

i

 الأيــــــــــــــــــــــــة

 قال تعالى:

"نَ رْفَعُ دَرَجَاتٍ مَّن نَّشَاءُ ۗ وَفَ وْقَ كُل ِّ ذِّي عِّلْمٍ
 يوسف (76عَلِّيم")

 صدق الله العظيم

ii

Acknowledgments

First I would like to thank our God for giving me knowledge, success and

strength to finishing this study ,The success and final outcome of this project

required a lot of guidance and assistance from many p eople and I am extremely

privileged to have got this all along the completion of my project. All that I have

done is only due to such supervision and assistance and I would not forget to thank

them.

I respect and thank Dr. Hisham Abdulla Manssor, for providing me an

opportunity to do the project work and giving me all support and guidance which

made me complete the project duly. I am extremely thankful to him for providing

such a nice support and guidance.

I owe my deep gratitude to my husband, who give me the time and full

support, till the completion of my project work. And giving valuable suggestions and

comments on my work. Finally, I would like thank my family and especially my

mother and sister for their support.

iii

Abstract

During Enterprise Resource Planning system lifetime, the response time

increasing while the amount of data is increasing because data is retrieving from the

relational database, where the more data to be processed the more time needs to

response. A new data storage system has been developed called NoSQL, which

stands for “Not Only SQL or Non SQL systems”. NoSQL systems have been

designed for large-scale data storage and apply parallel data processing. To identify

and develop the optimal solution to reduce the time of huge data processing in the

Odoo framework.

The proposed solution is to import data from Odoo database and store it in

NoSQL data storage and build Odoo module that is able to read and write data from

both PostgreSQL Database (which is not distributed database) and suitable NoSQL

database. This research aims to solve the Odoo performance latency problem, this

reduce storage costs, because it is cheaper to store archived data based on NoSQL

infrastructure, Open-source software and easy to extending in future, Also can use

data for mining “data mining”.

iv

 المستخلص

خلال فترة تطبيق نظام تخطيط موارد المؤسسة ، يزداد زمن الاستجابة بينما يزداد

مقدار البيانات نظرًا لاستعادة البيانات من قاعدة البيانات العلائقية ، حيث تتم معالجة المزيد

من البيانات التي تحتاج إلى مزيد من الوقت للاستجابة. وقد تم تطوير نظام جديد لتخزين

". تم تصميم SQLأو أنظمة غير SQL، والذي يرمز إلى "ليس فقط NoSQLيسمى البيانات

لتخزين البيانات على نطاق واسع وتطبيق معالجة البيانات المتوازية. لتطوير NoSQLأنظمة

لحل المقترح هو او Odooالحل الأمثل لتقليل وقت معالجة البيانات الضخمة في إطار عمل.

وبناء وحدة NoSQLوتخزينها في تخزين البيانات Odooعدة بيانات استيراد البيانات من قا

Odoo القادرة على قراءة وكتابة البيانات من كل من قاعدة بياناتPostgreSQL التي(

مناسبة. يهدف هذا البحث إلى حل NoSQLليست قاعدة بيانات موزعة (وقاعدة بيانات

ن تكاليف التخزين ،لأنه أرخص لتخزين يمكن أن يقلل هذا م. Odooمشكلة انخفاض أداء

. ومفتوح المصدر وسهل التوسع في NoSQLالبيانات المؤرشفة على أساس البنية التحتية

 . ”data miningالمستقبل ، ويمكن أيضا استخدام البيانات في التنقيب “

v

Table of Contents

 i .. الأيــــــــــــــــــــــــة

Acknowledgments .. ii

Abstract ... iii

 iv ... المستخلص

Table of Contents ... v

List of Figures .. viii

List of Tables: ...ix

List of abbreviations: ..ix

CHAPTER ONE ... 1

Introduction .. 1

1.1 Overview: ... 1

1.2 Background: ... 1

1.3 Problem Statement: .. 1

1.4 Research Objectives ... 2

1.5 Scope of Work: ... 2

1.6 Proposed Solution: ... 2

1.7 Research Methodology: .. 3

1.8 Thesis Organization: ... 4

1.9 Contribution: .. 4

1.10 Big Data: ... 4

1.11 Characteristics of Big Data: ... 5

CHAPTER TWO .. 6

Related work and Literature Review .. 6

2.1 Introduction .. 6

2.2 Enterprise Resource Planning Systems: ... 6

The Types of ERP Systems: ... 6

Open-source Software (OSS): .. 6

Odoo Enterprise Resource Planning Systems:.. 7

Odoo Software & Architecture: .. 7

Odoo Applications and Modules: ... 7

vi

Odoo Features: .. 7

Disadvantages of Odoo: .. 8

2.3 Hadoop: .. 8

2.3.1 Hadoop consists of three main components [6]: .. 8

2.3.2 Hadoop Distributed File System .. 8

2.3.3 Architecture of Hadoop Distributed File System: 8

2.3.4 MapReduce Framework:.. 9

2.3.5 MapReduce Consists of Three Main Steps: ... 9

2.4 NoSQL Database Storage: .. 10

2.4.1 NoSQL characteristics: .. 10

2.4.2 A Comparison between SQL and NoSQL databases: 10

2.4.3 Common Type of NoSQL Database: ... 11

2.4.4 Popular NoSQL Databases: ... 12

2.5 Literature review: ... 12

2.5.1 Solving and Processing Big Data Problem using Hadoop 12

2.5.2 Performance Evaluation and Data Migration to Hadoop. 13

2.5.3 A performance Comparison of SQL and NoSQL Databases. 14

2.6 Summary: ... 15

CHAPTER THREE .. 16

Research Methodology ... 16

3.1 Introduction .. 16

3.2 Research Methodology: .. 16

3.3 System Architecture: .. 16

3.3.1 Functional Requirement:.. 17

3.3.2 Non-functional Requirement: .. 17

3.3.3 Hbase fetchers: ... 18

3.3.4 Zookeeper: ... 18

3.3.5 Phoenix: ... 18

3.4 System Implementation: ... 19

3.4.1 Hadoop installation and Configuration: ... 19

3.4.2 Hbase Configuration .. 20

3.4.3 Data collection: .. 20

3.4.4 Data Analysis: .. 21

vii

3.4.5 Import Data from PostgreSQL to Hbase Databases in Hadoop Ecosystem:

 .. 21

3.5 Summary: ... 25

CHAPTER FOURE .. 26

System Design and Implementation ... 26

4.1 Introduction: ... 26

4.2 Development: ... 26

4.2.1 Odoo ORM: ... 26

4.2.2 The benefits of ORM technology .. 26

4.2.3 Disadvantages of ORM:... 26

4.2.4 JDBC concept: ... 27

4.2.5 Create ORM Method (CRUD):.. 27

4.2.5.1 Create: ... 28

4.2.5.2 Update: .. 28

4.2.5.3 Delete: ... 29

4.3 Start system servers and web interfaces: .. 29

4.4 Hadoop control panel: .. 32

4.5 Fetch Hbase Table Data in Apache Phoenix: ... 33

4.6 Hadoop Cluster Implementation... 34

4.7 Consistency Test Evaluation: ... 36

4.8 Database Systems Evaluation: .. 38

4.9 Summary: ... 39

CHAPTER FIVE .. 40

Conclusion and Recommendations .. 40

5.1 Conclusions and Lessons Learned: .. 40

5.2 Recommendations: ... 40

6.1 References: ... 41

viii

List of Figures

FIGURE 1.1: RESEARCH METHODOLOGY ... 3

FIGURE 1.1: MAPREDUCE EXAMPLE ... 9

FIGURE 3.1: SYSTEM ARCHITECTURE .. 17

FIGURE 3.2: CONFIGURE REPLICATION FACTOR IN HDFS-SITE.XML FILE 20

FIGURE 3.3: PYTHON WIZARD USED TO GENERATE DATA .. 20

FIGURE 3.4: PYTHON SCRIPT USED TO GENERATE DATA .. 21

FIGURE 3.5: CREATE EMPLOYEE TABLE IN HBASE .. 22

FIGURE 3.6: IMPORTING DATA FROM POSTGRESQL TO HBASE USING SQOOP 22

FIGURE 3.7: DATA IMPORTING SUCCESSFULLY ... 23

FIGURE 3.8: SCAN “EMPLOYEE” TABLE .. 23

FIGURE 3.9: SCAN “EMPLOYEE” TABLE WITH SPECIFIC CONDITION 24

FIGURE 3.10: TABLE IN POSTGRESQL .. 24

FIGURE 3.11: TABLE IN HBASE (HADOOP CLUSTER) ... 24

FIGURE 4.1: OPTIMIZATION IN CREATE FUNCTION .. 28

FIGURE 4.2: OPTIMIZATION IN UPDATE FUNCTION .. 28

FIGURE 4.3: OPTIMIZATION IN DELETE FUNCTION .. 29

FIGURE 4.4: START HDFS AND MAPREDUCE (YARN) ... 29

FIGURE 4.5: RUN ZOOKEEPER SERVER .. 30

FIGURE 4.6: STARTING HBASE SERVER ... 30

FIGURE 4.7: OPEN HBASE SHELL .. 30

FIGURE 4.8: RUN JPS IN MASTER MACHINE ... 30

FIGURE 4.9: RUN JPS IN SLAVE MACHINE .. 31

FIGURE 4.10: START ODOO SERVER .. 31

FIGURE 4.11: START PHOENIX .. 31

FIGURE 4.13: HADOOP CLUSTER ... 32

FIGURE 4.12: HADOOP DATA DISTRIBUTION (TWO NODES) ... 32

FIGURE 4.14: CREATE VIEW IN PHOENIX TO FETCH HBASE TABLE DATA................... 33

FIGURE 4.15: SHOW PHOENIX TABLES .. 33

FIGURE 4.16: RETRIEVE HBASE TABLE DATA IN APACHE PHOENIX 34

FIGURE 4.17: THE RESULT OF QUERY IN POSTGRESQL .. 36

FIGURE 4.18: THE RESULT OF QUERY IN PHOENIX .. 36

FIGURE 4.19: QUERY IN POSTGRESQL RETURN NUMBER OF RECORDS 37

FIGURE 4.20: QUERY IN PHOENIX RETURN NUMBER OF RECORDS 37

FIGURE 4.21: TIME TO RETURN SPECIFIC ROWS IN TABLE FROM POSTGRESQL 38

FIGURE 4.22: TIME TO RETURN ALL ROWS IN TABLE FROM POSTGRESQL................. 39

file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271457
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271476
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271480
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271481

ix

List of Tables:

Table Number

Table Name

Page Number

Table (2.1) Comparison between SQL and NoSQL 10

Table(4.1) Cluster Nodes Specification

35

Table(4.2) PostgreSQL Database Specification

35

Table(4.3) Sample Data Record Counts:

35

List of abbreviations:

Abbreviation

Explanation

ERP Enterprise Resource Planning

ORM Object Relational Mapper

NoSQL Not Only SQL

CRUD (Create,Read,Update,Delete)

SQL Structure Query Language

HDFS Hadoop Distributed File System

API Application Programming Interface

Sqoop Sql + Hadoop

Chapter One

Introduction

1

CHAPTER ONE

Introduction

1.1 Overview:

 This chapter introduces the research work, states the problem, defines

research objectives, significant and describes the methodology.

1.2 Background:

 Enterprise Resource Planning Systems Odoo / OpenERP is a comprehensive

suite of business applications including Sales, CRM, Project management,

Warehouse management, Manufacturing, Financial management, and Human

Resources just to name a few. Odoo / OpenERP offers a choice of over a thousand

modules. Odoo / OpenERP is available in the cloud or on-site. In the past it is most

suited for small to mid-sized companies, but in today's time Odoo / OpenERP used in

big companies. With more than a thousand downloads/installations per day, Odoo /

OpenERP is one of the most used open source solution in the world. It has a dynamic

community, is flexible, and can be adapted to your needs. It can be put in production

rapidly thanks to its modularity and is easy to use [1].

1.3 Problem Statement:

 In most organizations, the data size doubles every two years, and most

relational databases like 'PostgreSQL' are not distributed database, that works on one

server. The problem lies in large companies when they decide to carry a large

number of data into the database and after long-term data archiving. Its performance

is decreasing due to the growing amount of data.

2

1.4 Research Objectives

1. The research aims to Implement Odoo / OpenERP in large companies without

Odoo latency problem.

2. To identify and develop the optimal solution to reduce the time of huge data

processing in the Odoo framework.

3. To allows the system to continue working if the server / node fails by

applying the distributed environment and choose a NoSQL data storage

system that meets the requirements.

4. To evaluate the performance of the proposed solution in terms of time and

compare it with the current approach.

1.5 Scope of Work:

Building the system that able to process and store the extremely large data in

distributed environment.

1.6 Proposed Solution:

 Data is growing rapidly, we need to archive all data. Data archiving is

performed by transferring data from primary storage to secondary storage, where we

can transfer large data from Odoo to Hadoop system using SQOOP. It is an import /

export tool that allows you to transfer data between the SQL database and the

NoSQL database in the Hadoop cluster. Then, create a new Odoo module that

enables Odoo Object Relational Mapper (ORM) schema to communicate with the

NoSQL database system. Finally, the goal is to reduce processing time for storing

and retrieving data. After archiving that data, we get better performance and lower

cost for hardware and software. This step can reduce storage costs because it is

cheaper to store archived data on the Hadoop structure.

3

1.7 Research Methodology:

 The research methodology that will be employed in the research work is described

and presented in detail.

i. Data collection: use tool to generate data or python scripts to create millions

of data records in Odoo system.

ii. Data analysis: identify the suitable NoSQL database type to store imported

data from Odoo, by Using Sqoop to transfer all the data from PostgreSQL to

Hbase data databases in Hadoop ecosystem, Sqoop recommend because it is

faster to deploy and to make updates in a production environment.

iii. Development: build Odoo module that is able to reading and writing data

from both PostgreSQL Database (which is not distributed database) and

suggested NoSQL database.

iv. Evaluation: evaluate the performance of PostgreSQL and Hbase in term of

data retrieving time.

Figure 1.1 display methodology which research follow it.

Figure 1.1: Research Methodology

4

1.8 Thesis Organization:

The rest of the thesis is organized as follows:

• Chapter Two: Related work and Literature reviews.

• Chapter Three: Research Methodology.

• Chapter Four: System design and implementation.

• Chapter Five: Conclusions and Recommendations

1.9 Contribution:

 Develop and build new Odoo module that is able to reading and writing data

from both PostgreSQL Database (which is not distributed database) and suggested

NoSQL database. To ensure the changes reflect to Odoo and new system in the same

time.

1.10 Big Data:

With the spread of the Internet, automated systems have been involved into

daily operations in different fields. All of this generating huge amount of data from

several sources in multiple forms like text, audio, video, documents, emails, images

and posts on Facebook or Tweeter, etc. this data release the expression of Big Data.

[2][3] With reason of large amount of data, traditional data processing and storage

technologies are insufficient. After long-term of data archiving the business will

influence negatively.

 The expansion and the availability of huge amount of data either structured,

semi structured or unstructured described by the term 'Big Data’. So, to optimize our

business processes need more data to collect more accurate result. [2]

 Another definition of big data is data sets that are so large and complicated

that traditional data-processing application software are unqualified to handle with

them. [4]

5

1.11 Characteristics of Big Data:

 The term of Big Data do not only refer to the data with a big size. The

definition of Big Data included four concepts: Volume, Velocity, Variety and

Veracity. So data possesses large volume, generated with high velocity, comes from

a variety of sources and formats and having great uncertainty in quality and fidelity

is referred as Big Data. [3]

Other definition of big data comes with six characteristics:

• Volume: Through the years we have a lot of online transactions

stored, this responsible.

• Velocity: Data is arriving in fast speeds and must be dealt with in

appropriate time.

• Variety: Data comes in various types of format structured,

unstructured and semi structured. Managing and processing this

different variety of data is so hard.

• Veracity: Obtaining data accuracy is a challenge. Due to data can be

inconsistent and conflicting.

• Complexity: Data comes from numerous sources. So need to prepare,

cleanse and transform data over systems.

• Value: Extract values from Big Data is a big issue because that

enhancing the organization’s business.

Chapter Two

Related work and Literature Review

6

CHAPTER TWO

Related work and Literature Review

2.1 Introduction

This chapter describes Hadoop , ERP systems , NoSQL Database and reviews

the current literature.

2.2 Enterprise Resource Planning Systems:

 ERP involves all of the processes that are important to run a business,

including inventory, order management, accounting, human resources and customer

relationship management (CRM). ERP software integrates these functions into one

complete system to perform processes across the organization. [5]

The Types of ERP Systems:

On-Premise ERP: Everything is stored, installed and managed locally in the

organization.

Cloud ERP: Hosting company manages the ERP system and its data. The

organization’s user can access the ERP system via internet.

Hybrid: Hybrid ERP system combines both On-Premise and Cloud ERP

systems.

Open-source Software (OSS):

 Open source systems are systems which their source code are available for

users, and based on their requirements can customize the source code.

7

Odoo Enterprise Resource Planning Systems:

 Odoo is one of first Open Source ERP All-In-One solutions meet your

company´s requirements. Odoo have developed 30 main modules which are regularly

upgraded and easy to use.

Odoo Software & Architecture:

 Odoo uses Python scripting and PostgreSQL database. The software is

accessed via a web browser in a one page app developed in JavaScript.

Odoo Applications and Modules:

 Odoo is extensible architecture. A large number of freelancers and

organizations develop Odoo Modules and place them in the marketplace for sale or

to be downloaded for free. Odoo has about 30 core modules and more than 5000

community modules. Main modules are available in all active versions such as 9.0,

10.0 and 11.0.

Odoo Features:

• Open source system.

• Web.

• Extensible architecture.

• Its easy integration and customization options.

• Download all the official modules for free.

• Flexible and easy to use.

• Odoo is one of the fastest growing software its database runs on PostgreSQL.

• Able to integrating with other platforms.

• The travel through the pages looks really simple.

• The software is always up to date with the improvement in the technology.

• The managers able to monitoring the performance indicator by progressing

monitor and then making decision.

https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/JavaScript

8

Disadvantages of Odoo:

 Their compatibility problem when a new version released, user needs to solve

the conflict of code and some data migration issues.

2.3 Hadoop:

Hadoop is a collection of open-source software, a programming framework

built using Java language. Hadoop is developed to execute distributed data

processing over hardware. The developers, even without any distributed or parallel

programming skills, enables to write distributed data processing jobs.

2.3.1 Hadoop consists of three main components [6]:

• Hadoop Distributed File System

• MapReduce Framework

• Yet Another Resource Negotiator (YARN)

2.3.2 Hadoop Distributed File System

HDFS is the key component of Hadoop. It manages, stored and replicated

huge data set in a cluster reliably. HDFS is designed to execute fast read operations

but the write operations are slower, so HDFS is optimal for dealing with data that has

the access pattern write-once/read-many. Also HDFS partitions the files into blocks

and distributes these blocks among the cluster’s nodes.

2.3.3 Architecture of Hadoop Distributed File System:

 There are two types of nodes:

• NameNode “the master node”: NameNode stores the meta-data and

identifies the DataNodes that are responsible for storing each block. The

client asks the NameNode to return the DataNodes that should be

communicated to store or retrieve the data.

9

• DataNode “the slave node”: DataNode stores two files: first one contains

the data and the second is checksum file to identify corrupted data blocks.

 HDFS was designed to expect and detect the hardware failure, each

DataNodes regularly sends a heartbeat signal to the NameNode. If not happened it

marks this DataNode as out of service and re-replicates all data to other active

DataNodes. [6]

2.3.4 MapReduce Framework:

 MapReduce it is achieved the “Data Locality” concept which means moving

the computation to data instead of moving data to the computation and then

aggregates the results to get the final output. Also it is a programming model for

processing huge and distributed data.

2.3.5 MapReduce Consists of Three Main Steps:

• Map: convey the input data in to set of <key, value>

• Shuffle and Sort: In this step, Hadoop shuffles and reduce <key, value> pairs

and sorts these pairs.

• Reduce: finally, applies the required functions, such as (count, average, etc.).

And writes the final result to HDFS. [6]

 Figure 1.1: MapReduce Example

10

2.4 NoSQL Database Storage:

 It is normal for any web application to serve millions of users simultaneously.

These users generate huge amount of data, so data storage system needs to manage

his efficiently. Many companies such as Amazon and Google have limitation of

relation databases and developed own data storage system to be suitable for the new

requirements, these systems become known as NoSQL “Not Only SQL”

2.4.1 NoSQL characteristics:

• Support parallel processing for data that have huge volumes (distributed

systems).

• NoSQL data storage systems do not need predefined schema and no tables to

store data.

• Each data item can have different attributes.

• NoSQL systems has different query language, so do not necessarily support

SQL statement. [6]

2.4.2 A Comparison between SQL and NoSQL databases:

Table (2.1) a Comparison between SQL and NoSQL

NoSQL databases SQL databases

 Are optimized for key-value stores SQL databases are not

Non-relational databases and distributed It is relational databases and not

distributed

NoSQL databases are document-oriented and

have a relationship with applications written

in object-oriented programming languages

like Java, PHP, and Python through APIs.

SQL is not document-oriented.

11

Allow developers to execute queries without

having to understand SQL or the basic

architecture of their database system.

Developers should be learn SQL and

understand the underlying architecture

of their database system.

Some of the NOSQL databases providers are

handles hardware failures.

SQL does not handle hardware

failures.

Different query languages: each of these

systems has own language to access stored

data.

Structured Query Language: SQL

systems support standard language to

access data.

Horizontal scalability. Vertical scalability.

BASE properties: NoSQL users prefer read

outdated information to obtain preferable

performance. Such as E-commerce systems.

ACID properties: SQL systems prefer

read the most recent value, which

leads to Lower performance such as

Banking systems.

Evolving: NoSQL systems are still in the

growing phase, and continuously there are

new releases.

Stable: SQL databases are stable

because it has been in use for years.

2.4.3 Common Type of NoSQL Database:

• Key-value model: which stores data in less complex way that consists of

indexed keys and values. Examples: Cassandra, LevelDB, and Riak.

• Column store: which allow high performance and excellent scalability by

storing data tables as columns rather than rows. Examples: Hbase, BigTable

and HyperTable.

• Document database: using the key-value concept, each document has its own

data and unique key, which is used to retrieve it. Examples: MongoDB, and

CouchDB.

• Graph database: this method is perfect when you have complex data

represented as a graph. Examples: Polyglot, Neo4J. [7]

12

2.4.4 Popular NoSQL Databases:

• MongoDB: popular open-source and free NoSQL system, It was developed

using C++, it is efficient database, have a high performance, persistence, ad

hoc queries and indexing. MongoDB is document-oriented database the

documents are stored in BSON (Binary JSON) format. Disadvantages is that

indexing takes up lot of ram.

• Apache’s CouchDB: was developed by Apache software for the web, it is

stores the documents in JSON data exchange format.

• Hbase: also Apache project but developed as a part of Hadoop, that main

features are open-source and the type is column family.

• Couchbase is a NoSQL document database is the fastest overall for read,

write and delete operations for interactive web applications.

• Apache’s Cassandra DB: Cassandra is a distributed database for handling

huge amounts of structured data. The important disadvantage of Cassandra is

that reads are so slowly compared to writes. This applied in Instagram,

Comcast and Apple.

• Riak: an open-source and key-value store database. for excellent performance

it used automatic data distribution.[7][8]

2.5 Literature review:

In this section, some of previous related research will be addressed and

compared to come out with research gab.

2.5.1 Solving and Processing Big Data Problem using Hadoop

In [9] the author’s focus on the problems related to big data (data more

than one TB) and network, these problems like: Network failure, Disk failure and

high storage cost. To prevent these problems apply Hadoop because it provides

the solutions, one of this are the data redundancy feature. Means can recover the

data from the replicated. The second is map and reduce. Running of map reduce

code in apache Hadoop used to process the data. Mappers are programs allow

13

small amount of data runs in parallel and the reducer will present the final result.

Data have to be stored and retrieved in low cost, effective way and process it

efficiently.

Enterprise resource planning depends on relational database which has

problems including the difficulty to build Data Warehouse with a low cost and

time as well as processing of huge data. The scientist in [10] introduced two main

solutions:

Solution 1: The data is archived in Hadoop Distributed File System HDFS

with map reduce feature which uses Sqoop for data migration. Hive is used as

SQL Language to retrieve the data to perform analysis and make decisions.

 Solution 2: The ORM method is modified in order for Odoo system

storage to be able to contact with Cassandra as NoSQL database.

This solutions achieved high performance and availability for Odoo

system even in the case of huge data. It also offered secondary storage with

relatively low cost for archiving and making decisions.

2.5.2 Performance Evaluation and Data Migration to Hadoop.

This project [11] try to solve migrating process for data Exist in RDBMS

(MySQL database) to DB2 database. Current system take huge resources and

time to migrate pita bytes of data. The suggested project migrate data from

MySQL to Hadoop distributed file system using tool called Sqoop, then Hadoop

HIVE is used to retrieve data. The result was positive because data replication

can recover the data if failure. Also, Hadoop used MapReduce in processing so

migration process become faster. The NameNode and DataNodes have built in

web servers that are makes it easy to check current status of the cluster, low coast

and more flexible to add extra nodes

The researchers in [12] apply tests aim to estimating the performance

considering the random writing and random reading of rows, and how they make

a difference by increasing the number of servers. Use Hbase for this evaluation

because it have low cost implementation, the system can scalability by added

14

nodes and handle a huge volumes of data. In case of failure, it can be restored

automatically by using replication feature, the model implemented is write-once-

read-many.

The results of this evaluation shows that the random reading on single

column family increased by augmenting the number of nodes, while random

writes remained the same in the case of a single node, or four nodes. In multiple

column family, the performance of both random reads and write are not affected

by increasing the number of servers and column families.

2.5.3 A performance Comparison of SQL and NoSQL Databases.

The inquisitive in this research [6] discuss the latency problem in Odoo

ERP system caused by two Odoo modules (mail messages, attachments). To

solve the problem of Odoo latency using NoSQL system, Hbase-Hadoop is used

as a new NoSQL data storage. The data is moved into Hadoop Distributed File

System (HDFS) Using Sqoop to Hbase databases. After that, ORM layer is

updated. Phoenix Hadoop is used to perform SQL queries over Hbase to retrieve

data. The results of experiment and evaluation tests that application can still use

PostgreSQL for long time as better choice than proposed Hadoop stack. To get

the benefits of using developed solution, large data volumes are required (more

than one TB).

The researchers in [13] compare key-value store implementations on

NoSQL and SQL databases. Compare time of read, write and delete for some

NoSQL databases. Find that not all NoSQL databases perform better than the

SQL database. In NoSQL databases there is a wide variation in performance

based on the type of operation. For example Couchbase and MongoDB are faster

in all operations. RavenDB and CouchDB do not result well in the read, write

and delete operations. Casandra is slow on read operations.

In [14] the authors tried to study and compare the different kinds of

NoSQL systems under specific criteria. The study focused on Hbase and

15

Cassandra because they have the same family and framework (Hadoop).

Moreover, it took MySQL (relational/SQL database) to see the benefits of using

NoSQL. The criteria included features such as persistence, replication, high

availability, transactions rack-locality awareness, implementation language,

influences /sponsors and license type. Then, the performance is measured for

write and read considering the number of nodes and the records. Comparison

results show that for over 7000 read or write operations per second in MySQL

becoming unresponsive and the latency time is too great. The write performance

of Hbase is greatly improved. Furthermore, in a read intensive environment,

MySQL is offering better results.

2.6 Summary:

This chapter described concepts such as: Hadoop, ERP systems, NoSQL

Database in details and summarized the current literature.

Chapter Three

Research Methodology

16

CHAPTER THREE

Research Methodology

3.1 Introduction

 This chapter introduce the methodology which research follow it, and explain

the solution architecture to solve Odoo performance limitation.

3.2 Research Methodology:

 The research methodology that will be employed in the research work is in

short: First of all, create millions of data records in Odoo system. Then, Identify the

suitable NoSQL database type to store imported data from Odoo. Moreover, build

Odoo module that is able to reading and writing data from both PostgreSQL

Database and suggested database. Finally, evaluate the performance of Odoo system

after applying the proposed solution in term of processing time.

3.3 System Architecture:

 In Figure 4.1, we explain an overall view of the new system. Odoo executes

all requests using normal Odoo ORM layer and PostgreSQL. Only requests for

Hbase based models (”employee") are executed by `HBaseORM' module.

`HBaseORM' sends all CRUD operations to the Hbase cluster directly through Hbase

Thrift API, Also executes search requests using Phoenix layer via the Query Server.

Every information stored in Hbase database is managed by the Hadoop distributed

file system.

17

Figure 3.1: System Architecture

3.3.1 Functional Requirement:

Implement all original Odoo functionalities, such as: Add, update, read and

search for specific table to support the new data storage.

3.3.2 Non-functional Requirement:

The main non-functional requirement is to minimizing the process time and

Archive the data to use for mining in future.

18

3.3.3 Hbase fetchers:

 Hbase is can be partitioned more efficiently because it is one of the column

family data models, also these databases are more suitable for huge datasets than

document stores. Columns and rows can be added very flexibly at runtime but

column families have to be predefined, which leads to less flexibility than key value

stores and document stores offer. [15]

 Hbase have low cost implementation. Handle a large volumes of data. In case

of failure, it can be restored automatically because Hbase use replication for offer

full consistency. Finally, is optimal for dealing with data that has the access pattern

write-once/read-many. That is the aim of the system. On the other hand Cassandra is

slow on read operations but is reasonably good for write. It can be used to handle

huge, complex and expressive data structures. [12][15]

3.3.4 Zookeeper:

 Zookeeper is a high performance coordination service for distributed

applications (like Hbase). It offer common services like naming, configuration

management and synchronization, It is configured in hbase-env.sh file and Tell

Hbase whether it should be manage its own instance of Zookeeper or not. Export

HBASE_MANAGES_ZK=true or false it will start/stop the Zookeeper servers as a

part of the regular start/stop scripts. In this project we used external Zookeeper to

manage the Hbase.

3.3.5 Phoenix:

 Use an application from Hadoop ecosystem, such as Hive and Phoenix that

performs SQL queries over Hbase to retrieve data.

 Either than Hbase is the NoSQL database and working well , there is one

limitation of the Hbase that it is not very user friendly for SQL developer, to

overcome this limitation they come up with the SQL layer above Hbase known as

Apache Phoenix.

19

3.4 System Implementation:

 We used Java version 1.8.0, Hadoop version 2.7.3, Hbase version 1.2.6,

Sqoop version 1.4.7 and phoenix version 4.14.0 which are all compatible with each

other.

 The processes are running in data which in Hadoop cluster not data in an

RDBMS. Because of the storage and parallelism capabilities of HDFS, Hadoop

cluster can run optimally on many different readily available hardware systems, and

Scales well ,Provides cheaper storage options ,Improves the performance of overall

big data environment, can store more data, and store more types of data (both

structured and unstructured).

3.4.1 Hadoop installation and Configuration:

 Select Hadoop ecosystem, which is open source applications offered by

Apache software Foundation. To set up your Hadoop cluster follow the information

that is available with the Hadoop solution you are using. After installed Java and

Hadoop in two machines/nodes open the file in terminal hdfs-site.xml to ensure high

availability of data, Hadoop replicates the data, the configuration “dfs.replication”

factor is to specify how many replications are required. This factor should be equal to

number of nodes in system. Also, configure the path where DataNode and

NameNode directory.

20

Figure 3.2: Configure Replication Factor in hdfs-site.xml File

3.4.2 Hbase Configuration

 Install Hbase in two machines/nodes it used to import data in.

3.4.3 Data collection:

 Data was generated by two ways: first of one is python wizard generate data

from existing Employee records

Figure 3.3: Python Wizard Used to Generate Data

21

 The second one by using python method called “generate_series“, then created

millions of data records in Odoo system.

Figure 3.4: Python Script Used to Generate Data

3.4.4 Data Analysis:

 Identify the suitable NoSQL database type to store imported data from Odoo,

by Using Sqoop to transfer all the data from PostgreSQL to Hbase data databases in

Hadoop ecosystem.

3.4.5 Import Data from PostgreSQL to Hbase Databases in Hadoop

Ecosystem:

 Now that the Hadoop cluster is set up.so, we need to integrate the Hadoop

cluster with the existing Odoo / ERP, which uses an RDBMS as its data storage.

Sqoop comes now. It is an import/export tool that allows you to move Big Data

between an SQL DB and Hadoop cluster using a JDBC driver. Sqoop is faster to

deploy and faster to make updates to in a production environment.

22

 Before using Sqoop create “Employee” table in hbase to receive data which

coming from PostgreSQL.

Figure 3.5: Create Employee Table in Hbase

 After the table is created, importing the data to Hbase and specify which

database should be accessed and columns want to retrieve.

Figure 3.6: Importing Data from PostgreSQL to Hbase Using Sqoop

 When this process finished, Data importing complete successfully.

23

Figure 3.7: Data Importing Successfully

 To ensure all data transferred, do scan to "Employee” table in Hbase for all rows

or scan “Employee” table within specific condition.

Figure 3.8: Scan “Employee” Table

24

Figure 3.9: Scan “Employee” Table with Specific Condition

Can see there are differences between Table in Hbase (Hadoop cluster) and

same table in PostgreSQL in the storage format.

Figure 3.10: Table in PostgreSQL

Figure 3.11: Table in Hbase (Hadoop cluster)

25

3.5 Summary:

 This chapter introduced the methodology which research follow it, and listed

the functional and non-functional requirements and explained the solution

architecture to solve Odoo performance limitation.

Chapter Four

 System Design and Implementation

26

CHAPTER FOURE

System Design and Implementation

4.1 Introduction:

 This chapter introduce the system implementation which enabling Odoo to be

contacted Hbase as NoSQL data storage instead of PostgreSQL. In addition, how a

new system components interact with each other's. Finally, show the result of the

research problem.

4.2 Development:

 Build Odoo module that is able to reading and writing data from both

PostgreSQL Database and Hbase database.

4.2.1 Odoo ORM:

 The ORM, short for Object-Relational Mapping is another technology in Odoo

to save and retrieve the data from PostgreSQL without the SQL Queries.

4.2.2 The benefits of ORM technology

• No need to deal with the SQL Queries to save and retrieve the data.

• Simple configuration.

• Easy to learn and use.

• Support the concurrency.

• Provide standardized API to support the business objects.

• Fast development of application.

4.2.3 Disadvantages of ORM:

 Slow performance in case of large batch updates.

27

4.2.4 JDBC concept:

 JDBC stands for Java Database Connectivity, is a set of Java API for

accessing the relational databases from Java program. The Java API enables the

programmers to execute the SQL statements against the JDBC complaint database.

 JDBC allows the programmers to quickly develop small Java applications

that interact with the databases. [16]

4.2.5 Create ORM Method (CRUD):

 In Odoo each model has four main functions for CRUD operations (Create,

Read, Update, and Delete).

 Hbase is developed using Java language and provides various Client APIs to

access Hbase from other programming languages like ‘Python’. There are two APIs

connector for Hbase: Thrift API and REST API. Thrift API is faster than

Representational State Transfer (REST) API, so, we choose Thrift API as the

connector between Odoo and Hbase. And have two Python libraries communicate

with Hbase: Happybase, Starbase. Only Happybase library support Thrift API. So,

we choose Happybase library to send the requests to Hbase through Thrift API.

Happybase supports all the needs to communicate with Hbase.

 To access the Hbase through the thrift, need to open the thrift service on

Hbase by running this command: Hbase thrift –p 9090 start

 Update the ORM layer emphasized that all data in PostgreSQL and data in

Hadoop cluster are consistent.

28

4.2.5.1 Create:

 Create function is called by Odoo when a user need to create a new record

.This customization in function store the record in both PostgreSQL and Hbase,

Figure 4.1: Optimization in Create Function

4.2.5.2 Update:

 Update function is called by Odoo when a user tries to update an existed

record .This customization in function update the record in both PostgreSQL and

Hbase.

 Figure 4.2: Optimization in Update Function

29

4.2.5.3 Delete:

 Delete function is called by Odoo when a user wants to delete an existed

record of a model. This customization in function delete the record in both

PostgreSQL and Hbase.

Figure 4.3: Optimization in Delete Function

4.3 Start system servers and web interfaces:

Figure 4.4: Start hdfs and MapReduce (YARN)

30

Figure 4.5: Run Zookeeper Server

Figure 4.6: Starting Hbase Server

Figure 4.7: Open Hbase Shell

Figure 4.8: Run JPS in Master Machine

31

Figure 4.9: Run JPS in Slave Machine

Figure 4.10: Start Odoo Server

Figure 4.11: Start Phoenix

32

4.4 Hadoop control panel:

Explain information about DataNodes like Nodes Name and the capacity of each

one.

Figure 4.12: Hadoop Data Distribution (two nodes)

Figure 4.13: Hadoop Cluster

33

4.5 Fetch Hbase Table Data in Apache Phoenix:

 After create table in Hbase and import the data from PostgreSQL , then create

view in phoenix with the same name and columns of Hbase table ,Phoenix

automatically fetch and load the data from Hbase table .

Figure 4.14: Create View in Phoenix to Fetch Hbase Table Data

 To show all phoenix tables and views just print “!Table” in terminal.

Figure 4.15: Show Phoenix Tables

34

 Now can manipulate the data by using normal SQL language and its features.

Figure 4.16: Retrieve Hbase Table Data in Apache Phoenix

4.6 Hadoop Cluster Implementation

 The Hadoop cluster that proposed to make the evaluation consists of two

nodes: One Master node and one Slave node (virtual machine).

35

Table (4.1) Cluster Nodes Specification

NAME OS CPU RAM

Master Ubuntu 14.04 LTS

32-bit

Intel core i5 18 GB

Slave1 Ubuntu 14.04 LTS

32-bit

Intel core i5 7 GB

Table (4.2) PostgreSQL Database Specification

NAME OS CPU RAM

Master Ubuntu 14.04 LTS

32-bit

Intel core i5 18 GB

Table (4.3) Sample Data Record Counts:

Table Name Record No.

Employee 1000.000

36

4.7 Consistency Test Evaluation:

 Consistent testing aims to check if the changes to Odoo return correct results

on the new system:

1. Change employee name from 'Pieter Parker John' to 'Pieter Parker' and save,

then run the query in PostgreSQL and phoenix, should be return the same

data.

SELECT id, name_related

FROM hr_employee

WHERE name_related = 'Pieter Parker';

Figure 4.17: The Result of Query in PostgreSQL

Figure 4.18: The Result of Query in Phoenix

37

2. delete specific employee and run the query in PostgreSQL and phoenix

,number of records should be same:

SELECT COUNT (id)

FROM hr_employee

Figure 4.19: Query in PostgreSQL Return Number of Records

Figure 4.20: Query in Phoenix Return Number of Records

38

4.8 Database Systems Evaluation:

1. In this section, we evaluate the performance of PostgreSQL and Hadoop

ecosystem to return names of the employees that has the word ‘Pieter’:

SELECT name_related

FROM hr_employee

WHERE name ILIKE ’%Pieter%’;

• Time to return Result from PostgreSQL:

 Return about 125.000 row in 37 seconds

Figure 4.21: Time to Return Specific Rows in Table from PostgreSQL

• Time to return specific result from phoenix:

 125,000 row in 30 s

39

2. Return all the data from employee table

SELECT *

FROM employee;

• Result from PostgreSQL:

 Return about 1000.000 row in 56 seconds

Figure 4.22: Time to Return All Rows in Table from PostgreSQL

• Time to Return All Result from phoenix

 1000,000 row in 150 s

4.9 Summary:

 This chapter discussed the system implementation in details and introduced

the result of the research problem which is the delay and latency in retrieving

information due to huge data in Odoo system.

Chapter Five

Conclusion and Recommendations

40

CHAPTER FIVE

Conclusion and Recommendations

5.1 Conclusions and Lessons Learned:

 NoSQL systems are promoted as more performed systems than SQL data

storage systems. Therefore, we chose to solve the problem of Odoo latency using

NoSQL system.

Hbase-Hadoop was selected as a new NoSQL data storage. To evaluate the new

system, compared its performance with the performance of the original Odoo system.

• The system able to scalability (add nodes) without stop.

• The NameNode and DataNodes have built in web servers that makes it easy

to check current status of the cluster.

5.2 Recommendations:

• The results of this experiment explain that Hadoop ecosystem can be used for

generating reports better than PostgreSQL.

• To get the benefits of using developed solution, large data volumes are

required.

• Can apply data mining and PI in archived data in system.

Chapter Six

References

41

6.1 References:

[1] (www.sodexis.com), W. (n.d). What is Odoo / OpenERP? | ERP CRM Software

Longwood Orlando Florida. [online] Sodexis.com. Available at:

http://www.sodexis.com/services/what-is-odoo-longwood-orlando-florida.html

[Accessed 25 Feb. 2018].

[2] Verma, J. and Agrawal, S. (2016). Big Data Analytics: Challenges and

Applications for Text, Audio, Video, and Social Media Data. International Journal on

Soft Computing, Artificial Intelligence and Applications, 5(1), pp.41-51.

[3] Singh, S., Singh, P. and Garg, R. (2015). Big Data: Technologies, Trends and

applications.

[4] En.wikipedia.org. (2018). Big data. [online] Available at:

https://en.wikipedia.org/wiki/Big_data [Accessed 8 Jul. 2018].

[5] NetSuite.com. (n.d.). Do you know what ERP is? Learn how ERP can help your

business with this informative article. [online] Available at:

http://www.netsuite.com/portal/resource/articles/erp/what-is-erp.shtml [Accessed 17

Feb. 2018].

[6] Enaya, M. (2016). An Experimental Performance Comparison of NoSQL and

RDBMS Data Storage Systems in the ERP System Odoo.

[7] Anon, (2017). [online] Available at: https://www.upwork.com/hiring/data/sql-vs-

nosql-databases-whats-the-difference/ [Accessed 17 Apr. 2018].

[8] Nayak, A., Poriya, A. and Poojary, D. (2013). Type of NOSQL Databases and its

Comparison with Relational Databases.

[9] Chaturvedi, S., Lowden, F. and Bhirud, N. (2015). Solving Big Data Problem

using Hadoop File System (HDFS).

[10] Khalifa, E., Ahmed, S., Ismeil, O. and Balla, A. (2017). Storing

42

[11] Tiyyagura, N., Rallabandi, M. and Nalluri, R. (2016). Data Migration from

RDBMS to Hadoop.

[12] Carstoiu, D., Cernian, A. and Olteanu, A. (2010). Hadoop Hbase-0.20.2

Performance Evaluation. IEEE.

[13] Li, Y. and Manoharan, S. (2013). A performance comparison of SQL and

NoSQL databases. IEEE.

[14] Tudorica, B. and Bucur, C. (2011). A comparison between several NoSQL

databases with comments and notes. IEEE.

[15] Hecht, R. and Jablonski, S. (2011). NoSQL Evaluation a Use Case Oriented

Survey.

[16] Roseindia.net. (n.d.). JDBC vs ORM. [online] Available at:

https://www.roseindia.net/jpa/jdbc-vs-orm.shtml [Accessed 16 Jul. 2018].

[17] Uye, C. (2015). Integrate Hadoop with an existing RDBMS.

 Analytics, B. (2015). Integrate Hadoop with an existing RDBMS. [online] Ibm.com.

Available at: https://www.ibm.com/developerworks/library/ba-hadoop-

rdbms/index.html#ibm-pagetitle-h1 [Accessed 11 Jan. 2018].

