Sudan University of Science and Technology

College Of Graduate Studies

Master of Information Technology

Performance Improvement for Enterprise Resource Planning

Systems using Big Data Technologies
dadiical) i) ol al sl A yal) Jadadli Aabsl elaY) (s

A Thesis Submitted in Partial Fulfillment of the requirements for the degree of M.Sc.in
Information Technology

By
Samia Abdelmonim Osman

Supervisor

Dr. Talaat Mohiuddin Wahbe

September 2018



[ 4

N

fSld Ja

[+)
. A
z - 7 - d j&é :.u:‘ . :
- S 5 Bl /~J/3 M}"o{”
z ce

s (76) ”m&:c

asdaall &) (3aa



Acknowledgments

First I would like to thank our God for giving me knowledge, success and
strength to finishing this study ,The success and final outcome of this project
required a lot of guidance and assistance from many p eople and | am extremely
privileged to have got this all along the completion of my project. All that | have
done is only due to such supervision and assistance and | would not forget to thank

them.

I respect and thank Dr. Hisham Abdulla Manssor, for providing me an
opportunity to do the project work and giving me all support and guidance which
made me complete the project duly. | am extremely thankful to him for providing

such a nice support and guidance.

| owe my deep gratitude to my husband, who give me the time and full
support, till the completion of my project work. And giving valuable suggestions and
comments on my work. Finally, I would like thank my family and especially my
mother and sister for their support.



Abstract

During Enterprise Resource Planning system lifetime, the response time
increasing while the amount of data is increasing because data is retrieving from the
relational database, where the more data to be processed the more time needs to
response. A new data storage system has been developed called NoSQL, which
stands for “Not Only SQL or Non SQL systems”. NoSQL systems have been
designed for large-scale data storage and apply parallel data processing. To identify
and develop the optimal solution to reduce the time of huge data processing in the

Odoo framework.

The proposed solution is to import data from Odoo database and store it in
NoSQL data storage and build Odoo module that is able to read and write data from
both PostgreSQL Database (which is not distributed database) and suitable NoSQL
database. This research aims to solve the Odoo performance latency problem, this
reduce storage costs, because it is cheaper to store archived data based on NoSQL
infrastructure, Open-source software and easy to extending in future, Also can use

data for mining “data mining”.



A lain Llaia¥) () k¢ duugall lge Jadads allay Guks 578 P

ajal) dalle a3 Gua ¢ AEDkall Ll saelE e UL salain Blas bl ok
OpAdl s ol gkl o5 a8y LAl Clgll e ade () zlias Al bl (e
s’ 5 ."SQL e dalail of SQL Lo ul' 1) Say s3lls « NOSQL ansy bl
oeshail LAl Ul) dalles Gakals aasly (BUad e clilad) oianl NoSQL dakaif
8 zraall Jally 0d00.dae sl 8 dadall i) dallee iy Jlid JiaY) )
Baag elug NOSQL clilull ¢pyas 4 ity Odoo cilily saeld e libud) i)
) PostgreSQL ulily 322l (e JS e clilall LUS5 5618 e 80 Odoo
da Gl 13a Caagy LAalie NOSQL cilily sacliy (dejge cilily saels
ool el al¥e canll CallSs (e 13 Jla o (Sen OdoO slal aless) AS5a
sl ey saadl zsites (NOSQL 4l didl Guld e dad)sall bl

data mining* cugill & bl aladiu) L (Sag ¢ Jaisal



Table of Contents

-

e | i
ACKNOWIEAGMENTS ... e ii
ADSTFACT ...ttt bbb iii
PV S T | RSO iv
Table OFf CONENTS ...ooeieiece et e v
LISt OF FIQUIES ...ttt et b e e esna e viii
LISt OF TaADIES: ...t ettt be e iX
LiSt OF @DDIEVIALIONS: .....oeeeieeieeeee ettt iX
CHAPTER ONE.....ooiiiieicietetesteees ettt sttt st et s se s e saeneas 1
T oo [8Tox 1 o] [OOSR SRR 1
@ =T VT PR 1
1.2 BACKGIOUNT: ...ttt bbbttt nae e 1
1.3 Problem STateMENT: .....cc.ooeviiieieeee ettt 1
1.4 RESEArCN ODJECLIVES ....cc.evviriiriiriieiteieieste sttt sttt nae s 2
1.5 SCOPE OF WOTK: ...ttt sttt nne 2
1.6 PropoSed SOIULION: ......ccviieieiieieeeeete ettt e 2
1.7 Research Methodology:.......coveuieieciieieeieseee ettt 3
1.8 ThesiS OrganiZatioN:........cccueveerieeiereesieeeeseesteetesee e sreesseeaesraenteeseesseeseeneas 4
1.9 CONEFIDULION: ..ottt sttt b e 4
(O =] T T v USRS 4
1.11 CharacteristiCs Of Big Data: .......ccccceeverierieieeieseesie et 5
CHAPTER TWO ...ttt sttt sttt s 6
Related work and Literature REVIEW ..........ccceveriviieieieieriese e 6
2.1 INEFOTUCTION ...ttt s sttt et e et sae e 6
2.2 Enterprise Resource Planning SYStEMS: ........c.ccovecueviereeieeiereee e 6

The Types 0f ERP SYSIEIMS: ......couiieiieie ettt 6

Open-source SOFtWAre (OSS): ...cviiiiieieeieeee et 6

Odoo Enterprise Resource Planning SYSteMS:.......cccecveveereeceereeneeeeseeie e seeens 7

0d00 Software & ArCNITECIUIE: ......ccuivieieieeieee et 7

Odoo Applications and MOAUIES: ..........cooiieiieiiiciece e 7



(O Lo [oTo T mI=T: L L0 =T I 7

Disadvantages 0f OU00:.......c.coieiieieriiee ettt 8
2 B T T [0 T o SRS 8
2.3.1 Hadoop consists of three main components [6]:.......cccooeverererieiiencnenienn 8
2.3.2 Hadoop Distributed File SYSteM.......ccvecvevieiieieseeeeeeceee e 8
2.3.3 Architecture of Hadoop Distributed File System: .......ccccccevvvveeveevieeieneenne 8
2.3.4 MapReduce Framework:........ccveieiererineneeeeeeeesre e 9
2.3.5 MapReduce Consists of Three Main Steps:........cccoverevereneneeieneneneenienne 9
2.4 NOSQL Database SIOrage:.....c.cccvereerueeeerieeieseeseesteeeesteeaeseesreesesaesaensesseens 10
2.4.1 NOSQL CharaCteriStiCS: ......eeveriierierierieeieeee ettt 10
2.4.2 A Comparison between SQL and NoSQL databases: .........ccccceveverveuennen. 10
2.4.3 Common Type of NOSQL Database:..........cccoeevereeneerrieieceee e 11
2.4.4 Popular NOSQL Databases: ........ccceverueeiueeieniieiesieseesre e steesee e see e 12
2.5 LITEIAtUIE TEVIBW: ..cueeeuiieeeeieeieseee st ete et e e e te s e seeeae e e steeaesseesseensasneesseensennnens 12
2.5.1 Solving and Processing Big Data Problem using Hadoop..........c.ccccu....... 12
2.5.2 Performance Evaluation and Data Migration to Hadoop............c.cceeu...... 13
2.5.3 A performance Comparison of SQL and NoSQL Databases. ................... 14
2.6 SUMMANY: ..ottt ettt ettt ettt sb et b e nesaeenbe e b e sneenbesnenaeens 15
CHAPTER THREE ...ttt 16
Research Methodology .......ccveieiieiieeceece e 16
S L INTrOAUCTION ..ottt sttt saenae s 16
3.2 Research Methodology:......ccoveeeeiieececeee e 16
3.3 SYStEM ATCNITECIUIE: ...ttt 16
3.3.1 Functional REQUITEMENT:........ccvecuereerieeie et s 17
3.3.2 Non-functional REQUIrEMENL: .........c.ccveiiieieceeeceseee e 17
3.3.3 HDASE FEICNEIS: ...t 18
IO B o T (=TT o -1 TS 18
BL3.5 PROBINIX: oottt bbbttt sae 18
3.4 System IMPIEMENtatioN: ........c.eiiieeieceece e e 19
3.4.1 Hadoop installation and Configuration:...........ccceeeveevieceneeneecesceseeenee, 19
3.4.2 Hbase Configuration ..........cccuevievieieesieie et 20
3.4.3 Data COBCLION: ..ot 20
3.4.4 Data ANAIYSIS: ....eiiieeeiieeieeee ettt e ns 21

Vi



3.4.5 Import Data from PostgreSQL to Hbase Databases in Hadoop Ecosystem:

............................................................................................................................ 21
3.5 SUMMAIY. ettt st st s e e s e e s b e e s sabeessabeeenanes 25
CHAPTER FOURE ......c.ooiitiieireetees ettt sttt 26
System Design and Implementation............ccoceeceriereerienieneere e 26
ot a1 0o [0 od o] AP S RPN 26
O Ll =] (o] o] 1] ] SRS 26

O R Lo (o T I ] 4V SR TR U SR 26

4.2.2 The benefits of ORM technology .........ccccveeeviereninenineneeeeeeeeee 26

4.2.3 Disadvantages 0f ORM:.........ccvoiieiiiieseceeee et 26

N 1B = T O ol0] [of=] | SO SUPRR 27

4.2.5 Create ORM Method (CRUD):.....ccovirieiiieeierieereeeseeeee e 27

A.2.5.1 CrEALE: ...ttt ettt s 28

4.2.5.2 UPAALE: ...c.veeiieeeeeieete ettt ettt ettt nes 28

A.2.5.3 DRIBLE: ...t et 29
4.3 Start system servers and Web iNterfaces: ........occvvveveeievieneeieseee e 29
4.4 Hadoop CONtrol PANEL: .......ooveeeeeeeeeeeceeee et 32
4.5 Fetch Hbase Table Data in Apache PROEBNIX: ........ccccverirereneneeieiesiesesieneens 33
4.6 Hadoop Cluster Implementation............cccccveveeveenieniencieneese e 34
4.7 Consistency Test EValuation: .........c.cceveeieeieeieciece e 36
4.8 Database Systems EValUuation:..........cccoccveveeiiieieiicriecee e 38
4.9 SUMMAIY:. c..eiieiie ettt ettt sate s be e s et e et e e sabeebeesaeeenbeessteenteesseeenneesans 39
CHAPTER FIVE ...ttt sttt ettt ae e 40
Conclusion and RecommEeNdations ...........ccevveeieierierenese e 40
5.1 Conclusions and Lessons Learned: ..........cccecveveruerieneneneneneneeeeeeseesee e 40
5.2 RECOMMENUALIONS: ...c.veiiiieiieieiesieste sttt 40
6.1 RETEIENCES: ...ttt st b ettt 41

Vii



List of Figures

FIGURE 1.1: RESEARCH METHODOLOGY ...covviiiiiiiiiirieiereeeieeeereeseresssssesesseseesessesrssessssmeen 3
FIGURE 1.1: MAPREDUCE EXAMPLE ....ccciitiiie ittt ettt ettt ettt e sbvae e enra s 9
FIGURE 3.1: SYSTEM ARCHITECTURE .....ccutttieiiiitiee e s iteeeessitrteeesenreesesssbaeesssrsaessssnnnnas 17
FIGURE 3.2: CONFIGURE REPLICATION FACTOR IN HDFS-SITE.XML FILE.........ccceune... 20
FIGURE 3.3: PYTHON WIZARD USED TO GENERATE DATA......coiiiiiiiiiiiiiee e 20
FIGURE 3.4: PYTHON SCRIPT USED TO GENERATE DATA .....eoiiiiiiiiie et 21
FIGURE 3.5: CREATE EMPLOYEE TABLE IN HBASE.......coiiiiiiiieiciiiee et 22
FIGURE 3.6: IMPORTING DATA FROM POSTGRESQL TO HBASE USING SQOOP............ 22
FIGURE 3.7: DATA IMPORTING SUCCESSFULLY ..vvviiiiitiieeeiiirieeeeeireeeesireeeessvsaeeesensseeas 23
FIGURE 3.8: SCAN “EMPLOYEE” TABLE ....vttiiiiiiiieeiittiee e citriee s eittee e svaee e srvae e eanvaeas 23
FIGURE 3.9: SCAN “EMPLOYEE” TABLE WITH SPECIFIC CONDITION ....veoveiiivvieeeinnnen. 24
FIGURE 3.10: TABLE IN POSTGRESQL ...c.uviiiiiiiieiiie e 24
FIGURE 3.11: TABLE IN HBASE (HADOOP CLUSTER) .....cciviiiiiiiniieieiesiesie s 24
FIGURE 4.1: OPTIMIZATION IN CREATE FUNCTION ...vtvviiiiieiiis ettt svvrreee e 28
FIGURE 4.2: OPTIMIZATION IN UPDATE FUNCTION.....tvtiiiieeiiiiiiieieiiee e sssvvrreee e e e e e 28
FIGURE 4.3: OPTIMIZATION IN DELETE FUNCTION ...vvviiiiiiiiiiiciiitieeeee e eeevvrreee e 29
FIGURE 4.4: START HDFS AND MAPREDUCE (YARN)....cccoiiiiiieiieeee 29
FIGURE 4.5: RUN ZOOKEEPER SERVER .....ttuiiiieeiiiiiittieiiieieesssssisssseesssssssssssssssssssssssssins 30
FIGURE 4.6: STARTING HBASE SERVER .....cctiiieiiiiiiittteiiie e e e e s sisrrieees e s s s s sessssbseessseesssens 30
FIGURE 4.7: OPEN HBASE SHELL ....coooocvvttiiiiiee e sittteier s e s e s s sibvtaee e s e s s s s seabbbaaenssee e s ens 30
FIGURE 4.8: RUN JPS IN MASTER MACHINE ......ooovettteiiie ettt eirbraeee s e e 30
FIGURE 4.9: RUN JPS IN SLAVE MACHINE ....cccoiiiiiitieiiie ettt eivrraeen s e 31
FIGURE 4.10: START ODOO SERVER.......ttttiiiiieiiiiiiiiiieieisieessssiisbasesesessssssssssbssesssesssnins 31
FIGURE 4.11: START PHOENIX 11viiiiiiiiiiiitiiiiiiii e siitbriee s e e s s sbbbsbee e s e s e s s s s sasbbaaeeeseesasans 31
FIGURE 4.13: HADOOP CLUSTER .....cciiiittttiiiiie e e s s siittbrree s e e e s sbbbabee e s e s e s s sssnsbbaraeeseessnans 32
FIGURE 4.12: HADOOP DATA DISTRIBUTION (TWO NODES)......ccoieeiuieieireerveeeesreesneans 32
FIGURE 4.14: CREATE VIEW IN PHOENIX TO FETCH HBASE TABLE DATA......ccvvveeenn. 33
FIGURE 4.15: SHOW PHOENIX TABLES ...vttttiiiieiiiiiiitirieiseeessssibbereeesesessssssssbssessseesssins 33
FIGURE 4.16: RETRIEVE HBASE TABLE DATA IN APACHE PHOENIX ......ccoovvvvverieeeennns 34
FIGURE 4.17: THE RESULT OF QUERY IN POSTGRESQL .......oovviiiiiiiciiiiiee e, 36
FIGURE 4.18: THE RESULT OF QUERY IN PHOENIX......cctiiiiiiiieeeiiiiieeeecieee e e e e 36
FIGURE 4.19: QUERY IN POSTGRESQL RETURN NUMBER OF RECORDS............cc........ 37
FIGURE 4.20: QUERY IN PHOENIX RETURN NUMBER OF RECORDS..........ccccveaieenieenne 37
FIGURE 4.21: TIME TO RETURN SPECIFIC ROWS IN TABLE FROM POSTGRESQL ......... 38
FIGURE 4.22: TIME TO RETURN ALL ROWS IN TABLE FROM POSTGRESQL................. 39

viii


file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271457
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271476
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271480
file:///C:/Users/Ibrahim%20Almahi/Desktop/last%20research/samiaResearsh%20(Autosaved).docx%23_Toc8271481

List of Tables:

Table Number Table Name Page Number
Table (2.1) Comparison between SQL and NoSQL 10
Table(4.1) Cluster Nodes Specification 35
Table(4.2) PostgreSQL Database Specification 35
Table(4.3) Sample Data Record Counts: 35

List of abbreviations:

Abbreviation

Explanation

ERP Enterprise Resource Planning
ORM Obiject Relational Mapper

NoSQL Not Only SQL

CRUD (Create,Read,Update,Delete)

SQL Structure Query Language

HDFS Hadoop Distributed File System
API Application Programming Interface

Sgoop

Sql + Hadoop




Chapter One

Introduction



CHAPTER ONE

Introduction

1.1 Overview:

This chapter introduces the research work, states the problem, defines

research objectives, significant and describes the methodology.
1.2 Background:

Enterprise Resource Planning Systems Odoo / OpenERP is a comprehensive
suite of business applications including Sales, CRM, Project management,
Warehouse management, Manufacturing, Financial management, and Human
Resources just to name a few. Odoo / OpenERP offers a choice of over a thousand
modules. Odoo / OpenERP is available in the cloud or on-site. In the past it is most
suited for small to mid-sized companies, but in today's time Odoo / OpenERP used in
big companies. With more than a thousand downloads/installations per day, Odoo /
OpenERP is one of the most used open source solution in the world. It has a dynamic
community, is flexible, and can be adapted to your needs. It can be put in production

rapidly thanks to its modularity and is easy to use [1].
1.3 Problem Statement:

In most organizations, the data size doubles every two years, and most
relational databases like 'PostgreSQL" are not distributed database, that works on one
server. The problem lies in large companies when they decide to carry a large
number of data into the database and after long-term data archiving. Its performance

is decreasing due to the growing amount of data.



1.4 Research Objectives

1. The research aims to Implement Odoo / OpenERP in large companies without
Odoo latency problem.

2. To identify and develop the optimal solution to reduce the time of huge data
processing in the Odoo framework.

3. To allows the system to continue working if the server / node fails by
applying the distributed environment and choose a NoSQL data storage
system that meets the requirements.

4. To evaluate the performance of the proposed solution in terms of time and
compare it with the current approach.

1.5 Scope of Work:

Building the system that able to process and store the extremely large data in

distributed environment.
1.6 Proposed Solution:

Data is growing rapidly, we need to archive all data. Data archiving is
performed by transferring data from primary storage to secondary storage, where we
can transfer large data from Odoo to Hadoop system using SQOOP. It is an import /
export tool that allows you to transfer data between the SQL database and the
NoSQL database in the Hadoop cluster. Then, create a new Odoo module that
enables Odoo Object Relational Mapper (ORM) schema to communicate with the
NoSQL database system. Finally, the goal is to reduce processing time for storing
and retrieving data. After archiving that data, we get better performance and lower
cost for hardware and software. This step can reduce storage costs because it is

cheaper to store archived data on the Hadoop structure.



1.7 Research Methodology:

The research methodology that will be employed in the research work is described

and presented in detail.

i.  Data collection: use tool to generate data or python scripts to create millions
of data records in Odoo system.

ii.  Data analysis: identify the suitable NoSQL database type to store imported
data from Odoo, by Using Sqoop to transfer all the data from PostgreSQL to
Hbase data databases in Hadoop ecosystem, Sqoop recommend because it is
faster to deploy and to make updates in a production environment.

iii.  Development: build Odoo module that is able to reading and writing data
from both PostgreSQL Database (which is not distributed database) and
suggested NoSQL database.

iv.  Evaluation: evaluate the performance of PostgreSQL and Hbase in term of

data retrieving time.

Figure 1.1 display methodology which research follow it.

Data Collection

Data Analysis
Development
Evaluation

Figure 1.1: Research Methodology



1.8 Thesis Organization:

The rest of the thesis is organized as follows:

e Chapter Two: Related work and Literature reviews.
e Chapter Three: Research Methodology.
e Chapter Four: System design and implementation.

e Chapter Five: Conclusions and Recommendations
1.9 Contribution:

Develop and build new Odoo module that is able to reading and writing data
from both PostgreSQL Database (which is not distributed database) and suggested
NoSQL database. To ensure the changes reflect to Odoo and new system in the same

time.
1.10 Big Data:

With the spread of the Internet, automated systems have been involved into
daily operations in different fields. All of this generating huge amount of data from
several sources in multiple forms like text, audio, video, documents, emails, images
and posts on Facebook or Tweeter, etc. this data release the expression of Big Data.
[2][3] With reason of large amount of data, traditional data processing and storage
technologies are insufficient. After long-term of data archiving the business will

influence negatively.

The expansion and the availability of huge amount of data either structured,
semi structured or unstructured described by the term 'Big Data’. So, to optimize our

business processes need more data to collect more accurate result. [2]

Another definition of big data is data sets that are so large and complicated
that traditional data-processing application software are unqualified to handle with
them. [4]



1.11 Characteristics of Big Data:

The term of Big Data do not only refer to the data with a big size. The
definition of Big Data included four concepts: Volume, Velocity, Variety and
Veracity. So data possesses large volume, generated with high velocity, comes from
a variety of sources and formats and having great uncertainty in quality and fidelity

is referred as Big Data. [3]
Other definition of big data comes with six characteristics:

e Volume: Through the years we have a lot of online transactions
stored, this responsible.

e Velocity: Data is arriving in fast speeds and must be dealt with in
appropriate time.

e Variety: Data comes in various types of format structured,
unstructured and semi structured. Managing and processing this
different variety of data is so hard.

e Veracity: Obtaining data accuracy is a challenge. Due to data can be
inconsistent and conflicting.

e Complexity: Data comes from numerous sources. So need to prepare,
cleanse and transform data over systems.

e Value: Extract values from Big Data is a big issue because that

enhancing the organization’s business.



Chapter Two

Related work and Literature Review



CHAPTER TWO

Related work and Literature Review

2.1 Introduction

This chapter describes Hadoop , ERP systems , NoSQL Database and reviews

the current literature.
2.2 Enterprise Resource Planning Systems:

ERP involves all of the processes that are important to run a business,
including inventory, order management, accounting, human resources and customer
relationship management (CRM). ERP software integrates these functions into one

complete system to perform processes across the organization. [5]
The Types of ERP Systems:

On-Premise ERP: Everything is stored, installed and managed locally in the

organization.

Cloud ERP: Hosting company manages the ERP system and its data. The

organization’s user can access the ERP system via internet.

Hybrid: Hybrid ERP system combines both On-Premise and Cloud ERP

systems.
Open-source Software (OSS):

Open source systems are systems which their source code are available for

users, and based on their requirements can customize the source code.



Odoo Enterprise Resource Planning Systems:

Odoo is one of first Open Source ERP All-In-One solutions meet your
company’s requirements. Odoo have developed 30 main modules which are regularly

upgraded and easy to use.
Odoo Software & Architecture:

Odoo uses Python scripting and PostgreSQL database. The software is
accessed via a web browser in a one page app developed in JavaScript.

Odoo Applications and Modules:

Odoo is extensible architecture. A large number of freelancers and
organizations develop Odoo Modules and place them in the marketplace for sale or
to be downloaded for free. Odoo has about 30 core modules and more than 5000
community modules. Main modules are available in all active versions such as 9.0,
10.0 and 11.0.

Odoo Features:

e Open source system.

e Web.

e Extensible architecture.

e Its easy integration and customization options.

e Download all the official modules for free.

e Flexible and easy to use.

e Odoo is one of the fastest growing software its database runs on PostgreSQL.
e Able to integrating with other platforms.

o The travel through the pages looks really simple.

e The software is always up to date with the improvement in the technology.

e The managers able to monitoring the performance indicator by progressing

monitor and then making decision.


https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/JavaScript

Disadvantages of Odoo:

Their compatibility problem when a new version released, user needs to solve

the conflict of code and some data migration issues.
2.3 Hadoop:

Hadoop is a collection of open-source software, a programming framework
built using Java language. Hadoop is developed to execute distributed data
processing over hardware. The developers, even without any distributed or parallel

programming skills, enables to write distributed data processing jobs.
2.3.1 Hadoop consists of three main components [6]:

e Hadoop Distributed File System
e MapReduce Framework

¢ Yet Another Resource Negotiator (YARN)
2.3.2 Hadoop Distributed File System

HDFS is the key component of Hadoop. It manages, stored and replicated
huge data set in a cluster reliably. HDFS is designed to execute fast read operations
but the write operations are slower, so HDFS is optimal for dealing with data that has
the access pattern write-once/read-many. Also HDFS partitions the files into blocks

and distributes these blocks among the cluster’s nodes.
2.3.3 Architecture of Hadoop Distributed File System:
There are two types of nodes:

e NameNode “the master node”: NameNode stores the meta-data and
identifies the DataNodes that are responsible for storing each block. The
client asks the NameNode to return the DataNodes that should be

communicated to store or retrieve the data.



e DataNode “the slave node”; DataNode stores two files: first one contains

the data and the second is checksum file to identify corrupted data blocks.

HDFS was designed to expect and detect the hardware failure, each
DataNodes regularly sends a heartbeat signal to the NameNode. If not happened it
marks this DataNode as out of service and re-replicates all data to other active
DataNodes. [6]

2.3.4 MapReduce Framework:

MapReduce it is achieved the “Data Locality” concept which means moving
the computation to data instead of moving data to the computation and then
aggregates the results to get the final output. Also it is a programming model for

processing huge and distributed data.
2.3.5 MapReduce Consists of Three Main Steps:

e Map: convey the input data in to set of <key, value>
e Shuffle and Sort: In this step, Hadoop shuffles and reduce <key, value> pairs

and sorts these pairs.

e Reduce: finally, applies the required functions, such as (count, average, etc.).
And writes the final result to HDFS. [6]

HDFS Map Shuffle = Reduce

Odoo,ERP DEdeP'11 ERP.1
' NoSQL,1
NoSQL, 1 ERP, 1
Odoo Odoo, 1 NoSQL, 2
1 Odoo, 2
NoSQL,1 Odoo, 1

Figure 1.1: MapReduce Example



2.4 NoSQL Database Storage:

It is normal for any web application to serve millions of users simultaneously.
These users generate huge amount of data, so data storage system needs to manage
his efficiently. Many companies such as Amazon and Google have limitation of
relation databases and developed own data storage system to be suitable for the new

requirements, these systems become known as NoSQL “Not Only SQL”
2.4.1 NoSQL characteristics:

e Support parallel processing for data that have huge volumes (distributed
systems).

¢ NoSQL data storage systems do not need predefined schema and no tables to
store data.

e Each data item can have different attributes.

e NoSQL systems has different query language, so do not necessarily support
SQL statement. [6]

2.4.2 A Comparison between SQL and NoSQL databases:

Table (2.1) a Comparison between SQL and NoSQL

NoSQL databases SQL databases
Are optimized for key-value stores SQL databases are not
Non-relational databases and distributed It is relational databases and not
distributed

NoSQL databases are document-oriented and |[SQL is not document-oriented.
have a relationship with applications written
in object-oriented programming languages
like Java, PHP, and Python through APIs.

10




Allow developers to execute queries without
having to understand SQL or the basic
architecture of their database system.

Developers should be learn SQL and
understand the underlying architecture
of their database system.

Some of the NOSQL databases providers are
handles hardware failures.

SQL does not handle hardware

failures.

Different query languages: each of these
systems has own language to access stored
data.

Structured Query Language: SQL
systems support standard language to

access data.

Horizontal scalability.

Vertical scalability.

BASE properties: NoSQL users prefer read
outdated information to obtain preferable

performance. Such as E-commerce systems.

ACID properties: SQL systems prefer
read the most recent value, which
leads to Lower performance such as
Banking systems.

Evolving: NoSQL systems are still in the
growing phase, and continuously there are

new releases.

Stable: SQL databases are stable

because it has been in use for years.

2.4.3 Common Type of NoSQL Database:

e Key-value model: which stores data in less complex way that consists of

indexed keys and values. Examples: Cassandra, LevelDB, and Riak.

e Column store: which allow high performance and excellent scalability by

storing data tables as columns rather than rows. Examples: Hbase, BigTable

and HyperTable.

e Document database: using the key-value concept, each document has its own

data and unique key, which is used to retrieve it. Examples: MongoDB, and

CouchDB.

e Graph database: this method is perfect when you have complex data

represented as a graph. Examples: Polyglot, Neo4J. [7]

11




2.4.4 Popular NoSQL Databases:

e MongoDB: popular open-source and free NoSQL system, It was developed
using C++, it is efficient database, have a high performance, persistence, ad
hoc queries and indexing. MongoDB is document-oriented database the
documents are stored in BSON (Binary JSON) format. Disadvantages is that
indexing takes up lot of ram.

e Apache’s CouchDB: was developed by Apache software for the web, it is
stores the documents in JSON data exchange format.

e Hbase: also Apache project but developed as a part of Hadoop, that main
features are open-source and the type is column family.

e Couchbase is a NoSQL document database is the fastest overall for read,
write and delete operations for interactive web applications.

e Apache’s Cassandra DB: Cassandra is a distributed database for handling
huge amounts of structured data. The important disadvantage of Cassandra is
that reads are so slowly compared to writes. This applied in Instagram,
Comcast and Apple.

¢ Riak: an open-source and key-value store database. for excellent performance
it used automatic data distribution.[7][8]

2.5 Literature review:

In this section, some of previous related research will be addressed and
compared to come out with research gab.

2.5.1 Solving and Processing Big Data Problem using Hadoop

In [9] the author’s focus on the problems related to big data (data more
than one TB) and network, these problems like: Network failure, Disk failure and
high storage cost. To prevent these problems apply Hadoop because it provides
the solutions, one of this are the data redundancy feature. Means can recover the
data from the replicated. The second is map and reduce. Running of map reduce
code in apache Hadoop used to process the data. Mappers are programs allow

12



small amount of data runs in parallel and the reducer will present the final result.
Data have to be stored and retrieved in low cost, effective way and process it

efficiently.

Enterprise resource planning depends on relational database which has
problems including the difficulty to build Data Warehouse with a low cost and
time as well as processing of huge data. The scientist in [10] introduced two main

solutions:

Solution 1: The data is archived in Hadoop Distributed File System HDFS
with map reduce feature which uses Sgoop for data migration. Hive is used as

SQL Language to retrieve the data to perform analysis and make decisions.

Solution 2: The ORM method is modified in order for Odoo system

storage to be able to contact with Cassandra as NoSQL database.

This solutions achieved high performance and availability for Odoo
system even in the case of huge data. It also offered secondary storage with

relatively low cost for archiving and making decisions.
2.5.2 Performance Evaluation and Data Migration to Hadoop.

This project [11] try to solve migrating process for data Exist in RDBMS
(MySQL database) to DB2 database. Current system take huge resources and
time to migrate pita bytes of data. The suggested project migrate data from
MySQL to Hadoop distributed file system using tool called Sqoop, then Hadoop
HIVE is used to retrieve data. The result was positive because data replication
can recover the data if failure. Also, Hadoop used MapReduce in processing so
migration process become faster. The NameNode and DataNodes have built in
web servers that are makes it easy to check current status of the cluster, low coast

and more flexible to add extra nodes

The researchers in [12] apply tests aim to estimating the performance
considering the random writing and random reading of rows, and how they make
a difference by increasing the number of servers. Use Hbase for this evaluation

because it have low cost implementation, the system can scalability by added

13



nodes and handle a huge volumes of data. In case of failure, it can be restored
automatically by using replication feature, the model implemented is write-once-

read-many.

The results of this evaluation shows that the random reading on single
column family increased by augmenting the number of nodes, while random
writes remained the same in the case of a single node, or four nodes. In multiple
column family, the performance of both random reads and write are not affected

by increasing the number of servers and column families.

2.5.3 A performance Comparison of SQL and NoSQL Databases.

The inquisitive in this research [6] discuss the latency problem in Odoo
ERP system caused by two Odoo modules (mail messages, attachments). To
solve the problem of Odoo latency using NoSQL system, Hbase-Hadoop is used
as a new NoSQL data storage. The data is moved into Hadoop Distributed File
System (HDFS) Using Sqoop to Hbase databases. After that, ORM layer is
updated. Phoenix Hadoop is used to perform SQL queries over Hbase to retrieve
data. The results of experiment and evaluation tests that application can still use
PostgreSQL for long time as better choice than proposed Hadoop stack. To get
the benefits of using developed solution, large data volumes are required (more
than one TB).

The researchers in [13] compare key-value store implementations on
NoSQL and SQL databases. Compare time of read, write and delete for some
NoSQL databases. Find that not all NoSQL databases perform better than the
SQL database. In NoSQL databases there is a wide variation in performance
based on the type of operation. For example Couchbase and MongoDB are faster
in all operations. RavenDB and CouchDB do not result well in the read, write

and delete operations. Casandra is slow on read operations.

In [14] the authors tried to study and compare the different kinds of

NoSQL systems under specific criteria. The study focused on Hbase and

14



Cassandra because they have the same family and framework (Hadoop).
Moreover, it took MySQL (relational/SQL database) to see the benefits of using
NoSQL. The criteria included features such as persistence, replication, high
availability, transactions rack-locality awareness, implementation language,
influences /sponsors and license type. Then, the performance is measured for
write and read considering the number of nodes and the records. Comparison
results show that for over 7000 read or write operations per second in MySQL
becoming unresponsive and the latency time is too great. The write performance
of Hbase is greatly improved. Furthermore, in a read intensive environment,

MySQL is offering better results.
2.6 Summary:

This chapter described concepts such as: Hadoop, ERP systems, NoSQL

Database in details and summarized the current literature.

15



Chapter Three

Research Methodology



CHAPTER THREE

Research Methodology

3.1 Introduction

This chapter introduce the methodology which research follow it, and explain

the solution architecture to solve Odoo performance limitation.
3.2 Research Methodology:

The research methodology that will be employed in the research work is in
short: First of all, create millions of data records in Odoo system. Then, Identify the
suitable NoSQL database type to store imported data from Odoo. Moreover, build
Odoo module that is able to reading and writing data from both PostgreSQL
Database and suggested database. Finally, evaluate the performance of Odoo system

after applying the proposed solution in term of processing time.
3.3 System Architecture:

In Figure 4.1, we explain an overall view of the new system. Odoo executes
all requests using normal Odoo ORM layer and PostgreSQL. Only requests for
Hbase based models (“employee") are executed by ‘HBaseORM' module.
"HBaseORM' sends all CRUD operations to the Hbase cluster directly through Hbase
Thrift API, Also executes search requests using Phoenix layer via the Query Server.
Every information stored in Hbase database is managed by the Hadoop distributed

file system.

16



Hbase Maodel (CUDR)

L

Hbase Cluster

Figure 3.1: System Architecture

3.3.1 Functional Requirement:

Implement all original Odoo functionalities, such as: Add, update, read and

search for specific table to support the new data storage.
3.3.2 Non-functional Requirement:

The main non-functional requirement is to minimizing the process time and

Archive the data to use for mining in future.

17



3.3.3 Hbase fetchers:

Hbase is can be partitioned more efficiently because it is one of the column
family data models, also these databases are more suitable for huge datasets than
document stores. Columns and rows can be added very flexibly at runtime but
column families have to be predefined, which leads to less flexibility than key value

stores and document stores offer. [15]

Hbase have low cost implementation. Handle a large volumes of data. In case
of failure, it can be restored automatically because Hbase use replication for offer
full consistency. Finally, is optimal for dealing with data that has the access pattern
write-once/read-many. That is the aim of the system. On the other hand Cassandra is
slow on read operations but is reasonably good for write. It can be used to handle

huge, complex and expressive data structures. [12][15]
3.3.4 Zookeeper:

Zookeeper is a high performance coordination service for distributed
applications (like Hbase). It offer common services like naming, configuration
management and synchronization, It is configured in hbase-env.sh file and Tell
Hbase whether it should be manage its own instance of Zookeeper or not. Export
HBASE_MANAGES_ZK=true or false it will start/stop the Zookeeper servers as a
part of the regular start/stop scripts. In this project we used external Zookeeper to

manage the Hbase.
3.3.5 Phoenix:

Use an application from Hadoop ecosystem, such as Hive and Phoenix that

performs SQL queries over Hbase to retrieve data.

Either than Hbase is the NoSQL database and working well , there is one
limitation of the Hbase that it is not very user friendly for SQL developer, to
overcome this limitation they come up with the SQL layer above Hbase known as
Apache Phoenix.

18



3.4 System Implementation:

We used Java version 1.8.0, Hadoop version 2.7.3, Hbase version 1.2.6,
Sqoop version 1.4.7 and phoenix version 4.14.0 which are all compatible with each

other.

The processes are running in data which in Hadoop cluster not data in an
RDBMS. Because of the storage and parallelism capabilities of HDFS, Hadoop
cluster can run optimally on many different readily available hardware systems, and
Scales well ,Provides cheaper storage options ,Improves the performance of overall
big data environment, can store more data, and store more types of data (both

structured and unstructured).
3.4.1 Hadoop installation and Configuration:

Select Hadoop ecosystem, which is open source applications offered by
Apache software Foundation. To set up your Hadoop cluster follow the information
that is available with the Hadoop solution you are using. ~ After installed Java and
Hadoop in two machines/nodes open the file in terminal hdfs-site.xml to ensure high
availability of data, Hadoop replicates the data, the configuration “dfs.replication”
factor is to specify how many replications are required. This factor should be equal to
number of nodes in system. Also, configure the path where DataNode and

NameNode directory.

19



GNU nano 2.2.6 File: usrflocal/hadoop/etc/hadoop/hdfs-site.xmlL

dfs.replication
3

dfs.namenode.name.dir
file: fusrflocal/hadoop_ store/hdfs/namenode

dfs.datanode.data.dir
file: fusrflocal/hadoop_store/hdfs/datanode

Figure 3.2: Configure Replication Factor in hdfs-site.xml File

3.4.2 Hbase Configuration
Install Hbase in two machines/nodes it used to import data in.
3.4.3 Data collection:

Data was generated by two ways: first of one is python wizard generate data

from existing Employee records

Generate Employees Records

This wizard will generate new Employees Records.

Employees

Name Work Phone Work Emall Department Job Title Manager

samia

Gilles Grav Experienced r jlal

J an Eyck Experienced Developer =
Number of 1000
Employees

Figure 3.3: Python Wizard Used to Generate Data

20



The second one by using python method called “generate series®, then created

millions of data records in Odoo system.

Query - generateEMP on postgres@localhost:5432 *
PE BRSO & P > e

| SQL Editor | Graphical Query Builder -

Previous queries v Delete Delete All

[INSERT INTO employee(name)
SELECT left(md5(random()::text),8)

FROM generate series(1,1000000);

Figure 3.4: Python Script Used to Generate Data

3.4.4 Data Analysis:

Identify the suitable NoSQL database type to store imported data from Odoo,
by Using Sqoop to transfer all the data from PostgreSQL to Hbase data databases in

Hadoop ecosystem.

3.4.5 Import Data from PostgreSQL to Hbase Databases in Hadoop

Ecosystem:

Now that the Hadoop cluster is set up.so, we need to integrate the Hadoop
cluster with the existing Odoo / ERP, which uses an RDBMS as its data storage.
Sqoop comes now. It is an import/export tool that allows you to move Big Data
between an SQL DB and Hadoop cluster using a JDBC driver. Sqoop is faster to

deploy and faster to make updates to in a production environment.

21



Before using Sqoop create “Employee” table in hbase to receive data which

coming from PostgreSQL.

hbase(main):050:0% create_"Employee" s, "EmployeeName'’
@ row(s) in 6.9298 seconds

== Hbase::Table - Employee

hbase(main):e51:0> [

Figure 3.5: Create Employee Table in Hbase

After the table is created, importing the data to Hbase and specify which

database should be accessed and columns want to retrieve.

Lbranimgibrahin: fusr /local [hbase-1.2.6/bin$ sqoop inport --connect jdbc:postgresql://127.0.0.1/newdb --table hr_employee --username odoo --pass

word odoo --colums "id,nane_related" --hbase-table ENPLOYEES --colum-family EAPLOYEENAME --hbase-row-key id -n 1

Figure 3.6: Importing Data from PostgreSQL to Hbase Using Sqoop

When this process finished, Data importing complete successfully.

22



18/07/20 ©3:13:36 INFO mapreduce.Job: Job job_1532028448015_0004 completed successfully
18/07/20 ©3:13:38 INFO mapreduce.Job: Counters: 3@
File System Counters
FILE: Mumber of bytes read=8
FILE: Mumber of bytes written=167034
FILE: Mumber of read operations=0
FILE: Mumber of large read operations=0
FILE: Mumber of write operations=0
HDFS: Number of bytes read=87
HDFS: Mumber of bytes written=0
HDFS: Mumber of read operations=1
HDFS: Mumber of large read operations=0
HDFS: Number of write operations=0
Job Counters
Launched map tasks=1
Other local map tasks=1
Total time spent by all maps in occupied slots (ms)=61771
Total ti spent by all reduces in occupied slots (ms)=8
Total time spent by all map tasks (ms)=61771
Total vcore-milliseconds taken by all map tasks=61771
Total megabyte-milliseconds taken by all map tasks=63253504
Map-Reduce Framework
Map input records=125032
Map output records=125032
Input split bytes=87
Spilled Records=0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=269
CPU time spent (ms)=46720
Physical memory (bytes) snapshot=164794368
Virtual memory (bytes) snapshot=597295104
Total committed heap usage (bytes)=80216064
File Input Format Counters
Bytes Read=0
File Output Format Counters
Bytes Written=80
18/07/20 ©3:13:38 INFO mapreduce.Importl]obBase: Transferred ® bytes in 138.3606 seconds (0 bytes/sec)
18/07/20 ©3:13:38 INFO mapreduce.ImportlobBase: Retrieved 125032 records.

Figure 3.7: Data Importing Successfully

To ensure all data transferred, do scan to "Employee” table in Hbase for all rows

or scan “Employee” table within specific condition.

hbase(main):054:0> scan "Employee”
ROW COLUMN+CELL
1 € related, timestamp=1532045021670, Pieter Parker
10 € related, timestamp=1532045021670, mmy Kosikin
11 name_related, timestamp=1532045021670, Famke Jenssens
12 column=EmployeeName:name_related, timestamp=1532045021670, Ashley Presley
13 mployeeName:name_related, timestamp=1532045021670, Hans Anders
14 mployeeName:name_related, timestamp=1532045021670, Jan Van Eyck
15 ee name_related, timestamp=1532045021670, an-Pierre Carnaud
16 ee :name_related, timestamp=1532045021670, John Doe
17 mployeeName:name_related, timestamp=1532045021670, Jo\xC3\xA30 Gomer
18 mployeeName:name_related, timestamp=1532045021670, Juan Gomez
19 mployeeName:name_related, timestamp=1532045021670, Luigi Rondi
2 mployeeName:name_related, timestamp=1532045021670, Antoine Langlais4
20 column=EmployeeName:name_related, timestamp=1532045021670, =\xD0\x9D\xDO\xB8\xDO\ xBA\xDO\XBE\xDO\XBB\
xD@\xBO\xDO\xB9 \xDO\x9F\xDO\xB5\xD1\x82\xD1\x80\xDO\xBO
column=EmployeeName:name_related, timestamp=1532045021670, \XE4\xBD\x98\xE8\x97\xA4\XE3\x81\x95\xE3\
x81\x8F\XE3\x82\x89 (demo_ja_IP)
column=EmployeeName:name_related, timestamp=1532045021670, \XE8\XB6\x99\XE7\x94\x9F (demo_zh_CN)
related, timestamp=1532045021670,
name_related, timestamp=1532045021670,
timestamp=1532045021670, John sSmith
timestamp=1532045021670, Michael Hawkins
timestamp=1532045021670, Liam Nelson
timestamp=1532045021670, David Samson
, timestamp=1532045021670, Gilles Gravie
timestamp=1532045021670, Jack Macklin
column=EmployeeName:name_related, timestamp=1532045021670, value=Martin Lawrence
row(s) in 0.9620 seconds

Figure 3.8: Scan “Employee” Table

23



hbase(main):081:0> scan 'Employee', {COLUMNS => ['EmployeeName'], LIMIT => 10, STARTROW

ROW COLUMN+CELL

9 column=EmployeeName:name_related, timestamp=1532045574467, value=Martin Lawrence

90 eeN ame_related, timestamp=1532045574467, value=Gilles Gravie 29

908 eeN ame_related, timestamp=1532045574467, \XE4\xBD\x908\xE8\x97\xA4\XE3\x81\x95\xE3\

9000 eeN e_re e timestamp=1532045582072, Jo\xC3\xA30 Gomer 89
9001 eeN e_re e timestamp=1532045582072, e=John Doe 8940

9002 eeN e_re e timestamp=1532045582072, e=John Smith 8941

9003 eeN e_re e timestamp=1532045582072, e=Juan Gomez 8942

9004 eeN name_related, timestamp=1532045582072, e=Liam Nelson 8943
9005 eeN ame_related, timestamp=1532045582072, e=Luigi Rondi 8944
9006 eeN ame_related, timestamp=1532045582072, e=Martin Lawrence 8945
16 row(s) in ©.4060 seconds

hbase(main):002:0> [I

Figure 3.9: Scan “Employee” Table with Specific Condition

Can see there are differences between Table in Hbase (Hadoop cluster) and

same table in PostgreSQL in the storage format.

a - localhost (localhost:5432) - test - hr_employee

] v | No limit -
id address_id create_dat ssnid coach_id message_| color marital identificat bank_accoi job_id parent_id \'work_phor resource_ii country_id depari
[PK] serial |integer  timestamp characteryinteger | timestampinteger |characterycharacteryinteger |integer integer |characteryinteger |integer |intege
1 1 3 2018-02-1: [*] 1 +32818137¢4 3
2 |2 2018-02-1: [*] 2 +32818137¢5 4
3 3 2018-02-1: [¢] 4 2 +32818137¢6 4
4 |4 2018-02-1: [¢] 4 2 +32818137¢7 4
5 5 2018-02-1: [:] 4 2 +32818137¢8 4
6 |6 2018-02-1: 2] 4 2 +32818137¢9 4
7 7 2018-02-1: 0 4 2 +32818137¢18 4
8 8 2018-02-1: [:] 4 2 +32818137¢11 4
9 9 2018-02-1: 3] 3 1 +32818137¢12 5
10 |18 2018-82-1: Gl 3 1 +32818137€13 5
11 |11 2018-02-1: [¢] 6 1 +32818137¢ 14 2
12 |12 2018-02-1: [*] 5 1 +32818137¢15 1
13 |13 2018-02-1: [¢] 4 +32828235¢€ 16 4
14 |14 2018-02-1: [¢] 4 +32828235¢17 4
15 |15 2018-02-1: [¢] 3 +32828235¢18 5
16 |16 2018-02-1: [:] [ +32828235€19 2
17 |17 2018-02-1: 2] 4 +32828235€ 20 4
18 |18 2018-02-1: [:] 3 +32828235€21 5
19 |19 2018-02-1: 3] 3] +32828235€22 2
20 20 2018-82-1: Gl 3 +32828235€23 5
21 21 2018-82-1: Gl 3 +32828235€24 5
22 |22 2018-02-1: [¢] 4 +32828235€ 25 4
23 |23 2018-02-1: [*] +32828235€ 26
Figure 3.10: Table in PostgreSQL
> C B © localhost - @ o INn

st Visited @ Getting Started New Folder

Hadoop Overview Datanodes Snapshot Startup Progress Utilities ~

Browse Directory

/hbase/data/default Go!
Permission owner Group Size Last Modified Replication Block Size Name
drwxr-xr-x ibrahim supergroup 0B 7/20/2018, 2:35:51 AM 0 0B [Employee]
drwxr-xr-x ibrahim supergroup 0B 5/1/2018, 3:52:56 AM 0 0B HrPayslip

Figure 3.11: Table in Hbase (Hadoop cluster)

24



3.5 Summary:

This chapter introduced the methodology which research follow it, and listed
the functional and non-functional requirements and explained the solution

architecture to solve Odoo performance limitation.

25



Chapter Four

System Design and Implementation



CHAPTER FOURE

System Design and Implementation

4.1 Introduction:

This chapter introduce the system implementation which enabling Odoo to be
contacted Hbase as NoSQL data storage instead of PostgreSQL. In addition, how a
new system components interact with each other's. Finally, show the result of the

research problem.
4.2 Development:

Build Odoo module that is able to reading and writing data from both

PostgreSQL Database and Hbase database.
4.2.1 Odoo ORM:

The ORM, short for Object-Relational Mapping is another technology in Odoo

to save and retrieve the data from PostgreSQL without the SQL Queries.
4.2.2 The benefits of ORM technology

¢ No need to deal with the SQL Queries to save and retrieve the data.
e Simple configuration.

e Easy to learn and use.

e Support the concurrency.

e Provide standardized API to support the business objects.

e Fast development of application.
4.2.3 Disadvantages of ORM:

Slow performance in case of large batch updates.

26



4.2.4 JDBC concept:

JDBC stands for Java Database Connectivity, is a set of Java API for
accessing the relational databases from Java program. The Java API enables the

programmers to execute the SQL statements against the JDBC complaint database.

JDBC allows the programmers to quickly develop small Java applications
that interact with the databases. [16]

4.2.5 Create ORM Method (CRUD):

In Odoo each model has four main functions for CRUD operations (Create,
Read, Update, and Delete).

Hbase is developed using Java language and provides various Client APIs to
access Hbase from other programming languages like ‘Python’. There are two APIs
connector for Hbase: Thrift APl and REST API. Thrift APl is faster than
Representational State Transfer (REST) API, so, we choose Thrift APl as the
connector between Odoo and Hbase. And have two Python libraries communicate
with Hbase: Happybase, Starbase. Only Happybase library support Thrift API. So,
we choose Happybase library to send the requests to Hbase through Thrift API.
Happybase supports all the needs to communicate with Hbase.

To access the Hbase through the thrift, need to open the thrift service on
Hbase by running this command:  Hbase thrift —p 9090 start

Update the ORM layer emphasized that all data in PostgreSQL and data in
Hadoop cluster are consistent.

27



4.2.5.1 Create:

Create function is called by Odoo when a user need to create a new record
.This customization in function store the record in both PostgreSQL and Hbase,

@api.model
def create(self,values):
connection=happybase.Connection(host="localhost',port=9896,autoconnect=False,compat='0.96",transport="buffered')
connection.open()
table = connection.table('EMPLOYEES')
father = super( HrEmployee, self).create(values)
empid=str(father.id)
name = values.get('name")
table.put(empid, {b'EMPLOYEENAME:name_related' :name})
return father

Figure 4.1: Optimization in Create Function

4.2.5.2 Update:

Update function is called by Odoo when a user tries to update an existed
record .This customization in function update the record in both PostgreSQL and
Hbase.

@api.multi
def write(self, vals):
connection=happybase.Connection(host="localhost"',port=9690,autoconnect=False,compat="0.96",transport="buffered")
connection.open()
table = connection.table('EMPLOYEES')
father = super(HrEmployee, self).write(vals)
empid = str (self.id)
name = str (self.name)
table.put(empid, {b'EMPLOYEENAME:name_related':name})
return father

Figure 4.2: Optimization in Update Function

28



4.2.5.3 Delete:

Delete function is called by Odoo when a user wants to delete an existed
record of a model. This customization in function delete the record in both
PostgreSQL and Hbase.

@api.multi
def unlink(self):
connection=happybase.Connection(host="1localhost',port=9690,autoconnect=False,compat="'0.96",transport="buffered"')
connection.open()
table = connection.table('EMPLOYEES')
r = str (self.id)
row = table.delete(r)
resources = self.mapped('resource_id")
super (HrEmployee, self).unlink()
return resources.unlink()

Figure 4.3: Optimization in Delete Function

4.3 Start system servers and web interfaces:

29912 Jps

hduser@master: /usr/local/hadoop/sbin$ ./start-all.sh

This script is Deprecated. Instead use start-dfs.sh and start-yarn.sh

18/09/06 19:40:00 WARN util.NativeCodelLoader: Unable to load native-hadoop libra
able

Starting namenodes on [master]

master: starting namenode, logging to /usr/local/hadoop/logs/hadoop-hduser-namen
master: starting datanode, logging to /usr/local/hadoop/logs/hadoop-hduser-datan
slavel: starting datanode, logging to /usr/local/hadoop/logs/hadoop-hduser-datan
Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop/logs/hadoop-hd
18/09/06 19:40:44 WARN util.NativeCodelLoader: Unable to load native-hadoop libra
able

starting yarn daemons

starting resourcemanager, logging to /usr/local/hadoop/logs/yarn-hduser-resource
slavel: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-hduser-node
master: starting nodemanager, logging to /usr/local/hadoop/logs/yarn-hduser-node
hduser@master: /usr/local/hadoop/sbinS$S jps

10641 HMaster

1522 ResourceManager

10772 HRegionServer

1046 DataNode

15964 Jps

1340 SecondaryNameNode

Figure 4.4: Start hdfs and MapReduce (YARN)

29



hduser@master: /usr/local/zookeeper-3.4.10/bin$ sudo ./zkServer.sh start
ZooKeeper JMX enabled by default

Using config: /usr/local/zookeeper-3.4.10/bin/../conf/zo0.cfg
Starting zookeeper ... STARTED
hduser@master: /usr/local/zookeeper-3.4.10/bin$ I

Figure 4.5: Run Zookeeper Server

hduser@master: /usr/local/hbase-1.2.6/bin$ ./start-hbase.sh

starting master, logging to /usr/local/hbase-1.2.6/bin/../logs/hbase-hduser-master-master.out
Jusr/local/hbase-1.2.6/bin/hbase-daemon.sh: line 225: /var/hadoop/pids/hbase-hduser-master.pid: Permission
denied

Java HotSpot(TM) Server VM warning: ignoring option PermSize=128m; support was removed in 8.0

Java HotSpot(TM) Server VM warning: ignoring option MaxPermSize=128m; support was removed in 8.0

slavel: bash: line 0: cd: /usr/local/hbase-1.2.6/bin/..: No such file or directory

slavel: bash: Jusr/local/hbase-1.2.6/bin/hbase-daemon.sh: No such file or directory

master: starting regionserver, logging to /usr/local/hbase-1.2.6/bin/../logs/hbase-hduser-regionserver-ma
ter.out

master: /usr/local/hbase-1.2.6/bin/hbase-daemon.sh: line 225: /var/hadoop/pids/hbase-hduser-regionserver.p
id: Permission denied

master: Java HotSpot(TM) Server VM warning: ignoring option PermSize=128m; support was removed in 8.0
master: Java HotSpot(TM) Server VM warning: ignoring option MaxPermSize=128m; support was removed in 8.0
hduser@master: /usr/local/hbase-1.2.6/bin$ i

Figure 4.6: Starting Hbase Server

ibrahim@ibrahim: fusr/local/hbase-1.2.6/bin$ ./hbase shell
2018-07-18 00:36:29,390 WARN [main] util.NativeCodeloader: Unable to load nati
e-hadoop library for your platform... using builtin-java classes where applicab
e
SLF4]: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/usrflocal/hbase-1.2.6/1lib/slf4j-1log4j12-1.7.5
.jar!/org/slf4jfimpl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:fusrflocal/hadoop/share/hadoop/common/1lib/slf
j-log4j12-1.7.10.jar! forg/slf4j/implfStaticlLoggerBinder.class]

: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.

: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
HBase Shell; enter 'help<RETURN:>' for list of supported commands.

e "exit<RETURN=" to leave the
6, rUnknown, Mon May 29 ©2:25:32 CDT 2017

hbase(main):001:0> [J
Figure 4.7: Open Hbase Shell

hduser@master: /usr/local/hadoop/sbin$ jps
10641 HMaster

1522 ResourceManager

10772 HRegionServer

1046 DataNode

15964 Jps
1340 SecondaryNameNode
1677 NodeManager

895 NameNode

Figure 4.8: Run JPS in Master Machine



hduser@master:~$ ssh slavel
Welcome to Ubuntu 14.04.5 LTS (GNU/Linux 4.4.0-31-gener

* Documentation: https://help.ubuntu.com/

Last login: Tue Sep 4 15:28:03 2018 f
lhduser@slave1:~$ jps

30530 Jps

29970 DataNode

30070 NodeManager

hduser@slavel:~$

Figure 4.9: Run JPS in Slave Machine

: /home/ibrahim$ /opt/odoo/odoo-16.6/odoo-bin --addons-path="/opt/odoo/odoo-10.6/addons, /home/ibrahim/Desktop/addons”
2018-07-20 00:00:34,702 2407 INFO ? odoo: Odoo version 10.0
2018-07-20 00:00:34,702 2407 INFO ? odoo: addons paths: ['/opt/odoo/.local/share/0Odoo/addons/10.06', u'/opt/odoo/odoo-16.06/addons', u'/home/ibra
him/Desktop/addons', '/opt/odoo/odoo-16.6/odoo/addons']
-20 00:00:34,702 2407 INFO ? odoo: database: default@default:default

-07-20 00:00:34,891 2407 INFO ? odoo.service.server: HTTP service (werkzeug) running on 0.0.0.0:8069

-07-20 00:00:54,311 2407 INFO ? odoo.addons.report.models.report: You need Wkhtmltopdf to print a pdf version of the reports.

-07-20 00:00:57,037 2407 INFO ? odoo.http: HTTP Configuring static files

-07-20 00:00:57,095 2407 INFO newdb odoo.modules.loading: loading 1 modules...

-07-20 00:00:57,119 2407 INFO newdb odoo.modules.loading: 1 modules loaded in 0.02s, © queries

-07-20 00:00:57,404 2407 INFO newdb odoo.modules.loading: loading 31 modules...

-07-20 00:00:57,751 2407 INFO newdb odoo.modules.loading: 31 modules loaded in 0.35s, 0 queries

-07-20 00:00:58,204 2407 INFO newdb odoo.modules.loading: Modules loaded.

-07-20 00:00:58,231 2407 INFO newdb odoo.addons.base.ir.ir_http: Generating routing map

-07-20 00:00:58,550 2407 INFO ? odoo.addons.bus.models.bus: Bus.loop listen imbus on db postgres

-07-20 00:01:10,882 2407 INFO newdb werkzeug: 127.0.0.1 - - [20/Jul/2018 00:01:10] "POST /web/dataset/call_kw/hr.employee/write HTTP/1.1" 2

-07-20 00:01:10,974 2407 INFO newdb werkzeug: 127.0.0.1 - - [20/Jul/2018 00:01:10] "POST /web/dataset/call_kw/hr.employee/search_read HTTP/
" 200 -
-07-20 :101:11,025 2407 INFO newdb werkzeug: 127.0.0.1 - - [20/Jul/2018 00:01:11] "POST /web/dataset/call_kw/hr.employee.category/read HTT

:101:11,026 2407 INFO newdb werkzeug: 127.0.0.1 - - [20/Jul/2018 00:01:11] "GET /web/image?model=hr.employee&id=25&field=image_medi
um&unique=20180720000110 HTTP/1.1" 200 -
2018-07-20 00:01:11,040 2407 INFO newdb werkzeug: .0.0.1 - - [20/Jul/2018 101: "POST /mail/read_followers HTTP/1.1" 200
2018-07-20 00:01:11,082 2407 INFO newdb werkzeug: .0.0.1 - - [20/3ul/2018 :01: "POST /web/dataset/search_read HTTP/1.1" 200
-07-20 00:01:11,134 2407 INFO newdb werkzeug: .0.0.1 - - [20/Jul/2018 :01: "POST /web/dataset/call_kw/hr.employee.category/read HTT
P/1.1" 200 -
2018-07-20 00:01:11,662 2407 INFO newdb werkzeug: .0.0. - [20/Jul/2018 :01: "POST /web/menu/load_needaction HTTP/1.1" 200 -

Figure 4.10: Start Odoo Server

: Class path contains multiple SLF4) bindings.
: Found binding in [jar:file:/usr/local/phoenix/phoenix-4.14.0-HBase-1.2-client.jar!/org/slf4j/impl/StaticLoggerBinder.class]
Found binding in [jar:file:/usr/local/hadoop/share/hadoop/common/1ib/s1f4j-1og4j12-1.7.10.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4]): See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
Java HotSpot(TM) Server VM warning: You have loaded library /usr/local/hadoop/lib/native/libhadoop.so which might have disabled stack guard. Th
e VM will try to fix the stack guard now.
It's highly recommended that you fix the library with 'execstack -c <libfile>', or link it with '-z noexecstack'.

18/68/69 02:03:56 WARN util.NativeCodelLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applic

Building list of tables and colu tab-completion (set fastconnect to true to skip).
138/138 (160%) Done

Done

sqlline version 1.2.0

0: jdbc:phoenix:localhost>

Figure 4.11: Start Phoenix

31



4.4 Hadoop control panel:

Explain information about DataNodes like Nodes Name and the capacity of each

one.
In operation
Last Admin Non DFS Block pool Falled

Node contact State Capacity Used Used Remaining Blocks used Volumes Version

master:50010 2 In Service 182168 28 16.12 GB 20868 0 28 KB (0%) 0 213

(192.168.43.149:50010) KB

slavel:50010 (192.168.43.238:50010) 2 In Service 12668 28 544068 1.82GB 0 28 KB (0%) 0 2.13
KB

Figure 4.12: Hadoop Data Distribution (two nodes)

Nodes of the cluster

G hERREED

|

~ Cluster Cluster Metrics
About Apps Apps Apps Apps Containers Memory Memory Memory VCores VCores VCores Active Decommissioned
Nodes Submitted Pending Running Completed Running Used Total Reserved Used Total Reserved Nodes Nodes
% [ [ [ [ [ o8 8GB 0B 0 8 [ 1 0
MN = Scheduler Metrics
NEW_SAVING Scheduler Type Scheduling Resource Type Minimum Allocation Ma
i—uﬁ-—-ﬁn;;zgrgn Capacity Scheduler [MEMORY] <memory:1024, vCores:1> <memory:8192,
RUNNING + y :
FINISHED Show 20 ~|entries Search:
FAl :
Node s Node Node Node HTTP Last health-update % » Containers Mem Mem
ELLED Labels «+ Rk ° gate & Address @ Address ¢ s eakrerofm: ¢ used ¢ Avail ¢
Scheduler /default- RUNNING master:38263 master:8042 Thu Sep 06 o 0B 8 GB
rack 22:02:58 +0300
» Tools 2018

Showing 1 to 1 of 1 entries

Figure 4.13: Hadoop Cluster




4.5 Fetch Hbase Table Data in Apache Phoenix:

After create table in Hbase and import the data from PostgreSQL , then create
view in phoenix with the same name and columns of Hbase table ,Phoenix

automatically fetch and load the data from Hbase table .

B: jdbc:phoenix: localnost>

0: jdbc:phoenix: localhost> CREATE view EMPLOYEES (id VARCHAR PRIMRY KEY , "EMPLOVEENAME'."name related" VARCHAR) ;|

Figure 4.14: Create View in Phoenix to Fetch Hbase Table Data

To show all phoenix tables and views just print “!Table” in terminal.

slline version 1.2.0

B jdbc:phoentx: localhosts .‘

b oo cmmmmmme S H 5= mmcomsmmneees fommmmmmamonooan femmmmmmmas e e S EEEEe R S +
| TABLE_CAT | TABLESCHEN | TABLENAME | TABLE.TYPE | REMARKS | TYPENANE | SELF REFERENCING COL NAME | REF GENERATION | INOEXS |

| SYSTEN | CATALOG | SYSTEN TABLE |
| SISTEN | FUNCTION | SYSTEH TABLE |
| SSTEN | L0 | SYSTEN TARLE |
[ SYSTEN | SEQURNCE | SYSTEN TABLE |
| SYSTEN | STATS | SYSTEN TABLE |
| US_POPULATION | TABLE
| EIPLOVEES | VIEN

B jdbc:phoenix: localhosts |

Figure 4.15: Show Phoenix Tables

33



Now can manipulate the data by using normal SQL language and its features.

L +
name_related
...................... +
Pieter Parker |
Jimmy Kosikin |
Famke Jenssens |
Ashley Presley |
Hans Anders |
Jan Van Eyck |
Jean-Pierre Carnaud |
John Doe |
Joao Gomer |
Juan Gomez |
Luigi Rondi |
Antoine Langlais4 |
Hukonain MeTpa |
ZEEE< 5 (demo_ja_IP)
4 (demo_zh_cN) |
Roger Scott

amia abo
John Smith

I

W M MM MR

Figure 4.16: Retrieve Hbase Table Data in Apache Phoenix

4.6 Hadoop Cluster Implementation

The Hadoop cluster that proposed to make the evaluation consists of two

nodes: One Master node and one Slave node (virtual machine).

34



Table (4.1) Cluster Nodes Specification

NAME 0S CPU RAM

Master Ubuntu 14.04 LTS Intel core i5 18 GB
32-bit

Slavel Ubuntu 14.04 LTS Intel core i5 7GB
32-bit

Table (4.2) PostgreSQL Database Specification

NAME 0S CPU RAM

Master Ubuntu 14.04 LTS Intel core i5 18 GB
32-bit

Table (4.3) Sample Data Record Counts:

Table Name Record No.

Employee 1000.000

35




4.7 Consistency Test Evaluation:

Consistent testing aims to check if the changes to Odoo return correct results

on the new system:

1. Change employee name from 'Pieter Parker John' to 'Pieter Parker' and save,
then run the query in PostgreSQL and phoenix, should be return the same
data.

SELECT id, name_related
FROM hr_employee

WHERE name_related = 'Pieter Parker";

SQL Editor = Graphical Query Builder 4

Previous queries v Delete All

SELECT id, name related
FROM hr_employee
WHERE name related ='Pieter Parker';

l 4 »
Output pane

Data Output  Explain = Messages History

id name_related
integer character varying
1 1 Pieter Parker

Figure 4.17: The Result of Query in PostgreSQL

jdbc:phoenix:localhost> SELECT

Figure 4.18: The Result of Query in Phoenix

36



2. delete specific employee and run the query in PostgreSQL and phoenix
,number of records should be same:

SELECT COUNT (id)

FROM hr_employee

SQL Editor = Graphical Query Builder

Previous queries v

SELECT COUNT (id)
FROM mployee

Output pane
Data Output Explain Messages History

count
bigint

1 1000007

Figure 4.19: Query in PostgreSQL Return Number of Records

: jdbc:phoenix:master,slavel> select count(id) from "Employee";

1 row selected (1.077 seconds)
0: jdbc:phoenix:master,slavel> I

Figure 4.20: Query in Phoenix Return Number of Records

37



4.8 Database Systems Evaluation:

1. In this section, we evaluate the performance of PostgreSQL and Hadoop

ecosystem to return names of the employees that has the word ‘Pieter’:
SELECT name_related
FROM hr_employee
WHERE name ILIKE ’%Pieter%’;
e Time to return Result from PostgreSQL.:

Return about 125.000 row in 37 seconds

Unix |Ln1, Col18, Ch18 125033 rov |37345 ms

Figure 4.21: Time to Return Specific Rows in Table from PostgreSQL

e Time to return specific result from phoenix:

125,000 row in 30°s

38



2. Return all the data from employee table

SELECT *

FROM employee;

e Result from PostgreSQL.:

Return about 1000.000 row in 56 seconds

= & | & < | e Vel N W G- (|0 gene
SQL Editor | Graphical Query Builder = | [EE=t=RTRad (el
FPrevious queries - Delete All

select * from employee

iOutput pane (]
Data Ouktpukt | Explain Messages History -
create_uid create_date name write_uid w
ger integer timestamp without time zone character varying  integer kb
1 1 ahmed
2 2 mohammed
3 3 khaled
4 185 e8e
5 106 6be
=) 17 71l
T 108 175
8 189 l1d9c44de
o 11@ aGe7887d
40 111 hffaaabh3
OK. Unix [Ln 1, Col23, Ch 23 1000007 ro 56930 ms

Figure 4.22: Time to Return All Rows in Table from PostgreSQL

e Time to Return All Result from phoenix

1000,000 row in 150 s
4.9 Summary:

This chapter discussed the system implementation in details and introduced
the result of the research problem which is the delay and latency in retrieving

information due to huge data in Odoo system.

39



Chapter Five

Conclusion and Recommendations



CHAPTER FIVE

Conclusion and Recommendations

5.1 Conclusions and Lessons Learned:

NoSQL systems are promoted as more performed systems than SQL data
storage systems. Therefore, we chose to solve the problem of Odoo latency using
NoSQL system.

Hbase-Hadoop was selected as a new NoSQL data storage. To evaluate the new

system, compared its performance with the performance of the original Odoo system.

e The system able to scalability (add nodes) without stop.
e The NameNode and DataNodes have built in web servers that makes it easy

to check current status of the cluster.
5.2 Recommendations:

e The results of this experiment explain that Hadoop ecosystem can be used for

generating reports better than PostgreSQL.

e To get the benefits of using developed solution, large data volumes are

required.

e Can apply data mining and P1 in archived data in system.

40



Chapter Six

References



6.1 References:

[1] (www.sodexis.com), W. (n.d). What is Odoo / OpenERP? | ERP CRM Software
Longwood Orlando Florida. [online] Sodexis.com. Available at:
http://www.sodexis.com/services/what-is-odoo-longwood-orlando-florida.html
[Accessed 25 Feb. 2018].

[2] Verma, J. and Agrawal, S. (2016). Big Data Analytics: Challenges and
Applications for Text, Audio, Video, and Social Media Data. International Journal on
Soft Computing, Artificial Intelligence and Applications, 5(1), pp.41-51.

[3] Singh, S., Singh, P. and Garg, R. (2015). Big Data: Technologies, Trends and

applications.

[4] En.wikipedia.org. (2018). Big data. [online] Available at:
https://en.wikipedia.org/wiki/Big_data [Accessed 8 Jul. 2018].

[5] NetSuite.com. (n.d.). Do you know what ERP is? Learn how ERP can help your
business with this informative article. [online] Available at:
http://www.netsuite.com/portal/resource/articles/erp/what-is-erp.shtml [Accessed 17
Feb. 2018].

[6] Enaya, M. (2016). An Experimental Performance Comparison of NoSQL and
RDBMS Data Storage Systems in the ERP System Odoo.

[7] Anon, (2017). [online] Available at: https://www.upwork.com/hiring/data/sql-vs-
nosql-databases-whats-the-difference/ [Accessed 17 Apr. 2018].

[8] Nayak, A., Poriya, A. and Poojary, D. (2013). Type of NOSQL Databases and its

Comparison with Relational Databases.

[9] Chaturvedi, S., Lowden, F. and Bhirud, N. (2015). Solving Big Data Problem
using Hadoop File System (HDFS).

[10] Khalifa, E., Ahmed, S., Ismeil, O. and Balla, A. (2017). Storing

41



[11] Tiyyagura, N., Rallabandi, M. and Nalluri, R. (2016). Data Migration from
RDBMS to Hadoop.

[12] Carstoiu, D., Cernian, A. and Olteanu, A. (2010). Hadoop Hbase-0.20.2
Performance Evaluation. IEEE.

[13] Li, Y. and Manoharan, S. (2013). A performance comparison of SQL and
NoSQL databases. IEEE.

[14] Tudorica, B. and Bucur, C. (2011). A comparison between several NoSQL

databases with comments and notes. IEEE.

[15] Hecht, R. and Jablonski, S. (2011). NoSQL Evaluation a Use Case Oriented

Survey.

[16] Roseindia.net. (n.d.). JDBC vs ORM. [online] Available at:
https://www.roseindia.net/jpa/jdbc-vs-orm.shtml [Accessed 16 Jul. 2018].

[17] Uye, C. (2015). Integrate Hadoop with an existing RDBMS.

Analytics, B. (2015). Integrate Hadoop with an existing RDBMS. [online] Ibm.com.
Available at: https://www.ibm.com/developerworks/library/ba-hadoop-
rdbms/index.html#ibm-pagetitle-h1 [Accessed 11 Jan. 2018].

42



