 𝛼 >  
1

2
 . 𝑆𝑜, 𝑖𝑓 𝜑 ∶  𝔻 → 𝔻 is an arbitrary 

holomorphic function and 𝛼 >  
1

2
, then the composition operator 𝐶𝜑 maps 𝐿𝛼  𝔅(𝔻) into 

𝐵𝑀𝑂𝐴(𝔻). 
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       For ≤ 
1

2
 , a theoretical characterization of the bounded composition operators 𝐶𝜑 ∶

𝐿𝛼  𝔅(𝔻)  →  𝐵𝑀𝑂𝐴(𝔻) is given in [110]. Applying Theorem (5.2.5), we obtain an explicit 

condition that is necessary for the boundedness of 𝐶𝜑 ∶ 𝐿
𝛼  𝔅(𝔻)  →  𝐵𝑀𝑂𝐴(𝔻), 𝛼 <  

1

2
 , 

Proposition (5.2.7)[199]: (cf. [190]) Let α <  
1

2
 , and let φ ∶  𝔻 → 𝔻  be a holomorphic 

function. Assume that Cφ ∶ L
α 𝔅(𝔻)  →  BMOA(𝔻) is a bounded operator. Then there exist 

constants 𝜀 =  𝜀(𝛼, ‖𝐶𝜑‖𝐿𝛼 𝔅(𝔻)→ 𝐵𝑀𝑂𝐴(𝔻)
   >  0 and 𝐶 >  0 such that 

∫ exp (𝜀 log
1

1 − |𝜑∗(𝜁)|2
)

1
2−𝛼

𝕋

𝑑𝜎(𝜁) ≤  𝐶. 

Proof. Since 𝛼 <
1

2
 and the operator 𝐶𝜑 ∶  𝐿

𝛼  𝔅(𝔻)  → BMOA(𝔻) is bounded, we have 

|𝜙 ∗ (𝜁)|  <  1 𝑓𝑜𝑟 𝜎 − 𝑎. 𝑒. 𝜁 ∈  𝕋 (see [110]). Therefore, for every 𝑓 ∈  𝐻 (𝔻), 

𝑓(𝜑∗(𝜁)) =  lim
𝑟→1−

𝑓(𝜑(𝑟𝜁)) =  (𝑓 ∘ 𝜑)∗ (𝜁).   𝜎 − 𝑎. 𝑒. 𝜁 ∈  𝕋                 (35) 

Let the functions 𝐹𝓍  ∈  𝐿
𝛼  𝔅(𝔻), 0 ≤  𝑥 ≤  1, be those provided by Theorem (5.2.5) with 

𝑝 =  1. 𝑇ℎ𝑒𝑛 

 ‖𝑓𝓍 ∘ 𝜑‖𝐵𝑀𝑂𝐴(𝐷)  ≤  ‖𝐶𝜑‖𝐿𝛼 𝔅(𝔻)→𝐵𝑀𝑂𝐴(𝐷)
.  

𝑃𝑢𝑡 𝛿 =  𝐴‖𝐶𝜑‖𝐿𝛼 𝔅(𝔻)→𝐵𝑀𝑂𝐴(𝐷)
−1

 
, where 𝐴 is the constant provided by the John– Nirenberg 

theorem . By (35) and (34), we have 

∫ 𝑒𝑥𝑝(𝛿|𝐹𝓍(𝜑
∗(𝜁))|)

𝕋

 𝑑𝜎(𝜁) = ∫ exp(𝛿|(𝐹𝓍 ∘ 𝜑)
∗(𝜁)|)

𝕋

𝑑𝜎(𝜁) ≤ 𝐶,       0 ≤ 𝓍 ≤ 1.  

Finally, applying Fubini’s theorem, Jensen’s inequality, and Theorem (5.2.5), we obtain 

𝐶 ≥ ∫ ∫𝑒𝑥𝑝

1

0

(𝛿|𝐹𝓍(𝜑
∗(𝜁))|)

𝕋

𝑑𝓍 𝑑𝜎(𝜁) 

≥ ∫ exp(𝛿∫|𝐹𝓍(𝜑
∗(𝜁))|

1

0

𝑑𝓍)

𝕋

𝑑𝜎(𝜁) 

≥ ∫ exp(𝛿𝜏1,𝛼 (𝑙𝑜𝑔
1

1 − |𝜑∗(𝜁)|2
)

1
2
−𝛼

𝑑𝓍)

𝕋

𝑑𝜎(𝜁). 

As required. 

Corollary (5.2.8)[276]:  (cf. [202]). Let 𝜖 ≥  0, and let 𝑡 ∈  [0, 1). Then there exists a 

constant C1+𝜖  >  0 such that 

∑(𝑘 + 1)𝜖
∞

𝑘=0

𝑡2
𝑘−1 ≥ 𝐶1+𝜖 (𝑙𝑜𝑔

1

1 − 𝑡
)
1+𝜖

                      (36) 

Proof. First, let   𝑡 ∈ [0,
1

2
]. Then 

∑(𝑘 + 1)𝜖
∞

𝑘=0

𝑡2
𝑘−1 ≥ 1 ≥ (𝑙𝑜𝑔2

1

1 − 𝑡
)
1+𝜖
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= (log 2)−(1+𝜖) (𝑙𝑜𝑔
1

1 − 𝑡
)
1+𝜖

. (37) 

Second, let 𝑡 ∈  [ 
1

2
, 1). Select 𝑛 ∈ ℕ such that  1 − 

1

2𝑛
   ≤  𝑡 ≤  1 −

1

2𝑛+1
, then we have 

∑(𝑘 + 1)𝜖
∞

𝑘=0

𝑡2
𝑘−1 ≥ ∑(𝑘 + 1)𝜖

𝑛

𝑘=0  

(1 −
1

2𝑛
)
2𝑘−1

≥ (1 −
1

2𝑛
)
2𝑛−1

∑(𝑘 + 1)𝜖
𝑛

𝑘=0

≥
1

𝑒
∑(𝑘 + 1)𝜖
𝑛

𝑘=0

.                                                                                                     (38) 

Put  𝑆𝑛 = 
1

𝑒
∑ (𝑘 + 1)𝜖𝑛
𝑘=0   . Continuation of estimate (38) depends on  (1 + 𝜖)  and uses 

the inequality  𝑡 ≤ 1 −
1

2𝑛+1,
, which  is equivalent to 

(𝑙𝑜𝑔2
1

1 − 𝑡
)
1+𝜖

≤ (𝑛 + 1)1+𝜖                                                        (39) 

If 𝜖 < 1, then, by (39) 

𝑆𝑛 ≥
(𝑛 + 1)1−𝜖

𝑒
≥
1

𝑒
(𝑙𝑜𝑔2

1

1 − 𝑡
)
1−𝜖

=
1

𝑒
(log 2)𝜖−1 (𝑙𝑜𝑔

1

1 − 𝑡
)
1−𝜖

.          (40) 

If 𝜖 ≥ 0, then, by (39) 

𝑆𝑛 = 
1

2𝑒
∑((𝑘 + 1)𝜖
𝑛

𝑘=0

+ (𝑛 + 1 − 𝑘)𝜖) 

≥
1

2𝑒
∑

(𝑛 + 2)𝜖

2𝜖
≥
(𝑛 + 1)1+𝜖

𝑒21+𝜖

𝑛

𝑘=0

              (41) 

≥
1

𝑒
(
1

2
𝑙𝑜𝑔2

1

1 − 𝑡
)
1+𝜖

=
1

𝑒
(2 log 2)−(1+𝜖) (𝑙𝑜𝑔

1

1 − 𝑡
)
1+𝜖

 

         Finally (37), (40) and (41) imply (36) with 𝐶1+𝜖 =
1

𝑒
(2 log 2)−(1+𝜖). 

Corollary (5.2.9)[276]:  Let 𝜖 ∈ ℝ. Then there exists a constant 𝐶1
2
−𝜖
> 0    such that  

∑
2𝐾 − 1

(𝑘 + 1)
1
2
−𝜖
𝑡2

𝑘−1−1 ≤

∞

𝐾=1

𝐶1
2
−𝜖
(1 − 𝑡)−1 (𝑙𝑜𝑔

𝑒

1 − 𝑡
)
−(
1
2−𝜖)

, 𝑡 ∈ [0,1)            (42) 

Proof. Put 

𝐺1
2
−𝜖
(𝑡) = (1 − 𝑡) (𝑙𝑜𝑔

𝑒

1 − 𝑡
)

1
2−𝜖

∑
2𝐾 − 1

(𝑘 + 1)
1
2
−𝜖
𝑡2

𝑘−1−1 

∞

𝐾=1

, 𝜖 ∈ ℝ  , 𝑡 ∈ [0,1) 

      For 𝑛 ∈ ℕ  and 𝑡 ∈ [1 −
1

2𝑛
, 1 −

1

2𝑛+1
], we have 

𝐺1
2−𝜖
(𝑡) ≤ 𝐶1

2−𝜖
(∑(

𝑛

𝑘
)

1
2−𝜖

∞

𝑘=1

2𝑘−𝑛𝑡2
𝑘−1
− 1

≤ 𝐶1
2
−𝜖
(∑(

𝑛

𝑘
)

1
2
−𝜖

∞

𝑘=1

2𝑘−𝑛 + ∑ (
𝑛

𝑘
)

1
2
−𝜖

∞

𝑘=𝑛+1

2𝑘−𝑛 (1 −
1

2𝑛+1
)

2𝑘−1−1

) 
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≤ 𝐶1
2−𝜖

(∑(
𝑛

𝑘
)

1
2
−𝜖

2𝑘−𝑛 + ∑ (
𝑛

𝑘
)

1
2
−𝜖

∞

𝑘=𝑛+1

2𝑘−𝑛𝑞2
𝑘−𝑛
,

𝑛

𝑘=1

).                          (43) 

Where 𝑞 =  𝑒−
1

8 ∈ (0,1). 

       Continuation of estimate (43) depends on 1 − 𝜖. If 𝜖 ≤ 1, then (
𝑛

𝑘
)
1−𝜖

≤ 𝑒(𝜖−1) 
𝑘−𝑛

𝑛 ≤

𝑒(𝜖−1) (𝑘−𝑛), so 

𝐺1−𝜖(𝑡) ≤ 𝐶1−𝜖 (∑2𝑘−𝑛
𝑛

𝑘=1

+ ∑ (2𝑒𝜖−1)𝑘−𝑛𝑞2
𝑘−𝑛

∞

𝑘=𝑛+1

 )

≤ 𝐶1−𝜖 (2 +∑(2𝑒𝜖−1)1−𝜖𝑞2
1−𝜖

∞

𝜖=0

)

= 𝐶1−𝜖
′ .                                                                                                                            (44) 

If  𝜖 ≥ 0,  then  

𝐺1+𝜖(𝑡) ≤ 𝐶1+𝜖( ∑ 𝑛1+𝜖2− 
𝑛
2 + 21+𝜖

1≤𝑘≤
𝑛
2

∑ 2𝑘− 𝑛 +
𝑛
2≤𝑘≤𝑛

∑21−𝜖𝑞2
1−𝜖

∞

𝜖=0

) 

≤ 𝐶1+𝜖 (𝑛
2+𝜖2− 

𝑛
2−1 + 22+𝜖 +∑21−𝜖𝑞2

1−𝜖

∞

𝜖=0

) = 𝐶1+𝜖
′′ .                         (45) 

It remains to remark that (42) follows from (44) and (45). 

Corollary (5.2.10)[276]: Let  𝜖 <  
1

2
 and let 0 ≤ 𝜖 < ∞ then there exist functions  𝐹𝑥 ∈ 

 𝐿𝜖+
1

2𝔅(𝔻), 0 ≤ 𝑥 ≤ 1 such that  ‖𝐹𝑥‖
 𝐿
𝜖+
1
2𝔅(𝔻)

≤ 1 and 

∑ 

𝑠

(∫|𝐹𝑥(𝑧𝑠)|
1+𝜖

1

0

𝑑𝑥)

1
1+𝜖

≥∑ 

𝑠

𝜏
1+𝜖,

1
2+𝜖

(𝑙𝑜𝑔
𝑒

1 − |𝑧𝑠|
2)
−𝜖

, 𝑧𝑠 ∈ 𝔻,       (46) 

for a constant 𝜏
1+𝜖,

1

2
+𝜖
 >  0. 

Proof. Let the constant 𝐶1
2
−𝜖
> 0 be that provided by Corollary (5.2.9) for  𝓍 ∈ [0,1]  

consider the following functions : 

∑ 

𝑠

𝐹𝓍(𝑧𝑠) =  
1

1 + 𝐶1
2
−𝜖

∑∑ 

𝑠

𝑅𝑘(𝓍)

(𝑘 + 1)
1
2
−𝜖
𝑧𝑠
2𝑘−1, 𝑧𝑠 ∈ 𝔻.

∞

𝐾=0

 

Where 𝑅𝑘(𝓍) =  sign in  (2𝑘+1𝜋𝓍) are the Rademacher functions. First , we have  𝐹𝓍 ∈
𝐻(𝔻)  and 
‖𝐹𝓍‖

𝐿−𝜖+
1
2𝔅(𝔻)

≤
1

1 + 𝐶1
2−𝜖

(1 + sup
𝑧𝑠∈𝔻

∑ 

𝑠

(1 − |𝑧𝑠|
2) (𝑙𝑜𝑔

𝑒

1 − |𝑧𝑠|
2
)

1
2−𝜖

∑
2𝑘 − 1

(𝑘 + 1)
1
2−𝜖

∞

𝑘=1

|𝑧𝑠|
2𝑘−2)

≤ 1. 

by Corollary (5.2.9), with 𝑡 = |𝑧𝑠|
2. Second, by [91] 
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∫ ∑ 

𝑠

|𝐹𝑥(𝑧𝑠)|
1+𝜖

1

0

𝑑𝑥 ≥ 𝐴
1+𝜖,

1
2
−𝜖
∑ 

𝑠

(∑
|𝑧𝑠|

2(2𝑘−1)

(𝑘 + 1)2(
1
2
−𝜖)

∞

𝑘=0

)

1+𝜖
2

,  

Applying Corollary (5.2.8) with 𝜖 = 1  and  𝑡 = |𝑧𝑠|
2 , we obtain  

∑∑ 

𝑠

|𝑧𝑠|
2(2𝑘−1)

(𝑘 + 1)2(
1
2−𝜖)

∞

𝑘=0

≥ 𝐶2𝜖∑ 

𝑠

(𝑙𝑜𝑔
1

1 − |𝑧𝑠|
2
)
2𝜖

, 𝑧𝑠 ∈ 𝔻 

Therefore, 

∫ ∑ 

𝑠

|𝐹𝑥(𝑧𝑠)|
1+𝜖

1

0

𝑑𝑥 ≥ 𝜏
1+𝜖,

1
2
−𝜖

1+𝜖 ∑ 

𝑠

(𝑙𝑜𝑔
1

1 − |𝑧𝑠|
2)
𝜖(1+𝜖)

, 𝑧𝑠 ∈ 𝔻 

As require. 

Corollary (5.2.11)[276]: Let  𝜖 <
1

2
 , and let φ ∶  𝔻 →  𝔻 be a holomorphic mapping. Then 

the following properties are equivalent: 

𝐶𝜑   ∶   𝐿
−𝜖+

1
2 𝔅(𝔻)  →   𝐻2(𝔻).                               (47) 

is a bounded operator (47) 

∫ ∑ 

𝑠

|𝜑′(𝑟𝜁𝑠)|
2

(1 − |𝜑(𝑟𝜁𝑠)|
2)2

(𝑙𝑜𝑔
𝑒

1 − |𝜑(𝑟𝜁𝑠)|
2)
−2(

1
2−𝜖)

1

0

 (1 − 𝑟)𝑑𝑟 ∈ 𝐿1(𝕋);                (48) 

        𝜑 ∈  𝐻ℎ
2𝜖  (𝔻).                                                     (49) 

Proof. Let (47) hold. Applying Theorem (5.2.1), choose 𝑓1, 𝑓2 ∈ 𝐿
−𝜖+

1

2 𝔅(𝔻) that 

∑ 

𝑠

(|𝑓1
′(𝑧𝑠)|

2 + |𝑓2
′(𝑧𝑠)|

2) ≥∑ 

𝑠

(1 − |𝑧𝑠|
2)−2 (𝑙𝑜𝑔

𝑒

1 − |𝑧𝑠|
2)
2𝜖−1

,       𝑧𝑠 ∈ 𝔻. 

By (47), we have 𝐶𝜑 𝑓𝑗   ∈  𝐻
2(𝔻), 𝑗 =  1, 2. Thus, 

∞ >  ‖𝑔(𝐶𝜑 𝑓1)‖𝐿2(𝕋)
2

 +  ‖𝑔(𝐶𝜑 𝑓2)‖𝐿2(𝕋)
2

= ∫ ∫∑ 

𝑠

(|𝑓1
′(𝜑(𝑟𝜁𝑠))|

2
+ |𝑓2

′(𝜑(𝑟𝜁𝑠))|
2
)

1

0
𝕋

|𝜑′(𝑟𝜁𝑠)|
2(1 − 𝑟)𝑑𝑟𝑑𝜎(𝜁𝑠)

≥ ∫ ∫∑ 

𝑠

|𝜑′(𝑟𝜁𝑠)|
2

(1 − |𝜑(𝑟𝜁𝑠)|
2)2

1

0
𝕋

(𝑙𝑜𝑔
𝑒

(1 − |𝜑(𝑟𝜁𝑠)|
2)2
)
2𝜖−1

(1 − 𝑟)𝑑𝑟𝑑𝜎(𝜁𝑠). 

So, (47) implies (48). 

       To prove the converse implication, assume that (48) holds.  

       Given 𝑓 ∈   𝐿−𝜖+
1

2 𝔅(𝔻) and 𝜁𝑠 ∈  𝑇, we have 

∑ 

𝑠

𝑔2(𝐶𝜑𝑓)(𝜁𝑠)

≤ ‖𝑓‖
𝐿
−𝜖+

1
2 𝔅(𝔻)

2 ∫∑ 

𝑠

|𝜑′(𝑟𝜁𝑠)|
2

(1 − |𝜑(𝑟𝜁𝑠)|
2)2

(𝑙𝑜𝑔
𝑒

1 − |𝜑(𝑟𝜁𝑠)|
2
)
−2()

(1 − 𝑟)𝑑𝑟.

1

0

 

Whence,  𝑔(𝐶𝜑 𝑓 ) ∈  𝐿
2(𝕋) by (48). 

       Therefore, 𝐶𝜑 𝑓 ∈  𝐻
2(𝔻).  So, (48)implies (47). 

       Finally, properties (48) and (49) are equivalent by [203]. 

Corollary (5.2.12)[276]: (cf. [190]) Let  𝜖 <  
1

2
 , and let φ ∶  𝔻 → 𝔻  be a holomorphic 
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function. Assume that Cφ ∶ 𝐿
−𝜖+

1

2 𝔅(𝔻)  →  BMOA(𝔻) is a bounded operator. Then there 

exist constants 𝜀 =  𝜀(
1

2
− 𝜖, ‖𝐶𝜑‖

𝐿
−𝜖+

1
2 𝔅(𝔻)→ 𝐵𝑀𝑂𝐴(𝔻)

   >  0 and 𝜖 ≥ 0 such that 

∫∑ 

𝑠

exp (𝜀 log
1

1 − |𝜑∗(𝜁𝑠)|
2
)
𝜖

𝕋

𝑑𝜎(𝜁𝑠) ≤  1 + 𝜖. 

Proof. Since 𝜖 <
1

2
 and the operator 𝐶𝜑 ∶  𝐿

−𝜖+
1

2 𝔅(𝔻)  → BMOA(𝔻) is bounded, we have 

∑  𝑠 |𝜑
∗(𝜁𝑠)|  <  1 for 𝜎 − 𝑎. 𝑒. 𝜁𝑠  ∈  𝕋 (see [110]). Therefore, for every 𝑓 ∈  𝐻 (𝔻), 

∑ 

𝑠

𝑓(𝜑∗(𝜁𝑠)) =  lim
𝑟→1−

∑ 

𝑠

𝑓(𝜑(𝑟𝜁𝑠)) = ∑ 

𝑠

(𝑓 ∘ 𝜑)∗ (𝜁𝑠).   𝜎 − 𝑎. 𝑒. 𝜁𝑠  ∈  𝕋    (50) 

Let the functions 𝐹𝓍  ∈  𝐿
−𝜖+

1

2 𝔅(𝔻), 0 ≤  𝑥 ≤  1, be those provided by Corollary (5.2.10) 

with 𝜖 = 0. Then 

 ‖𝑓𝓍 ∘ 𝜑‖𝐵𝑀𝑂𝐴(𝐷)  ≤  ‖𝐶𝜑‖
𝐿
−𝜖+

1
2 𝔅(𝔻)→𝐵𝑀𝑂𝐴(𝐷)

.  

Put 𝛿 =  (1 + 𝜖)‖𝐶𝜑‖
𝐿
−𝜖+

1
2 𝔅(𝔻)→𝐵𝑀𝑂𝐴(𝐷)

−1

 

, where (1 + 𝜖) is the constant provided by the 

John– Nirenberg theorem. By (50) and (34), we have 

∫ exp∑ 

𝑠

(𝛿|𝐹𝓍(𝜑
∗(𝜁𝑠))|)

𝕋

𝑑𝜎(𝜁𝑠) = ∫ exp∑  

𝑠

(𝛿|(𝐹𝓍 ∘ 𝜑)
∗(𝜁𝑠)|)

𝕋

𝑑𝜎(𝜁𝑠) ≤ 1 + 𝜖,

0 ≤ 𝓍 ≤ 1.  
Finally, applying Fubini’s theorem, Jensen’s inequality, and Corollary (5.2.10), we obtain 

1 + 𝜖 ≥ ∫ ∫exp

1

0

∑ 

𝑠

(𝛿|𝐹𝓍(𝜑
∗(𝜁𝑠))|)

𝕋

𝑑𝓍 𝑑𝜎(𝜁𝑠)

≥ ∫ exp∑  

𝑠

(𝛿∫|𝐹𝓍(𝜑
∗(𝜁𝑠))|

1

0

𝑑𝓍)

𝕋

𝑑𝜎(𝜁𝑠)

≥ ∫ exp∑  

𝑠

(𝛿𝜏
1,
1
2−𝜖

(𝑙𝑜𝑔
1

1 − |𝜑∗(𝜁𝑠)|
2
)
𝜖

𝑑𝓍)

𝕋

𝑑𝜎(𝜁𝑠). 

As required. 

Section (5.3): Quadratic Integrals 
       For 𝐻(𝐵𝑑) denote the space of holomorphic functions on the unit ball 𝐵𝑑of ℂd, 𝑑 ≥ 1. 
Given a gauge function ω : (0, 1] → (0, +∞), the weighted Bloch space  𝔅𝜔(𝐵𝑑) consists of 

those 𝑓 ∈ 𝐻(𝐵𝑑) for which 

‖𝑓‖𝔅𝜔(𝐵𝑑) = |𝑓(0)| + 𝑠𝑢𝑝𝑧∈𝐵𝑑
|ℛ𝑓(𝑧)||(1 − |𝑧|)|

𝜔(1 − |𝑧|)
< ∞              (51) 

Where 

ℛ𝑓(𝑧) =  ∑𝑧𝑗
𝜕𝑓

𝜕𝑧𝑗
 (𝑧), 𝑧 ∈

𝑑

𝑗=1

𝐵𝑑 

is the radial derivative of f . 𝔅𝜔 (𝐵𝑑) is a Banach space with respect to the norm defined by 

(51). If ω ≡ 1, then 𝔅𝜔 (𝐵𝑑) is the classical Bloch space  𝔅 (𝐵𝑑). Usually we suppose that 
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the gauge function ω is increasing; hence, we have 𝔅𝜔 (𝐵𝑑) ⊂ 𝔅 (𝐵𝑑). 

       The above notation is not completely standard: often the weight t/ω (t) is attributed to 

𝔅 (𝐵𝑑). 

       Assuming that ω is sufficiently regular, we show that the quadratic integral  

𝐼(𝑥) =  𝐼𝑥(𝑥) = ∫
𝑤2(𝑡)

𝑡
 𝑑𝑡,        0 < 𝑥 < 1

1

𝑥

, 

governs the radial divergence and integral reverse estimates in 𝔅𝜔 (𝐵𝑑). In both cases, the 

solutions are based on the classical Hadamard gap series. 

       Given f ∈ H(𝐵𝑑) and ζ ∈ ∂ 𝐵𝑑, we say that f has a radial limit at ζ if there exists a finite 

limit f ∗(ζ) = limr→1− f (𝑟𝜁). 

      Let 𝜎𝑑 denote the normalized Lebesgue measure on the unit sphere ∂Bd. The radial 

convergence or divergence in 𝔅𝜔 (𝐵𝑑) is described in terms of (𝐼(0+) by the following 

dichotomy: 

       Remark that the condition I (0+) = ∞ was previously used by Dyakonov [201] to 

construct a non-BMO function lying in 𝔅𝜔 (B1) and in all Hardy spaces  Hp(B1), 0 < p < ∞. 

 

Given an unbounded decreasing function v : (0, 1] → (0, +∞), typical reverse estimates are 

obtained in the growth space Av(𝐵𝑑), which consists of f ∈ H(𝐵𝑑) such that |f (z)| ≤ 𝐶𝑣(1 − 

|z|) for all z ∈ Bd. Namely, under appropriate restrictions on v, there exists a finite family 

{𝑓𝑗  }𝑗
𝐽

=1 ⊂ Av(𝐵𝑑) 

such that 

|𝑓1(z)| + · · · + |𝑓𝐽 (z)| ≥ 𝐶𝑣(1 − |z|) 

for all   z ∈ 𝐵𝑑 (see, for example, [200]). 

     For the weighted Bloch space 𝔅𝜔(𝐵𝑑) the following result provides integral reverse 

estimates related to the function Φ
1

2(1 − |𝑧|), 𝑧 ∈ 𝐵𝑑 , where  

Φ(𝓍) =  Φω(𝓍) = 1 + ∫
𝑤2(𝑡)

𝑡
 𝑑𝑡,     0 < 𝑥 < 1

1

𝑥

. 

       For ω ≡ 1 and for logarithmic functions ω, the above estimates were obtained in [190] 

and [199], respectively. 

We devoted to the radial divergence problem. We prove Theorem (5.3.5) and we 

show that estimate (56) is sharp, up to a multi-plicative constant. Applications of Theorem 

(5.3.5). 

Proposition (5.3.1)[205]: Let ω : (0, 1] → (0, +∞) be an increasing function. 

i. Let   I (0+) < ∞. If f ∈ 𝔅ω (Bd), then f has radial limits σd-almost everywhere. 

ii. Let I (0+) = ∞ and let ω(t) / t1−ε be decreasing for some ε > 0. Then the space 𝔅ω (Bd) 

contains a function with no radial limits σd-almost everywhere.  

Proof. (i) is a known fact. Indeed, if I (0+) < ∞ and f ∈ 𝔅𝜔 (𝐵𝑑), then |𝑅𝑓 (z)|2(1 − |z|) is a 

Carleson measure, hence, f ∈ BMOA(𝐵𝑑). In particular, f  has radial limits 𝜎𝑑 − 𝑎. 𝑒. 
(ii) for d = 1 Put 

𝑓(𝑧) =  ∑𝑤(2−𝑘)

∞

𝑘=0

𝑧2
𝑘
, 𝑧 ∈ 𝐵1. 

Standard arguments guarantee that   f ∈  𝔅𝜔 (B1). For example, let t ∈ (0, 1] and let 𝜏 =

 
1

𝑡
 ≥  1. Observe that 
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𝜏𝜔 (
1
𝜏
)

𝜏
  𝑖𝑠  𝑎 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜏 ≥ 1. 

because ω(t) is increasing. Also, 

𝜏𝜔 (
1

𝜏
) / 𝜏𝜀      𝑖𝑠 𝑎𝑛  𝑖𝑛𝑐𝑟𝑒𝑠𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜏 ≥ 1. 

 

𝑏𝑒𝑐𝑎𝑢𝑠𝑒
𝜔(𝑡 )

𝑡1−𝜀
𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔  𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 , 𝜏𝜔 (

1

𝜏
) , 𝜏 ≥  1,  is a normal weight in the sense 

of [11]. The derivative 𝑓′ is represented by a Hadamard gap series, hence, f ∈ 𝔅𝜔 (B1) (see, 

e.g., [206]). 

       Since ω is increasing, we have 

∑𝜔2(2−𝑘)

∞

𝑘=0

≥ 𝐼(0 +) = ∞.                              (52) 

Thus, f  has no radial limits 𝜎1 − 𝑎. 𝑒. by [91]. 

(ii) 𝑑 ≥ 2 Fix a Ryll–Wojtaszczyk sequence {𝑊 [𝑛]}𝑛=1
∞  (see [197]). By definition, W [n] 

is a holomorphic homogeneous polynomial of degree 𝑛, ‖𝑊 [𝑛]‖𝐿∞(𝜕𝐵𝑑)  = 1 and 

‖𝑊 [𝑛]‖𝐿2(𝜕𝐵𝑑)  ≥  𝛿 for a universal constant δ ≥0. In particular, (52) guarantees that 

∑‖𝜔(2−𝑘)𝑊[2𝑘]‖
𝐿2(𝜕𝐵𝑑)

2
∞

𝑘=0

= ∞. 

Hence, by [77], there exists a sequence {𝑈𝑘}𝑘=1
∞ of unitary operators on ℂ𝑑 such that 

∑𝜔2(2−𝑘)|𝑊[2𝑘] ∘ 𝑈𝑘(𝜁)|
2

∞

𝑘=0

= ∞.                                            (53) 

for 𝜎𝑑-almost all ζ ∈ ∂Bd. Put 

𝑓(𝑧) =  ∑𝜔(2−𝑘)𝑊[2𝑘] ∘ 𝑈𝑘(𝑧)

∞

𝑘=0

   , 𝑧 ∈ 𝐵𝑑 

First, fix a point ζ ∈ ∂𝐵𝑑 with property (53). Consider the slice-function  𝑓𝜁  (𝜆)  =

 𝑓 (𝜆𝜁), 𝜆 ∈  𝐵1. Note that 

𝑓𝜁  (𝜆)  = ∑𝑎𝑘𝜆
2𝑘   , 𝜆 ∈

∞

𝑘=0

𝐵1. 

Where 𝑎𝑘 = 𝑤(2
−𝑘)𝑊[2𝑘] ∘ 𝑈𝑘(𝜁).   𝐵𝑦 (4), 𝑤𝑒 ℎ𝑎𝑣𝑒 {𝑎𝑘}𝑘=1

∞ ∉ ℓ2. 
       Thus , 𝑓𝜁   has no radial limits  𝜎1 − 𝑎. 𝑒 . 𝑏𝑦 [91]. Since the latter property holds for 

𝜎𝑑 −almost all 𝜁 ∈  𝜕𝐵𝑑, Fubini’s theorem guarantees that f has no radial limits 𝜎𝑑 − 𝑎. 𝑒.. 

       Second, recall that ‖𝑊 [2𝑘] ∘  𝑈𝑘‖𝐿∞(𝜕𝐵𝑑)
  =  1.  So, we deduce that f ∈  𝔅𝜔 (𝐵𝑑), 

applying the argument to the slice-functions 𝑓𝜁  , ζ ∈ 𝜕𝐵𝑑 .. This ends the proof of Proposition 

(5.3.1). 

       If  𝜔 (0+)  >  0, then  𝔅𝜔(𝐵𝑑) coincides with 𝔅 (𝐵𝑑), hence,  𝔅𝜔(𝐵𝑑) contains a 

function with no radial limits everywhere (see [207], [136]).However, if 𝜔(0+)  =  0, then 

Proposition (5.3.1)(ii) is not improvable in this direction. Indeed, if𝜔 (0+)  =  0 𝑎𝑛𝑑 𝑓 ∈
  𝔅𝜔(𝐵1), then f  has radial limits on a set of Hausdorff dimension one (see [208]). 

       To obtain the hyperbolic analog of  𝔅𝜔(𝐵𝑑), replace ℛ𝑓 (𝑧) by 
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ℛ𝜑 (𝑧),

1 −  |𝜑(𝑧)|2 ,
 

where 𝜑 ∶  𝐵𝑛 → 𝐵𝑚 , 𝑚, 𝑛 ∈  ℕ, is a holomorphic mapping. The radial limit 𝜑∗(𝜁) is 

defined at 𝜎𝑛almost every point of 𝜕𝐵𝑛 , hence, it is natural to replace the radial divergence 

condition by the following property: |𝜑∗|  =  1 𝜎𝑑 − 𝑎. 𝑒., that is, 𝜑 is inner. While the 

problem in the hyperbolic setting is more sophisticated, the following analog of Proposition 

(5.3.1) is known, at least for n = m = 1. 

Theorem (5.3.2)[205]: ([13)], [92]). Let 𝜔 ∶  (0, 1]  → (0,+∞) be an increasing function 
(i) Assume that I(0+)  <  ∞ and φ ∶  B1 → B1 is a holomorphic function such that  

|𝜑′(𝑧)|(1 − |𝑧|)

1 − |𝜑(𝑧)|
≤ 𝜔(1 − |𝑧|), 𝑧 ∈ 𝐵1. 

Then φ is not inner. 

(ii) Assume that I(0+)  =  ∞ and ω(t)/t1−ε decreases for some ε > 0. Then there exists an 

inner function φ ∶  B1 → B1 such that  
|𝜑′(𝑧)|(1 − |𝑧|)

1 − |𝜑(𝑧)|
≤ 𝜔(1 − |𝑧|), 𝑧 ∈ 𝐵1. 

We apply Theorem (5.3.5) to obtain quantitative versions of Theorem (5.3.2)(i). 

Lemma (5.3.3)[205]: Let ω : (0, 1]  →  (0, +∞) be an increasing function. Put 

Ψ(𝑟) =  ∑𝜔2(2−𝑘)𝑟2
𝑘−1, 0 ≤ 𝑟 < 1.

∞

𝑘=0

 

Then 

Ψ(𝑟) ≥ 𝐶Φ(1 − 𝑟) 𝑓𝑜𝑟 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝐶 = 𝐶𝜔 > 0. 
Proof.   Let 2−𝑛−1 ≤ 1 − 𝑟 < 2−𝑛 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ+. Then 

2Ψ(𝑟) ≥ 2𝜔2(1) + ∑𝜔2
𝑛

𝑘=1

(2−𝑘)(1 − 2−𝑛)2
𝑘−1 

≥ 𝜔2(1) +
1

𝑒
∑𝜔2
𝑛

𝑘=0

(2−𝑘) ≥ 𝐶Φ(2−𝑛−1) ≥ 𝐶Φ(1 − r), 

since ω is increasing and Φ is decreasing. 

       Also, we need the following improvement of the Ryll–Wojtaszczyk theorem used. 

Theorem (5.3.4)[205]: ([192]). Let d ∈  ℕ. Then there exist δ =  δ(d)  ∈  (0, 1) and J =
 J(d)  ∈  ℕ with the following property: For every n ∈  ℕ, there exist holomorphic 

homogeneous polynomials Wj [n] of degree n, 1 ≤ j ≤ J, such that 

‖𝑊𝑗[𝑛]‖𝐿∞(𝜕𝐵𝑑)
≤ 1 𝑎𝑛𝑑                                              (54) 

𝑚𝑎𝑥1≤𝑗≤𝐽|𝑊𝑗[𝑛](𝜉)| ≥ 𝜁   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜉 ∈ 𝜕𝐵𝑑.                   (55) 

Probably, it is worth mentioning that J(1) = 1. 

Theorem (5.3.5)[205]: Let d ∈ ℕ and let 0 < p < ∞.  Assume that ω : (0, 1] → (0, +∞) 

increases and ω (t) / t1−ε decreases for some ε > 0. Then there exists a constant τd,p,ω > 0 and 

functions Fy ∈ 𝔅ω (Bd) , 0 ≤ y ≤ 1, such that ‖𝐹𝑦‖𝔅ω(Bd)
  ≤  1 and 

∫ |𝐹𝑦(𝑧)|
2𝑝

1

0

𝑑𝑦 ≥ 𝜏𝑑,𝑝,𝜔 Φ
𝑝 (1 − |𝑧|)                             (56) 

For all z ∈ 𝐵𝑑 

Proof. Let the constant δ ∈ (0, 1) and the polynomials 𝑊𝑗  [n], 1 ≤ j ≤ J, n ∈ ℕ, be those 
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provided by Theorem (5.3.4). 

       For each non-dyadic y ∈ [0, 1], consider the following functions: 

𝐹𝑗𝑦(𝑧) = ∑𝑅𝐾

∞

𝑘=0

(𝑦)𝑤(2−𝑘)𝑊𝑗[2
𝑘 − 1](𝑧), 𝑧 ∈ 𝐵𝑑 , 1 ≤ 𝑗 ≤ 𝐽, 

Where  

𝑅𝑘(𝑦)𝑠𝑖𝑔𝑛 𝑠𝑖𝑛(2
𝑘+1𝜋𝑦), 𝑦 ∈ [0,1] 

Is the Rademacher function. 

       First, arguing as using estimate (54), we deduce that 

‖𝐹𝑗,𝑦‖𝔅𝜔(𝐵𝑑)
  ≤  𝐶. 

Second, we obtain 

𝐶𝑃∫|𝐹𝑗𝑦(𝑧)|
2𝑝
𝑑𝑦 ≥ (∑|𝜔(2−𝑘)𝑊𝑗[2

𝑘 − 1](𝑧)|
2

∞

𝑘=0

)

𝑝1

0

 

 

 

by [91]. Given positive numbers  𝑎𝑗 , 1 ≤  𝑗 ≤  𝐽 =J (d), we have 

(∑𝑎𝑗

𝐽

𝑗=1

)

𝑝

≤ 𝐶𝑑,𝑝∑𝑎𝑗
𝑝

𝐽

𝑗=1

. 

Hence, 

𝐶𝑑,𝑝∑∫|𝐹𝑗,𝑦(𝑧)|
2𝑝

1

0

𝑗

𝑗=1

𝑑𝑦 ≥ (∑∑𝜔2
𝐽

𝑗=1

∞

𝑘=0

(2−𝑘)|𝑊𝑗[2
𝑘 − 1](𝑧)|

2
)

𝑝

 

Since 𝑊𝑗[2
𝑘  −  1], 1 ≤  𝑗 ≤  𝐽, are homogeneous polynomials of degree 2k − 1, we obtain 

∑∑𝜔2
𝑗

𝑗=1

∞

𝑘=0

(2−𝑘)|𝑊𝑗[2
𝑘 − 1](𝑧)|

2
≥ 𝛿2∑𝜔2

∞

𝑘=0

(2−𝑘)|𝑧|2
𝑘+2−2 

≥ 𝛿2𝐶𝜔Φ(1 − |𝑧|
2),   𝑧 ∈ 𝐵𝑑 . 

By (55) and Lemma (5.3.3) with  𝑟 =  |𝑧|2. So, 

𝐶𝑑,𝑝∑∫|𝐹𝑗,𝑦

1

0

𝐽

𝑗=1

𝑧|2𝑝 𝑑𝑦 ≥ (𝛿2𝐶𝜔Φ (1 − |𝑧|
2))

𝑝
,    𝑧 ∈ 𝐵𝑑 , 

Changing the indices of the functions 𝐹𝑗,𝑦 and using a new variable of integration, we may 

reduce the above sum of integrals to one integral over [0, 1]. So, it remains to verify that 

𝐶Φ(1 − 𝑟2)  ≥  Φ(1 −  𝑟),          0 ≤  𝑟 <  1. 

First, if 0 ≤  𝑟 ≤  
2

3
, then Φ(1 −  𝑟)  ≤  𝐶𝜔   ≤  𝐶𝜔Φ(1 −  𝑟2) for a constant 

𝐶𝜔  >  0. Second, if 0 <  𝜀 <  
1

3
, then Φ(𝜀) −  Φ(2𝜀) ≤  𝜔2(2𝜀) ≤  3Φ (2𝜀), because 𝜔 

is increasing. Thus  

Φ(1 −  𝑟) ≤  4Φ(1 − 𝑟2)𝑓𝑜𝑟 
2

3
 <  𝑟 <  1. 

The proof of Theorem (5.3.5) is finished. 

       To show that inequality (56) is sharp, we estimate the integral means  
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𝑀𝑝(𝑓, 𝑟) = ( ∫|𝑓 (𝑟𝜁)|𝑝 𝑑𝜎𝑑(𝜁)

𝜕𝐵𝑑

)

𝐼
𝑝

.     0 <  𝑟 <  1, 

for the functions 𝑓 ∈   𝔅𝜔(𝐵𝑑). 
       For ω ≡ 1, the following result was obtained in [209] and [210]. 

 

Proposition (5.3.6)[205]: Let 0 < p < ∞ and let    f ∈  𝔅ω(Bd) Then 

𝑀𝑝(𝑓, 𝑟) ≤ 𝐶‖𝑓‖ 𝔅𝜔(𝐵𝑑)Φ
1
2(1 − 𝑟),       0 <  𝑟 <  1          (57) 

for a constant C > 0. 

Proof. For 𝑓 ∈  𝐻(𝐵𝑑) 𝑎𝑛𝑑 0 <  𝑟 <  1, we have 

𝑀𝑝(𝑓, 𝑟) ≤ 𝐶|𝑓(0)|+𝐶 ( ∫ (∫𝑟2  

1

0

 |ℛ𝑓(𝑟𝑡𝜁)|2(1 − 𝑡)

𝜕𝐵𝑑

𝑑𝑡)

𝑝
2

𝑑𝜎𝑑(𝜁)

)

 
 

1/𝑝

 

for a constant C > 0; see, for example, [211].  

       If f ∈  𝔅𝜔(𝐵𝑑), then, using the defining property (51), we obtain 

∫𝑟2 |ℛ𝑓(𝑟𝑡𝜁)|2(1 − 𝑡)𝑑𝑡 =  ∫|ℛ𝑓(𝑡𝜁)|2(𝑟 − 𝑡)𝑑𝑡 

𝑟

0

1

0

≤  ‖𝑓‖ 𝔅𝜔
2

(𝐵𝑑)
∫
𝜔2(1 − 𝑡)

1 − 𝑡

𝑟

0

𝑑𝑡 

≤ ‖𝑓‖ 𝔅𝜔
2

(𝐵𝑑)
Φ(1 − 𝑟). 

Since  |𝑓 (0)|  ≤  ‖𝑓‖𝔅𝜔(𝐵𝑑)
in sum we obtain the required estimate. 

       Comparing Proposition (5.3.6) and Theorem (5.3.5), we conclude that the direct 

estimate (57) and the reverse estimate (56) are not improvable, up to multiplicative 

constants.  

       Given a gauge function ω, the weighted Hardy–Bloch space  𝔅𝜔(𝐵𝑑), 0 <  𝑝 <  ∞, 
consists of those 𝑓 ∈  𝐻(𝐵𝑑) for which 

‖𝑓‖𝔅𝑝𝜔(𝐵𝑑) =  |𝑓(0)| + 𝑠𝑢𝑝0<𝑟<1
𝑀𝑝(ℛ𝑓, 𝑟)(1 − 𝑟)

𝜔(1 − 𝑟)
< ∞.                       (58) 

Clearly we have    𝔅𝜔(𝐵𝑑)  ⊂ 𝔅𝑝
𝜔(𝐵𝑑),  0 <  𝑝 <  ∞,   . So , it is interesting that estimate 

(57) is sharp for  𝑓 ∈   𝔅𝜔(𝐵𝑑) and holds for all 𝑓 ∈  𝔅𝑝
𝜔(𝐵𝑑) with  𝑝 ≥ 2.  Namely, we 

have the following proposition that was proved in [202] for 𝜔 ≡ 1. 
Proposition (5.3.7)[205]: Let  2 ≤ 𝑝 < ∞  and let  . Then 𝑓 ∈  𝔅𝑝

𝜔(𝐵𝑑), Then 

𝑀𝑝(𝑓, 𝑟) ≤ 𝐶‖𝑓‖ 𝔅𝜔(𝐵𝑑)Φ
1

2(1 − 𝑟),      0 <  𝑟 <  1,                     (59)    

For a constant 𝐶 > 0. 
Proof.  For  𝑓 ∈  𝐻(𝐵𝑑) and   0 <  𝑟 <  1, , we have  

𝑀𝑝(𝑓, 𝑟) ≤ 𝐶|𝑓(0)| + 𝐶

(

 
 
∫( ∫|ℛ𝑓(𝑟𝑡𝜁)|𝑃

𝜕𝐵𝑑

𝑑𝜎𝑑(𝜁))

2
𝑝

𝑟2(1 − 𝑡)𝑑𝑡

1

0

)

 
 

1
2

      (60) 

For a constant  𝐶 > 0 (see [212] for 𝑑 = 1: integration by slices gives the result for  𝑑 ≥
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1). Now, we argue as in the proof of Proposition (5.3.6). Namelym for  𝑓 ∈   𝔅𝜔(𝐵𝑑) , the 

defining property (58) guarantees that 

∫( ∫|ℛ𝑓(𝑟𝑡𝜁)|𝑃

𝜕𝐵𝑑

𝑑𝜎𝑑(𝜁))

2
𝑝

𝑟2(1 − 𝑡)𝑑𝑡

1

0

= ∫𝑀𝑝
2(ℛ𝑓, 𝑡)(𝑟 − 𝑡)𝑑𝑡

𝑟

0

 

≤ ‖𝑓‖ 𝔅𝜔(𝐵𝑑)
2 ∫

𝜔2(1 − 𝑡)

1 − 𝑡
 𝑑𝑡 ≤ ‖𝑓‖ 𝔅𝜔(𝐵𝑑)

2 Φ (1 − 𝑟)

𝑟

0

 

Since |𝑓(0)| ≤ ‖𝑓‖ 𝔅𝜔(𝐵𝑑), the proof is finished. 

We assume that 𝜔: (0,1] → (0,+∞)    is an increasing function. 

       Given a space 𝑋 ⊂  𝐻(𝐵𝑑) and 0 < q < ∞, recall that a positive Borel measure μ on 

𝐵𝑑 is called q-Carleson for X if X ⊂ 𝐿𝑞(𝐵𝑑 , 𝜇). 
       Suppose that 𝜔(𝑡)/𝑡1−𝜀 decreases for some ε > 0. A direct application of Theorem 

(5.3.5) gives the following result: 

Corollary (5.3.8)[205]: Let 0 < q < ∞ and let μ be a q-Carleson measure for Bω(Bd). 
Then 

∫ Φ
𝑞
2(1 − |𝑧|)𝑑𝜇(𝑧) < ∞.

𝐵𝑑

 

         If μ is a radial measure, then the above corollary is reversible. Moreover, the 

corresponding result holds for all spaces 𝐵𝑝
𝜔(𝐵𝑑), p ≥ 2.  

Proposition (5.3.9)[205]: Let  0 <  q <  ∞ and let ρ be a positive measure on [0, 1). 

Then the following properties are equivalent: 

∫ ∫|𝑓(𝑟𝜁)|𝑞𝑑𝜎𝑑(𝜁)𝑑𝜌(𝑟) < ∞         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝔅𝑝
𝜔(𝐵𝑑), 𝑝 ≥ 2;

𝜕𝐵𝑑

1

0

       (61) 

∫ ∫|𝑓(𝑟𝜁)|𝑞𝑑𝜎𝑑(𝜁)𝑑𝜌(𝑟) < ∞       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝔅𝜔(𝐵𝑑);

𝜕𝐵𝑑

1

0

                      (62) 

∫ Φ
𝑞
2(1 − 𝑟)𝑑𝜌(𝑟) < ∞.

1

0

                 (63) 

Proof. The implication (61)⇒ (62) is trivial, because 𝐵𝜔(𝐵𝑑)  ⊂  𝐵𝑝
𝜔(𝐵𝑑). Next, (62) 

implies (63) by Corollary (5.3.8). Finally, Proposition (5.3.7) guaran-tees that (63) implies 

(62).  

       Let 𝐼𝜔(0+)  <  ∞. As observed in [213], the conclusion of Theorem (5.3.2)(i) remain 

true if the restriction 

|𝜑′(𝑧)||1 − |𝑧||

1 − 𝜑(𝑧)
≤ 𝜔(1 − |𝑧|). 𝑧 ∈ 𝐵1, 

is replaced by the following weaker assumption: 

|𝜑′(𝑧)||1 − |𝑧||

1 − |𝜑(𝑧)|
Ω(1 − 𝜑(𝑧)) ≤ 𝜔(1 − |𝑧|), 𝑧 ∈ 𝐵1, 

where Ω : (0, 1] → (0, +∞) is a bounded measurable function such that 
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𝐼Ω =  ∫
Ω
2(𝑡)

𝑡
 𝑑𝑡 = ∞.

1

0

 

To obtain quantitative results of the above type, we apply Theorem (5.3.5). Also, we make 

weaker assumptions about 𝜑. 

       So, suppose that Ω is increasing and 𝛺(𝑡)/𝑡1−𝜀  is decreasing for some  ε > 0. Put 

ΦΩ(𝓍) =  𝐼 + ∫
Ω
2(𝑡)

𝑡
 𝑑𝑡, 0 < 𝓍 < 1

1

𝓍

 

Corollary (5.3.10)[205]: Let ϕ ∶  B1 →  B1 be a holomorphic mapping and let 1 ≤ p < ∞. 

Assume that Iω (0+)  <  ∞, 1Ω  =  ∞ and 

(1 − 𝑟)( ∫ (
|𝜑′(𝑟𝜁)|

1 − |𝜑(𝑟𝜁)|
𝜕𝐵1

Ω(1 − |𝜑(𝑟𝜁)|))2𝑃𝑑𝜎1(𝜁))

1
2𝑃

≤ 𝜔(1 − 𝑟)        (64) 

For 0 < 𝑟 < 1. then 

𝑠𝑢𝑝0<𝑟<1 ∫ ΦΩ
𝑃

𝜕𝐵1

(1 − |𝜑(𝑟𝜁)|)𝑑𝜎1(𝜁) < ∞.  

in particular, |𝜑∗| <1 𝜎1 − 𝑎. 𝑒.  
Proof. Let the constant τ = τ1,p,Ω > 0   and the function Fy ∈ 𝔅

Ω(B1),  0 ≤ y ≤ 1, by 

those provided by Theorem (5.3.5) for d =1 and for Ω in place of ω. 

Since  ‖Fy‖𝔅Ω(B1)
≤ 1,   , we have  

|(𝐹𝑦 ∘ 𝜑)
′
(𝑧)| ≤ |𝐹𝑦

′(𝜑(𝑧))||𝜑′(𝑧)| ≤
|𝜑′(𝑧)|

1 − |𝜑(𝑧)|
Ω(1 − |𝜑(𝑧)|), 𝑧 ∈ 𝐵1. 

So, using (64) and the hypothesis 𝐼𝜔(0+)  <  ∞, we obtain 

∫𝑀2𝑃
2

1

0

((𝐹𝑦 ∘ 𝜑)
′
, 𝑡) (1 − 𝑡)𝑑𝑡 ≤ ∫

𝜔2(1 − 𝑡)

1 − 𝑡
 𝑑𝑡 < ∞

1

0

. 

We further observe that |𝐹𝑦 ∘ 𝜑(0)|  ≤  𝐶𝜑‖𝐹𝑦‖𝐵Ω(𝐵1) 
≤  𝐶, and so estimate (60) 

guarantees that 

∫|𝐹𝑦 ∘ 𝜑(𝑟𝜁)|
2𝑝

𝜕𝐵1

𝑑𝜎1(𝜁) ≤ 𝐶,    0 ≤  𝑦 ≤  1,   0 <  𝑟 <  1 

for a universal constant C > 0. Hence, applying Fubini’s theorem and Theorem (5.3.5), we 

obtain 

𝐶 ≥ ∫ ∫|𝐹𝑦 ∘ 𝜑(𝑟𝜁)|
2𝑃

1

0

𝑑𝑦 𝑑𝜎1(𝜁) ≥ ∫ ΦΩ
𝑝

𝜕𝐵1𝜕𝐵1

(1 − |𝜑(𝑟𝜁)|) 𝑑𝜎1(𝜁), 

 as required. 

Corollary (5.3.11)[276]: Let 𝜔 ∶  (0, 1]  →  (0, +∞) be an increasing function. 

(i) Let 𝐼 (0+)  <  ∞. If 𝑓 ∈  𝔅𝜔 (𝐵1+𝜖), then f has radial limits 𝜎1+𝜖-almost everywhere. 

(ii) Let 𝐼(0+)  =  ∞ and let 
𝜔(𝑡)

𝑡1−𝜀
 be decreasing for some 𝜀 > 0. Then the space 
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𝔅𝜔(𝐵1+𝜖) contains a function with no radial limits σd-almost everywhere. 

Proof. (i) is a known fact. Indeed, if 𝐼 (0+)  <  ∞ and 𝑓 ∈  𝔅𝜔(𝐵1+𝜖), then |𝑅𝑓(𝑧𝑟)|
2(1 −

 |𝑧𝑟|) is a Carleson measure, hence, 𝑓 ∈ BMOA(𝐵1+𝜖). In particular, 𝑓  has radial limits 

𝜎1+𝜖 − 𝑎. 𝑒. 
 (ii) for 𝜖 = 0 (see [276]). 

       Put 

∑ 

𝑟

𝑓(𝑧𝑟) =  ∑∑ 

𝑟

𝜔(2−𝑘)

∞

𝑘=0

𝑧𝑟
2𝑘 , 𝑧𝑟 ∈ 𝐵1. 

Standard arguments guarantee that   𝑓 ∈   𝔅𝜔(𝐵1). For example, let 𝑡 ∈ (0, 1] and let 𝑡 =
1

1+𝜖
, 𝜖 ≥ 0. Observe that 

𝜔 (
1

1 + 𝜖
)   is  a decreasing  function of 𝜖 ≥ 0. 

because ω(t) is increasing. Also, 

(1 + 𝜖)1−𝜖𝜔 (
1

1 + 𝜖
)  is an  incresing function of 𝜖 ≥ 0. 

because 
𝜔(𝑡 )

𝑡1−𝜀
is decreasing  therefore , (1 + 𝜖)𝜔 (

1

1+𝜖
) , 𝜖 ≥ 0,  is a normal weight in the 

sense of [11]. The derivative 𝑓′ is represented by a Hadamard gap series, hence, 𝑓 ∈
𝔅𝜔(𝐵1) (see, e.g., [206]). 

       Since 𝜔 is increasing, we have 

∑𝜔2(2−𝑘)

∞

𝑘=0

≥ 𝐼(0 +) = ∞.                              (65) 

Thus, 𝑓  has no radial limits 𝜎1 − 𝑎. 𝑒. by [91]. 

 (ii) for 𝜖 ≥ 0 (see [276]). 

       Fix a Ryll–Wojtaszczyk sequence {𝑊 [𝑛]}𝑛=1
∞  (see [197]). By definition, W [n] is a 

holomorphic homogeneous polynomial of degree 𝑛, ‖𝑊 [𝑛]‖𝐿∞(𝜕𝐵2+𝜖)  =  1 and 

‖𝑊 [𝑛]‖𝐿2(𝜕𝐵2+𝜖)  ≥  𝛿 for a universal constant 𝛿 ≥ 0. In particular, (65) guarantees that 

∑‖𝜔(2−𝑘)𝑊[2𝑘]‖
𝐿2(𝜕𝐵2+𝜖)

2
∞

𝑘=0

= ∞. 

Hence, by [77], there exists a sequence {𝑈𝑘}𝑘=1
∞ of unitary operators on ℂ2+𝜖 such that 

∑∑ 

𝑟

𝜔2(2−𝑘)|𝑊[2𝑘] ∘ 𝑈𝑘(𝜁𝑟)|
2

∞

𝑘=0

= ∞.                                            (66) 

for 𝜎2+𝜖-almost all 𝜁𝑟  ∈  𝜕𝐵2+𝜖. Put 

∑ 

𝑟

𝑓(𝑧𝑟) =  ∑∑ 

𝑟

𝜔(2−𝑘)𝑊[2𝑘] ∘ 𝑈𝑘(𝑧𝑟)

∞

𝑘=0

   , 𝑧𝑟 ∈ 𝐵2+𝜖 

First, fix a point 𝜁𝑟  ∈  𝜕𝐵2+𝜖 with property (66). Consider the series of slice-function 

∑  𝑟  𝑓𝜁𝑟  (𝜆) = ∑  𝑟 𝑓 (𝜆𝜁𝑟), 𝜆 ∈  𝐵1. Note that 

∑ 

𝑟

𝑓𝜁𝑟(𝜆)  = ∑𝑎𝑘𝜆
2𝑘   , 𝜆 ∈

∞

𝑘=0

𝐵1. 

Where 𝑎𝑘 = ∑  𝑟 𝜔(2
−𝑘)𝑊[2𝑘] ∘ 𝑈𝑘(𝜁𝑟).   By (66), we have {𝑎𝑘}𝑘=1

∞ ∉ ℓ2, 
       Thus , 𝑓𝜁𝑟   has no radial limits  𝜎1-a.e .by [91]. Since the latter property holds for 
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𝜎2+𝜖 −almost all 𝜁𝑟  ∈  𝜕𝐵2+𝜖, Fubini’s theorem guarantees that 𝑓 has no radial limits 

𝜎2+𝜖 − 𝑎. 𝑒.. 

       Second, recall that ‖𝑊 [2𝑘] ∘  𝑈𝑘‖𝐿∞(𝜕𝐵2+𝜖)
  =  1.  So, we deduce that 𝑓 ∈  𝔅𝜔 (𝐵2+𝜖), 

applying the argument to the slice-functions 𝑓𝜁𝑟  , 𝜁𝑟  ∈  𝜕𝐵2+𝜖.. This ends the proof of 

Corollary (5.3.11). 

Corollary (5.3.12)[276]: Let 𝜔 ∶  (0, 1]  →  (0, +∞) be an increasing function. Put 

Ψ(1 − 𝜖) =  ∑𝜔2(2−𝑘)(1 − 𝜖)2
𝑘−1

∞

𝑘=0

, 𝜖 ≤ 1. 

Then 

Ψ(1 − 𝜖) ≥ (1 + 𝜖)Φ(𝜖) for a constant 1 + 𝜖 = 𝐶𝜔 > 0. 
Proof.   Let 2−(𝑛+1) ≤ 𝜖 < 2−𝑛 for some 𝑛 ∈ ℤ+. Then 

2𝛹(1 − 𝜖) ≥ 2𝜔2(1) + ∑𝜔2
𝑛

𝑘=1

(2−𝑘)(1 − 2−𝑛)2
𝑘−1 ≥ 𝜔2(1) +

1

𝑒
∑𝜔2
𝑛

𝑘=0

(2−𝑘)

≥ (1 + 𝜖)𝛷(2−(𝑛+1)) ≥ (1 + 𝜖)𝛷(𝜖), 
since ω is increasing and Φ is decreasing. 

Corollary (5.3.13)[276]: Let 1 + 𝜖 ∈  ℕ and let 0 ≤ 𝜖 <  ∞.  Assume that 𝜔 ∶  (0, 1]  →

 (0, +∞) increases and 
𝜔(𝑡)

𝑡1−𝜀
 decreases for some 𝜀 >  0. Then there exists a constant 

(1 + 𝜖)1+𝜖,1+𝜖,𝜔 >  0 and functions 𝐹𝑦𝑟 ∈ 𝔅
𝜔(𝐵1+𝜖), 0 ≤  𝑦𝑟  ≤  1, such that 

∑  𝑟 ‖𝐹𝑦𝑟‖𝔅𝜔(𝐵1+𝜖)
≤ 1 and 

∫ ∑ 

𝑟

|𝐹𝑦𝑟(𝑧𝑟)|
2(1+𝜖)

1

0

𝑑𝑦𝑟 ≥ (1 + 𝜖)1+𝜖,1+𝜖,𝜔∑ 

𝑟

Φ1+𝜖 (1 − |𝑧𝑟|)              (67) 

For all 𝑧𝑟  ∈ 𝐵1+𝜖. 
Proof. Let the constant 𝛿 ∈  (0, 1) and the polynomials 𝑊1+𝜖[𝑛], 𝜖 ≥ 0, 𝑛 ∈  ℕ, be those 

provided by Theorem (5.3.4). 

       For each non-dyadic 𝑦𝑟 ∈ [0, 1], consider the series of the following functions: 

∑ 

𝑟

𝐹1+𝜖,𝑦𝑟(𝑧𝑟) = ∑∑ 

𝑟

𝑅𝐾

∞

𝑘=0

(𝑦𝑟)𝜔(2
−𝑘)𝑊1+𝜖[2

𝑘 − 1](𝑧𝑟), 𝑧𝑟 ∈ 𝐵1+𝜖, 𝜖 ≥ 0, 

where  

∑ 

𝑟

𝑅𝑘(𝑦𝑟) = ∑ 

𝑟

sign sin(2𝑘+1𝜋𝑦𝑟), 𝑦𝑟 ∈ [0,1], 

is the series of Rademacher functions. 

       First, arguing estimate (5), we deduce that 

∑ 

𝑟

‖𝐹1+𝜖,𝑦𝑟‖𝔅𝜔(𝐵1+𝜖)
  ≤ 1 + 𝜖. 

Second, we obtain 

𝐶1+𝜖∫∑ 

𝑟

|𝐹1+𝜖,𝑦𝑟(𝑧𝑟)|
2(1+𝜖)

𝑑𝑦𝑟 ≥∑  

𝑟

(∑|𝜔(2−𝑘)𝑊1+𝜖[2
𝑘 − 1](𝑧𝑟)|

2
∞

𝑘=0

)

1+𝜖1

0

 

by [91]. Given positive numbers  𝑎1+𝜖 , 𝜖 = 0, we have 
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(∑ 𝑎1+𝜖

1+2𝜖

𝜖=0

)

1+𝜖

≤ 𝐶1+𝜖,1+𝜖 ∑ 𝑎1+𝜖
1+𝜖

1+2𝜖

𝜖=0

. 

Hence, 

𝐶1+𝜖,1+𝜖 ∑ ∫∑ 

𝑟

|𝐹1+𝜖,𝑦𝑟(𝑧𝑟)|
2(1+𝜖)

1

0

1+2𝜖

𝜖=0

𝑑𝑦𝑟

≥∑ 

𝑟

(∑ ∑ 𝜔2
1+2𝜖

𝜖=0

∞

𝑘=0

(2−𝑘)|𝑊1+𝜖[2
𝑘 − 1](𝑧𝑟)|

2
)

1+𝜖

 

Since 𝑊1+𝜖[2
𝑘  −  1], 𝜖 ≥ 0, are homogeneous polynomials of degree 2k − 1, we obtain 

∑ ∑ ∑ 

𝑟

𝜔2
1+2𝜖

𝜖=0

∞

𝑘=0

(2−𝑘)|𝑊1+𝜖[2
𝑘 − 1](𝑧𝑟)|

2
≥ 𝛿2∑∑ 

𝑟

𝜔2
∞

𝑘=0

(2−𝑘)|𝑧𝑟|
2𝑘+2−2 

≥ 𝛿2𝐶𝜔∑ 

𝑟

Φ(1 − |𝑧𝑟|
2),   𝑧𝑟 ∈ 𝐵1+𝜖. 

By (6) and Corollary (5.3.12) with  1 − 𝜖 =  |𝑧𝑟|
2. So, 

𝐶1+𝜖,1+𝜖 ∑ ∫∑ 

𝑟

|𝐹1+𝜖,𝑦𝑟

1

0

1+2𝜖

𝜖=0

𝑧𝑟|
2(1+𝜖) 𝑑𝑦𝑟 ≥∑ 

𝑟

(𝛿2𝐶𝜔Φ (1 − |𝑧𝑟|
2))

1+𝜖
,    𝑧𝑟 ∈ 𝐵1+𝜖, 

Changing the indices of the functions 𝐹1+𝜖,𝑦𝑟 and using a new variable of integration, we 

may reduce the above sum of integrals to one integral over [0, 1]. So, it remains to verify 

that 

(1 + 𝜖)Φ(2𝜖 − 𝜖2) ≥  Φ(𝜖),          𝜖 ≤ 1. 

First, if 𝜖 ≤  
2

3
, then Φ(

1

3
+ 𝜖)  ≤  𝐶𝜔   ≤  𝐶𝜔Φ(

5

9
+
4

3
𝜖 − 𝜖2) for a constant 𝐶𝜔  >  0. 

Second, if 0 <  𝜀 <  
1

3
, then Φ(𝜀) −  Φ(2𝜀) ≤  𝜔2(2𝜀) ≤  3Φ (2𝜀), because 𝜔 is 

increasing. Thus Φ(𝜖) ≤  4Φ(2𝜖 − 𝜖2) for 𝜖 <
1

3
. 

The proof of Corollary (5.3.13) is finished. 

Corollary (5.3.14)[276]: Let 0 ≤ 𝜖 <  ∞ and let    𝑓 ∈   𝔅𝜔(𝐵1+𝜖) Then 

𝑀1+𝜖(𝑓, 1 − 𝜖) ≤ (1 + 𝜖)‖𝑓‖ 𝔅𝜔(𝐵1+𝜖)Φ
1
2(𝜖),       𝜖 ≤ 1          (68) 

for a constant 𝜖 ≥ 0. 

Proof. For 𝑓 ∈  𝐻(𝐵1+𝜖) and 𝜖 ≤ 1, we have 
𝑀1+𝜖(𝑓, 1 − 𝜖)

≤ (1 + 𝜖)|𝑓(0)| + (1

+ 𝜖)∑  

𝑟

( ∫ (∫(1 − 𝜖)2  

1

0

 |ℛ𝑓((1 − 𝜖)𝑡𝜁𝑟)|
2(1 − 𝑡)

𝜕𝐵1+𝜖

𝑑𝑡)

1+𝜖
2

𝑑𝜎1+𝜖(𝜁𝑟)
 

)

 
 

1
1+𝜖

 

for a constant 𝜖 ≥ 0; see, for example, [211].  

       If 𝑓 ∈   𝔅𝜔(𝐵1+𝜖), then, using the defining property (1), we obtain 
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∫∑ 

𝑟

(1 − 𝜖)2 |ℛ𝑓((1 − 𝜖)𝑡𝜁𝑟)|
2(1 − 𝑡)𝑑𝑡 =  ∫ ∑ 

𝑟

|ℛ𝑓(𝑡𝜁𝑟)|
2(1 − 𝜖 − 𝑡)𝑑𝑡 

1−𝜖

0

1

0

≤  ‖𝑓‖ 𝔅𝜔
2

(𝐵1+𝜖)
∫
𝜔2(1 − 𝑡)

1 − 𝑡

1−𝜖

0

𝑑𝑡 ≤ ‖𝑓‖ 𝔅𝜔
2

(𝐵1+𝜖)
Φ(𝜖). 

Since  |𝑓 (0)|  ≤  ‖𝑓‖𝔅𝜔(𝐵1+𝜖)
in sum we obtain the required estimate. 

Corollary (5.3.15)[276]: Let  0 ≤ 𝜖 < ∞  and let  . Then 𝑓 ∈  𝔅2+𝜖
𝜔 (𝐵1+𝜖), Then 

𝑀2+𝜖(𝑓, 1 − 𝜖) ≤ (1 + 𝜖)‖𝑓‖ 𝔅𝜔(𝐵1+𝜖)Φ
1
2(𝜖),      𝜖 ≤ 1,                     (69) 

For a constant 𝜖 ≥ 0. 
Proof.  For  𝑓 ∈  𝐻(𝐵1+𝜖) and ≤ 1, , we have  
𝑀2+𝜖(𝑓, 1 − 𝜖) ≤ (1 + 𝜖)|𝑓(0)|

+ (1 + 𝜖)∑  
𝑟

(

 
 
∫( ∫ |ℛ𝑓((1 − 𝜖)𝑡𝜁

𝑟
)|
2+𝜖

𝜕𝐵1+𝜖

𝑑𝜎1+𝜖(𝜁𝑟))

2
2+𝜖

(1 − 𝜖)2(1 − 𝑡)𝑑𝑡

1

0

)

 
 

1
2

      (70) 

For a constant  𝜖 ≥ 0 (see [212] for 𝜖 = 0: integration by slices gives the result for  𝜖 ≥ 0). 

Now, we argue as in the proof of Corollary (5.3.14). Namely, for  𝑓 ∈   𝔅𝜔(𝐵1+𝜖) , the 

defining property (8) guarantees that 

∫∑ 

𝑟

( ∫ |ℛ𝑓((1 − 𝜖)𝑡𝜁𝑟)|
2+𝜖

𝜕𝐵1+𝜖

𝑑𝜎1+𝜖(𝜁𝑟))

2
2+𝜖

(1 − 𝜖)2(1 − 𝑡)𝑑𝑡

1

0

=  ∫ 𝑀2+𝜖
2 (ℛ𝑓, 𝑡)(1 − 𝜖 − 𝑡)𝑑𝑡

1−𝜖

0

≤ ‖𝑓‖ 𝔅𝜔(𝐵1+𝜖)
2 ∫

𝜔2(1 − 𝑡)

1 − 𝑡
 𝑑𝑡 ≤ ‖𝑓‖ 𝔅𝜔(𝐵1+𝜖)

2 Φ (𝜖)

1−𝜖

0

 

Since |𝑓(0)| ≤ ‖𝑓‖ 𝔅𝜔(𝐵1+𝜖), the proof is finished. 

Corollary (5.3.16)[276]: Let  0 ≤ 𝜖 <  ∞ and let 𝜌 be a positive measure on [0, 1). Then 

the following properties are equivalent: 

∫ ∫ ∑ 

𝑟

|𝑓((1 − 𝜖)𝜁𝑟)|
1+𝜖𝑑𝜎1+𝜖(𝜁𝑟)𝑑𝜌(1 − 𝜖) < ∞   for all  𝑓 ∈ 𝔅2+𝜖

𝜔 (𝐵1+𝜖),

𝜕𝐵1+𝜖

1

0

𝜖 ≥ 0;                                                                                                                         (71) 

∫ ∫ ∑ 

𝑟

|𝑓((1 − 𝜖)𝜁𝑟)|
1+𝜖𝑑𝜎1+𝜖(𝜁𝑟)𝑑𝜌(1 − 𝜖) < ∞  for all   𝑓 ∈ 𝔅𝜔(𝐵1+𝜖);

𝜕𝐵1+𝜖

1

0

  (72) 

∫ Φ
1+𝜖
2 (𝜖)𝑑𝜌(1 − 𝜖) < ∞.

1

0

                                     (73) 

Proof. The implication (71)⇒ (72) is trivial, because 𝐵𝜔(𝐵1+𝜖)  ⊂  𝐵2+𝜖
𝜔 (𝐵1+𝜖). Next, (72) 

implies (73) by Corollary (5.3.16). Finally, Corollary (5.3.15) guarantees that (73) implies 
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(72).  

Corollary (5.3.17)[276]: Let 𝜑 ∶  B1  →  B1 be a holomorphic mapping and let 0 ≤ 𝜖 < ∞. 

Assume that 𝐼𝜔 (0+)  <  ∞, 1𝛺  =  ∞ and 

𝜖∑  

𝑟

( ∫ (
|𝜑′((1 − 𝜖)𝜁𝑟)|

1 − |𝜑((1 − 𝜖)𝜁𝑟)|
𝜕𝐵1

Ω(1 − |𝜑((1 − 𝜖)𝜁𝑟)|))
2(1+𝜖)𝑑𝜎1(𝜁𝑟))

1
2(1+𝜖)

≤ 𝜔(𝜖) (74) 
For 𝜖 ≤ 1. Then 

sup
𝜖≤1

 ∫ ∑  

𝑟

𝛷𝛺
1+𝜖

𝜕𝐵1

(1 − |𝜑((1 − 𝜖)𝜁𝑟)|)𝑑𝜎1(𝜁𝑟) < ∞.  

in particular, |𝜑∗| < 1 𝜎1 − 𝑎. 𝑒.  
Proof. Let the constant 1 + 𝜖 = (1 + 𝜖)1,1+𝜖,𝛺 > 0   and the function 𝐹𝑦𝑟 ∈ 𝔅

Ω(𝐵1),  0 ≤

 𝑦𝑟  ≤  1, by those provided by Corollary (5.3.13) for 𝜖 = 0 and for Ω in place of 𝜔. 

Since  ∑  𝑟 ‖𝐹𝑦𝑟‖𝔅Ω(𝐵1)
≤ 1,   , we have  

∑ 

𝑟

|(𝐹𝑦𝑟 ∘ 𝜑)
′
(𝑧𝑟)| ≤ ∑  

𝑟

|𝐹𝑦𝑟
′(𝜑(𝑧𝑟))||𝜑

′(𝑧𝑟)| ≤ ∑  

𝑟

|𝜑′(𝑧𝑟)|

1 − |𝜑(𝑧𝑟)|
Ω(1 − |𝜑(𝑧𝑟)|),

𝑧𝑟 ∈ 𝐵1. 
So, using (74) and the hypothesis 𝐼𝜔(0+)  <  ∞, we obtain 

∫∑ 

𝑟

𝑀2(1+𝜖)
2

1

0

((𝐹𝑦𝑟 ∘ 𝜑)
′
, 𝑡) (1 − 𝑡)𝑑𝑡 ≤ ∫

𝜔2(1 − 𝑡)

1 − 𝑡
 𝑑𝑡 < ∞

1

0

. 

We further observe that ∑  𝑟 |𝐹𝑦𝑟 ∘ 𝜑(0)|  ≤  𝐶𝜑∑  𝑟 ‖𝐹𝑦𝑟‖𝐵Ω(𝐵1) 
≤  1 + 𝜖, and so estimate 

(70) guarantees that 

∫∑ 

𝑟

|𝐹𝑦𝑟 ∘ 𝜑((1 − 𝜖)𝜁𝑟)|
2(1+𝜖)

𝜕𝐵1

𝑑𝜎1(𝜁𝑟) ≤ 1 + 𝜖,    0 ≤  𝑦𝑟  ≤  1, 𝜖 ≤ 1 

for a universal constant 𝜖 ≥ 0. Hence, applying Fubini’s theorem and Corollary (5.3.13), 

we obtain 

1 + 𝜖 ≥ ∫ ∫∑  
𝑟

|𝐹𝑦𝑟 ∘ 𝜑((1 − 𝜖)𝜁𝑟)|
2(1+𝜖)

1

0

𝑑𝑦𝑟 𝑑𝜎1
(𝜁𝑟)

𝜕𝐵1

≥ ∫ ∑  
𝑟

𝛷Ω
1+𝜖

𝜕𝐵1

(1 − |𝜑((1 − 𝜖)𝜁
𝑟
)|) 𝑑𝜎1(𝜁𝑟), 

 as required.  
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Chapter 6 

Compact and Weakly Compact Composition Operators 
 

          We show that the conditions for the hyperbolic Besov classes are then interpreted 

geometrically when the symbols are univalent, and strict inclusion between different 

hyperbolic Besov classes is shown by an example. We characterize, in function-theoretic 

terms, when the composition operator 𝐶𝜙𝑓 = 𝑓 ∘ 𝜙 induced by an analytic self-map 𝜙 of 

the unit disk defines an operator 𝐶𝜙:𝒩𝛼 → ℬ, ℬ → 𝑄𝛽 ,𝒩𝛼 → 𝑄𝛽 which is bounded resp. 

compact. In particular, by combining techniques from both complex and functional analysis, 

we show that weak compactness is equivalent to compactness. For the operators into the 

corresponding “small” spaces we also characterize the boundedness and show that it is 

equivalent to compactness. 

Section (6.1): Bloch Type Spaces to Hardy and Besov Spaces 
      For 𝐻(𝐷)be the space of all analtytic function on the unit disk 𝐷. very analytic self-map 

𝜑:𝐷 → 𝐷   of the unit disk induces through composition a linear composition operator 

𝐶𝜑 from 𝐻 (𝐷). to itself. Thus 𝐶𝜑 is defined by 𝐶𝜑 (𝑓 ) =  𝑓 ∘ 𝜑 for 𝑓 ∈  𝐻 (𝐷). The study 

of composition operators lies at the interface of analytic functions and operator theory. 

Many interesting results have been found for composition operators on Hardy and Bergman 

spaces see [12], [224], [180], [153], [144] for only a few examples, while the study of 

composition operators on other Banach spaces, such as the Bloch space and BMOA, is just 

in the beginning. Recently, 𝐾. Madigan and A. Matheson characterized the boundedness 

and the compactness of 𝐶𝜑 on the Bloch space and the Little Bloch space in [19]. After this 

work, boundedness and compactness of composition operators from the Bloch space to 

some other function spaces, such as Hardy spaces, BMOA, the spaces 𝒬𝑝which are 

introduced in [216], and analytic Besov spaces are studied almost simultaneously by [194], 

[222], [80], [225], [229], [230].. A common feature is that these results involve the 

hyperbolic versions of the corresponding spaces. We consider composition operators from 

Bloch type spaces 𝕭𝜶 to Hardy spaces 𝐻 𝑝and analytic Besov type spaces 𝐵𝑝. We recall the 

definitions of these spaces here. Let 0 < 𝛼 < ∞ An analytic function f on D is said to be in 

the a-Bloch space 𝕭𝜶, if 

‖𝑓‖𝕭𝜶 = 𝑠𝑢𝑝𝑧∈𝐷|𝑓
′(𝑧)|(1 − |𝑧|2)𝛼 < ∞. 

Correspondingly, f is in the Little 𝜶 -Bloch space  𝕭𝟎
𝜶, if 

lim
|𝑧|→1

|𝑓′(𝑧)| (1 − |𝑧|2)𝛼 = 0. 

Note that for the case 𝛼 =  1, we have 𝕭𝟏 = 𝕭, the Bloch space and 𝕭𝟎
𝟏= 𝕭𝟎 , the Little 

Bloch space. When 0 < 𝛼 <  1, the spaces 𝕭𝜶 and 𝕭𝟎
𝜶. can be identified with the analytic 

Lipschitz space 𝑙𝑖𝑝1−𝛼 and the Little Lipschitz space 𝑙𝑖𝑝1−𝛼. 
      For 1 ≤ 𝑝 < ∞ we say that an analytic function f on D is in the Hardy space 𝐻𝑝 if 

‖𝑓‖𝐻𝑝 = 𝑠𝑢𝑝1<𝑟<1(
1

2𝜋
∫ |𝑓(𝑟𝑒𝑖𝜃)|

𝑝

2𝜋

0

𝑑𝜃)

1/𝑝

< ∞. 

Finally, let 0 < p < ∞   and - 1 < q < ∞   . We say that 𝑓 in the Besov type space  Bp,q, if  

‖𝑓‖𝑝,𝑞 =  (∫|𝑓
′(𝑧)|𝑝(1 − |𝑧|2)𝑞𝑑𝑚(𝑧)

𝐷

)

1/𝑝

< ∞.   
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Where dm(z) denotes the Lebesque area measure on D. We note that 𝐵𝑝,𝑝−2 = 𝐵𝑝, the 

analytic Besov spaces (see [154] and [234])., for 1 < 𝑝 < ∞;𝐵2,𝑞 =  𝐷𝑞 . , the weighted 

Dirichlet spaces see, for example, [12].; and 𝐵𝑝,𝑝 = 𝐿𝑎
𝑝

, the Bergman spaces, for 1 ≤ 𝑝 <

∞. (see [154]). 

             We have the following 

 When  1 < 𝑝 < ∞     , we may define the hyperbolic Besov class  𝐵𝑝
ℎ as the set of 

analytic self maps  𝜑:𝐷 → 𝐷 such that  

∫ (𝜑ℎ(𝑧))
𝑝
(1 − |𝑧|2)𝑝−2𝑑𝑚(𝑧) < ∞.

𝐷

 

Where  𝜑ℎ(𝑧) =
|𝜑′(𝑧)|

(1−𝜑(𝑧)2)
 .  

Using 𝐵𝑝
ℎ we can state the special case of Theorem (6.1.4) for 𝛽 = 1 and 𝑞 = 𝑝 − 2 in the 

following form 

Corollary (6.1.1)[214]:   𝜑: 𝐷 → 𝐷   be an analytic self map, and let  1 < 𝑝 < ∞ , . Then 

the following statements are equivalent: 

(i)   𝔅 → 𝐵𝑝                                Is bounded 

(ii) 𝐶𝜑: 𝔅 → 𝐵𝑝                          Is compact; 

(iii) 𝐶𝜑: 𝕭𝟎 → 𝐵𝑝                       Is bounded. 

(iv) 𝐶𝜑: 𝕭𝟎 → 𝐵𝑝                        Is compact 

(v) 𝜑 ∈ 𝐵𝑝
ℎ. 

We note here that the equivalence of (𝑖 ).,( 𝑖𝑖) ., and (𝑣. ) of Corollary (6.1.1) was 

independently proved by S. Makhmutov in [225] and M. Tjani in [230], with different 

methods. 

Theorem (6.1.4). We consider the composition operators from the Bloch space and the Little 

Bloch space to the minimal Besov space 𝐵1. The equivalence of boundedness and 

compactness for composition operators from Bloch type spaces to Besov type spaces which 

appears in Theorem (6.1.4) is not an accidental phenomenon. It can be derived from general 

Banach space theory. An explanation for the equivalence of (i), (iv) in Theorem (6.1.4) from 

the point of view of the general Banach space theory, as well as some more general results 

will be given. 

We consider composition operators from Bloch type spaces to Hardy spaces. We 

assume that the symbol 𝜑 is univalent and give a geometric criterion for boundedness and 

compactness of 𝐶𝜑 from 𝔅 and 𝔅0 to the Besov space 𝐵𝑝, for 1 <  𝑝 < ∞ We then 

construct an example for which 𝐶𝜑: 𝔅 → 𝐵𝑝2  is compact, but 𝐶𝜑: 𝔅 → 𝐵𝑝1  is not compact, 

provided 1 <  𝑝1  <  𝑝2 < ∞ . 
      In the following, ‘‘ A ~B’’ means that there are two absolute positive constants 𝐶1 and 

𝐶2 such that 𝐶1 A ≤ B ≤ 𝐶2 B. 

      First of all, let us generalize a result concerning Carleson type measure by J. Arazy, S. 

D. Fisher, and J. Peetre in [215]. Let 𝜇 be a positive Borel measure on the unit disk. For 

0 <  𝑝 < ∞ we denote 𝐷𝑝 (𝜇)
. as the space of analytic functions on D satisfying 

‖𝑓‖𝐷𝑝(𝜇) = (∫|𝑓
′(𝑧)|𝑝𝑑𝜇(𝑧)

𝐷

)

1/𝑝

< ∞. 
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The following is the result of Theorem (6.1.4) of [215]:  

Theorem (6.1.2)[214]: Let 𝜇 be a positive Borel measure on 𝐷. and let 0 < 𝑝 < ∞. Then 

the inclusion map 𝑖: 𝔅 → 𝐷𝑝(𝜇 ) is bounded if and only if 

∫
𝑑𝜇(𝑧)

(1 − |𝑧|2)𝑝
  < ∞  .

𝐷

 

      We generalize this result to the 𝛼 − 𝐵𝑙𝑜𝑐ℎ 𝑠𝑝𝑎𝑐𝑒𝑠 𝑓𝑜𝑟 0 < 𝛼 ≤ 1 

     For a proof, we require the following result on gap series, see [91]. 

Lemma (6.1.5)[214]: Suppose that (𝑛𝑘)  is an increasing sequience of positive integers 

with Hadamard gaps. That is,  
𝑛𝑘+1

𝑛𝑘
≥ 𝜆 > 1 for all 𝑘. 

Let 0 < 𝑝 < ∞. 
      Then there is a constant 𝑀 > 0  depending on p  and 𝜆  such that 

𝑀−1 (∑|𝑎𝑘|
2

𝑁

𝑘=1

)

1/2

≤ (
1

2𝜋
∫ |∑𝑎𝑘𝑒

𝑖𝑛𝑘𝜃

𝑁

𝑘=1

|

𝑝2𝜋

0

𝑑𝜃)

1/𝑝

≤ 𝑀(∑|𝑎𝑘|
2

𝑁

𝑘=1

)

1/

 

For any scalars 𝑎1… . 𝑎𝑁  and   𝑁 = 1,2, … 

Theorem (6.1.3)[214]: Let 𝜇 be a positive Borel measure on 𝐷. Let 0 < 𝑝 < ∞ and 1 ≤
𝛽 < ∞. Then the following statements are equivalent:  

(i)  𝔅1/𝛽 → 𝐷𝑝𝛽(𝜇 ) is bounded. 

(ii)  𝔅1/𝛽 → 𝐷𝑝𝛽(𝜇 ) is compact. 

(iii)  𝔅0
1/𝛽 → 𝐷𝑝𝛽(𝜇 ) is bounded. 

(iv)  𝔅0
1/𝛽 → 𝐷𝑝𝛽(𝜇 ) is bounded. 

(v) ∫
𝑑𝜇(𝑧)

(1−|𝑧|2)𝑝
  < ∞ .

𝐷
 

Note that the absence of 𝛽 in (v) means that if  𝜇 is independent of 𝛽 and one of (i)-(iv)holds 

for some  𝛽, 1 ≤ 𝛽 < ∞, then it will hold for all 𝛽, 1 ≤ 𝛽 < ∞.  
Proof. Since it is obvious that  (𝑖𝑖) ⟹ (𝑖) ⇒ (𝑖𝑖𝑖) and  (𝑖𝑖) ⟹ (𝑖𝑣) ⇒ (𝑖𝑖𝑖)   we need only 

to prove that  (𝑖𝑖𝑖) ⟹ (𝑣) ⇒ (𝑖𝑖) suppose (iii)  is true, Let  𝑟𝑛 ∈ (0,1)  satisfy 𝑟𝑛 → 1  , and 

let 

𝑓𝑛,𝑙(𝑧) = ∑𝑎𝑘𝑧
2𝑘

∞

𝑘=1

=  
1

𝑟𝑛
∑2𝑘(1/𝛽−1)
∞

𝑘=1

(𝑟𝑛𝑒
𝑖𝑙𝑧)

2𝑘

. 

Since   2(𝑘(1−1)/𝛽)|𝑎𝑘| → 0 as   𝑘 → ∞  [8] (see also [235]) we see that  𝑓𝑛.𝑙 ∈ 𝔅0
1/𝛽

  and  

‖𝑓𝑛.𝑙‖𝔅1/𝛽 ≤ 𝐾 < ∞,  , where  𝐾 > 0 is a constant independent of  𝑛 and  . Since 𝑖: 𝔅0
1/𝛽

→

𝐷𝑃𝛽(𝜇)     is bounded, we know that 

∫|𝑓𝑛.𝑙
′ (𝑧)|𝑃𝛽 𝑑𝜇(𝑧) =  ‖𝑓𝑛.𝑙‖𝐷𝑝𝛽(𝜇)

𝑃𝛽
≤ ‖𝑓𝑛.𝑙‖

𝔅
1
𝛽

𝑃𝛽
‖𝑖‖𝑃𝛽 ≤ 𝐾𝑃𝛽‖𝑖‖𝑃𝛽.                  (1) 

Integrating this inequality with respect to t, applying Fubini’s theorem. Lemma (6.1.5) and 

H�̈�lder’s inequality we get that 

𝐾𝑃𝛽‖𝑖‖𝑃𝛽 ≥ ∫ (∑ 22𝐾(𝑟𝑛|𝑧|)
2(2𝑘−1)𝛽

∞

𝐾=1

)

𝑝/2

𝑑𝜇(𝑧).
𝐷

 

Since 
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∑22𝑘
∞

𝑘=1

((𝑟𝑛|𝑧|)
2(2𝑘−1)𝛽) ≥

1

2

1

(1 − (𝑟𝑛|𝑧|)
2𝛽)2

 

(see, [222]) and  1 − (𝑟𝑛|𝑧|)
2𝛽~1 − (𝑟𝑛|𝑧|)

2   we get that 

∫
𝑑𝜇(𝑧)

(1 − (𝑟𝑛|𝑧|)
2)𝑝

≤ 2𝑃/2

𝐷

𝐾𝑃𝛽‖𝑖‖𝑃𝛽. 

Thus (v) is obtained from thae above inequality and Fatou’s Lemma. 

To prove (v) ⟹ (ii), suppose (v) is true. Then 

‖𝑓𝑛.𝑙‖𝐷𝑝𝛽(𝜇)
𝑃𝛽

=  ∫|𝑓′(𝑧)|𝑃𝛽 𝑑𝜇(𝑧) ≤  ‖𝑓𝑛.𝑙‖𝔅1/𝛽
𝑃𝛽

∫
𝑑𝜇(𝑧)

(1 − |𝑧|2)𝑝
.

𝐷

 

Thus: 𝔅1/𝛽 → 𝐷𝑝𝛽(𝜇 ) is bounded. To see that 𝑦𝑗 is operator is moreover compact, let  

{𝑓𝑛} ⊂ 𝔅
1/𝛽  be such that   ‖𝑓𝑛‖𝔅1/𝛽 ≤ 1 . We must show that {𝐶𝜑𝑓𝑛}  has a subsequence 

that converges in 𝐷𝑝𝛽(𝜇 )  . It is easy to show that for every 𝑓 ∈ 𝔅1/𝛽. 

|𝑓(𝑧)| ≤ |𝑓(0)| + ‖𝑓‖𝔅1/𝛽(1 − |𝑧|)
−1/𝛽 

Thus there is a subsequence of {𝑓𝑛}  that converges uniformly on compact subsets of  D  to 

an analytic function 𝑓. By passing to this subsequence, we may assume that the 

sequence {𝑓𝑛}   itself converges to 𝑓. We get also that 𝑓 ∈ 𝔅1/𝛽 and ‖𝑓‖𝔅1/𝛽 ≤ 1. Thus  

𝑓 = 𝑖𝑓 ∈ 𝐷𝑝𝛽(𝜇 )  and it suffices to show that  

lim
𝑛→∞

‖𝑓𝑛 − 𝑓‖𝐷𝑝𝛽(𝜇 ) = 0. 

This is consequence of the Lebesgue Dominated convergence theorem, since  
(𝑓𝑛 − 𝑓   )

′(𝑧) → 0    pointwise in D and 

|(𝑓𝑛 − 𝑓   )
′(𝑧)|𝑝𝛽 ≤ 2𝑝𝛽 (‖𝑓𝑛‖𝔅1/𝛽

𝑃𝛽
+ ‖𝑓‖

𝔅1/𝛽
𝑃𝛽

) (1 − |𝑧|2)−𝑝 ≤ 2𝑝𝛽+1(1 − |𝑧|2)−𝑝. 

Thus we have shown that (v) implies (ii) and the proof is complete. 

      Now we can derive our main theorem from Theorem (6.1.3). 

Theorem (6.1.4)[214]: Let 𝜑:𝐷 → 𝐷   be an analytic self map, let  0 < 𝑝 < ∞, −1 < 𝑞 <
∞ and 1 ≤ β < ∞. Then the following statements are equivalent: 

(i) 𝐶𝜑: 𝔅
1/𝛽 → 𝐵𝑝𝛽,𝑞                       Is bounded 

(ii) 𝐶𝜑: 𝔅
1/𝛽 → 𝐵𝑝𝛽,𝑞                      Is compact; 

(iii) 𝐶𝜑: 𝔅0
1/𝛽

→ 𝐵𝑝𝛽,𝑞                       Is bounded. 

(iv) 𝐶𝜑: 𝔅0
1/𝛽

→ 𝐵𝑝𝛽,𝑞                       Is compact 

(v) ∫
|𝜑′(𝑧)|

𝑝𝛽
(1−|𝑧|2)𝑞

(1−𝜑(𝑧)2)𝑝𝑑𝑚(𝑧)<∞
.

𝐷
 

Proof. We make the following change of variables  

∫|(𝑓 ∘ 𝜑)′(𝑧)|𝑝𝛽

𝐷

(1 − |𝑧|2)𝑞𝑑𝑚(𝑧) = ∫|𝑓′(𝑤)|𝑝𝛽

𝐷

𝐺𝜑(𝑤)𝑑𝑚(𝑧).          (2) 

where 

𝐺𝜑(𝑤) =  ∑ |𝜑′(𝑧)|𝑝𝛽−2

𝜑(𝑧)=𝑤

(1 − |𝑧|2)𝑞 . 
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Let 𝜇𝜑 be the measure on 𝐼) defined by 𝜇𝜑(𝐸) = ∫ 𝐺𝜑𝐸
(𝑤)𝑑𝑚(𝑤). Then, by (2),𝐶𝜑 is 

bounded from 𝔅1 𝛽⁄  to 𝐵𝑝𝛽,𝑞 if and only if the inclusion map : 𝔅1 𝛽⁄ → 𝐷𝑝𝛽(𝜇𝜑) is a 

bounded operator. By Theorem (6.1.3), this is equivalent to 

∫  
𝐷

𝑑𝜇𝜑(𝑤)

(1 − |𝑤|2)𝑝 
< ∞. 

If we change variables back, we get 

∫  
𝐷

𝑑𝜇𝜑(𝑤)

(1 − |𝑤|2)𝑝
= ∫  

𝐷

|𝜑′(𝓏)|𝑝𝛽

(1 − |𝜑(𝓏)|2)𝑝
 (1 − |𝓏|2)𝑞 𝑑𝑚(𝓏) < ∞. 

Thus Theorem (6.1.4) is a direct consequence of Theorem (6.1.3). 

We extend the result of Corollary (6.1.1) to the case 𝑝 = 1. Let 𝐻∞ be the space of 

all bounded analytic functions 𝑓 on the unit disk with norm ‖ 𝑓‖𝐻∞ = sup
𝑧∈𝐷

  |𝑓(𝓏)|. We 

may define the hyperbolic Hardy class 𝐻∞  as the set of all analytic self-maps 𝜑: 𝐷 → 𝐷 

satisfying ‖𝜑‖𝐻∞ < 1, which means that the hyperbolic distance from 𝜑(𝓏). to 0 is 

uniformly bounded. 

Recall that the minimal Besov space 𝐵1 is defined as the set of analytic functions 𝑓 

on 𝐷 which are of the forms 

𝑓(𝓏) = ∑  

∞

𝑘=1

𝜆𝑘 𝜎𝑎𝑘(𝑧),                                                                  (3) 

where |𝑎𝑘| ≤ 1, 𝜎𝑎𝑘(𝑧) = (𝑎𝑘 − 𝑧)  ⁄ (1 − 𝑎 ̅𝑘𝑧). and ∑  ∞
𝑘=1 |𝜆𝑘| < ∞.The norm of f  is 

given by 

‖𝑓‖𝐵1 = inf  {∑  |𝜆𝑘|: (3) holds } 

(see [215]). It is known that, if 𝑓(0) = 𝑓′(0) = 0, then 

‖𝑓‖𝐵1~∫  
𝐷

|𝑓′′(𝑧)|𝑑𝑚(𝑧) 

(see [215]. It is easy to see that 𝐵1 ⊂ 𝐵𝑝  ⊂ 𝔅 for 1 < 0𝑝 < ∞. In fact, 𝐵1 is the minimal 

Möbius invariant Banach space and the Bloch space 𝔅 is the largest Möbius invariant 

Banach space under some reasonable assumptions (see [215] and [227]). We give the 

following result: 

Theorem (6.1.5). Let 𝜑: 𝐷 → 𝐷 be an analytic self map. Then the following statements are 

equivalent: 

(i) 𝐶𝜑 ∶ 𝔅 → 𝐵1 is bounded;  

(ii) 𝐶𝜑 ∶ 𝔅 → 𝐵1 is compact; 

(iii) 𝐶𝜑:𝔅 → 𝐵1 is bounded;  

(iv) 𝐶𝜑 ∶  𝐵 ª𝐵 is compact;  

(v) 𝜑 ∈ 𝑏2
ℎ𝑎𝑛𝑑 ∫  𝐷 |𝜑′′(𝑧)|  ⁄ (1 − |𝜑(𝑧)|)2 𝑑𝑚 (𝑧) < ∞; 

(vi) 𝜑 ∈ 𝐵1 ∩ 𝐻ℎ
∞. 

Proof. As before, it is obvious that (ii)⟹(i) ⟹(iii) and (ii) ⟹(iv) ⟹ (iii). Thus the proof 

will be complete if we prove (iii) ⟹(vi) ⟹ (vi) ⟹ (ii). 
Suppose (iii) is true. Since 𝑓0 (𝑧) = 𝑧 ∈ 𝔅0 , we get 𝜑 = 𝑓0 ∘ 𝜑 ∈  𝐵1. It is obvious 

that 𝐵1 ;𝐻∞. Thus Cw : 𝐵0
 ∩ 𝐻ℎ

∞ is bounded. Thus, from the Closed Graph Theorem (6.1.2) 

and the fact that 𝐵0 contains unbounded functions it is easy to see that 𝜑 ∈ 𝐻ℎ
∞. Thus we 

have got (iii) implies (vi).  
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To prove (vi) ⟹(v), let 𝜑 ∈ 𝐵1 ∩ 𝐻ℎ
∞. Thus ‖𝜑‖𝐻∞ = 𝛿 < 1. Since 𝜑 = 𝐵1 ⊂ 𝐵2, 

we have 

∫  
𝐷

|𝜑′(𝑧)|2

(1 − |𝜑(𝑧)|2)2
 𝑑𝑚(𝑧) <

1

(1 − 𝛿2)2
 ∫  
𝐷

 |𝜑′(𝑧)|2 𝑑𝑚 (𝑧) ≤
𝑀1

(1 − 𝛿2)2
≤ ∞, 

and 

∫  
𝐷

|𝜑′′(𝑧)| 

1 − |𝜑(𝑧)|2
𝑑𝑚(𝑧) <

1

1 − 𝛿2
 ∫  
𝐷

 |𝜑′′(𝑧)|  𝑑𝑚 (𝑧) ≤
𝑀2

1 − 𝛿2
≤ ∞.  

So we get that (vi) implies (v). 

Finally, suppose that (v) is true. Let 𝑓 ∈ 𝔅0. Without loss of generality, we may 

suppose that 𝑓(0) = 𝑓′(0) = 0. Since ‖ 𝑓‖𝔅 ∽ sup
𝑧∈𝐷

  | 𝑓′′(𝑧)|(1 − |𝑧|2)2 (see for 

example, [154]), by (v) we get 

‖𝐶𝜑𝑓‖𝐵1
≤ 𝐶∫  

𝐷

 |(𝑓 ∘ 𝜑)′′(𝑧)| 𝑑𝑚 (𝑧)

≤ 𝐶 (∫  
𝐷

|𝑓′′(𝜑(𝑧))||𝜑′(𝑧)|2𝑑𝑚(𝑧) + ∫  
𝐷

|𝑓′(𝜑(𝑧))||𝜑′′(𝑧)|𝑑𝑚(𝑧))

≤ 𝐶‖𝑓‖𝔅 (∫  
𝐷

|𝜑′(𝑧)|2

(1 − |𝜑(𝑧)|2)2
)  𝑑𝑚(𝑧) + ∫  

𝐷

 |
𝜑′′(𝑧)

1 − |𝜑(𝑧)|2
𝑑𝑚(𝑧))

≤ 𝐶𝑀‖𝑓‖𝔅.   
Thus 𝐶𝜑 ∶  𝔅0 → 𝐵1 is bounded. Now by a similar argument as in the proof of Theorem 

(6.1.3) we can prove that 𝐶𝜑 is moreover compact from 𝔅0 to 𝐵1 .We left the details. Thus 

(v) implies (ii) and the proof is complete. 

The equivalence of boundedness and compactness for composition operators from 

Bloch type spaces to Besov type spaces which appears in Theorem (6.1.4) and Theorem 

(6.1.5) is not an accidental phenomenon. It can be explained from general Banach space 

theory. To see this, let us first look at some basic facts on the a-Bloch spaces. 

Lemma (6.1.6). For 0 < 𝛼 < ∞, the dual space of the Little a-Bloch space 𝔅0
𝛼  is 

isomorphic with the Bergman space 𝐿𝑎
1 , and the dual space of 𝐿𝑎

1  is isomorphic with the 𝛼-

Bloch space 𝔅𝑎. 

For a proof, see [235]. 

Lemma (6.1.7). The Bergman space 𝐿𝑎
1  has the Schur Property, that is, every weakly 

con¨ergent sequence is norm-convergent. 

This is because that the Bergman space 𝐿𝑎
1  is isomorphic to the sequence space 𝑙1 (see [231] 

and the later one has the Schur Property (see, for example, [231] or [233]). 

Since 𝔅𝑎 is the dual of 𝐿𝑎
1 , and the point evaluation are continuous in 𝔅𝑎, obviously 

we have the following result. 

Lemma (6.1.8). In the space 𝔅𝑎, weak-star convergence implies pointwise convergence. 

Since 𝔅0
𝛼 is weak-star dense in 𝔅𝛼 (see, for example, [232]), we can easily prove the 

following result using Lemma (6.1.8). 

Theorem (6.1.9). (‘‘Big-oh’’ vs ‘‘Little-oh’’). If 𝑌 is a Banach space of analytic functions 

and if 𝐶𝜑 ∶ 𝔅0
𝛼 → 𝑌 is bounded, then 𝐶𝜑

∗∗ = 𝐶𝜑 on 𝔅𝛼. 

The details of the proof are left. As a direct consequence of Theorem (6.1.9) we easily get 

Corollary (6.1.10). Let 𝑌 be a Banach space of analytic functions on the unit disk 𝐷. 

(i) If 𝐶𝜑 ∶  𝔅0
𝛼 → 𝑌 is bounded, then 𝐶𝜑: 𝔅

𝛼 → 𝑌∗∗ is bounded. 
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(ii) If 𝐶𝜑 ∶  𝔅0
𝛼 → 𝑌 is compact, then 𝐶𝜑 ∶  𝔅

𝛼 → 𝑌∗∗  is compact. 

If in the above corollary, 𝑌 is a reflexive space, then 𝑌∗∗ = 𝑌 and we get that 𝐶𝜑 ∶  𝔅0
𝛼 → 𝑌 

is bounded (compact) if and only if 𝐶𝜑 ∶  𝔅
𝛼 → 𝑌 is bounded (compact). Since for 1 <

𝑝𝛽 < ∞, the Besov space 𝐵𝑝𝛽 ,𝑞 is reflexive, being a closed subspace of a reflexive 

space 𝐿𝑝𝛽(𝜇), the equivalence of (i) and (iii) and the equivalence of (ii) and (iv) in Theorem 

(6.1.4) are direct consequences of this corollary. 

To see how to get the equivalence between boundedness and compactness, we give the 

following 

Theorem (6.1.11). General compactness theorem. Suppose 𝑋 or 𝑌 is a reflexive space and 

𝑌 is a space with the Schur Property. Then every bounded operator 𝑇: 𝑋 →  𝑌 is compact.  

Proof. If 𝑇: 𝑋 →  𝑌 is bounded and 𝑋 or 𝑌 is a reflexive Banach space then 𝑇 is weakly 

compact see, for example, [218].  

Since 𝑌 has the Schur property, it is clear that 𝑇 is compact.  

As an application we give the following:  

Corollary (6.1.12). Let 0 <  𝑎 < ∞ and let 𝑌 be a reflexive Banach space of analytic 

functions.  

(i) If 𝑇: ℬ0
𝑎  → 𝑌 is a bounded operator, then 𝑇 is also compact.  

(ii) If 𝑇: ℬ 
𝑎  → 𝑌 is a weak-star continuous operator, then 𝑇 is also compact.  

Proof. (i) Suppose 𝑇: ℬ 0
𝑎  → 𝑌 is bounded. By Lemma (6.1.6), 𝑇∗: 𝑌∗ → (ℬ0

𝑎)∗ = 𝐿𝑎
1  is 

bounded. Lemma (6.1.7) and Theorem (6.1.11) implies that 𝑇∗ is 0 a compact, and so is 𝑇.  
(ii) Suppose 𝑇: ℬ 

𝑎  → 𝑌 is a weak-star continuous operator. Then it is the adjoint of some 

bounded operator 𝑆: 𝑌∗ → (ℬ0
𝑎)∗ =   𝐿𝑎

1  (see [218].) Note that since. 𝑌 is reflexive, the 

predual space of 𝑌  is same as the dual space 𝑌∗. Again, by Theorem (6.1.11), 𝑆 is compact, 

and so is 𝑇. Let 1 <  𝑝 < ∞ and −1 <  𝑞 < ∞. As a closed subspace of a reflexive space 

𝐿𝑝(𝜇), 𝐵𝑝,𝑞 is reflexive. Thus, for the case 1 <  𝑝𝛽 < ∞, the equivalence of (iii) and (iv) in 

Theorem (6.1.4) is a direct consequence of Corollary (6.1.12)(i). The equivalence of (i) and 

(ii) in Theorem (6.1.4) for 1 <  𝑝𝛽 < ∞, follows from Corollary (6.1.12) ii and the 

following lemma.  

Lemma (6.1.13). Let 0 <  𝑎 < ∞ and let 𝑌 be a reflexive Banach space of analytic 

functions. If 𝐶𝜑 ∶ ℬ
𝑎 →  𝑌 is bounded, then it is weak-star continuous.  

Proof. Let 𝐶𝜑 ∶ ℬ
𝑎 →  𝑌 be bounded. Since ℬ0

𝑎 ⊂ ℬ𝑎 , we see that 𝐶𝜑 ∶ ℬ
𝑎 →  𝑌 is 

bounded. Theorem (6.1.9) implies that 𝐶𝜑
∗∗ = 𝐶𝜑 on ℬ𝑎 . Let 𝑓𝑛  →  𝑓 in the weak-star 

topology of ℬ𝑎 and let ℎ ∈  𝑌∗. Because 𝐶𝜑 ∶ ℬ0
𝑎 →  𝑌 is bounded, we get that 𝐶𝜑

∗ ∶  𝑌∗ →

(ℬ0
𝑎 )∗ is bounded and so 𝐶𝜑

∗  ℎ ∈ (ℬ0
𝑎)∗ =  𝐿𝑎

1  . Thus  

lim
𝑛→∞

 |〈ℎ, 𝐶𝜑 (𝑓 −  𝑓)〉| =  lim
𝑛→∞

 |〈ℎ, 𝐶∗∗𝜑 (𝑓𝑛 −  𝑓)〉| = lim
𝑛→∞

 |〈ℎ, 𝐶𝜑
∗  𝑓𝑛 −  𝑓〉| = 0  

Thus 𝐶𝜑 is weak-star continuous.  

Similar reasoning also applies to Theorem (6.1.5), and to Theorem (6.1.4) for the case 

𝑝𝛽 =  1 though the range spaces there are not reflexive. To see this, let 𝑐0 denote the space 

of sequences  { 𝑎𝑛} for which 𝑎𝑛 →  0, and, for 0 ≤  𝑝 <  ∞ ,let l denote the space of 

sequence an n such that ||{𝑎𝑛}||𝑝
𝑝
= ∑  ∞

𝑛=1 |𝑎𝑛|
𝑝 < ∞. The norm of a sequence {𝑎𝑛} is 

given by ||{𝑎𝑛}||∞ = sup
𝑛
|𝑎𝑛|in 𝑐0 and ||{𝑎𝑛}||𝑝

 
in 𝑙𝑝. 

Theorem (6.1.14). Let 1 ≤ 𝑝 < 𝑞 < ∞. Then every bounded operator from 𝑙𝑞 to 𝑙𝑝p is 

compact. The same is true for bounded operators from 𝑐0 to 𝑙𝑝 .  
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For a proof, see [223].  

Since the Besov spaces 𝐵1  and 𝐵1,𝑞 are isomorphic to the Bergman space 𝐿𝑎
1  , which 

is isomorphic to 𝑙1 , and, as the pre-dual space of 𝐿𝑎
1  , the a a Little 𝑎 −Bloch space ℬ0

𝑎 is 

isomorphic to 𝑐0 , we see that the equivalences of (iii) and (iv) in Theorem (6.1.5) and 

Theorem (6.1.4) in the case 𝑝𝛽 =  1 are direct consequences of Theorem (6.1.14).  

The other equivalences of Theorem (6.1.5) and Theorem (6.1.4) in the case 𝑝𝛽 =
 1 can be also derived from Theorem (6.1.14), although more considerations are needed 

here.  

We discuss results concerning Hardy spaces. Recently, E. G. Kwon characterized in 

[80] the boundedness of the composition operators from the Bloch space B to Hardy spaces 

𝐻2𝑝 , 1 ≤  𝑝 < ∞ . His result involved the hyperbolic Hardy classes 𝐻ℎ
𝑝
 . Following S. 

Yamashita [204] and [89], an analytic self-map 𝜑 on the unit disk is said to be in the 

hyperbolic Hardy class 𝐻ℎ
𝑝
 , if  

sup
0<𝑟<1

∫  

2𝜋

0

 (log 
1

1 − |𝜑(𝑟𝑒𝑖𝜃)|2
)
p

dθ < ∞.  

Let 𝜑ℎ = |𝜑′|/(1 − |𝜑|2) be the hyperbolic derivative of the analytic self-map 

𝜑: 𝐷 →  𝐷. 𝐸. 𝐺. Kwon proved the following result in [80].  

Theorem (6.1.15). If 𝜑: 𝐷 → 𝐷 is analytic and 1 ≤ 𝑝 < ∞ then the following statements 

are equivalent:  

(i)𝐶𝜑 is bounded from the Bloch space ℬ to 𝐻2𝑝;  

(ii) 𝜑 ∈ 𝐻ℎ
𝑝

 

(iii) ∫  
2𝜋

0
(∫  

1

0
(𝜑ℎ(𝑟𝑒𝑖𝜃))

2
(1 − 𝑟)𝑑𝑟)

𝑝

𝑑𝜃 < ∞. 

By Theorem (6.1.9) and Corollary (6.1.12), we immediately get the following result. 

Theorem (6.1.16). Let 𝜑: 𝐷 →  𝐷 be an analytic self map and let 1 ≤ 𝑝 < ∞. Then the 

following statements are equivalent:  

(i) 𝐶𝜑 ∶ ℬ →  𝐻
2𝑝 𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑;  

(ii) 𝐶𝜑 ∶ ℬ →  𝐻
2𝑝  𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡;  

(iii) 𝐶𝜑 ∶ ℬ0  →  𝐻
2𝑝  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑;  

(iv) 𝐶𝜑 ∶ ℬ →  𝐻
2𝑝  𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑐𝑡;  

(v) 𝜑 ∈  𝐻ℎ
𝑝
 ;  

(vi)  ∫  
2𝜋

0
(∫  

1

0
𝜑ℎ(𝑟𝑒𝑖𝜃))2(1 − 𝑟) 𝑑𝑟)

𝑝
𝑑𝜃 < ∞.  

We note that the case 𝑝 =  1 has been proved by Wayne Smith and [229].  

In [222], H. Jarchow and R. Riedl got a criterion for the composition operators bounded 

from an a-Bloch space to a Hardy space. We restate Corollary 4 of [222] as follows:  

Theorem (6.1.17). Let 𝜑: 𝐷 →   𝐷 be an analytic self map, let 1 ≤  𝛽 < ∞ and 0 <  𝑝 <

∞. Then 𝐶𝜑 ∶ ℬ
1+1/𝛽  →  𝐻𝑝𝛽 is bounded if and only if  

sup
0<𝑟<1

 ∫  
2𝜋

0

(
1

1 − |𝜑(𝑟𝑒𝑖𝜃)|2
)
𝑝

𝑑𝜃 < ∞  

This result can be improved as follows:  

Theorem (6.1.18). Let 𝜑: 𝐷 → 𝐷 be an analytic self-map, let 1 ≤ 𝛽 < ∞ and 0 < 𝑝 < ∞. 

Then the following statements are equivalent:  

(i) 𝐶𝜑: ℬ
1+1 𝛽⁄  → 𝐻𝑝𝛽   is bounded;  
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(ii) 𝐶𝜑: ℬ
1+1 𝛽⁄  → 𝐻𝑝𝛽is compact;  

(iii) 𝐶𝜑: ℬ0
1+1 𝛽⁄

 → 𝐻𝑝𝛽 s bounded; 

(iv) 𝐶𝜑: ℬ0
1+1 𝛽⁄

 → 𝐻𝑝𝛽 is compact;  

(v) sup
0<𝑟<1

 ∫  
2𝜋

0
(1 1 − |𝜑(𝑟𝑒𝑖𝜃)|

2
⁄ )

𝑝

𝑑𝜃 < ∞.  

This can be proved either by a similar method as in the proof of Theorem (6.1.4), or, 

in the case 1 <  𝑝𝛽 < ∞, directly from Theorem (6.1.4), Theorem (6.1.9) and Corollary 

(6.1.12). Note that, however, unlike the Bergman space 𝐿𝑎
1  , the Hardy space 𝐻1  is not 

isomorphic to the sequence space 𝑙1 Žsee [231]. Thus Theorem (6.1.14) cannot be used in 

the case 𝐻1 .  

The results of Theorem (6.1.16) can be viewed as the limiting case 𝛽 → ∞ of 

Theorem (6.1.18). Note that the missing of 𝛽 in (𝑣) means that if one of (𝑖) − (𝑖𝑣) holds 

for some 𝛽 ,1 < 𝛽 < ∞then it will hold for all 𝛽, 1 ≤ 𝛽 < ∞.  
By Theorem (6.1.5), we see that, if a composition operator 𝐶𝜑 ∶ ℬ0 → ℬ1is compact, then 

||𝜑||
𝐻∞

<  1. Since for 1 <  𝑝 < ∞, 𝐵1 ⊂  𝐵𝑝 ⊂  ℬ0 , we may ask a natural question: for 

1 <  𝑝 < ∞, are there some analytic self-maps w: 𝐷 →  𝐷 such that ‖𝜑‖𝐻∞ = 1 and 𝐶𝜑 ∶

ℬ →  𝐵𝑝 are compact? The answer is positive. In fact, for 1 < 𝑝1 < 𝑝2 < ∞, we will 

construct an analytic and univalent self map 𝜑 of 𝐷 such that ‖𝜑‖𝐻∞ = 1, 𝐶𝜑 ∶ ℬ → 𝐵𝑝2   is 

compact, while 𝐶𝜑 ∶ ℬ →   𝐵𝑝1  is not compact. 

We first give a geometric criterion for a univalent function 𝜑 ∈  𝐵𝑝
ℎ  

Theorem (6.1.19). Let 𝜑: 𝐷 →  𝐷 be an analytic and univalent self map, let 𝐺 = 𝜑(𝐷) and 

let 1 <  𝑝 < ∞. Then 𝜑 ∈ 𝐵𝑝
ℎ if and only if.  

∫  

 

𝐺

𝛿𝐺
 (𝑤)𝑝−2

(1 − |𝑤|2)
𝑑𝑚(𝑤) < ∞,                                             (4) 

where 𝛿𝐺(𝑤) is the Euclidean distance between w and the boundary of 𝐺.  

Proof. The result is easily obtained from Corollary (6.1.1) by using the Koebe distortion 

theorem which says 𝛿𝐺(𝜑(𝓏 ))~(1 − |𝓏|
2)|𝜑′(𝓏)| see, for exmaple, [144] and changing of 

variables 𝜑(𝓏) = 𝑤.  
Example (6.1.20). Let 1 < 𝑝1 < 𝑝2 < ∞. Then there exists an analytic and univalent self-

map 𝜑 of 𝐷 such that  

(i) ‖𝜑‖𝐻∞ = 1 ;  
(ii) 𝐶𝜑: ℬ → 𝐵𝑝2  (or ℬ → 𝐵𝑝2) is compact;  

(iii) 𝐶𝜑: ℬ → 𝐵𝑝1(or ℬ → 𝐵𝑝2) is not compact.  

Proof. Suppose 1 <  𝑝1 < 𝑝2 < ∞. For any integers 𝑘 ≥  1, let 𝑟𝑘 = 1 − 2
−𝑘, 𝜃𝑘 =

2−𝑘𝑘−1 (𝑝1−1)⁄ , and let 𝐸 (𝑘) be the following polar rectangulars in 𝐷: 

 𝐸(𝑘) = {𝑤 = 𝑟𝑒𝑖𝜃 ∈ 𝐷: 𝑟𝑘 ≤ 𝑟 ≤ 𝑟𝑘+1, −𝜃𝑘 ≤ 𝜃 ≤ 𝜃𝑘 

Let 𝐸 be the interior of ⋃  ∞
𝑘=1 𝐸 (𝑘) Then 𝐸 is a simple connected region of zoom lens 

shape along the real axis. Let 𝜑 be a Riemann map from 𝐷 onto 𝐸. We claim that 𝜑 is the 

required map. Obviously, we have ‖𝜑‖𝐻∞ = 1. Thus, by Corollary (6.1.1), we need only 

check the condition (4) in Theorem (6.1.19) for  𝑝1 and 𝑝2 we first note that, if 𝑤 =  𝑟𝑒𝑖𝜃  ∈
 𝐸 ∩ 𝐸 (𝑘) . and 𝜃 ≥ 0, then clearly we have  

𝛿𝐸(𝑤) ≤ 𝑟(𝜃𝑘 − 𝜃). 
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Since for 𝑟𝑒𝑖𝜃  ∈  𝐸(𝑘) we have 1/2 <  𝑟 < 1 and 1 − 𝑟2~2−𝑘   , we get that for 

every𝑝, 1 < 𝑝 < ∞, 

∫  

𝑟𝑘+1

𝑟𝑘

 
𝑟𝑝−1

(1 − 𝑟2)𝑝
𝑑𝑟~2𝑘𝑝  ∫  

𝑟𝑘+1

𝑟𝑘

𝑑𝑟 = 2𝑘𝑝(2−𝑘 − 2−𝑘−1) = 2𝑘𝑝−𝑘−1   .                     (5) 

 

Thus, by symmetricity and (5),  

𝐼𝐸 ≔ ∫  

 

𝐸

𝛿𝐸
𝑝 
 −2(𝑤)

(1 − |𝑤|2)𝑝
𝑑𝑚(𝑤) = ∑  

∞

𝑘=0

∫  

 

𝐸(𝑘)

𝛿𝐸
𝑝 
 −2(𝑤)

(1 − |𝑤|2)𝑝
𝑑𝑚(𝑤)

≤ 2∑  

∞

𝑘=0

∫  

𝑟𝑘+1 

𝑟𝑘

∫  

 𝜃𝑘

0

 
(𝑟(𝜃𝑘 − 𝜃))

𝑝−2

(1 − 𝑟2)𝑝
 𝑟𝑑𝜃~∑  

∞

𝑘=1

2𝑘𝑝−𝑘∫  

 𝜃𝑘

0

(𝜃𝑘 − 𝜃)
𝑝−2𝑑𝜃

=
1

𝑝 − 1
∑  

∞

𝑘=1

2𝑘(𝑝−1)𝜃𝑘
𝑝−1

=
1

𝑝 − 1
∑  

∞

𝑘=1

𝑘−(𝑝−1)/(𝑝1−1).                              (6) 

For completing the proof, we need a lower estimate of 𝐼𝐸(𝑝). For this E purpose, let 𝐸′(𝑘) be 

the subset of 𝐸 (𝑘) defined by  

𝐸’ (𝑘) = { 𝑟𝑒𝑖𝜃  ∈ 𝐷: 𝑟𝑘 ≤ 𝑟 ≤  𝑟𝑘+1, −𝜃𝑘+2 ≤ 𝜃 ≤ 𝜃𝑘+2}  

and let 𝐸′ be the interior of ⋃  ∞
𝑘=1 𝐸′(𝑘) It is obvious that, for any 𝑤 = 𝑟𝑒𝑖𝑟𝑒𝑖𝜃  ∈ 𝐸′(𝑘) 

𝛿𝐸(𝑤) ≥ 𝑟𝑠𝑖𝑛(𝜃𝑘+2 − 𝜃)~𝑟(𝜃𝑘+2 − 𝜃). 
Using this estimate and (5), by a similar calculation as in (6), we have, for any 𝑝, 0 <  𝑝 <
∞ ,  

𝐼𝐸(𝑝) ≥ ∫  

 

𝐸′

𝛿𝐸
𝑝−2(𝑤)

(1 − |𝑤|2)
𝑑𝑚(𝑤) 

≥
𝐶

𝑝 − 1
∑  

∞

𝑘=1

(𝑘 + 2)−(𝑝−1)/(𝑝1−1) ~∑  

∞

𝑘=1

𝑘−(𝑝−1)/(𝑝1−1).                (7) 

Now (6) and (7) mean that for any 𝑝, 0 < 𝑝 < ∞, 

𝐼𝐸(𝑝) ~∑  

∞

𝑘=1

𝑘−(𝑝−1)/(𝑝1−1).   

It follows that 𝐼𝐸  (𝑝)  is finite if 𝑝 =  𝑝2 >  𝑝1 and infinite if 𝑝 =  𝑝1 . Thus Corollary 

(6.1.1) and Theorem (6.1.19) implies that 𝐶𝜑 ∶ ℬ → ℬ𝑝2  is compact but 𝐶𝜑 ∶ ℬ → ℬ𝑝1 is not 

compact.  

Let 𝐸 (𝑎𝑛) = ⋃  ∞
𝑘=1 𝐸(𝑛, 𝑘) . Then each 𝐸 (𝑎𝑛) is a zoom lens shape region in 𝐷 

along the radial direction 𝑡𝑛 . It is easy to see that, for 𝑛1  ≠  𝑛2 , 𝐸 (𝑎𝑛) ∩ 𝐸 (𝑎𝑛) =⊘ .Set 

𝐺∗ =  �̅�1/2 ∪ (⋃  

∞

𝑛=1

𝐸(𝑎𝑛))  

and let 𝐺 be the interior of 𝐺∗. Then 𝐺 is a simple connected domain in 𝐷 and  ð𝐺 ∩  ð𝐷 =
{ 𝑎𝑛} , which is infinite. Let 𝜑 be a Riemann map from 𝐷 onto 𝐺, then a similar calculation 

as in the Example shows that  
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 ∫  

 

𝐸(𝑎𝑛)

𝛿𝐺
𝑝2
−2

(𝑤)

(1 − |𝑤|2)𝑝2
 𝑑𝑚(𝑤)~𝑛−𝛽(𝑝2−1)   

Since 𝛽 =  𝑚𝑎𝑥 (2, 2 /(𝑝2 −  1)) , we have 𝛽 (𝑝2 −  1 )  ≥ 2. Note that the  integral over 

𝐷1
2

̅̅ ̅ is finite. Thus taking the sum of above integrals over 𝑛 we easily see that  

∫  

 

𝐺

𝛿𝐺
𝑝2
−2

(𝑤)

(1 − |𝑤|2)𝑝2
𝑑𝑚(𝑤) < ∞, 

and so 𝐶𝜑 ∶ ℬ → ℬ𝑝2  is compact. But as in the Example we see that for any 𝑛,  

∫  

 

𝐸(𝑎𝑛)

𝛿𝐺
𝑝2
−2

(𝑤)

(1 − |𝑤|2)𝑝1
𝑑𝑚(𝑤) = ∞ 

Thus 𝐶𝜑 ∶ ℬ → ℬ𝑝1 is not compact.  

Wayne Smith pointed out to the author that it is very easy to construct examples for 

answering the above question by using [19]. All that is required is to construct a simply 

connected subset 𝐺 of 𝐷 such that  
𝛿𝐺
 (𝑤)

(1 − |𝑤| )
→ 0                                                            (8)  

and take a Riemann map 𝜑 onto 𝐺. Theorem (6.1.4) of [19] shows that 𝐶𝜑 is w compact on 

ℬ0, and clearly 𝐺 can intersect 𝜕𝐷 in infinitely many points.  

In fact, a much stronger example is given by Wayne Smith in [228]. It is proved that 

there is an analytic and univalent self-map 𝜑 of 𝐷 such that 𝐶𝜑 is compact on ℬ0, while 

𝜑( 𝐷)̅̅ ̅̅ ̅̅ ̅̅  ∩  ð𝐷 is the whole unit circle ð𝐷.  

Section (6.2): 𝓝𝜶  to the Bloch Space to  𝓠𝜷 

       For ∆ be the unit disk  {𝑧 ∈ ℂ: |𝑧| < 1}   in the complex plane, and let ℋ (∆)  be the 

space of all analytic functions on ∆. 

       Any analytic map 𝜙: ∆→ ∆  gives rise to an operator  𝐶𝜙:ℋ (∆) →  ℋ (∆)  defined 

𝐶𝜙𝑓 = 𝑓 ∘ 𝜙, the composition operator induced by  𝜙  . 

       One of the central problems on composition operators is  to know when    𝐶𝜙 maps 

between two subclasses of  ℋ (∆)  and in fact to relate function theoretic properties of  𝜙    

to operator- theoretic properties of  𝐶𝜙 . This problem is addressed here for the weighted 

Nevanlinna, the Bloch and the   𝓠 spaces with respect to boundedness and compactness  of 

the operator. (See for example [245], [247], [121], [198], [232], and [253] ).  

       For each  𝛼 ∈ (−1,∞)   , let  𝓝𝜶 be the space of all functions   𝑓 ∈ ℋ (∆)     satisfying 

𝑇𝛼(𝑓) =  
1 + 𝛼

𝜋
∫[𝑙𝑜𝑔+[𝑓(𝑧)]]

∆

(1 + |𝑧|2)𝛼 𝑑𝑚(𝑧) < ∞. 

Here and after wards,  𝑑𝑚  means the usual element of the area measure on    ∆, and  

𝑙𝑜𝑔+𝑥 𝑖𝑠 log 𝑥 𝑖𝑓 𝑥 > 1 𝑎𝑛𝑑 0 𝑖𝑓 0 ≤ 𝑥 ≤ 1.  
       From 𝑙𝑜𝑔+𝑥 ≤  log(1+x) ≤ 1 + 𝑙𝑜𝑔+𝑥 𝑓𝑜𝑟 𝑥 ≥ 0  we see that a function 𝑓 ∈ ℋ (∆) 
belongs to 𝒩𝛼  if and only if  

‖𝑓‖𝓝𝜶
= ∫[𝑙𝑜𝑔(1 + 𝑓(𝑧))  ](1 − |𝑧|2)𝛼

∆

𝑑𝑚(𝑧) < ∞. 
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Obviously,max {‖𝑓 + 𝑔‖𝓝𝜶
, ‖𝑓𝑔‖𝓝𝜶

 } ≤ ‖𝑓‖𝓝𝜶
+‖𝑔‖𝓝𝜶

. 

       For all  𝑓, 𝑔 ∈ 𝓝𝜶 . Consequently, 𝓝𝜶 is not only a vector space but even an algebra. 

Further, by setting 

𝑑𝛼(𝑓, 𝑔) = ‖𝑓 + 𝑔‖𝓝𝜶
 . 

For   𝑓, 𝑔 ∈ 𝓝𝜶 , we obtain a translation invariant metric on  𝓝𝜶 . More is true:  ‖. ‖  𝓝𝜶
  is 

an F-norm, and under this norm, 𝓝𝜶 is an F-space, i.e. a complete metrizable topological 

vector space (cf.[244]). 

       The Bloch space B consists of all functions 𝑓 ∈ ℋ (∆)   obeying 

‖𝑓‖𝐵 =  |𝑓(0)| + 𝑠𝑢𝑝𝑧∈∆ (1 − |𝑧|
2)|𝑓′(𝑧)| < ∞. 

 ‖. ‖𝑩  Is a norm and makes B a Banach space. 

       Given  𝝎 ∈ ∆ , let 

𝜑𝜔(𝑧) =  
𝜔 − 𝑧

1 − �̅�𝑧
. 

Be a M�̈�bius transformation which exchange  𝜔 𝑎𝑛𝑑 0. Stroethoff’s idea = in the proof of 

theorems 4.1 and 4.2 in [251] yield that  𝑓 ∈ ℋ (∆) lies in B if and only if  

𝑠𝑢𝑝𝜔∈∆𝑇𝛼 (𝐶𝜑𝜔𝑓 − 𝑓(𝜔)) < ∞. 

That is to say, 𝐵 is the M�̈�bius bounded subspaces of 𝓝𝜶. 
       For  𝛽 ∈ (−1,∞)  , let  𝒬𝛽 be the class of all functions   𝑓 ∈ ℋ (∆) with 

‖𝑓‖𝒬𝛽 =  |𝑓(0)| + 𝑠𝑢𝑝𝜔∈∆ [∫|(𝐶𝜑𝜔𝑓)
′
(𝑧)|2(1 − |𝑧|2)𝛽𝑑𝑚(𝑧)]

1
2 < ∞.

∆

  

Observe that if   𝛽 ∈ (−1,0), 𝛽 = 0, 𝛽 = 1 𝑎𝑛𝑑 𝛽 ∈ (1,∞), then    𝒬𝛽 = ℂ,   𝒟 (the classical 

Dirichlet space), BMOA and B respectively (cf. [248], [Ba ], [240], [237], [252]. Of course,  

𝒬𝛽 is the M�̈�bius bounded subspaces of the weighted Dirichlet space (see also [238], [239], 

[243]. The spaces   𝒩𝛼,𝐵 𝐴𝑁𝐷  𝒬𝛽    are linked by the inclusions   𝒩𝛼, ⊃ 𝐵 ⊃ 𝒬𝛽   . Notice 

that B and 𝒬𝛽 are M�̈�bius invariant, but    𝒩𝛼, is not. 

       We are going to work with the composition operators sending ‘big’ spaces to ‘small’ 

spaces since the converse is clear. In fact,   𝐶𝜙: 𝐵 →  𝒩𝛼,   and   𝐶𝜙: 𝒬𝛽 →  𝒩𝛼,  are always 

compact ([253]), while   𝐶𝜙: 𝒬𝛽 →  𝐵, is compact if and only if   lim
|𝜙(𝑧)|→1

(1 − |𝑧|2) 

|𝜙′(𝑧)| /(1 =  |𝜙(𝑧)|2) = 0.    (cf. [247] and [198]. 

       The main results are the next three theorem. The first concerns boundedness and 

compactness of 𝐶𝜙:  𝒩𝛼, → 𝒬𝛽 . 

       Arcs in the unit circle  𝜕∆ are sets of the form  𝐼 =  {𝑧 ∈ 𝜕∆ ∶  𝜃1 ≤ arg 𝑧 < 𝜃2}   where   

𝜃1, 𝜃2 ∈ [0,2𝜋)𝑎𝑛𝑑 𝜃1 <  𝜃2    . The length of an arc    𝐼 ⊂ 𝜕∆will be denoted by [I]. The 

Carleson box based on an arc I is the set 

𝑆(𝐼) =  {𝑧 ∈ ∆: 1 −
|𝐼|

2𝜋
≤ |𝑍| < 1,

𝑧

|𝑧|
∈ 𝐼 }                              (9) 

Also for an  𝑟 ∈ (0, 1) and an analytic self-map 𝜙 of  ∆ , put Ω𝑟 = {𝑧 ∈ ∆: |𝜙(𝑧)| > 𝑟}. 
The characteristic function of a set  𝔼 ⊂ ∆ is denoted by 1𝔼 

        The third theorem deals with boundedness and compactness of  𝐶𝜙:  𝒩𝛼, → 𝒬𝛽         . 

This requite the Möbius invariant version of the generalized Nevanlinna counting function 

(cf. [232]). For 𝛽 ∈ (0,∞!) and an analytic map 𝜙: ∆→ ∆. 

       Let  
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𝑁(𝛽,𝜔, 𝑧, 𝜙) = {
∑ [1 − |𝜙𝜔(𝑣)|

2]𝛽 ,   𝑧 ∈ 𝜙(∆),

𝜙(𝑣)=𝑧

0,                                    𝑧 ∈ ∆/𝜙(∆)  

 

We denote positive constants by 𝑀,𝑀0, 𝑀1, , 𝑀2, … those  constants depend only on 

some  parameters such as    and unless a special remark is made . Also given two families  

𝑥 = (𝑥(𝜔))
𝜔∈Ω

  and 𝑦 = (𝑦(𝜔))
𝜔∈Ω

of non negative two families real numbers (or 

functions) on the given domain Ω   , we write x ≍ y if (there exists constant 𝑀1, 𝑀2 > 0   

such that  ) ,𝑀1𝑥(𝜔) ≤ 𝑦(𝜔) ≤ 𝑀2𝑥(𝜔) for all 𝜔 ∈ Ω. 
1. 𝐶𝜙:  𝒩𝛼, → 𝐵  The space ℋ (∆)  is a Fréchet space with respect to the compact-open 

toplpogy, that is, the topology of uniform convergence on compact subsets of  ∆  ; in fact  

ℋ (∆)    is even a Fréchet algebra. By Montel’s theorem, bounded sets in ℋ (∆) are 

relatively compact; accordingly, bounded sequences in ℋ (∆) admit convergent 

subsequences. Convergence in the space will be reffered to as locally uniform (𝑙, 𝑢.) 

convergence. 

     Recall that 𝒩𝛼, is a linear subspace (even a subalgebra) of  ℋ (∆)    . Note that   𝒩𝛼,  is 

a topological vector space with respect to the 𝐹-norm ‖. ‖  𝒩𝛼,. This is in marked contrast to 

the situation for the classical Nevanlinna class which is not a topological vector space [249]. 

Under  ‖. ‖  𝒩𝛼,   , the topology of    𝒩𝛼, is stronger than that of locally uniform convergence. 

This is a simple consequence of the following estimate: 

log(1 + 𝑓(𝑧)) ≤
 𝑀0‖𝑓‖  𝒩𝛼,
(1 − |𝑧|2)2+𝛼

, 𝑓 ∈   𝒩𝛼 ,                            (10) 

Where   𝑀0 > 0  is a constant depending only on 𝛼. 
       As in [251],   𝒩𝛼 ,  has B as its M�̈�bius bounded subspace. 

Proposition (6.2.1)[236]: Let   𝛼 ∈ (−1,∞)  and  𝑓 ∈ ℋ (∆)  . Then the following are 

equivalent: 

(i) 𝑓 belong to B. 

(ii) 𝑠𝑢𝑝𝜔∈∆𝑇𝛼 (𝐶𝜑𝜔∆𝑓 − 𝑓(𝜔)) < ∞. 

(iii) 𝑠𝑢𝑝𝜔∈∆‖𝐶𝜑𝜔𝑓 − 𝑓(𝜔)‖  𝒩𝛼,
< ∞. 

Proof. It suffices to show (i) ⇔ (iii), for (i) ⇔ (ii)   can be verified in a similar manner to 

proving Theorem 4.1 and 4.2 of [251]. 

       Observe that if  𝑓 is a Bloch function with  ‖𝑓‖𝐵 > 0  then for 𝑧 ∈ ∆ 

|𝐶𝜑𝜔𝑓(𝑧) − 𝑓(𝜔)| ≤
‖𝑓‖𝐵
2

 𝑙𝑜𝑔
1 + |𝑧|

1 − |𝑧|
, 

It follows that for each 𝑡 > 0, 

𝑚𝛼[𝑡] =  𝑚𝛼{𝑧 ∈ ∆: |𝐶𝜑𝜔𝑓(𝑧) − 𝑓(𝜔)| > 𝑡} ≤ 𝑀1𝑒𝑥𝑝 [−
2(𝛼 + 1)𝑡

‖𝑓‖𝐵
] 

Let now   be a Bloch function. We may assume that  ‖𝑓‖𝐵 > 0  . There is a constant  𝑀2 >
0   depending only on 𝛼 such that for each   𝜔 ∈ ∆ 

‖𝐶𝜑𝜔𝑓(𝑧) − 𝑓(𝜔)‖  𝒩𝛼,
= ∫

𝑚𝛼[𝑡]

1 + 𝑡

∞

0

𝑑𝑡 ≤ 𝑀2‖𝑓‖𝐵                          (11) 

Which proves (iii). 
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       Suppose conversely that (iii) is true, Let  𝑟 ∈ (0,1)  . If   𝑧 ∈ ∆ is such that    |𝜑𝜔(𝑧)| <
𝑟 then, by (10)   and since 𝜑𝜔  is an analytic automorphism of    ∆ with 𝜑𝜔

−1        = 𝜑𝜔 ,  

log(1 + |𝑓(𝑧) − 𝑓(𝜔)|) ≤
𝑀0‖𝐶𝜑𝜔𝑓 − 𝑓(𝜔)‖  𝒩𝛼 

(1 − 𝑟)2+𝛼
.                          (12) 

An application in [251]. The proof is complete. 

       Note that B has a closed subspace, the Little Bloch space 𝐵0 of all function obeying 𝑓 ∈
𝐵  obeying 

lim
|𝑧|→1

(1 − |𝑧|2)|𝑓′(𝑧)| = 0. 

It is well known that the polynomials are dense in  𝐵0 under  ‖. ‖𝐵 . We have 

Corollary (6.2.2)[236]: Let  𝛼 ∈ (−1,∞)  and  𝑓 ∈ ℋ (∆).  Then the following are 

equivalent: 

(i) 𝑓  belong to 𝐵0-  

(ii) lim
|𝜔|→1

𝑇𝛼 (𝜚
−1 (𝐶𝜑𝜔𝑓 − 𝑓(𝜔))) = 0   𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝜚 > 0, 

(iii) lim
|𝜔|→1

‖𝐶𝜑𝜔𝑓 − 𝑓(𝜔)‖  𝒩𝛼,
=  0. 

Proof. As in Proposition (6.2.1), it is enough to verify  (𝑖) ⟺ (𝑖𝑖𝑖)  . Suppose that 𝑓  belong 

to  𝐵0. By density, given any 𝜀 ∈ (0,1)   , there  is a polynomial  P such that     ‖𝑓 − 𝑃‖𝐵 <
𝜀.  Consequently, by (11), 

‖𝐶𝜑𝜔(𝑓 − 𝑃) − (𝑓 − 𝑃)(𝜔)‖  𝒩𝛼,
≤ 𝑀2     ‖𝑓 − 𝑃‖𝐵 < 𝑀2𝜀. 

This implies (iii), owing to  lim
|𝜔|→1

‖𝐶𝜑𝜔𝑃 − 𝑃(𝜔)‖  𝒩𝛼,
= 0.   

       The converse follows easily from (12) and from Theorem (6.2.7) of [251]. 

A subset  𝐸 of    𝒩𝛼, is called 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 if it is bounded for the defining  F-norm  ‖. ‖  𝒩𝛼,  . 

Given a Banach space 𝑌  , we say  that a linear map  𝑇:   𝒩𝛼, → 𝑌    is bounded if  𝑇(𝐸) ⊂ 𝑌 

is  bounded for every bounded subset    𝐸 𝑂𝐹 𝒩𝛼,. In   addition , we say that 𝑇   is compact 

if    𝑇(𝐸) ⊂ 𝑌   is relatively compact  for every bounded  set.   𝐸 ⊂  𝒩𝛼,. A useful tool is 

the following compactness criterion which follows readily in [245] and [232]. 

Lemma (6.2.3)[236]: Let   𝛼 ∈ (−1,∞) and 𝑌 be a Banach subspace of  ℋ (∆).   with norm  

‖. ‖  𝒩𝛼,. Then 𝐶𝜑 :   𝒩𝛼, → 𝑌 is compact if and onlu if  for every   𝑠 > 0  and every sequences  

{𝑓𝑛}  satisfies  ‖𝑓𝑛‖  𝒩𝛼, ≤ 𝑠 and converges to  0. 𝑙. 𝑢, 𝑙𝑖𝑚𝑛→∞‖𝐶𝜑𝑓𝑛‖𝑌
= 0. 

Theorem (6.2.4)[236]: Let 𝛼 ∈ (−1,∞)  and let  𝜙: ∆→ ∆ be analytic   . Then the following 

are equivalent: 

(i) 𝐶𝜙:  𝒩𝛼, → 𝒬𝛽        exists as a bounded operator. 

(ii)  𝐶𝜙:  𝒩𝛼, → 𝒬𝛽      Exists as a comact operator. 

(iii) For all  𝑐 > 0. , 
Before giving the second assertion on boundedness and compactness of   𝐶𝜙: 𝐵 → 𝒬𝑝, we 

explain the necessary notation. 

Proof. It suffices to check two implication  (𝑖) ⟺ (𝑖𝑖𝑖)  and (𝑖𝑖𝑖) ⟺ (𝑖𝑖) 
(i) ⟺ (iii). Let (i) hold. For any 𝑐 > 0 and 𝜔 = 𝜙(𝑧0) (where 𝑧0 ∈ ∆ is fixed), 

consider the test function. 

𝑓𝜔(𝑧) = 𝑒𝑥𝑝 [𝑐 (
1 − |𝜔|2

(1 − �̅�𝑧)2
)

2+𝛼

]                          (13) 

Since 
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log (1 + 𝑥) ≤ 1 + 𝑙𝑜𝑔+𝑥       𝑓𝑜𝑟 𝑥 ≥ 0, 

‖𝑓𝜔‖  𝒩𝛼, ≤
𝜋

1 + 𝛼
+ ∫[𝑙𝑜𝑔+[𝑓𝜔(𝑧)]]

∆

(1 + |𝑧|2)𝛼 𝑑𝑚(𝑧) 

≤
𝜋

1 + 𝛼
+  𝑐 ∫ (

1 − |𝜔|2

(1 − �̅�𝑧)2
)

2+𝛼

∆

(1 − |𝑧|2)𝛼  𝑑𝑚(𝑧) ≤ 𝑀3. 

Where  𝑀3. > 0  done not depend on  𝜔 and it comes from Lemma 4.2.2 of [154]. Because  

𝐶𝜙:  𝒩𝛼, → 𝐵  is bounded and 

𝑓𝜔
′(𝑧) =  

2(2 + 𝛼)𝑐�̅�(1 − |𝜔|2)2+𝛼

(1 − �̅�𝑧)2(2+𝛼)+1
exp [𝑐 (

1 − |𝜔|2

(1 − �̅�𝑧)2
)

2+𝛼

] 

There is a constant 𝑀4 > 0 depending only on 𝑐 𝑎𝑛𝑑 𝛼    such that  

𝑀4 ≥ (1 − |𝑧|
2)|𝑓𝜔

′(𝜙(𝑧))|. |𝜙′(𝑧)| 

≥
2(1 − |𝑧|2)|𝜙′(𝑧)|(1 − |𝜔|2)2+𝛼

(1 − �̅�𝜙(𝑧))
2(2+𝛼)+1

exp [𝑐 (
1 − |𝜔|2

(1 − �̅�𝜙(𝑧))
2)

2+𝛼

] 

This estimate leads to 
(1 − |𝑧0|

2)|𝜙′(𝑧0)|

1 − |𝜙(𝑧0)|
2  𝑒𝑥𝑝 [

𝑐

(1 − |𝜙(𝑧0)|
2)2+𝛼

] ≤
𝑀4(1 − |𝜙(𝑧0)|

2)2+𝛼

𝑐|𝜙(𝑧0)|
        (14) 

Where forces (iii) to hold. 

(ii) ⟹ (ii) Assume that (iii) is valid for all  𝑐 > 0. Note that if  𝑓 ∈   𝒩𝛼, then by (10) 

and  Cauchy’s  formula 

(1 − |𝑧|2)|𝑓′(𝑧)| ≤
2

𝜋
∫|𝑓(𝑧 + 2−1(1 − |𝑧|)𝜁|

𝜕∆

|𝑑𝜁| ≤ 𝑒𝑥𝑝 [
42+𝛼𝑀0‖𝑓𝜔‖  𝒩𝛼,
(1 − |𝑧|2)2+𝛼

 

]   (15) 

To demonstrate that  𝐶𝜙:  𝒩𝛼, → 𝐵 is compact, we choose, for  𝑠 > 0  , any sequence  {𝑓𝑛} in  

  𝒩𝛼, such that ‖𝑓𝑛‖  𝒩𝛼, ≤ 𝑠  and 𝑓𝑛 → 0  l. u. on ∆  . Then for each 𝛿 ∈ (0,1), 

𝑠𝑢𝑝|𝜙(𝑧)|≤𝛿(1 − |𝑧|
2) |(𝐶𝜙𝑓𝑛)

′
(𝑧)| ≤ 𝑠𝑢𝑝|𝜙(𝑧)|≤𝛿(1 − |𝜙(𝑧0)|

2)|𝑓𝑛
′(𝜙(𝑧))| → 0, 𝑛 → ∞. 

On the other hand, from (15) and (iii) is turns out that whenever  𝛿 → 1. 

𝑠𝑢𝑝|𝜙(𝑧)|>𝛿(1 − |𝑧|
2) |(𝐶𝜙𝑓𝑛)

′
(𝑧)| 

≤ 𝑠𝑢𝑝|𝜙(𝑧)|>𝛿
(1 − |𝑧|2)|𝜙′(𝑧)|

1 − |𝜙(𝑧)|
exp  

42+𝛼𝑀0𝑠

(1 − |𝜙(𝑧)|2)2+𝛼
→ 0. 

Combining the above estimates we that  ‖𝐶𝜙𝑓𝑛‖𝐵→0 
 AS  𝑛 → ∞. Hence (ii) follows from 

Lemma (6.2.3). The proof is complete. There is an: analogue of Theorem (6.2.4) for the 

Little Bloch space 𝐵0. 
Corollary (6.2.5)[236]: Let 𝛼 ∈ (−1,∞) and let 𝜙 ∶ ∆→ ∆ be analytic. Then the following 

are equivalent: 

- 𝐶𝜙:  𝒩𝛼, → 𝐵0  exist as a bounded operator. 

- 𝐶𝜙:  𝒩𝛼, → 𝐵0 exist as a compact operator. 

- for all 𝑐 > 0. 

lim
|𝑧|→1

(1 − |𝑧|2)|𝜙′(𝑧)|

1 − |𝜙(𝑧)|2
exp [

𝑐

(1 − |𝜙(𝑧)|2)2+𝛼
] = 0            (16) 
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Proof. It suffices to demonstrate  (𝑖𝑖𝑖) ⟹ (𝑖𝑖) 𝑎𝑛𝑑 (𝑖) ⟹ (𝑖𝑖𝑖)   . The first implication 

follows easily from the proof of the corresponging case of Theorem (6.2.4). The second will 

be verified by contradiction, Suppose that 𝐶𝜙:  𝒩𝛼, → 𝐵0   is bounded. so 𝜙 ∈ 𝐵0   Now, if 

(16) is not true for all, 𝑐 > 0 then there are  𝑐0,, 𝜀0,and a sequence {𝑧𝑛} tending to 𝜕∆ such 

that  
(1 − |𝑧𝑛|

2)|𝜙′(𝑧𝑛)|

1 − |𝜙(𝑧𝑛)|
2 exp [

𝑐0
(1 − |𝜙(𝑧𝑛)|

2)2+𝛼
] ≥ 𝜀0,            (17) 

Since 𝜙 ∈ 𝐵0  (17) indicate that {𝑧𝑛}  has a subsequence {𝑧𝑛𝑘}  with  |𝜙(𝑧𝑛𝑘)| → 1. Also 

since  𝐶𝜙:  𝒩𝛼, → 𝐵0  is bounded, one has (9) (for all c > 0, which, in particular, produces 

the following limit: 

(1 − |𝑧𝑛𝑘|
2
) |𝜙′(𝑧𝑛𝑘)|

1 − |𝜙(𝑧𝑛𝑘)|
2 exp [

𝑐0

(1 − |𝜙(𝑧𝑛𝑘)|
2
)
2+𝛼] →  0.            (18) 

It is evident that (18) contradicts (17). We are done. 

(ii)𝐶𝜑 → 𝐵 → 𝒬𝛽. We prove Theorem (6.2.8). The proof will borrow a technique from [242]. 

Before proceeding, we need an inverse inquality for B due to Ramey and Ullrich [121]. 

Lemma (6.2.6)[236]: There are two functions  𝑓1, 𝑓2 ∈ 𝐵  such that  

inf𝑧∈∆(1 − |𝑧|
2)|𝑓1

′(𝑧)| + |𝑓21
′ (𝑧)| ≥ 1.                                  (19) 

For   𝛽 ∈ (0,∞)we say that a positive Borel measure on 𝑑𝜇 on ∆ is a 𝛽 −Carelson measure 

provided  
𝑠𝑢𝑝𝐼⊂𝜕∆ 𝜇(𝑆(𝐼))

|𝐼|𝛽
< ∞. This definition was introduced by [239] to characterize the 

  𝒬𝛽 space. 

Lemma (6.2.7)[236]: Let   𝛽 ∈ (0,∞) and let   𝑓 ∈ ℋ (∆) with 

𝑑𝜇𝑓,𝛽(𝑧) =  |𝑓
′(𝑧)|2(1 − |𝑧|2)𝛽𝑑𝜇 (𝑧). 

Then 𝑓 ∈  𝒬𝛽  if   and only if  𝑑𝜇𝑓,𝛽   is a 𝛽 - Carleson measure. Moreover, 

‖𝑓‖𝒬𝛽  ≍ |𝑓(0)| + [𝑠𝑢𝑝𝐼⊂𝜕∆ 
𝜇𝑓,𝛽(𝑆(𝐼))

|𝐼|𝛽
]

1/2

.                              (20) 

Theorem (6.2.8)[236]: Let 𝛽 ∈ (0,∞) and let  𝜙: ∆→ ∆  be analytic. Then  

(i) 𝐶𝜙: 𝐵 → 𝒬𝛽      exists as a bounded operator if and only if  

𝑠𝑢𝑝𝐼⊂𝜕∆|𝐼|
−𝛽 ∫ [

(1 − |𝑍|2)𝛽/2|𝜙′(𝑍)|

1 − |𝜙(𝑍)|2
]

2

𝑆(𝐼)

𝑑𝑚(𝑧) < ∞                     (21) 

(ii) 𝐶𝜙: 𝐵 → 𝒬𝛽     exists as a  compact operator if and only if  𝜙 ∈ 𝒬𝛽   and 

lim
𝑟→1

𝑠𝑢𝑝𝐼⊂𝜕∆|𝐼|
−𝛽 ∫ [

(1 − |𝑍|2)
𝛽
2 |𝜙′(𝑍)|

1 − |𝜙(𝑍)|2
]

2

𝑆(𝐼)

1Ω𝑟(𝑧)𝑑𝑚(𝑧) = 0 .        (22) 

       Note that (i) of Theorem (6.2.8) is essentially known (cf. [198]) and is listed here only 

for, the sake of completeness. However, (ii) is new and is just what Smith-Zhao did not 

figure out. Moreover, if  𝛽 > 1 then (22) is equivalent to  lim
|𝜙(𝑧)|1

(1 − |𝑧|2) |𝜙′(𝑧)|/(1 −

 |𝜙(𝑧)|2) = 0, (cf. [247]). 

Proof. From now on, 𝔹𝑋  stands for the unit ball of a given Banach space (𝑋, ‖. ‖𝑋). 
i. Follows obviously from Lemmas (6.2.6) and (6.2.7). The key is to infer (ii). 

Sufficiency of (ii). Let 𝜙 ∈ 𝒬𝛽 and let (22) ∆hold. We have to show that if {𝑓𝑛} ⊂ 𝔹𝐵  
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converges to 01.u. on ∆ then {‖𝐶𝜙𝑓𝑛‖ 𝒬𝛽        }  then converges to 0. for each 𝑟 ∈ (0,1) set 

Ω̌𝑟 =
Δ

Ωr .
𝑠𝑜 {𝑓𝑛

′(𝜙)} tends to 0 uniformly on  Ω̌𝑟 .  Hence by Lemma (6.2.7), for every  𝜀 >

0 there is an integer 𝑁 > 1 such that for 𝑛 ≥ 𝑁,   

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
𝛽 ∫ |(𝐶𝜙𝑓𝑛)

′
(𝑧)|

2

𝑆(𝐼)

(1 − |𝑧|2)𝛽𝐼Ω̌𝑟(𝑧) 𝑑𝜇 (𝑧) ≤ 𝜀 𝑀‖𝜙‖𝒬𝛽        
2  

On the other hand, from (22) and the growth of the derivatives of 𝐵-function one derivatives 

that for every 𝜀 > 0  there exists a 𝛿 ∈ (0,1)  such that for 𝑟 ∈ [𝛿, 1), 

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
𝛽 ∫ |(𝐶𝜙𝑓𝑛)

′
(𝑧)|

2

𝑆(𝐼)

(1 − |𝑧|2)𝛽𝐼Ω𝑟(𝑧) 𝑑𝑚 (𝑧) < 𝜀. 

Combining the previous inequalities with Lemma (6.2.7) , we obtain  ‖𝐶𝜙𝑓𝑛‖𝒬𝛽
.  

       Necessity of (ii) . This part is more difficult. Let  𝐶𝜑 → 𝐵 → 𝒬𝛽 be compact. It is clear 

that   𝜙 ∈ 𝒬𝛽     . So, we must show (22) . Since {𝑧𝑛}  is norm bounded in B and it converges 

to 01.u.  on  ∆ , we have  ‖𝜙𝑛‖𝒬𝛽 → 0. Applying by Lemma (6.2.7), we find that for every  

𝜀 > 0    , there is an integer 𝑁 > 1 such that for 𝑛 ≥ 𝑁.   

𝑛2𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|𝜙(𝑧)|2𝑛−2

𝑆(𝐼)

|𝜙′(𝑧)|2(1 − |𝑧|2)𝛽 𝑑𝑚 (𝑧) < 𝜀. 

Thus for each   𝑟 ∈ (0,1) 

𝑁2𝑟2𝑁−2𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|𝜙′(𝑧)|2(1 − |𝑧|2)𝛽1 Ω𝑟𝑑𝑚 (𝑧) < 𝜀.

𝑆(𝐼)

 

Taking  𝑟 ≥ 𝑁−1/(𝑁−1), we get  

  

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|𝜙′(𝑧)|2(1 − |𝑧|2)𝛽1 Ω𝑟𝑑𝑚 (𝑧) < 𝜀.

𝑆(𝐼)

            (23) 

Keeping (23) in mind we show that for every 𝑓 ∈ 𝔹𝐵   and for every  𝜀 > 0,  , there is a 𝛿 = 

𝛿(𝑓, 𝜀) such that for𝑟 ∈ [𝛿. 1) 

𝑇(𝑓,𝜙. 𝛽. 𝑟) =    𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓)

′(𝑧)|
2
(1 − |𝑧|2)𝛽1 Ω𝑟𝑑𝑚 (𝑧) < 𝜀

𝑆(𝐼)

.     (24) 

     As a matter of fact, if we let  𝑓𝑡(𝑧) = 𝑓(𝑡𝑧) 𝑓𝑜𝑟  𝑓 ∈ 𝔹𝐵  𝑎𝑛𝑑 𝑡 ∈ (0,1) then 𝑓𝑡 →
𝑓 1, 𝑢, 𝑜𝑛  ∆ 𝑎𝑠 𝑡 → 1. Since  𝐶𝜑 → 𝐵 → 𝒬𝛽        is compact,  ‖𝑓𝑡 ∘ 𝜙 − 𝑓 ∘ 𝜙‖𝒬𝛽        →

0 𝑎𝑠 𝑡 → 1 .  Furthermore, Lemma (6.2.7) yields that for every 𝜀 > 0   there is a  𝑡 ∈ (0,1)    
such that 

      𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧) − (𝐶𝜙𝑓𝑡)
′(𝑧) |

2
(1 − |𝑧|2)𝛽𝑑𝑚 (𝑧) < 𝜀.

𝑆(𝐼)

 

Accordingly, by (23), 
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     𝑇(  𝑓, 𝜙, 𝛽, 𝑟  ) ≤ 2𝜀 + 2 𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧) |
2
(1 − |𝑧|2)𝛽1Ω𝑟(𝑧)𝑑𝑚 (𝑧)

𝑆(𝐼)

 

≤ 𝜀 + 2‖𝑓𝑡
′‖∞
2       𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|

−𝛽 ∫|𝜙′(𝑧)|2(1 − |𝑧|2)𝛽1Ω𝑟(𝑧)𝑑𝑚 (𝑧)

𝑆(𝐼)

 

≤ 2𝜀(1 + ‖𝑓𝑡
′‖∞
2 ). 

Since  𝐶𝜙 sends 𝔹𝐵   to a relatively compact subset of  𝒬𝛽, there exists, for every 𝜀 > 0, a 

finite collection of functions 𝑓1, … , 𝑓𝑁 𝑖𝑛 𝔹𝐵 such that for each 𝑓 ∈ 𝔹𝐵 there is a 𝑘 ∈
{1, … , 𝑁} with 

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓)

′(𝑧) − (𝐶𝜙𝑓𝑘)
′(𝑧) |

2
(1 − |𝑧|2)𝛽𝑑𝑚 (𝑧) < 𝜀.

𝑆(𝐼)

 

Now (24) is used to deduce that for   𝛿 = 𝑚𝑎𝑥1≤𝑘≤𝑁 𝛿(𝑓𝑘, 𝜀) 𝑎𝑛𝑑 𝑟 ∈ [𝛿, 1), 

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫ |(𝐶𝜙𝑓𝑘)

′(𝑧)|
2
(1 − |𝑧|2)𝛽1 Ω𝑟(𝑧)𝑑𝑚 (𝑧) ≤ 𝜀;

𝑆(𝐼)

 

Thus  

𝑠𝑢𝑝𝑓∈𝔹𝐵     𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫ |(𝐶𝜙𝑓)

′(𝑧)|
2
(1 − |𝑧|2)𝛽1 Ω𝑟(𝑧)𝑑𝑚 (𝑧) ≤ 4𝜀;

𝑆(𝐼)

         (25) 

An application of Lemma (6.2.6) to (25) implies (22). This concludes the proof. 

       The space  𝒬𝛽, like 𝐵, has a closed subspace 𝒬𝛽,0 which consists of those 𝑓 ∈ 𝒬𝛽 

satisfying 

lim
|𝜔|→1

∫ |(𝐶𝜙𝜔𝑓)
′(𝑧)|

2

∆

(1 − |𝑧|2)𝛽𝑑𝑚(𝑧) = 0. 

It is known that 𝒬𝛽,0 =  ℂ, 𝑉𝑀𝑂𝐴 and 𝐵0  whenever 𝛽 ∈ (−1.0], 𝛽 = 1 𝑎𝑛𝑑 𝛽 ∈ (1,∞)    

and, respectively (c.f. [248], [237]). Moreover, the   𝒬𝛽,0-version of Lemma (6.2.7) states 

that 𝑓 ∈ 𝒬𝛽,0 if and only if 𝑑𝜇𝑓,𝛽  is a vanishing 𝛽-Carelson measure, i.e.  
lim
|𝐼|→0

𝜇𝑓,𝛽(𝑆(𝐼))

|𝐼|𝛽
= 0 

uniformly for all Carelson boxes S(I)(cf. [239]). 

       The purpose of mentioning 𝒬𝛽,0  is to solve another problem in [198]: ‘’ when is    𝐶𝜑 →

𝐵0 → 𝒬𝛽        or 𝒬𝛽,0compact? “ the  method of treating Theorem (6.2.8) can be adopted to 

provide an answer to this question. 

       For convenience, let  ∆𝑟=  {𝑧 ∈ ∆: |𝑧| > 𝑟}  where  𝑟 ∈ (0,1]  . We have 

Corollary (6.2.9)[236]: Let 𝛽 ∈ (0,∞]  and let  𝜙: Δ → ∆  be analytic. Then 

(i) 𝒬𝛽 exists as a compact operator if and only if 

𝜙 ∈ 𝒬𝛽 and (22) holds. 

(ii)  𝒬𝛽,0 exists as a compact operator if and only if 𝜙 ∈ 𝒬𝛽 and 

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫ [

(1 − |𝑧|2)
𝛽
2|𝜙′(𝑧)|2

1 − |𝜙(𝑧)|2
]

2

1Δr(𝑧) 𝑑𝑚(𝑧) = 0

𝑆(𝐼)

.                (26) 
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Proof. (i) sufficiency. It follows from Theorem (6.2.8)(ii). 

       Necessity. Suppose that  𝐶𝜑 → 𝐵0 → 𝒬𝛽,   is compact. Then 𝜙 ∈ 𝒬𝛽  follows right away. 

Note that if  𝑓 ∈ 𝔹𝐵  then ‖𝑓𝑡‖𝐵 ≤ ‖𝑓‖𝐵 ≤ 1. Now for a fixed  𝑡 ∈ (0,1),    , put   𝔹𝐵
𝑡 =

 {𝑓𝑡: 𝑓 ∈ 𝔹𝐵}  . Then 𝔹𝐵
𝑡    is a subset of 𝔹𝐵0 . By compactness of  𝐶𝜑  is a relatively compact 

subset of 𝒬𝛽,  . The proof of Theorem (6.2.8) (ii) actually shows that for every  𝜀 > 0   there 

is a 𝛿 ∈ (0,1)    ( independent of  t )  ( such that for   𝑟 ∈ [𝛿, 1). 

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧)|
2

𝑆(𝐼)

(1 − |𝑧|2)𝛽

 

1 Ω𝑟(𝑧)𝑑𝑚(𝑧) < 𝜀. 

This estimate and Lemma (6.2.6) result in 

     𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫ [

𝑡|𝜙′(𝑧)|(1 − |𝑧|2)𝛽/2

1 − 𝑡2|𝜙(𝑧)|2
]

2

1Ωr(𝑧) 𝑑𝑚(𝑧) < 2𝜀;

𝑆(𝐼)

 

And so (26) follows, by Fatou’s lemma. 

(ii) Sufficiency. Let  𝜙 ∈ 𝒬𝛽 and let 𝜙 satisfy (26). Suppose that {𝑓𝑛} ⊂ 𝔹𝐵0  is a dequence 

which converges to 01.u.on ∆  . To prove that    𝐶𝜑 → 𝐵0 → 𝒬𝛽,0,is compact, it suffices to 

verify that lim
𝑛→∞

‖𝐶𝜑𝑓𝑛‖𝒬𝛽        
= 0.  For each  𝑟 ∈ (0,1) put ∆�̌�=  ∆/∆𝑟  Since  ∆�̌�  is a compact 

subset of    ∆ . {𝑓𝑛
′(𝜙)}tend to 0 uniformly on  ∆�̌�  . From  𝜙 ∈ 𝒬𝛽          and Lemma (6.2.7) it 

is seen that  

lim
𝑛→∞

     𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧)|
2

𝑆(𝐼)

(1 − |𝑧|2)𝛽1∆�̌�(𝑧) 𝑑𝑚(𝑧) = 0. 

This limit, together with (26), gives   lim
𝑛→∞

‖𝐶𝜑𝑓𝑛‖𝒬𝛽        
= 0  

       Let  𝐶𝜑 → 𝐵0 → 𝒬𝛽,0  be compact. It is trivial to deduce that    𝜙 ∈ 𝒬𝛽        and   𝐶𝜑(𝔹𝐵0)is 

a relatively compact subset of   𝒬𝛽,0. Given an  𝜀 > 0 for every 𝑓 ∈  𝔹𝐵0  there are finitely 

many functions   𝑔𝑘 ∈ 𝒬𝛽,0 such that 

 𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧) − 𝑔′
𝑘
(𝑧)|

2

𝑆(𝐼)

(1 − |𝑧|2)𝛽𝑑𝑚(𝑧) < 𝜀 

Where we have used Lemma (6.2.7). Consequently, for all   𝑟 ∈ (0,1) 

 𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧) − 𝑔′
𝑘
(𝑧)|

2

𝑆(𝐼)

(1 − |𝑧|2)𝛽1∆�̌�(𝑧) 𝑑𝑚(𝑧) < 𝜀 

Since  𝑔𝑘  ∈ 𝒬𝛽,0        there is  𝑟 ∈ (0,1)  such that for  𝑟 ∈ [𝛿, 1),  

 𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|𝑔′

𝑘
(𝑧)|

2

𝑆(𝐼)

(1 − |𝑧|2)𝛽1∆𝑟(𝑧) 𝑑𝑚(𝑧) < 𝜀 

Which implies  

sup
𝑓∈  𝔹𝐵0

𝑠𝑢𝑝𝐼⊂𝜕∆ |𝐼|
−𝛽 ∫|(𝐶𝜙𝑓𝑡)

′(𝑧)|
2

𝑆(𝐼)

(1 − |𝑧|2)𝛽1∆𝑟(𝑧) 𝑑𝑚(𝑧) < 2𝜀 
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A careful inspection of the above argument for the necessity of (i) shows that (26) follows 

immediately from another application of Lemma (6.2.6) and Fatou’s lemma to the last 

inequality. The proof is complete. 

       We close by an observation on the condition (22). it is clear that (22) holds if 

∫ [
𝜙′(𝑧)

1 − |𝜙(𝑧)|2
]

2

∆

 𝑑𝑚(𝑧) < ∞.                     (27) 

Shapiro- Taylor [250] showed that (27) force 𝑠  𝐶𝜙: 𝒟 → 𝒟    to be a Hilbert- Schmidt 

operator. Tjani [232] pointed out. 

       That (27) ensures that 𝐶𝜙: 𝐵 → 𝒟 is compact. Since 𝒟 ⊂ 𝒬𝛽 ⊂ 𝐵, our conditions (22) 

and 𝜙 ∈ 𝒬𝛽 fill up the gap between 𝒟 and B in the sense of the Hilbert- Schmidt property 

and compactness. 

4. 𝐶𝜙: 𝒩𝛼 → 𝒬𝛽. We show Theorem (6.2.10). A dyadic division of ∆, quite different from 

the one used for Theorem (6.2.4), will be involved to control Theorem (6.2.10). 

       Following [72], we divide  ∆ into dyadic boxes. Let  𝐼 denote the family of dyadic arcs 

in 𝜕∆, that is, the family of all arcs of the form 

{𝑧 ∈ 𝜕∆: 2𝜋𝑘/2𝑙 ≤ arg 𝑧 < 2𝜋(1 + 𝑘)/2𝑙}, 𝑘 = 0,1, … , 2𝑙 − 1, 𝑙 = 0.1, … 

Given an arc 𝐼 ⊂ 𝜕∆, let 𝐻(𝐼) denote the half of  𝑆(𝐼) which is closest to the origin, namely, 

𝐻(𝐼) = {𝑧 ∈ 𝑆(𝐼): 1 −
𝐼

2𝜋
≤ |𝑧| < 1 − |𝐼|/4𝜋}. 

Note that the 𝐻(𝐼)′𝑠 for 𝐼 ∈ ℐ are pair wise disjoint and cover ∆. Fix any enumeration 

{𝐻𝑗: 𝑗 = 1,2,…   } of these sets and select a point 𝑎𝑗 in each 𝐻𝑗. Almost any point would 

work, but in order to simplify  some parts later  on let us  agree that  𝑎𝑗 is the “ center”  of  

𝐻𝑗 in  the sense that   |𝑎𝑗 | and arg    𝑎𝑗 bisect the interval  of abslute values and the  interval 

of arguments,  respectively , of points in  𝐻𝑗 . 𝐼𝑓 𝐻𝑗 =   then 𝐻(𝐼) 𝑡ℎ𝑒𝑛 |𝐼| ≍ 1 − |𝑎𝑗 |. 

Theorem (6.2.10)[236]: Let  𝛼 ∈ (−1,∞), 𝛽 ∈ (0,∞)   and let  𝜙: ∆→ ∆ be analytic. Then 

the following are equivalent: 

(i) 𝐶𝜙:  𝒩𝛼, → 𝒬𝛽        exists as a bounded operator .  

(ii) 𝐶𝜙:  𝒩𝛼, → 𝒬𝛽        exists as a  compact operator   

(iii) 𝜙 ∈ 𝒬𝛽        𝑎𝑛𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 > 0. 

𝑠𝑢𝑝𝜔∈∆𝑠𝑢𝑝𝐼⊂𝜕∆
|𝐼|−2(𝛼+3)

exp(𝑐|𝐼|2+𝛼)
∫ 𝑁(𝛽, 𝜔, 𝑧, 𝜙)𝑑𝑚(𝑧) < ∞

𝑆(𝐼)

.                 (28) 

        Comparing Theorem (6.2.10) with Theorem (6.2.4) we find that (28) ⇔(9)   when 𝛽 >
1. 
      We devote to the proof of Theorem (6.2.4) and its consequences. The proof of Theorem 

(6.2.8). We devoted to proving Theorem (6.2.10) and a further discussion.  

Proof. It is enough to verify the implications (i) ⇒ (iii) ⟹ (ii). 
Put 

𝑑𝑚𝛽,𝜔,𝜙(𝑧) = 𝑁(𝛽,𝜔, 𝑧, 𝜙)𝑑𝑚(𝑧). 

With this choice, we establish 

‖𝐶𝜙𝑓‖𝒬𝛽
=  |𝑓(𝜙(0))| + 𝑠𝑢𝑝𝜔∈∆ [∫|𝑓

′(𝑧)|2𝑑𝑚𝛽,𝜔,𝜙(𝑧)

∆

]

1/2

                  (29) 
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(i) ⇒ (iii), Suppose that  𝐶𝜙: 𝒩𝛼 → 𝒬𝛽  is bounded, Then clearly 𝜙  is a member of  𝒬𝛽 . In 

order to show that  𝑑𝑚𝛽,𝜔,𝜙 satisfies (28), fix 𝜃 ∈ [0,2𝜋)  and  𝑢 =  [1 + (2𝜋)−1[𝐼]]𝑒𝑖𝜃. 

Consider, for any  𝑐 > 0, the test function 

𝑔𝑢(𝑧) = exp [
𝑐(1 − |𝑢|2)𝑚−2−𝛼

(1 − �̅�𝑧)𝑚
], 

Where  𝑚  is the smallest integer greater than  2 + 𝛼  . Then  

𝑔′𝑢(𝑧) = exp
𝑐𝑚�̅�(1 − |𝑢|2)𝑚−2−𝛼

(1 − �̅�𝑧)𝑚+1
exp [

𝑐(1 − |𝑢|2)𝑚−2−𝛼

(1 − �̅�𝑧)𝑚
], 

Since log ( 1 + 𝑥 ) ≤ 1 + 𝑙𝑜𝑔+𝑥   𝑓𝑜𝑟 𝑥 ≥ 0. 

‖𝑔𝑢‖𝒩𝛼 ≤
𝜋

1 + 𝛼
+ 𝑐∫

(1 − |𝑢|2)𝑚−2−𝛼(1 − |𝑧|2)𝛼

(1 − �̅�𝑧)𝑚
𝑑𝑚(𝑧) ≤ 𝑀

∆

,             (30) 

Once again, this constant  𝑀 > 0  is independent of  𝑢 and it is determined by Lemma 4.2.2 

of [154]. Let I be the arc centered at  𝑒𝑖𝜃. Then there is  𝛿 ∈ (0,1)  such that for |𝐼| < 𝛿, 
𝑠𝑢𝑝𝑧∈𝑆(𝐼)|1�̅�𝑧| ≤ 𝑀1|𝐼|, 𝑖𝑛𝑓𝑧∈𝑆(𝐼)𝑅𝑒[(1 − 𝑢𝑧̅)

𝑚] ≥ 𝑀2|𝐼|
𝑚 

And hence 

𝑖𝑛𝑓𝑧∈𝑆(𝐼)|(𝑔𝑢
′ (𝑧))| ≥

𝑀3|𝐼|
−(3+𝛼)

exp (𝑀4|𝐼|
2+𝛼))

 

Where  𝑀1 > 0 𝑎𝑛𝑑 𝑀2 > 0   rely upon 𝛿 𝑎𝑛𝑑 𝛼 𝑜𝑛𝑙𝑦 but also give 

𝑀3 =  
𝑐𝑚

2(2𝜋)𝑚−2−𝛼𝑀1
𝑚+1 .    𝑀4 = 

𝑐𝑀2

2(2𝜋)𝑚−2−𝛼𝑀1
2𝑚 

By (29) and since   𝑙𝑜𝑔+𝑥 ≤ 𝑙𝑜𝑔(1 + 𝑥)𝑜𝑛 [0,∞), 

‖𝐶𝜙𝑔𝑢‖𝒬𝛽

2
≥

𝑀3
2𝑚𝛽,𝜔,𝜙(𝑆(𝐼))

|𝐼|2(3+𝛼) exp(2𝑀4|𝐼|
2+𝛼))

.                     (31) 

Appealing to the closed graph theorem, (31) and (30), one obtain (28) at once. On the other 

hand, if  |𝐼| ≥ 𝛿  , then (29) and  𝜙 ∈ 𝒬𝛽  easily imply (28) too. 

(iii) ⟹ (ii) Assume   now that 𝜙 ∈ 𝒬𝛽  and  𝑑𝑚𝛽,𝜔,𝜙 is such that (28) is valid for all  

𝒄 > 0  . For every  𝒔 > 0  we choose a sequence {𝑓𝑛}   in  𝒩𝛼  so that  ‖𝑓𝑛‖𝛼∈ ≤
𝑠  and  {𝑓𝑛}  converges to  01, 𝑢. 𝑜𝑛 ∆  on   . With the help og the dyadic division 

of   ∆  , for  𝑓𝑛 ∈ 𝒩𝛼  𝑙𝑒𝑡 𝑎𝑗
∗ ∈ 𝐻𝑗  let   (closure of  𝐻𝑗 )   be a point  where  |𝑓𝑛

′|   

attain its maximum on  𝐻𝑗 . If  𝑙 is the integer such that  𝐻𝑗  is contained in 

𝐴𝑙 ≔ {𝑧 ∈ ∆: 1 − 2−𝑙 ≤ |𝑧| < 1 − 2−(𝑙+2)}, 
then the set 

𝑆𝑗 ≔ {𝑧 ∈ ∆: 1 − 2−(𝑙+1) ≤ |𝑧| < 1 − 2−(𝑙+2), |arg 𝑧 − 𝑎𝑟𝑔𝑎𝑗
∗| < 2−𝑙−1 } 

Contains   a disc  ∆𝑗 with center 𝑎𝑗
∗  and radius comparable to  2−𝑙  . Note that  𝑆𝑗 intersects 

at most 6 of the sets   𝐻𝑘 and that  1 − |𝑧|2 ≍   2−𝑙 whenever 𝑧 ∈ 𝑆𝑗. Using these 

observations, (15) snd the submean value property of  |𝑓𝑛
′| , we find that to every  𝜀 ∈ (0,1) 

there corresponds an 𝑟 ∈ (0,1)   such that for all 𝑓𝑛   and all 𝜔 ∈ ∆. 

∫|𝑓𝑛
′|2

∆̃𝑟

𝑑𝑚𝛽,𝜔,𝜙 ≤∑ 𝑠𝑢𝑝𝑧∈𝐻𝑗⋂∆𝑟
𝑗

|𝑓𝑛
′(𝑧)|2𝑚𝛽,𝜔,𝜙(𝐻𝑗⋂∆𝑟) 
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≤ 𝜀2(1+𝛼)𝑀5∑|𝑓𝑛
′(𝑎𝑗

∗)|
2
(1 − |𝑎𝑗|

2
)
4

𝑗

𝑒𝑥𝑝 [−𝑐𝑀6 (1 − |𝑎𝑗|
2
)
2+𝛼

] 

≤ 𝜀2(1+𝛼)𝑀7∑ ∫|𝑓𝑛
′(𝑧)|2(1 − |𝑧|2)2

∆𝑗

𝑒𝑥𝑝[−𝑐𝑀8(1 − |𝑧|
2)2+𝛼]𝑑𝑚(𝑧)

𝑗

 

≤ 𝜀2(1+𝛼)𝑀7∑ ∫[|𝑓𝑛
′(𝑧)(1 − |𝑧|2)]2

𝐻𝑗

𝑒𝑥𝑝[−𝑐𝑀8(1 − |𝑧|
2)2+𝛼]𝑑𝑚(𝑧)

𝑗

 

≤ 𝜀2(1+𝛼)𝑀9∫ 𝑒𝑥𝑝[−|𝑐𝑀8−4
2+𝛼𝑀0𝑠) (1 − |𝑧|

2)2+𝛼)]

∆

𝑑𝑚(𝑧). 

Since (28) holds   for all 𝑐 > 0   , it follows from picking  𝑐 > 42+𝛼 s 𝑀0/ 𝑀𝑠    in the above 

estimates that  

∫|𝑓𝑛
′|2

∆̃𝑟

𝑑𝑚𝛽,𝜔,𝜙 < 𝜀
2(1+𝛼)𝑀10                                 (32) 

Also since  𝜙 ∈ 𝒬𝛽, and 𝑓𝑛
′ → 0uniformly on ∆̃𝑟to the above  𝜀 and 𝑟there corresponds an 

integer  𝑁 > 0 such that for 𝑛 ≥ 𝑁. 

∫|𝑓𝑛
′|2

∆̃𝑟

𝑑𝑚𝛽,𝜔,𝜙 < 𝜀‖𝜙‖𝒬𝛽
2                                          (33) 

Putting (29), (32) and (33) together produces that   ‖𝐶𝜙𝑓𝑛‖𝒬𝛽,
→ 0. as 𝑛 → ∞. 

We present a  𝒬𝛽,0  version of Theorem (6.2.10). 

Corollary (6.2.11)[236]: Let  𝛼 ∈ (−1,∞) 𝛽 ∈ (0,∞) and let   𝜙: Δ → ∆  and let be 

analytic. Then the following are equivalent: 

(i) 𝐶𝜙: 𝒩𝛼 → 𝒬𝛽,0   exist as a bounded operator. 

(ii) 𝐶𝜙: 𝒩𝛼 → 𝒬𝛽,0 exist as a compact operator. 

(iii)   𝜙 ∈ 𝒬𝛽,0   and (28) holds for all 𝑐 > 0 

Proof. It suffices to show (iii) ⟹ (ii) because (ii) ⟹ (i) is trivial and (i) ⟹ (iii) follows 

from Theorem (6.2.10). So let (iii) be true. Since the poly nomias are dense in  𝒩𝛼 and in 

𝒬𝛽,0 (this is easily verified via the triangle inequality), if 𝑓 ∈ 𝒩𝛼 then for every  𝜀 > 0  there 

is a polynomial 𝑃  such that  ‖𝑓 − 𝑃‖𝒩𝛼 < 𝜀  . Observe that (iii) asserts boundedness of 

𝐶𝜙: 𝒩𝛼 → 𝒬𝛽 . So, there is a constant  𝑀 > 0  such that   ‖𝐶𝜙𝑓 − 𝐶𝜙𝑃  ‖𝒬𝛽
< 𝜀 𝑀 also since  

𝜙 ∈ 𝒬𝛽,0, it follws from the  𝒬𝛽,0 -version of Lemma (6.2.7) that  𝜙𝑛 ∈ 𝒬𝛽,0  for every 

integer  𝑛 > 0. As  a result, 𝐶𝜙𝑃  ∈ 𝒬𝛽,0the triangle inequality and the density of the 

polynomials in 𝒬𝛽,0  yield 𝐶𝜙𝑃  ∈ 𝒬𝛽,0  .  In other words, 𝐶𝜙𝑚𝑎𝑝𝑠 𝒩𝛼  into 𝒬𝛽,0  . 

Furthermore, the last part of the proof of Theorem (6.2.10) shows that  𝐶𝜙: 𝒩𝛼 → 𝒬𝛽  is 

compact, that is, (ii) holds. 
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Section (6.3): The Bloch Space into M�̈�bius Invariant Spaces 
By a self-map of the unit disk 𝔻 we will mean an analytic function 𝜑 from the unit 

disk 𝔻 into itself. Every self-map of 𝔻 induces the composition operator 𝐶𝜑 with symbol 𝜑 

by the formula 𝐶𝜑(𝑓) = 𝑓 ∘ 𝜑 on the set of all analytic functions in 𝔻 but it is often of 

interest to consider 𝐶𝜑 as an operator between Banach spaces of analytic functions. For 

several classical spaces of analytic functions such as a Hardy space 𝐻𝑝, a Bergman space 

𝐴𝑃, or the Bloch space 𝔅, any symbol 𝜑 gives rise to a bounded operator 𝐶𝜑from the space 

into itself. However, this is not the case for the Dirichlet space or for more general analytic 

Besov spaces 𝐵𝑝, so the question of deciding which 𝜑 induce a bounded operator 𝐶𝜑 is of 

interest. The situation becomes more complicated if we consider composition operator 

acting between two deferent spaces. 

A related problem is to characterize all compact or weakly compact operators 𝐶𝜑 

between two given spaces in terms of the symbols. 

Criteria for compactness of 𝐶𝜑when acting on Hardy and Bergman spaces (due to 

J.H. Shapiro and B. MacCluer) are now already considered a classical knowledge; see [12], 

[144]. For compact operators acting on 𝔅 and on the Little Bloch space 𝐵0 see [19], [146], 

and [259]. Related results regarding composition operators from 𝔅 into the Dirichlet space 

D or the more general analytic Besov spaces 𝐵𝑝 can be found in [227], [267], and [214]. 

Composition operators from 𝔅 into Hardy spaces were treated in [268] while those from 

the Bloch space into the conformally invariant subspaces BMOA and V MOA of Hardy 

spaces and other spaces were studied in [232] and [196]. For composition operators from 𝔅 

into 𝒬𝑃-type spaces see [198]. Weak compactness of composition operators on vector-

valued versions of classical spaces of analytic functions have been considered in [257], for 

Example (6.3.9) (6.3.4). 

       Obviously, there are quite a few on the subject but it turns out that many similar setups 

are treated in an isolated way and many proofs are essentially repeated while it looks 

desirable to show the “bigger picture”. One purpose is precisely to treat such questions 

globally, for those 𝐶𝜑 that map the Bloch space into other spaces. We would like to 

underline that our work also provides new results in the case when the target space is one 

of the many rather classical Banach spaces. 

We consider the spaces X which are Möbius invariant, i.e., those whose seminorm 𝑠 
has the following property: 𝑠(𝑓 ∘ 𝜎)  ≤  𝐶 𝑠(𝑓 ), 𝑓 ∈ 𝑋, for some fixed constant C and all 

disk automorphisms σ. These spaces were given a systematic treatment in [215] which was 

also pioneering in the theory of composition operators acting on them. This family of spaces 

includes the Bloch space 𝔅, the Little Bloch space 𝔅0, and analytic Besov spaces denoted 

𝐵𝑃. We also mention the important spaces BMOA (a variant of the classical John-Nirenberg 

space BMO) and V MOA (introduced by Sarason; see [263]), both M�̈�bius -invariant 

subspaces of the Hardy space 𝐻2. The classical Hardy and Bergman spaces, however, do 

not satisfy the requirements for belonging to this family. 

       The question whether the weak compactness of a composition operator acting between 

two conformally invariant spaces of analytic functions is actually equivalent to its 

compactness has generated considerable interest among the experts. For the composition 

operators on BMOA or V MOA or between these spaces, this question was posed (in its 

deferent versions) by Bourdon, Cima, and Matheson [244], [258], by Laitila [264], and also 

by Tjani. An affirmative answer has been given recently by Laitila, Nieminen, Saksman, 
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and Tylli [258], where they used some functional analysis tools such as the Bessaga-

Pelczy´nski selection principle. 

       It is important to notice that there exist weakly compact composition operators acting 

on other function spaces which are not compact. An Example (6.3.9) (6.3.4) of such 

𝐶𝜑 induced by a lense map 𝜑, was given in [265]. 

       The idea of considering the largest conformally invariant subspace of a given Banach 

space of analytic functions has already been considered. Two relevant sources are [256] and 

[275]. Significant motivation for the work comes from the approach adopted by Aleman 

and Simbotin (Persson); see [255] or [272]. 

We consider three fairly large families of spaces of analytic functions: the spaces 𝐷𝜇
𝑝

 

defined in terms of integrability of the derivative of a function with respect to a certain Borel 

measure μ, their conform ally invariant subspaces 𝑀 (𝐷𝜇
𝑝
), and the small subspaces 𝑀0(𝐷𝜇

𝑝
). 

We defer their precise definitions which coincide with those given in [255] or [272]. These 

families include various types of well-known spaces: 

(i) the Hardy space 𝐻2 and all weighted Bergman and Dirichlet-type spaces,  

(ii) their M�̈�bius invariant subspaces such as BMOA, 𝔅, analytic Besov spaces, and 

𝒬𝑃 spaces, and  

(iii) the small subspaces of the above spaces such as V MOA, 𝔅0 or 𝑄𝑝,0. It should also be 

remarked that families of “large” and “small” spaces defined by means of oscillation and 

density of polynomials in them (which is also discussed here) were considered in Perfekt’s 

[269]. 

We present a unified approach to charac-terizing all bounded, compact, and weakly 

compact composition operators from 𝔅 into any of the spaces belonging to the family 

mentioned above. Our principal result shows that every weakly compact composition 

operator from 𝔅 into any space𝑀 (𝐷𝜇
𝑝
),  is actually compact. We also generalize a number 

of existing but scattered results and add some new results. For instance, we characterize the 

compact and weakly compact operators from the Bloch space into the space BMOA. We do 

this by using a combination of complex analysis arguments and Banach space techniques. 

       Part of the motivation for our approach to compactness comes from Xiao’s treatment 

[124]. 

       First of all, we characterize completely and in terms of the hyperbolic derivative of the 

symbol 𝜑 all bounded and compact composition operators 𝐶𝜑 from the Bloch space 𝔅 into 

any of the general spaces 𝐷𝜇
𝑝
, 𝑀 (𝐷𝜇

𝑝
), 𝑎𝑛𝑑 𝑀0(𝐷𝜇

𝑝
) considered. It turns out that when-ever 

𝐶𝜑 ∶  𝔅 →  𝐷𝜇
𝑝
 𝑜𝑟 𝐶𝜑 ∶  𝔅 →  𝑀0(𝐷𝜇

𝑝
), the compactness of Cϕ follows “for free” (after 

some work). 

       Our Theorem (6.3.7) describes the compact composition oper-ators from 𝔅 into the 

invariant space 𝑀 (𝐷𝜇
𝑝
) and shows that, in this case, weak compactness is equivalent to 

compactness. The proof is based on a theorem of Banach-Saks type from functional analysis 

and techniques from function spaces. The result is accompanied by appropriate Example 

(6.3.9) (6.3.4)’s. 

       Another relevant point (Theorem (6.3.13)) is a rigorous and detailed proof that, for all 

natural radial measures of certain type, the polynomials are dense in the small subspace 

𝑀0(𝐷𝜇
𝑝
)  of the conform ally invariant space M (𝐷𝜇

𝑝
)  , in analogy with the classical cases. 

This provides a wide range of Examples (6.3.9), (6.3.4) where the separability hypothesis 

of our Theorem (6.3.15) is satisfied. This last result characterizes the bounded and compact 
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composition operators from the Bloch space 𝔅 into the small spaces 𝑀0(𝐷𝜇
𝑝
)  . 

       In what follows, 𝔻 will denote the unit disk in the complex Plane: 𝔻 =  {𝑧 ∈ ℂ ∶
 |𝑧|  <  1} 𝑎𝑛𝑑 𝑑𝐴 will denote the normalized Lebesgue area measure on 𝔻:  

𝑑𝐴(𝑧) =  
1

𝜋
 𝑑𝑥 𝑑𝑦 =  

1

𝜋
 𝑟 𝑑𝑟 𝑑𝜃,    𝑧 = 𝑥 + 𝑦𝑖 = 𝑟𝑒𝑖𝜃. 

By a disk automorphism, we will mean a one-to-one analytic mapping of 𝔻 onto itself. The 

set of all such maps, 𝐴𝑢𝑡(𝔻), is a transitive group under composition. As is well known, 

every 𝜎 ∈  𝐴𝑢𝑡(𝔻) has the form 

𝜎(𝑧) =  𝜆
𝑎 − 𝑧

1 − 𝑎𝑧
,   |𝜆| = 1,      |𝑎| < 1.                         (34) 

An important property of disk automorphisms is that they yield equality in the Schwarz-

Pick lemma: 

(1 − |𝑧|2)|𝜎′(𝑧)| =  1 −  |𝜎(𝑧)|2 , 𝑧 ∈  𝔻 .                         (35) 
We shall always consider a positive Borel measure μ on 𝔻. A typical Example (6.3.9) 

(6.3.4) is 

𝑑𝜇(𝑧)  =  (1 − |𝑧|2)𝛼𝑑𝐴(𝑧) ,  
a measure which is finite if and only if −1 < α < ∞. Another Example (6.3.9) (6.3.4) is 

𝑑𝜇(𝑧)  = 𝑙𝑜𝑔𝛼
1

|𝑧|
 𝑑𝐴(𝑧) , 

Note that for z near the unit circle the function 𝑙𝑜𝑔𝛼
1

|𝑧|
 behaves asymptotically like 

(1 −  |𝑧|2)𝛼. In principle, our measures are not assumed to be of the form ℎ(|𝑧|) 𝑑𝐴(𝑧), 
where h is some integrable positive function on [0, 1) like in the above Example (6.3.9) 

(6.3.4)’s. However, the result will mostly be displayed for measures that satisfy this 

assumption. 

We will use ℋ(𝔻) to denote the set of all functions analytic in 𝔻. A function 𝑓 ∈
 ℋ(𝔻) is said to belong to the Bloch space 𝔅 if its invariant derivative:( 1 −
 |𝑧|2)|𝑓′(𝑧)| 𝑖𝑠 bounded in 𝔻. The name comes from the fact that this quantity does not 

change under a composition with any 𝜎 ∈  𝐴𝑢𝑡(𝔻) in view of our formula (35). The Bloch 

space becomes a Banach space when equipped with the norm 

‖𝑓‖𝔅 =  |𝑓(0)| + 𝑠𝑢𝑝𝑧∈𝔻(1 − |𝑧|
2)|𝑓′(𝑧)|. 

every function in 𝔅 satisfies the standard growth condition : 

|𝑓(𝑧)| ≤ (1 +
1

2
log

|1 + 𝑧|

|1 − 𝑧|
) ‖𝑓‖𝔅,            𝑧 ∈  𝔻.                        (36) 

Given a positive Borel measure 𝜇 on  𝔻 and 𝑝 ∈ [1,∞), we can define the, weighted 

Girichlet-types space  𝐷𝜇
𝑝

 in the usual way: 

𝐷𝜇
𝑝
=  {𝑓 ∈ ℋ(𝔻): ‖𝑓‖

𝐷𝜇
𝑝

𝑝
≔ |𝑓(0)|𝑝 + ∫|𝑓′|𝑝

𝔻

 𝑑𝜇 < ∞}. 

Consider the point evaluation functional  𝜑𝜁  , 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑏𝑦 𝜑𝜁  (𝑓 ) = 𝑓(𝜁) , 𝑓𝑜𝑟 𝜁 ∈  𝔻. It 

is natural to require the following axioms to hold:  
 𝐷𝜇

𝑝
 is a Banach space;  

 The point-evaluation functional 𝜑𝜁  is bounded on 𝐷𝜇
𝑝
 for each 𝜁 ∈  𝔻.  

       In view of the uniform boundedness principle, these two requirements can be 

summarized in one single axiom: 
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The point-evaluation functional are uniformly bounded on 𝐷𝜇
𝑝
  on compact subsets of 

𝔻.  

       Following the notation used, for Example (6.3.9) (6.3.4), in [255], we define the Möbius 

invariant subspace M (𝐷𝜇
𝑝

) as the space of all functions f 𝑖𝑛 ℋ(𝔻) such that 

‖𝑓‖
𝑀 (𝐷𝜇

𝑝
)

𝑝
: =  |𝑓(0)|𝑝 + 𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻) ∫|(𝑓 ∘ 𝜎)

′|𝑝

𝔻

𝑑𝜇 < ∞. 

We also define the corresponding Little invariant subspaces: 

𝑀0(𝐷𝜇
𝑝
) =  {f ∈ 𝑀(𝐷𝜇

𝑝
): lim

|𝜎(0)|→1,𝜎∈𝐴𝑢𝑡(𝔻)
∫|(𝑓 ∘ 𝜎)′|𝑝𝑑𝜇 = 0

𝔻

}. 

       A few remarks are in order: 

It is routine to verify that  s(f)  =  𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻) (∫ |(𝑓 ∘ 𝜎)′|𝑝𝑑𝜇
𝔻

)
1/𝑝

 

Defines a seminorm on  𝑀(𝐷𝜇
𝑝
) and  ‖. ‖𝑀(𝐷𝜇

𝑝
) has all the properties of a norm. 

Since {𝜏 ◦∘ 𝜎 ∶  𝜎 ∈  𝐴𝑢𝑡(𝔻)}  =  𝐴𝑢𝑡(𝔻) holds for any fixed τ ∈ Aut(𝔻), it 

follows that the s (f ◦ τ ) = s (f ). In other words, this seminorm is conform ally invariant.  

Since the identity map of 𝔻 is trivially a disk automorphism, it is immediate that 

𝑀(𝐷𝜇
𝑝
) ⊂ 𝐷𝜇

𝑝
. It actually follows from our previous comment that 𝑀(𝐷𝜇

𝑝
) is the largest 

conformally invariant subspace of 𝐷𝜇
𝑝

.  

Note that we actually require that f ∈ M (𝐷𝜇
𝑝
)is in the definition of M0 (𝐷𝜇

𝑝
)is since 

it is not obvious, even for somewhat special measures  

μ, that the assumption 

lim
|𝜎(0)|→1,𝜎∈𝐴𝑢𝑡(𝔻)

∫|(𝑓 ∘ 𝜎)′|𝑝𝑑𝜇 = 0

𝔻

 

Implies that  

𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻) ∫|(𝑓 ∘ 𝜎)
′|𝑝𝑑𝜇 < ∞

𝔻

. 

Assuming the uniform boundedness of point evaluations in 𝐷𝜇
𝑝

 on compact subsets 

of 𝔻, by a standard normal families argument and Fatou’s lemma one can deduce the 

completeness of M (𝐷𝜇
𝑝
). It is easily checked that 𝑀0(𝐷𝜇

𝑝
) is a closed subspace of M (𝐷𝜇

𝑝
), 

so it is also complete.  

It is not difficult to see that each one of the spaces defined above contains sufficiently 

many functions for most “reasonable” measures μ. For Example (6.3.9) (6.3.4), if μ is a 

finite measure then every function analytic in a disk larger than 𝔻 and centered at the origin 

is readily seen to belong to M (𝐷𝜇
𝑝

). We shall discuss the membership and density of the 

polynomials in 𝑀0 (𝐷𝜇
𝑝

).  

In several only the involutive automorphisms are considered: 𝜎𝑎(𝑧)  =  (𝑎 −
 𝑧)/(1 − �̅�𝑧), 𝑎 ∈  𝔻, 𝑟𝑒𝑞𝑢𝑖𝑟𝑖𝑛𝑔 𝑡ℎ𝑎𝑡 |𝑎|  →  1 in the definitions of the special small 

spaces. Here we have opted for the full generality and for considering the entire 

automorphism group, which adds certain technical difficulties to some proofs. 

       An appropriate choice of μ in the above definitions of our spaces 



182 

𝐷𝜇
𝑝
, 𝑀 (𝐷𝜇

𝑝
), 𝑎𝑛𝑑 𝑀0(𝐷𝜇

𝑝
) yields a number of well-known spaces of analytic functions in 

the disk as special cases. Here is a list of some important Example (6.3.9) (6.3.4)s. 

(A) In view of the well-known Littlewood-Paley identity [144]: 

‖𝑓‖𝐻2
2 ≔ |𝑓(0)|2 + 2 ∫|𝑓′(𝑧)|2

𝔻

 𝑙𝑜𝑔
1

|𝑧|
𝑑𝐴(𝑧) , 

the Hardy space 𝐻2 can be seen as a 𝐷𝜇
2 space by choosing d 𝜇 (z) = log 

1

|𝑧|2
 dA(z). Its 

conformally invariant subspace M (𝐷𝜇
2) is the well-known BMOA space of analytic 

functions of bounded mean oscillation and the corresponding space 𝑀0(𝐷𝜇
2) = V MOA, the 

space of functions of vanishing mean oscillation; see [263] for more about these space. It 

should be remarked that in this case our definition involving all possible disk 

automorphisms coincides with the usual one that takes into account only the involutive 

automorphisms 𝜎𝑎 mentioned above in view of rotation invariance of the measure μ. 

(B) The analytic Besov spaces 𝐵𝑝, 1 <  𝑝 <  ∞, are obtained as 𝐷𝜇
𝑝

 spaces by choosing 

𝑑𝜇(𝑧)  =  (𝑝 −  1)(1 − |𝑧 |2)𝑝−2𝑑𝐴(𝑧), 1 <  𝑝 <  ∞. See [215] or [154] for more about 

these spaces. Note that, in this case, combining the simple change of variable 𝑤 =
 𝜎(𝑧), 𝑑𝐴(𝑤)  =  |𝜎′(𝑧)|2𝑑𝐴(𝑧) with (35) shows that 

∫|(𝑓 ∘ 𝜎)′(𝑧)|𝑝𝑑𝜇(𝑧) = ∫|𝑓′(𝜔)|𝑝

𝔻𝔻

𝑑𝜇(𝜔). 

So it is immediate that here   while the corresponding space   is trivial (consisting only of 

the constant functions). 

(c) The Bergman spaces 𝐴𝑝, 1 ≤  𝑝 ≤ ∞, can be obtained by taking  𝑑𝜇(𝑧) =
 (1 − |𝑧|2)𝑝𝑑𝐴(𝑧) . Well- known ( but too lengthy to repeat here ) arguments using the 

Cauchy integral formula and Minkowski’s inequality in its integral form as in [262] show 

that the norm in our definition is equivalent to the standard Bergman norm: 

|𝑓(0)|𝑝 + ∫|𝑓′(𝑧)|𝑝

𝔻

(1 − |𝑧|2)𝑝𝑑𝐴(𝑧) ≍ ∫|𝑓(𝑧)|𝑝

𝔻

𝑑𝐴(𝑧). 

(meaning that each of the two sides is bounded by a constant multiple of the other, this 

multiple being independent of f ). In this case it turns out that M (𝐷𝜇
𝑝
) = 𝔅 and 𝑀0(𝐷𝜇

𝑝
)  = 

𝔅0, the Little Bloch space (the closure of polynomials in 𝔅), as was shown by Axler [256]. 

(D) The 𝑄𝛼 spaces, defined by Aulaskari, Xiao, and Zhao [216] and studied by other as well 

(see [124] for an extensive account), can be seen as 𝑀 (𝐷𝜇
𝑝
) spaces by taking 𝑝 =

 2, 𝑑𝜇(𝑧) =  𝑙𝑜𝑔𝛼  
1

|𝑧|
 𝑑𝐴(𝑧), 0 <  𝛼 <  ∞. An equivalent norm is obtained by choosing 

𝑑𝜇 =  (1 − |𝑧|)𝛼  𝑑𝐴(𝑧) instead. (Note that we will use the notation  𝒬𝛼rather than the 

traditional 𝒬𝑝 because here p = 2 is fixed and the exponent α from the weight is the one that 

determines the space.) It is well known that   𝒬𝛼 coincides as a set with 𝔅 (but is, of course, 

endowed with a deferent norm) whenever α > 1 and with BMOA when α = 1, while it is an 

entirely deferent space when 0 < α < 1. The corresponding small space 𝑀0(𝐷𝜇
𝑝
) is the space 

usually denoted as 𝒬𝛼,0 and 

𝑄1,0  =  𝑉 𝑀𝑂𝐴. 
       The following lemma in the case p = 1 has been proved explicitly by Ramey and Ullrich 
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[121] although the argument can probably be traced back to Ahern and Rudin.  

Lemma (6.3.1)[254]: Let 1 ≤  p <  ∞. There exist two functions f and g in the Bloch 

space 𝔅 and a positive constant C such that 

|𝑓′(𝑧)|𝑝 + |𝑔′(𝑧)|𝑝 ≥
𝐶

(1 − |𝑧|2)𝑝
 

for all z in 𝔻. 

       The proof follows by [121]. The key point is to select a partition of the disk into two 

sets of concentric annuli centered at the origin and two lacunary series, one of which takes 

on large enough values: 

|𝑓′(𝑧)| ≥
𝐴

1 − |𝑧|2
 

on the odd-numbered annuli and the other does the same on the even-numbered annuli. This 

takes care of the case 𝑝 = 1, for arbitrary 𝑝 ≥ 1 the statement follows readily by the 

standard inequality (𝑎 +  𝑏)𝑃 ≤  2𝑃(𝑎𝑝  +  𝑏𝑝), where 𝑎, 𝑏 ≥  0. 

       It will be convenient to use the following version of the hyperbolic derivative of an 

analytic self-map 𝜑𝑜𝑓 𝔻: 

𝜑⋕(𝑧) =  
|𝜑′(𝑧)|

1 − |𝜑(𝑧)|2
 

It should be noted that there is another related quantity also called hyperbolic derivative but 

only the above expression will be useful for our purpose. 

       We state two basic facts which characterize the bounded composition operators from 

𝔅 𝑖𝑛𝑡𝑜 𝐷𝜇
𝑝
 𝑎𝑛𝑑 𝑖𝑛𝑡𝑜 𝑀 (𝐷𝜇

𝑝
) respectively. The proofs of such facts are relatively 

straightforward and have by now become standard. We record them here only for the sake 

of completeness. 

Proposition (6.3.2)[254]: The following statements are equivalent: 

(a) 𝐶𝜑: Β → 𝐷𝜇
𝑝
; 

(b) 𝐶𝜑 is bounded operator from Β into 𝐷𝜇
𝑝
; 

(c) 𝐷|𝜙#|𝑝 𝑑𝜇 <  ∞. 
Proof. It suffices to verify the following short chain of implications: (a) ⇒ (c) ⇒ (b) ⇒ (a). 

[(𝑎)  ⇒  (𝑐). ]Suppose that  𝑓 ∘ 𝜑 ∈  𝐷𝜇
𝑝
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓 𝑖𝑛 𝔅. Choose two functions f , g ∈ 𝔅 

and the constant C > 0 as in Lemma (6.3.1). Evaluate them at 𝜑(𝑧) to get that 
𝐶

(1 − |𝜑(𝑧)|2)𝑝
≤ |𝑓′(𝜑(𝑧))|

𝑝
+ |𝑔′(𝜑(𝑧))|

𝑝
,   𝑧 ∈ 𝔻. 

This yields 

𝐶 ∫
|𝜑′|𝑝

(1 − |𝜑|2)𝑝
𝔻

𝑑𝜇 ≤ ∫|𝑓′  ∘ 𝜑|𝑝

𝔻

|𝜑′|𝑝𝑑𝜇 + ∫|𝑔′  ∘ 𝜑|𝑝

𝔻

|𝜑′|𝑝𝑑𝜇. 

≤ ‖𝑓 ∘ 𝜑‖𝐷𝑝
𝑝
+ ‖𝑔 ∘ 𝜑‖𝐷𝑝

𝑝
 < ∞. 

This proves. 

     Suppose that let f be an arbitrary function In  𝔅 . Then 

|𝑓′(𝜑(𝑧))|(1 − |𝜑(𝑧)|2) ≤  ‖𝑓‖𝔅  

for every 𝑧 ∈  𝔻. This readily implies that 

 ∫ |𝑓′  ∘ 𝜑|𝑝
𝔻

|𝜑′| 𝑝𝑑𝜇 ≤

 ∫ |𝜑#| 𝑝
𝔻

   𝑑𝜇 ·  ‖𝑓‖𝔅
𝑝
 <  ∞. 
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Also, from the growth estimate (36) we obtain 

|𝑓(𝜑(0))| ≤ (1 +
1

2
log

1 + |𝜑(0)|

1 − |𝜑(0)|
) ‖𝑓‖𝔅. 

By summing up the last two inequalities, it follows that 𝐶 𝜑is bounded as an operator from 

𝔅 𝑖𝑛𝑡𝑜 𝑀 (𝐷𝜇
𝑝
). 

     [(b) ⇒ (a)]is trivial. 

Proposition (6.3.3)[254]: The following statements are equivalent: 

(a) 𝐶𝜑 : 𝔅 → M (𝐷𝜇
𝑝

);  

(b) 𝐶𝜑 is a bounded operator from 𝔅 into M (𝐷𝜇
𝑝

);  

(c) 𝑠𝑢𝑝 𝜎∈𝐴𝑢𝑡(𝐷)  ∫ |(𝜑 ∘ 𝜎)#|
𝑃

𝔻
dμ < ∞.  

Proof. The proof can be worked out along the same lines as that of Proposition (6.3.2), with 

the necessary modifications. 

       It is important to make sure that we are not dealing with trivial situations by displaying 

Example (6.3.9) that work in a large number of cases. Here is a very simple Example (6.3.9) 

showing that very simple symbols may or may not yield bounded composition operators 

from 𝔅0 our spaces. 

Example (6.3.4)[254]: Let 1 ≤  𝑝 <  ∞, 𝑑𝜇(𝑧)  =  (1 −  |𝑧|2)𝛼 𝑑𝐴(𝑧), 𝑎𝑛𝑑 𝑙𝑒𝑡 𝜑(𝑧)  ≡
 𝑧. 
Then the following statements are equivalent: 

(a) 𝐶𝜑 is bounded as an operator from 𝔅 into 𝐷𝜇
𝑝
. 

(b) 𝐶𝜑 is bounded as an operator from 𝔅 into 𝑀(𝐷𝜇
𝑝
). 

(c) 𝑝 − 𝛼 < 1. 

The case of M(Dμ
p
) is slightly more involved, but still easy to check, in view of the identity 

(35): 

∫|(𝜑 ∘ 𝜎)⋕|
𝑝

𝔻

𝑑𝜇 =  ∫|𝜎⋕(𝑧)|
𝑝

𝔻

𝑑𝜇(𝑧) = ∫
𝑑𝜇(𝑧)

(1 − |𝑧|2)𝑝
𝔻

= ∫
𝑑𝐴(𝑧)

(1 − |𝑧|2)𝑝−𝛼
𝔻

. 

Trivial integration in polar coordinates shows that the last integral converges only for the 

range indicated in (c). (Note that this is really a statement about the containments 𝔅 ⊂

 M(Dμ
p
)  but is at the same time an Examples (6.3.9), (6.3.4) for composition operators.) 

       The case of bounded operators from 𝔅 into the Little Möbius invariant subspaces 

𝑀0(𝐷𝜇
𝑝
)   will be considered together with the compactness question. This is done because 

the two turn out to be equivalent and the proof requires other results to be obtained first. 

We probably noticed some differences in the formulation of the results and those by 

other pertaining to the cases like BMOA or 𝑄𝛼 . The reason for this is very simple: these 

spaces are obtained in the special case p = 2 when some of our results above can be rewritten 

in a different language. 

To this end, denote by 𝑁𝜑 the counting function of 𝜑: 

𝑁𝜑(𝜔)  =  |{𝑧 ∈  𝔻 ∶  𝜑(𝑧)  =  𝜔}| , 

understanding 0, 1, 2,. . . ,∞ as its possible values. Let us also agree to write 𝐴ℎ for the 

hyperbolic area of a subset of the disk: 
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𝐴ℎ(𝑆) =  ∫
𝑑𝐴(𝑧)

(1 − |𝑧|2)2.
𝑆

 

Lemma (6.3.5)[254]: For arbitrary positive measure μ, we have 

|𝜑′|2

(1 − |𝜑|2)2
 =  ∆ log

1

1 − |𝜑|2
.                                                    (37) 

When 𝑑𝜇 = 𝑑𝐴, we also have 

∫
|𝜑′|2

(1 − |𝜑|2)2
 𝑑𝐴

𝔻

 =  ∫ 𝑁𝜑𝑑𝐴ℎ
𝔻

,                                                         (38) 

Formula (37) is a simple consequence of the identity 𝛥(𝑢 ∘ 𝜑)  =  (𝛥𝑢 ∘ 𝜑)|𝜑′|2 while (38) 

follows from the well-known formula for non-univalent change of variable (see [144] or 

[12]). 

       Taking into account the equivalent forms of writing |𝜑# | from Lemma (6.3.5), it 

becomes obvious how the condition (c) in Proposition (6.3.2) and Proposition (6.3.3) can 

be rewritten. For Example (6.3.9) (6.3.4), in two special cases we could state our Proposition 

(6.3.2) or Proposition (6.3.3) as follows: 

For arbitrary μ, the composition operator Cφ is bounded from 𝔅 into M(Dμ
p
) if and only if 

𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻) ∫ ∆ 𝑙𝑜𝑔
1

1 − |𝜑 ∘ 𝜎|2
𝔻

𝑑𝜇 < ∞. 

𝐶𝜑 is bounded from 𝔅 into 𝐷𝐴
2 (A being the area measure) if and only if 

 𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻) ∫ 𝑁𝜑∘𝜎 𝑑𝐴ℎ.𝔻
= ∫ 𝑁𝜑𝑑𝐴ℎ < ∞𝔻

. 

in view of conformal invariance. 

       Recall that a bounded linear operator between two Banach spaces is said to be compact 

if it takes bounded sets into sets whose closure is compact; equivalently, if for every 

bounded sequence in the space the sequence of images has a convergent subsequence in the 

norm topology. A bounded operator is weakly compact if it takes bounded sets into sets 

whose closure is weakly compact; equivalently, if for every bounded sequence in the space 

the sequence of images has a subsequence that converges in the weak topology. 

Compactness obviously implies weak compactness. 

       We will now show that every composition operator from the Bloch space B into any of 

our spaces 𝑀(𝐷𝜇
𝑝
)  is compact if and only if it is weakly compact and will also give a 

characterization of this property in terms of the symbol 𝜑 which unifies all previously 

obtained results for concrete spaces. In the special case of composition operators from 𝔅 to 

𝒬𝛼, the equivalence of (a) and (c) in Theorem (6.3.7) below has been proved before by 

Smith and Zhao [198]; see also [275] or [273]. However, weak compactness was not 

considered in these works. 

       The main novelty of our approach consists of the use of certain techniques usually 

employed by the experts in Banach space theory, the main one being a version of the 

Banach-Saks theorem. We formulate below the statement needed as a lemma but remark 

that it proof relies on some rather non-trivial results. It should be observed that the lemma 

is no longer true (even for composition operators) if we only assume boundedness of the 

operator. 

Lemma (6.3.6)[254]: Suppose that T is a weakly compact operator from 𝔅 into an arbitrary 
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Banach space Y . Then every bounded sequence (fn)n in 𝔅 has a subsequence (𝑓𝑛𝑘)𝑘 such 

that the arithmetic means of the images 𝑇 𝑓𝑛𝑘 converge to some element in the norm of 𝑌. 

Proof. Recall that the Bloch space is isomorphic to the space of all bounded complex 

sequences 𝑙∞; see Lusky’s [266]. On the other hand, 𝑙∞ 𝑖s a unital commutative 𝐶∗-algebra 

endowed with the usual operations of coor-dinatewise multiplication and conjugation. The 

Gelfand-Naimark Theorem (see [271] where uses the term 𝐵∗ −algebra instead) now 

implies that 𝑙∞ is isomorphic to a space of continuous functions on its maximal ideals 

(which is a compact Hausdorff space by [271]). Thus, we are allowed to apply a Banach-

Saks type theorem proved in 1979 by Diestel - Seifert and (see [260]) which establishes that 

any weakly compact linear operator from a space of continuous functions on a compact 

Hausdorff space into an arbitrary Banach space has the Banach-Saks property. 

Alternatively, we could have deduced the statement from a more general result of 𝐽𝑎𝑟𝑐ℎ𝑜𝑤 

referring directly to the 𝐶∗ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑠 (see also [260]). 

       Note that the measure μ in the theorem below is not required to be of any special form. 

In particular, it need not be finite. 

       For the sake of brevity, throughout the rest we will write simply {|𝜑 ∘ 𝜎|  >  𝑟} to 

denote the set {𝑧 ∈  𝔻 ∶  |(𝜑 ∘ 𝜎)(𝑧)|  >  𝑟}. 
Theorem (6.3.7)[254]: Let  1 ≤  p <  ∞. Suppose that Cφ is a bounded operator from 

𝔅 to M (Dμ
p
). Then the following statements are equivalent:  

(a) 𝐶𝜑 is a compact operator 𝔅 to 𝑀(𝐷𝜇
𝑝
). 

(b) 𝐶𝜑 is a weakly compact operator from 𝔅 to 𝑀(𝐷𝜇
𝑝
). 

(c)  𝑙𝑖𝑚𝑟→1 𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝜑 ∘ ◦  𝜎)#| 𝑝𝑑𝜇 =  0.
{|𝜙∘◦𝜎|>𝑟}

 

Proof. We proceed to prove the statement by proving the implications (c) ⇒ (a) ⇒ (b) ⇒ 

(c). 
[(c) ⇒ (a).]  Suppose (c) holds. It is clear that if (𝑓𝑛)𝑛 is a bounded sequence in the Bloch 

space that converges to zero uniformly on compact sets, then 𝑙𝑖𝑚𝑛→∞𝑓𝑛(𝜑(0))  =  0. Thus, 

let us concentrate on the second term that appears in the norm. Fix an arbitrary 𝜀 >  0. Then 

there exists 𝑟0  ∈  (0, 1) such that 

𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝜑 ∘ ◦  𝜎)#| 𝑝𝑑𝜇 <
𝜀

2𝑝+1
{|𝜙∘◦𝜎|>𝑟0}

.                      (39) 

Let (𝑓𝑛)𝑛 be an arbitrary sequence in 𝔅 𝑤𝑖𝑡ℎ ‖𝑓𝑛‖𝔅  ≤  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. By a normal families 

argument, there exists a subsequence which we denote by (𝑔𝑛)𝑛 which converges uniformly 

on compact sets to an analytic function g. From 

|𝑔𝑛
′ (𝑧)| ≤

‖𝑔𝑛‖𝔅
1 − |𝑧|2

≤
1

1 − |𝑧|2
,     𝑧 ∈ 𝔻. 

It readily follows that g enjoys the same estimate , hence 𝑔 ∈ 𝔅 𝑎𝑛𝑑 ‖𝑔‖𝔅 ≤ 1. Moreover, 

we also have that  |𝑔𝑛
′ (𝜔) − 𝑔′(𝜔)| ≤

2

1−|𝜔|2
  for all 𝜔 𝑖𝑛 𝔻   , hence  

|(𝑔𝑛 − 𝑔)
′ ∘ (𝜑 ∘ 𝜎)|𝑝|(𝜑 ∘ 𝜎)′|𝑝 ≤ 2𝑝|(𝜑 ∘ 𝜎)⋕|

𝑝
                      (40) 

       holds throughout 𝔻. In order to show that 𝐶𝜑(𝑔𝑛)  →  𝐶𝜑(𝑔) in the 𝑀 (𝐷𝜇
𝑝
) norm, we 

need to show that the integrals 
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∫|(𝑔𝑛 − 𝑔)
′ ∘ (𝜑 ∘ 𝜎)|𝑝

𝔻

 |(𝜑 ∘ 𝜎)′|𝑝 𝑑𝜇.  

are uniformly small independently of σ as n → ∞. 𝑓𝑜𝑟 𝑡ℎ𝑖𝑠 𝑝𝑢𝑟𝑝𝑜𝑠𝑒  , is convenient to split 

the above integral into two ( omitting  the integrals  below): 

 

∫ = ∫ +

{|𝜑∘𝜎|≤𝑟0}𝔻

∫ .

{|𝜑∘𝜎|>𝑟0}

                                      (41) 

By assumption, 𝐶𝜑 is bounded from B to 𝑀 (𝐷𝜇
𝑝
) so in view of Proposition (6.3.3), we have 

𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝜑 ∘ ◦  𝜎)
#| 𝑝𝑑𝜇 ≤ 𝑀. .

𝔻

 

for some fixed positive constant M. Given ε > 0, by virtue of the uniform 

convergence: (𝑔𝑛  −  𝑔)
′  →  0 on the compact set {𝑧 ∶  |𝑧|  ≤  𝑟0}, for large enough n we 

have 

∫ |(𝑔𝑛 − 𝑔)
′ ∘ (𝜑 ∘ 𝜎)|𝑝

{|𝜑∘𝜎|≤𝑟0}

|(𝜑 ∘ 𝜎)′|𝑝 𝑑𝜇

≤ ∫ |(𝑔𝑛 − 𝑔)
′ ∘ (𝜑 ∘ 𝜎)|𝑝

{|𝜑∘𝜎|≤𝑟0}

|(𝜑 ∘ 𝜎)′|𝑝 

1 − |(𝜑 ∘ 𝜎)2|𝑝 
𝑑𝜇

<
𝜀

2𝑀
∫

|(𝜑 ∘ 𝜎)′|𝑝 

1 − |(𝜑 ∘ 𝜎)2|𝑝 
𝑑𝜇 ≤

𝜀

2
.

{|𝜑∘𝜎|≤𝑟0}

 

Thus, for 𝑛 sufficiently large, the first integral in (41) can be made smaller than < ε/2. 

       The second integral in (41) is smaller than ε/2 in view of the inequalities (39) and (40). 

This implies that 

‖𝐶𝜑(𝑔𝑛) − 𝐶𝜑(𝑔)‖𝑀(𝐷𝜇
𝑝
)
< 𝜀. 

for n large enough, as asserted. 

(a) ⟹   (b) is obvious. 
(b)  ⟹ (c) is the most intricate part of the proof. We follow the steps indicated below.  

Step 1:  We first show that the weak compactness assumption on 𝐶𝜑 implies 

lim
𝑟→1

  𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝜑 ∘ ◦  𝜎)′| 𝑝𝑑𝜇 = 0

{|𝜑∘ ◦ 𝜎|>𝑟}

.                              (42) 

This condition alone is apparently much weaker than (c). However, we will eventually show 

that, together with the weak compactness of 𝐶𝜑 it actually implies the desired condition (c). 

Thus, suppose that 𝐶𝜑 is weakly compact from B into 𝑀 (𝐷𝜇
𝑝
) but (42) does not hold. Then 

we can find a positive number δ, an increasing sequence (𝜌𝑗 )𝑗 of numbers in (0, 1) such 

that limn→∞ 𝜌𝑗 = 1, and a sequence of disk automorphisms (𝜏𝑗 )𝑗 such that 
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∫ |(𝜑 ∘ ◦ 𝜏𝑗)
′
| 𝑝𝑑𝜇 ≥ 𝛿

{|𝜑∘ ◦ 𝜏𝑗|>𝜌𝑗}

.                          (43) 

For a positive integer k, let us agree to write 

𝐶𝑘 =  
𝑘(𝑘 + 1)

2
 

Next, choose recursively a subsequence (𝑚𝑛)𝑛 of the integers in such a way that 

𝑚0 = 1  ,𝑚𝑛 > 𝐶𝑚𝑛−1
+ 𝑛. 

Once the sequence(𝑚𝑛)𝑛has been fixed, let us choose the subsequence (𝑟𝑛) of the sequence 

(𝜌𝑗 )𝑗  so that 

𝑚𝑛𝑟𝑛
𝑚𝑛−1   > 𝐶𝑚𝑛−1

+ 𝑛,                𝑛 ≥ 1 

This is possible since l𝑖𝑚𝑟→1 𝑚𝑛𝑟𝑛
𝑚𝑛−1  =  𝑚𝑛. Note that then 

𝑚𝑛𝑟𝑛
𝑚𝑛−1   > 𝐶𝑚𝑛−1

+ 𝑛 ≥ 𝑚𝑛−1 + 𝑛 >  𝑚𝑛−1                       (44) 

Also, let us choose the subsequence (𝜎𝑛)𝑛 𝑜𝑓 (𝜏𝑗 )𝑗  with the same indices as those of 

(𝑟𝑛)𝑛with respect to (𝜌𝑗 )𝑗. 

       By applying Lemma (6.3.6) to our weakly compact operator 𝐶𝜑 : 𝐵 →  𝑀 (𝐷𝜇
𝑝
) and 

observing that the sequence (𝑧𝑚𝑛  )𝑛 is bounded in the Bloch space, we conclude that there 

exists a subsequence (𝑚𝑛𝑘)𝑘of (𝑚𝑛)𝑛 for which the arithmetic means 

1

𝑁
∑𝜑𝑚𝑛𝑘

𝑁

𝑘=1

 

converge in the norm of 𝑀 (𝐷𝜇
𝑝
). They actually must tend to zero since they converge to 

zero uniformly on compact sets. Hence, 

‖
1

𝑁
∑𝜑𝑚𝑛𝑘

𝑁

𝑘=1

‖

𝑀(𝐷𝜇
𝑝
)

𝑝

≥ 𝑠𝑢𝑝𝜎 ∫ |
1

𝑁
∑𝑚𝑛𝑘(𝜑

𝑚𝑛𝑘
−1 ∘ 𝜎)

𝑁

𝑘=1

|

𝑃

𝔻

|(𝜑 ∘ ◦  𝜎)′|𝑝𝑑𝜇. 

Hence  

lim
𝑁→∞

𝑠𝑢𝑝𝜎 ∫ |
1

𝑁
∑𝑚𝑛𝑘(𝜑

𝑚𝑛𝑘−1 ∘ 𝜎)

𝑁

𝑘=1

|

𝑃

𝔻

|(𝜑 ∘ ◦  𝜎)′|𝑝𝑑𝜇 = 0. 

𝑠𝑢𝑝𝜎 ∫ |
1

𝑁
∑𝑚𝑛𝑘(𝜑

𝑚𝑛𝑘−1 ∘ 𝜎)

𝑁

𝑘=1

|

𝑃

𝔻

|(𝜑 ∘ ◦  𝜎)′|𝑝𝑑𝜇 < 𝜀. 

∫ |
1

𝑁
∑𝑚𝑛𝑘(𝜑

𝑚𝑛𝑘
−1 ∘ 𝜎𝑛𝑁)

𝑁

𝑘=1

|

𝑃

{|(𝜑∘ ◦ 𝜎𝑛𝑁)|>𝑟𝑛𝑁}

|(𝜑 ∘ ◦ 𝜎𝑛𝑁)
′
|
𝑝
𝑑𝜇 < 𝜀.  (45) 

For an arbitrary but fixed z such that |(𝜑 ∘◦ 𝜎𝑛𝑁  )(𝑧)|  >  𝑟𝑛𝑁 , let us use the shorthand 

𝑥 =  |(𝜑 ∘◦ 𝜎𝑛𝑁  )(𝑧)|. Then, using the triangle inequality for complex numbers, the 

obvious inequalities 𝑟𝑛𝑁  <  𝑥 <  1, the elementary identity for the sum of the first N − 1 

positive integers, and (44), together with the fact that the sequence (𝐶𝑘)𝑘  is increasing and 

the obvious inequalities  𝑚𝑛𝑁−1
≥   𝑚𝑛𝑁−1

  and 𝑛𝑁 ≥ 𝑁, it follows that 
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1

𝑁
|∑𝑚𝑛𝑘(𝜑

𝑚𝑛𝑘−1 ∘ 𝜎𝑛𝑁)(𝑧)

𝑁

𝑘=1

| ≥
1

𝑁
(𝑚𝑛𝑘 𝑥

𝑚𝑛𝑁−1 −∑𝑚𝑛𝑘𝑥
𝑚𝑛𝑘−1

𝑁

𝑘=1

)

≥
1

𝑁
(𝑚𝑛𝑘 𝑥

𝑚𝑛𝑁−1 − ∑ 𝑗𝑥𝑗−1

𝑚𝑛𝑁−1

𝑗=1

) ≥
1

𝑁
(𝑚𝑛𝑘 𝑥

𝑚𝑛𝑁−1 − ∑ 𝑗

𝑚𝑛𝑁−1

𝑗=1

)

≥
1

𝑁
(𝑚𝑛𝑘  𝑥

𝑚𝑛𝑁
−1 −

𝑚𝑛𝑁−1(𝑚𝑛𝑁−1 + 1)

2
) ≥

1

𝑁
(𝑚𝑛𝑘 𝑥

𝑚𝑛𝑁
−1 − 𝐶𝑚𝑛𝑁−1

)

≥
1

𝑁
(𝑚𝑛𝑘  𝑥

𝑚𝑛𝑁
−1 + 𝑛𝑁 − 𝐶𝑚𝑛𝑁−1

) ≥
1

𝑁
𝑛𝑁 ≥ 1. 

Together with (12) , this yields  

∫ |(𝜑 ∘ 𝜎𝑛𝑁)
′
|
𝑃
𝑑𝜇 < 𝜀.

{|(𝜑∘𝜎𝑛𝑁)|>𝑟𝑛𝑁}

 

Since this must hold for an arbitrary choice of ε, it contradicts our assumption (43). This 

completes the proof that (42) holds. 

Step 2: Next, we show that the above condition (42), together with the weak compactness 

of 𝐶𝜑, implies the following condition 

lim
𝑟→1

  𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝑓 ∘ 𝜑 ∘ ◦  𝜎)′| 𝑝𝑑𝜇 = 0,    

{|𝜑∘ ◦ 𝜎|>𝑟}

𝑓 ∈ 𝔅.                (46) 

For any constant function the above condition is trivially fulfilled so let  f  be an arbitrary 

but fixed non-constant function in B. Pick an increasing sequence (𝑟𝑛) convergent to 1. Let 

us agree to denote by 𝑓𝑟 the dilations of f defined in the usual way: 

𝑓𝑟(𝑧) ≔ 𝑓(𝑟𝑧),       0 < 𝑟 < 1.                                (41) 
In view of the obvious inequality: 

(1 − |𝑧|2)𝑟𝑛|𝑓
′(𝑟𝑛𝑧)| ≤ (1 − |𝑟𝑛𝑧|

2)|𝑓′(𝑟𝑛𝑧)| ≤ ‖𝑓‖𝔅. 
the sequence (𝑓𝑟𝑛  ) is a bounded in the Bloch space. Also, it converges to f uniformly on 

compact sets. Since the operator 𝐶𝜑 : 𝐵 →  𝑀 (𝐷𝜇
𝑝
)  has the Banach-Saks property (in 

reality, it s𝑢ffi𝑐𝑒𝑠 to use the fact that it is weakly compact), there exists a subsequence of 

(𝑟𝑛), denoted in the same way by an abuse of notation, such that 

lim
𝑁→∞

‖
1

𝑁
∑(𝑓𝑟𝑘 ∘ 𝜑) − (𝑓 ∘ 𝜑) 

𝑁

𝑘=1

‖

𝑀(𝐷𝜇
𝑝
)

= 0. 

Our axiom on boundedness of the point evaluations on 𝐷𝜇
𝑝

 implies uniform convergence of 

 
1

𝑁
∑ (𝑓𝑟𝑘 ∘ 𝜑)𝑡𝑜 (𝑓 ∘ 𝜑) 
𝑁
𝑘=1 . We are, of course, not interested in the trivial case when the 

symbol 𝜑 is a constant function. Since neither of the functions f and 𝜑 is identically 

constant, the same is true of the function 𝑓 ∘  𝜑. Thus, we may select a further subsequence, 

denoted again by (𝑟𝑛) in order not to burden the notation, so that 
1

𝑁
∑ (𝑓𝑟𝑘 ∘ 𝜑) 
𝑁
𝑘=1    is not 

identically constant, and since is not ide4ntically constant, this implies 

‖
1

𝑁
∑𝑓𝑟𝑘

′  

𝑁

𝑘=1

‖

𝐻∞

≠ 0. 



190 

Given  𝜀 > 0, there exists a positive integer 𝑁 such that  

‖
1

𝑁
∑(𝑓𝑟𝑘 ∘ 𝜑) − (𝑓 ∘ 𝜑) 

𝑁

𝑘=1

‖

𝑀(𝐷𝜇
𝑝
)

<
𝜀

2
. 

Moreover, by (42) there exists 𝑟0 ∈ (0,1)  such that if 𝑟0 ≤ 𝑟 < 1  then  

𝑠𝑢𝑝𝜎 ∫ |(𝜑 ∘ ◦  𝜎)′|𝑑𝜇 <    
𝜀

2 ‖
1
𝑁
∑ 𝑓𝑟𝑘

′  𝑁
𝑘=1 ‖

𝐻∞
{|𝜑∘ ◦ 𝜎|>𝑟}

. 

Hence for  𝑟0 ≤ 𝑟 < 1    and for every disk automorphism  𝜎 we have  

∫ |(𝑓 ∘ 𝜑 ∘ 𝜎)′|𝑑𝜇

{|𝜑∘ ◦ 𝜎|>𝑟}

≤ ∫ |(
1

𝑁
∑𝑓𝑟𝑘  

𝑁

𝑘=1

∘ 𝜑 ∘ 𝜎)

′

− (𝑓 ∘ 𝜑 ∘ 𝜎)′| 𝑑𝜇

{|𝜑∘ ◦ 𝜎|>𝑟}

+ ∫ |(
1

𝑁
∑𝑓𝑟𝑘  

𝑁

𝑘=1

∘ 𝜑 ∘ 𝜎)

′−

| 𝑑𝜇

{|𝜑∘ ◦ 𝜎|>𝑟}

≤
𝜀

2
+ ∫ |(

1

𝑁
∑𝑓𝑟𝑘

′  

𝑁

𝑘=1

∘ 𝜑 ∘ 𝜎) (𝜑 ∘ 𝜎)′| 𝑑𝜇

{|𝜑∘ ◦ 𝜎|>𝑟}

≤
𝜀

2
+ ‖

1

𝑁
∑𝑓𝑟𝑘

′  

𝑁

𝑘=1

‖

𝐻∞

∫ |(𝜑 ∘ 𝜎)′|𝑑𝜇 ≤ 𝜀.

{|𝜑∘ ◦ 𝜎|>𝑟}

 

Taking the supremum over all automorphisms σ, we obtain (46). 

Step 3: Finally, in order to see that our condition (46) implies 

lim
𝑟→1

  𝑠𝑢𝑝𝜎∈𝐴𝑢𝑡(𝔻)  ∫ |(𝜑 ∘ ◦  𝜎)⋕| 𝑝𝑑𝜇 = 0,    

{|𝜑∘ ◦ 𝜎|>𝑟}

 

which is (c), it 𝑠𝑢ffi𝑐𝑒𝑠 to recall Lemma (6.3.1): there exist functions f and g in B such that  

|𝑓′(𝑧)|𝑝+  |𝑔′(𝑧)|𝑝 ≥
𝐶

(1 − |𝑧|2)𝑝
     ,     𝑧 ∈ 𝔻. 

By applying this inequality at the point 𝜑(𝜎(𝑧)) instead of z and then using (46), we see 

that (c) follows immediately. 

Example (6.3.8)[254]: Let 1 ≤ p < ∞ and let μ be an arbitrary measure (not necessarily 

finite) that satisfies our axioms. Then for any analytic symbol φ such that φ(𝔻) is a compact 

subset of  𝔻, the operator Cφ is compact (equivalently, weakly compact) from B into M 

(Dμ
p
). Indeed, condition (c) in Theorem (6.3.7) is trivially verified. An obvious Examples 

(6.3.9), (6.3.8) is φ(z)  =  az +  b with |a|  +  |b|  <  1, a ≠ 0. 
       It should be made clear that not every bounded composition operator from B into M 

(𝐷𝜇
𝑝
) will be compact so the above theorem describes a non-trivial situation. Here is a very 

simple Examples (6.3.9), (6.3.8). 

Example (6.3.9)[254]: Let dμ =  (1 − |z|2)p dA(z), 1 ≤  p =  α <  ∞. Then the 
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symbol φ(z)  =  (1 +  z)/2 induces a bounded composition operators from B into M (Dμ
p

) 

which is not compact. Indeed, recall first that in this case M (Dμ
p
) = B and that every self-

map of the disk induces a bounded com-position operator on B. On the other hand, our 

operator is not compact because the sequence (zn)n is bounded in B and converges to zero 

uniformly 

On compact subsets of the unit disk but evaluation at the points   

 
𝑛−1

𝑛+1
 𝑦𝑒𝑖𝑙𝑑𝑠‖𝐶𝜑(𝑧

𝑛)‖
𝔅
 ≥  𝑠𝑢𝑝𝑧∈𝔻(1 − |𝑧|

2) |((
1+𝑧

2
)
𝑛
)
′

| ≥ 2 

(
𝑛

2
)
𝑛+1

→
2

𝑒
≠ 0, 

Related Example (6.3.9)s of this kind in the specific context of operators from into of  𝒬𝛼 

type can be found in [258] or [198]. 

Corollary (6.3.10)[254]: Suppose that the operator 𝐶𝜑 : 𝐵 →  𝑀 (𝐷𝜇
𝑝
)   is bounded. Then 

the following assertions are equivalent. 

(i) 𝐶𝜑 : 𝐵 →  𝑀 (𝐷𝜇
𝑝
) Is not compact. 

(ii) There exist a subspace   X of 𝐵 isomorphic to 𝐼∞ sucgh that the restriction of  𝐶𝜑 to  X 

is an isomorphism. 

Proof. It suffices to apply the fact already mentioned that B  is isomorphic to  𝐼∞ as a 

Banach space and the following result (ii): An operator  T defined in 𝐼∞ is not weakly 

compact if and only if there exists a subspace X of  𝐼∞isomorphic to 𝐼∞ and such that  is an 

isomorphism. 

       It is natural to ask whether there is a version of Proposition (6.3.2) for 

       Compact operators into 𝐷𝜇
𝑝

 such a result can be easily proved by following and 

simplyifying an easy part of the proof of Theorem (6.3.7). It also shows that in this case 

Example (6.3.9) like the last one are not possible, 

Theorem (6.3.11)[254]: Let 1 ≤ 𝑝 < ∞ . If the composition operator 𝐶𝜑  is bounded from 

B  to 𝐷𝜇
𝑝

  it is also compact  

Proof: Let  𝐶𝜑  be bounded from 𝐵 into 𝐷𝜇
𝑝
. By Proposition (6.3.2), we know that    

∫|𝜑⋕ |
𝑝

𝔻

𝑑𝜇 < ∞. 

Let  (𝑟𝑛)𝑛 be an increasing sequence with   lim
𝑛
𝑟𝑛 = 1 and define 

𝛀𝒏 =  {𝑧 ∈ 𝔻: |𝜑(𝑧)| ≤ 𝑟𝑛} 
Note that 𝛀𝒏  is an ascending chain in the sense of inclusion whose union is 𝔻. Denoting 

by 𝒳Ω𝑛  the characteristic function of 𝛀𝒏 , it is clear that  |𝝋⋕ |
𝒑
 𝒳Ω𝑛converges to  |𝝋⋕ |

𝒑
 

pointwise and  |𝝋⋕ |
𝒑
 𝒳𝛀𝒏 . by the Lebesgue domainated convergence theorem, we have 

lim
𝑛→∞

∫|𝜑⋕|
𝑝

Ω𝑚

𝑑𝜇 = lim
𝑛→∞

∫|𝜑⋕|
𝑝

𝔻

 𝒳Ω𝑛𝑑𝜇 = ∫|𝜑⋕|
𝑝

𝔻

 𝑑𝜇. 

This shows that  

lim
𝑛→∞

∫ |𝜑⋕|
𝑝

{|𝜑|>𝑟𝑛}

𝑑𝜇 = 0. 
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Now one can just retrace the steps of the proof of the 𝑖𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 (𝑐)  ⇒  (𝑎) in Theorem 

(6.3.7) and simplify them (without taking the supremum and working only with the identity 

automorphism) to see that the last condition is 𝑠𝑢ffi𝑐𝑖𝑒𝑛𝑡 for compactness of 𝐶𝜑. 

We characterize the bounded and compact operators from B into the small spaces 

𝑀0(𝐷𝜇
𝑝
). The proof of this characterization will require some “obvious” properties such as 

separability of 𝑀0(𝐷𝜇
𝑝
)which are well known to hold in the classical “Little spaces” like 

VMOA, 𝐵0, and 𝑄𝛼,0. For Example (6.3.9), this property is fulfilled whenever the 

polynomials are dense in the space. However, in our general context separability has to be 

checked and it turns out that a complete and rigorous proof of this fact is somewhat 

involved. 

       In what follows, we shall typically (but not exclusively) consider positive measures μ 

of the form 𝑑𝜇(𝑧)  =  ℎ(|𝑧 |) 𝑑𝐴(𝑧), 𝑤ℎ𝑒𝑟𝑒 ℎ ∈  [0, 1)  →  [0,∞) is an integrable 

function. Moreover, we shall assume that there exist positive constants α and C such that 

ℎ(|𝜎(𝑧)|) ≤ 𝐶ℎ(|𝑧|)|𝜎′(𝑧)|𝛼                                  (48) 
for all 𝑧 ∈  𝔻 𝑎𝑛𝑑 𝑎𝑙𝑙 𝜎 ∈  𝐴𝑢𝑡(𝔻). Then the induced measure μ is finite. We will refer to 

such μ as the radial measure induced by h. We remind the reader that the definitions of all 

classical conformally invariant spaces involve measures of this type. 

       Let us agree to write 

ℎ𝜎 ≔    (ℎ ∘ |𝜎|)|𝜎
′|2−𝑝                                       (49) 

Using the standard change of variable: 𝑧 =  𝜎(𝜔), 𝑑𝐴(𝑧) = |𝜎′(𝜔)|2𝑑𝐴(𝜔)      it is easy to 

verify the identity  

∫     

𝔻

|(𝑓 ∘ 𝜎−1)
′
(𝑧)|𝑝 𝑑𝜇(𝑧) = ∫|𝑓′(𝜔)|𝑝

𝔻

 ℎ ∘ (𝜔)𝑑𝐴(𝜔)               (50) 

for every function f in 𝑀(𝐷𝜇
𝑝
). 

       The first natural question is: when does 𝑀0(𝐷𝜇
𝑝
).  contain the polynomials? 

Proposition (6.3.12)[254]: Let μ be a radial measure induced by an integrable, non-

negative, radial function h. Then the following statements are equivalent: 

(a) The identity function, given by f (z)  =  z, belongs to M0(Dμ
p
).  

(b) All polynomials belong to M0(Dμ
p
).  

(c) The following two conditions hold simultaneously 

supσ  ∫     h ∘

𝔻

(ω)dA(ω) < ∞,                               (51) 

lim
𝜎∈𝐴𝑢𝑡(𝔻),|𝜎(0)|→1

∫ ℎ𝜎(𝜔)𝑑𝐴(𝜔) = 0.

𝔻

 

Proof. Formula (50) readily that implied the identity function, given by f (z) = z belong to 

𝑀0(𝐷𝜇
𝑝
)  if and only if and (51) holds.  

       Trivially, if all polynomials belong to   𝑀0(𝐷𝜇
𝑝
)  then so does f (z) = z. 

        If the identity is in 𝑀0(𝐷𝜇
𝑝
)  then (51) holds, and choosing 𝑓 (𝑧)  =  𝑧𝑛 we get 

𝑠𝑢𝑝𝜎 ∫     

𝔻

|(𝑓 ∘ 𝜎−1)′|𝑝 𝑑𝜇 =  𝑠𝑢𝑝𝜎 ∫     

𝔻

|𝑓′|𝑝 ℎ𝜎𝑑𝐴 ≤ 𝑛
𝑝𝑠𝑢𝑝𝜎 ∫ ℎ𝜎𝑑𝐴

𝔻

< ∞. 
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and 

lim
 |𝜎(0)|→1

∫     

𝔻

|(𝑓 ∘ 𝜎−1)′|𝑝 𝑑𝜇 = lim
 |𝜎(0)|→1

∫   |𝑓′(𝜔)|𝑝 ℎ𝜎(𝜔)𝑑𝐴(𝜔)

𝔻

 

≤ 𝑛 𝑝 lim
 |𝜎(0)|→1

∫   ℎ𝜎(𝜔)𝑑𝐴(𝜔) = 0.  

𝔻

 

It is easy to see that   |𝜎−1(0)| → 1  if and only if |𝜎(0)| → 1. Recalling also the obvious 

fact that {𝜎−1 ∶  𝜎 ∈  𝐴𝑢𝑡(𝔻)}  =  𝐴𝑢𝑡(𝔻), the statement follows. 

Theorem (6.3.13)[254]: Let μ be a radial measure induced by an integrable, non-negative, 

radial function h that satisfies (48); suppose also that the identity function belongs to 

M0(Dμ
p
). Let the dilations fr be defined as in (47). Then the following statements are 

equivalent: 

(a) The function 𝑓 belongs to 𝑀0(𝐷𝜇
𝑝
);  

(b) lim
𝑟→1
‖𝑓 − 𝑓𝑟‖𝑀(𝐷𝜇

𝑝
) 

(c) 𝑓 belongs to the closure of the polynomials in 𝑀0(𝐷𝜇
𝑝
). 

Proof. Our proof will consist of proving the chain of implications (a) ⇒ (b) ⇒(c) ⇒ (a). 
[(𝑎)  ⇒  (𝑏)].  Let 𝑓 ∈  𝑀0(𝐷𝜇

𝑝
).  The key points is that, by assumption, the identity 

belongs to 𝑀0(𝐷𝜇
𝑝
) Also, all dilations 𝑓𝑟  have a continuous derivative in the closed disk. 

However, we will need a uniform bound on their norms in terms of 𝑓. Using the Poisson’s 

kernel, we can rewrite the function 𝑓𝑟 as 

𝑓𝑟(𝑧)  =  
1

2𝜋
∫ f(𝓏ξ)

𝕋

1 − r2

|1 − rξ̅|
2 |dξ|. 

Thus 

𝑓′𝑟(𝑧)  =  
1

2𝜋
∫ ξ𝑓′(𝓏ξ)

𝕋

1 − r2

|1 − rξ̅|
2 |dξ|. 

Fix 𝜎 ∈  𝐴𝑢𝑡(𝔻). 𝐺𝑖𝑣𝑒𝑛 𝜆 ∈  𝑇, let us define 𝜎𝜆(𝑧) ∶=  𝜎(�̅�𝑧), 𝑧 ∈  𝔻. Then, applying the 

equality (50) and Minkowski’s inequality, 

(∫|(𝑓𝑟 ∘ 𝜎
−1)′|𝑝

𝔻

𝑑𝜇)

1
𝑝

= (∫|𝑓𝑟
′|p

𝔻

ℎ𝜎𝑑𝐴)

1
𝑝

=  
1

2π
 

(

 
 
∫ |∫ ξ𝑓′(𝓏ξ)

𝕋

1 − r2

|1 − rξ̅|
2 |dξ||

p

𝔻

ℎ𝜎(𝑧)𝑑𝐴(𝑧)

)

 
 

1
𝑝

≤   
1

2π
 (∫ (∫|ξ𝑓′(𝓏ξ)|p

𝔻

ℎ𝜎(𝑧)𝑑𝐴(𝑧)

𝕋

)

1
𝑝
1 − r2

|1 − rξ̅|
2 |dξ| 
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=   
1

2π
 (∫ (∫|𝑓′(ω)|p

𝔻

ℎ𝜎𝜉(𝜔)𝑑𝐴(𝑧)

𝕋

)

1
𝑝
1 − r2

|1 − rξ̅|
2 |dξ| 

≤
1

2π
∫ 𝑠𝑢𝑝𝜆∈𝕋
𝕋

(

 
 
∫|𝑓′(ω)|p

𝔻

ℎ𝜎λ(ω)dA(ω)

)

 
 

1
𝑝

1 − r2

|1 − rξ̅|
2 |dξ|  

= 𝑠𝑢𝑝𝜆∈𝕋(∫|𝑓
′(ω)|pℎ𝜎λ(ω)dA(ω)

𝔻

)

1/𝑝

1

2π
∫

1 − r2

|1 − rξ̅|
2

𝕋

 

=  𝑠𝑢𝑝𝜆∈𝕋 (∫|𝑓
′(ω)|pℎ𝜎λ(ω)dA(ω)

𝔻

)

1/𝑝

. 

That is, for all   𝜎 ∈ 𝐴𝑢𝑡(𝔻)  and all    we have that  

∫|(𝑓𝑟 ∘ 𝜎
−1)′|𝑝

𝔻

𝑑𝜇 ≤ 𝑠𝑢𝑝𝜆∈𝕋 ∫|(𝑓𝑟 ∘ 𝜎
−1)′|𝑝

𝔻

𝑑𝜇                     (52) 

It now follows that ‖𝑓𝑟‖𝑀(𝐷𝜇
𝑝
) ≤  ‖𝑓‖𝑀(𝐷𝜇

𝑝
) 𝑠𝑖𝑛𝑐𝑒 𝑓𝑟(0)  =  𝑓 (0). 

       In the special case when σ is chosen to be the identity, a close inspection of the above 

long chain of inequalities shows that 

∫|𝑓𝑟
′|𝑝

𝔻

𝑑𝜇 ≤  ∫|𝑓′|𝑝

𝔻

𝑑𝜇                                  (53) 

Using the description (34) of the group of disk automorphisms, it is easy to see that for 

every function   f  ∈ 𝑀0(𝐷𝜇
𝑝
) we have 

lim
 |𝜎(0)|→1

(𝑠𝑢𝑝𝜆∈𝕋 ∫ |(𝑓 ∘ 𝜎𝜆
−1)

′
|
𝑝

𝔻

𝑑𝜇) = 0.                              (54) 

Assume the contrary of what we want to prove: 𝑙𝑖𝑚𝑟→1 ‖𝑓 − 𝑓𝑟‖𝑀0(𝐷𝜇
𝑝
)  ≠  0.  

      Then there exist a constant δ > 0, a sequence of positive numbers 𝑟𝑛 ↗ 1, and a 

sequence of automorphisms of the unit disk (𝜎𝑛)𝑛 such that 

(∫|(𝑓 ∘ 𝜎𝑛
−1)′ − (𝑓 ∘ 𝜎𝑛

−1)′|𝑝

𝔻

𝑑𝜇)

1/𝑝

≥ 𝛿.               (55) 

For all 𝑛. 
       After passing to a subsequence, we may assume that the sequence (𝜎𝑛)𝑛 converges 

uniformly on compact subsets of the unit disk. By a corollary to Hurwitz’s theorem, it 

converges either to a 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜆 ∈  𝕋  𝑜r to an automorphism σ. We analyze the two cases 

separately. 

Case 1. Suppose 𝑡ℎ𝑎𝑡 𝜎𝑛(0)  →  𝜆 𝑤𝑖𝑡ℎ |𝜆|  =  1; then |𝜎𝑛 (0)| → 1. By (54), we can find 

𝑛0  ∈  𝑁 such that 
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𝑠𝑢𝑝𝜆∈𝕋(∫ |(𝑓 ∘ 𝜎𝑛,𝜆
−1)

′
|
𝑝

𝔻

 𝑑𝜇)

1/𝑝

<
𝛿

4
. 

for all 𝑛 ≥  𝑛0, where 𝜎𝑛,𝜆(𝑧)  =  𝜎𝑛(�̅�𝑧) as before. From here we deduce by (52) that 

(∫ |(𝑓 ∘ 𝜎𝑛
−1)′ − (𝑓𝑟𝑛 ∘ 𝜎𝑛

−1)
′
|
𝑝

𝔻

𝑑𝜇)

1
𝑝

≤ (∫ | (𝑓𝑟𝑛 ∘ 𝜎𝑛
−1)

′
|
𝑝

𝔻

𝑑𝜇)

1
𝑝

+ (∫| (𝑓 ∘ 𝜎𝑛
−1)′|𝑝

𝔻

𝑑𝜇)

1
𝑝

≤ 2 𝑠𝑢𝑝𝜆∈𝕋 (∫ | (𝑓 ∘ 𝜎𝑛,𝜆
−1)

′
|
𝑝

𝔻

𝑑𝜇)

1/𝑝

<
𝛿

2
, 

which is in contradiction with (55). 

Case 2. Suppose 𝜎𝑛  →  𝜎 uniformly on compact sets, 𝜎 ∈  𝐴𝑢𝑡(𝐷). Then there exists 𝑟 ∈
 (0, 1) such that |𝜎𝑛

−1(0)|  ≤  𝑟 for all 𝑛 ∈  𝓊. Thus, 
1 − 𝑟

1 + 𝑟
≤ |(𝜎𝑛

−1)(𝑧)| ≤
1 − 𝑟

1 + 𝑟
 

holds for all 𝑧 ∈  𝔻. Taking α to be the same constant as in (48), denote by D the following 

finite positive constant: 

𝐷 = max {(
1 − 𝑟

1 + 𝑟
)
2−𝑝+𝛼

, (
1 − 𝑟

1 + 𝑟
)
2−𝑝+𝛼

} 

Extend h to 𝔻 radially by defining ℎ(𝑧)  =  ℎ(|𝑧|). By formula (50) and our hypotheses on 

h, we have 

∫ |(𝑓 ∘ 𝜎𝑛
−1)′ − (𝑓𝑟𝑛 ∘ 𝜎𝑛

−1)
′
|
𝑝

𝔻

𝑑𝜇 =  ∫|𝑓′ − 𝑓𝑟𝑛
′ |
𝑃

𝔻

ℎ𝜎n dA

≤ 𝐶 ∫|𝑓′(𝜔) − 𝑓𝑟𝑛
′ (𝜔)|

𝑃

𝔻

h(|ω|)|𝜎𝑛
′ (ω)|2−p+α dA(ω)

≤ 𝐶𝐷 ∫|𝑓′(𝜔) − 𝑓𝑟𝑛
′ (𝜔)|

𝑃

𝔻

h(|ω|) dA(ω)

≤ 𝐶𝐷𝑝 ∫ (|𝑓
′(𝜔)|𝑝 − |𝑓𝑟𝑛

′ (𝜔)
𝑃
)

𝔻

h(|ω|) dA(ω), 

 

Notice 𝑡ℎ𝑎𝑡 |𝑓′|𝑝ℎ belongs to 𝐿1(𝔻, 𝑑𝐴) because 𝑓 ∈  𝑀0(𝐷𝜇
𝑝
) and |𝑓𝑟𝑛|

𝑝
ℎ also belongs to 

𝐿1(𝔻, 𝑑𝐴) by (53). Since |𝑓𝑟𝑛
′  | converges pointwise to |𝑓′|, Fatou’s lemma and again (53) 

together imply that 
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∫|𝑓′|𝑝𝑑𝜇 ≤ limn inf ∫|𝑓𝑟𝑛
′ |
𝑝

𝔻

𝑑𝜇 ≤ limn sup
 

𝔻

∫|𝑓𝑟𝑛
′ |
𝑝

𝔻

𝑑𝜇 = ∫|𝑓′|
𝑝

𝔻

𝑑𝜇 , 

Thus 

limn  ∫|𝑓𝑟𝑛
′ |
𝑝

𝔻

𝑑𝜇 =  ∫|𝑓′|
𝑝

𝔻

𝑑𝜇,                            (56) 

In summary, we know the following: 

(i) − |𝑓𝑟𝑛
′ − 𝑓′|

𝑝
ℎ𝜎𝑛 ≤ 𝐶𝐷𝑝(|𝑓𝑟𝑛

′ |
𝑝
+ |𝑓′|𝑝)ℎ   holds throughout 𝔻; 

(ii) |𝑓𝑟𝑛
′ − 𝑓′|

𝑝
ℎ𝜎𝑛 → 0 pointwise in 𝔻 as 𝑛 → ∞: 

(iii) (|𝑓𝑟𝑛
′ |
𝑝
+ |𝑓′|𝑝)ℎ → 2|𝑓′|𝑝ℎ poinywise in 𝔻 ; 

(iv) ∫ (|𝑓𝑟𝑛
′ |
𝑝
+ |𝑓′|𝑝)ℎ 𝑑𝐴 → ∫ 2|𝑓′|𝑝ℎ

𝔻𝔻
𝑑𝐴 by (23). 

Thus, we are allowed to apply the well-known generalization of the Lebesgue dominated 

convergence theorem usually called Pratt’s lemma [270], obtaining 

∫ |(𝑓 ∘ 𝜎𝑛
−1)′ − (𝑓𝑟𝑛 ∘ 𝜎𝑛

−1)
′
|
𝑝

𝔻

𝑑𝜇 =  ∫|𝑓′ − 𝑓𝑟𝑛
′ |
𝑃

𝔻

ℎ𝜎n dA → 0,     n → ∞. 

which again yields a contradiction. This concludes our proof that (a) ⇒ (b). 

[(b) ⇒ (c).] Fix 𝑟 ∈  (0, 1). Since  𝑓𝑟 is analytic in a larger disk centered at the origin, there 

exists a sequence of polynomials (𝑝𝑛)𝑛 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑛(0)  =  𝑓 (0) and 

𝑀𝑛 ≔ sup{|𝑓𝑟
′𝑧 − 𝑝𝑛

′ (𝑧)|: 𝑧 ∈ 𝔻} → 0   𝑎𝑠 n → ∞. 
thus,  

𝑠𝑢𝑝𝜎 ∫|(𝑓 ∘ 𝜎
−1)′ − (𝑝𝑛 ∘ 𝜎

−1)′|𝑝

𝔻

𝑑𝜇 = 𝑠𝑢𝑝𝜎  ∫|𝑓𝑟
′ − 𝑝′𝑛|

𝑃

𝔻

hσ dA

≤ Mn
p
 supσ ∫ ℎ𝜎

𝔻

𝑑𝐴 =  𝑀𝑛
𝑝‖𝑧‖

𝑀(𝐷𝜇
𝑝
)

𝑝
. 

Therefore, 𝑙𝑖𝑚𝑛‖  𝑓𝑟  −  𝑝𝑛‖𝑀(𝐷𝜇
𝑝
)   =  0 𝑎𝑛𝑑   𝑓𝑟  belongs to the closure of the polynomials 

in 𝑀(𝐷𝜇
𝑝
)) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 >  1. 

       Since 

𝑙𝑖𝑚𝑟→1‖𝑓 −   𝑓𝑟‖𝑀(𝐷𝜇
𝑝
)  =  0, 

the function f   also belongs to the closure of the polynomials 

We would like to remark that here our inspiration for the above result comes from [274]. 

Since we are considering compositions with all automorphisms, there are some technical 

difficulties involved. The radial character of the measure μ does not seem to guarantee all 

rotation-invariant properties to hold so it appears necessary to consider the supremum over 

all compositions with rotations as we have done above or to use some similar argument in 

order to complete the proof. 

Corollary (6.3.14)[254]: Let μ a radial measure induced by a positive, radial, inte-grable 

function h that satisfies (48). If the identity function is in M0(Dμ
p
)then the polynomials are 

dense in M0(Dμ
p
). In particular, the Banach space M0(Dμ

p
)is separable. 
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           We a characterization of bounded and compact com-position operators from the 

Bloch space into the small spaces. 

Theorem (6.3.15)[254]: Let 1 ≤ p < ∞. Assume that the Banach space M0(Dμ
p
) is separable. 

Let φbe an analytic self-map of the unit disk. Then the following statements are equivalent 

(a) 𝐶𝜑: 𝔅 → 𝑀0(𝐷𝜇
𝑝
) is a bounded operator. 

(b) 𝐶𝜑: 𝔅 → 𝑀0(𝐷𝜇
𝑝
)  is a compact operator. 

(c) Both conditions. 

lim
 |𝜎(0)|→1

∫|(𝜑 ∘ 𝜎)⋕|
𝑝

𝔻

𝑑𝜇 =  0     𝑎𝑛𝑑   sup
 𝜎∈𝐴𝑢𝑡 (𝔻)

∫|(𝜑 ∘ 𝜎)⋕|
𝑝

𝔻

𝑑𝜇 < ∞. 

Are fulfilled. 

Proof. We will first show that the conditions (a) and (b) are equivalent and then also that 

(a) is equivalent to (c). 

[(b) ⇒ (a)]  is trivial. 

[(a) ⇒ (b).]  As was already remarked, 𝔅 is isomorphic to 𝐼∞see, e.g., 

[266]. Therefore every bounded operator from B into a separable Banach space is weakly 

compact (see [261], for Example (6.3.9)). In Particular, every bounded operator from 𝔅  

into    𝑀0(𝐷𝜇
𝑝
)  is weakly compact. 

       Since   𝑀0(𝐷𝜇
𝑝
) 𝑖𝑠 𝑎 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒 𝑜𝑓𝑀(𝐷𝜇

𝑝
), 𝑖𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑎𝑡  𝐶𝜑: 𝔅 → 𝑀(𝐷𝜇

𝑝
)  is also a 

weakly compact operator. By Theorem (6.3.7), it is compact. 

[(a) ⇒ (c)]   By Lemma (6.3.1), there exist   𝑓, 𝑔 ∈ 𝔅 and a positive constant C such that 

|𝑓′(𝑧)|𝑝 + |𝑔′(𝑧)|𝑝 ≥
𝐶

(1 − |𝑧|2)𝑝
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ 𝔻.                    (57) 

Thus, given  𝜎 ∈ 𝐴𝑢𝑡 (𝔻)  , we have that 

|(𝑓 ∘ 𝜑 ∘ 𝜎)′|𝑝 + |(𝑔 ∘ 𝜑 ∘ 𝜎)′|𝑝 =  (|𝑓′ ∘ 𝜑 ∘ 𝜎|𝑝 + |𝑔′ ∘ 𝜑 ∘ 𝜎|𝑝)|(𝜑 ∘ 𝜎)′|𝑝

≥
𝐶

(1 − |(𝜑 ∘  𝜎)|2)𝑝
, 

|(𝜑 ∘ 𝜎)′|𝑝 =  𝐶|(𝜑 ∘ 𝜎)⋕|
𝑝
. 

Since  𝐶𝜑  maps the Bloch space into   𝑀0(𝐷𝜇
𝑝
) . The functions 𝑓 ∘ 𝜑  and  𝑔 ∘ 𝜑 belong to  

   𝑀0(𝐷𝜇
𝑝
)  so from the above inequalities we deduce that  

lim
 |𝜎(0)|→1

∫|(𝜑 ∘ 𝜎)⋕|
𝑝

𝔻

𝑑𝜇 =   0. 

By (a), the operator 𝐶𝜑: 𝔅 → 𝑀(𝐷𝜇
𝑝
) is bounded and, by Proposition (6.3.3), we have  

𝑠𝑢𝑝𝜎 ∫|(𝜑 ∘ 𝜎)
⋕|
𝑝

𝔻

𝑑𝜇 < ∞. 

[(c)⟹(a)]. Applying again Proposition (6.3.3), we conclude that the composition operator 

𝐶𝜑is bounded from the Bloch space into 𝑀0(𝐷𝜇
𝑝
). It is only left to prove that the range of 

𝐶𝜑 is contained in the Little space 𝑀0(𝐷𝜇
𝑝
). To this end, suppose f ∈ 𝔅. Then 

|(𝑓 ∘ 𝜑 ∘ 𝜎)′|𝑝 =  |(𝑓 ∘ 𝜑 ∘ 𝜎)′|𝑝|(𝜑 ∘ 𝜎)′|𝑝 ≤
‖𝑓‖𝔅

𝑝

(1 − |𝜑 ∘ 𝜎|2)𝑝
|(𝜑 ∘ 𝜎)′|𝑝

=  ‖𝑓‖𝔅
𝑝
|(𝜑 ∘ 𝜎)⋕|

𝑝
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By our assumption (c), it follows that  

lim
 |𝜎(0)|→1

∫|(𝑓 ∘ 𝜑 ∘ 𝜎)′|𝑝

𝔻

𝑑𝜇 =   0. 

Hence 𝑓 ∘ 𝜑 ∈ 𝑀0(𝐷𝜇
𝑝
), This complete the proof.  
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List of Symbols 
 

Symbol  Page 

ℬ𝜇,0: Little Bloch-type space 1 

𝐻∞: essential Hardy space 1 

sup: supremum 1 

𝐴𝛼
𝑝
: Bergman space 2 

𝐻𝑝: Hardy space 3 

𝐻𝜇
∞: Weighted Hardy space 3 

𝐵𝑝: Besov space 3 

BMOA: Bounded mean oscillation of analytic function 3 

max: maximum 17 

min: minimum 23 

𝐻2: Hilbert space 33 

dim: dimension 38 

inf: infimum 38 

Re: Real 40 

dist: distance 42 

𝐿1: Lebesgue space on the line 45 

loc: local 56 

a. e: almost everywhere 68 

Lip: Lipschitz 74 

VMOA: vanishing mean oscillation of analytic function 75 

osc: oscillation 80 

𝐿2: Hilbert space 85 

ℓ∞: sequence space 96 

ker: kernel 102 

𝐿∞: essential Lebesgue space 129 

𝐿𝑞 : Dual of Lebesgue space 149 

𝐵𝑝,𝑞: Besov type space 156 

𝐿𝑎
𝑝
: Bergman space 157 

ℓ𝑝: Banach space of sequence 163 

ℓ𝑞: Dual of Banach space of sequence 163 

𝐻1: Hardy space 164 

arg: argument 167 

𝑙. 𝑢: Locally uniform 168 

𝐴𝑢𝑡: Automorphism 180 
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