an )l Cpen Il ) sy
Sudan University of Science &Technology Ak@@

College of Graduate Studies e

College of Computer Science and Technology

Evaluation of Code Quality in Web Pages using Software

Testing Tools
DR i g3 aladiialy qu gl Ciladia b el sl 3352 an g8
Tl )
Prepared by:
Maaza Eldaleel Mustafa Eldaleel

Supervisor

Dr. Mohamed El-Ghazali Hamza Khalil

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree Master of Computer Science

November 2019


http://taoxie.cs.illinois.edu/publications/icws07.pdf
http://taoxie.cs.illinois.edu/publications/icws07.pdf

Declaration

I hereby declare that the work reported in this M.Sc. thesis titled as “An Evaluation of
Test Coverage Code Quality Tools and Response Analysis in Web Pages” submitted
at the Master of Science degree in Computer Science, is an authentic record of my
work carried out under the supervision Dr. Mohammed Elghazali Hamza. | have not

submitted this work elsewhere for any other degree.

Maaza Eldaleel Mustafa Eldaleel Dr Mohammed Al-Ghazali Hamza

..................... Supervisor



Acknowledgement

I would first like to thank my thesis advisor Dr. Mohammed Elghazali Hamza Khalil
of the Faculty of Computer Science at Sudan University of Science and Technology.
The door to Dr. Elghazali office was always open whenever | ran into a trouble spot
or had a question about my research or writing. He consistently allowed this research

to be my own work, but steered me in the right direction whenever he thought |

needed it.



Abstract

Continuous improvement is a key factor for survival in today’s turbulent business
environment. Correspondingly, in today’s business world, software is everywhere. In
the whole process of software development, testing is a phase that is often forgotten.
Everybody assumes that once the software is developed, it will work flawlessly.
However, it often happens not to be so. Moreover, when it does not, we are all
unsatisfied and frustrated. Problems with software are a frequent occurrence, but only
a few people address them in their product. The problems caused by a bad code
quality vary from bugs to project delays and in general cause issues with the project
timeline and budget. Furthermore, software testing has come to play a vital role in the
success of the business, it makes sure that the application’s performances are
adequate and the customers are satisfied with it. When the delivered product is of
quality, it helps in gaining the confidence of the customers. Through a load testing
using webload and apache JMeter tools on a number of websites such as( Apple.com)
and site from own design (pstore.com), interactive social site (noonpost.com),
number of performance measurements based on the analysis results of the two tools
were evaluated. This research presented also automated unit testing to provide
dependable, periodic feedback to project developers. Constant feedback allows them

to correct code as part of the development process and it reduces the checking time.



il

OV gl ¢ JAdL o gll 4 sl ) Jlae W) A 8 o all i) Jale aitiaal) Gl
aay ¢ LeleSl cilima ) g plai ddee (8 LS IS (8 el ) ¢ sl Jlae W) e 8
rony o g ¢ alil) obai 3 yman 43l iy el Lol oy Lo Llle sy sy
Las Liild ¢ Ay e 3530 oladl glal) (e 5l A Gaay « Al ey e G5
o had S ae (S0 ¢ 1,00 ) el el jall S 2 phasna g il e (05S8
el G L sallay palasY)

b5 & el il pals 1) eUad1 (e o) 35S0 80 g e Al S Calias
zral ¢l e s e Al uall 5 g g pudiall el Jgaally 3heti JSUie dalal) Liliadl
Ol s S Gkl ool o (yaniay sgd ¢ Jlae W) ot 815 o 1750 Gaaly lama ) jLsial)
2ol 43 ¢ Bagall e aadid 23 g2 il 5 Ladie ade sl £ Dlaall
e dlanll 485 L)

&8 5e (e 230 e apache JMeter s webload < sl aladiuly deald) jlis) A (1
eelaia¥) a8 gall 5 ¢ caraai (1 (pstore.com ) & s<ll s(Apple.com)dic sl
o (oY) Jolas il ) L) ool Cululd (e d2c «( noonpost.com) (e Ll
Leale alaie W) Sy ey ) 50 il alad il AV 3 gl SLia) Lyl Caall s a0
O o 3aS Lmapll Claglatll a5 patasall Cllaa Sl agl =5 g 5 el (5 sdadl
DhiaY) il Qi phail) dylec



TABLE OF CONTENTS

DECIAIALION ...t bbbt vi
ACKNOWIBAGEMENTS. .....ciiieie et ra e be e e e reenne e Vi
ADSTFACT. ...ttt enes vi
Table OF CONTENTS ..o Vi
LASE OF FIQUIES ..ot ix
LASE OF TADIES ... xii
LiSt OF @DDIEVIALION. .......oviiiiiice e e e e vi
(@ g F=T 0] (=1 g @ ] N SR 1
INTRODUCGTION . ...ttt b e n e 2
OVEIVIBW..... etttk b bbb et b ettt bbb n e 2
1.1 Background 0f RESEAICN..........cciiiiiicece et 3
1.2 Problem STAtEMENT .........ooviiiie e 4
1.3 RESEAICN QUESTIONS.......cuiiiviiie ettt et be e sreene e 5
1.4 ODJECLIVES. ...ttt e b et et e et e e b e et e e ae e te e aeereenreenre e 5
1.5 SCOPE OF RESEAICN.......ocuiiiiicie et 5
1.6 PropoSed SOIULION.........cciiiiiie ettt re e 5
1.7 OUtlINES the TESEAICH ..o s 5
(O gF= 10 (=1 gl I YAY L TSSOSO 6
LATErAtUIE REVIEW. ...ttt bbbt 6
2.1 INEFOTUCTION ..ttt bbbt 7

2.2 CoNtINUOUS INTEGIALION......ccuiiiiiiiie it srae e sae e e re e 7
2.3 Attributes of Good Code QUAIITY.........ceeiiiiiieiir e 8

2.4 DYNAMIC TESHING.....eiitie ittt et e e e b e e s e e nteesraeenaee s 9



2.5 UNIE TESTING...evveteeieee ettt e et et e st e e beenaeeneesteeneeaneenneenes 10

2.6 WEDLOAD Professional...........coiiieiiiiiieieiiceeses e 10
O I (- TSP PRI 12
2.8 REIALEA WOTK ... 12
2.9 SUMMIAIY ...eiiitie ettt ettt e bt e e bb e e bb e e e ke e e s st e e e eabe e e s bbe e s sbbeeenbeeeanneeennes 17
Chapter THREE...........o oot s e e anes 18
B.L INEFOAUCTION. ...ttt 19
3.2 Research Methodologies and Software t0ol USE..........cccccveieiiciicic e 19
B.2.0 LOAA ST ..ottt e 20
3.2.2 APACNEIMIBLET ... e 20
3.2.3 Unit testing USING JASMINE......ccveiiiiieiteeie ettt sre e 22
3.3 SUMMIAIY ..ttt a e e ea e e e b bt e e sb b e e e bt e e e nbb e e e nbbe e s nbbeesnaeeans 22
Chapter FOUR.......cui ottt ettt et e e e e e sreeneeareenne e 23
4.1 INEFOTUCTION. ...ttt bbbt 24
4.2 Performance testing with WebLOAD Professional...........ccccooviiiieicniniiininins 24
4.2.1 First site https://WwWw.apple.COM/..........cooviiiiiiie e 24
4.2.2 Second site http://WWW.NOONPOSE.COM/.......ccviiiieieieece e 33
4.2.3 Third site https://maazamustafa.webhostapp.com/Project/Project.............c..c....... 42
4.2.4 WebLOAD Cloud(Web Dashboard in earlier versions).........................o..... 47
4.2.5 Jenkins Plugin Cl test (JenKins Plugin)......cc..ooveiiiiiii e 48
4.3 APACNEIMBLCT . ... ..ttt e e e e 50
4.4 Unit testing USING JaSMINE. ........ouiieiitiit e e e 58
SIS TU 11 010 - V2SR PR 58

Vi


https://www.apple.com/

CRAPLEEN FIVE ..ottt et re e 59

0.1 CONCLUSION. .. .o e e 60
5.2 RECOMMENDATIONS FOR FURTHER RESEARCH..................cooal. 61
REFERENCE. ... e 62
AN X A, 66
APPENAIX B oot 71

Vil



2.1

3.1

3.2

3.3

41

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

411

4.12

4.13

4.14

4.15

4.16

List of Figures

Welcome to Webload

Block diagram and Research method

The workflow of JMeter stages

Home screen Apache Jmeter

Agenda for (apple.com) and Page View
Agenda for(apple.com) and Javascript View
Log Window (apple.com)

Session Tree and default report with measurement type
(apple.com)

Default Report (apple.com)

Statistics Reports (apple.com)

Dashboard (apple.com)

Integrated Report (apple.com)
measurement type (apple.com/)

Dashboard (apple.com)

WebLOAD Analytics Screen (apple.com)

Log Summary, Tabular Data (apple.com)
WebLOAD Analytics User Interface (apple.com)
Transaction Counters (apple.com)

HTTP Responses(apple.com)

Agenda for(noonpost) and Page View

Viii

11

19

21

21

25

25

26

26

27

27

28

28

29

29

30

30

31

31

31

33



4.17

4.18

4.19

4.20

421

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

Agenda for(noonpost) and Javascript View
Log Window (noonpost)

Data Drilling Report(noonpost)

Statistics Reports(noonpost)

Dashboard (noonpost)

Integrated Report(noonpost)

Performance Summary(noonpost)

HTTP Responses (noonpost)

Log Summary, Tabular Data (noonpost)
Page time (noonpost)

Session Summary(noonpost)

Statistics based on response time and hits per second(noonpost)

Agenda for(pstore) and Page View

Agenda for(pstore) and Page View

Log Window (pstore)

Transactions Dashboard(pstore)

Data Drilling Report(pstore)

Statistics Reports(pstore)

Dashboard (pstore)

Integrated Report(pstore)

Session Summary(pstore)

Statistics based on throughput and errors(pstore)

Dashboard Components

34

34

35

35

36

36

37

38

39

39

40

42

42

43

43

43

44

44

45

46

47

47



4.40

4.41

4.42

4.43

4.44

4.45

4.46

4.47

4.48

4.49

4.50

451

Execute WebLOAD session

Generate WebLOAD Analytics Report

Output of plugin WebLOAD

Badboy software to record script(apple.com)
Badboy software to record script(noonpost.com)
Badboy software to record script(pstore)

export script in Jmeter

Create HTML Dashboard Reports from the command line
Apache JMeter Dashboard(apple.com)

Apache JMeter Dashboard(noonpost.com)
Apache JMeter Dashboard(pstore)

Jasmine Output

48

48

49

50

50

51

51

52

53

54

55

58



List of Tables

Table 1: Measurement based Transaction Counters(apple.com.............................32
Table 2: Measurement based HTTP Responses(apple.com)............cccovveeeeeinnnnnn 33
Table 3: Measurements Performance(nN0ONPOSt).........c.ovvviiiiiiiiiiiieiieeieee, 38
Table 4: Measurements COMPAIISON. ... ......uvuiuerinieet et eieeet et eeeiineea, 56

Xi



Cl
IDE
ROI
SDLC
STLC
WA
QA
ISP
DB
AWS

SUT

List of Abbreviations

Continuous Integration.

Integrated Development Environment
Return on Investment.

Systems Development Life Cycle
Software Testing Life Cycle.

Web Applications

Quality assurance

Internet service provider

Database

Amazon Web Services

System Under Test

Xii



Chapter ONE
INTRODUCTION



Chapter One
Introduction

Overview

In the last years, web applications (WA) have become one of the very common ways
people interact with computers thanks to the increasing internet speed. WA is capable of
more complex operations and provides various functionalities. In many instances, they
tend to replace classic desktop applications for many reasons, e.g. cross-platform
compatibility support or ability to be easily updated and maintained.
However, while providing many advantages, there are specific weaknesses of which one
has to be aware when implementing such an application. The main disadvantage stems
from the fact that developer does not know what the hardware, software and network the
application will run on. For example, a general drawback of WA is their slower response
to user actions when compared to a reaction speed of desktop applications. It is often
caused by inappropriate front-end development.
The levels of quality, scalability, and maintainability of software programs can be
improved and measured through the utilization of functional and non-functional software
testing tools throughout the software development process. One of the most important
things on every project is keeping codebase consistent and ensure its quality over time,
or, at least, build a road to achieve this goal in the future. Part of this job can be achieved
automatically. In web-land, it seems more common to test back-end code than front-end
this is probably changing as tooling gets better.
Quality assurance can be done by manually operating and manipulating the SUT in
different ways, using different inputs and comparing the actual outcome with the
expectations and making sure that they align. Manual testing is by its very nature time-
consuming and prone to errors. If testing is carried out in this way, for example by the
same software developer who wrote the software, there’s also a risk that the test cases
may be chosen based on how the code is expected to work. In the worst-case scenario, if
a formal testing protocol is not defined or properly followed, there is also a chance of
parts or all the quality assurance process being neglected [1].
Performance is a huge subject, but it's not always a "back-end" or an "admin" subject: it's

a Front-End responsibility too. The Front-End Performance Checklist is an exhaustive list

2



of elements check or at least be aware of, as a Front-End developer and apply to your
project when (personal or professional) [2].

Web applications are a mixture of server-side and client-side code. Application can have
performance problems on either side or both needs to be optimized. The client-side
relates to performance as seen within the web browser. This includes initial page load
time, downloading all of the resources, JavaScript that runs in the browser. Web
performance optimization occurs by monitoring and analyzing the performance of your
web application and identifying ways to improve it [3].

The motivation to enforce good code is to quality improve the image of the company and
help to create long-lasting partnerships with clients. Discussed tools in this research, that
help developers and companies deploy software with good quality code by automatically
perform checks on different areas of front end development.

Producing high-quality code is an aim that almost everyone in software development
would say they support. Yet, long-term observations in the field reveal that many
organizations do not back up thatworthy sentiment with the necessary resources
(technology, budgettime, training, and management attention) or with the
institutionalprocesses required to ensure that the quality of code is routinely
maintained[4].

Software bugs have been around for as long as the software itself. Even for a program
that has been thoroughly tested, the bugs are inevitable. The longer they are present in the
code, the more expensive and difficult it is for them to be removed to boost front-end
performance as much as possible for our developer. It is not so easy to convince every
client to follow all of our performance guidelines. Correspondingly, to convince them by
talking to them in their language, and explain the importance of performance for
conversion or compare their performance to their main competitors. Our goal was to take
control, focus on performance, be flexible for the future and to suggest recommendations
for how to design, implement and administer tools for code quality in large-scale front-
end software development projects.

1.1 Background of Research

Every year, billions of dollars are lost due to software that does not perform as
expected. While the conformance to the customer requirements is mostly validated by



functional testing, there is more to software quality than that. To cover the attributes
like maintenance, readability, reusability or testability, that directly affect customers’
perception of the product’s quality, other inspection techniques need to be involved as
well. There are different possibilities ranging from formal inspections of the code, peer
code reviews, pair programming, to use of automated tools for static code analysis,
which can be applied to ensure the quality of the code. The key to achieving quality
software lies in the combination of these techniques [5].

According to this definition, quality assurance can simply be interpreted as assuring
customer satisfaction [6]. According to IEEE Standard 610.12-1990, "IEEE Standard
Glossary of Software Engineering Terminology" [7] “testing” is defined as: "The
process of operating a system or component under specified conditions, observing or
recording the results, and making an evaluation of some aspect of the system or
component.”

Performance is a vital factor deciding the quality of a web application, most of the
performance issues happen on the front-end because developers pay much more
attentions on the back-end dealing with business logic and data interaction. Front-End
checklist items are created to go over a web application to check and boost the
performance before releasing it to customers [8].

Even bad code can function. but if code isn’t clean, it can bring a development
organization to its knees. Every year, countless hours and significant resources are lost
because of poorly written code. but it doesn’t have to be that way. Ensuring code quality
when your software team is growing rapidly is a huge challenge. But even with a
constant number of software developers, maintaining code quality can cause headaches
[9]. Without tools and a consistent system, the whole project can accumulate a huge
technical debt, causing more problems in the long-term than it solves in the short-term.
1.2 Problem Statement

The problems caused by a bad code quality vary from bugs to project delays and in
general cause issues with the project timeline and budget.

Low quality code can cause serious problems in the long term, which affect software

quality attributes such as maintainability, performance and security of software systems.



1.3 Research questions
1. How to select a specific tool to maximize the code quality?

2. How to measure the performance in web pages through using the tools?

1.4 Objectives
« To determine specific tools to choose for maximizing code quality in software
development
» To select guideline or framework for firms for excellent tools that are available
and explanation and shows effectively in results.
1.5 Scope of Research
The scope of the research includes only front-end software development related coding
issues and tools.
1.6 Proposed solution
Assessments of tools through measurement performance for web pages to improve code
quality in development projects, and to suggest recommendations for how to design,
implement and administer tools for code quality in software development projects.
1.7 Outlines the research
This thesis is divided into five chapters. Chapter two discusses a group of different
attributes and requirements for code quality, related work. Chapter three about the
research methodology, inside this chapter research design and procedures, were
presented as well as tools, Chapter four which contain result and discussion about the

implementation of work and finally the conclusion and future work at Chapter five.



Chapter Two

Literature Review



Chapter Two
Literature Review

2.1 Introduction

This chapter focuses on theoretical base information for the study such as code quality
and front end. The first section briefly summarizes the concepts of software testing
methodologies and our research based on briefly explains what is the web application is,
the parts and the most important techniques used for development of code quality.

2.2 Continuous Integration

Continuous Integration (CI) is a development practice that requires developers to
integrate code into a shared repository several times a day.

Continuous integration (CI) is a software engineering practice which reduces the blind
spots of software development and leads to the process of building and delivering the
software in rapid. At first, a daily build existed as standard. At present, each team
member has to submit their work on daily basis and intended for a build to be
accompanied with each significant alteration. When CI used by the book, provides
constant feedback on the status of the product development. For the reason that CI
discovers short ages initially during development process, defects are normally less

significant, less complex and stress-free to resolve [10].

In terms of software quality, ClI can help to measure cyclomatic complexity, code
duplication, dependencies and coding standards so that developers can proactively
refactor code before a defect is introduced. If a defect is introduced into a code base, CI
can provide feedback soon after, when defects are less complex and less expensive to fix.
Also, when using an effective developer testing regimen, CI provides quick feedback, via
regression tests, on software that was previously working and is adversely affected by a

new change.

Furthermore, to calculate how much time your team spends on fixing defects once the
software is with the testing team, quality assurance, integration testing, etc. Of course, it

costs considerably more once it enters production. When implementing effective CI



practices, can discover many of these defects as soon as they are introduced, which
significantly decreases the cost of fixing each defect.

The purpose of CI is to ensure required quality and consistency of the code in the
development repository. Usually every code increment submitted by a developer is built
with the newest code base and automatically checked against predefined criteria, like

static code analysis and automated testing [11].
2.3 Attributes of Good Code Quality

Code quality is a combination of various attributes and conditions, which depend on the
used business case. The following attributes are some of the most common ones for
defining code quality, but there are tens of more attributes that can be used in addition
depending on the code that is being evaluated:

e Clarity: Easy to read and oversee for anyone who isn’t the creator of the code. If
it’s easy to understand, it’s much easier to maintain and extend the code. Not just
computers, but also humans need to understand it.

« Maintainable: A high-quality code isn’t overcomplicated. Anyone working with
the code has to understand the whole context of the code if they want to make any
changes.

e Documented: The best thing is when the code is self-explaining, but it’s always
recommended to add comments to the code to explain its role and functions. It
makes it much easier for anyone who didn’t take part in writing the code to
understand and maintain it.

o Refactored: Code formatting needs to be consistent and follow the language’s
coding conventions. Some code refactoring tips here.

o Well-tested: The fewer bugs the code has the higher its quality. Thorough testing
filters out critical bugs ensuring that the software works the way it’s intended.

o Extendible: The code received had to be extendible. It’s not really great when to
have to throw it away after a few weeks.

o Efficiency: High-quality code doesn’t use unnecessary resources to perform the
desired action.

e Tested: A code should have thorough tests to prevent any unwanted bugs from

being introduced. Having well-written tests against the code will also enforce


https://apiumhub.com/tech-blog-barcelona/code-refactoring-techniques/

maintainability and extensibility as the programmers can modify the code with
ease of mind knowing that the tests will more likely show if something gets
broken. Testing can be performed at many different levels in the software
development process. Each level has been designed to detect different types of
issues.

o Reliable: A code can be considered reliable when it works as expected and does
not fail even in edge case situations. Reliable applications have fewer bugs and
downtime and are therefore better for the business.

o Follows Standards: The code should follow any rules and regulations set by the
client organization. The other programmers will understand easier the code and its
maintenance takes less effort when it is following common standards. Following
coding standards creates more consistent and uniform code regardless of each
programmer’s styles.

e Reusability: Programming reuse is a decent cost productive and efficient
advancement way. Distinctive code libraries classes ought to be sufficiently
nonexclusive to utilize effectively in diverse application modules. Isolating
application into diverse modules with the goal that modules can be reused over

the application [12].

2.4 Dynamic Testing

Dynamic Testing is a kind of software testing technique using which the dynamic
behaviour of the code is analyzed. For Performing dynamic, testing the software should
be compiled and executed and parameters such as memory usage, CPU usage, response
time and overall performance of the software are analyzed [13], is usually thought to
have four different levels: unit testing, integration testing, system testing and acceptance
testing.

Dynamic testing involves validation and it usually asks or checks "Are you building the
right thing?” The software should be compiled and executed and input values are given

and output values are checked with the expected output [14].



2.5 Unit Testing

Unit testing is defined as a type of software testing where individual units/ components of
software are tested. Unit testing of software applications is done during the development
(coding) of an application. The objective of Unit Testing is to isolate a section of code
and verify its correctness. In procedural programming, a unit may be an individual
function or procedure. Unit testing is usually performed by the developer.

In SDLC, STLC, V Model, Unit testing is the first level of testing done before integration
testing. Unit testing is a White Box testing technique that is usually performed by the
developer. Though, in a practical world due to time crunch or reluctance of developers to
tests, QA engineers also do unit testing. Dynamic testing involves testing the software for
the input values, and output values are analyzed. Dynamic testing is the Validation part of
Verification and Validation.

It is done at the lowest level. It tests the basic unit of software, which is the smallest
testable piece of software. It is also called module or component testing. It refers to tests
that verify the functionality of a specific section of code, usually at the function level. In
an object-oriented environment, this is usually at the class level, and the minimal unit

tests include the constructors and destructors [15].

2.6 WebLOAD Professional

WebLOAD is a website and performance testing tool for performing enterprise-scale load
testing. Through AWS or cloud providers, can generate massive virtual user load through
its Load Generation Console on Windows and Linux devices both in the cloud or locally.
What separates it from other solutions is it's Free Edition for 50 virtual users that include
community support and all of its features. Developed by RadView Software, WebLOAD
is capable of supporting hundreds of technologies and features flexible built-in scripting
capabilities.

Correspondingly, the side from offering extensive features for load testing web systems,
WebLOAD is also capable of testing a variety of enterprise systems, including Oracle,
SAP, and others. With WebLOAD, users can easily create and view their load script
coupled with record and playback options, making test creation simple and efficient. The

system implements multi-protocol support, enabling WebLOAD to replicate load

10



environments that number from hundreds to thousands of users and then provide accurate
and detailed analysis of how the application behaves under load. With WebLOAD,
businesses have a platform that allows them to perform load testing that is reliable,
accurate, and efficient. The system offers an integrated development environment (IDE)
that comes with a throng of useful features including correlation,

The system comes with a set of predefined analysis reports that provides developers with
a detailed breakdown of performance data. This allows users to determine the bottlenecks
and quickly make adjustments to resolve issues. The reports can also be viewed off-site
through the customizable web dashboard.

WebLOAD also gathers critical information such as server-side statistics and other data
from test runs. This helps users collect more information to apply within their root cause
analysis. The platform is optimized for any device, ensuring that users can easily access
the system from the desktop, laptop, and mobile phone, and analyze performance test

results even if they are away from the office[34].

2 Welcorme to WfeblOAD

~WEBLOAD

Welcome! Let's get started!

o @

Launch WebLOAD Recorder Launch WebLOAD Console Launch WebLOAD Analytics
to create, manage and to create, run and monitor to analyze your load test
validate your test scripts. your Load Tests. results, find bottlenecks and

create informative reports.

License setup

OnLine Help

Wihat's new

Figure 2.1: Welcome to Webload

11



2.7 Cl test

Continuous Integration (Cl) has evolved to become an integral part of the software
ecosystem. When the discussion pivots to Cl, the first tool that comes to mind is Jenkins.
Jenkins is the most popular of any of the CI tools used today by software teams and is
playing a significant role in the accelerating the ‘Dev’ in DevOps. It is an open source CI
platform built in Java and has thousands of native integrations with useful tools. Jenkins
enables developers to build, deploy, and automate projects; thereby, improving time to
market and product quality.
As automation testing continues to help organizations scale their software quality efforts,
it is imperative that automated tests are also part of the CI pipeline to achieve true
continuous delivery. Most test types - including unit, integration, functional, and
regression tests - are run via Cl depending on the size of the test suite and the type of
application under test.
Advantages of Jenkins include:

e Itis an open source tool with great community support.

o ltiseasy to install. and share with the community.

e Itis free of cost.

e It has 1000+ plugins to ease work. If a plugin does not exist can code it

o Itis built with Java, and hence, it is portable to all the major platforms [35].

2.8 Related Work

Many research articles are found regarding identify ways to improve and enforce code
quality using automated tools.
In [16] defining the quality of software-defined infrastructures. The outcome of the

interviews suggests that among other important quality characteristics, testing is a very
important quality characteristic.

On the other hand, [17] say in their research unit testing By definition and in practice,
unit testing is done by the developer, not an independent tester or quality assurance
person. Unit testing is based upon a structural view into the implementation code. Code

coverage tools can be used to provide the programmer with insight into which part of the

12



code structure has been exercised by tests. However, developers often do not use code
coverage information in their determination that they have tested enough.

In [18] developed a framework and provide improvement suggestions for better quality
optimization of current web page and further development process for same type of
application.

The research in [19] propose two case study analyses conducted on past large-scale
software development projects. the projects included some tools to improve the quality of
the code, but they both also failed in some quality areas. These analyses were utilized to
first find out the common pain points in software development projects, which reduced
the code quality and secondly to help to identify methods that could solve these issues.
Could be solved by enforcing the code quality with automated tools, caused many of the
problems in the past projects. The set up of the projects determined a lot of the type of
issues that arose, but most of them could have been avoided with a better planning and
implementation of the quality enforcement tools. The results and suggestions consist of a
list of tools and guidelines for how to use them to solve the most common coding related
challenges.

In [20] in contrast, Avritzer and Weyuker introduced a new way to design an application-
independent workload for doing such a performance evaluation. It was determined that
for the given project, the quantity of software and system availability requirements made
it impossible to port the system to the new platform in order to do the performance
testing. Therefore, a novel approach was designed in which no software was ported at all.
Instead, a synthetic workload was devised by tuning commercially-available benchmarks
to approximate resource usage of the actual system.

The works in [21] discuss a case study describing the experience of using these
approaches for testing the performance of a system used as a gateway in a large industrial
client/server transaction processing application is presented.

According to [22], if test execution is performed manually then it is considered as
inefficient and error prone whereas test execution which is performed automatically
increases the efficiency in such a way it reduces the work of the testers. Automated test

case execution helps in reducing the cost because it decreases human involvement.

13



In [23] the aim of web performance testing is to evaluate performances of the web
application and all the back-end systems (DB and application server) changing the load.
Performance testing activity guarantees system performances according to a defined load,
identifying where response time is too high. Automated tools are used to generate and
emulate the load of the end users. These kinds of tests are very useful to verify, in test
plant, new releases of the application or to stress it with a greater load (useful, for
example, before the launch of a new advertising campaign). An artificial traffic is
generated to reproduce the activity of a certain number of users of different types and, if
long response time are measured, to find out all the system bottlenecks. After a first
tuning activity, all the tests should be executed again.

All the test activities can be executed on-site or in a remote way. The focus of the first
kind of activity is the application (all the network involved between server web and
browser is not considered) and it’s possible to extract lot of useful and detailed
information (especially if, during the test, all the resources of the systems involved are
under monitoring). With a remote test, as all the elements involved are considered (user
browser, ISP, network and application) it’s possible to obtain an end-to-end measure of
performance, but it’s impossible to get lot of details on every element.

The study in [24] introduces a model that assesses test code quality by combining source
code metrics that reflect three main aspects of test code quality: completeness,
effectiveness and maintainability. The model is inspired by the software quality model of
the software improvement group which aggregates source code metrics into quality
ratings based on benchmarking. To validate the model we assess the relation between test
code quality, as measured by the model, and issue handling performance. An experiment
is conducted in which the test code quality model is applied to 18 open source systems.
The test quality ratings are tested for correlation with issue handling indicators, which are
obtained by mining issue repositories. In particular, we study the (1) defect resolution
speed, (2) throughput and (3) productivity issue handling metrics. The results reveal a
significant positive correlation between test code quality and two out of the three issue
handling metrics (throughput and productivity), indicating that good test code quality

positively influences issue handling performance.

14



In [25] discussed comparative analysis of various software performance testing tools and
their limitations and a new approach for software performance testing. With an upbeat
approach, we can produce software that can meet performance objectives and can be
delivered on time and within budget, avoiding the project crises.

In [26] provided a good insights of software testing practices Most of the teams (6(8),
75%) teams mentioned that their impression on the tool that they were using is
satisfactory, Another team mentioned need of more tools to perform unit and integration
testing, and also improvement in software testing repository.

In [27] they mentioned software testing types there are various software testing
techniques as per the research and study like a black box, white box, grey box,
regression, reliability, usability, performance, unit, system, integration, security, smoke,
sanity and object-oriented testing etc. It is impossible to perform all types of testing on a
software as there is always fixed amount of time allocated for testing. Functional testing
is very common, and lots of research is done on them in the past that’s why only in rare
cases a site crashes due to lack of functional testing. The most recent failures that
happened in the past are due to lack of Performance and Security testing. In 2014 Indian
Railway site got crashed as it was not able to handle the load of customers. Another
failure in 2014 is of Delhi University (DU) online application form web site crash on last
day of submission due to excessive load on site. Then there were instances in 2013 when
Indian government sites were hacked by some external agencies. After analyzing and
survey of all these techniques, it is found that the right mix of testing types should be
performed on a given software to ensure quality and overall reliable software.

This research focuses on the main testing techniques like functional [F], performance [P]
and security testing[S]. The right mix of testing should be included from all headers of F,
P and S. Functionality is the first and foremost aspect of software testing which ensures
the quality of software. verification and validation are done using static and dynamic
testing respectively. static testing involves all types of reviews, inspections, and
walkthroughs. dynamic testing or actual validation involves all functional and non-
functional testing types.

Recommended [28] of a pilot case study aiming: (a) to understand the implications of

structural quality; and (b) to figure out the benefits of structural quality analysis of the

15



code delivered by open source style development. To this end, we have measured quality
characteristics of 100 applications written for Linux, using a software measurement tool,
and compared the results with the industrial standard that is proposed by the tool. Another
target of this case study was to investigate the issue of modularity in open source as this
characteristic is being considered crucial by the proponents of open source for this type of
software development. we have empirically assessed the relationship between the size of
the application components and the delivered quality measured through user satisfaction.
We have determined that, up to a certain extent, the average component size of an
application is negatively related to the user satisfaction for

this application.

Discussed [29] web Performance testing is executed through testing campaigns for
stressing the web site and back-end systems with the amount of load simulating the real
conditions of the field or to evaluate if the site/application will support the expected load
following special situations (e.g. an advertisement campaign). That allows you to
guarantee system performances under that load and to identify and help in fixing possible
issues.

Web performance measurement aims at analysis and fast characterization of system and
user behaviour in order to give fast feedback on any issues. In order to achieve that,
TILAB has realized two tools: WEBSAT(WEB Server Application Time) and BMPOP.
WEBSAT is based on web server log files and completes the tool suite of the commercial
off the shelf products used for Web Performance Evaluation/Measurement activities.
BMPOP (BenchMark Point Of Presence) is used for web performance measurement from
the end-to-end perspective.

The study [30] reported in this paper establishes a conceptual framework and some key
initial results in the analysis of the characteristics of software quality.

Explicit attention to characteristics of software quality can lead to significant savings in
software life-cycle costs and the current software state-of-the-art imposes specific
limitations on our ability to automatically and quantitatively evaluate the quality of
software.

Proposed [31] a performance testing methodology which copes with the afore mentioned

16



characteristics. the methodology consists of a set of methods and patterns to realize
adequate workloads for multi-service systems. the effectiveness of this methodology is
demonstrated throughout a case study on IP Multimedia Subsystem performance testing.
In [32] analyzed source code version control system logs of popular open source software
systems to detect changes marked as refactorings and examine how the software metrics
are affected by this process, in order to evaluate whether refactoring is effectively used as
a means to improve software quality within the open source community.

Suggested [33] a framework for performance analysis and performance evaluation. So,
we have discussed comparative analysis of various software performance testing tools
and their limitations and a new approach for software performance testing. With an
upbeat approach, we can produce software that can meet performance objectives and can
be delivered on time and within budget, avoiding the project crises.

2.9 Summary

This chapter presents the theoretical information about what good code quality means,
unit testing, dynamic testing, and continuous integration. Secondly, in next section
describe the work related to software testing published by various researchers by

highlighting their contributions.

17



Chapter Three
Methodology

18



Chapter Three
Methodology

3.1 Introduction

This chapter provides the research method steps, and the explanation of the methodology
to be followed to achieve the research objectives. In addition, listing concrete tools and

methods for improving code quality.

3.2 Research Methodologies and Software tool used

To develop ways to improve code quality using automated software testing tools in
development projects, first, existing knowledge about code quality was investigated
mostly through literature reviews and how to improve and implement it will be explored.
Secondly, implement the knowledge about what things enhancement of code quality by
using different tools and framework, finally, the methods and tools are put into
framework of software development and the technologies are explained in more detail

together with concrete examples of how to use them [19].

Definition of good code quality

Literature review—>| and List of available tools

Identification

Exiting knowledge

Results from using tools

Different free tool ———— |mplementation | > Analysis results

A 4
Suggestion
guidelines for
usage (framework)

Figure 3.1: Research method for the study using Block diagram

19




3.2.1 Load test
WebLOAD Cloud (Web Dashboard in earlier versions). The Dashboards tab enables
viewing, analyzing and comparing load sessions, with full control and customization of
the display.
WebLOAD Cloud provides a single unified command and control interface where can
create, execute, schedule, and analyze tests all directly from a web browser. It can be
deployed on-premises or in the cloud, delivering greater visibility, control and
collaboration to performance testing, QA, and DevOps teams. Some of the tasks can
accomplish using the WebLOAD Cloud include:

o Create and edit load tests

o Upload, add and manage tests, resources, and sessions

« Execute and schedule test runs

e Analyze results using ready-made and self-configured dashboards

e Share tests and results with peers

e Manage access permissions for users and groups

o Download test results to the local machine for further analysis with WebLOAD

Analytics

3.2.2 Apache JMeter

The Apache JMeter TM is pure Java open source software, which was first developed by
Stefano Mazzocchi of the Apache Software Foundation, designed to load functional test
behaviour and measure performance.

Used JMeter to analyze and measure the performance of web application or a variety of
services. Performance Testing means testing a web application against heavy load,
multiple and concurrent user traffic. JMeter originally is used for testing Web
Application or FTP application. Nowadays, it is used for a functional test, database server
test [35].

20


https://www.guru99.com/java-tutorial.html
https://www.guru99.com/apache.html
https://www.guru99.com/software-testing.html

Test report

T r——

Create request
to target server

Trrreler srmralades

C 011 ect an. d mraltrple asers
serdirrg reguest o Server
Ca].cu].ate Earged server, omda resp Ond_s
statistical info raburos She

SPES PTG ITE S resalE
2 Ehre Eorged

Sawves all
responses

Figure 3.2: Workflow of JMeter stages
_f Apache Iheter (5.1 r1853635) EI IEI

File Edit Search BRun Options Tools Help
= & 7
iy ™
A TestFPlan
Comments:

User Defined VYariables

IRETEN

Dzl Add Add from Clipboard zluis Doovrs

Run Thread Groups consecutively (i.e. one at a time)

¥ Run tearDown Thread Groups after shutdown of main threads

Functional Test Mode {i.e. save Response Data and Sampler Data)

ing Functional Te ode r v perform

Add directory or jar to classpath | Browse... Delete Clear

Iikivans

Figure 3.3: Home screen Apache JMeter

21




3.2.3 Unit testing using Jasmine

Jasmine is one of the popular JavaScript unit testing frameworks which is capable of
testing synchronous and asynchronous JavaScript code. It is used in BDD (behaviour-
driven development) programming which focuses more on the business value than on the
technical details. Jasmine is a Behavior Driven Development testing framework for
JavaScript. It does not rely on browsers, DOM, or any JavaScript framework. Thus it's
suited for websites, Node.js projects, or anywhere that JavaScript can run. Jasmine Suite

and Specs in Jasmine, there are two important terms — suite and spec.
3.2.3.1 Suite

A Jasmine suite is a group of test cases that can be used to test a specific behaviour of the
JavaScript code (a JavaScript object or function). This begins with a call to the Jasmine
global function describe with two parameters — the first parameter represents the title of
the test suite and the second parameter represents a function that implements the test

suite.
3.2.3.2 Spec

A Jasmine spec represents a test case inside the test suite. This begins with a call to the
Jasmine global function it with two parameters — the first parameter represents the title of
the spec and the second parameter represents a function that implements the test case.

In practice, spec contains one or more expectations. Each expectation represents an
assertion that can be either true or false. To pass the spec, all of the expectations inside
the spec have to be true. If one or more expectations inside a spec are false, the spec fails
[36].

3.3 Summary

This chapter provides a description of the research methodology using a block diagram.
Also, show up the techniques have been applied in the research, in addition describe
different tools and steps of a method used.

22



Chapter Four

Implementation and Results

23



Chapter Four
Implementation and Results

4.1 Introduction

This chapter shows the implementation details of code quality in web pages using
software testing tool. It also shows the results of the study are presented and discussed
concerning the aim of the study, which was to provide framework or suggestion for how
to design, implement and administer tools for code quality in software development. First
we applied tools that improve performance website, secondly, when the code is in
operation mode, unit testing using jasmine framework is performed in the runtime
environment.

4.2 Performance testing with WebLOAD Professional

In this study, three sites were tested in order to get more coverage of the results and
compare them with another tool using the same sites. The sites used in this study are:
Apple.com and pstore.com this site is designed by me and the interactive social site
noonpost.com.

4.2.1 First site https://www.apple.com/

The first steps to test the performance of the webload tool, WebLOAD Recorder. Is a
visual environment for creating protocol test scripts (referred to as scripts). The snapshot
of recorded agenda can switch the views from JavaScript View to Page View or HTML
View or HTTP Headers View.

24


https://www.apple.com/

Script Tree & JavaScript View [ HTML View @~
B Agenda + Global Nav Open Menu Global Mav Close Menu o
B; BeginTransaction:Transaction]_Opendpp |E
] it wnapple.com/ o Apple —
« Shopping Bag
& https:ffnenanapple.cornfusfshop/bag/status Tapikey=3F)I9YF
(@) htp bR p/bag pikey
i Sleep Search apple.com
L6 hittps:/faenarapple.comysearch-services/suggestions
L@ bt le.com/seatch-services/ fans/
----- T EndTransaction:Transactionl_Opendpp Cancel
[-= BeginTransactian:Transaction?_L OGIN « Apple
----- 5 EndTransactmln::Transactloan_LO(lSIN . Mac
[-= BeginTransaction::Transaction3_Findltem .
----- T EndTransaction:Transaction3_Findltermn » IFad
[~ BeginTransaction:Transactiond_&dd to cart s IFhone
----- T EndTransactionuTransactiond_Add to cart
..... E SlEEFI - WatCh
----- @| https:ffxpapplecom/repot2 fp_aos_clientperf e 1Y
o Music
« SUpport
‘ 1 r v
EDIT MODE [EDITING]
Figure 4.1: Agenda for (apple.com) and Page View
Script Tree [l Page View % JavaScript View X IenlciRVIRNTN @~
EI; ggisr;Transactinn::Transacti0n2_LOGIN T4 it (e NodsSoipt =
..... BEp
_ g5 | -
..... ; ? - i
] glttps.H\m\rmr.appIe.cam,’usfshopr'bagfﬂyout.aplkey S a5 | wiHitp SaveSource = true
""" & Steep T T T T g7 | wiHttp. Header"Referer'] = "https: foven apple. cormd
urr:.-.-turr:.-:[.-[.nlr:.n.l.nrn,.- 3 -Ign_ln:l.:-:HF-.I.In.Hf oo WIHttp.FurmdataEncudingType =1 £
""" 4 Sleep o g% | AWLCORRHIMFO - Replacing "aHROCHMELyS3d3c0’ KBy
""" 9] hittpsy/ /341800575 |og.optimizely.com/eventla=34130057 90 | wiHttp.FormData["c"] = getCorelationtalue("corr_Mew B o
----- [@] hitps://341800575.1ag.optirnizely.com/event fa=34180057 = g1 | /WLCORR-INFQ : Replacing "SCOHYHPT CYAHTR2H" -
----- @) httpsiffsecured store.apple.com/shop/bag/statustapikey: 92 | wiHttp. FormData["r"] = getCorrelation®alue("car_New 5_r
----- 2 Sleep 93 | AWLCORR-INFO - Replacing "aHROcHWMBLyS3d3cu XBw
----- @) httpsifsecurel store.apple.com/search-services/suggesti 94 | wiHttp.FarmData["s"] = getCorrelation'value("carr_New r7_¢
----- H Sleep = 95 | wiCookie Set("s_fid", "35EDI4166E7EA7IE-05EDET BFO0D
..... @' https;ﬁxp.apme,cQm,-’repgrt,-’z,fxp_ags_clientperf S5 W|CDDkiE.SEt("3_ptC", "0.016%5E%5ED . 000%5E%SED.000
..... (@] httpsifAp.apple.comfrepart/2fp_aos_clientperf 47| wiCookie. 5eti"s_aca_ct", "%/ B%Z2linkTrackars%22%3A
,,,,,  Sleep G5 | wiCookie.Set("s_pathLength", "homepage%301%2C", "sec
..... @) httpsi// 341800575 og.optimizely.com/eventia=34190057 5% | wiCookie Set("s_cc', "true”, "secure store.apple.com”, *f",
_____ B Sleep 100 | wiTemporary = "appleglobal%2582Capplehome%252Capples
----- [@] https//redirector.gutl.com/edgedl/chrome/dict/en-us- 13; + "B %252620% 2525 8us% 252528 %2528 pidt %253
----- 5 Sleep i | |
¢ . r 4 i
ECTT MODE [EDITING] LML COLl

Figure 4.2: Agenda for(apple.com) and Javascript View

25



Log Window px

! | |TIME |GENERATOR..|SCRIPT NAME CLIE... | MESSAGE TIME STAMP &
& 57905 localhost Sample_apple 2 Connection to secure.store.apple.com failed, in C\Users\Daleel\Documents\WebLOAD\Sessions'\Sample... 2/28/2019 10:57:10 AM
8 58009 localhost Sample_apple 2 Transaction Transaction2_LOGIN not completed. Error occurred in current transaction. 2/28/2019 10:57:11 AM
@ 58111 localhost Sample_apple 12 Error in delete cookie. Cookie not found, Name:end_user_id, Domain: OPTIMIZELY.COM, Path:/, in Ch\Us... 2/28/2019 10:57:12 AM
& 58347 localhost Sample_apple 7 Error in delete cookie. Cookie not found, Mamefixed_external_341800575_end_user_id, Domain:OPTIMIZE... 2/28/2019 10:57:15 AM
@ 58512 localhost Sample_apple 11 Error in delete cookie. Cookie not found, Name:fixed_external_341800575_end_user_id, Domain: OPTIMIZE... 2/28/2019 10:57:16 AM
& 50163 localhost Sample_apple 13 Error in delete cookie, Cookie not found, Mame:end_user_id, Domain: OPTIMIZELY.COM, Path:/. in C:\Us... 2/28/2019 10:57:23 AM
0 s Test passed 2/28/2019 10:57:42 AM

READY ELAPSED TIME: 00:10:04 REMAINING TIME: 00:00:00

Figure 4.3: Log Window (apple.com)
The Log Window displays a summary of the test including all log messages detected by

WebLOAD Console in run time that is generated by the Console, the JavaScript compiler

and any user messages programmed in the test script.

Session tree window e -

Load Session ey r= 1000 =
3! B9 E 2R+ X
i..iz| Sample_spple
100.00
50.00
[ —_— e N . s - x".--.'*"‘..'* - .'.‘ "y
0.00 e x
a 100 200 300 400 500 600 700 800 900 1000
1 I b
S Generator Mame heasurernent Mame Measurement Type Walue hir m
Tatal Load Size Current Slice Surm (Current Yalue) 20,000 434
. Tatal Hits Per Second Current Slice Surm (Current Yalue) 1.050 0.250 -
1 n b

Time: 600.00

Figure 4.4: Session Tree and default report with measurement type (apple.com)

The Session Tree displays in the left pane of the Console screen, and gives you a
complete graphical overview of the test session including the Agendas run, and the hosts
running each Agenda. The icons adjacent to the tree items enable you to view your test

activity at a glance.

26



Session tree window

@ -
34 Load Session B | # - g 1000 =]
Sample_apple o |l #AD@ + X =
Iﬂ localhost (20, 0)
100,00
50.00 P —
R e e — - == = S L s Wi
o 100 200 300 400 500 500 700 500 a0 1000
< n | »
5. Generator Mame Measurerment Marme Measurement Type Walue Min m
- Tatal Laad Size Current Slice Sum (Current Value) n.000 4.322 D
- Total Hits Per Second Current Slice Surm (Current Value) 1.050 0.250 -
< n ] v
Tirme: 600,00
Figure 4.5: Default Report (apple.com)

[ Default Report [ Transactions Dashboard % Transactions v
Measurements -
(Current Values) Total Sample_applexTo..| Sample_apple@lo..| _Peformance@lo...| PM@localhost _RPM@localhost =
Load Size 20.000 20,000 20,000 - - -

Rounds 0.000 0.000 0.000 - - -

Failed Rounds 0.000 0.000 0.000 - - -

Rounds Per Second 0.000 0.000 0.000 - - -

Failed Rounds Per Second 0.000 0.000 0.000 - - -

Page Time 9.414 9.414 9.414 - - -

Pages 14,000 14,000 14,000 - - -

Pages Per Second 0.700 0.700 0.700 - - -

DNS Lookup Time 1.242 1.242 1.242 - - -

Hit Time 13.611 13611 13.611 - - - S
Double click on a colurmn or row header or amy table cell to view statistical details, Load Size: 20 Tirre: 600

Figure 4.6: Statistics Reports (apple.com)

WebLOAD collects approximately 35 different statistics during a test. Statistics Reports

display the values for all of them.

27



Session tree window [59] Default Report [5] Transactions Dashboard Statistics @ -
@ Load SES_SiU” Measurement Current Walue Awerage Walue

% b Tirne 1040.00

. £ DalesPC [16,0)

Running Wirtual Clients 16

Rounds Executed 2083

Failed Rounds 2083

Failed Hits 0

Hits Per Second 0 0
Calculated Hits Per Day 0 1]
Pages Per Second 14 3
Calculated Pages Per Day 1209600 259200
Throughput 0 ]
Calculated Throughput Per Day 0 1]

[=] Default Report (-] ¥ Transactions Statistics v
By & -9l & TR 1000 =
—

v .00
c
2

£§ .00
5 300
o
o
- 000 T T T T T T T T

0 200 300 400 a00 E00 700 a00 Q00 1000
« | 1 | »
5. Generator Marme Transaction Marne Walue Total Min Total Max Tatal Average Tot:
Tirne:
Figure 4.7: Dashboard (apple.com)
The Dashboard displays real-time statistical information about the test session including
the number of Virtual Clients running, hits per day, pages per day and throughput.

s W REC @ 1000 =]
B i ﬁ TR :!b + x Q
000
G000
30.00

000 T T T

0 00 a0o a00 1000
« | I | »
Measurernent Mame heasurernent Type Walue Mlin hla ferag *

‘ [ m b

Figure 4.8: Integrated Report (apple.com)

28



1{ I

5. Generator Name Measurement Name Measurerment Type Walue Min
Total Load Size Current Slice Sum (Current Yalye) 20000 431
. Samnple_apple@local.,  HTTP Response Status 200 Current Slice surm (Current Yalye) 21000 1000
. Sample_apple@local.,  HTTP Response Status 304 Current Slice Sum (Current Yalue) 0,000 0.000
Sarnple_apple@local.,  HTTP Respanse Status 303 Current Slice Surn (Current Yalue) 0,000 0.000
Sarnple_apple@local.,  Load Size Current Slice Surn (Current Yalue) 20.000 432
Sarnple_apple@local.,  Failed Transaction]_ Opendpp Trans., Current Slice Surm (Current Yalug) 0.000 0.000
. Sarnple_apple@local., Failed Transactionl Open&pp Trans.,  Current Slice Surm (Current Yalue) 0.000 0.000
B Samole aovleBlocal., Failed Transaction? LOGIN Transacti..  Current Slice Sum (Current Value) 1000 0.000
] m b
Tirne: 600,00
I
Figure 4.9: measurement type (apple.com/)
|| Default Report [s| Transactions Dashboard [ Statistics (=] |a=| Reportl -
Measurerment Current Walue Prrerage Walue
Tirme 60000
Running Wirtual Clients 20
Rounds Executed 106
Failed Rounds 106
Failed Hits 143
Hits Per Second 2 1
Calculated Hits Per Day 1r2a00 ga400
Pages Per Secand 1 1
Calculated Pages Per Day 26400 26400
Throughput 44130 60916
Calculated Throughput Per Day 3637 MB 5020 kB

Figure 4.10: Dashboard (apple.com)

The last step, WebLOAD Analytics provides you with a simple yet comprehensive
method of producing and publishing reports to fulfill all your analysis and reporting
requirements. Using WebLOAD Analytics, you can create clear, accurate, and
meaningful reports that enable you to analyze Load Session results and identify peaks,

trends, and anomalies in your data. WebLOAD Analytics provides you with a variety of

29



I%] Report

x| GHE =0

& Report 1
m Performance Summary
m Atternpted Connections
m Response Tirme Breakdown
m HTTP Responses
[E] HTTR Errors Ower Tirne
m Errors and Warnings
[&1 Loa Surnmary

m Gallery (] RecentReportsW

=0

m Templates
L General
m Log and Errors
m Pages &nalysis
m Percentile
m Probing Client
[ Server Side Statistics
m Session Compatison
[ Static Ternplates
m Statistical Correlation
[ Transaction Analysis
m User Defined

M

predefined chart templates that enable you to produce focused reports on specific topics.

You can edit these templates, and create new templates.

@ Perfarmance Summary &3 Load Generator Healt 1@ Windowes Platform Sta W m Session Surmmary 1 I =08
Performance Summary
2 Settings |fiy Chart View| © Preview|
= 16.00 - S 11000 |4
g 180 - 1.60 -
g 1400 - - 100,00
w1 160 - 1.40 -
& T 1200 - e
S 140 - 500 0 O ~ &0o0 & | —
] o & =
51207 o 10.00 - - 7000 8
g F100- 8 g
400 2 - ¢ - 6000 2
100 - & 5.0 - &
= T 080 - ’ f =
2 @ ' - 5000
£ 080 - A y,
3 oeo | 809 A - 4000
= b * # b =
Eogo- *e A
0.40 - 4.00 - * J - 30000
040 - '
+ \ \ A A P - 2000
gap 0204 200 o TN y # - 1000
0.0 - 0.00 - 0.00 T T 0.00
0:05:00 o000 1500 |
Relative Time Hmm ss
0:00:20 | 0:00:40 | 0:01:00
B | oad Size 4 60 5.00 .00
* Page Time
= Time To First Byte 148 .19 589 4.09 283 414
+ Response Time 3.80 2328 2070 19.57 4590 a0.44 57

E;_h‘] Report

Figure 4.11: WebLOAD Analytics Screen (apple.com)

X|#QE -0

Windowes Platform Sta Session Sumrma 1
& i v

m Performance Summary [m Log Summary 3

m Performance Summary
@ Atternpted Connections
[€] Response Tirme Breakdawn
@ HTTP Responses

[E] HTTP Errors Qwer Time

@ Errors and Warnings

m Log Summary

%] Total Page Time

-

Log Summary

2 Settings | © Preview

mGaIIery @ Recent Reports]

=08

m Termplates
m General
[l Log and Errars
m Pages Analysis
[L Percertile
m Probing Client
[ Server Side Statistics
m Session Compatison
m Static Templates
m Statistical Correlation
m Transaction &nalysis
m User Defined

n

| »

m

[ R Hof1 |._,£\@\ 125% - @,
Log Summary - Total 0
Description  This chart displays a summary of the Load Session's logged messages. Similar
messages are grouped, and their total count shown. =
Error sample-Daleel-PC 104 Connection to www.apple.com failed. in C:
\Users\Dalee\Documents\WebLOAD\Sessions
\sample.wlp at line 11
Error sample-Daleel-PC 103 Transaction Transaction1_OpenApp not
completed. Error occurred in current
transaction.
Error sample-Daleel-PC 16 Transaction Transaction2_LOGIN not
completed. Error occurred in current
transaction.
Error sample-Daleel-PC 11 Connection to secure.store.apple.com failed. in
C:
I leersiNales DA imenteiWehl OANSessinne -

Figure 4.12: Log Summary, Tabular Data (apple.com)

30




I8 Report

X SswE o

|]l Performance Summary &3 |€] Load Generator Healt

| HE] Windows Platfarm Sta

| [€] Session Sumrmary |

“1a

&}y Report 1
ﬁ Performance Summary
(] Atternpted Connections
m Response Time Breakdown
ﬁ HTTF Responses
[€] HTTP Errors Over Time
ﬁ Errars and Warnings
[&1 Lo Surmmary

«| || Performance Summary

mGaIIery ] RecentReportsw

m Templates

[ Gereral
m Log and Errors
m Pages Bnalysis
[l Percentile
m Probing Client
[ Server Side Statistics
m Session Compatison
m Static Ternplates
[ Statistical Carrelation
m Transaction Analysis
[ User Defined

] m

= % Settings & Chart Wiew | © Preview|
£ ogo T N A 4 4000 [ .
060 - -4 A
0.40 4.00 - * 30.00
0.40 - '
b \ #* # 20.00
- »
- ozn| 020 2004 < N ’ # 10.00
g poo- ooo- ooo - ; 000
0:05:00 0:10:00 01500
Relative Time H:mm:zs
& |oad Size
- Page Time 13049 T.24| B2O5| BTEE| 349 1.56
= = Time To First Byte 1.48 6.19 589 4.09 283 4.14 162 436 .46 4.59 329 224
+ Responze Time 390( 2325) 2070| 1957 4590 5044 15890| 1385| 4007 2067 2903 39.54
= Hitz Per Second 1.00 0.60 0.50 0.40 0.40 0.40 1.05 0.40 045 0.90 0Es 0.s0
- Throughput (Megs bits Per Second) 026 043 o4 0.54 0.96 0.67 087 0.6 061 066 1.0 1642
I ———
Measurernent Narne hin hax Awerage
B Lo Size 4603 ] 10994
< [ Page Time 156 130192 WHLE -
< I ] r >

Figure 4.13: WebLOAD Analytics User Interface (apple.com)

300.00

250.00 -

260.00 -

240.00 -

220.00 -

200.00 -

180.00 -

160.00 -

140.00 -

Transactions

120.00 -

100.00 -

80.00 -

£0.00 -

40.00 -

20,00 -

I
o
[=

Ey
C
[}
=3

OI

-
=

=

o
b
@
C
T
=

=

I
=
o
=]
]
[

c
o
b
[
@
[
I
=
=

Transaction3_Finditem -

. Failed Transactionsz
B successful Transactions

Figure 4.14: Transaction Counters (apple.com)

31




Measurement Name Total

Successful Transaction1_OpenApp Transactions Sum 79
Successful Transaction2_LOGIN Transactions Sum 1
Failed Transactionl_OpenApp Transactions Sum 202
Failed Transaction2_LOGIN Transactions Sum 77
Failed Transaction3_Findltem Transactions Sum 1

Table 1: Measurement based Transaction Counters(apple.com)

This chart shows successful and failed transaction counts for each transaction in the

session.

404: 093%
303 3.70%
[ERER, e F

[ =i
[
=03
[REH

Figure 4.15: HTTP Responses(apple.com)

32



HTTP Response Status 200 Sum 974
HTTP Response Status 302 Sum 13
HTTP Response Status 303 Sum 38
HTTP Response Status 404 Sum 2

Table 2: Measurement based HTTP Responses(apple.com)

This chart displays a summary of the HTTP response status messages received during the Load
Session. For each response status, the template lists the number of responses received and what
percentage it represents of all HTTP responses. Common response status codes - 200 OK, 302
Found, 404 Not Found, 500 Internal Server Error.

4.2.2 Second site http://www.noonpost.com/

Script Tree L LEPEAUCYIRd  § JavaScript View HTML View @ HTTP Headers Vi~

BeginTransaction:Open_site

EndTransactionuOpen_site
BeginTransaction:Open_analysis
----- EndTransaction:Open_analysis
BeginTransaction:Open_Interactive

EndTransactioniOpen_Interactive

T‘} |

WebLOAD [ '}
The Quickest Pg th
From Load Tesﬂ;; n\-

Figure 4.16: Agenda for(noonpost) and Page View

33



Script Tree [ Page View EEE T AN [ HTML View @ HTTP Headers Vi3

fl++1l

[ httpsif/phstnimg.com/card_img 1182
= EndTransactionuOpen Interactive

EndTransaction:Open_analysis ] ENe e NodeScript =
BeginTransaction:Open_Interactive a5 O .
<L Sleep ) ) o 286 | wiHttp. SaveSource = true I
(9] hitpsi//m addthis.com/live/red lojson/’ 2687 | wiHttp. Header["Referer"] = "hitp: Mwww noonpost.cormfanalysis"
- . 288 | wiCookie.Set("_chartbeat2”, ". 1570730144509 157073057 77511 EH4tAQD.
OERPEEEEEMMIIERENRE 285 | wiCookie Set("_chartheats”, "428 0,%2Fanalysis http%3A%2F % 2F wawn no
& Sleep 290 | wiHtp. Get("http: e noonpost. comdinteractive™) i
(@] httpi/feloudfront-labs.amazanaws.com 291 | A WLCORR-INFO : Extracting the dynamic value from the response accor
- Sleep 2924 | setCorrelationalue("corr_Mew r10_tid_48", extractvalue( "createt” 4", ",
(@) https://stats.g doubleclick.net/tfcollect] = 293 | MWLCORR-INFO ;o Extracting the dynamic value from the response accor
g4 Sleep 294: | setCorrelationalue("corr_Mew i _tw_docurment_href 48", extractvalue( "=
|‘g| https:/fs7.addthis.com/110n/client.ar.m 205 HWLCORR-IMFO o Extracting the dynamic value from the response accor
B Sleep 296 | setCorrelationalue("corr_Mew B fp_ 48", extractValuel "fwww noonpost. oo
[ httpsiffanalytics twitter.com/ifadsctip_ 297
3 Sleep 298 -
[ httpsiffsyndicationtwitter.com/ifiat | 293
14 Sleep

-

Figure 4.17: Agenda for(noonpost) and Javascript View

Log View i
! Time Description

& nen Could not extract correlation value to parametercor_New_r2_tw_docurment_href_3, Original value will be used: "http:/fomnivnoonpost.cor” in main_agenda at line 19
& una Could not extract correlation value to parametercor_New_rd_pub_3, Original value will be used: 'mbaa’ in main_agenda at line 21

M 111255 Could not extract correlation value to parametercor_New_r5_dp_3, Onginal value will be used: ‘wavwnoonpost.com' in main_agenda at line 23

& una Custorm Http errar 308 Requested URL: hitpe//sT.addthis.com/js/300/addthis_widget,js in main_agenda at line 33

& 11342 Transaction Open_site has not been closed,

o 1113.96 End raund 1 {1 af 1)

i RAMER v Script Bxecution End Tirne: Sat Oct 19 03:16:43 2019 ™

Figure 4.18: Log Window (hoonpost)

34



Session tree window fault Report l#] Transactions Dashboard @) WebLOAD Dashboard b *¥ Transactions b Open_:

'f\‘j'. Load Session Transachion Name | Total Court| Suczesshl Cout | Faled Cour | Marked Court
£tz nooposts (pen_app e 13

Figure 4.19: Data Drilling Report(noonpost)

Data Drilling provides both a global and detailed account of hit successes and failures allowing
you to verify the functional integrity of your Web application at the per client, per-transactions and
per-instance level. The Data Drilling reports provide an extremely detailed yet easily accessible
summary of all the statistical, timing, and performance information collected over the course of the

test session.

Session tree window &) Default Repott (& '
'f“j'.Loadniz;:;: Eiﬁ:ﬁ;iﬁ;ﬁ) Total noopostsiTotal | Performance@lo., nooposts@localh.. | PM@loczhost | _RPM@locathost
- 3 lecahost (20,0 Load Size 5000 5000 - 5000
Rounds 2000 2000 - 2000
Aborted Rounds 0000 0000 - 0000
Failed Rounds 2000 2000 - 2000
Rounds Per Second 0,100 0100 - 0100
Failed Rounds Per Second 0,100 0100 - 0100

Figure 4.20: Statistics Reports(noonpost)

35



Session tree window Default Report Satisis (@)
3 Load Session Measurement Current Value Awerage Value
- oo Tine w0y
b @Iocalhost[%,ﬂ]
Runring Yirtual Clients 5
Rourids Executed 14
Failed Rounds 12
Failed Hit; 0
Hits Per Secand i Iy
Calrulated Hits Per Naw AG1ANN 1468800
«| i b
Figure 4.21: Dashboard (noonpost)
Session tree window 7 Saiics (@) WebLOAD Dashboard '
| ol
@uadSessmn .-.{ﬁ' 3& jﬁ&ﬁﬁ J@ 4 X 1000 o
w2 0DPOsts —
- @Iocalhost 20,0)
100,00
D00 : ~
'-““i{H-:'H }ﬂw'w.www-ﬁ-m1h_‘
UUU e | | | [ [ | | | |
I 100 200 il 400 500 B0 {1 a0 500 1000
| il 0
‘| i | b
Tirme: 300,00

Figure 4.22: Integrated Report(noonpost)

WebLOAD Integrated Reports provide both a graphical and statistical view of the performance of

your application as it is being tested. Integrated reports can be viewed while the test is in progress

or saved for later analysis.

36



Performance Summary

£ Settings | B Chart View | © Preview

g.00

o iy bkl
o o o
=} =1 =1

Throughput (Mega bits Per Second)

Ly
o
=}

1.00

oo

Hits Per Second

22.00

20.00

16.00

16.00

14.00

12.00

10.00

g.00

6.00

4.00

200

0.00

Load Size

18.00

&0.00
16.00 7000
14.00

50.00
12.00

50.00
10.00

40.00
.00

30.00
5.00
400 20.00

[ L
L}
200 J [ & 10.00
o a
o a—— o a oy
000 S b polid o000
0:05:00 0:A0:00 01500

Figure 4.23: Performance Summary(noonpost)

This chart and table below displays the main performance indicators and changes in Load Size,
over time:

- Load Size — The number of Virtual Clients running during the last reporting interval.

- Page Time — The time it takes to complete a successful upper level request, in seconds.

[SpUDaas] aw)

- Time to First Byte — The time it takes from when a request is sent until the Virtual Client receives
the first byte of data.

- Response Time —The time it takes the SUT to send the object of an HTTP request back to a
Virtual Client, in seconds.

- Hits Per Second — The number of times the Virtual Clients made an HTTP request, divided by

the elapsed time.

- Throughput — The average number of Mega bits per second, transmitted to the Virtual Clients

running the Agenda.

37



Relative Time H.mim: 33

000:20 000040 [ 0:01:00 (000120 | 0:04:40 |0:0200 |0:02:20 | 00240 00300 | 00320 (000540 |0:04:00
& | oad Size 437 543 EBO00| TO2| 843 900 1083 114500 1200) 1385 1443 1500
= Page Time 083 047 1299 2857 475 TE4| 21B3| 2458 507| 4986
= Time To First Byte 043 031 028 057 043 027 0G5 074 067 0890 166| 143
¥ Rezponze Time 072 050 045) 092 0B 039 102 108 084) 132 349 343
 Hitz Per Second 1535 1555 S5BS| ZZB0| 17B0| 1745 2270 22000 17ES| 1250| 10.35| 1560
+ Throughput (Mega bits Per Second) | 432 443| 180|619 488 442 640 ST 489 ZEG| 342 441

| ————————

Table 3: Measurements Performance(noonpost)

02 0.01%
403 0.87T%
308 1.86% B =00
302 0.01%
301: 3.73%/ =01
M =0z
[ 308
200; 95.53% I 403
@ 50z

Figure 4.24: HTTP Responses (noonpost)

This chart displays a summary of the HTTP response status messages received during the Load
Session. For each response status, the template lists the number of responses received and what
percentage it represents of all HTTP responses.

Common response status codes - 200 OK, 302 Found, 404 Not Found, 500 Internal Server Error

38



Log Summary - Total

Description This chart displays a summary of the Load Session's logged messages. Similar
messages are grouped, and their total count shown.

Error nooposts-localhost 125 Custom Hitp emor 308 Requested URL: hitp:
{/s7.addthis.com/js/300/addthis_widget.js in C:
\Users\Dalee\Documents\WebLOAD\Sessions
‘nooposts.wip at line 25

Error nooposts-localhost 124 Transaction Open_app not completed. Error
occurred in current transaction.
Minor Error nooposts-localhost 143 Custom Hitp error 308 Requested URL: http:

/s 7.addthis.com/js/300/addthis_widget.js in C:
\Users\Daleel\Documents\WebLOAD\Sessions
‘nooposts.wip at line 11

Figure 4.25: Log Summary, Tabular Data (noonpost)

This chart displays a summary of the Load Session’s logged messages. Similar messages are

grouped, and their total count shown.

2000
80.00
16.00 5
5 £0.00 @
& 1200 £
=
% a0 4000 g
- 2
400 4 20008
0.0 000

0:05:00 0:10:00 0:15:00
Relative Time Hmmss

Figure 4.26: Page time (noonpost)

This chart displays the Page Time, over time. Page Time is the time it takes to complete a
successful upper level request, in seconds. It is the sum of the Connect Time, Send Time,
Response Time, and Process Time for all the hits on a page. The template also displays the Load

Size, for reference.

39



noonpostses - Total

Start 101519 1:24 AM  End 10/15/19 1:39 AM Duration  00:15:08

Test passed Max Virtual Clients 20  Total Throughput (MB) 195.23
Total Errors 238 Total Wamings 275 o
Failed Rounds 120 Total Rounds 135 o
Total Failed Hits 0 Total Hits 14414 Q)
Total Failed TXs 139 Total TXs 139 ©

Figure 4.27: Session Summary(noonpost)

40




Seconds

Response Time

3.5 4 lr-'f.l". F20
30 - i ! Y
N/ \ F15
2.5 \U ] % \/
2.0 L 10
1.5 4
1.0 1 ]
0.5 4
0.0 T d T d T T T T d 0
o] 100 200 300 400 500 00 700 800 900
Time
— Response Time — Load Size
Hits per second
F20
20 1
e v F15
B 15 -
: o]
. M1
& 10 1
n
T
5 4 F &
0 T T T T T T T T T 0
o] 100 200 300 400 500 800 700 800 aoo
Time
|— Hits per second — Load Size |

Figure 4.28:Statistics based on response time and hits per second(noonpost)

41

azig peo]

a5 peo




4.2.3 Third site:
https://maazamustafa0000.000webhostapp.com/Project/Project/clothing.html

Script Tree o= Page View X ® JavaScript View [ HTML View %;
=-=] Agenda I -
S 2 BeginTransaction:Transactionl_Opensite El

&

BeginTransaction:Transactiond_login
EndTransactionuTransactiond_login
BeginTranzaction:Transaction3_Add to bag
EndTransaction:Transaction3_&dd to bag

NEW ARRIVALS!!

Figure 4.29: Agenda for(pstore) and Page View

2 Agenda Function Mame: ModeScript =
-2 BeginTransaction:Transactionl_Opensite o7
B -
o https: tafal000.000webhost: . Proj P —
@ psi/fmaszamustata webhostapp.com/PrajectFro oo wiHttp. Header["Referer"] = "https: . Yrmaazarmostafal000. 000,

EndTransaction:Transactionl_Opensite jai=t wiHttp. Get("https: Srmaazamustafa0000 000webhostapp. cor

BeginTransaction:TransactionZ_login an
EndTransaction:TransactionZ_login o
BeginTransaction:Transaction3_Add to bag =

2 Sleep

&3] httpsdfrmaazamustafal000.000webhostapp.com/Project/Pro

i Sleep

@] https:/frmaazamustafali00.000webhostapp.com/Project/Pro

m

[@@] https:frnaazamustafaliil.00luwebhostapp.comy/Project/Pro

- EndTransactionuTransaction3_2dd to bag

Figure 4.30: Agenda for(pstore) and Javascript View

42


https://maazamustafa0000.000webhostapp.com/Project/Project/clothing.html

Log Window 4x
¢t | |TIME | GENERATOR... SCRIPT NAME| CLIE... | MESSAGE | TIME STAMP o
& 57773 Daleel-PC pstere 9 404 Mot found. Requested URL: https://dl.google.com/edgedl/chrome/dict/en-us-8-0. bdic?cms_redirect... 2/21/2019 4:45:21 AM
aleel- pstore ot found. st : hitps:// st com/Proje roject/login.ht... Al
M 71632 Daleel-PC 2 404 Not found. R d URL: https:// fa0000.000webk /Project/Project/login.ht... 2/21/2019 4:47:40 AM
& 738.05 Daleel-PC pstore 3 404 Mot found. Requested URL: https://dl.google.com/edgedl/chrome/dict/en-us-8-0.bdic?cms_redirect... 2/21/2019 4:48:01 AM
M 74490 Daleel-PC pstore 2 404 Mot found. Requested URL: https://dl.google.com/edgedl/chrome/dict/en-us-8-0.bdicfcms_redirect... 2/21/2019 4:48:08 AM
M 74712 Daleel-PC pstore 4 404 Not found. Requested URL: https://dl.google.com/edgedl/chrome/dict/en-us-8-0.bdicfcms_redirect... 2/21/2019 4:48:10 AM
aleel- ore ot found. Requeste 3 htt) .google.com/edgedl/chrome/dict/en-us-8-0.bdic?cms_redirect... :48:
M 75583 Daleel-PC pst: 0 404 Mot found. Req d URL: https://dl.google.com/edged|/chrome/dict/" 3-0.bdic? di 2/21/2019 4:48:19 AM
y aleel- ore ot found. Requeste 2 hitt) .google.com/edgedl/chrome/dict/en-us-8-0.bdicTcms_redirect... 48:
M 75678 Daleel-PC pst: 6 404 Not found. Req d URL: https://dl.gocgle.com/edgedl/chrome/dict/" 8-0.bdic? di 2/21/2019 4:48:20 AM
aleel- ore ot found. Requeste : htt) .google.com/edgedl/chrome/dict/en-us-8-0.bdicfcms_redirect... A48
M 75687 Daleel-PC pst: 1 404 Not found. Req d URL: https://dl.gocgle.com/edgedl/chrome/dict/\ 8-0.bdic? di 2/21/2019 4:48:20 AM
aleel- ore ot found. Requeste : hit) .google.com/edged|/chrome/dict/en-us-8-0.bdic?ems_redirect... £ H
M 758.00 Daleel-PC pst: 5 404 Mot found. Req d URL: https://dl.google.com/edged|/chrome/dict/, 8-0.bdic? di 2/21/2019 4:48:21 AM
@ wmxn Test passed 2/21/2019 4:50:54 AM -
READY ELAPSED TIME RERALINING TIME
Figure 4.31: Log Window (pstore)
Session tree window Default Report = Transactions Dashboard X e
Load Session ABC 1000 =)
2 B[R ELEDAR| =
..... ﬂ pstore
----- g Daleel-PC (10.0)
270.00 S5
. 24000
o
E  20m
o
2 18000
B
%o 15000
w —
& 12000 ~—r
o
5 oooo
&
= 60.00
30.00 1 A\-_._______._._--—f""""'_'_ ..,\-
0.00 T T T T T T T T T
o 100 200 300 400 300 B0O0 oo G800 00 1000
]| ———————————————

Figure 4.32: Transactions Dashboard(pstore)
The Transactions Dashboard displays real-time statistical information of the transactions in your
test, in graphical format.

Session tree window
; Load Session

- ﬂ petare

£ DaleelPC (10.0)

Default Report

Tranzaction Name T atal Count| Successful Count
Tranzaction]_DOpensite 21
TranzactionZ_login 14
Trangactiond Add to bag 9

@ WebLOAD Dashboard
Marked Count

Transactions Dashboard

Failed Count

Figure 4.33: Data Drilling Report(pstore)

43



Data Drilling provides both a global and detailed account of hit successes and failures allowing
you to verify the functional integrity of your Web application at the per client, per-transactions and
per-instance level. The Data Drilling reports provide an extremely detailed yet easily accessible

summary of all the statistical, timing, and performance information collected over the course of the

test session.

Session tree window
5 Load Session

2] ptore (Current Values) Total pstore:Total _Performance@D...  pstore@Daleel-PC | PM@localhost _RPM@Daleel-PC ;
=Y Dales-PC10.0) Load Size 5.000 5.000 = 5.000

Round Time 452,666 452,666 452 666

Rounds 2.000 2.000 - 2.000

Successful Rounds 2.000 2.000 - 2,000

Aborted Rounds 0.000 0.000 - 0.000

Failed Rounds 0.000 0.000 - 0.000

Rounds Per Second 0100 0.100 - 0100

Successful Rounds Per 0100 0.100 - 0100

Second

Failed Rounds Per Second 0.000 0.000 - 0.000

Page Time 5.429 5.429 - 5429

Pages 4.000 4.000 - 4.000

Pages Per Second 0.200 0.200 - 0.200

DMS Lookup Time S

Session tree window

[=2] Default Report

[22] Transactions

Dashboard (=)

@) WebLOAD Dashboard

% Transactions

Measurements

Figure 4.34:

2] Default Report

[Z] Transactions

Statistics Reports(pstore)

Dashboard (] Statistics L=

¥ Transactions

3 Load Sessian Measurermnent Current Value Awerage Value

E| pstore Tirme 900,00

'ﬁ DaleelPC 10, 0]
Running Virtual Clients 5
Rounds Executed 18
Failed Founds 4
Failed Hits 17
Hits Per Second 1 1
Calculated Hits Per Day andnn aa400
Pages Per Second 1 1
Calculated Pages Per Day g6400 26400
Throughput 3545 15414
Calculated Throughput Per Day 207 ME 1271 ME

Figure 4.35: Dashboard (pstore)

44



]

By - (9| A DR+ X

EE)

1000

100.00

0,00

G0.00

40.00

—u

20.00 -

0.00

-

A
e AN N

7
4

‘t\

o \‘/

T T T
100 200 300

T
400

T
=00

T
GO0

-
700

1000

Figure 4.36: Integrated Report(pstore)

WebLOAD Integrated Reports provide both a graphical and statistical view of the performance of

your application as it is being tested. Integrated reports can be viewed while the test is in progress

or saved for later analysis.

45



I.'".IIIIFI‘- 1wl

Start 2/21/194:35AM  End 2/21/19 4:50 AM Duration  00:15:11

Test passed Max Virtual Clients 10  Total Throughput (MB) 5.55
Total Errors 11 Total Warnings 40 °
Failed Rounds 4 Total Rounds 18 o
Total Failed Hits 17 Total Hits 539 o
Total Failed TXs 9  Total TXs 53 o
Response Time
a0 F100
|I .
|'I RR%
15 ; i R 75
. , —\
: [
2104 & = N
sV
5 | II| ".I || III ;.IIII r
I I'.I_ I ] I\ .III..' ,III.— -_lr.r _.l,ll
0 ; : e g
] 100 200 00 400 500 &00 70 &00 900

Tima

— Responsa Tima — Load Siza

Figure 4.37: Session Summary(pstore)

46

EnS pEO




Throughput
F10.0

075 | \
z L 7.5
3 E
¢ 050 50 a
d 1 . EJ
2

025 4 2.5

.00 4 —_ T v T T —_ v . 1 0.0

a 100 200 300 400 500 a00 T0o0 800 Q00
Tima
| Throughput (Mega bits Par Sacond) — Load Siza
Errors

71 F10.0

. | \

5 \ . 7.5
o, ] \ — ]
a | T~ o
= \ 50 m
w

3 |I m

| |

2 III L 2.5

Ly |

i} v r ] x . T T v T T T 0.0

450 500 550 G600 G50 700 750 8OO 850 a00
Tima

Figure 4.38:Statistics based on throughput and errors(pstore)

4.2.4 WebLOAD Cloud(Web Dashboard in earlier versions)

# Session info # Failures
Met
Return Code
Erre
C passed
Faile

Was
# SLA Failures # Errors and wamings # Failed Rounds # Failed Hits
||. 'Lﬂ” | L. u.l...!Hl
X):2 00:20:40 X X )
= = o, ~ Failed Rounds: 500 _ ..
# Load Size # Hits Per Second
B
3) I | z
......... s . 1 {
o |
o | VyY
soand . s AWYY §
e \ AN
2 HitTime # PageTime
\K A
s AN AN A
= AAN \w“,'x“‘/‘
", . W N YN Y I L. 30 D i ceersstsesssrtet sttt testeteretstrsstostetessetastesrssstelsssssstessstssssesssssssssasdiilvessse

— Titme To First Byte - Page

Figure 4.39: Dashboard Components

47



Predefined and customized dashboards make it easy to analyze the results of test runs.
You can view results dynamically while a test session is running, compare multiple
sessions on the same graph, drill down, and share reports and graphs with other team

members.
4.2.5 ClI test (Jenkins Plugin)

Build
Ezecute WebLOAD load session
Template File Chitempihly Jop.tpl @
Load Session File | result_${BUILD_MUMBER} 15| @

Advanced...
Add build step ~

Post-build Actions

Figure 4.40: Execute WebLOAD session
In Figure 4.41 once plugin Webload test in the side manages plugin, can easily add to the

template file to be executed.

Build

Generate WebL OAD Analytics Report

Input Load Session File result_HBUILD_MNUMBER) 1S

Cutput format POF v
Portfalio Mame

Report name

Compare to previous builds 2

Compare to sessions

m| Apply ‘ Advanced...

Figure 4.41: Generate WebLOAD Analytics Report

48



You can specify what the output of the result of report(Junit, pdf, XML, Doc,...etc), and
the number of the comparison to previous session.

Jenkins

Jenkins  » Run Performance Tests  » ENABLE AUTO REFRESH

4 Backto Dashboard Project Run Performance Tests

Test Result Trend

O, status

oy Build10.1.068

= Changes [#fedit description
—
& workspace

Workspace

Last Successful Artifacts
[[] result 5.dat 664 B A= vie

i
0w

=
- [] cesult 5.isd 20.00 KB &= view 3 4
B“"‘! ”f"‘"" (l.rc_nd] [E] result s.Is 15.17 KB &= view =
@ =5 DecS. 2013 4:37:20 AM [£] result 5.mdb 106.00 KB sz view
0 =4 Deco, 2013 4:02:13 AM [E) result S.sdb  446.25 KBS view
@ 3 Dec5, 2013 2:48:40AM —

|=#® Recent Changes [ o — T =
@ #2 Deco. 2013 2:30;28 AM = = W = =

{just show failures) enlarge
W 1 Dec9 2013 1:38:35 AM
35§ f | EY RSS for fai ' Latest Test Result  (no failures)
Permalinks

« Last build (£5), 6 days 20 hr ago
o Last stable build (;

5). 6 davs 20 hr ago
= Last successful build (#5), 6 davs 20 hr ago
* Last unstable Dyild (24), 6 davs 21 hr ago
« Last unsuccessful build (=4), 6 davs 21 hr ago

e

Figure 4.42: Output of plugin WebLOAD
Once a WebLOAD session completes running, automated decisions can be made in

Jenkis, based on the results such as: Failure or success of the entire session and
Errors/warning Data validation results / Performance measurements.

49



4.3 Apache JMeter

-

i Script_apple - Badboy - (recording) EI@

File Edit ‘Wiew Tools Preferences  Help
DEE 2R 828d<@EPPUME®E v $ ®E &

@ ﬁ e:]https:,l',l'www.apple.com,l'watch,l'apple_watch_series_S,l'us,l'sh0p,l'goto,l'buv_watch,l',l'shop,l'unsupported - ‘

x |e Global Nav Open Menu Global Nav =
Script | Close Menu E
ST Test Suite 1
BB Test 1 * Apple
Ee% Step 1 « Shopping Bag
- hitpsi/fnean.apple.comy
[ fwvatchy Search apple.com
-0 fawatchfapple_watch_series_3
-4 fwatch/apple_watch_series_3/us/ Cancel
- fwatch/apple_watch_series_3/us/shop . Apple
- fovatch/apple_watch_series_3/us/shop/gotaf « Mac
-0 Fwatchfapple_watch_series_3fus/shap/gatafbuy_watch/ ;
-4 fwatch/apple_watch_series_3/us/shop/gotasbuy_watch/fsh * iPad
- fwatchfapple_watch_series_3/us/shop/gotofbuy_watch/fsh| |« IPhone
Pl T | F ANt b =
4| m 3
Recording
Figure 4.43: Badboy software to record script(apple.com)
) Script - Badboy - (recording) =l | (3]
)

File  Edit ‘iew Tools  Preferences  Help

DEEs{BRB 2 <@ PPUmMH@E v § Bz g

0 ﬁ &3 hktp: v, noonpost.comftagf1574 - |
= |*
Script | . ®
=T Test Suite 1
=B Test 1
@ Step 1

' hitp:/ s noonpost.c
i’ fcontent/29916

g/1574
psifwenefacebook,

g hitt;
- /noonpost

4 L1 2

Recording

Figure 4.44: Badboy software to record script(noonpost.com)

50



f} Script - Badboy - (recording) EI@

File  Edit Wiew Tools Preferences  Help
DEEHI BB @M PPN @B v $ FE

0 o 193 https:f{maazamustafa0000, 000webhost app.comfProjectProject fclathing. html - ‘
x| [~
: Home (=1
Script |
=T Test Suite 1
=B Test 1
=% Step 1

G- htkpsiffmaazarmustafali0.00lwebhostz
- Project/Project/brands,htrl
- fProject/Projectfselectadidas html

G- Project/Projectfwormenadidas.html
3]
[E3]

-’ [Project/Projectfwatshirt.html
i fProject/Projectfbuy.hitml

----- [ Message - Thank You Far Shopping. You NEW ARRIVALS! !

G- Project/Projectfbuythanks html
- fProject/Projectfclothing. btml

4 | m | L

4 | m 3

Done Recaording

Figure 4.45: Badboy software to record script(pstore)

-

L) Script - Badboy - (recarding) EI@

File Edit “iew Tools Preferences Help

DPERH BRI @E PPN wNEE v $ @E B

@ O a http: ffwiss,noonpost.com/tagf 1574 - |
- )
Script i =
[ ) Save &s
gl
A |- Desktop b - | ‘fl | Search Desktop Pl
File name:  Script -
Save as type: [JMeter Files (*.jrmux) v]
<« [ ] -
—| ‘= Browse Folders Save Cancel I
Ready

Figure 4.46: export script in JMeter

51



C‘-.['-.I'l.-"mdu:uws\systemﬂ‘xcmd exe - jmeter -n -thUsershDalee\Dacumentshapache-jmeter-5. 1 sers .. | = || BB || E2

ticn.  All rights reserwved.

cumantshapache-jmetar-5.1%kin
1mutur—1.1~h1n i not r ized as an internal or e

11htm1 rep
mm i t_mer
1all for

Figure 4.47: Create HTML Dashboard Reports from the command line

One of advantages using JMeter is created full dashboard report by using non GUI
JMeter to create a useful report about the performance of web site.
C:\Users\Daleel\Documents\apache-jmeter-5.1\bin>jmeter —n —t
‘\Users\Daleel\Documents\apache-JMeter-5.1\Test.jmx
‘\Users\Daleel\Documents\apache-JMeter-5.1\Test.csv —e —0
‘\Users\Daleel\Documents\apache-jmeter-5.1\htmlreport\

In the next figure displayed a summary of performance testing in log file and from this

log or the command line, 1 got the dashboard report in the HTML format.

52



il Response Time Percentiles 1 & A

17500
15000 [
12500
n
=
=
3 10000
m
=
il
£ 7500
Jul]
=
a
S000 [
2500
i
Percentiles
Joom
20000
10000
I
]
oo s0.0

htip:fapple.coms B hiips:/www.apple.com/apple-watch-series- 3/
hitps :iwww. apple. comishop/unsupported
B hiips:/fmww.apple.comvusishop/zotobuy watchiapple waich series 3
M hiips:/imww.apple.comwatch!

Figure 4.48: Apache JMeter Dashboard(apple.com)

53



il Respeonse Time Percentiles 1 »#

7000

G000 [

S000
wi y
E T
=
S 4000
m
=
o
= 3000 [
]
2
&

2000

b1
—
0 4‘[ 20030 percentile vwas 0ms ]
0o 100 200 300 400 s00 B0 o0 a00 a0a
Zoarm
40000
000
T
- 1 -
0 ]
0.0 s0.0

B W htp:iwwwnoonpost.com! B hiip:/www.noonpost.comicontent24682 I hitp:/iwww.noonpost.comcontent/20205
hiip:/wwwnoonpost.comitagi1574 M hiip:/www.noonpost.com/tag/40368 htips:/m.facehook.com/noonpost
hiips:/fwww.facehoolcommoonpost

Figure 4.49: Apache JMeter Dashboard(noonpost.com)

54



lul Response Time Percentiles

Q000

000

a0

G000

000

4000

Percentile value in ms

3000

2000

1000

oun 100 200 30.0 400 a0.0 G0.0 o0 G0.0 0.0 1000

Zoarm :

10000

000

o a0.0 100.0

B hiips://maazamustafa0000.000webhostapp.com/ProjectProjecthrands. himl

B hiips://maazamusiafa0000.000webhostapp.comFrojeciProjecthuy himl

B hiips:/imaazamustafa0000.000webhostapp.com/ProjectProjecthuythanks. himl
hitips:/maszamustafal000.000vebhostapp.com/ProjectProjecticlothing, iiml
hitips:/maazamustafal000.000webhostapp.comvProjectProjectiselectadidas. himl
hitips:/maazamustafali00.000wvebhostapp.com/ProjectProjectwatshirt. iml
htips:/imaazamustafali00.000webhostapp.com/ProjectProjectivomenadidas. himl

Figure 4.50: Apache JMeter Dashboard(pstore)

55

&



Tools Measurements Web pages
Performance

Apple.come Noonpost.com | Pstore
Webloald Hits Per Second 0.412 hits/sec 5.65 hits/sec | 0.438
Professional hits/sec
Apache JMeter | Hits Per Second 0.413 hits/sec 5.62 hits/sec | 0.439

hits/sec

Webloald
Professional Latency 0.65 0.7 0.85
Apache JMeter | Response Time 2.5s 0.2s 0.6s

Table 4: Measurements comparison

Results of the table explain hits/sec was almost matching and we were having different

latencies on Jmeter and webload.

Latency in Jmeter : JMeter measures the latency from just before sending the request to

just after the first response has been received. Thus the time includes all the processing

needed to assemble the request as well as assembling the first part of the response, which

in general will be longer than one byte.

The JMeter time should be closer to that which is experienced by a browser or other

application client. Latency in Webload: The time that elapsed since a request was sent

until the Virtual Client received the first byte of data.

56




As Jmeter is working from perspective of application client where it’s also considering
the time taken on post processing of DOM, that may be the reason we are having
increased time shown up in Jmeter which is in seconds. This is the way Jmeter works on
the other hand Webload is showing time without processing of data, the time it takes to

receive data in DOM, which is always in millisec.

57



4.4 Unit testing using Jasmine
On opening the SpecRunn html file in the browser, specs are run, and the result is

rendered in the browser as shown:

Jasmine

1 spec, 0 failures, randomized with seed 58235

A suite
SPEC HAS NO EXPECTATIONS contains spec with an expectation

Figure 4.51: Jasmine Output

4.5 Summary

This chapter presented the results and findings of the study with regard to providing
guideline or framework for a company to choose the best tool from a list of tools that are
available and explanation on how to use them effectively for enhancement of code
quality in front-end. In the beginning, applied the non-functional performance test using
two tools: Webload Professional, JMeter to take advantage of the features of the two
tools, and then unit testing which called functional testing, to test code after enters run-

time stage.

58



Chapter Five

Conclusion and Recommendations

59



Chapter Five

Conclusion and Recommendations

5.1 CONCLUSION

This section summarizes the findings of this study and provides answers to the research
questions. The performance test is the test to determine how fast some aspect of a
system performs under a particular workload. From run-through using performance test,
it can also serve to validate and verify other quality attributes of the system, such as
scalability, reliability and resource usage. Application performance has a major impact
on the overall quality and popularity, especially in cases where organizations are
dependent on IT for major business activities. Clients have a clear expectation when it
comes to quality and has become more demanding. Every client looks for a reliable and
fast application; performance testing ensures that all applications are performing
optimally and are available and speedy.

Correspondingly, the need for eliminating bottlenecks has become greater in this
competitive business world. Performance testing ensures that bottlenecks are identified
and eliminated before the application goes into the production stage. Breach in service
level agreement conditions can be prevented through performance testing of applications.
Through a load testing using webload and apache JMeter tool reached to quality
assurance through inspects quality of code written in the development life cycle. It is a
crucial part to identify if the development team needs special training to make more fine-
tuned code. And then we provided compare between analysis results from webload and
jmeter using two of measurements performance, Hits Per Second and Latency to evaluate
different ratios for measurements.

Using unit testing automated analysis provides dependable, periodic feedback to project
developers. Constant feedback allows them to correct code as part of the development
process and it reduces the checking time. Overall, it leads to improved company
procedures and code practices. These processes improvements lead to higher quality
products, more efficient project execution and finally to the greatest benefit of all higher
profits for the company.

60


http://www.gcreddy.com/2012/07/performance-testing.html
http://www.gcreddy.com/2012/07/performance-testing.html

5.2 Recommendations

e Test software such as integration testing, regression testing, Smoke testing, alpha
testing, beta testing and other types of software testing.

e Static analysis of the code can be integrated with an automated task (using Gulp
for example) or Grunt JavaScript task runner that is added in workflow before
releasing the code to quality assurance and production environments.

e Jmeter is a popular open source load testing tool that can be used to check for a

site’s performance. It can also be integrated into a Cl server.

61


https://jmeter.apache.org/

References

[1]  ANTTILA, H. 2018. Continuous Integration and System Test Automation: Case
Exertus.

[2] Findbestopensource. (n.d.). Front-End-Performance-Checklist: The only Front-
End Performance Checklist that runs faster than the others. [online] Available at:
https://www.findbestopensource.com/product/thedaviddias-front-end-performance-
checklist [Accessed 12 Oct. 2018].

[3] MATT WATSON. (2017, Dec 6). Web Performance Optimization: Top 3 Server
and Client-Side Performance Tips. [online] Available at: https://stackify.com/web-
performance-optimization/[Accessed 2 Oct. 2018].

[4] TIM WALKER, Y. K. 2017. Improving code quality : a survey of tools, trends,
and habits across software organizations.

[5] DANKOVCIKOVA, Z. 2017. Custom Roslyn Tool for Static Code Analysis.
Masaryk University, Faculty of Informatics.

[6] OGBARI, M. & BORISHADE, T. T. 2015. Strategic imperatives of total quality
management and customer satisfaction in organizational sustainability.
International Journal of Academic Research in Business and Social Sciences, 5, 1-
22.

[7] MAJCHRZAK, T. A. 2012. Improving software testing: technical and
organizational developments, Springer Science & Business Media.

[8] IMT Solutions. (2018, jun 13). Front-End Performance Optimization Checklist
For Web Applications [Blog post]. Retrieved from https://www.imt-
soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-
Applications

[9] MARTIN, R. C. 2009. Clean code: a handbook of agile software craftsmanship,

Pearson Education.

62


https://www.findbestopensource.com/product/thedaviddias-front-end-performance-checklist
https://www.findbestopensource.com/product/thedaviddias-front-end-performance-checklist
https://stackify.com/web-performance-optimization/
https://stackify.com/web-performance-optimization/
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications
https://www.imt-soft.com/Blogs/Microsoft-Net/Front-End-Performance-Optimization-Checklist-For-Web-Applications

[10] POORNALINGA, K. S. & RAJKUMAR, P. 2016. Survey on Continuous
Integration, Deployment and Delivery in Agile and DevOps Practices.

[11] VAANANEN, M. 2012. Development of continuous integration framework for

external partners.

[12] SENTHILKUMAR, R. & ARUNKUMAR, T. 2016. A Survey on Prioritization of
Software Quality Attributes. Indian Journal of Science and Technology, 9, 7.

[13] tutorialspoint. (n.d.). What is Dynamic Testing?. [online] Available at:
https://www.tutorialspoint.com/software_testing_dictionary/dynamic_testing.htm|[
Accessed 11 Aug. 2018].

[14] MAILEWA, A., HERATH, J. & HERATH, S. A Survey of Effective and
Efficient Software Testing. The Midwest Instruction and Computing Symposium.
Retrieved from http://www. micsymposium.
org/mics2015/ProceedingsMICS_2015/Mailewa_2D1 41. pdf, 2015.

[15] GHUMAN, S. S. 2014. Software Testing Techniques. International Journal of
Computer Science and Mobile Computing, 3, 988-993.

[16] SIEBERT, B., VAN EEKELEN, M. & VISSER, J. 2014. Evaluating the testing
quality of software defined infrastructures. Thesis, Radboud University Nijmegen.

[17] WILLIAMS, L., KUDRJAVETS, G. & NAGAPPAN, N. On the effectiveness of
unit test automation at microsoft. 2009 20th International Symposium on
Software Reliability Engineering, 2009. IEEE, 81-89.

[18] PATEL, C. & GULATI, R. 2014. Software Performance Testing Measures.
International Journal of Management & Information Technology, 8, 1297-1300.

[19] PAULASAARI, M. 2018. Tools for Code Quality in Front-end Software
Development.

[20] WEYUKER, E. J. & VOKOLOQS, F. I. 2010. Experience with performance testing
of software systems: issues, an approach, and case study. IEEE transactions on
software engineering, 26, 1147-1156.

63


https://www.tutorialspoint.com/software_testing_dictionary/dynamic_testing.htm
http://www/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

VOKOLOS, F. I. & WEYUKER, E. J. Performance testing of software systems.
Proceedings of the 1st International Workshop on Software and Performance,
2014. ACM, 80-87.

PATEL, C. & GULATI, R. 2014. Software Performance Testing Measures.
International Journal of Management & Information Technology, 8, 1297-1300.

GOTTA, D. & BIFFI, L. 2013. PERFORMANCE EVALUATION OF WEB
APPLICATIONS.

ATHANASIOU, D., NUGROHO, A, VISSER, J. & ZAIDMAN, A. 2014. Test
code quality and its relation to issue handling performance. IEEE Transactions on
Software Engineering, 40, 1100-1125.

PATEL, M. C. & GULATI, R. 2012. Software Performance Testing Tools—A

Comparative Analysis. Int. J. Eng. Res. Dev, 3, 58-61.
KONKA, B. B. 2012. A case study on Software Testing Methods and Tools.

HOODA, I. & CHHILLAR, R. S. 2015. Software test process, testing types and

techniques. International Journal of Computer Applications, 111.

[28]

[29]

[30]

[31]

STAMELQS, I., ANGELIS, L., OIKONOMOU, A. & BLERIS, G. L. 2002. Code
quality analysis in open source software development. Information Systems
Journal, 12, 43-60.

CASSONE, G., ELIA, G., GOTTA, D., MOLA, F. & PINNOLA, A. Web
Performance Testing and Measurement: a complete approach. CMG ITALIA
2017 and CMG USA 2017 conference proceedings, 2017.

BOEHM, B. W., BROWN, J. R. & LIPOW, M. Quantitative evaluation of
software quality. Proceedings of the 2nd international conference on Software
engineering, 2015. IEEE Computer Society Press, 592-605.

DIN, G. 2013. A Performance Test Design Method and its Implementation
Patterns for Multi-Services Systems.

64



[32] STROGGYLOS, K. & SPINELLIS, D. Refactoring--Does It Improve Software
Quality? Fifth International Workshop on Software Quality (WoSQ'07: ICSE
Workshops 2016), 2016. IEEE, 10-10.

[33] PATEL, M. C. & GULATI, R. 2012. Software Performance Testing Tools—A
Comparative Analysis. Int. J. Eng. Res. Dev, 3, 58-61.

[34] RadView Software. (October 2015). Load and Performance Load Testing. [online]
Available at: https://www.radview.com/wp-content/uploads/2015/10/Load-
Testing-with-WebLOAD-KeyFeatures-white-paper.pdf [Accessed 9 Jan. 2019].

[35] Saurabh. (Mar 18, 2019). What is Jenkins? Jenkins For Continuous Integration.
[online] codementor. Available at: https://www.codementor.io/saurabh426/what-is-
jenkins-jenkins-for-continuous-integration-t737vsxlb [Accessed 10 Feb. 2019].

65


https://www.radview.com/wp-content/uploads/2015/10/Load-Testing-with-WebLOAD-KeyFeatures-white-paper.pdf
https://www.radview.com/wp-content/uploads/2015/10/Load-Testing-with-WebLOAD-KeyFeatures-white-paper.pdf
https://www.codementor.io/saurabh426
https://www.codementor.io/saurabh426/what-is-jenkins-jenkins-for-continuous-integration-t737vsxlb
https://www.codementor.io/saurabh426/what-is-jenkins-jenkins-for-continuous-integration-t737vsxlb

Appendix A

Al: Installing and Setting up the Basic tools
In order to Integrate JSHint, JSCS into Visual Studio Code editor, those tools

are not enable by default like in other code editors. However, you can add

them manually following the next steps.

File Edit Selection View Go Debug Terminal Help o Testjs - Visual Studio Code
E—.\ EXTENSIONS: MARK J5 Testjs ® = Untitled-4 £ Untitled-3 £ Untitled-2
1
. ar rson= {
jshint . N

F jshint 01020
__ Integrates JSHint into VS Code. JSHint is a lint...
Y Dirk Bacumer / Enabled  {i}

Add to Globals 100
; M
Easily add, modify or remove global variables

® Mintonne Install

L 18 person.ag
[

Figure : Visual Studio Code
1. Download and install the latest version of Node.js
2. Use npm (installed with Node.js) to install JSHint (option -g is to install it
globally so you don't need to do it in every project)
1 npminstall-g jshint
3. Use npm to install JSCS
npm install -g jscs

(BN

EX Node.js command prompt
up for using Mode.js 11.11 .8 <(x64> and npmn.

ml

Your environment has heen set

IC:~Users~AccP>node -—u
a

rs~Accnpm install —g Jjshint
H rs~AccHAppDatasRoaming~npm~jshint —-> C::\Users“AccxAppData*~Roaming~npm-node
| modulessjshintsbinNjshint
+ jshintB2.168.2
1 ladded 38 packages from 15 contributors in 15.4%6s

IC:~Users~Acc>npm install —g Jjscs
Jscs—preset—wikimediaPl.8.1: Deprecated in favour of eslint-—

npm
—— https:- phabricator.wikimedia.org-T118741

iconf ig—wikimedia.
nomnomnBP1 .8 .1: Package no longer supported. Contact supportln

\ﬂcc\ﬁppData\R;aming\npm\jscs —=>» C:xUsers~Acc~AppDatas~Roaming“~npm~node_m|
jecesbinsjscs

c
+ jec=03_0_7
ladded 184 packages from 98 contributors in 45.19%7s

IC:~Users~Acc>

Figure: Install jshint and jscs global

1. Open Visual Studio Code and press F1
2. Enter the following command to install JSHint


http://jscs.info/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://nodejs.org/en/
https://www.npmjs.com/

Jasmine Setup Configuration

First download jasmine framework and extract it inside your project folder. I will suggest to

create a separate folder /jasmine under /js or /javascript folder which may be already
present in your application.
four folders/files in distribution bundle:

1. /src: contains the JavaScript source files that you want to test

2. [lib : contains the framework files

3. Ispec : contains the JavaScript testing files

4.  SpecRunner.html : is the test case runner HTML file
You may delete /src folder; and reference the source files from their current location
inside SpecRunner.html file. The default file looks like, and you will need to change the
files included from /src and /spec folders.
I have removed /src folder and will refer files from their current locations. The current

folder structure in Figure :

lib 11-Mar-1812:15 PM  File folder
scripts 11-Mar-19 2:24 PM  File folder
styles 05-Jan-19 8:12 PM File folder
Tests 11-Mar-19 2:23 PM  File folder
£ | SpecRunner 11-Mar-191:20 P HTML Document 1 KB

Figure: Folder Jasmine framework

67


https://github.com/jasmine/jasmine/releases

Load Test in WebLOAD Cloud

T = e

* @

W WebLOAD - Fome Page X

€ > C | @ locathost

Create a new Load Test

Welcome admin let's get started!

M
’
“~WEBLOAD
[ Script Test
THE QUICKEST PATH FROM LOAD TESTING TO PERFORMANCE INSIGHTS
Last Running Sessions [ showai | Last Updated Tests
Status Name Last Update

Name

Ble G C[iim]
Creating a URL/API Load Test Use this option to instantly create a load test for testing a
load on a URL and/or API. After entering the load test specifications, webload

automatically creates a test according to the specifications.
Select URL/API Test.

68



Lol Canfiguration

0B o g

ST T TN
Figure: Creating a URL/API load test

Creating a Script Load Test
Use this option to create a load test based on a WebLOAD script that was created in

WebLOAD Recorder.

69



Gener

Scripks

g e Hu b

Laad Configuration

B 5T TH

0 o g

i
i oo e DR oS D @

Recurrence
Ty

e Qi T e T
Figure: Creating a Script load test

Customize a new chart based on the Blank Template can create a new interactive chart
based on the Blank Template. This template can be modified or you can use it to create
additional custom interactive templates.

Km Gallery @ Recent Repu:ur‘tq = O

m Ternplates
m General
m Log and Errors
m Pages fnalysis

m Percentile

m Probing Client

m Sepver Side Statistics
m Session Comparison
m Static Ternplates

m Statistical Correlation
m Transaction Snalysis
m User Defined -

' m | »

-

13

m

Figure: Templates Gallery

70



Appendix B

Code Java Script used in unit testing, log file

SpecRunner.html in folder jasmine_stand _alone
<IDOCTYPE html>
<htmI>
<head>
<meta charset="utf-8">
<title>Jasmine Spec Runner v2.4.1</title>
<link rel="shortcut icon™ type="image/png" href="lib/jasmine-
2.4.1/jasmine_favicon.png'>
<link rel="stylesheet™ href="lib/jasmine-2.4.1/jasmine.css">
<script src="lib/jasmine-2.4.1/jasmine.js"></script>
<script src="lib/jasmine-2.4.1/jasmine-html.js"></script>
<script src="lib/jasmine-2.4.1/boot.js"></script>
<!I--include source files here... -->
<script src="src/Player.js"></script>
<script src="src/Song.js"></script>
<!--include spec files here... -->
<script src="spec/SpecHelper.js"></script>
<script src="spec/PlayerSpec.js"></script>
</head>
<body></body>
</html>
To concentrate on what Jasmine is capable of, | am created a simple JS file

slider.js with function we will unit-test that function.
vari=0;

var imagefiles=['rbags4.jpg’,'rbags5.jpg’, rbags7.jpg’,'rbags9.jpg’, rbagsl2.jpg;
window.setInterval(startSlider,1500);

71



functionstartSlider()

{
document.getElementByld("topimg").src="images/slider/"+imagefiles[i];
i++;
if(i>4)
{
i=0;
}
}

And after adding file reference in SpecRunner.html, file content will be :

<IDOCTYPEhtmI>
<html>

<head>
<metacharset="utf-8">

<title>Jasmine Spec Runner v3.1.0</title>

<linkrel="shortcut icon"type="image/png"href="lib/jasmine-3.1.0/jasmine_favicon.png">
<linkrel="stylesheet"href="lib/jasmine-3.1.0/jasmine.css">

<scriptsrc="lib/jasmine-3.1.0/jasmine.js"></script>
<scriptsrc="lib/jasmine-3.1.0/jasmine-html.js"></script>

<scriptsrc="lib/jasmine-3.1.0/boot.js"></script>

<!I--include source files here... -->
<scriptsrc="scripts/login.js"></script>

<scriptsrc="scripts/slider.js"></script>

<!I--include spec files here... -->
<scriptsrc="Tests/sliderTests.js"></script>
</head>

<body>

</body>

</html>
Let’s start writing unit tests for slider.js to better understand suite and specs. We will

write thesespecs inTests/ sliderTests js.

/I <reference path="../scripts/slider.js" />
/[This will be called before running each spec
beforeEach(function () {

72



varim = '<div id="topimg" ></div>",
document.body.insertAdjacentHTML (‘afterbegin’, im);
b

/[This will be called after running each spec
afterEach(function () {
document.body.removeChild(document.getElementByld("topimg™));

b

/IThis is test suite

describe('A suite', function () {

/ISpec for startSlider operation

it('‘contains spec with an expectation', function () {
startSlider();

1o}
;

HTML Assertion

HTML Assertion is used to verify that the response contains correct HTML syntax or not
using JTidy (HTML Syntax Checker). It will fail the test in case of improper HTML
syntax response.
This is log file to collect the errors and warning of improper HTML syntax response.
line 4 column 9 - Warning: <meta> lacks "content" attribute
line 144 column 16 - Warning: unknown attribute “property"
line 144 column 54 - Warning: unknown attribute “property”
line 145 column 9 - Warning: <script> lacks "type" attribute
line 155 column 1 - Warning: <link> isn't allowed in <body> elements
line 156 column 1 - Warning: <link> isn't allowed in <body> elements
line 157 column 1 - Warning: <link> isn't allowed in <body> elements
line 158 column 1 - Warning: <style> isn't allowed in <body> elements
line 205 column 15 - Warning: <style> isn't allowed in <body> elements

line 209 column 15 - Warning: <style> isn't allowed in <body> elements

73



