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ABSTRACT

The aim of this research is to discuss and study symmetries of Lagrangian
and Hamiltonian systems using Lie algebra of the symmetry Lie groups.
In particular conservation laws for invariant variational based on Noether
theorem. We introduced analytical and geometrical formulation of
Lagrangian and Hamiltonian systems that contain symmetry rules on the
vector space by using classical variational calculus. Also we obtained the
reduction of controlled Lagrangian and Hamiltonian systems with
symmetry. Finally we classify the symmetry groups of Hamiltonian
system with degrees of freedom and we provided some application of

symmetries of Lagrangian and Hamiltonian systems.
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Introduction

Conservation laws and symmetries have always been of considerable
interest in science. They are important in formulation and investigation
of many mathematical models. They were used for providing global
existence theorems. Roughly speaking, symmetry of a geometrical -
object is a transformation whose action leaves the object apparently
unchanged. We consider the local one-parameter point transformations
to move for local one-parameter transformation group to obtain
conserved quantities associated to an infinitesimal symmetry. What was
important in these discoveries are:

In chapter one we study the Lie groups and their Lie algebra as essential
tools in the study of general mathematical fields. These include topolo-
gical manifolds, differential manifolds, partial differential equations,
differential forms in general. Invariance, vector fields and tangent space
at the identity and action of groups are presented. Finally we introduce
exponential map and representation of Lie group.

In chapter two we study the symmetries of differential equations which
is helpful to consider symmetries of simpler objects. We introduce the
local one-parameter point transformations, local one-parameter
transformation of group and we use group operator to introduce the
prolongation formulas. Invariant functions, generate point symmetries
of dependents and independents variables, Lie group of heat equation is
used. Also we used invariant solution to solve the differential equations.

In chapter three, we introduce Lagrangian and Hamiltonian systems that
contain symmetry rules on the vector space by using classical variational
calculus, the Euler-Lagrange equations and Hamilton's equations are
obtained. We divided this chapter in to analytical and geometrical
formulation with the continuous system of N degrees of freedom, state
as Noether's theorems, also we use symplectic form to obtained a
symmetry of Hamiltonian system.

Mechanics has two main system Lagrangian and Hamiltonian mechanical
system.



In Lagrangian mechanical system is based on variational principles and
it generalized directly to the general relativistic context. Hamiltonian
mechanics is based directly on the energy concept and it's closely
connected to quantum mechanics.

In chapter four the quantum will be based on our chapter and we deal
with the concepts of the Classical mechanics. An important concept is
that the equations of motion of the Classical Mechanics which is based on
a variational principle, that along a path describing classical motion the
action integral (Hamiltonian Principle of Least Action).

The results of variational calculus derived allow us to formulate the
Hamiltonian principle of Least Action of Classical Mechanics and study
its equivalence to the Newtonian equations of motion. We used Gauge
symmetry to obtain transformation for Lagrangian. The Euler operator is
importance and we obtain continuous symmetries and conservation laws
of Noether's, also we obtain the reduction of controlled Lagrangian
system with symmetry and we will present reduction of controlled
Hamiltonian systems with symmetry.

In chapter five, we discussed the relation between one parameter
continuous symmetries of dynamics, defined on physical grounds, and
conservation laws. In the Hamiltonian formulation, such symmetries of
the dynamics in general leave the Hamiltonian invariant only up to a
total derivative, dG(q)/dt. And we study the infinitesimal symmetries,
New- tonoid vector fields, infinitesimal Noether symmetries and
conservation laws of Hamiltonian systems. Finally we classify the
symmetry groups of an autonomous Hamiltonian system with two
degrees of freedom. With the exception of the harmonic oscillator or a
free particle where the dimension is 15, we obtain all dimensions
between 1 and 7. For each system in the classification we examine
integrability. In chapter six we obtain some applications of symmetries
for Lagrangian and Hamiltonian systems.

Vi



Chapter One

Lie Groups

1.1lintroduction

Lie group are named after the nineteenth century by Norwegian
mathematician Sophus Lie who laid the function of the theory of
continuous transformation group

Lie group represent the best developed theory of continuous symmetry
of mathematical objects and structure, which makes them in
dispensable tools for many parts of contemporary mathematic, as well
as for modern theoretical physics. They provide a natural frame work for
analyzing the continuous symmetries of differential equations, in much
the same way as permutation groups are used in Galois Theory for
analyzing the discrete symmetries of algebraic equations .An extension
of Galois Theory to the case of continuous symmetry groups was one of
Lie principle motivations.

The circle of center 0 and radius 1 in the complex plane is a Lie group
with complex multi- plication.

A lie groups and their Lie algebras are essential tools in the study of
general mathematical field. These include partial differential equations,
physical fields and their classification, homogenous spaces, symmetric
spaces and differential geometry in general.

In fact Lie groups are endowed with two structures.
1. Group structure

2. Differentiable structures



1.2Topological Manifolds

A manifold M of dimension n or n-manifold is a topological space with
following properties

1- M is Hausdorff

2- M is a locally Euclidean of dimension n

3- M has a countable basis of open sets
The dim M is used for dimension of M, when dim M = 0, then M is
countable space with the distance topology. It follows from the
homeomorphism of U and U’ that locally Euclidean is equivalent to the
requirement that each point p have a neighborhood U homeomorphic to
an n- ball in R™ . Thus a manifold of dimension 2 is locally
homeomorphic to an open disk.

1.3 Chart:

Definition1.3.1 A local chart on M is the pair (U; , @) consisting of :
1. An open U; of M
2. A homeomophric @ of U; on to an open subset @( U;)

The open U; is called domain of the chart or we can define a chart is a
pair (U, @) where U is an open set in X and @:U — R" is
homeomorphism on to its image. The components of

@ = (x1, x?,...,x™) are called coordinates.

Given, two charts (U;,®,)and (U,,®d,) then we get overlap or
transition maps

Byo O7' 0, (U NUy)—> @, (U; NUY) and B0 07' 0, (
Uy NU;)—> 0,(U; NU).



Definition1.3.2 Two charts (U;,®;) and (U,,®,) are called
compatible if the overlap maps are smooth.

Definition1.3.3 Two charts (U;,®;)and (Uy,®,)on M , such that
Ui N Uy # 0 are called C?-compatible (g = 1) if the overlap mapping
Drj= Do (2)]71/ Ui N Uy is aC?-diffeomorphism between the open

1.4 Local Coordinates

The local coordinate x! of a point p belong to the domain U of chart (U,
@) of M is the co- ordinates of points @(p) of R"

1.5 Differential Manifolds

A differentiable or C*(or smooth) structure on a topological manifold M
is a family

u=(U,, @,) of coordinate neighborhoods such that
1. The U, cover M

2. For any a,p the neighborhood U, , ¢, and Ug, @p are C* -

compatible.

Any co ordinate neighborhood V, { compatible with every U, ,¢, € u
is itself inu

A C* manifold is a topological manifold together with C* -
(differentiable ) structure.

Definition1.5.1 A differentiable manifold is a pair of Hausdorff space
with countable basis and atlas and also it’s a manifold if for every point



of space there exist an admissible local chart (U ,0 ) such that (U
,0)c R™

For instance:

sphere S™, in R™*! |et us consider the n-sphere

S™ ={x = (x1,.. x"1) |Z?:+11(xi):1}
Answer:

To provide S™ With a differentiable manifold structure we define an
atlas consisting of 2n +2charts (1<i<n+1)

Ut ={xesm i > 0}:and U7 ={x € S™ i < 0}
the sphere S™ is really covered with such charts.

Now we must construct transformations between charts (change of
charts) which are C* diffeomorphism. Let us consider

o U >R :x = (x1, .., x™"1) - x = (x4, .., x" L, 2™

Where the symbol » means ith coordinates are removed. It is a way the
orthogonal projection of the “positive hemisphere” onto the
corresponding equatorial “plane”. That is really bi continuous bijection.
Analogically we define

o1 U7 > R":x = (x%,...,x"1)

For instance, let us consider any point x of U;" N Uj+ such that the ith

and jth coordinates are positive. The following mapping between opens
of R"



A

o, (@) ol (UFnUN> of (UF nUT) (xh.0,x Lo, x™h

- (x1, ...,xj_l,\/l — Z?J:ll(xk)z sy e, X5 L, ™D
k=i
is actually a diffeomorphism. A difficulty could have occurred because of

the square root but the expression under the radical sign is always
positive.

1.6 Lie Groups

A Lie group G is a differentiable manifold which is also a group such that
the product and inverse operations are differentiable this mean that for
any x, y in G we have.

m:GXG — G,m(x,y) =xy (Multiplication) is a differentiable
Inv: G - G, I(x) = x~! (Inversion) is a differentiable "C*®"

1(x1,x3) = x4 xz_l

Examplel.6.1 The GL(n,R) is a Lie group called the real general linear
group, completely analogously we gave the Lie group is a group under
the operations

adjA
A,B) =AB [(A) = A1=

Examplel.6.2 The complex general linear group GL(n, ¢) = {A = M,,(¢)/detA =+ 0}.
Example1.6.3 The orthogonal group 0(n) = {A € M,,(R)/AAT = 1} is a Lie
group as a sub group and sub manifold of GL(n,R)

Example 1.6.4 The following are examples of Lie groups.

1. R™ With the group operation given by addition



(R™ x)and (R*,x), St ={Z € (:|Z| = 1}.

2.GL(n,R) an, many of the groups we will consider will be sub
groups of

GL(n,R)or(n, ().

3.5U(2) = {A € GL(2,¢)/AA = 1,det A = 1}, indeed one can easily
see that.

P):p el +1p12 =1}

=l K

SU2) = {(—

Writing X= x; + ixy, f = X3 + iXx4,x; ER

We see that SU (2) is diffeomorphic to

S3={xt+ x2+ x3+ xz} cR*
Recall that a space is simply connected it every closed curve (a loop) can
be contracted to a point.

Clearly, this is not true for a curve that wraps a round S?.

A general (topological) space is compact if each open cover contains a
finite cover this are rather abstract (through important) notion. Luckily,
for subset of R™, there is a simpler criterion: They are if they are closed
and bounded.

Clearly, SO (2) and SU(2) are compact (note that we did not need to
introduce parameters for So(2) to see this).

Example of a non compact would be So(1,1), the Lorentz group in two
dimensions. It is defined as the group of linear transformations of R?
which leave the indefinite inner product.

(V7,u7) = viuy — vuy



Invariant, and have determinant one, it can be written similarly to SO(2)
as

A= (Z Z),a2 -b%2=1

And parameterized by x € R as

_ (coshx sinhx
AGx) = (sinhx coshx)

Hence, as manifold, SO So(1,1) =R .Actually since

NCINE) = A(x + ),
This isomorphism hold for the group as will.

Theorem1.6.5 (close sub group) Let G be a Lie group and H<G a

closed subgroup of G, then, H is a Lie group in the induce topology as an
embedded sub manifold of G.

Theorem 1.6.6 If H is a regular sub manifold and sub group of a Lie
group G, Then H is a closed as a sub set of G.

Proof: It is enough to show that whenever a sequence {h,} of the
elements of H has alimit g € G, then g isinH.

Let U,@ be a preferred coordinate neighborhood of the identity e
relative to the regular sub manifold H, then:

@(U) = C{* (o) is a cube with @(e ) =0,V =H N U consists exactly of
those point whose last m — n coordinates are zero , and @' = @|, maps
V homeomorphically on to this slice to the cube if {h}} is a sequence in
V=HnNUandlimh; = g with g € U, then last m —n coordinates of g
arealsozerosog € HNU c H.

Now let {h,} be any sequence of H withlimh, = gand let W be a
neighborhood of e small enough so that W™1W c U, where W 1W =
{x"lye Glx,y € W} such W exist be continuity of the group operations.

There exist N such that for n = N, h,, € g W, in particular hy €
g W, using group operations, we may verify that



(1) § = g thy € W and setting h,, = h,;1hy , we have.

(2) limhy; =g . But for n > N,h; = h;thy lies in (gW) 1gW =
W1"W c U.Thus § € H, and hence g = hyg~! € H which was to be
proved.

Corollary1. 6.7 If G and G' are Lie groups and @: G — G'is a continuous
homomorphism then @ is smooth.

From the close sub group theorem we can generate quite a few more
examples of Lie groups.

Examples 1.6.8.The real special linear group SL(n,R) where SL(n,R) =
{A € CL(n,R)/detA = 1}

The complex special linear group SL(n,() ={A € GL(n,C)/detA =
1}

The special orthogonal group, So(n,R) = SL(n,R) N 0(n).

The unitary group U(n) = {A € GL(nn,R)/AA" = 1} (where A" denotes
the Harmitian transpose of A)

The special unitary group, U(N) = U(n) N SL(n, ¢).
1.7 Some Differential Geometry

Since Lie groups are analytic manifolds, we can apply the apparatus of
differential geometry. In particular will turn out that almost all
information about the Lie group is a contained in its tangent space at the
identity, the Lie algebra, intuitively, the tangent space is just that: the
space of all tangent vectors, i.e. all possible “directions” at the given
point .When considering sub manifolds, the tangent space can visualized
as a plane touching the manifold at the point g. Mathematically, the
notion of a tangent vector is formalized as a differential operator, this
makes intuitive sense since a tangent vector corresponds to “going “in
to a particular direction with a certain “speed”, i.e. the length of the
vector, we notice that we move because things around we change.
Hence it is reasonable that tangent vectors measure changes, i.e. they
are derivatives.



1.8 Tangent Vectors
We introduce a bit of machinery: A curve is a differentiable map
K:R2I - G.

Where I is some open interval (note that the map itself is the curve, not
just the image).

Definition 1.8.1 Let k :(—¢&, &) — G be a curve with k (0) = g. the tangent
vector of k in g is the operator that maps each differentiable function f:
G — K toit’s directional derivative along.

X: f- X[f] = %f(k(t)) |t=0

The set of all tangent vectors in g is called the tangent space of G in g,
T,G.

This is naturally a vector space: for two tangent vectors X and Y and a
real number A, define the sum and multiple by

(X+Y)[f] = X[f] + Y[f], (X A)[f] = AX[f]

One can find curves that realize the vectors on the right- hand side, but
we only care about the vectors.

Tangent vectors are defined independently of coordinates. Practically,
one often needs to calculate a tangent vector in a given coordinate
system, i.e. a particular map @, then we have

X[1 = (k) | - L (£0718,k(®)) |mo
= 207 g L0,k |eco.

Even more practically: if the element of V;, i.e. the coordinates around
g, are given by x%then it is a common abuse of notation to write the
curve as (Z)(k(t)) = x%(t) and the



1.

Function (f-0;1)(x%) = f(0; *(x) as f(x). thus we get X[f]=

d d 4
2 Fo0.Lxo()

Here we again use the summation convention: an index that appears
twice (the a) is summed over. The nice thing about this way of writing
the tangent vector is that we have separated the f-dependent pieces,
and we can even write the tangent without referring to f as the
differential operator

0

d
X=axa(t) |t=0'ﬁ = Xaaa

Hence, the partial derivatives along the coordinate directions provide a
basis for the tangent space at any given point, called the coordinate
basis. Clearly, the dimension of the tangent apace is equal to the
dimension of manifold. the X are called the component of X. this way
of writing a vector comes at the price of introducing a coordinates
system, and the components of the vector.

Will depend on the chosen coordinates (as it should be: components
depend on the basis). However, so do the partial derivatives, and the
vector itself is entirely independent of the coordinates. Hence one often
speaks of “the vectorX?”.

1.9 Tangent Space at The Identity

We define the tangent space T,(M)to M at p to be the set of all
mappings X,,: C® — R satisfying for alla,f € Rand f,g € C*(p) the

two conditions

Xp(x f+Bg) =x (Xpf) + B(Xpg) (Linearity)

2. Xp(x f) = (XpF)g(P) + f(P)(Xpg) (Leibniz rule).
With the vector space operations Tp(M) defined by
1. Xp+Yp)f = X,F + YpF
2. (xXp)F =x (XpF), a tangent vector to M at Pis any X;, € Tp (M)
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Theorem 1.9.1 Let F: M —-N be a C®map of manifolds. Then forp €
M the map F*:C°°(F(p)) — C®(p) identityby F*(f) = f-F isa
homeomorphism of algebras and induces a dual vector space
homeomorphism F,: T,,(M) — Tr () (N). define by F, (Xp)f = X, (F*f).
which gives F,(X},) as a map of C°°(F(p)) to R. when F: M — Mis the
identity, both F*and F, are the identity isomorphism. If H=G.F is a
composition of C “maps. Then

H* = F* G* and H* = G*OP;

Proof: The proof consists of routinely checking the statements against
definitions. We omit the verification that F* is a homomorphism and
consider F, only. Let X, € T,(M) and.g € C®(F(p)); We must prove
that the map F,(X,,): C*(F(p)) — Ris a vector at F(p).that is a linear
map satisfying the Leibniz rule. We have

F.(X,)(fg) = XpF*(f9) = Xp[fF(g-F)] = X, (fF)g(F(p)) +
f(F(0))Xp(g-F).

And so we obtain

F.(%,)(f9) = (E(X,))g(F®)) + f(F®))F.(Xy)g

(Linearity is even simpler).thusF:T,(M) — T, (N). further,FEis a
homomorphism.

F(aX, + BY,)f = ((aX, + BY,)(f-F) = aX,(f-F) + BY,(f-F)
= “F;(Xp)f + ,BF*( Yp)f = [“F*(Xp) + ,BP;( Yp)]f' [2]

Notation: The homomorphism F.:T,(M) — Tg,)(M)is often called the
differential of map.
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Corollary: 1.9.2 If F: M — N is a diffeomorphism of M onto an open set
Uc Nandp € M, then F:T,(M) - Trp)(M) is an isomorphism
onto.This follow at once from the last statement of the theorem and
note that if we suppose G is inverse to. Then both G,.F.:T,(M) -
T,(M)and F,-G,:T,(M) = Tg,)(N) are the identity isomorphism on
the corresponding vector space.

Remembering that any open subset of a manifold is a (sub) manifold of
the same dimension. we see that if U, ¢ is a coordinate neighborhood on
M, then the coordinate map ¢ induces an isomorphism ¢,: Tp(M) -
Tp)(R™) of the tangent space at each pointp € U onto T,(R") =
@(p).the map ¢; 1, on the other hand , maps T, (R™) isomorphically
onto T,(M).

The images Ej;, = ot (6/6xi>’i =1,..,..,..n.of the natural basis

a/axl’ ""a/ax" at each a € @(U) c R™ determine atp = ¢ 1(a) €

M abasisE;,, ..., ..., Eqp of T,(M), we call bases the coordinate frames.

Corollary 1.9.3 To each coordinate neighborhood U on M there corresponds
a natural basis Elp ) ) ...,Enp of Tp(M) for everyp € U; in particular,
T,(M) = dimM. let f be aC* function defined in a neighborhood of p,

and f = fop~1it’s expression in local coordinates relative to ¢, then

ov/
Eipf = ( Y /axi )(p(p)-

In particular, if x!(q)is the ith coordinate function, XpXi is the ith
component of X, in this basis, that is, X, = ?=1(XpXi)Eip.

The last statement of the cOrorllary is a restatement of the definition in
theorem (1.9.2) for

12



Ep= o <a/axi>' namely Epf =\ ¢ (a/axl) F=

0 —
Axi (ﬁ’(p 1) |v:<p(p)

If we take f to be ith coordinate function.f(q) = xi(q)anpr =
Y. a' E;y, Then

i i i i ox'
Xpx™ = Z“ (Eipx') = Z“ (ﬁ)q)(p) =
i

We may use this to derive a standard formula which gives the matrix of
the linear map E, relative to local coordinate systems. Let F: M— N is a
smooth map. And let U, ¢ and V, be coordinate neighborhood on M
and N with

F (U) cV. suppose that in these local coordinates F is given by

yi= filxt, . v, x™),i=1, ,m

And that p is a point with coordinates = (a?, ... ... ... ,a™). Then F(p) has y
coordinate  determined by these functions. Further let

c’)y‘/ c’)fi/
O denote Ol

Theorem 1.9.4 |et

Ey = ot <a/axi> and EF(p) = ;! <a/6yi>'i =1, ,nand

i=1,.......m, be the basis of T,(M) and Trg,)(N) respectively,

determined by the given coordinate neighborhoods. Then

13



In the terms of components, if X, =Y a'E; maps to F.(Xp =
Y. B! Er(p)- then we have

i i ayi) .
| A m A —
=YY"« (— =1, m
J=1 axt/, J ’ ’

The partial derivatives in these formulas are evaluated of

P:a=(al,...... ,a™) = @(P).

Proof: We have F;(El-p) = F*ogo*‘l(a/axi) and according to corollary

@ (P)
(1.9. 3), to compute its components relative to ~]-F(p)' we must apply this

vector as an operator on C®(F(P)) to the coordinate functions y’

. d A af’
o= -1 [— J = — vi(Fp™1 =2
F.(Epp)y (F* . (axl)>y 5oV (B D) =

These derivatives being evaluate at the coordinates of P, that is, at
o (P);

: ay’
They could be also written O
o (P)

Example 1.9.5 Suppose M to be a two-dimensional sub-manifold ofR?
that is a surface. Let W be an open subset, say a rectangle in the
(u,v) — plane R? and

0:W — R3 a parameterization of apportion M.

Namely, suppose fis an imbedding whose image is an open subset
V of;V, 8~ tis a coordinate neighborhood on M. Suppose

e(uo»vo) = (XOI yo,ZO)r

where we now use (x,y,z) as the natural coordinate in R3.we may
assume that 6 is given by coordinate functions

x = f(u,v), y=g Wv), z=h(v).
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Since 6 is embedding, the Jacobian matrix d(f, g, h)/d(u,v) has rank 2
at each point of W. we consider the image of the basis vectors d/du and
d/0v at (uy,vy), we denote these by (X)), and (X,),, according to the
first formula of pervious theorem(1.23). They are given by

_ _0x0  9yo L 0z0
(Xu)O - 9*(a/au) T Qudx + dudy 0Ouodz

dx 9 0dyad 0z0

(Xy)o =06.(0/0v) = %a+%6y +%£

Where we have written dx/du,dx/0v for df /ou,df /v and so on..
these derivatives being evaluated at (ug, vy)since 8 has rank 2, these are
linearity independent vectors. And they span a two-dimensional
subspace of T(xo'yo,zo)(R"), this subspace is what we have by our
identification then we use the tangent at this point (xo,yo‘zo):it consists
of all vectors of the form

ab,(9/0u) + p6.(0/0v) = a(Xy)o + B(Xp)o, @, B € R;

their initial point of course always is (xo,yo,zo), it is easily to seen that
this subspace is the usual tangent plane to a surface, as we would
naturally expect it to be. We use one of standard descriptions of the
tangent plane at a point P of surface M in R™; the collection of all
tangent vectors at p to curves through P which lie on M. in fact let I an
open interval about t =t, and let consider a curve on M through
(xo, yo’zo). It is no loss of generality to suppose the curve given by

F:1 > W Composed with 8:W — R3; thus u,v are functions of
t with u(ty) = u, and

v(ty) = vy and the curve is given by
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0(f () = (x(u@®),v(®)),y(u®), v(t)),z(u(t), v(t)).

The tangent to the curve at (xo, yo,zo)is given by
O.F (d)_.t 6+.t 6+.t %)
(6-F). dt _X(O)ax )’(o)ay Z(O)az

where

. dx Jx du dx dv
i - (8), -5
(o) at/y, ouadt tova

Evaluated at (xo,yo,zo) and t = t,.substituting and collecting terms, we
have

(BF)(d>_du(6x 0 +ay 0 +az 6)
“\dt) T dt \Quox  oudy ' dudz
dov(x d dyad 0z
+—(——+——+——)

dt \ovdx Jdvdy OJvoz

= 2o () +206. (s) = ulte) Ko + ¥(t) (K)o

If we letu = (t —ty) + uy v = vy, we obtain just (X,)o = 6. (:—u) and

analogously (X,), are tangent to the parameter curveu =u,, v =
(t—ty) +vy. The coordinate frame vector, are tangent to the
coordinate curves.

1.10 Vector Fields
Definition.1.10.1 A vector field is a map that associates a vector X(g) € T,;G
to each point g € G.

In a given map we can choose the coordinate basis and write the
components as functions of coordinates, i.e.

X= X%x)d,
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Definition 1.10.2 Given two vector fields X and Y, the Lie bracket is a vector
field given by:

[X,Y1[F] = X[Y[F]] — Y[X[F]]= [XY-YX][F]

This is a reflection of the fact that derivatives on manifolds are not
directly straight forward. The lie bracket allows extending the action to

vector fields. The lie bracket is thus sometimes called a lie derivative,
LY =Y, X].

This is not any more truly a directional derivative as it was functions: it
depends not only on X at the point. To see this observe that for any
function F: G - K we can define a new vector field X' = FX. Assume
that f (g) = 1, so thatX’|, = X|,. Then one could expect that at g also

the derivatives coincide, but actually we have.

L.Y=FLY— Y[F]X.

And the second term doesn’t vanish in general.

Definition 1.10.3 Vector fields X of class C" on M is a function assigning to
each point P of M a vector Xp € Tp(M) whose components in the
frames of any local coordinates U, ¢ are functions of class C" on the
domain U of the coordinates. Unless otherwise noted we will use vector
field to mean C* vector field.

Examplel.10.4. If we considerM = R3 — {0}, then the gravitational
field of an object of unit mass at o is a C* vector field whose
components «!, x?, x3 relative to the basis

5 5 5
—=F —=E, ,—=E
5x1 1 85x2 27 5x3 3
i Xi . .
are «<!= —=, 1= 1,2, 3,with r: such that.
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r= (D2 + ()2 + (x)?):

Definition1.10.5 Let F: M — N a vector field Y on M such that for each
q€EMandP € F7'(q) c N we have F.(X,) =Y,, then we say that
the vector fields X on Y are F-related and we write, briefly,

Y = F(X)

[We do not require F to be on to: if F71(q) is empty, then the condition
is vacuously satisfied].

Theorem 1.10.6 If F: M — N is a diffeomorphism, then each vector field X on
N is F-related to a uniquely determined vector field Y on M.

Proof: Since F is diffeomorphism, it has inverseG: N — M, and at each
point P, we have F,:T,,(N) = Ty, py(M) is an isomorphism onto G, an
inverse. Thus given aC®_vector field X on N, then at each point g on M.
The vectorY, = F*(XG(q)) is uniquely determined. It then remains to

check that Y is a C*_vector field. This is immediate if we introduce
local coordinates and apply theorem to the component function.

1.11invariant

Definition 1.11.1 If F: M — N is a difteomorphism and X is a C* vector field
on M such that F,(X) = X. that is, X is F-related to it- self, then X is said
to be invariant with respect to F, or F- invariant.

Remark 1.11.2 Before prove the theorem let us define two diffeomorphism
to Lie group called left translation L, and right translation R, by and
defined by.

L,:G->G,Lo,g=ag. R,:G-G,R,g9 = ga.
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Theorem1.11.3 Let G be a Lie group and T, (G) the tangent space at the
identity , then each X, € T,(G) determine uniquely a C* vector field of
X on G which is invariant under left translations. In particular, G is
parallelizable.

Proof: To each g € G there corresponding exactly one left translation
Lgtaking e tog. Therefore if it exists, X is uniquely determined by the
formula: X; = Lg.(X.). Except for differentiability, this formula does

define a left invariant vector field fora € G, we have.

Lg*(Xg) = La*OLg*(Xe) = Lag*(Xe) = Xag

We must show that, so determined isC®. Let U,¢@ be a coordinate
neighborhood of e such that ¢(e) = (0,...,...,...,0) and let V be a
neighborhood of e satisfying VcU. Letg, h € V with co-ordinate
x=(x1,x?% ..,x™) and y = (y1,y? ..,9"), respectively, and let
z=(z%,..,z") be the coordinates of the product gh.Then, Z! =
Fi(x, y),i =1,2,...,nare C*functions on

e(V) x @(V).

If we write X, =X,y iEie, v1, ...,¥™ real numbers, then the formula
above for X, becomes

, afi
X, =Ls(Xe) =27 (a_yl) x,0)Eig

Since in local coordinate Ly is given by 7= fi(x,y),i =1,2,..,n with
the coordinates x of g fixed. It follows on V the components of X, in the
coordinates frames are C*functions of the local coordinates. However,
for any a € G the open set a V is diffeomorphic image by L, of V. More
over X, as just shown, is Lg-invariant so that for every g = ah € al’ we

have

Xg = Lg.(Xp). It follows that X onaVis Ls-related to X on V and

therefore X is C* on aV since X is C* in a neighborhood to each element
of G, itis C* on G.
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Corollary1.11.4 let G; and G, be Lie groups and F:G; - G,
homomorphism. Then to each left- Invariant vector field X on G; there
uniquely determined left- invariant vector field Y on G, which is f-related
to X

Proof: By the theorem (1.11.3), X is determined by X, , it’s value at the
identity e; of G; . Let e, = F(e;) be the identity of G, and let Y be the
uniquely determined left- invariant vector field on G, such that
Ye,=F«X,, ). That Y should have this value at e, is surly necessary
condition for Y to be F-related to X, and it remains only to see whether
this vector field Y satisfies. F«(X.;) = Yr(g) for everyg € G;. If so Y is
indeed F-related (and uniquely determined). We write the mapping F as
a composition.

F = Lpg ofoL,. Using  F(x) = F(g)F(g~"x), and note that since
both X on Y are left-invariant by assumption. This gives

F(Xe)= Lp(g).0F.0L(g) (Xg)

F(Xe) = Lp(g)0F.(Xe) = Lp(g)Ye
Therefore Y meets all conditions and the corollary is true.
1.12Action of Groups

Important groups' action is the following actions of G on itself. Left
action: L;: G = Gis defined by L, (h) = gh

Right action: R;: G = G is defined by Ry(h) = h g™"
Adjoint action: Ad,: G — G is defined by Ad,(h) = ghg™t

Easily sees that left and right actions are transitive; in fact, each of them
is simply transitive. It is also easy to see that left and right actions are
commute and that

Ad, = L,R, .
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Each of these actions also defines the action of G on the spaces of
functions, vector fields, forms, etc. On G.

Definition 1.12.1 A vector field v € Vect(G)is left- invariant if g.v = v for
every, g € G, and right -invariant if v. g = v, for every g € G. A vector
field is called bi-invariant if it is both left- and right-invariant.

Definition1.12.2 (Left invariant vector field)

By using left translations to transport around tangent vectors on G. put
g = T.G, The tangent space to G at the neutral element e€ G. For XE g
and g € G define.

Ly(g) = T, A,.X € T,G.

Definition 1.12.3 Let G is a Lie group. A vector field & € x(G) is called left-
invariant if and only if(A,) *&=Z&forallg € G. The space of left-

invariant vector fields is denoted by x; (G).

Definition1.12.4 (Right invariant vector fields)

We have used left translations to trivialize the tangent bundle of a Lie
group G in (propel) in same way; one can consider the right trivialization.
TG — G X g Defined by

&g ™ (g,Tgpg_l.E). The inverse of this map is denoted by (g,X) —
Rx(g), and Ry is called the right - invariant vector field generated
byX € g. In general, a vector field & € X(G) is called right invariant if
(p9) € =& for allg € G. The space of right invariant vector fields is
denoted byXz (G). As in (porpl) one shows that

¢ =%(e)and X — Ry. Are inverse bijections between g andXz (G).

Proposition1.12.5 Let G be a Lie group, then, the vector space of all left —
invariant vector fields on G is isomorphic( as a vector space) to T;G .

Proof: Since X is left invariant the following diagram commutes.
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So that X(a) = (dLa){(X(1))for alla € G. We denote that I'(TG)®
the set of all left invariant vector fields on G. Define a map @:I'(TG)¢ —
TG by @:X — X(1). Then, @ is linear and injective since if X,Y €
r(TG)¢ and (X) = B(Y)

X(g)=d Lg(X (1)) = dL, (X (1)) = Y (g), foreach g€ G.
Now, @ is also surjective, for v € T, G define X,, € I'(TG)® by

X,(a) = (dLy),(v) for a € G. We claim that X, is a left invariant
vector field. Now X,:G = TG is a C® map of manifolds since
if feC”Gthenfora €.

X () (@) = (dlg ) f = v (f o La).

Now, if x € G we have

(f o La) (0) = (f em)(a,x).

Which is a smooth map of a, x (here, m is the multiplication map on
G).Thus v (f o L,) is smooth and hence so is X,,.

We now show X, is left invariant. Fora g € G we have

( dLg) (Xy (a)) = dLg ((dLg)1(V)) = d(Ly o La)(v) =
d(Lga)(v) = Xy(ga) =X, (La(a))

So that X,, is left-invariant. Therefore @ is onto and I'(TG)¢ = T,G .

We now give T;G a Lie algebra structure by identifying if with I'(TG)¢
with the lie bracket of vector fields. But, we need to show at [,] is in fact
a binary operation on I'(TG)¢, recall iff: M - Nis a smooth map of
manifolds and X, Y are f-related if d(X(x)) = Y (f(x)) foreveryx € M
. It is fact from manifolds theory that is X,Y and X',Y' are F-related,
then so are [X,Y]and [X',Y'], but, left invariant vector fields are L,
related for all a € G by definition. This justifies.

Proposition 1.12.6 The Lie bracket of two left vector fields is a left invariant
vector field. Thus we can regard T; G as Lie algebra.
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Definition 1.12.7 Let G be a group, the Lie algebra g of Gis T; G with the Lie
bracket induced by its identification with I'(TG)©.

Example1.12.8 Consider the Lie group GL (n,R). We have T,GL (n,R) =
M, (R), the set of all n X n matrices. For any A, B € M,(R), the Lie
bracket is the commutator for; that is

[A, B] = AB — BA.

Proof: To prove this, we compute X,, the left invariant vector field
associated with the matrix A € T,GL(n,R).Now, on M, (R), we have
global coordinate maps given by

x;j(A) = A;j, the ijt" entry of the matrix B. So, for g =GL (n, R),
(XA(xij)) (g9) = XA(e)(xijoLg ). Also, if h € GL(n,R), then

(xijoLy )(h) = x;;(gh) = T Girhj = T Ginxwj(h).

Which, implies that x;;°Lg = Yx gixXk;j

Now if f € C*(GL(n,R)), Xa(e)f = = |c—o f(1 + t4) So that

d
Xa(e)xij = £ le=o Xij f(1 + tA) = Ajj.

Putting these remarks together, we see that:

XA(xijOLg ) = Yk Jik Ay;j =2k Xik (9) A

We are now in a position to calculate the lie bracket of the left invariant
vector fields associated with elements of M, (R):
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([Xa,Xgl(e)i) = [Xa, Xgl(e)x;; = XaXp ( Xy — XpXa ( x5 =
(Xa(Zk By Xix)

—Xp(Tk AxiXik) = QL Brix 1Ak — Akjx ;B (€)
= Yk BijOu Ak — Ak, 8iBix
=Yk AixBrj — Xk BikAxj = (AB — BA);;

So, [A, B] = AB — BA. [3]

1.13 Lie Group Homomorphism

Definition1.13.1 Let G and H is Lie groups. A map p: G — His Lie group
homomorphism if:

1. p Is a C* map of manifold and

2. p s agroup homomorphism.

Furthermore, we say pis a Lie group is isomorphism if it's a group
isomorphism.

If g and fjare Lie algebras,a Lie algebra homomorphismz:g — fjis a
map such that:

1. tis linear.

2.1 (X YD) =[t(X),t(Y)) [forallX, Y €g

Now, suppose V is an n-dimensional vector space over R. we define
GL(V) ={A:V - V /A alinear isomorphism}.

Since, V = R",GL(V) = GL(n,R).
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1.14 The Lie Algebra of A Lie Group

For a Lie group G, left invariant vector fields &,n € X, (G) and an
element g € G we obtain.

A8, =[5 Am] = [€,7]
So, [€,1] is left invariant too. Appling this to Ly and Ly

For X,Y € g = T.G we see that [Ly ,Ly] is left invariant.

Detaining[X,Y] € gas [Ly ,Ly] (e), that,

[Lx,Ly] = Lixy.

Proposition1.14. 1 If X,Y € g, so their Lie bracket [X, Y] is left invariant.

Proof: We need to show that [X, Y] is left invariant if X and Y are left
invariant. We first notice

Y(foLa)(b) =Yp(f oLy ) = (dLa)p(Yp)f = Yopf = (YN(Lab) = (Yf) o
L, (D).

For any smooth function f € C*(G). Thus

Yapf(Yf) = (dLg)p(Xp)(YF) = (Xp)((Yf) o Lg) = XpY (o Ly)

Similarly:

Yoo Xf =Y, X(fo Ly) .
Thus

dL,([X,Y]p)f = XpY(foLy) = VpX(Foly) = Xgp(Y) =YX f=
[X, Y]ab(.f)'
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Definition 1.14.2 Let G be a group. The Lie algebras of G is the tangent space
g = T. G together with the map [, ]: g X g — g defined by

[X,Y] = [Lx, Ly](e)

Remark 1.14.3 From corresponding properties of the bracket of vector
fields, it follows immediately that bracket [ ,]: g X g — gis:

1.Bilinear: [a X,Y] = a[X,Y]and [X; + X,,Y] = [X1,Y] + [X3, Y]
2. Skew symmetric: [X ,Y] = —[V, X]
3. satisfies the Jacobi identity: that is
[X,[Y,Z]] = [[X,YLZ] +[Y,[X,Z]]

In general, one defines Lie algebra as a real vector space together with a
Lie bracket having those three properties.

Example 1.14.4 Let us consider the fundamental example G = GL (n, R). As a
manifold, G is an open subset in the vector space M n (R), so in
particular, g = M,, (R) as a vector space. Consider the matrices

A,B,CeM,, (R)we have A (B+1tC)=AB+tAC,solefttranslation by A is
a linear map. In particular, this implies that for A € GL(n,R) and
Ce M, (R) = T,GL (n,R) we obtain

L-(A) = AC. Viewed as a function L(n, R) - M,,(R), the left invariant
vector field L. is therefore given by right multiplication by C and thus
extents to all of M,,(R), now viewing vector fields on open subset of R™
as function with values in R™, the Lie bracket is given by [E,n](x) =
Dn(x)(E(x)) — DE(x)(n(x)).Since, right multiplication by a fixed matrix
is a linear map, we conclude that D(L.)(e)(C) = CC' for C,C" € M,(R)

Hence we obtain [C,C'] = [L.,Ls ]J(e) =CC'—C'C, And rth Lie
bracket on M,, (R) is given by commutate of matrices.
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Lemma 1.145 tet F : M - N be smooth map, and let & € X(M) and
n; € X(N) be vector fields for i = 1, 2. If §~gmn;for i = 1, 2, then

fel&1, 8] “‘f[‘h M2l .

Proof: For a smooth map o: N = Rwe have (Tfo §). x= & (xof) by
definition of the tangent map. Hence §~f7 is equivalent to

& (xof) = (n.x). f Forall xe C*(N, R).Now assuming that &i~sm; for

i=1,2 We compute

&. (8. (0 f)) =& ((2.) of ) = (1. (2. %)) o f, from definition of

Lie bracket, then

[ElrEZ]' (OCO_f) = ([Th'nz]-‘x) ° .f And thUS, [Elr EZ] ~f [Th»ﬂz]-

Definition1.14.6 A Lie algebra homomorphism between two Lie algebras A and B (over the
same field) is a linear map that preserves the Lie bracket. i.e. a map

A ->B
£ oty fabD = (@, fo))

An invertible Lie algebra homomorphism is a Lie algebra isomorphism.

Proposition 1.14.7 Let G and H be Lie groups with Lie algebras g and h.

1. If @: G - H is a smooth homomorphism then ¢’ = T.@:g — fjis a homomorphism of Lie
algebras, i.e. ' ([X,Y]) = [¢'(X), @' (Y)] forall X, Y € g.

2. If G is cumulative, then the Lie bracket on g is identically zero.

Proof: 1.The equation @(gh) = @(g)@(h) can be interpreted as
P OAg = Ap(g) © @
Differentiating this equation in e € G we obtain

Tg@ © Tedg(g) = TeTy(g) © @' Inserting X € TG = g. we get,
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Ty.Lx(g) = L(pr(X)((p(g)) , and hence the vector fields Ly € X(G) and L,y € X(H) are
¢-related for eachX € g. From the lemma, we conclude that for X, Y €g we getT, o
[Ly,Ly] = [L(pr(X), L¢I(Y)] o ¢. Evaluated in e € G thus gives

@'[X, Y] = [p"X), @' M)].

If G is commutative, then (gh)™! = h™1g™1 = g71h71so inversion mapv:G - Gis a

group homomorphism. Hence by part (1), v': g — g s a Lie algebra homomorphism.
By part (2) of lemma v’ = id and we obtain

—[X,Y]=v'(X, YD) =[v'X),v'(V)] = [-X,-Y] = [X,Y]. Thus [X,Y] =0 for all, X,
YE g.

Proposition 1.14.8 Let G a Lie group with Lie algebra and inversion v: G — G then we have
Ry =v*(L_x) forallX €g.

For X, Y € g, we have [Ry, Ry] = R_[xy. Forall, X,Y € g, we have [Ly, Ry] = 0.

1.15. Exponential Map

Given a Lie group and its Lie algebra g, we would like to construct an exponential map from
g = G, which will help to give some information about the structure of g.

Proposition 1.15.1 Let G be a Lie group with Lie algebra g. Then, for each € g, there exists a
map Yx : R = G satisfying: yx(0o) = I; .

d
T le=o¥x(t) = X, And  yx(s +t) = yx(s)yx(t)

Proof: Consider the Lie algebra map 7: R = g defined byt :t — tX forallt €g. Now R is
connected and simply connected, so by proposition. There exists unique Lie group map

yx: R — G such that (dyy), = T, which is to say % li=oyx(t) =X .

This leads to the following definition.

Definition1.15.2 Let G be a Lie group with Lie algebra, define the exponential map.

exp: g = G by exp(X) = yx(1).

Lemmal.15.3 Let G be a Lie group with Lie algebra g and X € g. write X for left invariant
vector field on g with X(1) = X. then, ¢,(a) = ayx(t).

Is the flow of X . In particular, X is complete; i.e. the flow exists for all t € R
Proof: for a € G, we have

28



d d
L Csarx(®) = ([ALo)yy, (d— mt))

da
= @la)yy, (Slemovx(t +9))

= ([@ladyxes) (5 1e=0 xSVx (D) = [@Ladyy (5 om0 Ly, x () -
(Layxe)1 (% le=o ¥x (t)) - (dLaVX(s))1(X):X(a)’x(s)),

(since X is left invariant )

S0, a y,(t) is the flow of X and exist for all.

Lemma1.15.4 The exponential map is C*> map.

Proof: Consider the vector field V on GXg given by

V(a, X)=(d L, (X), 0).

Then,V € C*(G, g) and the claim is that the flow of Vis given by

Y:(g,X) = (g yx(t),X).To prove this claim, consider the following:

d
—le=0(g 72 (), X) = (dLayx(s)(X),0) = V(g vx(s) , X).
From which we can conclude that yy depends smoothly on X.
Now, we note thatthe map ¢ : R X G X g defined by

cl)(t,a,X) = (a yx(t),X) is smooth. Thus itm;: G X g — G is projection
on the first factor, (m; ©)(I5, X) = yx(1) = exp(X) is C*.

Lemma1.15.5 Forall X € gandforallt € R, y;x(1) = yx(t).

Proof: The intent is to prove that for t € R.ytX(ts)=yx(ts). Now,
S > y:x(s) is the integral curve of the left invariant vector field
tX through I;. But, X = tX, so if we prove that, yx(ts) is an integral
curve of tX through I, by uniqueness the lemma will be established. To
prove this, first let ¢(s) = yx(ts), then ¢(0) = yx(0) = I;. We also
have
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Do) = L ya(ts) = d- s YX W)

=tX(yx(ts)) = tX(o(s)). So, &(s) is also an integral curve of tX
through I; . Thus, y:x(s) = yx(ts), and in particular, when s = 1 we
have yix (1) = yx(t).

Now, we will prove the nice fact about exponential map.

Proposition1.15.6 Let G be a Lie group and g it's Lie algebra. Identity both
T- g and [, G with g.Then (d exp),: Tog — I,G is the identity map.

Proof: By using definition1.8.1and lemmal.15.3 we have

d d d
(d exp)o(X) = E|t=oexp(0 +X) = E|t=0 Yex (1) =a|t=0 Yx(t) =
X.

Corollary1.15.7 For all t;,t,, € R4,
1. (exp (t; +t5) X) = expt; X * exp t,X

2. exp(—tX) = (exp (t X) !

1.16 Representation of Lie Group

Definition 1.16.1 An action of a Lie group G and a manifold M is an
assignment to each g € G a diffeomorphism p(g) € Diff M such that

p(1) = p(g) p(h) and such that the map
GXM->M:(g,m) - p(g).m is smooth map.

Example1.16.2 The group GL (n, R) (and thus any it’s Lie subgroup) acts on
RTL

The group 0(n, R) acts on the sphere S*~1 c R" .
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The group U(n) acts on the sphere $2"~1 c C™.

Definition1.16.3 Let G be a Lie group and V a vector space. A
representation of a Lie groupisamap p : G = GL(V) of Lie groups.

For a Lie group G, consider the action of G on itself by conjugation: for

each g € Gwe have adiffeomorphism C,:G — G given by: C,(a) =

gag .

Notice that C;(1) =1 and we have invertible linear map

(dc, )1:g -g

Now C = (4 ,0C, , for all g; g, € G and hence (dC91)1(dC92)1 =

9192
(ng 19 2)1

Definition1.16.4 The Ad joint representation of a Lie group G is the
representation Ad : G — GL(g) defined by: Ad(g) = (dcy),

The Adjoin representation of a Lie algebra g is representation

ad: g - gl(g) = Hom(g, g) defined by ad(X) = (d Ad),(X).

Proposition 1.16.5 Suppose G is a Lie group, then for all t € R, g € G and
X € gwe have g exp (tX)g~! = exp(tAd(g)(X)) and

Ad(exp(tX) = exp(t ad(X)).

Example1.16.6 We compute that Ad and ad as maps when GL (n, R), recall
that for any A, g € Gwe have the conjugation map Cg(A) =gAg .
Note that conjugation is linear. Thus for Xé g we have

Ad(g)(X) = (dC,), (X) = = |i=oCylexp(tX))
=2 im0 g exp(tX) g1

d _ _
=9(; le=0 exp(tx))g™ = gX g~*
Also,forX,Y € g
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ad(X)Y = % |;=0Ad exp(tX)Y = % lt=0 exp(tX)Y exp(—tX)

(% lt=0 exp(tX)) Y exp(—0X) + exp(0X)Y (% lt=0 exp(—tX))

=XY+Y(-X)=XY=YX=[X Y]
the commutates of the matrices, X, Y.

Theorem 1.16.7 Let G be a Lie group, thenforany X, Y € g,
ad(X)Y =[X, Y].

Proof: First note that

ad(X)Y = = |e=oAd (exp (tX))Y = le=0 d (Coxpex),(¥)  (1.1)

Also, recall that we have show

Cy(@=gag™= (Ry-1°Ly)(a). (dLg)l(Y) = Y (g), where Yis Left
invariant vector field with

F()=Y (1.2)

The flow @7 of ¥ is given by

OF (@) = a(exptX) = Rexpex(a) (13)
[X,71(a) = g lezo A(@F) (T (9F () (1.4)
(exptX)™! = exp(—tX) (1.5)
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We now put from (1.1) — (1.5) together

d
ad(X)Y = at le=0 dRexp(—tX) (dLexp txY) =
d ~
dt |t:0 dRexp(—tX) (Y(ethX))

d

=2 1eeo d@D(F (05 (1)) = [X, 71(1.1), (by (1.4).

dat

1.17 Operation on Representations

1.17.1 Sub Representations and Quotient

Definition1.17.1 Let V is a representation of G (respectively g). A sub
representation is a vector subspace w CV stable under the action: p(g)
W cW

For all g € G (respectively), p(x) WcCW, for all x€ g.

If G is a connected Lie group with Lie algebra g, then W cV is a sub
representation for G if and only if, it is a sub representation for g. If
W cV is a sub representation, then the quotient space V/W has a
canonical structure of a representation, it will be called factor
representation, or quotient representation.

Definition1.17.2. (Invariants)

Let V be a representation of a Lie group G. A vector v € V is called
invariant if:

p(g)lv = v V¥V g € G. The subspace of invariant vector in V is denoted
byV €.

Similarly, let V be a representation of a Lie algebra g. A vectorv € V' is
called invariant if p(x) v = oV x € g. The subspace of invariant vectors in
Vis denoted by V€.

If G is connected with g then for any V of G we have V¢ = V8
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Chapter Two

Symmetries

2.1 Introduction

In order to understand symmetries of differential equations, it is helpful
to consider symmetries of simpler objects. Roughly speaking, symmetry
of a geometrical -object is a transformation whose action leaves the
object apparently unchanged. For instance, consider the result of
rotating an equilateral triangle anticlockwise about its centre. After
rotation of 2/3, the triangle looks the same as it did before the
rotation, so this transformation is symmetry. Rotations of 47/3 and 2mt
are also symmetries of the equilateral triangle. In fact, rotating by 2m is
equivalent to doing nothing, because each point its mapped to itself. The
transformation mapping each point to itself is a symmetry of any
geometrical object: it is called the trivial symmetry.

On the other hand, consider a circle; any rotation by angle € may be
represented in Cartesian coordinates as the mapping

Fe(x,y) = (xcose —ysing xsine + ycose)

In this case ¢ is continues parameter, similar the set of reflection of circle
can be represented by the mapping

Fp:(x,y) = (=x,y).

Followed by a rotation . therefore in the case of a circle we are
examining a symmetric group which is not discrete; these kinds of
symmetries are known as Lie symmetries, and they form a Lie group
which will be explored in the next section.
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Symmetries are commonly used to classify geometrical objects. There
are certain constraints of on symmetries of geometrical objects. Each,
symmetry has a unique inverse, which is itself is symmetry. The
combined action of the symmetry and its inverse upon the object leaves
of coordinates q (t) and q’(t) are solutions of the same set of equations.
This explains the view of symmetry transformation as mapping between
different solutions of the equations of motion.

The mapping between different solutions of the equation of motion
motivates an alternative view of symmetry transformations, different
form the passive view. They are considered as transformations between
different time evolutions of the system, describe in the same coordinate
frame. This is called an active transformation. It is transformation
between different physical stations, rather than a transformation
between two different descriptions of the same situation.

2.2. Importance of the Symmetries

Symmetries are for many reasons a highly important subject to study in
physics. Symmetries of the fundamental laws of nature tells as
something basic about the nature that in many cases can be viewed as
even more basic than the laws themselves. A well-known example is the
space-time symmetries of the special theory of relativity. The Lorentz
transformations were first detected as symmetries of Maxwell's
equations, but Einstein realized that they are more fundamental than
being symmetries of equations. After him the relativistic symmetries of
space-time have been the guiding principle for formulation of all (new)
fundamental laws of nature.

In the similar way, when extending the laws of nature in to new realms,
in particular in elementary particle physics, the study of observed
symmetries have often been used as a tool in the construction of new
theoretical models.

When systems become complex and a detailed description
becomes difficult, the symmetries may still shine through the
complexities as a simplifying principle. In the study of the condensed
matter physics the identification of important symmetries is often used
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as a guiding principle to obtain a correct description o the observed
phenomena.

In the present case where we focus on the description of mechanical
systems we have notice the possible use of symmetries as generates
new solutions from old solutions of the equations of the motion. There is
another important effect of symmetries that we will focus on, the
connection between symmetries and constant of motion. Loosely
speaking, to any (continuous) symmetry there is associated a conserved
quantity.

The study of constants of the motion is important for the following
reasons.

These constants may tell us something important about time evolution
of the system even if we are not able to solve the full problem given by
equations of motion.

The presence of constants of motion may simplify the problem since
they effectively reduce the number of variables of the system.

In symmetry, a transformation is symmetry if it satisfies the following
1-the transformation preserves the structure.
2-the transformation is a diffeomorphism.

3-the transformation maps is object to itself.

2.3. Local One —Parameter Point Transformations

To begin local one-parameter point transformation, we consider the
following equation

X =G(x,€)
(2.1)
be a family of one-parameter € € R invertible transformations, of points

x = (x1,..,x®) € RN into points X = (x!,..,x") € RN. These are
known as one-parameter transformations, and subject to the conditions
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X |6=0 = x thisis, G(x,¢) |6=0 =X (2.2)
Equation (2.1) using Taylor expansion in the some, neighborhood
e = 0, we get

0
X+ € (a_fl |€:0) + 0(62) (23)
Putting
G |
§() =57 lemo 249

reduces the expansion to

Xx=x+ €&(x)+ 0(€? (2.5)
The expression

X =x+ €§(x), (2.6)

is called a local one-parameter point transformation and the
component of €& (x) are the infinitesimals of (2.1).[34]

2.4. Local One-Parameter Point Transformation
Groups

The set G of transformations

G _l_i 926G
2
€ile,_o 2 \ O€;

f€i=x+ei<a—i

>+ e i=1,2,3,...,(2.7)

€i=0

becomes a group only when truncated at 0(€?)
2.4.1 The Group Generator

The local one-parameter point transformation in equation (2.6) we
can rewritten in the form

X=x+ €&(x).Vx, (2.8)

so Xx =1+ €(x).V)x, an operator,

G = &().V (2.9)
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these implies that

Xx=(1+4 eG)x (2.10)
An operator (2.9) has the expanded form

N
0
G = ; &k P [10], [34] (2.11)

2.4.2. Prolongations Formulas

The prolongation is happens when the function F(x, y) does not only
depend on point x alone, but also on the derivatives. When this case is
happened then we have use the prolonged form of the operator G.

When N =2, with x! = x and x? = y reduces (2.11) to

0 0

In determining the prolongations, it is convenient to use the operator of
total differentiation

0 v 9 L9 ..
D—a+yay+y 6y’+ ) (2.13)

. dy . d%y

where y =E, y T2

ay

the deerivatives of the transformation point is y' = — since

Xx=x+€§ and y = y+en (2.14)
Then
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—; _ dy+edn
dx+ed&’

So that

—, _ dy/dx+edn/dx
dx/dx+ed&/dx *

We can introduce the operator D:

_, Yy +eD(m)
Y T+ en®

from the (2.16)implies that

vy =y +e(Dm —y'D)),

or

y' =y +ed,
with

¢t=D@m) —y'D()

It expands into

Cl =Myt (le - Ex)y, - ylzfy.

The first prolongation of G is

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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11l = 9 94,19
GH=SCoy) oot ntey) o+ 855 (2.20)
For the second prolongation, we have
_v _ y+ed(Y) _

1+€eD(¢)
y +ed?, (2.21)

with (% =D(¢Y) — y D(&)this expands into
62 = MNxx + (any - Exx)y, + (nyy - foy)ylz - y,3€yy

+(ny — 28, —3y'))y
(2.22)
the second prolongation of G is

G2l =
0 d d d
§Cey) o+ nxy) oo+ 5+ (2.23)

Most applications involve up to second order derivatives. For this
reasonable we pause here third order. [10].

2.5. Invariant Functions in R?

A function F(x, y) is an invariant of group of transformations (2.11) if for
each point (x, y) it is constant along the trajectory determined by the
totality of transformed points (x, y):

F(xy)=Fxy). (2,
24)
This requires that
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GF = 0. (2. 25)

. . d d
Leading to the characteristic system d—; = ﬁ .

2.5.1 Multi-Dimensional Cases

In the cases of multi-dimensional, we recast the generator (2.11) as

G
~ S axi T gua
considered the kth — order partial differential equation

(2.26)

F (X, U, Uery U)o Ugy)Where x = (x4, ...,xn),u(l) =
= @27
By definition of symmetry, the transformations (2.1) form a symmetry

group G of the system (2.27) if the function u = u(x) satisfies the initial
conditions

X eeo = x5, U'|ezq = u®. whenever u = u(x)satisfies(2.27)
The transformed derivatives U1y, -, UGy Are found from (2.3) by using
the formula of change variables in the derivatives, D; = D; (fj)l_)j.

Here:

dxt L \gue

] d d
D = uf () + Ul (w+) (2.28)

is the total derivative operator with respect to x* and D; is given in terms
of the transformed variables. The transformations (2.11) together with
the transformations on Uy form a group, G!'l, which is the first
prolonged group which acts in the space (x, u, u(qy ).

Likewise, we obtain the prolonged groupG!?!, and so on up to G .

The infinitesimal transformations of the prolonged groups are:
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uf =~ uf + all(x,u,uq)),

- a a
uj; & ;i + “Qj(x' u, u(1)'u<2))'

—a

ul o~oul o+ a({;"ik(x, U, Uy, ...,u(k)), (2.29)

The functions

i (xu, u(1>)» ¢ij (x' U, U(q), u(Z))andfiof...ik (x» Uy U(1)s ooy u(k))

are given, recursively, by the prolongation formulas:

& = Di(n™) —uf (&),
% = D) —uy Dy (€Y

¢ i = D (88 i) — Wiy i Dirc(E1)- (2.30)
The generators of the prolonged groups are:

. F;) 0 d
G =& 0 uw) 5+ 1% w) 5 — + I (o w ug) ) 5z

d
a

+ Cl-“(x, U, Ugy) )au1

. 0
Gl = &i(x, Wzt nthw o

?
+oot O (U ugy) T

(2.31)
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Definition 2.5.1 A differential function F(x, u o Upy), P 2 0, is a pth-
order differential invariant of a group G if F( x, u, .., u(p)) =
F(TC, u, ..., u(p)),

l.e. if F is invariant under the prolonged group G'P!, where for p =0,

U@y = 0 and G° = G.

Theorem2.5.2 A differential function F(x, u,..,ug)),p = 0,is ap"-
order differential invariant of a group G if

GIPIF =0, (2.32)

2.6 Invariant Functions in R"

A function F(x) is an invariant of the group of transformations (2.11) if
for each point x it is constant along the trajectory determined by the
totality of transformed points X,

F(%) = F(x) (2.33)

This implies that, GF= 0. Leading to the characteristic system

dx?
agt
dxN

s (2.34)
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2.6.1 Determining Equations

Substitution of equations (2.31) in to

GME? (x,u,uqy - ugy)ly=0 = 0,0 = 1, ..., 1R,

Gives rise to

Ea(f, u, ﬁ(l), ...,l_L(k)) = EU(X, u, u(l)‘ ...,u(k))+a(G|k|E") (235)

Thus, we have

GME? (x,u,uqy ., ugy) =0 (2.36)

Then, the equations (2.36) are called the determining equations. They
are written as

G|k|E"(x, u, U(l)’ "'Ju(k))l(l):O = 0, o = 1, ...,ﬁ’l, (237)
where |1y means evaluated on the surface (2.27).

The determining equations are linear homogenous partial differential
equations of order k for the unknown functionsé!(x, u), n%(x,u). These
are consequences of the prolongation formula (2.30). Equation (2.37)
also involves the derivatives U1y, -+ Ugl) SOME of which are eliminated
by the system (2.27). We then equate the coefficients of the remaining
unconstrained partial derivatives of u to zero. In general (2.27)
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decomposes into an over determined system of equations, that is, there
are more equations than the n + m unknowns ¢&*, n¢.

Since the determining equations are linear homogenous, their solutions
form a vector space.

2.6.2 Lie Algebras

There is another important property of the determining equations, that
is if the generators

, ) , )
G, = ¢&i(x, u)ﬁ + n1(x, u)w

_ zi 9 i 0
Gy = &(xu) oxl + 5 (x,u) ud
Satisfy the determining equations, so do their commutates

(61, G2] =616 — GG1=(61 (&) — G2 (&) = + (61 (n}) — G2 () 7z

This obeys the properties of bilinearity, skew-symmetry and Jacobi's
identity.

2.7 Lie Equations

A given the infinitesimal transformations X! = x! + e&!(x),u’ = u® +
en®(x) or its symbol G, the corresponding one-parameter group G is
obtained by solution of the Lie equations
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dxt o _\ du® _
E = El(xi U),E = na(x; U,),

with initial conditions
X eoo = x°, U emg = u“ (2.38)
2.8 Canonical Parameter

For the expression, ¢(€;,€,) = €, + €,, the canonical parameter exists
whenever @ exists.

Theorema2.8.1 for anyg(a, b), there exists the canonical parameter

- a da <P(ab)
a=[ — A where A(a) = lp=o-

This system, with a as the canonical parameter, transforms form-
invariantly in variables t, x, y, u,w, p, u under

t = texp[ Oau;la(m] = [ 0 7F’ (M)] y =yexp [fo F (#)]
Z = zexp [foa ﬁgi;)], U = uex p[ 0 T (u)] U = vexp [fo ZF (u)]

5 —wexp (12, p=pe [[io],  FD = ek PG,

BF' (W)

Where

F(W) = == [36] (2.39)
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2.8.1 Canonical Variables

Every one-parameter group of transformations (X = f(x,y,€),y =

9(x,y,€)
reduces to a group of translations t =t + €,u = u

with the generator X = %. By a change of variables
t =t(x,y), u = u(x,y).

The variables t, u are called canonical variabls.
2.9 Generate Point Symmetries

2.9.1 One Dependent and Two Independent Variables.

Considering the equation:

U = Uy, (2.40)

In order to generating point symmetries for equation (2.40) .We first
consider a change of variables from t,x and u to t*, x*and u” involving
an infinitesimal parameter €. A Taylor's expansionine = 0 is

t=t+e€T(t,x,u)
X=x+€&(t,x,u)
u=1u

+ e((t,x,u)

(2.41)

Differentiating (2.41) with respect to €
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ot )
&|6=0 = T(tJ x:u)
0%

%le 0o — E(t X, u)

on
¥|6=0 - ((tliu)J

-~

(2.42)

The tangent vector field (2.42) is associated with an operator

G=1liel 1720 (2.43)
ot fax cau' '

This operator is called a symmetry generator. This leads to the
invariance condition

G [F(t, X, U, Uy, Upy, Ugt,s uxx] |{F(t,x,ut,ux,utx,utt,uxx):0} =0, (2-44’)

where G2l is the second prolongation of G. it is obtained from:

G =6+ 0 + 0 + + (2 + 2 ‘ (245)
- t a t {x a ctt a tt tx a tx XX a
where
dg  of oT 0¢&
1 __ ~ <9 7 - -
=5 g, [ at]”t %
dg  Of % oT
1 _ < _2
= TG +[ axl ™ T v
d%g  0%f of 0°T 02§ oT
2 <9 7 - — R
=gtz t [2 ot aﬂ]”t gz tx T [f : at]““
9¢
—Zautx,
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GE GE of 02 02T oT
g f f 0% N [f _y

2 _ o, - —
Cox dx? +u6x2 dx 0x2 U dx? e 0x Wsx
T
- Zautx,
and
, 0% N 92 f of  9°T Jof _ 0%
Six = 3iax T “atax T % ax " o™ T %3t T 3rox|
[ aT  0¢ T d¢
ot ox) T gr e T g

2.9.2 One Dependent and Three Independent Variables

In order to generate point symmetries for equation u; = Uy, + Uy, We
first consider a change of variables from
t,x,yand utot*,x*,y* and u* involve an infinitesimal parameter €.

use Taylor's series in € near € = 0 yilds

E =t+ ET(t,X;y'u)
_')_C =X + Ef(t; x: y: u) l’ (246)
y=y+ep(txyu)
u=u+ed(txyu
ot )
E|e=0 =T xyu)
afl £t )
S le=0 = YU
dy
%|6=0 = (p(t,x,y,u)
ou

EL?:O = Z(t,x,y,u)J

The tangent vector field (2.47) is associated with an operator:
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G—Ta+a+ a+a 2.48
- ot fax ¢6y Zau' (2.48)

Called a symmetry generator .this in turn leads to the invariance
condition

2
Gl | [F(t; X, Ug, Uy, uy,utXl uty, Utt) Uxy, uxy,uyy] |{F(t'x:ut:ux;uy,utx:uty, utt:uxx:uxy,uyy)zo}
=0, (2.49)

where G!?! is the second prolongation of G.it is obtained from the
formulas:

9g  of oT] 8¢ 90
1 o — — — —
e T T T T T T W

dg  of 0¢ T 9
1 _ < 7 2 _ _ _r
=g TUg T [f ax] e =3 e~ W

1_ag af [ ] do a¢ oT
=gt / Uy Tt T ey T Wy
, 0%, O [Of 0T 026 9%
T T T o) RO T R T
,oT 0 1)
+[f at]utt Zautx_zauyt'

2g 0%¢ 0°T

G = gt +ug+ [250 = S we S - w1 -

0

225y
dp aT

—Zauxy - Zautx,
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, 9% .\ 92 f L|or 92T i 92¢ 920
Six = 3iax T %atax T ax " deax| ™ TP 3~ drax| ™ T Frox
T  aT 98 0f dp 9

—[2f =25 = 5w =[5 = 52 e = (252 + 52 ey
0%¢& 0°T
Sty = atay atay o [ atay] Y " atay Ux T gy Ut T

[2__|__ Uy, —2 at+ ]xy [Zf 26_T__y Uy,

2 29 2L _
oy vz Yayz T %oy T 9y ay2'* Tyt

Hr=2glmy 2[5

[f 2—]uyt, (2.50)

d%g 2f laf azgol 65 0°T
av2 |y

2.9.3 One Dependent and n Independent Variables

The local one-parameter point transformations

x =X;(x,u,e) =x; +e(x,u) + 0(62)} o
u=U(x,u,e) =u+en(xu)+ 0(e B
1,...,n. (2.51)

Acting on (x, u)-space has generator
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X =
0 0
FICAD Emi i [CADEw (2.52)

The kth extended infinitesimals are given by

E(x,u),n(x,u), n(l) (x,u,ou), ..., 77(") (x,u,ou,...,oum), (2.53)

And the corresponding kth extended generator is [34]

o 0 9
X0 =X, — +n— +F—+ -+ K i=1,.., 2.54
Gy Hlgg T gt i=1..,n (254

)
auilmii

2.9.4 m Dependent and n Independent Variables

We consider the case of n independent variables x = (x1,...,x™) and m

dependent variables u(x) = u!(x),...,u™(x). with partial derivatives

u

u
denoted by uf = the notation

0Pu = 0'u = ud (%) ... ud (%) ... ul"(x) ...u™(x)

Denotes the set of all first order partial derivatives

0Pu = {ufl_"ipm =1l.miip..i,=1 n}

_ { oPut(x) |

prrmel | 1.m:iiy..ip,=1 n}
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Denotes the set of all partial derivatives of order p. point
transformations of the form

flx, ”)}, (2.55)

X =
u=g(xu)

Acting on the n+m dimensional space (x, y) has as its pt" extended
transformation

@ = flew )
@) = g xu
@) = r@wow (2.56)

(ﬂﬁ...ip) = hﬁ___ip (x,u, 0u, ...0Pu)
@M
) a(f)i.
the first order derivatives are determined by

withi =i, ..,i, u=1,...,m The transformed components of

(@Y [hi] D, g¥
@3z | = k2 | = g1 [P9"
@nl  Lny Dy g"

where A7 1 is the inverse of the matrix

D1f1 o Dyf™
anl ann

in term of the total derivatives operator

A=

_ 0 u 0 u 0
Di o axi+ui 6u”+uii1 c’)uf1

+-i=1,..,n

The transformed components of the higher-order derivatives are
determined by
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i i - - U -
(u)zl ip 1 A Dihi, iy
u U
U U
( )ll dpn _hil...ip n. _Dnhil...ip nJ

The situation where the point transformation (2.55) is a one-parameter
group of transformation given by

xi=filx,u€) = x' + efl(x,u) + 0(e2),i=1,..,n

.(2.57
ut = gh(x,u,€) = ut + ent(x,u) + 0(e?),u =1, ...,m} ( )

Will have the corresponding generator given by

X = &Y(x, u)— +nHt(x,u) — (2.58)

6“’

2.10 Lie Group of the Heat Equation

We consider the symmetry analysis and Lie symmetries of one —
dimensional and two dimensional heat equations. Also we find the

invariant solutions of certain symmetry generators of heat equations
[34].

2.10.1 One-Dimensional Heat Equation

Consider the heat equation given by

Uy — U =0 (2.59)

Let x and t two independent variables, and u a dependent variable.
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The total derivatives are given by

The infinitesimal generator is given by

X=T(xu) % + &(t,x,u) aa_x + n(t,x,u) :—u, (2.60)

The second prolongation of X is define by

X=X+ ( ( + (xx 9 + (xt P + (tt 9 , (2.61)

The coefficients (;, {g, 2., {,%tand cgt are define by
{x = Dx(n) — uyDx(§) — uDx(T) = gy + fitt + U (f — &) — w, Ty,
¢ = De(n) — uxDe(§) —uDe(T) = ge + fru +ue(f —Tp) — usdy
Gox = Dx(83) = Uy Dyt (§) — ue Dy (T)
= Grx + Ufux + U (2f = &) = UeTox + W (f = 285) — 20y T,
Gt = De(8x) = Une D (§) — Uyt Do (T)

= Gxt T freth + U Cfp — Exe) —Ue(fie — Tier) — et + (f — &5 —
T ) Uyt
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—Tyuyy,

Ctzt = Dt((t:l) — Uyt DL (&) — uge D (T)

= Gee T frew + ur (&ee) — ue2f — Tee) — 2us§e + uee (f — 2T7).

2.10.2 Symmetries of One Dimensional Heat Equation

The determining equation is obtained from invariance condition

1 9

0 0 0 L
(T(t,x,u)a+ E(t,x,u)a + n(t,x,u)£+ (x

du,

5, 5, , 0
+{fe 5 o, ‘|‘ (ot o, + {i E) (u — utt)lut=utt =

where

(G = S lumy,, =0 (2.62)

After substituting (¢ {2, and u, = u,, in equations (2.59), we get

gt t ftu + ut(f - Tt) - uxft - [gxx + ufxx + ux(zfx - fxx) -
U Ty + ut(f - fo) - Zuxth] =
0, (2.63)

Separate coefficients in (2.60) having the following monomials

C: get—Gxx= 0 (2.64)

U fi—fu = 0 (2.65)
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ut : Tt - Txx - ng == 0 (2.66)

Ue 2 Se— S T+ 2fi= 0 (2.67)

Uy = Ty 0 (2.68)

Integrating equation (2.68) with respect to x we get

T = a(t) (2.69)

Substituting T in to (2.66) and integrating with respect to x we obtain

= %atx +b(t) (2.70)

Differentiating (2.65) with respect to t we get

1
gt - Eattx + bt (271)

Substituting &;in (2.67)and integrating with respect to x yields

f= —%attx2 — %btx + c(x) (2.72)

Substituting f in (2.65) we obtain

1 1
—gatttxt - Ebttx + Ct + Z(ltt =0 (2.73)

Splitting equation (2.68) with respect to the powers x we get
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And integrating three equations with respect to t respectively yields

A
a(t) =71t2 + Ayt + Ay )

b(t) = At + Ag (2.74)

1

The infinitesimals:

T - altz + Zazt + ag

=a.tx + 2a,x + a,t +
SZ 11 12 4 5 (275)
f == _Zalxz _Ea4x - alt + CZ6
2.10.3 Symmetries

The equation

0 d 0
X=T%+fa +(fu+g)£ (2.76)

The corresponding symmetries are given by
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X = —, 2.77
1 ax ( )
X, = J 2.78
Z_atl (' )
X2 = a+2ta 2.79
R PR TY (2.79)
0 20 (1.2 1 9

X4—xtax+t o (4x +2u)uau, (2.80)

X —ta ! ta 2.81

5= 9t 2% aw (2:81)

X =ul 2.82

6_uau’ ( )

X, = J 2.83

2.10.4 Invariant Solutions

Useful tools of the symmetries groups that conserve the set of all
solutions in the differential equations admitting these groups. That is,
the symmetries transformations simply permute those integrals curves
among themselves. Such integral curves are termed invariant solutions.

Theorem 2.10.1 A function F(x, y) is called an invariant of the
group G if and only if it solving the following first-order linear
differential equations
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XF =§&( )(’)F +n( )aF (2.84)
=$(x,y 7 Ty 3y’ .
X(t,x, u)§—§+ T(t,x, u)% =n(t,x,u), (2.85)

is the general partial differential equation of invariant surface, with the
following characteristic equations

dx _ dt _ du
X(txw)  T(xw)  nltxuw)’

(2.86)

For the symmetry equation (s5) characteristic equation is

xax &, (2.87)

2t u

Integrating (2.79) we obtain

u= ,B(t)e_g (2.88)

Differentiating (2.88) with respect to t and twice with respect to x
respectively we obtain

2 x2 22

u, = B'(De it + BD)e it — (2.89)
e = Sz () = e WD) (2:90)

Substituting u; and u,., in (2.59)yields

B'()+5B(t) =0 (2.91)

Hence the solution is
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%2

U= %e—z (2.92)

Finding the invariant solution the symmetry equation (s,) is used since it
contains (x, t,u) then the invariance condition becomes

xtu, + t?u, = — ze + %t) u (2.93)

The corresponding characteristic equations are given by

R (2.94)

xt  t2 (12 l)
X2+t u

By separation of variables and integration, the solution of the
characteristic equations yields two invariants of X4,(=’—: and

v = te* /4y,

Then the solution of the invariant surface equation (2.92) is given by the
invariant form ~te* /4ty = @ G) solving for the following equations is
obtain

u=0(xt) = %exz/‘“@(o (2.95)

Finding the solution:

u =Xt g () (%) (2.96)

we =B ()0 () () + (G —3)v @97

Substituting u,and u,., in (2.59) we obtain

b(2)5=0 (2.98)

t
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Hence

=0 (2.99)

Solving the differential equation obtained

1 x?

2.11 Two -Dimensional Heat Equation

Consider two dimensional heat equations

U — Uyy — Uyy =0 (2.101)

The dependent variable is u and independent variables are t, x, and .
the infinitesimal generator is given by

d d d d
X = T(t,x,y,u)a+f(t,x,y,u)a+<p(t,x,y,u)@ +((t,x,y,u)£

(2.102)

The second prolongation of X is

xl=x4+(¢ J + ¢} 0 +€1i+{21+52 i+§2 i
“ou, Fou, You, CFouy CFou, Y oug

+ {2 9 + {2 g + {2 J
(XX auxx (xy auxy (yy auyy

With invariance condition
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X (up = ey =y )| up-igamusy, = 0 (2.103)

That yields
(tl - (ng - C}gyl(ut—uxx=uyy) =0 (2.104)
where {f, {7 and {},, are substituted in (2.104)
199 9f _ory, _9. _ . 9
e = e T Ut [f at]ut ax T T Uy 5o
1_99  Of _o9), _or. . 9¢
Z’C_at uax+[ ax] x T gt T Uy 5o
1_99_  0Of _Oe], _o¢ _ 08  OT
(y_at-l_uay-l_[f oyl Yy T ot T Mgy T G,
9%g  9*f [ of a9°T] 9% 9%
2
=g tliget IZE_F UGt Ty
oT d¢ I
+ [f - ZE] utt - Zautx - ZEuyt,
, _ d%g , 9%f of 0% 92¢ 02T o0&
o= gatugst |25 - i - T - Tpu + | - 25w
dp oT
_Zauxy - Zautx,
. 9%g  9*f [of 9°T of 0% 920
(tx: tu t 53— t Y Uy — Uy 773
dtox dtdx |0x Otdx ot OJtox dtox
[2 26T OT] [66 66]
7; 9t " ox Yox = g¢ ~ ox] "
4 4
- [2E+ 9 ]“"y’
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, 0%g 0%f of 0% 0%¢& 0°T
{5y = +u — o |U — U, — Ug
dtdy dtdy dy 0dtdy dotdy dy?
dop 0d¢ 9§ 0%
— —_2l=4+=
[2 at " ay] [at + ay] Yy
- 26T aT]
f =25 = gyl W
E)Zf 92¢ 92T
Gy =S +ush+ 28-St - Shue - Shu+ [r -

¢ o
228wy, -2 [5] v+ |2 - 25] Je (2.105)
2.11.1 Determining Equation of Two Dimensional Heat Equation

Considering the equation

(¢ =0+ 35y =0 (2.106)
implies that
43 ap
R R K
0%¢ o%T 0¢
- Th+ 22 - w8y - SRu + [ - 25w
dx ¥ Tox W ay ayz| Y ayzT*
92T

+ [f _ zg_‘)’j] u, -2 [%] Uy + [Zf - 23—5] Uy, (2.107)
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Compare coefficient of constant and u yields

c gt = Gxx —Gyy =0 (2.108)
u ft = Fex = fyy =0 (2.109)
Uy ¢ Ty —Tex —Tyy — 20 = 0 (2.110)
Uyt S —Sxx—Syy +2fi= 0 (2.111)
Uy Pt — QPux — Pyy +2f, =0 (2.112)
Upx: $x — @y = 0 (2.113)
Ugy : Px+$,= 0 (2.114)
Uy T, = 0 (2.115)
Uy : T, =0 (2.116)

Integrating (2.115) and (2.116) with respect to x and y respectively
getting

T = a(t) (2.117)

Substituting T in (2.110) and integrate with respect to y we obtain

¢ = acy + b(t,x) (2.118)
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Differentiating
@ twice with respect to x and y respectively we obtain

Pxx = byx(t, %), ®yy =0 (2.119)

Differentiating ¢ with respect to t we get

1
Pr =5y + b.(t,x) (2.120)

Differentiating ¢ with respect toy and substituting in (2.113) and
integrate with respect to x obtained

§= %atx +c(ty) (2.121)

Differentiating & with respect to t and twice with respect x and y
respectively we obtains the following equations

1
$¢ = S0 X + ce(t,y) (2.122)

$xx =0 nyy = ny(t:y) (2.123)

Differentiating (2.114) with respect to x and y respectively obtained the
following equations

Oxx =0 =Dbyy, &y, =0 =0y, (2.124)

Integrating (2.124) with respect to x and y respectively we obtained
b == Alx + A2 (2.125)

c=Azy+ A, (2.126)
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Substituting &, $xy ,&yy i (2.111)and @, @xx, @yy in (2.112)and

Integrating with respect to x and y respectively we obtains

1 , 1 , 1 1
f= TgduX T gl —Ect(t,y)x—zbt(t,x)y+d(t,X)

Differentiating f with respect to t and twice with respect to x and vy
respectively we obtain

1 1 1

1
ft = _ga’tttx2 - gatttyz - Ectt(t;y)x - Ebtt(t»x)y +d(t,%)

+ e:(t,v),(2.128)

1 1
fxx = _Zatt + dxx(t' X), fyy = _Zatt + ny(t' y) (2'129)

Substituting f, fx, fyy in (2.109) yields

1 1 1 1

_§atttx2 - g“ttt)’z - Ectt(t: y)x — Ebtt(t: x)y +di(t,x) +e(t,y)

1
toa — Cyy(t,y) — dyx (£, x) = 0 (2.130)

Splitting (2.130) we obtains minimal equations

.attt (t) =
0 (2.131)

d..(tx) =0 (2.132)
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: ey, (t,y) =
0 (2.133)

+d,(t,x) = 0 (2.134)

: et(tly) =
0 (2.135)

Integrating (2.134), (2.135) and 2.133) with respect to t, x and vy
respectively yields

a(t) = %Astz + Agt + A, (2.136)
d(x,t) = Agx
+ Ao (2.137)
e(t,y) = Aoy
+ Ay (2.138)

The infinitesimals:

T = Byt + 2Bt + B3 (2.139)

&= PBitx + 2B,x + Bay + Bs (2.140)

@ = ity + 2B,y + Bux
+ B, (2.141)
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1
f= _Z,B1(x2 + %) + B7x + Bgy + Bo, (2.142)

Symmetries:

X =t g 2.143
1= at’ ( . )
Xy = o, (2.144)
X3 = g 2.145
3 = ay' ( . )

X, = g (2.146)
4 = uau, .

X = g (2.147)
5 — xu au, .

X, = g (2.148)
6 —Yyu au, .

X, = g + g (2.149)
7= Y ox xay' '

X—2t6+ a+ 9 (2.150)
A T PRI '

Xo =t —+t a+t g 1(2+ 2) g 2.151
o = Uit tigy t g, — g Hyug, (2151)

)
Xo =95, (2.152)
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2.11.2 Invariant Solution

d . e
For X5 = 3 the characteristic condition is given by

al
Xal = (2.153)

The characteristic equation is
— === (2.154)

This implies that dy = 0, thus the invariant solutionu = @(x) or u =
@(t) for u= @(t), we substitute this in the original equation
Up = Uyy + Uy,

toget @'(t) = 0 thus @(t) = k similarly foru = @(x) we have
Uy = @' (x) =0 which implies @(x) = C;x + C, then the invariant

solution becomes

u=
Cix + G, (2.155)

2
For X, = P

Similarly we obtain the invariant solution

u=Ay+A4, (2.156)
For
5] 0
X7 == ya + xﬁ )
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The invariant condition is

X,1
_ + ol (2.157)
B yax xay' '

The characteristic equation is given by

dx _dy _du _dt (2.158)

= y? — x? (2.159)

The first invariant, ¥; = y? — x2 and the second invariant.,¥; = @(t)
The invariant solution is u = @(t)(y? — x?2) substituting this solution in
the original equation obtain

o't y*—x*)=0,0'(t) =0,0()=C (2.160)

Thus invariant solution

u=_C(y*—x? (2.161)

For

_ 420 9 9 12,2y, 9
Xg=t 6t+tx6x+ty6y 4(x +y)uau

The invariance condition is given by

71



-l or O _ 1,24 42y, 90
Xol =t 6t+tx6x+ty6y 4(x +y)ua

The characteristic equation is given by equation
dx dy du du
t2  tx  ty

%(x2 +yHu

From the equation (2.163) we get

dt _ dx

t2  tx

Integrating the equation (2.164) leads to
X _
;- P

From the (2.163) we have

dt du
—+ =0

2
' %(x2 +yHu

Integrating (2.166) obtain

u=r ()

(2.162)

(2.163)

(2.164)

(2.165)

(2.166)

(2.167)

Differentiating (1.167) with respect to t and twice with respect to x and y

respectively we obtain

(x2+y2) (x +y2) 2,.2
— x x (x“+y°)
Uy —Ft—ze 4t —Ft—ze t 22
(x2+y?) X (x2+y?) (x2+y?)
Uy = F'' e +F’t—ze st +Fe 4 —

(2.168)

(2.169)
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(2+y?) (2+y?) 52

Uy, = Fe 4 (Z)+Fe at i}— (2.170)

t2

Substituting u;, Uy, and u,,, in (2.101) yields

x2 2 (x2+y?)
4 > ~ 0 (2.171)

F”1+F’2x+F 1+ + + 4t
t2 t2 t  4t?  4¢2 €

The second order differential equation (2.170) reduces to
F'a+F'B+FA=0 (2.172)

From characteristic equation (2.163)

dx dy

ool (2.173)
Integrating obtain
X
S = #2 (2.174)
From (2.162)
dy du
—+ 1 =0 (2.175)
Y@ +yDu
Integrating (2.175) obtain
x _(W)
u=R (;) e 8t (2.176)

Differentiating (2.176) with respect to t and twice with respect to x and y
respectively yields
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2x2Iny+y?

—(— 2x%Iny+y?
_ WA (2x%iny+y?
U = Re ( 8t2 )’

2x%Iny+y? 2x2iny+y?
I G >_R,<le—( o )@)
y y ty

_(2x2Iny+y? _ zleny+y2> 21 2
_R e < 8t ) ln_y _l_ e ( 8t x“In"y
2t 4tz )

x2 _<2leny+y2)
Uyy =R <37€ 8t
2x2Iny+y? 2x2Iny+y?\ 42 2
+ R’ Z_xe_< 8t >+ie_< 8t )x +Yy
y3 y? 2t

2x2%iny +y? 2 2\ 2 2x2%iny+y? 2 2
+R e_( 8t ) r 1y +e_( 8t )ix Ty ,
4ty 4t y?

Substituting u;, uy, and u,,, in (2.101) we obtain

R 1 x? Y xlny 2x x(x?+y?)
v2 v2 ] 2 3 2
yey tys y 2ty

8t 2t 4¢2 4ty 4ty?
=0,(2.177)

2x%lny +y? Iny x?In? x2 +y2\°  x +y?
_R< y+y* Iy y_( y)_ y

This reduces to

R"6§ —R'k — Ry =0, (2.178)
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From [36] for two —dimension Lie algebra spanned by
X,Yhas invariant

r =./x2%2 4+ y2 and v = u*. Looking for invariant solutions in the form
v = @(r), whence u = @(r)e™, substituting in (2.101) and multiplying
by r

The results equation becomes

r@" + 0" —Kkrg =0, (2.179)

Letting K < 0. then setting k = —a? and ¥ = ar the equation becomes
Bessel function J,(7) of order zero:

Q" +@" + 7@ =0, (2.180)

Where @ = J,(7) and the invariant solution is given by

u=J,(ar)e™®’t (2.181)
Also we can obtain the solution of (2.172) and (2.178) similar to (2.180)
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Chapter Three

Lagrangian and Hamiltonian System

3.1 Introduction

In this chapter, we introduce Lagrangian and Hamiltonian systems that
contain symmetry rules on the vector space by using classical variational
calculus, the Euler-Lagrange equations and Hamilton's equations are
obtained. We dividing this chapter in to analytical and geometrical
formulation with the continuous system of N degrees of freedom, state
as Noether's theorems, also we use symplectic form to obtained a
symmetry of Hamiltonian system.Mechanics has two main system
Lagrangian and Hamiltonian mechanical system [37].

In Lagrangian mechanical system is based on variational principles and
it's generalized directly to the general relativistic context. In Hamiltonian
mechanics is based directly on the energy concept and it's closely
connected to quantum mechanics.

3.2 Analytical Formulation

This chapter we introduce the basic motions of the Lagrangian and
Hamiltonian formalisms. First we starts with a system with N degrees of
freedom, state as Noether's theorems.

3.2.1 Lagrangian Formalism

Consider the action associated to a discrete system with N degrees of
freedom
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t . .
S(qi) = J, dtL(q;, g, ,t),i =
1,..,N . (3.1)

Where L(q;,q, ,t) is Lagrangian of system,{ q;} are gerneralized

coordinates and g, = dqi/dt the generalized velocities .In order to get

the Euler- Lagrange equations of the motion we need small variations of
the generalized coordinates q; keeping the extremes fixed

q =q; +9dq; , 8q; (t1) = 6q;(t;) =0, (3.2)

Applying the first order Taylor expansion of Lagrangian we obtain

" 0L oL
L(qg: g : = L(g; . d — 80, + — 54
(qi +3q;,4, +6q, ,1) (ql,ql,t)+aql6ql+aql5ql
= L(q;,q,t) + 6L, (3.3)

Now we can obtain variation and the differentiation operators:

d
6q:(6) = q;(t) = q: (1) = = (8q:) = 4, (6) = Gu(6) = 8. (£), (34)

Thus we get to the following expression for L

2q; 24, 2q; a4, dt 2q; dt \dq,
d (oL
(50, 00:) (5:5)
Now we apply the Stationary Action principle to get the equation of

motion for the physical paths, the action must be maximum, or
minimum or an inflexion point. This translates mathematically in to

oL oL .. oL oL d oL d (oL
0L=—6q;+-—-6q¢, =--6q; +——(6q;) = (_—_(_)> 6q; +

t . t .
65 =46 [, dtL(q;,q, ,t) = [ dtéL(q;,q, ,t) =0, (3.6)
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Expanding 6L we obtain:

g5 = [ ae( S~ (50) oa+ [ ar(500) =0, @7

3g, dt\ag))°h™ dt \ag, (3.7)
Since 8q; (t;) = 8q; (t,) =0, then this implies that the second
integral vanishes:

ie. [ dt—(— ai) = ;—;5qi]i=0, (3.8)

Therefore we see that

R 39
aql dt aql ql (')

Then we can obtain the following equations:

JL d(c’)L) 0
a4, ’

dq; dt
Vq; . These Equations are called the Euler — Lagrange equations of
motion.

(3.10)

Now from the eq. (3.8) we can also conclude an important side of
Lagrangians that they are not unique defined:

dF(q,t)

s (3.11)

L(ql lCil ,t) and Z(ql ,ql,t) = L(qliéh' t) +

generate the same equations of motion. We have an anagram way to

directly change that by substituting a function of the form % to the

78



dF(Qi,t)

Lagrangian, doesn't alter the equation of motion. Use (3.10) to ”

we obtain:

0 dF(ql, t) d 0 dF(ql, t) _
aqi< dt >_E<aql< dt ))‘0’ (312)

Next we will present Noether's Theorem which is one of most
important theorem of analytical mechanics:

3.2.2 Noether's Theorem

In this part we deal with a conserved quantity associated with every
symmetry of Lagrangian of a system.

We consider a transformation of a coordinate system

% - q =q +dq;, (3.13)
Thus the variation of the Lagrangian can be written as the exact
differential of the function F:
LG4} 47,0 = L(qi, 4y 6) + 20D this impiies 5L = AL,
(3.14)

In here we allow F to depend on, g, (that was not the case of (3 .12)).
On the other hand, we can write §Las:

5L = oL d(c’)L) 5 d(c’)L(S ) d(a 5 ) 315
=\3q, "ac\aa) ) 0% @ \5g, 0%) = 7 \gg, o) (19

To obtain the last equality we considered the equations of motion.
Suppose we write (6q; = €f;) , then an infinitesimal variation is form

q; =q; +6q; =q; +€f;, (3.16)

where € acostant, and f; a smooth, in the limit e = 0 we get
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limg; = q; =>» limdL =0, (3.17)

e—-0 -0

Thus, F be of the form F = €F, and

d oL dﬁ(ql , qi , t)
— | =(ef) | = 1
Integrating with respect to t, we get
oL - )
%(fi) =F(q;,qi, )+C, (3.19)
l

where, C is integration constant. Now we can introduced, that the
conserved quantity associated to an infinitesimal symmetry [37] as:

JL ~ .
C=a—%ﬂ—F(qi,qi, t) (3.20)
3.3 Hamiltonian Formalism

The Hamiltonian functional of a physical system is define as

H(q; ,p; t) = pi4, — L, (3.21)

where p; the canonical conjugated momentum and defined as

_ oL

P =5 (3.22)

If the Euler- Lagrange equations (3. 10) are satisfied then:
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. JdL

Now we are obtain the Hamiltonian equations of motion by applying the
principle of the stationary action:

t2 t2 . t2 . . OH
6S = [ dtsL = [ dts(piq, — H) = [ dt(Sp;4, + 64, ~ 34,09 —
0H t2 . d . 0H 0H
a_m5pi) =, dt(6piq, + — (i6q;) —pi6q; — a_qi6CIi — a_m5pi)

t2 t2

Jpdt  ( dp [ql ] + Sql[ P~ i]) + J,; dt (p:6qy)
t2 . 0H

=7 dt(op: |4, - 5| + 64, [—pl -2h=o, (324)

From theses equations, for arbitrary, §p;and &q;, the Hamiltonian
equations of motion are easily given as:

. _OH . OH 3 75

©=55 0 P = (3.25)
If the Hamiltonian displays clear time dependence, it can be simply
related to the time dependence of the Lagrangian

dH ( L) = 0H 0H dH___ _,+6H
dt plql - ap pl aql QL dt = q,Di piq, ot
.. . oL . aL .. oL
=Pid+Pidy — 54 ~ 54~ 5 (3.26)

Therefore we can obtain the following relation in partial derivatives:

oH _ oL

5 = 3’ (3.27)

3.4 Continuous Systems

The last paragraph we have considered discrete systems characterized
by(N time) degrees of freedom. Now we are considering the systems
depends on an infinite number of degrees of freedom (N — o) and
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replace discrete coordinates g; by the continuous field that is defined for
every point in space and they can vary with time

q;(t) » B(x, t) = 0(x*) = O(x), (3.28)

In here we have spatial dependence besides the time dependence, the
following replacement is can justified:

G,(t) = (0:0(x), 0, B (x)) = 0,D(x). (3.29)

Remembering that we have introduced the compact relativistic notion
and we have supposed that the partial derivatives of the fields are
Lorentz or (Poincare) covariant quantity of form d,@(x), with

0
aﬁ = w = (at, V) = (at, ak) (330)
Now we considering the following important define of contra variant
quantity

0" = g"’0, = (0, = V) = (¢, —0y), (3.3D)

Then we are only interested in Lagrangians that are invariant under
space-time translations besides the Lorentz translations (Poincare
groups). Therefore they are not depend explicitly on x*. The most
general Lagrangian that exhibits all the properties, we have written
described as:

L= [, %L (0,(x),0,0:(x)), (3.32)

where L is the Lagrangian density and we can written Lagrangian density
as a functional of M (with M finite) fields{@;(x)}}". Thus, the action can
be written as an integral of the Lagragian density
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S = [*dei=[dt [, d’xLxL (Q)i(x),a Q)i(x))

_ j T, (2:00,3,8,(), (3.33)

Just like in the discrete case.
3.5 Euler-Lagrange Equations

In order to obtain the Euler- Lagrange equations of motion we
considering the variations of the fields, keeping the extremes fixed

0'(x) = 0;(x) + 60;(x): 8P;(x1) = 6P;(x2) =0, (3.34)

Under these variations, we can define the following:

5 (2:(),0,0:0)) = L(:() + 68,(0), 9,0, (x) + 5[0,0,(0)])

—£(2:(2),0,8:(x)) , (3.35)

Thus, we can obtain the following operations:

oL

5L = ———60; (x)+a—['5[a 0;(x)]
a9, (x) 9[0,0,(x)] " *"
oL oL
=36.00 80, (x )+—6[6Q)( y (60 ()]
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_<a_L_a 6_13)5@'( )
“\oo. @~ *a[a,0.0])

0L

+a” W6Q)L(x) ,(336)

Now, we obtain the Euler- Lagrange equations for continuous systems by
applying the principle of stationary action as follows:

6S = sz <6—£ — aﬁ (3_13) 60;(x)
« \09:(0) " 9[0,0,(x)]

+ j ol =2 sp.00
X1 g a[alvl(Z)l(x)] l
=fx2 (a_/;_a a—L>5¢-(x) (3 .37)
o 00, *30,0,0])

Thus, for arbitrary §@;(x), the equation becomes

oL 0L

36,00~ % 0[0,0,0] O (339)

Forall@;,i=1,..,M. We can also see that from the right side of the
(3.37) with condition §@;(x;) = 60;(x,) = 0, we found that

50;(x) | = 0. (3.39)

1

[ me
x g a[a‘uQ)t(x)]
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Thus, if we considering an arbitrary functional of the form
b*(@;(x)), then

X

5 jx 9,b1(0;(:)) = fx Y (agf(i)a[wi(x)]) -0, (3.40)

the conclude is that a Lagrangian density is not defined uniquely. Similar
to the discrete case, we can add a functional of the form d,b*(9;(x))
without changing the equations of the motion. There fore

£(8:(x),8,8,(x)) and £ (8,(x), 9,8,(x))
+ 9,b"(0;(x)), (3 .41)

give back the same equations of motion.

3.6 Hamiltonian Formalism

The Hamiltonian density is define as

#(:(x), 0, (), VO, () = 0, (x)m; (x) — L. 3.
42)

where
@; = 0;9;(x) and m;(x) is the canonical momentum associated

to the field @; (x):
0L
a(bi(x).

The action can be written in terms of the Hamiltonian density as

mi(x) = (3.43)
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S = f;lz d*xL = f;lz d*x(0; () (x) — »). (3.44)

Now applying the principle of the stationary action to get

o5 = [ avefom o~ ) o0+ 35~ |
=0.(3.45)

For any arbitrary 6m; and 6®;. thus equations of motion simply write as

ox ) ox 43 oxn
T am() . 00;(x) = “0(3,0;)

where 0, are spatial derivatives (k = 1,2, 3).

(3.46)

3.7 Noether's Theorem (The General Formulation)

Consider the variation of the shape of the field without changing the
space-time coordinates which defined as

We can also define another type of variation which is closely related, a
local variation. It is defined as the difference between the fields
evaluated in the same space-time point but in two different coordinates
systems:

68;(x) = 8';(x") — 9, (x). (3.48)

Now consider a continuous space time translation which define as
following

xt - x'™" = x* + AxH. (3.49)
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Which be proper orthochronous Lorentz transformation or space-time
transformation. At first order in Ax, 6@;(x) write as:

50,(x) = 0',(x) — Bi(x) = 0';(x + Ax) — B;(x)
~ 0(x) + (0,01 (x)) Axk — 8, (x)
~ 0 () + (0,0:()) Axk — 9,(x)
=50;(x) + (9,8,(x)) Axt. (3.50)

Therefore, we have found the following relation between
60;(x) and §@;(x) for an infinitesimal transformation of the type
(3.49):

50,(x) = 60, (x) + (9,8,(x)) Ax. (3.51)

If @';(x") = @;(x) (Which is in general the case for scalar field; it is
also the case for spinor fields under space-time translations) then

50,(x) = — (6”®l-(x)) AxH, (3.52)

Thus, in this case, an equivalent way of making a transformation of the
type (3.49).Which acts on the coordinates, is by making an opposite
transformation on the field:

0;(x) - 8/ (x) = @;(x —
Ax) (3.53)

Let us now deduce the Lagrangian transforms under these type of
variations.

In order to keep the notation short, we shall introduce the following
short-hand notations:
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L(x) = L(0:(x),0,0:(x)),  L'(x) = L(®;'(x),0,9(x)),

£'(x) = £(8;(x), 9,0/ (), b*(x) = bH(p(x)). (3.54)

) :
Where dy = S keeping only terms up to

O(Ax)we can calculate 5§ L(x) under(3.49)

5L =L (x")— L(x)
= L(0;(x) + 80;(x),0,0;(x) + 6[0,0;(x)]) — L(x)

N 0L(x) - 0L() o 1
~ L(x) + 500 50; + PERS 5.0.00] 5[0,0:(x)] — £(x)
~ §L(x) + (9,L(x))Ax* . (3.55)

Now we have introduce the following notation

0L 0L
B”L(x) = ﬂ@uwl(ﬁo + a[aT(x()x)]
u¥i

36, (0) 9,0y 0; (x). (3.56)
Also we have used the following approximation:

dAxY
OxH

610,9:(x)] = 8,[88:(x)] - (0y2:(x)) = 09,[60,(x)]. (3.57)

For the last equality we have used that for a Lorentz (Poincare)
transformation

aﬂAxV = 0. Thus the new variation operator § also commutes with
the derivation operator when restricting ourselves to Lorentz
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(Poincare) continuous transformations. There for we have obtained
an expression similar to the (3. 51) foré :

§L(x) = 6L+ (9,L(x))AxH . (3.58)

Now considering the transformation of the system, a transformation
that leaves the equations of the motion invariant is the symmetry of
the system. Under such symmetry the system S will mostly
transform as § - S'with S’ is given by

S = [ d*x'L'(x) = [ d*xL(x) + [ ,d*d,b"(x)

=S+ [, d*d,b" (x). (3.59)

Where &S’ = 6S(thus generating the same equations of motion),
to introducing the Jacobian matrix we have

J

This must hold for all space-time volume £, therefore:

dx’

0x

d4xL'(x') = j d* xL(x) + j d*a,b" (x). (3.60)
) K]

‘aa—z‘ L'(x') = L(x) + 8,b*(x). (3.61)

The determinant of the Jacobian matrix is equal to 1for a proper
orthochronous Lorentz transformation. Thus

5L(x) — 0,b*(x) = 0. (3.62)

Substituting the (3.54) in to (3.58) to introduces

SL(x) + 9,[L(x)Ax* — bH(x)] = 0. (3.63)
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Put in the explicit form of 6 £ from (3.36) in the last expression (3.63)

We introduce

(az(x) _g, ) >5®-(x) P I CORpTeS
00:(x) *a[9,0,(x)]) “\o[a.0.(x)]
+0,[L(x)Ax* — b*(x)] = 0. (3.64)

Using the Euler-Lagrange equations of motion we finally obtain the
conservation laws as;

0,j*(x) = 0,

where j*(x)
_ 0L(x)
0 [6M(Z)i (x)]
Where j*(x) is the conserved Noether's current. Our result is hold for
continuous space-time transformation of the type

50, (x) + [L(x)Ax* — b*(x)]. (3.65)

xt - x'H = x* + AxH.

And for transformations that only implies afield variation without
modifying the space-time configuration. In this last case we would
simply set Ax# = 0 in (3.65). And we defined a conserved charge Q
associated to conserved current j*(x) as:

d
Q= jd3xj0. , d—%=jd3x60j° = —jd3xAj = 0.(3.66)
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3.8 Geometrical Formulation
3.8.1 Lagrangian Mechanics

Lagrangian mechanics is more fundamental, since it is based on
variational principles and it is what generalizes most directly to the
general relativistic context.

The Lagrangian formulation of mechanics is based on variational
principles behind the fundamental laws of force balance as given by
Newton's laws F= ma. If we choose a configuration space Q@ with
coordinate qi,i =1, ...,n, that describe the configuration of the system
under study, then when introduces the Lagrangian [15], [16],[19]
L(qi, d;, t), which is shorthand notation for
L(qY,..,q% gt ..., g%, ..., g™ t), where, L is the kinetic minus the
potential energy of the system, and one takes ¢' = dq'/dt, to be the
system velocity.

The variational principle of Hamilton states

b
5] L(q%¢',t)dt =0 (3.67)
a

In this principle, we choose curves qi(t) joining two fixed point in Q over
fixed time interval[a, b]and calculate the integral regarded as a function
of this curve. Hamilton's principle states that this function has a critical
point at a solution within the space of curves. Now we let §q’ be a
variation, that is, the derivate of a family of curves with respect to a
parameter, then by the chain rule, (3.67) is equivalent to

zn:fb<aL6i+aL6'i)dt—o 30 3.68

Y variations 8q".

Using equality of mixed partials, we find that,
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i 4o
6q —dtdq.

Using this integrating the second term of (3.68) by part, and employing
the boundary conditions g =oatt=aandb equation (3.68)
becomes [32]

> [ o

Ny = 0. (3.69)

Where 8q'is arbitrary, and equations (3.69) is equivalent to the Euler-
Lagrange equations

d oL 0L
dtag aqi

=1,..,n (3.70)
For a system of N particles moving in Euclideen 3-space, we choose the
configuration space tobe Q@ = R3N = R3 x ... x R3(N times), and L has
the form of kinetic minus potential energy:

L@, 41,6) = sz il

- V(ql) (3.71)

Where one can write points in Q as q;, ..., gy where q; € R3.in this case
the Euler-Lagrange equations (3.70) reduce to Newton's second law

@ iy =~V
de YT T
1

., N. (3.72)
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There is F = ma for the motion of particles in the potential V.Also in
Lagrangian mechanics, we can identifies a configuration space Q with
coordinates ( g!,...,q™) and the forms of velocity phase space TQ,
where TQ called the tangent bundle of Q. Coordinates on TQ are
denoted by

(@, ...qa™ 4" .. q" ...q")

and the Lagrangian is regarded as a function L:TQ — R.This stage,
interesting links with geometries are possible. If g;;(q)is a given metric
tensor or mass matrix and we consider the kinetic energy Lagrangian

L(q%,q")
1 n
=5 gy@di 4. (3.73)
i,j=1

Then the Euler- Lagrange equations are equivalent to the equations of
geodesic motion, as can be verified next lemma.

Lemma 3.8.1.1 Geodesic equations: considering Lagrange's equations
of motion for the Lagrangian

1 n
L@d) =5 ) 9@ (3.74)

i,k=1

Are given in local coordinates by the system of ordinary differential
equations

n
G+ ) Tedje =0, (3.75)

j k=1
Where the quantities Ij:k are known as the Christoffel symbols and for

i,j,k =1,..n,are given by
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Nlr—\

n
0 0 09 ;

Z u( gl] k1 91k>. (3.76)
dq,  dq; Oq

i=1

Proof. We complete the proof in the steps as follows:

Stepl: for the Lagrangian L = L(q, ¢)defined in the statement of the
lemma, using the product and chain rules, we find that

oL - aglk .
q]qk

aq} Zlk 1 aq]

And

n n

. 1 .

aq] Zglqu—l_ Zgl]ql_ zgjqu'i'EEgquk
= k=1 k=1

= Zgijk- (3.77)
k=1

where in the last step we utilized the symmetry of g;,. Using this last
expression we see that:

a N ik . .
<6q]> kZd (g]kCIk) ; ar dk +kz:1(.g]kCIk)

n

0
Z Ik CIlqk + z(g] ki) (3.78)

k,l=1

Substituting the expressions above into Lagrange's equations of motion,
using that the summation
indices i, k can be relabelled and that g is symmetric, we find
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09k 1agkl .. )
Z (91 kCIk) + : qrq; = 0 for each j
aq; 2 aq;
Jj,k=1
(3.79)

Step2: we multiply the last equations from stepl by g¥”and sum over the
index j this gives

. 1 (09 109K\ . .
= G; + z g”( ’—an’l qiqr = 0. (3.80)

where the last step we relabeled summation indices.

Step3: by using the symmetry of g and performing some further
relabeling of summation indices, we see that

n

(0g;; 109k

il J - J
Z;lg <aqk 2 aql q]qk

n
Z 1 i<agl] aglj_a.gjk>q.q
= 12 0qx  0qyg aq, Tk

Ik
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where the, I ; are those given in the statement of the lemma.,

Conservation laws that are a result of symmetry in a mechanical context
can then be applied to yield interesting geometric facts. For instance,
theorem about geodesics on surfaces of revolution can be readily proved
this way.

The Lagrangian formalism can be extended to the infinite-dimensional
case. One view is to replace the g‘ by field ¢?, ..., ™ that are, for
example, functions of spatial points x* and time ¢t. Then L is a function of
oL, ...,o™ ¢l ..., ¢™ and the spatial derivatives of the fields.

3.8.2 Holonomic Constraints

Definition3.8.2 (Holonomic constraints) for a system of particles with
positions given by r;(t) fori = 1, ..., N, constraints that can be expressed
in the form

g(rl, v TN t) =0

are said to be holonomic . They only involve the configuration
coordinates.

We will only consider systems for which the constraints are holonomic
system with constraints that are non- holonomic are: gas molecules in a
container, or sphere rolling on a rough surface without slipping.

Let us suppose that for the N particles there are m holonomic constraints
given by

9, (1, ., Ty, t) =0,

For, k = 1,...,m. The positions r;(t) of all N particles are determined by
3N coordinates. However due to the constraints, the positions r;(t)are not
all independent. In principle, we can use the m holonomic constraints to
eliminate m of the 3N coordinates and we would be left with 3N-m
independent coordinates, i.e. the dimension of the configuration space is
actually, 3N —m.
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3.8.3 Degrees of Freedom

The dimension of configuration space is called the number of degrees of
freedom, thus we can transform from the old coordinates r4, ..., ry to new
generalized coordinates q4, ..., g, Where

n=3N-—-m, ry =1,(qy, ', @p t), oo, Ty = TN (q1, o) G, ).

3.8.4 D' Alembert's Principle

Consider Newton's second law of motion for the i*" particles

p; = FF* + FFem (3.82)

Fori =1,..., N and where F£*" external force, F£°™ constraints force and

p; = m;v; is the linear momentum of the ithparticle and v; = r; velocity

We will restrict ourselves to systems for which the net work of the
constraints force is zero i.e. we suppose

> Ff dr; = 0. (3.83)

i=1"1

for every small charge dr;, of the configuration of the system (for ¢
fixed).

So here for the it" particles, the constraint force applied is Ff°" and
suppose it undergoes a small displacement given by the vectors dr;, since
the dot product of two vectors gives the projection of the one vector in the
direction of the other , the dot product Ff°™. dr; gives the work done by
F£°™ in the direction of the displacement of dr;.
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If we combine the assumption that the net work of the constraint forces is
zero with Newton's second law, p; = FF*t + F£°™, from the last section ,
we get

N N
Z pl dri = Z(FieXt + Ficon) . dri
i=I i=1
N N N
¢:>:E:Z%.d7}:= ZE:fot.dei‘:E:f¥mn.dTi
i=1 i=1 i=1

= Zl 1Di- dr; = llFleXt dr;

Therefore

N
Z(pi — FE¥). dr; = 0, (3.84)
i=1

for every small charge dr;. The equations (3.84) are representing
D'Alembert’s principle. In this equations a particles not have forces of
constraints only moving by external force

Now consider the transformation to the generalized coordinates

i = 11(q1, ) Gns 1),

fori =1,...,N. If we consider a small increment in the displacements
dr; then the corresponding increment in the work done by the external
forces is

N N

or:
Y Eetdn =y Fe q‘ ZQ, dq;. (3.85)

i=1 i=1

In equations (3.85) we have used the chain rule
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ari

Andforj=1,...,n

N
0 T

Q; = Z FiEXt'a_q-' (3.87)
y)

i=1
We deal with Q; as generalized forces.

Now assume the work done by these forces depends on the initial and
final configurations only and not on the path between them. In other
words we assume there exists a potential function V =V (q;, ..., q,) such
that

Q= —5—. (3.88)

For, j=1,...,n. Such forces are said to be conservative forces. We
defines that total kinetic energy by

m;|v;|%. (3.89)

[\.)Ib—\

N
And the Lagrange function or Lagrangian as

L=T-V. (3.90)

Theorem 3.8.4.1 (Lagrange's equations) D' Alembert's principle,
under the assumption the constraints are holonomic, is equivalent to
system of ordinary differential equations
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d (0L L 0 391

dt\dq;) adq; (3:91)
For,j =1, ....,n. These are equations known as Lagrange's equations of
motion.

Proof: The change in kinetic energy mediated through the momentum the
first termin

D' Alembert's principle due to the increment in the displacements dr; is
given by

67‘1
Zpl dr; = Zm v dr; = z m; v;.— 6 (3.92)

i,j=1

Using product rule we get that

d ari or; N d (0r; or; N av; 393
dt\""aq; =Yg dq, " ‘dt\dq; = Vi g, “aq; aq - (3:93)
Also, by differentiating the transformations to generalized coordinates we

get

- 0ri da d avi 673- (3 94)
D; = —daq; ana — = . .
l = aq] J aq] aq]
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n ;N
B z z d dv; dv; p
= dt ivi.aqj mivi.aqj q]

j=1 \i=1

n N N
S smitwi? zl Il ) |dg;. 395
dt aq] _lzml vl aq] Zm vl q] ( )

j=1

Hence we see that D’Alembert’s principle is equivalent to

z”: d (dT\ aT e — o 206
£ \dt\ag;) ~aq; —9j)dq (3.96)
j=1

Since the g; for, j = 1, ...,n, where n = 3N — m, are all independent, we
have

d(oT\ T o, 207
dt aqj Qi (3.97)

Using the definition for the generalized forces Q; in term of the potential
functions IV gives the result.

Remark 3.8.4.2 If the system has forces that are not conservative it my
still be possible to find a generalized potential function V such that

v d( o8
% ="%3¢ T a\ag,) (3.98)

Remark 3.8.4.3 (Non-uniqueness of the Lagrangian).Two Lagrangian's
Lyand L, that differ by the total time derivative of any function of
q = (q4, ..., q,)T and t generate the same equations of motion. In fact if

L2(q,4,t) = L1(q,4.0) + — (f (g, 1)), (3.99)
Then for j = 1, ..., n direct calculation reveals that
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d (dL,\ oL, d (dL,\ oL,
—(=2)-=2 = () -2, (3.100)

3.8.5 Constraints

Consider a Lagrangian L(q, g,t) for a system, suppose we realize the
system has some constraints (so g; are not all independent). Suppose we

have m holonomic constraints of the form

G (qy, ) qn t) = 0, (3.101)

Forj =1,...,m < n.we can now see the method of Lagrange multipliers
with Hamilton's principle to deduce the equations of motion are given by

d (oL aL_i/1 N 2 102

Gk(qll o Qo t) = 0’

For, j=1,..,nand k =1,...,m. We call the quantities on the right
above (3.102)

m
k =
k=1 aqj
the generalized forces of constraints.
3.9 Hamiltonian Mechanics

We consider mechanical system that are holonomic and conservative (or
for which the applied forces have a generalized potential). For such a
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system we can construct a Lagrangian L(q,q,t), where q =
(q4, ..., g,)TWhich is the differences of the total kinetic T and potential
Venergies. These mechanical system evolve according to the n Lagrange
equations

d (0L L 0

for j=1,..,n. These are each second order ordinary differential
equations and so the system is determined for all time once 2n initial
conditions (q(t,), q(ty))are specified (or n conditions at two different

times). The state of the system is represented by a point ¢ = (qy, ..., g,,)7
in configuration space.

3.9.1 Generalized Momenta

We define the generalized momenta for a Lagrangian mechanical system
forj=1,..,ntobe

L

== 3.103

where p; = p;(q,q,t) in general, we have q = (qq,...,q,)" and ¢ =
(G1, -0 4n)"

In term of generalized momenta , Lagrange's equation become

oL
p;=—,forj=1,..,n (3.104)
J aqj
Further, in principle, we can solve the relations above which define the
generalized momenta, to find functional expressions for the g; in term of
q;, p;and t, i.e. we can solve the relations defining the generalized
momenta to find q; = q;(q, p, t)where
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q=0q - q)" andp = (py, -, Pn)"

3.9 .2 Hamiltonian Function

We define the Hamiltonian function as the Lagendre transform of the
Lagrangian function, i.e. we define it as

H(g,p,t) = q.p — L(q,q,t), (3.105)
where, g = (qq, ..., qn)T and p = (py, ..., p,)T and we suppose
q=4q(q,p,t).
In this definition we used the notion for the dot product

n
q.p = Z q; Pj» (3.106)
j=1

From the Lgrange's equations of motion we can deduce Hamilton's
equations of motion, using the definitions for the generalized momenta
and Hamiltonian,

L

n
Dj =% andH=ijpj—L, (3.107)
aq] =

Theorem3.9.3 (Hamilton's equations of motion)

Lagrange's equations of motion imply Hamilton's canonical equations,
fori = 1,...n we have,

oH , oH

= —, P =——, 3.108
op; l aq; ( )

q;

These consist of 2n first equations of motion.
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Proof: Using the definition of the Hamiltonian in terms of the Lagrangian
and with

g; =q;(q,p,t) forj=1,..,nwe use,
(1) The chain and product rules;
(2) That dp;/dp; = 0 if i # j,while dp;/dp; = 1 for, i = j, and

(3) The definition of generalized momenta. Directly computing using
this sequence of results gets

OH aq, Z”: dp; N 9L 94,
q; o
ap; — 0p; " Opi 44104 0p;

3, P~
i .~ 0L g,
Lo ™ T Lag o,

wlim%=w (3.109)

Again we using the definition of the Hamiltonian as above, and we using
(1), (2), (3) and the Lagrange's equations of motion in the form, p; =
dL/dq;. Directly computing using this sequence of results yields

OH <O 04 oL dq; < AL 94,

9q; j=la_qip] 10q; 0, £ 104, 04,

iaq, . oL aq]
: Pi~ 6011 & 601]6011

6q] aq]
p’wlzm —o— =P, (3110)
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For i =1,..,n. Collecting these relations together, we see that
Lagrange's equations of motion, implies Hamilton's canonical equations
as shown.

We have two useful observations:

First, if the Lagrangian L = L(q,q) is independent of explicit t, then
when we solve the equations that define the generalized momenta we find
q = q(q,p). Hence we see that

H=q(q,p).p
—L(q,9(a,p)), (3.111)

I.e. the Hamiltonian H = H(q, p)is also independent of t explicitly.

Second, in general, using the chain rule and Hamilton's equations we see
that

dH ~-0H ~—0H 0H
qit ) 2—bit 5T

dt  Liag, T Lap Pt T ot
n =1 nl=1
0H 0H 0H 0H 0H
< o )"
£ 0q;0p; L=0p;\ 0q; at
=1 =1
= oH 3.112
Hence we have
dH
dt
= oH 3.113
-~ at’ (3.113)

Hence if H does not explicitly depend on t then
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constant of motion,
Hisa conserved quantity,
integral of the motion.

Hence the absence of explicit t dependence in the Hamiltonian H could
serve as more general definition of a conservative system, thought in
general H may not be the total energy. However for simple mechanical
systems for which the kinetic energy T = T(q,q) is a homogeneous
quadratic function in g, and the potential V = VV(q), then the Hamiltonian
H will be the total energy. To see suppose

n

= o @ (3.114)

ij=1

so that a homogeneous quadric function in g;; to be ¢;; = ¢;;. Then we
have

n

n n

oT . ) .

Fr Z cj(@) q;+ ) cu(q) g =2 z cir (@4 (115)
' 1 i=1

]:1 i=

this implies that

oT
z G, — = 2T. (3.116)

Thus the Hamiltonian H = 2T — (T — V) =T + V is the total energy.
3.10 A Symplectic Form

We begin with a foundational assumption of Hamiltonian mechanics:[21]

First assumption: for any particle, the set of all its possible positions
is an n-dimensional (n < 3) smooth manifold, C inR3, called the
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configuration space. The manifold that we are interested in, however, is
the cotangent bundle of C

T*C = {(r,p") € R® X (R®)*:r € Cand pT € (T, C)*}, (3.117)

Where 7 is a column vector, pT is a row vector, and (T, C)* is the dual
space of the tangent space of C at r. in this assumption T*C is itself a
smooth 2n-dimensional manifold, and from now on we shall label such
manifold as M. By definition of the tangent space, T, C is the set of all
possible momentum p a particles traveling through r can take, and since
we are working in finite dimensions, (7, C)* = T, C, so we can identify
each element of (T, C)* as the transpose p’ of a momentum column
vector p, from now on we shall write p for the row vectors of (T, C)*.

In case we want to incorporate N particles into our system, we may
just take the cotangent bundle of a Cartesian product of configuration
spaces, such that our manifold M has coordinates
(ry, .., "N, P1, -, Py) Where r; and p; represents the positions and
momentum of the ithparticles for i = 1, ..., N. For many systems, such as
a free particle, a planetary system and ideal harmonic oscillator systems,
we will have M = R3N x (R3M)* orM = Rx R* for particle
constrained to move in one dimension.

Second assumption: we shall make is that the net force F on the particle
depends only on the particle's position and momentum. This covers many
physicals forces, such that gravitational, electromagnetic, fractional, and
spring forces. Newton second law states that

dr
dt’

The existence and uniqueness theorem for first order ordinary differential
equations tells us that if we specify r and p at a given time, then we know
that particle's position and momentum at an interval around that time.
Thus every point (r, p) on our manifold M should define a path through
Mthat corresponds to the trajectory of the particle.

d
F(r(t), p(t)) = d_IZ' wher momentum p(t):=m (3.118)

Know we need away to find this trajectory, and we can do so given a
symplectic form w and an infinitely differentiable function H on M.
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Definition3.10.1.A symplectic form w is a closed, nondegenerate 2-form
on a manifold M. in other words the following two conditions are
satisfied.

(i)dw = 0. (Closedness)

(i)For all u € M and nonzero v € T,,M, there exists w € T,,M such that
wy(v,w) # 0.

(nondegenerate).

As it turns out, every cotangent bundle of a smooth manifold has a
canonical symplectic form

w = Y. dp; \dr;, (3.119)

or equivalently w = dpAdr in more condensed notation. A manifold M
with a symplectic form w is called a symplectic manifold ( M, w). When
that manifold is the cotangent bundle of configuration space, (M, w) is
called phase space. For a more complete discussion of the cotangent
bundle and it's symplectic structure. For a more details, see [38].

As for an infinitely differentiable function, we can assign to each point
of M a total energy , and assume this function is infinitely differentiable (
it is all realistic cases). We call this function the Hamiltonian and label it
H:M — R. The important fact that is «w and H determine a vector field
on M a long whole particle will typically flow.

Lemma3.10.2 A given a 2-form w on an n-dimensional smooth manifold
M, there exist a family of anti-symmetric matrices {Aq}qu such that for

all, g e Mand u,v € TyM, we have

wq(u,v) = uTAyv. (3.120)
Proof: Since w is a 2-form, for every q € M, w,is bilinear and anti-
symmetric and can be represented as
Wy (u, U) = Zi<j aij (p)dri/\dxj, (3121)

where a;; are real valued function on M. then define the matrices A,such
that

A, ={a;j(@)} fori<j, (3.122)
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And the remaining entries determined by requiring A, to be
antisymmetric. Then the expression u”A,v also define a 2-form that
agrees with w for all the coefficient functions, and so

wq(u,v) = uTAyv.

Theorem 3.10.3  given an infinitely differentiable function H on
smooth manifold M with symplectic form w, there exists a unique vector
field X satisfying

dH() = — w Xy,.), (3.123)

Proof: Let A, denote the matrices from lemma 3.10.1.since w is
symplectic, and therefore nondegenerate, A, is invertible for all g. We
define the vector field X, as

Xy (q) = A7 (VH(q))', (3.124)

Where VH(q)is the row vector gradient of H at q. We show that X,
fulfills the desired condition, using the fact that the inverse of an
antisymmetric matrix is antisymmetric:

VH.(A;9)" = X}, — VH.AZ' = X}, — VH
= X} A, (3.125)

Since dH is the one form that multiplies VH to a vector in the tangent
space, this proves that X, satisfies

dH() = —w (Xy,.).

We need to prove Xy is unique. Suppose there exists an another vector
field Yy that satisfies the above property. Then by linearity of w
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—wXyg =Yy ) =—o Xy, )+ o Yy,.) =dH() —dH() =
0, (3.126)

But by nondegenerate w, this implies that

Xy —Yy =0, (3.127)
S0 Xy IS unique.

The significance of the vector field Xyand the symplectic form w can be
seen through the example of particle under the influence of conservative
forces. This meen that the net force can be written as

F =-VU, (3.128)

Where U (r) is real-valued potential energy function depending only the
position of the particle.

Corolary3.10.4 A given a Hamiltonian system (M,w,H) and
Hamiltonian vector field Xy, we have

XyH =0, (3.129)

Proof: the proof is immediately from the definitions.

where w(Xy — Yy) = 0 since w is antisymmetric.
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Chapter Four
Symmetries of Lagrangian Systems

4.1 Introduction

The quantum will be based on our chapter and we deal with the concepts
of the Classical mechanics. An important concept is that the equations of
motion of the Classical Mechanics which based on a variational principle,
that along a path describing classical motion the action integral
(Hamiltonian Principle of Least Action).[5], [7]

The results of variational calculus derived allow us to formulate the
Hamiltonian principle of Least Action of Classical Mechanics and study
its equivalence to the Newtonian equations of motion. We used Gauge
symmetry to obtained transformation of Lagrangian. Euler operator is
importance and we obtained continuous symmetries and conservation
laws of Noether's theorem Lorentz invariance is importance, also
obtained the reduction of controlled Lagrangian system with symmetry.

Theorem 4.1 Hamiltonian Principle of Least Action

The trajectories q(t) of systems of particles described through the
Newtonian equations of motion

d, . o
a(quj) n 30 0;j=12,.., M. (4.1)
]

are extremals of the functional, so the action integral is

s@G®) = j LG @), 40, 0. (4.2)

to

where L(G(t),q(t),t) is the Lagrangian :
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M
> 5 1 .
L(G(®),q4®),t) = szjqu' — U(q1, 92 - qum)- (4.3)
j=1

in these equations we consider only velocity-independent potentials.

Proof : to prove the Hamiltonian Principle of Least Action we inspect the
Euler- Lagrange conditions associated with the action integral defined
through (4.2) , (4.3). The condition lead to

oL _d oL\ _ . U d( )= 0,4
—_———] = - - .q:) = .
dq,  dt\ag; aq;, dt~ Il , (4.4)

which are obviously equivalent to the Newtonian equations of motion.

4.2 Particle Moving in An Electromagnetic Field

We consider the Newtonian equations of motion for a single particle of
charge g with a trajectory 7(t) = (xl(t), xz(t),x3(t)) moving in
electromagnetic field described through the electrical and magnetic field

components E( r,t) and B(#t), respectively. The equations of motion
for such a particle are

d . - > - -
= (m#) = FG,0; FG,0) = qE G0 + 25 x B, 0, (45)

-

where %zﬁ and ﬁ(?,t) iIs Lorentz force. The fields
E(r,t) and B(# t)obey the Maxwell equations

. 10 5 | )
VXE(r,t)+——B(r,t)=0
c ot
V.B(#t) =0

~

Y (4.6)

N 10 - | 4mj
VXB(T',t)—ZaE(T’,t) :T

V.E(# t) = 4mp )
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Where p(7, t) describes the charge density present in the field and j (7, t)
describes the charge current density. Equations V.B(#t) = 0 and V X

B(# t) — %%E)(F, t) = 4% can be satisfied implicitly if we represent the

fields through a scalar potential V (7, t) and a vector potential /T(_r’, t) as
follows

B(#t) = VX A(Ht)

. 10A(7,t) (- (47)
E(#t) = -VV(T,t) —Eg—:)

4.3 Gauge Symmetry of the Electromagnetic Field

We will now consider the relationship between fields and potentials (4.7)
allows we to transform the potentials without effecting the fields and
without effecting the equations of motion (4.5) of particle moving in the
field. The transformation which leaves the fields invariant is

AP 6) = A(F,t) + VK(7, ©)

o 18 b (4.8)
V (7", t) = V(T', t) - Z&K(T, t)

4. 4 Lagrangian of Particle Moving in Electromagnetic Field

Now we want to show that the equation of motion (4.5) follows form the
Hamiltonian Principle of Least Action, if we assumes for a particle the
Lagrangian

L(7,7,t) = %mﬁz S UGHEEYIGIN (4.9)

For this purpose we consider only we component of the equation of
motion (4, 5), namely
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= (mvy) = F, =

ov qr- =4
—q5,-+2[9 x B] (4.10)
We using equation (4.7), i.e., (B3 = a% - %) so that

o , 04, AN . (A, 04,
[UXB]=xZB3_X3B2=Xz<___>_x (a_xg_a_xl> (4‘11)

0x; 0x,
This expression allows us to show that (4.10) is equivalent to the Euler-
Lagrange condition

d(&L) JL —0 112
dt \0x, 6x1 ' (4.12)

The second term in equation (4.12) is

oL av N q (6/11 _ d0A, 0A; | )

=—q-— X, + Xy +—=—X
0x, q6x1 c\ax; t " ax, % Axy 3

The first term of equation (4.12) is

(4.13)

d((’)L)_d( .)+qu1

dt\ox,) —dt Y T d
_d( _)+q(6A1_ +6A1_ 0A, ) 414
= q ) TGt g Bt g% ) (1)

The results of (4.13, 4.14) together yields

d av

. q
e — 41
2 mi) = a5 +70, (4.15)
where
oA Oy OAy Ay 0A Ay
E2 PR PRI P R PO R P R POt
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. <6A2 6A1> .<6A1 6A3) 416
— %2 0x; 0x, *3 0x; 0x1/ (4.16)

Which are identical to the term (4.11) in the Newtonian equation of
motion. Comparing the equations (4.15), (4.16) with equation (4.10)
shows that the Newtonian equations of motion and Euler- Lagrange
condition are, in fact, equivalent.

4.5 Symmetry Properties in Lagrangian Mechanics

Symmetry properties play an eminent role in Quantum Mechanics since
they reflect the properties of the elementary constituents of physical
systems, and since these properties allow we often simplify mathematical
descriptions.

We will consider in following two symmetries, gauge symmetry and
symmetries with respect to spatial transformations.

The gauge symmetry, encountered above in connection with the
transformations (4.8) of electromagnetic potentials, appear in different,
surprisingly simple fashion in Lagrangian Mechanics. They are subject of
the following theorem.

Theorem 4.2 (Gauge Transformation of Lagrangian)

The equation of motion (Euler- Lagrange conditions) of classical mechanical systems are
unaffected by the following transformation of its Lagrangian

s S 5 5 d >
L(3,4.t) =L(4.4.t) + 1K@ 1), (4.17)

This transformation is termed gauge transformation. The factor % has been introduced to make

this transformation equivalent to gauge transformation (4.8) of electromagnetic potentials.
Note that we adds the total time derivative of a function K (7, t) to the Lagrangian. This terms
is

dK(*t)—aK‘ +aK‘ +aK' +aK—(VK)*+aK 418
a KO =gt g -d o iy + 50 = (VK).v+ 50 (418)
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Proof: to prove this theorem we determine the action integral corresponding to the
transformed Lagrangian

'ro> tl s S tl Y q -
S1q@®)] =f dtL(4,q,t) = | dtL(q,q.t) +EK(q,t)|§;

to to

= S[GO] + 1K@, 0z (4.19)

Since the condition8q(t;) = 6G(t,) = 0 holds for the variational function of Lagrangian
Mechanics, eq. (4.19) implies that the gauge transformation amounts to adding a constant
term to the action integral, i.e., a term not affected by the variational allowed. We can
conclude then immediately that any extermal of S'[G(t)] is also an extremal of S[G(t)]. We
want to demonstrate now that the transformation (4.17) is, in fact, equivalent to the gauge
transformation (4.8) of electromagnetic potentials. For this purpose we can consider the
transformation of the single particle Lagrangian (4.9)

(77, 6) =1mB" — qV(F,¢) + TAF,0).5 + 12k, 0). (4.20)

Inserting (4.18) into (4.20) and reordering terms yields using (4.8)

L(77t) = %mﬁz —q <V(?, t)— %%—f) +%(Z(?, t)+VK).7

= omi’ — v, 0)+ 1A (7,0).7 421)

Obviously, the transformation (4.17) corresponds to replacing in the
Lagrangian potentials V (7, t), A7 t) by gauge transformed potentials

v'(7,t),4 (7, t). We have proven, therefore, the equivalent of (4.17) and
(4.8).

We consider now invariance properties connected with coordinate
transformations. Such invariance properties are very familiar, for
example, in the case of central force fields which are invariant with
respect to rotations of coordinates around the center.

The following description of the spatial symmetry is important in two
respects, for connection between invariance properties and constant s of
the motion, which has an important analogy in Quantum Mechanics, and
for the introduction of infinitesimal transformations which will provide a
crucial method for the study of symmetry in Quantum Mechanics. The
trans-formations we consider are the most simple kind, the reason being
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that our interest lies in achieving familiarity with the principles of
symmetry properties rather than in providing a general tool in the context
of the Classical Mechanics. The transformations considered are specified
in the following.

4.6 Infinitesimal One-Parameter Coordinate
Transformations

A one-parameter coordinate transformation is described through
7'=7'(#¢€), 77 €R¥ e €R. (4.22)

where the origin of € is chosen such that

r(#,0) = 7. (4.23)
The corresponding infinitesimal transformation is defined for small € through

7(7,€) =7+ eR(®) + 0(e); KF) =X |o. (424)

In the following we will denote unit vectors as &, i.e., for such vectors holds 4. a = 1.

Theorem 4.3 (Noether's Theroem)

If the Lagrangian L(§, ¢, t) is invariant with respect to an infinitesimal
transformation

Ny

q;= d; + eaj (@), then XL, Q; % is a constant of motion.
J

We have generalized in this theorem the definition of infinitesimal
coordinate transformation to M-dimensional vectors q.

Proof: In order to prove Noethr's theorem we note

118



q —q,+eQ,(q)
" aQ} Jic ¢ (4.25)

Inserting these infinitesimal changes of q; and ¢; into the Lagrangian
L(c?, E[’ t) yields after Taylor expansion, neglecting terms of order 0(e2),

= = SN aQ;
L(q,q,t)=L(q,q,t)+62j"’ilgéQ +e€ Z]k 12; 34, Lq,, (4.26)

a ] . . . . ' .
Where we used EQJ' =y, (ﬁ Qj) g, Invariance implies L =L, i.e.,
k

the second and third term in (4.26) must cancel each other or both vanish.

Using the fact, that along the classical path holds the Euler- Lagrange
oL

7y )We can rewrite the sum of the second and third
]

)
condition — = —(
2q; dt

termin (4.26)

i oL\, oL d Z o a2
U aq; aqjdt U)=a@ Qfa = 0.(%27)

j=1
From this follows the statement of the theorem.

4.7 Symmetries of Variational Problems

4.7.1 The calculus of Variations

The starting point will be a discussion of some of foundational result, in
the calculus of variations. As usual, we work over an open subset of the
total space E =X XU = RP x R? coordinatized by independent
variables x = (x1,x?, ..., x?) and dependent variables
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u = (ul,u?,...,u). The associated n" jet space j™is coordinatized by
the derivatives u(™ of the dependent variables. Let 2 c X denote a
connected open set with smooth boundary

a1. By an n'" order variational problem, we mean the problem of finding
the extremals (maxima and /or minima) of a functional

Llu] = Ly[u] = f L(x,u™)dx. (4.28)
0

Over some space of functions u = f(x),x € 2.The integrand L(x,u™),
which is smooth differential function on the jet space J", is referred to as
the Lagrangian of the variational problem (4.28); the horizontal p-form
Ldx = Ldx® A\ ... \dxP? is the Lagrangian form. The precise space of the
functions upon which the functional (4.28) is to be extremied will
depend on any boundary conditions which may be imposed —e.g., the
Dirichlet conditions

u=00ondN- as well as smoothness requirements. More generally,
although this beyond our scope, we may also impose additional

constraints- holonomic, non— honomic, integral.

The most basic result in the calculus of variations is the construction
of the fundamental differential equations-Euler-Lagrange equations,
which must be satisfied by any smooth extremal. The Euler-Lagrange
equation constitute the infinite-dimensional version of the basic theorem
from calculus that the maxima and minima of smooth function f(x)
occur at the point where the gradient vanishes: Vf = 0. In the functional
context, the gradient's role is played by the "variantional derivatives",
whose components, in concrete form, are found by applying the
fundamental Euler operators.
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4.7.2. Euler operator

Let 1 <a <gq, the differential operator E = (Ey,..,E;), whose
components are

d
E, = Z(—D)]W,a =1,..,q. (4.29)
J
iIs known as the Euler operator. In (4.29), the sum is over all symmetric

multi-indices

J = Uu i) 1 < jy <p,and (=D); = (-1)*D; denote the
correspond-ing signed higher order total derivative.

Theorem.4.4 The smooth extremals u = f(x) of a variational problem
with Lagrangian

L(x,u™) must satisfy the system of Euler- Lagrange equations

oL
E, (L) = Z(—D)] ce=0a=1..,q  (430)
]
]

Note that, as with the total derivatives, even though the Euler operator
(4.29) is defined using an infinite sum, for any given Lagrangian only
finitely many summands are needed to compute the corresponding Euler-
Lagrange expressions E'(L).

Proof: the proof of this theorem relies on the analysis of the variations of
the extremal u.

In general, a one-parameter family of functions u(x, €) is called a family
of variations of a fixed function u(x) = u(x, 0) provided that, outside a
compact subset, K c 2, the functions coincide; u(x, &) = u(x) forx €
K\ 2. In particular, all the functions in the family satisfy the same
boundary conditions as u.Therefore, if u is, say, a minimum of the
variational problem, then, for any family of variations functions u(x, ¢),
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the scalar function h(e) = L[u(x, €)],must have a minimum at € = 0,
and so, by elementary calculus, satisfies h'(0) =0. In view of our
smoothness assumptions, we can interchange the integration and
differentiation to evaluate this derivative:

(x, u(”))D]v“ dx. (4.31)

a

oL
9]

0= %L[u(x, €)lle=0 ZL LZ:Z U

where v(x) = u.(x,0).The method now is to integrate (4.31) by parts.
The Leibniz rule

PD,Q = —QD;P + D;[PQl,i = 1,...,p. (4.32)

For total derivatives implies, using the Divergence theorem, the general
integration by parts formula

j PD; Qdx = —f QDide+J (=D PQAxIA ... Adxtt
n n 0
AdxTIA L ADXP,  (4.33)

which holds for any smooth function u = f(x). Applying (4.33)
repeatedly to integral on the right hand side of (4.31), and using the fact
that v and its derivatives vanish on 02, we find

o=jﬂ [iZ(—D), (a(ll;a)v“] dszQ zq:Ea(L)v“]d
a=1 ] a=1

= j [E(L).v]dx.
0

Since the resulting integrand must vanish for every smooth function
with compact supportv(x),the Euler -Lagrange expression E(L)
must vanish everywhere in{), completing the proof.
Q.E.D
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Let us specialize to the scalar case, when there is one independent
and one dependent variable. Here, the Euler-Lagrange equation
associated with an n*" order Lagrangian

L(x,u™) is the ordinary differential equation

oL D (aL)+D2(aL) + 1"D”(6L)—o 4.34
ou *\ou, * \OUyy (=1) xaun_'(' )

For example, the Euler-Lagrange equation associated with classical
Newtonian variational problem Llu]l = Eu,zc — V(u)] dx (which

equals kinetic energy minus potential energy) is second order differential
equation —u,, — V'(u) = 0 governing motion in a potential force field.

In general, the Euler-Lagrange equation (4.34) associated with an nt"
order Lagrangian is an ordinary differential of order 2n provided the
Lagrangian satisfies the classical nondegeneracy

Condition

o°L * 0 4.35
au% " ( " )

Isolated points at the nondegeneracy condition (4.35) fails constitute
singular points of the Euler-Lagrange equation. Note that, in this
context, Lagranginans which are affine functions of the highest order
derivative, L(x,u™) = A(x, u™ V)u, + B(x,u" V), are degenerate
everywhere. However, straightforward integration by parts will reduce
such a Lagrangian to a nondegerate one of lower order, and so the
exclusion of the such Lagrangians is not essential;

as (4.33) below.

Of particular interest are the null Lagrangians, which, by definition, are
Lagrangians whose Euler- Lagrange expression vanishes identically:
E(L) = 0. The associated variational problem is completely trivial, since
L[u] depends only on the boundary values of u, and hence every
function provides an extremal.

123



Theroem4.5. A differential function L(x,u(")) defines a null
Lagranian, E(L) = 0, if and only if it is a total divergence, so L =DivP =
DyP, +---+ D,D,, for some p — tuple P = (P, ..., B,) of differential
functions.

Proof: clearly, if L =DivP, the Divergence Theorem implies that the
integral ((4.28) only depends on boundary values of u. therefore, the
functional is unaffected by any variations, and so, E(L) = 0. Conversely,
suppose L(x,u(n)) is null Lagrangian. Consider the expression

d L
o) = 3 )
a,

Each term in this formula can be integrated by parts, using (4.32)
repeatedly. The net result is, as in proof of theorem 4.2,

q

d

EL(x, tu™) = Z u%E, (L) (x, tu®™) + DivR(t, x,u®"). (4.36)
a=1

For some well-defined p — tuple of differential functions R =
(Rl, ...,Rp) depending on L and its derivatives. Since E(L)=0 by
assumption, we can integrate (4.36)with respect to t from t=o to t=1,
producing the desired divergence identity,

= L(x,u™) = L(x,0) + DivP = DivP.

Here P(x,u(zn)) = folR(t, x,u(zn))dt, and P = P, + P, where Py(x) is
any p — tuple such that divP, = L(x,0).
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Remark 4.6: The proof of theorem 4.3 assumes that L(x,u™)is
defined everywhere on the Jet space J".

Corollary 4.7 Two Lagrangians define the same Euler-Lagrange
expressions if and only if they differ by a divergence: L = L + DivP.

Remark 4.8 It is possible for two Lagrangian to give rise to the same
Euler-Lagrange equations even though they do not differ by a
divergence. For instance, both of the scalar variational problems

fuidxand [1+u?dx lead to the same Eule-Lagrange
equation u,, = 0, even though their Euler-Lagrange expressions are not
identical. The characterization of such "inequivalent Lagrangians" is
a problem of importance in the theory of intgrable systems.

Symmetries of Variational Maps that preserve variational problems
serve to define variational symmetries. The precise definition is as
follows.

Definition4.9 A point transformation g is called a variational symmetry
of the functional (4.28) if and only if the transformed functional agrees
with original one, which means that for every smooth function f defined
on the domain Q, with transformed counterpart f = g. f defined on 2,
we have

jﬂ L(x, f(")(x)) dx = j_ L(;z, f(")(f)) dx. (4.37)

Q

Thus, a transformation group G is a variational symmetry group if and

only if the Lagrangian form L(x, u®™)dx is contact- invariant p-form, so
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(@) [L(x,u™)dx] = L(x,u™)dx + 8,9 €
G. (4.38)

for some contact form 6 = 6,, possibly depending on the group
element g. In particular, if the group transformation g is fiber-
preserving, then, @ = 0, and the Lagrangian form is strictly invariant. In
local coordinates, the contact invariance condition (4.38) takes the form

L(x,u™) =1L (32, f@ (JE)) det),when

(5,2™) = g™, (x,u™). (4.39)

where | = (Di)(j) is the total Jacobian matrix. Since the Euler-Lagrange
equations are correspondingly transformed under an equivalence map,
we immediately deduce the following useful result.

Theorem 4.10 Every variational symmetry group of a variational problem
is a symmetry group of the associated Euler-Lagrange equations.

Note, though, the converse to theorem 4.6 is not true.

Theorem4.11 A connected transformation group G is a variational
symmetry group of the Lagrangian L(x,u(")) if and only if the
infinitesimal variational symmetry condition

v (L) + LDivE = 0, (4.40)

holds for every infinitesimal generator v € g.
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Definition 4.12 A vector field v is a divergence symmetry of a variational
problem with Lagrangian L if and only if it satisfies

v (L) + LDivé = DivB. (4.41)
For some p-tuple of functions B = (By, ..., By).

A divergence symmetry is a divergence self-equivalence of the
Lagrangian form, so that (4.38) holds the modulo on exact p-form d=.
The divergence symmetry groups form the most general class of
symmetries related to conservation laws. Indeed, Noether's theorem
provides a one-to-one correspondence between generalized divergence
symmetries of a variational problem and conservation laws of the
associated Euler-Lagrange equations.

4.8 Invariant Variational Problems

As with differential equations, the most general variational problem
admitting a given symmetry group can be readily characterized using the
differential invariants of the prolonged group action. The key additional
requirement is the existence of a suitable contact-invariant p-form,
where p is the number of independent variables. the following theorem
is a straightforward consequence of the infinitesimal variational
symmetry criterion (4.40) and dates back to Lie.

Theorem 4.13 Let G be transformation group, and assume that the nt"
prolongation of G acts regularly on (an open subset of) /™. Assume
further that there exists a nonzero contact-invariant horizontal p-form
0N, = Lo(x,u("))dx on J™. A variational problem admits G as a
variational symmetry group if and only if it can be written in the form
[ 104 = [ILydx, where | is a differential invariant of G.

In particular, any contact-invariant co-frame w?, ..., w? provides a
contact-invariant p-form
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g = w'A ... AwP. Hence every G-invariant variational problem has the
form

Lu] = fL(x,u("))dx

= fF(Il(x,u(")), o L (6, u™)) WA L AwP. (4.42)

Where I, ..., I, are a complete set of functionally independent nt"* order
differential invariants.

Definition 4.14 For a system of ordinary differential equations

A(x,u(")) = 0, a first integral is a function P(x,u(m)) which is constant
on solutions.

Theorem 4.15 If v is an infinitesimal variational symmetry with
characteristic Q, then the product QE(L) = D, P is a total derivative,
and thus a first integral of the Euler-Lagrange equation (L) = 0.

Proof: If v defines a variational symmetry, then according to (4.40)

JL

Ozva£%+U%f=vgkU+J%U£)=2§U&Q)5;+I&@®
i=0 l

Now, applying the basic integration by parts formula (4.32) repeatedly,
we find

—~D,P=0

n
./ OL
.E(L)—D,P = Q. -D ‘(—)
Q-E(L) — Dy Q[Z( 2 (5
i=0
for some function P depending on Q, L, and their derivatives. Thus D, P is

a multiple of the Euler-Lagrange equation, which suffices to prove the
result.
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4.9 Continuous Symmetries and Conservation

Laws (Noether’s Theorem)

In many physical systems, the action is invariant under some continuous
set of transformations.

In such systems, there exist local and global conservation laws analogous
to current and charge conservation in electrodynamics. The analogs of
the charges can be used to generate the symmetry transformation, from
which they were derived, with the held of Poisson brackets, or after
Quantization, with the held of commutators.

4.9.1 Point Mechanics

We consider a simple mechanical system with a generic action

ty

A= dt(q(t),q(t)t). (4.43)

ta

4.9.2 Continuous Symmetries and Conservation Law

Suppose A is invariant under a continuous set of transformations of the
dynamical variables:

q(®) — 4(®) = f(q(®©),9(®)). (4.44)
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Where f(q(t),q(t)) is some functional of q(t). Such transformations
are called symmetry transformations. Thereby it is important that the
equations of motion are not used when establishing the invariance of
the action under (4.44).

If the action subjected successively to two symmetry transformations,
the result is again a symmetry transformation. Thus, symmetry
transformations form a group called the symmetry group of the system.
For an infinitesimal symmetry transformation (4.44), the difference

85q(t) = q'(t) — q(®). (4.45)

will be called a symmetry variation. It has the general form

85q(t) = €A(q(t),q(t),1). (4.46)

Symmetry variations must not be confused with ordinary variations q(t)
used to derive the Euler-Lagrange equations. While the ordinary
variations §q(t) vanish at initial and final times,

6q(ty) = 8q(t,) =0, the symmetry variations 6,q(t) are usually
nonzero at the ends.

Let us calculate the change of the action under a symmetry variation
(4.46). Using the a chain rule of differentiation and an integration by
parts, we obtain from (4.43)

tp
O A = f dt oL — 0; éL 6,q(t) + —— 65q(t)| (4.47)
e, L0q(t) dq(t) 06 (t)

For orbit g(t) that satisfy the Euler-Lagrange equations, only boundary
terms survive, and we are left with
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O A =€

oL
—A(q,q,0)|". (4.48)
aq(¢) a

Under the symmetry assumption, ;A vanishes for any orbit q(t),
implying that the quantity

oL A 4.49
0(0) = 50758 4.0 (4:49)

is the same at timest =t, andt =t,. Since t, is arbitrary, Q(t) is
independent of the time t, i.e., it satisfies

Q) = Q. (4.50)

It is conserved quantity, a constant of motion, and the expression on the
right-hand side of (4.50) is called Noether charge.

The statement can be generalized to transformations 6,q(t) for
which the action is not directly invariant but its symmetry variation is
equal to an arbitrary boundary term:

8seA = N4, 4, D). (4.51)
In this case,
Q) = a—()A(q q,t) —Nq,q,t). (4.52)

is a conserved Noether charge.

It is also possible to derive the constant of motion (4. 52) without
invoking the actions, but starting from the Lagrangian. For it we
evaluate the symmetry variation as follows:

. . . oL
6,L=L(q+6,9,9+6,9)—L(q,q) = [aq(t) 0t 5 (t)] 85q(t) +
d[ oL
dt [aq(t) sq (t)] (4:53)
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On account of the Euler-Lagrange equations, the first term on the right-
hand side vanishes as before, and only the last term survives. The
assumption of invariance of the action up to a possible surface term in
eq. (4.51) is equivalent to assuming that the symmetry variation of the
Lagrangian in a total time derivative of some function A(q, g, t):

85L(q,4.t) = e-\(q, 4, t). (4.54)

Inserting this into the left-hand side of (4.53), we find

d

E& mA(q, q,t) —/\(q, q, t) = (. (455)

Thus, recovering again the conserved Noether charge (4.50).

The existence of conserved quantity for every continuous symmetry,
is the content of Noether's theorem [1] .

4.9.3 Alternative Derivation

Let we do a substantial variation in eq. (4.47) explicitly, and change a
classical orbit g.(t), that extremizes the action, by an arbitrary variation
6,q(t). If this does not vanish at the boundaries, the action changes by
pure boundary term that follows directly from (4.47)

oL

R0

8.9 | 2. (4.56)

From this equation we can derive Noether's theorem in yet another
way. Suppose we subject a classical orbit to a new type of symmetry
variation, to be called local symmetry transformations, which generalizes
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the previous symmetry variations (4.46) by making the parameter e
time-dependent:

65q(t) = e(DA(q(8), 4(0), ). (4.57)

The superscript t of §q(t) indicates the new time dependence in the
parameter €(t). These variations may be considered as a special set of
the general variations §,q(t) introduced above. Thus also §A must be
a pure boundary term of the type (4.56). For the subsequent discussion
it is useful to introduce the infinitesimally transformed orbit

q°(t) = q(t) + 65q(6) = q(©) + e(D)A(q(), 4(0), 1), (4.58)

and the associated Lagrangian:

Lf = L(q°(t), (D). (4.59)

Using the time-dependent parametere(t), the local symmetry variation
of the action can be written as

oLf d aLe
de(t)  dtae(t)

oL
0€(

. tp d € |tb

StA= | dt ] ( —[ ] 0. (4.60

s j () + 5 (52| €O 11 (460)
Along the classical orbit, the action is extremal and satisfies the

equation

§A
Se(t)

0, (4.61)

which translates for a local action to an Euler-Lagrange type of equation:
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oL d OLf _ 0
de(t) dtoe(t)

(4.62)

This can also be checked explicitly by differentiating (4.59) according to
the chain rule of differentiation:

o A @(©.4(0,0 +
0et) 0q( T T a4
dL¢ _ dL¢
dé(t)  9q(t)

and inserting on the right-hand side the ordinary Euler-Lagrange

aLe d oL
de(t) dtde(t)

Alq(®),q(6),t).  (4.63)

A(q(t), q(t), t). (4.64)

equations

We now invoke the symmetry assumption that the action is a pure
surface term under the time-independent transformation (4.57). This

implies that
dL¢ d
—ae(t) = aA. (4.65)

Combining this with (4.62), we derive a conservation law for the charge:

_oLf A
— 0€(b)

Q (4.66)

Inserting here Eq. (4.64), we find that this is the same charge as that
derived by the previous method.
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4.10 Displacement and Energy Conservation

Consider the case that the Lagrangian does not depend explicitly on
time, i.e., that

L(q,q,t) = L(q,q). Let us perform a time translation on the coordinate
frame:

t'=t—e. (4.67)

In the new coordinate frame, the same orbit has the new description

q(t") = q(0). (4.68)

i.e., the orbit q(t) at the translated time t' is precisely the same as the
orbit g(t) at the original time t. If we replace the argument of ¢(t) in
(4. 68) by t’, we describe a time-translated orbit in terms of the original
coordinates. This implies the symmetry variation of the form (4.46)

8:q(t) = q'(t) —q(t) = qt" +€) —q(t) =q(t') +eq(t’) —q(®)
= eq(t). (4.69)

The symmetry variation of the Lagrangian is in general

, _ oL oL
8sL=L(q'®),q'®) - L(q(®),q@®)) = 3 sq(t) + a—qusq(t)- (4.70)

Inserting 6,q(t) from (4 69) we find, without using the Euler-Lagrange
equation,

8L = 6(2—26](1?) + Z—;éj&)) =

d
e=L. (4.71)
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This has precisely the form of Eq. (4.54) with A = L as expected, since
time-translations are symmetry translations. Here the function A in(4.54)
happens to coincide with the Lagrangian.

According to Eq. (4.52) we find the Noether charge

Q
oL

=544~ @0 (4.72)

to be a constant of motion. This recognized as the Legendre transform of
the Lagrangian which is, of course, the Hamiltonian of the systems.

Let us briefly check how this Noether charge is obtained from the
alternative formula (4.52). The time-dependent symmetry variation is
here

8sq(t) =
e(t)q(t). (4.73)

under which the Lagrangian is change by

6tL—aL .+6L(..+ )
sh=5, 64+ 55 (€a+ €
_oL +aLE° 4.74
~0e T 9 © (4.74)
with
oL oL 4
dé  9q (475)
and
6L_6L_+6L o_d, ae
de oq1 9 M Tt (4.76)
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This shows that time translations fulfill the symmetry condition (4.65),
and that the Noether charge (4.66) coincides with the Hamiltonian
foundin Eq. (4.52).

4.11 Momentum and Angular Momentum

While the conservation law of energy follows from the symmetry of
action under time translations, conservation laws of momentum and
angular momentum are found if the action is invariant under
translations and rotations.

Consider a Lagrangian of a point particle in euclideen space

L = L(x'(6), x'(t), t). (4.77)

In contrast to the previous discussion of time translation invariance,
which was applicable to systems with arbitrary Lagrange coordinates
q(t), we denote coordinates here by x!to emphasize that we now
consider Cartesian coordinates. If the Lagrangian does depend only on
the velocities x' and not on the coordinates x! themselves, the system is
translationally invariant. If it depends, in addition, only onx? = x!x%, it is
also rotationally invariant.

The simplest example is the Lagrangian of a point particle of mass m
in euclideen space:

L="x% (4.78)

It exhibits both invariances, leading to conserved Noether charge of
momentum and angular momentum, as we now demonstrate.
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4.11.1 Translational Invariance in Space

Under a spatial translation, the coordinates x* change to

x't = x' + € (4.79)

where €' are small numbers, the infinitesimal translations of a particles
path are [compare with (4.46)]

5.xt(t) = €. (4.80)

Under these, the Lagrangian changes by

SL=1 (x’i(t),x"i(t), t) - L(x(D), %' (D), t) = —5 xi= — ¢
= 0. (4.81)

By assumption, the Lagrangian is independent of x!, so that the right-
hand side vanishes. This has to be compared with the symmetry
variation of the Lagrangian around the classical orbit, calculate via the
chain rule, and using the Euler-Lagrange equation:

6L—(6L daL)6i d[ 55 ] [ ]i 4.82
sb=\gx ~ataxt) % Twlan % | T alaw) e 48D

This has the form (4.48), from which we extract a conserved
Noether charge (4. 49) for each coordinate x!:

i—aL 4 83
p_axi' (4 .83)
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These are simply the canonical momenta of the system.

4.11.2 Rotational Invariance

Under rotations, the coordinates x* change to

x't = Rix/. (4.84)

where R} is an orthogonal 3 X 3-matrix. Infinitesimally, this can be

written as

R} = 6/ — wyepij. (4.85)

Where w is an infinitesimal rotation vector, the corresponding rotation
of particle paths is

Sexi(t) = x''(t) — x1(t) = —wker %/ (D). (4.86)

It is useful to introduce the anti-symmetric infinitesimal rotation tensor

Wij = WyEkij - (4.87)

In terms of which

Soxt = —a)l-jxj. (4.88)

Then we can write the change of the Lagrangian under §,x?,

139



5L =L(x"(0), %" (®),t) — L(x'(1), £'(£), 1)

oL . 9L _
= ﬁ(ﬁsx + ﬁ&x . (489)
as
oL . aL .
65L = — (ﬁ(ﬁsxf + ﬁ&xf) a)ij = 0. (490)

If the Lagrangian depends only on the rotational variations x?2, X2, x. %,
and on powers thereof, the right-hand side vanishes on account of the
anti-symmetric of w;;. This ensures the rotational symmetry.

Now we calculate once more the symmetry variation of Lagrangian
via the chain rule and find using the Euler-Lagrange equations,

(SL—(aL daL>6 i+d[aL5 i]_ d oL j]
st = \oxt " droxt) Ot Taclaai &t T Taelant Y Yy

1d oL

:E; xiﬁ—(iHj)] Wij- (491)
The right-hand side yields the conserved Noether charge of type (4. 49),

one for each anti-symmetric pair i, j:

LU=t 2 Ok = xipl —xIpt. (4.92)

dxJ axt
These are anti-symmetric components of angular momentum.

Had we worked with the original vector form of the rotation angle w*, we would have
found the angular momentum in the more common form:

1 P
L, = Eekijl'u = (x x p)*. (4.93)

The quantum-mechanical operators associated with these, after replacing p! - —i d/0x!
have the well-known commutations rules

[Zi' Ej] = iEijkzk. (494)
In the tensor notation (4.92), these become
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[Zij' Zkl] = —1(6”(2]1 - 6le]k + 6]'[2:“( - 5jkiil). (4‘.95)
4.11.3 Center-of-Mass Theorem

Consider now the transformations corresponding to a uniform motion of
the coordinate system. We shall study the behavior of a set of free
massive point particles in euclidean space described by the Lagrangian

mn.z

L) = ) TR, (4.96)

Under Galilei transformations, the spatial coordinates and the time are
changed to

x'(t) = x'(t) — v't, t'=t. (4.97)

where vl is the relative velocity along the it" axis. The infinitesimal
symmetry variations are

Ssxt(t) = xH(t) — xi(t) = —v't. (4.98)

which change Lagrangian by

8L = L(x' —v't,x' —v') — L(x}, xY). (4.99)

Inserting the explicit form (4.96), we find
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8L = Z % |G —v)" = ()7 (4.100)

n

This can be written as a total time derivative:

5L—dA—d cLpt v” 4101
S _E —az:mn —Xn U +7t. (4. )
n

to prove that Galilei transformations are symmetry transformations in
the Noether sense. By assumption, the velocities v in (4.97) are
infinitesimal, so that the second term can be ignored.

By calculating 5L once more via the chain rule with help of the Euler-
Lagrange equations, and by equating the result with (4.101), we find the
conserved Noether charge

Q = Sn oz 86Xl — A = (= TpMpint + TaMy xh) vl (4102)

Since the direction of the velocity v' is arbitrary, each component is separately a constant of
motion:

Nt = — Z muxtt+ Z my, xk, = constant. (4.103)
n n

This is the well-known center of mass theorem[26]. Indeed, introducing the center of
mass theorem coordinates

l
xby = So———. (4.104)
and the associated velocities
D
Vey = ————. (4.105)
M yamy

the conserved charge (4.103) can be written as
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Ni= Z M (— Vit + Xy ). (4.106)
n

The time-independence of N* implies that the center-of-mass moves with uniform velocity
according to the law

xem () = Xbou + Véut. (4.107)
where

Ni

x(‘)CM = m (4108)

is the position of the center of massatt = 0.

In the non relativistic physics, the center of mass theorem is a consequence of momentum
conservation since momentum = mass X velocity, but this is no longer true in relativistic
physics.

4.11.4 Conservation Laws Resulting From Lorentz Invariance

In relativistic physics, particle orbits are described by function in space-
time

xH (7). (4.109)

where T is an arbitrary Lorentz-invariance parameter. The action is an
integral over some Lagrangian:

A = deL(x“(T),J'c”(T),T). (4.110)

where x*(t) is the derivative with respect to the parameter 7. If the
Lagrangian depends only on the invariant scalar products
x“xﬂ, x“fcw xﬂxﬂ, then it is invariant under the Lorentz transformation
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xH - x# = ADx?, (4.111)

where AL is a 4 x 4 matrix satisfying

AT = g. (4.112)

with the Minkowski metric

Juw = ) (4.113)
—1

For a free massive point particle in space-time, the Lagrangian is

L(x(x)) = —Mc / G Xhx? . (4.114)

It is reparametrization invariant under t© — f(t), with an arbitrary
function f (7). Under translations

d.xM () = xH (1) — e (7). (4.115)

The Lagrangian is obviously invariant, satisfying 6,£ = 0. calculating this
variation once more via the chain rule with the help of the Euler-
Lagrange equations, we find

o—frvd (aL(s ﬂ+aL5°ﬂ)— ﬂfrvd d(aL) 116
)y, o O Tgn ) T | ar g -(116)

From this we obtain the Noether charges
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oL Iy x, (1)

R — = Mcu*. 4.117
Pu =~ ggn = M o M 417

which satisfy the conservation law

d t)=0 4.118

dr Pt = (4.118)
They are the conserved four-momenta of a free relativistic particle. The
quantity

XM
ut = —— (4.119)

V IurXHx®

is the dimensionless relativistic four velocity of the particle. It has the
property x¥x, =1

and it is reparametrization invariant. By choosing for 7 the physical time
t =x%°/cwe can express u* in terms of the physical velocities
vt =dxt/dt as

ut* = y(1,v/c),withy = {1 —v2/c2. (4.120)

Note the minus sign in the definition (4.117) of the canonical
momentum with respect to the non-relativistic case. It is necessary to
write Eq.(4.117) covariantly. The derivative with respect to x*
transforms like a covariant vector with a subscript u, whereas the
physical momenta are p*.

For small Lorentz transformations near the identity we write

A =60+l (4.121)
where
wy = g wpy. (4.122)
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is an arbitrary infinitesimal anti-symmetric matrix. An infinitesimal
Lorentz transformation of the particle path is

5sxH (1) = 2 (1) — xH (1) = 0 xV (7). (4.123)

Under it, the symmetry variation of a Lorentz- invariant Lagrangian
vanishes:

oL L N\ .,
5SL = (ﬁx +@x )a),, =0. (4124)

This has to be compared with the symmetry variation of the Lagrangian
calculated via the chain rule with the help of the Euler-Lagrange
equation

5 _(6L d 6L>(S P‘+d[aL6 M]_d[aL6_v] u
s* = \oxt " aroxt) O Tarloxn Ot | T arloan Ot | v
1 o,df oL L 12
“2%ar\" ox, " ox,) (4.123)

By equating this with (4.124), we obtain the conserved rotational
Noether charges[containing again a minus sign as in(4.117)]

L dL
+ x¥ — = x¥p¥ — xVpH. (4.126)

LMY = —xH —
dax, dx,

They are four-dimensional generalizations of the angular momenta
(4.92). The quantum-mechanical operators

LFY = j(x*d7” — xV0M). (4.127)
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obtained after replacement p# — id/0x, satisfy the four-dimensional
space-time generalization of the commutation relations (4.95)

[L47, D4] = i gheLPt — ghALP™ + gPALHe — g¥L#Y] . (4.128)

The quantities LY coincide with the earlier-introduced angular momenta
(4.92). The conserved components

L% == x"p' —x'p° = M. (4.129)

yield the relativistic generalization of the center-of-mass theorem
(4.103)

M; = const. (4.130)

4.12 Generating the Symmetry Transformations

The relation between invariance's and conservation laws has second
aspect. With help of Poisson brackets, the charges associated with
continuous symmetry transformations can be used to generate the
symmetry transformation from which they were derived. Explicitly see,
[13]

5sx = —ie[Q,2(1)]. (4.131)

The charge (4.72) is by definition the Hamiltonian

Q =H.
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whose operator version generates infinitesimal time displacements by
the Heisenberg equation of motion:

x(t) = —i[H,2(0)]. (4.132)
This equation is obviously the same as (4.131)

To quantize the system canonically, we may assume the Lagrangian to
have the standard form

L(x, %) = %xz —V(x). (4.133)

So that the Hamiltonian operator becomes, with the canonical
momentum, p = x:

H=—+V(). (4.134)

Equation (4.132) is then a direct consequence of the canonical equal-
time commutation rules

6, 2] =—i,  [p@®,p(O] =0,  [2(t),x(0)] =0. (4.135)

the charges (4.83), derived from translational symmetry, are another
famous example. After quantization, the commutation rule (4.131) with
(4.80) becomes

e/ = ie'[p (), 27 (D). (4.136)

This coincides with one of the canonical commutation relations (here it
for time-independent momenta, since the system is translationally
invariant).
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The relativistic charges (4.117) of space-time generate translations
via

6% = et = —ie?[p,, X*(1)]. (4.137)

Similarly we find that the quantized versions of the conserved charge L;
in Eq. (4.93) generate infinitesimal rotations:

6556] = —(UiEijk fk(t) == iwi[zi; k\](t)] (4138)

whereas the quantized conserved charges N' of Eq. (4. 103) generate
infinitesimal Galilei transformations, and that the charges M; of Eq.
(4.129) generate pure rotational

Lorentz transformations:

6555] = Ei?/C\O = iEl'[Mi; 56\1 ]} (4139)

6556'\0 = Gl‘jC\i = iEi[Mi,jC\O]

Since the quantized charges generate the rotational symmetry
transformations, they form a representation of the generators of the
symmetry group. When commuted with each other, they obey the same
commutation rules as the generators of the symmetry group. The
charges (4.93) associated with relations, for example, have commutation
rules

~

which are the same as those between the 3 X 3 generators of the three-
dimensional rotations (L;) jx = —i€;j .

The quantized charges of the generators (4.126) of the Lorentz group
satisfy the commutation rules (4 128) of the 4 X 4 generators (4.127)
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[L#v, LH] = —ighrLv2, (4.141)

This follows directly from the canonical commutation rules (4. 137)

4.13Reductoin of Controlled Lagrangian System with Symmetry

We use the theory of controlled Lagrangian systems to include systems
with symmetry and Lagrangian reduction theory.

4.13.1The Configuration Manifold and Bundle Map

The configuration manifold for the mechanical systems under
consideration is denoted Q. We assume that the dimension of Q is
n and use (q*, ..., q™) as coordinates on Q. The second order tangent
bundle is denotes T(®)Q and consist of second derivatives of the curves
in Q. Let G be a Lie group which acts (on the left) on Q free, and properly
so that

m:(Q):Q - Q/G

becomes a principal bundle. The tangent lift action of G on TQ is free
and proper and

t/G:TQ - TQ/G

becomes a principal bundle. When M is a manifold on which G acts, we
let [m], denote the equivalence class of m € M in the quotient space
M /G. Even though we do not explicitly specify the manifold M in this
part, it will clear in the context. See, [19]

The Euler-Lagrange operator £ assigns to a Lagrangian L:TQ - R, a
bundle map
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eL(L):T(Z)Q — T*Q which be written in local coordinates ( employing
the summation convention) as

d oL _  dL

e£(L) (4,0, )dq = ( (a.4)) dq'. (4.142)

In which it is understood that one regards the first term on the right
hand side as a function on the second —order tangent bundle T Q by
formally applying the chain rule and then replacing everywhere
dq/dt by g and dq/dt by g.

4.13.2 Controlled Lagrangian System

We define a controlled Lagrangian (CL) system is a
triple (L, F, W) where the function L:TQ — R is the Lagrangian, the
fiber-preserving map F: TQ — T*Q is an external force and W, called the
control bundle, is a Sub bundle of T*Q, representing the actuation
directions.

When we choose a specific feedback control map u: TQ —» W, we call
the triple (L, F,u) a closed-loop Lagrangian system. The equation of
motion of the closed-loop system (L, F, u) is given by

eL(L);(q,9,9) = F(q,9) +u(q,q). (4.143)

A CL system (L,F,W)is called simple if the Lagrangian L has the form of kinet:

potential energy : L(q,q) = %m(q)(q, q) —V(g). We will use the

acronym SCL for "simple controlled Lagrangian”.
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4.13.3.Euler-Lagrange Matching Conditions and
CL — Equivalent

Given the two simple CL systems (L, F;,W;) and (L,,F,,W,), the
Euler-Lagrange matching conditions are

ELM_1: W, = mym;*(W,),

ELM_2: Im[(eL(L,) — F}) —mym;1(eL(L,) — F,] c W,

where m; is the mass tensor of L; and Im
means the pointwise image of the map in

bracket.

We say that the two simple CL system (L, F;,W;) and (L,, F,, W,)
are CL — equivalent if

ELM — 1 and ELM — 2 hold.

The following theorem explains the main property of the CL-equivalence
relation.

Theorem 4.16 Suppose two simple controlled Lagrangian systems
(L;,F;,W;),i = 1,2 are CL-equivalent. Then, for an arbitrary control law
given for one system, there exist a control law for the other system such
that the two closed-loop systems produce the same equations of
motion. The explicit relation between the two feedback control laws
u;, L = 1,2 is given by

u, = (g.l:(lzl) - Fl) - mlmz_l(g.l:(lzz) - Fz) + mlmz_luZ . (4‘144)

where m; is the mass tensor of L;.
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4.14 Reduction of Controlled Lagrangian Systems with
Symmetry

Consider on the work on the Lagrangian reduction, we develop the
reduction theory of controlled Lagrangian systems with symmetry and
the reduced CL systems.

4.14.1 Reduction of CL-Systems with Symmetries

We defined the CL-system in 4.13.2. Here, we define G-invariant CL
systems on TQ and reduced CL systems on TQ /G where G is a Lie group
acting on Q. [29]

Definition 4.17 Let G be a Lie group acting on Q. A G-invariant
controlled Lagrangian

(G-CL) system is a CL system, (L,F,W), where L is a G-invariant
Lagrangian, F is G- equivariant force map and W is a G-invariant sub
bundle of T*Q.

Definition 4.18 A reduced controlled Lagrangian (RCL) system is a
triple (L, f, U)where

l: TQ/G = Ris a smooth function called the reduced Lagrangian,
the fiber-preserving map f: TQ/G - T*Q/G is called the reduced
force map, and U, called the reduced control bundle, is a sub bundle of
T*Q/G. A feedback control for the RCL system is a (fiber-preserving )
map of TQ/G into U.

153



Suppose that we are given a G-CL system (L, F, W). the G-invariance of
Linduces a reduced Lagrangianlon TQ/G satisfying

1.7/G = L. (4.145)

The & — equivariance of F induces a reduced force Map [F]; : TQ/G —
T*Q/G satisfying

[Flg .t/G =7m/G,F. (4.146)

This leads to the following definition:

Definition 4.19 The RCL system of a G-CL system (L, F,W) is a triple
( LIFle,W/G )
where [ is the reduced Lagrangian satisfying (4.145), and [F]; is the
reduced force satisfying (4.146).

Propposition4.20 Given a RCL system (I, f,U) on TQ/G, there exists
a unique G-CL system (L, F,W) on TQ whose RCL system is (I, f, U).

Proof: define L by (4.145), define a force map F on TQ as follows: for
Vg, Wq € T, 0,

(F(vq),wq) = (f° T/G(vq),T/G(Wq)>. (4.147)

We can check the G—equivariance of F. We also can check that relation
(4.147) defines a unique fiber-preserving map Fof TQtoT*Q. Let
W :=1"1/G(U).By construction, (L, F,W)is the unique G-CL system
whose RCL system is (I, f,U).

By proposition 4.14.1 we can, without loss of generality, write an
arbitrary RCL system in the form of the RCL system of a G-CL system.
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Given a G-CL system,(L,F,W), the G-invariant of L implies the G-
equivalence of the map

eL(L): T®Q - T*Q, which induces a quotient map

ReL(l) : = [eL(L)]g:TPQ ~> T*Q/G,

which depends only on the reduced Lagrangianlon TQ/G induced
from L .The operator ReL is called the
reduced Euler — Lagrange operator. The equation of motion of a
RCL

(L, [Flg, W /G) with a choice of control [u];: TQ/G — W /G is given by

ReL(D)(1q,9,4]¢) = [Fle(la. ql¢) + [uls(la, qle)-

To write computable equations of ReL, we have to choose a principle
connection on the principle bundle Q —» Q/G to make the following
identifications:

TQ/G =T(Q/G)®E, T®Q/G - TP(Q/G) Xqg/6 28,

T"Q/G =T"(Q/G)®g"

where g is the adjoint bundle Ad(Q), g* is the coadjiont bundle Ad*(Q),
2g :=gdg, and @ is the Whitney sum (see [31]. With these
identifications, ReL(l) induces the Lagrange- Poincare operator

LP(D): TP(Q/G) Xq/c 28 - T*(Q/G)DPE". (4.148)

Hence, the reduced Euler-Lagrange operator, ReL may be replaced by
the Lagrange-Poincare' operator LP in the following as long as we
chooses a connectionon Q = Q/G [30, 31].
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We study the relation between trajectories of G-CL systems and
trajectories of RCL systems. Let (L,F,W) be a G-CL system and
(L[Flg,W/G) be its RCL system. Choose an arbitrary G-equivalent
feedback control law uw : TQ — W for (L, F,W). The control u induces
a reduced map [ulz: TQ/G->T*Q/G. If (q(t),q(t)) ETQ is a
trajectory of the closed-loop system (L, F,u),then t/G(q(t),q(t)) €
TQ/G is the trajectory of the closed-loop system

(LIFlg, [ulg).

4.15 Reduced CL-Equivalence

Definition4.21 We define the reduced simple controlled Lagrangian
(RSCL) system is the reduced CL system ([, [F];, W/G) of a G-invariant
simple CL system (L, F,W). If the G-invariant simple Lagrangian L is given by
L(q,q) = %mq (q,9) —V(q), then its reduced Lagrangian L is denoted by

1

l(lq,ql¢) = P [mls(lg, qle. [a,qle) — [VIg(Iale)

Where [m]; €T(Q/G, T*Q/G®T*Q/G) are the reduced mass tensor
induced from the  G-invariance of the mass tensor
meTl(T*Q/GAT*Q/G) and [V]; — R is the reduced potential energy,
see [30], [31], [32].

We now define an equivalence relation among RCL systems on TQ /G.

Definition4.22 two RSCL systems ( [, [Fls W;/G ),
[ = 1,2 are said to be reduced-CL-equivalent (RCL-equivalent) if the
following reduced Euler-Lagrange matching conditions hold:

RELM —1: W, /G = [my]s[m,]5",

156



RELM —2: Im[ReL(l}) — [Filg — [ml]G[mZ]El(REL(ZZ) — [F]6]
eW,/G

where [m;]; is reduced mass tensor of l;, i =1, 2.

The following proposition explains the relationship between the CL-
equivalence relation between G-SCL's and the RCL-equivalence relation
among RSCL's.

Proposition 4.23 Two G-SCL systems are CL-equivalent if and only if their
associated RSCL systems are RCL-equivalent.

Proof: Let (L,F,W) be a G-SCL system, and (L [F]l;, W /G) be its
associated RSCL system. Then the proposition follows from the G-
invariance of W and the following relations:

RELID° TP /6 =m/G° EL(L),[F];° T/G =m/G° F.

where T® /G : T®Q - T®Q/G is G quotient map. m

Hence, one can check the RCL-equivalence of two RSCL's in two way:
1: is to directly check it.

2:is to check CL-equivalence of their associated unreduced G-SCL's.

Theorem.24. Suppose that two RSCL systems ([, [F;]z, W;/G), i = 1,2
are RCL-equivalent.

Then, for an arbitrary control law for one system, there exist a control
law for the other system such that the two closed-loop RSCL systems
produce the same equations of motion. The explicit relation between
the two feedback control laws [u;];,i = 1,2 is given by
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[u;l¢ = REL(L) — [Filg — [m1]a[m2]51(738£(lz) —[Fl¢) +

[my]eImalztuz]e.
(4.149)

where m; is mass tensor of L; ,i = 1, 2.

Proof: Let [u;]; be a feedback control for ( [;, [F;]s, Wi/G), i = 1,2. Let
(L;, F;, W;) be the unreduced G-SCL system of ( [;, [F;]s, W;/G), i =1, 2.
By proposition 4.23 the two G-SCL are CL- equivalent. By 4.10, the two
closed-loop G-SCL systems (L;, F;, W;),i = 1, 2 produce

(L, [File, W;/G), i = 1,2the same equations of motion when u, and u,
satisfy (4.144). Hence, the two closed-loop RSCL systems (
l;, [File, W;/G),i = 1,2 produce the same equations of motion when
[u;]s and [u,]; satisfy (4.149) because each term in (4.144) is G-
equivariant. In addition, notice that for any choice of [u;];, we can
choose the other [uj]Gsuch that (4.149) holds.

4.16 Euler-Poincare' Matching

Here we briefly sketch the proof that the set of Euler-Poincare' matching
conditions in [30] is a special case of the reduced Euler-Lagrange
matching conditions. This set of matching conditions can handle such
examples as a spacecraft with a rotor and underwater vehicles with
internal rotors.

Let Q = G X H be the configuration space where G is a Lie group acting
trivially on H, and H is an Abelian Lie group. We choose the trivial
connection on Q — H to write down the Lagrange-Poincare' equation on
TQ/G = g X TH with the Lie algebra g of the Lie group G. we use
n = (n%) as coordinates on g and (9,9) = (9“ ,éa)as coordinates on
TH. The Lagrange-Poincare' operator LP with respect to trivial
connection is given by

158



LP() = \ Lol / (4.150)
dt g 96

B
ay

structure coefficients of the Lie algebra g. See [31] for derivation of
(4.150).

for any reduced Lagrangianl = l(n“,é“, 9“), where ¢, are the

Let (1, 0,T*H) be the given RCL system with the reduced Lagrangian,

L(1%,6%) = = gug1N® + Gaan 6% + = 0y 0267
’ 2 af aa 2 ab ’

where gop, Gaa» gap are constant function on TQ/G. Notice that this
Lagrangian cyclic in the Abelian variables 8% and the controls act only
on the cyclic variables. Let (1, ,, 0, T*H) be an another RCL system with

the reduced Lagrangian of the following form:

Legp = l(n“, 0% + Tgn“) + %Jabrgrgn“nﬁ (4.151)
1 : )

+5 (pap = 9ap) (0 + g% gean®™ + 740" )(6” + g*gepn” +75n’),

which exactly the equation (11) in [30].

Now we have the following Euler-Poincare' matching conditions:
EP—1: 12 =—-0%%g,,,

EP—2: g%b _|_pab — gab.

Then, we can show that the two assumptions of EP — 1 and EP — 2
imply the RCL-equivalence of the two reduced CL systems
(L,O,T*H) and (lm’p,O,T*H). by theorem4.19.1, we can equivalently

work with the second system see also [30, 31].
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Chapter Five

Symmetries of Hamiltonian systems

5.1 Introduction

In this part we discuss the relation between one parameter continuous
symmetries of dynamics, defined on physical grounds, and conservation
laws. In the Hamiltonian formulation, such symmetries of the dynamics
in general leave the Hamiltonian invariant only up to a total derivative,
dG(q)/dt. And we study the infinitesimal symmetries, Newtonoid
vector fields, infinitesimal Noether symmetries and conservation laws of
Hamiltonian systems. Finally we classify the symmetry groups of an
autonomous Hamiltonian system with degrees of freedom. With the
exception of the harmonic oscillator or a free particle where the
dimension is 15, we obtain all dimensions between 1 and 7. For each
system in the classification we examine integrability.

5.2 Infinitesimal Transformation of the Hamiltonian

A one-parameter continuous group of (possibly time dependent)
transformations of the dynamical variables which leave their time
evolution invariant and therefore leave the Lagrangian invariant up to
total derivative, dG(q)/dt , induces the following infinitesimal
transformations of Hamiltonian

., oF dG(q)
6H=H(q',p',t) —H(q,p,t) =e—+¢

PR I .(5.1)

where F is the (possibly time dependent) generator of the corresponding
canonical transformation q,p - q',p’.
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In this more general case, the Hamiltonian formulation of Noether
theorem gives the following conservation law

d
= =—(F+6)=0. (5.2)

Hence, in order to get a conserved quantity we have to add the function
G to the generator F of the canonical transformations.

Since the addition of a total derivative to the Lagrangian does not
change the dynamics of the Lagrangian variables, q, ¢, it leaves
invariant all the observables F(q, q) and has therefore the meaning of a
gauge transformation(this point of view is, with different Hamiltonian
version of Noether theorem see [28]).

In terms of the canonical variables the addition of the total derivative
implies the following transformation of the canonical variables

G
q; = Qb 2D —5— (5.3)

aq;
which changes the relation between the conjugate momentum p; and
the time derivative g; of position equation (5.3) states that G is the
canonical generator of such gauge transformation. It is worthwhile to
recall that for a particle in a magnetic field x and x are observable (gauge
invariant ) quantities, but p; = x; + (e/c)A4; is not.

In  conclusion for one- parameter continuous groups of
transformations, which leave the dynamics invariant, but leave the
Lagrangian or the Hamiltonian invariant only up to a total derivative,
the conservation laws displays a sort of anomaly, the conserved quantity
being the sum f the generator of the corresponding canonical
transformation plus the generator G of the gauge transformation(5.3).
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5.3 Symmetries of the Dynamics and Transformation of the
Hamiltonian

The symmetry of the dynamics we mean a transformation of the
dynamical variables such that their equations of motion are invariant. In
the Lagrangian formulation, the dynamical variables are the Lagrangian
coordinates g; and their time derivatives g; and a transformation,[23]

q; = q,i(q; t)' Qi - q,i(q: q: t)' (54)

is a symmetry of the dynamics if it leaves the equations of motion
G; = F;(q, q,t) invariant, i.e.

' =Fq'.q",0). (5.5)

Then, we have a complete characterization of the symmetries of the
dynamics in terms of invariance properties of the Lagrangian [39].

Proposition 5.1 The invariance of the Lagrange equations under a
(possible time dependent) transformation of the Lagrangian variables
q—4q;, q - q'; is equivalent to the invariance of the Lagrangian up

to a total derivative

L@ = L@ 00 - (56

Since the Lagrangian transforms covariantly under a change of the
Lagrangian coordinates, namely

L'(q,q',t) = L(q,q,t). (5.7)

Eq. (5.3) (and therefore the symmetry of the dynamics) is equivalent to
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dG(q)

L ,l.llt =L J.Jt
(q,q',t) =L(qqt)+ 7t

(5.8)

The next step is to characterize the transformation properties of the
Hamiltonian under a transformation of the Lagrangian variables which
leave the Lagrangian invariant up to a total derivative.

Proposition 5.2.A transformation of Lagrangian Variables

q; = qli(q' t)! Qi - q,i(q: q: t)- (59)

Such the Lagrangian is invariant up a total derivative, eq. (5.6) defines a
canonical transformation of the canonical variables

!

-9, pi—oD; (5.10)

such that

re 0o 1 dG
H'(q\p" t) = H(q',p",t) —— . (5.11)

Proof: In fact, we have (sum over repeated indices being understood )

! ! o/ I I -1 o/ ! . dG(q)
H(q,p,t)=q¢;pi—L(q,q¢,t) =q;p'i—L(g,q,t) — R
! 1 ! Y dG(q) / o dG(C[)
—CIzpl_L(q;CI»t)_ dt _H((qrp;t)-l_ dt ]
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where we have eq. (5.8) and eq, (5.7), for one-parameter continuous
groups of canonical transformations, the infinitesimal variations of the
canonical variables g, p are of the form

0F(q,p,t)
6q; = €{q;, F} = e ————,
q q ,
0F(q,p, t)
6p; = elp, F} = R (5.12)
l

Where, F(q,p, t) is the generator of the canonical transformation and
{,} denotes the poisson bracket.

Clearly, a one-parameter group of symmetries of the dynamics is
non-trivial, provided §q; # 0. Then, we have following theorem:

Theorem 5.3 Noether theorem (Hamiltonian form).To each one-
parameter group of (non-trivial ) symmetries of the dynamics, so that in
the Hamiltonian transformation the Hamiltonian is invariant up to a total
derivative, eq.(5.11) their corresponds the following constant of motion

Q=F+G. (5.13)

F is a canonical generator of the symmetry transformations, eq. (5.12).

Proof: The first step is to derive the Hamiltonian analog of eq. (5.8), i.e.
we must relate

H'((q",p",t) to H(q,p, t).

Contrary to the Lagrangian case, for time dependent transformations

H'((¢",p",t) # H(q,p,1);
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actually one has ( see [39])

Jd0F
H'((a"p", ) = H(g,p, ) + - (5.14)

where F is a generating function of the canonical transformation (5.12).
Then, the expression of F to first order in &, in eq. (5.14)

oF
H'((@"p"\ ) =H(gp ) +e5. (5.15)

And eq. (5.11) is equivalent to

oF G
6H=H'((q',p',t) —H(q,p,t) =e—+ e—. (5.16)
ot ot
Now, on one side, we have
SH = (c’)HaF 6H6F)_ (HF} = (dF aF) 5 17
=309 " apag,) " S = el m ) A7)

and, on the other side, by eq. (5.16) we have

L
9t "¢

Hence, it follows that

dF  da(q)
dt  dt

i.e.Q = F + G is a constant of motion.

The above theorem allows to derive the constant of motion associated
to one- parameter group of symmetries of the dynamics, without

165



recourse to the Lagrangian formulation; we have to check only the
transformation properties of the Hamiltonian, leaving open its
invariance up to a total derivative, eq. (5.11).

The conclusion is the canonical generator F of, a symmetry of the
dynamics need not be a constant of motion. The point is that the
invariance of the dynamics requires the invariance of the Hamiltonian
only up to a total derivative dG(q)/dt, with G the generator of a gauge
transformation, and in general, only the sum F + G is constant of
motion(anomaly).

On the other hand, the standard treatment of the Hamiltonian version
of Noether theorem).

, identifies the symmetries as those which leave the Hamiltonian
invariant.

5.4 Symmetry of Hamiltonian Systems of Spaces

A Hamiltonian space [40] is a pair (M, H) where M is a differentiable, n-
dimensional manifold and H is a function on T*M with the properties:

1. H:(x,p) ET*M - H(x,p) € R is differentiable on T*M and
continue on the null section of the projection 7: T*M — M.
2. The Hamiltonian of H with respect to p; is nondegenerate

g 0*H
9= apiapj,
3. The tensor field g% (x, p) has constant signature on T*M \ {0}.
The triple (T*M, w, H) is called a Hamiltonian system.

The Hamiltonian H on T*M induces a pseudo-Riemannin
metric g;; with g;;g’* = 8 and g’* given by (5.18) on VT*M( an
integrable vertical distribution). It induces a unique adopted
tangent structure denoted

rank| g¥ (x, p)|| =n on T*M \ {0}. (5.18)
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9]

Ju = 9,;® a,
A g -regular vector field induced by the regular Hamiltonian H has
the form
0H 0 0

There exists a unique Hamiltonian vector field py € (T*M )
which is a J -regular vector field such that i, ,.w = —dH, given by

_ J0H 0 d0H 0 5 19
P = op; Oxt  dxidp; (5.19)
The symmetric nonlinear connection
N =—-L, Ju,
has the coefficients [40], [41]
Ny == {9:,H} oH + oH 5.20

where the Poisson bracket is

Yijy opy 0xk  dxk oxk’

it is called the canonical nonlinear connection of the Hamilton space (M,
H), which is a metric nonlinear connection, that is Vg = 0 see[42]. In
this case, the coefficients of the Jacobi endomorphism have the form
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Ry = 22 + ot Nji + N;i Nyeg" + o
Tk gpdxd TR T gpaxk Tt T T k9T Gxiaxk

+ pu (N )- (5.21)

and the action of the dynamical covariant derivative on the Berwald

basis is given by

72 ——h[ ° ]—_ oH § Mgt )2 5.22
SxJ PH 53 op;0xJ kI ) sxt (5:22)
Y o _ o |- o + Nixg® o 5.23
op; v pH'apj Op;0xt k9 op; (5:23)

In the following we study the symmetries of Hamiltonian systems [43] on
the cotangent bundle using the Hamiltonian vector field and the adapted
tangent structure.

Definition 5.4 A vector field X € y(T*M) is an infinitesimal symmetry of
Hamiltonian vector field if [py, X] = 0.

If we consider X = X'(x, p)% + Yl-(x,p)aip_ then an infinitesimal

symmetry is given by equations

oH . J0H .
K = x(Ga) ematry =0

and the first relation leads to

Y, = XY —xJ 0°H
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Definition 5.5 A vector field Z € y(M) is said to be a natural
infinitesimal symmetry if its complete lift to T*M ia an infinitesimal

symmetry, that is [py, Z¢* ] = 0.
We know that, for Z = Z!(x) % the complete lift on T*M is given by

i

7o iy 2y B0
B * Pi Oxt api'

dxt

and a natural infinitesimal symmetry is characterized by the equations

P (6H> L oV A
op,/ Op; Oxt’

s (6H> _0HOZF  0H 0°Z
axk) = axiaxk P Op; Oxkoxt”

Next, we introduce the Newtonoid vector field on T*M (see [45]for
tangent bundle case) which help us to find the canonical nonlinear
connection induced by a regular Hamiltonian.

Definition5.6. A vector field X € y(T*M) is called Newtonoid vector

In local coordinates we obtain

X(6H> (x%) o _o
Jij ap; PH dp; '

and using that rank”gij (x, p)” = n it result the equation

X (22) = py (1),
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which leads to the expression of a Newtonoid vector field

d

X=X g (pa6) 0

92H \ 0
dp;0x’ ) dpy.

We remark that X is an infinitesimal symmetry if and only if it is
Newtonoid vector field and satisfies the equation

X (aH) +py(Y) =0

The set of Newtonoid vector fields is given by

X, = Ker(Jy°Ly,) = Im(ld + Jy°L,,).

In the following, we will use the dynamical covariant derivative and
Jacobi endomorphism in order to find the invariant equations of
Newtonoid vector field and infinitesimal symmetries. Let py be the
Hamiltonian vector field, V' an arbitrary nonlinear connection with
induced v,h projectors and V the induced dynamical covariant
derivative. We set:

Proposition 5.7 A vector field X € y(T*M) is a Newtonoid vector field if
and only if

v(X) = Jy (VX). (5.24)

Proof: We have the relation

h°L,°J = —h, J°L,°v = —v, implies that J,°V = Jy°L,, + v and it
results Jy[py, X] = 0ifand only if v(X) = Jy(VX).
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Proposition 5.8 A vector field X € y(T*M) is an infinitesimal symmetry
if and only if X isa Newtonoid vector field and satisfies the equation

V(J4VX) + ®(X) = 0. (5.25)

Proof: A vector field X € y(T*M) is an infinitesimal symmetry if and only
if h|py,X] =0and

v[py, X] = 0. Composing by Jy we obtain Jyh[py, X] = Jylpy, X] =0
which means that X is a Newtonoid vector field. Also, v[py, X] =
v[py, vX] + v[py, hX] = VwX) + ®(X) = V(J4 (VX)) + ®(X), which
ends the proof.

For f € C*(T*M) and X € y(T*M) we define the product

f*X= (Id +c7Ho['pH)(fX) =X+ fIulpu, X1 + pu(f)IuH,

and the result that a vector field X is a Newtonoid if and only if

. 0
X =X"(x,p) *—,
ap;
Alsojif X € X, then fxX = fX +py(f)JyH (see[46]for the case of
tangent bundle). Next theorem proves that the canonical nonlinear
connection induced by a regular Hamiltonian can by determine by
symmetries.

Theorem 5.9 Let us consider the Hamiltonian vector, field py an
arbitrary nonlinear connection N and V the dynamical covariant
derivative. The following conditions are equivalent:

1) VrestrictstoV: X, —» X, satisfies thelLeibnitz rule with

respect to the * product.

171



3) LPHJH +N =0.

1 9%H 0%H
4) Nij = 5<{gij,H} - (gikW + gjk W))-

Proof: For (2.= 1.) let us consider X € X, and using (5.24) we
get vX = Jy (VX).

Applying V to both sides, we obtain V(vX) = V(J4VX) which
yields

(VWX + v(VX) = (VI (VX) + J4V(VX).

Using the relations Vv = 0,VJy, = 0 it results v(VX) = J4V(VX) which
implies

VX € X, .For X € X, weobtain,

V(f *X) = V(X + pyg(f)TuX)
= pu(NX + VX +p* ,(HIuX + pu(HV(IuX),

Vi* X+ f*VX =py(/HX+fVX + sz(f){]HX + P (f) I (VX).
But V(JuX) = (VIp)X +Jy(VX) and from VJy =0 it results
V(JgX) = Jy(VX) whichleadsto V(f *X) =Vf X+ f *VX.

For (1.= 2.) we prove that VJy vanishes on the set X,,, U x¥(T*M \ {0}) which is a set of
generators for y(T*M \ {0}). For Xe yV(T*M \ {0}) we have JyX =0 and Jy(VX) =0
which leads to VJy(X) = V(JgX) — Jy(VX) = 0. Next, if X € po then from

Vf*X)=Vf*X+f+xVX=Vf*xX+f*VXitresults

pu(FV(IuX) = py(f)Iu(VX), which implies py(f)(VJIy)X = 0 for
arbitrary function f € C*(r*m\ {0}) and arbitrary vector field x e
%pH.Therefore VJy = 0 which ends the proof. The equivalence of 2), 3)

, 4) results from
Vi=L,J+h—-v

66" 0y 6
J
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Given an adapted tangent structure (J and a J-regular vector field p,
then the compatibility condition V. = ofix the canonical nonlinear
connection with h, v projectors

h=—(1d - £,J), v=>d + L,J).

Considering the canonical nonlinear connection (N = —L,, _J,), we get

the following results.

Proposition 5.10 A vector field X € y(T*M) is a infinitesimal symmetry
if and only if

V23, X + ®(X) = 0. (5.26)

which locally yields

V29, X'+ Ry X' = 0. (5.27)
Proof: If V is the canonical nonlinear connection, then v 7, = 0 and using

VJy = V°Jdy — Ju°V from (5.25) it is results (5.26). Also, we obtain that the
local components the vertical vector field (5.26) are (5.27).

Definition 5.11 {) An infinitesimal Noether symmetry of the
Hamiltonian H is a vector

X € x(T*M) such that

wa = 0, LxH =0

ii) A vector field X € y(T*M) is said to be an invariant vector field for
the Hamiltonian H if X¢*(H) = 0.

iii) A function f € C* (M) is a constant of motion (or a conservation
Law) for the Hamiltonian H if Lyf = 0.
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Proposition 5.12 Every infinitesimal Noether s ymmetry is an
infinitesimal symmetry.

Proof: From the symplectic equation i, w = —dH, applying the Lie
derivative in both sides, it results

Ly (ip,w) =—LxdH = —dLyH = 0.
Also, from the formula ity ,,.y = Lx°ip, — ip, °Lx we obtain
LX(iPHw) = I, pr}@ T iPHLXw = lix, pH 3@
which leads to igy ,, ;0 = 0 and we get {X, py } = 0. |

Proposition 5.13 If X is a vector field on M such that Lgc.0 is closed and
d(X¢*H) = 0, then X is a natural infinitesimal symmetry.

Proof: We have

i{XC*’pH}a) = L)?C* (ipr) - ipH(L)?C*“)) = —,CXC*dH -

= —dLgc.dH — iy, d(Lgc.0) = —d(X*H) = 0,
because d(Lgc:0) = 0.

Proposition 5.14 The Hamiltonian vector field py is an infinitesimal
Noether symmetry.

Proof: Using the skew symmetry of the symplectic 2-form w it results
0 = ip,w(py) = —dH(py) = pu(H) = L, H.
Also, from dw = 0 we get
Ly,w=di, w+i,do=-d(dH) = 0.
|

Since Lie and exterior derivatives commute, we obtain for an
infinitesimal Noether symmetry

d£X9 = Lxde = LXw = O.
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It results that the 1-form L6 is a closed 1-form and consequently L, .6

is closed.

Definition 5.15 An infinitesimal Noether symmetry X € y(T*M) is said
to be on exact infinitesimal Noether symmetry if the 1-form L40 is
exact.

The next result, prove that there is a one to one correspondence
between the exact infinitesimal Noether symmetry and conservation
laws. Also, if X is an exact infinitesimal Noether symmetry, then there is
a function f € C*(M) such that L4x60 = df.

Theorem 5.16 If X is an exact infinitesimal Noether symmetry, then
f —0(X)is a conservation law for the Hamiltonian H. conversely, if
f €C®(M)is a conservation law for H, then X € y(T*M \ {0}) the
unique solution of the equation iyw = —df is an exact infinitesimal
Noether symmetry.

Proof: We have py(f—00))=d(f—0X))(py) = (Lx0 —
dig(0))(py) = ixd6(py) = ixw(w) =i, w(X) =dH(X) =0, and it
results that f — 6(X) is a conservation law for the dynamics associated
to the regular Hamiltonian H. Conversely, if X is the solution of the
equation iyw = —df then Ly0 =iyd0 + diy0 = —df +ixdf is an
exact 1-form. Consequently, 0 =dLy0 = Lyxd0 = Lyw. Also, f is a
conservation law, and we have

0 =pu(f) =df (pn) = —ixw(py) = ipH(U(X) = —dH(X) = =X (H).

Therefore, we obtain LyH = 0 and X is an exact infinitesimal Noether
symmetry.

Theorem 5.17 If X € y(M) is an invariant vector field for the
Hamiltonian H then its complete lift X¢* is an exact infinitesimal
Noether symmetry and consequently X is an natural infinitesimal
symmetry. Moreover, the function 8(X) is a conservation law for the
Hamiltonian H.

Proof: We have that Lyc.H = X¢*(H) = 0. Next we prove that
Lgc0 = 0 using the computation in local coordinates.
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d v C* d v C* d
e () =57 (o)) o 5= 7]
' oxioxJ ~ O0xkoxi"/ op,

€3e0) () =27 (0 (52) ) - 0[] = -8 (Ga75r) = ©
& Cx — = —_— — ,— | = - -— | =
X dp; dp; dp; dxJ Op;

It results that 0 = dLgc-0 = Lzc:dO = Lyc-w and  X¢* is an exact
infinitesimal Noether symmetry. Using proposition 5.4and 5.6 we have
that X¢* is an infinitesimal symmetry and consequently, X is a natural
infinitesimal symmetry. Moreover, for f = 0 it results that

H(XC*) = p X,

is a conservation law for the Hamiltonian H.

5.5 Classification of the Symmetries of Hamiltonian Systems
with Degrees of Freedom

We consider the motion of a particle of unit mass in the plane (q4,q,)
under the influence of a potential of the form V(q4, ;). We will assume
that the Hamiltonian is time independent. This is not really a restriction
because a time-dependent n- dimensional system is equivalent to a
time-independent (n+1)- dimensional system by regarding the time
variable as the new coordinate. For the most part we assume that the
system is two-dimensional with Hamiltonian
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1 1
H(q1,q2,p1,02) =5p7 +5p5 +V(q1,42).  (5.28)

The real valued function V(q,, q,) is assumed to be smooth on some
open, connected subset of R?. Hamilton's equations, in Newtonian
form, become

. av
q1 = — 37—
a‘hl
W (5.29)
qZ - aqz

We search for point symmetries of the system (5.29). That is, we search
for the infinitesimal transformations of the form

t'=t+eT(t,q1,q2) + 0(e?)
6:11 =q; +€Q:(t,q1,q2) + O(EZ) _ (5.30)
G2 = q, + €Q5(t,q4,92) + 0(e?)

The function V(q,q,) such that the system (5.29) admit such
transformations are completely classified. Therefore, in the following
analysis we determine the functions V, T, Q, and Q,.

Equations (5.29) admit Lie transformations of the form (5.30) if and only
if

r@{g, +v, }=0
) (s + Vo, } (5.31)
F( ){q2+VqZ}:0
where '@ is the second prolongation of
r=rT g + 0 + I 5.32
- at Qlaql QZan' ( ' )

Equations (5.31) give two identities of the form:
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El (ti d1, 97, q1; qz ) = 0}
. - 5.33
Ey(t,491,92.41,42) =0 (5:33)
Where, we have used that ¢; = ~ 9% and Gy = — 9 The functions E,
09,1 aq,

and E, are explicit polynomials in g, and g,. We impose the condition
that equation (5.33) are identities in five variablest,q4,q,,q; and q,
which are regarded as independent. These two identities enable the
infinitesimal transformations to be derived and ultimately impose
restrictions on the functional forms of V, T, Q; and Q,.

After some straightforward a calculations we can show, that the
generators necessarily have the following form:

T = ,a(t) + b1(f)CI1 + b, (t)q;
Q= ?1(15)61% + bzgt)ChCIz +c11(0)qy + c12(0)qy +di(t) ;. (5.34)
Q2 = by (£)q1q2 + b2 ()5 + 1 (t)q1 + c22(V) g, + dy(t)

In this section we classify the symmetry groups of the system according
to the form of the generators. Here is a preview of the various cases and
the potentials that appear.

Casel. by #0,b, # 0.

In this case the potential is of the form

A
V= ‘(Qf + q%) + 4191 + A24;.

2

The symmetry group has maximum dimension. It is a 15-parameter
group of transformations isomorphic to si(4, R).

Case2.b; = b, = 0.

In other words, T is a function of time only. We consider two possibilities
accordingto a"+0 ora" = 0.

First Sub-case: a"+#0
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2a

_r
(q1 + kqz)?

In this case we obtain a 6-parameter group.

A
V=§(Qf+qg)+

2b

A [0
V=50 +4d)+—
Z(Ch qZ) (qz)z

This is special case of previous one with k = 0.
2C

A

2 2 1
V= 2(% + q3) +_2CD(S();
q;

where & = %. For @ arbitrary we end up with a 3-parameter symmetry
2

group. For special types of ® we obtain a 4-parameter group.
Second sub-case a" =0
This is the case where T is a linear function of time,

2d

V= CI% + 4149192 + P(8),

Where ¢ = q; — Aq, For @ arbitrary we end up with a 4-parameter

symmetry group. For ® quadratic we obtain a 7-parameter group and

setting A; = 0, for some special form of @ (exponential, logarithmic, nt"

power) results in a 5-parameter group of symmetries.
2e

V= AM% + ®(q,)
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The case 4; = 0is the case of a separable potential with one variable
missing. We will comment on this case separately. If, 1; # 0, we end up
with a 4-parameter group.

2f

The dimensions of the symmetry groups in this case are all equal to
2except for the last three systems where the dimension is 3. Specifically,
we obtain the following list of potentials:

1.
q1
/=aro(2)
2 )
2.
V = Ailogg, + @ (ﬂ)
qz
3.
V = et ®(q,)
4,
V = et ®(q; — Aqy)
5-10

V =2411(q1) + 2212(q2)
where f1(q1) = q7 ,logqy, e*? and f,(q;) = q3" ,1ogq,, e

11.
V=g +q3)

12.
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V=A¢q?+q))"n+—-1,0,1

13.
V = Mog(q? + q3)

14.
2 2
V = Asin™t —qlz qi
qi +q;

Finally, we note that the potential V(q,,q,) = q¥ has a 15-parameter
group of symmetries fork = 0,1, a 7-parameter group fork = 2,a 6-
parameter group for k = —2,and a 5-parametergroup of symmetries
otherwise. These dimensions generalize for arbitraryn = 2 to

(n+2)? —1,n? + 3,n? + 2,n? + 1 respectively.

In this sections we will not consider the general case of motion in R™,
however for the case n = 3, the classification of symmetry groups in
progress; see[47]. In this case, we end up again with a maximal
dimension of (n + 2)2 — 1 = 24 for the harmonic oscillator or a free
particle, but the dimensions of the other groups in the classification vary
from 1 to 12 (n? + 3). We did not obtain the dimension 8 and any
dimension between 13 and 23. In sectionll we will also consider the
simplest system, with one degree of freedom, mainly to illustrate the
procedure we use for the two-dimensional case.

Of course the ultimate goal in classical mechanics is to integrate
explicitly the equations of motion. Such systems are called integrable.

Theorem of Liouville 5.18: this theorem is the key result which in the 2-
dimensional case translates as follows:

Consider a Hamiltonian system with two degrees of freedom. If in
addition to the Hamiltonian H there is a second integral of motion I,
independent of H, then the system is integrable, i.e. in principle we can
solve the equations by quadratures.
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Now, we shill point out that all the systems which do not appear in our
e e . 0 :
classification will have 535 @ single symmetry. We can construct a

number of systems possessing, only one symmetry, for example, we can
take

V =q% +2q% + q¥q,. (5.35)
with k > 1.

As was mention there are integrable systems which possess only one
symmetry, This situation is also, investigate [48], [49]. We would like to
point out another example:

T- T-
V=4g+q+—+—=.  (536)
q1 q;

In this system the associated Hamilton-Jacobi equation is separable in
Cartesian coordinates. We should point out that integrable systems have
symmetries other than point symmetries.

5.5.1 Systems with One Degree of Freedom

Before attacking the two-dimensional case, we classify the symmetries
for a one-dimensional system, just to illustrate the techniques we use on
the two-dimensional case. We consider a

Hamiltonian of the form

1
H= Epz + V(). (5.37)

The equation of motion of the particle is
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)4

T (5.38)

q’:

We search for symmetries for equation (5.38) of form

t' =t+€T(t,q) + 0(e?)

q' =q+€Q(t,q) +0(e?). (5.39)

Equation (5.38) admits symmetries of the form (5.39) if and only if

r{g+v,}=o. (5.40)

where I'@ s the second prolongation of

F—Ta+ 0 5.41

The definition of the second prolongation if the following: first we define
the first prolongation

PO =T+ [~Tyd? + (Qq = T)d + Q] 35 (542)

The second prolongation of I" is an extension of '™ given by

r®=rW4[(Q, — 2T —3T,q)d — Tyqd® + (Quq — 2Tq)d% + (2Quq — Tee)q +
Qtt]a%. _ (5.43)

Equation (5.40) becomes an identity of the form
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E(t,q,q) = 0. (5.44)
using the fact that g = —-V,.

The coefficient of ¢3 in (5.44) gives Tqq = 0.similarly, the coefficient of
q° gives Qgq = 2T,

Therefore,

T =a(t)+ b(t)q }
: 5.45
Q = b'(H)g? + c(t)q + d(t) (5:45)
Using equations (5.45), identity (5.44) becomes
0%V av

ov
no__ " 2 I - AN 2 r_ 21111 1
3b—aq+3qb a" + c]q+(qb+qc+d)—aq2+(a c)—aq+qb + qc

+d" =0. (5.46)

The coefficient of g in (5.46) gives

av
Sb% + 3gb"-a" +2c' = 0. (5.47)

We split the analysis into two exclusive cases:
Casel. b # 0.

Case2.b =0

Casel. b # 0.

From equation (5.47) we obtain

_Al 2
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We easily calculate that the algebra of symmetries has dimension 8. It is
a simple Lie algebra isomorphic to sl(3, R).

Case2..b =0

From (5.47) we have

— 1 ! _|_
c= Ea (o)
and equation(5.46) becomes
0%V av "
[q(a’" + 2¢;) + 2d)] 7 + (3a’ — 2c1)% +a'"q+ 2d" =0.(5.49)

Form equation (5.49) we deduce that V satisfies an O.D.E. of the form

Mg + A)Vyq + A3V, = Aaq + As . (5.50)

In order to solve equation (5.50) we consider the following five
possibilities:

1.4, =1,=A; =4, =24 =0. In this case we get a(t) =
constant,c; = 0,and d(t) = 0.

Therefore V arbitrary we have T =c¢,, Q = 0. In other words the
symmetry group is trivial ( one dimension).

2.1, =43 =0, 1, # 0. In this case, V is quadratic, a case already
examined.

3.4, =0, 1, #0, A3 # 0. From (5.50) we get V = A1e"4, where we

have ignored linear terms. We obtain a 2-parameter group of

symmetries withT = —2¢,t + ¢, and Q = %.

4. 1, # 0, 43 =0. From (5.50) we obtain VV = glogqg. the symmetry
group here is also trivial.
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5.4; # 0,43 # 0. Without loss of generality we take A, = 0in (5.50)
and we obtain either

V= 2q", n+0,12,0or V= Alogg.

First: If V = Aq™ we substitute in to (5.49) to get, a(t) = c,t? +
2¢c3t 4+ ¢4,d(t) = ¢c; =0,

2(2—-n)
n+2

if n=—-2,and a(t) = cit+c,,d(t)=0ifn+-2. to

. A
summarize, we have forV = ey

T =c,t? +2c3t + ¢y

Q = (ct + c3)q. (5.51),

and for V= Aq",n # —2,0,1,2 the generators have the following
form:

2(2—n)
T =Wclt+cz

Q= Zgq (5.52)

n+2 t°

In other words, we obtain either a two-parameter or a three parameter
group of symmetries.

Second: When V = Alogg we get a(t) = c;t + ¢, and d(t) = 0.
therefore,

T - 2C1t + C2
Q= 2cgq. (5.53)
This is a two parameter group of symmetries.

To summarize the results in the case of one degree of freedom we
obtain a maximal dimension of 8 for the harmonic oscillator or a free
particle, but the dimensions in the other groups in the classification vary
from 1 to 3. We do not obtain any dimension between 4 and 7.
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5.5.2 Systems with Two Degrees of Freedom

We return now to the case of two-degree of freedom. The analysis is
analogous to the one used in the case of one-degree of freedom. We
substitute the form T, Q4, Q, in (5.34) into equations (5.33).

The coefficient of ¢, in equations (5.33) [E, = 0] gives

(V. by 0y
1T 5z 127 75;

= 0. 5.54
30, (5.54)

On the other hand, the coefficient of g, in equation (5.33) [E; = 0]
implies

2 (3 4 02, P2 _ 5.55
aql 2 atz ql - Y ( . )

Similarly, the coefficient of ¢, in equation (5.33) [E; = 0] gives

B Vb 9%h, 0% 9
L9q,  2aq, T ez T2Tgz Tz T gt

=0. (5.56)

while the coefficient of g, in equation (5.33) [E, = 0] implies

B LV by b 0% 9oy
29q, T agq, T2z T Mez T gz T Tt

=0. (5.57)

If b;(t) # 0 and b,(t) # 0, then from equations (5.54) and (5. 55) we
deduce that V is quadratic in g; and g,. We also note that if b,(t) =
0,b,(t) #0,(or by(t) #0,b,(t) =0),

then from equations (5.55) and (5.55) V has again a quadratic form. We
therefore split the analysis into two exclusive cases:
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Casel. by(t) #0,b,(t) # 0
Case2. b, (t) =0,b,(t) =0
Casel.
From equations (5.54) and (5.55) we deduce that
V =201qf + 2203 + 23q; + 4G, + As. (5.58)

Now, substitute (5.58) into (5.33) the coefficients of gq;g, in E;and
q2q, in E, give respectively:

3(b}/ + 2Ab;) = 0 (5:59)

Hence, it follows that, 4; = A, =0or 4; =1, # 0.

In the case 4, = A1, = 0,V is linear. We shall present the symmetries for
the case, but in the remaining part of the analysis we shall ignore linear
terms in the form of V. Adding a constant to equations (5.29) has no
effect on the symmetry groups.

V=24q+2q;, + 3
Sub-case 1a

Note that we have taken 1, = A4, = 0in (5.58) and then renamed the
constants. Without presenting any calculations, we state that the system
(5.29) with V linear has the following 15-symmetries:

=
[, = aiqz
Ly = q1%— </Z—%t3 + ;ﬂlt(h) 6(311 - (/11:2 t3 + %Altqz + Athl)aiqz
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0 1 3

r5 =t—+ <_q1 _Z}lltz

at  \2

0 A
I'e —tza+<q1t——t

D <,11,12
7= T2, 4

0
I'g = (2tq, + /12t3)— + (Z‘hCIz + Apt?qy — Ait?q, —

(2612 -

Iy =(2tq, + /11t3)— (

+ (2q1q2 + At?q, — A,t2q, —

1 0
[y = (CIZ +§/12t2>a_ql

2 aq,
d
[, =t—
12 tach
0
[, = t—
13 taqz
r ( + 1/1 tz)
= q —_— —_—
14 1 2 1 q1
1 0
r15 == (qZ + Elztz)a_qz

1 2
qu _ZAZt
th __t

t3 + /11tq2 + 1/“.thl> i -
2 2qq

A 3 0
_2t3 + E}lthz -~

qu - _Azt‘}

dq,

Remark5.19: this system is of course integrable. The second integral is

I = %plz+ A1q, or
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1 L :
I = Ep% + A,q,. It also has constants of motion linear in the momenta,

for example
I = —A;p1 + A4p5.
Sub-case 1b

We will choose A=1. We substitute the form of V into equations(5.33)
and equate coefficients. In E; q;q; = 0 implies

d?b,
dt?

+b1=0

In E; q1q9, = 0 implies

dZ

dt?

+b2=0

InE; g, = 0implies

dcip
dt

0,

therefore ¢, is constant. Similarly by examining the coefficient of ¢, in
E, we see that c;, is also constant.

InE; g, =0andinE, ¢, = 0,imply that

d’a _dcyy

-2 0,
dt? dt
d%a dc
—2222_,
dt? dt

Similarly, using the coefficient of g;=0in E; and g,=0in E, , we obtain

d?c da
11 + b
dt? dt

0,

and
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dc,, _da

2—=0.
dt? T dt

Finally, and E; =0 and E, = 0 imply that the function d,(t) and
d,(t) are solutions of the equation

d*x
F‘l‘X:O.

Therefore the form of the generators in this case is the following:

T = ky + kycos2t + kgsin2t + (kycost + kgsint)q; + (kgcost
+ k,sint)q,

Q; = (—kysint + kscost)q? + (—kgsint + k,cost)q,q,
+ (—k,sin2t + kscos2t + c;1)qq +

C12qy + kgcost + kgsint

Q, = (—kysint + kscost)q,q, + (—kgsint + k,cost)qs + c,1q4
+ (—k,sin2t + kscos2t + ¢,,)q, + kigcost + ky4sint.

We note that the system (5.29) with V=%(qf+q§) admit a 15-

parameter qroup of transformations isomorphic to si(4,R).

Remark 5.20: This system is the 2-dimensional isotropic oscillator. A
second integral is

1 1 1 1
I =§Pf +EQf orl, = EP% +EOI§-

We also have constants of motion linear in the in the momenta, for

example I3 = q;p1 — q1D>.

Remark 5.21: cases la and 1b give the most general form of
Hamiltonian for which the second invariant is linear in the momenta.

Case 2

We use the identities E;, = 0and E, = 0in (5.33) to obtain:
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Ei:g; =0 ¢;, =0

E,;;g; =0 ¢;; =0

E;:g,=0 ©2c,—a"=0

E,qg,=0 ¢y, —a"=0. (5.60)
Therefore, c1; = €1 €31 = €3 €11 = %a’ +c3 and ¢y = %a’ + ¢4. Here

and elsewhere the c; are constants. Using these results, equations (5.33)
take the form g, g,

(a'qy + 2¢,q1 + 2¢4q, + 2d3)Vy g,
+ (a'qy + 2¢3q; + 2¢1q + 2d1) Vg,

+(3a’ — 2¢3)V,, — 26V, + a’"q, + 2d7’ = 0. (5.61)
and

(a'qy + 2¢3q1 + 20192 + 2d1) Vg q, + (@2 + 2021 + 2€49, +
2d3)Vq,q, +@a’ = 2¢)Vy, — 2¢,V,, +a'"q, + 2d5 =
0. (5.62)

We differentiate equations (5.61) and (5.62) with respect tot to get
respectively:

(@"qy +2d3)V,,q, + (@"qq + 2d7)V
+ 2dy"
0, (5.63)

11V, nrr
+3a""1+a""qy

141

(a'"qy + 2d7)V, q, + (@' qy + 2d3)V,
= 0.

+ 3(1”qu + allllqz + Zdéu

242

(5.64)
We now split the analysis into two parts:
a’" #0ora” =0.

Non-linear T (a"" #0)
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We divide equations (5.63) and (5.64) by a’’ and then differentiate with
respect to t to get respectively:

dé ! di / allll ! dill !

2 ? VCI1CIz t2 ? V‘hql + 7 g1+ 2 a’ =0, (5.65)
di ! dé Y aIIII / dé” !

2 F VQ1QZ +2 ? VQzQz + 7 qz + 2 a’ =0, (5.66)

From equations (5.65) and (5.66) we deduce that the function V(q4, q5)

satisfies two partial differential equations of the form

All/QlQZ + /12‘/(11(11 + /13q1 + /14 = 0, (567)

/12[/q + AlI/qzCIZ + A3Q2 + AS = O (568)

192

In order to solve equations (5.67) and (5.68) we consider the following
cases:
e L1 #0,4,#o0
e 1, =0,1,#0,(orA; #0,1, =0)
e L=A4=243=4,=0
In the following three sub-cases we determine the form of V from
equations (5.67) and (5.68). The corresponding generators may be
obtained with the employment of equations (5.61) and (5.66).
Sub-case 2a
In this case, V takes the form
_ 2

2 2 H
V= > (qgi +q3) + (Qitka)?" (5.69)

with the corresponding generators:

T =a(t)
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Q= %a'(t)% + k%cyqy — keyqy + kg, (2) (5.70)

Q; = %a’(t)‘h —kcaqq + caqz — q2(8)

where a’’ + 41a = cg and d, is a solution of d; + Ad, = 0.
(A 6-parameter group).

Sub-case 2b

Setting 4; = 0in (5.67) and (5.68) we get the forms of the group
generators:

V =kiqi + kyqf + k3q195 + keq1q2 + ksqq + P(q2). (5.71)

Using equations (5.63) and (5.64) we getA; =A;=4,=0and ® =
k,q% + keq, + ko + :—2
2

Therefore, ignoring the linear terms, I takes the form

A [0
V=-(g+a)+— (5.72)

2

Finally, using equations (5.61) and (5.62) we get the forms of the group
generators:

T =a(t)

1,
Q, =c3q, + Ea q; +d(t) (5.73)
1 !
Q, = Ea (t)q:
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where a’’ + 44a = cg and d{ + Ad; = 0 (A 6-parameter group).
The case A =0 is equivalent to the system V(qy,q5) =q—12 with
1

generators:

T = Cltz + ZCZt + C3

Q1= (at+c2)qy (5.74)
QZ = (Clt + (8 + C4)q2 + Cst + C6

We choose the following basis for the Lie algebra of symmetries:

X_a

Y,

X—Zta+ + J
2 = at Q1aq1 anqZ
X—t26+ ta+ ta
3 — at ql aql QZ aqz
¥ d

4 ‘baqz
X ta

° dq;
¥ = 0

6_6‘12’

with ( non-zero) bracket relations

[X1»X2] =2X;
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[X1;X3] = X;

[X1, X5] = X6

[X2, X3] = 2X;3
[X2, X5] = X5

[X2, Xe] = =X
[X3,X6] = —X;5
[X4, X5] = —Xs
[X4, X6] = —XGe.

This algebra is not semi-simple since the ideal generated by Xz, X, is

abetain. It is not solvable either because, L™ = {X,,X,, X3, Xc, X}, and
L) = (1)

Remark5.22: it is clear that sub-case 2b is a special case of sub-case 2a
by setting k=0.

Sub-case 2c

Since all the coefficients of the terms in equations (5.65) and (5.66)
vanish, the function a(t), d,(t) and d,(t) may be determined. Form
equations (5.63) and (5.64) we deduce that

A
V=3¢ + )+ 50, (5.76)
q;

where £ = %. We now use equations (5.61) and (5.62) to determine the
2

forms of the generators. Without presenting any more calculations we
state the following results:

1.D arbitrary:

T =a(t)

0 =3d'q (5.77)
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Q, ==a'(t)q,

2

where a'’ + 4la = cg (A 3-parameter group).

For A=0 the Lie algebra has a basis given by

X;=t*—+ ti 2
3 = d1 + qat

with bracket relations of a simple Lie algebra:

(X1, X5] = 2X;

[X1, X5] = X,

[Xz;X3] = 2X3
2
u q>

2.0=—=u—:
& 4
It follows from (5.76)
A 2
V= E(qf +q3) + —. (5.78)

1

This potential already appeared in 2b.
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3.D = u = constant:
It follows from (5.76) that

_A !

V=5@i+q)+— (5.79)
a;
This system is not different from the previous one.
[ -1
4. = ————ectan ¢,
§2+1
It follows form (5.76) that
A U ctan~ 141
V==(q?+q3)+ e 4z, (5.80
The generators take the form:
T =a(t)
1 1
Q= 7 €11 + Cqz + 5@ ®q, - (5.81)
1 1
Q; = 760192 ~ A + 5@ (t)q

where a'’ + 4la = cg (A 4-parameter group).

The Lie algebra for this system is a direct sum of an sl(2,R) and a one
dimensional Lie algebra. It has a basis consisting of the vectors

0
Xl—a
X —Zta-l- I + I
2 at qlaql q20q2
X —t26+t 0 +t 0
3 = at qlaql anqZ

4= 4CCI1 q: 94, 4“12 q1 aqz'
with bracket relations
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[X1, X2] = 2X;

[X1, X3] = X;

[X2, X3] = 2X3
[X;,X4]=0, i=1,2,3.

This example generalizes in n dimension to Lie algebra which is a direct
sum sl(2,R) @ so(n,R).

Remark5.23: in polar coordinates this system is
A [
V==0(?%+—e,

It is integrable, by taking B(0) = ue® and i = %lz + B(6),where l =

41P2-P192-
Taking ®(¢) = ;—; + 1, we end up with the system

A non
V=5(0q+4)+5+=
270 gt g3

The associated Hamilton-Jacobi equation is integrable in Cartesian and
polar coordinates. This system is an example of a system with closed
trajectories under the influence of Non-central field [49]. For A =1, the

generators take the form:
T = ¢4 + cyc082t + c3sin2t
Q, = (—c,sin2t + c3cos2t)q,

Q, = (—c,sin2t + c3cos2t)q,.

They form a 3-dimensional Lie algebra
T ES 5

d

0 _ 0 _
X, = cosZtE — qlSLnZta—q1 — q251n2ta—q2
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0
X3 = sin2t — + q,co0s2t —

T 7, + qZCOSZta P
with bracket relations
[X1,X2] = —2X;
(X1, X5] = 2X,. (5.82)
[X2, X5] = 2X,

In other words, it is a simple Lie algebra of type A; isomorphic to
so(3,R).For A = 0 we obtain a Lie algebra isomorphic to sl(2,R).In
[50] the most general form of a differential equation invariant under the
action of the generators of sl(2,R) is determined.

We note that the similar system

7”2

. (5.83)
q%

=2 (g} + qp) + 2
=5 qi +q5 7
has %as the only symmetry .

In general, the system V= %(q1 + q3) + CD( ) is integrable.

Changing to polar coordinates we putq; = rcos@, q, = rsinf to find
that

A . ®(cotd) A . B(6)
_1 2 _ o2, 2\
V= Zr T r2sin20 2 rz ’

Letting | = q;p, — p195, the second integral is [ = %lz + B(6).

The system V = %(ql +q3%) +
of (5.76) with

P() =

—(q PPy is integrable. It is special case

($+k)2

14

Tlinear a4’ =0

In this case a(t) is a linear function of time.

200



From equations (5.63) and (5.64) we deduce that the function V(q4,q2)
satisfies two partial differential equations of form

Alllqlql + AZI/Q1Q2 + /13 = 0 (584‘)
/111/611612 + All/qzqz + quz + ).4_ - O (585)
In order to solve these equations, we consider the following cases:

L4 /11¢0,/12¢0
e 1,=0,4,#0,(ord; #0,4, =0)
.11=AZ=13=A4=0

Without giving any more details, using equations (5.61) and (5.62), we
are led to the following results:

Sub-case 2d
V= /11‘7% + 120192 + P(§)

where £ = q; — A1q,. We get various forms of the generators depending
on the form of function ®.

1. CD - /1352:
That is, V is quadratic of the form
V=245 + 4,010z + 2347 (5.86)

We have followed the common practice of renaming the constants. The
corresponding generators are:

T - C6
Q1 = c1q; + c3q1 + dy (D). (5.87)

Mo A3
Q2 =c1q; + (2 <A_2 - A_) 1+ C3> qz + d,(t)

where d, (t) and d,(t) satisfy the O.D.E.'s di' + 243d,(t) + A,d,(t) =
0,and d} + 24,d,(t) + A,d, (t) = 0. (A 7-parmeter group).
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If A,=o0 then,

M #F A3

’

Q. = c3q, +d,(t),Q, = c4q, + d, (1) and d,(t),d,(t) satisfy the same

0.D.E.'s with A, = o.

We describe explicitly the Lie algebra for the potential

1 1
V(q1,q2) = —54qi +543.

The Lie algebra is 7-dimensional with generators:

v - 0
17 ot
Y. = 0
2 — q1 aql
0
Xz = et—
37° 09,
0
X,=e t—
+= g,
v = 0
5 = (42 94,
X = t g
6 = COS 3,
X nt g
= sint —
7 aq,
with (non-zero) bracket relations
[X1, X3] = X3
[X1, X4] = =X,
[X1,Xe] = —X;
[X2, X3] = —X;
[X1, X7] = X

202



[X1'X4] = —X,
[XS»X6] = —X¢

[X51X7]

_X7.

This Lie algebra L is solvable with
LD =L, L] = {X3, X4, Xe, X7} and L = {0}.

Remark5.24: the system with Hamiltonian

H=1 2+l 24+ 1.g%+ 2 + 1.q2 5.88
SPit5P2 +4ai + 4010, + 4343 (5.88)

is integrable. We can actually rotate the Hamiltonian to a separable one,
obtain the second integral and then rotate black to obtain the invariant
in the original coordinates. So, we set

q; = c0s0Q, + sinbQ,,
qz = —SinfQy + cosbQ,,
p1 = cosOp, + sinbp,,

p2 = —sinfp, + cosOp,,.

The Hamiltonian H will be transformed to new Hamiltonian which is a
function of Qy, @y, py and p,. The coefficient of Q,0Q, in the rotated
Hamiltonian is

(A, —A23)sin260 + A,cos26.

If A; = A3, we choose 6 = Zof Ay # A3, then we choose 0 to satisfy
4

Az

tan20 = :
an Py

Therefore, in the new coordinates the Hamiltonian is separable of the
form

1 1
§P§+§P§ + 11 Q% + +1205.
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We may choose the second integral to be pZ+u,Q%. The second
integral for the original system is

I = (cosOp; — sinfBp,)? + p,(cosBq, — sinbq,)>.

2. ® arbitrary:

In this case, IV has the form

_ 2

V=2 <Q1QZ + T‘ﬁ) + @(q1 — 192)- (5.89)

The corresponding generators are:

T=C6

Q1 = /’lCqu + Czqz + }\dz(t) (590)

1
Q2 = Ccq; + ECZQZ + d,(t)

where d, (t) satisfies the O.D.E. d; + %dz(t) = 0.(A 4- parameter
group).

Remark5.25: Assume A=1. The system with Hamiltonian

1 1
H= Epf + Ep% + 2q1q2 + ©(q1 — q2).  (5.91)

is integrable. We can actually transform the Hamiltonian to a
separable one, obtain the second integral and then rotate back to obtain
the invariant in the original coordinates. So, we set

1,1
ql_ﬁQx \/EQy

1,1,
QZ_\/Ex \/Ey
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1 1
= — + —
p1 \/pr \/ipy
__1 1
p2 \/pr \/Epy

The Hamiltonian H will be transformed to a new Hamiltonian which is a
function of Qy, @y, Dx

and p,. Therefore, in the new coordinates the Hamiltonian is separable
of the form

1 1 A
3PE+ 505+ (V20,) +5 (05 - 03).

We may choose the second integral to be %p,% + @(V2Q,) — %Qf The
second integral for the original system is
1 5 A, 5
I = Z(P1 —p2)° + P(q1 — q2) _Z(‘h —q2)".
3.0 = 2,8 n#0,1,2:

In this case, IV has the form

92

V=2 <CI1CI2 + TCI%) + A3(q, — Ag)™ (5.92)

withn # 0,1, 2.

The generators are:

T = 2¢5t + ¢4

Q1 =c,(Aq1 + q2) — ﬁcs% + Ad, (0). (5.93)
1 4
Q; = (Ch + EQZ) T o 552 + Ad, (1)
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where d, (t) satisfies the O.D.E. d; + %dz (t) = 0.

If A, =0thend,(t) =c3+ c,t and we end-up with a 5-parameter
group. Note that forn = —2 we are in subcase 2a with a 6-parameter
group.

If A, # 0, then we set cs = 0 and we end up with a 4-parameter group (
the same as @ arbitrary).

For example, if V(qy,q92) = —q19, + (q; — q,)° then the Lie algebra is
generated by

X, =(q1+q2) (i"‘i)

dq; 0q;
X3 = cost (i + i)
dq; 0q;
X, = sint (i + i)
dq; 0q;

with (nonzero) bracket relations

[X1, X3] = =X,
[X1, X4] = X3
[X2, X3] = —2X;3
[X2, X4] = —2X,,

This Lie algebra L is solvable with L™ =[L,L] = [X5,X,] and L =
{0}.

On the other hand, the potential V(q,,q,) = (q; — q5)° gives a five
dimensional Lie algebra.
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This Lie algebra is isomorphic with the symmetry Lie algebra for the

potential V(qy, ;) = g3 which we examine later.

4.0 = Age”f:

In this case, IV has the form

2

V=2 <Q1qZ + TQ%) + Azet @4y,

The generators are:

T = 2¢5t + ¢4

4
Q; = c;(Aq1 + q2) — G5 + Ad, ().

1
Q=0 (Ch + ;qz) + Ad,(t)
where d, (t) satisfies the O.D.E. d; + %dz (t) =0.

If A, =0thend,(t) =c3+ c4t and we end-up
group.

If A, # 0 then, we set c; = 0 and we end up with
(the same as @ arbitrary).

(5.94)

(5.95)

with a 5-parameter

a 4-parameter group

The case A=u=1and A, =0is the Toda Lattice, a well-known

integrable system [51], [52]. We will calculate the Lie algebra of

symmetries for the potential of the Toda Lattice V(q,q,) = c?179%2, We

obtain a five dimensional Lie algebra with generators

0
X, =2
17 a¢

X—Zta 4a
S T P

) a
X3 =(q; +q3) (a—%'l‘a—qz)
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%= (504 500)
* dq; 0q;

X—t(a+a)
° 0q, aQZ,

with (nonzero) bracket relations

[X1»X2] =2X;
[X1»X5] = X,
[Xz»X3] = —4X,

[XZJXS] = 2‘)(5
[X3;X4] = —2X,
[X3»X5] = —2X5

This Lie algebra L is solvable with L™ =[L,L] = [X;, X, Xs],L® =
{X,} and L® = {0}.

For the case A, # 0 we obtain a Lie algebra which is identical with the
one in @ arbitrary.

5.® = A3;logé:

Setting A, = 0, V taken the form

V = 23log(q: — 4q2). (5.96)
The generators are:

T = 2¢5t + ¢4

Ql = /’lCqu + C2q2 + 2C5q1 + Adz(t) (597)
1
Q2 = C2q1 + 562G, + 205G, + d,(t)
where d, (t) = c3t + ¢, ( A 5-parameter group)

If A, # 0, the result again is the same as ® arbitrary.
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Sub-case 2e V =2,q9%+®(qq).

We obtain various forms of the generators depending on the form of the
function @.

1. ® arbitrary :
This case, the generators has the form:
T = ¢4
Q. =0. (5.98)

Q; = c4q; + dy (D)

where d,(t) satisfies the O.D.E. d; + 24,d,(t) = 0.( A 4-parameter
group).

2.0 = 2,497, n+ —2,0,1,2:

If A4, =0, then

T = 2¢c5t + ¢4

Q1 = —csq;. (5.99)

2-n
Q2 = C4qy + it + ¢
( A 5-parameter group).

If A, # 0, we set c; = 0. We end up with a 4-parameter group. It is the
same as in @ arbitrary.

We will calculate explicitly the Lie algebra for the potential V(q4,q,) =
q,3. for a basis we choose the following five vector fields:

0
Xl—a

0 0
X2 —ta—qua—ql
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X3 =QZE
2
0
X4—t£
2
d
XS_%’

[XZrX4 = X4
[X3;X4] = —X,
[X3, Xs5] = X5

This Lie algebra L is solvable with L™ =[L,L] = [X{, X, Xs],L® =
{Xs} and L® = {0}.

On the other hand, for the potential V(q;,q;) = %q%+qf we obtain a 4-

parameter group with a basis

0
Xl == a

¥ 0

=q;=—
2 2 34,

X3 = t—

3 = COS 90,

X, = sint—

4 = Sin 30,

This Lie algebra L is also solvable with

LD =[L,L] = [X3, X, ] and L® = {0} . It is isomorphic with Lie algebra
of symmetries of potential (5.92) which we already examined.
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3. (-D = )lze”‘h:

If A, =0, then
T =2c5t + ¢4
Q, = ‘fcs. (5.100)

Q2 = C4qy +dy(t)

where d,(t) satisfies the O.D.E. dj + 24,d,(t) = 0.( A 5-parameter
group).

If A, # 0, we set cg = 0. Itis the same as in ® arbitrary.

4.® = A,logq,:

We set 1; = 0. Then V = A,logg, and the generators have the form:
T = 2cst + ¢4
Q1 = 2¢5q4 (5.101)
Q2 = €4qz + cyt +cg,

( a 5-parameter group).

Remark5.26: the potentials that appear in his case are clearly integrable,
being separable potentials. At this point we have completed the analysis

. . . . L1
of a separable potential with one variable missing. The potential Fwas
1

considered in subcase 2b. Potentials qf forn = 0,1 are covered by
casel. The potential g7 was considered in subcase 2d. The potential
f(qq) falls under subcae 2e.

Sub-case 2f:

Equations (5.63) and (5.64) are satisfied (d,(t) = constant,d,(t) =
constant ). From equations (5.61) and (5.62) we obtain the following
results:
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T =%c3(2 — N)t+c,

Q1 =C3q4 (5.102)
Q2 =39,
a 2-parameter group of transformations. The Lie algebra in this case is
the two- dimensional non-abelian Lie algebra with bracket [X;,X, ] =
%(2 — N)X, if N # 2 and an abelian 2-dimensinal Lie algebra if N = 2.
We should mention that for certain choice of ® we may obtain a larger
symmetry group, e.g. for ®(x) = xV, but generically the Lie algebra is 2-

dimensional. Some values of N will also give different results. For
example, N = -2 falls under sub-case 2c.

Remark5.27: in general, this system is not integrable. However, there
are some integrable examples. We mention the Holt potentials [53],
[54], [55]

1 _2
V(q1,62) = 54, 3(cqs +q3). (5.103)

& w

9
where ¢ = =7 and c = 12.

Also, the Fokos_ Lagerstrom potential [56].

1

V(q1,q2) = (5.104)

.
(q1—q3)73

Case 2f includes Henon — Heiles type potential of the form, cqs +

q?q,. They are integrable for the following values of c:c==,c =

Wl

2 and c = ? 1571, [58], [59].

Finally we mention the potential

q
V(g1 q2) = —. (5.105)

2
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It was shown by Hietarinta [60] that the second integral for this potential
is a transcendental functions i.e. the solutions of the equation

1. y"+ ze — a) y = 0. (5.106)

2 V=2Nlogg, + @ (Z—z)

T == C3t + C6
Q1 = c3q4 (5.107)
Q2 = Cc3q;

a 2-parameter group of transformations. The Lie algebra in this case the
2-dimensional non-abelian Lie algebra with bracket [X;, X, | = X;.

3. V=elt1d(q,)
T = %cst + ¢c¢

0= = (5.108)

Q=0
a 2-parameter group of transformations.

Remark5.28: Taking ®(q,) = e *92 we obtain again the Toda lattice.
However, we already have seen that this system has a 5-parameter
group of transformations. Generically, the symmetry group is a 2-
dimensional. For example, taking V(qy,q,) = e%1q; gives a two-

. , . , . a d
dimensional non-abelian algebra with basis X; = % and X; = to—

0
2—.
0q,

4. V =ett1®(q, — Aq3)

T = —%Aucgt + ¢q
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Q1 = Acg (5.109)

a 2-parameter group of transformations. The Lie algebra is again the 2-

dimensional non-abelian Lie algebra with bracket [X;,X, ] = %Aqu.

Remark5.29: we should mention that because of symmetry we do not
list potentials of the form V((q4,q;) = e*%2®(q, — Aq,). We can also
replace q; — Aq; with agqy + fq, Takingu=1,a =1and f = —2 we
obtain the potential V((qq,q;) = e91792 4 92, This is a generalized
Toda Lattice associated with a Lie algebra of type B,, first considered by
Bogoyavlensky in [61]

1
T = £c5t + ¢q

Cs

Q1= q1 (5.110)

2—n

Cs

Q; qz,

- 2—m
a 2-parameter group of transformations. Here, n # 0,1,2 and m #
0,1,2 and n ,m not both equal to -2. The Lie algebra in this case is the
2-dimensional non-abelian Lie algebra with bracket [X{, X, | = %Xl. The

symmetry Lie algebra for the potentials 6-10satisfies precisely same
bracket relation.

6. V =491 + A,logg, ,n#0,1,2
T = %cst + ¢
Q=2 (5.111)
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Q2 = =42

7. V == /’llq? + Aze#qz
1
T = Ec5t + ¢c¢
Q= Zi_snfh (5.112)
QZ = _%,

8. V = Alogq, + A,logg, ,n#0,1,2
1
T = Ec5t + c¢

Q, = %Ch (5.113)

Cs

Q; = - 42

9. V = A;logq, + 1,e#92

T ==-cst+cq
Q= %Ch (5.114)

Cs

Q; = i

10 V == Aleﬂlql + Azeuzqz

T = %cst + ¢
Q =— = (5.115)
251
Cs
Q =
2 2%
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11. V = ®(g? + q3)

T = C6
Q1 = €19 (5.116)
Q2 = —¢1qs,

a 2-parameter group of transformations. This is a unit mass 2-
dimensional space moving in a central field, i.e. a potential which is a
function of r only. The function q;p, — q,p; is a second integral. Note
that in this case the Lie algebra is abelian.

12. V. =2A(g? + g3, n+*-10,1

T = %cst + c¢
2
Q1= aqy T 16N (5.117)
_ 2
Q=—c1q4 e 16592

a 3-parameter group of transformations. This Lie algebra is 3-
dimensional with only non-zero bracket[X;,X, ] = 2X;. The case

n=—%is a Kepler problem. For n = —1 the Lie algebra is 4-
dimensional, it falls under sub-case 2c. See (5.80) with A= ¢ =0 and
u=1.

Remark5.30:This potential is special case of system 1 with N = 2n.
Takingn = 2, we have a system of the form aq{ + bg?q>s + cq;. In
general (for a, b c non — zero) this system has a 2-dimensional group of

symmetries unless b = 2a = 2c. Generically the potential V(q4,q;) =
aqi + bg?q% + cqy is not integrable, but for certain values of the
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parameters it becomes integrable. That is the case whenb = 6a =
6cora = 16¢c,b = 12cor b = 6a,c = 8a.[53], [62], [63].

13. V = Aog(q? + ¢3)
T = 2c¢5t + ¢4
Q1 = €19 + 2¢5q4 (5.118)

Q2 = —¢1q1 + 2¢5q3,

a 3-parameter group of transformations. The Lie algebra, which is the
same as in the pervious case, may not seem interesting, but inn-
dimensions it is a direct sum of a 2-dimensional Lie algebra with
so(n,R).

2 _ 2
14, v =asint 112
qi + q;
T = 2¢s5t + ¢4
Q1= 1q2 + 2¢5q (5.119)

Q2 = —¢1q;1 + 2¢5q5,

a 3-parameter group of transformations. This potential can be written in
the form A; + 4,0, in polar coordinates. In other words, it is a linear
function of 6.

5.5.3. Generalizations Systems

We consider a Hamiltonian with n degrees of freedom, in n-dimensions
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n
1
H= Ez p? + V(g1 92 0 qn),
i=1

and the associated Lagrange-Newton equations

Gi+V, =0,i=12,..,n (5.120)

As in the case of two degrees of freedom we seek point symmetries of
equations (5.120). We consider the equations

F(Z){‘?i + Vql} =0,
i=12,...,n, (5.121)

where I'® is the second prolongation of

r
n

—Ta+z g 5.122
1=

Equations (5.121) give n identities of the form:

Ei(t,q1, 92 s Qs 41,42, 1 4n) = 0,
i=12..,n (5.123)

. oV : -
where, we have used that g; = 2 The functions E; are explicit

1

polynomialsin ¢, 4y, ..., qy.

We impose the condition that equations (5.123) are identities in the
variables t, q;, g; which are regarded as independent.

Again, the functions T and Q; must be of the form
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4 Z by(t) qs. (5.124)

n n
0= B @+ Y cu®aqe+di(®), =12,
k=1 k=1
We substitute (5.124) into (5.123). By considering the coefficient of g

in E; we obtain the following n? equations:

For j # k,

ov
b ()q; + ¢jj, (t) + ﬁbk = 0. (5.125)

J

Forj =k,

! n " aV 14 aV
26],(0) =" (0) + 36 (094, + 35 by + Z (5 ®a+ 5-0.0)
i#]

=0. (5.126)

It follows from equations (5.125) that V' is quadratic of the form

n n
V=) dat+ ) mar (5.127)
i=1 i=1

unless b;(t) = 0 fori =1,2,...,n.

Substituting (5.127) into (5.126) we obtain

b£,+2/1ibi=0, i=2,3, e,
and
bl + 24,b; = 0, i=23..,1n
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Therefore for non-zero b;(t), we necessarily have
/11:/12 :/13 ="'=An.

Hence, V is of the form

V =

N >

n

2
E qi,
i=1

where, the linear terms are ignored.
We can easily deduce the form of the generators:

a(t), is a solution of a second order equation of the form a’’ + 41a = c.
( 3-prameters).

b;(t), is a solution of b;" + Ab; = 0.( 2n — parameters)
d;(t), is a solution of d;' + Ad; = 0. ( 2n — parameters)

¢;j(t), are constant for i # j and ¢y = ct + ¢, — 2Afa(t)dt. (n* —
parameters)

Therefore, the dimension of the symmetry algebra is 3 + 2n + 2n +
n?=(m+2)??-1.

When A = 0, the potential energy is zero and we have a free particle
moving in R™. In this case the generators take the following simple
form:

a(t) = c¢; + ¢t + ct?)
bi(t) = ai+ Bt
di(t) = y1+6;5t

Cii = €; + ct
Cij = kij' [ i] )

~
~

(5.128)

The dimension is again (n + 2)? — 1.
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This dimension is in agreement with the results in[64], where upper
bounds for dimension of the symmetry groups are obtained.

In case 2, b;(t) =0for i =1,2,..,nand equation (5.126) and (5.127)
imply that

Cjk(t) = kiijT'j:ptk
1,

where cj; are, constants. Equations (5.123) now become

L (60,4 () + i ooV .3 02 i oV
7 9q0q. T2 g, B
k=1 k=1
= 0. (5.129)
for i =1,2,..,n, where
1 n
j=1
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Chapter Six

Applications of Symmetries of Lagrangian and Hamiltonian
Systems

6.1 Particle in Rotationally Invariant Potential

Consider the kinetic and potential energies given by

T=-mf?, V=V(), (6.1)

which give the following Lagrangian in Cartesian coordinates

1
L=om@? + 3% +2%) —V (VxZ+y2+2%), (62)

and in polar coordinates

1 . )
L= Em(fz + 7202 + r2sin? 09?) - V(r), (6.3)

The system is clearly symmetric under all rotations about the origin (the
center of the potential), but we note that expressed in Cartesian
coordinates there is no cyclic coordinate corresponding to these
symmetries. In polar coordinates there is a cyclic coordinate, @. The
corresponding conserved quantity is the conjugate momentum

Py = Z—g = mr2sin?69, (6.4)

and the physical interpretation of pgis as the z-component of the
angular momentum
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(m# x F)Z = m(xy — yx) = mr2sin269, (6.5)

Clearly also the other components of the angular momentum are
conserved, but there is no cyclic coordinate corresponding to these
components.

We use the expression derived to find the conserved quantities
associated with the rotational symmetry. First we note that an
infinitesimal rotation can be expressed in the form

PP =7+ 8dxT (6.6)
or
57 = 8@ X7, (6.7)

where the direction of the vector §&@ specifies the direction of the axis
of rotation and the absolute value da specifies the angle of rotation.

We can explicitly verify that to first order in §& the transformation
(6.6) leaves 72 unchanged. Since the velocity # transforms in the same

way (by time derivative of (6.6)) also, #2is invariant transformation.
Consequently, the Lagrangian is invariant under the infinitesimal
rotations (6.6), which is therefore (as we already should know) a
symmetry transformation of the system.

By use of the expression K = Zk 6qk we find the following

expression for the conserved quantity associates with the symmetry
transformation,

Q)
b‘

m¥. 6r = m(r X r) 50, (6.8)

Since this quantity is conserved for arbitrary, 65, we conclude that the
vector quantity
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[=mFx7? (6.9)

is conserved. This demonstrates that the general expression we found
for a constant of motion reproduces, as expected, the angular
momentum as a constant of motion when particle moves in a
rotationally invariant potential.

6.2 Conservation of the Total Linear and Angular Momentum

We consider a system of N particles interacting together with potential
forces depending on the distances of the particles. This is a Hamiltonian
system with total energy

1 N 1 N i-1
H(p,q) = —z —_PiTPi + zz Vij (lla: = a;l), (6.10)
2 =M i=2 j=1

The q;,p; € R3 represent the position and momentum of the ith
particle of mass m; and Vl-j(r)(i > j) is the interaction potential

between ith and jth particle. The equations of motion read

N
. 1 .
qi = ——Pi pi = zvij(qi -4q;), (6.11)
L .
Jj=1
Here, for, i > j, we have Vi =V = Vl-'j(rl-j)/rij with Trij = ||ql- — qj||.

the conservation of the total linear and angular momentum

N N
P = Z pi, L= Z qi X Pi (6.12)
im1 i=1

is a consequence of the symmetry relation v;; = vj;.
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6.3 Space-Time Translations
Consider the following infinitesimal space-time translation:

xt - x'H = xH — ¥, (6.13)

with € real constants. For scalar or spinor fields we have @;(x) =
@i(x") thus 8@;(x) = 0. under this type of transformation our
Lagrangians remain unchanged so L'(x") = £L(x), therefore, by taking
5L(x) — d,b*(x) = 0 we conclude that d,b*(x) = 0.we can thus,
eliminate the b* term from (3.65) i.e. d,j*(x) = 0. where j#(x) =

_0Lx) 60;(x) + [L(x)Ax* — b*(x)]. and the conserved current is
9[0,0:(x)]

simply given by

w_ 0L
S 5(0,0) "

@ié'v — Let = < 6”®i — Lgl'w> €y, (614)

0(9,9;)

The conservation law d,j* = 0 holds for any arbitrary constants €,,

therefore, we actually have four conserved currents:

OH =0, TH = oL
a(au(bi)

0vQ; — Lg™, (6.15)

with THY the four- momentum tensor. The conserved Noether charges
are given by

0L
p¥ = fdg‘ xT =jd3x(—.6”®i —g°”L>
99,

= Jd:; x(nian)i —govL)
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= fd3X(ﬂi¢l—g°°£—niV¢i) = fd%(}f,?) =(H,p), (6.16)

where we have used 0* = g*vd,, = (0,,—V) = (9;,—0,). As we can
see, the conserved charges are the Hamiltonian and three-momentum
operators.

6.4 Conservative Force and Hamiltonian Vector Field

If the forces on a particle are conservative, the Hamiltonian is

Where the first term is the kinetic energy and the second the potential
energy. We use the canonical symplectic form w = dp A dr. let us work
out explicitly what Xy is. We denote

3
i=1 '

d d %)
Xy = Z (ai (r,p) EP b;(r,p) a) = a(r,p) E
. l
0
+ b(T', p) %, (618)

Then

0 0
—w(Xy,.) =dr Adp (a(r,p)a + b(r, p)%,.)
= a(r,p)dp — b(r,p)dr, (6.19)
We then calculate dH as

i =2 g O 0 vuar+ P a 6.20
_arrapp_ rmp, (6.20)
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Setting the coefficient functions of dH and —w(Xy,.) equal to each

other yields
0 0
aH =22 _yy (6.21)
mor dp

Now let us suppose that y'(t) = Xy(y(t)). Likewise if y(t) satisfies
y'® = X, (y(£)), then y(t) solves the equations of motion. This
demonstrates that the symplectic form encodes the equations of motion
into our Hamiltonian system, and that the vector field Xy points along
physical trajectories. When dealing with non-conservative forces, such
as magnetic forces, the symplectic form is not always the canonical one
and Hamiltonian function does not always correspond to total energy.
Ultimately the goal is to choose w and H so as to best encode into our
system the equations of motion given by Newton's second law.

Despite the ambiguity in choice of w and H, the vector field Xy
always points along the direction of constant H, i.e. Xy is tangent to the
level sets of H. We take advantage of the partial differentiation notation
for Xy to define

X, H = o e 2 - anx 6.22
H _a(r’p a,r (T,p ap - H)' ( . )

6.5 Simple Harmonic Motion

Consider a particle of mass m moving in a one dimensional Hookeian

force field - kx, where k is a constant the potential functionV =V (x)
corresponding to this force field satisfies

av (" _1 .,
P oV - = fo K = V() =5k (623)
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The Lagrangian L =T — V is thus given by

: 1 1
L(x,%) = mez - Ekxz, (6.24)

From Hamilton's principle the equations of motion are given by
Lagrange's equations. Here, taking the generalized coordinate to be
q = x, the single Lagrange equation is

d 6L> aL_
%(% ax

Using the form for the Lagrangian above we find that

oL _ k daL— X 6.25
—=—kx, and —=mi, (6.25)

And so Lagrange's equation of motion becomes
mX + kx =0, (6 26)
6.6 Kepler Problem

The kepler problem for a mass m moving in an inverse-square central
force field with characteristic coefficient u. The Lagrangian L =T =V is

L1 .
L(r,7,6,6) = 5m(r? +72 67) + =7, (6.27)

Hence the generalized momenta are
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o_ . oL
=—=mr an = —
Pr Peo PY:

P = mr?0, (6.28)

These imply 7 = p,/m and 6 = py/mr? and so the Hamiltonian is
given by

H(r,0,p.,p9) =y + Opg — L(r,7,6,0)

1 P4 1 (p? Pé um
R S R o N 2
_m<pr+r2) <2m<m2+r m2r4 T r

1(p} b5\ um
=2 (422 ) -2 (6.2
2<m+r mr?2 r , (6:29)

which in this case is also the total energy. Hamilton's equations of
motion are

= 0H/dp, © 1 =p./m
0= 0H/0py & 0 =py/mr?
pr= —0H/0r & p, =ps/mr®—pum/r?
Po =— 0H/00 < pg = 0.

Note: for pg = 0, we have that pgy is constant for the motion. This
property corresponds to the conservation of angular momentum.

6.7 An Optimal Control Problem

Consider the following distributional system in R?( driftless control
affine system):

2

-1 _ ,,1 2.1
Sk u (6.30)
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Let x, and x; be two points in R2. An optimal control problem consists
of finding the trajectories of our control system which connect x, and x;
and minimizing the Lagrangian

T
minj L(u(x))dt, L(w) = %((ul)2 + (1?)?),x(0) = xq, x(T)
0

=x,, (6.31)

. dxt . . .
where x' = Eand ul,u? are control variables. Using the Pontryagin

Maximum principle, we find the Hamiltonian function on the cotangent
bundle T*R? in the form

. 1
HOpw) = it — L= pr(ut +u2xh) + pyu? = 2 (@2 + @)?),

(6.32)

. _ 0 .
with the condition £ = 0, which leads to u' = p; u® = p;x' + p,. we

obtain
1 2 172 1 2
H(x,p) = §(p1(1+ (x7)%) + 2p1p2x” + p3)
1
= E(Pf + (P1x1 + Pz)z);
(6.33)
and it result
6H_ 1+ () + L 6H_ -
ap, =P1 X p2Xx", p, = p1Xx P2,

230



0H J0H

ﬁ=p12x1+p1p2, @=0

The Hamilton's equations lead to the following system of differential
equations

xt =p (1 + (x1)?) + pox?!
2 1

LGN (6.34)
p; = —p1(p1x* + p3)

pz = 0 —1 pZ =ct

The Hessian matrix of H with respect to p is

g 0%H 1 142 1
o - LI (14

= L, =1,2 6.35
dp;0p; X 1) / ( )

and it result that H is regular (rank|g”(x,p)|| = 2) and its inverse
matrix has the form

o1
gy = (" o) (6:36)

The adapted tangent structure is given by

0 0 0

Jy=dx' Q@ — —x1dx' @ — — x¥dx* ® — + (1 + (x1)?)dx?
" 0p; 0p> dp; ( ( )
d

& —,
ap;

(6.37)

The Jy regular vector field is the Hamiltonian vector field from the
equation (5.19) i.e.
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_0H 0 0H 0
~ Op; 0xt  dxidp;

Pu

So that

) d
py = (p1 (1 + (xH)?) + pox?) Fpis p1(p1x* + py2) 322

— (2 4 pypy)—— (637)
1 1 2 aplf .

and from proposition(5.8) is a infinitesimal Noether symmetry for the
dynamics induced by the regular Hamiltonian H. Moreover, if

X = pzaa?then [py, X] =0 and it result that X is an infinitesimal

symmetry for the Hamiltonian vector field py.

The local coefficients of the canonical nonlinear connection (5.20) have
the following form

Ny; = _(P1x1 + p2),
Ny = =x*(1 4 (x1)?) + pox?t
Ny, = Npy = xl(plxl + p2)

By straightforward computation we obtain that

_O0H O0H 9 _0H 3
Pu = 6pl-6xi 6pl Uap]_apl&cl'

(6.38)

And it results that the Hamiltonian vector field is a horizontal Jy_
regular vector field. In this case we obtain that the Jacobi endomorphism
(5.21) is given by
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0H
Rij = Ryij ap. (6.39)

where R;;; are the local coefficients from

ONjx 6Ny
W = oy

of the curvature of the canonical nonlinear connection with nonzero
components

Rip = 2P1x1 +p2 = —R311
Ry = p1 +2p1(x1)? + pyx! = —Ryy,.  (6.40)

Also, Vpy = Dy ,py = 0 and it result that the integral curves of

horizontal Hamiltonian vector field py are geodesics of the Berwald
Linear connection.

6.8 Straight Line R Is Connection (Geodesics) Between Two Points.

We consider application of the rules of the variational calculus to prove
the well-known result that a straight line | R is the shortest
connection(geodesics) between two points (x;,y;) and (x,,y,). Let us
assume that the two points are connected by the path y(x), y(x;) =
Y1, Y(x3)=y,. The length of such path can be determined starting from
the fact that the incremental length ds in going from point

(x,y(x))to (x +ds,y(x + ds))is

2 2

ds = \/(dx)z + (% dx) =dx |1+ (3—?:) , (6.41)
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The total path Length is then given by the integral

s = fxldx ’1 + (Z—Z)Z (6.42)

S is a functional of y(x) of the type S[G(t)] = fti,l dtL(q(t),q(t),t)
with

L(y(0,2) =1+ [@y/dx)?. (6.43)

The shortest path is an external of s[y(x)] which must, according to the
theorems above, obey the Euler-Lagrange condition reads

i(a_L) _4 y —0, (6.64)
dx \dy dx \/T(y')z

From this follows y'/\/1+ (y")? = constant and hence, y' =
conatant. this in turn yields y(x) = ax + b. the constants a and b are

readily identified through the condition y(x;) = y; and y(x;) = y,. One
obtains

Yi—Y2

X1 — X3

y(x) = (x —x3) + y2, (6.65).

6.9 Infinitesimal Transformations

An advantage of infinitesimal transformations is that they can be stated
in very simple manner [11], [20]. In case of a translation transformation
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in the direction é nothing new is gained. However, we like to provide the
transformation as

P =7+eé, (6.66)

A non-trivial example is furnished by the infinitesimal rotation around
axis é

P =FtebxT, (6.67)

| would Like to derive this transformation in a somewhat complicated,
but nevertheless instructive way considering rotations around the
X3 — axis. In this case the transformation can be written in matrix form

X cose —sine 0\ /%1
xy | =| sine cose 0]|*2], (6.68)
x} 0 0 0/\x

[T

In case of small € this transformation can be written neglecting terms
0(€?) using case cose = 1 + 0(€?), sine = 1+ 0(€?)

X X1 0 —€ 0 X1
Xy | = (xz) + (e 0 0) <x2> + 0(€?), (6.69)
x5 X3 0 0 0/ \X3

One can readily verify that in case & = &;(&; denoting the unit vector in

[N

the direction of the x; — axis) (6.67) read

=1

r = F - xZél + xléz ’ (6. 70)

which is equivalent to (6.69).
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any time, a classical mechanical system is invariant with respect to a
coordinate transformation a constant of motion exists, i.e., a quantity

C(7, ?) which is constant along the classical path of the system. We have
used there the notation corresponding to single particle motion,
however, the property holds for any system.

The property has been shown to hold in a more general context, namely
for fields rather than only for particle motion, by Noether. We consider
here only the 'particle version' of the theorem. Before the starting on
this theorem we will comment on what is meant by the statement that a
classical mechanical system is invariant under a coordinate
transformation. In the context of Lagrangian mechanics this implies that
such transformation leaves the Lagrangian of the system unchanged (the
theorem (4.3)).

6.10 The Boussinesq Equation

The Boussinesqg equation is not the Euler-Lagrange equation for any
variational problem. However, replacing u by u,,, we form the
"potential Boussinesq equation" [46]

1
Uyxtt + EDJ% (uazcx) + Uxxexxx = 0, (6.71)

which is the Euler-Lagrange equation for variational problem

1 1 1
Llu] = j j [Eu,zct + guix — Eu,zcxx dx A dt, (6.72)

The symmetry group of the potential form (6.71) is spanned by the
translation and scaling vector fields

Vi = Oy, Vy = 0, vy = x0d, + 2t0;, (6.73)

And the two infinite families of vector fields
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Ve = f(t)au, Vp = h(t)xau, (674‘)

Where f(t) and h(t) are arbitrary functions of t; the corresponding
group action

uru+ f(t)+ h(t)x indicates the ambiguity in our choice of
potential. (Compare with the symmetry group of the usual form of the
Boussinesq equation.) The most general varational symmetry is found by
substituting a general symmetry vector field

V = C1V1 + €V + Cc3V3 + Yy + v, into  the infinitesimal criterion
(v™ (L) + LDivé = 0), which requires that

1
263 (—3u2, +ud, — 3u2,,) + ' (Ou,, =0, (6.75)

Therefore c; = 0 and h is constant, hence the two translations, and the
groupu = u + cx + f(t), with c constant, are variational, whereas the
scaling and the more general fields v;, h not constant, are not ordinary
variational symmetries, but do define divergence symmetries, in the
following sense:

A vector field v is divergence symmetry of a variational problem with
Lagrangian L if and only if it satisfies

v™ (L) + LDivé = DivB, (6.76)
For, some p- tuple of functions B = (BL e Bp).

A divergence symmetry is a divergence self- equivalence of the
Lagrangian form, so that (4.38) holds modulo an exact p- form d=. The
divergence symmetry groups form the most general class of symmetries
related to conservation laws.
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