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Abstract 

The description of the spectra tiling properties and Gabor orthonormal 

bases generated by the unit cubes and of the exponential for the 𝑛-cube are 

characterized. In addition the uniformity of non-uniform Gabor bases, atomic 

characterizations of modulation spaces through Gabor representations with 

Weyl-Heisenberg frames on Hilbert space, slanted matrices and Banach 

frames are clearly improved. We obtain the density, stability, generated 

characteristic function and Hamiltonian deformations of Gabor frames. We 

find estimates for vector –valued Gabor frames of Hermite functions plus 

periodic subsets of the real line. The Gabor frame sets for subspace with 

totally positive functions and deformation of Gabor systems are considered. 
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 الخلاصة
 

قمنا بتشخيص الطيف وخصائص السطح المقرمد وأساس جابور المنتظم المتعامد 

. اضافة تم التحسن الواضح لانتظامية أساس  n -للمكعب يةالمولد مكعبات الوحدة والأس

جابور غير المنتظم والتشخيصات الذرية للفضاءات المعدلة خلال تمثيلات جابور مع 

فضاء هلبرت والمصفوفات المائلة وإطارات باناخ . تم هايسنبيرج على -اطارات ويل

الحصول على الكثافة والاستقرارية والدالة المميزة المولدة وتشوهات هاملتوينيان 

المتجه لدوال هيرمايت -لإطارات جابور. قمنا بإيجاد تقديرات لإجل اطارات جابور قيمة

تبار لفئات اطار جابور للفضاء زائداً الفئات الجزئية الدورية للخط الحقيقي . تم الاع

 الجزئي مع الدوال الموجبة الكلية وتشوه انظمة جابور .
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Introduction 

Let 𝑄 = [0, 1)𝑑 denote the unit cube in d-dimensional Euclidean space ℝ𝑑 and let 

𝑇 be a discrete subset of ℝ𝑑 . We relate the spectra of sets 𝛺 to tiling in Fourier space. 

We develop such a relation for a large class of sets and apply it to geometrically 

characterize all spectra for the n-cube. There have been extensive studies on non-

uniform Gabor bases and frames. But interestingly there have not been a single example 

of a compactly supported orthonormal Gabor basis in which either the frequency set or 

the translation set is non-uniform. Nor has there been an example in which the modulus 

of the generating function is not a characteristic function of a set. We show that in the 

one dimension and if we assume that the generating function g(x) of an orthonormal 

Gabor basis is supported on an interval, then both the frequency and the translation sets 

of the Gabor basis must be lattices.  

Given 𝑠 ∈ 𝑅 and 1 ≤ 𝑝, 𝑞 ≤ ∞ the modulation space 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) can be described 

as follows, using the Gauss-function 𝑔0, 𝑔0(𝑥) ≔ exp(−𝑥2), 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) ≔

{𝜎|𝜎 ∈ 𝑆′, 𝑔0 ∗ 𝜎 ∈ 𝐿
𝑝(𝑅𝑚) and [𝜎|𝑀𝑝,𝑞

𝑠 ≔ [∫ ‖𝑀𝑡𝑔0 ∗ 𝜎‖𝑝
𝑞(1 + |𝑡|)𝑠𝑝

𝑅𝑚
]
1

𝑞 < ∞]}. 

(Writing 𝑀𝑡 , 𝑀𝑡𝑓(𝑥) ≔ exp(𝑖𝑥. 𝑡)𝑓(𝑥), 𝑡, 𝑥 ∈ 𝑅𝑚) for the modulation operator. Among 

these spaces one has the classical potential spaces ℒ𝑠
2(𝑅𝑚) = 𝑀2,2

𝑠 (𝑅𝑚) and the 

remarkable Segal algebra 𝑆0(𝑅
𝑚) = 𝑀1,1

0 (𝑅𝑚). A Gabor system is a set of time-

frequency shifts 𝑆(𝑔, Λ)  =  {𝑒2𝜋𝑖𝑏𝑥𝑔(𝑥 −  𝑎)}
(𝑎,𝑏)∈Λ

 of a function 𝑔 ∈ 𝐿2(ℝ𝑑). We 

show that if a finite union of Gabor systems ⋃ 𝑆(𝑔𝑘 , 𝛬𝑘)
𝑟
𝑘=1  forms a frame for 𝐿2(ℝ𝑑) 

then the lower and upper Beurling densities of Λ = ⋃ Λk
𝑟
𝑘=1  satisfy 𝐷−(Λ) ≥  1 and 

𝐷+(Λ) < ∞. We study the stability of Gabor frames with arbitrary sampling points in 

the time-frequency plane, in several aspects. We prove that a Gabor frame generated by 

a window function in the Segal algebra 𝑆0(ℝ
𝑑) remains a frame even if (possibly) all 

the sampling points undergo an arbitrary perturbation, as long as this is uniformly small. 

We give explicit stability bounds when the window function is nice enough, showing 

that the allowed perturbation depends only on the lower frame bound of the original 

family and some qualitative parameters of the window under consideration.  

A Weyl-Heisenberg frame {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 = {𝑒
2𝜋𝑖𝑚𝑏(·)𝑔(·  − 𝑛𝑎)}

𝑚,𝑛∈𝑍
 for 

𝐿2(𝑅) allows every function 𝑓 ∈ 𝐿2(𝑅) to be written as an infinite linear combination of 

translated and modulated versions of the fixed function 𝑔 ∈ 𝐿2(𝑅). We find sufficient 

conditions for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame for span̅̅ ̅̅ ̅̅ {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 , which, in 

general, might just be a subspace of 𝐿2(𝑅). Even our condition for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to 

be a frame for 𝐿2(𝑅) is significantly weaker than the previous known conditions.  We 

derive frame bound estimates for vector-valued Gabor systems with window functions 

belonging to Schwartz space. We provide estimates for windows composed of Hermite 
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functions. The well-known density theorem for one-dimensional Gabor systems of the 

form {𝑒2𝜋𝑖𝑚𝑏𝑥𝑔(𝑥 −  𝑛𝑎)}
𝑚,𝑛∈𝑍

, where 𝑔 ∈ 𝐿2(𝑅), states that a necessary and 

sufficient condition for the existence of such a system whose linear span is dense in 

𝐿2(𝑅), or which forms a frame for 𝐿2(𝑅), is that the density condition 𝑎 𝑏 ≤  1 is 

satisfied. We study the analogous problem for Gabor systems for which the window 

function g vanishes outside a periodic set 𝑆 ⊂ 𝑅 which is a 𝑍-shift invariant. We obtain 

measure-theoretic conditions that are necessary and sufficient for the existence of a 

window g such that the linear span of the corresponding Gabor system is dense in 

𝐿2(𝑆).  

We investigate the characterization problem which asks for a classification of all 

the triples (𝑎, 𝑏, 𝑐) such that the Gabor system {𝑒𝑖2𝑚𝜋𝑏𝑡𝜒[𝑛𝑎,𝑐+𝑛𝑎): 𝑚, 𝑛 ∈ 𝑍} is a frame 

for 𝐿2(𝑅). With the help of a set-valued mapping defined on certain union of intervals, 

we are able to provide a complete solution for the case of 𝑎𝑏 being a rational number. 

Let 𝑔 be a totally positive function of finite type, i.e., �̂�(𝜉) = ∏ (1 + 2𝜋𝑖𝛿𝜈𝜉)
−1𝑀

𝜈=1  for 

𝛿𝜈 ∈ 𝑅 and 𝑀 ≥  2. Then the set {𝑒2𝜋𝑖𝛽𝑙𝑡𝑔(𝑡 −  𝛼𝑘): 𝑘, 𝑙 ∈ ℤ} is a frame for 𝐿2(ℝ), if 

and only if 𝛼𝛽 <  1. This result is a first positive contribution to a conjecture of I. 

Daubechies from 1990. So far the complete characterization of lattice parameters α, β 

that generate a frame has been known for only six window functions 𝑔.  

We consider the problem in determining the countable sets Λ in the time-frequency 

plane such that the Gabor system generated by the time-frequency shifts of the window 

𝜒[0,1]𝑑 associated with Λ forms a Gabor orthonormal basis for 𝐿2(ℝ𝑑). We show that, if 

this is the case, the translates by elements Λ of the unit cube in ℝ2𝑑 must tile the time-

frequency space ℝ2𝑑. By studying the possible structure of such tiling sets, we 

completely classify all such admissible sets Λ of time-frequency shifts when 𝑑 =  1, 2.  

We present a rare combination of abstract results on the spectral properties of 

slanted matrices and some of their very specific applications to frame theory and 

sampling problems. We show that for a large class of slanted matrices boundedness 

below of the corresponding operator in p for some p implies boundedness below in 𝑝 for 

all 𝑝. Gabor frames can advantageously be redefined using the Heisenberg–Weyl 

operators familiar from harmonic analysis and quantum mechanics. Not only does this 

redefinition allow us to recover in a very simple way known results of symplectic 

covariance, but it immediately leads to the consideration of a general deformation 

scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings 

passing through the identity). We introduce a new notion for the deformation of Gabor 

systems. Such deformations are in general nonlinear and, in particular, include the 

standard jitter error and linear deformations of phase space. With this new notion we 
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show a strong deformation result for Gabor frames and Gabor Riesz sequences that 

covers the known perturbation and deformation results.  

We investigate vector-valued Gabor frames (sometimes called Gabor 

superframes) based on Hermite functions 𝐻𝑛. Let ℎ =  (𝐻0, 𝐻1, . . . , 𝐻𝑛) be the vector of 

the first 𝑛 + 1 Hermite functions. We give a complete characterization of all lattices 

Λ ⊆ ℝ2 such that the Gabor system {𝑒2𝜋𝑖𝜆2𝑡ℎ(𝑡 −  𝜆1): 𝜆 =  (𝜆1, 𝜆2) ∈ Λ} is a frame 

for 𝐿2(ℝ, ℂ𝑛+1). We obtain sufficient conditions for a single Hermite function to 

generate a Gabor frame and a new estimate for the lower frame bound. We investigate 

Gabor frame sets in a periodic subset 𝕊 of ℝ. We characterize tight Gabor sets in 𝕊, and 

obtain some necessary/sufficient conditions for a measurable subset of 𝕊 to be a Gabor 

frame set in 𝕊. The notion of vector-valued frame (also called superframe) was first 

introduced by Balan of multiplexing. It has significant applications in mobile 

communication, satellite communication, and computer area network. For vector-valued 

Gabor analysis, existent literatures mostly focus on 𝐿2(ℝ, ℂ𝐿) instead of its subspace. 

Let 𝑎 > 0, and 𝑆 be an 𝑎ℤ-periodic measurable set in ℝ (i.e. 𝑆 + 𝑎ℤ = 𝑆). We addresse 

Gabor frames in 𝐿2(𝑆, ℂ𝐿) with rational time–frequency product. They can model 

vector-valued signals to appear periodically but intermittently. And the projections of 

Gabor frames in 𝐿2(ℝ, ℂ𝐿)onto 𝐿2(𝑆, ℂ𝐿) cannot cover all Gabor frames in 𝐿2(𝑆, ℂ𝐿) if 
𝑆 ≠ ℝ.   
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Chapter 1 

Spectral and Orthonormal Bases with Uniformity 
 

We show that the exponentials 𝑒𝑡(𝑥):= exp  (𝑖2𝜋𝑡𝑥), 𝑡 ∈  𝑇 form an othonormal 

basis for 𝐿2 (𝑄) if and only if the translates 𝑄 + 𝑡, 𝑡 ∈  𝑇 form a tiling of ℝ𝑑. We study 

the behavior of the orthonormal bases for 𝑛-cube. We show that the Gabor basis must 

be the “trivial” one in the sense that |𝑔(𝑥)| = 𝑐𝜒Ω(𝑥) for some fundamental interval of 

the translation set. We also give examples showing that compactly supported non-

uniform orthonormal Gabor bases exist in higher dimensions. 

Section (1.1): Tiling Properties of the Unit Cube 

For 𝑄 ≔ [0, 1)𝑑 denote the unit cube in 𝑑-dimensional Euclidean space  ℝ𝑑 .Let 

𝑇 be a discrete subset of ℝ𝑑. We say  𝑇 is a tiling set for 𝑄, if each 𝑥 ∈ ℝ𝑑 can written 

uniquely as 𝑥 = 𝑞 + 𝑡, with 𝑞 ∈ 𝑄 and 𝑡 ∈ 𝑇 .We say 𝑇 is a spectrum for 𝑄, if the 

exponentials  

𝑒𝑡(𝑥) ≔ 𝑒𝑖2𝜋𝑡𝑥,   𝑡 ∈ 𝑇 

form an orthonormal basis for 𝐿2(𝑄). Here juxtaposition 𝑡𝑥 of vectors 𝑡, 𝑥 in ℝ𝑑 denote 

the usual inner product 𝑡𝑥 = 𝑡1𝑥1+ . . . +𝑡𝑑𝑥𝑑  in ℝ𝑑 and 𝐿2(𝑄) is equipped with usual 

inner productive ,vis., 

〈𝑓, 𝑔〉 ≔ ∫ 𝑓�̅� 𝑑𝑚

𝑄

, 

Where 𝑚 denotes Lebesgue measure.  

Theorem (1.1.1)[1]: Let 𝑇 be a subset of  ℝ𝑑. Then 𝑇 is a spectrum for the unit cube 𝑄 

if and only if  𝑇 is a tiling set for the unit cube 𝑄. 

Remark (1.1.2)[1]: As we shall discuss below there exists highly counter-intuitive 

cube-tiling’s in ℝ𝑑  for sufficiently large d. Those tiling’s can be much more 

complicated than lattice tiling’s. Theorem (1.1.1) is clear if  𝑇  is a lattice .The point of 

Theorem (1.1.1) is that the result still holds even if the restrictive lattice assumption is 

dropped.  

Sets whose translates tile ℝ𝑑 and the corresponding tiling sets have been 

investigated intensively, see [3], [11], [12]. Even the one-dimensional case 𝑑 = 1 is 

non-trivial. The study of sets whose 𝐿2-space admits orthogonal bases of exponentials 

was begun in [4]. Several have appeared, see [6], [15], [13]. It was conjectured in [4] 

that a set admits a tiling set if and only if it admits a spectrum, i.e, the corresponding 𝐿2-

space admits an orthogonal basis of exponentials. 

Cube tiling’s have a long history beginning with a conjecture due to Minkowski: 

in every lattice tiling have of ℝ𝑑 by translates of 𝑄 some cubes must share a complete 
(𝑑 − 1)-dimensional face. Minkowski’s conjecture was show in [5], see [18]. Keller [8] 

while working on Minkowski’s conjecture made the stronger conjecture that one could 

omit the lattice assumption in Minkowski’s conjecture. Using [19] and [2] it was shown 

in [10] that there are cube tiling’s in dimensions 𝑑 ≥ 10 not satisfying Keller’s 

conjecture. 

The study of the possible spectra for the unit cube was initiated in [7], where 

Theorem (1.1.1) was conjectured. Theorem (1.1.1) was show in [7] if  𝑑 ≤ 3  and  for 

any 𝑑 if  𝑇 is periodic. The terminology spectrum for 𝑄 originates in a problem about 
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the existence of certain commuting self-adjoint partial differential operators. We say 

that two self-adjoint operators commute if their spectral measures commute, see [17] for 

to the theory of unbounded self-adjoint operators. The following result was show in [4] 

under a mild regularity condition on the boundary; the regularity condition was 

removed in [14]. 

Theorem (1.1.3)[1]: Let 𝛺 be a connected open subset of ℝ𝑑 with finite Lebesque 

measure, there exists a set 𝑇 so that the exponentials 𝑒𝑡, 𝑡 ∈ 𝑇 form an orthogonal basis 

for 𝐿2(𝛺) if and only if there exists commuting self-adjoint operators 𝐻 =
(𝐻1 , . . . . . , 𝐻𝑑) so that  each 𝐻𝑗 is defined on 𝐶𝑐

∞(𝛺) and  

𝐻𝑗𝑓 =
1

𝑖2𝜋

𝜕𝑓

𝜕𝑥𝑗
                                                          (1) 

For any 𝑓 ∈ 𝐶𝑐
∞(𝛺) and any 𝑗 = 1,… . . , 𝑑.  

If  𝑒𝑡, 𝑡 ∈ 𝑇 is an orthogonal basis for 𝐿2(𝛺) then a commuting tuple 𝐻 =
(𝐻1 , . . . . . , 𝐻𝑑) of self-adjoint operators satisfying (1) is uniquely determined 𝐻𝑗𝑒𝑡 =

𝑡𝑗𝑒𝑡 , 𝑡 ∈ 𝑇 then. Conversely, if 𝐻 = (𝐻1 , . . . . . , 𝐻𝑑)  is a commuting tuple of self-adjoint 

operators satisfying (1) then the joint spectrum 𝜎(𝐻) is discrete and each 𝑡 ∈ 𝜎(𝐻) is a 

simple eigen-value corresponding to the eigen-vector 𝑒𝑡, in particular, 𝑒𝑡, 𝑡 ∈ 𝜎(𝐻) is 

an orthogonal basis for 𝐿2(𝛺). 
We show that any tiling set is a spectrum, the converse is showed. Key ideas in 

both proofs are that if  (𝑔𝑛) is an orthonormal family in 𝐿2(𝑄) and 𝑓 ∈ 𝐿2(𝑄) then we 

have equality in Bessel’s inequality  

∑|〈𝑓, 𝑔𝑛〉|
2 ≤ ‖𝑓‖2 

if and only if 𝑓 is in the closed linear span of (𝑔𝑛), and a sliding lemma  (Lemma 

(1.1.6)) showing that we may translate certain parts of a spectrum or tiling set while 

preserving the spectral respectively the tiling set property. We show some elementary 

properties of spectra and tiling sets. For 𝑡 ∈ ℝ𝑑 let  𝑄 + 𝑡: {𝑞 + 𝑡: 𝑞 ∈ 𝑄} denote the 

translate of 𝑄 by vector  . We say (𝑄, 𝑇) is non-overlapping if the cubes  𝑄 + 𝑡 and 

cubes 𝑄 + 𝑡′ are disjoint for any 𝑡, 𝑡′ ∈ 𝑇. Note, 𝑇 is a tiling set for 𝑄 if and only if 

(𝑄, 𝑇) is non-overlapping and ℝ𝑑 = 𝑄𝑇 ≔ 𝑈𝑡∈𝑇(𝑄 + 𝑇). We say (𝑄, 𝑇) is orthogonal, 

if the exponentials 𝑒𝑡,𝑡 ∈ 𝑇 are orthogonal in 𝐿2(𝑄). A set 𝑇 is a spectrum for 𝑄 if and 

only if (𝑄, 𝑇) is orthogonal and 

∑|〈𝑒𝑛, 𝑒𝑡〉|
2

𝑡∈𝑇

= 1 

For all 𝑛 ∈ ℤ𝑑. Let ℕ denote the positive integers {1,2,3, … } and let ℤ denote the set of 

all integers{… , −1,0,1,2, … }.  
We received a preprint [9] by Lagarias, Reed and Wang proving our main result 

.Compared to [9] the proof  that any spectrum is  a tiling set  uses completely different 

techniques, the proof that any tiling set is spectrum is a similar to the proof  in [9] in 

that both proof’s makes use of  Keller’s Theorem (Theorem (1.1.9)) and an argument 

involving an inequality becoming equality. We wish to thank Lagarias for the preprint 

and useful remarks. Robert S. Strichartz helped us clarify the exposition. 

The basis property is equivalent to the statement that the sum 
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∑|〈𝑒𝑥, 𝑒𝑡〉|
2 = 1 

𝑡∈𝑇

                                                      (2) 

For all 𝑥 ∈ ℝ𝑑  .it is easy to see that if 𝑇 has the basis property then the cubes  𝑄 + 𝑡, 
𝑡 ∈ 𝑇 are non-overlapping. We show by a geometric argument that if the basis property 

holds and the tiling property does not hold then the sum in (2) is strictly less than one. 

Conversely, if 𝑇 has the tiling property then the exponentials 𝑒𝑡, 𝑡 ∈ 𝑇 are orthogonal 

by Keller’s Theorem. Plancerel’s Theorem now implies that the sum in (2) is one. The 

geometric argument is based Lemma (1.1.6), An analogous lemma was used by Perron 

[16] in his proof Keller’s Theorem. 

We begin by proving a simple result characterizing orthogonal subsets of ℝ𝑑. 

There is a corresponding (non-trivial) result for tiling’s, stated as Theorem (1.1.9) 

below. 

Lemma (1.1.4)[1]: (Spectral version of  Keller’s  theorem). Let 𝑇 be a discrete subset of 

ℝ𝑑. The pair (𝑄, 𝑇) is orthogonal if and only if given any pair 𝑡, 𝑡′ ∈ 𝑇, with 𝑡 ≠ 𝑡′, 

there exists 𝑗 ∈ {1,… . , 𝑑}  so  that |𝑡𝑗 − 𝑡𝑗
′| ∈ ℕ. 

Proof. For 𝑡, 𝑡′ ∈ ℝ𝑑   we have   

〈𝑒𝑡 , 𝑒𝑡′〉 =∏∅(𝑡𝑗 − 𝑡𝑗
′)

𝑑

𝑗=1

                                               (3) 

Where for 𝑥 ∈ ℝ     

∅(𝑥) ≔ {

1,               if   𝑥 = 0;

𝑒𝑖2𝜋𝑥 − 1

𝑖2𝜋𝑥
, if    𝑥 ≠ 0.

                                       (4) 

The lemma is now immediate. 

We can now state showing that there is a connection between spectra and tiling 

sets for the unit cube. 

Corollary (1.1.5)[1]: Let 𝑇 be a subset of ℝ𝑑. if  (𝑄, 𝑇) is orthogonal, then (𝑄, 𝑇) is 

non-overlapping. 

A key   technical   lemma needed for the proofs of both implications in the main 

result is the following lemma. The lemma shows that a certain part of a spectrum 

(respectively tiling set) can be translated independently of it’s complement without 

destroying the spectral (respectively tiling set) property. The tiling set part of The   

lemma if taken from [16].  

Lemma (1.1.6)[1]: Let 𝑇 be a discrete subset of  ℝ𝑑, fix 𝑎, 𝑏 ∈ ℝ .Let 

 𝑐 ≔ (𝑏, 0,… . . ,0) ∈ ℝ𝑑 And for 𝑡 ∈ 𝑇, let: 

𝛼𝑇,𝑎,𝑏(𝑡) ≔ {
𝑡,       if 𝑡1 − 𝑎 ∈ ℤ;
𝑡 + 𝑐, if 𝑡1 − 𝑎 ∉ ℤ.

 

We have the following conclusions: (a) if 𝑇 is a spectrum for 𝑄, So is 𝛼𝑇,𝑎,𝑏(𝑇). (b) if  

𝑇 is a tiling set for 𝑄, so is 𝛼𝑇,𝑎,𝑏(𝑇). 
Proof. Suppose 𝑇 is a spectrum for 𝑄. The orthogonally of (𝑄, 𝛼𝑇,𝑎,𝑏(𝑇)) is an easy 

consequence of Lemma (1.1.4). Let 𝐴𝑇,𝑎,𝑏 𝑒𝑡 ≔ 𝑒𝛼𝑇,𝑎,𝑏(𝑡) for 𝑡 ∈ 𝑇. To simplify the 

notation we will write 𝐴𝑏 in place of 𝐴𝑇,𝑎,𝑏 . By orthogonality and linearity 𝐴𝑏 extends 

to an isometry mapping 𝐿2(𝑄) into itself. We must show that the range 𝐴𝑏𝐿
2(𝑄) is all 

of  𝐿2(𝑄). Let 𝐾+ be the subspace of  𝐿2(𝑄) spanned by the exponentials 𝑒𝑡, 𝑡 ∈ 𝑇 with 
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𝑡1 − 𝑎 ∈ ℤ and let 𝐾− be the subspace of  𝐿2(𝑄) spanned by the exponentials 𝑒𝑡 , 𝑡 ∈ 𝑇 

With 𝑡1 − 𝑎 ∉ ℤ. Then 𝐴𝑏𝑓 = 𝑓 for all 𝑓 ∈ 𝐾+, So 𝐴𝑏𝐾+ = 𝐾+ .Since 𝐴𝑏 preserves 

orthogonality, 𝐴𝑏𝐾− ⊆ 𝐾− . We must Show 𝐴𝑏𝐾− = 𝐾−. Since 𝑏 ∈ ℝ is arbitrary, we 

also have that the map 𝐴−𝑏 is an isometry mapping 𝐾−  into itself. By construction  

𝐴𝑏𝑓 = 𝑒𝑐𝑓  and  𝐴−𝑏𝑓 = 𝑒�̅�𝑓  for all 𝑓 ∈ 𝐾−. it follows that 𝐾− = 𝐴𝑏𝐴−𝑏𝐾− ⊆ 𝐴𝑏𝐾− ⊆
𝐾−. Hence 𝐴𝑏𝐾− = 𝐾− as desired. The proof that 𝛼𝑇,𝑎,𝑏(𝑇) is a tiling set provided 𝑇 is, 

follows from The last part of the proof of the Theorem (1.1.9) bellow. 

For  𝑛′ ∈ 𝕫𝑑−1  let  ℓ𝑛′  be the line in ℝ𝑑 given by {(𝑥, 𝑛′), 𝑥 ∈ ℝ} .The idea of 

our proof that any spectrum for 𝑄 must be a tiling set for 𝑄 is as follows .Suppose 𝑇 is a 

spectrum but not a tiling set, but not a tiling set. Fix  𝑛′ ∈ ℤ𝑑−1 and pick a  𝑡 ∈ 𝑇 (if 

any) so that 𝑄 + 𝑡  interseets the line  ℓ𝑛′  applying  Lemma (1.1.6) we can insure that 

𝑡1 ∈ ℤ. Repeating this for each  𝑛′ ∈ 𝕫𝑑−1 we can ensure  𝑡1 ∈ ℤ   for any  𝑡1 ∈ 𝑇
new. 

Considering each of the remaining coordinate directions we end up with  𝑇new  being a 

subset of  ℤ𝑑. (The meaning of  𝑇new changes with each application of lemma (1.1.6)). 

By Lemma (1.1.8) 𝑇new is not a tiling set for 𝑄 since 𝑇 was not a tiling set, so 𝑇new is a 

proper subset of  ℤ𝑑, contradicting the basis property. The difficulty with this outline is 

that after we apply Lemma (1.1.6) an  infinite  number of times the  basis  property  may  

not hold. In fact, associated to each application of Lemma (1.1.6) is an  isometric 

isomorphism 𝐴𝑏𝑛. Without restrictions on the sequence (𝑏𝑛) the infinite product 

∏ 𝐴𝑏𝑛
∞
𝑛=1  need not be convergent (e.g., with respect to the weak operator topology). 

Even if the infinite product  ∏ 𝐴𝑏𝑛
∞
𝑛=1  is convergent, the limit may be a non- surjective 

isometry. 

If we use Lemma (1.1.6) to put a large finite part of  𝑇 into ℤ𝑑  then we can use 

decay properties of the Fourier transform of the characteristic  functions of  the cube  𝑄 

to  contradict (2).  

The following lemma shows that sums of the Fourier transform of the 

characteristic function of the cube 𝑄 over certain discrete sets  has uniform decay 

properties. 

Lemma (1.1.7)[1]: Let 𝜙 be given by there exists a constant 𝐶 > 0 so that 

∑∏|𝜙(𝑡𝑗)|
2
≤
𝐶

𝑁

𝑑

𝑗=1𝑡∈𝑇𝑁

 

For any 𝑁 > 1, whenever 𝑇 ⊂  ℝ𝑑   is a spectrum for the unit cube 𝑄. Here 𝑇𝑁 is the set 

of  𝑡 ∈ 𝑇 for which|𝑡𝑗| > 𝑗, for at least one𝑗. Note, the constant 𝐶 is uniform over all 

spectra 𝑇 for the unit cube 𝑄 and all  𝑁 > 1. 

Proof. Let 𝑇 be a spectrum for 𝑄. for any partition 𝑃 = {𝐼. 𝐼𝐼. 𝐼𝐼𝐼. 𝐼𝑉} of  {1, … . . . , 𝑑}, 
let 𝑇𝑁,𝑃 denote the set of 𝑡 ∈ 𝑇𝑁 for so that 𝑡𝑗 > 𝑁 for 𝑗 ∈ 𝐼; 𝑡𝑗 < −𝑁 for 𝑗 ∈ 𝐼𝐼; 0 ≤

𝑡𝑗 ≤ 𝑁  for  𝑗 ∈ 𝐼𝐼𝐼 and  −𝑁 ≤ 𝑡𝑗 < 0 for 𝑗 ∈ 𝐼𝑉 .Note 𝑇𝑁,𝑃 is empty unless 𝐼 ∪ 𝐼𝐼 is 

non-empty. For 𝑥 ∈ ℝ  let  𝜓(𝑥) = 1, if  −1 < 𝑥 < 1  and  let  𝜓(𝑥) = 𝑥−2  if  |𝑥| ≥ 1. 
Then  for  𝑡 ∈ 𝑇𝑁,𝑃 , 

∏|𝜙(𝑡𝑗)|
2
≤∏𝜓(𝑠𝑗)

𝑑

𝑗=1

𝑑

𝑗=1

                                             (5) 
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For any 𝑠 = (𝑠1 , …… . , 𝑠𝑑) in the cube  𝑋𝑡,𝑃 given by 𝑡𝑗 − 1 ≤ 𝑠𝑗 < 𝑡𝑗  if  𝑗 ∈ 𝐼 ∪ 𝐼𝐼𝐼, 

and  𝑡𝑗 ≤ 𝑠𝑗 < 𝑡𝑗 + 1 if 𝑗 ∈ 𝐼𝐼 ∪ 𝐼𝑉. It follows from (5) and disjointness (Lemma 

(1.1.4)) of  the cubes 𝑋𝑡,𝑃 , 𝑡 ∈ 𝑇𝑁,𝑃 that 

∑ ∏|∅(𝑡𝑗)|
2
≤ ∑ ∫ ∏𝜓(𝑠𝑗)

𝑑

𝑗=1

𝑑𝑠 ≤ ∫ ∏𝜓(𝑠𝑗)

𝑑

𝑗=1

𝑑𝑠,
𝑌𝑁,𝑃𝑋𝑡,𝑃𝑡∈𝑇𝑁,𝑃

𝑑

𝑗=1𝑡∈𝑇𝑁,𝑃

 

Where 𝑌𝑁,𝑃 is the set of 𝑦 ∈ ℝ𝑑 for which 𝑁 − 1 < 𝑦𝑗  for  𝑗 ∈ 𝐼, 𝑦𝑗 < −𝑁 + 1 for 𝑗 ∈

𝐼𝐼, −1 < 𝑦𝑗 < 𝑁 for 𝑗 ∈ 𝐼𝐼𝐼, and −𝑁 < 𝑦𝑗 < 1 for 𝑗 ∈ 𝐼𝑉. By definition of 𝜓 we have  

∫ ∏𝜓(𝑠𝑗)

𝑑

𝑗=1

𝑑𝑠 ≤
𝑌𝑁,𝑃

3𝑑−𝑛  
1

(𝑁 − 1)𝑛
, 

where 𝑛 > 0 is the cardinality of 𝐼 ∪ 𝐼𝐼; since the number of possible partitions  𝑃 =
{𝐼, 𝐼𝐼, 𝐼𝐼𝐼, 𝐼𝑉}  only depends on the dimension  𝑑 𝑜𝑓 ℝ𝑑, the proof is complete. 

The following lemma shows that if 𝑇 is a spectrum but not a tiling set for 𝑄 then 

the set constructed in Lemma (1.1.6); is also not a tiling set for 𝑄 . It is needed because 

the inverse of the transformation in Lemma (1.1.6) is not of the same form. 

Lemma (1.1.8)[1]: If 𝑇 is a spectrum for 𝑄 but not a tiling set for 𝑄 , then 𝛼𝑇,𝑎,𝑏(𝑇) is  

not a tiling set for 𝑄. 

Proof. Suppose 𝑇 is a spectrum for 𝑄 but not a tiling set for 𝑄. Let 𝑔 ∉ 𝑄𝑇. Let ℓ ≔
{(𝑥, 𝑔2, 𝑔3, …… , 𝑔𝑑)}. If  𝑟, 𝑠 ∈ 𝑇 are so that 𝑄 + 𝑟 and 𝑄 + 𝑆 intersect ℓ then it  

follows  from Lemma (1.1.4) that  𝑠1 − 𝑟1 is an  integer, since |𝑠𝑗 − 𝑡𝑗| < 1 for 𝑗 ≠ 1 

because 𝑄 + 𝑟 and 𝑄 + 𝑠 intersect ℓ. So either 𝑡1 − 𝑎 ∈ ℤ  for all 𝑡 ∈ 𝑇 so that 𝑄 + 𝑡 
intersect ℓ or 𝑡1 − 𝑎 ∉ ℤ for all 𝑡 ∈ 𝑇 so that 𝑄 + 𝑡 interests ℓ. In the first case 𝑔 ∉
𝑄𝛼𝑇,𝑎,𝑏(𝑇)  in the second case 𝑔 + 𝑐 ∉ 𝑄𝛼𝑇,𝑎,𝑏(𝑇). 

Suppose 𝑇 is a spectrum for the unit cube 𝑄. By Corollary (1.1.5); the pair (𝑄, 𝑇)  
is non-overlapping. We must show that the union 𝑄𝑇 = 𝑈𝑡∈𝑇(𝑄 + 𝑡) is all of  ℝ𝑑. To 

get a contradiction suppose 𝑔 ∉ 𝑄𝑇 . Let N be so large that  𝑔 ∈ (−𝑁 + 2,𝑁 − 2)𝑑.  

Let 𝑇(𝑁) ≔ 𝑇 ∩ (−𝑁 − 1,𝑁 + 1)𝑑 Let 𝑛′1 ≔ (−𝑁,−𝑁,… . . , −𝑁) ∈ 𝕫𝑑−1. Pick 

𝑡 ∈ 𝑇(𝑁) so that 𝑄 + 𝑡  intersects ℓ𝑛′1 (if such a 𝑡 exists). Use Lemma (1.1.6); with 𝑎 =

0 and 𝑏 = 𝑏1 ≔ 𝑡1 − ⌊𝑡1⌋ to conclude 𝑇1 ≔ 𝛼𝑇,𝑎,𝑏(𝑇) has the basis property, it follows 

from Lemma (1.1.4); that  𝑡1 ∈ ℤ  for any  𝑡 ∈ 𝑇1 so that 𝑄 + 𝑡  intersects ℓ𝑛1′ . 

Let  𝑛2
′ ≔ (−𝑁,−𝑁,… ,−𝑁 + 1) ∈ ℤ𝑑−1. Pick 𝑡 ∈ 𝑇1(𝑁) so that 𝑄 + 𝑡 intersects  

ℓ𝑛2′  (if such a t exists). Use Lemma (1.1.6) with 𝑎 = 0 and 𝑏 = 𝑏2 ≔ 𝑡1 − ⌊𝑡1⌋  if  𝑏1 +

𝑡1 − ⌊𝑡1⌋ ≥ 1 and 𝑏 = 𝑏2:=𝑡1 − ⌊𝑡1⌋ − 1  if  𝑏1 + 𝑡1 − ⌊𝑡1⌋ < 1  to conclude 𝑇2 ≔
𝛼𝑇1,𝑎,𝑏(𝑇1) has the basis property. It follows from Lemma (1.1.4); that 𝑡1 ∈ ℤ for any  

𝑡 ∈ 𝑇2, so that 𝑄 + 𝑡 intersects ℓ𝑛2′ . Note we did not move any of the cubes in 𝑇1 with  

−𝑁 − 1 < 𝑡𝑗 ≤ −𝑁, for 𝑗 = 2,… . , 𝑑.  

Continuing in this manner, we end up with 𝑇′ having the basis property so that 

𝑡1 ∈ ℤ for any 𝑡 ∈ 𝑇′ with −𝑁 − 1 < 𝑡𝑗 < 𝑁 + 1 for 𝑗 = 2,… . , 𝑑. Note  −1 < ∑ 𝑏𝑗
𝑛
1 <

1  for any 𝑛. So if at some stage 𝑡 ∈ 𝑇𝑛 is derived from 𝑡original ∈ 𝑇, Then we have 

𝑡1
original − 1 < 𝑡1 < 𝑡1

original + 1 Repeating this process for each of the other 

coordinate directions we end up with 𝑇new so that 𝑇new(𝑁 − 1) is  a  subset of  the 

integer lattice ℤ𝑑, any 𝑡 ∈ 𝑇new(𝑁 − 1) is obtained from some 𝑡original ∈ 𝑇(𝑁), and any 
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𝑡original ∈ 𝑇(𝑁 − 1) is translated onto some 𝑇new(𝑁). In short, we  did  not  move any 

point in 𝑇 very much. By Lemma (1.1.8); it follows that (−𝑁,𝑁)𝑑\𝑄𝑇new  is non-

empty, hence there exists 𝑔new ∈ ℤ𝑑, so that 𝑔new ∈ (−𝑁,𝑁)𝑑\𝑇new.Replacing 𝑇new by 

𝑇new by 𝑇new − 𝑔new, is necessary, and applying the process described above we may 

assume 𝑔new = 0. To simplify the notation let 𝑇 = 𝑇𝑛𝑒𝑤. We have  

1 =∑|〈𝑒𝑡 , 𝑒0〉|
2 =

𝑡∈𝑇

∑ |〈𝑒𝑡 , 𝑒0〉|
2 ∑|〈𝑒𝑡 , 𝑒0〉|

2.

𝑡∈𝑇𝑁𝑡∈𝑇(𝑁)

 

The first sum = 0 since 𝑇(𝑁) ⊂ ℤ𝑑 and 0 ∉ 𝑇(𝑁), the second sum is < 1 for 𝑁 

sufficiently large by Lemma (1.1.7); this contradiction completes the proof. 

The following result (due to [8]) shows that any tiling set for the cube is 

orthogonal. It is a key step in our proof that any tiling set for the cube must be a 

spectrum for the cube and should be compared with Lemma (1.1.4) above. The proof is 

essentially taken from [16]. 

Theorem (1.1.9)[1]: (Keller's Theorem). If  𝑇 is a tilling set for 𝑄, Then given any pair  

𝑡, 𝑡′ ∈ 𝑇, with 𝑡 ≠ 𝑡′, there exist a 𝑗 ∈ {1,…… , 𝑑}  so that |𝑡𝑗 − 𝑡
′
𝑗| ∈ ℕ. 

Proof. Let 𝑇 be a tiling set for 𝑄. Suppose 𝑡, 𝑡′ ∈ 𝑇. The proof is by induction on the 

number of 𝑗's  for which|𝑡𝑗 − 𝑡
′
𝑗| ≥ 1. Suppose that |𝑡𝑗 − 𝑡

′
𝑗| < 1 for all but one ∈

{1,… . . , 𝑑} . Let  𝑗0 be the exceptional 𝑗, then  |𝑡𝑗0 , 𝑡
′
𝑗0| ≥ 1.  Fix 𝑥𝑗 , 𝑗 ≠ 𝑗0  so that the 

line  ℓ𝑗0 ≔ {(𝑥1, … . . , 𝑥𝑗): 𝑥𝑗0 ∈ ℝ} passes through both of the cubes 𝑄 + 𝑡 and 𝑄 + 𝑡′. 

Considering the cubes 𝑄 + 𝑡, 𝑡 ∈ 𝑇 that intersect ℓ𝑗0 it is immediate that |𝑡𝑗0 , 𝑡
′
𝑗0| ∈ ℕ.   

For the inductive step, suppose |𝑡𝑗 − 𝑡
′
𝑗| < 1  for 𝑘  values of  𝑗  and |𝑡𝑗 , 𝑡

′
𝑗| ≥ 1, 

for the remaining 𝑑 − 𝑘 values of  𝑗  implies |𝑡𝑗0 − 𝑡
′
𝑗0| ∈ ℕ  for  some 𝑗0. Let 𝑡, 𝑡′ ∈ 𝑇 

be so that |𝑡 − 𝑡′𝑗| < 1 for 𝑘 − 1 values of 𝑗 and |𝑡 − 𝑡′𝑗| ≥ 1 for the remaining  𝑑 −

𝑘 + 1  values of 𝑗. interchanging the coordinate axes, if necessary, we may assume  

|𝑡𝑗 − 𝑡
′
𝑗| ≥ 1,     for  𝑗 = 1,… , 𝑑 − 𝑘 + 1 

|𝑡 − 𝑡′𝑗| < 1,    for 𝑗 = 𝑑 − 𝑘 + 2,… , 𝑑. 

If 𝑡1 − 𝑡
′
1 is an integer, then there we are done. Assume 𝑡1 − 𝑡

′
1 ∉ ℤ. Let 𝑐 ≔

(𝑡1 − 𝑡
′
1, 0, … . ,0),  and for �̃� ∈ 𝑇  let  

𝑠(�̃� ) ≔ {
�̃� − 𝑐, if �̃�1 − 𝑡1 ∈ ℤ 

�̃�,       if �̃�1 − 𝑡1 ∉ ℤ.
 

In particular, 𝑠(𝑡) = 𝑡 − 𝑐 and 𝑠(𝑡′) = 𝑡′. We claim the set 𝑆 ≔ {𝑠(�̃� ):�̃� ∈ 𝑇} is a tiling 

set for 𝑄. Assuming, for a moment, that the claim is valid, we can easily complete the 

proof. In fact, |𝑠(𝑡)1 − 𝑠(𝑡
′)1| = 0 and |𝑠(𝑡)𝑗 − 𝑠(𝑡

′)𝑗| < 1 for  𝑗 = 𝑑 − 𝑘 + 2,… , 𝑑, 

so by the inductive hypothesis one of the numbers 𝑡𝑗 − 𝑡
′
𝑗 = 𝑠(𝑡)𝑗 − 𝑠(𝑡

′)𝑗  , 𝑗 =

2,… , 𝑑 − 𝑘 + 1  is a non-zero integer. 

It remains to show that 𝑆 is a tiling set for 𝑄. We must show that 𝑄𝑠 is non-

overlapping and that ℝ𝑑 ⊂ 𝑄𝑠. First we dispense with the non-overlapping part. Let  

𝑎, 𝑎′ be distinct points in 𝑇. Suppose 𝑥 is a point in the intersection(𝑄 + 𝑠(𝑎)) ∩

(𝑄 + 𝑠(𝑎′)), then 𝑥 − 𝑠(𝑎), 𝑥 − 𝑠(𝑎′) ∈ 𝑄 In particular, 0 ≤ 𝑥𝑗 − 𝑎𝑗 < 1 and 0 ≤ 𝑥𝑗 −

𝑎′𝑗 < 1 for  𝑗 = 2,… , 𝑑. It follows that |𝑎𝑗 − 𝑎
′
𝑗| for  𝑗 = 2,… , 𝑑, so first paragraph of 

the proof shows that |𝑎𝑗 − 𝑎𝑗
′| ∈ ℕ, hence either 𝑎1 − 𝑡1, 𝑎

′
1 − 𝑡1 ∈ ℤ or 𝑎1 − 𝑡1, 𝑎

′
1 −

𝑡1 ∉ ℤ. In both cases we get a contradiction to the non-overlapping property of 𝑄𝑇. In 
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fact, if 𝑎1 − 𝑡1 , 𝑎
′ − 𝑡1 ∈ ℤ , then (𝑄 + 𝑠(𝑎)) ∩ (𝑄 + 𝑠(𝑎′)) = ((𝑄 + 𝑎) ∩ (𝑄 +

𝑎′)) − 𝑐 = ∅. 
If  𝑎1 − 𝑡1, 𝑎

′
1 − 𝑡1 ∉ ℤ , then 𝑄 + 𝑠(𝑎)) ∩ (𝑄 + 𝑠(𝑎′)) = ((𝑄 + 𝑎) ∩ (𝑄 + 𝑎′)) = ∅. 

Let 𝑥 ∈ ℝ𝑑 be an arbitrary point, then 𝑥 ∈ 𝑄𝑇 . If 𝑥 ∈ (𝑄 + 𝑎) for some 𝑎 ∈ 𝑇   

with 𝑎1 − 𝑡1 ∉ ℤ , then there is nothing to show, Assume  𝑥 ∈ (𝑄 + 𝑎) for some 𝑎 ∈ 𝑇  

with 𝑎1 − 𝑡1 ∈ ℤ .The point 𝑥 + 𝑐 is in 𝑄 + 𝑏 for some 𝑏 ∈ 𝑇. First we show that 

|𝑎1 − 𝑏1| ∈ ℕ. Since 𝑥 ∈ 𝑄 + 𝑎  and 𝑥 + 𝑐 ∈ 𝑄 + 𝑏 we have 

0 ≤ 𝑥𝑗 − 𝑎𝑗 < 1,      0 ≤ 𝑥𝑗 − 𝑏𝑗 + 𝑐𝑗 < 1,                             (6) 

for = 1,… , 𝑑 , so using 𝑐𝑗 = 0, for 𝑗 = 2,… , 𝑑, it follows that |𝑎𝑗 − 𝑏𝑗| < 1, for 𝑗 =

2,… , 𝑑; an application for the first paragraph of the  proof yields the desired result that 

|𝑎1 − 𝑏1| ∈ ℕ. Using 𝑎1 − 𝑡1 ∈ ℤ we conclude 𝑏1 − 𝑡1 ∈ ℤ; so using the second half of 

(6) and the definition of  𝑠(𝑏) we have 𝑥 ∈ 𝑄 + 𝑠(𝑏); as needed. 

Corollary (1.1.10)[1]: If 𝑇 is a tiling set for 𝑄, then (𝑄, 𝑇) is orthogonal. 

Proof. This is a direct consequence of Keller’s Theorem and Lemma (1.1.4). 

It is now easy to complete the proof that any tiling set for the unit cube 𝑄  must 

be a spectrum for  𝑄. 

Suppose 𝑇 is a tiling set for 𝑄. By Keller’s theorem {𝑒𝑡: 𝑡 ∈ 𝑇} is an orthogonal 

set of unit vectors in 𝐿2(𝑄), so by Bessel’s inequality 

∑|〈𝑒𝑠, 𝑒𝑡〉|
2 ≤ 1

𝑡∈𝑇

                                                          (7) 

for any  𝑠 ∈ ℝ𝑑. Not that 〈𝑒𝑠, 𝑒𝑡〉 is the Fourier transform of the characteristic function 

of the cube 𝑄 at the points 𝑠 − 𝑡.  For any 𝑟 ∈ ℝ𝑑  we have  

𝐼 = ∫ |〈𝑒𝑦 , 𝑒0〉|
2
𝑑𝑦 = ∫ ∑|〈𝑒𝑥, 𝑒𝑡〉|

2𝑑𝑥

𝑡∈𝑇𝑄+𝑟

≤ ∫ 1𝑑𝑦
𝑄+𝑟ℝ𝑑

= 1, 

Where we used Plancherel’s Theorem, the tiling property, and Bessel’s inequality (7); it 

follows that  

∑|< 𝑒𝑠, 𝑒𝑡 >|
2

𝑡∈𝑇

= 1                                                     (8) 

for almost every 𝑠 in 𝑄 + 𝑟, and since 𝑟 is arbitrary, for almost every 𝑠  in ℝ𝑑. Hence 

for almost every 𝑠 ∈ ℝ𝑑 the exponential 𝑒𝑠 is in the closed span of the 𝑒𝑡 , 𝑡 ∈ 𝑇. This 

completes the proof. 

Section (1.2): Exponentials for the 𝒏-Cube 

 A compact set 𝛺 𝑖𝑛 ℝ𝑛  of positive lebesgue measure is  a spectral set if  there is 

some set of exponentials 

𝔅𝐴 ≔ {𝑒2𝜋𝑖〈𝜆,𝑥〉: 𝜆 ∈ 𝐴},                                                     (9) 

which when restricted to 𝛺 gives an orthogonal basis for 𝐿2(𝛺), with respect to the 

inner product  

〈𝑓, 𝑔〉𝛺 ≔ ∫ 𝑓(𝑥)̅̅ ̅̅ ̅̅

𝛺

𝑔(𝑥)𝑑𝑥.                                               (10) 

Any set 𝐴 that gives such an orthogonal basis is called a spectrum for 𝛺. Only very 

special sets Ω in ℝ𝑛 are spectral sets. However, when a spectrum exists, it can be 
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viewed as a generalization of Fourier series, because for the 𝑛-cube  𝛺 = [0,1]𝑛 , the 

spectrum 𝐴 = ℤ𝑛 gives the standard Fourier basis of  𝐿2([0,1]𝑛).  
We relate the spectra of sets 𝛺 to tiling in Fourier space. we develop such a 

relation for a large class of sets and apply it to geometrically characterize all spectra for 

the n-cube  𝛺 = [0,1]𝑛.  
Theorem (1.2.1)[20]:  The following conditions on a set 𝐴 in ℝ𝑛 are equivalent. 

(i) The set  𝔅𝐴 ≔ {𝑒2𝜋𝑖〈𝜆,𝑥〉: 𝜆 ∈ 𝐴}  when restricted to [0,1]𝑛 is an orthonormal 

basis of  𝐿2([0,1]𝑛).  
(ii) The collection of sets {𝜆 + [0,1]𝑛: λ ∈ 𝐴}  is a tiling of ℝ𝑛 by translates of unit 

cubes. 

Proof. The set 𝐷 = [0,1]𝑛 is a tight orthogonal packing region for Ω = [0,1]𝑛. To see 

this, note that lemma (1.2.20) implies that 𝐷 is an orthogonal packing region for Ω, and 

since each of  Ω and 𝐷 has measure 1,it is tight. 

(i)⇒(ii). By hypothesis, 𝔅𝐴 is an orthogonal set in 𝐿2([0,1]𝑛). We showed above 

that 𝐷 is a tight orthogonal packing region for Ω. Now Theorem (1.2.15). Applies to 

conclude that 𝐴 + 𝐷 is a tiling of ℝ𝑛. 

(ii)⇒(i). By hypothesis, 𝐴 + 𝐷 is a cube tiling , so by Proposition (1-2-19), 𝔅𝐴 is 

an orthogonal set in 𝐿2([0,1]𝑛). Clearly, 𝑚(𝛺)𝑚(𝐷) = 1 , and since 𝐴 + 𝐷 is a cube 

tiling, it is a fortiori a cube packing. So by Theorem (1.2.14), 𝐴 is a spectrum. 

This result was conjectured by Jorgensen and Pedersen [26], who showed it in 

dimensions 𝑛 ≤ 3. We note that in high dimensions , there are many "exotic" cube 

tiling. There are aperiodic cube tiling’s in all dimensions 𝑛 ≥ 3 , while in dimensions 

𝑛 ≥ 10 there are cube tilings in which no two cubes share a commone (𝑛 − 1)-face, see 

Lagarias and and shor [29].  

In theorem (1.2.1), the 𝑛-cube [0,1]𝑛 appears in both conditions (i) and (ii),  but 

in functorially different context, the 𝑛-cube in (i) lies in the space domain ℝ𝑛 while the 

𝑛 − 𝑐𝑢𝑏𝑒  in (ii) lies in the Fourier domain (ℝ𝑛)∗, so they transform differently under 

linear change of variables. Thus theorem (1.2.1) is equivalent to the following result. 

Theorem (1.2.2)[20]: For any invertible linear transformation 𝐴 ∈ 𝐺𝐿(𝑛,ℝ) the 

following condition are equivalent.  

(i) 𝐴 ⊂ ℝ𝑛 Is a spectrum for  𝛺𝐴 ≔ 𝐴([0,1]𝑛). 
(ii) The collection of sets {𝜆 + 𝐷𝐴: 𝜆 ∈ 𝐴} is a tiling of ℝ𝑛, where 𝐷𝐴 =
(𝐴𝑇)−1([0,1]𝑛). 
The main result gives a necessary and sufficient condition for a general set A to 

be a spectrum of  𝛺 in terms of a tiling of ℝ𝑛 by  𝐴 + 𝐷, where 𝐷 is  a specified 

auxiliary set in Fourier space. This result applies whenever a suitable auxiliary set 𝐷 

exists. We show that this is the case when 𝛺 is an 𝑛-cube, with 𝐷 also begin an 𝑛-cube, 

and obtain Theorem (1.2.1). 

Spectral sets were originally studied by Fuglede [21], who related them, to the 

problem of finding commuting self-adjoint extension in 𝐿2[𝛺] of the set of differential 

operators −𝑖
𝜕

𝜕𝑥1
, … , −𝑖

𝜕

𝜕𝑥𝑛
 defined on the common dense domain 𝐶𝑐

∞(𝛺). Our 

definition of spectrum differs from his by a factor of 2𝜋. Fuglede  showed that for 

sufficiently nice connected open regions 𝛺, each spectrum 𝐴 of  𝛺 (in our sense) has 

2𝜋𝐴 as a joint spectrum of a set of commuting self-adjoint extensions of  
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−𝑖
𝜕

𝜕𝑥1
, … , −𝑖

𝜕

𝜕𝑥𝑛
 and conversely. He also showed that only very special sets 𝛺 are 

spectral sets. In particular , Fuglede [21, p 120] made the following conjecture. 

A set 𝛺 in ℝ𝑛 is a spectral set if and only if it tiles ℝ𝑛 by translations. 

       Much work on spectral sets is due to Jorgenson and Pedersen (see [24]-[26], [33], 

and [34]), with additional work by Lagarias and Wang [30]. 

The spectral set conjecture concerns tiling’s by 𝛺 in the space domain, Theorem 

(1.2.2), describes spectra 𝐴 for the 𝑛-cube in terms of tiling in the Fourier domain by an 

auxiliary set 𝐷. in general there does not seem to be any simple relation between sets of 

translations 𝑇 used to tile 𝛺 in the space domain and the set of spectra 𝐴 for 𝛺 (see [25], 

[30], and [34]). We indicate a relation between the spectral set conjecture and tiling’s in 

the Fourier domain – this is discussed.  

Theorem (1.2.2), also implies a result concerning sampling and interpolation of 

certain classes of entire functions. Given a compact set 𝛺 of nonzero Lebesgue measure, 

let 𝐵2(𝛺) denote the set of band-limited functions on 𝛺,which are those entire functions 

𝑓: ℂ𝑛 → ℂ whose restriction to ℝ𝑛 is the Fourier transform of an 𝐿2-function with 

compact support contained in 𝛺. A countable set 𝐴 is a set of sampling for 𝐵2(𝛺) if 
there exist, 𝐴, 𝐵 > 0 such that for all 𝑓 ∈ 𝐵2(𝛺), 

𝐴‖𝑓‖2 ≤∑|𝑓(𝜆)|2

𝜆∈𝐴

≤ 𝐵‖𝑓‖2.                                              (11) 

A set of sampling is always a set of uniqueness for 𝐵2(𝛺), where a set 𝐴 is a set of 

uniqueness if  for each set of complex values {𝑐𝜆: 𝜆 ∈ 𝐴} with ∑|𝑐𝜆|
2 < ∞ there is at 

most one function 𝑓 ∈ 𝐵2(𝛺)  with 

𝑓(𝜆) = 𝑐𝜆,      for each  𝜆 ∈ 𝐴.                                              (12) 
A set 𝐴 is a set of interpolation for 𝐵2(𝛺) if for each such set {𝑐𝜆: 𝜆 ∈ 𝐴} there is at least 

one function 𝑓 ∈ 𝐵2(𝛺) such that (12) holds. It is clear that a spectrum 𝐴 of  a spectral 

set 𝛺 is both a set of sampling and a set of interpolation for 𝐵2(𝛺), so Theorem (1.2.2) 

immediately yields the following theorem. 

Theorem (1.2.3)[20]: Given a linear transformation 𝐴 in 𝐺𝐿(𝑛,ℝ), set  𝛺𝐴 = 𝐴([0,1]
𝑛) 

and 𝐷𝐴 = (𝐴
𝑇)−1([0,1]𝑛 ). If 𝐴 + 𝐷𝐴 is a tiling of  ℝ𝑛, then 𝐴 both a set of sampling 

and a set of interpolation for 𝐵2(𝛺𝐴). 
Here the set 𝐴 has density exactly equal to the Nyquist rate |det (𝐴)|, as is 

required by results of Landau (see [31], [32]) for sets of sampling and interpolation. 

We apply Theorem (1.2.1) to show that  in dimensions 𝑛 = 1 and 𝑛 = 2 any 

orthogonal set of exponentials in 𝐿2([0,1]𝑛) can be completed to a basis of  

exponentials of 𝐿2([0,1]𝑛)but that this is not always the case in dimensions 𝑛 ≥ 3.  
We conclude with two remarks concerning the relation of spectral sets and 

tiling’s. First, in comparison with other spectral sets, the 𝑛-cube [0,1]𝑛  has an 

enormous variety of spectra 𝐴. It seems likely that a “generic” spectral set  has a unique 

spectrum, up to translations. Second, the tiling result applies to more general sets 𝛺 than 

linearly transformed 𝑛-cubed 𝛺𝐴 = 𝐴([0,1]
𝑛); we give the one-dimensional example 

𝛺 = [0,1] ∪ [2,3].  
After completing a preprint in early 1998, we learned that A. losevich  and S. 

Pedersen [23] simultaneously and independently obtained  a proof of  Theorem (1.2.1) 
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by a different approach M. Kolountzakis and [28] has showed Conjecture (1.2.12) 

below, building on the approach. 

Natation (1.2.4)[20]: For 𝑥 ∈ ℝ𝑛, let ‖𝑥‖ denote the Education length of 𝑥. We let 

𝐵(𝑥, 𝑇) ≔ {𝑦: ‖𝑦 − 𝑥‖ ≤ 𝑇} 
denote the ball of radius 𝑇 centered at 𝑥. The Lebesgue measure of  a set 𝛺 in ℝ𝑛 is 

denoted 𝑚(𝛺). The Fourier transform 𝑓(𝑢) is normalized by 

𝑓(𝑢) ≔ ∫ 𝑒−2𝜋𝑖(𝑢,𝑥) 𝑓(𝑥)𝑑𝑥

ℝ𝑛

. 

We let  

𝑒𝜆(𝑥) ≔ 𝑒2𝜋𝑖(𝜆,𝑥),      for 𝑥 ∈ ℝ𝑛.                                        (13) 
Some (see [21], [26]) define 𝑒𝜆(𝑥) differently , without the factor 2𝜋 in the exponent .  

We consider packing’s and tiling’s in ℝ𝑛 by compact sets 𝛺 of the following 

kind. 

Definition (1.2.5)[20]: A compact set 𝛺 in ℝ𝑛 is a regular region if it has positive 

Lebesgue measure 𝑚(𝛺) > 0, is the closure of its interior 𝛺𝑜, and has a boundary 𝜕𝛺 =
𝛺 𝛺𝑜⁄  of measure zero. 

Definition (1.2.6)[20]: If 𝛺 is a regular region, then a discrete set 𝐴 is a packing set for 

𝛺 if the sets {𝛺 + 𝜆 ∶ 𝜆 ∈ 𝐴} have disjoint interiors. It is a tiling set if, in addition,                                               

the union of the sets {𝛺 + 𝜆 ∶ 𝜆 ∈ 𝐴} covers ℝ𝑛. In these cases we say 𝐴 + 𝛺 is a 

packing or tiling of  ℝ𝑛 by 𝛺, respectively. 

To a vector λ in ℝ𝑛, we associate the exponential function. 

𝑒𝜆(𝑥) ≔ 𝑒2𝜋𝑖〈𝜆 ,𝑥〉,         for  𝑥 ∈ ℝ𝑛.                                       (14) 
Given a discrete set 𝐴  in  ℝ𝑛 , we set 

𝐵𝐴 ≔ {𝑒𝜆(𝑥): 𝜆 ∈ 𝐴}.                                                     (15) 
Now suppose that 𝐵𝐴 restricted to a regular region 𝛺 gives an orthogonal set of 

exponentials in  𝐿2(𝛺). We derive conditions that the points of 𝐴 must satisfy. Let  

𝑥𝛺(𝑥) = {
1, for 𝑥 ∈ 𝛺,
0, for 𝑥 ∉ 𝛺

                                                   (16) 

be the characteristic function of 𝛺, and consider its Fourier transform 

𝑥𝛺(𝑢) = ∫ 𝑒−2𝜋𝑖〈𝑢,𝑥〉𝑥𝛺(𝑥)𝑑𝑥,

ℝ𝑛

    𝑢 ∈ ℝ𝑛.                                 (17) 

Since 𝛺 is compact, the function 𝑥𝛺(𝑢) is an entire function of 𝑢 ∈ ℂ𝑛. We denote the 

set of real zeros of  𝑥𝛺(𝑢) by  

        𝑍(𝛺) ≔ {𝑢 ∈ ℝ𝑛 ∶ 𝑥𝛺(𝑢) = 0}.                                       (18) 
Lemma (1.2.7)[20]: If 𝛺 is a regular region in ℝ𝑛, then a set 𝐴 gives an orthogonal set 

of exponentials 𝐵𝐴 in 𝐿2(𝛺) if and only if   

𝐴 − 𝐴 ⊆ 𝑍(𝛺) ∪ {0}.                                                 (19) 
Proof. For distinct  𝜆 , 𝜇 ∈ 𝐴 we have 

𝑥𝛺(𝜆 − 𝜇) = ∫ 𝑒−2𝜋𝑖〈𝜆−𝜇,𝑥〉𝑥𝛺(𝑥)𝑑𝑥

𝑅𝑛
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= ∫ 𝑒−2𝜋𝑖〈𝜆,𝑥〉𝑒2𝜋𝑖〈𝜇,𝑥〉𝑑𝑥

𝛺

= 〈𝑒𝜆, 𝑒𝜇〉𝛺.                   (20) 

If (19) holds, then 〈𝑒𝜆, 𝑒𝜇〉𝛺 = 0, and conversely.    

This lemma implies that the points of 𝐴 have the property of being “well-spaced” 

in the sense of being uniformly discrete; that is, there is some positive 𝑅 such that any 

two points are no closer than 𝑅. Indeed, since 𝑥𝛺(0) = 𝑚(Ω) > 0, the continuity of  

𝑥𝛺(𝑢) implies that there is some ball 𝐵(0, 𝑅) around zero that includes no point of  

𝑍(Ω)  hence, ‖𝜆 − 𝜇‖ ≥ ℝ for all 𝜆, 𝜇 ∈ 𝐴, 𝜆 ≠ 𝜇. 
Definition (1.2.8)[20]: Let Ω be a regular region in ℝ𝑛. A regular region 𝐷 is said to be 

an orthogonal packing region for Ω if   

                                   (𝐷𝑜 − 𝐷𝑜) ∩ 𝑍(Ω) = ∅.                                             (21) 
Lemma (1.2.9)[20]: Let Ω be a regular region in ℝ𝑛, and let 𝐷 be an orthogonal 

packing region for Ω. If a set 𝐴 gives an orthogonal set of exponentials 𝐵𝐴 in 𝐿2(𝛺), 
then 𝐴 is a packing set for 𝐷. 

Proof. If 𝜆 ≠ 𝜇 ∈ 𝐴, then Lemma (1.2.7) gives 𝜆 − 𝜇 ∈ 𝑍(𝛺). By definition of an 

orthogonal packing region we have 𝐷𝑂 ∩ (𝐷𝑂 + 𝑢) = ∅, for all 𝑢 ∈ 𝑍( 𝛺); hence 

𝐷𝑂 ∩ (𝐷𝑂 + 𝜆 − 𝜇) = ∅, 
is required. 

As indicated above, each regular region 𝛺 has an orthogonal packing region 𝐷 

given by a ball  𝐵(0, 𝑇) for small enough 𝑇. The larger we can take 𝐷, the stronger the 

restrictions imposed on 𝐴. 

Lemma (1.2.10)[20]: If Ω is a spectral set and if 𝐷 is an orthogonal packing region for 

Ω, then 

𝑚(𝐷)𝑚(𝛺) ≤ 1.                                                       (22) 
Proof. Let 𝐴 be a spectrum for Ω. Then 𝐴 is a set of sampling for 𝐵2(Ω), so the density 

results of Landau [31] (see also Gröchenig and Razafinjatovo [22]) give 

𝑑(𝐴) = lim
𝑛→∞

inf
1

(2𝑇)𝑛
 # (𝐴 ∩ [−𝑇, 𝑇]𝑛) ≥ 𝑚(Ω).                      (23) 

Now 𝐴 + 𝐷 is a packing of  ℝ𝑛, hence if 𝑅 = diam(𝐷), we have 
𝑚(𝐷)

(2𝑇)𝑛
 #  (𝐴 ∩ [−𝑇, 𝑇]𝑛) =

1

(2𝑇)𝑛
𝑚({⋃ (𝜆 + 𝐷): 𝜆 ∈𝜆 𝐴 ∩ [−𝑇, 𝑇]𝑛})  

≤
𝑚([−𝑇+𝑅,𝑇+𝑅]𝑛)

(2𝑇)𝑛
= (1 +

𝑅

2𝑇
)
𝑛
.                  (24)  

Letting 𝑇 → ∞ and taking the inferior limit yields 

𝑚(𝐷)𝑑(𝐴) ≤ 1,                                                       (25) 
and now (23); Yields (22). 

We give a self-contained proof of Lemma (1.2.10). The inequality of Lemma 

(1.2.10) Does not hold for general sets Ω. In fact the set 𝛺 = [0,1] ∪ [2, 2 + 𝜃]  for 

suitable irrational 𝜃 has a Fourier transform 𝑥𝛺(𝜉) that has no real zeros; so𝑍(Ω) = ∅, 

and any regular region 𝐷, of arbitrarily large measure, is an orthogonal packing region 

for Ω.  

In view of Lemma (1.2.10) we introduce the following terminology. 

Definition (1.2.11)[20]: An orthogonal packing region 𝐷 for a regular region Ω is tight 

if 
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𝑚(𝐷) =
1

𝑚(Ω)
.                                                        (26) 

This definition transforms in the Fourier domain under linear transformations: If 

𝐷 is a tight orthogonal packing region for a regular region Ω, then for any 𝐴 ∈ 𝐺𝐿(𝑛,ℝ)  
the set (𝐴𝑇)−1(𝐷) is a tight orthogonal packing region for 𝐴(Ω). 

There are many spectral sets that have tight orthogonal packing regions. We show 

that 𝐷 = [0,1]𝑛 is a tight orthogonal packing region for Ω = [0,1]𝑛. Another 

Example in ℝ1 is the region  

 Ω = [0,1] ∪ [2,3].                                                       (27) 
We can take 

𝐷 = [0,
1

4
] ∪ [

1

2
,
3

4
].                                                        (28) 

Indeed, 𝜒Ω(𝑥) is the convolution of 𝜒[0,1](𝑥) with the sum of two delta functions (𝛿0 +

𝛿2). Thus 

 �̂�Ω(𝑥) = (1 + 𝑒
−4𝜋𝑖𝑥)�̂�[0,1](𝑥).                                             (29) 

From this it is easy to check that the zero set is given by 

𝑧(Ω) = (ℤ\{0}) ∪ (
1

4
+ ℤ) ∪ (−

1

4
+ ℤ),                                (30) 

that 𝐷 is an orthogonal packing region for Ω, and, since 𝑚(𝐷) = 1 2⁄ = 1 𝑚(𝛺)⁄ , that 

D is tight. A spectrum for Ω is 𝐴 = ℤ ∪ (ℤ + (1 4⁄ )). 
Lemma (1.2.12)[20]: Together with the spectral set conjecture leads us to propose the 

following. 

Conjecture (1.2.13)[20]: If Ω tiles ℝ𝑛 by translations and if 𝐷 is an orthogonal packing 

region for Ω, then 

𝑚(𝛺)𝑚(𝐷) ≤ 1.                                                         (31) 
This conjecture has now been proved by Kolountzakis [28, theorem 7]. 

A main result is the following criterion that relates spectra to tilings in the Fourier 

domain. 

Theorem (1.2.14)[20]: Let Ω be a regular region in ℝ𝑛, and let 𝐴 be such that the of  

exponentials 𝔅𝐴 is orthogonal  for 𝐿2(Ω), suppose that 𝐷  is  a regular region with 

𝑚(𝛺)𝑚(𝐷) = 1                                                           (32) 
Such that 𝐴 + 𝐷 is a packing of  ℝ𝑛. Then 𝐴 is a spectrum for Ω if and only if 𝐴 + 𝐷 is  

a tiling of  ℝ𝑛.  

Proof. suppose first that 𝐴 is a spectrum for  Ω. pick a "bump function" 𝛾(𝑥) ∈ 𝐶𝑐
∞(Ω), 

and set  

𝛾𝑡(𝑥) = 𝑒
−2𝜋𝑖〈𝑡,𝑥〉𝛾(𝑥),    for 𝑡 ∈ ℝ𝑛. 

By hypothesis 𝔅𝐴 = {𝑒𝜆(𝑥): λ ∈ A} is orthogonal and complete for 𝐿2(Ω). Thus, on 𝛺, 

we have  

𝛾𝑡(𝑥)~∑
〈𝑒2𝜋𝑖〈𝜆,𝑥〉, 𝛾𝑡(𝑥)〉Ω

‖𝑒𝜆‖2
2 𝑒2𝜋𝑖〈𝜆,𝑥〉

𝜆∈𝐴

,                                (33) 

with coefficients 

〈𝑒2𝜋𝑖〈𝜆,𝑥〉, 𝛾𝑡(𝑥)〉Ω
‖𝑒𝜆‖2

2 =
1

𝑚(Ω)
 ∫ 𝑒−2𝜋𝑖〈𝜆,𝑥〉𝛾𝑡(𝑥)𝑑𝑥

Ω

=
1

𝑚(Ω)
∫ 𝑒−2𝜋𝑖〈𝜆+𝑡,𝑥〉𝛾(𝑥)𝑑𝑥

ℝ𝑛

 



13 

=
1

𝑚(Ω)
𝛾(𝜆 + 𝑡),                                                                                 (34) 

where 𝑚(Ω) is the Lebesgue measure of Ω. The rapid decrease of 𝛾 with increasing 

radius ‖𝑥‖ and the well-spaced property of 𝐴 show that the right side of (33)  
converges absolutely and uniformly on ℝ𝑛. Since  𝛾𝑡(𝑥) is continuous, we have  

𝛾𝑡(𝑥) =
1

𝑚(Ω)
∑𝛾(𝜆 + 𝑡)𝑒2𝜋𝑖〈𝜆,𝑥〉,

𝜆∈𝐴

       for all 𝑥 ∈ Ω.                      (35) 

This yields, for all 𝑡 ∈ ℝ𝑛, that  

𝛾(𝑥) = 𝑒2𝜋𝑖〈𝑡,𝑥〉𝛾𝑡(𝑥) =
1

𝑚(Ω)
 ∑𝛾(𝜆 + 𝑡)𝑒2𝜋𝑖〈𝜆+𝑡,𝑥〉,

𝜆∈𝐴

        for all 𝑥 ∈ Ω.        (36) 

The series on the right side of (36), converges absolutely and uniformly for all 𝑥 ∈ ℝ𝑛, 

and 𝑡 in any fixed compact subset of ℝ𝑛, but it is only guaranteed to agree with 𝛾(𝑥) for 

𝑥 ∈ Ω. 
We now integrate both sides of  (36)  in 𝑡 over all 𝑡 ∈ 𝐷 to obtain  

𝑚(𝐷)𝛾(𝑥) = 𝛾(𝑥) ∫ 𝑋𝐷(𝑡)𝑑𝑡

ℝ𝑛

=
1

𝑚(Ω)
 ∑∫ 𝛾(𝜆 + 𝑡)𝑒2𝜋𝑖〈𝜆+𝑡,𝑥〉

𝐷

𝑑𝑡  

𝜆∈𝐴

 

=
1

𝑚(Ω)
∫ 𝛾(𝑢)𝑒2𝜋𝑖〈𝑢,𝑥〉𝑑𝑢

𝐴+𝐷

,        for all 𝑥 ∈ Ω.           (37) 

In the last step we used the fact that the translates 𝜆 + 𝐷 overlap on sets of measure 

zero, because 𝐴 + 𝐷 is packing of  ℝ𝑛. Since 𝑚(𝐷) = 1 𝑚(⁄ Ω), (37) yields  

𝛾(𝑥) = ∫ ℎ(𝑢) �̂�(𝑢)𝑒2𝜋𝑖〈𝑢,𝑥〉𝑑𝑢,

ℝ𝑛

          for all 𝑥 ∈ Ω.                       (38) 

where 

ℎ(𝑢) = {
1, if 𝑢 ∈ 𝐴 + 𝐷,
0, otherewise.  

 

Define 𝑘 ∈ 𝐿2(ℝ𝑛) by �̂� = ℎ�̂�, so (38) asserts that 𝛾(𝑥) = 𝑘(𝑥) for almost all 𝑥 ∈ Ω. 

Plancherel’s  theorem on 𝐿2(ℝ𝑛) applied to 𝑘, together with (38), gives  

‖𝛾‖2
2 ≥ ‖ℎ�̂�‖2

2  = ‖𝑘‖2
2 ≥ ∫|𝑘(𝑥)|2 𝑑𝑥

Ω

= ∫|𝛾(𝑥)|2𝑑𝑥

Ω

= ‖𝛾‖2
2.          (39) 

Since plancherel’s theorem also gives ‖�̂�‖2
2 = ‖𝛾‖2

2,  we must have  

‖𝛾‖2
2 = ‖ℎ𝛾‖2

2.                                                                        (40)  
We next show that this equality implies that ℎ(𝑢) = 1 almost everywhere on ℝ𝑛. To  do 

this we show that 𝛾(𝑢) ≠ 0 in ℝ𝑛. Since 𝛾 has compact support, the paley-wiener 

theorem states that 𝛾(𝑢) is the restriction to ℝ𝑛 of an entire function on ℂ𝑛 that satisfies 

an exponential growth condition at infinity, see stein and Weiss [36, Theorem 4.9]. 

Thus 𝛾(𝑢) is real analytic on ℝ𝑛 and is not identically zero, hence  

𝑍 ≔ {𝑢 ∈ ℝ𝑛: �̂�(𝑢) = 0} 
has Lebesgue measure. Together with (40) this yields  

ℎ(𝑢) = 1,      a.e in ℝ𝑛.                                                 (41)  
Thus, 𝐴 + 𝐷 covers all ℝ𝑛 except a set of measure zero. 
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Finally we show that 𝐴 + 𝐷 covers all of ℝ𝑛. By the well-spaced property of 𝐴 

and the compactness of 𝐷, the set 𝐴 + 𝐷  is locally the union of finitely many translates 

of 𝐷 ; hence 𝐴 + 𝐷 is closed. Thus, the complement of 𝐴 + 𝐷 is an open set. But the 

complement of 𝐴 + 𝐷 has zero Lebesgue measure, hence, it is empty, so 𝐴 + 𝐷 is a 

tiling of  ℝ𝑛. 
Suppose 𝐴 + 𝐷 tiles ℝ𝑛. by hypothesis, 𝔅𝐴 is an orthogonal set in 𝐿2(𝛺), and to 

show that 𝐴 is a spectrum it remains to show that it is complete in 𝐿2(𝛺). Let 𝑆 be the 

closed span of 𝔅𝐴 in 𝐿2(𝛺).We show that 𝐶𝑐
∞(𝛺) is contained in 𝑆. Since 𝐶𝑐

∞(𝛺) is 

dense in 𝐿2(𝛺), this implies 𝑆 = 𝐿2(𝛺). 
For each 𝛾 ∈ 𝐶𝑐

∞(𝛺), set 

𝛾𝑡(𝑥) = 𝑒
−2𝜋𝑖〈𝑡,𝑥〉𝛾(𝑥),    for 𝑡 ∈ ℝ𝑛. 

Since the elements of  𝔅𝐴 are orthogonal, Bessel’s inequality gives  

‖𝛾𝑡‖
2 ≥∑

|〈𝑒𝜆, 𝛾𝑡〉|
2

‖𝑒𝜆‖
2

𝜆∈𝐴

=
1

𝑚(𝛺)
∑|𝛾(𝜆 + 𝑡)|2

𝜆∈𝐴

,                          (42) 

where the last series converges uniformly on compact sets by the rapid decay of 𝛾 at 

infinity.  Integrating this inequality over 𝑡 ∈ 𝐷 yields  

∫ ‖𝛾𝑡‖
2𝑑𝑡 ≥

1

𝑚(𝛺)
∫ ∑ |𝛾(𝜆 + 𝑡)|2 𝑑𝑡.𝜆∈𝐴𝐷𝐷

  

Since ‖𝛾𝑡‖ = ‖𝛾‖ for all 𝑡 and since 𝐴 + 𝑆 is a tiling, we obtain 𝑚(𝐷)‖𝑦‖2 ≥
‖�̂�‖2/𝑚(Ω). But 𝑚(𝐷) = 1/𝑚(Ω)  and ‖𝛾‖2 = ‖𝛾‖2, so equality must hold in (42). 

For almost all 𝑡: 

‖𝛾‖2 =∑
|〈𝑒𝜆, 𝛾𝑡〉|

2

‖𝑒𝜆‖2
2

𝜆∈𝐴

.                                                 (43) 

Now the right side of (43) converges uniformly on compact sets, so (43). holds for all 

𝑡 = 0. Hence   

‖𝛾‖2 =∑
|〈𝑒𝜆, 𝛾𝑡〉|

2

‖𝑒𝜆‖2
2

𝜆∈𝐴

, 

and so  𝛾 ∈ 𝑆. 
At first glance, the first half of this proof of Theorem (1.2.13) appears too good to 

be true because it only uses functions 𝛾𝑡(𝑥) supported on a fixed subset of Ω .But the 

relevant fact is the that sup 𝛾�̂� is dense in Fourier space ℝ𝑛. 

The proof of Theorem (1.2.13) yields a direct proof of  Lemma (1.2.10). If 𝐷 is 

an orthogonal packing set, then (37), holds for it, hence 𝑚(𝐷)𝑚(Ω)𝛾(𝑥) agrees with 

𝑘(𝑥) on Ω, and hence  

𝑚(𝐷)𝑚(Ω)‖𝛾‖2 ≤ ‖𝐾‖2 ≤ ‖𝛾‖2, 
which shows that (22) holds. 

The following result is an immediate corollary of Theorem (1.2.35) [1] , which 

we state as a theorem for emphasis. 

Theorem (1.2.15)[20]: Let Ω be a regular region in ℝ𝑛, suppose that 𝐷 is a tight 

orthogonal packing region for  Ω , then 𝐴 + 𝐷 is a tiling of  ℝ𝑛.  

Proof. the assumption that 𝐷 is tight orthogonal packing region guarantees that 𝐴 + 𝐷 

is a packing for all spectra 𝐴, so theorem (1.2.14), applies. 

Theorem (1.2.15) sheds some light on Fugled’s conjecture that every spectral  set 

Ω  tiles ℝ𝑛. 
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Definitions (1.2.16)[20]: A pair of regular regions (𝛺, �̂�) is a tight dual pair if each is a 

tight orthogonal packing region for the other. 

We show that ([0,1]𝑛, [0,1]𝑛) is a tight dual pair of regions; it follows that if  𝐴 ∈
𝐺𝐿(𝑛, ℝ), then (𝐴([0,1]𝑛), (𝐴𝑇)−1([0,1]𝑛)) is also a tight dual pair of regions. 

The sets ([0,1] ∪ [2,3], [0 ,
1

4
] ∪ [

1

2
 ,
3

4
 ]) are a tight dual pair in ℝ1. 

If (Ω, Ω̂) is a tight dual pair, then Theorem (1.2.14) states that if one of  (𝛺, �̂�) is 

a spectral set, say, 𝛺, then the other set �̂� tiles ℝ𝑛. if  �̂� were also  a spectral  set (as the 

spectral set conjecture implies), then Theorem (1.2.14) would show that 𝛺 tiles ℝ𝑛. This  

raises the question whether the current evidence in favor of Fuglede’s conjecture is 

mainly based on sets 𝛺 that appear in a tight dual pair (Ω, Ω̂). We can only say that 

there are many nontrivial examples of tight dual pairs. 

We formulate two conjectures. 

Conjecture (1.2.17)[20]: (Spectral set duality conjecture). If (Ω, Ω̂)a tight dual pair of 

regular regions is and if 𝛺 is a spectral set, then �̂� is also a spectral set. 

In this case Theorem (1.2.15) would imply that both Ω and �̂� tile ℝ𝑛. The 

corresponding tiling analogue of this conjecture is as follows. 

Conjecture (1.2.18)[20]: (weak spectral set conjecture). If (Ω, Ω̂) is a tight dual pair of 

regular regions and if one of them tiles ℝ𝑛, then so does the other, and both 𝛺 and �̂�  
are spectral sets. 

We prove Theorem (1.2.1). We use the following basic result of  Keller [27], 

which gives a necessary condition for a set 𝐴 to give a cube tiling. 

Proposition (1.2.19)[20]: (Keller’s criterion). If  𝐴 + [0,1]𝑛 is a tiling of ℝ𝑛, then each 

𝜆, 𝜇 ∈ 𝐴 has  

𝜆𝑖 − 𝜇𝑖 ∈ ℤ ∖ {0}      for some 𝑖 , 1 ≤ 𝑖 ≤ 𝑛.                             (44)  
Proof. This result was proved by Keller [27] in 1930. A detailed proof appears in 

Perron [35, Satz 9].  

The following lemma shows that Keller’s necessary condition for a cube tiling is 

the same orthogonality of exponentials in the set 𝐴. 

Lemma (1.2.20)[20]: 𝔅𝐴 ≔ {𝑒2𝜋𝑖〈𝜆,𝑥〉: 𝜆 ∈ 𝐴} gives a set of orthogonal functions in 

𝐿2([0,1]𝑛) if and only if ,for any distinct 𝜆, 𝜇 ∈ 𝐴, 

𝜆𝑗 − 𝜇𝑗 ∈ ℤ ∖ {0},      for some  𝑗 , 1 ≤ 𝑗 ≤ 𝑛.                         (45) 

Proof.  For 𝛺 = [0,1]𝑛 and  𝑢 ∈ ℝ𝑛,  

𝑥𝛺(𝑢) = ∫ 𝑒−2𝜋𝑖〈𝑢,𝑥〉𝑑𝑥

[0,1]𝑛

=∏ℎ0(𝑢𝑗),

𝑛

𝑗=1

 

where ℎ0(𝜔) ≔ (1 − 𝑒−2𝜋𝑖𝜔) (−2𝜋𝑖𝜔)⁄ ,𝜔 ∈ ℝ , and ℎ0(0) ≔ 1. Note that ℎ0(𝜔) ≔

0. If and only if 𝜔 ∈ ℤ ∖ {0}. Hence, 𝑥𝛺(𝑢) = 0 if and only if 𝑢𝑗 ∈ ℤ ∖ {0} for 

some 𝑗, 1 ≤ 𝑗 ≤ 𝑛.  The lemma now follows immediately from Lemma (1.2.7). 

This appendix determines in which dimensions 𝑛 every orthogonal set of 

exponentials on the 𝑛-cube can be extended to an orthogonal basis of 𝐿2([0,1]𝑛).  
Theorem (1.2.21)[20]: In dimensions 𝑛 = 1 and 𝑛 = 2,any orthogonal set of 

exponentials can be completed to an orthogonal basis of exponentials of  𝐿2([0,1]𝑛). In 

dimensions 𝑛 ≥ 3, this is not always the case. 
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Proof. we say that a cube packing Γ + [0,1]𝑛 is orthogonal if for distinct 𝛾, 𝜇 ∈ Γ,  
𝛾𝑗 − 𝜇𝑗 ∈ ℤ ⧵ {0},     for  some 𝑗 , 1 ≤ 𝑗 ≤ 𝑛.                             (46) 

Now Proposition (1.2.19) (Keller’s criterion) and Lemma (1.2.20), together imply that 

an orthogonal set of exponentials {𝑒2𝜋𝑖〈𝛾𝑥〉: 𝛾 ∈ Γ} in 𝐿2([0,1]𝑛). Corresponds to an 

orthogonal cube packing using Γ. By Theorem (1.2.1), the question of whether an 

orthogonal set of exponentials in 𝐿2([0,1]𝑛) can be extended to an orthogonal basis of 

exponentials of 𝐿2([0,1]𝑛) is equivalent to asking whether the associated orthogonal 

cube packing in ℝ𝑛 can be completed to a cube tiling by adding extra cubes. 

Using the known structure of one- and two-dimensional cube tilings , it is 

straight-forward to check that a completion of any orthogonal cube packing is always 

possible. (Two-dimensional cube tiling’s always partition into either all horizontal rows 

of cubes or all vertical columns of cubes). 

To show  that extendibility is not  always possible in dimension 3, consider the 

set of four cubes {𝑣(𝑖) + [0,1]3: 1 ≤ 𝑖 ≤ 4} in ℝ3 , given by  

𝑣(1) = (−1,0,−
1

2
),  

𝑣(2) = (−
1

2
, −1, 0),  

𝑣(3) = (0,−
1

2
, −1),  

𝑣(4) = (
1

2
,
1

2
,
1

2
 ).  

The orthogonality condition (46) is easily verified. The cubes corresponding to 𝑣(1) 

through 𝑣(3) contain (0 ,0 ,0) on their boundary and create a corner (0 ,0,0). Any cube 

tiling that extended {𝑣𝑖 + [ 0 ,1 ]3 ∶ 1 ≤ 𝑖 ≤ 3} would have to fill this corner by 

including the cube [0,1]3. However, [0,1]3 has nonempty interior in common with 𝑣4 +
[0,1]3.  

This construction easily generalizes to  ℝ𝑛 for 𝑛 ≥ 3. 
Section (1.3): Non-Uniform Gabor Bases 

For ℱ and 𝒯 be two discrete subsets ℝ𝑑, and let g(𝑥) ∈ 𝐿2(ℝ𝑑). The Gabor 

system (also known as the Weyl-Heisenberg system) with respect to ℱ,𝒯 and g is 

following family of functions in 𝐿2(ℝ𝑑): 

𝐺(ℱ, 𝒯, g) ≔ {𝑒2𝜋𝑖𝜆𝑥g(𝑥 − 𝑝) ⎸𝜆 ∈ ℱ, 𝑝 ∈ 𝒯}.                             (47) 
Such a family was first introduce by Gabor [49] in 1946 for signal processing, and is 

still widely used today. We call 𝐺(ℱ, 𝒯, g) an (orthonormal) Gabor basis if it is an 

orthonormal basis for 𝐿2(ℝ𝑑), and a Gabor frame if it is a frame for 𝐿2(ℝ𝑑). Gabor 

bases and frames have been extensively studied. Apart from their important applications 

in digital signal processing, they are significant mathematical entities on their own. 

They are an integral part of time-frequency analysis, and are closely related to the study 

of wavelets and spectral sets.  

Most of the study of Gabor bases have focused on "uniform" sets ℱ and 𝒯, i.e. 

they are taken to be lattices. For full rank lattices ℱ = 𝐴(ℤ𝑑) and 𝒯 = 𝐵(ℤ𝑑), a Gabor 

basis 𝐺(ℱ, 𝒯, g) must satisfy |det (𝐴𝐵)| = 1, see [64] for 𝑑 = 1 and [63] for arbitrary 𝑑. 

Conversely, if |det (𝐴𝐵)| = 1 then there exists a function g(𝑥) ∈ 𝐿2(ℝ𝑑) such that 

𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis, see [52]. The function g is not necessarily 

compactly supported. A compactly supported g can be found if  ℱ and 𝒯∗(the dual 
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lattice of 𝒯) are commensurable. Also known is the Balian-Low theorem, which states 

that if 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis and g is compactly supported then g 

cannot be very smooth, see [38].  

The study of non-uniform or irregular Gabor bases and frames, i.e. those without 

the lattice condition on ℱ or 𝒯, has gained considerable interest (see,  [42]). It is known 

that if 𝐺(ℱ, 𝒯, g) is a Riesz basis then both ℱ and 𝒯 must be uniformly discrete, i.e 

there exists an 𝜀 > 0 such that they are 𝜀-separated. The density result by Ramanthan 

and Steger [63] was actually established in a much more general setting. In a Gabor 

basis 𝐺(ℱ, 𝒯, g) the sets ℱ and 𝒯 satisfy the density condition 𝐷(ℱ)𝐷(𝒯) = 1 where 

𝐷(∙) is the Beurling density. For a set ℐ in ℝ𝑑 the upper and lower Beurling density of  

ℐ respectively are defined as   

𝐷+(ℐ) = lim sup
𝑟→∞

sup
𝑥 ∈ℝ𝑑

|ℐ ∩ (𝑥 + [0, 𝑟]𝑑|

|𝑟𝑑|
, 

𝐷−(ℐ ) = lim inf
𝑟→∞

inf
𝑥∈ℝ𝑑

|ℐ ∩ (𝑥 + [0, 𝑟]𝑑|

|𝑟𝑑|
.    

If 𝐷+(ℐ) = 𝐷−(ℐ ) then 𝐷(ℐ) = 𝐷+(ℐ) = 𝐷−(ℐ ) is the Beurling density of ℐ. But 

oddly, despite the many studies on non-uniform Gabor bases none contained a single 

example of an orthonormal Gabor basis that is non-uniform in the sense that either ℱ or 

𝒯 is nonperiodic. We have not seen an example given in the Gabor literature in which 

an orthonormal Gabor basis has non-lattice ℱ and 𝒯. Another observation is that there is 

not a single example of a compactly supported orthonormal Gabor basis in which the 

generating function g(𝑥) does not satisfy |g(𝑥)| = (1 √𝜇(𝛺))𝑥𝛺(𝑥))⁄  for some 

bounded set 𝛺. These observations Lead to the following questions: Are there any non-

uniform orthonormal Gabor bases, and are there compactly supported orthonormal 

Gabor bases 𝐺(ℱ, 𝒯, g) in which |g(𝑥)| ≠ (1 √𝜇(𝛺))𝑥𝛺(𝑥))⁄ ?  

As we shall demonstrate, there are indeed non-uniform orthonormal Gabor bases 

in dimension 𝑑 ≥ 2. In the one dimension there exists orthonormal Gabor bases 

𝐺(ℱ, 𝒯, g) in which neither ℱ nor 𝒯 is a lattice. These results follow rather easily from 

the work on spectral sets. If g is compactly supported we establish: 

We assume that supp(g) is an interval, then the main theorem of ours below 

states that the only such orthonormal Gabor bases are the ‘‘trivial‘‘ bases. 

We shall use 𝑒(𝑥) to denote 𝑒2𝜋𝑖𝑥 . 
Lemma (1.3.1)[37]: Let 𝑓(𝑥) be a compactly supported function in 𝐿1(ℝ), and 𝒯 ⊂ ℝ 

be a discrete set with 𝐷+(𝒯) < ∞. Suppose that ∑ 𝑓(𝑥 − 𝑝) = 𝑐𝑝∈𝒯  for all 𝑥 ∈ ℝ. Then 

𝒯 is a union of (possibly translated) lattices  

𝒯 =⋃(𝐿𝑗ℤ + 𝑏𝑗)

𝑁

𝑗=1

 

for some real 𝐿𝑗 ≠ 0, and 𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑁. 

Proof. See [55]. 

Theorem (1.3.2)[37]: Let g(𝑥) ∈ 𝐿2(ℝ) be compactly supported and let ℱ,𝒯 be subset 

of ℝ. Suppose that 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis and ℱ is  periodic. Then  𝒯  

must be periodic. 
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Proof. ℱ is periodic so we may write ℱ = 𝐿ℤ +𝒜 for some 𝐿 ≠ 0 and finite set 𝒜 ⊂
ℝ. Without loss of generality we assume that 𝐿 = 1 and |𝐴| = 𝑚. 

Since we have an orthonormal Gabor basis 𝐺(ℱ, 𝒯, 𝑔) applying Parseval’s 

identity to the function 𝜙𝑡(𝑥) = 𝑋[𝑡,𝑡+1](𝑥) yields  

‖𝜙𝑡‖
2 = ∑∑|⟨𝜙𝑡(𝑥), 𝑒(𝜆, 𝑥)g(𝑥 − 𝑝)⟩|

2

𝜆∈ℱ𝑝∈𝒯

= ∑∑|∫ 𝑒(−𝜆𝑥)𝑔(𝑥 − 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡+1

𝑡

𝑑𝑥|

2

𝜆∈ℱ𝑝∈𝒯

= ∑∑∑|∫ 𝑒(−(𝑛 + 𝑎)𝑥)𝑔(𝑥 − 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑡+1

𝑡

𝑑𝑥|

2

𝑛∈ℤ𝑎∈𝐴𝑝∈𝒯

. 

Observe that {𝑒((𝑛 + 𝑎)𝑥): 𝑛 ∈ ℤ} is an orthonormal basis for 𝐿2([𝑡, 𝑡 + 1]) for any 𝑡. 
Therefore another application of parseval's identity yields 

∑|∫ 𝑒(−(𝑛 + 𝑎)𝑥)𝑔(𝑥 − 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑡+1

𝑡

|

2

𝑛∈ℤ

= ∫ |g(𝑥 − 𝑝)|2𝑑𝑥

𝑡+1

𝑡

. 

Thus  

‖𝜙𝑡‖
2 = ∑∑∑|∫ 𝑒(−(𝑛 + 𝑎)𝑥)g(𝑥 − 𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑡+1

𝑡

𝑑𝑥|

2

𝑛∈ℤ𝑎∈𝐴𝑝∈𝒯

= ∑∑∫ |g(𝑥 − 𝑝)|2𝑑𝑥

𝑡+1

𝑡𝑎∈𝐴𝑝∈𝒯

= |𝒜|∑∫ |g(𝑥 − 𝑝)|2𝑑𝑥

𝑡+1

𝑡𝑝∈𝒯

 

Now set (𝑡) = ∫ |g(𝑥)|2𝑑𝑥
𝑡+1

𝑡
. Then ∫ |g(𝑥 − 𝑝)|2𝑑𝑥

𝑡+1

𝑡
= 𝑓(𝑡 − 𝑝). We have 

‖𝜙𝑡‖
2 = 1 for all 𝑡. So  

∑∫ |g(𝑥 − 𝑝)|2𝑑𝑥

𝑡+1

𝑡𝑝∈𝒯

= ∑𝑓(𝑡 − 𝑝)

𝑝∈𝒯

= |𝒜|−1.                         (48) 

As g is compactly supported, so must be 𝑓(𝑡), and ∫ 𝑓(𝑡)𝑑𝑡 < ∞
ℝ

, By Lemma (1.3.1) 

𝒯  must  be a union of (possibly translated) lattices, 

𝒯 =⋃(𝐿𝑗ℤ + 𝑏𝑖)

𝑘

𝑗=1

 

for some real 𝐿𝑗 ≠ 0 and 𝑏𝑗, we claim that all 𝐿𝑖 𝐿𝑗⁄ ∈ ℚ, if not, say 𝐿1 𝐿2⁄  is irrational, 

then a theorem of  kronecker (see [43]) states that 𝐿1ℤ − 𝐿2ℤ  is  dense in ℝ. Hence 

there exist 𝑃1 ∈ 𝐿1ℤ + 𝑏1 and 𝑝2 ∈ 𝐿2ℤ + 𝑏2 such that 𝑝1 − 𝑝2 can become arbitrarily 

small. This contradicts the fact that g(𝑥 − 𝑝1) and g(𝑥 − 𝑝2) are orthogonal in 𝐿2(ℝ). 
Hence all 𝐿𝑗 must be commensurable. So 𝒯 is periodic, showing the theorem. 

We next show the following theorem. 

Lemma (1.3.3)[37]: Let 𝐺(ℱ, 𝒯, g) be an orthonormal Gabor basis. Then 𝐷(ℱ) and 

𝐷(𝒯) both exist and 𝐷(ℱ)𝐷(𝒯) = 1.  
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Proof. It was shown in [26] that 𝐷(ℱ × 𝒯) exists and is equal to 1.  But it is easy to 

show that 𝐷−(ℱ × 𝒯) = 𝐷−(ℱ)𝐷−(𝒯) and 𝐷+(ℱ × 𝒯) = 𝐷+(ℱ)𝐷+(𝒯). this lemma 

follows immediately. 

Lemma (1.3.4)[37]: Let ℱ be a uniformly discrete subset of ℝ with 𝐷+(ℱ) ≤ 1. 
suppose that for some sequence 𝑐𝜆: 𝜆 ∈ ℱ ∈ ℓ

2(ℱ)  we have   

∑ 𝑐𝜆
𝜆∈ℱ

𝑒(𝜆𝑥) = 0 

in 𝐿2([𝑎, 𝑏]) with 𝑏 − 𝑎 > 1  then 𝑐𝜆 = 0 for all 𝜆 ∈ ℱ. 

Proof. Assume 𝑐λ0 ≠ 0 for some 𝜆0 ∈ ℱ. Let ℱ0 = ℱ ⧵ {𝜆0}. then  

𝑒(𝜆0𝑥) =∑𝑏𝜆𝑒(𝜆𝑥)

𝜆∈

, 

where 𝑏𝜆 = −𝑐𝜆/𝑐𝜆0 in 𝐿2([𝑎, 𝑏]). A theorem of Young (see [67, p.129]) states that 

{𝑒(𝜆𝑥): 𝜆 ∈ ℱ0} is complete in 𝐿2([𝑎, 𝑏]). 
Now Theorem 2.4 of  seip [66] states that ℱ can be extended to ℱ′ so that 

{𝑒(𝜆𝑥): 𝜆 ∈ ℱ′} is a Riesz basis for 𝐿2([𝑎, 𝑏]). Therefore 

‖∑𝑐𝜆
𝜆∈ℱ

𝑒(𝜆𝑥)‖

2

≥ 𝐵∑|𝑐𝜆|
2

𝜆∈ℱ

 

for some 𝐵 > 0 this is a contradiction. 

Lemma (1.3.5)[37]: Let ℱ be a uniformly discrete subset of  ℝ  such that  𝐷−(ℱ) > 0. 
let {𝑐𝜆: 𝜆 ∈ ℱ} be a sequence in ℓ2(ℱ). Then 𝑓(𝑥) ≔ ∑ 𝑐𝜆𝜆∈ℱ 𝑒(𝜆𝑥) ∈ 𝐿2([𝑎, 𝑏]) for 

any interval [𝑎, 𝑏], and ‖𝑓‖2 ≤ 𝐶∑ |𝑐𝜆|
2

𝜆∈ℱ , where 𝐶 depends only on ℱ and 𝑏 − 𝑎. 
Proof. The fact that ℱ is uniformly discrete and 𝐷−(ℱ) > 0. Implies that there exists a 

sufficiently small 𝛿 > 0 such that {𝑒(𝜆𝑥): 𝜆 ∈ ℱ} is a frame for 𝐿2([𝑠, 𝑠 + 𝛿]) for any 𝑠. 
Let ‖∙‖𝛺 denote the  𝐿2-norm for 𝐿2(𝛺). It follows from [46] that the sum converges in 

𝐿2([𝑠, 𝑠 + 𝛿]) with  

‖𝑓‖[𝑠,𝑠+ 𝛿]
2 ≤ 𝐵∑|𝑐𝜆|

2

𝜆∈ℱ

,                                                  (49) 

where 𝐵 is the upper frame bound for the frame. Subdividing [𝑎, 𝑏] into 𝑘 ≤ (𝑏 − 𝑎)/𝛿 

intervals of length 𝛿 or less yields  

‖𝑓‖[𝑎 ,𝑏]
2 ≤ 𝐾𝐵∑|𝑐𝜆|

2

𝜆∈ℱ

.                                                 (50) 

We remark that if the condition 𝐷−(ℱ) > 0 is dropped in the above lemma then 

𝑓(𝑥) ≔ ∑ 𝑐𝜆𝜆∈ℱ 𝑒(𝜆𝑥) ∈ 𝐿2([𝑎, 𝑏]) still holds, see [67, section 4.3]. It is unclear 

whether (50) also holds. The weaker result is sufficient for our purpose. 

Lemma (1.3.6)[37]: Let 𝐺(ℱ, 𝒯, g) be an orthonormal Gabor basis for 𝐿2(ℝ) with 

supp(g) = [0, 𝑎]. Suppose that 𝐷(ℱ) = 1 and let 𝒯 = {𝑦𝑛: 𝑛 ∈ ℤ}  with 𝑦𝑛 < 𝑦𝑛+1. 

Then  𝑦𝑛+1 − 𝑦𝑛 ≤ 1 for all 𝑛 ∈ ℤ.   
Proof. Assume the lemma is false. Then without loss of generality we may assume 𝑦1 −
𝑦0 > 1 and 𝑦0 = 0. We shall derive a contradiction. 

Clearly 𝑎 ≥ 𝑦1, for if not then any function ℎ(𝑥) ∈ 𝐿2(ℝ), with supp(ℎ) ⊆
[𝑎, 𝑦1] will be orthogonal to all functions in 𝐺(ℱ, 𝒯, g), a contradiction. We now choose 

𝜀 > 0, such that 𝑦1 − 𝜀 > 1 and 𝑦−1 + 𝜀 < 0. Let 𝑓(𝑥) be any 𝐿2 function supported in 

[𝑎 − 𝜀, 𝑎], Then  
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𝑓(𝑥) =∑∑𝑐𝑛,𝜆𝑒(𝜆𝑥)g(𝑥 − 𝑦𝑛)

𝜆∈ℱ𝑛∈ℤ

,                                     (51) 

where 𝑐𝑛,𝜆 = ∫ 𝑓(𝑡)𝑒(−𝜆𝑡)g(𝑡 − 𝑦𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑡
𝑎

𝑎−𝜀
. By the choice of 𝜀 the coefficients 𝑐𝑛,𝜆 = 0 

for all but finitely many 𝑛, in particular 𝑐𝑛,𝜆 = 0 for all 𝑛 < 0. So  

𝑓(𝑥) = ∑∑𝑐𝑛,𝜆𝑒(𝜆𝑥)g(𝑥 − 𝑦𝑛)

𝜆∈ℱ

𝑁

𝑛=0

 

= ∑𝑐0,𝜆𝑒(𝜆𝑥)g(𝑥) +∑∑𝑐𝑛,𝜆𝑒(𝜆𝑥)g(𝑥 − 𝑦𝑛)

𝜆∈ℱ

𝑁

𝑛=1𝜆∈ℱ

.     (52) 

For 𝑛 > 1 we have 𝑦𝑛 ≥ 𝑦1 > 1, so g(𝑥 − 𝑦𝑛) = 0  for 𝑥 ∈ [0, 𝑦1 − 𝜀]. 
We now restrict 𝑓(𝑥) to 𝑥 ∈ [0, 𝑦1 − 𝜀] as a function in 𝐿2([0, 𝑦1 − 𝜀]), which is 

0. Note that ℱ is uniformly discrete and 𝐷−(ℱ) > 0, because 𝐺(ℱ, 𝒯, g) is an 

orthonormal basis. By Lemma (1.3.5) each sum ∑ 𝑐𝑛,𝜆𝑒(𝜆𝑥)𝜆∈ℱ  converges in  

𝐿2([0, 𝑦1 − 𝜀]) for each 𝑛.  Note that g(𝑥 − 𝑦𝑛) = 0 on [0, 𝑦1 − 𝜀]  for all 𝑛 > 0, so 

(52) yields  

0 = 𝑓(𝑥) = ∑𝑐0,𝜆𝑒(𝜆𝑥)

𝜆∈ℱ

g(𝑥) 

on [0, 𝑦1 − 𝜀] . But g(𝑥) ≠ 0 , on [0, 𝑦1 − 𝜀] .Thus 

∑𝑐0,𝜆𝑒(𝜆𝑥)

𝜆∈ℱ

= 0 

on [0, 𝑦1 − 𝜀] , it follows from Lemma (1.3.4) that 𝑐0,𝜆 = 0, for all 𝜆 ∈ ℱ. However, 

𝑐0,𝜆 = 〈𝑓(𝑥), 𝑒(𝜆𝑥)g(𝑥)〉 = 0 implies that 𝑓(𝑥)g(𝑥)̅̅ ̅̅ ̅̅  is orthogonal to the set of 

functions {𝑒(𝜆𝑥): 𝜆 ∈ ℱ} for all functions 𝑓(𝑥) with supp(𝑓) ⊆ [𝑎 − 𝜀, 𝑎]. This is a 

contradiction. 

For any ℱ ∈ ℝ the upper asymptotic density 𝐷𝑢(ℱ) is defined as  

𝐷𝑢(ℱ) ≔ lim sup
𝑟→∞

|ℱ ∩ [−𝑟 , 𝑟]|

2𝑟
. 

It is easy to see that 𝐷−(ℱ) ≤ 𝐷𝑢(ℱ) ≤ 𝐷
+(ℱ). In particular if 𝐷(ℱ) exists then 

𝐷𝑢(ℱ) = 𝐷(ℱ). The following lemma is a key to proving Theorem (1.3.8) it was 

proved in [57] in a much stronger form. We include the weak form here for 

completeness. 

Lemma (1.3.7)[37]: Let ℱ be a subset of ℝ with 𝐷(ℱ) = 1.Suppose that 𝐷𝑢(ℱ − ℱ) ≤
1. Then ℱ − ℱ = ℤ. 
Proof. Without loss of  generality we assume that 0 ∈ ℱ. Hence ℱ − ℱ ⊇ ℱ. Clearly 

this means 𝐷𝑢(ℱ − ℱ) ≥ 𝐷(ℱ) = 1. This yields 𝐷𝑢(ℱ − ℱ) = 1. We show ℱ − ℱ  is a 

group. 

Denote 𝐺 = ℱ − ℱ. For any 𝑎 ∈  ℱ observe that ℱ − 𝑎 has Beurling density 

𝐷(ℱ − 𝑎) = 1. But ℱ − 𝑎 ⊆ 𝐺 and 𝐷𝑢(𝐺) = 1. This implies that 𝐺 = (ℱ − 𝑎) ∪ 𝜀𝑎 

with 𝐷𝑢(𝜀𝑎) = 0 .Similarly 𝐺 = (ℱ − 𝑏) ∪ 𝜀𝑏 for any 𝑏 ∈ ℱ with 𝐷𝑢(𝜀𝑏) = 0. Denote 

ℱ𝑎 ,𝑏 = (ℱ − 𝑎) ∩ (ℱ − 𝑏). We therefore must have 𝐷𝑢(ℱ𝑎 ,𝑏) = 1, since 𝐺 ⧵ ℱ𝑎 ,𝑏 =

𝜀𝑎 ∪ 𝜀𝑏 has Beurling density 0. It follows that 𝐷𝑢(ℱ𝑎 ,𝑏 + 𝑏) = 1. In other words, ℱ ∩
(ℱ − 𝑎 + 𝑏) has upper asymptotic density 1. 



21 

Now take any 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℱ. The above yields that both ℱ ∩ (ℱ − 𝑎1 + 𝑏1) 
and ℱ ∩ (ℱ − 𝑎2 + 𝑏2) have upper asymptotic density 1. But both are subsets of  ℱ, 
which itself has upper asymptotic density 1. Therefore the two sets must intersect, or the 

upper asymptotic density of 1. Therefore the two sets must intersect ,or the upper 

asymptotic density of  ℱ would have to be at least 2. This means there exist 𝑐1, 𝑐2 ∈ ℱ, 

such that 𝑐1 − 𝑎1 + 𝑏1 = 𝑐2 − 𝑎1 + 𝑏1, which gives us (𝑏2 − 𝑎2) − (𝑏1 − 𝑎1) = 𝑐1 −
𝑐2) ∈ 𝐺. Since 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 ∈  ℱ are arbitrary we conclude that 𝐺  is closed under 

subtraction. Hence G is group. 

The only discrete subgroups of ℝ with bounded densities are cyclic groups. So 

𝐺 = 𝐿ℤ  for some ∈ ℝ . But the density of 𝐺 is 1. Hence 𝐺 = ℱ − ℱ = ℤ. 
Theorem (1.3.8)[37]: Let g(𝑥) ∈ 𝐿2(ℝ) such that supp(g) is an interval, and let  ℱ, 𝒯 

be subset of ℝ. Suppose that 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis. Then both ℱ and 

𝒯 must be (possibly translated) lattices. In other words there exist real numbers 𝑎 > 0 

and 𝑏1, 𝑏2 such that ℱ = 𝑎ℤ + 𝑏1 and 𝒯 = 𝑎−1ℤ + 𝑏2. Furthermore, |g(𝑥)| = √𝑎𝑥𝛺(𝑥) 
where 𝛺 is an interval of length 𝑎−1. 

Proof. Without loss of generality we may assume that 𝐷(ℱ) = 𝐷(𝒯 ) = 1 by lemma 

(1.3.3), 0 ∈ ℱ, 0 ∈ 𝒯 and that 𝑠𝑢𝑝𝑝(g) = [0, 𝑎]. Since 𝒯 is uniformly discrete we may 

write it as 𝒯 = {𝑦𝑛: 𝑛 ∈ ℤ} in ascending order.  

Claim (1.3.9)[37]: ℱ = ℤ And if  0 < 𝑎 − (𝑦𝑘 − 𝑦𝑛) ≤ 1, then  𝑎 − (𝑦𝑘 − 𝑦𝑛) = 1. 

Proof. For 0 < 𝑏 ≔ 𝑎 − (𝑦𝑘 − 𝑦𝑛) ≤ 1 let ℎ(𝑥) = g(𝑥 − 𝑦𝑛)g(𝑥 − 𝑦𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Then ℎ(𝑥) is  

supported on an interval of length 𝑏 ≤ 1. The orthogonality of Gabor basis yields  

ℎ̂(𝜉) = 0. for all  𝜉 ∈ ℱ − ℱ, 𝜉 ≠ 0. (we would even have ℎ̂(0) = 0 if 𝑘 ≠ 𝑛. ) 

      But note that by the Paley-Wiener theorem ℎ̂ is an entire function of exponential 

type restricted to  the real’s, and such functions can note have "too many" zeros. In fact, 

it follows from Theorem 8.4.16 of Boas [40] that the set of zeros of ℎ̂  has an upper  

asymptotic density at most 𝑏, i.e. 𝐷+(ℱ − ℱ) ≤ 𝑏 ≤ 1. It follows from 𝐷(𝑓) = 1 and 

Lemma (1.3.7) that 𝑏 = 1 and ℱ − ℱ = ℤ. Since 0 ∈ ℱ we get ℱ ⊆ ℤ.  
Now suppose that ℱ ≠ ℤ. Then we may replace ℱ by ℤ and the orthonormality is 

again satisfied with the new Gabor system 𝐺(ℤ , 𝒯, g). This contradicts the fact that 

𝐺(ℱ, 𝒯, g) is a basis. Therefore ℱ = ℤ. The claim is proved. 

 We next show 𝒯 =  ℤ by showing that  for any 𝑛 we have 𝑦𝑛 − 𝑦𝑛−1 = 1. 
Assume that this is not true, then there exists an 𝑛 such that 𝑦𝑛 − 𝑦𝑛−1 < 1. We choose 

𝑘 to be the largest index such that 0 ≤ 𝑦𝑘 − 𝑦𝑛 < 𝑎. Since each yj+1 − yj ≤ 1 . By 

lemma (1.3.4), 0 < 𝑎 − (𝑦𝑘 − 𝑦𝑛) ≤ 1. It follows from the claim that 𝑎 − (𝑦𝑘 − 𝑦𝑛) =
1. But we now have 0 < 𝑎 − (𝑦𝑘 − 𝑦𝑛−1) < 1 Because 𝑦𝑛 − 𝑦𝑛−1 < 1.  This 

contradicts claim (1.3.9). Hence   𝑦𝑛 − 𝑦𝑛−1 = 1 , for all n and  𝒯 = ℤ. 
 Finally we show 𝑎 = 1 and |g(𝑥)| = 𝑋[0,1](𝑥). 𝑖𝑡  is easy to see that 𝑎 ≥ 1, which  

in fact  follows from the claim. Assume that 𝑎 > 1. Then there exists an 𝑛 ≠ 0 such that 

0 < 𝑏 ≔ 𝑎 − 𝑛 ≤ 1. (the claim actually gives 𝑏 = 1, but we don’t need it). Now the 

function ℎ(𝑥) = g(𝑥)g(𝑥 − 𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is supported on [𝑛, 𝑎] and is orthogonal to 𝑒(𝜆𝑥) for all 

𝜆 ∈ ℱ = ℤ. This is impossible unless ℎ(𝑥) = 0, which is not the case since g is 

supported on [0, 𝑎 ]. Hence 𝑎 = 1. So |g|2(𝑥) is orthogonal to 𝑒(𝜆𝑥) for all 𝜆 ∈ ℤ ⧵ {0}.  
This forces |g|2(𝑥) = 𝑐. the orthonormality  of the Gabor basis now yields 𝑐 = 1, and 

|g| = 𝑋[0,1]. 
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 The study of orthonormal Gabor bases is actually closely related to the study of 

spectral sets and their spectra, a link that has not been exploited in the Gabor. A 

measurable set 𝛺 in ℝ𝑑 with positive and finite measure is called a spectral set  if there 

exists an ℱ ⊂ ℝ𝑑 such that set of exponentials {𝑒(𝜆. 𝑥): 𝜆 ∈ ℱ} is an orthogonal basis 

for 𝐿2(𝛺). In this case ℱ is called a spectrum of 𝛺. A spectral set 𝛺 may have more than 

one spectrum. Spectral sets have been studied rather extensively. The major unsolved 

problem concerning spectral sets is the following conjecture of Fuglede [48]. 

 Let 𝛺 be a set in ℝ𝑑 with positive and finite Lebesgue measure. Then 𝛺 is 

spectral set if and only if  𝛺 tiles ℝ𝑑 by translation. 

 Here by 𝛺 tiles we mean there exists a 𝒯 ⊂ ℝ𝑑   such that 𝛺 + 𝒯 is a measure-

disjoint covering of  ℝ𝑑, i.e ∑ 𝑥𝛺 (𝑥 − 𝑝) = 1𝑝∈𝒯 , for almost all 𝑥 ∈ ℝ𝑑 . the set 𝒯 is 

called a tiling set for 𝛺. The spectral set conjecture remains open in either direction, 

even in dimension one and for sets that are unions of unit intervals. Furthermore, there 

appears to be a one-to-one correspondence between spectra of spectral set and its tiling. 

We give several examples, based on the study of spectral sets. First we establish: 

Lemma (1.3.10)[37]: let 𝛺 ⊂ ℝ𝑑   with 0 < 𝜇(𝛺) < ∞. Suppose that 𝛺 is spectral set 

with a spectrum ℱ and it tiles ℝ𝑑  by the tiling set 𝒯. Let g(x) be any function with |g| =

(1 √𝜇(𝛺))𝑥𝛺⁄ . Then 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis for 𝐿2(ℝ𝑑). 
Proof. The proof is rather standard, and we shall give a quick sketch here. The 

orthonormality is clear. Take any 𝑒(𝜆1. 𝑥)g(𝑥 − 𝑝1) and 𝑒(𝜆2. 𝑥)g(𝑥 − 𝑝2) in 

𝑮(ℱ,𝒯, g). If  𝑝1 ≠ 𝑝2 then g(𝑥 − 𝑝1) and g(𝑥 − 𝑝2) have disjoint support as a result of 

the tiling property. So the two functions are orthogonal. If  𝑝1 = 𝑝2 then 𝜆1 ≠ 𝜆2.  
Hence 〈𝑒(𝜆1. 𝑥), 𝑒(𝜆2. 𝑥)〉  = 0 by the spectral set property. Therefore   

〈𝑒(𝜆1. 𝑥)g(𝑥 − 𝑝1), 𝑒(𝜆2. 𝑥)g(𝑥 − 𝑝1)〉 = 〈𝑒(𝜆1. 𝑥), 𝑒(𝜆2. 𝑥)〉 = 0. 
To see the completeness observe that the set of functions {𝑒(𝜆. 𝑥)g(𝑥 − 𝑝): 𝜆 ∈ ℱ} is 

complete in 𝐿2(𝛺 + 𝑝 ) becouse ℱ is a spectrum for 𝛺 + 𝑝 and |g(𝑥 − 𝑝)| is a nonzero 

constant on 𝛺 + 𝑝. Now every 𝑓(𝑥) ∈ 𝐿2(ℝ𝑑) can be expressed as 𝑓(𝑥) = ∑ 𝑓𝑝(𝑥)𝑝∈𝒯  

where 𝑓𝑝(𝑥) ≔ 𝑓(𝑥)𝑥𝛺 (𝑥 − 𝑝) as a result of the tiling property. But 𝑓𝑝(𝑥) ∈

𝐿2(𝛺 + 𝑝 ). Standard  argument now implies 𝐺(ℱ, 𝒯, g) is complete in 𝐿2(ℝ), proving 

the lemma. 

 We shall refer to an orthonormal Gabor basis obtained in such a way as standard 

orthonormal Gabor basis. Standard Gabor bases nevertheless yield nontrivial examples 

of non-uniform Gabor bases.  

Example (1.3.11)[37]: In dimension 𝑑 ≥ 2 there exist compactly supported 

orthonormal Gabor bases 𝐺(ℱ, 𝒯, g) in which both  ℱ  and 𝒯 are nonperiodic.  

 Let 𝛺 = [0,1]𝑑 be the unit d-cube. it is well known that there are nonperiodic 

tilings using the unit cube. In fact, for 𝑑 ≥ 3 there are completely aperiodic cube tilings, 

see [59]. (For 𝑑 = 2 the tilings must be half periodic in the sense that it must be 

periodic either in the horizontal or in the vertical direction) one simple nonperiodic 

tiling set for the cube [0,1]2 in the two dimension is 

𝒯 = {(𝑛,𝑚 + 𝑒𝑛): 𝑛 ,𝑚 ∈ ℤ}, 
which is obtained from the standard lattice tiling by shifting the nth column by 𝑒𝑛. Let 

𝒯 be any nonperiodic tiling of  𝛺 and set ℱ = 𝒯. Now a theorem of lagarias et al. [58] 

(and independently by Iosevich and Pedersen [53]) states that ℱ must also be a spectrum 
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for 𝛺. Therefore for g(𝑥) = 𝑥𝛺 (𝑥) the Gabor system 𝐺(ℱ, 𝒯, g) is an orthonormal 

Gabor basis. By assumption neither ℱ nor 𝒯 is uniform. 

Example (1.3.12)[37]: In the one dimension there exist compactly supported 

orthonormal Gabor bases 𝐺(ℱ, 𝒯, g) in which neither ℱ nor 𝒯 is a lattice.   

 Let 𝛺 = [0,1] ∪ [2,3]. Again We know that this is a spectral set with spectrum  

 ℱ = ℤ + {0,
1

4
}, see, e.g, [61]. 𝛺 tiles with the tiling set 𝒯 = 4ℤ + {0,1}. Now for 

g(𝑥) = (1 √2⁄ )𝑥𝛺 (𝑥) the Gabor system 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis. 

However, neither ℱ nor 𝒯 is a lattice. 

Example (1.3.13)[37]:  In an orthonormal Gabor basis 𝐺(ℱ, 𝒯, g) having one of  ℱ or 𝒯 

being a lattice does not imply the other must be, even in the one dimension.   

 Let 𝛺 = [0,1] ∪ [3,4]. Again we know that this is a spectral set with two distinct 

spectra: ℱ1 = ℤ + [0,
1

6
] and ℱ2 =

1

2
ℤ.  𝛺 also has two distinct tiling sets 𝒯1 = 6ℤ +

[0,1,2] and 𝒯2 = 2ℤ. Let g(𝑥) = (1 √2) 𝑥𝛺⁄ (𝑥). We have an orthonormal Gabor basis 

𝐺(ℱ, 𝒯, g) by taking ℱ = ℱ1 and 𝒯 = 𝒯2, or by taking ℱ = ℱ2 and 𝒯 = 𝒯1. In either 

case, one is a lattice and the other is not.  

 We conclude with the following conjecture on orthonormal Gabor bases 

𝐺(ℱ, 𝒯, g). 
Conjecture (1.3.14)[37]: Let g(𝑥) ∈ 𝐿2(ℝ𝑑) be compactly supported. Let ℱ and 𝒯 be 

discrete sub-set of ℝ𝑑. Suppose that 𝐺(ℱ, 𝒯, g) is an orthonormal Gabor basis. Then 

𝐺(ℱ, 𝒯, g) must be standard.in the other words, there exists a spectral set 𝛺 in ℝ𝑑 such 

that 

(a) ℱ is a spectrum of  𝛺. 

(b) 𝒯 is a tiling of 𝛺. 

(c) |𝑔(𝑥)| = (1 √𝜇(𝛺)⁄ )𝑥𝛺(𝑥).  
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Chapter 2 

Atomic Characterizations and Arbitrary Sampling Points 
 

We show that for the spaces an atomic characterization similar to known 

characterization of Besov spaces can be given (with dilation being replaced by 

modulation). The main theorem is the following: Given 𝑠 ∈ 𝑅 and some 𝑔0 ≠ 0, 𝑔0 ∈

𝑀1,1
|𝑠|(𝑅𝑚)(e.g., 𝑔 ∈ 𝑆(𝑅𝑚) or 𝑔 ∈ 𝐿1 with compactly supported Fourier transform). 

Extend the work of Ramanathan and Steger. We show the conjecture that no collection 

⋃ {𝑔𝑘(𝑥 −  𝑎)}𝑎∈Γ𝑘
𝑟
𝑘=1  of pure translates can form a frame for 𝐿2(ℝ𝑑). For the 

perturbation of window functions we show that a Gabor frame generated by any 

window function with arbitrary sampling points remains a frame when the window 

function has a small perturbation in 𝑆0(ℝ
𝑑) sense. We also study the stability of dual 

frames, which is useful in practice. We give some general results and explain 

consequences to Gabor frames. 

Section (2.1): Modulation Spaces Through Gabor-Type Representations 

Theorem (2.1.1)[68]: There exist 𝛼0 > 0 and 𝛽0 > 0 such that, for 𝛼 ≤ 𝛼0 and 𝛽 ≤ 𝛽0, 

there exists 𝐶 = 𝐶(𝛼, 𝛽) > 0 with the following property: 𝑓 ∈ 𝑀𝑠
𝑝,𝑞(𝑅

𝑚) if and only  

if  𝑓 = ∑ 𝑎𝑛,𝑘𝑀𝛽𝑛𝐿𝛼𝑘 g 𝑛,𝑘 , for some double sequence of coefficients satisfying  

[∑(∑|𝑎𝑛,𝑘|
𝑝

𝑘

)

𝑞 𝑝⁄

(1 + |𝑛|)𝑠𝑞 

𝑛

]

1 𝑞⁄

≤ 𝐶‖𝑓 ⎸𝑀𝑠
𝑝,𝑞(𝑅

𝑚)‖. 

The convergence is in the sense of tempered distributions, and in the norm sense 

for  𝑝, 𝑞 < ∞. 

The investigation of modulation spaces has been suggested, starting at first from 

the simple idea of replacing the dyadic partition used in the characterization of Besov-

spaces by an equidistant one. It turned out that  the characterization used  in the abstract 

(here it would have been sufficient to assume that  g 0 ≠ 0 is any Schwartz function or 

 g 0 ∈ 𝐿
1 with compactly  supported Fourier transform, cf.[78], [79], kap.5.2) is more 

elegant  and admits shorter proof s  of some of the basic properties of these spaces, such  

the  invariance of  some of these  spaces under  the  Fourier transform.   

The most interesting among these spaces are 𝐿2(𝑅𝑚) = 𝑀2,2
0 (𝑅𝑚) and 𝑆0(𝑅

𝑚) =

𝑀1,1
0 (𝑅𝑚). For 𝑝 = 𝑞 = 2, 𝑠 = 0,𝑚 = 1 and  g 0 being the Gauss function, our results 

may considered as Gabor representation for 𝑓  (cf. [82]), however, with an estimate on 

the coefficients in ℓ2. This is in contrast to the classical situation (where the von 

Neumann lattice with 𝛼𝛽 = 2𝜋 is chosen; in that case the operators 𝐿𝑥 and 𝑀𝑡 involved 

commute, but unbounded coefficients may arise). For 𝑝 = 𝑞 = 1, 𝑠 = 0  one obtains an 

improved atomic characterization for the segal algebra 𝑆0(𝐺) and for 𝑝 = 𝑞 = ∞ of its 

dual space (cf.[76], [75],[81]). Atypical feature of our approach is the considerable 

freedom in the choice of 𝑔0 as “basic” function. 

We shall have the following results: 

Corollary (2.1.2)[68]: Given 𝑓 ∈ 𝑆(𝑅𝑚), 𝑠 ∈ ℝ and  g 0 ∈ 𝑆(𝑅
𝑚),  g 0 ≠ 0, there exists 

𝛼, 𝛽 > 0 (depending only on  g 0) such that 𝑓 ∈ ℒ𝑆
2(𝑅𝑚) ( the Bessel potential space, 

cf. [75]) if  and only if  
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𝑓 =∑𝑎𝑛 ,𝑘  𝑀𝛽𝑛 𝐿𝛼𝑘  g 0
𝑛,𝑘

 

For a double sequence satisfying [∑ ∑ |𝑎𝑛,𝑘|
2
(1 + |𝑛|)2𝑠𝑘𝑛 ]

1 2⁄

< ∞. 

Corollary (2.1.3)[68]: Given 𝑓 ∈ 𝐿1(𝑅𝑚) and  g 0 ∈ 𝑆0(𝑅
𝑚),  g 0 ≠ 0, there exists 

𝛼, 𝛽 > 0 (depending only on  g 0) such that 𝑓 ∈ 𝑆0(𝑅
𝑚) if  and only if 

𝑓 =∑𝑎𝑛,𝑘𝑀𝛽𝑛𝐿𝛼𝑘  g 0
𝑛,𝑘

 

for a double sequence satisfying  ∑ ∑ |𝑎𝑛,𝑘| < ∞𝑘𝑛  

            As mentioned already in [81] the special choice  g 0 = Gauss function implies a 

number of properties for 𝑆0(𝑅
𝑚) (which are stated for general Ica. groups in [75 ,76], 

using a fairly different approach). 

We want to summarize here a few facts concerning modulation spaces which may 

be defined as inverse images under the Fourier transform of certain Wiener-type spaces 

(for basic facts cf. [77] and [80]). In order to describe these spaces we need the 

following conventions: We shall need the weighted 𝐿𝑞-spaces 𝐿𝑠
𝑞(𝑅𝑚), given by 

𝐿𝑠
𝑞
≔ { 𝑓| ‖𝑓|𝐿𝑠

𝑞(𝑅𝑚)‖ ≔ ( ∫|𝑓(𝑥)|𝑞(𝑞 + |𝑥|)𝑠𝑞  

𝑅𝑚

)

1 𝑞⁄

< ∞} 

which are Banach spaces with respect to their natural norms for 1 ≤ 𝑞 ≤ ∞. Because 

𝜔 = 𝜔𝑠: 𝑥 → (1 + |𝑥|)
𝑠, 𝑠 > 0, satisfies 𝜔(𝑥𝑦) ≤ 𝐶𝜔(𝑥)𝜔(𝑦) for all 𝑥, 𝑦 ∈ 𝑅𝑚 it is a  

weight function on 𝑅𝑚 in the sense of Reiter [82], and 𝐿𝑠
𝑞
 is invariant under translation, 

given by 𝐿𝑥𝑓(𝑧) ≔ 𝑓(𝑧 − 𝑥). it also follows that 𝐿𝑠
1 is a Banach convolution algebra 

(called Beurling algebra, cf. [81]) for 𝑠 > 0 and one has 𝐿|𝑠|
1 ∗ 𝐿𝑠

𝑞
⊆ 𝐿𝑠

𝑞
 for 1 ≤ 𝑞 ≤ ∞, 

together with the corresponding norm estimate. 𝐶0(𝑅𝑚) Denotes the space of 

continuous, complex-valued functions vanishing at infinity, endowed with the sup-norm  
‖ ‖∞, and 𝑀(𝑅𝑚) denotes the space of bounded, regular measures on 𝑅𝑚, which is 

considered as the dual space to 𝐶0(𝑅𝑚) . We denote by ℱ𝐿𝑝 the image of  𝐿𝑝 

(considered as a subspace of  𝑆′(𝑅𝑚)) under the Fourier transform and assume that it is 

endowed with its natural norm, i.e, ‖𝑓‖
ℱ𝐿𝑝

≔ ‖ℱ‖𝐿𝑝. It is now clear from the basic 

properties of the Fourier transform that  ℱ𝐿𝑝 is a translation invariant Banach space of  

tempered distributions which is a point wise Banach module over ℱ𝐿1(𝑅𝑚). 
Consequently it is possible to define the Wiener-type spaces 𝑊(ℱ𝐿𝑝, 𝐿𝑠

𝑞
) (as by [77]) as 

follows: let 𝑘 ∈ 𝐷(𝑅𝑚) be any nonzero Window-function (one should think of a 

positive plateau-like function, satisfying 𝑘(𝑧) ≅ 1 on a compact set 𝑄, and define the 

control function as follows: 

𝑘(𝑓, 𝑘)(𝑡) ≔ ‖(𝐿𝑡𝑘)𝑓‖𝐹𝐿𝑝 ≔ ‖𝑀𝑡�̂� ∗ 𝑓‖𝐿𝑝        for 𝑡 ∈ 𝑅𝑚.  

Then  

 𝑊(ℱ𝐿𝑝, 𝐿𝑠
𝑞
) ≔ {𝑓 ∈ 𝑆′(𝑅𝑚)| 𝑓 ∈ (ℱ𝐿𝑝)𝑙𝑜𝑐 , 𝐾(𝑓, 𝑘) ∈ 𝐿𝑠

𝑞(𝑅𝑚)},  

Endowed with its natural norm ‖𝑓|𝑊(ℱ𝐿𝑝, 𝐿𝑠
𝑞
)‖ ≔ ‖𝐾(𝑓, 𝑘)|𝐿𝑠

𝑞
‖. 
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Using this definition it is easy to verify that these Wiener-type spaces are 

translation invariant, but also invariant under multiplication with characters. One has the 

following estimates for the operator norms of these operators: 

‖𝐿𝑥𝑓|𝑊(ℱ𝐿
𝑝, 𝐿𝑠

𝑞
)‖ ≤ (1 + |𝑥|)𝑠‖𝑓|𝑊(ℱ𝐿𝑝, 𝐿𝑠

𝑞
) ‖  For all 𝑥 ∈ 𝑅𝑚, 

And  

‖𝑀𝑡𝑓|𝑊(ℱ𝐿
𝑝, 𝐿𝑠

𝑞
)‖ = ‖𝑓|𝑊(ℱ𝐿𝑝, 𝐿𝑠

𝑞
) ‖ For all 𝑡 ∈ 𝑅𝑚. 

An essential tool for the discrete way of describing these spaces (this is the 

original definition of these spaces) is based on the existence of suitable partitions of 

unity. Since we do need the most general description in our situation we can stick to the 

following (restricted) definition of a bounded uniform partition of unity of size 𝛿 > 0 

(for short a 𝛿-BUPU) in ℱ𝐿1: 
Definition (2.1.4)[68]: Given 𝛿 > 0 any bounded family in the Banach space Ψ =
(𝜓𝑛)𝑛∈Ζ𝑚 in ℱ𝐿1(𝑅𝑚) is called a 𝛿-BUPU) in ℱ𝐿1 if the following properties hold: 

(BP1) There is a lattice 𝛿𝑍𝑚 in 𝑅𝑚 (for some positive 𝛿) such that supp 𝜓𝑛 ⊆
𝐵(𝛿𝑛, 𝛿) (the ball around 𝛿𝑛 with radius 𝛿). 

(BP2) ∑ 𝜓𝑛(𝑥) ≡ 1.𝑛∈𝑍𝑚  

    Using BUPUs one can give the following discrete characterization: 𝑓 ∈ 𝑊(ℱ𝐿𝑝, 𝐿𝑠
𝑞
) 

if and only if, for some BUPU, one has  

[ ∑ ‖𝑓𝜓𝑛‖
𝑞
ℱ𝐿𝑝
(1 + |𝑛|)𝑠𝑞

𝑛∈𝑍𝑚

]

1 𝑞⁄

< ∞ 

(and this expression gives an equivalent norm, cf.[77]). 

It is a consequence of this description that any window function 𝑘 as described 

above (even any Schwartz function or any 𝑘 ∈ 𝑊(ℱ𝐿1, 𝐿𝑠
1) defines the same space 

𝑊(ℱ𝐿𝑝, 𝐿𝑠
𝑞
) and gives an equivalent norm, cf. [79]. 

The modulation space 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) can now defined as inverse images of the spaces 

𝑊(ℱ𝐿𝑝, 𝐿𝑠
𝑞
) under the Fourier transform. The invariance properties of Wiener-type 

spaces are easily translated into invariance properties of modulation spaces. Thus one 

has isometric translation invariance and the following estimates for the multiplication 

Operators 𝑀𝑡: ‖𝑀𝑡𝑓|𝑀
𝑠
𝑝,𝑞‖ ≤ (1 + |𝑡|)

𝑠‖𝑓|𝑀𝑠
𝑝,𝑞‖. In particular, the spaces 𝑀1,1

|𝑠|(𝑅𝑚) 

are character invariant Segal algebras, isometrically translation invariant spaces in 

𝐿1(𝑅𝑚), complete with respect to their own norm, hence Banach ideals in 𝐿1(𝑅𝑚)(cf. 

[82; chapter 6 & 2.2] for details about Segal algebras). Since Fourier transformation is 

very well compatible with duality it is clear from the general results on decomposition 

spaces (of which Wiener-type spaces are a special case, cf. [80], [79], [78]) that 

modulation spaces show the natural behavior with respect to duality, i.e, one has 

(𝑀𝑝,𝑞
𝑠 (𝑅𝑛))′ = 𝑀𝑝′,𝑞′

−𝑠 (𝑅𝑛), for 1 ≤ 𝑝, 𝑞 < ∞. 

We want to show the atomic characterization of modulation spaces indicated in 

the abstract. Apparently we have to verify two partial results, one on synthesis (i.e, that 

expressions in the atomic characterizations are actually convergent to elements in 

𝑀𝑝,𝑞
𝑠 (𝑅𝑛) and, on the other hand , the decomposition result. We shall show the last 

mentioned first . Because 𝑀1,1
|𝑠|(𝑅𝑚) is a Segal algebra we shall write 𝑆 for this space 

throughout the proof (fixing 𝑠). 
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A) Let  g ∈ 𝑆 , g ≠ 0 be given, and ∈ 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) . We shall show decomposition 

result first with respect to functions  g ∈ 𝑆 with the additional property that supp  g ̂ ⊆
𝑘, some compact subset of  𝑅𝑚. Since it is possible to replace  g  by 𝑀𝛽𝑛  g , if 

necessary, we may assume that there exists 𝛿 > 0 such that  g ̂(𝑡) ≠ 0 for |𝑡| ≤ 𝛿. 
Applying Wiener’s theorem on the inversion of the Fourier transform (cf.[82; chapter 1 

& 3.6]) we find that there exists ℎ ∈ 𝐿1(𝑅𝑚) such that ℎ̂(𝑡) g ̂(𝑡) = 1 for all |𝑡| ≤ 𝛿. 

Without loss of generality we may assume that ℎ̂ has compact support, e.g., ℎ̂(𝑡) = 0 

for |𝑡| ≥ 2𝛿. Now let Φ = (𝜑𝑛)𝑛∈𝑍𝑚 be any bounded, uniform spectral decomposition 

of unity of Size ≤ 𝛿, i.e a family given as inverse image under the Fourier transform of 

a 𝛿-BUPU. Consequently we have 𝜎 = ∑ Ψ𝑛𝑛𝜖𝑧𝑚 ∗ 𝜎 for any 𝜎 ∈ 𝑠′(𝑅𝑚) (for 

example), where Ψ𝑛 = 𝑀𝛽𝑛Ψ0 for some Ψ0 with supp𝜓0̂  ⊆ 𝐵(0, 𝛿) =:𝑄. It is our 

main to start with this spectral decomposition, (at the moment we only have 

convergence in the week toplogy, but part C) will show that one has norm convergence 

for 1 ≤ 𝑝, 𝑞 < ∞). Since Ψ𝑛 = 𝑀𝛽𝑛 (Ψ0 ∗  g ∗ ℎ) we can write  

𝑓 =∑ (𝑀𝛽𝑛 (Ψ0 ∗  g ∗ ℎ)) ∗ 𝑓
𝑛∈𝑍𝑚

=: ∑ 𝑀𝛽𝑛 
𝑛∈𝑍𝑚

(𝑓𝑛 ∗  g ) 

With 𝑓𝑛 ≔ (𝜓0 ∗ ℎ) ∗ 𝑀−𝛽𝑛 𝑓. For later use let us fix the following constants:  

 (i) For any compact set 𝑄 ⊆ 𝑅𝑚 there exists 𝐶𝑄 > 0  such that  

‖𝑓|𝑀|𝑠𝑝,𝑞‖ ≤ 𝐶𝑄‖𝑓‖𝑝  

And (for later use) 

‖𝑓|𝑊(𝐶0, 𝐿𝑝)‖ ≤ 𝐶𝑄‖𝑓‖𝑝 For all 𝑓 ∈ 𝐿𝑝(𝑅𝑚) with supp𝑓 ⊆ 𝑄 

(cf. [77], Theorem 5 for a proof of the last statement). 

 (ii) Using the discrete version of the norm on Wiener-type spaces (cf.[9]) we 

know that there exists 𝐶Φ > 0 such that  

∑ ‖𝑓𝑛‖𝑝
𝑞
(1 + |𝛽𝑛|)

𝑠𝑞

𝑛∈𝑍𝑚

≤ ∑ ‖ℎ𝑛‖1
𝑞
‖𝑀𝛽𝑛 𝜓0 ∗ 𝑓 ‖𝑝

𝑞
(1 + |𝛽𝑛|)

𝑠𝑞

𝑛∈𝑍𝑚

≤ 𝐶∅
𝑝‖ℎ‖1

𝑞
‖𝑓|𝑀𝑝,𝑞

𝑠 (𝑅𝑚)‖
𝑞
. 

           We apply a variant of Shannon’s principle which will allow us to replace, given 

the 𝑓𝑛′𝑠  the convolution 𝑓𝑛 ∗  g   by a discrete sum of translates. Thus let us assume that 

𝑓 belongs to 𝐿𝑃(𝑅𝑚) and supp𝑓 ⊆ 𝑄. 

 We proceed as follows, having a look on the Fourier transform side and using the 

notation ⧢ for the (translation bounded) Radon measure given as ⧢≔ ∑ 𝛿𝑘𝑘∈𝑍𝑚  and 

⧢𝑝≔ ∑ 𝛿𝑝𝑘𝑘∈𝑍𝑚 . Since supp  g ̂ ⊆ 𝑘 (compact) there exists 𝜌 > 0 such that 𝑓 g ̂ =

[∑ (𝐿𝑝𝑘𝑓)] g ̂ = (⧢𝜌∗ 𝑓) g ̂ ,𝑘∈𝑍𝑚  or going back to the functions and using Poisson’s 

formula, telling us that ⧢ is invariant under the Fourier transform   

𝑓 ∗  g = ((𝑝−𝑚
⧢
1 𝑝⁄  ) 𝑓) ∗  g = 𝑝

−𝑚 ∑ 𝑓(𝑘 𝑝)𝐿𝑘 𝑝 g ⁄⁄𝑘∈𝑍𝑚 .  

Applying the same argument to each 𝑓𝑛 we have the following estimate for the sequence 

of coefficients 𝑎𝑛,𝑘 ≔ 𝑝−𝑚𝑓𝑛(𝑘 𝑝⁄ ): 

( ∑ |𝑎𝑛,𝑘|
𝑝

𝑘∈𝑍𝑚

)

1 𝑝⁄

≤ 𝐶𝑝‖𝑓𝑛|𝑊(𝐶
0, 𝐿𝑝)‖ ≤ 𝐶𝜌𝐶𝑄‖𝑓𝑛‖𝑝      for all 𝑛 ∈ 𝑍𝑚. 
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Which gives together with the previous estimates, the required sum ability properties for 

the double sequence ( 𝑎𝑛,𝑘). 
 B) Let us now consider the case of an arbitrary element 𝑔1 in 𝑆. Since the Segal 

algebra 𝑆 ⊆ 𝑆0(𝑅
𝑚) is continuously embedded into Wiener’s algebra 𝑊(𝑅𝑚) =

𝑊(𝐶0, 𝐿1) (cf. [76]), hence into the Segal algebra 𝑊(𝐿𝑃 , 𝐿1) for 1 ≤ 𝑝 < ∞, it is 

possible to approximate 𝑔1 in the norm of 𝑊(𝐿𝑃 , 𝐿1) by elements 𝑔 with compactly 

supported Fourier transform. In order to have the right constants (appropriate a priori 

estimates) let us note that we have the following facts at our disposition: 

 (iii) The family 𝜌−𝑚 ⧢1 𝜌⁄  is uniformly bounded in the space 𝑊(𝑀, 𝐿∞). 

 (iv) There is a universal constant 𝐶𝑝 > 0 (depending only on the norms used) 

such that the following estimates hold true (cf.[77], [80]): 

‖ g ‖1 ≤ 𝐶𝑝‖ g |𝑊(𝐿
𝑝, 𝐿1)‖  for all  g ∈ 𝑊(𝐿𝑝, 𝐿1), 

‖𝑓𝜇|𝑊(𝑀, 𝐿
𝑝)‖ ≤ 𝐶𝑝‖𝑓|𝑊(𝐶

0, 𝐿𝑝)‖ ‖𝜇|𝑊(𝑀, 𝐿𝑝)‖                                 

      for 𝑓 ∈  𝑊(𝐶0, 𝐿𝑝), 𝜇 ∈ 𝑊(𝑀, 𝐿𝑝), 
‖𝑣 ∗  g ‖𝑝 ≤ 𝐶𝑝‖𝑣|𝑊(𝑀, 𝐿

𝑝)‖ || g | |𝑊(𝐿𝑝 , 𝐿1)||                     

     for 𝑣 ∈ 𝑊(𝑀, 𝐿𝑝), g ∈ 𝑊(𝐿𝑝, 𝐿1).  
 (v) Combining these estimates (with (i) above), we find some constant 𝐶1𝑄 (only 

dependent on the common support of 𝑓 and 𝑝)  such that  

‖(𝜌−𝑚 ⧢
1 𝑝⁄
) 𝑓|𝑊(𝑀, 𝐿𝑝)‖ ≤ 𝐶𝑄

1‖𝑓‖𝑝    if supp𝑓 ⊆ 𝑄.  

 Writing for brevity, 𝐷𝜌𝑓 for (𝜌−𝑚 ⧢1 𝜌⁄ )𝑓 (discrete version of 𝑓), we obtain the 

following estimate in 𝐿𝑝 (still assuming supp𝑓 ⊆ 𝑄 and 𝜌 chosen depending on the 

support of �̂� as a bove): 

         ‖𝑓 ∗   g  1 − 𝐷𝑃𝑓 ∗   g  1‖𝑝  

     ≤ ‖𝑓 ∗ ( g 1 −  g )‖𝑝 + ‖𝑓 ∗  g − 𝐷𝜌𝑓 ∗  g ‖𝑝
+ ‖𝐷𝜌𝑓 ∗ ( g −  g 1)‖𝑝

  

         ≤ ‖𝑓‖𝑝‖ g −  g 1‖1 + 0 + 𝐶𝑝‖𝐷𝑝𝑓|𝑊(𝑀, 𝐿
𝑝)‖‖ g −  g 1|𝑊(𝐿

𝑝, 𝐿1)‖  

≤ ‖𝑓‖𝑝𝐶𝑝‖ g −  g 1|𝑊(𝐿
𝑝, 𝐿1)‖(1 + 𝐶1𝑄).  

Having this estimate (which does not depend on the support of  g ̂) it is clear that we can 

choose  g  such that  

‖ g −  g 1|𝑊(𝐿
𝑝 , 𝐿1)‖ ≤ (2𝐶𝑝(+𝐶

1
𝑄)𝐶𝑄𝐶𝜙‖ℎ‖1)

−1,  

hence  

‖𝑓 ∗  g 1 − 𝐷𝜌𝑓 ∗  g 1 ‖𝑝
≤ (2𝐶𝑄𝐶∅‖ℎ‖1)

−1‖𝑓‖𝑝.  

This estimate, being valid for each 𝑓 = 𝑓𝑛, we obtain, summing over 𝑛: 

‖𝑓 − ∑ 𝑀𝛽𝑛(𝐷Ψ
𝑛∈𝑍𝑚

𝑓𝑛 ∗  g )|𝑀𝑝,𝑞
𝑠 ‖ = ‖ ∑ 𝑀𝛽𝑛(( 𝑓𝑛 − 𝐷Ψ

𝑛∈𝑍𝑚

𝑓𝑛) ∗  g )|𝑀𝑝,𝑞
𝑠 ‖ 

≤ ∑ ‖𝑀𝛽𝑛| 𝑀𝑝,𝑞
𝑠 ‖

𝑛∈𝑍𝑚

‖ (𝑓𝑛 − 𝐷Φ 𝑓𝑛) ∗  g |𝑀𝑝,𝑞
𝑠 ‖          by (i) 

≤ ∑ (1 + |𝛽𝑛|)
𝑠𝑞𝐶𝑄‖( 𝑓𝑛 − 𝐷Ψ𝑓𝑛) ∗  g ‖𝑝

𝑛∈𝑍𝑚

 

≤ 𝐶𝑄 ∑ (1+ |𝛽𝑛|)
𝑠𝑞‖𝑓𝑛‖𝑝(2𝐶𝑄𝐶Φ‖ℎ‖1)

−1

𝑛∈𝑍𝑚

         (by (ii)) 
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                                    ≤ (2𝐶Φ𝐶Q‖ℎ‖1)
−1
𝐶𝑄𝐶Φ‖ℎ‖1‖𝑓|𝑀𝑝,𝑞

𝑠 ‖ = 1 2⁄ . ‖𝑓|𝑀𝑝,𝑞
𝑠 ‖.  

We have thus found a linear mapping 𝑇Ψ: 𝑓 ⟶ ∑ 𝑀𝛽𝑛(𝐷Ψ𝑛∈𝑍𝑚 𝑓𝑛 ∗  g ), such that Id-𝑇Ψ  

is a contraction on 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) for 1 ≤ 𝑝, 𝑞 < ∞.  consequently 𝑇Ψ is invertible on 𝑀𝑝,𝑞

𝑠  

and we have  

𝑓 = 𝑇Ψ(𝑇Ψ
−1 𝑓) = 𝑇Ψ (∑(𝐼𝑑 − 𝑇Ψ)

𝑖(𝑓)

∞

𝑖=𝑜

) ≔ 𝑇Ψ(ℎ),   with  ℎ ∈ 𝑀𝑝,𝑞
𝑠 (𝑅𝑚). 

Since ‖ℎ|𝑀𝑝,𝑞
𝑠 ‖ ≤ 𝐶‖𝑓|𝑀𝑝,𝑞

𝑠 ‖ we have  

𝑓 = 𝑇Ψ(ℎ) = ∑ 𝑎𝑛,𝑘𝑀𝛽𝑛𝐿𝛼𝑘 g ,𝑛,𝑘   

with 

[∑(∑|𝑎𝑛,𝑘|
𝑝

𝑘𝑛

)𝑞 𝑝⁄ (1 + |𝛽𝑛 |)
𝑠𝑞]

1 𝑞⁄

≤ 𝐶2‖ℎ|𝑀𝑝,𝑞
𝑠 ‖ ≤ 𝐶2𝐶‖𝑓|𝑀𝑝,𝑞

𝑠 ‖, 

and the proof is complete in this case. 

 C) We have now to discuss the synthesis problem, i.e, given any element in 𝑆 =

𝑀1,1
|𝑠|(𝑅𝑛). And a double sequence (𝑎𝑛,𝑘) satisfying the sum ability condition stated 

above, the corresponding Gabor sum defines an element of 𝑀𝑝,𝑞
𝑠 (𝑅𝑚).  

 Given now  g ∈ 𝑀1,1
|𝑠|(𝑅𝑛)  we start splitting it by means of a uniform spectral 

decomposition (as used a bove), i.e, we write  

g = ∑ 𝑄𝑗 ∗  g 

𝑗∈𝑍𝑚

= ∑ 𝑀𝛽𝑗 g 𝑗
𝑗∈𝑍𝑚

,    with  g 𝑗 ≔ 𝜑0 ∗ 𝑀−𝛽𝑗 g 𝑗 , 

and  

∑ ‖ g 𝑗‖1(1 +
|𝑗|)|𝑠| ≤ 𝐶1‖ g |𝑀1,1

|𝑠|‖ < ∞.

𝑗∈𝑍𝑚

 

For later use let us note that the �̂�𝑗′𝑠 have common compact support 𝑄. Consequently 

they belong to any Segal algebra (cf. [82; chapter 6 & 2.2]), in particular to the Segal 

algebra 𝑊(𝐿1 , 𝐿𝑝). Moreover, there is a constant 𝐶2 < 0 such that 

 ‖𝑔𝑗𝑊(𝐿
𝑝, 𝐿1)‖ ≤ 𝐶2‖𝑔𝑗‖1 for all 𝑗 ∈ 𝑧𝑚 (cf. [77, Theorem 5] for an alternative proof 

of this assertion). Calculating within 𝑆′(𝑅𝑚) we obtain, using the identity 𝐿𝑥𝑀𝑡 =
𝑀𝑡𝐿𝑥𝑒

𝑖𝑥.𝑡 for all 𝑥, 𝑡 ∈ 𝑅𝑚: 

∑𝑎𝑛,𝑘
𝑛,𝑘

𝑀𝛽𝑛𝐿𝛼𝑘 g =∑𝑎𝑛,𝑘𝑀𝛽𝑛 𝐿𝛼𝑘
𝑛,𝑘

(∑𝑀𝛽𝑗 g 𝑗
𝑗

) 

=∑𝑀𝛽𝑗
𝑗

(∑𝑎𝑗𝑛,𝑘𝐿𝛼𝑘𝑀𝛽𝑛𝑔𝑗
𝑛,𝑘

) 

With 𝑎𝑛,𝑘
𝑗
= exp (𝑖𝛼𝑘. 𝛽(𝑛 − 𝑗)), hence |𝑎𝑛,𝑘

𝑗
| = |𝑎𝑛,𝑘| for all 𝑗, 𝑛, 𝑘 ∈ 𝑍𝑚. Rewriting 

the sum (in order to introduce some notations) one has  

ℎ ≔∑𝑎𝑛,𝑘
𝑛,𝑘

𝐿𝛼𝑘𝑀𝛽𝑛  g =:∑𝑀𝛽𝑗ℎ𝑗,𝑛 ≔∑𝑀𝛽𝑗ℎ𝑗 ,

𝑗𝑗,𝑛
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ℎ𝑗,𝑛 ≔∑𝑎𝑛,𝑘
𝑗
𝐿𝛼𝑘𝑀𝛽𝑛 g 𝑗

𝑘

= (∑𝑎𝑛,𝑘
𝑗
𝛿𝛼𝑘

𝑘

) ∗ 𝑀𝛽𝑗 g 𝑗 ∈ 𝑊(𝑀, 𝐿
𝑝) ∗ 𝑊(𝐿𝑝 , 𝐿1) ⊆ 𝐿𝑃 

and (cf. [77, Theorem 3]) the estimate  

‖ℎ𝑗,𝑛‖𝑝 ≤ 𝐶3 ‖∑𝑎𝑛,𝑘
𝑗
𝛿𝛼𝑘

𝑘

|𝑊(𝑀, 𝐿𝑝)‖ ‖ g 𝑗|𝑊(𝐿
𝑝 , 𝐿1)‖ 

≤ 𝐶4(∑|𝑎𝑛,𝑘|
𝑝
)

𝑘

1 𝑝⁄

‖ g 𝑗‖1 

Now supp ℎ̂𝑗,𝑛 ⊆ 𝛽𝑛 + supp  g ̂𝑗 ⊆ 𝛽𝑛 + 𝑄  for all 𝑛, 𝑗 ∈ 𝑍𝑚. In order to get an estimate 

for the sum over the 𝑛′𝑠 we observe next that the family ( 𝛽𝑛 + 𝑄)𝑛∈𝑍𝑚 constitutes an 

admissible uniform covering of 𝑅𝑚 (this f means essentially that is a covering of 

uniformly bounded height, cf. [80, cor. 2.6]) and consequently (this another 

characterization of wiener-type spaces) there exists 𝐶5 > 0 such that  

‖ℎ𝑗|𝑀𝑝,𝑞
𝑠 ‖ = ‖∑ℎ𝑗,𝑛

𝑛

|𝑀𝑝,𝑞
𝑠 ‖ = ‖∑ℎ̂𝑗,𝑛|𝑊(ℱ𝐿

𝑝, 𝐿𝑠
𝑞
)

𝑛

‖

≤ 𝐶5 (∑‖ℎ𝑗,𝑛‖𝑝
𝑞
(1 + |𝛽𝑛|)

𝑠𝑞

𝑛

)

1/𝑝

≤ 𝐶6 [∑(∑|𝑎𝑛,𝑘|
𝑝

𝑘

)

𝑞 𝑝⁄

(1 + |𝑛|)𝑠𝑞

𝑛

]

1 𝑞⁄

‖ g 𝑗‖1. 

We can now carry out the last step, i.e, summation over the 𝑗′𝑠 which yield immediately 

the required estimate, completing the proof.  

‖ℎ|𝑀𝑝,𝑞
𝑠 (𝑅𝑚)‖ ≤∑‖𝑀𝛽𝑗ℎ𝑗‖ ≤∑‖|𝑀𝛽𝑗|‖ ‖ℎ𝑗|𝑀𝑝,𝑞

𝑠 ‖

𝑗𝑗

≤ 𝐶6 [∑(∑|𝑎𝑛,𝑘|
𝑝

𝑘

)

𝑞 𝑝⁄

(1 + |𝑛|)𝑠𝑞

𝑛

]

1 𝑞⁄

∑𝐶7(1 + |𝑗|)
|𝑠|‖ g 𝑗‖1

𝑗

 

≤ 𝐶8 [∑(∑|𝑎𝑛,𝑘|
𝑝

𝑘

)

𝑞 𝑝⁄

(1 + |𝑛|)𝑠𝑞

𝑛

]

1 𝑞⁄

‖ g |𝑀1,1
|𝑠|‖ 

Besides the Corollaries stated already one has among others, the following useful 

consequence. 

Corollary (2.1.5)[68]: (cf. [81]). The Banach space 𝑀1,1
|𝑠|(𝑅𝑛) (with 𝑠 ≥ 0) is smallest 

among all Banach spaces satisfying the following conditions: 

(a) it is continuously embedded into 𝑆′(𝑅𝑚), 
(b) it has non-trivial intersection with 𝑆(𝑅𝑚), 
(c) it is isometrically translation invariant, 

(d) it satisfies ‖𝑀𝑡‖ = 𝑂(1 + |𝑠|) for 𝑡 ⟶ ∞. 

 It is also possible to use the atomic characterization of the spaces ‖ g |𝑀1,1
|𝑠|‖(𝑅𝑚) 

in order to give an alternative proof showing the freedom in choice of the function  g 0 
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used in the definition of 𝑀𝑝,𝑞
𝑠 (𝑅𝑚) in the abstract (Note that for all results presented so 

far we could have worked with a function  g 0 = �̂�, with 𝑘 ∈ 𝐷(𝑅𝑚)). That we could 

have used any non-zero window function 𝑘 ∈ 𝑊(ℱ𝐿1, 𝐿𝑠
1) (which is equivalent to the 

use of  �̂� =  g 0 in ‖ g |𝑀1,1
|𝑠|‖(𝑅𝑚), thus in particular any Schwartz function  g 0 ∈

𝑆(𝑅𝑚), so especially the Gauss function) in our definition can be shown as follows: if 

the integral expression involving 𝜎 is finite for a given element  g 0 ∈

‖ g |𝑀1,1
|𝑠|‖(𝑅𝑚), (e.g, with supp  g 0̂ compact) it is easily verified that it is also finite for 

 g 0 replaced by 𝑀𝑡𝐿𝑥 g 0, for any 𝑡, 𝑥 ∈ 𝑅𝑚, and in the estimate only an additional 

factor (1 + |𝑡|)𝑠 arises. Now inserting any  g 1 ∈ 𝑀
|𝑠|
1,1(𝑅

𝑚), written in the atomic 

way based on  g 0, it is clear that the integral expression (involving  g 1 now  instead of 

 g 0) is finite as well. Thus any non-zero element  g 0 ∈ ‖ g |𝑀1,1
|𝑠|‖(𝑅𝑚), gives another 

equivalent norm. This was showed using different methods already in [79]. 

Section (2.2): Gabor Frames and Density 

For each 𝑎, 𝑏 ∈ 𝑅𝑑, let 𝑇𝑎 and 𝑀𝑏 denote the translation and modulation 

operators on 𝐿2(𝑅𝑑) defined by 

𝑇𝑎g(𝑥) = g(𝑥 − 𝑎)      and      𝑀𝑏g(𝑥) = 𝑒
2𝜋𝑖𝑏𝑥g(𝑥),  

Where 𝑏𝑥 = 𝑏1𝑥1 +⋯+ 𝑏𝑑𝑥𝑑. A time- frequency shift is a composition of modulation 

and translation; i.e, it has the form  

𝑀𝑏𝑇𝑎g (𝑥) = 𝑒
2𝜋𝑖𝑏𝑥g(𝑥 − 𝑎).  

If  Γ ⊂ 𝑅𝑑, then the collection of translates of g along Γ is defined to be 

𝑇(g, Γ) = {𝑇𝑎g}𝑎∈Γ  

If 𝐴 ⊂ 𝑅2𝑑, then the collection of time-frequency shifts of g along 𝐴 is defined to be 

𝑆(g, 𝐴) = {𝑀𝑏𝑇𝑎g}(𝑎,𝑏)∈𝐴.  

We refer to 𝑆(g, 𝐴) as the Gabor system generated by g and 𝐴. 

 Gabor system which form frames for 𝐿2(𝑅𝑑) have a wide variety of applications. 

One important problem is therefore to determine sufficient conditions on g and 𝐴  which 

imply that 𝑆(g, 𝐴) is a frame. In the case that 𝑑 = 1 and 𝐴 is a regular lattice of the form 

𝑎𝑍 × 𝑏𝑍, sufficient conditins for 𝑆(g, 𝐴) to form a frame for 𝐿2(𝑅) were found by 

Daubechies [87]. A generalization of this result requiring weaker assumptions, which  

also applies when 𝑆(g, 𝐴) only forms a frame for its closed span instead of all of  𝐿2(𝑅), 
was obtained recently in [85].  

We are concerned with the connection between density properties of 𝐴 and frame 

properties of 𝑆(g, 𝐴), and the analogous problem for systems 𝑇(g,Γ) of pure translates. 

For the case of Gabor systems, there is rich literature on this subject, especially when 𝐴 

is rectangular lattice  𝐴 = 𝑎𝑍𝑑 × 𝑏𝑍𝑑. We briefly review here some of the main results 

connecting the density of 𝐴 to properties of  𝑆(g, 𝐴), and refer to [84] for  a more  

thorough historical discussion and a review of properties of Gabor systems. In addition 

that we discuss explicitly below, some relevant related articles include [92, 93, 94,98]. 

For simplicity, consider the one-dimensional setting 𝑑 = 1 and a rectangular 

lattice 𝐴 = 𝑎𝑍 × 𝑏𝑍. In this case, Rieffel showed (as a corollary of results on 𝐶∗ 
algebres) that 𝑆(g, 𝐴) is incomplete in 𝐿2(𝑅) if 𝑎𝑏 > 1 [97]. The algebraic structure of 

the lattice is crucial to this result, as the proof follows from computing the coupling 

constant of the von Neumann algebra generated by the Operators {𝑀𝑚𝑏𝑇𝑛𝑎}𝑚,𝑛∈𝑍 . for  
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the case that 𝑎𝑏 > 1 is rational, Daubechies provided a constructive proof of the 

incompleteness of 𝑆(g, 𝐴) through the use of Zak transform, which is again an algebraic  

tool highly dependent on the lattice structure of 𝐴 = 𝑎𝑍 × 𝑏𝑍 [87]. Ramanathan and 

Steger introduced a technique that applies to Countable, nonlattice set 𝐴 that are 

uniformly separated; i.e, there is a minimum distance 𝛿 between elements of 𝐴 [96]. It is 

possible to define an upper Beurling density 𝐷+(𝐴) and lower Beurling density 𝐷−(𝐴) 
for such sets (the precise definition of density, along with other fundamental concepts 

used) for example, for the lattice 𝐴 = 𝑎𝑍 × 𝑏𝑍  these two densities coincide and equal 

1 (𝑎𝑏)⁄ ; hence this lattice is said to have uniform Beurling density 𝐷(𝐴) = 1 (𝑎𝑏)⁄ . 

Ramanathan and Steger showed for arbitrary uniformly separated sets A that if  

𝐷−(𝐴) < 1 then  𝑆(g, 𝐴) is not a frame. Thus, in the case that 𝐴 = 𝑎𝑍 × 𝑏𝑍, this can be 

viewed as a weak version of the Rieffel  incompleteness result. On the other hand, 

Ramanathan/Steger result applies to a far broader class of time-frequency translates than 

does the Rieffel result. Ramanathan and Steger were able to recapture by their 

techniques the full Rieffel incompleteness result in the case that 𝐴 = 𝑎𝑍 × 𝑏𝑍. In light 

of the above discussion, Ramanathan and Steger therefore conjectured that 𝑆(g, 𝐴) must 

be incomplete whenever 𝐴 is a uniformly separated set satisfying 𝐷−(𝐴) < 1. Walnut 

and Heil  showed that this conjecture is false by constructing for each 𝜀 > 0 a function  

g ∈ 𝐿2(𝑅) and a nonlattice 𝐴 ⊂ 𝑅2 such that 𝑆(g, 𝐴) is compete in 𝐿2(𝑅) yet 𝐴 has 

uniform Beurling density 𝐷(𝐴) < 𝜀 [84]. Hense the algebraic structure of 𝐴 is in fact 

critical for the Rieffel incompleteness result. 

We extended and apply the Ramanathan/Steger density results. The extension is 

to higher dimensions, to multiple generating functions, and to completely arbitrary sets 

of time-frequency shifts. To state our results, for each 𝑘 = 1,… , 𝑟 let g𝑘 be an element 

of  𝐿2(𝑅𝑑) and let 𝐴𝑘 = {(𝑎𝑘,𝑖 , 𝑏𝑘,𝑖)}𝑖∈𝐼𝑘  be   a sequence of points in 𝑅2𝑑. Unless 

specified otherwise, we place no restrictions on the sequences 𝐴𝑘. For example, the 

index set 𝐼𝑘 may be countable or uncountable, and repetitions of points in 𝐴𝑘 are 

allowed. For simplicity, we will write 𝐴𝑘 ⊂ 𝑅
2𝑑, although we always mean that 𝐴𝑘 is a 

sequence of points from 𝑅2𝑑 and not merely  a subset  of  𝑅2𝑑. Define an index set 𝐼 =
{(𝑖, 𝑘): 𝑖 ∈ 𝐼𝑘 , 𝑘 = 1,… , 𝑟} and sequence 𝐴 = {(𝑎𝑘,𝑖 , 𝑏𝑘,𝑖)}(𝑖,𝑘)∈𝐼 = {(𝑎𝑘,𝑖 , 𝑏𝑘,𝑖)}𝑖∈𝐼𝑘

, 

𝑘 = 1,… . . , 𝑟, i.e, 𝐴 is the sequence obtained by amalgamating 𝐴1, … . . , 𝐴𝑟 . For 

simplicity, we write 𝐴 = ⋃ 𝐴𝑘
𝑟
𝑘=1 , and say that 𝐴 is the disjoint union of 𝐴1, … . . , 𝐴𝑟 . 

The Gabor system generated by g1, …… , g𝑟 and 𝐴1, … . . , 𝐴𝑟 is then ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1 , the 

disjoint union of the Gabor systems 𝑆(g𝑘, 𝐴𝑘) with this notation, our first main result is 

the following. 

We remark that the conclusion in part (a) of Theorem (2.2.10) that 𝐴 has finite 

upper Beurling density is equivalent to the statement that 𝐴, and hence each 𝐴𝑘, is 

relatively uniformly separated, i.e, is a finite union of uniformly separated sequences. 

The proof of Theorem (2.2.10) is given. the result of  Ramanathan and strger in [96] 

corresponds to the special case of Theorem (2.2.10)(b) with 𝑑 = 1 and 𝑘 = 1 and with 

the added assumption that 𝐴 is uniformly separated and satisfies 𝐷+(𝐴) < ∞. 
One useful feature of Gabor frames ⋃ 𝑆(g𝑘 , 𝐴𝑘)𝑘  generated by functions g𝑘 that  

are well localized in both time  and frequency is that  if a function 𝑓 is expanded in this 

frame, then a perturbation of 𝑓 that is well localized in both time and frequency will 

have a local effect on the frame coefficients. By comparison, a frame of the 
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⋃ 𝑇(g𝑘, Γ𝑘)𝑘  consisting solely of translates of  finitely many function g𝑘 would have the 

desirable property that perturbation localized solely in time have localized effects on the 

frame coefficients. In this regard, Olson and Zalik showed that there do not  exist any 

Riesz bases for 𝐿2(𝑅) generated by translates of a single function [95], and Christensen 

conjectured that there are no frames for 𝐿2(𝑅) of this form [86]. Since 𝑇(g, Γ) =
𝑆(g, Γ × {0}), systemes of translates can be considered to be special cases of Gabor 

systems. We show that Theorem (2.2.10) implies that there are no frames for 𝐿2(𝑅𝑑) of 

the form ⋃ 𝑇(g𝑘, Γ𝑘)𝑘 . We give a direct proof of the following refinement of this 

statement. 

For 𝑥 ∈ 𝑅𝑑 and ℎ > 0 we let 𝑄ℎ(𝑥) denote the cube centered at 𝑥 with side 

lengths ℎ: 

 𝑄ℎ(𝑥) = ∏ [𝑥𝑗 − ℎ 2⁄ , 𝑥𝑗 + ℎ 2⁄ ]
𝑑
𝑗=1 .  

In particular, {𝑄ℎ(ℎ𝑛)}𝑛∈𝑍𝑑 is disjoint cover of 𝑅𝑑. To distinguish between cubes 

in 𝑅𝑑  and those in 𝑅2𝑑, we write 𝑄ℎ(𝑥, 𝑦) = 𝑄ℎ(𝑥) × 𝑄ℎ(𝑦) for  a cube in 𝑅2𝑑. 

The Lebesgue measure of 𝐸 ⊂ 𝑅𝑑 is denoted by |𝐸|. In particular, the volume of 

the cube  𝑄ℎ(𝑥) is | 𝑄ℎ(𝑥)| = ℎ
𝑑. The number of points in 𝐸 ⊂ 𝑅𝑑 is denoted by #𝐸. 

The 𝐿2-inner product is 〈𝑓, g 〉 = ∫𝑓(𝑥) g(𝑥) 𝑑𝑥. The short-time Fourier 

transform of 𝑓 ∈ 𝐿2(𝑅𝑑) against g ∈ 𝐿2(𝑅𝑑) is   

𝑆g𝑓(𝑎, 𝑏) = 〈𝑓,𝑀𝑏𝑇𝑎 g〉  

We have 𝑆g𝑓 ∈ 𝐿
2(𝑅2𝑑) ∩ 𝐶0(𝑅

2𝑑), with ‖𝑆g𝑓‖2
= ‖𝑓‖2‖g‖2.  

Given a closed subspace 𝑉 ⊂ 𝐿2(𝑅𝑑), we let 𝑃𝑉 denote the orthogonal projection 

onto 𝑉. Then for any 𝑓 ∈ 𝐿2(𝑅𝑑), 
dist 𝑓𝑉 = ‖𝑓 − 𝑃𝑉𝑓‖2 = inf

𝑢∈𝑉
‖𝑓 − 𝑢‖2. 

A family of elements {𝑓𝑖}𝑖∈𝐼 is a frame for a Hilbert space 𝐻 if there exist 

constants 𝐴, 𝐵 > 0 such that 

∀ 𝑓 ∈ 𝐻, 𝐴‖𝑓‖2 ≤∑|〈𝑓, 𝑓𝑖〉|
2 ≤ 𝐵‖𝑓‖2

𝑖∈𝐼

.                             (1) 

The numbers 𝐴, 𝐵 are called frame bounds. The frame operator 𝑆𝑓 = ∑ 〈𝑓, 𝑓𝑖〉𝑓𝑖𝑖  is a 

bounded, invertible, and positive mapping of 𝐻 onto itself. This provides the frame 

decomposition  

𝑓 = 𝑆−1𝑆𝑓 =∑〈𝑓, 𝑓𝑖〉𝑓𝑖
𝑖∈𝐼

, ∀𝑓 ∈ 𝐻,                                    (2) 

Where 𝑓𝑖 = 𝑆
−1𝑓𝑖 . The family {𝑓𝑖} is also a frame for 𝐻, called the dual frame of {𝑓𝑖}, 

and has frame bounds 𝐵−1, 𝐴−1. The utility of frames, as compared to sets of functions 

that are merely complete in 𝐿2(𝑅𝑑), often lies in the stable reconstruction formula (2). 

          Riesz bases are special cases of frames, and can be characterized as those frames 

which are biorthogonal to their dual frames, i.e, such that 〈𝑓𝑖 , 𝑓𝑗〉 = 𝛿𝑖𝑗. 

An arbitrary family {𝑓𝑖} which satisfies the first inequality in (1) (and which may 

or may not satisfy the second inequality) is said to possess a lower frame bound. 

Likewise, a family {𝑓𝑖} which satisfies at least the second inequality in (1) is said to 

possess an upper frame bound. Such a family is also called a Bessel sequence. 

Additional information on frames can be found in [87,90]. 



34 

    We now give several definitions related to the “density” of an arbitrary sequence Γ =
{𝛾𝑖}𝑖∈𝐼 of points of 𝑅𝑑. The index set may be countable or uncountable, and since Γ is 

regarded as a sequence, repetitions of elements of  Γ are allowed. 

Definition (2.2.1)[83]: Let Γ = {𝛾𝑖}𝑖∈𝐼 ⊂ 𝑅
𝑑. 

(a) Γ is 𝛿-uniformly separated if 𝛿 = inf𝑖≠𝑗|𝛾𝑖 − 𝛾𝑗| > 0. The number 𝛿 is the 

separation constant. 

(b) Γ is relatively uniformly separated if it is a finite union of uniformly separated 

sequences Γ𝑘. More precisely, this means that 𝐼 can be partitioned into disjoint 

sets 𝐼1, … , 𝐼𝑟  such that each sequence Γ𝑘 = {𝛾𝑖}𝑖∈𝐼𝑘  is 𝛿𝑘-uniformly separated for 

some 𝛿𝑘 > 0. 

Definition (2.2.2)[83]: let Γ = {𝛾𝑖}𝑖∈𝐼 ⊂ 𝑅
𝑑 . For each ℎ > 0, let 𝑣+(ℎ) and 𝑣−(ℎ) 

denote the largest and smallest numbers of points of  Γ that lie in any 𝑄ℎ(𝑥): 

𝑣+(ℎ) = max
𝑥∈𝑅𝑑

#(Γ ∩ 𝑄ℎ(𝑥))      and     𝑣−(ℎ) = min
𝑥∈𝑅𝑑

#(Γ ∩ 𝑄ℎ(𝑥)). 

We have 0 ≤ 𝑣−(ℎ) ≤ 𝑣+(ℎ) ≤ ∞ for each ℎ. The upper and lower Beurling densities 

of Γ are then  

𝐷+(Γ) = lim sup
ℎ→∞

𝑣+(ℎ)

ℎ𝑑
       and      𝐷−(Γ) = lim inf

ℎ→∞

𝑣−(ℎ)

ℎ𝑑
. 

We have 0 ≤ 𝐷−(Γ) ≤ 𝐷+(Γ)  ≤ ∞. If 𝐷+(Γ) = 𝐷−(Γ), then Γ is said to have uniform 

Beurling density 𝐷(Γ) = 𝐷+(Γ) = 𝐷−(Γ). 
Note that if Γ is the disjoint union of Γ1, … , Γ𝑟, then we always have  

#(Γ ∩ 𝑄ℎ(𝑥)) = ∑ #(Γ𝑘 ∩ 𝑄ℎ(𝑥)),
𝑟
𝑘=1   

and therefore  

∑𝐷−(Γ𝑘)

𝑟

𝑘=1

≤ 𝐷−(Γ) ≤ 𝐷+(Γ) ≤ ∑𝐷+(Γ𝑘)

𝑟

𝑘=1

.                             (3) 

Some or all of the inequalities in (3) may be strict. For example, if Γ1 is the set of 

negative integers, Γ2 is the positive integers, and Γ = Γ1 ∪ Γ2, then 𝐷−(Γ1) = 𝐷
−(Γ2 ) =

0, 𝐷−(Γ) = 𝐷+(Γ) = 1, and 𝐷+(Γ1) = 𝐷
+(Γ2) = 1. 

The following lemma provides some equivalent ways to view the meaning of 

finite upper Burling density. 

Lemma (2.2.3)[83]: Let Γ = {𝛾𝑖}𝑖∈𝐼 be any sequence of points in 𝑅𝑑. Then the 

following statements are equivalent. 

(a) 𝐷+(Γ) < ∞. 

(b) Γ is relatively uniformly separated. 

(c) For some (and therefore every) ℎ > 0, there is an integer 𝑁ℎ > 0 such that each 

cube 𝑄ℎ(ℎ𝑛) contains at most 𝑁ℎ points of Γ. that is,  

𝑁ℎ = sup
𝑛∈𝑍𝑑

 #(Γ ∩ 𝑄ℎ(ℎ𝑛)) < ∞. 

Proof. (a)⇒(c). If  𝐷+(Γ) < ∞ then 𝑣+(ℎ) ℎ𝑑 < ∞⁄  for some ℎ. 

 (c)⇒(b). Assume that there is an ℎ > 0 such that each cube 𝑄ℎ(ℎ𝑛) contains at 

most 𝑁ℎ elements of  Γ. Let 𝑒1, … , 𝑒2𝑑 denote the vertices of the unit cube [0,1]𝑑, and 

define 

𝑍𝑘 = (2𝑧)
𝑑 + 𝑒𝑘      and       𝐵𝑘 = ⋃ 𝑄ℎ(ℎ𝑛).𝑛∈𝑍𝑘   

Then 𝑅𝑑 is the disjoint union of the 2𝑑 Sets 𝐵𝑘. If 𝑚,𝑛 ∈ 𝑍𝑘 with 𝑚 ≠ 𝑛, then 
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dist(𝑄ℎ(ℎ𝑚),𝑄ℎ(ℎ𝑛)) = inf{|𝑥 − 𝑦| : 𝑥 ∈ 𝑄ℎ(ℎ𝑚), 𝑦 ∈ 𝑄ℎ(ℎ𝑛)} ≥ ℎ. 
Further, each cube 𝑄ℎ(ℎ𝑛)contains at most 𝑁ℎ elements of Γ, so the sequences {𝛾𝑖: 𝛾𝑖 ∈
𝐵𝑘} can be split into 𝑁ℎ uniformly separated sequences. Hence the entire sequence Γ 

can be split into 2𝑑𝑁ℎ uniformly separated sequences. 

(b)⇒(a). Assume that Γ is relatively uniformly separated. Then we can partition 𝐼 
into sets 𝐼1, … . , 𝐼𝑟 in such a way that each sequence Γ𝑘 = {𝛾𝑖}𝑖∈𝐼𝑘  is 𝛿𝑘-uniformly 

separated. Let 𝛿 = min{𝛿1 2⁄ ,… , 𝛿𝑟 2⁄ }. Then any cube 𝑄𝛿(𝑥) contains at most one 

element of Γ𝑘, and therefore contains at most 𝑟 elements of Γ. Therefore, if ℎ is any 

positive number then 𝑄ℎ𝛿(𝑥) can contain at most 𝑟(ℎ + 1)𝑑 elements of Γ. Hence 

𝑣+(ℎ𝛿) ≤ 𝑟(ℎ + 1)𝑑 for each ℎ, so  

𝐷+(Γ) ≤ lim sup
ℎ→∞

𝑟(ℎ+1)𝑑

(ℎ𝛿)𝑑
=

𝑟

𝛿𝑑
< ∞.  

We will show Theorem (2.2.10), we consider part (a) and part (b) of  the theorem 

separately. In particular, we begin by considering the special case of Theorem 

(2.2.10)(a) when 𝑟 = 1. 
Theorem (2.2.4)[83]: Choose a nonzero g ∈ 𝐿2(𝑅𝑑) and a sequence 𝐴 ⊂ 𝑅2𝑑. If 

𝑆(g, 𝐴) possesses an upper frame bound, then 𝐴 is relatively uniformly separated. 

Proof. Assume that 𝐴 is not relatively uniformly separated. Choose any 𝑓 ∈ 𝐿2(𝑅𝑑)  
with ‖𝑓‖2 = 1, and note that  

|〈𝑀𝑞𝑇𝑝𝑓,𝑀𝑏𝑇𝑎g〉| = |〈𝑓,𝑀𝑏−𝑞𝑇𝑎−𝑝g〉| = |𝑆g𝑓(𝑎 − 𝑝, 𝑏 − 𝑞)|.  

Since 𝑆g𝑓 is nonzero and continuous on 𝑅2𝑑, it must be bounded away from zero on 

some cube, say,  

𝜇 = inf
(𝑥,𝑦)∈𝑄ℎ(𝑐,𝑑)

|𝑆g𝑓(𝑥, 𝑦)|  > 0.  

Now choose any 𝑁 > 0. Then, by Lemma (2.2.3) applied to 𝐴, there exists some cube 

𝑄ℎ(𝑝, 𝑞) which contains at least 𝑁 elements of 𝐴. However, if (𝑎, 𝑏) ∈ 𝑄ℎ(𝑝, 𝑞), then 

(𝑎 − 𝑝 + 𝑐, 𝑏 − 𝑞 + 𝑑) ∈ 𝑄ℎ(𝑐, 𝑑), so 

∑  |〈𝑀𝑞−𝑑𝑇𝑝−𝑐𝑓,𝑀𝑏𝑇𝑎 g 〉|
2

(𝑎,𝑏)∈𝐴∩𝑄ℎ(𝑝,𝑞)   

                             = ∑  |𝑆g𝑓(𝑎 − 𝑝 + 𝑐, 𝑏 − 𝑞 + 𝑑|
2

(𝑎,𝑏)∈𝐴∩𝑄ℎ(𝑝,𝑞) ≥ 𝑁𝜇2.  

Since ‖𝑀𝑞−𝑑𝑇𝑝−𝑐𝑓‖2 = 1, it follows that 𝑆(g, 𝐴) cannot possess an upper frame bound. 

The insight provided by [96] is that Gabor frames possess a certain Homogeneous 

Approximation property, or HAP. This is stated below in our general context as 

Theorem (2.2.7). The proof given by Ramanathan and Steger relied on weak 

convergence of translations of A. Grochenig and Razafinjatovo proved an analogue of 

the HAP for frames of translates in the space of bandlimited functions [89] . Their proof 

was considerably shorter than the method of [96], but required a restriction on the frame 

generators. In Gabor systemes , this restriction stems from the fact that the local 

maximal function of the short-time Fourier transform 𝑆g𝑓 is not necessarily square-

integrable. We will provide a simple proof of  the HAP which imposes no restriction on 

the generators. 

Notation (2.2.5)[83]: Let g1, … . , g𝑟 ∈ 𝐿
2(𝑅𝑑) and 𝐴1, … , 𝐴𝑟 ⊂ 𝑅

2𝑑be such that 

⋃ 𝑆(g𝑘, 𝐴𝑘)𝑘  is a frame for 𝐿2(𝑅𝑑), with frame bounds 𝐴, 𝐵 let  

{g̃𝑘,𝑎,𝑏}(𝑎,𝑏)∈𝐴𝑘 ,𝑘=1,….,𝑟
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denote the dual frame of  ⋃ 𝑆(g𝑘, 𝐴𝑘)𝑘 , in general, this dual frame need not consist of 

translates and modulates of some finite set of functions. 

Given ℎ > 0 and (𝑝, 𝑞) ∈ 𝑅2𝑑, let 𝑊(ℎ, 𝑝, 𝑞) denote the following subspace of  

𝐿2(𝑅𝑑): 

𝑊(ℎ , 𝑝 , 𝑞 ) = span{g̃𝑘,𝑎,𝑏: (𝑎, 𝑏) ∈ 𝑄ℎ(𝑝, 𝑞) ∩ 𝐴𝑘 , 𝑘 = , … , 𝑟}.               (4) 
This space is finite-dimensional because, by Theorem (2.2.10)(a), each 𝐴𝑘 is relatively 

uniformly separated. 

Lemma (2.2.6)[83]:  Set 𝜑(𝑥) = 𝑒−(𝜋 2⁄ )𝑥2, and let ℎ > 0 be  fixed. Then there exists a 

constant 𝑘 such that for each 𝑓 ∈ 𝐿2(𝑅𝑑) and each (𝑝, 𝑞) ∈ 𝑅2𝑑,  

|〈𝜑,𝑀𝑞𝑇𝑝𝑓〉|
2
≤ 𝑘∬ |〈𝜑,𝑀𝑦𝑇𝑥𝑓〉|

2
𝑑𝑥 𝑑𝑦

𝑄ℎ(𝑝,𝑞)
.  

Proof. The Bargmann transform  

𝐵𝑓(𝑥 + 𝑖𝑦) = 𝑒(𝜋 2)(𝑥2+𝑦2)⁄ 𝑒𝜋𝑖𝑥𝑦 〈𝑀𝑦𝑇−𝑥𝑓, 𝜑〉 

maps 𝐿2(𝑅𝑑) into the space of entire functions on 𝐶2𝑑 [88, p.40]. Hence, by [91, 

Theorem 2.2.3] there exists a constant C, independent of 𝑓, such that  

|𝐵𝑓(0)| ≤ 𝐶 ∬ |𝐵𝑓(𝑧)|𝑑𝑧.

𝑄ℎ(0,0)

                                          (5) 

Applying (5) to the function 𝑀𝑞𝑇𝑝𝑓 therefore yields  

|〈𝜑,𝑀𝑞𝑇𝑝𝑓〉|
2
= |𝐵(𝑀𝑞𝑇𝑝𝑓)(0)|

2
                                        

≤ 𝐶2 (∬ |𝑒
𝜋

2
(𝑥2+𝑦2)〈𝑀𝑦𝑇−𝑥(𝑀𝑞𝑇𝑝𝑓), 𝜑〉| 𝑑𝑥𝑑𝑦𝑄ℎ(0,0)

)
2

  

≤ 𝐶2 (∬ 𝑒𝜋(𝑥
2+𝑦2)𝑑𝑥𝑑𝑦

𝑄ℎ(0,0)
)  

× (∬ |〈𝑀𝑞+𝑦𝑇𝑝−𝑥𝑓, 𝜑〉|
2
𝑑𝑥𝑑𝑦

𝑄ℎ(0,0)
)  

= 𝐾∬ |〈𝑀𝑦𝑇𝑥𝑓, 𝜑〉|
2
𝑑𝑥𝑑𝑦

𝑄ℎ(𝑝,𝑞)
  

We can now state the HAP. The simple proof follows by observing that the HAP for 

time-frequency shifts of a single function implies the HAP for all functions. 

Theorem (2.2.7)[83]: (Homogeneous Approximation property). Let g1, … . , g𝑟 ∈
𝐿2(𝑅𝑑) and 𝐴1, … . , 𝐴𝑟 ⊂ 𝑅

2𝑑, be such that ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1  is a frame for 𝐿2(𝑅𝑑). Then 

for each 𝑓 ∈ 𝐿2(𝑅𝑑),   

∀ 𝜀 > 0,    ∃ 𝑅 > 0,    ∀(𝑝, 𝑞) ∈ 𝑅2𝑑 ,    dist (𝑀𝑞𝑇𝑝𝑓,𝑊(𝑅, 𝑝, 𝑞)) < 𝜀.          (6) 

Proof. By Theorem (2.2.10)(a). the assumption that ⋃ 𝑆(g𝑘, 𝐴𝑘)𝑘  is a frame implies that 

each 𝐴𝑘 is relatively uniformly separated. By dividing each 𝐴𝑘 into subsequences that  

are uniformly separated, we may assume without loss of generality that each 𝐴𝑘  is 𝛿𝑘-

uniformly separated.  Define 𝛿 = min {𝛿1 2⁄ ,… , 𝛿𝑟 2⁄ }. 
Let ℋ be the subset of  𝐿2(𝑅) consisting of all functions 𝑓 for which (6) holds. It 

is easy to see that ℋ is closed under finite linear combinations and 𝐿2-limits. It 

therefore suffices to show that, for the Gaussian function 𝜑(𝑥) = 𝑒−(𝜋 2)𝑥2⁄ , all time-

frequency shifts 𝑀𝑡𝑇𝑠𝜑 belong to ℋ, for then ℋ = 𝐿2(𝑅𝑑) and the result follows. 

Therefore, fix any(𝑠, 𝑡) ∈ 𝑅2𝑑, and consider any (𝑝, 𝑞) ∈ 𝑅2𝑑. The function 

𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑) has the frame expansion 
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𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑) = ∑ ∑ 〈𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑀𝑏𝑇𝑎g𝑘〉g̃𝑘,𝑎,𝑏(𝑎,𝑏)∈𝐴𝑘
𝑟
𝑘=1   

By definition of distance and the fact that {g̃𝑘,𝑎,𝑏} is itself a frame with upper frame 

bound 𝐴−1, we have    

dist (𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑊(𝑅, 𝑝, 𝑞))
2
 

≤ ‖𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑) −∑ ∑ 〈𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑀𝑏𝑇𝑎g𝑘〉g̃𝑘,𝑎,𝑏
(𝑎,𝑏)∈𝑄𝑅(𝑝,𝑞)∩𝐴𝑘

𝑟

𝑘=1

‖

2

2

 

= ‖∑ ∑ 〈𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑀𝑏𝑇𝑎g𝑘〉g̃𝑘,𝑎,𝑏
(𝑎,𝑏)∈𝐴𝑘\𝑄𝑅(𝑝,𝑞)

𝑟

𝑘=1

‖

2

2

 

≤ 𝐴−1∑ ∑ |〈𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑀𝑏𝑇𝑎g𝑘〉 |
2

(𝑎,𝑏)∈𝐴𝑘\𝑄𝑅(𝑝,𝑞)

𝑟

𝑘=1

.                            (7) 

By Lemma (2.2.6) there exists a constant 𝑘 such that    

|〈𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑀𝑏𝑇𝑎g𝑘〉|
2
= |〈𝜑 ,𝑀𝑏−𝑞−𝑡𝑇𝑎−𝑝−𝑠 g𝑘〉|

2
 

≤ 𝐾 ∬ |〈𝜑 ,𝑀𝑦𝑇𝑥g𝑘〉|
2
𝑑𝑥 𝑑𝑦

𝑄𝛿(𝑎−𝑝−𝑠,𝑏−𝑞−𝑡)

 

= 𝐾 ∬ |𝑆𝜑g𝑘(𝑥, 𝑦)|
2
𝑑𝑥 𝑑𝑦

𝑄𝛿(𝑝+𝑠−𝑎 ,𝑞+𝑡−𝑏)

.                               (8) 

Where 𝑆𝜑g𝑘 is the short-time Fourier transform of g𝑘 a gainst 𝜑. Combining (7) and (8) 

with the fact that 𝐴𝑘 is 𝛿-separated, we conclude that   

dist (𝑀𝑞𝑇𝑝(𝑀𝑡𝑇𝑠𝜑),𝑊(𝑅, 𝑝, 𝑞))
2

≤ 𝐴−1𝐾∑ ∑ ∬ |𝑆𝜑g𝑘(𝑥, 𝑦)|
2
𝑑𝑥 𝑑𝑦

𝑄𝛿(𝑝+𝑠−𝑎 ,𝑞+𝑡−𝑏)(𝑎,𝑏)∈𝐴𝑘\𝑄𝑅(𝑝,𝑞)

𝑟

𝑘=1

 

≤ 𝐴−1𝐾∑ ∬ |𝑆𝜑g𝑘(𝑥, 𝑦)|
2
𝑑𝑥𝑑𝑦

𝑅2𝑑\𝑄𝑅−𝛿(𝑠,𝑡)

𝑟

𝑘=1

.                                         (9) 

Since each 𝑆𝜑g𝑘 ∈ 𝐿
2(𝑅2𝑑), the last quantity in (9) can be made arbitrarily small, 

independently of (𝑝, 𝑞), by taking 𝑅 large enough.  

Corollary (2.2.8)[83]: (strong HAP). Let g1, … . , g𝑟 ∈ 𝐿
2(𝑅𝑑) and 𝐴1, … , 𝐴𝑟 ⊂ 𝑅

2𝑑 be 

such that ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1  is a frame for 𝐿2(𝑅𝑑). Then for each 𝑓 ∈ 𝐿2(𝑅𝑑) and each >

0 , there exists a constant 𝑅 > 0, such that   

∀(𝑝, 𝑞) ∈ 𝑅2𝑑 ,     ∀ℎ > 0,   ∀(𝑥, 𝑦) ∈ 𝑄ℎ(𝑝, 𝑞),   dist (𝑀𝑦𝑇𝑥𝑓,𝑊(ℎ + 𝑅, 𝑝, 𝑞)) < 𝜀. 

Proof. Simply note that if (𝑥, 𝑦) ∈ 𝑄ℎ(𝑝, 𝑞), then 𝑊(𝑅, 𝑥, 𝑦) ⊂ 𝑊(ℎ + 𝑅, 𝑝, 𝑞), and 

therefore dist 𝑀𝑦𝑇𝑥𝑓𝑊(ℎ + 𝑅, 𝑝, 𝑞) ≤ dist 𝑀𝑦𝑇𝑥𝑓𝑊(𝑅, 𝑥, 𝑦). 
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We now use the Homogeneous Approximation property to show the following 

comparison between the density of a Gabor frame and the density of Gabor Riesz basis. 

The double-projection idea of [96] is an important ingredient.  

Theorem (2.2.9)[83] (Comparison Theorem). Let g1, … . , g𝑟 ∈ 𝐿
2(𝑅𝑑) and 𝐴1, … , 𝐴𝑟 ⊂

𝑅2𝑑 be such that ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1  is a frame for 𝐿2(𝑅𝑑). Let 𝜙1, … , 𝜙𝑠 ∈ 𝐿

2(𝑅𝑑) and  

∆1, … , ∆𝑠⊂ 𝑅
2𝑑 be such ⋃ 𝑆(𝜙𝑘, ∆𝑘)

𝑟
𝑘=1  is a Riesz basis for 𝐿2(𝑅𝑑). Let 𝐴 be the 

disjoint union of 𝐴1, … , 𝐴𝑟 and let ∆ be the disjoint union of  ∆1, … , ∆𝑠 , then   

𝐷−(∆) ≤ 𝐷−(𝐴)     and     𝐷+(∆) ≤ 𝐷+(𝐴).  
Proof. We use the notation defined in Notation (2.2.5). Additionally, we denote the dual 

frame of ⋃ 𝑆(𝜙𝑘, ∆𝑘)
𝑟
𝑘=1  by {�̃�𝑘,𝑎,𝑏}(𝑎,𝑏)∈∆𝑘 ,𝑘=1,…,𝑠, and, in analogy to the subspaces 

𝑊(ℎ, 𝑝, 𝑞) defined in (4), we set  

𝑉(ℎ, 𝑝, 𝑞) = span{𝑀𝑏𝑇𝑎𝜙𝑘: (𝑎, 𝑏) ∈ 𝑄ℎ(𝑝, 𝑞) ∩ ∆𝑘, 𝑘 = 1,… , 𝑠}  
By Theorem (2.2.10)(a), each ∆𝑘 is relatively uniformly separated, and hence 𝑉(ℎ, 𝑝, 𝑞) 
is finite-dimensional. Since the elements of any frame are uniformly bounded in norm, 

we can find a constant 𝐶 such that ‖�̃�𝑘,𝑎,𝑏‖ ≤ 𝐶  for all 𝑘, 𝑎, and 𝑏.  

Choose now any 𝜀 > 0. Then, by Corollary (2.2.8) applied to the frame 

⋃ 𝑆(g𝑘 , 𝐴𝑘)𝑘=1  and the function 𝑓 = 𝜙𝑘 ,  there exists 𝑅𝑘 > 0 such that  

∀ ℎ > 0,     ∀(𝑝, 𝑞) ∈ 𝑅2𝑑 ,      ∀(𝑥, 𝑦) ∈ 𝑄ℎ(𝑝, 𝑞), 

dist (𝑀𝑦𝑇𝑥𝑓,𝑊(ℎ + 𝑅𝑘, 𝑝, 𝑞)) <
𝜀

𝐶
.                                     (10) 

Let = max {𝑅1, … . , 𝑅𝑠} , then (10) holds for each 𝐾 when 𝑅𝑘, is replaced by 𝑅. 

Now let ℎ > 0 and (𝑝, 𝑞) ∈ 𝑅2𝑑 be fixed. For simplicity, let us denote the 

orthogonal projections onto 𝑉(ℎ, 𝑝, 𝑞) and 𝑊(ℎ + 𝑅, 𝑝, 𝑞) by 𝑃𝑉 = 𝑃𝑉(ℎ,𝑝,𝑞) and 𝑃𝑊 =

𝑃𝑊(ℎ+𝑅 ,𝑝,𝑞). Define 𝑇: 𝑉(ℎ, 𝑝, 𝑞) → 𝑉(ℎ , 𝑝, 𝑞) by  

𝑇 = 𝑃𝑉(ℎ,𝑝,𝑞)𝑃𝑊(ℎ+𝑅 ,𝑝,𝑞) = 𝑃𝑉𝑃𝑊. 

Then, by the biorthogonality of ⋃ 𝑆(∅𝑘, ∆𝑘)𝑘  and {�̃�𝑘,𝑎,𝑏}, the trace of 𝑇 can be 

computed as  

tr(𝑇) = ∑ ∑ 〈𝑇(𝑀𝑏𝑇𝑎𝜙𝑘), �̃�𝑘,𝑎,𝑏〉

(𝑎,𝑏)∈𝑄ℎ(𝑝,𝑞)∩∆𝑘

𝑠

𝑘=1

. 

However, for (𝑎, 𝑏) ∈ 𝑄ℎ(𝑝, 𝑞) ∩ ∆𝑘, we have  

𝑇〈(𝑀𝑏𝑇𝑎𝜙𝑘), �̃�𝑘,𝑎,𝑏〉 = 〈𝑃𝑊𝑀𝑏𝑇𝑎𝜙𝑘, 𝑃𝑉�̃�𝑘,𝑎,𝑏〉                                                     

                                          = 〈𝑀𝑏𝑇𝑎𝜙𝑘, 𝑃𝑉�̃�𝑘,𝑎,𝑏〉 + 〈(𝑃𝑊 − 1)𝑀𝑏𝑇𝑎𝜙𝑘, 𝑃𝑉�̃�𝑘,𝑎,𝑏〉.  
Now 𝑃𝑉𝑀𝑏𝑇𝑎𝜙𝑘 = 𝑀𝑏𝑇𝑎𝜙𝑘  since 𝑀𝑏𝑇𝑎𝜙𝑘 ∈ 𝑉(ℎ, 𝑝, 𝑞). Therefore, 

〈𝑀𝑏𝑇𝑎𝜙𝑘, 𝑃𝑉�̃�𝑘,𝑎,𝑏〉 = 〈𝑃𝑉𝑀𝑏𝑇𝑎𝜙𝑘, �̃�𝑘,𝑎,𝑏〉 = 〈𝑀𝑏𝑇𝑎𝜙𝑘, �̃�𝑘,𝑎,𝑏〉 = 1,  
the last equality following from biorthogonality. Further, by (10) we have  

|〈(𝑃𝑊 − 1)𝑀𝑏𝑇𝑎𝜙𝑘 , 𝑃𝑉�̃�𝑘,𝑎,𝑏〉|  ≤ ‖(𝑃𝑊 − 1)𝑀𝑏𝑇𝑎𝜙𝑘, 𝑃𝑉�̃�𝑘,𝑎,𝑏‖2‖𝑃𝑉�̃�𝑘,𝑎,𝑏‖2 ≤
𝜀

2
∙ 𝐶

= 𝜀. 
Hence, since ∆ is disjoint union of ∆1, … , ∆𝑠, 

tr(𝐴) ≥ ∑ ∑ (1 − 𝜀)

(𝑎,𝑏)∈𝑄ℎ(𝑝,𝑞)∩∆𝑘

𝑠

𝑘=1

= (1 − 𝜀)∑#(𝑄ℎ(𝑝, 𝑞) ∩ ∆𝑘)

𝑠

𝑘=1

 

= (1 − 𝜀)#(𝑄ℎ(𝑝, 𝑞) ∩ ∆).                                           (11) 
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On ther other hand, all eigenvalues of 𝑇 satisfy |𝜆| ≤ ‖𝑇‖ ≤ 1. Hence,  

tr(𝑇) ≤ rank(𝑇) ≤ dim(𝑊(ℎ + 𝑅, 𝑃, 𝑞 )) ≤ ∑#(𝑄ℎ+𝑅(𝑝, 𝑞) ∩ 𝐴𝑘)

𝑠

𝑘=1

 

= #(𝑄ℎ+𝑅(𝑝, 𝑞) ∩ 𝐴).                                                                 (12) 
Therefore, by combining (11) and (12), we see that for each ℎ > 0 and each (𝑝, 𝑞) ∈
𝑅2𝑑, 

(1 − 𝜀)#(𝑄ℎ(𝑝, 𝑞) ∩ ∆) ≤ #(𝑄ℎ+𝑅(𝑝, 𝑞) ∩ 𝐴). 
As a consequence, 

(1 − 𝜀)
#(𝑄ℎ(𝑝,𝑞)∩∆)

ℎ2𝑑
≤
#(𝑄ℎ+𝑅(𝑝,𝑞)∩𝐴)

(ℎ+𝑅)2𝑑

(ℎ+𝑅)2𝑑

ℎ2𝑑
.  

It follows that  

(1 − 𝜀)𝐷−(∆) ≤ 𝐷−(𝐴)    and     (1 − 𝜀)𝐷+(∆) ≤ 𝐷+(𝐴), 
and since 𝜀 is arbitrary, the theorem is proved. 

The proof  of part (b) of Theorem (2.2.10) is now immediate. 

Theorem (2.2.10)[83]: For each 𝑘 = 1,… . . , 𝑟, choose a nonzero function g𝑘 ∈ 𝐿
2(𝑅𝑑) 

and an arbitrary sequence𝐴𝑘 ⊂ 𝑅
2𝑑. Let 𝐴 be the disjoint union of  𝐴1, … . . , 𝐴𝑟 .  

(a) If ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1  possesses an upper frame bound for 𝐿2(𝑅𝑑), then 𝐷+(𝐴) < ∞. 

(b) If  ⋃ 𝑆(g𝑘, 𝐴𝑘)
𝑟
𝑘=1  is a frame for 𝐿2(𝑅𝑑), then 𝐷−(𝐴) ≥ 1. 

Proof. (a) Suppose that 𝑈𝑘 𝑆(g𝑘 , 𝐴𝑘) possesses an upper frame bound. then, by 

Theorem (2.2.4), each 𝐴𝑘 is relatively uniformly separated. Hence A is a finite union of 

relatively uniformly separated sequences, therefore is itself relatively uniformly 

separated, and hence has finite upper Beurling density. 

(b) Define 𝜙 = 𝜒𝑄1(0) and Δ = 𝑍𝑑. Then 𝑆(𝜙, Δ) is an orthonormal basis for 𝐿2(𝑅𝑑). 

Therefore, Theorem (2.2.9) implies that 𝐷−(𝐴) ≥ 𝐷−(∆) = 1 . 

We remark that we cannot replace the conclusion 𝐷−(𝐴) ≥ 1 of Theorem 

(2.2.10)(b) by the stronger statement that ∑ 𝐷−(𝐴𝑘) ≥ 1.
𝑟
𝑘=1  For example, consider 

again the orthonormal basis 𝑆(∅, ∆) defined by ∅ = 𝜒𝑄1(0) and ∆= 𝑍𝑑. We do have 

𝐷− ≥ 1. However, if we  define ∆1= {𝑛 = (𝑛1, … . , 𝑛𝑑) ∈ 𝑍
𝑑: 𝑛1 ≥ 0} and ∆2= {𝑛 =

(𝑛1, … , 𝑛𝑑) ∈ 𝑍
𝑑: 𝑛1 < 0}, then 𝑆(∅, ∆1) ∪ 𝑆(∅, ∆2) is an orthonormal basis for 

𝐿2(𝑅𝑑), yet 𝐷−(∆1) = 𝐷
−(∆2) = 0. 

We conclude with the following consequence of the comparison theorem for 

Gabor Riesz bases. 

Corollary (2.2.11)[83]: Assume that 𝜙1, … , 𝜙𝑠 ∈ 𝐿
2(𝑅𝑑) and ∆1, … . , ∆𝑠⊂ 𝑅

2𝑑 are such 

that ⋃ 𝑆(𝜙𝐾 , ∆𝐾)
𝑠
𝑘=1  is a Riesz basis for 𝐿2(𝑅𝑑). Let ∆ be the disjoint union of 

∆1, … . , ∆𝑠, then 𝐷+(∆) = 𝐷−(∆) = 1; i.e, ∆ has uniform Beurling density 𝐷(∆) = 1. 
Proof. Let g = 𝜒𝑄1(0) and 𝐴 = 𝑍𝑑. Then 𝑆(g, 𝐴) is an orthonormal basis, and hence a 

frame, for 𝐿2(𝑅𝑑). Therefore, Theorem (2.2.9) applied to this frame and to the Riesz  

Basis ⋃ 𝑆(∅𝐾 , ∆𝐾)𝑘  implies that 𝐷−(∆) ≤ 𝐷−(𝐴) = 1 and 𝐷+(∆) ≤ 𝐷+(𝐴) = 1. By 

symmetry, we also have 1 = 𝐷−(𝐴) ≤ 𝐷−(∆) and 1 = 𝐷+(𝐴) ≤ 𝐷+(∆). 
We will prove Theorem (2.2.12). 

      First, however we observe that Theorem (2.2.10) already implies that there are no 

frames consisting of translates of finitely many functions. to  see this, assume that 

g1, … , g𝑟 ∈ 𝐿
2(𝑅𝑑) and Γ1, … Γ𝑟 ⊂ 𝑅

𝑑 were such that ⋃ 𝑇(g𝑘, Γ𝑘)𝑘  was a frame for 

𝐿2(𝑅𝑑). Considering that (g𝑘, Γ𝑘 × {0}) = 𝑇(g𝑘, Γ𝑘), we see that Theorem (2.2.10)(b) 
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implies that 𝐷−(Γ × {0}) ≥ 1 , where Γ is the disjoint union of Γ1, … , Γ𝑟. However, this  

is certainly a contradiction, since 𝐷−(Γ × {0}) = 0. 

Indeed, Theorem (2.2.10)(b) implies that whenever ⋃ 𝑆(g𝐾 , ∆𝐾)𝑘  is a frame, the 

disjoint union 𝐴 cannot contain arbitrarily large  gaps , since if for each radius ℎ there  

existed a point (𝑥, 𝑦) ∈ 𝑅2𝑑 such that 𝑄ℎ(𝑥, 𝑦) contained no points of 𝐴, then we would 

have 𝐷−(A) = 0 and therefore could not have a frame. Thus, the collection 𝐴 of time-

frequency translates must be ”spread” throughout the entire time-frequency plane 𝑅2𝑑. 

For example, 𝐴 could not be restricted to a banded set like 𝑅𝑑 × 𝑄1(0), or a single 

“quadrant” in 𝑅2𝑑. 

We now give the proof of Theorem (2.2.12). 

Theorem (2.2.12)[83]: For each 𝑘 = 1,…… , 𝑟, choose a nonzero function 𝑔𝑘 ∈ 𝐿
2(𝑅𝑑) 

and  an arbitrary sequence Γ𝑘 ⊂ 𝑅
𝑑 . Let Γ be the disjoint union of  Γ𝑘, … . . , Γ𝑟).   

(a) If  ⋃ 𝑇(g𝑘, Γ𝑘)
𝑟
𝑘=1  possesses an upper frame bound for 𝐿2(𝑅𝑑), then 𝐷+(Γ) < ∞. 

(b) If  ⋃ 𝑇(g𝑘, Γ𝑘)
𝑟
𝑘=1  possesses an lower frame bound for 𝐿2(𝑅𝑑), then 𝐷+(Γ) = ∞. 

Proof. (a) Assume that ⋃ 𝑇(g𝑘, Γ𝑘)𝑘  possessed an upper frame bound. Then by 

Theorem (2.2.10)(a), We have 𝐷+(Γ × {0}) < ∞. This implies that Γ × {0} is relatively 

uniformely separated as a subset of 𝑅2𝑑, Hence Γ  is relatively uniformly separated as a 

subset of  𝑅𝑑 , and therefore 𝐷+(Γ) < ∞. 
(b) We will show the contrapositive statement. Assume that 𝐷+(Γ) < ∞. then Γ, and 

therefore each Γ𝑘, is relatively uniformely separated. Hence for each 𝑘 we can write Γ𝑘 

as the union of subsequences Δ𝑘𝑗 for 𝑗 = 1,… , 𝑠𝑘, each of which is δ𝑘𝑗-Separated. 

Define 𝛿 = min{δ𝑘𝑗 2⁄ }. Then fix any ℎ < 𝛿, and define 𝑄 = 𝑄ℎ(0). Note that the 

cubes {𝑄 + 𝑎}𝑎∈∆𝑘𝑗 are disjoint, and define  

𝐵𝑘𝑗 = ⋃ (𝑄 + 𝑎)𝑎∈∆𝑘𝑗 .  

Then , 

∑ ∑|〈𝑥𝑄, 𝑇𝑎g𝑘〉|
2
=∑∑ ∑ |〈𝑥𝑄, 𝑥𝑄𝑇𝑎g𝑘〉|

2

𝑎∈∆𝑘𝑗

𝑠𝑘

𝑗=1

𝑟

𝑘=1𝑎∈Γ𝑘

𝑟

𝑘=1

≤∑∑ ∑ ‖𝑥𝑄‖2
2
‖𝑥𝑄𝑇𝑎g𝑘‖2

2

𝑎∈∆𝑘𝑗

𝑠𝑘

𝑗=1

𝑟

𝑘=1

= ‖𝑥𝑄‖2
2
∑∑ ∫|g(𝑥)|2 𝑑𝑥

𝐵𝑘𝑗

𝑠𝑘

𝐽=1

𝑟

𝐾=1

. 

However, for each fixed 𝑘 and  𝑗, the function 𝑥𝐵𝑘𝑗(𝑥)|g𝑘(𝑥)|
2 converges to zero   point 

wise a.e as ℎ → 0, and is dominated by the integrable function |g𝑘(𝑥)|
2. it therefore 

follows from the lebesgue Dominated Convergence Theorem that 

lim
ℎ→0

∫ |g𝑘(𝑥)|
2 𝑑𝑥

𝐵𝑘𝑗
= 0.  Hence ⋃ 𝑇(g𝑘, Γ𝑘)𝑘  cannot possess a lower frome bound. 

Section (2.3): Stability of Gabor Frames 

Given a Gabor frames {𝜋(𝛾)g: 𝛾 ∈ Γ}, also known as a Weyl-Heisenbrg frame, 

where g ∈ 𝐿2(𝑅𝑑), Γ is a sequence in 𝑅2𝑑, and   

𝜋(𝑥, 𝑦)g(𝑧) = g(𝑧 − 𝑥)𝑒2𝜋𝑖〈𝑧,𝑦〉, (𝑥, 𝑦) ∈ 𝑅2𝑑 , 
one is asked if it remains a frame when the window function and /or sampling points 

have some small perturbation. Since the frame property of this system is equivalent to 

the question whether it is possible to recover a signal 𝑓 from 𝐿2 in a stable way from the 

sampling values of the short-time Fourier transform over Γ, i.e, from the values 
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〈𝑓, 𝜋(𝑥, 𝑦)g〉, with (𝑥, 𝑦) ∈ Γ one also talks about the stability of sampling points, 

respectively the jitter error problem for the Gabor transform. Although the continuous 

dependence of the representation coefficients as a function of  the precise position of the 

sampling points has been described in considerable generality as early as 1989 in [111] 

(Theorem 6.5), this result concerns the coefficients obtained by specific iterative 

reconstruction methods, which in turn are only guaranteed to converge under the 

assumption of sufficiently high sampling density. The stability of Gabor frames having 

the canonical duals in mind has been given by Favier and Zalik [109] and subsequently 

by [103,104,106,109,126,127,128].Most of them are concerning 1-dimension or Γ being 

a separable lattice (or product lattice), i.e, Γ = {(𝑛𝑎,𝑚𝑏): 𝑛,𝑚 ∈ 𝑍𝑑} for some 𝑎, 𝑏 >
0. 

In [114], Feichtinger and Kaiblinger proved that if  {𝜋(𝐿𝑛)g: 𝑛 ∈ 𝑍2𝑑} is a frame 

for 𝐿2(𝑅𝑑), where 𝐿 is a 2𝑑 × 2𝑑 matrix and g ∈ 𝑆0(𝑅
𝑑), then {𝜋(�̃�𝑛)g: 𝑛 ∈ 𝑍2𝑑} is 

also a frame provided ‖𝐿 − �̃�‖ is small enough. These results are valid despite the fact 

that the corresponding frame operators are not close to each other in the operator norm. 

We study similar perturbations, but for arbitrary sets of sampling points in the time-

frequency plane. Specifically, let {𝜋(𝑎𝑛, 𝑏𝑛)g: 𝑛 ∈ 𝑍} be a frame. We ask whether it 

remains a frame when (𝑎𝑛, 𝑏𝑛) is replaced by (𝑃𝑎𝑛,𝑃−𝑇𝑏𝑛). here 𝑃 is a 𝑑 × 𝑑 matrix, 

𝑃𝑇 is the transpose of 𝑃 and 𝑃−𝑇 = (𝑃𝑇)−1. We show that the answer is positive if g 
satisfies some decay condition and ‖𝐼 − 𝑃‖ is small enough. Note that for Γ being a 

lattice, perturbations of this type  preserve the size of the lattice. Typical cases are 

ordinary dilations (e.g stretching in the time direction and corresponding compression in 

the frequency domain), or more general symplectic transformations acting on phase 

space. Since for the regular Gabor the lattices obtained from standard product lattices in 

this way are called symplectic lattices we call these perturbations symplectic 

perturbations (cf. [121], p.280). 

For the ℓ∞ perturbation of sampling points, it was shown in [103,104,109,126, 

127] that if {𝜋(𝑛𝑎,𝑚𝑏 )g: 𝑛,𝑚 ∈ 𝑍} is a frame for 𝐿2(𝑅), g satisfies some decay and 

smoothness conditions, and |𝜆𝑛 − 𝑛𝑎| and |𝜇𝑚 −𝑚𝑏| are small enough, then 

{𝜋(𝜆𝑛, 𝜇𝑚)𝑔: 𝑛,𝑚 ∈ 𝑍} is also a frame for 𝐿2(𝑅). In [128], this result is generalized to 

arbitrary sampling points while the window function is required to stisfy 𝑥𝑘g(ℓ)(𝑥) ∈
𝐿2(𝑅) for all 0 ≤ 𝑘, ℓ ≤ 2, which implies that g(𝑥), g′(𝑥), 𝑥g(𝑥), 𝑥g′(𝑥) ∈ 𝑆0(𝑅

𝑑) (see 

[116, Lemma 3.11]). We show that the window function belonging to  𝑆0(𝑅
𝑑) is enough 

to ensure the stability. Specifically, if g ∈ 𝑆0(𝑅
𝑑) and {𝜋(𝛾𝑛)g: 𝑛 ∈ 𝑍} is a frame for 

𝐿2(𝑅𝑑), then {𝜋(𝛾𝑛
′)g: 𝑛 ∈ 𝑍} is also a frame whenever sup

𝑛
‖𝛾𝑛 − 𝛾𝑛

′‖∞ is small 

enough. Moreover, we give an explicit stability bound when 𝑋𝛼g, 𝐷𝛼g ∈ 𝑆0(𝑅
𝑑) for all 

𝛼 ∈ 𝐼𝑑 with |𝛼| = 1. Note that the sampling points are arbitrary.  

On the perturbation of window functions, most of known results [103,109,126] 

are stated with a decay condition on window functions. Perturbations are allowed only 

in point wise sense, i.e, |ℎ(𝑥) − g(𝑥)| ≤ 𝜀|g(𝑥)| or |ℎ̃(𝜔) − g̃(𝜔)| ≤ 𝜀|�̃�(𝜔)|, where ℎ 

is the perturbed window function. Here we give some stability conditions with global 

norms. In particular, if {𝜋(𝛾)g: 𝛾 ∈ Γ} is a frame, then {𝜋(𝛾)ℎ: 𝛾 ∈ Γ} is also a frame 

provided ‖𝑔 − ℎ‖𝑠0 is small enough. Note that the window function and sampling 

points are arbitrary. 
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The stability of dual frames is also needed in practice. However, as far as we 

know, there are few of results on this topic (except for the typical statements on frame 

bounds). We show that if two frames are close to each other , so are their dual frames in 

the same sense. 

Notation (2.3.1)[99]: |𝐸| denotes the Lebesgue measure of a measurable set 𝐸. A 

sequence Γ ⊂ 𝑅𝑑 is called 𝛿-uniformely discrete for some 𝛿 > 0 if ‖𝛾 − 𝛾′‖∞ ≥ 𝛿 for 

any 𝛾, 𝛾′ ∈ Γ with 𝛾 ≠ 𝛾′. Γ is called relatively uniformly discrete if it is a finite union 

of uniformly discrete sequences. For any 𝑎 > 0 and 𝑛 ∈ 𝑍𝑑 , let 𝐸𝑛,𝑎 = 𝑛𝑎 + [0, 𝑎]
𝑑. 

define the Wiener algebra as 

𝑊(𝑅𝑑) = {𝑓: 𝑓 is continuous and ∑ ‖𝑓. 𝑋𝐸𝑛,𝑎‖∞
< ∞𝑛∈𝑍𝑑 }.  

It can be proved that 𝑊(𝑅𝑑) is Banach space with the norm  

‖𝑓‖𝑊,𝑎 = ∑ ‖𝑓. 𝑋𝐸𝑛,𝑎‖∞
< ∞𝑛∈𝑍𝑑   

and different choices of a give of a give equivalent norm [106, p.187]. 

For any 𝑑 × 𝑑 matrix P, denote its norm by ‖𝑃‖ = sup‖𝑥‖2=1‖𝑝𝑥‖2.  

We use the following set of multi-indices: 𝐼𝑑 ≔ {(𝑖1, … . , 𝑖𝑑): 𝑖𝑘 = 0 or 1},  𝛼 =
(𝛼1, … , 𝛼𝑑), |𝛼| = 𝛼1 +⋯+ 𝛼𝑑 , 

𝑥𝛼 = 𝑥1
𝛼1 , … , 𝑥𝑑

𝛼𝑑 , (𝑋𝛽𝑓)(𝑥) = 𝑋𝛽𝑓(𝑥) = 𝑥1
𝛽1 , … , 𝑥𝑑

𝛽𝑑𝑓(𝑥),  

and 𝐷𝑥
𝛼𝑓(𝑥) =

𝜕|𝛼|

𝜕𝑥1
𝛼1 ,…,𝜕𝑥𝑑

𝛼𝑑
𝑓(𝑥) stands for classical partial derivatives. We simply write 

𝐷𝛼𝑓 if there is no confusion. 

The Segal algebra 𝑆0(𝑅
𝑑), also known as Feichtinger's algebra, is defined by  

𝑆0(𝑅
𝑑) = {𝑓 ∈ 𝐿2(𝑅𝑑): ‖𝑓‖𝑠0 = ‖𝑉 g 0𝑓‖1

< ∞}, 

Where g0 is the Gaussian function, i.e , g0(𝑥) = 𝑒
−𝜋‖𝑥‖2

2

. 𝑆0(𝑅
𝑑) Coincides with the 

modulation space 𝑀1,1
0  as discussed in [110,112].   

Note that (𝑉g𝑓)(𝑥, 𝑦) = 𝑒
−2𝜋𝑖〈𝑥,𝑦〉(𝑉g̃𝑓)(𝑦,−𝑥). Consequently 𝑓 ∈ 𝑆0(𝑅

𝑑) if and 

only if 𝑓 ∈ 𝑆0(𝑅
𝑑). We give some sufficient conditions (see for example [117]) for a 

function to be in 𝑆0(𝑅
𝑑), and we see [118] for further properties. 

Proposition (2.3.2)[99]: Any of the following conditions implies 𝑓 ∈ 𝑆0(𝑅
𝑑): 

(i) ([118]) 𝑓 ∈ 𝐿1(𝑅𝑑) and band limited, i.e, 𝑓 is compactly supported.  

(ii) ([120]) 𝑓𝜔𝑠 , 𝑓𝜔𝑠 ∈ 𝐿
2(𝑅𝑑), where 𝜔𝑠(𝑥) = (1 + ‖𝑥‖2

2)𝑠 2⁄ , for some 𝑠 > 𝑑.  

Recall that a family of  functions {𝜑𝑘 ∶ 𝑘 ∈ 𝑍} in 𝐿2(𝑅𝑑) is a frame for 𝐿2(𝑅𝑑)  if 
there are two positive numbers 𝐴 and 𝐵 such that for any 𝑓 ∈ 𝐿2(𝑅𝑑),  

𝐴‖𝑓‖2 ≤∑|〈𝑓, 𝜑𝑘〉|
2 ≤ 𝐵‖𝑓‖2

𝑘∈𝑧

. 

𝐴 And 𝐵 are called the lower and upper frame bounds, respectively . We see [106, 130] 

for an overview on frames and Riesz bases. 

We study the Symplectic perturbation of sampling points. We consider two cases. 

the first concerns sets of the form Γ = {(𝑎𝑛, 𝑏𝑛,𝑚): 𝑛,𝑚 ∈ 𝑍}, the second the more 

general situation Γ = {(𝑎𝑛, 𝑏𝑛): 𝑛 ∈ 𝑍}. First, we recall a result by Christensen, Deng 

and Heil. 

Proposition (2.3.3)[99]: [107, Theorem 1.1]. Let g ∈ 𝐿2(𝑅𝑑) {0}⁄   and Γ be a sequence 

in 𝑅2𝑑. 
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(i) If {𝜋(𝛾)g: 𝛾 ∈ Γ} has an upper frame bound, then Γ is relatively uniformly 

discrete.  

(ii) If {𝜋(𝛾) g ∶ 𝛾 ∈ Γ} is a frame for 𝐿2(𝑅𝑑), then Γ has a lower Beurling density no 

less than 1. 

The following is a fundamental result in the study of the stability of frames. 

Proposition (2.3.4)[99]: [102, Theorem 1]. Let {𝑓𝑘: 𝑘 ∈ 𝑍} be a frame for some Hilbert 

space ℋ with bounds 𝐴 and 𝐵. if  {g𝑘: 𝑘 ∈ 𝑍} ⊂ ℋ is such that {𝑓𝑘 − g𝑘: 𝑘 ∈ 𝑍} is a 

Bassel sequence with upper bound 𝑀 < 𝐴, then {g𝑘: 𝑘 ∈ 𝑍} is a frame for ℋ with 

bounds (√𝐴 − √𝑀)
2
 and (√𝐵 − √𝑀)

2
.  

The following lemma is a generalization of   Wirtinger’s inequality [122, p.184] 

for multivariate functions, which can be showed by induction (see [116, lemma 3.14] 

for a proof). 

Lemma (2.3.5)[99]: Suppose that 𝐸 is a cube in 𝑅𝑑 with side length 𝛿 and 𝐷𝛼𝑓 ∈
𝐿2(𝐸) for any 𝛼 ∈ 𝐼𝑑. Then for any 𝑦 ∈ 𝐸, 

‖𝑓 − 𝑓(𝑦)‖𝐿2(𝐸) ≤ ∑ (
2𝛿

𝜋
)
|𝛼|
‖𝐷𝛼𝑓‖𝐿2(𝐸) 𝛼∈𝐼𝑑\{0} .  

The 1-dimensional version of the following lemma essentially appeared in [100, 

lemma 42]. here we give a multi-dimensional version. 

Lemma (2.3.6)[99]: Suppose that 𝑎 and 𝛿 are positive constants. Then for any 𝛿-

uniformely discrete sequence {𝑏𝑛: 𝑛 ∈ 𝑍} ⊂ 𝑅
𝑑 , {𝑒2𝜋𝑖〈∙,𝑏𝑛〉: 𝑛 ∈ 𝑍} is a Bessel sequence 

for 𝐿2(𝐸) with upper bound 𝛿−𝑑(1 + 𝑎𝛿)2𝑑 for any cube 𝐸 ⊂ 𝑅𝑑 with side length  𝑎. 

Proof. First, we consider the case of  𝐸 = [−𝑎 2⁄ , 𝑎 2⁄ ]𝑑 .  Divide [−𝛿 2 , 𝛿 2⁄  ⁄ ]𝑑 into 

2𝑑 small cubes 𝑈𝑘, 1 ≤ 𝑘 ≤ 2𝑑, such that |𝑈𝑘| = (𝛿 2)⁄
𝑑

 and 0 is an end point of each 

𝑈𝑘. 

For any 𝑓 ∈ 𝐿2 with support in [−𝑎 2⁄ , 𝑎 2⁄ ]𝑑 , the Fourier transform takes the 

form  

𝑓(𝑦) = ∫ 𝑓(𝑥)𝑒−2𝜋𝑖〈𝑥,𝑦〉𝑑𝑥
[−𝑎 2⁄ ,𝑎 2⁄ ]𝑑

.  

Then we have 

‖𝐷𝛼𝑓‖
2
= ‖(−2𝜋𝑖)|𝛼|𝑋𝛼𝑓‖

𝐿2(𝐸)
≤ (𝜋𝑎)|𝛼|‖𝑓‖𝐿2(𝐸) = (𝜋𝑎)

|𝛼|‖𝑓‖
2
.  

It follows from lemma (2.3.5) that 

∑∑∫ |𝑓(𝑦 + 𝑏𝑛) − 𝑓(𝑏𝑛)|
2
𝑑𝑦

𝑈𝑘𝑛∈𝑍

2𝑑

𝑘=1

≤∑∑( ∑ (
𝛿

𝜋
)

|𝛼|

𝛼∈𝐼𝑑\{0}

‖𝐷𝛼𝑓(.+𝑏𝑛)‖𝐿2(𝑈𝑘)
)

2

 

𝑛∈𝑍

2𝑑

𝑘=1

≤ ( ∑ (∑∑(
𝛿

𝜋
)

2|𝛼|

‖𝐷𝛼𝑓(∙ +𝑏𝑛)‖𝐿2(𝑈𝑘)
2

𝑛∈𝑍

2𝑑

𝑘=1

)

1 2⁄

𝛼∈𝐼𝑑\{0}

)

2

 

=

(

 
 

∑ (∑(
𝛿

𝜋
)
2|𝛼|

∫ |(𝐷𝛼𝑓)(𝑦 + 𝑏𝑛)|
2

[−𝛿 2,𝛿 2]⁄⁄ 𝑑

𝑑𝑦

𝑛∈𝑍

)

1 2⁄

𝛼∈𝐼𝑑\{0}

)

 
 

2
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≤ ( ∑ (
𝛿

𝜋
)

|𝛼|

𝛼∈𝐼𝑑\{0}

‖𝐷𝛼𝑓‖
2
)

2

≤ ( ∑ (
𝛿

𝜋
)

|𝛼|

𝛼∈𝐼𝑑\{0}

(𝜋𝑎)|𝛼|‖𝑓‖
2
)

2

= ((𝑎𝛿 + 1)𝑑 − 1)2‖𝑓‖
2

2
. 

Note that  

∑∑ ∫|𝑓(𝑦 + 𝑏𝑛)|
2
𝑑𝑦 = ∑ ∫ |𝑓(𝑦 + 𝑏𝑛)|

2
𝑑𝑦

[−𝛿 2,𝛿 2]⁄⁄ 𝑑𝑛∈𝑍𝑈𝑘𝑛∈𝑍

2𝑑

𝑘=1

≤ ‖𝑓‖
2

2
. 

We have 

∑|𝑓(𝑏𝑛)|
2
=
1

𝛿𝑑
∑∑∫ |𝑓(𝑏𝑛)|

2
𝑑𝑦

𝑈𝑘

≤

𝑛∈𝑍

2𝑑

𝑘=1𝑛∈𝑍

1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑‖𝑓‖

2

2
 . 

Since ‖𝑓‖
2
= ‖𝑓‖𝐿2(𝐸), {𝑒

2𝜋𝑖 〈∙,𝑏𝑛〉: 𝑛 ∈ 𝑍} is a Bessel sequence for 𝐿2([−𝑎 2⁄ , 𝑎 2]⁄
2
) 

with upper bound  𝛿−𝑑(1 + 𝑎𝛿)2𝑑. 

For the general case, by a change of variable of the form  𝑥 → 𝑥 + 𝑥0, where 𝑥0 

is the center point of  𝐸, we can show that {𝑒2𝜋𝑖 〈∙,𝑏𝑛〉: 𝑛 ∈ 𝑍} is a Bessel sequence for 

𝐿2(𝐸) with the same upper bound. 

The following lemma gives an estimate for the upper frame bound of  

{𝜋(𝑎𝑛, 𝑏𝑚,𝑛)g: 𝑛,𝑚 ∈ 𝑍} when g ∈ 𝑊(𝑅𝑑).  

Lemma (2.3.7)[99]: let 𝑎, 𝛿 > 0 be constants. Suppose that {𝑎𝑛: 𝑛 ∈ 𝑍} ⊂ 𝑅
𝑑 is a-

uniformly discrete and for any  𝑛 ∈ 𝑍,{𝑏𝑛,𝑚:𝑚 ∈ 𝑍} is 𝛿-uniformly discrete. Then 

{𝜋(𝑎𝑛, 𝑏𝑚,𝑛)g: 𝑛,𝑚 ∈ 𝑍} is a Bessel sequence for 𝐿2(𝑅𝑑) for any g ∈ 𝑊(𝑅𝑑), with 

upper bound  

𝑀 = (2 𝛿)⁄
𝑑
(1 + 𝑎𝛿)2𝑑‖𝑔‖𝑊,𝑎

2
. 

Proof. For any 𝑘 ∈ 𝑍𝑑, let 𝐸𝑘,𝑎 = 𝑘𝑎 + [0, 𝑎)
𝑑 and  

𝑞𝑘,𝑛 = ‖g(∙ −𝑎𝑛) ∙ 𝜒𝐸𝑘,𝑎‖∞
+ 2−(|𝑘1|+⋯+|𝑘𝑑|)𝜂 , 𝑛 ∈ 𝑍,  

Where 𝜂 is appositive constant. We have  

∑ 𝑞𝑘,𝑛
𝑘∈𝑍𝑘

= ∑‖g(∙ −𝑎𝑛)𝜒𝐸𝑘,𝑎‖∞
+

𝑘∈𝑍𝑘

∑  2−(|𝑘1|+⋯+|𝑘𝑑|)𝜂

𝑘∈𝑍𝑘

= ∑‖g ∙ 𝜒𝐸𝑘,𝑎 − 𝑎𝑛‖∞
+ 3𝑑𝜂

𝑘∈𝑍𝑘

≤∑ ∑ ‖g ∙ 𝜒𝐸
𝑘′,𝑎
‖
∞
+

𝑘′∈𝑍𝑑

|𝐸𝑘′,𝛼∩(𝐸𝑘,𝑎−𝑎𝑛)|>0

𝑘∈𝑍

3𝑑𝜂

= ∑ ∑ ‖g ∙ 𝜒𝐸
𝑘′,𝑎
‖
∞
+ 3𝑑𝜂

𝑘∈𝑍𝑑

|𝐸𝑘′,𝛼∩(𝐸𝑘,𝑎−𝑎𝑛)|>0

𝑘′∈𝑍𝑑

≤ ∑ 2𝑑 ‖𝑔 ∙ 𝜒𝐸
𝑘′,𝑎
‖
∞
+ 3𝑑𝜂 = 2𝑑‖g‖𝑊,𝑎 + 3

𝑑𝜂

𝑘′∈𝑍𝑑

. 

 It follows by Lemma (2.3.6) that  
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∑ |〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛,𝑚)𝑔〉|
2
=

𝑛,𝑚∈𝑍

∑ |∫ 𝑓(𝑥)𝑔(𝑥 − 𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝑥,𝑏𝑛,𝑚〉𝑑𝑥

𝑅𝑑

|

2

𝑛,𝑚∈𝑍

 

= ∑ |∑ ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝑥,𝑏𝑛,𝑚〉𝑑𝑥

𝐸𝑘,𝑎𝑘∈𝑍𝑑

|

2

𝑛,𝑚∈𝑍

 

≤ ∑ ∑ 𝑞𝑘,𝑛
𝑘∈𝑍𝑑𝑛,𝑚∈𝑍

∑
1

𝑞𝑘,𝑛
𝑘∈𝑍𝑑

| ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝑥,𝑏𝑛,𝑚〉𝑑𝑥

𝐸𝑘,𝑎

|

2

 

≤ ∑ (2𝑑‖𝑔‖𝑊,𝑎 + 3
𝑑𝜂)

𝑛,𝑚∈𝑍

∑
1

𝑞𝑘,𝑛
𝑘∈𝑍𝑑

| ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑎𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝑥,𝑏𝑛,𝑚〉𝑑𝑥

𝐸𝑘,𝑎

|

2

 

≤∑
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖𝑔‖𝑊,𝑎 + 3

𝑑𝜂)

𝑛∈𝑍

∑
1

𝑞𝑘,𝑛
𝑘∈𝑍𝑑

 ∫|𝑓(𝑥)𝑔(𝑥 − 𝑎𝑛)|
2𝑑𝑥

𝐸𝑘,𝑎

 

=
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖𝑔‖𝑊,𝑎 + 3

𝑑𝜂) ∑ ∫|𝑓(𝑥)|2

𝐸𝑘,𝑎

∑|𝑔(𝑥 − 𝑎𝑛)|
2
1

𝑞𝑘,𝑛
𝑛∈𝑍𝑘∈𝑍𝑑

𝑑𝑥 

≤
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖𝑔‖𝑊,𝑎 + 3

𝑑𝜂) ∑ ∫|𝑓(𝑥)|2

𝐸𝑘,𝑎

∑ |𝑔(𝑥 − 𝑎𝑛)|

𝑛∈𝑍𝑘∈𝑍𝑑

𝑑𝑥 

=
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖𝑔‖𝑊,𝑎 + 3

𝑑𝜂) ∫|𝑓(𝑥)|2

𝐸𝑘,𝑎

∑ |𝑔(𝑥 − 𝑎𝑛)|

𝑛∈𝑍

𝑑𝑥 

=
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖𝑔‖𝑊,𝑎 + 3

𝑑𝜂) ∫|𝑓(𝑥)|2

𝑅𝑑

∑|𝑔(𝑥 − 𝑎𝑛)|

𝑛∈𝑍

𝑑𝑥.           (13) 

Since {𝑎𝑛: 𝑛 ∈ 𝑍} ⊂ 𝑅
𝑑 is 𝑎-uniformly discrete, 

#(𝐸𝑘,𝑎 ∩ {𝑥 − 𝑎𝑛: 𝑛 ∈ 𝑍) ≦ 1, ∀𝑘 ∈ 𝑍𝑑 , 𝑥 ∈ 𝑅𝑑 . 
Thus  

∑|g(𝑥 − 𝑎𝑛)|

𝑛∈𝑍

≦ ∑‖g. 𝜒𝐸𝑘,𝑎‖∞
𝑘∈𝑍𝑑

= ‖g‖𝑊,𝑎, ∀𝑥. 

By (13) , this implies that  

∑ |〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛,𝑚)g〉|
2

𝑛,𝑚∈𝑍

≤
1

𝛿𝑑
(1 + 𝑎𝛿)2𝑑(2𝑑‖g‖𝑊,𝑎 + 3

𝑑𝜂)‖g‖𝑊,𝑎‖𝑓‖2
2. 

Now the conclusion follows by letting  𝜂 → 0. 

Lemma (2.3.8)[99]: Suppose that g ∈ 𝑊(𝑅𝑑) and 𝑃 is a 𝑑 × 𝑑 matrix. Let (𝐷𝑝𝑔)(𝑥) =

|det 𝑃|1 2⁄ ∙ g(𝑝𝑥). Then we have  

lim
‖𝐼−𝑃‖→0

‖g − 𝐷𝑝g‖𝑊,𝑎 = 0, ∀g ∈ 𝑊
(𝑅𝑑), 𝑎 > 0.  
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Proof. By [114, Lemma 2.1], lim
‖𝐼−𝑝‖→0

‖g − g(𝑝−1)‖𝑊,𝑎 = 0. Since ‖𝐼 − 𝑝‖ → 0 is 

equivalent to ‖1 − 𝑃−1‖ → 0, the conclusion follows.  

With the results above, we can consider Symplectic perturbations of Gabor 

frames for the case that the sampling points are on Parallel lines. 

Theorem (2.3.9)[99]: Suppose that {𝜋(𝑎𝑛, 𝑏𝑛,𝑚)g ∶ 𝑛,𝑚 ∈ 𝑍} is a frame for 𝐿2(𝑅𝑑),

{𝑎𝑛: 𝑛 ∈ 𝑍} is relatively uniformly discrete, and g ∈ 𝑊(𝑅𝑑). Then there is some 𝜀 > 0. 

Such that for any matrix 𝑃 satisfying ‖𝐼 − 𝑃‖ < 𝜀,   {𝜋(𝑃𝑎𝑛 , 𝑃
−𝑇𝑏𝑛,𝑚)g

: 𝑛,𝑚 ∈ 𝑍)} is a 

frame for 𝐿2(𝑅𝑑). 
Proof.  Fix some 𝛿 > 0. by proposition (2.3.3), Γ is relatively uniformly discrete. Hence 

there is some 𝑁 > 0 such that  

# ({(𝑎𝑛, 𝑏𝑛,𝑚): 𝑛,𝑚 ∈ 𝑍} ∩ ([0, 𝛿]
2𝑑 + 𝑥)) ≦ 𝑁,       ∀𝑥 ∈ 𝑅2𝑑. 

Therefore, 

# ({𝑏𝑛,𝑚:𝑚 ∈ 𝑍} ∩ ([0, 𝛿]
𝑑 + 𝑦)) ≦ 𝑁, ∀𝑦 ∈ 𝑅𝑑 , 𝑛 ∈ 𝑍. 

Consequently, we can split {𝑏𝑛,𝑚:𝑚 ∈ 𝑍} into at most 𝑟′ = (2𝑁)𝑑  𝛿-uniformly discrete 

subsequences 𝐴𝑛,ℓ, 1 ≤ ℓ ≤ 𝑟
′. Similarly, there is some 𝑎 > 0 such that we can split 

{𝑎𝑛: 𝑛 ∈ 𝑍} into 𝑟 𝑎-uniformly discrete subsequences Γ𝑘, 1 ≤ 𝑘 ≤ 𝑟. By Lemma (2.3.7), 

we have  

∑ |〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛,𝑚)(g − 𝐷𝑃g)〉|
2

𝑛,𝑚∈𝑍                                               

                            = ∑ ∑ ∑ |〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛,𝑚)(g − 𝐷𝑃g)〉|
2
 𝑎𝑛∈Γ𝑘

𝑏𝑛,𝑚∈𝐴𝑛,ℓ 

𝑟′

ℓ=1
𝑟
𝑘=1   

                   ≤ 𝑟′𝑟 (
2

𝛿
)
𝑑
(1 + 𝑎𝛿)2𝑑‖g − 𝐷𝑃g‖𝑊,𝑎

2 ‖𝑓‖2
2.  

By Lemma (2.3.8) we can make  ‖g − g𝑃‖𝑊,𝑎, arbitrary small by choosing ‖𝐼 − 𝑃‖ 

small enough. Hence there is some 𝜀 > 0 such that   

∑ |〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛,𝑚)(g − 𝐷𝑃g〉)|
2

𝑁,𝑀∈𝑍 ≦ ∆𝜀‖𝑓‖2
2 < 𝐴‖𝑓‖2

2,  

Whenever ‖𝐼 − 𝑃‖ ≦ 𝜀, it follows from Proposition (2.3.5) that {𝜋(𝑎𝑛, 𝑏𝑛,𝑚)𝐷𝑃,g: 𝑛, 𝑚 ∈

𝑍} is a frame for 𝐿2(𝑅𝑑), i.e, there are some constants 𝐴, 𝐵 > 0 such that  

𝐴‖𝑓‖2
2 ≦ ∑ |det 𝑃| ∙ | ∫ 𝑓(𝑥) ∙ g(𝑃𝑥 − 𝑃𝑎𝑛)𝑒

−2𝜋𝑖〈𝑥,𝑏𝑛,𝑚〉𝑑𝑥

𝑅𝑑

|

2

𝑛,𝑚∈𝑍

≦ 𝐵‖𝑓‖2
2,   ∀𝑓. 

By a change of variable of the form  𝑥 → 𝑃−1𝑥, the conclusion follows. 

Remark (2.3.10)[99]: By Proposition (2.3.3) {(𝑎𝑛, 𝑏𝑚,𝑛): 𝑛,𝑚 ∈ 𝑍} has to be relatively 

uniformly discrete for {𝜋(𝑎𝑛, 𝑏𝑚,𝑛)g: 𝑛,𝑚 ∈ 𝑍} to be a frame, and so is {𝑏𝑚,𝑛:𝑚 ∈ 𝑍} 
for any 𝑛 ∈ 𝑍. However,  {𝑎𝑛 ∶ 𝑛 ∈ 𝑍} might not be so. The following is a counter 

example. 

For simplicity, we take 𝑑 = 1. Let 𝛿 > 0 and {𝑟𝑛: 𝑛 ∈ 𝑍} be the set of all rational 

numbers. Define  

𝑎𝑛 = 𝑟𝑛𝛿,    𝑏𝑛,𝑚 = {

𝑚𝛿, 𝑟𝑛 ∈ 𝑍,

22𝑛(2𝑚 + 1)𝛿, 𝑟𝑛 ∉ 𝑍, 𝑛 ≧ 0,

21−2𝑛(2𝑚 + 1)𝛿, 𝑟𝑛 ∉ 𝑍, 𝑛 < 0.
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It is easy to see that both {(𝑎𝑛, 𝑏𝑚,𝑛): 𝑛,𝑚 ∈ 𝑍, 𝑟𝑛 ∈ 𝑍} and {(𝑎𝑛, 𝑏𝑚,𝑛): 𝑛,𝑚 ∈ 𝑍, 𝑟𝑛 ∉

𝑍} are 𝛿-uniformely discrete. Hence {(𝑎𝑛, 𝑏𝑛,𝑚): 𝑛,𝑚 ∈ 𝑍} is relatively uniformly 

discrete. Since it contains the lattice 𝑍2𝛿, we see from [123,125] that {(𝑎𝑛, 𝑏𝑚,𝑛) g ∶

𝑛,𝑚 ∈ 𝑍} is a frame for 𝐿2(𝑅) if g is the Gaussian and 𝛿 < 1. Obviously, {𝑎𝑛: 𝑛 ∈ 𝑍} is 

not relatively uniformly discrete. 

Remark (2.3.11)[99]: Also, the continuity of g is necessary for this theorem for 

example, if g(𝑥) = 𝜒[0,1]𝑑(𝑥), then {𝜋(𝑛,𝑚)g: 𝑛,𝑚 ∈ 𝑍𝑑} is an orthonormal basis for 

𝐿2(𝑅𝑑). But for any 𝑝 > 1, {𝜋(𝑝𝑛,𝑚 𝑝⁄ )g: 𝑛,𝑚 ∈ 𝑍𝑑} is not complete in 𝐿2(𝑅), and so 

cannot form a frame. On the other hand, it is easy to check that if for a continuous 

function 𝑔 satisfying   

| g (𝑥)| ≤ 𝐶∏(1 + |𝜒𝑘|)
−1−𝜀

𝑑

𝐾=1

 

For some 𝐶, 𝜀 > 0, then g ∈ 𝑊(𝑅𝑑). Consequently, we can apply Theorem (2.3.9) to 

Gabor frames generated by 𝑔. However,  the conclusion is not true if 𝜀 = 0. 

For example, ℎ(𝑥) = ∏
sin𝜋𝑥𝑘

𝜋𝜒𝑘

𝑑
𝑘=1  is continuous and |ℎ(𝑥)| ≤ ∏ (1 + |𝜒𝑘|)

−1𝑑
𝑘=1 . 

Since ℎ̃ = 𝜒[−1 2⁄ ,1 2⁄ ]𝑑, it is easy to see that {𝜋(𝑛,𝑚)ℎ: 𝑛,𝑚 ∈ 𝑍𝑑} is an orthonormal 

basis for 𝐿2(𝑅𝑑) for any 𝑃 > 1. 

We study the stability of Gabor frames with arbitrary sampling points. 

Proposition (2.3.12)[99]: ([116, Lemma 3.2.15]). For any 𝑓, g ∈ 𝑆0(𝑅
𝑑), we have 

𝑉g𝑓 ∈ 𝑊(𝑅
2𝑑) and  

‖𝑉 g 0g‖𝑤,𝛿
= ‖𝑉𝑔g0‖𝑤,𝛿

≦ 25𝑑 2⁄ (2 +
1

𝛿
)
2𝑑

‖𝑉g0g0‖𝑤,1
‖g‖𝑠0 ,  

‖𝑉g𝑓‖𝑤,𝛿
≦ 23𝑑 (2 +

1

𝛿
)
2𝑑

‖𝑉g0g0‖𝑤,1
‖𝑓‖𝑠0‖g‖𝑠0 .  

Lemma (2.3.13)[99]: ([116, Lemma 3.3]). Suppose that g ∈ 𝑆0(𝑅
𝑑). Then {𝜋(𝛾) g ∶

 𝛾 ∈ Γ} is a Bessel sequence for 𝐿2(𝑅𝑑) with upper bound  

𝑀( g ; 𝛿) ≔ 2𝑑 (2 +
1

𝛿
)
2𝑑

‖𝑉 g 0  g 0‖𝑤,1
‖ g ‖𝑆0

2
, 

for any 𝛿-uniformely discrete sequence Γ ⊂ 𝑅2𝑑. 

Lemma (2.3.14)[99]: If {𝜋(𝑎𝑛, 𝑏𝑛) g ∶ 𝑛 ∈ 𝑍} has an upper (lower) frame bound, then 

so does {𝜋(𝑎𝑛 + 𝑥0, 𝑏𝑛 + 𝑦0) g ∶ 𝑛 ∈ 𝑍} with the same bound for any 𝑥0, 𝑦0 ∈ 𝑅
𝑑. 

Proof. This  is a consequence of the fact that 

〈𝑓, 𝜋(𝑎𝑛 + 𝑥0, 𝑏𝑛 + 𝑦0) g 〉 = 𝑒
−2𝜋𝑖〈𝑥0,𝑏𝑛+𝑦0〉〈𝑓(∙ +𝑥0)𝑒

−2𝜋𝑖〈∙ , 𝑦0〉, 𝜋(𝑎𝑛, 𝑏𝑛) g 〉. . 
We are now ready to give a symplectic perturbation result for Gabor frames with 

arbitrary sampling points. 

Theorem (2.3.15)[99]: Suppose that  g ∈ 𝑆0(𝑅
𝑑) and {𝜋(𝑎𝑛, 𝑏𝑛) g ∶ 𝑛 ∈ 𝑍} is a frame 

for 𝐿2(𝑅𝑑). Then there is some 𝜀 > 0 such that for any matrix 𝑃 satisfying ‖1 − 𝑃‖ <
𝜀, {𝜋(𝑃𝑎𝑛, 𝑃

−𝑇𝑏𝑛) g ∶ 𝑛 ∈ 𝑍} is a frame for 𝐿2(𝑅𝑑).  
Proof. As in the proof of Theorem (2.3.9) we need only to show that 

{𝜋(𝑎𝑛, 𝑏𝑛)𝐷𝑃𝑔: 𝑛 ∈ 𝑍} is a frame 𝐿2(𝑅𝑑) if ‖1 − 𝑃‖  is small enough. 
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By Proposition (2.3.3), {(𝑎𝑛, 𝑏𝑛: 𝑛 ∈ 𝑍)} is relatively uniformly discrete. Hence 

there is some 𝑟, 𝛿 > 0 such that we can splite {(𝑎𝑛, 𝑏𝑛: 𝑛 ∈ 𝑍)} into 𝑟 𝛿-uniformely 

discrete sequences Γ𝑘. For any𝑓 ∈ 𝐿2(𝑅𝑑), we have  

(𝑉g𝑓)(𝑥, 𝑦) = 〈𝑓, 𝜋(𝑥, 𝑦) g 〉 =
1

‖g0‖2
2 〈𝑉 g  0𝑓, 𝑉 g 0𝜋(𝑥, 𝑦)g〉                                          

=
1

‖ g 0‖2
2 ∬(

𝑅2𝑑

𝑉 g 0𝑓)(𝑡, 𝜔)(𝑉 g 0  g )(𝑡 − 𝑥,𝜔 − 𝑦)𝑒
2𝜋𝑖〈𝑥,𝜔−𝑦〉𝑑𝑡𝑑𝜔.    (14) 

Similarly, 

(𝑉𝐷𝑃 g 𝑓) (𝑥, 𝑦) =

1

‖ g 0‖2
2∬ (

𝑅2𝑑
𝑉𝐷𝑃 g 0𝑓)(𝑡, 𝜔)(𝑉𝐷𝑃 g 0𝐷𝑃 g )(𝑡 − 𝑥,𝜔 − 𝑦)𝑒

2𝜋𝑖〈𝑥,𝜔−𝑦〉𝑑𝑡𝑑𝜔. 

Hence  

|(𝑉 g 𝑓)(𝑎𝑛, 𝑏𝑛) − (𝑉𝐷𝑃 g 𝑓)(𝑎𝑛, 𝑏𝑛)| 

=
1

‖ g 0‖2
2 |∬(

𝑅2𝑑

𝑉 g 0𝑓)(𝑡, 𝜔)(𝑉 g 0  g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛,𝜔−𝑏𝑛〉𝑑𝑡𝑑𝜔 

− ∬(

𝑅2𝑑

𝑉𝐷𝑃 g 0𝑓)(𝑡, 𝜔)(𝑉𝐷𝑃 g 0𝐷𝑃 g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)𝑒
2𝜋𝑖〈𝑥,𝜔−𝑦〉𝑑𝑡𝑑𝜔| 

≦
1

‖ g 0‖2
2 (∬|(𝑉 g 0𝑓)(𝑡, 𝜔) − (𝑉𝐷𝑃 g 0 𝑓)(𝑡, 𝜔)|

𝑅2𝑑

 

⋅ |(𝑉𝑔0  g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔 + ∬|(𝑉𝐷𝑃 g 0𝑓)(𝑡, 𝜔)|

𝑅2𝑑

 

⋅ |(𝑉 g 0  g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛) − (𝑉𝐷𝑃 g 0𝐷𝑃 g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔) 

=
1

‖ g 0‖2
2 ∬|(𝑉( g 0−𝐷𝑝 g 0)𝑓)(𝑡, 𝜔)|

𝑅2𝑑

⋅ |(𝑉g0  g )(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔 

+
1

‖g0‖2
2 ∬|(𝑉𝐷𝑃g0 𝑓)(𝑡, 𝜔)| ⋅ |(𝑉gg − 𝑉𝐷𝑃g0𝐷𝑃g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔

𝑅2𝑑

 

≦
1

‖g0‖2
2(∬|(𝑉(g0−𝐷𝑝g0)𝑓)(𝑡, 𝜔)|

2
⋅ |(𝑉g0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)𝑑𝑡𝑑𝜔|

𝑅2𝑑

)

1 2⁄

 

⋅ (∬|(𝑉g0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|

𝑅2𝑑

𝑑𝑡𝑑𝜔)

1 2⁄

 

+
1

‖g0‖2
2 (∬|(𝑉𝐷𝑃g0 𝑓)(𝑡, 𝜔)|

2

𝑅2𝑑
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⋅ |(𝑉gg − 𝑉𝐷𝑃g0𝐷𝑃g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔)
1 2⁄

 

⋅ (∬|(𝑉gg − 𝑉𝐷𝑃g0𝐷𝑃g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔

𝑅2𝑑

)

1 2⁄

 

=
‖g‖𝑆0

1 2⁄

‖𝑔0‖2
2 (∬|(𝑉(𝑔0−𝐷𝑝𝑔0)𝑓)(𝑡, 𝜔)|

2
⋅ |(𝑉g0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)𝑑𝑡𝑑𝜔|

𝑅2𝑑

)

1 2⁄

 

+𝐶𝑝 (∬|(𝑉𝐷𝑃𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

⋅ |(𝑉𝑔0g − 𝑉𝐷𝑃g0𝐷𝑃g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔)
1 2⁄
, 

Where 𝐶𝑝 = ‖g0‖2
−2 ⋅ ‖𝑉g0g − 𝑉𝐷𝑃g0𝐷𝑃g‖1

1 2⁄
. Note that for any 𝑡, 𝜔 ∈ 𝑅𝑑, (𝑡, 𝜔) − Γ𝑘. 

Hence 

(∑|(𝑉g𝑓)(𝑎𝑛, 𝑏𝑛) − (𝑉𝐷𝑃g𝑓)(𝑎𝑛, 𝑏𝑛)|
2

𝑛∈𝑍

)

1 2⁄

 

≦
‖g‖𝑆0

1 2⁄

‖g0‖2
2 (∬|(𝑉(𝑔0−𝐷𝑃𝑔0)𝑓)(𝑡, 𝜔)|

2

𝑅2𝑑

 

⋅∑|(𝑉𝑔0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔

𝑛∈𝑍

)

1 2⁄

+ 𝐶𝑝 (∬|(𝑉𝐷𝑃𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

⋅ ∑|(𝑉𝑔0g − 𝑉𝐷𝑃g0𝐷𝑝g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔

𝑛∈𝑍

)

1 2⁄

 

=
‖𝑔‖𝑆0

1 2⁄

‖𝑔0‖2
2 |∬|(𝑉(𝑔0−𝐷𝑃𝑔0)𝑓(𝑡, 𝜔)|

2

𝑅2𝑑

 

⋅ ∑ |(𝑉𝑔0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔
1≤𝑘≤𝑟

(𝑎𝑛,𝑏𝑛)∈Γ𝑘

||

1 2⁄

+ 𝐶𝑝 |∬|(𝑉𝐷𝑃g0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

⋅ ∑ |(𝑉g0g − 𝑉𝐷𝑃g0𝐷𝑝g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)|𝑑𝑡𝑑𝜔
1≤𝑘≤𝑟

(𝑎𝑛,𝑏𝑛)∈Γ𝑘

||

1 2⁄

 

≦
𝑟1 2⁄

‖𝑔0‖2
2 (‖𝑉𝑔0𝑔‖𝑊,𝛿

1 2⁄
‖𝑔‖𝑆0

1 2⁄ ‖𝑔0 − 𝐷𝑃𝑔0‖2 
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+‖𝑉𝑔0𝑔 − 𝑉𝐷𝑃𝑔0𝐷𝑝𝑔‖𝑊,𝛿
1 2⁄
‖𝑉𝑔0𝑔 − 𝑉𝐷𝑃𝑔0𝐷𝑝𝑔‖1

1 2⁄
‖𝑔0‖2)‖𝑓‖.             (15) 

Note that 

(𝑉𝐷𝑃𝑔0𝐷𝑝𝑔 )(𝑥, 𝑦) = ∫|det𝑃|𝑔(𝑝𝑡)𝑔0(𝑃𝑡 − 𝑃𝑥)𝑒
−2𝜋𝑖〈𝑡,𝑦〉𝑑𝑡

𝑅𝑑

= ∫ 𝑔(𝑡)𝑔0(𝑡 − 𝑝𝑥)𝑒
−2𝜋𝑖〈𝑡,𝑃−𝑇𝑦〉𝑑𝑡

𝑅𝑑

= (𝑉𝑔0𝑔)(𝑃𝑥, 𝑃
−𝑇𝑦), 

By replacing diag [𝑃, 𝑃−𝑇] for 𝑃 in Lemma (2.3.8), we have  

lim
‖𝐼−𝑃‖→0

‖𝑉𝑔0𝑔 − 𝑉𝐷𝑃𝑔0𝐷𝑃𝑔‖𝑤,𝛿
= lim
‖𝐼−𝑃‖→0

‖𝑉𝑔0𝑔 − 𝑉𝑔0𝑔(𝑃, 𝑃
−𝑇‖

𝑤,𝛿
= 0.  

Consequently, 

lim
‖𝐼−𝑃‖→0

‖𝑉𝑔0𝑔 − 𝑉𝐷𝑃𝑔0𝐷𝑃𝑔‖1
= 0.  

Hence we can find some constants 𝜀 > 0 and 0 < ∆< 𝐴 such that for any matrix 𝑃 

with‖𝐼 − 𝑃‖ ≤ 𝜀, 

∑ |(𝑉g𝑓)(𝑎𝑛, 𝑏𝑛) − (𝑉𝐷𝑃g𝑓)(𝑎𝑛, 𝑏𝑛)|
2

𝑛∈𝑍 ≤ ∆‖𝑓‖2
2.  

By proposition (2.3.4), {𝜋(𝑎𝑛, 𝑏𝑛)𝐷𝑃g: 𝑛 ∈ 𝑍} is also a frame for 𝐿2(𝑅𝑑). 
We study the perturbation of sampling points in ℓ∞ sense. The main difference 

between our result and those in [103,104,109,126,127] is that arbitrary sampling points 

are considered here. By [16, Lemma 3.11], the assumption on the window function is 

weaker than that of [128, Theorem 3.2] 

Theorem (2.3.16)[99]: Suppose that g ∈ 𝑆0(𝑅
𝑑) and {𝜋(𝛾𝑛)g: 𝑛 ∈ 𝑍} is a frame for 

𝐿2(𝑅𝑑) with bounds 𝐴 and 𝐵. Then there is some 𝜀 > 0, such that for any 𝛾𝑛
′ ∈ 𝑅2𝑑 

satisfying ‖𝛾𝑛 − 𝛾𝑛
′‖∞ < 𝜀, 𝑛 ∈ 𝑍, {𝜋(𝛾𝑛

′)g: 𝑛 ∈ 𝑍} is a frame for 𝐿2(𝑅2). 
If 𝐷𝛼g, 𝑋𝛼g ∈ 𝑆0, ∀|𝛼| = 1, and {𝛾𝑛: 𝑛 ∈ 𝑍} is a union of 𝑟 𝛿-uniformly discrete 

sequences, then 𝜀 can be determined by 0 < 𝜀 < 𝛿 3⁄  and  

𝑀𝜀 ≔ 𝜀2𝑟23𝑑 (2 +
3

𝛿
)
2𝑑

‖𝑉g0g0‖𝑊,1
. 

(∑ ‖𝐷𝛼g‖𝑆0
|𝛼|=1

+ (2𝜋)1 2⁄ ∑‖𝑋𝛼g‖𝑠0
|𝛼|=1

)

2

< 𝐴. 

In this case,  (𝐴1 2⁄ −𝑀𝜀
1 2⁄
)
2
 and (𝐵1 2⁄ +𝑀𝜀

1 2⁄
)
2
 are frame bounds for {𝜋(𝛾𝑛

′)𝑔: 𝑛 ∈

𝑍}. 
Proof. Put 𝛾𝑛 = (𝑎𝑛, 𝑏𝑛) and𝛾𝑛

′ = (𝑎𝑛
′ , 𝑏𝑛

′ ). For any 𝑓 ∈ 𝐿2(𝑅𝑑), we see from (14) that  

     |(𝑉𝑔𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛〉 − (𝑉g𝑓)(𝑎𝑛
′ , 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛〉|

2

= |(𝑉g𝑓)(𝑎𝑛, 𝑏𝑛), (𝑉g𝑓)(𝑎𝑛
′ , 𝑏𝑛)|

2

=
1

‖g0‖2
4 |∬(𝑉𝑔0𝑓)(𝑡, 𝜔)(𝑉g0g)(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛,𝜔−𝑏𝑛〉

𝑅2𝑑

− (𝑉𝑔0g)(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝜔−𝑏𝑛〉)𝑑𝑡𝑑𝜔|

2
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≦
1

‖g0‖2
4 |∬|(𝑉g0𝑓)(𝑡, 𝜔)| ⋅ |(𝑉g0g)(𝑡 − 𝑎𝑛 , 𝜔 − 𝑏𝑛) 𝑒

2𝜋𝑖〈𝑎𝑛 ,𝜔−𝑏𝑛〉

𝑅2𝑑

 

 −(𝑉g0g)(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛)𝑒

2𝜋𝑖−𝑎𝑛
′ ,𝜔−𝑏𝑛|𝑑𝑡𝑑𝜔|

2

 

= 2𝑑 |∬|(𝑉g0𝑓)(𝑡, 𝜔)| ⋅ |(𝑉g0g)(𝑡 − 𝑎𝑛 , 𝜔 − 𝑏𝑛) 𝑒
2𝜋𝑖〈𝑡−𝑎𝑛 ,𝜔−𝑏𝑛〉

𝑅2𝑑

 

−(𝑉g0g)(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛)𝑒

2𝜋𝑖〈𝑡−𝑎𝑛
′ ,𝜔−𝑏𝑛〉|𝑑𝑡𝑑𝜔|

2

 

= 2𝑑 |∬|(𝑉g0𝑓)(𝑡, 𝜔)|

𝑅2𝑑

 

 ⋅ |(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|𝑑𝑡𝑑𝜔|

2

 

≦ 2𝑑 ∬|(𝑉g0𝑓)(𝑡, 𝜔) |
2

𝑅2𝑑

 

⋅ |(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)𝑑𝑡𝑑𝜔| 

⋅ ∫|(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|𝑑𝑡𝑑𝜔

𝑅2𝑑

 

≦ 2𝑑∆𝜀,1(𝑉𝑔𝑔0) ∬|(𝑉𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

⋅ |(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|𝑑𝑡𝑑𝜔          (16) 

Where  ∆𝜀,1(𝑉𝑔𝑔0) = sup‖𝑥‖∞
≤ ‖(𝑉𝑔𝑔0)(∙ +𝑥,∙) − (𝑉𝑔𝑔0)‖1

 

By proposition (2.3.3), {𝛾𝑛: 𝑛 ∈ 𝑍} is the union of finitely many uniformly 

discrete sequences. Therefore, we can find some constant 𝛿 > 0 and r disjoint subsets 

𝐴ℓ ⊂ 𝑍 such that ⋃ 𝐴ℓ
𝑟
ℓ=1 = 𝑍 and {𝛾𝑛: 𝑛 ∈ 𝐴ℓ} is 𝛿-uniformely discrete, 1 ≤ ℓ ≤ 𝑟. 

Assume that ‖𝛾𝑛
′ − 𝛾𝑛‖∞ ≤ 𝜀 ≤ 𝛿 3⁄ . Then {𝛾𝑛

′ = (𝑎𝑛
′ , 𝑏𝑛

′ ): 𝑛 ∈ 𝐴ℓ} is 𝛿 3⁄ -

uniformely discrete. Hence for any 𝑡, 𝜔 ∈ 𝑅𝑑 and 𝑚 ∈ 𝑍2𝑑, 

#({(𝑡 − 𝑎𝑛, 𝜔 − 𝑏𝑛): 𝑛 ∈ 𝐴ℓ} ∩ (𝑚𝛿 3 +⁄ [0, 𝛿 3⁄ )2𝑑)) ≤ 1, 

# ({(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛): 𝑛 ∈ 𝐴ℓ} ∩ (𝑚𝛿 3 + [0, 𝛿 3⁄ )

2𝑑⁄ )) ≤ 1, 1 ≤ ℓ ≤ 𝑟. 

It follows that  

∑|(𝑉g𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛〉 − (𝑉g𝑓)(𝑎𝑛
′ , 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛〉|

2

𝑛∈𝑍
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≤ 2𝑑∆𝜀,1(𝑉𝑔𝑔0) ∬|(𝑉𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

∙ ∑|(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 − 𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|𝑑𝑡𝑑𝜔

𝑛∈𝑍

 

= 2𝑑∆𝜀,1(𝑉𝑔𝑔0) ∬|(𝑉𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑

 

∙∑ ∑|(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|𝑑𝑡𝑑𝜔

𝑛∈𝐴ℓ

𝑟

ℓ=1

 

≤ 2𝑑 2⁄ ∆𝜀,1(𝑉𝑔𝑔0) ∙ 2𝑟‖𝑉𝑔𝑔0 ‖𝑊,𝛿 3⁄
‖𝑓‖2

2 

Similarly we can show that 

∑|(𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛〉 − (𝑉𝑔𝑓)(𝑎𝑛

′ , 𝑏𝑛
′ )𝑒2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛
′ 〉|
2

𝑛∈𝑍

 

=∑2𝑑 |∬(𝑉𝑔0𝑓)(𝑡, 𝜔)((𝑉𝑔0𝑔)(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝜔〉 

𝑅2𝑑𝑛∈𝑍

 

− (𝑉𝑔0𝑔)(𝑡 − 𝑎𝑛
′ , 𝜔−, 𝑏𝑛

′ )𝑒2𝜋𝑖〈𝑎𝑛
′ ,𝜔〉𝑑𝑡𝑑𝜔|

2

 

≤∑2𝑑∆𝜀,2(𝑉𝑔0𝑔)

𝑛∈𝑍

∬ |(𝑉𝑔0𝑓)(𝑡, 𝜔)|
2

𝑅2𝑑
 

∙ |(𝑉𝑔0𝑔)(𝑡 − 𝑎𝑛
′ , 𝜔 − 𝑏𝑛) − (𝑡 − 𝑎𝑛

′ , 𝜔−, 𝑏𝑛
′ )|𝑑𝑡𝑑𝜔 

≤ 2𝑑 2⁄ ∆𝜀,2(𝑉𝑔0𝑔) ∙ 2𝑟‖𝑉𝑔0𝑔‖𝑊,𝛿 3⁄
‖𝑓‖2

2, 

Where ∆𝜀,2(𝑉𝑔0𝑔) = sup‖𝑦‖∞
≤ 𝜀‖(𝑉𝑔0𝑔)(∙,∙ +𝑦) − 𝑉𝑔0𝑔‖1

. By the triangle inequality, 

∑|(𝑉𝑔𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛〉 − (𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛

′ )𝑒2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛

′ 〉|
2

𝑛∈𝑍

 

≤ 2𝑑 2⁄ ∙ 2𝑟‖𝑉𝑔0𝑔‖𝑊,𝛿 3⁄
(∆𝜀,1(𝑉𝑔𝑔0)

1 2⁄
+ ∆𝜀,2 (𝑉𝑔0𝑔)

1 2⁄
)
2

‖𝑓‖2
2 

≔ 𝑀(𝜀)‖𝑓‖2
2.                                                                                    (17) 

Since 𝑔 ∈ 𝑆0 implies 𝑉𝑔𝑔0, 𝑉𝑔0𝑔 ∈ 𝐿
1(𝑅2𝑑), we can choose some 𝜀 > 0 such that 𝑀(𝜀) 

is less than the lower frame bound of {𝜋(𝛾𝑛)𝑔: 𝑛 ∈ 𝑍}. By Proposition (2.3.4)  

{𝜋(𝛾𝑛
′)𝑔: 𝑛 ∈ 𝑍}, is a frame for 𝐿2(𝑅𝑑) whenever ‖𝛾𝑛 − 𝛾𝑛

′‖∞ < 𝜀, ∀𝑛 ∈ 𝑍. 

Next we assume that 𝐷𝛼𝑔, 𝑋𝛼𝑔 ∈ 𝑆0, ∀ |𝛼| = 1. We have  
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∬|(𝑉𝑔𝑔0)(𝑡 + 𝑥,𝜔) − (𝑉𝑔𝑔0)(𝑡, 𝜔)|𝑑𝑡𝑑𝜔

𝑅2𝑑

= ∬|∫
𝜕

𝜕𝑠

1

0

(𝑉𝑔𝑔0)(𝑡 + 𝑠𝑥,𝜔)𝑑𝑠| 𝑑𝑡𝑑𝜔

𝑅2𝑑

= ∬|∫ ∑ 𝑥𝛼(𝑉𝐷𝛼𝑔𝑔0)(𝑡 + 𝑠𝑥,𝜔)𝑑𝑠

|𝛼|=1

1

0

| 𝑑𝑡𝑑𝜔

𝑅2𝑑

≤ ∑ |𝑥𝛼| ∫ ∬|(𝑉𝐷𝛼𝑔𝑔0)(𝑡 + 𝑠𝑥, 𝜔)|𝑑𝑡𝑑𝜔𝑑𝑠

𝑅2𝑑

1

0|𝛼|=1

= ∑ |𝑥𝛼| ∙ ‖𝐷𝛼𝑔‖𝑆0
|𝛼|=1

. 

Hence  

∆𝜀,1(𝑉𝑔𝑔0) = sup
‖𝑥‖∞≤𝜀

∬|(𝑉𝑔𝑔0)(𝑡 + 𝑥,𝜔) − (𝑉𝑔𝑔0)(𝑡, 𝜔)|𝑑𝑡𝑑𝜔

𝑅2𝑑

 

≤ 𝜀 ∑ ‖𝐷𝛼𝑔‖𝑠0
|𝛼|=1

.                                                          (18) 

As in the first part, we assume that {𝛾𝑛: 𝑛 ∈ 𝑍} is a union of  𝑟 𝛿-uniformely discrete 

sequences {𝛾𝑛: 𝑛 ∈ 𝐴ℓ}, 1 ≤ ℓ ≤ 𝑟 and ‖𝛾𝑛 − 𝛾𝑛
′‖∞ ≤ 𝜀 < 𝛿 3⁄ . The sequence {(𝑎𝑛 −

𝑡 + 𝑠(𝑎𝑛
′ − 𝑎𝑛), 𝑏𝑛 −𝜔) ∶ 𝑛 ∈ 𝑍} is a union of 𝑟  𝛿 3⁄  uniformly discrete sequences for 

any (𝑡, 𝜔) ∈ 𝑅2𝑑  and 0 < 𝑠 < 1. It follows that  

∑|(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡, 𝑏𝑛 −𝜔) − (𝑉𝑔𝑔0)(𝑎𝑛
′ − 𝑡, 𝑏𝑛 −𝜔)|

𝑛∈𝑍

 

=∑|∫
𝜕

𝜕𝑠

1

0

(𝑉𝑔𝑔0)(𝑎𝑛 − 𝑡 + 𝑠(𝑎𝑛
′ − 𝑎𝑛), 𝑏𝑛 −𝜔)𝑑𝑠|

𝑛∈𝑍

 

≤ 𝜀∑ ∑ ∫|(𝑉𝐷𝛼𝑔𝑔0)(𝑎𝑛 − 𝑡 + 𝑠(𝑎𝑛
′ − 𝑎𝑛), 𝑏𝑛 −𝜔)|𝑑𝑠

1

0|𝛼|=1𝑛∈𝑍

 

= 𝜀 ∑ ∫∑∑|(𝑉𝐷𝛼𝑔𝑔0)(𝑎𝑛 − 𝑡 + 𝑠(𝑎𝑛
′ − 𝑎𝑛), 𝑏𝑛 −𝜔)|𝑑𝑠

𝑛∈𝐴ℓ

𝑟

ℓ=1

1

0|𝛼|=1

 

≤ 𝜀 ∑ ∫𝑟‖𝑉𝐷𝛼𝑔𝑔0‖𝑊,𝛿 3⁄
𝑑𝑠

1

0|𝛼|=1

 

≤ 𝜀𝑟25𝑑 2⁄ (2 +
3

𝛿
)
2𝑑

‖𝑉𝑔0𝑔0‖𝑊,1
∑ ‖𝐷𝛼𝑔‖𝑠0
|𝛼|=1

                     (19) 

where we used Proposition (2.3.12) in the last step. Putting (16), (18) and (19) together, 

we get  

∑|(𝑉𝑔𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛〉 − (𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛〉|

2

𝑛∈𝑍

 

≤ 𝜀2𝑟23𝑑 (2 +
3

𝛿
)
2𝑑

‖𝑉𝑔0𝑔0‖𝑊,1
(∑ ‖𝐷𝛼𝑔‖𝑠0
|𝛼|=1

)

2

‖𝑓‖2
2. 



54 

Similarly we can show that  

∑|(𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛)𝑒

2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛〉 − (𝑉𝑔𝑓)(𝑎𝑛

′ , 𝑏𝑛
′ )𝑒2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛
′ 〉|

𝑛∈𝑍

2 

 

≤ 𝜀2𝑟23𝑑 (2 +
3

𝛿
)
2𝑑

‖𝑉𝑔0𝑔0‖𝑊,1
(2𝜋 ∑ ‖𝑋𝛼𝑔‖𝑠0

|𝛼|=1

)

2

‖𝑓‖2
2. 

Hence  

∑|(𝑉𝑔𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖<𝑎𝑛

′ ,𝑏𝑛> − (𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛

′)𝑒2𝜋𝑖<𝑎𝑛
′ ,𝑏𝑛

′> |
2

𝑛∈𝑍

 

≤ 𝜀2𝑟23𝑑 (2 +
3

𝛿
)
2𝑑

‖𝑉𝑔0𝑔0‖𝑊,1
 ( ∑ ‖𝐷𝛼𝑔‖𝑠0 + 2𝜋 ∑ ‖𝑋𝛼𝑔‖𝑠0

|𝛼|=1|𝛼|=1

)

2

‖𝑓‖2
2
. 

Now the conclusion follows from Proposition (2.3.4). 

Remark (2.3.17)[99]: The above theorem says that Gabor frames generated by 

functions in 𝑆0 with arbitrary sampling points are stable with respect to small 

perturbations of the sampling points. 

The following theorem shows that (regular and) irregular Gabor frames are stable 

with respect to small changes of the window function in the 𝑆0 norm sense. 

Theorem (2.3.18)[99]: Suppose that {𝜋(𝛾)𝑔: 𝛾 ∈ Γ} is a frame for 𝐿2(𝑅𝑑) for some 

sequence Γ ⊂ 𝑅2𝑑. Then there is some 𝜀 > 0 such that {𝜋(𝛾)ℎ: 𝛾 ∈ Γ} is a frame for 

𝐿2(𝑅𝑑) provided ‖𝑔 − ℎ‖𝑆0 < 𝜀. 

If Γ = {(𝑎𝑛 , 𝑏𝑛,𝑚): 𝑛,𝑚 ∈ 𝑍} and {𝑎𝑛: 𝑛 ∈ 𝑍} is relatively discrete, then the 

condition ‖𝑔 − ℎ‖𝑆0 < 𝜀 can be replaced by the weaker condition‖𝑔 − ℎ‖𝑊,1 < 𝜀. 

Proof. By Proposition (2.3.3) there is some 𝛿 > 0 such that we can split Γ into 𝑟 𝛿-

uniformly discrete subsequences Γℓ , 1 ≤ ℓ ≤ 𝑟. By lemma (2.3.13) {𝜋(𝛾)(𝑔 − ℎ): 𝛾 ∈
Γ} is a Bessel sequence with upper bound  

𝐵𝛿 ≔ 2𝑑𝑟 (1 +
1

𝛿
)
2𝑑

‖𝑉𝑔0𝑔0‖𝑊,1
∙ ‖𝑔 − ℎ‖𝑆0

2 .  

By Proposition (2.3.4) {𝜋(𝛾)ℎ: 𝛾 ∈ Γ} is a frame for 𝐿2(𝑅2) whenever ‖𝑔 − ℎ‖𝑆0 is 

small enough. This showed the first part.  

The second part follows by Lemma (2.3.7) and Proposition (2.3.4).  

Remark (2.3.19)[99]: It is also possible perturb the window function and sampling 

points simultaneously. By Theorems (2.3.16) and (2.3.18), if 𝑔 ∈ 𝑆0(𝑅
𝑑) and 

{𝜋(𝛾𝑛)𝑔: 𝑛 ∈ Z} is a frame for 𝐿2(𝑅𝑑), then we can find some 𝜀 > 0 such that 

{𝜋(𝛾𝑛
′)ℎ: 𝑛 ∈ Z} is also a frame for 𝐿2(𝑅𝑑) provided ‖𝑔 − ℎ‖𝑆0 < 𝜀 and ‖𝛾𝑛

′ − 𝛾𝑛‖∞ <

𝜀. 
We study the stability of dual frames. Suppose that {𝑔𝑛: 𝑛 ∈ 𝑍} is a frame for 

some Hilbert space ℋ. Define the frame operator 𝑆 as  

𝑆𝑓 = ∑〈𝑓, 𝑔𝑛〉𝑔𝑛
𝑛∈𝑍

      ∀𝑓 ∈ ℋ. 

The (canonical) dual frame {𝑔�̃�: 𝑛 ∈ 𝑍}, is defined by 𝑔𝑛  ̃: 𝑆
−1𝑔𝑛.  

The following theorem shows that if two frames are close, so are their duals. 
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Theorem (2.3.20)[99]: Let {𝑔𝑛: 𝑛 ∈ 𝑍} and  {�̃�𝑛: 𝑛 ∈ 𝑍}, {ℎ𝑛: 𝑛 ∈ 𝑍} and {ℎ̃𝑛: 𝑛 ∈ 𝑍} 
be two pairs of dual frames for some Hilbert space ℋ. Denote the frame bounds of  

{𝑔𝑛: 𝑛 ∈ 𝑍} and {ℎ𝑛: 𝑛 ∈ 𝑍} by (𝐴1, 𝐵1) and (𝐴2, 𝐵2), respectively. 

(i) If {𝑔𝑛 − ℎ𝑛: 𝑛 ∈ 𝑍} is a Bessel sequence with upper bound 𝛿, then {�̃�𝑛 −

ℎ ̃𝑛: 𝑛 ∈ 𝑍} is a Bessel sequence with upper bound 𝛿 (
𝐴1+𝐵1+𝐵1

1 2⁄
𝐵2
1 2⁄

𝐴1𝐴2
)
2

. 

(ii) If  

|∑|〈𝑓, 𝑔𝑛〉|
2

𝑛∈𝑍

−∑|〈𝑓, ℎ𝑛〉|
2

𝑛∈𝑍

| ≤ 𝛿‖𝑓‖2, ∀𝑓 ∈ ℋ, 

Then 

|∑|〈𝑓, 𝑔�̃�〉|
2

𝑛∈𝑍

−∑|〈𝑓, ℎ�̃�〉|
2

𝑛∈𝑍

| ≤
𝛿

𝐴1𝐴2
‖𝑓‖2, ∀𝑓 ∈ ℋ. 

Proof. First, we show (i). Put  

𝑆𝑓 = ∑〈𝑓, 𝑔𝑛〉𝑔𝑛
𝑛∈𝑍

     and       𝑇𝑓 = ∑〈𝑓, ℎ𝑛〉ℎ𝑛.

𝑛∈𝑍

 

Then 𝑆 and 𝑇 are self-adjoint, 𝑔�̃� = 𝑆
−1𝑔𝑛, ℎ�̃� = 𝑇

−1ℎ𝑛, 𝐴1𝐼 ≤ 𝑆 ≤ 𝐵1𝐼 and 𝐴2𝐼 ≤
𝑇 ≤ 𝐵2𝐼. For any 𝑓 ∈ ℋ, we have  

‖𝑆𝑓 − 𝑇𝑓‖ = ‖∑(〈𝑓, 𝑔𝑛〉𝑔𝑛 − 〈𝑓, ℎ𝑛〉ℎ𝑛)

𝑛∈𝑍

‖

≤ ‖∑〈𝑓, 𝑔𝑛 − ℎ𝑛〉𝑔𝑛
𝑛∈𝑍

‖ + ‖∑〈𝑓, ℎ𝑛〉(𝑔𝑛 − ℎ𝑛)

𝑛∈𝑍

‖

≤ 𝐵1
1 2⁄
(∑|〈𝑓, 𝑔𝑛 − ℎ𝑁〉|

2

𝑛∈𝑍

)

1 2⁄

+ 𝛿1 2⁄ (∑|〈𝑓, ℎ𝑛〉|
2

𝑛∈𝑍

)

1 2⁄

≤ 𝛿1 2⁄ (𝐵1
1 2⁄ + 𝐵2

1 2⁄
)‖𝑓‖. 

Hence  

‖𝑆 − 𝑇‖ ≤ 𝛿1 2⁄ (𝐵1
1 2⁄ + 𝐵2

1 2⁄
). 

Therefore, 

‖𝑆−1 − 𝑇−1‖ = ‖𝑇−1(𝑇 − 𝑆)𝑆−1‖ ≤ ‖𝑇−1‖ ∙ ‖𝑇 − 𝑆‖ ∙ ‖𝑆−1‖

≤
1

𝐴1𝐴2
𝛿1 2⁄ (𝐵1

1 2⁄ + 𝐵2
1 2⁄
). 

Consequently, 

∑|〈𝑓, (𝑆−1 − 𝑇−1)𝑔𝑛〉|
2

𝑛∈𝑍

=∑|〈(𝑆−1 − 𝑇−1)𝑓, 𝑔𝑛〉|
2

𝑛∈𝑍

≤ 𝐵1‖(𝑆
−1 − 𝑇−1)𝑓‖2

≤
𝐵1

𝐴1
2𝐴2
2 𝛿(𝐵1

1 2⁄ + 𝐵2
1 2⁄
)‖𝑓‖2. 

On the other hand, 

∑|〈𝑓, 𝑇−1(𝑔𝑛 − ℎ𝑛)〉|
2 =∑|〈𝑇−1𝑓, 𝑔𝑛 − ℎ𝑛〉|

2

𝑛∈𝑍𝑛∈𝑍

≤ 𝛿‖𝑇−1𝑓‖2 ≤
𝛿

𝐴2
2  ‖𝑓‖

2. 

Hence, 
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∑|〈𝑓, 𝑔�̃� − ℎ�̃�〉|
2
=∑|〈𝑓, 𝑆−1𝑔𝑛 − 𝑇

−1ℎ𝑛〉|
2

𝑛∈𝑍𝑛∈𝑍

=∑|〈𝑓, (𝑆−1 − 𝑇−1)𝑔𝑛〉 + 〈𝑓, 𝑇
−1(𝑔𝑛 − ℎ𝑛)〉|

2

𝑛∈𝑍

≤ 𝛿(
1

𝐴2
+
𝐵1
1 2⁄

𝐴1𝐴2
(𝐵1

1 2⁄ + 𝐵2
1 2⁄
))

2

‖𝑓‖2

= 𝛿 (
𝐴1 + 𝐵1 + 𝐵1

1 2⁄ 𝐵2
1 2⁄

𝐴1𝐴2
)

2

‖𝑓‖2. 

Next we prove (ii). Since both 𝑆 and 𝑇 are self-adjoint, we have 

‖𝑆 − 𝑇‖ = sup
‖𝑓‖=1

|〈(𝑆 − 𝑇)𝑓, 𝑓〉| = sup
‖𝑓‖=1

|〈𝑆𝑓, 𝑓〉 − 〈𝑇𝑓, 𝑓〉| 

= sup
‖𝑓‖=1

|∑|〈𝑓, 𝑔𝑛〉|
2 −∑|〈𝑓, ℎ𝑛〉|

2

𝑛∈𝑍𝑛∈𝑍

| ≤ 𝛿. 

Therefore, 

‖𝑆−1 − 𝑇−1‖ ≤ ‖𝑇−1‖ ∙ ‖𝑇 − 𝑆‖ ∙ ‖𝑆−1‖ ≤
1

𝐴1𝐴2
𝛿. 

Since 𝑔�̃� = 𝑆
−1𝑔𝑛, we have  

∑|〈𝑓, 𝑔�̃�〉|
2 =∑|〈𝑓, 𝑆−1𝑔𝑛〉|

2

𝑛∈𝑍

=∑|〈𝑆−1𝑓, 𝑔𝑛〉|
2

𝑛∈𝑍𝑛∈𝑍

= 〈𝑆𝑆−1𝑓, 𝑆−1𝑓〉 =  〈𝑓, 𝑆−1𝑓〉. 

Similarly, 

∑|〈𝑓, ℎ�̃�〉|
2

𝑛∈𝑍

= 〈𝑓, 𝑇−1𝑓〉. 

It follows that  

|∑|〈𝑓, 𝑔�̃�〉|
2 −∑|〈𝑓, ℎ�̃�〉|

2

𝑛∈𝑍𝑛∈𝑍

| = |〈𝑓, (𝑆−1 − 𝑇−1)𝑓〉| ≤ ‖𝑆−1 − 𝑇−1‖ ∙ ‖𝑓‖2

≤
𝛿

𝐴1𝐴2
 ‖𝑓‖2. 

Example (2.3.21)[99]: Stability of the dual of a Gabor frame {𝜋(𝛾𝑛)𝑔: 𝑛 ∈ 𝑍}. Let the 

hypotheses be as in Theorem (2.3.16), 𝛾𝑛 = (𝑎𝑛, 𝑏𝑛), 𝛾𝑛
′ = (𝑎𝑛

′ , 𝑏𝑛
′ ), and 𝐴 and 𝐵 be the 

lower and upper frame bounds for {𝜋(𝛾𝑛)𝑔: 𝑛 ∈ 𝑍}, respectively. Suppose that ‖𝛾𝑛 −
𝛾𝑛
′‖∞ ≤ 𝜀. We have  

|(∑|(𝑉𝑔𝑓)(𝛾𝑛)|
2

𝑛∈𝑍

)

1 2⁄

− (∑|(𝑉𝑔𝑓)(𝛾𝑛
′  )|

2
 

𝑛∈𝑍

)

1 2⁄

|

≤ (∑|(𝑉𝑔𝑓)(𝑎𝑛, 𝑏𝑛)𝑒
2𝜋𝑖〈𝑎𝑛

′ ,𝑏𝑛〉 − (𝑉𝑔𝑓)(𝑎𝑛
′ , 𝑏𝑛

′ )𝑒2𝜋𝑖〈𝑎𝑛
′ ,𝑏𝑛

′ 〉|
2

𝑛∈𝑍

)

1 2⁄

≤ 𝑀(𝜀)1 2⁄ ‖𝑓‖2, 
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Where 𝑀(𝜀) is defined as in (17) on the other hand, since {𝜋(𝛾𝑛
′)𝑔: 𝑛 ∈ 𝑍} has upper 

frame bound (𝐵1 2⁄ +𝑀(𝜀)1 2⁄ )
1 2⁄

, we also have  

(∑|(𝑉𝑔𝑓)(𝛾𝑛)|
2

𝑛∈𝑍

)

1 2⁄

+ (∑|(𝑉𝑔𝑓)(𝛾𝑛
′)|
2

𝑛∈𝑍

)

1 2⁄

≤ (2𝐵1 2⁄ +𝑀(𝜀)1 2⁄ )‖𝑓‖2. 

It follows that  

|∑|(𝑉𝑔𝑓)(𝛾𝑛)|
2

𝑛∈𝑍

−∑|(𝑉𝑔𝑓)(𝛾𝑛
′)|
2

𝑛∈𝑍

| ≤ (2𝐵1 2⁄ 𝑀(𝜀)1 2⁄ +𝑀(𝜀)‖𝑓‖2
2). 

Since 𝑀(𝜀) tends to zero as 𝜀 does, the Gabor frames {𝜋(𝛾𝑛)𝑔: 𝑛 ∈ 𝑍} and 

{𝜋(𝛾𝑛
′)𝑔: 𝑛 ∈ 𝑍} are close. By Theorem (2.3.20), the dual frames are also close in the 

same sense. Specifically, let {𝑔�̃�: 𝑛 ∈ 𝑍} and {ℎ�̃�: 𝑛 ∈ 𝑍} be the dual frames of  

{𝜋(𝛾𝑛)𝑔: 𝑛 ∈ 𝑍} and {𝜋(𝛾𝑛
′)𝑔: 𝑛 ∈ 𝑍}, respectively. Then  

|∑|〈𝑓, 𝑔�̃�〉|
2 −∑|〈𝑓, ℎ�̃�〉|

2

𝑛∈𝑍𝑛∈𝑍

| ≤
2𝐵1 2⁄ 𝑀(𝜀)1 2⁄ +𝑀(𝜀)

𝐴(𝐴1 2⁄ −𝑀(𝜀)1 2⁄ )2
‖𝑓‖2

2. 

However, the upper bound for the Bessel sequence {𝜋(𝛾𝑛)𝑔 − 𝜋(𝛾𝑛
′)𝑔 ∶ 𝑛 ∈ 𝑍} 

might not tend to zero. Specifically, we have the following . 

Proposition (2.3.22)[99]: Let {𝜋(𝑎𝑛, 𝑏𝑛)𝑔 ∶ 𝑛 ∈ 𝑍} be a frame for 𝐿2(𝑅𝑑). 
(i) If 𝑔 ∈ 𝑆0(𝑅

𝑑), then  

lim
‖{𝑎𝑛−𝑎𝑛

′ }‖
∞
→0

sup
‖𝑓‖2=1

∑|〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛)𝑔 − 𝜋(𝑎𝑛
′ , 𝑏𝑛)𝑔〉|

2

𝑛∈𝑍

= 0. 

(ii) For any  𝜀 > 0, let 𝑦𝜀 = (𝜀,… , 𝜀) ∈ 𝑅
𝑑. Then 

lim
𝜀→0

sup
‖𝑓‖2=1

sup
𝑛∈𝑍
|〈𝑓, 𝜋(𝑎𝑛, 𝑏𝑛)𝑔 − 𝜋(𝑎𝑛, 𝑏𝑛 + 𝑦𝜀)𝑔〉|

2 ≥ ‖𝑔‖2
2. 

Remark (2.3.23)[99]: The second part of the above proposition shows that the upper 

bound of the Bessel sequence {𝜋(𝑎𝑛, 𝑏𝑛)𝑔 − 𝜋(𝑎𝑛, 𝑏𝑛
′ )𝑔: 𝑛 ∈ 𝑍} might not tend to zero 

even if ∑ |𝑏𝑛 − 𝑏𝑛
′ |𝑝𝑛∈𝑍  tends to zero for some 𝑝 > 0. 

Proof. We see from (16) that (i) holds since 𝑔 ∈ 𝑆0(𝑅
𝑑) is equivalent to 𝑉𝑔𝑔0 ∈

𝐿1(𝑅2𝑑).  
In order to show (ii) put Γ = {(𝑎𝑛, 𝑏𝑛) ∶ 𝑛 ∈ 𝑍} and 𝑄𝑟(𝑥) = {𝑥

′: ‖𝑥′ − 𝑥‖∞ ≤
𝑟}. By proposition (2.3.3), for a sufficiently large 𝑟, we have  

# (Γ⋂𝑄𝑟(𝑥, 𝑦)) ≥ 1,        ∀𝑥, 𝑦 ∈ 𝑅
𝑑 .                               (20) 

For any 0 < 𝜀 < 1 (8𝑟𝑑),⁄  let 𝑥𝜀 = (1 (2𝑑𝜀)⁄ , … , 1 (2𝑑𝜀)⁄ ) ∈ 𝑅𝑑. By (20),  there is 

some (𝑎𝑚, 𝑏𝑚) ∈ Γ⋂𝑄𝑟(𝑥𝜀 , 0). Therefore, ‖𝑎𝑚 − 𝑥𝜀‖∞ ≤ 𝑟, It  follows that  

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀 − 𝑎𝑚) ⊃ 𝑄2𝑟(𝑥𝜀 − 𝑎𝑚) ⊃ 𝑄𝑟(0). 
Let  

𝑓𝑚(𝑥) = 𝑔(𝑥 − 𝑎𝑚)𝑒
2𝜋𝑖〈𝑥,𝑏𝑚〉(1 − 𝑒2𝜋𝑖〈𝑥,𝑦𝜀〉)𝑥𝑄1 (4𝑑𝜀)⁄

(𝑥𝜀). 

Then we have 

‖𝑓𝑚‖2
2 = ∬ |𝑔(𝑥 − 𝑎𝑚)|

2|1 − 𝑒2𝜋𝑖〈𝑥,𝑦𝜀〉|
2
𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀)
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≤ 4 ∬ |𝑔(𝑥 − 𝑎𝑚)|
2𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

.                                                (21) 

On the other hand, for any 𝑥 = (𝑥1, … , 𝑥𝑑) ∈ 𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀), we have |𝑥𝑘 − 1 (2𝑑𝜀)⁄ | ≤

1 (4𝑑𝜀)⁄ . It follows that |𝑥1 +⋯+ 𝑥𝑑 − 1 (2𝜀)⁄ | ≤ 1 (4𝜀)⁄  and thus |〈𝑥, 𝑦𝜀〉 − 1 2⁄ | ≤
1 4⁄ . Therefore, 

|1 − 𝑒2𝜋𝑖〈𝑥,𝑦𝜀〉|
2
− 4 sin2(𝜋〈𝑥, 𝑦𝜀〉) ≥ 2, ∀𝑥 ∈ 𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

It follows that  
1

‖𝑓𝑚‖2
2 sup
𝑛∈𝑍
|〈𝑓𝑚 , 𝜋(𝑎𝑛, 𝑏𝑛)𝑔 − 𝜋(𝑎𝑛, 𝑏𝑛 + 𝑦𝜀)𝑔〉|

2

≥
1

‖𝑓𝑚‖2
2
|〈𝑓𝑚, 𝜋(𝑎𝑚, 𝑏𝑚)𝑔 − 𝜋(𝑎𝑚, 𝑏𝑚 + 𝑦𝜀)𝑔〉|

2

=
1

‖𝑓𝑚‖2
2 | ∬ 𝑓𝑚(𝑥)𝑔(𝑥 − 𝑎𝑚)𝑒

−2𝜋𝑖〈𝑥,𝑏𝑚〉(1 − 𝑒2𝜋𝑖〈𝑥,𝑦𝜀〉)𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

|

2

=
1

‖𝑓𝑚‖2
2 | ∬ |𝑔(𝑥 − 𝑎𝑚)|

2|𝑒2𝜋𝑖〈𝑥,𝑦𝜀〉 − 1|
2
𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

|

2

≥
4

‖𝑓𝑚‖2
2 | ∬ |𝑔(𝑥 − 𝑎𝑚)|

2𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

|

2

≥ ∬ |𝑔(𝑥 − 𝑎𝑚)|
2𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀) 

= ∬ |𝑔(𝑥)|2𝑑𝑥

𝑄1 (4𝑑𝜀)⁄ (𝑥𝜀−𝑎𝑚) 

≥ ∬|𝑔(𝑥)|2𝑑𝑥

𝑄𝑟(0) 

. 

(by (21)). Hence 

lim
𝜀→0

sup
‖𝑓‖2>0

1

‖𝑓𝑚‖2
2 sup
𝑛∈𝑍
|〈𝑓𝑚, 𝜋(𝑎𝑛, 𝑏𝑛)𝑔 − 𝜋(𝑎𝑛, 𝑏𝑛 + 𝑦𝜀)𝑔〉|

2 ≥ ∬|𝑔(𝑥)|2

𝑄𝑟(0)

𝑑𝑥. 

By letting 𝑟 → +∞, we get the conclusion.  
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Chapter 3 

Weyl-Heisenberg Frames and Simultaneous Estimates with Density Results 

 

We show that the results shed new light on the classical results concerning frames 

for 𝐿2(𝑅), showing for instance that the condition 𝐺(𝑥) ≔ ∑  𝑛∈𝑍 |𝑔(𝑥 − 𝑛𝑎)|
2 > 𝐴 >

 0 is not necessary for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame for span{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 . 

Inspired by Benedetto and Li, where the relationship between the zero-set of the 

function 𝐺 and frame properties of the set of functions {𝑔(·  − 𝑛)}𝑛∈𝑍 is analyzed. We 

established sampling theorem for the simply connected Heisenberg group, which is 

translated to a family of frame bound estimates by a direct integral decomposition. We 

show that if this density condition holds, there exists, in fact, a measurable set 𝐸 ⊂  𝑅 

with the property that the Gabor system associated with the same parameters a, b and 

the window= 𝜒𝐸 , forms a tight frame for 𝐿2(𝑆). 
Section (3.1): Subspaces of 𝑳𝟐(𝑹) 

For ℋ denote a separable Hilbert space with the inner product 〈∙ ,∙〉 linear in the 

first entry. Let 𝐼 denote a countable index set. 

We say that {𝑔𝑖}𝑖∈𝐼 ⊆ ℋ is a frame (for ℋ) if there exist constants 𝐴, 𝐵 > 0 such 

that 

‖𝑓‖2 ≤ ∑ |〈𝑓, 𝑔𝑖〉|
2 ≤ 𝐵𝑖∈𝐼 ‖𝑓‖2, ∀ 𝑓 ∈ ℋ.  

In particular a frame for ℋ is complete, i.e ,span{𝑔𝑖}𝑖∈𝐼 = ℋ. In case {𝑔𝑖}𝑖∈𝐼 is not 

complete, {𝑔𝑖}𝑖∈𝐼 is a frame for sequence. The numbers 𝐴, 𝐵 that appear in the definition 

of a frame are called frame bounds.  

Orthonormal bases and, more generally, Riesz bases are frames. Recall that  
{𝑔𝑖}𝑖∈𝐼 is a Riesz basis for ℋ if span{𝑔𝑖}𝑖∈𝐼 = ℋ and  

∃𝐴, 𝐵 > 0 ∶    𝐴∑|𝑐𝑖|
2

𝑖∈𝐼

≤ ‖∑𝑐𝑖𝑔𝑖
𝑖∈𝐼

‖

2

≤ 𝐵∑|𝑐𝑖|
2

𝑖∈𝐼

,    ∀{𝑐𝑖}𝑖∈𝐼 ∈ ℓ
2(𝐼). 

If  {𝑔𝑖}𝑖∈𝐼 is a Riesz basis for span{𝑔𝑖}𝑖∈𝐼, we say that {𝑔𝑖}𝑖∈𝐼 is a Riesz sequence. 

The present deals with frames having a special structure: all elements are 

translated and/or modulated versions of a single function. Let 𝐿2(𝑅) denote the Hilbert 

space of functions on the real line which are square integrable with respect to the 

Lebesgue measure. First, define the following operators on functions 𝑓 ∈ 𝐿2(𝑅):  
Translation by 𝑎 ∈ 𝑅:    (𝑇𝑎𝑓)(𝑥) = 𝑓(𝑥 − 𝑎),   𝑥 ∈ 𝑅. 

Modulation by 𝑏 ∈ 𝑅:    (𝐸𝑏𝑔)(𝑥) = 𝑒
2𝜋𝑖𝑏𝑥𝑓(𝑥),   𝑥 ∈ 𝑅. 

A frame for 𝐿2(𝑅) of the form {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is called a Weyl-Heisenberg frame (or 

Gabor frame). For a collection of different concerning those frames see [136].  

Sufficient conditions for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame 𝐿2(𝑅) has been known 

for about 10 years. The basic insight was provided by Daubechies [134]. A slight 

improvement was proved in [137]. 

Theorem (3.1.1)[131]: Let 𝑔 ∈ 𝐿2(𝑅) and suppose that  

∃𝐴, 𝐵 > 0:     𝐴 ≤ ∑|𝑔(𝑥 − 𝑛𝑎)|2 ≤ 𝐵

𝑛∈𝑍

  for 𝑎. 𝑒 𝑥 ∈ 𝑅,                     (1) 

lim
𝑏→0

∑‖∑𝑇𝑛𝑎𝑔𝑇𝑛𝑎+𝑘
𝑏
�̅�

𝑛∈𝑍

‖

∞𝑘≠0

= 0.                                      (2) 
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Then there exists 𝑏0 > 0 such that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a Weyl-Heisenberg frame for 

𝐿2(𝑅) for all ∈ ]0; 𝑏0[. 
The proof of Theorem (3.1.1) is based on the following identity, valid for all 

continuous functions 𝑓 with compact support whenever 𝑔 satisfies (1): 

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

 𝑚,𝑛 ∈𝑍

=
1

𝑏
 ∫|𝑓(𝑥)|2𝐺(𝑥)𝑑𝑥 

+
1

𝑏
 ∑∫𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑓(𝑥 − 𝑘 𝑏⁄ )∑𝑔(𝑥 − 𝑛𝑎)𝑔(𝑥 − 𝑛𝑎 − 𝑘 𝑏⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥.

𝑛∈𝑍𝑘≠0

  (3) 

An estimate of the second term in (3) now shows that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is actually a 

frame for all values of 𝑏 for which  

∑‖∑𝑇𝑛𝑎𝑔𝑇𝑛𝑎+𝑘
𝑏
�̅�

𝑛∈𝑍

‖

∞𝐾≠0

< 𝐴.                                             (4) 

A more recent result can be found in [135]: in Theorem 2.3 it is proved that if (1)  

is satisfied and there exists a constant 𝐷 < 𝐴 such that  

∑∑|𝑔(𝑥 − 𝑛𝑎)𝑔 (𝑥 − 𝑛𝑎 −
𝑘

𝑏
)|

𝑛∈𝑍𝑘≠0

≤ 𝐷  for 𝑎. 𝑒. 𝑥 ∈ 𝑅,                   (5) 

Then {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame for 𝐿2(𝑅) with bounds 
𝐴−𝐷

𝑏
,
𝐵+𝐷

𝑏
. The reader should 

observe that [135] does not provide us with a generalization of  the results in [134], 

[137] in a strict sense: there are cases where (5) is satisfied but (4) is not, and vice versa. 

The main point is that other conditions for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame can be 

derived from (5); cf. Theorem 2.4 in [135]. 

Define the Fourier transform ℱ(𝑓) = 𝑓 of 𝑓 ∈ 𝐿1(𝑅) by  

𝑓(𝑦) = ∫𝑓(𝑥)𝑒−2𝜋𝑖𝑦𝑥𝑑𝑥 

As usual we extend  the Fourier transform to an isometry  from 𝐿2(𝑅) onto 𝐿2(𝑅). We 

denote  the inverse Fourier transformation of 𝑔 ∈ 𝐿2(𝑅) by ℱ−1𝑔 or �̂�. It is important 

to observe the following comutator relations, valid for all 𝑎 ∈ 𝑅: 
ℱ𝑇𝑎 = 𝐸−𝑎ℱ,           ℱ𝐸𝑎 = 𝑇𝑎ℱ. 

We need a result from [133]. The basic insight was provided by Benedetto and Li [132], 

who treated the case 𝑎 = 1. 

Theorem (3.1.2)[131]: Let 𝑔 ∈ 𝐿2(𝑅), then {𝑇𝑛𝑎𝑔}𝑛∈𝑍 is a frame sequence with bounds 

𝐴, 𝐵 if and only if  

0 < 𝑎𝐴 ≤ ∑|�̂� (
𝑥 + 𝑛

𝑎
)|
2

≤ 𝑎𝐵

𝑛∈𝑍

 𝑓𝑜𝑟 𝑎. 𝑒 𝑥 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ ∑ |�̂� (
𝑥 + 𝑛

𝑎
)|
2

≠ 0

𝑛∈𝑍

. 

In that case {𝑇𝑛𝑎𝑔}𝑛∈𝑍 is a Riesz sequence if and only if the set of 𝑥 for which 

∑ |�̂�(
𝑥+𝑛

𝑎
)|
2
= 0𝑛∈𝑍  has measure zero.  

Theorem (3.1.2) leads immediately to an equivalent condition to (1). Define the 

function 𝐺 and its kernel 𝑁𝐺 by  

𝐺: 𝑅 → [0,∞ ], 𝐺(𝑥) ≔ ∑ |𝑔(𝑥 − 𝑛𝑎)|2𝑛∈𝑍 ,  
𝑁𝐺 = {𝑥 ∈ 𝑅|𝐺(𝑥) = 0}. 
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Corollary (3.1.3)[131]: {𝐸𝑛
𝑎
 𝑔}

𝑛∈𝑍
 is a frame sequence with bounds 𝐴, 𝐵 if and only if  

0 <
𝐴

𝑎
≤ ∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

≤
𝐵

𝑎
  𝑓𝑜𝑟 𝑎. 𝑒 𝑥 ∈ 𝑅 − 𝑁𝐺 . 

In that case {𝐸𝑛
𝑎
 𝑔}

𝑛∈𝑍
 is a Riesz sequence iff  𝑁𝐺 has measure zero. 

Proof. The inequality  

0 <
𝐴

𝑎
≤ ∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

≤
𝐵

𝑎
  𝑓𝑜𝑟 𝑎. 𝑒 𝑥 ∈ 𝑅 − 𝑁𝐺 . 

holds if and only if  

0 <
𝐴

𝑎
≤ ∑|𝑔([𝑥 − 𝑛]𝑎)|2

𝑛∈𝑍

≤
𝐵

𝑎
  𝑓𝑜𝑟 𝑎. 𝑒 𝑥 ∈ 𝑅 − 𝑁𝐺 .                      (6) 

By Theorem (3.1.2), (6) is equivalent to {𝑇𝑛𝑎�̂�}𝑛∈𝑍 being a frame sequence with  

bounds 𝐴, 𝐵. Appling the Fourier transformation this is equivalent to {𝐸𝑛
𝑎
 𝑔}

𝑛∈𝑍
 being a 

frame sequence with bounds 𝐴, 𝐵. 

From now on we concentrated on Wey-Heisenberg frames {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍. The first 

result gives a sufficient condition for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to a frame sequence. It can be 

considered as a "subspace version" of a result by Ron and shen; cf. [138]. The condition 

for  {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame for 𝐿2(𝑅) is significantly weaker than the conditions 

mentioned. 

Let 𝐿2(𝑅 − 𝑁𝐺) denote the set of functions in 𝐿2(𝑅) that vanishes at 𝑁𝐺 . 

Theorem (3.1.4)[131]: let 𝑔 ∈ 𝐿2(𝑅) 𝑎, 𝑏 > 0 and suppose that  

𝐴 ≔ inf
𝑥∈[0,𝑎]→𝑁𝐺

[∑|𝑔(𝑥 − 𝑛𝑎)|2 −∑|∑𝑔(𝑥 − 𝑛𝑎)(𝑔 (𝑥 − 𝑛𝑎 −
𝑘

𝑏
)

𝑛∈𝑍

|

𝑘≠0𝑛∈𝑍

] > 0,   (7) 

𝐵 ≔ sup
𝑥∈[0,𝑎]

∑|∑𝑔(𝑥 − 𝑛𝑎)(𝑔 (𝑥 − 𝑛𝑎 −
𝑘

𝑏
)

𝑛∈𝑍

|

𝑘∈𝑍

< ∞.                       (8) 

Then {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame for 𝐿2(𝑅 − 𝑁𝐺) with bounds 
𝐴

𝑏
,
𝐵

𝑏
.  

Proof. First, observe that span{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 ⊆ 𝐿
2(𝑅 − 𝑁𝐺). Now consider a 

function 𝑓 ∈ 𝐿2(𝑅 − 𝑁𝐺) which is bounded and has support in a compact set. The Heil-

Walnut argument (3) is valid under the assumption (8) and it gives that  

 

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

 𝑚,𝑛 ∈𝑍

=
1

𝑏
 ∫|𝑓(𝑥)|2∑|𝑔(𝑥 − 𝑛𝑎)|2𝑑𝑥

𝑛∈𝑍

 

+
1

𝑏
 ∑∫𝑓(𝑥)̅̅ ̅̅ ̅̅ 𝑓(𝑥 − 𝑘 𝑏⁄ )∑𝑔(𝑥 − 𝑛𝑎)𝑔(𝑥 − 𝑛𝑎 − 𝑘 𝑏⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥.

𝑛∈𝑍𝑘≠0

  (3) 

We want to estimate the second term above. For 𝑘 ∈ 𝑍, define  

𝐻𝑘(𝑥):∑𝑇𝑛𝑎𝑔(𝑥)

𝑛∈𝑍

𝑇𝑛𝑎+𝑘 𝑏⁄ 𝑔(𝑥). 

First, observe that  
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∑|𝑇−𝑘 𝑏⁄ 𝐻𝑘(𝑥)|

𝑘≠0

=∑|𝑇−𝑘 𝑏⁄ ∑𝑇𝑛𝑎𝑔(𝑥)𝑇𝑛𝑎+𝑘 𝑏⁄ 𝑔(𝑥) 

𝑛∈𝑍

|

𝑘≠0

=∑|∑𝑇𝑛𝑎−𝑘 𝑏⁄ 𝑔(𝑥)𝑇𝑛𝑎𝑔(𝑥)

𝑛∈𝑍

|

𝑘≠0

=∑|∑𝑇𝑛𝑎+𝑘 𝑏⁄ 𝑔(𝑥)𝑇𝑛𝑎𝑔(𝑥)

𝑛∈𝑍

|

𝑘≠0

=∑|∑𝑇𝑛𝑎+𝑘 𝑏⁄ 𝑔(𝑥)

𝑛∈𝑍

𝑇𝑛𝑎𝑔(𝑥)|

𝑘≠0

=∑|𝐻𝑥(𝑥)|

𝑘≠0

. 

Now, by a slight modification of the argument in [135], Theorem 2.3, 

|∑𝑓(𝑥)

𝑘≠0

𝑓(𝑥 − 𝑘 𝑏⁄ )∑𝑔(𝑥 − 𝑛𝑎)𝑔(𝑥 − 𝑛𝑎 − 𝑘 𝑏⁄ )𝑑𝑥

𝑛∈𝑍

|

≤ ∑∫|𝑓(𝑥)| ∙ |𝑇𝑘 𝑏⁄ 𝑓(𝑥)| ∙ |𝐻𝑘(𝑥)|𝑑𝑥

𝑘≠0

=∑∫|𝑓(𝑥)|√|𝐻𝑘(𝑥)| ∙ |𝑇𝐾 𝐵⁄ 𝑓(𝑥)|√|𝐻𝑘(𝑥)| 𝑑𝑥

𝑘≠0

≤∑(∫|𝑓(𝑥)|2|𝐻𝑘(𝑥)|𝑑𝑥)
1 2⁄

(∫|𝑇𝑘 𝑏⁄ 𝑓(𝑥)|
2
|𝐻𝑘(𝑥)|𝑑𝑥)

1 2⁄

𝑘≠0

≤ (∑|𝑓(𝑥)|2|𝐻𝑘(𝑥)|𝑑𝑥

𝑘≠0

)

1 2⁄

∙ (∫|𝑇𝑘 𝑏⁄ 𝑓(𝑥)|
2
|𝐻𝑘(𝑥)|𝑑𝑥)

1 2⁄

= (∫|𝑓(𝑥)|2  ∑|𝐻𝑘(𝑥)|𝑑𝑥 

𝑘≠0

)

1 2⁄

∙ (∫|𝑓(𝑥)|2∑|𝑇−𝑘 𝑏⁄ 𝐻𝑘(𝑥)|
2
𝑑𝑥

𝑘≠0

)

1 2⁄

= ∫|𝑓(𝑥)|2∑|𝐻𝑘(𝑥)|𝑑𝑥

𝑘≠0

. 

Note that  ∑ |𝐻𝑘(𝑥)| =𝑘≠0 ∑ |∑ 𝑇𝑛𝑎𝑔(𝑥) 𝑇𝑛𝑎+𝑘 𝑏⁄ 𝑔(𝑥)𝑛∈𝑍 |𝑘≠0  is a periodic function with 

periodic 𝑎. By (3) and the assumption (7) we now have  

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛∈𝑍

≥
1

𝑏
 ∫|𝑓(𝑥)|2  [∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

−∑|∑𝑔(𝑥 − 𝑛𝑎) 𝑔 (𝑥 − 𝑛𝑎 −
𝑘

𝑏
)

𝑛∈𝑍

|

𝑘≠0

] 𝑑𝑥 ≥
𝐴

𝑏
 ‖𝑓‖2. 

Similarly , by (3) and (8), 
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∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛∈𝑍

≤
1

𝑏
∫|𝑓(𝑥)|2 [∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

+∑|∑𝑔(𝑥 − 𝑛𝑎) 𝑔 (𝑥 − 𝑛𝑎 −
𝑘

𝑏
)

𝑛∈𝑍

|

𝑘≠0

] 𝑑𝑥

=
1

𝑏
∫|𝑓(𝑥)|2 ∑ |∑𝑔(𝑥 − 𝑛𝑎) 𝑔 (𝑥 − 𝑛𝑎 −

𝑘

𝑏
)

𝑛∈𝑍

|

𝑘∈𝑍

≤
𝐵

𝑏
‖𝑓‖2. 

Since those two estimates holds on a dense subset of 𝐿2(𝑅 − 𝑁𝐺), they hold on 𝐿2(𝑅 −
𝑁𝐺). Thus {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame for 𝐿2(𝑅 − 𝑁𝐺) with desired bounds. 

The advantage of  Theorem (3.1.4) compared to the results is that we compare the 

functions ∑ |𝑔(𝑥 − 𝑛𝑎)|2𝑛∈𝑍  and ∑ |𝐻𝑘(𝑥)|𝑘≠0  point wise rather than assuming that the 

supremum of  ∑ |𝐻𝑘(𝑥)|𝑘≠0  is smaller than the infimum of  ∑ |𝑔(𝑥 − 𝑛𝑎)|2𝑛∈𝑍 . It is 

easy to give concrete examples where Theorem (3.1.4) shows That {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a 

frame for 𝐿2(𝑅) but where the conditions  are not satisfied: 

Example (3.1.5)[131]: Let 𝑎 = 𝑏 = 1 and define  

𝑔(𝑥) = {

1 + 𝑥 if 𝑥 ∈ [0,1[,
1

2
𝑥    if 𝑥 ∈ [1,2[,

0       otherwise.

 

For 𝑥 ∈ [0,1[ we have  

𝐺(𝑥) = ∑|𝑔(𝑥 − 𝑛)|2 = 𝑔(𝑥)2 + 𝑔(𝑥 + 1)2 =
5

4
(𝑥 + 1)2

𝑛∈𝑍

 

and 

∑|∑𝑔(𝑥 − 𝑎)𝑔(𝑥 − 𝑛 − 𝑘)

𝑛∈𝑍

| = (1 + 𝑥)2,

𝑘≠0

 

so by Theorem (3.1.4) {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame for 𝐿2(𝑅) with bounds 𝐴 =
1

4
, 𝐵 = 9 

But inf𝑥∈𝑅𝐺(𝑥) =
5

4
 and  

∑‖∑𝑇𝑛𝑎𝑔𝑇𝑛+𝑘𝑔

𝑛∈𝑍

‖

∞𝑘≠0

= 4, 

so the condition (4) is not satisfied. (5) is not satisfied either. 

Remark (3.1.6)[131]: It is well known that 𝐺 being bounded below is a necessary 

condition for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame for 𝐿2(𝑅); cf. [134]. Theorem (3.1.4) 

shows that this condition is not necessary for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame sequence. 

However, it is implicit in (7) that 𝐺 has to be bounded below on 𝑅 − 𝑁𝐺 in order for 

Theorem (3.1.4) to work, and any easy modification of the proof in [134] shows that 

this is actually a necessary condition for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame for 𝐿2(𝑅 − 𝑁𝐺). 
We shall later give examples of frame sequences for which 𝐺 is not bounded below on 

𝑅 − 𝑁𝐺. 
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In case 𝑔 has support in an interval of length 
1

𝑏
 an equivalent condition for 

{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame sequence can be given. First, observe that by (3) this 

condition on 𝑔 implies that for all continuous functions 𝑓 with compact support, we 

have  

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛∈𝑍 =
1

𝑏
∫|𝑓(𝑥)|2 𝐺(𝑥)𝑑𝑥.  

It is not hard to show that this actually holds for all ∈ 𝐿2(𝑅); cf. [137]. 

Corollary (3.1.7)[131]: Suppose that 𝑔 ∈ 𝐿2(𝑅) has compact support in an interval 𝐼 of 

length |𝐼| ≤ 1 𝑏⁄  then {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame sequence with bounds 𝐴, 𝐵 if and 

only if  

0 < 𝑏𝐴 ≤ ∑ |𝑔(𝑥 − 𝑛𝑎)|2𝑛∈𝑍 ≤ 𝑏𝐵,   𝑓𝑜𝑟 𝑎. 𝑒 𝑥 ∈ 𝑅 − 𝑁𝐺 .  
In that case {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is actually a frame for  𝐿2(𝑅 − 𝑁𝐺).  

Proof.  Suppose that 𝑔 has support in an interval 𝐼 of  length |𝐼| ≤
1

𝑏
 . if 0 < 𝑏𝐴 ≤ 𝐺(𝑥) 

≤ 𝑏𝐵 for a.e. 𝑥 ∈ 𝑅 − 𝑁𝐺 , it follows from Theorem (3.1.4) that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a 

frame sequence with the desired bounds. Now suppose that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame 

sequence with bounds 𝐴, 𝐵. then, for every interval 𝐼of  length |𝐼| ≤
1

𝑏
  and every  

function 𝑓 ∈ 𝐿2(𝐼), 

∑|〈𝑓, {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍〉|
2
=
1

𝑏
∫|𝑓(𝑥)|2𝐺(𝑥)𝑑𝑥

𝑅𝑚,𝑛

≤ 𝐵‖𝑓‖2. 

But this is clearly equivalent to  

𝐺(𝑥) = ∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

≤ 𝐵𝑏 𝑎. 𝑒. 

To prove the lower bound for 𝐺 we proceed by way of contradiction. Suppose that for 

some 𝜖 > 0 we have 0 ≤ 𝐺(𝑥) ≤ (1 − 𝜖)𝐴𝑏 on a set of positive measure. in this case  

there is a set ∆ of positive measure and supported in an interval of  length ≤
1

𝑏
 so that 

0 < 𝐺(𝑥) ≤ (1 − 𝜖)𝐴𝑏 on ∆. Then, for any function 𝑓 ∈ 𝐿2(𝑅) supported on ∆, we 

have  

∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛

=
1

𝑏
∫|𝑓(𝑥)|2𝐺(𝑥)𝑑𝑥

𝑅

 

≤
(1 − 𝜖)𝐴𝑏

𝑏
 ∫|𝑓(𝑥)|2𝑑𝑥

𝑅

= (1 − 𝜖)𝐴‖𝑓‖2. 

Since 𝐺(𝑥) > 0 on ∆, there is a 𝑘 ∈ 𝑍 so that 𝑥∆𝑇𝑘𝑎𝑔 is not the zero function. 

With  ∆′≔ ∆ ∩ 𝑠𝑢𝑝𝑝(𝑇𝑘𝑎𝑔 ) we have  

𝑓 ≔ 𝜒∆′𝑇𝑘𝑎𝑔 ∈ span{𝐸𝑚𝑏𝑇𝑘𝑎𝑔 }𝑚∈𝑍 ⊆ span{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍, 
so the above calculation shows that the lower bound for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is at most 

(1 − ϵ)A, which is a contradiction is a frame. Thus 

𝐺(𝑥) ≥ 𝑏𝐴 for 𝑎. 𝑒. 𝑥 ∈ 𝑅 − 𝑁𝐺 . 
In case the condition in Corollary (3.1.6) is satisfied, it follows from Theorem (3.1.4) 

that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame for 𝐿2(𝑅 − 𝑁𝐺 . 
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For functions 𝑔 with the property that the translates 𝑇𝑘𝑎𝑔, 𝑛 ∈ 𝑍, have disjoint 

support we can give an equivalent condition for {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame 

sequence. Define the function  

�̂�(𝑥): 𝑅 → [0,∞],     �̂�(𝑥) = ∑ |𝑔(𝑥 +
𝑚

𝑏
)|
2

𝑚∈𝑍

. 

Proposition (3.1.8)[131]: Let ∈ 𝐿2(𝑅), 𝑎, 𝑏 > 0 and suppose that 

        supp(𝑔) ∩ supp(𝑇𝑛𝑎𝑔) = ∅,     ∀𝑛 ∈ 𝑍 − {0}.                       (9) 
Then {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame sequence with bounds 𝐴, 𝐵 if and only if there exist 

𝐴, 𝐵 > 0 such that  

𝑏𝐴 ≤ ∑ |𝑔 (𝑥 +
𝑚

𝑏
)|
2

≤ 𝑏𝐵 

𝑚∈𝑍

 𝑓𝑜𝑟 𝑎. 𝑒.  𝑥 ∈ 𝑅 − 𝑁�̃� . 

In that case {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a Riesz sequence iff  𝑁�̃� has measure zero. 

Proof. Because of the support condition (9), it is clear that {𝐸𝑚𝑏𝑔}𝑚∈𝑍 is a frame 

sequence iff {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a frame sequence, in which case the sequences have the 

same frame bounds. But by Corollary (3.1.3) {𝐸𝑚𝑏𝑔}𝑚∈𝑍 is a frame sequence with 

bounds 𝐴, 𝐵 iff 

𝑏𝐴 ≤ ∑ |𝑔 (𝑥 +
𝑚

𝑏
)|
2

≤ 𝑏𝐵 

𝑚∈𝑍

 𝑓𝑜𝑟 𝑎. 𝑒. 𝑥 ∈ 𝑅 − 𝑁�̃� . 

Also, {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 is a Riesz sequence iff {𝐸𝑚𝑏𝑔}𝑚∈𝑍 is a Riesz sequence, which, 

by Corollary (3.1.3), is the case iff 𝑁�̃� has measure zero. 

We are now ready to show that 𝐺 being bounded below on 𝑅 − 𝑁𝐺  (by a positive 

number) is not a necessary condition for {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 to be a frame sequence. 

Example (3.1.9)[131]: Let 𝑎, 𝑏 > 0 and suppose that 
1

𝑎𝑏
∉ 𝑁. Chose 𝜖 > 0 such that  

[0 , 𝜖] + 𝑛𝑎 ∩ [
1

𝑏
 ,
1

𝑏
+ 𝜖] = ∅,     ∀𝑛 ∈ 𝑍. 

This implies that 𝜖 < min (𝑎 ,
1

𝑏
) define  

𝑔(𝑥) ≔

{
 
 

 
 
𝑥                         if 𝑥 ∈ [0, 𝜖],          

√1 − (𝑥 −
1

𝑏
)
2

if 𝑥 ∈ [
1

𝑏
 ,
1

𝑏
+ 𝜖] ,

0                         otherwise.            

 

Then the condition (9) in Proposition (3.1.7) is satisfied. Also, for 𝑥 ∈ [0, 𝜖]  

�̃�(𝑥) = ∑ |𝑔(𝑥 +
𝑚

𝑏
)|
2

𝑚∈𝑍

= 𝑔(𝑥)2 + 𝑔(𝑥 + 1)2 = 1 

And for 𝑥 ∈ ]𝜖 ,
1

𝑏
], we have �̃�(𝑥) = 0. Thus, by proposition (3.1.7) {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 is 

a frame sequence. But for 𝑥 ∈ [0, 𝜖], 

𝐺(𝑥) =  ∑|𝑔(𝑥 − 𝑛𝑎)|2

𝑛∈𝑍

= 𝑥2. 

Thus 𝐺 is not bounded below by a positive number on 𝑅 − 𝑁𝐺. By the remark after 

Theorem (3.1.4) this implies that span{{𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 } ≠ 𝐿
2(𝑅 − 𝑁𝐺). 
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For 𝑎𝑏 > 1 it is even possible to construct an orthonormal sequence having all  

the features of the above example. For example, let 𝑎 = 2 , 𝑏 = 1 and  

𝑔(𝑥) ≔ {

𝑥                 if 𝑥 ∈ [0,1],

√2𝑥 − 𝑥2 if 𝑥 ∈ ]1,2],
0                 otherwise.

 

Since  

∑ |𝑔(𝑥 +
𝑚

𝑏
)|
2

𝑚∈𝑍∈

= 1,     ∀𝑥, 

it follows by Proposition (3.1.7) that {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 is a Riesz sequence with bounds 

𝐴 = 𝐵 = 1, which implies that {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 is an orthonormal sequence. But 

𝐺(𝑥) = ∑ |𝑔(𝑥 − 𝑛𝑎)|2𝑥∈𝑍  is not bounded below on 𝑅 − 𝑁𝐺 .  
𝐺 being bounded above is still a necessary condition for {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 to be a 

frame sequence (repeat the argument in Corollary (3.1.6)) �̃� also has to be bounded 

above: 

Proposition (3.1.10)[131]: If {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 is a frame sequence with upper bound 𝐵, 

then  

∑ |𝐺(𝑥 +
𝑚

𝑏
)|
2

𝑚∈𝑍

≤ 𝐵   𝑎. 𝑒. 

Proof. If {𝐸𝑚𝑏𝑇𝑘𝑎𝑔}𝑚,𝑛∈𝑍 is a frame sequence, then {ℱ−1𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈𝑍 =
{𝑇𝑚𝑏𝐸𝑛𝑎�̌�}𝑚,𝑛∈𝑍 is a frame sequence with the same bounds. In particular the sequence 

{𝑇𝑚𝑏�̌�}𝑚,𝑛∈𝑍 has the upper frame bound 𝐵. By Theorem (3.1.2) (or, more precisely, the 

proof  of in [133]) it follows that 

∑ |𝐺(𝑥 +
𝑚

𝑏
)|
2

≤ 𝐵

𝑚∈𝑍

 for 𝑎. 𝑒. 𝑥. 

It follows that ∑ |𝑔(𝑥 +
𝑚

𝑏
|
2
≤ 𝐵  𝑎. 𝑒.𝑚∈𝑍  

As well as Weyl-Heisenberg frames, wavelet frames play a very important role in 

applications. The theory for the two types of frames was developed at the same time, 

with the main contribution due to Daubechies. Several results for Weyl-Heisenberg  

frames have counterparts for wavelet frames. For example, Theorem 5.1.6 in [137] 

gives sufficient conditions for {
1

𝑎𝑛 2⁄
𝑔(

𝑥

𝑎𝑛
−𝑚𝑏)}

𝑚,𝑛∈𝑍
 to be a frame based on a 

calculation similar to (3). 

Also our results for Weyl-Heisenberg frames have counterparts for wavelet 

frames. The ideas in the proof of Theorem (3.1.4) can be used to modify [137], 

Theorem 5.1.6 which leads to the following: 

Theorem (3.1.11)[131]: let 𝑎 > 1, 𝑏 > 0 and  g ∈ 𝐿2(𝑅) be given. let  

𝑁 ≔ {𝛾 ∈ [1, 𝑎] |∑|�̂�(𝑎𝑛𝛾)|2 = 0

𝑛∈𝑍

} 

and suppose that  

𝐴 ≔ inf
|𝛾|∈[1,𝑎]→𝑁

[∑|�̂�(𝑎𝑛𝛾)|2 −∑∑|�̂�(𝑎𝑛𝛾)�̂�(𝑎𝑛𝛾 + 𝑘 𝑏⁄ )|

𝑛∈𝑍𝐾≠0𝑛∈𝑍

] > 0, 
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𝐵 ≔ sup
|𝛾|∈[0,𝑎]

∑ |�̂�(𝑎𝑛𝛾)�̂�(𝑎𝑛𝛾 + 𝑘 𝑏⁄ )|

𝑘,𝑛∈𝑍

< ∞. 

Then {
1

𝑎𝑛 2⁄
 𝑔 (

𝑥

𝑎𝑛
−𝑚𝑏)}

𝑚,𝑛∈𝑍
 is a frame sequence with bounds 

𝐴

𝑏
,
𝐵

𝑏
. 

Section (3.2): Vector-Valued Gabor Frames of Hermite Functions 

We derive frame estimates for vector-valued Gabor systems. We consider the 

space 𝐿2(ℝ; ℂ𝑑) of vector–valued signals. Elements of this space can also be understood 

as vectors 𝑓 = (𝑓1, … , 𝑓𝑑),  with 𝑓𝑖 ∈ 𝐿
2(ℝ; ℂ𝑑), which amounts to identifying 

𝐿2(ℝ; ℂ𝑑) with the 𝑑-fold direct sum of 𝐿2(ℝ). Gabor systems in this space are obtained 

by picking a window function 𝑓 ∈ 𝐿2(ℝ; ℂ𝑑), and applying translations and 

modulations. Here the translation and modulation operators are given as  

(𝑇𝑦𝑓)(𝑥) = 𝑓(𝑥 − 𝑦),    (𝑀𝜉𝑓)(𝑥) = 𝑒
2𝜋𝑖𝜉𝑥𝑓(𝑥)  (𝑦, 𝜉 ∈ 𝑅) 

For any 𝛾 = (𝛾1, 𝛾2) ∈ ℝ
2, we denote the associated time-frequency shift of a function 

𝑓 ∈ 𝐿2(ℝ; ℂ𝑑) by  

𝑓𝛾 = 𝑇𝛾1𝑀𝛾2𝑓. 

Now, given a lattice Γ ⊂ ℝ2 and 𝑓 ∈ 𝐿2(ℝ; ℂ𝑑), the resulting Gabor system 

𝐺(𝑓, Γ) is given by 

𝐺(𝑓, Γ) = (𝑓𝛾)𝛾∈Γ. 

Recall that a family (𝜂𝑖)𝑖∈𝐼 of vectors in a Hilbert space ℋ is called a frame if it 

satisfies  

𝐴‖𝜑‖2 ≤∑|〈𝜑, 𝜂𝑖〉|
 2

𝑖∈𝐼

≤ 𝐵‖𝜑‖2,                                    (10) 

for all 𝜑 ∈ ℋ, with constants 0 < 𝐴 ≤ 𝐵. These constants are called frame bounds; in 

the following frame constants are generally not assumed to be optimal. A Gabor system 

𝐺(𝑓, Γ) that is also a frame is called a Gabor frame. 

For case 𝑑 = 1, Gabor frames have been studied extensively; see e.g. [154]. For a 

treatment of the case 𝑑 > 1, in somewhat different terminology, see [142]. 

The problem of constructing a Gabor frame in dimension 𝑑 contains that of 

simultaneously constructing 𝑑 Gabor frames: if 𝐺(𝑓, Γ) is a frame with bounds 𝐴, 𝐵, 
then 𝐺(𝑓𝑖 , Γ) is a frame with frame bounds 𝐴, 𝐵 for each component 𝑓𝑖 of 𝑓. More 

generally, whenever �̃� < 𝑑 and 𝑓 = (𝑓1, … . , 𝑓�̃�), the system 𝐺(𝑓, Γ) is a frame of  

𝐿2(ℝ; ℂ𝑑), again with frame bounds 𝐴 and 𝐵.   

But the converse need not be true: the definition of the scalar product in 

𝐿2(ℝ; ℂ𝑑) entails that  

〈𝑔, 𝑓𝜆〉 =∑〈𝑔𝑖 , 𝑓𝑖|𝜆〉

𝑑

𝑖=1

, 

where we used 𝑓𝑖|𝜆 to denote the action of a time-frequency shift on 𝑓𝑖. Hence, 

cancellation may prevent the higher-dimensional system from being a frame even when 

all components 𝑓1, … , 𝑓𝑑  generate a frame. In fact, one can easily see that an obvious 

necessary requirement for 𝑓 to generate a frame is linear independence of its entries 

𝑓1, … , 𝑓𝑑. 
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Observe, however, that at least the upper frame bound for 𝑓 can be estimated in 

terms of the upper frame bounds for the 𝑓𝑖: if 𝐵,𝐵1, … . , 𝐵𝑑 are optimal upper frame 

bounds for 𝑓, 𝑓1, … , 𝑓𝑑 , respectively, then the Cauchy-Schwartz inequality entails 

𝐵 ≤ 𝑑∑𝐵𝑖

𝑑

𝑖=1

.                                                        (11) 

Probably the most-studied window function for the case 𝑑 = 1 has been the 

Gaussian, 𝑔(𝑥) = 𝜋−1 4⁄ 𝑒−𝑥
2 2⁄ . This is partly due to historical reasons: Gabor 

suggested using Gaussian window [151], and the characterization of densities for Gabor 

frames with Gaussian window took more than 30 years to be fully clarified [156,158]. 

The choice of this window function is motivated by the way Gabor systems are 

employed : they are designed to measure time-frequency content in a signal. By the 

Heisenberg uncertainty relation a Gaussian window has optimal time-frequency 

concentration, and thus can be expected to yield a good time-frequency resolution. 

Moreover, for the Gaussian window powerful tools from complex analysis can be 

employed to study sampling [156,158], which adds to its theoretical appeal. 

We intend to derive frame estimates for window functions 𝑓 consisting of the 

first 𝑑 + 1 Hermits functions. For ℎ ∈ ℕ0, we define the 𝑛𝑡ℎ Hermits function ℎ𝑛 by    

ℎ𝑛(𝑥) =
(−1)𝑛

√22𝑛! √𝜋
𝑒𝑥

2 2⁄
𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥

2
,                                   (12) 

where the normalization factor ensures ‖ℎ𝑛‖2 = 1, the above defined Gaussian equals 

ℎ0, whence the problem considered here can be viewed as a generalization of Gabor’s 

original question.  

The vector-valued windows that we are interested in are given by  

ℎ𝑑 = (ℎ0, . . . , ℎ𝑑) ∈ 𝐿
2(ℝ; ℂ𝑑+1). 

We intend to give frame conditions and estimates for 𝐺 (ℎ𝑑 ,ℳ(ℤ2)), where ℳ denotes 

a real-valued invertible 2 × 2-matrix, in terms of a matrix norm defined by  

‖ℳ‖ = sup{‖ℳ𝑍‖2: ‖𝑧‖∞ ≤ 1 2⁄ }.                               (13) 
Here ‖𝑧‖𝑃 denotes the usual ℓ𝑝-norm on ℝ2. This choice of matrix norm may seem 

somewhat peculiar, and in fact the theorems below can be formulated with respect to 

any other norm on matrix space. As will become clear below, the use of (13) 

emphasizes the close connection to sampling estimates on the Heisenberg group. 

The chief purpose of Theorem (3.2.1) is to allow a better understanding and 

formulation of Theorem (3.2.6). Theorem (3.2.1) is of independent interest. Even 

though we expect it somehow to be part of Gabor analysis, we are not aware of any 

previous source for this result; not even for 𝑑 = 1. 

Hence the tightness of the frame estimate, which is the quotient of the two frame 

bounds, approaches 1 as ‖ℳ‖ → 0, with speed proportional to ‖ℳ‖2 𝐶𝒇
2⁄ .  

We observe that Theorem (3.2.1) holds for the supremum 𝐶𝒇
∗ of all possible 

constants, and that this choice provides the sharpest possible statement. Then the main 

result is the following estimate: 

It uses a sampling estimate for the Paly-Wiener space 𝑃𝑊(ℍ) established in Führ 

and Gröchenig [150]. The space was introduced by Pesenson [157], using a particular 

differential operator on ℍ, the so-called sub-Laplacian. Hermite functions enter in the 
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spectral decomposition of this operator, and it is this connection that will allow to relate 

the sampling theorem to frame estimates for Hermite functions. 

The connection between frames and sampling theory is not exactly new, in fact it 

is  at the base of frame theory, which originated from nonharmonic Fourier series and 

their connections to irregular sampling over the reals, see [144]. For the sake of 

explicitness, assume we are given a sequence 𝐴 = (𝜆𝑘)𝑘∈ℤ of sampling points in ℝ. We 

are looking for criteria that allow to reconstruct a Paley-Wiener  function, i.e. 𝑓 ∈
𝐿2(ℝ) whose Fourier transform has support in the unit interval [−0.5 , 0.5] , in a stable 

manner from its restriction to 𝛬. Noting that  

𝑓(𝜆𝑘) = ∫ 𝑓(𝜉)𝑒2𝜋𝑖𝜆𝑘𝜉𝑑𝜉

0.5

−0.5

= 〈𝑓, 𝑒𝜆𝑘〉, 

we find the following two equivalent conditions, with identical constants 𝐴 and 𝐵 in 

both cases: 

(a) The sequence 𝛬 fulfills the sampling estimate  

𝐴‖𝑓‖2
2 ≤ ∑|𝑓(𝜆𝑘) |

2

𝑘∈ℤ 

≤ 𝐵‖𝑓‖2
2, 

for all Paley-Wiener functions. 

(b) The sequence (𝑒𝜆𝑘)𝑘∈ℤ fulfills the frame estimate  

𝐴‖𝐹‖2
2 ≤ ∑|〈𝐹, 𝑒𝜆𝑘〉|

2

𝑘∈ℤ 

≤ 𝐵‖𝐹‖2
2, 

for all 𝐹 ∈ 𝐿2([−0.5 , 0.5]). 
This equivalence can be used in two ways: For instance, observing that the choice 

𝜆𝑘 = 𝑘(𝑘 ∈ ℤ) results in the Fourier orthonormal basis (𝑒𝜆𝑘)𝑘∈ℤ of 𝐿2([−0.5, 0.5]), the 

implication (b) ⇒ (a) leads to Shannon’s sampling theorem. Conversely, for irregular 

sampling sets, condition (a) can often be checked using tools from complex analysis, 

and then (a) ⇒ (b) results in frame estimates for irregularly spaced exponentials. 

We use a similar approach for the Heisenberg group ℍ: this time, previously 

established sampling estimates for Paley-Wiener functions on ℍ will allow to derive 

frame estimates for Hermite functions, by an analogue of the implication (a) ⇒ (b). for 

this purpose we will need to work out the connections between 𝑃𝑊(ℍ) and the Hermite 

functions. But first let us show Theorem (3.2.1). 

Theorem (3.2.1)[140]: Let 𝑓 = (𝑓1 , … . , 𝑓𝑑) ∈ 𝐿
2(ℝ , ℂ𝑑) be given, with 𝑓𝑖 ∈ 𝑆(ℝ), and 

〈𝑓𝑖 , 𝑓𝑗〉 = 𝛿𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑑. Then there exists a constants  0 < 𝐶𝒇 ≤ 1 such that for 

all matrices ℳ with ‖ℳ‖ < 𝐶𝒇, the system 𝐺(𝒇,ℳ(ℤ2)) is a frame with frame 

constants 
1

|det(ℳ)|
(1 ±

‖ℳ‖

𝐶𝒇 
)
2

. 

Proof. Let 𝑉𝑓: 𝐿
2(ℝ ; ℂ𝑑) → 𝐿2(ℝ2) denote the short-time Fourier transform, 

𝑉𝑓𝑔(𝑥, 𝜉) = (𝑔, 𝑇𝑥𝑀𝜉𝑓). 

The orthogonally relations for the short-time Fourier transform [154, Theorem 3.2.1] 

and the pairwise orthogonallity  of  the components of 𝒇 imply that 𝑉𝑓 is an isometry. 

Hence its image ℋ𝑓 is a closed subspace of 𝐿2(ℝ2). As outlined in the previous, the 



70 

isometry property of 𝑉𝑓 implies that a frame estimate for 𝐺(𝒇,ℳ(ℤ2)) is the same as 

sampling estimate for ℋ𝑓, with sampling set ℳ(ℤ2).  

We intend to utilize the techniques from Fuhr and Grouching [150] for this 

purpose, hence we need oscillation estimates. We will need oscillation estimates. We 

define  

osc𝑟(𝑓)(𝑥) = sup
|𝑥−𝑦|<𝑟

|𝑓(𝑥) − 𝑓(𝑦)|.  

Our first aim is to show 

‖osc𝑟(𝐹)‖2 ≤
𝑟

𝐶𝒇
‖𝐹‖2, ∀𝐹 ∈ ℋ𝒇,                                   (14)  

for a suitable constant 𝐶𝒇. 

For this purpose we first observe that the projection 𝑃𝒇 onto ℋ𝒇 is obtained by 

twisted convolution [154]: 

(𝑃𝒇𝐺)(𝑥, 𝜉) = ( 𝐺#𝐹)(𝑥, 𝜉) = ∫ 𝐺(𝑥′, 𝜉′)𝐹(𝑥 − 𝑥′, 𝜉 − 𝜉′)𝑒𝜋𝑖(𝑥𝜉
′−𝑥′𝜉)𝑑𝑥′𝑑𝜉′

𝑅2

 

where we let 𝐹 = 𝑉𝑓𝒇. 

Hence 𝐺 = 𝐺#𝐹 for 𝐺 ∈ ℋ𝒇, and therefore  

osc𝑟(𝐺)(𝑥, 𝜉)

= sup
|(𝑥 ,𝜉)−(𝑥′′,𝜉′′)|< 𝑟

| ∫ 𝐺(𝑥′, 𝜉′)(𝐹

𝑅2

(𝑥 − 𝑥′, 𝜉 − 𝜉′)𝐹(𝑥′′ − 𝑥′, 𝜉′′

− 𝜉′))𝑒𝜋𝑖(𝑥𝜉
′−𝑥′𝜉)𝑑𝑥′𝑑𝜉′| 

≤ ∫|𝐺(𝑥′, 𝜉′)| sup
|(𝑥 ,𝜉)−(𝑥′′,𝜉′′)|< 𝑟

|𝐹(𝑥 − 𝑥′, 𝜉 − 𝜉′) − 𝐹(𝑥′′ − 𝑥′, 𝜉′′ − 𝜉′)|𝑑𝑥′𝑑𝜉′

𝑅2

 

= ∫|𝐺(𝑥′, 𝜉′)|

𝑅2

osc𝑟(𝐹)(𝑥 − 𝑥
′, 𝜉 − 𝜉′)𝑑𝑥′𝑑𝜉′ = |𝐺| ∗ osc𝑟(𝐹), 

where convolution is taken with reference to the group structure on 𝑅2. Hence  

‖oscr(𝐺)‖2 ≤ ‖𝐺‖2‖osc𝑟(𝐹)‖1.                                          (16) 
In the following estimates we let 𝐵𝑟(𝑥, 𝜉) ⊂ 𝑅

2 denote the Euclidean of radius 𝑟 
centered at (𝑥, 𝜉). The second factor in (15) can be estimated by  
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‖osc𝑟(𝐹)‖1 = ∫ sup
(𝑥′,𝜉′)∈𝐵𝑟(𝑥,𝜉)

|𝐹(𝑥, 𝜉) − 𝐹(𝑥′, 𝜉′)|𝑑𝑥𝑑𝜉

𝑅2

≤ ∫ 𝑟 sup
(𝑥′,𝜉′)∈𝐵𝑟(𝑥,𝜉)

(|
𝜕𝐹

𝜕𝑥
(𝑥, 𝜉)| + |

𝜕𝐹

𝜕𝜉
(𝑥, 𝜉)|) 𝑑𝑥𝑑𝜉

ℝ2

≤ 𝑟 ∫ ∑ ‖𝐷𝛼𝐹‖∞,𝐵𝑟(𝑥,𝜉)𝑑𝑥𝑑𝜉

|𝛼|≤1ℝ2

≤ 𝑟 ∫ 𝐶𝐵𝑟
ℝ2

∑ ‖𝐷𝛼𝐹‖1 ,𝐵𝑟(𝑥,𝜉)𝑑𝑥𝑑𝜉

1≤|𝛼|≤4

= 𝑟 ∑ |𝐵𝑟|𝐶𝐵𝑟‖𝐷
𝛼𝐹‖1

1≤|𝛼|≤4

 

where we used the mean value theorem for the first inequality, and the Sobolev 

embedding theorem for the third, applied to both 
𝜕𝐹

𝜕𝑥
 and 

𝜕𝐹

𝜕𝜉
. Here 𝐶𝐵𝑟  denotes the norm 

of the embedding 𝑊3,1(𝐵𝑟) ↪ 𝐶(𝐵𝑟) [141,Theorem 5.4]. Clearly, |𝐵𝑟| = 𝑟
2|𝐵1|;  on 

the other hand, a dilation argument establishes for 𝑟 < 1 that 𝐶𝐵𝑟 ≤ 𝑟
−2𝐶𝐵1 . Hence  

‖osc𝑟(𝐹)‖1 ≤ 𝑟|𝐵1|𝐶𝐵1 ∑‖𝐷𝛼𝐹‖1
|𝛼|≤4

, 

And thus (15) implies (14), with 𝐶𝒇 =
1

|𝐵1|𝐶𝐵1 ∑ ‖𝐷𝛼𝐹‖1|𝛼|≤4   
. 

Now by letting 𝑘 = ℳ([−0.5 ,0.5]2), we obtain ℝ2 = ⋃ 𝛾 + 𝑘𝛾∈ℳ(ℤ2)  as a 

disjoint union, and 𝐾 has Lebesgue measure |det (ℳ)|. Moreover, by definition of the 

norm, 𝐾 ⊂ 𝐵𝑟, for 𝑟 = ‖ℳ‖. Now by [150, Theorem 3.5], the oscillation estimate (14) 

results in the sampling estimate  

1

|det(ℳ)|
(1 −

𝑟

𝐶𝒇
)

2

‖𝐹‖2
2 ≤ ∑ |𝐹(𝛾)|2

𝛾∈ℳ(ℤ2)

≤
1

|det (ℳ)|
(1 +

𝑟

𝐶𝒇
)

2

‖𝐹‖2
2 

Which is Theorem (3.2.1). 

The (simply connected) Heisenberg group is defined as  ℍ = ℝ3, with group law 

(𝑝, 𝑞, 𝑡)(𝑝′, 𝑞′, 𝑡′) = (𝑝 + 𝑝′, 𝑞 + 𝑞′, 𝑡 + 𝑡′ + (𝑝𝑞′ − 𝑝′𝑞) 2⁄ ) 
For the following facts concerning ℍ, see [148]. ℍ is a step-two nilpotent Lie group, 

with center 𝑍(ℍ) = {0} × {0} × ℝ. ℍ is unimodular, with two-sided invariant measure 

on ℍ given by the usual Lebesgue measure of ℝ3.  

Given  𝜆 ∈ ℝ∗ = ℝ\{0}, the Schrodinger representation 𝜌𝜆 of ℍ acts on 𝐿2(ℝ) 
via  

𝜌𝜆(𝑝, 𝑞, 𝑡) = 𝑒
−2𝜋𝑖𝜆(𝑡−𝑝𝑞 2⁄ )𝑇𝜆𝑝𝑀𝑞 . 

This is an irreducible unitary representation of ℍ. The family of Schrödinger  

representations provides the basis for the Plancherel transform of the group, a tool that 

is of key importance. 

Before we describe this transform in more detail, let us quickly recall the basics 

of Hilbert-Schmidt operators: The space of Hilbert-Schmidt operators on a Hilbert space 

ℋ is given by all bounded linear operators such that 

‖𝑇‖𝐻𝑆
2 =∑‖𝑇𝜂𝑖‖

2

𝑖∈𝐼

. 
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Is finite; here (𝜂𝑖)𝑖∈𝐼 denotes an arbitrary orthonormal basis of ℋ. it is well-known that 

the norm is independent of the choice of  basis, and defines a Hilbert space structure on 

the Hilbert-Schmidt operators with the Scalar product  

〈𝑆, 𝑇〉 = trace(𝑇∗𝑆) =∑〈𝑆𝜂𝑖 , 𝑇𝜂𝑖 〉

𝑖∈𝐼

. 

Now, given 𝑓 ∈ 𝐿1 ∩ 𝐿2(ℍ), one defines  

𝜌𝜆(𝑓) = ∫ 𝜌𝜆(𝑥)𝑓(𝑥)𝑑𝑥

ℍ

, 

Understood in the weak operator sense. This is just the canonical extension of the 

representation 𝜌𝜆 to the convolution algebra 𝐿1(ℍ). The mapping 𝑓 → (𝜌𝜆(𝑓))𝜆∈ℝ∗ is 

called the group Fourier transform. This nomenclature is justified by the observation 

that the Euclidean Fourier transform is obtained by integration against the characters of 

the additive group. Moreover, it turns out that for 𝑓 ∈ 𝐿1 ∩ 𝐿2(ℍ), the group Fourier 

transform is in fact a family of Hilbert-Schmidt operators, and we have the Parseval 

relation 

‖𝑓‖2
2 = ∫‖𝜌𝜆(𝑓)‖𝐻𝑆

2  |𝜆|𝑑𝜆

ℝ

. 

The Parseval relation allows to extend the Fourier transform to 𝐿2(ℍ), yielding 

the Plancherel transform, a unitary map  

𝐿2(ℍ) → ∫ 𝐻𝑆(𝐿2(ℝ)

⊕

ℝ

)|𝜆|𝑑𝜆, 

where the right hand side denotes the direct integral of  Hilbert-Schmidt  Spaces. We 

denote the Plancherel transform of 𝑓 ∈ 𝐿2(ℍ) as 𝑓 = (𝑓(𝜆))
𝜆∈ℝ∗

. This map will play 

the same role as the Euclidean Fourier  transform in the discussion.   

The Plancherel transform its algebraic properties, providing a decomposition of 

various operators and representations acting on 𝐿2(ℍ) and 𝑥, 𝑦 ∈ ℍ, then  

𝜌𝜆(𝐿𝑥𝑓) = 𝜌𝜆(𝑥) ∘ 𝜌𝜆( 𝑓), 
which provides the decomposition of the left regular representation 𝐿 into a direct 

integral, 

𝐿 ⋍ ∫ 𝜌𝜆⊗1|𝜆|𝑑𝜆
ℝ∗

.  

Similarly, the right regular representation, acting by 𝑅𝑥(𝑓)(𝑦) = 𝑓(𝑦𝑥), decomposes by 

the formula  

𝜌𝜆(𝑅𝑥𝑓) = 𝜌𝜆(𝑓) ∘ 𝜌𝜆(𝑥)
∗. 

The decompositions extend to commuting operators: For any bounded operator 𝑇 

commuting with 𝐿, there exists a measurable field (�̂�𝜆)𝜆∈ℝ∗ of bounded operators on 

𝐿2(ℝ) satisfying 𝜌𝜆(𝑇𝑓) = 𝜌𝜆(𝑓) ∘ �̂�𝜆, or in direct integeral notation 

𝑇 ⋍ ∫ Id⨂ �̂�𝜆|𝜆|𝑑𝜆

ℝ∗

. 
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We outline the definition of Paley-Wiener space on ℍ and its relation to Hermite 

functions. The central role of Hermite function in the decomposition of the sub-

Laplacian has been observed previously, e.g. in Galler [152]; the results presented 

below can be found also in Thangavelu [160]. For background material on the 

Heisenberg group, confer Folland [146]. 

We define a let-invariant differential operator 𝑃 on ℍ by  

(𝑝𝑓)(𝑝, 𝑞, 𝑡) = lim
ℎ→0

𝑓((𝑝, 𝑞, 𝑡)(ℎ, 0,0)) − 𝑓(𝑝, 𝑞, 𝑡)

ℎ
,                      (16) 

corresponding to the subgroup ℝ× {0} × {0}, and 𝑄 is a left-invariant operator 

associated to {0} × ℝ × {0}, in the same manner. 𝑃,𝑄 are viewed as elements of the Lie 

algebra 𝔥 of  ℍ; we have [𝑃, 𝑄] = 𝑇, the infinitesimal generator of the group center. 

This observation exhibits 𝔥 as a stratified Lie algebra, 

𝔥 = 𝑉1 + 𝑉2 

with  𝑉1 = span(𝑃, 𝑄), and  𝑉2 = ℝ ∙ 𝑇 = [𝑉1, 𝑉2]. 
Of particular interest for analysis on these groups is the sup-Laplacian; as the 

name suggests, it can be viewed as a replacement for the Laplacian over ℝ𝑛. For the 

Heisenberg group, this operator is defined by  

ℒ = −𝑃2 −
𝑄2

4𝜋2
   

The normalization of 𝑄 is chosen for the sake of convenience. ℒ is a left-invariant 

positive unbounded operator on 𝐿2(ℍ). We denote its spectral measure by 𝜋ℒ. The 

Paley-Wiener space on ℍ is  then defined as  

𝑃𝑊(ℍ) = 𝜋ℒ([0,1])(𝐿
2(ℍ)) 

Note that ,up to normalization, this definition is completely analogous to the definition 

of band limited functions on ℝ, since the Euclidean Fourier transform can also be read 

as the spectral decomposition of the Laplacian. The projection Πℒ([0,1]) is left – 

invariant, and is therefore decomposition by Hermit functions. We use the notation 

𝐷𝑎𝒇(x) = |𝑎|
−1 2⁄ 𝒇(|𝑎|−1𝑥). As with translation and modulation operators, we use the 

same symbol for operators acting on scalar – and on vector – valued functions. 

Lemma (3.2.2)[140]: 

(a) (ℎ𝑛)𝑛∈ℕ0 is an orthonormal basis of  𝐿2(ℝ).  

(b) The system (ℎ𝑛)𝑛∈ℕ0 is an Eigen basis of the Hermit operator 

(c)  𝐻𝑓(𝑥) = 𝑥2𝑓(𝑥) − 𝑓′′(𝑥), 
𝐻ℎ𝑛 = (2𝑛 + 1)ℎ𝑛.                                                (17)  

(d) For every real 𝑎 ≠ 0, the dilated system (ℎ𝑛,𝑎)𝑛∈ℕ0, defined by  

ℎ𝑛,𝑎(𝑥) = (𝐷|𝑎|1 2⁄ ℎ𝑛)(𝑥) = |𝑎|
−1 4⁄ ℎ𝑛(|𝑎|

−1 2⁄ 𝑥) , 

is an eigenbasis of the scaled Hermite operator 𝐻𝑎𝑓(𝑥) = 𝑥
2𝑓(𝑥) − 𝑎2𝑓′′(𝑥) 

𝐻𝑎ℎ𝑛,𝑎 = |𝑎|(2𝑛 + 1)ℎ𝑛,𝑎                                         (18) 
(e) The sub-Laplacian decomposes into a direct integral of scaled Hermite operators: 

𝜌𝜆(ℒ𝑓) = 𝜌𝜆(𝑓) ∘ 𝐻𝜆, 
for all 𝑓 ∈ 𝐶𝑐

∞(ℍ). 
Proof. For part (a) confer [147, Corollary 6.2, Theorem 6.14]. Parts(b) and (c) follow 

from part (a). Part (d) is established by formal calculation from (16) and the analogous 

formula for 𝑄, using the decomposition of the right regular representation. 



74 

Parts (b) through (d) contain the ingredients of the direct integral decomposition 

of (ℍ). For the precise formulation of this result and its proof, the tensor product 

notation for Hilbert-Schmidt operators will be useful. Given vectors 𝜂, 𝜑 in a Hilbert 

space ℋ, we let  

𝜂 ⨂ 𝜑: 𝑧 ↦ 〈𝑧, 𝜑〉𝜂, 
which is a rank-one operator on ℋ. Note that the notation is only conjugate linear in 𝜑. 

The Hilbert-Schmidt scalar product of two elementary tensors is   

〈𝜂⨂𝜑, 𝜂′⨂𝜑′〉𝐻𝑆 = 〈𝜂 , 𝜂′〉ℋ〈𝜑′, 𝜑〉ℋ. 
Moreover, for any pair 𝑆, 𝑇 of bounded operators, 𝑆 ∘ (𝜂⨂𝜑) ∘ 𝑇 = (𝑆𝜂)⨂(𝑇∗𝜑).  

Now, given any orthonormal basis (𝜑𝑖)𝑖∈𝐼 of ℋ, every Hilbert-Schmidt operator 

𝑇 has a unique decomposition  

𝑇 =∑𝜂𝑖
𝑖∈𝐼

⨂𝜑𝑖 . 

Hence, if 𝑆 = ∑ 𝜓𝑖𝑖∈𝐼 ⨂𝜑𝑖 is another Hilbert-Schmidt Operator, we obtain for the scalar 

product 

〈𝑇, 𝑆〉 =∑〈𝜂𝑖 , 𝜓𝑖〉

𝑖∈𝐼

.                                                  (19) 

Observe in the formulation of the following proposition that �̂�𝜆 involves the first 𝑑(𝜆) +
1 Hermit functions. For |𝜆| > 1, we have  𝑑(𝜆) = −1 , and thus �̂�𝜆 = 0.  

Proposition (3.2.3)[140]:  Letting     

𝑑(𝜆) = ⌊
1

2|𝜆|
−
1

2
⌋  

and  

�̂�𝜆 = ∑ ℎ𝑛.𝜆⨂

𝑛=0,…,𝑑(𝜆)

ℎ𝑛.𝜆, 

the projection onto Paley-Wiener space is given by  

(Πℒ([0,1](𝑓))
∧(𝜆) = 𝑓(𝜆) ∘ �̂�𝜆,      ∀𝑓 ∈ 𝐿

2(ℍ).                          (12) 
The operator field (�̂�𝜆)𝜆∈ℝ∗ is the Plancherel transform of 𝑎 function 𝑝 ∈ 𝐿2(ℍ)  
whence Πℒ([0,1](𝑓) = 𝑓 ∗ 𝑝. 

Proof.  We apply the above considerations to the case ℋ = 𝐿2(ℍ) and its orthonormal 

basis (ℎ𝑛,𝜆)𝑛∈ℕ0. Hence each Hilbert-Schmidt operator 𝑇 on 𝐿2(ℝ) has a decomposition  

𝑇 = ∑ 𝜂𝑛⨂ℎ𝑛,𝜆
𝑛∈ℕ0

,                                                          (21) 

and we obtain from (18) that  

𝑇 ∘ 𝐻𝜆 = ∑ |𝜆|(2𝑛 + 1)𝜂𝑛⨂ℎ𝑛,𝜆
𝑛∈ℕ0

 . 

This shows that the map 𝑇 ⟼ 𝜂𝑛⨂ℎ𝑛,𝜆 can be understood as a projection onto an 

eigenspace of the operator ↦ 𝑇 ∘ 𝐻𝜆, with associated eigenvalue |𝜆|(2𝜆 + 1). By 

definition of  Paley-Wiener space, only eigenvalues ≤ 1 are admitted, which shows that 

the definition of  �̂�𝜆 indeed yields (20). 

For the second statement, we compute the norm of the operator field in the direct 

integral space. First observe that �̂�𝜆 = 0 for |𝜆| > 1. Moreover, the squared Hilbert-
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Schmidt norm of a projection equals its rank, whence ‖�̂�𝜆‖𝐻𝑆
2
= 𝑑(𝜆) + 1 <

1

2|𝜆|+1
 and 

thus  

∫‖�̂�𝜆‖𝐻𝑆
2
|𝜆|𝑑𝜆

ℝ∗

< ∫(
1

2|𝜆|
+ 1) |𝜆|𝑑𝜆

1

−1

= 2. 

Hence (�̂�𝜆)𝜆 has a preimage 𝑝 under the Plancherel transform. Finally, (20) and the 

convolution Theorem [149, Theorem 4.18] provide that 𝑃𝑓 = 𝑓 ∗ 𝑝. 

The motivation for considering 𝑃𝑊(ℍ) is the existence of sampling estimates for 

this space. The formulation of the sampling theorem requires some additional notation. 

We fix a quasi-norm |∙|: ℍ ⟶ ℝ0
+ by  

|(𝑝, 𝑞, 𝑡)| = (𝑝2 + 𝑞2 + |𝑡|)1 2⁄ , 
and write 𝐵𝑡 to denote the unit ball around 0. A discrete subset Γ ⊂ ℍ is called aquasi-

lattice if there exists a relatively compact set 𝑘 ⊂ ℍ such that ℍ = ⋃ 𝛾𝑘𝛾∈Γ , as a 

disjoint union. Such a set 𝑘 is called complement of Γ. 

Theorem (3.2.4)[140]: [150, Theorem 5.11] There exists a constant 0 < 𝑪ℍ ≤ 1 with 

the following property: For all quasi-lattices Γ possessing a complement 𝑘 contained in 

a ball of radius 𝑟 < 𝑪ℍ and all 𝑓 ∈ 𝑃𝑊(ℍ), 
1

|𝑘|
(1 − 𝑟 𝑪ℍ⁄ )2‖𝑓‖2

2 ≤∑|𝑓(𝛾)|2

𝛾∈Γ

≤
1

|𝑘|
(1 − 𝑟 𝑪ℍ⁄ )2‖𝑓‖2

2.                (22) 

We stress that the constant 𝑪ℍ is the same as the identically denoted constant 

from Theorem (3.2.6). 

We will now derive Theorem (3.2.6), basically by explicit calculation. The 

following Lemma can be seen as analog of (1)⇔(2). A version of this result was 

obtained in [149, Proposition 6.11]. 

Lemma (3.2.5)[140]: Suppose that Γ′ ⊂ ℍ is of the form Γ′ = Γ × 𝛼ℤ ,with Γ ⊂ ℝ2 
symmetric and 𝛼 > 0. Consider the following statements:  

(a) For all 𝑓 ∈ 𝑃𝑊(ℍ), 

𝐴‖𝑓‖2
2 ≤ ∑ |𝑓(𝛾)|2

𝛾∈Γ′ 

≤ 𝐵‖𝑓‖2
2.                                  (23) 

(b) For all 𝑑 ∈ ℕ0, and for almost all 𝜆 with |𝜆| <
1

2𝜆+1
, the system 𝒢(ℎ𝑑 , |𝜆|1 2⁄ Γ) is 

a frame of  𝐿2(ℝ; ℂ𝑑+1) with frame bounds 𝛼|𝜆|−1𝐴 and 𝛼|𝜆|−1𝐵. 

Then (a)⇒(b), and if 𝛼 < 1 2⁄ , (b)⇒(a). 

Moreover, if  Γ = ℳ(ℤ2), for a suitable invertible matrix, the frame estimates in 

(b) are valid for all 𝜆 <
1

2𝑑+1
. 

Proof. For the proof of  (a)⇒(b), let 𝑓 ∈ 𝑃𝑊(ℍ) be given. Then we can write 

𝑓(𝜆) = ∑ 𝜑𝑖,𝜆⊗ℎ𝑖,𝜆

𝑑(𝜆)

𝑖=0

,                                                 (24) 

for suitable functions 𝜑𝑖,𝜆 ∈ 𝐿
2(ℝ). In the following, we also use the notations 

Φ𝜆 = (𝜑0,𝜆, … , 𝜑𝑑(𝜆),𝜆) 
and  

𝒉𝜆 = (ℎ0,𝜆, … , ℎ𝑑(𝜆),𝜆). 
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Let 𝐸 ⊂ ℝ∗ be a Borel set contained in an interval 𝐼 of  length 1 𝛼⁄ , and consider 

g with �̂� = 𝑓 ∙ 𝟏𝐸. Observing that 𝑔 ∈ 𝑃𝑊(ℍ), we can compute the ℓ2-norm of its 

restriction to Γ′ as follows: 

∑|𝑔(𝛾)|2

𝛾∈Γ′

= ∑|〈𝑔, 𝐿𝛾𝑝〉|
2

𝛾∈Γ′

= ∑|〈�̂�, (𝐿𝛾𝑝)
∧〉|

2

𝛾∈Γ′

= ∑ |∫〈𝑓(𝜆), 𝜌𝜆(𝛾)�̂�(𝛾)〉|𝜆|𝑑𝜆

𝐸

|

2

𝛾∈Γ′

= ∑ |∫〈𝑓(𝜆), 𝜌𝜆(𝑙, 𝑘, 0)�̂�(𝛾)〉𝑒
2𝜋𝑖𝜆𝛼𝑛|𝜆|𝑑𝜆

𝐸

|

2

(𝑙,𝑘)∈𝛤,𝑛∈ℤ

. 

Applying the Parseval formula for the interval, we thus obtain 

∑|𝑔(𝛾)|2

𝛾∈Γ′

= 𝛼−1 ∑  ∫|〈𝑓(𝜆), 𝜌𝜆(𝑙, 𝑘, 0)�̂�(𝛾)〉|
2
|𝜆|2𝑑𝜆

𝐸(𝑙,𝑘)∈Γ

 

= 𝛼−1  ∫ ∑ |〈Φ𝜆 , 𝑇𝜆𝑙𝑀𝑘|𝜆|
1 2⁄ ℎ𝜆〉𝑒

𝜋𝑖𝜆𝑙𝑘|
2
|𝜆|𝑑𝜆

(𝑙,𝑘)∈Γ𝐸

 

= 𝛼−1∫ ∑ |〈Φ𝜆, 𝑇|𝜆|𝑙𝑀𝑘|𝜆|
1 2⁄ ℎ𝜆〉|

2
|𝜆|𝑑𝜆

(𝑙,𝑘)∈Γ𝐸

                    (25) 

where we used (19) to express the Hilbert-Schmidt scalar products as scalar products as 

scalar products of vector-valued functions, as symmetry of Γ to replace 𝜆 by |𝜆|.  
On the other hand, by the Plancherel formula, we find 

‖𝑔‖2
2 = ∫‖𝑓(𝜆)‖

𝐻𝑆

2
|𝜆|𝑑𝜆

𝐸

= ∫‖Φ𝜆‖𝐿2(ℝ,ℂ𝑑(𝜆))
2 |𝜆|𝑑𝜆

𝐸

 

Hence the lower sampling estimate yields  

𝐴∫‖Φ𝜆‖𝐿2(ℝ,ℂ𝑑(𝜆))
2 |𝜆|𝑑𝜆

𝐸

≤ 𝛼−1∫ ∑ |〈Φ𝜆, 𝑇|𝜆|𝑙𝑀𝑘|𝜆|
1 2⁄ ℎ𝜆〉|

2
|𝜆|𝑑𝜆

(𝑙,𝑘)∈Γ𝐸

     (26) 

Since this inequality holds true for all Borel sets 𝐸 of  diameter at most 1 𝛼⁄ , it has to 

hold point wise a.e for the integerands, i.e, after shifiting constants:  

𝛼|𝜆|−1𝐴‖Φ𝜆‖𝐿2(ℝ,ℂ𝑑(𝜆))
2 ≤ ∑ |〈Φ𝜆, 𝑇|𝜆|𝑙𝑀𝑘ℎ𝜆〉|

2
 (a.e.𝜆)

(𝑙,𝑘)∈Γ

.                  (27) 

This is already quite close to the desired lower frame estimate, except that it holds on a 

set of 𝜆′𝑠 which may depend on the choice of 𝑓 (or equivalently, on the field (Φ𝜆)𝜆∈ℝ∗). 
The next step is to establish (27) for all 𝑓 ∈ 𝑃𝑊(ℍ) and all 𝜆 in a set with 

complement of measure zero, independent of 𝑓. For this purpose we pick a sequence 

(𝑓𝑛)𝑛∈ℕ with dense span in (ℍ), and obtain a set Ω ⊂ [−1,1] with complement of 

measure zero such that (27) holds for all 𝜆 ∈ Ω and all 𝑓 in the (ℚ + 𝑖ℚ) -span of 

(𝑓𝑛)𝑛∈ℕ. But then the (ℚ + 𝑖ℚ)- span of (𝑓(𝜆))𝑛∈ℕ is dense in 𝐻𝑆(𝐿2(ℝ)) ∘ �̂�𝜆, for all 

𝜆 in a Borel set Ω′ ⊂ [−1,1] with complement of measure zero. Hence for all 𝜆 ∈ Ω ∩

Ω′, the frame estimate holds on a dense subset of 𝐻𝑆(𝐿2(ℝ)) ∘ �̂�𝜆, which is sufficient. 
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Thus we have finally established (27) for almost all 𝜆 ∈ [−1,1], and all Φ𝜆 ∈

𝐿2(ℝ , ℂ𝑑(𝜆)). The same argument applies to show the upper estimate with constant 

𝛼|𝜆|−1𝐵. 

Now using 𝒉𝜆 = 𝐷|𝜆|1 2⁄ 𝒉
𝑑(𝜆) and the relations  

𝑀𝜉𝐷𝑏 = 𝐷𝑏𝑀𝑏𝜉 , 𝑇𝑥𝐷𝑏 = 𝐷𝑏𝑇𝑏−1𝑥 

we find that  

𝑇|𝜆|𝑙𝑀𝑘𝒉𝜆 = 𝐷|𝜆|1 2⁄ (𝑇|𝜆|1 2⁄ 𝑙𝑀𝜆1 2⁄ 𝑘ℎ
𝑑(𝜆)). 

Since the image of  a frame under a unitary map is a frame with identical constants, we 

finally obtain that (𝑇|𝜆|1 2⁄ 𝑙𝑀𝜆1 2⁄ 𝑘ℎ
𝑑(𝜆))(𝑙,𝑘)∈Γ is a frame, for almost all |𝜆| < 1. Now 

part (b) follows from 𝑑 ≤ 𝑑(𝜆), for 𝜆 <
1

2𝑑+1
. 

For the converse direction observe that by assumption on 𝛼. all Plancherel  

transforms of elements of  𝑃𝑊(ℍ) are supported in an interval of length 1 𝛼⁄ . Hence 

(25) holds for all 𝑔 ∈ 𝑃𝑊(ℍ), where this time 𝐸 = [−1,1], and the field (𝛷𝜆)𝜆 

corresponds to the Plancherel transform of 𝑔. But then (b)⟹(a) is immediate.  

The proof that the "almost everywhere" contained in the statement can be omitted 

for lattices relies on semi-continunity properties of the frame bounds. 

For any unit vector 𝑓 ∈ 𝐿2(ℝ, ℂ𝑑), consider the function  

Θ𝒇: ]0,
1

2𝑑 + 1
[ ∋ 𝜆 ⟼ ∑ |〈𝒇, 𝑇𝑙𝑀𝑘|𝜆|

1 2⁄ ℎ𝑑〉|
2

(𝑙,𝑘)∈|𝜆|1 2⁄ ℳ(ℤ2)

. 

We compute 

Θ𝒇(𝜆) = |𝜆| ∑ |〈𝒇, 𝑇𝑙𝑀𝑘ℎ
𝑑〉|

2

(𝑙,𝑘)∈|𝜆|1 2⁄ ℳ(ℤ2)

= |𝜆| ∑ |∑〈𝑓𝑖 , 𝑇𝑙𝑀𝑘ℎ𝑖〉

𝑑

𝑖=0

|

2

(𝑙,𝑘)∈|𝜆|1 2⁄ ℳ(ℤ2)

= |𝜆|∑∑〈𝑓𝑖 , 𝑇𝑙𝑀𝑘ℎ𝑖〉〈𝑓𝑖, 𝑇𝑙𝑀𝑘ℎ𝑖〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑖,𝑗(𝑙,𝑘)

= |𝜆|∑∑〈𝑓𝑖 , 〈𝑓𝑗 , 𝑇𝑙𝑀𝑘ℎ𝑖〉𝑇𝑙𝑀𝑘ℎ𝑖〉

(𝑙,𝑘)𝑖,𝑗

= |𝜆|∑〈𝑓𝑖 , ∑〈𝑓𝑗 , 𝑇𝑙𝑀𝑘ℎ𝑖〉𝑇𝑙𝑀𝑘ℎ𝑖
(𝑙,𝑘)

〉

𝑖,𝑗

= |𝜆|∑〈𝑓𝑖 , 𝑆ℎ𝑖,ℎ𝑗; |𝜆|1 2⁄  ℳ𝑓𝑗〉

𝑖,𝑗

. 

Here we used the linear operator 𝑆𝑔1,𝑔2;𝒩 associated to functions 𝑔1, 𝑔2 and an 

invertible matrix 𝒩, defined by 

𝑆𝑔1,𝑔2;𝒩(𝑓) = ∑ 〈𝑓, 𝑇𝑙𝑀𝑘𝑔1〉

(𝑙,𝑘)∈𝒩(ℤ2)

𝑇𝑙𝑀𝑘𝑔2. 

[145, Theorem 3.6] states that 𝑆:𝑀1(ℝ) × 𝑀1(ℝ) × 𝐺𝐿(2,ℝ) ⟶ ℬ(𝐿2(ℝ)) is 

continuous, where the right-hand side denotes the space of bounded operators endowed 

with the norm topology, and 𝑀1(ℝ) is the Feichtinger algebra; see e.g. [154] for a 

definition and basic properties. Now the continuous inclusion 𝒮(ℝ) ⊂ 𝑀1(ℝ) entails 

that the map 𝜆 ↦ 〈𝑓𝑖 , 𝑆ℎ𝑖 ,ℎ𝑗 ; |𝜆|1 2⁄ ℳ𝑓𝑗〉 is continuous, for all 0 ≤ 𝑖, 𝑗 ≤ 𝑑, and then Θ𝒇 is 

continuous. 

Next consider the map associating to each 𝜆 the optimal upper frame bound, 

given by 

𝐵𝑜𝑝𝑡: ]0,
1

2𝑑 + 1
[ ∈↦ sup

‖𝑓‖=1
Θ𝑓(𝜆). 
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The supremum is always finite: By [154, Corollary 6.2.3], the frame operator of one-

dimensional window in the Schwartz class is always bounded. Hence the upper frame 

bound also exists in the vector valued case, by (11). 

As the supremum of a family of continuous functions, 𝐵𝑜𝑝𝑡 is lower semi-

continuous, and then 𝜆 ⟼ 𝐵𝑜𝑝𝑡(𝜆)|𝜆|
−1 2⁄  is lower semi-continuous as well. We 

already know that the latter map is bounded from above by 𝛼𝐵 on a subset of ]0,
1

2𝑑+1
[ 

with complement of measure zero. This subset is dense, hence lower semi-continuity 

implies 𝐵𝑜𝑝𝑡(𝜆)|𝜆|
−1 2⁄ ≤ 𝛼𝐵 on the whole interval. 

The analogous reasoning, replacing lower by upper semi-continuity, applies to 

the lower frame bound, and we are done. 

Theorem (3.2.6)[140]: There exists a constant 𝐶ℍ ≤ 1 such that for all 𝑑 ∈ ℕ0 

𝐶
ℎ𝑑
∗ ≥

𝐶ℍ

√2𝑑 + 1
.                                                    (28) 

Proof. Fix 𝑑 ∈ ℕ0. Suppose that ℳ is given with ‖ℳ‖ < 𝐶ℍ √2𝑑 + 1⁄ . let 𝐾 =
ℳ([−0.5  , 0.5)2), then 𝐾 is a complement of ℳ(ℤ2) in ℝ2, contained in a ball of 

radius 𝑟0 = ‖ℳ‖, and with measure |det (ℳ)|. Moreover, by choosing 𝛼 > 0 small 

enough, the set 𝐾′ = 𝐾 × [−𝛼 2⁄ , 𝛼 2⁄ ) is contained in a ball of radius 𝑟0 + 𝜖 <

𝐶ℍ √2𝑑 + 1⁄  (with respect to the quasi-norm on ℍ). In addition, if we define Γ′ =
ℳ(ℤ2) × 𝛼ℤ, as in Lemma (3.2.5), then 𝐾′ is a complement of  Γ′:for any (𝑝, 𝑞, 𝑡) ∈
ℍ, there exist unique (𝑝1, 𝑞1) ∈ Γ and (𝑝2, 𝑞2) ∈ 𝐾 with (𝑝1 + 𝑝2, 𝑞1 + 𝑞2) = (𝑝, 𝑞), 
and finally unique 𝑙 ∈ ℤ and 𝑠 ∈ [−𝛼 2⁄ , 𝛼 2⁄ ) with 𝑠 + 𝛼𝑙 = 𝑡 − (𝑝1𝑞2 − 𝑝2𝑞1) 2⁄ . 

But these choices imply (𝑝1, 𝑞1, 𝛼𝑙)(𝑝2, 𝑞2, 𝑠) = (𝑝, 𝑞, 𝑡). 
We will apply Theorem (3.2.4) to dilated copies of Γ′. We define dilations 𝛿𝑎 =

ℍ⟶ ℍ for 𝑎 > 0 by letting 𝛿𝑎(𝑝, 𝑞, 𝑡) = (𝑎𝑝, 𝑎𝑞, 𝑎
2𝑡). It is easy to check that 𝛿𝑎 is a 

group automorphism fulfilling |𝛿𝑎(𝑝, 𝑞, 𝑡) | = 𝑎|(𝑝, 𝑞, 𝑡)|. Hence 𝛿𝑎(Γ
′) is a quasi-

lattice, with complement 𝛿𝑎(𝑘) contained in a ball of radius (𝑟0 + 𝜖). Hence, for any 

𝑎 < ℂℍ (𝑟0 + 𝜖),⁄  the sampling theorem provides the estimate  

1

𝑎4|det(ℳ)|𝛼
(1 −

𝑎(𝑟0 + 𝜖)

ℂℍ 
)

2

‖𝑓‖2
2 ≤ ∑ |𝑓(𝛾)|2

𝛾∈𝛿𝑎(Γ
′)

≤
1

𝑎4|det(ℳ)|𝛼
(1 −

𝑎(𝑟0 + 𝜖)

ℂℍ 
)

2

‖𝑓‖2
2. 

An application of Lemma (3.2.5) then yields, for all 𝜆 <
1

2𝑛+1
, that 

𝒢 (ℎ𝑑 , 𝑎|𝜆|1 2⁄ ℳ(ℤ2)) is a frame with bounds 
1

𝑎2|𝜆||det (ℳ)|
(1 ∓

𝑎(𝑟0+𝜖)

𝐶ℍ
)
2

. Letting 

𝑎2|𝜆| = 1, provides a lower frame bound for 𝒢 (ℎ𝑑 ,ℳ(ℤ2)) given by  

sup {
1

|det(ℳ)|
(1 −

𝑎(𝑟0+𝜖)

𝐶ℍ
)
2

: √2𝑑 + 1 ≤ 𝑎 < 𝐶ℍ (𝑟0 + 𝜖)⁄ }.  

Observe that the restriction 𝑎 ≥ √2𝑑 + 1 is imposed by |𝜆| ≤
1

2𝑑+1
. By monotonicity, 

the supremum is 
1

|det(ℳ)|
(1 −

√2𝑑+1(𝑟0+∈)

𝐶ℍ
)
2

. Sending 𝜖 to zero provides the lower 
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frame bound estimate necessary to establish Theorem (3.2.6) the upper estimate is 

obtained in the same fashion. 

We have employed various ideas that are frequently used in frame theory and the 

discretization of integral transforms: we have already mentioned the connection 

between sampling and discretization. The proof of Theorem (3.2.1). Relied on the 

analysis of the reproducing kernel of the image space of short time Fourier transform, 

and in this respect it has many precedents in the literature: As a recent influential 

sources discussing sampling in reproducing kernel Hilbert spaces see [159]. The 

oscillation approach used to prove Theorem (3.2.1) is an adaptation of  techniques 

employed, e.g, by Grochenig in [153]. Another idea that is often used is the direct 

connection between Gabor frames and a particular  representation of the Heisenberg 

group ℍ, or ratherble: of a suitable quotient of ℍ. 
There are however some aspects that set the results and arguments presented. For 

instance, we study the asymptotic behavior of  the frame bounds, as the density 

increases to infinity. We are not aware of any previous source for this type of  results, 

not even for the scalar case. The main difference however is in terms of technique: 

unlike most sources in Gabor analysis, we employ a representation of the simply 

connected Heisenberg group ℍ, and not of  the reduced Heisenberge ℍ𝑟, which is the 

quotient of  ℍ by a central discrete subgroup. 

It can be argued that ℍ𝑟 has a more intuitive connection to Gabor analysis. The 

proof of Theorem (3.2.6) shows that in working with ℍ one needs to deal with a fair 

amount of additional technical details, that one avoids by considering ℍ𝑟. The  benefit 

of this approach lies in the fact that a single sampling estimate, namely (22), gives rise 

to a whole family of Gabor frame estimates, namely (28), valid for all 𝑑 ≥ 0.  

The main result provides rather intuitive asymptotic estimates for Gabor frame 

bounds. A major drawback of these estimates is that they involve an  unknown 

constants. An estimate for 𝐶ℍ is given in Führ and Gröchenig [150], involving operator 

norms for differential operators on 𝑃𝑊(ℍ) as well as a Sobolev constant for the unit 

ball ℍ; the argument is very similar to the estimate of the constant 𝐶𝒇 in the proof of 

Theorem (3.2.1). While rough estimates for the norms of differential operators are 

obtainable from the Plancherel transform, which decomposes the differential operators  

as well as 𝑃𝑊(ℍ), we have not managed to obtain an explicit estimate for the Sobolev 

constant for ℍ. in any case, we stress that the constant 𝐶ℍ in the sampling theorem is the 

same as in Theorem (3.2.6); this was the chief motivation for the picking the matrix 

norm (13). 

For single Hermite functions, the results obtained here compare in an interesting 

way with recent results due to Gröchenig and Lyubarskii. Using complex analysis 

methods, they obtained the following statement [155, Theorem 3.1]: 

Theorem (3.2.7)[140]:  If |detℳ| < (𝑑 + 1)−1, then 𝒢(ℎ𝑑 ,ℳ) is a frame for 𝐿2(ℝ). 
For the isotropic case, i.e, ℳ = 𝑎. Id, this results provides a criterion that is very 

close to our Theorem (3.2.6): Any a below a threshold ~𝑛−1 2⁄  guarantees a frame. In 

the general case however, Theorem (3.2.7) is much more widely applicable: At the same 

time |detℳ| can be made arbitrarily small and ‖ℳ‖ arbitrarily large. 

On the other hand, Theorem (3.2.7) does not provide frame bound estimates, and 

it only applies to the scalar –valued case. 
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Let us finally comment on possible generalizations. The first possible extension 

consist in replacing ℝ by ℝ2, i.e, studying vector-valued Gabor frames in 𝐿2(ℝ𝑛; ℂ𝑑). 
One now considers the 2𝑛 + 1-dimensional Heisenberg group ℍ𝑛. This is a stratified 

Lie group, possessing a sub-Laplacian, Paley-Wiener space and, finally, a sampling 

Theorem [150]. As for the one – dimensional case, the spectral decomposition of  the 

sub-Laplacian involves Hermite functions, and an adaptation of arguments for ℍ should 

be a straightforward task. 

A second, more interesting but also more challenging type of generalization 

concerns the sampling sets, which could also be irregular. There already exists an 

irregular sampling theorem for ℍ, however, in the transfer of the associated sampling 

estimates to Gabor frame estimates, we are crucially relying on the lattice structure of 

the sampling set. The key result is the continuity statement [145, Theorem 3.6], and the 

proof of this result makes full use of Gabor theory developed for lattices.  

As a result, we can currently only show statements of the following form: For all 

𝑑 ∈ ℕ0 and all uniformly discrete and uniformly dense sets Γ ⊂ ℝ2 there exists a range 

(0, 𝑎𝑑) of dilation parameters such that 𝒢(ℎ𝑑 , 𝑎Γ) is a frame, for almost all 𝑎 ∈ (0, 𝑎𝑑), 

including an estimate of the frame bounds. The threshold 𝑎𝑑 is of the order 𝑑−1 2⁄ . 

Section (3.3): Gabor Systems Associated with Periodic Subsets of the Real Line 

The theory of frames was first introduced in 1952 by Duffin and Schaeffer ([167]; 

see also [179]) dealing with nonharmonic Fourier series. It came back into the limelight 

in recent years with the apparition of a large number of dealing with specific 

applications of frames, mostly to wavelets and Gabor systems. Let us briefly recall 

some important definitions and results of the theory of frames. If ℋ is an infinite-

dimensional separable Hilbert space, with inner product 〈 . , . 〉, and 𝒩 is a countable 

index set, we say that a collection 𝑋 = {𝑥𝑛}𝑛∈𝒩 in ℋ is a frame for its closed linear 

span ℳ if  there exist constants 𝐴, 𝐵 > 0, called the frame bounds , such that  

𝐴‖𝑥‖2 ≤ ∑|〈𝑥, 𝑥𝑛〉|
2 ≤ 𝐵‖𝑥‖2,

𝑛∈𝒩

     𝑥 ∈ ℳ.                             (29) 

A frame 𝑋 is said to be tight (resp. a Parseval tight frame) if  𝐴 = 𝐵 (resp. 𝐴 = 𝐵 = 1) 
in (29). We call the collection 𝑋 Bessel, with constant 𝐵, if the second inequality in (29) 

holds for all 𝑥 ∈ ℳ. the collection 𝑋 = {𝑥𝑛}𝑛∈𝒩 is called a Riesz family or Riesz 

sequence with constants 𝐶, 𝐷, if the inequalities 

𝐶 ∑|𝑎𝑛|
2

𝑛∈𝒩

≤ ‖∑ 𝑎𝑛𝑥𝑛
𝑛∈𝒩

‖

2

≤ 𝐷 ∑|𝑎𝑛|
2,

𝑛∈𝒩

 

Hold for all (finitely supported) sequences {𝑎𝑛} of complex numbers. If the linear span 

of a Riesz family 𝑋 is dense in ℋ, we say that 𝑋 forms a Riesz basis. If we can choose 

𝐶 = 𝐷 = 1, then 𝑋 is an orthonormal family and an orthonormal basis if its closed 

linear span is ℋ. Let ℓ2(𝒩) denote the space of complex-valued square-summable 

sequences indexed by 𝒩. If 𝑋 is a Bessel collection, the analysis operator or frame 

transform associated with 𝑋, 𝑇𝑋:ℳ → ℓ2(𝒩), is defined by  

𝑇𝑋(𝑥) = {〈𝑥, 𝑥𝑛〉}𝑛∈𝒩 ,    𝑥 ∈ ℳ.                                           (30) 
while its adjoint, the synthesis operator, 𝑇𝑋

∗: ℓ2(𝒩) → ℳ, is given by 

𝑇𝑋
∗({𝑐𝑛}𝑛∈𝒩) = ∑ 𝑐𝑛𝑥𝑛

𝑛∈𝒩

, {𝑐𝑛}𝑛∈𝒩 ∈ ℓ
2(𝒩).                          (31) 
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The frame operator 𝑆 is defined by 𝑆 = 𝑇𝑋
∗𝑇𝑋:ℳ →ℳ. More explicitly  

𝑆𝑥 = ∑〈𝑥, 𝑥𝑛〉 𝑥𝑛
𝑛∈𝒩

,      𝑥 ∈ ℳ.                                              (32) 

If 𝑋 is a frame for ℳ, then 𝑆:ℳ →ℳ is a bounded, positive and invertible operator 

with a bounded inverse. The collection {𝑆−1𝑥𝑛}𝑛∈𝒩 is called the standard dual frame of 

the frame 𝑋 and we have the reconstruction formula   

𝑥 = ∑〈𝑥, 𝑥𝑛〉 𝑆
−1𝑥𝑛 =

𝑛∈𝒩

∑〈𝑥, 𝑆−1𝑥𝑛〉 𝑥𝑛
𝑛∈𝒩

,      𝑥 ∈ ℳ. 

We will let ℋ = 𝐿2(ℝ) and consider expansions in terms of one-dimensional Gabor 

(also called Weyl-Heisenberg) systems of the form 𝐺 = {𝑒2𝜋𝑖𝑚𝑏𝑥𝑔(𝑥 − 𝑛𝑎)}
𝑚,𝑛∈ℤ

, 

where 𝑎, 𝑏 > 0 two real parameters and 𝑔 are is a function in 𝐿2(ℝ) called the window 

function. Such systems have been studied quite extensively, mostly when the 

expansions are considered on the whole space 𝐿2(ℝ) (see [174,168,169,176,177]), but 

also (as in [163,171,172,173]). 

In the one-dimensional case, the well-known density Theorem for Gabor systems 

states that a necessary and sufficient condition for the existence of a Gabor system 𝑮 as 

above whose linear span is dense in ℋ = 𝐿2(ℝ) is that 𝑎𝑏 ≤ 1. If this last condition 

holds, there exists a function 𝑔 ∈ 𝐿2(ℝ) such that the associated system 𝑮 forms a tight 

frame for 𝐿2(ℝ). In fact, it is not difficult to show that 𝑔 = 𝜒[0,𝑎) will do the trick. The 

necessary (and harder) part of this result was first obtained by Daubechies [166] in the 

rational case (i. e. 𝑎𝑏 ∈ ℚ) and is generally attributed to Baggett [162] and Rieffel [178] 

in the irrational one. (See [177]) 

We study related problems for subspaces of  𝐿2(ℝ) of the form 𝐿2(𝑆) =
{𝑓 ∈ 𝐿2(ℝ), 𝑓 = 0 a. e . on ℝ\𝑆}, where 𝑆 is a measurable subset of ℝ which is 𝑎ℤ-shift 

invariant, i.e. 𝑆 has the property that it is invariant under the transformation 𝑥 ⟼ 𝑥 + 𝑎. 

If 𝑔 it is vanishes 𝑎. 𝑒. Outside of S, it is clear that the closed linear space generated by 

the corresponding system 𝑮 will be a subspace of 𝐿2(𝑆). One can then ask for 

conditions on 𝑆 depending on 𝑎, 𝑏 for the existence of a system 𝑮 whose linear span is 

dense in 𝐿2(𝑆). If this condition holds, one can then ask if there exist such collections 𝑮 

forming a (tight) frame, Riesz basis, etc. for 𝐿2(𝑆). This framework can model a 

situation where a signal is known to appear periodically but intermittently and one 

would try to perform a Gabor analysis of the signal in the most efficient way possible 

while still preserving all the features of the observed data. One could think of the signal 

as existing for all time t and do the analysis in the usual way but clearly, if the signal is 

only emitted for very short periods of time, this might not be the optimal way to 

proceed. Since the correct density condition is 𝑎𝑏 ≤ 1 in the case where 𝑆 = ℝ, one 

would assume that if 𝑆 is “smaller” than ℝ, a corresponding smaller density condition 

might result. One might guess that the correct density condition should be that 𝑏|𝑆 ∩
[0,1)| ≤ 1, where | . | denotes the Lebesgue measure. In fact, that condition was proved 

to be necessary in [172]. As we will show, it turns out to be the right density condition 

in the irrational case, but not in the rational one. We will show that, if 𝑎𝑏 =
𝑃

𝑞
, where 𝑝 

and 𝑞 are two positive integers with gcd(𝑝, 𝑞) = 1, the correct density condition is that 

∑ χ𝑆 (. +
𝑘

𝑏
) ≤ 𝑞

𝑝−1
𝑘=0  a.e on ℝ. One of the main results, is that, in both cases, if the 
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appropriate density condition is satisfied, we can construct a window 𝑔 of the form 𝑔 =
𝑋𝐸, where 𝐸 is a measurable subset of ℝ with finite measure, such that the 

corresponding system 𝑮 actually forms a tight frame for 𝐿2(𝑆). In fact, we will show 

that the possibility of  constructing a Gabor subspace frame of this form for 𝐿2(𝑆) is 

equivalent to being able  to solve a certain tiling problem related to the set 𝑆 and the 

density condition is exactly what is needed for the tiling problem to have a solution. We 

note  that the idea of using a window which is the characteristic function of  a 

measurable set was also used by Han and Wang [175] to show the existence of Gabor  

frames (where the parameters 𝑎, 𝑏 are replaced by invertible matrices) in higher 

dimensions  for the space 𝐿2(ℝ𝑛). 
We consider the rational case, Given a measurable subset 𝑆 of the real line, 

invariant by a ℤ-translations, and a window 𝑔 ∈ 𝐿2(𝑆), we provide a necessary and 

sufficient condition for the linear span of the linear span of the system {𝑒2𝜋𝑖𝑚𝑏𝑥𝑔(𝑥 −

𝑛𝑎)}
𝑚,𝑛∈ℤ

 to be dense in 𝐿2(𝑆) under the assumption that the product 𝑎𝑏 is a rational 

number 𝑝 𝑞⁄  where gcd(𝑝, 𝑞) = 1 (Theorem (3.3.7)) this condition involves the rank of 

𝑎𝑞 × 𝑝 matrix-valued function 𝒢 built using the Zak transform of 𝑔 and implies the 

density condition for the rational case mentioned earlier. Using an iterative construction 

is using finitely many steps (in fact, 𝑞 steps), we show that if this density condition is 

satisfied, then there exists a measurable set 𝐸 ⊂ ℝ with |𝐸| < ∞, such that the Gabor 

system associated with the  window 𝑔 = 𝜒𝐸 actually forms a tight frame for 𝐿2(𝑆) 
(Theorem (3.3.12)), we give a proof of the fact that the condition 𝑏|𝑆⋂[0, 𝑎)| ≤ 1 is 

necessary in order for Gabor system as above to form a frame for 𝐿2(𝑆), whether 𝑎 𝑏 is 

rational or not, and that, if such a frame exists, it will form a Riesz basis if and only if 

𝑏|𝑆⋂[0, 𝑎)| = 1 (Theorem (3.3.17)). Finally, we show, for the irrational case. That if 

the density condition 𝑏|𝑆⋂[0, 𝑎)| ≤ 1  hols, one can again construct a window function 

of the form 𝑔 = 𝜒𝐸 such that the associated system forms a tight frame for 𝐿2(𝑆) 
(Theorem (3.3.19)). The construction of 𝐸 is done using a similar iterative procedure as 

for the rational case, but requiring now an infinite number of steps. 

We will consider Gabor systems of the form   

𝑮 = {𝑒2𝜋𝑖𝑚𝑏𝑥𝑔(𝑥 − 𝑛𝑎)}
𝑚,𝑛∈ℤ

,  

where 𝑎, 𝑏 ∈ ℚ and 𝑔 is a window vanishing a.e outside of a set 𝑆 which is a ℤ-shift 

invariant. The Zak transform will be one of the main tools used, which is not unusual 

when dealing with Gabor systems in the rational case (see [166,174]). 

For 𝐸 be a measurable set in ℝ with nonzero Lebesgue measure (which will be 

denoted by |𝐸|). We identify 𝐿2(𝐸) with { 𝑓 ∈ 𝐿2(ℝ): 𝑓 = 0 a. e on ℝ\𝐸 }. For 𝑥, 𝜔 ∈
ℝ and 𝑔 ∈ 𝐿2(ℝ), we denote by 𝑇𝑥 and 𝐸𝜔, the translation and modulation operators 

defined respectively by  

(𝑇𝑥𝑔)(𝑡) = 𝑔(𝑡 − 𝑥)   and  (𝐸𝜔𝑔)(𝑡) = 𝑒
2𝜋𝑖𝜔𝑡𝑔(𝑡),      𝑡 ∈ ℝ 

For a fixed 𝛼 > 0, we define the Zak transform 𝒵𝛼: 𝐿
2(ℝ) → 𝐿loc

2 (ℝ2) to be the 

mapping  

(𝒵𝛼𝑓)(𝑡, 𝑣) =∑𝑓(𝑡 + 𝑘𝛼)𝑒2𝜋𝑖𝑘𝑣

𝑘∈ℤ

,      𝑓 ∈ 𝐿2(ℝ), 

defined for a.e (𝑡, 𝑣) ∈ ℝ2. It is easy to check that  

(𝒵𝛼𝑓)(𝑡 + 𝑘𝛼, 𝑣 + 𝑙) = 𝑒
−2𝜋𝑖𝑘𝑣(𝒵𝛼𝑓)(𝑡, 𝑣)                                     (33) 
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for 𝑘, 𝑙 ∈ ℤ and a. e. (𝑡, 𝑣) ∈ ℝ2. See [174, Chapter 8], for further information on the 

Zak transform. The following lemma, although quite elementary, will play an important 

role in our analysis of the rational case. With a slight abuse of language, we will call the 

operator that maps a function 𝑓 ∈ 𝐿2(ℝ) to the restriction of its Zak transform 𝒵𝛼𝑓 to a 

subset of ℝ2, the restriction of the Zak transform 𝒵𝛼 to that subset. 

Lemma (3.3.1)[161]: let 𝑆 be a measurable subset of ℝ which is a ℤ-shift invariant and 

define 𝑆0 = 𝑆⋂[0, 𝛼) then, 

(i) The restriction of  𝒵𝛼 to the set [0, 𝛼) × [0,1) is a unitary operator from 𝐿2(ℝ) 
onto 𝐿2([0, 𝛼) × [0,1)).  

(ii) The image of 𝐿2(𝑆) under the restriction of  𝒵𝛼 to the set [0, 𝛼) × [0,1) is the 

subspace 𝐿2(𝑆0 × [0,1)). 
Proof. The first statement is a well-known property of the Zak transform. To show the 

second one, note first that, from the definition of 𝒵𝛼, if 𝑓 ∈ 𝐿2(𝑆), then 𝒵𝛼𝑓 = 0 a.e on 
(ℝ\𝑆) × ℝ. Hence, when we restrict the Zak transform to [0, 𝛼) × [0,1), we deduce that 

𝒵𝛼𝑓 ∈ 𝐿
2(𝑆0 × [0,1)).Conversely, given an arbitrary function 𝐹(𝑡, 𝑣) ∈ 𝐿2(𝑆0 ×

[0,1)), we have, for any 𝑘 ∈ ℤ, 

(𝒵𝛼
−1𝐹)(𝑡 + 𝑘𝛼) = ∫ 𝐹(𝑡, 𝑣)𝑒−2𝜋𝑖𝑘𝑣𝑑𝑣 = 0,

1

0
    for a.e 𝑡 ∈ [0,1)\𝑆0,  

which shows that 𝒵𝛼
−1𝐹 ∈ 𝐿2(𝑆). The mapping 𝒵𝛼: 𝐿

2(𝑆) → 𝐿2(𝑆0 × [0,1)) is thus 

subjective which shows our claim. 

Definition (3.3.2)[161]: If 𝑗 ∈ ℤ, we denote by 𝜏𝑗 the translation operator acting on the 

finite group ℤ𝑝 identified with the set {0,1,… , 𝑝 − 1} and defined by  

𝜏𝑗(𝑘) = 𝑘 − 𝑗 mod(𝑝),     𝑘 = 0,… , 𝑝 − 1. 

If 𝐴 ⊂ {0,1,… , 𝑝 − 1}, we let 𝜏𝑗(𝐴) = {𝜏𝑗(𝑘), 𝑘 ∈ 𝐴}. 

The following lemma is well-known. 

Lemma (3.3.3)[161]: Let 𝑝1, 𝑝2 ∈ ℕ satisfy gcd(𝑝1, 𝑝2) = 1. Then, to every 𝑗 ∈ ℤ, 

there correspond a unique 𝑘 ∈ ℤ and a unique 𝑟 ∈ {0,1, … , 𝑝1 − 1} such that  

                                𝑗 = 𝑘𝑝1 + 𝑟𝑝2.                                                         (34) 

Lemma (3.3.4)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1 and 

let 𝑆 be a measurable subset of ℝ with nonzero measure, and with 𝑆 being a ℤ-shift 

invariant. Define the function  

ℎ(𝑡) ≔∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

, 𝑡 ∈ ℝ 

and, given 𝑡 ∈ ℝ, define the set  

𝐾𝑠(𝑡) = {𝑘 ∈ {0,1,… , 𝑝 − 1}, 𝜒𝑆 (𝑡 +
𝑘

𝑏
) = 1} 

Then, the function ℎ is 
1

𝑏𝑞
-periodic and, furthermore, if 𝑗 ∈ ℤ, we have the identity  

𝐾𝑆 (𝑡 +
𝑗

𝑏𝑞
) = 𝜏𝑘0(𝐾𝑆(𝑡)), 

where 𝑘0 is the unique integer satisfying  
𝑗

𝑞
= 𝑘0 +

𝑟𝑝

𝑞
 with 𝑟 ∈ {0,1, … , 𝑞 − 1}. 

Proof. Letting 𝑆0 = 𝑆 ∩ [0, 𝑎), we have 𝜒𝑆 = ∑ 𝜒𝑆0(∙ +𝑛𝑎)𝑛∈ℕ . Thus, using Lemma 

(3.3.3) with 𝑝1 = 𝑝 and 𝑝2 = 𝑞, we have  
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ℎ = ∑∑𝜒𝑆0 (∙ +
𝑘

𝑏
+
𝑛𝑝

𝑏𝑞
)

𝑛∈ℤ

𝑝−1

𝑘=0

=∑∑𝜒𝑆0 (∙ +
1

𝑏𝑞
(𝑘𝑞 + 𝑛𝑝))

𝑛∈ℤ

𝑝−1

𝑘=0

 

=∑𝜒𝑆0 (∙ +
𝑙

𝑏𝑞
)

𝑙∈ℤ

                                                                                            (35) 

and this last expression is clearly 
1

𝑏𝑞
-periodic, which shows the first part of the claim. 

Next, note that, for a.e 𝑡 ∈ ℝ, the mapping 𝐾 ↦ 𝜒𝑆 (𝑡 +
𝑘

𝑏
) is 𝑝-periodic, since 

𝜒𝑆 (𝑡 +
𝐾 + 𝑃

𝐵
) = 𝜒𝑆 (𝑡 +

𝑘

𝑏
+
𝑝

𝑏𝑞
𝑞) = 𝜒𝑆 (𝑡 +

𝑘

𝑏
+ 𝑎𝑞) = 𝜒𝑆 (𝑡 +

𝑘

𝑏
). 

If 
𝑗

𝑞
= 𝑘0 +

𝑟𝑝

𝑞
 as above, we have  

𝜒𝑆 (𝑡 +
𝑗

𝑏𝑞
+
𝑘

𝑏
) = 𝜒𝑆 (𝑡 +

𝑘0
𝑏
+
𝑟𝑝

𝑏𝑞
+
𝑘

𝑏
) = 𝜒𝑆 (𝑡 +

𝑘 + 𝑘0
𝑏

). 

Thus, 𝑘 ∈ 𝐾𝑆 (𝑡 +
𝑗

𝑏𝑞
) if and only if 𝜒𝑆 (𝑡 +

𝑘+𝑘0

𝑏
) = 1, which, using the periodicity 

property just mentioned, is equivalent to the fact that 𝑘 ∈ 𝜏𝑘0(𝐾𝑆(𝑡)). 

The analysis in the case where the product 𝑎𝑏 is rational, will depend in an 

essential way on properties of a matrix-valued function associated with the window 

function 𝑔 and defined using the Zak transform. We denote by ℳ𝑞,𝑝 the space of 

matrices with complex entries of size 𝑞 × 𝑝. A function taking values in ℳ𝑞,𝑝 is said to 

be measurable if each of the corresponding entries is measurable. 

Definition (3.3.5)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. 

Given a function 𝑔 in 𝐿2(ℝ), we associate with the matrix-valued function 𝒢:ℝ2 →
ℳ𝑞,𝑝 defined by  

       𝒢(𝑡, 𝑣)𝑟,𝑘 = (𝒵𝑎𝑞𝑔)(𝑡 +
𝑘

𝑏
− 𝑟𝑎, 𝑣) ,    0 ≤ 𝑟 ≤ 𝑞 − 1,0 ≤ 𝑘 ≤ 𝑝 − 1,     (36)  

for a.e. (𝑡, 𝑣) ∈ ℝ2. 
The matrix-valued function 𝒢 is related to the so-called Zibulski-Zeevi matrix 

[180] and has similar properties, but the definition given here is more convenient for our 

purposes. We will need the following lemma. 

Lemma (3.3.6)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1 and 

let 𝑆 be a measurable subset of ℝ which is a ℤ-shift invariant. Given 𝑔 ∈ 𝐿2(𝑆), let, for 

a.e. (𝑡, 𝑣) ∈ ℝ2, 𝒢(𝑡, 𝑣) be the matrix-valued function defined in (36) and let the matrix 

𝑝(𝑡, 𝑣) ∈ ℳ𝑝,𝑝 denote the orthogonal projection onto the kernel of  𝒢(𝑡, 𝑣). Then, 𝑝(∙,∙) 

is measurable. Furthermore, the integer-valued function (𝑡, 𝑣) ↦ rank(𝒢(𝑡, 𝑣)) is 

measurable, 
1

𝑏𝑞
-periodic with respect to variable 𝑡 and satisfies the inequality  

rank(𝒢(𝑡, 𝑣)) ≤ ∑𝜒𝑆

𝑝−1

𝑘=0

(𝑡 +
𝑘

𝑏
).                                        (37) 

Proof. Note first that, for a.e (𝑣, 𝑡) ∈ ℝ2, 

𝑝(𝑡, 𝑣) = lim
𝑛→∞

exp(−𝑛(𝒢∗𝒢)(𝑡, 𝑣)), 
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by an easy application of the spectral theorem for self-adjoint matrices (see also [166, 

p.978]). Since 𝒢(∙,∙) is measurable, the measurability of 𝑝(∙,∙), follows immediately. 

Using the facts that the sum of the rank of 𝒢(𝑡, 𝑣) and the dimension of the kernel of 

𝒢(𝑡, 𝑣) is equal to 𝑝 and that the dimension of a subspace of ℂ𝑝 is the trace of the 

orthogonal projection onto that subspace, it follows that the rank of  𝒢(𝑡, 𝑣) is equal to 

𝑝 − trace (𝑝(𝑡, 𝑣)) and is thus also measurable. Given any  𝑗 ∈ ℤ, we can write, using 

Lemma (3.3.3), 
𝑗

𝑞
= 𝑘0 +𝑚𝑝 + 𝑟0

𝑝

𝑞
 uniquely with 𝑚 ∈ ℤ, 𝑘0 ∈ {0,1,… , 𝑝 − 1} and 

𝑟0 ∈ {0,1,… , 𝑞 − 1}. If 𝑘1, 𝑘2 ∈ {0,1,… , 𝑝 − 1}, we have  

(𝒢∗𝒢)(𝑡, 𝑣)𝑘1,𝑘2 =∑𝒢(𝑡, 𝑣)
𝑟,𝑘1
𝒢(𝑡, 𝑣)𝑟,𝑘2

𝑞−1

𝑟=0

=∑(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘1
𝑏
− 𝑟𝑎 , 𝑣)

𝑞−1

𝑟=0

(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘2
𝑏
− 𝑟𝑎, 𝑣). 

Hence,  

(𝒢∗𝒢) (𝑡 +
𝑗

𝑏𝑞
, 𝑣 )

𝑘1,𝑘2

=∑(𝒵𝑎𝑞𝑔) (𝑡 +
𝑗

𝑏𝑞
+
𝑘1
𝑏
− 𝑟𝑎, 𝑣 )

𝑞−1

𝑟=0

(𝒵𝑎𝑞𝑔) (𝑡 +
𝑗

𝑏𝑞
+
𝑘2
𝑏
− 𝑟𝑎, 𝑣)

= ∑{(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1
𝑏

+
𝑚𝑝

𝑏
− (𝑟 − 𝑟0)𝑎, 𝑣)

𝑞−1

𝑟=0

× (𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘2 

𝑏
+
𝑚𝑝

𝑏
− (𝑟 − 𝑟0)𝑎, 𝑣)}. 

Using Eq. (33) and the fact that 
𝑚𝑝

𝑏
= 𝑚𝑎𝑞, this expression simplifies to  

∑(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1
𝑏

− (𝑟 − 𝑟0)𝑎, 𝑣) (𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘2 

𝑏
− (𝑟 − 𝑟0)𝑎, 𝑣)

𝑞−1

𝑟=0

 

or  

∑ {(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1
𝑏

− (𝑟 − 𝑟0 + 𝑞)𝑎 + 𝑞𝑎, 𝑣)

𝑟0−1

𝑟=0

 

      × (𝒵𝑎𝑞𝑔)(𝑡 +
𝑘0+𝑘2 

𝑏
− (𝑟 − 𝑟0 + 𝑞)𝑎 + 𝑞𝑎, 𝑣)}  

+∑(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1
𝑏

− (𝑟 − 𝑟0)𝑎, 𝑣) (𝒵𝑎𝑞𝑔)(𝑡 +
𝑘0 + 𝑘2 

𝑏
− (𝑟 − 𝑟0)𝑎, 𝑣)

𝑞−1

𝑟=𝑟0

. 

Using the Eq. (33), we can rewrite this last expression as 

∑(𝒵𝑎𝑞𝑔)(𝑡 +
𝑘0 + 𝑘1
𝑏

− 𝑟𝑎, 𝑣) (𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘2 

𝑏
− 𝑟𝑎, 𝑣)

𝑞−1

𝑟=𝑟0

. 
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Using the fact that  

(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1
𝑏

− 𝑟𝑎, 𝑣) = 𝑒−2𝜋𝑖𝑣(𝒵𝑎𝑞𝑔) (𝑡 +
𝑘0 + 𝑘1 − 𝑝

𝑏
− 𝑟𝑎, 𝑣) 

it follows thus that, for 𝑘1, 𝑘2 ∈ {0,1,… . . , 𝑝 − 1}, the entry (𝒢∗𝒢) (𝑡 +
𝑗

𝑏𝑞
, 𝑣)

𝑘1,𝑘2

 must 

be equal to 

{
 
 

 
 
(𝒢∗𝒢)(𝑡, 𝑣)𝑘1+𝑘0, 𝑘2+𝑘0 ,                if 𝑘1 + 𝑘0 < 𝑝 and 𝑘2 + 𝑘0 < 𝑝,

𝑒−2𝜋𝑖𝑣(𝒢∗𝒢)(𝑡, 𝑣)𝑘1+𝑘0, 𝑘2+𝑘0−𝑝, if 𝑘1 + 𝑘0 < 𝑝 and 𝑘2 + 𝑘0 ≥ 𝑝,

𝑒−2𝜋𝑖𝑣(𝒢∗𝒢)(𝑡, 𝑣)𝑘1+𝑘0−𝑝, 𝑘2+𝑘0 , if 𝑘1 + 𝑘0 ≥ 𝑝 and 𝑘2 + 𝑘0 < 𝑝,

(𝒢∗𝒢)(𝑡, 𝑣)𝑘1+𝑘0−𝑝, 𝑘2+𝑘0−𝑝,       if 𝑘1 + 𝑘0 ≥ 𝑝 and 𝑘2 + 𝑘0 ≥ 𝑝.

 

If  𝜉 = (𝜉0, … , 𝜉𝑝−1)
𝑡 ∈ ℂ𝑝, define 𝑈𝜉 = 𝜂 = (𝜂0, … , 𝜂𝑃−1)

𝑡, where  

𝜂𝑖 = {
𝑒−2𝜋𝑖𝑣𝜉𝑖−𝑘0+𝑝, if 0 ≤ 𝑖 ≤ 𝑘0 − 1,

𝜉𝑖−𝑘0 ,                if 𝑘0 ≤ 𝑖 ≤ 𝑝 − 1.
 

Then, 𝑈 is a 𝑝 × 𝑝 unitary matrix and  

〈(𝒢∗𝒢) (𝑡 +
1

𝑏𝑞
, 𝑣) 𝜉, 𝜉〉 = 〈(𝒢∗𝒢)(𝑡, 𝑣)𝜂, 𝜂〉 = 〈(𝒢∗𝒢)(𝑡, 𝑣)𝑈𝜉, 𝑈𝜉〉

= 〈𝑈∗(𝒢∗𝒢)(𝑡, 𝑣)𝑈𝜉, 𝜉〉, 

which shows that (𝒢∗𝒢) (𝑡 +
𝑗

𝑏𝑞
, 𝑣) = 𝑈∗(𝒢∗𝒢)(𝑡, 𝑣)𝑈 and thus (𝒢∗𝒢) (𝑡 +

𝑗

𝑏𝑞
, 𝑣) and 

(𝒢∗𝒢)(𝑡, 𝑣) must have the same rank. Since the rank of the any matrix 𝐴 is the same as 

that of 𝐴∗𝐴, it follows that rank (𝒢(𝑡, 𝑣)) is 
1

𝑏𝑞
-periodic with respect to variable 𝑡. 

Finally, it follows from Lemma (3.3.1) that (𝒵𝑎𝑞𝑔) (𝑡 +
𝑘

𝑏
− 𝑟𝑎, 𝑣) = 0 if 𝜒𝑆 (𝑡 +

𝑘

𝑏
) =

0 so that a column of (𝒢)(𝑡, 𝑣) corresponding to an index 𝑘 such that  𝜒𝑆 (𝑡 +
𝑘

𝑏
) = 0 

must be identically zero. The rank of  (𝒢)(𝑡, 𝑣) is then at most equal to the numbers of 

the other columns which is ∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
) .

𝑝−1
𝑘=0 this shows the lemma. 

The following result provides a characterization for the completeness of the span 

of Gabor system in 𝐿2(𝑆) in terms of the matrix-valued function 𝒢 associated with the 

window. 

Theorem (3.3.7)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. 

Let 𝑆 be a measurable set in ℝ with nonzero measure and suppose that 𝑆 is a ℤ-shift 

invariant. Assume that 𝑔 ∈ 𝐿2(𝑆) and let 𝒢(𝑡, 𝑣) denote the 𝑞 × 𝑝 matrix-valued 

function defined by (36).then the following are equivalent: 

(a) The linear span of the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆). 

(b) Rank(𝒢(𝑡, 𝑣)) = ∑ 𝜒𝑠 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0  for a.e. (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × (0,1). 

(c) Rank (𝒢(𝑡, 𝑣)) = ∑ 𝜒𝑠 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0  for a.e. (𝑡, 𝑣) ∈ ℝ2. 

Proof. The equivalence of (b) and (c) follows from the fact that the functions on either 

side of the equality in (c) are 
1

𝑏𝑞
-periodic with respect to the first variable 𝑡, by Lemmas 

(3.3.4) and (3.3.6), and are also clearly 1-periodic with respect to the second variable 𝑣. 

Define 𝑔𝑟(∙) = 𝑔(∙ −𝑟𝑎) for 𝑟 = 0,1, … , 𝑞 − 1. Then, the linear span of the collection 
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{𝐸𝑚𝑏𝑇𝑛𝑎𝑞𝑔𝑟:𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆) if and only if the span of {𝐸𝑚𝑏𝑇𝑛𝑎𝑞𝑔𝑟: 0 ≤

𝑟 ≤ 𝑞 − 1,𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆). It is easy to check that  

(𝒵𝑎𝑞𝐸𝑚𝑏𝑇𝑛𝑎𝑞𝑔𝑟)(𝑡, 𝑣) = 𝑒
2𝜋𝑖𝑚𝑏𝑡𝑒2𝜋𝑖𝑛𝑣(𝒵𝑎𝑞𝑔)(𝑡 − 𝑟𝑎, 𝑣)  

for 𝑚,𝑛 ∈ ℤ and 0 ≤ 𝑟 ≤ 𝑞 − 1. Applying Lemma (3.3.1), we have, for 𝑓 ∈ 𝐿2(ℝ), 
𝑚,𝑛 ∈ ℤ and 0 ≤ 𝑟 ≤ 𝑞 − 1 

〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑞𝑔𝑟〉 = ∫ ∫(𝒵𝑎𝑞

1

0

𝑎𝑞

0

𝑓)(𝑡, 𝑣)(𝒵𝑎𝑞𝑔)(𝑡 − 𝑟𝑎, 𝑣)𝑒
−2𝜋𝑖𝑚𝑏𝑡𝑒−2𝜋𝑖𝑛𝑣𝑑𝑣𝑑𝑡 

= ∫∫∑(𝒵𝑎𝑞𝑓) (𝑡 +
𝑘

𝑏
, 𝑣) (𝒵𝑎𝑞𝑔)(𝑡 +

𝑘

𝑏
− 𝑟𝑎, 𝑣)

𝑝−1

𝑘=0

1

0

1
𝑏

0

 

× 𝑒−2𝜋𝑖𝑚𝑏𝑡𝑒−2𝜋𝑖𝑛𝑣𝑑𝑣𝑑𝑡.                                                             (38) 
If (c) holds, let 𝑓 ∈ 𝐿2(𝑆) satisfy that 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑞𝑔𝑟〉 = 0 for all 𝑚, 𝑛 ∈ ℤ and 0 ≤ 𝑟 ≤

𝑞 − 1. We need to show that 𝑓 = 0. for fixed (𝑡, 𝑣) ∈ ℝ2, let 𝐹(𝑡, 𝑣) =

(𝐹0(𝑡, 𝑣), … , 𝐹𝑝−1(𝑡, 𝑣))
𝑡
∈ ℂ𝑝 be defined by 𝐹𝑖(𝑡, 𝑣) = (𝒵𝑎𝑞𝑓) (𝑡 +

𝑖

𝑏
, 𝑣) for 𝑖 =

0,… , 𝑝 − 1. By (38), we have  

𝒢(𝑡, 𝑣)𝐹(𝑡, 𝑣) = 0,    for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1).                   (39) 

If  𝐵 is a subset of {0,1, … , 𝑝 − 1} , we define  

𝐼𝐵 = {𝑡 ∈ [0,
1

𝑏
) ,∑𝜒𝑆 (𝑡 +

𝑘

𝑏
) = ∑𝜒𝑆 (𝑡 +

𝑘

𝑏
) = card(𝐵)

𝑘∈𝐵

𝑝−1

𝑘=0

}. 

Then, each set 𝐼𝐵 is measurable and the collection {𝐼𝐵}, where 𝐵 runs over all subsets of 

{0,1, … , 𝑝 − 1}, forms a partition of the interval [0,
1

𝑏
). If 𝐵 = ∅ and 𝑡 ∈ 𝐼∅ , we have 

∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
) = 0

𝑝−1
𝑘=0  and thus 𝐹(𝑡, 𝑣) = 0 by Lemma (3.3.1), if 𝐵 ≠ 0 and 𝑡 ∈ 𝐼𝐵, we 

have 𝒢(𝑡, 𝑣)𝑟,𝑘 = 𝐹𝑘(𝑡, 𝑣) = 0 if 𝑘 ∉ 𝐵, by Lemma (3.3.1), since 𝑓 and 𝑔𝑟 ∈ 𝐿
2(𝑆), for 

each 𝑟 = 0,… , 𝑞 − 1. Using our assumption, the sub matrix of 𝒢(𝑡, 𝑣) of size 𝑞 ×
card(𝐵), obtained by removing from 𝒢(𝑡, 𝑣) all the columns with an index not in 𝐵 has 

thus a rank equal to card(𝐵), Since the entries corresponding to the removed columns 

are all zero, and Eq. (39) then implies that 𝐹𝑘(𝑡, 𝑣) = 0, for 𝑘 ∈ 𝐵. Hence, 𝐹(𝑡, 𝑣) = 0, 

for 𝑡 ∈ 𝐼𝐵 . Therefore, 𝐹(𝑡, 𝑣) = 0 for 𝑡 ∈ [0,
1

𝑏
), which shows that (𝒵𝑎𝑞𝑓)(𝑡, 𝑣) = 0 for 

𝑡 ∈ [0,
𝑝

𝑏
) = [0, 𝑎𝑞) and thus that 𝑓 = 0, using Lemma (3.3.1) again. 

Conversely, if (c), or equivalently, (b) fails, then, taking into account inequality 

(37), we deduce the existence of a subset 𝐵 of  {0,1,… . , 𝑝 − 1} such that 

Rank(𝒢(𝑡, 𝑣)) < ∑𝜒𝑆

𝑝−1

𝑘=0

(𝑡 +
𝑘

𝑏
) ,     for a. e. (𝑡, 𝑣) ∈ 𝐻,                      (40) 

where 𝐻 is a measurable subset of 𝐼𝐵 × [0,1) with nonzero measure. Let 𝑒0, 𝑒1, … , 𝑒𝑝−1 

denote the standard orthonormal basis of ℂ𝑝 and let 𝑝(𝑡, 𝑣): ℂ𝑝 → ℂ𝑝 denote the 

orthogonal projection onto the kernel of 𝒢(𝑡, 𝑣). Then, 𝒫(∙,∙) is measurable by Lemma 
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(3.3.6). We claim that there exists 𝑘0 ∈ 𝐵 such that the vector-valued function 

𝑝(𝑡, 𝑣)𝑒𝑘0 ≠ 0 on a subset of 𝐼𝐵 × [0,1) having positive measure. Indeed if this were 

not the case, letting 𝐸 = span {𝑒𝑘: 𝑘 ∈ 𝐵}, it would follow that for a.e. (𝑡, 𝑣) ∈ 𝐼𝐵 ×
[0,1), 𝑝(𝑡, 𝑣)𝑥 = 0, for all 𝑥 ∈ 𝐸 or equivalently, that 𝐸 ⨁ker (𝒢(𝑡, 𝑣))  is a direct sum. 

Since, in that case, 

𝑝 ≥ dim(𝐸⨁ker(𝒢(𝑡, 𝑣))) = card(𝐸) + (𝑝 − rank(𝒢(𝑡, 𝑣))), 

this would imply that rank(𝒢(𝑡, 𝑣)) ≥ card(𝐸) and thus, using the definition of 𝐼𝐵, that 

rank(𝒢(𝑡, 𝑣)) = ∑𝜒𝑆

𝑝−1

𝑘=0

(𝑡 +
𝑘

𝑏
)     for a. e. (𝑡, 𝑣) ∈ 𝐼𝐵 × [0,1). 

This would contradict (40). With 𝑘0 ∈ 𝐵 as a above, we define  

𝐹(𝑡, 𝑣) = {
𝑝(𝑡, 𝑣)𝑒𝑘0 , if (𝑡, 𝑣) ∈ 𝐼𝐵 × [0,1),                  

0,                if (𝑡, 𝑣) ∈ ([0,
1

𝑏
) \𝐼𝐵) × [0,1).

  

By construction, we have ‖𝐹(𝑡, 𝑣)‖ℂ𝑝 ≤ 1, so that each component of 𝐹 is square-

integrable on [0,
1

𝑏
) × [0,1) and 𝐹 = (𝐹0, … , 𝐹𝑝−1)

𝑡 satisfies Eq. (39). Furthermore, if  

𝑙 ∈ {0,1, … , 𝑝 − 1}\𝐵 and(𝑡, 𝑣) ∈ 𝐼𝐵 × [0,1), we have that 𝒢(𝑡, 𝑣)𝑒𝑙 = 0 and thus  

〈𝒫(𝑡, 𝑣)𝑒𝑘0 , 𝑒𝑙〉 = 〈𝑒𝑘0 , 𝒫(𝑡, 𝑣)𝑒𝑙〉 = 〈𝑒𝑘0 , 𝑒𝑙〉 = 0. 

This shows that, if (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1), we must have 𝐹𝑘(𝑡, 𝑣) = 0 whenever  

𝜒𝑆 (𝑡 +
𝑘

𝑏
) = 0. Defining 𝑓 ∈ 𝐿2(ℝ) by  

(𝒵𝑎𝑞𝑓) (𝑡 +
𝑘

𝑏
, 𝑣) = 𝐹𝑘(𝑡, 𝑣),   (𝑡, 𝑣) ∈ [0,

1

𝑏
) × [0,1), 𝑘 = 0,1,… . , 𝑝 − 1,  

we have 𝑓 ≠ 0 and {𝒵𝑎𝑞𝑓 ≠ 0} ⊂ 𝑆0 × [0,1). Hence, 𝑓 belong to 𝐿2(𝑆) by Lemma 

(3.3.1), and, furthermore, using (39), 𝑓 is orthogonal to the Collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈

ℤ}. Hence, (a) fails which completes the proof. 

In the case, 𝑆 = ℝ, the density condition in the theorem just proved reduces to 

rank(𝒢) = 𝑝 a.e, a condition which also must hold  for the Zibulski-Zeevi matrix 

([166,180]; see also [173]). As in the case 𝑆 = ℝ, this result has an important 

consequence. 

Corollary (3.3.8)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1 

and let 𝑆 be an a ℤ-shift invariant, measurable subset of ℝ. If there exists a function 

𝑔 ∈ 𝐿2(𝑆) such that the linear span of the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} is dense in 

𝐿2(𝑆), then, necessarily  

∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

≤ 𝑞    for a.e. 𝑡 ∈ ℝ.                                  (41) 

Proof.  By the previous theorem, we have, for a.e. 𝑡 ∈ ℝ, 

∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

= Rank(𝒢(𝑡, 𝑣)) ≤ 𝑞, 

Since 𝒢(𝑡, 𝑣) ∈ ℳ𝑞,𝑝. 



89 

We show that in the rational case (𝑎𝑏 ∈ 𝑄), condition (41) is sufficient to ensure 

the existence of function 𝑔 ∈ 𝐿2(𝑆) such that the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} not 

only has a dense linear span in 𝐿2(𝑆),but forms a tight frame for  𝐿2(𝑆).In fact, we will 

see that this can be done with 𝑔 of the form 𝑔 = 𝜒𝐸, where 𝐸 is a subset of 𝑆 such that 

𝜒𝑆 = ∑ 𝜒𝐸𝑛∈ℤ (∙ −𝑛𝑎). On the other hand, if 𝐸 is a set satisfying the previous identity 

and 𝑔 = 𝜒𝐸, it is clear that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} forms a tight frame for 𝐿2(𝑆) if and 

only if {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝐸). The next Lemma translates this 

last requirement into geometrical terms. We first need the following definition. 

Definition (3.3.9)[161]: Given 𝑎 > 0 , two measurable subsets of ℝ, 𝐸1 and 𝐸2, are said 

to be a ℤ-congruent if there exist measurable partitions {𝐸1,𝑘}𝑘∈ℤ of {𝐸2,𝑘}𝑘∈ℤ of 𝐸2 

such that 𝐸2,𝑘 = 𝐸1,𝑘 + 𝑘𝑎, modulo a set of zero measure, for all 𝑘 ∈ ℤ. It is easy to 

check that 𝐸1 and 𝐸2 are a ℤ-translation congruent if and only if the identity 

∑𝜒𝐸1(∙ −𝑎𝑘)

𝑘∈ℤ

=∑𝜒𝐸2(∙ −𝑎𝑘)

𝑘∈ℤ

 

Holds a.e. on ℝ. 

Lemma (3.3.10)[161]: Let 𝑏 > 0, and 𝐸 be a measurable subset of ℝ. Then, the 

following conditions are equivalent: 

(a) {𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is a frame for 𝐿2(𝐸). 
(b) The linear span of the collection {𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is dense in 𝐿2(𝐸).  

(c) 𝐸 is 
1

𝑏
ℤ-congruent to a subset of [0,

1

𝑏
). 

(d) ∑ 𝜒𝐸 (∙ +
𝑘

𝑏
)𝑘∈ℤ ≤ 1 a.e on ℝ. 

In addition, {𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is a tight frame in 𝐿2(𝐸) with frame bound 
1

𝑏
 if any 

of the above conditions holds. 

Proof. If is clear that (a) implies (b). To show that (b) implies (c), assume that (b) holds 

and define 𝐸1 = 𝐸⋂[𝑙 𝑏⁄ , (𝑙 + 𝐼 𝑏)⁄   for ∈ ℤ . then {𝐸1: 𝑙 ∈ ℤ} is  a partition of 𝐸 and  

⋃ (𝐸1 − 𝑙 𝑏⁄ ) ⊂ [0,
1

𝑏
) .𝑙∈ℤ  So it suffices to show that |(𝐸1 − 𝑙 𝑏⁄ ) ∩ (𝐸𝑘 − 𝑘 𝑏⁄ )| = 0 

for 𝑙 ≠ 𝑘, 𝑙, 𝑘 ∈ ℤ. If this were not the case, there would exist 𝑙0, 𝑘0 ∈ ℤ with 𝑙0 ≠ 𝑘0 
such that 𝐹 ≔ (𝐸𝑙0 − 𝑙0 𝑏⁄ )⋂(𝐸𝑘0 − 𝑘0 𝑏⁄ ) has positive measure. Define 𝑓 ∈ 𝐿2(𝐸) by  

𝑓 = {

1   on 𝐹 + 𝑙0 𝑏⁄ ;                                   
−1 on 𝐹 + 𝑘0/𝑏;                                   

0   on 𝐸 \[(𝐹 + 𝑙0 𝑏⁄ )⋃(𝐹 + 𝑘0 𝑏⁄ ].
 

Then, for 𝑚 ∈ ℤ,  

∫ 𝑓(𝑥)𝑒−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥 = ∫ [𝑓(𝑥) + 𝑓(𝑥 + (𝑘0 − 𝑙0) 𝑏⁄ ]𝑒
−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥

𝐹+𝑙0 𝑏⁄𝐸

= 0 

contradicting the fact that the linear span of the collection {𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is dense in 

𝐿2(𝐸).  
The equivalence of (c) and (d) is clear. To finish the proof, we show that (c) 

implies that {𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is a tight frame in 𝐿2(𝐸) with frame bound 
1

𝑏
 and thus also 
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statement (a). Suppose {𝐸𝑙: 𝑙 ∈ ℤ} is a partition of 𝐸 such that {𝐸𝑙 − 𝑙 𝑏⁄ : 𝑙 ∈ ℤ} is a 

partition of some subset of [0,
1

𝑏
). then for 𝑓 ∈ 𝐿2(𝐸), we have  

〈𝑓, 𝐸𝑚𝑏𝜒𝐸〉 =∑ ∫ 𝑓(𝑥 − 𝑙 𝑏⁄ )𝑒−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥

𝐸𝑙−𝑙 𝑏⁄𝑙∈ℤ

= ∫ ∑𝑓(𝑥 − 𝑙 𝑏⁄ )𝜒𝐸1−𝑙 𝑏⁄ (𝑥)𝑒
−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥

𝑙∈ℤ
[0,
1
𝑏
)

 

and, consequently, using Parsval’s formula, 

∑|〈𝑓, 𝐸𝑚𝑏𝜒𝐸〉|
2

𝑚∈ℤ

=
1

𝑏
∫ |∑𝑓(𝑥 − 𝑙 𝑏⁄ )𝜒𝐸1−𝑙 𝑏⁄ (𝑥)

𝑙∈ℤ

|

2

𝑑𝑥

[0,
1
𝑏
)

=
1

𝑏
∑ ∫ |𝑓(𝑥 − 𝑙 𝑏⁄ )|2 𝑑𝑥

𝐸𝑙−𝑙 𝑏⁄𝑙∈ℤ

=
1

𝑏
∫|𝑓(𝑥)|2𝑑𝑥

𝐸

, 

which completes the proof. 

In connection with the previous lemma, we mention the following particular case 

of a well-known result about spectral pairs due to Fuglede [170].  

Proposition (3.3.11)[161]: Let 𝑏 > 0, and 𝐸 be a measurable subset of ℝ. Then, the 

following conditions are equivalent: 

(a) {√𝑏𝐸𝑚𝑏𝜒𝐸:𝑚 ∈ ℤ} is an orthonormal basis for 𝐿2(𝐸). 

(b) ∑ 𝜒𝐸 (∙ +
𝑘

𝑏
) = 1, a. e on ℝ𝑘∈ℤ . 

Theorem (3.3.12)[161]: let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. 

Let 𝑆 be a measurable subset of ℝ which is a ℤ-shift invariant. Then, the following are 

equivalent. 

(i) There exists a measurable set 𝐸 in ℝ which is a ℤ-congruent to 𝑆⋂[0,1) such that 

{𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐸: 𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝑆). 
(ii) we have the inequality  

∑𝜒𝑆 (∙ +
𝑘

𝑏
)

𝑝−1

𝑘=0

≤ 𝑞   a. e on ℝ.                                       (42) 

Proof. The necessity of condition (42) is a direct consequence of Corollary (3.3.8) it can 

also be obtained by the following, more direct, observation. The facts that 𝐸 is a ℤ-

congruent to 𝑆 ∩ [0, 𝑎) and that {𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐸:𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝑆) are 

equivalent, by Lemma (3.3.10), to  

∑𝜒𝐸(∙ +𝑘𝑎)

𝑘=0

= 𝜒𝑆   and   ∑𝜒𝐸(∙ + 𝑘 𝑏⁄ )

𝑘∈ℤ

≤ 1      a.e on ℝ, 

respectively. Therefore, we have  
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∑𝜒𝑆 (∙ +
𝑘

𝑏
)

𝑝−1

𝑘=0

=∑∑𝜒𝐸 (∙ +
𝑙𝑝

𝑞𝑏
+
𝑘

𝑏
)

𝑙∈ℤ

𝑝−1

𝑘=0

=∑𝜒𝐸 (∙ +
𝑗

𝑞𝑏
)

𝑗∈ℤ

=∑∑𝜒𝐸 (∙ +
𝑟

𝑞𝑏
+
𝑘

𝑏
)

𝑘∈ℤ

𝑞−1

𝑟=0

≤ 𝑞. 
Let 𝑆0 = 𝑆⋂[0, 𝑎). Clearly, {𝑆0 + 𝑛𝑎 ∶ 𝑛 ∈ ℤ} is a partition of 𝑆. to show the 

sufficiency part of the statement, we need to show, according to Lemma (3.3.10), that 

there exists a measurable set 𝐸 in ℝ such that 𝐸 is a ℤ-congruent to 𝑆0 and at the same 

time is 
1

𝑏
ℤ-congruent to a subset of [0, 1 𝑏⁄ ). If 𝑎𝑏 ≤ 1, we can take 𝐸 = 𝑆0 Since 𝑆0 ⊂

[𝑎, 0) ⊂ [0, 1 𝑏⁄ ) .We can also reduce the proof of the construction of 𝐸 to the case 𝑏 =

1. Indeed, if 𝑏 is arbitrary, we can define �̌� = 𝑏𝑆. then �̌� is 𝑎𝑏ℤ-shift invariant, and 

{�̌�0 + 𝑛𝑎𝑏: 𝑛 ∈ ℤ} is a partition of �̌�, where �̌�0 = �̌�⋂[0, 𝑎𝑏). Furthermore, �̌� satisfies 

(42) with 𝑏 replaced by 1. So, if we can construct a measurable set �̌� such that  �̌� is 

𝑎𝑏ℤ-congruent to �̌�0, and with �̌� being ℤ-congruent to a subset of [0,1), we can then 

define 𝐸 =
1

𝑏
 �̌�. We can easily check that 𝐸 satisfies all of our requirements. We may 

thus assume, without loss of generality, that 𝑏 = 1  and 𝑎 > 1. We have 𝑎 =
𝑝

𝑞
, and, 

using (35) with 𝑏 = 1 and (42), it follows that 

∑𝜒𝑆(∙ +𝑘)

𝑝−1

𝑘=0

=∑𝜒𝑆0 (∙ +
𝑘

𝑞
)

𝑘∈ℤ

≤ 𝑞.                                 (43) 

Note that, since  

|𝑆0| = ∫ ∑𝜒𝑆0(𝑥 + 𝑘 𝑞⁄ )𝑑𝑥

𝑘∈ℤ
[0,
1
𝑞
)

, 

inequality (43) implies that |𝑆0| ≤ 1 as well as the fact that |𝑆0| = 1 if and only if  

∑𝜒𝑆( ∙ +𝑘)

𝑝−1

𝑘=0

= 𝑞     a. e. on ℝ.                                     (44) 

We will divide the proof into two cases: |𝑆0| = 1 and |𝑆0| < 1.  

Case 1: |𝑆0| = 1. 

In this case, identity (44) holds. Let 𝑔0 = ∑ 𝜒𝑆0𝑘∈ℤ (∙ +𝑘). If  𝑔0 ≤ 1 a.e. on ℝ, 

then 𝐸 = 𝑆0 is as desired. Otherwise, we follow the following inductive procedure to 

construct 𝐸. Let 𝐻0 = {𝑔0 > 0}, where {𝑔0 > 0} denotes the set {𝑡 ∈ ℝ ∶ 𝑔0(𝑡) > 0}. 
(We will use similar notations for the sets 𝐻𝑘 defined below). Let 𝑇0 be a measurable 

subset of  𝑆0 such that  

∑𝜒𝑇0(∙ +𝑘) =

𝑘∈ℤ

𝜒𝐻0 . 

If the sets 𝑆𝑙 , 𝑇𝑙 , 𝐻𝑙  and the function 𝑔𝑙 have already been constructed for all indices 𝑙 
with 0 ≤ 𝑙 ≤ 𝑗 − 1 < 𝑞 − 1, we define  𝑆𝑗 = 𝑆𝑗−1\𝑇𝑗−1, 

𝑔𝑗 =∑𝜒𝑆𝑗(∙ +𝑎𝑗 + 𝑘)

𝑘∈ℤ

, 
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and 𝐻𝑗 = {𝑔𝑗 > 0, 𝑔0 = 𝑔1 = ⋯ = 𝑔𝑗−1 = 0}. We then choose a measurable set 𝑇𝑗 

contained in 𝑆𝑗 and such that 

∑𝜒𝑇𝑗(∙ +𝑎𝑗 + 𝑘)

𝑘∈ℤ

= 𝜒𝐻𝑗 . 

We follow this procedure until the index 𝑗 above reaches 𝑞 − 1 and then stop. We then 

define 𝐸 = ⋃ (𝑇𝑖 − 𝑖𝑎).
𝑞−1
𝑖=0  Note that the set 𝐻𝑖 , 𝑖 = 0,… , 𝑞 − 1 , are mutually disjoint. 

We have thus 

∑𝜒𝐸(∙ +𝑘) = ∑∑𝜒𝑇𝑖(∙ +𝑖𝑎 + 𝑘)

𝑘∈ℤ

𝑞−1

𝑖=0𝑘∈ℤ

=∑𝜒𝐻𝑖

𝑞−1

𝑖=0

≤ 1        a.e. on ℝ. 

So, by Lemma (3.3.10), the collection {𝑒2𝜋𝑖𝑚𝑡𝜒𝐸(𝑡):𝑚 ∈ ℤ} is a tight frame for 𝐿2(𝐸). 
Since the sets 𝑇𝑖 , 𝑖 = 0,… , 𝑞 − 1 are disjoint subsets of  𝑆0 ⊂ [0, 𝑎), in order to show 

that 𝐸 is a ℤ-congruent to 𝑆0, we only need to show that ∑ |𝑇𝑖| = |𝑆0| = 1
𝑞−1
𝑖=0 . We have 

∑|𝑇𝑖| = ∑ ∫ ∑𝜒𝑇𝑖(𝑡 + 𝑖𝑎 + 𝑘)𝑑𝑡

𝑘∈ℤ[0,1)

𝑞−1

𝑖=0

𝑞−1

𝑖=0

= ∫ ∑𝜒𝐻𝑖(𝑡)𝑑𝑡

𝑞−1

𝑖=0[0,1)

 

and since ∑ 𝜒𝐻𝑖(𝑡)
𝑞−1
𝑖=0 ≤ 1 a.e. on ℝ, it suffices to show that ∑ 𝜒𝐻𝑖

𝑞−1
𝑖=0 = 1 a.e. on [0,1). 

We will argue by contradiction. Suppose that there exists a measurable set 𝐹 ⊂ [0,1) 
with nonzero measure such that 𝑔𝑖 = 0 on 𝐹 for all indices 𝑖 with 0 ≤ 𝑖 ≤ 𝑞 − 1. If 𝑞 =
1, then ∑ 𝜒𝑆0(∙ +𝑘) = 𝑔0 = 0𝑘∈ℤ  on 𝐹, contradicting the fact that ∑ 𝜒𝑆0(∙ +𝑘) =𝑘∈ℤ

1 a.e. on ℝ (which follows from (43) and (44)). If 𝑞 > 1, we have 

𝑔0 =∑𝜒𝑆0(∙ +𝑘)

𝑘∈ℤ

= 0    on 𝐹 

and, since 𝜒𝑆𝑙 = 𝜒𝑆0 − ∑ 𝜒𝑇𝑖
𝑙−1
𝑖=𝑜 , the fact that 𝑔𝑙 = 0 on 𝐹 for 1 ≤ 𝑙 ≤ 𝑞 − 1 is 

equivalent to  

∑𝜒𝑆0(∙ +𝑙𝑎 + 𝑘)

𝑘∈ℤ

=∑∑𝜒𝑇𝑖(⋅ +𝑙𝑎 + 𝑘)

𝑘∈ℤ

𝑙−1

𝑖=0

=∑𝜒𝐻𝑖

𝑙−1

𝑖=0

(⋅ +(𝑙 − 𝑖)𝑎) 

on 𝐹 for 𝑙 = 1,2,… , 𝑞 − 1. Also observing that  

∑𝜒𝑆(∙ +𝑘) = ∑∑∑𝜒𝑆0 (⋅ +
(𝑙𝑞 + 𝑟)𝑝

𝑞
+ 𝑘)

𝑙∈ℤ

𝑝−1

𝑘=0

𝑞−1

𝑟=0

𝑝−1

𝑘=0

=∑∑𝜒𝑆0(⋅ +𝑟𝑎 + 𝑘)

𝑘∈ℤ

𝑞−1

𝑟=0

, 

We have 

∑𝜒𝑆(⋅ +𝑘)

𝑝−1

𝑘=0

=∑∑𝜒𝐻𝑖(⋅ +(𝑟 − 𝑖)𝑎)

𝑟−1

𝑖=0

𝑞−1

𝑟=1

=∑ ∑ 𝜒𝐻𝑖(⋅ +𝑙𝑎)

𝑞−𝑙−1

𝑖=0

𝑞−1

𝑙=1

≤ 𝑞 − 1 < 𝑞 

on 𝐹, which contradicts (44) . 

Case 2:  |𝑆0| < 1. 

For  𝝐 = (𝜖0, 𝜖1, … , 𝜖𝑝−1) ∈ {0,1}
𝑝 , define  

𝐴(𝝐) = {𝑡 ∈ [0, 1 𝑞⁄ ): 𝜒𝑆0 (𝑡 +
𝑘

𝑞
) = 𝜖𝑘  for 0 ≤ 𝑘 ≤ 𝑝 − 1} . 

If ∑ 𝜖𝑘 = 𝑚 < 𝑞
𝑝−1
𝑘=0 , we choose 𝑚 − 𝑞 indices 𝑘𝑖 , 𝑖 = 1,… , 𝑞 − 𝑚, such that 𝜖𝑘1 =

𝜖𝑘2 = ⋯ = 𝜖𝑘𝑞−𝑚 = 0, which can be done since 𝑝 > 𝑞, and we define  
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𝐵(𝜖) = (⋃ (𝐴(𝜖) +
𝑘𝑙
𝑞
)

𝑞−𝑚

𝑙=1

)⋃(⋃ (𝐴(𝜖) +
𝑘

𝑞
)

𝜖𝑘≠0

). 

If ∑ 𝜖𝑘
𝑝−1
𝑘=0 = 𝑞, define 

𝐵(𝜖) = ⋃ (𝐴(𝜖) +
𝑘

𝑞
)

𝜖𝑘≠0

. 

We then let  

�̌�0 = ⋃ 𝐵(𝜖)

𝜖∈{0,1}𝑃

,    and     �̌� =⋃(

𝑛∈ℤ

�̌�0 + 𝑛𝑎). 

Note that, by construction, 𝑆0 ⊂ �̌�0 ⊂ [0, 𝑎). Furthermore, we have  

∑𝜒�̌�0 (⋅ +
𝑘

𝑞
)

𝑘∈ℤ

=∑𝜒�̌�(⋅ +𝑘) = 𝑞

𝑝−1

𝑘=0

    a.e. on ℝ, 

Which implies, as before that |�̌�0| = 1. Using Case 1, with S and 𝑆0 replaced with  �̌�  

and  �̌�0, respectively, we can construct a measurable set �̃� which is a ℤ-congruent to 

�̌�⋂[0, 𝑎) and such that {𝑒2𝜋𝑖𝑚𝑡𝜒�̃�(𝑡):𝑚 ∈ ℤ} is a tight frame for 𝐿2(�̃�). The collection 

{𝑒2𝜋𝑖𝑚𝑡𝜒�̃�(𝑡 − 𝑛𝑎):𝑚, 𝑛 ∈ ℤ} is thus a tight frame for 𝐿2(�̃�) and the set 𝐸 ≔ �̃� ∩ 𝑆 

satisfies all of our requirements. 

Corollary (3.3.13)[161]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑃

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1 

and let 𝑆 be an a ℤ-shift invariant, measurable subset of ℝ and define the set 𝑆0 = 𝑆 ∩
[0, 𝑎) then, the following are equivalent: 

(a) There exists a function 𝑔 ∈ 𝐿2(𝑆) such that the linear span of the collection 

{𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐸:𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆). 
(b) There exists a measurable set 𝐸 in ℝ which is a ℤ-congruent to 𝑆 ∩ [0, 𝑎) such 

that {𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐸:𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝑆).  

(c) ∑ 𝜒𝑆
𝑝−1
𝑘=0 (⋅ +

𝑘

𝑏
) ≤ 𝑞 a.e on ℝ. 

In particular, if any of the conditions above holds, then we must have the inequality 

𝑏|𝑆0| ≤ 1.                                                            (45) 
Proof. The equivalence between statements (a), (b), and (c) follows immediately from 

Corollary (3.3.8), and Theorem (3.3.12). If (c) holds, then we must have  

∫ ∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0 𝑑𝑡

1 𝑏⁄

0
= ∫ 𝜒𝑆(𝑡)𝑑𝑡

𝑝 𝑏⁄

0
= ∫ 𝜒𝑆(𝑡)𝑑𝑡 =

𝑎 𝑞

0
𝑞|𝑆0|  ≤

𝑞

𝑏
 ,  

which yields inequality (45). 

It was showed in [172] that the existence of a function 𝑔 ∈ 𝐿2(𝑆) such that the 

linear span of {𝐸𝑚𝑏𝑇𝑛𝑎g:𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆) implies inequality (45), even 

without the restriction that 𝑎𝑏 ∈ 𝑄.in the rational case, it is clear that condition (42)  is 

always stronger than condition (45) when 𝑎𝑏 = 𝑝 𝑞⁄ > 1. (Note that both conditions are 

always clearly satisfied when 𝑎𝑏 = 𝑝 𝑞⁄ ≤ 1). For example, if we define, for 0 < 𝜖 <

min (
1

𝑏𝑞
,
1

𝑝
), the set  

𝑆 =⋃{⋃[
𝑘

𝑏
,
𝑘

𝑏
+ 𝜖) + 𝑙𝑎

𝑝−1

𝑘=0

}

𝑙∈ℤ

, 
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we have 𝑏|𝑆0| = 𝜖 𝑝 ≤ 1, but condition (42) clearly fails when 𝑝 > 𝑞. However, in the 

irrational case, condition (45) turns out to be necessary and sufficient for the existence 

of a function 𝑔 ∈ 𝐿2(𝑆) such that the linear span of the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} 
is dense (or, forms a tight frame ) in 𝐿2(𝑆). 
Remark (3.3.14)[161]: In the rational case, if we consider two Gabor systems 

associated with a fixed set 𝑆 and with the same parameter 𝑎 but with a different 

parameter 𝑏, say 𝑏1, and 𝑏2, the fact that density condition (42) holds for the pair (𝑎, 𝑏1) 
does not imply that it also holds for the pair (𝑎, 𝑏2) when 𝑏2 < 𝑏1. For example, if we 

choose 𝑎 = 1 , 𝑏1 = 5 2⁄  , 𝑏2 = 2 and 

𝑆 =⋃([𝑛, 1 10⁄ + 𝑛) ∪ [5 10 + 𝑛, 6 10⁄ + 𝑛))⁄

𝑛∈ℤ

, 

condition (42) holds for the pair (𝑎, 𝑏1) = (1, 5 2⁄ ) since  

∑𝜒𝑆

4

𝑘=0

(⋅ +
2𝑘

5
) = 1 ≤ 2, 

While it does not for the pair (𝑎, 𝑏2) = (1,2) in view of the fact that  

∑𝜒𝑆 (⋅ +
𝑘

2
)

1

𝑘=0

= 2 > 1 

on the interval (0,
1

10
). 

We provide a simple proof that the condition 𝑏|𝑆 ∩ [𝑎, 0)| ≤ 1 is necessary, in 

both the rational and irrational cases, for the existence of a window such that the 

associated Gabor system with parameters 𝑎, 𝑏 forms a frame for 𝐿2(𝑆). a although the 

necessity of this condition was obtained earlier in [172, Corollary 2.4] ,the proof given 

there, based on methods of operator algebras, is less transparent. Furthermore, we show 

that, if such a system exists, it will be a Riesz basis for 𝐿2(𝑆) if and only if equality 

occurs in the condition above. We first need the following lemmas. The first one of 

these is well-known [165, Proposition 2.1]. 

Lemma (3.3.15)[161]: If 𝑔 ∈ 𝐿∞(ℝ) is compactly supported, there is a constant 𝐶 such 

that 

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎〉|
2 ≤ 𝐶‖𝑓‖2

2,      𝑓 ∈ 𝐿2(ℝ)

𝑚,𝑛∈ℤ

. 

The second lemma deals with a version of the Walnut representation which was 

showed in [174, Proposition 7.1.1] under the assumption that the collections 

{𝐸𝑚𝑏𝑇𝑛𝑎 g }𝑚,𝑛∈ℤ and {𝐸𝑚𝑏𝑇𝑛𝑎 γ }𝑚,𝑛∈ℤ are both Bessel sequences. As we will show 

here, these conditions on 𝑔 and 𝛾 are not necessary. 

Lemma (3.3.16)[161]: Let 𝑎, 𝑏 > 0, and 𝑔, 𝛾 ∈ 𝐿2(ℝ). Then, for 𝑓, ℎ ∈ 𝐿∞(ℝ) with 

bounded support,  

∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎 𝑔〉〈𝐸𝑚𝑏𝑇𝑛𝑎 𝛾, ℎ〉

𝑚,𝑛∈ℤ

=
1

𝑏
 ∑∫ 𝐺𝑛(𝑥)𝑓(𝑥 − 𝑛 𝑏⁄ )

ℝ𝑛∈ℤ

ℎ(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥,       (46) 

Where 𝐺𝑛 = ∑ 𝑔 (⋅ −
𝑛

𝑏
− 𝑘𝑎)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝛾(⋅ −𝑘𝑎)𝑘∈ℤ  and both series in (46) converge absolutely. 

Proof. By a simple computation, we have  
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〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉 = ∫ ∑(𝑇𝑛𝑎𝑔𝑓)(𝑥 − 𝑙 𝑏⁄ )𝑒
−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥

𝑙∈ℤ
[0,
1
𝑏
)

, 

〈ℎ, 𝐸𝑚𝑏𝑇𝑛𝑎𝛾〉 = ∫ ∑(𝑇𝑛𝑎�̅�ℎ)(𝑥 − 𝑙 𝑏⁄ )𝑒
−2𝜋𝑖𝑚𝑏𝑥𝑑𝑥

𝑙∈ℤ
[0,
1
𝑏
)

. 

Also, observing that the sum of the series in both integrals above define functions in 

𝐿2 ([0,
1

𝑏
)) since both 𝑓 and ℎ have bounded support, we have, by Parseval’s formula 

and the fact that both 𝑓and ℎ are bounded support, 

∑〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉〈𝐸𝑚𝑏𝑇𝑛𝑎𝛾, ℎ〉 

𝑚∈ℤ

=
1

𝑏
∫ [∑(

𝑙1∈ℤ

𝑇𝑛𝑎𝑔𝑓)(𝑥 − 𝑙1 𝑏⁄ )]

[0,
1
𝑏
)

[∑(𝑇𝑛𝑎𝛾ℎ̅)(𝑥 − 𝑙2 𝑏⁄ )

𝑙2∈ℤ

] 𝑑𝑥

=
1

𝑏
∫ (∑(𝑇𝑛𝑎𝑔𝑓)(𝑥 − 𝑙 𝑏⁄ )

𝑙∈ℤ

)

ℝ

𝑇𝑛𝑎𝛾(𝑥)ℎ(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥 

              =
1

𝑏
∫∑𝑔(𝑥 − 𝑛𝑎 − 𝑙 𝑏⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝛾(𝑥 − 𝑛𝑎)𝑓(𝑥 − 𝑙 𝑏⁄ )ℎ(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑙∈ℤℝ

. 

Identity (46) follows immediately. The boundedness of the support of both 𝑓 and ℎ 

shows that The series on the right-hand side of (46) converges absolutely since it is 

actually a finite sum. The absolute convergence of the series on the left-hand side of 

(46) is obtained by the following argument. By Lemma (3.3.15), both {𝐸𝑚𝑏𝑇𝑛𝑎𝑓:𝑚, 𝑛 ∈
ℤ } and {𝐸𝑚𝑏𝑇𝑛𝑎ℎ ∶ 𝑚, 𝑛 ∈ ℤ} are Bessel sequences in 𝐿2(ℝ). Noting that  

〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉 = 𝑒
−2𝜋𝑖𝑚𝑛𝑎𝑏〈𝐸−𝑚𝑏𝑇−𝑛𝑎𝑓, 𝑔〉,      𝑚, 𝑛 ∈ ℤ, 

and 

〈ℎ, 𝐸𝑚𝑏𝑇𝑛𝑎𝛾〉 = 𝑒
−2𝜋𝑖𝑚𝑛𝑎𝑏〈𝐸−𝑚𝑏𝑇−𝑛𝑎ℎ, 𝛾〉,      𝑚, 𝑛 ∈ ℤ, 

it follows that both {〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉}𝑚,𝑛∈ℤ and {〈ℎ, 𝐸𝑚𝑏𝑇𝑛𝑎𝛾〉 }𝑚,𝑛∈ℤ are in 𝑙2(ℤ2). The 

series on the left-hand side of (46) thus converges absolutely using the Cauchy-Schwarz 

inequality, showing our claim. 

Note that part (a) in the following theorem follows from [172, Corollary 3.3.6] 

under the weaker assumption that the corresponding system is complete in 𝐿2(𝑆). 
However, as mentioned earlier, that result was obtained by more abstract methods of 

operator algebras and we prefer to give here a more direct proof of this result (which is 

needed to show part (b) in any case) under the assumption that the system forms a 

frame. (See [164] for a similar proof in the case 𝑆 = ℝ). 
Theorem (3.3.17)[161]: Let 𝑎, 𝑏 > 0, let 𝑆 be an 𝑎ℤ-shift invariant measurable set in ℝ  

with nonzero measure, and suppose that {𝐸𝑚𝑏𝑇𝑛𝑎ℎ ∶ 𝑚, 𝑛 ∈ ℤ} is a frame for 𝐿2(𝑆). 
Then,  

(a) 𝑏|𝑆0| ≤ 1, 𝑤ℎ𝑒𝑟𝑒 𝑆0 = 𝑆 ∩ [0, 𝑎). 
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(b) {𝐸𝑚𝑏𝑇𝑛𝑎𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} is a Riesz basis for 𝐿2(𝑆) if and only if 𝑏|𝑆0| = 1. 

Proof.  We denote by 𝑆 the frame operator:  

𝑆𝑓 = ∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉

𝑚,𝑛∈ℤ

𝐸𝑚𝑏𝑇𝑛𝑎𝑔,     𝑓 ∈ 𝐿
2(𝑆) 

and  𝛾0 = 𝑆−1𝑔 . Then  

𝑓 = ∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉

𝑚,𝑛∈ℤ

𝐸𝑚𝑏𝑇𝑛𝑎𝛾
0,       𝑓 ∈ 𝐿2(𝑆).                                    (47) 

Define 𝐺𝑛 = ∑ 𝑔(⋅ −𝑛 𝑏 − 𝑘𝑎⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑘∈ℤ 𝛾0(⋅ −𝑘𝑎) for each 𝑛 ∈ ℤ. Suppose 𝑓, ℎ ∈ 𝐿∞(ℝ) 

both vanish outside the set 𝑆0 ∩ 𝐼, where 𝐼 is an interval of length 𝐼 𝑏⁄ . Note that 𝑇𝑙𝑎𝑓 

and 𝑇𝑙𝑎ℎ both belong to 𝐿2(𝑆) 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑙 ∈ ℤ. It follows from identity (47) and 

Lemma  (3.3.16) that  

〈𝑓, ℎ〉 = 〈𝑇𝑙𝑎𝑓, 𝑇𝑙𝑎ℎ〉 = ∑ 〈𝑇𝑙𝑎𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉〈𝐸𝑚𝑏𝑇𝑛𝑎𝛾
0, 𝑇𝑙𝑎ℎ〉

𝑚,𝑛∈ℤ

=
1

𝑏
∑∫ 𝐺𝑛(𝑥)𝑓(𝑥 − 𝑙𝑎 − 𝑛 𝑏⁄ )ℎ(𝑥 − 𝑙𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

ℝ𝑛∈ℤ

=
1

𝑏
∫ 𝐺0(𝑥)𝑓(𝑥 − 𝑙𝑎)ℎ(𝑥 − 𝑙𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝑥

ℝ

=
1

𝑏
∫ 𝐺0(𝑥 + 𝑙𝑎)𝑓(𝑥)ℎ(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥

𝑆0∩𝐼

. 

Since 𝑓 and 𝑔 are arbitrary functions in 𝐿∞(ℝ) vanishing outside the set 𝑆0 ∩ 𝐼, it 

follows that 𝐺0(∙ +𝑙𝑎) = 𝑏 a.e on 𝑆0 ∩ 𝐼 and thus also on 𝑆0, since 𝐼 is an arbitrary  

interval of length 𝐼 𝑏⁄ . Hence, 𝐺0 = 𝑏 a.e on 𝑆 and, since the functions  𝑇𝑛𝑎 𝛾
0, 𝑛 ∈ ℤ , 

all belong to 𝐿2(𝑆), 𝐺0 vanishes outside of 𝑆. Hence, we conclude that 𝐺0 = 𝑏𝜒𝑆 . This 

implies, in particular, that  

𝑏|𝑆0| = ∫ 𝑏𝜒𝑆(𝑥)𝑑𝑥

[0,𝑎)

= ∫ 𝐺0(𝑥) 𝑑𝑥

[0,𝑎)

= ∫ ∑𝑔(𝑥 − 𝑘𝑎)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝛾0(𝑥 − 𝑘𝑎)𝑑𝑥

𝑘∈ℤ[0,𝑎)

 

= ∫ 𝑔(𝑥)̅̅ ̅̅ ̅̅

ℝ

𝛾0(𝑥)𝑑𝑥 = 〈𝑆−1𝑔, 𝑔〉 = 〈𝑆−1 2⁄ 𝑔, 𝑆−1 2⁄ 𝑔〉 = ‖𝑆−1 2⁄ 𝑔‖
2
. 

it follows that 

‖𝑆−1 2⁄ 𝑔‖
2
= 𝑏|𝑆0|.                                                (48) 

Since {𝐸𝑚𝑏𝑇𝑛𝑎𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} is a frame for 𝐿2(𝑆). It is well-known that the collection 

{𝑆−1𝐸𝑚𝑏𝑇𝑛𝑎𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} which can also be written as {𝐸𝑚𝑏𝑇𝑛𝑎𝑆
−1 2⁄ 𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} is a 

Parseval tight frame for 𝐿2(𝑆). This implies that ‖𝑆−1 2⁄ 𝑔‖
2
≤ 1, which together with 

(48) shows that 𝑏|𝑆0| ≤ 1, and shows (a). the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} forms a 

𝑅iesz basis for 𝐿2(𝑆), if and only if the parseval tight frame {𝐸𝑚𝑏𝑇𝑛𝑎𝑆
−1 2⁄ 𝑔 ∶ 𝑚, 𝑛 ∈

ℤ} is an orthonormal basis for 𝐿2(𝑆), which is equivalent to ‖𝑆−1 2⁄ 𝑔‖
2
= 1 or to 

𝑏|𝑆0| = 1, using (48). This shows (b) and completes the proof. 

We show that, in the irrational case, if the condition 𝑏|𝑆 ∩ [0, 𝑎)| ≤ 1 holds, we 

can construct a measurable set 𝐸 ⊂ 𝑆 whose a ℤ-translates tile 𝑆 and such that the 
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Gabor system with window 𝑔 = 𝜒𝐸 and parameters 𝑎, 𝑏 forms a tight frame for 𝐿2(𝑆). 
We will first need the following Lemma. 

Lemma (3.3.18)[161]: Let 𝑎 be an irrational number and suppose that 𝐸 is a 

measurable subset of  ℝ wich is both a ℤ and 𝑎 ℤ - shift invariant. Then  𝐸 = ℝ or ∅ up 

to a set of zero measure. 

Proof. Since 𝜒𝐸 is 1- periodic, we can express it as a Fourier series  

𝜒𝐸(𝑥) =∑𝑐𝑘𝑒
2𝜋𝑖𝑘𝑥,

𝑘∈ℤ

     𝑥 ∈ ℝ, 

for some sequence {𝑐𝑘} ∈ ℓ
2(ℤ) where the series converges locally in 𝐿2. Since 𝜒𝐸 is 

also 𝑎-periodic, we have  

𝜒𝐸(𝑥) = 𝜒𝐸(𝑥 + 𝑎) =∑𝑐𝑘𝑒
2𝜋𝑖𝑘𝑎𝑒2𝜋𝑖𝑘𝑥,

𝑘∈ℤ

 

and the uniqueness of the Fourier coefficients implies that 𝑐𝑘(1 − 𝑒
2𝜋𝑖𝑘𝑎) = 0 for all 

integers 𝑘. Since 𝑎 is irrational, this is equivalent to 𝑐𝑘 = 0 for all 𝑘 ∈ ℤ\{0}, i.e. to 

𝜒𝐸 = 𝑐0 a.e. on ℝ from which the claim follows. 

Theorem (3.3.19)[161]: Let 𝑎, 𝑏 > 0 be such that 𝑎 𝑏 ∉ 𝑄. Let S be an a ℤ-shift 

invariant, measurable subset of ℝ with nonzero measure and satisfying 𝑏|𝑆0| ≤ 1, 

where 𝑆0 = 𝑆 ∩ [0, 𝑎). Then, there exists a measurable set 𝐸 in ℝ which is a ℤ-

congruent to 𝑆0 and such that the collection {𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐸 ∶ 𝑚, 𝑛 ∈ ℤ} is a tight frame for 

𝐿2(𝑆).  
Proof. By the same argument as that of Theorem(3.3.12) we can assume that 𝑏 =
1, 𝑎 > 1 without loss of generality, and we only need to show the existence of 

measurable subset 𝐸 of ℝ which is a ℤ-congruent to 𝑆0 and such that the collection 

{𝑒2𝜋𝑖𝑚𝑥𝜒𝐸(𝑥):𝑚 ∈ ℤ} is a tight frame for 𝐿2(𝐸). Let ℤ+ = {0,1,2,3, … } and define a 

bijection  𝜎 ∶ ℤ+⟶ ℤ by 

𝜎(0) = 0,      𝜎(2𝑘 − 1) = 𝑘,     𝜎(2𝑘) = −𝑘     for 𝑘 > 0. 
Let 𝑔0 = ∑ 𝜒𝑆0(∙ +𝑘)𝑘∈ℤ .  If  𝑔0 ≤ 1, a.e. on ℝ, then 𝐸 = 𝑆0 is desired. Otherwise, we 

proceed with the following inductive procedure to construct  𝐸, analogous to the 

construction given in Theorem (3.3.12) (and with similar notation). Let 𝐻0 = {𝑔0 > 0} 
and let 𝑇0 be a measurable subset of  𝑆0 such that  

∑𝜒𝑇0(⋅ +𝑘) = 𝜒𝐻0 .

𝑘∈ℤ

 

If the sets 𝑆𝑙 , 𝑇𝑙 , 𝐻𝑙 and the function 𝑔1 have already been constructed for all indices 𝑙 
with 0 ≤ 𝑙 ≤ 𝑗 − 1, we define 𝑆𝑗 = 𝑆𝑗−1\𝑇𝑗−1,  

𝑔𝑗 =∑𝜒𝑆𝑗(∙ +𝑎𝜎( 𝑗) + 𝑘),

𝑘∈ℤ

 

and 𝐻𝑗 = {𝑔𝑗 > 0, 𝑔0 = 𝑔1 = ⋯ = 𝑔𝑗−1 = 0}. We then choose a measurable set 𝑇𝑗 

contained in 𝑆𝑗 and such that  

∑𝜒𝑇𝑗(⋅ +𝑎𝜎(𝑗) + 𝑘)

𝑘∈ℤ

= 𝜒𝐻𝑗 . 

Define 𝐸 = ⋃ (𝑇𝑗 − 𝑎𝜎(𝑗))𝑗∈ℤ+ . Note that the sets 𝐻𝑗 , 𝑗 ∈ ℤ
+, are mutually 

disjoint. We have  
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∑𝜒𝐸(⋅ +𝑘)

𝑘∈ℤ

= ∑∑𝜒𝑇𝑗(⋅ +𝑎𝜎(𝑗) + 𝑘) = ∑ 𝜒𝐻𝑗 ≤ 1

𝑗∈ℤ+𝑘∈ℤ𝑗∈ℤ+

   a.e. on ℝ. 

So, by Lemma (3.3.10) the collection {𝐸𝑚𝑏𝜒𝐸:𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝐸). 
Since 𝑇𝑗 − 𝑎𝜎(𝑗) ⊂ 𝑆0 − 𝑎𝜎(𝑗) for 𝑗 ∈ ℤ+, and the sets 𝑆0 − 𝑎𝜎(𝑗), 𝑗 ∈ ℤ

+, are 

mutually disjoint, so are the sets 𝑇𝑗 − 𝑎𝜎(𝑗), 𝑗 ∈ ℤ
+. Hence, in order to show that 𝐸 is a 

ℤ-congruent to 𝑆0, we only need to show that |𝑆0\(⋃ 𝑇𝑗𝑗∈ℤ+ )| = 0. Write 𝑄 =

𝑆0 \(⋃ 𝑇𝑗)𝑗∈ℤ+ . Since, for 𝑗 ≥ 1 , 𝑆𝑗 = 𝑆0 \ (⋃ 𝑇𝑖
𝑗−1
𝑖=0 ), we have 𝑄 ⊂ 𝑆𝑗, for all  𝑗 ≥ 0, 

and thus  

{∑𝜒𝑄(⋅ +𝑘) > 0

𝑘∈ℤ

} ⊂ {∑𝜒𝑆𝑗(⋅ +𝑘) > 0

𝑘∈ℤ

} = {𝑔𝑗(⋅ −𝑎𝜎(𝑗)) > 0} 

⊂ ⋃ (𝐻𝑚 + 𝑎𝜎(𝑗)).
∞
𝑚=0          

It follows, using the disjointness the sets 𝐻𝑚 , 𝑚 ≥ 0, that  

{∑𝜒𝑄(⋅ +𝑘) > 0

𝑘∈ℤ

} ⊂⋂⋃(𝐻𝑚 + 𝑎𝜎(𝑗))

∞

𝑚=0

∞

𝑗=0

=⋂⋃(𝐻𝑚 + 𝑎𝑙)

∞

𝑚=0𝑙∈ℤ

 

=⋂(⋃{𝜒𝐻𝑚(⋅ −𝑎𝑙) = 1}

∞

𝑚=0

)

𝑙∈ℤ

=⋂({∑ 𝜒𝐻𝑚(⋅ −𝑎𝑙) = 1

𝑚≥0

})

𝑙∈ℤ

. 

Hence, 

{∑𝜒𝑄(⋅ +𝑘) > 0

𝑘∈ℤ

} ⊂⋂{∑∑𝜒𝑇𝑚(⋅ +𝑎𝜎(𝑚) − 𝑎𝑙 + 𝑘) = 1

𝑘∈ℤ𝑚≥0

}

𝑙∈ℤ

≔ �̃�. 

We will now show that |𝑄| = 0 by contradiction. Suppose that |𝑄| > 0. Then,  

|⋃(𝑇𝑚 + 𝑎𝜎(𝑚))

∞

𝑚=0

| = ∑|𝑇𝑚 + 𝑎𝜎(𝑚)|

∞

𝑚=0

= ∑|𝑇𝑚| < |𝑆0|

∞

𝑚=0

≤ 1           (49) 

due to the disjointness of the sets 𝑇𝑚, 𝑚 ≥ 0. It is obvious that 

�̃� ⊂ {∑∑𝜒𝑇𝑚(⋅ +𝑎𝜎(𝑚) + 𝑘) = 1

𝑘∈ℤ𝑚≥0

} = {∑𝜒⋃ 𝑇𝑚−𝑎𝜎(𝑚)
∞
𝑚=0

(⋅ +𝑘) = 1

𝑘∈ℤ

} 

Since the sets 𝑇𝑚−𝑎𝜎(𝑚), 𝑚 ≥ 0, are disjoint. Since �̃� is ℤ-periodic and 

|�̃� ∩ [0,1)| = ∫ 𝜒�̃�(𝑡)

[0,1)

𝑑𝑡 ≤ ∫ ∑𝜒⋃ 𝑇𝑚−𝑎𝜎(𝑚)
∞
𝑚=0

(⋅ +𝑘)

𝑘∈ℤ

𝑑𝑡

[0,1)

< 1, 

using (49), it follows that �̃� ≠ ℝ modulo a set of zero measure. However, �̃� is both a ℤ 

and ℤ-periodic and Lemma (3.3.18) shows that |�̃�| = 0. Therefore, we conclude that 

|{∑ 𝜒𝑄(⋅ +𝑘) > 0𝑘∈ℤ }| = 0 and thus  

|ℚ| = ∫ ∑𝜒ℚ(𝑡 + 𝑘)𝑑𝑡

𝑘∈ℤ[0,1)

 = 0. 

Which is a contradiction. The proof is completed. 
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Corollary (3.3.20)[161]: let 𝑎, 𝑏 > 0 be such that 𝑎𝑏 ≠ ℚ. Let 𝑆 be an a ℤ-shift 

invariant, measurable subset of ℝ and define the set 𝑆0 = 𝑆 ∩ [0, 𝑎). Then, the 

following are equivalent: 

(a) There exists a function 𝑔 ∈ 𝐿2(𝑆) such that the linear span of the collection 

{𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} is dense in 𝐿2(𝑆). 
(b) There exists a measurable set 𝐸 in ℝ which is a ℤ-congruent to 𝑆 ∩ [0, 𝑎) such 

that {𝐸𝑚𝑏𝑇𝑛𝑎𝑔:𝑚, 𝑛 ∈ ℤ} is a tight frame for 𝐿2(𝑆). 
(c) 𝑏 |𝑆0| ≤ 1. 

Proof. As we mentioned earlier, the fact that (a) implies (c) is a result from [172]. The 

fact that (b) follows from (c) is the content of Theorem (3.3.19) and, clearly (b) implies 

(a).  
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Chapter 4 

Gabor Frames and Unit Cubes 
 

 

We show that for the irrational case, we show that the classification problem can 

be completely settled if the union of some intervals obtained from the set-valued 

mapping becomes stabilized after finitely many times of iterations, which we conjecture 

is always true. We provide an uncountable class of functions. As a byproduct of the 

proof method we derive new sampling theorems in shift-invariant spaces and obtain the 

correct Nyquist rate. An inductive procedure for constructing such sets Λ in dimension 

𝑑 ≥ 3 is also given. An interesting and surprising consequence of the results is the 

existence, for 𝑑 ≥ 2, of discrete sets Λ with 𝐺(𝜒[0,1]𝑑  , 𝛬) forming a Gabor orthonormal 

basis but with the associated “time”-translates of the window 𝜒[0,1]𝑑 having significant 

overlaps. 

Section (4.1): Characteristic Function Generates a Gabor Frame 

Frames introduced by Duffin and Shaffer in [191] have recently received great 

attention due to their wide range of applications in both mathematics and engineering 

science. Gabor frames form a special kind of frames for 𝐿2(ℝ) whose elements are 

generated by time-frequency shifts of a single window-function or atom. More 

specifically, let 𝑔 ∈ 𝐿2(ℝ) and 𝑎, 𝑏 ∈ ℝ+, we use (𝑔, 𝑎, 𝑏) to denote the Gabor family 

or system {𝑀𝑚𝑏𝑇𝑛𝑎g ∶ 𝑚, 𝑛 ∈ ℤ} generated by 𝑔 where 𝑇𝑥 𝑔(𝑡) = 𝑔(𝑡 − 𝑥) is the 

translation unitary operator and 𝑀𝜉  𝑔(𝑡) = 𝑒
2𝜋𝑖𝜉𝑡𝑔(𝑡) is the modulation unitary 

operator. The composition 𝑀𝜉  𝑇𝑥 is called the time-frequency shift operator. We say 

that (𝑔, 𝑎, 𝑏) is a Gabor frame for 𝐿2(ℝ) if there exist two constants 𝐶1, 𝐶2 > 0 such that  

𝐶1‖𝑓‖
2 ≤ ∑ |〈𝑓,𝑀𝑚𝑏𝑇𝑛𝑎g〉|

2

𝑚,𝑛∈ℤ

≤ 𝐶2‖𝑓‖
2                           (1) 

Holds for every 𝑓 ∈ 𝐿2(ℝ). See [182,188,190,192,193,195,196,197,204] for some 

background materials and recent development in Gabor analysis. In order to have a 

Gabor frame for 𝐿2(ℝ), one important restriction is the density condition which states 

that if (𝑔, 𝑎, 𝑏) forms a Gabor frame, then 𝑎𝑏 ≤ 1 (cf. [187,201]). Although it is a key 

condition for the Gabor frame, the density condition is still far from providing an 

answer to the fundamental question of characterizing classes of functions which can be 

served as a window-function for a Gabor frame. This is generally believed to a quite 

difficult problem. In fact, the problem is only solved completely for few functions (cf. 

[194]). For an excellent survey on this topic see to C. Hail’s [196]. In particular we 

mention that Gabor originally proposed the Gaussian function 𝑔(𝑡) = 𝑒−𝑡
2
 as a window 

with respect the unit time-frequency lattice ℤ × ℤ (𝑖. 𝑒. 𝑎 = 𝑏 = 1). However, though it 

is a complete system for 𝐿2(ℝ), the Gaussian Gabor system (𝑔, 1, 1) is not a frame. it 

was conjectured by Daubechies and Grossmann [187,189], and later proved by 

Lyubarskii, Seip and Wellston [200,202,203] that (𝑒−𝑡
2
, 𝑎, 𝑏) is a frame if and only if 

𝑎𝑏 < 1. Another seemingly natural case is the class of characteristic functions. It was 

shown by Casazza and kalton [184] that characterizing such sets 𝐸 that (𝜒𝐸 , 1,1) is a 

frame is equivalent to solving an old open problem of Littlewoods in complex analysis. 

A further special case of the above problem, Which we will refer to as the 𝑎𝑏𝑐-problem, 
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asks for a classification of all 𝑎, 𝑏, 𝑐 ∈ ℝ+ such that (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame. This 

problem was initiated by Janssen [198,199], Casazza and Lammers [185]. Although 

classification has been obtained for some special cases, this problem appears to be very 

difficult in general. In many cases it is associated with an extremely complicated set-

Janssen’s tie [199]. We raise a conjecture concerning the image of certain set-valued 

mapping on certain union of intervals. We conjecture that the said image will always 

become stabilized after finitely many times of iterations. The main results (Theorems 

(4.1.18) and (4.1.3)) indicate that if the conjecture is true, then the 𝑎𝑏𝑐-problem can be 

completely solved. 

To show how delicate the 𝑎𝑏𝑐-problem is, we list two results due to Janssen, 

Casazza and Lammers.  

Proposition (4.1.1)[181]: (See [198,199]). Assume 𝑎 < 1 < 𝑐. 
(i) If 𝑎 is not rational and 1 < 𝑐 < 2, then (𝜒[0,𝑐), 𝑎, 1) is a Gabor frame.  

(ii) If 𝑎 = 𝑝 𝑞⁄  is rational, 𝑔𝑐𝑑(𝑝, 𝑞) = 1 and 2 − 1 𝑞⁄ < 𝑐 < 2, then (𝜒[0,𝑐), 𝑎, 1) 
is not a Gabor frame. 

(iii) If 𝑎 > 3 4⁄ , 𝑐 = 𝐿 − 1 + 𝐿(1 − 𝑎) with integer 𝐿 ≥ 3, then (𝜒[0,𝑐), 𝑎, 1) is not 

a Gabor frame. 

(iv) If 𝑑 is the greatest integer ≤ 𝑐 and |𝑐 − 𝑑 − 1 2⁄ | < 1 2⁄ − 𝑎, then (𝜒[0,𝑐), 𝑎, 1) 
is a Gabor frame. 

Proposition (4.1.2)[181]: (See [185]). 

(i) The Gabor system (𝜒[0,𝑐), 1, 𝑐) is a Gabor frame if and only if 𝑐 = 1. 

(ii) If 2 ≤ 𝑐 ∈ ℕ, then for all 𝑎 > 0, (𝜒[0,𝑐), 𝑎, 1) is not a Gabor frame.  

(iii) If 𝑎 ≤ 𝑐 < 1, then (𝜒[0,𝑐), 𝑎, 1) is a Gabor frame, if 𝑐 < 𝑎 < 1, then 

(𝜒[0,𝑐), 𝑎, 1) is not a Gabor frame. 

We will state all our results for general 𝑎, 𝑏, 𝑐 ∈ ℝ+ instead of adopting the 

practice of both Janssen, Casazza and Lammers by letting 𝑏 = 1. From (1) and (3) of 

Proposition (4.1.2) above, we see that the case of 𝑎𝑏 = 1 and the case of 𝑏𝑐 < 1 are 

completely solved, so throughout we will always assume that 0 < 1 𝑏⁄ ≤ 𝑐. We will use 

𝑀 to denote exclusively the largest natural number less than or equal to 𝑏𝑐. We will use 

𝑑 exclusively to denote 𝑐 − 𝑀(1 𝑏⁄ ), thus 0 ≤ 𝑑 < 1 𝑏⁄  always holds. Almost all the 

arguments revolve around the behaviors of the following two sets 𝐴 = ⋃ [𝑛𝑎, 𝑛𝑎 +𝑛∈ℤ

1 𝑏⁄ ). We will also use letters 𝐴 and 𝐵 for the above mentioned sets exclusively. 

We will use the new approach to recover or generalize some of the results 

obtained in [198,199] and [185]. the main purpose there is to exhibit the new techniques 

and summarize certain known or generalizable existing results in a suitable way in 

anticipation for the new results. We will not attempt a detailed comparison of the results 

stated in the first half with the ones found [198,199] or [185], usually in deferent forms 

with 𝑏 = 1. It suffices to say, even when these results are not explicitly stated in 

[198,199] or [185], they are most likely obtainable using the techniques developed. We 

will recover (2) of Proposition (4.1.1), in a lemma and generalize it to the following 

result, which is already established by Janssen in [199]. 

On the other hand, the following (together with Lemma (4.1.5) and Proposition 

(4.1.11) for the case of 𝑀 = 1) provides us with a complete solution to the 𝑎𝑏𝑐-problem 

for the case of 𝑎 =
1

𝑞
(1 𝑏)⁄  with 𝑞 ∈ ℕ + 1, which is also know to Janssen. 
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We will give proofs of the sufficiency parts of the following two theorems. The 

first one is a complete solution to the 𝑎𝑏𝑐-problem for the case of 𝑀 = 1. We point out 

that this case is already completely solved by Janssen in [199], and his results can be 

quickly recovered from the theorem below. 

Here ℳ1 and ℳ2 are set-valued mappings defined by ℳ1(𝐺) = 𝐺 ∪ (𝐴 ∩ 𝐺 −
1 𝑏⁄ ) and ℳ2(𝐺) = 𝐺 ∪ (𝐴 ∩ 𝐺 + 1 𝑏⁄ ) for any 𝐺 ∈ ℝ, where 𝐴 = ⋃ [𝑛𝑎, 𝑛𝑎 + 𝑑)𝑛∈ℤ  

and 𝐵 = ⋃ [𝑛𝑎 + 𝑑, 𝑛𝑎 + 1 𝑏⁄ )𝑛∈ℤ  as we defined earlier. Since it will be made clear that 

the case of 𝑏𝑐 ∈ ℕ is trivial, what is left to consider is the case of 𝑏𝑐 > 2. This is treated 

in the next theorem. 

The necessity parts of both of these theorems , especially that of Theorem 

(4.1.18), entail complicated constructions of functions. We will devote most to this task. 

In fact, instead of proving the necessity part of Theorem (4.1.18), we will show the 

following slightly stronger result. 

Theorem (4.1.3)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. If there is an 𝑎-periodic proper subset 𝐺 of ℝ which contains 𝐸 and 

satisfies ℳ(𝐺) = 𝐺, then (𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame for 𝐿2(ℝ). 

We will also show quickly that in the case of 𝑎𝑏 ∈ ℚ+, it is true that 

ℳ𝑆0+1(𝐸) = ℳ𝑆0(𝐸) for some 𝑆0 ∈ ℕ, thus immediately obtain a complete solution 

for that case. This naturally leads to our conjecture that when 𝑎𝑏 is irrational the same 

still holds. 

Due to the nature of the proofs, we will divide them between. Deals with the 

proofs of Proposition (4.1.9), Theorem (4.1.10), and the proofs of the sufficiency parts 

of Theorems (4.1.19) and (4.1.18). The necessity part of Theorem (4.1.19) requires 

some technical details, it will be given together with much more complicated 

constructions involved in the proof of Theorem (4.1.3), which serves as a proof of the 

necessity part of Theorem (4.1.18). We then briefly discuss the case of 𝑀 > 1 in 

comparison with Janssen’s counterpart in [199]. In particular, with the help of one of 

our main results (Theorem (4.1.3)) we negatively settle one conjecture raised by Janssen 

in [199]. 

For any fixed triple (𝑎, 𝑏, 𝑐) satisfying 0 < 𝑎 < 1 𝑏⁄ ≤ 𝑐, we will henceforth use 

the letters 𝑀,𝑑, 𝐴, 𝐵 exclusively to denote numbers or sets as specified in the previous. 

Also, for any 𝑛 ∈ ℤ, any bounded and compactly supported function 𝑓 ∈ 𝐿2(ℝ) and any 

𝑔 ∈ 𝐿2(ℝ), we define  

𝐻𝑛(𝑡) =∑𝑓(𝑡 − 𝑘 𝑏⁄ )𝑔(𝑡 − 𝑛𝑎 − 𝑘 𝑏⁄ )

𝑘

,                              (2) 

for each 𝑛 ∈ ℤ. Though 𝐻𝑛 also depends both on 𝑓 and 𝑔, for notational simplicity we 

will avoid indexing 𝐻𝑛 by 𝑓 and 𝑔 since it will always be clear from the context which 

𝑓 and 𝑔 are associated with the specific 𝐻𝑛 in question. By definition, 𝐻𝑛 is 1 𝑏⁄ -

periodic and 𝐻𝑛 ∈ 𝐿
2[0, 𝑎 𝑏⁄ ). We omit the proof of the following lemma, which is 

almost identical to the well-known proof of the WH-identity in [182], where it is 

credited to Heil and Walnut [197]. The same proof can also be found in [188]. 

Lemma (4.1.4)[181]: Let 𝑔 ∈ 𝐿2(ℝ) be such that ∑ |𝑔(𝑡 − 𝑛𝑎)|2𝑛 ≤ 𝐶 for some 𝐶 > 0, 

and let 𝐻 𝑛 be defined as in (2) for any bounded and compactly    
Supported functions 𝑓. then  
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∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛∈ℤ

=
1

𝑏
∑∫ |𝐻𝑛(𝑡)|

2𝑑𝑡.

1 𝑏⁄

0𝑛

 

We only consider the case of  𝑔(𝑡) = 𝜒[0,𝑐)(𝑡). In order to examine whether 𝑔 

generates a frame, we need the following observations. First of all, since g(t) =
𝜒[0,𝑐)(𝑡), we certainly have ∑ |𝑔(𝑡 − 𝑛𝑎)|2 ≤ 𝐶𝑛  for some 𝐶 > 0. Thus Lemma (4.1.4). 

Applies. Moreover, by the CC-condition due to Casazza and Christensen [182], there is 

a 𝐶2 > 0, such that for any 𝑓 ∈ 𝐿2(ℝ), 

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|
2

𝑚,𝑛∈ℤ

≤ 𝐶2‖𝑓‖2
2. 

Therefore, in order to check whether (𝑔, 𝑎, 𝑏) is a Gabor frame, we only need to check 

whether there exists some 𝐶1 > 0 such that  

𝐶1‖𝑓‖2
2 ≤ ∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉|

2

𝑚,𝑛∈ℤ

 

for all 𝑓 ∈ 𝐿2(ℝ), however, since bounded and compactly supported functions 𝑓 are 

dense in 𝐿2(ℝ), it follows from a density argument and Lemma (4.1.4) that we only 

need to check if there is a 𝐶1 > 0 such that 

𝐶1‖𝑓‖2
2 ≤

1

𝑏
∑∫ |𝐻𝑛(𝑡)|

2𝑑𝑡

1 𝑏⁄

0𝑛

                                    (3) 

for all such functions. Secondly, since 𝑔(𝑡) = 𝜒[0,𝑐)(𝑡), for any bounded and compactly 

supported𝑓, if we define 𝐺𝑛(𝑡) = 𝑓(𝑡) 𝑔(𝑡 − 𝑛𝑎) = 𝑓(𝑡)𝜒[𝑛𝑎,𝑛𝑎+𝑐)(𝑡) For each 𝑛 ∈ ℤ, 

then clearly 𝐻 𝑛(𝑡) = ∑ 𝐺 𝑛(𝑡 − 𝑘 𝑏⁄ )𝑘 . Simple computation shows that whenever 0 <
𝑎 < 1 𝑏⁄ ≤ 𝑐 holds, we have: 

𝐻𝑛(𝑡) = {
𝐹1(𝑡), 𝑡 ∈ [𝑛𝑎, 𝑛𝑎 + 𝑑),             

𝐹2(𝑡), 𝑡 ∈ [𝑛𝑎 + 𝑑, 𝑛𝑎 + 1 𝑏⁄ ),
  

where  

𝐹1(𝑡) =∑𝑓(𝑡 + 𝑗(1 𝑏⁄ ))

𝑀

𝑗=0

,      𝐹2(𝑡) = ∑ 𝑓(𝑡 + 𝑗(1 𝑏⁄ ))

𝑀−1

𝑗=0

. 

Therefore, if we let 𝐿1, 𝐿2 be the smallest natural numbers greater than or equal to 
𝑑

𝑎
 and 

1 𝑏⁄

𝑎
 respectively, then for any bounded and compactly supported functions 𝑓 ∈ 𝐿2(ℝ), 

we have  

∫|𝐹1(𝑡)|
2𝑑𝑡

𝐴

+ ∫|𝐹2(𝑡)|
2𝑑𝑡

𝐵

≤∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

 

≤ 𝐿1∫|𝐹1(𝑡)|
2𝑑𝑡

𝐴

+ 𝐿2 ∫|𝐹2(𝑡)|
2𝑑𝑡

𝐵

. (4) 

From now on we will also use 𝐿1, 𝐿2 exclusively to denote such numbers. Let us 

now show how Lemma (4.1.4) and, specifically, inequality (4) can be used in 

some simpler cases. 
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Lemma (4.1.5)[181]: Let 0 < 𝑎 < 1 𝑏 ≤ 𝑐 = 1 𝑏⁄ + 𝑑⁄  for some 0 ≤ 𝑑 ≤ 1 𝑏⁄ . If  

1 𝑏⁄ − 𝑑 ≥ 𝑎, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame. 

Proof. In this case we have 𝑀 = 1. So 𝐹2(𝑡) = 𝑓(𝑡). Note that the condition 1 𝑏⁄ −
𝑑 ≥ 𝑎, implies that 𝐵 = ℝ. Hence  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ ∫|𝐹2(𝑡)|
2𝑑𝑡

ℝ

= ∫|𝑓(𝑡)|2𝑑𝑡

ℝ

. 

Note that Lemma (4.1.5) certainly includes the case of 𝑑 = 0 and  𝑐 = 1 𝑏⁄ . Next 

lemma is actually (ii) of Proposition (4.1.2), a result by Casazza and Lammers. It deals 

with all the other situations of 𝑑 = 0. 

Lemma (4.1.6)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) for some 𝑀 ∈ ℕ + 1, then 

(𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame. 

Proof. In this case we have 𝑑 = 0, So 𝐴 = 𝜙 and 𝐻𝑛(𝑡) = 𝐹2(𝑡). Similarly, 1 𝑏⁄ > 𝑎 

implies 𝐵 = ℝ. Hence for any bounded and compactly supported 𝑓 ∈ 𝐿2(ℝ), we have 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≤ 𝐿2 ∫ 𝐹2(𝑡)𝑑𝑡

ℝ

. 

To show that (𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame, we only need to construct a sequence of 

functions 𝑓𝑗 ∈ 𝐿
2(ℝ) with ‖𝑓𝑗‖ approaching infinity while the corresponding 

∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛  stays bounded. In fact, for each 𝑗 ∈ ℕ we define 𝑓𝑗(𝑡) supported on 

the interval [0, 𝑗 𝑏⁄ ) by letting 𝑓𝑗(𝑡) = 𝑒
𝑖
𝑘

𝑀
2𝜋𝑡

 for each 𝑡 ∈ [(𝑘 − 1) 𝑏⁄ , 𝑘 𝑏⁄ ) with 𝑘 ∈

{1,2,… , 𝑗}. Straightforward calculation shows that ‖𝑓𝑗‖
2
= 𝑗 𝑏⁄ , but correspondingly we 

always have  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≤ 2𝐿2𝑀
3(1 𝑏⁄ ). 

After Lemma (4.1.6), we do not need to worry about the case of 𝑏𝑐 ∈ ℕ anymore. 

Hence we will assume 𝑑 > 0 throughout the rest of the article. The following result 

recovers and generalizes (iv) Proposition (4.1.1). We point out that it has already been 

established by Janssen in this generality in [199]. 

Lemma (4.1.7)[181]: Let 0 < 𝑎 < 1 𝑏 < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑⁄  for some 𝑀 ∈ ℕ and 

 0 < 𝑑 < 1 𝑏⁄ . If min{𝑑, 1 𝑏 − 𝑑⁄ } ≥ 𝑎, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame. 

Proof.  As before, min{𝑑, 1 𝑏 − 𝑑⁄ } ≥ 𝑎, implies that 𝐴 = 𝐵 = ℝ.Thus, by (4). 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ ∫|𝐹1(𝑡)|
2𝑑𝑡

ℝ

+ ∫|𝐹2(𝑡)|
2𝑑𝑡

ℝ

≥ ∫
1

2
|𝐹1(𝑡) − 𝐹2(𝑡)|

2𝑑𝑡

ℝ

 

= ∫
1

2
|𝑓 (𝑡 +

𝑀

𝑏
)|
2

𝑑𝑡

ℝ

=
1

2
∫|𝑓(𝑡)|2𝑑𝑡

ℝ

. 

Note that because of Lemma (4.1.7), we now only need to consider the case of 

𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑  with 𝑀 ∈ ℕ, 0 < 𝑑 < 1 𝑏⁄  and 𝑎 > min{𝑑, 1 𝑏⁄ − 𝑑} for the next 
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lemma, we need some more terminology. We will call a measurable 𝐸 ⊂ ℝ 𝑎-

translation periodic or 𝑎-translation invariant if 𝐸 + 𝑛𝑎 = 𝐸 holds for all  𝑛 ∈ ℤ. 

Lemma (4.1.8)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 𝑀 ∈ ℕ  and  0 <
𝑑 < 1 𝑏⁄ . Then ℝ\(⋃ (𝐴 + 𝑘 𝑏⁄ )𝑘∈ℤ ∩ (⋃ (𝐵 + 𝑘 𝑏⁄ )𝑘∈ℤ )) has positive measure if and only 

𝑎 =
𝑝

𝑞
(1 𝑏⁄ ) with 𝑝, 𝑞 ∈ ℕ, satisfying gcd(𝑝, 𝑞) = 1 and 

𝑎

𝑝
> min{1 𝑏⁄ − 𝑑, 𝑑}. 

Proof. We show the sufficiency part first: Since 𝑎 =
𝑝

𝑞
(1 𝑏⁄ ) with gcd(𝑝, 𝑞) = 1, we 

have that both ⋃ (𝐴 + 𝑘 𝑏⁄ )𝑘∈ℤ  and ⋃ (𝐵 + 𝑘 𝑏⁄ )𝑘∈ℤ  are 
1

𝑞𝑏
-translation periodic 

consisting of all 
1

𝑞𝑏
-translates of intervals [0, 𝑑) or [𝑑, 1 𝑏⁄ ), respectively. It follows that 

both sets are actually 
𝑎

𝑝
-translation periodic consisting of all 

𝑎

𝑝
-translates of intervals 

[0, 𝑑) or [0, 𝑑) or [𝑑, 1 𝑏⁄ ), respectively. Hence the condition 
𝑎

𝑝
> min{1 𝑏⁄ − 𝑑, 𝑑} is 

equivalent to the condition that at least one of the above two sets is complemented in ℝ 

by a set of positive (indeed, infinite) measure, which in turn is equivalent to the desired 

conclusion. 

The argument above implies that we only need to show the necessity part for 𝑎 =

𝑟(1 𝑏⁄ ) with irrational 𝑟. In this case, the set {[
𝑘

𝑏
] : 𝑘 ∈ {0} ∪ ℕ} is dense in the 

interval[0, 𝑎), where [𝑥] = 𝑥 mod(𝑎). Since 𝐴, 𝐵 are both 𝑎-periodic sets containing 

intervals, it follows that ⋃ (𝐴 + 𝑘 𝑏⁄ )𝑘∈ℤ = ℝ,⋃ (𝐵 + 𝑘 𝑏⁄ ) = ℝ.𝑘∈ℤ  

Now we are ready to prove Proposition (4.1.9) and Theorem (4.1.10). 

Proposition (4.1.9)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 𝑀 ∈ ℕ + 1 and 

0 < 𝑑 < 1 𝑏⁄ . If 𝑎 =
𝑝

𝑞
(1 𝑏⁄ ) with 𝑝, 𝑞 ∈ ℕ such that 0 < 𝑝 < 𝑞, gcd(𝑝, 𝑞) = 1 and 

𝑎

𝑝
> min{1 𝑏 − 𝑑⁄ , 𝑑}, then (𝜒[0,𝑐), 𝑎, 1) is a not a Gabor frame.  

Proof. According to Lemma (4.1.8), we have either ℝ\⋃ (𝐴 +
𝑘

𝑏
)𝑘∈ℤ  or ℝ\

⋃ (𝐵 +
𝑘

𝑏
)𝑘∈ℤ  has positive measure. Without loss of generality, we assume that the 

former does, and denote 𝐺 = ℝ\⋃ (𝐴 +
𝑘

𝑏
 )𝑘∈ℤ . As noted before, this set is 

1

𝑞𝑏
(or 

𝑎

𝑝
)-

translation invariant. Similar to the proof of Lemma (4.1.6), we only need to define a 

sequence of functions 𝑓𝑗 ∈ 𝐿
2(ℝ) supported on set 𝐺 with ‖𝑓𝑗‖ approaching infinity 

while the corresponding ∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛  stays bounded. 

In fact, for each 𝑗 ∈ ℕ, we can define 𝑓𝑗(𝑡) supported on [0, 𝑗( 1 𝑏⁄ )) ∩ 𝐺 by 

letting 𝑓𝑗(𝑡) = 𝑒
𝑖
𝑘

𝑀
2𝜋𝑡 for each 𝑡 ∈ [(𝑘 − 1) 1 𝑏⁄ , 𝑘(1 𝑏⁄ )) ∩ 𝐺 with 𝑘 ∈ {1,2, … , 𝑗}. Then 

‖𝑓𝑗‖
2
= 𝑗 ⋅ 𝜇(𝐺 ∩ [0, 1 𝑏))⁄ . On the other hand, for any bounded and compactly 

supported 𝑓 defined on 𝐺, (4) implies 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≤ 𝐿2 ∫|𝐹2(𝑡)|
2𝑑𝑡

𝐵

. 

Similarly we can get an estimate for the corresponding 𝐻𝑛. If  we use 𝜇 to denote the 

Lebesgue measure, we have  
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∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≤ 2𝐿2𝑀
3 ⋅ 𝜇(𝐺 ∩ [0, 1 𝑏⁄ )). 

Theorem (4.1.10)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for  some  𝑀 ∈ ℕ + 1, and 

0 < 𝑑 < 1 𝑏⁄ . If 𝑎 =
1

𝑞
(1 𝑏⁄ ) with 𝑞 ∈ ℕ + 1, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame if and 

only if 𝑎 ≤ min{1 𝑏⁄ − 𝑑, 𝑑}. 
Proof. The sufficiency part follows from Lemma (4.1.7). For the necessity part, we 

assume to the contrary that 𝑎 > min{1 𝑏⁄ − 𝑑, 𝑑}. Thus Proposition (4.1.9) (the special 

case of 𝑝 = 1) implies that (𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame. 

Extending Theorem (4.1.10) to the case of 𝑀 = 1 is quick. Note that by Lemma 

(4.1.5), we only need to look at the case of 𝑎 > 1 𝑏⁄ − 𝑑. 

Proposition (4.1.11)[181]: Let 0 < 𝑎 < 1 𝑏⁄ + 𝑑 < 𝑐 = 1 𝑏⁄ + 𝑑 for 0 < 𝑑 < 1 𝑏⁄ . If 

𝑎 =
𝑝

𝑞
(1 𝑏⁄ ) with 𝑝, 𝑞 ∈ ℕ such that gcd(𝑝, 𝑞) = 1,

𝑎

𝑝
> 1 𝑏⁄ − 𝑑, then (𝜒[0,𝑐), 𝑎, 𝑏) is 

not a Gabor frame. 

Proof. In this case, ℝ\ (⋃ (𝐵 + 𝑘 𝑏))⁄𝑘∈ℤ  has positive measure. The rest is the same as 

the proof of Proposition (4.1.7). 

In order to show the necessity parts of Theorems (4.1.19) and (4.1.18), we need to 

develop a key lemma which already appears in its embryonic form in the proof of 

Lemma (4.1.7). We will treat the sufficient parts of both. 

Proposition (4.1.12)[181]: Let 𝐻𝑛(𝑡) be defined as in (2) for 𝑔(𝑡) = 𝜒[0,𝑐)(𝑡) and any 

bounded and compactly supported 𝑓. Suppose for some 𝑁, 𝐿 ∈ ℕ with 𝑁 < 𝐿 and some 

𝐷𝑁 , 𝐷𝐿 ⊂ ℝ, there are 𝛼𝑁 , 𝛼𝐿 > 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝐿 ∫ |∑𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=0

|

2

𝑑𝑡

𝐷𝐿

, 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝑁 ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑁−1

𝑗=0

|

2

𝑑𝑡

𝐷𝑁

 

holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛.  

Then for any subset 𝐷 of ℝ satisfying either  

(a) 𝐷 ⊂ 𝐷𝐿 , 𝐷 +
𝐿−𝑁

𝑏
⊂ 𝐷𝑁  or   

(b) 𝐷 −
𝑁

𝑏
⊂ 𝐷𝐿 , 𝐷 −

𝑁

𝑏
⊂ 𝐷𝑁, 

there is some 𝛼𝐷 > 0, such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝐷∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−𝑁−1

𝑗=0

|

2

𝑑𝑡

𝐷

 

holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. 

Proof. Denote 𝐼 = ∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡.

1 𝑏⁄

0𝑛  For any 𝐷 satisfying (a), we have 

∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−𝑁−1

𝑗=0

|

2

𝑑𝑡

𝐷

= ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=0

− ∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=𝐿−𝑁

|

2

𝑑𝑡

𝐷
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≤ 2∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=0

|

2

𝑑𝑡

𝐷

+ 2∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=𝐿−𝑁

|

2

𝑑𝑡

𝐷

 

≤ 2∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝐿−1

𝑗=0

|

2

𝑑𝑡

𝐷

+ 2 ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑁−1

𝑗=0

|

2

𝑑𝑡

𝐷+
𝐿−𝑁

𝑏

 

                     ≤
2

𝛼𝐷𝐿
𝐼 +

2

𝛼𝐷𝑁
𝐼 = 2

𝛼𝐷𝑁+𝛼𝐷𝐿

𝛼𝐷𝑁×𝛼𝐷𝐿
𝐼.  

We may take 𝛼𝐷 to be 
𝛼𝐷𝑁×𝛼𝐷𝐿

2𝛼𝐷𝑁+2𝛼𝐷𝐿
. The other case is similar. 

Now we apply Proposition (4.1.12) to the cases which we are interested in. First 

in order, the case of 𝑀 = 1. 

Lemma (4.1.13)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 1 𝑏⁄ + 𝑑 with some 0 < 𝑑 < 1 𝑏⁄ . 

Suppose for some set 𝐹 and 𝛼𝐹 > 0, ∑ ∫ |𝐻𝑛(𝑡)|
2 𝑑𝑡

1 𝑏⁄

0𝑛 ≥ 𝛼𝐹 ∫ |𝑓(𝑡)|2
𝐹

𝑑𝑡 holds for 

any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. Then for any 𝐷 ⊂ 𝐴 

such that 𝐷 + 1 𝑏⁄ ⊂ 𝐹, or  any 𝐷 ⊂ 𝐴 + 1 𝑏⁄  such that 𝐷 ⊂ 𝐹 + 1 𝑏⁄ , there exists some 

𝛼𝐷 > 0 such that ∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛 ≥ 𝛼𝐷 ∫ |𝑓(𝑡)|2
𝐷

𝑑𝑡 holds for any bounded and 

compactly supported 𝑓 and its corresponding 𝐻𝑛. 

Proof. Denote 𝐼 = ∑ ∫ |𝐻𝑛(𝑡)|
2 𝑑𝑡

1 𝑏⁄

0𝑛 . Our assumption can be simply written as 𝐼 ≥

𝛼𝐹 ∫ |𝑓(𝑡)|2𝑑𝑡
𝐹

. Since 𝑀 = 1, it follows from (4) that 

𝐼 ≥ ∫|𝑓(𝑡) + 𝑓(𝑡 + (1 𝑏⁄ ))|
2
𝑑𝑡

𝐴

. 

Now apply Proposition (4.1.12)(a) with  𝐿 = 2 and 𝑁 = 1,𝐷𝐿 = 𝐴 and 𝐷𝑁 = 𝐹, the 

conclusion follows. The other case is similar.  

Lemma (4.1.14)[181]: Let 0 < 𝑎 < 1/𝑏 < 𝑐 = 1/𝑏 + 𝑑 for some 0 < 𝑑 < 1/𝑏. If 𝐹 is 

any of the three sets 𝐴 ∩ 𝐵 + 1/𝑏, 𝐴 ∩ (𝐵 − 1 𝑏⁄ ), 𝐵 or any union of any such sets, then 

there exists a constant 𝛼𝐹 > 0 (dependent on 𝐹) such that 

∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛 ≥ 𝛼𝐹 ∫ |𝑓(𝑡)|2
𝐹

𝑑𝑡  

holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. 

Proof. We observe that by (4), when 𝑀 = 1, we have  

∑∫ |𝐻𝑛(𝑡)|
2

1 𝑏⁄

0

𝑑𝑡

𝑛

≥ ∫|𝑓(𝑡)|2

𝐵

𝑑𝑡. 

Rest of the conclusion follows readily from Lemma (4.1.13) above. 

Part of the following lemma recovers (i) of Proposition (4.1.1) a result by 

Janssen. 

Lemma (4.1.15)[181]: Let 0 < 𝑎 < 1 𝑏 < 𝑐⁄ = 1 𝑏⁄ + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄ . Let 

𝐹 = (𝐴 ∩ 𝐵 + 1 𝑏⁄ ) ∪ (𝐵 − 1 𝑏⁄ )) ∪ 𝐵. If ⋃ (𝐹 − 𝑘(1 𝑏))⁄𝑁
𝑘=0 = ℝ for some 𝑁 ∈ ℕ ∪

{0}, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame. In particular, if 𝑎 = 𝑟(1 𝑏⁄ ) for some irrational 

number  𝑟, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame. 
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Proof. We first note that 0 < 𝑎 < 1 𝑏⁄  implies 𝐴 ∪ 𝐵 = ℝ. By starting with the 

conclusion in Lemma (4.1.14) and applying Lemma (4.1.13) repeatedly , we will obtain 

that for any 𝑛 ∈ ℕ ∪ {0}, there is some 𝛼𝐷 > 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2

1 𝑏⁄

0

𝑑𝑡

𝑛

≥ 𝛼𝐷 ∫|𝑓(𝑡)|
2

𝐷

𝑑𝑡, 

where 𝐷 = ⋃ (𝐹 − 𝑘(1 𝑏))⁄𝑛
𝑘=0 . Consequently, the first conclusion is established when 

𝑛 = 𝑁. The second conclusion is proved using the same density argument employed in 

the proof of the necessity part of Lemma (4.1.8). 

We turn our attention to the case of 𝑀 > 1, we have 

Lemma (4.1.16)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. Let 𝐸 = (𝐴 ∩ 𝐵 +𝑀(1 𝑏⁄ )) ∪ (𝐴 ∩ (𝐵 − 1 𝑏⁄ )). Then there is an 

𝛼𝐸 > 0 such that 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝐸 ∫|𝑓(𝑡)|
2

𝐸

𝑑𝑡 

holds for any bounded and compactly supported and its corresponding 𝐻𝑛. 

Proof. This follows immediately from proposition (4.1.12). With 𝐿 = 𝑀 + 1 and 𝑁 =
𝑀 and 𝐷𝐿 = 𝐴,𝐷𝑁 = 𝐵. 

Clearly the sufficiency part of Theorem (4.1.18) follows from the last and the 

next lemma. Please refer for the definitions of the sets 𝐴, 𝐵, 𝐸 and the set-valued 

mappings ℳ and 𝑝𝑗 with 𝑗 ∈ {1,2,3,4,5}  

Lemma (4.1.17)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. Suppose that for a measureable set 𝐺, there is some 𝛼𝐺 > 0, such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝐺 ∫|𝑓(𝑡)|
2

𝐺

𝑑𝑡                                (5) 

holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. Then there 

exists some 𝛼ℳ(𝐺)
> 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼ℳ(𝐺)
∫ |𝑓(𝑡)|2

ℳ(𝐺)

𝑑𝑡 

also holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. 

Proof. Observe that by the definition of the set-valued mapping ℳ, it is enough to 

show that under the assumption of the lemma, for each 𝑗 ∈ {1,2,3,4,5} , there exists 

some 𝛼𝑝𝑗(𝐺) > 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼𝑝𝑗(𝐺) ∫ |𝑓(𝑡)|2

𝑝𝑗(𝐺)

𝑑𝑡 

also holds for any bounded and compactly supported 𝑓 and its corresponding 𝐻𝑛. 

(i) 𝑝1(𝐺)-case. Note that by (4), we have  
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∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ ∫ |∑𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑀

𝑗=0

|

2

𝑑𝑡

𝐴

.                         (6) 

Now apply Proposition (4.1.12)(a) to (6) and (5), with 𝐿 = 𝑀 + 1,𝑁 = 1,𝐷𝐿 = 𝐴 

and 𝐷𝑁 = 𝐺, we obtain some 𝛼 > 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼 ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑀−1

𝑗=0

|

2

𝑑𝑡

𝐴∩(𝐺−𝑀(1 𝑏⁄ ))

.           (7) 

Now apply proposition (4.1.12)(a) to (7) and (5) again, with 𝐿 = 𝑀 and 𝑁 =

1,𝐷𝐿 = 𝐴 ∩ (𝐺 −𝑀(1 𝑏⁄ )) and 𝐷𝑁 = 𝐺, we obtain some 𝛼′ > 0 such that  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛼′ ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑀−1

𝑗=0

|

2

𝑑𝑡

𝐴∩(𝐺−𝑀(1 𝑏⁄ ))∩(𝐺−(𝑀−1)(1 𝑏⁄ ))

.  (8) 

Repeating this process 𝑀 − 1 times we get the result. 

(ii) 𝑝2(𝐺)-case. Note that by (4), we also have  

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑀−1

𝑗=0

|

2

𝑑𝑡

𝐵

.                       (9) 

Now apply Proposition (4.1.12)(a) to (9) and (5), with 𝐿 = 𝑀,𝑁 = 1,𝐷𝐿 = 𝐵 and 

𝐷𝑁 = 𝐺, we have for some 𝛽 > 0, 

∑∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛

≥ 𝛽 ∫ |∑ 𝑓(𝑡 + 𝑗 𝑏⁄ )

𝑀−2

𝑗=0

|

2

𝑑𝑡

𝐵∩(𝐺−(𝑀−1)(1 𝑏⁄ ))

.     (10) 

The rest is similar to the first case. 

(iii) 𝑝3(𝐺)-case. This is the consequence of applying Proposition (4.1.12)(a) to (6) 

and (7), with 𝐿 = 𝑀 + 1,𝑁 = 𝑀,𝐷𝐿 = 𝐴 and 𝐷𝑁 = 𝐴 ∩ (𝐺 −𝑀(1 𝑏⁄ )). 
(iv) 𝑝4(𝐺)-case. This is the consequence of applying Proposition (4.1.12)(a) to (9) 

and (10), with 𝐿 = 𝑀,𝑁 = 𝑀 − 1,𝐷𝐿 = 𝐵 and 𝐷𝑁 = 𝐵 ∩ (𝐺 − (𝑀 − 1)(1 𝑏⁄ )).  
(v) 𝑝5(𝐺)-case. This is the consequence of applying Proposition (4.1.12)(a) to (9) 

and (8) with 𝐿 = 𝑀 , 𝑁 = 𝑀 − 1,𝐷𝐿 = 𝐵 and 𝐷𝑁 = 𝐴 ∩ (𝐺 −𝑀(1 𝑏⁄ )) ∩

(𝐺 − (𝑀 − 1)(1 𝑏⁄ )). 
Theorem (4.1.18)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. If ℳ𝑆0+1(𝐸) = ℳ𝑆0(𝐸) for some 𝑆0 ∈ ℕ, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor 

frame for 𝐿2(ℝ) if and only if ℳ𝑆0(𝐸) = ℝ. 
Here ℳ is a set-valued mapping defined in turn by several other set-valued 

mapping 𝑝𝑗 for 𝑗 ∈ {1,2,3,4,5} such that for any 𝐺 ∈ ℝ 

ℳ(𝐺) = 𝐺 ∪ 𝑝1(𝐺) ∪ 𝑝2(𝐺) ∪ 𝑝3(𝐺) ∪ 𝑝4(𝐺) ∪ 𝑝5(𝐺) 
and  

𝑝1(𝐺) = 𝐴 ∩ (⋂ (𝐺 − 𝑘(1 𝑏)⁄𝑀
𝑘=1 ).                                   

𝑝2(𝐺) = 𝐵 ∩ (⋂ (𝐺 − 𝑘(1 𝑏)⁄𝑀−1
𝑘=1 ).                                   

𝑝3(𝐺) = (𝐺 − (𝑀 + 1)(1 𝑏⁄ )) ∩ (𝐴 − 1 𝑏⁄ ) ∩ 𝐴.       
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𝑝4(𝐺) = (𝐺 −𝑀(1 𝑏⁄ )) ∩ (𝐵 − 1 𝑏⁄ ) ∩ 𝐵.                   

                          𝑝5(𝐺) = (𝐺 −𝑀(1 𝑏⁄ )) ∩ (𝐺 − (𝑀 + 1)(1 𝑏⁄ )) ∩ (𝐴 − 1 𝑏⁄ ) ∩ 𝐵, 
where 𝐴, 𝐵 are unions of intervals specified earlier and 𝐸 = (𝐴 ∩ 𝐵 +𝑀(1 𝑏))⁄ ∪ (𝐴 ∩
(𝐵 − 1 𝑏)).⁄  

Proof. Note that because of Lemma (4.1.15) we only need to consider the case of 𝑎 =
𝑃

𝑞
(1 𝑏)⁄  with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. Assume that ℳ1

𝑝
(ℳ2

𝑝(𝐵)) = ℝ. Recall that 

by definition, for any measurable set 𝐺,ℳ1(𝐺) = 𝐺 ∪ (𝐴 ∩ (𝐺 − 1 𝑏⁄ )) and ℳ2(𝐺) =
𝐺 ∪ (𝐴 ∩ 𝐺 + 1 𝑏⁄ ). Observe that 𝐴 ∪ 𝐵 = ℝ always holds whenever 𝑎 < 1 𝑏⁄  and in 

the case of 𝑀 = 1 we also have ∑ ∫ |𝐻𝑛(𝑡)|
21 𝑏⁄

0
𝑑𝑡𝑛 ≥ ∫ |𝑓(𝑡)|2

𝐵
𝑑𝑡. Now apply 

Lemma (4.1.13) repeatedly 2𝑝 times starting with set 𝐵, the conclusion follows. 

This follows immediately from the conclusion of Lemma (4.1.16), by applying 

Lemma (4.1.17)[181] 𝑠0-times. 

We deal with the easier case of Theorem (4.1.19), first. 

Theorem (4.1.19)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 1 𝑏⁄ + 𝑑  for some  0 < 𝑑 < 1 𝑏⁄ .  

(i) If 𝑎 = 𝑟(1 𝑏⁄ ) for some irrational 𝑟, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor frame . 

(ii) If 𝑎 =
𝑝

𝑞
(1 𝑏⁄ ) with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1, then (𝜒[0,𝑐), 𝑎, 𝑏) is a Gabor 

frame if and only if ℳ1
𝑝
(ℳ2

𝑝(𝐵)) = ℝ. 

Proof. Let 𝐻 = ℝ\ℳ1
𝑃(ℳ2

𝑃(𝐵)). Assume that 𝐻 has positive measure, we are going to 

prove that (𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame. We make a few observations about 

ℳ1 𝑎𝑛𝑑 ℳ2 first. Note that for any set 𝐺 containing 𝐵, we must have ℳ1 ∘ℳ2(𝐺) =
ℳ2 ∘ℳ1(𝐺). Indeed, by using the fact that 𝐴 ∪ 𝐵 = ℝ, We see that ℳ1(𝐺) = 𝐺 ∪
(𝐺 − 1 𝑏⁄ ) whenever 𝐵 ⊂ 𝐺. Thus for such 𝐺 we have  

ℳ1 ∘ℳ2(𝐺) = 𝐺 ∪ (𝐴 ∩ 𝐺 + 1 𝑏⁄ ) ∪ (𝐴 ∩ (𝐺 − 1 𝑏⁄ )) = ℳ2 ∘ℳ1(𝐺). 
Note also that when 𝐷 is an 𝑎-translation periodic set of positive measure, if  𝑎 =

𝑃

𝑞
 (1 𝑏⁄ ) with integers 0 < 𝑝 < 𝑞 and gcd  (𝑝, 𝑞) = 1, then 𝐷 − 𝑙(1 𝑏⁄ ) = 𝐷 − 𝐾(1 𝑏⁄ ) 

whenever 𝑘 − 𝑙 = 𝑝𝑚 for some integer 𝑚. Thus the definition of ℳ1 says right away 

that ℳ1
𝑘(𝐺) = ℳ1

𝑝(𝐺) for any 𝑘 ≥ 𝑝 and any a-translation periodic set 𝐺 ⊃ 𝐵. Simple 

computation also shows that ℳ2
𝑘(𝐺) is  the union of the set 𝐺 with the sets of the form  

(𝐴 +
1

𝑏
) ∩ (𝐴 +

2

𝑏
) ∩ …∩ (𝐴 +

𝑗

𝑏
) ∩ (𝐺 +

𝑗

𝑏
)  

for 𝑗 ∈ {1,2,3, … , 𝑘}. By similar argument, we also have ℳ2
𝑘(𝐺) = ℳ2

𝑝(𝐺) for   any 

𝑘 ≥ 𝑝 and any a-translation periodic set 𝐺 ⊃ 𝐵. These facts imply that the set 𝐾 =

ℳ1
𝑝
(ℳ2

𝑝(𝐵)) is invariant under both maps ℳ1(𝐺) = 𝐺 ∪ (𝐺 − 1 𝑏⁄ ) and ℳ2(𝐺) =

𝐺 ∪ (𝐴 ∩ 𝐺 + 1 𝑏⁄ ). In particular, it says that 

𝑘 −
1

𝑏
 ⊆ 𝐾.  

When 𝑘 −
1

𝑏
= 𝑘, we can employ the same techniques as those found in the proof of 

both Lemma (4.1.5), and Proposition (4.1.9) we omit the proof to avoid repetition. 

Now assume that 𝑘 −
1

𝑏
 is properly contained in 𝑘. It follows that 𝐻 +

1

𝑏
 is also 

properly contained in 𝐻. Let 𝐽 = 𝐻 \ (𝐻 +
1

𝑏
). Then 𝐽 is a set of positive measure no 
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bigger than 
1

𝑏
 and 𝐻 is the disjoint union of the sets 𝐽 +

𝑗

𝑏
 with 𝑗 ∈ {0} ∪ ℕ. We will 

construct a sequence of functions 𝑓𝑗 ∈ 𝐿
2(ℝ) with ‖𝑓𝑗‖ approaching infinity and the 

corresponding ∑ ∫ |𝐻𝑛(𝑡)|
2 𝑑𝑡

1 𝑏⁄

0𝑛  staying bounded. In fact, we define 𝑓𝑗(𝑡) to be 

supported on the set 𝐻 so that 𝑓𝑗(𝑡) = (−1)
𝑘 for 𝑡 ∈ 𝐽 +

𝑘

𝑏
 with 𝑘 ∈ {0,1,2,… , 𝑗}. Thus 

‖𝑓𝑗‖
2
= (𝑗 + 1)𝜇(𝐽). Because 𝐻 is disjoint from 𝐾,𝐻 is also disjoint from 𝐵 since 𝐾 

contains 𝐵. Therefore  

∑∫ |𝐻𝑛(𝑡)|
2

1 𝑏⁄

0

𝑑𝑡

𝑛

= ∫ |𝑓(𝑡) + 𝑓 (𝑡 +
1

𝑏
)|
2

𝑑𝑡

𝐴

.                   (11) 

For any 𝑡 ∈ 𝐴, we have either 𝑡 ∈ 𝐴 ∩ 𝐾 or 𝑡 ∈ 𝐴\𝐾. if 𝑡 ∈ 𝐴 ∩ 𝐾, then by definition of 

𝑓𝑗 we have 𝑓𝑗(𝑡) = 0. Since 𝐾 is invariant under ℳ2, we have 𝑡 +
1

𝑏
 ∈ 𝐴 ∩ 𝑘 +

1

𝑏
⊂ 𝑘. 

Hence by definition of 𝑓𝑗 we have 𝑓𝑗 (𝑡 +
1

𝑏
) = 0. On the other hand, if 𝑡 ∈ 𝐴\𝐾, then 

𝑓𝑗(𝑡) = 0 only when 𝑡 ∈ 𝐽 +
𝑘

𝑏
  for some integer 𝑘 ≥ 𝑗 + 1. In this case, by definition of  

𝑓𝑗, we always have 𝑓𝑗 (𝑡 +
1

𝑏
) = 0. Lastly, if 𝑡 ∈ 𝐴\𝑘 and 𝑓𝑗(𝑡) ≠ 0, then 𝑓𝑗 (𝑡 +

1

𝑏
) ≠

0 unless 𝑡 ∈ 𝐽 +
𝑗

𝑏
. Using these observations, we have that  

∑∫ |𝐻𝑛(𝑡)|
2 𝑑𝑡

1 𝑏⁄

0𝑛

≤ 𝐿1𝜇(𝐽). 

Hence (𝜒[0,𝑐), 𝑎, 𝑏) cannot be a Gabor frame. 

It is clear that the necessity part of Theorem (4.1.18) follows readily from 

Theorem (4.1.3) before embarking on the proof of Theorem (4.1.3). As in the 

assumption of Theorem (4.1.3), we let 𝐺 be an 𝑎-periodic set satisfying the condition 

that 𝐸 ⊂ 𝐺, 𝜇(ℝ\𝐺) > 0 and ℳ(𝐺) = 𝐺. Thought we use �̅� to denote ℝ\ 𝐹 for any 

𝐹 ⊂ ℝ, we will also use 𝐻 specifically to denote �̅�. Thus 𝐻 is also 𝑎-periodic and hence 

𝜇(𝐻 ∩ [0, 𝑎)) > 0. We also denote 𝐻′ = 𝐻 ∩ [0, 1 𝑏⁄ ). Since 1 𝑏⁄ > 𝑎, 𝜇(𝐻′) > 0, also 

holds. Recall that ℳ is a set-valued mapping defined in turn by several other set-valued 

mapping mapping 𝑝𝑗 for 𝑗 ∈ {1,2,3,4,5} such that for any 𝐺 ⊂ ℝ,ℳ(𝐺) = 𝐺 ∪ 𝑝1(𝐺) ∪

𝑝2(𝐺) ∪ 𝑝3(𝐺) ∪ 𝑝4(𝐺) ∪ 𝑝5(𝐺). For the definition of the mappings 𝑝𝑗 in terms of the 

sets 𝐴, 𝐵 and the number 𝑀, reader may consult. Note that 𝐺 = ℳ(𝐺) implies that �̅� =
�̅� ∩ 𝑝1(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝑝2(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝑝3(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝑝4(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ∩ 𝑝5(𝐺)̅̅ ̅̅ ̅̅ ̅̅ . We will use 𝐻𝑗 to denote 𝑝𝑗(𝐺)̅̅ ̅̅ ̅̅ ̅ for each 

𝑗 ∈ {1,2,3,4,5}. Thus in our simplified notation, we have 𝐻 = 𝐻 ∩ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∩
𝐻4 ∩ 𝐻5. Before we begin our construction, we need to establish the following lemmas, 

which will be used extensively in our proof. 

Lemma (4.1.20)[181]: Let 𝐺 be an 𝑎-periodic set satisfying the condition that 𝐸 ⊂ 𝐺, 

𝜇(ℝ\𝐺) > 0 and ℳ(𝐺) = 𝐺 . Let 𝐻 = ℝ \𝐺. Then the following are true: 

(a) If 𝑡 ∈ 𝐻, then either 𝑡 − 𝑀(1 𝑏⁄ ) ∈ 𝐴 \𝐵 or 𝑡 − 𝑀(1 𝑏⁄ ) ∈ 𝐵\𝐴. 

(b) If  𝑡 ∈ 𝐴 ∩ 𝐻, then 𝑡 + 1\𝑏 ∈ 𝐴 \𝐵. 

(c) If 𝑡 ∈ 𝐴 ∩ 𝐻, then there exists 𝑘 ∈ {1,2,3,… ,𝑀} such that 𝑡 + 𝑘(1\𝑏) ∈ 𝐻. 
(d) If 𝑡 ∈ 𝐵 ∩ 𝐻, then there exists 𝑘 ∈ {1,2,3, … ,𝑀 − 1} such that 𝑡 + 𝑘(1\𝑏) ∈ 𝐻. 
(e) If 𝑡 ∈ 𝐴 ∩ 𝐻, then 𝑡 + 𝑙(1 𝑏⁄ ) ∈ 𝐻 for 𝑙 = 𝑀 + 1. 
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(f) If 𝑡 ∈ 𝐵 ∩ 𝐻 and 𝑡 + 1/𝑏 ∈ 𝐵, then 𝑡 + 𝑙(1 𝑏⁄ ) ∈ 𝐻 for 𝑙 = 𝑀. Furthermore, in 

this case 𝑡 ∈ 𝐵/𝐴 always holds.   

(g) If 𝑡 ∈ 𝐵 ∩ 𝐻 and 𝑡 + 1/𝑏 ∈ 𝐴, then there is an 𝑙 ∈ {𝑀,𝑀 + 1} such that 𝑡 +
𝑙(1 𝑏⁄ ) ∈ 𝐻. Furthermore, in the case of 𝑡 + 𝑀(1 𝑏⁄ ) ∈ 𝐻, 𝑡 ∈ 𝐵\𝐴  holds. In the 

case of  𝑡 + ( 𝑀 + 1 )(1 𝑏⁄ ) ∈ 𝐻, 𝑡 + 1\𝑏 ∈ 𝐴\𝐵 holds. 

Proof. Since 𝐸 = (𝐴 ∩ 𝐵 +𝑀(1 𝑏⁄ )) ∪ (𝐴 ∩ (𝐵 − 1 𝑏⁄ )) ⊂ 𝐺, we have 𝐻 ⊂ �̅� . This 

can also be expressed as  

𝐻 ⊂ (�̅� ∪ �̅�) + 𝑀(1 𝑏⁄ ),          𝐻 ⊂ �̅� ∪ (�̅� − 1 𝑏⁄ ). 
Items (a) and (b) are then easily derived from the above observation. 

On the other hand, 𝐻 = 𝐻 ∩ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 ∩ 𝐻4 ∩ 𝐻5 implies that for 𝑗 ∈
{1,2,3,4,5}, we have 𝐻 ⊂ 𝐻𝑗. This can also be expressed in the following way: 

𝐻 ⊂ �̅� ∪ (⋃(𝐻 − 𝐾(1 𝑏⁄ ))

𝑀

𝑘=1

), 

𝐻 ⊂ �̅� ∪ (⋃(𝐻 − 𝐾(1 𝑏⁄ ))

𝑀−1

𝑘=1

), 

𝐻 ⊂ (�̅� − 1 𝑏⁄ ) ∪ �̅� ∪ (𝐻 − (𝑀 + 1)(1 𝑏⁄ ), 
𝐻 ⊂ (�̅� − 1 𝑏⁄ ) ∪ �̅� ∪ (𝐻 −𝑀(1 𝑏⁄ )), 

𝐻 ⊂ (�̅� − 1 𝑏⁄ ) ∪ �̅� ∪ (𝐻 − (𝑀 + 1)(1 𝑏⁄ )) ∪ (𝐻 −𝑀(1 𝑏⁄ )). 
With the help of already established items (a) and (b), items (c)-(g) can be immediately 

derived from the above conditions concerning these sets. 

According to the observation made after Lemma (4.1.4), in order to show that 

(𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame, it suffices to construct a sequence of functions 𝑓𝑐 

with ‖ 𝑓𝑗‖ approaching infinity while the corresponding ∑ ∫ |𝐻𝑛(𝑡)|
2𝑑𝑡

1 𝑏⁄

0𝑛  stays 

bounded. We need to define the notion of translation congruence. Suppose 𝐸 and 𝐹 are 

measurable sets, 𝑠 is a positive real number. We say that 𝐸 and 𝐹 are 𝑠-translation 

congruent, if there are measurable partitions {𝐸𝑛 | 𝑛 ∈ ℤ} and {𝐹𝑛|𝑛 ∈ ℤ } such that 

𝐸𝑛 + 𝑛𝑠 = 𝐹𝑛 for each 𝑛 ∈ ℤ.  
We will construct functions 𝑓𝑗 in such a way that for each 𝑗 ∈ ℕ, 𝑓𝑗 is supported 

on  𝐻, and the range of 𝑓𝑗 is {−1,0,1}. More specifically, for each 𝑗 ∈ ℕ, we will make 

sure that 𝑓𝑗(𝑡) = 1 holds whenever 𝑡 ∈ 𝐻′. Also, for each 𝑗 ∈ ℕ  and each 𝑡 ∈ 𝐻′, we 

will find 𝑗 + 2 natural numbers 0 = 𝑚0 < 𝑚1 < ⋯ < 𝑚𝑗+1 dependent on 𝑡, such that 

𝑓𝑗(𝑠) ≠ 0 (namely, 𝑓𝑗(𝑠) ∈ {−1,1}) if and only if 𝑠 = 𝑡 +𝑚𝑙(1 𝑏⁄ ) for some 𝑙 ∈

{0,1, … , 𝑗 + 1}. We will also make sure that 𝑓𝑗(𝑡) = 0 for any 𝑡 ∈ ℝ and any 𝑗 ∈ ℕ, 

whenever 𝑡 + 𝑚(1 𝑏⁄ ) ∉ 𝐻′ for any 𝑚 ∈ ℤ. We will define those functions inductively. 

Once 𝑓𝑗 is defined for some 𝑗 ∈ ℕ, we define 𝑓𝑗+1(𝑡) = 𝑓𝑗(𝑡) for each 𝑡 satisfying 

𝑓𝑗(𝑡) ∈ {−1,1}. Then we will construct some set which is 1 𝑏⁄ -translation congruent to 

𝐻′ and on which 𝑓𝑗 vanishes, and define 𝑓𝑗+1(𝑡) = 1 or −1 for each 𝑡 in such a set. 

Lastly, we define 𝑓𝑗+1(𝑡) = 0  for any other ∈ ℝ . Note that 𝐻′ is contained in [0, 1 𝑏⁄ ) 

with positive measure, we will make sure that each 𝑓𝑗 is measurable and the above 

mentioned conditions hold in a measurable fashion, thus guaranteeing that for each 𝑗 ∈

ℕ, ‖𝑓𝑗  ‖
2
= (2 + 𝑗)𝜇(𝐻′).  
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Because of inequality (4) and the specific forms taken by 𝐹1 and 𝐹2 as discussed, 

we see that the following two equations are crucial to our construction: 

∑𝑓(𝑡 + 𝑗(1 𝑏⁄ ))

𝑀

𝑗=0

= 0,                                            (12) 

∑ 𝑓(𝑡 + 𝑗(1 𝑏⁄ ))

𝑀−1

𝑗=0

= 0.                                            (13) 

More importantly, we will construct 𝑓𝑗 in such a way that the set of points in 𝐴 

(respectively 𝐵)  where Eq. (12) (respectively Eq (13)) does not hold for 𝑓𝑗 will always 

have measure no bigger than 2(𝑀 + 2)𝜇(𝐻′). This will be achieved if we make sure 

that, in a measurable fashion, for each 𝑡 ∈ 𝐻′, the only possible points where Eqs. (4) 

and (5) are not satisfied by 𝑓𝑗 are contained in the union of sets {𝑡 − (𝑀 +

1)(1 𝑏⁄ ), … , 𝑡 − (1 𝑏⁄ )} and {𝑡 + 𝑚𝑗+1(1 𝑏⁄ ) − 𝑀(1 𝑏⁄ ), 𝑡 + 𝑚𝑗+1(1 𝑏⁄ ) − (𝑀 −

1)(1 𝑏⁄ ), … , 𝑡 + 𝑚𝑗+1(1 𝑏⁄ )} where 𝑚𝑗+1 ∈ ℕ is the largest natural number, dependent on 

𝑡, for which 𝑓𝑗 (𝑡 + 𝑚𝑗+1(1 𝑏⁄ )) ∈ {−1,1}. This will then lead to the estimate that for 

each 𝑓𝑗 constructed, we have 

∫|𝐹1(𝑡)|
2𝑑𝑡

𝐴

≤ 2(𝑀 + 2)3𝜇(𝐻′),        ∫|𝐹1(𝑡)|
2𝑑𝑡

𝐵

≤ 2(𝑀 + 2)3𝜇(𝐻′). 

Hence such a sequence 𝑓𝑗 will serve the purpose of showing that (𝜒[0,𝑐), 𝑎, 𝑏) is not a 

Gabor frame. The construction of each 𝑓𝑗 is based on a partition of certain subset of 𝐻 

with positive measure. We deal with the existence of such a partition for 𝐻′ in the next 

lemma. 

Lemma (4.1.21)[181]: Let 𝐻′ = 𝐻 ∩ [0, 1 𝑏⁄ ).then there is a partition of 𝐻′ into finitely 

many subsets 𝐻𝑣,𝑘1,𝑐1
′  with 𝑣 ∈ {1,2,3}, 𝑘1 ∈ {1,2,… . , 𝑀} and 𝑙1 ∈ {𝑀,𝑀 + 1} such 

that 0 < 𝑙1 − 𝑘1 ≤ 𝑀. The partition satisfies the following conditions: 

(a) For any 𝑘1, 𝑙1, 𝐻1,𝑘1,𝑙1
′ ⊂ 𝐴\𝐵, 𝐻2,𝑘1,𝑙1

′ ⊂ 𝐴⋂𝐵 , 𝐻3,𝑘1,𝑙1
′ ⊂ 𝐵\𝐴. 

(b) For any {𝑣, 𝑘1, 𝑙1}, and any 𝑡 ∈ 𝐻𝑣,𝑘1,𝑙1
′ , 𝑡 + 𝑘1(1 𝑏⁄ ) ∈ 𝐻 and 𝑡 + 𝑙1(1 𝑏⁄ ) ∈ 𝐻. 

Proof. Under the assumption 𝑎 < 1 𝑏⁄ , we always have 𝐴 ∪ 𝐵 = ℝ. We may partition 

𝐻′ into disjoint union of sets 𝐻′ ∩ (𝐴\𝐵),𝐻′ ∩ (𝐴 ∩ 𝐵) and 𝐻′ ∩ (𝐵\𝐴). According to 

Lemma (4.1.20), for each 𝑡 ∈ 𝐻′ ∩ (𝐴\𝐵), there is a 𝑘 ∈ {1,2,3, … ,𝑀}, such that 𝑡 +

𝑘(1\𝑏) ∈ 𝐻. Also 𝑡 + 𝑙 (
1

𝑏
) ∈ 𝐻 for 𝑙 = 𝑀 + 1. Likewise, for each 𝑡 ∈ 𝐻′ ∩ (𝐴 ∩ 𝐵), 

because of item (a) of Lemma (4.1.20), we know that  𝑡 + 𝑀 (
1

𝑏
) ∉ 𝐻, So Lemma 

(4.1.20) Leads to the conclusion that there is a 𝑘 ∈ {1,2,3,… ,𝑀 − 1}, such that 𝑡 +

𝑘 (
1

𝑏
) ∈ 𝐻 and also 𝑡 + 𝑙 (

1

𝑏
) ∈ 𝐻 For 𝑙 = 𝑀 + 1. The last case is more involved. For 

each 𝑡 ∈ 𝐻′ ∩ (𝐵\𝐴), though there is always a 𝑘 ∈ {1,2,3, … ,𝑀 − 1} such that 𝑡 +

𝑘 (
1

𝑏
) ∈ 𝐻, it is both possible for 𝑙 = 𝑀 or 𝑙 = 𝑀 + 1 to satisfy 𝑡 + 𝑙 (

1

𝑏
) ∈ 𝐻. The 

restrictions are stated in items (f) and (g) of Lemma (4.1.20). Yet for the purpose of 

obtaining a partition of 𝐻′, if we allow empty sets in the midst, we may ignore such 

nuance. The above argument is enough to guarantee the existence of such a partition. 
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The construction of 𝑓1 is based on such a partition for the set 𝐻′. For any  𝑡 ∈ 𝐻′ 

we define 𝑓1(𝑡) = 1. For any  𝑡 ∈ 𝐻𝑣,𝑘1,𝑙1
′ + 𝑘1 (

1

𝑏
), we define 𝑓1(𝑡) = −1. For any 𝑡 ∈

𝐻𝑣,𝑘1,𝑙1
′ + 𝑙1 (

1

𝑏
), we define 𝑓1(𝑡) = 1. For any other 𝑡 ∈ ℝ, we define 𝑓1(𝑡) = 0. 

According to Lemma (4.1.21), 0 < 𝑙1 − 𝑘1 ≤ 𝑀 always holds. So 𝑓1 is well defined. 

Now we use �̃�′ to denote the set of points where 𝑓1 takes non-zero value. Also we 

define  

H′′ = ⋃ (𝐻𝑣,𝐾1,𝑙1
′ + 𝑘1 (

1

𝑏
))

𝑣,𝐾1,𝑙1

,    𝐻′′′ = ⋃ (𝐻𝑣,𝐾1,𝑙1
′ + 𝑙1 (

1

𝑏
))

𝑣,𝐾1,𝑙1

. 

Cleary, both H′′ and 𝐻′′′ are subsets of �̃�′ and they are both 1/𝑏 –translation 

congruent to 𝐻′. Hence 𝜇(𝐻′′) = 𝜇(𝐻′′′) = 𝜇(𝐻′). In fact, �̃�′ is the disjoint union of 

𝐻′,  𝐻′′ and 𝐻′′′. Therefore 𝜇(�̃�′) = 3𝜇(𝐻′) and evidently ‖𝑓1‖
2 = 3𝜇(𝐻′). Note also 

that the support of  𝑓1 is contained in  

�̂�′ = ⋃ (⋃𝐻𝑣,𝐾1,𝑙1
′ +𝑚(1/𝑏)

𝑙1

𝑚=0

)

𝑣,𝑘1,𝑙1

. 

Since 𝑙1 ≤ 𝑀 + 1 holds for each 𝑙1 ∈ {𝑀,𝑀 + 1}, �̂�
′ has measure no bigger than 

(𝑀 + 2)𝜇(𝐻′). Also note that for each 𝑡 ∈ 𝐻′ and each 𝑚 ∈ ℤ, 𝑡 + 𝑚(1/𝑏) ∈ �̂�′ if and 

only if 𝑡 + 𝑚(
1

𝑏
) ∈ {𝑡, 𝑡 + 1 𝑏⁄ ,… , 𝑡 + 𝑙1 (

1

𝑏
)}. Thus, for any 𝑡 ∈ 𝐻′, the only possible 

points where Eqs. (4) and (5) are not satisfied by 𝑓1 are contained in the union of sets 

{𝑡 − 𝑀(1/𝑏),… , 𝑡 − 1/𝑏} and {𝑡 + 𝑙1 (
1

𝑏
) − 𝑀(1/b), 𝑡 + 𝑙1(1/b) − (𝑀 −

1)(1/b),… , 𝑡 + 𝑙1(1/b)}. Note that the later set is contained in �̂�′, so the measure of 

the points in 𝐴 (respectively 𝐵) where Eq. (3) (respectively Eq. (4)) does not hold for 𝑓1 

is no bigger that 𝑀𝜇(𝐻
′) + (𝑀 + 2)𝜇(𝐻′) < 2(𝑀 + 2)𝜇(𝐻′). Hence there is nothing 

else to check at this stage. Nevertheless, we make the following observation concerning 

the points which satisfy Eqs. (12) and (13). 

Lemma (4.1.22)[181]: For any 𝑚 ∈ {0,1}, 𝑣 ∈ {1,2,3}, 𝑘1 ∈ {1,2,3, … ,𝑀} and 𝑙1 ∈

{𝑀,𝑀 + 1} and any 𝑡 ∈ 𝐻𝑣,𝐾1,𝑙1
′ +𝑚(

1

𝑏
), the following is true: 

(a) 𝑓1 Satisfies Eq. (12) whenever  𝑡 ∈ 𝐴. 

(b) 𝑓1 Satisfies Eq. (13) whenever  𝑡 ∈ 𝐵. 

Proof. When 𝑣 = 1, according to item (b) of Lemma (4.1.20), for any 𝑚 ∈ {0,1} and 

any 𝑘1, 𝑙1 ,if 𝑡 ∈ 𝐻1,𝐾1,𝑙1
′ +𝑚(1/𝑏), then 𝑡 ∈ 𝐴\𝐵. Thus we only need to check Eq. (12) 

which can be easily done due to the simple construction of 𝑓1. Likewise, when 𝑣 = 2. 

according to item (g) of lemma (4.1.20), we need to check both Eqs. (12) and (13) for 

𝑡 ∈ 𝐻2,𝐾1,𝑙1
′  but only Eq. (12) for 𝑡 ∈ 𝐻2,𝐾1,𝑙1

′ + 1/𝑏. Note also  that just as in the case of 

𝑣 = 1, when 𝑣 = 2, we always have 𝑙1 = 𝑀 + 1. But unlike the case of 𝑣 = 1, when 

𝑣 = 2, 𝑘1 ≤ 𝑀 − 1. Likewise, when 𝑣 = 3, we always have 𝑙1 = 𝑀. Thought in the 

case of 𝑣 = 3 there are more subcases, it is still quite straight forward to show that for 

any 𝑚 ∈ {0,1} and 𝑘1, 𝑙1, any 𝑡 ∈ 𝐻3,𝐾1,𝑙1
′ +𝑚(1/𝑏), Eq. (12) (respectively Eq. (13)) is 

satisfied by 𝑓1 whenever 𝑡 ∈ 𝐴 (respectively 𝑡 ∈ 𝐵). We omit the repetitive 

computations. 
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Note that as mentioned in the above proof, 𝑙1 = 𝑀 holds whenever 𝑣 = 3, 

whereas when 𝑣 ∈ {1,2}, 𝑙1 = 𝑀 + 1 is always true. Once 𝑓2 is constructed, it will 

become evident that for 𝑡 ∈ 𝐻𝑣,𝑘1,𝑙1
′ +𝑚(1 𝑏⁄ ) with 𝑣 ∈ {1,2},𝑚 ∈ {0,1} and any 𝑘1, 𝑙1, 

Eq. (12) (respectively (12)) is satisfied by 𝑓2 whenever 𝑡 ∈ 𝐴  (respectively 𝑡 ∈ 𝐵). As 

for 𝑡 ∈ 𝐻3,𝑘1,𝑙1
′ +𝑚(1 𝑏⁄ ) with 𝑚 ∈ {0,1} , though the same is also true, it takes a bit of 

proof. In fact, once 𝑓2 is defined, we will show that the construction of 𝑓2 guarantees 

𝑓2(𝑡 + (𝑀 + 1)(1 𝑏⁄ )) = 0 for any 𝑡 ∈ 𝐻3,𝑘1,𝑙1
′  with any 𝑘1, 𝑙1. This fact then will lead 

quickly to the same desired conclusion. 

For the purpose of defining  𝑓2, we will first obtain a partition 𝐻′′. Instead of 

using indexing triples as in the partition of  𝐻′, we will use indexing quadruples 

{𝑣, 𝑘1, 𝑘2, 𝑙2} with 𝑣 ∈ {1,2,3}, 𝑘1, 𝑘2 ∈ {1,2,… ,𝑀} and 𝑙2 ∈ {𝑀,𝑀 + 1}. The reason 

for this choice of index will become apparent once 𝑓2 is constructed. Let us first see 

how the partition is done for 𝐻′′. 
Lemma (4.1.23)[181]: Let 𝐻′′ be defined as above. Then there is a partition of 𝐻′′ into 

finitely many subsets 𝐻𝑣,𝐾1,𝑘2,𝑙2
′′  with 𝑣 ∈ {1,2,3} , 𝐾1, 𝑘2 ∈ {1,2,… ,𝑀} and 𝑙2 ∈

{𝑀,𝑀 + 1} such that 0 < 𝑙2 − 𝑘2 ≤ 𝑀. The partition satisfies the following conditions:  

(a) For any 𝑘1, 𝑘2, 𝑙2, 𝐻1,𝐾1,𝑘2,𝑙2
′′ ⊂ 𝐴\𝐵, 𝐻2,𝐾1,𝑘2,𝑙2

′′ ⊂ 𝐴⋂𝐵,𝐻3,𝐾1,𝑘2,𝑙2
′′ ⊂ 𝐵\𝐴 . 

(b) For any 𝑣, 𝑘1, 𝑘2, 𝑙2 and any 𝑡 ∈ 𝐻𝑣,𝐾1,𝑘2,𝑙2
′′ , 𝑡 − 𝑘1(1/𝑏) ∈ 𝐻

′. 

(c) For any 𝑣, 𝑘1, 𝑘2, 𝑙2, and any 𝑡 ∈ 𝐻𝑣,𝐾1,𝑘2,𝑙2
′′ , 𝑡 + 𝑘2(1/𝑏) ∈ 𝐻

′′′. 

(d) For any 𝑣, 𝑘1, 𝑘2, 𝑙2,and any 𝑡 ∈ 𝐻𝑣,𝐾1,𝑘2,𝑙2
′′ , 𝑡 + 𝑙2(1/𝑏) ∈ 𝐻. 

Proof. The argument is quite similar to that of the proof of Lemma (4.1.21). Again, 

Since our main concern is to obtain a partition of 𝐻′′, to avoid unnecessary 

complications, we allow that some of the sets indexed by {𝑣, 𝐾1, 𝑘2, 𝑙2} may be empty. 

Clearly, from the discussion of �̃�′ above, for each 𝑡 ∈ 𝐻′′, there are unique natural 

numbers 𝐾1 and 𝑘2 such that 𝑡 − 𝑘1(1 𝑏⁄ ) ∈ 𝐻
′ and 𝑡 + 𝑘2(1 𝑏⁄ ) ∈ 𝐻

′′′. On the other 

hand, Lemma (4.1.20) also guarantees that for each 𝑡 ∈ 𝐻′′, there is a 𝑙2 ∈ {𝑀,𝑀 + 1}, 
such that 𝑐+ 𝑙2(1/𝑏) ∈ 𝐻. Now the only thing left to show is the following∶ For each 

𝑡 ∈ 𝐻′′, let 𝐾1 and 𝐾2 be the unique natural numbers 𝐾1 and 𝐾2 such that 𝑡 −

𝐾1(1/𝑏) ∈ 𝐻
′ and 𝑡 + 𝐾2 (

1

𝑏
) ∈ 𝐻′′′, let 𝑙2 ∈ {𝑀,𝑀 + 1} as guaranteed by Lemma 

(4.1.20) with 𝑡 + 𝑙2(1 𝑏⁄ ) ∈ 𝐻, then it is always true that 𝑘1, 𝑘2 ∈ {1, … ,𝑀} and 0 <
𝑘1 − 𝑘2 ≤ 𝑀. 

Indeed, if we consider the point 𝑡′ = 𝑡 − 𝑘1(1 𝑏⁄ ) ∈ 𝐻
′, and suppose 𝑡′ ∈

𝐻𝑣,𝑘1′ ,𝑙1′
′ , for some 𝑘1

′ ∈ {1,… ,𝑀} and 𝑙1
′ ∈ {𝑀,𝑀 + 1}, then we must have 𝑘1 = 𝑘1

′  and 

𝑘2 = 𝑙1
′ − 𝑘1

′ . Thus 0 <  𝑘1 ≤ 𝑀. According to Lemma (4.1.21), 0 <  𝑙1
′ − 𝑘1

′ ≤ 𝑀 

always holds, Thus we always have 0 <  𝑘2 ≤ 𝑀. Since 𝑙2 ∈ {𝑀,𝑀 + 1}, 𝑙2 − 𝑘2 ≤ 𝑀  

clearly holds . Lastly, in order to show 𝑙2 − 𝑘2 > 0, we only need to make sure that 

𝑘2 = 𝑙2 = 𝑀, never could happen. Observe that if 𝑘2 = 𝑙1
′ − 𝑘1

′ = 𝑀 holds, it must be 

true that 𝑙1
′ = 𝑀 + 1 and 𝑘1

′ = 1. Let us list all possible cases where this happens, and 

show that in each case 𝑙2 = 𝑀 + 1 must be true. For 𝑡 ∈ 𝐻′′, since 𝑘1 = 1, we have 

must have 𝑡′ = 𝑡 − 1 𝑏⁄ ∈ 𝐻′, thus either  𝑡′ ∈ 𝐴 or 𝑡′ ∈ 𝐵\𝑐. Yet 𝑡′ ∈ 𝐴⋂𝐻′ implies 

𝑡′ + 1 𝑏⁄ = 𝑡 ∈ 𝐴\𝐵 which implies 𝑙2 = 𝑀 + 1.Whereas when 𝑡′ ∈ 𝐵\𝐴, we see that 

𝑙1
′ = 𝑀 + 1 only when 𝑡′ + 1 𝑏⁄ = 𝑡 ∈ 𝐴, in which case actually 𝑡 ∈ 𝐴\𝐵, hence also 

𝑙2 = 𝑀 + 1. Thus 0 < 𝑙2 − 𝑘2 ≤ 𝑀 always hold. 
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We note in passing that, as indicated by the above lemma, our choice of the letter 

𝑘2 in the definition of the partition of 𝐻′′ is actually appropriate since 𝑘2 indeed 

represents one of the 𝑘 guaranteed by item (c) and (d) of Lemma (4.1.20) for each 𝑡 ∈
𝐻′′. 

Now for any 𝑡 ∈ 𝐻′′ + 𝑙2(1 𝑏⁄ ), we define 𝑓2(𝑡) = −1. For any other  𝑡 ∈ ℝ, the 

definition of  𝑓2 agrees with that of 𝑓1. As we have just proved, 𝑘2 < 𝑙2 holds for all 

non-empty sets in the partition of 𝐻′′, So 𝑓2 is will defined. Similarly, we use �̃�′′ to 

denote the set of points where 𝑓2 takes non-zero value. Clearly, �̃�′′ is the disjoint union 

of 𝐻′, 𝐻′′, 𝐻′′′  and the set 

𝐻{4} = ⋃ (𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ + 𝑙2(1 𝑏⁄ ))

𝑣,𝑘1,𝑘2,𝑙2

. 

Also note that, from the proof of the last Lemma, for any 𝑡 ∈ 𝐻′′ with 

corresponding numbers 𝑘1, 𝑘2 and 𝑙2, the number 𝑘2 can always be expressed uniquely 

as 𝑘2 = 𝑙1
′ − 𝑘1

′  where 𝑙1
′  and 𝑘1

′  are the numbers corresponding to the unique point 𝑡′ =
𝑡 − 𝑘1(1 𝑏⁄ ) ∈ 𝐻

′. Since 𝐻′′ = ⋃ (𝐻𝑣,𝑘1,𝑙1
′ + 𝑘1(1 𝑏⁄ ))𝑣,𝑘1,𝑙1 , it then follows that the set 

𝐻′′′ = ⋃ (𝐻𝑣,𝑘1,𝑙1
′ + 𝑙1(1 𝑏⁄ ))𝑣,𝑘1,𝑙1  can be written as 

𝐻′′′ = ⋃ (𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ + 𝑘2(1 𝑏⁄ ))

𝑣,𝑘1,𝑙1

. 

Evidently, 𝐻′, 𝐻′′, 𝐻′′′ and 𝐻{4} are mutually 1 𝑏⁄ -translation congruent, 

therefore 𝜇(�̃�′′) = 4𝜇(𝐻′). Thus ‖𝑓2‖2
2 = 4𝜇(𝐻′). Now we look at the support of 𝑓2 

more closely. According to the partition of 𝐻′ and 𝐻′′, the support of 𝑓2 is contained in 

the disjoint union of the following two sets: 

⋃ ⋃(𝐻𝑣,𝑘1,𝑙1
′ +𝑚(1 𝑏⁄ ))

𝑘1+1

𝑚=0𝑣,𝑘1,𝑙1

,       ⋃ ⋃(𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ +𝑚(1 𝑏⁄ )).

𝑙2

𝑚=2𝑣,𝑘1,𝐾2,𝑙2

 

Similarly, we denote the union of the above two sets as �̂�′′. Note that the second 

set above has measure less than (𝑀 + 1)𝜇(𝐻′), while the first set above can also be 

written as 

⋃ ⋃ 𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ +𝑚(1 𝑏⁄ )

1

𝑚=−𝑘1𝑣,𝑘1,𝑘2,𝑙2

. 

Now it should be clear that once the next lemma is established, due to the fact 

that 𝑙2 ≤ 𝑀 + 1 always holds, it follows immediately that all possible points where 

Eqs.(4) and (5) are not satisfied by 𝑓2 are contained in the union of sets ⋃ 𝐻′ −𝑀+1
𝑚=1

𝑚(1 𝑏⁄ ) and ⋃ ⋃ 𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ +𝑚(1 𝑏⁄ )

𝑙2
𝑚=2𝑣,𝑘1,𝑘2,𝑙2 , thus it has measure no bigger that 

2(𝑀 + 2)𝜇(𝐻′). 
Lemma (4.1.24)[181]:  Let  𝐻′′ and its partition be defined as above. For any 𝑡 ∈
𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ +𝑚(1 𝑏)⁄  With 𝑚 ∈ {−𝑘1, … ,0,1} and 𝑣 ∈ {1,2,3}, 

𝑘1, 𝑘2 ∈ {1,… ,𝑀} and 𝑙2 ∈ {𝑀,𝑀 + 1}, Eq. (12) is satisfied by 𝑓2 whenever 𝑡 ∈ 𝐴 and 

Eq. (13) is satisfied by 𝑓2 whenever 𝑡 ∈ 𝐵. 

Proof. We show the case of 𝑚 = −𝑘1 and 𝑚 = −𝑘1 + 1 first. For this purpose, note 

that according to the definition of 𝐻′ and 𝐻′′, we have 𝑡 ∈ 𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ − 𝑘1 (

1

𝑏
) if and 
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only if 𝑡 ∈ 𝐻𝑣′,𝑘1,𝑙1′
′  for some 𝑣′ ∈ {1,2,3} and 𝑙1

′ ∈ {𝑀,𝑀 + 1}. Likewise, 𝑡 ∈

𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ − 𝑘1 (

1

𝑏
) + 1 𝑏⁄  if and only if  𝑡 ∈ 𝐻𝑣′,𝑘1,𝑙1′

′ + 1 𝑏⁄  for some 𝑣′ ∈ {1,2,3} and 

𝑙1
′ ∈ {𝑀,𝑀 + 1}.  Recall that it is already checked in Lemma (4.1.22) that those 

equations are satisfied by 𝑓1 for such 𝑡 .Since 𝑓1 and 𝑓2 are identical on the union of the 

following two sets:  

⋃ ⋃𝐻𝑣,𝑘1,𝑙1
′ +𝑚(1 𝑏⁄ )

𝑘1 

𝑚=0𝑣,𝑘1,𝑙1

, ⋃ ⋃ 𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ +𝑚(1 𝑏⁄ )

𝑙2− 1

𝑚=1𝑣,𝑘1,𝑘2,𝑙2

. 

it should be clear that if 𝑡 ∈ 𝐻𝑣′,𝑘1,𝑙1′
′  for some 𝑣′ ∈ {1,2,3}  and 𝑙1

′ ∈ {𝑀,𝑀 + 1}, 𝑓2 is 

also satisfies Eq. (3) (respectively (4)) whenever 𝑡 ∈ 𝐴 (respectively 𝑡 ∈ 𝐵). For the 

case of 𝑚 = −𝑘1 + 1, the only non-trivial case that needs detailed discussion is when 

𝑘1 = 1. Now if 𝑡 ∈ 𝐴 ∩ 𝐻𝑣′,𝑘1,𝑙1′
′ + 1 𝑏⁄  and 𝑘1 = 1, the corresponding 𝑙1

′  for 𝑡′ = 𝑡 −

1 𝑏⁄ ∈ 𝐻𝑣′,𝑘1,𝑙1′
′  is always 𝑀 + 1. Thus the same conclusion is also trivially true. This 

leaves us with the case of 𝑡 ∈ (𝐵\𝐴) ∩ 𝐻𝑣′,𝑘1,𝑙1′
′ + 1 𝑏⁄  and 𝑘1 = 1, which we discuss in 

the following. 

Note that the assumption 𝑘1 = 1 means that for such 𝑡 ∈ (𝐵\𝐴) ∩ 𝐻𝑣′,𝑘1,𝑙1′
′ + 1 𝑏⁄  

we must have 𝑡 ∈ 𝐻′′ and 𝑡′ = 𝑡 − 1 𝑏⁄ ∈ 𝐻′. There are three possibilities . First of all, 

it is possible that 𝑡 ∈ 𝐴 ∩ 𝐵. In this case the corresponding 𝑙1
′    for 𝑡′ = 𝑡 − 1 𝑏⁄  

guaranteed by Lemma (4.1.20) must be 𝑀 (according to the item (g) of Lemma (4.1.20) 

in this case 𝑙1
′  cannot be 𝑀 + 1). Note that in this case we only need to make sure that 

𝑡 + 𝑀(1 𝑏⁄ ) ∉ 𝐻{4}, thus it is enough to make sure that 𝑡 + 𝑀(1 𝑏⁄ ) ∉ 𝐻. 
Indeed, this is guaranteed item (a) of Lemma (4.1.20). Secondly ,it is possible 

that 𝑡 ∈ 𝐵\𝐴. In this case the corresponding 𝑙1
′  for such 𝑡′ = 𝑡 − 1 𝑏⁄  guaranteed by 

Lemma (4.1.20) must also  be 𝑀. In this case Eq. (12) is satisfied by 𝑓2 for 𝑡 vacuously. 

Whereas Eq. (13) is trivially satisfied by 𝑓2 for such 𝑡.  
Thirdly, it is possible that 𝑡 ∈ 𝐴\𝐵. In this case the corresponding 𝑙1

′  for 𝑡′ = 𝑡 −
1 𝑏⁄  guaranteed by Lemma (4.1.20) could either be 𝑀 or 𝑀 + 1.  When 𝑙1

′ = 𝑀 + 1, it 

is trivial for the same reason as when 𝑡 ∈ 𝐴 ∩ 𝐻𝑣′,𝑘1,𝑙1′
′ + 1 𝑏⁄ . We look at the subcase of 

𝑙1
′ = 𝑀. In this subcase, again we only need to make sure that 𝑡 + 𝑀(1 𝑏⁄ ) ∉ 𝐻{4}. 

Indeed, since 𝑡 ∈ 𝐴\𝐵 according to item (c) of Lemma (4.1.20), the number 𝑙2 

corresponding to such 𝑡 is 𝑀 + 1. This means that 𝑡 + (𝑀 + 1)(1 𝑏⁄ ) ∈ 𝐻{4}. Thus  𝑡 +

𝑀 (
1

𝑏
) ∉ 𝐻.  

After the case of 𝑚 = −𝑘1and 𝑚 = −𝑘1 + 1 is done, we see that when  𝑘1 = 1 

we have already finished checking. Otherwise, 𝑘1 > 1. We note that when 𝑚 ∈
{−𝑘1 + 2,… ,−1}, the checking is trivially done. When 𝑚 ∈ {0,1}, the checking is 

exactly the same as in Lemm (4.1.22). 

Now we proceed to construct 𝑓3 based on a partition of 𝐻′′′. 
Lemma (4.1.25)[181]: Let 𝐻′′′ be defined as above. Then there is a partition of  𝐻′′′ 
into finitely many subsets 𝐻𝑣,𝑘2,𝑘3,𝑙3

′′′  with 𝑣 ∈ {1,2,3}, 𝑘2, 𝑘3 ∈ {1,2,… ,𝑀} and  𝑙3 ∈

{𝑀,𝑀 + 1}such that 0 < 𝑙3 − 𝑘3 ≤ 𝑀. The partition satisfies the following conditions: 

(a) For any 𝑘2, 𝑘3, 𝑙3  𝐻1,𝑘2,𝑘3,𝑙3
′′′ ⊂ 𝐴\𝐵, 𝐻2,𝑘2,𝑘3,𝑙3

′′′ ⊂ 𝐴⋂𝐵, 𝐻3,𝑘2,𝑘3,𝑙3
′′′ ⊂ 𝐵\𝐴. 

(b) For any 𝑣, 𝑘2, 𝑘3, 𝑙3 and any 𝑡 ∈ 𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ , 𝑡 − 𝑘2(1/𝑏) ∈ 𝐻

′′.  
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(c) For any 𝑣, 𝑘2, 𝑘3, 𝑙3 and any 𝑡 ∈ 𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ , 𝑡 + 𝑘3(1/𝑏) ∈ 𝐻

{4}.  

(d) For any 𝑣, 𝑘2, 𝑘3, 𝑙3 and any  𝑡 ∈ 𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ , 𝑡 + 𝑙3(1/𝑏) ∈ 𝐻.  

Proof. The argument is quite similar to that of Lemma (4.1.23), we omit it. 

Now for any 𝑡 ∈ 𝐻′′′ + 𝑙3(1 𝑏⁄ ), we define 𝑓3(𝑡) = 1. For any other 𝑡 ∈ ℝ, the 

definition of 𝑓3 agrees with that of 𝑓2. As we have just proved, 𝑘3 < 𝑙3 holds for all 

non-empty sets in the partition of 𝐻′′′, so 𝑓3 is well defined. Likewise we define  

𝐻{5} = ⋃ (𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ + 𝑙3(1 𝑏⁄ ))

𝑣,𝑘2,𝑘3,𝑙3

. 

Likewise, for any 𝑡 ∈ 𝐻′′′ with corresponding numbers 𝑘2, 𝑘3 and 𝑙3, the number 

𝑘3 can always be expressed uniquely as 𝑘3 = 𝑙2
′′ − 𝑘2

′′ where 𝑙2
′′ and 𝑘2

′′ are the unique 

numbers corresponding to the unique point 𝑡′′ = 𝑡 − 𝑘2(1 𝑏⁄ ) ∈ 𝐻
′′. Since 𝐻′′′ =

⋃ (𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ + 𝑘2(1 𝑏⁄ ))𝑣,𝑘2,𝑘3,𝑙3 , it then f0llows that the set 

𝐻{4} = ⋃ (𝐻𝑣,𝑘1,𝑘2,𝑙2
′′ + 𝑙2(1 𝑏⁄ ))

𝑣,𝑘1,𝑘2,𝑙2

 

can be written as 𝐻{4} = ⋃ (𝐻𝑣,𝑘2,𝑘3,𝑙3
′′ + 𝑘3(1 𝑏⁄ ))𝑣,𝑘2,𝑘3,𝑙3 .  

Similarly we get ‖𝑓3‖2
2 = 5𝜇(𝐻′) .Now we look at the support of 𝑓3 more 

closely. According to the partition of  𝐻′′′, the support of 𝑓3 is contained in the union of 

the set �̂�′ and the following set: 

⋃ ⋃𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ +𝑚(1 𝑏⁄ )

𝑙3

𝑚=2𝑣,𝑘2,𝑘3,𝑙3

. 

Again we denote the union of the above mentioned two sets as �̂�′′′. Thus once 

we prove that for any point 𝑡 ∈ �̂�′, Eq. (3) (respectively Eq. (4)) is satisfied whenever 

𝑡 ∈ 𝐴 (respectively 𝐵), it will follow immediately that the set of points in 𝐴 

(respectively 𝐵), where 𝑓3 does not satisfy Eq. (3) (respectively Eq. (4)) is contained in 

the union of ⋃ 𝐻′ −𝑚(1 𝑏⁄ )𝑀+1
𝑚=1  and ⋃ ⋃ 𝐻𝑣,𝑘2,𝑘3,𝑙3

′′′ +𝑚(1 𝑏⁄ )
𝑙3
𝑚=2𝑣,𝑘2,𝑘3,𝑙3 , thus it has 

measure no bigger that 2(𝑀 + 2)𝜇(𝐻′). Yet if we take Lemma (4.1.24) into 

consideration, we see that in order to show that for any point 𝑡 ∈ �̂�′, Eq. (3) 

(respectively Eq. (4)) is satisfied whenever 𝑡 ∈ 𝐴 (respectively 𝐵), it is more than 

enough to prove the following Lemm: 

Lemma (4.1.26)[181]: Let 𝐻′′′ and its partition be defined as above. For any 𝑡 ∈

𝐻𝑣,𝑘2,𝑘3,𝑙3
′′′ +𝑚(1 𝑏⁄ ) with 𝑚 ∈ {−𝑘2, … ,0,1} and 𝑣 ∈ {1,2,3}, 𝑘2, 𝑘3 ∈ {1,… ,𝑀} and 𝑙3 ∈
{𝑀,𝑀 + 1}, Eq. (12) is satisfied by 𝑓3 whenever 𝑡 ∈ 𝐴 and Eq. (13) is satisfied by 𝑓3 

whenever 𝑡 ∈ 𝐵. 

Proof.  The proof is similar to that of Lemma (4.1.24) we omit it. 

Lemma (4.1.27)[181]: Let 𝐻{𝑗} be as defined. Then there is a partition of 𝐻{𝑗} into 

finitely many subsets 𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

 with 𝑣 ∈ {1,2,3}, 𝑘𝑗−1, 𝑘𝑗 ∈ {1,2,… ,𝑀} and 𝑙𝑗 ∈

{𝑀,𝑀 + 1} such that 0 < 𝑙𝑗 − 𝑘𝑗 ≤ 𝑀. The partition satisfies the following conditions:  

(a) For any 𝑘𝑗−1, 𝑘𝑗 , 𝑙𝑗 , 𝐻1,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

⊂ 𝐴\𝐵, 𝐻2,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

⊂ 𝐴⋂𝐵,𝐻3,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

⊂ 𝐵\𝐴. 

(b) For any 𝑣, 𝑘𝑗−1, 𝑘𝑗 , 𝑙𝑗, and any 𝑡 ∈ 𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

, 𝑡 − 𝑘𝑗−1(1 𝑏⁄ ) ∈ 𝐻
{𝑗−1}. 
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(c) For any 𝑣, 𝑘𝑗−1, 𝑘𝑗 , 𝑙𝑗, and any 𝑡 ∈ 𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

, 𝑡 + 𝑘𝑗(1 𝑏⁄ ) ∈ 𝐻
{𝑗+1}. 

(d) For any 𝑣, 𝑘𝑗−1, 𝑘𝑗 , 𝑙𝑗 , and any 𝑡 ∈ 𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

, 𝑡 + 𝑙𝑗(1 𝑏⁄ ) ∈ 𝐻. 

Proof. The argument is quite similar to that of Lemma (4.1.25), we omit it. 

Now for any 𝑡 ∈ 𝐻[𝑗] + 𝑙3(1 𝑏⁄ ), we define 𝑓𝑗(𝑡) = (−1)
𝑗+1. For any other 𝑡 ∈

ℝ, the definition of 𝑓𝑗 agrees with that of 𝑓𝑗−1. At this stage, it is already established that 

𝑘𝑗 < 𝑙𝑗 holds for all non-empty sets in the partition of 𝐻[𝑗], so 𝑓𝑗  is well defined. 

Likewise we define 

𝐻{𝑗+2} = ⋃ (𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

+ 𝑙𝑗(1 𝑏⁄ ))

𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗

. 

Likewise, for any 𝑡 ∈ 𝐻𝑗 with the unique corresponding numbers 𝑘𝑗−1, 𝑘𝑗 and 𝑙𝑗, the 

number 𝑘𝑗 can always be expressed uniquely as 𝑘𝑗 = 𝑙𝑗−1
(𝑗−1)

− 𝑘𝑗−1
(𝑗−1)

 where 𝑙𝑗−1
(𝑗−1)

 and 

𝑘𝑗−1
(𝑗−1)

 are the unique numbers corresponding to the unique point 𝑡(𝑗−1) = 𝑡 −

𝑘𝑗−1(1 𝑏⁄ ) ∈ 𝐻
𝑗−1. Since  

𝐻{𝑗} = ⋃ (𝐻𝑣,𝑘𝑗−1,𝑘𝑗−1,𝑙𝑗−1
{𝑗−1}

+ 𝑘𝑗−1(1 𝑏⁄ ))

𝑣,𝑘𝑗−2,𝑘𝑗−1,𝑙𝑗−1

, 

it then follows that 𝐻{𝑗+1} = ⋃ (𝐻𝑣,𝑘𝑗−2,𝑘𝑐−1,𝑙𝑗−1

{𝑗−1}
+ 𝑙𝑗−1(1 𝑏⁄ ))𝑣,𝑘𝑗−2,𝑘𝑗−1,𝑙𝑗−1   can be 

written as  

𝐻{𝑗+1} = ⋃ (𝐻𝑣,𝑘𝑗−1,𝑘𝑗 ,𝑙𝑗
{𝑗}

+ 𝑘𝑗(1 𝑏⁄ ))

𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗

. 

We use 𝐻{𝑗}̃  to denote the sets of points where 𝑓𝑗 takes non-zero value. Then 

clearly 𝐻{𝑗}̃  is a disjoint union of mutually 1 𝑏⁄ -translation congruent sets 𝐻′, … , 𝐻{𝑗+2}. 

Thus 𝜇 (𝐻{𝑗}̃ ) = (𝑗 + 2)𝜇(𝐻′) and ‖𝑓𝑗‖2
2
= (𝑗 + 2)𝜇(𝐻′). Now we look at the support 

of 𝑓𝑗 more closely. The support 𝑓𝑗 is contained in the union of the sets 𝐻{𝑗−2}̂  and the 

following set: 

⋃ ⋃𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝑗}

+𝑚(1 𝑏⁄ )

𝑙𝑗

𝑚=2𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗 

. 

Again we denote the union of the above mentioned two sets as 𝐻{𝑗}̂ . Note that the 

latter set has measure no greater than (𝑀 + 2)𝜇(𝐻′). Thus once we prove that for any 

point 𝑡 ∈ 𝐻{𝑗−2}̂ , Eq. (3) (respectively Eq. (4)) is satisfied whenever 𝑡 ∈ 𝐴 (respectively 

𝐵), it will follow immediately that the set of points in 𝐴 (respectively 𝐵) where 𝑓𝑗 does 

not satisfy Eq. (3) (respectively Eq. (4)) is contained in the union of ⋃ 𝐻′ −𝑀+1
𝑚=1

𝑚(1 𝑏⁄ ) and ⋃ ⋃ 𝐻,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝐽}

+𝑚(1 𝑏⁄ )
𝑙𝑗
𝑚=2𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗 , thus it has measure no bigger that 

2(𝑀 + 2)𝜇(𝐻′). 
Yet since we proceed inductively, we see that in order to prove that for any point 

𝑡 ∈ 𝐻{𝑗−2}̂ , Eq. (3) (respectively Eq. (4)) is satisfied whenever 𝑡 ∈ 𝐴 (respectively 𝐵), it 

is more than enough to prove the following lemma: 
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Lemma (4.1.28)[181]: Let 𝐻{𝑗} and its partition be as defined. For any 𝑣 ∈

{1,2,3}, 𝑘𝑗−1, 𝑘𝑗 ∈ {1,… ,𝑀}, 𝑙𝑗 ∈ {𝑀,𝑀 + 1} and 𝑚 ∈ {−𝑘𝑗−1, … ,0,1} if 𝑡 ∈ 𝐻𝑣,𝑘𝑗−1,𝑘𝑗,𝑙𝑗
{𝐽}

+

𝑚(1 𝑏⁄ ), then Eq. (12) is satisfied by 𝑓𝑗 whenever 𝑡 ∈ 𝐴 and Eq. (13) is satisfied by 𝑓𝑗 

whenever 𝑡 ∈ 𝐵. 

Proof. The proof is similar to that Lemma (4.1.24) we omit it. 

This concludes the proof of Theorem (4.1.3). 

Theorem (4.1.29)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. If 𝑎𝑏 ∈ ℚ, then there is some 𝑠0 ∈ ℕ, such that ℳ𝑠0+1(𝐸) = ℳ𝑠0(𝐸) 
for some 𝑠0 ∈ ℕ. 

Proof. For the definitions of the sets 𝐴, 𝐵, 𝐸 and the set-valued mapping ℳ. In the case 

of 𝑎𝑏 ∈ ℚ, we may assume that 𝑎𝑏 =
𝑞

𝑝
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. Since 𝐴 and 𝐵 

are 𝑎- translation invariant sets, so there are at most 𝑝 different elements in the 

collection of sets {𝐴 + 𝑘(1 𝑏⁄ )|𝑘 ∈ ℤ}. Likewise, there are at most 𝑝 different elements 

in the collection of sets {𝐵 + 𝑘(1 𝑏⁄ )|𝑘 ∈ ℤ}. Thus there are at most 22
2𝑝

 elements in 

the collection {ℳ𝑙(𝐸)|𝑙 ∈ ℕ}. Hence the conclusion follows. 

Conjecture (4.1.30)[181]: Let 0 < 𝑎 < 1 𝑏⁄ < 𝑐 = 𝑀(1 ) + 𝑑⁄  for some 0 < 𝑑 < 1 𝑏⁄  

and 𝑀 ∈ ℕ+ 1. Then there is some 𝑠0 ∈ ℕ, such that ℳ𝑠0+1(𝐸) = ℳ𝑠0(𝐸). 
Note that the case 𝑎𝑏 ∈ ℚ is settled in Theorem (4.1.29). On the other hand, 

when 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 𝑀 ∈ ℕ+ 1 and 0 < 𝑑 < 1 𝑏⁄ , if  max{𝑑, 1 𝑏⁄ − 𝑑} ≥
𝑎, then we have either 𝐴 = ℝ or 𝐵 = ℝ. In this case the conjecture is also trivially 

proven affirmatively. Thus we need to know whether the same holds when 𝑎𝑏 ∈ ℝ \ℚ, 

𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 for some 𝑀 ∈ ℕ+ 1 and 0 < 𝑑 < 1 𝑏⁄ , while 𝑎 > max{𝑑, 1 𝑏⁄ − 𝑑}. 
Lastly, we briefly compare our results and those of Janssen’s in [199]. As we 

have already mentioned, the special case of 𝑎 =
1

𝑞
(1 𝑏⁄ ) with 𝑞 ∈ 𝑁, the special case of 

𝑀 = 1 and the special case of 𝑎 ≤  min {𝑑, 1 𝑏⁄ − 𝑑} (as discussed in this article in 

Theorems (4.1.10), (4.1.19), and Lemma (4.1.7) respectively) are already completely 

solved by Janssen in [199]. Also, using Theorem (4.1.19), it is quite easy to recover  

Janssen’s more specific conditions in the case of 𝑎𝑏 being rational. 

In the case of 𝑀 > 1 with 𝑎𝑏 being rational, Janssen developed in [199] an 

algorithm to determine whether (𝜒[0,𝑐), 𝑎, 1 𝑏⁄ ) is a Gabor frame, while our Theorem 

(4.1.18), together with Theorem (4.1.29), offers both a complete solution and a concrete 

criteria in terms of some set-valued mappings. 

As we mentioned before, Theorem (4.1.18), leads to a complete solution 

whenever max{𝑑, 1 𝑏⁄ − 𝑑} ≥ 𝑎 since in this case we have either 𝐴 = ℝ or 𝐵 = ℝ. 

Janssen’s Theorem 3.3.4.4 in [199] states that when 𝑀 > 1, 𝑐 = 𝑀(1 𝑏⁄ ) + 𝑑 with 0 <
𝑑 < 1 𝑏⁄ , whenever 𝑎𝑏 is irrational and max{𝑑, 1 𝑏⁄ − 𝑑} ≥ 𝑎, then  (𝜒[0,𝑐), 𝑎, 1 𝑏⁄ ) is 

always a Gabor frame. This result can be quickly recaptured by Theorem (4.1.18) since 

the set-valued mapping ℳ is significantly simplified with either 𝐴 or 𝐵 being ℝ, and 

we only need to look at the mappings 𝑝3 or 𝑝4 to see that the density argument used in 

the proof of Lemma (4.1.8) applies readily here to quickly get the same conclusion.  
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For the difficult case of 𝑎 ≥ max{𝑑, 1 𝑏⁄ − 𝑑}, Janssen’s Theorem 3.3.5.2 in 

[199] (which generalizes Theorem 3.3.5.1) states that when 𝑀 > 1, 𝑑 = 𝐼(1 𝑏⁄ − 𝑎) 

with 𝐼 ∈ {3,4, … } satisfying 1 𝑏⁄ − 𝑎 ≤
1

𝐼+1
 and 𝐼 ≡ 0 mod (𝑀 + 1), then 

(𝜒[0,𝑐), 𝑎, 1 𝑏⁄ ) is not a Gabor frame. This result can also be quickly recaptured by 

Theorem (4.1.3). Indeed, if we assume 𝐼 = 𝑘(𝑀 + 1) for some natural number 𝑘, it is 

easy to check that the union of 𝐴 ∩ 𝐵 +𝑀(1 𝑏⁄ ) and ⋃ ((𝐵 − 1 𝑏⁄ ) ∩ 𝐴 −𝑘−1
𝑗=0

𝑗(𝑀 + 1)(1 𝑏⁄ )),  which is clearly a proper subset of  ℝ, is invariant under ℳ. 

It is thus quite baffling that we are not able to recover, except in the case of 𝑀 =
2, Janssen’s last theorem in [199]. Dealing with the difficult case of  𝑎 ≥
𝑚𝑎𝑥{𝑑, 1 𝑏⁄ − 𝑑}, Theorem 3.3.5.3 states that whenever 𝑀 > 1 and 𝑎𝑏 is irrational, if  

𝑑 = 𝐼(1 𝑏⁄ − 𝑎) with 𝐼 ∈ {1,2,3,… } satisfying 1 𝑏⁄ − 𝑎 ≤
1

𝐼+1
 and 𝐼 ≢ 0 mod (𝑀 + 1) 

, then (𝜒[0,𝑐), 𝑎, 1 𝑏⁄ ) is a Gabor frame. The main reason for the failure, it appears, is 

that the sequence of sets generated by 𝐸 under iterations of ℳ does not seem to have 

regular enough features we would like it to have in order for us to use such density 

argument as in the proof of Lemma (4.1.8). Thus it is all the more intriguing that 

Janssen is able to prove  the  theorem  using virtually the same simple density fact as the 

one in our Lemma (4.1.8). 

However, with the help of Theorem (4.1.3), examples can be found which 

negatively settles Janssen’s conjecture in [199] that when 𝑎𝑏 is irrational, the only cases 

of (𝜒[0,𝑐), 𝑎, 1 𝑏⁄ ) not being  a Gabor frame is described in Theorem 3.3.5.2 in [199]. 

Example (4.1.31)[181]: Suppose 𝑎 =
√6

3
, 𝑏 = 1, 𝑝 = 8169, 𝑞 = 10005. Let 𝑑 = 𝑝 −

(𝑞 − 1)𝑎,𝑀 = 𝑝 − 1 and 𝑐 = 𝑀 + 𝑑. Then 0 < max{𝑑, 1 − 𝑑} < 𝑎 < 1 𝑏⁄ =
1,4(1 − 𝑎) < 𝑑 < 5(1 − 𝑎), and (𝜒[0,𝑐), 𝑎, 𝑏) is not a Gabor frame.  

Proof. First we check that the following holds: 
𝑝 − 5

𝑞 − 6
<
𝑝

𝑞
< 𝑎 <

𝑝 − 4

𝑞 − 5
<
𝑝 + 1

𝑞 + 1
<
𝑝 − 2

𝑞 − 3
<
𝑝 − 1

𝑞 − 2
<

𝑝

𝑞 − 1
< 1. 

Using the above inequalities, we can that hen establish the facts that 0 < 𝑑 < 𝑎, 0 <
1 − 𝑑 < 𝑎 and 4(1 − 𝑎) < 𝑑 < 5(1 − 𝑎). Also useful is the fact that 𝑎 − 𝑑 < 1 − 𝑎 

with 𝑎 =
√6

3
, 𝑏 = 1, clearly we have 𝑎 < 1 𝑏⁄ . We may also substitute 1 𝑏⁄  with 1 in the 

definitions  of 𝐴, 𝐵, 𝐸 and the mapping ℳ and 𝑝𝑗  for 𝑗 ∈ {1,2,3,4,5}. 

We then calculate to get 𝐴 ∩ (𝐵 − 1) = ⋃ [𝑛𝑎 + 𝑎 + 𝑑 − 1, 𝑛𝑎 + 𝑑)𝑛∈ℤ  and 

𝐴⋂𝐵 = (⋃ [𝑛𝑎 + 𝑎, 𝑛𝑎 + 1)𝑛∈ℤ . It is also quick to establish the facts that (𝐵 − 1) ∩
(𝐴 − 1) ∩ 𝐴 = 𝐴 ∩ (𝐵 − 1) ∩ 𝐵 = ∅. 

From 𝑀 = 𝑃 − 1 and 𝑝 = (𝑞 − 1)𝑎 + 𝑑, it then follows that 𝐴 ∩ 𝐵 +𝑀 = 𝐴 ∩
𝐵 + 𝑑 − 1 = ⋃ [𝑛𝑎 + 𝑎 + 𝑑 − 1, 𝑛𝑎 + 𝑑) = 𝐴 ∩ (𝐵 − 1).𝑛∈ℤ Therefore 𝐸 = 𝐴 ∩
(𝐵 − 1) = 𝐴 ∩ 𝐵 +𝑀. Finally, we need to check ℳ(𝐸) = 𝐸 by proving 𝑝𝑗(𝐸) = ∅, 

for each 𝑗 ∈ {1,2,3,4,5}. Observe that 𝐸 ∩ (𝐸 + 1) = ∅. The definitions of 𝑝𝑗 then lead 

to the conclusion that 𝑝𝑗(𝐸) = ∅ whenever 𝑗 ∈ {1,2,5}. On the other hand, the identity 

𝐸 −𝑀 = 𝐴 ∩ 𝐵 leads directly to the conclusion that   

𝑝3(𝐸) = (𝐵 − 1) ∩ (𝐴 − 1) ∩ 𝐴 = ∅.              
                           𝑝4(𝐸) = (𝐸 −𝑀) ∩ (𝐵 − 1) ∩ 𝐵 = 𝐴 ∩ (𝐵 − 1) ∩ 𝐵 = ∅.  
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Section (4.2): Totally Positive Functions 

The fundamental problem of Gabor analysis is to determine triples (𝑔, 𝛼, 𝛽) 
consisting of an 𝐿2-function 𝑔 and lattice parameters 𝛼, 𝛽 > 0, such that the set of 

functions 𝒢(𝑔, 𝛼, 𝛽) = {𝑒2𝜋𝑖𝛽𝑙𝑡𝑔(𝑡 − 𝛼𝑘): 𝑘, 𝑙 ∈ ℤ} constitutes a frame for 𝐿2(ℝ). Thus 

the fundamental problems is to determine the set (the frame set) 

ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝒢(𝑔, 𝛼, 𝛽)) is a frame}.                         (15) 

It is stunning how little is known about the nature of the set ℱ(𝑔), even after 

twenty years of Gabor analysis. The famous Janssen tie [225] shows that the set ℱ(𝑔) 
can be arbitrarily complicated, even for a “simple” function such as the characteristic 

function 𝑔 = 𝜒𝐼 of an interval. 

If 𝑔 is in the Feichtinger algebra 𝑀1, then the set ℱ(𝑔) is open in ℝ+
2  

[218].Furthermore, if 𝑔 ∈ 𝑀1, then ℱ(𝑔) contains a neighborhood 𝑈 of 0 in ℝ+
2 . Much 

effort has been spent to improve the analytic estimates and make this neighborhood as 

large as possible [210,214,231]. The fundamental density theorem asserts that ℱ(𝑔) is 

always a subset of {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 ≤ 1} [215,219,222]. If 𝑔 ∈ 𝑀1, then a subtle 

version of the uncertainty principle, the so-called Balian-Low theorem, states that 

ℱ(𝑔) ⊆ {(𝛼, 𝛽): 𝛼𝛽 < 1} [209,213]. This means that {(𝛼, 𝛽): 𝛼𝛽 ≤ 1} is the maximal 

set that can occur as a frame set ℱ(𝑔).  
Until now, the catalogue of windows 𝑔 for which ℱ(𝑔) is completely known, 

consists of the following functions: if 𝑔 is either the Gaussian 𝑔(𝑡) = 𝑒−𝜋𝑡
2
, the 

hyperbolic secant 𝑔(𝑡) = (𝑒𝑡 + 𝑒−𝑡)−1, the exponential function 𝑒−|𝑡|, then  ℱ(𝑔) =
{(𝛼, 𝛽) ∈ ℝ+

2 : 𝛼𝛽 < 1}; if 𝑔 is the one-sided exponential function  𝑔(𝑡) = 𝑒−𝑡𝜒ℝ+(𝑡), 
then ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+

2 : 𝛼𝛽 ≤ 1}, in addition, the dilates of these functions and their 

Fourier transform, 𝑔(𝑡) = ( 1 + 2𝜋𝑖𝑡 )−1 and 𝑔(𝑡) = (1 + 4𝜋2𝑡2)−1, also have the 

same frame set. The case of the Gaussian was solved independently by Lyubarski [230] 

and Seip [236] in 1990 with methods from complex analysis in response to a conjecture 

by Daubechies and Grossman [216]; the case of the hyperbolic secant can be reduced to 

the Gaussian with a trick of Janssen and Strohmer [227], the case of the exponential 

functions is due to Janssen [224,226]. We note that in all these cases the necessary 

density condition 𝛼𝛽 < 1 (or 𝛼𝛽 ≤ 1) is also sufficient for 𝒢(𝑔, 𝛼, 𝛽) to generate a 

frame. 

The example of the Gaussian lead Daubechies to conjecture that ℱ(𝑔) =
{(𝛼, 𝛽) ∈ ℝ+

2 : 𝛼𝛽 < 1} whenever 𝑔 is a positive function in 𝐿1 with positive Fourier 

transform in 𝐿1 [214,p.981]. This conjecture was disproved in [223].  

Surprisingly, no alternatives to Daubechie’s conjecture have been formulated so 

far. We deal with a modification of Daubechie’s  conjecture and prove that the frame set 

of a large class of functions is indeed the maximal set ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}. 

This breakthrough is possible by combining ideas from Gabor analysis, 

approximation theory and spline theory, and sampling theory. The main observation is 

that all functions above-The Gaussian, the hyperbolic secant, and the exponential 

functions-are totally positive functions. This means that for every two sets of increasing 

real numbers 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 and 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑁 , 𝑁 ∈ ℕ, the determinant of the 

matrix [𝑔(𝑥𝑗 − 𝑦𝑘)]1≤𝑗,𝑘≤𝑁 is non-negative. 

Indeed, for a large class of totally positive functions to be defined in (29) we will 

determine the set ℱ(𝑔) completely. We have the following:  
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Theorem (4.2.1)[205]: Assume that 𝑔 ∈ 𝐿2(ℝ) is a totally positive function of finite 

type ≥ 2. Then ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}. In other words, 𝒢(𝑔, 𝛼, 𝛽) is a frame, if 

and only if  𝛼𝛽 < 1. 

This theorem increases the number of functions with known frame set from six to 

uncountable. We will see later that the totally positive functions of finite type can be 

parameterized by a countable number of real parameters, see (29). Among the examples 

of totally positive functions of finite type are the two-sided exponential 𝑒−|𝑡| (already 

known), the truncated power functions 𝑔(𝑡) = 𝑒−𝑡𝑡𝑟𝜒ℝ+ for 𝑟 ∈ ℕ, the function 𝑔(𝑡) =

(𝑒−𝑎𝑡 − 𝑒−𝑏𝑡)𝜒ℝ+(𝑡) for 𝑎, 𝑏 > 0, or the asymmetric exponential 𝑔(𝑡) = 𝑒𝑎𝑡𝜒
ℝ+
(−𝑡) +

𝑒−𝑏𝑡𝜒
ℝ+
(𝑡), and the convolutions of  totally positive functions of  finite type. In addition 

the class of 𝑔 such that ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1} is invariant with respect to 

dilation, time-frequency shifts, and the Fourier transform. Since 𝒢(𝑔, 𝛼, 𝛽) =
𝒢(�̂�, 𝛽, 𝛼), we obtain a complete description of the frame set of the Fourier transforms 

of   totally positive functions. For instance, if 𝑔(𝑡) = (1 + 4𝜋2𝑡2)−𝑛 for 𝑛 ∈ ℕ, then 

ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}.     

To compare with Daubechies’ original conjecture, we note that every totally 

positive and even functions possesses a positive Fourier transform. Theorem (4.2.1) 

yields a large class of functions for which Daubechies’ conjecture is indeed true. 

Furthermore, Theorem (4.2.1) suggests the modified conjecture that the frame set of 

every continuous totally positive function is ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}.  

The main tool is a generalization of the total positivity to infinite matrices. We 

will show that an infinite matrix of the form [𝑔(𝑥𝑗 − 𝑦𝑘)]𝑗,𝑘∈ℤ possesses a left-inverse, 

when 𝑔 is totally positive and some natural conditions hold for the sequences (𝑥𝑗) and 

(𝑦𝑘) (Theorem (4.2.8)). 

The analysis of Gabor frames and the ideas developed in the proof of Theorem 

(4.2.1). Lead to a surprising progress on another open problem, namely (nonuniform) 

sampling in shift-invariant spaces. Fix a generator 𝑔 ∈ 𝐿2(ℝ), a step-size ℎ > 0, and 

consider the subspace of  𝐿2(ℝ) defined by  

𝑉ℎ(𝑔) = {𝑓 ∈ 𝐿
2(ℝ): 𝑓 =∑𝑐𝑘𝑔(.−𝑘ℎ)

𝑘∈ℤ

}. 

For the case ℎ = 1 we write 𝑉(𝑔), for short. We assume that translates 𝑔(⋅ −𝑘), 𝑘 ∈ ℤ, 

from a Riesz basis for 𝑉(𝑔) so that ‖𝑓‖2 ≍ ‖𝑐‖2 . Shift-invariant spaces are used as an 

attractive substitute of  bandlimited functions in signal processing to model “almost” 

bandlimited  functions. See the survey [208] for sampling in shift-invariant spaces. An 

important problem that is related to the analog-digital conversion in signal processing is 

the derivation of sampling theorems for the space 𝑉(𝑔). We say that a set of sampling 

points 𝑥𝑗, ordered linearly as 𝑥𝑗 < 𝑥𝑗+1, is a set of  sampling for 𝑉ℎ(𝑔), if  there exist 

constants 𝐴, 𝐵 > 0, such that  

𝐴‖𝑓‖2
2 ≤∑|𝑓(𝑥𝑗)|

2

𝑗∈ℤ

≤ 𝐵‖𝑓‖2
2         for all 𝑓 ∈ 𝑉ℎ(𝑔). 

As in the case of Gabor frames there are many qualitative sampling theorems for 

shift-invariant spaces. Typical results require high oversampling rates. They state that 

there exists a 𝛿 > 0 depending on 𝑔 such that every set with maximum gap 
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sup𝑗(𝑥𝑗+1 − 𝑥𝑗) = 𝛿 is a set of sampling for 𝑉(𝑔) [206,208, 239]. In most cases 𝛿 is 

either not specified or too small to be of practical use. The expected result is that for 

𝑉(𝑔) there exists a Nyquist rate and that 𝛿 < 1 is sufficient. And yet, the only 

generators for which the sharp result is known are the 𝐵-splines 𝑏𝑛 = 𝜒[0,1] ∗ …∗ 𝜒[0,1] 

(𝑛 + 1 − times). If the maximum gap sup𝑗(𝑥𝑗+1 − 𝑥𝑗) = 𝛿 satisfies 𝛿 < 1, then {𝑥𝑗} is 

a set of sampling for  𝑉(𝑏𝑛)[207]. (This optimal result can also be proved for a 

generalization of splines, the so-called “ripplets” [211]). It has been an open problem to 

identify further classes of shift-invariant spaces for which the optimal sampling results 

hold.   

Here we will prove a similar result for totally positive generators. 

Theorem (4.2.2)[205]: Let 𝑔 be a totally positive function of finite type and 𝓍 = {𝑥𝑗} 

be a set with maximum gap sup𝑗(𝑥𝑗+1 − 𝑥𝑗) = 𝛿. If 𝛿 < 1, then 𝓍 is a set of sampling 

for 𝑉(𝑔).  
The theorem will be a corollary of  a much more general sampling theorem.  

We discuss the tool box for the Gabor frame problem. We will review some known 

characterizations of Gabor frames and derive some new criteria that are more suitable. 

We then recall the main statements about totally positive functions and prove the main 

technical theorem about the existence of a left-inverse of the pre-Gramian matrix. We 

study Gabor frames and discuss some open problems that are raised by our new results. 

We show the sampling theorem.  

There are many results about the structure of Gabor frames and numerous 

characterizations of Gabor frames. In principle, one has to check that one of the 

equivalent conditions for a set 𝒢(𝑔, 𝛼, 𝛽) to be a frame is satisfied. This task almost 

always difficult because it amounts to showing the invertibility of an operator  or a 

family of operators on an infinite-dimensional Hilbert space. 

We summarize the most important characterizations of Gabor frames. These are 

valid in arbitrary dimension 𝑑 and for rectangular lattices 𝛼ℤ𝑑 × 𝛽ℤ𝑑. We will use the 

notation 𝑀𝜉𝑓 = 𝑒
2𝜋𝑖𝜉𝑓 and 𝑇𝑦𝑓 = 𝑓(⋅ −𝑦), 𝜉, 𝑡 ∈ ℝ

𝑑, such that      

𝒢(𝑔, 𝛼, 𝛽) = {𝑀𝑙𝛽𝑇𝐾𝛼𝑔 ∶ 𝑘, 𝑙 ∈ ℤ
𝑑}.  

Then 𝒢(𝑔, 𝛼, 𝛽) is a frame of 𝐿2(ℝ𝑑), if there exist constants 𝐴, 𝐵 > 0, such that  

𝐴‖𝑓‖2
2 ≤ ∑ |〈𝑓,𝑀𝑙𝛽𝑇𝐾𝛼𝑔〉|

2
≤ 𝐵

𝑘,𝑙∈ℤ

‖𝑓‖2
2        for all 𝑓 ∈ 𝐿2(ℝ𝑑). 

If only the right-hand inequality is satisfied, then 𝒢(𝑔, 𝛼, 𝛽) is called a Bessel sequence.  

Following the fundamental work of Ron and Shen [231] on shift-invariant 

systems and Gabor frames, we define two families of  infinite matrices associated to a 

given window function 𝑔 ∈ 𝐿2(ℝ𝑑) and two lattice parameters 𝛼, 𝛽 > 0. The pre-

Gramian matrix 𝑃 = 𝑃(𝑥) is defined by the entries  

𝑃(𝑥)𝑗𝑘 = 𝑔 (𝑥 + 𝑗𝛼 −
𝑘

𝛽
) ,        𝑗, 𝑘 ∈ ℤ𝑑 .                                 (16) 

The Ron-shen matrix is 𝐺(𝑥) = 𝑃(𝑥) ∗ 𝑃(𝑥) with the entries 

𝐺(𝑥)𝑘𝑙 = ∑ 𝑔(𝑥 + 𝑗𝛼 −
𝑙

𝛽
) �̅� (𝑥 + 𝑗𝛼 −

𝑘

𝛽
)

𝑗∈ℤ𝑑 

,     𝑘, 𝑙 ∈ ℤ𝑑 .                (17) 
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Theorem (4.2.3)[205]: (characterizations of Gabor frames) Let 𝑔 ∈ 𝐿2(ℝ𝑑) and 𝛼, 𝛽 >
0. Then the following conditions are equivalent: 

(i) The set 𝒢(𝑔, 𝛼, 𝛽) is a frame for 𝐿2(ℝ𝑑). 
(ii) There exist 𝐴, 𝐵 > 0 such that the spectrum of almost every Ron-Shen matrix 

𝐺(𝑥) is contained in the interval [𝐴, 𝐵]: 

𝜎(𝐺(𝑥)) ⊆ [𝐴, 𝐵]         𝑎. 𝑎. 𝑥 ∈ ℝ𝑑 . 
(iii) There exist 𝐴, 𝐵 > 0 such that  

𝐴‖𝑐‖2
2 ≤ ∑ |∑ 𝑐𝑘𝑔

𝑘∈ℤ𝑑

(𝑥 + 𝑗𝛼 −
𝑘

𝛽
)|

2

≤ 𝐵

𝑗∈ℤ𝑑

‖𝑐‖2
2  𝑎. 𝑎. 𝑥 ∈ ℝ𝑑 , 𝑐 ∈ ℓ2(ℤ𝑑).        (18) 

(iv) There exists 𝑎 so-called dual window 𝛾, such that 𝒢(𝛾, 𝛼, 𝛽) is a Bessel sequence 

and 𝛾 satisfies the biorthogonality condition  

〈𝛾,𝑀𝑙 𝛼⁄ 𝑇𝑘 𝛽⁄ 𝑔〉 = (𝛼𝛽)
𝑑𝛿𝑘,0𝛿𝑙,0      ∀𝑘, 𝑙 ∈ ℤ

𝑑 .                   (19) 

Lemma (4.2.4)[205]: Let 𝑔 ∈ 𝐿2(ℝ𝑑) and 𝛼, 𝛽 > 0 . Then the following conditions are 

equivalent: 

(i) The set 𝒢(𝑔, 𝛼, 𝛽) is a frame for 𝐿2(ℝ𝑑). 
(ii) The set of the pre-Gramians {𝑃(𝑥)} is uniformly bounded on ℓ2(ℤ𝑑), and possess 

a uniformly bounded set of left-inverses, i.e, there exist matrices Γ(𝑥) , 𝑥 ∈ ℝ𝑑, 

such that  

Γ(𝑥)𝑃(𝑥) = 𝐼         𝑎. 𝑎. 𝑥 ∈ ℝ𝑑 ,                                    (20) 
‖Γ(𝑥)‖𝑜𝑝 ≤ 𝐶         𝑎. 𝑎. 𝑥 ∈ ℝ

𝑑 .                                    (21) 

In this case, the function 𝛾 defined by 𝛾(𝑥 + 𝛼𝑗) = 𝛽𝑑Γ̅0,𝑗(𝑥), where 𝑥 ∈ [0, 𝛼)𝑑 

and 𝑗 ∈ ℤ𝑑, or equivalently  

𝛾(𝑥) = 𝛽𝑑 ∑ Γ̅0,𝑗(𝑥)𝑥[0,𝛼)𝑑(𝑥 − 𝛼𝑗),

𝑗∈ℤ𝑑

      𝑥 ∈ ℝ𝑑 ,                     (22) 

Satisfies the biorthogonality condition (19). 

Proof. (i)⇒(v). If  𝒢(𝑔, 𝛼, 𝛽) is a frame, then by Theorem (4.2.3)(ii) 

∑ |∑ 𝑐𝑘𝑔 (𝑥 + 𝑗𝛼 −
𝑘

𝛽
)

𝑘∈ℤ𝑑

|

2

𝑗∈ℤ𝑑

= 〈𝑃(𝑥)𝑐, 𝑃(𝑥)𝑐〉 = 〈𝐺(𝑥)𝑐, 𝑐〉 ≍ ‖𝑐‖2
2, 

with bounds independent of 𝑥. Consequently 𝐺(𝑥) is bounded and invertible on ℓ2(ℤ𝑑). 
Therefore the operators 𝑃(𝑥) are uniformly bounded on ℓ2(ℤ𝑑) ,and we can define 

Γ(𝑥) = 𝐺(𝑥)−1𝑃∗(𝑥). Then  

Γ(𝑥)𝑃(𝑥) = ((𝑃∗(𝑥)𝑃(𝑥))
−1
𝑃∗(𝑥))𝑃(𝑥) = 𝐼𝑑, 

and  

‖Γ(𝑥)‖𝑜𝑝 ≤ ‖𝐺(𝑥)
−1‖𝑜𝑝‖𝑃(𝑥)‖𝑜𝑝 ≤ 𝐴

−1𝐵1 2⁄ . 

(v)⇒(ii). Conversely, if 𝑃(𝑥) possesses a bounded left-inverse Γ(𝑥), then 

‖𝑐‖2
2 = ‖Γ(𝑥)𝑃(𝑥)𝑐‖2

2 ≤ ‖Γ(𝑥)‖𝑜𝑝
2  ‖𝑃(𝑥)𝑐‖𝑜𝑝

2 ≤ 𝐶2〈𝐺(𝑥)𝑐, 𝑐〉 ≤ 𝐶2‖𝑃(𝑥)‖𝑜𝑝
2 ‖𝑐‖2

2, 

and this implies condition (ii) of Theorem (4.2.3). 

We next verify that 𝛾 as defined in (22) satisfies the biorthogonality condition 

(19): 
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〈𝛾,𝑀𝑙 𝛼⁄ 𝑇𝑘 𝛽⁄ 𝑔〉 = ∫ 𝛾(𝑥)�̅�(𝑥 − 𝑘/𝛽)𝑒−2𝜋𝑖𝑙∙𝑥/𝛼𝑑𝑥

ℝ𝑑

= ∫ ∑ 𝛾(𝑥 + 𝛼𝑗)�̅�(𝑥 + 𝛼𝑗 − 𝑘/𝛽)𝑒−2𝜋𝑖𝑙∙𝑥/𝛼𝑑𝑥

𝑗∈ℤ𝑑[0,𝛼]𝑑

= 𝛽𝑑 ∫ ∑ Γ̅0,𝑗(𝑥)�̅�(𝑥 + 𝛼𝑗 − 𝑘/𝛽)𝑒
−2𝜋𝑖𝑙∙𝑥/𝛼𝑑𝑥

𝑗∈ℤ𝑑[0,𝛼]𝑑

 

= 𝛽𝑑 ∫ 𝛿𝑘,0𝑒
−2𝜋𝑖𝑙∙𝑥/𝛼𝑑𝑥

[0,𝛼]𝑑

= (𝛼𝛽)𝑑𝛿𝑘,0𝛿𝑙,0.                            (23) 

The function 𝛾 in (22) is a dual window of 𝑔, as defined in condition (iv) of 

Theorem (4.2.3), provided that 𝒢(𝑔, 𝛼, 𝛽) is a Bessel sequence. The following result 

gives a sufficient condition. 

Lemma (4.2.5)[205]: Assume that there exists a (Lévesque measurable) vector-valued 

function 𝜎(𝑥) from ℝ𝑑 to ℓ2(ℤ𝑑) with period , such that  

∑ 𝜎𝑗(𝑥)

𝑗∈ℤ𝑑

�̅� (𝑥 + 𝛼𝑗 −
𝑘

𝛽
) = 𝛿𝑘,0         𝑎. 𝑎.   𝑥 ∈ ℝ

𝑑 .                   (24) 

If  ∑ sup𝑥∈[0,𝛼]𝑑𝑗∈ℤ𝑑 |𝜎𝑗(𝑥)| < ∞, then 𝒢(𝑔, 𝛼, 𝛽) is a frame. Moreover, with  

𝛾(𝑥) = 𝛽𝑑 ∑ 𝜎𝑗(𝑥)𝜒[0,𝛼)𝑑(𝑥 − 𝛼𝑗)

𝑗∈ℤ𝑑

,           𝑥 ∈ ℝ𝑑 , 

the set 𝒢(𝛾, 𝛼, 𝛽) is a dual frame of  𝒢(𝑔, 𝛼, 𝛽). 
Proof. The computation in (23) shows that 𝛾 satisfies the biorthogonality condition 

(19). The additional assumption implies that   

∑ sup
𝑥∈[0,𝛼]𝑑

|𝛾(𝑥 + 𝛼𝑘)|

𝑘∈ℤ𝑑

< ∞. 

Consequently, 𝛾 is in the amalgam space 𝑊(ℓ1). this property guarantees that 𝒢(𝛾, 𝛼, 𝛽) 
is a Bessel system [238]. Thus condition (iv) of Theorem (4.2.3) is satisfied, and 

𝒢(𝑔, 𝛼, 𝛽) is a frame. The biorthogonality condition (19) implies that  𝒢(𝛾, 𝛼, 𝛽) is a 

dual frame of 𝒢(𝑔, 𝛼, 𝛽). 
The notation of totally positive functions was introduced in 1947 by I. J. 

Schoenberg [232]. A non-constant measurable function 𝑔:ℝ ⟶ ℝ is said to be totally 

positive, if it satisfies the following condition: For every two sets of  increasing real 

numbers 

𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 ,          𝑦1 < 𝑦2 < ⋯ < 𝑦𝑁 ,        𝑁 ∈ ℕ,                 (25) 
We have the inequality  

𝐷 = det[𝑔(𝑥𝑗 − 𝑦𝑘)]1≤𝑗,𝑘≤𝑛 ≥ 0                                  (26) 

Schoenberg [28] connected the total positivity to factorization of the (two-sided) 

Laplace transform of  𝑔 
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ℒ[𝑔](𝑠) = ∫ 𝑒−𝑠𝑡𝑔(𝑡)𝑑𝑡

∞

−∞

=:
1

Φ(𝑠)
. 

Theorem (4.2.6)[205]: (Schoenberg [27]). The function 𝑔:ℝ → ℝ is totally positive, if 

and only if its two-sided Laplace transform exists in a strip 𝑆 = {𝑠 ∈ ℂ: 𝛼 < 𝑅𝑒 𝑠 < 𝛽}, 
and 

Φ(𝑠) =
1

ℒ[𝑔](𝑠)
= 𝐶𝑒−𝛾𝑠

2+𝛿𝑠∏(1+ 𝛿𝑣𝑠

∞

𝑣=1

)𝑒−𝛿𝑣𝑠,                   (27) 

with real parameters 𝐶, 𝛾, 𝛿, 𝛿𝑣 satisfying  

𝐶 > 0,     𝛾 ≥ 0,     0 < 𝛾 +∑𝛿𝑣
2

∞

𝑣=1

< ∞.                            (28) 

A comprehensive study of total positivity is given of Karlin [228]. It is Known 

that, if 𝑔 is totally positive and integrable, then 𝑔 decays exponentially (see 

[233,p.340]). We restrict our attention to the class of totally positive functions 𝑔 ∈
𝐿1(ℝ) with the factorization  

Φ(𝑠) =
1

ℒ[𝑔](𝑠)
= 𝐶𝑒𝛿𝑠∏(1+ 𝛿𝑣𝑠)

𝑀

𝑣=1

,                             (29) 

for 𝑀 ∈ ℕ and real 𝛿𝑣. This means that the denominator of ℒ[𝑔] has only finitely many 

roots. Equivalently, the Fourier transform of 𝑔 can be extended to a meromorphic 

function with a finite number of  poles on the imaginary axis  and no other poles. As 

noted in [234,p.247], the exponential factor can be omitted, as it corresponds to a simple 

shift of 𝑔. in the following we will call a totally positive function satisfying (29) totally 

positive of finite type and refer to 𝑀 as the type of  𝑔.  

Schoenberg and Whitney [234] gave a complete characterization of the case when 

the determinate 𝐷 in (26) satisfies 𝐷 > 0.  
Theorem (4.2.7)[205]: ([234]). Let 𝑔 ∈ 𝐿1(ℝ) be a totally-positive function of finite 

type. Furthermore, let 𝑚 be the number of positive 𝛿𝑣 and 𝑛 be the number of negative 

𝛿𝑣 in (29), and 𝑚 + 𝑛 ≥ 2. For a set of points in (25), the determinant 𝐷 =
det[𝑔(𝑥𝑗 − 𝑦𝑘)]𝑗,𝑘=1,…,𝑁 is strictly positive, if and only if  

𝑥𝑗−𝑚 < 𝑦𝑗 < 𝑥𝑗+𝑛            for 1 ≤ 𝑗 ≤ 𝑁.                              (30) 

Here, we use convention that 𝑥𝑗 = −∞, if 𝑗 < 1, and 𝑥𝑗 = ∞, if  𝑗 > 𝑁. 

The conditions in (30) are nowadays called the Schoenberg-Whitney conditions 

for 𝑔. They have been used extensively in the analysis of spline interpolation by 

Schoenberg and others (see [235]). They will be crucial for our construction of a left 

inverse of the pre-Gramian matrix in (16). 

As a generalization of the pre-Gramian in (16), we consider bi-infinite matrices of 

the form 

𝑃 = [𝑔(𝑥𝑗 − 𝑦𝑗)]𝑗,𝑘∈ℤ ,                                              (31) 

where each sequence 𝑋 = (𝑥𝑗)𝑗∈ℤ and 𝑌 = (𝑦𝑘)𝑘∈ℤ ⊆ ℝ is strictly increasing. 

Moreover, the sequence  (𝑥𝑗)𝑗∈ℤ is supposed to be denser in the sense of the following 

condition : 
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(𝐶𝑟) {
(a) every  interval (𝑦𝑘, 𝑦𝑘+1) contains at least  one  point 𝑥𝑗;       

(b) there is an 𝑟 ∈ ℕ such that |(𝑦𝑘, 𝑦𝑘+𝑟) ∩ 𝑋| ≥ 𝑟 + 1 for all 𝑘.
 

The main tool for the study of Gabor frames and sampling theorems will be the 

following technical result. It can be interpreted as a suitable extension of total positivity 

to infinite matrices.  

Theorem (4.2.8)[205]: let 𝑔 ∈ 𝐿1(ℝ) be totally-positive function of finite type. Let 𝑚 

be the number of positive 𝛿𝑣 , 𝑛 be the number of negative 𝛿𝑣 in (29), and 𝑀 = 𝑚+
𝑛 ≥ 1. Assume that the sequences (𝑥𝑗)𝑗∈ℤ and (𝑦𝑘)𝑘∈ℤ ⊂ ℝ satisfy condition (𝐶𝑟). 

Then the matrix 𝑃 = [𝑔(𝑥𝑗 − 𝑦𝑗)]𝑗,𝑘∈ℤ  defines a bounded operator on ℓ2(ℤ). It 

has an algebraic left- inverse Γ = [𝛾𝑘,𝑗]𝑘,𝑗∈ℤ, and 

𝛾𝑘,𝑗 = 0,     if 𝑥𝑗 < 𝑦𝑘−𝑟𝑚 or 𝑥𝑗 > 𝑦𝑘+𝑟𝑛.                          (32) 

Proof. We construct a left-inverse Γ with the desired properties by defining each row of 

Γ separately. It suffices to consider the row with index 𝑘 = 0, as the construction of all 

other rows is done in the same way. The goal of the first three steps is to select a finite 

subset of 𝑥𝑗
′𝑠 and 𝑦𝑘

′ 𝑠 that satisfy the Schoenberg-Whitney conditions. (our choice of 

indices is not unique and not symmetric in 𝑚 and 𝑛, it minimizes the number of case 

distinctions.)  

Step 1: Column selection. First, consider the case 𝑚,𝑛 > 0 and set 𝑁 ≔ (𝑚 + 𝑛 −
1)(𝑟 + 1), if  𝑛 > 1, and 𝑁 = 𝑚(𝑟 + 1) + 1, if 𝑛 = 1. We define an 𝑁 ×𝑁 submatrix 

𝑃0 of 𝑃 in the following way. As columns of 𝑃0, we select columns of 𝑃 between 

𝑘1 = −(𝑟 + 1)𝑚 + 1    and    𝑘2 = 𝑘1 +𝑁 − 1. 
Hence 𝑘2 = (𝑟 + 1)(𝑛 − 1) for 𝑛 > 1, and 𝑘2 = 1 for 𝑛 = 1 for later purposes, note 

that 𝑘1 ≤ −𝑚 < 0 < 𝑛 ≤ 𝑘2 .Therefore, the column with index 𝑘 = 0 has at least  𝑚  

columns to its left and 𝑛 columns to its right. 

Step 2: Selection of a Square matrix. Assumption (𝐶𝑟) and our definition of 𝑁 imply 

that the interval 𝐼 = (𝑦𝑘1+𝑚−1, 𝑦𝑘2−𝑛+1) contains at least 𝑁 points 𝑥𝑗. More precisely, 

for 𝑛 > 1 we write  

(𝑦𝑘1+𝑚−1, 𝑦𝑘2−𝑛+1) = (𝑦−𝑟𝑚 , 𝑦𝑟(𝑛−1)) = ⋃ (𝑦𝑟𝑣, 𝑦𝑟(𝑣+1))
𝑛−2
𝑣=−𝑚   

and find at least 𝑟 + 1 points 𝑥𝑗 in each subinterval (𝑦𝑟𝑣, 𝑦𝑟(𝑣+1)) with −𝑚 ≤ 𝑣 ≤ 𝑛 −

2. This amounts to at least (𝑚 + 𝑛 − 1)(𝑟 + 1) = 𝑁 points in 𝐼. If 𝑛 = 1, we have 

(𝑦𝑘1+𝑚−1, 𝑦𝑘2−𝑛+1) = (𝑦−𝑟𝑚 , 𝑦1) and find 𝑚(𝑟 + 1) points 𝑥𝑗 in (𝑦−𝑟𝑚, 𝑦0) plus at 

least one additional point in (𝑦0, 𝑦1). 
We let  

𝑗1 ≔ min{𝑗: 𝑥𝑗 > 𝑦𝑘1+𝑚−1},     𝑗2: = max{𝑗: 𝑥𝑗 < 𝑦𝑘2−𝑛+1}.         (33) 

We have just shown that the set  

𝑋0 = {𝑥𝑗: 𝑗1 ≤ 𝑗 ≤ 𝑗2} ⊂ (𝑦𝑘1+𝑚−1, 𝑦𝑘2−𝑛+1) 

contains at least 𝑁 elements. We choose a subset  

𝑋0
′ = {𝜉1 < ⋯ < 𝜉𝑁} ⊂ 𝑋0, 

that contains precisely 𝑁 elements and satisfies  

(𝑦𝑘, 𝑦𝑘+1) ∩ 𝑋0
′ ≠ ∅     for    𝑘1 +𝑚− 1 ≤ 𝑘 ≤ 𝑘2 − 𝑛. 

That is, we choose one point 𝑥𝑗 in each interval (𝑦𝑘 , 𝑦𝑘+1), with 𝑘1 +𝑚− 1 ≤ 𝑘 ≤

𝑘2 − 𝑛, and an additional 𝑛 +𝑚 − 1 points 𝑥𝑗 ∈ (𝑦𝑘1+𝑚−1, 𝑦𝑘2−𝑛+1). Note that  

𝑦𝑘1+𝑚−1 < 𝜉1 = 𝑚𝑖𝑛 𝑋0
′  < 𝑦𝑘1+𝑚 < 𝑦𝑘2−𝑛 < 𝑚𝑎𝑥 𝑋0

′ = 𝜉𝑁 < 𝑦𝑘2−𝑛+1 (20) 
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Now set 

𝜂𝑘 = 𝑦𝑘1+𝑘−1,         1 ≤ 𝑘 ≤ 𝑁, 

and define the matrix  

𝑃0 = (𝑔(𝜉𝑗 − 𝜂𝑘))
𝑗,𝑘=1,…,𝑁

.  

Then 𝑃0 is a quadratic 𝑁 × 𝑁-submatrix of 𝑃. 

Step 3: Verification of the Schoenberg-Whitney conditions. We next show that 𝑃0 is 

invertible by checking the Schoenberg-Whitney conditions. First, by (34), we have 

𝜉1 = min𝑋0
′ < 𝑦𝑘1+𝑚 = 𝜂𝑚+1.  

By the construction of  𝑋0
′ , this inequality progresses from left to right, i.e,  

ξ𝑗 < 𝑦𝑘1+𝑚−1+𝑗 = 𝜂𝑗+𝑚          for 1 ≤ 𝑗 ≤ 𝑁 −𝑚.  

Likewise, we also have  

𝜂𝑁−𝑛 = 𝑦𝑘2−𝑛 < max𝑋0
′ = 𝜉𝑁, 

and this inequality progresses from right to left, i.e, 

𝜂𝑗 < 𝜉𝑗+𝑛 for     1 ≤ 𝑗 ≤ 𝑁 − 𝑛. 

Therefore, the Schoenberg-Whitney conditions (30) are satisfied, and Theorem (4.2.7) 

implies that det 𝑃0 > 0. 

Step 4: Linear dependence of the remaining columns of 𝑷. We now make some 

important observations. 

Choose indices 𝑘0 and 𝑠 ∈ ℤ with 𝑘0 < 𝑘1 and 𝑚 < 𝑠 ≤ 𝑁, and consider the new 

set {𝜂𝑘
′ ∶ 𝑘 = 1,… ,𝑁} consisting of the points  

𝑦𝑘0 < 𝑦𝑘1 < ⋯ < 𝑦𝑘1+𝑠−2 < 𝑦𝑘1+𝑠 < ⋯ < 𝑦𝑘2  

and the corresponding 𝑁 ×𝑁-matrix 𝑃0
′ = (𝑔(𝜉𝑗 − 𝜂𝑘

′ ))
𝑗,𝑘=1,…,𝑁

. This matrix is 

obtained from 𝑃0 by adding the column (𝑔(𝜉𝑗 − 𝑦𝑘0))1≤𝑗≤𝑁
 as its first column and 

deleting the column (𝑔(𝜉𝑗 − 𝜂𝑠))
1≤𝑗≤𝑁

. Then 𝜂𝑚 appears in the 𝑚+ 1-st column of 𝑃0
′. 

By (34), we see that  

𝜂𝑚+1
′ = 𝜂𝑚 = 𝑦𝑘1+𝑚−1 < 𝜉1. 

Consequently, the Schoenberg-Whitney conditions are violated and therefore det 𝑃0
′ = 0 

by Theorem (4.2.9). Since this holds for all 𝑠 > 𝑚, the vector (𝑔(𝜉𝑗 − 𝑦𝑘0))1≤𝑗≤𝑁
 must 

be in the linear span of the first 𝑚 columns of 𝑃0, namely (𝑔(𝜉𝑗 − 𝑦𝑘))
1≤𝑗≤𝑁

  for 𝑘 =

𝑘1… , 𝑘1 +𝑚− 1. 

Likewise, choose 𝑘3 > 𝑘2, 1 ≤ 𝑠 ≤ 𝑁 − 𝑛, and consider the new set {𝜂𝑘
′′: 𝑘 =

1,… , 𝑁} consisting of the points 

𝑦𝑘1 < ⋯ < 𝑦𝑘1+𝑠−2 < 𝑦𝑘1+𝑠 < ⋯ < 𝑦𝑘2 < 𝑦𝑘3  

and the corresponding 𝑁 ×𝑁-matrix 𝑃0
′′ = (𝑔(𝜉𝑗 − 𝜂𝑘

′′))
𝑗,𝑘=1,..,𝑁.

. This matrix is 

obtained from 𝑃0 by adding the column (𝑔(𝜉𝑗 − 𝑦𝑘3))1≤𝑗≤𝑁
 as its last (= 𝑁 − th) 

column and deleting the column (𝑔(𝜉𝑗 − 𝜂𝑠))
1≤𝑗≤𝑁

. Then 𝜂𝑁−𝑛+1 appears in the  

𝑛 + 1 − st column of  P0
′′, counted from right to left, and  
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𝜂𝑁−𝑛
′′ = 𝜂𝑁−𝑛+1 = 𝑦𝑘1+𝑁−𝑛 = 𝑦𝑘2−𝑛+1 > 𝜉𝑁 

by (34). Again the Schoenberg-Whitney conditions are violated and therefore det 𝑃0
′′ =

0. We conclude that the vector (𝑔(𝜉𝑗 − 𝑦𝑘3))1≤𝑗≤𝑁
 must lie in the linear span of the last 

𝑛 columns of  𝑃0. 

Step 5: Construction of the left-inverse. Recall that 𝑘1 = −𝑚(𝑟 + 1) + 1 and that 

𝜂(𝑟+1)𝑚 = 𝑦𝑘1+(𝑟+1)𝑚−1 = 𝑦0. let 𝐶𝑇 denote the (𝑟 + 1)𝑚−𝑡ℎ row vector of  𝑃0
−1. By 

definition of the inverse, we have ∑ 𝑐𝑗𝑔(𝜉𝑗 − 𝜂𝑘) = 𝛿𝑘,(𝑟+1)𝑚
𝑁
𝑗=1  or equivalently, for 

 𝑘1 ≤ 𝑘 ≤ 𝑘2, 

∑𝑐𝑗𝑔(𝜉𝑗 − 𝑦𝑘)

𝑁

𝑗=1

= 𝛿𝑘,0.                                                   (35) 

Let us now consider the other columns with 𝑘 < 𝑘1 or 𝑘 > 𝑘2. Since 𝑘1 ≤ −𝑚 < 0 <

𝑛 ≤ 𝑘2 and every vector (𝑔(𝜉𝑗 − 𝑦𝑘))
1≤𝑗≤𝑁

 lies either in the span of the first 𝑚 

columns of 𝑃0 (for 𝑘 < 𝑘1) or in the span of the last 𝑛 columns of  𝑃0 (for 𝑘 > 𝑘2), we 

obtain that  

∑𝑐𝑗𝑔(𝜉𝑗 − 𝑦𝑘)

𝑁

𝑗=1

= 0. 

Therefore, the identity (35) holds for all 𝑘 ∈ ℤ. 

Next we fill the vector 𝑐 with zeros and define the infinite vector 𝛾0 by  

𝛾0,𝑗 = {
𝑐𝑗′ if 𝑥𝑗 = 𝜉𝑗′ ∈ 𝑋0

′

0  otherwise.        
 

Then   

∑ 𝛾0,𝑗𝑔(𝑥𝑗 − 𝑦𝑘)𝑗∈ℤ = ∑ 𝑐𝑗𝑔(𝜉𝑗 − 𝑦𝑘)
𝑁
𝑗=1 = 𝛿𝑘,0.  

Thus 𝛾0 is a row of the left-inverse of 𝑃. By construction, 𝛾0 has most 𝑁 non-zero 

entries. In particular, if 𝑥𝑗 < 𝑦𝑘1+𝑚−1 = 𝑦−𝑟𝑚, then we have 𝑗 < 𝑗1 and thus 𝛾0,𝑗 = 0. 

Similarly, if 𝑥𝑗 > 𝑦𝑘2−𝑛+1 = 𝑦𝑟(𝑛−1) for 𝑛 > 1, and 𝑥𝑗 > 𝑦𝑘2−𝑛+1 = 𝑦1 for 𝑛 = 1, then 

we have 𝑗 > 𝑗2 and 𝛾0,𝑗 = 0. This gives the support properties of the entries 𝛾0,𝑘 of row  

𝑘 = 0 of the left-inverse Γ. 

Step 6: the other rows of Γ. The construction of the 𝑘 − th row of Γ is similar. We 

choose the columns between  𝑘1 = 𝑘 − (𝑟 + 1)𝑚 + 1 and 𝑘2 = 𝑘1 +𝑁 − 1 of  𝑃, and, 

accordingly, we choose suitable rows between the indices 𝑗1 = min{𝑗: 𝑥𝑗 > 𝑦𝑘1+𝑚−1} 

and 𝑗2 = max{𝑗: 𝑥𝑗 < 𝑦𝑘2−𝑛+1}. Then the column of 𝑃 containing 𝑦𝑘 has at least 𝑚 

columns to its left and 𝑛 columns to its right. We then proceed to select 𝜉𝑗
′𝑠 and define 

an 𝑁 ×𝑁-matrix 𝑃𝑘 and verify that det 𝑃𝑘 > 0. The 𝑘 − th  row  of Γ is obtained by 

padding the appropriate row (with row-index (r+1)m) of 𝑃𝐾
−1 with zeros. By this 

construction one obtains a vector 𝛾𝑘 = (𝛾𝑘,𝑗)𝑗∈ℤ, for which  

∑ 𝛾𝑘𝑗𝑔(𝑥𝑗 − 𝑦𝑙) = 𝛿𝑘,𝑙𝒋∈ℤ   

holds. Furthermore, 𝛾𝑘,𝑗 = 0 when 𝑥𝑗 < 𝑦𝑘−𝑟𝑚 and when 𝑥𝑗 > 𝑦𝑘+𝑟𝑛. 

Step 7: the remaining cases. The cases where 𝑚 = 0 or 𝑛 = 0 are simple adaptations 

of the above steps. For 𝑚 = 0, 𝑛 ≥ 2 we choose 𝑁 = (𝑛 − 1)(𝑟 + 1). The indices for 

the sub matrix 𝑃𝑘 that occurs in the construction of the 𝑘 − th row of  Γ are 𝑘1 =
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𝑘, 𝑘2 = 𝑘 + 𝑁 − 1, 𝑗1 = 𝑗1(𝑘) = 𝑗1 = max{𝑗: 𝑥𝑗 < 𝑦𝑘1} and 𝑗2 = 𝑗2(𝑘) = max{𝑗: 𝑥𝑗 <

𝑦𝑘2}. Now we proceed as before. 

We note that Step 4 simplifies a bit. For  𝑚 = 0 the function 𝑔 is supported on 

(−∞, 0) by [233,p.339]. Consequently, if 𝑘0 < 𝑘1 and 𝑗 ≥ 𝑗1, then 𝑥𝑗 − 𝑦𝑘0 > 0 and  

𝑔(𝑥𝑗 − 𝑦𝑘0) = 0. 

Thus the column vectors of  𝑃 to the left of the sub matrix 𝑃0 are identically zero 

and no further proof is needed for linear dependence. The case 𝑛 = 0 is similar. It can 

be reduced to the previous case by a reflection 𝑥 → −𝑥, which interchanges the role of  

𝑚 and 𝑛. 
The special case of  𝑚 = 0 and 𝑛 = 1 can be solved by taking 𝑁 = 2, 𝑘1 =

𝑘, 𝑘2 = 𝑘 + 1, 𝑗1 = max{𝑗: 𝑥𝑗 < 𝑦𝑘  } , 𝑗2 = min{𝑗: 𝑥𝑗 > 𝑦𝑘}, and the 2 × 2-matrix  

𝑃𝑘 = (
𝑔(𝑥𝑗1 − 𝑦𝑘) 𝑔(𝑥𝑗1 − 𝑦𝑘+1)

𝑔(𝑥𝑗2 − 𝑦𝑘) 𝑔(𝑥𝑗2 − 𝑦𝑘+1)
). 

In this simple case the size of the matrix is independent of the parameter 𝑟 occurring in 

condition 𝐶𝑟. 
We show the main result about Gabor frames. Recall that a totally positive 

function is said to be of finite type, if its two-sided Laplace transform factors as 

ℒ[𝑔](𝑠)−1 = 𝐶𝑒𝛿𝑠∏ (1 + 𝛿𝑣𝑠)
𝑀
𝑣=1  with real numbers 𝛿, 𝛿𝑣 . 

By taking a Fourier transform, we obtain the following corollary. 

Corollary (4.2.9)[205]: If ℎ(τ) = C∏ (1 + 2𝜋𝑖𝛿𝑣𝜏)
−1𝑀

𝑣=1  for  𝑀 ≥ 2, then ℱ(ℎ) =
{(𝛼, 𝛽) ∈ ℝ2: 𝛼𝛽 < 1} and 𝒢(ℎ, 𝛼, 𝛽) possesses a band limited dual window 𝜃 with sup 

𝜃 ⊆ [−
𝑟𝑚

𝛼
− 𝛽,

𝑟𝑛

𝛼
+ 𝛽]. 

Theorem (4.2.10)[205]: Assume that 𝑔 is a totally positive function of finite type and 

𝑀 = 𝑚 + 𝑛 ≥ 2, where 𝑚 is the number of positive zeros and 𝑛 the number of negative 

zeros of 1 ℒ(𝑔)⁄ . Then ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ2: 𝛼𝛽 < 1}. The Gabor frame 𝒢(𝑔, 𝛼, 𝛽) 

possesses a piecewise continuous dual window 𝛾 with compact support in [−
𝑟𝑚

𝛽
−

𝛼,
𝑟𝑛

𝛽
+ 𝛼], where 𝑟 ≔ ⌊

1

1−𝛼𝛽
⌋. 

Proof. Since 𝑔 ∈ 𝐿1(ℝ) is totally positive, it decays exponentially, and since 𝑀 ≥ 2, its 

Fourier transform �̂�(𝜉) = 𝐶𝑒2𝜋𝑖𝛿𝜉∏ (1 + 2𝜋𝑖𝛿𝑣𝜏)
−1𝑀

𝑣=1  decays at least like |�̂�(𝜉)| ≤
�̃�(1 + 𝜉2)−1. In particular, 𝑔 is continuous. As a consequence, the assumptions of the 

Balian-Low theorem are satisfied [209, 219] satisfied [209, 219] and ℱ(𝑔) ⊆
{(𝛼, 𝛽) ∈ ℝ+

2 : 𝛼𝛽 ≤ 1}. 
To show that 𝒢(𝑔, 𝛼, 𝛽) is a frame for 𝛼𝛽 < 1, we will construct a family of 

uniformly bounded left-inverses for the pre- Gramians 𝑃(𝑥) of 𝑔 and then use Lemma 

(4.2.4).  

Fix 𝑥 ∈ [0, 𝛼] and consider the sequences 𝑥𝑗 = 𝑥 + 𝛼𝑗 and 𝑦𝑘 = 𝑘 𝛽⁄ , 𝑗, 𝑘 ∈ ℤ. 

We first check condition (𝐶𝑟). By our assumption, we have 𝛼 < 1 𝛽⁄  and every interval 

(𝑘 𝛽⁄ , (𝑘 + 1) 𝛽⁄ ) contains at least one point 𝑥 + 𝛼𝑗. Every interval (𝑘 𝛽⁄ , (𝑘 + 𝑟) 𝛽⁄ ), 
with 𝑟 ∈ ℕ, contains at least 𝑟 + 1 points 𝑥 + 𝛼𝑗, if 𝑟 𝛽⁄ > (𝑟 + 1)𝛼, i.e, we have  

𝑟 >
𝛼𝛽

1 − 𝛼𝛽
,     or equivalently   𝑟 ≥ ⌊

1

1 − 𝛼𝛽
⌋. 
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Consequently, condition (𝐶𝑟) is satisfied with 𝑟 = ⌊
1

1−𝛼𝛽
⌋. By Theorem (4.2.8), each 

pre-Gramian 𝑃(𝑥) with entries 𝑔(𝑥 + 𝛼𝑗 − 𝑘 𝛽⁄ ) Possesses a left-inverse Γ(𝑥). To 

apply Lemma (4.2.5), we need to show that Γ(𝑥), 𝑥 ∈ [0, 𝛼], is a uniformly bounded set 

of operators on ℓ2(ℤ).  
Let 𝑃0(𝑥) be the 𝑁 × 𝑁-squar sub matrix constructed in Steps 1 and 2. The 

column indices 𝑘1 and 𝑘2 depend only on the type of 𝑔, but not on 𝑥. the row 

indices𝑗1 = 𝑗1(𝑥) = min{𝑗 ∶  𝑥𝑗 > 𝑦𝑘1+𝑚−1} = min{𝑗: 𝑥 + 𝛼𝑗 > (𝑘1 +𝑚 − 1) 𝛽⁄ } and 

𝑗2 = 𝑗2(𝑥) are locally constant in 𝑥. Likewise the indices that determine which rows 

𝑗, 𝑗1 < 𝑗 < 𝑗2 of 𝑃(𝑥) are contained in 𝑃0(𝑥) are locally constant. Consequently, for 

every 𝑥 ∈ [0, 𝛼) there is a neighborhood 𝑈𝑥 such that indices used for 𝑃0(𝑦)𝑗𝑘 = 𝑔(𝑦 +

𝜉𝑗 − 𝑘 𝛽⁄ ) do not depend on 𝑦 ∈ 𝑈𝑥. Since 𝑔 is continuous, 𝑃0(𝑦) is continuous on 𝑈𝑥, 

and since det 𝑃0(𝑥) > 0 there exists a neighborhood 𝑉𝑥 ⊆ 𝑈𝑥, such that det 𝑃0(𝑦) ≥
det 𝑃0(𝑥) 2⁄   for 𝑦 ∈ 𝑉𝑥. 

We now cover [0, 𝛼] with finitely many neighborhoods 𝑉𝑥𝑞 and obtain that 

det 𝑃0(𝑦) ≥ min
𝑞
det 𝑃0(𝑥𝑞) 2⁄ = 𝛿 > 0 for all 𝑦 ∈ [0, 𝛼]. Since each entry of the 

inverse matrix 𝑃0(𝑦) 
−1 can be calculated by Cramer’s rule, these entries must be 

bounded by 𝐶 det 𝑃0(𝑦) 
−1 ≤ 𝐶𝛿−1 with a constant 𝐶 depending only on ‖𝑔‖∞ and the 

dimension 𝑁 of   𝑃0(𝑦).  
By construction (step 5), the zero-th row 𝛾(𝑥) = (𝛾0(𝑥), 𝑗(𝑥)) 𝑗∈ℤ of the left-

inverse Γ(𝑥) contains at most 𝑁 ≤ (𝑟 + 1)𝑀 non-zero entries, namely those of the row 

of 𝑃0(𝑥)
−1 corresponding to 𝑦0 = 0. We have thus constructed vector-valued functions 

𝑥 → 𝛾(𝑥) from [0, 𝛼] → ℓ∞(ℤ) with the following properties: 

(i) 𝛾(𝑥) is piecewise continuous, 

(ii) card (supp 𝛾(𝑥)) ≤ (𝑟 + 1)𝑀, where according to (223). 

supp 𝛾(𝑥) = {𝑗: 𝛾0,𝑗(𝑥) ≢ 0} ⊆ {𝑗: 
−𝑟𝑚

𝛽
≤ 𝑥 + 𝛼𝑗 ≤

𝑟𝑛

𝛽
} ⊆ {𝑗 ∶

−𝑟𝑚

𝛼𝛽
− 1 ≤ 𝑗 ≤

𝑟𝑛

𝛼𝛽
}, 

(iii) and sup
𝑥∈[0,𝛼]

‖𝛾(𝑥)‖∞ = 𝐶 < ∞. 

Consequently, the dual window 𝛾(𝑥) = 𝛽 ∑ 𝛾0,𝑗(𝑥)𝜒[0,𝛼](𝑥 − 𝛼𝑗)𝑗∈ℤ𝑑  

corresponding to Γ(𝑥) by Lemma (4.2.5), has compact support on the interval [−
𝑟𝑚

𝛽
−

𝛼,
𝑟𝑛

𝛽
+ 𝛼], is piecewise continuous, and bounded. In particular, it satisfies the Bessel 

property (see [238] or [219, Cor. 6.2.3]) . We have constructed a dual window for 

𝒢(𝑔, 𝛼, 𝛽) satisfying Bessel property. By Theorem (4.2.3) and Lemma (4.2.4). 

𝒢(𝑔, 𝛼, 𝛽) is a Gabor frame. 

In the proof of Theorem (4.2.10) we have constructed a compactly supported dual 

window 𝛾 for 𝒢(𝑔, 𝛼, 𝛽). This construction is explicit and can be realized numerically, 

because it requires only the inversion of finite matrices. To determine the values 𝛾(𝑥 +
𝑗𝛼), one has to solve the linear 𝑁 × 𝑁 system 𝑃0(𝑥)𝛾(𝑥) = 𝑒 for a vector 𝑒 of the 

standard basis of  ℝ𝑁.   

We observe that the canonical dual window (provided by standard frame theory) 

has better smoothness properties. The regularity theory for the Gabor frame operator 

implies that the canonical dual window 𝛾0 decays exponentially and its Fourier 
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transform 𝛾0̂(𝜉) decays like 𝑂(|𝜉|−𝑀), where 𝑀 is the type of 𝑔. See 

[217,219,220,237].  

Theorem (4.2.10) raises many new questions. Theorem (4.2.10) suggests the 

natural conjecture that frame set of every totally positive continuous function 𝑔 in 

𝐿1(ℝ) is ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}. Our proof is tailored to totally positive 

functions of finite type, most likely the proof of the conjecture will require a different 

method.  

In a larger context one may speculate about the set ℳ of functions such that the 

frame set is exactly  ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}. In other words, when is the 

necessary density condition 𝛼𝛽 < 1 also sufficient for 𝒢(𝑔, 𝛼, 𝛽) to be  a frame? the 

invariance properties of Gabor frames imply that the class ℳ must be invariant under 

time-frequency shifts, dilations, involution, and the Fourier transform. Furthermore, if  

ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ2: 𝛼𝛽 < 1}, then both 𝑔 and �̂� must have infinite support. 

A general method for constructing functions in ℳ can be exracted from [227]. 

We write �̂�(𝜉) = ∑ 𝑐𝑘𝑘∈ℤ 𝑒2𝜋𝑖𝑘𝜉  for the Fourier series of a sequence (𝑐𝑘) and then 

define, for a given function 𝑔0 ∈ 𝐿
2(ℝ),     

𝐶𝑔0 = {𝑓 ∈ 𝐿
2(ℝ) ∶ 𝑓 = ∑ 𝑐𝑘𝑑𝑙𝑇𝑘𝑀𝑙 𝑔0, 𝑐, 𝑑 ∈ ℓ

1(ℤ), inf
𝜉
(|�̂�(𝜉)�̂�(𝜉)|) > 0

𝑘,𝑙∈ℤ

}. 

Lemma (4.2.11)[205]: Let 𝑔0 be a totally positive function of finite type 𝑀 ≥ 2. If 𝑔 ∈
𝐶𝑔0, then the frame set of 𝑔 is ℱ(𝑔) = {(𝛼, 𝛽) ∈ ℝ+

2 : 𝛼𝛽 < 1}. This trick was used by 

Janssen and Strohmer in [227].  They showed that the hyperbolic secant 𝑔1(𝑡) =

(𝑒𝑡 + 𝑒−𝑡)−1 belongs to the set 𝐶𝜑 for the Gaussian window 𝜑(𝑡) = 𝑒−𝜋𝑡
2
 and then 

concluded that ℱ(𝑔1) = {(𝛼, 𝛽) ∈ ℝ+
2 : 𝛼𝛽 < 1}. The general argument is identical. 

Each class 𝐶𝑔 is completely determined by the zeros of the Zak transform of  𝑔. 

Let 𝑍𝑔(𝑥, 𝜉) = ∑ 𝑔(𝑡 − 𝑘)𝑒2𝜋𝑖𝑘𝜉𝑘∈ℤ  be the Zak transform of 𝑔. Since 

𝑍(𝑇𝑘𝑀𝑙𝑔)(𝑥, 𝜉) = 𝑒
2𝜋𝑖(𝑙𝑥−𝑘𝜉)𝑍𝑔(𝑥, 𝜉), every 𝑔 ∈ 𝐶𝑔0 has a Zak transform of the form 

𝑍𝑔(𝑥, 𝜉) = �̂�(−𝜉)�̂�(𝑥)𝑍𝑔0(𝑥, 𝜉). 

The definition of  𝐶𝑔0 implies that 𝑍𝑔 and 𝑍𝑔0 have the same zero set. If  𝑔0 and ℎ are 

totally positive functions, then the zero sets of 𝑍𝑔0 and 𝑍ℎ are different in general, 

therefore Lemma (4.2.11), leads to distinct sets 𝐶𝑔0. The zeros of the Zak transform 

seems to be some kind of invariant for the Gabor frame problem, but their deeper 

significance is still mysterious. 

We exploit the connection between Gabor frames and sampling theorems and 

show new sharp sampling theorems for shift-invariant spaces. Originally shift-invariant 

spaces were used as a substitute for band limited functions and were defined as the span 

of integer translates of a given function 𝑔.    We refer to the survey [208] for the theory 

of sampling in shift-invariant spaces. We will deal with a slightly more general class of 

spaces that are generated by arbitrary shifts.  

Let 𝑌 = (𝑦𝑘)𝑘∈ℤ be a strictly increasing sequence and consider the quasi shift-

invariant space  

𝑉𝑌(𝑔) = {𝑓 ∈ 𝐿
2(ℝ): 𝑓 =∑𝑐𝑘𝑔(⋅ −𝑦𝑘)

𝑘∈ℤ

}. 
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We require that the sequence 𝑌 = (𝑦𝑘) of shift parameters satisfies the conditions  

0 < 𝑞𝑌 = inf
𝑘
(𝑦𝑘+1 − 𝑦𝑘) ≤ sup

𝑘
(𝑦𝑘+1 − 𝑦𝑘) = 𝑄𝑌 < ∞.               (36) 

Such sequences are called quasi-uniform or uniformly discrete. The numbers 𝑄𝑌, 𝑞𝑦 > 0 

are the mesh-norm and the separation distance of 𝑌. 

For the norm equivalence ‖𝑓‖2 ≍ ‖𝑐‖2 for 𝑓 ∈ 𝑉𝑌(𝑔) we need that {𝑔(⋅
−𝑦𝑘: 𝑦𝑘 ∈ 𝑌} is a Riesz basis for 𝑉𝑌(𝑔). 
Lemma (4.2.12)[205]: Let 𝑔 be an arbitrary totally positive function. 

(i) If  𝑌 = ℎℤ with ℎ > 0, then {𝑔(⋅ −ℎ𝑘), 𝑘 ∈ ℤ} is a Riesz basis for 𝑉𝑌(𝑔). 
(ii) If 𝑌 is quasi-uniform, then {𝑔(⋅ −ℎ𝑘): 𝑘 ∈ ℤ} is a Riesz basis for 𝑉𝑌(𝑔). 

Proof. (i) Since �̂� is continuous, does not have any real zeros, and �̂�(𝜉) decays at least 

like 𝐶 |𝜉|⁄ , every periodization of |�̂�|2 is bounded above and below. This property is 

equivalent to the Riesz basis property, e.g.[212,Thm. 7.2.3 ]. 

Of course, (i) also follows from (ii). 

(ii) For the general case we use Zygmund’s inequality [240,Th. 9.1]: if 𝐼 is an 

interval of length |𝐼| >
1+𝛿

𝑞𝑌
, then  

∫|∑𝑐𝑘𝑒
2𝜋𝑖𝑦𝑘𝜉

𝑘

|

2

𝑑𝜉

𝐼

≥ 𝐴𝛿|𝐼|‖𝑐‖2
2 

for a constant depending only on 𝛿 > 0. 

If 𝑓 = ∑ 𝑐𝑘𝑔(⋅ −𝑦𝑘)𝑘 , then  

‖𝑓‖2
2 = ‖𝑓‖

2

2
= ∫ |∑𝑐𝑘𝑒

−2𝜋𝑖𝑦𝑘𝜏

𝑘

|

2

|�̂�(𝜏)|2𝑑𝜏

ℝ

≥ inf
𝜏∈𝐼
|�̂�(𝜏)|2∫|∑𝑐𝑘𝑒

−2𝜋𝑖𝑦𝑘𝜏

𝑘

|

2

𝑑𝜉

𝐼

≥ 𝐶|𝐼|𝐴𝛿‖𝑐‖2
2. 

Here inf
𝜏∈𝐼
|�̂�(𝜏)|2 > 0, because �̂� does not have any real zeros by Theorem (4.2.6). 

We are interested to derive sampling theorems for generalized shift-invariant 

spaces that are generated by a totally positive function 𝑔. Our goal is to construct 

strictly increasing sequences 𝑋 = (𝑥𝑗) that yield a sampling inequality  

𝐴‖𝑓‖2
2 ≤∑|𝑓(𝑥𝑗)|

2

𝑗∈ℤ

≤ 𝐵‖𝑓‖2
2      for all 𝑓 ∈ 𝑉𝑌(𝑔)                 (37) 

for some constants 𝐴, 𝐵 > 0 independent of 𝑓. Following Landau [229], a set 𝑋 ⊂ ℝ 

that satisfies the norm equivalence (37) is called a set of (stable) sampling for 𝑉𝑌(𝑔). 
Except for band limited functions and 𝐵-spline generators only qualitative results are 

known about sets of sampling in shif-invariant spaces.  

We first give an equivalent condition for sets of sampling in 𝑉𝑌(𝑔). As in Lemma 

(4.2.4) we obtain the following characterization of sets of sampling in 𝑉𝑌(𝑔).  
Lemma (4.2.13)[205]: Let 𝑔 ∈ 𝐿2(ℝ), and let 𝑌 = (𝑦𝑘)𝑐∈ℤ ⊂ ℝ be a strictly increasing 

sequence. Then a set {𝑥𝑗} ⊂ ℝ is a set of sampling for 𝑉𝑌(𝑔), if and only if the pre-

Gramian 𝑃 with entries 𝑝𝑗𝑘 = 𝑔(𝑥𝑗 − 𝑦𝑘) possesses a left-inverse Γ that is bounded on 

ℓ2(ℤ). The case of uniform sampling in shift-invariant spaces is completely settled by 

the results. 
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Corollary (4.2.14)[205]: Let 𝑔 be a totally positive function of finite type 𝑀 ≥ 2, and 

𝑌 = ℎℤ. If 𝛼 < ℎ and 𝑥 ∈ ℝ is arbitrary, then the set 𝑥 + 𝛼ℤ is a set of sampling for 

𝑉𝑌(𝑔). More precisely, there exist positive constants 𝐴, 𝐵 independent of  𝑥, such that  

𝐴‖𝑓‖2
2 ≤ ∑ |𝑓(𝑥 + 𝛼𝑗)|2𝑗∈ℤ ≤ 𝐵‖𝑓‖2

2       for all  𝑓 ∈ 𝑉𝑌(𝑔).  

Proof. We showed that Theorem (4.2.10) by verifying the equivalent condition of 

Theorem (4.2.3) namely (18) stating that 

𝐴‖𝑐‖2
2 ≤ ∑ |∑ 𝑐𝑘𝑔(𝑥 + 𝑗𝛼 − ℎ𝑘)

𝑘∈ℤ𝑑

|

2

𝑗∈ℤ𝑑

≤ 𝐵‖𝑐‖2
2   for all 𝑥 ∈ ℝ , 𝑐 ∈ ℓ2(ℤ). (38) 

Since 𝑓 ∈ 𝑉𝑌(𝑔) is of the form 𝑓 = ∑ 𝑐𝑘𝑔(⋅ −ℎ𝑘)𝑘  and ‖𝑓‖2 ≍ ‖𝑐‖2 by the Lemma 

(4.2.12), the inequalities (38) are equivalent to the sampling inequality ‖𝑓‖2
2 ≍

∑ |𝑓(𝑥 + 𝛼𝑗)|2,𝑗∈ℤ  and the constants are independent of 𝑥 by Theorem (4.2.3) see [290]. 

Our methods yield more general sampling theorems. On the one hand, we study 

non-uniform sampling sets, and on the other hand, we may treat quasi shift –invariant 

spaces. The auxiliary characterization of Lemma (4.2.13), gives a hint of  how to 

proceed. If the sequences (𝑥𝑗) and (𝑦𝑘) satisfy condition (𝐶𝑟) for some 𝑟 > 0, then by 

Theorem (4.2.8), the pre-Gramian matrix 𝑃 possesses an algebraic left-inverse. To 

obtain a sampling theorem, we need to impose additions on (𝑥𝑗) and (𝑦𝑘), so that this 

left-inverse is bounded on ℓ2.  

To vrify the boundedness of a matrix, we will apply the following lemma which 

is a direct consequence of  Schur’s test, see, e.g, [219, Lemma 6.2.1]. 

Lemma (4.2.15)[205]: Assume that 𝐴 = (𝑎𝑗𝑘)𝑗,𝑘∈ℤ is a matrix with bounded entries 

|𝑎𝑗𝑘| ≤ 𝐶 for𝑗, 𝑘 ∈ ℤ. Furthermore, assume that there exists a strictly increasing  

sequence (𝑗𝑘)𝑘∈ℤ of row indices 𝑗𝑘 ∈ ℤ and 𝑁 ∈ ℕ such that 𝑎𝑗𝑘 = 0 for |𝑗 − 𝑗𝑘| ≥ 𝑁. 

Then  

‖𝐴‖ℓ2→ℓ2 ≤ (2𝑁 − 1)𝐶.                                              (39) 
Proof. The conditions give   

𝐾2 ≔ sup
𝑘∈ℤ

∑|𝑎𝑗𝑘|

𝑗∈ℤ

= sup
𝑘∈ℤ

∑ |𝑎𝑗𝑘|

𝑗𝑘+𝑁−1

𝑗=𝑗𝑘−𝑁+1

≤ (2𝑁 − 1)𝐶. 

For the estimate of the column sums, we define the set 

𝑁𝑗 = {𝑘 ∈ ℤ: 𝑎𝑗𝑘 ≠ 0} ⊆ {𝑘 ∈ ℤ ∶ |𝑗 − 𝑗𝑘| < 𝑁}           for 𝑗 ∈ ℤ. 

Since (𝑗𝑘) is strictly increasing, 𝑁𝑗 has at most (2𝑁 − 1) elements, and this gives  

𝐾1 ≔ sup
𝑗∈ℤ
∑|𝑎𝑗𝑘|

𝑘∈ℤ

= sup
𝑗∈ℤ

∑|𝑎𝑗𝑘|

𝑘∈𝑁𝑗

≤ (2𝑁 − 1)𝐶. 

The assertion now follows from Schur’s test. 

We give a sufficient condition for a set Χ to be a set of sampling for 𝑉𝑌(𝑔). 
Theorem (4.2.16)[205]: Let 𝑔 be a totally positive function of finite type 𝑀 ≥ 2. Let 

𝑌 = (𝑦𝑘)𝑘∈ℤ ⊆ ℝ be an increasing quasi-uniform sequence with parameters 𝑞𝑌, 𝑄𝑌 

defined in (36). Moreover, let (𝑥𝑗)𝑗∈ℤ ⊂ ℝ be a strictly increasing sequence, which 

satisfies the following conditions: 
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(𝐶𝑟(𝜖))

{
 
 

 
 

There exist 𝑟 ∈ ℕ, 𝜖 ∈ (0, 𝑞𝑌 2⁄ ) and a quasi − uniform subsequence

𝑋′ ⊆ 𝑋, such that                                                                                                
(a) every interval (𝑦𝑘 + 𝜖, 𝑦𝑘+1 − 𝜖) contains at least one point           

𝑥𝑗 ∈ 𝑋
′;                                                                                                                 

(b) for every 𝑘 ∈ ℤ, we have |(𝑦𝑘 + 𝜖, 𝑦𝑘+1 − 𝜖) ∩ 𝑋
′| ≥ 𝑟 + 1.          

 

Then 𝑋 is a set of sampling for 𝑉𝑌(𝑔). 
Proof. Step 1. First, we construct a left-inverse of the pre-Gramian 𝑃 as in the proof of 

Theorem (4.2.8) with a small modification. 

We consider only the case 𝑚 > 1, 𝑛 > 1. For the construction of the row with the 

index 𝑘 of the left-inverse Γ, we choose the size 𝑁 ∈ ℕ for a square sub matrix 𝑃𝑘 of 𝑃 

as in Step 1 and the column indices 𝑘1 = 𝑘 − 𝑟(𝑚 + 1) + 1 and 𝑘2 = 𝑘1 +𝑁 − 1 as in 

Step 6. 

To incorporate condition 𝐶𝑟(𝜖), we modify the selection of the row indices in 

Step 2 as follows. Assumption 𝐶𝑟(𝜖) and our definition of 𝑁 imply that the interval 𝐼 =

(𝑦𝑘1+𝑚−1 + 𝜖, 𝑦𝑘2−𝑛+1 − 𝜖) contains at least 𝑁 points 𝑥𝑗 ∈ 𝑋
′, where  𝑋′ is the quasi-

uniform subset of 𝑋 in condition 𝐶𝑟(𝜖). Define  

𝑗1 ≔ min{𝑗: 𝑥𝑗 ∈ 𝑋
′, 𝑥𝑗 ≥ 𝑦𝑘1+𝑚−1 + 𝜖},   𝑗2 ≔ max{𝑗: 𝑥𝑗 ∈ 𝑋

′, 𝑥𝑗 ≤ 𝑦𝑘2−𝑛+1 − 𝜖 } , 

Then the set  

𝑋𝑘 = {𝑥𝑗 ∈ 𝑋
′: 𝑗1 ≤ 𝑗 ≤ 𝑗2} ⊂ (𝑦𝑘1+𝑚−1 + 𝜖, 𝑦𝑘2−𝑛+1 − 𝜖) 

has at least 𝑁 elements. We now choose one point 𝑥𝑗 ∈ (𝑦𝑙 + 𝜖 , 𝑦𝑙+1 − 𝜖) ∩ 𝑋
′ for each 

𝑘1 +𝑚 − 1 ≤ 𝑙 ≤ 𝑘2 − 𝑛 and an additional 𝑛 +𝑚 − 1 points 𝑥𝑗 ∈ (𝑦𝑘1+𝑚−1 +

𝜖, 𝑦𝑘2−𝑛+1 − 𝜖) ∩ 𝑋
′ and obtain a subset  

𝑋𝑘
′ = {𝜉1 < ⋯ < 𝜉𝑁} ⊆ 𝑋𝑘 ⊂ 𝑋

′, 
containing precisely 𝑁 elements. As before, we set 

𝜂1 = 𝑦𝑘1+𝑙−1 ,     1 ≤ 𝑙 ≤ 𝑁, 

and define the quadratic sub matrix 𝑃𝑘 of 𝑃 by  

𝑃𝑘 = (𝑔(𝜉𝑗 − 𝜂𝑙))𝑗,𝑙=1,…,𝑁 . 

The modified construction leads to a stronger version of the Schoenberg-Whitney 

conditions, namely 

𝜉𝑗 + 𝜖 ≤ 𝜂𝑗+𝑚  for 1 ≤ 𝑗 ≤ 𝑁 −𝑚,    𝜂𝑗 + 𝜖 ≤ 𝜉𝑗+𝑛 for 1 ≤ 𝑗 ≤ 𝑁 − 𝑛.   (40) 

Step 4 remains unchanged, and the column of 𝑃 with 𝑘 < 𝑘1 or 𝑘 > 𝑘2 are 

linearly dependent on the columns of 𝑃𝑘. 

Hence  𝑃𝑘 is invertible and, by padding the (𝑟 + 1)𝑚 − th row of 𝑃𝑘
−1 with zeros, 

we obtain the row (𝛾𝑘,𝑗)𝑗∈ℤ with the row index 𝑘 of the left-inverse Γ. 

Step 2. We show that this left inverse Γ defines a bounded operator on ℓ2(ℤ).  
By construction the 𝑗 − th row (𝛾𝑘,𝑗) of Γ has at most 𝑁 non-zero entries between 

𝑘1 = 𝑘 − (𝑟 + 1)𝑚 + 1 and 𝑘1 +𝑁 − 1. To apply Lemma (4.2.15), we need to show 

that the entries of Γ are uniformly bounded, or equivalently, that the entries of 𝑃𝑘
−1 are 

bounded with a bound that does not depend on 𝑘. 

We set up a compactness argument similar to the proof of Theorem (4.2.8), we 

begin with the simple observation that  

𝑔(𝜉𝑗 − 𝜂𝑙) = 𝑔 ((𝜉𝑗 − 𝜂1) − (𝜂𝑙 − 𝜂1)) ,   𝑗, 𝑙 = 1,… , 𝑁. 



137 

Let 𝑆 be the 𝑁-dimensional simplex 

𝑆 = {𝜏 = (𝜏1, … , 𝜏𝑁) ∈ ℝ
𝑁: 0 ≤ 𝜏1 ≤ ⋯ ≤ 𝜏𝑁 ≤ (𝑁 − 1)𝑄𝑌}.         (41)  

Although the finite sequences (𝜉𝑗)1≤𝑗≤𝑁 and (𝜂𝑗)1≤𝑙≤𝑁depend on the row index 𝑘  (and 

we should write 𝜉𝑗
(𝑘)

 and 𝜂𝑙
(𝑘)

 to make the dependence explicit), we always have  

0 < 𝜉1 − 𝜂1 < 𝜉𝑁 − 𝜂1 < 𝜂𝑁 − 𝜂1 ≤ (𝑁 − 1)𝑄𝑌. 
Consequently, 

(𝜉1 − 𝜂1, … , 𝜉𝑁 − 𝜂1) ∈ 𝑆,   and (0, 𝜂2 − 𝜂1, … , 𝜂𝑁 − 𝜂1) ∈ 𝑆. 

Let 𝑞 ≔ min{𝑞𝑥′ , 𝑞𝑌} > 0 be the minimum of the separation distances of the 

quasi-uniform sets 𝑋′ and 𝑌 and let  

𝑆𝑞 = {𝜏 = (𝜏1, … , 𝜏𝑁) ∈ 𝑆: 𝜏𝑗+1 − 𝜏𝑗 ≥ 𝑞 for 1 ≤ 𝑗 ≤ 𝑁 − 1}. 

Then 𝑆𝑞 is compact and 

(𝜉1 − 𝜂1, … , 𝜉𝑁 − 𝜂1) ∈ 𝑆𝑞  and (0, 𝜂2 − 𝜂1, … , 𝜂𝑁 − 𝜂1) ∈ 𝑆𝑞 . 
Finally, we define the compact set 

𝐾 = {(𝜏 , 𝜃) ∈ 𝑆𝑞 × 𝑆𝑞: 𝜏𝑗 + 𝜖 ≤ 𝜃𝑗+𝑚 for 1 ≤ 𝑗 ≤ 𝑁 −𝑚, 

𝜃𝑗 + 𝜖 ≤ 𝜏𝑗+𝑛 for 1 ≤ 𝑗 ≤ 𝑁 − 𝑛}.                       

The assumption 𝐶𝑟(∈) implies that  

((𝜉1 − 𝜂1, … , 𝜉𝑁 − 𝜂1), (0, 𝜂2 − 𝜂1, … , 𝜂𝑁 − 𝜂1)) ∈ 𝐾. 
Clearly, the Schoenberg-Whitney conditions are satisfied for every point (𝜏, 𝜃) ∈ 𝐾 and 

therefore every 𝑁 ×𝑁-matrix (𝑔(𝜏𝑗 − 𝜃𝑙)) has positive determinant. Since the 

determinant depends continuously on (𝜏, 𝜃) and 𝐾 is compact, we conclude that  

inf
(𝜏,𝜃)∈𝐾

det (𝑔(𝜏𝑗 − 𝜃𝑙)) = 𝛿 > 0. 

This construction implies that det 𝑃𝑘 ≥ 𝛿 > 0 for every 𝑘. As in the proof of Theorem 

(4.2.8) we use Cramer’s rule and conclude that all entries of 𝑃𝑘
−1 are bounded by 

(𝑁 − 1)! 𝛿−1‖𝑔‖∞
𝑁−1. 

The assumption of the modified Schur test are satisfied, and Lemma (4.2.15) 

yields that the matrix Γ is bounded as an operator on ℓ2(ℤ). Finally, Lemma (4.2.13) 

implies that 𝑋 is a set of sampling for 𝑉𝑌(𝑔). 
Corollary (4.2.17)[205]: Assume that 𝑔 is totally positive of finite order 𝑀 ≥ 2 and 

𝑌 = ℎℤ. Let 𝛼 = sup𝑗∈ℤ(𝑥𝑗+1 − 𝑥𝑗) be the maximum 𝑔ap between consecutive 

sampling points. If  𝛼 < ℎ, then (𝑥𝑗) is a set of  sampling for 𝑉𝑌(𝑔). 

Proof. The assumption of Theorem (4.2.16) is verified with 𝜖 = ℎ − 𝛼. 

Section (4.3): Gabor Orthonormal Bases  

       For 𝑔 be a non-zero function in 𝐿2(ℝ𝑑) and let 𝛬 be a discrete countable set on 

ℝ2𝑑, where we identify ℝ2𝑑 to the time-frequency plane by writing (𝑡, 𝜆) ∈ 𝛬 with 

𝑡, 𝜆 ∈ ℝ2𝑑. the Gabor system associated with the window 𝑔 consists of  the set of 

translates and modulates of 𝑔: 

𝒢(𝑔, 𝛬) = {𝑒2𝜋𝑖〈𝜆,𝑥〉𝑔(𝑥 − 𝑡): (𝑡, 𝜆) ∈ 𝛬}.                              (42) 
Such systems were first introduced by Gabor [248] who used them for applications in 

the theory of telecommunication, but there has been a more recent interest in using 

Gabor system to expand functions both from a theoretical and applied perspective. The 

branch of Fourier analysis dealing with Gabor systems is usually referred to as Gabor, 
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or time-frequency, analysis. Gröchenig’s monograph [244] provide an excellent and 

detailed exposition on this subject. 

Recall that the Gabor system is a 𝑓𝑟𝑎𝑚𝑒 for 𝐿2(ℝ𝑑) if there exists constants 

𝐴, 𝐵 > 0 such that 

𝐴‖𝑓‖2 ≤ ∑ |〈𝑓, 𝑒2𝜋𝑖〈𝜆,.〉𝑔(⋅ −𝑡)〉|
2

(𝑡,𝜆)∈𝛬

≤ 𝐵‖𝑓‖2,      𝑓 ∈ 𝐿2(ℝ𝑑).             (43) 

It is called an orthonormal basis for 𝐿2(ℝ𝑑) if it is complete and the elements of the 

systems (42) are mutually orthogonal in 𝐿2(ℝ𝑑) and have norm 1, or, equivalently, 

‖𝑔‖ = 1 and 𝐴 = 𝐵 = 1 in (43). One of the fundamental problems in Gabor analysis is 

to classify the windows 𝑔 and time-frequency sets 𝛬 with the property that the 

associated Gabor system 𝒢(𝑔, 𝛬) forms a (Gabor) frame or an orthonormal basis for 

𝐿2(ℝ𝑑). This is of  course a very difficult problem and only partial results are known. 

For example, the complete characterization of time-frequency sets 𝛬 for which (42) is a 

frame for 𝐿2(ℝ𝑑) was only done when 𝑔 = 𝑒−𝜋𝑥
2
, the Gaussian window. Lyubarskii, 

and Seip and Wallsten [253,258] showed that 𝒢(𝑒−𝜋𝑥
2
, 𝛬) is a Gabor frame if and only 

if the lower Beurling density of 𝛬 is strictly greater than 1. If we assume that 𝛬 is a 

lattice of the form 𝑎ℤ × 𝑏ℤ, then it is well known that 𝑎𝑏 ≤ 1 is a necessary condition 

for (42) to form a frame for 𝐿2(ℝ𝑑). Gröchenig and Stöcker [246] showed that for 

totally positive functions, (42) is a frame if and only if 𝑎𝑏 < 1. If we consider 𝑔 =
𝜒[0,𝑐), the characteristic function of an interval, the associated characterization problem 

is known as the 𝑎𝑏𝑐-problem in Gabor analysis. By rescaling, one may assume that 𝑐 =
1. In that case, the famous Janssen tie showed that the structure of the set couples 

(𝑎, 𝑏) yielding a frame is very complicated [250,249]. A complete solution of the 𝑎𝑏𝑐-
problem was recently obtained by Dai and Sun [243]. 

We focus our attention on Gabor system of the form (42) which yield 

orthonormal bases for 𝐿2(ℝ𝑑). Perhaps  the most natural and simplest example of Gabor 

orthonormal basis is the system 𝒢(𝜒[0,𝑐)𝑑 , ℤ
𝑑 × ℤ𝑑). The orthonormality property for 

this system easily follows from that facts that the Euclidean space ℝ𝑑 can be partitioned 

by the ℤ𝑑-translates of the hypercube [0,1]𝑑 and that the exponentials 𝑒2𝜋𝑐〈𝑛,𝑥〉 form an 

orthonormal basis for the space of square-integrable functions supported on any of these 

translated hypercubes. A direct generalization of this observation is the following: 

Proposition (4.3.1)[241]: Let |𝑔| = |𝐾|−1 2⁄ 𝜒𝐾, where |⋅| denotes the Lebesgue 

measure, and 𝐾 ⊂ ℝ𝑑 is measurable with finite Lebesgue measure. Suppose that  

(i) The translates of  𝐾 by the discrete set 𝒥 are pairwise a.e disjoint and cover ℝ𝑑 

up to a set of zero measure. 

(ii) For each 𝑡 ∈ 𝒥, the set of exponentials {𝑒2𝜋𝑖〈𝜆,𝑥〉: 𝜆 ∈ 𝐴𝑡} is an orthonormal 

basis for 𝐿2(𝐾).  
Let  

𝛬 =⋃{𝑡} × 𝛬𝑡
𝑡∈𝒥

.                                                    (44) 

Then 𝒢(𝑔, 𝛬) is a Gabor orthonormal basis for 𝐿2(ℝ𝑑).  
Although its proof is straightforward and will be omitted (see also [255]), this 

proposition gives us a flexible way of constructing large families of Gabor orthonormal 
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basis. The first condition above means that 𝐾 is a translational tile (with 𝐽 called an 

associated tiling set) and the second one that 𝐿2(𝐾) admits an orthonormal basis of 

exponentials. If this last conditions holds, 𝐾 is called a spectral set (and each 𝛬𝑡 is an 

associated spectrum). The connection between translational tiles and spectral sets is 

quite mysterious. They were in fact conjectured to be the same class of sets by Fuglede 

[244], but that statement was later disproved by Tao [259] and the exact relationship 

between the two classes remains unclear. 

For the fixed window 𝑔𝑑 = 𝜒[0,1]𝑑, we call a countable set 𝛬 ⊂ ℝ2𝑑 standard if it 

is of the form (44). Motivated by the complete solution to the 𝑎𝑏𝑐-problem, our main 

objective is to characterize the discrete sets 𝛬 (not necessarily lattices) with the property 

that the Gabor system 𝒢(𝑔𝑑 , 𝛬) is a Gabor orthonormal basis. First, by generalizing the 

notion of orthogonal packing region in the work of  Lagarias, Reeds and Wang [256] to 

the setting of Gabor systems, we deduce a general criterion for 𝒢(𝑔𝑑 , 𝐴) to be a Gabor 

orthonormal basis. 

Theorem (4.3.2)[241]: 𝒢(𝑔𝑑 , 𝛬) is a Gabor orthonormal basis if and only if 𝒢(𝑔𝑑 , 𝛬) is 

an orthogonal set and the translates of [0,1]𝑑 by the elements of 𝛬 tile ℝ2𝑑. 

This criterion offers a very simple solution to our problem in the one-dimensional 

case. 

However, such a simple characterization cases to exist in higher dimensions. We 

will introduce an inductive procedure which allows us to construct a Gabor orthonormal 

basis with window 𝑔𝑑 from a Gabor orthonormal basis with window 𝑔𝑛, 𝑛 < 𝑑 . This 

procedure can be used to produce many non- standard Gabor orthonormal basis and we 

call a set 𝛬 obtained through this procedure pseudo-standard. Assuming a mild 

condition on a low-dimensional time-frequency space, we show that 𝒢(𝑔𝑑 , 𝛬) are 

essentially pseudo-standard (See Theorem (4.3.14)) 

Although we do not have a complete description of the sets 𝛬 yielding Gabor 

orthonormal bases with window 𝑔𝑑 in dimension 𝑑 ≥ 3, we managed to obtain a 

complete characterization of those discrete sets 𝛬 ⊂ ℝ4 such that 𝒢(𝑔2, 𝛬) form an 

orthonormal basis for 𝐿2(ℝ2).  

 
Figure (1)[241]: This figure illustrates the time-domain of 𝛬 in the first situation of 

Theorem (4.3.22). We basically partition ℝ2 by horizontal strips. Some strips, like ℝ ×
[0,1] with 𝑛 = 0, have overlapping structure. This corresponds to the first union of 𝛬. 

Some strips, like ℝ × [1,2] with 𝑛 = 1, have tiling structures. This corresponds to the 

second union of 𝛬. 
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We provide some preliminaries notations and prove Theorem (4.3.2). We show 

Theorem (4.3.6) and introduce the pseudo-standard time-frequency set. We focus on 

dimension 2 and prove Theorem (4.3.22). 

  We explore the relationship between Gabor orthonormal bases and tiling’s in the 

time-frequency space. This theory will be an extension of spectral-tile duality in [256] 

to the setting of Gabor analysis. Denote by |𝐾| the Lebesgue measure of a set 𝐾. We 

say that a closed set 𝑇 is a region if  |𝜕𝑇| = 0 and 𝑇∘̅̅ ̅ = 𝑇. A bounded region 𝑇 is called 

a translational tile if we can find a countable set 𝒥 such that  

(i) |(𝑇 + 𝑡) ∩ (𝑇 + 𝑡′)| = 0,    𝑡, 𝑡′ ∈ 𝒥, 𝑡 ≠ 𝑡′, and  

(ii) ⋃ (𝑇 + 𝑡) = ℝ𝑑𝑡∈𝒥 .  

In that case, 𝒥 is called a tiling set for 𝑇 and 𝑇 + 𝒥 a tiling of  ℝ𝑑. We will say that 𝑇 +
𝒥 is a packing of ℝ𝑛 if (i) above is satisfied. We can generalize the notion of tiling and 

packing to measures and functions. Given a positive Borel measure 𝜇 and 𝑓 ∈ 𝐿1(ℝ𝑛) 
with 𝑓 ≥ 0, the convolution of 𝑓 and 𝜇 is defined to be  

𝑓 ∗ 𝜇(𝑥) = ∫𝑓(𝑥 − 𝑦)𝑑𝜇(𝑦) ,       𝑥 ∈ ℝ𝑛, 

(where a Borel measurable function is chosen in the equivalence class of 𝑓 to define the 

integral above). We say that 𝑓 + 𝜇 is a tiling (resp. packing) of ℝ𝑑 if 𝑓 ∗ 𝜇 = 1 (resp. 

𝑓 ∗ 𝜇 ≤ 1) almost everywhere with respect to the Lebesgue measure. It is clear that if 

𝑓 = 𝜒𝑇 and 𝜇 = 𝛿𝒥 where 𝛿𝒥 = ∑ 𝛿𝑡𝑡∈𝒥 , then 𝑓 ∗ 𝜇 = 1 is equivalent to 𝑇 + 𝒥 being a 

tiling. 

First we start with the following Theorem which gives us a very useful criterion 

to decide if a packing is actually a tiling. in fact, special cases of this Theorem were 

showed by many in different settings (see e.g [256,Theorem 3.1], [252, Lemma 3.1] and 

[254]), but the following version is the most general one. 

Theorem (4.3.3)[241]: Suppose that 𝐹, 𝐺 ∈ 𝐿1(ℝ𝑛) are two functions with 𝐹, 𝐺 ≥ 0 

and ∫ 𝐹(𝑥)𝑑𝑥
ℝ𝑛

= ∫ 𝐺(𝑥)𝑑𝑥
ℝ𝑛

= 1. Suppose that 𝜇 is a positive Borel measure on ℝ𝑛 

such that  

𝐹 ∗ 𝜇 ≤ 1     and     𝐺 ∗ 𝜇 ≤ 1. 
Then, 𝐹 ∗ 𝜇 = 1 if and only if 𝐺 ∗ 𝜇 = 1. 

Proof. By symmetry, it suffices to show one side of the equivalence.Assuming that  

𝐹 ∗ 𝜇 = 1, we have  

1 = 𝐹 ∗ 𝜇 ⇒ 1 = 1 ∗ 𝐺 = 𝐺 ∗ 𝐹 ∗ 𝜇 = 𝐹 ∗ 𝐺 ∗ 𝜇. 
Letting 𝐻 = 𝐺 ∗ 𝜇 we have 0 ≤ 𝐻 ≤ 1 and 𝐻 ∗ 𝐹 = 1. We now show that 𝐻 = 1. 

indeed letting 𝐴 be the set {𝑥 ∈ ℝ𝑛, 𝐻(𝑥) < 1} and 𝐵 = ℝ𝑛 \𝐴, we have  

(𝐻 ∗ 𝐹)(𝑥) = ∫ 𝐻(𝑦)𝐹(𝑥 − 𝑦)𝑑𝑦

ℝ𝑛

= ∫ 𝐻(𝑦)𝐹(𝑥 − 𝑦)𝑑𝑦

𝐴

+ ∫ 𝐻(𝑦)𝐹(𝑥 − 𝑦)𝑑𝑦

𝐵

 

Now, if |𝐴| > 0, we have 

∫ ∫ 𝐹(𝑥 − 𝑦)𝑑𝑦𝑑𝑥

𝐴ℝ𝑛

= |𝐴| > 0 

and there exists thus a set 𝐸 with positive measure such that  
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∫ 𝐹(𝑥 − 𝑦)𝑑𝑦

𝐴

> 0, 𝑥 ∈ 𝐸. 

If 𝑥 ∈ 𝐸, we have  

∫ 𝐻(𝑦)𝐹(𝑥 − 𝑦)𝑑𝑦

𝐴

+ ∫ 𝐻(𝑦)𝐹(𝑥 − 𝑦)𝑑𝑦

𝐵

< ∫ 𝐹(𝑥 − 𝑦)𝑑𝑦

𝐴

+ ∫ 𝐹(𝑥 − 𝑦)𝑑𝑦

𝐵

= (1 ∗ 𝐹)(𝑥) = 1. 
This contradicts to the that 𝐻 ∗ 𝐹 = 1  almost everywhere. Hence, |𝐴| = 0 and 𝐻 = 1 

follows.   

Let, 𝑔 ∈ 𝐿2(ℝ𝑑). We define the short time Fourier transform of 𝑓 with respect to 

the window 𝑔 be 

𝑉𝑔𝑓(𝑡, 𝑣) = ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝑣,𝑥〉𝑑𝑥

ℝ2𝑑

. 

Let 𝒢(𝑔, Λ) be a Gabor orthonormal basis. Since translating Λ be an element of ℝ2𝑑 

does not affect the orthonormality nor the completeness of the given system, there is no 

loss of generality in assuming that (0,0) ∈ Λ. We say that a region 𝐷 (⊂ ℝ2𝑑) is an 

orthogonal packing region for 𝑔 if  

(𝐷∘ − 𝐷∘) ∩ 𝒵(𝑉𝑔𝑔) = ∅. 

Here 𝒵(𝑉𝑔𝑔) = {(𝑡, 𝑣): 𝑉𝑔𝑔(𝑡, 𝑣) = 0}. 

Lemma (4.3.4)[241]: Suppose that 𝒢(𝑔, Λ) is a mutually orthogonal set of 𝐿2(ℝ𝑑). Let 

𝐷 be any orthogonal packing region for 𝑔. Then Λ − Λ ⊂ 𝒵(𝑉𝑔𝑔) ∪ {0} and 𝐴 + 𝐷 is a 

packing of ℝ2𝑑. Suppose furthermore that 𝒢(𝑔, Λ) is a Gabor orthonormal basis. Then 
|𝐷| ≤ 1. 

Proof.  Let (𝑡, 𝜆), (𝑡′, 𝜆′) ∈ Λ be two distinct points in Λ. Then  

∫𝑔(𝑥 − 𝑡′)𝑔(𝑥 − 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑒−2𝜋𝑖(𝜆−𝜆
′)𝑥𝑑𝑥 = 0, 

Or equivalently, after the change of variable 𝑦 = 𝑥 − 𝑡′, 

∫𝑔(𝑥)𝑔(𝑥 − (𝑡 − 𝑡′))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑒−2𝜋𝑖(𝜆−𝜆
′)𝑥𝑑𝑥 = 0 . 

Hence, 𝑉𝑔𝑔(𝑡 − 𝑡
′, 𝜆 − 𝜆′) = 0 and (𝑡, 𝜆) − (𝑡′, 𝜆′) ∈ 𝒵(𝑉𝑔𝑔). This means that (𝑡, 𝜆) −

(𝑡′, 𝜆′) ∉ 𝐷0 − 𝐷0. Therefore, the intersection of the sets (𝑡, 𝜆) + 𝐷 and (𝑡′, 𝜆′) + 𝐷 has 

zero Lebesgue measure.  

Suppose now that 𝒢(𝑔, 𝐴) is a Gabor orthonormal basis. Denote by 𝑅 the 

diameter of  𝐷. By the packing property of 𝐴 + 𝐷, 

|𝐷| ∙  
#(𝐴 ∩ [−𝑇, 𝑇]2𝑑)

(2𝑇)2𝑑
=

1

(2𝑇)2𝑑
| ⋃ (𝐷 + 𝜆)

𝜆∈Λ∩[−𝑇 ,𝑇]2𝑑

| ≤
1

(2𝑇)2𝑑
|[−𝑇 − 𝑅, 𝑇 + 𝑅]2𝑑|

= (1 +
𝑅

2𝑑
)
2𝑑

. 

Taking limit 𝑇 → ∞ and using the fact that Beurling density of Λ is 1 ([257]), we have 

|𝐷| ≤ 1. 
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We say that an orthogonal packing region 𝐷 for 𝑔 is tight if we have 

furthermore |𝐷| = 1. We now apply Theorem (4.3.3) to the Gabor orthonormal basis 

problem.  

Theorem (4.3.5)[241]: Suppose that 𝒢(𝑔, Λ) is an orthonormal set in 𝐿2(ℝ𝑑) and that 𝐷 

is a tight orthogonal packing region for 𝑔. Then 𝒢(𝑔, Λ) ia a Gabor orthonormal basis 

for 𝐿2(ℝ𝑑) if and only if  Λ + 𝐷 is a tiling of  ℝ2𝑑. 

Proof. Let 𝐹 = 𝜒𝐷 and 𝐺 = |𝑉𝑔𝑓|
2
/‖𝑓‖2

2. Then ∫ 𝐹
ℝ2𝑑

= 1 and ∫ 𝐺
ℝ2𝑑

= ‖𝑔‖2
2 = 1.  

Now, as 𝐷 is an orthogonal packing region for 𝑔, we have in particular  

∑ 𝜒𝐷(𝑥 − 𝜆)𝜆∈𝐴 ≤ 1.  
This shows that   

𝛿Λ ∗ 𝐹 = 𝛿Λ ∗ 𝜒𝐷 ≤ 1. 
Moreover, Λ + 𝐷 is a tilling of ℝ2𝑑 if and only if  𝛿𝐴 ∗ 𝜒𝐷 = 1. On the other hand, 

(𝑔, Λ) being a mutually orthogonal set, Bessel’s inequality yields  

∑ | ∫ 𝑓(𝑥)𝑔(𝑥 − 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖〈𝜆,𝑥〉𝑑𝑥

ℝ𝑑

|

2

(𝑡,𝜆)∈Λ

≤ ‖𝑓‖2, 𝑓 ∈ 𝐿2(ℝ𝑑), 

or, replacing 𝑓 by 𝑓(𝑥 − 𝜏)𝑒2𝜋𝑖𝑣𝑥 with (𝜏, 𝑣) ∈ ℝ2𝑑,   

∑ |𝑉𝑔𝑓(𝜏 − 𝑡, 𝑣 − 𝜆)| 
2

(𝑡,𝜆)∈Λ

≤ ‖𝑓‖2,        𝑓 ∈ 𝐿2(ℝ𝑑). 

Hence,  

𝛿Λ ∗ 𝐺 = 𝛿Λ ∗
|𝑉𝑔𝑓|

2

‖𝑓‖2 
≤ 1 

with equality if and only if the Gabor orthonormal system is in fact a basis. The 

conclusion follows then from Theorem (4.3.3).  

Theorem (4.3.6)[241]: In dimension 𝑑 = 1, the system 𝒢(𝑔1, 𝛬) is a Gabor 

orthonormal basis if and only if 𝛬 is standard. 

Proof. Let 𝑔𝑑 = 𝜒[0,1]𝑑 . Using Theorem (4.3.5), we just need to show that [0,1]2𝑑 is a 

tight orthogonal packing region for 𝑔𝑑. 

We first consider the case 𝑑 = 1. For 𝑔1 = 𝜒[0,1], a direct computation shows that  

𝑉𝑔1𝑔1(𝑡, 𝑣) =

{
 
 

 
 
0,                                     |𝑡| ≥ 1;       
1

2𝜋𝑖𝑣
 (𝑒2𝜋𝑖𝑣 − 𝑒2𝜋𝑖𝑣), 0 ≤ 𝑡 ≤ 1;  

1

2𝜋𝑖𝑣
(1 − 𝑒2𝜋𝑖𝑣(𝑡+1)), −1 ≤ 𝑡 ≤ 0.

                  (45) 

The zero set of  𝑉𝑔1𝑔1 is therefore given by 

𝑍(𝑉𝑔1𝑔1) = {(𝑡, 𝑣): |𝑡| ≥ 1} ∪ {(𝑡, 𝑣): 𝑣(1 − |𝑡|) ∈ ℤ\{0}}.               (46) 

Hence, (0,1)2 − (0,1)2 = (−1,1)2 does not intersect the zero set and therefore [0,1]2 is 

a tight orthogonal packing region for 𝑔1. 

We now consider the case 𝑑 ≥ 2. As we can decompose 𝑔𝑑 as 

𝜒[0,1](𝑥1)… 𝜒[0,1](𝑥𝑑), we have  

𝑉𝑔𝑑𝑔𝑑(𝑡, 𝑣) = 𝑉𝑔1𝑔1(𝑡1, 𝑣1)…𝑉𝑔1𝑔1(𝑡𝑑 , 𝑣𝑑) where 𝑡 = (𝑡1, … , 𝑡𝑑) and 𝑣 = (𝑣1, … , 𝑣𝑑). 

The zero set 𝑉𝑔𝑑𝑔𝑑 is therefore given by  
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𝑍(𝑉𝑔𝑑𝑔𝑑) = {(𝑡, 𝑣): |𝑡|max ≥ 1} ∪ (⋃{(𝑡, 𝑣) ∶ 𝑣𝑖(1 − |𝑡𝑖|) ∈ ℤ\{0})}

𝑑

𝑖=1

)  (47) 

where |𝑡|max = max{𝑡1, … , 𝑡𝑑}. It follows that [0,1]2𝑑 is a tight orthogonal packing 

region for 𝑔𝑑. 

The following example will not be used in later discussion, but it demonstrates 

the usefulness of the theory for windows other than the unit cube. 

Example (4.3.7)[241]: Let 𝑔(𝑥) =
2

𝑒2𝑥+𝑒−2𝑥
 be the hyperbolic secant function. It can be 

shown ([251]; see also [247]) that  

𝑉𝑔𝑔(𝑡, 𝑣) =
𝜋sin (𝜋𝑣𝑡)𝑒−𝜋𝑖𝑣𝑡

sinh(2𝑡) sinh(𝜋2𝑣 2⁄ )
 

and the zero set is given by 

𝑍(𝑉𝑔𝑔) = {(𝑡, 𝑣): 𝑡𝑣 ∈ ℤ\{0}}. 

Hence, [0,1]2 is a tight orthogonal packing region for 𝑔. Note that the zero set does not 

contain any point on  the 𝑥 − axis and 𝑦 − axis. There is no tiling set Λ for  [0,1]2 such 

that Λ − Λ ⊂ 𝑍(𝑉𝑔𝑔)⋃{0} (see also Proposition (4.3.9)) and thus there is no Gabor 

orthonormal basis using the hyperbolic secant as a window. This can be viewed as a 

particular case of a version of the Balian-Low Theorem valid for irregular Gabor frames 

which was recently obtained in [242] and which state that Gabor orthonormal bases 

cannot exist if the window function is in the modulation space 𝑀1(ℝ𝑑). 
Using Lemma (4.3.4), Theorem (4.3.2) may be restated in the following way:  

Theorem (4.3.8)[241]:  𝒢(𝜒[0,1]𝑑 , Λ) is a Gabor orthonormal basis if and only if  the 

inclusion Λ − Λ ⊂ 𝑍(𝑉𝑔𝑔)⋃{0} holds and Λ + [0,1]2, is a tiling. 

In view of the previous result, the possible translational tiling’s of the unit cube 

on ℝ2𝑑 play a fundamental role in the solution of our problem. A characterization for 

these is not available in arbitrary 2𝑑 dimension but it is easily obtained when 𝑑 = 1. 

We prove this result here for completeness but it should be well known. 

Proposition (4.3.9)[241]: Suppose that 𝜒[0,1]2+𝒥 is a tilling of ℝ2 with (0,0) ∈ 𝒥. Then 

𝒥 is of either of the following two form: 

𝒥 =⋃(ℤ+ 𝑎𝑘) × {𝑘}

𝑘∈ℤ

   or  𝒥 =⋃{𝑘} × (ℤ + 𝑎𝑘)

𝑘∈ℤ

                  (48) 

where 𝑎𝑘 are any real numbers in [0,1) for 𝑘 ≠ 0 and 𝑎0 = 0. 

Proof. By Keller’s criterion for square tiling’s (see e.g [256, Proposition 4.1]), for any 

(𝑡1 , 𝑡2) and (𝑡1
′ , 𝑡2

′) in 𝒥, 𝑡𝑖 − 𝑡𝑖
′ ∈ ℤ\{0} for some 𝑖 = 1,2. Taking (𝑡1

′ , 𝑡2
′ ) = (0,0), we 

obtain that, for any (𝑡1 , 𝑡2) ∈ 𝒥\{(0,0)}, one of 𝑡1 or 𝑡2 belongs to  ℤ\{0}. If 𝒥 ⊂ ℤ, we 

must have 𝒥 = ℤ for 𝜒[0,1]2+𝒥 to be tiling of ℝ2 and ℤ can be written as either of the 

sets in (48) by taking 𝑎𝑘 = 0 for all 𝑘. Suppose that there exists (𝑠1, 𝑠2) ∈ 𝒥 such 𝑠1 is 

not an integer and 𝑠2 ∈ ℤ. If (𝑡1 , 𝑡2) ∈ 𝒥 and 𝑡2 ∉ ℤ, then both 𝑡1 and 𝑡1 − 𝑠1 must be 

integers which would imply that 𝑠1 is an integer, contrary to our assumption. Hence, 

(𝑠1, 𝑠2) ∈ 𝒥 implies 𝑠2 ∈ ℤ and we can write  

𝒥 =⋃𝒥𝑘 × {𝑘}

𝑘∈ℤ

. 
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for some discrete set 𝒥𝑘 ⊂ ℝ. For 𝜒[0,1]2 + 𝒥  to be a tiling of  ℝ2, the set 𝒥𝑘 must be of 

the form 𝒥𝑘 = ℤ + 𝑎𝑘. In the case 𝒥 can be expressed as one of the sets in the first 

collection appearing in (48).  

Similarly, if there exists (𝑠1, 𝑠2) ∈ 𝒥 such that 𝑠2 is not an integer and 𝑠1 ∈ ℤ, 𝒥 

can be expressed as one of the sets in the second collection appearing in (48) this 

completes the proof. 

We say that the Gabor orthonormal basis 𝒢(𝜒[0,1]𝑑, Λ) is standard if  

Λ =⋃{𝑡}  × Λ𝑡
𝑡∈𝒥

, 

where 𝒥 + [0,1]𝑑 tiles ℝ𝑑 and Λ𝑡 is a spectrum for [0,1]𝑑. (Note that, by the result in 

[256], Λ𝑡 + [0,1]
𝑑 must then be a tiling of ℝ𝑑 for every 𝑡 ∈ 𝒥). 

The following result settles the one-dimensional case. 

Theorem (4.3.10)[241]: 𝒢(𝜒[0,1]𝑑, Λ) is a Gabor orthonormal basis if and only if Λ is 

standard.  

Proof. We just need to show that Λ being standard is a necessary condition for 

𝒢(𝜒[0,1]𝑑, Λ) to be a Gabor orthonormal basis. We can also assume, for simplicity, 

that(0,0) ∈ Λ. By Proposition (4.3.9), if 𝒢(𝜒[0,1]𝑑, Λ) is a Gabor orthonormal basis, then 

Λ − Λ ⊂ 𝑍(𝑉𝑔𝑔)⋃{0} and  Λ + [0,1]2 Must be a tiling of  ℝ2. By Proposition (4.3.9), Λ 

must be of either one of the forms in (48). Note that Λ is standard in the second case. In 

order to deal with the first case, suppose that  

Λ =⋃(ℤ + 𝑎𝑘) × {𝑘},   

𝑘∈ℤ

with  𝑎𝑘 ∈ [0,1),   𝑘 ≠ 0,   𝑎0 = 0. 

We now show that this is impossible unless 𝑎𝑘 = 0 for all 𝑘 (which reduces to the case 

Λ = ℤ2, which is standard). We can assume, without loss of generality, that 𝑎𝑘 ≠ 0 for 

some 𝑘 > 0 with 𝑘 being the smallest such index. If  𝑎𝑘 ≠ 0  for some 𝑘, then both 

(𝑎𝑘, 𝑘) and (0, 𝑘 − 1) are in Λ. The orthogonality of the Gabor system then implies that 

(𝑎𝑘, 1) ∈ 𝑍(𝑉𝑔𝑔). Using (46), we deduce that 1. (1 − |𝑎𝑘|) ∈ ℤ\{0}. That means 𝑎𝑘 

must be an integer, which is a contradiction. Hence, the first case is impossible unless 

𝑎𝑘 = 0 for all 𝑘 and the proof is completed. 

A description of all time-frequency sets Λ for which 𝒢(𝜒[0,1]𝑑, Λ) is a Gabor 

orthonormal basis however become vastly more complicated when 𝑑 ≥ 2. In particular, 

as we will see, the standard structure cannot cover all possible cases. Consider integers 

𝑚,𝑛 > 0 such that 𝑚 + 𝑛 = 𝑑. For convenience and to be consistent with our previous 

notation, we will write the Cartesian product of the two-frequency spaces ℝ2𝑚 and ℝ2𝑛 

in the non-standard form 

ℝ2𝑑 = ℝ2𝑚 ×ℝ2𝑛 = {(𝑠, 𝑡, 𝜆, 𝑣), (𝑠, 𝜆) ∈ ℝ2𝑚, (𝑡, 𝑣) ∈ ℝ2𝑛}. 
We will also denote by Π1 the projection operator from ℝ2𝑑 to ℝ2𝑚 defined by 

∏1((𝑠, 𝑡, 𝜆, 𝑣)) = (𝑠, 𝜆),    (𝑠, 𝑡, 𝜆, 𝑣) ∈ ℝ
2𝑑 = ℝ2𝑚 × ℝ2𝑛.             (49) 

To simplify the notation, we also define 𝑔𝑘 = 𝜒[0,1]𝑘 for  any 𝑘 ≥ 1. We now build a 

new family of time-frequency sets on ℝ2𝑑 as follows. Suppose that  𝒢(𝜒[0,1]𝑚, Λ1) is a 

Gabor orthonormal basis for 𝐿2(ℝ𝑚) and that we associate with each (𝑠, 𝜆) ∈ Λ1 , a 

discrete set Λ(𝑠,𝜆) in ℝ2𝑛 such that 𝒢(𝜒[0,1]𝑛, Λ(𝑠,𝜆)) is a Gabor orthonormal basis of 

𝐿2(ℝ𝑛). We then define 
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Λ = ⋃ {(𝑠, 𝑡, 𝜆, 𝑣), (𝑡, 𝑣) ∈ Λ(𝑠,𝜆)}

(𝑠,𝜆)∈Λ1

.                            (50) 

We say that a Gabor system 𝒢(𝜒[0,1]𝑑, Λ) with Λ as in (50) is pseudo-standard. 

Proposition (4.3.11)[241]: Every pseudo-standard Gabor system 𝒢(𝜒[0,1]𝑑, Λ) is a 

Gabor orthonormal basis 𝐿2(ℝ𝑑). 
Proof. If 𝑥 ∈ ℝ𝑚 and 𝑦 ∈ ℝ𝑛, we have 𝑔𝑑(𝑥, 𝑦) = 𝑔𝑚(𝑥)𝑔𝑛(𝑦) (for 𝑚 + 𝑛 = 𝑑). 
This yields immediately that  

𝑉𝑔𝑑𝑔𝑑(𝑠, 𝑡, 𝜆, 𝑣) = 𝑉𝑔𝑚𝑔𝑚(𝑠, 𝜆)𝑉𝑔𝑛𝑔𝑛(𝑡, 𝑣),    (𝑠, 𝜆) ∈ ℝ
2𝑚, (𝑡, 𝑣) ∈ ℝ2𝑛.   (51) 

Suppose that 𝜌 = (𝑠, 𝑡, 𝜆, 𝑣) and 𝜌′ = (𝑠′, 𝑡′, 𝜆′, 𝑣′) are distinct elements of  Λ. If  

(𝑠, 𝜆) = (𝑠′, 𝑡′), then (𝑡, 𝑣) and (𝑡′, 𝑣′) are distinct elements of Λ(𝑠,𝜆) and we have thus  

(𝑡′ − 𝑡, 𝑣′ − 𝑣) ∈ 𝑍(𝑉𝑔𝑛𝑔𝑛) 

which implies that 𝑍(𝑉𝑔𝑑𝑔𝑑)(𝜌
′ − 𝜌) = 0. On the other hand , if (𝑠, 𝜆) ≠ (𝑠′, 𝜆′) , we 

have then 

(𝑠′ − 𝑠, 𝜆′ − 𝜆) ∈ 𝑍(𝑉𝑔𝑚𝑔𝑚)  

Which implies again that 𝑍(𝑉𝑔𝑑𝑔𝑑)(𝜌
′ − 𝜌) = 0. This proves the orthonormality of  the 

system 𝒢(𝜒[0,1]𝑑, Λ). This proposition can now be proved by invoking Theorem (4.3.8) 

if we can show that Λ + [0,1]2𝑑 is a tiling of ℝ2𝑑. To prove this, we note that Λ1 +
[0,1]2𝑑 is a tiling of the subspace ℝ2𝑚 by Theorem (4.3.8) and that, similarly, for each 

(𝑡, 𝜆) ∈ Λ(𝑡,𝜆) + [0,1]
2𝑛 is a tiling of  ℝ2𝑛. This easily implies the required tiling 

property and concludes the proof. 

Example (4.3.12)[241]: Consider the two-dimensional case 𝑑 = 2. Let  

Λ1 = ⋃{𝑚} × (ℤ + 𝜇𝑚),

𝑚∈ℤ

     𝜇𝑚 ∈ [0,1). 

Associate with each 𝛾 = (𝑚, 𝑗 + 𝜇𝑚) ∈ Λ1 the set  

Λ𝛾 =⋃{𝑛 + 𝑠𝑚,𝑗} × (ℤ + 𝑣𝑛,𝑚,𝑗),

𝑛∈ℤ

     𝑠𝑚,𝑗 ∈ ℝ, 𝑣𝑛,𝑚,𝑗 ∈ [0,1). 

Then, 

Λ ≔ {(𝑚, 𝑛 + 𝑠𝑚,𝑗 , 𝑗 + 𝜇𝑚, 𝑘 + 𝑣𝑛,𝑚,𝑗):𝑚, 𝑛 𝑗, 𝑘 ∈ ℤ} 

(written in the form of (𝑡1, 𝑡2, 𝜆1, 𝜆2) where (𝑡1, 𝑡2) are the translations and (𝜆1, 𝜆2) the 

frequencies) has the pseudo-standard structure. Note that the parameters 𝛿𝑚,𝑗 can be 

chosen so that the set Λ is not standard as the set  

{(𝑚, 𝑛 + 𝑠𝑚,𝑗),𝑚, 𝑛, 𝑗 ∈ ℤ} + [0,1]
2  

will not tile ℝ2 in general. For example, for 𝑚 = 𝑛 = 0, we could let 𝑠0,0 = 0 and the 

numbers 𝑠0,𝑗 could be chosen as distinct numbers in the interval [0,1). The square 

[0,1]2 would then overlap with infinitely many of its translates appearing as part of the 

Gabor system. 

Using a similar procedure to higher dimension, we can produce many non-

standard Gabor orthonormal bases with window 𝜒[0,1]𝑑. However, the pseudo-standard 

structure still cannot cover all possible cases of time-frequency sets. A time-frequency 

set could be a mixture of pseudo-standard and standard structure. For example consider 

the set  
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Λ = ⋃ {(𝑚 + 𝑡𝑛,𝑘, 𝑛, 𝑗 + 𝜇𝑘,𝑚,𝑛,𝑘 + 𝑣𝑛): 𝑗, 𝑘 ∈ ℤ}

𝑛∈ℤ\{1}

∪ {(𝑚, 1)} × Λ𝑚, 

where 𝐴𝑚 + [0,1]
2 tiles ℝ2. This set consists of two parts. The first part is a subset of a 

set having the pseudo-standard structure while the second part is a subset of  a set 

having the standard one. Moreover, the translates of the unit square associated with the 

first part are disjoint with those associated with the second part, showing that 

𝒢(𝜒[0,1]2, Λ) is a mutually orthogonal set. Since Λ is Clearly a tiling of ℝ4, Theorem 

(4.3.8) shows that 𝒢(𝜒[0,1]2, Λ) is a Gabor orthonormal basis. We will classify all 

possible sets Λ ⊆ ℝ4  with the property that 𝒢(𝜒[0,1]2, Λ) is a Gabor orthonormal basis 

for 𝐿2(ℝ2). We have  

Proposition (4.3.13)[241]: Let 𝑑 = 𝑚 + 𝑛 and suppose that (𝜒[0,1]𝑑, Λ) is a Gabor 

orthonormal basis for L2(ℝd). If (𝑠0, 𝜆0) ∈ ℝ
2𝑚, consider the translate of the unit 

hypercube in ℝ2𝑚 , 𝐶 = (𝑠0, 𝜆0) + [0,1)
2𝑚, and define  

Λ(𝐶) ≔ {(𝑡, 𝑣) ∈ ℝ2𝑛: (𝑠, 𝑡, 𝜆, 𝑣) ∈ Λ and (𝑠, 𝜆) ∈ 𝐶}. 
Then (𝜒[0,1]𝑛, Λ(𝐶)) is a Gabor orthonormal basis for 𝐿2(ℝ2𝑛). 

Proof. We first show that the system (𝜒[0,1]𝑛, Λ(𝐶)) is orthogonal. Let (𝑡, 𝑣) and 

(𝑡′, 𝑣′) be distinct elements of Λ(𝐶). There exist (𝑠, 𝜆) and (𝑠′, 𝜆′) in ℝ2𝑚 such that 

(𝑠, 𝑡, 𝜆, 𝑣) and (𝑠′, 𝑡′, 𝜆′, 𝑣′) both belong to Λ. Using the mutual orthogonality of the 

system (𝜒[0,1]𝑑, Λ) together with (51), we have  

𝑉𝑔𝑚𝑔𝑚(𝑠 − 𝑠
′, 𝜆 − 𝜆′) = 0  or  𝑉𝑔𝑛𝑔𝑛(𝑡 − 𝑡

′, 𝑣 − 𝑣′) = 0. 

Note that, as both (𝑠, 𝜆) and (𝑠′, 𝜆′) belong to 𝐶, we have |𝑠 − 𝑠′|max < 1 and |𝜆 −
𝜆′|max < 1. In particular, 𝑉𝑔𝑚𝑔𝑚(𝑠 − 𝑠

′, 𝜆 − 𝜆′) ≠ 0 and the orthogonallity of the 

system (𝜒[0,1]𝑛, Λ(𝐶)) follows. 

If (𝑠, 𝜆) ∈ Π1(Λ) (as defined in (49)), let   

Λ(𝑠,𝜆) = {(𝑡, 𝑣): (𝑠, 𝑡, 𝜆, 𝑣) ∈ Λ}. 

Let 𝑓1 ∈ 𝐿
2(ℝ𝑚), 𝑓2 ∈ 𝐿

2(ℝ𝑛) and (𝑠0, 𝜆0) ∈ ℝ
2𝑚. Applying Parseval’s identity to the 

function 

𝑓(𝑥, 𝑦) = 𝑒2𝜋𝑖𝜆0𝑥𝑓1(𝑥 − 𝑠0)𝑓2(𝑦),        𝑥 ∈ ℝ
𝑚, 𝑦 ∈ ℝ𝑛, 

we obtain that 

∫|𝑓1(𝑥)|
2𝑑𝑥

ℝ𝑚

∫|𝑓2(𝑦)|
2𝑑𝑦

ℝ𝑛

= ∑ ∑ |𝑉𝑔𝑚𝑓1(𝑠 − 𝑠0, 𝜆 − 𝜆0)|
2
|𝑉𝑔𝑛𝑓2(𝑡, 𝑣)|

2

(𝑡,𝑣)∈Λ(𝑠,𝜆) (𝑠,𝜆)∈Π1(Λ)

= ∑ ∑ |𝑉𝑓1𝑔𝑚(𝑠0 − 𝑠, 𝜆0 − 𝜆)|
2
|𝑉𝑔𝑛𝑓2(𝑡, 𝑣)|

2

(𝑡,𝑣)∈Λ(𝑠,𝜆) (𝑠,𝜆)∈Π1(Λ)

 

Defining  

𝑤(𝑠, 𝜆) = ‖𝑓2‖2
−2  ∑ |𝑉𝑔𝑛𝑓2(𝑡, 𝑣)|

2

(𝑡,𝑣)∈Λ(𝑠,𝜆) 

 and 𝜇 = ∑ 𝓌(𝑠, 𝜆)𝛿(𝑠,𝜆)
(𝑠,𝜆)∈Π1(Λ)

 

for 𝑓2 ≠ 0, the above identity can be written as 
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∫|𝑓1(𝑥)|
2𝑑𝑥

ℝ𝑚

= ∑ 𝑤(𝑠, 𝜆)

(𝑠,𝜆)∈Π1(Λ)

|𝑉𝑓1𝑔𝑚(𝑠0 − 𝑠, 𝜆0 − 𝜆)|
2

= (𝜇 ∗ |𝑉𝑓1𝑔𝑚|
2
) (𝑠0, 𝜆0). 

On the other hand, letting �̌�[0,1)2𝑚(𝑠, 𝜆) = 𝜒[0,1)2𝑚(−𝑠, −𝜆) and defining 𝐶 and Λ(𝐶) as 

above, we have also  

(𝜇 ∗ �̌�[0,1)𝑚)(𝑠0, 𝜆0) = ∑ 𝓌(𝑠, 𝜆)𝜒[0,1)2𝑚(𝑠 − 𝑠0, 𝜆 − 𝜆0)

(𝑠,𝜆)∈Π1(Λ)

= ∑ 𝓌(𝑠, 𝜆)

(𝑠,𝜆)∈Π1(Λ)∩𝐶

= ‖𝑓2‖2
−2 ∑ |𝑉𝑔𝑛𝑓2(𝑡, 𝑣)|

2
≤ 1

(𝑡,𝑣)∈Λ(𝐶)

, 

Where the last inequality results from the orthogonality of the system  (𝜒[0,1)𝑛,Λ(𝐶)) 

proved earlier. Since (𝑠0, 𝜆0) is arbitrary in ℝ2𝑚 and  

∫|𝑉𝑓1𝑔𝑚(𝑠, 𝜆)|
2
𝑑𝑠𝑑𝜆

ℝ2𝑚

= ‖𝑓1‖2
2, 

Theorem (4.3.3) can be used to deduce that 𝜇 ∗ �̌�[0,1)𝑚 = 1. This shows that  

∑ |𝑉𝑔𝑛𝑓2(𝑡, 𝑣)|
2
= ‖𝑓2‖

2,

(𝑡,𝑣)∈Λ(𝐶)

      𝑓2 ∈ 𝐿
2(ℝ𝑛), 

and thus that the system (𝜒[0,1)𝑛,Λ(𝐶)) is complete, proving our claim. 

Theorem (4.3.14)[241]: Let 𝑑 = 𝑚 + 𝑛 and let Π1: ℝ
2𝑑 → ℝ2𝑚 be defined by (49). 

Suppose that (𝜒[0,1]𝑑, Λ) is a Gabor orthonormal basis and that Π1(Λ) + [0,1]
2𝑚 tiles 

ℝ2𝑚. Then Λ has the pseudo-standard structure. 

Proof. Let 𝒥 = Π1(Λ) and, for any (𝑠, 𝜆) ∈ 𝒥, define  

Λ(𝑠,𝜆) = {(𝑡, 𝑣): (𝑠, 𝑡, 𝑣, 𝜆) ∈ Λ}. 

If (𝑠0, 𝜆0) ∈ 𝒥, let 𝐶 = (𝑠0, 𝜆0) + [0,1)
2𝑚, and  

Λ(𝐶) ≔ {(𝑡, 𝑣) ∈ ℝ2𝑛: (𝑠, 𝑡, 𝑣, 𝜆) ∈ Λ and (𝑠, 𝜆) ∈ 𝐶}. 
Proposition (4.3.13) shows that the system (𝜒[0,1)𝑛,Λ(𝐶)) forms a Gabor orthonormal 

basis. By assumption 𝒥 + [0,1)2𝑚 tiles ℝ2𝑚. Hence, (𝑠0, 𝜆0) + [0,1)
2𝑚 contains 

exactly one point in 𝒥, i.e. (𝑠0, 𝜆0), and we have  

Λ(𝐶) = {(𝑡, 𝑣): (𝑠0, 𝑡, 𝜆0, 𝑣) ∈ Λ} = Λ(𝑠0,𝜆0). 

Therefore, we can write Λ as 

Λ = ⋃ {(𝑠0, 𝜆0)}

(𝑠0,𝜆0)∈𝒥

× Λ(𝑠0,𝜆0). 

Our proof  will be complete if we can show that 𝒥 is a Gabor orthonormal basis of 

𝐿2(ℝ𝑚). 
As 𝒥 is a tiling set, by Proposition (4.3.8) it suffices to show that the inclusion 

𝒥 − 𝒥 ⊂ 𝑍(𝑉𝑔𝑚𝑔𝑚) ∪ {0} holds. Let (𝑠, 𝜆) and (𝑠′, 𝜆′) be distinct points in 𝒥. As 

Λ(𝑠,𝜆) + [0,1)
2𝑛 tiles ℝ2𝑛, so does Λ(𝑠,𝜆) + [−1,0)

2𝑛, and we can find (𝑡, 𝑣) ∈ Λ(𝑠,𝜆) 

such that 0 ∈ (𝑡, 𝑣) + [−1,0)2𝑛, or, equivalently, with (𝑡, 𝑣) ∈ [0,1)2𝑛. Similarly, we 

can fined (𝑡′, 𝑣′) ∈ Λ(𝑠′,𝜆′) such that (𝑡′, 𝑣′) ∈ [0,1)2𝑛. Using the fact that 

(𝜒[0,1)𝑛,Λ(𝐶)) is a Gabor orthonormal basis of  𝐿2(ℝ2𝑑), we have  
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(𝑠, 𝑡, 𝜆, 𝑣) − (𝑠′, 𝑡′, 𝜆′, 𝑣′) ∈ 𝑍(𝑉𝑔𝑑𝑔𝑑). 

or, equivalently  

𝑉𝑔𝑚𝑔𝑚(𝑠 − 𝑠
′, 𝜆 − 𝜆′) = 0   or   𝑉𝑔𝑛𝑔𝑛(𝑡 − 𝑡

′, 𝑣 − 𝑣′) = 0. 

Note that, since  |𝑡 − 𝑡′| < 1 and |𝑣 − 𝑣′| < 1, 𝑉𝑔𝑛𝑔𝑛(𝑡 − 𝑡
′, 𝑣 − 𝑣′) ≠ 0. Hence 

(𝑠, 𝜆) − (𝑠′, 𝜆′) ∈ 𝑍(𝑉𝑔𝑚𝑔𝑚)  as claimed. 

The goal will be to classify all possible Gabor orthonormal basis generated by the 

unit square on ℝ2. 

Given a fixed Gabor orthonormal basis 𝒢(𝜒[01]2,Λ) and a set 𝐴 ⊂ ℝ2, we define 

the sets  

Γ(𝐴) = {(𝜆1, 𝜆2) ∈ ℝ
2 ∶ (𝑡1, 𝑡2, 𝜆1, 𝜆2) ∈ Λ, (𝑡1, 𝑡2) ∈ 𝐴}  

and, for any (𝜆1, 𝜆2) ∈ ℝ
2 and any set 𝐵 ⊂ ℝ2, we let  

𝑇𝐴(𝜆1, 𝜆2) = {(𝑡1, 𝑡2) ∈ ℝ
2 ∶ (𝑡1, 𝑡2, 𝜆1, 𝜆2) ∈ Λ, (𝑡1, 𝑡2) ∈ 𝐴} 

and 

𝑇𝐴(𝐵) = {(𝑡1, 𝑡2) ∈ ℝ
2 ∶ (𝑡1, 𝑡2, 𝜆1, 𝜆2) ∈ Λ, (𝑡1, 𝑡2) ∈ 𝐴, (𝑡1, 𝑡2) ∈ 𝐵}. 

In particular, the set 𝑇𝐴(Γ(𝐴)) collects all the couples (𝑡1, 𝑡2) ∈ 𝐴 such that 

(𝑡1, 𝑡2, 𝜆1, 𝜆2) ∈ Λ for some (𝜆1, 𝜆2) ∈ ℝ
2. 

We say that a square is half-open if it is a translate of one of the sets  

[0,1)2, (0,1]2, [0,1) × (0,1] or (0,1] × [0,1). 
Two measurable subsets of ℝ𝑑 will be called essentially disjoint if their intersection has 

zero Lebesgue measure. In the derivation below, we will make use of the identity  

𝑉𝑔2𝑔2(𝑡1, 𝑡2, 𝜆1, 𝜆2) = 𝑉𝑔1𝑔1(𝑡1, 𝜆1)𝑉𝑔1𝑔1(𝑡2, 𝜆2) ,      (𝑡1, 𝑡2, 𝜆1, 𝜆2) ∈ ℝ
4,  

which implies, in particular, that  

𝑉𝑔2𝑔2(𝑡1, 𝑡2, 𝜆1, 𝜆2) ⟺ 𝑉𝑔1𝑔1(𝑡1, 𝜆1) = 0   or   𝑉𝑔1𝑔1(𝑡2, 𝜆2) = 0. 

Moreover, using (47), the zero set of 𝑉𝑔2𝑔2 is given by  

𝑍(𝑉𝑔2𝑔2) = {(𝑡, 𝜆): |𝑡|max ≥ 1} ∪ (⋃ {(𝑡, 𝑣): 𝜆𝑖(1 − |𝑡𝑖|) ∈ ℤ\{0})}
2
𝑖=1 ).         (52)  

This implies that if  |𝑡|max < 1  and (𝑡, 𝜆) ∈ 𝑍(𝑉𝑔2𝑔2), then, there exists 𝑖 ∈ {1,2} and 

for some integer 𝑚 ≠ 0 such that  

|𝜆𝑖| =
|𝑚|

1−|𝑡𝑖|
≥ 1.  

with a strict inequality if 𝑡𝑖 ≠ 0. These properties will be used throughout. 

Lemma (4.3.16)[241]: Let 𝒢(𝜒[01]2,Λ) be a Gabor orthonormal basis for 𝐿2(ℝ2) and let 

𝐶 be a half-open square. Then,  

(i) Γ(𝐶) + [0,1]2 is a packing of  ℝ2. 

(ii) If (𝜆1, 𝜆2) ∈ Γ(𝐶), then 𝑇𝐶(𝜆1, 𝜆2) consists of one point. 

Proof. (i) let (𝜆1, 𝜆2) and (𝜆1
′ , 𝜆2

′ ) be distinct elements of Γ(𝐶). By definition, we can 

find (𝑡1, 𝑡2) and (𝑡1
′ , 𝑡2

′) in 𝐶 such that (𝑡1, 𝑡2, 𝜆1, 𝜆2), (𝑡1
′ , 𝑡2

′ , 𝜆1
′ , 𝜆2

′ ) ∈ Λ. We then have  

0 = 𝑉𝑔1𝑔1(𝑡1 − 𝑡1
′ , 𝜆1 − 𝜆1

′ )𝑉𝑔1𝑔1(𝑡2 − 𝑡2
′ , 𝜆2 − 𝜆2

′ )  

If, without loss of generality, the first factor on the right-hand side of the previous 

equality vanishes, the fact that |𝑡1 − 𝑡1
′ | < 1 shows the existence of an integer 𝑘 > 0, 

such that  

|𝜆1 − 𝜆1
′ | = 𝑘/(1 − |𝑡1 − 𝑡1

′ |) ≥ 1.  
Hence, the cubes (𝜆1, 𝜆2) + [0,1]

2 and (𝜆1
′ , 𝜆2

′ ) + [0,1]2 are essentially disjoint. 

(ii) Suppose that 𝑇𝐶(𝜆1, 𝜆2) contains two distinct points (𝑡1, 𝑡2) and (𝑡1
′ , 𝑡2

′). 
Then,  
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0 = 𝑉𝑔1𝑔1(𝑡1 − 𝑡1
′ , 0) 𝑉𝑔1𝑔1(𝑡2 − 𝑡2

′ , 0).  

As 𝑉𝑔1𝑔1(𝑡, 0) ≠ 0 for any 𝑡 with |𝑡| < 1, we must have |𝑡1 − 𝑡1
′ | ≥ 1 or  |𝑡2 − 𝑡2

′ | ≥ 1 

, contradicting the fact that both (𝑡1, 𝑡2) and (𝑡1
′ , 𝑡2

′) belong to 𝐶. 

We will denote by 𝜕𝐴 the boundary of a set 𝐴. The next result will be useful. 

Lemma (4.3.17)[241]: Under the hypotheses of the previous Lemma, consider an 

element 𝜆 = (𝜆1, 𝜆2) of Γ(𝐶) and let 𝑇𝐶(𝜆) = {(𝑡1, 𝑡2)}. Then for any 𝑥 ∈ 𝜕(𝜆 +

[0,1]2), we can find 𝜆𝑥 = (𝜆1,𝑥, 𝜆2,𝑥) ∈ Γ(𝐶) such that ∈ 𝜕(𝜆𝑥 + [0,1]
2) . Moreover, 

for any such 𝜆𝑥, letting 𝑇𝐶(𝜆𝑥) = {𝑡𝑥}, where 𝑡𝑥 = (𝑡1,𝑥, 𝑡2,𝑥), we can fined 𝑖0 ∈ {1,2} 

such that 𝑡𝑖0,𝑥 = 𝑡𝑖0  and 𝜆𝑖0,𝑥 = 𝜆𝑖0 + 1 or  𝜆𝑖0 − 1. 

Proof. We can write 𝑥 = (𝜆1 + 𝜖1, 𝜆2 + 𝜖2), where 0 ≤ 𝜖𝑖 ≤ 1 , 𝑖 = 1,2 and  𝜖𝑖 ∈ {0,1} 
for at least one index 𝑖. Let 𝑎 = (𝑎1, 𝑎2) ∈ ℝ

2 with 0 < 𝑎𝑖 < 1, for 𝑖 = 1,2 and 

consider the point (𝑡𝑎, 𝑥) ≔ (𝑡1 + 𝑎1, 𝑡2 + 𝑎2, 𝜆1 + 𝜖1, 𝜆2 + 𝜖2 ) in ℝ4. Since Λ +
[0,1]4 is a tiling on ℝ4 and the point (𝑡𝑎, 𝑥) is a point on the boundary of (𝑡, 𝜆) + [01]4, 

we can find some point (𝑡𝑥,𝑎, 𝜆𝑥,𝑎) ∈ 𝛬\{(𝑡, 𝜆)} such that  (𝑡𝑎, 𝑥) ∈ (𝑡𝑥,𝑎, 𝜆𝑥,𝑎) + [01]
4. 

Let 𝑡𝑥,𝑎 = (𝑡1
′ , 𝑡2

′) and 𝜆𝑥,𝑎 = (𝜆1
′ , 𝜆2

′ ). We have 

{
−𝑎𝑖 ≤ 𝑡𝑖 − 𝑡𝑖

′ ≤ 1 − 𝑎𝑖 ,

−𝜖𝑖 ≤ 𝜆𝑖 − 𝜆𝑖
′ ≤ 1 − 𝜖𝑖 ,

       𝑖 = 1,2                            (53)  

Using the orthogonality of the system 𝒢(𝜒[01]2,Λ), we can find 𝑖0 ∈ {1,2} such that 

𝑉𝑔1𝑔1(𝑡𝑖0 − 𝑡𝑖0
′ , 𝜆𝑖0 − 𝜆𝑖0

′ ) = 0.Note that 𝑡𝑖0 − 𝑡𝑖0
′ ≠ 0 would imply that |𝜆𝑖0 − 𝜆𝑖0

′ | > 1 

which impossible from (53). Hence, 𝑡𝑖0 − 𝑡𝑖0
′  and 𝜆𝑖0 − 𝜆𝑖0

′ ≠ 0. 

Moreover, as  𝑉𝑔1𝑔1(0, 𝑣) ≠ 0 if |𝑣| < 1, 𝑉𝑔1𝑔1(𝑡𝑖0 − 𝑡𝑖0
′ , 𝜆𝑖0 − 𝜆𝑖0

′ ) = 0 can only 

occurs if |𝜆𝑖0 − 𝜆𝑖0
′ | = 1. This shows also that 𝜖𝑖0 ∈ {0,1} in that case. This proves the 

last statement of our claim and the fact that 𝑥 ∈ 𝜕(𝜆𝑥,𝑎 + [0,1]
2). the proof will be 

complete if we can show that 𝜆𝑥,𝑎 ∈ Γ(𝐶) for some choice of 𝑎. 

For simplicity, we consider the half -open square to be 𝐶 = [𝑏1, 𝑏1 + 1) ×
[𝑏2, 𝑏2 + 1). Our assertion will be true if the point 𝑡𝑥,𝑎 = (𝑡1

′ , 𝑡2
′ ) Constructed above 

satisfies the inequalities 𝑏𝑖 ≤ 𝑡𝑖
′ < 𝑏𝑖 + 1 for 𝑖 = 1,2. As 𝑡𝑖0 = 𝑡𝑖0

′ , the inequalities 

clearly hold for 𝑖 = 𝑖0. Suppose that the other index 𝑗 falls out of the range, say 𝑡𝑗
′ < 𝑏𝑗 

(The case 𝑡𝑗
′ ≥ 𝑏𝑗 + 1 is similar). We consider (𝑡𝑎′ , 𝑥) with 𝑎𝑗

′ = 𝑡𝑗
′ + 1 − 𝑡𝑗 + 𝛿 for 

some small 𝛿 > 0. Note that, by (53), we have 𝑡𝑖 + 𝑎𝑖 − 1 ≤ 𝑡𝑖
′ ≤ 𝑡𝑖 + 𝑎𝑖 for 𝑖 = 1,2, 

and, in particular,  

𝑎𝑗
′ = 𝑡𝑗

′ + 1 − 𝑡𝑗 + 𝛿 ≥ 𝑎𝑗 + 𝛿 > 0. 

We have also  𝑎𝑗
′ < 1. Indeed, the inequality 𝑡𝑗

′ − 𝑡𝑗 + 1 + 𝛿 ≥ 1 would imply that 𝑡𝑗
′ +

1 + 𝛿 ≥ 1 + 𝑡𝑗. This is not possible, as 𝑏𝑗 ≤ 𝑡𝑗 < 𝑏𝑗 + 1, so 1 + 𝑡𝑗 ≥ 𝑏𝑗 + 1. But 𝑡𝑗
′ <

𝑏𝑗, so 𝑡𝑗
′ + 1 < 𝑏𝑗 + 1 , so for 𝛿 small, 

𝑡𝑗
′ + 1 + 𝛿 < 𝑏𝑗 + 1 ≤ 1 + 𝑡𝑗 

which yields a contradiction. 

Using the previous argument with 𝑎′ replacing 𝑎, we guarantee the existence of  

𝑡𝑗
′′ such that 𝑡𝑗

′ + 𝛿 = 𝑡𝑗 + 𝑎𝑗
′ − 1 ≤ 𝑡𝑗

′′ ≤ 𝑡𝑗 + 𝑎𝑗
′ = 𝑡𝑗

′ + 1 + 𝛿 and the a ssociated point 

(𝑡𝑎′ , 𝜆𝑥,𝑎′) = (𝑡1
′′, 𝑡2

′′, 𝜆1
′′, 𝜆2

′′) in 𝛬 with the property that 𝑥 ∈ 𝜕(𝜆𝑥,𝑎′ + [0,1]
2) for some 

index 𝑖0
′  such that |𝜆𝑖0′ − 𝜆𝑖0′

′′ | = 1, 𝑡𝑖0′ = 𝑡𝑖0′
′′  and 𝜖𝑖0′ ∈ {0,1}. We claim that 𝑡𝑗

′′ = 𝑡𝑗
′ + 1. 
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Now, (𝑡1
′ , 𝑡2

′ , 𝜆1
′ , 𝜆2

′ )  and (𝑡1
′′, 𝑡2

′′, 𝜆1
′′, 𝜆2

′′) are in 𝛬. The mutual orthogonality property 

implies that 𝑉𝑔1𝑔1(𝑡𝑖
′ − 𝑡𝑖

′′, 𝜆𝑖
′ − 𝜆𝑖

′′) = 0 for some 𝑖 = 1,2.  

Suppose that 𝑥 is not of the corner points of 𝜆 + [0,1]2. In that case, the index 𝑖 
such that 𝜖𝑖 ∈ {0,1} is unique and it follows that 𝑖0 = 𝑖0

′ . This implies in particular, that 

𝑡𝑖0
′ = 𝑡𝑖0

′′  (as 𝑡𝑖0
′ = 𝑡𝑖0 = 𝑡𝑖0′ = 𝑡𝑖0′

′′ = 𝑡𝑖0
′′). Furthermore, the second set of inequalities in 

(53) show that 𝜆𝑖0
′ = 𝜆𝑖0

′′ = 𝜆𝑖0 − 1 if  𝜖𝑖0 = 0 and 𝜆𝑖0
′ = 𝜆𝑖0

′′ = 𝜆𝑖0 + 1 if 𝜖𝑖0 = 1. We 

have thus 𝜆𝑖0
′ = 𝜆𝑖0

′′  in both cases. We have thus  

𝑉𝑔1𝑔1(𝑡𝑖0
′ − 𝑡𝑖0

′′ , 𝜆𝑖0
′ − 𝜆𝑖0

′′ ) = 𝑉𝑔1𝑔1(0,0) = 1. 

Therefore, the other index 𝑗 must satisfy 𝑉𝑔1𝑔1(𝑡𝑗
′ − 𝑡𝑗

′′, 𝜆𝑗
′ − 𝜆𝑗

′′) = 0. This inequalities  

−𝜖𝑗 ≤ 𝜆𝑗 − 𝜆𝑗
′ ≤ 1 − 𝜖𝑗     and     −𝜖𝑗 ≤ 𝜆𝑗 − 𝜆𝑗

′′ ≤ 1 − 𝜖𝑗 

yield −1 ≤ 𝜆𝑗
′ − 𝜆𝑗

′′ ≤ 1. However, 𝛿 ≤ 𝑡𝑗
′′ − 𝑡𝑗

′ ≤ 1 + 𝛿. The 𝑉𝑔1𝑔1 would not be zero 

unless 𝑡𝑗
′′ ≥ 𝑡𝑗

′ + 1(≥ 𝑏𝑗). Hence, 𝑡𝑗
′ + 1 ≤ 𝑡𝑗

′′ ≤ 𝑡𝑗
′ + 1 + 𝛿. This forces that 𝑡𝑗

′′ = 𝑡𝑗
′ +

1. This completes the proof for non-corner points. If 𝑥 is the corner point, as the square 

constructed for the non-corner will certainly cover the corner point. therefore, the proof  

is completed. 

With the help of the previous two lemmas, the following tiling result for Γ(𝐶) 
follows immediately. 

Corollary (4.3.18)[241]: Let 𝐶 be a half-open square. Then Γ(𝐶) + [0,1]2 is a tilling of 

 ℝ2.  

Proof. It suffices to show the following statements: suppose that 𝒥 + [0,1]2 is non-

empty packing of ℝ2. If, for any 𝑥 ∈ 𝜕(𝑡 + [0,1]2) where 𝑡 ∈ 𝒥, we can fined 𝑡𝑥 ∈ 𝒥 

with 𝑡𝑥 ≠ 𝑡 such that 𝑥 ∈ 𝜕(𝑡𝑥 + [0,1]
2), then 𝒥 + [0,1]2 is a tiling of ℝ2. Indeed, by 

Lemma (4.3.16)(i) and Lemma (4.3.17) Γ(𝐶) + [0,1]2 is a packing of ℝ2 and satisfies 

the stated property. It is thus a tiling of ℝ2.  

To prove the previous statements, we note that as 𝒥 + [0,1]2 is packing, it is 

closed set. Suppose that 𝒥 + [0,1]2 satisfies the property above and that  ℝ𝑑\𝒥 +
[0,1]2 ≠ ∅. Let 𝑥 ∈ 𝜕(𝒥 + [0,1]2) and assume that 𝑥 ∈ 𝑡 + [0,1]2. We can then find 

𝑡𝑥 ∈ 𝒥 with 𝑡𝑥 ≠ 𝑡 such that 𝑥 ∈ 𝜕(𝑡𝑥 + [0,1]
2). Note that if 𝑥 were not a corner point 

of either 𝑡 + [0,1]2 or 𝑡𝑥 + [0,1]
2, then 𝑥 would be in the interior of 𝒥 + [0,1]2. Hence, 

𝑥 must be a corner point of 𝑡 + [0,1]2 or 𝑡𝑥 + [0,1]
2. As the set of all corner points of 

the squares in 𝒥 + [0,1]2 is countable, the Lebesgue measure of the open set  ℝ𝑑\(𝒥 +
[0,1]2) is zero and ℝ𝑑\(𝒥 + [0,1]2) is thus empty, proving our claim. 

Lemma (4.3.19)[241]: Let 𝐶 be a half-open square and suppose that (𝜆1, 𝜆2) ∈ Γ(𝐶) 
with 𝑇𝐶(𝜆1, 𝜆2) = {(𝑡1, 𝑡2)}. Then all the sets 𝑇𝐶(𝜆1

′ , 𝜆2
′ ) with (𝜆1

′ , 𝜆2
′ ) ∈ Γ(𝐶) are either 

of the form {(𝑡1, 𝑡2 + 𝑠)} or {(𝑡1 + 𝑠, 𝑡2)} for some real 𝑠 with |𝑠| < 1 depending on 

(𝜆1, 𝜆2). 
Proof. We first make the following remark. If (𝛼1, 𝛼2), (𝛽1, 𝛽2) ∈ Γ(𝐶) are such that 

the two squares (𝛼1, 𝛼2) + [0,1]
2 and (𝛽1, 𝛽2) + [0,1]

2 intersect each other and also 

both intersect a third square (𝛾1, 𝛾2) + [0,1]
2 with (𝛾1, 𝛾2) ∈ Γ(𝐶), then, letting 

𝑇𝐶(𝛾1, 𝛾2) = (𝑟1, 𝑟2), we have  

𝑇𝐶(𝛼1, 𝛼2) = {(𝑟1 + 𝑎, 𝑟2)}     and    𝑇𝐶(𝛽1, 𝛽2) = {(𝑟1 + 𝑏, 𝑟2)} 
or  

𝑇𝐶(𝛼1, 𝛼2) = {(𝑟1, 𝑟2 + 𝑎)}    and    𝑇𝐶(𝛽1, 𝛽2) = {(𝑟1, 𝑟2 + 𝑏)},  
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for Some real 𝑎, 𝑏. Indeed, using Lemma (4.3.17), we have 𝑇𝐶(𝛼1, 𝛼2) = {(𝑟1 + 𝑎, 𝑟2)}  
or {(𝑟1, 𝑟2 + 𝑎)} and 𝑇𝐶(𝛽1, 𝛽2) = {(𝑟1 + 𝑏, 𝑟2) or (𝑟1, 𝑟2 + 𝑏)}. Suppose, for example, 

that 𝑇𝐶(𝛼1, 𝛼2) = {(𝑟1 + 𝑎, 𝑟2)} and 𝑇𝐶(𝛽1, 𝛽2) = (𝑟1, 𝑟2 + 𝑏). Since the two squares 

intersect each other, we must have |𝛼1 − 𝛽1| ≤ 1 and |𝛼2 − 𝛽2| ≤ 1. The orthogonality 

property also implies that either (𝑎, 𝛼1 − 𝛽1) or (−𝑏, 𝛼2 − 𝛽2) is in the zero set of 

𝑉𝑔1𝑔1. But since we have |𝑎|, |𝑏| < 1, this would imply that |𝛼1 − 𝛽1| > 1 or |𝛼1 −

𝛽2| > 1, which cannot happen. As Γ(𝐶) + [0,1]2 is a tiling of ℝ2, for any square 

(𝜎1, 𝜎2) + [0,1]
2 intersecting the square (𝜆1, 𝜆2) + [0,1]

2 and with (𝜎1, 𝜎2) ∈ Γ(𝐶) , we 

can find another square (𝛿1, 𝛿2) + [0,1]
2, with (𝛿1, 𝛿2) ∈ Γ(𝐶) and with (𝛿1, 𝛿2) +

[0,1]2 intersecting both squares (𝜎1, 𝜎2) + [0,1]
2 and (𝜆1, 𝜆2) + [0,1]

2. By the previous 

remark, the conclusion of the lemma holds for all the squares that neighbour the square 

(𝜆1, 𝜆2) + [0,1]
2. Replacing this original square by one of the neighbouring squares and 

continuing this process, we obtain the conclusion of the lemma for all the squares in the 

tiling Γ(𝐶) + [0,1]2 by an induction argument. This proves our claim. 

Suppose that the system 𝒢(𝜒[0,1]2 , Λ) gives rise to a non-standard Gabor 

orthonormal basis of 𝐿2(ℝ2). Then, some of the squares will have overlaps and, without 

loss of generality, we can assume that  

|[0,1]2 ∩ [0,1]2 + (𝑡1, 𝑡2)| > 0 

for some (𝑡1, 𝑡2) in the translation component of Λ. 

Lemma (4.3.20)[241]: If (0,0,0,0) ∈ Λ, then the sets 𝑇[0,1)2(𝜆1, 𝜆2) where (𝜆1, 𝜆2) ∈

Γ([0,1]2) are either all of the form {(𝑡, 0)} or all 𝜔 of the form {(0, 𝑡)} with some 𝑡 
(depending on (𝜆1, 𝜆2) with |𝑡| < 1. In the first case, if there exists some (𝜆1, 𝜆2) ∈
Γ([0,1]2) with 𝑇[0,1]2(𝜆1, 𝜆2) = (𝑡, 0) and  𝑡 ≠ 0, then  

Γ([0,1]2 =⋃(ℤ+ 𝜇𝑘,0) × {𝑘}

𝑘∈ℤ

                                           (54) 

for some 0 ≤ 𝜇𝑘,0 ≤ 1. Moreover, we can find 0 ≤ 𝑡𝑘 ≤ 1 such that  

𝑇[0,1)2 ((ℤ + 𝜇𝑘,0) × {𝑘}) = {(𝑡𝑘, 0)},   𝑘 ∈ ℤ,                        (55) 

and 

Λ ∩ ([0,1)2 ×ℝ2) = {(𝑡𝑘, 0, 𝑗 + 𝜇𝑘,0 , 𝑘): 𝑗, 𝑘 ∈ ℤ}.                  (56) 

(In the second case, Γ([0,1)2 = ⋃ {𝑘} × (ℤ + 𝜇𝑘,0)𝑘∈ℤ  and 𝑇[0,1)2({𝑘} × (ℤ + 𝜇𝑘,0)) =

{(0, 𝑡𝑘)}, Λ ∩ ([0,1)
2 × ℝ2) = {(0, 𝑡𝑘 , 𝑘, 𝑗 + 𝜇𝑘,0: 𝑗, 𝑘 ∈ ℤ)}.  

Proof. If 𝜆 = (0,0), we have 𝑇[0,1)2(𝜆) = {(0,0)} as (0,0,0,0) ∈ Λ. By Lemma  

(4.3.19), any (𝜆1, 𝜆2) ∈ Γ([0,1)
2 with the square (𝜆1, 𝜆2) + [0,1)

2 intersecting [0,1]2 
on the 𝜆1, 𝜆2-plane satisfies 𝑇[0,1)2(𝜆1, 𝜆2) = {(𝑡, 0)} or 𝑇[0,1)2(𝜆1, 𝜆2){(0, 𝑡)} with |𝑡| <

1. Without loss of generality, we assume that the first case holds. As Γ([0,1]2) + [0,1]2 
is a tiling of  ℝ2, for any square 𝐶 = (𝜆1, 𝜆2) + [0,1]

2, with (𝜆1, 𝜆2) ∈ Γ([0,1]
2), we 

can find squares 𝐶𝑖 = (𝜆1,𝑖  , 𝜆2,𝑖) + [0,1]
2 for 𝑖 = 0,… , 𝑘 with (𝜆1,𝑖  , 𝜆2,𝑖) ∈ Γ([0,1]

2) 

and such that 𝐶0 = [0,1]
2, 𝐶𝑘 = 𝐶, and with 𝐶𝑖 and 𝐶𝑖+1 touching each other for all 𝑖 =

0,… , 𝑘 − 1.  

We have 𝑇[0,1)2(𝜆1,1 , 𝜆2,1) = {(𝑡1 , 0)} for some number 𝑡1 with|𝑡1| < 1. Since 

𝐶2 and 𝐶0 both intersect 𝐶1, 𝑇[0,1)2(𝜆1,2 , 𝜆2,2) = {(𝑡2 , 0)} by Lemma (4.3.19) again. 
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Inductively, we have 𝑇[0,1)2(𝜆1,𝑖  , 𝜆2,𝑖) = {(𝑡𝑖  , 0)}, 𝑖 = 1,… , 𝑘, which proves the first 

part. 

Consider the case where, for any (𝜆1, 𝜆2) ∈ Γ([0,1]
2), there exists a number 𝑡 =

𝑡(𝜆1, 𝜆2) such that 𝑇[0,1)2(𝜆1 , 𝜆2) = {(𝑡 , 0)} and assume that 𝑡(𝜆1, 𝜆2) ≠ 0 for at least 

one couple (𝜆1, 𝜆2) ∈ Γ([0,1]
2). Suppose that Γ([0,1]2) is not of the form in (54). By 

Corollary (4.3.18) and Proposition (4.3.9), we must have Γ([0,1]2) = ⋃ {𝑘} ×𝑘∈ℤ

(ℤ + 𝑎𝑘)  with 0 ≤ 𝑎𝑘 ≤ 1 and at least one 𝑎𝑘 ≠ 0. Consider the distinct points  

(𝑡, 0, 𝑘, 𝑎𝑘 + 𝑗)     and    (𝑡′, 0, 𝑘 − 1, 𝑎𝑘−1 + 𝑗),    both in Λ. 

We must have that either (𝑡 − 𝑡′, 1) ∈ 𝑍(𝑉𝑔1𝑔1) or (0, 𝑎𝑘 − 𝑎𝑘−1) ∈ 𝑍(𝑉𝑔1𝑔1). 

however, since |𝑎𝑘 − 𝑎𝑘−1| < 1, the second case is impossible. This means that 

(𝑡 − 𝑡′, 1) ∈ 𝑍(𝑉𝑔1𝑔1) which is possible only if 𝑡 = 𝑡′. Therefore the fact (𝑡, 0, 𝑘, 𝑎𝑘 +

𝑗) ∈ Λ implies that 𝑡 = 𝑡𝑗 for some real 𝑡𝑗. We know show by induction on |𝑗| that 𝑡𝑗 =

0, for all 𝑗 ∈ ℤ . The case 𝑗 = 0 is clear as (0,0,0,0) ∈ Λ by assumption. if our claim is 

true for all |𝑗| ≤ 𝐽 Where 𝐽 ≥ 0, chose 𝑘 ∈ ℤ such that 𝑎𝑘+1 ≠ 0 and 𝑎𝑘 = 0 if such 𝑘 

exists. Suppose first that 𝑗 > 0. there exist thus 𝑡 ∈ [0,1) such that  

(𝑡𝑗+1, 0, 𝑘, 𝑗 + 1)    and   (0,0, 𝑘 + 1, 𝑎𝑘+1 + 𝑗)   both belong to Λ. 

This implies that either (𝑡, −1) ∈ 𝑍(𝑉𝑔1𝑔1) or (0, 𝑎𝑘+1 − 1) ∈ 𝑍(𝑉𝑔1𝑔1). This last case 

is impossible and the first one is only possible if 𝑡 = 0, showing that 𝑡𝑗+1 = 0. Similarly 

by considering the points   

(𝑡𝑗−1, 0, 𝑘 + 1, 𝑎𝑘+1 + 𝑗 − 1)   and   (0,0, 𝑘, 𝑗)   which both belong to Λ. 

we can conclude that 𝑡𝑗−1 = 0 for 𝑗 < 0. If 𝑘 as above does not exist, there exists chose 

𝑘′ ∈ ℤ such that 𝑎𝑘′−1 ≠ 0  and 𝑎𝑘′ = 0. By considering the points    

(𝑡𝑗+1, 0, 𝑘
′, 𝑗 − 1)   and   (0,0, 𝑘′ − 1, 𝑎𝑘′−1 + 𝑗)    if  𝑗 > 0. 

and the points 

(𝑡𝑗−1, 0, 𝑘
′ − 1, 𝑎𝑘′−1 + 𝑗 − 1)    and    (0,0, 𝑘′, 𝑗)    if  𝑗 < 0 

which all belong to Λ, we conclude that 𝑡𝑗 = 0 if  |𝑗| = 𝐽 + 1. This proves (54). 

If we are in the first case, i.e  

Γ([0,1]2) =⋃(ℤ+ 𝜇𝑘,0) × {𝑘}

𝑘∈ℤ

, 

let 𝑚,𝑚′ be distinct integers. We have then  

𝑇[0,1)2(𝑚 + 𝜇𝑛,0, 𝑛) = {(𝑡𝑚, 0)}   and  𝑇[0,1)2(𝑚
′ + 𝜇𝑛,0, 𝑛) = {(𝑡𝑚′ , 0)} 

which implies that 𝑉𝑔1𝑔1(𝑡𝑚 − 𝑡𝑚′ , 𝑚 −𝑚
′) = 0 or 𝑉𝑔1𝑔1(0,0) = 0. The second case is 

clearly impossible while the first one is possible only when 𝑡𝑚 = 𝑡𝑚
′ . This shows (55) 

and (56) follows immediately from (45) and (55). 

Note that Lemma (4.3.20) implies that Γ([0,1]2) = Γ({(𝑥, 0): 0 ≤ 𝑥 < 1}) and 

Γ([0,1]2) = ∅ if (0,0,0,0) ∈ Λ. 

Lemma (4.3.21)[241]: Under the assumptions of Lemma (4.3.20), suppose that there 

exists (𝜆1, 𝜆2) ∈ Γ([0,1]
2) with 𝑇[0,1)2(𝜆1, 𝜆2) = (𝑡, 0) and 𝑡 ≠ 0. Then we can find 

numbers 𝑡𝑘 with 0 ≤ 𝑡𝑘 < 1 and 𝜇𝑘,0, 𝑘, 𝑚 ∈ ℤ, with 0 ≤ 𝜇𝑘,𝑚 < 1, such that  

Λ ∩ (ℝ × [0,1] × ℝ2) = {(𝑚 + 𝑡𝑘 , 0, 𝑗 + 𝜇𝑘,𝑚,𝑘): 𝑗, 𝑘,𝑚 ∈ ℤ} 
Proof. By the result of  Lemma (4.3.20), we have the identities (55) and (56). Let 𝑇 =
{𝑡𝑘  , 𝑘 ∈ ℤ} ⊂ [0,1) where 𝑡𝑘 , 𝑘 ∈ ℤ, are the numbers appearing in (55). let 𝑠1, 𝑠1 ∈ 𝑇 
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with 𝑠1 < 𝑠2. Consider the half-open squares 𝐶 = (𝑠1, 0) + [0,1)
2 and 𝐶′ = (𝑠1, 0) +

((0,1] × [0,1)). Then we know that Γ(𝐶) + [0,1]2 and Γ(𝐶′) + [0,1]2 both tile ℝ2. Let  

𝑃0 = {(𝑠1, 𝑦): 0 ≤ 𝑦 < 1} and 𝑃1 = {(𝑠1 + 1, 𝑦): 0 ≤ 𝑦 < 1}. Note that Γ(𝑃0) =
Γ({(𝑠1, 0)}). Moreover,  

Γ(𝐶) = Γ(𝑃0) ∪ Γ(𝐶\𝑃0), Γ(𝐶
′) = Γ(𝐶′\𝑃1) ∪ Γ(𝑃1) 

and since 𝐶\𝑃0 = 𝐶
′\𝑃1, Γ(𝑃0) =  Γ(𝑃1). We have 

𝑇𝐶′(Γ(𝑃1)) ⊂ {(𝑠1 + 1, 𝑦), 0 ≤ 𝑦 < 1} 

but since (𝑠2, 0) ∈ 𝐶
′, we must have 𝑇𝐶′(Γ(𝑃1)) = (𝑠1 + 1,0) by Lemma (4.3.19). 

Since  

Γ(𝑃0) = {(𝑗 + 𝜇𝑘,0, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 𝑠1} 

and 𝜋2(Γ(𝑃0)) = 𝜋2(Γ(𝑃1)), where 𝜋2 is the projection to the second coordinate, we 

have  

Γ({(1 + 𝑠1, 0)}) = Γ(𝑃1) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 𝑠1}. 

for some constants 𝜇𝑘,1 with 0 ≤ 𝜇𝑘,1 < 1 using Proposition (4.3.9). Applying this 

argument to 𝑠1 = 0 and 𝑠2 = 𝑡, we obtain that  

Λ ∩ ({1} × [0,1) × ℝ2) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 0}.  
Similar arguments applied to 𝑠1 = 𝑠 and 𝑠2 = 1 show that, for any 𝑠 ∈ 𝑇, we have  

Λ ∩ ({𝑠 + 1} × [0,1) × ℝ2) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 𝑠}. 

and that Λ ∩ ({𝑠 + 1} × [0,1) × ℝ2) is empty if 𝑠 ∈ [0,1)\𝑇. The same idea can also be 

used to show the existence of constants 𝜇𝑘,−1 with 0 ≤ 𝜇𝑘,1 < 1 such that  

Λ ∩ ({𝑠 − 1} × [0,1) × ℝ2) = {
{(𝑗 + 𝜇𝑘,−1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 𝑠}, 𝑠 ∈ 𝑇,            

∅,                                                       𝑠 ∈ [0,1)\𝑇.
 

and, more generally using induction, that, for any 𝑚 ∈ ℤ, we can find constants 𝜇𝑘,𝑚 

with 0 ≤ 𝜇𝑘,𝑚 < 1 such that  

Λ ∩ ({𝑠 + 𝑚} × [0,1) × ℝ2) = {
{(𝑗 + 𝜇𝑘,𝑚, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑘 = 𝑠}, 𝑠 ∈ 𝑇,            

∅,                                                      𝑠 ∈ [0,1)\𝑇.
 

This proves our claim. 

We can now complete the proof of the main result which gives a characterization 

for the subsets Λ of ℝ4 with the property that the associated set of time-frequency shifts 

applied to the window 𝜒[0,1]2 yields an orthonormal basis for 𝐿2(ℝ2). 

Theorem (4.3.22)[241]:  𝒢(𝜒[0,1]2 , 𝛬) is a Gabor orthonormal basis for 𝐿2(ℝ2) if and 

only if we can partition ℤ into 𝒥 and 𝒥′ such that either  

𝛬 = ⋃ {(𝑚 + 𝑡𝑛,𝑘,𝑛, 𝑗 + 𝜇𝑘,𝑚,𝑛, 𝐾 + 𝑣𝑛):𝑚, 𝑗, 𝑘 ∈ ℤ}𝑛∈𝒥 ∪ ⋃ ⋃ {(𝑚 + 𝑡𝑛, 𝑛)}𝑛∈𝒥′𝑚∈ℤ × 𝛬𝑚,𝑛.  

or 

𝛬 = ⋃ {(𝑚, 𝑛 + 𝑡𝑚,𝑗 , 𝑗 + 𝑣𝑚, 𝐾 + 𝜇𝑗,𝑚,𝑛): 𝑛, 𝑗, 𝑘 ∈ ℤ} ∪ ⋃ ⋃ {(𝑚, 𝑛 + 𝑡𝑚)}𝑚∈𝒥′𝑛∈ℤ𝑚∈𝒥 × 𝛬𝑚,𝑛.  

where 𝛬𝑚,𝑛 + [0,1]
2 tile ℝ2 and 𝑡𝑛,𝑘 , 𝜇𝑘,𝑚,𝑛 and 𝑣𝑛 are real numbers in [0,1) as a 

function of 𝑚,𝑛 or 𝐾. 

Proof. It follows from Lemma (4.3.19), that either all 𝑇[0,1)2(𝜆1, 𝜆2), (𝜆1, 𝜆2) ∈

Γ([0,1]2) are either of the form {(𝑡, 0)} or all are of the form {(0, 𝑡)} with some 𝑡 ≠ 0. 

In the first case, we deduce from Lemma (4.3.21) that  

Λ ∩ (ℝ × [0,1) × ℝ2) = {(𝑚 + 𝑡𝑘 , 0, 𝑗 + 𝜇𝑘,𝑚, 𝑘): 𝑗, 𝑘,𝑚 ∈ ℤ} 
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for certain numbers 𝑡𝑘 and 𝜇𝑘,𝑚 in the interval [0,1). We now show that Λ will be of the 

first of the two possible forms given in the Theorem. (Similarly, the second form 

follows from the second case of Lemma (4.3.21)). 

Letting 𝐶 = [0,1)2 and 𝐶′ = [0,1) × (0,1], we note that both Γ(𝐶) + [0,1]2 and 

Γ(𝐶′) + [0,1]2 tile ℝ2 but Γ((0,1)2) is empty. Hence, Γ(𝐶′) = Γ({(𝑥, 1): 0 ≤ 𝑥 ≤ 1}). 
It means that any set 𝑇𝐶′(𝜆1, 𝜆2) with (𝜆1, 𝜆2) ∈ Γ(𝐶

′) is of the form {(𝑡, 1)} for some 

𝑡 = 𝑡(𝜆1, 𝜆2) with 0 ≤ 𝑡 < 1. We now have two possible cases : either the cardinality 

of 𝑇𝐶′(Γ(𝐶
′)) is larger than one or equal to one. In the first case, we can find two 

distinct elements of  𝑇𝐶′(Γ(𝐶
′)) and we can then replicate the proof of Lemma (4.3.21), 

to obtain that  

Λ ∩ (ℝ × [1,2) × ℝ2) = {(𝑚 + 𝑡𝑘 , 1, 𝑗 + 𝜇𝑘,𝑚,1, 𝑘): 𝑗, 𝑘 ∈ ℤ}. 

In the other case, 𝑇𝐶′(Γ(𝐶
′)) = {(𝑡1, 1)} for some 𝑡1 with 0 ≤ 𝑡1 < 1. If we translate 𝐶′ 

horizontally and use the same argument as in the proof of Lemma (4.3.21), we see that  

Λ ∩ (ℝ × [1,2) × ℝ2) = {(𝑚 + 𝑡1, 1)} × Λ𝑚,1, 

where 𝐴𝑚,1 is a spectrum for the unit square [0,1]2. This last property is equivalent to 

𝐴𝑚,1 + [0,1]
2 being a tiling of ℝ2 by the result in [256]. 

We can them prove the Theorem inductively by translating the square 𝐶′ in the 

vertical direction using integer steps. 

Corollary (4.3.23)[491]: Suppose that 𝐹𝑟 , 𝐺𝑟 ∈ 𝐿
1(ℝ𝑛) are two functions with 𝐹𝑟 , 𝐺𝑟 ≥

0 and ∫ ∑  𝑟 𝐹𝑟(𝑥𝑟)𝑑𝑥𝑟ℝ𝑛
= ∫ ∑  𝑟 𝐺𝑟(𝑥𝑟)𝑑𝑥𝑟ℝ𝑛

= 1. Suppose that 𝜇 is a positive Borel 

measure on ℝ𝑛 such that  

∑ 

𝑟

𝐹𝑟 ∗ 𝜇 ≤ 1 and ∑  

𝑟

𝐺𝑟 ∗ 𝜇 ≤ 1. 

Then, ∑  𝑟 𝐹𝑟 ∗ 𝜇 = 1 if and only if  ∑  𝑟 𝐺𝑟 ∗ 𝜇 = 1. 

Proof. By symmetry, it suffices to show one side of the equivalence. Assuming that 
∑  𝑟 𝐹𝑟 ∗ 𝜇 = 1, we have  

1 =∑ 

𝑟

𝐹𝑟 ∗ 𝜇 ⇒ 1 =∑ 

𝑟

1 ∗ 𝐺𝑟 =∑ 

𝑟

𝐺𝑟 ∗ 𝐹𝑟 ∗ 𝜇 =∑ 

𝑟

𝐹𝑟 ∗ 𝐺𝑟 ∗ 𝜇. 

Letting 𝐻 = ∑  𝑟 𝐺𝑟 ∗ 𝜇 we have 0 ≤ 𝐻 ≤ 1 and ∑  𝑟 𝐻 ∗ 𝐹𝑟 = 1. We now show 

that 𝐻 = 1. indeed letting 𝛬𝑟 be the set {𝑥𝑟 ∈ ℝ
𝑛, 𝐻(𝑥𝑟) < 1} and 𝐴𝑟 + 𝜖 = ℝ

𝑛 \𝛬𝑟, 
we have  

∑ 

𝑟

(𝐻 ∗ 𝐹𝑟)(𝑥𝑟) = ∫ ∑ 

𝑟

𝐻(𝑦𝑟)𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
ℝ𝑛

= ∫ ∑ 

𝑟

𝐻(𝑦𝑟)𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟

+∫ ∑ 

𝑟

𝐻(𝑦𝑟)𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟+𝜖

 

Now, if |𝛬𝑟| > 0,we have 

∫ ∫ ∑ 

𝑟

𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟𝑑𝑥𝑟
𝐴𝑟ℝ𝑛

=∑ 

𝑟

|𝐴𝑟| > 0 

and there exists thus a set 𝐸 with positive measure such that  

∫ ∑ 

𝑟

𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟

> 0, 𝑥𝑟 ∈ 𝐸. 

If 𝑥𝑟 ∈ 𝐸, we have  



155 

∫ ∑ 

𝑟

𝐻(𝑦𝑟)𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟

+∫ ∑ 

𝑟

𝐻(𝑦𝑟)𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟+𝜖

< ∫ ∑ 

𝑟

𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟

+∫ ∑ 

𝑟

𝐹𝑟(𝑥𝑟 − 𝑦𝑟)𝑑𝑦𝑟
𝐴𝑟+𝜖

=∑ 

𝑟

(1 ∗ 𝐹𝑟)(𝑥𝑟) = 1 

This contradicts to the that ∑  𝑟 𝐻 ∗ 𝐹𝑟 = 1  almost everywhere. Hence,|𝛬𝑟| = 0 and 

𝐻 = 1 follows. 

Corollary (4.3.24)[491]: Suppose that 𝒢(∑ 𝑔𝑟𝑟 , 𝛬𝑟) is a mutually orthogonal set of  

𝐿2(ℝ3+𝜖). Let 𝐷 be any orthogonal packing region for ∑ 𝑔𝑟𝑟 . Then 𝛬𝑟 − 𝛬𝑟 ⊂
∑  𝑟 𝒵(𝑉𝑔𝑟𝑔𝑟) ∪ {0} and 𝛬𝑟 + 𝐷 is a packing of  ℝ2(3+𝜖). Suppose furthermore that 

𝒢(∑ 𝑔𝑟𝑟 , 𝛬𝑟) is a Gabor orthonormal basis. Then |𝐷| ≤ 1. 

Proof. Let (𝑡𝑟−2, 𝜆𝑟−2
2 ), (𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 + 𝜖) ∈ 𝛬𝑟 be two distinct points in 𝛬𝑟. Then  

∫∑𝑔𝑟
𝑟

(𝑥𝑟 − (𝑡𝑟−2
 + 𝜖))𝑔𝑟(𝑥𝑟 − 𝑡𝑟−2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑒−2𝜋𝑖(−𝜖)𝑥𝑟𝑑𝑥𝑟 = 0, 

Or equivalently, after the change of variable 𝑦𝑟 = 𝑥𝑟 − 𝑡𝑟−2
 + 𝜖, 

∫∑𝑔𝑟
𝑟

(𝑥𝑟)𝑔𝑟(𝑥𝑟 + 𝜖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑒2𝜋𝑖(𝜖)𝑥𝑟𝑑𝑥𝑟 = 0. 

Hence, ∑  𝑟 𝑉𝑔𝑟𝑔𝑟(−𝜖,−𝜖) = 0 and (𝑡𝑟−2, 𝜆𝑟−2
2 ) − (𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 + 𝜖) ∈

∑  𝑟 𝒵(𝑉𝑔𝑟𝑔𝑟). This means that (𝑡𝑟−2, 𝜆𝑟−2
2 ) − (𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 + 𝜖) ∉ 𝐷0 − 𝐷0. 

Therefore, the intersection of the sets (𝑡𝑟−2, 𝜆𝑟−2
2 ) + 𝐷 and (𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 + 𝜖) + 𝐷  

has zero Lebesgue measure.  

Suppose now that 𝒢(∑ 𝑔𝑟𝑟 , 𝛬𝑟) is a Gabor orthonormal basis. Denote by 𝑅 the 

diameter of  𝐷. By the packing property of  𝛬𝑟 + 𝐷, 

∑ 

𝑟

|𝐷|.
#(𝛬𝑟 ∩ [−𝑇, 𝑇]

2(3+𝜖))

(2𝑇)2(3+𝜖)
=

1

(2𝑇)2(3+𝜖)
∑ 

𝑟

| ⋃ (𝐷 + 𝜆𝑟−2
2 )

𝜆𝑟−2
2 ∈𝛬𝑟∩[−𝑇,𝑇]

2(3+𝜖)

|  

≤
1

(2𝑇)2(3+𝜖)
|[−𝑇 − 𝑅, 𝑇 + 𝑅]2(3+𝜖)| = (1 +

𝑅

2(3 + 𝜖)
)
2(3+𝜖)

. 

Taking limit 𝑇 → ∞ and using the fact that Beurling density of  𝛬𝑟 is 1 ([257], we 

have |𝐷| ≤ 1. 

Corollary (4.3.25)[491]: Suppose that 𝒢(∑ 𝑔𝑟𝑟 , 𝛬𝑟) is an orthonormal set in 𝐿2(ℝ3+𝜖) 
and that 𝐷 is a tight orthogonal packing region for ∑ 𝑔𝑟𝑟 . Then 𝒢(∑ 𝑔𝑟𝑟 , 𝛬𝑟) ia a Gabor 

orthonormal basis for 𝐿2(ℝ3+𝜖) if and only if  𝛬𝑟 + 𝐷 is a tiling of  ℝ2(3+𝜖). 

Proof. Let 𝐹𝑟 = 𝜒𝐷 and ∑  𝑟 𝐺𝑟 = ∑  𝑟 |𝑉𝑔𝑟𝑓𝑟|
2
/‖𝑓𝑟‖2

2. Then ∫ ∑  𝑟 𝐹𝑟ℝ2(3+𝜖)
= 1 and 

∫ ∑  𝑟 𝐺𝑟ℝ2(3+𝜖)
= ∑  𝑟 ‖𝑔𝑟‖2

2 = 1. Now, as 𝐷 is an orthogonal packing region for ∑ 𝑔𝑟𝑟 , 

we have in particular  

∑ 𝜒𝐷(𝑥𝑟 − 𝜆𝑟−2
2 ) ≤ 1

𝜆𝑟−2
2 ∈𝛬𝑟

. 

This shows that 
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∑ 

𝑟

𝛿𝑣𝑟−22 ∗ 𝐹𝑟 =∑ 

𝑟

𝛿𝛬𝑟 ∗ 𝜒𝐷 ≤ 1. 

Moreover, 𝛬𝑟 + 𝐷 is a tilling of  ℝ2(3+𝜖) if and only if  ∑  𝑟 𝛿𝛬𝑟 ∗ 𝜒𝐷 = 1. On the 

other hand, (∑ 𝑔𝑟𝑟 , 𝛬𝑟)  being a mutually orthogonal set, Bessel’s inequality yields  

∑ |∫ ∑ 

𝑟

𝑓𝑟(𝑥𝑟)𝑔𝑟(𝑥𝑟 − 𝑡𝑟−2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑒−2𝜋𝑖〈𝑣𝑟−2
2 ,𝑥𝑟〉𝑑𝑥𝑟

ℝ2(3+𝜖)
|

2

≤∑ 

𝑟

‖𝑓𝑟‖
2 ,

(𝑡𝑟−2,𝜆𝑟−2
2 )∈𝛬𝑟

𝑓𝑟 ∈ 𝐿
2(ℝ3+𝜖) , 

or, replacing 𝑓𝑟 by 𝑓𝑟(𝑥𝑟 − 𝜏)𝑒
2𝜋𝑖𝑣𝑟−2

2 𝑥𝑟 with (𝜏, 𝑣𝑟−2
2 ) ∈ ℝ2(3+𝜖),  

∑ ∑ 

𝑟

|𝑉𝑔𝑟𝑓𝑟  (𝜏 − 𝑡𝑟−2, 𝑣𝑟−2
2 − 𝜆𝑟−2

2 )| 2 ≤∑ 

𝑟

‖𝑓𝑟‖
2 ,     𝑓𝑟 ∈ 𝐿

2(ℝ3+𝜖)

(𝑡𝑟−2,𝜆𝑟−2
2 )∈𝛬𝑟

. 

Hence,  

∑ 

𝑟

𝛿𝛬𝑟 ∗ 𝐺𝑟 =∑ 

𝑟

𝛿𝛬𝑟 ∗
|𝑉𝑔𝑟𝑓𝑟|

2

‖𝑓𝑟‖
2 
≤ 1 

with equality if and only if the Gabor orthonormal system is in fact a basis. The 

conclusion follows then from Corollary (4.3.23).  

Corollary (4.3.26)[491]: 𝒢(∑ (𝑔𝑟)2+𝜖𝑟 , 𝛬𝑟) is a Gabor orthonormal basis if and only if 

𝒢(∑ (𝑔𝑟)2+𝜖𝑟 , 𝛬𝑟) is an orthogonal set and the translates of  [0,1]2+𝜖 by the elements of  

𝛬𝑟 tile ℝ2(2+𝜖). 
Proof. Let ∑ (𝑔𝑟)3+𝜖𝑟 = 𝜒[0,1]3+𝜖. Using Corollary (4.3.25), we just need to show that 

[0,1]2(3+𝜖) is a tight orthogonal packing region for ∑ (𝑔𝑟)3+𝜖𝑟 . 

We first consider the case 𝜖 = −2. For ∑ (𝑔𝑟)1𝑟 = 𝜒[0,1], a direct computation 

shows that  

∑ 

𝑟

𝑉(𝑔𝑟)1(𝑔𝑟)1(𝑡𝑟−2, 𝑣𝑟−2
2 )

=

{
 
 

 
 

0 ,                                                     |𝑡𝑟−2| ≥ 1

∑ 

𝑟

1

2𝜋𝑖𝑣𝑟−2
2  (𝑒2𝜋𝑖𝑣𝑟−2

2
− 𝑒2𝜋𝑖𝑣𝑟−2

2
)       ,        0 ≤ 𝑡𝑟−2 ≤ 1 ;

∑  

𝑟

1

2𝜋𝑖𝑣𝑟−2
2 (1 − 𝑒2𝜋𝑖𝑣𝑟−2

2 (𝑡𝑟−2+1))         ,   − 1 ≤ 𝑡𝑟−2 ≤ 0.

          (57) 

The zero set of  𝑉(𝑔𝑟)1(𝑔𝑟)1 is therefore given by 

𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1)

= {(𝑡𝑟−2, 𝑣𝑟−2
2 ): |𝑡𝑟−2| ≥ 1}

∪ {(𝑡𝑟−2, 𝑣𝑟−2
2 ): 𝑣𝑟−2

2 (1 − |𝑡𝑟−2|) ∈ ℤ\{0}}                        (58) 

Hence, (0,1)2 − (0,1)2 = (−1,1)2 does not intersect the zero set and therefore 

[0,1]2 is a tight orthogonal packing region for (𝑔𝑟)1. 

     We now consider the case 𝜖 ≥ 0. As we can decompose (𝑔𝑟)2+𝜖 as 

𝜒[0,1]((𝑥𝑟)1)… 𝜒[0,1]((𝑥𝑟)2+𝜖), we have ∑  𝑟 (𝑉(𝑔𝑟)2+𝜖(𝑔𝑟)2+𝜖(𝑡𝑟−2, 𝑣𝑟−2
2 )) =

∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(𝑡𝑟, 𝑣𝑟)⋯𝑉(𝑔𝑟)1(𝑔𝑟)1(𝑡𝑟+1+𝜖 , 𝑣𝑟+1+𝜖)  where 𝑡𝑟−2 = (𝑡𝑟 , … , 𝑡𝑟+1+𝜖) 

and 𝑣𝑟−2
2 = (𝑣𝑟 , … , 𝑣𝑟+1+𝜖). The zero set 𝑉(𝑔𝑟)2+𝜖(𝑔𝑟)2+𝜖 is therefore given by  
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∑ 

𝑟

𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1)

=∑ 

𝑟

{(𝑡𝑟−2, 𝑣𝑟−2
2 ): |𝑡𝑟−2|max ≥ 1}

∪ (⋃{(𝑡𝑟−2, 𝑣𝑟−2
2 ) ∶ 𝑣𝑟+𝑖−1(1 − |𝑡𝑟+𝑖−1|) ∈ ℤ\{0})}

2+𝜖

𝑖=1

) (59) 

Where |𝑡𝑟−2|max = max{𝑡𝑟 ,⋯ , 𝑡𝑟+1+𝜖}. It follows that [0,1]2(2+𝜖) is a tight 

orthogonal packing region for (𝑔𝑟)2+𝜖. 
Corollary (4.3.27)[491]: Suppose that 𝜒[0,1]2+𝒥𝑟  is a tilling of  ℝ2 with (0,0) ∈ 𝒥𝑟. 

Then 𝒥𝑟  is of either of the following two form: 

𝒥𝑟 =⋃(ℤ+ 𝑎𝑘
𝑟) × {𝑘}

𝑘∈ℤ

 or 𝒥𝑟 =⋃{𝑘} × (ℤ + 𝑎𝑘
𝑟)

𝑘∈ℤ

                                       (60) 

Where 𝑎𝑘
𝑟  are any real numbers in [0,1) for 𝑘 ≠ 0 and 𝑎0

𝑟 = 0. 

Proof. By Keller’s criterion for square tiling’s (see e.g [256]), for any (𝑡𝑟 , 𝑡𝑟+1) and 

(𝑡𝑟
 + 𝜖, 𝑡𝑟+1

 + 𝜖) in 𝒥𝑟, 𝑡𝑟+𝑖−1, 𝑡𝑟+𝑖−1
 + 𝜖 ∈ ℤ\{0}  for some 𝑖 = 1,2. Taking (𝑡𝑟

 +
𝜖, 𝑡𝑟+1

 + 𝜖) = (0,0), we obtain that, for any (𝑡𝑟 , 𝑡𝑟+1) ∈ 𝒥𝑟\{(0,0)}, one of  𝑡𝑟 or 𝑡𝑟+1 

belongs to ℤ\{0}. If ⊂ ℤ, we must have 𝒥𝑟 = ℤ for 𝜒[0,1]2+𝒥𝑟 to be tiling of  ℝ2 and ℤ 

can be written as either of the sets in (7) by taking 𝑎𝑘
𝑟 = 0 for all 𝑘. Suppose that there 

exists (𝑠𝑟 , 𝑠𝑟+1) ∈ 𝒥𝑟 such 𝑠𝑟 is not an integer and 𝑠𝑟+1 ∈ ℤ. if  (𝑡𝑟 , 𝑡𝑟+1) ∈ 𝒥𝑟 and 

𝑡𝑟+1 ∉ ℤ, then both 𝑡𝑟  and 𝑡𝑟 − 𝑠𝑟 must be integers which would imply that 𝑠𝑟 is an 

integer, contrary to our assumption. Hence, (𝑠𝑟 , 𝑠𝑟+1) ∈ 𝒥𝑟 implies 𝑠𝑟+1 ∈ ℤ and we 

write  

𝒥𝑟 =⋃(𝒥𝑟)𝑘 × {𝑘}

𝑘∈ℤ

. 

For some discrete set (𝒥𝑟)𝑘 ⊂ ℝ. For  𝜒[0,1]2 + 𝒥𝑟  to be a tiling of  ℝ2, the set 

(𝒥𝑟)𝑘 must be of the form (𝒥𝑟)𝑘 = ℤ + 𝑎𝑘
𝑟 . In the case 𝒥𝑟 can be expressed as one of 

the sets in the first collection appearing in (60).  

  Similarly, if there exists (𝑠𝑟 , 𝑠𝑟+1) ∈ 𝒥𝑟 such that 𝑠𝑟+1 is not an integer and 𝑠𝑟 ∈
ℤ, 𝒥𝑟 can be expressed as one of the sets in the second collection appearing in (60) this 

completes the proof. 

Corollary (4.3.28)[491]: 𝒢(𝜒[0,1]2+𝜖, 𝛬𝑟) is a Gabor orthonormal basis if and only if  

𝛬𝑟   is standard.  

Proof. We just need to show that 𝛬𝑟 being standard is a necessary condition for 

𝒢(𝜒[0,1]2+𝜖, 𝛬𝑟) to be a Gabor  orthonormal basis. We can also assume, for simplicity, 

that (0,0) ∈ 𝛬𝑟. By Proposition 3.1, if  𝒢(𝜒[0,1]2+𝜖, 𝛬𝑟) is a Gabor orthonormal basis, 

then 𝛬𝑟 − 𝛬𝑟 ⊂ 𝑍(𝑉𝑔𝑟𝑔𝑟)⋃{0} and  𝛬𝑟 + [0,1]
2. must be a tiling of  ℝ2. By Corollary 

(4.3.27), A must be of either one of the forms in (60). Note that 𝛬𝑟 is standard in the 

second case. In order to deal with the first case, suppose that  

𝛬𝑟 = ⋃ (ℤ + 𝑎𝑘
𝑟) × {𝑘},   𝑘∈ℤ with  𝑎𝑘

𝑟 ∈ [0,1)  , 𝑘 ≠ 0 , 𝑎0
𝑟 = 0. 

   We now show that this is impossible unless 𝑎𝑘
𝑟 = 0 for all 𝑘 (which reduces to 

the case 𝛬𝑟 = ℤ
2, which is standard). we can assume, without loss of generality, that 

𝑎𝑘
𝑟 ≠ 0 for some 𝑘 > 0 with 𝑘 being the smallest such index. If  𝑎𝑘

𝑟 ≠ 0  for some𝑘, 
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then both (𝑎𝑘
𝑟 , 𝑘) and (0, 𝑘 − 1) are in 𝛬𝑟. The orthogonality of the Gabor system then 

implies that (𝑎𝑘
𝑟 , 1) ∈ 𝑍(𝑉𝑔𝑟𝑔𝑟). Using (58), we deduce that 1 ⋅ (1 − |𝑎𝑘

𝑟|) ∈ ℤ\{0}. 

That means 𝑎𝑘
𝑟  must be an integer, which is a contradiction. 

Hence, the first case is impossible unless 𝑎𝑘
𝑟 = 0 for all 𝑘 and the proof is 

completed. 

Corollary (4.3.29)[491]: Every pseudo-standard Gabor system 𝒢(𝜒[0,1]2+𝜖, 𝛬𝑟) is a 

Gabor orthonormal basis 𝐿2(ℝ2+𝜖). 
Proof. If  𝑥𝑟 ∈ ℝ

𝑛−𝜖 and 𝑦𝑟 ∈ ℝ
𝑛, we have (𝑔𝑟)2+𝜖(𝑥𝑟 , 𝑦𝑟) = (𝑔𝑟)𝑛−𝜖(𝑥𝑟)(𝑔𝑟)𝑛(𝑦𝑟) 

(for 𝑛 − 2(1 + 𝜖) = 0). 
This yields immediately that  

𝑉(𝑔𝑟)2+𝜖(𝑔𝑟)2+𝜖(𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2
2 , 𝑣𝑟−2

2 )

= 𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖(𝑠𝑟−2, 𝜆𝑟−2
2 )𝑉(𝑔𝑟)𝑛(𝑔𝑟)𝑛(𝑡𝑟−2, 𝑣𝑟−2

2 )   ,

(𝑠𝑟−2, 𝜆𝑟−2
2 ) ∈ ℝ2(𝑛−𝜖), (𝑡𝑟−2, 𝑣𝑟−2

2 ) ∈ ℝ2𝑛                          (61) 
Suppose that 𝜌 = (𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2

2 , 𝑣𝑟−2
2 ) and 𝜌′ = (𝑠𝑟−2 + 𝜖, 𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 +

𝜖, 𝑣𝑟−2
2 + 𝜖) are distinct elements of  𝛬𝑟. If  (𝑠𝑟−2, 𝜆𝑟−2

2 ) = (𝑠𝑟−2 + 𝜖, 𝑡𝑟−2
 + 𝜖), then 

(𝑡𝑟−2
2 , 𝑣𝑟−2

2 ) and (𝑡𝑟−2
 + 𝜖, 𝑣𝑟−2

2 + 𝜖) are distinct elements of  (𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 ) and we 

have thus  

(𝜖, 𝜖) ∈ 𝑍(𝑉(𝑔𝑟)𝑛(𝑔𝑟)𝑛) 

 Which implies that  𝑍(𝑉(𝑔𝑟)2+𝜖(𝑔𝑟)2+𝜖)(𝜌
′ − 𝜌) = 0 . This proves the 

orthonormality of  the system 𝒢(𝜒[0,1]2+𝜖, 𝛬𝑟). this proposition can now be proved by 

invoking Theorem (4.3.8) if we can show that 𝛬𝑟 + [0,1]
2(2+𝜖) is a tiling of ℝ2(2+𝜖).to 

prove this, we note that (𝛬𝑟)1 + [0,1]
2(2+𝜖) is a tiling of the subspace ℝ2(𝑛−𝜖) by 

Theorem (4.3.8) and that, similarly, for each  (𝑡𝑟−2, 𝜆𝑟−2
2 ) ∈ (𝛬𝑟)(𝑡𝑟−2,𝜆𝑟−22 ) + [0,1]

2𝑛 is 

a tiling of  ℝ2𝑛. This easily implies the required tiling property and concludes the proof. 

Corollary (4.3.30)[491]: Let 𝑛 − 2(1 + 𝜖) = 0 and suppose that (𝜒[0,1]2+𝜖, 𝛬𝑟) is a 

Gabor orthonormal basis for L2(ℝd). if (𝑠𝑟−1, 𝜆𝑟−1
2 ) ∈ ℝ2(𝑛−𝜖), consider the translate of 

the unit hypercube in ℝ𝟐𝒎, 𝐶 = (𝑠𝑟−1, 𝜆𝑟−1
2 ) + [0,1]2(𝑛−𝜖), and define  

𝛬𝑟(𝐶) ≔ {(𝑡𝑟−2, 𝑣𝑟−2
2 )  ∈ ℝ𝟐𝒏: (𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2

2 , 𝑣𝑟−2
2 ) ∈ 𝛬𝑟    and  (𝑠𝑟−2, 𝜆𝑟−2

2 , ) ∈ 𝐶}. 
Then (𝜒[0,1]𝑛, 𝛬𝑟(𝐶)) is a Gabor orthonormal basis for 𝐿2(ℝ2𝑛). 

Proof. We first show that the system (𝜒[0,1]𝑛, 𝛬𝑟(𝐶)) is orthogonal.Let (𝑡𝑟−2, 𝑣𝑟−2
2 ) and 

(𝑡𝑟−2
 + 𝜖, 𝑣𝑟−2

2 + 𝜖) be distinct elements of  𝛬𝑟(𝐶). There exist (𝑠𝑟−2, 𝜆𝑟−2
2 ) and 𝑠𝑟−2 +

𝜖, 𝜆𝑟−2
2 + 𝜖) in ℝ2m  such that (𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2

2 , 𝑣𝑟−2
2 ) and (𝑠𝑟−2 + 𝜖, 𝑡𝑟−2

 + 𝜖, 𝜆𝑟−2
2 +

𝜖, 𝑣𝑟−2
2 + 𝜖) both belong to 𝛬𝑟. Using the mutual orthogonality of the system 

(𝜒[0,1]2+𝜖, 𝛬𝑟) together with (61), we have  

∑ 

𝑟

𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖(−𝜖,−𝜖) = 0  or ∑  

𝑟

𝑉(𝑔𝑟)𝑛(𝑔𝑟)𝑛(−𝜖,−𝜖) = 0. 

Note that, as both (𝑠𝑟−2, 𝜆𝑟−2
2 ) and 𝑠𝑟−2 + 𝜖, 𝜆𝑟−2

2 + 𝜖) belong to 𝐶, we have 

|𝜖|max < 1 and |𝜖|max < 1 . In particular, ∑  𝑟 𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖(−𝜖,−𝜖) ≠ 0 and the 

orthogonallity  of the system (𝜒[0,1]𝑛, 𝛬𝑟(𝐶)) follows. 

     If  (𝑠𝑟−2, 𝜆𝑟−2
2 ) ∈ Π1(𝛬𝑟) (as defined in (49)), let 
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∑ 

𝑟

(𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 ) =∑ 

𝑟

{(𝑡𝑟−2, 𝑣𝑟−2
2 ): (𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2

2 , 𝑣𝑟−2
2 ) ∈ 𝛬𝑟}. 

Let (𝑓𝑟)1 ∈ L
2(ℝm) , (𝑓𝑟)2 ∈ L

2(ℝn) and (𝑠𝑟−1, 𝜆𝑟−1
2 ) ∈ ℝ2m. Applying Parseval’s 

identity to the function 

∑ 

𝑟

𝑓𝑟(𝑥𝑟 , 𝑦𝑟) =∑ 

𝑟

𝑒2𝜋𝑖𝜆𝑟−1
2 𝑥𝑟(𝑓𝑟)1(𝑥𝑟 − 𝑠𝑟−1)(𝑓𝑟)2(𝑦𝑟), 𝑥𝑟 ∈ ℝ

𝑛−𝜖 ,

𝑦𝑟 ∈ ℝ
𝑛, 

we obtain that   

∫ ∑ 

𝑟

(𝑓𝑟)1|𝑥𝑟|
2𝑑𝑥𝑟

ℝ𝑛−𝜖
∫ ∑ 

𝑟

(𝑓𝑟)2|𝑦𝑟|
2𝑑𝑦𝑟

ℝ𝑛−𝜖

= ∑ ∑ ∑ 

𝑟

|𝑉(𝑔𝑟)𝑛−𝜖|(𝑓𝑟)1(𝑠𝑟−2
(𝑡𝑟−2,𝑣𝑟−2

2 )∈(𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−2
2 ) 

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)

− 𝑠𝑟−1, 𝜆𝑟−2
2 − 𝜆𝑟−1

2 )2|𝑉(𝑔𝑟)𝑛(𝑓𝑟)2(𝑡𝑟−2, 𝑣𝑟−2
2 )|

2

= ∑ ∑ ∑ 

𝑟

|𝑉(𝑓𝑟)1(𝑔𝑟)𝑛−𝜖|(𝑓𝑟)1(𝑠𝑟−1
(𝑡𝑟−2,𝑣𝑟−2

2 )∈(𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−2
2 ) 

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)

− 𝑠𝑟−2, 𝜆𝑟−1
2 − 𝜆𝑟−2

2 )2|𝑉(𝑔𝑟)𝑛(𝑓𝑟)2(𝑡𝑟−2, 𝑣𝑟−2
2 )|

2
 

Defining  

∑ 

𝑟

𝒲(𝑠𝑟−2, 𝜆𝑟−2
2 ) =∑ 

𝑟

‖(𝑓𝑟)2‖2
−2  ∑ |𝑉(𝑔𝑟)𝑛(𝑓𝑟)2(𝑡𝑟−2, 𝑣𝑟−2

2 )|
2

(𝑡𝑟−2,𝑣𝑟−2
2 )∈(𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−2

2 ) 

 

and 

𝜇 = ∑ 𝒲(𝑠𝑟−2, 𝜆𝑟−2
2 )𝛿(𝑠𝑟−2,𝜆𝑟−22 )

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)

 

For (𝑓𝑟)2 ≠ 0, the above identity can be written as 

∫ ∑ 

𝑟

(𝑓𝑟)1|𝑥𝑟|
2𝑑𝑥𝑟

ℝ𝑛−𝜖

= ∑ ∑ 

𝑟

𝒲(𝑠𝑟−2, 𝜆𝑟−2
2 )

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)

|𝑉(𝑓𝑟)1(𝑔𝑟)𝑛−𝜖|(𝑠𝑟−1 − 𝑠𝑟−2, 𝜆𝑟−1
2

− 𝜆𝑟−2
2 )2 =∑ 

𝑟

(𝜇 ∗ |𝑉(𝑓𝑟)1(𝑔𝑟)𝑛−𝜖|
2
) (𝑠𝑟−1, 𝜆𝑟−1

2 ). 

On the other hand, letting �̌�[0,1)2(𝑛−𝜖)(𝑠𝑟−2, 𝜆𝑟−2
2 ) = 𝜒[0,1)2(𝑛−𝜖)(−𝑠𝑟−2, −𝜆𝑟−2

2 ) and 

defining 𝐶 and 𝛬𝑟(𝐶) as above, we have also  
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∑ 

𝑟

(𝜇 ∗ �̌�[0,1)𝑛−𝜖)(𝑠𝑟−1, 𝜆𝑟−1
2 )

= ∑ 𝒲(𝑠𝑟−2, 𝜆𝑟−2
2 )𝜒[0,1)2(𝑛−𝜖)(𝑠𝑟−2 − 𝑠𝑟−1, 𝜆𝑟−2

2 − 𝜆𝑟−1
2 )

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)

= ∑ 𝒲(𝑠𝑟−2, 𝜆𝑟−2
2 )

(𝑠𝑟−2,𝜆𝑟−2
2 )∈Π1(𝛬𝑟)∩𝐶

=∑ 

𝑟

‖(𝑓𝑟)2‖2
−2 ∑ |𝑉(𝑔𝑟)𝑛(𝑓𝑟)2(𝑡𝑟−2, 𝑣𝑟−2

2 )|
2
≤ 1

(𝑡𝑟−2,𝑣𝑟−2
2 )∈𝛬𝑟(𝐶)

, 

Where the last inequality results from the orthogonality of the system 

(𝜒[0,1)𝑛,𝛬𝑟(𝐶)) proved earlier. Since (𝑠𝑟−1, 𝜆𝑟−1
2 ) is arbitrary in ℝ2(𝑛−𝜖) and  

∫ ∑ 

𝑟

|𝑉(𝑓𝑟)1(𝑔𝑟)𝑛−𝜖(𝑠𝑟−2, 𝜆𝑟−2
2 )|

2
𝑑𝑠𝑟−2𝑑𝜆𝑟−2

2

ℝ2(𝑛−𝜖)
=∑ 

𝑟

‖(𝑓𝑟)2‖2
2, 

Corollary (4.3.23) can be used to deduce that 𝜇 ∗ �̌�[0,1)𝑛−𝜖 = 1. This shows that  

∑ ∑ 

𝑟

|𝑉(𝑔𝑟)𝑛(𝑓𝑟)2(𝑡𝑟−2, 𝑣𝑟−2
2 )|

2
=∑ 

𝑟

‖(𝑓𝑟)2‖
2

(𝑡𝑟−2,𝑣𝑟−2
2 )∈𝛬𝑟(𝐶)

, (𝑓𝑟)2 ∈ 𝐿
2(ℝ𝑛), 

and thus that the system (𝜒[0,1)𝑛,𝛬𝑟(𝐶)) is complete, proving our claim. 

Corollary (4.3.31)[491]: Let 𝑛 − 2(1 + 𝜖) = 0 and let  Π1: ℝ
2(2+𝜖) → ℝ2(𝑛−𝜖) be 

defined by (3.2). Suppose that (𝜒[0,1]2+𝜖, 𝛬𝑟) is a Gabor orthonormal basis and that 

Π1(𝛬𝑟) + [0,1]
2(𝑛−𝜖) tiles ℝ2(𝑛−𝜖). Then 𝛬𝑟 has the pseudo-standard structure. 

Proof. Let 𝒥𝑟 = Π1(𝛬𝑟) and, for any (𝑠𝑟−2, 𝜆𝑟−2
2 ) ∈ 𝒥𝑟, define  

(𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 ) = {(𝑡𝑟−2, 𝑣𝑟−2
2 ): (𝑠𝑟−2, 𝑡𝑟−2, 𝑣𝑟−2

2 , 𝜆𝑟−2
2 ) ∈ 𝛬𝑟}. 

If (𝑠𝑟−1, 𝜆𝑟−1
2 ) ∈ 𝒥𝑟, let 𝐶 = (𝑠𝑟−1, 𝜆𝑟−1

2 ) + [0,1)2(𝑛−𝜖), and  

𝛬𝑟(𝐶) ≔ {(𝑡𝑟−2, 𝑣𝑟−2
2 ) ∈ ℝ2𝑛: (𝑠𝑟−2, 𝑡𝑟−2, 𝑣𝑟−2

2 , 𝜆𝑟−2
2 ) ∈ 𝛬𝑟  and (𝑠𝑟−2, 𝜆𝑟−2

2 ) ∈ 𝐶 }. 

Corollary (4.3.30) shows that the system (𝜒[0,1)𝑛,𝛬𝑟(𝐶)) forms a Gabor orthonormal 

basis. By assumption 𝒥𝑟 + [0,1)
2(𝑛−𝜖) tiles ℝ2(𝑛−𝜖) . Hence, (𝑠𝑟−1, 𝜆𝑟−1

2 ) + [0,1)2(𝑛−𝜖) 
contains exactly one point in 𝒥𝑟 , 𝑖. 𝑒. (𝑠𝑟−1, 𝜆𝑟−1

2 ), and we have  

𝛬𝑟(𝐶) = {(𝑡𝑟−2, 𝑣𝑟−2
2 ): (𝑠𝑟−1, 𝜆𝑟−1

2 , 𝑣𝑟−2
2 ) ∈ 𝛬𝑟} = (𝛬𝑟)(𝑠𝑟−1,𝜆𝑟−12 ). 

Therefore, we can write 𝛬𝑟 as 

𝛬𝑟 = ⋃ {(𝑠𝑟−1, 𝜆𝑟−1
2 )}

(𝑠𝑟−1,𝜆𝑟−1
2 )∈𝒥𝑟

× (𝛬𝑟)(𝑠𝑟−1,𝜆𝑟−12 ). 

Our proof  will be complete if  we can show that 𝒥𝑟 is a Gabor orthonormal basis 

of 𝐿2(ℝ𝑛−𝜖 ). 
     As 𝒥𝑟 is a tiling set, by Proposition (4.3.8) it suffices to show that the inclusion 

𝒥𝑟 − 𝒥𝑟 ⊂ 𝑍(𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖) ∪ {0} holds. Let (𝑠𝑟−2, 𝜆𝑟−2
2 ) and (𝑠𝑟−2 + 𝜖, 𝜆𝑟−2

2 + 𝜖) 

be distinct points in 𝒥𝑟. As (𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 ) + [0,1)
2𝑛 tiles ℝ2𝑛 , so does (𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 ) +

[−1,0)2𝑛, and we can find (𝑡𝑟−2, 𝑣𝑟−2
2 ) ∈ (𝛬𝑟)(𝑠𝑟−2,𝜆𝑟−22 )  such that 0 ∈ (𝑡𝑟−2, 𝑣𝑟−2

2 ) +

[−1,0)2𝑛,or, equivalently, with (𝑡𝑟−2, 𝑣𝑟−2
2 ) ∈ [0,1)2𝑛.Similarly, we can fined (𝑡𝑟−2

 +
𝜖, 𝑣𝑟−2

2 + 𝜖) ∈ (𝛬𝑟)(𝑠𝑟−2+𝜖,𝜆𝑟−22 +𝜖) such that (𝑡𝑟−2
 + 𝜖, 𝑣𝑟−2

2 + 𝜖) ∈ [0,1)2𝑛.Using the 

fact that (𝜒[0,1)𝑛,𝛬𝑟(𝐶)) is a Gabor orthonormal basis of  𝐿2(ℝ2(2+𝜖) ), we have  
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(𝑠𝑟−2, 𝑡𝑟−2, 𝜆𝑟−2
2 , 𝑣𝑟−2

2 ) − (𝑠𝑟−2 + 𝜖, 𝑡𝑟−2
 + 𝜖, 𝜆𝑟−2

2 + 𝜖, 𝑣𝑟−2
2 + 𝜖)

∈ 𝑍(𝑉(𝑔𝑟)2+𝜖(𝑔𝑟)2+𝜖). 

Or, equivalently ∑  𝑟 𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖(−𝜖,−𝜖) = 0 or ∑  𝑟 𝑉(𝑔𝑟)𝑛(𝑔𝑟)𝑛(−𝜖, −𝜖) =

0. 

Note that, since  |𝜖| < 1, ∑  𝑟 𝑉(𝑔𝑟)𝑛(𝑔𝑟)𝑛(−𝜖,−𝜖) ≠ 0. Hence (𝑠𝑟−2, 𝜆𝑟−2
2 ) −

(𝑠𝑟−2 + 𝜖, 𝜆𝑟−2
2 + 𝜖) ∈ 𝑍(𝑉(𝑔𝑟)𝑛−𝜖(𝑔𝑟)𝑛−𝜖)  as claimed. 

Corollary (4.3.32)[491]: Let 𝒢(𝜒[0,1]2,𝛬𝑟) be a Gabor orthonormal basis for 𝐿2(ℝ2) 

and let 𝐶 be a half-open square. Then,  

(i) Γ(𝐶) + [0,1]2 is a packing of  ℝ2. 

(ii) if  (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ(𝐶), then 𝑇𝐶(𝜆𝑟
2, 𝜆𝑟+1

2 ) consists of one point. 

Proof. (i) let (𝜆𝑟
2 + 𝜖, 𝜆𝑟+1

2 + 𝜖) and (𝜆𝑟
2 + 𝜖, 𝜆𝑟+1

2 + 𝜖) be distinct elements of  Γ(𝐶). by 

definition, we can find (𝑡𝑟 , 𝑡𝑟+1) and (𝑡𝑟 + 𝜖, 𝑡𝑟+1 + 𝜖)  in 𝐶 such that 

(𝑡𝑟 , 𝑡𝑟+1, 𝜆𝑟
2, 𝜆𝑟+1

2 ), (𝑡𝑟 + 𝜖, 𝑡𝑟+1 + 𝜖, 𝜆𝑟
2 + 𝜖, 𝜆𝑟+1

2 + 𝜖) ∈ 𝛬𝑟.  We then have  

0 =∑ 

𝑟

𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖, −𝜖) 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖,−𝜖)  

If, without loss of generality, the first factor on the right-hand side of the previous 

equality vanishes, the fact that |𝜖| < 1 shows the existence of an integer 𝑘 > 0, such 

that  

|𝜖| = 𝑘/(1 − |𝜖|) ≥ 1. 
Hence, the cubes (𝜆𝑟

2, 𝜆𝑟+1
2 ) + [0,1]2 and (𝜆𝑟

2 + 𝜖, 𝜆𝑟+1
2 + 𝜖) + [0,1]2 are 

essentially disjoint. 

(ii) Suppose that 𝑇𝐶(𝜆𝑟
2, 𝜆𝑟+1

2 ) contains two distinct points (𝑡𝑟 , 𝑡𝑟+1) and (𝑡𝑟 +
𝜖, 𝑡𝑟+1 + 𝜖). Then,  

0 =∑ 

𝑟

𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖, 0) 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖, 0). 

As ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(𝑡𝑟−2, 0) ≠ 0 for any 𝑡𝑟−2 with |𝑡𝑟−2| < 1, we must have  |𝜖| ≥

1, contradicting the fact that both (𝑡𝑟 , 𝑡𝑟+1) and (𝑡𝑟 + 𝜖, 𝑡𝑟+1 + 𝜖) belong to 𝐶. 

Corollary (4.3.33)[491]: Under the hypotheses of the previous Lemma, consider an 

element 𝜆𝑟−2
2 = (𝜆𝑟

2, 𝜆𝑟+1
2 ) of  Γ(𝐶) and let 𝑇𝐶(𝜆𝑟−2

2 ) = {(𝑡𝑟 , 𝑡𝑟+1)}. Then for any 𝑥𝑟 ∈

𝜕(𝜆𝑟−2
2 + [0,1]2). Moreover, for any such (𝜆𝑟−2

2 )𝑥𝑟 = ((𝜆𝑟−2
2 )1,𝑥𝑟 , (𝜆𝑟−2

2 )2,𝑥𝑟) ∈ Γ(𝐶) 

such that 𝑥𝑟 ∈ 𝜕((𝜆𝑟−2
2 )𝑥𝑟 + [0,1]

2). Moreover, for any such (𝜆𝑟−2
2 )𝑥𝑟, letting 

𝑇𝐶((𝜆𝑟−2
2 )𝑥𝑟) = {(𝑡𝑟−2)𝑥𝑟}, where (𝑡𝑟−2)𝑥𝑟 = ((𝑡𝑟−2)1,𝑥𝑟 , (𝑡𝑟−2)2,𝑥𝑟), we can fined 

𝑖0 ∈ {1,2} such that (𝑡𝑟−2)𝑖0,𝑥𝑟 = (𝑡𝑟−2)𝑖0 and (𝜆𝑟−2
2 )𝑖0,𝑥𝑟 = (𝜆𝑟−2

2 )𝑖0 + 1 or  (𝜆𝑟−2
2 )𝑖0 −

1. 

Proof. We can write = (𝜆𝑟
2 + 𝜖 , 𝜆𝑟+1

2 + 𝜖 ), where 0 ≤ 𝜖𝑖 ≤ 1 , 𝑖 = 1,2 and  𝜖𝑖 ∈ {0,1} 
for at least one index 𝑖. Let 𝑎 = (𝑎1

 , 𝑎2
 ) ∈ ℝ2 with 0 < 𝑎𝑖

 < 1 , 𝑖 = 1,2 and  consider 

the point ((𝑡𝑟−2)𝑎 , 𝑥𝑟) ≔ (𝑡𝑟 + 𝑎1
 , 𝑡𝑟+1 + 𝑎2

  )(𝜆𝑟
2 + 𝜖 ), 𝜆𝑟+1 + 𝜖 ) in ℝ2. Since 𝛬𝑟 +

[0,1]4 is a tiling on ℝ4 and the point ((𝑡𝑟−2)𝑎, 𝑥𝑟) is a point on the boundary of  

((𝑡𝑟−2)𝑎, 𝑥𝑟) = ((𝑡𝑟−2)𝑥𝑟,𝑎, (𝜆𝑟−2
2 )𝑥𝑟,𝑎) + [0,1]

4. Let (𝑡𝑟−2)𝑥𝑟,𝑎 = (𝑡𝑟 + 𝜖, 𝑡𝑟+1 + 𝜖) 

and (𝜆𝑟−2
2 )𝑥𝑟,𝑎 = (𝜆𝑟

2 + 𝜖 , 𝜆𝑟+1 + 𝜖 ). We have 

{
−𝑎𝑖

 ≤ 𝜖 ≤ 1 − 𝑎𝑖
 ,

−𝜖𝑖 ≤ −𝜖 ≤ 1 − 𝜖𝑖 ,
       𝑖 = 1,2.                                      (62) 
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Using the orthogonality of the system (𝜒[0,1]2,𝛬𝑟), we can find 𝑖0 ∈ {1,2} such that 

∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖,−𝜖) = 0. Note that 𝜖 ≠ 0 would imply that |𝜖| > 1 which 

impossible from (62). Hence, 𝜖 ≠ 0. 

Moreover, as ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(0, 𝑣𝑟−2
2 ) ≠ 0 if |𝑣𝑟−2

2 | < 1, ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖,−𝜖) = 0 

can only occurs if  |𝜖| = 1. This shows also that 𝜖𝑖0 ∈ {0,1} in that case. this proves the 

last statement of our claim and the fact that 𝑥𝑟 ∈ 𝜕(𝜆𝑥𝑟,𝑎 + [0,1]
2). The proof will be 

complete if we can show that (𝜆𝑟−2
2 )𝑥𝑟,𝑎 ∈ Γ(𝐶) for some choice of 𝑎. 

   For simplicity, we consider the half -open square to be 𝐶 = [𝑏1, 𝑏1 + 1) ×
[𝑏2, 𝑏2 + 1). Our assertion will be true if the point  𝜖 = 0 constructed above satisfies the 

inequalities 𝑏𝑖 ≤ (𝑡𝑟−2)𝑖 + 𝜖 <  𝑏𝑖 + 1 for 𝑖 = 1,2. As (𝑡𝑟−2)𝑖0 = (𝑡𝑟−2)𝑖0 + 𝜖, the 

inequalities clearly hold for 𝑖 = 𝑖0. Suppose that the other index 𝑗 falls out of the range, 

say (𝑡𝑟−2)𝑗 + 𝜖 < 𝑏𝑗 (the case (𝑡𝑟−2)𝑗 + 𝜖 ≥ 𝑏𝑗 + 1 is similar ). We consider 

((𝑡𝑟−2)𝑎′ , 𝑥𝑟) with 𝑎𝑗
′ = 1 + 𝜖 + 𝛿 for some small 𝛿 > 0. Note that, by (62), we have 

(𝑡𝑟−2)𝑖 + 𝑎𝑖
 − 1 ≤ (𝑡𝑟−2)𝑖 + 𝜖 ≤ (𝑡𝑟−2)𝑖 + 𝜖 + 𝑎𝑖 

 for 𝑖 = 1,2, and, in particular  

𝑎𝑗
′ = 1 + 𝜖 + 𝛿 ≥ 𝑎𝑗

 + 𝛿 > 0. 

We have 𝑎𝑗
′ < 1 indeed, the inequality 𝜖 + 𝛿 ≥ 0. This is not possible, as 𝑏𝑗 ≤

(𝑡𝑟−2)𝑗 < 𝑏𝑗 + 1, so 1 + (𝑡𝑟−2)𝑗 ≥ 𝑏𝑗 + 1. But (𝑡𝑟−2)𝑗 + 𝜖 < 𝑏𝑗, so (𝑡𝑟−2)𝑗 + 𝜖 + 1 <

𝑏𝑗 + 1 , so for 𝛿 small, 

(𝑡𝑟−2)𝑗 + 𝜖 + 𝛿 < 𝑏𝑗 ≤ (𝑡𝑟−2)𝑗 

Which yields a contradiction. 

    Using the previous argument with 𝑎′ replacing , we guarantee the existence of 

(𝑡𝑟−2)𝑗 + 2𝜖 such that (𝑡𝑟−2)𝑗 + 𝜖 + 𝛿 = (𝑡𝑟−2)𝑗 + 𝑎𝑗
′ − 1 ≤ (𝑡𝑟−2)𝑗 + 2𝜖 ≤

(𝑡𝑟−2)𝑗 + 𝑎𝑗
′ = (𝑡𝑟−2)𝑗 + 𝜖 + 1 + 𝛿 and the a ssociated point ((𝑡𝑟−2)𝑎′ , (𝜆𝑟−2

2 )𝑥𝑟,𝑎′) =

(𝑡𝑟
 + 2𝜖, 𝑡𝑟+1

 + 2𝜖, 𝜆𝑟
2 + 2𝜖, 𝜆𝑟+1

2 + 2𝜖) in 𝛬𝑟 with the property that 𝑥𝑟 ∈

𝜕((𝜆𝑟−2
2 )𝑥𝑟,𝑎′ + [0,1]

2)  for some index 𝑖0
′  such that |(𝜆𝑟−2

2 )𝑖0′
 , (𝜆𝑟−2

2 )𝑖0′
 + 2𝜖| = 1, 

(𝑡𝑟−2)𝑖0′ = (𝑡𝑟−2)𝑖0′
 + 2𝜖 and 𝜖𝑖0′ ∈ {0,1}. We claim that 𝜖 = 1. Now, (𝑡𝑟

 + 𝜖, 𝑡𝑟+1
 +

𝜖, 𝜆𝑟
2 + 𝜖, 𝜆𝑟+1

2 + 𝜖) and (𝑡𝑟
 + 2𝜖, 𝑡𝑟+1

 + 2𝜖, 𝜆𝑟
2 + 2𝜖, 𝜆𝑟+1

2 + 2𝜖) are in 𝛬𝑟. The mutual 

orthogonality property implies that ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖,−𝜖) = 0 for some 𝑖 = 1,2. 

Suppose that 𝑥𝑟 is not of the corner points of 𝜆𝑟−2
2 + [0,1]2. in that case, the index 

𝑖 such that 𝜖𝑖 ∈ {0,1} is unique and it follows that 𝑖0 = 𝑖0
′ . this implies in particular, that 

𝜖 = 0 ( as (𝑡𝑟−2)𝑖0
 + 𝜖 = (𝑡𝑟−2)𝑖0

 = (𝑡𝑟−2)𝑖0′ = (𝑡𝑟−2)𝑖0′
 + 2𝜖 = (𝑡𝑟−2)𝑖0

 + 2𝜖). 

Furthermore, the second set of inequalities in (12) show that (𝜆𝑟−2
2 )𝑖0

 + 𝜖 = (𝜆𝑟−2
2 )𝑖0

 +

2𝜖 = (𝜆𝑟−2
2 )𝑖0 − 1 if  𝜖𝑖0 = 0 and (𝜆𝑟−2

2 )𝑖0
 + 𝜖 = (𝜆𝑟−2

2 )𝑖0
 + 2𝜖 = (𝜆𝑟−2

2 )𝑖0 + 1 if 

𝜖𝑖0 = 1. We have thus 𝜖 = 0 in both cases. We have thus  

𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖, −𝜖) = 𝑉(𝑔𝑟)1(𝑔𝑟)1(0,0) = 1. 

Therefore, the other index 𝑗 must satisfy ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(−𝜖,−𝜖) = 0. This inequalities  

𝜖𝑗 − 1 ≤ −𝜖 ≤ 𝜖𝑗   and 𝜖𝑗 − 1 ≤ 2𝜖 ≤ 𝜖𝑗 yield −1 ≤ 𝜖 ≤ 1. 

However, 𝛿 ≤ 𝜖 ≤ 1 + 𝛿. The 𝑉(𝑔𝑟)1(𝑔𝑟)1 would not be zero unless  (𝑡𝑟−2)𝑗
 + 2𝜖 ≥

(𝑡𝑟−2)𝑗
 + 𝜖 + 1(≥ 𝑏𝑗). Hence, (𝑡𝑟−2)𝑗

 + 𝜖 + 1 ≤ (𝑡𝑟−2)𝑗
 + 2𝜖 ≤ (𝑡𝑟−2)𝑗

 + 𝜖 + 1 + 𝛿. 

This forces that  (𝑡𝑟−2)𝑗
 + 2𝜖 = (𝑡𝑟−2)𝑗

 + 𝜖 + 1. This completes the proof for non-
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corner points. if 𝑥𝑟 is the corner point, as the square constructed for the non-corner will 

certainly cover the corner point. therefore, the proof  is completed. 

Corollary (4.3.34)[491]: Let 𝐶 be a half-open square. Then Γ(𝐶) + [0,1]2 is a tilling of 

 ℝ2.  

Proof.  It suffices to prove the following statements: suppose that 𝒥𝑟 + [0,1]
2 is non-

empty packing of   ℝ2. If, for any 𝑥𝑟 ∈ 𝜕(𝑡𝑟−2 + [0,1]
2) where 𝑡𝑟−2 ∈ 𝒥𝑟, we can fined 

(𝑡𝑟−2)𝑥𝑟 ∈ 𝒥𝑟 with (𝑡𝑟−2)𝑥𝑟 ≠ 𝑡𝑟−2 such that 𝑥𝑟 ∈ 𝜕((𝑡𝑟−2)𝑥𝑟 + [0,1]
2), then 𝒥𝑟 +

[0,1]2 is a tiling of   ℝ2. Indeed, by Corollary (4.3.32)(i) and Corollary (4.3.33), Γ(𝐶) +
[0,1]2 is  a packing of  ℝ2 and satisfies the stated property. It is thus a tiling of   ℝ2.  

      To prove the previous statements, we note that as 𝒥𝑟 + [0,1]
2 is packing, it is 

closed set. Suppose that 𝒥𝑟 + [0,1]
2 satisfies the property above and that  ℝ2+𝜖\(𝒥𝑟 +

[0,1]2 ≠ ∅). Let 𝑥𝑟 ∈ 𝜕(𝒥𝑟 + [0,1]
2) and assume that 𝑥𝑟 ∈ 𝑡𝑟−2 + [0,1]

2. We can then 

find (𝑡𝑟−2)𝑥𝑟 ∈ 𝒥𝑟 with (𝑡𝑟−2)𝑥𝑟 ≠ 𝑡𝑟−2 such that 𝑥𝑟 ∈ 𝜕((𝑡𝑟−2)𝑥𝑟 + [0,1]
2). Note that 

if  𝑥𝑟  were not a corner point of either 𝑡𝑟−2 + [0,1]
2 or (𝑡𝑟−2)𝑥𝑟 + [0,1]

2, then 𝑥𝑟 would 

be in the interior of  𝒥𝑟 + [0,1]
2. Hence, 𝑥𝑟 must be a corner point of  𝑡𝑟−2 + [0,1]

2 or 

(𝑡𝑟−2)𝑥𝑟 + [0,1]
2. As the set of all corner points of the squares in 𝒥𝑟 + [0,1]

2  is 

countable, the Lebesgue measure of the open set  ℝ2+𝜖\(𝒥𝑟 + [0,1]
2) is zero and 

 ℝ2+𝜖\(𝒥𝑟 + [0,1]
2) is thus empty, proving our claim. 

Corollary (4.3.35)[491]: Let 𝐶 be a half-open square and suppose that (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈
Γ(𝐶) with 𝑇𝐶(𝜆𝑟

2, 𝜆𝑟+1
2 ) = {(𝑡𝑟 , 𝑡𝑟+1)}. Then all the sets 𝑇𝐶(𝜆𝑟

2 + 𝜖, 𝜆𝑟+1
2 + 𝜖) with 

(𝜆𝑟
2 + 𝜖, 𝜆𝑟+1

2 + 𝜖) ∈ Γ(𝐶) are either of the form {(𝑡𝑟 , 𝑡𝑟+1 + 𝑠𝑟−2)} or {(𝑡𝑟 +
𝑠𝑟−2, 𝑡𝑟+1)} for some real 𝑠𝑟−2 with |𝑠𝑟−2| < 1 depending on (𝜆𝑟

2, 𝜆𝑟+1
2 ). 

Proof. We first make the following remark. if (𝛼𝑟, 𝛼𝑟+1), (𝛽𝑟, 𝛽𝑟+1) ∈ Γ(𝐶) are such 

that the two squares (𝛼𝑟 , 𝛼𝑟+1) + [0,1]
2 and  (𝛽𝑟, 𝛽𝑟+1) + [0,1]

2 intersect each other 

and also both intersect a third square (𝛾𝑟 , 𝛾𝑟+1) + [0,1]
2 with (𝛾𝑟 , 𝛾𝑟+1) ∈ Γ(𝐶) , then, 

letting 𝑇𝐶(𝛾𝑟 , 𝛾𝑟+1) = (𝑚𝑟 ,𝑚𝑟+1), we have  

𝑇𝐶(𝛼𝑟 , 𝛼𝑟+1) = {(𝑚𝑟 + 𝑎,𝑚𝑟+1)}     and 𝑇𝐶(𝛽𝑟 , 𝛽𝑟+1) = {(𝑚𝑟 + 𝑏,𝑚𝑟+1)} 
or  

𝑇𝐶(𝛼𝑟 , 𝛼𝑟+1) = {(𝑚𝑟 + 𝑎,𝑚𝑟+1)}    and 𝑇𝐶(𝛽𝑟 , 𝛽𝑟+1) = {(𝑚𝑟 ,𝑚𝑟+1 + 𝑏)}  , 
for Some real 𝑎, 𝑏. Indeed, using Corollary (4.3.33), we have 𝑇𝐶(𝛼𝑟 , 𝛼𝑟+1) =
{(𝑚𝑟 + 𝑎,𝑚𝑟+1)}  or {(𝑚𝑟 , 𝑚𝑟+1 + 𝑎)} and 𝑇𝐶(𝛽𝑟, 𝛽𝑟+1) = {(𝑚𝑟 +
𝑏,𝑚𝑟+1)   or (𝑚𝑟, 𝑚𝑟+1 + 𝑏)}. Suppose, for example, that 𝑇𝐶(𝛼𝑟 , 𝛼𝑟+1) =
{(𝑚𝑟 + 𝑎,𝑚𝑟+1)} and 𝑇𝐶(𝛽𝑟, 𝛽𝑟+1) = (𝑚𝑟, 𝑚𝑟+1 + 𝑏). Since the two squares intersect 

each other, we must have |𝛼𝑟 − 𝛽𝑟| ≤ 1 and |𝛼𝑟+1 − 𝛽𝑟+1| ≤ 1. The orthogonality 

property also implies that either (𝑎, 𝛼𝑟 − 𝛽𝑟) or (−𝑏, 𝛼𝑟+1 − 𝛽𝑟+1) is in the zero set of  

𝑉(𝑔𝑟)1(𝑔𝑟)1. But since we have |𝑎|, |𝑏| < 1, this would imply that |𝛼𝑟 − 𝛽𝑟| > 1 or 

|𝛼𝑟 − 𝛽𝑟+1| > 1, which cannot happen. As Γ(𝐶) + [0,1]2 is a tiling of ℝ2, for any 

square (𝜎𝑟 , 𝜎𝑟+1) + [0,1]
2 intersecting the square (𝜆𝑟

2, 𝜆𝑟+1
2 ) + [0,1]2 and with 

(𝜎𝑟 , 𝜎𝑟+1) + [0,1]
2, we can find another square (𝛿𝑟, 𝛿𝑟+1) + [0,1]

2, with (𝛿𝑟 , 𝛿𝑟+1) ∈
Γ(𝐶) and with (𝛿𝑟 , 𝛿𝑟+1) + [0,1]

2 intersecting both squares (𝜎𝑟 , 𝜎𝑟+1) + [0,1]
2 and 

(𝜆𝑟
2, 𝜆𝑟+1

2 ) + [0,1]2. by  the previous remark, the conclusion of the lemma holds for all 

the squares that neighbor the square (𝜆𝑟
2, 𝜆𝑟+1

2 ) + [0,1]2. Replacing this original square 

by one of the neighbouring squares and continuing this process, we obtain the 
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conclusion of the lemma for all the squares in the tiling Γ(𝐶) + [0,1]2 by an induction 

argument. This proves our claim. 

Corollary (4.3.36)[491]: If (0,0,0,0) ∈ 𝛬𝑟, then the sets 𝑇[0,1]2(𝜆𝑟
2, 𝜆𝑟+1

2 ) where 

(𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2) are either all of the form {(𝑡𝑟−2, 0)} or all 𝜔 of the form 

{(0, 𝑡𝑟−2)} with some 𝑡𝑟−2 (depending on (𝜆𝑟
2, 𝜆𝑟+1

2 ) with |𝑡𝑟−2| < 1. in the first case, if 

there exists some (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2) with 𝑇[0,1]2(𝜆𝑟
2, 𝜆𝑟+1

2 ) = (𝑡𝑟−2, 0) and ≠ 0, 

then  

Γ([0,1]2 =⋃(ℤ + 𝜇𝑘,0) × {𝑘}

𝑘∈ℤ

                                                                    (63) 

for some 0 ≤ 𝜇𝑘,0 ≤ 1. Moreover, we can find 0 ≤ (𝑡𝑟−2)𝑘 ≤ 1 such that  

𝑇[0,1)2 ((ℤ + 𝜇𝑘,0) × {𝑘}) = {((𝑡𝑟−2)𝑘, 0)}  ,         𝑘 ∈ ℤ                      (64) 

and 

        𝛬𝑟 ∩ ([0,1)
2 × ℝ2) = {((𝑡𝑟−2)𝑘, 0, 𝑗 + 𝜇𝑘,0, 𝑘): 𝑗, 𝑘 ∈ ℤ}            (65) 

In the second case, Γ([0,1)2 = ⋃ {𝑘} × (ℤ + 𝜇𝑘,0)𝑘∈ℤ  and  𝑇[0,1)2({𝑘} × (ℤ + 𝜇𝑘,0)) =

{(0, (𝑡𝑟−2)𝑘)}, 𝛬𝑟 ∩ ([0,1)
2 ×ℝ2) = {((0, (𝑡𝑟−2)𝑘, 𝑘, 𝑗 + 𝜇𝑘,0): 𝑗, 𝑘 ∈ ℤ)}. 

Proof. If  (𝜆𝑟
2, 𝜆𝑟+1

2 ) = (0,0) we have 𝑇[0,1)2(𝜆𝑟−2
2 ) = {(0,0)} as (0,0,0,0) ∈ 𝛬𝑟. By 

Corollary (4.3.35), any (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1)2 with the square (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ [0,1)2 
intersecting [0,1]2 on the 𝜆𝑟

2, 𝜆𝑟+1
2 -plane satisfies 𝑇[0,1)2(𝜆𝑟

2, 𝜆𝑟+1
2 ) = {(𝑡𝑟−2, 0)} or 

𝑇[0,1)2(𝜆𝑟
2, 𝜆𝑟+1

2 ){(𝑡𝑟−2, 0)} with |𝑡𝑟−2| < 1. Without loss of generality, we assume that 

the first case holds. As Γ([0,1]2) + [0,1]2 is a tiling of  ℝ2, for any square  𝐶 =
(𝜆𝑟
2, 𝜆𝑟+1

2 ) + [0,1]2, with (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2), we can find squares  𝐶𝑖 =

((𝜆𝑟−2
2 )1,𝑖 , (𝜆𝑟−2

2 )2,𝑖) + [0,1]
2  for 𝑖 = 0,… , 𝑘 with ((𝜆𝑟−2

2 )1,𝑖 , (𝜆𝑟−2
2 )2,𝑖) ∈ Γ([0,1]

2) 

and such that 𝐶0 = [0,1]
2, 𝐶𝑘 = 𝐶,and with 𝐶𝑖 and 𝐶𝑖+1 touching each other for all 𝑖 =

0,… , 𝑘 − 1.  

     We have 𝑇[0,1)2((𝜆𝑟−2
2 )1,1, (𝜆𝑟−2

2 )2,1) = {(𝑡𝑟 , 0)} for some number 𝑡𝑟 with 

|𝑡𝑟| < 1. Since 𝐶2  and 𝐶0 both intersect 𝐶1, 𝑇[0,1)2((𝜆𝑟−2
2 )1,1, (𝜆𝑟−2

2 )2,1) = {(𝑡𝑟 , 0)} by 

Corollary (4.3.35) again. inductively, we have 𝑇[0,1)2((𝜆𝑟−2
2 )1,𝑖 , (𝜆𝑟−2

2 )2,𝑖) =

{(𝑡𝑟+𝑖−1, 0)}, 𝑖 = 1,… , 𝑘, which proves the first part. 

 Consider the case where, for any (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2), there exists a number 

𝑡𝑟−2 = 𝑡𝑟−2(𝜆𝑟
2, 𝜆𝑟+1

2 ) such that 𝑇[0,1)2(𝜆𝑟
2, 𝜆𝑟+1

2 ) = {(𝑡𝑟−2, 0)} and assume that 

𝑡𝑟−2(𝜆𝑟
2, 𝜆𝑟+1

2 ) ≠ 0 for at least one couple (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2). Suppose that 

Γ([0,1]2) is not of the form in (63).  By Corollary (4.3.34) and Corollary (4.3.27), we 

must have Γ([0,1]2) = ⋃ {𝑘} × (ℤ + 𝑎𝑘
𝑟)  𝑘∈ℤ with 0 ≤ 𝑎𝑘

𝑟 ≤ 1 and at least one 𝑎𝑘
𝑟 ≠ 0. 

Consider the distinct points 

(𝑡𝑟−2, 0, 𝑘, 𝑎𝑘
𝑟 + 𝑗) and (𝑡𝑟−2 + 𝜖, 0, 𝑘 − 1, 𝑎𝑘−1

𝑟 + 𝑗), both in 𝛬𝑟. 

  We must have that either (−𝜖, 1) ∈ 𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1) or (0, 𝑎𝑘
𝑟 − 𝑎𝑘−1

𝑟 ) ∈

𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1). however, since |𝑎𝑘
𝑟 − 𝑎𝑘−1

𝑟 | < 1, the second case is impossible. this 

means that (−𝜖, 1) ∈ 𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1) which is possible only if  𝑡𝑟−2 = 𝑡𝑟−2 + 𝜖. 

Therefore the fact (𝑡𝑟−2, 0, 𝑘, 𝑎𝑘
𝑟 + 𝑗) ∈ 𝛬𝑟 implies that 𝑡𝑟−2 = (𝑡𝑟−2)𝑗 for some real 

(𝑡𝑟−2)𝑗. we know prove by induction on |𝑗| that (𝑡𝑟−2)𝑗 = 0, for all |𝑗| ≤ 𝐽 Where 𝐽 ≥
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0, chose 𝑘 ∈ ℤ such that 𝑎𝑘+1
𝑟 ≠ 0 and 𝑎𝑘

𝑟 = 0 if such 𝑘 exists. Suppose first that 𝑗 > 0. 

There exist thus 𝑡𝑟−2 ∈ [0,1) such that 

((𝑡𝑟−2)𝑗+1, 0, 𝑘, 𝑗 + 1) and (0,0, 𝑘 + 1, 𝑎𝑘+1
𝑟 + 𝑗) both belong to 𝛬𝑟. 

This implies that either (𝑡𝑟−2, −1) ∈ 𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1) or (0, 𝑎𝑘+1
𝑟 − 1) ∈

𝑍(𝑉(𝑔𝑟)1(𝑔𝑟)1). This last case is impossible and the first one is only possible if 𝑡𝑟−2 =

0, showing that (𝑡𝑟−2)𝑗+1 = 0. Similarly by considering the points   

((𝑡𝑟−2)𝑗−1, 0, 𝑘 + 1, 𝑎𝑘+1
𝑟 + 𝑗 − 1) and (0,0, 𝑘, 𝑗) which both belong to 𝛬𝑟. 

We can conclude that (𝑡𝑟−2)𝑗−1 = 0 for 𝑗 < 0. If  𝑘 as above does not exist, there 

exists chose 𝑘′ ∈ ℤ such that 𝑎𝑘′−1
𝑟 ≠ 0 and 𝑎𝑘′

𝑟 = 0. By considering the points    

((𝑡𝑟−2)𝑗+1, 0, 𝑘
′, 𝑗 − 1) and (0,0, 𝑘′ − 1, 𝑎𝑘′−1

𝑟 + 𝑗) if    𝑗 > 0. 

and the points 

((𝑡𝑟−2)𝑗−1, 0, 𝑘
′ − 1, 𝑎𝑘′−1

𝑟 + 𝑗 − 1) and (0,0, 𝑘′, 𝑗)  if  𝑗 < 0 

Which all belong to , we conclude that (𝑡𝑟−2)𝑗 = 0 if  |𝑗| = 𝐽 + 1. This proves 

(63). 

    If we are in the first case, i.e  

Γ([0,1]2) =⋃(ℤ + 𝜇𝑘,0)  × {𝑘},

𝑘∈ℤ

 

let 𝑛 − 𝜖, 𝑛′ − 𝜖 be distinct integers. We have then  

𝑇[0,1)2(𝑛 − 𝜖 + 𝜇𝑛,0, 0) = {(𝑡𝑟+𝑛−𝜖−1, 0)} and 𝑇[0,1)2(𝑛
′ − 𝜖 + 𝜇𝑛,0, 𝑛) =

{(𝑡𝑟+𝑛′−𝜖−1, 0)} 
Which implies that ∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(𝑡𝑟+𝑛−𝜖−1 − 𝑡𝑟+𝑛′−𝜖−1, 𝑛 − 𝑛

′) = 0 or 

∑  𝑟 𝑉(𝑔𝑟)1(𝑔𝑟)1(0,0) = 0. This second case is clearly impossible while the first one is 

possible only when 𝑡𝑟+𝑛−𝜖−1 = 𝑡𝑟+𝑛−𝜖−1
′ . This shows (64) and (65) follows 

immediately from (63) and (64). 

Corollary (4.3.37)[491]: Under the assumptions of Corollary (4.3.36), suppose that 

there exists (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ([0,1]2) with 𝑇[0,1)2(𝜆𝑟
2, 𝜆𝑟+1

2 ) = (𝑡𝑟−2, 0) and 𝑡𝑟−2 ≠ 0. 

Then we can find numbers 𝑡𝑟+𝑘−1 with 0 ≤ 𝑡𝑟+𝑘−1 < 1 and 𝜇𝑘,0, 𝑘, 𝑛 − 𝜖 ∈ ℤ, with 0 ≤
𝜇𝑘,𝑛−𝜖 < 1, such that  

𝛬𝑟 ∩ (ℝ × [0,1] × ℝ
2) = {(𝑛 − 𝜖 + 𝑡𝑟+𝑘−1, 0, 𝑗 + 𝜇𝑘,𝑛−𝜖,𝑘): 𝑗, 𝑘, 𝑛 − 𝜖 ∈ ℤ} 

Proof. By the result of Corollary (4.3.36), we have the identities (64) and (65). Let 𝑇 =
{𝑡𝑟+𝑘−1, 𝑘 ∈ ℤ} ⊂ [0,1) where 𝑡𝑟+𝑘−1, 𝑘 ∈ ℤ, are the numbers appearing in (64). Let 

𝑠𝑟 , 𝑠𝑟+1 ∈ 𝑇 with 𝑠𝑟 < 𝑠𝑟+1. Consider the half-open squares 𝐶 = (𝑠𝑟 , 0) + [0,1)
2 and 

𝐶′ = (𝑠𝑟 , 0) + ((0,1] × [0,1)). then we know that Γ(𝐶) + [0,1]2 and Γ(𝐶′) + [0,1]2 

both tile ℝ2. Let  𝑃𝑟−1 = {(𝑠𝑟 , 𝑦𝑟): 0 ≤ 𝑦𝑟 < 1} and 𝑃𝑟 = {(𝑠𝑟 + 1, 𝑦𝑟): 0 ≤ 𝑦𝑟 < 1}. 
Note that Γ(𝑃𝑟−1) = Γ({(𝑠𝑟 , 0)}). Moreover,  

Γ(𝐶) = Γ(𝑃𝑟−1) ∪ Γ(𝐶\𝑃𝑟−1), Γ(𝐶
′) = Γ(𝐶′\𝑃𝑟) ∪ Γ(𝑃𝑟) 

and since 𝐶\𝑃𝑟−1 = 𝐶
′\𝑃𝑟, Γ(𝑃𝑟−1) =  Γ(𝑃𝑟). We have  

𝑇𝐶′(Γ(𝑃𝑟)) ⊂ {(𝑠𝑟 + 1, 𝑦𝑟), 0 ≤ 𝑦𝑟 < 1} 

but since (𝑠2, 0) ∈ 𝐶
′, we must have 𝑇𝐶′(Γ(𝑃𝑟)) ⊂ {(𝑠𝑟 + 1,1)} by Corollary (4.3.35). 

Since  

Γ(𝑃𝑟−1) = {(𝑗 + 𝜇𝑘,0, 𝑘):  𝑗, 𝑘 ∈ ℤ, 𝑡𝑟+𝑘−1 = 𝑠𝑟} 
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and 𝜋2(Γ(𝑃𝑟−1)) = 𝜋2(Γ(𝑃𝑟)), where 𝜋2 is the projection to the second coordinate, we 

have  

Γ({(1 + 𝑠𝑟 , 0)}) = Γ(𝑃𝑟) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑟+𝑘−1 = 𝑠𝑟  }. 

For some constants 𝜇𝑘,1 with 0 ≤ 𝜇𝑘,1 < 1 using Corollary (4.3.27). Applying this 

argument to 𝑠𝑟 = 0 and 𝑠𝑟+1 = 𝑡𝑟−2, we obtain that  

𝛬𝑟 ∩ ({1} × [0,1) × ℝ
2) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑟+𝑘−1 = 0}. 

Similar arguments applied to 𝑠𝑟 = 𝑠𝑟−2 and 𝑠𝑟+1 = 1 show that, for any 𝑠𝑟−2 ∈
𝑇,we have  

𝛬𝑟 ∩ ({𝑠𝑟−2 + 1} × [0,1) × ℝ
2) = {(𝑗 + 𝜇𝑘,1, 𝑘): 𝑗, 𝑘 ∈ ℤ, 𝑡𝑟+𝑘−1 = 𝑠𝑟−2}. 

And that 𝛬𝑟 ∩ ({𝑠𝑟−2 + 1} × [0,1) × ℝ
2) is empty if 𝑠𝑟−2 ∈ [0,1)\𝑇. The same 

idea can also be used to show the existence of constants 𝜇𝑘,−1 with 0 ≤ 𝜇𝑘,1 < 1 such 

that  

𝛬𝑟 ∩ ({𝑠𝑟−2 − 1} × [0,1) × ℝ
2)

= {
{(𝑗 + 𝜇𝑘,−1, 𝑘):  𝑗, 𝑘 ∈ ℤ , 𝑡𝑟+𝑘−1 = 𝑠𝑟−2 }   , 𝑠𝑟−2 ∈ 𝑇

∅,                                  𝑠𝑟−2 ∈ [0,1)\𝑇.
 

And, more generally using induction, that, for any 𝑛 − 𝜖 ∈ ℤ, we can find 

constants 𝜇𝑘,𝑛−𝜖 with 0 ≤ 𝜇𝑘,1 < 1 such that  

𝛬𝑟 ∩ ({𝑠𝑟−2 + 1} × [0,1) × ℝ
2)

= {
{(𝑗 + 𝜇𝑘,𝑛−𝜖 , 𝑘):  𝑗, 𝑘 ∈ ℤ , 𝑡𝑟+𝑘−1 = 𝑠𝑟−2 }   , 𝑠𝑟−2 ∈ 𝑇

∅,                                  𝑠𝑟−2 ∈ [0,1)\𝑇.
   

This proves our claim. 

Corollary (4.3.38)[491]: 𝒢(𝜒[0,1]2 , 𝛬𝑟) is a Gabor orthonormal basis for  𝑳𝟐(ℝ𝟐) if and 

only if we can partition ℤ into 𝒥𝑟 and 𝒥𝑟
′  such that either  

𝛬𝑟 = ⋃{(𝑛 − 𝜖 + (𝑡𝑟−2)𝑛,𝑘,𝑛, 𝑗 + 𝜇𝑘,𝑛−𝜖,𝑛, 𝐾 + 𝑣𝑟+𝑛−1
2 ): 𝑛 − 𝜖, 𝑗, 𝑘 ∈ ℤ}

𝑛∈𝒥𝑟

∪ ⋃ ⋃ {(𝑛 − 𝜖 + (𝑡𝑟−2)𝑛, 𝑛)}
𝑛∈𝒥𝑟

′

𝑛−𝜖∈ℤ

× (𝛬𝑟)𝑛−𝜖,𝑛. 

𝛬𝑟 = ⋃ {(𝑛 − 𝜖, 𝑛 + (𝑡𝑟−2)𝑛−𝜖,𝑗,, 𝑗 + 𝑣𝑟+𝑛−𝜖−1
2 , 𝐾 + 𝜇𝑗,𝑛−𝜖,𝑛): 𝑛, 𝑗, 𝑘 

𝑛−𝜖∈𝒥𝑟

∈ ℤ}⋃⋃ ⋃ {(𝑛 − 𝜖, 𝑛 + (𝑡𝑟−2)𝑛−𝜖)}

𝑛−𝜖∈𝒥𝑟
′𝑛∈ℤ

× (𝛬𝑟)𝑛−𝜖,𝑛. 

Where (𝛬𝑟)𝑛−𝜖,𝑛 + [0,1]
2 tile ℝ2 and (𝑡𝑟−2)𝑛,𝑘 , 𝜇𝑘,𝑛−𝜖,𝑛 and 𝑣𝑟+𝑛−1

2  are real 

numbers in [0,1) as a function of 𝑛 − 𝜖, 𝑛 or K. 

Proof. It follows from Corollary (4.3.35), that either all 𝑇[0,1)2(𝜆𝑟
2, 𝜆𝑟+1

2 ), (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈

Γ([0,1]2) are either of the form {(𝑡𝑟−2, 0)} or all are the form {(0, 𝑡𝑟−2)} with some 

𝑡𝑟−2 ≠ 0. In the first case, we deduce from Corollary (4.3.37) that  

𝛬𝑟 ∩ ({𝑠𝑟−2 + 1} × [0,1) × ℝ
2) = {(𝑛 − 𝜖 + 𝑡𝑟+𝑘−1, 0, 𝑗 + 𝜇𝑘,𝑛−𝜖 , 𝑘): 𝑗, 𝑘, 𝑛 − 𝜖 ∈ ℤ } 

For certain numbers 𝑡𝑟+𝑘−1 and 𝜇𝑘,𝑛−𝜖 in the interval [0,1). We now show that 𝛬𝑟 
will be of the first of the two possible forms given in the theorem. ( Similarly, the 

second form follows from the second case of Corollary (4.3.37)). 

    Letting 𝐶 = [0,1)2 and 𝐶′ = [0,1) × (0,1], we note that both Γ(𝐶) + [0,1]2 and 

Γ(𝐶′) + [0,1]2, tile ℝ2 but Γ((0,1)2) is empty. Hence, Γ(𝐶′) = Γ({(𝑥𝑟, 1): 0 ≤ 𝑥𝑟 ≤
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1}). It means that any set 𝑇𝐶′(𝜆𝑟
2, 𝜆𝑟+1

2 ) with (𝜆𝑟
2, 𝜆𝑟+1

2 ) ∈ Γ(𝐶′) is of the form 

{(𝑡𝑟−2, 1)} for some 𝑡𝑟−2 = 𝑡𝑟−2(𝜆𝑟
2, 𝜆𝑟+1

2 ) with 0 ≤ 𝑡𝑟−2 < 1. We now have two 

possible cases : either the cardinality of  𝑇𝐶′(Γ(𝐶
′)) is larger than one or equal to one. 

In the first case, we can find two distinct elements of  𝑇𝐶′(Γ(𝐶
′)) and we can then 

replicate the proof of Corollary (4.3.37), to obtain that  

𝛬𝑟 ∩ (ℝ × [1,2) × ℝ
2) = {(𝑛 − 𝜖 + 𝑡𝑟+𝑘−1, 1, 𝑗 + 𝜇𝑘,𝑛−𝜖,1, 𝑘): 𝑗, 𝑘 ∈ ℤ }. 

In the other case, 𝑇𝐶′(Γ(𝐶
′)) = {(𝑡𝑟 , 1)} for some 𝑡𝑟 with 0 ≤ 𝑡𝑟 < 1. If we 

translate 𝐶′ horizontally and use the same argument as in the proof of Corollary 

(4.3.37), we see that  

𝛬𝑟 ∩ (ℝ × [1,2) × ℝ
2) = {(𝑛 − 𝜖 + 𝑡𝑟 , 1) } × (𝛬𝑟)𝑛−𝜖,1 

Where (𝛬𝑟)𝑛−𝜖,1 is a spectrum for the unit square [0,1]2. This last property is 

equivalent to (𝛬𝑟)𝑛−𝜖,1 + [0,1]
2 being a tiling of  ℝ2. 

   We can them prove the theorem inductively by translating the square 𝐶′ in the 

vertical direction using integer steps.  
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Chapter 5 

Slanted Matrices and Hamiltonian Deformation 

 

We establish result to enrich our understanding of Banach frames and obtain new 

results for irregular sampling problems. We also present a version of a non-

commutative Wiener’s lemma for slanted matrices. We study in some detail an 

associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from 

semiclassical physics involving coherent states and Gaussian approximations. We will 

thereafter discuss possible applications and extensions, which can be viewed as the very 

first steps towards a general deformation theory for Gabor frames. The deformation 

theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It 

is in the style of Beurling’s characterization of sets of sampling for bandlimited 

functions and extends significantly the known characterization of Gabor frames 

“without inequalities” from lattices to non-uniform sets. 

Section (5.1): Banach Frames and Sampling 

We study certain properties of so-called slanted matrices, which occur naturally 

in different fields of pure and applied analysis. A matrix is slanted if it has a decay 

property such that the coefficients vanish away from a diagonal, which is not 

necessarily the main diagonal; ideally, non-zero coefficients of such a matrix are 

contained between two parallel slanted lines. Potential applications of the theory of 

slanted matrices range through wavelet theory and signal processing 

[277,278,279,284,293], frame and sampling theory [261,262, 263,268,269,290], 

differential equations [273,274,276], and even topology of manifolds [303]. Here we 

especially emphasize the use of slanted matrices in frame theory and related fields.  

We begin with a few explicit examples illustrating the appearance of slanted 

matrices. The standard case of banded matrices is a particular case of slanted banded 

matrices. Below are less trivial examples and the first of them concerns sampling in 

shift invariant spaces. 

Example (5.1.1)[260]: It is well known that the Paley-Wiener space 𝑃𝑊1 2⁄ =

{𝑓 ∈ 𝐿2(ℝ2): supp𝑓 ⊂ [−1 2⁄ , 1 2]⁄ } can also be described as  

𝑃𝑊1 2⁄ = {𝑓 ∈ 𝐿2(ℝ2): 𝑓 =∑𝑐𝑘𝜙(⋅ −𝑘), 𝑐 ∈ ℓ
2(ℤ)

𝑘∈ℤ

},                 (1) 

where 𝜙(𝑥) =
sin𝜋(𝑥−𝑘)

𝜋(𝑥−𝑘)
 and the series converges in 𝐿2(ℝ) (see [263]). Because of this 

equivalent description of  𝑃𝑊1 2⁄ , the problem of reconstructing a function 𝑓 ∈ 𝑃𝑊1 2⁄  

from the sequence of its integer samples, {𝑓(𝑖)}𝑖∈ℤ, is equivalent to finding the 

coefficients 𝑐 ∈ ℓ2 such that {𝑓(𝑖)} = 𝐴𝑐 where 𝐴 = (𝑎𝑖,𝑗) is the with entries 𝑎𝑖,𝑗 =

∅(𝑖 − 𝑗). It is immediate, however, that 𝐴 = 𝐼 is the identity matrix and, therefore, 

𝑓 =∑𝑓(𝑘)𝜙(⋅ −𝑘)

𝑘∈ℤ

. 

If, instead we sample a function 𝑓 ∈ 𝑃𝑊1 2⁄  on 
1

2
ℤ, then we obtain the equation 

{𝑓(
𝑖

2
)} = 𝐴𝑐. In this case, the sampling matrix 𝐴 is defined by 𝑎𝑖,𝑗 = 𝜙 (

𝑖

2
− 𝑗) and is 

no longer diagonal- it has constant values on slanted lines with slopes 1 2⁄ , for instance, 
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𝑎2𝑗,𝑗 = 1. If 𝜙 =
sin𝜋(𝑥−𝑘)

𝜋(𝑥−𝑘)
 in (1) is replaced by a function 𝜓 supported on [−

𝑀

2
,
𝑀

2
], 

then the matrix 𝐴 = (𝑎𝑖,𝑗) is zero outside the slanted band |𝑗 − 𝑖 2⁄ | ≤ 𝑀. Clearly, this 

matrix is not banded in the classical sense. If we move to the realm of irregular 

sampling [263], the sampling matrix will be given by 𝑎𝑖,𝑗 = 𝜙(𝜒𝑖 − 𝑗), where 𝑥𝑖 , 𝑖 ∈ ℤ, 

are the sampling points. In this case, we no longer have constant values on slanted lines, 

but the slanted structure is still preserved if we have the same number of sampling 

points per period. An important fact [263] is that any function can be reconstructed from 

its samples at  𝑥𝑖 , 𝑖 ∈ ℤ, if and only if the sampling matrix is bounded below and above. 

The main emphasis is to study this particular property of abstract slanted matrices. 

The next example deals with frames in Hilbert spaces. Meaningful extension of 

the notion of frames to Banach spaces is a non-trivial problem which provided some 

inspiration for our abstract results. In the example below we only give a brief 

introduction and defer precise definitions.  

Example (5.1.2)[260]: Let ℋ be a separable Hilbert space. A sequence 𝜑𝑛 ∈ ℋ, 𝑛 ∈ ℤ , 

is a frame for ℋ if for some 0 < 𝑎 ≤ 𝑏 < ∞ 

𝑎‖𝑓‖2 ≤∑|〈𝑓, 𝜑𝑛〉|
2

𝑛∈ℤ

≤ 𝑏‖𝑓‖2                                   (2) 

for all 𝑓 ∈ ℋ. The operator𝑇:ℋ → ℓ2,𝑇𝑓 = {〈𝑓, 𝜑𝑛〉}𝑛∈ℤ , 𝑓 ∈ ℋ, is called an analysis 

operator. It is an easy exercise to show that a sequence 𝜑𝑛 ∈ ℋ is a frame for ℋ if and 

only if its analysis operator has a left inverse. The a djoint of the analysis operator, 

𝑇∗: ℓ2 → ℋ, is given by 𝑇∗𝑐 = ∑ 𝑐𝑛𝜑𝑛𝑛∈ℤ , 𝑐 = (𝑐𝑛) ∈ ℓ
2. The frame operator is 

𝑇∗𝑇:ℋ → ℋ, 𝑇∗𝑇𝑓 = ∑ 〈𝑓, 𝜑𝑛〉𝑛∈ℤ 𝜑𝑛 , 𝑓 ∈ ℋ. 

Traditionally (see [280,283,290]), the frame properties are studied via the spectral 

properties of the frame operator. We show that some work can be done already at the 

level of the analysis operator. This makes extensions to Banach spaces easier since the 

analysis operator is more amenable to such. Connection with slanted matrices is readily 

illustrated if we consider a frame in ℓ2(ℤ) which consists of two copies of an 

orthonormal basis. The matrix of the analysis operator with respect to that basis looks 

like 
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1  0.

  

Clearly, the slant of the matrix may serve as a natural measure of redundancy of a 

frame. The following example illustrates the role of slanted matrices in wavelet theory. 

Example (5.1.3)[260]: In signal processing and communication, a sequence 𝑠 (𝑎) 
discrete signal) is often split into finite set compressed sequences {𝑠1, … , 𝑠𝑟} from which 

the original sequence 𝑠 can be reconstructed or approximated. The compression is often 

performed with filter banks [284,293] using the cascade algorithm. One way to 

introduce filters, in the simplest case, is to use the two-scale equation of the 

multiresolution analysis (MRA): 

𝜑(𝑥) = ∑ 𝑎𝑛𝜑(2𝑥 − 𝑛)𝑛∈ℤ ,  
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Where 𝜑 ∈ 𝐿2(ℝ) is the so-called 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. The filter coefficients𝑎𝑛, 𝑛 ∈ ℤ, 

in the above equation are the Fourier coefficients of the −𝑝𝑎𝑠𝑠 𝑓𝑖𝑙𝑡𝑒𝑟 𝑚0 ∈ 𝐿
2(ℝ), =

ℝ/ℤ , which is a periodic function given by  

𝑚0(𝜉) = ∑ 𝑎𝑛𝑒
2𝜋𝑖𝑛𝜉

𝑛∈ℤ ,       𝜉 ∈ ℝ.  
It is clear that the two-scale equation has the following equivalent form in the Fourier 

domain: 

�̂�(2𝜉) = 𝑚0(𝜉)�̂�(𝜉), 𝜉 ∈ ℝ .  
An important role in the 𝑀𝑅𝐴 theory is played the 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝜎𝜑 ∈ 𝐿

∞(𝕋) of the 

scaling function 𝜑, which is defined by  

𝜎𝜑(𝜉) = [�̂�, �̂�](𝜉) = ∑ |�̂�(𝜉 + 𝑛)|2𝑛∈ℤ   

It is a standard fact (see, e.g., [266, Lemma 2.11]) that this periodization satisfies  

𝜎𝜑(𝜉/2) = |𝑚0(𝜉)|
2𝜎𝜑(𝜉) + |𝑚0(𝜉 + 1 2⁄ )|

2𝜎𝜑(𝜉 + 1 2⁄ ).  

In fact, 𝜎𝜑 is the Perron-Frobenius eigen-vector of the transfer operator 𝑅𝑚0 which acts 

on different spaces of periodic functions via 

(𝑅𝑚0𝑓)(𝜉) = |𝑚0(𝜉)|
2𝑓(𝜉) + |𝑚0(𝜉 + 1 2⁄ )|

2𝑓(𝜉 + 1 2⁄ )            (3)  

In [278] there is a detailed account of the relation between the spectral properties of the 

transfer operator on different function spaces and the properties of the corresponding 

MRA filters, scaling functions, and wavelets. Here we will just recall that the 

convergence rate of the above mentioned cascade algorithm is controlled by the second 

biggest eigenvalue of 𝑅𝑚0. The reason we use the transfer operator as an example is 

because of its matrix with respect to the Fourier basis in 𝐿2(𝕋). Following [278, Section 

3.2], we let  

𝑐𝑛 =∑𝑎𝑘𝑎𝑛+𝑘
𝑘∈ℤ

. 

Then the Fourier coefficients of 𝑅𝑚0𝑓 and 𝑓 are related via 

(𝑅𝑚0𝑓)𝑛
=∑𝑐2𝑛−𝑘𝑓𝑘
𝑘∈ℤ

, 

and, hence, this is, indeed, a slanted matrix. In particular, if  

𝑚0(𝜉) = 𝑎0 + 𝑎1𝑒
2𝜋𝑖𝜉 + 𝑎2𝑒

2𝜋𝑖2𝜉 + 𝑎3𝑒
2𝜋𝑖3𝜉 , 

this matrix looks like 
𝑐3 𝑐2 𝑐1 𝑐0 𝑐−1 𝑐−2 𝑐−3 0 0 0 0 0 0 0 0
0 0 𝑐3 𝑐2 𝑐1 𝑐0 𝑐−1 𝑐−2 𝑐−3 0 0 0 0 0 0
0 0 0 0 𝑐3 𝑐2 𝑐1 𝑐0 𝑐−1 𝑐−2 𝑐−3 0 0 0 0
0 0 0 0 0 0 𝑐3 𝑐2 𝑐1 𝑐0 𝑐−1 𝑐−2 𝑐−3 0 0
0 0 0 0 0 0 0 0 𝑐3 𝑐2 𝑐1 𝑐0 𝑐−1 𝑐−2 𝑐−3.

 

Due to the special Laurent-type structure of this matrix there has been a lot of result on 

the spectral properties of such matrices (see [278]). Since we are interested in more 

general slanted matrices, we cannot use most of those results. Observe also, that this 

matrix has the “opposite” slant compared to the matrices in the previous examples. In 

fact, as shown in Lemma (5.1.10) below such matrices cannot be bounded below and, 

therefore, are less relevant.  

We devoted to abstract results. We give precise definitions of different classes of 

slanted matrices and study some of their basic properties, we state and show one of our 

main Theorems. Specifically, slanted matrices with some decay, viewed as operators on 
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ℓ𝑃 (ℤ𝑑 , (𝑋𝑛)) spaces (where 𝑋𝑛 is a Banach space), are either universally bounded 

below for all 𝑝 ∈ [1,∞], or do not have this property for any 𝑝 ∈ [1,∞]. We use this 

Theorem to obtain a version of Wiener’s Tauberian lemma and a result on subspace 

complementation in Banach spaces. We devoted to some applications of the results. 

Specifically, the reconstruction formula for Hilbert frames are extended to Banach 

frames under certain localization conditions related to slanted matrices. Gabor systems 

having this localization property are then presented as an example. Exhibits an 

application of slanted matrices to sampling theory. 

We prefer to give a straightforward definition of slanted matrices in the relatively 

simple case that arises in applications presented, mainly in connection with sampling 

theory. For that reason, we restrict our attention to the group ℤ𝑑 , 𝑑 ∈ ℕ, and leave the 

case of more general locally compact Abelian groups for future research in the spirit of 

[271,272,275]. We believe, also, that some of the results below may be extended to 

matrices indexed by discrete metric spaces. 

For each 𝑛 ∈ ℤ𝑑 we let 𝑋𝑛 and 𝑌𝑛 be (complex) Banach spaces and 𝔏𝑃 =

ℓ𝑝 (ℤ𝑑 , (𝑋𝑛))  be the Banach space of sequences 𝑥 = (𝑥𝑛)𝑛∈ℤ𝑑, 𝑥𝑛 ∈ 𝑋𝑛, with the norm 

‖𝑥‖𝑝 = (∑ ‖𝑥𝑛‖𝑋𝑛
𝑝

𝑛∈ℤ𝑑 )
1 𝑝⁄

 when 𝑝 ∈ [1,∞) and ‖𝑥‖∞ = sup𝑛∈ℤ𝑑‖𝑥𝑛‖𝑋𝑛. By 𝑐0 =

𝑐0 (ℤ
𝑑 , (𝑋𝑛)) we denote the subspace of 𝔏∞of sequences vanishing at infinity, that is 

lim
|𝑛|→∞

‖𝑥𝑛‖ = 0, where |𝑛| = max1≤𝑘≤𝑑|𝑛𝑘|, 𝑛 = (𝑛1, 𝑛2, … , 𝑛𝑑) ∈ ℤ
𝑑. We will use this 

multi-index notation throughout. Note that when 𝑋𝑛 = ℂ for all 𝑛, then 𝔏𝑃 is the 

standard space of complex-valued sequences ℓ𝑝(ℤ𝑑). 
Let 𝑎𝑚𝑛: 𝑋𝑛 → 𝑌𝑚 be bounded linear operators. The symbol 𝔸 will denote the 

operator matrix (𝑎𝑚𝑛),𝑚, 𝑛 ∈ ℤ
𝑑. We are interested only in those matrices that give 

rise to bounded linear operators that map 𝔏𝑃 into 𝔏𝑃 for all 𝑝 ∈ [1,∞] and 𝑐0 into 𝑐0. 

We let ‖𝐴‖𝑝 be the operator norm of 𝔸 in 𝔏𝑝 = ℓ𝑝 (ℤ𝑑 , (𝑌𝑛)) and ‖𝔸‖𝑠𝑢𝑝 =

sup𝑚,𝑛∈ℤ𝑑‖𝑎𝑚𝑛‖. If 𝑋𝑛, 𝑌𝑛, 𝑛 ∈ ℤ
𝑑, are separable Hilbert spaces, we denote by 𝔸⋆ =

(𝑎𝑚𝑛
⋆ ) the matrix defined by 𝑎𝑚𝑛

⋆ = (𝑎𝑚𝑛)
∗, where (𝑎𝑚𝑛)

∗: 𝑌𝑛 → 𝑋𝑚 are the (Hilbert) 

adjoints of the operators 𝑎𝑛𝑚. Clearly, (𝔸⋆)⋆ = 𝔸. 

To define certain of operator matrices we use the following types of weight 

functions. 

Definition (5.1.4)[260]: A weight is a function 𝜔:ℤ𝑑 → [1,∞). A weight is sub 

multiplicative if 

𝜔(𝑚 + 𝑛) ≤ 𝐶𝜔(𝑚)𝜔(𝑛),      for  some 𝐶 > 0. 

A weight is a 𝐺𝑅𝑆-weight if it satisfies the Gel’fand-Raĭkov-Šilov conditiona [286] 

lim
𝑚→∞

𝜔(𝑚𝑛)
1

𝑚 = 1,        𝑛 ∈ ℤ𝑑 .  

A weight is balanced if  

sup
𝑛∈ℤ𝑑

𝜔(𝑘𝑛)

𝜔(𝑛)
< ∞,          𝑘 ∈ ℕ.  

Finally, an admissible weight is an even sub multiplicative weight. 

Example (5.1.5)[260]: A typical weight on ℤ𝑑 is given by  

𝜔(𝑛) = 𝑒𝑎|𝑛|
𝑏
(1 + |𝑛|)𝑠,          𝑎, 𝑏, 𝑠 ≥ 0.  
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This weight is admissible when 𝑏 ∈ [0,1], is a GRS-weight when 𝑏 ∈ [0,1) and is 

balanced When𝑏 = 0.  

We fix a slant𝛼 ≠ 0. To simplify the notation we use 𝛽 = 𝛼−1 and 𝐾 = ⌈|𝛽|⌉𝑑-

the 𝑑th power of the smallest integer number bigger than or equal to |𝛽|. By 𝑥𝑆 we 

denote the characteristic function of a set 𝑆. 

Definition (5.1.6)[260]: For 𝛼 ≠ 0 and 𝑗 ∈ ℤ𝑑 the matrix 𝐴𝑗 = 𝐴𝑗
𝛼 = (𝑎𝑚𝑛

(𝑗)
), 𝑚,𝑛 ∈

ℤ𝑑, defined by 

𝑎𝑚𝑛
(𝑗)
= 𝑎𝑚𝑛∏ 𝜒[𝑗𝑘,𝑗𝑘+1)(𝛼𝑚𝑘 − 𝑛𝑘)

𝑑
𝑘=1   

is called the 𝑗𝑡ℎ 𝛼-𝑠𝑙𝑎𝑛𝑡 of 𝔸. 

 Observe that for every 𝑚 ∈ ℤ𝑑 there is at most one 𝑛 ∈ ℤ𝑑 such that 𝑎𝑚𝑛
(𝑗)
≠ 0 

and at most 𝑘 different numbers ℓ ∈ ℤ𝑑 such that 𝑎𝑚𝑛
(𝑗)
≠ 0. Hence, we have ‖𝐴𝑗‖𝑃 ≤

𝐾‖𝐴𝑗‖sup for any 𝑝 ∈ [1,∞]. This allows us to define different classes of matrices with 

decaying 𝛼-slants independently of  𝑝 ∈ [1,∞].  
Definition (5.1.7)[260]: We consider the following several classes of matrices. 

(i) For some fixed 𝑀 ∈ ℕ,ℱ𝛼
𝑀 will denote the class of matrices 𝔸 that satisfy 𝔸 =

∑ 𝐴𝑗|𝑗|≤𝑀−1 . Observe that for 𝔸 ∈ ℱ𝛼
𝑀 we have 𝑎𝑚𝑛 = 0 as soon as |𝑛 − 𝛼𝑚| >

𝑀 − 1. The class ℱ𝛼 = ⋃ ℱ𝛼
𝑀

𝑀∈ℕ  consists of operators with finitely many 𝛼-

slants. 

(ii) The class Σ𝛼
𝜔 of matrices with 𝜔-summable 𝛼-slantes consists of matrices 𝔸 

such that ‖𝔸‖Σ𝛼𝜔 = 𝑘∑ ‖𝐴𝑗‖sup𝜔(𝑗)𝑗∈ℤ𝑑 < ∞, where 𝜔 is a weight. We have 

Σ𝛼
𝜔 ⊂ Σ𝛼

1 = Σ𝛼 -the class of matrices with (unweighted) summable 𝛼-slantes. 

(iii) The class ℰ𝛼 of matrices with exponential decay of 𝛼-slantes is defined as a 

subclass of matrices 𝔸 from Σ𝛼 such that for some 𝐶 ∈ ℝ and 𝜏 ∈ (0,1) we have 

‖𝐴𝑗‖Σ𝛼
≤ 𝐶𝜏|𝑗|. 

 For 𝔸 ∈ Σ𝛼
𝜔, we denote by 𝔸𝑀 ∈ ℱ𝛼

𝑀, 𝑀 ∈ ℕ, the truncation of 𝔸, i.e., the matrix 

defined by 𝑎𝑚𝑛
𝑀 = 𝑎𝑚𝑛 when |𝑛 − 𝛼𝑚| ≤ 𝑀 − 1 and 𝑎𝑚𝑛

𝑀 = 0 otherwise. Equivalently, 

𝔸𝑀 = ∑ 𝐴𝑗|𝑗|≤𝑀−1  where 𝐴𝑗 , 𝑗 ∈ ℤ
𝑑, is the 𝑗th 𝛼-slant of 𝔸. By definition of  Σ𝛼

𝜔, the 

operators 𝔸𝑀 converge to 𝔸 in the norm ‖⋅‖Σ𝛼𝜔. 

 Here we present some basic properties of slanted matrices that are useful for the 

reminder. 

Lemma (5.1.8)[260]: For some 𝑝 ∈ [1,∞] we consider two operators 

𝔸: ℓ𝑝(ℤ𝑑 , (𝑌𝑛)) → ℓ
𝑝(ℤ𝑑 , (𝑍𝑛)) and 𝔹 ∶ ℓ𝑝(ℤ𝑑 , (𝑋𝑛)) → ℓ

𝑝(ℤ𝑑, (𝑌𝑛)) and let 𝜔 be a 

sub multiplicative balanced weight. 

(i) If 𝔸 ∈  ℱ𝛼(Σ𝛼
𝜔, 𝑜𝑟 𝜀𝛼) and 𝔹 ∈  ℱ�̃�(Σ�̃�

𝜔, 𝑜𝑟 𝜀�̃�) then we have 𝔸𝔹 ∈
ℱ𝛼�̃�(Σ𝛼�̃�

𝜔 , 𝑜𝑟 𝜀𝛼�̃�).  
If, moreover, 𝑌𝑛 , 𝑍𝑛, 𝑛 ∈ ℤ

𝑑, are Hilbert spaces, then we  have 

𝐴⋆: ℓ𝑝(ℤ𝑑 , (𝑍𝑛)) → ℓ
𝑝(ℤ𝑑, (𝑌𝑛))  

and 

(ii) 𝔸 is inverrible if and only if  𝐴⋆ is invertible; 

(iii) If  𝔸 ∈  ℱ𝛼(Σ𝛼
𝜔, 𝑜𝑟 𝜀𝛼)  then 𝐴⋆ ∈  ℱ𝛼−1(Σ𝛼−1

𝜔 , 𝑜𝑟 𝜀𝛼−1). 
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Proof. The last two properties are easily verified by direct computation. For the   first one, 

let 𝔻 = (𝑑𝑚,𝑛) = 𝔸𝔹 = (𝑎𝑚,𝑛)(𝑏𝑚,𝑛), and let ⌈𝑎⌉ = (⌈𝑎1⌉ , … , ⌈𝑎𝑑⌉) ∈ ℤ
𝑑, where 𝑎 ∈

ℝ𝑑 and ⌈𝑎𝑘⌉ is, as before, the smallest integer greater than or equal to 𝑎𝑘 , 𝑘 = 1,… , 𝑑. We 

have that  

‖𝑑𝑚,⌈𝛼�̃�𝑚⌉+𝑗‖ ≤ ∑‖𝑎𝑚,𝑘‖‖𝑏𝑘,⌈𝛼�̃�𝑚⌉+𝑗‖

𝑘∈ℤ𝑑

= ∑‖𝑎𝑚,⌈𝛼𝑚⌉+𝑘−⌈𝛼𝑚⌉‖‖𝑏𝑘,⌈�̃�𝑘⌉+⌈𝛼�̃�𝑚⌉+𝑗−⌈�̃�𝑘⌉‖

𝑘∈ℤ𝑑

≤ ∑ 𝑟(𝑘 − ⌈𝛼𝑚⌉)𝑠(⌈𝛼�̃�𝑚⌉ + 𝑗 − ⌈�̃�𝑘⌉)

𝑘∈ℤ𝑑

= ∑ 𝑟(𝑘)𝑠(⌈𝛼�̃�𝑚⌉ + 𝑗 − ⌈�̃�𝑘 + �̃�⌈𝛼𝑚⌉⌉)

𝑘∈ℤ𝑑

, 

Where 𝑟(𝑗) = ‖𝐴𝑗‖sup and 𝑠(𝑗) = ‖𝐵𝑗‖sup. For 𝑎, 𝑏 ∈ ℝ we have  

⌈𝑎⌉ + ⌈𝑏⌉ − 1 ≤ ⌈𝑎 + 𝑏⌉ ≤ ⌈𝑎⌉ + ⌈𝑏⌉; 

    ⌈|𝑎|𝑏⌉ ≤ ⌈|𝑎|⌈𝑏⌉⌉ ≤ ⌈|𝑎|𝑏⌉ + ⌈|𝑎|⌉. 
Hence,  

‖𝑑𝑚,⌈𝛼�̃�𝑚⌉+𝑗‖ ≤ ∑ 𝑟(𝑘)𝑘∈ℤ𝑑 𝑠(𝑗 − ⌈�̃�𝑘⌉ + 𝑙),  

where 𝑙 = 𝑙(𝛼, �̃�,𝑚, 𝑘) ∈ ℤ𝑑 is such that |𝑙| ≤ ⌈|�̃�|⌉ + 1. 

 If 𝔸 ∈ ℱ𝛼 and 𝔹 ∈ ℱ�̃�, the last inequality immediately implies 𝔻 = 𝔸𝔹 ∈ ℱ𝛼�̃�.  

 If 𝔸 ∈ Σ𝛼
𝜔 and 𝔹 ∈ Σ�̃�

𝜔, we use the fact that the weight 𝜔 is sub multiplicative and 

balanced to obtain 

∑ sup
𝑚∈ℤ𝑑

‖𝑑𝑚,⌈𝛼�̃�𝑚⌉+𝑗‖𝜔(𝑗)

𝑗∈ℤ𝑑

≤ ∑ 𝑟(𝑘)𝑠(𝑗 − ⌈�̃�𝑘⌉ + 𝑙)𝜔(𝑗)

𝑗,𝑘∈ℤ𝑑

≤ 𝐶𝑜𝑛𝑠𝑡 ⋅ ∑ 𝑟(𝑘)𝑠(𝑗 − ⌈�̃�𝑘⌉)𝜔(𝑗 − ⌈�̃�𝑘⌉)
𝜔(⌈�̃�𝑘⌉)

𝜔(𝑘)
𝑗,𝑘∈ℤ𝑑

≤ 𝐶𝑜𝑛𝑠𝑡 ⋅ ‖𝔸‖Σ𝛼𝜔‖𝔹‖Σ�̃�
𝜔 . 

 The case 𝔸 ∈ 𝜀𝛼 and 𝔹 ∈ 𝜀�̃� can be treated in a similar way. Since we will not 

use this result, we omit the proof. 

 The property of (left, right) invertility of operator matrices in certain operator 

algebras has been studied extensively by many authors (see [271,287, 295]). The main 

focus, however, is on a weaker property of boundedness below (or uniform injectivity). 

As we show matrices with this property play a crucial role in certain applications. 

Definitions (5.1.9)[260]: We say that the matrix 𝔸 is bounded below in 𝔏𝑝 or, shorter, 

𝑝 − 𝑏𝑏, if  

‖𝔸𝑥‖𝑝 ≥ ℘𝑝‖𝑥‖𝑝,   for some ℘𝑝 > 0  and all    𝑥 ∈ 𝔏𝑝.                        (4) 
 Befor we state the main result, we note an important spectral property of slanted 

matrices given by the following lemma due to Pfander [297] (see also [298]). We 

include the proof for completeness and since the matrices considered here are more 

general. 

Lemma (5.1.10)[260]: Assume that 𝑋𝑛 = 𝑌𝑛, 𝑛 ∈ ℤ
𝑑, and that all these spaces are 

finite-dimensional. If 𝔸 ∈ Σ𝛼 , for some 𝛼 > 1, then 0 is an approximate eigenvalue  of 
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𝔸:𝔏𝑝 → 𝔏𝑝, 𝑝 ∈ [1,∞]. Equivalently, for any 𝜖 > 0 there exists 𝑥 ∈ 𝔏𝑝 such that 

‖𝑥‖𝑝 = 1 𝑎𝑛𝑑 ‖𝔸𝑥‖𝑝 ≤ 𝜖. 

Proof.  Let 𝔸 ∈ ∑ .𝛼  for 𝜖 > 0 choose 𝑀 so large that ‖𝔸 − 𝔸𝑀‖Σ𝛼 ≤ 𝜖. Since 𝛼 > 1, 

there exists 𝑁0 such that 𝑁 = ⌈𝛼𝑁0⌉ ≥ 𝑁0 + 1. Let 𝔸𝑀
𝑁  be a matrix with an (𝑖, 𝑗)-entry 

coinciding with that of the truncation matrix 𝔸𝑀 if |𝑖| ≤ 𝑀 + 𝑁, |𝑗| ≤ 𝑀 + 𝑁, and 

equal to 0 otherwise. We have 𝔸𝑀𝑥𝑀
𝑁 = 𝔸𝑀

𝑁𝑥𝑀
𝑁  for every 𝑥𝑀

𝑁 ∈ 𝔏𝑝 such that 𝑥𝑀
𝑁(𝑖) = 0 

for |𝑖| > 𝑀 + 𝑁. By assumption, the subspace 𝒳𝑀
𝑁 of such vectors is finite-dimensional 

and, by construction, it is invariant with respect to 𝔸𝑀
𝑁 . Observe  that we chose 𝑁 so 

large that the restruction of 𝔸𝑀
𝑁  to 𝒳𝑀

𝑁 cannot be invertible because its matrix has a zero 

“row” Hence, for 𝔸𝑀
𝑁 , we can find a vector 𝒳𝑀

𝑁 ∈ 𝒳𝑀
𝑁 such that ‖𝑥𝑀

𝑁‖ = 1 and 𝔸𝑀𝑥𝑀
𝑁 =

𝔸𝑀
𝑁𝑥𝑀

𝑁 = 0. Thus, for any given 𝜖 > 0, we can find 𝑥𝑀
𝑁 ∈ 𝜒 such that ‖𝑥𝑀

𝑁‖ = 1, and 

‖𝔸𝑥𝑀
𝑁‖𝑝 = ‖𝔸𝑥𝑀

𝑁 −  𝔸𝑀𝑥𝑀
𝑁‖𝑝 ≤ 𝜖. 

 We note that without the assumption in Lemma (5.1.10) that 𝑋𝑛 = 𝑌𝑛 the lemma 

may fail. The following Theorem presents our central theoretical result. We observe that 

it has not been showed before even in the classical case of the slant 𝛼 = 1.  

 The proof of the Theorem is preceded by several technical lemmas and 

observations below. We begin with a lemma that provides some insight into the 

intuition behind the proof. We should also mention that our approach is somewhat 

similar Sjostrand’s proof of a non-commutative Wiener’s lemma [299]. We will discuss 

Wiener-type lemmas in more detail. 

 Let 𝜔𝑁: ℝ𝑑 → ℝ,𝑁 > 1, be a family of window functions such that 0 ≤ 𝜔𝑁 ≤
1,𝜔𝑁(𝑘) = 0 for all |𝑘| ≥ 𝑁, and 𝜔𝑁(𝑘) = 1. By 𝜔𝑛

𝑁 we will denote the translates of 

𝜔𝑁, i.e., 𝜔𝑛
𝑁(𝑡) = 𝜔𝑁(𝑡 − 𝑛), and 𝑊𝑛

𝑁: ℓ𝑝(ℤ𝑑 , 𝑋) → ℓ𝑝(ℤ𝑑, 𝑋) will be the 

multiplication operator  

𝑊𝑛
𝑁𝑥(𝑘) = 𝜔𝑛

𝑁(𝑘)𝑥(𝑘),        𝑥 ∈ 𝔏𝑝, 𝑛 ∈ ℝ𝑑 . 
Let 𝑥 ∈ ℓ𝑝(ℤ𝑑 , 𝑋), 𝑝 ∈ [1,∞] , and define  

|‖𝑥‖|𝑝
𝑝
≔ ∑ ∑‖𝑊𝑛

𝑁𝑥(𝑗)‖𝑝
𝑝

𝑗∈ℤ𝑑𝑛∈ℤ𝑑

= ∑ ∑ ‖𝑊𝑛
𝑁𝑥(𝑗)‖𝑝

𝑝

|𝑗−𝑛|<𝑁𝑛∈ℤ𝑑

,     𝑃 ∈ [1,∞), 

|‖𝑥‖|∞ ≔ sup
𝑛
‖𝑊𝑛

𝑁𝑥‖∞. 

Lemma (5.1.11)[260]: For any 𝑝 ∈ [1,∞], the norms ‖⋅‖𝑝 and |‖⋅‖|𝑝 are equivalent 

norms on 𝔏𝑝, and we have  

‖𝑥‖𝑝 ≤ |‖𝑥‖|𝑝 ≤ (2𝑁)
𝑑 𝑝⁄ ‖𝑥‖𝑝,     𝑝 ∈ [1,∞), 

and 

‖𝑥‖∞ = |‖𝑥‖|∞. 
Proof. For 𝑝 = ∞ the equality is obvious. For 𝑝 ∈ [1,∞), the left-hand side inequality 

follows from the fact ‖𝑥(𝑛)‖𝑝 ≤ ∑ ‖𝑊𝑛
𝑁𝑥(𝑗)‖𝑝

𝑝
|𝑗−𝑛|≤𝑁 , and by summing over 𝑛. For the 

right-hand side inequality we simply note that 

∑ ∑ ‖𝜔𝑛
𝑁(𝑗)𝑥(𝑗)‖𝑃

𝑃

|𝑗−𝑛|<𝑁𝑛∈ℤ𝑑

≤ ∑ ∑ ‖𝑥(𝑗 + 𝑛)‖𝑝
𝑝
≤ (2𝑁)𝑑‖𝑥‖𝑝

𝑝

|𝑗|<𝑁𝑛∈ℤ𝑑

. 

 The above equivalence of norms will supply us with the crucial inequality in the 

proof of the Theorem. The opposite inequality is due to the following observation. 
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Remark (5.1.12)[260]: We shall make use of the following obvious relation between 

the norms in finite-dimensional spaces. For every 𝑥 in 𝑎 𝑑-dimensional Euclidean space 

we have  

‖𝑥‖𝑝 ≥ ‖𝑥‖∞ ≥ 𝑑
−
1
𝑝‖𝑥‖𝑝     for any 𝑝 ∈ [1,∞).                    (5) 

 At this point we choose our window functions to be the family of Cesaro means 

𝜓𝑁: ℝ𝑑 → ℝ,𝑁 > 1 , defined by 

𝜓𝑁(𝑘) = {
(1 −

|𝑘|

𝑁
) , |𝑘| < 𝑁;    

0,                otherwise.
  

Observe that their translates 𝜓𝑛
𝑁(𝑘) = 𝜓𝑁(𝑘 − 𝑛), 𝑛 ∈ ℝ𝑑, satisfy  

𝜓𝛼𝑛
𝛼𝑁(𝑘) = 𝜓𝑛

𝑁(𝛼−1𝑘)                                                   (6) 
for any 𝛼 > 0. Again, by 𝜓𝑛

𝑁: 𝔏p → 𝔏p, 𝑁 > 1, we will denote the operator of 

multiplication  

𝜓𝑛
𝑁𝑥(𝑘) = 𝜓𝑛

𝑁(𝑘)𝑥(𝑘) ,       𝑥 ∈ 𝔏𝑝, 𝑛 ∈ ℝ𝑑 .  
 The following lemma presents yet another estimate crucial for our proof. To 

simplify the notation we let 𝛽 = 𝛼−1. 

Lemma (5.1.13)[260]: The following estimate holds for any 𝑞 ∈ [1,∞], any 𝔸 ∈ Σ𝛼 =
Σ𝛼
1  and all of its truncations 𝔸𝑀 ∈ ℱ𝛼

𝑀, 𝑀 ∈ ℕ. 

‖𝔸𝑀𝜓𝑛
𝑁 − 𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀‖

𝑞
≤
(2𝑀)𝑑+1

2𝑁
‖𝔸‖sup =:ℵ 2⁄ .                    (7) 

Proof. Define 𝐽𝑘 = {𝑖 ∈ ℤ
𝑑 ∶ |𝑖 − 𝛼𝑘| ≤ 𝑀 − 1}. Using (6), we have  

|𝜓𝑛
𝑁(𝑖) − 𝜓𝛽𝑛

𝛽𝑁
(𝑘)| ≤

𝑀−1

𝑁
,    for |𝑖 − 𝛼𝑘| ≤ 𝑀 − 1.  

Observe that for any 𝑦 ∈ 𝔏q we have  

(𝔸𝑀𝜓𝑛
𝑁𝑦)(𝑘) = ∑ 𝛼𝑘𝑖𝑖∈𝐽𝑘 𝜓𝑛

𝑁(𝑖)𝑦(𝑖),    (𝜓𝛽𝑛
𝛽𝑁
𝔸𝑀𝑦) (𝑘) = 𝜓𝛽𝑛

𝛽𝑁(𝑘)∑ 𝑎𝑘𝑖𝑖∈𝐽𝑘 𝑦(𝑖).  

Now the following easy computation shows that (7) is true for 𝑞 ∈ [1,∞): 

‖(𝔸𝑀𝜓𝑛
𝑁 − 𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀) 𝑦‖

𝑞
= (∑ ‖∑𝑎𝑘𝑖

𝑖∈𝐽𝑘

(𝜓𝑛
𝑁(𝑖) − 𝜓𝛽𝑛

𝛽𝑁(𝑘)𝑦(𝑖)‖

𝑞

𝑘∈ℤ𝑑

)

1
𝑞

≤
𝑀

𝑁
‖𝔸‖sup (∑ (∑‖𝑦(𝑖)‖

𝑖∈𝑗𝑘

)

𝑞

𝑘∈ℤ𝑑

)

1
𝑞

≤
(2𝑀)𝑑+1

2𝑁
‖𝔸‖sup‖𝑦‖𝑞 . 

An obvious modification yields it in the case 𝑞 = ∞. 

 Observe that for 𝔸𝑀 ∈ ℱ𝛼
𝑀 the commutator studied in the above lemma satisfies  

    (𝜓𝛽𝑛
𝛽𝑁
𝔸𝑀 − 𝔸𝑀𝜓𝑛

𝑁) 𝑥 = (𝜓𝛽𝑛
𝛽𝑁
𝔸𝑀 − 𝔸𝑀𝜓𝑛

𝑁)𝑃𝑛
𝑁+𝑀𝑥,                 (8) 

Where 𝛽 = 𝛼−1, 𝑃𝑛
𝐿𝑥(𝑘) = 𝑥(𝑘) if |𝑘 − 𝑛| ≤ 𝐿, and 𝑃𝑛

𝐿𝑥(𝑘) = 0 otherwise, where 𝐿 >
1. Also observe that for any 𝑝 ∈ [1,∞] and any 𝐿 > 1, we have that  

‖𝑃𝑛
𝐿𝑥‖𝑝 ≤ 2‖𝜓𝑛

2𝐿𝑥‖𝑝.                                             (9) 
Combining the above facts we obtain the following estimate. 

Lemma (5.1.14)[260]: Let 𝔸 ∈ ∑ ,𝛼  be 𝑝 − 𝑏𝑏 for some 𝑝 ∈ [1,∞]. As usual, let 𝔸𝑀 ∈
ℱ𝛼
𝑀 be the truncations of 𝔸 and 𝛽 = 𝛼−1. Then for all 𝑛 ∈ ℤ𝑛, 𝑁 > 1, and all 𝑀 ∈ ℕ 

with 𝛾𝑝 = ℘𝑝 − ‖𝔸 − 𝔸𝑀‖𝑝 > 0, we have  



176 

‖𝜓𝑛
𝑁𝑥‖𝑝 ≤ 𝛾𝑝

−1 (‖𝜓𝛽𝑛
𝛽𝑁
𝔸𝑀𝑥‖

𝑝
+ ℵ‖𝜓𝑛

2(𝑁+𝑀)
𝑥‖

𝑝
).                       (10) 

Proof. Observe that  

‖𝜓𝑛
𝑁𝑥‖𝑝 ≤ ℘𝑝

−1(‖(𝔸𝑀𝜓𝑛
𝑁)𝑥‖𝑝 + ‖𝔸 − 𝔸𝑀‖𝑝‖𝜓𝑛

𝑁𝑥‖𝑝). 
Hence, using (7), (8), and (9), we get  

(1 − ℘𝑝
−1‖𝔸 − 𝔸𝑀‖𝑝) ‖𝜓𝑛

𝑁𝑥‖𝑝 ≤ ℘𝑝
−1‖(𝔸𝑀 𝜓𝑛

𝑁)𝑥‖𝑝             

                        ≤ ℘𝑝
−1 (‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀𝑥‖

𝑝
+ ‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀 − 𝔸𝑀𝜓𝑛

𝑁)𝑥‖
𝑝
)  

                                   ≤ ℘𝑝
−1 (‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀𝑥‖

𝑝
+ ‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀 − 𝔸𝑀𝜓𝑛

𝑁)𝑃𝑛
𝑁+𝑀𝑥‖

𝑝
)  

    ≤ ℘𝑝
−1 (‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀𝑥‖

𝑝
+
ℵ

2
‖𝑃𝑛

𝑁+𝑀𝑥‖𝑝)  

           ≤ ℘𝑝
−1 (‖𝜓𝛽𝑛

𝛽𝑁
𝔸𝑀𝑥‖

𝑝
+ ℵ‖𝜓𝑛

2(𝑁+𝑀)
𝑥‖

𝑝
),  

which yields the desired inequality. 

 By iterating (10) 𝑗 − 1 times we get 

Lemma (5.1.15)[260]: Let 𝔸 ∈ ∑ ,𝛼  be 𝑝 − 𝑏𝑏 some 𝑝 ∈ [1,∞]. Let 𝔸𝑀 ∈ ℱ𝛼
𝑀 be 

𝑡ℎ𝑒 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛𝑠 of 𝔸 and 𝛽 = 𝛼−1. Then for all 𝑛 ∈ ℤ𝑛, 𝑁 > 1 and 𝑀 ∈ ℕ with 𝛾𝑝 =

℘𝑝 − ‖𝔸 − 𝔸𝑀‖𝑝 > 0, we have  

‖𝜓𝑛
𝑁𝑥‖𝑝 ≤ 𝛾𝑝

−1
1 − (ℵ𝛾𝑝

−1)
𝑗

1 − (ℵ𝛾𝑝
−1)

‖𝜓
𝛽𝑛

𝛽𝑍𝑗𝔸𝑀𝑥‖
𝑝
+ (ℵ𝛾𝑃

−1)𝑗 ‖𝜓𝑛
𝑍𝑗+1𝑥‖

𝑝
,     (11) 

𝑤ℎ𝑒𝑟𝑒 𝑍𝑗 = 2
𝑗−1𝑁 + (2𝑗 − 2)𝑀, for 𝑗 ≥ 1. 

 To simplify the use of (11) we let  

𝑎𝑗,𝑝 ≔ 𝛾𝑝
−1
1 − (ℵ𝛾𝑝

−1)
𝑗

1 − (ℵ𝛾𝑝
−1)

=

1 − (
(2𝑀)𝑑+1‖𝔸‖sup

(℘𝑝 − ‖𝔸 − 𝔸𝑀‖𝑝)𝑁
)

𝑗

℘𝑝 − ‖𝔸 − 𝔸𝑀‖𝑝 −
(2𝑀)𝑑+1

𝑁
‖𝔸‖sup

         (12) 

and 

𝑏𝑗,𝑝 ≔ (ℵ𝛾𝑝
−1)

𝑗
=

((2𝑀)𝑑+1‖𝔸‖sup)
𝑗

(℘𝑝 − ‖𝔸 − 𝔸𝑀‖𝑝 )
𝑗
𝑁𝑗
.                            (13) 

 Now we complete the proof of the main result. 

Theorem (5.1.16)[260]: Let 𝑠 > (𝑑 + 1)2 and 𝜔 = (1 + |𝑗|)𝑠. Then 𝔸 ∈ Σ𝛼
𝜔 is 𝑝 − 𝑏𝑏 

for some 𝑝 ∈ [1,∞] if and only if 𝔸 is 𝑞-bb for all 𝑞 ∈ [1,∞]. 
Proof. The remainder of the proof  will be presented in two major steps. In the first step, 

we will assume that  𝔸 ∈ Σ𝛼
𝜔  is ∞-bb and  show that this implies that 𝔸 is 𝑝-bb for all 

𝑝 ∈ [1,∞). In the second step we will do the “opposite” that is, assume that 𝔸 ∈ Σ𝛼
𝜔 is 

𝑝-bb for some 𝑝 ∈ [1,∞) and show that this implies that 𝔸 ∞-bb. This would obviously 

be enough to complete the proof. 

Step 1. Assume that 𝔸 is ∞-bb. Using Hölder’s inequality and (11), we get for large 

values of 𝑀 ∈ ℕ 
 

‖𝜓𝑛
𝑁𝑥‖∞

𝑝
≤ 2𝑝−1𝑎𝑗,∞

𝑝
‖𝜓

𝛽𝑛

𝛽𝑍𝑗𝔸𝑀𝑥‖
∞

𝑝

+ 2𝑝−1𝑏𝑗,∞
𝑝
‖𝜓𝑛

𝑍𝑗+1𝑥‖
∞

𝑝
.  

Using (5), we get  
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(2𝑁)−𝑑‖𝜓𝑛
𝑁𝑥‖𝑝

𝑝
≤ 2𝑝−1𝑎𝑗,∞

𝑝
‖𝜓

𝛽𝑛

𝛽𝑍𝑗𝔸𝑀𝑥‖
𝑝

𝑝

+ 2𝑝−1𝑏𝑗,∞
𝑝
‖𝜓𝑛

𝑍𝑗+1𝑥‖
𝑝

𝑝
. 

Summing over 𝑛 and using Lemma (5.1.11), we get  

‖𝑥‖𝑝
𝑝
≤ (2𝑁)𝑑2𝑝−1𝑎𝑗,∞

𝑝
(2𝑍𝑗)

𝑑
‖𝔸𝑀𝑥‖𝑝

𝑝
+ (2𝑁)𝑑2𝑝−1𝑏𝑗,∞

𝑝
(2𝑍𝑗+1)

𝑑
‖𝑥‖𝑝

𝑝

≤ 𝑁𝑑2𝑑+𝑝−1𝑎𝑗,∞
𝑝
𝑍𝑗
𝑑(‖𝔸𝑥‖𝑝

𝑝
+ ‖𝔸 − 𝔸𝑀‖𝑝

𝑝‖𝑥‖𝑝
𝑝
) 

+𝑁𝑑2𝑑+𝑝−1𝑏𝑗,∞
𝑝
𝑍𝑗+1
𝑑 ‖𝑥‖𝑝

𝑝
.                                                                                         (14) 

 At this point we use the assumption 𝔸 ∈ Σ𝛼
(1+|𝑗|)𝑠

 to get  

‖𝔸 − 𝔸𝑀‖𝑝 ≤ ‖∑ 𝐴𝑗
|𝑗|≥𝑀

‖

𝑝

≤ 𝐾 ∑ ‖𝐴𝑗‖sup
(1 + |𝑗|)𝑠(1 + |𝑗|)−𝑠

|𝑗|≥𝑀

 

≤ ‖𝐴‖
Σ𝛼
(1+|𝑗|)𝑠 sup

|𝑗|≥𝑀
(1 + |𝑗|)−𝑠 ≤ ‖𝔸‖

Σ𝛼
(1+|𝑗|)𝑠𝑀

−𝑠. 

 Plugging the above estimate into (14) we obtain  

‖𝑥‖𝑝
𝑝
≤ 22𝑑+𝑝−1𝑁𝑑𝑎𝑗,∞

𝑝
𝑍𝑗
𝑑‖𝔸𝑥‖𝑝

𝑝

+ 22𝑑+𝑝−1𝑁𝑑 (𝑎𝑗,∞
𝑝
𝑍𝑗
𝑑‖𝔸‖

Σ𝛼
(1+|𝑗|)𝑠
𝑝

𝑀−𝑠𝑝 + 𝑏𝑗,∞
𝑝
𝑍𝑗+1
𝑑 ) ‖𝑥‖𝑝

𝑝
 

= 22𝑑+𝑝−1𝑎𝑗,∞
𝑝
𝑁𝑑𝑍𝑗

𝑑‖𝔸𝑥‖𝑝
𝑝
+ ℵ̃‖𝑥‖𝑝

𝑝
.                                   (15) 

 Hence, to complete Step 1 it suffices to show that one can choose 𝑗, 𝑀 ∈ ℕ and 

𝑁 > 1 so that ℵ̃ < 1. 

 We put 𝑁 = 𝑀𝛿(𝑑+1) for some 𝛿 > 1. From (7),(12),(13), and the definition of 𝑍𝑗 

in lemma (5.1.11), we get ℵ = 𝒪(𝑀(1−𝛿)(𝑑+1), 𝑏𝑗,∞) = 𝒪(𝑀
(1−𝛿)(𝑑+1)𝑗), 𝑎𝑗,∞ = 𝒪(1), 

and 𝑍𝑗 = 𝒪(𝑀
𝛿(𝑑+1))  as 𝑀 → ∞. Hence, 

ℵ̃ ≤ 𝐶1𝑀
𝛿(𝑑+1)2−𝑠𝑝 + 𝐶2𝑀

(1−𝛿)(𝑑+1)𝑗𝑝+𝛿(𝑑+1)2 , 
where the constants 𝐶1 and 𝐶2 depend on 𝔸, 𝑠, 𝑗, and 𝑝 but do not depend on 𝑀. Since 

𝑠 > (𝑑 + 1)2, we can choose 𝛿 ∈ (1,
𝑠𝑝

(𝑑+1)2
) and 𝑗 >

𝛿(𝑑+1)

𝑝(𝛿−1)
  then, clearly, ℵ̃ = 𝒪(1) as 

𝑀 → ∞. 

Step 2. Now assume that 𝔸 is 𝑝-bb, for some 𝑝 ∈ [1,∞). Using (5) and (11), we get   

‖𝜓𝑛
𝑁‖∞ ≤ 𝑎𝑗,𝑝(2𝑍𝑗)

𝑑 𝑝⁄
‖𝜓

𝛽𝑛

𝛽𝑍𝑗𝔸𝑀𝑥‖
∞
+ 𝑏𝑗,𝑝(2𝑍𝑗+1)

𝑑 𝑝⁄
‖𝜓𝑛

𝑍𝑗+1𝑥‖
∞
.  

As in Step 1, we have ‖𝔸 − 𝔸𝑀‖𝑝 ≤ ‖𝐴‖Σ𝛼
(1+|𝑗|)𝑠𝑀

−𝑠. Using this estimate and Lemma 

(5.1.11), we obtain  

‖𝑥‖∞ ≤ 𝑎𝑗,𝑝(2𝑍𝑗)
𝑑 𝑝⁄
‖𝔸𝑥‖∞ + 2

𝑑 𝑝⁄ (𝑎𝑗,𝑝𝑍𝑗
𝑑 𝑝⁄ ‖𝐴‖

Σ𝛼
(1+|𝑗|)𝑠𝑀

−𝑠 + 𝑏𝑗,𝑝𝑍𝑗+1
𝑑 𝑝⁄
) ‖𝑥‖∞.  

Again, as in the previous step, if  we choose 𝛿 ∈ (1,
𝑠𝑝

(𝑑+1)2
) , 𝑁 = 𝑀𝛿(𝑑+1), and 𝑗 >

𝛿(𝑑+1)

𝑝(𝛿−1)
 , we get  

𝑎𝑗,𝑝𝑍𝑗
𝑑 𝑝⁄ ‖𝐴‖

Σ𝛼
(1+|𝑗|)𝑠𝑀

−𝑠 + 𝑏𝑗,𝑝𝑍𝑗+1
𝑑 𝑝⁄

= 𝒪(1) 

as 𝑀 → ∞ and the proof is complete. 

 Careful examination of (15) yields the following result. 

Corollary (5.1.17)[260]: let 𝑠 > (𝑑 + 1)2, 𝜔 = (1 + |𝑗|)𝑠, and 𝔸 ∈ Σ𝛼
𝜔 be 𝑝-bb for 

some 𝑝 ∈ [1,∞]. Then there exists ℘ > 0 such that for all 𝑞 ∈ [1,∞] 
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‖𝔸𝑥‖𝑞 ≥ ℘‖𝑥‖𝑞 ,      for all 𝑥 ∈ 𝔏
𝑞 . 

 As we have seen in the proof above, the group structure of the index set ℤ𝑑 has 

not been used.Thus, it is natural to conjecture that a similar result holds for matrices 

indexed by much more general (discrete) metric spaces. We do not pursue this 

extension. Instead, we show the result for a class of matrices that define operators of 

𝑏𝑜𝑢𝑛𝑑𝑒𝑑 𝑓𝑙𝑜𝑤. 
Definition (5.1.18)[260]: A matrix 𝔸 is said to have bounded dispersion if there exists 

𝑀 ∈ ℕ such that for every 𝑚 ∈ ℤ𝑑 there exists 𝑛𝑚 ∈ ℤ
𝑑 for which 𝑎𝑚𝑛 = 0  

as soon as |𝑛 − 𝑛𝑚| > 𝑀. A matrix 𝔸 is said to have bounded accumulation if 𝔸⋆ has 

bounded dispersion. Finally, 𝔸 is a bounded flow matrix if it has both bounded 

dispersion and bounded accumulation. 

Corollary (5.1.19)[260]: Assume that 𝔸 has bounded flow and is 𝑝-bb for some 𝑝 ∈
[1,∞]. Then 𝔸 is 𝑞 − 𝑏𝑏 for all 𝑞 ∈ [1,∞]. 
Proof. In lieu of the proof it is enough to make the following two observations. First, if 

a matrix is bounded below then any matrix obtained from the original one by permuting 

its rows (or columns) is also bounded below with the same bound. Second, if a matrix is 

bounded below then any matrix obtained from the original one by inserting any number 

of rows consisting entirely of 0 entries is also bounded below with the same bound. 

Using these observations we can use row permutations and insertions of zero rows to 

obtain a slanted matrix in ℱ𝛼
𝑀 for some 𝛼 ∈ ℝ, |𝛼| > 0. 

Theorem (5.1.20)[260]: Let 𝑋𝑛, 𝑌𝑛, 𝑛 ∈ ℤ
𝑑, be Hilbert spaces and 𝜔 be an admissible 

balanced GRS-weight. If 𝔸 ∈ Σ𝛼
𝜔 is invertible for some 𝑝 ∈ [1,∞], then 𝔸 is invertible 

for all 𝑞 ∈ [1,∞] and 𝔸−1 ∈ Σ𝛼−1
𝜔 . Moreover, if 𝔸 ∈ ℰ𝛼, then we also have 𝔸−1 ∈ ℰ𝛼−1.   

Proof. First, we observe that 𝔸−1 = (𝔸⋆𝔸)−1𝔸⋆. Second, since Lemma (5.1.8) implies 

𝔸⋆𝔸 ∈ Σ1
𝜔 (or 𝜀1), [272, Theorem 2] guarantees that (𝔸⋆𝔸)−1 ∈ Σ1

𝜔(or 𝜀1). Finally, 

applying Lemma (5.1.8) once again we get the desired results. 

Theorem (5.1.21)[260]: Let 𝑋𝑛 = ℋ𝑋 and 𝑌𝑛 = ℋ𝑌  be the same Hilbert (or Euclidean) 

spaces for all 𝑛 ∈ ℤ𝑑 and 𝔸 ∈ Σ𝛼
𝜔 where 𝜔(𝑗) = (1 + |𝑗|)𝑠, 𝑠 > (𝑑 + 1)2. Let also 𝑝 ∈

[1,∞]. 
(i) If 𝔸 is 𝑝-bb, then 𝔸 is left invertible for all 𝑞 ∈ [1,∞] and a left inverse is given 

by 𝔸# = (𝔸⋆𝔸)−1𝔸⋆ ∈ Σ𝛼−1
𝜔 .  

(ii) If 𝔸⋆ is 𝑝-bb, then 𝔸 is right invertible for all 𝑞 ∈ [1,∞] and a right inverse is 

given by 𝔸𝑏 = 𝔸⋆(𝔸𝔸⋆)−1 ∈ Σ𝛼−1
𝜔 .  

Proof. Since (i) and (ii) are equivalent, we prove only (i). Theorem (5.1.16) implies that 

‖𝔸𝑥‖2 ≥ ℘2‖𝑥‖2 for some ℘2 > 0 and all 𝑥 ∈ 𝔏2. Under the specified conditions the 

Banach spaces ℓ2(ℤ𝑑 , (Χ𝑛)) and ℓ2(ℤ𝑑, (𝑌𝑛)) are, however, Hilbert spaces and 𝔸⋆ 
defines the Hilbert a djoint of  𝔸. Since 〈𝔸⋆𝔸𝑥, 𝑥〉 = 〈𝔸𝑥, 𝔸𝑥〉 ≥ ℘2〈𝑥, 𝑥〉, we have that 

the operator 𝔸⋆𝔸 is invertible in 𝔏2. It remains to argue as in (5.1.20) and apply Lemma 

(5.1.8) and [272, Theorem 2 and Corolary 3]. 

Corollary (5.1.22)[260]: If 𝔸 is as in Theorem (5.1.21)(i) then, for any 𝑞 ∈ [1,∞], 
Im 𝔸 is a subspace of  𝔏𝑞 that can be complemented. 

 We will address several fundamental questions. Given a sampling set for some 

𝑝 ∈ [1,∞] can we deduce that this set is a set of sampling for all 𝑝? Under which 

condition is a 𝑝-frame for some 𝑝 ∈ [1,∞] also a Banach frame for all 𝑝 ? These and a 
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few other questions are discussed and an answer in terms of slanted matrices is 

presented.  

 The first part concerns Banach frames and the second one concerns sampling 

theory. 

 The notion of a frame in a separable Hilbert space has already become classical. 

The pioneering work [282] explicitly introducing it was published in 1952. It analoues 

in Banach spaces, however, are non-trivial (see [265,268,269, 280,285,290]). We show 

that in the case of certain localized frames the simplest possible extension of the 

definition remains meaningful. 

Definition (5.1.23)[260]: Let ℋ be a separable Hilbert space. A sequence 𝜑𝑛 ∈ ℋ, 𝑛 ∈
ℤ𝑑, is a frame for ℋ if for some 0 < 𝑎 ≤ 𝑏 < ∞ 

𝑎‖𝑓‖2 ≤ ∑ |〈𝑓, 𝜑𝑛〉|
2

𝑛∈ℤ𝑑

≤ 𝑏‖𝑓‖2                                   (16) 

for all 𝑓 ∈ ℋ. 

 The operator 𝑇:ℋ → ℓ2, 𝑓 = {〈𝑓, 𝜑𝑛〉}𝑛∈ℤ𝑑 , 𝑓 ∈ ℋ , is called an analysis 

operator. It is an easy exercise to show that a sequence 𝜑𝑛 ∈ ℋ is a frame for ℋ for if 

and only if its analysis operator has a left inverse. The adjoint of the analysis operator 

𝑇∗: ℓ2 → ℋ, is given by 𝑇∗𝑐 = ∑ 𝑐𝑛𝜑𝑛𝑛∈ℤ𝑑 , 𝑐 = (𝑐𝑛) ∈ ℓ
2. The frame operator is 

𝑇∗𝑇:ℋ → ℋ, 𝑇∗𝑇𝑓 = ∑ 〈𝑓, 𝜑𝑛〉𝜑𝑛, 𝑓 ∈ ℋ.𝑛∈ℤ𝑑  A gain, a sequence 𝜑𝑛 ∈ ℋ is a frame 

for ℋ if and only if its frame operator is invertible. The canonical dual frame �̃�𝑛 ∈ ℋ is 

then �̃�𝑛 = (𝑇
∗𝑇)−1𝜑𝑛 and the (canonical) synthesis operator is 𝑇#: ℓ2 → 𝐻, 𝑇# =

(𝑇∗𝑇)−1𝑇∗, so that  

𝑓 = 𝑇#𝑇𝑓 = ∑ 〈𝑓, 𝜑𝑛〉�̃�𝑛
𝑛∈ℤ𝑑

= ∑ 〈𝑓, �̃�𝑛〉𝜑𝑛
𝑛∈ℤ𝑑

 

for all 𝑓 ∈ ℋ. 

 Generalizing the notion of frames to Banach spaces requires some care. In 

general Banach spaces one cannot use just the equivalence of norms similar to (16). The 

above construction breaks down because, in this case, the analysis operator ends up 

being bounded below and not necessarily left invertible. As a result a “frame 

decomposition” remains possible but “frame reconstruction” no longer makes sense. 

Theorem (5.1.21)(i) indicates, however, that often this obstruction does not exist. The 

idea is to make the previous statement precise. To simplify the exposition we remain in 

the realm of Banach spaces ℓ𝑝(ℤ𝑑 ,ℋ) and use other chains of spaces such as the one in 

[290] only implicitly. 

Definition (5.1.24)[260]: A sequence 𝜑𝑛 = (𝜑𝑚
𝑛 )𝑚∈ℤ𝑑 ∈ ℓ

1(ℤ𝑑 ,ℋ), 𝑛 ∈ ℤ𝑑, is a 𝑝-

frame (for ℓ𝑝(ℤ𝑑 ,ℋ)) for some 𝑝 ∈ [1,∞) if  

𝑎‖𝑓‖𝑝 ≤ ∑ | ∑ 〈𝑓𝑚 , 𝜑𝑚
𝑛 〉

𝑚∈ℤ𝑑

|

𝑝

𝑛∈ℤ𝑑

≤ 𝑏‖𝑓‖𝑝                              (17) 

for some 0 < 𝑎 ≤ 𝑏 < ∞ and all 𝑓 = (𝑓𝑚)𝑚∈ℤ𝑑 ∈ ℓ
𝑝(ℤ𝑑 ,ℋ).if  

𝑎‖𝑓‖ ≤ sup
𝑛∈ℤ𝑑

| ∑ 〈𝑓𝑚, 𝜑𝑚
𝑛 〉

𝑚∈ℤ𝑑

| ≤ 𝑏‖𝑓‖                                 (18) 
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for some 0 < 𝑎 ≤ 𝑏 < ∞ and all 𝑓 = (𝑓𝑚)𝑚∈ℤ𝑑 ∈ ℓ
∞(ℤ𝑑 ,ℋ), then the sequence 𝜑𝑛 is 

called an ∞-frame. It is called a 0-frame if (18) holds  for all 𝑓 ∈ 𝑐0(ℤ
𝑑 ,ℋ). 

 The definition of 𝑝-frame above is consistent with the standard one found 

[265,281,288]. For example, if ℋ = ℂ we obtain the standard definition of  𝑝-frames 

for ℓ𝑝(ℤ𝑑).  
 The operator 𝑇𝜑 = 𝑇: ℓ

𝑝(ℤ𝑑 ,ℋ) → ℓ𝑝(ℤ𝑑) = ℓ𝑝(ℤ𝑑, ℂ), given by  

𝑇𝑓 = 〈𝑓, 𝜑𝑛〉 ≔ { ∑ 〈𝑓𝑚, 𝜑𝑚
𝑛  〉

𝑚∈𝕫𝑑

}

𝑛∈ℤ𝑑

,      𝑓 ∈ ℓ𝑝(ℤ𝑑 ,ℋ), 

is called a 𝑝-analysis operator, 𝑝 ∈ [1,∞]. The 0-analysis operator is defined in the 

same way for 𝑓 ∈ 𝑐0(ℤ
𝑑 ,ℋ). 

Definition (5.1.25)[260]: A 𝑝-frame 𝜑𝑛 with the 𝑝-analysis operator 𝑇, 𝑝 ∈ {0} ∪
[1,∞], is (𝑠, 𝛼)-localized for some 𝑠 > 1 and 𝛼 ≠ 0, if there exists an isomorphism 

𝐽: ℓ∞(ℤ𝑑 ,ℋ) → ℓ∞(ℤ𝑑,ℋ) which leaves invariant 𝑐0 and all ℓ𝑞(ℤ𝑑 ,ℋ), 𝑞 ∈ [1,∞), 
and such that  

𝑇𝐽|ℓ𝑝 ∈ Σ𝛼
𝜔, 

where ω(n) = (1 + |𝑛|)𝑠, 𝑛 ∈ ℤ𝑑, see Remark (5.1.11). 

 As a direct corollary of Theorem (5.1.21) and the above definition we obtain the 

following result. 

Theorem (5.1.26)[260]: Let 𝜑𝑛, 𝑛 ∈ ℤ𝑑 , be an (𝑠, 𝛼)-localized 𝑝-frame for some 𝑝 ∈
{0} ∪ [1,∞] with 𝑠 > (𝑑 + 1)2 . Then  

(i) The 𝑞-analysis operator 𝑇 is well defined and left invertible for all 𝑞 ∈ {0} ∪
[1,∞], and the 𝑞-synthesis operator 𝑇# = (𝑇∗𝑇)−1𝑇∗ is also well defined for all 

𝑞 ∈ {0} ∪ [1,∞]. 
(ii) The sequence 𝜑𝑛, 𝑛 ∈ ℤ𝑑 , and its dual sequence �̃�𝑛 = (𝑇∗𝑇)−1𝜑𝑛, 𝑛 ∈ ℤ𝑑, are 

both (𝑠, 𝛼)-localized q-frames for all 𝑞 ∈ {0} ∪ [1,∞]. 
(iii) 𝐼𝑛 𝑐0 and ℓ𝑞(ℤ𝑑 ,ℋ), 𝑞 ∈ [1,∞), we have the reconstruction formula  

𝑓 = 𝑇#𝑇𝑓 = ∑ 〈𝑓, 𝜑𝑛〉�̃�𝑛
𝑛∈ℤ𝑑

= ∑ 〈𝑓, �̃�𝑛〉𝜑𝑛
𝑛∈ℤ𝑑

. 

For 𝑓 ∈ ℓ∞(ℤ𝑑,ℋ) the reconstruction formula remains valid provided the 

convergence is understood in the weak∗-topology. 

 Theorem (5.1.26)(iii) shows that an (𝑠, 𝛼)-localized 𝑝-frame is a Banach frame 

for 𝑐0 and all ℓ𝑞(ℤ𝑑 ,ℋ), 𝑞 ∈ [1,∞], in the sense of the following definition. 

Definition (5.1.27)[260]: (see [289, Definition 13.6.1]) . A countable sequence 

{𝑥𝑛}𝑥𝑛∈𝐽 ⊂ 𝑋
′ in the dual of a Banach space 𝑋 is a Banach frame for 𝑋 if there exist an 

associated sequence space 𝑋𝑑( 𝐽), a constant 𝐶 ≥ 1, and a bounded operator 𝑅: 𝑋𝑑 → 𝑋 

such that for all 𝑓 ∈ 𝑋 
1

𝐶
‖𝑓‖𝑋 ≤ ‖〈𝑓, 𝑥𝑛〉‖𝑋𝑑 ≤ 𝐶‖𝑓‖𝑋, 

𝑅(〈𝑓, 𝑥𝑛〉𝑗∈𝐽) = 𝑓.  

Example (5.1.28)[260]: Following [289], let 𝑔 ∈ 𝑆 ⊂ 𝐶∞(ℝ𝑑) be a non-zero window 

function in the Schwartz class 𝒮, and 𝑉𝑔 be the short time Fourier transform 
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(𝑉𝑔𝑓)(𝑥, 𝜔) = ∫ 𝑓(𝑡)𝑔(𝑡 − 𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑒−2𝜋𝑖𝑡∙𝜔𝑑𝑡

ℝ2𝑑

,    𝑥, 𝜔 ∈ ℝ𝑑 . 

let 𝑀𝑝,1 ≤ 𝑝 ≤ ∞ , be the modulation spaces of tempered distributions with the norms  

‖𝑓‖𝑀𝑝 = ( ∫ ( ∫|𝑉𝑔𝑓(𝑥, 𝜔)|
𝑝
𝑑𝑥

ℝ𝑑

)𝑑𝜔

ℝ𝑑

)

1/𝑝

, 1 ≤ 𝑝 < ∞, 

‖𝑓‖𝑀∞ = ‖𝑉𝑔𝑓‖∞
.  

It is known that these modulation spaces do not depend on the choice of 𝑔 ∈ 𝑆 and are 

isomorphic to ℓ𝑝(ℤ2𝑑), with isomorphism’s provided by the Wilson bases. 

 Let 𝑔 ∈ 𝑀1 be a window such that Gabor system 

𝒢(𝑔, 𝑎, 𝑏) = {𝑔𝑘,𝑛(𝑥) = 𝑒
−2𝜋𝑖(𝑥−𝑎𝑘).𝑏𝑛𝑔(𝑥 − 𝑎𝑘),   𝑘, 𝑛 ∈ ℤ𝑑 ,   𝑥 ∈ ℝ𝑑} 

is a tight Banach frame for all 𝑀𝑝, 1 ≤ 𝑝 ≤ ∞. By this we mean that the 𝑝-analysis 

operator  𝑇𝒢:𝑀
𝑝 → ℓ𝑝, 𝑇𝒢𝑓 = {〈𝑓, 𝑔𝑘,𝑛〉} , is left invertible and the frame operator 𝑇𝒢

∗𝑇𝒢 

is a scalar multiple of the identity operator for all 𝑝 ∈ [1,∞]. Assume that a sequence 

𝛷 = {𝜙𝑖,𝑗}𝑖,𝑗∈ℤ𝑑 of distributions in 𝑀∞ is such that {𝜑(𝑖,𝑗) = 𝑇𝒢∅𝑖,𝑗}, (𝑖, 𝑗) ∈ ℤ
2𝑑, is an 

(𝑠, 𝛼)-localized p-frame for some 𝑝 ∈ {0} ∪ [1,∞], and 𝑠 > (𝑑 + 1)2. Since, by 

Definition (5.1.24), {𝜑(𝑖,𝑗) = 𝑇𝒢∅𝑖,𝑗} must be in ℓ1(ℤ2𝑑 , ℂ), then by [289, Corollary 

12.2.8] 𝛷 ⊂ 𝑀1. Moreover, by Theorem (5.1.26) we have that {𝜑(𝑖,𝑗)} is an (𝑠, 𝛼)-
localized 𝑞-frame for all 𝑞 ∈ {0} ∪ [1,∞], and a Banch frame. Finally, since 𝒢 is a tight 

Banach frame for all 𝑀𝑞 , 𝑞 ∈ [1,∞], we have that  

〈𝑓, 𝜙𝑖,𝑗〉 = 𝐶𝑜𝑛𝑠𝑡〈𝑇𝒢
∗𝑇𝒢𝑓, 𝜙𝑖,𝑗〉 = 𝐶𝑜𝑛𝑠𝑡〈𝑇𝒢𝑓, 𝑇𝒢𝜙𝑖,𝑗〉, for all 𝑓 ∈ 𝑀

𝑞 ,  

and, hence, the frame operator 

𝑓 ↦ 𝑇𝒢𝑓 ↦ {〈𝑇𝒢𝑓, 𝑇𝒢𝜙𝑖,𝑗〉 } ↦ {〈𝑓, 𝜙𝑖,𝑗〉}:𝑀
𝑞 → ℓ𝑞(ℤ2𝑑 , ℂ) 

is left invrtible and, therefore, 𝛷 is a Banach frame for all 𝑀𝑞 , 𝑞 ∈ [1,∞]. 
Example (5.1.29)[260]: Here we would like to highlight the role of the slant 𝛼 in the 

previous example. Using the same notation as above, let 𝛷 be the frame consisting of  

two copies of the frame 𝒢. then (renumbering 𝛷 if needed) it is easy to see that matrix 

(〈𝜙𝑖,𝑗  , 𝑔𝑘,𝑛〉)(𝑖,𝑗),(𝑘,𝑛)∈ℤ2𝑑 is 
1

2
-slanted. Hence, the slant 𝛼 serves as a measure of relative 

redundancy of 𝛷 with respect to 𝒢 and a measure of absolute redundancy of 𝛷 if  𝒢 is a 

basis. 

 We apply the previous results to handle certain problems in sampling theory. 

Theorem (5.1.32) below was the principal motivation for us to show Theorem (5.1.16). 

 The sampling/reconstruction problem includes devising efficient methods for 

representing a signal (function) in terms of a discrete (finite or countable) set of its 

samples (values) and reconstructing the original signal from its samples. We assume 

that the  signal is a function 𝑓 that belongs to space  

𝑉𝑝(𝛷) = {∑ 𝑐𝑘𝜑𝑘
𝑘∈ℤ𝑑

}, 
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where 𝑐 = (𝑐𝑘) ∈ ℓ
𝑝(ℤ𝑑) when 𝑝 ∈ [1,∞], 𝑐 ∈ 𝑐0 when 𝑝 = 0, and 𝛷 = {𝜑𝑘}𝑘∈ℤ𝑑 ⊂

𝐿𝑝(ℝ𝑑) is a countable collection of continuous functions. To avoid convergence issues 

in the definition of 𝑉𝑝(𝛷), we assume that the functions in 𝛷 satisfy the condition 

𝑚𝑝‖𝑐‖ℓ𝑝 ≤ ‖∑ 𝑐𝑘𝜑𝑘
𝑘∈ℤ𝑑

‖

𝐿𝑝

≤ 𝑀𝑝‖𝑐‖ℓ𝑝 , for all 𝑐 ∈ ℓ𝑝,                  (19) 

for some 𝑚𝑝, 𝑀𝑝 > 0 independent of 𝑐. This is a p-Riesz basis condition for 𝑝 ∈
[1,∞) ∪ {0}[260]. We assume that the functions in 𝛷 belong to a Wiener-amalgam 

space 𝑊𝜔
1 defined as follows. 

Definitions (5.1.30)[260]: A measurable function 𝜑 belongs to 𝑊𝜔
1 for a certain weight, 

if it satisfies  

‖𝜑‖𝑊𝜔1 = (∑ 𝜔(𝑘) ∙ ess sup{|𝜑|(𝑥 + 𝑘): 𝑥 ∈ [0,1]𝑑}

𝑘∈ℤ𝑑

) < ∞.         (20) 

 When a function 𝜑 in 𝑊𝜔
1 is continuous we write 𝜑 ∈ 𝑊0,𝜔

1 . In many applications 

𝑉𝑝(𝛷) is a shift invariant space, that is, 𝜑𝑘(𝑥) = 𝜑(𝑥 − 𝑘), 𝑘 ∈ ℤ
𝑑, for some 𝜑 ∈ 𝑊𝜔

1. 

 Sampling is assumed to be performed by a countable collection of finite complex 

Borel measures 𝜇 = {𝜇𝑗}𝑗∈ℤ𝑑 ⊂ ℳ(ℝ
𝑑). A 𝜇-sample is a sequence 𝑓(𝜇) =

∫𝑓 𝑑𝜇𝑗 , 𝑗 ∈ ℤ
𝑑. If 𝑓(𝜇) ∈ ℓ𝑝 and ‖𝑓(𝜇)‖ℓ𝑝 ≤ 𝐶‖𝑓‖𝐿𝑃 for all 𝑓 ∈ 𝑉𝑝(𝛷), we say that 

𝜇 is a (𝛷, 𝑝)-sampler. If a sampler 𝜇 is a collection of  Dirac measures then it is called a 

(𝛷, 𝑝)-ideal sampler. Other-wise, it is a (𝛷, 𝑝)-average sampler. 

 We determine when a sampler 𝜇 is stable. That is, when 𝑓 is uniquely determined 

by its 𝜇-sample and a small perturbation of the sampler results in a small perturbation of 

𝑓 ∈ 𝑉𝑝(𝛷). The above condition can be formulated as follows [263].  

Definition (5.1.31)[260]: A sampler 𝜇 is stable on 𝑉𝑝(𝛷) (in other words, 𝜇 is a 

stable(𝛷, 𝑝)-sampler) if the bi-infinite matrix  𝔸𝜇
Φ defined by  

(𝔸𝜇
Φ𝑐)(𝑗) = ∑ ∫ 𝑐𝑘𝜑𝑘𝑑𝜇𝑗𝑘∈ℤ𝑑 , 𝑐 ∈ ℓ𝑝(ℤ),  

defines a bounded sampling operator 𝔸𝜇
Φ: ℓ𝑝(ℤ) → ℓ𝑝(ℤ) which is bounded below In 

ℓ𝑝 (or 𝑝-bb). 

 We assume that the generator 𝛷 and the sampler 𝜇 are such that the operator 𝔸𝜇
Φ 

is a bounded on 𝑐0 and all ℓ𝑝, 𝑝 ∈ [1,∞]; we say that such sampling system (𝛷, 𝜇) is 

sparse. This situation happens, for example, when the generator 𝛷 has sufficient decay 

at ∞ and the sampler is separated. The following Theorem is a direct corollary of 

Theorem (5.1.21) and the above definitions. 

Theorem (5.1.32)[260]: Assume that 𝜔(𝑛) = (1 + |𝑛|)𝑛, 𝑛 ∈ ℤ𝑑 , 𝑠 > (𝑑 + 1)2, Φ 

satisfies (19), for all 𝑞 ∈ {0} ∪ [1,∞] and 𝜇 is (𝛷, 𝑝)-sampler for every 𝑝 ∈ [1,∞]. 
Assume also that the sampling operator 𝔸𝜇

Φ is 𝑝-bb for some 𝑝 ∈ {0} ∪ [1,∞] and 𝔸𝜇
Φ ∈

Σ𝛼
𝜔 for some 𝛼 ≠ 0. Then 𝜇 is a stable sampler on 𝑉𝑞(𝛷) for every 𝑞 ∈ {0} ∪ [1,∞]. 

 Below we study the case of ideal sampling in shift invariant spaces in greater 

detail and obtain specific examples of the above Theorem. From now on we assume that 

𝜑𝑘(𝑥) = 𝜑𝑘(𝑥 − 𝑘), 𝑘 ∈ ℤ
𝑑 , for some 𝜑 ∈ 𝐶 ∩𝑊𝜔

1 =:𝑊0,𝜔
1 . 
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Definition (5.1.33)[260]: If 𝜇 = (𝜇𝑖) is a stable ideal sampler on 𝑉𝑝(Φ) and the 

measures 𝜇𝑖 are supported on {𝑥𝑗}, 𝑗 ∈ ℤ
𝑑, then set 𝑋 = {𝑥𝑗 , 𝑗 ∈ ℤ

𝑑  } is called a (stable) 

set of sampling on 𝑉𝑝(Φ) . A set of sampling 𝑋 ⊂ ℝ𝑑 is separated if   

inf
𝑗≠𝑘∈ℤ𝑑

|𝑥𝑗 − 𝑥𝑘| = 𝛿 > 0. 

A set of sampling 𝑋 ⊂ ℝ𝑑 is homogeneous if  

#{𝑋⋂[𝑛, 𝑛 + 1)} = 𝑀  

is constant for every 𝑛 ∈ ℤ𝑑. 

 We are interested in the homogeneous sets of sampling because of the following 

result. 

Lemma (5.1.34)[260]: Let 𝜑 ∈ 𝑊0,𝜔
1 , Φ = {𝜑(⋅ −𝑘)}, and 𝜇 ∈ ℓ∞(ℤ𝑑 ,ℳ(ℝ𝑑)) be an 

ideal sampler with a separated homogenous sampling set 𝑋. Then the sampling operator 

𝔸𝜇
Φ belongs to Σ𝛼

𝜔 for 𝛼 = 𝑀−1. 

Proof.  Follows by direct computation. 

 The following lemma shows that we can restrict our attention to homogeneous 

sets of sampling without any loss of generality. The intuition behind this result is that 

we can count each measurement at a point in 𝑋 not once but finitely many times and 

still obtain unique and stable reconstructions. 

Lemma (5.1.35)[260]: Let 𝔸 be an infinite matrix that defines a bounded operator on 

ℓ𝑝, 𝑝 ∈ [1,∞], and 𝔸 be a (bounded) operator on ℓ𝑝 obtained from 𝔸 by duplicating 

each row at most 𝑀 times. Then 𝔸 is 𝑝-bb if and only if �̃� is 𝑝-bb. 

Proof. The proof for 𝑝 < ∞ follows from the inequalities  

‖𝔸𝑥‖𝑝
𝑝
≤ ‖�̃�𝑥‖

𝑝

𝑝
≤ (𝑀 + 1)‖𝔸𝑥‖𝑝

𝑝
, 𝑥 ∈ ℓ𝑝. 

For 𝑝 = ∞, we have ‖𝔸𝑥‖∞ = ‖�̃�𝑥‖∞, 𝑥 ∈ ℓ∞. 

 As a direct corollary of Theorems (5.1.21), (5.1.32), Lemmas (5.1.34), (5.1.35), 

and Remark (5.1.10) we obtain the following Theorem.  

Theorem (5.1.36)[260]: Let 𝜔(𝑛) = (1 + |𝑛|)𝑠, 𝑛 ∈ ℤ𝑑 , 𝑠 > (𝑑 + 1)2, 𝜑 ∈ 𝑊0,𝜔
1 , and  

𝑎𝑝‖𝑓‖𝐿𝑝 ≤ ‖{𝑓(𝑥𝑗)}‖ℓ𝑝 ≤ 𝑏𝑝
‖𝑓‖𝐿𝑝 ,       for all 𝑓 ∈ 𝑉

𝑝(Φ), 

for some 𝑝 ∈ [1,∞] ∪ {0} and a separated set 𝑋 = {𝑥𝑗 , 𝑗 ∈ ℤ
𝑑}. Then 𝑋 is a stable set of 

sampling on 𝑉𝑞(Φ) for all 𝑞 ∈ [1,∞] ∪ {0}. 
 Now we can show a Beurling-Landau type Theorem [1-4] for shift-invariant 

spaces generated by piecewise differentiable functions. 

Theorem (5.1.37)[260]: Let Φ be a sequence generated by the translates of a piecewise 

differentiable function 𝜑 ∈ 𝑊0,𝜔
1  such that  

𝑎‖𝑐‖∞ ≤ ‖∑ 𝑐𝑘𝜑𝑘𝑘∈ℤ ‖∞ ≤ 𝑏‖𝑐‖∞    and    ‖∑ 𝑐𝑘𝜑𝑘
′

𝑘∈ℤ ‖∞ ≤ 𝑏
′‖𝑐‖∞.  

for all 𝑐 ∈ 𝑐0(ℤ
𝑑). Then every 𝑋 = {𝑥𝑗} that satisfies 𝛾(𝑋) = sup(𝑥𝑗+1 − 𝑥𝑗) < 2𝑎 𝑏

′⁄  

is a set of sampling for 𝑉𝑝(Φ) for all 𝑝 ∈ {0} ∪ [1,∞]. 
Proof. We show the result for everywhere differentiable functions 𝜑 and omit the 

obvious generalization. 

 Let 𝑓 ∈ 𝑉0(Φ) be such that  𝑓′ = ∑ 𝑐𝑘𝜑𝑘
′

𝑘∈ℤ𝑑 , where the series has finitely many 

non-zero terms. The set of such functions is dense in 𝑉0(Φ) and if we show that for all 

such 𝑓  

‖{𝑓(𝑥𝑗)}‖∞ = sup
𝑗∈ℤ𝑑

|𝑓(𝑥𝑗)| ≥ ℘∞‖𝑐‖∞,  
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the result would follow immediately from Theorem (5.1.36).  

 Let 𝑥∗ ∈ ℝ be such that ‖𝑓‖∞ = |𝑓(𝑥
∗)|. There exists 𝑗 ∈ 𝐽 such that |𝑥𝑗 − 𝑥

∗| ≤
1

2
𝛾(𝑋). Using the fundamental Theorem of calculus, we get 

|𝑓(𝑥𝑗)| = |∫ 𝑓
′(𝑡)𝑑𝑡 − 𝑓(𝑥∗)

𝑥∗

𝑥𝑗

| ≥ ‖𝑓‖∞ − |∫ 𝑐𝑘𝜑𝑘
′ (𝑡)𝑑𝑡

𝑥∗

𝑥𝑗

|

≥ ‖𝑓‖∞ − |∫ ‖∑ 𝑐𝑘𝜑𝑘
′

𝑘∈ℤ𝑑

‖

∞

𝑑𝑡

𝑥∗

𝑥𝑗

| ≥ (𝑎 −
1

2
𝑏′𝛾(𝑋)) ‖𝑐‖∞. 

Since (𝑋) <
2𝑎

𝑏′
 , we have ℘∞ > 𝑎 −

1

2
𝑏′ ⋅

2𝑎

𝑏′
= 0. 

Corollary (5.1.38)[260]: Let 𝛷 be a sequence generated by the translates of a piecewise 

twice differentiable function 𝜑 ∈ 𝑊0,𝜔
1  such that 

𝑎‖𝑐‖∞ ≤ ‖∑𝑐𝑘𝜑𝑘
𝑘∈ℤ

‖

∞

≤ 𝑏‖𝑐‖∞   and  ‖∑𝑐𝑘𝜑𝑘
′′

𝑘∈ℤ

‖

∞

≤ 𝑏′′‖𝑐‖∞ 

for all 𝑐 ∈ 𝑐0(ℤ). Then every 𝑋 = {𝑥𝑗} that satisfies 𝛾(𝑋) = sup(𝑥𝑗+1 − 𝑥𝑗) < √
8𝑎

𝑏′′
 is a 

set of sampling for 𝑉𝑝(Φ) for all 𝑝 ∈ {0} ∪ [1,∞]. 
Proof. Using the same notation as in the proof of Theorem, we see that 𝑓′(𝑥∗) = 0 and, 

therefore 

|𝑓(𝑥𝑗)| = |∫ 𝑓
′(𝑡)𝑑𝑡 − 𝑓(𝑥∗)

𝑥∗

𝑥𝑗

| ≥ ‖𝑓‖∞ − |∫ ∫ 𝑓
′′(𝑢)𝑑𝑢𝑑𝑡

𝑥∗

𝑡

𝑥∗

𝑥𝑗

|

≥ ‖𝑓‖∞ −
𝑏′′

2
|𝑥∗ − 𝑥𝑗|

2
‖𝑐‖∞ ≥ (𝑎 −

1

8
𝑏′′𝛾2(𝑋))‖𝑐‖∞. 

At this point the statement easily follows. 

 In the next two examples we apply the above Theorem and its corollary to spaces 

generated by 𝐵-splines 𝛽1 = 𝜒[0,1] ∗ 𝜒[0,1] and 𝛽2 = 𝜒[0,1] ∗ 𝜒[0,1] ∗ 𝜒[0,1]. 

Example (5.1.39)[260]: Let 𝜑 = 𝛽1. This function satisfies the conditions of Theorem 

(5.1.37) with 𝑎 = 1 and 𝑏′ = 2. Hence, if 𝛾(𝑋) < 1, we have that 𝑋 is a set of sampling 

for 𝑉0(𝜑) with the lower bound 1 − 𝛾(𝑋). Using the estimates in the proof of Theorem 

(5.1.16) one can obtain explicit lower bounds for any 𝑉𝑝(𝜑), 𝑝 ∈ [1,∞] and a universal 

bound for all 𝑝 ∈ [1,∞].  
Example (5.1.40)[260]: Let 𝜑 = 𝛽2. This function satisfies the conditions of Corallary 

(5.1.38) with 𝑎 =
1

2
 and  𝑏′′ = 4. Hence, if  𝛾(𝑋) < 1, we have that 𝑋 is a set of 

sampling for 𝑉0(𝜑) with the lower bound 
1

2
(1 − 𝛾2(𝑋)). Again, Using the estimates in 

the proof of Theorem (5.1.16) one can obtain explicit lower bounds for any 𝑉𝑝(𝜑), 𝑝 ∈
[1,∞] and a universal bound for all 𝑝 ∈ [1,∞]. 
 Slanted matrices have also been studied in wavelet theory and signal processing 

(see Bratteli and Jorgensen [278], [277,279,284,293],). They also occur in 𝑘-theory of 

operator algebras and its applications to topology of manifolds [303]. the technique may 

be applied to these situations as well. Finally, the results may be useful in the study of 
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differential equations with unbounded operator coefficients similar to the ones described 

in [273,274,246]. 

Section (5.2): Hamiltonian Deformations of Gabor Frames 

The theory of Gabor frames (or Weyl-Heisenberg frames as they are also called) 

is a rich and expanding topic of applied harmonic analysis. It has numerous applications 

in time-frequency analysis, signal theory, and mathematical physics. We show a 

systematic study of the symplectic transformation properties of Gabor frames, both in 

the linear and nonlinear cases. Strangely enough, the use of symplectic techniques in the 

theory of Gabor frames is often ignored; one example (among many others) being 

Casazza’s seminal [311] on modern tools for Weyl-Heisenberg frame theory, where the 

word “symplectic” does not appear a single time. This is of course very unfortunate: it is 

a thumb-rule in mathematics and physics that when symmetries are present in a theory 

their use always leads to new insights in the mechanisms underlying that theory. To 

name just one single example, the study of fractional Fourier transforms belongs to the 

area of symplectic analysis and geometry; remarking this would avoid to many 

unnecessary efforts and complicated calculations. On the positive side, there are 

however (a few) exceptions to this refusal to include symplectic techniques in applied 

harmonic analysis: for instance, in Gröchenig’s treatise [330] the metaplectic 

representation is used to study various symmetries in time frequency analysis, and the 

recent by Pfander et al. [354] elaborates on earlier work [333] by Han and Wang, where 

symplectic transformations are exploited to study various properties of Gabor frames. 

We consider deformations of Gabor systems using Hamiltonian isotopies . A 

Hamiltonian isotopy is a curve (𝑓𝑡)0≤𝑡≤1 of diffeomorphisms of phase space ℝ2𝑛 

starting at the identity, and such that there exists a (usually time-dependent) 

Hamiltonian function 𝐻 such that (generalized) phase flow (𝑓𝑡
𝐻)𝑡 determined by the 

Hamilton equations  

�̇� = 𝜕𝑝𝐻(𝑥, 𝑝, 𝑡),          �̇� = −𝜕𝑥𝐻(𝑥, 𝑝, 𝑡)                             (21) 

consists of the mappings 𝑓𝑡 for 0 ≤ 𝑡 ≤ 1. In particular Hamiltonian isotopies consist of 

symplectomorphisms (or canonical transformations, as they are called in physics). 

Given a Gabor system 𝒢(𝜙, Λ) with window (or atom) 𝜙 and lattice Λ we want to find a 

working definition of the deformation of 𝒢(𝜙, Λ) by a Hamiltonian isotopy (𝑓𝑡)0≤𝑡≤1. 
While it is clear that the deformed lattice should be the image Λ𝑡 = 𝑓𝑡(Λ) of the original 

lattice Λ, it is less clear what the deformation 𝜙𝑡 = 𝑓𝑡(𝜙) of the window 𝜙 should be. A 

clue is however given by the linear case: assume that the mappings 𝑓𝑡 are linear, i.e. 

symplectic matrices 𝑆𝑡; assume in addition that there exists an infinitesimal symplectic 

transformation 𝑋 such that 𝑆𝑡 = 𝑒
𝑡𝑋 for 0 ≤ 𝑡 ≤ 1. Then (𝑆𝑡)𝑡 is the flow determined 

by the Hamiltonian function   

       𝐻(𝑥, 𝑝) = −
1

2
(𝑥, 𝑝)𝑇𝐽𝑋(𝑥, 𝑝)                                         (22) 

where 𝐽 is the standard symplectic matrix. it is well-known that in this case there exists 

a one-parameter group of unitary operators (�̂�𝑡)𝑡 satisfying the operator Schrödinger 

equation  

𝑖ℏ
𝑑

𝑑𝑡
�̂�𝑡 = 𝐻(𝑥, −𝑖ℏ𝜕𝑥)�̂�𝑡 

where the formally self-adjoint operator 𝐻(𝑥, −𝑖ℏ𝜕𝑥) is obtained by replacing formally 

𝑝 with −𝑖ℏ𝜕𝑥 in (22); the matrices 𝑆𝑡 and the operators �̂�𝑡 correspond to each other by 
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the metaplectic representation of the symplectic group. This suggests that we define the 

deformation of the initial window 𝜙 by 𝜙𝑡 = �̂�𝑡𝜙𝑡. It turns out that this definition is 

satisfactory, because it allows to recover, setting 𝑡 = 1, known results on the image of 

Gabor frames by linear symplectic transformations. This example is thus a good 

guideline; however one encounters difficulties as soon as one want to extend it to more 

general situations. While it is “reasonably” easy to see what one should do when the 

Hamiltonian isotopy consists of an arbitrary path of symplectic matrices, it is not clear 

at all what a “good” definition should be in the general nonlinear case: this is discussed, 

where we suggest that a natural choice would be to extend the linear case by requiring 

that 𝜙𝑡 should be the solution of the Schrödinger equation  

𝑖ℏ
𝑑

𝑑𝑡
𝜙𝑡 = �̂�𝜙𝑡 

associated with the Hamiltonian function 𝐻 determined by the equality (𝑓𝑡)0≤𝑡≤1 =
(𝑓𝑡
𝐻)0≤𝑡≤1; the Hamiltonian operator �̂� would then be associated with the function 𝐻 by 

using, for instance, the Weyl correspondence. Since the method seems to be difficult to 

study theoretically and to implement numerically, we propose what we call a notation of 

weak deformation, where the exact definition of the transformation 𝜙 ↦ 𝜙𝑡 of the 

window 𝜙 is replaced with a correspondence used in semiclassical mechanics, and 

which consists in propagating the “center” of a sufficiently sharply peaked initial 

window 𝜙 (for instance a coherent state, or a more general Gaussian) along the 

Hamiltonian trajectory. This definition coincides with the definition  already given in 

the linear case, and has the advantage of being easily computable using the method of 

symplectic integers since all what is needed is the knowledge of the phase flow 

determined by a certain Hamiltonian function. Finally we discuss possible extensions of 

our method. 

We notice that the notion of general deformations of Gabor frames is an ongoing 

topic in Gabor analysis; see for instance the recent contribution by Gröchenig et al. 

[332], also Feichtinger and Kaiblinger [320] where lattice deformations are studied. 

The generic point of the phase space ℝ2𝑛 ≡ ℝ𝑛 × ℝ𝑛 is denoted by 𝒵 = (𝑥, 𝑝) 
where we have set 𝑥 = (𝑥1, … , 𝑥𝑛), 𝑝 = (𝑝1, … , 𝑝𝑛). The scalar product of two vectors, 

say 𝑝 and 𝑥, is denoted by 𝑝 ⋅ 𝑥 or simply 𝑝𝑥. When matrix calculations are performed, 

𝒵, 𝑥, 𝑝 are viewed as column vectors.   

We will write 𝑑𝒵 = 𝑑𝑥𝑑𝑝 where 𝑑𝑥 = 𝑑𝑥1…𝑑𝑥𝑛 and 𝑑𝑝 = 𝑑𝑝1…𝑑𝑝𝑛. The 

scalar product on 𝐿2(ℝ2) is defined by  

(𝜓|𝜙) = ∫ 𝜓(𝑥)𝜙(𝑥)̅̅ ̅̅ ̅̅ ̅𝑑𝑥
ℝ𝑛

  

and the associated norm by ‖⋅‖. The Schwartz space of rapidly decreasing functions is 

denoted by 𝑆(ℝ𝑛) and its dual (the space of tempered distributions) by 𝑆′(ℝ𝑛). 
We review the basics of the modern theory of  Hamiltonian mechanics from the 

symplectic point of view; for details see [306,315,342,355]; we are following here the 

elementary accounts we have given in [325,327]. 

We will equip ℝ2𝑛 with the standard symplectic structure  

𝜎(𝒵,𝒵′) = 𝑝 ⋅ 𝑥′ − 𝑝′ ⋅ 𝑥; 

in matrix notation 𝜎(𝒵, 𝒵′) = (𝒵′)𝑇𝐽𝒵 where 𝐽 = (
0 1
−1 0

) (0 and 𝐼 are here the 𝑛 × 𝑛 

zero and identity matrices. The symplectic group of ℝ2𝑛 is denoted by 𝑆𝑃(𝑛); it consists 
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of all linear outomorphisms of ℝ2𝑛 such 𝜎(𝑆𝑧, 𝑆𝑧′) = 𝜎(𝑧, 𝑧′) for all 𝑧, 𝑧′ ∈ ℝ2𝑛. 

Working in the canonical basis 𝑆𝑃(𝑛) is identified with the group of all real 2𝑛 × 2𝑛 

matrices 𝑆 such that 𝑆𝑇𝐽𝑆 = 𝐽 (or, equivalently, SJ𝑆𝑇 = 𝐽). A diffeomorphism 𝑓:ℝ2𝑛 →
ℝ2𝑛 is called a symplectomorphism if the Jacobin matrix 𝐷𝑓(𝑧) is symplectic at every 

𝑧 ∈ ℝ2𝑛: 

𝐷𝑓(𝑧)𝑇𝐽𝐷𝑓(𝑧) = 𝐷𝑓(𝑧)𝐽𝐷𝑓(𝑧)𝑇 = 𝐽.                             (23) 
(Symplectomorphisms are often called “canonical transformations” in physics.) the 

symplectomorphisms of ℝ2𝑛 form a subgroup Symp(𝑛) of the group Diff(ℝ2𝑛) of all 

diffeomorphisms of ℝ2𝑛 (this follows from formula (23) above, using the chain rule). 

Of course Sp(𝑛) is a subgroub of Symp(𝑛).  
Let 𝐻 ∈ 𝐶∞(ℝ2𝑛 ×ℝ) be real-valued; we will call 𝐻 a Hamiltonian fuction. The 

associated Hamilton equations with initial data 𝑧′ at time 𝑡′ are  

�̇�(𝑡) = 𝐽𝜕𝑧𝐻(𝑧(𝑡), 𝑡),      𝑧(𝑡
′) = 𝑧′                                (24) 

(cf.Eqs. (21)). A ssuming existence and uniqueness of the solution for every choice of 

(𝑧′, 𝑡′) the time-dependent flow (𝑓𝑡,𝑡′
𝐻 ) is the family of mapping which associates to 

every initial 𝑧′ the value 𝑧(𝑡) = 𝑓𝑡,𝑡′
𝐻 (𝑧′) of the solution of (24). The importance of 

symplectic geometry in Hamiltonian mechanics comes from the following result: 

Proposition (5.2.1)[304]: Each diffeomorphism 𝑓𝑡,𝑡′
𝐻  is a symplectomorphism of  

ℝ2𝑛: 𝑓𝑡,𝑡′
𝐻 ∈ Symp(𝑛).  Equivalently  

       [𝐷𝑓𝑡
𝐻(𝑧)]𝑇𝐽𝐷𝑓𝑡

𝐻(𝑧) = 𝐷𝑓𝑡
𝐻(𝑧)𝐽[𝐷𝑓𝑡

𝐻(𝑧)]𝑇 = 𝐽                      (25) 
where 𝐷𝑓𝑡

𝐻(𝑧) is the Jacobian matrix of 𝑓𝑡
𝐻 calculated at 𝑧. 

Proof. See for instance [306,325,327]. 

It is common practice to write 𝑓𝑡
𝐻 = 𝑓𝑡,0

𝐻 . Obviously  

           𝑓𝑡,𝑡′
𝐻 = 𝑓𝑡,0

𝐻 (𝑓𝑡′,0
𝐻 )

−1
= 𝑓𝑡

𝐻(𝑓𝑡′
𝐻)
−1
                                    (26) 

and the 𝑓𝑡,𝑡′
𝐻  satisfy the groupoid property   

𝑓𝑡,𝑡′
𝐻 𝑓𝑡′,𝑡′′

𝐻 = 𝑓𝑡,𝑡′′ 
𝐻 ,     𝑓𝑡,𝑡

𝐻 = 𝐼𝑑                                        (27) 

for all 𝑡, 𝑡′ and 𝑡′′. Notice that it follows in particular that (𝑓𝑡,𝑡′
𝐻 )

−1
= 𝑓𝑡,𝑡′

𝐻 . 

A remarkable fact is that composition and inversion of Hamiltonian flows also 

yield Hamiltonian flows: 

Proposition (5.2.2)[304]: Let (𝑓𝑡
𝐻) and (𝑓𝑡

𝑘) be the phase flows determined by two 

Hamiltonian functions 𝐻 = 𝐻(𝑧, 𝑡) and 𝐾 = 𝐾(𝑧, 𝑡). We have 

𝑓𝑡
𝐻𝑓𝑡

𝑘 = 𝑓𝑡
𝐻#𝑘       𝑤𝑖𝑡ℎ 𝐻#𝐾(𝑧, 𝑡) = 𝐻(𝑧, 𝑡) + 𝐾((𝑓𝑡

𝐻)−1(𝑧), 𝑡).       (28) 

(𝑓𝑡
𝐻)−1 = 𝑓𝑡

�̅�      𝑤𝑖𝑡ℎ �̅�(𝑧, 𝑡) = −𝐻(𝑓𝑡
𝐻(𝑧), 𝑡).                                     (29) 

 Proof. It is based on the transformation properties of the Hamiltonian fields 𝑋𝐻 = 𝐽𝜕𝑧𝐻 

under diffeomorphisms; see [325,342,355] for detailed proofs. 

We notice that even if 𝐻 and 𝐾 are time-independent Hamiltonians the functions 

𝐻#𝐾 and �̅� are generically time-dependent. 

We will call a symplectomorphism 𝑓 such that 𝑓 = 𝑓𝑡
𝐻 for some Hamiltonian 

function 𝐻 and time 𝑡 = 1 a 𝐻amiltonian symplectomorphism. The choice of time 𝑡 =
1 in this definition is of course arbitrary, and can be replaced with any other choice 𝑡 =

𝑎 noting that we have 𝑓 = 𝑓𝑡
𝐻𝑎 where 𝐻𝑎(𝑧, 𝑡) = 𝑎𝐻(𝑧, 𝑎𝑡). 
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Hamiltonian symplectomorphisms form a subgroup Ham(𝑛) of the group 

Symp(𝑛) of all symplectomorphisms; it is in fact a normal subgroup of Symp(𝑛) as 

follows from the conjugation formula 

𝑔−1𝑓𝑡
𝐻𝑔 = 𝑓𝑡

𝐻∘𝑔
                                                 (30) 

valid for every symplectomorphisms 𝑔 of ℝ2𝑛 (see [342,325,327]). This formula is 

often expressed in Hamiltonian mechanics by saying that “Hamilton’s equations are 

covariant under canonical transformations”. That Ham(𝑛) is a group follows from the 

two formulas (28) and (29) in Proposition (5.2.2) above. 

The following result is, in spite of its simplicity, a deep statement about the 

structure of the group Ham(𝑛). It says that every continuous path of  Hamiltonian 

transformations passing through the identity is itself the phase flow determined by a 

certain Hamiltonian function. 

Proposition (5.2.3)[304]: Let (𝑓𝑡)𝑡 be a smooth one-parameter family of Hamiltonian 

transformations such that 𝑓0 = 𝐼𝑑 . There exists a Hamiltonian function 𝐻 = 𝐻(𝑧, 𝑡) 
such that 𝑓𝑡 = 𝑓𝑡

𝐻. More precisely, (𝑓𝑡)𝑡 is the phase flow determined by the 

Hamiltonian function  

𝐻(𝑧, 𝑡) = −∫𝑧𝑇𝐽(�̇�𝑡 ∘ 𝑓𝑡
−1)(𝜆𝑧)𝑑𝜆

1

0

                            (31) 

Where �̇�𝑡 = 𝑑𝑓𝑡 𝑑𝑡⁄ . 

Proof.  See Banyaga [308]; Wang [361] gives an elementary proof of formula (31). 

We will call a smooth path (𝑓𝑡) in Ham(𝑛) joining the identity to some element 

𝑓 ∈ Ham(𝑛) 𝐻amiltonian isotopy. Proposition (5.2.3)  above says that every 

Hamiltonian isotopy is a Hamiltonian flow restricted to sometime interval.  

Consider in particular the case of the symplectic Sp(𝑛). We claim that every path 

in Sp(𝑛) joining an element 𝑆 ∈ Sp(𝑛) to the identity is a Hamiltonian isotopy. Since 

Sp(𝑛) is connected there exists a 𝐶1 path 𝑡 ↦ 𝑆𝑡 , 0 ≤ 𝑡 ≤ 1 (in fact infinitely many) 

joining the identity to 𝑆 in Sp(𝑛). in view of Proposition (5.2.3) above there exists a 

Hamiltonian function 𝐻 such that 𝑆𝑡 = 𝑓𝑡
𝐻. The following result gives an explicit 

description of that Hamiltonian without using formula (31): 

Proposition (5.2.4)[304]: Let 𝑡 ↦ 𝑆𝑡 , 0 ≤ 𝑡 ≤ 1, be a Hamiltonian isotopy in Sp(𝑛). 
There exists a Hamiltonian function 𝐻 = 𝐻(𝑧, 𝑡) such that 𝑆𝑡 is the phase flow 

determinant by the Hamilton equations  �̇� = 𝐽𝜕𝑧𝐻. Writing  

𝑆𝑡 = (
𝐴𝑡 𝐵𝑡
𝐶𝑡 𝐷𝑡

)                                                  (32) 

The Hamiltonian function is the quadratic form 

 𝐻 =
1

2
(�̇�𝑡𝐶𝑡

𝑇 − �̇�𝑡𝐷𝑡
𝑇)𝑥2 + (�̇�𝑡𝐴𝑡

𝑇 − �̇�𝑡𝐵𝑡
𝑇)𝑝 ⋅ 𝑥 +

1

2
(�̇�𝑡𝐴𝑡

𝑇 − �̇�𝑡𝐵𝑡
𝑇)𝑃2   (33) 

where �̇�𝑡 = 𝑑𝐴𝑡 𝑑𝑡⁄ , etc. 

Proof. The matrices 𝑆𝑡 being symplectic we have 𝑆𝑡
𝑇𝐽𝑆𝑡 = 𝐽 Differentiating both sides 

of this equality with respect to 𝑡 we get �̇�𝑡
𝑇𝐽𝑆𝑡 + 𝑆𝑡

𝑇𝐽�̇�𝑡 = 0 or, equivalently,  

𝐽�̇�𝑡𝑆𝑡
−1 = −(𝑆𝑡

𝑇)−1�̇�𝑡
𝑇𝐽 = (𝐽�̇�𝑡𝑆𝑡

−1)
𝑇
  

This equality can be rewritten 𝐽�̇�𝑡𝑆𝑡
−1 = (𝐽�̇�𝑡𝑆𝑡

−1)
𝑇
 hence the matrix 𝐽�̇�𝑡𝑆𝑡

−1 is 

symmetric. Set 𝐽�̇�𝑡𝑆𝑡
−1 = 𝑀𝑡(= 𝑀𝑡

𝑇); then  

�̇�𝑡 = 𝑋𝑡𝑆𝑡 ,      𝑋𝑡 = −𝐽𝑀𝑡                                           (34) 
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(these relations reduce to 𝑆𝑡 = 𝑒
𝑡𝑥 when 𝑀𝑡 is time-independent: see (47)   below). 

Define now  

𝐻(𝑧, 𝑡) = −
1

2
𝑧𝑇(𝐽𝑋𝑡)𝑧;                                           (35)  

using (34) one verifies that the phase flow determined by 𝐻 consists precisely of the 

symplectic matrices 𝑆𝑡 and that 𝐻 is given by formula (33). 

Symplectic integrators are designed for the numerical solution of Hamilton’s 

equations; they are algorithms which preserve the symplectic character of Hamiltonian 

flows. The literature on the topic is immense; a well-cited is channel and Scovel [312]. 

Among many recent contributions, a highlight is [344] by Kang Feng and Mengzhao 𝑄 

in; also see the comprehensive by Xue-Shen Liu et al. [364], and Marsden’s online 

lecture notes [351, Chapter 9]. 

Let (𝑓𝑡
𝐻) be a Hamiltonian flow; let us first assume that 𝐻 is time-independent so 

that we have the one-parameter group property 𝑓𝑡
𝑇𝑓𝑡′

𝑇 = 𝑓𝑡+𝑡′
𝐻 . Choose an initial value 𝑧0 

at time 𝑡 = 0. A mapping 𝑓∆𝑡 on ℝ2𝑛 is an algorithm with time step-size ∆𝑡 for (𝑓𝑡
𝐻) if 

we have 

𝑓∆𝑡
𝐻(𝑧) = 𝑓∆𝑡(𝑧) + 𝑂(∆𝑡

𝑘); 

the number 𝑘 (usually an integer ≥ 1) is called the order of the algorithm. In the theory 

of Hamiltonian systems one requires that 𝑓∆𝑡 be a symplectomorphism; 𝑓∆𝑡 is then called 

a symplectic integrator. One of the basic properties one is interested in is convergence: 

setting ∆𝑡= 𝑡 𝑁⁄  (𝑁 an integer) when do we have lim
𝑁→∞

(𝑓𝑡 𝑁⁄ )
𝑁
(𝑧) = 𝑓𝑡

𝐻(𝑧)? One 

important requirement is stability, i.e. (𝑓𝑡 𝑁⁄ )
𝑁
(𝑧) must remain close to 𝑧 for small 𝑡 

(Chorin et al. [313]). 

Here are two elementary examples of symplectic integrators. We assume that the 

Hamiltonian 𝐻 has the physical form 

𝐻(𝑥, 𝑝) = 𝑈(𝑝) + 𝑉(𝑥).  
(i) First order algorithm, one defines (𝑥𝑘+1, 𝑝𝑘+1) = 𝑓∆𝑡(𝑥𝑘, 𝑝𝑘) by 

𝑥𝑘+1 = 𝑥𝑘 + 𝜕𝑝𝑈(𝑝𝑘 − 𝜕𝑥𝑉(𝑥𝑘)∆𝑡)∆𝑡  

𝑝𝑘+1 = 𝑝𝑘 − 𝜕𝑥𝑉(𝑥𝑘)∆𝑡.                           
(ii) Second order algorithm Setting  

𝑥𝑘
′ = 𝑥𝑘 +

1

2
𝜕𝑝𝑈(𝑝𝑘)  

We take 

𝑥𝑘+1 = 𝑥𝑘 +
1

2
𝜕𝑝𝑈(𝑝𝑘)  

𝑝𝑘+1 = 𝑝𝑘 − 𝜕𝑥𝑉(𝑥𝑘
′ )∆𝑡.  

One can show, using Proposition (5.2.3) that both schemes are not only 

symplectic, but also Hamiltonian (Wang [361]). For instance, for the first order 

algorithm described above, we have 𝑓∆𝑡 = 𝑓∆𝑡
𝑘  where 𝑘 is the now time-dependent 

Hamiltonian 

𝐾(𝑥, 𝑝, 𝑡) = 𝑈(𝑝) + 𝑉(𝑥 − 𝜕𝑝𝑈(𝑝)𝑡).                             (36) 

When the Hamiltonian 𝐻 is itself time-dependent its flow does no longer enjoy 

the group property 𝑓𝑡
𝐻𝑓𝑡′

𝐻 = 𝑓𝑡+𝑡′
𝐻 , so one has to redefine the notion of algorithm in 

some way. This can be done by considering the time-dependent flow (𝑓𝑡+𝑡′
𝐻 ) defined by 
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(26) : 𝑓𝑡+𝑡′
𝐻 = 𝑓𝑡

𝐻(𝑓𝑡′
𝐻)
−1

. One then uses the following trick: define the suspended flow 

(𝑓𝑡
𝐻)̃ by the formula  

𝑓𝑡
�̃�(𝑧′, 𝑡′) = (𝑓𝑡+𝑡′

𝐻 (𝑧′), 𝑡 + 𝑡′);                                 (37) 

One verifies that the mappings 𝑓𝑡
�̃�: ℝ2𝑛 ×ℝ → ℝ2𝑛 ×ℝ (the “extended phase space“) 

satisfy the one-parameter group law 𝑓𝑡
�̃�𝑓𝑡′

�̃� = 𝑓𝑡+𝑡′
�̃�  and one may then define a notion of 

algorithm approximating 𝑓𝑡
�̃�(see Struckmeier [359] for a detailed study of the extended 

phase space approach to Hamiltonian dynamics). For details see [313] by Chorin et al. 

where a general Lie-Trotter is developed. 

Gabor frames are a generalization of the usual notion of basis; see for instance 

Grochenig [330], Feichtinger and Grochenig [319], Balan et al. [307], Heil [337], 

Casazza [311] for a detailed treatment of this topic. In what follows we give a slightly 

modified version of the usual definition, better adapted to the study of symplectic 

symmetries. 

let 𝜙 be an a non-zero square integrable function (hereafter called window) on 

ℝ𝑛, and a lattice Λ in ℝ2𝑛, i.e a discrete subset of ℝ2𝑛. Observe that we do not require 

that Λ be regular (i.e a subgroup of ℝ2𝑛). The associated ℏ − 𝐺𝑎𝑏𝑜𝑟 system is the set of 

square-integrable functions  

𝐺(𝜙, Λ) = {�̂�ℎ(𝑧)𝜙: 𝑧 ∈ Λ}  

where �̂�ℎ(𝑧) = 𝑒−𝑖𝜎(�̂�,𝑧)/ℏ is the Heisenberg operator. The action of this operator is 

explicitly given by the formula 

�̂�ℏ(𝑧0)𝜙(𝑥) = 𝑒
𝑖(𝑝0𝑥−𝑝0𝑥0 2⁄ )/ℏ

ℎ 𝜙(𝑥 − 𝑥0)                           (38) 
(see e.g [325,327,348]) .We will call the Gabor system 𝒢(𝑔, Λ) a ℏ-frame for 𝐿2(ℝ2), if 
there exist constants 𝑎, 𝑏 > 0 ( the frame bounds) such that  

𝑎‖𝜓‖2 ≤ ∑|(𝜓|�̂�ℎ(𝑧0)𝜙)|
2

𝑧0∈Λ

≤ 𝑏‖𝜓‖2                          (39) 

for every square integrable function 𝜓 on ℝ𝑛. When 𝑎 = 𝑏 the ℏ-frame 𝒢(𝑔, Λ) is said 

to be tight. 

For the choice ℏ = 1 2𝜋⁄  the notion of  ℏ-Gabor frame coincides with the usual 

notion of Gabor frame as found in the literature. In fact, in this case, writing �̂�(𝑧) =

�̂�1 2𝜋⁄  (𝑧) and 𝑝 = 𝜔, we have  

|(𝜓|�̂� (𝑧)𝜙)| = |(𝜓|𝜏(𝑧)𝜙)| 
where 𝒯(𝑧) is the time-frequency shift operator defined by  

𝒯(𝑧0)𝜙(𝑥) = 𝑒
2𝜋𝑖𝜔0𝑥𝜙(𝑥 − 𝑥0) 

for 𝑧0 = (𝑥0, 𝜔0). The two following elementary results can be used to toggle between 

both definitions: 

 Proposition (5.2.5)[304]: Let 𝐷ℏ = (
1 0
0 2𝜋ℎ𝐼

). The system 𝒢(𝜙, Λ) is a Gabor frame 

if and only if 𝒢(𝜙, 𝐷ℏΛ) is a ℎ-Gabor frame. 

Proof. We have �̂�ℏ(𝑥0, 2𝜋ℎ𝑝0) = �̂�(𝑥0, 𝑝0) where �̂�(𝑥0, 𝑝0) = �̂�
1 2𝜋⁄ (𝑥0, 𝑝0).by 

definition 𝒢(𝜙, Λ) is a Gabor  frame if and only if  

𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�(𝑧0)𝜙)|
2

𝑧0∈Λ ≤ 𝑏‖𝜓‖2  

for every 𝜓 ∈ 𝐿2(ℝ𝑛) that is  
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𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�(𝑥0, 𝑝0)𝜙)|
2

(𝑥0,𝑝0)∈Λ ≤ 𝑏‖𝜓‖2;  

this inequality is equivalent to  

𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�ℎ(𝑥0, 2𝜋ℏ𝑝0)𝜙)|
2

(𝑥0,𝑝0)∈Λ ≤ 𝑏‖𝜓‖2  

that is to 

𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�ℎ(𝑥0, 𝑝0)𝜙)|
2

(𝑥0,(2𝜋ℏ )
−1𝑝0)∈Λ ≤ 𝑏‖𝜓‖2  

hence the result since (𝑥0, (2𝜋ℏ )
−1𝑝0) ∈ Λ is equivalent to the condition (𝑥0, 𝑝0) ∈

𝐷ℏΛ. 

We can also rescale simultaneously the lattice and the window (which amounts to 

a “change of Planck’s constant”): 

Proposition (5.2.6)[304]: Let 𝒢(𝜙, Λ) be a Gabor system, and set 

𝜙ℏ(𝑥) = (2𝜋ℏ )−𝑛 2⁄ 𝜙(𝑥 √2𝜋ℎ⁄ ).                              (40) 

Then 𝒢(𝜙, Λ) is a frame if and only if  𝒢(𝜙ℏ, √2𝜋ℏΛ) is a ℏ-frame. 

Proof. We have 𝜙ℏ = �̂�1 √2𝜋ℏ𝐼,0⁄ 𝜙 where �̂�1 √2𝜋ℏ𝐼,0⁄ ∈ Mp(𝑛) has projection   

𝑀1 √2𝜋ℏ⁄ = (
(2𝜋ℏ)1 2⁄ 𝐼 0

0 (2𝜋ℏ)−1 2⁄ 𝐼
)  

On Sp(𝑛). the Gabor system 𝒢(𝜙ℏ, √2𝜋ℏΛ) is a ℏ-frame if and only  

𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�(𝑧0)�̂�1 √2𝜋ℏ𝐼,0⁄ 𝜙)|
2

𝑧0∈√2𝜋ℏΛ
≤ 𝑏‖𝜓‖2  

for every 𝜓 ∈ 𝐿2(ℝ𝑛), that is, taking the symplectic covariance formula (41) into 

account, if and only if    

𝑎‖𝜓‖2 ≤ ∑ |(�̂�√2𝜋ℏ𝐼,0𝜓|�̂�((2𝜋ℏ)
−1 2⁄ 𝑥0, (2𝜋ℏ)

−1 2⁄ 𝑝0)𝜙)|
2

𝑧0∈√2𝜋ℏΛ
≤ 𝑏‖𝜓‖2.  

But this is inequality is equivalent to  

𝑎‖𝜓‖2 ≤ ∑ |(𝜓|�̂�(𝑧0)𝜙)|
2

𝑧0∈𝐷
ℏΛ ≤ 𝑏‖𝜓‖2.  

And one concludes using Proposition (5.2.5). 

Gabor frames behave well under symplectic transformations of the lattice (or, 

equivalently, under metaplectic transformations of the window). Formula (41) bellow 

will play a fundamental role in our transformations, and metaplectic operators. Let �̂� ∈

𝑀𝑝(𝑛) have projection 𝜋ℏ(�̂�) = 𝑆 ∈ Sp(𝑛). Then     

�̂�ℏ(𝑧)�̂� = �̂��̂�ℏ(𝑆−1𝑧)                                          (41) 
(see e.g. [325,327,348]); one easy way to derive this intertwining relation is to show it 

separately for each generator 𝐽, �̂�𝐿,𝑚, �̂�𝑃 of the metaplectic group described in formula 

(81), (82), (83). We remark the time-frequency shift operators do not satisfy any 

simple analogue of property (41). As a consequence, the covariance properties we will 

study below do not appear in any “abvious” way when using the standard tools of Gabor 

analysis. 

The following result is well-known, and appears in many places (see e.g. 

Grochenig [330], Pfander et al. [354], Luo [349]). Our proof is somewhat simpler since 

it exploits the symplectic covariance property of the Heisenberge-Weyl operators, 

which we explain now. 

Proposition (5.2.7)[304]: Let 𝜙 ∈ 𝐿2(ℝ𝑛) (or 𝜙 ∈ 𝑆(ℝ𝑛)). A Gabor system 𝒢(𝜙, Λ) is 

a ℏ-frame if and only if 𝒢(�̂�𝜙, 𝑆Λ) is a ℏ-frame; when this is the case both frames have 

the same bounds. In particular, 𝒢(𝜙, Λ) is a tight ℏ-frame if and only if  𝒢(�̂�𝜙, 𝑆Λ) is. 
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Proof. Using formula (41) intertwining metaplectic and Heisenberg-Weyl operators we 

have  

∑ |(𝜓|�̂�ℏ(𝑧)�̂�𝜙)|
2
= ∑ |(𝜓|�̂��̂�ℏ(𝑆−1𝑧)𝜙)|

2
𝑧∈𝑆Λ𝑧∈𝑆Λ   

                                  = ∑ |(�̂�−1𝜓|�̂�ℏ(𝑧)𝜙)|
2

𝑧∈Λ   

and hence, since 𝒢(𝜙, Λ) is a ℏ-frame,  

𝑎‖�̂�−1𝜓‖
2
≤ ∑ |(𝜓|�̂�ℏ(𝑧)�̂�𝜙)|

2
𝑧∈𝑆Λ ≤ 𝑏‖�̂�−1𝜓‖

2
 .  

The result follows since ‖�̂�−1𝜓‖ = ‖𝜓‖ because metaplectic operatoes are unitary; the 

case 𝜙 ∈ 𝑆(ℝ𝑛) is similar since metaplectic operators are linear automorphisms of  

𝑆(ℝ𝑛). 
The problem of constructing Gabor frames 𝒢(𝜙, Λ) in 𝐿2(ℝ𝑛) with an arbitrary 

window 𝜙 and lattice Λ is difficult and has been tackled by many (see [331], also 

[354]).Very little is known about the existence of frames in the general case. We 

however have the following characterization of Gaussian frames which extends a 

classical result of Lyubarskii [320] and Seip and Wallsten[357]: 

Proposition (5.2.8)[304]: Let 𝜙0
ℏ(𝑥) = (𝜋ℏ)−𝑛 4⁄ 𝑒−|𝑥|

2 2ℏ⁄  (the standard centered 

Gaussian) and Λ𝛼𝛽 = 𝛼ℤ
𝑛 × 𝛽ℤ𝑛 with 𝛼 = (𝛼1, … , 𝛼𝑛) and 𝛽 = (𝛽1, … , 𝛽𝑛). Then 

𝒢(𝜙0
ℏ, Λ𝛼𝛽) is a frame if and only if 𝛼𝑗𝛽𝑗 < 2𝜋ℏ for 1 ≤ 𝑗 ≤ 𝑛.  

Proof. Bourouihiya [309] showes this for ℏ = 1 2𝜋⁄ ; the result for arbitrary ℏ > 0 

follows using Proposition (5.2.6). 

It turns out that using the result above one can construct infinitely many 

symplectic Gaussian frames using the theory of metaplectic operators: 

Proposition (5.2.9)[304]: Let 𝜙0
ℏ be the standard Gaussian. The Gabor system 

𝒢(𝜙0
ℏ, Λ𝛼𝛽) is a frame if and only if 𝒢(�̂�𝜙0

ℏ, 𝑆Λ𝛼𝛽) is a frame (with same bounds) for 

every �̂� ∈ Mp(𝑛). Writing 𝑆 in block-matrix form (
𝐴 𝐵
𝐶 𝐷

) the window �̂�𝜙0
ℏ is the 

Gaussian  

                        �̂�𝜙0
ℏ(𝑥) = (

1

𝜋ℏ
)
𝑛 4⁄
(det𝑋)1 4⁄ 𝑒−

1

2ℏ
(𝑋+𝑖𝑌)𝑥∙𝑥                           (42) 

where  

𝑋 = −(𝐶𝐴𝑇 + 𝐷𝐵𝑇)(𝐴𝐴𝑇 + 𝐵𝐵𝑇)−1                              (43) 
  𝑌 = (𝐴𝐴𝑇 + 𝐵𝐵𝑇)−1                                                           (44) 

are symmetric matrices, and 𝑋 > 0. 

Proof. That 𝒢(𝜙0
ℏ, Λ𝛼𝛽) is a frame if and only if  𝒢(�̂�𝜙0

ℏ, 𝑆Λ𝛼𝛽) is a frame follows from 

Proposition (5.2.7). To calculate �̂�𝜙0
ℏ 

Let us choose ℏ 2𝜋⁄  and consider the rotations 

𝑆𝑡 = (
cos 𝑡   sin 𝑡
− sin 𝑡 cos 𝑡

)                                             (25)  

(we assume 𝑛 = 1). The matrices 𝑆𝑡 form a one-parameter subgroup of the symplectic 

group Sp(1). To (𝑆𝑡) corresponds a unique one-parameter subgroup (�̂�𝑡) of the 

metaplectic group Mp(1) such that 𝑆𝑡 = 𝜋
1 2𝜋⁄ (�̂�𝑡). (�̂�𝑡𝜙) is explicitely given for 𝑡 ≠

𝑘𝜋 (𝑘 integer) by  

�̂�𝑡𝜙(𝑥) = 𝑖
𝑚(𝑡) (

1

2𝜋𝑖|sin 𝑡|
)
1 2⁄

∫ 𝑒2𝜋𝑖𝑊(𝑥,𝑥
′,𝑡)𝜙(𝑥′)𝑑𝑥′

∞

−∞
  

where 𝑚(𝑡) is an integer (the “Maslov index”) and 
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𝑊(𝑥, 𝑥′, 𝑡) =
1

2 sin 𝑡
((𝑥2 + 𝑥′2) cos 𝑡 − 2𝑥𝑥′). 

The metaplectic operators �̂�𝑡 are the “fractional Fourier transforms” familiar from 

time-frequency analysis (see e.g Almedia [305], Namias [352]). The argumentation 

above clearly shows that the study of these fractional Fourier transforms belong to the 

area of symplectic and metaplectic analysis and geometry. 

Applying Proposition (5.2.7) we recover without any calculation the results of 

Kaiser [343, Theorem 1 and Corollary 2] about rotations of Gabor frames; in the 

notation: 

Corollary (5.2.10)[304]: Let 𝒢(𝜙, Λ) be a frame; then 𝒢(�̂�𝑡𝜙, 𝑆𝑡Λ) is a frame for every 

𝑡 ∈ ℝ. 

Notice that fractional Fourier transforms (and their higher-dimensional 

generalizations) are closely related to the theory of the quantum mechanical harmonic 

oscillator: the metaplectic operators �̂�𝑡 are solutions of the operator Schrödinger 

equation 

𝑖ℏ
𝑑

𝑑𝑡
�̂�𝑡 =

1

2
(−ℏ2

𝑑2

𝑑𝑥2
+ 𝑥2) �̂�𝑡. 

The symplectic covariance property of Gabor frames studied above can be 

interpreted as a first result on Hamiltonian deformations of frames because, as we will 

see, every symplectic matrix is the value of the flow (at some time 𝑡) of  Hamiltonian 

function which is a homogeneous quadratic polynomial (with time-depending 

coefficients) in the variables 𝑥𝑗 , 𝑝𝑘 . We will in fact extend this result to deformations by 

affine flows corresponding to the case where the Hamiltonian is an arbitrary quadratic 

function of these coordinates. 

The first example (the fractional Fourier transform) can be interpreted as a 

statement about continuous deformations of Gabor frames. For instance, assume that 

𝑆𝑡 = 𝑒
𝑡𝑥, 𝑋 in the Lie algebra  𝔰𝔭(𝑛) of the symplectic goup Sp(𝑛) (it is the algebra of 

all 2𝑛 × 2𝑛 matrices 𝑋 such that 𝑋𝐽 + 𝐽𝑋𝑇 = 0; when 𝑛 = 1 this condition reduces to 

Tr𝑋 = 0; see e.g. [322,325]). The family  (𝑆𝑡) can be identified with the flow 

determined by the Hamilton equations �̇� = 𝐽𝜕𝑧𝐻 where  

𝐻(𝓏) = −
1

2
𝓏𝑇(𝐽𝑋)𝓏                                            (46) 

is a quadratic polynomial in the variables 𝑥𝑗 , 𝑝𝑘 (cf. formula (35)). That flow satisfies 

the matrix differential equation  
𝑑

𝑑𝑡
𝑆𝑡 = 𝑋𝑆𝑡 .                                                    (47) 

We now make the following fundamental observation: in view of the unique lifting 

property of covering spaces, to the path of symplectic matrices 𝑡 ⟼ 𝑆𝑡 , 0 ≤ 𝑡 ≤ 1, 

corresponds a unique path 𝑡 ⟼ �̂�𝑡 , 0 ≤ 𝑡 ≤ 1, of metaplectic operators such that �̂�0 =
𝐼𝑑 and �̂�1 = �̂� it can be shown that this path satisfies the operator Schrödinger equation  

𝑖ℏ
𝑑

𝑑𝑡
�̂�𝑡 = �̂��̂�𝑡                                                     (48) 

Where �̂� is the Weyl quantization of function 𝐻 (for a detailed discussion of the 

correspondence between symplectic and metaplectic pathes see de Gosson [325,327], 

Leray [347]; it is also hinted at in at Folland [322]). Collecting these facts, one sees that 
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𝒢(�̂�𝜙0
ℏ, 𝑆Λ𝛼𝛽) is obtained from the initial Gabor frame 𝒢(𝜙0

ℏ, Λ𝛼𝛽) by a smooth 

deformation  

𝑡 ↦ 𝒢(�̂�𝑡𝜙0
ℏ, 𝑆𝑡Λ𝛼𝛽),      0 ≤ 𝑡 ≤ 1.                                     (49) 

Let 𝑆 be an arbitrary element of the symplectic group Sp(𝑛). Such an element can in 

general no longer be written as an exponential 𝑒𝑋, 𝑋 ∈ 𝔰𝔭(𝑛), so we cannot define an 

isotopy joining 𝐼𝑑 to 𝑆 by the formula 𝑆𝑡 = 𝑒
𝑡𝑋. However, in view of Proposition 

(5.2.4), such an isotopy 𝑡 ↦ 𝑆𝑡 exists (but it does not satisfy the group property 𝑆𝑡𝑆𝑡′ =
𝑆𝑡+𝑡′ as in the case 𝑆𝑡 = 𝑒

𝑡𝑥). Exactly as above , to this isotopy corresponds a path 𝑡 ↦
�̂�𝑡 of metaplectic operators such that �̂�0 = 𝐼𝑑 and �̂�1 = �̂�, and this path again satisfies a 

Schrödinger equation (48) where the explicit form of the Hamiltonian function is given 

by formula (33) in Proposition (5.2.4). Thus, it makes sense to consider smooth 

deformations (49) for arbitrary symplectic isotopies. This situation will be generalized 

to the nonlinear case later. 

A particular simple example of transformation is that of the translations 

𝑇(𝓏0): 𝓏 ↦ 𝓏 + 𝓏0 in ℝ2𝑛. On the operator level they correspond to the Heisenberg – 

Weyl operators �̂�ℏ(𝓏0). This correspondence is very easy to the understand in terms of 

“quantization”: for fixed 𝓏0 consider the Hamiltonian function  

𝐻(𝓏) = 𝜎(𝓏, 𝓏0) = 𝑝 ⋅ 𝑥0 − 𝑝0 ⋅ 𝑥  

The associated Hamilton equations are just �̇� = 𝑥0, �̇� = 𝑝0 whose solutions are 𝑥(𝑡) =
𝑥(0) + 𝑡𝑥0 and 𝑝(𝑡) = 𝑝(0) + 𝑡𝑝0, that is 𝓏(𝑡) = 𝑇(𝑡𝓏0)𝓏(0). Let now 

�̂� = 𝜎(�̂�, 𝓏0) = (−𝑖ℏ𝜕𝑥) ⋅ 𝑥0 − 𝑝0 ⋅ 𝑥 

be the “quantization” of  𝐻, and consider the Schrödinger equation 

𝑖ℏ𝜕𝑡𝜙 = 𝜎(�̂�, 𝓏0)𝜙 

Its solution is given by  

                       𝜙(𝑥, 𝑡) = 𝑒−𝑡𝜎(�̂�,𝓏0) ℏ⁄ 𝜙(𝑥, 0) = �̂�ℏ(𝑡𝓏0)𝜙(𝑥, 0)  
( the second equality can be verified by a direct calculation, or using the Campbell-

Hausdorff formula [322,325,327,348]). 

Translations act in a particularly simple way on Gabor frames; writing 𝑇(𝓏1)𝐴 =
𝐴 + 𝓏1 we have: 

Proposition (5.2.11)[304]: Let 𝓏0, 𝓏1 ∈ ℝ
2𝑛. A Gabor system 𝒢(𝜙, Λ) is a ℏ-frame if 

and only if 𝒢(�̂�ℏ(𝓏0)𝜙, 𝑇(𝓏1)Λ) is a ℏ-frame; the frame bounds are in this case same 

for all values of 𝓏0, 𝓏1. 

Proof. We will need the following well-known [322,325,327,348] properties of the 

Heisenberge –Weyl operators: 

�̂�ℏ(𝓏)�̂�ℏ(𝓏′) = 𝑒𝑖𝜎(𝓏,𝓏
′)/ℏ�̂�ℏ(𝓏)�̂�ℏ(𝓏′)                               (50) 

�̂�ℏ(𝓏 + 𝓏′) = 𝑒−𝑖𝜎(𝓏,𝓏
′)/ℏ�̂�ℏ(𝓏)�̂�ℏ(𝓏′).                            (51) 

Assume first 𝓏1 = 0 and let us show that 𝒢(�̂�ℏ(𝓏0)𝜙, Λ) is a ℏ-frame if and only if  

𝒢(𝜙, Λ) is. We have, using formula (50) and the unitary of �̂�ℏ(𝓏0),  

∑|(𝜓|�̂�ℏ(𝑧)�̂�ℏ(𝑧0)𝜙)|
2

𝑧∈Λ

=∑|(𝜓|𝑒𝑖𝜎(𝑧,𝑧
′)/ℏ�̂�ℏ(𝑧0)�̂�

ℏ(𝑧)𝜙)|

𝑧∈Λ

=∑|(𝜓|�̂�ℏ(𝑧0)�̂�
ℏ(𝑧)𝜙)|

𝑧∈Λ

=∑|(�̂�ℏ(−𝑧0)𝜓|�̂�
ℏ(𝑧)𝜙)|

𝑧∈Λ

; 

it follows that the inequality   
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𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℏ(𝑧)�̂�ℏ(𝑧0)𝜙)|
2

𝑧∈Λ

≤ 𝑏‖𝜓‖2 

is equivalently to  

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℏ(𝑧)𝜙)|
2

𝑧∈Λ

≤ 𝑏‖𝜓‖2 

hence our claim in the case 𝑧1 = 0. We next assume that 𝑧0 = 0; we have, using this 

time formula (51), 

∑ |(𝜓|�̂�ℏ(𝑧)𝜙)|
2

𝑧∈𝑇(𝑧1)Λ

=∑|(𝜓|�̂�ℏ(𝑧 + 𝑧1)𝜙)|
2

𝑧∈Λ

=∑|(𝜓|�̂�ℏ(𝑧1)�̂�
ℏ(𝑧))𝜙)|

2

𝑧∈Λ

=∑|�̂�ℏ(−𝑧1)𝜓|�̂�
ℏ(𝑧)𝜙)|

2

𝑧∈Λ

 

and one conclude as in the case 𝑧1 = 0. The case of arbitrary 𝑧0, 𝑧1 immediately 

follows. 

Identifying the group of translations with ℝ2𝑛 the inhomogeneous (or affine) 

symplectic group ISp(𝑛) is the semi-direct product Sp(𝑛) × ℝ2𝑛 (see [310, 322,325]); 

the group law is given by  

(𝑆, 𝑧)(𝑆′, 𝑧) = (𝑆𝑆′, 𝑧 + 𝑆𝑧′). 
Using the conjugation relation (cf. (41)) 

𝑆−1𝑇(𝑧0)𝑆 = 𝑇(𝑆
−1𝑧0)                                           (52) 

one checks that ISp(𝑛) is isomorphic to the group of all affine transformations of  ℝ2𝑛 

of the type 𝑆𝑇(𝑧0) (or 𝑇(𝑧0)𝑆) where 𝑆 ∈ Sp(𝑛). 
The group ISp(𝑛) appears in a natural way when one considers Hamiltonians of 

the type  

𝐻(𝑧, 𝑡) =
1

2
𝑀(𝑡)𝑧 ⋅ 𝑧 + 𝑚(𝑡) ⋅ 𝑧                                       (53) 

where 𝑀(𝑡) is symmetric and 𝑚(𝑡) is a vector. In fact, he phase flow determined by the 

Hamilton equation’s for (53) consist of elements of ISp(𝑛). Assume for instance that 

the coefficients 𝑀 and 𝑚 are time-independent; the solution of  Hamilton’s equations 

�̇� = 𝐽𝑀𝑧 + 𝐽𝑚 is  

𝑧𝑡 = 𝑒
𝑡𝐽𝑀𝑧0 + (𝐽𝑀)

−1(𝑒𝑡𝐽𝑀 − 𝐼)𝐽𝑀                                   (54) 
provided that det𝑀 ≠ 0. When det𝑀 = 0 the solution (54) is still formally valid and 

depends on the nilpotency degree of 𝑋 = 𝐽𝑀. Since 𝑋 = 𝐽𝑀 ∈ 𝔰𝔭(𝑛) we have 𝑠𝑡 =
𝑒𝑡𝑥 ∈ 𝑆𝑝(𝑛); setting 𝜉𝑡 = 𝑋

−1(𝑒𝑡𝑥 − 𝐼)𝑢 the flow (𝑓𝑡
𝐻) is thus given by  

𝑓𝑡
𝐻 = 𝑇(𝜉𝑡)𝑆𝑡 ∈ 𝐼𝑆𝑝(𝑛). 

The metaplectic group Mp(𝑛) is a unitary representation of the double cover 

Sp2(𝑛) of Sp(𝑛). There is an analogue when Sp(𝑛) is replaced with ISp(𝑛): it is the 

Weyl-metaplectic group WMp(𝑛), which consists of all products �̂�(𝑧0)�̂�; notice that 

formula (41), which we can rewrite  

�̂�−1�̂�ℎ(𝑧)�̂� = �̂�ℎ(𝑆−1𝑧)                                           (55) 
is the operator version of formula (52). 

We now turn to the central topic, which is to  propose and study “reasonable” 

definitions of the notion of deformation of a Gabor frame by a Hamiltonian isotopy. We 

begin by briefly recalling the notion of Weyl quantization. 
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Let 𝐻 be a Hamiltonian which we assume to be well-behaved at infinity ; more 

specifically we impose for fixed 𝑡, the condition  

𝐻(∙, 𝑡) ∈ 𝐶∞(ℝ2𝑚) ∩ 𝑆′(ℝ2𝑚). 
We will call such a Hamiltonian  function  admissible. We denote by �̂� = Op(𝐻) the 

pseudo-differential operator on ℝ𝑛 associated to 𝐻 by the Weyl rule. Formally, for 𝜓 ∈
𝑆(ℝ𝑛), 

�̂�𝜓(𝑥) = (
1

2𝜋ℎ
)
𝑛

∫∫𝑒𝑖𝑝(𝑥−𝑦)/ℎ𝐻 (
1

2
(𝑥 + 𝑦), 𝑝, 𝑡)𝜓(𝑥)𝑑𝑝𝑑𝑦 ; 

more rigorously (that is avoiding convergence problems in the integeral above) 

�̂�𝜓(𝑥) = (
1

2𝜋ℎ
)
𝑛

∫𝐻𝜎(𝑧)�̂�
ℎ(𝑧0)𝜓(𝑥)𝑑𝑧0 

where 𝐻𝜎 is the symplectic Fourier of 𝐻 and �̂�ℎ(𝑧0) is the Heisenberg-Weyl operator 

defined by formula (38). An essential observation is that the operator �̂� is (formally) 

self-adjoint (because a Hamiltonition is a real function). We refer to the standard 

literature on pseudo-differential calculus for details (see [322,325,327,353,358,362]; a 

nice review accessible to non-specialists is given by Littlejohn in [348]. Our choice of 

this particular type of quantization-among all others available on the market – is not 

arbitrary; it is due to the fact that the Weyl rule is the only [362] quantization procedure 

which is symplectically covariant in the following sense: let �̂� be an arbitrary element of 

the metaplectic group Mp(𝑛); if  �̂� has projection 𝑆 ∈ Sp(𝑛) then  

Op(𝐻 ∘ 𝑆) = �̂�Op(𝐻)�̂�−1.                                         (56) 
This property, which easily follows from the intertwining relation (41) for Heisenberg-

Weyl operators, is essential in our context, since our aim is precisely to show how 

symplectic convariance properties provide a powerful tool for the study of 

transformations of Gabor frames. 

It is usually to consider the Schrödinger equation associated with an admissible 

Hamiltonian function 𝐻: It is the linear partial differential equation  

                       𝑖ℎ
𝜕𝜓

𝜕𝑡
= �̂�𝜓,     𝜓(∙ ,0) = 𝜓0                                        (57) 

where the initial function is usually chosen in the Schwartz space 𝑆(ℝ𝑛). Every solution 

𝜓 can be written  

𝜓(𝑥, 𝑡) = �̂�𝑡𝜓0(𝑥) 
and �̂�𝑡 is called the evolution operator (or “propagator”) for the Schrödinger equation 

(57). An essential property is that the �̂�𝑡 are unitary operators on 𝐿2(ℝ𝑛). To see this, 

set 𝑢(𝑡) = (�̂�𝑡𝜓|�̂�𝑡𝜓) where 𝜓 is in the domain of �̂� (for instance 𝜓 ∈ 𝑆(ℝ𝑛)); 
differentiating with respect to 𝑡 and using the product rule we have  

𝑖ℎ�̇�(𝑡) = (�̂��̂�𝑡𝜓|�̂�𝑡𝜓) − (�̂�𝑡𝜓|�̂��̂�𝑡𝜓) = 0 

since �̂� is (formally) self- adjoint; it follows that (�̂�𝑡𝜓|�̂�𝑡𝜓) = (𝜓|𝜓) hence �̂�𝑡 is 

unitary as claimed. 

We now turn to the description of the problem. Let 𝑓 ∈ Ham(𝑛) and (𝑓𝑡)0≤𝑡≤1 be 

a Hamiltonian isotopy joining the identity to 𝑓; in view of Proposition (5.2.3) there 

exists a Hamiltonian function 𝐻 such that 𝑓𝑡 = 𝑓𝑡
𝐻 for 0 ≤ 𝑡 ≤ 1 . we want to study the 

deformation of a ℎ-Gabor frame 𝒢(𝜙, Λ) by (𝑓𝑡)0≤𝑡≤1 ; that is we want to define a 

deformation  
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𝒢(𝜙, 𝐴)
  𝑓𝑡  
→ 𝒢(�̂�𝑡𝜙, 𝑓𝑡Λ);                                          (58) 

here �̂�𝑡 is an (unknown) operator associated in some (yet unknown) way with 𝑓𝑡. We 

will proceed by analogy with the case 𝑓𝑡 = 𝑆𝑡 ∈ Sp(𝑛) where we defined the 

deformation by 

       𝒢(𝜙, Λ)
  𝑆𝑡   
→  𝒢(�̂�𝑡𝜙, 𝑆𝑡Λ);                                         (59) 

where �̂�𝑡 ∈ Mp(𝑛), 𝑆𝑡 = 𝜋
ℎ(�̂�𝑡). This suggests that we require that: 

(iii) The operator �̂�𝑡 should be unitary in 𝐿2(ℝ𝑛); 
(iv) The deformation (58) should reduce to (59) when the isotopy  (𝑓𝑡)0≤𝑡≤1 

lies than Sp(𝑛). 
The following property of the metaplectic representation gives us a clue. Let (𝑆𝑡) 

be a Hamiltonian isotopy in Sp(𝑛) ⊂ Ham(𝑛). We have seen in Proposition (5.2.4)  that 

there exists a Hamiltonian function  

𝐻(𝑧, 𝑡) =
1

2
𝑀(𝑡)𝑧 ∙ 𝑧 

with associated phase flow precisely (𝑆𝑡). Consider now the Schrödinger equation  

𝑖ℎ
𝜕𝜓

𝜕𝑡
=  �̂�𝜓,   𝜓(∙ ,0) = 𝜓0 

where �̂� is the Weyl quantization of  𝐻 (real that �̂� is a formally self-adjoint operator). 

It is well-known [325,327,322] that 𝜓 = �̂�𝑡𝜓0 where (�̂�𝑡) is the unique path in 𝑀𝑝(𝑛) 
passing through the identity and covering (𝑆𝑡). This suggests that we should choose 

(�̂�𝑡)𝑡 in the following way: let 𝐻 be the Hamiltonian function determined by the 

Hamiltonian isotopy (𝑓𝑡): 𝑓𝑡 = 𝑓𝑡
𝐻. the quantize 𝐻 into an operator �̂� using the Weyl 

correspondence, and let �̂�𝑡 be the solution of  Schrödinger’s equation  

𝑖ℎ
𝑑

𝑑𝑡
�̂�𝑡 = �̂��̂�𝑡 ,        �̂�0 = 𝐼𝑑 .                                      (60) 

While definition (59) of a Hamiltonian deformation of a Gabor system is 

"reasonable", its practical implementation is difficult because it requires the solution of 

a Schrödinger equation. We will therefore try to find a weaker, more tractable definition 

of the correspondence (58), which is easier to implement numerically. 

The "weak Hamiltonian deformation" scheme method we are going to use is the 

so-called Gasussian wave packet method which comes from semiclassical  mechanics 

and is widely used in chemistary; it is due to Heller and his collaborators (Heller 

[338,339], Davis and Heller [314]) and Littlejohn [348]. (for a rather up to date 

discussion of various Gaussian wave packet methods see Heller [340].)  for fixed 𝑧0 we 

set 𝑧𝑡 = 𝑓𝑡
𝐻(𝑧0) and define the new Hamilton function 

𝐻𝑧0(𝑧, 𝑡) = (𝜕𝑧, 𝐻)(𝑧𝑡 , 𝑡)(𝑧 − 𝑧𝑡) +
1

2
𝐷𝑧
2𝐻(𝑧𝑡 , 𝑡)(𝑧 − 𝑧𝑡)

2;            (61) 

it is the Taylor series of 𝐻 at 𝑧𝑡 with terms of order 0 and > 2 suppressed. The 

corresponding Hamilton equations are  

�̇� = 𝐽𝜕𝑧𝐻(𝑧𝑡 , 𝑡) + 𝐽𝐷𝑧
2𝐻(𝑧𝑡 , 𝑡)(𝑧 − 𝑧𝑡).                              (62) 

We make the following obvious but essential observation: in view of the uniqueness 

theorem for the solution of (32) with initial value 𝑧0 is the same as that of the 

Hamiltonian system  

�̇�(𝑡) = (𝜕𝑧, 𝐻)(𝑧(𝑡), 𝑡)                                            (63) 
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with 𝑧(0) = 𝑧0. Denoting by (𝑓𝑡
𝐻𝑧0) the Hamiltonian flow determined by 𝐻𝑧0 we thus 

have 𝑓𝑡
𝐻(𝑧0) = 𝑓𝑡

𝐻𝑧0(𝑧0). More generally, the flows (𝑓𝑡
𝐻𝑧0) and (𝑓𝑡

𝐻) are related by a 

simple formula involving the "linearized flow" (𝑆𝑡): 
Proposition (5.2.12)[304]: The solutions of Hamilton’s equations (62) and (63) are 

related by the formula  

𝑧(𝑡) = 𝑧𝑡 + 𝑆𝑡(𝑧(0) − 𝑧0)                                         (64) 
where 𝑧𝑡 = 𝑓𝑡

𝐻(𝑧0), 𝑧𝑡 = 𝑓𝑡
𝐻(𝑧) and (𝑆𝑡) is the phase flow determined by the quadratic 

time-dependent Hamiltonian  

𝐻0(𝑧, 𝑡) =
1

2
𝐷𝑧
2𝐻(𝑧𝑡 , 𝑡) 𝑧 ∙ 𝑧                                       (65) 

Equivalently, 

       𝑓𝑡
𝐻(𝑧) = 𝑇[𝑧𝑡 − 𝑆𝑡(𝑧0)] 𝑆𝑡(𝑧(0))                                   (66) 

where 𝑇(∙) is the translation operator. 

Proof. let us set 𝑢 = 𝑧 − 𝑧𝑡. we have, taking (62) into account, 

�̇� + �̇�𝑡 = 𝐽𝜕𝑧𝐻(𝑧(𝑡), 𝑡) + 𝐽𝐷𝑧
2𝐻(𝑧𝑡 , 𝑡)𝑢 

that is, since �̇�𝑡 = 𝐽𝜕𝑧𝐻(𝑧𝑡 , 𝑡), 
�̇� = 𝐽𝐷𝑧

2𝐻(𝑧𝑡 , 𝑡)𝑢 

It follows that 𝑢(𝑡) = 𝑆𝑡(𝑢(0)) and hence 

𝑧(𝑡) = 𝑓𝑡
𝐻(𝑧0) + 𝑆𝑡𝑢(0) = 𝑧𝑡 − 𝑆𝑡(𝑧0) + 𝑆𝑡(𝑧(0))  

Which is precisely (64). 

Remark (5.2.13)[304]: the function 𝑡 ⟼ 𝑆𝑡(𝑧) = 𝐷𝑓𝑡
𝐻(𝑧) satisfies the "variational 

equation"   
𝑑

𝑑𝑡
𝑆𝑡(𝑧) = 𝐽𝐷𝑧

2𝐻(𝑓𝑡
𝐻(𝑧), 𝑡)𝑆𝑡(𝑧), 𝑆0(𝑧) = 𝐼                     (67) 

(this relation can be used to show that 𝑆𝑡(𝑧) is symplectic [325,327];  it thus gives a 

simple proof of the fact that Hamiltonian phase flows consist of symplectomorphisms 

[325,327]). 

The thawed Gaussian approximation (TGA) (also sometimes called the nearby 

orbit method) consists in making the following Ansatz: 

The approximate solution to Schrödinger’s equation 

𝑖ℎ
𝜕𝜓

𝜕𝑡
= �̂�𝜓,   𝜓(∙ ,0) = 𝜙𝑧0

ℎ  

where 

𝜙𝑧0
ℎ = �̂�ℎ(𝑧0)𝜙0

ℎ                                                    (68) 

is the standard coherent state centered at 𝑧0 is given by the  formula  

�̃�(𝑥, 𝑡) =  𝑒
𝑖
ℎ
𝛾(𝑡,𝑧0)�̂�ℎ(𝑧𝑡) �̃�𝑡(𝑧0)�̂�

ℎ(𝑧0)
−1𝜙𝑧0

ℎ                        (69) 

where the phase 𝛾(𝑡, 𝑧0) is the symmetrized action 

𝛾(𝑡, 𝑧0) = ∫(
1

2
𝜎(𝑧𝑡′ , �̇�𝑡′) − 𝐻(𝑧𝑡′ , 𝑡

′)) 𝑑𝑡′
1

0

                        (70) 

calculated along the Hamiltonian trajectory leading from 𝑧0 at time 𝑡0 = 0 to 𝑧𝑡 at 𝑡. 
One shows that under suitable conditions on the Hamiltonian 𝐻 the approximate 

solution satisfies, for |𝑡| ≤ 𝑇, an estimate of the type 
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‖𝜓(∙, 𝑡) − �̃�(∙, 𝑡)‖ ≤ 𝐶(𝑧0, 𝑇) √ℎ|𝑡|                               (71) 
where 𝐶(𝑧0, 𝑇) is a positive constant depending only on the initial point 𝑧0 and the time 

interval [−𝑇, 𝑇] (Hagedorn [335,336], Nazaikiinskii et al. [353]). 

We consider a Gaussian Gabor system 𝒢(𝜙0
ℎ , Λ); applying the nearby orbit 

method to 𝜙0
ℎ yields the approximation  

𝜙0
ℎ = 𝑒

𝑖
ℎ
𝛾(𝑡,0)�̂�ℎ(𝑧𝑡)�̂�𝑡𝜙0

ℎ                                       (72) 
where we have set �̂�𝑡 = �̂�𝑡(0). Let us consider the Gabor system 𝒢(𝜙0

ℎ , Λ) where 𝐴𝑡 =
𝑓0
ℎ(Λ). 

Proposition (5.2.14)[304]: The Gabor system 𝒢(𝜙0
ℎ , Λ) is a Gabor h-frame if and only 

if  𝒢(𝜙0
ℎ , Λ) is a Gabor ℎ-frame; when this is the case both frames have the same 

bounds. 

Proof. Writing  

𝐼𝑡(𝜓) = ∑|(𝜓|�̂�ℎ(𝑧𝑡)𝜙0
ℎ)|

2

𝑧∈Λ𝑡

 

we set out to show that the inequality  

𝑎‖𝜓‖2 ≤ 𝐼𝑡(𝜓) ≤ 𝑏‖𝜓‖
2                                           (73) 

(for all 𝜓 ∈ 𝐿2(ℝ2)) holds for every 𝑡 if and only if it holds for 𝑡 = 0 (for all 𝜓 ∈
𝐿2(ℝ2)). In view of definition (72) we have  

𝐼𝑡(𝜓) = ∑|(𝜓|�̂�ℎ(𝑧)�̂�ℎ(𝑧𝑡)�̂�𝑡𝜙0
ℎ)|

2

𝑧∈𝛬𝑡

; 

the commutation formula (50) yields 

�̂�ℎ(𝑧)�̂�ℎ(𝑧𝑡) = 𝑒
𝑖𝜎(𝑧,𝑧𝑡)/ℎ�̂�ℎ(𝑧𝑡)�̂�

ℎ(𝑧) 
and hence  

𝐼𝑡(𝜓) = ∑|(𝜓|�̂�ℎ(𝑧𝑡)�̂�
ℎ(𝑧)�̂�𝑡𝜙0

ℎ)|
2

𝑧∈𝛬𝑡

 

                 =∑|(𝜓|�̂�ℎ(𝑧𝑡)�̂�
ℎ(𝑓𝑡

𝐻(𝑧)�̂�𝑡𝜙0
ℎ)|

2

𝑧∈𝛬

. 

Since �̂�ℎ(𝑧𝑡) is unitary the inequality (73) is thus equivalent to  

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℎ(𝑓𝑡
𝐻(𝑧)�̂�𝑡𝜙0

ℎ)|
2

𝑧∈Λ

≤ 𝑏‖𝜓‖2.                        (74) 

In view of formula (64) we have, since 𝑆𝑡𝑧0 = 0 because 𝑧0 = 0, 

𝑓𝑡
𝐻(𝑧) = 𝑆𝑡𝑧0 + 𝑓𝑡

𝐻(0) = 𝑆𝑡𝑧 + 𝑧𝑡 
hence the inequality (74) can be written  

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℎ(𝑆𝑡𝑧 + 𝑧𝑡)�̂�𝑡𝜙0
ℎ)|

2

𝑧∈Λ

≤ 𝑏‖𝜓‖2.                    (75) 

In view of the product formula (51) for Heisenberg-Weyl operators we have  

�̂�ℎ(𝑆𝑡𝑧 + 𝑧𝑡) = 𝑒
𝑖𝜎(𝑆𝑡𝑧,𝑧𝑡) 2ℎ⁄ �̂�ℎ(𝑧𝑡)�̂�

ℎ(𝑆𝑡𝑧) 
so that (75) becomes   

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℎ(𝑧𝑡)�̂�
ℎ(𝑆𝑡𝑧)�̂�𝑡𝜙0

ℎ)|
2

𝑧∈Λ

≤ 𝑏‖𝜓‖2;                   (76) 

the unitarity of �̂�ℎ(𝑧𝑡) implies that (76) is equivalent to  
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𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℎ(𝑆𝑡𝑧)�̂�𝑡𝜙0
ℎ)|

2

𝑧∈Λ

≤ 𝑏‖𝜓‖2.                       (77) 

Using the symplectic covariance formula (51) we have  

�̂�ℎ(𝑆𝑡𝑧)�̂�𝑡𝜙0
ℎ = �̂�𝑡�̂�

ℎ(𝑧) 
so that the inequality (77) can be written  

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�𝑡�̂�
ℎ(𝑧)𝜙0

ℎ)|
2

𝑧∈Λ

≤ 𝑏‖𝜓‖2; 

since �̂�𝑡 is unitary, this is equivalent to  

𝑎‖𝜓‖2 ≤∑|(𝜓|�̂�ℎ(𝑧)𝜙0
ℎ)|

2

𝑧∈Λ

≤ 𝑏‖𝜓‖2. 

The Proposition follows. 

The fact that we assumed that the window is the centered coherent state 𝜙0
ℎ is not 

essential. For instance, proposition (25)  shows that the result remains valid if we 

replace 𝜙0
ℎ with a coherent state having arbitrary center, for instance 

 𝜙𝑧0
ℎ = �̂�ℎ(𝑧0)𝜙0

ℎ. More generally: 

Corollary (5.2.15)[304]: Let 𝒢(𝜙, Λ) be a Gabor system where the window 𝜙 is the 

Gaussian  

𝜙𝑀
ℎ (𝑥) = (

det Im𝑀

(𝜋ℎ)𝑛
)
1 4⁄

𝑒
𝑖
2𝜋
𝑀𝑥.𝑥                                   (78) 

where 𝑀 = 𝑀𝑇 , Im𝑀 > 0. then 𝒢(𝜙𝑡
ℎ , Λ𝑡) is a Gabor ℎ-frame if and only if it is the 

case for 𝒢(𝜙, Λ). 
Proof. It follows from the properties of the action of the metaplectic group on 

Gaussians that there exists �̂� ∈ Mp(𝑛) such that 𝜙𝑀
ℎ = �̂�𝜙0

ℎ. Let 𝑆 = 𝜋ℎ(�̂�) be the 

projection on Sp(𝑛) of �̂�; the Gabor system 𝒢(𝜙𝑀
ℎ , Λ) is a ℎ-frame if and only if 

𝒢(�̂�−1𝜙𝑀
ℎ , 𝑆−1Λ) = 𝒢(𝜙0

ℎ , 𝑆−1Λ) is a h-frame in view of Proposition (5.2.7) .the result 

now follows Proposition (5.2.14).  

We finally remark that the fact that we have been using Gaussian windows 

(coherent states and their generalizations) is a matter of pure convenience. in fact, that 

definition of weak Hamiltonian deformations of a Gabor frame as given above is valid 

for arbitrary windows 𝜙 ∈ 𝑆(ℝ𝑛) (or 𝜙 ∈ 𝐿2(ℝ𝑛)). it suffices for this to replace the 

defining formula (72) with 

𝜙𝑡 = 𝑒
1
ℎ
𝛾(𝑡,0)�̂�ℎ(𝑧𝑡)𝜙0

ℎ�̂�𝑡𝜙.                                       (79) 
One can prove that if 𝜙 is sufficiently concentrated around the origin, then 𝜙𝑡 is again a 

good semiclassical approximation to the true solution of Schrödinger’s equation. This 

question is related to the uncertainty principle, see [323,324,329]. However, when one 

wants to the initial window to belong to more sophisticated functional spaces than 

𝑆(ℝ𝑛) or 𝐿2(ℝ𝑛) one might be confronted to technical difficulties if one wants to prove 

that the deformed window (79) belongs to the same space. However, there is a very 

important case where this difficulty does not appear, namely if we assume that the 

initial window 𝜙 belongs to Feichtinger’s algebra 𝑆0(ℝ
𝑛). Since our definition of weak 

transformations of Gabor frames only makes use of phase space translations �̂�ℎ(𝑧) and 

of metaplectic operators it follows that 𝜙𝑡 ∈ 𝑆0(ℝ
𝑛) if and only if 𝜙 ∈ 𝑆0(ℝ

𝑛) (see de 

Gosson [326]). This is due to the fact that the Feichtinger’s algebra is the smallest 
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Banach algebra invariant under these operations, and is thus preserved under the 

semiclassical propagation scheme used here. It is unknown whether this property is 

conserved under passage to the general definition (59) b, that is 

𝒢(𝜙, 𝐴)
   𝑓𝑡   
→  𝒢(�̂�𝑡𝜙, 𝑓𝑡𝛬)                                             (80) 

where �̂�𝑡 is the solution of the Schrödinger equation associated with the Hamiltonian 

operator corresponding to the Hamiltonian operator corresponding to the Hamiltonian  

isotopy (𝑓𝑡)0≤𝑡≤1: one does not know at the time of writing if the solution to 

Schrödinger equations with initial data in 𝑆0(ℝ
𝑛) also is in 𝑆0(ℝ

𝑛) for arbitrary 

Hamiltonians. The same difficulty appears when one considers other more general 

functions spaces (e.g modulation spaces). 

We shortly discuss some future issues that will be studied in forthcoming; the list 

is of course far from being exhaustive, since these “first steps” of a general theory of 

Hamiltonians of Gabor frames will hopefully become a marathon!  

We briefly indicate here how the weak Hamiltonian deformation method could be 

practically and numerically implemented; we will come back to this important practical 

issue in a forthcoming where experimental results will be given. The main observation 

is that a weak deformation of a Gabor frame consists of two objects: a Hamiltonian flow 

and a family of operators approximating the quantized version of that flow (semi 

classical propagator). First, the action of the Hamiltonian isotopy on the Gabor lattice 

can be computed ( to an arbitrary degree of precision) using the symplectic algorithms 

reviewed; a host of  numerical implementations can be found, see for instance the 

already mentioned works [312,344, 364]. The corresponding deformation of the 

window should not be more difficult to compute numerically, since the essence of the 

method consists in replacing the “true” quantum propagation with a linearized operator, 

expressed in terms of translations and metaplectic operators as in formula (69), which 

says that (up to an unessential phase factor) the propagated coherent state is an 

expression of the type 

�̂�ℎ(𝑧𝑡)�̂�𝑡(𝑧0)�̂�
ℎ(𝑧0)

−1𝜙𝑧0
ℎ = �̂�ℎ(𝑧𝑡)�̂�𝑡(𝑧0)𝜙𝑧0

ℎ . 

Numerically, this term can be calculated using the symplectic algorithm to 

evaluate �̂�ℎ(𝑧𝑡) = �̂�
ℎ(𝑓𝑡

𝐻(𝑧0)) and then calculate �̂�𝑡(𝑧0) by numerical (or explicit) 

methods for generating metaplectic operators given. Of course, precise error bounds 

have to be proven, but this should not be particularly difficult, these approximation 

theories being well-established parts of the toolbox of numerical analysis. 

Since our definition of weak deformations was motivated by semi classical 

considerations one could perhaps consider refinements of this method using the 

asymptotic expansions of Hagedorn [335,336] and his followers; this could then lead to 

“higher order“ weak deformations, depending on the number of terms that are retained. 

The scheme we have been exposing is a standard and robust method; its advantage is its 

simplicity. We will discuss other interesting possibilities. For instance, in [338,339] 

Heller proposes a particular simple semi classical approach which he calls the “frozen 

Gaussian approximation” (FGA). It is obtained by surrounding the Hamiltonian 

trajectories by a fixed (“frozen”) Gaussian function (for instance 𝜙0
ℎ) and neglecting its 

“squeezing” by metaplectic operators used in the TGA. Although this method seems to 

be rather crud, it yields astoundingly accurate numerical results applied to super 

positions of infinitely many Gaussians; thus it inherently has a clear relationship with 
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frame expansions. A more sophisticated procedure would be the use of the Kluk-

Herman (HK) approximate propagator, which has been widely discussed in the 

chemical literature (Herman [341] shows that the evolution associated with the HK 

propagator is unitary, and Swart and Rousse [360] put the method on a firm 

mathematical footing by relating it with the theory of Fourier integral operators; in 

[334] Grossmann and Herman discuss questions of terminology relating to the FGA and 

the HK propagator). Also see Heller [340] and Kay [345] where the FGA and the 

respective merits of various semi classical approximation methods are discussed . 

Still, there remains the question of the general definition (80) where the exact 

quantum propagator is used. It would indeed be more intellectually (and also probably 

practically!) satisfying to study this definition in detail. We preferred to consider a 

weaker version because it is relatively easy to implement numerically using symplectic 

integrators. The general case (80) is challenging, but probably not out of reach . from a 

theoretical point of view, it amounts to construct an extension of the metaplectic 

representation in the non-linear case; that such a representation indeed exists has been 

shown with Hily [328] (a caveat: one sometimes finds in the physical literature a claim 

following which such an extension could not be constructed, a famous theorem of 

Greenwood and Van Hove being invoked to sustain this claim. This is merely a 

misunderstanding of this theorem, which only says that there is no way to extend the 

metaplectic representation so that the Dirac correspondence between Poisson brackets 

and commutators is preserved). There remains the problem of how one could prove that 

there is no way to extend the metaplectic representation so that the Dirac 

correspondence between Poisson brackets and commutators is preserved). There 

remains the problem of how one could show that the deformation scheme (80) preserves 

the frame property; a possible approach could consist in using a time-slicing (as one 

does for symplectic integrators); this would possible also lead to some insight on 

whether the Feichtinger algebra is preserved by general quantum evolution. This is an 

open question which is being actively investigated. 

Section (5.3): Gabor Systems 
The question of robustness of a basis or frame is a fundamental problem in 

functional analysis and in many concrete applications. It has its historical origin in the 

work of Paley and Wienter (see, e.g, [405]) who studied the perturbation of  Fourier 

bases and was subsequently investigated in complex analysis and harmonic analysis. 

Particularly fruitful was the study of the robustness of structured function systems, such 

as reproducing kernels, sets of sampling in a space of analytic functions, wavelets, or 

Gabor systems. We take a new look at the stability of Gabor frames and Gabor Riesz 

sequences with respect to general deformations of phase space.  

To be explicit, let us denote the time-frequency shift of a function 𝑔 ∈ 𝐿2(ℝ2) 
along 𝑧 = (𝑥, 𝜉) ∈ ℝ𝑑 × ℝ𝑑 ≃ ℝ2𝑑 by  

𝜋(𝑧)𝑔(𝑡) = 𝑒2𝜋𝑖𝜉𝑡𝑔(𝑡 − 𝑥). 
For a fixed non-zero function 𝑔 ∈ 𝐿2(ℝ2), usually called a “window function”, and Λ ⊆
ℝ2, a Gabor system is a structured function system of the form 

𝒢(𝑏, Λ) = {𝜋(𝜆)𝑔 ∶= 𝑒2𝜋𝑖𝜉𝑡𝑔(∙ −𝑥): 𝜆 = (𝑥, 𝜉) ∈ Λ}. 

The index set Λ is a discrete subset of the phase space ℝ2𝑑 and 𝜆 indicates the 

localization of time-frequency shift 𝜋(𝜆)𝑔 in phase space. 
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The Gabor system 𝒢(𝑔, Λ) is called a frame (a Gabor frame), if  

𝐴‖𝑓‖2
2 ≤∑|〈𝑓, 𝜋(𝜆)𝑔〉|2

𝜆∈Λ

≤ 𝐵‖𝑓‖2
2,          𝑓 ∈ 𝐿2(ℝ2), 

for some constants 0 < 𝐴 ≤ 𝐵 < ∞. In this case every function 𝑓 ∈ 𝐿2(ℝ2)   possesses 

an expansion 𝑓 = ∑ 𝑐𝜆𝜋(𝜆)𝑔𝜆 , for some coefficient sequence 𝑐 ∈ ℓ2(Λ) such that 
‖𝑓‖2 ≍ ‖𝑐‖2. The Gabor system 𝒢(𝑔, Λ) is called a Riesz sequence (or Riesz basis for 

its span), if ‖∑ 𝑐𝜆𝜆 𝜋(𝜆)𝑔‖2 ≍ ‖𝑐‖2 for all 𝑐 ∈ ℓ2(Λ). 
  For meaningful statements about Gabor frame it is usually assumed that  

∫|〈𝑔, 𝜋(𝑧)𝑔〉|𝑑𝑧

ℝ2𝑑

< ∞. 

This condition describes the modulation space 𝑀1(ℝ𝑑), also known as the Feichtinger 

algebra. Every Schwartz function satisfies this condition.  

We study the stability of the spanning properties of 𝒢(𝑔, Λ) with respect to a set 

Λ ⊆ ℝ2𝑑. If Λ′ is “close enough” to Λ, then we expect 𝒢(𝑔, Λ′) to possess the same 

spanning properties. We distinguish perturbations and deformations. Whereas a 

perturbation is local and Λ′ is obtained by slightly moving every 𝜆 ∈ Λ, a deformation is 

a global transformation of ℝ2𝑑. the existing literature is rich in perturbation results, but 

not much is known about deformations of Gabor frames. 

(a) Perturbation or jitter error: The jitter describes small point wise perturbations 

of Λ. For every Gabor 𝒢(𝑔, Λ) with 𝑔 ∈ 𝑀1(ℝ𝑑) there exists a maximal jitter 𝜖 > 0 

with the following property: if sup𝜆∈Λinf𝜆′∈Λ|𝜆 − 𝜆
′| < 𝜖 and sup𝜆′∈Λ′inf𝜆∈Λ|𝜆 − 𝜆

′| <
𝜖, then 𝒢(𝑔, Λ′) is also a frame. See [384, 388] for a general result in coorbit theory, see 

[386], and Christensen’s book on frames [375]. 

Conceptually the jitter error is easy to understand, because the frame operator is 

continuous in the operator norm with respect to the jitter error. The proof techniques go 

back to Paley and Wiener and amount to norm estimates for the frame operator. See 

[375] and [405] for a modern exposition. 

(b) Linear deformations: The fundamental deformation result is due to 

Feichtinger and Kaiblinger [385]. Let 𝑔 ∈ 𝑀1(ℝ𝑑), Λ ⊆ ℝ2𝑑 be a lattice, and assume 

that 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑). Then there exists 𝜖 > 0 with the following property: 

if 𝐴 is a 2𝑑 × 2𝑑-matrix with ‖𝐴 − 𝐼‖ < 𝜖 (in some given matrix norm), then 𝒢(𝑔, 𝐴Λ) 
is again a frame .only recently, this result was generalized to non-uniform Gabor frames 

[368]. The proof for the of a lattice [385] was based oduality theory of Gabor frames, 

the proof for non-uniform Gabor frames in [368] relies on the stability under chirps of 

the Sjostrand symbol class for pseudo differential operators, but this technique does not 

seem to adapt to nonlinear deformations. Compared to perturbations, (linear) 

deformations of Gabor frames are much more difficult to understand, because the frame 

operator no longer depends (norm-) continuously on Λ and a deformation may change 

the density of Λ (which may affect significantly the spanning properties of  𝒢(𝑔, Λ)). 
Perhaps the main difficulty is to find a suitable notion for deformations that 

preserves Gabor frames. Except for linear deformations and some preliminary 

observations in [377,380] this question is simply unexplored. We introduce a general 

concept of deformation, which we call Lipschitz deformations. Lipchitz deformations 

include both the jitter error and linear deformations as a special case. The precise 
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definition is somewhat technical and will be given. For simplicity we formulate a 

representative special case. 

Theorem (5.3.1)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑), and Λ ⊆ ℝ2𝑑. Let 𝑇𝑛: ℝ
2𝑑 → ℝ2𝑑 for 𝑛 ∈ ℕ 

be a sequence of differentiable maps with Jacobian 𝐷𝑇𝑛. Assume that    

sup
𝑧∈ℝ2𝑑

|𝐷𝑇𝑛(𝑧) − 𝐼| ⟶ 0       𝑎𝑠 𝑛 → ∞,                             (81) 

Then the following holds. 

(a) If 𝒢(𝑔, Λ) is a frame, then 𝒢(𝑔, 𝑇𝑛(Λ)) is a frame for all sufficiently large 𝑛.  

(b) If 𝒢(𝑔, Λ) is a Riesz sequence, then 𝒢(𝑔, 𝑇𝑛(Λ)) is a Riesz sequence for all 

sufficiently large 𝑛. 

We would like to emphasize that Theorem (5.3.1) is quite general. It deals with non-

uniform Gabor frames (not just lattices) under nonlinear deformations.in particular, 

Theorem (5.3.1) implies the main results of [385,368]. The counterpart for deformations 

of Gabor Riesz sequences (item (b)) is new even for linear deformations. 

Condition (81) roughly states that the mutual distances between the points of Λ 

are preserved locally under the deformation 𝑇𝑛. Our main insight was that the frame 

property of a deformed Gabor system 𝒢(𝑔, 𝑇𝑛(Λ)) does not depend so much on the 

position or velocity of the sequences (𝑇𝑛(𝜆))𝑛∈ℕ for 𝜆 ∈ Λ, but on the relative distances 

|𝑇𝑛(𝜆) − 𝑇𝑛(𝜆
′)| for 𝜆, 𝜆′ ∈ Λ. For an illustration see Example (5.3.26). 

As an application of Theorem (5.3.1), we derive a non-uniform Balian-Low 

Theorem (BLT). For this, we recall that the lower Beurling density of a set Λ ⊆ ℝ2𝑑 is 

given by 

𝐷−(Λ) = lim
𝑅→∞

min
𝑧∈ℝ2𝑑

#Λ ∩ 𝐵𝑅(𝑧)

vol(𝐵𝑅(0))
, 

and likewise the upper Beurling density 𝐷+(Λ) (where the minimum is replaced by a 

supremum). The fundamental density Theorem of Raman than and Steger [396] asserts 

that if  𝒢(𝑔, Λ) is a frame then 𝐷−(Λ) ≥ 1 . Analogously, if 𝒢(𝑔, Λ) is a Riesz sequence, 

then 𝐷+(Λ) ≤ 1 [370]. The so-called Balian-low Theorem (BLT) is a stronger version 

of the density Theorem and asserts that for “nice” window s 𝑔 the inequalities in the 

Balian -Low Theorem is a consequence of [385]. A Balian-Low Theorem for non-

uniform Gabor frames was open for a long time and was proved only recently by 

Ascensi, Feichtinger, and Kaiblinger [368]. The corresponding statement for Gabor 

Riesz sequences was open and is settled here as an application of  our deformation 

Theorem. See Heil’s detailed survey [392] of the numerous contributions to the density 

Theorem for Gabor frames after [396] and to [378] for the Balian-low Theorem. 

As an immediate consequence of Theorem (5.3.1) we obtain the following 

version of  the Balian-Low therem for non-uniform Gabor systems. 

Corollary (5.3.2)[356]: (Non-uniform Balian-Low Theorem). Assume that 𝑔 ∈
𝑀1(ℝ𝑑). 

(a) If  𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑), then 𝐷−(Λ) > 1. 

(b) If  𝒢(𝑔, Λ) is a Riesz sequence in 𝐿2(ℝ𝑑), then 𝐷+(Λ) < 1. 

Proof. We only prove the new statement (b), part (a) is similar [368]. Assume 𝒢(𝑔, Λ) is 

a Riesz sequence but the 𝐷+(Λ) = 1. Let 𝛼𝑛 > 1 such that lim
𝑛→∞

𝛼𝑛 = 1 and set 𝑇𝑛𝑧 =

𝛼𝑛𝑧. Then the sequence 𝑇𝑛 satisfies condition (81). on the one hand, we have 

𝐷+(𝛼𝑛Λ) = 𝛼𝑛
2𝑑 > 1, and on the other hand, Theorem (5.3.1) implies that 𝒢(𝑔, 𝛼𝑛Λ) is 
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a Riesz sequence for 𝑛 large enough. This is a contradiction to the density Theorem, and 

thus the assumption 𝐷+(Λ) = 1 cannot hold. 

The proof of Theorem (5.3.1) does not come easily and technical. It combines 

methods from the theory of localized frames [387,390], the stability of operators on ℓ𝑝-

spaces [366,401] and weak limit techniques in the style of Beurling [373]. We say that 

Γ ⊆ ℝ2𝑑 is a weak limit of translates of Λ ⊆ ℝ2𝑑, if there exists a sequence (𝑧𝑛)𝑛∈ℕ ⊆
ℝ2𝑑, such that Λ + 𝑧𝑛 → Γ uniformly on compact sets. For the precise definition and 

more details on weak limits. 

We will prove the following characterization of non-uniform Gabor frames 

“without inequalities”. 

Theorem (5.3.3)[356]: Assume that 𝑔 ∈ 𝑀1(ℝ𝑑) and Λ ⊆ ℝ2𝑑. Then 𝒢(𝑔, Λ) is a 

frame for 𝐿2(ℝ𝑑), if and only if for every weak limit Γ of Λ the map 𝑓 →

(〈𝑓, 𝜋(𝛾)𝑔〉)𝛾∈Γ is one-to-one on (𝑀1(ℝ𝑑))
∗
. 

The full statement with five equivalent conditions characterizing a non-uniform 

Gabor frame will be given, Theorem (5.3.14). An analogous characterization of Gabor 

Riesz sequences with weak limits is stated in Theorem (5.3.17).  

For the special case when Λ is a lattice, the above characterization of Gabor 

frames without inequalities was already proved in [391]. In the lattice case, the Gabor 

system 𝒢(𝑔, Λ) possesses additional invariance properties that facilitate the application 

of methods from operator algebras. The generalization of [391] to non-uniform Gabor 

systems was rather surprising for us and demands completely different methods.  

To make Theorem (5.3.3) more plausible, we make the analogy with Beurling’s 

results on balayage in Paley-Wiener space. Beurling [373] characterized the stability of 

sampling in the Paley-Wiener space of bandlimited functions {𝑓 ∈ 𝐿2(ℝ𝑑) ∶ supp �̂� ⊆
𝑆} for a compact spectrum 𝑆 ⊆ ℝ𝑑 in terms of sets of uniqueness for this space. It is 

well-known that the frame property of a Gabor system 𝒢(𝑔, Λ) is equivalent to a 

sampling Theorem for an associated transform. Precisely, let 𝑧 ∈ ℝ2𝑑 → 𝑉𝑔𝑓(𝑧) =

〈𝑓, 𝜋(𝑧)𝑔〉 be the short-time Fourier transform, for fixed non-zero 𝑔 ∈ 𝑀1(ℝ𝑑) and 𝑓 ∈

(𝑀1(ℝ𝑑))
∗
. Then 𝒢(𝑔, Λ) is a frame, if and only if Λ is a set of sampling for the short-

time Fourier transform on (𝑀1)∗. In this light, Theorem (5.3.3) is the precise analog of 

Beurling’s Theorem for bandlimited functions. 

One may therefore try to adapt Beurling’s methods to Gabor frames and the 

sampling of short-time Fourier transforms. Beurling’s ideas have been used for many 

sampling problems in complex analysis following the pioneering work of  Seip on the 

Fock space [397,398] and the Bergman space [399], see also [372] for a survey. A 

remarkable fact in Theorem (5.3.3) is the absence of a complex structure (except when 

𝑔 is a Gaussian). This explains why we have to use the machinery of localized frames 

and the stability of operators in the proof. We mention that Beurling’s ideas have been 

transferred to a few other contexts outside complex analysis, such as sampling 

Theorems with spherical harmonics in the sphere [393], or, more generally, with 

eigenvectors of the Laplace operator in Riemannin manifolds [395]. 

We collect the main definitions from time-frequency analysis. We discuss time-

frequency molecules and their ℓ𝑝-stability. We devoted to the details of Beurling’s  

notation of weak convergence of sets. We state and prove the full characterization of 
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no-uniform Gabor frames and Riesz sequences without inequalities. We introduce the 

general concept of a Lipschitz deformation of a set and prove the main properties. We 

state and show the main result, the general deformation result.  

Let, |𝑥| ≔ (|𝑥1|
2 +⋯+ |𝑥𝑑|

2)1 2⁄  denotes the Euclidean norm, and 𝐵𝑟(𝑥) 
denotes the Euclidean ball. Given two functions 𝑓, 𝑔 ∶ 𝑋 → [0,∞), we say that 𝑓 ≤ 𝑔 if 

there exists a constant 𝐶 > 0 such that 𝑓(𝑥) ≤ 𝐶𝑔(𝑥), for all 𝑥 ∈ 𝑋. We say that 𝑓 ≍ 𝑔 

if 𝑓 ≤ 𝑔 and 𝑔 ≤ 𝑓. 

A set Λ ⊆ ℝ𝑑 is called relatively separated if  

rel(Λ) ≔ sup{#(Λ⋂𝐵1(𝑥)): 𝑥 ∈ ℝ
𝑑} < ∞.                           (82) 

It is called separated if  

sep(Λ) ≔ inf{|𝜆 − 𝜆′|: 𝜆 ≠ 𝜆′ ∈ Λ} > 0.                            (83) 
We say that Λ is 𝛿-separated if sep(Λ) ≥ 𝛿. A separated set is relatively separated and  

rel(Λ) ≤ sep(Λ)−1, Λ ⊆ ℝ𝑑 .                                   (84) 
Relatively separated sets are finite unions of separated sets. 

The hole of a set Λ ⊆ ℝ𝑑 is define as  

𝜌(Λ) ≔ sup
𝑥∈ℝ𝑑

inf
𝜆∈Λ
|𝑥 − 𝜆|.                                           (85) 

A sequence Λ is called relatively dense if 𝜌(Λ) < ∞. Equivalently, Λ is relatively dense 

if there exists 𝑅 > 0 such that  

ℝ𝑑 =⋃𝐵𝑅(𝜆)

𝜆∈Λ

. 

In terms of the Beurling defined, a set Λ is relatively separated if and if  𝐷+(Λ) < ∞ 

and it is relatively dense if and only if  𝐷−(Λ) > 0. 

The amalgam space 𝑊(𝐿∞, 𝐿1)(ℝ𝑑) consists of all functions 𝑓 ∈ 𝐿∞(ℝ𝑑) such 

that  

‖𝑓‖𝑊(𝐿∞,𝐿1) ≔ ∫‖𝑓‖𝐿∞(𝐵1(𝑥))𝑑𝑥

ℝ𝑑

𝑥 ∈ ℝ𝑑 ≍ ∑‖𝑓‖𝐿∞([0,1]𝑑+𝑘)
𝑘∈ℤ𝑑

< ∞. 

The space 𝐶0(ℝ
𝑑) consists of all continuous functions 𝑓:ℝ𝑑 → ℂ such that lim

𝑥→∞
𝑓(𝑥) =

0, consequently the (closed) subspace of 𝑊(𝐿∞, 𝐿1)(ℝ𝑑) consisting of continuous 

functions is (𝐶0, 𝐿
1)(ℝ𝑑). This space will be used as a convenient collection of  test 

functions. 

We will repeated use the following sampling inequality: Assume that 𝑓 ∈
𝑊(𝐶0, 𝐿

1)(ℝ𝑑) and Λ ⊆ ℝ𝑑 is relatively separated, then  

∑|𝑓(𝜆)|

𝜆∈Λ

≤ rel(Λ)‖𝑓‖𝑊(𝐿∞,𝐿1).                                        (86) 

The dual space of 𝑊(𝐶0, 𝐿
1)(ℝ𝑑) will be denoted 𝑊(𝐿∞, 𝐿1)(ℝ𝑑). It consists of 

all the complex-valued Borel measures 𝜇: 𝛽(ℝ𝑑) → ℂ  such that  

‖𝜇‖𝑊(ℳ,𝐿∞) ≔ sup
𝑥∈ℝ𝑑

‖𝜇‖𝐵1(𝑥) = sup
𝑥∈ℝ𝑑

|𝜇|(𝐵1(𝑥)) < ∞. 

For the general theory of Wiener amalgam spaces see [382]. 

The time-frequency shifts of  a function 𝑓:ℝ𝑑 → ℂ are  

𝜋(𝑧)𝑓(𝑡) ≔ 𝑒2𝜋𝑖𝜉𝑡𝑓(𝑡 − 𝑥),      𝑧 = (𝑥, 𝜉) ∈ ℝ𝑑 ×ℝ𝑑 , 𝑡 ∈ ℝ𝑑 . 
These operators satisfy the commutation relations  
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𝜋(𝑥, 𝜉)𝜋(𝑥′, 𝜉′) = 𝑒−2𝜋𝑖𝜉
′𝑥 𝜋(𝑥 + 𝑥′, 𝜉 + 𝜉′),   (𝑥, 𝜉), (𝑥′, 𝜉′) ∈ ℝ𝑑 × ℝ𝑑 .  (87) 

Given a non-zero Schwartz function 𝑔 ∈ 𝑆(ℝ𝑑), the short-time Fourier transform of a 

distribution 𝑔 ∈ 𝑆′(ℝ𝑑) with respect to the window 𝑔 is defined as  

𝑉𝑔𝑓(𝑧) ≔ 〈𝑓, 𝜋(𝑧)𝑔〉,       𝑧 ∈ ℝ2𝑑 .                                       (88) 

For ‖𝑔‖2 = 1 the short-time Fourier transform is an isometry: 

‖𝑉𝑔𝑓‖𝐿2(ℝ2𝑑)
= ‖𝑓‖𝐿2(ℝ2𝑑),       𝑓 ∈ 𝐿

2(ℝ2𝑑).                           (89) 

The commutation rule (87) implies the covariance property of the short-time Fourier 

transform: 

𝑉𝑔(𝜋(𝑥, 𝜉)𝑓)(𝑥
′, 𝜉′) = 𝑒−2𝜋𝑖𝑥(𝜉

′−𝜉)𝑉𝑔𝑓(𝑥
′ − 𝑥, 𝜉′ − 𝜉),    (𝑥, 𝜉), (𝑥′, 𝜉′) ∈ ℝ𝑑 ×ℝ𝑑 . 

In particular, 

|𝑉𝑔𝜋(𝑧)𝑓| = |𝑉𝑔𝑓(∙ −𝑧)|,       𝑧 ∈ ℝ
2𝑑 .                               (90) 

We then define the modulation spaces as follows: fix a non-zero 𝑔 ∈ 𝑆(ℝ𝑑)  and 

let  

                     𝑀𝑃(ℝ𝑑) ≔ {𝑓 ∈ 𝑆′(ℝ𝑑) ∶ 𝑉𝑔𝑓 ∈ 𝐿
2(ℝ2𝑑)},    1 ≤ 𝑝 ≤ ∞,               (91) 

endowed with the norm ‖𝑓‖𝑀𝑝 ≔ ‖𝑉𝑔𝑓‖𝐿𝑝
. Different choice of non-zero windows 𝑔 ∈

𝑆(ℝ𝑑)  yield the same space with equivalent norms, see [383]. We note that for 𝑔 ∈
𝑀1(ℝ𝑑) and 𝑓 ∈ 𝑀𝑝(ℝ𝑑), 1 ≤ 𝑝 ≤ ∞, the short-time Fourier transform 𝑉𝑔𝑓 is a 

continuous function, we may therefore argue safely with the point wise values of 𝑉𝑔𝑓. 

The space 𝑀1(ℝ𝑑), known as the Feichtinger algebra plays a central role. it can 

also be characterized as  

𝑀0(ℝ𝑑) = {𝑓 ∈ 𝑀∞(ℝ𝑑): 𝑉𝑔𝑓 ∈ 𝐿
1(ℝ2𝑑)}. 

The modulation space 𝑀0(ℝ𝑑) is defined as the closure of the Schwartz-class with 

respect to the norm ‖∙‖𝑀∞. Then 𝑀0(ℝ𝑑) is a closed subspace of 𝑀∞(ℝ𝑑) and can also 

be characterized as  

𝑀0(ℝ𝑑) = {𝑓 ∈ 𝑀∞(ℝ𝑑): 𝑉𝑔𝑓 ∈ 𝐶0(ℝ
2𝑑)}. 

The duality of modulation spaces is similar to sequence spaces; we have 𝑀0(ℝ𝑑)∗ =
𝑀∞(ℝ𝑑) with respect to the duality 〈𝑓, ℎ〉 ≔ 〈𝑉𝑔𝑓, 𝑉𝑔ℎ〉.  

We consider a fixed function 𝑔 ∈ 𝑀1(ℝ𝑑) and will be mostly concerned with 

𝑀1(ℝ𝑑), its dual space 𝑀∞(ℝ𝑑), and 𝑀2(ℝ𝑑) = 𝐿2(ℝ𝑑). The weak∗ topology in 

𝑀∞(ℝ𝑑) will be denoted by 𝜎(𝑀∞, 𝑀1) and the weak∗ topology on 𝑀1(ℝ𝑑) by 

𝜎(𝑀1, 𝑀0), Hence, a sequence {𝑓𝑘: 𝑘 ≥ 1} ⊆ 𝑀
∞(ℝ𝑑) convergence to 𝑓 ∈ 𝑀∞(ℝ𝑑) in 

𝜎(𝑀∞, 𝑀1) if and only if for every ℎ ∈ 𝑀1(ℝ𝑑): 〈𝑓𝑘 , ℎ〉 → 〈𝑓, ℎ〉. 
We mention the following facts that will be used repeatedly (see for example 

[384, Theorem 4.1] and [389, proposition 12.1.11])  

Lemma (5.3.4)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑) be nonzero. Then the following hold true. 

(a) If 𝑓 ∈ 𝑀1(ℝ𝑑), then 𝑉𝑔𝑓 ∈ 𝑊(𝐶0, 𝐿
1)(ℝ2𝑑). 

(b) Let {𝑓𝑘: 𝑘 ≥ 1} ⊆ 𝑀
∞(ℝ𝑑) be a bounded sequence and 𝑓 ∈ 𝑀∞(ℝ𝑑). Then 

𝑓𝑘 → 𝑓 in 𝜎(𝑀∞,𝑀1) if and only if 𝑉𝑔𝑓𝑘 → 𝑉𝑔𝑓 uniformly on compacts sets. 

(c) Let {𝑓𝑘: 𝑘 ≥ 1} ⊆ 𝑀
1(ℝ𝑑) be a bounded sequence and 𝑓 ∈ 𝑀1(ℝ𝑑). Then 𝑓𝑘 →

𝑓 in 𝜎(𝑀1, 𝑀0) if and only if 𝑉𝑔𝑓𝑘 → 𝑉𝑔𝑓 uniformly on compacts sets. 

In particular, if  𝑓𝑛 → 𝑓 in 𝜎(𝑀∞, 𝑀1) and 𝑧𝑛 → 𝑧 ∈ ℝ
2𝑑, then 𝑉𝑔𝑓𝑛(𝑧𝑛) →

𝑉𝑔𝑓(𝑧). 
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Given 𝑔 ∈ 𝑀1(ℝ𝑑) and a relatively separated Set Λ ⊆ ℝ2𝑑, consider the analysis 

operator and the synthesis operator that are formally defined as 

𝐶𝑔,Λ𝑓 ≔ (〈𝑓, 𝜋(𝜆)𝑔〉)𝜆∈Λ,       𝑓 ∈ 𝑀
∞(ℝ𝑑), 

𝐶𝑔,Λ
∗ 𝑐 ≔∑𝑐𝜆𝜋(𝜆)𝑔

𝜆∈Λ

,     𝑐 ∈ ℓ∞(Λ).             

These maps are bounded between 𝑀𝑝 and ℓ𝑝 spaces [389, Cor.12.1.12] with estimates  

‖𝐶𝑔,Λ𝑓‖ℓ𝑝
≤ rel(Λ)‖𝑔‖𝑀1‖𝑓‖𝑀𝑝 , 

‖𝐶𝑔,Λ
∗ 𝑐‖

𝑀𝑝
≤ rel(Λ)‖𝑔‖𝑀1‖𝑐‖ℓ𝑝 .  

The implicit constants in the last estimates are of  𝑝 ∈ [1,∞]. 
For 𝑧 = (𝑥, 𝜉) ∈ ℝ2𝑑, the twisted shift is the operator 𝜅(𝑧): ℓ∞(Λ) → ℓ∞(Λ + 𝑧) 

given by 

(𝜅(𝑧)𝑐)𝜆+𝑧 ≔ 𝑒−2𝜋𝑖𝑥𝜆2𝑐𝜆,    𝜆 = (𝜆1, 𝜆2) ∈ Λ. 
As a consequence of the commutation relations (87), the analysis and synthesis 

operators satisfy the covariance property 

𝜋(𝑧)𝐶𝑔,Λ
∗ = 𝐶𝑔,Λ+𝑧

∗ 𝜅(𝑧) and 𝑒2𝜋𝑖𝑥𝜉𝐶𝑔,Λ𝜋(−𝑧) = 𝑒
−2𝜋𝑖𝑥𝜉𝜅(−𝑧)𝐶𝑔,Λ+𝑧      (92) 

for 𝑧 = (𝑥, 𝜉) ∈ ℝ𝑑 × ℝ𝑑. 

A Gabor system 𝒢(𝑔, Λ)is a frame if and only if 𝐶𝑔,Λ: 𝐿
2(ℝ𝑑) → ℓ2(Λ)  is 

bounded below, and 𝒢(𝑔, Λ) is a Riesz sequence if and only if 𝐶𝑔,Λ
∗ : ℓ2(Λ) → 𝐿2(ℝ𝑑) is 

bounded below. As the following lemma shows, each of these conditions implies a 

restriction of the geometry of the set Λ. 

Lemma (5.3.5)[356]: Let 𝑔 ∈ 𝐿2(ℝ𝑑) and let Λ ⊆ ℝ2𝑑 be a set. Then the following 

holds. 

(a) If 𝒢(𝑔, Λ) is a frame, then Λ is relatively separated and relatively dense. 

(b) If 𝒢(𝑔, Λ) is a Riesz sequence, then Λ is separated.  

Proof. For part (a) see for example [374, Theorem 1.1]. for part (b), suppose that Λ is 

not separated. Then there exist two sequences {𝜆𝑛: 𝑛 ≥ 1} ⊆ Λ with 𝜆𝑛 ≠ 𝛾𝑛 such 

|𝜆𝑛 − 𝛾𝑛| → 0. Hence we derive the following contradiction: √2 = ‖𝛿𝜆𝑛 −

𝛿𝛾𝑛‖ℓ2(ℝ𝑑)
≍ ‖𝜋(𝜆𝑛)𝑔 − 𝜋(𝛾𝑛)𝑔‖𝐿2(ℝ𝑑) → 0. 

We extend the previous terminology to other values of 𝑝 ∈ [1,∞]. We say that 

𝒢(𝑔, Λ) is a 𝑝-fame for 𝑀𝑝(ℝ𝑑) if 𝐶𝑔,Λ:𝑀
𝑝(ℝ𝑑) → ℓ𝑝(Λ) is bounded below, and that 

𝒢(𝑔, Λ) is a 𝑝 −Riesz sequence within 𝑀𝑝(ℝ𝑑) if  𝐶𝑔,Λ
∗ : ℓ𝑝(Λ) → 𝑀𝑝(ℝ𝑑)  is bounded 

below. Since boundedness below and left invertibility are different properties outside 

the context of Hilbert spaces, there are other reasonable definitions of frames and Riesz 

sequences for ℳ𝑝. This is largely immaterial for Gabor frames with 𝑔 ∈ ℳ1, since the 

theory of localized frames asserts that when such a system is a frame for 𝐿2, then it is a 

frame for all ℳ𝑝 and moreover the operator 𝐶𝑔,Λ:ℳ
𝑝 → ℓ𝑝 is a left invertible 

[390,387,369,370]. Similar statements apply to Riesz sequences. 

We say that {𝑓𝜆: 𝜆 ∈ Λ} ⊆ L
2(ℝ𝑑) is a set of time-frequency molecules, if  Λ ⊆

ℝ2𝑑 is a relatively separated set and there exists a non-zero 𝑔 ∈ ℳ1(ℝ𝑑) and an 

envelope function Φ ∈ 𝑊(𝐿∞, 𝐿1)(ℝ2𝑑) such that   

|𝑉𝑔𝑓𝜆(𝑧)| ≤ Φ(𝑧 − 𝜆),        a.e. 𝑧 ∈ ℝ𝑑 , 𝜆 ∈ Λ.                      (93) 
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If (93) holds for some 𝑔 ∈ ℳ1(ℝ𝑑), then it holds for all 𝑔 ∈ ℳ1(ℝ𝑑) (with an 

envelope depending on 𝑔).  

Theorem (5.3.6)[356]: Let {𝑓𝜆: 𝜆 ∈ Λ} be a set of time-frequency molecules. Then the 

following holds. 

(a) Assume that  

‖𝑓‖𝑀𝑝 ≍ ‖(〈𝑓, 𝑓𝜆〉)𝜆∈Λ‖𝑝, ∀𝑓 ∈ ℳ𝑝(ℝ𝑑),                    (94) 

Holds for some 1 ≤ 𝑝 ≤ ∞. Then (94) holds for all 1 ≤ 𝑝 ≤ ∞. in other words, if 

{𝑓𝜆: 𝜆 ∈ Λ} is a p-frame for ℳ𝑝(ℝ𝑑) for some 𝑝 ∈ [1,∞], then it is a 𝑝-frame for 

ℳ𝑝(ℝ𝑑) for all 𝑝 ∈ [1,∞].  
(b) Assume That  

‖∑𝑐𝜆𝑓𝜆
𝜆∈𝐴

‖

𝑀𝑝

≍ ‖𝑐‖𝑝,       𝑐 ∈ ℓ
𝑝(Λ),                               (95) 

Holds for some 1 ≤ 𝑝 ≤ ∞. Then (95) holds for all 1 ≤ 𝑝 ≤ ∞. 

The result is similar in spirit to other results [402,366,400, 404, 403], but none of 

these is directly applicable to our setting. We postpone the proof of Theorem (5.3.6), so 

as not to interrupt the natural flow. the proof elaborates on Sjöstrand’s Wiener-type 

lemma [401]. 

As a special case of Theorem (5.3.6). We record the following corollary. 

Corollary (5.3.7)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑) and let Λ ⊆ ℝ2𝑑 be a relatively separated set. 

Then the following holds. 

(a) If 𝒢(𝑔, Λ) is a 𝑝-frame for 𝑀𝑝(ℝ𝑑) for some 𝑝 ∈ [1,∞], then it is a 𝑝-frame for 

𝑀𝑝(ℝ𝑑) for all 𝑝 ∈ [1,∞]. 
(b) If 𝒢(𝑔, Λ) is a 𝑝-Riesz sequence in 𝑀𝑝(ℝ𝑑) for some 𝑝 ∈ [1,∞], then it is a 𝑝-

Riesz sequence in 𝑀𝑝(ℝ𝑑) for all 𝑝 ∈ [1,∞]. 
The space 𝑀1(ℝ𝑑) is the largest space of windows for which the corollary holds. 

Under a stronger condition on 𝑔, statement (a) was already derived in [366], the general 

case was left open. 

The Hausdorff distance between two sets 𝑋, 𝑌 ⊆ ℝ𝑑 is defined as  

𝑑𝐻(𝑋, 𝑌) ≔ inf{𝜖 > 0: 𝑋 ⊆ 𝑌 + 𝐵𝜖(0), 𝑌 ⊆ 𝑋 + 𝐵𝜖(0)}. 
Note that  𝑑𝐻(𝑋, 𝑌) = 0 if and only if  �̅� = �̅�. 

 Let Λ ⊆ ℝ2𝑑 be a set. A sequence {Λ𝑛: 𝑛 ≥ 1} of subsets of ℝ𝑑 

convergence weakly to Λ, in short Λ𝑛
  𝜔  
→ Λ, if  

𝑑𝐻 ((Λ𝑛 ∩ �̅�𝑅(𝑧)) ∪ 𝜕�̅�𝑅(𝑧)) , (Λ ∩ �̅�𝑅(𝑧) ∪ 𝜕�̅�𝑅(𝑧)) → 0,   ∀ 𝑧 ∈ ℝ
𝑑 , 𝑅 > 0.    (96) 

(to understand the role of the boundary of the ball in the definition, consider the 

following example in dimension 𝑑 = 1: Λ𝑛 ≔ {1 + 1 𝑛⁄ }, Λ ≔ {1} and 𝐵𝑅(𝑧) = [0,1]).     
The following lemma provides an alternative description of weak convergence. 

Lemma (5.3.8)[356]: Let Λ ⊆ ℝ2𝑑 and Λ𝑛 ⊆ ℝ
𝑑 , 𝑛 ≥ 1 be sets. Then Λ𝑛

  𝜔  
→ Λ if and 

only if for every 𝑅 > 0 and 𝜖 > 0 there exists 𝑛0 ∈ ℕ such that for 𝑛 ≥ 𝑛0   

Λ ∩ 𝐵𝑅(0) ⊆ Λ𝑛 + 𝐵𝜖(0)    and   Λ𝑛 ∩ 𝐵𝑅(0) ⊆ Λ𝑛 + 𝐵𝜖(0) 
The following consequence of Lemma (5.3.8) is often useful to identity weak 

limits. 

 Lemma (5.3.9)[356]: let Λ𝑛
  𝜔  
→ Λ and Γ𝑛

  𝜔  
→ Γ. Suppose that for every 𝑅 > 0 and  𝜖 >

0 there exists 𝑛0 ∈ ℕ such that for all 𝑛 ≥ 𝑛0  
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Λ𝑛 ∩ 𝐵𝑅(0) ⊆ Γ𝑛 + 𝐵𝜖(0). 
Then Λ̅ ⊆ Γ̅. 

The notion of weak convergence will be a technical tool in the proofs of 

deformation results. 

We explain how the weak convergence of sets can be understood by the 

convergence of some associated measures. First we note the following semi continuity 

property, that follows directly from Lemma (5.3.19). 

Lemma (5.3.10)[356]: Let {𝜇𝑛 ∶ 𝑛 ≥ 1} ⊆ 𝑊(ℳ, 𝐿
∞)(ℝ𝑑) be a sequence of measures 

of measures that converges to a measure 𝜇 ∈ 𝑊(ℳ, 𝐿∞)(ℝ𝑑) in the 

𝜎(𝑊(ℳ, 𝐿∞),𝑊(𝐶0, 𝐿
1)) topology. Suppose that supp(𝜇𝑛) ⊆ Λ𝑛 and that Λ𝑛

  𝜔  
→ Λ. 

Then supp(𝜇𝑛) ⊆ Λ̅. 

The example 𝜇𝑛 =
1

𝑛
𝛿, 𝜇 = 0 shows  that in Lemma (5.3.10) the inclusions 

cannot in general be improved to equalities. Such improvement is however possible for 

certain classes of measures. A Borel measure 𝜇 is called natural-valued if for all Borel 

sets 𝐸 the value 𝜇(𝐸) is a non-negative integer or infinity. For these measures the 

following holds. 

Lemma (5.3.11)[356]: Let {𝜇𝑛 ∶ 𝑛 ≥ 1} ⊂ 𝑊(ℳ, 𝐿
∞)(ℝ𝑑) be a sequence of natural-

valued measures that converges to a measure 𝜇 ∈ 𝑊(ℳ, 𝐿∞)(ℝ𝑑) in the 

𝜎(𝑊(ℳ, 𝐿∞),𝑊(𝐶0, 𝐿
1)) topology. Then supp(𝜇𝑛)

  𝜔  
→ supp(𝜇). 

The proof of Lemma (5.3.11) is elementary and therefore we skip it. Lemma 

(5.3.11) is useful to deduce properties of weak convergence of sets from properties of 

convergence of measures, as we now show. For a set Λ ⊆ ℝ2𝑑, let us consider the 

natural-valued measure  

ш𝐴 ≔∑𝛿𝜆
𝜆∈Λ

.                                                        (97) 

One can readily verify that Λ is relatively separated if and only if шΛ ∈ 𝑊(ℳ, 𝐿
∞)(ℝ𝑑) 

and moreover, 

‖шΛ‖𝑊(ℳ,𝐿∞) ≍ rel(Λ).                                             (98) 

For sequence of sets {Λ𝑛: 𝑛 ≥ 1} with uniform separation, i.e, 

inf
𝑛

sep(Λ𝑛) = inf{|𝜆 − 𝜆
′|: 𝜆 ≠ 𝜆′, 𝜆, 𝜆′ ∈ Λ𝑛, 𝑛 ≥ 1} > 0, 

the convergence Λ𝑛
  𝜔  
→ Λ is equivalent to convergence шΛ𝑛 → шΛ in 

𝜎(𝑊(ℳ, 𝐿∞),𝑊(𝐶0, 𝐿
1)). For sequences without uniform separation the situation is 

slightly more technical because of possible multiplicities in the limit set. 

Lemma (5.3.12)[356]: Let {Λ𝑛 ∶ 𝑛 ≥ 1} be a sequence of relatively separated sets in 

ℝ𝑑. Then the following hold. 

(a) If шΛ𝑛 → 𝜇 in  𝜎(𝑊(ℳ, 𝐿∞),𝑊(𝐶0, 𝐿
1)) for some measure 𝜇 ∈ 𝑊(ℳ, 𝐿∞), then 

sup𝑛rel(Λ𝑛) < ∞  and Λ𝑛
  𝜔  
→ Λ ≔ supp(𝜇). 

(b) If lim sup
𝑛

rel(Λ𝑛) < ∞, then there exists a subsequence {Λ𝑛: 𝑘 ≥ 1} that 

converges weakly to a relatively separated set. 

(c) If lim sup
𝑛

rel(Λ𝑛) < ∞, and 𝐴𝑛
  𝜔  
→  for some set Λ ⊆ ℝ𝑑, then Λ is relatively 

separated (and is particular closed). 
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The lemma follows easily from lemma (5.3.11), (98) and the weak∗-compactness 

of the ball of  𝑊(ℳ, 𝐿∞), and hence we do not prove it. We remark that the limiting 

measure 𝜇 in the lemma is not necessarily ш𝐴. For example, if  𝑑 = 1 and Λ𝑛 ≔
{0, 1 𝑛⁄ , 1 ,1 + 1 𝑛⁄ , 1 − 1 𝑛⁄ }, then шΛ𝑛 → 2𝛿0 + 3𝛿1. The measure 𝜇 in (a) can be 

shown to be natural-valued, and therefore we can interpret it as representing a set with 

multiplicities. 

The following lemma provides a version of (98) for linear combinations of point 

measures. 

Lemma (5.3.13)[356]: Let Λ ⊆ ℝ𝑑 be a relatively separated set and consider a measure  

𝜇 ≔∑𝑐𝜆
𝜆∈Λ

𝛿𝜆 

with coefficients 𝑐𝜆 ∈ ℂ. Then  

                                         ‖𝜇‖ = |𝜇|(ℝ𝑑) = ‖𝑐‖1, 

‖𝑐‖∞ ≤ ‖𝑐‖𝑊(ℳ,𝐿∞) ≲ rel(Λ)‖𝑐‖∞.  

Proof.   The identity |𝜇|(ℝ𝑑) = ‖𝑐‖1 is elementary. The estimate for ‖𝜇‖𝑊(ℳ ,𝐿∞) 

follows from the fact that, for all 𝜆 ∈ Λ, |𝑐𝜆|𝛿𝜆 ≤ ‖𝑐‖∞шΛ, where шΛ is defined by 

(17).  

          As a first step towards the main results, we characterize frames and Riesz         

bases in terms of uniqueness properties for certain limit sequences. The corresponding 

results for lattices have been derived by different methods in [391]. For the proofs we  

combine Theorem (5.3.6) with Beurling’s methods [373, pp. 351-365]. 

For a relatively separated set Λ ⊆ ℝ2𝑑, let 𝑊(Λ) be the set of weak limits of the 

translated sets Λ + 𝑧, 𝑧 ∈ ℝ2𝑑, i.e., Γ ∈ 𝑊(Λ) if there exists a sequence {𝑧𝑛: 𝑛 ∈ ℕ} 

such that Λ + 𝑧𝑛
  𝜔  
→  Γ. It is easy to see that then Γ is always relatively separated. When 

Λ is a lattice, i.e, Λ = Λℤ2𝑑 for an invertible real-valued 2𝑑 × 2𝑑-matrix Λ, then 𝑊(Λ) 
consists only of translates of Λ. 

We use repeated the following special case of  Lemma (5.3.12)(b,c): given a 

relatively separated set Λ ⊆ ℝ2𝑑 and any sequence of points {𝑧𝑛 ∶ 𝑛 ≥ 1} ⊆ ℝ
2𝑑, there 

is a subsequence {𝑧𝑛𝑘 ∶ 𝑘 ≥ 1} and relatively separated set Γ ⊆ ℝ2𝑑 such Λ + 𝑧𝑛𝑘
  𝜔  
→  Γ. 

We characterize the frame property of Gabor systems in terms of the sets in (Λ).  
Theorem (5.3.14)[356]: Assume that 𝑔 ∈ 𝑀1(ℝ𝑑) and that Λ ⊆ ℝ2𝑑 is relatively 

separated. Then the following are equivalent. 

(i) 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑). 
(ii) 𝒢(𝑔, Λ) is a 𝒫-frame for 𝑀𝑝(ℝ𝑑) for some 𝑝 ∈ [1,∞] (for all 𝑝 ∈ [1,∞]). 

(iii) 𝒢(𝑔, Λ) is an ∞-frame  for  𝑀∞(ℝ𝑑). 
(iv) 𝐶𝑔,Λ

∗  is surjective  from ℓ1(Λ) onto 𝑀1(ℝ𝑑). 

(v) 𝐶𝑔,Γ is bounded below on 𝑀∞(ℝ𝑑) for every weak limit Γ ∈ 𝑊(Λ).  

(vi) 𝐶𝑔,Γ is one-to-one on 𝑀∞(ℝ𝑑) for every weak limit Γ ∈ 𝑊(Λ). 

Proof. The equivalence of (i), (ii) and (iii) follows immediately from Corollary (5.3.7). 

We will use several times the following version of the closed range the Orem 

[376, p.166]: Let 𝑇: 𝑋 → 𝑌 be bounded operator between two Banach spaces 𝑋 and 𝑌. 

Then 𝑇 is onto 𝑌, if and only if 𝑇∗: 𝑌∗ → 𝑋∗ is one-to-one on 𝑌∗ and has closed range in 

𝑋∗, if and only if  𝑇∗ is bounded below. 
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Condition (iii) and (iv) are equivalent by applying the closed range Theorem to 

the synthesis operator  𝐶𝑔,Λ
∗  on ℓ1(Λ). 

For the remaining equivalences we adapt Burling’s methods. 

(iv) ⇒ (v). Consider a convergent sequence of translates Λ − 𝑧𝑛
  𝜔  
→ Γ . Since 𝐶𝑔,Λ

∗  

maps ℓ1(Λ) onto 𝑀1(ℝ𝑑), because of (92) and the open mapping Theorem, the 

synthesis operators 𝐶𝑔,Λ−𝑧𝑛
∗  are also onto 𝑀1(ℝ𝑑) with bounds on preimages 

independent of 𝑛. Thus for every 𝑓 ∈ 𝑀1(ℝ𝑑) there exist sequences {𝑐𝜆
𝑛}𝜆∈Λ−𝑧𝑛 with 

‖𝑐𝑛‖1 ≲ 1 such that  

𝑓 = ∑ 𝑐𝜆
𝑛𝜋(𝜆) 𝑔

𝜆∈Λ−𝑧𝑛

, 

with convergence in 𝑀1(ℝ𝑑). 
Consider the measures 𝜇𝑛 ≔ ∑ 𝑐𝜆

𝑛𝛿𝜆𝜆∈Λ−𝑧𝑛 . Note that ‖𝜇𝑛‖ = ‖𝑐
𝑛‖1 ≲ 1 . By 

passing to a subsequence we may assume that 𝜇𝑛 → 𝜇 in 𝜎(ℳ,𝐶0) for some measure 

𝜇 ∈ ℳ(ℝ2𝑑). 

By assumption supp(𝜇𝑛) ⊆ Λ− 𝑧𝑛, Λ− 𝑧𝑛
  𝑤  
→ Γ, and Γ is relatively separated 

and thus closed. It follows from Lemma (5.3.10) that supp(𝜇𝑛) ⊆ Γ. Hence, 

𝜇 =∑𝑐𝜆𝛿𝜆
𝜆∈Γ

 

for some sequence 𝑐. In addition, ‖𝑐‖1 = ‖𝜇‖ ≤ lim inf𝑛 ‖𝜇𝑛‖ ≲ 1. Let 𝑓′ ≔
∑ 𝑐𝜆𝜋(𝜆)𝑔𝜆∈Γ . This is well-defined in 𝑀1(ℝ𝑑), because 𝑐 ∈ ℓ1(Γ). Let ∈ ℝ2𝑑. Since by 

Lemma (5.3.4), 𝑉𝑔𝜋(𝑧)𝑔 ∈ 𝑊(𝐶0, 𝐿
1)(ℝ2𝑑) ⊆ 𝐶0(ℝ

2𝑑) we can compute 

〈𝑓, 𝜋(𝑧)𝑔〉 = ∑ 𝑐𝜆
𝑛𝑉𝑔𝜋(𝑧)𝑔(𝜆)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜆∈Λ−𝑧𝑛

                                           

                               = ∫ 𝑉𝑔𝜋(𝑧)𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜇𝑛

ℝ2𝑑

→ ∫ 𝑉𝑔𝜋(𝑧)𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜇

ℝ2𝑑

= 〈𝑓′, 𝜋(𝑧)𝑔〉. 

(Here, the interchange of summation and integration is justified because 𝑐 and 𝑐𝑛 are 

summable). Hence 𝑓 = 𝑓′ and thus 𝐶𝑔,Γ
∗ ∶ ℓ1(Γ) → 𝑀1(ℝ𝑑) is surjective. By duality 

𝐶𝑔,Γ is one-to-one from 𝑀∞(ℝ𝑑) to ℓ∞(Γ) and has closed range, whence 𝐶𝑔,Γ is 

bounded below on 𝑀∞(∞ ). 
(v) ⟹ (vi) is clear. 

(vi) ⟹ (iii). Suppose 𝒢(𝑔, Λ) is not an ∞-frame for 𝑀∞(ℝ𝑑). then there exists a 

sequence of functions {𝑓𝑛 ∶ 𝑛 ≥ 1} ⊂ 𝑀
∞(ℝ𝑑) such that ‖𝑉𝑔𝑓𝑛‖∞

= 1 and 

sup𝜆∈Λ|𝑉𝑔𝑓𝑛(𝜆)| → 0. Let 𝑧𝑛 ∈ ℝ
2𝑑 be such that |𝑉𝑔𝑓𝑛(𝑧𝑛)| ≥ 1 2⁄  and consider ℎ𝑛 ≔

𝜋(−𝑧𝑛)𝑓𝑛. By passing to a subsequence we may assume that  ℎ𝑛 → ℎ in 𝜎(𝑀∞,𝑀1) for 

some ℎ ∈ 𝑀∞(ℝ𝑑), and that Λ − 𝑧𝑛
 𝜔  
→  Γ for some relatively separated Γ. Since 

|𝑉𝑔ℎ𝑛(0)| = |𝑉𝑔𝑓𝑛(𝑧𝑛)| ≥ 1 2⁄  by (90), it follows from Lemma (5.3.4)(b) that ℎ ≠ 0. 

Given 𝛾 ∈ Γ, there exists a sequence {𝜆𝑛: 𝑛 ≥ 1} ⊆ Λ such that 𝜆𝑛 − 𝑧𝑛 → 𝛾. Since, by 

Lemma (5.3.4), 𝑉𝑔ℎ𝑛 → 𝑉𝑔ℎ uniformly on compact sets, we can use (90) to obtain that  

|𝑉𝑔ℎ𝑛(𝛾)| = lim
𝑛
|𝑉𝑔𝑓𝑛(𝜆𝑛 − 𝑧𝑛)| = lim

𝑛
|𝑉𝑔𝑓𝑛(𝜆𝑛)| = 0. 

As 𝛾 ∈ Γ is arbitrary, this contradicts (vi). 
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Theorem (5.3.14) seems to be purely qualitative, it can be used to derive 

quantities estimates for Gabor frames. We fix a non-zero window 𝑔 in 𝑀1(ℝ𝑑) and 

assume that ‖𝑔‖2 = 1. We measure the modulation space norms with respect to this 

window by  ‖𝑓‖𝑀𝑝 = ‖𝑉𝑔𝑓‖𝑝
 and observe that the isometry property of the short-time 

Fourier transform extends to 𝑀∞(ℝ𝑑) as follows: if  ∈ 𝑀∞(ℝ𝑑) and ℎ ∈ 𝑀1(ℝ𝑑), then  

〈𝑓, ℎ〉 = ∫ 𝑉𝑔𝑓(𝑧)𝑉𝑔ℎ(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝑧

ℝ2𝑑

= 〈𝑉𝑔𝑓, 𝑉𝑔ℎ〉.                       (99) 

For 𝛿 > 0, we define the 𝑀1-modulus of continuity of 𝑔 as  

𝜔𝛿(𝑔)𝑀1 = sup
𝑧,𝑤∈ℝ2𝑑

|𝑧−𝑤|≤𝛿

‖𝜋(𝑧)𝑔 − 𝜋(𝑤)𝑔‖𝑀1 

= sup
𝑧,𝑤∈ℝ2𝑑

|𝑧−𝑤|≤𝛿

‖𝑉𝑔(𝜋(𝑧)𝑔 − 𝜋(𝑤)𝑔)‖𝐿1
.                  (100) 

It is easy to verify that lim
𝛿→0+𝜔𝛿

(𝑔)𝑀1 = 0, because time-frequency shifts are continuous 

on 𝑀1(ℝ𝑑). 
Then we deduce the following quantitative condition for Gabor frames from 

Theorem (5.3.14). 

Corollary (5.3.15)[356]: For 𝑔 ∈ 𝑀1(ℝ𝑑) with ‖𝑔‖2 = 1 choose 𝛿 > 0 so that 

𝜔𝛿(𝑔)𝑀1 < 1.  

If Λ ⊆ ℝ2𝑑 is relatively separated and 𝜌(𝐴) ≤ 𝛿, Then 𝒢(𝑔, Λ) is a frame for 

𝐿2(ℝ𝑑). 
Proof. We argue by contradiction and assume that 𝒢(𝑔, Λ) is not a frame. By condition 

(vi) of Theorem (5.3.14) there exists a weak limit Γ ∈ 𝑊(Λ) and non-zero 𝑓 ∈

𝑀∞(ℝ𝑑), such that 𝑉𝑔𝑓|Γ
= 0. Since 𝜌(Λ) ≤ 𝛿, we also have 𝜌(Γ) ≤ 𝛿. By 

normalizing, we may assume that ‖𝑓‖𝑀∞ = ‖𝑉𝑔𝑓‖∞
= 1. For 0 < 𝜖 < 1 − 𝜔𝛿(𝑔)𝑀1 

we find 𝑧 ∈ ℝ2𝑑 such that |𝑉𝑔𝑓(𝑧)| = |〈𝑓, 𝜋(𝑧)𝑔〉| > 1 − 𝜖. By lemma (5.3.12), Γ is 

relatively separated and, in particular, closed. Since 𝜌(Γ) ≤ 𝛿 there is a 𝛾 ∈ Γ such that 

|𝑧 − 𝛾| ≤ 𝛿. Consequently, since 𝑉𝑔𝑓|Γ
= 0, we find that  

1 − 𝜖 < |〈𝑓, 𝜋(𝑧)𝑔〉 − 〈𝑓, 𝜋(𝛾)𝑔〉| = |〈𝑓, 𝜋(𝑧)𝑔 − 𝜋(𝛾)𝑔〉|        

= |〈𝑉𝑔𝑓, 𝑉𝑔(𝜋(𝑧)𝑔 − 𝜋(𝛾)𝑔)〉| 

       ≤ ‖𝑉𝑔𝑓‖∞‖
𝑉𝑔(𝜋(𝑧)𝑔 − 𝜋(𝛾)𝑔)‖1

 

= ‖𝑓‖𝑀∞‖𝜋(𝑧)𝑔 − 𝜋(𝛾)𝑔‖1   
 ≤ 𝜔𝛿(𝑔)𝑀1 .                                   

Since we have chosen 1 − 𝜖 > 𝜔𝛿(𝑔)𝑀1 , we have arrived at a contradiction. Thus 

𝒢(𝑔, Λ) is a frame. 

This Theorem is analogous to Beurling’s famouse sampling Theorem for 

multiveariate bandlimited functions [371]. The proof is  in the style of [394]. 

We now derive analogouse  results for Riesz sequences. 

Lemma (5.3.16)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑), 𝑔 ≠ 0, and let {Λ𝑛: 𝑛 ≥ 1} be a sequence of 

uniformly separated subsets of  ℝ2𝑑, i.e, 

inf
𝑛

sep(Λ𝑛) = 𝛿 > 0.                                            (101) 
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For every 𝑛 ∈ ℕ, let 𝑐𝑛 ∈ ℓ∞(Λ𝑛) be such that ‖𝑐𝑛‖∞ = 1 and suppose that  

∑ 𝑐𝜆
𝑛𝜋(𝜆)𝑔 → 0

𝜆∈Λ𝑛

  𝑖𝑛 𝑀∞(ℝ𝑑),      𝑎𝑠 𝑛 → ∞. 

Then there exist a subsequence (𝑛𝑘) ⊂ ℕ, points 𝜆𝑛𝑘 ∈ Λ𝑛𝑘, a separated set Γ ⊆ ℝ2𝑑, 

and a non-zero sequence 𝑐 ∈ ℓ∞(Γ) such that 

Λ𝑛𝑘 − 𝜆𝑛𝑘
  𝜔   
→  Γ,     as 𝑘 → ∞ 

and        ∑𝑐𝜆𝜋(𝜆)𝑔

𝜆∈Γ

= 0.                                       

Proof. Combining the hypothesis (111) and observation (84), we also have the uniform 

relative  

sup
𝑛
rel(Λ𝑛) < ∞.                                                   (102) 

Since ‖𝑐𝑛‖∞ = 1 for every 𝑛 ≥ 1, we may choose 𝜆𝑛 ∈ Λ𝑛 be such that |𝑐𝜆
𝑛| ≥ 1 2⁄ . 

Let 𝜃𝜆,𝑛 ∈ ℂ such that  

𝜃𝜆,𝑛𝜋(𝜆 − 𝜆𝑛) = 𝜋(−𝜆𝑛)𝜋(𝜆), 

and consider the measures 𝜇𝑛 ≔ ∑ 𝜃𝜆,𝑛𝑐𝜆
𝑛𝛿𝜆−𝜆𝑛𝜆∈𝐴𝑛 . Then by Lemma (5.3.13), 

‖𝜇𝑛‖𝑊(ℳ,𝐿∞) ≲ rel(Λ𝑛 − 𝜆𝑛)‖𝑐
𝑛‖∞ = rel(Λ𝑛)‖𝑐

𝑛‖∞ ≲ 1. Using (102) Lemma 

(5.3.12) we may pass to a subsequence such that (i) Λ𝑛 − 𝜆𝑛
  𝜔  
→  Γ for some relatively 

separated set Γ ⊆ ℝ2𝑑 and (ii) 𝜇𝑛 → 𝜇 in 𝜎(𝑊(ℳ, 𝐿∞),𝑊(𝐶0, 𝐿
1))(ℝ2𝑑) for some 

measure 𝜇 ∈ 𝑊(ℳ, 𝐿∞)(ℝ2𝑑). The uniform separation condition in (101) implies that 

Γ is also separated.  

Since supp(𝜇𝑛) ⊆ Λ𝑛 − 𝜆𝑛 it follows from Lemma (5.3.10), that supp(𝜇) ⊆ Γ̅ =
Γ. Hence, 

𝜇 =∑𝑐𝜆
𝜆∈Γ

𝛿𝜆, 

for some sequence of complex numbers, and, by Lemma (5.3.13), ‖𝑐‖∞ ≤
‖𝜇‖𝑊(ℳ,𝐿∞) < ∞.  

From (101) it follows that for all 𝑛 ∈ ℕ,𝐵𝛿 2⁄ (𝜆𝑛) ∩ 𝐴𝑛 = {𝜆𝑛}. Let 𝜑 ∈ 𝐶(ℝ2𝑑) 

be real-valued, supported on 𝐵𝛿 2⁄ (0) and such that (0) = 1. Then  

| ∫ 𝜑𝑑𝜇

ℝ2𝑑

| = lim
𝑛
| ∫ 𝜑𝑑𝜇𝑛

ℝ2𝑑

| = lim
𝑛
|𝑐𝜆𝑛
𝑛 | ≥ 1 2⁄ . 

Hence 𝜇 ≠ 0 and therefore 𝑐 ≠ 0. 

Finally, we show that the short-time Fourier transforms of ∑ 𝑐𝜆𝜋(𝜆)𝑔𝜆  is zero. 

Let 𝑧 ∈ ℝ2𝑑 be arbitrary and recall that by Lemma (5.3.4) 𝑉𝑔𝜋(𝑧)𝑔 ∈ 𝑊(𝐶0, 𝐿
1)(ℝ2𝑑). 

Now we estimate  

                    |〈∑𝑐𝜆𝜋(𝜆)𝑔, 𝜋(𝑧)

𝜆∈Γ

𝑔〉| = |∑𝑐𝜆𝑉𝑔𝜋(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜆∈Γ

𝑔(𝜆)| 

                                                          = | ∫ 𝑉𝑔𝜋(𝑧)𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜇

ℝ2𝑑

| = lim
𝑛
| ∫ 𝑉𝑔𝜋(𝑧)𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜇𝑛

ℝ2𝑑

| 
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                                                 = lim
𝑛
|〈∑ 𝜃𝜆,𝑛𝑐λ

𝑛𝜋(𝜆 − 𝜆𝑛)𝑔, 𝜋(𝓏)𝑔

𝜆∈Λ𝑛

〉| 

                                                      ≤ lim
𝑛
‖∑ 𝜃𝜆,𝑛𝑐λ

𝑛𝜋(𝜆 − 𝜆𝑛)𝑔

𝜆∈Λ𝑛

‖

𝑀∞

‖𝑔‖𝑀1 

                                                = lim
𝑛
‖𝜋(−𝜆𝑛) ∑ 𝑐λ

𝑛𝜋(𝜆)𝑔

𝜆∈Λ𝑛

‖

𝑀∞

‖𝑔‖𝑀1 

                                          = lim
𝑛
‖∑ 𝑐λ

𝑛𝜋(𝜆)𝑔

𝜆∈Λ𝑛

‖

𝑀∞

‖𝑔‖𝑀1 = 0. 

We have shown that 𝑉𝑔(∑ 𝑐𝜆𝜋(𝜆)𝑔𝜆∈Γ ) ≡ 0 and thus ∑ 𝑐𝜆𝜋(𝜆)𝑔𝜆∈Γ ≡ 0, as desired. 

Theorem (5.3.17)[356]: Assume that 𝑔 ∈ 𝑀1(ℝ𝑑) and Λ ⊆ (ℝ2𝑑) is separated 

separated. Then the following are equivalent. 

(i) 𝒢(𝑔, Λ) is a Riesz sequence in 𝐿2ℝ𝑑. 

(ii) 𝒢(𝑔, Λ) is a 𝑝-Riesz sequence in 𝑀𝑝(ℝ𝑑) for some 𝑝 ∈ [1,∞] (for all 𝑝 ∈
[1,∞]). 

(iii) 𝒢(𝑔, Λ) is a ∞-Riesz sequence in 𝑀∞(ℝ𝑑), i.e, 𝐶𝑔,Λ
∗ ∶ ℓ∞(Γ) → 𝑀∞(ℝ𝑑) is 

bounded below. 

(iv) 𝐶𝑔,Λ:𝑀
1 → ℓ1(Γ) is surjective. 

(v) 𝐶𝑔,Γ
∗ ∶ ℓ∞(Γ) → 𝑀∞(ℝ𝑑) is bounded below for every weak limit Γ ∈ W(Λ). 

Proof. The equivalence of (i), (ii) and (iii) follows from Corollary (5.3.7)(b), and the 

equivalence of (iii) and (iv) follows by duality. 

(iv) ⇒ (v). Assume (iv) and consider a sequence Λ − 𝓏𝑛
 𝜔 
→ Γ. Let 𝜆 ∈ Γ be 

arbitrary and let {𝜆𝑛: 𝑛 ∈ ℕ} ⊆ Λ be a sequence such that 𝜆𝑛 − 𝓏𝑛 → 𝜆. By the open 

map Theorem, every sequence 𝑐 ∈ ℓ1(Λ) with ‖𝑐‖1 = 1 has a preimage  𝑐 = 𝐶𝑔,Λ(𝑓) 

with ‖𝑓‖𝑀1 ≲ 1. With the covariance property (92) we deduce that there exist 𝑓𝑛 ∈
𝑀1(ℝ𝑑), such that 𝑐 = 𝐶𝑔,𝐴−𝓏𝑛(𝑓𝑛)  and ‖𝑓𝑛‖𝑀1 ≲ 1. 

In particular, for each 𝑛 ∈ ℕ there exists an interpolating function ℎ𝑛 ∈ 𝑀
1(ℝ𝑑) 

such that ‖𝑉𝑔ℎ𝑛‖1
≲ 1, 𝑉𝑔ℎ𝑛(𝜆𝑛 − 𝓏𝑛) = 1 and 𝑉𝑔ℎ𝑛 ≡ 0 on Λ − 𝓏𝑛\{𝜆𝑛 − 𝓏𝑛}. By 

passing to a subsequence we may assume that ℎ𝑛 → ℎ in 𝜎(𝑀1, 𝑀0). It follows that 

‖ℎ‖𝑀1 ≲ 1. Since 𝑉𝑔ℎ𝑛 → 𝑉𝑔ℎ uniformly on compact sets by Lemma (5.3.4), we obtain 

that  

𝑉𝑔ℎ(𝜆) = lim
𝑛
𝑉𝑔ℎ𝑛(𝜆𝑛 − 𝓏𝑛) = 1. 

Similarly, given 𝛾 ∈ Γ\{𝜆}, there exists a sequence {𝛾𝑛: 𝑛 ∈ ℕ} ⊆ Λ such that 𝛾𝑛 −
𝓏𝑛 → 𝛾. Since 𝜆 ≠ 𝛾, for 𝑛 ≫ 0 we have that 𝛾𝑛 ≠ 𝜆𝑛 and consequently 𝑉𝑔ℎ(𝛾𝑛 −

𝓏𝑛) = 0. It follows that 𝑉𝑔ℎ(𝜆) = 0. 

Hence, we have shown that for each 𝜆 ∈ Γ there exists an interpolating function 

ℎ𝜆 ∈ 𝑀
1(ℝ𝑑) such that ‖ℎ𝜆‖𝑀1 ≲ 1, 𝑉𝑔ℎ𝜆(𝜆) = 1 and 𝑉𝑔ℎ𝜆 ≡ 0 on Γ\{𝜆}. Given an 

arbitrary sequence 𝑐 ∈ ℓ1(Γ) we consider  
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𝑓 ≔∑𝑐𝜆ℎ𝜆
𝜆∈Γ

. 

It follows that 𝑓 ∈ 𝑀1(ℝ𝑑) and that 𝐶𝑔,Γ𝑓 = 𝑐. Hence, 𝐶𝑔,Γ is onto ℓ1(Γ), and therefore 

𝐶𝑔,Γ
∗  is bounded below. 

(v) ⇒ (vi) is clear. 

(vi) ⇒ (iii). Suppose that (iii) does not hold. Then there exists a sequence 

{𝑐𝑛 ∶ 𝑛 ∈ ℕ} ⊆ ℓ∞(Λ) such that ‖𝑐𝑛‖∞ = 1 and 

‖∑𝑐λ
𝑛𝜋(𝜆)𝑔

𝜆∈Λ

‖

𝑀∞

→ 0,      as 𝑛 → ∞. 

We now apply Lemma (5.3.16), with Λ𝑛 ≔ Λ and obtain a set Γ ∈ 𝑊(Λ) and a non-zero 

sequence 𝑐 ∈ ℓ∞(Γ) such that ∑ 𝑐𝜆𝜋(𝜆)𝑔 =𝜆∈Γ 𝐶𝑔,Γ
∗ (𝑐) = 0. This contradicts (vi). 

The characterizations of Theorem (5.3.14) suggest that Gabor frames are 

invariant under “weak deformations” of Λ. One might expect that if 𝒢(𝑔, Λ) is a frame 

and Λ′ is close to Λ in the weak sense, then 𝒢(𝑔, Λ′) is also a frame. This view is too 

simplistic. Just choose Λ𝑛 = Λ⋂𝐵𝑛(0), then Λ𝑛
  𝜔  
→ Λ, but Λ𝑛 is a finite set and thus 

𝒢(𝑔, Λ𝑛) is never a frame. For a deformation result we need to introduce a finer notion 

of convergence.  

Let Λ ⊆ ℝ𝑑 be a (countable) set. We consider a sequence {Λ𝑛 ∶ 𝑛 ≥ 1} of subsets 

of ℝ𝑑 produced in the following way. For each 𝑛 ≥ 1, let 𝜏𝑛: Λ → ℝ
𝑑 be a map and let 

Λ𝑛 ≔ 𝜏𝑛(Λ) = {𝜏𝑛(𝜆): 𝜆 ∈ Λ}. We assume that 𝜏𝑛(𝜆) → 𝜆, as 𝑛 → ∞, for all 𝜆 ∈ Λ. 

The sequence of sets {Λ𝑛 ∶ 𝑛 ≥ 1} together with the maps {𝜏𝑛 ∶ 𝑛 ≥ 1} is called a 

deformation of Λ. We think of each sequence of points {𝜏𝑛 (𝜆): 𝑛 ≥ 1} as a (discrete) 

path moving towards the end point 𝜆. 

We will often say that {Λ𝑛 ∶ 𝑛 ≥ 1} of Λ is called Lipschitz, denote by Λ𝑛
  𝐿𝑖𝑝  
→   Λ 

, if the following two conditions hold:  

(L1) Given 𝑅 > 0,   

sup
𝜆,𝜆′∈Λ

|𝜆−𝜆′|∞≤𝑅

|(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)) − (𝜆 − 𝜆′)| → 0,     as 𝑛 ⟶ ∞. 

(L2) Given 𝑅 > 0, there exist 𝑅′ > 0 and 𝑛0 ∈ ℕ such that if |𝜏𝑛 (𝜆) −
𝜏𝑛 (𝜆

′)| ≤ 𝑅 for some 𝑛 > 𝑛0 and some 𝜆, 𝜆′ ∈ Λ, then |𝜆 − 𝜆′| ≤ 𝑅′. 
Condition (L1) means that 𝜏𝑛 (𝜆) − 𝜏𝑛 (𝜆

′) → 𝜆 − 𝜆′ uniformly in |𝜆 − 𝜆′|. In 

particular, by fixing 𝜆′, we see that Lipschitz convergence implies the weak 

convergence Λ𝑛
 𝜔 
→ Λ. Furthermore, if {Λ𝑛 ∶ 𝑛 ≥ 1} is Lipschitz convergent to Λ, then so 

is every subsequence  {Λ𝑛𝑘 ∶ 𝑘 ≥ 1}. 

Example (5.3.18)[356]: Jitter error: Let Λ ⊆ ℝ𝑑 be relatively separated and let {Λ𝑛 ∶

𝑛 ≥ 1} be a deformation of Λ. If sup𝜆|𝜏𝑛(𝜆) − 𝜆| → 0, as 𝑛 → ∞, then Λ𝑛
  Lip  
→   Λ.  

Example (5.3.19)[356]: Linear deformations: Let Λ = 𝐴ℤ2𝑑 ⊆ ℝ2𝑑, with Λ an 

invertible 2𝑑 × 2𝑑 matrix, Λ𝑛 = Λ𝑛ℤ
2𝑑 for a sequence of invertible 2𝑑 × 2𝑑- matrices 

and assume that limA𝑛 = Λ. Then Λ𝑛
 Lip  
→  Λ . in this case conditions (L1) and (L2) are 

easily checked by taking 𝜏𝑛 = 𝐴𝑛𝐴
−1. 

The third class of examples contains differentiable, nonlinear deformations. 
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Lemma (5.3.20)[356]: let 𝑝 ∈ (𝑑,∞]. For each 𝑛 ∈ ℕ, let 𝑇𝑛 = (𝑇𝑛
1, … . , 𝑇𝑛

𝑑):ℝ𝑑 → ℝ𝑑 

be a map such that each coordinate function 𝑇𝑛
𝑘: ℝ𝑑 → ℝ is continuous, locally 

integrable and has a weak derivative in 𝐿loc
𝑝 (ℝ𝑑). Assume that  

𝑇𝑛(0) = 0, 
                               |𝐷𝑇𝑛 − 𝐼| → 0      in 𝐿

𝑑(ℝ𝑑). 
(Here, 𝐷𝑇𝑛 is the Jacobian matrix consisting of the partial derivatives of 𝑇𝑛 and the 

second condition means that each entry of the matrix 𝐷𝑇𝑛 − 𝐼 tends to 0 in 𝐿𝑝) . 
Let Λ ⊆ ℝ𝑑 be a relatively separated set and consider the deformation  Λ𝑛 ≔

𝑇𝑛(Λ) (i. e. 𝜏𝑛 ≔ 𝑇𝑛|Λ). Then Λ𝑛 is Lipschitz convergent to Λ. 

Proof. Let 𝛼 ≔ 1 −
𝑑

𝑝
∈ (0,1]. We use the following Sobolev embedding known as 

Morrey’s inequality (see for example [381, Chapter 4, Theorem 3]). If 𝑓:ℝ𝑑 → ℝ is 

locally integrable and possesses a weak derivative in 𝐿𝑝(ℝ𝑑), then 𝑓 is 𝛼-Holder 

continuous (after being redefine on a set of measure zero). If 𝑥, 𝑦 ∈ ℝ𝑑, then  

|𝑓(𝑥) − 𝑓(𝑦)| ≲ ‖∇𝑓‖𝐿𝑝(ℝ𝑑)|𝑥 − 𝑦|
𝛼 , 𝑥, 𝑦 ∈ ℝ𝑑 . 

Applying  Morrey’s inequality to each coordinate function of 𝑇𝑛 − 𝐼 we obtain that 

there is a constant 𝐶 > 0 such that  

      |(𝑇𝑛𝑥 − 𝑇𝑛𝑦) − (𝑥 − 𝑦)| 
= |(𝑇𝑛 − 𝐼)𝑥 − (𝑇𝑛 − 𝐼)𝑦| ≤ 𝐶‖𝐷𝑇𝑛 − 𝐼‖𝐿𝑝(ℝ𝑑)|𝑥 − 𝑦|

𝛼 , 𝑥, 𝑦 ∈ ℝ𝑑 . 

Let 𝜖𝑛 = 𝐶‖𝐷𝑇𝑛 − 𝐼‖𝐿𝑝(ℝ𝑑), where ‖𝐷𝑇𝑛 − 𝐼‖𝐿𝑝(ℝ𝑑) is the 𝐿𝑝-norm of |𝐷𝑇𝑛(∙) − 𝐼|. 

Then 𝜖𝑛 → 0 by assumption and  

|(𝑇𝑛𝑥 − 𝑇𝑛𝑦) − (𝑥 − 𝑦)| ≤ 𝜖𝑛|𝑥 − 𝑦|
𝛼 , 𝑥, 𝑦 ∈ ℝ𝑑 .                (103) 

Choose 𝑥 = 𝜆 and 𝑦 = 0, then 𝑇𝑛(𝜆) → 𝜆 for all 𝜆 ∈ Λ (since 𝑇𝑛(0) = 0). Hence Λ𝑛 is 

a deformation of Λ. 

If 𝜆, 𝜆′ ∈ Λ and |𝜆 − 𝜆′| ≤ 𝑅, then (103) implies that  

|(𝑇𝑛𝜆 − 𝑇𝑛𝜆
′) − (𝜆 − 𝜆′)| ≤ 𝜖𝑛ℝ

𝛼 . 
Thus condition (L1) is satisfied. 

For condition (L2), choose 𝑛0 such that 𝜖𝑛 ≤ 1/2 for 𝑛 ≥ 𝑛0, 𝜆, 𝜆′ ∈ Λ then by 

(103) we obtain  
|(𝑇𝑛𝜆 − 𝑇𝑛𝜆

′) − (𝜆 − 𝜆′)| ≤ 1 2⁄ |𝜆 − 𝜆′|𝛼 ≤ 1 2⁄ |(𝜆 − 𝜆′)|. 
This implies that  

|𝜆 − 𝜆′| ≤ 2|(𝑇𝑛𝜆 − 𝑇𝑛𝜆
′)|,     for all 𝑛 ≥ 𝑛0.                       (104) 

Since |𝑇𝑛𝜆 − 𝑇𝑛𝜆
′| ≤ 𝑅, we conclude that |𝜆 − 𝜆′| ≤ 2𝑅, and we may actually choose 

𝑅′ = max(1,2𝑅) in condition (L2). 

Lemma (5.3.21)[356]: Let {Λ𝑛: 𝑛 ≥ 1} be a deformation of a relatively separated set 

Λ ⊆ ℝ𝑑. Then the following hold. 

(a) If Λ𝑛 is Lipschitz convergent to Λ and sep(Λ) > 0, then lim inf
𝑛

sep(Λ𝑛) > 0. 

(b) If Λ𝑛 is Lipchitz convergent to Λ and then lim inf
𝑛

sep(Λ𝑛) < ∞.  

(c) If Λ𝑛 is Lipchitz convergent to Λ and 𝜌(Λ) < ∞,  then limsup
𝑛

𝜌(𝐴𝑛) < ∞ . 

Proof. (a) By assumption 𝛿 ≔ sep(Λ) > 0. Using  (𝐿2), let 𝑛0 ∈ ℕ and 𝑅′ > 0 be such 

that if |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)| ≤ 𝛿 2⁄  for some 𝜆, 𝜆′ ∈ Λ and 𝑛 > 𝑛0, then |𝜆 − 𝜆′| ≤ 𝑅′. By  

(𝐿1), choose 𝑛1 ≥ 𝑛0  such that for 𝑛 ≥ 𝑛1 
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sup
|𝜆−𝜆′|≤𝑅′

|(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)) − (𝜆 − 𝜆′)| < 𝛿 2⁄ . 

Claim (5.3.22)[356]: sep(Λ𝑛) ≥ 𝛿 2⁄  for 𝑛 ≥ 𝑛1. 

If the claim is not true, then for some 𝑛 ≥ 𝑛0 there exist two distinct points 

𝜆, 𝜆′ ∈ Λ such that |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)| ≤ 𝛿 2⁄ . Then |𝜆 − 𝜆′| ≤ 𝑅′ and consequently  

|𝜆 − 𝜆′| ≤ |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′) − (𝜆 − 𝜆′)| + |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆

′)| < 𝛿, 
contradicting the fact that Λ is 𝛿-separated. 

(b) Since Λ is relatively separated we can split it into finitely many separated sets 

Λ = Λ1 ∪ …∪ Λ𝐿 with sep(Λ𝑘) > 0. 

Consider the sets defined by restricting the deformation 𝜏𝑛 to each Λ𝑘  

Λ𝑛
𝐾 ≔ {𝜏𝑛(𝜆): 𝜆 ∈ Λ

𝑘}. 
As proved above in (a), there exists 𝑛0 ∈ ℕ and 𝛿 > 0 such that       sep(Λ𝑛

𝐾) ≥ 𝛿 

for all 𝑛 ≥ 𝑛0 and 1 ≤ 𝑘 ≤ 𝐿. Therefore, using (84), 

rel(Λ𝑛) ≤ ∑rel(Λ𝑛
𝐾)

𝐿

𝑘=1

≲ 𝐿𝛿−𝑑 ,     𝑛 ≥ 𝑛0. 

and the conclusion follows. 

(c) By (b) we may assume that each Λ𝑛 is relatively separated. Assume that 

𝜌(Λ) < ∞. Then there exists 𝑟 > 0 such that every cube 𝑄𝑟(𝑧) ≔ 𝑧 + [−𝑟, 𝑟]𝑑 

Intersects. By (L1), There is 𝑛0 ∈ ℕ such that for 𝑛 ≥ 𝑛0, 

sup
𝜆,𝜆′∈Λ

|𝜆−𝜆′|∞≤6𝑟

|(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)) − (𝜆 − 𝜆′)|

∞
≤ 𝑟.                    (105) 

Let 𝑅 ≔ 8𝑟 and 𝑛 ≥ 𝑛0. We will show that every cube 𝑄𝑅(𝓏) intersects Λ𝑛. This will 

give a uniform upper bound for 𝜌(Λ𝑛). Suppose on the contrary that some cube 𝑄𝑅(𝓏) 
does not meet Λ𝑛 and consider a larger radius 𝑅′ ≥ 𝑅 such that Λ𝑛 intersects the 

boundary but not the interior of 𝑄𝑅′(𝓏). (this is possible because Λ𝑛 is relatively 

separated and therefore closed) . Hence, there exists 𝜆 ∈ Λ such that |𝜏𝑛(𝜆) − 𝑧|∞ = 𝑅
′. 

Let us write  

(𝑧 − 𝜏𝑛(𝜆))𝑘 = 𝛿𝑘𝑐𝑘 , 𝑘 = 1,… , 𝑑. 

𝛿𝑘 ∈ {−1,1}, 𝑘 = 1,… , 𝑑,                
0 ≤ 𝑐𝑘 ≤ 𝑅

′, 𝑘 = 1,… , 𝑑,               

 
                    Fig. (1)[356]: The selection of the point 𝛾 satisfying (106) and (107). 

and 𝑐𝑘 = 𝑅
′ for some 𝑘. We now argue that we can select a point 𝛾 ∈ Λ such that  

(𝜆 − 𝛾)𝑘 = −𝛿𝑘𝑐𝑘
′  ,     𝑘 = 1,… , 𝑑,                                 (106) 

with coordinates  
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2𝑟 ≤ 𝑐𝑘
′ ≤ 6𝑟,        𝑘 = 1,… , 𝑑.                                   (107) 

Using the fact that Λ intersects each of the cubes {𝑄𝑟(2𝑟𝑗): 𝑗 ∈ ℤ
𝑑}, we first select an 

index 𝑗 ∈ ℤ𝑑 such that 𝜆 ∈ 𝑄𝑟(2𝑟𝑗). Second, we define a new index 𝑗′ ∈ ℤ𝑑 by 𝑗𝑘
′ =

𝑗𝑘 + 2𝛿𝑘 for 𝑘 = 1,… , 𝑑. We finally select a point ∈ Λ ∩ 𝑄𝑟(2𝑟𝑗
′) . This guarantees 

that (106) and (107) hold true. See Fig. 1. 

Since by (106) and (107) |𝜆 − 𝛾|∞ ≤ 6𝑟, we can use (105) to obtain  

(𝜏𝑛(𝜆) − 𝜏𝑛(𝛾))𝑘 = −𝛿𝑘𝑐𝑘
′′, 𝑘 = 1,… , 𝑑 , 

with coordinates 

𝑟 ≤ 𝑐𝑘
′′   ≤ 7𝑟,         𝑘 = 1,… , 𝑑. 

We write (𝑧 − 𝜏𝑛(𝛾))𝑘 = (𝑧 − 𝜏𝑛
(𝜆))

𝑘
+ (𝜏𝑛(𝜆) − 𝜏𝑛(𝛾))𝑘 = 𝛿𝑘

(𝑐𝑘 − 𝑐𝑘
′′) and note 

that −7𝑟 ≤ 𝑐𝑘 − 𝑐𝑘
′′ ≤ 𝑅′ − 𝑟. Hence, 

|𝑧 − 𝜏𝑛(𝛾)|∞ ≤ max{𝑅
′ − 𝑟, 7𝑟} =𝑅′ − 𝑟, 

since 7𝑟 = 𝑅 − 𝑟 ≤ 𝑅′ − 𝑟. This shown that 𝑄𝑅′−𝑟(𝑧) intersects Λ𝑛, contradicting  the 

choice of  𝑅′.  
The following lemma relates Lipchitz convergence to the weak-limit techniques.  

Lemma (5.3.23)[356]: Let Λ ⊆ 𝑅𝑑 be relatively separated and let {Λ𝑛: 𝑛 ≥ 1} be a 

Lipschitz deformation of Λ. Then the following holds. 

(a) Let Γ ⊆ ℝ𝑑 and {𝜆𝑛: 𝑛 ≥ 1} ⊆ Λ be some sequence in Λ. If Λ𝑛 − 𝜏𝑛(𝜆𝑛)
  𝜔  
→ Γ, 

then Γ ∈ 𝑊(Λ). 
(b) Suppose that Λ is relatively dense and {𝑧𝑛: 𝑛 ≥ 1} ⊆ ℝ

𝑑 is an arbitrary sequence 

if Λ𝑛 − 𝑧𝑛
  𝜔  
→ Γ, then Γ ∈ 𝑊(Λ). 

Proof. (a) We first note that Γ is relatively separated indeed, Lemma (5.3.21) says that  

limsup
𝑛→∞

rel(Λ𝑛 − 𝜏𝑛(𝜆𝑛)) = limsup
𝑛→∞

rel(Λ𝑛) < ∞, 

and Lemma (5.3.12)(c) implies that Γ is relatively separated (and in particular closed).  

By extracting a subsequence, we assume that Λ − 𝜆𝑛
  𝜔  
→ Γ′ for some relatively 

separated set Γ′ ∈ 𝑊(Λ). We will show that Γ′ = Γ and consequently Γ ∈ 𝑊(Λ). 
Let 𝑅 > 0 and 0 < 𝜖 ≤ 1 be given. By (L1), there exists 𝑛0 ∈ ℕ such that  

𝜆, 𝜆′ ∈ Λ, |𝜆 − 𝜆′| ≤ 𝑅, 𝑛 ≥ 𝑛0⟹ |(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)) − (𝜆 − 𝜆′)| ≤ 𝜀.     (108) 

If 𝑛 ≥ 𝑛0 and 𝑧 ∈ (Λ − 𝜆𝑛) ∩ 𝐵𝑅(0), then there exists 𝜆 ∈ Λ such that 𝑧 = 𝜆 −
𝜆𝑛 and |𝜆 − 𝜆𝑛| ≤ 𝑅. Consequently (108) implies that  

|(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆𝑛)) − 𝑧| = |(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆𝑛)) − (𝜆 − 𝜆𝑛)| ≤ 𝜖. 
This shows that  

(Λ − 𝜆𝑛) ∩ 𝐵𝑅(0) ⊆ (Λ𝑛 − 𝜏𝑛(𝜆𝑛)) + 𝐵𝜀(0)   for 𝑛 ≥ 𝑛0.          (109) 

Since Λ − 𝜆𝑛
  𝜔  
→ Γ′ and Λ𝑛 − 𝜏𝑛(𝜆𝑛)

  𝜔  
→ Γ, it follows from (109) and Lemma (5.3.9) 

that Γ′ ⊆ Γ̅ = Γ.  

For the reverse inclusion, let again 𝑅 > 0 and 0 < 𝜀 ≤ 1. Let R′ > 0 and 𝑛0 ∈ ℕ 

be the numbers associated with 𝑅 in(L2). Using (L1), choose 𝑛1 ≥ 𝑛0 such that 

  𝜆, 𝜆′ ∈ Λ, |𝜆 − 𝜆′| ≤ R′, 𝑛 ≥ 𝑛1   ⟹ |(𝜏𝑛(𝜆) − 𝜏𝑛(𝜆
′)) − (𝜆 − 𝜆′)| ≤ 𝜀.   (110) 

If 𝑛 ≥ 𝑛1 and 𝑧 ∈ (Λ𝑛 − 𝜏𝑛(𝜆)) ∩ 𝐵𝑅(0), then 𝑧 = 𝜏𝑛(𝜆) − 𝜏𝑛(𝜆) For some 𝜆 ∈
Λ and |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆𝑛)| ≤ 𝑅. Condition (L2) now implies that |𝜆 − 𝜆𝑛| ≤ R

′ and 

therefore, using (110) with 𝜆′ = 𝜆𝑛, we get  

|𝑧 − (𝜆 − 𝜆𝑛)| = |𝜏𝑛(𝜆) − 𝜏𝑛(𝜆𝑛)) − (𝜆 − 𝜆𝑛)| ≤ 𝜀. 
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Hence we have proved that  

                     𝑧 ∈ (Λ𝑛 − 𝜏𝑛(𝜆)) ∩ 𝐵𝑅(0) ⊆ (Λ − 𝜆𝑛) + 𝐵𝜀(0),    for 𝑛 ≥ 𝑛1. 

Since Λ𝑛 − 𝜏𝑛(𝜆𝑛)
  𝜔  
→ Γ and Λ − 𝜆𝑛

  𝜔  
→ Γ′, Lemma (5.3.9) implies that Γ ⊆ Γ ′̅ ∈

𝑊(Λ), as desired. 

(b) since 𝜌(Λ) < ∞, Lemma (5.3.21)(c), implies that limsup
𝑛

𝜌(Λ𝑛) < ∞. By 

omitting finitely many 𝑛, there exists 𝐿 > 0 such that Λ𝑛 + 𝐵𝐿(0) = ℝ
𝑑  for  all 𝑛 ∈ ℕ. 

This implies the existence of a sequence {𝜆𝑛 ≥ 1} ⊆ Λ such that |𝑧 − 𝜏𝑛(𝜆𝑛)| ≤ 𝐿. By 

passing to a subsequence we may assume that 𝑧 − 𝜏𝑛(𝜆𝑛) → 𝑧0 for some 𝑧0 ∈ ℝ
𝑑. 

Since Λ𝑛 − 𝑧𝑛
  𝜔  
→ Γ and 𝑧𝑛 − 𝜏𝑛(𝜆𝑛) → 𝑧0, it follows that Λ𝑛 − 𝜏𝑛(𝜆𝑛)

  𝜔  
→ Γ +

𝑧0. By (a), we deduce that Γ + 𝑧0 ∈ 𝑊(Λ), as desired. 

We now show the main results on the deformation of Gabor systems. The proofs 

combine the characterization of non-uniform Gabor frames and Riesz sequences without 

inequalities and the fine details of  Lipschitz convergence.  

First we formulate the stability of Gabor frames under a class of nonlinear 

deformations.  

Theorem (5.3.1)(a) now follows by combining Theorem (5.3.24) and Lemma 

(5.3.20). Note that in Theorem (5.3.1) we may assume without loss of generality that 

𝑇𝑛(0) = 0, because the deformation problem is invariant under translations. 

Theorem (5.3.24)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑), Λ ⊆ ℝ2𝑑 and assume that 𝒢(𝑔, Λ) is a frame 

for 𝐿2(ℝ𝑑). If Λ𝑛 is Lipchitz convergent to Λ, then 𝒢(𝑔, Λ𝑛) is a frame for all 

sufficiently large 𝑛.  

Proof. Suppose that 𝒢(𝑔, Λ𝑛) is a frame. According to Lemma (5.3.5*), Λ is relatively 

separated and relatively dense. Now suppose that the conclusion does not hold. By 

passing to a subsequence we may assume that 𝒢(𝑔, Λ𝑛) fails to be a frame for all 𝑛 ∈ ℕ.  

By Theorem (5.3.14) every 𝒢(𝑔, Λ𝑛) also fails to an ∞-frame for 𝑀∞(ℝ𝑑). It 

follows that for every 𝑛 ∈ ℕ there exist 𝑓𝑛 ∈ 𝑀
∞(ℝ𝑑) such that ‖𝑉𝑔𝑓𝑛‖∞

= 1  and  

‖𝐶𝑔,Λ𝑛(𝑓𝑛)‖ℓ∞(Λ𝑛)
= sup

𝜆∈Λ
|𝑉𝑔𝑓𝑛(𝜏𝑛(𝜆))| → 0.    as 𝑛 → ∞. 

For each 𝑛 ∈ ℕ, let 𝑧𝑛 ∈ ℝ
2𝑑 be such that |𝑉𝑔𝑓𝑛(𝑧𝑛)| ≥ 1 2⁄  and let us consider ℎ𝑛 ≔

𝜋(−𝑧𝑛)𝑓𝑛. By passing to a subsequence we may assume that ℎ𝑛 → ℎ in 𝜎(𝑀∞,𝑀1) for 

some function ℎ ∈ 𝑀∞. Since |𝑉𝑔ℎ𝑛(0)| = |𝑉𝑔𝑓𝑛(𝑧𝑛)| ≥ 1 2⁄ , it follows that 

|𝑉𝑔ℎ𝑛(0)| ≥ 1 2⁄  and the weak∗-limit ℎ is not zero. 

In addition, by Lemma (5.3.21)  

lim sup
𝑛→∞

rel(Λ𝑛 − 𝑧𝑛) = lim sup
𝑛→∞

rel(Λ𝑛) < ∞. 

Hence, using Lemma (5.3.12) and passing to a further subsequence, we may assume 

that Λ𝑛 − 𝑧𝑛(𝜆𝑛)
  𝜔  
→ Γ, for some relatively separated set Γ ⊆ ℝ2𝑑. Since 𝐴  is relatively 

dense, Lemma (5.3.23) guarantees that Γ ∈ 𝑊(Λ). 

Let 𝛾 ∈ Γ be arbitrary. Since Λ𝑛 − 𝑧𝑛(𝜆𝑛)
   𝜔   
→  Γ, there exists a sequence 

{𝜆𝑛}𝑛∈ℕ ⊆ Λ such that 𝜏𝑛(𝜆𝑛) − 𝑧𝑛 → 𝛾. By Lemma (5.3.4), the fact ℎ𝑛 → ℎ in 

𝜎(𝑀∞, 𝑀1) implies that 𝑉𝑔ℎ𝑛 → 𝑉𝑔ℎ uniformly on compact sets. Consequently, by (90), 

|𝑉𝑔ℎ(𝛾)| = lim
𝑛
|𝑉𝑔ℎ𝑛(𝜏𝑛(𝜆𝑛) − 𝑧𝑛)| = lim

𝑛
|𝑉𝑔ℎ𝑛(𝜏𝑛(𝜆𝑛))| = 0. 
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Hence, ℎ ≢ 0 and 𝑉𝑔ℎ ≡ 0 on Γ ∈ 𝑊(Λ). According to Theorem (5.3.14)(vi), 𝒢(𝑔, Λ) is 

not a frame, thus contradicting the initial assumption. 

The corresponding deformation result for Gabor Riesz sequences reads as 

follows. 

Theorem (5.3.25)[356]: Let 𝑔 ∈ 𝑀1(ℝ𝑑), Λ ⊆ ℝ2𝑑, and assume that 𝒢(𝑔, Λ) is a Riesz 

sequences reads in 𝐿2(ℝ𝑑). 
If Λ𝑛 is Lipchitz convergent to, then 𝒢(𝑔, Λ𝑛) is a Riesz sequence for all 

sufficiently large 𝑛. 

Proof. Assume that 𝒢(𝑔, Λ) is a Riesz sequence, Lemma (5.3.5*) implies that Λ is 

separated. With Lemma (5.3.21) we may extract a subsequence such that each Λ𝑛 is 

separated with a uniform separation constants, i.e., 

inf
𝑛≥1

sep(Λ𝑛) > 0.                                               (111) 

we argue by contradiction and assume that the conclusion does not hold. By passing to a 

further subsequence, we may assume that 𝒢(𝑔, Λ𝑛) fails to be a Riesz sequence for all 

𝑛 ∈ ℕ. As a consequence of Theorem (5.3.17)(iii), there exist sequences 𝑐𝑛 ∈ ℓ∞(Λ𝑛) 
such that ‖𝑐𝑛‖∞ = 1 and  

‖𝐶𝑔,𝐴𝑛
∗ (𝑐𝑛)‖

𝑀∞
= ‖∑𝑐𝜏𝑛(𝜆𝑛)

𝑛 𝜋(𝜏𝑛(𝜆𝑛))

𝜆∈Λ

𝑔‖

𝑀∞

→ 0,   as 𝑛 → ∞.      (112) 

Thus 𝑔, Λ𝑛 , 𝑐
𝑛 satisfy the assumptions of Lemma (5.3.16) the conclusion of Lemma 

(5.3.16) yields a subsequence (𝑛𝑘), a separated set Γ ⊆ ℝ2𝑑, a non-zero sequence 𝑐 ∈

ℓ∞(Γ), and a sequence of points {𝜆𝑛𝑘: 𝑘 ≥ 1} ⊆ Λ such that 

Λ𝑛𝑘 − 𝜏𝑛𝑘(𝜆𝑛𝑘)
  𝜔   
→  Γ 

and  

∑𝑐𝛾𝜋(𝛾)𝑔

𝛾∈Γ

= 𝐶𝑔,Γ
∗ (𝑐) = 0. 

By Lemma (5.3.23), we conclude that Γ ∈ 𝑊(Λ). According to condition (vi) of 

Theorem (5.3.17), 𝒢(𝑔, Λ) is not a Riesz sequence, which is a contradiction.  

Example (5.3.26)[356]: From [368] or from Theorem (5.3.24) we know that if 𝑔 ∈
𝑀1(ℝ𝑑) and 𝒢(𝑔, Λ) is a frame, then 𝒢(𝑔, (1 + 1 𝑛⁄ )Λ) is also a frame for sufficiently 

large 𝑛. For every 𝑛 we now construct a deformation of the form 𝜏𝑛(𝜆) ≔ 𝛼𝜆,𝑛𝜆 where 

𝛼𝜆,𝑛 is either 1 or (1 + 1 𝑛⁄ ) with roughly half of the multipliers equal to 1. Since only 

a subset of  𝐴 is moved, we would think that this deformation is “smaller” than the full 

dilation 𝜆 → (1 +
1

𝑛
) 𝜆, and thus it should preserve the spanning properties of the 

corresponding Gabor system. 

Surprisingly, this is completely false. We now indicate how the coefficients 𝛼𝜆,𝑛 

need to be chosen. Let ℝ2𝑑 = ⋃ 𝐵𝑙
∞
𝑙=0  be a partition of ℝ2𝑑 into the annuli  

𝐵𝑙 = {𝑧 ∈ ℝ
2𝑑: (1 +

1

𝑛
)
𝑙

≤ |𝑧| < (1 +
1

𝑛
)
𝑙+1

} ,     𝑙 ≥ 1, 

𝐵0 ≔ {𝑧 ∈ ℝ2𝑑: |𝑧| < (1 +
1

𝑛
)}                                                

and define  
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𝛼𝜆,𝑛 = {

1        if 𝜆 ∈ 𝐵2𝑙 ,    

1 +
1

𝑛
if 𝜆 ∈ 𝐵2𝑙+1.

 

Since (1 +
1

𝑛
)𝐵2𝑙+1 = 𝐵2𝑙+2, the deformed set Λ𝑛 = 𝜏𝑛(Λ) = {𝛼𝜆,𝑛𝜆: 𝜆 ∈ Λ} is 

contained in ⋃ 𝐵2𝑙
∞
𝑙=0  and thus contains arbitrarily large holes. So 𝜌(Λ𝑛) = ∞ and 

𝐷−(Λ𝑛) = 0. Consequently the corresponding Gabor system 𝒢(𝑔, Λ𝑛) cannot be frame. 

See Fig. 2 for a plot of this deformation in dimension 1. 

 
Fig. (2)[356]: A deformation “dominated” by the dilation 𝜆 → (1 + 1 𝑛⁄ )𝜆.  
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Chapter 6 

Vector-Valued Gabor Frames with Hermits Functions 

 

We show that the main tools are growth estimates for the Weierstrass σ-function, 

a new type of interpolation problem for entire functions on the Bargmann–Fock space, 

and structural results about vector-valued Gabor frames. We characterize those sets 𝕊 

admitting tight Gabor sets, and obtain an explicit construction of a class of tight Gabor 

sets in such 𝕊 for the case that the product of time-frequency shift parameters is a 

rational number. By introducing a suitable Zak transform matrix, we characterize 

completeness and frame condition of Gabor systems, obtain a necessary and sufficient 

condition on Gabor duals of type I (resp. II) for a general Gabor frame, and establish a 

parametrization expression of Gabor duals of type I (resp. II). All conclusions are 

closely related to corresponding Zak transform matrices. This allows to easily realize 

these conclusions by designing the corresponding matrix-valued functions. An example 

theorem is also presented. 

Section (6.1): Gabor Super Frames  

Given a function 𝑔 ∈ 𝐿2(ℝ) and a lattice Λ ⊂ ℝ2, we study the frame property of 

the set {𝑒2𝜋𝑖𝜆2𝑡𝑔(𝑡 − 𝜆1): 𝜆 = (𝜆1, 𝜆2) ∈ Λ}. Precisely, write 𝜋𝜆𝑔 = 𝑒
2𝜋𝑖𝜆2𝑡𝑔(𝑡 − 𝜆1) 

for the time-frequency shift by 𝜆 = (𝜆1, 𝜆2) ∈ ℝ
2. Then we call the set 𝒢(𝑔, Λ) =

{𝜋𝜆𝑔: 𝜆 ∈ Λ}  a Gabor frame or Weyl-Heisenberg frame, whenever there exist constants 

𝐴, 𝐵 > 0 such that, for all 𝑓 ∈ 𝐿2(ℝ),  

𝐴‖𝑓‖𝐿2(ℝ)
2 ≤∑|〈𝑓, 𝜋𝜆𝑔〉𝐿2(ℝ)|

2
≤ 𝐵‖𝑓‖𝐿2(ℝ)

2

𝜆∈Λ

.                          (1) 

Gabor frames originate in quantum mechanics through J. von Neumann and in 

information theory through Gabor [418] and nowadays have  many application in signal 

processing. A large body of results describes the structure of Gabor frames and provides 

sufficient conditions for 𝒢(𝑔, Λ) to form a (Gabor) frame, see [412, 420]. 

We will also study vector-valued Gabor frames in the Hilbert space ℋ =

𝐿2(ℝ , ℂ𝑛) of all vector-valued functions 𝑓(𝑡) = (𝑓1(𝑡),… , 𝑓𝑛(𝑡)) with inner product  

〈𝑓, 𝑔〉 =  ∑ ∫ 𝑓𝑗(𝑡)𝑔𝑗(𝑡)̅̅ ̅̅ ̅̅ ̅𝑑𝑡

∞

−∞

𝑛

𝑗=1

=∑〈𝑓𝑗 , 𝑔𝑗〉

𝑛

𝑗=1

.                           (2) 

The time-frequency shifts 𝜋𝓏 , 𝑧 = (𝑥, 𝜉) act coordinate –wise by 

𝜋z𝑓(𝑡) = 𝑒
2𝑖𝜋𝜉𝑡𝑓(𝑡 − 𝑥).                                              (3) 

The vector-valued Gabor system 𝒢(𝑔, Λ) = {𝜋z𝑔 ∶ 𝜆 ∈ Λ} is a frame for  𝐿2(ℝ, ℂ𝑛), if 
there exist constant 𝐴, 𝐵 > 0 such that  

𝐴‖𝑓‖𝐿2(ℝ ,ℂ𝑛)
2 ≤∑|〈𝑓, 𝜋z𝑔〉|

2

𝜆∈Λ

≤ 𝐵‖𝑓‖𝐿2(ℝ ,ℂ𝑛)
2 ,    ∀𝑓 ∈ 𝐿2(ℝ, ℂ𝑛).         (4) 

If only the inequality on the right-hand side is satisfied, then the Gabor system 𝒢(𝑔, Λ)  
is called a Bessel sequence. 

Vector-valued Gabor frames were introduced under the name “super frames” in 

signal processing by Balan [409] in the context of multiplexing and studied in [408,424] 

for their own sake.The idea of multiplexing is to encode 𝑛 independent signals 

(functions) 𝑓𝑗 ∈ 𝐿
2(ℝ), 𝑗 = 1,… , 𝑛 , as a single sequence that captures the time-
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frequency information of each 𝑓𝑗. Fixing suitable windows 𝑔𝑗 ∈ 𝐿
2(ℝ) and using 

vector-valued notation 𝑓 = (𝑓1, … , 𝑓𝑛), one then considers the sequence of numbers 

〈𝑓, 𝜋z𝑔〉 = ∑ 〈𝑓𝑗 , 𝜋𝜆𝑔𝑗〉
𝑛
𝑗=1  for 𝜆 ∈ Λ, i.e., the inner product in 𝐿2(ℝ , ℂ𝑛). These 

numbers then measure the time-frequency content of the whole 𝑓 at the point 𝜆 in the 

time- frequency plane. 

Now one requires that 𝑓 is completely determined by these inner products and 

that there exists a stable reconstruction. This requirement leads to the definition of a 

vector-valued Gabor frame (4).  

The general problem of characterizing all lattices Λ for which 𝒢(𝑔, Λ) is a frame 

seems to be extremely difficult. In fact, this problem is solved only for three classes of  

basis functions, namely for the Gaussians 𝐻0(𝑡) = 𝑒
−𝑎𝑡2 , 𝑎 > 0, in [432,435], for 

hyperbolic secant 𝑔(𝑡) = (cosh𝑎𝑡)−1 in [431]. For the one-sided exponential function 

𝑔(𝑡) = 𝑒−𝑎|𝑡|𝜒[0,∞)(𝑡) [429]. For the Gaussian, our understanding is based on the 

connection between the frame property of  𝒢(𝑔, Λ) and a classical interpolation problem 

in the Bargmann-Fock space of entire functions. The case of the hyperbolic secant is 

reduced to the case of the Gaussian.  

For other choices of the 𝑔, where the connections for 𝒢(𝑔, 𝑎ℤ × 𝑏ℤ) to form a 

frame become very different and are often rather intriguing [430]. Even less is known 

about Gabor super frames. Necessary density conditions were studied in [408], 

sufficient density conditions can be derived from coorbit theory [414] and from the 

sampling theory on the Heisenberg group [417]. In particular, these results imply that 

for any sufficiently dense lattice Λ and a mild condition on the vector g the Gabor 

system 𝒢(𝑔, Λ) is a Gabor super frame.  

We study the frame property of 𝒢(ℎ, Λ) in the case when ℎ is the vector of the 

first 𝑛 + 1 Hermite function ℎ = (𝐻0, … , 𝐻𝑛). In the scalar-valued case, the study of 

Gabor frames with  the Gaussian window 𝐻0 is natural, because the Gaussian minimizes 

the uncertainty principle. Likewise, for vector-valued frames, the study of Gabor super 

frames with the Hermit window ℎ is natural, because the first Hermite functions are the 

unique orthonormal set {𝑓0, … , 𝑓𝑛} in 𝐿2(ℝ) of size 𝑛 + 1 satisfying the normalizations 

∫ 𝑡|𝑓𝑗(𝑡)|
2
𝑑𝑡

∞

−∞
= 0 and ∫ 𝜉|𝑓𝑗(𝜉)|

2
𝑑𝜉

∞

−∞
= 0, 𝑗 = 0,… , 𝑛 such that the uncertainty        

∑( ∫ 𝑡2|𝑓𝑗(𝑡)|
2
𝑑𝑡

∞

−∞

+ ∫ 𝜉2|𝑓𝑗(𝜉)|
2
𝑑𝜉

∞

−∞

)

𝑛

𝑗=0

                         (5) 

is minimized. Another motivation comes again from signal processing where Hermite 

functions are used, see [425]. 

The case of the Hermite vector window has been already investigated         by 

employing techniques related to sampling in the space of band limited functions on the 

Heisenberg group. He proved the following result. 

Theorem (6.1.1)[406]: let ℎ = (𝐻0, … , 𝐻𝑛). There exists a constant 𝐶 > 0 with the 

following property: If the diameter of the (smallest) fundamental domain of  Λ is less 

that 𝐶(𝑛 + 1)−1 2⁄ , then 𝒢(ℎ, Λ) is a frame for 𝐿2(ℝ, ℂ𝑛+1). 
Unfortunately nothing can be said about the constant 𝐶 within such an approach. 

Fuhr uses the so-called “oscillation method” which is used for existence results, but in 

general does not yield sharp results. 
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We give a complete characterization of vector-valued frames with Hermite 

functions. If the lattice is given as Λ = 𝐴ℤ2 for some invertible, real-valued 2 × 2-

matrix 𝐴, let 𝑠(Λ) = |det𝐴| be the area of the fundamental domain of Λ. The main 

result can be formulated as follows. 

By specializing to the 𝑛-th coordinate of the ℎ, we obtain a condition for scalar-

valued Gabor frames with Hermite functions. The following result was already 

announced in [423]. 

Proposition (6.1.2)[406]: If  𝑠(Λ) <
1

𝑛+1
, then 𝒢(𝐻𝑛, Λ) is a frame for 𝐿2(ℝ). 

For 𝑛 = 0, the case of  the Gaussian, we recover (the lattice part of) the results in 

[432,435]. Our method of proof yields several new results about the dual window. On 

the one hand, we construct a dual window for 𝒢(𝐻𝑛, Λ) with Gaussian decay in time and 

frequency; on the other hand, we derive a new estimate for the lower frame bound of 

𝒢(𝐻0, Λ). Furthermore, we discuss an example for 𝑛 = 1 which suggests that the 

sufficient conditions of Proposition (6.1.2) are sharp for all 𝑛. 

In order to show these results we combine the techniques of Gabor analysis and 

complex-analytic methods. The (now) classical structural results related to the scalar 

Gabor frame systems can be formulated for the vector case as well. They lead to an 

interpolation problem in the Fock space of entire functions. 

This problem is not “purely holomorphic”: the values of linear combinations of 

functions from the Fock space and their derivatives are prescribed in the lattice points; 

however, the coefficients of such combinations are anti-holomorphic polynomials. The 

classical methods of complex analysis cannot be applied for problems of this kind. 

Fortunately, in our particular case, i.e., for the lattices of sufficiently small density, one 

may use the well-developed machinery of elliptic functions.  

We collect the necessary facts related to vector-valued frames, in particular, the 

frame operator and the vector-valued version of the structural theorems: Janssen’s 

representation and the Wexler-Raz biorthogonality criteria .the complex analytic tools, 

including the Fock spaces and the Weierstrass 𝜎-function ,are presented. We contain the 

proofs of Theorem (6.1.12) and Proposition (6.1.2) we also show a result (Proposition 

(6.1.14)) indicating that the density condition in Proposition (6.1.2) might be sharp. The 

rest contains estimates of dual windows for the Hermitian frames and of the lower frame 

bound. 

To derive the criterion for Gabor super frames from Hermit functions Theorem 

(6.1.12), we need some general results about Gabor super frames, such as Janssen’s 

representation of the frame operator and the Wexler-Raz identities. Although these are 

among the fundamentals results about Gabor frames, they have not yet been formulated 

for Gabor super frames. For convenience and later reference we formulate them 

explicitly for Gabor frames on ℝ𝑑 (instead of ℝ). Since the vector-valued case is a 

simple consequence of the well-known scalar-valued case. 

Let Λ = 𝐴ℤ2𝑑 be a lattice in ℝ2𝑑, where 𝐴 is a non-singular real 2𝑑 × 2𝑑-matrix. 

Let 𝑠(Λ) = |det 𝐴| be the volume of a fundamental domain of Λ. The adjoint lattice is 

defined by the commutant property as  

Λ∘ = {𝜇 ∈ ℝ2𝑑: 𝜋(𝜆)𝜋(𝜇) = 𝜋(𝜇)𝜋(𝜆) for all 𝜆 ∈ Λ}.                   (6) 
If  Λ = 𝛼ℤ𝑑 × 𝛽ℤ𝑑, then  Λ∘ = 𝛽−1ℤ𝑑 × 𝛼−1ℤ𝑑. For general Λ = 𝐴ℤ2𝑑 ⊆ ℝ2𝑑 

Λ∘ = 𝒥(𝐴𝑇)−1ℤ2𝑑 ,                                                      (7) 
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where 𝐴𝑇 is the transpose of 𝐴 and  𝒥 = (
0 1
−1 0

) (consisting of 𝑑 × 𝑑 blocks) is the 

matrix defining the standard symplectic form [415]. 

Furthermore, from (7) we see that  

𝑠(Λ∘) = 𝑠(Λ)−1.                                                         (8) 
The density of Λ is defined as 𝑑(Λ) = 𝑠(Λ)−1, so that 𝑑(Λ) coincides with the usual 

notions of density. 

Given two vector-valued functions (windows) 𝛾 = (𝛾𝑗)1
𝑛, 𝑔 = (𝑔𝑗)1

𝑛 ∈

𝐿2(ℝ𝑑 , ℂ𝑛), the associated vector-valued Gabor frame-type operator is defined to be  

𝑆𝑓 = 𝑆𝑔,𝛾
Λ 𝑓 =∑〈𝑓, 𝜋𝜆𝑔〉𝜋𝜆𝛾

𝜆∈Λ

.                                     (9) 

For arbitrary 𝑔, 𝛾 ∈ 𝐿2(ℝ𝑑 , ℂ𝑛) the right-hand side in (9) defines a continuous operator 

from 𝑆(ℝ𝑑 , ℂ𝑛) to 𝑆′(ℝ𝑑 , ℂ𝑛) with weak∗-convergence of the sum. 

Under slight conditions on the component functions 𝑔𝑗 and 𝛾𝑗 the series in (9) 

converges in 𝐿2(ℝ𝑑 , ℂ𝑛)-norm .Recall that a function 𝑔 on ℝ𝑑 belongs to the 

Feichtinger a lgebra 𝑀1(ℝ𝑑), if  

‖𝑔‖𝑀1 ≔ ∫|〈𝑔, 𝜋𝑧𝜑〉|𝑑𝑧

ℝ2𝑑

< ∞,                                    (10) 

where 𝜑(𝑡) = 2𝑑 4⁄ 𝑒−𝜋𝑡
2
 is the 𝐿2-normalized Gaussian. This condition is met if, for 

example, both 𝑔 and its Fourier transform �̂�, decay sufficiently fast, see [420, Ch,7], 

and also [419] for discussion and the proofs. The convergence of (9) follows from the 

following lemma taken from [420] by looking at each component separately (the 

statement is not stated as explicitly as we want it, but follows from combining 

Propositions 11.1.4, 12.1.11, and 12.2.1). 

Lemma (6.1.3)[406]: If 𝑔 ∈ 𝑀1(ℝ𝑑), then  

∑|〈𝑓, 𝜋𝜆𝑔〉|
2

𝜆∈Λ

≤ 𝑛(Λ)‖𝑔‖𝑀1
2 ‖𝑓‖2

2                                  (11) 

and  

‖∑𝐶𝜆𝜋𝜆𝑔

𝜆∈Λ

‖

2

≤ 𝑛(Λ)1 2⁄ ‖𝑔‖𝑀1‖𝑐‖2,                              (12) 

where 𝑛(Λ) = 𝑐max𝑘∈ℤ2𝑑 card (Λ⋂(𝐾 + [0,1]2𝑑)) for some absolute constant 𝑐 > 0.  

As a consequence, if 𝑔 = (𝑔𝑗)1
𝑛
∈ 𝑀1(ℝ𝑑) for 𝑗 = 1, . . , 𝑛, then the sequence 

𝒢(𝑔, Λ) is a Bassel sequence in 𝐿2(ℝ𝑑 , ℂ𝑛) for every lattice.  

As in the scalar case, the frame operator can be represented as a sum of time-

frequency shifts over the adjoint lattice. 

In the scalar case 𝑛 = 1, this is a theorem of Rieffel [434] and Janssen [428], the 

vector-valued version follows easily from the scalar case. Given a Gabor (super) frame 

𝒢(𝑔, Λ) with 𝑔 ∈ 𝐿2(ℝ𝑑 , ℂ𝑛), we say that 𝛾 ∈ 𝐿2(ℝ𝑑 , ℂ𝑛) is a dual window (with 

respect to the lattice Λ) if  

𝑆𝑔,𝛾
Λ = 𝑆𝛾,𝑔

Λ = 𝐼.                                                (13) 
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Dual windows always exist, a special choice is given by the canonical dual 

window 𝛾∘ ≔ (𝑆𝑔,𝑔
Λ )

−1
𝑔; clearly the invertibility of 𝑆𝑔,𝑔

Λ  is equivalent to the form 

property (4).  

From Janssen’s representation we obtain a criterium for the system 𝒢(𝑔, Λ) to 

form a frame in 𝐿2(ℝ𝑑 , ℂ𝑛) with dual window 𝛾, that is a vector analog of the Wexler-

Raz condition. 

As in the scalar case we obtain Balan’s necessary density condition [408] by 

adjusting an argument of Janssen [427]. 

Proposition (6.1.4)[406]: (Density theorem). If 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑 , ℂ𝑛), then 

𝑠(Λ) ≤ 𝑛−1. 

Proof. Let 𝛾∘ = 𝑆𝑔,𝑔
−1𝑔 be the canonical dual window. Then 𝑓 = ∑ 〈𝑓, 𝜋𝜇𝛾

∘〉𝜆∈Λ 𝜋𝜆𝑔 

holds for every 𝑓 ∈ 𝐿2(ℝ𝑑 , ℂ𝑛). If  𝑓 has also the representation 𝑓 = ∑ 𝑐𝜆𝜋𝜆𝑔𝜆∈Λ  then 

by [413] 

∑|〈𝑓, 𝜋𝜇𝛾
∘〉|
2

𝜆∈Λ

≤∑|𝑐𝜆|
2

𝜆∈Λ

. 

we apply this argument to the trivial expansion 𝑔 = 1 ⋅ 𝑔 + ∑ 0 ⋅ 𝜋𝜆𝑔𝜆≠0 . thus we 

obtain   

|〈𝑔, 𝛾∘〉|2 ≤∑|〈𝑔 , 𝜋𝜆𝛾
∘〉|2

𝜆∈Λ

≤ 1. 

The Wexler-Raz identities (56) yield  

〈𝑔 , 𝛾∘〉 =∑〈𝑔𝑗 , 𝛾𝑗〉

𝑛

𝑗=1

= 𝑛𝑠(Λ). 

and the result follows. 

The Wexler-Raz relations also yield an estimate for the lower frame bound that 

deserves to be better known and is stated here for the scalar case. 

Corollary (6.1.5)[406]: Assume that 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑) with some dual 𝛾 ∈ 

𝑀1(ℝ𝑑). Then the optimal lower frame bound 𝐴opt = ‖𝑆𝑔,𝑔
−1‖

𝐿2→𝐿2

−1
 satisfies  

𝐴opt ≥ 𝑛(Λ)
−1‖𝛾‖𝑀1

−2 .                                            (14) 

Proof. Since 𝑓 = 𝑆𝑔,𝛾
Λ 𝑓 = ∑ 〈𝑓, 𝜋𝜆𝑔 〉𝜆∈Λ 𝜋𝜆𝛾. Lemma (6.1.3) implies that  

‖𝑓‖2
2 ≤ 𝑛(Λ)‖𝛾‖𝑀1

2 ∑|〈𝑓, 𝜋𝜆𝑔 〉|
2

𝜆∈Λ

, 

whence the estimate for the lower frame bound follows. 

The following duality result is not needed, but is included for completeness. It 

answers a question of our engineering colleague G.Matz, see  [425]. 

The complex analytic techniques we use are concentrated around the Fock space 

of entire functions and precise estimates for the Weierstrass 𝜎-function. These topics are 

closely related: roughly speaking 𝜎-function deliver examples of functions of  “maximal 

possible growth” in the Fock space. 

We recall the basic properties of the Fock space, as discussed and proved, for 

instance, in [416,420]. 

The Fock ℱ is the Hilbert space of all entire functions such that  
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‖𝐹‖ℱ
2 = ∫|𝐹(𝑧)|2𝑒−𝜋|𝑧|

2
𝑑𝑚𝑧

ℂ

< ∞,                                 (15) 

where 𝑑𝑚 is the planaer Lebesgue measure. The natural inner product in ℱ is denoted 

by 〈. , . 〉ℱ. 

Below we list the properties of the Fock space, which will be used in the sequel. 

(a) Each point evaluation is a bounded linear functional in ℱ, and the corresponding 

reproducing kernel is the function 𝑤 ↦ 𝑒𝜋�̅�𝑤, precisely,  

𝐹(𝑧) = 〈𝐹(𝑤), 𝑒𝜋�̅�𝑤〉ℱ       ∀𝐹 ∈ ℱ.                                    (16) 
(b) A function in ℱ grows at most like the Gaussian (see e.g. [433]), more precisely,  

|𝐹(𝑧)| = 𝜊(1)𝑒
𝜋
2
|𝑧|2 ,   𝑎𝑠 𝑧 → ∞,   𝐹 ∈ ℱ.                             (17) 

(c) The collection of monomials  

𝑒𝑛(𝑧) = (
𝜋𝑛

𝑛!
)

1 2⁄

𝑧𝑛,   𝑛 = 0,1,…                                  (18) 

forms an orthonormal basis in ℱ.  

(d) Define the Bargmann transform of a function 𝑓 ∈ 𝐿2(ℝ𝑑) by  

𝑓 ⟼ ℬ𝑓(𝑧) = 𝐹(𝑧) = 21 4⁄ 𝑒−𝜋𝑧
2 2⁄ ∫ 𝑓(𝑡)𝑒−𝜋𝑡

2
𝑒2𝜋𝑡𝑧𝑑𝑡

ℝ

.             (19) 

Proposition (6.1.6)[406]: The Bargmann transform is a unitary mapping between 

𝐿2(ℝ ) and ℱ. 

(e)  The Hermite functions are defined by  

𝐻𝑛(𝑡) = 𝑐𝑛𝑒
𝜋𝑡2

𝑑𝑛

𝑑𝑡𝑛
𝑒−2𝜋𝑡

2
, 𝑛 = 0,1,2,…                        (20) 

where the coefficients 𝑐𝑛 are chosen in order to have ‖𝐻𝑛‖2 = 1. It is a classical result 

that the set of Hermite functions {𝐻𝑛}𝑛=0
∞  forms an orthonormal basis in  𝐿2(ℝ𝑑).  

Their image under the Bargmann transform is {𝑒𝑛}𝑛=0
∞ -the natural orthonormal 

basis in ℱ : 

ℬ𝐻𝑛(𝑧) = 𝑒𝑛(𝑧),     𝑛 = 0,1,….                                      (21) 
(f) In what follows we identify ℂ and ℝ2. In particular for each 𝜁 = 𝜉 + 𝑖𝜂 ∈ ℂ we 

write 𝜋𝜁 = 𝜋(𝜉,𝜂). Define the shift 𝛽𝜁: ℱ → ℱ in the Fock space by  

𝛽𝜁F(z) = 𝑒
𝑖𝜋𝜉𝜂𝑒−𝜋|𝜁|

2 2⁄ 𝑒𝜋𝜉𝑧𝐹(𝑧 − 𝜁)̅.                                (22) 

Then 𝛽𝜁 is unitary on ℱ, and the Bargmann transform intertwines the Fock space shift 

and the time-frequency shift: 

𝛽𝜁ℬ = ℬ𝜋𝜁 .                                                       (23) 

With these properties one can easily obtain the inner product of a function ℱ ∈
𝐿2(ℝ𝑑) with the time-frequency shifts of a Hermite function as in [411]. This quantity is 

the short-time Fourier transform with respect to a Hermite function. 

Proposition (6.1.7)[406]: Let 𝑓 ∈ 𝐿2(ℝ ) and 𝐹(𝑧) = ℬ𝑓(𝑧). Then, for all 𝜁 ∈ ℂ, 

〈𝑓, 𝜋𝜉𝐻𝑛〉𝐿2(ℝ𝑑 ) =
1

√𝐻𝑛𝑛!
𝑒−𝑖𝜋𝜉𝜂𝑒−

𝜋|𝜁|2

2 ∑(
𝑛
𝑘
) (−𝜋𝜁)𝑘𝐹(𝑛−𝑘)(𝜁)̅

𝑛

𝑘=0

.      (24) 

Proof. Using the intertwining property (23), we have  

 〈𝑓, 𝜋𝜉𝐻𝑛〉𝐿2(ℝ ) = 〈𝐹, 𝛽𝜉ℬ𝐻𝑛〉ℱ                                  
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= (
𝜋𝑛

𝑛!
)

1 2⁄

𝑒−𝑖𝜋𝜉𝜂𝑒−
𝜋|𝜁|2

2 〈𝐹(𝑧), 𝑒𝜋𝜁𝑧(𝑧 − 𝜁)̅𝑛〉         

            = (
𝜋𝑛

𝑛!
)

1 2⁄

𝑒−𝑖𝜋𝜉𝜂𝑒−
𝜋|𝜁|2

2 ∑(
𝑛
𝑘
) (−𝜁)𝑘〈𝐹(𝑧), 𝑧𝑛−𝑘𝑒𝜋𝜁𝑧〉

𝑛

𝑘=0

 

= (
𝜋𝑛

𝑛!
)

1 2⁄

𝑒−𝑖𝜋𝜉𝜂𝑒−
𝜋|𝜁|2

2 ∑(
𝑛
𝑘
) (−𝜁)𝑘𝜋−𝑛+𝑘

𝑑𝑛−𝑘

𝑑𝜁�̅�−𝑘
〈𝐹(𝑧), 𝑒𝜋𝜁𝑧〉

𝑛

𝑘=0

. 

It remains to apply relation (16). 

Finally we give a description of the space 𝑀1 in terms of  the Bargmann 

transform. Since |〈𝑓, 𝜋�̅�𝐻0〉| = |ℬ𝑓(𝑧)|𝑒
−
|𝑧|2

2  (e.g., [420]or [416]), we obtain the 

following reformulation of condition (10). 

Proposition (6.1.8)[406]: A function 𝑓 ∈ 𝐿2(ℝ ) belongs to 𝑀1, if and only if its 

Bargmann transform 𝐹(𝑧) = ℬ𝑓 satisfies  

‖𝑓‖𝑀1 = ∫|𝑓(𝑧)|𝑒
−𝜋|𝑧|2 2⁄ 𝑑𝑚𝑧

ℂ

< ∞.                              (25) 

We collect definitions and known facts about the Weierstrass functions. They will 

be used. 

Given two numbers 𝜔1, 𝜔2 ∈ ℂ such that  

ℑ(𝜔2/𝜔1) > 0.                                                      (26) 
we consider the lattice Λ = {𝑚1𝜔1 +𝑚2𝜔2: 𝑚1, 𝑚2 ∈ ℤ} ⊂ ℂ. The numbers 𝜔1, 𝜔2 ∈
ℂ are called periods of the lattice Λ. 𝐴 lattice on ℝ2 written in the form Λ′ = 𝐴ℤ2 ⊂ ℝ2 
with det𝐴 > 0 coincides with Λ after the natural identification of  ℝ2 and ℂ . in this 

case 𝜔1, 𝜔2 correspond to the columns of 𝐴.  

The parallelogram  ΠΛ = 𝐴[0,1)
2 with basis on 𝜔1 and 𝜔2 is a fundamental 

domain for Λ (also called the period parallelogram). Its area can be expressed through 

the periods as  

𝑠(Λ) = Area(ΠΛ) = det𝐴 = ℑ(�̅�1𝜔2) = −
𝑖

2
(�̅�1𝜔2 − �̅�2𝜔1).           (27) 

Next consider the Weierstrass sigma-function (𝜎-function): 

𝜎(𝑧) = 𝑧 ∏ (1 −
𝑧

𝜔
)

𝜔∈Λ′

𝑒
𝑧
𝜔
+
𝑧2

2𝜔2 ,                                          (28) 

where Λ′ = Λ\{0}. The lattice Λ plays a special role for the Weierstrass 𝜎-function: 𝜎 

has simple zeros precisely on Λ and no other zeros. 

The main property of the Weierstrass 𝜎-function is its quasi-periodicity. This 

means that there exist 𝜂1, 𝜂2 ∈ ℂ, such that  

𝜎(𝑧 + 𝜔𝑘) = −𝜎(𝑧)𝑒
𝜂𝑘𝑧+

1
2
𝜂𝑘𝜔𝑘 ,      𝑧 ∈ ℂ, 𝑘 = 1,2.                      (29) 

See, e.g., [407] for detailed proofs. Furthermore, the constants 𝜂𝑘 satisfy the Legendre 

relation 

𝜂1𝜔2 − 𝜂2𝜔1 = 2𝜋𝑖.                                                 (30) 
In order to understand the growth properties of the Weierstrass 𝜎-function in 

dependence of the lattice, we follow an elegant argument of Hayman [426]. He realized 

that, after a proper normalization and growth compensation, the absolute value of 𝜎 
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becomes a double periodic function. We include this arguments for the sake of 

completeness. 

Proposition (6.1.9)[406]: Set  

𝛼(Λ) =
𝑖𝜋

�̅�1𝜔2 − �̅�2𝜔1
=

𝜋

2𝑆(Λ)
,     𝑎(Λ) =

𝜂2�̅�1 − 𝜂2�̅�2
2𝜔1�̅�2 −𝜔2�̅�1

.           (31) 

and  

𝜎Λ(𝑧) = 𝜎(𝑧)𝑒
𝑎(Λ)𝑧2 .                                             (32) 

Then the function |𝜎Λ(𝑧)|𝑒
−𝛼(Λ)|𝑧|2 is periodic with periods 𝜔1 and 𝜔2. 

Proof. It follows from (29) that  

|𝜎(𝑧 + 𝜔𝑘)𝑒
𝑎(Λ)(𝑧+𝜔𝑘)

2
|𝑒−𝛼(Λ)|𝑧+𝜔𝑘|

2
= |𝜎(𝑧)|𝑒𝑎(Λ)|𝑧|

2
𝑒𝔑𝐴𝑘(𝑧),   𝑘 = 1,2, 

where  

𝐴𝑘(𝑧) = 𝑧(𝜂𝑘 + 2𝑎𝜔𝑘 − 2𝛼�̅�𝑘) + (
1

2
𝜂𝑘𝜔𝑘 + 𝑎𝜔𝑘

2 − 𝛼|𝜔𝑘|
2) ,   𝑘 = 1,2. (33) 

An explicit calculation, based on relations (31) and (30), shows that  

𝜂𝑘 + 2𝑎𝜔𝑘 − 2𝛼�̅�𝑘 = 0,       𝑘 = 1,2. 
and also  

ℜ(
1

2
𝜂𝑘𝜔𝑘 + 𝑎𝜔𝑘

2 − 𝛼|𝜔𝑘|
2) = 0,     𝑘 = 1,2. 

Proposition (6.1.9) now follows. 

  The periodicity implies a groth estimate for the modified sigma-function 𝜎𝐴. 

Proposition (6.1.10)[406]: Set  

𝑐(Λ) = sup
𝑧∈ΠΛ

|𝜎Λ(𝑧)|𝑒
−𝛼(Λ)|𝑧|2 .                                       (34) 

Then  

|𝜎Λ(𝑧)| ≤ 𝑐(Λ)𝑒
𝜋

2𝑠(Λ)
|𝑧|2

,      ∀𝑧 ∈ ℂ.                                 (35) 
For each 𝜖 > 0 we have  

|𝜎Λ(𝑧)|  ≍ 𝑒
𝛼(Λ)|𝑧|2 ,       whenever dist(𝑧, Λ) > 𝜖.                   (36) 

Proof. The function |𝜎Λ(𝑧)|𝑒
−𝛼(Λ)|𝑧|2 is bounded in ΠΛ and has its only zeros at the 

vertices of  ΠΛ. Hence it is bounded away from 0 on every compact subset of  ΠΛ that 

does not contain its vertices. Relation (36) follows now from the periodicity. 

We show Theorem (6.1.12) and thus give a complete characterization of Gabor 

superframes with Hermite functions. 

We divide proof  into several steps. First we will use the matrix form of the 

Wexler-Raz biorthogonality relations (56) and translate these relations to an 

interpolation problem on Fock space. 

Let, as earlier, ℎ = (𝐻𝑗)𝑗=0
𝑛

 be the vector-valued window consisting of the first 

𝑛 + 1 Hermite functions, For each 𝛾 = (𝛾𝑗)𝑗=0
𝑛

∈ 𝐿2(ℝ, ℂ𝑛+1) denote  

𝐺𝑗 = ℬ𝛾𝑗 ,      𝑗 = 0,1,… , 𝑛.                                         (37) 

Taking 𝑔 = ℎ in the biorthogonality relations (56) and using Proposition (6.1.7). We 

can rewrite these relations as an interpolation problem for the function 𝐺𝑗 ∈ ℱ: 

〈𝛾𝑗 , 𝜋𝜇𝐻𝑙〉𝐿2(ℝ) = 𝑒
−𝑖𝜋ℑ𝜇ℜ𝜇𝑒−𝜋|𝜇|

2/2
1

√𝜋𝑙𝑙!
∑(

𝑙
𝑘
) (−𝜋𝜇)𝑘𝐺𝑗

(𝑙−𝑘)(�̅�)

𝑙

𝑘=0
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= 𝑠(Λ)𝛿𝜇,0𝛿𝑗,𝑙,      𝑗, 𝑙 = 0,1,… , 𝑛; 𝜇 ∈ Λ
∘.                           (38) 

The 𝒢(ℎ, Λ) is a frame for 𝐿2(ℝ, ℂ𝑛+1), if and only if there exist functions 𝐺𝑗 ∈ ℱ 

satisfying (38) and if  𝒢(𝛾, Λ) is a Bessel sequence in 𝐿2(ℝ, ℂ𝑛+1). 
This interpolation problem can be rewritten in a simpler way. Indeed, for each 

𝜇 ∈ Λ∘\{0} and 𝑗 ∈ {0,1, … , 𝑛}, the system (38) is a triangle linear system in the 

variables {𝐺𝑗
(𝑚)(�̅�)}

𝑚=0

𝑛
 with non-zero diagonal coefficients and zero right-hand side. 

Clearly, it has just zero solutions. Thus if  𝐺 = (Gj)𝑗=0
𝑛

 satisfies (38), then 𝐺𝑗
(𝑚)(�̅�) =

0, 𝑗,𝑚 = 0,1,… , 𝑛, 𝜇 ∈ Λ∘\{0}. For 𝜇 = 0, the relations (38) take the form  
1

√𝜋𝑙𝑙!
𝐺𝑗
(𝑙)(0) = 𝑠(Λ)𝛿𝑗,𝑙 ,     𝑗, 𝑙 = 0,1,… , 𝑛. 

By adjusting the normalization of the 𝐺𝑗, we obtain the following statement. 

Proposition (6.1.11)[406]: The Gabor system 𝒢(ℎ, Λ) is a Gabor superframe for 

𝐿2(ℝ, ℂ𝑛+1), if and only if there exist 𝑛 + 1 functions 𝛾𝑗 ∈ 𝐿
2(ℝ𝑑) such that 𝒢(𝛾𝑗 , Λ) is 

a Bessel sequence and 𝐺𝑗 = ℬ𝛾𝑗 , 𝑗 = 0,… , 𝑛, satisfy the (Hermite) interpolation problem  

𝐺𝑗
(ℓ)(�̅�) = 𝛿𝜇,0𝛿𝑗,ℓ,    for  𝜇 ∈ Λ

∘, 𝑗, ℓ = 0,… , 𝑛.                      (39) 

Theorem (6.1.12)[406]: Let ℎ = (𝐻0, … , 𝐻𝑛) be the vector of the first 𝑛 + 1 Hermit 

functions. Then 𝒢(ℎ, Λ) is a frame for 𝐿2(ℝ, ℂ𝑛+1), if and only if  

𝑠(Λ) <
1

𝑛 + 1
.                                                 (40) 

Proof. Sufficiency of (40). We use the Weierstrass functions described.  Construct the 

Weierstrass 𝜎-function for the lattice Λ∘̅̅ ̅, as given by (6). 

Let the construct 𝛼(Λ∘̅̅ ̅), 𝑎(Λ∘̅̅ ̅) be defined by (31) and the function 𝜎(𝐴0̅̅ ̅̅ ) be 

defined by (32), where the 𝜎-function is constructed for the lattice (Λ∘̅̅ ̅), consider the 

function  

𝑆(𝑧) = (𝜎(Λ∘̅̅ ̅)(𝑧))
𝑛+1

= 𝜎(𝑧)𝑛+1𝑒𝑎(Λ
∘̅̅ ̅)(𝑛+1)𝑧2 .                        (41) 

The zero set of  𝑆 is (Λ0∘̅̅ ̅̅ ), and the multiplicity of each zero is precisely 𝑛 + 1. In 

our case (Λ∘̅̅ ̅) =
𝜋

2𝑠(Λ∘)
=
𝜋

2
𝑠(Λ) , and the growth estimates (35) and (36) can be 

rewritten as  

|𝑆(𝑠)| ≤ 𝑒
𝜋
2
(𝑛+1)𝑆(Λ)|𝑠|2 ,         for all 𝑠 ∈ ℂ,                               (42) 

|𝑆(𝑠)| ≍ 𝑒
𝜋
2
(𝑛+1)𝑆(Λ)|𝑠|2 ,        if dist(𝑠, 𝐴0̅̅̅̅ ) > 𝜖.                      (43) 

Now assume that 𝑠(Λ) < (𝑛 + 1)−1. Then the functions 

𝑆𝑚(𝑧) =
1

𝑧𝑛+1−𝑚
𝑆(𝑧),       𝑚 = 0,1,… , 𝑛                           (44) 

belong to ℱ. they have zero of order 𝑛 + 1 at each 𝜇 ∈ Λ∘̅̅ ̅\{0}, and also 

𝑆𝑚
(𝑙)(0) = 0,   for  0 ≤ 𝑙 ≤ 𝑚 − 1,   and 𝑆𝑚

(𝑚)(0) ≠ 0. 
 The solutions 𝐺𝑗 to the interpolation problem (39) can be now found in the form  

𝐺𝑗 = ∑ 𝑐𝑚,𝑗𝑆𝑚

𝑛

𝑚=𝑗

,       𝑗 = 0,1,… , 𝑛.                                  (45) 
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 These functions have a zero of multiplicity 𝑛 + 1 at all points from Λ∘̅̅ ̅\{0}, while, 

for each 𝑗, the condition 𝐺𝑗
(𝑙)
= 𝛿𝑗,𝑙 leads one to a triangular system of linear equations 

with respect to the coefficients {𝑐𝑚,𝑗}𝑚=𝑗
𝑛

 with non-zero diagonal entries. Clearly this 

system has a (unique) Solution. 

 It remains to ensure that each system 𝒢(𝛾𝑗 , Λ) is a Bessel sequence. Each 𝐺𝑗 

inherits its growth from the functions 𝑆𝑗 and from 𝑆, thus (42) and Proposition (6.1.8) 

imply that 𝛾𝑖 ∈ 𝑀
1(ℝ) For 𝑗 = 0,… , 𝑛. Now apply Lemma (6.1.3).  

Necessity. Let now 𝑠(Λ) ≥ (𝑛 + 1)−1. The growth estimate (43) implies that 

      |𝑆(𝑧)| ≥ Const 𝑒
𝜋

2
|𝑧|2 ,    whenever dist(𝑧, Λ∘̅̅ ̅) > 𝜖.                 (46) 

 Now assume that 𝒢(ℎ, Λ) is a frame for 𝐿2(ℝ, ℂ𝑛+1). Then there exists a system 

of functions 𝐺0, 𝐺1, … , 𝐺𝑛 ∈ ℱ which satisfy the interpolation problem (39). The 

function 𝐺𝑛 has zeros of multiplicity 𝑛 + 1 at Λ∘̅̅ ̅\{0} and a zero of multiplicity 𝑛 at the 

origin. Therefore  

Φ(𝒵) =
𝑧𝐺𝑛(𝑧)

𝑆(𝑧)
 

is an entire function. Estimates (46) and (17) yield 

|Φ(𝑧)| = 𝜊(|𝑧|),   𝑧 → ∞,   dist(𝑧, Λ∘) > 𝜖. 
By the maximum principle, the restriction dist(𝑧, Λ∘) > 𝜖 can be removed, and thus Φ 

is a bounded entire function. Liouville’s  theorem implies that Φ is constant: 

𝐺𝑛(𝑧) = 𝐶
𝑆(𝑧)

𝑧
. 

But 𝑧−1𝑆(𝑧) ∉ ℱ , this follows again from (46). Therefore 𝐶 = 0 and hence 𝐺𝑛 is 

identically contradiction to (39). this completes the proof of necessity [410].  

 Next we consider scalar-valued Gabor frames with Hermite functions.  

 We remark that if for some 𝑔 ∈  𝐿2(ℝ, ℂ𝑛+1) and lattice Λ ⊂ ℝ2 the system 

𝒢(𝑔, Λ) is a vector-valued frame in 𝐿2(ℝ, ℂ𝑛+1), then trivially, for each 𝑗 = 0,1,… , 𝑛, 

the Gabor system 𝒢(𝑔𝑗 , Λ) = {𝜋𝜆𝑔𝑗 , 𝜆 ∈ Λ} is a frame for 𝐿2(ℝ). More generally, for 

each 𝑐 ∈ ℂ𝑛+1, 𝑐 ≠ 0, the system 𝒢(ℎ, Λ) = {𝜋𝜆𝑔𝑗 , 𝜆 ∈ Λ} with ℎ = ∑ 𝑐𝑗𝑔𝑗
𝑛
𝑗=0  also is a 

frame in 𝐿2(ℝ). By applying this observation to the window 𝑔 = (𝐻0, … , 𝐻𝑛) we obtain 

Proposition (6.1.2), which gives a condition for the one dimensional system with a 

Hermite window to be a frame for 𝐿2(ℝ). Actually a slightly more general result holds 

true. 

Proposition (6.1.13)[406]: Let 𝑛 ∈ ℤ , 𝑛 ≥ 0 and ℎ = ∑ 𝑐𝑘𝐻𝑘
𝑛
𝑘=0 , ∑ |𝑐𝑘| ≠ 0

𝑛
0 . If 

𝑠(Λ) < (𝑛 + 1)−1, then 𝒢(ℎ, Λ) is a frame for 𝐿2(ℝ). 
 Amazingly enough the sufficient density of Proposition (6.1.13) might be sharp, 

as is suggested by following counter-example. 

Proposition (6.1.14)[406]: If Λ = 𝑎ℤ × 𝑏ℤ and 𝑎𝑏 = 1 2⁄ , then 𝒢(𝐻2𝑛+1, Λ) is not a 

Gabor frame for 𝐿2(ℝ) for all integers 𝑛 ≥ 0.  

Proof. We use a Zak transform argument. For 𝑎 > 0 the Zak transform is defined as  

𝑍𝑎𝑓(𝑥, 𝜉) = ∑ 𝑓(𝑥 − 𝑎𝑘)𝑒2𝑖𝜋𝑎𝑘𝜉
∞

𝑘=−∞

.                           (47) 
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We refer the reader to [420, Sect.8.3] for a detailed discussion of its properties. In 

particular it is a unitary mapping between 𝐿2(ℝ) and 𝐿2(𝑄𝑎)- the space of square-

integrable functions in the rectangle 𝑄𝑎 = [0, 𝑎) × [0, 1 𝑎⁄ ). For the case 𝑎𝑏 = 1 2 ⁄ the 

Gabor frame operator is unitarily equivalent to a multiplication operator on 𝐿2(𝑄𝑎) by 

maens of the Zak transform. Precisely, 

    𝑍𝑎𝑆𝐻𝑛,𝐻𝑛𝑓(𝑥, 𝜉) = (|𝑍𝑎𝐻𝑛(𝑥, 𝜉)|
2 + |𝑍𝑎𝐻𝑛(𝑥 −

𝑎

2
, 𝜉)|

2

)𝑍𝑎𝑓(𝑥, 𝜉), 𝑓 ∈ 𝐿
2(ℝ). 

Consequently 𝒢(𝐻𝑛, Λ) is a frame for 𝐿2(ℝ) if and only if  

0 < inf
𝑄𝑎
{(|𝑍𝑎𝐻𝑛(𝑥, 𝜉)|

2 + |𝑍𝑎𝐻𝑛 (𝑥 −
𝑎

2
) , 𝜉|

2

)} 

                 ≤ sup
𝑄𝑎

{(|𝑍𝑎𝐻𝑛(𝑥, 𝜉)|
2 + |𝑍𝑎𝐻𝑛 (𝑥 −

𝑎

2
) , 𝜉|

2

)} < ∞,  

see relation (8.21)in [420]. 

 Clearly, 𝑍𝑎𝐻𝑛(𝑥, 𝜉) is a continuous function Since 𝐻2𝑛+1 is an odd function, its 

Zak transform satisfies 𝑍𝑎𝐻𝑛+1(0,0) = 𝑍𝑎𝐻𝑛+1 (
𝑎

2
, 0) = 0. This contradicts the above 

criterium, therefore 𝒢(𝐻2𝑛+1, Λ) cannot be a frame. 

 In [423, Prop. 3.3] we showed that 𝒢(𝐻𝑛, Λ) is a frame, if and only if there exists 

a 𝛾𝑛 ∈ 𝐿
2(ℝ), such that 𝒢(𝛾𝑛, Λ) is a Bessel system and the Bargmann transform 𝐺𝑛 =

ℬ𝛾𝑛 is in ℱ and satisfies the interpolation problem  

∑(
𝑛
𝑘
) (−𝜋𝜇)𝑘𝐺𝑛

(𝑛−𝑘)(�̅�)

𝑛

𝑘=0

= 𝛿𝜇,0     ∀𝜇 ∈ Λ
∘.                           (48) 

 Note that (48) coincides with (38) for 𝑗 = 𝑙 = 𝑛 and that for 𝑠(Λ) < 1 (𝑛 + 1)⁄  

the function  

𝐺𝑛(𝑧) = 𝑆𝑛(𝑧) = 𝑐𝑧
−1𝜎

𝑛 + 1

Λ∘
(𝑧)                                    (49) 

is a solution of (48) in ℱ. 

 If 𝑠(𝐴) ≥ 1 (𝑛 + 1)⁄ , then we do not know whether (48) has any solution in ℱ. 

the difficulty is that this interpolation problem is not entirely holomorphic, and the 

standard complex variable methods do not seem sufficient to investigate this problem. 

In the light of Proposition (6.1.14) it is conceivable that the sufficient condition 𝑠(Λ) <
1 (𝑛 + 1)⁄  in Proposition (6.1.13) is also necessary. 

 

 We assume that 𝑠(Λ) <
1

𝑛+1
, and we estimate the 𝐿2 and 𝑀1-norm of the dual 

window for the frame 𝒢(𝐻𝑛, Λ). Thought the estimates are simple, they seem to be new 

even for the Gaussian case 𝑛 = 0. 

Lemma (6.1.15)[406]: Assume that (𝑛 + 1)𝑆(Λ) < 1 and let 𝛾𝑛 be the dual windows 

with Bargmann transform 𝐺𝑛 defined in (49). Setting =
1−(𝑛+1)𝑆(Λ)

3−(𝑛+1)𝑆(Λ)
 , then  

|𝛾𝑛(𝑡)| + |𝛾𝑛(𝑡)| ≤ 𝐶𝑒
−𝜋𝑘𝑡2 .                                        (50) 

Furthermore, 

‖𝛾‖𝑀1 ≤ 4𝑐(Λ
∘̅̅ ̅)𝑛+1

1

1 − (𝑛 + 1)𝑆(Λ)
,                              (51) 

and  



234 

‖𝛾𝑛‖𝐿2(ℝ)
2 ≍ log

1

1 − (𝑛 + 1)𝑆(Λ)
.                                  (52) 

where 𝑐(Λ) is defined in (34). 

Proof. The estimates involve a routine calculation with Gausians and are a consequence 

of the growth estimate (35) of Proposition (6.1.10). Set 𝜌 = 1 − (𝑛 + 1)𝑠(Λ).  
 For the decay property, we use the inversion formula for the short-time Fourier 

transform (e.g., [420,Prop. 3.2.3]) which states  

𝛾𝑛(𝑡) = ∫〈𝛾𝑛, 𝜋𝑧𝐻0〉𝜋𝑧𝐻0(𝑡)𝑑𝑚𝑧
ℂ

 

with absolute convergence of the integral for each 𝑡 ∈ ℝ. Since by (35)  

|〈𝛾𝑛, 𝜋�̅�𝐻0〉| = |ℬ𝛾𝑛(𝑧)|𝑒
−𝜋|𝑧|2/2 ≤ 𝐶𝑒−𝜋|𝑧|

2/2 

and since 𝜋𝑥+𝑖𝜉𝐻0(𝑡) = 𝑒
2𝜋𝑖𝜉𝑡𝐻0(𝑡 − 𝑥) , we obtain that 

|𝛾𝑛(𝑡)| ≤ 𝐶 ∫ 𝑒
−𝜋𝜌𝜉2/2𝑑𝜉

ℝ

∫ 𝑒−𝜋𝜌𝑥
2/2𝑒−𝜋𝜌(𝑡−𝑥)

2
𝑑𝑥

ℝ

. 

The convolution of  the two Gaussians in this integral is a multiple of the Gaussian 

𝑒
−𝜋

𝜌

2+𝜌
𝑡2

 by the semigroup property og Gaussians with respect to convolution [420, 

Lemma 4.4.5]. 

 The 𝑀1-norm of  𝛾𝑛 is readily estimated by  

‖𝛾‖𝑀1 = ∫|𝐺𝑛(𝑧)|𝑒
−𝜋|𝑧|2/2𝑑𝑚𝑧

ℂ

                           

≤ 𝑐(Λ∘̅̅ ̅)𝑛+1∫
1

|𝑧|
𝑒−𝜋𝜌|𝑧|

2/2𝑑𝑚𝑧
ℂ

 

                        = 2𝜋(Λ∘̅̅ ̅)𝑛+1∫ 𝑒−𝜋𝜌𝑟/2𝑑𝑟

∞

0

= 4𝑐(Λ∘̅̅ ̅)𝑛+1 +
1

𝜌
. 

 For the estimate of ‖𝛾𝑛‖2
2 we have similarly  

‖𝛾𝑛‖𝐿2(ℝ)
2 = ‖𝐺‖ℱ

2 = ∫|𝑧|−2|𝜎Λ∘̅̅ ̅(𝑧)|
2(𝑛+1)𝑒−𝜋|𝑧|

2
𝑑𝑚𝑧

ℂ

. 

When |𝑧| ≤ 1 the integrated is bounded uniformly, so this part does not bring an 

essential contribution into the whole norm. It follows now from (36) that  

‖𝛾𝑛‖𝐿2(ℝ)
2 ≍ ∫ |𝑧|−2𝑒−𝜋𝜌|𝑧|

2
𝑑𝑚𝑧

|𝑧|>1

≍ ∫
1

𝑟

∞

1

𝑒−𝜋𝜌𝑟
2
𝑑𝑟 ≍ − log(1 − (𝑛 + 1)𝑠(Λ)). 

This is the desired inequality. 

 Finally let us briefly describe how the lower frame bound of the Gabor frame 

𝒢(𝐻0, Λ) with Gaussian window behaves, when the lattice approaches the critical size 

𝑠(Λ) = 1. Since the constants in Lemma (6.1.15) depend on (the excentricity of) the 

lattice Λ, we fix a lattice Λ with size 𝑠(Λ) = 1 and study the behavior of lower frame 
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bound of 𝒢(𝐻0, 𝑞Λ), as 𝑞 tends to 1. As long as 𝑞 < 1, 𝒢(𝐻0, 𝑞Λ) is aframe by the 

classical results in [432,435],however, when 𝑞 = 1, then 𝒢(𝐻0, 𝑞Λ) cannot be a frame 

by the Balian-Low theorem [410]. The upper frame bound can be controlled uniformly 

with Proposition (6.1.3), therefore the lower frame bound must 𝐴 converge to 0 as 𝑞 →
1. 

Proposition (6.1.16)[406]: Assume that 𝑠(Λ) = 1 and 𝑞 < 1. Let 𝐴𝑞 denote the optimal 

lower frame bound of  𝒢(𝐻0, 𝑞Λ). Then  

𝐴𝑞 ≥ 𝑐(1 − 𝑞
2)2 = 𝑐(1 − 𝑠(𝑞Λ))2 

for some constant independent of 𝑞. 

Proof. Let 𝛾0 be the dual window defined by (49). Corollary (6.1.19) of the Wexler-Raz 

relations and Lemma (6.1.15) imply that  

𝐴𝑞 ≥ (𝑛(𝑞Λ)‖𝛾0‖𝑀1
2 )−1 ≥ (16𝑛(𝑞Λ)𝑐((𝑞Λ)°̅̅ ̅̅ ̅̅ ̅)

2
)
−1

(1 − 𝑠(𝑞Λ))
2
 

Thus we need to show that the two constants 𝑛 and 𝑐 are bounded, as long as 𝑞 is 

bounded away from 0, 𝑞 ≥ 1 2⁄ , say. Clearly the constant (𝑞Λ), which measures the 

maximal number of lattice points in a unite cube (Lemma (6.1.3)), can be bounded 

uniformly. As for 𝑐, which is the supremum of the 𝜎-function over the period 

parallelogram (34), we note that (𝑞Λ)° = 𝑞−1Λ° and that 𝜎𝑞−1Λ(𝑧) = 𝑞
−1𝜎Λ(𝑞𝑧) by 

(28), (30) and (31). Consequently, sup1 2⁄ ≤𝑞≤1𝑐(𝑞
−1Λ°̅) < ∞, and we are done. 

 We show how the structural results about Gabor super frames can be derived 

from the corresponding well-known results for scalar Gabor frames. 

Proposition (6.1.17)[406]: (Janssen representation for Gabor super frames) Assume 

that 𝛾, 𝑔 ∈ 𝑀1(ℝ𝑑 , ℂ𝑛). Then the frame-type operator 𝑆𝛾,𝑔
Λ  can be written as  

𝑆𝑓 = 𝑆𝛾,𝑔
Λ 𝑓 = ∑ Γ(𝜇)𝜋𝜇𝑓

𝜇∈Λ∘

,                                      (53) 

where Γ(𝜇) is the 𝑛 × 𝑛 matrix with entries  

Γ(𝜇)𝑘𝑙 = 𝑠(Λ)
−1〈𝛾𝑘 , 𝜋𝜇𝑔𝑙〉                                       (54) 

and the sum convergence in the operator norm on 𝐿2(ℝ𝑑 , ℂ𝑛). 
Proof. We look at the 𝑙–th component of 𝑆𝑓. Using definition (9) it can be written 

explicitly as a sum of scalar frame-type operators 

(𝑆𝑓)𝑙 =∑〈𝑓, 𝜋𝜆𝑔〉𝜋𝜆𝛾𝑙
𝜆∈Λ

=∑∑〈𝑓𝑗 , 𝜋𝜆𝑔𝑗〉𝜋𝜆𝛾𝑙
𝜆∈Λ

𝑛

𝑗=1

=∑𝑆𝑔𝑗,𝛾𝑙
Λ 𝑓𝑗

𝑛

𝑗=1

. 

If all  𝑔𝑗 , 𝛾𝑗 are in 𝑀1, then the well-known scalar version of Janssen’s representation 

(53) can be applied to each of the frame-type operators occurring above sum and we 

obtain that  

(𝑆𝑓)𝑙 = 𝑠(Λ)
−1 ∑∑〈𝛾𝑙 , 𝜋𝜇  𝑔𝑗〉

𝑛

𝑗=1𝜇∈Λ∘

𝜋𝜇𝑓𝑗 = ∑(𝛤(𝜇)𝜋𝜇𝑓)𝑙
𝜇∈Λ∘

,            (55)  

as was to be shown. 

 

Proposition (6.1.18)[406]: (Wexler-Raz biorthogonality). Assume that both 𝒢(𝑔, Λ) 
and 𝒢(𝛾, Λ) are Bessel sequences in 𝐿2(ℝ𝑑 , ℂ𝑛). Then 𝒢(𝑔, Λ) is a vector-valued frame 

in 𝐿2(ℝ𝑑 , ℂ𝑛) with dual window 𝛾 if and only if  
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1

𝑆(Λ)
〈𝛾𝑙 , 𝜋𝜇𝑔𝑗〉 = 𝛿0,𝜇𝛿𝑙,𝑗     for  𝜇 ∈ Λ

∘, 𝑗, 𝑙 = 1,2,… , 𝑛.                 (56) 

Proof. We remark first that time-frequency shifts on a lattice are linearly independent in 

the following sense: if 𝑐 = (𝑐𝜇)𝜇∈Λ∘ ∈ ℓ
∞(Λ∘) and ∑ 𝑐𝜇𝜋(𝜇)𝜇∈Λ∘ = 0 as an operator 

from 𝑀1 to (𝑀1)∗, then 𝑐𝜇 = 0 for all 𝜇 ∈ Λ∘. See, e.g., [421,434]. If 𝑆𝑔,𝛾 = I, then by 

Janssen’s representation  

𝑓𝑙 = (𝑆𝑓)ℓ = 𝑠(Λ)
−1 ∑∑〈𝛾ℓ, 𝜋𝜇  𝑔𝑗〉

𝑛

𝑗=1𝜇∈Λ∘

𝜋𝜇𝑓𝑗 , 

and so linear independence forces 𝑠(Λ)−1〈𝛾ℓ, 𝜋𝜇  𝑔𝑗  〉 = 𝛿𝜇,0𝛿𝑗,ℓ or in shart notation 

𝑠(Λ)−1Γ(𝜇) = 𝛿𝜇,0I.  

 Conversely, if the biorthogonality condition 𝑠(Λ)−1Γ(𝜇) = 𝛿𝜇,0I holds, then 

obviously 𝑆𝑔,𝛾 = 1. 

Theorem (6.1.19)[406]: (Janssen-Ron-Shen duality). The Gabor  system 𝒢(𝑔, Λ) is a 

frame for 𝐿2(ℝ𝑑 , ℂ𝑛), if and only if the union of Gabor systems ⋃ 𝒢(𝑔𝑗, Λ
∘)𝑛

𝑗=1  is a 

Riesz sequence for 𝐿2(ℝ𝑑). 
Proof. Assume first that 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑 , ℂ𝑛). then the canonical dual is 

given by 𝛾∘ = 𝑆−1𝑔, and by general frame theory 𝛾∘ satisfies 𝑆𝑔,𝛾∘ = 1. Furthermore, 

𝒢(𝛾∘, Λ) is again a frame for 𝐿2(ℝ𝑑 , ℂ𝑛), in particular it is a Bessel sequence. If  

𝑓 =∑∑ 𝑐𝑗,𝜇𝜋𝜇
𝜇∈Λ∘

𝑛

𝑗=1

𝑔𝑗                                                  (57) 

For some sequence (𝑐𝑗,𝜇) ∈ ℓ
2({1,… , 𝑛} × Λ∘), Then by the Bessel property of  

𝒢(g𝑗 , Λ
∘) for each, we obtain that  

‖𝑓‖2
2 = ‖∑∑ 𝑐𝑗,𝜇𝜋𝜇

𝜇∈Λ∘

𝑛

𝑗=1

𝑔𝑗‖ ≤ 𝐵∑∑|𝑐𝑗,𝜇|2
2
= 𝐵‖𝑐‖2

2

𝜇∈Λ∘

𝑛

𝑗=1

. 

For the converse inequality we use the Wexler-Raz relations. If 𝑓 ∈ 𝐿2(ℝ𝑑) is given by 

(57), then the coefficients are uniquely determined by  

𝑐𝑗,𝜇 = 〈𝑓, 𝜋𝜇𝛾𝑗〉. 

Again, since 𝒢(𝛾𝑗 , Λ
∘) possesses the Bessel property, we find that ‖𝑐‖2

2 ≤ 𝐴′‖𝑓‖2
2. 

Altogether we have shown that the set ⋃ 𝒢(𝑔𝑗, Λ
∘)𝑛

𝑗=1  is a Riesz sequence in 𝐿2(ℝ𝑑). 

 Conversely, assume that ⋃ 𝒢(𝑔𝑗 , Λ
∘)𝑛

𝑗=1  is a Riesz sequence that generates a sub-

space 𝒦 ⊆ 𝐿2(ℝ𝑑). Then there exists a biorthogonal basis {𝑒𝑗,𝜇} contained in 𝒦. By the 

invariance of the Gabor systems 𝒢(𝑔𝑗 , Λ
∘), we find that the biorthogonal basis must be 

of the form 𝑒𝑗,𝜇 = 𝜋𝜇𝛾𝑗 for some 𝛾𝑗 ∈ 𝐿
2(ℝ𝑑). By the general properties of  Riesz  

bases, 𝒢(𝑔𝑗 , Λ
∘) is a Bessel sequence for each 𝑗, and, after some rescaling, the 

biorthogonality states that 𝑠(Λ)−1〈𝜋𝜇′𝛾𝑗 , 𝜋𝜇𝑔ℓ〉 = 𝛿𝜇,𝜇′𝛿𝑗,ℓ. According to the Wexler-

Raz relations, this implies that 𝒢(𝑔, Λ) is a frame for 𝐿2(ℝ𝑑 , ℂ𝑛). 
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Section (6.2): Gabor Frame Sets for Subspace 

 We denote by ℤ,ℕ,ℚ and 𝐿2(ℝ) the set of integers, the set of natural numbers, 

the set of rational numbers and the Hilbert space of all squares-integrable functions on 

ℝ, respectively. Unless otherwise specified, relations between two measurable sets in ℝ 

such as equality, disjointness or inclusion, are always understood up to a set of 

Lebesgue  measure zero, and similarly, equality or inequality between functions is 

always understood in the “almost everywhere” sense. Given any 𝑀 ∈ ℕ, write ℕ𝑀 =
{0,1,… ,𝑀 − 1}. For 𝑐 > 0 two measurable subsets 𝕊1 and 𝕊2 of ℝ are said to be 𝑐ℤ-

congruent if there exist measurable partitions {𝕊1,𝑘}𝑘∈ℤ of  𝕊1 and {𝕊2,𝑘}𝑘∈ℤ of  𝕊2 such 

that 𝕊2,𝑘 = 𝕊1,𝑘 + 𝑐𝑘 for all 𝑘 ∈ ℤ. For a measurable set 𝐹 in ℝ, we denote by 𝜇(𝐹) its 

Lebesgue measure. 

 Let ℋ be a separable Hilbert space, and let 𝐼 be a countable index set. A 

sequence {ℎ𝑛}𝑛∈𝐼 in ℋ is called a frame for ℋ if there exist constants 𝐴 and 𝐵 with 0 <
𝐴 ≤ 𝐵 < ∞ such that 

𝐴‖𝑓‖2 ≤∑|〈𝑓, ℎ𝑛〉|
2 ≤ 𝐵‖𝑓‖2

𝑛∈𝐼

,      𝑓 ∈ ℋ.                       (58) 

The maximum constant 𝐴 and the minimal constant 𝐵 for the inequalities (58) to hold 

are called the upper frame bound and the lower frame bound respectively. The sequence 
{ℎ𝑛}𝑛∈𝐼 is called a Bessel sequence in ℋ if only the right-hand side inequality in (58) 

holds. See [437,442] and [456] for the fundamentals of frame theory. Given 𝑎, 𝑏 > 0. 

Define the modulation operator 𝐸𝑚𝑏 , 𝑚 ∈ ℤ, and translation operator 𝑇𝑛𝑎, 𝑛 ∈ ℤ, by  

𝐸𝑚𝑏𝑓(∙) ≔ 𝑒2𝜋𝑖𝑚𝑏𝑓(∙)  and  𝑇𝑛𝑎𝑓(∙) ≔ 𝑓(∙ −𝑛𝑎),    𝑓 ∈ 𝐿2(ℝ), 
respectively. For an arbitrary 𝑔 ∈ 𝐿2(ℝ), we denote by 𝒢(𝑔, 𝑎, 𝑏) the Gabor system 

associated with 𝑔 and the time-frequency shift parameters 𝑎, 𝑏: 

𝒢(𝑔, 𝑎, 𝑏) ≔ {𝐸𝑚,𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈ℤ. 

A Measurable set 𝕊 in ℝ with positive measure is said to be 𝑎ℤ-periodic if  𝕊 + 𝑛𝑎 = 𝕊 

for 𝑛 ∈ ℤ. We restrict ourselves to the closed subspace 𝐿2(𝕊) of  𝐿2(ℝ): 
𝐿2(𝕊) ≔ {𝑓 ∈ 𝐿2(ℝ) ∶ 𝑓 = 0 on ℝ\𝕊}, 

where 𝕊 is an 𝑎ℤ-periodic set in ℝ. Clearly, it is a Hilbert space with the inner product 

in 𝐿2(ℝ). We deal with the Gabor systems of the form 𝒢(𝜒𝐹 , 𝑎, 𝑏) where 𝐹 a 

measurable subset of is 𝕊, and 𝜒𝐹 denotes the characteristic function of 𝐹. A measurable 

set 𝐹 in 𝕊 is called a Gabor frame set (tight Gabor set) in 𝕊 if  𝒢(𝜒𝐹, 𝑎, 𝑏) is a frame 

(tight frame ) for 𝐿2(𝕊), and called a Gabor Bessel set in 𝕊 if  𝒢(𝜒𝐹, 𝑎, 𝑏) is a Bessel 

sequence in 𝐿2(𝕊). 
 During the last 20 years Gabor systems have been extensively studied in 𝐿2(ℝ) 
(see [443,444,445,451]), and also in the setting of  subspaces 

[438,446,447,449,454,455]. We concern Gabor analysis in 𝐿2(𝕊), where 𝕊 is an 𝑎ℤ-

periodic set in ℝ. Such a scenario can be used to model a signal that appears 

periodically but intermittently. Although classical Gabor analysis tools in 𝐿2(ℝ) can be 

adjusted to treat such a scenario by padding with zeros outside the set 𝕊 , Gabor systems 

that fit exactly such a scenario might have been more efficient. The following 

proposition shows that only periodic 𝕊 in ℝ are suitable for Gabor analysis. 
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Proposition (6.2.1)[436]: Given 𝑎, 𝑏 > 0 and a measurable set 𝕊 in ℝ with positive 

measure. Assume that there exists 𝑔 ∈ 𝐿2(ℝ) such that 𝒢(𝑔, 𝑎, 𝑏) is complete in 𝐿2(𝕊). 
Then = ⋃ (supp(𝑔) + 𝑛𝑎)𝑛∈ℤ . 

 Significant achievement has been made on wavelet sets and frame wavelet sets 

(see [437,440,441,450,452,453]). In recent years, the study of Gabor frame sets in 

ℝ  attracted many mathematicians. In [439], Casazza and Kalton proved that the 

characterization of Gabor frame sets in ℝ is equivalent to solving an old open problem 

of Littlewoods in complex analysis. Janssen in [444] obtained many interesting results 

about Gabor frame sets in ℝ of the form (0, 𝑐0). With the help of set-valued mapping 

defined on certain union of intervals, Gu and Han in [448] provided a complete solution 

to Gabor frame sets in ℝ of the form (0, 𝑐0) for the case of 𝑎𝑏  being a rational number. 

For the irrational case,some related results were also obtained. Given , 𝑏 > 0 . For 

Gabor analysis in 𝑎ℤ-periodic se, Gabardo and [449] provided some conditions on 𝕊 for 

the existence of a complete Gabor system in 𝐿2(𝕊) and the existence of tight Gabor sets. 

We devoted to Gabor frame sets (especially tight Gabor sets) in 𝕊. The results are also 

new even if  𝕊 = ℝ.  

 We characterize Gabor Bessel sets in ℝ. Focuses on characterization of Gabor 

frame sets (especially on tight Gabor sets) in periodic setting. In particular, given 𝑎, 𝑏 >
0 and an 𝑎ℤ-periodic Set 𝕊  in ℝ. Some results related to Gabor frame sets are given, 

and a necessary and sufficient condition on a subset of 𝕊 being a tight Gabor set is 

established. We discuss Gabor frame sets with rational 𝑎𝑏. We characterize 𝕊 admitting 

tight Gabor Sets, and obtain an explicit construction of a class of tight Gabor sets in 

such in such 𝕊. For irrational, we derive a necessary and sufficient condition on 𝕊 

admitting tight Gabor sets.  

 We will characterize Gabor Bessel sets in ℝ. We begin with a proposition on set 

decomposition .Given a measurable set 𝐹 in ℝ and a constant 𝑐 > 0. Define the 

function 𝜏𝑐  of  ℝ into ℕ⋃{∞} by  

𝜏𝑐 (𝑥) ≔ card({𝑦 ∈ 𝐹 ∶ 𝑦 = 𝑥 + 𝑐𝑗 for some 𝑗 ∈ ℤ}),    𝑥 ∈ ℝ.             (59) 
and  

𝐹(𝑐, 𝑘) ≔ {𝑥 ∈ 𝐹 ∶ 𝜏𝑐 (𝑥) = 𝑘},     𝑘 ∈ ℕ ∪ {∞}.                         (60) 
Here card (𝐸) denotes the cardinality of 𝐸 for a set 𝐸. 

Proposition (6.2.2)[436]: Given a Lebesgue measurable set 𝐹 in ℝ and a constant 𝑐 >
0. Define 𝜏𝑐  and 𝐹(𝑐, 𝑘) as in (59) and (60) for 𝑘 ∈ ℕ⋃{∞} respectively. Then  

(i) 𝜏𝑐  is 𝑐-periodic. 

(ii) 𝐹(𝑐, 𝑘) ∩ 𝐹(𝑐, 𝑘′) + 𝑐𝑗) = ∅ for 𝑗 ∈ ℤ and 𝑘, 𝑘′ ∈ ℕ⋃{∞} with 𝑘 ≠ 𝑘′, and 𝐹 =
(⋃ 𝐹(𝑐, 𝑘)𝑘∈ℕ ) ∪ 𝐹(𝑐,∞). 

(iii) For each 𝑘 ∈ ℕ⋃{∞} , 𝐹(𝑐, 𝑘) is measurable, and 𝐹(𝑐, 𝑘) is a disjoint union of 𝑘 

measurable subsets 𝐹(𝑗)(𝑐, 𝑘), 𝑗 ∈ ℕ𝑘, such that all 𝐹(𝑗)(𝑐, 𝑘) are 𝑐ℤ-congruent to 

the same subset of [0, 𝑐) where ℕ∞ = ℕ.  

(iv) ∑ 𝜇(𝐹(𝑐, 𝑘) ∩ (𝐹 + 𝑐𝑛))𝑛∈ℤ 𝑘𝜇(𝐹(𝑐, 𝑘)) for 𝑘 ∈ ℕ. 

(v) 𝐹(𝑐,∞) = ∅ when 𝜇(𝐹) < ∞. 

Proof. By the definitions of 𝜏𝑐 and (𝑐, 𝑘), we have the conclusion (i) and 𝐹 =
(⋃ 𝐹(𝑐, 𝑘)𝐾∈ℕ ) ∪ 𝐹(𝑐,∞). The conclusion (iii) follows from Lemma 1 in [441], and the 

equality in (v) is borrowed from Remark 1 in [440]. To show (ii), we only need to show 

that  
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𝐹(𝑐, 𝑘) ∩ (𝐹(𝑐, 𝑘′) + 𝑐𝑗) = ∅ 

for 𝑗 ∈ ℤ and 𝑘, 𝑘′ ∈ ℕ⋃{∞} with 𝑘 ≠ 𝑘′. We will establish the above result by indirect 

proof. Suppose there exists a set 𝐸 with 𝜇(𝐸) > 0 such that 𝐸 ⊂ 𝐹(𝑐, 𝑘)⋂(𝐹(𝑐, 𝑘′) +
𝑐𝑗) for some 𝑗 ∈ ℤ and 𝑘, 𝑘′ ∈ ℕ⋃{∞} with 𝑘 ≠ 𝑘′. Then 𝜏𝑐 (∙) = 𝑘 and 𝜏𝑐 (∙ −𝑐𝑗) =
𝑘′ on 𝐸 by the definition of 𝜏𝑐 , which implies that 𝑘 = 𝑘′ by (i). This is a contradiction. 

Now we turn to prove (iv). Given 𝑘 ∈ ℕ. By (ii) and (iii),   

𝐹(𝑐, 𝑘)⋂(𝐹 + 𝑐𝑛) = ⋃ (𝐹(𝑐, 𝑘) ∩ (𝐹(𝑐, 𝑙) + 𝑐𝑛))

𝑙∈ℕ⋃{∞}

 

                  = 𝐹(𝑐, 𝑘) ∩ (𝐹(𝑐, 𝑘) + 𝑐𝑛) 

                                  =⋃(𝐹(𝑐, 𝑘) ∩ (𝐹(𝑗)(𝑐, 𝑘) + 𝑐𝑛))

𝑘−1

𝑗=0

 

for 𝑛 ∈ ℤ. Also note that all 𝐹(𝑗)(𝑐, 𝑘), 𝑗 ∈ ℕ𝑘, are 𝑐ℤ-congruent to the same subsets of 

[0, 𝑐) by (iii). It follows that  

 ∑𝜇

𝑛∈ℤ

(𝐹(𝑐, 𝑘) ∩ (𝐹(𝑐, 𝑘) + 𝑐𝑛)) =∑∑𝜇(𝐹(𝑐, 𝑘) ∩ (𝐹𝑗(𝑐, 𝑘) + 𝑐𝑛))

𝑘−1

𝑗=0𝑛∈ℤ

          

=∑𝜇(⋃(𝐹(𝑐, 𝑘) ∩ (𝐹𝑗(𝑐, 𝑘) + 𝑐𝑛))

𝑛∈ℤ

)

𝑘−1

𝑗=0

(61) 

Again by (iii), 𝐹𝑙(𝑐, 𝑘) is 𝑐ℤ-congruent to 𝐹𝑗(𝑐, 𝑘) for each (𝑙, 𝑗) ∈ ℕ𝑘 × ℕ𝑘. It follows 

that 

𝐹𝑙(𝑐, 𝑘) ⊂⋃((𝐹𝑗(𝑐, 𝑘) + 𝑐𝑛))

𝑛∈ℤ

,  

and consequently, 

𝐹(𝑐, 𝑘) =⋃𝐹𝑙(𝑐, 𝑘) ⊂

𝑘−1

𝑙=0

⋃(𝐹𝑗(𝑐, 𝑘) + 𝑐𝑛)

𝑛∈ℤ

. 

which together with (61) leads to the conclusion (iv).  

Lemma (6.2.3)[436]: Let 𝑏 > 0 and Γ be a subset in ℝ with positive measure such that 

Γ = Γ (
1

𝑏
, 1). For an arbitrary function 𝑓 ∈ 𝐿2(ℝ), write  

𝑓(∙) =∑𝑓 (∙ +
𝛾

𝑏
)

𝛾∈ℤ

𝜒𝑟 (∙ +
𝛾

𝑏
).                                    (62) 

Then 𝑓 ∈ 𝐿2 [0,
1

𝑏
), 

𝑓(∙) = 𝑏∑〈𝑓, 𝐸𝑚𝑏𝜒𝑟〉𝑒
2𝜋𝑖𝑚𝑏

𝛾∈ℤ

.                                    (63) 

in 𝐿2 [0,
1

𝑏
), and the right-hand side series in (62) converges absolutely a.e on ℝ.  

Proof. Since Γ is 
1

𝑏
ℤ-congruent to a subset of [0,

1

𝑏
), we have  

|𝑓(∙)|
2
=∑|𝑓 (∙ +

𝛾

𝑏
)𝜒𝑟 (∙ +

𝛾

𝑏
)|
2

𝛾∈ℤ

 

on ℝ. It follows that  
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|𝑓(∙)|
2
𝑑𝑡 =∑ ∫ |𝑓 (𝑡 +

𝛾

𝑏
)𝜒𝑟 (𝑡 +

𝛾

𝑏
)|
2

𝑑𝑡

[0,
1
𝑏
)

𝛾∈ℤ

 

  = ∫|𝑓(𝑡)|
2
𝑑𝑡

Γ

≤ ‖𝑓‖2 < ∞. 

Then 𝑓 ∈ 𝐿2 [0,
1

𝑏
), and Consequently, 

∫ ∑|𝑓 (𝑡 +
𝛾

𝑏
)𝜒𝑟 (𝑡 +

𝛾

𝑏
)| 𝑑𝑡

𝛾∈ℤ
[0,
1
𝑏
)

                                             

                              ≤
1

√𝑏
[
 
 
 
∫ (∑|𝑓 (𝑡 +

𝛾

𝑏
)𝜒𝑟 (𝑡 +

𝛾

𝑏
)| 

𝛾∈ℤ

)

2

𝑑𝑡

[0,
1
𝑏
)

 

]
 
 
 

1
2

 

=
1

√𝑏
‖𝑓‖ < ∞,                                                                   (64) 

where we have used the fact that Γ is 
1

𝑏
ℤ-congruent to a subset of [0,

1

𝑏
). Therefore, 

∫ 𝑓(𝑡)𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

[0,
1
𝑏
)

=∑ ∫ 𝑓 (𝑡 +
𝛾

𝑏
) 𝜒𝑟 (𝑡 +

𝛾

𝑏
) 𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

[0,
1
𝑏
)

𝛾∈ℤ

= 〈𝑓, 𝐸𝑚𝑏𝜒𝑟〉. 

for 𝑚 ∈ ℤ. Also observing that {√𝑏𝑒2𝜋𝑖𝑚𝑏}
𝑚∈ℤ

 is an orthonormal basis for 𝑓 ∈

𝐿2 [0,
1

b
), we obtain the equation (63). Form (64) and 

1

𝑏
-periodicity of 𝑓, it follows that 

the right-hand side series in (63) converges absolutely a.e. on ℝ. 

Lemma (6.2.4)[436]: Given 𝑏 > 0 and a measurable set 𝐹 in ℝ with positive measure. 

Then {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a tight frame for 𝐿2(𝐹) if and only if  𝐹 = 𝐹 (
1

𝑏
, 1). In this case, 

{𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a tight frame for 𝐿2(𝐹) with frame bound 
1

𝑏
. 

Proof. The conclusions follow from Lemma 2.10 in [449]. 

Lemma (6.2.5)[436]: Given 𝑏 > 0 and a measurable set 𝐹 in ℝ with finite positive 

measure. Then {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a Bessel sequence in 𝐿2(𝐹) if and only if there exists 

𝐾 ∈ ℕ such that 𝐹 (
1

𝑏
, 1) = ∅ for 𝑘 > 𝐾. 

Proof. We show the necessity by indirect proof. Suppose {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is Bessel 

sequence in 𝐿2(𝐹) with Bessel bound 𝐵, and 𝜇 (𝐹 (
1

𝑏
, 𝑘𝐵)) > 0 for some 𝑘𝐵 > 𝑏𝐵. By 

Proposition (6.2.2), 𝐹 (
1

𝑏
, 𝑘𝐵) can be represented as a disjoint union of 𝑘𝐵 measurable 

subsets 𝐹(𝑗) (
1

𝑏
, 𝑘𝐵) , 𝑗 ∈ ℕ𝑘𝐵, such that all 𝐹(𝑗) (

1

𝑏
, 𝑘𝐵) are  

1

𝑏
ℤ-congruent to the same 

subset of [0,
1

𝑏
). Define 𝑓 ≔ 𝜒

𝐹(
1

𝑏
 ,𝑘𝐵)

. Then  
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∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉𝐸𝑚𝑏𝜒𝐹(∙)

𝑚∈ℤ

                                                   

         = ∑ ∑ 〈𝜒
𝐹(𝑗)(

1
𝑏
,𝑘𝐵)
, 𝐸𝑚𝑏𝜒𝐹〉 𝑒

2𝜋𝑖𝑚𝑏𝑓(∙)

𝑘𝐵−1

𝑗=0𝑚∈ℤ

 

= 𝑓(∙) ∑ ∑ 〈𝜒
𝐹(𝑗)(

1
𝑏
 ,𝑘𝐵)

, 𝐸𝑚𝑏𝜒𝐹(𝑗)(1
𝑏
 ,𝑘𝐵)

〉

𝑚∈ℤ

𝑘𝐵−1

𝑗=0

𝑒2𝜋𝑖𝑚𝑏 .      (65) 

on 𝐹 (
1

𝑏
, 𝑘𝐵). Applying Lemma (6.2.3) to 𝜒

𝐹(𝑗)(
1

𝑏
,𝑘𝐵)

 and 𝐹(𝑗) (
1

𝑏
, 𝑘𝐵), we have  

∑ 〈𝜒
𝐹(𝑗)(

1
𝑏
,𝑘𝐵)
, 𝐸𝑚𝑏𝜒𝐹(𝑗)(1

𝑏
,𝑘𝐵)
〉 𝑒2𝜋𝑖𝑚𝑏

𝑚∈ℤ

=
1

𝑏
∑𝜒

𝐹(𝑗)(
1
𝑏
,𝑘𝐵)+

𝛾
𝑏

(∙)

𝛾∈ℤ

 

on ℝ. This together with (65) leads to  

∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉𝐸𝑚𝑏𝜒𝐹(∙)

𝑚∈ℤ

=
𝐾𝐵
𝑏
𝑓(∙) 

on (
1

𝑏
, 𝑘𝐵), where we have also used the facts that 𝐹 (

1

𝑏
, 𝑘𝐵) can be represent as a 

disjoint union of 𝑘𝐵 measurable subsets 𝐹(𝑗) (
1

𝑏
, 𝑘𝐵) , 𝑗 ∈ ℕ𝐾𝐵, and that all 𝐹(𝑗) (

1

𝑏
, 𝑘𝐵) 

are 
1

𝑏
ℤ-congruent to the same subset of [0,

1

𝑏
). Therefore, 

∑|〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉|
2

𝑚∈ℤ

=
𝑘𝐵
𝑏
‖𝑓‖2 > 𝐵‖𝑓‖2, 

which is a contradiction as {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a Bessel sequence in 𝐿2(𝐹) with Bessel 

bound 𝐵. 

 Now we prove the sufficiency. For an arbitrary function 𝑓 ∈ 𝐿2(𝐹), 

∑|〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉|
2

𝑚∈ℤ

= ∑ |∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹(1
𝑏
,𝑘)
〉

𝑘

𝑘=1

|

2

𝑚∈ℤ

 

                                                 = ∑ |∑〈𝑓𝜒
𝐹(
1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
 ,𝑘)
〉

𝑘

𝑘=1

|

2

𝑚∈ℤ

. 

By Proposition (6.2.2), for each 𝑘 = 1,… , 𝑘, 𝐹 (
1

𝑏
, 𝑘) can be represented as a disjoint 

union of 𝑘 measurable subsets 𝐹(𝑗) (
1

𝑏
, 𝑘) , 𝑗 ∈ ℕ𝑘, such that all 𝐹(𝑗) (

1

𝑏
, 𝑘) are  

1

𝑏
ℤ-

congruent to the same subset of  [0,
1

𝑏
 ). It follows that  

〈𝑓𝜒
𝐹(
1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
,𝑘)
〉 = ∑ 〈𝑓𝜒

𝐹(𝑗)(
1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(𝑗)(1

𝑏
,𝑘)
〉

𝑘−1

𝑗=0

 

for 𝑚 ∈ ℤ and 1 ≤ 𝑘 ≤ 𝐾. Therefore,  

       ∑|〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉|
2

𝑚∈ℤ

= ∑ |∑∑〈𝑓𝜒
𝐹(𝑗)(

1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
,𝑘)
〉

𝑘−1

𝑗=0

𝑘

𝑘=1

|

2

𝑚∈ℤ
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≤
𝐾(𝐾 + 1)

2
∑∑∑ |〈𝑓𝜒

𝐹(𝑗)(
1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(𝑗)(1

𝑏
,𝑘)
〉|
2

𝑚∈ℤ

𝑘−1

𝑗=0

𝑘

𝑘=1

. (66) 

Applying Lemma (6.2.4)  𝐹(𝑗) (
1

𝑏
, 𝑘) leads to   

∑ |〈𝑓𝜒
𝐹(𝑗)(

1
𝑏
,𝑘)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
,𝑘)
〉|
2

𝑚∈ℤ

=
1

𝑏
∫ |𝑓(𝑡)|2𝑑𝑡

𝐹(𝑗)(
1
𝑏
,𝑘) 

, 

which together with (66) implies  that 

∑|〈𝑓, 𝐸𝑚𝑏𝜒𝐹〉|
2 ≤

𝐾(𝑘 + 1)

2𝑏
𝑚∈ℤ

∑∑ 

𝑘−1

𝑗=0

𝑘

𝑘=1

∫ |𝑓(𝑡)|2𝑑𝑡

𝐹(𝑗)(
1
𝑏
,𝑘) 

=
𝐾(𝑘 + 1)

2𝑏
‖𝑓‖2. 

Then {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a Bessel sequence in 𝐿2(𝑓), as the function 𝑓 in the above 

inequality is chosen arbitrarily. 

Theorem (6.2.6)[436]: Given 𝑎, 𝑏 > 0 and a measurable set 𝐹 in ℝ with finite positive 

measure. Then 𝐹 is a Gabor Bessel set in ℝ if and only if there exists 𝑘 ∈ ℕ such that 

𝐹 (
1

𝑏
, 𝑘) = 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾. 

Proof. Necessity. Suppose 𝐹 is a Gabor Bessel set in ℝ with Bessel bound 𝐵.Then 

∑𝜒𝐹(∙ −𝑛𝑎)

𝑛∈ℤ

=∑|𝜒𝐹(∙ −𝑛𝑎)|
2

𝑛∈ℤ

≤ 𝑏𝐵 

on ℝ by Proposition 8.3.2 in [437], Also note that {𝐸𝑚𝑏𝜒𝐹}𝑚∈ℤ is a Bessel sequence in 

𝐿2(𝐹). By Lemma (6.2.5), there exists 𝐿 ∈ ℕ such that 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾, when 

𝐾 > max{𝑏, 𝐵, 𝐿}. 

 Sufficiency. Suppose 𝐾 ∈ ℕ is such that 𝐹 (
1

𝑏
, 𝑘) = 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾. 

Write 𝐹𝑛 = 𝐹 + 𝑛𝑎 for 𝑛 ∈ ℤ. Then 𝐹𝑛 (
1

𝑏
, 𝑘) = 𝐹 (

1

𝑏
, 𝑘) = ∅ for 𝑘 > 𝐾, and  

∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ

≤∑|〈𝑓𝜒𝐹𝑛 , 𝐸𝑚𝑏𝜒𝐹𝑛〉|
2

𝑛∈ℤ

 

for 𝑓 ∈ 𝐿2(ℝ) and 𝑛 ∈ ℤ. So, by the proof of sufficiency in Lemma (6.2.5) 

∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ

≤
𝐾(𝐾 + 1)

2𝑏
‖𝑓𝑇𝑛𝑎𝜒𝐹‖

2 

for 𝑓 ∈ 𝐿2(ℝ) and 𝑛 ∈ ℤ. It follows that 

∑∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ𝑛∈ℤ

≤
𝐾(𝐾 + 1)

2𝑏
∑∫|𝑓(𝑡)|2𝜒𝐹(𝑡 − 𝑛𝑎)𝑑𝑡

ℝ𝑛∈ℤ

 

                                                =
𝐾(𝐾 + 1)

2𝑏
∫|𝑓(𝑡)|2∑𝜒𝐹(𝑡 − 𝑛𝑎)𝑑𝑡

𝑛∈ℤℝ

 

for 𝑓 ∈ 𝐿2(ℝ). Also observing that ∑ 𝜒𝐹(𝑡 − 𝑛𝑎)𝑛∈ℤ ≤ 𝐾 due to 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾 

∑∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ𝑛∈ℤ

≤
𝐾2(𝐾 + 1)

2𝑏
‖𝑓‖2 
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for 𝑓 ∈ 𝐿2(ℝ). That 𝐹 is a Gabor Bessel set in ℝ. 

 We will focus on Gabor frame sets, especially on tight Gabor sets in 𝕊, where 

𝑎, 𝑏 > 0, and 𝕊 is an aℤ-periodic set in ℝ. We first need to establish two Lemmas. 

Lemma (6.2.7)[436]: Given 𝑏 > 0 and two measurable sets 𝐹1 and 𝐹2 in ℝ with 

positive measure. Assume that  

𝐹1 = 𝐹1 (
1

𝑏
, 1),   𝐹1 ∩ (𝐹2 +

𝐾

𝑏
) = ∅    for 𝑘 ∈ ℤ. 

Then  

∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹1〉

𝑚∈ℤ

𝐸𝑚𝑏𝜒𝐹1(∙) = 0                                       (67) 

Holds on ℝ for any 𝑓 ∈ 𝐿2(ℝ).  
Proof. Applying Lemma (6.2.3) to 𝐹1 and 𝑓, we have  

∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹1〉𝑒
2𝜋𝑖𝑚𝑏

𝑚∈ℤ

=
1

𝑏
 ∑𝑓 (∙ +

𝛾

𝑏
) 𝜒𝐹1 (∙ +

𝛾

𝑏
)

𝛾∈ℤ

. 

It follows that  

∑〈𝑓, 𝐸𝑚𝑏𝜒𝐹1〉𝐸𝑚𝑏𝜒𝐹2(∙)

𝑚∈ℤ

=
1

𝑏
∑𝑓 (∙ +

𝛾

𝑏
)𝜒

(𝐹1−
𝛾
𝑏
)∩𝐹2
(∙)

𝛾∈ℤ

, 

which, together with 𝐹1 ∩ (𝐹2 +
𝑘

𝑏
) = ∅ for 𝑘 ∈ ℤ, shows the conclusion (67). 

Lemma (6.2.8)[436]: Given 𝑎, 𝑏 > 0 and an aℤ-periodic set 𝕊 in ℝ. Then, for an 

arbitrary measurable subset 𝐹 of 𝕊 with finite positive measure, 𝐹 is a Gabor Bessel set 

in 𝕊 if and only if there exists 𝑘 ∈ ℕ such that 𝐹 (
1

𝑏
, 𝑘) = 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾.  

Proof. Since 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹 ∈ 𝐿
2(𝕊) for 𝑚,𝑛 ∈ ℤ, 𝐹 is a Gabor Bessel set in 𝕊 if and only if 

it is a Gabor Bessel set in ℝ. the lemma therefore follows by Theorem (6.2.6). 

 By Proposition (6.2.1) and Lemma (6.2.8), we obtain the following necessary 

condition for a set to be a Gabor frame set in 𝕊. 

Theorem (6.2.9)[436]: Given 𝑎, 𝑏 > 0 and an aℤ-periodic set 𝕊 in ℝ. Assume that 𝐹 is 

a Gabor frame set in 𝕊. Then 

(i) ⋃ (𝐹 (
1

𝑏
, 1) + 𝑛𝑎)𝑛∈ℤ = 𝕊; and 

(ii) There exists 𝐾 ∈ ℕ such that 𝐹 (
1

𝑏
, 𝑘) = 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾. 

The following theorem gives a sufficient condition for a set to be a Gabor frame 

set in 𝕊. 

Theorem (6.2.10)[436]: Given 𝑎, 𝑏 > 0 and an aℤ-periodic set 𝕊 in ℝ. Assume that 𝐹 

is a measurable subset of 𝕊 with finite positive measure, and that 𝐹 satisfies the 

following conditions: 

(i) ⋃ (𝐹 (
1

𝑏
, 1) + 𝑛𝑎)𝑛∈ℤ = 𝕊; and 

(ii) There exists 𝐾 ∈ ℕ such that 𝐹 (
1

𝑏
, 1) = 𝐹(𝑎, 𝑘) = ∅ for 𝑘 > 𝐾. 

Then 𝐹 is a Gabor frame set in 𝕊. 

Proof. By Lemma (6.2.8), 𝐹 is a Gabor Bessel set in 𝕊, and the function 

𝐻𝐹𝑓 ≔∑∑〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹
𝑚∈ℤ𝑛∈ℤ

                             (68) 
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converges for any 𝑓 ∈ 𝐿2(ℝ). Then it suffices to prove  

〈𝐻𝐹𝑓, 𝑓〉 ≥
1

𝑏
‖𝑓‖2,    𝑓 ∈ 𝐿2(𝕊).                                     (69) 

 When 𝐾 = 1, we have that 𝐹 = 𝐹 (
1

𝑏
, 1), and consequently, 

〈𝐻𝐹𝑓, 𝑓〉 = ∑∑|〈𝑇−𝑛𝑎𝑓𝜒𝐹 , 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ𝑛∈ℤ

=
1

𝑏
∑ ∫ |𝑓(𝑡)|2𝑑𝑡

𝐹+𝑛𝑎𝑛∈ℤ

 

for 𝑓 ∈ 𝐿2(𝕊) by Lemma (6.2.4).This, together with the condition (i), establishes (69). 

 When 𝐾 > 1, by Proposition (6.2.4), for 𝑓 ∈ 𝐿2(𝕊), 𝐻𝐹𝑓 can be be rewritten as  

𝐻𝐹𝑓 =∑∑∑∑∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(𝑗)(1
𝑏
 ,𝐾)
〉 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(𝑗)(1

𝑏
,𝐾)

𝑚∈ℤ

𝑘−1

𝑗=0

𝑘

𝑙=1

𝑘

𝑘=1𝑛∈ℤ

 

where 𝐹 (
1

𝑏
, 1) ∩ (𝐹 (

1

𝑏
, 𝑙) +

1

𝑏
) = ∅ for 𝑙′ ∈ ℤ and 𝑘, 𝑙 ∈ {1,… , 𝑘} with 𝑘 ≠ 𝑙, 

𝐹 (
1

𝑏
, 𝑘) = ⋃ 𝐹(𝑗) (

1

𝑏
, 𝑘) ,𝑘−1

𝑗=0 𝑗 ∈ ℕ𝑘, are 
1

𝑏
ℤ-congruent to the same subset of  (0,

1

𝑏
). 

Then, by Lemma (6.2.7), 

𝐻𝐹𝑓 =∑∑∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1
𝑏
,𝑘)
〉 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1

𝑏
,𝑘)

𝑚∈ℤ

𝑘

𝑘=1𝑛∈ℤ

   

=∑∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1
𝑏
,1)
〉 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1

𝑏
,1)

𝑚∈ℤ𝑛∈ℤ

 

+∑∑∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1
𝑏
,𝑘)
〉 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1

𝑏
,𝑘)

𝑚∈ℤ

𝑘

𝑘=2𝑛∈ℤ

           (70) 

for 𝑓 ∈ 𝐿2(𝕊). It follows that 

〈𝐻𝐹𝑓, 𝑓〉 ≥∑∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹(1
𝑏
,1)
〉|
2

𝑚∈ℤ𝑛∈ℤ

 

=∑∑ |〈𝑇−𝑛𝑎𝑓𝜒𝐹(1
𝑏
,1)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
,1)
〉|
2

𝑚∈ℤ𝑛∈ℤ

             (71) 

for 𝑓 ∈ 𝐿2(𝕊). By Lemma (6.2.4) and the condition (i). 

∑∑ |〈𝑇−𝑛𝑎𝑓𝜒𝐹(1
𝑏
,1)
, 𝐸𝑚𝑏𝜒𝐹(1

𝑏
,1)
〉|
2

𝑚∈ℤ𝑛∈ℤ

=
1

𝑏
∑ ∫ |𝑓(𝑡)|2𝑑𝑡

𝐹(
1
𝑏
,1)+𝑛𝑎

𝑛∈ℤ

 ≥
1

𝑏
‖𝑓‖2 

for 𝑓 ∈ 𝐿2(𝕊), which together with (71) proves (69). 

Theorem (6.2.11)[436]: Given 𝑎, 𝑏 > 0 and an 𝑎ℤ-periodic set 𝕊 in ℝ. Assume that 𝐹 

is a measurable subset of 𝕊, and that 

𝐹 = 𝐹(𝑎, 1), and 𝐹 (
1

𝑏
, 𝑘) ≠ ∅   for some 𝑘 > 1. 

Then 𝐹 is not a Gabor frame set in 𝕊. 

Proof. By Proposition (6.2.2), there exist 𝐹(𝑗) (
1

𝑏
, 𝑘) , 𝑗 ∈ ℕ𝑘, such that  

𝐹 (
1

𝑏
, 𝑘) = ⋃ 𝐹(𝑗) (

1

𝑏
, 𝑘)

𝑗∈ℕ𝑘

, 
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that 𝐹(𝑗) (
1

𝑏
, 𝑘) , 𝑗 ∈ ℕ𝑘, are mutually disjoint, and they are all 

1

𝑏
ℤ-congruent to the same 

subset of (0,
1

𝑏
). Define 𝑓(∙) ∶= 𝜒

𝐹(0)(
1

𝑏
,𝑘)
(∙) − 𝜒

𝐹(0)(
1

𝑏
,𝑘)
(∙) then 0 ≠ 𝑓 ∈ 𝐿2(𝕊) and  

〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉 = ∫ 𝜒
𝐹(0)(

1
𝑏
,𝑘)
(𝑡)𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹+𝑛𝑎

− ∫ 𝜒
𝐹(1)(

1
𝑏
,𝑘)
(𝑡)𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹+𝑛𝑎

 

for 𝑚,𝑛 ∈ ℤ. Also observing that 𝐹 = 𝐹(𝑎, 1), we have  

𝐹(𝑗) (
1

𝑏
, 𝑘) ∩ 𝐹 = 𝐹(𝑗) (

1

𝑏
, 𝑘) , 𝐹(𝑗) (

1

𝑏
, 𝑘) ∩ (𝐹 + 𝑎𝑛) = ∅ when 0 ≠ 𝑛 ∈ ℤ  

for 𝑗 = 0,1. It follows that  

∑ |〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚,𝑛∈ℤ

= ∑ | ∫ 𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹
(0)(

1
𝑏
,𝑘)

− ∫ 𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹
(1)(

1
𝑏
,𝑘)

|

2

𝑚∈ℤ

= 0, 

where we have used the fact that 𝐹(0) (
1

𝑏
, 𝑘) and 𝐹(0) (

1

𝑏
, 𝑘) are both 

1

𝑏
ℤ-congruent to 

the same subset of  [0,
1

𝑏
). Therefore, 𝐹 is not Gabor frame set in 𝕊. 

Theorem (6.2.12)[436]: Let 𝑎, 𝑏 > 0 and 𝕊 be an aℤ-periodic set in ℝ. For an arbitrary 

measurable subset 𝐹 of 𝕊 with finite positive measure, the following statements are 

equivalent: 

(i) 𝐹 is a tight Gabor set in 𝕊. 

(ii) ⋃ (𝐹 + 𝑛𝑎) = 𝕊𝑛∈ℤ  and 𝐹 = 𝐹 (
1

𝑏
, 1) = 𝐹(𝑎, 𝑘) for Some 𝑘 ∈ ℕ. 

(iii) There exist 𝑘 mutually disjoint measurable sets 𝐹0, 𝐹1, … , 𝐹𝑘−1 in 𝕊 such that 𝐹 =

⋃ 𝐹𝛾
𝑘−1
𝛾=0  for some 𝑘 ∈ ℕ, 𝐹 = 𝐹 (

1

𝑏
, 1), and each 𝐹𝛾 is aℤ-congruent to [0, 𝑎) ∩ 𝕊. 

Furthermore, the number 𝑘 in (ii) and (iii) are the same, and, when one of  (ii)  

and (iii) is satisfied, 𝐹 is a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
. 

Proof.  

(i)⇒(ii) Suppose 𝐹 is a tight Gabor set in 𝕊 with frame bound 𝐴. By Proposition 

(6.2.1), we have ⋃ (𝐹 + 𝑛𝑎) = 𝕊𝑛∈ℤ . Suppose 𝜇 (𝐹 (
1

𝑏
  , 𝑘0)) > 0 for some 

𝑘0 > 1. Then, by Proposition (6.2.2), 𝐹 (
1

𝑏
 , 𝑘0) can be represented as a 

disjoint union of  𝑘0 measurable subsets 𝐹(𝑗) (
1

𝑏
, 𝑘0) , 𝑗 ∈ ℕ𝑘0 , such that all 

𝐹(𝑗) (
1

𝑏
, 𝑘0) are 

1

𝑏
ℤ-congruent to the same subset of [0,

1

𝑏
). Take 𝑓0 =

𝜒
𝐹(0)(

1

𝑏
,𝑘0)

 and 𝑓1 = 𝜒𝐹(1)(1
𝑏
,𝑘0)

. Then 𝑓0, 𝑓1 ∈ 𝐿
2(𝕊) and 〈𝑓0, 𝑓1〉 = 0 since 

𝐹(0) (
1

𝑏
, 𝑘0) ∩ 𝐹

(1) (
1

𝑏
, 𝑘0) = ∅ . Define  

𝐻𝐹𝑓:= ∑∑〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹
𝑚∈ℤ𝑛∈ℤ

 

for 𝑓 ∈ 𝐿2(𝕊). Again observing that 𝐹 is a tight Gabor set in 𝕊 with frame bound 𝐴 > 0 

leads to  

〈𝐻𝐹𝑓0, 𝑓1〉 = 𝐴〈𝑓0, 𝑓1〉 = 0                                  (72) 
On the other hand, 
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〈𝐻𝐹𝑓0, 𝑓1〉 = ∑ 〈𝑓0, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉〈𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹 , 𝑓1〉

𝑚,𝑛∈ℤ

 

                = ∑ ( ∫ 𝑒−2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹
(0)(

1
𝑏
,𝑘0)∩(𝐹+𝑛𝑎)

)

𝑚,𝑛∈ℤ

 

                    × ( ∫ 𝑒2𝜋𝑖𝑚𝑏𝑡𝑑𝑡

𝐹
(1)(

1
𝑏
,𝑘0)∩(𝐹+𝑛𝑎)

) . 

For each 𝑛 ∈ ℤ, 𝐹(𝑗) (
1

𝑏
, 𝑘0) ∩ 𝐹(𝐹 + 𝑎𝑛) is 

1

𝑏
ℤ-congruent to a subset, denoted 

by 𝐺𝑛
(𝑗)

, of [0,
1

𝑏
) for 𝑗 = 0,1. It follows that  

〈𝐻𝐹𝑓0, 𝑓1〉 =∑∑ ( ∫ 𝑒−2𝜋𝑖𝑏𝑚𝑡𝑑𝑡

𝐺𝑛
(0)

)( ∫ 𝑒2𝜋𝑖𝑏𝑚𝑡𝑑𝑡

𝐺𝑛
(1)

)

𝑚∈ℤ𝑛∈ℤ

 

    =
1

𝑏
∑ ∫ 𝑑𝑡

𝐺𝑛
(0)
∩𝐺𝑛

(1)𝑛∈ℤ

≥
1

𝑏
𝜇 (𝐺0

(0)
∩ 𝐺0

(1)
). 

Note that 𝐺0
(0)
= 𝐺0

(1)
 and 𝜇 (𝐺0

(0)
) = 𝜇 (𝐹(0) (

1

𝑏
, 𝑘0)) > 0 by Proposition 

(6.2.2). This leads to 
〈𝐻𝐹𝑓0, 𝑓1〉 > 0, 

Which contradicts (72), and therefore 𝐹 = 𝐹 (
1

𝑏
, 1). It, together with Lemma 

(6.2.4), yields that 

∑∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑚∈ℤ𝑛∈ℤ

=∑∑|〈𝑇−𝑛𝑎𝑓𝜒𝐹 , 𝐸𝑚𝑏𝜒𝐹〉|
2

𝑚∈ℤ𝑛∈ℤ

 

=
1

𝑏
∑ ∫ |𝑓(𝑡)|2𝑑𝑡

𝐹+𝑛𝑎𝑛∈ℤ

                     (73) 

for 𝑓 ∈ 𝐿2(𝕊).Next we show that 𝐹 = 𝐹(𝑎, 𝑘) for some 𝑘 ∈ ℕ by indirect 

proof. Since 𝜇(𝐹) < ∞, 𝐹(𝑎,∞) = ∅ by Proposition (6.2.2). Suppose 

𝜇(𝐹(𝑎, 𝑘1)) > 0 and 𝜇(𝐹(𝑎, 𝑘2)) > 0 for some 𝑘1, 𝑘2 ∈ ℕ with 𝑘1 ≠ 𝑘2. Let 

𝑓1 = 𝜒𝐹(𝑎,𝑘1), 𝑓2 = 𝜒𝐹(𝑎,𝑘2). Applying (73) to functions 𝑓1 and 𝑓2, and using 

Proposition (6.2.2),we obtain that  

∑∑|〈𝑓1, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑛∈ℤ𝑚∈ℤ

=
𝑘1
𝑏
‖𝑓1‖

2, 

∑∑|〈𝑓2, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑛∈ℤ𝑚∈ℤ

=
𝑘2
𝑏
‖𝑓2‖

2, 

Which contradicts the fact that 𝐹 is a tight Gabor set in 𝕊. 

(ii)⇒(iii) Suppose that the condition (ii) is satisfied. By Proposition (6.2.2), there exist 

mutually disjoint measurable subsets 𝐹𝛾(𝑎, 𝑘), 𝛾 ∈ ℕ𝑘, such that 𝐹 =
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𝐹(𝑎, 𝑘) = ⋃ 𝐹𝛾(𝑎, 𝑘)𝑘−1
𝛾=0 , and all 𝐹𝛾(𝑎, 𝑘) are aℤ-congruent to the same subset 

𝑆 of  [0, 𝑎). Then  

⋃(𝑆 + 𝑛𝑎) =⋃(𝐹(𝛾)(𝑎, 𝑘) + 𝑛𝑎)

𝑛∈ℤ𝑛∈ℤ

=⋃(𝐹 + 𝑛𝑎)

𝑛∈ℤ

= 𝕊 

For each 𝛾 ∈ ℕ𝑘, which implies that [0, 𝑎) ∩ 𝕊 = [0, 𝑎) ∩ (⋃ (𝑆 + 𝑛𝑎)𝑛∈ℤ ) =
𝑆 Since 𝑆 ⊂ [0, 𝑎). The conclusion (iii) therefore follows. 

(iii)⇒(i) Suppose that the condition (iii) is satisfied. Since = 𝐹 (
1

𝑏
, 1), the equation (73) 

holds. It follows that  

∑∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑛∈ℤ𝑚∈ℤ

=
1

𝑏
∑∑ ∫ |𝑓(𝑡)|2𝑑𝑡

𝐹𝛾+𝑛𝑎𝑛∈ℤ

𝑘−1

𝛾=0

 

 For 𝑓 ∈ 𝐿2(𝕊) since 𝐹 is the disjoint union of  𝐹𝛾 , 𝛾 ∈ ℕ𝑘. Note that each 𝐹𝛾 is 

aℤ-congruent to [0, 𝑎) ∩ 𝕊, and that {([0, 𝑎) ∩ 𝕊 + 𝑛𝑎: 𝑛 ∈ ℤ} is also a 

partition of  𝕊. We therefore have  

∑∑|〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝜒𝐹〉|
2

𝑛∈ℤ𝑚∈ℤ

=
𝐾

𝑏
‖𝑓‖2 

For 𝑓 ∈ 𝐿2(𝕊). We then finish the proof as (ii) holds for the same 𝐾 as in (iii). 

By Theorem (6.2.12), we have the following corollary. 

Corollary (6.2.13)[436]: Given 𝑎, 𝑏 > 0 and an aℤ-periodic set 𝕊 in ℝ. If 𝐹 is  a tight 

Gabor set in 𝕊 with frame bound 𝐴, then 𝐴 =
𝑘

𝑏
 for some 𝑘 = 1. 

As an immediate consequence of Theorem (6.2.12) and Corollary (6.2.13), We 

can obtain a necessary condition of the existence of tight Gabor sets in 𝕊, which can be 

obtained from Theorem 3.3 in [449] when 𝑘 = 1.  

Theorem (6.2.14)[436]: Given 𝑘 ∈ ℕ, 𝑎, 𝑏 > 0 and an aℤ-periodic set in 𝕊 in ℝ. If 

there exists a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
 , then  

𝑏𝑘𝜇([0, 𝑎) ∩ 𝕊) ≤ 1.                                              (74) 

Given positive number 𝑎, 𝑏 such that 𝑎𝑏 is a rational number. We devoted to 

characterization of aℤ-periodic set 𝕊 which admits tight Gabor sets, and to the 

construction of a class of tight Gabor sets in such aℤ-periodic 𝕊. We first need to 

establish some auxiliary lemmas. 

Lemma (6.2.15)[436]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
  with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. 

Then {[0,
1

𝑏𝑞
) +

𝑙

𝑏
+ 𝑛𝑎: (𝑙, 𝑛) ∈ ℕ𝑝 × ℤ} and {[0,

1

𝑏𝑞
) +

1

𝑏
− 𝑟𝑎 +𝑚𝑎𝑞: (𝑙, 𝑟,𝑚) ∈

ℕ𝑝 × ℕ𝑞 × ℤ} are both partitions of ℝ. 

 Proof.  Note that {[0,
1

𝑏𝑞
) +

𝑗

𝑏
: 𝑗 ∈ ℤ} is a partition of ℝ. By Lemma 2.3 in [449], to 

every 𝑗 ∈ ℤ there corresponds a unique (𝑙, 𝑛) ∈ ℕ𝑞 × ℤ such that 𝑗 = 𝑙𝑞 + 𝑛𝑝, from 

which we can obtain a unique (𝑙, 𝑟, 𝑚) ∈ ℕ𝑞 × ℕ𝑞 × ℤ such that 𝑗 = 𝑙𝑞 + (𝑚𝑞 − 𝑟)𝑝 

the lemma therefore follows. 

Lemma (6.2.16)[436]: Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1, 

and let 𝕊 be an aℤ-periodic set in ℝ. For 𝐵 ⊂ ℕ𝑝, define 
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𝐼𝐵 ≔ {𝑡 ∈ [0,
1

𝑏𝑞
) : ∑ 𝜒𝕊
𝑙∈ℕ𝑝

(𝑡 +
𝑙

𝑏
) = ∑ 𝜒𝕊

𝑙∈ℕ𝑝

(𝑡 +
𝑙

𝑏
) = card(𝐵)}      (75) 

if 𝐵 ≠ ∅, and  

𝐼∅ ≔ {𝑡 ∈ [0,
1

𝑏𝑞
) : ∑ 𝜒𝕊
𝑙∈ℕ𝑝

(𝑡 +
𝑙

𝑏
) = 0}.                           (76) 

Then  

𝜇([0, 𝑎) ∩ 𝕊) = ∑ card(𝐵)𝜇(𝐼𝐵)

𝐵⊂ℕ𝑝

. 

Proof. Write 𝕊0 = [0, 𝑎)⋂𝕊. By Lemma (6.2.15), 

𝜇(𝕊0) = 𝜒𝕊0(𝑡)𝑑𝑡 = ∫ ∑∑𝜒𝕊0 (𝑡 +
𝑙

𝑏
+ 𝑛𝑎)𝑑𝑡

𝑛∈ℤ𝑙∈ℕ𝑝[0,
1
𝑏𝑞
)

. 

Note that {𝕊0 + 𝑛𝑎: 𝑛 ∈ ℤ} is a partition of 𝕊 and {𝐼𝐵: 𝐵 ⊂ ℕ𝑝}  is a partition of [0,
1

𝑏𝑞
). 

So, 

𝜇(𝕊0) = ∑ ∫ ∑ 𝜒𝕊 (𝑡 +
1

𝑏
)𝑑𝑡

𝑙∈ℕ𝑝𝐼𝐵𝐵⊂ℕ𝑝

= ∑ card(𝐵)𝜇(𝐼𝐵)

𝐵⊂ℕ𝑝

. 

Lemma (6.2.17)[436]: Given 𝑘 ∈ ℕ, 𝑎, 𝑏 > 0 and an 𝑎ℤ-periodic set 𝕊 in ℝ. Let 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1, and let 𝐼𝐵  be defined as in Lemma (6.2.16) for 𝐵 ⊂

ℕ𝑝, Assume that, for ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 𝐼𝐵 ≠ ∅ and (𝛾, 𝑙) ∈ ℕ𝑘 × 𝐵,𝑚𝐵,𝛾,𝑙 ∈ ℤ and 𝜏𝐵,𝛾 

are mappings from 𝐵 into ℕ𝑞 satisfying 𝜏𝐵,𝛾(𝑙) ≠ 𝜏𝐵,𝛾′(𝑙
′) for (𝛾, 𝑙) ≠ (𝛾′, 𝑙′). Define 

𝐹𝛾 ≔ ⋃ ⋃(𝐼𝐵 +
1

𝑏
− 𝜏𝐵,𝛾(𝑙)𝑎 + 𝑚𝐵,𝛾,𝑙𝑎𝑞)

𝑙∈𝐵∅≠𝐵⊂ℕ𝑝
𝐼𝐵≠∅

.                   (77) 

for 𝛾 ∈ ℕ𝑘 =, and  

𝐹 ≔ ⋃ 𝐹𝛾
𝛾∈ℕ𝑘

.                                                    (78) 

Then 𝐹 is a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
 =.  

Proof. By Theorem (6.2.12), it suffices to show that 𝐹 = (
1

𝑏
, 1) , 𝐹𝛾 , 𝛾 ∈ ℕ𝑘, are 

mutually disjoint, and each 𝐹𝛾 is aℤ-congruent to [0, 𝑎) ∩ 𝕊. 

 First we show that 𝐹 = (
1

𝑏
, 1). For this purpose, we only need to prove that 𝑘 =

0 whenever 𝑘 ∈ ℤ satisfies that  

𝐸 +
1

𝑏
− 𝜏𝐵,𝛾(𝑙)𝑎 + 𝑚𝐵,𝑙,𝛾𝑎𝑞 = 𝐸

′ +
𝑙′

𝑏
− 𝜏𝐵′,𝛾′(𝑙

′)𝑎 + 𝑚𝐵′,𝑙′,𝛾′𝑎𝑞 +
𝑘

𝑏
   (79)  

for some 𝛾, 𝛾′ ∈ ℕ𝑘, 𝐵, 𝐵
′ ⊂ ℕ𝑝, 𝑙 ∈ 𝐵, 𝑙

′ ∈ 𝐵′, and ∅ ≠ 𝐸 ⊂ 𝐼𝐵 , ∅ ≠ 𝐸
′ ⊂ 𝐼𝐵′ .  
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Suppose (79) holds, then 𝐸′ = 𝐸 +
𝑗

𝑏𝑞
, where 𝑗 = (𝑙 − 𝑙′)𝑞 − (𝜏𝐵,𝛾(𝑙) − 𝜏𝐵′,𝛾′(𝑙

′)) 𝑝 +

(𝑚𝐵,𝑙,𝛾 −𝑚𝐵′,𝑙′,𝛾′)𝑝𝑞 − 𝑘𝑞 ∈ ℤ. Note that 𝐸, 𝐸′ ⊂ [0,
1

𝑏𝑞
). It follows that 𝑗 = 0, and 

thus 𝐸 = 𝐸′, which in turn implies that 𝐵 = 𝐵′ since 𝐸 = 𝐸′ ⊂ 𝐼𝐵 ∩ 𝐼𝐵′ and 𝐼𝐵 ∩ 𝐼𝐵′ =
∅ if 𝐵 ≠ 𝐵′. So the equation 𝑗 = 0 can be rewritten as 

(𝑙 − 𝑙′)𝑞 − (𝜏𝐵,𝛾(𝑙) − 𝜏𝐵,𝛾′(𝑙)) 𝑝 + (𝑚𝐵,𝑙,𝛾 −𝑚𝐵,𝑙′,𝛾′)𝑝𝑞 − 𝑘𝑞 = 0.      (80) 

It follows that 𝑞| (𝜏𝐵,𝛾(𝑙) − 𝜏𝐵,𝛾′(𝑙)), and thus 𝜏𝐵,𝛾(𝑙) = 𝜏𝐵,𝛾′(𝑙
′) since 𝜏𝐵,𝛾(𝑙), 

𝜏𝐵,𝛾′(𝑙
′) ∈ ℕ𝑞. Therefore, (𝛾, 𝑙) = (𝛾′, 𝑙′), which implies that 𝑘 = 0 by (80). From the 

above argument, we also obtain that 𝐹𝛾 , 𝛾 ∈ ℕ𝑘 , are mutually disjoint. 

 Fix a 𝛾 ∈ ℕ𝑘. Similarly, we can show that 𝐹𝛾 is aℤ-congruent to a subset of 

[0, 𝑎). Also observing that 𝐹𝛾 ⊂ 𝕊, we have 𝐹𝛾 is aℤ-congruent to a subset of  [0, 𝑎) ∩

𝕊. By the above argument, 𝐼𝐵 +
1

𝑏
− 𝜏𝐵,𝛾(𝑙)𝑎 + 𝑚𝐵,𝑙,𝛾𝑎𝑞, ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 𝐼𝐵 ≠ ∅, 𝑙 ∈

𝐵, are mutually disjoint. It follows that 

𝜇(𝐹𝛾) =  ∑ card(𝐵)𝜇(𝐼𝐵)

𝐵⊂ℕ𝑝

= 𝜇([0, 𝑎) ∩ 𝕊) 

by Lemma (6.2.16), therefore, 𝐹𝛾 is aℤ-congruent to [0, 𝑎) ∩ 𝕊. 

Remark (6.2.18)[436]: Under the hypothesis of Lemma (6.2.17) the sets of the form 

(78) cannot run over all tight Gabor sets in 𝕊 with frame bound 
𝑘

𝑏
. Indeed we can 

construct other tight Gabor sets in 𝕊 with frame bound 
𝑘

𝑏
 by cut-and-paste operations to 

a set of the form (78), which are not of the form (78). Suppose 𝐹 is a set of the form 

(78). Arbitrarily fix 𝛾0 ∈ ℕ𝑘, ∅ ≠ 𝐵0 ⊆ ℕ𝑘 , ∅ ≠ 𝐵0 ⊆ ℕ𝑝 with 𝐼𝐵0 ≠ ∅ and 𝑙0 ∈ 𝐵0, fix 

0 ≠ 𝑚 ∈ ℤ and decompose 𝐼𝐵0 +
𝑙0

𝑏
− 𝜏𝐵0,𝛾0(𝑙0)𝑎 + 𝑚𝐵0,𝛾0,𝑙0𝑎𝑞 as  

𝐼𝐵0 +
𝑙0
𝑏
− 𝜏𝐵0,𝛾0(𝑙0)𝑎 + 𝑚𝐵0,𝛾0,𝑙0𝑎𝑞 = 𝑆1 ∩ 𝑆2 ≠ ∅ with 𝑆1, 𝑆2 ≠ ∅ and 𝑆1 ∩ 𝑆2 = ∅. 

Define  

�̃�𝛾0 ≔ (𝐹𝛾0\𝑆2) ∪ (𝑆2 +𝑚𝑎𝑞), 

and 

�̃� ≔ ( ⋃ 𝐹𝛾
𝛾0≠𝛾∈ℕ𝑘

) ∪ �̃�𝛾0 . 

Then, by the same procedure as in Lemma (6.2.17). We can show that �̃� is a tight Gabor 

set in 𝕊 with frame bound 
𝑘

𝑏
. Also as �̃�𝛾0  is not of  the form (77), �̃� is not of the form 

(78) too. 

 The following theorem provides us with a necessary and sufficient condition for 

the existence of tight Gabor sets with frame bound 
𝑘

𝑏
. 

Theorem (6.2.19)[436]: Given 𝑘 ∈ ℕ. Let 𝑎, 𝑏 > 0 satisfy 𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and 

gcd(𝑝, 𝑞) = 1, and let 𝕊 be an aℤ-periodic set in ℝ. Then there exists a tight Gabor set 

in 𝕊 with frame bound 
𝑘

𝑏
 if and only if   
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𝑘 ∑ 𝜒𝕊
𝑙∈ℕ𝑝

(∙ +
1

𝑏
) ≤ 𝑞.                                              (81) 

on [0,
1

𝑏𝑞
). 

Proof.  Necessity. Suppose 𝐹 is a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
, then, by 

Theorem (6.2.12), there exist 𝑘 mutually disjoint sets 𝐹𝛾 , 𝛾 ∈ ℕ𝑘, such that 𝐹 =

⋃ 𝐹𝛾𝛾∈ℕ𝑘 , 𝐹 = 𝐹 (
1

𝑏
, 1), and each 𝐹𝛾 is aℤ-congruent to [0, 𝑎) ∩ 𝕊. Also observing that 

{([0, 𝑎) ∩ 𝕊) + 𝑛𝑎: 𝑛 ∈ ℕ} forms a partition of  𝕊 by aℤ-periodicity of  𝕊, we conclude 

that {𝐹𝛾 + 𝑛𝑎: 𝑛 ∈ ℕ} is a partition of  𝕊 for each 𝛾 ∈ ℕ𝑘 . Then  

∑ 𝜒𝕊
𝑙∈ℕ𝑝

(∙ +
1

𝑏
) = ∑∑𝜒𝐹𝛾

𝑛∈ℤ𝑙∈ℕ𝑝

(∙ +𝑛𝑎 +
1

𝑏
) = ∑∑𝜒𝐹𝛾

𝑛∈ℤ𝑙∈ℕ𝑝

(∙ +
𝑛𝑝 + 𝑙𝑞

𝑏𝑞
) 

on [0,
1

𝑏𝑞
 ) for each 𝛾 ∈ ℕ𝑘. Taking sum over 𝛾 to both sides of the above equality, we 

obtain that  

𝑘 ∑ 𝜒𝕊
𝑙∈ℕ𝑝

(∙ +
1

𝑏
) = ∑∑𝜒𝐹

𝑛∈ℤ𝑙∈ℕ𝑝

(∙ +
𝑛𝑝 + 𝑙𝑞

𝑏𝑞
)                    (82) 

on [0,
1

𝑏𝑞
 ), where we have used the facts that 𝐹 = 𝐹 = ⋃ 𝐹𝛾  𝛾∈ℕ𝑘  and that 𝐹𝛾 , 𝛾 ∈ ℕ𝑘, 

are mutually disjoint. By Lemma 2.3 in [449], every 𝑗 ∈ ℤ corresponds a unique (𝑙, 𝑛) ∈
ℕ𝑝 × ℤ such that 𝑗 = 𝑙𝑞 + 𝑛𝑝, from which we rewrite (81) as  

𝑘 ∑ 𝜒𝕊𝑙∈ℕ𝑝 (∙ +
1

𝑏
) = ∑ 𝜒𝐹𝑛∈ℤ (∙ +

𝑛

𝑏𝑞
) = ∑ ∑ 𝜒𝐹𝑛∈ℤ𝑙∈ℕ𝑝 (∙ +

𝑙

𝑏𝑞
+
𝑛

𝑏
)  

on [0,
1

𝑏𝑞
). Note that ∑ 𝜒𝐹𝑛∈ℤ (∙ +

𝑛

𝑏
) ≤ 1 on ℝ due to the fact that 𝐹 = 𝐹 (

1

𝑏
, 1). This 

inequality (81) therefore follows. 

 Sufficiency. By the definition of 𝐼𝐵 in Lemma (6.2.16) and the fact {𝐼𝐵: 𝐵 ⊂ ℕ𝑝} 

is a partition of  [0,
1

𝑏𝑞
), (80) holds on [0,

1

𝑏𝑞
) if and only if    

𝑘card(𝐵) ≤ 𝑞                                                    (83) 
for ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 𝐼𝐵 ≠ ∅. Then, by Lemma (6.2.17) we only need to show that the 

sets of the form (78) are well-defined if (83) holds for ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 𝐼𝐵 ≠ ∅. Note 

that the inequality (83) is equivalent to card(ℕ𝑘 × 𝐵) ≤ 𝑞 for ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 𝐼𝐵 ≠

∅. So there exist 𝑘 mappings 𝜏𝐵,𝛾 from 𝐵 into ℕ𝑞, 𝛾 ∈ ℕ𝑘, such that they meet the 

requirement in Lemma (6.2.17) for each 𝜏𝐵,𝛾(𝑙), fix an integer 𝑚𝐵,𝛾,𝑙. Then we can 

define a set of the form (78). 

 By Lemma (6.2.17) and Theorem (6.2.19), we have the following theorem, which 

also gives a class of tight  Gabor sets in 𝕊. 

Theorem (6.2.20)[436]: Given 𝑎, 𝑏 > 0 and an 𝑎ℤ-periodic set 𝕊 in ℝ. Let 𝑎𝑏 =
𝑝

𝑞
 with 

𝑝, 𝑞 ∈ ℕ and gcd(p, q) = 1. Then there exists a tight Gabor set in 𝕊 if and only if   

∑ 𝜒𝕊
𝑙∈ℕ𝑝

(∙ +
1

𝑏
) ≤ 𝑞                                              (84) 

on [0,
1

𝑏𝑞
). In this case, define 𝑘0 by  
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𝑘0 ≔ max{𝑘 ∈ ℕ: 𝑘 ∑ 𝜒𝕊
𝑙∈ℕ𝑝

(∙ +
1

𝑏
) ≤ 𝑞 on [0,

1

𝑏𝑞
)}. 

Then every set 𝐺𝑘 of the form  

𝐺𝑘 = ⋃ ⋃ ⋃(𝐼𝐵 +
1

𝑏
− 𝜏𝐵,𝛾(𝑙)𝑎 + 𝑚𝐵,𝛾,𝑙𝑎𝑞)

𝑙∈𝐵∅≠𝐵⊂ℕ𝑝
𝐼𝐵≠∅

𝛾∈ℕ𝑘

 

is a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
 for each 𝑘 ∈ ℕ𝑘0 + 1, where 𝐼𝐵 are defined 

as in Lemma (6.2.16), 𝜏𝐵,𝛾 are mappings from 𝐵 into ℕ𝑞 satisfying 𝜏𝐵,𝛾(𝑙) ≠ 𝜏𝐵,𝛾′(𝑙
′) 

and 𝑚𝐵,𝛾,𝑙 ∈ ℤ for (𝛾, 𝑙), (𝛾′, 𝑙′) ∈ ℕ𝑘 × 𝐵 with (𝛾, 𝑙) ≠ (𝛾′, 𝑙′) and ∅ ≠ 𝐵 ⊂ ℕ𝑝 with 

𝐼𝐵 ≠ ∅. 

 We begin with the following example. Given 𝑘 ∈ ℕ and 𝑎, 𝑏 > 0 satisfying 
1

𝑘
<

𝑎𝑏 =
𝑝

𝑞
 with 𝑝, 𝑞 ∈ ℕ and gcd(𝑝, 𝑞) = 1. Let 0 < 𝜖 ≤

1

𝑘𝑏𝑝
, let Γ = ⋃ [

1

𝑏
,
1

𝑏
+ 𝜖)𝑙∈ℕ𝑝 , and 

let 𝕊 = ⋃ [Γ + 𝑛𝑎)𝑙∈ℕ𝑝 . Then  

[0, 𝑎) ∩ 𝕊 = ⋃((Γ ∩ (𝑙𝑎, (𝑙𝑎 + 1)𝑎)) − 𝑙𝑎)

𝑙∈ℕ𝑞

. 

It follows that   

𝜇([0, 𝑎) ∩ 𝕊) ≤ ∑(𝜇(Γ ∩ (𝑙𝑎, (𝑙𝑎 + 1)𝑎) − 𝑙𝑎)

𝑙∈ℕ𝑞

= ∑ 𝜇(Γ ∩ (𝑙𝑎, (𝑙𝑎 + 1)𝑎))

𝑙∈ℕ𝑞

= 𝜇(Γ) = 𝜖𝑝, 
which implies that  

𝑘𝑏𝜇([0, 𝑎) ∩ 𝕊) ≤ 1. 

However, it is obvious that ∑ 𝜒𝕊𝑙∈ℕ𝑞 (∙ +
1

𝑏
) = 𝑘𝑝 > 𝑞 on (0, ϵ). Then by  Theorems 

(6.2.14) and (6.2.19), this examples shows that, when 𝑎𝑏 is a rational number, the 

inequality (44) is a necessary but not a sufficient condition for the existence of tight 

Gabor set in 𝕊 with frame bound 
𝑘

𝑏
. Next we will show that, when 𝑎𝑏 is an irrational 

number, (44) is also sufficient for the existence of tight Gabor set in 𝕊. However, it is 

open how to obtain an explicit expression of general tight Gabor sets in 𝕊 for this case. 

 By a careful observation of Theorem 4.2 in [449] and Theorem (6.2.14), we have 

the following Lemma. 

Lemma (6.2.21)[436]: Given 𝑎, 𝑏 > 0 with 𝑎𝑏 ∉ 𝑄, and an 𝑎ℤ-periodic set 𝕊 in ℝ. 

There exists a tight Gabor set in 𝕊 with frame bound 
1

𝑏
 if and only if  

𝑏𝜇([0, 𝑎) ∩ 𝕊) ≤ 1. 
Theorem (6.2.22)[436]: Given 𝑘 ∈ ℕ, 𝑎, 𝑏 > 0 with 𝑎𝑏 ∉ 𝑄, and an 𝑎ℤ-periodic set 𝕊 

in ℝ. There exists a tight Gabor set in 𝕊 with frame bound 
𝑘

𝑏
 if and only if 

𝑏𝑘𝜇([0, 𝑎) ∩ 𝕊) ≤ 1.                                              (85) 
Proof. By Theorem (6.2.14) and Lemma (6.2.21), we only need to show the sufficiency 

for the case that 𝑘 > 1. Suppose that (85) is satisfied. Note that  
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[0, 𝑘𝑎) ∩ 𝕊 = ⋃(([0, 𝑎) ∩ 𝕊) + 𝛾𝑎)

𝛾∈ℕ𝑘

. 

It follows that 

𝜇([0, 𝑘𝑎) ∩ 𝕊) = 𝑘𝜇([0, 𝑎) ∩ 𝕊),                                     (86) 
and thus, 𝑏𝜇([0, 𝑘𝑎) ∩ 𝕊) ≤ 1. Note that 𝕊 is also 𝑘𝑎ℤ-periodic. So, by Lemma 

(6.2.21), there exists 𝐹 ⊂ 𝕊 such that {𝐸𝑚𝑏𝑇𝑛𝑘𝑎 𝜒𝐹}𝑚,𝑛∈ℤ is a tight frame for 𝐿2(𝕊) with 

frame bound 
1

𝑏
, which, by Theorem (6.2.12), implies that 𝐹 =  𝐹 (

1

𝑏
 ,1) and 𝐹 is 𝑘𝑎ℤ-

congruent to [0, 𝑘𝑎) ∩ 𝕊. Put  

𝐹𝛾 = (⋃([0, 𝑎) + (𝛾 + 𝑙𝑘)𝑎)

𝑙∈ℤ

) ∩ 𝐹 

for 𝛾 ∈ ℕ𝑘. Then 𝐹 = ⋃ 𝐹𝛾𝛾∈ℕ𝑘 , and 𝐹𝛾 , 𝛾 ∈ ℕ𝑘, are mutually disjoint. So it suffices to 

show that 𝐹𝛾 is 𝑎ℤ-congruent to [0, 𝑎) ∩ 𝕊 for each 𝛾 ∈ ℕ𝑘 by Theorem (6.2.12). By 

𝑎ℤ-periodicity of 𝕊 and the fact that 𝐹𝛾 ⊂ 𝕊 for 𝛾 ∈ ℕ𝑘,  

𝐹𝛾 = {⋃ [(([0, 𝑎) ∩ 𝕊) + 𝛾𝑎) + 𝑙𝑘𝑎]𝑙∈ℤ } ∩ 𝐹  

for 𝛾 ∈ ℕ𝑘. It follows that each 𝐹𝛾 with 𝛾 ∈ ℕ𝑘 is 𝑘𝑎ℤ-congruent to a subset of  

([0, 𝑎) ∩ 𝕊) + 𝛾𝑎), and thus 𝑎ℤ-congruent to a subset of  [0, 𝑎) ∩ 𝕊. So, we only need 

to show that 𝜇(𝐹𝛾) = 𝜇([0, 𝑎) ∩ 𝕊) for each 𝛾 ∈ ℕ𝑘 by indirect proof. Suppose 

𝜇(𝐹𝛾0) < 𝜇([0, 𝑎) ∩ 𝕊) for some 𝛾0 ∈ ℕ𝑘. Also observing that {𝐹𝛾: 𝛾 ∈ ℕ𝑘} is a 

partition of 𝐹, we have 

𝜇(𝐹) = ∑ 𝜇(𝐹𝛾)𝛾∈ℕ𝑘 < 𝐾𝜇([0, 𝑎) ∩ 𝕊).  

It together with (86) follows that  

𝜇(𝐹) < 𝜇([0, 𝑘𝑎) ∩ 𝕊), 
which contradicts the fact that 𝐹 is 𝑘𝑎ℤ-congruent to [0, 𝑘𝑎) ∩ 𝕊. 

Section (6.3): Periodic Subsets of the Real Line 

For ℋ be a separable Hilbert space. An at most countable sequence {ℎ𝑖}𝑖∈𝔩 in ℋ 

is a called a frame for ℋ if there exist 0 < 𝐴 ≤ 𝐵 < ∞ such that  

𝐴‖𝑓‖2 ≤∑|〈𝑓, ℎ𝑖〉|
2 ≤

𝑖∈𝔩

𝐵‖𝑓‖2.                                    (87) 

for 𝑓 ∈ ℋ. Where 𝐴, 𝐵 are called frame bounds; it is called a tight frame (Parseval 

frame) if 𝐴 = 𝐵(𝐴 = 𝐵 = 1) in (87); and a Bessel sequence in ℋ if the right-hand side 

inequality in (87) holda. A frame for ℋ is called a Riesz basis if it ceases to be a frame 

whenever any one of its elements is removed. Given two Bessel sequences {𝑔𝑖}𝑖∈𝔩 and 

{ℎ𝑖}𝑖∈𝔩 in ℋ, define the operator 𝑆ℎ,𝑔:ℋ → ℋ by     

𝑆ℎ,𝑔𝑓 =∑〈𝑓, ℎ𝑖〉𝑔𝑖
𝑖∈𝔩

                                             (88) 

for 𝑓 ∈ ℋ. Then 𝑆ℎ,𝑔 is bounded operator on ℋ. Let {𝑔𝑖}𝑖∈𝔩 be a frame {ℎ𝑖}𝑖∈𝔩 is called 

a dual of {𝑔𝑖}𝑖∈𝔩 if  𝑆ℎ,𝑔 = 𝐼 on ℋ, where 𝐼 denotes the identity operator. It is well-

known that, for two Bessel sequences {𝑔𝑖}𝑖∈𝔩 and {ℎ𝑖}𝑖∈𝔩 in ℋ, whenever 𝑆ℎ,𝑔 = 𝐼 on ℋ, 

they are both frames for ℋ and are duals of each other. If  𝑔𝑖 = ℎ𝑖 in (88) and {𝑔𝑖}𝑖∈𝔩 is 

a frame for ℋ with frame bounds 𝐴 and 𝐵, it is also well-known that 𝑆𝑔,𝑔 is bounded 

and invertible, that  {𝑆𝑔,𝑔
−1ℎ𝑖}𝑖∈𝔩

 is also a frame for ℋ with frame bounds 𝐵−1 and 𝐴−1, 
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and a dual of {𝑔𝑖}𝑖∈𝔩, he which is the so-called canonical dual. The fundamentals of  

frames can be found in [466,467,477,488]. 

Given a positive integer 𝐿, let 𝐿2(ℝ, ℂ𝐿) be the vector-valued Hilbert space 

𝐿2(ℝ, ℂ𝐿) endowed with the inner product defined by 

〈f, h〉 =∑∫ fl(x)hl(x)̅̅ ̅̅ ̅̅ ̅dx

ℝ

L

l=1

for f = (f1, f2, … , fL), h = (h1, h2, … , hL)

∈ L2(ℝ, ℂL). 
Obviously, it is exactly the direct sum Hilbert space ⊕l=1

L L2(ℝ). In what 

follows, for f ∈ L2(ℝ, ℂL) and 1 ≤ l ≤ L, we always denote by fl its l-th 

component. For a, b > 0 and g ∈ L2(ℝ, ℂL), we define Gabor system G(g, a, b) 
by 

G(𝐠, a, b) = {EmbTnag:m, n ∈ ℤ}.                                  (89) 
where  

𝐸𝑚𝑏𝑇𝑛𝑎𝑔 = (𝑒
2𝜋𝑖𝑚𝑏𝑔1(∙ −𝑛𝑎), 𝑒

2𝜋𝑖𝑚𝑏𝑔2(∙ −𝑛𝑎), … , 𝑒
2𝜋𝑖𝑚𝑏𝑔1(∙ −𝑛𝑎)). 

We also call it vector-valued Gabor system since 𝐿 is not necessarily 1. When 𝐿 = 1, it 

is the usual Gabor system in 𝐿2(ℝ) and called scalar-valued Gabor system in contrast to 

a general 𝐿. A set 𝑆 in ℝ with positive measure is said to be 𝑎ℤ-periodic if 𝑆 + 𝑛𝑎 = 𝑆 

for 𝑛 ∈ ℤ. For such 𝑆, we denote by 𝐿2(ℝ , ℂ𝐿) the closed subspace of  𝐿2(ℝ, ℂ𝐿) of the 

form 

𝐿2(ℝ, ℂ𝐿) = {𝑓 ∈ 𝐿2(ℝ, ℂ𝐿): 𝑓 = 0 on ℝ\𝑆}. 
The addresses Gabor analysis on  𝐿2(𝑆, ℂ𝐿). 

Vector-valued frame is also called Super frame. It was introduced in [461] under 

the setting of general Hilbert spaces by Balan in the context of “multiplexing”. Which 

has been widely used in mobile communication network, satellite communication 

network and computer area network. In recent years, vector-valued wavelet and Gabor 

frames in 𝐿2(ℝ, ℂ𝐿) have interested some mathematicians and engineering specialist 

(see [459,460,462,468,469,470,478, 479,481,482]), and in [486,487] vector-valued 

analysis also occurred as a technical tool in the study of ordinary frames. Let us first 

recall some related works. 

Führ in [470] derived frame bound estimates for vector-valued Gabor system in 

𝐿2(ℝ, ℂ𝐿) with window functions belonging to Schwartz space, and obtained estimates 

for the window 𝒉 = (ℎ0, ℎ1, … , ℎ𝐿) ∈ 𝐿
2(ℝ, ℂ𝐿+1) composed of the first 𝐿 + 1 Hermite 

functions. Grochenig and Lyubarskii in [478] characterized all lattices Λ ⊂ ℝ2 such that 

Gabor system {𝐸𝜆2𝑇𝜆1𝒉: 𝜆 = (𝜆1, 𝜆2) ∈ Λ} is a frame for 𝐿2(ℝ, ℂ𝐿). Abreu [458] gave a 

simple proof of this characterization. It has the advantage of also characterizing all 

lattices Λ ⊂ ℝ2 such that {𝐸𝜆2𝑇𝜆1𝒉: 𝜆 = (𝜆1, 𝜆2) ∈ Λ} is a Riesz sequence in 𝐿2(ℝ, ℂ𝐿). 

Also observe that Brekke and Seip in [464] characterized sets generating multi-window 

Gabor frames (resp. Riesz sequences) with Hermite functions. For general vector-valued 

Gabor systems, necessary density conditions were studied in [460] by Balan. For 

vector-valued Gabor systems with rational time-frequency lattices, a sufficient and 

necessary density condition was obtained in [482] by Li and Han. And a Zak transform 

matrix method was developed in [484] by Li and Zhou. There authors characterized 



254 

complete vector-valued Gabor systems and Gabor frames, and obtained a 

parameterization of all its Gabor duals of a general vector-valued Gabor frame. 

The theory of subspace Gabor frames includes two aspects. One is to ask whether 

𝐺(𝑔, 𝑎, 𝑏)a frame for its closed linear span for is given 𝑔 ∈ 𝐿2(ℝ) and 𝑎, 𝑏 > 0, and 

[463,465,471,472,473,489] belong to this. The other is, given 𝑎, 𝑏 > 0 and an 𝑎ℤ-

periodic set 𝑆 in ℝ, to fined g such that 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(𝑆). See 

[474,475,476,480,485]. Gabor analysis on 𝐿2(𝑆) interests us because of the following 

reasons: 

 From the perspective of application .Gabor systems on 𝐿2(𝑆) can model a 

situation where a signal is known to appear periodically but intermittently, and 

one would try to perform Gabor analysis for the signal in the most efficient way 

possible while still preserving all the features of the observed data. Although one 

can think of the signal as existing for all time and do the analysis in the usual 

way, this is not optimal way to proceed if the signal is only emitted for very short 

periods of time.  

 From the perspective of theory. The 𝑎ℤ-periodicity of 𝑆 is a natural requirement 

since one can show that 𝑆 must be 𝑎ℤ-periodicity if  𝐿2(𝑆) admits a complete 

Gabor system. The projections of Gabor frames in 𝐿2(ℝ) onto 𝐿2(𝑆) onto 𝐿2(𝑆)  
cannot cover all Gabor frames 𝐿2(𝑆). Indeed, let 𝑎𝑏 ≤ 1, and 𝑆 be an 𝑎ℤ-periodic 

measurable subset of ℝ with positive measure. It is easy to check that, if  

𝐺(𝑔, 𝑎, 𝑏) is a frame for 𝐿2(ℝ), then its projection 𝐺(𝑔𝜒𝑆, 𝑎, 𝑏) onto 𝐿2(𝑆) is a 

frame for 𝐿2(𝑆), where 𝜒𝑆 is the characteristic function of 𝑆. However, when 

𝑎𝑏 > 1 and 𝑆 ≠ ℝ, 𝐺(𝑔, 𝑎, 𝑏) cannot be a frame in 𝐿2(ℝ) for any 𝑔 ∈ 𝐿2(ℝ), 
while it is possible that there exists some g such 𝐺(𝑔, 𝑎, 𝑏) is a frame for 𝐿2(𝑆). 
In addition, Theorems 2.7, 2.12, 3.3, 4.2 and Corollaries 2.13, 4.3 in [475] show 

that there exist significant differences between Gabor analysis on 𝐿2(𝑆) and one 

on 𝐿2(ℝ). 
For rational 𝑎𝑏 and 𝑔 ∈ 𝐿2(ℝ, ℂ𝐿), Li and Zhang in [483] investigated the Gabor 

system 𝐺(𝒈, 𝑎, 𝑏) of the form (89). Using a suitable Zak transform matrix, they obtained 

a characterization for 𝐺(𝒈, 𝑎, 𝑏) to be a frame, Riesz basis, and orthonormal basis for its 

closed linear span. They also characterized the uniqueness of two types of Gabor duals, 

and using it they extended the classical Balian-Low Theorem. The classical Ron-Shen 

dual principle was pointed out to be invalid under this setting. For general 𝑎𝑏 and 𝑎ℤ-

periodic set 𝑆 in ℝ, a densiry Theorem for Gabor  systems in 𝐿2(ℝ, ℂ𝐿) was presented in 

[474, Theorem 1.5] by Gabardo et al. However, nothing is known about general vector-

valued Gabor systems in 𝐿2(ℝ, ℂ𝐿) except for [474, Theorem 1.5]. Motivated by the 

above works, we consider Gabor systems in 𝐿2(𝑆, ℂ𝐿). By introduction of a suitable Zak 

transform matrix, we investigate completeness, frame conditions of Gabor systems, and 

two types of Gabor duals for a general Gabor frame. We will work under the following 

assumptions: 

Assumption (6.3.1)[457]: 𝑎, 𝑏 > 0, and 𝑎𝑏 =
𝑝

𝑞
 with 𝑝 and 𝑞 being relatively prime 

positive integers. 

Assumption  (6.3.2)[457]: 𝐿 is a positive integer. 

Assumption (6.3.3)[457]: 𝑆 is an 𝑎ℤ-periodic set in ℝ.  
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Focuses on completeness and frame characterization. We devoted to dual 

characterization and expression. For a general frame 𝐺(𝒈, a, b) in 𝐿2(𝑆, ℂ𝐿). We 

characterize its Gabor duals of type I and II. Obtain an explicit expression of its 

canonical Gabor dual. And establish a parameterization expression of all its Gabor duals 

of type I and a class of its Gabor duals of type II. We present an example Theorem for 

all previous Theorems. This allows us to easily construct Gabor frames and their Gabor 

duals by designing corresponding Zak  transform matrices. 

We denote by ℕ the set of positive integers, by ℳ𝑠,𝑡 the set of all 𝑠 × 𝑡 complex 

matrices for 𝑠, 𝑡 ∈ ℕ, by 𝒜∗ its conjugate transpose for 𝒜 ∈ℳ𝑠,𝑡, by 𝐼 the identity 

operator and by 𝐼𝑡 the 𝑡 × 𝑡 identity matrix when want to specify its size, by 𝜒𝐹 the 

characteristic function of  𝐹 for a set 𝐹, and by ℕ𝑀 the set ℕ𝑀 = {0,1,2,… ,𝑀 − 1} for 

𝑀 ∈ ℕ. For  𝒜 ∈ℳ𝑠,𝑡, and ∅ ≠ Γ ⊂ ℕ𝑠, ∅ ≠ Ω ⊂ ℕ𝑡, define 𝒜Γ,Ω as the sub matrix of 

𝒜 with row indices in Γ and column indices in Ω. In particular, we write 𝒜Γ,Ω = 𝒜Γ if  

Γ = Ω. Given a subspace 𝑉 of Euclidean Space ℂ𝜇, we denote by 𝒫𝑉 the orthogonal 

projection operator from ℂ𝜇 onto 𝑉. And we denote by ℳ(𝒈, 𝑎, 𝑏) the closed linear 

subspace of 𝐿2(ℝ , ℂ𝐿) generated by 𝐺(𝒈, 𝑎, 𝑏) for 𝑔 ∈ 𝐿2(ℝ, ℂ𝐿) and 𝑎, 𝑏 > 0. Let 

𝐺(𝒈, 𝑎, 𝑏) and 𝐺(𝒉, 𝑎, 𝑏) be both Bessel sequences in 𝐿2(ℝ, ℂ𝐿). Define 

𝑆ℎ,𝒈: 𝐿
2(ℝ , ℂ𝐿) → 𝐿2(ℝ, ℂ𝐿) by  

𝑆ℎ,𝒈𝑓 = ∑ 〈𝑓, 𝐸𝑚,𝑏𝑇𝑛𝑎ℎ〉𝐸𝑚,𝑏𝑇𝑛𝑎𝑔

𝑚,𝑛∈𝒲ℤ

. 

We also make the following conventions: relations between two measurable sets in ℝ 

such as equality, disjointness or inclusion, are always understood up to a set of measure 

zero. And similarly, equality between two functions is always understood up to a set of 

measure zero, and similarly, equality or inequality between two functions is always 

understood in the “almost-everywhere” sense. 

Let 𝒜 ∈ℳ𝑠,𝑡 which we consider as a linear mapping from ℂ𝑡 into ℂ𝑠. Define the 

mapping �̃�: ker(𝒜)⊥ → range(𝒜) by �̃�𝑥 = 𝒜𝑥  for 𝑥 ∈ (ker(𝒜))
⊥

. Then �̃� is a 

bijection, and thus it has an inverse (�̃�)−1. We extend (�̃�)−1 to an operator 𝒜†: ℂ𝑠 →
ℂ𝑡 by defining  

𝒜†(𝑦 + 𝑧) = (�̃�)−1𝑦 for 𝑦 ∈ range(𝒜) and 𝑧 ∈ (range(𝒜))
⊥
. 

The operator 𝒜† is called the pseudo-inverse of 𝒜. 

Definition (6.3.4)[457]: Let 𝐺(𝒈, 𝑎, 𝑏) be a frame for ℳ(𝒈, 𝑎, 𝑏). 
(i) If 𝒉 ∈ ℳ(𝒈, 𝑎, 𝑏) is such that 𝐺(𝒉, 𝑎, 𝑏) is a Bessel sequence, and that 

𝑆ℎ,𝒈𝑓 = 𝐼 on ℳ(𝒈, 𝑎, 𝑏), 

then 𝐺(𝒈, 𝑎, 𝑏) is called a Gabor dual of type I for 𝐺(𝒈, 𝑎, 𝑏). 
(ii) If ℎ ∈ 𝐿2(ℝ, ℂ𝐿) (not necessarily in ℳ(𝒈, 𝑎, 𝑏) is such that 𝐺(𝒈, 𝑎, 𝑏) is a Bessel 

sequence,    

{{〈𝑓, 𝐸𝑚,𝑏𝑇𝑛𝑎ℎ〉}𝑚,𝑛∈ℤ ∶ 𝒇 ∈ 𝐿
2(ℝ, ℂ𝐿)} ⊂ {{〈𝑓, 𝐸𝑚,𝑏𝑇𝑛𝑎𝒈〉}𝑚,𝑛∈ℤ𝒇 ∈ 𝐿

2(ℝ, ℂ𝐿)} 

and  

𝑆ℎ,𝒈 = 𝐼 on  ℳ(𝒈, 𝑎, 𝑏), 

then 𝐺(𝒉, 𝑎, 𝑏) is called a Gabor dual of type II for 𝐺(𝒈, 𝑎, 𝑏). 
Definition (6.3.4) is a direct generalization of Definition 2.1 in [472]. Recall that 

the Gabor dual of type I corresponds to the usual Gabor dual where the dual window 
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belongs to ℳ(𝒈, 𝑎, 𝑏).while the dual window is not required to be in ℳ(𝒈, 𝑎, 𝑏) for the 

Gabor dual of type II, instead the range of the analysis operator of the dual frame is 

required to be contained in that of the original frame. 

Given a measurable set 𝐹 in ℝ, a countable collection {𝐹𝑖: 𝑖 ∈ 𝔩} of measurable 

sets is called a partition of  𝐹 sets is called a partition of 𝐹 if  

⋃𝐹𝑖
𝑖∈𝔩

= 𝐹,    and    𝐹𝑖 ∩ 𝐹𝑖′ = ∅  for  𝑖 ≠ 𝑖′ ∈ 𝔩. 

Given 𝛼 > 0, two measurable sets 𝐹1 and 𝐹2 are said to be 𝛼ℤ-congruent if there exists 

a partition {𝐹1,𝑘: 𝑘 ∈ ℤ} of  𝐹1 such that {𝐹1,𝑘 + 𝑘: 𝑘 ∈ ℤ} is a partition of 𝐹2. In 

particular, only finitely many 𝐹1,𝑘 among {𝐹1,𝑘: 𝑘 ∈ ℤ} are nonempty, and the others are 

empty if both 𝐹1 and 𝐹2 are bounded in addition. Let 𝑎, 𝑏 and 𝐿 satisfy Assumptions 

(6.3.1) and (6.3.2). Define Zak transform 𝒵𝑎𝑞: 𝐿
2(ℝ) → 𝐿loc

2 (ℝ2) by 

𝒵𝑎𝑞𝑓(𝑡, 𝑣) =∑𝑓(𝑡 + 𝑎𝑞𝑘)𝑒2𝜋𝑖𝑘𝑣

𝑘∈ℤ

 for 𝑓 ∈ 𝐿2(ℝ)   and a. e. (𝑡, 𝑣) ∈ ℝ2 

and vector-valued Zak transform 𝒵𝑎𝑞: 𝐿
2(ℝ, ℂ𝐿) → 𝐿loc

2 (ℝ2, ℂ𝐿) by  

𝒵𝑎𝑞𝑓(𝑡, 𝑣) = (𝒵𝑎𝑞𝑓1(𝑡, 𝑣), 𝒵𝑎𝑞𝑓1(𝑡, 𝑣), … , 𝒵𝑎𝑞𝑓𝐿(𝑡, 𝑣)) 

for 𝑓 ∈ 𝐿2(ℝ, ℂ𝐿) and a. e (𝑡, 𝑣) ∈ ℝ2. 
 

It is easy to check that 𝒵𝑎𝑞 has the quasi-periodicity: 

𝒵𝑎𝑞𝑓(𝑡 + 𝑘𝑎𝑞, 𝑣 + 𝑛) = 𝑒
−2𝜋𝑖𝑘𝑣𝒵𝑎𝑞𝑓(𝑡, 𝑣)  

for 𝑓 ∈ 𝐿2(ℝ, ℂ𝐿), (𝑘, 𝑛) ∈ ℤ2 and a.e (𝑡, 𝑣) ∈ ℝ2.                   (90) 
By [475, Lemma 2.1], the restrictions of 𝒵𝑎𝑞  and 𝒁𝑎𝑞 to [0, 𝑎𝑞) × [0,1) are respectively 

unitary operators from 𝐿2([0, 𝑎𝑞) × [0,1)) and from 𝐿2(ℝ, ℂ𝐿) onto 𝐿2([0, 𝑎𝑞) ×
[0,1)ℂ𝐿). 

For 𝑓 ∈ 𝐿2(ℝ, ℂ𝐿), define the ℂ𝐿𝑝-valued function ℱ(𝑡, 𝑣) on ℝ2 by  

ℱ(𝑡, 𝑣) = (

ℱ1(𝑡, 𝑣)

ℱ2(𝑡, 𝑣)
⋮

ℱ𝐿(𝑡, 𝑣)

),                                                (91) 

where  

ℱ𝑙(𝑡, 𝑣) = (𝒵𝑎𝑞𝑓𝑙 (𝑡 +
𝑘

𝑏
, 𝑣))

𝑘∈ℕ𝑝

                                 (92) 

for each 1 ≤ 𝑙 ≤ 𝐿 and a.e. (𝑡, 𝑣) ∈ ℝ2. 

Definition (6.3.5)[457]: Let 𝑎, 𝑏, 𝐿 satisfy Assumptions (6.3.1) and (6.3.2). Given 𝑔 ∈
𝐿2(ℝ, ℂ𝐿), we associate it with the matrix-valued function 𝐺:ℝ2 →ℳ𝑞,𝐿𝑝  Defined by  

𝐺(𝑡, 𝑣) = (𝐺1(𝑡, 𝑣), 𝐺2(𝑡, 𝑣), … , 𝐺𝐿(𝑡, 𝑣))                           (93) 

for a.e. (𝑡, 𝑣) ∈ ℝ2, where 𝐺1(𝑡, 𝑣) is the matrix-valued function from ℝ2 into ℳ𝑞,𝑝 

given by  

(𝐺(𝑡, 𝑣))𝑟,𝑘 = 𝒵𝑎𝑞𝑔𝑙 (𝑡 +
𝑘

𝑏
− 𝑟𝑎, 𝑣)  for (𝑟, 𝑘) ∈ ℕ𝑞 × ℕ𝑝. 
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Observe that, even if 𝐿 = 1, 𝐺(𝑡, 𝑣) is different from Zibulski-Zeevi matrix in 

[470], but it is more direct and convenient for our purpose. Similarly, for 𝒉,𝒘 and 𝑓 ∈
𝐿2(ℝ, ℂ𝐿), we associate it with 𝐻(𝑡, 𝑣),𝑊(𝑡, 𝑣) and 𝐹(𝑡, 𝑣) as in (93) respectively.  

Write  

∆= ⋃ ⋃ ([0,
1

𝑏𝑞
) +

𝑘

𝑏
− 𝑟𝑎)

𝑟∈ℕ𝑞𝑘∈ℕ𝑝

. 

It is easy to check that ∆ is 𝑎𝑞ℤ-congruent to [0, 𝑎𝑞). So, by quasi-periodicity and 

unitarity of 𝒵𝑎𝑞, an arbitrary 𝑞 × 𝐿𝑝 matrix-valued function defined on [0,
1

𝑏𝑞
) × [0,1) 

with 𝐿2 ([0,
1

𝑏𝑞
) × [0,1)) entries determines a unique 𝑔 ∈ 𝐿2(ℝ, ℂ𝐿) via (93) restricted 

to [0,
1

𝑏𝑞
) × [0,1). 

Let 𝑎, 𝑏, 𝐿 and 𝑆 satisfy Assumptions (6.3.1)-(6.3.2). Now we check how a 

𝐺(𝑡, 𝑣) defined on [0,
1

𝑏𝑞
) × [0,1) determines a g in 𝐿2(𝑆, ℂ𝐿). For 𝐸 ⊂ ℕ𝑝, define 

𝑆𝐸 = {𝑡 ∈ [0,
1

𝑏𝑞
) : 𝑡 +

𝑘

𝑏
∈ 𝑆 for 𝑘 ∈ 𝐸, 𝑡 +

𝑘

𝑏
∉ 𝑆 for 𝑘 ∈ ℕ𝑝\𝐸}. 

Then {𝑆𝐸: 𝐸 ⊂ ℕ𝑝} is a partition of [0,
1

𝑏𝑞
), and the set 

⋃ ⋃ ⋃ (𝑆𝐸 − 𝑟𝑎 +
𝑘

𝑏
)

𝑘∈ℕ𝑝\𝐸𝐸⊆ℕ𝑝𝑟∈ℕ𝑞

 

is 𝑎𝑞ℤ-congruent to [0, 𝑎𝑞)\𝑆 by Lemma 2.5 in [476]. Moreover, 

        {𝒁𝑎𝑞𝒇|[0,𝑎𝑞)×[0,1): 𝒇 ∈ 𝐿
2(𝑆, ℂ𝐿)} 

= {𝑭: 𝑭 ∈ 𝐿2([0, 𝑎𝑞) × [0,1), ℂ𝐿), 𝑭 = 0 on ([0, 𝑎𝑞)\𝑆) × [0,1)} 
by Lemma 2.1 in [475]. So, by quasi-periodicity and unitary of 𝑍𝑎𝑞, for an arbitrary  

𝑞 × 𝐿𝑝 matrix–valued function 𝐺(𝑡, 𝑣) defined on [0,
1

𝑏𝑞
) × [0,1) with 𝐿2([0, 𝑎𝑞) ×

[0,1)) entries, whenever all its 𝑘th columns vanish on 𝑆𝐸 × [0,1) for 𝑘 ∈ ℕ𝑝\𝐸 with 

𝑬 ⊈ ℕ𝑝, it determines a unique 𝑔 ∈ 𝐿2(𝑆, ℂ𝐿) via (93) restricted to [0,
1

𝑏𝑞
) , [0,1). 

In what follows, we always write 

𝐵(𝑡) = {𝑘 ∈ ℕ𝑝: 𝑡 +
𝑘

𝑏
∈ 𝑆},                                       (94) 

𝐷(𝑡) = diag (𝜒𝐵(𝑡)(0), 𝜒𝐵(𝑡)(1), … , 𝜒𝐵(𝑡)(𝑝 − 1))                   (95) 

and 

�̃�(𝑡) = diag(𝐷(𝑡), 𝐷(𝑡), … , 𝐷(𝑡)) (with 𝐿 blocks)                  (96) 
for 𝑡 ∈ ℝ. 

Let 𝑎, 𝑏, 𝐿 and 𝑆 satisfy Assumptions (6.3.1)-(6.3.3). Focuses on the completeness 

and frame characterization of a Gabor system in 𝐿2(𝑆, ℂ𝐿), We begin with some 

lemmas. 

The following three Lemmas are borrowed from Theorem 2.1 and Theorem 2.2 in 

[484] respectively: 
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Lemma (6.3.6)[457]: For 𝒈 ∈ 𝐿2(𝑆, ℂ𝐿), 𝐺(𝒈, 𝑎, 𝑏)  is a frame for ℳ(𝒈, 𝑎, 𝑏) with 

frame bounds 𝐴 and 𝐵 if and only if 𝑏𝐴(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)) ≤ (𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
2
≤

𝑏𝐵(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)) for a.e (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 

Lemma (6.3.7)[457]: Let 𝐺(𝒈, 𝑎, 𝑏) be a Bessel sequence in 𝐿2(𝑆, ℂ𝐿). Then  

rank(𝐺(𝑡, 𝑣)) = 𝑞  for a. e (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) 

if and only if 𝐺(𝒈, 𝑎, 𝑏) has Riesz property, i.e., 𝑐 = 0 is a unique solution to 

∑ 𝑐𝑚,𝑛𝐸𝑚𝑏𝑇𝑛𝑎𝒈𝑚,𝑛∈ℤ = 0  in 𝑙2(ℤ2). 
Lemma (6.3.8)[457]: For every 𝑗 ∈ ℤ, there exists a ℤ-periodic 𝐿𝑃 × 𝐿𝑃 unitary matrix-

valued measurable function 𝑈𝑗(𝑣) such that  

𝐺∗ (𝑡 +
𝑗

𝑏𝑞
, 𝑣)𝐻 (𝑡 +

𝑗

𝑏𝑞
, 𝑣) = 𝑈𝑗

∗(𝑣)𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣)𝑈𝑗(𝑣) 

for 𝒈, 𝒉 ∈ 𝐿2(𝑆, ℂ𝐿) and a. e. (𝑡, 𝑣) ∈ ℝ2. 
Lemma (6.3.9)[457]: 𝒈 ∈ 𝐿2(𝑆, ℂ𝐿). Then 𝒫ker(𝐺(𝑡,𝑣))(𝑡, 𝑣), rank(𝐺(𝑡, 𝑣)) are both 

measurable, rank(𝐺(𝑡, 𝑣)) is 
1

𝑏𝑞
ℤ-periodic with respect to 𝑡 and satisfies 

rank(𝐺(𝑡, 𝑣)) ≤ 𝐿∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

.                                 (97) 

Proof. Using an argument similar to Lemma 2.6 in [475], we can prove the 

measurability of 𝒫ker(𝐺(𝑡,𝑣))(𝑡, 𝑣) and rank(𝐺(𝑡, 𝑣)). By Lemma (6.3.8), rank(𝐺(𝑡, 𝑣)) 

is 
1

𝑏𝑞
ℤ-periodic with respect to 𝑡. Also observe that, for each 𝑘 ∈ ⋃ (ℕ𝑝 + (𝑙 − 1)𝑝)

𝐿
𝑙=1 , 

we must have 𝑘 ∈ ⋃ (𝐵(𝑡) + (𝑙 − 1)𝑝)𝐿
𝑙=1  whenever the 𝑘-th column of 𝐺(𝑡, 𝑣) is a 

nonzero vector. This implies that rank(𝐺(𝑡, 𝑣)) is at most 𝐿∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0 , the 

cardinality of ⋃ (𝐵(𝑡) + (𝑙 − 1)𝑝)𝐿
𝑙=1 . The proof is completed. 

Theorem (6.3.10)[457]:  Let 𝒈 ∈ 𝐿2(𝑆, ℂ𝐿). Then the following are equivalent: 

(i) ℳ(𝒈, 𝑎, 𝑏) = 𝐿2(𝑆, ℂ𝐿); 

(ii) rank(𝐺(𝑡, 𝑣)) = ∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0  for a.e. (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × [0,1); 

(iii) range(𝐺∗(𝑡, 𝑣)) = range (�̃�(𝑡)) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1); 

(iv) 𝒫range(𝐺∗(𝑡,𝑣)) = �̃�(𝑡) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 

Proof. By an argument similar to Theorem 2.7 in [475], we can prove the equivalence 

between (i) and (ii). Next we prove the equivalence between (ii) and (iii), and the 

equivalence between (iii) and (iv) to finish the proof. Write 𝑇 = ⋃ (ℕ𝑝\𝐵(𝑡) +
𝐿
𝑙=1

(𝑙 − 1)𝑝). For almost every (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1), by the definition of 𝐺(𝑡, 𝑣) we 

deduce that the 𝑘th row of 𝐺∗(𝑡, 𝑣) is a zero vector if 𝑘 ∈ 𝑇. This implies that 

range(𝐺∗(𝑡, 𝑣)) ⊂ {𝑥 ∈ ℂ𝐿𝑝: 𝑥 = (

𝑥0
𝑥1
⋮

𝑥𝐿𝑝−1

) , 𝑥𝑘 = 0 for 𝑘 ∈ 𝑇} = range (�̃�(𝑡))  

and thus (iii) holds if and only if 
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rank(𝐺∗(𝑡, 𝑣)) = rank (�̃�(𝑡)) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 

Since rank (�̃�(𝑡)) = 𝐿∑ 𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1
𝑘=0 , (ii) is equivalent to (98). The equivalence 

between (ii) and (iii) therefore follows. Observe that �̃�(𝑡) is an orthogonal projection 

for each 𝑡 ∈ [0,
1

𝑏𝑞
). It follows that (iii) is equivalent to (iv) [483, Theorem 3.1].  

Theorem (6.3.11)[457]: Let 𝒈 ∈ 𝐿2(𝑆, ℂ𝐿). Then 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(𝑆, ℂ𝐿) 
with frame bounds A and B if and only if 

𝑏𝐴�̃�(𝑡) ≤ 𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) ≤ 𝑏𝐵�̃�(𝑡) for a.e(𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1).      (99) 

Proof. It is easy to check that 

‖�̃�(𝑡)𝑥‖
2
= 〈𝐷(𝑡)𝑥, 𝑥〉 and 𝐺(𝑡, 𝑣)�̃�(𝑡) = 𝐺(𝑡, 𝑣)                    (100) 

for 𝑥 ∈ ℂ𝐿𝑝 and a.e. (𝑡, 𝑣) ∈ ℝ2. By Lemma (6.3.6) and Theorem (6.3.10), 𝐺(𝒈, 𝑎, 𝑏) is 

a frame for 𝐿2(𝑆, ℂ𝐿) with frame bounds A and B if and only if 

𝑏𝐴𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣) ≤ (𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
2
≤ 𝑏𝐵(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)),       (101) 

range(𝐺∗(𝑡, 𝑣)) = range (�̃�(𝑡))                                   (102) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). Observe that (101) is equivalent to 

𝑏𝐴𝐼 ≤ 𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) ≤ 𝑏𝐵𝐼 on range(𝐺∗(𝑡, 𝑣)).                 (103) 
So we only need to prove that (102) and (103) hold if and only if (99) holds. Suppose 

(102) and (103) hold. Then 

𝑏𝐴‖�̃�(𝑡)𝑥‖
2
≤ 〈𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)�̃�(𝑡)𝑥, �̃�(𝑡)𝑥〉 ≤ 𝑏𝐵‖�̃�(𝑡)𝑥‖

2
, 

namely, 

𝑏𝐴‖�̃�(𝑡)𝑥‖
2
≤ ‖𝐺(𝑡, 𝑣)�̃�(𝑡)𝑥‖

2
≤ 𝑏𝐵‖�̃�(𝑡)𝑥‖

2
 

for 𝑥 ∈ ℂ𝐿𝑝 and a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). This implies (99) by (100). Conversely, 

suppose (99) holds. Then, rank(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)) = rank (�̃�(𝑡)), equivalently, 

𝐿∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

= rank(𝐺(𝑡, 𝑣))   for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) 

and thus (102) holds by Theorem (6.3.10). Also observe that 

〈𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝑥, 𝑥〉 = 〈𝐺∗(𝑡, 𝑣)𝑥, 𝐺(𝑡, 𝑣)𝑥〉 
                                                       = 〈𝐺(𝑡, 𝑣)�̃�(𝑡)𝑥, 𝐺(𝑡, 𝑣)�̃�(𝑡)𝑥〉 
                                                         = 〈𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)�̃�(𝑡)𝑥, �̃�(𝑡)𝑥〉 

by (100). So (103) holds by Theorem (6.3.10) and (100). The proof is completed.  

By Lemma (6.3.7), and Theorems (6.3.10), (6.3.11), we have 

Corollary (6.3.12)[457]: For 𝑔 ∈ 𝐿2(𝑆, ℂ𝐿), 𝐺(𝒈, 𝑎, 𝑏) is a Riesz basis (an orthonormal 

basis) for 𝐿2(𝑆, ℂ𝐿) with Riesz bounds 𝐴, 𝐵 if and only if 

𝑏𝐴�̃�(𝑡) ≤ 𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) ≤ 𝑏𝐵�̃�(𝑡)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡)𝐼) 
and 

𝑞 = 𝐿∑𝜒𝑆 (𝑡 +
𝑘

𝑏
)

𝑝−1

𝑘=0

      for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 
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Let 𝑎, 𝑏, 𝐿 and 𝑆 satisfy Assumptions (6.3.1)–(6.3.3), and 𝐺(𝒈, 𝑎, 𝑏) be a frame 

for 𝐿2(𝑆, ℂ𝐿). We devoted to its duals with Gabor structure. We characterize Gabor 

duals of type 𝐼 and 𝐼𝐼, present an explicit expression of the canonical dual, and establish 

a parametrization expression of Gabor duals of type 𝐼 and 𝐼𝐼 for 𝐺(𝒈, 𝑎, 𝑏). In 

particular, when 𝐿 = 1, Gabardo and Li [476] investigated the canonical dual and the 

uniqueness of Gabor duals of type 𝐼 and 𝐼𝐼 for a Gabor frame in 𝐿2𝑆. 

The following three lemmas are borrowed from Lemmas 3.2 and 3.4 in [483] and 

Remark 3.2 in [484]: 

Lemma (6.3.13)[457]: Let 𝐺(𝒈, 𝑎, 𝑏) and 𝐺(𝒉, 𝑎, 𝑏) be both Bessel sequences. Then 

𝑓 = 𝑆ℎ,𝑔𝑓   for   𝑓 = ∑ 𝑐𝑚,𝑛𝐸𝑚𝑏𝑇𝑛𝑎𝑔

𝑚,𝑛∈ℤ

 with 𝑐 ∈ 𝑙2(ℤ2) 

if and only if 

𝐺(𝑡, 𝑣) =
1

𝑏
𝐺(𝑡, 𝑣)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)  for a.e. (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × [0,1). 

Lemma (6.3.14)[457]: Given 𝑔, ℎ ∈ 𝐿2(ℝ, ℂ𝐿), let 𝐺(𝑔, 𝑎, 𝑏) and 𝐺(ℎ, 𝑎, 𝑏) be both 

Bessel sequences in 𝐿2(ℝ, ℂ𝐿). Then 

{{〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎ℎ〉}𝑚,𝑛∈ℤ ∶ 𝑓 ∈ 𝐿
2(ℝ, ℂ𝐿)} ⊂ {{〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎𝑔〉}𝑚,𝑛∈ℤ ∶ 𝑓 ∈ 𝐿

2(ℝ, ℂ𝐿)}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

if and only if there exists a function 𝐵 ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝐿𝑝,𝐿𝑝 such that 

𝐻(𝑡, 𝑣) = 𝐺(𝑡, 𝑣)𝐵(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1).  

Lemma (6.3.15)[457]: For 𝑎, 𝑏 > 0 and 𝑔 ∈ 𝐿2(ℝ, ℂ𝐿)𝐺(𝑔, 𝑎, 𝑏) is a Bessel sequence 

in 𝐿2(ℝ, ℂ𝐿) if and only if all its entries belong to 𝐿∞ ([0,
1

𝑏𝑞
) × [0,1)). 

By the same procedure as in [484, Lemma 4.3], we can prove 

Lemma (6.3.16)[457]: Let 𝐺(𝑔, 𝑎, 𝑏) be a frame for ℳ(𝑔, 𝑎, 𝑏), and ℎ ∈ 𝐿2(ℝ, ℂ𝐿). 
Then ℎ ∈ ℳ(𝑔, 𝑎, 𝑏) and 𝐺(ℎ, 𝑎, 𝑏) is a Bessel sequence in ℳ(𝑔, 𝑎, 𝑏) if and only if 

there exists a function 𝐴 ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝑞,𝑞 with 𝐿∞ ([0,

1

𝑏𝑞
) × [0,1)) entries 

such that 

𝐻(𝑡, 𝑣) = 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 

Theorem (6.3.17)[457]: Let 𝐺(𝑔, 𝑎, 𝑏) be a frame for 𝐿2(𝑆, ℂ𝐿). Then 

(i) 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type 𝐼 for 𝐺(𝑔, 𝑎, 𝑏) if and only if there exists some 

function 𝐴 ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝑞,𝑞 with 𝐿∞ ([0,

1

𝑏𝑞
) × [0,1)) entries such that 

𝐻(𝑡, 𝑣) = 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣), 
𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡) 

a.e. on [0,
1

𝑏𝑞
) × [0,1).               
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(ii) 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type II for 𝐺(𝑔, 𝑎, 𝑏) if and only if all the entries of 

𝐻(𝑡, 𝑣) belong to 𝐿∞ ([0,
1

𝑏𝑞
) × [0,1)), and there exists some function 𝐵 ∶

[0,
1

𝑏𝑞
) × [0,1) → ℳ𝑞,𝑞 such that 

𝐻(𝑡, 𝑣) = 𝐺(𝑡, 𝑣)𝐵(𝑡, 𝑣), 
        �̃�(𝑡)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡) 

a.e. on [0,
1

𝑏𝑞
) × [0,1).    

Proof. By Lemmas ((6.3.3)–(6.3.16)) and Theorem (6.3.10), 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual 

of type 𝐼 (type 𝐼𝐼) for 𝐺(𝑔, 𝑎, 𝑏) if and only if 

𝑏𝐺(𝑡, 𝑣) = 𝐺(𝑡, 𝑣)𝐻∗(𝑡, 𝑣)(𝑡, 𝑣),                                (104) 

𝐻(𝑡, 𝑣) = 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣)    (𝐻(𝑡, 𝑣) = 𝐺(𝑡, 𝑣)𝐵(𝑡, 𝑣))            (105) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) and some 𝑞 × 𝑞 (𝐿𝑝 × 𝐿𝑝) matrix-valued function 

𝐴(𝑡, 𝑣) (𝐵(𝑡, 𝑣)) defined on [0,
1

𝑏𝑞
) × [0,1), where 𝐴(𝑡, 𝑣) has 𝐿∞ ([0,

1

𝑏𝑞
) × [0,1)) 

entries. So, to finish the proof, we only need to prove that, under the condition (105), 

𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡) (�̃�(𝑡)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡))           (106) 

holds for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) if and only if (104) holds. Suppose 𝐻(𝑡, 𝑣) =

𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣) and 𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡). Then 

𝐺(𝑡, 𝑣)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏𝐺(𝑡, 𝑣)�̃�(𝑡) = 𝑏𝐺(𝑡, 𝑣). 
Conversely, suppose 𝐻(𝑡, 𝑣) = 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣) and (104). Then 

range(𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)) ⊂ range(𝐺∗(𝑡, 𝑣)). This implies that 𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏𝐼 on 

range𝐺∗(𝑡, 𝑣) due to the restriction of 𝐺(𝑡, 𝑣) on range𝐺∗(𝑡, 𝑣) being injective. Also 

observe that 𝐺(𝑡, 𝑣)�̃�(𝑡) = 𝐺(𝑡, 𝑣) and that range𝐺∗(𝑡, 𝑣) = range�̃�(𝑡) by Theorem 

(6.3.10). It follows that 𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡). 
Now suppose 𝐻(𝑡, 𝑣) = 𝐺(𝑡, 𝑣)𝐵(𝑡, 𝑣). Then (104) holds if and only if 

𝑏𝐺∗(𝑡, 𝑣) = 𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣)𝐺∗(𝑡, 𝑣), equivalently, 

𝑏𝐼 = 𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣) on range (𝐺∗(𝑡, 𝑣)).                       (107) 

Since range𝐺∗(𝑡, 𝑣) = range�̃�(𝑡) by Theorem (6.3.10), (107) can be rewritten as 

𝑏�̃�(𝑡) = 𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣)�̃�(𝑡), 
which is equivalent to �̃�(𝑡)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡). The proof is completed.  

Lemma (6.3.18)[457]: Let 𝐺(𝑔, 𝑎, 𝑏) and 𝐺(ℎ, 𝑎, 𝑏) be both Bessel sequences in 

𝐿2(ℝ, ℂ𝐿). Then 

𝑤 = 𝑆ℎ,𝑔𝑓                                                      (108) 

if and only if 

𝑊∗(𝑡, 𝑣) =
1

𝑏
𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣)𝐹∗(𝑡, 𝑣)                            (109) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 
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Proof. For 𝑔, ℎ ∈ 𝐿2(ℝ) satisfying {𝐸𝑚𝑏𝑇𝑛𝑎𝑔 ∶ 𝑚, 𝑛 ∈ ℤ} and {𝐸𝑚𝑏𝑇𝑛𝑎ℎ ∶ 𝑚, 𝑛 ∈ ℤ} 
are Bessel sequences in 𝐿2(ℝ), define 𝑆ℎ,𝑔𝑓 = ∑ 〈𝑓, 𝐸𝑚𝑏𝑇𝑛𝑎ℎ〉𝐸𝑚𝑏𝑇𝑛𝑎𝑔𝑚,𝑛∈ℤ  for 𝑓 ∈

𝐿2(ℝ). By Lemmas 2.1 and 2.5 in [483], we have that 

𝒵𝑎𝑞(𝑆ℎ,𝑔𝑓)(𝑡, 𝑣) 

= ∑ ∑

(

 
 
∫∫(𝐻(𝑢, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝑢, 𝑠))

𝑟
𝑒−2𝜋𝑖𝑚𝑏𝑢𝑒−2𝜋𝑖𝑛𝑠

1

0

1
𝑏

0

)

 
 
𝑑𝑢𝑑𝑠𝑒2𝜋𝑖𝑚𝑏𝑡𝑒2𝜋𝑖𝑛𝑣𝒵𝑎𝑞𝑔(𝑡

𝑚,𝑛∈ℤ𝑟∈ℕ𝑞

− 𝑟𝑎, 𝑣) 

for a.e. (𝑡, 𝑣) ∈ [0,
𝑝

𝑏
) × [0,1), which is equivalent to 

(𝒵𝑎𝑞(𝑆ℎ,𝑔𝑓) (𝑡 +
𝑘

𝑏
, 𝑣))

𝑘∈ℕ𝑝

=
1

𝑏
𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝒵𝑎𝑞𝑓 (𝑡 +

𝑘

𝑏
, 𝑣))

𝑘∈ℕ𝑝

 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1) by a simple computation. Observe that 

𝑆ℎ,𝑔𝑓 = (∑𝑆ℎ𝑙,𝑔1𝑓𝑙

𝐿

𝑙=1

,∑𝑆ℎ𝑙,𝑔2𝑓𝑙

𝐿

𝑙=1

, … ,∑𝑆ℎ𝑙,𝑔𝐿𝑓𝑙

𝐿

𝑙=1

) . 

It follows that (108) holds if and only if 

(𝒵𝑎𝑞𝑤𝑙′ (𝑡 +
𝑘

𝑏
, 𝑣))

𝑘∈ℕ𝑝

=
1

𝑏
∑𝐺𝑙′

∗ (𝑡, 𝑣)𝐻𝑙(𝑡, 𝑣)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝒵𝑎𝑞 (𝑡 +
𝑘

𝑏
, 𝑣))

𝑘∈ℕ𝑝

𝐿

𝑙=1

 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1) and 1 ≤ 𝑙′ ≤ 𝐿, equivalently, 

𝒵𝑎𝑞𝑤𝑙′ (𝑡 − 𝑟𝑎 +
𝑘

𝑏
, 𝑣) 

=
1

𝑏
∑ ∑ (∑ 𝒵𝑎𝑞𝑔𝑙′ (𝑡 − 𝑛𝑎 +

𝑘

𝑏
, 𝑣)𝒵𝑎𝑞ℎ𝑙′ (𝑡 − 𝑛𝑎 +

𝑗

𝑏
, 𝑣)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑁∈ℕ𝑝

)

𝑗∈ℕ𝑝

𝐿

𝑙=1

 

𝒵𝑎𝑞𝑓𝑙′ (𝑡 +
𝑗

𝑏
, 𝑣)                                                (110) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1), 𝑘 ∈ ℕ𝑝 and 1 ≤ 𝑙′ ≤ 𝐿. By a simple computation, (109) 

can be rewritten as 

𝑊𝑙′
∗(𝑡, 𝑣) =

1

𝑏
∑𝐺𝑙′

∗ (𝑡, 𝑣)𝐻𝑙(𝑡, 𝑣)𝐹𝑙
∗(𝑡, 𝑣)

𝐿

𝑙=1

 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1) and 1 ≤ 𝑙′ ≤ 𝐿, equivalently, 

𝒵𝑎𝑞𝑤𝑙′ (𝑡 − 𝑟𝑎 +
𝑘

𝑏
, 𝑣) 

=
1

𝑏
∑ ∑ (∑ 𝒵𝑎𝑞𝑔𝑙′ (𝑡 − 𝑛𝑎 +

𝑘

𝑏
, 𝑣)𝒵𝑎𝑞ℎ𝑙′ (𝑡 − 𝑛𝑎 +

𝑗

𝑏
, 𝑣)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑁∈ℕ𝑝

)

𝑗∈ℕ𝑝

𝐿

𝑙=1
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𝒵𝑎𝑞𝑓𝑙′ (𝑡 − 𝑟𝑎 +
𝑗

𝑏
, 𝑣)                                                    (111) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏
) × [0,1) and (𝑟, 𝑘) ∈ ℕ𝑞 × ℕ𝑝. 

Next we prove the equivalence between (110) and (111) to finish the proof. For 

(𝑡, , 𝑟, 𝑘) ∈ [0,
1

𝑏𝑞
) ∈ ℕ𝑞 × ℕ𝑝, define 𝜏 (𝑡 − 𝑟𝑎 +

𝑘

𝑏
) = 𝑡′ +

𝑘′

𝑏
 if (𝑡 − 𝑟𝑎 +

𝑘

𝑏
) = 𝑡′ +

𝑘′

𝑏
+𝑚𝑎𝑞 for some (𝑡′, 𝑘′, 𝑚) ∈ [0,

1

𝑏
) ∈ ℕ𝑝 × ℤ. Then it is easy to check that 𝜏 is a 

bijection from ⋃ ⋃ ([0,
1

𝑏𝑞
) − 𝑟𝑎 +

𝑘

𝑏
)𝑘∈ℕ𝑝𝑟∈ℕ𝑞  onto ⋃ ([0,

1

𝑏
) +

𝑘

𝑏
)𝑘∈ℕ𝑝 , and (111) can 

be rewritten as 

𝒵𝑎𝑞𝑤𝑙′ (𝑡
′ +
𝑘′

𝑏
+𝑚𝑎𝑞, 𝑣) 

=
1

𝑏
∑ ∑ (∑ 𝒵𝑎𝑞𝑔𝑙′ (𝑡

′ − (𝑛 − 𝑟)𝑎 +
𝑘′

𝑏
+𝑚𝑎𝑞, 𝑣)

𝑁∈ℕ𝑞𝑗∈ℕ𝑝

𝐿

𝑙=1

 

                   𝒵𝑎𝑞ℎ𝑙 (𝑡
′ − (𝑛 − 𝑟)𝑎 +

𝑘′ − 𝑘 + 𝑗

𝑏
+ 𝑚𝑎𝑞, 𝑣)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) 

𝒵𝑎𝑞𝑓𝑙 (𝑡
′ +
𝑘′ − 𝑘 + 𝑗

𝑏
+𝑚𝑎𝑞, 𝑣).                                  (112) 

Since ℕ𝑞 − 𝑟 is 𝑞ℤ-congruent to ℕ𝑞, and ℕ𝑝 + (𝑘
′ − 𝑘) is 𝑝ℤ-congruent to ℕ𝑝, (112) is 

equivalent to 

𝒵𝑎𝑞𝑤𝑙′ (𝑡
′ +
𝑘′

𝑏
, 𝑣) 

=
1

𝑏
∑ ∑ (∑ 𝒵𝑎𝑞𝑔𝑙′ (𝑡

′ − 𝑛𝑎 +
𝑘′

𝑏
, 𝑣)𝒵𝑎𝑞ℎ𝑙 (𝑡

′ − 𝑛𝑎 +
𝑗

𝑏
, 𝑣)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑁∈ℕ𝑞

)𝒵𝑎𝑞𝑓𝑙 (𝑡
′

𝑗∈ℕ𝑝

𝐿

𝑙=1

+
𝑗

𝑏
, 𝑣) 

by quasi-periodicity of 𝒵𝑎𝑞. It is exactly (110) due to s is a bijection from the set 

⋃ ⋃ ([0,
1

𝑏𝑞
) − 𝑟𝑎 +

𝑘

𝑏
)𝑘∈ℕ𝑝𝑟∈ℕ𝑞  onto ⋃ ([0,

1

𝑏
) +

𝑘

𝑏
)𝑘∈ℕ𝑝 . The proof is completed.  

Theorem (6.3.19)[457]: Let 𝐺(𝑔, 𝑎, 𝑏) be a frame for 𝐿2(𝑆, ℂ𝐿), and 𝐺(ℎ, 𝑎, 𝑏) be a 

Bessel sequence in 𝐿2(𝑆, ℂ𝐿). Then 𝐺(ℎ, 𝑎, 𝑏) is the canonical Gabor dual of 𝐺(𝑔, 𝑎, 𝑏) 
if and only if 

𝐻(𝑡, 𝑣) = 𝑏𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
 for a.e.  (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × [0,1).    (113) 

Proof. 𝐺(ℎ, 𝑎, 𝑏) is the canonical Gabor dual of 𝐺(𝑔, 𝑎, 𝑏) if and only if 

𝑆𝑔,𝑔ℎ = 𝑔,                                                   (114) 

which is equivalent to 

𝐺∗(𝑡, 𝑣) =
1

𝑏
𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝐻∗(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × [0,1) 

by Lemma (6.3.18), namely, 
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𝐺(𝑡, 𝑣) =
1

𝑏
𝐻(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ [0,

1

𝑏𝑞
) × [0,1).    (115) 

Then (113) implies (117) due to (𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝒫range𝐺

∗(𝑡, 𝑣). 

Next we show the converse implication to finish the proof. Suppose (115) holds. Since 

the canonical Gabor dual is a dual of type 𝐼, we have that 𝐻(𝑡, 𝑣) = 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣) for 

some 𝐴(𝑡, 𝑣) by Theorem (6.3.17). Combined with (115), it follows that 

𝑏𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
= 𝐻(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))

†
     

= 𝐴(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†

 

= 𝐻(𝑡, 𝑣)                

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1), where we used the fact that 

𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
= 𝒫range𝐺

∗(𝑡, 𝑣). 

Eq. (113) therefore follows. The proof is completed.  

Theorem (6.3.20)[457]: Let 𝐺(𝑔, 𝑎, 𝑏) be a frame for 𝐿2(𝑆, ℂ𝐿). Then, for any Bessel 

sequence 𝐺(ℎ, 𝑎, 𝑏), we have 

(i) 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type 𝐼 for 𝐺(𝑔, 𝑎, 𝑏) if and only if there exists some 

function 𝒜 ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝑞,𝑞 such that 

𝐻(𝑡, 𝑣) = 𝑏𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
                                  

(𝐼 −
1

𝑏
𝐺∗(𝑡, 𝑣)𝒜(𝑡, 𝑣)𝐺(𝑡, 𝑣)) + 𝒜(𝑡, 𝑣)𝐺(𝑡, 𝑣)       (116) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1); 

(ii) 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type 𝐼𝐼 for 𝐺(𝑔, 𝑎, 𝑏) if there exists some function 

𝒜 ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝐿𝑝,𝐿𝑝 such that 

𝐻(𝑡, 𝑣) = 𝑏𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
                                  

(𝐼 −
1

𝑏
𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝒜(𝑡, 𝑣)) + 𝐺(𝑡, 𝑣)𝒜(𝑡, 𝑣)          (116) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1). 

Proof. (i) Sufficiency. Suppose (116) holds. Then 

𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣) + 𝐺∗(𝑡, 𝑣)𝒜∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) 

                              −𝐺∗(𝑡, 𝑣)𝒜∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣). 

Since 𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
= 𝒫range(𝐺(𝑡,𝑣)), we have that 

−𝐺∗(𝑡, 𝑣)𝒜∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
 

+𝐺∗(𝑡, 𝑣)𝒜∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 0                                         
and thus 

𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣). 

So,  

𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
, 
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which is 𝒫range(𝐺∗(𝑡,𝑣)). And then 𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) ×

[0,1) by Theorem (6.3.10). Therefore, 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type 𝐼 for 𝐺(𝑔, 𝑎, 𝑏) 
by Theorem (6.3.17). 

Necessity. Suppose 𝐺(ℎ, 𝑎, 𝑏) is a Gabor dual of type 𝐼 for 𝐺(𝑔, 𝑎, 𝑏). Then, 

𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡), and there exists some ℬ ∶ [0,
1

𝑏𝑞
) × [0,1) → ℳ𝐿𝑝,𝐿𝑝𝐵 such 

that 𝐻(𝑡, 𝑣) = ℬ(𝑡, 𝑣)𝐺(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) by Theorem (6.3.17). Take 

𝒜(𝑡, 𝑣) = ℬ(𝑡, 𝑣) (𝐺(𝑡, 𝑣)𝐺†(𝑡, 𝑣)). Then 

𝑏(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣) (𝐼 −

1

𝑏
𝐺∗(𝑡, 𝑣)𝒜(𝑡, 𝑣)𝐺(𝑡, 𝑣))𝒜(𝑡, 𝑣)𝐺(𝑡, 𝑣) 

= 𝐻(𝑡, 𝑣)𝑏(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣)                        

   −(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))†𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)𝐻(𝑡, 𝑣) 

+ (𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))

†
𝐺(𝑡, 𝑣) 

−(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣)                          

= 𝐻(𝑡, 𝑣) + 𝑏(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣)𝐺               

−𝑏(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
𝐺(𝑡, 𝑣)�̃�(𝑡)              

= 𝐻(𝑡, 𝑣)                                                                                            (118) 

due to 𝐺(𝑡, 𝑣)�̃�(𝑡) = 𝐺(𝑡, 𝑣) and 𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣)(𝐺(𝑡, 𝑣)𝐺∗(𝑡, 𝑣))
†
= 𝒫range(𝐺(𝑡,𝑣)). (ii) 

Suppose (117) holds. Then 

 �̃�(𝑡)𝐻(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)) 

                      +�̃�(𝑡)𝒜∗(𝑡, 𝑣)(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)) − �̃�(𝑡)𝒜∗(𝑡, 𝑣) 

× (𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))†(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)). (119) 

Observe that (𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣))
†
(𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)) = 𝒫range(𝐺∗(𝑡,𝑣)). From (119), we 

deduce that 

�̃�(𝑡)𝐻∗(𝑡, 𝑣)𝐺(𝑡, 𝑣) = 𝑏�̃�(𝑡) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1) by Theorem (6.3.10). This finishes the proof.  

By Theorems 3.1 and 3.2 in [483], we have the following: 

All previous conclusions closely depend on the matrix-valued functions. This 

allows us to realize these conclusions by designing the corresponding matrix-valued 

functions. We give an example Theorem to illustrate the efficiency of our method. 

Suppose S satisfies that 

𝐿∑𝜒𝑆 (∙ +
𝑘

𝑏
)

𝐿

𝑙=1

≤ 𝑞 for a. e. 𝑡 ∈ [0,
1

𝑏𝑞
) . 

This is a natural requirement. Define 𝑔 ∈ 𝐿2(𝑆, ℂ𝐿) by 

𝐺(𝑡, 𝑣) = 0 for (𝑡, 𝑣) ∈ 𝑆∅ × [0,1) if |𝑆∅| >  0                          (120) 
and 

𝐺(𝑡, 𝑣) = 𝑈(𝑡, 𝑣)Λ(𝑡, 𝑣)𝑉(𝑡, 𝑣) for (𝑡, 𝑣) ∈ ([0,
1

𝑏𝑞
) \𝑆∅) × [0,1),       (121) 
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where 𝑈(𝑡, 𝑣) is a 𝑞 × 𝑞 matrix-valued measurable function which is unitary, and 

Λ(𝑡, 𝑣) and 𝑉(𝑡, 𝑣) is defined as the following: 

Observe that {𝑆𝐸 ∶ ∅ ≠ 𝐸 ⊂ ℕ𝑝} is a partition of [0,
1

𝑏𝑞
) \𝑆∅. We only need to 

define Λ(𝑡, 𝑣) and 𝑉(𝑡, 𝑣) on each 𝑆𝐸 × [0,1) with ∅ ≠ 𝐸 ⊂ ℕ𝑝 and |𝑆𝐸| > 0. Suppose 

∅ ≠ 𝐸 ⊂ ℕ𝑝 and |𝑆𝐸| > 0. Let 𝑉(𝑡, 𝑣) be an 𝐿𝑝 × 𝐿𝑝 matrix with 𝑉
⋃ (𝐸+𝑝(𝑙−1))𝐿
𝑙=1

(𝑡, 𝑣) 

being a unitary matrix and other entries outside 𝑉
⋃ (𝐸+𝑝(𝑙−1))𝐿
𝑙=1

(𝑡, 𝑣) being zeros. Now 

we define 

Λ(𝑡, 𝑣) = (Λ1(𝑡, 𝑣), Λ2(𝑡, 𝑣),… , Λ𝐿(𝑡, 𝑣)). 

Suppose 𝐸 = 𝑘0, 𝑘1, … , 𝑘𝑚(𝐸)−1 with 𝑘0 < 𝑘1 < ⋯ < 𝑘𝑚(𝐸)−1 for some 𝑚(𝐸) ∈

ℕ𝑝. Take Λ𝑙(𝑡, 𝑣) such that 

Λ
(ℕ𝑚(𝐸)+(𝑙−1)𝑚(𝐸))×𝐸

(𝑙) (𝑡, 𝑣) = diagΛ𝐸,0
(𝑙) (𝑡, 𝑣), Λ𝐸,1

(𝑙) (𝑡, 𝑣), … , Λ𝐸,𝑚(𝐸)−1
(𝑙)

(𝑡, 𝑣) 

and the entries outside Λ
(ℕ𝑚(𝐸)+(𝑙−1)𝑚(𝐸))×𝐸

(𝑙) (𝑡, 𝑣) are all zeros, where 

Λ𝐸,0
(𝑙) (𝑡, 𝑣), Λ𝐸,1

(𝑙) (𝑡, 𝑣), … , Λ𝐸,𝑚(𝐸)−1
(𝑙)

(𝑡, 𝑣) ∈ 𝐿2𝑆𝐸 × [0,1). 

Next we compute 〈𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝑥, 𝑥〉 and 〈�̃�(𝑡)𝑥, 𝑥〉 with 𝑥 ∈ ℂ𝐿𝑝. 

〈𝐺∗(𝑡, 𝑣)𝐺(𝑡, 𝑣)𝑥, 𝑥〉 = 〈𝑉∗(𝑡, 𝑣)Λ∗(𝑡, 𝑣)Λ(𝑡, 𝑣)𝑉(𝑡, 𝑣)𝑥, 𝑥〉 
                                  = 〈Λ∗(𝑡, 𝑣)Λ(𝑡, 𝑣)𝑉(𝑡, 𝑣)𝑥, 𝑉(𝑡, 𝑣)𝑥〉 

= 〈Λ̃(𝑡, 𝑣)𝑉(𝑡, 𝑣)𝑥, 𝑉(𝑡, 𝑣)𝑥〉,                           (122) 
where 

Λ̃(𝑡, 𝑣) = diag(Λ̃(1)(𝑡, 𝑣)Λ̃(1)(𝑡, 𝑣), … , Λ̃(𝐿)(𝑡, 𝑣)) (with 𝐿 blocks) 

Λ̃𝐸
(𝑙)(𝑡, 𝑣) = 𝑑𝑖𝑎𝑔 |𝜆𝐸,0

(𝑙) (𝑡, 𝑣)|
2
, |𝜆𝐸,1

(𝑙) (𝑡, 𝑣)|
2
, … , |𝜆𝐸,𝑚(𝐸)−1

(𝑙) (𝑡, 𝑣)|
2

 

and other entries outside Λ̃𝐸
(𝑙)(𝑡, 𝑣) being zeros. 

〈�̃�(𝑡)𝑥, 𝑥〉 = 〈�̃�(𝑡)𝑉∗(𝑡, 𝑣)𝑉(𝑡, 𝑣)𝑥, 𝑥〉 = 〈𝑉(𝑡, 𝑣)�̃�(𝑡)𝑉(𝑡, 𝑣)𝑥, 𝑥〉 
= 〈𝑉(𝑡, 𝑣)𝑥, 𝑉(𝑡, 𝑣)𝑥〉,                                                                (123) 

where we used the fact that �̃�(𝑡)𝑉(𝑡, 𝑣) = 𝑉(𝑡, 𝑣) by the definition of 𝑉(𝑡, 𝑣). 
Applying Theorems (6.3.10), (6.3.11), Corollary (6.3.12), Theorem (6.3.19) to 

𝐺(𝑔, 𝑎, 𝑏), we have 

Theorem (6.3.21)[457]: Define 𝒈 ∈ 𝐿2(ℝ, ℂ𝐿) as above, and 𝐿∑ 𝜒𝑆 (∙,
𝑘

𝑏
)𝐿

𝑙=1 ≤ 𝑞. Then 

𝒈 ∈ 𝐿2(𝑆, ℂ𝐿), and 

(i) ℳ(𝒈, 𝑎, 𝑏) = 𝐿2(ℝ, ℂ𝐿) if and only if, for each 1 ≤ 𝑙 ≤ 𝐿 and ∅ ≠ 𝐸 ⊂ ℕ𝑝 with 

|𝑆𝐸| > 0, we have that 

𝜆𝐸,𝑖
(𝑙)(∙,∙) ≠ 0 a.e. on 𝑆𝐸 × [0,1) 

for 𝑖 ∈ ℕ𝑚(𝐸). 

(ii) 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿) with frame bounds 𝐴 and 𝐵 if and only if 

√𝑏𝐴 ≤ |𝜆𝐸,𝑖
(𝑙)(∙,∙)| ≤ √𝑏𝐵 a.e. on 𝑆𝐸 × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿, 𝑖 ∈ ℕ𝑚(𝐸) and ∅ ≠ 𝐸 ⊂ ℕ𝑝 with |𝑆𝐸| > 0; 

(iii) 𝐺(𝒈, 𝑎, 𝑏) is a Riesz basis (an orthonormal basis) for 𝐿2(ℝ, ℂ𝐿) with Riesz 

bounds 𝐴, 𝐵 if and only if 
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√𝑏𝐴 ≤ |𝜆𝐸,𝑖
(𝑙)(∙,∙)| ≤ √𝑏𝐵 (|𝜆𝐸,𝑖

(𝑙)(∙,∙)| = √𝑏) a.e. on 𝑆𝐸 × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿, 𝑖 ∈ ℕ𝑚(𝐸) and ∅ ≠ 𝐸 ⊂ ℕ𝑝 with |𝑆𝐸| > 0, and 

𝐿∑𝜒𝑆 (∙,
𝑘

𝑏
)

𝑝−1

𝑘=0

= 𝑞 a.e. on [0,
1

𝑏𝑞
) ; 

(iv) 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿),  and has a unique Gabor dual of type 𝐼 if and 

only if 

√𝑏𝐴 ≤ |𝜆𝐸,𝑖
(𝑙)(∙,∙)| ≤ √𝑏𝐵 a.e. on 𝑆𝐸 × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿, 𝑖 ∈ ℕ𝑚(𝐸) and ∅ ≠ 𝐸 ⊂ ℕ𝑝 with |𝑆𝐸| > 0, and 

𝐿∑𝜒𝑆 (∙,
𝑘

𝑏
)

𝑝−1

𝑘=0

∈ {0, 𝑞} a.e. on [0,
1

𝑏𝑞
) ; 

(v) 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿), and has a unique Gabor dual of type 𝐼𝐼 if and 

only if 

√𝑏𝐴 ≤ |𝜆𝐸,𝑖
(𝑙)(∙,∙)| ≤ √𝑏𝐵 a.e. on 𝑆𝐸 × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿, 𝑖 ∈ ℕ𝑚(𝐸) and ∅ ≠ 𝐸 ⊂ ℕ𝑝 with |𝑆𝐸| > 0, and 

𝐿∑𝜒𝑆 (∙,
𝑘

𝑏
)

𝑝−1

𝑘=0

∈ {0, 𝑝} a.e. on [0,
1

𝑏𝑞
) ; 

(vi)  𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿),  its canonical Gabor dual 𝐺(𝒉, 𝑎, 𝑏) is given 

by  

𝐻(𝑡, 𝑣) = 𝑏𝑈(𝑡, 𝑣)𝛾(𝑡, 𝑣)𝑉(𝑡, 𝑣) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1), where 𝛾(𝑡, 𝑣) for a.e. (𝑡, 𝑣) ∈ 𝑆∅ × [0,1) if |𝑆∅| >

0, and 

𝛾(𝑡, 𝑣) = (𝛾(1)(𝑡, 𝑣), 𝛾(2)(𝑡, 𝑣), … , 𝛾(𝐿)(𝑡, 𝑣)) 

is defined on each 𝑆𝐸 × [0,1) with |𝑆∅| > 0 as following: each 𝛾(𝑙)(𝑡, 𝑣) is 𝑎 𝑞 ×
𝑝 matrix-valued function such that 

𝛾
(ℕ𝑚(𝐸)+(𝑙−1)𝑚(𝐸))×𝐸

(𝑙) (𝑡, 𝑣)

= diag((𝜆𝐸,0
(𝑙) (𝑡, 𝑣))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−1
, (𝜆𝐸,1

(𝑙) (𝑡, 𝑣))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−1

, … , (𝜆𝐸,𝑚(𝐸)
(𝑙) (𝑡, 𝑣))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−1
) 

and other entries outside 𝛾
(ℕ𝑚(𝐸)+(𝑙−1)𝑚(𝐸))×𝐸

(𝑙) (𝑡, 𝑣) are zeros. 

When 𝑆 = ℝ in Theorem (6.3.21), the above (121) and (122) reduce to 

𝐺(𝑡, 𝑣) = 𝑈(𝑡, 𝑣)Λ(𝑡, 𝑣)𝑉(𝑡, 𝑣); 
where 𝑈(𝑡, 𝑣) and 𝑉(𝑡, 𝑣) are respectively 𝑞 × 𝑞 and 𝐿𝑝 × 𝐿𝑝 matrix-valued 

measurable functions, and 

Λ = (Λ(1)(𝑡, 𝑣), Λ(2)(𝑡, 𝑣),… , Λ(𝐿)(𝑡, 𝑣)) , 

Λ
(ℕ𝑝+(𝑙−1)𝑝)×ℕ𝑝

(𝑙) (𝑡, 𝑣) = diag (𝜆ℕ𝑝,0
(𝑙) (𝑡, 𝑣), 𝜆ℕ𝑝,1

(𝑙) (𝑡, 𝑣), … , 𝜆ℕ𝑝,𝑝−1
(𝑙) (𝑡, 𝑣)) 
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with 𝜆ℕ𝑝,ℕ𝑝
(𝑙) (𝑡, 𝑣) ∈ 𝐿2 ([0,

1

𝑏𝑞
) × [0,1)) for 1 ≤ 𝑙 ≤ 𝐿. So, by Theorem (6.3.21), we 

have 

Corollary (6.3.22)[457]: Define 𝒈 ∈ 𝐿2(ℝ, ℂ𝐿) as above. Then 

(i) ℳ(𝒈, 𝑎, 𝑏) = 𝐿2(ℝ, ℂ𝐿) if and only if, for each 1 ≤ 𝑙 ≤ 𝐿, we have that 

𝜆ℕ𝑝,ℕ𝑝
(𝑙) (∙,∙) ≠ 0 a.e. on [0,

1

𝑏𝑞
) × [0,1); 

(ii) 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿) with frame bounds 𝐴 and 𝐵 if and only if 

√𝑏𝐴 ≤ |𝜆ℕ𝑝,ℕ𝑝
(𝑙) (∙,∙)| ≤ √𝑏𝐵 a.e. on [0,

1

𝑏𝑞
) × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿; 

(iii) 𝐺(𝒈, 𝑎, 𝑏) is a Riesz basis (an orthonormal basis) for 𝐿2(ℝ, ℂ𝐿) with Riesz 

bounds 𝐴, 𝐵 if and only if 

√𝑏𝐴 ≤ |𝜆ℕ𝑝,ℕ𝑝
(𝑙) (∙,∙)| ≤ √𝑏𝐵 (|𝜆ℕ𝑝,ℕ𝑝

(𝑙) (∙,∙)| = √𝑏) a.e. on [0,
1

𝑏𝑞
) × [0,1) 

for 1 ≤ 𝑙 ≤ 𝐿, and 𝐿𝑝 = 𝑞; 

(iv) 𝐺(𝒈, 𝑎, 𝑏) is a frame for 𝐿2(ℝ, ℂ𝐿) with frame bounds 𝐴 and 𝐵, its canonical 

Gabor dual 𝐺(𝒉, 𝑎, 𝑏) is given by 

𝐻(𝑡, 𝑣) = 𝑏𝑈(𝑡, 𝑣)𝛾(𝑡, 𝑣)𝑉(𝑡, 𝑣) 

for a.e. (𝑡, 𝑣) ∈ [0,
1

𝑏𝑞
) × [0,1), where 

𝛾(𝑡, 𝑣) = (𝛾(1)(𝑡, 𝑣), 𝛾(2)(𝑡, 𝑣), … , 𝛾(𝐿)(𝑡, 𝑣)) 

is defined on [0,
1

𝑏𝑞
) × [0,1) with 𝛾(𝑙)(𝑡, 𝑣) being 𝑎 𝑞 × 𝑝 matrix-valued function 

satisfying 

𝛾
ℕ𝑝+(𝑙−1)𝑝×ℕ𝑝

(𝑙) (𝑡, 𝑣) = diag((𝜆ℕ𝑝,0
(𝑙) (𝑡, 𝑣))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1
, (𝜆ℕ𝑝,1

(𝑙) (𝑡, 𝑣))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −1

, … , (𝜆ℕ𝑝,𝑝−1
(𝑙) (𝑡, 𝑣))

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−1
) 

for 1 ≤ 𝑙 ≤ 𝐿. 

Corollary (6.3.23)[491]: For g𝒓 ∈ 𝐿2(𝑡 −  𝜖, ℂ𝐿).Then  𝒫
ker(𝐺(𝑡,𝑣2))

(𝑡, 𝑣2), rank(𝐺(𝑡, 𝑣2)) 

are both measurable, rank(𝐺(𝑡, 𝑣2)) is 
1

(1+2𝜖)𝑞
ℤ-periodic with respect to 𝑡 and satisfies 

rank(𝐺(𝑡, 𝑣2))

≤ (1 + 2𝜖)∑𝜒𝑆 (𝑡 +
𝑘

1 + 2𝜖
)

𝑝−1

𝑘=0

.                                                               (124) 

Proof. Using an argument similar to Lemma 2.6 in [475], we can show the 

measurability of 𝒫
ker(𝐺(𝑡,𝑣2))

(𝑡, 𝑣2) and rank(𝐺(𝑡, 𝑣2)). By Lemma 3.3, 

rank(𝐺(𝑡, 𝑣2)) is 
1

(1+2𝜖)𝑞
ℤ-periodic with respect to 𝑡. Also observe that, for each 𝑘 ∈

⋃ (ℕ𝑝 + (𝑙 − 1)𝑝)
1+2𝜖
𝜖=0 , we must have 𝑘 ∈ ⋃ ((𝐴 + 𝜖)(𝑡) + (𝑙 − 1)𝑝)1+2𝜖

𝜖=0  whenever the 

𝑘-th column of 𝐺(𝑡, 𝑣2) is a nonzero vector. This implies that rank(𝐺(𝑡, 𝑣2)) is at most 

(1 + 2𝜖)∑ 𝜒𝑆 (𝑡 +
𝑘

(1+2𝜖)
)

𝑝−1
𝑘=0 , the cardinality of ⋃ ((𝐴 + 𝜖)(𝑡) + (𝜖)𝑝)

(1+2𝜖)
𝜖=0 . The 

proof is completed. 
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Corollary (6.3.24)[491]:  Let g𝒓 ∈ 𝐿2(𝑡 − 𝜖, ℂ𝐿). Then the following are equivalent: 

(v) ℳ(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) = 𝐿2(𝑡 − 𝜖, ℂ𝐿); 

(vi) rank(𝐺(𝑡, 𝑣2)) = (1 + 2𝜖)∑ 𝜒𝑆 (𝑡 +
𝑘

1+2𝜖
)

𝑝−1
𝑘=0  for a.e. (𝑡, 𝑣2) ∈ [0,

1

(1+2𝜖)𝑞
) ×

(0,1); 

(vii) range(𝐺∗(𝑡, 𝑣2)) = range (�̃�(𝑡)) for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × (0,1); 

(viii) 𝒫
range(𝐺∗(𝑡,𝑣2))

= �̃�(𝑡) for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × (0,1). 

Proof. By an argument similar to Theorem 2.7 in [475], we can show the equivalence 

between (i) and (ii). Next we show the equivalence between (ii) and (iii), and the 

equivalence between (iii) and (iv) to finish the proof. Write  𝑇 = ⋃ (ℕ𝑝\(𝐴 +
1+2𝜖
𝜖=0

𝜖)(𝑡) + (𝑙 − 1)𝑝). For almost every(𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1), by the definition of 

𝐺(𝑡, 𝑣2) we deduce that the 𝑘th row of 𝐺∗(𝑡, 𝑣2) is a zero vector if 𝑘 ∈ 𝑇. This implies 

that 

range(𝐺∗(𝑡, 𝑣2)) ⊂ {𝑥 ∈ ℂ𝐿𝑝: 𝑥 = (

𝑥0
𝑥1
⋮

𝑥𝐿𝑝−1

) , 𝑥𝑘 = 0 for 𝑘 ∈ 𝑇} = range (�̃�(𝑡)) 

and thus (iii) holds if and only if 

rank(𝐺∗(𝑡, 𝑣2)) = rank (�̃�(𝑡)) for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1 + 2𝜖)𝑞
) × [0,1).          (125) 

Since rank (�̃�(𝑡)) = (1 + 2𝜖)∑ 𝜒𝑆 (𝑡 +
𝑘

(1+2𝜖)
)

𝑝−1
𝑘=0 , (ii) is equivalent to (125). The 

equivalence between (ii) and (iii) therefore follows. Observe that �̃�(𝑡) is an orthogonal 

projection for each 𝑡 ∈ [0,
1

(1+2𝜖)𝑞
). It follows that (iii) is equivalent to (iv). 

Corollary (6.3.25)[491]:  Let g𝒓 ∈ 𝐿2(𝑡 − 𝜖, ℂ𝐿). Then 𝐺(∑g𝒓 , 1 + 𝜖 ,1 + 2𝜖) is a 

frame for 𝐿2(𝑡 − 𝜖, ℂ𝐿) with frame bounds A and 𝐴 + 𝜖 if and only if 

(1 + 2𝜖)𝐴�̃�(𝑡) ≤ 𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) ≤ (1 + 2𝜖)(𝐴 + 𝜖)�̃�(𝑡) for a.e (𝑡, 𝑣2)

∈ [0,
1

(1 + 2𝜖)𝑞
) × [0,1)                                                                    (126) 

Proof. It is easy to check that 

‖�̃�(𝑡)𝑥‖
2
= 〈�̃�(𝑡)𝑥, 𝑥〉 and 𝐺(𝑡, 𝑣2)�̃�(𝑡) = 𝐺(𝑡, 𝑣2)          (127) 

for 𝑥 ∈ ℂ𝐿𝑝 and a.e. (𝑡, 𝑣2) ∈ ℝ2. By Lemma (6.3.6) and Corollary (6.3.24), 

𝐺(∑g𝒓 , 1 + 𝜖 ,1 + 2𝜖) is a frame for 𝐿2(𝑡 − 𝜖, ℂ𝐿) with frame bounds A and 𝐴 + 𝜖 if 
and only if 

(1 + 2𝜖)𝐴𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2) ≤ (𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
2

≤ (1 + 2𝜖)(𝐴 + 𝜖 )(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)),                            (128) 

range(𝐺∗(𝑡, 𝑣2)) = range (�̃�(𝑡))                                                            (129) 

For a.e.  (𝑡, 𝑣2)  ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1). Observe that (128) is equivalent to 

(1 + 2𝜖)𝐴𝐼 ≤ 𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) ≤ (1 + 2𝜖)(𝐴 + 𝜖 )𝐼 on range(𝐺∗(𝑡, 𝑣2))       (130) 
So we only need to show that (129) and (130) hold if and only if (126) holds. Suppose 

(129) and (130) hold. Then 
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(1 + 2𝜖)𝐴‖�̃�(𝑡)𝑥‖
2
≤ 〈𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)�̃�(𝑡)𝑥, �̃�(𝑡)𝑥〉

≤ (1 + 2𝜖)(𝐴 + 𝜖 )‖�̃�(𝑡)𝑥‖
2
, 

namely, 

(1 + 2𝜖)𝐴‖�̃�(𝑡)𝑥‖
2
≤ ‖𝐺(𝑡, 𝑣2)�̃�(𝑡)𝑥‖

2
≤ (1 + 2𝜖)(𝐴 + 𝜖 )‖�̃�(𝑡)𝑥‖

2
 

for 𝑥 ∈ ℂ𝐿𝑝 and a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1). This implies (126) by (127). 

Conversely, suppose (126) holds. Then, rank(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) = rank (�̃�(𝑡)), 

equivalently, 

(1 + 2𝜖)∑𝜒𝑆 (𝑡 +
𝑘

1 + 2𝜖
)

𝑝−1

𝑘=0

= rank(𝐺(𝑡, 𝑣2))   for a.e. (𝑡, 𝑣2)

∈ [0,
1

(1 + 2𝜖)𝑞
) × [0,1) 

and thus (129) holds by Corollary (6.3.24). Also observe that 

〈𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝑥, 𝑥〉 = 〈𝐺(𝑡, 𝑣2)𝑥, 𝐺(𝑡, 𝑣2)𝑥〉 
= 〈𝐺(𝑡, 𝑣2)�̃�(𝑡)𝑥, 𝐺(𝑡, 𝑣2)�̃�(𝑡)𝑥〉 
= 〈𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)�̃�(𝑡)𝑥, �̃�(𝑡)𝑥〉 

by (127). So (130) holds by Corollary (6.3.24). The proof is completed. 

Corollary (6.3.26)[491]:  Let 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) be a frame for 𝐿2(𝑡 − 𝜖, ℂ𝐿). 
Then 

(iii) 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a Gabor dual of type 𝐼 for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if 

and only if there exists some function 𝐴 ∶ [0,
1

(1+2𝜖)𝑞
) × [0,1) → ℳ𝑞,𝑞 with 

𝐿∞ ([0,
1

(1+2𝜖)𝑞
) × [0,1)) entries such that 𝐻(𝑡, 𝑣2) =

𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2), 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡) a.e. on [0,
1

(1+2𝜖)𝑞
) × [0,1). 

(iv) 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a Gabor dual of type 𝐼𝐼 for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if 

and only if all the entries of 𝐻(𝑡, 𝑣2) belong to 𝐿∞ ([0,
1

(1+2𝜖)𝑞
) × [0,1)), and there 

exists some function 𝐴 + 𝜖 ∶ [0,
1

(1+2𝜖)𝑞
) × [0,1) → ℳ𝑞,𝑞 such that    𝐻(𝑡, 𝑣2) =

𝐺(𝑡, 𝑣2)(𝐴 + 𝜖)(𝑡, 𝑣2), 

�̃�(𝑡)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡) a.e. on [0,
1

(1+2𝜖)𝑞
) × [0,1). 

Proof. By Lemmas (6.3.3)- (6.3.16) and Corollary (6.3.24), 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a 

Gabor dual of type 𝐼 (type 𝐼𝐼) for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if and only if 

(1 + 2𝜖)𝐺(𝑡, 𝑣2) = 𝐺(𝑡, 𝑣2)𝐻∗(𝑡, 𝑣2)(𝑡, 𝑣2),                                               (131) 
𝐻(𝑡, 𝑣2) = 𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2),

(𝐻(𝑡, 𝑣2) = 𝐺(𝑡, 𝑣2)(𝐴 + 𝜖)(𝑡, 𝑣2))                                   (132) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1) and some 𝑞 × 𝑞 (𝐿𝑝 × 𝐿𝑝) matrix-valued function 

𝐴(𝑡, 𝑣2) (𝐵(𝑡, 𝑣2)) defined on [0,
1

(1+2𝜖)𝑞
) × [0,1), where 𝐴(𝑡, 𝑣2) has 
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𝐿∞ ([0,
1

(1+2𝜖)𝑞
) × [0,1)) entries. So, to finish the proof, we only need to show that, 

under the condition (132), 

𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡) (�̃�(𝑡)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡))   (133) 

holds for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1) if and only if (131) holds. Suppose 

𝐻(𝑡, 𝑣2) = 𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) and 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡).Then 

𝐺(𝑡, 𝑣2)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)𝐺(𝑡, 𝑣2)�̃�(𝑡) = (1 + 2𝜖)𝐺(𝑡, 𝑣2). 
Conversely, suppose 𝐻(𝑡, 𝑣2) = 𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) and (131). Then 

range(𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) ⊂ range(𝐺∗(𝑡, 𝑣2)).This implies that 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) =

(1 + 2𝜖)𝐼 on range𝐺∗(𝑡, 𝑣2) due to the restriction of 𝐺(𝑡, 𝑣2) on range 𝐺∗(𝑡, 𝑣2) being 

injective. Also observe that 𝐺(𝑡, 𝑣2)�̃�(𝑡) = 𝐺(𝑡, 𝑣2) and that range𝐺∗(𝑡, 𝑣2) =
range�̃�(𝑡) by Corollary (6.3.24). It follows that 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡). 
Now  suppose  𝐻(𝑡, 𝑣2) = 𝐺(𝑡, 𝑣2)(𝐴 + 𝜖)(𝑡, 𝑣2). Then (131) holds if and only if (1 +
2𝜖)𝐺∗(𝑡, 𝑣2) = 𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2), equivalently, 

(1 + 2𝜖)𝐼 = 𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2) on range (𝐺∗(𝑡, 𝑣2)).                                  (134) 

Since range 𝐺∗(𝑡, 𝑣2) = range �̃�(𝑡) by Corollary (6.3.24), can be rewritten as 

(1 + 2𝜖)�̃�(𝑡) = 𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2)�̃�(𝑡), 
Which is equivalent to �̃�(𝑡)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡). The proof is completed. 

 

Corollary (6.3.27)[491]:  Let 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) and 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) be 

both Bessel sequences in 𝐿2(ℝ, ℂ𝐿). Then 

∑ 

𝑟

𝑤𝑟 =∑ 

𝑟

𝒮ℎ𝑟,g𝑟𝑓
𝑟                                                                                        (135) 

if and only if 

𝑊∗(𝑡, 𝑣2) =
1

1 + 2𝜖
𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2)𝐹∗(𝑡, 𝑣2)                                                          (136) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1). 

Proof. For g𝑟 , ℎ𝑟 ∈ 𝐿2(ℝ) satisfying {𝐸𝑚(1+2𝜖)𝑇(𝑚+𝜖)(1+𝜖)g
𝑟  ∶ 𝑚, (𝑚 + 𝜖) ∈ ℤ} and 

{𝐸𝑚(1+2𝜖)𝑇(𝑚+𝜖)(1+𝜖)ℎ
𝑟 ∶ 𝑚, (𝑚 + 𝜖) ∈ ℤ} are Bessel sequences in 𝐿2(ℝ), define 

∑  𝑟 𝒮ℎ𝑟,g𝑟𝑓
𝑟 = ∑ ∑  𝑟 〈𝑓

𝑟 , 𝐸𝑚(1+2𝜖)𝑇(𝑚+𝜖)(1+𝜖)ℎ
𝑟〉𝐸𝑚(1+2𝜖)𝑇(𝑚+𝜖)(1+𝜖)g

𝑟
𝑚,𝑛∈ℤ  for 𝑓𝑟 ∈

𝐿2(ℝ). By Lemmas 2.1 and 2.5 in [483], we have that 
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∑ 

𝑟

𝒵(1+𝜖)𝑞(𝒮ℎ𝑟,g𝑟𝑓
𝑟)(𝑡, 𝑣2)

=  ∑ ∑

(

 
 
∫ ∫(𝐻(𝑢2, 𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ℱ(𝑢2, 𝑠))

𝑟
𝑒−2𝜋𝑖𝑚(1+2𝜖)𝑢

2
𝑒−2𝜋𝑖(𝑚+𝜖)(𝑡−𝜖)𝑑𝑢2𝑑(𝑡

1

0

1
1+2𝜖

0𝑚,(𝑚+𝜖)∈ℤ𝑟∈ℕ𝑞

− 𝜖)

)

 
 
𝑒2𝜋𝑖𝑚(1+2𝜖)𝑡𝑒2𝜋𝑖(𝑚+𝜖)𝑣

2
𝒵(1+𝜖)𝑞g

𝑟(𝑡 − 𝑟(1 + 𝜖), 𝑣2) 

for a.e. (𝑡, 𝑣2) ∈ [0,
𝑝

(1+2𝜖)
) × [0,1), which is equivalent to 

∑ 

𝑟

(𝒵(1+𝜖)𝑞(𝒮ℎ𝑟,g𝑟𝑓
𝑟) (𝑡 +

𝑘

1 + 2𝜖
, 𝑣2))

𝑘∈ℕ𝑝

=
1

1 + 2𝜖
𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∑  

𝑟

(𝒵(1+𝜖)𝑞𝑓
𝑟 (𝑡 +

𝑘

1 + 2𝜖
, 𝑣2))

𝑘∈ℕ𝑝

 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

1+2𝜖
) × [0,1) by a simple computation. Observe that 

∑ 

𝑟

𝒮ℎ𝑟,g𝑟𝑓
𝑟

= ( ∑ ∑ 

𝑟

𝒮ℎ𝑟(1+𝜖),g𝑟1𝑓1+𝜖
𝑟

(1+2𝜖)

𝜖=0

, ∑ ∑ 

𝑟

𝒮ℎ𝑟(1+𝜖),g𝑟1𝑓
𝑟
(1+𝜖)

(1+2𝜖)

𝜖=0

, … , ∑ ∑ 

𝑟

𝒮ℎ𝑟1+𝜖,g1𝑟  𝑓1+𝜖
𝑟

(1+2𝜖)

𝜖=0

). 

It follows that (135) holds if and only if 

∑ 

𝑟

(𝒵(1+𝜖)𝑞𝑤(1+𝜖)′
𝑟 (𝑡 +

𝑘

1 + 2𝜖
, 𝑣2))

𝑘∈ℕ𝑝

=
1

1 + 2𝜖
∑ ∑ 

𝑟

𝐺(1+𝜖)′
∗ (𝑡, 𝑣2)𝐻(1+𝜖)(𝑡, 𝑣

2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (𝒵(1+𝜖)𝑞𝑓
𝑟 (𝑡

(1+2𝜖)

𝜖=0

+
𝑘

1 + 2𝜖
, 𝑣2))

𝑘∈ℕ𝑝

 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

1+2𝜖
) × [0,1) and 1 ≤ (𝑙 + 𝜖)′ ≤ 𝑙 + 2𝜖, equivalently, 

∑ 

𝑟

𝒵(1+𝜖)𝑞𝑤𝑙′
𝑟 (𝑡 − 𝑟(1 + 𝜖) +

𝑘

1 + 2𝜖
, 𝑣2) 
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=
1

1 + 2𝜖
∑ ∑∑ 

𝑟

(∑ 𝒵(1+𝜖)𝑞g(1+𝜖)′
𝑟 (𝑡 − (𝑚 + 𝜖)(1 + 𝜖)

𝑛∈ℕ𝑝𝑗∈ℕ𝑝

1+2𝜖

𝜖=0

+
𝑘

1 + 2𝜖
, 𝑣2)𝒵(1+𝜖)𝑞ℎ

𝑟
(1+𝜖)′ (𝑡 − (𝑚 + 𝜖) + 1 + 𝜖 +

𝑗

1 + 2𝜖
, 𝑣2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)

× 𝒵(1+𝜖)𝑞𝑓
𝑟
(1+𝜖)

(𝑡 +
𝑗

1 + 2𝜖
, 𝑣2)                                                          (137) 

For a.e. (𝑡, 𝑣2) ∈ [0,
1

1+2𝜖
) × [0,1), 𝑘 ∈ ℕ𝑝 and 1 ≤ 𝑙 + 𝜖 ≤ 𝑙 + 2𝜖. By a simple 

computation, can be rewritten as 

𝑊(1+𝜖)′
∗ (𝑡, 𝑣2) =

1

1 + 2𝜖
∑ 𝐺(1+𝜖)′

∗ (𝑡, 𝑣2)𝐻(1+𝜖)(𝑡, 𝑣
2)𝐹(1+𝜖)

∗ (𝑡, 𝑣2)

(1+2𝜖)

𝜖=0

 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1) and 1 ≤ (1 + 𝜖)′ ≤ (𝑙 + 2𝜖), equivalently, 

∑ 

𝑟

𝒵(1+𝜖)𝑞𝑤
𝑟
(1+𝜖)′ (𝑡 − 𝑟(1 + 𝜖) +

𝑘

1 + 2𝜖
, 𝑣2)

=
1

1 + 2𝜖
∑ ∑∑ 

𝑟

(∑ 𝒵(1+𝜖)𝑞g
𝑟
(1+𝜖)′

(𝑡 − (𝑚 + 𝜖)(1 + 𝜖)

𝑁∈ℕ𝑝𝑗∈ℕ𝑝

𝑙+2𝜖

𝜖=0

+
𝑘

1 + 2𝜖
, 𝑣2)𝒵(1+𝜖)𝑞ℎ

𝑟
(1+𝜖) (𝑡 − (𝑚 + 𝜖)(1 + 𝜖) +

𝑗

1 + 2𝜖
, 𝑣2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
) 

×∑ 

𝑟

𝒵(1+𝜖)𝑞𝑓(1+𝜖)
𝑟 (𝑡 − 𝑟(1 + 𝜖) +

𝑗

1 + 2𝜖
, 𝑣2),                                   (138) 

for a .e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1) and  (𝑟, 𝑘) ∈ ℕ𝑞 × ℕ𝑝. 

Next we show the equivalence between (137) and (138) to finish the proof. 

For(𝑡, , 𝑟, 𝑘) ∈ [0,
1

(1+2𝜖)𝑞
) ∈ ℕ𝑞 × ℕ𝑝, define 𝜏 (𝑡 − 𝑟(1 + 𝜖) +

𝑘

1+2𝜖
) = 𝑡′ +

𝑘′

1+2𝜖
 if 

(𝑡 − 𝑟(1 + 𝜖) +
𝑘

1+2𝜖
) = 𝑡′ +

𝑘′

1+2𝜖
+𝑚(1 + 𝜖)𝑞 for some (𝑡′, 𝑘′, 𝑚) ∈ [0,

1

1+2𝜖
) ×

ℕ𝑝 × ℤ. Then it is easy to check that 𝜏 is a bijection from ⋃ ⋃ ([0,
1

(1+2𝜖)𝑞
) −𝑘∈ℕ𝑝𝑟∈ℕ𝑞

𝑟(1 + 𝜖) +
𝑘

1+2𝜖
) onto ⋃ ([0,

1

1+2𝜖
) +

𝑘

1+2𝜖
)𝑘∈ℕ𝑝 , and (138) can be rewritten as 

∑ 

𝑟

𝒵(1+𝜖)𝑞𝑤
𝑟
(1+𝜖)′ (𝑡

′ +
𝑘′

1 + 2𝜖
+𝑚(1 + 𝜖)𝑞, 𝑣2) 
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=
1

1 + 2𝜖
∑ ∑ ∑ 

𝑟

(∑ 𝒵(1+𝜖)𝑞g
𝑟
(1+𝜖)′

(𝑡′ − ((𝑚 + 𝜖) − 𝑟)(1 + 𝜖) +
𝑘′

1 + 2𝜖
𝑛∈ℕ𝑞𝑗∈ℕ𝑝

(1+2𝜖)

𝜖=0

+𝑚(1 + 𝜖)𝑞, 𝑣2)

× 𝒵(1+𝜖)𝑞ℎ
𝑟
(1+𝜖) (𝑡

′ − ((𝑚 + 𝜖) − 𝑟)(1 + 𝜖) +
𝑘′ − 𝑘 + 𝑗

1 + 2𝜖
+𝑚(1 + 𝜖)𝑞, 𝑣2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
) 

× 𝒵(1+𝜖)𝑞𝑓
𝑟
ℎ𝑟(1+𝜖)

(𝑡′ +
𝑘′ − 𝑘 + 𝑗

1 + 2𝜖
+ 𝑚(1 + 𝜖)𝑞, 𝑣2).               (139) 

Since ℕ𝑞 − 𝑟 is 𝑞ℤ-congruent to ℕ𝑞, and ℕ𝑝 + (𝑘
′ − 𝑘) is 𝑝ℤ-congruent to ℕ𝑝, (139) is 

equivalent to 

𝒵(1+𝜖)𝑞𝑤
𝑟
(1+𝜖)′ (𝑡

′ +
𝑘′

1 + 2𝜖
, 𝑣2) 

=
1

1 + 2𝜖
∑ ∑ (∑ 𝒵(1+𝜖)𝑞g

𝑟
(1+𝜖)′

(𝑡′ − (𝑚 + 𝜖)(1 + 𝜖)

𝑛∈ℕ𝑞𝑗∈ℕ𝑝

(1+2𝜖)

𝜖=0

+
𝑘′

1 + 2𝜖
, 𝑣2)𝒵(1+𝜖)𝑞ℎ

𝑟
(1+𝜖) (𝑡

′ − (𝑚 + 𝜖)(1 + 𝜖) +
𝑗

1 + 2𝜖
, 𝑣2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
)𝒵(1+𝜖)𝑞𝑓

𝑟
(1+𝜖)

(𝑡′

+
𝑗

1 + 2𝜖
, 𝑣2) 

by quasi-periodicity of 𝒵(1+𝜖)𝑞. It is exactly (137) due to 𝜏 is a bijection from the set 

⋃ ⋃ ([0,
1

(1+2𝜖)𝑞
) − 𝑟(1 + 𝜖) +

𝑘

1+2𝜖
)𝑘∈ℕ𝑝𝑟∈ℕ𝑞  onto ⋃ ([0,

1

1+2𝜖
) +

𝑘

1+2𝜖
)𝑘∈ℕ𝑝 . The 

proof is completed. 

Corollary (6.3.28)[491]: Let 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) be a frame for 𝐿2(𝑆, ℂ𝐿), and 

𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) be a Bessel sequence in 𝐿2(𝑡 − 𝜖, ℂ𝐿). Then 𝐺(∑ ℎ𝒓𝒓 , 1 +
𝜖, 1 + 2𝜖) is the canonical Gabor dual of 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if and only if 

𝐻(𝑡, 𝑣2) = (1 + 2𝜖)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
 for a.e.  (𝑡, 𝑣2)

∈ [0,
1

(1 + 2𝜖)𝑞
) × [0,1).                                                       (140) 

Proof. 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is the canonical Gabor dual of 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) 
if and only if 

∑ 

𝑟

𝒮g𝑟,g𝑟𝒉
𝒓 =∑ 

𝑟

g𝑟 ,                                                                         (141) 

Which is equivalent to 

𝐺∗(𝑡, 𝑣2) =
1

1 + 2𝜖
𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝐻∗(𝑡, 𝑣2) for a.e. (𝑡, 𝑣2) ∈ [0,

1

(1 + 2𝜖)𝑞
) × [0,1) 

by Corollary (6.3.27), namely, 
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𝐺(𝑡, 𝑣2) =
1

1 + 2𝜖
𝐻(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) for a.e. (𝑡, 𝑣2)

∈ [0,
1

(1 + 2𝜖)𝑞
) × [0,1).                                                   (142) 

Then (140) implies (142) due to (𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) =

𝒫range𝐺
∗(𝑡, 𝑣2). 

Next we show the converse implication to finish the proof. Suppose (142) holds. Since 

the canonical Gabor dual is a dual of type 𝐼, we have that 𝐻(𝑡, 𝑣2) = 𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) 
for some 𝐴(𝑡, 𝑣2) by Corollary (6.3.26). Combined with (142), it follows that 

(1 + 2𝜖)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†

= 𝐻(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†

= 𝐴(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
 = 𝐻(𝑡, 𝑣2) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1), where we used the fact that 

𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
= 𝒫range𝐺

∗(𝑡, 𝑣2). 

Eq. (140) therefore follows. The proof is completed. 

Corollary (6.3.29)[491]: Let 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) be a frame for 𝐿2(𝑡 − 𝜖, ℂ𝐿). 
Then, for any Bessel sequence  𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖), we have 

(iii) 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a Gabor dual of type 𝐼 for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if 

and only if there exists some function 𝒜 ∶ [0,
1

(1+2𝜖)𝑞
) × [0,1) → ℳ𝑞,𝑞 such that 

𝐻(𝑡, 𝑣2) = (1 + 2𝜖)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))†𝐺(𝑡, 𝑣2) 

(𝐼 −
1

1+2𝜖
𝐺∗(𝑡, 𝑣2)𝒜(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) +𝒜(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)                                            

(143) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1); 

(iv) 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a Gabor dual of type 𝐼𝐼 for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) if 

there exists some function 𝒜 ∶ [0,
1

(1+2𝜖)𝑞
) × [0,1) → ℳ𝑞,𝑞 such that 

𝐻(𝑡, 𝑣2) = (1 + 2𝜖)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
 

(𝐼 −
1

1+2𝜖
𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝒜(𝑡, 𝑣2)) + 𝐺(𝑡, 𝑣2)𝒜(𝑡, 𝑣2)                                                 

(144) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1). 

Proof. (i) Sufficiency. Suppose (143) holds. Then 

𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)

= (1 + 2𝜖)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)

+ 𝐺∗(𝑡, 𝑣2)𝒜∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)

− 𝐺∗(𝑡, 𝑣2)𝒜∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2). 

Since 𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
= 𝒫range(𝐺(𝑡,𝑣)), we have that 
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−𝐺∗(𝑡, 𝑣2)𝒜∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†

+ 𝐺∗(𝑡, 𝑣2)𝒜∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = 0, 
and thus 

𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2). 

So 

𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
, 

which is 𝒫
range(𝐺∗(𝑡,𝑣2))

. And then 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡) for a.e. (𝑡, 𝑣2) ∈

[0,
1

(1+2𝜖)𝑞
) × [0,1) by Corollary (6.3.24). Therefore, 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a 

Gabor dual of type 𝐼 for 𝐺(∑ g𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) by Corollary (6.3.26). 

Necessity, Suppose 𝐺(∑ ℎ𝒓𝒓 , 1 + 𝜖, 1 + 2𝜖) is a Gabor dual of type 𝐼 for 𝐺(∑ g𝒓𝒓 , 1 +
𝜖, 1 + 2𝜖). Then, 𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡), and there exists some ℬ ∶

[0,
1

(1+2𝜖)𝑞
) × [0,1) → ℳ𝐿𝑝,𝐿𝑝 such that 𝐻(𝑡, 𝑣2) = ℬ(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) for a.e. (𝑡, 𝑣2) ∈

[0,
1

(1+2𝜖)𝑞
) × [0,1) by Corollary (6.3.26). Take 𝒜(𝑡, 𝑣2) = ℬ(𝑡, 𝑣2) −

(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))†. Then 

(1 + 2𝜖)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2) (𝐼 −

1

1 + 2𝜖
𝐺∗(𝑡, 𝑣2)𝒜(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))

+𝒜(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)

= 𝐻(𝑡, 𝑣2) + (1 + 2𝜖)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)

− (𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))†𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)𝐻(𝑡, 𝑣2)

+ (𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))

†
𝐺(𝑡, 𝑣2)

− (𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)

= 𝐻(𝑡, 𝑣2) + (1 + 2𝜖)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)𝐺 − (1

+ 2𝜖)(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
𝐺(𝑡, 𝑣2)�̃�(𝑡) 

= 𝐻(𝑡, 𝑣2)                                                                                                      (145) 

Due to 𝐺(𝑡, 𝑣2)�̃�(𝑡) = 𝐺(𝑡, 𝑣2) and (𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))(𝐺(𝑡, 𝑣2)𝐺∗(𝑡, 𝑣2))
†
=

𝒫
range(𝐺(𝑡,𝑣2))

. (ii) Suppose (144) holds. Then 

�̃�(𝑡)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) 

+�̃�(𝑡)𝒜∗(𝑡, 𝑣2)(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) − �̃�(𝑡)𝒜∗(𝑡, 𝑣2) 

× (𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))†(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)).     (146) 

Observe that (𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2))
†
(𝐺∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2)) = 𝒫

range(𝐺∗(𝑡,𝑣2))
. From (146), 

we deduce that 

�̃�(𝑡)𝐻∗(𝑡, 𝑣2)𝐺(𝑡, 𝑣2) = (1 + 2𝜖)�̃�(𝑡) 

for a.e. (𝑡, 𝑣2) ∈ [0,
1

(1+2𝜖)𝑞
) × [0,1) by Theorem (124). This finishes the proof.  
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