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Abstract 
 

This study proposes the usage of enhanced activation function to improve the performance 

of deep learning models used in MRI brain tumour segmentation. Activation function has a 

significant role in deep network stability, learning rate and accuracy of the resultant 

solution. The main advantage of this new activation function is the ability to provide more 

accurate results solving the problem of vanishing gradient in comparison to the common 

activation functions “ReLU”. Vanishing gradient affects the training rate and therefore, the 

weight updates and the overall network accuracy. This work aims to study the feasibility of 

increasing the accuracy of deep learning brain tumour segmentation using an enhanced 

activation function. In this study, U-Net deep learning model was chosen. A modified U-

Net architecture was built for the segmentation task. Several enhanced activation functions 

were used besides the standard ReLU. The benchmark database used for the evaluation was 

BRAST 2015 dataset.  The results showed that the HardELiSH activation function 

outperformed the standard ReLU activation function. This proves that the deep learning 

model performance in brain tumour segmentation can be enhanced with the choice of the 

activation function. 
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 المستخلص
 

ورم اليد ج  ايجلرمي   شيخي لتحسيي  ددا  مايج ا اليت ال ال اييم الاسيتخد ة  ي  ت نشيطاستخدام دالة التتقترح هذه الدراسة 

  دورًا  هاًج    استقرار الشبكة ال ايقه و  دل الت ال ودقة تحايل النتجتج. نشيطتا ب دالة التكاج الاغنجطيس . 

  التيييدر التلاشييي  الجدييييدل هييي  القيييدرل  ايييج تييي  ير متيييجيج داخييير دقييية لحيييل  شيييكاة ا ت يييج   نشييييطالاييييال الرييسيييية لدالييية الت

   (ReLU). الشجي ه نشيطالت قجرمة بدالة اللامهجي  

لشيبكة حيديخج  الي  و ودقية اتييثثر  ايج اللامهيجي   ايج   يدل التيدربب واجلتيجل    التيدر التلاشي   دثبتت الدراسية تييثير  

ل ال اييييم ورم اليييد ج  ايييجلت ا شيييخي  بيييجدل دقييية ت الا دلييية لاهاييية U-Net يهيييدذ هيييذا ال ايييل  ليييج دراسييية  يييدو   الكايييية. 

الاحسينة  نشييطلتدوال استخدام ال ديد    اإ U-Net   .    هذه الدراسة ، تل ا تيجر ما  ا حسنة نشيطدالة ت اجستخدام

دظهير  النتيجيج دو دالية بيجمج   ي  التقيييل.  قج دل  ستخدا ت ك BRATS2015 (ReLU).شجي ة الاستخدام لج  جمب 

ددا  مايي  ا الييت ال  طيي برت دمييه كاكيي  تتييثبد ه الدراسييةهييذ .ReLU نشيييط ت  قييت  اييج داليية الت HardELiSHالتنشيييط 

 .نشيطدالة التالدقيم ل  تيجراجلإالد ج  ورم  تشخي ال ايم    
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CHAPTER ONE 

INTRODUCTION 

1.1 General view 

Brain tumor is abnormal growth of cells in the brain. It is one of the most challenges 

disease nowadays in the world because it causes death to people suffering from it. Glial 

cells are the cause of gliomas that are the most common brain tumors. Gliomas are usually 

classified into low-grade gliomas (LGG) and high grade gliomas (HGG) which are 

malignant and more aggressive. According to the American Brain Tumor Association 

(ABTA). High-grade glioblastoma (HGGs) represent 74% of all malignant tumors and 26% 

of all primary brain tumors. World Health Organization (WHO) categorize HGGs as stage 

IV brain cancer [1]. So that, People who have such kind of this disease their predictions of 

survival in life is less than two years [2]. Such kinds of this diseases are difficult to treat if 

they are not diagnosed early in an appropriate and accurate way. Furthermore, the location 

of the tumor in the brain makes it so difficult to diagnose easily. 

Magnetic Resonance Imaging (MRI) is a device used to scan different kinds of tumors in 

the brain, due to its excellent soft tissue contrast and capability for functional imaging it is 

used to locate the shape, size and location of the tumor in the brain. However, the 

diagnosing of the shape, size and location of the tumor in the early stage help to increase 

the patient life time[3]. The accurate delineation of tumor region in MRI sequences is of 

great importance since it allows volumetric measurement of the tumor, monitoring of tumor 

growth in the patient between multiple MRI scans and treatment planning with follow-up 

evaluation, including the prediction of overall survival[4].  

There are different types of Brain tumors that are heterogeneous in appearance and shape 

which make MRI segmentation one of the most challenging tasks in medical image 

analysis. However, the segmentation for brain tumor are two types; either manual 

segmentation or automatical segmentation. Manual segmentation is not the appropriate 

method for diagnosis because it is time consuming and subjects to errors. Time consuming 

and less efficient results contribute to less accurate diagnoses. It has pointed inefficient 

results compared to automatic segmentations. Hence, the automatic segmentation is the best 

method to solve such problems faced by earlier methods.          
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With improvement and advancement in technology a new method has appeared recently 

which is automatically and perfectly detects the brain tumor, this method is called deep 

convolution neural network (DCNN). It has approved to be the best method to detect the 

brain tumor and most widely used nowadays. It is most powerful technique which 

outperforms traditional methods.  

In previous years’ neural networks have emerged in many applications in medical field 

which are used in diagnosing some diseases [5]. Neural networks have been successfully 

implemented in diagnosis, prediction, identify, classify, detect, and monitoring of cancer. 

Machine learning also as a field of neural networks has branched into different technique 

[6]. One of the most important techniques that has appeared in recent years is deep 

learning, which has proved to be the most powerful technique in detection and diagnosing 

tumors in the body. Specifically, the brain tumor detection. 

Deep neural networks (DNNs) or deep learnings are the current area for research in many 

applications which are a part of broad field of the artificial intelligence. It is a class of 

neural networks characterized by a significant number of layers of neurons [7]. 

DNNs combines between science and engineering for creating intelligent machines that 

have powerful mechanisms to deal with machines like humans do. It works based on 

supervised and unsupervised learnings, the supervised learnings are used for classifications 

of cancer which are very effective method for diagnosis and treatment [7]. 

The BraTS challenge started on 2012 and since then, it has always been focusing on the 

evaluation of state-of-the-art methods for the segmentation of brain tumors in multimodal 

magnetic resonance imaging (MRI) scans [8]. The last iteration, BraTS 2018 utilizes multi-

institutional pre-operative MRI scans and focused on the segmentation of intrinsically 

heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas [9]. 

However, BraTS challenges play an important role in increasing the diagnosis accuracy 

through the evaluation of dice score for the segmented tumor. 

1.2 Problem Statement 

Brain cancer is the most dangerous disease in the world. Hence, it is the most difficult part 

to diagnose and treat in the body. Therefore, we need an accurate and efficient diagnosing 

method for earlier treatment of the patients in order to safe their life.  
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The shape of brain tumour is unpredictable and its segmentation represent one of the most 

challenging tasks in medical image analysis. 

Manual segmentations are time consuming compared with automatic segmentation. 

Deep learning based methods are the top ranked in the task of MRI brain tumour 

segmentation. However, the problem of vanishing gradient influenced the overall accuracy 

due to the inappropriate selection of activation functions.  

1.3 Objective 

1.3.1 General objectives 
To apply deep learning model for accurate brain tumour segmentation. 

1.3.2 Specific objective 
1. To implement of 2D data with small patches to lower the computations process. 

Therefore, increasing the accuracy of detection.  

2. To apply new activation function ‘HardELiSH’ to avoid vanishing gradient 

problem. 

1.4 Thesis layout 

This thesis is constructed from five chapters. The first chapter consists of general overview, 

statement of the problem and aim of the study. The second chapter is focused on the brain 

tumour and its types and causes, furthermore, MRI structure, artificial neural network, 

background on deep learning and literature review. The third chapter proposes the 

methodology of the study. The forth chapter explains the results and discussions while the 

fifth chapter represents the conclusion and recommendations. 
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CHAPTER TWO 

Background and Literature Review 

 

2.1 Brain Tumor 
Tumor is uncontrolled abnormal growth of cells. It harms the healthy tissues and starts to 

spread in different sides and parts in the body leading to destroy tissue functions that cause 

death with time if are not diagnosed and treated earlier. However, the development of cell 

is controlled by DNAs. DNAs contain sequences that control gene expression. 

Tumors in the brain begin when normal cells acquire some abnormal signs in mutations in 

their DNA which allow the cells to grow and divide. Hence, normal cells start to 

dysfunction and die, so that, the result of this process is soft and spongy mass of tissues 

called brain tumors. 

2.1.1 Types of brain tumors 
There are two main types of brain tumor, Primary brain tumor and secondary brain tumors 

in which Primary brain tumor initializes in the brain [10] such locations; brain-covering 

membranes (meninges), cranial nerves, pituitary gland or pineal gland. Primary brain 

tumors are much less common than are secondary brain tumors, in which the secondary 

brain tumor begins elsewhere and spreads to the brain. 

There are many different types of primary brain tumors such as acoustic neuroma 

(schwannoma), Astrocytoma, also known as glioma, which includes anaplastic astrocytoma 

and glioblastoma, ependymoma, ependymoblastoma, germ cell tumor, medulloblastoma, 

meningioma, neuroblastoma, oligodendroglioma, and pineoblastoma. 

 Secondary brain tumors (metastatic) are tumors that result from cancer that begins 

elsewhere in the body and then spreads (metastasizes) to the brain. They most often occur 

in people who have a history of cancer.  The most common types of cancer that can spread 

to the brain are breast cancer, colon cancer, kidney cancer, lung cancer, and melanoma. 

2.1.2 Stages of brain tumors  
There are four stages for brain tumor, first stage occurs when tissues are composed of 

benign cells which are very similar to brain cells and grow slowly. While, second stage 

happens when the tissues are composed of malignant cells which contains more abnormal 

cells than cells in fist stage which is benign and has less abnormal cells. Hence, in the third 
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stage the tissues are composed of malignant cells and grow quickly. Finally, the fourth 

stage in which the tissues are malignant cells and grow more rapidly than third stage. 

Brain tumor are two types, benign tumor and malignant tumor. Hence, benign tumor grows 

slowly and rarely spread to other parts in the brain but may cause some pressures on 

surrounding tissues. It may sometimes transform to malignant  [10] and this process called 

malignant transformation.[11]. The most common types of benign brain tumors are:  

Meningioma’s: these tumors arise from arachnoid matter and they are benign of stage one. 

These tumors represent around 34% of primary brain tumors, Acoustic Neuroma which is 

benign tumor of the nerve of hearing. It is located in the angle between cerebellum and the 

pons. Furthermore, chondroma which is also a benign tumor which arises in the base of the 

skull. Craniopharyngioma is rarely occurs which is benign tumor that forms above the 

pituitary gland. One more type is called Cysticastrocytomas, which  are benign  in the form 

of stage one, these are usually treated through surgical removal [12]. 

Coming to the malignant brain tumors, unlike benign tumors, malignant tumor is a type of 

tumor that spreads quickly which is very harmful and cause death and affects others parts in 

the brain and in the body if not treated early. Furthermore, it can come back after treated 

[13] (Lois et al. 2007). The most common types of malignant tumors are: High-grade 

astrocytomas, Oligodendrogliomas, Ependymomas, Glioblastoma, and Mixed gliomas. 

 2.1.3 Magnetic Resonance Imaging (MRI) 
Magnetic resonance imaging (MRI) is a noninvasive technique which is used for 

diagnosing the diseases through producing details images about specific part inside the 

body. It uses strong magnetic fields and radio waves. It depends on the relaxation 

properties of protein nuclei in water and lipids. It has many functions such as, employs 

nonionizing radio frequency signals to obtain its images, detects various features in tissues 

via varying scanning parameters, creates cross sectional images besides oblique planes, and 

superior to detect and identify tumors [14].  

Different types of MRI modalities used in segmenting and extracting tumour regions: 

a) FLAIR images: Fluid-Attenuated Inversion-Recovery MRI: bright signal of the CSF 

(cerebrospinal fluid) is suppressed which allows a better detection of small hyper-

intense lesions 
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b) T1-weighted MRI: image contrast is based predominantly on the T1 (longitudinal) 

relaxation time of tissue, tissue with short T1 relaxation time appears brighter 

(hyper intense). 

c) T2-weighted MRI: image contrast is based predominantly on the T2 (transverse) 

relaxation time of tissue, tissue with long T2 relaxation time appears brighter (hyper 

intense). 

d) T1-weighted MRI after administration of contrast media (T1c): many tumours show 

signal enhancement after administration of contrast agent. 

 

 

Figure 2. 1: Different modalities of MRI. 

 

Usually, an expert radiologist uses MRI technique to generate a sequence of images (Flair, 

T1, T1 contrast, T2 ...etc.) to identify different regions of tumor. This variety of images 

helps radiologists and people working in this field to extract different types of information 

about the tumor (shape volume ...etc.) Fully Automatic Brain Tumor Segmentation using 

End-to-End Incremental Deep Neural Networks in MRI images, [15]. 

MR images have multiple imaging file formats which describe how the data is organized in 

the image file and how these images should be interpreted for correct loading and 
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visualization. Some formats have a separate header file illustrating the data contained in the 

data file while others support the storage of the header and data in one file. 

2.1.4 Machine Learning 
Machine Learning is a field of study that gives computers the capability to learn without 

being explicitly programmed. It is one of the most exciting technologies that we have ever 

come across. It has the ability to learn the computer similar to humans. Machine learning is 

classified into three types: Supervised learning which works under the supervision of a 

teacher similar to human, unsupervised learning where this type learns from its own 

without any association response, and reinforcement learning which connected to 

applications for which the algorithm must make decisions. 

2.1.5 Artificial Neural Networks (ANNs) are a machine learning technique based 

on biological neural networks (BNN). It is also known as a “Neural Nets” which are a 

computational tool modeled through the interaction of neuron in the nervous system of the 

human brain and other organisms,[16].  

Artificial Neural Networks, in general, is a biologically inspired network of artificial 

neurons applied on computer to perform specific tasks. The neurons are the basic 

processing element in the ANN. These neurons are not the same as the neurons in the 

human body but in terms of functionality, they work in the same manner. Hence, they are 

named as artificial neurons. They have a normal range of output between (-1, +1). These 

neurons could also be (0, 1) compute the sum of weighted inputs and then applied a non-

linear transfer function to the computed sum[16].  

Neural network is known as  “Neural Net”  which refers to both the biological and artificial 

networks. Mathematically, neural nets are nonlinear. It is a sequence of layer, each layer 

represents a non-linear combination of non-linear functions from the previous layer. 

Neurons in an ANN are arranged into layers. Each neuron is a multiple-input, multiple-

output (MIMO) system that receives signals from the inputs, produces a resultant signal, 

and transmits that signal to all outputs.  

Practically, the input layer is the first layer that interacts the environment and the final layer 

is called output layer.  Layers between the input and the output layer are known as hidden 

layers. By increasing the number of layers the complexity of an ANN increases, and thus its 
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computational capacity requires the addition of more hidden layers, and more neurons per 

layer[16]. 

                                        

(a)                                                                                                       (b) 

Figure 2. 2: Atypical diagram for biological neuron (a) and its application in ANN (b). 

The dendrite receives signals from other neurons; soma (cell body) sums all the coming signals 

to generate input. Hence, axon transmits signals from one neuron to another. When the sums 

reach a threshold value, the neuron is fired and begins to transmit while synapses place of 

interaction of one neuron with others. The amount of signal transmitted depends on the synaptic 

weights.                                                  

The dendrites in the Biological Neural Network are analogous to the weighted inputs based 

on their synaptic interconnection in the Artificial Neural Network. The cell body is 

comparable to the artificial neuron unit in the Artificial Neural Network which also 

comprises of summation and threshold unit. Axon carries output that is analogous to the 

output unit in case of aartificial neural network. So, ANN is modelled using the working of 

basic biological neurons. 

The similarity of Artificial Neural Networks with Biological Neural Network in which 

neural networks resemble the human brain in which neural network acquires knowledge 

through learning. Hence, the knowledge is stored within inter-neuron connection strengths 

known as synaptic weights. 

Neural network archeticture: 
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(a)                                     (b) 

Figure 2. 3: (a) Simple neural network , (b) Connections to a neuron in the brain[7]. 

The inputs (𝑥1, 𝑥2, …..𝑥𝑖) and the weights (𝑤1, 𝑤2, .......𝑤𝑖) are real numbers and can be 

positive or negative. All the inputs are individually added together and passes into 

activation function [7]. 

Each neuron can be seen as a connection between a lower and a higher layer. However, the 

general structure is multiplying of the input by weight, adding a bias and executing an 

activation function. Thus, its mathematical operation can be written as: 

𝑦1 = 𝑓(∑𝑤𝑖 ∗ 𝑥𝑖 + 𝑏)……                            (1) 

where f: the activation function, w: the weights and b: the bias[7] . 

As shown in the figure (2.3) ANN can be viewed as weights in which artificial neurons are 

nodes, between the neuron outputs and neuron inputs the edges with weights are connected. 

The ANN receives information inputs in the form of images in vector form. These inputs 

are mathematically designated by the notation x(n) for n number of inputs. Each input is 

multiplied by its corresponding weights. Weights are the information used by the neural 

network to solve a problem. Typically, the strength of the interconnection between neurons 

inside the Neural Network is represented by weight. The weighted inputs are all summed 

up inside computing unit (artificial neuron). In case the weighted sum is zero, bias is added 

to make the output non- zero or to scale up the system response. The input and weight for 

bias is always equal one.  

Today, ANN represents a major extension to computation. It provides better results and 

performance than the traditional statistical tools for the prediction and classification 

purposes in various applications[17]. ANNs offer short computation times, low 

computational burden and the opportunity of reformulating the problem thereby 



10 
 

considering only on the important variables and parameters from the given data set or 

certain unknown areas of interest. There are different types of neural networks that are 

designed and developed for various applications[16].  

2.1.6 Deep Learning 
In recent years, deep artificial neural networks have won numerous contests in pattern 

recognition and machine learning[18]. It has recently become very popular and it is now 

successfully applied for a wide range of applications. However, as more complex and 

deeper networks are of interest, strategies are required to make neural network training 

more efficient and more stable. 

 

Figure 2. 4: Deep learning as a sub-branch of neural network 

 

To learn representations of data, we use computational models which are composed with 

multiple processing. These methods have improved the state-of-the-art in speech 

recognition, visual object recognition, object detection and many other domains such as 

drug discovery and genomics. deep learning has made a great revolution in identifying, 

classifying, and quantifying patterns in medical images [19].  

Deep learning discovers complex structure in large data sets by using the back propagation 

algorithm to indicate how a machine should change its internal parameters that are used to 

compute the representation in each layer from the representation in the previous layer. Deep 

convolutional networks have made a huge impact in developing processing images, video, 
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speech and audio, whereas recurrent networks have shone light on sequential data such as 

text and speech [20]. 

 

Figure 2. 5: Deep learning  neural network structure [21]. 

Impressive improvements by deep learning, over other machine learning techniques in the 

literature, have been demonstrated. Those successes have been attractive enough to draw an 

attention of researchers in the field of computational medical imaging to investigate the 

potential of deep learning in medical images acquired with CT, MRI, PET, and X-ray, for 

example. [19]. 

Deep learning is a sub-branch of neural networks. It is characterized by a significant 

number of layers of neurons. Therfore, it is  a super powerful technique that has appeared in 

recent years which works based on convolution neural network. 

Compared with traditional methods, deep learning neural network has proved to be the 

most powerful method detects the tumor in a very automatic and accurate way. It has the 

ability to be trained with large database. Furthermore, it is fast in computations and gives 

results with high accuracy. Today deep learning is booming at a much higher rate than any 

before because of the following possible reasons; increasing dataset sizes, increasing model 

sizes, and increasing accuracy, complexity and real-world impact. 

The main reasons behind the great success of deep learning over traditional machine 

learning models is the advancements in neural networks in which it learns high-level 

features from data in an incremental manner, which eliminates the need of domain expertise 

and hard feature extraction. And it solves the problem in an end to end manner. 

Furthermore, the appearance of GPU and GPU-computing libraries make the model can be 
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trained 10 to 30 times faster than on CPUs. And the open source software packages provide 

efficient GPU implementations. Finally, several available efficient optimization techniques 

also contribute the final success of deep learning, such as dropout, batch normalization, 

Adam optimizer and others, ReLU activation function and its variants, with that, we can 

update the weights and obtain the optimal performance[22]. 

2.1.7 Convolutional Neural Networks  
CNNs are  an outstanding branch of deep learning applications to visual purposes. Theses 

networks are made up of neurons with learnable weights and biases. Hence, CNNs work 

based on a feed-forward neural network and are widely used for image recognition and 

classification. Each neuron receives several inputs and takes a weighted sum over them, 

which passes them through activation function that has been selected to responds with 

output. 

CNNs operate with volumes with inputs of multi-channelled images, unlike the neural 

networks which operate in vectors[4]. However, CNNs based models have proved their 

effectiveness and superiority over traditional medical image segmentation algorithms [10]. 

Due to the lack of labelled training data and computational power limitations (since 1990), 

it was not possible to train deep CNNs without over-fitting. As a result, proposals in this 

field were discontinued for some years. Therefore, traditional methods were used for 

segmentations. With time, graphics processing units (GPUs) have been created which are 

more powerful and capable for more training datasets. CNNs learn the relationships among 

the pixels of input images by extracting representative features using convolution and 

pooling operations. 

 

                                                         
Figure 2. 6: CNN architecture [11]. 
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From the figure (2.6) shown above, the output of each convolution operation at each layer 

is activated using activation functions before applying pooling operations.  

The convolution operation produces different numbers of feature maps, depending on the 

numbers of filters are used. The pooling operations reduce the spatial dimensions of each 

feature map. After convolution and pooling the layers, the feature maps are flattened in the 

fully connected layer before a prediction is made using linear classifiers [11]. 

The neurons in the input layer receive some values and propagate them to the neurons in 

the middle layer of the network, which is also frequently called a ‘hidden layer’.  

(CNNs) Image segmentation with CNN involves feeding segments of an image as input 

to a convolutional neural network, which labels the pixels. The CNN cannot process the 

whole image at once. It scans the image, looking at a small “filter” of several pixels each 

time until it has mapped the entire image.  

Advantages of using  CNNs in brain tumor detection 

 Automatic learning techniques 

 Well-engineered algorithms 

 Deal with high dimensional data 

 Slight shift invariance is achieved using pooling layer 

 Very deep CNN architectures replaced the conventional convolutional layer with 

more powerful representation while using less computational resources 

 CNNs operate with volumes with inputs of multi-channelled images, unlike the 

neural networks which operate in vectors 

 CNNs have proved their effectiveness and superiority over traditional medical 

image segmentation algorithms 

 CNNs update their weights after calculating the error of each batch. 

Fully Convolution Networks (FCNs) use convolutional layers to process varying input 

sizes and can work faster. The final output layer has a large receptive field and 

corresponds to the height and width of the image, while the number of channels 

corresponds to the number of classes. In order to determine the context of the image, 

including the location of objects, the convolutional layers classify every pixel. 
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Ensemble learning Synthesizes the results of two or more related analytical models into a 

single spread. We can increase the prediction accuracy and reduce generalization error by 

using ensemble learning. It enables accurate classification and segmentation of images 

through the generation a set of weak base-learners that classify parts of the image, and 

combine their output, instead of trying to create one single optimal learner. 

Classification of ANN 

Feedforward neural network 

The feedforward neural network is type of artificial neural network. It works based on the 

flow of information in one direction from the input nodes through the hidden layers and to 

the output nodes. There is no loops in the network. 

Single layer perceptron 

It is another type of ANN which consists of a single layer of output nodes, the inputs are 

connected directly to the outputs by a series of weights. In each node the sum of the 

products of the weights and the inputs is calculated. If the value is above some threshold 

(typically 0) the neuron fires and takes the activated value (typically 1); otherwise it takes 

the deactivated value (typically -1).  

Multi- layer percept ron(MLP) 

MLP consists of multiple layers of computational units which interconnected in a feed-

forward way. Each neuron is connected from one layer to the neurons of the subsequent 

layer. In this networks a sigmoid function appliesd as an activation function. 

The most popular technique used in MLP is back propagation Here, the output values are 

compared with the correct answer to compute the value of some predefined error-function. 

By various techniques, the error is then fed back through the network. Using this 

information, in order to reduce the value of the error function by some small amount the 

algorithm adjusts the weights of each connection. After repeating this process for a 

sufficiently large number of training cycles, the network will usually converge to some 

state where the error of the calculations is small [23]. 
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Backpropagation neural network 

Backpropagation is a supervised learning algorithm, for training Multi-layer Perceptrons 

(Artificial  Neural Networks). 

The Backpropagation algorithm uses delta rule or gradient descent to look for the minimum 

value of the error function in weight space. The solution to the learning problem is the 

weights that minimize the error function. 

 

Figure 2. 7:  Back propagation algorithm 

From the above diagram we can summarize the following points: Calculate the error – How 

far is your model output from the actual output. Morever, minimum Error – Check whether 

the error is minimized or not. Furthermore, update the parameters – If the error is huge 

then, update the parameters (weights and biases). After that again check the error. Repeat 

the process until the error becomes minimum. Finally, model is ready to make a 

prediction – Once the error becomes minimum, you can feed some inputs to your model 

and it will produce the output.[24]. 

Rojas (2005) [25], proposed that the back propagation algorithm can be decomposed in the 

following four steps: (i) Feed-forward computation (ii) Back propagation to the output 

layer (iii) Back propagation to the hidden layer, and (iv) Weight updates. The algorithm is 

stopped when the value of the error function has become sufficiently small.  
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2.1.8 U-Net Architecture 
U-Net is a Fully Convolutional Network (FCN) that segments medical images in a very better 

way. It predicts each pixel’s class. The U-Net architecture is built upon the Fully 

Convolutional Network. Compared to FCN-8, U-net is symmetric and skip connections 

between the downsampling path and the upsampling path which instead of a sum apply a 

concatenation operator. These skip connections provide local information to the global 

information in the process of upsampling. It has a large number of feature maps in the 

upsampling path because of symmetry, which allows to transfer information.  

U-Net architecture is separated in 3 parts: (1) The contracting/downsampling path, (2) 

Bottleneck, and (3) The expanding/upsampling path.  

Contracting/downsampling path is composed of 4 blocks. Each block is composed of 3x3 

Convolution Layer plus activation function (with batch normalization), 3x3 Convolution 

Layer plus activation function (with batch normalization), and 2x2 Max Pooling. 

 

Figure 2. 8: U-Net architecture [26] 

The number of feature maps doubles at each pooling, starting with 64 feature maps for the 

first block, 128 for the second, and so on. In order to be able to do segmentation, the 

contracting path capture the context of the input image. Then the information will then be 

transferred to the upsampling path by skip connections. 
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Bottleneck is a part of the network located between the contracting and expanding paths. The 

bottleneck is built from simply two convolutional layers (with batch normalization), with 

dropout. Expanding/upsampling path is composed of four blocks. Each of these blocks is 

composed of deconvolution layer with stride two, concatenation with the corresponding 

cropped feature map from the contracting path, 3x3 Convolution layer plus activation 

function (with batch normalization), and 3x3 Convolution layer plus activation function (with 

batch normalization). The purpose of this expanding path is to enable precise localization 

combined with contextual information from the contracting path [26]. 

Advantages of U-Net architecture  

General information’s are obtained by the U-Net through the combination of the location of 

information from the downsampling path with the contextual information in the upsampling 

path to finally obtain a combining localization and context, which is necessary to predict a 

good segmentation map.  Furthermore, there is no dense layer, so that the images of different 

sizes can be used as input since the only parameters to learn on convolution layers are the 

kernel since the size of the kernel is independent from input image size. 
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2.2 Literature review 
 

Image segmentation is most difficult task in  locating and differentiating the normal and 

abnormal area of tumors while segmenting image. The manual brain tumor segmentation is 

time consuming and does not provide the result required. Hence,  to overcome this problem 

we go for automatic detection and segmentation. In recent years, many methods are 

developed for automation of imaging, scanning, detection and segmentation.  

Review studies based on arteficail neural network (deep learning) 

The Multimodal Brain Tumour Segmentation (BraTS) challenge  at MICCAI annual 

conference is an annual challenge since 2012. BraTS challenge is a competition that plays a 

significant role in the development of brain tumour segmentation methods. It can be 

observed that the top-ranked methods are based on deep learning methods.  

Kamnitsas et al. (2017) the winners of the BraTS 2018 challenge, have proposed a study in 

Ensembles of Multiple Models and Architectures for Robust Brain Tumour Segmentation. 

They proposed to ensemble several models for robust segmentation (EMMA). EMMA 

takes advantage of an ensemble of several independently trained architectures. In particular, 

EMMA combined DeepMedic, FCN and U-net models and ensembled their segmentation 

predictions. During training they used a batch size of 8, and a crop of 64x64x64 3D patch. 

EMMA’s ensemble of different models demonstrated a good generalization performance 

winning the BraTS 2017 challenge. 

The U-Nets were trained with input patches of size 64x64x64. The patches were sampled 

only from within the brain, with equal probability being centred around a voxel from each 

of the four labels. They were trained minimizing cross entropy via AdaDelta and Adam 

respectively, with different optimization, regularization and augmentation meta-parameters. 

The trained models are then applied fully convolutional on whole volumes for inference. 

All layers use batch normalisation, ReLUs and zero-padding. They used Tensorflow 

framework for implementation. The ensembles models are:  
 

 (a). DeepMedic process model  
 

DeepMedic model is a fully 3D, multi-scale CNN, designed with a focus on efficient 

processing of 3D images. It employs parallel pathways, with the secondary taking as input 

down-sampled context. The first of the two models used is the residual version previously 
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employed in BRATS 2016. The second is a wider variant, with double the number of filters 

at each layer. 

(b). Fully Connected Network (FCN) model 

The second FNC is larger, replacing each convolutional layer with a residual block with 

two convolutions. The third is also residual-based, but with one less down-sampling step. 

All layers use batch normalisation, ReLUs and zero-padding. 

(c). U-Net model 

The U-Nets were trained with input patches of size 64×64×64. The patches were sampled 

only from within the brain, with equal probability being centred around a voxel from each 

of the four labels.  

They were trained minimizing cross entropy via AdaDelta and Adam respectively, with 

different optimization, regularization and augmentation meta-parameters. The trained 

models are then applied fully convolutionally on whole volumes for inference. All layers 

use batch normalisation, ReLUs and zero-padding, [27]. 

Andriy (2018) the winner of the BraTS 2018 challenge, has proposed a study on 3D MRI 

brain tumor segmentation using autoencoder regularization, he described a semantic 

segmentation network for tumor subregion segmentation from 3D MRIs based on encoder-

decoder architecture. Due to a limited training dataset size, a variational auto-encoder 

branch is added to reconstruct the input image itself in order to regularize the shared 

decoder and impose additional constraints on its layers. 

This study follows the encoder-decoder structure of CNN, with asymmetrically large 

encoder to extract deep image features, and the decoder part reconstructs dense 

segmentation masks. The author’s also added the variation auto-encoder (VAE) branch to 

the network to reconstruct the input images jointly with segmentation in order to   

regularize the shared encoder. At inference time, only the main segmentation encode-

decoder part is used. 

The author’s used the largest crop size of 160x192x128 but compromise the batch size to 

be 1 to be able to fit network into the GPU memory limits. They also output all 3 nested 

tumor subregion directly after the sigmoid (instead of using several networks or the 

softmax over the number of classes). Finally, the author’s added an additional branch to 

regularize the shared encoder, used only during training. No any additional training data 
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used and only the provided training set are used. The author’s implemented their network in 

Tensorflow and trained it on NVIDIA Tesla V100 32GB GPU using BraTS 2018 training 

dataset (285 cases) without any additional in-house data. 

Input is a four channel 3D MRI crop, followed by initial 3x3x3 3D convolution with 32 

filters. Each green block is a ResNet-like block with the group normalization. The output of 

the segmentation decoder has three channels (with the same spatial size as the input) 

followed by a sigmoid for segmentation maps of the three tumor subregions (WT, TC, ET), 

[28]. 

Xue Feng et al. (2018) the winners of the BraTS 2018 challenge,  developed an ensemble 

of 3D U-Nets for brain tumor segmentation. Zero padding was used to make sure the 

spatial dimension of the output is the same with the input. For each encoding block, a VGG 

like network with two consecutive 3D convolutional layers with kernel size 3 followed by 

the activation function and batch norm layers were used. The parametric rectilinear 

function (PReLU) was used with trainable parameter 𝛼 as the activaton function. The 

number of features was doubled while the spatial dimension was halved with every 

encoding block, as in conventional U-Net structure. To improve the expressiveness of the 

network, a large number of features were used in the first encoding block. Dropout with 

ratio 0.5 was added after the last encoding block. Symmetric decoding blocks were used 

with skipconnections from corresponding encoding blocks. Features were concatenated to 

the de-convolution outputs. The extracted segmentation map of the input patch was 

expanded to the multi-class the ground truth labels (3 foreground classes and the 

background). Weighted/non-weighted cross entropy was used as the loss function, [29]. 
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Figure 2. 9: 3D U-Net structure with 3 encoding and 3 decoding blocks. 

Hao Dong et al (2019), presented a study a fully automatic brain tumor detection and 

segmentation method using the U-Net based deep convolution networks. Based on the 

experiments on a well-established benchmarking (BRATS 2015) datasets, which contain 

both HGG and LGG patients, they have demonstrated that their method can provide both 

efficient and robust segmentation compared to the manual delineated ground truth. In 

addition, compared to other state-of-the-art methods, their U-Net based deep convolution 

networks can also achieve comparable results for the complete tumor regions, and superior 

results for the core tumor regions. In their current study, the validation has been carried out 

using a five-fold cross-validation scheme; however, they can envisage a straightforward 

application on an independent testing datasets and further applications for multi-

institutional and longitudinal datasets. The proposed method makes it possible to generate a 

patient-specific brain tumor segmentation model without manual interference, and this 

potentially enables objective lesion assessment for clinical tasks such as diagnosis, 

treatment planning and patient monitoring [1]. 

 

https://www.researchgate.net/profile/Hao_Dong35
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Figure 2. 10: The developed U-Net architecture 

Adel Kermi, et al, (2019) presented a fully automated and efficient brain tumor 

segmentation method based on 2D Deep Convolutional Neural Networks (DNNs) which 

automatically extracts the whole tumor and intra-tumor regions, including enhancing 

tumor, edema and necrosis, from pre-operative multimodal 3D-MRI. The network 

architecture was inspired by U-net and has been modified to increase brain tumor 

segmentation performance. 

 
Figure 2. 11:  Architecture of the proposed Deep Convolutional Neural Network 
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The proposed method was tested and evaluated quantitatively on both BraTS’2018 training 

and challenge validation datasets. Therefore, the total learning computation time of the 285 

multimodal MRI volumes of BraTS’2018 training dataset is 185 h on a Cluster machine 

with Intel Xeon E5-2650 CPU@ 2.00 GHz (64 GB) and NVIDIA Quadro 4000–448 Core 

CUDA (2 GB) GPU. The average segmentation time of a brain tumor and its components 

from a given MRI volume is about 62 s on the same GPU [30]. 
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CHAPTER THREE 

Methodology 

 

This chapter describes and discuss the methods are used for  segmentation of brain tumor 

by using deep learning. Our contribution are based on BraTS challenges and previous 

studies in this field.  

 

Figure 3. 1: Block diagram that shows the steps of detection of brain tumour by deep learning 

3.1 Pre-processing: 
1. Database, training and test datasets 

This study used The Multimodal Brain Tumour Segmentation Tumour (BRATS 2015) 

as a benchmark database. The database is fully annotated patients data and it is 

composed of 220 HGG and 54 LGG each has four MRI modalities images (T1, T1c, 

T2, Flair). The brain tumour is classified by experts into the whole tumour (based on 

Flair), tumour core (based on T2), and enhanced tumour based on T1c as shown in 
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Figure. 3.1. In this study, only HGG patient’s data were used. The data is divided into 

training and testing groups. The initial images dimension is 240×240×155, due to the 

limitation in computing power of the standard computer, only 20 images slices for each 

patient were selected and the size is reduced to 128×128. The ground-truth images were 

used as target images and the dice score as an error measure. 

 

 

Figure 3. 2: The procedure of Glioma sub-regions segmentation by expert [8]. 

3.2 Hardware and software 
We used advanced standard computer (CORE i5 7th Generation) to train the network with  

single GPU, 2GB memory, NVidia developer and Cuda toolkit 10.2.  

The softwer used in this study is Python (version 3.7). The training and testing codes of the 

network are implemented by using PyTorch library (Spyder).  

 

 

https://developer.nvidia.com/cuda-downloads
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3.3 Training process  

Before we can start training our model we need to configure the learning process. We need 

to specify an optimizer, a loss function and optionally some metrics like accuracy. The loss 

function is a measure on how good our model is at achieving the given objective. 

An optimizer is used to minimize the loss function by updating the weights using the 

gradients. The dataset is divided into training and testing data. Each activation function is 

trained with thirty epochs, where the epoch is defined as a complete pass over all the 

training samples. Hence, we used only HGGs for training with 5700 images per each 

activation function; each iteration took 190 images for training. We set the filters size to 

3×3 in all our convolutional layers. We divided the patches into small patches to avoid 

overfitting. Moreover, padding is used as true so that the input shape is the same as the 

output while stride is used with one to modify the amount of movement over the image. 

The optimizer parameters used in this procedure as follow: Learning rate = 0.0001, 

momentum=0.99 and dropout =0.2. We visualized our training and testing accuracy and loss 

for each epoch so we can get information about the performance of our model. The accuracy 

and loss over epochs are saved in the history variable and we used Matplotlib to visualize 

this data. 

3.4 U-Net deep learning Model  
Figure 3.1 shows the block diagram of the method used of the evaluation of the enhanced 

activation function in the task of brain tumour segmentation. 

This research performs brain tumor segmentation using 2-D U-Net which is a fast, efficient 

and simple network that has become popular in the semantic segmentation domain. 

U-Net is a widespread deep network for segmentation. It has been the first model to be used 

for image segmentation in the medical field by Ronneberger, et al. in 2015 [26]. U-Net has 

multi-channel architecture, which suits well the multi-channel input of MRI images and the 

multi-class classification task. MR images has a high similarity and correlation feature in 

the intensities among neighboring voxels, so they are good for the convolution blocks 

constructing the U-Net. Essentially, U-Net is a deep-learning framework based on fully 

convolutional networks[31]. It comprises two parts:  

https://www.youtube.com/watch?v=IVVVjBSk9N0
https://www.youtube.com/watch?v=IVVVjBSk9N0
https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f
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1. A contracting path similar to an encoder, to capture context from a compact feature 

representation.  

2. A symmetric expanding path similar to a decoder, which allows accurate localization . 

This step is done to retain boundary information (spatial information) despite down 

sampling and max-pooling performed in the encoder stage[19] . 

 

Figure 3. 3: Proposed U-net architecture model 

A modified U-Net model is used in this study as shown in Figure (3.3)above.  The 

architecture of the U-Net network consists of an encoder and decoder path. It is built from 

convolution layers. Each convolution layer is followed by batch normalization, average 

pooling and activation function. In general, it is composed of down-sampling and up-

sampling paths. The down-sampling path is constructed from four CNN blocks with two 

layers for each block and filter size of 3 × 3, a stride of 1 in both directions and batch 

normalization.  While the up-sampling path is built from deconvolution layer with 3 × 3 

filter size and stride of 2 × 2. Hence, the feature maps are doubled and at the same time are 

decreased by two. A crop feature map is applied followed with two 3x3 convolutions, each 
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with activation function. In the last layer, a 1x1 convolution is applied to connect the 16-

component features to the required number of classes that are foreground and background. 

3.4.1 Activation Functions 
The  activation functions is used to compute the weighted sum of input and biases, which is 

used to decide if a neuron can be fired or not. It also  manipulates the presented data 

through some gradient processing usually gradient descent and afterwards produce an 

output for the neural network, that contains the parameters in the data[32]. 

To achieve the state-of-the-art performances, the Deep learning (DL) architectures use 

activation functions (AFs), that perform diverse computations between the hidden layers 

and the output layers of any given DL architecture[33]. Many activation functions have 

been used in deep learning like ReLU, Swish, ELU, sigmoid …etc. However, the activation 

function is the heart of neural network, so that we focused on selecting the appropriate one 

in order to get solution to the vanishing gradient problem and to increase the accuracy of 

detection. 

Due to the universal approximation properties of the activations functions the research in 

this field was mostly concentrated on squashing functions such as Sigmiod and Tanh. 

However, training DNNs using such functions suffers from the vanishing gradient problem. 

 To overcome this problem, various non-squashing functions were introduced, where the 

most notable example is Rectified Linear Unit (ReLU). In particular, as the derivative of 

positive inputs in ReLU are one the gradient cannot vanish. Therefore, as all negative 

values are mapped to zero, there is not information flow in DNNs for negative values. This 

problem is known as dying ReLU. Hence, Swish, EliSH, and HardELiSH were introduced. 

The Swish Activation function 

Ramachandran et al. proposed the Swish activation function in 2017 [34] . It is derived 

from the sigmoid activation function and it uses the reinforcement learning based automatic 

search technique to compute the function. The properties of the swish function include 

smoothness, non-monotonic, bounded below and unbounded in the upper limits. The 

smoothness property makes the swish function produce better optimization and 

generalization results when used in training deep learning architectures, which is defined as 

follows: 

𝑓(𝑥) = 𝑥 ∙ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
𝑥

1+𝑒−𝑥   …….. (3.1)    [34]. 
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                   Figure 3. 4:(a) ReLU and Swish Functions (b)Derivative of ReLU and Swish 

  

ReLU activation function is defined as: 

                                      𝑓(𝑥)=𝑥 + = max(0, 𝑥) … … … … … … … . (3.2) 

Where, 𝑥 is the input to the neuron. ReLU has been the most popular activation function 

due to its gradient preserving property (it means that, it is  having derivative of one for 𝑥 >

0 ). The network extensively suffers from dying neuron problem for randomly initialized 

pre-activations where a high percentage of neurons are deactivated. Hence, deteriorating 

the network efficiency. ReLU is monotonous and smooth.  

In 2018, Mina Basirat and Peter M. Roth further developed ELiSH and HardELiSH 

activation functions derived from the Swish activation function[35]. Equstions. 2 and 3 

give the mathematical formulas of EliSH and HardEliSH activation functions respectively. 

                                     ………..…  (3.3) 

ELiSH activation function shares the properties of Swish, as its negative part is a 

multiplication of ELU and Sigmoid, while sharing the same positive part with Swish 

 

                                                                                                                                 …………… (3.4)  

HardELiSH activation function is introduced as a result of a multiplication of 

HardSigmoid and ELU in negative part and HardSigmoid and Linear in positive part. 
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HardELiSH and ELiSH activation functions provide a good flow of information during the 

training stage of the deep neural network. Therefore, they outperform the standard ReLU 

activation function dealing with the problem of the vanishing gradient [35]. 

Our  contribution is based on using HardELiSH activation function in our project. It has 

shown to be competitive compared to existing approaches as well as very useful within the 

proposed framework. To demonstrate the benefits of our learned activation functions, we 

compared our approach with three activation functions and run it using U-Net network 

architectures. The results clearly demonstrate that using the proposed approach better 

results can be obtained. 

 

Figure 3. 5: The proposed new activation functions (red), HardELiSH and ELiSH, and their derivatives (blue 

dotted), respectively[35]. 

3.4.2 Optimization Algorithm 

We use optimization algorithms to train the neural network through optimizing the cost 

function J.  Given an algorithm f(x), an optimization algorithm helps in either minimizing or 

maximizing the value of f(x). The cost function can be defined as: 

 

                                                                              ………………(3.5)  

 

The value of cost function J is the mean of the loss L between the predicted value y’ and 

actual value yi. During the forward propagation step we can obtain the value of y’ by using 

the weights W and biases b of the network. The optimization algorithms minimize the value 

of cost function J by updating the values of the trainable parameters W and b. 
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3.4.3 Learning rate 

Learning rate is a parameter of optimization technique. The jumping of the optimization 

technique between each iteration is specified by learning rate. The optimization will need to 

be run a lot of times if the learning rate is too small, (taking a long time and potentially 

never reaching the optimum). The optimization may be unstable (bouncing around the 

optimum, and maybe even getting worse rather than better) If the learning rate is too big. 

3.4.4 Gradient Descent 

Usually we use gradient descent to optimize weights and other parameters of neural 

networks. Differentiable programming languages allowing us to use gradient descent to 

optimize any program parameter that would otherwise be hard-coded by a human. 

When we train a network, the weights (𝑤𝑖) are usually updated using optimization process 

called gradient descent. A multiple of the gradient of the loss relative to each weight, which 

is the partial derivative of the loss with respect to the weight is used to update the weight. 

In gradient descent methods, the parameters update by using a back-propagation algorithm. 

The Weight Matrix W is initialized randomly. We use gradient descent to minimize the cost 

function J and obtain the optimal Weight Matrix W and Bias b. Mathematically it can be 

defined as: 

 

                                                                  ………………….. (3.6)          

 

The first equation represents the change in Weight Matrix W, whereas the second equation 

represents the change in Bias b. The learning rate alpha and the derivatives of the cost 

function J with respect to the Weight W and Bias b determines the change in values. We 

repeat the updating the weight and bias until the cost function J has been minimized [36]. 

3.4.5 Stochastic Gradient Descent 

In order to update the weights, we accumulate the error across all training samples. There 

are big datasets, which lead to slow training over iteration for just one update.  

The  solution to this problem is the stochastic gradient descent (SGD) algorithm, which 

works in the same way as regular gradient descent, but updates the weights after every 
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training sample. However, SGD is prone to noise in the data. SGD is used as the optimizer 

in all training process. 

It is the most commonly used algorithm for solving such optimization problems. This 

approach is implemented by passing a set of mini-batches through the network at a time 

and computing the gradient descent for each mini-batch. Gradient change ∆𝑤𝑖 is 

propagated back to update the weights on all layers to the entire network [37]. 

3.4.6 Mini-Batch Gradient Descent 

One of the disadvantages of gradient descent is that it begins the Parameter updating only 

after it goes through the full training data. This poses a challenge when the training data is 

too big to fit in the computer memory. Mini-Batch gradient descent is a powerful tool that 

tackles the above problems of Gradient Descent. 

In Mini-Batch gradient descent, we distribute the whole training data in small mini-batches 

of sizes 16,32,64, and so on depending on the use case. We then use these mini-batches to 

train the network iteratively. The use of mini-batch has two advantages: (a) training starts as 

soon as we traverse over the first mini-batch, i.e., from the first few training examples, and 

(b) We can train a neural network even when we have a large amount of training data that 

doesn’t fit in the memory. The batch size now becomes a new hyper parameter for our 

model. 

When the batch size equals number of training examples, it is called as Batch gradient 

descent. It faces the problem of beginning learning only after traversing the whole dataset. 

When the batch size equals one, it is called as Stochastic Gradient Descent. It does not make 

full use of vectorization, and the training becomes very slow. Therefore, the common choice 

is 64 or 128 or 256 or 512. However, it depends on the use case and the system memory, i.e., 

we should ensure that a single mini-batch should be able to fit in the system memory[36] . 

3.4.7 Pooling layer 

It is inserted between successive convolution layers. The function of pooling is to 

progressively reduce the spatial size of the input representation. It also Makes the input 

representations (feature dimension) smaller and more manageable. Furthermore, it reduces 

the number of parameters and computations in the network, therefore, controlling 

overfitting. It makes the network invariant to small transformations, distortions and 

translations in the input image [38]. 
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Pooling are two types: Max pooling, in max Pooling, we define a spatial neighbourhood and 

take the largest element from the rectified feature map within that window, and average 

pooling: In average pooling we take the average or sum of all elements in that window as 

shown in the figure (3.5) below. 

 

Figure 3. 6: types of pooling operations (max and average pooling operations). 

Overfitting 

It is one of the problems that occur during neural network training. It happens as a result of 

crush patterns in the training set that the network may wrongly assign to a specific class. It 

gets worse as the number of trainable weights increase in the neural network. Deep neural 

networks are susceptible to overfitting during training since they contain a large number of 

free parameter to be trained. This problem can be solved by using regularization to limit the 

parameters trained to capture only the features of interest in the image. Regulariztion uses 

dropout technique to solve the problem of overfitting. It drops some neurons during 

training phases to reduce the dependency of the final output on certain inputs. 

3.4.8 Dropout technique 

Hinton et al. [39] proposed termed named ”Dropout” which works based on randomly de-

activate 50% of the nodes of a network on each training iteration. A disabled node would 

not participate in forward propagation (where they would output 0), and would block any 

error signal from propagating through the node during backpropagation. When training is 

done, all nodes are re-enabled, but all weights are halved to maintain the same output range 

[39]. Hence, we used dropout to avoid the overfitting problem. 
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3.4.9 Batch normalization 

We used batch normalization in U-Net model to prevent overfitting problem.  It is a super-

powerful technique, which works between neural network hidden layers to ensure that at 

each layer the inputs are normalized, i.e. they are properly centred and scaled. As it is used 

to prevent overfitting problem it helps to speed up the training and hence, improve accuracy 

[37]. 

Training set is divided into batches. The CNN updates its weights after calculating the error 

of each batch. After each convolution layer the results of the convolution are normalized to 

have zero mean and standard deviation of one. The normalization is applied in over 

batches. 

3.4.10 Loss function 

In order to measure how well the model performs, the output is mapped to a single number. 

This loss function (error function) can be used to adjust the network to an desirable result. 

In image segmentations, a simple loss function is the binary categorical accuracy. It is 

defined as the percentage of the pixels. For medical segmentations, the large parts of the 

image which are belong to the background, the binary categorical accuracy can lead to false 

classification of the whole image to the background class. Therefore, a definition of the loss 

using the intersection and union of the segmentation with the ground truth is helpful. One 

loss function is the jaccard loss, also called jaccard distance, which is based on the jaccard 

index [40]. 

3.4.11 Momentum  

In the optimisation technique we used momenteum to keep improving the model 

parameters towards the end of the optimisation process. It provides us with informations on  

how the parameters were changing over the last few iterations, and use these informations 

to keep moving in the same direction. The number of prior iterations changes depends on 

the initial learning stabilises. 

3.5 Evaluation parameter 

The evaluation parameter is the dice score, which is the standard parameter for the 

segmentation procedure.  We used the following equation to obtain the dice score: 

DSC = 
𝟐𝑻𝑷

𝟐𝑻𝑷+𝑭𝑷+𝑭𝑵
  With TP: true positives, FP: false positives and FN: false negatives.  
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CHAPTER FOUR 

Results and Discussions 

4.1 Results  
 In this chapter we have shown and have discussed the results obtained by this proposed 

study. 

Figure. 4.1 illustrates the results of HardEliSH brain tumour segmentation. The figure 

compares the ground truth (pink colour) with U-Net results (green colour). It can be noticed 

that the U-Net results are visually closed.     

HardEliSH activation function:  

 

Figure 4. 1: Patient 2 brain tumour segmentation The results of U-Net using HardEliSH activation function. 

(a) T1. (b) T1c. (c) T2. (d) Flair. (e) Ground Truth (pin). (f) U-Net segmentation (green) 
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ReLU activation function result: 

 

Figure 4. 2: Patient 2 brain tumour segmentation The results of U-Net using ReLU activation function. (a) T1. 

(b) T1c. (c) T2. (d) Flair. (e) Ground Truth (pin). (f) U-Net segmentation (green) 

    

ELiSH activation function result: 

 

Figure 4. 3: The results of U-Net using EliSH activation function. (a) T1. (b) T1c. (c) T2. (d) Flair. (e) Ground 

Truth (pin). (f) U-Net segmentation (green). 
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Swish activation function result: 

 

Figure 4. 4: The results of U-Net using swish activation function. (a) T1. (b) T1c. (c) T2. (d) Flair. (e) Ground 

Truth (pin). (f) U-Net segmentation (green). 

Table 4.I compares the dice score resulting from the different activation functions. It can be 

observed that the new activation function HardELiSH obtained the best results and outperforms the 

most used ReLU in the task of MRI brain tumour segmentation. 

Type of 

activation 

function  

Number of 

epochs 

Train dice 

score 

Test dice score  Time Consumed 

HardELiSH 30 93.7% 88.4%  6 hours 

ReLU 30 93.1% 88.2%  6 hours and 8 

minutes 

ELiSH 30 92.6% 87.8%  6 hours and 13 

minutes 

Swish 30 92.1% 88.8%  7 hours 

 

Table 4. 1 Results for training and testing images for different activation function showing that 

‘HardELiSH’ activation function  is the highest. 
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From the above table, we can say that the increasing number of epochs plays an important 

role in the increasing of the accuracy of the detection of brain tumour during the training. 

As we increase the number of epochs the accuracy increases. We started training with 

twenty epochs and we saw that the accuracy of both training dice score and testing dice 

score was good but when we increased the number of epochs to thirty, the accuracy 

increases. Hence, the accuracy depends on the increasing the number of epochs and the 

appropriate selection of activation function. We applied and measured different activation 

functions and compared between them as shown in the table 4.1. ReLU activation function 

is the common use among researchers in the field of brain tumour detection by deep 

learning. Hence, when we compared the new introduced activation functions HardELiSH 

with most standard one (ReLU) we found that, the HardELiSH activation function 

outperformed the ReLU. Therefore, the accuracy is increased. Furthermore, the time 

consumed in the training was less compared with ReLU. 
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4.2. Discussion 
 

In this project we worked on the BraTS2015 data. The database was in the form of (Mha) 

files which we converted it to (png images). We implemented our network by using 

Pytorch software and trained it with standard computer with NVIDIA 2GB and single 

GPU. The data is a collection of several patients with  low-grade gliomas (LGG) and High-

grade gliomas (HGG). It is categorized by four modalities, T1, T1c, T2 and FLAIR MR 

images. . 

The total number of images used for the training is 5700. However, there are 30 epochs 

each has 190 images. The training time of the U-Net network with each activation function 

in standard computer took around 6 hours (30 epochs). The optimizer, stochastic gradient 

descent, was implemented with the following  parameters: learning rate = 0.0001, 

momentum = 0.99, and dropout = 0.2. The activation functions used were, ReLU, Swish, 

EliSH, and HardEliSH. 

 

We used gradient descent to optimize weights and other parameters of neural networks. 

However, the optimization techniques often work based on learning rate. The learning rate 

specifies how aggressively the optimization technique should jump between each iteration. 

We used the stochastic gradient descent (SGD) to solve the optimization problems which 

implemented by passing a set of mini-batches through the network at a time and computing 

the gradient descent for each mini-batch. We reduced the spatial size of the input 

representation by using pooling operation. Furthermore, reduced the number of parameters 

and computations in the network, therefore, controlling over fitting. 
 

However, due to the large dataset in the training,  the training will be slow. Hence, we have 

come over this problem by using batch normalization which works between layers through 

dividing the training set into batches, each batch size is 16. This makes CNN updates its 

weights after calculating the error of each batch. 

 

Similarly, we used dropout as a regularization technique to solve the problem of overfitting. 

It works based on dropping some neurons during training phases to reduce the dependency 

of the final output on certain inputs. Adding momentum to the optimisation technique  

helped to keep improving the model parameters towards the end of the optimisation 
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process. It provides us with informations on  how the parameters were changing over the 

last few iterations.  

We have calculated the dice score of training and testing which is the standard parameter 

for the segmentation procedure for each activation function and compared between them. 

We have got that the HardELiSH activation function is the best one among the others for 

detection of brain tumour.  
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CHAPTER FIVE 

Conclusion and Recommendation 

 

5.1 Conclusion 
This study aims to validate the feasibility of improvement of the performance of deep 

learning network using a suitable activation function. The findings of the study are 

promising and are expected to have a great impact on the task of brain tumour segmentation 

by increasing the performance of the existing already top-ranking deep learning models. 

Selecting inappropriate activation function leads to loss the information of the input during 

forward propagation and the exponential vanishing of gradients during back-propagation, 

this leads to inefficient and less accurate results. So that, our proposed study modified U-

Net network to be trained and tested with different activation functions and compared 

between them. However, we have found that the Hard ELiSH activation function 

outperforms the others activation functions. Hence, we got 93.7% score in training and 

88.4% in testing compared with most standard one (ReLU) activation function as shown in 

the table 4.1. Furthermore, it solves the vanishing gradient problem which faced by other 

activation functions. Hence, we have increased the accuracy of the brain tumour 

segmentation by the appropriate selection of activation function.  

Limitations of the study 

Due to the limitation in computation power and memory in our standard computer we 

couldn’t increase the number of epochs. Moreover, we used only HGGs database for 

training.  To use both LGGs and HGGs dataset and to increase number of epochs we 

require super-computing machine to train which is not available here in Sudan. These the 

limitations we faced during the work of this study.  

5.2 Recommendations 
a). Applying 3D data with HGGs and LGGs with 3D U-Net and training the network 

with using machine learning computers. 

b). Develop a new framework for training models to detect brain tumors which will 

improve the speed or accuracy of detection and to be able to predict the future behavior 

of the patient tumor. 
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 5.3 Published work 
Mushtaq Salih, Musab Salih, and Mohammed Ahmed, Enhancement of U-Net 

Performance in MRI    Brain Tumour Segmentation using HardELiSH Activation 

Function. International Conference on Computer, Control, Electrical, and Electronics 

Engineering (ICCCEEE) 2019. Accepted for publication in ICCCEEE 2019. 
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APPENDIX 
 

Implementation code for 2D U-Net Model  

import torch 

from torch import nn 

from torch.nn import functional as F 

class UNet(nn.Module): 

    def __init__(self, in_channels=1, n_classes=2, depth=5, wf=6, padding=False, 

    batch_norm=False, up_mode='upconv', use_HardELiSH = False): 

    super(UNet, self).__init__() 

     assert up_mode in ('upconv', 'upsample') 

     self.padding = padding 

      self.depth = depth 

      prev_channels = in_channels 

      self.down_path = nn.ModuleList() 

     for i in range(depth): 

self.down_path.append(UNetConvBlock( prev_channels, 2**(wf+i),  padding, batch_norm,          

use_HardELiSH )) 

      prev_channels = 2**(wf+i) 

        self.up_path = nn.ModuleList() 

        for i in reversed(range(depth - 1)): 

  self.up_path.append(UNetUpBlock(prev_channels, 2**(wf+i), up_mode, padding, batch_norm, 

use_HardELiSH )) 

  prev_channels = 2**(wf+i) 

    self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1) 

    def forward(self, x): 

        blocks = [] 

        for i, down in enumerate(self.down_path): 

            x = down(x) 

            if i != len(self.down_path)-1: 

                blocks.append(x) 

                x = F.avg_pool2d(x, 2 
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 for i, up in enumerate(self.up_path): 

            x = up(x, blocks[-i-1]) 

        return self.last(x) 

class HardELiSH (nn.Module): 

    def forward(self, x): 

        return 1.67653251702 * x * torch.sigmoid(x) 

class UNetConvBlock(nn.Module): 

    def __init__(self, in_size, out_size, padding, batch_norm, use_swish): 

        super(UNetConvBlock, self).__init__(   ) 

        block = [] 

        self.dropout = False 

        block.append(nn.Conv2d(in_size, out_size, kernel_size=3, 

                               padding=int(padding))) 

        if use_ HardELiSH: 

            block.append(HardELiSH ()) 

        else:  

            block.append(nn.ReLU()) 

        if batch_norm: 

            block.append(nn.BatchNorm2d(out_size)) 

        if self.dropout: 

            block.append(nn.Dropout(p = 0.2)) 

        block.append(nn.Conv2d(out_size, out_size, kernel_size=3, 

                               padding=int(padding))) 

        if use_ HardELiSH: 

            block.append(HardELiSH ()) 

        else:  

            block.append(nn.ReLU()) 

        if batch_norm: 

            block.append(nn.BatchNorm2d(out_size)) 

        if self.dropout: 

            block.append(nn.Dropout(p = 0.2)) 
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self.block = nn.Sequential(*block) 

    def forward(self, x): 

        out = self.block(x) 

        return out 

class UNetUpBlock(nn.Module): 

    def __init__(self, in_size, out_size, up_mode, padding, batch_norm, use_ReLU): 

        super(UNetUpBlock, self).__init__() 

        if up_mode == 'upconv': 

            self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, 

                                         stride=2) 

        elif up_mode == 'upsample': 

            self.up = nn.Sequential(nn.Upsample(mode='bilinear', scale_factor=2), 

                                    nn.Conv2d(in_size, out_size, kernel_size=1)) 

    self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm, use_ReLU) 

    def center_crop(self, layer, target_size): 

        _, _, layer_height, layer_width = layer.size() 

        diff_y = (layer_height - target_size[0]) // 2 

        diff_x = (layer_width - target_size[1]) // 2 

        return layer[:, :, diff_y:(diff_y + target_size[0]), diff_x:(diff_x + target_size[1])] 

    def forward(self, x, bridge): 

        up = self.up(x) 

        crop1 = self.center_crop(bridge, up.shape[2:]) 

        out = torch.cat([up, crop1], 1) 

        out = self.conv_block(out) 

        return out 

# model = UNet(depth = 5, wf = 3, padding = True, n_classes = 1, use_swish = True, batch_norm = 

True) 

# summary(model, (1,128,128)) import torch 

from torch import nn 

from torch.nn import functional as F 

class UNet(nn.Module): 

def __init__(self, in_channels=1, n_classes=2, depth=5, wf=6, padding=False, 
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       batch_norm=False, up_mode='upconv', use_HardELiSH = False): 

        super(UNet, self).__init__() 

        assert up_mode in ('upconv', 'upsample') 

        self.padding = padding 

        self.depth = depth 

        prev_channels = in_channels 

        self.down_path = nn.ModuleList() 

        for i in range(depth): 

        self.down_path.append(UNetConvBlock( prev_channels, 2**(wf+i), 

         padding, batch_norm, use_HardELiSH )) 

        prev_channels = 2**(wf+i) 

        self.up_path = nn.ModuleList() 

        for i in reversed(range(depth - 1)): 

         self.up_path.append(UNetUpBlock(prev_channels, 2**(wf+i), up_mode, 

          padding, batch_norm, use_HardELiSH )) 

         prev_channels = 2**(wf+i) 

        self.last = nn.Conv2d(prev_channels, n_classes, kernel_size=1)  

         def forward(self, x): 

        blocks = [] 

       for i, down in enumerate(self.down_path): 

            x = down(x) 

            if i != len(self.down_path)-1: 

                blocks.append(x) 

                x = F.avg_pool2d(x, 2) 

    for i, up in enumerate(self.up_path): 

   x = up(x, blocks[-i-1]) 

        return self.last(x) 

    class HardELiSH (nn.Module): 

    def forward(self, x): 

        return 1.67653251702 * x * torch.sigmoid(x) 

    class UNetConvBlock(nn.Module): 
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    def __init__(self, in_size, out_size, padding, batch_norm, use_swish): 

        super(UNetConvBlock, self).__init__() 

        block = [] 

        self.dropout = False 

        block.append(nn.Conv2d(in_size, out_size, kernel_size=3, padding=int(padding))) 

        if use_swish: 

            block.append(SWISH()) 

        else:  

            block.append(nn.ReLU()) 

        if batch_norm: 

            block.append(nn.BatchNorm2d(out_size)) 

        if self.dropout: 

            block.append(nn.Dropout(p = 0.2)) 

        block.append(nn.Conv2d(out_size, out_size, kernel_size=3, padding=int(padding))) 

        if use_ HardELiSH: 

            block.append(SWISH()) 

        else:  

            block.append(nn.ReLU()) 

        if batch_norm: 

            block.append(nn.BatchNorm2d(out_size)) 

        if self.dropout: 

            block.append(nn.Dropout(p = 0.2)) 

        self.block = nn.Sequential(*block) 

    def forward(self, x): 

        out = self.block(x) 

        return out 

class UNetUpBlock(nn.Module): 

    def __init__(self, in_size, out_size, up_mode, padding, batch_norm, use_ReLU): 

        super(UNetUpBlock, self).__init__() 

        if up_mode == 'upconv': 

            self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2,   stride=2) 
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        elif up_mode == 'upsample': 

          self.up = nn.Sequential(nn.Upsample(mode='bilinear', scale_factor=2), nn.Conv2d(in_size, 

out_size, kernel_size=1)) 

        self.conv_block = UNetConvBlock(in_size, out_size, padding, batch_norm, use_ReLU) 

    def center_crop(self, layer, target_size): 

        _, _, layer_height, layer_width = layer.size() 

        diff_y = (layer_height - target_size[0]) // 2 

        diff_x = (layer_width - target_size[1]) // 2 

        return layer[:, :, diff_y:(diff_y + target_size[0]), diff_x:(diff_x + target_size[1])] 

    def forward(self, x, bridge): 

        up = self.up(x) 

        crop1 = self.center_crop(bridge, up.shape[2:]) 

        out = torch.cat([up, crop1], 1) 

        out = self.conv_block(out) 

        return out 

# model = UNet(depth = 5, wf = 3, padding = True, n_classes = 1, use_ HardELiSH = True, 

batch_norm = True) 

# summary(model, (1,128,128)) 


