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Abstract

The description of the spectra tiling properties and Gabor orthonormal
bases generated by the unit cubes and of the exponential for the n-cube are
characterized. In addition the uniformity of non-uniform Gabor bases, atomic
characterizations of modulation spaces through Gabor representations with
Weyl-Heisenberg frames on Hilbert space, slanted matrices and Banach
frames are clearly improved. We obtain the density, stability, generated
characteristic function and Hamiltonian deformations of Gabor frames. We
find estimates for vector —valued Gabor frames of Hermite functions plus
periodic subsets of the real line. The Gabor frame sets for subspace with

totally positive functions and deformation of Gabor systems are considered.
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Introduction

Let Q = [0, 1)? denote the unit cube in d-dimensional Euclidean space R? and let
T be a discrete subset of R% . We relate the spectra of sets 2 to tiling in Fourier space.
We develop such a relation for a large class of sets and apply it to geometrically
characterize all spectra for the n-cube. There have been extensive studies on non-
uniform Gabor bases and frames. But interestingly there have not been a single example
of a compactly supported orthonormal Gabor basis in which either the frequency set or
the translation set is non-uniform. Nor has there been an example in which the modulus
of the generating function is not a characteristic function of a set. We show that in the
one dimension and if we assume that the generating function g(x) of an orthonormal
Gabor basis is supported on an interval, then both the frequency and the translation sets
of the Gabor basis must be lattices.

Given s € R and 1 < p, q < o the modulation space M, ,(R™) can be described
as follows, wusing the Gauss-function go, go(x) = exp(—x2), M;,(R™) =

1
{0|0 €S',go*0og € LP(R™) and [0|M1§,q = [mellMtgo * O'”g(l + |t|)51’]5 < OO]}

(Writing M, M. f (x) = exp(ix.t)f(x), t,x € R™) for the modulation operator. Among
these spaces one has the classical potential spaces LZ(R™) = Mj3,(R™) and the
remarkable Segal algebra S,(R™) = MP,(R™). A Gabor system is a set of time-

frequency shifts S(g,A) = {e?™P*g(x — a)}(a'b)eA of a function g € L?(R%). We

show that if a finite union of Gabor systems U%_, S(gy ,A4,) forms a frame for L?(R%)
then the lower and upper Beurling densities of A = Uj,-, Ay satisfy D=(A) = 1 and
DT (A) < co. We study the stability of Gabor frames with arbitrary sampling points in
the time-frequency plane, in several aspects. We prove that a Gabor frame generated by
a window function in the Segal algebra S,(R%) remains a frame even if (possibly) all
the sampling points undergo an arbitrary perturbation, as long as this is uniformly small.
We give explicit stability bounds when the window function is nice enough, showing
that the allowed perturbation depends only on the lower frame bound of the original
family and some qualitative parameters of the window under consideration.

A Weyl-Heisenberg frame {E,.;Tha9dmnez = {€2™0g(- — na)} for

mmnez

L?(R) allows every function f € L?(R) to be written as an infinite linear combination of
translated and modulated versions of the fixed function g € L2(R). We find sufficient
conditions for {E;,,T1a9}mnez 10 be a frame for span{E,,;T,a9}mnez » Which, in
general, might just be a subspace of L?(R). Even our condition for {E,,,;, Ty 9}mnez tO
be a frame for L?(R) is significantly weaker than the previous known conditions. We
derive frame bound estimates for vector-valued Gabor systems with window functions
belonging to Schwartz space. We provide estimates for windows composed of Hermite
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functions. The well-known density theorem for one-dimensional Gabor systems of the
form {e?™mb¥g(x — na)}m,nez’ where g € L?(R), states that a necessary and
sufficient condition for the existence of such a system whose linear span is dense in
L?*(R), or which forms a frame for L?(R), is that the density condition ab < 1 is
satisfied. We study the analogous problem for Gabor systems for which the window
function g vanishes outside a periodic set S © R which is a Z-shift invariant. We obtain
measure-theoretic conditions that are necessary and sufficient for the existence of a
window g such that the linear span of the corresponding Gabor system is dense in

I2(S).

We investigate the characterization problem which asks for a classification of all
the triples (a, b, ¢) such that the Gabor system {e??™™ty .., c1nay: m,n € Z} is a frame
for L2(R). With the help of a set-valued mapping defined on certain union of intervals,
we are able to provide a complete solution for the case of ab being a rational number.
Let g be a totally positive function of finite type, i.e., (&) = [}, (1 + 2mis5, &) for
5, ERand M = 2. Then the set {e2™Flg(t — ak):k,l € Z}is a frame for L*(R), if
and only if a8 < 1. This result is a first positive contribution to a conjecture of |I.
Daubechies from 1990. So far the complete characterization of lattice parameters a, 3
that generate a frame has been known for only six window functions g.

We consider the problem in determining the countable sets A in the time-frequency
plane such that the Gabor system generated by the time-frequency shifts of the window
X[0,1]¢ associated with A forms a Gabor orthonormal basis for L (R%). We show that, if

this is the case, the translates by elements A of the unit cube in R2¢ must tile the time-
frequency space R??. By studying the possible structure of such tiling sets, we
completely classify all such admissible sets A of time-frequency shifts whend = 1, 2.

We present a rare combination of abstract results on the spectral properties of
slanted matrices and some of their very specific applications to frame theory and
sampling problems. We show that for a large class of slanted matrices boundedness
below of the corresponding operator in p for some p implies boundedness below in p for
all p. Gabor frames can advantageously be redefined using the Heisenberg—\Weyl
operators familiar from harmonic analysis and quantum mechanics. Not only does this
redefinition allow us to recover in a very simple way known results of symplectic
covariance, but it immediately leads to the consideration of a general deformation
scheme by Hamiltonian isotopies (i.e. arbitrary paths of non-linear symplectic mappings
passing through the identity). We introduce a new notion for the deformation of Gabor
systems. Such deformations are in general nonlinear and, in particular, include the
standard jitter error and linear deformations of phase space. With this new notion we
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show a strong deformation result for Gabor frames and Gabor Riesz sequences that
covers the known perturbation and deformation results.

We investigate vector-valued Gabor frames (sometimes called Gabor
superframes) based on Hermite functions H,,. Let h = (H,, H,,..., H,) be the vector of
the first n + 1 Hermite functions. We give a complete characterization of all lattices
A € R? such that the Gabor system {e2™#2th(t — 4,): 1 = (A4,4,) € A} is a frame
for L2(R,C™*1). We obtain sufficient conditions for a single Hermite function to
generate a Gabor frame and a new estimate for the lower frame bound. We investigate
Gabor frame sets in a periodic subset S of R. We characterize tight Gabor sets in S, and
obtain some necessary/sufficient conditions for a measurable subset of S to be a Gabor
frame set in S. The notion of vector-valued frame (also called superframe) was first
introduced by Balan of multiplexing. It has significant applications in mobile
communication, satellite communication, and computer area network. For vector-valued
Gabor analysis, existent literatures mostly focus on L?(R, CL) instead of its subspace.
Let a > 0, and S be an aZ-periodic measurable set in R (i.e. S + aZ = S). We addresse
Gabor frames in L?(S,CL) with rational time—frequency product. They can model
vector-valued signals to appear periodically but intermittently. And the projections of
Gabor frames in L2(R, C¥)onto L2(S, CY) cannot cover all Gabor frames in L?(S, CF) if
S # R.
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Chapter 1
Spectral and Orthonormal Bases with Uniformity

We show that the exponentials e, (x): = exp (i2rtx),t € T form an othonormal
basis for L2 (Q) if and only if the translates Q + t,t € T form a tiling of R%. We study
the behavior of the orthonormal bases for n-cube. We show that the Gabor basis must
be the “trivial” one in the sense that [g(x)| = ¢,q(x) for some fundamental interval of
the translation set. We also give examples showing that compactly supported non-
uniform orthonormal Gabor bases exist in higher dimensions.

Section (1.1): Tiling Properties of the Unit Cube

For Q := [0,1)% denote the unit cube in d-dimensional Euclidean space R® .Let
T be a discrete subset of R%. We say T is a tiling set for Q, if each x € R can written
uniquely as x =q+¢t, with ge Q and t e T .We say T is a spectrum for Q, if the
exponentials

ec(x) =e?™* teT
form an orthonormal basis for L?(Q). Here juxtaposition tx of vectors t, x in R% denote
the usual inner product tx = t;x;+...+tzx, in R* and L2(Q) is equipped with usual
inner productive ,vis.,

(f,g) = j £ dm,
Q

Where m denotes Lebesgue measure.

Theorem (1.1.1)[1]: Let T be a subset of R<. Then T is a spectrum for the unit cube Q
if and only if T is atiling set for the unit cube Q.

Remark (1.1.2)[1]: As we shall discuss below there exists highly counter-intuitive
cube-tiling’s in R?for sufficiently large d. Those tiling’s can be much more
complicated than lattice tiling’s. Theorem (1.1.1) is clear if T is a lattice .The point of
Theorem (1.1.1) is that the result still holds even if the restrictive lattice assumption is
dropped.

Sets whose translates tile R? and the corresponding tiling sets have been
investigated intensively, see [3], [11], [12]. Even the one-dimensional case d =1 is
non-trivial. The study of sets whose L?-space admits orthogonal bases of exponentials
was begun in [4]. Several have appeared, see [6], [15], [13]. It was conjectured in [4]
that a set admits a tiling set if and only if it admits a spectrum, i.e, the corresponding L?-
space admits an orthogonal basis of exponentials.

Cube tiling’s have a long history beginning with a conjecture due to Minkowski:
in every lattice tiling have of R? by translates of Q some cubes must share a complete
(d — 1)-dimensional face. Minkowski’s conjecture was show in [5], see [18]. Keller [8]
while working on Minkowski’s conjecture made the stronger conjecture that one could
omit the lattice assumption in Minkowski’s conjecture. Using [19] and [2] it was shown
in [10] that there are cube tiling’s in dimensions d = 10 not satisfying Keller’s
conjecture.

The study of the possible spectra for the unit cube was initiated in [7], where
Theorem (1.1.1) was conjectured. Theorem (1.1.1) was show in [7] if d <3 and for
any d if T is periodic. The terminology spectrum for Q originates in a problem about
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the existence of certain commuting self-adjoint partial differential operators. We say
that two self-adjoint operators commute if their spectral measures commute, see [17] for
to the theory of unbounded self-adjoint operators. The following result was show in [4]
under a mild regularity condition on the boundary; the regularity condition was
removed in [14].

Theorem (1.1.3)[1]: Let 2 be a connected open subset of R? with finite Lebesque
measure, there exists a set T so that the exponentials e;, t € T form an orthogonal basis
for L2(2) if and only if there exists commuting self-adjoint operators H =

(Hy,..... ,Hg) so that each H; is defined on €, (2) and
. 1 of .
if = i2m 0x; M

Forany f € C.,”(2)andanyj =1,.....,d.

If e, t €T is an orthogonal basis for L?(2) then a commuting tuple H =
(Hy,..... ,Hy) of self-adjoint operators satisfying (1) is uniquely determined Hje, =
tiee, t € T then. Conversely, if H = (Hy,..... ,Hyz) 1s a commuting tuple of self-adjoint
operators satisfying (1) then the joint spectrum o (H) is discrete and each t € g(H) is a
simple eigen-value corresponding to the eigen-vector e;, in particular, e;, t € o(H) is
an orthogonal basis for L?(02).

We show that any tiling set is a spectrum, the converse is showed. Key ideas in
both proofs are that if (g,,) is an orthonormal family in L?(Q) and f € L2(Q) then we
have equality in Bessel’s inequality

D f gl < NIFI?

if and only if f is in the closed linear span of (g,), and a sliding lemma (Lemma
(1.1.6)) showing that we may translate certain parts of a spectrum or tiling set while
preserving the spectral respectively the tiling set property. We show some elementary
properties of spectra and tiling sets. For t € R% let Q + t:{q + t:q € Q} denote the
translate of Q by vector . We say (Q,T) is non-overlapping if the cubes Q +t and
cubes Q + t’ are disjoint for any t,t' € T. Note, T is a tiling set for Q if and only if
(Q,T) is non-overlapping and R% = Qy = U,er(Q + T). We say (Q, T) is orthogonal,
if the exponentials e,,t € T are orthogonal in L*(Q). A set T is a spectrum for Q if and

only if (Q,T) is orthogonal and
D Kenel? =1

teT
For all n € Z%. Let N denote the positive integers {1,2,3, ...} and let Z denote the set of

all integers{...,—1,0,1,2, ... }.

We received a preprint [9] by Lagarias, Reed and Wang proving our main result
.Compared to [9] the proof that any spectrum is a tiling set uses completely different
techniques, the proof that any tiling set is spectrum is a similar to the proof in [9] in
that both proof’s makes use of Keller’s Theorem (Theorem (1.1.9)) and an argument
involving an inequality becoming equality. We wish to thank Lagarias for the preprint
and useful remarks. Robert S. Strichartz helped us clarify the exposition.

The basis property is equivalent to the statement that the sum



D Kewenl =1 @

teT
For all x € R% .it is easy to see that if T has the basis property then the cubes Q + t,

t € T are non-overlapping. We show by a geometric argument that if the basis property
holds and the tiling property does not hold then the sum in (2) is strictly less than one.
Conversely, if T has the tiling property then the exponentials e;, t € T are orthogonal
by Keller’s Theorem. Plancerel’s Theorem now implies that the sum in (2) is one. The
geometric argument is based Lemma (1.1.6), An analogous lemma was used by Perron
[16] in his proof Keller’s Theorem.

We begin by proving a simple result characterizing orthogonal subsets of R<.
There is a corresponding (non-trivial) result for tiling’s, stated as Theorem (1.1.9)
below.

Lemma (1.1.4)[1]: (Spectral version of Keller’s theorem). Let T be a discrete subset of
R®. The pair (Q,T) is orthogonal if and only if given any pair t,t' € T, with t = t’,
there exists j € {1, ....,d} so that |t; — ¢;'| € N.

Proof. For t,t' € R we have

d
ey = [0 -1 3)

j=1

Where for x € R
1, if x=0;

® — eiZTL'x -1 4
W=qe -1 Lo )

i2mx

The lemma is now immediate.

We can now state showing that there is a connection between spectra and tiling
sets for the unit cube.

Corollary (1.1.5)[1]: Let T be a subset of R<. if (Q,T) is orthogonal, then (Q,T) is
non-overlapping.

A key technical lemma needed for the proofs of both implications in the main
result is the following lemma. The lemma shows that a certain part of a spectrum
(respectively tiling set) can be translated independently of it’s complement without
destroying the spectral (respectively tiling set) property. The tiling set part of The
lemma if taken from [16].

Lemma (1.1.6)[1]: Let T be a discrete subset of R?, fix a,b € R .Let
c:=(b,0,....,00 € R* And fort € T, let:
(¢, ift; —a €%

rap(t) = {t +¢c, ift;—aél.
We have the following conclusions: (a) if T is a spectrum for Q, So is ar 4, (T). (b) if
T is atiling set for Q, sois ar g, (T).
Proof. Suppose T is a spectrum for Q. The orthogonally of (Q, ar4;,(T)) is an easy
consequence of Lemma (1.1.4). Let Ay, e = eq,,,(t) for t € T. To simplify the

notation we will write A, in place of A; ., . By orthogonality and linearity A, extends
to an isometry mapping L?(Q) into itself. We must show that the range A4,L?(Q) is all
of L2(Q). Let K, be the subspace of L?(Q) spanned by the exponentials e,, t € T with
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t, —a € Z and let K_ be the subspace of L?(Q) spanned by the exponentials e, , t € T
With t; —a ¢ Z. Then A,f = f for all f € K,, So A, K, = K, .Since A, preserves
orthogonality, A,K_ € K_ . We must Show A,K_ = K_. Since b € R is arbitrary, we
also have that the map A_, is an isometry mapping K_ into itself. By construction
Apf =e.f and A_,f =e.f forall f € K_.itfollowsthat K_ = A,A_,K_ S A,K_ <
K_.Hence A,K_ = K_ as desired. The proof that ar, ,(T) is a tiling set provided T is,
follows from The last part of the proof of the Theorem (1.1.9) bellow.

For n' € z%1 let £, be the line in R? given by {(x,n’), x € R}.The idea of
our proof that any spectrum for Q must be a tiling set for Q is as follows .Suppose T is a
spectrum but not a tiling set, but not a tiling set. Fix n’ € Z¢ ! and pick a t € T (if
any) so that Q + t interseets the line ¢, applying Lemma (1.1.6) we can insure that
t, € Z. Repeating this for each n’ € z%~1 we can ensure t, € Z for any t, € T"eW,
Considering each of the remaining coordinate directions we end up with 7" being a
subset of Z4. (The meaning of T™®W changes with each application of lemma (1.1.6)).
By Lemma (1.1.8) T"™®Y is not a tiling set for Q since T was not a tiling set, so T"*V is a
proper subset of Z%, contradicting the basis property. The difficulty with this outline is
that after we apply Lemma (1.1.6) an infinite number of times the basis property may
not hold. In fact, associated to each application of Lemma (1.1.6) is an isometric
isomorphism A, . Without restrictions on the sequence (b,) the infinite product
[In=1 45, need not be convergent (e.g., with respect to the weak operator topology).
Even if the infinite product [[;_; 4, is convergent, the limit may be a non- surjective
isometry.

If we use Lemma (1.1.6) to put a large finite part of T into Z¢ then we can use
decay properties of the Fourier transform of the characteristic functions of the cube Q
to contradict (2).

The following lemma shows that sums of the Fourier transform of the
characteristic function of the cube Q over certain discrete sets has uniform decay
properties.

Lemma (1.1.7)[1]: Let ¢ be given by there exists a constant C > 0 so that
d

> [ el <5,

teTy j=1
For any N > 1, whenever T ¢ R¢ is a spectrum for the unit cube Q. Here Ty, is the set
of t €T for which|¢;| > j, for at least onej. Note, the constant C is uniform over all

spectra T for the unit cube Q and all N > 1.

Proof. Let T be a spectrum for Q. for any partition P = {I.I1.1I1.1IV} of {1,......,d},
let Ty p denote the set of t € Ty for so that t; > N for j€I; t; <—N forj €1l; 0 <
ti<N for jelll and —N <t; <0 for j € IV .Note Ty p is empty unless I U II is
non-empty. Forx € R let ¥(x) =1,if —1 <x <1 and let Y(x) =x72 if |x| > 1.

Then for t € Ty p,
d a
[ [lecnl” <] [wesp (5)
j=1 j=1



Forany s = (Sy,......,Sq) in the cube X,p givenby t; —1<s; <t; if jEITUIII,
and t;<s;<t;+1if jellulV. It follows from (5) and disjointness (Lemma
(1.1.4)) of the cubes X, p , t € Ty p that

z ﬁ|®(tj)|2§ Z jX ﬁlll(sj)dssjm ﬁl[)(sj)ds,

teTyp j=1 teTyp “UP j=1 Poj=1
Where Yy p is the set of y € R? for which N — 1 < yj for jel,yj<—-N+1forje
II,-1<y; <Nforje€llland —N < y; < 1forj € IV. By definition of ¢ we have
a

sj)ds <3¢ " ————

jyl_[vz( ) e

where n > 0 is the cardinality of I U II; since the number of possible partitions P =
{I,11,111,1V} only depends on the dimension d of R%, the proof is complete.

The following lemma shows that if T is a spectrum but not a tiling set for Q then
the set constructed in Lemma (1.1.6); is also not a tiling set for Q . It is needed because
the inverse of the transformation in Lemma (1.1.6) is not of the same form.

Lemma (1.1.8)[1]: If T is a spectrum for @ but not a tiling set for Q , then ar 4, (T) is
not a tiling set for Q.

Proof. Suppose T is a spectrum for Q but not a tiling set for Q. Let g € Q;. Let £ :=
{(x, 95,93 - ,94)} If r,s €T are so that Q +r and Q + S intersect £ then it
follows from Lemma (1.1.4) that s; —r; is an integer, since |s; —¢;| < 1 for j # 1
because Q +r and Q + s intersect £. So either t;, —a € Z forallt e T sothat Q + ¢
intersect £ or t; —a ¢ Z for all t € T so that Q + t interests . In the first case g &
Qar,,(T) inthe second case g + ¢ € Qg ., (T).

Suppose T is a spectrum for the unit cube Q. By Corollary (1.1.5); the pair (Q,T)
is non-overlapping. We must show that the union Q; = U,er(Q + t) is all of R%. To
get a contradiction suppose g & Q. Let N be so large that g € (=N + 2, N — 2)4.

Let T(N) =T n(-N—1,N + 1)¢ Letn', := (—N,—N, .....,—N) € z%~1. Pick
t € T(N) sothat @ +t intersects £,/ (if such a t exists). Use Lemma (1.1.6); with a =
0 and b = by :=t; — |t;] to conclude T; = ar 4, (T) has the basis property, it follows
from Lemma (1.1.4); that ¢, € Z forany ¢ € T; sothat Q +t intersects £,.

Let n) := (—N,—N,...,—N + 1) € Z% 1. Pick t € T;(N) so that Q + t intersects
2y, (if such a t exists). Use Lemma (1.1.6) witha = 0 and b = b, :=t; — |t1] if by +
t; —|t;l =1 and b =by:=t; —|t;]—1 if b+t —|t;] <1 to conclude T, :=
ar, qp(T1) has the basis property. It follows from Lemma (1.1.4); that t; € Z for any
t € Ty, so that Q + t intersects £,,;. Note we did not move any of the cubes in T; with
—N-1<t;<-N,forj=2,...,d.

Continuing in this manner, we end up with T’ having the basis property so that
ty EZforanyt € T'with—N —1<t; <N+ 1forj=2,...,d.Note —1 <}7h; <
1 for any n. So if at some stage t € T,, is derived from t°"8i"al € T Then we have
t,orisinal _ 1 < ¢ < ¢, °original 1 Repeating this process for each of the other
coordinate directions we end up with T"*W so that T"*W(N — 1) is a subset of the
integer lattice Z¢, any t € T™W(N — 1) is obtained from some t°¢"! € T(N), and any
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toriginal e T(N — 1) is translated onto some T"W(N). In short, we did not move any
point in T very much. By Lemma (1.1.8); it follows that (—N, N)*\Qpnew is non-
empty, hence there exists g"®" € Z4, so that g"*" € (=N, N)4\T™".Replacing T"" by
TV by TV — g™V, is necessary, and applying the process described above we may
assume g"®" = 0. To simplify the notation let T = T™*". We have

1= Y lewed? = Y Kewedl® Y Keweo)l?

teT teT(N) tETy
The first sum = 0 since T(N) c Z% and 0 ¢ T(N), the second sum is <1 for N
sufficiently large by Lemma (1.1.7); this contradiction completes the proof.

The following result (due to [8]) shows that any tiling set for the cube is
orthogonal. It is a key step in our proof that any tiling set for the cube must be a
spectrum for the cube and should be compared with Lemma (1.1.4) above. The proof is
essentially taken from [16].

Theorem (1.1.9)[1]: (Keller's Theorem). If T is a tilling set for Q, Then given any pair

t,t' € T, with ¢t = t’, there existaj € {1, ......,d} sothat|¢; —t';| € N.
Proof. Let T be a tiling set for Q. Suppose t,t’ € T. The proof is by induction on the
number of j's for which|t; — ¢’;| = 1. Suppose that |¢; —t';| < 1 for all but one €
{1,....,d} . Let j, be the exceptional j, then |tj0,t’jo| > 1. Fix x;,j # jo so that the
line ¢; = {(xy,.....,x;):x;, € R} passes through both of the cubes Q + ¢ and Q + ¢’
Considering the cubes Q + ¢, ¢t € T that intersect ¢;_ it is immediate that |¢; ,t; | € N.
For the inductive step, suppose |t; —t;| < 1 for k valuesof j and |¢;,t";| = 1,

for the remaining d — k values of j implies |t;, —t'; | € N for somej,. Lett,t' €T
be so that |t — ¢';| < 1 for k — 1 values of j and |t — ¢';| = 1 for the remaining d —
k + 1 values of j. interchanging the coordinate axes, if necessary, we may assume

|tj —t’j| >1, forj=1,..,d—k+1

lt—tj| <1, forj=d—k+2,..4d
If t; —t’y is an integer, then there we are done. Assume t, —t'y € Z. Let c =
(t; —t'1,0,....,0), andfort € T let

—c, ift,—t, €L

. t
s(t) = {E, iff, —t, & Z.
In particular, s(t) =t — cand s(t’) = t’. We claim the set S := {s(f ):t € T} is atiling
set for Q. Assuming, for a moment, that the claim is valid, we can easily complete the
proof. In fact, |s(t); —s(t')1] =0 and [s(t); —s(t");| <1for j=d—k+2,..,d,
so by the inductive hypothesis one of the numbers ¢; —t'; = s(t); —s(t");,j =
2,..,d —k+1 isanon-zero integer.

It remains to show that S is a tiling set for Q. We must show that Q is non-
overlapping and that R% c Q. First we dispense with the non-overlapping part. Let
a,a’ be distinct points in T. Suppose x is a point in the intersection(Q + s(a)) N
(Q +s(a"), then x — s(a),x —s(a") € Q In particular, 0 < x; —a; < 1and 0 < x; —
a'; <1for j=2,..,d. It follows that |a; — a';| for j = 2,...,d, so first paragraph of
the proof shows that |a; — a;’| € N, hence either a; — t;,a’y —t; € Zora; — ty,a'y —
t; € Z. In both cases we get a contradiction to the non-overlapping property of Q. In
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fact, if ay—t;,a' —t; €Z , then (Q+s(a)N(Q@+s(@)=(Q+a)n(Q+
a))—c=0.
If a; —t;,a'1—t; €Z,thenQ+s(a)N(Q+s(@)={(Q+a)n(Q+a")) =0a.

Let x € R% be an arbitrary point, then x € Q7. If x € (Q + a) for some a € T
with a, — t; € Z , then there is nothing to show, Assume x € (Q + a) forsomea € T
with a; —t; € Z .The point x + cisin Q + b for some b € T. First we show that

la; — b;| € N.Sincex € Q +a and x + ¢ € Q + b we have

OSx]—a]<1, OSX]_bJ+C]<1, (6)

for =1,..,d , so using ¢; =0, for j =2,...,d, it follows that |a; — b;| < 1, for j =
2, ...,d; an application for the first paragraph of the proof yields the desired result that
|a;, — b,| € N. Using a, — t; € Z we conclude b; — t; € Z; so using the second half of
(6) and the definition of s(b) we have x € Q + s(b); as needed.
Corollary (1.1.10)[1]: If T is a tiling set for Q, then (Q, T) is orthogonal.
Proof. This is a direct consequence of Keller’s Theorem and Lemma (1.1.4).

It is now easy to complete the proof that any tiling set for the unit cube Q must
be a spectrum for Q.

Suppose T is a tiling set for Q. By Keller’s theorem {e;:t € T} is an orthogonal
set of unit vectors in L2(Q), so by Bessel’s inequality

D lesed? <1 @

teT
for any s € R%. Not that (e, e,) is the Fourier transform of the characteristic function

of the cube Q at the points s — t. Forany r € R? we have

2
1= Keyeal'dy=| lewearars| 1dy=1
R% Q+r

teT Q+r
Where we used Plancherel’s Theorem, the tiling property, and Bessel’s inequality (7); it
follows that

Dl<ese =1 (®)

teT
for almost every s in Q + r, and since r is arbitrary, for almost every s in R%. Hence

for almost every s € R the exponential e, is in the closed span of the e,,t € T. This
completes the proof.
Section (1.2): Exponentials for the n-Cube

A compact set 2 in R™ of positive lebesgue measure is a spectral set if there is
some set of exponentials

B, = {210 ) € 4}, 9)

which when restricted to £2 gives an orthogonal basis for L?(£2), with respect to the
inner product

(f e = f G g(x)dx. (10)

Any set A that gives such an orthogonal basis is called a spectrum for 2. Only very
special sets Q in R™ are spectral sets. However, when a spectrum exists, it can be



viewed as a generalization of Fourier series, because for the n-cube 2 = [0,1]" , the
spectrum A = Z™ gives the standard Fourier basis of L?([0,1]™).

We relate the spectra of sets 2 to tiling in Fourier space. we develop such a
relation for a large class of sets and apply it to geometrically characterize all spectra for
the n-cube N = [0,1]™.

Theorem (1.2.1)[20]: The following conditions on a set A in R™ are equivalent.
(i) The set B, := {e?™**): 2 € A} when restricted to [0,1]" is an orthonormal
basis of L2([0,1]™).
(ii)The collection of sets {1 + [0,1]™:A € A} s a tiling of R™ by translates of unit
cubes.
Proof. The set D = [0,1]™ is a tight orthogonal packing region for Q = [0,1]™. To see
this, note that lemma (1.2.20) implies that D is an orthogonal packing region for (2, and
since each of Q and D has measure 1,it is tight.

(i)=(ii). By hypothesis, B, is an orthogonal set in L*([0,1]™). We showed above
that D is a tight orthogonal packing region for Q. Now Theorem (1.2.15). Applies to
conclude that A + D is a tiling of R™.

(i)=>(i). By hypothesis, A + D is a cube tiling , so by Proposition (1-2-19), B, is
an orthogonal set in L2([0,1]™). Clearly, m(2)m(D) = 1, and since A + D is a cube
tiling, it is a fortiori a cube packing. So by Theorem (1.2.14), A is a spectrum.

This result was conjectured by Jorgensen and Pedersen [26], who showed it in
dimensions n < 3. We note that in high dimensions , there are many "exotic" cube
tiling. There are aperiodic cube tiling’s in all dimensionsn > 3 , while in dimensions
n = 10 there are cube tilings in which no two cubes share a commone (n — 1)-face, see
Lagarias and and shor [29].

In theorem (1.2.1), the n-cube [0,1]™ appears in both conditions (i) and (ii), but
in functorially different context, the n-cube in (i) lies in the space domain R™ while the
n — cube in (ii) lies in the Fourier domain (R™)*, so they transform differently under
linear change of variables. Thus theorem (1.2.1) is equivalent to the following result.
Theorem (1.2.2)[20]: For any invertible linear transformation A € GL(n,R) the
following condition are equivalent.

(i) A c R™ Is a spectrum for 0, := A([0,1]™).
(i)The collection of sets {A+D,:1€ A} is a tiling of R™ where D, =

(AT)7H([0,1]™).

The main result gives a necessary and sufficient condition for a general set A to
be a spectrum of 2 in terms of a tiling of R™ by A+ D, where D is a specified
auxiliary set in Fourier space. This result applies whenever a suitable auxiliary set D
exists. We show that this is the case when 2 is an n-cube, with D also begin an n-cube,
and obtain Theorem (1.2.1).

Spectral sets were originally studied by Fuglede [21], who related them, to the
problem of finding commuting self-adjoint extension in L2[2] of the set of differential

operators —i%,...,—iai defined on the common dense domain C.°(£2). Our

1 Xn

definition of spectrum differs from his by a factor of 2m. Fuglede showed that for
sufficiently nice connected open regions (2, each spectrum A of 2 (in our sense) has
2mA as a joint spectrum of a set of commuting self-adjoint extensions of
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—iaixl, ""_iaaTn and conversely. He also showed that only very special sets 2 are
spectral sets. In particular , Fuglede [21, p 120] made the following conjecture.
A set 2 in R"™ is a spectral set if and only if it tiles R™ by translations.

Much work on spectral sets is due to Jorgenson and Pedersen (see [24]-[26], [33],
and [34]), with additional work by Lagarias and Wang [30].

The spectral set conjecture concerns tiling’s by £ in the space domain, Theorem
(1.2.2), describes spectra A for the n-cube in terms of tiling in the Fourier domain by an
auxiliary set D. in general there does not seem to be any simple relation between sets of
translations T used to tile 2 in the space domain and the set of spectra A for (2 (see [25],
[30], and [34]). We indicate a relation between the spectral set conjecture and tiling’s in
the Fourier domain — this is discussed.

Theorem (1.2.2), also implies a result concerning sampling and interpolation of
certain classes of entire functions. Given a compact set 2 of nonzero Lebesgue measure,
let B, (£2) denote the set of band-limited functions on £2,which are those entire functions
f:C" > C whose restriction to R™ is the Fourier transform of an L?-function with
compact support contained in 2. A countable set A is a set of sampling for B,(2) if
there exist, A, B > 0 such that for all f € B,(£2),

AFIZ < ) IfF DI < BIFI (11)
A€A
A set of sampling is always a set of uniqueness for B,({2), where a set A is a set of

uniqueness if for each set of complex values {c;: 1 € A} with }|c;|?> < o there is at
most one function f € B,(£2) with

f(A) =c,, foreach A €A. (12)
A set A is a set of interpolation for B, (£2) if for each such set {c;: 1 € A} there is at least
one function f € B,(£2) such that (12) holds. It is clear that a spectrum A of a spectral
set 2 is both a set of sampling and a set of interpolation for B, ({2), so Theorem (1.2.2)
immediately yields the following theorem.
Theorem (1.2.3)[20]: Given a linear transformation A in GL(n, R), set 2, = A([0,1]™)
and D, = (AT)~1([0,1]™). If A+ D, is a tiling of R", then A both a set of sampling
and a set of interpolation for B, (£24).

Here the set A has density exactly equal to the Nyquist rate |det(A)|, as is
required by results of Landau (see [31], [32]) for sets of sampling and interpolation.

We apply Theorem (1.2.1) to show that in dimensions n =1 and n = 2 any
orthogonal set of exponentials in L?([0,1]") can be completed to a basis of
exponentials of L?([0,1]™)but that this is not always the case in dimensions n > 3.

We conclude with two remarks concerning the relation of spectral sets and
tiling’s. First, in comparison with other spectral sets, the n-cube [0,1]* has an
enormous variety of spectra A. It seems likely that a “generic” spectral set has a unique
spectrum, up to translations. Second, the tiling result applies to more general sets 2 than
linearly transformed n-cubed 2, = A([0,1]™); we give the one-dimensional example
N =1[0,1] U [2,3].

After completing a preprint in early 1998, we learned that A. losevich and S.
Pedersen [23] simultaneously and independently obtained a proof of Theorem (1.2.1)



by a different approach M. Kolountzakis and [28] has showed Conjecture (1.2.12)

below, building on the approach.

Natation (1.2.4)[20]: For x € R", let [|x|| denote the Education length of x. We let
B(x,T) ={y:lly —xll =T}

denote the ball of radius T centered at x. The Lebesgue measure of a set 2 in R™ is

denoted m (). The Fourier transform f£(u) is normalized by

fay = [ em2me feda.
Rn
We let
e, (x) = e?™@AX)  for x € R™. (13)
Some (see [21], [26]) define e, (x) differently , without the factor 2 in the exponent .
We consider packing’s and tiling’s in R™ by compact sets £ of the following
kind.
Definition (1.2.5)[20]: A compact set 2 in R" is a regular region if it has positive
Lebesgue measure m(£2) > 0, is the closure of its interior £2°, and has a boundary 02 =
1 /02° of measure zero.
Definition (1.2.6)[20]: If 2 is a regular region, then a discrete set A is a packing set for
N if the sets {N + A : A € A} have disjoint interiors. It is a tiling set if, in addition,
the union of the sets {2 + 1 : 1 € A} covers R"™. In these cases we say A+ is a
packing or tiling of R™ by 2, respectively.
To a vector 1 in R™, we associate the exponential function.
e, (x) = e?™A.%)  for x € R™ (14)
Given a discrete set A in R™, we set
B, == {e;(x): 1 € A}. (15)
Now suppose that B, restricted to a regular region £ gives an orthogonal set of
exponentials in L?(2). We derive conditions that the points of A must satisfy. Let

1, forx € (2,
Xo(x) = {O, forx ¢ (16)
be the characteristic function of (2, and consider its Fourier transform
Xo(u) = Je‘zni(u'x)xﬂ(x)dx, u € R". (17)

Rn

Since 2 is compact, the function X,(u) is an entire function of u € C™. We denote the
set of real zeros of X,(u) by

Z(2Q)={ueR": x,(u) = 0}. (18)
Lemma (1.2.7)[20]: If 2 is a regular region in R™, then a set A gives an orthogonal set
of exponentials B, in L2(2) if and only if

A—AcZ()u{o}. (19)

Proof. For distinct 4, u € A we have

Xo(A—p) = f e ~2mA-mX) x o (x)dx
RTL
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— f e—Zni(/l,x)ezm(u,x)dx — <eA’ eu)g. (20)
0
If (19) holds, then (e;, e, ), = 0, and conversely.

This lemma implies that the points of A have the property of being “well-spaced”
in the sense of being uniformly discrete; that is, there is some positive R such that any
two points are no closer than R. Indeed, since X,(0) = m(Q) > 0, the continuity of
X, (u) implies that there is some ball B(0,R) around zero that includes no point of
Z(Q) hence, |[1 —u|l = Rforall A, u € 4,1 # p.

Definition (1.2.8)[20]: Let Q be a regular region in R™. A regular region D is said to be
an orthogonal packing region for ( if

(D° -=D°)NZ(Q) = 0. (21)
Lemma (1.2.9)[20]: Let Q be a regular region in R™, and let D be an orthogonal
packing region for Q. If a set A gives an orthogonal set of exponentials B, in L?(12),
then A is a packing set for D.
Proof. If A # u € A, then Lemma (1.2.7) gives A —u € Z(2). By definition of an
orthogonal packing region we have D° n (D° + u) = @, for all u € Z( 2); hence

D°Nn(D° +1—p) =0,

IS required.

As indicated above, each regular region 2 has an orthogonal packing region D
given by a ball B(0,T) for small enough T. The larger we can take D, the stronger the
restrictions imposed on A.

Lemma (1.2.10)[20]: If Q is a spectral set and if D is an orthogonal packing region for
Q, then

m(D)m(N) < 1. (22)
Proof. Let A be a spectrum for Q. Then A is a set of sampling for B, (), so the density
results of Landau [31] (see also Grochenig and Razafinjatovo [22]) give

d(4) = lim inf #(AN[-T,TI") = m(Q). (23)

"
Now A + D is a packing of R", hence if R = diam(D), we have
0w (AN[-T, T]") = —m{U A+ D): A €AN [T, T]"}

" iy 2T)n
m([-T+RT+R]") _ R
= (2T)n - (1 + ZT) ' (24)
Letting T — oo and taking the inferior limit yields

m(D)d(A) <1, (25)
and now (23); Yields (22).

We give a self-contained proof of Lemma (1.2.10). The inequality of Lemma
(1.2.10) Does not hold for general sets Q. In fact the set 2 =[0,1]U [2,2 + 8] for
suitable irrational 8 has a Fourier transform x,(¢) that has no real zeros; soZ(Q) = 9,
and any regular region D, of arbitrarily large measure, is an orthogonal packing region
for Q.

In view of Lemma (1.2.10) we introduce the following terminology.

Definition (1.2.11)[20]: An orthogonal packing region D for a regular region Q is tight
if
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1

This definition transforms in the Fourier domain under linear transformations: If
D is a tight orthogonal packing region for a regular region (, then for any A € GL(n, R)
the set (A7)~1(D) is a tight orthogonal packing region for A(£).

There are many spectral sets that have tight orthogonal packing regions. We show
that D = [0,1]" is a tight orthogonal packing region for Q. = [0,1]™. Another
Example in R? is the region

Q=10,1] U [2,3]. (27)

We can take

p=[ol]ufis 28
- )4 2)4 . ( )
Indeed, xq (x) is the convolution of o ;1(x) with the sum of two delta functions (6, +
&,). Thus

Ra(x) = (1 + ™) f1o 17 (%) (29)
From this it is easy to check that the zero set is given by
1 1
2(Q) = (Z\{0}) U (Z + z) U (— 2+ z), (30)

that D is an orthogonal packing region for Q, and, since m(D) =1/2 = 1/m(R2), that
D is tight. A spectrum for Qis A = Z U (Z + (1/4)).
Lemma (1.2.12)[20]: Together with the spectral set conjecture leads us to propose the
following.
Conjecture (1.2.13)[20]: If Q tiles R™ by translations and if D is an orthogonal packing
region for Q, then

m()m(D) < 1. (31)

This conjecture has now been proved by Kolountzakis [28, theorem 7].

A main result is the following criterion that relates spectra to tilings in the Fourier
domain.
Theorem (1.2.14)[20]: Let Q be a regular region in R™, and let A be such that the of
exponentials B, is orthogonal for L?(Q), suppose that D is a regular region with

m(2)m(D) =1 (32)
Such that A + D is a packing of R™. Then A is a spectrum for Q if and only if A+ D is
a tiling of R™.
Proof. suppose first that A is a spectrum for Q. pick a "bump function” y(x) € C°(Q),
and set

Ye(x) = e 274Xy (), fort € R™.

By hypothesis 8, = {e;(x): A € A} is orthogonal and complete for L?(£). Thus, on £,

we have
2mi{A,x)

- (8 ryt(x))ﬂ. (A, x)
P~ ) e, (33)

AEA

with coefficients

(e2™A0), y, (X)) 1 2mi 1 j
— - {(A,x) dx = —2mi{A+t,x) d

lesI2 mmje Ve(x)dx mmje y(x)dx
Q

Rn
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LA
= m—my(ﬂ +t), (34)
where m(Q) is the Lebesgue measure of Q. The rapid decrease of ¥ with increasing
radius ||x|| and the well-spaced property of A show that the right side of (33)
converges absolutely and uniformly on R™. Since y,(x) is continuous, we have
1 .

—z 74+ )e?™A% - forallx € Q. (35)

m(Q) A€A
This yields, for all t € R", that

. 1 .
]/(X) = eznl(t'x)yt(x) = m z ]’/\(/1 + t)eznl(/l-l-t‘x), for all x € Q. (36)
A€A
The series on the right side of (36), converges absolutely and uniformly for all x € R",
and t in any fixed compact subset of R™, but it is only guaranteed to agree with y(x) for
x € (.
We now integrate both sides of (36) in t over all t € D to obtain

Ye(x) =

1 .
m(D)y(x) = y(x) f Xo(O)dt =~ Y f (A + Demitet) gy
R AEA D

1 .
— 5 2mi{u,x)
D j P(we du, forallx € Q. (37)

A+D
In the last step we used the fact that the translates A + D overlap on sets of measure

zero, because A + D is packing of R™. Since m(D) = 1/m(Q), (37) yields

y(x) = j h(w) y(u)e?™wX gy, for all x € Q. (38)
Rn
where
(1, ifu€A+D,
h(uw) = {O, otherewise.

Define k € L(R™) by k = h, so (38) asserts that y(x) = k(x) for almost all x € Q.
Plancherel’s theorem on L?(R"™) applied to k, together with (38), gives

1713 = Ihl13 = 1kl = jlk(x)l2 dx = JI)/(X)Ide =1vlz. 39
Q Q

Since plancherel’s theorem also gives ||7]|5 = ||y||5, we must have

17113 = IR7II3. (40)
We next show that this equality implies that ~(u) = 1 almost everywhere on R™. To do
this we show that y(u) = 0 in R™. Since y has compact support, the paley-wiener
theorem states that ¥ (u) is the restriction to R™ of an entire function on C™ that satisfies
an exponential growth condition at infinity, see stein and Weiss [36, Theorem 4.9].
Thus ¥ (w) is real analytic on R™ and is not identically zero, hence

Z ={u € R":y(u) = 0}
has Lebesgue measure. Together with (40) this yields
h(u) =1, aeinR", (41)
Thus, A + D covers all R™ except a set of measure zero.
13



Finally we show that A + D covers all of R™. By the well-spaced property of A
and the compactness of D, the set A + D is locally the union of finitely many translates
of D ; hence A + D is closed. Thus, the complement of A 4+ D is an open set. But the
complement of A+ D has zero Lebesgue measure, hence, it is empty, so A+ D is a
tiling of R™.

Suppose A + D tiles R™. by hypothesis, B, is an orthogonal set in L?(2), and to
show that A is a spectrum it remains to show that it is complete in L?(2). Let S be the
closed span of B, in L?(2).We show that C°(2) is contained in S. Since C () is
dense in L2(2), this implies S = L2(2).

Foreachy € CZ°(2), set

Ye(x) = e 2THEX)y (), fort € R™.
Since the elements of B, are orthogonal, Bessel’s inequality gives

ey 1
Z2 > = E 7(A+1)]?, 42

where the last series converges uniformly on compact sets by the rapid decay of 7 at
infinity. Integrating this inequality over t € D yields

I lyell?de = (n)f Yeal P2+ £)]? dt.
Since |ly¢ll = llyll for all ¢t and since A+ S is a tiling, we obtain m(D)||yll* =
I711?/m(Q). But m(D) = 1/m(Q) and ||y||*> = ||7]|, so equality must hold in (42).
For almost all ¢:

[{en Vedl?
Iyl? =y ——. (43)
L legll,
Now the right side of (43) converges uniformly on compact sets, so (43). holds for all
t = 0. Hence
2 |<eﬂ,l yt)l
vl elZ
e e
andso y € S.

At first glance, the first half of this proof of Theorem (1.2.13) appears too good to
be true because it only uses functions y,(x) supported on a fixed subset of Q .But the
relevant fact is the that sup y; is dense in Fourier space R™.

The proof of Theorem (1.2.13) yields a direct proof of Lemma (1.2.10). If D is
an orthogonal packing set, then (37), holds for it, hence m(D)m(Q)y(x) agrees with
k(x) on Q, and hence

mD)mQ)|lyllz < Kl < llyll2,
which shows that (22) holds.

The following result is an immediate corollary of Theorem (1.2.35) [1] , which
we state as a theorem for emphasis.

Theorem (1.2.15)[20]: Let Q be a regular region in R", suppose that D is a tight
orthogonal packing region for Q, then A + D is atiling of R".

Proof. the assumption that D is tight orthogonal packing region guarantees that A + D
Is a packing for all spectra A4, so theorem (1.2.14), applies.

Theorem (1.2.15) sheds some light on Fugled’s conjecture that every spectral set
Q tiles R™,
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Definitions (1.2.16)[20]: A pair of regular regions (Q,ﬁ) Is a tight dual pair if each is a
tight orthogonal packing region for the other.

We show that ([0,1]™,[0,1]™) is a tight dual pair of regions; it follows that if A €
GL(n, R), then (A([0,1]™), (AT)~1([0,1]™)) is also a tight dual pair of regions.
The sets ([0,1] U [2,3], [0 ﬂ U E %]) are a tight dual pair in R?,

If (Q, Q) is a tight dual pair, then Theorem (1.2.14) states that if one of (£2,0) is
a spectral set, say, £2, then the other set 2 tiles R™. if 2 were also a spectral set (as the
spectral set conjecture implies), then Theorem (1.2.14) would show that (2 tiles R™. This
raises the question whether the current evidence in favor of Fuglede’s conjecture is
mainly based on sets 2 that appear in a tight dual pair (Q, ﬁ) We can only say that
there are many nontrivial examples of tight dual pairs.

We formulate two conjectures.
Conjecture (1.2.17)[20]: (Spectral set duality conjecture). If (Q ﬁ)a tight dual pair of
regular regions is and if (2 is a spectral set, then 2 is also a spectral set.

In this case Theorem (1.2.15) would imply that both Q and 2 tile R™. The
corresponding tiling analogue of this conjecture is as follows.
Conjecture (1.2.18)[20]: (weak spectral set conjecture). If (Q, ﬁ) Is a tight dual pair of
regular regions and if one of them tiles R™, then so does the other, and both 2 and 2
are spectral sets.

We prove Theorem (1.2.1). We use the following basic result of Keller [27],
which gives a necessary condition for a set A to give a cube tiling.
Proposition (1.2.19)[20]: (Keller’s criterion). If A 4+ [0,1]™ is a tiling of R™, then each
A, 1 € A has

Ai—u; €Z \{0} forsomei,1<i<n. (44)

Proof. This result was proved by Keller [27] in 1930. A detailed proof appears in
Perron [35, Satz 9].

The following lemma shows that Keller’s necessary condition for a cube tiling is
the same orthogonality of exponentials in the set A.
Lemma (1.2.20)[20]: B, = {e?™{1%): 1 € A} gives a set of orthogonal functions in
L?([0,1]™) if and only if ,for any distinct A, u € A,

A —p; €Z\{0}, forsome j,1<j<n. (45)

Proof. For 2 =[0,1]" and u € R",

n
Ro(u) = j e ~2miwx) gy = nho(uj),
[0,1]" j=1
where hy(w) = (1 — e‘Z”i“’)/(—Zniw),w € R, and hy(0) := 1. Note that hy(w) =
0. If and only if w € Z\ {0}. Hence,X,(u) =0if and only if u; €Z \ {0} for

some j,1 < j < n. The lemma now follows immediately from Lemma (1.2.7).

This appendix determines in which dimensions n every orthogonal set of
exponentials on the n-cube can be extended to an orthogonal basis of L2([0,1]™).
Theorem (1.2.21)[20]: In dimensions n =1 and n = 2,any orthogonal set of
exponentials can be completed to an orthogonal basis of exponentials of L?([0,1]™). In
dimensions n > 3, this is not always the case.
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Proof. we say that a cube packing I + [0,1]™ is orthogonal if for distinct y,u € T,

Y; —uj € Z\{0}, for somej,1<j<n. (46)
Now Proposition (1.2.19) (Keller’s criterion) and Lemma (1.2.20), together imply that
an orthogonal set of exponentials {ez”“m:y € F} in L2([0,1]™). Corresponds to an
orthogonal cube packing using I'. By Theorem (1.2.1), the question of whether an
orthogonal set of exponentials in L2([0,1]™) can be extended to an orthogonal basis of
exponentials of L([0,1]™) is equivalent to asking whether the associated orthogonal
cube packing in R™ can be completed to a cube tiling by adding extra cubes.

Using the known structure of one- and two-dimensional cube tilings , it is
straight-forward to check that a completion of any orthogonal cube packing is always
possible. (Two-dimensional cube tiling’s always partition into either all horizontal rows
of cubes or all vertical columns of cubes).

To show that extendibility is not always possible in dimension 3, consider the
set of four cubes {v® +[0,1]%:1 < i < 4} in R3, given by

1
o = (-10).
U(Z) = (—5,1—1, 0),
0= 0-21)
v = (533)
The orthogonality condition (46) is easily verified. The cubes corresponding to v
through v contain (0,0,0) on their boundary and create a corner (0,0,0). Any cube
tiling that extended {v'+ [0,1]®:1<i <3} would have to fill this corer by
including the cube [0,1]3. However, [0,1]® has nonempty interior in common with v* +
[0,1]3.
This construction easily generalizes to R" forn > 3.
Section (1.3): Non-Uniform Gabor Bases

For F and 7 be two discrete subsets R¢, and let g(x) € L2(R%). The Gabor
system (also known as the Weyl-Heisenberg system) with respect to F,7 and g is
following family of functions in L?(R%):

G(F,T,g) ={e*™g(x —p)| L€ F,p € T}. (47)
Such a family was first introduce by Gabor [49] in 1946 for signal processing, and is
still widely used today. We call G(F,T,g) an (orthonormal) Gabor basis if it is an
orthonormal basis for L?(R%), and a Gabor frame if it is a frame for L?(R%). Gabor
bases and frames have been extensively studied. Apart from their important applications
in digital signal processing, they are significant mathematical entities on their own.
They are an integral part of time-frequency analysis, and are closely related to the study
of wavelets and spectral sets.

Most of the study of Gabor bases have focused on "uniform" sets F and 7, i.e.
they are taken to be lattices. For full rank lattices F = A(Z%) and T = B(Z%), a Gabor
basis G (F, T, g) must satisfy |det(AB)| = 1, see [64] for d = 1 and [63] for arbitrary d.
Conversely, if |det(AB)| = 1 then there exists a function g(x) € L2(R%) such that
G(F,T,g)is an orthonormal Gabor basis, see [52]. The function g is not necessarily
compactly supported. A compactly supported g can be found if F and T *(the dual

16



lattice of 7) are commensurable. Also known is the Balian-Low theorem, which states
that if G(F,T,g) is an orthonormal Gabor basis and g is compactly supported then g
cannot be very smooth, see [38].

The study of non-uniform or irregular Gabor bases and frames, i.e. those without
the lattice condition on F or 7', has gained considerable interest (see, [42]). It is known
that if G(F,T,g) is a Riesz basis then both F and 77 must be uniformly discrete, i.e
there exists an € > 0 such that they are e-separated. The density result by Ramanthan
and Steger [63] was actually established in a much more general setting. In a Gabor
basis G(F,T,g) the sets F and T satisfy the density condition D(F)D(T) = 1 where
D(") is the Beurling density. For a set 7 in R® the upper and lower Beurling density of
J respectively are defined as

n (x+[0,7]¢
D*(7) = limsup sup |70 G+ [0,7]°]

r—o x R4 74| 4 ’
D=(7) = liminf inf 7.0 x4 [0,7] |.

r—0o  xeRd |r|
If D*(3) =D~(3) then D(7) = D*(3) =D~ (J) is the Beurling density of 7. But
oddly, despite the many studies on non-uniform Gabor bases none contained a single
example of an orthonormal Gabor basis that is non-uniform in the sense that either F or
T is nonperiodic. We have not seen an example given in the Gabor literature in which
an orthonormal Gabor basis has non-lattice F and 7°. Another observation is that there is
not a single example of a compactly supported orthonormal Gabor basis in which the

generating function g(x) does not satisfy |g(x)| = (1//u(2)x,(x)) for some
bounded set 2. These observations Lead to the following questions: Are there any non-

uniform orthonormal Gabor bases, and are there compactly supported orthonormal

Gabor bases G (F, T, g) in which |g(x)| # (1/4/u(2))x,(x))?

As we shall demonstrate, there are indeed non-uniform orthonormal Gabor bases
in dimension d > 2. In the one dimension there exists orthonormal Gabor bases
G(F,T,g) in which neither F nor T is a lattice. These results follow rather easily from
the work on spectral sets. If g is compactly supported we establish:

We assume that supp(g) is an interval, then the main theorem of ours below
states that the only such orthonormal Gabor bases are the ““trivial‘‘ bases.

We shall use e(x) to denote e?™*,

Lemma (1.3.1)[37]: Let f(x) be a compactly supported function in L!(R), and T c R
be a discrete set with D*(T") < oo. Suppose that Y, 7 f (x —p) = c for all x € R. Then
T is a union of (possibly translated) lattices

N
j=1

for some real L; # 0,and b;,1 < j < N.

Proof. See [55].

Theorem (1.3.2)[37]: Let g(x) € L?(R) be compactly supported and let F, T be subset
of R. Suppose that G (F, T, g) is an orthonormal Gabor basis and F is periodic. Then T
must be periodic.
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Proof. F is periodic so we may write F = LZ + A for some L # 0 and finite set A C
R. Without loss of generality we assume that L = 1 and |A| =
Since we have an orthonormal Gabor basis G(F,T,g) applying Parseval’s

identity to the function ¢, (x) = Xp;¢117(x) yields
2

Igellz =Y D (heC), e )gle—p)E= Y » f (1) g~ p) dx

PET AEF PET AEF | ¢
t+1 2

=S| e+ awgE=pax

PET a€An€EZ |t
Observe that {e((n + a)x):n € Z} is an orthonormal basis for L?([¢,t + 1]) for any t.
Therefore another application of parseval's identity yields

t+1 2t
> || e+ amge=—pdr| = | lg-plax
Thus e t
1 2 t+1
lode =Y > || et amaG—pdy =) > [ s plds
PET a€A neZ PET a€A t
=11y [ lgGc—pldx
peT ¢t

Now set (¢) = [ |g(x)|2dx. Then [*"|g(x — p)|2dx = f(t — p). We have
lp:)I? = 1 forall t. So

t+1
> [ gt =prax=" rc-p = jar (48)
PET ¢t PET

As g is compactly supported, so must be f(t), and fR f(t)dt < oo, By Lemma (1.3.1)
T must be a union of (possibly translated) lattices,
k

T = U(sz +by)

for some real L; # 0 and b;, we claim that all L;/L; € Q, if not, say L, /L, is irrational,
then a theorem of kronecker (see [43]) states that L,Z — L,Z is dense in R. Hence
there exist P, € L,Z + b, and p, € L,Z + b, such that p; — p, can become arbitrarily
small. This contradicts the fact that g(x — p,;) and g(x — p,) are orthogonal in L?(R).
Hence all L; must be commensurable. So T is periodic, showing the theorem.
We next show the following theorem.

Lemma (1.3.3)[37]: Let G(F,T,g) be an orthonormal Gabor basis. Then D(F) and
D(T) both existand D(F)D(T) = 1.
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Proof. It was shown in [26] that D(F x T") exists and is equal to 1. But it is easy to
show that D=(F X T) =D~ (F)D~(T) and D*(F xT) = D*(F)D* (7). this lemma
follows immediately.

Lemma (1.3.4)[37]: Let F be a uniformly discrete subset of R with D*(F) < 1.
suppose that for some sequence c;: 1 € F € £2(F) we have

Z c,e(Ax) =0
_ _ AEF
in L2([a, b]) withb —a > 1 thenc; = 0forall A € F.
Proof. Assume ¢, # 0 for some 1, € F. Let F = F \ {4,}. then

e(Aox) = z b,e(Ax),

where by = —c;/cy, in L?([a,b]). A theorem of Young (see [67, p.129]) states that
{e(Ax): 1 € F,}is complete in L?([a, b]).

Now Theorem 2.4 of seip [66] states that F can be extended to F' so that
{e(Ax): 1 € F'}is a Riesz basis for L?([a, b]). Therefore

2
Z c,e(Ax)|| =B Z|CA|2
AeF

AEF
for some B > 0 this is a contradiction.

Lemma (1.3.5)[37]: Let F be a uniformly discrete subset of R such that D~ (F) > 0.
let {c;: 1 € F} be a sequence in £2(F). Then f(x) := Y cr c; e(Ax) € L?([a, b]) for
any interval [a, b], and ||f]|? < C X elc,|?, where C depends only on F and b — a.
Proof. The fact that F is uniformly discrete and D~ (F) > 0. Implies that there exists a
sufficiently small § > 0 such that {e(Ax): 1 € F} is a frame for L2([s, s + &]) for any s.
Let |||, denote the L?-norm for L2(£2). It follows from [46] that the sum converges in
L*([s,s + &]) with

1 lss s < B ) leal?, (49)

AEF
where B is the upper frame bound for the frame. Subdividing [a, b] into k < (b —a)/é

intervals of length & or less yields

1y < KB ) leal? (50)

AEF
We remark that if the condition D~ (F) > 0 is dropped in the above lemma then

f(x) ==Y ercie(Ax) € L*([a, b]) still holds, see [67, section 4.3]. It is unclear
whether (50) also holds. The weaker result is sufficient for our purpose.
Lemma (1.3.6)[37]: Let G(F,T,g) be an orthonormal Gabor basis for L?(R) with
supp(g) = [0, a]. Suppose that D(F) =1 and let T = {y,:n € Z} with y, < y,41.
Then vy, —y, < 1foralln € Z.
Proof. Assume the lemma is false. Then without loss of generality we may assume y; —
Yo > 1 and y, = 0. We shall derive a contradiction.

Clearly a > y,, for if not then any function h(x) € L*(R), with supp(h) S
[a, y;] will be orthogonal to all functions in G (F, T, g), a contradiction. We now choose
g > 0 suchthaty, —e > 1and y_; + £ < 0. Let f(x) be any L? function supported in
a — & al, Then
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FO) =D cnre(0)g(x = ), (51)
a nezZ AeF
where ¢, ; = fa_gf(t)e(—/lt)g(t — yp)dt. By the choice of ¢ the coefficients ¢, ; = 0

for all but finitely many n, in particular ¢, ; = 0 forall n < 0. So

f) = i D CnaeGog(x = )

n=0 AeF

N
= z core(Ax)g(x) + Z Z cnae(A0)glx —y,). (52)

AEF n=1AeF
Forn>1wehavey, >y, >1,s0g(x—y,) =0 forx € [0,y; — ¢].

We now restrict f(x) to x € [0,y, — €] as a function in L2([0,y, — £]), which is
0. Note that F is uniformly discrete and D~ (F) > 0, because G(F,7T,g) is an
orthonormal basis. By Lemma (1.3.5) each sum Y ,ercp,e(dx) converges in
L*([0,y, — €]) for each n. Note that g(x — y,,) = 0 on [0,y, — ] for all n > 0, so
(52) yields

0= ()= ) coae(A) g®)
on[0,y; — €] .Butg(x) #0,0n]0,y; —Aeefj .Thus

z core(Ax) =0

AEF
on [0,y, — ], it follows from Lemma (1.3.4) that c,, = 0, for all 2 € F. However,

cor = (f(x),e(Ax)g(x)) = 0 implies that f(x)g(x) is orthogonal to the set of
functions {e(1x): A € F} for all functions f(x) with supp(f) € [a — ¢, a]. This is a
contradiction.

For any F € R the upper asymptotic density D,,(F) is defined as

. |F 0 [—r,7]]
D, (F) = limsup :
r—o0 ZT

It is easy to see that D~ (F) < D,(F) < D*(F). In particular if D(F) exists then
D, (F) = D(F). The following lemma is a key to proving Theorem (1.3.8) it was
proved in [57] in a much stronger form. We include the weak form here for
completeness.
Lemma (1.3.7)[37]: Let F be a subset of R with D(F) = 1.Suppose that D,,(F — F) <
1.ThenF —F =Z.
Proof. Without loss of generality we assume that 0 € F. Hence F — F 2 F. Clearly
this means D, (F —F) = D(F) = 1. This yields D,(F —F) = 1. We show F — F isa
group.

Denote G = F — F. For any a € F observe that F —a has Beurling density
D(F —a)=1.But F—a < G and D,(G) = 1. This implies that ¢ = (F —a) U g,
with D, (¢,) = 0 .Similarly G = (F — b) U g, for any b € F with D, (¢,) = 0. Denote
Fap = (F—a)n (F —b). We therefore must have D, (F, ) = 1, since G\ F, p =
g4 U &, has Beurling density 0. It follows that D,,(F, , + b) = 1. In other words, F N
(F — a + b) has upper asymptotic density 1.
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Now take any a4, a,, by, b, € F. The above yields that both F n (F — a; + b;)
and F n (F — a, + b,) have upper asymptotic density 1. But both are subsets of F,
which itself has upper asymptotic density 1. Therefore the two sets must intersect, or the
upper asymptotic density of 1. Therefore the two sets must intersect ,or the upper
asymptotic density of F would have to be at least 2. This means there exist c;,c, € F,
such that ¢; —aq; + b; = ¢, — a; + by, wWhich gives us (b, —a,) — (by —a;) =¢; —
c,) € G. Since a,,a,,b;,b, € F are arbitrary we conclude that G is closed under
subtraction. Hence G is group.

The only discrete subgroups of R with bounded densities are cyclic groups. So
G = LZ for some € R . But the density of G is 1. Hence G = F — F = Z.

Theorem (1.3.8)[37]: Let g(x) € L*(R) such that supp(g) is an interval, and let F,T
be subset of R. Suppose that G (F, T, g) is an orthonormal Gabor basis. Then both F and
T must be (possibly translated) lattices. In other words there exist real numbers a > 0
and by, b, such that F = aZ + b, and T = a~1Z + b,. Furthermore, |g(x)| = Vax,(x)
where (2 is an interval of length a™1.

Proof. Without loss of generality we may assume that D(F) = D(T ) = 1 by lemma
(1.3.3), 0 € F,0 € T and that supp(g) = [0, a]. Since T is uniformly discrete we may
write itas T = {y,;: n € Z} in ascending order.

Claim (1.3.9)[37]: F =ZAndif 0 <a— (yy —y,) <1,then a— (y, —y,) = 1.
Proof. For0 < b:=a— (y, —y,) <1 let h(x) = g(x — y,)g(x — yx). Then h(x) is
supported on an interval of length b < 1. The orthogonality of Gabor basis yields
h(§) =0.forall £ € F —F,& # 0. (we would even have A(0) = 0 if k # n.)

But note that by the Paley-Wiener theorem h is an entire function of exponential
type restricted to the real’s, and such functions can note have "too many" zeros. In fact,
it follows from Theorem 8.4.16 of Boas [40] that the set of zeros of A has an upper
asymptotic density at most b, i.e. D*¥(F —F) < b < 1. It follows from D(f) = 1 and
Lemma (1.3.7)thatb =1and F —F = Z.Since 0 € F we get F C Z.

Now suppose that F + Z. Then we may replace F by Z and the orthonormality is
again satisfied with the new Gabor system G(Z,T,g). This contradicts the fact that
G(F,T,g) is a basis. Therefore F = Z. The claim is proved.

We next show T = Z by showing that for any nwe have y, —y,_, = 1.
Assume that this is not true, then there exists an n such that y,, — y,,_; < 1. We choose
k to be the largest index such that 0 < y, —y, <a. Since each yj.; —y; <1 . By
lemma (1.3.4),0 < a — (y, — y,) < 1. It follows from the claim that a — (y, — y,) =
1. But we now have 0<a— (yx —yn-1) <1 Because y,—y,_; <1. This
contradicts claim (1.3.9). Hence y, —y,_, =1 ,forallnand T =Z.

Finally we show a = 1 and |g(x)| = X[o,17(x). it is easy to see that a > 1, which
in fact follows from the claim. Assume that a > 1. Then there exists an n # 0 such that
0 < b:=a—n< 1. (the claim actually gives b = 1, but we don’t need it). Now the
function h(x) = g(x)g(x — n) is supported on [n, a] and is orthogonal to e(Ax) for all
A €F =7Z. This is impossible unless h(x) = 0, which is not the case since g is
supported on [0, a ]. Hence a = 1. So |g|?(x) is orthogonal to e(Ax) for all A € Z \ {0}.
This forces |g|?(x) = c. the orthonormality of the Gabor basis now yields ¢ = 1, and

gl = X[0,1]-
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The study of orthonormal Gabor bases is actually closely related to the study of
spectral sets and their spectra, a link that has not been exploited in the Gabor. A
measurable set 2 in R? with positive and finite measure is called a spectral set if there
exists an F < R? such that set of exponentials {e(4.x): A € F} is an orthogonal basis
for L?(2). In this case F is called a spectrum of £2. A spectral set 2 may have more than
one spectrum. Spectral sets have been studied rather extensively. The major unsolved
problem concerning spectral sets is the following conjecture of Fuglede [48].

Let Qbe a set in RY with positive and finite Lebesgue measure. Then 2 is
spectral set if and only if 2 tiles R? by translation.

Here by 0 tiles we mean there exists a 7 < R? such that 2 + 7 is a measure-
disjoint covering of R?, i.e ¥ ,erxy (x —p) = 1, for almost all x € R?. the set T is
called a tiling set for 2. The spectral set conjecture remains open in either direction,
even in dimension one and for sets that are unions of unit intervals. Furthermore, there
appears to be a one-to-one correspondence between spectra of spectral set and its tiling.
We give several examples, based on the study of spectral sets. First we establish:
Lemma (1.3.10)[37]: let 2 c R% with 0 < u(2) < oo. Suppose that 2 is spectral set
with a spectrum F and it tiles R? by the tiling set 7. Let g(x) be any function with |g| =

(1//u(2))x,. Then G(F, T, g) is an orthonormal Gabor basis for L?(R%).
Proof. The proof is rather standard, and we shall give a quick sketch here. The
orthonormality is clear. Take any e(4;.x)g(x —p;) and e(d,.x)g(x —p,) In
G(F,T,g). If p; # p, then g(x — p;) and g(x — p,) have disjoint support as a result of
the tiling property. So the two functions are orthogonal. If p; = p, then A; # 4,.
Hence (e(4,.x),e(4,.x)) = 0 by the spectral set property. Therefore

(e(A1.0)g(x — p1), e(A2.x)g(x — p1)) = (e(A1.x),e(A;.x)) = 0.
To see the completeness observe that the set of functions {e(A.x)g(x —p): A € F}is
complete in L2(2 + p ) becouse F is a spectrum for 2 + p and |g(x — p)| is a nonzero
constant on 2 + p. Now every f(x) € L*(R?) can be expressed as f(x) = ¥ er f»(x)
where f,(x) == f(x)x, (x —p) as a result of the tiling property. But f,(x) €
L>(2 + p). Standard argument now implies G(F, T, g) is complete in L?(R), proving
the lemma.

We shall refer to an orthonormal Gabor basis obtained in such a way as standard
orthonormal Gabor basis. Standard Gabor bases nevertheless yield nontrivial examples
of non-uniform Gabor bases.

Example (1.3.11)[37]: In dimension d > 2 there exist compactly supported
orthonormal Gabor bases G (F, T, g) in which both F and T are nonperiodic.

Let 2 = [0,1]¢ be the unit d-cube. it is well known that there are nonperiodic
tilings using the unit cube. In fact, for d > 3 there are completely aperiodic cube tilings,
see [59]. (For d = 2 the tilings must be half periodic in the sense that it must be
periodic either in the horizontal or in the vertical direction) one simple nonperiodic
tiling set for the cube [0,1]? in the two dimension is

T={(nm+e"):n,melr}
which is obtained from the standard lattice tiling by shifting the nth column by e™. Let
T be any nonperiodic tiling of 2 and set F = 7. Now a theorem of lagarias et al. [58]
(and independently by losevich and Pedersen [53]) states that F must also be a spectrum
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for 0. Therefore for g(x) = x, (x) the Gabor system G(F,T,g) is an orthonormal
Gabor basis. By assumption neither F nor 7 is uniform.
Example (1.3.12)[37]: In the one dimension there exist compactly supported
orthonormal Gabor bases G (F, T, g) in which neither F nor 7 is a lattice.

Let 2 =[0,1] U [2,3]. Again We know that this is a spectral set with spectrum

F= Z+{O,%}, see, e.g, [61]. 2 tiles with the tiling set 77 = 4Z + {0,1}. Now for

g(x) = (1/v2)x, (x) the Gabor system G(F,T,g) is an orthonormal Gabor basis.
However, neither F nor T is a lattice.
Example (1.3.13)[37]: In an orthonormal Gabor basis G (F, T, g) having one of F or T
being a lattice does not imply the other must be, even in the one dimension.

Let 2 =[0,1] U [3,4]. Again we know that this is a spectral set with two distinct

spectra: F; =Z + [0%] and F, = %Z. 0 also has two distinct tiling sets 7; = 6Z +

[0,1,2] and T, = 2Z. Let g(x) = (1//2) x,, (x). We have an orthonormal Gabor basis
G(F,T,g) by taking F = F, and T =T, or by taking F = F, and T = 7;. In either
case, one is a lattice and the other is not.
We conclude with the following conjecture on orthonormal Gabor bases

G(F,T,g).
Conjecture (1.3.14)[37]: Let g(x) € L?(R%) be compactly supported. Let F and T be
discrete sub-set of R%. Suppose that G(F,T,g) is an orthonormal Gabor basis. Then
G(F,T,g) must be standard.in the other words, there exists a spectral set £ in R% such
that

(@) F is a spectrum of 0.

(b)T is a tiling of 0.

© g = (1/y @) xqo(x).
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Chapter 2
Atomic Characterizations and Arbitrary Sampling Points

We show that for the spaces an atomic characterization similar to known
characterization of Besov spaces can be given (with dilation being replaced by
modulation). The main theorem is the following: Given s € R and some g, # 0, g, €
Mfll(Rm)(e.g., g € S(R™) or g € L' with compactly supported Fourier transform).
Extend the work of Ramanathan and Steger. We show the conjecture that no collection
Uk=1{gx(x — @)}qer, Of pure translates can form a frame for L*(R?). For the
perturbation of window functions we show that a Gabor frame generated by any
window function with arbitrary sampling points remains a frame when the window
function has a small perturbation in S,(R%) sense. We also study the stability of dual
frames, which is useful in practice. We give some general results and explain
consequences to Gabor frames.

Section (2.1): Modulation Spaces Through Gabor-Type Representations
Theorem (2.1.1)[68]: There exist a, > 0 and 8, > 0 such that, for @« < ay and § < f3,,
there exists C = C(a, B) > 0 with the following property: f € M*, ,(R™) if and only
if f=XnkanikMp Lai g, for some double sequence of coefficients satisfying

1/q

q/p
[Z (Zlan,kl") A+ | < Clf MR
n k

The convergence is in the sense of tempered distributions, and in the norm sense
for p,q < oo.

The investigation of modulation spaces has been suggested, starting at first from
the simple idea of replacing the dyadic partition used in the characterization of Besov-
spaces by an equidistant one. It turned out that the characterization used in the abstract
(here it would have been sufficient to assume that g, # 0 is any Schwartz function or
g, € L' with compactly supported Fourier transform, cf.[78], [79], kap.5.2) is more
elegant and admits shorter proof s of some of the basic properties of these spaces, such
the invariance of some of these spaces under the Fourier transform.

The most interesting among these spaces are L*(R™) = MJ,(R™) and S,(R™) =
M?;(R™).Forp=q=2,s=0,m=1and g, being the Gauss function, our results
may considered as Gabor representation for f (cf. [82]), however, with an estimate on
the coefficients in #2. This is in contrast to the classical situation (where the von
Neumann lattice with aff = 2m is chosen; in that case the operators L, and M, involved
commute, but unbounded coefficients may arise). For p = g = 1,s = 0 one obtains an
Improved atomic characterization for the segal algebra S,(G) and for p = g = o of its
dual space (cf.[76], [75],[81]). Atypical feature of our approach is the considerable
freedom in the choice of g, as “basic” function.

We shall have the following results:

Corollary (2.1.2)[68]: Given f € S(R™),s e Rand g, € S(R™), g, # 0, there exists
a, B > 0 (depending only on g,) such that f € Ls*(R™) ( the Bessel potential space,
cf. [75]) if and only if
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1/2
For a double sequence satisfying [Zn 2k|an'k|2(1 + |n|)25] < oo,

Corollary (2.1.3)[68]: Given f € LY(R™) and g, € So(R™), g, # 0, there exists
a, f > 0 (depending only on g ,) such that f € S,(R™) if and only if

f= 2 an,kMBnLak go
nk

for a double sequence satisfying Y., Y|ani| <
As mentioned already in [81] the special choice g, = Gauss function implies a
number of properties for S,(R™) (which are stated for general Ica. groups in [75 ,76],
using a fairly different approach).
We want to summarize here a few facts concerning modulation spaces which may
be defined as inverse images under the Fourier transform of certain Wiener-type spaces
(for basic facts cf. [77] and [80]). In order to describe these spaces we need the

following conventions: We shall need the weighted L9-spaces LI(R™), given by
1/q

1= FIIFILLR™)|| = j FEOIG+1xD% | <o

which are Banach spaces with respect to their natural norms for 1 < g < oo. Because
w = ws:x = (14 |x|)% s > 0,satisfies w(xy) < Cw(x)w(y) for all x,y € R™ it is a
weight function on R™ in the sense of Reiter [82], and LI is invariant under translation,
given by L, f(z) :== f(z — x). it also follows that L. is a Banach convolution algebra
(called Beurling algebra, cf. [81]) for s > 0 and one has L}S| « LT c Ll for1<q < oo,
together with the corresponding norm estimate. C°(R™) Denotes the space of
continuous, complex-valued functions vanishing at infinity, endowed with the sup-norm
| |lew, and M(R™) denotes the space of bounded, regular measures on R™, which is
considered as the dual space to C°(R™) . We denote by FLP the image of LP
(considered as a subspace of S’(R™)) under the Fourier transform and assume that it is

endowed with its natural norm, i.e, ||f|..,, = IF |l ». It is now clear from the basic
properties of the Fourier transform that FLP is a translation invariant Banach space of
tempered distributions which is a point wise Banach module over FL!(R™).
Consequently it is possible to define the Wiener-type spaces W (FLP, L) (as by [77]) as
follows: let k € D(R™) be any nonzero Window-function (one should think of a
positive plateau-like function, satisfying k(z) = 1 on a compact set Q, and define the
control function as follows:
K(F (@) = (L) llprp = ||Mck* f| ,  fort € R™

Then

W(FL?,LY) = {f € S'R™I f € (FLP)1oe, K(f, k) € L{(R™)},
Endowed with its natural norm ||fIW (FL?, LD || = ||[K (f, k) |L1]|-
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Using this definition it is easy to verify that these Wiener-type spaces are
translation invariant, but also invariant under multiplication with characters. One has the
following estimates for the operator norms of these operators:

\LfIW(FLP, L) < (1 + IxDS||fIW(FLP,LY) || Forall x € R™,
And
\M.fiw (FLP, L) = ||FIw (FLP, LY) || Forall t € R™.

An essential tool for the discrete way of describing these spaces (this is the
original definition of these spaces) is based on the existence of suitable partitions of
unity. Since we do need the most general description in our situation we can stick to the
following (restricted) definition of a bounded uniform partition of unity of size § > 0
(for short a §-BUPU) in FL:

Definition (2.1.4)[68]: Given § > 0 any bounded family in the Banach space ¥ =
(W) nezm in FLL(R™) is called a §-BUPU) in FL! if the following properties hold:

(BP1) There is a lattice §Z™ in R™ (for some positive §) such that supp ¥, €
B(6,,6) (the ball around §,, with radius 6).

(BPZ) Znezm wn(x) =1

Using BUPUSs one can give the following discrete characterization: f € W (FLP, LT)

if and only if, for some BUPU, one has
1/q

D Ml (14 1D | <o

nezm
(and this expression gives an equivalent norm, cf.[77]).

It is a consequence of this description that any window function k as described
above (even any Schwartz function or any k € W(FLY, L) defines the same space
W (FLP, L1 and gives an equivalent norm, cf. [79].

The modulation space M, ,(R™) can now defined as inverse images of the spaces

W (FLP, LTy under the Fourier transform. The invariance properties of Wiener-type
spaces are easily translated into invariance properties of modulation spaces. Thus one
has isometric translation invariance and the following estimates for the multiplication
Operators M,: || M fIM®, || < (1 + |t])*||fIM5,4]|. In particular, the spaces M}*} (R™)
are character invariant Segal algebras, isometrically translation invariant spaces in
L*(R™), complete with respect to their own norm, hence Banach ideals in L'(R™)(cf.
[82; chapter 6 & 2.2] for details about Segal algebras). Since Fourier transformation is
very well compatible with duality it is clear from the general results on decomposition
spaces (of which Wiener-type spaces are a special case, cf. [80], [79], [78]) that
modulation spaces show the natural behavior with respect to duality, i.e, one has
(M;’q (Rn)), = M;I?ql(Rn), forl < p,q < oo,

We want to show the atomic characterization of modulation spaces indicated in
the abstract. Apparently we have to verify two partial results, one on synthesis (i.e, that
expressions in the atomic characterizations are actually convergent to elements in
M; ,(R™) and, on the other hand , the decomposition result. We shall show the last

mentioned first . Because Mfll(Rm) Is a Segal algebra we shall write S for this space
throughout the proof (fixing s).
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A)Let g €S, g # 0begiven, and € M, ,(R™) . We shall show decomposition
result first with respect to functions g € S with the additional property that supp g <
k, some compact subset of R™. Since it is possible to replace g by Mg g, if
necessary, we may assume that there exists § > 0 such that g (t) # 0 for |t| <.
Applying Wiener’s theorem on the inversion of the Fourier transform (cf.[82; chapter 1
& 3.6]) we find that there exists h € L*(R™) such that A(t) g (t) = 1 for all |t] < 8.
Without loss of generality we may assume that A has compact support, e.g., A(t) = 0
for [t] = 26. Now let @ = (¢,,),ezm be any bounded, uniform spectral decomposition
of unity of Size < §, i.e a family given as inverse image under the Fourier transform of
a 6-BUPU. Consequently we have o =),.,m»%¥, *a for any o € s'(R™) (for
example), where ¥, = M, ¥, for some ¥, with suppyP, S B(0,8) =:Q. It is our
main to start with this spectral decomposition, (at the moment we only have
convergence in the week toplogy, but part C) will show that one has norm convergence
for1 < p,q < ). Since ¥,, = Mg (¥, * g * h) we can write

fzznezm(Mﬁn(LpO* 8 *h))*f=: z Mﬁ" Un*8)

nezm

With f,, == (o * h) * M_g_f. For later use let us fix the following constants:
(i) For any compact set @ S R™ there exists C, > 0 such that

1M1, || < collfil,
And (for later use)
IfIW (CO, LP)|| < ColIfll, Forall f € LP(R™) with suppf € Q
(cf. [77], Theorem 5 for a proof of the last statement).
(if) Using the discrete version of the norm on Wiener-type spaces (cf.[9]) we
know that there exists Cq > 0 such that

D AR+ 18D < D Wl [ Mg, 0+ £ |71+ 181y
nezm nezm
< ColIRIS |1 1M5 o R™)".

We apply a variant of Shannon’s principle which will allow us to replace, given
the f,,’s the convolution f,, * g by a discrete sum of translates. Thus let us assume that
f belongs to L (R™) and suppf < Q.

We proceed as follows, having a look on the Fourier transform side and using the
notation w for the (translation bounded) Radon measure given as w:= ) ,c,m &, and

Wy = Ygezm Opk. SiNce supp g € k (compact) there exists p > 0 such that fg =
[Xkezm(Lpk g = (up* )8, or going back to the functions and using Poisson’s
formula, telling us that w is invariant under the Fourier transform

frg= ((p""f/up )f) * 8 =D " Lrezm f(k/P)Liesp g
Applying the same argument to each f,, we have the following estimate for the sequence
of coefficients a,, , :== p™™ £, (k/p):

1/p
p
( Z |an k| ) < GlifpW (O LA < C,Collfull,  foralln e Z™.
kezm

27



Which gives together with the previous estimates, the required sum ability properties for
the double sequence ( a,, ).

B) Let us now consider the case of an arbitrary element g, in S. Since the Segal
algebra S € S,(R™) is continuously embedded into Wiener’s algebra W (R™) =
w(c®, LY) (cf. [76]), hence into the Segal algebra W (LF,L') for 1 <p < oo, it is
possible to approximate g, in the norm of W(L?,L!) by elements g with compactly
supported Fourier transform. In order to have the right constants (appropriate a priori
estimates) let us note that we have the following facts at our disposition:

(iii) The family p™™ w; ,, is uniformly bounded in the space W (M, L*).

(iv) There is a universal constant C, > 0 (depending only on the norms used)
such that the following estimates hold true (cf.[77], [80]):

gl < Gllg WP, LY forall g € W(LP,LY),
|fulw (M, LP) || < G lIf W (CO, L) llelW (M, LP) |
for f € W(C° LP),u € W(M,LP),
lv* gll, < Collviw (M, L)l || g | [W(LP, LY)]|
forv € W(M,LP),g € W(LP,LY).

(v) Combining these estimates (with (i) above), we find some constant C*, (only

dependent on the common support of f and p) such that

(o™ %) Flwm, 17) || < cBlifl, if suppf < 0.

Writing for brevity, D,f for (p™™ w;,,)f (discrete version of f), we obtain the
following estimate in L, (still assuming supp f € Q and p chosen depending on the
support of g as a bove):

If* g8 1—=Dpf* gl
<Nf+(g1— M+ |fx 8 =Dpf » gl +[[Dpof * (g8 — g,
<IIfllpll g = gall + 0+ ColIDo fFIWM, LP)|[ll g — g4 1W (P, LDl

< IfllyColl g = g1 WP, IDII(1 + CYy).
Having this estimate (which does not depend on the support of g) it is clear that we can
choose g such that

lg — g WP, LY < (2C,(+C*)CoCpllnll) ™2,
hence
|f * g1 —Dof * g4 ||p < (2CCollnll) AN -

This estimate, being valid for each f = f,,, we obtain, summing over n:

- Z Mg, (Dy fn * )| My 2 Mg, ((fo = Dy fo) * 8)| My

nezm nezm

< Z Mg, | M3 gllll (o = Do f) * g IMpqll by (D)
nezm
< Z (1 + 182D Coll( f = Dwf) * g Il
nezm
<Co ) A+ 18D Ifully(2CCollkll,) ™ (by (D)
nezm
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< (2CoCollhlly) ™ CoCallnlly[|FIM5 ]l = 1/2. || F1M3 4]l
We have thus found a linear mapping Ty: f — Ypezm Mg (Dy f,, * g), such that 1d-Ty
is a contraction on My ,(R™) for 1 < p,q < o. consequently Ty is invertible on M ,
and we have

(00

f=Ty(Te " f) =Ty (Z(ld — Tq,)i(f)> = Ty(h), with h € Mj,(R™).

Since ||hIM3 || < C||fIMS || we have
f=Tg(h) = Zn,k an,kMﬁnLak g,

[Z(Z|an,k|p)q/P<1 +18, D%
n k

and the proof is complete in this case.
C) We have now to discuss the synthesis problem, i.e, given any element in § =

Mfll(R"). And a double sequence (a, ) satisfying the sum ability condition stated
above, the corresponding Gabor sum defines an element of M ,(R™).

Given now g € Mfll(R") we start splitting it by means of a uniform spectral
decomposition (as used a bove), i.e, we write

jezm jezm

with
1/

q
< Co||hIMs o]l < CCIFIM3 4

and
< 00,

D llesl,a+ s < e g mi]
jezm
For later use let us note that the §;'s have common compact support Q. Consequently
they belong to any Segal algebra (cf. [82; chapter 6 & 2.2]), in particular to the Segal
algebra W (L', L?). Moreover, there is a constant C, < 0 such that
lg;w (P, L] < G, ||g; |, for all j € z™ (cf. [77, Theorem 5] for an alternative proof
of this assertion). Calculating within S’(R™) we obtain, using the identity L,M; =
M,L,e™* forall x,t € R™:

z an,k Mﬁ’nl‘akg = Z an,kMﬁn Lak Z Mﬁjgj
J

nk n,k

= Z Mg, (Z al n'kLakMﬁngj>
j

nk
With a), , = exp(iak.B(n — j)), hence |a), | = |anx| for all j,n, k € Z™. Rewriting
the sum (in order to introduce some notations) one has

h = Z Ank LakM,Bn g = Z Mﬁjhj,n = z M‘B]h],

nk jn j
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Rjn = z ai.kLakMﬁn gj= (Z a{z,k‘Sak) *Mg.g . € W(M,LP) « W(LP L") € LF
k k
and (cf. [77, Theorem 3]) the estimate

J

k
1/p
< C4(Z|an,k|p) ” gj||1

Now supp h in S Bn+supp g; S Bn + Q foralln,j € Z™. In order to get an estimate
for the sum over the n's we observe next that the family ( B,, + Q),,czm constitutes an
admissible uniform covering of R™ (this f means essentially that is a covering of
uniformly bounded height, cf. [80, cor. 2.6]) and consequently (this another
characterization of wiener-type spaces) there exists Cs > 0 such that

Iy 5,1 = > Ryl WFLP, L)
n

1Rl < €5 w, L) | g s wr, L]

in [Mp

1/p
<c. (Znh,-,nu;u 1g)
" 1/q

q/p
<63 (Do) @l s,
n k

We can now carry out the last step, i.e, summation over the j's which yield immediately
the required estimate, completing the proof.

. el < 3 o] < 3 s s el
<c6lz Zlank|> (1 + [n])* Zc7(1+u|>'5'||gjll
o[ (St ] e

n k

Besides the Corollaries stated already one has among others, the following useful
consequence.
Corollary (2.1.5)[68]: (cf. [81]). The Banach space M; s 1(R™) (with s = 0) is smallest
among all Banach spaces satisfying the following conditions:

(a) it is continuously embedded into S’ (R™),

(b) it has non-trivial intersection with S(R™),

(c) it is isometrically translation invariant,

(d)it satisfies ||[M.|| = 0(1 + |s|) for t — oo.

It is also possible to use the atomic characterization of the spaces ” g |M'S| (R™)

in order to give an alternative proof showing the freedom in choice of the function g,
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used in the definition of M; ,(R™) in the abstract (Note that for all results presented so

far we could have worked with a function g, = k, with k € D(R™)). That we could
have used any non-zero window function k € W (FL, L) (which is equivalent to the

use of k= g, in || g IMfl| (R™), thus in particular any Schwartz function g, €

S(R™), so especially the Gauss function) in our definition can be shown as follows: if
the integral expression involving o is finite for a given element g, €

” g IMﬂ (R™), (e.g, with supp g, compact) it is easily verified that it is also finite for

g, replaced by ML, g,, for any t,x € R™, and in the estimate only an additional
factor (1 + |t|)® arises. Now inserting any g, € M!Sl ; (R™), written in the atomic
way based on g, it is clear that the integral expression (involving g, now instead of

g o) Is finite as well. Thus any non-zero element g, € || g |Mfl| (R™), gives another

equivalent norm. This was showed using different methods already in [79].
Section (2.2): Gabor Frames and Density

For each a,b € R%, let T, and M, denote the translation and modulation

operators on L?(R%) defined by

T,g(x) =glx—a) and M,g(x) = e*™"¥g(x),
Where bx = b;x; + -+ bgx4. A time- frequency shift is a composition of modulation
and translation; i.e, it has the form

M,Tog (x) = > g(x — a).
If T' < R9, then the collection of translates of g along T is defined to be
T(g ) = {Tag}aer
If A c R?%, then the collection of time-frequency shifts of g along A is defined to be
S(g,A) = {MbTag}(a,b)eA-

We refer to S(g, A) as the Gabor system generated by g and A.

Gabor system which form frames for L2(R%) have a wide variety of applications.
One important problem is therefore to determine sufficient conditions on g and A which
imply that S(g, A) is a frame. In the case that d = 1 and A is a regular lattice of the form
aZ x bZ, sufficient conditins for S(g,A) to form a frame for L2(R) were found by
Daubechies [87]. A generalization of this result requiring weaker assumptions, which
also applies when S(g, A) only forms a frame for its closed span instead of all of L?(R),
was obtained recently in [85].

We are concerned with the connection between density properties of A and frame
properties of S(g, A), and the analogous problem for systems T'(g,I') of pure translates.
For the case of Gabor systems, there is rich literature on this subject, especially when A
is rectangular lattice A = aZ® x bZ%. We briefly review here some of the main results
connecting the density of A to properties of S(g,A), and refer to [84] for a more
thorough historical discussion and a review of properties of Gabor systems. In addition
that we discuss explicitly below, some relevant related articles include [92, 93, 94,98].

For simplicity, consider the one-dimensional setting d =1 and a rectangular
lattice A =aZ X bZ. In this case, Rieffel showed (as a corollary of results on C*
algebres) that S(g, A) is incomplete in L2(R) if ab > 1 [97]. The algebraic structure of
the lattice is crucial to this result, as the proof follows from computing the coupling
constant of the von Neumann algebra generated by the Operators {M,,, T,q }mnez - fOr
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the case that ab > 1 is rational, Daubechies provided a constructive proof of the
incompleteness of S(g, A) through the use of Zak transform, which is again an algebraic
tool highly dependent on the lattice structure of A = aZ X bZ [87]. Ramanathan and
Steger introduced a technique that applies to Countable, nonlattice set A that are
uniformly separated,; i.e, there is a minimum distance § between elements of A [96]. It is
possible to define an upper Beurling density D*(A) and lower Beurling density D~ (A)
for such sets (the precise definition of density, along with other fundamental concepts
used) for example, for the lattice A = aZ X bZ these two densities coincide and equal
1/(ab); hence this lattice is said to have uniform Beurling density D(A) = 1/(ab).
Ramanathan and Steger showed for arbitrary uniformly separated sets A that if
D~ (A) < 1then S(g, A) is not a frame. Thus, in the case that A = aZ X bZ, this can be
viewed as a weak version of the Rieffel incompleteness result. On the other hand,
Ramanathan/Steger result applies to a far broader class of time-frequency translates than
does the Rieffel result. Ramanathan and Steger were able to recapture by their
techniques the full Rieffel incompleteness result in the case that A = aZ X bZ. In light
of the above discussion, Ramanathan and Steger therefore conjectured that S(g, A) must
be incomplete whenever A is a uniformly separated set satisfying D~ (A) < 1. Walnut
and Heil showed that this conjecture is false by constructing for each € > 0 a function
g € L>(R) and a nonlattice A ¢ R? such that S(g, A) is compete in L>(R) yet A has
uniform Beurling density D(A) < € [84]. Hense the algebraic structure of A is in fact
critical for the Rieffel incompleteness result.

We extended and apply the Ramanathan/Steger density results. The extension is
to higher dimensions, to multiple generating functions, and to completely arbitrary sets
of time-frequency shifts. To state our results, for each k = 1, ...,r let g, be an element
of L?(R%) and let Ay = {(ay; br)}ier, be  a sequence of points in R?%. Unless
specified otherwise, we place no restrictions on the sequences A,. For example, the
index set I, may be countable or uncountable, and repetitions of points in A, are
allowed. For simplicity, we will write 4, c R?¢, although we always mean that A, is a
sequence of points from R2¢ and not merely a subset of R?¢. Define an index set I =
{(i,k):i €,k =1,..,r} and sequence A = {(ak'i'bk'i)}(i,k)el = {(ak'i’bk'i)}ielk’
k=1,....,r, i.e, A is the sequence obtained by amalgamating A,,.....,A,. For
simplicity, we write A = U}, 4y, and say that A is the disjoint union of A, ....., 4,.
The Gabor system generated by g4, ... ... ,8-and Ay, ....., A, is then Uy, S(gx, Ax), the
disjoint union of the Gabor systems S(gy, A;) with this notation, our first main result is
the following.

We remark that the conclusion in part (a) of Theorem (2.2.10) that A has finite
upper Beurling density is equivalent to the statement that A, and hence each A,, is
relatively uniformly separated, i.e, is a finite union of uniformly separated sequences.
The proof of Theorem (2.2.10) is given. the result of Ramanathan and strger in [96]
corresponds to the special case of Theorem (2.2.10)(b) with d = 1 and k = 1 and with
the added assumption that 4 is uniformly separated and satisfies D*(4) < oo,

One useful feature of Gabor frames U, S(gy , Ax) generated by functions g; that
are well localized in both time and frequency is that if a function f is expanded in this
frame, then a perturbation of f that is well localized in both time and frequency will
have a local effect on the frame coefficients. By comparison, a frame of the
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Uk T (g, %) consisting solely of translates of finitely many function g, would have the
desirable property that perturbation localized solely in time have localized effects on the
frame coefficients. In this regard, Olson and Zalik showed that there do not exist any
Riesz bases for L2(R) generated by translates of a single function [95], and Christensen
conjectured that there are no frames for L2(R) of this form [86]. Since T(g,I') =
S(g T x {0}), systemes of translates can be considered to be special cases of Gabor
systems. We show that Theorem (2.2.10) implies that there are no frames for L?(R%) of
the form U, T(gx, I%). We give a direct proof of the following refinement of this
statement.

For x € R% and h > 0 we let Q,(x) denote the cube centered at x with side
lengths h:

Qn(x) =T19-1[x; — h/2,%; + h/2].

In particular, {Q, (hn)},,.,a is disjoint cover of R%. To distinguish between cubes
in R4 and those in R?4, we write Q,,(x,y) = Q,(x) x Q,(y) for acube in R%¢,

The Lebesgue measure of E ¢ R? is denoted by |E|. In particular, the volume of
the cube Q,(x) is | Q,(x)| = h%. The number of points in E < R® is denoted by #E.

The L%-inner product is (f,g)= [ f(x) g(x) dx. The short-time Fourier
transform of f € L?(R%) against g € L2(R%) is
Sef (a,b) = (f, MpT, g)
We have Sgf € L*(R*) N Co(R*%), with ||5gf||2 = [Ifll2llgll2-

Given a closed subspace V < L2(R%), we let P, denote the orthogonal projection
onto V. Then for any f € L?(R%),

dist fV = |f = P fll, = igg”f — ull,.
A family of elements {f;};,c; is a frame for a Hilbert space H if there exist
constants A, B > 0 such that

VvifeH, Alfl*< ZI(ﬁﬁ-)l2 < BIIfII*. (1)

i€l
The numbers A, B are called frame bounds. The frame operator Sf = Y. ,{f, f:)f; IS a
bounded, invertible, and positive mapping of H onto itself. This provides the frame

decomposition

f=STSf= Y (fffi  VfEH, @)
i€l
Where f; = S71f;. The family {ﬁ} is also a frame for H, called the dual frame of {f;},
and has frame bounds B~1, A~1. The utility of frames, as compared to sets of functions
that are merely complete in L2 (R%), often lies in the stable reconstruction formula (2).

Riesz bases are special cases of frames, and can be characterized as those frames
which are biorthogonal to their dual frames, i.e, such that (fi,fj) = §;;.

An arbitrary family {f;} which satisfies the first inequality in (1) (and which may
or may not satisfy the second inequality) is said to possess a lower frame bound.
Likewise, a family {f;} which satisfies at least the second inequality in (1) is said to
possess an upper frame bound. Such a family is also called a Bessel sequence.

Additional information on frames can be found in [87,90].
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We now give several definitions related to the “density” of an arbitrary sequence I' =
{y;};ie; Of points of R%. The index set may be countable or uncountable, and since T is
regarded as a sequence, repetitions of elements of T are allowed.

Definition (2.2.1)[83]: Let T = {y;};e; < R%.

(@) T is &-uniformly separated if § = inf;,;|y; —y;| > 0. The number & is the
separation constant.

(b)T is relatively uniformly separated if it is a finite union of uniformly separated
sequences I,. More precisely, this means that I can be partitioned into disjoint
sets Iy, ..., I, such that each sequence I}, = {y;}ie, IS 8x-uniformly separated for
some §; > 0.

Definition (2.2.2)[83]: let T = {y;};e; < R%. For each h > 0, let v*(h) and v~ (h)
denote the largest and smallest numbers of points of T that lie in any Q;,(x):
vt (h) = max #(F N Qh(x)) and v~ (h) = ;rel}?rcli #(F N Qh(x)).

We have 0 < v~ (h) < v*(h) < o for each h. The upper and lower Beurling densities
of I are then

D*(I") = limsup vt () and D~ (T') =lim infv_(h)

h—co hd h—oo hd
We have 0 < D~ (I') < D*(I') < oo. If D*(T') = D ('), then T is said to have uniform
Beurling density D(I") = D*(T') = D~ ().
Note that if I is the disjoint union of I}, ..., I, then we always have

#(I'N Qr(x) = Ziey #(Ti N Qr()),

and therefore

z D~(I) < D~(T) < D*(T) < z D*(T}). 3)
k=1 k=1

Some or all of the inequalities in (3) may be strict. For example, if I is the set of
negative integers, I, is the positive integers,and ' =T; UT,,then D~ (I';) = D~ (I, ) =
0,D-() =D*(") =1,and D*(I}) = D*(T},) = 1.

The following lemma provides some equivalent ways to view the meaning of
finite upper Burling density.

Lemma (2.2.3)[83]: Let T' = {y;};; be any sequence of points in R%. Then the
following statements are equivalent.

(@) D*(T) < oo.

(b) T is relatively uniformly separated.

(c) For some (and therefore every) h > 0, there is an integer N,, > 0 such that each

cube @y, (hn) contains at most N;, points of I'. that is,
N, = sup #(F N Qh(hn)) < oo,
nez

Proof. (a)=(c). If D*(I") < oo then v*(h)/h? < oo for some h.

(c)=(b). Assume that there is an h > 0 such that each cube @, (hn) contains at
most Ny, elements of T. Let ey, ..., e,a denote the vertices of the unit cube [0,1]¢, and
define

Zy = (22)*+ e, and By = Upez, Qn(hn).
Then R? is the disjoint union of the 2¢ Sets B,. If m,n € Z, with m # n, then
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dist(Qh(hm), Qh(hn)) = inf{|x — y|:x € Q,(hm),y € Q,(hn)} = h.
Further, each cube @, (hn)contains at most N;, elements of T', so the sequences {y;: y; €
B} can be split into N, uniformly separated sequences. Hence the entire sequence T
can be split into 2¢N,, uniformly separated sequences.

(b)=(a). Assume that T is relatively uniformly separated. Then we can partition I
into sets I;,....,I. in such a way that each sequence I}, = {y;}ic;, IS Ox-uniformly
separated. Let § = min{d,/2, ...,8,./2}. Then any cube Qs(x) contains at most one
element of I}, and therefore contains at most r elements of I'. Therefore, if h is any
positive number then Qn5(x) can contain at most r(h + 1)¢ elements of I'. Hence
v*(h8) < r(h + 1)¢ for each h, so

+ . r(h+1)% _r
D*(IN < llr}?_)sogp el = 5 < oo,

We will show Theorem (2.2.10), we consider part (a) and part (b) of the theorem
separately. In particular, we begin by considering the special case of Theorem
(2.2.10)(a) when r = 1.

Theorem (2.2.4)[83]: Choose a nonzerog € L?(R%) and a sequence A c R4, If
S(g, A) possesses an upper frame bound, then A is relatively uniformly separated.
Proof. Assume that A is not relatively uniformly separated. Choose any f € L?(R%)
with ||f]|, = 1, and note that

|<Mquf' MbTag)l = |<f} Mb—qTa—pg>| = |ng(a —-p,b— CI)|
Since Sgf is nonzero and continuous on R?¢, it must be bounded away from zero on
some cube, say,

= inf S.f(x, > 0.
# (x,y)eoh(c,d)| of (4.9

Now choose any N > 0. Then, by Lemma (2.2.3) applied to A, there exists some cube
Q5 (p, q) which contains at least N elements of A. However, if (a,b) € Q,(p, q), then
(a—p+c,b—q+d) € Q,(cd),so

2
Z(a,b)EAﬂQh(p,q) |<Mq—dTp—cf» MpT, g )|

2
= Lapeanonwa) [Sef (@—p+c,b—q+d|" = Np?.
Since ||Mq_dTp_Cf||2 = 1, it follows that S(g, A) cannot possess an upper frame bound.

The insight provided by [96] is that Gabor frames possess a certain Homogeneous
Approximation property, or HAP. This is stated below in our general context as
Theorem (2.2.7). The proof given by Ramanathan and Steger relied on weak
convergence of translations of A. Grochenig and Razafinjatovo proved an analogue of
the HAP for frames of translates in the space of bandlimited functions [89] . Their proof
was considerably shorter than the method of [96], but required a restriction on the frame
generators. In Gabor systemes , this restriction stems from the fact that the local
maximal function of the short-time Fourier transform S,f is not necessarily square-
integrable. We will provide a simple proof of the HAP which imposes no restriction on
the generators.

Notation (2.2.5)[83]: Let gi,....,g, € L*(R?) and Aj,..,A, € R*%be such that
Uk S(gk, Ax) is a frame for L2(R%), with frame bounds A4, B let

{gk,a,b}(a,b)eAk,k=1,....,r
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denote the dual frame of U, S(gx, Ax), in general, this dual frame need not consist of
translates and modulates of some finite set of functions.

Given h > 0 and (p,q) € R?%, let W(h, p,q) denote the following subspace of
L*(R%):
W(h P, q ) = Span{gk,a,b: (Cl, b) € Qh(p' q) n Ak! k= ) e ,7"}. (4)
This space is finite-dimensional because, by Theorem (2.2.10)(a), each A, is relatively
uniformly separated.
Lemma (2.2.6)[83]: Set ¢(x) = e"(/2** and let h > 0 be fixed. Then there exists a
constant k such that for each f € L?(R%) and each (p, q) € R?%,

(o MTP|* < K [, o oo MyTef) dx dy.
Proof. The Bargmann transform

Bf (x + iy) = e(/DE D™y (M T_ f, )
maps L?(R%) into the space of entire functions on C2¢ [88, p.40]. Hence, by [91,
Theorem 2.2.3] there exists a constant C, independent of f, such that

BF(0)| < C jf B (2)|dz. )

Qn(0,0)
Applying (5) to the function M, T, f therefore yields

(@, My T, )" = [B(M, T, 1) ()] 2
< ([, |25 M T (M T, 1), )| dxdly)
2 ( 2 2)
s¢ (foh(o,o) e dXdy)
2
X ([ MasyTy-sf @) dxdy)

=K ff,, [(MyTef, )| dxdy

We can now state the HAP. The simple proof follows by observing that the HAP for
time-frequency shifts of a single function implies the HAP for all functions.
Theorem (2.2.7)[83]: (Homogeneous Approximation property). Let g4,...,g, €
L>(R*) and A4, ...., A, € R?%, be such that U%,_; S(gx, Ay) is a frame for L2(R%). Then
for each f € L?(R%),

Ve>0, 3R>0, V(p,q) €RY, dist(MT,f, WRp.q)<e  (6)
Proof. By Theorem (2.2.10)(a). the assumption that U, S(gx, Ax) is a frame implies that
each A, is relatively uniformly separated. By dividing each A, into subsequences that
are uniformly separated, we may assume without loss of generality that each A is &j-
uniformly separated. Define § = min{4,/2, ..., §,./2}.

Let 7€ be the subset of L?(R) consisting of all functions f for which (6) holds. It
is easy to see that H is closed under finite linear combinations and L2-limits. It
therefore suffices to show that, for the Gaussian function ¢@(x) = e~(/2** || time-
frequency shifts M, T, belong to 7, for then 7 = L?(R%) and the result follows.

Therefore, fix any(s,t) € R??, and consider any (p,q) € R?%. The function
M,T,(M.Ts) has the frame expansion
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Mqu(Mthgo) = 22:1 Z(a,b)eAk<Mqu(Mth§0)r MbTagk)gk,a,b
By definition of distance and the fact that {g, ,,} is itself a frame with upper frame
bound A~1, we have

2
dist (Mq T, (M Ts9), W (R, p, q))
T
< ||M,T,(M,T;¢) — z Z (Mg T, (M Ts), Mp T4 81)8k.ap
k=1 (a'b)EQR(p'q)nAk
2
= 2 Z (Mqu (MtTSQD)r MbTagk>gk,a,b

k=1 (a,b)€EAL\Qr(.q)
T

<A (MT, (M T, My Tagio | @

k=1 (a'b)EAk\QR(p'q)
By Lemma (2.2.6) there exists a constant k such that

(M, T, (M. Ty0), MyTogi)|” = (0, My—q—Taep—s 810}

2

<k || lomTeol e ay

Q&(a—p—s,b—q—t)

2
-k || Issmyliaray. ®
Q6(p+s—a,q+t—b)
Where S, gy is the short-time Fourier transform of g, a gainst ¢. Combining (7) and (8)
with the fact that A, is §-separated, we conclude that

2
dist (Mqu (M, Ts9), W(R, p, q))

r
< ATK z Z ff 1S, (x, )| dx dy
k=1 (a,b)EAK\QR(p.g) Q5(p+s—a,q+t-b)
r
- 2
< A'K ﬂ S,k (x, ¥)| dxdy. (9)
k=1 R2d\Qp_s(s1)

Since each S,gy € L?(R?%), the last quantity in (9) can be made arbitrarily small,
independently of (p, q), by taking R large enough.
Corollary (2.2.8)[83]: (strong HAP). Let g5, ...., g, € L>(R%) and A4, ..., A, € R?*? be

such that U%_; S(gx, Ax) is a frame for L2(R®). Then for each f € L?(R%) and each >
0, there exists a constant R > 0, such that

V(p,q) € R?4, Vh >0, V(x,y) € Qy(p,q), dist (MyTxf,W(h +R,p, q)) <e.

Proof. Simply note that if (x,y) € Q,(p,q), then W(R,x,y) c W(h+ R,p,q), and
therefore dist M, T, fW (h + R,p,q) < dist M\, T, fW (R, x,y).
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We now use the Homogeneous Approximation property to show the following
comparison between the density of a Gabor frame and the density of Gabor Riesz basis.
The double-projection idea of [96] is an important ingredient.

Theorem (2.2.9)[83] (Comparison Theorem). Let g4, ...., g, € L2(R%) and 44, ..., A, C
R?? be such that Uy_; S(gx, Ax) is a frame for L2(R%). Let ¢y, ..., s € L2(R?) and
A4, ...,A;c R?® be such Uh_, S(¢y, Ax) is a Riesz basis for L2(R%). Let A be the
disjoint union of 44, ..., A,- and let A be the disjoint union of A4, ..., A, then

D~ (A) <D (A) and D*(A) <D*(A).
Proof. We use the notation defined in Notation (2.2.5). Additionally, we denote the dual
frame of Uj—;S(¢x, Ax) by {ék,a,b}(a,b)eAk,k:L_ws, and, in analogy to the subspaces
W (h,p, q) defined in (4), we set
V(h; P Q) = Span{MbTa¢k: ((1, b) € Qh(p' q) N Ak: k=1, ...,S}
By Theorem (2.2.10)(a), each Ay, is relatively uniformly separated, and hence V (h,p, q)
is finite-dimensional. Since the elements of any frame are uniformly bounded in norm,
we can find a constant € such that || @ .|| < € forall k, a, and b.

Choose now any & > 0. Then, by Corollary (2.2.8) applied to the frame
Uk=1S(gk,Ay) and the function f = ¢,, there exists R, > 0 such that

Vh>0, V(p,q) €R*, V(xy) €Q,(p,q,

&
dist (M, T f,W(h + Ry, p, @) < - (10)
Let = max{R,, ...., R}, then (10) holds for each K when Ry, is replaced by R.

Now let h >0 and (p,q) € R?>? be fixed. For simplicity, let us denote the
orthogonal projections onto V(h,p,q) and W(h + R,p,q) by Py = Py(npq) and Py, =
Py (h+r p.q)- Define T:V(h,p,q) - V(h,p,q) by

T'=PynpayPwnsr pa) = Pvbw-
Then, by the biorthogonality of Uy S(@x,Ax) and {¢y ..}, the trace of T can be

computed as
S

tM=> > (TMTed), Fran)
k=1 (a,b)€Qn(p.q)NAk
However, for (a, b) € Q,(p,q) N A, we have

T{(MpTadr), Prap) = (PwMpToadr, Py Prap)

= (MpTodr, Py@Prap) + {(Pw — DMTody, Py i ap)-
Now P, M, T, ¢, = M,T,¢; since M,T,¢p, € V(h,p,q). Therefore,

(MpTodie, Py@reap) = (PyMpTodis Preap) = (MpTabrs Preap) = 1,
the last equality following from biorthogonality. Further, by (10) we have
{(Pw — DMy T, Pydrean)| < ||(Pw — 1)MbTa¢k'PV‘ﬁk,a,b”2||PV<5k,a,b||2 <
= E&.
Hence, since A is disjoint union of A4, ..., A,
S

w@=) ) (A= =(1-8) ) #ep.9) N8
k=1 (a,b)€Qn(p,q)NAk k=1
= (1 - #(Qu(@ @) N A). (11)

38

‘.c
2



On ther other hand, all eigenvalues of T satisfy |A| < ||T|| < 1. Hence,
S

tr(T) < rank(T) < dim(W(h +R,P,q )) < z #(Qnir(p, @) NAL)
k=1

= #(Qn+r(P, q) N A). (12)
Therefore, by combining (11) and (12), we see that for each h > 0 and each (p,q) €

RZd,
(1= )#(Qnlp,q) N A) < #(Qn+r(, @) N A).
As a consequence,

2d
(1-2¢) #(Qh;zz,g)ﬂA) < #(Q,(l;i%gzm) (h;fi
It follows that
(1—e)D~(A) <D (A) and (1-—¢&)D*(A) <D*(4),
and since ¢ is arbitrary, the theorem is proved.

The proof of part (b) of Theorem (2.2.10) is now immediate.

Theorem (2.2.10)[83]: For each k = 1, ....., 7, choose a nonzero function g, € L?(R%)
and an arbitrary sequenced, < R?%. Let A be the disjoint union of A, .....,A4,.

(@) If U%_, S(gx, Ax) possesses an upper frame bound for L2(R%), then D*(A4) < oo.

(b) If U%_,S(gx, Ay) is a frame for L2(R%), then D~(4) = 1.

Proof. (a) Suppose that U, S(gx,A)) possesses an upper frame bound. then, by
Theorem (2.2.4), each A, is relatively uniformly separated. Hence A is a finite union of
relatively uniformly separated sequences, therefore is itself relatively uniformly
separated, and hence has finite upper Beurling density.

(b) Define ¢ = x,(0) and A = Z%. Then S(¢,A) is an orthonormal basis for L*(R?).
Therefore, Theorem (2.2.9) impliesthat D= (A) = D~ (A) =1.

We remark that we cannot replace the conclusion D~ (A) =1 of Theorem
(2.2.10)(b) by the stronger statement that ».;_, D~(A;) = 1. For example, consider
again the orthonormal basis S(@,A) defined by @ = x,. (o) and A= Z%. We do have
D~ > 1. However, if we define A;={n= (ny,...,n3) € Z%:n, >0} and A,= {n =
(ny, ...,ng) € Z%n, <0}, then S(@,A,)US(®,4A,) is an orthonormal basis for
L>(R%),yet D~(A;) = D~ (A,) = 0.

We conclude with the following consequence of the comparison theorem for
Gabor Riesz bases.

Corollary (2.2.11)[83]: Assume that ¢, ..., ¢s € L>(R?) and A4, ...., A,c R?® are such
that U3_, S(¢k,Ax) is a Riesz basis for L2(R%). Let A be the disjoint union of
A4, ..., A;, then DY (A) = D~ (A) = 1; i.e, A has uniform Beurling density D(A) = 1.
Proof. Let g = xq,(0) and A = Z%. Then S(g, A) is an orthonormal basis, and hence a
frame, for L2(R%). Therefore, Theorem (2.2.9) applied to this frame and to the Riesz
Basis Uy S(@k,Ay) implies that D~(A) <D (A) =1 and D*(A) < D*(4A) =1. By
symmetry, we also have 1 = D7 (A) < D~ (A)and 1 = D*(4) < D*(A).

We will prove Theorem (2.2.12).

First, however we observe that Theorem (2.2.10) already implies that there are no
frames consisting of translates of finitely many functions. to see this, assume that
g1, ...,8, € L>(RY) and Ty, ..T. € R% were such that U, T(gx I,) was a frame for
L?>(R%). Considering that (g, T, x {0}) = T (g, T}), we see that Theorem (2.2.10)(b)
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implies that D~ (I" x {0}) = 1, where T is the disjoint union of I}, ..., [;.. However, this
is certainly a contradiction, since D~ (T" x {0}) = 0.

Indeed, Theorem (2.2.10)(b) implies that whenever U, S(gk, Ax) is a frame, the
disjoint union A cannot contain arbitrarily large gaps , since if for each radius h there
existed a point (x,y) € R4 such that Q, (x,y) contained no points of 4, then we would
have D~(A) = 0 and therefore could not have a frame. Thus, the collection A of time-
frequency translates must be “spread” throughout the entire time-frequency plane R?<.
For example, A could not be restricted to a banded set like R% x Q,(0), or a single
“quadrant” in R?¢,

We now give the proof of Theorem (2.2.12).

Theorem (2.2.12)[83]: Foreach k =1, ... ... ,7, choose a nonzero function g, € L?>(R%)
and an arbitrary sequence I, € R%. Let T be the disjoint union of T, .....,T}.).
@) If Uk_; T (g T) possesses an upper frame bound for L?(R%), then D*(T) < oo.
(b) If U%_, T(gx, I}) possesses an lower frame bound for L2(R%), then D (I') = oo.
Proof. (a) Assume that U T (g, I[x) possessed an upper frame bound. Then by
Theorem (2.2.10)(a), We have D™ (I" x {0}) < oo. This implies that I x {0} is relatively
uniformely separated as a subset of R?¢, Hence I is relatively uniformly separated as a
subset of R4, and therefore D*(T") < oo.
(b) We will show the contrapositive statement. Assume that D*(I') < oo. then T, and
therefore each I, is relatively uniformely separated. Hence for each k we can write I},
as the union of subsequences Ay; for j =1, ..., s, each of which is 6, ;-Separated.

Define § = min{8,,/2}. Then fix any h < §, and define Q = Q,(0). Note that the
cubes {Q + a}aeAkj are disjoint, and define

Bk] = UaEAkj(Q + a).

Then
r T
Z > o Tagl” 22 > g xoTag)| 22 > el lloTagill;
=1 a€ly 1] 1 a€ly; =1 j=1 a€ly;
T
:||xQ||jzz f|g<x)|zdx.
K=1]=1Bkj

However, for each fixed k and j, the function xp, . (x)| g, (x)|? converges to zero point

wise a.e as h — 0, and is dominated by the integrable function |g,(x)|?. it therefore
follows from the lebesgue  Dominated Convergence  Theorem  that

;11“% ka,ng(x)l2 dx = 0. Hence Uy T (g, ;) cannot possess a lower frome bound.
= ]

Section (2.3): Stability of Gabor Frames

Given a Gabor frames {m(y)g:y € I'}, also known as a Weyl-Heisenbrg frame,
where g € L?(R%), T is a sequence in R?4, and

n(x,y)g(z) = g(z — x)e*™=¥), (x,y) € R*4,
one is asked if it remains a frame when the window function and /or sampling points
have some small perturbation. Since the frame property of this system is equivalent to
the question whether it is possible to recover a signal f from L? in a stable way from the
sampling values of the short-time Fourier transform over T, i.e, from the values
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(f,m(x,y)g), with (x,y) €' one also talks about the stability of sampling points,
respectively the jitter error problem for the Gabor transform. Although the continuous
dependence of the representation coefficients as a function of the precise position of the
sampling points has been described in considerable generality as early as 1989 in [111]
(Theorem 6.5), this result concerns the coefficients obtained by specific iterative
reconstruction methods, which in turn are only guaranteed to converge under the
assumption of sufficiently high sampling density. The stability of Gabor frames having
the canonical duals in mind has been given by Favier and Zalik [109] and subsequently
by [103,104,106,109,126,127,128].Most of them are concerning 1-dimension or I" being
a separable lattice (or product lattice), i.e, T = {(na, mb):n,m € Z%} for some a,b >
0.

In [114], Feichtinger and Kaiblinger proved that if {m(Ln)g:n € Z?%} is a frame
for L?(R%), where L is a 2d x 2d matrix and g € So(R%), then {n(Ln)g:n € Z?%} is
also a frame provided ||L — L|| is small enough. These results are valid despite the fact
that the corresponding frame operators are not close to each other in the operator norm.
We study similar perturbations, but for arbitrary sets of sampling points in the time-
frequency plane. Specifically, let {m(a,, b,)g:n € Z} be a frame. We ask whether it
remains a frame when (a,, b,,) is replaced by (Pa,,P~Th,). here P is a d x d matrix,
PT is the transpose of P and P~T = (PT)~1. We show that the answer is positive if g
satisfies some decay condition and ||I — P|| is small enough. Note that for I' being a
lattice, perturbations of this type preserve the size of the lattice. Typical cases are
ordinary dilations (e.g stretching in the time direction and corresponding compression in
the frequency domain), or more general symplectic transformations acting on phase
space. Since for the regular Gabor the lattices obtained from standard product lattices in
this way are called symplectic lattices we call these perturbations symplectic
perturbations (cf. [121], p.280).

For the £ perturbation of sampling points, it was shown in [103,104,109,126,
127] that if {m(na,mb)g:n,m € Z} is a frame for L?(R), g satisfies some decay and
smoothness conditions, and |A,, —na| and |u,, —mb| are small enough, then
{m(A,, 1) g:n,m € Z} is also a frame for L?(R). In [128], this result is generalized to
arbitrary sampling points while the window function is required to stisfy x*g® (x) €
L?(R) for all 0 < k, ¢ < 2, which implies that g(x), g’ (x), xg(x), xg'(x) € Sy(R%) (see
[116, Lemma 3.11]). We show that the window function belonging to S,(R%) is enough
to ensure the stability. Specifically, if g € S,(R%) and {n(y,)g:n € Z} is a frame for
L>(R%), then {m(y,)g:n € Z} is also a frame whenever supl|ly, — ¥ullo is small

n

enough. Moreover, we give an explicit stability bound when X%g, D%g € S,(R%) for all
a € I; with |a| = 1. Note that the sampling points are arbitrary.

On the perturbation of window functions, most of known results [103,109,126]
are stated with a decay condition on window functions. Perturbations are allowed only
in point wise sense, i.e, |h(x) — g(x)| < elg(x)| or |h(w) — (w)| < €lg(w)I, where h
is the perturbed window function. Here we give some stability conditions with global
norms. In particular, if {m(y)g:y € I'} is a frame, then {m(y)h:y € I'} is also a frame
provided [lg — hll, is small enough. Note that the window function and sampling
points are arbitrary.
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The stability of dual frames is also needed in practice. However, as far as we
know, there are few of results on this topic (except for the typical statements on frame
bounds). We show that if two frames are close to each other , so are their dual frames in
the same sense.

Notation (2.3.1)[99]: |E| denotes the Lebesgue measure of a measurable set E. A
sequence ' c R? is called §-uniformely discrete for some § > 0 if ||y — y'||s = & for
any y,y' € I' with y # y'. T is called relatively uniformly discrete if it is a finite union
of uniformly discrete sequences. For any a > 0 and n € Z¢, let E, , = na + [0, a]?.
define the Wiener algebra as

W(R®) = {f:f is continuous and Znezd”f.XEn‘a” < 00}.
It can be proved that W (R%) is Banach space with the norm

Ifllw,a = Znezci”f-XEn,a”oo <®

and different choices of a give of a give equivalent norm [106, p.187].

For any d x d matrix P, denote its norm by ||P|| = supj,=1llpxll2-

We use the following set of multi-indices: I :== {(iy,....,iz):iy =0or1}, a =
(ay, ..,ag), lal =a; + -+ ay,

x% = xfl, ...,xgd, (Xﬂf)(x) =XBf(x) = xfl, ,xgdf(x),
|ex|
and D¥f(x) = a‘"fw f(x) stands for classical partial derivatives. We simply write
a0
D%f if there is no confusion.
The Segal algebra S,(R%), also known as Feichtinger's algebra, is defined by

So(RY) = {f € ZRM:Nf s, = Ve fl, < ),

Where g, is the Gaussian function, i.e , g,(x) = e "I¥ll2" s, (R%) Coincides with the
modulation space M7, as discussed in [110,112].
Note that (V,f)(x, y) = e 2> (V,f ) (y, —x). Consequently f € S,(R?) if and
only if f € S;(R%). We give some sufficient conditions (see for example [117]) for a
function to be in S,(R%), and we see [118] for further properties.
Proposition (2.3.2)[99]: Any of the following conditions implies f € S,(R%):
(i) ([118]) f € LY(R%) and band limited, i.e, f is compactly supported.
(i) ([120]) fo., foo, € L*(RY), where ws(x) = (1 + ||x]13)5/2, for some s > d.
Recall that a family of functions {¢,, : k € Z} in L?(R%) is a frame for L?(R%) if
there are two positive numbers A and B such that for any f € L?(R%),

ANFIZ < D KF, 0l < BIFI

kez

A And B are called the lower and upper frame bounds, respectively . We see [106, 130]
for an overview on frames and Riesz bases.

We study the Symplectic perturbation of sampling points. We consider two cases.
the first concerns sets of the form T = {(a,, by, ):n,m € Z}, the second the more
general situation I' = {(a,, b,):n € Z}. First, we recall a result by Christensen, Deng
and Heil.

Proposition (2.3.3)[99]: [107, Theorem 1.1]. Let g € L?(R%)/{0} and I be a sequence
in R24,
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(i) If {m(y)g:y €T} has an upper frame bound, then T is relatively uniformly
discrete.
(iDIf {m(y) g : y € '} is a frame for L?(R%), then T" has a lower Beurling density no

less than 1.

The following is a fundamental result in the study of the stability of frames.
Proposition (2.3.4)[99]: [102, Theorem 1]. Let {f;.: k € Z} be a frame for some Hilbert
space H with bounds A and B. if {gy:k € Z} c H is such that {f, —gx:k € Z} is a
Bassel sequence with upper bound M < A, then {g,:k € Z} is a frame for H with

bounds (VA — vi)” and (VB — V).

The following lemma is a generalization of Wirtinger’s inequality [122, p.184]
for multivariate functions, which can be showed by induction (see [116, lemma 3.14]
for a proof).
Lemma (2.3.5)[99]: Suppose that E is a cube in R with side length § and D*f €
L*(E) forany a € I;. Then forany y € E,

25\l
If = FO ey < Seerae (2) 1D Nz

The 1-dimensional version of the following lemma essentially appeared in [100,
lemma 42]. here we give a multi-dimensional version.
Lemma (2.3.6)[99]: Suppose that aand & are positive constants. Then for any é-
uniformely discrete sequence {b,:n € Z} ¢ R%,{e?™:Pn):n € Z} is a Bessel sequence
for L2 (E) with upper bound 64 (1 + a&)?¢ for any cube E < R% with side length a.
Proof. First, we consider the case of E = [—a/2,a/2]%. Divide [-§/2,5/2]% into
2% small cubes Uy, 1 < k < 2%, such that |U, | = (§/2)% and 0 is an end point of each
Uy.

For any f € L? with support in [—a/2,a/2]%, the Fourier transform takes the
form

fO) = Ji—ayzayze f (072N dx.
Then we have
[0<Fll, = |- 2m) X | ) < @iy = ()],
It follows from lemma (2.3.5) that

|l

ZZ j G+ b) = )| dy<zz S E) I+,

=1nez =1nezZ \ a€lg\{0}

1/2\ 2
2|a|

DAXYE) il

a€lg\{0} \k=1nez

1/2 2
( )Zla| f (0P + by dy \l
\ /

(xEId\{O} nEZ (=8/2,8/21°
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|| lal

- N ipesl | < J jal|| £
<\ 2 ) Ieerl) <[ D, (7)) @i,
a€l \{0} a€ly\{0}
= (a8 + D - ?||f|I"
Note that

2d

z j|f(y+bn)|2dy=z f f o +bo)| dy < ||f].

k= nez [—6/2,6/2]d

Y 1F ool =5 Z > J, el ay<gz a1+ asp ;.

nez k=1nez
Since ||f||2 = 1fll 2y, {€*™ Pn)im € Z} is a Bessel sequence for L2([—a/2,a/2]?)
with upper bound §~4(1 + ad)?¢.

For the general case, by a change of variable of the form x — x + x,, where x,
is the center point of E, we can show that {e2™ "’n):n € Z} is a Bessel sequence for
L?(E) with the same upper bound.

The following lemma gives an estimate for the upper frame bound of

{n(an bmn)g:n, m € Z} when g € W(R?).
Lemma (2.3.7)[99]: let a,8 > 0 be constants. Suppose that {a,:n € Z} c R% is a-
uniformly discrete and for any n € Z,{b,,,,:m € Z} is §-uniformly discrete. Then
{m(an, bmn)gin,m € Z} is a Bessel sequence for L?(R%) for any g € W(R%), with
upper bound

We have

M = (2/8)" (1 +a8)*ligllwa”
Proof. Forany k € Z%, let Ey , = ka + [0,a)? and
Qin = ||8C —an) * Xg, ||+ 27Wkal+Hlkabn, e 7,

Where 7 is appositive constant. We have

z Qe = z ”g( _an)XEk,a”oo + Z o =(kq|++|kal)y

kezk kezk kezk

— . - d
= D llg xme —anll, +3%

kezk

. d
Sz z ||g Xey || +3°7
, [e'e]
kez k'ezd

|Exr oN(Era—an)|>0

=2 2 el e

k'ezd kezd
|Ekl,an(Ek,a—an)|>0

ssz

k'ezd

It follows by Lemma (2.3.6) that

o |oo +3% = 2%gllwq + 3.
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2

Z |(f»n(an' bn,m)g>|2 = z J f(x)me_zni<x’b"'m>dx

n,mezZ nmez |pd
2

- z 2 f () g(x — a,)e 2mixbnm) dx

nmez |kez? gy,

nmeZ kez4q kezd
2
< ) (2llglhwa+3) Z j FOOGG = e 2mitsbnn)
nmez keZd ra
<) (1 + a8y (2 glhy0 +3%) Z L (1 wg0 = aplPdx
nez e Zd Eka

5 (14 a0 (2 lgla+3n) ). [IFCOP Y 9t — anl? —a

keZ4 Ey 4 nez Ak
1
<52+ a8 (@ glwa+3%) Y. [IFCOP Y 196 anldx
kezZ4 Ey 4 nez

1
— 52+ a8 (2glwa+3%) [IF@P Y lgtc=aplds

Eka nez

<2 (1 + a8 (2% glly,q + 3%) f FP Y lge-alde.  (13)

nez
Since {a,;:n € Z} c R%is a-uniformly dlscrete

#(E o N{x—apneZ)s1, VkeZ%xeR?

Z'W ~ @)l = z lg-xeoll = lglwe V.

nez kezd

By (13) , this implies that
Z (f, 1(an Brm)g)|” < 5a (1 +a8)*(2%ellw,a + 3*n)lglw.allf1I3.

nmez

Now the conclusion follows by letting n — 0.
Lemma (2.3.8)[99]: Suppose that g € W (R%) and P is a d x d matrix. Let (D,g)(x) =
|det P|*/2 - g(px). Then we have

lim ||g — ng”Wa =0, Vg € W(R%),a > 0.

lI-P|—-0

Thus
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Proof. By [114, Lemma 2.1], ”Ilirﬁl 0||g— g(@ Hllwa =0. Since || —pl|l -0 is
Sl

equivalent to ||1 — P~1|| - 0, the conclusion follows.
With the results above, we can consider Symplectic perturbations of Gabor
frames for the case that the sampling points are on Parallel lines.

Theorem (2.3.9)[99]: Suppose that {r(a,, bny,)g: n,m € Z} is a frame for L>(RY),
{a,:n € Z} is relatively uniformly discrete, and g € W (R%). Then there is some £ > 0.
Such that for any matrix P satisfying ||I — P|| < &, {T[(Pan:P_Tbn,m)g: n,m€ Z)}isa
frame for L2(R%).
Proof. Fix some § > 0. by proposition (2.3.3), I' is relatively uniformly discrete. Hence
there is some N > 0 such that

# ({(an, bn’m):n,m € Z} N ([0,58]%¢ + x)) =N, Vx€ER??,
Therefore,

#({bammeZyn ([0,619+y)) SN, VyeRiLnez

Consequently, we can split {b,, ,: m € Z} into at most ' = (2N)% §-uniformly discrete
subsequences A, ,, 1 < € < r'. Similarly, there is some a > 0 such that we can split

{a,,:n € Z} into r a-uniformly discrete subsequences I, 1 < k < r. By Lemma (2.3.7),
we have

2
Zn,meZl(fi T[(anr bn,m)(g - ng))l
’ 2
= Yk=120=12 an€lyg |(f,7t(an, bnm)(g— ng))|
bn,mEAn,i’
o (2\® 2d 2 2
<r'r(3) (1+a8)?lg— Dpgll? olIfIIZ
By Lemma (2.3.8) we can make [[g —gplly o, arbitrary small by choosing |[I — P]|
small enough. Hence there is some € > 0 such that
2
Ynmez|[{f, 1(an, bnm) (g — Dpg))|” = AclIfII5 < AlIfII3,
Whenever ||I — P|| £ &, it follows from Proposition (2.3.5) that {rr(ay, by )Dpg:n,m €

Z} is a frame for L2(R%), i.e, there are some constants 4, B > 0 such that
2

AIFIZS ) IdetP|- j f(x) - g(Px — Py, )e 2mbnmddx| < BI|f|I3, Vf.
n,mez Rd

By a change of variable of the form x — P~1x, the conclusion follows.
Remark (2.3.10)[99]: By Proposition (2.3.3) {(an, bmn):n,m € Z} has to be relatively
uniformly discrete for {m(a,, by n)g:n,m € Z} to be a frame, and so is {b,,, ,: m € Z}
for any n € Z. However, {a, : n € Z} might not be so. The following is a counter
example.

For simplicity, we take d = 1. Let § > 0 and {r;;: n € Z} be the set of all rational
numbers. Define

mé, 1, € Z,
ap =10, bym =1 2"(2m+1)6, 1, €Znz=20,
2172"(2m +1)6, r, ¢ Z,n<0.
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It is easy to see that both {(a,, byn):n,m € Z,1, € Z} and {(ay, bpn):n,m € Z, 1, €
Z} are S-uniformely discrete. Hence {(an, bym):n,m € Z} is relatively uniformly
discrete. Since it contains the lattice Z28, we see from [123,125] that {(a,, byn) 8
n,me€ Z} is a frame for L?(R) if g is the Gaussian and § < 1. Obviously, {a,:n € Z} is
not relatively uniformly discrete.

Remark (2.3.11)[99]: Also, the continuity of g is necessary for this theorem for
example, if g(x) = x[o172(x), then {m(n,m)g:n,m € Z%} is an orthonormal basis for
L?>(R%). But for any p > 1, {m(pn, m/p)g:n,m € Z%} is not complete in L?(R), and so
cannot form a frame. On the other hand, it is easy to check that if for a continuous
function g satisfying

a
gl <c| [a+inh

For some C,& > 0, then g € W(R%). Con_sequently, we can apply Theorem (2.3.9) to
Gabor frames generated by g. However, the conclusion is not true if € = 0.

For example, h(x) = [1¢_, Siz;x" is continuous and |h(x)| < [1¢_,(1 + |xx D7 .
k

Since h = X[-1/2,1/2)% It IS easy to see that {m(n,m)h:n,m € Z%} is an orthonormal
basis for L?2(R%) forany P > 1.

We study the stability of Gabor frames with arbitrary sampling points.
Proposition (2.3.12)[99]: ([116, Lemma 3.2.15]). For any f,g € So(R%), we have
Vof € W(R*?) and

2d
Vel = I%oll, , = 2572 (242 Vtoll, el

1 2d
Vefll, , £2%4(2+35) Vool I1F s, llgls,:
Lemma (2.3.13)[99]: ([116, Lemma 3.3]). Suppose that g € S,(R%). Then {n(y) g :
y € I'} is a Bessel sequence for L2(R%) with upper bound

1 2d 5
M(g;9)=29(2+3) Ve, 8ol N8l

for any §-uniformely discrete sequence I' © R%¢,
Lemma (2.3.14)[99]: If {n(a,, b,) g: n € Z} has an upper (lower) frame bound, then
so does {m(a,, + xq, b, + Vo) g : n € Z} with the same bound for any x,,y, € R¢.
Proof. This is a consequence of the fact that
(f,(ay + Xg, by + o) g ) = e 2MXobntYol(£ (- 4x5)e 2 Y0) 7r(ay, by) g). .

We are now ready to give a symplectic perturbation result for Gabor frames with
arbitrary sampling points.
Theorem (2.3.15)[99]: Suppose that g € S,(R%) and {rn(a,, b,) g: n € Z} is a frame
for L2(R%). Then there is some & > 0 such that for any matrix P satisfying ||1 — P|| <
g, {nr(Pa,,P~Th,) g : n € Z} is a frame for L2(R%).
Proof. As in the proof of Theorem (2.3.9) we need only to show that
{n(a,, b,)Dpg:n € Z} is a frame L2(R%) if |[1 — P]| is small enough.
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By Proposition (2.3.3), {(a,, b,:n € Z)} is relatively uniformly discrete. Hence
there is some 7,8 > 0 such that we can splite {(a,, b,:n € Z)} into r §-uniformely

discrete sequences I,. For anyf € L>(R%), we have
1

(ng)(x,y) = (f,T[(X,y) g) = ”_<Vg Ofngon(xly)g>

2
goll3

1 l .

g oll3 ﬂ(vgof)(t’ ®)(Vg, 8)(t —x,0 — )e?™ 50 Ndtdw. (14)
012

R2d

Similarly,
(Vngf) (x,y) =
1 ] _
I go”% ffde(VDP gof)(t, a))(VDP goDP g )(t — X, — y)327”(x'w J’)dtdw.

Hence

|(Vg ) (@ bn) = Vo, g f)(an by

1 .
= ” g ”2 fj(Vg Of)(t, w)(Vgo g )(t —Qp, W — bn)ezm<an'w_bn>dtdw
0ll2
R2d

~ [ Vop o120, 5,55 83 = a0 = Be?™Ndede

R2d
1

= 2
lgoll;

f j (Ve )t @) = (Vi g, ) ()|

R2d

|y, 8)(t = @ — by)|dtdw + ]j|<vD,,g0f><t, o)

R2d

) |(Vg0 g)(t—apw—Dby) - (VngODP g)t—ayw— bn)ldtdw)

1 _U |(V(go—ng0)f)(t;w)| | (V, 8)(t — ap, @ — by)|dtdw

I'goll3
R

1
12 10005, D0 |t = Vo, Do) ¢ = a0 = bt
2 p3d

1/2

+

g

1
lIgoll3

=

ﬂ |(V(g0_ngo)f) (t, w)|2 |V, 8)(t — ay, @ — by)dtdw|

R2d
1/2

. jf|(Vgog)(t — @y, @ — by)| dtdw

R2d

1 2
S TEATE jj |(Vopgo )&, 0)]
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1/2

' |(Vgg - VngODPg)(t —au, W — bn)|dtda))

1/2
R2d
1/2
lglls/? ,
" gl [ V-ppo @] 00 = an0 = bydde
R2d
2
+Cp fj|(Vngof) (tr w)l
R2d
1/2

| (V3,8 = Vipg, Dp&) (t — an, @ — by)|dtdw) ™",
Where C, = llgollz? - ||V 8 — VngODPg”i/Z- Note that for any t,w € R?, (t,w) — I}.

Hence
1/2

D 1)@ b) = Vo) (@b
nez
1/2

_ llglly
e

[T

R2d
1/2

W~ ano = bldtdw |+ G| [[10opa e

nez R2d
1/2

- Z|(Vgog Vg DpE)(t — @y, @ — by)|dtdw

1/2

lglly,
19011

Jfl(V(QO—DPgo)f(t’ “))lz

R2d
1/2

|(V,,8)(t — @y, @ — by)|dtdw|  +C, ﬂ|(VDPgOf)(t, )|’

1<k<r R3d
(an,bn)€ly
1/2

|(Vg0g — Vppg, Dp8) (t — ap, w — bn)|dtda)

1<ksr
(an,bp)ETY

1/2

<

Tz (1081, 5191151190 = Drgoll,
2 )
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#1209 = Vorgo o3y, Va8 = VopaaPoll. “Ngollz) IFI.— (15)
Note that

(Vbpg, Dpg )(x, ) = j |detP|,(pt)go(Pt — Px)e 2™{t¥)qt

R4

= j g(t)go(t — px)e—ZT[i(t,P_TJ/)dt — (Vgog)(Px; P_Ty),

Rd

By replacing diag [P, P~T] for P in Lemma (2.3.8), we have

IIIPPrﬁl—m” 909 VngoDPgnws = PII—>0|| 909 gog(P'P_T”Wﬁ B

Consequently,

i 1Vs0g = Vopg, Degll, = 0.

Hence we can find some constants € > 0 and 0 < A< A such that for any matrix P
with||I — P|| < e,

Snez| (Vef) (@ bn) = (Vo) (@n, bi)|” < AlIFI3.
By proposition (2.3.4), {r(a,, b,))Dpg:n € Z} is also a frame for L?(R%).

We study the perturbation of sampling points in £ sense. The main difference
between our result and those in [103,104,109,126,127] is that arbitrary sampling points
are considered here. By [16, Lemma 3.11], the assumption on the window function is
weaker than that of [128, Theorem 3.2]

Theorem (2.3.16)[99]: Suppose that g € S,(R%) and {r(y,)g:n € Z} is a frame for
L?>(R%) with bounds A and B. Then there is some & > 0, such that for any y,, € R4
satisfying ||y, — ¥ulle < &1 € Z, {n(y,,)g:n € Z} is a frame for L2(R?).

If D*g, X%g € Sy, V|a| =1, and {y,,:n € Z} is a union of r §-uniformly discrete
sequences, then & can be determined by 0 < ¢ < §/3 and

3, 2d
M, = 27234 (2 + 3) “Vgogonw,l'

2
(Z ID%glls, + 2m)/2 ) ||X“g||so) <4

|la|=1 la|=1
2 2
In this case, (A1/2 — Mgl/z) and (Bl/2 + Mgl/z) are frame bounds for {r(y;))g:n €
7
Proof. Puty,, = (a,, b,) andy,, = (a,,, b},). For any f € L? (R‘;), we see from (14) that
| (Vo) (an, by)e?mantn) — (V. £)(ay, by,)e?™anbn)|
’ 2
= |(Vef)(@n, by), (Vef)(an, by)|

: .
~lgoll? ﬂ (V3 /) (t, @) (Vg 8) (t — ap, @ — by)e?™Henw=bn)
go 2 R2d

. 2
— (Vgo2) (t — ap, w — by)e?™ @by dtde|
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1
Igoll2

<

ff|(Vgof)(t: (1))| : |(Vg0g)(t —a,,w —by,) e 2mi{an w=bn)

R2d
2

—(Vg,®)(t — ap, @ — by)e?™ e ~bn|dtd

=21 jjl(Vgof)(tl O))l ’ |(Vg0g)(t — Ay, W — bn) o 2mi(t—an @=by)

R2d
2

— (Vo 8) (¢ — a,  — by)e?™XE=ane=bn) | drd

= 24 Jfl(Vgof)(t,wﬂ

R2d
2

' |(Vggo)(an —t,by —w) — (Vggo)(aﬁ —t, b, — a))|dtda)

< 2 jfl(‘/gof)(t"“) ]

R2d

) |(Vggo)(an —t, by —w) — (Vggo)(aél —t, b, — a))dtda)|

: f |(V290)(an — t, by — @) = (Vyg0)(an, = t, by, — w)|dtdw

R2d

< 2480, (90) | (e ]

R2d
) |(Vggo)(an —t,by — w) — (Vggo)(ak —t,by — a))|dtdw (16)

Where As,l(Vggo) = SUP) x|l < ”(Vggo)( +x,) — U{qgo)nl

By proposition (2.3.3), {y,:n € Z} is the union of finitely many uniformly
discrete sequences. Therefore, we can find some constant 6§ > 0 and r disjoint subsets
A, c Z such that Uy—,; A, = Z and {y,,: n € A4,} is §-uniformely discrete, 1 < £ < r.

Assume that [|v,' — Vulle < €< 6/3. Then {y,, = (ay, b,):n € A,} is 6/3-
uniformely discrete. Hence for any ¢, w € R* and m € Z%4,

#({(t — @, 0 = by):n € Ag} 0 (m6/3 +[0,6/3)°4)) < 1,

#({(t— ap 0 —b)in € A} 0 (m6/3+[0,6/3)29)) <1,  1<£<r.
It follows that

Z|(ng) (an; bn)ezm(ah'bn) _ (ng) (a;v bn)ezm(a;bbn)l2
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< 218, (00) [[ 10,9 e ]

R2d

(% 90) @n = t.by = @) = (Vyg0) (@ — £, by — w)|dedw

nez

= 280, (90) [[ 104,00

R2d

z Z |(V,90)(@n — t, by — @) — (V,90)(a}, — t, by, — w)|dtda

f{=1ne€Ay,

< 24284 (Vy90) - 2r([Vg o [l 5 I 113
Similarly we can show that

S 1) @l b @00 — (1, ) @l by

nez
= z 2d ﬂ Vo ) (6 @) (V3 9)(t — ap, w — by)e?Tan®)
nez Rr2d

2
— (W, 9)(t — ap, w—, b!)e2man®) did g

<D 2.04,9) || 10wl

nez

|(,,9)( — an, 0 — by) — (t — ap, w—, b)) |dtdw
< 29205 (Yg9) - 2r (Vo095 5 IF 113,
Where A, 5(V;,9) = supy,,; < &l|(V5,9) G +3) — Vg, g||, - By the triangle inequality,
D 1) (an, e — (v, £)(ap, byye?mieno|
nez 5
/ /
<242 21|V, gl 5 5 (Ber (Vyg0) ™" +Bea (V3 9) ") IIFI1

= M3 (17)

Since g € S, implies V,go, V;,g9 € L'(R*?), we can choose some & > 0 such that M(e)
is less than the lower frame bound of {m(y,)g:n € Z}. By Proposition (2.3.4)
{n(y,)g:n € Z}, is a frame for L2(R%) whenever ||y,, — V.l < &, V1 € Z.

Next we assume that D%g, X%*g € S,,V |a| = 1. We have
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1
9]
jﬂ(l{ggo)(t +x,w) — (V;90)(t, a))|dtda) = f f&(l/gg())(t + sx, w)ds| dtdw
0

R2d R2d
1

= ff jz: x%(Vpaggo)(t + sx, w)ds| dtdw

R24 |0 la|=1
1

< D1 [ [ |0egg0)(e + 5w dedads = > w1 10glls,

|la|=1 0 R2d |a|=1
Hence

Aeq(V, go)— sup ﬂl( 290t + x,0) — (V590) (8, w)|dtdw

[1x||co<E

<& > D%l (18)
lr|=1
As in the first part, we assume that {y,,:n € Z} is a union of r §-uniformely discrete
sequences {y,:n€ Ay}, 1 <€ <r and ||y, — ¥nllw < € < &/3. The sequence {(a, —
t+s(a, —a,), b, —w) :n € Z}isaunion of r §/3 uniformly discrete sequences for
any (t,w) € R?*% and 0 < s < 1. It follows that

D 1900 (@n = t.by = @) = (Y go) (@i = £, by = )

nez
0
= Z f&(‘(ggo)(an —t+ S(a;l — an)'bn — (U)dS
nez |o
1
= gz Z fl(VD“ggo)(an —t+ S(a;L — an)»bn _ a))|ds
nEZ|“| 10

=¢ z jz z |(Vbaggo)(an —t + s(ap, — ay), b, — w)|ds

lx|=19 f=1ned,

<ey jr”VDaggO”Wﬁ/st
lal=10

3 2d
<er25?(2+2) a0l Y 1Dl (19)

|a|=1
where we used Proposition (2.3.12) in the last step. Putting (16), (18) and (19) together,
we get

i(a) ’ . 2
S |0 ) )0 — (1 )y )0

nez

2
3 2d
<z (243) Wl Y 0 ) 111

la|=1
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Similarly we can show that
2
D 1o (@ b)e?mienim — (v £)(ap, by)e?rienti]

nez
3\ 2d 2
<& (2+5) [%,90ll,, (Zn > ||X“g||so> IF1I3
|la|=1
Hence
. / ) . ! ! 2
D |Waf) (@ byermiseion> — (v, ) @y’ by Yerri<antn’> |
nez
3 2d 2
2
<etr2(2+5) 90l <Z||D“g||so+2n > ||X“g||so) IF1l2>
|lax|=1 |lax|=1

Now the conclusion follows from Proposition (2.3.4).

Remark (2.3.17)[99]: The above theorem says that Gabor frames generated by
functions in S, with arbitrary sampling points are stable with respect to small
perturbations of the sampling points.

The following theorem shows that (regular and) irregular Gabor frames are stable
with respect to small changes of the window function in the S, norm sense.

Theorem (2.3.18)[99]: Suppose that {m(y)g:y € T} is a frame for L?(R%) for some
sequence I' € R%%, Then there is some & > 0 such that {m(y)h:y € T'} is a frame for
L*(R®) provided ||g — hlls, < e.

If T'={(an, bum):n,meZ} and {a,:n € Z} is relatively discrete, then the
condition ||g — h|[s, < & can be replaced by the weaker condition||g — h[ly, < €.
Proof. By Proposition (2.3.3) there is some § > 0 such that we can split T' into r §-
uniformly discrete subsequences I, 1 < ¢ <r. By lemma (2.3.13) {n(y)(g — h):y €
I'} is a Bessel sequence with upper bound

2d
Bs =2 (1+45) Vo9l , - llg = R,

By Proposition (2.3.4) {m(y)h:y € T} is a frame for L>(R*) whenever ||g — hl|s, is
small enough. This showed the first part.

The second part follows by Lemma (2.3.7) and Proposition (2.3.4).
Remark (2.3.19)[99]: It is also possible perturb the window function and sampling
points simultaneously. By Theorems (2.3.16) and (2.3.18), if g € Sy(R%) and
{n(y,)g:n €Z} is a frame for L?(R%), then we can find some &> 0 such that
{n(y,, Yh:n € Z} is also a frame for L2(R%) provided ||g — hlls, < eand [[yn — ¥nllew <
E.

We study the stability of dual frames. Suppose that {g,,:n € Z} is a frame for
some Hilbert space . Define the frame operator S as

Sf =) {f,gngn V€T

nez

The (canonical) dual frame {g,:n € Z}, is defined by g;, : S~1g,,.
The following theorem shows that if two frames are close, so are their duals.
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Theorem (2.3.20)[99]: Let {g:n € Z} and {§,:n € Z}, {hy:n € Z} and {h,;:n € Z}
be two pairs of dual frames for some Hilbert space . Denote the frame bounds of
{gn:n € Z}and {h,:n € Z} by (44, B;) and (4,, B,), respectively.

(i) If {g, —h,:n € Z} is a Bessel sequence with upper bound &, then {gn —

_ 1/2 ,1/2\ 2
h n:n € Z} is a Bessel sequence with upper bound & (Aleil 52 )
(ii) If
DKLl = D KPS SIFIZ  Vf e,
nez nez
Then
—_—\ 12 —~ 12 5 2
UG = Y [ Ff | <=2 vf e,
A4,
nez nez

Proof. First, we show (i). Put

SF= D {f.gu0n and T = ) (F.hdhn,
nez _ nez
Then S and T are self-adjoint, g, =S g, h, =T th,,A;]1 <S <B;I and A,I <
T < B,1. Forany f € H, we have

ISf =TAIl= || D ((f: 9ndgn = {F. hudha)

nez

D 4. 9n = ha)gn

nez

< 41 0 ha) (G = h)

nez

1/2 1/2
< B (Zuf, gn— hN>|2> +62 (Zuf, hn>|2)

nez nez

< 52(B"? + B,?)IIf.

Hence
IS =T < 61/2(B11/2 n le/z).
Therefore,
ISTH =T H =TT =S)STH < T - IT =S|I - IS~

1
1/2 1/2 1/2
<ot (B +B,7%).

Consequently,

DA™ =T gl = Y (S =T, g2 < BillS™ = T)f I

nez B nez
1 1/2 1/2 2
< 5(B,"° + B, )|IfIl%
A%A2 ( 1 2 )
On the other hand,
)
D UET gn = BaDIE = > KT f, g = had? < SIT I < 5 IFI
nez nez 2
Hence,
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DGR’ = Y 15 gn = T )2

nez nez

= D IS =T 0ga) + 4,77 (gn = k)2

nez
2

(B +B,) | IFII?

1/2

<6
= A2+AA2

2
A, + B, + B}/?B}/?
=4 1.

A A,
Next we prove (ii). Since both S and T are self-adjoint, we have

Is =Tl = sup K(S =T)f.1)] = sup [(SF. /)= (Tf.f)

= sup | > Kf.gwl? = ) Wfo )l
nez nez
Therefore,
STE=T Y <|IITH-NT=S|I-IS7] < 5.
| <07l -l Il_AlA2

Since g, = S~1g,,, we have

STUEGIE = ) K579 = ) KSTF.00 = (s5717,573f) = (1,571

nez nez nez
Similarly,

D E = (T,

nez
It follows that

D KEGIE =) [(f T

nez nEZ
2
<~ AZ 111
Example (2.3.21)[99]: Stability of the dual of a Gabor frame {n(y,,)g:n € Z}. Let the
hypotheses be as in Theorem (2.3.16), y,, = (a,, b,,), vy, = (ay, by,), and A and B be the

lower and upper frame bounds for {m(y,,)g:n € Z}, respectively. Suppose that ||y,, —
Yullo < €. We have

1/2 1/2
<z|(l(gf><yn>|2> - (Zl%f)m; I )

nez nez

N= ST =T O < IS =T - IFII2

1/2
- (zl(%fxan, bp)e?™enon) — (V, £) (ap, b,a>e2”i<a%"’*'”|2>

nez

<MEY2If 2,
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Where M (¢) is defined as in (17) on the other hand, since {r(y,,)g:n € Z} has upper
frame bound (BY/2 + M()/2)"'?, we also have

1/2 1/2
(ZI(%f)(Vn)IZ> +<z|("gf)(%€)|2> < (2BY2+ M©Y?)IIf

nez nez
It follows that

PR R A

nez nez
Since M(e) tends to zero as & does, the Gabor frames {m(y,)g:n € Z} and

{n(y,,')g:n € Z} are close. By Theorem (2.3.20), the dual frames are also close in the
same sense. Specifically, let {g,:n € Z} and {lTn ne Z} be the dual frames of
{n(y,)g:n € Z}and {r(y,,)g: n € Z}, respectively. Then

. — 2| 2BY2M(e)Y% 4+ M(¢)
D KEGIE =D (R

< I£115.
1/2 _ 1/2)2
nez nez A(A M(E) )

However, the upper bound for the Bessel sequence {rn(y,,))g —n(y,)g : n € Z}
might not tend to zero. Specifically, we have the following .
Proposition (2.3.22)[99]: Let {m(a,, b,))g : n € Z} be a frame for L2(R%).
(i) If g € Sy(R%), then

< (2BY2M()V% + M(DIIf113).

lim sup Y I{f,m(an, by)g — m(an, bg)? = 0.
lan-ahll.~0 1711 &
(ii)Forany £ >0, lety, = (¢, ..., &) € R%. Then
lim sup supl{f,m(an, bn)g — m(an, by + ¥ )P* = llgll5.

£20|fll,=1 nez

Remark (2.3.23)[99]: The second part of the above proposition shows that the upper
bound of the Bessel sequence {r(a,, b,,)g — m(a,, b;,)g:n € Z} might not tend to zero
even if }.,.c,|b,, — b,,|P tends to zero for some p > 0.
Proof. We see from (16) that (i) holds since g € So(R?) is equivalent to V, g, €
L*(R?%).

In order to show (ii) put I' = {(a,,b,,) : n € Z} and Q,(x) = {x":[|x" — x||e <
r}. By proposition (2.3.3), for a sufficiently large r, we have

#(r ﬂ 0 (y)21,  vayer: (20)

For any 0 < e < 1/(8rd), let x, = (1/(2d¢), ...,1/(2de)) € R%. By (20), there is
some (a,,, b,y) € T'N Q,(x,, 0). Therefore, ||a,, — x|l < 7, It follows that

Ql/(4ds) (xe - am) > QZr(xe - am) > Qr(o)-
Let

fin (@) = glx = ay)e?iebm) (1 — e2miye)x, - (x,).
Then we have

i = ([ 190c=amin - e Pax

Q1/(ade)(xg)
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|| 19G-anizax 21)
Q1/(ade)(xe)
On the other hand, for any x = (x4, ..., X4) € Q1/(4as)(Xs), We have |x, — 1/(2de)| <
1/(4de). It follows that |x; + -4+ x4 — 1/(2¢)| < 1/(4¢) and thus |{x,y,) —1/2| <
1/4. Therefore,
|1 - e2m®70|” — 4sin?(m(x,y:)) 2 2, Vx € Qp/gaar (xe)
It follows that

=7 SUP[{fom, (an, bp)g — m(an, by + ye) 9
1fmll3 nez

1
= |<fm'7'[(am; m)g n(am,b +ys)g>|2
1 finllZ

2
1 S— . .
= f fon () g(x = a)e2miebm) (1 — e2mixve))dx
| 113
Q1/(4de)(xe)
2
1 . 2
——| | 196 amplermierd 1 ax
| 113
Q1/(4de)(xg)
ZL 2 2
> 5 lg(x — ay)|dx| = lg(x — ap)|“dx
| |12
Q1/(ade)(xg) Q1/(ade)(xe)
-] eeraz [[lger
Q1/(ade)(xg—am) Qr(0)

(by (21)). Hence

1
lim sup ——— supl{fo 7(@n bu)g — T(an by + Y )GH? = f 19012 dx.
£>0 711,50 || fin |5 nez .

r(0)

By letting r — 40, we get the conclusion.
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Chapter 3
Weyl-Heisenberg Frames and Simultaneous Estimates with Density Results

We show that the results shed new light on the classical results concerning frames
for L2(R), showing for instance that the condition G(x) = Y,.c; |lg(x —na)|*> > A >
0 is not necessary for {E,,;Tna9}mnez t0 be a frame for span{E,,;Tna9}mnez -
Inspired by Benedetto and Li, where the relationship between the zero-set of the
function G and frame properties of the set of functions {g(- — n)},,cz is analyzed. We
established sampling theorem for the simply connected Heisenberg group, which is
translated to a family of frame bound estimates by a direct integral decomposition. We
show that if this density condition holds, there exists, in fact, a measurable set E < R
with the property that the Gabor system associated with the same parameters a, b and
the window= y , forms a tight frame for L*(S).

Section (3.1): Subspaces of L?(R)

For H denote a separable Hilbert space with the inner product (- ,) linear in the
first entry. Let I denote a countable index set.

We say that {g;};c; S H is a frame (for H) if there exist constants A, B > 0 such
that

IFII? < Ziell{f, g)? < BIIfIIZV f €.

In particular a frame for H is complete, i.e ,span{g;};c; = . In case {g;};e; iS not
complete, {g;}:c; is a frame for sequence. The numbers A, B that appear in the definition
of a frame are called frame bounds.

Orthonormal bases and, more generally, Riesz bases are frames. Recall that
{g:}ic; 1s a Riesz basis for # if span{g;};c; = H and

2
JA,B> 0 : AZICiIZ < Zcigi < BZIcilz, Vichies € €2(D).
i€l i€l i€l
If {g,}ic; IS a Riesz basis for span{g; };;, we say that {g;};c; is a Riesz sequence.

The present deals with frames having a special structure: all elements are
translated and/or modulated versions of a single function. Let L?(R) denote the Hilbert
space of functions on the real line which are square integrable with respect to the
Lebesgue measure. First, define the following operators on functions f € L*(R):

Translationby a € R: (T,f)(x) = f(x —a), x €R.
Modulationby b € R:  (E,g)(x) = e?™*f(x), x € R.
A frame for L?(R) of the form {E,,;, a9} mnez is called a Weyl-Heisenberg frame (or
Gabor frame). For a collection of different concerning those frames see [136].

Sufficient conditions for {E ;T 9}mnez to be a frame L*(R) has been known
for about 10 years. The basic insight was provided by Daubechies [134]. A slight
improvement was proved in [137].

Theorem (3.1.1)[131]: Let g € L?(R) and suppose that

3A,B > 0: ASZlg(x—na)lng fora.e x € R, (D
nez
lim | TaadT, k) =0 2)
k+0 lilnez 0o
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Then there exists by > 0 such that {E,;, T 9}mnez 1S @ Weyl-Heisenberg frame for
L?(R) for all € ]0; b, [.

The proof of Theorem (3.1.1) is based on the following identity, valid for all
continuous functions f with compact support whenever g satisfies (1):

1
> K EnaTaa)l? =5 [IFGP GG

mmnez

1 -
+E z jf(x)f(x —k/b) Z g(x —na)g(x —na —k/b)dx. (3)
k+0 nez
An estimate of the second term in (3) now shows that {E,,;T,,qa9}mnez IS actually a

frame for all values of b for which
2 Tnanga+§g

nez

K+0 00
A more recent result can be found in [135]: in Theorem 2.3 it is proved that if (1)
Is satisfied and there exists a constant D < A such that

<A (4)

k
ZZ|g(x—na)g(x—na—E)|SD fora.e.x € R, (5)
k+0nez A-D B+D
Then {E,.pTha9}mnez IS @ frame for L2(R) with bounds — L The reader should

observe that [135] does not provide us with a generallzatlon of the results in [134],
[137] in a strict sense: there are cases where (5) is satisfied but (4) is not, and vice versa.
The main point is that other conditions for {E;,;T,,9}mnez t0 be a frame can be
derived from (5); cf. Theorem 2.4 in [135].

Define the Fourier transform F(f) = f of f € L'(R) by

Fo) = j f(0)e2mvedy

As usual we extend the Fourier transform to an isometry from L?(R) onto L?(R). We
denote the inverse Fourier transformation of g € L?(R) by F~1g or §. It is important
to observe the following comutator relations, valid for all a € R:

FT, = E_,F, FE, =T,F.
We need a result from [133]. The basic insight was provided by Benedetto and Li [132],
who treated the case a = 1.
Theorem (3.1.2)[131]: Let g € L2(R), then {T,,,g}.c7 is a frame sequence with bounds
A, B if and only if

o<urs 3 (2

XxX+n
< aB fora. exforwhlch2|g( )
nez

In that case {Tnag}nez is a Riesz sequence if and only |f the set of x for which

Znez| G(— )| = 0 has measure zero.

Theorem (3.1.2) leads immediately to an equivalent condition to (1). Define the
function G and its kernel N by
G:R - [0,00 ]' G(x) = ZneZlg(x - na)|2,
N; = {x € R|G(x) = 0}.

* 0.

x+n
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Corollary (3.1.3)[131]: {Eg g} Is a frame sequence with bounds A, B if and only if

nez
A , B
0 <ESZ|g(x—na)| SE fora.ex € R — Ng.
nez
In that case {Eg g} Is a Riesz sequence iff N, has measure zero.

a nez

Proof. The inequality
A B
O<ES Elg(x—na)lzsa fora.ex € R — Ng.

nez

holds if and only if
A B
0<532|g([x—n]a)lzsa fora.ex € R — Ng. (6)

nez
By Theorem (3.1.2), (6) is equivalent to {T,,,g}.c, being a frame sequence with

bounds A, B. Appling the Fourier transformation this is equivalent to {Eg g} being a
a nez
frame sequence with bounds 4, B.

From now on we concentrated on Wey-Heisenberg frames {E;,,,T,q 9} mnez- The first
result gives a sufficient condition for {E,,;T,,a9}mnez t0 @ frame sequence. It can be
considered as a "subspace version™ of a result by Ron and shen; cf. [138]. The condition
for {E.pTha9}mnez t0 be a frame for L2(R) is significantly weaker than the conditions
mentioned.

Let L?(R — N;) denote the set of functions in L?(R) that vanishes at N,;.
Theorem (3.1.4)[131]: let g € L*(R) a, b > 0 and suppose that

k
A= Om]f [ZIg(x—na)lZ z Zg(x—na)(g (x—na—E) >0, (7)
“ nez k+0 Inez
k
B := sup glx —na)(g (x —na — —) < oo, (8)
x€[0,a] b
keZ Inez

Then {E,p Tha g} mnez IS @ frame for L2(R — Ng) with bounds 2 E'E'

Proof. First, observe that span{E,;Thq9}mnez S L*(R — N;). Now consider a

function f € L?(R — N;) which is bounded and has support in a compact set. The Heil-
Walnut argument (3) is valid under the assumption (8) and it gives that

1
> K EsTaag)? =5 [1£GOP Y lg(x = naex

mmn€Z nez

1 _
b z J fGf G =k /b) z g(x —na)g(x —na —k/b)dx. (3)
k+#0 nez
We want to estimate the second term above. For k € Z, define

Hk (x): Z Tnag(x) Tna+k/bg(x)'

nez

First, observe that
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z |T—k/ka (x)| = Z

T—k/b Z Tnag(x)Tna+k/b9(x)

k#0 k+0 nez
= 2 Tna—k/bg(x)Tnag(x) = z Tna+k/bg(x)Tnag(x)
k+01Inez k+0 Inez
=D 1D Taaripd @ Taag (0| = D 1Ha ()]
k#0 Inez k#0

Now, by a slight modification of the argument in [135], Theorem 2.3,

D FGIfGx—k/b) ) g(x = na)gGr —na — k/b)dx

k+0 nez

= z jlf(x)l |Tie/pf (O] - |Hi () dx
k#0
- Z f'f(xﬂ [Hi GOl | Tieya f OV H ()] dx

k+0
1/2

=S ([ircorimcons)” ([Insrcol i cola)
k=0

1/2
< <Z|f<x)|2|Hk(x>|dx> ([ Irenfeolimeolax)

k=0

1/2

1/2 1/2
= ( [rreor Z|Hk<x)|dx> - ( [irreor Z|T_k/bﬂk(x)|2dx>
k=0 k+0
— [Irr Y IHGolax
k=0

Note that X0l Hi (0)] = Ykro|Znez Tnag (¥) Trarr/pg(x)| is a periodic function with
periodic a. By (3) and the assumption (7) we now have

z |<f! Emanag)l2

mmnez
>3 [Ircor [Zlg(x ~na)?

nez

k
Zg(x—na)g(x—na—g)
k#0 Ilnez
Similarly, by (3) and (8),

dx =2 1f11e
Xz 5 fll“.
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z |<f» Emanag>|2

<3 [1rcor z;g(x—nanz
k
+;) nZgg(x—na)g(x—na—E)]dx
= [1rcor ; ;g(x—na)g<x—na—%) <2 IFI1P.

Since those two estimates holds on a dense subset of L?(R — N;), they hold on L*(R —
Ng). Thus {E ;.5 Tna 93 mnez is a frame for L (R — N;;) with desired bounds.

The advantage of Theorem (3.1.4) compared to the results is that we compare the
functions Y,,czlg(x — na)|? and Y.l Hi (x)| point wise rather than assuming that the
supremum of Yol Hi ()| is smaller than the infimum of Y,c;|g(x —na)|?. It is
easy to give concrete examples where Theorem (3.1.4) shows That {E,, Tq 9} mnez IS @
frame for L?(R) but where the conditions are not satisfied:

Example (3.1.5)[131]: Leta = b = 1 and define
1+x ifx€e[0,1],

1 .
g(x) = ke ifx € [1,2],

0 otherwise.
For x € [0,1] we have

60 = Y lgle=mI* = 9GO+ gCx + D2 =5 (x4 17

4
nez
and
YD g -aga—n—1| =1 +02,
k#0 lnez
so by Theorem (3.1.4) {E,;1p Tha 9} mnez is @ frame for L*(R) with bounds 4 = i, B=9

But infyez G (x) = = and

Z z Tna.ng+k§

k+#0 llnez 0

so the condition (4) is not satisfied. (5) is not satisfied either.

Remark (3.1.6)[131]: It is well known that G being bounded below is a necessary
condition for {E,.,Ta9}mnez t0 be a frame for L2(R); cf. [134]. Theorem (3.1.4)
shows that this condition is not necessary for {E;,,;, o 9} mnez t0 be a frame sequence.
However, it is implicit in (7) that G has to be bounded below on R — N, in order for
Theorem (3.1.4) to work, and any easy modification of the proof in [134] shows that
this is actually a necessary condition for {E,,,;,T;,0 9 }m nez t0 be a frame for L2(R — N).
We shall later give examples of frame sequences for which G is not bounded below on
R — N,.

=4,
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In case g has support in an interval of length % an equivalent condition for

{EmpTna9}mnez to be a frame sequence can be given. First, observe that by (3) this
condition on g implies that for all continuous functions f with compact support, we
have

Smnezl(f EmpTrag)|” =3 [If (01 G(x)dx.
It is not hard to show that this actually holds for all € L?(R); cf. [137].
Corollary (3.1.7)[131]: Suppose that g € L?(R) has compact support in an interval I of
length |I| < 1/b then {E,,;, T g} mnez IS @ frame sequence with bounds 4, B if and
only if
0 < bA < Y,ezlg(x —na)|? < bB, fora.ex € R— Ng.
In that case {E ., Thad}mnez IS actually a frame for L2(R — N).
Proof. Suppose that g has support in an interval I of length |I]| < %. if 0 < bA < G(x)

< bB for a.e. x € R — Ng, it follows from Theorem (3.1.4) that {E},,, Ta 9} mnez 1S @
frame sequence with the desired bounds. Now suppose that {E,,, ;a9 }mnez 1S @ frame

sequence with bounds A, B. then, for every interval Iof length || s% and every
function f € L*(I),

1
D N s Traghmnen)* =5 [ 1£COFGGIx < BIFIP.
R

mmn

But this is clearly equivalent to

G(x) = ZIg(x —na)|> < Bba.e.
nez
To prove the lower bound for G we proceed by way of contradiction. Suppose that for

some € > 0 we have 0 < G(x) < (1 —€)Ab on a set of positive measure. in this case
there is a set A of positive measure and supported in an interval of length < % so that

0 < G(x) < (1—¢€)Ab on A. Then, for any function f € L>(R) supported on A, we
have

1
> U EmsTaa)? = 5 [ 1FI26Gd

1—¢€)Ab
< % j FGo2dx = (1 — )Allfl2

Since G(x) > 0 on A, there is a k € Z so that x,T,g is not the zero function.

With A= A N supp(Ty,g ) We have
f = XA’Tkag € Spﬁ{Emkaag }mEZ c Spﬁ{EmbTnag}m,nEZ:
so the above calculation shows that the lower bound for {E;,;,T,a9}mnez 1S at most
(1 — e)A, which is a contradiction is a frame. Thus
G(x) = bAfora.e.x € R — Ng.

In case the condition in Corollary (3.1.6) is satisfied, it follows from Theorem (3.1.4)
that {E;p Tha9}mnez is a frame for L*(R — Nj;.
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For functions g with the property that the translates T, g,n € Z, have disjoint
support we can give an equivalent condition for {E;;;,T,,9}mnez 10 be a frame
sequence. Define the function

G(x):R - [0,00], G(x)= z |g(x +%)|2.

mezZ
Proposition (3.1.8)[131]: Let € L2(R), a, b > 0 and suppose that
supp(g) Nsupp(Tra9) =@, Vn € Z —{0}. 9)

Then {EpTha93mnez 1S @ frame sequence with bounds A, B if and only if there exist
A, B > 0 such that

bA < z |g(x+%)|2SbB fora.e. x € R — Ng.

mez
In that case {E,, Tha9}mnez 1S @ Riesz sequence iff Ng has measure zero.

Proof. Because of the support condition (9), it is clear that {E,,;,g}nez IS @ frame
sequence iff {E,,,Tha9}mnez IS a frame sequence, in which case the sequences have the
same frame bounds. But by Corollary (3.1.3) {E,.p9}mez IS @ frame sequence with
bounds A4, B iff

bA < z |g(x+%)|2 <bB fora.e.x €ER— Ng.

mezZ
Also, {E, 1, Tha93mnez 1S @ Riesz sequence iff {E,,,9}mez IS @ Riesz sequence, which,

by Corollary (3.1.3), is the case iff Nz has measure zero.
We are now ready to show that G being bounded below on R — N, (by a positive
number) is not a necessary condition for {E,,;, Tiqa 9}m nez t0 be a frame sequence.

Example (3.1.9)[131]: Let a, b > 0 and suppose that ﬁ ¢ N. Chose € > 0 such that
11
[0,e]+nan[g ,E+e] =@, VneEdLZ.

This implies that € < min (a %) define

X ifx € [0,€],

1\? 11
0= fi-(e-3) wcefy 3o
jl X 2 ifx € b,b+e,

0 otherwise.

Then the condition (9) in Proposition (3.1.7) is satisfied. Also, for x € [0, €]
~ m_?
) = ) g+ P =g +gG+1?=1

mezZ

And for x € ]e %] we have G (x) = 0. Thus, by proposition (3.1.7) {EppTka 93 mnez 1S
a frame sequence. But for x € [0, €],
60 = ) lgx—na)l* = x2

nez
Thus G is not bounded below by a positive number on R — N;. By the remark after

Theorem (3.1.4) this implies that span{{Eny Txa g} mnez } # L*(R — Ng).
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For ab > 1 it is even possible to construct an orthonormal sequence having all
the features of the above example. For example, leta = 2,b = 1 and

X ifx € [0,1],
gx) =12x —x2 ifxe 11,2],
0 otherwise.
Since
m 2
Z |g(x+3)| =1, Vx,

meZzZe
it follows by Proposition (3.1.7) that {E,, Txa 9 }mnez 1S @ Riesz sequence with bounds

A =B =1, which implies that {E,,,Txq9}mnez 1S an orthonormal sequence. But
G(x) = Y, ezlg(x —na)|? is not bounded below on R — N.

G being bounded above is still a necessary condition for {E,,,, Txq g} mnez t0 be a
frame sequence (repeat the argument in Corollary (3.1.6)) G also has to be bounded
above:

Proposition (3.1.10)[131]: If {E},; Tka 9} mnez 1S @ frame sequence with upper bound B,
then

m 2
Z|G(x+g)| <B a.e.
m_EZ
Proof. If {EnpTka9tmnez is @ frame sequence, then {F'E,,Tnad}tmnez =

{TmpEnad¥mnez 1S a frame sequence with the same bounds. In particular the sequence
{TmpG}mnez has the upper frame bound B. By Theorem (3.1.2) (or, more precisely, the
proof of in [133]) it follows that

z |G(x+%)|2 < B fora.e.x.

7’I’lEZ2
It follows that Lez [g(x +2| < B a.e.

As well as Weyl-Heisenberg frames, wavelet frames play a very important role in
applications. The theory for the two types of frames was developed at the same time,
with the main contribution due to Daubechies. Several results for Weyl-Heisenberg
frames have counterparts for wavelet frames. For example, Theorem 5.1.6 in [137]

gives sufficient conditions for { i/zg(in—mb)} to be a frame based on a
a a mmnez

calculation similar to (3).

Also our results for Weyl-Heisenberg frames have counterparts for wavelet
frames. The ideas in the proof of Theorem (3.1.4) can be used to modify [137],
Theorem 5.1.6 which leads to the following:

Theorem (3.1.11)[131]: leta > 1, b > 0 and g € L?(R) be given. let

N = {V € [1,a] ZIgA(a"V)I2 = 0}

D@m= Y 1@y + kb))

nez K#0nezZ
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B:= sup Y |g(a"p)glay +k/b)| < .

lvl€[0,a] ez

Then {# g (;—n — mb)}m’nez Is a frame sequence with bounds %,g.
Section (3.2): Vector-Valued Gabor Frames of Hermite Functions

We derive frame estimates for vector-valued Gabor systems. We consider the
space L?(R; C%) of vector-valued signals. Elements of this space can also be understood
as vectors f = (fy,..,f1), With f; € L(R;C%), which amounts to identifying
L?(R; €%) with the d-fold direct sum of L2(IR). Gabor systems in this space are obtained
by picking a window function f € L?(R;C%), and applying translations and
modulations. Here the translation and modulation operators are given as

(Tf)0) = Fx =), (Mef) () = e?™*f(x) (v, €R)
For any ¥ = (y4,7,) € R?, we denote the associated time-frequency shift of a function
f € L2(R; C%) by
ﬁ’ = TV1MV2f'

Now, given a lattice I' ¢ R? and f € L2(R; C%), the resulting Gabor system

G(f,T) is given by
G(f, 1) = (fy)yer-

Recall that a family (n;);c; of vectors in a Hilbert space H is called a frame if it
satisfies

Allol> < > Kol * < Blloll?, (10)
i€l
for all ¢ € H, with constants 0 < A < B. These constants are called frame bounds; in
the following frame constants are generally not assumed to be optimal. A Gabor system
G(f,T) that is also a frame is called a Gabor frame.

For case d = 1, Gabor frames have been studied extensively; see e.g. [154]. For a
treatment of the case d > 1, in somewhat different terminology, see [142].

The problem of constructing a Gabor frame in dimension d contains that of
simultaneously constructing d Gabor frames: if G(f,I") is a frame with bounds A4, B,
then G(f;,T) is a frame with frame bounds A, B for each component f; of f. More
generally, whenever d < d and f = (f, ..., fz), the system G(f,T) is a frame of
L?(R; €%), again with frame bounds A and B.

But the converse need not be true: the definition of the scalar product in
L?(R; C%) entails that

d
(9. £ = ) (g fila),
i=1

where we used f;|, to denote the action of a time-frequency shift on f;. Hence,
cancellation may prevent the higher-dimensional system from being a frame even when
all components f;, ..., f4 generate a frame. In fact, one can easily see that an obvious
necessary requirement for f to generate a frame is linear independence of its entries

fir - fa-
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Observe, however, that at least the upper frame bound for f can be estimated in
terms of the upper frame bounds for the f;: if B, B, ...., B; are optimal upper frame
bounds for f, fi, ..., f4, respectively, then the Cauchy-Schwartz inequality entails

d
B < dZBi. (11)
i=1

Probably the most-studied window function for the case d = 1 has been the

Gaussian, g(x) = n~1/4e=**/2 This is partly due to historical reasons: Gabor
suggested using Gaussian window [151], and the characterization of densities for Gabor
frames with Gaussian window took more than 30 years to be fully clarified [156,158].
The choice of this window function is motivated by the way Gabor systems are
employed : they are designed to measure time-frequency content in a signal. By the
Heisenberg uncertainty relation a Gaussian window has optimal time-frequency
concentration, and thus can be expected to yield a good time-frequency resolution.
Moreover, for the Gaussian window powerful tools from complex analysis can be
employed to study sampling [156,158], which adds to its theoretical appeal.

We intend to derive frame estimates for window functions f consisting of the
first d + 1 Hermits functions. For h € N, we define the nt* Hermits function h,, by

n n
h,(x) = &exz/zd—e‘xz, (12)
[22n1 N dx™
where the normalization factor ensures ||k, ||, = 1, the above defined Gaussian equals
hy, whence the problem considered here can be viewed as a generalization of Gabor’s
original question.
The vector-valued windows that we are interested in are given by
h? = (hy,...,hy) € L2(R; C4*1),

We intend to give frame conditions and estimates for G (hd,J\/[ (ZZ)), where M denotes

a real-valued invertible 2 x 2-matrix, in terms of a matrix norm defined by

1Ml = sup{l|Mzll,: Izl < 1/2}. (13)
Here ||z||, denotes the usual #”-norm on R2. This choice of matrix norm may seem
somewhat peculiar, and in fact the theorems below can be formulated with respect to
any other norm on matrix space. As will become clear below, the use of (13)
emphasizes the close connection to sampling estimates on the Heisenberg group.

The chief purpose of Theorem (3.2.1) is to allow a better understanding and
formulation of Theorem (3.2.6). Theorem (3.2.1) is of independent interest. Even
though we expect it somehow to be part of Gabor analysis, we are not aware of any
previous source for this result; not even for d = 1.

Hence the tightness of the frame estimate, which is the quotient of the two frame
bounds, approaches 1 as || M || - 0, with speed proportional to || M || /CF.

We observe that Theorem (3.2.1) holds for the supremum C; of all possible
constants, and that this choice provides the sharpest possible statement. Then the main
result is the following estimate:

It uses a sampling estimate for the Paly-Wiener space PW (H) established in Fuhr
and Grochenig [150]. The space was introduced by Pesenson [157], using a particular
differential operator on H, the so-called sub-Laplacian. Hermite functions enter in the
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spectral decomposition of this operator, and it is this connection that will allow to relate
the sampling theorem to frame estimates for Hermite functions.

The connection between frames and sampling theory is not exactly new, in fact it
Is at the base of frame theory, which originated from nonharmonic Fourier series and
their connections to irregular sampling over the reals, see [144]. For the sake of
explicitness, assume we are given a sequence A = (4;)xez Of sampling points in R. We
are looking for criteria that allow to reconstruct a Paley-Wiener function, i.e. f €
L?(R) whose Fourier transform has support in the unit interval [—0.5,0.5] , in a stable
manner from its restriction to A. Noting that

0.5
f) = f f(©e*™Méids = (f, e;,),
-0.5
we find the following two equivalent conditions, with identical constants A and B in
both cases:
(a) The sequence A fulfills the sampling estimate

ANFIZ < ) IF G 1P < BIFIG

keZ
for all Paley-Wiener functions.

(b) The sequence (ey, )kez fulfills the frame estimate

2
AIFIE < ) [(F,e3)]" < BIIFIB,
k€EZ
for all F € L?([—0.5,0.5]).

This equivalence can be used in two ways: For instance, observing that the choice
Ax = k(k € Z) results in the Fourier orthonormal basis (e, )xez 0f L*([-0.5,0.5]), the
implication (b) = (a) leads to Shannon’s sampling theorem. Conversely, for irregular
sampling sets, condition (a) can often be checked using tools from complex analysis,
and then (a) = (b) results in frame estimates for irregularly spaced exponentials.

We use a similar approach for the Heisenberg group H: this time, previously
established sampling estimates for Paley-Wiener functions on H will allow to derive
frame estimates for Hermite functions, by an analogue of the implication (a) = (b). for
this purpose we will need to work out the connections between PW (H) and the Hermite
functions. But first let us show Theorem (3.2.1).

Theorem (3.2.1)[140]: Let f = (f;, ..., f4) € L*(R, C%) be given, with f; € S(R), and
(fi, f;) = 6;5 forall 1 < i,j < d. Then there exists a constants 0 < C¢ < 1 such that for

all matrices M with ||M|| < Cf, the system G(f, M (Z?)) is a frame with frame

2
1 1Ml
constants det )] (1 + e ) .

Proof. Let V;: L*(R ; C%) — L*(R?) denote the short-time Fourier transform,

Veg(x,8) = (g, TeMef).
The orthogonally relations for the short-time Fourier transform [154, Theorem 3.2.1]
and the pairwise orthogonallity of the components of f imply that V; is an isometry.

Hence its image H; is a closed subspace of L?>(IR?). As outlined in the previous, the
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isometry property of V; implies that a frame estimate for G(f, M (Z?)) is the same as
sampling estimate for 2, with sampling set M (Z?).

We intend to utilize the techniques from Fuhr and Grouching [150] for this
purpose, hence we need oscillation estimates. We will need oscillation estimates. We
define

osc,(f)(x) = Sup If () = FI.

x—y|<r
Our first aim is to show
llosc, (F)ll, < Ciannz, VF € H;, (14)

for a suitable constant Cy.
For this purpose we first observe that the projection Py onto H is obtained by
twisted convolution [154]:

(P6)(x,6) = (GHF)(x,€) = j GO, EVF (x — x', € — €m0 <) ' g’
RZ
where we let F = V¢ f.
Hence G = G#F for G € H, and therefore

osc, (G)(x,$)

= s j GO, &) (F (x — X', & — EVF(x" — x', &
|G, )=-@"EM<r | /)

_ f’))e”i(xf"x’f)dx’df’

< jIG(x’,é”)l sup |F(x —x',§ = &) = F(x" = x',§" = §")|dx"d¢’
A |Ge )= ENI<r

R

= j |G(x",§D)]osc, (F)(x — x',§ — §')dx"dS" = |G| * osc,.(F),
RZ
where convolution is taken with reference to the group structure on R%. Hence

llosc.(G)llz < lIGIzllosc, (F)Il1- (16)
In the following estimates we let B,.(x,&) c R? denote the Euclidean of radius r
centered at (x, £). The second factor in (15) can be estimated by
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losc, (]I, = j sup  |F(x§) — F(x', €)dxdé

g GEDeEB ()

< | (|5 ) + 22 .0 dxas
< |r su —(x, —(x, X
(o167 o) \N 0% 0§

<t | DDl endxds <7 [ Co D IDFIl g, oprdrd
R2 |a|s1 R2 1<|a|<4

=7 > IBICs, IDFI,
1<|a|<4

where we used the mean value theorem for the first inequality, and the Sobolev
embedding theorem for the third, applied to both Z—i and ‘;—? Here Cp_ denotes the norm

of the embedding W31(B,) & C(B,) [141,Theorem 5.4]. Clearly, |B,| = r?|B,|; on
the other hand, a dilation argument establishes for r < 1 that Cz < r~2Cp, . Hence

lose, ()l < 1BaICs, ) 1D,
. |ax|<4
And thus (15) implies (14), with C¢ = B11Co . Taqeal D7F,

Now by letting k = M ([-0.5,0.5]*), we obtain R*> = Uyenzz)y +k as a
disjoint union, and K has Lebesgue measure |det(M)|. Moreover, by definition of the
norm, K c B,, for r = ||M||. Now by [150, Theorem 3.5], the oscillation estimate (14)
results in the sampling estimate

2
_ (1=} rpiz <
|det(M)| Cy Z2=

Which is Theorem (3.2.1).
The (simply connected) Heisenberg group is defined as H = R3, with group law
®q@.q.t)=@+p.q+q t+t"+ (g —0'9)/2)
For the following facts concerning M, see [148]. H is a step-two nilpotent Lie group,
with center Z(H) = {0} x {0} x R. H is unimodular, with two-sided invariant measure
on H given by the usual Lebesgue measure of R3.
Given 1 € R* = R\{0}, the Schrodinger representation p, of H acts on L*(R)

Fool <— (147 172
W = {qeta)] Cr :
YEM (Z2)

via
pa(p, q,t) = e 2MAEPUDT, M,

This is an irreducible unitary representation of H. The family of Schrddinger
representations provides the basis for the Plancherel transform of the group, a tool that
is of key importance.

Before we describe this transform in more detail, let us quickly recall the basics
of Hilbert-Schmidt operators: The space of Hilbert-Schmidt operators on a Hilbert space
H is given by all bounded linear operators such that

ITWEs = ) 1Tl

i€l
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Is finite; here (n;);; denotes an arbitrary orthonormal basis of #. it is well-known that
the norm is independent of the choice of basis, and defines a Hilbert space structure on
the Hilbert-Schmidt operators with the Scalar product

(S,T) = trace(T*S) = Z<Sm'Tm ).
i€l
Now, given f € L' n L?(H), one defines

pa(f) = f P () f (x)dx,

H
Understood in the weak operator sense. This is just the canonical extension of the

representation p, to the convolution algebra L*(H). The mapping f = (01(f))ier* iS
called the group Fourier transform. This nomenclature is justified by the observation
that the Euclidean Fourier transform is obtained by integration against the characters of
the additive group. Moreover, it turns out that for f € L' n L2(IH), the group Fourier
transform is in fact a family of Hilbert-Schmidt operators, and we have the Parseval
relation

1112 = f o2 (DIlZs 121dA.
R

The Parseval relation allows to extend the Fourier transform to L?(H), yielding
the Plancherel transform, a unitary map
®

L*(H) - f HS(L*(R))|A|d4,

R
where the right hand side denotes the direct integral of Hilbert-Schmidt Spaces. We

denote the Plancherel transform of f € L?(H) as f = (f(/l))/1 " This map will play
R

the same role as the Euclidean Fourier transform in the discussion.
The Plancherel transform its algebraic properties, providing a decomposition of
various operators and representations acting on L?(H) and x, y € H, then

pa(Lxf) = pa(x) o pa( /),

which provides the decomposition of the left regular representation L into a direct
integral,

L= [.py @ 1]AldA.

Similarly, the right regular representation, acting by R,.(f)(y) = f(yx), decomposes by
the formula

N PA(Rxf) = pa(f) o pa(x)".
The decompositions extend to commuting operators: For any bounded operator T
commuting with L, there exists a measurable field (T3),eg+ Of bounded operators on

L?(R) satisfying p,(Tf) = p,(f) o Ty, or in direct integeral notation

T = f1d®ﬁ|z|d/1.

R*
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We outline the definition of Paley-Wiener space on H and its relation to Hermite
functions. The central role of Hermite function in the decomposition of the sub-
Laplacian has been observed previously, e.g. in Galler [152]; the results presented
below can be found also in Thangavelu [160]. For background material on the
Heisenberg group, confer Folland [146].

We define a let-invariant differential operator P on H by

,q,t)(h,0,0)) — f(p,q,t
(pf)(p,q,t)z}li%f((pq )( h)) f(.a.0) (16)
corresponding to the subgroup R x {0} x {0}, and Q is a left-invariant operator
associated to {0} x R x {0}, in the same manner. P, Q are viewed as elements of the Lie
algebra p of H; we have [P,Q] =T, the infinitesimal generator of the group center.
This observation exhibits b as a stratified Lie algebra,

b=V +1;
with V; = span(P,Q),and V, = R-T = [V, V,].

Of particular interest for analysis on these groups is the sup-Laplacian; as the
name suggests, it can be viewed as a replacement for the Laplacian over R"™. For the
Heisenberg group, this operator is defined by

L=-p? -2
41T

The normalization of Q is chosen for the sake of convenience. L is a left-invariant
positive unbounded operator on L?(H). We denote its spectral measure by m,. The
Paley-Wiener space on H is then defined as

PW (H) = m.([0,1])(L* (D))
Note that ,up to normalization, this definition is completely analogous to the definition
of band limited functions on R, since the Euclidean Fourier transform can also be read
as the spectral decomposition of the Laplacian. The projection I1.([0,1]) is left —
invariant, and is therefore decomposition by Hermit functions. We use the notation
D,f(x) = |a|"?f(|a|"*x). As with translation and modulation operators, we use the
same symbol for operators acting on scalar — and on vector — valued functions.
Lemma (3.2.2)[140]:
(@) (hn)nen, Is an orthonormal basis of L*(R).
(b) The system (hy,)nen, IS an Eigen basis of the Hermit operator
(©) Hf(x) =x%f(x) — f" (x),
Hh, = (2n + 1)h,,. (17)
(d) For every real a # 0, the dilated system (hy, 4)nen,, defined by
h,a(0) = (Djgprhn) (%) = la| V4 hy(Jal™V/2x) ,
is an eigenbasis of the scaled Hermite operator H, f (x) = x%f(x) — a?f" (x)
Hohyo = lal(Zn+ Dhy 4 (18)
(e) The sub-Laplacian decomposes into a direct integral of scaled Hermite operators:
pa(Lf) = pa(f) o Hy,
forall f € C;°(H).

Proof. For part (a) confer [147, Corollary 6.2, Theorem 6.14]. Parts(b) and (c) follow
from part (a). Part (d) is established by formal calculation from (16) and the analogous
formula for @, using the decomposition of the right regular representation.

73



Parts (b) through (d) contain the ingredients of the direct integral decomposition
of (H). For the precise formulation of this result and its proof, the tensor product
notation for Hilbert-Schmidt operators will be useful. Given vectors n, ¢ in a Hilbert
space H, we let

n®@:z - (z,¢),
which is a rank-one operator on H'. Note that the notation is only conjugate linear in ¢.
The Hilbert-Schmidt scalar product of two elementary tensors is
M®p,n' @ YHS = (n,n"YH(p', p)H.
Moreover, for any pair S, T of bounded operators, S c (MQ@) o T = (SN)Q(T* ).
Now, given any orthonormal basis (¢;);c; of H, every Hilbert-Schmidt operator

T has a unique decomposition
T = Z n; ®@;.

i€l
Hence, if S = );¢; ¥; ®; is another Hilbert-Schmidt Operator, we obtain for the scalar
product

(T.5) = ) (o) (19)
i€l
Observe in the formulation of the following proposition that P, involves the first d(1) +
1 Hermit functions. For |1| > 1, we have d(1) = —1, and thus P, = 0.
Proposition (3.2.3)[140]: Letting

1 1
4 = |73
and
P, = z hna® hy g
n=0,..,d(1)
the projection onto Paley-Wiener space is given by

(M ([0,1UN ) = f(D) o By, Vf € L*(H). (12)
The operator field (P;);er+ is the Plancherel transform of a function p € L?(H)
whence I, ([0,1](f) = f * p.
Proof. We apply the above considerations to the case # = L?(H) and its orthonormal
basis (hy,2)nen,- Hence each Hilbert-Schmidt operator T on L?(RR) has a decomposition

= 1.8k, 1)

neN
and we obtain from (18) that

ToH, = z 2120 + D)0, ®hy, .-

nENO
This shows that the map T — 7n,®h, ; can be understood as a projection onto an

eigenspace of the operator — T o H;, with associated eigenvalue [1|(24+ 1). By
definition of Paley-Wiener space, only eigenvalues < 1 are admitted, which shows that
the definition of P, indeed yields (20).

For the second statement, we compute the norm of the operator field in the direct
integral space. First observe that P, = 0 for |A| > 1. Moreover, the squared Hilbert-
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Schmidt norm of a projection equals its rank, whence ||13,1||2 =dD)+1< and

thus

HAI +1

~ 2 2 1
l”PA||HSM|dA< J<m+1) 1A|dA = 2.

R -1
Hence (P;), has a preimage p under the Plancherel transform. Finally, (20) and the
convolution Theorem [149, Theorem 4.18] provide that Pf = f * p.

The motivation for considering PW (H) is the existence of sampling estimates for
this space. The formulation of the sampling theorem requires some additional notation.
We fix a quasi-norm |-|: H — R¢ by

(0., )| = 0* + ¢ +[t)"/?,
and write B; to denote the unit ball around 0. A discrete subset I' c H is called aquasi-
lattice if there exists a relatively compact set k c H such that H = U,ryk, as a
disjoint union. Such a set k is called complement of T
Theorem (3.2.4)[140]: [150, Theorem 5.11] There exists a constant 0 < Cy < 1 with
the following property: For all quasi-lattices I possessing a complement k contained in
a ball of radius r < Cyandall f € PW(H),

T kl A r/CalIfIE < Y IFP < g (L= 1/ C? I 1. (22)
Yer

We stress that the constant Cy is the same as the identically denoted constant
from Theorem (3.2.6).

We will now derive Theorem (3.2.6), basically by explicit calculation. The
following Lemma can be seen as analog of (1)<(2). A version of this result was
obtained in [149, Proposition 6.11].

Lemma (3.2.5)[140]: Suppose that I'" < H is of the form I'" =T X aZ ,with T c R?
symmetric and « > 0. Consider the following statements:
(@) Forall f € PW(H),

AlFIZ < Y 1f@I? < BIFIE 23)

yer!
(b)For all d € N,, and for almost all A with || < ﬁ the system G(h%, |A|Y/?T) is

a frame of L?(R; C4*1) with frame bounds a 1|14 and a|A|~!B.
Then (a)=(b), and if « < 1/2, (b)=>(a).
Moreover, if T = M (Z?), for a suitable invertible matrix, the frame estimates in
(b) are valid for all A < ﬁ
Proof. For the proof of (a)=(b), let f € PW (H) be given. Then we can write
)

o = z 014 ® hiz, 24

for suitable functions ¢, ; € L*(R). In the followmg we also use the notations

Dy = (Porr - Paa))
and
hy = (hoa, s haay,1)-
75



Let E c R* be a Borel set contained in an interval I of length 1/«a, and consider

g with § = f - 1. Observing that g € PW (H), we can compute the £2-norm of its

restriction to I’ as follows:
2

Y1l =Y o tm)l’ = Y @ @l = Y || F@mmpeiadr
yer’ yer’ yer’ vel’ |E ,

= > |k 0pe A
(Lk)ernez |g
Applying the Parseval formula for the interval, we thus obtain

Dl =a Y [ [0, patt k00| 122

yer’ (Lk)ET E

Il
)

_ ALk |2
[T L@ TuMda 2 gem 212
% (LRer

=@ [ D [ TaMdA ) 21 (25)
E (Lk)er
where we used (19) to express the Hilbert-Schmidt scalar products as scalar products as
scalar products of vector-valued functions, as symmetry of I to replace A by |A|.
On the other hand, by the Plancherel formula, we find

||g||2—f IF I, 212 = j 0211z g iy 2162

Hence the lower sampllng estimate ylelds

A [ 1021 amittar < a [ 37 @ Tl A2h) [ l2ld2 - 26)
E E (Lk)er
Since this inequality holds true for all Borel sets E of diameter at most 1/«, it has to
hold point wise a.e for the integerands, i.e, after shifiting constants:

a2 AN g an < ) (@2 TapMehy)|* (2. 27)
(Lk)er

This is already quite close to the desired lower frame estimate, except that it holds on a
set of A's which may depend on the choice of f (or equivalently, on the field (®,) 1er*)-
The next step is to establish (27) for all f € PW(H) and all A in a set with
complement of measure zero, independent of f. For this purpose we pick a sequence
(f)nen With dense span in (H), and obtain a set Q c [—1,1] with complement of
measure zero such that (27) holds for all A € Q and all f in the (Q + iQ) -span of
(fidnen- But then the (Q + iQ)- span of (f(1))ney is dense in HS(L2(R)) o By, for all
A in a Borel set Q' c [—1,1] with complement of measure zero. Hence for all A € Q n

(', the frame estimate holds on a dense subset of HS(L?(R)) o P;, which is sufficient.
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Thus we have finally established (27) for almost all 1 € [—-1,1], and all &, €
L*(R,C®). The same argument applies to show the upper estimate with constant
a|A|71B.

Now using h; = D,;1/zh*™ and the relations

Mbe = DbeE, TxDb - DbTb_lx
we find that
’I'M.”Mkhl == D|A|1/2(Tlllll/ZlMll/Zkhd(A)).
Since the image of a frame under a unitary map is a frame with identical constants, we
finally obtain that (T);1/2iM1/2ch®®) g ier is a frame, for almost all [4] < 1. Now

1
part (b) follows from d < d(A), for A < ST

For the converse direction observe that by assumption on «a. all Plancherel
transforms of elements of PW (H) are supported in an interval of length 1/a. Hence
(25) holds for all g € PW(H), where this time E = [—1,1], and the field (&;);
corresponds to the Plancherel transform of g. But then (b)=(a) is immediate.

The proof that the "almost everywhere" contained in the statement can be omitted
for lattices relies on semi-continunity properties of the frame bounds.

For any unit vector f € L?(R, C%), consider the function

1 2
. d
Gf.]0,2d+1[a,1n—> E [(f, TiMy 121229 |

(LK)EIAIL/ 20 (22)

We compute
2

d
oM =12 ) [LTMAD = 1A > (fu TiMihy)

(Lk)E|A|Y/2 M (Z2) (Lk)€E|A|Y/2m (z2) 1i=0
= |A] z Z(fi.Tszhi)(fu T\Myh,) = |A] Z Z(fi; (fj TuMy hi)T, M, h;)
=10 (fo D TMchdTiMihe) = A1) (Fi Sy v e

Here we used the linear operator S, , ., associated to functions g,,g, and an
invertible matrix V', defined by

Sgpgz;N(f) = Z (f, TiMy g1) T\ My g
(LK)EN (72)
[145, Theorem 3.6] states that S:M!(R) x M1(R) X GL(2,R) — B(L*(R)) is
continuous, where the right-hand side denotes the space of bounded operators endowed
with the norm topology, and M*(R) is the Feichtinger algebra; see e.g. [154] for a
definition and basic properties. Now the continuous inclusion S(R) ¢ M1(R) entails
that the map 4 - <fi'5hi,hj; /2 f7) 1s continuous, for all 0 < i,j < d, and then Oy is

continuous.
Next consider the map associating to each A the optimal upper frame bound,
given by
1

B :o,—[e 0. (1).
"”t] 2d+ 11— Ak (D)
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The supremum is always finite: By [154, Corollary 6.2.3], the frame operator of one-
dimensional window in the Schwartz class is always bounded. Hence the upper frame
bound also exists in the vector valued case, by (11).

As the supremum of a family of continuous functions, B, is lower semi-

continuous, and then )Ln—>Bopt(/1)|/1|‘1/2 is lower semi-continuous as well. We

already know that the latter map is bounded from above by aB on a subset of ]0, —2d1+1[

with complement of measure zero. This subset is dense, hence lower semi-continuity
implies B,,;(1)|1]7*/2 < aB on the whole interval.

The analogous reasoning, replacing lower by upper semi-continuity, applies to
the lower frame bound, and we are done.
Theorem (3.2.6)[140]: There exists a constant Cy < 1 such that for all d € N,

Cy
Cry>—1 28
= 2d + 1 (28)

Proof. Fix d € N,. Suppose that M is given with ||[M|| < Cx/V2d + 1. let K =
M([—-0.5,0.5)2), then K is a complement of M (Z?) in R?, contained in a ball of
radius r, = ||M]|, and with measure |det(M)|. Moreover, by choosing a > 0 small
enough, the set K' =K X [—a/2,a/2) is contained in a ball of radius r, + € <
Cy/V2d + 1 (with respect to the quasi-norm on H). In addition, if we define I'' =
M (Z?*) x aZ, as in Lemma (3.2.5), then K’ is a complement of I':for any (p,q,t) €
H, there exist unique (p1,q:) €T and (p,,q;) € K with (p; + 2,91 + q2) = (p,q),
and finally unique € Z and s € [—a/2,a/2) with s+ al =t — (p1q, —P291)/2.
But these choices imply (py, g1, al)(p2,q2,s) = (p, q, t).

We will apply Theorem (3.2.4) to dilated copies of I''. We define dilations §, =
H — H for a > 0 by letting §,(p, g, t) = (ap, aq, at). It is easy to check that &, is a
group automorphism fulfilling |5,(p,q,t) | = al(p,q,t)|. Hence §,(T'") is a quasi-
lattice, with complement 6, (k) contained in a ball of radius (1, + €). Hence, for any
a < Cy /(ry + €), the sampling theorem provides the estimate

1 a(ry + €) 2 ) 5
o det(M)|06<1_T> IFIE< > 1f®)

Y€8(T")

1 a(ry +€) 2
= 2 detO0)|a <1 - W) IF112.

An application of Lemma (3.25) then vyields, for all A<ﬁ, that

1 — a(rg+e€)
az|1||det(M)] (1 + Ch

a?|A| = 1, provides a lower frame bound for G (hd,M(ZZ)) given by
2
(1 —M) NV2d+1<a<Cyx/(ry+ e)}.

1
SUP {|det<M>| i
Observe that the restriction a > v2d + 1 is imposed by [1] < Tlﬂ. By monotonicity,

(1 _ V2d+1(rp+e)
|[det(M)| Cy

2
g(hd,alﬂll/ZM(Zz)) is a frame with bounds ) . Letting

2
the supremum is ) . Sending € to zero provides the lower
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frame bound estimate necessary to establish Theorem (3.2.6) the upper estimate is
obtained in the same fashion.

We have employed various ideas that are frequently used in frame theory and the
discretization of integral transforms: we have already mentioned the connection
between sampling and discretization. The proof of Theorem (3.2.1). Relied on the
analysis of the reproducing kernel of the image space of short time Fourier transform,
and in this respect it has many precedents in the literature: As a recent influential
sources discussing sampling in reproducing kernel Hilbert spaces see [159]. The
oscillation approach used to prove Theorem (3.2.1) is an adaptation of techniques
employed, e.g, by Grochenig in [153]. Another idea that is often used is the direct
connection between Gabor frames and a particular representation of the Heisenberg
group M, or ratherble: of a suitable quotient of H.

There are however some aspects that set the results and arguments presented. For
instance, we study the asymptotic behavior of the frame bounds, as the density
increases to infinity. We are not aware of any previous source for this type of results,
not even for the scalar case. The main difference however is in terms of technique:
unlike most sources in Gabor analysis, we employ a representation of the simply
connected Heisenberg group H, and not of the reduced Heisenberge H,., which is the
quotient of H by a central discrete subgroup.

It can be argued that H,. has a more intuitive connection to Gabor analysis. The
proof of Theorem (3.2.6) shows that in working with H one needs to deal with a fair
amount of additional technical details, that one avoids by considering H,. The benefit
of this approach lies in the fact that a single sampling estimate, namely (22), gives rise
to a whole family of Gabor frame estimates, namely (28), valid for all d > 0.

The main result provides rather intuitive asymptotic estimates for Gabor frame
bounds. A major drawback of these estimates is that they involve an unknown
constants. An estimate for Cy; is given in Fiihr and Grdchenig [150], involving operator
norms for differential operators on PW (H) as well as a Sobolev constant for the unit
ball H; the argument is very similar to the estimate of the constant Cy in the proof of
Theorem (3.2.1). While rough estimates for the norms of differential operators are
obtainable from the Plancherel transform, which decomposes the differential operators
as well as PW (H), we have not managed to obtain an explicit estimate for the Sobolev
constant for H. in any case, we stress that the constant Cy in the sampling theorem is the
same as in Theorem (3.2.6); this was the chief motivation for the picking the matrix
norm (13).

For single Hermite functions, the results obtained here compare in an interesting
way with recent results due to Gréchenig and Lyubarskii. Using complex analysis
methods, they obtained the following statement [155, Theorem 3.1]:

Theorem (3.2.7)[140]: If |det M| < (d + 1)71, then G(hy, M) is a frame for L#(R).

For the isotropic case, i.e, M' = a. Id, this results provides a criterion that is very
close to our Theorem (3.2.6): Any a below a threshold ~n~1/2 guarantees a frame. In
the general case however, Theorem (3.2.7) is much more widely applicable: At the same
time |det M| can be made arbitrarily small and ||M || arbitrarily large.

On the other hand, Theorem (3.2.7) does not provide frame bound estimates, and
it only applies to the scalar —valued case.
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Let us finally comment on possible generalizations. The first possible extension
consist in replacing R by R?, i.e, studying vector-valued Gabor frames in L?(R"; C%).
One now considers the 2n + 1-dimensional Heisenberg group H,,. This is a stratified
Lie group, possessing a sub-Laplacian, Paley-Wiener space and, finally, a sampling
Theorem [150]. As for the one — dimensional case, the spectral decomposition of the
sub-Laplacian involves Hermite functions, and an adaptation of arguments for H should
be a straightforward task.

A second, more interesting but also more challenging type of generalization
concerns the sampling sets, which could also be irregular. There already exists an
irregular sampling theorem for H, however, in the transfer of the associated sampling
estimates to Gabor frame estimates, we are crucially relying on the lattice structure of
the sampling set. The key result is the continuity statement [145, Theorem 3.6], and the
proof of this result makes full use of Gabor theory developed for lattices.

As a result, we can currently only show statements of the following form: For all
d € N, and all uniformly discrete and uniformly dense sets I' ¢ R? there exists a range
(0,a,) of dilation parameters such that G(h¢, al') is a frame, for almost all a € (0, a,),
including an estimate of the frame bounds. The threshold a is of the order d~1/2.
Section (3.3): Gabor Systems Associated with Periodic Subsets of the Real Line

The theory of frames was first introduced in 1952 by Duffin and Schaeffer ([167];
see also [179]) dealing with nonharmonic Fourier series. It came back into the limelight
in recent years with the apparition of a large number of dealing with specific
applications of frames, mostly to wavelets and Gabor systems. Let us briefly recall
some important definitions and results of the theory of frames. If H is an infinite-
dimensional separable Hilbert space, with inner product (.,.), and &V is a countable
index set, we say that a collection X = {x,,},,c» in H is a frame for its closed linear
span M if there exist constants A, B > 0, called the frame bounds , such that

AllxI? < ) x5 < Bllxll?,  x € M. 29)
nenN
A frame X is said to be tight (resp. a Parseval tight frame) if A = B (resp.A=B =1)
in (29). We call the collection X Bessel, with constant B, if the second inequality in (29)
holds for all x € M. the collection X = {x,,},,e» is called a Riesz family or Riesz
sequence with constants C, D, if the inequalities
2
<D ) la,l?

C z la,|? < z A, Xy,
nenN

o neN neN .
Hold for all (finitely supported) sequences {a,,} of complex numbers. If the linear span

of a Riesz family X is dense in H, we say that X forms a Riesz basis. If we can choose
C =D =1, then X is an orthonormal family and an orthonormal basis if its closed
linear span is H. Let £2(V) denote the space of complex-valued square-summable
sequences indexed by V. If X is a Bessel collection, the analysis operator or frame
transform associated with X, Ty: M — £2(V), is defined by

Tx(x) = {{x, Xxp)dnew, x € M. (30)
while its adjoint, the synthesis operator, Tx: £%(N) — M, is given by
Tilenhen) = ) utn,  {eadnen € 2V, (31)
neN
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The frame operator S is defined by S = Ty Tx: M = M. More explicitly

Sy = Z(x,xn) Xn, XEM. (32)
- nEN - -, = - -
If X is a frame for M, then S: M — M is a bounded, positive and invertible operator

with a bounded inverse. The collection {S~1x,},,cx is called the standard dual frame of
the frame X and we have the reconstruction formula

X = Z(x,xn)S‘lxn=z(x,5‘1xn)xn, x € M.
. neN . neN . . )
We will let H = L?(R) and consider expansions in terms of one-dimensional Gabor

(also called Weyl-Heisenberg) systems of the form G = {eZ”im”xg(x—na)}m’nEZ,

where a, b > 0 two real parameters and g are is a function in L?(R) called the window
function. Such systems have been studied quite extensively, mostly when the
expansions are considered on the whole space L?(R) (see [174,168,169,176,177]), but
also (as in [163,171,172,173]).

In the one-dimensional case, the well-known density Theorem for Gabor systems
states that a necessary and sufficient condition for the existence of a Gabor system G as
above whose linear span is dense in H = L?(R) is that ab < 1. If this last condition
holds, there exists a function g € L?(R) such that the associated system G forms a tight
frame for L2(R). In fact, it is not difficult to show that g = X{o.a) Will do the trick. The
necessary (and harder) part of this result was first obtained by Daubechies [166] in the
rational case (i.e.ab € Q) and is generally attributed to Baggett [162] and Rieffel [178]
in the irrational one. (See [177])

We study related problems for subspaces of L*(R) of the form L?(S) =
{f € L*(R), f = 0a.e.on R\S}, where S is a measurable subset of R which is aZ-shift
invariant, i.e. S has the property that it is invariant under the transformation x — x + a.
If g it is vanishes a.e. Outside of S, it is clear that the closed linear space generated by
the corresponding system G will be a subspace of L?(S). One can then ask for
conditions on S depending on a, b for the existence of a system G whose linear span is
dense in L2(S). If this condition holds, one can then ask if there exist such collections G
forming a (tight) frame, Riesz basis, etc. for L2(S). This framework can model a
situation where a signal is known to appear periodically but intermittently and one
would try to perform a Gabor analysis of the signal in the most efficient way possible
while still preserving all the features of the observed data. One could think of the signal
as existing for all time t and do the analysis in the usual way but clearly, if the signal is
only emitted for very short periods of time, this might not be the optimal way to
proceed. Since the correct density condition is ab < 1 in the case where S = R, one
would assume that if S is “smaller” than R, a corresponding smaller density condition
might result. One might guess that the correct density condition should be that b|S N
[0,1)] < 1, where | .| denotes the Lebesgue measure. In fact, that condition was proved
to be necessary in [172]. As we will show, it turns out to be the right density condition

in the irrational case, but not in the rational one. We will show that, if ab = S, where p
and q are two positive integers with gcd(p, g) = 1, the correct density condition is that
P Xs (+§) < q a.e on R. One of the main results, is that, in both cases, if the
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appropriate density condition is satisfied, we can construct a window g of the form g =
Xg, where E is a measurable subset of R with finite measure, such that the
corresponding system G actually forms a tight frame for L2(S). In fact, we will show
that the possibility of constructing a Gabor subspace frame of this form for L2(S) is
equivalent to being able to solve a certain tiling problem related to the set S and the
density condition is exactly what is needed for the tiling problem to have a solution. We
note that the idea of using a window which is the characteristic function of a
measurable set was also used by Han and Wang [175] to show the existence of Gabor
frames (where the parameters a,b are replaced by invertible matrices) in higher
dimensions for the space L?(R™).

We consider the rational case, Given a measurable subset S of the real line,
invariant by a Z-translations, and a window g € L?(S), we provide a necessary and
sufficient condition for the linear span of the linear span of the system {ez’“'m”x g(x —

na)} to be dense in L2(S) under the assumption that the product ab is a rational
mmnezZ

number p/q where gcd(p,q) = 1 (Theorem (3.3.7)) this condition involves the rank of
aq X p matrix-valued function G built using the Zak transform of g and implies the
density condition for the rational case mentioned earlier. Using an iterative construction
Is using finitely many steps (in fact, g steps), we show that if this density condition is
satisfied, then there exists a measurable set E c R with |E| < oo, such that the Gabor
system associated with the window g = yr actually forms a tight frame for L2(S)
(Theorem (3.3.12)), we give a proof of the fact that the condition b|SN[0,a)| <1 is
necessary in order for Gabor system as above to form a frame for L?(S), whether a b is
rational or not, and that, if such a frame exists, it will form a Riesz basis if and only if
b|SN[0,a)| = 1 (Theorem (3.3.17)). Finally, we show, for the irrational case. That if
the density condition b|SN[0,a)| < 1 hols, one can again construct a window function
of the form g = y such that the associated system forms a tight frame for L%(S)
(Theorem (3.3.19)). The construction of E is done using a similar iterative procedure as
for the rational case, but requiring now an infinite number of steps.

We will consider Gabor systems of the form

G = {Banmbxg(x _ na)}m,nez’
where a,b € Q and g is a window vanishing a.e outside of a set S which is a Z-shift
invariant. The Zak transform will be one of the main tools used, which is not unusual
when dealing with Gabor systems in the rational case (see [166,174]).

For E be a measurable set in R with nonzero Lebesgue measure (which will be
denoted by |E|). We identify L2(E) with { f € L*(R):f = 0a.eon R\E }. For x,w €
R and g € L?(R), we denote by T, and E,, the translation and modulation operators
defined respectively by

(Teg)(®) = g(t —x) and (E,g)(t) = e*™g(t), t€R
For a fixed a > 0, we define the Zak transform Z,:L?(R) - Lf,.(R?) to be the
mapping

(Z)(E0) = ) f(E+ k)™, f € X(R),

keZ
defined for a.e (t,v) € R2. It is easy to check that
(Zo)(t + ka,v +1) = e 2™ (Z,f)(t, v) (33)
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for k,l € Z and a.e.(t,v) € R%. See [174, Chapter 8], for further information on the
Zak transform. The following lemma, although quite elementary, will play an important
role in our analysis of the rational case. With a slight abuse of language, we will call the
operator that maps a function f € L?(R) to the restriction of its Zak transform Z,f to a
subset of R?, the restriction of the Zak transform Z,, to that subset.
Lemma (3.3.1)[161]: let S be a measurable subset of R which is a Z-shift invariant and
define S, = SN0, @) then,
(i) The restriction of Z, to the set [0, a) X [0,1) is a unitary operator from L?(R)
onto L2([0, @) X [0,1)).
(ii) The image of L?(S) under the restriction of Z, to the set [0, a) x [0,1) is the
subspace L?(S, x [0,1)).
Proof. The first statement is a well-known property of the Zak transform. To show the
second one, note first that, from the definition of Z,, if f € L?(S), then Z,f = 0 a.e on
(R\S) x R. Hence, when we restrict the Zak transform to [0, ) %X [0,1), we deduce that
Zof € L*(Sy x [0,1)).Conversely, given an arbitrary function F(t,v) € L*(S, X
[0,1)), we have, for any k € Z,
(Z'F)(t +ka) = [, F(t,v)e >y =0, foraet € [0,1)\S,
which shows that Z;1F € L?(S). The mapping Z,:L*(S) — L?(S, X [0,1)) is thus
subjective which shows our claim.
Definition (3.3.2)[161]: If j € Z, we denote by t; the translation operator acting on the
finite group Z, identified with the set {0,1, ..., p — 1} and defined by
7j(k) =k —jmod(p), k=0,..,p—1
IfAc{01,..,p— 1}, welett;(4) = {r;(k), k € A}.
The following lemma is well-known.
Lemma (3.3.3)[161]: Let p,,p, € N satisfy gcd(p,,p,) = 1. Then, to every j € Z,
there correspond a unique k € Z and a unique r € {0,1, ..., p;, — 1} such that
J = kp; +1p,. (34)
Lemma (3.3.4)[161]: Let a, b > 0 satisfy ab = g with p,q € N and gcd(p,q) = 1 and

let S be a measurable subset of R with nonzero measure, and with S being a Z-shift

invariant. Define the function
p—1

h(t):=Z)(5(t+%), teR

k=0
and, given t € R, define the set

Ks(t) = {k €{0,1,..,p — 1}, x5 (t + %) = 1}

Then, the function h is i—periodic and, furthermore, if j € Z, we have the identity

Ks (t + b]_q> = Tk, (Ks(D),

where k, is the unique integer satisfying é = ko + %with ref{0,1,..,qg—1}

Proof. Letting S, =S N[0,a), we have ys = Ynen Xs, (- +na). Thus, using Lemma
(3.3.3) with p; = p and p, = q, we have
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h= Zz)(so< L np) 2DjZm(+—(l’<q+np)>

k=0ne€ezZ k=0neZ

=Y 2o (+5) (35)

leZ
and this last expression is clearly i-periodic, which shows the first part of the claim.

Next, note that, for a.e t € R, the mapping K = ys(t + ) is p- eriodic, since
») 1SP-P

<t+K+P)— <t+k+p s (t+5 4 aq) = (e +5
Xs B ) 4\"Th bq)_XS< b aq)‘“( b)'

Ifé = ko + % as above, we have
j k ke ™ k k+kg
)(S(t+5+g> =)(5(t+?+5+b> xs (e +—=2).
Thus, k € K; (t +£) if and only if yg (t + k+k°) = 1, which, using the periodicity

property just mentioned, is equivalent to the fact that k € 7, (KS(t)).

The analysis in the case where the product ab is rational, will depend in an
essential way on properties of a matrix-valued function associated with the window
function g and defined using the Zak transform. We denote by M, ,, the space of
matrices with complex entries of size g X p. A function taking values in M, ,, is said to
be measurable if each of the corresponding entries is measurable.

Definition (3.3.5)[161]: Let a,b > 0 satisfy ab = S with p,q € N and ged(p,q) = 1.

Given a function g in L?(R), we associate with the matrix-valued function G: R? -
M, ,, defined by

GtV = (Zagg) (t+7-Ta,v), 0<S7r<q-10<k<p-1 (36)

fora.e. (t,v) € R

The matrix-valued function G is related to the so-called Zibulski-Zeevi matrix
[180] and has similar properties, but the definition given here is more convenient for our
purposes. We will need the following lemma.

Lemma (3.3.6)[161]: Let a,b > 0 satisfy ab = S with p,q € N and ged(p,q) =1 and
let S be a measurable subset of R which is a Z-shift invariant. Given g € L?(S), let, for
a.e. (t,v) € R?,G(t,v) be the matrix-valued function defined in (36) and let the matrix
p(t,v) € M, ,, denote the orthogonal projection onto the kernel of G(t,v). Then, p(:,")
iIs measurable. Furthermore, the integer-valued function (t,v) = rank(G(t,v)) is
measurable, %—periodic with respect to variable t and satisfies the inequality

p—1

rank(g(t, v)) < z Xs (t + %) (37)

k=0

Proof. Note first that, for a.e (v,t) € R?,
p(t,v) = lim exp(—n(G*G)(t,v)),
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by an easy application of the spectral theorem for self-adjoint matrices (see also [166,
p.978]). Since G(:,) is measurable, the measurability of p(:,), follows immediately.
Using the facts that the sum of the rank of G(¢t,v) and the dimension of the kernel of
G(t,v) is equal to p and that the dimension of a subspace of CP is the trace of the
orthogonal projection onto that subspace, it follows that the rank of G(t, v) is equal to
p — trace (p(t,v)) and is thus also measurable. Given any j € Z, we can write, using
Lemma (3.3. 3) i = ko +mp + 7’02 uniquely with m € Z, ko € {0,1,...,p — 1} and

1 € {0,1,. 1} If kl,k2 e {0,1,. — 1}, we have

(6" Wiy, = 29(:: V), G,

q— 1

k k
= Z(Zaqg) (t + ?1 —ra ,v) (Z4q9) (t + ?2 —ra, v).
r=0

Hence,
GO+

q-—1
Jj |k Jj |k
= Z(Zaqg) (t+5+?1—ra,v)(zaqg) <t+5+72—ra,v)

kl!kZ

q-1

-3 e (BT )

r=0

ko +k m
x(Zaqg)(t+ 0 5 2+ bp—(r—ro)a,v>}.

Using Eq (33) and the fact that % = magq, this expression simplifies to

Z(Zaqg) (t + ko T (r—rya, v) (Z4q9) (t + Ko -Il; k2 _ (r—ry)a, v)

or

Z {(Zaqg) (H' ot (r—mn +q)a+qa,v)

ko+k;,

X (Zaqg) (t+ —(r—mnm +q)a+qa,v)}

ko +k ko +k
+Z(Zaqg) (t+ 0 1—(r—r0)a,v> (Zaqg) <t+ 0 5 2 —(r—ro)a,v>.
r=ry

Using the Eq (33) we can rewrite this last expression as

ko + k,

Z (Zaqg) (t + ko * —ra, v) (Zaqg) (t + b ra, v).

85



Using the fact that

ko + k . ko + Ky —
(Zaqg)<t+ Ob 1—ra,v)=e‘2"‘”(zaqg)<t+OTlp_ra,v>

it follows thus that, for k, k, € {0,1, .....,p — 1}, the entry (G*G) (t + é, v) must
kq,k>

be equal to
((G"G) (V) ke, +kq, kyp+kor ifky + ko <pandk; + ko, <p,
e 2 (G* G) (6, V)i, 4k, kytko—pr 1T ky + ko <pandk, +ky=p,
e (G GY(t, V)i, +hg-p, kytkyr 1L K1+ ko =pandk, + ko <p,
(G 9)(¢, v)k1+k0—p, ky+ko—p> ifky + ko =pandk, + ko = p.
If &= (8o, ....8p-1)" € CP, define UE =n = (no,...,np-1)", Where
_(eTEE oty fO<i<ko—1,
M= {Ei_ko, ifkg<i<p-—1.
Then, U is a p X p unitary matrix and

1
("6 (£ +52,) 80 = (GO 1) = (GO WUE D)

= (U*(G"G)(t, v)US,3),
which shows that (G*G) (t + é,v) = U"(G*G)(t,v)U and thus (G*G) (t + b’—qv) and
(G*G)(t, v) must have the same rank. Since the rank of the any matrix A is the same as
that of A*A, it follows that rank (g(t, v)) IS i—periodic with respect to variable t.

Finally, it follows from Lemma (3.3.1) that (Z,,9) (t + % —ra, v) =0 if s (t + %) =

0 so that a column of (G)(t, v) corresponding to an index k such that yg (t + g) =0
must be identically zero. The rank of (G)(t,v) is then at most equal to the numbers of
the other columns which is ¥2_¢ x (t + %) this shows the lemma.

The following result provides a characterization for the completeness of the span
of Gabor system in L2(S) in terms of the matrix-valued function G associated with the
window.

Theorem (3.3.7)[161]: Let a,b > 0 satisfy ab = S with p,q € N and ged(p,q) = 1.

Let S be a measurable set in R with nonzero measure and suppose that S is a Z-shift
invariant. Assume that g € L?(S) and let G(t,v) denote the g X p matrix-valued
function defined by (36).then the following are equivalent:

(a) The linear span of the collection {E,,, T,,og: m,n € Z} is dense in L?(S).

(b)Rank(G(t,v)) = X225 xs (t + %) fora.e. (t,v) € [0,%) x (0,1).
k

(c)Rank (G(t,v)) = X2 i xs (t + ;) for ae. (t,v) € R

Proof. The equivalence of (b) and (c) follows from the fact that the functions on either
side of the equality in (c) are i—periodic with respect to the first variable t, by Lemmas

(3.3.4) and (3.3.6), and are also clearly 1-periodic with respect to the second variable v.
Define g,(-) = g(- —ra) for r = 0,1, ...,q — 1. Then, the linear span of the collection
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{EmpTnaqgr:m,n € Z} is dense in L2(S) if and only if the span of {E,;,Theq9-:0 <
r<q—1mmne Z} is dense in L?(S). It is easy to check that

(Zaquanaqgr)(t; 17) = eznimbtezninv(zaqg) (t —ra, v)
for myn€Z and 0 <r < q— 1. Applying Lemma (3.3.1), we have, for f € L?(R),

mneZand0<r<qg-1
aq 1

(f EnoTraq9r) = | | Zaq £)(6)(Zag@) € = ra,m)e 2mmte =27

0 0
1
b 1p-1
k
=ff2(zaqf) t+ )(Zaqg)(t+——ra V)
00 ><=e mebte anvdvdt_ (38)

If (c) holds, let f € L?(S) satisfy that (f, EppThaqdr) =0 forallmmn e Zand 0 <r <
g—1. We need to show that f=0. for fixed (t,v) € R?, let F(t,v)=

t ,
(Fo(t,v), ... Fy_y(t,v)) € CP be defined by Fi(t,v) = (Zaqf) (t +7,v) for i=
0,..,p — 1. By (38), we have

Gt V)F(Lv) =0, forae. (t,v) € [o ) [0,1). (39)
If B isasubsetof{0,1,..,p — 1}, we define
p—1
Ig =<tE€ [0,1>,Z)(5 (t +E) = z)(s (t+E) = card(B) ;.
b k=0 b keEB b

Then, each set Iy is measurable and the collection {Iz}, where B runs over all subsets of
{0,1, ...,p — 1}, forms a partition of the interval [O,%). If B=@ and t € I , we have

ShZoxs(t+3) =0 and thus F(t,v) = 0 by Lemma (3.3.1), if B # 0 and t € I, we
have G(t, v),x = Fr(t,v) = 0 if k € B, by Lemma (3.3.1), since f and g, € L*(S), for
each r =0, ...,q — 1. Using our assumption, the sub matrix of G(t,v) of size g X
card(B), obtained by removing from G(t, v) all the columns with an index not in B has

thus a rank equal to card(B), Since the entries corresponding to the removed columns
are all zero, and Eq. (39) then implies that F;, (t,v) = 0, for k € B. Hence, F(t,v) = 0,

for t € I5. Therefore, F(t,v) =0 fort € [O,%), which shows that (Z,,f)(t, v) = 0 for

t e [0, %) = [0, aq) and thus that f = 0, using Lemma (3.3.1) again.

Conversely, if (c), or equivalently, (b) fails, then, taking into account inequality
(37), we deduce the existence of a subset B of {0,1,....,p — 1} such that
p—-1
k
Rank(G(t,v)) < z Xs (t + E) for a.e.(t,v) € H, (40)
k=0
where H is a measurable subset of Iy X [0,1) with nonzero measure. Let eg, ey, ..., €51
denote the standard orthonormal basis of CP and let p(t,v):CP — CP denote the
orthogonal projection onto the kernel of G(t,v). Then, P(:,") is measurable by Lemma
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(3.3.6). We claim that there exists k, € B such that the vector-valued function
p(t,v)ex, # 0 on a subset of Iz x [0,1) having positive measure. Indeed if this were

not the case, letting E = span {e,: k € B}, it would follow that for a.e. (t,v) € Iy X
[0,1),p(t,v)x = 0, for all x € E or equivalently, that E @ ker(G(t,v)) is a direct sum.
Since, in that case,

p = dim(E ® ker(g(t v))) = card(E) + ( — rank(g(t v)))
this would imply that rank(g(t v)) > card(E) and thus, using the definition of I, that

rank(g(t v)) Z)(S (t + ) fora.e.(t,v) € Iz x [0,1).

This would contradict (40). Wlth k0 € B as a above, we define
p(t,v)e, if(t,v) €1z x[0,1),
F(t,v) =

0, if (t,v) € ([o, %) \IB) x [0,1).

By construction, we have ||[F(t,v)|lc» < 1, so that each component of F is square-

integrable on [0 b) x [0,1) and F = (F, ..., F,_,)" satisfies Eq. (39). Furthermore, if

le{0,1,..,p—1}\Band(t,v) € Iz X [0,1), we have that G(t, v)el = 0 and thus
(P(t,v)ex, ) = (er,, P(t,v)e) = (ex, e) =

This shows that, if (t,v) € [0 ) [0,1), we must have Fk(t v) = 0 whenever

)(5( ;) = 0. Defining f € L*(R) by

(Zaqf)(t+§, ) F.(t,v), (tv)€ [0 ) [01,k=01,...,p—1,
we have f # 0 and {Zaqf * 0} c Sy %X [0,1). Hence, f belong to LZ(S) by Lemma
(3.3.1), and, furthermore, using (39), f is orthogonal to the Collection {Emanag: m,n €
Z}. Hence, (a) fails which completes the proof.

In the case, S = R, the density condition in the theorem just proved reduces to
rank(G) = p a.e, a condition which also must hold for the Zibulski-Zeevi matrix
([166,180]; see also [173]). As in the case S =R, this result has an important
consequence.

Corollary (3.3.8)[161]: Let a,b > 0 satisfy ab = g with p,q € N and ged(p,q) =1

and let S be an a Z-shift invariant, measurable subset of R. If there exists a function
g € L*(S) such that the linear span of the collection {Emanag:m,n € Z} IS dense in

L*(S), then, necessarily
p—1

Z ( )<q fora.e. t € R. (41)
k=

0
Proof. By the previous theorem we have, for a.e. t € R,

Z )(S( %) = Rank(G(t,v)) < q,

k=0

Since G(t,v) € M,
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We show that in the rational case (ab € Q), condition (41) is sufficient to ensure
the existence of function g € L*(S) such that the collection {E,,T,q4:m, n € Z} not
only has a dense linear span in L?(S),but forms a tight frame for L?(S).In fact, we will
see that this can be done with g of the form g = x5, where E is a subset of S such that
Xs = Yinez Xg (- —na). On the other hand, if E is a set satisfying the previous identity
and g = xg, it is clear that {E,;;Thag:m,n € Z} forms a tight frame for L2(S) if and
only if {EppTyag: m n € Z} is a tight frame for L2(E). The next Lemma translates this
last requirement into geometrical terms. We first need the following definition.
Definition (3.3.9)[161]: Given a > 0, two measurable subsets of R, E; and E,, are said
to be a Z-congruent if there exist measurable partitions {El'k}keZ of {Ez'k}kez of E,

such that E, , = E; , + ka, modulo a set of zero measure, for all k € Z. It is easy to
check that E; and E, are a Z-translation congruent if and only if the identity

D s, C—ak) = Yy, (- —ak)

k€EZ k€EZ
Holds a.e. on R.

Lemma (3.3.10)[161]: Let b > 0, and E be a measurable subset of R. Then, the
following conditions are equivalent:

(@) {E,,,xg: m € Z} is a frame for L2(E).

(b) The linear span of the collection {E,,, xz: m € Z} is dense in L?(E).

(C)Eis %Z-congruent to a subset of [0, %)

(d) Xkez XE ( +%) <1laeonkR.

In addition, {E,,, xz: m € Z} is a tight frame in L?(E) with frame bound % if any

of the above conditions holds.
Proof. If is clear that (a) implies (b). To show that (b) implies (c), assume that (b) holds
and define E; = EN[l/b,(l +1/b) for € Z . then {E;:l € Z} is a partition of E and
Uiez(E; — 1/b) © [0%) So it suffices to show that |[(E; —1/b) N (Ex —k/b)| =0
for | # k, 1, k € Z. If this were not the case, there would exist 1y, k, € Z with [, + k,
such that F := (E;, — lo/b)N(E), — ko/b) has positive measure. Define f € L*(E) by

1 onF+1,/b;

f=<—-1 onF +ky/b;

0 onE\[(F+1l,/b)U(F + ky/b].

Then, form € Z,

[ remmmonax = [ 17+ £Gc+ tho = to)/ble~2mm>*ax = 0
E F+ly/b
contradicting the fact that the linear span of the collection {E,,, xz: m € Z} is dense in
L*(E).
The equivalence of (c) and (d) is clear. To finish the proof, we show that (c)
implies that {E,,,,xg: m € Z} is a tight frame in L?(E) with frame bound % and thus also
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statement (a). Suppose {E;:l € Z} is a partition of E such that {E; —l/b:l € Z} is a
partition of some subset of [0%) then for f € L?(E), we have

FEmxe) =Y. [ £ t/pyemmax

l€Z E;-1/b

| D = by, ppremima

o)™

and, consequently, using Parsval’s formula,
2

> Kf, Emoe)? = f > £ 1D )| dx
meZ leZ
[ 5)
1 1
=" | - ypiax =3 [ Ifeord,
LEZ E;-l/b E

which completes the proof.

In connection with the previous lemma, we mention the following particular case
of a well-known result about spectral pairs due to Fuglede [170].
Proposition (3.3.11)[161]: Let b > 0, and E be a measurable subset of R. Then, the
following conditions are equivalent:

(@) {\/EEmb)(E: m € Z} is an orthonormal basis for L2(E).

k
(b)Y kez XE ( +E) = 1,a.eonR.
Theorem (3.3.12)[161]: let a,b > 0 satisfy ab = g with p,q € N and ged(p, q) = 1.
Let S be a measurable subset of R which is a Z-shift invariant. Then, the following are
equivalent.

(i) There exists a measurable set E in R which is a Z-congruent to SN[0,1) such that
{E b Tnaxe: m,n € Z} is a tight frame for L%(S).

(if)we have the inequality
Z)(S< )<q a.eon R. (42)

Proof. The necessity of conditlon (42) is a direct consequence of Corollary (3.3.8) it can
also be obtained by the following, more direct, observation. The facts that E is a Z-
congruent to S N [0,a) and that {E,,,T,exs: m,n € Z} is a tight frame for L?(S) are
equivalent, by Lemma (3.3.10), to

Z){E( +ka) = ys and ZXE( +k/b)<1 aeonk,

keZ
respectively. Therefore we have
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p-1 - q-

w(+5) - ZZ%(%%) D (- +35)- ZZ (+a+5)

M

k=0 k=0 LEZ JEL =0

Let S, =SN[O, a) Clearly, {Sy+na:n€Z} is a partition of S. to show the
sufficiency part of the statement, we need to show, according to Lemma (3.3.10), that
there exists a measurable set E in R such that E is a Z-congruent to S, and at the same

time is %Z-congruent to a subset of [0,1/b). If ab < 1, we can take E = S, Since S, C

[a,0) c [0, 1/ p) -We can also reduce the proof of the construction of E to the case b =

1. Indeed, if b is arbitrary, we can define S = bS. then S is abZ-shift invariant, and
{So + nab:n € Z} is a partition of S, where S, = SN[0,ab). Furthermore, S satisfies
(42) with b replaced by 1. So, if we can construct a measurable set E such that E is
abZ-congruent to S,, and with E being Z-congruent to a subset of [0,1), we can then

define E = % E. We can easily check that E satisfies all of our requirements. We may
thus assume, without loss of generality, that b =1 and a > 1. We have a = g, and,
using (35) with b = 1 and (42) it follows that

Zm HO= Y 2o (+2) <a (43)

) KEZ
Note that, since

1 = f > s, + /@),

keZ
[o)
q
inequality (43) implies that |S,| < 1 as well as the fact that |S,| = 1 if and only if
p—1
z)(s( +k)=q a.e.onR. (44)
k=0
We will divide the proof into two cases: |S,| = 1 and |S,| < 1.

Case 1: |S,| = 1.

In this case, identity (44) holds. Let go = Yxez Xs, (- +k). If go <1ae. onR,
then E = S, is as desired. Otherwise, we follow the following inductive procedure to
construct E. Let Hy, = {g, > 0}, where {g, > 0} denotes the set {t € R: g,(t) > 0}.
(We will use similar notations for the sets H, defined below). Let T, be a measurable
subset of S, such that

ZXTO(' +k) = XH,-

keZ
If the sets S;, T;, H; and the function g, have already been constructed for all indices [

with0 <1 <j—-1<gq—1,wedefine §; =S;_;\Tj_4,
g] :zXS](. +a]+k)r

k€Z
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and H; = {gj >0,90=9g1=""=9j-1= 0}. We then choose a measurable set T;
contained in S; and such that

ZXT]-(' +aj + k) = xu,;.
keZ
We follow this procedure until the index j above reaches g — 1 and then stop. We then

define E = Ufz_ol(Ti — ia). Note that the set H;,i =0, ...,q — 1, are mutually disjoint.
We have thus

Z)(E(+k)—zz)(T(+la+k) Z)(H <1 a.e.on R.

kEeZ i=0 k€eZ
So, by Lemma (3.3.10), the collection {e?™™¢y, (t) m € Z} is a tight frame for L?(E).

Since the sets T;,i = 0, ...,q — 1 are disjoint subsets of S0 [0,a), in order to show
that E is a Z- congruent to SO, we only need to show that Zf’ 0 |T | = |S,] = 1. We have

leI—Z foT(t+za+k)dt— jz)cm)dt

i= 0[01)keZ 01)1
and since Zl _o Xu, < 1ae.onR, it suffices to show that Zl _o Xu, = 1 ae.on[0,1).
We will argue by contradiction. Suppose that there exists a measurable set F < [0,1)
with nonzero measure such that g; = 0 on F for all indicesi with0 <i<q—1.Ifq =
1, then Yyez xs,(- k) = go = 0 on F, contradicting the fact that Y.,z xs, (- +k) =
1 a.e. on R (which follows from (43) and (44)). If g > 1, we have

gO=ZXSO(' +k)=0 onF
k€eZ
and, since xs, = Xs, — %;},)(Ti, the fact that g =0 on F for 1<[I<q—-1is

equivalent to

Z)(S(+la+k)—zz)(T( +la+k) = ZXH ¢ +( - Da)

keZ =0 k€Z
oanorl—12 ..,q — 1. Also observing that
q-1p-1 (l n ) q-
g +7r)p 7‘29
sz( IEDIIY SO< ) ZZXSO(-+ra+k),
r=0 k=0 lEZ r=0 k€EZ
Wehave
q—1r-1 qg-1q-1-1
ZXS( +k)—zz)m( +(r—l)a)—z Z xu(+la)<q—-1<q
r=11i=0

onF, WhICh contradicts (44) .
Case 2: |S,| < 1.
For € = (€g, €1, ...,€p—1) € {0,1}? , define
A(e) = {t €[0,1/q): xs, (t+§) =¢,for0<k<p- 1}.
If Zk oEk =m < q, we choose m — q indices k;,i = 1,..,q —m, such that ¢, =
€k, = '+ = €x,_,, = 0, which can be done since p > ¢, and we define

2
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q—m

B(e) = (A(e)+ ) U U(A(e)+§).

=1 €r#0

B(e) = U (A(e) +§)

€r*0

If ¥0 oek = g, define

We then let
So = U B(e), and §=U(§O+na).

66{0,1}Pv nerz
Note that, by construction, S, c S, c [O a) Furthermore, we have

Z)(s“o(' ) z)(s( +k) =q ae. onR,

k€EZ
Which implies, as before that [S,| = 1 Usmg Case 1, with S and S, replaced with S
and S,, respectively, we can construct a measurable set £ which is a Z-congruent to
SN[0,a) and such that {e>™™¢ yz(t):m € Z} is a tight frame for L?(E). The collection
{e?™mtyz(t —na):m,n € Z} is thus a tight frame for L?($) and the set E:==ENS
satisfies all of our requirements.

Corollary (3.3.13)[161]: Let a,b > 0 satisfy ab = S with p,q € N and ged(p,q) =1

and let S be an a Z-shift invariant, measurable subset of R and define the set S, = S N
[0, a) then, the following are equivalent:
(a) There exists a function g € L2(S) such that the linear span of the collection
{EpThaxs:m,n € Z} is dense in L2(S).
(b) There exists a measurable set E' in R which is a Z-congruent to S N [0, a) such
that {E,,,, Toxg: M, n € Z} is a tight frame for L2(S).

(C)Zk 0)(5( )Sqa.eonR.
In particular, if any of the conditions above holds, then we must have the inequality
b|S,| < 1. (45)
Proof. The equivalence between statements (a), (b), and (c) follows immediately from
Corollary (3.3.8), and Theorem (3.3.12). If (c) holds, then we must have

5 s xs (t+5) dt = [P xo(0)dt = [ xs()dt = qiSo| <2,
which yields inequality (45).

It was showed in [172] that the existence of a function g € L?(S) such that the
linear span of {E,,,T,,g:m,n € Z} is dense in L?(S) implies inequality (45), even
without the restriction that ab € Q.in the rational case, it is clear that condition (42) is
always stronger than condition (45) when ab = p/q > 1. (Note that both conditions are
always clearly satisfied when ab = p/q < 1). For example, if we define, for 0 < e <

min (i,%), the set

-U{U

leZ

—+e)+la ,

p—1
k k
[E'b

k=
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we have b|S,| = e p < 1, but condition (42) clearly fails when p > g. However, in the
irrational case, condition (45) turns out to be necessary and sufficient for the existence
of a function g € L?(S) such that the linear span of the collection {E,,, T,,,g: m,n € Z}
is dense (or, forms a tight frame ) in L?(S).

Remark (3.3.14)[161]: In the rational case, if we consider two Gabor systems
associated with a fixed set S and with the same parameter a but with a different
parameter b, say b,, and b,, the fact that density condition (42) holds for the pair (a, b,)
does not imply that it also holds for the pair (a, b,) when b, < b,. For example, if we
choosea=1,b; =5/2 ,b, = 2 and

S = U([n, 1/10+n) U [5/10 +n,6/10 + n)),

Nnez

condition (42) holds for the pair (a, b,) = (1,5/2) since
4

2k
z)(s(' +?> == 1 S 2)
k=0

While it does not for the pair (ajaz) = (1,2) in view of the fact that
1

k
). xs(+3)=2>1
k=0
on the interval (0, %)

We provide a simple proof that the condition b|S N [a,0)| < 1 is necessary, in
both the rational and irrational cases, for the existence of a window such that the
associated Gabor system with parameters a, b forms a frame for L?(S). a although the
necessity of this condition was obtained earlier in [172, Corollary 2.4] ,the proof given
there, based on methods of operator algebras, is less transparent. Furthermore, we show
that, if such a system exists, it will be a Riesz basis for L(S) if and only if equality
occurs in the condition above. We first need the following lemmas. The first one of
these is well-known [165, Proposition 2.1].

Lemma (3.3.15)[161]: If g € L*(R) is compactly supported, there is a constant C such
that

D K Em TP < CIFIR £ € 2R,

mmnezZ
The second lemma deals with a version of the Walnut representation which was

showed in [174, Proposition 7.1.1] under the assumption that the collections
{EmbTna 8 Ymnez anNd {EypThg Y Imnez are both Bessel sequences. As we will show
here, these conditions on g and y are not necessary.

Lemma (3.3.16)[161]: Let a,b > 0, and g,y € L*>(R). Then, for f,h € L*(R) with
bounded support,

1 -
> A B Tra OEmsTaa 7.0 =5 Y [ GuCf G = /D) RGO, (46)

mmnez NneEZR
Where G, = Y.xez 9 ( —% — ka) y(- —ka) and both series in (46) converge absolutely.
Proof. By a simple computation, we have

94



(f» Emana.g> = f Z(Tnagf)(x - l/b)e—Znimbxdx,

o)™

(o EnsTaa?) = | (el = 1/B)e 7m0,
o) "
Also, observing that the sum of the series in both integrals above define functions in
L? [0,1) since both f and h have bounded support, we have, by Parseval’s formula
b

and the fact that both fand h are bounded support,
Z <f: EmanangmanaV; h)

meZ

1 _
=3 j D (@) - ll/b)] IZ(Tnayh)(x —1,/b)| dx

[0%) l,EZ l,EZ

1 -
-/ (Z(Tnazf) (x - z/b)) Tna¥ (ORG)dx

R leZ

= %f Z g(x —na—1/b)y(x —na)f(x — 1/b)h(x)dx.
R LEZ

Identity (46) follows immediately. The boundedness of the support of both f and h
shows that The series on the right-hand side of (46) converges absolutely since it is
actually a finite sum. The absolute convergence of the series on the left-hand side of
(46) is obtained by the following argument. By Lemma (3.3.15), both {E,,,,; T, f: m,n €
Z} and {E,,, T,,h : m,n € Z} are Bessel sequences in L?(R). Noting that

(f' Emana.g> = e_znimnab<E_mbT—naf' g)' m,n € Z'
and

(h, EmanaV> = e_znimnab<E—mbT—nah» V); m,n € Z,
it follows that both {(f, EmpTnag)mnez and {(h, EppTrnaV) dmnez are in 12(Z*). The
series on the left-hand side of (46) thus converges absolutely using the Cauchy-Schwarz
inequality, showing our claim.

Note that part (a) in the following theorem follows from [172, Corollary 3.3.6]
under the weaker assumption that the corresponding system is complete in L?(S).
However, as mentioned earlier, that result was obtained by more abstract methods of
operator algebras and we prefer to give here a more direct proof of this result (which is
needed to show part (b) in any case) under the assumption that the system forms a
frame. (See [164] for a similar proof in the case S = R).

Theorem (3.3.17)[161]: Let a, b > 0, let S be an aZ-shift invariant measurable set in R
with nonzero measure, and suppose that {E,,,T,q.h : m,n € Z} is a frame for L*(S).
Then,

(@) b|Sy| < 1, where S, =S N [0,a).
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(D) {E,.pThqg : m,n € Z} is a Riesz basis for L(S) if and only if b|S,| = 1.
Proof. We denote by S the frame operator:

Sf: 2 (f»Emanag>Emanagr fELZ(S)
mmnez

and y° =S5"1g . Then
f= Z (f» Emanag> Emanayor f € Lz(s)- (47)

mmnez
Define G, = Yrez 9(- —n/b — ka) y°(- —ka) for each n € Z. Suppose f,h € L”(R)
both vanish outside the set S, N I, where I is an interval of length I/b. Note that T;, f
and T,,h both belong to L?(S) whenever | € Z. It follows from identity (47) and
Lemma (3.3.16) that

(f: h) = (Tlaf» Tlah> = Z (Tlaf' Emanag><Emanay01 Tlah>

mmnez

- %z j G, (0)f (x — la — n/bYR(x — la)dx

NeEzZ R

1

- %! Go(Of (x = la)h(x — la)dx = f Go(x + la) f(x)h(x)dx.

SoNI
Since f and g are arbitrary functions in L*(R) vanishing outside the set S, N1, it
follows that G,(- +la) = b a.e on S, NI and thus also on S, since I is an arbitrary
interval of length I/b. Hence, G, = b a.e on S and, since the functions T,, y°,n € Z,
all belong to L?(S), G, vanishes outside of S. Hence, we conclude that G, = by.. This

implies, in particular, that

b|S,| = jbXS(x)dxz jGo(x) dx = fzmw(x—ka)dx

[0,a) [0,a) [0,a) KEZ

=jg(x)y°(x)dx= (S71g,g) = (S71/2g,871/2g) = ||sV/2g]||".

R
it follows that

IS=1/2g]|* = bIS,|. (48)
Since {E,,;,Theg : m,n € Z} is a frame for L2(S). It is well-known that the collection
{S™ EmpTprag : m,n € Z} which can also be written as {E;,, T, S™%g : m,n € Z} is a
Parseval tight frame for L2(S). This implies that ||S=/2g||” < 1, which together with
(48) shows that b|S,| < 1, and shows (a). the collection {E,,, T,,g : m,n € Z} forms a
Riesz basis for L2(S), if and only if the parseval tight frame {E;,,T,0S™/2g : mn €

7} is an orthonormal basis for L2(S), which is equivalent to ||S~*/2g||" = 1 or to
b|S,| = 1, using (48). This shows (b) and completes the proof.

We show that, in the irrational case, if the condition b|S N [0,a)| < 1 holds, we
can construct a measurable set E ¢ S whose a Z-translates tile S and such that the
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Gabor system with window g = yr and parameters a, b forms a tight frame for L%(S).
We will first need the following Lemma.

Lemma (3.3.18)[161]: Let a be an irrational number and suppose that E is a
measurable subset of R wich is both a Z and a Z - shift invariant. Then E = R or @ up
to a set of zero measure.

Proof. Since yy is 1- periodic, we can express it as a Fourier series

xe(x) = z ce’™*  x eR,
k€EZ . ) . )
for some sequence {c,} € £?(Z) where the series converges locally in L?. Since g is

also a-periodic, we have

XE(x) — XE(x + a) — z Ckezmkaezﬂikx’

k€EZ
and the uniqueness of the Fourier coefficients implies that ck(l — ez’”"‘“) = 0 for all
integers k. Since a is irrational, this is equivalent to ¢, = 0 for all k € Z\{0}, i.e. to
X5 = Co a.e. on R from which the claim follows.
Theorem (3.3.19)[161]: Let a,b > 0 be such that ab & Q. Let S be an a Z-shift
invariant, measurable subset of R with nonzero measure and satisfying b|S,| < 1,
where S, = SN [0,a). Then, there exists a measurable set E in R which is a Z-
congruent to S, and such that the collection {E,,,; T,oxg : m,n € Z} is a tight frame for
L%(S).
Proof. By the same argument as that of Theorem(3.3.12) we can assume that b =
1,a > 1 without loss of generality, and we only need to show the existence of
measurable subset E of R which is a Z-congruent to S, and such that the collection
{e?™mXyp(x):m € Z} is a tight frame for L?(E). Let Z* = {0,1,2,3, ...} and define a
bijection o : Z* — Z by

0(0)=0, oRk—-1)=k, oR2k)=—-k fork>0.

Let go = Xkezxs,(C th). If go <1, ae onR,then E =S, is desired. Otherwise, we
proceed with the following inductive procedure to construct E, analogous to the
construction given in Theorem (3.3.12) (and with similar notation). Let H, = {g, > 0}
and let T, be a measurable subset of S, such that

ZXTO(' +Kk) = X,

keZ
If the sets S;, T, H; and the function g, have already been constructed for all indices [

with 0 <1 <j—1,wedefineS; = S;_;1\T;_4,
95 =Y x5,C+ao()+1),

kEZ
and H; ={g; > 0,90 =91 = - = gj—1 = 0}. We then choose a measurable set T;

contained in S; and such that

Dt C+ao () + ) = i,
k€EZ
Define E = Ujeg+ (Tj —aa(j)). Note that the sets H;,j € Z*, are mutually

disjoint. We have
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ZXE(' +k) = Z Z)(Tj(- +aoc(j) + k) = z Xu; <1 ae.onR

keZ JEZY kEL JEZ*
So, by Lemma (3.3.10) the collection {E,,,xz:m,n € Z} is a tight frame for L?(E).
Since T; —ao(j) € Sy —ao(j) for j€Z*, and the sets S, —ao(j),j € Z*, are
mutually disjoint, so are the sets T; — ac'(j), j € Z*. Hence, in order to show that E is a
Z-congruent to S,, we only need to show that |So\(Ujez+Tj)| =0. Write Q =
So \(Ujez+T)). Since, for j = 1,S; = S, \ (U/Z, Tp), we have Q c S;, for all j >0,
and thus

ZXQ(' +k) > 0} = {z xs, (- +k) > 0} ={g;(: —ao())) > 0}

keZ k€EZ
c U?ﬁ:o(Hm + aa(]')).
It follows, using the disjointness the sets H,,,, m = 0, that

ZXQ(- +k) > o} c ﬁ O(Hm+aa(j)) - ﬂ O(Hm +al)

KELZ _ j=0 m=0 LEZ m=0
= ﬂ( {XHm(' —al) = 1}) = ﬂ ({z Xn,, (- —al) = 1})
leZ \m=0 leZ m=0
Hence,
Xo (- +k) > O}C { X, (- +aoc(m) —al + k) = 1} = Q.

We will now show that |Q| = 0 by contradiction. Suppose that |Q| > 0. Then,

(Tm +aoc(m))| = ) [Ty +ac(m)| = ) |Tn| <[Sl <1 (49)

due to the disjointness of the sets T;,,, m = 0. It is obvious that

0c {Z Z)(Tm(- +aoc(m) + k) = 1} = {z XU?ﬁ:on_aa(m)(' +k) = 1}

mz0 ke kEL
Since the sets Ty, _q5(m), m = 0, are disjoint. Since Q is Z-periodic and

Gnon]= | 2e@des [t m-asomC +HOdE<1,

[0,1) [0,1) KEZ ~
using (49), it follows that Q + R modulo a set of zero measure. However, Q is both a Z
and Z-periodic and Lemma (3.3.18) shows that |Q| = 0. Therefore, we conclude that

[{Zkezxo( +k) > 0} = 0 and thus

Q| = f Z}(Q(t + k)dt = 0.
[0,1) kEZ
Which is a contradiction. The proof is completed.
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Corollary (3.3.20)[161]: let a,b > 0 be such that ab # Q. Let S be an a Z-shift
invariant, measurable subset of R and define the set S, =SnN[0,a). Then, the
following are equivalent:
(a) There exists a function g € L2(S) such that the linear span of the collection
{EpThag: m,n € Z} is dense in L2(S).
(b) There exists a measurable set E in R which is a Z-congruent to S N [0, a) such
that {E,,, T,,ng: m,n € Z} is a tight frame for L2(S).
()b |Sy| < 1.
Proof. As we mentioned earlier, the fact that (a) implies (c) is a result from [172]. The
fact that (b) follows from (c) is the content of Theorem (3.3.19) and, clearly (b) implies

(a).
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Chapter 4
Gabor Frames and Unit Cubes

We show that for the irrational case, we show that the classification problem can
be completely settled if the union of some intervals obtained from the set-valued
mapping becomes stabilized after finitely many times of iterations, which we conjecture
Is always true. We provide an uncountable class of functions. As a byproduct of the
proof method we derive new sampling theorems in shift-invariant spaces and obtain the
correct Nyquist rate. An inductive procedure for constructing such sets A in dimension
d > 3 is also given. An interesting and surprising consequence of the results is the

existence, for d > 2, of discrete sets A with G (o112 ,4) forming a Gabor orthonormal

basis but with the associated “time”-translates of the window y[0,1]¢ having significant
overlaps.
Section (4.1): Characteristic Function Generates a Gabor Frame

Frames introduced by Duffin and Shaffer in [191] have recently received great
attention due to their wide range of applications in both mathematics and engineering
science. Gabor frames form a special kind of frames for L?(R) whose elements are
generated by time-frequency shifts of a single window-function or atom. More
specifically, let g € L2(R) and a,b € R*, we use (g,a, b) to denote the Gabor family
or system {Mp,Theg : m,n € Z} generated by g where T, g(t) = g(t —x) is the
translation unitary operator and M. g(t) = et g(t) is the modulation unitary
operator. The composition M; T, is called the time-frequency shift operator. We say
that (g, a, b) is a Gabor frame for L?(R) if there exist two constants C;, C, > 0 such that

AP < D [ My Trag)|” < CollFI? ()
m,nez

Holds for every f € L?(R). See [182,188,190,192,193,195,196,197,204] for some
background materials and recent development in Gabor analysis. In order to have a
Gabor frame for L?(R), one important restriction is the density condition which states
that if (g, a, b) forms a Gabor frame, then ab < 1 (cf. [187,201]). Although it is a key
condition for the Gabor frame, the density condition is still far from providing an
answer to the fundamental question of characterizing classes of functions which can be
served as a window-function for a Gabor frame. This is generally believed to a quite
difficult problem. In fact, the problem is only solved completely for few functions (cf.
[194]). For an excellent survey on this topic see to C. Hail’s [196]. In particular we
mention that Gabor originally proposed the Gaussian function g(t) = e~ as a window
with respect the unit time-frequency lattice Z X Z (i.e.a = b = 1). However, though it
is a complete system for L?(R), the Gaussian Gabor system (g, 1, 1) is not a frame. it
was conjectured by Daubechies and Grossmann [187,189], and later proved by
Lyubarskii, Seip and Wellston [200,202,203] that (e ™", a, b) is a frame if and only if
ab < 1. Another seemingly natural case is the class of characteristic functions. It was
shown by Casazza and kalton [184] that characterizing such sets E that (g, 1,1) is a
frame is equivalent to solving an old open problem of Littlewoods in complex analysis.
A further special case of the above problem, Which we will refer to as the abc-problem,
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asks for a classification of all a, b,c € R* such that (x[o ), a, b) is a Gabor frame. This
problem was initiated by Janssen [198,199], Casazza and Lammers [185]. Although
classification has been obtained for some special cases, this problem appears to be very
difficult in general. In many cases it is associated with an extremely complicated set-
Janssen’s tie [199]. We raise a conjecture concerning the image of certain set-valued
mapping on certain union of intervals. We conjecture that the said image will always
become stabilized after finitely many times of iterations. The main results (Theorems
(4.1.18) and (4.1.3)) indicate that if the conjecture is true, then the abc-problem can be
completely solved.

To show how delicate the abc-problem is, we list two results due to Janssen,
Casazza and Lammers.

Proposition (4.1.1)[181]: (See [198,199]). Assume a < 1 < c.
(i) Ifaisnotrationaland 1 < ¢ < 2, then (x{o,), a, 1) is a Gabor frame.
(ii) If a =p/q is rational, gcd(p,q) =1 and 2 —1/q < ¢ < 2, then (x[g,) a, 1)
is not a Gabor frame.
(iii) If a > 3/4, ¢ =L — 1+ L(1 — a) with integer L > 3, then (x[o,), a, 1) is not
a Gabor frame.
(iv) If d is the greatest integer < c and |c —d — 1/2| < 1/2 — a, then (x[o,), a, 1)
is a Gabor frame.
Proposition (4.1.2)[181]: (See [185]).
(i) The Gabor system (x[o,c), 1,¢) is a Gabor frame if and only if ¢ = 1.
(ii) 1f2 < c €N, thenforall a > 0, (x[o,) a 1) is not a Gabor frame.
(i) If a<c<1, then (xpe a 1) is a Gabor frame, if ¢ <a <1, then
(X[0.¢), @ 1) is not a Gabor frame.

We will state all our results for general a,b,c € R* instead of adopting the
practice of both Janssen, Casazza and Lammers by letting b = 1. From (1) and (3) of
Proposition (4.1.2) above, we see that the case of ab = 1 and the case of bc < 1 are
completely solved, so throughout we will always assume that 0 < 1/b < c. We will use
M to denote exclusively the largest natural number less than or equal to bc. We will use
d exclusively to denote ¢ — M(1/b), thus 0 < d < 1/b always holds. Almost all the
arguments revolve around the behaviors of the following two sets A = U,,ez[na, na +
1/b). We will also use letters A and B for the above mentioned sets exclusively.

We will use the new approach to recover or generalize some of the results
obtained in [198,199] and [185]. the main purpose there is to exhibit the new techniques
and summarize certain known or generalizable existing results in a suitable way in
anticipation for the new results. We will not attempt a detailed comparison of the results
stated in the first half with the ones found [198,199] or [185], usually in deferent forms
with b = 1. It suffices to say, even when these results are not explicitly stated in
[198,199] or [185], they are most likely obtainable using the techniques developed. We
will recover (2) of Proposition (4.1.1), in a lemma and generalize it to the following
result, which is already established by Janssen in [199].

On the other hand, the following (together with Lemma (4.1.5) and Proposition
(4.1.11) for the case of M = 1) provides us with a complete solution to the abc-problem

for the case of a = 5(1/b) with g € N + 1, which is also know to Janssen.
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We will give proofs of the sufficiency parts of the following two theorems. The
first one is a complete solution to the abc-problem for the case of M = 1. We point out
that this case is already completely solved by Janssen in [199], and his results can be
quickly recovered from the theorem below.

Here M, and M, are set-valued mappings defined by M,(G) =GU(ANG —
1/b) and M,(G) =GU(ANG +1/b) for any G € R, where A = U, ez[na, na + d)
and B = Uyez[na + d,na + 1/b) as we defined earlier. Since it will be made clear that
the case of bc € N is trivial, what is left to consider is the case of bc > 2. This is treated
in the next theorem.

The necessity parts of both of these theorems , especially that of Theorem
(4.1.18), entail complicated constructions of functions. We will devote most to this task.
In fact, instead of proving the necessity part of Theorem (4.1.18), we will show the
following slightly stronger result.

Theorem (4.1.3)[181]: Let 0<a<1/b<c=M(1/b) +d for some 0 <d <1/b
and M € N + 1. If there is an a-periodic proper subset G of R which contains E and
satisfies M (G) = G, then (x[o,), a, b) is not a Gabor frame for L?(R).

We will also show quickly that in the case of ab € QF, it is true that
M5*(E) = MSo(E) for some S, € N, thus immediately obtain a complete solution
for that case. This naturally leads to our conjecture that when ab is irrational the same
still holds.

Due to the nature of the proofs, we will divide them between. Deals with the
proofs of Proposition (4.1.9), Theorem (4.1.10), and the proofs of the sufficiency parts
of Theorems (4.1.19) and (4.1.18). The necessity part of Theorem (4.1.19) requires
some technical details, it will be given together with much more complicated
constructions involved in the proof of Theorem (4.1.3), which serves as a proof of the
necessity part of Theorem (4.1.18). We then briefly discuss the case of M > 1 in
comparison with Janssen’s counterpart in [199]. In particular, with the help of one of
our main results (Theorem (4.1.3)) we negatively settle one conjecture raised by Janssen
in [199].

For any fixed triple (a, b, ¢) satisfying 0 < a < 1/b < c, we will henceforth use
the letters M, d, A, B exclusively to denote numbers or sets as specified in the previous.
Also, for any n € Z, any bounded and compactly supported function f € L?(R) and any
g € L*(R), we define

Ha(®) = ) f(t~k/b)g(e—na—k/b), @)
k

for each n € Z. Though H,, also depends both on f and g, for notational simplicity we
will avoid indexing H,, by f and g since it will always be clear from the context which
f and g are associated with the specific H,, in question. By definition, H, is 1/b-
periodic and H,, € L?[0,a/b). We omit the proof of the following lemma, which is
almost identical to the well-known proof of the WH-identity in [182], where it is
credited to Heil and Walnut [197]. The same proof can also be found in [188].

Lemma (4.1.4)[181]: Let g € L?>(R) be such that },,|g(t — na)|* < € for some C > 0,
and let H,, be defined as in (2) for any bounded and compactly

Supported functions f. then
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1/b

> N B Tuag =5 Y [ 1Ha@Fdt

mmnez n o
We only consider the case of g(t) = x[o)(t). In order to examine whether g

generates a frame, we need the following observations. First of all, since g(t) =
X[o,c)(t), we certainly have ¥,|g(t — na)|* < C for some C > 0. Thus Lemma (4.1.4).
Applies. Moreover, by the CC-condition due to Casazza and Christensen [182], there is
a C, > 0, such that for any f € L?(R),

2
D EmoTuag)|” < CalIF 13
mmnez
Therefore, in order to check whether (g, a, b) is a Gabor frame, we only need to check

whether there exists some C; > 0 such that

GBS D F EmbTuag)|

mmnez
for all f € L?(R), however, since bounded and compactly supported functions f are

dense in L?(R), it follows from a density argument and Lemma (4.1.4) that we only

need to check if there is a C; > 0 such that
1/b

1
AN WEAGIEE 3
n o

for all such functions. Secondly, since g(t) = x[o,c)(t), for any bounded and compactly
supportedf’, if we define G,(t) = f(t) g(t — na) = f(£)X[nana+c)(t) FOr each n € Z,
then clearly H,,(t) = X G,(t — k/b). Simple computation shows that whenever 0 <
a < 1/b < c holds, we have:
H(¢) = {Fl(t), t € [na,na + d),
n F,(t), t€[na+d,na+ 1/b),
where

RO =) fe+/A/D), RO =) f(e+ia/b)
j=0 j=0

Therefore, if we let L,, L, be the smallest natural numbers greater than or equal to % and

1{719 respectively, then for any bounded and compactly supported functions f € L?(R),

we have
1/b

[1R@rd+ [Im@Pdcs Y [ moPd
A B n o

<L, f Iy (©)[2dt + L, j IF, (0)[2dt . (4)

From now on we will also use L,, L, exclusively to denote such numbers. Let us
now show how Lemma (4.1.4) and, specifically, inequality (4) can be used in
some simpler cases.
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Lemma (4.1.5)[181]: Let0<a<1/b<c=1/b+dforsome0<d <1/b.If
1/b—d = a, then (x[o), a, b) is a Gabor frame.
Proof. In this case we have M = 1. So F,(t) = f(t). Note that the condition 1/b —

d = a, implies that B = R. Hence
1/b

> [ a@rac 2 [InoPRE = [if@Pa
n o R R

Note that Lemma (4.1.5) certainly includes the case of d = 0 and ¢ = 1/b. Next
lemma is actually (ii) of Proposition (4.1.2), a result by Casazza and Lammers. It deals
with all the other situations of d = 0.

Lemma (4.1.6)[181]: Let 0 <a<1/b<c=M(1/b) for some M € N+ 1, then
(X[0,c)» @, b) is not a Gabor frame.
Proof. In this case we have d = 0, So A = ¢ and H,,(t) = F,(t). Similarly, 1/b > a

implies B = R. Hence for any bounded and compactly supported f € L?(R), we have
1/b

zf |H,(0)|2dt < szpz(t)dt_
n o

R
To show that (x[o,c), a, b) is not a Gabor frame, we only need to construct a sequence of

functions f; € L?(R) with ||f;|| approaching infinity while the corresponding
Yn fol/ blHn(t)lzdt stays bounded. In fact, for each j € N we define f;(t) supported on

.k
the interval [0, /b) by letting f;(t) = e'M*™ for each t € [(k — 1)/b,k/b) with k €

{1,2, ..., j}. Straightforward calculation shows that ||£;||* = j/b, but correspondingly we

always have
1/b

2f \H, (6)|2dt < 2L,M3(1/b).
n o

After Lemma (4.1.6), we do not need to worry about the case of bc € N anymore.
Hence we will assume d > 0 throughout the rest of the article. The following result
recovers and generalizes (iv) Proposition (4.1.1). We point out that it has already been
established by Janssen in this generality in [199].

Lemma (4.1.7)[181]: Let0 < a < 1/b < c = M(1/b) + d for some M € N and
0<d<1/b.Ifmin{d,1/b —d} = a, then (x[o ), a, b) is a Gabor frame.

Proof. As before, min{d, 1/b — d} = a, implies that A = B = R.Thus, by (4).
1/b

> [ moraz [IEore+ [ 1RoPE 2 [ 3156 - BoOPRE
n o R R

[

2 1 ,
dt =Ef|f(t)| dt.
R R

Note that because of Lemma (4.1.7), we now only need to consider the case of
c=M(1/b)+d with M eN,0<d<1/b and a > min{d,1/b — d} for the next
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lemma, we need some more terminology. We will call a measurable £E c R a-
translation periodic or a-translation invariant if E + na = E holds for all n € Z.

Lemma (4.1.8)[181]: Let0<a<1/b<c=M(1/b)+d forsome M e N and 0 <
d < 1/b.Then R\(Uez(A + k/b) N (Urez(B + k/b))) has positive measure if and only

a= Z(l/b) with p, g € N, satisfying ged(p, q) = 1 and% > min{1/b — d, d}.

Proof. We show the sufficiency part first: Since a = g(l/b) with ged(p,q) = 1, we
have that both Ugez(A+ k/b) and Ugez(B + k/b) are qib-translation periodic
consisting of all qib-translates of intervals [0,d) or [d, 1/b), respectively. It follows that
both sets are actually g—translation periodic consisting of all %—translates of intervals
[0,d) or [0,d) or [d,1/b), respectively. Hence the condition % > min{l/b —d,d} is

equivalent to the condition that at least one of the above two sets is complemented in R
by a set of positive (indeed, infinite) measure, which in turn is equivalent to the desired
conclusion.

The argument above implies that we only need to show the necessity part for a =

r(1/b) with irrational r. In this case, the set {[%]:k € {O}UN} is dense in the

interval[0, a), where [x] = x mod(a). Since A, B are both a-periodic sets containing
intervals, it follows that Uyez(A + k/b) = R, Ugez(B + k/b) = R.

Now we are ready to prove Proposition (4.1.9) and Theorem (4.1.10).
Proposition (4.1.9)[181]: Let0<a<1/b<c=M(1/b)+d forsome M e N+ 1 and

0<d<1/b. If a= Z(l/b) with p,q € N such that 0 < p < ¢q, ged(p,q) =1 and
% > min{1/b — d, d}, then (x[o), a, 1) is a not a Gabor frame.

Proof. According to Lemma (4.1.8), we have either R\ Ugez (A + S) or R\
Ukez (B +§) has positive measure. Without loss of generality, we assume that the

former does, and denote G = R\ Uyez (A + % ) As noted before, this set is qib(or %)

translation invariant. Similar to the proof of Lemma (4.1.6), we only need to define a
sequence of functions f; € L?(R) supported on set G with ||f;|| approaching infinity

while the corresponding )., fol/ blHn (t)|*dt stays bounded.
In fact, for each j € N, we can define f;(t) supported on [0,j(1/b)) NG by

letting £;(t) = e‘%m for each t € [(k—1)1/b,k(1/b)) NG with k € {1,2,...,j}. Then

||fj||2 =j-u(Gn[0,1/b)). On the other hand, for any bounded and compactly

supported f defined on G, (4) implies
1/b

> | morde <, [15@Pd

Similarly we can get an estimate for the corresponding H,,. If we use u to denote the
Lebesgue measure, we have
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1/b

ZJ |H,(t)|2dt < 2L,M3 - u(G N [0,1/D)).
n o

Theorem (4.1.10)[181]: Let0 <a < 1/b <c=M(1/b) + d for some M € N+ 1, and
0<d<1/b.Ifa= %(1/19) with ¢ € N+ 1, then (x[o,y, @, b) is a Gabor frame if and

only if a < min{1/b — d, d}.
Proof. The sufficiency part follows from Lemma (4.1.7). For the necessity part, we
assume to the contrary that a > min{1/b — d, d}. Thus Proposition (4.1.9) (the special
case of p = 1) implies that (xpo ), a, b) is not a Gabor frame.

Extending Theorem (4.1.10) to the case of M = 1 is quick. Note that by Lemma
(4.1.5), we only need to look at the case of a > 1/b — d.
Proposition (4.1.11)[181]: Let0<a <1/b+d<c=1/b+dfor0<d <1/b. If
a= 5(1/19) with p,q € N such that ged(p, q) = 1,% > 1/b—d, then (x[o,c) a b) is

not a Gabor frame.
Proof. In this case, R\ (Uxez(B + k/b)) has positive measure. The rest is the same as
the proof of Proposition (4.1.7).

In order to show the necessity parts of Theorems (4.1.19) and (4.1.18), we need to
develop a key lemma which already appears in its embryonic form in the proof of
Lemma (4.1.7). We will treat the sufficient parts of both.

Proposition (4.1.12)[181]: Let H, (t) be defined as in (2) for g(t) = x[o)(t) and any
bounded and compactly supported f. Suppose for some N, L € N with N < L and some

Dy, D, C R, there are ay, a; > 0 such that
1/b 2

le )7 dt>0cLJ Zf(t+]/b) dt,
p, |i=
zj Ha(Olde > ay | Ef(tﬂ/b)

holds for any bounded and compactly supported f and its corresponding H,,.
Then for any subset D of R satisfying either

(8)D € Dy, D +==c Dy or
(b)D == < Dy, D == Dy,

there is some a, > 0, such that
1/b

ZJ Ol > ap | Zf(tﬂ/b)

holds for any bounded and compactly supported f and its corresponding H,,.
Proof. Denote I = anl/blH (t)lzdt For any D satisfying (a), we have

j dt = j imﬂ/b)—i f(t+j/b)2

D D
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1/b

dt

dt

L—-N-1

Z f(t+j/b)

dt




-1
<2 Zf(t+]/b) dt+2f Z (t+]/b)
p lj=L-
N—-
Zf(t +]/b) dt + 2 f Zf(t+]/b) dt
j=0 L-N|j=0
b=
<2+t p=2%a"
ap; apy 129)]Y21%9)7]
We may take a, to be #. The other case is similar.

DN+2aDL
Now we apply Proposition (4.1.12) to the cases which we are interested in. First
in order, the case of M = 1.
Lemma (4.1.13)[181]: Let 0<a<1/b<c=1/b+d with some 0<d <1/b.

Suppose for some set F and ap > 0, anl/blHn(t)l2 dt = ag [, |f()]? dt holds for
any bounded and compactly supported f and its corresponding H,,. Then forany D c A
suchthat D +1/bc F,or anyD c A+ 1/b suchthat D c F + 1/b, there exists some
ap > 0 such that anl/blHn(t)lzdt > ap [, |f(¢)|*dt holds for any bounded and
compactly supported f and its corresponding H,,.

Proof. Denote [ = ), fl/bIHn(t)l2 dt. Our assumption can be simply writtenas I >
ar [, |f(©)[*dt. Since M = 1, it follows from (4) that

I> j|f(t) +£(t+ (1/p))| dt.

A
Now apply Proposition (4.1.12)(a) with L =2and N =1,D;, = Aand Dy = F, the
conclusion follows. The other case is similar.
Lemma (4.1.14)[181]: Let0 <a<1/b<c=1/b+dforsome0<d < 1/b.IfFis
any of the threesets AN B + 1/b,An (B — 1/b), B or any union of any such sets, then
there exists a constant @z > 0 (dependent on F) such that

Sy I (017de = ap [, 0] de
holds for any bounded and compactly supported f and its corresponding H,,.

Proof. We observe that by (4), when M = 1, we have
1/b

Zf |H, (t)]? dt = Jlf(t)lzdt.
n o

B

Rest of the conclusion follows readily from Lemma (4.1.13) above.

Part of the following lemma recovers (i) of Proposition (4.1.1) a result by
Janssen.
Lemma (4.1.15)[181]: Let 0<a<1/b<c=1/b+d for some 0 <d < 1/b. Let
F=(ANB+1/b)u(B—-1/b))UB. If U¥_,(F —k(1/b)) = R for some N € NuU
{0}, then (x1o,), @, b) is a Gabor frame. In particular, if a = r(1/b) for some irrational
number 7, then (xpo), a, b) is a Gabor frame.
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Proof. We first note that 0 <a < 1/b implies AU B = R. By starting with the
conclusion in Lemma (4.1.14) and applying Lemma (4.1.13) repeatedly , we will obtain

that for any n € N U {0}, there is some ap > 0 such that
1/b

> | m@rdeza [1r@Pde
n o D

where D = U}_,(F — k(1/b)). Consequently, the first conclusion is established when
n = N. The second conclusion is proved using the same density argument employed in
the proof of the necessity part of Lemma (4.1.8).

We turn our attention to the case of M > 1, we have
Lemma (4.1.16)[181]: Let 0 <a<1/b<c=M(1/b)+d for some 0 <d <1/b
and MeEN+1. Let E=(AnB+M(1/b))U(An (B —1/b)). Then there is an

ag > 0 such that
1/b

zf [Hn(O)I*dt > ag f I (®)I2 dt

holds for any bounded and compactly supported and its corresponding H,,.
Proof. This follows immediately from proposition (4.1.12). With L =M + 1 and N =
M and D, = A,Dy = B.

Clearly the sufficiency part of Theorem (4.1.18) follows from the last and the
next lemma. Please refer for the definitions of the sets A,B,E and the set-valued
mappings M and p; with j € {1,2,3,4,5}

Lemma (4.1.17)[181]: Let 0 <a<1/b<c=M(1/b)+d for some 0 <d <1/b

and M € N + 1. Suppose that for a measureable set G, there is some a; > 0, such that
1/b

> | i@rde = ag [ 1F@rR de 5)
n o G

holds for any bounded and compactly supported f and its corresponding H,,. Then there
exists some Apr gy > 0 such that
1/b

> | @z a,, [ 1r@Pd
n o M(G)
also holds for any bounded and compactly supported f and its corresponding H,,.
Proof. Observe that by the definition of the set-valued mapping M, it is enough to
show that under the assumption of the lemma, for each j € {1,2,3,4,5} , there exists
some ay. gy > 0 such that
1/b

> | i@rde = ae [ @R
n o

p;(G)
also holds for any bounded and compactly supported f and its corresponding H,,.
(i) p,(G)-case. Note that by (4), we have
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1/b

Zf IHn(t)IZdtzf‘
n o A |J

Now apply Proposition (4.1.12)(a) to (6) and (5), with L=M +1,N =1,D, = A
and Dy = G, we obtain some a > 0 such that
1/b

Zoj |H,(0)|2dt > a f

An(G-M(1/b))
Now apply proposition (4.1.12)(a) to (7) and (5) again, with L =M and N =
1,D, =An (G —M(1/b))and Dy = G, we obtain some &’ > 0 such that

f(t+j/b)| dt. (6)
=0

2

M-1
> fe+j/b)

j=0

dt. 7)

1/b M1 2
> | @z« S fe+im| de. (8)

noo An(G-M(1/b))n(6-(M-1)(1/b)) | /=0

Repeating this process M — 1 times we get the result.
(if)p, (G)-case. Note that by (4), we also have

1/b M-1 2

> [ im@rdez [ | ree+im| de 9
n o B |Jj=0

Now apply Proposition (4.1.12)(a) to (9) and (5), with L = M,N = 1,D;, = B and
Dy = G, we have for some > 0,
1/b

> | i@rde=p
n o

The rest is similar to the first case.
(iii)p3(G)-case. This is the consequence of applying Proposition (4.1.12)(a) to (6)
and (7),withL=M + 1,N =M,D, = Aand Dy = An (G — M(1/b)).
(iv)p4(G)-case. This is the consequence of applying Proposition (4.1.12)(a) to (9)
and (10), with L = M,N =M —1,D, = Band Dy = Bn (G — (M — 1)(1/b)).
(V) ps(G)-case. This is the consequence of applying Proposition (4.1.12)(a) to (9)
and (8) with L=M,N=M—-1,D,=B and Dy=An(G—-M(1/b)) n

(6 — (M —1)(1/b)).

2

M-2
Zf(t+j/b) de. (10)

j=0

BN(G-(M-1)(1/b))

Theorem (4.1.18)[181]: Let 0 <a<1/b<c=M(1/b)+d forsome 0 <d <1/b

and M € N + 1. If MSo*1(E) = MSo(E) for some S, € N, then (x[o.¢), a, b) is a Gabor
frame for L?(R) if and only if M50 (E) = R.

Here M is a set-valued mapping defined in turn by several other set-valued
mapping p; for j € {1,2,3,4,5} such that for any ¢ € R

M(G) = G Up;(G) Upz(G) Ups(G) Ups(G) Ups(G)

and

p1(G) = An (N}=1(G — k(1/b)).
p2(G) = B n (N=1 (G — k(1/b)).
ps(G) = (G- M+ 1)(1/b))n(A—-1/b) N A.
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ps(G) = (G —M(1/b))n(B—1/b)NB.

ps(G) = (G—-M(1/b))N(G—-M+1)(1/b))Nn(A-1/b)NB,
where A, B are unions of intervals specified earlierand E = (AN B+ M(1/b))U (AN
(B —1/b)).

Proof. Note that because of Lemma (4.1.15) we only need to consider the case of a =
S(l/b) with p,q € N and ged(p, @) = 1. Assume that M7 (MZP(B)) = R. Recall that
by definition, for any measurable set G, M;(G) = GuU (An (G —1/b)) and M, (G) =
GU(ANG+1/b). Observe that AU B = R always holds whenever a < 1/b and in
the case of M =1 we also have Y, fol/bIHn(t)I2 dt = [, |f(t)|?dt. Now apply

Lemma (4.1.13) repeatedly 2p times starting with set B, the conclusion follows.

This follows immediately from the conclusion of Lemma (4.1.16), by applying
Lemma (4.1.17)[181] s,-times.

We deal with the easier case of Theorem (4.1.19), first.
Theorem (4.1.19)[181]: Let0 <a<1/b<c=1/b+d forsome 0<d < 1/b.

(i) If a = r(1/b) for some irrational r, then (x[o), @, b) is a Gabor frame .
(i)If a = S(l/b) with p,q € N and ged(p,q) = 1, then (xo), a b) is a Gabor

frame if and only if M7 (M (B)) - R.
Proof. Let H = R\M7¥ (M7F (B)). Assume that H has positive measure, we are going to
prove that (x[o.),a,b) is not a Gabor frame. We make a few observations about

M, and M, first. Note that for any set G containing B, we must have M, o M, (G) =
M, o M;(G). Indeed, by using the fact that AU B = R, We see that M;(G) =G U
(G —1/b) whenever B c G. Thus for such G we have

My o My(G)=GUANG+1/b)U(ANn(G—1/b)) = M, o My(G).

Note also that when D is an a-translation periodic set of positive measure, if a =
S (1/b) with integers 0 < p < q and ged (p,q) = 1, then D — I(1/b) = D — K(1/b)
whenever k — | = p,, for some integer m. Thus the definition of M says right away
that M (G) = M (G) for any k > p and any a-translation periodic set G © B. Simple
computation also shows that MY (G) is the union of the set G with the sets of the form

(A+%)n (A+§)n ...n(A+é) n(G+é)

for j € {1,2,3, ..., k}. By similar argument, we also have M¥(G) = M7 (G) for any
k = p and any a-translation periodic set G © B. These facts imply that the set K =
m} (MZ”(B)) is invariant under both maps M;(G) = G U (G — 1/b) and M,(G) =
GU(ANG+ 1/b). In particular, it says that

k-1 ck.
b

When k — % = k, we can employ the same techniques as those found in the proof of
both Lemma (4.1.5), and Proposition (4.1.9) we omit the proof to avoid repetition.
Now assume that k —% is properly contained in k. It follows that H +% is also

properly contained in H. Let ] = H \ (H + %) Then J is a set of positive measure no
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bigger than % and H is the disjoint union of the sets J +£ with j € {0} UN. We will
construct a sequence of functions f; € L?(R) with ||f;|| approaching infinity and the
corresponding )., fol/bIHn(t)I2 dt staying bounded. In fact, we define f;(t) to be
supported on the set H so that f;(t) = (—D*forte]+ % with k € {0,1,2, ..., j}. Thus

||fj||2 = (j + Du()). Because H is disjoint from K, H is also disjoint from B since K

contains B. Therefore
1/b

> [ t@ra=[|ro+f(c+)
n o A

Forany t € A, we have eithert e AN K ort € A\K. ift € AN K, then by definition of
fj we have f;(t) = 0. Since K is invariant under M,, we have ¢ +% EANk+ % C k.

Hence by definition of f; we have f; (t + %) = 0. On the other hand, if t € A\K, then
fj(t) = 0only whent € ] +§ for some integer k = j + 1. In this case, by definition of
fj» we always have f; (t + %) = 0. Lastly, if t € A\k and f;(t) # 0, then f; (t + %) *

Ounlesst € ] + i. Using these observations, we have that
1/b

Zf o ()12 dt < Ly,

n o
Hence (x[o,c), @, b) cannot be a Gabor frame.

It is clear that the necessity part of Theorem (4.1.18) follows readily from
Theorem (4.1.3) before embarking on the proof of Theorem (4.1.3). As in the
assumption of Theorem (4.1.3), we let G be an a-periodic set satisfying the condition
that E c G, u(R\G) > 0 and M (G) = G. Thought we use F to denote R\ F for any
F c R, we will also use H specifically to denote G. Thus H is also a-periodic and hence
u(H N [0,a)) > 0. We also denote H' = Hn [0,1/b). Since 1/b > a,u(H") > 0, also
holds. Recall that M is a set-valued mapping defined in turn by several other set-valued
mapping mapping p; for j € {1,2,3,4,5} such that forany ¢ ¢ R, M'(G) = G U p,(G) U
p2(G) U p3(G) Up,u(G) U ps(G). For the definition of the mappings p; in terms of the
sets 4, B and the number M, reader may consult. Note that G = M (G) implies that G =
G Np(G) Np,(G) Np3(G) Npy(G) Nps(G). We will use H; to denote p, (&) for each
j €{1,2,3,4,5}. Thus in our simplified notation, we have H =HNH, N H, N H3 N
H, N Hs. Before we begin our construction, we need to establish the following lemmas,
which will be used extensively in our proof.

Lemma (4.1.20)[181]: Let G be an a-periodic set satisfying the condition that E c G,
U(R\G) > 0and M (G) = G . Let H = R\G. Then the following are true:
(@) Ift € H, then eithert — M(1/b) e A\Bort—M(1/b) € B\A.
(b)If te AnH,thent +1\b € A\B.
(c) If t € An H, then there exists k € {1,2,3, ..., M} such that t + k(1\b) € H.
(d)If t € B n H, then there exists k € {1,2,3,..., M — 1} such that t + k(1\b) € H.
(e)lfte AnH,thent +1(1/b) e Hforl =M + 1.
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(HIfteBnNnHand t+1/b € B, then t +1(1/b) € H for | = M. Furthermore, in
this case t € B/A always holds.

(QIf teBnHand t+1/b € A, then there is an [ € {M,M + 1} such that t +
[(1/b) € H. Furthermore, in the case of t + M(1/b) € H, t € B\A holds. In the
caseof t+ (M +1)(1/b) € H,t + 1\b € A\B holds.

Proof. Since E=(ANnB+ M(1/b))U(An (B —1/b)) c G, we have H c E . This
can also be expressed as
Hc (AuB)+ M(1/b), HcAu(B-1/b).
Items (@) and (b) are then easily derived from the above observation.
On the other hand, H=HNH; N H,NH; N H, N H; implies that for j €
{1,2,3,4,5}, we have H c H;. This can also be expressed in the following way:

HcAu (U(H - K(l/b))>,

k=1

HcBuU (U(H - K(l/b))>,

k=1
Hc(A-1/b)UAU(H - M+ 1)(1/b),
Hc (B—1/b)uBu (H—-M(1/b)),
Hc(A-1/b)UBU(H - (M +1)(1/b)) U (H — M(1/b)).

With the help of already established items (a) and (b), items (c)-(g) can be immediately
derived from the above conditions concerning these sets.

According to the observation made after Lemma (4.1.4), in order to show that
(X[0,c)» @, b) is not a Gabor frame, it suffices to construct a sequence of functions f

with || f;|| approaching infinity while the corresponding anol/blHn(t)lzdt stays
bounded. We need to define the notion of translation congruence. Suppose E and F are
measurable sets, s is a positive real number. We say that E and F are s-translation
congruent, if there are measurable partitions {E, | n € Z} and {F,|n € Z} such that
E, +ns = E, foreachn € Z.

We will construct functions f; in such a way that for each j € N, f; is supported

on H, and the range of f; is {—1,0,1}. More specifically, for each j € N, we will make
sure that f;(t) = 1 holds whenever t € H'. Also, for each j € N and each t € H', we
will find j + 2 natural numbers 0 = m, <m,; < -+ <m;,, dependent on t, such that
fj(s) # 0 (namely, f;(s) € {—=1,1}) if and only if s =t+m;(1/b) for some [ €
{0,1,...,j + 1}. We will also make sure that f;(¢) = 0 for any t € R and any j € N,
whenever t + m(1/b) ¢ H' for any m € Z. We will define those functions inductively.
Once f; is defined for some j € N, we define f;.,(t) = f;(¢) for each t satisfying
fi(t) € {—1,1}. Then we will construct some set which is 1/b-translation congruent to
H' and on which f; vanishes, and define f;,,(¢t) =1 or —1 for each ¢ in such a set.
Lastly, we define f;,,(t) = 0 for any other € R . Note that H' is contained in [0,1/b)
with positive measure, we will make sure that each f; is measurable and the above
mentioned conditions hold in a measurable fashion, thus guaranteeing that for each j €

NI I = @+ )rE).
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Because of inequality (4) and the specific forms taken by F; and F, as discussed,
we see that the following two equations are crucial to our construction:

M

> fe+ia/m)=o, (12)
vt
> 1(e+ja/m)=o. (13)
j=0

More importantly, we will construct f; in such a way that the set of points in A
(respectively B) where Eq. (12) (respectively Eq (13)) does not hold for f; will always
have measure no bigger than 2(M + 2)u(H'). This will be achieved if we make sure
that, in a measurable fashion, for each t € H’', the only possible points where Egs. (4)
and (5) are not satisfied by f; are contained in the union of sets {t— (M +
1)(/b),...,t — (1/b)} and {t + my,,(1/b) —M(1/b),t + m,(1/b) — (M —
1)(1/b), ...t + m;,1(1/b)} where m;,; € N is the largest natural number, dependent on

t, for which f; (t +m;,1(1/b)) € {~1,1}. This will then lead to the estimate that for
gach fj constructed, we have

j |F,(£)|2dt < 2(M + 2)3u(H"), lel(t)lzdt < 2(M + 2)3u(H").
A B

Hence such a sequence f; will serve the purpose of showing that (y[o), a, b) is not a
Gabor frame. The construction of each f; is based on a partition of certain subset of H
with positive measure. We deal with the existence of such a partition for H' in the next
lemma.

Lemma (4.1.21)[181]: Let H' = H n [0,1/b).then there is a partition of H' into finitely
many subsets H,, -, Wwith v € {1,23},k; € {1,2,...,M} and [; € {M,M + 1} such
that 0 < [; — k; < M. The partition satisfies the following conditions:

(@Forany ky,ly, H 1, © A\B, Hyy ;, € ANB , Hyy ;. © B\A.

(b)Forany {v,kq, 1}, andany t € H, ; ,t +k;(1/b) € Hand t + [;(1/b) € H,
Proof. Under the assumption a < 1/b, we always have A U B = R. We may partition
H' into disjoint union of sets H' N (A\B),H' n (An B) and H' n (B\A). According to
Lemma (4.1.20), for each t € H' n (A\B), there is a k € {1,2,3, ..., M}, such that t +

k(1\b) € H. Also t +(;) € H for L = M + 1. Likewise, for each ¢ € H' N (4N B),
because of item (a) of Lemma (4.1.20), we know that t +M(%) ¢ H, So Lemma
(4.1.20) Leads to the conclusion that there is a k € {1,2,3,...,M — 1}, such that t +

k (%) € H and also t + [ (%) € H For l = M + 1. The last case is more involved. For
each t € H' n (B\A), though there is always a k € {1,2,3,..., M — 1} such that t +

k(%) € H, it is both possible for [ =M or | =M + 1 to satisfy t+l(%) € H. The
restrictions are stated in items (f) and (g) of Lemma (4.1.20). Yet for the purpose of
obtaining a partition of H', if we allow empty sets in the midst, we may ignore such

nuance. The above argument is enough to guarantee the existence of such a partition.
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The construction of f; is based on such a partition for the set H'. Forany t € H'
we define fi(t) = 1. Forany t € Hy, ; + k4 (%) we define f;(t) = —1. Forany t €

Hyp o1t (%) we define f;(t) = 1. For any other t € R, we define f;(t) = 0.

According to Lemma (4.1.21), 0 < l; — k; < M always holds. So f; is well defined.
Now we use A’ to denote the set of points where f; takes non-zero value. Also we

define
144 ! 1 rr ! 1
1= | (s +ia(p)) 1= | (s +1(5))

v,Kq,l4 v,Kq,l4
Cleary, both H”" and H""" are subsets of H' and they are both 1/b —translation
congruent to H'. Hence u(H'") = u(H'") = u(H'). In fact, H' is the disjoint union of
H’', H" and H"". Therefore u(H') = 3u(H") and evidently [If, 1> = 3u(H"). Note also
that the support of f; is contained in

I
A = U UH{,‘Kl‘ll+m(1/b) .

v'kl'll m=0
Since I; < M + 1 holds for each I, € {M, M + 1}, H' has measure no bigger than
(M + 2)u(H"). Also note that for each t € H' and each m € Z, t + m(1/b) € H' if and

onlyift + m (%) € {t, t+1/b,..,.t+1 (%)} Thus, for any t € H', the only possible
points where Egs. (4) and (5) are not satisfied by f; are contained in the union of sets
{t — M(1/b), ...,t — 1/b} and {t+l1 (%) — M(1/b),t + 1;(1/b) — (M —

1)(1/b),.., t+ ll(l/b)}. Note that the later set is contained in A’, so the measure of

the points in A (respectively B) where Eq. (3) (respectively Eq. (4)) does not hold for f;
is no bigger that M, (H") + (M + 2)u(H") < 2(M + 2)u(H"). Hence there is nothing
else to check at this stage. Nevertheless, we make the following observation concerning
the points which satisfy Eqgs. (12) and (13).

Lemma (4.1.22)[181]: For any m € {0,1},v € {1,2,3},k; € {1,2,3,...,M} and [, €

{M,M+ 1}andany t € H{,)Kl,l1 +m (%) the following is true:

(a) f; Satisfies Eq. (12) whenever t € A.

(b) f; Satisfies Eq. (13) whenever t € B.
Proof. When v = 1, according to item (b) of Lemma (4.1.20), for any m € {0,1} and
any ky, 1y \ift € Hi g ;. +m(1/b), then t € A\B. Thus we only need to check Eq. (12)
which can be easily done due to the simple construction of f;. Likewise, when v = 2.
according to item (g) of lemma (4.1.20), we need to check both Egs. (12) and (13) for

t € Hy ,, butonly Eq. (12) for t € Hy . ; + 1/b. Note also that just as in the case of
v =1, when v = 2, we always have [; = M + 1. But unlike the case of v = 1, when
v=2k, <M-—1.Likewise, when v = 3, we always have [, = M. Thought in the
case of v = 3 there are more subcases, it is still quite straight forward to show that for
any m € {0,1} and ky, 4, any t € Hy g ; +m(1/b), Eq. (12) (respectively Eqg. (13)) is
satisfied by f; whenever t € A (respectively t € B). We omit the repetitive
computations.
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Note that as mentioned in the above proof, [, = M holds whenever v = 3,
whereas when v € {1,2},1; = M + 1 is always true. Once f, is constructed, it will
become evident that for t € H,,; ; +m(1/b) with v € {1,2},m € {0,1} and any k4, [,
Eq. (12) (respectively (12)) is satisfied by f, whenever t € A (respectivelyt € B). As
fort € Hzy ;, +m(1/b) withm € {0,1}, though the same is also true, it takes a bit of
proof. In fact, once f, is defined, we will show that the construction of f, guarantees
fo(t + (M +1)(1/b)) = 0 for any t € H},, , with any ky, [;. This fact then will lead
quickly to the same desired conclusion.

For the purpose of defining f,, we will first obtain a partition H'". Instead of
using indexing triples as in the partition of H’, we will use indexing quadruples
{v,k, k,,1,} with ve{l1,23},k,k, €{1,2,...,M}and [, € {M,M + 1}. The reason
for this choice of index will become apparent once f, is constructed. Let us first see
how the partition is done for H".

Lemma (4.1.23)[181]: Let H" be defined as above. Then there is a partition of H"' into
finitely many subsets Hpx ., with v € {1,23},K,k; €{1,2,..,M}and [, €
{M,M + 1} such that 0 < [, — k, < M. The partition satisfies the following conditions:

(@) Forany ky, ky, 1y, Hi'k k,1, © A\B, Hyk, k1, € ANB,H3'g 1,1, © B\A.

(b)Forany v, kq, ky, I, andany t € Hyy g, 1,,t —ki(1/b) € H'.

(c)Forany v, ky, ky, I, and any t € Hyx .1, t + ko (1/b) € H".

(d)Forany v, ky, ky, l;,and any t € Hyy g, 1, t +1,(1/b) € H.
Proof. The argument is quite similar to that of the proof of Lemma (4.1.21). Again,
Since our main concern is to obtain a partition of H'', to avoid unnecessary
complications, we allow that some of the sets indexed by {v, K, k,, l,} may be empty.
Clearly, from the discussion of H' above, for each t € H", there are unique natural
numbers K; and k, such that t — k,(1/b) € H and t + k,(1/b) € H'"". On the other
hand, Lemma (4.1.20) also guarantees that for eacht € H", there isa [, € {M,M + 1},
such that [ + [,(1/b) € H. Now the only thing left to show is the following: For each
te H”, let K, and K, be the unique natural numbers K; and K, such that t —

K;(1/b) e H" and t + K, (%) eH'", let [, € {M,M + 1} as guaranteed by Lemma

(4.1.20) with t + 1,(1/b) € H, then it is always true that k, k, € {1,..., M} and 0 <
ki —k, <M.

Indeed, if we consider the point t' =t —k,(1/b) € H', and suppose t' €
Hvly.k{,li’ for some ki € {1,..., M} and [ € {M, M + 1}, then we must have k, = k; and

k, =1 —k;. Thus 0 < k; < M. According to Lemma (4.1.21), 0< ; — k1 <M
always holds, Thus we always have 0 < k, < M.Sincel, e {(M,\M + 1}, I, -k, <M
clearly holds . Lastly, in order to show [, — k, > 0, we only need to make sure that
k, = I, = M, never could happen. Observe that if k, = 1] —k; = M holds, it must be
true that [; = M + 1 and k; = 1. Let us list all possible cases where this happens, and
show that in each case [, = M + 1 must be true. For t € H"”, since k; = 1, we have
must have t' =t —1/b € H', thus either t' € A or t' € B\[. Yet t' € ANH' implies
t"+1/b =t € A\B which implies [, = M + 1.Whereas when t’ € B\A, we see that
li=M+1onlywhent'+1/b =t € A, in which case actually t € A\B, hence also
[, =M+ 1.Thus0 < [, — k, < M always hold.
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We note in passing that, as indicated by the above lemma, our choice of the letter
k, in the definition of the partition of H" is actually appropriate since k, indeed
represents one of the k guaranteed by item (c) and (d) of Lemma (4.1.20) for each t €
H".

Now forany t € H"” + [,(1/b), we define f,(t) = —1. For any other t € R, the
definition of f, agrees with that of f;. As we have just proved, k, < [, holds for all
non-empty sets in the partition of H", So £, is will defined. Similarly, we use " to
denote the set of points where f, takes non-zero value. Clearly, H" is the disjoint union
of H',H",H'" and the set

H@ = U (Hiky sy + 12(1/B)).
v,kq1,k5,1l;

Also note that, from the proof of the last Lemma, for any t € H"' with
corresponding numbers k4, k, and [,, the number k, can always be expressed uniquely
as k, = 13 — k1 where [; and k; are the numbers corresponding to the unique point t’ =
t —ki(1/b) € H'. Since H" = Uy, 1,(Hp g, 1, + k1(1/b)), it then follows that the set

H"" = Uy, 1,(Hy, 1, + 11 (1/b)) can be written as
. U (Hiky sty + k2(1/B)).

v,kq,l4
Evidently, H',H",H"" and H®™ are mutually 1/b-translation congruent,
therefore u(H'") = 4u(H"). Thus ||f2I3 = 4u(H"). Now we look at the support of f,
more closely. According to the partition of H and H"', the support of £, is contained in
the disjoint union of the following two sets:

k1+1 lZ
U U@ +marmy, | |, +m@ro.
vkq,ly m=0 v,kq1,Kp,1, m=2

Similarly, we denote the union of the above two sets as H”. Note that the second
set above has measure less than (M + 1)u(H"), while the first set above can also be

written as
1

Hyje, e, 1, + m(1/D).
v,kq,kp,l, m=—kq
Now it should be clear that once the next lemma is established, due to the fact
that [, < M + 1 always holds, it follows immediately that all possible points where

Egs.(4) and (5) are not satisfied by f, are contained in the union of sets U¥t1 H' —

m(1/b) and Uy, k,.1, Ui,21=2 Hy', k1, + m(1/b), thus it has measure no bigger that

2(M + 2)u(H").

Lemma (4.1.24)[181]: Let H'" and its partition be defined as above. For any t €
Hy'k. k1, T m(1/b) Withm € {—k;,...,0,1} and v € {1,2,3},

ki, k, €{1,..,M}and [, € {M,M + 1}, Eq. (12) is satisfied by f, whenever t € A and
Eq. (13) is satisfied by f, whenever t € B.

Proof. We show the case of m = —k; and m = —k,; + 1 first. For this purpose, note

that according to the definition of H' and H", we have t € Hyj, ;. 1, — kl( ) if and
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only if teH, ko for some v’ € {123} and l; € {M,M+ 1}. Likewise, t€

144 1 H H ! !/
Hy ke iy, — ki (E) +1/bifandonlyif t€H, , . +1/b for some v’ € {1,2,3} and

[ €{M,M+ 1}. Recall that it is already checked in Lemma (4.1.22) that those
equations are satisfied by f; for such t .Since f; and f, are identical on the union of the
following two sets:

Ky -1
U U Hyy 1, + m(1/b), U U Hy'k. k1, T m(1/b).
v,k1,11 m=0 v,kl,kz,lz m=1

it should be clear that if t € Hz’?’.kl.li for some v' € {1,2,3} and ; e {M,M + 1}, f, is

also satisfies Eq. (3) (respectively (4)) whenever t € A (respectively t € B). For the
case of m = —k; + 1, the only non-trivial case that needs detailed discussion is when
k; =1.Nowifte An H;’,kl,zg + 1/b and k, = 1, the corresponding [ for t' =t —

1/b € H;,’kl,li Is always M + 1. Thus the same conclusion is also trivially true. This
leaves us with the case of t € (B\A4) N H;z’,kl,l{ + 1/b and k; = 1, which we discuss in

the following.
Note that the assumption k; = 1 means that for such t € (B\A) N Hyy,, ,» +1/b

we musthave t € H” andt’ =t —1/b € H'. There are three possibilities . First of all,
it is possible that t € An B. In this case the corresponding I; for t'=t—1/b
guaranteed by Lemma (4.1.20) must be M (according to the item (g) of Lemma (4.1.20)
in this case [; cannot be M + 1). Note that in this case we only need to make sure that
t + M(1/b) ¢ H™, thus it is enough to make sure that t + M(1/b) ¢ H.

Indeed, this is guaranteed item (a) of Lemma (4.1.20). Secondly ,it is possible
that t € B\A. In this case the corresponding [; for such t’" =t — 1/b guaranteed by
Lemma (4.1.20) must also be M. In this case Eq. (12) is satisfied by f, for t vacuously.
Whereas Eq. (13) is trivially satisfied by f, for such t.

Thirdly, it is possible that t € A\B. In this case the corresponding [ fort' =t —
1/b guaranteed by Lemma (4.1.20) could either be M or M + 1. When [ = M + 1, it
is trivial for the same reason aswhent € A N H;’.kl,li + 1/b. We look at the subcase of

I, = M. In this subcase, again we only need to make sure that t + M(1/b) ¢ H™®.
Indeed, since t € A\B according to item (c) of Lemma (4.1.20), the number [,
corresponding to such ¢ is M + 1. This means that t + (M + 1)(1/b) € H*¥}. Thus t +
M(5)¢H.

After the case of m = —k,;and m = —k; + 1 is done, we see that when k; =1
we have already finished checking. Otherwise, k, > 1. We note that when m €
{—k, + 2,...,—1}, the checking is trivially done. When m € {0,1}, the checking is
exactly the same as in Lemm (4.1.22).

Now we proceed to construct f; based on a partition of H'"'.

Lemma (4.1.25)[181]: Let H'"' be defined as above. Then there is a partition of H'"
into finitely many subsets H{,ﬂ(z,k&l3 with v € {1,2,3}, k,,k; € {1,2,..., M} and [ €
{M,M + 1}such that 0 < I; — k; < M. The partition satisfies the following conditions:
(@) Forany kj, ks, I3 Hi'k,ky1, © A\B, Hyje, ko1, © ANB, H3'y o © B\A.
(b)Forany v, k;, ks, l;andany t € Hy'y . 1., t — ko(1/b) € H".
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(c)Forany v, ky, k3, I andany t € Hyj, ., t + k3 (1/b) € H,
(d)Forany v, k,, ks, I3 and any t € Hy)j . 1., t +13(1/b) € H.
Proof. The argument is quite similar to that of Lemma (4.1.23), we omit it.
Now for any t € H'" + [5(1/b), we define f;(t) = 1. For any other t € R, the
definition of f; agrees with that of £,. As we have just proved, k; < l; holds for all
non-empty sets in the partition of H""', so f;5 is well defined. Likewise we define

HS) = U (ks + 1a(1/B)).
v,k;,k3,l3
Likewise, for any t € H'"" with corresponding numbers k,, k5 and I3, the number
ks can always be expressed uniquely as k5 = I3 — k3 where I3 and k5 are the unique
numbers corresponding to the unique point t"" =t —k,(1/b) € H". Since H""' =

U iy ks ls (H{,fkl’kz,lz + k, (1/b)), it then fOllows that the set
H4 = U (quyfkl,kz,lz + lz(l/b))

U,kl,kz,lz
can be written as H® = Uy, i 1, (Hlep ey 05 + ks (1/D)).

Similarly we get ||f;]l3 = 5u(H') .Now we look at the support of f; more
closely. According to the partition of H'"', the support of f; is contained in the union of
the set A’ and the following set:

l3
U U H{’:;(Z'k3'l3 + m(1/b).

v,ky,k3,l3 m=2
Again we denote the union of the above mentioned two sets as H'”’. Thus once
we prove that for any point t € H', Eq. (3) (respectively Eq. (4)) is satisfied whenever
t € A (respectively B), it will follow immediately that the set of points in A
(respectively B), where f; does not satisfy Eq. (3) (respectively Eq. (4)) is contained in

the union of UM H' —m(1/b) and Uy, 1, Usi =y Ho'ky st + m(1/b), thus it has
measure no bigger that 2(M + 2)u(H'). Yet if we take Lemma (4.1.24) into
consideration, we see that in order to show that for any point t € A, Eq. (3)
(respectively Eqg. (4)) is satisfied whenever t € A (respectively B), it is more than
enough to prove the following Lemm:

Lemma (4.1.26)[181]: Let H'" and its partition be defined as above. For any t €
Hy e, ko, +m(1/b) Withm € {—k;,...,0,1} and v € {1,2,3}, k,, k3 € {1,...,M}and 5 €
{M,M + 1}, Eq. (12) is satisfied by f; whenever t € A and Eq. (13) is satisfied by f;
whenever t € B.

Proof. The proof is similar to that of Lemma (4.1.24) we omit it.

Lemma (4.1.27)[181]: Let HY} be as defined. Then there is a partition of HY} into
finitely many subsets Hé{zij_l,kj,l,- with v € {1,2,3},k;_y, k; € {1,2,...,M} and [; €
{M,M + 1} such that 0 < [; — k; < M. The partition satisfies the following conditions:
U} U} U}
(a) For any k;_4, k;, ;, H,’ < A\B, Hyle,_ i, © ANB Hgle_ ye1 © B\A.

]2 ]’ 1,kj_1,k]',lj
(b)Forany v, k;_q,kj,l;,andany t € HU t —kj_1(1/b) € gu-1

Jr vkj_q1,kjlj’
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(c) Forany v, k;_q, k;, ;,

andany t € Hi’,i ity tHRi(1/b) € HUTD,
{ }
(d)For any v, k k], joandany t € Hyje ot +1;(1/b) € H.
Proof. The argument IS quite similar to that of Lemma (4.1.25), we omit it.
Now for any ¢ € HU! + I5(1/b), we define f;(t) = (—1)/**. For any other ¢ €
R, the definition of f; agrees with that of f;_;. At this stage, it is already established that

k; < ; holds for all non-empty sets in the partition of HU!, so f; is well defined.

Likewise we define
H{j+2} = U (ng"’;j—l'kj'lj + l](l/b))

. v:kj—lﬂkj'lj
Likewise, for any t € H’/ with the unique corresponding numbers k;_4,k; and [;, the
number k; can always be expressed uniquely as k; = lj(ﬂ;l) - kj(i;l) where l}f;l) and
kﬁf) are the. unique numbers corresponding to the unique point tU~D =t —
ki_1(1/b) € H/~*. Since

i} {j-1}
HUY = U (Hv'kj_l‘kj_l‘lj_l + kj_1(1/b)),
U'kj—z»kj—l'lj—l
; j+1} _ {j-1}
it then follows that HU™™ = Uy, 11, (Hv,kj—z,kL—l.lj—l +lj_1(1/b)) can be
written as
+1} — {}
U+ — U (Hvk] kL + k]-(l/b)).
U,kj_l,kj,lj
We use HU} to denote the sets of points where fj takes non-zero value. Then
clearly HU3 is a disjoint union of mutually 1/b-translation congruent sets H', ..., HU+2},
Thus u (H‘U}) = (j + 2)u(H") and ||f]||z = (j + 2)u(H"). Now we look at the support

of f; more closely. The support f; is contained in the union of the sets HU-2} and the

following set:
U U 15]13] kil T m(1/b).

vkj_q,kjlj m=2

Again we denote the union of the above mentioned two sets as HU3. Note that the
latter set has measure no greater than (M + 2)u(H"). Thus once we prove that for any
point t € HU=2}, Eq. (3) (respectively Eq. (4)) is satisfied whenever t € A (respectively
B), it will follow immediately that the set of points in A (respectively B) where f; does
not satisfy Eq. (3) (respectively Eq. (4)) is contained in the union of UMilH

Lj U3

m(1/b) and Uve;_yk; U%:z H,k,-_l,k,-,z,- + m(1/b), thus it has measure no bigger that
2(M + 2)u(H").

Yet since we proceed inductively, we see that in order to prove that for any point
t € HU-2} Eq. (3) (respectively Eq. (4)) is satisfied whenever t € A (respectively B), it
Is more than enough to prove the following lemma:

L
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Lemma (4.1.28)[181]: Let HU} and its partition be as defined. For any ve

(123} k1, k; € {1, ., ML L € (M, M + 1} and m € {—k;_,,..,01} if t e HJ} +

m(1/b), then Eq. (12) is satisfied by f; whenever ¢t € A and Eq. (13) is satisfied by f;
whenever t € B.

Proof. The proof is similar to that Lemma (4.1.24) we omit it.

This concludes the proof of Theorem (4.1.3).

Theorem (4.1.29)[181]: Let 0 <a<1/b<c=M(1/b)+d forsome 0 <d <1/b
and M € N + 1. If ab € Q, then there is some s, € N, such that MSet1(E) = Mo (E)
for some s, € N.

Proof. For the definitions of the sets A, B, E and the set-valued mapping M. In the case

of ab € Q, we may assume that ab = %with p,q € N and gcd(p,q) = 1. Since A and B

are a- translation invariant sets, so there are at most p different elements in the
collection of sets {A + k(1/b)|k € Z}. Likewise, there are at most p different elements

in the collection of sets {B + k(1/b)|k € Z}. Thus there are at most 22°% elements in
the collection {M*(E)|l € N}. Hence the conclusion follows.

Conjecture (4.1.30)[181]: Let0<a<1/b<c=M(1/)+d forsome 0 <d <1/b
and M € N + 1. Then there is some s, € N, such that MSot1(E) = MSo(E).

Note that the case ab € Q is settled in Theorem (4.1.29). On the other hand,
whenc =M(1/b)+d forsome M eN+1and0<d < 1/b,if max{d,1/b—d} >
a, then we have either A = R or B = R. In this case the conjecture is also trivially
proven affirmatively. Thus we need to know whether the same holds when ab € R \Q,
c=M(1/b)+dforsomeM eN+1and0<d < 1/b, while a > max{d,1/b — d}.

Lastly, we briefly compare our results and those of Janssen’s in [199]. As we

have already mentioned, the special case of a = g(l /b) with g € N, the special case of

M =1 and the special case of a < min{d,1/b — d} (as discussed in this article in
Theorems (4.1.10), (4.1.19), and Lemma (4.1.7) respectively) are already completely
solved by Janssen in [199]. Also, using Theorem (4.1.19), it is quite easy to recover
Janssen’s more specific conditions in the case of ab being rational.

In the case of M > 1 with ab being rational, Janssen developed in [199] an
algorithm to determine whether (o), a,1/b) is a Gabor frame, while our Theorem
(4.1.18), together with Theorem (4.1.29), offers both a complete solution and a concrete
criteria in terms of some set-valued mappings.

As we mentioned before, Theorem (4.1.18), leads to a complete solution
whenever max{d,1/b — d} = a since in this case we have either A=R or B = R.
Janssen’s Theorem 3.3.4.4 in [199] states that when M > 1, ¢ = M(1/b) + d with 0 <
d < 1/b, whenever ab is irrational and max{d, 1/b — d} = a, then (x[o), a,1/b) is
always a Gabor frame. This result can be quickly recaptured by Theorem (4.1.18) since
the set-valued mapping M is significantly simplified with either A or B being R, and
we only need to look at the mappings p; or p, to see that the density argument used in
the proof of Lemma (4.1.8) applies readily here to quickly get the same conclusion.
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For the difficult case of a > max{d, 1/b — d}, Janssen’s Theorem 3.3.5.2 in
[199] (which generalizes Theorem 3.3.5.1) states that when M > 1,d = I1(1/b — a)

with [ € {3,4,...} satisfying 1/b—a < i and I=0 mod (M+1), then
(X[o,c)»a@ 1/b) is not a Gabor frame. This result can also be quickly recaptured by
Theorem (4.1.3). Indeed, if we assume I = k(M + 1) for some natural number k, it is
easy to check that the union of AnB+ M(1/b) and Uﬁ?;g((B —1/b)NA—

j(M + 1)(1/b)), which is clearly a proper subset of R, is invariant under M.

It is thus quite baffling that we are not able to recover, except in the case of M =
2, Janssen’s last theorem in [199]. Dealing with the difficult case of a=>
max{d,1/b — d}, Theorem 3.3.5.3 states that whenever M > 1 and ab is irrational, if
d =1(1/b— a) with I € {1,2,3,...} satisfying 1/b —a < —and I # 0 mod (M + 1)
, then (x[o,c)»a, 1/b) is a Gabor frame. The main reason for the failure, it appears, is
that the sequence of sets generated by E under iterations of M does not seem to have
regular enough features we would like it to have in order for us to use such density
argument as in the proof of Lemma (4.1.8). Thus it is all the more intriguing that
Janssen is able to prove the theorem using virtually the same simple density fact as the
one in our Lemma (4.1.8).

However, with the help of Theorem (4.1.3), examples can be found which
negatively settles Janssen’s conjecture in [199] that when ab is irrational, the only cases
of (X10,c), @, 1/b) not being a Gabor frame is described in Theorem 3.3.5.2 in [199].

Example (4.1.31)[181]: Suppose a = \/S_g b=1p=8169,q =10005. Let d =p —

@—1DaM=p—-—1 and c=M+d. Then O<max{d,1-d}<a<1/b=
1,4(1 —a) <d <5(1—a), and (x[o,), a, b) is not a Gabor frame.
Proof. First we check that the following holds:
P—5 _p p—4 p+1 p—-2 p-1 p
q_6<q<a<q_5<q+1<q_3<q_2<q_1<L
Using the above inequalities, we can that hen establish the facts that 0 < d < a,0 <
1—-d<aand 4(1—a) <d<5( —a). Also useful is the fact that a —d <1 —a

with a = ? b = 1, clearly we have a < 1/b. We may also substitute 1/b with 1 in the
definitions of A4, B, E and the mapping M and p; for j € {1,2,3,4,5}.

We then calculate to get AN(B—1) =Upez[na+a+d—1,na+d) and
ANB = (Upez[na + a,na + 1). It is also quick to establish the facts that (B — 1) n
(A-—1)NA=An(B-1)NnB=0.

FromM =P —1 and p = (q —1)a + d, it then follows that ANB+M =AnN
B+d—-1=U,gna+a+d—-—1,na+d)=An (B —1).Therefore E=AnN
(B—1)=ANB+ M. Finally, we need to check M (E) = E by proving p;(E) = 9,
for each j € {1,2,3,4,5}. Observe that E n (E + 1) = @. The definitions of p; then lead
to the conclusion that p;(E) = @ whenever j € {1,2,5}. On the other hand, the identity
E — M = A n B leads directly to the conclusion that

ps(E)=B-1)N(A-1)NnA=0.
p(E)=(E—M)n(B—1)NnB=An(B—-1)nB = 0.
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Section (4.2): Totally Positive Functions

The fundamental problem of Gabor analysis is to determine triples (g, a, )
consisting of an L?-function g and lattice parameters a,8 > 0, such that the set of
functions G(g, a, B) = {e?™Fl g(t — ak): k, | € Z} constitutes a frame for L?(R). Thus
the fundamental problems is to determine the set (the frame set)

F(g) ={(a,p) € R2:G(g, @, B)) is a frame}. (15)

It is stunning how little is known about the nature of the set F(g), even after
twenty years of Gabor analysis. The famous Janssen tie [225] shows that the set F(g)
can be arbitrarily complicated, even for a “simple” function such as the characteristic
function g = yx, of an interval.

If g is in the Feichtinger algebra M?!, then the set F(g) is open in R2
[218].Furthermore, if g € M1, then F(g) contains a neighborhood U of 0 in R2. Much
effort has been spent to improve the analytic estimates and make this neighborhood as
large as possible [210,214,231]. The fundamental density theorem asserts that F(g) is
always a subset of {(a,B) € RZ: af < 1} [215,219,222]. If g € M, then a subtle
version of the uncertainty principle, the so-called Balian-Low theorem, states that
F(g) € {(a,B): afp < 1} [209,213]. This means that {(a, £): af < 1} is the maximal
set that can occur as a frame set F(g).

Until now, the catalogue of windows g for which F(g) is completely known,
consists of the following functions: if g is either the Gaussian g(t) = e ™" the
hyperbolic secant g(t) = (et + e~%)~1, the exponential function el then F(g) =
{(a, B) € R%: af < 1}; if g is the one-sided exponential function g(t) = e tyg+ (1),
then F(g) = {(a, B) € R3: af < 1}, in addition, the dilates of these functions and their
Fourier transform, g(t) = (1+ 2mit)™! and g(t) = (1 + 4n?t?)~1, also have the
same frame set. The case of the Gaussian was solved independently by Lyubarski [230]
and Seip [236] in 1990 with methods from complex analysis in response to a conjecture
by Daubechies and Grossman [216]; the case of the hyperbolic secant can be reduced to
the Gaussian with a trick of Janssen and Strohmer [227], the case of the exponential
functions is due to Janssen [224,226]. We note that in all these cases the necessary
density condition aff < 1 (or aff < 1) is also sufficient for G(g,a, ) to generate a
frame.

The example of the Gaussian lead Daubechies to conjecture that F(g) =
{(a, B) € R3: aff < 1} whenever g is a positive function in L' with positive Fourier
transform in L [214,p.981]. This conjecture was disproved in [223].

Surprisingly, no alternatives to Daubechie’s conjecture have been formulated so
far. We deal with a modification of Daubechie’s conjecture and prove that the frame set
of a large class of functions is indeed the maximal set F(g) = {(a, B) € R%: af < 1}.

This breakthrough is possible by combining ideas from Gabor analysis,
approximation theory and spline theory, and sampling theory. The main observation is
that all functions above-The Gaussian, the hyperbolic secant, and the exponential
functions-are totally positive functions. This means that for every two sets of increasing
real numbers x; < x, < -+ <xyandy, <y, < - <y, N €N, the determinant of the
matrix [g(x; — ¥k)]1<jk<n IS NON-NEgative.

Indeed, for a large class of totally positive functions to be defined in (29) we will
determine the set F(g) completely. We have the following:
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Theorem (4.2.1)[205]: Assume that g € L?(R) is a totally positive function of finite
type = 2. Then F(g) = {(a, B) € R%: af < 1}. In other words, G(g, a, B) is a frame, if
andonly if aff < 1.

This theorem increases the number of functions with known frame set from six to
uncountable. We will see later that the totally positive functions of finite type can be
parameterized by a countable number of real parameters, see (29). Among the examples
of totally positive functions of finite type are the two-sided exponential e~!t! (already
known), the truncated power functions g(t) = e~*t" yg, for r € N, the function g(t) =
(e~ — e Pt yp+(t) for a,b > 0, or the asymmetric exponential g(t) = e yp+(—t) +
e " xq+(t), and the convolutions of totally positive functions of finite type. In addition
the class of g such that F(g) = {(a,B) € R%: aff < 1} is invariant with respect to
dilation, time-frequency shifts, and the Fourier transform. Since G(g,a,f) =
G(§g,B,a), we obtain a complete description of the frame set of the Fourier transforms
of totally positive functions. For instance, if g(t) = (1 + 4m%t?)™™" for n € N, then
F(g) ={(a,p) € RE: aff < 1}.

To compare with Daubechies’ original conjecture, we note that every totally
positive and even functions possesses a positive Fourier transform. Theorem (4.2.1)
yields a large class of functions for which Daubechies’ conjecture is indeed true.
Furthermore, Theorem (4.2.1) suggests the modified conjecture that the frame set of
every continuous totally positive function is F(g) = {(a, 8) € R%:apf < 1}.

The main tool is a generalization of the total positivity to infinite matrices. We
will show that an infinite matrix of the form [g(x; — yx)]; xez POSsesses a left-inverse,
when g is totally positive and some natural conditions hold for the sequences (x;) and
(yx) (Theorem (4.2.8)).

The analysis of Gabor frames and the ideas developed in the proof of Theorem
(4.2.1). Lead to a surprising progress on another open problem, namely (nonuniform)
sampling in shift-invariant spaces. Fix a generator g € L?(R), a step-size h > 0, and
consider the subspace of L?(R) defined by

Vh(9) = {f € L*(R): f = z crg (. —kh)}-
k€EZ
For the case h = 1 we write VV(g), for short. We assume that translates g(- —k), k € Z,

from a Riesz basis for V(g) so that |||, = [|c]|, . Shift-invariant spaces are used as an
attractive substitute of bandlimited functions in signal processing to model “almost”
bandlimited functions. See the survey [208] for sampling in shift-invariant spaces. An
Important problem that is related to the analog-digital conversion in signal processing is
the derivation of sampling theorems for the space V(g). We say that a set of sampling
points x;, ordered linearly as x; < x;. 1, is a set of sampling for V,,(g), if there exist

constants 4, B > 0, such that

2
AlFIE < Y 1FCo)I* < BIFIE  forall f € V(o).
jez
As in the case of Gabor frames there are many qualitative sampling theorems for
shift-invariant spaces. Typical results require high oversampling rates. They state that
there exists a 6 > 0 depending on g such that every set with maximum gap

123



sup;(xj+1 — x;) = & is a set of sampling for V(g) [206,208, 239]. In most cases § is
either not specified or too small to be of practical use. The expected result is that for
V(g) there exists a Nyquist rate and that § < 1 is sufficient. And yet, the only
generators for which the sharp result is known are the B-splines b, = xjg1] * - * X[0,1]
(n + 1 — times). If the maximum gap sup;(x;4+; — x;) = & satisfies § < 1, then {x;} is
a set of sampling for V(b,)[207]. (This optimal result can also be proved for a
generalization of splines, the so-called “ripplets” [211]). It has been an open problem to
identify further classes of shift-invariant spaces for which the optimal sampling results
hold.

Here we will prove a similar result for totally positive generators.

Theorem (4.2.2)[205]: Let g be a totally positive function of finite type and x = {x;}
be a set with maximum gap sup;(x;+; — x;) = 8. If § < 1, then x is a set of sampling
for V(g).

The theorem will be a corollary of a much more general sampling theorem.

We discuss the tool box for the Gabor frame problem. We will review some known
characterizations of Gabor frames and derive some new criteria that are more suitable.
We then recall the main statements about totally positive functions and prove the main
technical theorem about the existence of a left-inverse of the pre-Gramian matrix. We
study Gabor frames and discuss some open problems that are raised by our new results.
We show the sampling theorem.

There are many results about the structure of Gabor frames and numerous
characterizations of Gabor frames. In principle, one has to check that one of the
equivalent conditions for a set G(g,a, ) to be a frame is satisfied. This task almost
always difficult because it amounts to showing the invertibility of an operator or a
family of operators on an infinite-dimensional Hilbert space.

We summarize the most important characterizations of Gabor frames. These are
valid in arbitrary dimension d and for rectangular lattices aZ x BZ%. We will use the
notation Mg f = e?™ f and T,,f = f(- —y), &, t € RY, such that

G(g,a,B) = {MpTxag : k,1 € 7%},
Then G(g, a, B) is a frame of L2(R%), if there exist constants 4, B > 0, such that

AIFIZ < ) K. MipTea)|* < BIFI  forallf € 2RY,
k,lEZ
If only the right-hand inequality is satisfied, then G(g, @, ) is called a Bessel sequence.
Following the fundamental work of Ron and Shen [231] on shift-invariant
systems and Gabor frames, we define two families of infinite matrices associated to a
given window function g € L2(R%) and two lattice parameters a, > 0. The pre-
Gramian matrix P = P(x) is defined by the entries

k
P(x)jkzg(x+ja—E>, j,kEZd. (16)
The Ron-shen matrix is G(x) = P(x) * P(x) with the entries
[ k
G(x)kl=2g<x+ja——)g’<x+ja——), k,1 € Z4. (17)
T B B
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Theorem (4.2.3)[205]: (characterizations of Gabor frames) Let g € L2(R%) and a, 8 >
0. Then the following conditions are equivalent:
(i) The set G(g, a, B) is a frame for L?(R%).
(i) There exist A, B > 0 such that the spectrum of almost every Ron-Shen matrix
G (x) is contained in the interval [A4, B]:
o(G(x)) €[4, B] a.a.x € R4,
(iii)There exist A, B > 0 such that

Allelz< Y | g (x+ja—%)

jezd lkezd
(iv) There exists a so-called dual window y, such that G(y, «, B) is a Bessel sequence
and y satisfies the biorthogonality condition
¥, MyoTr p9) = (@B)?6k o610 Yk, 1 € Z°. (19)
Lemma (4.2.4)[205]: Let g € L?(R%) and a, 8 > 0 . Then the following conditions are
equivalent:
(i) The set G(g, a, B) is a frame for L?(R%).
(i) The set of the pre-Gramians {P(x)} is uniformly bounded on £2(Z%), and possess
a uniformly bounded set of left-inverses, i.e, there exist matrices I'(x) ,x € R¢,
such that

2
<B|lc|l3 a.a.x € R%,c € £2(Z%). (18)

Fr(x)P(x)=1  a.a.x € RY, (20)
ITClop < C a.a.x € R4, (21)
In this case, the function y defined by y(x + aj) = BT, ;(x), where x € [0, a)?
and j € Z4, or equivalently

y(x) = g4 z Folj(x)x[oja)d(x —-a;), x€RY (22)
jezd
Satisfies the biorthogonality condition (19).
Proof. ()=(v). If G(g, a, B) is a frame, then by Theorem (4.2.3)(ii)

K 2
Z z ckg(x+ja——>
jezd lkezd B
with bounds independent of x. Consequently G (x) is bounded and invertible on £2(Z%).
Therefore the operators P(x) are uniformly bounded on #2(Z%) ,and we can define

I'(x) = G(x)"1P*(x). Then
reoPE) = ((PeP@) ' P'(0)) PG = 1d,

= (P(x)c, P(x)c) = (G(x)c, c) = lIcll3,

and
IT)llop < NGO M lopllP)lop < A7*BY2.
(V)=(ii). Conversely, if P(x) possesses a bounded left-inverse I'(x), then
llcll3 = ITC)P)cllz < TG, IPCo)cllg, < €3G (x)c, c) < CPIPOIIS, llcll3,
and this implies condition (ii) of Theorem (4.2.3).
We next verify that y as defined in (22) satisfies the biorthogonality condition

(19):
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(v, Ml/aTk/[;?g> = f y(x)g(x — k/ﬁ)e—Zm'l-x/adx
R4

= f z y(x+aj)glx + aj — k/B)e 2" x/2qx

[0,a]d jEZY

=5 [ D o+ af - k/pe e

[0,a]d jEZ2

=5 | Bupe I = @) Beoio 23)
[0,a]¢
The function y in (22) is a dual window of g, as defined in condition (iv) of
Theorem (4.2.3), provided that G(g, «, 5) is a Bessel sequence. The following result
gives a sufficient condition.
Lemma (4.2.5)[205]: Assume that there exists a (Lévesque measurable) vector-valued
function o (x) from R® to £2(Z%) with period , such that

k
z aj(x)g"(x +aj — E) = Ok0 a.a. x € R (24)
jeza

If X jeza SUPe[0,a]? |aj(x)| < oo, then G(g, @, ) is a frame. Moreover, with

y(x) = p*¢ Z 0 (D Xpei(x —a;),  x€RY
jezd
the set G(y, a, B) is a dual frame of G(g, a, B).
Proof. The computation in (23) shows that y satisfies the biorthogonality condition
(19). The additional assumption implies that

z sup |y(x + ak)| < oo.

= x€[0,a]?
Consequently, y is in the amalgam space W (#1). this property guarantees that G(y, a, B)
Is a Bessel system [238]. Thus condition (iv) of Theorem (4.2.3) is satisfied, and
G(g,a,B) is a frame. The biorthogonality condition (19) implies that G(y,a,B) is a
dual frame of G(g, @, B).

The notation of totally positive functions was introduced in 1947 by 1. J.
Schoenberg [232]. A non-constant measurable function g: R — R is said to be totally
positive, if it satisfies the following condition: For every two sets of increasing real
numbers

X <Xy << Xy, V<Y, << ypn N €N, (25)
We have the inequality
D = det[g(x; = ¥)]isjksn 2 0 (26)
Schoenberg [28] connected the total positivity to factorization of the (two-sided)
Laplace transform of g
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[ 1
Lol = [ e g0t =i

Theorem (4.2.6)[205]: (Schoenberg [_27]). The function g: R — R is totally positive, if
and only if its two-sided Laplace transform exists inastrip S = {s € C:a < Re s < S},
and

(00]

1 —ys%+8s —8,5
v=1
with real parameters C,y, 8, §,, satisfying
C>0, y=0, O<y+255<00. (28)

v=1
A comprehensive study of total positivity is given of Karlin [228]. It is Known
that, if g is totally positive and integrable, then g decays exponentially (see
[233,p.340]). We restrict our attention to the class of totally positive functions g €
L' (R) with the factorization

®(s) = e5s 1_[(1 +68,5), (29)
for M € N and real §,,. This means that the denommator of L[g] has only finitely many
roots. Equivalently, the Fourier transform of g can be extended to a meromorphic
function with a finite number of poles on the imaginary axis and no other poles. As
noted in [234,p.247], the exponential factor can be omitted, as it corresponds to a simple
shift of g. in the following we will call a totally positive function satisfying (29) totally
positive of finite type and refer to M as the type of g.

Schoenberg and Whitney [234] gave a complete characterization of the case when
the determinate D in (26) satisfies D > 0.

Theorem (4.2.7)[205]: ([234]). Let g € L'(R) be a totally-positive function of finite
type. Furthermore, let m be the number of positive §,, and n be the number of negative
6, in (29), and m+n = 2. For a set of points in (25), the determinant D =
det[g(x; — Yx)]j k=1, n is strictly positive, if and only if

Xji—m < Yj < Xjyn for1 <j<N. (30)
Here, we use convention that x; = —oo, if j < 1,and x; = oo, if j > N.

The conditions in (30) are nowadays called the Schoenberg-Whitney conditions
for g. They have been used extensively in the analysis of spline interpolation by
Schoenberg and others (see [235]). They will be crucial for our construction of a left
inverse of the pre-Gramian matrix in (16).

As a generalization of the pre-Gramian in (16), we consider bi-infinite matrices of
the form

P=1[g(x —y)ljkez (31)
where each sequence X = (xj)jez and Y = (yx)kez € R s strictly increasing.
Moreover, the sequence (x;) ez is supposed to be denser in the sense of the following
condition :
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(a) every interval (Y, Yx+1) contains at least one point x;;

() {(b) there is an r € N such that |(yy, Yx+r) N X| = r + 1 for all k.

The main tool for the study of Gabor frames and sampling theorems will be the
following technical result. It can be interpreted as a suitable extension of total positivity
to infinite matrices.

Theorem (4.2.8)[205]: let g € L*(R) be totally-positive function of finite type. Let m
be the number of positive §,, , n be the number of negative §,, in (29), and M = m +
n = 1. Assume that the sequences (x;) jez and (Yx)kez < R satisfy condition (C,.).

Then the matrix P = [g(x; — y;)]jkez defines a bounded operator on £,(Z). It

has an algebraic left- inverse I' = [y ;] jez, and

Yk =0, iij < Yk-rm OL Xj > Vi trn- (32)
Proof. We construct a left-inverse I" with the desired properties by defining each row of
I" separately. It suffices to consider the row with index k = 0, as the construction of all
other rows is done in the same way. The goal of the first three steps is to select a finite
subset of x/s and y,s that satisfy the Schoenberg-Whitney conditions. (our choice of
indices is not unique and not symmetric in m and n, it minimizes the number of case
distinctions.)
Step 1: Column selection. First, consider the case m,n >0 and set N :== (m +n —
D(r+1),if n>1,andN=m(r+ 1)+ 1, if n = 1. We define an N x N submatrix
P, of P in the following way. As columns of P,, we select columns of P between

ki =—+1m+1 and k,=k;+N—1.

Hence k, = (r+ 1)(n—1)forn > 1, and k, = 1 forn = 1 for later purposes, note
that k; < —m < 0 < n < k, .Therefore, the column with index k = 0 has at least m
columns to its left and n columns to its right.
Step 2: Selection of a Square matrix. Assumption (C,.) and our definition of N imply
that the interval I = (yk1+m_1,yk2_n+1) contains at least N points x;. More precisely,
forn > 1 we write
(yk1+m—1r YRz—n+1) = (Y—rm' yr(n—l)) = Ug;zm(yrw yr(v+1))
and find at least  + 1 points x; in each subinterval (y,,, ¥r@+1)) With —-m <v <n —
2. This amounts to at least (m+n —1)(r + 1) = N points in I. If n =1, we have
(yk1+m—1ryk2—n+1) = (y—rmIY1) and find m(r + 1) pOintS Xj in (y—rm'yo) p|US at
least one additional point in (y,, y1).

We let

ji=mindjix; > Vi mo1), J2i= max{jixg < yi,open)- (33)
We have just shown that the set

Xo = {xj:j1 <Jj sz} = (Yk1+m—1»Yk2—n+1)
contains at least N elements. We choose a subset
Xo ={& < <&} X,
that contains precisely N elements and satisfies
Vi Vke) NXg#0 for ki+m—-1<k<k,—n.

That is, we choose one point x; in each interval (yy,yx4+1), With ky +m—1<k <
k, —n, and an additional n + m — 1 points x; € (Y, +m—1, Yi,-n+1)- Note that

yk1+m—1 < El = min X(,) < yk1+m < ykz—n < max X(,) = 'fN < Ykz—n+1 (20)
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Now set
Mk = Yk +k—1/ 1<k<N,
and define the matrix

Py = (g(fj - nk))j,k:L...,N.

Then P, is a quadratic N X N-submatrix of P.
Step 3: Verification of the Schoenberg-Whitney conditions. We next show that P, is
invertible by checking the Schoenberg-Whitney conditions. First, by (34), we have

§1 =minX, < Yii+m = Nm+1-
By the construction of X, this inequality progresses from left to right, i.e,

& < Viy+m-14j = Nj+m forl<j<N-m.

Likewise, we also have

NMN-n = Yi—n < max Xy = ¢y,
and this inequality progresses from right to left, i.e,

T]j<€j+nf0r 1S]SN—TL
Therefore, the Schoenberg-Whitney conditions (30) are satisfied, and Theorem (4.2.7)
implies that det P, > 0.
Step 4: Linear dependence of the remaining columns of P. We now make some
important observations.

Choose indices k, and s € Z with ky < k; and m < s < N, and consider the new
set{n, : k =1, ..., N} consisting of the points
Vig < Vi < < Vkypsor < Viegrs < < Vi,

and the corresponding N x N-matrix P6=(g(fj—77§<)) . This matrix is
jk=1,..,N

obtained from P, by adding the column (g(€j _yko)) as its first column and
1<j<N

deleting the column (g(g‘j — 775)) . Then n,,, appears in the m + 1-st column of P;.
1<j<N

By (34), we see that

NMm+1 = Mm = Yig+m-1 < &1.
Consequently, the Schoenberg-Whitney conditions are violated and therefore det Py = 0

by Theorem (4.2.9). Since this holds for all s > m, the vector (g(fj — yko)) must

1<j<N

be in the linear span of the first m columns of P,, namely (g(fj — yk)) for k =
N

1<j<
ky... ki +m—1.
Likewise, choose ks > k,,1 <s < N —n, and consider the new set {n;:k =
1, ..., N} consisting of the points
Vi, < < Vkpyser < Vigws < < Vi, < Vg

and the corresponding N X N-matrix Py’ = (g(fj—n,'(') . This matrix is
jk=1,.,N.
obtained from P, by adding the column (g(fj —ykg)) as its last (= N — th)
1<j<N

column and deleting the column (g(fj - ns)) . Then ny_,,+1 appears in the
1<j<N

n + 1 — st column of Py, counted from right to left, and
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MN—n = MN-n+1 = Yk +N-n = Yk,—n+1 > &N
by (34). Again the Schoenberg-Whitney conditions are violated and therefore det Py’ =

0. We conclude that the vector (g(fj — yk3)) must lie in the linear span of the last
1<j<N

n columns of P,.
Step 5: Construction of the left-inverse. Recall that k;, = —m(r + 1) + 1 and that
Ne+1)m = Vi +r+1)m-1 = Yo- l€t CT denote the (r + 1),,_., row vector of P;l. By

definition of the inverse, we have Y.1_, ¢;g(&; — k) = 8k (r+1)m OF equivalently, for
kl S k S k2’

N

> 9(& = 9) = beo (35)
j=1
Let us now consider the other columns with k < k; or k > k,. Since k;, < —m <0<
n <k, and every vector (g(fj —yk)) lies either in the span of the first m

1<j<N
columns of P, (for k < k;) or in the span of the last n columns of P, (for k > k,), we

obtain that
N

> Ga(g-w) =o.
j=1
Therefore, the identity (35) holds for all k € Z.
Next we fill the vector ¢ with zeros and define the infinite vector y, by

Yo,j = .
0.J 0 otherwise.

Then

ZjEZVO,jg(xj - Yk) = Z?I=1 ng(fj - J’k) = ,0-
Thus y, is a row of the left-inverse of P. By construction, y, has most N non-zero
entries. In particular, if x; < yi. ym-1 = Y—rm, then we have j < j; and thus y,; = 0.
Similarly, if x; > vy 11 = Yrm-1) forn>1,and x; > yy,_n41 =y, forn =1, then
we have j > j, and y, ; = 0. This gives the support properties of the entries y, ; of row

k = 0 of the left-inverse T.
Step 6: the other rows of I'. The construction of the k — th row of T'is similar. We
choose the columns between k; =k—(r+1)m+1andk, =k, + N—1of P, and,

accordingly, we choose suitable rows between the indices j; = min{j:xj > yk1+m_1}

and j, = max{j:x; < y,_n41}- Then the column of P containing y, has at least m

columns to its left and n columns to its right. We then proceed to select E]’-s and define

an N x N-matrix P, and verify that det P, > 0. The k —th row of I' is obtained by

padding the appropriate row (with row-index (r+1)m) of Pg! with zeros. By this

construction one obtains a vector y, = (v, ;) jez, for which

Yjer ijg(xj - )’z) = O,

holds. Furthermore, y, ; = 0 when x; < y_p, and When x; > yy 4.

Step 7: the remaining cases. The cases where m = 0 or n = 0 are simple adaptations

of the above steps. For m = 0,n > 2 we choose N = (n — 1)(r + 1). The indices for

the sub matrix P, that occurs in the construction of the k —th row of T are k; =
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koky =k+N—1j; =ji(k) =j; = max{jix; <y} and j, = jp(k) = max{j:x; <
Yk, }- Now we proceed as before.

We note that Step 4 simplifies a bit. For m = 0 the function g is supported on
(—00,0) by [233 p.339]. Consequently, if k, <k, and j = j;, then x; —y, >0 and

(x] yko)

Thus the column vectors of P to the left of the sub matrix P, are identically zero
and no further proof is needed for linear dependence. The case n = 0 is similar. It can
be reduced to the previous case by a reflection x — —x, which interchanges the role of
m and n.

The special case of m =0 and n =1 can be solved by taking N = 2,k, =
k,k, = k+1,j; = max{j:x; <y },j, = min{j:x; > y, }, and the 2 x 2-matrix

_ <g(xj1 —¥i) g9, — yk+1)>
P, = .
9%, = yi)  9(Xj, = Yi+1)
In this simple case the size of the matrix is independent of the parameter r occurring in
condition C,..

We show the main result about Gabor frames. Recall that a totally positive
function is said to be of finite type, if its two-sided Laplace transform factors as
L[gl(s)™' = Ce% [IM (1 + 6,5) with real numbers 6, 5,,.

By taking a Fourier transform, we obtain the following corollary.

Corollary (4.2.9)[205]: If h(t) = C[I™,(1 + 2mié,7)~ for M > 2, then F(h) =
{(a, B) € R%:af < 1} and G(h, a, B) possesses a band limited dual window 6 with sup
os - p ).

Theorem (4.2.10)[205]: Assume that g is a totally positive function of finite type and
M = m +n = 2, where m is the number of positive zeros and n the number of negative
zeros of 1/L(g). Then F(g) = {(a,p) € R%:af < 1}. The Gabor frame G(g,a,B)

. . . . . . rm
possesses a piecewise continuous dual window y with compact support in [—?—

a?+a] where r —l_aﬁJ

Proof. Since g € L1(R) is totally positive, it decays exponentially, and since M > 2, its
Fourier transform §(&) = Ce?™ % [TM_,(1 + 2mis,7) ! decays at least like |§(&)| <
C(1+ &%)~ In particular, g is continuous. As a consequence, the assumptions of the
Balian-Low theorem are satisfied [209, 219] satisfied [209, 219] and F(g) <
{(a,p) ER%2:ap < 1}.

To show that G(g,a, ) is a frame for aff < 1, we will construct a family of
uniformly bounded left-inverses for the pre- Gramians P(x) of g and then use Lemma
(4.2.4).

Fix x € [0,a] and consider the sequences x; = x + aj and y, = k/B,j, k € Z.
We first check condition (C,.). By our assumption, we have a < 1/f and every interval
(k/B,(k +1)/p) contains at least one point x + «j. Every interval (k/B,(k +1)/B),
with r € N, contains at least r + 1 points x + aj, if r/8 > (r + 1)a, i.e, we have

ap

1—ap’

r> or equivalently r > l

1—apl
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Consequently, condition (C,) is satisfied with r = lﬁ] By Theorem (4.2.8), each

pre-Gramian P(x) with entries g(x + aj — k/f) Possesses a left-inverse I'(x). To
apply Lemma (4.2.5), we need to show that I'(x), x € [0, a], is a uniformly bounded set
of operators on £2(Z).

Let Py(x) be the N x N-squar sub matrix constructed in Steps 1 and 2. The
column indices k; and k, depend only on the type of g, but not on x. the row
indicesj; = j;(x) = min{j : x; > Yy 4m-1} = min{j:x + aj > (k; + m —1)/B} and
Jj2 = jo(x) are locally constant in x. Likewise the indices that determine which rows
j.j1 <Jj <j, of P(x) are contained in P,(x) are locally constant. Consequently, for
every x € [0, «) there is a neighborhood U, such that indices used for Py(y) jx = g(y +
¢; — k/pB) do not depend on y € U,. Since g is continuous, P,(y) is continuous on U,,
and since det Py(x) > 0 there exists a neighborhood V, € U,., such that det Py(y) >
det Py(x)/2 fory € V,.

We now cover [0,a] with finitely many neighborhoods Vg and obtain that

det Py(y) = mindet Py(x,)/2 =6 >0 for all y € [0,a]. Since each entry of the
q

inverse matrix Py(y) ~! can be calculated by Cramer’s rule, these entries must be
bounded by C det P,(y) ! < €51 with a constant C depending only on ||g||. and the
dimension N of P,(y).

By construction (step 5), the zero-th row y(x) = (yo(x),j(x)) jez Of the left-
inverse I'(x) contains at most N < (r + 1)M non-zero entries, namely those of the row
of P,(x)~1 corresponding to y, = 0. We have thus constructed vector-valued functions
x = y(x) from [0, a] = ¢ (Z) with the following properties:

(i) y(x) is piecewise continuous,
(ii)card (suppy(x)) < (r + 1)M, where according to (223).

_ —-rm o rn . —-rm r
suppy(x):{]:yo,j(x):‘EO}Q{]:TSx+a]S—}§{]: - —1S]<—},

(ii)and sup [ly(x)]le = C < oo.

x€[0,a]

Consequently, the dual window y(x) =B X;eza¥,, j (X)) x[0,01(x — a))

corresponding to I'(x) by Lemma (4.2.5), has compact support on the interval [—% —

a,%+ a], IS piecewise continuous, and bounded. In particular, it satisfies the Bessel

property (see [238] or [219, Cor. 6.2.3]) . We have constructed a dual window for
G(g,a,p) satisfying Bessel property. By Theorem (4.2.3) and Lemma (4.2.4).
G(g,a,B) is a Gabor frame.

In the proof of Theorem (4.2.10) we have constructed a compactly supported dual
window y for G(g, a, ). This construction is explicit and can be realized numerically,
because it requires only the inversion of finite matrices. To determine the values y(x +
ja), one has to solve the linear N x N system P,(x)y(x) = e for a vector e of the
standard basis of RV.

We observe that the canonical dual window (provided by standard frame theory)
has better smoothness properties. The regularity theory for the Gabor frame operator
implies that the canonical dual window y° decays exponentially and its Fourier
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transform y0(¢) decays like O(|é|™™), where M is the type of g. See
[217,219,220,237].

Theorem (4.2.10) raises many new questions. Theorem (4.2.10) suggests the
natural conjecture that frame set of every totally positive continuous function g in
LY(R) is F(g) = {(a,p) € R%:af < 1}. Our proof is tailored to totally positive
functions of finite type, most likely the proof of the conjecture will require a different
method.

In a larger context one may speculate about the set M of functions such that the
frame set is exactly F(g) ={(a,B) € R2:af < 1}. In other words, when is the
necessary density condition af < 1 also sufficient for G(g,a, ) to be a frame? the
invariance properties of Gabor frames imply that the class M must be invariant under
time-frequency shifts, dilations, involution, and the Fourier transform. Furthermore, if
F(g) = {(a,B) € R?:af < 1}, then both g and § must have infinite support.

A general method for constructing functions in M can be exracted from [227].
We write ¢(&) = Y pez cx 2™ for the Fourier series of a sequence (cx) and then
define, for a given function g, € L*(R),

Cgo = {f € LZ(]R) :f = z delTle Yo, C,d € 'gl(Z), llélf(lé(f)d’\(g)l) > 0y.
k,lEZ
Lemma (4.2.11)[205]: Let g, be a totally positive function of finite type M > 2. If g €

Cy,» then the frame set of g is F(g) = {(a,B) € Ri:aff < 1}. This trick was used by
Janssen and Strohmer in [227]. They showed that the hyperbolic secant g,(t) =
(et +e7")~! belongs to the set C, for the Gaussian window ¢(t) = e~™* and then
concluded that F(g,) = {(a, B) € R%: af < 1}. The general argument is identical.
Each class C;; is completely determined by the zeros of the Zak transform of g.
Let Z;(x,&) = Ykezg(t — k)e?™k& pe the Zak transform of g. Since
Z(TeMyy)(x, &) = e?™ kD7 (x,§), every g € C,, has a Zak transform of the form

Zy(x,8) = e(=§)d (x)Zg, (%, ).
The definition of C, implies that Z, and Z, have the same zero set. If g, and h are
totally positive functions, then the zero sets of Z, and Zh are different in general,
therefore Lemma (4.2.11), leads to distinct sets C, . The zeros of the Zak transform
seems to be some kind of invariant for the Gabor frame problem, but their deeper
significance is still mysterious.

We exploit the connection between Gabor frames and sampling theorems and
show new sharp sampling theorems for shift-invariant spaces. Originally shift-invariant
spaces were used as a substitute for band limited functions and were defined as the span
of integer translates of a given function g. We refer to the survey [208] for the theory
of sampling in shift-invariant spaces. We will deal with a slightly more general class of
spaces that are generated by arbitrary shifts.

Let Y = (yi)rez be a strictly increasing sequence and consider the quasi shift-
invariant space

W (g) = {f € L*(R):f = z ckg(: _Yk)}'

keZ
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We require that the sequence Y = (y; ) of shift parameters satisfies the conditions
0 <y = fQksr = ¥ic) < SUPGers = Vi) = Oy < . (36)

Such sequences are called quasi-uniform or uniformly discrete. The numbers Qy,q, > 0
are the mesh-norm and the separation distance of Y.
For the norm equivalence ||f|l, = lIc|]l, for f € Vy(g) we need that {g(:
—Vi: Vi € Y}is aRiesz basis for Vi, (g).
Lemma (4.2.12)[205]: Let g be an arbitrary totally positive function.
(i) If Y = hZ with h > 0, then {g(- —hk), k € Z} is a Riesz basis for Vy (g).
(i) If Y is quasi-uniform, then {g(- —hk): k € Z} is a Riesz basis for Vy, (g).
Proof. (i) Since g is continuous, does not have any real zeros, and §(&) decays at least
like C/|€|, every periodization of |§|? is bounded above and below. This property is
equivalent to the Riesz basis property, €.9.[212,Thm. 7.2.3 ].
Of course, (i) also follows from (ii).

(i1) For the general case we use Zygmund’s inequality [240,Th. 9.1]: if I is an

interval of length |I| > 1;—5, then
Y

J Z Ckezn'iykf

I k
for a constant depending only on § > 0.

If f =2k cg(- —yi), then

11 = W71 = | [ ecem2mone

R k
> C|1]Asllcll3.
Here irellfl G(o|? > 0, because g does not have any real zeros by Theorem (4.2.6).
T

We are interested to derive sampling theorems for generalized shift-invariant
spaces that are generated by a totally positive function g. Our goal is to construct
strictly increasing sequences X = (x]) that yield a sampling inequality

AlFIE < Y |f @) < BIFIE forallf () (37)
JEL

for some constants A, B > 0 independent of f. Following Landau [229], a set X c R
that satisfies the norm equivalence (37) is called a set of (stable) sampling for Vi (g).
Except for band limited functions and B-spline generators only qualitative results are
known about sets of sampling in shif-invariant spaces.

We first give an equivalent condition for sets of sampling in Vi, (g). As in Lemma
(4.2.4) we obtain the following characterization of sets of sampling in V/y (g).
Lemma (4.2.13)[205]: Let g € L?>(R), and let Y = (y;) ez < R be a strictly increasing
sequence. Then a set {x;} c R is a set of sampling for V; (g), if and only if the pre-
Gramian P with entries pj, = g(x; — y)) possesses a left-inverse I' that is bounded on
£2(Z). The case of uniform sampling in shift-invariant spaces is completely settled by
the results.

2
dé = AslIlicllz

2

6(D2dr = inflg (D)2 j
TEI

I

2

d§

2 Cke—anykt

k
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Corollary (4.2.14)[205]: Let g be a totally positive function of finite type M > 2, and
Y =hZ. If a < h and x € R is arbitrary, then the set x + aZ is a set of sampling for
Vy(g). More precisely, there exist positive constants 4, B independent of x, such that
AlFIE < Xjeal f(x + )P < BIFIZ  forall f € Wy(g).

Proof. We showed that Theorem (4.2.10) by verifying the equivalent condition of
Theorem (4.2.3) namely (18) stating that

Allel3 < ) | > cugle+ja—hio

jezd lkezd
Since f € V4 (g) is of the form f =}, ci,g(- —hk) and [|f]l, = lIc||, by the Lemma
(4.2.12), the inequalities (38) are equivalent to the sampling inequality [|f]|3 =
Y jezlf (x + aj)|?, and the constants are independent of x by Theorem (4.2.3) see [290].
Our methods yield more general sampling theorems. On the one hand, we study
non-uniform sampling sets, and on the other hand, we may treat quasi shift —invariant
spaces. The auxiliary characterization of Lemma (4.2.13), gives a hint of how to
proceed. If the sequences (x;) and (yy) satisfy condition (C,.) for some r > 0, then by
Theorem (4.2.8), the pre-Gramian matrix P possesses an algebraic left-inverse. To
obtain a sampling theorem, we need to impose additions on (x;) and (yy), so that this
left-inverse is bounded on #2.
To vrify the boundedness of a matrix, we will apply the following lemma which
1s a direct consequence of Schur’s test, see, e.g, [219, Lemma 6.2.1].
Lemma (4.2.15)[205]: Assume that A = (a;y)jkez iS @ matrix with bounded entries

|ajk| < C forj, k € Z. Furthermore, assume that there exists a strictly increasing
sequence (jix)xez Of row indices j, € Z and N € N such that a;, = 0 for [j — ji | = N.
Then

2
< B||c||5 forallx € R,c € ¢2(Z).(38)

1All 202 < (2N = 1)C. (39)
Proof. The conditions give
Jr+N-1
K, = supZ|ajk| = sup Z lai| < 2N - 1)C.
KEL 4 KEZ . .
JEL j=Jjr—-N+1

For the estimate of the column sums, we define the set
Ni={k€ZLay+#0}c{keZ:|j—j| <N} for j € Z.
Since (ji ) is strictly increasing, N; has at most (2N — 1) elements, and this gives

K, = s_up2|ajk| = sup z |ajk| < (2N -1)C.
Tt ez JEL jen;
The assertion now follows from Schur’s test.

We give a sufficient condition for a set X to be a set of sampling for Vy(g).
Theorem (4.2.16)[205]: Let g be a totally positive function of finite type M > 2. Let
Y = (Wi)rez € R be an increasing quasi-uniform sequence with parameters qy, Qy
defined in (36). Moreover, let (x;);ez € R be a strictly increasing sequence, which

satisfies the following conditions:
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(There existr € N, € € (0,qy/2) and a quasi — uniform subsequence
X' € X, such that
(C.(e))< (a) every interval (yy + €, Y41 — €) contains at least one point
x] € X,,'
\ (b) for every k € Z, we have |(y, + €, Y41 —€)NX'| =17+ 1.
Then X is a set of sampling for Vy, (g).
Proof. Step 1. First, we construct a left-inverse of the pre-Gramian P as in the proof of
Theorem (4.2.8) with a small modification.

We consider only the case m > 1, n > 1. For the construction of the row with the
index k of the left-inverse I', we choose the size N € N for a square sub matrix P, of P
as in Step 1 and the column indices k, =k —r(m+1)+1andk, =k; + N —1asin
Step 6.

To incorporate condition C,(e), we modify the selection of the row indices in
Step 2 as follows. Assumption C,(€) and our definition of N imply that the interval I =
(Y, +m-1 * € Yk,—n+1 — €) CONtains at least N points x; € X', where X' is the quasi-
uniform subset of X in condition C,.(¢). Define

J1 = min{j: X; €X', Xj = Y, 4m-1t €}, Jo = max{j:xj EX'\ X < Vi,-n41 — €},

Then the set

X ={x €X"j1 < < Jo} © (Vkyem-1 + € Viy-ns1 — €)
has at least N elements. We now choose one point x; € (y, + €,y,41 — €) N X' for each
ky+m—-1<1<k,—n and an additional n+m—1 points x; € (Vi ,4m-1 +
€ V,-n+1 — €) N X' and obtain a subset
Xp={&H < <& eXcX,
containing precisely N elements. As before, we set
M =Yi+1-1, 1<I<N,
and define the quadratic sub matrix P, of P by
P = (9(; - m))j,l=1,...,N'
The modified construction leads to a stronger version of the Schoenberg-Whitney
conditions, namely
$jtes<Njmforl<j<N-m, nj+e<¢j,forl<j<N-n. (40)
Step 4 remains unchanged, and the column of P with k <k, or k > k, are
linearly dependent on the columns of P,.
Hence P, is invertible and, by padding the (r + 1)m — th row of P, * with zeros,
we obtain the row (y; j)jeZ with the row index k of the left-inverse I.

Step 2. We show that this left inverse T' defines a bounded operator on £2(Z).

By construction the j — th row (yy ;) of I has at most N non-zero entries between
ki =k—(r+1m+1and k; + N — 1. To apply Lemma (4.2.15), we need to show
that the entries of T are uniformly bounded, or equivalently, that the entries of P;* are
bounded with a bound that does not depend on k.

We set up a compactness argument similar to the proof of Theorem (4.2.8), we
begin with the simple observation that

9(&-m)=g((&-m)—n—n)), jl=1,.,N.
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Let S be the N-dimensional simplex
S = {T == (Tl, ...,TN) € RN: 0 < 71 <--< TN < (N - 1)Qy} (4‘1)
Although the finite sequences (Ej)1<j<N and (n;),_,_, depend on the row index k (and

we should write E}k) and nl(k) to make the dependence explicit), we always have

0<$& =M <Sy—m <ny—n =<(N—-1)Q.

Consequently,

(§1 =M1y —m) €S, and (0,mz =7y, ...,y —M1) €S,

Let g := min{q,’,qy} > 0 be the minimum of the separation distances of the

quasi-uniform sets X’ and Y and let

Se={t=0y ... TN) €ESiTj41 —T; = qfor1 <j <N -1}
Then S, is compact and

(&1 =M1 $v — M) € Sgand (0,1 — Ny, -, Iy — 1) € Sy
Finally, we define the compact set

K={(z,0)€S;xS;:1j+€e<0jpforl<j<N-m,
0, +€<Tjforl<j<N-n}k

The assumption C, (€) implies that

((51 — N1y s $n =M1, (0,12 — Mg, iy — 771)) € K.
Clearly, the Schoenberg-Whitney conditions are satisfied for every point (z,6) € K and
therefore every N X N-matrix (g(rj - 91)) has positive determinant. Since the
determinant depends continuously on (7, 8) and K is compact, we conclude that
(T,IQ%EK det (g(rj — 91)) =46 > 0.

This construction implies that det P, = 6 > 0 for every k. As in the proof of Theorem
(4.2.8) we use Cramer’s rule and conclude that all entries of P;* are bounded by
(N =D gl ™.

The assumption of the modified Schur test are satisfied, and Lemma (4.2.15)
yields that the matrix T' is bounded as an operator on £2(Z). Finally, Lemma (4.2.13)
implies that X is a set of sampling for Vy(g).

Corollary (4.2.17)[205]: Assume that g is totally positive of finite order M > 2 and
Y =hZ. Let a =supjez(xj+1 —x;) be the maximum gap between consecutive
sampling points. If « < h, then (x;) is a set of sampling for Vy (g).
Proof. The assumption of Theorem (4.2.16) is verified withe = h — a.
Section (4.3): Gabor Orthonormal Bases

For g be a non-zero function in L?(R%) and let A be a discrete countable set on
R24, where we identify R?? to the time-frequency plane by writing (t,1) € A with
t,A € R?4. the Gabor system associated with the window g consists of the set of
translates and modulates of g:

G(g,A) = {em™ M) g(x — £): (¢, 2) € A}. (42)

Such systems were first introduced by Gabor [248] who used them for applications in
the theory of telecommunication, but there has been a more recent interest in using
Gabor system to expand functions both from a theoretical and applied perspective. The
branch of Fourier analysis dealing with Gabor systems is usually referred to as Gabor,
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or time-frequency, analysis. Grochenig’s monograph [244] provide an excellent and
detailed exposition on this subject.

Recall that the Gabor system is a frame for L>(R%) if there exists constants
A, B > 0 such that

AIFIZ < ) (e ®gC—* < BIfIZ, feZ@®D.  (43)
(t,1)eA

It is called an orthonormal basis for LZ(R%) if it is complete and the elements of the
systems (42) are mutually orthogonal in L?(R%) and have norm 1, or, equivalently,
lgll =1and A = B =1 in (43). One of the fundamental problems in Gabor analysis is
to classify the windows g and time-frequency sets A with the property that the
associated Gabor system G(g,A) forms a (Gabor) frame or an orthonormal basis for
L?>(R%). This is of course a very difficult problem and only partial results are known.
For example, the complete characterization of time-frequency sets A for which (42) is a
frame for L2(R%) was only done when g = e~™" the Gaussian window. Lyubarskii,

and Seip and Wallsten [253,258] showed that G (e‘”xz,/l) Is a Gabor frame if and only
if the lower Beurling density of A is strictly greater than 1. If we assume that A is a
lattice of the form aZ x bZ, then it is well known that ab < 1 is a necessary condition
for (42) to form a frame for L2(R%). Grochenig and Stocker [246] showed that for
totally positive functions, (42) is a frame if and only if ab < 1. If we consider g =
X[o,c), the characteristic function of an interval, the associated characterization problem
Is known as the abc-problem in Gabor analysis. By rescaling, one may assume that ¢ =
1. In that case, the famous Janssen tie showed that the structure of the set couples
(a, b) yielding a frame is very complicated [250,249]. A complete solution of the abc-
problem was recently obtained by Dai and Sun [243].

We focus our attention on Gabor system of the form (42) which vyield
orthonormal bases for L2(R%). Perhaps the most natural and simplest example of Gabor
orthonormal basis is the system G ()([O'C)d,Zd x Z%). The orthonormality property for

this system easily follows from that facts that the Euclidean space R¢ can be partitioned
by the Z%-translates of the hypercube [0,1]¢ and that the exponentials e?™ ™*) form an
orthonormal basis for the space of square-integrable functions supported on any of these
translated hypercubes. A direct generalization of this observation is the following:
Proposition (4.3.1)[241]: Let |g| = |K|~"?xx, where |-| denotes the Lebesgue
measure, and K ¢ R? is measurable with finite Lebesgue measure. Suppose that
(i) The translates of K by the discrete set J are pairwise a.e disjoint and cover R¢
up to a set of zero measure.
(ii) For each ¢ € J, the set of exponentials {e?™**): 1 € A,} is an orthonormal
basis for L?(K).
Let

A= U{t} x A,. (44)
tejg
Then G(g, A) is a Gabor orthonormal basis for L2 (R%).
Although its proof is straightforward and will be omitted (see also [255]), this
proposition gives us a flexible way of constructing large families of Gabor orthonormal
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basis. The first condition above means that K is a translational tile (with J called an
associated tiling set) and the second one that L?(K) admits an orthonormal basis of
exponentials. If this last conditions holds, K is called a spectral set (and each A; is an
associated spectrum). The connection between translational tiles and spectral sets is
quite mysterious. They were in fact conjectured to be the same class of sets by Fuglede
[244], but that statement was later disproved by Tao [259] and the exact relationship
between the two classes remains unclear.

For the fixed window gg = (4,4, We call a countable set A c R*? standard if it

is of the form (44). Motivated by the complete solution to the abc-problem, our main
objective is to characterize the discrete sets A (not necessarily lattices) with the property
that the Gabor system G(g4, A) is a Gabor orthonormal basis. First, by generalizing the
notion of orthogonal packing region in the work of Lagarias, Reeds and Wang [256] to
the setting of Gabor systems, we deduce a general criterion for G(g,4, A) to be a Gabor
orthonormal basis.

Theorem (4.3.2)[241]: G(g4, A) is a Gabor orthonormal basis if and only if G(gg4, A) is
an orthogonal set and the translates of [0,1]% by the elements of A tile R?¢,

This criterion offers a very simple solution to our problem in the one-dimensional
case.

However, such a simple characterization cases to exist in higher dimensions. We
will introduce an inductive procedure which allows us to construct a Gabor orthonormal
basis with window g, from a Gabor orthonormal basis with window g,,,n < d . This
procedure can be used to produce many non- standard Gabor orthonormal basis and we
call a set A obtained through this procedure pseudo-standard. Assuming a mild
condition on a low-dimensional time-frequency space, we show that G(g4, A) are
essentially pseudo-standard (See Theorem (4.3.14))

Although we do not have a complete description of the sets A yielding Gabor
orthonormal bases with window g, in dimension d > 3, we managed to obtain a
complete characterization of those discrete sets 4 ¢ R* such that G(g,,4) form an
orthonormal basis for L?(R?).

Figure (1)[241]: This figure illustrates the time-domain of A in the first situation of
Theorem (4.3.22). We basically partition R? by horizontal strips. Some strips, like R x
[0,1] with n = 0, have overlapping structure. This corresponds to the first union of A.
Some strips, like R x [1,2] with n = 1, have tiling structures. This corresponds to the
second union of A.
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We provide some preliminaries notations and prove Theorem (4.3.2). We show
Theorem (4.3.6) and introduce the pseudo-standard time-frequency set. We focus on
dimension 2 and prove Theorem (4.3.22).

We explore the relationship between Gabor orthonormal bases and tiling’s in the
time-frequency space. This theory will be an extension of spectral-tile duality in [256]
to the setting of Gabor analysis. Denote by |K| the Lebesgue measure of a set K. We
say that a closed set T is a region if |0T| = 0 and T° = T. A bounded region T is called
a translational tile if we can find a countable set ;J such that

OIT+)n(T+tH| =0, t,t'ed,t+t,and

(i) Ureg(T + t) = R%
In that case, J is called a tiling set for T and T + J a tiling of R%. We will say that T +
J is a packing of R™ if (i) above is satisfied. We can generalize the notion of tiling and
packing to measures and functions. Given a positive Borel measure u and f € L*(R")
with f > 0, the convolution of f and y is defined to be

fuwo=jfw—ywmw, x € R",

(where a Borel measurable function is chosen in the equivalence class of f to define the
integral above). We say that f + u is a tiling (resp. packing) of R® if f * u = 1 (resp.
f *u < 1) almost everywhere with respect to the Lebesgue measure. It is clear that if
f =xrand u =654 where §5 = Yeg6, then f xu =1 is equivalent to T + J being a
tiling.

First we start with the following Theorem which gives us a very useful criterion
to decide if a packing is actually a tiling. in fact, special cases of this Theorem were
showed by many in different settings (see e.g [256,Theorem 3.1], [252, Lemma 3.1] and
[254]), but the following version is the most general one.

Theorem (4.3.3)[241]: Suppose that F,G € L*(R™) are two functions with F,G >0

and [, F(x)dx = [, G(x)dx = 1. Suppose that u is a positive Borel measure on R"
such that
Fxu<1l and G=*u<1.

Then, Fxu=1ifandonlyif G * u = 1.
Proof. By symmetry, it suffices to show one side of the equivalence.Assuming that
F +u =1, we have

1=Fxu=1=1xG=G*F*xu=F*G * L.
Letting H=G +u we have 0 <H <1 and H *F = 1. We now show that H = 1.
indeed letting A be the set {x € R™", H(x) < 1} and B = R™ \A4, we have

(HMX@=jHUW&—wW=fH@W@—wW+jH@W@—ww
Now, if |A| > 0, il;{\;ie have i 0

f f F(x —y)dydx = |A| >0
- Rn A - -, =
and there exists thus a set E with positive measure such that
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fF(x—y)dy>0, X €EE.
A

If x € E, we have

jH(y)F(x—y)dy+fH(y)F(x—y)dy<JF(x—y)dy+fF(x—y)dy

A B A B
=(1*xF)(x)=1.
This contradicts to the that H * F = 1 almost everywhere. Hence, |A] =0and H =1
follows.

Let, g € L2(R%). We define the short time Fourier transform of f with respect to
the window g be

L) = [ f@gt= e dx

R2d
Let G(g,A) be a Gabor orthonormal basis. Since translating A be an element of R2?¢
does not affect the orthonormality nor the completeness of the given system, there is no
loss of generality in assuming that (0,0) € A. We say that a region D (c R?%) is an
orthogonal packing region for g if

(D° =D )N Z(V,g9) = 0.

Here Z(V,9) = {(t,v): V,g(t, v) = 0}.
Lemma (4.3.4)[241]: Suppose that G(g, A) is a mutually orthogonal set of L2 (R%). Let
D be any orthogonal packing region for g. Then A— A c Z(Vgg) Uf{0}and A+ D isa
packing of R?%. Suppose furthermore that G(g, A) is a Gabor orthonormal basis. Then
|ID| < 1.
Proof. Let (t,4),(t’,A") € A be two distinct points in A. Then

j glx —t)gx — 1) e 2mA-xqx = g,
Or equivalently, after the change of variable y = x — t’,

jg(X)g(x —(t—t)) e 2m@-Mxgy = 0,

Hence, ,g(t —t',A—2")=0and (t,A) — (t', 1) € Z(Vgg). This means that (t,1) —
(t',1") & D° — D°. Therefore, the intersection of the sets (¢,1) + D and (¢’,1") + D has
zero Lebesgue measure.

Suppose now that G(g,A) is a Gabor orthonormal basis. Denote by R the
diameter of D. By the packing property of A + D,

#(AN[-T,T]*% 1 1 "
T @D @2 U D+ D) < Gyl =T R T+ R

2d

Taking limit T — oo and using the fact that Beurling density of A is 1 ([257]), we have
|ID| < 1.

D

2d
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We say that an orthogonal packing region D for g is tight if we have
furthermore |D| = 1. We now apply Theorem (4.3.3) to the Gabor orthonormal basis
problem.

Theorem (4.3.5)[241]: Suppose that G(g, A) is an orthonormal set in L?(R%) and that D
is a tight orthogonal packing region for g. Then G(g,A) ia a Gabor orthonormal basis
for L2(R%) if and only if A+ D isatiling of R?<,

Proof. Let F = yp and G = |V, f|"/IIfII3. Then [ F =1 and [,,G = llgll3 = 1.

Now, as D is an orthogonal packing region for g, we have in particular

Yaeaxp(x—2A) < 1.
This shows that

5A*F = 5A*XD <1
Moreover, A + D is a tilling of R?¢ if and only if &, * x, = 1. On the other hand,
(g, A) being a mutually orthogonal set, Bessel’s inequality yields
2

> | [ regG = e etan| < I, f e,
(t,A)EA |Rd
or, replacing f by f(x — t)e?™¥* with (r,v) € R?¢,

D Wf@—tv=D|2<IfIP,  fe2®D.
(£, DEA
Hence,

2
Vofl” _
7> =
with equality if and only if the Gabor orthonormal system is in fact a basis. The
conclusion follows then from Theorem (4.3.3).

Theorem (4.3.6)[241]: In dimension d =1, the system G(g,,4) is a Gabor
orthonormal basis if and only if A is standard.

Proof. Let g, = X[o,1)4 - Using Theorem (4.3.5), we just need to show that [0,1]%¢ is a

tight orthogonal packing region for g,.
We first consider the case d = 1. For g; = x[o,1}, @ direct computation shows that

1

6A*G=6A*

0, It] = 1;
1 . ,
2TV __ 52TV , 0 <t< 1;
V.16 0) = | 2 (€7 —€™) (45)
1 .
1 — 2miv(t+1) . —1<t<o0.
| iGN B
The zero set of 1, g, is therefore given by
Z(Vy,91) = {(t,v): [t] = 13U {(t,v): v(1 — |¢]) € Z\{0}}. (46)

Hence, (0,1)? — (0,1)? = (—1,1)? does not intersect the zero set and therefore [0,1]? is
a tight orthogonal packing region for g, .
We now consider the case d=>2. As we can decompose g, as
X10,11(x1) - X[0,11(X4), We have
V3,94t v) =V g1(ty,v1) ...V, 91 (ta, vq) where t = (t;, ..., t5) and v = (vy, ..., vq).
The zero set Vg, is therefore given by
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a
Z(Vpo94) = (&) [tlnax = B U | | & 0) 1 0a1 = D) € Z\OD) | (47)

where |t|hax = max{ty, ..., t4}. It follows that [0,1]?>? is a tight orthogonal packing
region for g,.

The following example will not be used in later discussion, but it demonstrates
the usefulness of the theory for windows other than the unit cube.

Example (4.3.7)[241]: Let g(x) = be the hyperbolic secant function. It can be
shown ([251]; see also [247]) that

eZX+e—2x
msin(mvt)e ™t

sinh(2t) sinh(m2v/2)

Vpg(t,v) =

and the zero set is given by
Z(V,9) = {(t, v): tv € Z\{0}}.

Hence, [0,1]? is a tight orthogonal packing region for g. Note that the zero set does not
contain any point on the x — axis and y — axis. There is no tiling set A for [0,1]% such
that A—AC Z(Vgg)U{O} (see also Proposition (4.3.9)) and thus there is no Gabor
orthonormal basis using the hyperbolic secant as a window. This can be viewed as a
particular case of a version of the Balian-Low Theorem valid for irregular Gabor frames
which was recently obtained in [242] and which state that Gabor orthonormal bases
cannot exist if the window function is in the modulation space M*(R%).

Using Lemma (4.3.4), Theorem (4.3.2) may be restated in the following way:
Theorem (4.3.8)[241]: G(x[g1je,A) is a Gabor orthonormal basis if and only if the
inclusion A — A c Z(V,g)U{0} holds and A + [0,1]2, is a tiling.

In view of the previous result, the possible translational tiling’s of the unit cube
on R24 play a fundamental role in the solution of our problem. A characterization for
these is not available in arbitrary 2d dimension but it is easily obtained when d = 1.
We prove this result here for completeness but it should be well known.

Proposition (4.3.9)[241]: Suppose that x4 ;1244 is a tilling of R? with (0,0) € J. Then
J is of either of the following two form:

J= U(Z +a;) X {k} or J= U{k} X (Z + ayi) (48)
keZ k€EZ
where a;, are any real numbers in [0,1) for kK # 0 and a, = 0.

Proof. By Keller’s criterion for square tiling’s (see e.g [256, Proposition 4.1]), for any
(ti,ty) and (ty,t5) in J, t; —t; € Z\{0} for some i = 1,2. Taking (t;,t;) = (0,0), we
obtain that, for any (¢t,,t,) € J\{(0,0)}, one of t; or t, belongs to Z\{0}. If J c Z, we
must have J = Z for y[ 42,4 to be tiling of R* and Z can be written as either of the
sets in (48) by taking a;, = 0 for all k. Suppose that there exists (s;,s,) € J such s; is
not an integer and s, € Z. If (t;,t;) € J and t, & Z, then both ¢, and t; — s; must be
integers which would imply that s; is an integer, contrary to our assumption. Hence,
(51, 52) € J implies s, € Z and we can write

7= Jax .

k€EZ
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for some discrete set 7, < R. For X012 +J tO be a tiling of R2, the set J, must be of
the form J, = Z + a;. In the case J can be expressed as one of the sets in the first
collection appearing in (48).

Similarly, if there exists (s;,s,) € J such that s, is not an integer and s, € Z, J
can be expressed as one of the sets in the second collection appearing in (48) this
completes the proof.

We say that the Gabor orthonormal basis G (x o 1j¢, A) is standard if

A= U{t} % Ay,

teJ
where J + [0,1]¢ tiles R? and A, is a spectrum for [0,1]¢. (Note that, by the result in

[256], A, + [0,1]% must then be a tiling of R? for every t € ).

The following result settles the one-dimensional case.
Theorem (4.3.10)[241]: G(X[g42, A) is @ Gabor orthonormal basis if and only if A is
standard.
Proof. We just need to show that A being standard is a necessary condition for
G(Xx[o17¢, A) to be a Gabor orthonormal basis. We can also assume, for simplicity,

that(0,0) € A. By Proposition (4.3.9), if G(x[1;¢ A) is a Gabor orthonormal basis, then
A—AcZ(V,g)U{0}and A+ [0,1]> Must be a tiling of R?. By Proposition (4.3.9), A
must be of either one of the forms in (48). Note that A is standard in the second case. In
order to deal with the first case, suppose that

A= U(z +a,) % {k}, with a, € [0,1), k%0, a=0.
k€EZ

We now show that this is impossible unless a;, = 0 for all k (which reduces to the case
A = 72, which is standard). We can assume, without loss of generality, that a, # 0 for
some k > 0 with k being the smallest such index. If a;, # 0 for some k, then both
(ax, k) and (0,k — 1) are in A. The orthogonality of the Gabor system then implies that
(ar, 1) € Z(V,g). Using (46), we deduce that 1. (1 — |a,|) € Z\{0}. That means a,
must be an integer, which is a contradiction. Hence, the first case is impossible unless
a, = 0 for all k and the proof is completed.

A description of all time-frequency sets A for which G(xo 2 A) is a Gabor
orthonormal basis however become vastly more complicated when d > 2. In particular,
as we will see, the standard structure cannot cover all possible cases. Consider integers
m,n > 0 such that m + n = d. For convenience and to be consistent with our previous
notation, we will write the Cartesian product of the two-frequency spaces R?™ and R?"
in the non-standard form

R?4 = R?>™ x R?" = {(s,t,4,v), (s, 1) € R*™, (t,v) € R?"}.
We will also denote by I, the projection operator from R4 to R?™ defined by
[1((s 6, 4v) = (s, 1), (s,t47v) € R = R*™ x R*™, (49)
To simplify the notation, we also define g, = x|y« for any k = 1. We now build a

new family of time-frequency sets on R?¢ as follows. Suppose that G(Xpoym, Ag) isa
Gabor orthonormal basis for L?(R™) and that we associate with each (s,A) € A, , a
discrete set A¢szy in R*™ such that G(x[o1y», As,2y) is @ Gabor orthonormal basis of

L?(R™). We then define
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A= U {(s,t,,0), (t,v) € As.p)- (50)
(s,1)eA;

We say that a Gabor system G (x o2, A) With A as in (50) is pseudo-standard.
Proposition (4.3.11)[241]: Every pseudo-standard Gabor system G(x(o ¢ A) IS a
Gabor orthonormal basis L? (R%).
Proof. If x € R™ and y € R™, we have g;(x,y) = gm(x)g,(y) (form +n = d).
This yields immediately that

Vou9a(S, 6, 4, 0) =V, g (s, DV, g.(t,v), (s,4) € R*™, (t,v) € R*". (51)
Suppose that p = (s,t,A,v) and p’' = (s',t’,A',v") are distinct elements of A. If
(s,4) = (s',t"), then (¢, v) and (¢, v") are distinct elements of A, 4, and we have thus

t'—t,v' —v) € Z(V, gn)
which implies that Z(V,g4)(p' — p) = 0. On the other hand , if (s,2) # (s’,1') , we
have then
(s'"=s,A'=2) € Z(nggm)

Which implies again that Z(l{gdgd)(p’ — p) = 0. This proves the orthonormality of the
system G (x[o17¢, A). This proposition can now be proved by invoking Theorem (4.3.8)
if we can show that A + [0,1]%¢ is a tiling of R?%. To prove this, we note that A, +
[0,1]%¢ is a tiling of the subspace R?™ by Theorem (4.3.8) and that, similarly, for each
(t, 1) € Ay +[0,1]°™ is atiling of R*". This easily implies the required tiling
property and concludes the proof.
Example (4.3.12)[241]: Consider the two-dimensional case d = 2. Let

p=| o x @+ ) w0,
. . meZ
Associate with each y = (m,j + u,,,) € A, the set

A, = U{n + sm,j} X (Z + vn,m,j), Sm,j € R, vpm j € [0,1).
Nnez

Then,
A= {(m,n + S J + U, Kk + vn,m,j):m,nj,k € Z}
(written in the form of (¢4, t,, 44, A,) where (¢t;, t,) are the translations and (4, 1,) the
frequencies) has the pseudo-standard structure. Note that the parameters &,, ; can be
chosen so that the set A is not standard as the set
{(mn+sp,),mn,jeZ}+[01]?

will not tile R? in general. For example, for m = n = 0, we could let s, = 0 and the
numbers s, ; could be chosen as distinct numbers in the interval [0,1). The square

[0,1]% would then overlap with infinitely many of its translates appearing as part of the
Gabor system.

Using a similar procedure to higher dimension, we can produce many non-
standard Gabor orthonormal bases with window y/, ;;a. However, the pseudo-standard

structure still cannot cover all possible cases of time-frequency sets. A time-frequency
set could be a mixture of pseudo-standard and standard structure. For example consider
the set
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A= U {(m + thio ) + Miemnk +vn)ij, k € ZHU {(m, 1)} X Ay,
nezZ\{1}
where 4,,, + [0,1]? tiles R?. This set consists of two parts. The first part is a subset of a
set having the pseudo-standard structure while the second part is a subset of a set
having the standard one. Moreover, the translates of the unit square associated with the
first part are disjoint with those associated with the second part, showing that
G(X10172, A) is @ mutually orthogonal set. Since A is Clearly a tiling of R*, Theorem
(4.3.8) shows that G(x[oq52, A) is a Gabor orthonormal basis. We will classify all
possible sets A € R* with the property that G(X10,172, M) is @ Gabor orthonormal basis
for L?(IR?). We have
Proposition (4.3.13)[241]: Let d =m +n and suppose that (x5« A) is a Gabor
orthonormal basis for LZ2(R%). If (s, 1¢) € R*™, consider the translate of the unit
hypercube in R?2™ | C = (so,A¢) + [0,1)?™, and define
A(C) = {(t,v) € R*"™: (s,t,4,v) € Aand (s,1) € C}.
Then (x (o1, A(C)) is a Gabor orthonormal basis for L* (R*™).

Proof. We first show that the system ()([0‘1]11, A(C)) is orthogonal. Let (t,v) and
(t',v") be distinct elements of A(C). There exist (s,4) and (s’,1") in R?™ such that
(s,t,A,v) and (s',t',A’,v") both belong to A. Using the mutual orthogonality of the
system (x(o47¢, A) together with (51), we have
Vi dm(s—s',A=2A)=0orV, g(t—t,v—v")=0.

Note that, as both (s,4) and (s’,A") belong to C, we have |s — s'|hax < 1 and |1 —
A'lmax < 1. In particular, V;, g,,(s—s’,A—A4") # 0 and the orthogonallity of the
system (x[o,17n, A(C)) follows.

If (s,A) € 1, (A) (as defined in (49)), let

Ay =t v):(s,t,A4,v) €A}

Let f; € L>(R™), f, € L>(R™) and (sq, 1) € R?™. Applying Parseval’s identity to the
function

btain th f(x,y) = e?™hXf (x — s0) fo(¥), x € R™, y € R,
we obtain that

j £, () 2dx j o) [2dy
RM RM

2 2
= > D WhG=su2-2)[ %, L6
(s,M)ell{(N) (tV)EA(s )

2 2
= z Z |Vf19m(50 —5,A0 — /1)| |Vgnf2(tr V)|
(S,A)Enl(A) (t,U)EA(S’/D
Defining

- 2
ws D=6 Y e ada= Y wls D
(t,v)eA(M) (s, DEM(A)
for f, + 0, the above identity can be written as

146



2
[1r@rar = > WD [Vgno =540 - )
R™M (s,D)EM (M)
2
= (1 Vignl ") (50, 20).
On the other hand, letting ¥{q 1yzm (s, 1) = x[o,1)2m(—s, —A4) and defining C and A(C) as
above, we have also

(.U * )?[0,1)7")(50'/10) = z w (s, /1))([0,1)27"(5 — Sp, A — Ap)
(s,M)el{(N)
= > weH=IAE Y WAy st
(s,H)en,(A)ncC (t,v)eA(C)
Where the last inequality results from the orthogonality of the system ()([Oll)n,A(C))
proved earlier. Since (sq, Ay) is arbitrary in R*™ and

2
f 1V, gm(s, D)2 dsd2 = I 12

RZm

Theorem (4.3.3) can be used to deduce that u * ¥[o ;ym = 1. This shows that
2
Ve 26| = 1% fo € P(RY),

(t,v)EA(C)
and thus that the system (xx[o.1y» A(C)) is complete, proving our claim.
Theorem (4.3.14)[241]: Let d = m +n and let I1;: R?? —» R?™ e defined by (49).
Suppose that ([ 1je, A) is @ Gabor orthonormal basis and that I1; (A) + [0,1]%™ tiles
R2™, Then A has the pseudo-standard structure.
Proof. Let J = I1; (A) and, for any (s, 1) € J, define
Ay = {(tv):(s,t,v,1) € AL

If (59, 20) € J, let C = (s9,4) + [0,1)?™, and

A(C) = {(t,v) € R*™:(s,t,v,4) € Aand (s,1) € C}.
Proposition (4.3.13) shows that the system (x[o1)»A(C)) forms a Gabor orthonormal
basis. By assumption J + [0,1)?™ tiles R*™. Hence, (sy,A) + [0,1)?™ contains
exactly one pointin J, i.e. (sq, 4¢), and we have

A(C) = {(t,v): (so,t, A0, V) € A} = A5, 2,)-

Therefore, we can write A as

A= | G020} x Ay
(S0,40)€J
Our proof will be complete if we can show that J is a Gabor orthonormal basis of

L*(R™).

As J is a tiling set, by Proposition (4.3.8) it suffices to show that the inclusion
J—3JcZ(V,, gm) U {0} holds. Let (s,4) and (s’,A") be distinct points in J. As
Asy +10,1)%™ tiles R?", so does Az + [—1,0)*", and we can find (t,v) € Ay
such that 0 € (t,v) + [—1,0)2", or, equivalently, with (t,v) € [0,1)?". Similarly, we
can fined (t',v") € Aryy such that (t',v") € [0,1)*". Using the fact that
(X101~ A(C)) is a Gabor orthonormal basis of L?(R?%), we have
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(s,t,,v)—(s',t', A, v'") € Z(Vy,94)
or, equivalently
Vg, gm(s—s', A=2)=0 or V g,(t—t,v—v')=0.

Note that, since [t—t'|<1 and |[v—v'|<1,V, g,(t—t",v—7v')# 0. Hence
(s,A) — (s',2") € Z(V,, gm) as claimed.

The goal will be to classify all possible Gabor orthonormal basis generated by the
unit square on R?,

Given a fixed Gabor orthonormal basis G(x[o12,A) and a set A c R?, we define
the sets

F(A) = {(A1,42) € R? = (ty,t5, 44, 4;5) € A, (ty,t;) € A}
and, for any (1;,1,) € R? and any set B ¢ R?, we let
] Ta(A1,22) = {(t1, t2) € R? : (ty,t5,41,4;) € A, (1, t;) € A}
an
Ta(B) = {(t1, t2) € R? : (t1, 85,41, 42) € A, (81, t;) € A, (1, t;) € B}

In particular, the set TA(F(A)) collects all the couples (t;,t,) € Asuch that
(ty,t5, A4, 1,) € Afor some (14,1,) € R2.

We say that a square is half-open if it is a translate of one of the sets

[0,1)%,(0,1]%,[0,1) x (0,1] or (0,1] x [0,1).
Two measurable subsets of R? will be called essentially disjoint if their intersection has
zero Lebesgue measure. In the derivation below, we will make use of the identity
Vi, 92 (t1, ta, A1, A2) = Vg, g1 (b1, AV, 91 (82, 42) ,  (E1, 82,41, 42) € RY,
which implies, in particular, that
Vg, 92(t1, t2, A4, 42) © Vg g1(8,41) =0 or V, g,(t3,4,) = 0.

Moreover, using (47), the zero set of Vg, is given by

Z(Vg,92) = {(t, D Itlmax = 13U (UL (6, v): 4,1 — 6D € Z\{01)}).  (52)
This implies that if |t|n., <1 and (t,2) € Z(V,,g;), then, there exists i € {1,2} and
for some integer m # 0 such that

with a strict inequality if t; # 0. These properties will be used throughout.
Lemma (4.3.16)[241]: Let g()([m]zlA) be a Gabor orthonormal basis for L2 (RR?) and let

C be a half-open square. Then,
(i) I'(C) + [0,1]? is a packing of R2.
(i))If (14,4,) € T(C), then T (A4, A,) consists of one point.
Proof. (i) let (14,4,) and (A3, 45) be distinct elements of I'(C). By definition, we can
find (t,,t,) and (t4, t;) in C such that (t, t,, 44, 1,), (t1, t5, A1, A5) € A. We then have
0="V,,09:(t —t, A1 — 2DV, 91 (82 — t3, 42 — 13)
If, without loss of generality, the first factor on the right-hand side of the previous
equality vanishes, the fact that |¢t; — t;] < 1 shows the existence of an integer k > 0,
such that
A=Al =k/(1 =]t —t4]) = 1.
Hence, the cubes (1,,4,) + [0,1]? and (4}, 1) + [0,1]? are essentially disjoint.
(ii) Suppose that T.(4,,4,) contains two distinct points (t;,t,) and (tj,t5).
Then,
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0=1V,9:(t; —t1,0)V; g,(t; — t3,0).
As V,; g1(t,0) # 0 forany t with [¢] < 1, we must have |t; —¢1| = 1or [t, —t;]| =1
, contradicting the fact that both (t,, t,) and (¢4, t;) belong to C.

We will denote by dA the boundary of a set A. The next result will be useful.
Lemma (4.3.17)[241]: Under the hypotheses of the previous Lemma, consider an
element A = (44,4,) of T'(C) and let To(4) = {(t;,t,)}. Then for anyx € d(4 +
[0,1]%), we can find A, = (A1, 42,) € T(C) such that € d(4, + [0,1]?) . Moreover,
for any such A,, letting T¢ (1) = {t,}, where t, = (1, t2), We can fined i, € {1,2}
suchthatt; , =t andA; , =4, +1or 4, —1.

Proof. We can write x = (1; + €;,4, +€,),where 0 <¢; < 1,i=1,2and ¢; € {0,1}
for at least one index i. Let a = (a;,a,) € R? with 0 <a; <1, for i =1,2 and
consider the point (tg, x) = (t; + ay,ty, +az A +€,4, +€,)in R*. Since A+
[0,1]* is a tiling on R* and the point (¢,, x) is a point on the boundary of (¢,1) + [01]?,
we can find some point (ty g, Axq) € A\{(t, 1)} such that (ts, x) € (txq Ara) + [01]%
Lett,, = (t1,t;) and A, , = (17, 45). We have
—aiSti—ti'Sl—ai,
{_Ei Sll —A,l < 1—Ei,
Using the orthogonality of the system g()([m]z,A), we can find i, € {1,2} such that
Vg, 91(ti, — ti,, A, — Ai,) = 0.Note that ¢;, — t; # 0 would imply that |1, —2; | > 1
which impossible from (53). Hence, t;, — ¢; and 4;, — 2;, # 0.

Moreover, as V,, g,(0,v) # 0 if [v| < 1, V,, g:(t;, — ti , A, — Ai,) = 0 can only
occurs if |4;, — A | = 1. This shows also that ¢;, € {0,1} in that case. This proves the
last statement of our claim and the fact that x € d(A, 4 + [0,1]%). the proof will be
complete if we can show that A, , € I'(C) for some choice of a.

For simplicity, we consider the half -open square to be C = [b;,b; + 1) X
[b,, b, + 1). Our assertion will be true if the point t,, = (t;,t;) Constructed above
satisfies the inequalities b; <t; < b; +1 for i =1,2. As t; =t;, the inequalities
clearly hold for i = i,. Suppose that the other index j falls out of the range, say t; < b;
(The case tj = b; + 1 is similar). We consider (t,,x) with a; =t/ +1—t; + 6 for
some small § > 0. Note that, by (53), we have t; +a; —1 <t; <t; +a;for i =1,2,
and, in particular,

i=12 (53)

aj=ti+1—-tj+6=a;+5>0.
We have also a; < 1. Indeed, the inequality t; — t; + 1+ & = 1 would imply that t; +
146 =1+t Thisis not possible, as b; < t; < b; + 1,50 1+¢t; = b; + 1. But t; <
bj,soti +1<b;+1,s0 for & small,
ti+1+6<b+1<1+t

which yields a contradiction.

Using the previous argument with a’ replacing a, we guarantee the existence of
t/'suchthatt; +6 =t;+aj— 1<t <t;+a; =t/ +1+ 5 and the a ssociated point
(tar Arqr) = (t1, 5,27, 25) in A with the property that x € 9(2, o + [0,1]?) for some

index i such that |4;; — 41| =1, t;; =ty and € € {0,1}. We claim that ;" = ¢; + 1.
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Now, (t;,ty,41,45) and (t{,t;,A7,A;) are in A. The mutual orthogonality property
implies that V, g, (t; —t;",A; — A{") = 0 for some i = 1,2.

Suppose that x is not of the corner points of 1 + [0,1]%. In that case, the index i
such that €; € {0,1} is unique and it follows that i, = ij. This implies in particular, that
ti, =t (ast{, =t;, =ty = tl’(,: = t;). Furthermore, the second set of inequalities in
(53) show that A; = A;) =2;, —1if ¢ =0and 4; =4 =4, +1if g =1. We
have thus A; = 4;’ in both cases. We have thus

Vglgl(tilo - ti’(;’/l’io o A;:)) = Vglgl(0,0) =1
Therefore, the other index j must satisfy V,_ g, (¢t/ —t;’,4; — A}") = 0. This inequalities
—GJSA]—A]’S].—GJ and —EjS/lj—A],'lgl—Ej

yield =1 < A; — 4" < 1. However, § < t/' —t; <1+ 6. The I}, g, would not be zero
unless t;' > t{ + 1(= bj). Hence, t; + 1 < t;" < t; + 1+ §. This forces that ¢; = t; +
1. This completes the proof for non-corner points. If x is the corner point, as the square
constructed for the non-corner will certainly cover the corner point. therefore, the proof
Is completed.

With the help of the previous two lemmas, the following tiling result for I'(C)
follows immediately.

Corollary (4.3.18)[241]: Let C be a half-open square. Then I'(C) + [0,1]? is a tilling of
R?,

Proof. It suffices to show the following statements: suppose that J + [0,1]? is non-
empty packing of R2. If, for any x € d(t + [0,1]?) where t € J, we can fined t, € J
with t, # t such that x € d(t, + [0,1]?), then J + [0,1]? is a tiling of R?. Indeed, by
Lemma (4.3.16)(i) and Lemma (4.3.17) T'(C) + [0,1]? is a packing of R? and satisfies
the stated property. It is thus a tiling of R?.

To prove the previous statements, we note that as J + [0,1]? is packing, it is
closed set. Suppose that J + [0,1]? satisfies the property above and that R%\J +
[0,1]?> # @. Let x € d(J + [0,1]?) and assume that x € t + [0,1]%. We can then find
t, € J with t, # t such that x € d(t, + [0,1]%). Note that if x were not a corner point
of either t + [0,1]% or t,. + [0,1]?, then x would be in the interior of J + [0,1]%. Hence,
x must be a corner point of ¢ + [0,1]2 or ¢, + [0,1]%. As the set of all corner points of
the squares in J + [0,1]? is countable, the Lebesgue measure of the open set R4\ (J +
[0,1]2) is zero and R\ (J + [0,1]?) is thus empty, proving our claim.

Lemma (4.3.19)[241]: Let C be a half-open square and suppose that (1,,4,) € T'(C)
with To(4,,1,) = {(t4,t;)}. Then all the sets T-(47, 45) with (43, 45) € T'(C) are either
of the form {(t,,t, + s)} or {(t; + s,t,)} for some real s with |s| < 1 depending on
(11112)'

Proof. We first make the following remark. If (ay,a,), (1, 82) € I'(C) are such that
the two squares (aq, @) + [0,1]% and (B, B,) + [0,1]% intersect each other and also
both intersect a third square (yy,y,) + [0,1]?> with (y1,v,) € T(C), then, letting
Tc(y1,v2) = (11, 72), we have

Te(ay, az) ={(rp +a,15)} and T¢(By, B2) = {(r + b, 1)}

Te(ay, ap) ={(r,» +a)} and Tc(By,B2) = {(r, 2 + b))},
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for Some real a, b. Indeed, using Lemma (4.3.17), we have T.(a,, ;) = {(r, + a,1,)}
or {(r;,, +a)} and T.(B4,B,) = {(ry + b, 1) or (1,7, + b)}. Suppose, for example,
that T.(ay, ;) = {(rp, + a,1»)} and T.(B4,B2) = (ry, 12 + b). Since the two squares
intersect each other, we must have |a; — ;] < 1 and |a, — ,| < 1. The orthogonality
property also implies that either (a,a; — ;) or (—b,a, — ,) is in the zero set of
V;,91- But since we have |al, |b| < 1, this would imply that |a; — B4 > 1 or |a; —
B,| > 1, which cannot happen. As I'(C) + [0,1]? is a tiling of R?, for any square
(01, 0,) + [0,1]? intersecting the square (1, 1,) + [0,1]? and with (oy,0,) € T(C) , we
can find another square (&,,8,) + [0,1]2, with (6;,8,) € T'(C) and with (6,,8,) +
[0,1]? intersecting both squares (g, 05) + [0,1]% and (44, A,) + [0,1]%. By the previous
remark, the conclusion of the lemma holds for all the squares that neighbour the square
(14, 4,) + [0,1]2. Replacing this original square by one of the neighbouring squares and
continuing this process, we obtain the conclusion of the lemma for all the squares in the
tiling I'(C) + [0,1]? by an induction argument. This proves our claim.

Suppose that the system G(x[o152,A) gives rise to a non-standard Gabor
orthonormal basis of L?(R?). Then, some of the squares will have overlaps and, without
loss of generality, we can assume that

|[011]2 n [011]2 + (tlltZ)l >0
for some (t,, t,) in the translation component of A.
Lemma (4.3.20)[241]: If (0,0,0,0) € A, then the sets T, 1y2(44,4;) Where (14, 4;) €
I'([0,1]%) are either all of the form {(t,0)} or all w of the form {(0, )} with some ¢t
(depending on (44,4,) with |t| < 1. In the first case, if there exists some (4,,4,) €
'([0,1]%) with Ty 152(41,4,) = (t,0) and t # 0, then

P01 = | J(@+ o) x () (54)
keZ
for some 0 < py o < 1. Moreover, we can find 0 < ¢, < 1 such that
Tioy ((Z + o) X (}) = (6, 0)), k€ Z (55)
and
AN ([0,1)2xR?) ={(t,0,j + o, k):j, k € Z}. (56)

(In the second case, T'([0,1)? = Ugez{k} X (Z + px0) and Tpg y2({k} X (Z + pi o)) =
{00, )3, AN ([0,1)2 x R?) = {(0, ty, k,j + uro:j, k € Z)}.
Proof. If 1=(0,0), we have Tpy,y2(1) ={(0,0)} as (0,0,0,0) € A. By Lemma
(4.3.19), any (A,,4,) € T'([0,1)? with the square (1;,4,) + [0,1)? intersecting [0,1]?
on the 44, A,-plane satisfies Ty 1)2(14,4,) = {(t,0)} or T 1)2(41, 42){(0, 1)} with |¢] <
1. Without loss of generality, we assume that the first case holds. As I'([0,1]%) + [0,1]?
is a tiling of R?, for any square C = (44, 1,) + [0,1]%, with (1;,1,) € T'([0,1]%), we
can find squares C; = (A;;,4,;) + [0,1]? for i =0, ...,k with (4,;,1,;) € T'([0,1]%)
and such that ¢, = [0,1]?, C,, = C, and with C; and C,,, touching each other for all i =
0,..,k—1.

We have T[O,l)z(/h,1 ,/12,1) = {(t;,0)} for some number t; with|t;| < 1. Since
C, and C, both intersect Cy, Tjg1y2(A12,422) = {(t;,0)} by Lemma (4.3.19) again.
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Inductively, we have Tpg1y2(21;,42;) ={(t;,0)}, i =1,...,k, which proves the first
part.

Consider the case where, for any (1,1,) € I'([0,1]?), there exists a number t =
t(44,42) such that Ty 1y2(44,4;) = {(t,0)} and assume that t(4,,4,) # 0 for at least
one couple (14,1,) € T'([0,1]?). Suppose that T'([0,1]?) is not of the form in (54). By
Corollary (4.3.18) and Proposition (4.3.9), we must have T'([0,1]?) = Ugez{k} X
(Z + a;) with 0 < a;, < 1 and at least one a;, # 0. Consider the distinct points

(t,0,k,a;,+j) and (t',0,k—1,a;,_,+j), bothinA.
We must have that either (t—t',1) € Z(V,,9:) or (0,a, — ax—1) € Z(V,,91).
however, since |a, — a,_4| <1, the second case is impossible. This means that
(t—t',1) € Z(V,,g,) which is possible only if ¢ = ¢'. Therefore the fact (¢, 0, k, a; +
J) € A implies that t = t; for some real t;. We know show by induction on |j]| that ¢; =
0, forallj € Z . The case j = 0 is clear as (0,0,0,0) € A by assumption. if our claim is
true for all |j| <J Where J = 0, chose k € Z such that a;,; # 0 and a;, = 0 if such k
exists. Suppose first that j > 0. there exist thus t € [0,1) such that

(ti+1,0,k,j+1) and (0,0,k + 1,a,4; +j) both belong to A.
This implies that either (¢, —1) € Z(V,,g,) or (0,ax4, — 1) € Z(V},, g1 ). This last case
is impossible and the first one is only possible if t = 0, showing that ¢;,; = 0. Similarly
by considering the points
(tj-1,0,k +1,a,41 +j—1) and (0,0,k,j) which both belong to A.

we can conclude that t;_, = 0 for j < 0. If k as above does not exist, there exists chose
k' € Z such that a;_; # 0 and a;s = 0. By considering the points

(tj+1,0,k',j—1) and (0,0,k' —1,ap_y +j) if j>0.
and the points

(tj-1,0,k'—1L,a_;+j—1) and (0,0,k’,j) if j<O
which all belong to A, we conclude that ¢; = 0 if [j| =] + 1. This proves (54).

If we are in the first case, i.e

r(o41%) = (@ + o) x 1)
k€eZ
let m, m’ be distinct integers. We have then

T0,1)2 (m + pnoon) = {(t, 0} and T'10,1)2 (m' + pn0,n) = {(t,1,0)}

which implies that V, g, (t;, — t,,,,, m —m’) = 0 or V; g,(0,0) = 0. The second case is
clearly impossible while the first one is possible only when t,, = t,,. This shows (55)
and (56) follows immediately from (45) and (55).

Note that Lemma (4.3.20) implies that T'([0,1]?) = I'({(x,0):0 < x < 1}) and
(0,113 = @ if (0,0,0,0) € A.
Lemma (4.3.21)[241]: Under the assumptions of Lemma (4.3.20), suppose that there
exists (14,1,) € T'([0,1]?) with T1o1)2(41,42) = (¢,0) and t # 0. Then we can find
numbers t;, with 0 < t;, < 1 and uy o, k, m € Z, with 0 < p;, ,, < 1, such that

AN (R%[01] xR?) ={(m+ t,,0,j + wemk):j, k,m € Z}

Proof. By the result of Lemma (4.3.20), we have the identities (55) and (56). Let T =
{t, .k € Z} c [0,1) where t,, k € Z, are the numbers appearing in (55). let s;,s, €T
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with s; < s,. Consider the half-open squares € = (s;,0) + [0,1)? and C' = (s4,0) +
((0,1] x [0,1)). Then we know that I'(C) + [0,1]% and '(C") + [0,1]? both tile R?. Let
Py ={(s1,y):0<y<1} and P, ={(s; +1,¥):0<y<1}. Note that T'(P) =
I'({(s4,0)}). Moreover,
['(C) =T(P) UT(C\Py), I'(C") =T(C'\P,) UT(Py)
and since C\P, = C'\P;, T'(Py,) = T'(P;). We have
Te(T(P)) c{(s1+1,¥),0<y <1}
but since (s,,0) € C’, we must have T.(T'(P)) = (s; + 1,0) by Lemma (4.3.19).
Since
F(Py) ={( + tro k)i j k €Z,t; =51}
and 7, (T'(Py)) = m,(T'(Py)), where 7, is the projection to the second coordinate, we
have
P + 51,00 =T(P) = {(j + s, k), k €L, 6y = 51}
for some constants p;,; with 0 <y, 1 <1 using Proposition (4.3.9). Applying this
argumentto s, = 0 and s, = t, we obtain that
An ({1} x[0,1) x R?) ={(j + 1, k):j, k € Z, t; = 0}.
Similar arguments applied to s; = s and s, = 1 show that, for any s € T, we have
An({s+13x[0,1) xR?) ={(j + w1, k) j, k €Z 1t =s}.
and that An ({s + 1} x [0,1) X R?) is empty if s € [0,1)\T. The same idea can also be
used to show the existence of constants p;, _; with 0 < u; ; < 1 such that

{(+wux-1.k)jk€Zty=s}) se€T,

@, s € [0,1)\T.
and, more generally using induction, that, for any m € Z, we can find constants .,
with 0 < py, ,,, < 1 such that

Aﬂ({S—l}X[O,l)xR2)={

AN (s +m} x [0,1) x R?) = {{(j +hm k)i €Tt = s}, s €T,
@, s € [0,1)\T.
This proves our claim.

We can now complete the proof of the main result which gives a characterization
for the subsets A of R* with the property that the associated set of time-frequency shifts
applied to the window xo 4> Yields an orthonormal basis for L (R?).

Theorem (4.3.22)[241]: G(x[o12.A) is a Gabor orthonormal basis for L*(R?) if and
only if we can partition Z into J and J' such that either

A= UnEJ{(m + tn,k,n'j + Hi,mn, K+ Un): m:jr k € Z} U UmEZ UnEJ’{(m + by, Tl)} X Am,n-
or

A= Umeg{(m,n +tmjJ t v, K+ uj’m'n): n,j, k€ Z} U Unez Umegtimn + )} X Ay 1.
where A,,, +[0,1]* tile R* and t,, g mn and v, are real numbers in [0,1) as a
function of m,n or K.

Proof. It follows from Lemma (4.3.19), that either all Tp,qy2(44,4;), (A1,4;) €
I'([0,1]?) are either of the form {(¢,0)} or all are of the form {(0,t)} with some t # 0.
In the first case, we deduce from Lemma (4.3.21) that

AN (Rx%[01) X R?) ={(m+t,,0,j + pm k):j, k,m € Z}
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for certain numbers ¢, and py ,,, in the interval [0,1). We now show that A will be of the
first of the two possible forms given in the Theorem. (Similarly, the second form
follows from the second case of Lemma (4.3.21)).

Letting € = [0,1)% and C' = [0,1) x (0,1], we note that both I'(C) + [0,1]? and
r'(C") + [0,1]? tile R? but I'((0,1)?) is empty. Hence, T'(C") =T({(x,1):0 < x < 1}).
It means that any set T.r (14, 4,) with (44,4,) € T'(C") is of the form {(¢t, 1)} for some
t =t(14,4,) with 0 < t < 1. We now have two possible cases : either the cardinality
of T¢/(T(C")) is larger than one or equal to one. In the first case, we can find two
distinct elements of T/(T'(C")) and we can then replicate the proof of Lemma (4.3.21),
to obtain that

AN(RX[1,2) X RY) ={(m+ty, L,j + tem, k):j, k € Z}.
In the other case, T¢/(T'(C")) = {(t,, 1)} for some ¢, with 0 < ¢; < 1. If we translate C’
horizontally and use the same argument as in the proof of Lemma (4.3.21), we see that
AN(Rx[1,2) X R?) ={(m+t;, )} X Apq,

where 4,, ; is a spectrum for the unit square [0,1]%. This last property is equivalent to
A1 +[0,1]7 being a tiling of R? by the result in [256].

We can them prove the Theorem inductively by translating the square C’ in the
vertical direction using integer steps.
Corollary (4.3.23)[491]: Suppose that E., G, € L*(R™) are two functions with E., G, >
0and [, 2 F(x)dx. = [(. 2, Gr(x;)dx, = 1. Suppose that u is a positive Borel
measure on R™ such that

z Fr*u31andz Gr*xu < 1.

T T
Then, ), E.+xu=1ifandonlyif ), G, *u=1.
Proof. By symmetry, it suffices to show one side of the equivalence. Assuming that
Y FE.*pu=1,wehave

1:2 E,*ﬂ:)l:z 1*Gr:z GT*F;,*M:Z E. x G, * W.

r r r r
Letting H =), G,*u we have 0 <H <1 and ), H *F. = 1. We now show
that H = 1. indeed letting A, be the set {x, € R*,H(x,) < 1} and A, + € = R"\4,,
we have

D R = | S HODE G~ y)dy,

=L z HEYT)E‘(xr_yr)dyr L

Now, if |A,| > 0,we have

fRJ z B (or = yr)dyy dx, —Z |A;| >0

and there exists thus a set E W|th positive measure such that

jz E.(x, — y.)dy, > 0, x, EE.
A

r r

Z HOWE G = y)dy,

+e€

If x,- € E, we have
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fA Z H(y)E (xy — yr)dyr + fA +€Z H(y,)E.(x, — y,)dy,

<| D RGwdyt| DEey -y
=) (B = 1 r

T
This contradicts to the that )}, H = E. = 1 almost everywhere. Hence,|4,.| = 0 and
H =1 follows.
Corollary (4.3.24)[491]: Suppose that G(3., g,,A,) is a mutually orthogonal set of
L*(R3*€). Let D be any orthogonal packing region for },.g,. Then A, —A, C
Y Z(V,.9,)u{0} and A, + D is a packing of R?G*€). Suppose furthermore that
63, g, A,) is a Gabor orthonormal basis. Then |D| < 1.
Proof. Let (t,_,, A%2_,), (t,_, + €,A%_, + €) € A, be two distinct points in A,.. Then

f Z Ir (tr = (typ + €)) gy Ot — tr_3) e 2 rdx, = 0,
T
Or equivalently, after the change of variable y, = x,, — t,._, + €,
JZ 9r (X)) gr(xr + €) eZni(e)xrdxr = 0.

Hence, Y, V gr( e,—€)=0 and (t,_5,22_,) —(t,_, +€1%_,+¢€)E
Y Z2(V.9r). ThIS means that (t,_,,A%_,) — (t,_, + €%, +¢€) & D° —
Therefore, the intersection of the sets (¢,_,,4%2_,) + D and (¢,_, + €,4%2_, +€) + D
has zero Lebesgue measure.

Suppose now that G(3., g, A4,) is a Gabor orthonormal basis. Denote by R the
diameter of D. By the packing property of A, + D,

#(/1 N [T, T]?3*)
z D (2T)2(3+€) (ZT)2(3+e) Z U (D + /13—2)

T Ao €4,0[-T,T]2EHE)

2(3+¢€)

1

< Greeo| 23 + e))
Taking limit T — oo and using the fact that Beurling density of A, is 1 ([257], we
have |D| < 1.
Corollary (4.3.25)[491]: Suppose that G(¥., g, , 4, is an orthonormal set in L?(R3%€)
and that D is a tight orthogonal packing region for ), g,.. Then G(3.,- g,-, 4,-) ia a Gabor
orthonormal basis for L (R3*€) if and only if A, + D is a tiling of R2G*€),

2
Proof. Let F.=yxp and X, G. =%, |V fi| /If 5. Then [ ,cu0Xr F =1 and
fRz<3+e) Y. G- =Y, llg.ll5 = 1. Now, as D is an orthogonal packing region for ¥, g,
we have in particular

[T — R, T + R]?G*9)| = (1 +

Xp (X — /1%—2) <L
A7 _2€Ay
This shows that
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Z 617,?_2*1:;"22 6Ar*XDSL

T T
Moreover, A, + D is a tilling of R2G*€) if and only if ¥, &, *xp = 1. On the
other hand, (3., g, ,4,) being a mutually orthogonal set, Bessel’s inequality yields
2

—2qilp2
D LD At e | < AR,
R2(3ve) == r

(tr-2A7_2)€EA;
fr € LA(R%*9),
or, replacing £, by f,(x, — T)eZRivrz-zxr with (z, v2_,) € R2G+©),

Z 2| Jr (T =t Vi, — A2 2)|2<Z W62, f- € L2(R3%9),

(tr—2A7_2)EAr T r

Hence,
5, G, —z 5. 2o <
z Ar ar ”fr||2

with equality if and only if the Gabor orthonormal system is in fact a basis. The
conclusion follows then from Corollary (4.3.23).
Corollary (4.3.26)[491]: G(31-(g+)2+¢, ;) is a Gabor orthonormal basis if and only if
G (gr)2+e,4,) is an orthogonal set and the translates of [0,1]2*€ by the elements of
A, tile R?(+€),
Proof. Let }.-(gr)s+e = X[o,173+<- Using Corollary (4.3.25), we just need to show that
[0,1]2G*€) is a tight orthogonal packing region for Zr(gr)3+e

We first consider the case € = —2. For }..(g-)1 = X[0,1], @ direct computation
shows that

z V(.gr)l (gT')l (tT—ZJ v12'_2)
T

f 0 ) |tr—2| Z 1
1 . .
z (P —e?e) 0, <1
= < r—2 (57)
1— 2TL’lUT 2 (ty—p+1) , —1<t._,<0.
Z var 2( ) T2
The zero set of Vig,).(gr)1 is therefore given by
Z(Vign, (9)1)
= {(tr_2 v7_2): [ty_5] 2 1}
U{(tr—2, v7_5): 7, (1 = [ty _,]) € Z\{0}} (58)

Hence, (0,1)2 — (0,1)2 = (—1,1)% does not intersect the zero set and therefore
[0,1]? is a tight orthogonal packing region for (g,.);.

We now consider the case € >0. As we can decompose (g,)z+e @S
X1011(()1) - X[011((Xr)24¢),  we  have 3, (V(gr)2+€(.gr)2+e(tr 2 Vf_ 2)) =
Zr V(gr)l(gr)l(tr: vr) "'V(gr)l(gr)l(tr+1+e» vr+1+e) where bz = (tr: T'+1+E)
and v2_, = (¥, ..., Vyi14¢). The zero set Vig,)2sc (Gr)2+¢ 1S therefore given by
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z Z(Vign,(gr)1)
- Z {((tr2 25D [tz max = 13

2+e€
U (U{(tr_z.vf_z) Vrpict (1 [t ]) € Z\{on}) (59
i=1

Where |t,_,|max = Max{t,, -, t 114} It follows that [0,1]2*€) is a tight
orthogonal packing region for (g,) ;-
Corollary (4.3.27)[491]: Suppose that x[g )24, IS a tilling of R? with (0,0) € J,.
Then J,. is of either of the following two form:

g =\ Ja+ayx g or g, =| Juax @+ o) (60)
keZ keZ
Where aj, are any real numbers in [0,1) for k # 0 and af = 0.

Proof. By Keller’s criterion for square tiling’s (see e.g [256]), for any (t,,t,,,) and
(tr + € trpr+€) N Jpy tryioq, teypjq + € €Z\{0} for some i = 1,2. Taking (t, +
€ t.+1 +€) = (0,0), we obtain that, for any (t,,t,,1) € J,-\{(0,0)}, one of t, ort,,,
belongs to Z\{0}. If c Z, we must have J, = Z for xyj2,, to be tiling of R* and Z
can be written as either of the sets in (7) by taking a;, = 0 for all k. Suppose that there
exists (s, Sy+1) € J, such s, is not an integer and s, € Z. if (t, t,+1) € J, and
t..1 € Z, then both t, and t, — s, must be integers which would imply that s, is an
integer, contrary to our assumption. Hence, (s,,S;+1) € J, implies s,,; € Z and we
write

dr = U(Jr)k X {k}.

k€EZ
For some discrete set (J,), < R. For xo.12 + J, to be atiling of R?, the set

(J)r must be of the form (J,), = Z + ay,. In the case J, can be expressed as one of
the sets in the first collection appearing in (60).

Similarly, if there exists (s,, s,;+1) € J, such that s, is not an integer and s, €
Z, J, can be expressed as one of the sets in the second collection appearing in (60) this
completes the proof.
Corollary (4.3.28)[491]: G(x[o1)2+c, Ar) is a Gabor orthonormal basis if and only if
A, is standard.
Proof. We just need to show that A, being standard is a necessary condition for
G (X10,172+¢, Ar) 1o be a Gabor orthonormal basis. We can also assume, for simplicity,
that (0,0) € A,.. By Proposition 3.1, if G(x[o1j2+¢ 4,) is a Gabor orthonormal basis,
then 4, — A, ¢ Z(V, g,)U{0} and 4, + [0,1]%. must be a tiling of R?. By Corollary
(4.3.27), A must be of either one of the forms in (60). Note that A, is standard in the
second case. In order to deal with the first case, suppose that

Ay = Upez(Z + ap) x {k}, with a;, €[0,1) ,k #0,af = 0.

We now show that this is impossible unless a;, = 0 for all k (which reduces to
the case A, = Z2, which is standard). we can assume, without loss of generality, that
aj, # 0 for some k > 0 with k being the smallest such index. If aj # 0 for somek,
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then both (ay, k) and (0,k — 1) are in A,.. The orthogonality of the Gabor system then
implies that (af, 1) € Z(}, g, ). Using (58), we deduce that 1- (1 — |a|) € Z\{0}.
That means a;, must be an integer, which is a contradiction.

Hence, the first case is impossible unless a; =0 for all k and the proof is
completed.
Corollary (4.3.29)[491]: Every pseudo-standard Gabor system G(xq1j2+c 4y) IS
Gabor orthonormal basis L? (R2%€).

Proof. If x, € R"™€ and y. € R", we have (g,)2+e(Xr, V1) = (9r)n-e () (97 )n (V)
(forn—2(1+¢€) =0).
This yields immediately that
Vigr)nse (Gr)2+e(Sr—2, tr_2, A2 vF_5)
= V(gr)n_e(gr)n—e(sr—Z:/172‘—2)V(gr)n (gr)n(tr—zﬂf?—z) ,
(Sr_2,A2_3) E R*9), (t,_,,v7_,) € R*" (61)

Suppose that p = (Sy_o, tr_p, A% ,,v2,) and p' = (S, + € t,_, + €12, +
€, v2_, + €) are distinct elements of A,. If (s,_5,A2_,) = (5,_ + €, t,_, + €), then
(t72vi_p) and (t._, + €,v7_, + €) are distinct elements of (4,) _, 22 ) and we
have thus

(e.€) € Z(V(g,),(9r)n)

Which implies that  Z(Vi,),..(9r)2+¢)(0" —p) =0 . This proves the
orthonormality of the system G(xq 1j2+¢ 4,). this proposition can now be proved by
invoking Theorem (4.3.8) if we can show that A, + [0,1]?2®%€) is a tiling of R?(?*€) to
prove this, we note that (4,); + [0,1]?* is a tiling of the subspace R?("~€) py
Theorem (4.3.8) and that, similarly, for each (t,_,47_;) € (A)(¢,_, 22 + [0,1]°" is
atiling of R?™. This easily implies the required tiling property and concludes the proof.
Corollary (4.3.30)[491]: Let n—2(1+¢€) = 0 and suppose that (X[0'1]2+e‘ Ar) IS a
Gabor orthonormal basis for L?(R9). if (s,_;,A%_;) € R?™=€) consider the translate of
the unit hypercube in R?™, C = (s,_1,A2_;) + [0,1]>™~) and define
A (C) = {(tr—p, v} ) € RP™:(Sp_p,tr_p, A2 5, v} ) €A, and (5,5, A7_5,) € C}.

Then (11, 4-(C)) is a Gabor orthonormal basis for L* (R*™).

Proof. We first show that the system (X[O’l]n’ Ar(C)) is orthogonal.Let (¢t,_,, v2_,) and
(t,_, + €,v2_, + €) be distinct elements of A,.(C). There exist (s,_,, A%_,) and s,_, +
€,A%_, +¢€) in R?™ such that (s,_,, t,_y,A%2_5,v2_,) and (s,_, + €,t,_, + €,A%_, +
€, v2_, +€) both belong to A,. Using the mutual orthogonality of the system
(X[0.172+¢ A ) together with (61), we have

Y Vg @ne(-6, =€) =0 0r Y Vg (G:)u(—€,—€) = 0.

Note rthat, as both (s,_,,1%2_,) and sr_z-rl—.s,/ﬁ_2 + €) belong to C, we have
|€lmax <1 and |€|pmax < 1. In particular, ¥ Vg  (gr)n-c(—€,—€) # 0 and the
orthogonallity of the system (x(q1jn, 4,(C)) follows.

If (s,_,,A%2_,) € I1,(4,) (as defined in (49)), let
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> Uity = ) A2 V2) (5pa by, 20y V2 ) € 4,)

r r
Let (f); € L2(R™), (f;), € L2(R™) and (s,_;,A%_;) € R?™. Applying Parseval’s
identity to the function

Y Ry =) A, (- 5 ) (B0, X ERTE,
T T
yT E Rn’
we obtain that

_[RH_GZ (fe)alxr 2 dx, fRn-GZ (fi)2lyr 2dy;,
-2 D > Wigd G512

(Sr—2,2%_, )€l (Ar) (tr—z'vrz'—z)E(Ar)(sr_z_lg_z) r

2
— Sr—1 23_2 — F_1)? |V(gr)n(fr)2(tr—2r 17r2—2)|

B Z z 2 Ve 1(@nin-cl )1 (51—

(Sr—z:/li—z ) €My (Ay) (tr—2V2_5)E(Ay) (Sr—22_,) r

2
— Sr-2, A$—1 - 13—2)2 |V(gr)n(fr)2(tr—2r 17r2—2)|

Defining
- 2
> W2 2g) = ) I > VignFedatr—2v2-2)|
r r (tr—z"’f—z)E(Ar)(_gr_z,,lg_z)
and

= 2 W(Sy—2, 22-3)8(5, _,12.,)

(Sr—z')li—z)enl(/lr)
For (f,), # 0, the above identity can be written as

'[]Rn—eZ (f)1lx 12 dx,

- z z W(ST_Z'/L%_Z) |V(fr)1(gr)n—e|(sr_1 — Sr-2 /1%_1
(Sr—2:2'12"—2)€H1(Ar) r

— A2’ = Z (1 * Ve tomneel ) Gr-1,22-0).

T
On the other hand, letting ¥, 1y2m-e (Sy—2, 47_2) = X[g1)2-6) (—Sr_2, —A7_5) and
defining C and A,.(C) as above, we have also
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Z (ﬂ * )Z[O,l)n_e)(sr—l' Ar_1)
T

= z W(Sr—z»)lg—z)X[o,l)Z(n—e) (Sr—2 = Spo1, Ay — A7)
(Sr—z’li—z)enl(/lr)

=) Wty
(Sr_z,ﬂ.i_z)el_ll(/lr)ﬂc

=S MY Wi et vt <1

r (tr-2vF_5)€4,(C)
Where the last inequality results from the orthogonality of the system

(x10.1y,4,(C)) proved earlier. Since (s,_1,A2_;) is arbitrary in R2("~€) and

Joa 20 o el )t = 37 MG
RZ n—
Corollary (4. 3 23) can be used to deduce that u * y[g 1yn-c = 1 This shows that

D WeapaEatra 2 =D NGERIP, ()2 € PRY,
(tr-2vfz)ear(C) T r
and thus that the system (X[O,l)n’Ar(C)) Is complete, proving our claim.
Corollary (4.3.31)[491]: Let n—2(1+¢€) =0 and let II;: R?G+E) —» R2("=€) pe
defined by (3.2). Suppose that (o )2+ A,) is a Gabor orthonormal basis and that
I, (A,) + [0,1]2=€ tiles R2(™=€), Then A, has the pseudo-standard structure.
Proof. Let J, = I1,(4,) and, for any (s,_,, A2_,) € J,, define
(Ar)(s,_p22_,) = {(tr-2v72): (Sr—a) tr—2, V72, A7) € A},
If (s,_1,A2_1) € J,, let C = (s5,_1,A2_;) +[0,1)?(=9) and
A (C) = {(tr—2, v7_3) € R¥™:(Sp_p, ty_5, V5, A7) € Apand (s,_5,47_,) € C }.
Corollary (4.3.30) shows that the system (X[O’l)n’AT(C)) forms a Gabor orthonormal
basis. By assumption J, + [0,1)2("*=€) tiles ]R%Z(”‘E) . Hence, (s,_;,A2_;) +[0,1)2("=©)
contains exactly one point in Jr,i e.(s,_1,4%_1), and we have
A,.(C) = {(tr—2, vy 2) (sr- 17/11* vV r—z) €A} = (Ar)(sr_l,/lﬁ_l)'
Therefore, we can write A,. as

Ay = U {(5r-1, A7} X (A)(5,_, 22_,)-
(sr—1.A2_1)€EJy
Our proof will be complete if we can show that 7, is a Gabor orthonormal basis
of L?(R"¢).
As g, is a tiling set, by Proposition (4.3.8) it suffices to show that the inclusion
Ir —Jr € ZVig,,_.(Gr)n-e) U {0} holds. Let (57, A%2_,) and (s,_, + €,A%2_, +€)
be distinct points in Jy. As (4,)(s,_,22_,) + [0,1)?" tiles R?", so does (Ar)(s,_pi2_,) +
[—1,0)?", and we can find (t,_,,v2_,) € (Ar)(s,_,12_,) Such that 0 € (ty_pv2_)) +
[—1 0)2" or, equivalently, with (t,_,,v2_,) € [0,1)?™ Similarly, we can fined (t,_, +
€,VF_5 +€) € (A )(s,_,+e22,+e) SUCh that (t,._, +€,v7, +€) € [0,1)*".Using the
fact that (xo,1)n4,(C)) is a Gabor orthonormal basis of L?(R?(*€) ), we have
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(Sr-2tr2, Mg Vi 5) = (Sr2 H € tr s + 6,47 5 + V75 +6€)
€ Z(V(gr)2+e(gr)2+e)-

Or, equivalently 3, V(gr)n_e(.gr)n—e(_e:_e) =0 or X, V(gr)n(gr)n(_fi —€) =
0.

Note that, since |e| <1, ¥, V(g (gr)n(—€,—€) # 0. Hence (s,_p,A7_,) —
(Sr—z + €475 +€) € ZVig,), _.(gr)n-c) as claimed.
Corollary (4.3.32)[491]: Let g()([o,l]z,/lr) be a Gabor orthonormal basis for L?(R?)
and let C be a half-open square. Then,

(i) T(C) + [0,1]? is a packing of RZ.

(i) if (12,22,,) € T(C), then T, (A2, A%, ) consists of one point.
Proof. (i) let (A2 + €,A2,; + €) and (12 + €,A2,; + ¢€) be distinct elements of T'(C). by
definition, we can find (¢t t..;) and (t.+¢€,trpq +6€) in C such that
(trtye, A2, 22,), (t, + €t + €,A2 + €A%, + €) € A,. We then have

0= Vig,9)1(=&=€) Vg, (91 (—€,—€)

T

If, without loss of generality, the first factor on the right-hand side of the previous
equality vanishes, the fact that |e] < 1 shows the existence of an integer k > 0, such
that

lel =k/(1—e]) = 1.

Hence, the cubes (A2,4%2,,)+[0,1]? and (A2 +¢,4%2,; +€)+[0,1]* are
essentially disjoint.

(ii) Suppose that T.(42%,4%,,) contains two distinct points (t,,t,.,,) and (¢, +
€ t,+q1 +€). Then,

0= Vg, (01 (=€,0) Vigy), (1)1 (=€,0).

r
As Y Vigy,(9r)1(tr—2,0) # 0 forany t,_, with [t,_,| < 1, we must have |e| =
1, contradicting the fact that both (t,, t,,.,) and (t, + €,t,., + €) belong to C.
Corollary (4.3.33)[491]: Under the hypotheses of the previous Lemma, consider an
element A2_, = (12,12, ,) of T'(C) and let T.(12_,) = {(t,,t,+1)}. Then for any x,. €
0(2%_, + [0,1]®). Moreover, for any such (A%2_,),. = ((A2_2)1x,, (A2_3)2x,) € T(C)
such that x, € 9((22_,),, + [0,1]?). Moreover, for any such (A%_,), , letting
TC((ATZ‘—Z)xr) = {(tr—z)xr}7 where (t,_2)yx, = ((tr—z)l,xr' (tr—Z)Z,xr)’ we can fined
io € {1,2} such that (tr—)i,x, = (tr—2)i, AN (B2_)ipx, = (B—z)i, + 10T (A23);, —
1.
Proof. We can write = (A2 + €,4%2,, +€),where 0 <¢; <1,i=12and ¢ € {0,1}
for at least one index i. Let a = (a;,a,) € R®with0 < a; <1,i=1,2and consider
the point ((t,_2)a %) = (&, + @y, tryq +ay, Y(A2 +€),4,41 +€) in R?. Since A, +
[0,1]* is a tiling on R* and the point ((t,_,)4 X,) is a point on the boundary of
((tr-2)ar xr) = ((tr—z)xr,a» (Ag—z)xr,a) +[0,1]* Let (tr—2)xpa = (& + €, tryq +€)
and (A2_y)x,.a = (AF + €,A,41 + €). We have
—a;<e<l-—aqa, .
{_Ei <—e<l-¢, i =1,2. (62)
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Using the orthogonality of the system ()([0’1]2,/17,), we can find i, € {1,2} such that

Yr Vig),(Gr)1(—€,—€) = 0. Note that €+ 0 would imply that [e] > 1 which
impossible from (62). Hence, € # 0.
Moreover, as X, Vig,y,(9:)1(0,v7_5) # 0 if [vi_,| <1, Xy Vig,),(gr)1(—€,—€) =0
can only occurs if [e| = 1. This shows also that €;, € {0,1} in that case. this proves the
last statement of our claim and the fact that x,. € (A, 4 + [0,1]%). The proof will be
complete if we can show that (Ai_z)xr,a € I'(C) for some choice of a.

For simplicity, we consider the half -open square to be C = [by,b; + 1) X
[b,, b, + 1). Our assertion will be true if the point € = 0 constructed above satisfies the
inequalities b; < (t,_p); +e < b;+1 for i =1,2. As (t,_z);, = (t,_2);, T €, the
inequalities clearly hold for i = i,. Suppose that the other index j falls out of the range,
say (t,—»);j+e<b; (the case (t,_p);+e=b;j+1 is similar ). We consider
((tr—2)q’, %) With a; = 1+ € + & for some small § > 0. Note that, by (62), we have
(tr_2)i+a;— 1< (t,_3); + € < (t,_p); + € +q;fori = 1,2, and, in particular

aj=1+e+d=a;+6>0.

We have a; < 1 indeed, the inequality € + & > 0. This is not possible, as b; <
(tr—2)j <bj+1,50 1+ (t,_3); =bj+ 1. But (t,_;)j+€<b;,s0(t,_p)j+e+1<
b; + 1, so for § small,

(tr—p)j+ e+ 6 <bj < (t,_p);

Which yields a contradiction.

Using the previous argument with a’ replacing , we guarantee the existence of
(tr—2)j +2€ such that (t,_p)j+e+d=(t,_p);+taj—1=<(t,_p);+2e<
(tr—2); +aj = (t,—;); + € + 1 + & and the a ssociated point ((t;—2) 47, (A2_2)x,.o7) =
(t, + 26, t,.1 + 26,22+ 26,12, + 2¢) in A, with the property that x, €
0((A2_3)y, 0 +[01]%) for some index iy such that |(A2_,),, (2_,),, + 2€| = 1,
(tr—z)i(’) = (tr—z)i(’) +2¢e and € € {0,1}. We claim that e = 1. Now, (t, +€,t,. .4 +
€A% +¢€ 2%, +e) and (t, + 26, t,,1 + 26, A% + 26,12, + 2€) are in A,.. The mutual
orthogonality property implies that }... V4 5. (gr)1(—€,—€) = 0 for some i = 1,2.

Suppose that x, is not of the corner points of A2_, + [0,1]2. in that case, the index
i such that €; € {0,1} is unique and it follows that i, = ij. this implies in particular, that

e=0 ( as (tr—z)io te= (tr—z)io - (tr—z)i(’) = (tr—z)i(’) + 2e = (tr—z)io + 2e).
Furthermore, the second set of inequalities in (12) show that (/15_2)1-0 +e€= (Aﬁ_z)io +
2¢e = (BF_p)i, — 1 if g, =0 and (A7_,); +€=(A7_p);, +26=(A_p);, +1 if
€;, = 1. We have thus € = 0 in both cases. We have thus
Vign.(9r)1(—€,—€) =V(4,,(9:):1(0,0) = 1.
Therefore, the other index j must satisfy 3., V4 5. (g-)1(—€,—€) = 0. This inequalities
€—1<—-e<¢ andeg—1<2e=<¢Vyield-1<e<1.

However, § <e <1+4. The V., (g-): would not be zero unless (t,_,); + 2e =
(tr—2)j + €+ 1(= bj). Hence, (t,_5); + e+ 1< (t,_5); + 26 < (t,_p); +e+ 146,
This forces that (t,._,); + 2e = (t,_); + € + 1. This completes the proof for non-

162



corner points. if x,. is the corner point, as the square constructed for the non-corner will
certainly cover the corner point. therefore, the proof is completed.
Corollary (4.3.34)[491]: Let C be a half-open square. Then I'(C) + [0,1]? is a tilling of
R?,
Proof. It suffices to prove the following statements: suppose that J, + [0,1]? is non-
empty packing of RZ. If, for any x,. € d(t,_, + [0,1]%) where t,_, € J,, we can fined
(tr—2)x, € Jr With (t;_3)y # t,_, such that x, € d((t,_2)x, +[0,1]%), then J, +
[0,1]? is a tiling of RZ. Indeed, by Corollary (4.3.32)(i) and Corollary (4.3.33), I'(C) +
[0,1]% is a packing of R? and satisfies the stated property. It is thus a tiling of R2.

To prove the previous statements, we note that as J, + [0,1]? is packing, it is
closed set. Suppose that J, + [0,1]? satisfies the property above and that R?*€\(J, +
[0,1]? # ©). Let x,- € 9(J, + [0,1]?) and assume that x, € t,_, + [0,1]%. We can then
find (t,_2)y, € Jr With (t,_3),, # t,_, such that x,. € d((t,_,),, + [0,1]%). Note that
if x, were not a corner point of either t,_, + [0,1]? or (tr—2)x, T+ [0,1]2, then x,- would
be in the interior of J, + [0,1]%. Hence, x, must be a corner point of t,._, + [0,1]? or
(tr—2)x, +[0,1]%. As the set of all corner points of the squares in J, +[0,1]* is
countable, the Lebesgue measure of the open set R2*€\(J, + [0,1]?) is zero and
R2*€\(J, + [0,1]?) is thus empty, proving our claim.
Corollary (4.3.35)[491]: Let C be a half-open square and suppose that (12,12,,) €
r(c) with To(22,22,,) = {(t,, t,4+1)}. Then all the sets T.(A% + ¢, A2, + €) with
(A2 +€,1%2,,+€) €T(C) are either of the form {(t, t,4+; +5_5)} or {(t. +
Sy_z, ty41)} for some real s,_, with |s,_,| < 1 depending on (12, A2, ).
Proof. We first make the following remark. if (a,, ,1+1), (B, Br+1) € T'(C) are such
that the two squares (a,,a,,,) +[0,1]%> and (B, Br+1) + [0,1]? intersect each other
and also both intersect a third square (., ¥,+1) + [0,1]% with (¥,,¥,4+1) € T(C) , then,
letting T¢ (¥, ¥r+1) = (M, my41), We have

TC(ar» ar+1) ={(m, +aqa, mr+1)} and TC(BT’ ,81'+1) ={(m, + b, mr+1)}
or

TC(arr ar+1) = {(mr + q, mr+1)} and TC(.Brr .8r+1) = {(mr’mr+1 + b)} )
for Some real a,b. Indeed, using Corollary (4.3.33), we have T.(a,, &, ;1) =

{(my +a,m;14)} or  {(my,myyy+a)} and  Te(By, Brin) = {(m, +
b,m,,;) or(m, m, ., +b)}. Suppose, for example, that T.(a,, a,.,i) =
{(m, +a,m,,,)} and T.(B,, Br+1) = (n,,m,.; + b). Since the two squares intersect
each other, we must have |a, —B,| <1 and |a,.; — Br+1| < 1. The orthogonality
property also implies that either (a, a,. — ;) or (—b, a1 — Br+1) is in the zero set of
Vig,,(gr)1. But since we have |al, [b| <1, this would imply that |a, — B, > 1 or
la, — Br+1]1 > 1, which cannot happen. As T'(C) + [0,1]? is a tiling of R?, for any
square (o,,0,41) + [0,1]? intersecting the square (A%,1%,.,)+[0,1]*> and with
(0,,0,41) + [0,1]%, we can find another square (&,,8,,,) + [0,1]2, with (8,, 6,4,) €
r'(C) and with (8,,68,.1) + [0,1]? intersecting both squares (o,,0,.1) + [0,1]* and
(A2,22,.,) + [0,1]2. by the previous remark, the conclusion of the lemma holds for all
the squares that neighbor the square (12,12, ,) + [0,1]2. Replacing this original square
by one of the neighbouring squares and continuing this process, we obtain the
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conclusion of the lemma for all the squares in the tiling I'(C) + [0,1]? by an induction
argument. This proves our claim.

Corollary (4.3.36)[491]: If (0,0,0,0) € A,, then the sets Tyj2(47,A741) Where
(22,22,.,) € T([0,1]?) are either all of the form {(t,_,,0)} or all w of the form
{(0,t,_,)} with some ¢,_, (depending on (12, A2, ,) with |t,_,| < 1. in the first case, if
there exists some (47,47,1) € T'([0,1]%) with Tpg112(A47,A741) = (t,—2,0) and # 0,
then

P01 = | J(@ + o) x () (63)
k€eZ
for some 0 < py o < 1. Moreover, we can find 0 < (t,_;), < 1 such that
Tiony ((Z+ o) X k}) = {((tr-2)i 0}, k€T (64)

and
A 0 ([0,1)? X R?) = {((tr-2)is 0,) + b0, k):j, k €L} (65)
In the second case, I'([0,1)? = Uez{k} X (Z + py0) and Tpopy2({k} X (Z + pg0)) =

{00, (tr—2)1)} A N ([0,1)* X R?) = {((0» (tr—2)io Ko J + tie): ), ke € Z)}

Proof. If (47,47,1) = (0,0) we have Ty,y2(47_,) = {(0,0)} as (0,0,0,0) € 4,. By
Corollary (4.3.35), any (A2%,2%2,,) € I'([0,1)? with the square (42,1%2,,) € [0,1)?
intersecting [0,1]° on the A7,A7,,-plane satisfies Ty 1y2(47,47,1) = {(t,_,0)} or
T[O'l)z(/li,/liﬂ){(tr_z, 0)} with |t,._,| < 1. Without loss of generality, we assume that
the first case holds. As I'([0,1]?) + [0,1]? is a tiling of R2, for any square C =
(A2,22.) + [0,1]%, with (22,22, €T'([0,1]%), we can find squares C; =
((2_y)10 (R2_5)2;) +[0,11% for i =0,...,k with ((22_,)14 (A2_5)2;) € T([0,1]%)
and such that C, = [0,1]?, C, = C,and with C; and C;,, touching each other for all i =
0,..,k—1.

We have Tpo1)2((A2_5)11, (A2_2)21) = {(¢,,0)} for some number t, with
|t| < 1.Since C, and C, both intersect C;, Tjo 1y2((A2_2)1.1, (A%_3)241) = {(t,, 0)} by
Corollary (4.3.35) again. inductively, we have Tpgqy2((A2_5)1: (A2_5)2:) =
{(ty+i—1,0)}, i =1, ..., k, which proves the first part.

Consider the case where, for any (12,12,,) € I'([0,1]?), there exists a number
tr_y = t,_p(A7,A7,1) such that Tpoqy2(47,47,1) = {(t,—,,0)} and assume that
t,_,(12,A2,,) # 0 for at least one couple (4%, 12,,) € I'([0,1]?). Suppose that
I'([0,1]?) is not of the form in (63). By Corollary (4.3.34) and Corollary (4.3.27), we
must have I'([0,1]?) = Ugezik} X (Z + a},) with 0 < a}, < 1 and at least one aj, # 0.
Consider the distinct points

(ty—2,0,k,a; +j)and (t,_, +€,0,k —1,a,_; +j), both in A,.

We must have that either (—¢,1) € Z(V,y,(9r-)1) or (0,a; —aj_4) €
Z(V(gr)l(gr)l)- however, since |a; —aj_,| < 1, the second case is impossible. this
means that (—e¢,1) € Z(V(,.,(g-)1) Which is possible only if t._, =t._, +e€.
Therefore the fact (t._,,0,k, a; +j) € A, implies that t,_, = (t,_;); for some real
(tr—2) ;. we know prove by induction on |j| that (t,_,); = 0, for all || <] Where ] =
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0, chose k € Z such that a;,,, # 0 and a;, = 0 if such k exists. Suppose first that j > 0.
There exist thus t,._, € [0,1) such that

((¢7-2)j+1,0,k,j + 1) and (0,0, k + 1,a},, + j) both belong to 4,..

This implies that either (t,_,,—1) € Z(V(4,,(g,)1) or (0,afy; —1) €
Z(V(gr)l(gr)l)- This last case is impossible and the first one is only possible if t,_, =
0, showing that (t,_;);4+1 = 0. Similarly by considering the points

((ty-2)j-1,0,k + 1,a},, +j — 1) and (0,0, k, j) which both belong to 4.
We can conclude that (t,_;);-, = 0 for j < 0. If k as above does not exist, there
exists chose k' € Z such that a;,_, # 0 and a;, = 0. By considering the points
((tr-2)j+1,0,k',j —1)and (0,0,k' — 1,a;,_, +j)if j>O0.
and the points
((tr=2)j-1,0,k' = L,al,_, +j— 1) and (0,0,k’,j) if j <0

Which all belong to , we conclude that (t,._,); = 0 if [j| =]+ 1. This proves
(63).

If we are in the first case, i.e

r(0112) = | J(@+ o) x 3,
o . keZ
let n — €,n’ — € be distinct integers. We have then

T[O,l)z (n — €+ Unp,o, 0) = {(tr+n—e—1r 0)} and T[O,l)2 (n, —€+ :un,O:n) =
{(tr+n'—e—1r 0)}

Which implies that ¥, V(g5 (9r)1(trin—e-1 — tryn/—e—,n—n') =0 oOrF
Yr Vig),(9r)1(0,0) = 0. This second case is clearly impossible while the first one is
possible only when t,,,_c—1 =t/ in_e_1. This shows (64) and (65) follows
immediately from (63) and (64).
Corollary (4.3.37)[491]: Under the assumptions of Corollary (4.3.36), suppose that
there exists (47,47,41) € T([0,1]%) with Tpy4y2(47,47,1) = (t,—»,0) and t,_, # 0.
Then we can find numbers t,,,_; With 0 < t, 1 < land pg o k,n—€ € Z, with0 <
Ui n-e < 1, such that

AN (Rx[0,1]xR?) ={(n—€+ tr4x1,0,j + Ugn-ek):j k,n—€ €L}
Proof. By the result of Corollary (4.3.36), we have the identities (64) and (65). Let T =
{t,+x-1,k € Z} c [0,1) where t,,.,_1,k € Z, are the numbers appearing in (64). Let
Sy, Sy4+1 € T With s, < s,,4. Consider the half-open squares C = (s,, 0) + [0,1)? and
C' = (sr,0) + ((0,1] x [0,1)). then we know that I'(C) + [0,1]? and T'(C") + [0,1]?
both tile R2. Let P._; = {(s;,¥,):0<y.<1} and P. ={(s, + 1,v,):0 < y, < 1}.
Note that I'(P,_;) = I'({(s,-, 0)}). Moreover,

r(€) = T(Pr—1) UT(C\P,—1),T(C") =T(C'\B) UT(R)
and since C\P,_, = C'\P., I'(P,_,) = T'(B.). We have
Ter(T(R)) € {(sy + 1, y,),0 <y, <1}

but since (s,,0) € C’, we must have T.(T'(B.)) c {(s, + 1,1)} by Corollary (4.3.35).
Since

[(P_y) = {(] + U0, k) ok €Lty = Sr}
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and 7, (T'(P,_,)) = m,(T'(B.)), where m, is the projection to the second coordinate, we
have
QA +5,00) =TB) ={( + 1. k):j k € Ltrspa =5 }.

For some constants p,, ; with 0 < p, 1 < 1 using Corollary (4.3.27). Applying this

argument to s,, = 0 and s,.,; = t,_,, we obtain that
A0 ({13 x[0,1) x R?) ={(j + pr1, k)i j k € Z, tr gy = O}

Similar arguments applied to s, = s,_, and s,.; = 1 show that, for any s,_, €

T ,we have
Ar N ({Sr—z + 1} X [0,1) X RZ) - {(] + .uk,l'k):j:k € Z, trak-1 = Sr—Z}-

And that A, N ({s,_, + 1} x [0,1) X R?) is empty if s,_, € [0,1)\T. The same
idea can also be used to show the existence of constants p;, _; with 0 <y, ; <1 such
that

A0 ({s,_, — 1} x[0,1) X R?)
_ {{(f + -1, k): K€Lty =5rp ), s, €T
0} Sy_p € [0,1)\T.

And, more generally using induction, that, for any n—¢e € Z, we can find
constants iy ,— With 0 < p, ; < 1 such that
AN ({s,_, +1} x[0,1) x R?)

— {{(] + Mk,n—Ef k): j,k EZL rtr+k—1 = Sr—2 } ’ Sr-2 €T
@, S,_, € [0,1)\T.

This proves our claim.

Corollary (4.3.38)[491]: G(x[o]2, Ar) is a Gabor orthonormal basis for L#(R?) if and
only if we can partition Z into J,- and J, such that either

Ar = U {(n —€+ (tr—z)n,k,nij + :uk,n—e,an + 1712'+n—1): n— E'j! k € Z}

ned,

U U U ,{(Tl —€+ (tr—z)n' Tl)} X (Ar)n—e,n-
n—€ee€z nedr
Ar = U {(TL — €N + (tT—Z)TL—E,j,'j + v,a,_n_e_l,K + Auj,n—e,n): n,j’ k

n—eejr

erjul | | ] (-ent tdn-dlx Unen
NEZL n—e€J;.

Where (A,)p_en +[0,1]% tile R? and (t,—2)ni Bkn-en and vi,,_, are real
numbers in [0,1) as a function of n — ¢, n or K,
Proof. It follows from Corollary (4.3.35), that either all Tpy1y2(A7,A711), (A7, A741) €
I'([0,1]%) are either of the form {(t,_,,0)} or all are the form {(0,¢t,_,)} with some
t._, # 0. In the first case, we deduce from Corollary (4.3.37) that
LN {sr +X[0D)XR) ={(n—€+trx1,0,j + lgn-ek)jkn—€eceZ}

For certain numbers t,,;_, and py ,—. in the interval [0,1). We now show that A,
will be of the first of the two possible forms given in the theorem. ( Similarly, the
second form follows from the second case of Corollary (4.3.37)).

Letting C = [0,1)? and C' = [0,1) x (0,1], we note that both I'(C) + [0,1]? and
r(c") +[0,1]?, tile R? but I'((0,1)?) is empty. Hence, T'(C") =T ({(x,,1):0 < x, <
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1}). It means that any set T./(4%,2%,,) with (13,A2,;) € T(C") is of the form
{(t,_5, 1)} for some t,_, =t,_,(A%,12,,) with 0 <t._, <1. We now have two
possible cases : either the cardinality of TCr(F(C’)) Is larger than one or equal to one.
In the first case, we can find two distinct elements of T./(T'(C")) and we can then
replicate the proof of Corollary (4.3.37), to obtain that

AN(Rx[1L2)XR) ={(n—€+trix-1,1,j+ thenen k):jk €L}

In the other case, T¢/(I'(C")) = {(t,, 1)} for some t,. with 0 <¢, <1. If we
translate C’' horizontally and use the same argument as in the proof of Corollary
(4.3.37), we see that

AN (RX[1,2)XR*) ={(n—€+t,1)} X (A )n-c1

Where (4,),_e1 is @ spectrum for the unit square [0,1]%. This last property is
equivalent to (A,),_c1 + [0,1]% being a tiling of R?.

We can them prove the theorem inductively by translating the square C' in the
vertical direction using integer steps.

167



Chapter 5
Slanted Matrices and Hamiltonian Deformation

We establish result to enrich our understanding of Banach frames and obtain new
results for irregular sampling problems. We also present a version of a non-
commutative Wiener’s lemma for slanted matrices. We study in some detail an
associated weak notion of Hamiltonian deformation of Gabor frames, using ideas from
semiclassical physics involving coherent states and Gaussian approximations. We will
thereafter discuss possible applications and extensions, which can be viewed as the very
first steps towards a general deformation theory for Gabor frames. The deformation
theorem requires a new characterization of Gabor frames and Gabor Riesz sequences. It
is in the style of Beurling’s characterization of sets of sampling for bandlimited
functions and extends significantly the known characterization of Gabor frames
“without inequalities” from lattices to non-uniform sets.

Section (5.1): Banach Frames and Sampling

We study certain properties of so-called slanted matrices, which occur naturally
in different fields of pure and applied analysis. A matrix is slanted if it has a decay
property such that the coefficients vanish away from a diagonal, which is not
necessarily the main diagonal; ideally, non-zero coefficients of such a matrix are
contained between two parallel slanted lines. Potential applications of the theory of
slanted matrices range through wavelet theory and signal processing
[277,278,279,284,293], frame and sampling theory [261,262, 263,268,269,290],
differential equations [273,274,276], and even topology of manifolds [303]. Here we
especially emphasize the use of slanted matrices in frame theory and related fields.

We begin with a few explicit examples illustrating the appearance of slanted
matrices. The standard case of banded matrices is a particular case of slanted banded
matrices. Below are less trivial examples and the first of them concerns sampling in
shift invariant spaces.

Example (5.1.1)[260]: It is well known that the Paley-Wiener space PW,,, =

{f € L2(R?):supp f < [—1/2,1/2]} can also be described as

PW, /= {f € P(RD):f = ) (- —k),c € (D), )
kEZ

SNTER) and the series converges in L2(R) (see [263]). Because of this

where ¢(x) = _—
equivalent description of PW; ,,, the problem of reconstructing a function f € PW, ,,
from the sequence of its integer samples, {f(i)};ez, iS equivalent to finding the
coefficients ¢ € £2 such that {f(i)} = Ac where A = (ai,j) is the with entries a; ; =
@(i — j). Itis immediate, however, that A = I is the identity matrix and, therefore,

f= FUOSC k).
keZ )
If, instead we sample a function f € PW;,, on EZ’ then we obtain the equation

{f(é)} = Ac. In this case, the sampling matrix A is defined by a; ; = ¢ (é —j) and is
no longer diagonal- it has constant values on slanted lines with slopes 1/2, for instance,
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M M

. __sinm(x—k) . . .
ajj=1.1f ¢ = R in (1) is replaced by a function ¥ supported on [—;,;],

then the matrix A = (a; ;) is zero outside the slanted band |j — i/2| < M. Clearly, this

matrix is not banded in the classical sense. If we move to the realm of irregular
sampling [263], the sampling matrix will be given by a; ; = ¢(x; — j), where x;,i € Z,
are the sampling points. In this case, we no longer have constant values on slanted lines,
but the slanted structure is still preserved if we have the same number of sampling
points per period. An important fact [263] is that any function can be reconstructed from
its samples at x;,i € Z, if and only if the sampling matrix is bounded below and above.
The main emphasis is to study this particular property of abstract slanted matrices.

The next example deals with frames in Hilbert spaces. Meaningful extension of
the notion of frames to Banach spaces is a non-trivial problem which provided some
inspiration for our abstract results. In the example below we only give a brief
introduction and defer precise definitions.

Example (5.1.2)[260]: Let H be a separable Hilbert space. A sequence ¢,, € H,n € Z,
is a frame for H if forsome 0 < a < b <

allfI? < ) 1, @n)l? < BIIFI? @)
nez

for all f € H. The operatorT: I — £2,Tf = {{f, o) }nez , f € I, is called an analysis
operator. It is an easy exercise to show that a sequence ¢,, € H is a frame for A if and
only if its analysis operator has a left inverse. The a djoint of the analysis operator,
T*: 42 > 3, is given by T*c =Y,ez¢,¥n,c = (c,) € £2. The frame operator is
T'T:H = H,T'Tf = Ynerlf, Pn) . [ € H.

Traditionally (see [280,283,290]), the frame properties are studied via the spectral
properties of the frame operator. We show that some work can be done already at the
level of the analysis operator. This makes extensions to Banach spaces easier since the
analysis operator is more amenable to such. Connection with slanted matrices is readily
illustrated if we consider a frame in #2(Z) which consists of two copies of an
orthonormal basis. The matrix of the analysis operator with respect to that basis looks
like

S OO R K
S rRrRPRrR OO
-0 O OO
SO OO OO

0 0 1 O
Clearly, the slant of the matrix may serve as a natural measure of redundancy of a

frame. The following example illustrates the role of slanted matrices in wavelet theory.
Example (5.1.3)[260]: In signal processing and communication, a sequence s (a)
discrete signal) is often split into finite set compressed sequences {sy, ..., s,-} from which
the original sequence s can be reconstructed or approximated. The compression is often
performed with filter banks [284,293] using the cascade algorithm. One way to
introduce filters, in the simplest case, is to use the two-scale equation of the
multiresolution analysis (MRA):

QD(X) = ZnEZ anq)(zx —-n),
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Where ¢ € L?(R) is the so-called scaling function. The filter coefficientsa,,n € Z,
in the above equation are the Fourier coefficients of the —pass filter my € L*(R), =
R/Z , which is a periodic function given by

my (&) = Ynez aneZninf ) § ER.
It is clear that the two-scale equation has the following equivalent form in the Fourier
domain:

P(28) = my(O)P(8), ¢ ER.
An important role in the MRA theory is played the periodization g, € L*(T) of the

scaling function ¢, which is defined by
0o (§) = [§, P1(§) = Znezl @€ + M)I?
It is a standard fact (see, e.g., [266, Lemma 2.11]) that this periodization satisfies
0o (§/2) = Imo(§)I?04,(§) + Imo(§ + 1/2) [0, (& + 1/2).

In fact, g,, is the Perron-Frobenius eigen-vector of the transfer operator R,  which acts
on different spaces of periodic functions via

(Riof) (&) = Imo(OIFf (&) + Imo(§ + 1/2)I2f(§ +1/2) (3)
In [278] there is a detailed account of the relation between the spectral properties of the
transfer operator on different function spaces and the properties of the corresponding
MRA filters, scaling functions, and wavelets. Here we will just recall that the
convergence rate of the above mentioned cascade algorithm is controlled by the second
biggest eigenvalue of R,, . The reason we use the transfer operator as an example is

because of its matrix with respect to the Fourier basis in L?(T). Following [278, Section

3.2], we let
Cn = 2 A Api-

k€eZ
Then the Fourier coefficients of R,,, f and f are related via

(Rmof)n = Z Con—-k S

keZ
and, hence, this is, indeed, a slanted matrix. In particular, if

mo(§) = ag + a;e¥™% + a,e?™2% 4 q,e?™i3¢,
this matrix looks like
C3 € €4 €y €4 €, ¢c_3 O 0 0 0
0 0 ¢3 ¢ ¢4 ¢ ¢4 ¢, ¢c3 O 0
0O 0 0 0 ¢ ¢ ¢ ¢ €1 Cco c3 O
O 0 0 O O 0 c3 €, € €y C€_q C_p, C_3
O 0 0 0 O 0 0 0 C3 €, € €y €4 C_, C_3.
Due to the special Laurent-type structure of this matrix there has been a lot of result on
the spectral properties of such matrices (see [278]). Since we are interested in more
general slanted matrices, we cannot use most of those results. Observe also, that this
matrix has the “opposite” slant compared to the matrices in the previous examples. In
fact, as shown in Lemma (5.1.10) below such matrices cannot be bounded below and,
therefore, are less relevant.
We devoted to abstract results. We give precise definitions of different classes of
slanted matrices and study some of their basic properties, we state and show one of our
main Theorems. Specifically, slanted matrices with some decay, viewed as operators on
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£P (Zd, (Xn)) spaces (where X, is a Banach space), are either universally bounded

below for all p € [1, 0], or do not have this property for any p € [1, co]. We use this
Theorem to obtain a version of Wiener’s Tauberian lemma and a result on subspace
complementation in Banach spaces. We devoted to some applications of the results.
Specifically, the reconstruction formula for Hilbert frames are extended to Banach
frames under certain localization conditions related to slanted matrices. Gabor systems
having this localization property are then presented as an example. Exhibits an
application of slanted matrices to sampling theory.

We prefer to give a straightforward definition of slanted matrices in the relatively
simple case that arises in applications presented, mainly in connection with sampling
theory. For that reason, we restrict our attention to the group Z¢,d € N, and leave the
case of more general locally compact Abelian groups for future research in the spirit of
[271,272,275]. We believe, also, that some of the results below may be extended to
matrices indexed by discrete metric spaces.

For each n € Z¢ we let X, and Y, be (complex) Banach spaces and £F =
£P (Zd, (Xn)) be the Banach space of sequences x = (x,),,cz4, X, € X;,, With the norm

1/p
lxllp = (Znezallxall, )" when p € [1,00) and [|x|le = sup,ezallxnlly, By co =
Co (Zd, (Xn)) we denote the subspace of £*of sequences vanishing at infinity, that is
lim ||x, || = 0, where [n| = max;<x<q|nil, n = (ng, 1y, ..., ng) € Z¢. We will use this

[n|-co

multi-index notation throughout. Note that when X, = C for all n, then £F is the
standard space of complex-valued sequences €7 (Z4).

Let a,,,: X, = Y, be bounded linear operators. The symbol A will denote the
operator matrix (a,,,),m,n € Z%. We are interested only in those matrices that give
rise to bounded linear operators that map £F into 8F for all p € [1, ] and ¢, into c,.

We let [|A]l, be the operator norm of A in 8P =¢P (Zd, (Yn)) and |[[Allsyp =

SUP, nezd l@mnll- 1f Xy, Yium € Z%, are separable Hilbert spaces, we denote by A* =
(an,n) the matrix defined by a;,,, = (a,,n)*, Where (a,,,,)": Y, = X,, are the (Hilbert)
adjoints of the operators a,,,,. Clearly, (A*)* = A.

To define certain of operator matrices we use the following types of weight
functions.
Definition (5.1.4)[260]: A weight is a function w:Z% - [1,0). A weight is sub
multiplicative if

w(m+n) < Cw(m)w(n), for someC > 0.
A weight is a GRS-weight if it satisfies the Gel’fand-Raikov-Silov conditiona [286]
1
lim w(mn)=n =1, ne€Z%

m—oo
A weight is balanced if
w(kn)
félz% o < 00, k € N.
Finally, an admissible weight is an even sub multiplicative weight.
Example (5.1.5)[260]: A typical weight on Z% is given by

wn) = ea|"|b(1 + |n|)®, a,b,s > 0.
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This weight is admissible when b € [0,1], is a GRS-weight when b € [0,1) and is
balanced Whenb = 0.

We fix a slanta # 0. To simplify the notation we use f = a~! and K = [|5]]%-
the dth power of the smallest integer number bigger than or equal to |8|. By xg we
denote the characteristic function of a set S.

Definition (5.1.6)[260]: For a # 0 and j € Z% the matrix A; = Af = (a(j) ) m,n €

mn
7%, defined by
ar(rjzzl = Amn Hlaclzl Xljir+1) (amy — ny)
Is called the jth a-slant of A.

Observe that for every m € Z¢ there is at most one n € Z¢ such that a¥) = 0
and at most k different numbers £ € Z¢ such that al}), # 0. Hence, we have 1451l <

K||4;||.  foranyp € [1,0]. This allows us to define different classes of matrices with
Jllsup

decaying a-slants independently of p € [1, x].
Definition (5.1.7)[260]: We consider the following several classes of matrices.
(i)For some fixed M € N, £ will denote the class of matrices A that satisfy A =
Y1jjsm—14;. Observe that for A € F;' we have a,,,, = 0 as soon as |[n — am| >
M — 1. The class F, = Uyen FM consists of operators with finitely many a-
slants.
(i) The class £ of matrices with w-summable a-slantes consists of matrices A
such that ||Allse = ijEZd”A]-”Supw(i) < oo, where w is a weight. We have

>@ c 3l =3, -the class of matrices with (unweighted) summable a-slantes.

(iii) The class &, of matrices with exponential decay of a-slantes is defined as a
subclass of matrices A from Z, such that for some € € R and t € (0,1) we have
4]l < ¢zl

For A € £, we denote by A,, € FM, M € N, the truncation of A, i.e., the matrix
defined by af,, = a,,,, when |n —am| < M — 1 and a!,, = 0 otherwise. Equivalently,
Ay = Yjlsm-14; Where A;,j € Z%, is the jth a-slant of A. By definition of X%, the
operators Ay, converge to A in the norm ||| zw.

Here we present some basic properties of slanted matrices that are useful for the
reminder.

Lemma (5.1.8)[260]: For some p € |[1,00] we consider two operators
A: P (Z4,(Y,)) - £P(Z%,(Z,)) and B : ¢P(Z%,(X,)) — ¢P(Z%,(Y,)) and let w be a
sub multiplicative balanced weight.

) If A€ F,(Z%ore) and BE Fz(EZF orez) then we have ABE

Faa (ch)&' or ga’a?)-

If, moreover, Y, , Z,,,n € Z%, are Hilbert spaces, then we have
AP (29, (Zy)) - P (29, (Yn))
and
(i) A is inverrible if and only if A* is invertible;
(iii)If A € F,(Z&,0r &y) then A* € F-1(Z81, 01 £4-1).
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Proof. The last two properties are easily verified by direct computation. For the first one,
let D = (dmy) = AB = (amn)(bmn), and let [a] = (Ja;]1, ..., [aq]) € Z¢, where a €
R¢ and [a,] is, as before, the smallest integer greater than or equal to a,, k = 1, ...,d. We
have that

tmjazmiesl] < D emell1Biefame |
kezd

= Z [ femtse—teem || B et rami +j-fezk |

kezd

< ) 1k = famDs(lagm] + ] - [ak])
kezd

= ) r(0s(jaaml + - [ak + alam]]),
kezd

Where r(j) = ”AJ'”sup and s(j) = ”BJ'”sup' Fora, b € R we have

[a]l + [b] =1 < [a+ b] < [a] + [b];
[lalb] < [lal[b]] < [lalb] + [lall.
Hence,
dm facmi+ || < Tiezar(®R) sG = [ak] + D),
where | = I(a, @& m, k) € Z% is such that |I| < [|&|] + 1.
If A € F, and B € F, the last inequality immediately implies D = AB € F,;.
If A € £ and B € X2, we use the fact that the weight w is sub multiplicative and
balanced to obtain

Z sup ||dm,[ac~zm]+j||w(j) = Z T‘(k)S(j - [&k] + l)(x)(i)

jEZdTnEZd j kezd
w([a@k])
w (k)

< Const - z r(k)s(j — [akDw( — [ak])
jkezd
< Const - [|Allsg I Bllge.

The case A € ¢, and B € &5 can be treated in a similar way. Since we will not
use this result, we omit the proof.

The property of (left, right) invertility of operator matrices in certain operator
algebras has been studied extensively by many authors (see [271,287, 295]). The main
focus, however, is on a weaker property of boundedness below (or uniform injectivity).
As we show matrices with this property play a crucial role in certain applications.
Definitions (5.1.9)[260]: We say that the matrix A is bounded below in £ or, shorter,
p — bb, if

|Ax|l, = $,llx]l,, forsome g, >0 andall x € £P, (4)

Befor we state the main result, we note an important spectral property of slanted
matrices given by the following lemma due to Pfander [297] (see also [298]). We
include the proof for completeness and since the matrices considered here are more
general.

Lemma (5.1.10)[260]: Assume that X,, =Y,,n € Z%, and that all these spaces are
finite-dimensional. If A € £, , for some a > 1, then 0 is an approximate eigenvalue of
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A: 8P - QP p € [1,00]. Equivalently, for any € > 0 there exists x € £ such that
lxll, =1 and [[Ax]|, < €.
Proof. Let A € },. for e > 0 choose M so large that ||A — Alelza < e. Since a > 1,

there exists N, such that N = [aN,] = N, + 1. Let AL, be a matrix with an (i, j)-entry
coinciding with that of the truncation matrix A,, if |i| <M+ N, |j| <M+ N, and
equal to 0 otherwise. We have Ay x} = AN xl for every x5 € £ such that xJy (i) = 0
for |i| > M + N. By assumption, the subspace X} of such vectors is finite-dimensional
and, by construction, it is invariant with respect to AY,. Observe that we chose N so
large that the restruction of A}, to XY cannot be invertible because its matrix has a zero
“row” Hence, for A}, we can find a vector X2 € X such that ||xX]| = 1 and Ayx) =
AN xN = 0. Thus, for any given e > 0, we can find x)y € y such that ||x¥| = 1, and
lAxill, = 1Axy — Ayxyll, < e

We note that without the assumption in Lemma (5.1.10) that X,, = Y,, the lemma
may fail. The following Theorem presents our central theoretical result. We observe that
it has not been showed before even in the classical case of the slant a = 1.

The proof of the Theorem is preceded by several technical lemmas and
observations below. We begin with a lemma that provides some insight into the
intuition behind the proof. We should also mention that our approach is somewhat
similar Sjostrand’s proof of a non-commutative Wiener’s lemma [299]. We will discuss
Wiener-type lemmas in more detail.

Let wV: R - R,N > 1, be a family of window functions such that 0 < w" <
1,wN (k) =0 for all |k] = N, and 0" (k) = 1. By w we will denote the translates of
oV, ie, oN@)=w"({t—-n), and WN:¢P(Z% X) > ¢P(Z%X) will be the
multiplication operator

WNx(k) = ol (k)x(k), x € 8P,n€e R4,
Let x € £P(Z% X),p € [1, 0], and define

il = ZanNxo)up DD WO, P el ),

nezd jezd nezd |j-n|<N

1o = suplIW;" x|l -

n
Lemma (5.1.11)[260]: For any p € [1, %], the norms [|-||,, and [[|-]||, are equivalent
norms on £7, and we have
lxllp < llxlll, < @N)P||x|l,,  p € [1,0),
and

X0 = [lIx]l]co-
Proof. For p = oo the equality is obvious. For p € [1, o), the left-hand side inequality
follows from the fact [|x(n)||P < Z|j—n|sN”Wan(j)”pa and by summing over n. For the

right-hand side inequality we simply note that

D D e OxDIE < YT ) kG + I < @V,

nezd |j-n|<N nezd |jI<N
The above equivalence of norms will supply us with the crucial inequality in the
proof of the Theorem. The opposite inequality is due to the following observation.
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Remark (5.1.12)[260]: We shall make use of the following obvious relation between
the norms in finite-dimensional spaces. For every x in a d-dimensional Euclidean space

we have
1

lxll, = lIxlle = d Pllx|l, foranyp € [1,00). (5)
At this point we choose our window functions to be the family of Cesaro means
PYV:RY > R,N > 1, defined by

Ikl _
l/)N(k)={(1_7)' |k|<N;
0, otherwise.
Observe that their translates Y~ (k) = YV (k — n),n € R%, satisfy
an (k) =¥y (a™ k) (6)

for any a > 0. Again, by y¥~:2P - €P N > 1, we will denote the operator of
multiplication
YNx(k) = ¢pN(k)x(k), x€LP,ne R

The following lemma presents yet another estimate crucial for our proof. To
simplify the notation we let 8 = a~ 1.
Lemma (5.1.13)[260]: The following estimate holds for any g € [1,0], any A € £, =
»1 and all of its truncations A,, € FM, M € N.

IV “A“sup = N/2 (7)

e
Proof. Define J, = {i € Z% : |i — ak| < M — 1}. Using (6), we have
|1/J7’2’(i) — lpgg(k)| < % for |i —ak| <M —1.
Observe that for any y € £9 we have

Ay YIK) = Tiey, i W Dy @), (Yoo Auy ) () = Who () Eie, i ¥ Q).

Now the following easy computation shows that (7) is true for g € [1, o0):

)d+1

1

a\ q
[ (oo =)y = D, (1D, o oY@ = Gy
kezd |liejk
M ™\ (2 )d+1
<< lAll{ D { D Iy@Il | | <25 1Alapliyll,
kezd \i€jy

An obvious modification yields it in the case g = oo.
Observe that for A,, € FM the commutator studied in the above lemma satisfies

(Whn s — Barol) ) x = (Who Ay — Apgthl ) P M, (8)
Where 8 = a™ 1, PEx(k) = x(k) if |k —n| < L, and PEx(k) = 0 otherwise, where L >
1. Also observe that for any p € [1, o] and any L > 1, we have that

I1Brxll, < 2l1ztxllp. 9)

Combining the above facts we obtain the following estimate.
Lemma (5.1.14)[260]: Let A € Y, be p — bb for some p € [1, o0]. As usual, let Ay, €
FM be the truncations of A and g = a~1. Then foralln € Z",N > 1, and all M € N
withy, = g, — [|[A — Ayll, > 0, we have
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el < vt ([ fo w6 [[wZ ]| ) (10)
Proof. Observe that

lpn xllp, < 05" (II(AMYRxl, + 1A — Ayl 1R x11,)-
Hence, using (7), (8), and (9), we get

(1= 95 IA = Ally) Nl xll, < 051 11(Ay ),
< 5" <|1/J AMx| +||¢ AM_AMlpn)x”>

< 07" ([l aul] + g 8w = ARl )
<" ([[vfn A\Mx|p S 1Byl )

< (2o, + <o) )

which yields the desired inequality.

By iterating (10) j — 1 times we get
Lemma (5.1.15)[260]: Let A€ Y, be p —bb some p € [1,x]. Let A, € FM be
the truncations of A and f = a~*. Then forall n € Z",N > 1 and M € N with y, =

#p — [[A = Ayll, > 0, we have

_ - ( Vp BZ T Z;
lptxll, <yt~ iy oy ||¢ JAMpr + Ry v |p, (11)
where Z; = 2J7IN + (Zj — Z)M, forj > 1.
To simplify the use of (11) we let _
j ~ ( M) | Allup )J
1—(Ry, ! — [|A—A N
d: ( yp ) _ (@p ” M”p) (12)

jp = Vo N a1
1 — 1 2M
(%51 g, — 18— Ayl - E 4,
and
j
(M)Al sup)

bjp = (Nyp_l)Jz Jo
(Sop - ”A_AM”p) NJ
Now we complete the proof of the main result.
Theorem (5.1.16)[260]: Let s > (d + 1)? and w = (1 + |j|)S. Then A € 2% is p — bb
for some p € [1, o] if and only if A is g-bb for all g € [1, o].
Proof. The remainder of the proof will be presented in two major steps. In the first step,
we will assume that A € £ is oo-bb and show that this implies that A is p-bb for all
p € [1, ). In the second step we will do the “opposite” that is, assume that A € X3 is
p-bb for some p € [1, ) and show that this implies that A co-bb. This would obviously
be enough to complete the proof.
Step 1. Assume that A is co-bb. Using Hoélder’s inequality and (11), we get for large
valuesof M € N
|P

el < 207l |[whs Az + 2017, [
Using (5), we get

(13)
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_ _ BZ; 14 _ Z: p
@Vl < 27 af, [0 Awe]| + 27 bf [|wi x|
Summing over n and using Lemma (5.1.11), we get

_ d _ d
lxlly < (2N)42P~al ,(2Z;) 1Aux|ly + (2N)A2P b7 (2Z41) lIx1l3
< N2%* Pl ZE(lAx|y + 1A — Ayl llxlly)
+Nd2d+p‘1bfoozjd+1||x||g. (14)

At this point we use the assumption A € ZSH”)S to get

A=Al < || D 45l <K 4l @+ UDA+ D

ljl=M p ljlzM
< |[All .casijps sup (1 + [ < N|A[l caspjpsM 5.
Za 7 |jlzM Zq

Plugging the above estimate into (14) we obtain

Ixl} < 224+P~1Na? Z8||Ax]];

+ 22d+p-1pd (a}foozfi||A||Z(1+|j|)sM_sp + bjl,)ooZinﬂ) (B[
24
_ 22d+p—1a}?ooNded||Ax”g + N||x||g. (15)

Hence, to complete Step 1 it suffices to show that one can choose j, M € N and
N > 1sothat X < 1.

We put N = M%@+D for some § > 1. From (7),(12),(13), and the definition of Z;
in lemma (5.1.11), we get X = O(M@=9@+D) b, ) = o(MA=DE@+DI) g, = 0(1),
and Z; = O(M°@*1) as M — oo. Hence,

R < ClMa(d+1)2—sp + CZM(l_‘S)(dH)ijrS(dH)Z,

where the constants C; and C, depend on A, s, j, and p but do not depend on M. Since
s > (d + 1)2, we can choose & € (1, (dipl)z) and j > 22;:’3 then, clearly, R = 0(1) as
M — oo,

Step 2. Now assume that A is p-bb, for some p € [1, o). Using (5) and (11), we get
d/p Zj a/p || . Z:
I e R e e

B
[,
As in Step 1, we have [|A — Ayll, < ||A||Z(1+|j|)sM‘S. Using this estimate and Lemma
(5.1.11), we obtain

d/p d - d
Itlle < @1 (22)) "7 18l + 2477 (@, 2 P All s M + by Z527 ) o

Again, as in the previous step, if we choose 6 € (1, (dipl)z),N = M%@+D) and j >
5(d+1)
p(6-1)

, We get

@2 PNl s M~ + b Z]LY = O(1)
as M — oo and the proof is complete.
Careful examination of (15) yields the following result.
Corollary (5.1.17)[260]: let s > (d + 1)%, w = (1 + |j])%, and A € =2 be p-bb for

some p € [1,oo]. Then there exists g > 0 such that for all g € [1, o]
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|Ax|l, = @llx]l;, forallx € £9.

As we have seen in the proof above, the group structure of the index set Z% has
not been used.Thus, it is natural to conjecture that a similar result holds for matrices
indexed by much more general (discrete) metric spaces. We do not pursue this
extension. Instead, we show the result for a class of matrices that define operators of
bounded flow.

Definition (5.1.18)[260]: A matrix A is said to have bounded dispersion if there exists
M € N such that for every m € Z¢ there exists n,,, € Z¢ for which a,,,, = 0
as soon as |n —n,,| > M. A matrix A is said to have bounded accumulation if A* has
bounded dispersion. Finally, A is a bounded flow matrix if it has both bounded
dispersion and bounded accumulation.
Corollary (5.1.19)[260]: Assume that A has bounded flow and is p-bb for some p €
[1,0]. Then Ais q — bb for all g € [1, ].
Proof. In lieu of the proof it is enough to make the following two observations. First, if
a matrix is bounded below then any matrix obtained from the original one by permuting
its rows (or columns) is also bounded below with the same bound. Second, if a matrix is
bounded below then any matrix obtained from the original one by inserting any number
of rows consisting entirely of 0 entries is also bounded below with the same bound.
Using these observations we can use row permutations and insertions of zero rows to
obtain a slanted matrix in FM for some a € R, |a| > 0.
Theorem (5.1.20)[260]: Let X,,,Y,,n € Z¢, be Hilbert spaces and w be an admissible
balanced GRS-weight. If A € 23 is invertible for some p € [1, o], then A is invertible
forall g € [1,00] and A" € X-1. Moreover, if A € £, then we also have A™! € £ ,-1.
Proof. First, we observe that A~ = (A*A)~tA*. Second, since Lemma (5.1.8) implies
A*A € 3¢ (oreg,;), [272, Theorem 2] guarantees that (A*A)~! € ¢ (or &;). Finally,
applying Lemma (5.1.8) once again we get the desired results.
Theorem (5.1.21)[260]: Let X,, = Hy and Y,, = H; be the same Hilbert (or Euclidean)
spaces for all n € Z% and A € =2 where w(j) = (1 + |j])5,s > (d + 1)2. Letalso p €
[1, co].

(i) If A is p-bb, then A is left invertible for all g € [1, ] and a left inverse is given

by A* = (A*A)'A* € £2-..
(ii)If A* is p-bb, then A is right invertible for all g € [1, ] and a right inverse is
given by A? = A*(AA*)™! € £2-..

Proof. Since (i) and (ii) are equivalent, we prove only (i). Theorem (5.1.16) implies that
|Ax||, = g, ||x||, for some g, > 0 and all x € 2. Under the specified conditions the
Banach spaces #2(Z%,(X,,)) and #2(Z%(Y,)) are, however, Hilbert spaces and A*
defines the Hilbert a djoint of A. Since (A*Ax, x) = (Ax, Ax) = $,(x, x), we have that
the operator A*A is invertible in £2. It remains to argue as in (5.1.20) and apply Lemma
(5.1.8) and [272, Theorem 2 and Corolary 3].
Corollary (5.1.22)[260]: If A is as in Theorem (5.1.21)(i) then, for any q € [1, oo],
Im A is a subspace of £9 that can be complemented.

We will address several fundamental questions. Given a sampling set for some
p € [1, 0] can we deduce that this set is a set of sampling for all p? Under which
condition is a p-frame for some p € [1, o] also a Banach frame for all p ? These and a

178



few other questions are discussed and an answer in terms of slanted matrices is
presented.

The first part concerns Banach frames and the second one concerns sampling
theory.

The notion of a frame in a separable Hilbert space has already become classical.
The pioneering work [282] explicitly introducing it was published in 1952. It analoues
in Banach spaces, however, are non-trivial (see [265,268,269, 280,285,290]). We show
that in the case of certain localized frames the simplest possible extension of the
definition remains meaningful.
Definition (5.1.23)[260]: Let H be a separable Hilbert space. A sequence ¢,, € H,n €
7%, is a frame for I if forsome 0 <a < b < o

allfI? < )" 1(f, 91 < bIIFI (16)

nezd

forall f € H.

The operator T:H — €%, f ={{f,¢p)},eqe, f €EH , is called an analysis
operator. It is an easy exercise to show that a sequence ¢,, € H is a frame for H for if
and only if its analysis operator has a left inverse. The adjoint of the analysis operator
T*: 4% > 3, is given by T*c =Y, czach@n,c = (cy,) € £2. The frame operator is
T'T:H - H, T'Tf = XY ,epalf, on)0n, [ € H. A gain, a sequence ¢, € H is a frame
for H if and only if its frame operator is invertible. The canonical dual frame @,, € H is
then @, = (T*T) ¢, and the (canonical) synthesis operator is T#:#? - H, T# =
(T*T)~1T*, so that

f=THTf = D (f,0)Bn = ) (f.)0n
nezd nezd
forall f € .

Generalizing the notion of frames to Banach spaces requires some care. In
general Banach spaces one cannot use just the equivalence of norms similar to (16). The
above construction breaks down because, in this case, the analysis operator ends up
being bounded below and not necessarily left invertible. As a result a “frame
decomposition” remains possible but “frame reconstruction” no longer makes sense.
Theorem (5.1.21)(i) indicates, however, that often this obstruction does not exist. The
idea is to make the previous statement precise. To simplify the exposition we remain in
the realm of Banach spaces £7 (Z%, H") and use other chains of spaces such as the one in
[290] only implicitly.

Definition (5.1.24)[260]: A sequence ¢" = (@) ezt € €1 (Z%H),n € Z%, is a p-
frame (for £7(Z4, 7)) for some p € [1, ) if

allfIP < 1> (f 0B

nezd Imezd
forsome 0 < a <b < wandall f = (fi),eqa € P (Z4, 3).if

D 02| < bIFI (18)

mez4

p
< blIfIP (17)

allfIl < sup

nezd

179



for some 0 < a < b < oo and all f = (f;,),,cza € £°(Z%, 3), then the sequence ¢ is
called an oo-frame. It is called a 0-frame if (18) holds for all f € ¢, (Z4, 71).

The definition of p-frame above is consistent with the standard one found
[265,281,288]. For example, if H = C we obtain the standard definition of p-frames
for 7 (Z%).

The operator T, = T: £P(Z%,3) - £P(Z%) = ¢*(Z%,C), given by

Tf = f, ¢n) = { > (fm o >} . f et ),
mezd nezd
Is called a p-analysis operator, p € [1,0]. The 0-analysis operator is defined in the
same way for f € c,(Z%, ).
Definition (5.1.25)[260]: A p-frame ¢™ with the p-analysis operator T, p € {0} U
[1,00], is (s, a)-localized for some s > 1 and a # 0, if there exists an isomorphism
J: €2 (Z4, H) - £*°(Z%, H) which leaves invariant ¢, and all £9(Z%, H),q € [1,©),
and such that
'F]wp € XY,
where w(n) = (1 + |n])%,n € Z¢, see Remark (5.1.11).
As a direct corollary of Theorem (5.1.21) and the above definition we obtain the
following result.
Theorem (5.1.26)[260]: Let @™, n € Z%, be an (s, a)-localized p-frame for some p €
{0} U [1,0] withs > (d + 1)? . Then
(i) The g-analysis operator T is well defined and left invertible for all g € {0} U
[1, 0], and the g-synthesis operator T# = (T*T)~1T* is also well defined for all
q € {0} U [1, o0].
(ii))The sequence @™, n € Z%, and its dual sequence ¢ = (T*T) 1¢", n € Z%, are
both (s, a)-localized g-frames for all g € {0} U [1, oo].
(iii)In ¢y and £9(Z%, ), q € [1, ), we have the reconstruction formula

f=THf = D (f.0)0n = ) (f.)0n
nezd nezd
For f € £*(Z% 3) the reconstruction formula remains valid provided the

convergence is understood in the weak™-topology.

Theorem (5.1.26)(iii) shows that an (s, a)-localized p-frame is a Banach frame
for ¢, and all #9(Z4, H), q € [1, 0], in the sense of the following definition.
Definition (5.1.27)[260]: (see [289, Definition 13.6.1]) . A countable sequence
{xn}x,e; © X" in the dual of a Banach space X is a Banach frame for X if there exist an
associated sequence space X;( /), a constant C > 1, and a bounded operator R: X; —» X
such that for all f € X

1
¢ Il < 1KFs xn)llxg = Clifllx,

R({f,xn)ie)) = 1.
Example (5.1.28)[260]: Following [289], let g € S ¢ C*(R%) be a non-zero window
function in the Schwartz class S, and |/ be the short time Fourier transform
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(V,f)(x,w) = ff(t)g(t—x)e‘zmt"”dt, x,w € R4,

R2d
let MP,1 < p < oo, be the modulation spaces of tempered distributions with the norms
1/p
p
1fllyr = f f|l{gf(x,a))| dx|ldo| | 1=p<o,
RE \R4
1l = Ve £l -

It is known that these modulation spaces do not depend on the choice of g € S and are
isomorphic to £7 (Z?*%), with isomorphism’s provided by the Wilson bases.
Let g € M?! be a window such that Gabor system
G(g,a,b) = {gxn(x) = e 2m@-ak)bng(y — qk), k,neZ% x€ R}
Is a tight Banach frame for all MP, 1 < p < oo. By this we mean that the p-analysis
operator Tg: MP — ¢P, Tof = {(f, gk,n)} , Is left invertible and the frame operator T¢ T
Is a scalar multiple of the identity operator for all p € [1, c0]. Assume that a sequence
® = {d)i'j}ijeld of distributions in M* is such that {¢ ") = T;@; ;}, (i,j) € Z*?, is an

(s, a)-localized p-frame for some p € {0} U[1,], and s > (d + 1)2. Since, by
Definition (5.1.24), {¢") = T;®, ;} must be in ¢1(Z?%,C), then by [289, Corollary
12.2.8] @ c M. Moreover, by Theorem (5.1.26) we have that {9} is an (s, a)-
localized g-frame for all g € {0} U [1, =], and a Banch frame. Finally, since G is a tight
Banach frame for all M9, q € [1, o], we have that
(f, ij) = Const({T:T;f, ¢y j) = Const(Tsf, Ty, j), for all f € MY,

and, hence, the frame operator

foTef » {(Tsf. Tedij) } = {(f, @i j)}: MT - £9(Z2%,C)
is left invrtible and, therefore, @ is a Banach frame for all M9, q € [1, oo].
Example (5.1.29)[260]: Here we would like to highlight the role of the slant a in the
previous example. Using the same notation as above, let @ be the frame consisting of
two copies of the frame G. then (renumbering @ if needed) it is easy to see that matrix

.1 .
((qbi, ji gk,n)) ) km)ez? IS E—slanted. Hence, the slant a serves as a measure of relative

redundancy of @ with respect to G and a measure of absolute redundancy of @ if G is a
basis.

We apply the previous results to handle certain problems in sampling theory.
Theorem (5.1.32) below was the principal motivation for us to show Theorem (5.1.16).

The sampling/reconstruction problem includes devising efficient methods for
representing a signal (function) in terms of a discrete (finite or countable) set of its
samples (values) and reconstructing the original signal from its samples. We assume
that the signal is a function f that belongs to space

Ve(P) = {z Ck(pk}'

kezd
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where ¢ = (¢x) € ¢P(Z%) when p € [1,0],c € ¢, when p =0, and @ = {@;},.cpa C
LP(R%) is a countable collection of continuous functions. To avoid convergence issues
in the definition of VP (@), we assume that the functions in @ satisfy the condition

z Ck Pk

kezd LP

for some m,, M,, > 0 independent of c¢. This is a p-Riesz basis condition for p €
[1,00) U {0}[260]. We assume that the functions in @ belong to a Wiener-amalgam
space W} defined as follows.

Definitions (5.1.30)[260]: A measurable function ¢ belongs to W,} for a certain weight,
If it satisfies

myllcller < < Myl[cll e, for all c € P, (19)

1l = (2 w(k) - ess sup{l] (x + k): x € [0,1]d}) <w.  (20)

kezd
When a function ¢ in W} is continuous we write ¢ € Wg,,. In many applications

VP (@) is a shift invariant space, that is, @, (x) = ¢(x — k), k € Z¢, for some ¢ € W,L.
Sampling is assumed to be performed by a countable collection of finite complex
Borel measures u = {”f}jezd c M(RY. A p-sample is a sequence f(u)=

Jfadu;,je€ Z41f f(u) € €7 and |If (Wller < ClIf|l,p for all f € VP(D), we say that
u is a (@, p)-sampler. If a sampler u is a collection of Dirac measures then it is called a
(@, p)-ideal sampler. Other-wise, it is a (@, p)-average sampler.

We determine when a sampler u is stable. That is, when f is uniquely determined
by its u-sample and a small perturbation of the sampler results in a small perturbation of
f € VP(®). The above condition can be formulated as follows [263].

Definition (5.1.31)[260]: A sampler u is stable on VP(®) (in other words, u is a
stable(®, p)-sampler) if the bi-infinite matrix Aff defined by

(APc)() = Zkeza [ crordu;, c € £°(2),
defines a bounded sampling operator Aﬁ’:f?’(Z) — ¢P(Z) which is bounded below In
£P (or p-bb).

We assume that the generator @ and the sampler u are such that the operator Af{’

is a bounded on ¢, and all #7,p € [1, oo]; we say that such sampling system (@, u) is
sparse. This situation happens, for example, when the generator @ has sufficient decay
at oo and the sampler is separated. The following Theorem is a direct corollary of
Theorem (5.1.21) and the above definitions.
Theorem (5.1.32)[260]: Assume that w(n) = (1 + |n|))",n€Z% s> (d +1)? @
satisfies (19), for all g € {0} U [1, ] and u is (&, p)-sampler for every p € [1,x].
Assume also that the sampling operator A} is p-bb for some p € {0} U [1, 0] and A} €
X% for some a # 0. Then u is a stable sampler on V(@) for every q € {0} U [1, oo].

Below we study the case of ideal sampling in shift invariant spaces in greater
detail and obtain specific examples of the above Theorem. From now on we assume that
Pr(x) = @r(x — k), k € Z%, for some ¢ € C N W] =:W¢,,.
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Definition (5.1.33)[260]: If u = (u;) is a stable ideal sampler on VP(®) and the
measures y; are supported on {x;},j € Z%, then set X = {x;,j € Z% } is called a (stable)
set of sampling on V?(®) . A set of sampling X < R¢ is separated if

jiilzlefzdlxj — xk| =4§>0.

A set of sampling X < R? is homogeneous if
#HXNnn+1}=M
is constant for every n € Z¢.

We are interested in the homogeneous sets of sampling because of the following
result.

Lemma (5.1.34)[260]: Let ¢ € Wi, ® = {o(- —k)}, and pu € £*(Z%, M (R%)) be an
ideal sampler with a separated homogenous sampling set X. Then the sampling operator
A7 belongs to X% fora = M~1.

Proof. Follows by direct computation.

The following lemma shows that we can restrict our attention to homogeneous
sets of sampling without any loss of generality. The intuition behind this result is that
we can count each measurement at a point in X not once but finitely many times and
still obtain unique and stable reconstructions.

Lemma (5.1.35)[260]: Let A be an infinite matrix that defines a bounded operator on
P, p € [1,0], and A be a (bounded) operator on ¢P obtained from A by duplicating
each row at most M times. Then A is p-bb if and only if A is p-bb.

Proof. The proof for p < oo follows from the inequalities

1Ax]l} < [[Ax]]” < (M + DIIAx]E,  x € .

For p = oo, we have [|Ax||,, = [|Ax||_,x € £*.

As a direct corollary of Theorems (5.1.21), (5.1.32), Lemmas (5.1.34), (5.1.35),
and Remark (5.1.10) we obtain the following Theorem.
Theorem (5.1.36)[260]: Let w(n) = (1 + |n|)*,n € Z% s > (d + 1)?,¢ € W3, and

apliflle < [{F | < Bpllflle,  forall f € VP (@),

for some p € [1,00] U {0} and a separated set X = {xj,j € Z%}. Then X is a stable set of
sampling on V4(®) for all g € [1, o] U {0}.

Now we can show a Beurling-Landau type Theorem [1-4] for shift-invariant
spaces generated by piecewise differentiable functions.
Theorem (5.1.37)[260]: Let ® be a sequence generated by the translates of a piecewise
differentiable function ¢ € W, such that
allcllo < IXkez ckPrllo < bllclle and  [|Xgez cr@illor < b'llc]|oo-
for all ¢ € ¢o(Z%). Then every X = {x;} that satisfies y(X) = sup(x;41 — x;) < 2a/b’
is a set of sampling for VP (&) for all p € {0} U [1, oo].
Proof. We show the result for everywhere differentiable functions ¢ and omit the
obvious generalization.

Let f € VO(®) be such that f' = ¥, cza c @k, Where the series has finitely many
non-zero terms. The set of such functions is dense in V°(®) and if we show that for all
such f

17 G, = suplf ()] = @licl
j€
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the result would follow immediately from Theorem (5.1.36).
Let x* € R be such that ||f ]l = [f(x*)|. There exists j € J such that |x; — x*

%y(X). Using the fundamental Theorem of calculus, we get

<

*

X

Fel = | [ £ = 16| = e = | [ cupicCoe

Xj
x* 1
> Ul = | [ | i de|= (a=50v0) el
Xj kezd 0

Since (X) <i—‘,l,we have o, > a—%b’ -i—f‘: 0.
Corollary (5.1.38)[260]: Let @ be a sequence generated by the translates of a piecewise

twice differentiable function ¢ € W, such that
Z CkPx

Z Ck Pk
kez

k€Z

< b“C“oo and

0

allclle < <b"llclle

[00)

for all ¢ € ¢o(Z). Then every X = {x;} that satisfies y(X) = sup(xj41 — x;) < \/% is a

set of sampling for V?(®) forall p € {0} U [1, oo].
Proof. Using the same notation as in the proof of Theorem, we see that f'(x*) = 0 and,
therefore

x*

ropl = | [ £@ae= e\ 2 Il - | [ [ r@dua

Xj
"

b * 2 1 n,,2
> Ifller =5 J2* = 25 llellen = (@ = 5b"v2 (0 ) e

At this point the statement easily follows.

In the next two examples we apply the above Theorem and its corollary to spaces
generated by B-splines 1 = X[o1] * X[o,1] @1d B2 = X[0,1] * X[0,1] * X[0,1]-
Example (5.1.39)[260]: Let ¢ = B;. This function satisfies the conditions of Theorem
(5.1.37) with a = 1 and b’ = 2. Hence, if y(X) < 1, we have that X is a set of sampling
for V°(¢) with the lower bound 1 — y(X). Using the estimates in the proof of Theorem
(5.1.16) one can obtain explicit lower bounds for any VP (@), p € [1, o] and a universal
bound for all p € [1, ].
Example (5.1.40)[260]: Let ¢ = [,. This function satisfies the conditions of Corallary

(5.1.38) with a =% and b" = 4. Hence, if y(X) <1, we have that X is a set of

sampling for V°(¢) with the lower bound i(l — ¥2(X)). Again, Using the estimates in

the proof of Theorem (5.1.16) one can obtain explicit lower bounds for any VP (@), p €
[1, 0o] and a universal bound for all p € [1, oo].

Slanted matrices have also been studied in wavelet theory and signal processing
(see Bratteli and Jorgensen [278], [277,279,284,293],). They also occur in k-theory of
operator algebras and its applications to topology of manifolds [303]. the technique may
be applied to these situations as well. Finally, the results may be useful in the study of
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differential equations with unbounded operator coefficients similar to the ones described
in [273,274,246].
Section (5.2): Hamiltonian Deformations of Gabor Frames

The theory of Gabor frames (or Weyl-Heisenberg frames as they are also called)
Is a rich and expanding topic of applied harmonic analysis. It has numerous applications
in time-frequency analysis, signal theory, and mathematical physics. We show a
systematic study of the symplectic transformation properties of Gabor frames, both in
the linear and nonlinear cases. Strangely enough, the use of symplectic techniques in the
theory of Gabor frames is often ignored; one example (among many others) being
Casazza’s seminal [311] on modern tools for Weyl-Heisenberg frame theory, where the
word “symplectic” does not appear a single time. This is of course very unfortunate: it is
a thumb-rule in mathematics and physics that when symmetries are present in a theory
their use always leads to new insights in the mechanisms underlying that theory. To
name just one single example, the study of fractional Fourier transforms belongs to the
area of symplectic analysis and geometry; remarking this would avoid to many
unnecessary efforts and complicated calculations. On the positive side, there are
however (a few) exceptions to this refusal to include symplectic techniques in applied
harmonic analysis: for instance, in Grochenig’s treatise [330] the metaplectic
representation is used to study various symmetries in time frequency analysis, and the
recent by Pfander et al. [354] elaborates on earlier work [333] by Han and Wang, where
symplectic transformations are exploited to study various properties of Gabor frames.

We consider deformations of Gabor systems using Hamiltonian isotopies . A
Hamiltonian isotopy is a curve (f;)o<t<; Of diffeomorphisms of phase space R2?"
starting at the identity, and such that there exists a (usually time-dependent)
Hamiltonian function H such that (generalized) phase flow (f;7), determined by the
Hamilton equations

x = 0,H(x,p, 1), p=—0,H(x,p,t) (21)

consists of the mappings f; for 0 < t < 1. In particular Hamiltonian isotopies consist of
symplectomorphisms (or canonical transformations, as they are called in physics).
Given a Gabor system G (¢, A) with window (or atom) ¢ and lattice A we want to find a
working definition of the deformation of G(¢, A) by a Hamiltonian isotopy (f;)o<t<1-
While it is clear that the deformed lattice should be the image A; = f;(A) of the original
lattice A, it is less clear what the deformation ¢, = f;(¢) of the window ¢ should be. A
clue is however given by the linear case: assume that the mappings f; are linear, i.e.
symplectic matrices S;; assume in addition that there exists an infinitesimal symplectic
transformation X such that S, = e®* for 0 <t < 1. Then (S,), is the flow determined
by the Hamiltonian function

1
H(x,p) = —5 (x,p)"JX (x,p) (22)
where ] is the standard symplectic matrix. it is well-known that in this case there exists
a one-parameter group of unitary operators (S;), satisfying the operator Schrodinger
equation
d . A
lhast = H(x, _lhax)st
where the formally self-adjoint operator H(x, —ihd,.) is obtained by replacing formally
p with —ikd,, in (22); the matrices S, and the operators S, correspond to each other by
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the metaplectic representation of the symplectic group. This suggests that we define the
deformation of the initial window ¢ by ¢, = S, ¢,. It turns out that this definition is
satisfactory, because it allows to recover, setting t = 1, known results on the image of
Gabor frames by linear symplectic transformations. This example is thus a good
guideline; however one encounters difficulties as soon as one want to extend it to more
general situations. While it is “reasonably” easy to see what one should do when the
Hamiltonian isotopy consists of an arbitrary path of symplectic matrices, it is not clear
at all what a “good” definition should be in the general nonlinear case: this is discussed,
where we suggest that a natural choice would be to extend the linear case by requiring
that ¢, should be the solution of the Schrédinger equation
d -
ihaﬁbt = Ho,

associated with the Hamiltonian function H determined by the equality (f;)o<i<1 =
(f)o<t<1; the Hamiltonian operator A would then be associated with the function H by
using, for instance, the Weyl correspondence. Since the method seems to be difficult to
study theoretically and to implement numerically, we propose what we call a notation of
weak deformation, where the exact definition of the transformation ¢ — ¢, of the
window ¢ is replaced with a correspondence used in semiclassical mechanics, and
which consists in propagating the “center” of a sufficiently sharply peaked initial
window ¢ (for instance a coherent state, or a more general Gaussian) along the
Hamiltonian trajectory. This definition coincides with the definition already given in
the linear case, and has the advantage of being easily computable using the method of
symplectic integers since all what is needed is the knowledge of the phase flow
determined by a certain Hamiltonian function. Finally we discuss possible extensions of
our method.

We notice that the notion of general deformations of Gabor frames is an ongoing
topic in Gabor analysis; see for instance the recent contribution by Grdchenig et al.
[332], also Feichtinger and Kaiblinger [320] where lattice deformations are studied.

The generic point of the phase space R?" = R"™ x R" is denoted by Z = (x,p)
where we have set x = (x4, ..., x,,), p = (p4, ..., Pn). The scalar product of two vectors,
say p and x, is denoted by p - x or simply px. When matrix calculations are performed,
Z,x,p are viewed as column vectors.

We will write dZ = dxdp where dx = dx, ...dx, and dp = dp, ...dp,,. The
scalar product on L?(RR?) is defined by

W) = [z PP (x)dx
and the associated norm by ||:||. The Schwartz space of rapidly decreasing functions is
denoted by S(R™) and its dual (the space of tempered distributions) by S'(R™).

We review the basics of the modern theory of Hamiltonian mechanics from the
symplectic point of view; for details see [306,315,342,355]; we are following here the
elementary accounts we have given in [325,327].

We will equip R?™ with the standard symplectic structure

0(Z,Z'")Y=p-x"—p" - x;
in matrix notation a(Z,2") = (2')7]; where | = ( 01
zero and identity matrices. The symplectic group of R*™ is denoted by Sp,,); it consists

(1)) (0 and I are herethe n X n
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of all linear outomorphisms of R2" such o(Sz,Sz') = a(z,z') for all z,z' € R?",
Working in the canonical basis Spn) Is identified with the group of all real 2n X 2n
matrices S such that STJS = J (or, equivalently, SIST = J). A diffeomorphism f: R?" —
R2™ is called a symplectomorphism if the Jacobin matrix Df (z) is symplectic at every
z € R?™:
Df(2)"]Df(z) = Df (2)]Df ()" =]. (23)
(Symplectomorphisms are often called ‘“canonical transformations” in physics.) the
symplectomorphisms of R?" form a subgroup Symp(n) of the group Diff(R?") of all
diffeomorphisms of R?" (this follows from formula (23) above, using the chain rule).
Of course Sp(n) is a subgroub of Symp(n).
Let H € C*°(R?" x R) be real-valued; we will call H a Hamiltonian fuction. The
associated Hamilton equations with initial data z' at time t’ are
z(t) =Jd,H(z(t),t), z(t')=2z2 (24)
(cf.Egs. (21)). A ssuming existence and uniqueness of the solution for every choice of
(z',t") the time-dependent flow (ftﬁ,) is the family of mapping which associates to
every initial z' the value z(t) = ft’;,(z’) of the solution of (24). The importance of
symplectic geometry in Hamiltonian mechanics comes from the following result:
Proposition (5.2.1)[304]: Each diffeomorphism ftf’t, Is a symplectomorphism of
[Rzn:ft{"t, € Symp(n). Equivalently
[Df (D] JDf (z) = D ()] [DfF ()] =] (25)
where Df{(z) is the Jacobian matrix of £ calculated at z.

Proof. See for instance [306,325,327].
It is common practice to write ' = f/. Obviously

-1 -1
feer = flo(firo) ~ = fE(f) (26)
and the ft’;, satisfy the groupoid property
ftl,it’ftl’i,t” = ft{i” , fir=1la (27)

forall t,¢’ and t"’. Notice that it follows in particular that (ft’ft,)_l = fu.
A remarkable fact is that composition and inversion of Hamiltonian flows also
yield Hamiltonian flows:
Proposition (5.2.2)[304]: Let (f) and (f¥) be the phase flows determined by two
Hamiltonian functions H = H(z,t) and K = K(z,t). We have
fEf = f7 with H#K(z,t) = H(z,t) + K((f{) 7' (2),1).  (28)
(Ot =f"  withH(zt) = —H(f(2),t). (29)
Proof. It is based on the transformation properties of the Hamiltonian fields X, = Jo,H
under diffeomorphisms; see [325,342,355] for detailed proofs.
We notice that even if H and K are time-independent Hamiltonians the functions
H#K and H are generically time-dependent.
We will call a symplectomorphism f such that f = f for some Hamiltonian
function H and time t = 1 a Hamiltonian symplectomorphism. The choice of time t =
1 in this definition is of course arbitrary, and can be replaced with any other choice t =

a noting that we have f = £,’* where H,(z,t) = aH(z, at).
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Hamiltonian symplectomorphisms form a subgroup Ham(n) of the group
Symp(n) of all symplectomorphisms; it is in fact a normal subgroup of Symp(n) as
follows from the conjugation formula

g g =" (30)
valid for every symplectomorphisms g of R2" (see [342,325,327]). This formula is
often expressed in Hamiltonian mechanics by saying that “Hamilton’s equations are
covariant under canonical transformations”. That Ham(n) is a group follows from the
two formulas (28) and (29) in Proposition (5.2.2) above.

The following result is, in spite of its simplicity, a deep statement about the
structure of the group Ham(n). It says that every continuous path of Hamiltonian
transformations passing through the identity is itself the phase flow determined by a
certain Hamiltonian function.

Proposition (5.2.3)[304]: Let (f;); be a smooth one-parameter family of Hamiltonian
transformations such that f, = I;. There exists a Hamiltonian function H = H(z,t)
such that f, = ff. More precisely, (f;); is the phase flow determined by the

Hamiltonian function
1

HGO) = = [ 7)o f) 0222 3D
0
Where f, = df,/dt.
Proof. See Banyaga [308]; Wang [361] gives an elementary proof of formula (31).

We will call a smooth path (f;) in Ham(n) joining the identity to some element
f € Ham(n) Hamiltonian isotopy. Proposition (5.2.3) above says that every
Hamiltonian isotopy is a Hamiltonian flow restricted to sometime interval.

Consider in particular the case of the symplectic Sp(n). We claim that every path
in Sp(n) joining an element S € Sp(n) to the identity is a Hamiltonian isotopy. Since
Sp(n) is connected there exists a C! path t » S;,0 <t < 1 (in fact infinitely many)
joining the identity to S in Sp(n). in view of Proposition (5.2.3) above there exists a
Hamiltonian function H such that S, = f. The following result gives an explicit
description of that Hamiltonian without using formula (31):

Proposition (5.2.4)[304]: Let t » S;,0 <t < 1, be a Hamiltonian isotopy in Sp(n).
There exists a Hamiltonian function H = H(z,t) such that S, is the phase flow
determinant by the Hamilton equations z = Jd,H. Writing

= (¢ i) 32
The Hamiltonian function is the quadratic form
H == (D.CT — C.DT)x? + (D AT — C.BT )p - x + - (B.AT — ABT)P? (33)
where 4, = dA,/dt, etc.
Proof. The matrices S, being symplectic we have ST ]S, = J Differentiating both sides
of this equality with respect to t we get S7JS, + S7JS, = 0 or, equivalently,
J8eS7t = =(SDT8T = (J$.571)
This equality can be rewritten JS,S7* = (JS,S7 1)T hence the matrix JS,S;t is
symmetric. Set JS,S;* = M,(= MT); then
St = XSt X =M, (34)
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(these relations reduce to S, = e®™* when M, is time-independent: see (47) below).
Define now

H(z,t) = —%ZT(]Xt)Z; (35)
using (34) one verifies that the phase flow determined by H consists precisely of the
symplectic matrices S, and that H is given by formula (33).

Symplectic integrators are designed for the numerical solution of Hamilton’s
equations; they are algorithms which preserve the symplectic character of Hamiltonian
flows. The literature on the topic is immense; a well-cited is channel and Scovel [312].
Among many recent contributions, a highlight is [344] by Kang Feng and Mengzhao Q
in; also see the comprehensive by Xue-Shen Liu et al. [364], and Marsden’s online
lecture notes [351, Chapter 9].

Let (f;1) be a Hamiltonian flow; let us first assume that H is time-independent so
that we have the one-parameter group property f ftT, = ft’it,. Choose an initial value z,
at time ¢ = 0. A mapping f, on R2" is an algorithm with time step-size A, for (f{) if
we have

far(z) = fa,(2) + 0(At5);
the number k (usually an integer > 1) is called the order of the algorithm. In the theory
of Hamiltonian systems one requires that f,, be a symplectomorphism; f,, is then called
a symplectic integrator. One of the basic properties one is interested in is convergence:

setting A,=t/N (N an integer) when do we have lim (ft/N)N(z) = fH(z)? One

important requirement is stability, i.e. (ft/N) (z) must remain close to z for small t
(Chorin et al. [313]).

Here are two elementary examples of symplectic integrators. We assume that the
Hamiltonian H has the physical form

H(x,p) = U(p) +V(x).
(i)First order algorithm, one defines (xy41, Px+1) = fa, (Xk, Pi) DY

xk+1 - xk + 6pU(pk - axV(xk)At)At

Pr+1 = P — 05V (xp)AL.
(if) Second order algorithm Setting

, 1
X = X + EapU(pk)
We take
1
Xp+1 = X T EapU(pk)

Pr+1 = P — 0V (x)At.

One can show, using Proposition (5.2.3) that both schemes are not only
symplectic, but also Hamiltonian (Wang [361]). For instance, for the first order
algorithm described above, we have f,, = f;X where k is the now time-dependent
Hamiltonian

KCep,t) = U(p) +V(x = 3,U(p)1). (36)

When the Hamiltonian H is itself time-dependent its flow does no longer enjoy
the group property ftHft’? = ft’_’”,, so one has to redefine the notion of algorithm in
some way. This can be done by considering the time-dependent flow (ftﬁ’rt,) defined by
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26) : fH. =AY )_1. One then uses the following trick: define the suspended flow
(fT*r) by the formula

f@ ) = (@) e+ o) (37)
One verifies that the mappings f: R?™ x R - R?™ x R (the “extended phase space*)
satisfy the one-parameter group law f;f’f;f? = ft’z; and one may then define a notion of

algorithm approximating f;” (see Struckmeier [359] for a detailed study of the extended
phase space approach to Hamiltonian dynamics). For details see [313] by Chorin et al.
where a general Lie-Trotter is developed.

Gabor frames are a generalization of the usual notion of basis; see for instance
Grochenig [330], Feichtinger and Grochenig [319], Balan et al. [307], Heil [337],
Casazza [311] for a detailed treatment of this topic. In what follows we give a slightly
modified version of the usual definition, better adapted to the study of symplectic
symmetries.

let ¢ be an a non-zero square integrable function (hereafter called window) on
R™, and a lattice A in R?", i.e a discrete subset of R?"™. Observe that we do not require
that A be regular (i.e a subgroup of R?™). The associated 7 — Gabor system is the set of
square-integrable functions

G(p,A) = {T"(2)p:z € A}
where T"(z) = e~9&2/" is the Heisenberg operator. The action of this operator is

explicitly given by the formula

Ah [(Pox—PoXo/2)/N

T*(zp)p(x) =€ g $(x — x0) (38)
(see e.g [325,327,348]) .We will call the Gabor system G(g, A) a A-frame for L?(R?), if
there exist constants a, b > 0 ( the frame bounds) such that

A~ 2
allyll? < Z |W|T"(20)$)|” < bllpII® (39)
ZoEA
for every square integrable function i on R™. When a = b the a-frame G(g,A) is said

to be tight.

For the choice A = 1/2m the notion of A-Gabor frame coincides with the usual
notion of Gabor frame as found in the literature. In fact, in this case, writing T(z) =
T1/27 (z) and p = w, we have

(@IT @) =Wl @)l
where 7' (z) is the time-frequency shift operator defined by
T (29)p(x) = ™% (x — xo)
for z, = (x4, wy). The two following elementary results can be used to toggle between
both definitions:
1 0

Proposition (5.2.5)[304]: Let D" = (o 2mhl

if and only if G(¢, D™A) is a h-Gabor frame.
Proof. We have T"(x,,2mhpy) = T(xo,p,) Where T(xq,po) = T (xo,po).bY
definition G(¢, A) is a Gabor frame if and only if

allplI? < Xy en| (|T @)D < bllpII?
for every ¢ € L?>(R"™) that is

). The system G(¢, A) is a Gabor frame
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allpll < ¥ poyeal (@7 o po) )| < bl

this inequality is equivalent to

A 2
allYll? < Xixoporeal (@[T (xo, 2nhipe)p)|™ < blIWII?
that is to

A~ 2
allYll? < Xixo 2nn)-1pg)en| W T (x0, o) @) |” < bllplI?
hence the result since (x,, (2mh ) 1py) € A is equivalent to the condition (x,,p,) €
D™A.
We can also rescale simultaneously the lattice and the window (which amounts to
a “change of Planck’s constant™):

Proposition (5.2.6)[304]: Let G(¢, A) be a Gabor system, and set
¢"(x) = (2mh )™ 2p(x/V2mh). (40)
Then G(¢, A) is a frame if and only if G(¢p",V2rhA) is a A-frame.
Proof. We have ¢" = M, , 5=z, ¢ Where M, , 5— € Mp(n) has projection
y _ <(2nh)1/21 0 >
1/2rh 0 (2mh)~1/2]
On Sp(n). the Gabor system G($" V2mhA) is a A-frame if and only

alll? < %, cvzmmal WIT (200, i 0®)|” < III2

for every i € L*(R™), that is, taking the symplectic covariance formula (41) into
account, if and only if

P ~ 2
allYll? < X, cvzmmal (M o | T(2h) =V 2x,, (2m0) 7 2pg ) )| < bl I
But this is inequality is equivalent to

allPl? < Zypepnal W[ 20)0)| < bl I
And one concludes using Proposition (5.2.5).

Gabor frames behave well under symplectic transformations of the lattice (or,
equivalently, under metaplectic transformations of the window). Formula (41) bellow
will play a fundamental role in our transformations, and metaplectic operators. Let S €
Mp(n) have projection z"(S) = S € Sp(n). Then

T"(2)S = ST"(S™'2) (41)
(see e.g. [325,327,348]); one easy way to derive this intertwining relation is to show it
separately for each generator J, M, ,,, V» of the metaplectic group described in formula
(81),(82),(83). We remark the time-frequency shift operators do not satisfy any
simple analogue of property (41). As a consequence, the covariance properties we will
study below do not appear in any “abvious” way when using the standard tools of Gabor
analysis.

The following result is well-known, and appears in many places (see e.g.
Grochenig [330], Pfander et al. [354], Luo [349]). Our proof is somewhat simpler since
it exploits the symplectic covariance property of the Heisenberge-Weyl operators,
which we explain now.

Proposition (5.2.7)[304]: Let ¢ € L*(R™) (or ¢ € S(R™)). A Gabor system G(¢,A) is
a hi-frame if and only if G(Sp, SA) is a A-frame; when this is the case both frames have
the same bounds. In particular, G(¢, A) is a tight 2-frame if and only if G(S,, SA) is.
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Proof. Using formula (41) intertwining metaplectic and Heisenberg-Weyl operators we
have

S resal T2 @)8H)| = Sesal W[STH(S12)0)|’
= Yl $7 9| T(2)9)|

and hence, since G(¢, A) is a h-frame,
allS7 )" < Toesal WIT"3)|” < BIISTI"

The result follows since ||~y || = Il because metaplectic operatoes are unitary; the
case ¢ € S(R™) is similar since metaplectic operators are linear automorphisms of
S(R™).

The problem of constructing Gabor frames G(¢, A) in L2(R™) with an arbitrary
window ¢ and lattice A is difficult and has been tackled by many (see [331], also
[354]).Very little is known about the existence of frames in the general case. We
however have the following characterization of Gaussian frames which extends a
classical result of Lyubarskii [320] and Seip and Wallsten[357]:

Proposition (5.2.8)[304]: Let ¢%(x) = (mh) ™/*e~1XI*/2% (the standard centered
Gaussian) and Ag,p = aZ™ X BZ™ with a = (ay, .., ay) and B = (B, ..., Bn). Then
G(¢l, Ayp)isaframeif and only if a;8; < 2nhfor1 < j <n.

Proof. Bourouihiya [309] showes this for A = 1/2m; the result for arbitrary A > 0
follows using Proposition (5.2.6).

It turns out that using the result above one can construct infinitely many
symplectic Gaussian frames using the theory of metaplectic operators:

Proposition (5.2.9)[304]: Let ¢ be the standard Gaussian. The Gabor system
G(pl, Ayp) is a frame if and only if G(S@f, SA4p) is a frame (with same bounds) for

every S € Mp(n). Writing S in block-matrix form (‘2 g) the window S¢? is the
Gaussian
AR 1\V/4 1/4 —i(X+iY)x-x
Soh(x) = (g) (det X)/*e 2 (42)
where
X = —(CAT + DBT)(AAT + BBT)™1 (43)
Y = (AAT + BBT)"! (44)

are symmetric matrices, and X > 0.
Proof. That G(pf, Ayp) is a frame if and only if G(Spf, SA,p) is a frame follows from

Proposition (5.2.7). To calculate S¢?
Let us choose A/2m and consider the rotations

__(cost sint
St = (— sint cos t) (25)

(we assume n = 1). The matrices S; form a one-parameter subgroup of the symplectic
group Sp(1). To (S,) corresponds a unique one-parameter subgroup (S,) of the
metaplectic group Mp(1) such that S, = n/?7(S,). (S;4) is explicitely given for t
km (k integer) by

PN 1 1/2 0 . !

Std)(x) — l-m(t) ( ) f eZmW(x,x 't)qb(x’)dx’

2mi|sin t| —

where m(t) is an integer (the “Maslov index”’) and
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Wix,x',t) = Tt ((x? +x"?) cost — 2xx").

The metaplectic operators S, are the “fractional Fourier transforms” familiar from
time-frequency analysis (see e.g Almedia [305], Namias [352]). The argumentation
above clearly shows that the study of these fractional Fourier transforms belong to the
area of symplectic and metaplectic analysis and geometry.

Applying Proposition (5.2.7) we recover without any calculation the results of
Kaiser [343, Theorem 1 and Corollary 2] about rotations of Gabor frames; in the
notation:

Corollary (5.2.10)[304]: Let G(¢, A) be a frame; then G(S.¢, S;A) is a frame for every
t e R.

Notice that fractional Fourier transforms (and their higher-dimensional
generalizations) are closely related to the theory of the quantum mechanical harmonic
oscillator: the metaplectic operators S, are solutions of the operator Schrodinger
equation
~ 2 A
ih=$, =1(-h?<- +x2)35,.

The symplectic covariance property of Gabor frames studied above can be
interpreted as a first result on Hamiltonian deformations of frames because, as we will
see, every symplectic matrix is the value of the flow (at some time t) of Hamiltonian
function which is a homogeneous quadratic polynomial (with time-depending
coefficients) in the variables x;, p,. We will in fact extend this result to deformations by
affine flows corresponding to the case where the Hamiltonian is an arbitrary quadratic
function of these coordinates.

The first example (the fractional Fourier transform) can be interpreted as a
statement about continuous deformations of Gabor frames. For instance, assume that
S, = e'™, X in the Lie algebra sp(n) of the symplectic goup Sp(n) (it is the algebra of
all 2n x 2n matrices X such that XJ + JXT = 0; when n = 1 this condition reduces to
TrX = 0; see e.g. [322,325]). The family (S;) can be identified with the flow
determined by the Hamilton equations z = Jd,H where

1
H(z) = -52 (X7 (46)
is a quadratic polynomial in the variables x;, p, (cf. formula (35)). That flow satisfies
the matrix differential equation
d
_St = XSt. (47)

dt
We now make the following fundamental observation: in view of the unique lifting

property of covering spaces, to the path of symplectic matrices t — S;,0 <t <1,

corresponds a unique path ¢t — S;,,0 <t < 1, of metaplectic operators such that $, =

I, and S; = S it can be shown that this path satisfies the operator Schrodinger equation
d . .

Where H is the Weyl quantization of function H (for a detailed discussion of the

correspondence between symplectic and metaplectic pathes see de Gosson [325,327],

Leray [347]; it is also hinted at in at Folland [322]). Collecting these facts, one sees that
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G(S¢l, SA,p) is obtained from the initial Gabor frame G(¢&, A,z) by a smooth
deformation

t = G(Scpl, Sehap), 0<t<1. (49)
Let S be an arbitrary element of the symplectic group Sp(n). Such an element can in
general no longer be written as an exponential e*, X € sp(n), so we cannot define an
isotopy joining I; to S by the formula S, = e®*X. However, in view of Proposition
(5.2.4), such an isotopy t — S; exists (but it does not satisfy the group property S;S," =
S,.¢ as in the case S, = e**). Exactly as above , to this isotopy corresponds a path ¢
S, of metaplectic operators such that S, = I; and S; = S, and this path again satisfies a
Schrodinger equation (48) where the explicit form of the Hamiltonian function is given
by formula (33) in Proposition (5.2.4). Thus, it makes sense to consider smooth
deformations (49) for arbitrary symplectic isotopies. This situation will be generalized
to the nonlinear case later.

A particular simple example of transformation is that of the translations
T(z0):2 = 3z + 3, in R?™. On the operator level they correspond to the Heisenberg —
Weyl operators T"(z,). This correspondence is very easy to the understand in terms of
“quantization”: for fixed z, consider the Hamiltonian function

H(z) =0(2,20) =p-Xg— Do X
The associated Hamilton equations are just x = x,, p = po Whose solutions are x(t) =
x(0) + txy and p(t) = p(0) + tpy, that is z(t) = T(tz,)z(0). Let now
H= 0(%,30) = (—ihdy) - Xo — Do " X
be the “quantization” of H, and consider the Schrddinger equation
thd p = 0(2,20)¢

Its solution is given by

P(x,t) = e"t0@=)/ Mg (x,0) = T(tz,)P(x,0)
( the second equality can be verified by a direct calculation, or using the Campbell-
Hausdorff formula [322,325,327,348]).

Translations act in a particularly simple way on Gabor frames; writing T(z,)A =
A + z; we have:

Proposition (5.2.11)[304]: Let z,,3, € R?™. A Gabor system G(¢,A) is a A-frame if
and only if g(T"‘(zo)gb,T(zl)A) is a A-frame; the frame bounds are in this case same
for all values of z, 3;.
Proof. We will need the following well-known [322,325,327,348] properties of the
Heisenberge —Weyl operators:

Th(z)T"(z") = e?@/MT ()T (5") (50)

Th(z +3) = e—ia(z,z')/h'j‘wh(z)rj‘wh(zl). (51)

Assume first z; = 0 and let us show that G(T"(z,)¢,A) is a A-frame if and only if
G(¢,A) is. We have, using formula (50) and the unitary of T"(z,),

D@D Ed| = Y |@lee 1T @) T ¢)
ZEA ZEA
= D @I et @e)| = ) |z @e)

ZEA ZEA

it follows that the inequality

)
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allyll? < ) [T o) < bl
IS equivalently to et

- 2
allpll? < ) [T @) < bl
ZEA
hence our claim in the case z; = 0. We next assume that z, = 0; we have, using this

time formula (51),

@it @e) = Y |wlthe + o) = ) (@@ @)

Z€T(z1)A ZEA ZEA

= [Ph =zl @)
ZEA
and one conclude as in the case z; = 0. The case of arbitrary z,,z; immediately
follows.

Identifying the group of translations with R?" the inhomogeneous (or affine)
symplectic group ISp(n) is the semi-direct product Sp(n) x R?" (see [310, 322,325]);
the group law is given by

(S,2)(S",z) = (585',z+ Sz").

Using the conjugation relation (cf. (41))

S™IT(zy)S =T(S71zy) (52)
one checks that ISp(n) is isomorphic to the group of all affine transformations of R?"
of the type ST (z,) (or T(z,)S) where S € Sp(n).

The group ISp(n) appears in a natural way when one considers Hamiltonians of
the type

H(z,t) =%M(t)z-z+m(t) - Z (53)

where M (t) is symmetric and m(t) is a vector. In fact, he phase flow determined by the
Hamilton equation’s for (53) consist of elements of ISp(n). Assume for instance that
the coefficients M and m are time-independent; the solution of Hamilton’s equations
z=JM,+ ], is

ze =eMzy+ (M) 1(e™ — DM (54)
provided that det M # 0. When det M = 0 the solution (54) is still formally valid and
depends on the nilpotency degree of X = JM. Since X = JM € sp(n) we have s; =
et € Sp(n); setting & = X~ 1(e™ — Nu the flow (f) is thus given by

fi =TE)Se € ISp(n).

The metaplectic group Mp(n) is a unitary representation of the double cover
Sp,(n) of Sp(n). There is an analogue when Sp(n) is replaced with ISp(n): it is the
Weyl-metaplectic group WMp(n), which consists of all products T(z,)S; notice that
formula (41), which we can rewrite

STITM2)S = T"(S712) (55)
Is the operator version of formula (52).

We now turn to the central topic, which is to propose and study “reasonable”
definitions of the notion of deformation of a Gabor frame by a Hamiltonian isotopy. We
begin by briefly recalling the notion of Weyl quantization.
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Let H be a Hamiltonian which we assume to be well-behaved at infinity ; more
specifically we impose for fixed t, the condition
H(,t) € C*(R?*™) N S'(R?>™),
We will call such a Hamiltonian function admissible. We denote by A = Op(H) the
pseudo-differential operator on R™ associated to H by the Weyl rule. Formally, for ¢ €
S(R™),

Hy(x) = (ﬁ)n f j ey (% (x+¥),p, t) Y(x)dpdy ;

more rigorously (that is avoiding convergence problems in the integeral above)
~ 14\" .
M@ = (55) | He@ T oGz
where H, is the symplectic Fourier of H and T"(z,) is the Heisenberg-Weyl operator
defined by formula (38). An essential observation is that the operator H is (formally)
self-adjoint (because a Hamiltonition is a real function). We refer to the standard
literature on pseudo-differential calculus for details (see [322,325,327,353,358,362]; a
nice review accessible to non-specialists is given by Littlejohn in [348]. Our choice of
this particular type of quantization-among all others available on the market — is not
arbitrary; it is due to the fact that the Weyl rule is the only [362] quantization procedure
which is symplectically covariant in the following sense: let S be an arbitrary element of
the metaplectic group Mp(n); if $ has projection S € Sp(n) then
Op(H o S) = SOp(H)S . (56)
This property, which easily follows from the intertwining relation (41) for Heisenberg-
Weyl operators, is essential in our context, since our aim is precisely to show how
symplectic convariance properties provide a powerful tool for the study of
transformations of Gabor frames.
It is usually to consider the Schrddinger equation associated with an admissible
Hamiltonian function H: It is the linear partial differential equation
ih% = Hyp, (-,0) =, (57)
where the initial function is usually chosen in the Schwartz space S(R™). Every solution
1 can be written
) Y0x, ) = Oetho ()
and U, is called the evolution operator (or “propagator”) for the Schrodinger equation
(57). An essential property is that the U, are unitary operators on L?(R™). To see this,
set u(t) = (U|Usp) where 9 is in the domain of A (for instance ¥ € S(R™));
differentiating with respect to t and using the product rule we have
ihu(t) = (HU|0p) — (Up|HOp) = 0
since H is (formally) self- adjoint; it follows that (U.|Up) = (¥ly) hence U, is
unitary as claimed.
We now turn to the description of the problem. Let f € Ham(n) and (f;)<¢<1 b€
a Hamiltonian isotopy joining the identity to f; in view of Proposition (5.2.3) there
exists a Hamiltonian function H such that f, = £ for 0 < t < 1. we want to study the
deformation of a h-Gabor frame G(¢,A) by (f;)o<i<1; that is we want to define a
deformation
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G, A) > G(U.9, f.h); (58)
here U, is an (unknown) operator associated in some (yet unknown) way with f,. We
will proceed by analogy with the case f; =S; € Sp(n) where we defined the
deformation by

S A
G, M) = G(S:, Seh); (59)
where S, € Mp(n), S, = " (S,). This suggests that we require that:
(iii) The operator U, should be unitary in L?(R");
(iv) The deformation (58) should reduce to (59) when the isotopy (f;)o<e<1
lies than Sp(n).
The following property of the metaplectic representation gives us a clue. Let (S;)
be a Hamiltonian isotopy in Sp(n) € Ham(n). We have seen in Proposition (5.2.4) that
there exists a Hamiltonian function

1
H(z,t) = EM(t)z A
with associated phase flow precisely (S;). Consider now the Schrédinger equation

L0y

lh% = Hy, Y(,0) =19,
where H is the Weyl quantization of H (real that H is a formally self-adjoint operator).
It is well-known [325,327,322] that 1 = S, where (S;) is the unique path in Mp(n)
passing through the identity and covering (S;). This suggests that we should choose
(Ut)t in the following way: let H be the Hamiltonian function determined by the

Hamiltonian isotopy (f,): f; = f. the quantize H into an operator A using the Weyl
correspondence, and let U, be the solution of Schrédinger’s equation
mo0,= A0, Oy=1, (60)

While definition (59) of a Hamiltonian deformation of a Gabor system is
"reasonable”, its practical implementation is difficult because it requires the solution of
a Schrodinger equation. We will therefore try to find a weaker, more tractable definition
of the correspondence (58), which is easier to implement numerically.

The "weak Hamiltonian deformation” scheme method we are going to use is the
so-called Gasussian wave packet method which comes from semiclassical mechanics
and is widely used in chemistary; it is due to Heller and his collaborators (Heller
[338,339], Davis and Heller [314]) and Littlejohn [348]. (for a rather up to date
discussion of various Gaussian wave packet methods see Heller [340].) for fixed z, we
set z, = f{1(z,) and define the new Hamilton function

Hzo (Z, t) = (aZ'H)(Zt' t)(Z - Zt) + %DZZH(ZD t)(Z - Zt)z; (61)

it is the Taylor series of H at z, with terms of order 0 and > 2 suppressed. The
corresponding Hamilton equations are

z=]0,H(z,t) +D;H(z;,t)(z — 7). (62)
We make the following obvious but essential observation: in view of the uniqueness
theorem for the solution of (32) with initial value z, is the same as that of the
Hamiltonian system

z(t) = (95, H)(2(2), 1) (63)
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with z(0) = z,. Denoting by (ftHZO) the Hamiltonian flow determined by H, we thus

have ff(z,) = ftHZ" (z,). More generally, the flows (ftHZ") and (f) are related by a

simple formula involving the "linearized flow" (S;):
Proposition (5.2.12)[304]: The solutions of Hamilton’s equations (62) and (63) are
related by the formula

z(t) = z; + 5:(2(0) — z,) (64)
where z, = fH(z,), z. = f(z) and (S,) is the phase flow determined by the quadratic
time-dependent Hamiltonian

1
HO(z,t) = EDZZH(ZD t)z-z (65)

Equivalently,

f1(2) = Tlz, — 51(20)]1 S¢(2(0)) (66)
where T (+) is the translation operator.
Proof. let us set u = z — z;. we have, taking (62) into account,

U+ 2z, =Jo,H(z(t),t) + JDZH(z., t)u
that is, since z;, = Jd,H (z;, t),
i = JD?H(z,, t)u
It follows that u(t) = S;(u(0)) and hence
z(t) = f'(z) + Su(0) = z, — S (20) + St(Z(O))

Which is precisely (64).
Remark (5.2.13)[304]: the function t +— S,(z) = DfF(z) satisfies the "variational
equation™

d
75t(2) =JD;H(f!(2),)S:(2),  So(2) =1 (67)

(this relation can be used to show that S;(z) is symplectic [325,327]; it thus gives a
simple proof of the fact that Hamiltonian phase flows consist of symplectomorphisms
[325,327]).

The thawed Gaussian approximation (TGA) (also sometimes called the nearby
orbit method) consists in making the following Ansatz:

The approximate solution to Schrodinger’s equation

W g oo
ihoe = A, w(.0) = ¢,

where
¢?0 = Th(Zo)‘.bg (68)
Is the standard coherent state centered at z, is given by the formula
~ 13 A ~ A
Plx, ) = en" PITR(7,) S, (20) T (20) T B2, (69)

where the phase y (t, z,) is the symmetrized action
1

Vo) = [ (30020 — e, t)) ar (70)

0
calculated along the Hamiltonian trajectory leading from z, at time t, = 0 to z, at t.
One shows that under suitable conditions on the Hamiltonian H the approximate
solution satisfies, for |t| < T, an estimate of the type
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[0, ) =P, 0] < €z, T) Vhlt] (71)
where C(z,,T) is a positive constant depending only on the initial point z, and the time
interval [—T, T] (Hagedorn [335,336], Nazaikiinskii et al. [353]).

We consider a Gaussian Gabor system G(¢=, A); applying the nearby orbit
method to ¢ yields the approximation

BL = en O (z)$, 0 (72)
where we have set S, = S,(0). Let us consider the Gabor system G (¢, A) where A, =
fo ().

Proposition (5.2.14)[304]: The Gabor system G(¢2, A) is a Gabor h-frame if and only
if G(¢l,A) is a Gabor h-frame; when this is the case both frames have the same
bounds.

Proof. Writing

Lw) = ) Wl @eh)

ZEAt
we set out to show that the inequality

allyll®* < I,() < bllYll? (73)
(for all y € L2(R?)) holds for every t if and only if it holds for t = 0 (for all ¥ €
L?(R?)). In view of definition (72) we have

L) = ) |WIT@T @)5%)
ZEA;

the commutation formula (50) yields
T*(2)T"(z,) = ' 7##/" T (2,)T"(2)

2

.
)

and hence
L@) = ) @I T @Sh)|
ZEA;
= Y @I e @8I
Since T"(z,) is unitary the inequglei{[ly (73) is thus equivalent to
allyl? < ) [@IT @508 < bl (74

ZEA
In view of formula (64) we have, since S;z, = 0 because z, = 0,

fi'(2) = Sezo + f1(0) = Sz + z,
hence the inequality (74) can be written

allpll? < ) @ISz + 205:98)|” < bl (75)

ZEA
In view of the product formula (51) for Heisenberg-Weyl operators we have

Th(S,z + z,) = eloCz2)/2hTh (7 YT (S, 2)
so that (75) becomes
~ ~ A 2
allpll? < ) |(|T T S8 < bl (76)

ZEA

the unitarity of T(z,) implies that (76) is equivalent to

199



~ ~ 2
allyl? < ) (@I Setb)]” < bl (77)
ZEA
Using the symplectic covariance formula (51) we have

Th(StZ)St(P(’)l = .SA't’IA”h(z)
so that the inequality (77) can be written

allll? < ) [@IS T @) < bllwll;

ZEA
since S; is unitary, this is equivalent to

allyl? < Y |WIT )] < bl

o ZEA
The Proposition follows.

The fact that we assumed that the window is the centered coherent state ¢ is not
essential. For instance, proposition (25) shows that the result remains valid if we
replace ¢ with a coherent state having arbitrary center, for instance
¢ =T"(zy)¢pg. More generally:

Corollary (5.2.15)[304]: Let G(¢,A) be a Gabor system where the window ¢ is the
Gaussian
/4

detIm M iy
) e zMx (78)

h —

du(x) = (W
where M = MT,ImM > 0. then G(¢pI, A,) is a Gabor h-frame if and only if it is the
case for G(¢, A).
Proof. It follows from the properties of the action of the metaplectic group on
Gaussians that there exists S € Mp(n) such that ¢ = S¢l. Let S = n"(S) be the
projection on Sp(n) of S; the Gabor system G(¢¥,A) is a h-frame if and only if
G(S71pr,SIA) = G(p%,S7A) is a h-frame in view of Proposition (5.2.7) .the result
now follows Proposition (5.2.14).

We finally remark that the fact that we have been using Gaussian windows
(coherent states and their generalizations) is a matter of pure convenience. in fact, that
definition of weak Hamiltonian deformations of a Gabor frame as given above is valid
for arbitrary windows ¢ € S(R™) (or ¢ € L*(R™)). it suffices for this to replace the
defining formula (72) with

1

¢ = e COTh(2)pl S, 9. (79)
One can prove that if ¢ is sufficiently concentrated around the origin, then ¢, is again a
good semiclassical approximation to the true solution of Schrodinger’s equation. This
question is related to the uncertainty principle, see [323,324,329]. However, when one
wants to the initial window to belong to more sophisticated functional spaces than
S(R™) or L2(R™) one might be confronted to technical difficulties if one wants to prove
that the deformed window (79) belongs to the same space. However, there is a very
important case where this difficulty does not appear, namely if we assume that the
initial window ¢ belongs to Feichtinger’s algebra S, (IR™). Since our definition of weak
transformations of Gabor frames only makes use of phase space translations 7"(z) and
of metaplectic operators it follows that ¢, € S,(R™) if and only if ¢ € Sy,(R™) (see de
Gosson [326]). This is due to the fact that the Feichtinger’s algebra is the smallest
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Banach algebra invariant under these operations, and is thus preserved under the
semiclassical propagation scheme used here. It is unknown whether this property is
conserved under passage to the general definition (59) b, that is

G, A) =5 (0., f.1) (80)
where U, is the solution of the Schrodinger equation associated with the Hamiltonian
operator corresponding to the Hamiltonian operator corresponding to the Hamiltonian
iIsotopy (fi)o<t<1. One does not know at the time of writing if the solution to
Schrddinger equations with initial data in Sy(R™) also is in S,(R™) for arbitrary
Hamiltonians. The same difficulty appears when one considers other more general
functions spaces (e.g modulation spaces).

We shortly discuss some future issues that will be studied in forthcoming; the list
is of course far from being exhaustive, since these “first steps” of a general theory of
Hamiltonians of Gabor frames will hopefully become a marathon!

We Dbriefly indicate here how the weak Hamiltonian deformation method could be
practically and numerically implemented; we will come back to this important practical
issue in a forthcoming where experimental results will be given. The main observation
Is that a weak deformation of a Gabor frame consists of two objects: a Hamiltonian flow
and a family of operators approximating the quantized version of that flow (semi
classical propagator). First, the action of the Hamiltonian isotopy on the Gabor lattice
can be computed ( to an arbitrary degree of precision) using the symplectic algorithms
reviewed; a host of numerical implementations can be found, see for instance the
already mentioned works [312,344, 364]. The corresponding deformation of the
window should not be more difficult to compute numerically, since the essence of the
method consists in replacing the “true” quantum propagation with a linearized operator,
expressed in terms of translations and metaplectic operators as in formula (69), which
says that (up to an unessential phase factor) the propagated coherent state is an
expression of the type

Th(zt)gt(zo)Th(Zo)_ld’go = 'T"h(zt)ft(zo)q,’)go.

Numerically, this term can be calculated using the symplectic algorithm to
evaluate T"(z,) = T"(f(z,)) and then calculate S,(z,) by numerical (or explicit)
methods for generating metaplectic operators given. Of course, precise error bounds
have to be proven, but this should not be particularly difficult, these approximation
theories being well-established parts of the toolbox of numerical analysis.

Since our definition of weak deformations was motivated by semi classical
considerations one could perhaps consider refinements of this method using the
asymptotic expansions of Hagedorn [335,336] and his followers; this could then lead to
“higher order* weak deformations, depending on the number of terms that are retained.
The scheme we have been exposing is a standard and robust method; its advantage is its
simplicity. We will discuss other interesting possibilities. For instance, in [338,339]
Heller proposes a particular simple semi classical approach which he calls the “frozen
Gaussian approximation” (FGA). It is obtained by surrounding the Hamiltonian
trajectories by a fixed (“frozen”) Gaussian function (for instance ¢2) and neglecting its
“squeezing” by metaplectic operators used in the TGA. Although this method seems to
be rather crud, it yields astoundingly accurate numerical results applied to super
positions of infinitely many Gaussians; thus it inherently has a clear relationship with
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frame expansions. A more sophisticated procedure would be the use of the Kluk-
Herman (HK) approximate propagator, which has been widely discussed in the
chemical literature (Herman [341] shows that the evolution associated with the HK
propagator is unitary, and Swart and Rousse [360] put the method on a firm
mathematical footing by relating it with the theory of Fourier integral operators; in
[334] Grossmann and Herman discuss questions of terminology relating to the FGA and
the HK propagator). Also see Heller [340] and Kay [345] where the FGA and the
respective merits of various semi classical approximation methods are discussed .

Still, there remains the question of the general definition (80) where the exact
quantum propagator is used. It would indeed be more intellectually (and also probably
practically!) satisfying to study this definition in detail. We preferred to consider a
weaker version because it is relatively easy to implement numerically using symplectic
integrators. The general case (80) is challenging, but probably not out of reach . from a
theoretical point of view, it amounts to construct an extension of the metaplectic
representation in the non-linear case; that such a representation indeed exists has been
shown with Hily [328] (a caveat: one sometimes finds in the physical literature a claim
following which such an extension could not be constructed, a famous theorem of
Greenwood and Van Hove being invoked to sustain this claim. This is merely a
misunderstanding of this theorem, which only says that there is no way to extend the
metaplectic representation so that the Dirac correspondence between Poisson brackets
and commutators is preserved). There remains the problem of how one could prove that
there is no way to extend the metaplectic representation so that the Dirac
correspondence between Poisson brackets and commutators is preserved). There
remains the problem of how one could show that the deformation scheme (80) preserves
the frame property; a possible approach could consist in using a time-slicing (as one
does for symplectic integrators); this would possible also lead to some insight on
whether the Feichtinger algebra is preserved by general quantum evolution. This is an
open question which is being actively investigated.

Section (5.3): Gabor Systems

The question of robustness of a basis or frame is a fundamental problem in
functional analysis and in many concrete applications. It has its historical origin in the
work of Paley and Wienter (see, e.g, [405]) who studied the perturbation of Fourier
bases and was subsequently investigated in complex analysis and harmonic analysis.
Particularly fruitful was the study of the robustness of structured function systems, such
as reproducing kernels, sets of sampling in a space of analytic functions, wavelets, or
Gabor systems. We take a new look at the stability of Gabor frames and Gabor Riesz
sequences with respect to general deformations of phase space.

To be explicit, let us denote the time-frequency shift of a function g € L?(R?)
along z = (x,&) € RY x R ~ R?% by

m(2)g(t) = >t g(t — x).
For a fixed non-zero function g € L?(R?), usually called a “window function”, and A €
R?, a Gabor system is a structured function system of the form
G(b,A) = {n(D)g = e*™g(- —x): 1= (x,§) € A}.
The index set A is a discrete subset of the phase space R2¢ and A indicates the
localization of time-frequency shift w(1)g in phase space.
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The Gabor system G(g, A) is called a frame (a Gabor frame), if
AIFIZ < ) 1 mP < BIFIG  f € PR,

AEA
for some constants 0 < A < B < . In this case every function f € L*(R?) possesses

an expansion f =Y ,c¢m(1)g, for some coefficient sequence ¢ € #2(A) such that
I 1l> = llcll,. The Gabor system G(g,A) is called a Riesz sequence (or Riesz basis for
its span), if [|X, ¢ m(Dgll, = llc]l, for all ¢ € £2(A).

For meaningful statements about Gabor frame it is usually assumed that

[ Kg.mIgldz < e

R2d
This condition describes the modulation space M*(R%), also known as the Feichtinger
algebra. Every Schwartz function satisfies this condition.

We study the stability of the spanning properties of G(g, A) with respect to a set
A S R??,If A is “close enough” to A, then we expect G(g,A’) to possess the same
spanning properties. We distinguish perturbations and deformations. Whereas a
perturbation is local and A’ is obtained by slightly moving every A € A, a deformation is
a global transformation of R?¢. the existing literature is rich in perturbation results, but
not much is known about deformations of Gabor frames.

(a) Perturbation or jitter error: The jitter describes small point wise perturbations
of A. For every Gabor G(g,A) with g € M*(R%) there exists a maximal jitter € > 0
with the following property: if sup,cpinfyrcpld — A'| < € and supyreprinfiep|d — 47| <
€, then G(g, ") is also a frame. See [384, 388] for a general result in coorbit theory, see
[386], and Christensen’s book on frames [375].

Conceptually the jitter error is easy to understand, because the frame operator is
continuous in the operator norm with respect to the jitter error. The proof techniques go
back to Paley and Wiener and amount to norm estimates for the frame operator. See
[375] and [405] for a modern exposition.

(b) Linear deformations: The fundamental deformation result is due to
Feichtinger and Kaiblinger [385]. Let g € M1(R%),A € R?4 be a lattice, and assume
that G(g, A) is a frame for L?(R%). Then there exists e > 0 with the following property:
if Aisa2d x 2d-matrix with ||A — I|| < € (in some given matrix norm), then G(g, AA)
is again a frame .only recently, this result was generalized to non-uniform Gabor frames
[368]. The proof for the of a lattice [385] was based oduality theory of Gabor frames,
the proof for non-uniform Gabor frames in [368] relies on the stability under chirps of
the Sjostrand symbol class for pseudo differential operators, but this technique does not
seem to adapt to nonlinear deformations. Compared to perturbations, (linear)
deformations of Gabor frames are much more difficult to understand, because the frame
operator no longer depends (norm-) continuously on A and a deformation may change
the density of A (which may affect significantly the spanning properties of G(g, A)).

Perhaps the main difficulty is to find a suitable notion for deformations that
preserves Gabor frames. Except for linear deformations and some preliminary
observations in [377,380] this question is simply unexplored. We introduce a general
concept of deformation, which we call Lipschitz deformations. Lipchitz deformations
include both the jitter error and linear deformations as a special case. The precise
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definition is somewhat technical and will be given. For simplicity we formulate a
representative special case.
Theorem (5.3.1)[356]: Let g € M1(R%), and A € R?4. Let T,: R?>? - R?? for n € N
be a sequence of differentiable maps with Jacobian DT,,. Assume that

sup |DT,(z) —=I| =0 asn— o, (81)

zeR24

Then the following holds.

(@) If G(g,A) is a frame, then G(g, T,,(A)) is a frame for all sufficiently large n.

(b)If G(g,A) is a Riesz sequence, then G(g,T,,(A)) is a Riesz sequence for all

sufficiently large n.

We would like to emphasize that Theorem (5.3.1) is quite general. It deals with non-
uniform Gabor frames (not just lattices) under nonlinear deformations.in particular,
Theorem (5.3.1) implies the main results of [385,368]. The counterpart for deformations
of Gabor Riesz sequences (item (b)) is new even for linear deformations.

Condition (81) roughly states that the mutual distances between the points of A
are preserved locally under the deformation T,. Our main insight was that the frame
property of a deformed Gabor system G(g,T,,(A)) does not depend so much on the
position or velocity of the sequences (T;,(1)),,ey for 4 € A, but on the relative distances
|T,,(1) — T,,(A")]| for A4, A" € A. For an illustration see Example (5.3.26).

As an application of Theorem (5.3.1), we derive a non-uniform Balian-Low
Theorem (BLT). For this, we recall that the lower Beurling density of a set A € R?¢ is
given by

D-(A) = I ~ #A N Bg(2)
W) = fim i oI(BA(0))
and likewise the upper Beurling density D*(A) (where the minimum is replaced by a
supremum). The fundamental density Theorem of Raman than and Steger [396] asserts
that if G(g,A) is aframe then D~(A) = 1. Analogously, if G(g, A) is a Riesz sequence,
then D*(A) < 1 [370]. The so-called Balian-low Theorem (BLT) is a stronger version
of the density Theorem and asserts that for “nice” window s g the inequalities in the
Balian -Low Theorem is a consequence of [385]. A Balian-Low Theorem for non-
uniform Gabor frames was open for a long time and was proved only recently by
Ascensi, Feichtinger, and Kaiblinger [368]. The corresponding statement for Gabor
Riesz sequences was open and is settled here as an application of our deformation
Theorem. See Heil’s detailed survey [392] of the numerous contributions to the density
Theorem for Gabor frames after [396] and to [378] for the Balian-low Theorem.

As an immediate consequence of Theorem (5.3.1) we obtain the following
version of the Balian-Low therem for non-uniform Gabor systems.

Corollary (5.3.2)[356]: (Non-uniform Balian-Low Theorem). Assume that g €
M (R9).

(@) If G(g,A) is a frame for L2(R%), then D~ (A) > 1.

(b)If G(g,A) is a Riesz sequence in L2(R%), then D*(A) < 1.

Proof. We only prove the new statement (b), part (2) is similar [368]. Assume G(g, A) is
a Riesz sequence but the D*(A) = 1. Let a,, > 1 such that lim a, = 1 and set T,z =

n—-oo

anz. Then the sequence T, satisfies condition (81). on the one hand, we have
D*(a,A) = a?® > 1, and on the other hand, Theorem (5.3.1) implies that G(g, a,A) is
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a Riesz sequence for n large enough. This is a contradiction to the density Theorem, and
thus the assumption D*(A) = 1 cannot hold.

The proof of Theorem (5.3.1) does not come easily and technical. It combines
methods from the theory of localized frames [387,390], the stability of operators on £P-
spaces [366,401] and weak limit techniques in the style of Beurling [373]. We say that
I' € R?? is a weak limit of translates of A € R24, if there exists a sequence (z,,) ey S
R24, such that A + z,, —» T" uniformly on compact sets. For the precise definition and
more details on weak limits.

We will prove the following characterization of non-uniform Gabor frames
“without inequalities”.

Theorem (5.3.3)[356]: Assume that g € M*(R%) and A € R?%. Then G(g,A) is a
frame for L?(R%), if and only if for every weak limit T of A the map f —

(f,m(¥)g))yer is One-to-one on (Ml(Rd)) :

The full statement with five equivalent conditions characterizing a non-uniform
Gabor frame will be given, Theorem (5.3.14). An analogous characterization of Gabor
Riesz sequences with weak limits is stated in Theorem (5.3.17).

For the special case when A is a lattice, the above characterization of Gabor
frames without inequalities was already proved in [391]. In the lattice case, the Gabor
system G(g,A) possesses additional invariance properties that facilitate the application
of methods from operator algebras. The generalization of [391] to non-uniform Gabor
systems was rather surprising for us and demands completely different methods.

To make Theorem (5.3.3) more plausible, we make the analogy with Beurling’s
results on balayage in Paley-Wiener space. Beurling [373] characterized the stability of
sampling in the Paley-Wiener space of bandlimited functions {f € L2(R%) : supp § S
S} for a compact spectrum S € R¢ in terms of sets of uniqueness for this space. It is
well-known that the frame property of a Gabor system G(g,A)is equivalent to a
sampling Theorem for an associated transform. Precisely, let z € R?¢ — Vof (z) =

(f,m(2)g) be the short-time Fourier transform, for fixed non-zero g € M*(R%) and f €

(Ml(]R{d))*. Then G(g, A) is a frame, if and only if A is a set of sampling for the short-

time Fourier transform on (M1)*. In this light, Theorem (5.3.3) is the precise analog of
Beurling’s Theorem for bandlimited functions.

One may therefore try to adapt Beurling’s methods to Gabor frames and the
sampling of short-time Fourier transforms. Beurling’s ideas have been used for many
sampling problems in complex analysis following the pioneering work of Seip on the
Fock space [397,398] and the Bergman space [399], see also [372] for a survey. A
remarkable fact in Theorem (5.3.3) is the absence of a complex structure (except when
g 1s a Gaussian). This explains why we have to use the machinery of localized frames
and the stability of operators in the proof. We mention that Beurling’s ideas have been
transferred to a few other contexts outside complex analysis, such as sampling
Theorems with spherical harmonics in the sphere [393], or, more generally, with
eigenvectors of the Laplace operator in Riemannin manifolds [395].

We collect the main definitions from time-frequency analysis. We discuss time-
frequency molecules and their #P-stability. We devoted to the details of Beurling’s
notation of weak convergence of sets. We state and prove the full characterization of
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no-uniform Gabor frames and Riesz sequences without inequalities. We introduce the
general concept of a Lipschitz deformation of a set and prove the main properties. We
state and show the main result, the general deformation result.

Let, |x| = (]x4]|? + -+ |x4]*)*/? denotes the Euclidean norm, and B, (x)
denotes the Euclidean ball. Given two functions f, g : X = [0, ), we say that f < g if
there exists a constant € > 0 such that f(x) < Cg(x),forall x € X. Wesay that f = g
iff<gandg <f.

A set A € R4 is called relatively separated if

rel(A) = sup{#(ANB,(x)): x € R%} < oo, (82)
It is called separated if

sep(A) =inf{{A —A'|: A+ 1" € A} > 0. (83)
We say that A is §-separated if sep(A) = 6. A separated set is relatively separated and
rel(A) < sep(A)71, A € R4, (84)

Relatively separated sets are finite unions of separated sets.
The hole of a set A € R is define as
p(A) = sup inflx — 4. (85)

x€ER4
A sequence A is called relatively dense if p(A) < co. Equivalently, A is relatively dense

if there exists R > 0 such that
Rd = U B (A).

AEA
In terms of the Beurling defined, a set A is relatively separated if and if D*(A) < o

and it is relatively dense if and only if D~(A) > 0.
The amalgam space W (L®, L)(R%) consists of all functions f € L*(R%) such
that

||f||W(L°°,L1) = j”f”]ﬁ(gl(x))dxx € R? = Z ||f||L°°([0,1]d+k) < oo,
R4

kezd
The space C,(R%) consists of all continuous functions f: R¢ — C such that lim f(x) =
X—00

0, consequently the (closed) subspace of W(L®,LY)(R%) consisting of continuous
functions is (C,, L) (R%). This space will be used as a convenient collection of test
functions.

We will repeated use the following sampling inequality: Assume that f €
W(Co, LY)(R%) and A € R? is relatively separated, then

D IO < relWlIf o ity (86)
AEA
The dual space of W (C,, L*) (R%) will be denoted W (L%, LY)(R%). It consists of

all the complex-valued Borel measures u: (R%) — C such that
lillw e =) = sup lulls, ey = sup |ul(B1(x)) < oo.
x€eR

x€R4
For the general theory of Wiener amalgam spaces see [382].

The time-frequency shifts of a function f: R¢ - C are
t(2)f(t) == e?Etf(t —x), z=(x&) €RYxR%teR
These operators satisfy the commutation relations
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w(x, Em(x', &) = g —2mig'x m(x +x,&E+ &), (x,8),(x',&) € R x R%. (87)
Given a non-zero Schwartz function g € S(R%), the short-time Fourier transform of a
distribution g € S’ (R%) with respect to the window g is defined as

V,f (2) ={f,m(2)g), z€R* (88)
For ||gll, = 1 the short-time Fourier transform is an isometry:
||ng||L2(]R2d) = ”f”Lz(RZd)' f € LZ(RZd)' (89)

The commutation rule (87) implies the covariance property of the short-time Fourier
transform:
Uy (e, ) (', §) = e DY f(x' —x,8' = 8), (x,8),(x,§) € R x R™
In particular,
Vyr@)f| = Vf ¢ =2)|,  z€R* (90)
We then define the modulation spaces as follows: fix a non-zero g € S(R%) and
let
MP(RY) == {f € S'(R?) : V,f € L*(R*¥)}, 1<p < oo, (91)
endowed with the norm ||f ]|y = ||ng||Lp. Different choice of non-zero windows g €

S(R%) vyield the same space with equivalent norms, see [383]. We note that for g €
M*(R%) and f € MP(R%),1 < p < oo,the short-time Fourier transform V,f is a
continuous function, we may therefore argue safely with the point wise values of 1 f.

The space M*(R%), known as the Feichtinger algebra plays a central role. it can
also be characterized as

M°(R?) = {f € M*(R"):V,f € L*(R?*%)}.
The modulation space M°(R%) is defined as the closure of the Schwartz-class with
respect to the norm ||-||,;~. Then M°(R%) is a closed subspace of M (R%) and can also
be characterized as

M°(RY) = {f € M*(R?):V,f € Co(R*Y)}.
The duality of modulation spaces is similar to sequence spaces; we have M°(R%)* =
M*(R?) with respect to the duality (f, h) :== (V, f, V;h).

We consider a fixed function g € M*(R%) and will be mostly concerned with
M'(R%), its dual space M*(R%), and M?(R%) = L?>(R%). The weak* topology in
M®(R%) will be denoted by o(M*®, M) and the weak* topology on M*(R%) by
a(M?*, M®), Hence, a sequence {f,: k = 1} € M (R%) convergence to f € M*(R%) in
a(M*®,M?Y) if and only if for every h € MY (R®):(f;, h) = (f, h).

We mention the following facts that will be used repeatedly (see for example
[384, Theorem 4.1] and [389, proposition 12.1.11])

Lemma (5.3.4)[356]: Let g € M1(R%) be nonzero. Then the following hold true.
(@) If f e M}(RY), then V,f € W(Co, L") (R?*?).
(b) Let {fi:k =1} € M*(R%) be a bounded sequence and f € M®(R%). Then
fi = fina(M*,M") if and only if V, f;, = V, f uniformly on compacts sets.
(c) Let{fi:k =1} € M*(R%) be a bounded sequence and f € M*(R%). Then f, —
fina(M*', M) if and only if V, f;, = V,f uniformly on compacts sets.

In particular, if f, - fin o(M*,M") and z, - z € R*¢, then V,f,(z,) -

Vpf ).
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Given g € M*(R%) and a relatively separated Set A € R?%, consider the analysis
operator and the synthesis operator that are formally defined as

Coaf = (f,m(DgNaea, f € MZ(RY),

CyaC = Z am(d)g, ceL”(N).
A€
These maps are bounded between MP and ¢P spaces [389, Cor.12.1.12] with estimates

[Confll,» < rellgllaelIf e,
ICgacll,,» < rel®ligliylicler.
The implicit constants in the last estimates are of p € [1, oo].

For z = (x,&) € R?4, the twisted shift is the operator x(z): £°(A) = £°(A + 2)
given by

(K(2)psp = €75 2¢y, 1= (A4,4;) €A
As a consequence of the commutation relations (87), the analysis and synthesis
operators satisfy the covariance property
m(z2)Cp = CypvzK(2) and e?™¥Cy y(—2) = e 2™k (=2)Cyps,  (92)
forz = (x,&) € R% x R<,

A Gabor system G(g,A)is a frame if and only if C,A:L*(R?) - £2(A) s
bounded below, and G(g, A) is a Riesz sequence if and only if C; o: €2(A) - L*(RY) is
bounded below. As the following lemma shows, each of these conditions implies a
restriction of the geometry of the set A.

Lemma (5.3.5)[356]: Let g € L2(R%) and let A € R?? be a set. Then the following
holds.

(@) If G(g,A) is a frame, then A is relatively separated and relatively dense.

(b) If G(g, A) is a Riesz sequence, then A is separated.
Proof. For part (a) see for example [374, Theorem 1.1]. for part (b), suppose that A is
not separated. Then there exist two sequences {A,:n =1} € A with A,, # y, such

|4, —¥nl > 0. Hence we derive the following contradiction: V2 =|8; —
8yl 2 ey = 1T An)g = ()9l 2 ey = 0.

We extend the previous terminology to other values of p € [1, o0]. We say that
G(g,N) is a p-fame for MP(R?) if C; o: MP(R?) — £P(A) is bounded below, and that
G(g, M) is a p —Riesz sequence within M?(R%) if Cqn: tP(A) - MP(R%) is bounded
below. Since boundedness below and left invertibility are different properties outside
the context of Hilbert spaces, there are other reasonable definitions of frames and Riesz
sequences for M'P. This is largely immaterial for Gabor frames with g € M1, since the
theory of localized frames asserts that when such a system is a frame for L?, then it is a
frame for all M? and moreover the operator C,,: MP — £P is a left invertible
[390,387,369,370]. Similar statements apply to Riesz sequences.

We say that {f;: 1 € A} € L2(R%) is a set of time-frequency molecules, if A C
R24 is a relatively separated set and there exists a non-zero g € M'1(R%) and an
envelope function ® € W (L, L') (R?%) such that

|ng,1(z)| <®d(z—-21), aez€eR}HA1EA (93)
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If (93) holds for some g € M1(R%), then it holds for all g € M1(R%) (with an
envelope depending on g).
Theorem (5.3.6)[356]: Let {f;: 1 € A} be a set of time-frequency molecules. Then the
following holds.
(@) Assume that
Iflle = IKF, il aenllp,  Vf € MP(RY), (94)
Holds for some 1 < p < oo. Then (94) holds for all 1 < p < oo. in other words, if
{fi: A € A} is a p-frame for MP(R%) for some p € [1, o], then it is a p-frame for
MP(R4) forall p € [1,00].

(b) Assume That
z cfa

AEA MP

Holds for some 1 < p < co. Then (95) holds forall 1 < p < oo.

The result is similar in spirit to other results [402,366,400, 404, 403], but none of
these is directly applicable to our setting. We postpone the proof of Theorem (5.3.6), so
as not to interrupt the natural flow. the proof elaborates on Sjostrand’s Wiener-type
lemma [401].

As a special case of Theorem (5.3.6). We record the following corollary.
Corollary (5.3.7)[356]: Let g € M*(R%) and let A € R?4 be a relatively separated set.
Then the following holds.

@) If G(g,A) is a p-frame for MP(R%) for some p € [1, 0], then it is a p-frame for

MP(R?) forall p € [1, ].

(b)If G(g,A) is a p-Riesz sequence in MP(R%) for some p € [1, ], then it is a p-

Riesz sequence in MP(R%) for all p € [1, o].

The space M*(R%) is the largest space of windows for which the corollary holds.
Under a stronger condition on g, statement (a) was already derived in [366], the general
case was left open.

The Hausdorff distance between two sets X, Y € R4 is defined as

dy(X,Y) ==inf{e > 0: X € Y + B.(0),Y € X + B.(0)}.
Note that dy(X,Y) = 0ifandonlyif X =Y.

Let A S R?* be a set. A sequence {A,:n =1} of subsets of R¢

convergence weakly to A, in short A, i>A, if

dy ((An N Br(z)) U 8By (z)) (AN Bp(z) UdBR(2)) » 0, VzERLR>0. (96)
(to understand the role of the boundary of the ball in the definition, consider the
following example in dimension d = 1: A,, :== {1 + 1/n},A := {1} and Bz(z) = [0,1]).

The following lemma provides an alternative description of weak convergence.
Lemma (5.3.8)[356]: Let A € R?? and A, € R% n > 1 be sets. Then A, 2, A if and
only if for every R > 0 and € > 0 there exists n, € N such that for n > n,

ANBr(0) € A, +B,(0) and A, NnBg(0) €A, +B.(0)

The following consequence of Lemma (5.3.8) is often useful to identity weak
limits.

Lemma (5.3.9)[356]: let A, = Aand I 51 Suppose that for every R > 0 and € >
0 there exists n, € N such that for all n > n,
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A, N BR(0) €T, + B.(0).
ThenA S T.

The notion of weak convergence will be a technical tool in the proofs of
deformation results.

We explain how the weak convergence of sets can be understood by the
convergence of some associated measures. First we note the following semi continuity
property, that follows directly from Lemma (5.3.19).

Lemma (5.3.10)[356]: Let {u, : n =1} € W(M, L*)(R%) be a sequence of measures
of measures that converges to a measure u € W(M,L®)(R?) in the

o(W (M, L*), W (Co,LY)) topology. Suppose that supp(u,) S A, and that A, — A
Then supp(u,) € A.
The example u, =%6,u = 0 shows that in Lemma (5.3.10) the inclusions

cannot in general be improved to equalities. Such improvement is however possible for
certain classes of measures. A Borel measure u is called natural-valued if for all Borel
sets E the value u(E) is a non-negative integer or infinity. For these measures the
following holds.
Lemma (5.3.11)[356]: Let {u,, : n > 1} c W(M, L®)(R?) be a sequence of natural-
valued measures that converges to a measure u € W(M,L*)(R%?) in the
o(W (M, L), W(C,, LY)) topology. Then supp(uy,) 2, supp(p).

The proof of Lemma (5.3.11) is elementary and therefore we skip it. Lemma
(5.3.11) is useful to deduce properties of weak convergence of sets from properties of

convergence of measures, as we now show. For a set A € R?%, let us consider the
natural-valued measure

My = 25,1. (97)

AEA
One can readily verify that A is relatively separated if and only if m, € W (M, L*)(R%)

and moreover,
lallw (e, 0y = rel(A). (98)
For sequence of sets {A,,;: n = 1} with uniform separation, i.e,
infsep(A,) =inf{|A —A: A=A, LA €A,n=1}>0,
n

w . i )
the convergence A, — A is equivalent to convergence 1, —m, in
n

a(W(M , L°°),W(CO,L1)). For sequences without uniform separation the situation is
slightly more technical because of possible multiplicities in the limit set.
Lemma (5.3.12)[356]: Let {A,, : n = 1} be a sequence of relatively separated sets in
R¢. Then the following hold.

@ fmy - pin a(W(M, L°°),W(CO,L1)) for some measure u € W (M, L), then

sup,rel(A,) < o and A, ZA= supp(u).
(b) If limsuprel(A,) < o, then there exists a subsequence {A,:k =1} that

n
converges weakly to a relatively separated set.
(c) If limsuprel(A,) < o, and 4, 2, for some set A C R4, then A is relatively

n
separated (and is particular closed).
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The lemma follows easily from lemma (5.3.11), (98) and the weak*-compactness
of the ball of W (M, L*), and hence we do not prove it. We remark that the limiting
measure p in the lemma is not necessarily m,. For example, if d =1 and A, =
{0,1/n,1,14+1/n,1—1/n}, then m,,, — 26, + 36;. The measure u in (a) can be
shown to be natural-valued, and therefore we can interpret it as representing a set with
multiplicities.

The following lemma provides a version of (98) for linear combinations of point
measures.

LLemma (5.3.13)[356]: Let A € R? be a relatively separated set and consider a measure

H:zcﬂsa

AEA
with coefficients c¢; € C. Then

lull = [ul(RY) = llcll,,

llclle < llcllweriy S rel()llcllc.
Proof. The identity |u|(R%) = ||c||; is elementary. The estimate for Ileellw ae 1oy
follows from the fact that, for all 1 € A, |c;|6; < ||c||emy, Where 11, is defined by
(17).

As a first step towards the main results, we characterize frames and Riesz
bases in terms of uniqueness properties for certain limit sequences. The corresponding
results for lattices have been derived by different methods in [391]. For the proofs we
combine Theorem (5.3.6) with Beurling’s methods [373, pp. 351-365].

For a relatively separated set A € R?%, let W (A) be the set of weak limits of the
translated sets A + z,z € R??, i.e.,, T € W(A) if there exists a sequence {z,:n € N}

such that A + z, 2 Iitis easy to see that then T' is always relatively separated. When
A is a lattice, i.e, A = AZ?? for an invertible real-valued 2d x 2d-matrix A, then W (A)
consists only of translates of A.

We use repeated the following special case of Lemma (5.3.12)(b,c): given a
relatively separated set A € R2¢ and any sequence of points {z, : n > 1} € R?¢, there

IS a subsequence {an t k> 1} and relatively separated set I' € R?% such A + Zn, 5
We characterize the frame property of Gabor systems in terms of the sets in (A).
Theorem (5.3.14)[356]: Assume that g € M1(R%) and that A € R?? is relatively
separated. Then the following are equivalent.
(i) G(g,A) is a frame for L2(R%).
(i)G (g, A) is a P-frame for MP (R%) for some p € [1, o] (for all p € [1, o0]).
(iii)G (g, A) is an co-frame for M (R%).
(iv)C, A is surjective from £1(A) onto M*(R%).
(V) C,r is bounded below on M*(R?) for every weak limit T’ € W (A).
(Vi) Cy r is one-to-one on M*®(R%) for every weak limit T € W (A).
Proof. The equivalence of (i), (ii) and (iii) follows immediately from Corollary (5.3.7).
We will use several times the following version of the closed range the Orem
[376, p.166]: Let T: X — Y be bounded operator between two Banach spaces X and Y.
Then T isonto Y, if and only if T*: Y™ — X™ is one-to-one on Y* and has closed range in
X", ifand only if T* is bounded below.
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Condition (iii) and (iv) are equivalent by applying the closed range Theorem to
the synthesis operator C; 5 on £'(A).

For the remaining equivalences we adapt Burling’s methods.

(iv) = (v). Consider a convergent sequence of translates A — z, 2T . Since Cg.n
maps #1(A) onto M'(R%), because of (92) and the open mapping Theorem, the
synthesis operators C;,_, are also onto M'(R?) with bounds on preimages
independent of n. Thus for every f € M*(R?) there exist sequences {c; },ep—z, With
llc™||; < 1 such that

f= ) grg,
AEA-Z,
with convergence in M1(R%).

Consider the measures p, = ¥ ep—z, €1 6,. Note that [[u,ll = [[c™|[; S 1 . By
passing to a subsequence we may assume that w,, —» u in a(M, C,) for some measure
u € M(R?D).

By assumption supp(u,) S A —2z,, A—z, RN I', and T is relatively separated
and thus closed. It follows from Lemma (5.3.10) that supp(u,,) < I'. Hence,

n= 2@15,1

A€r
for some sequence c. In addition, [|c[l; = |||l <liminf, ||u,|l S 1. Let f':=

Yaer am(4)g. This is well-defined in M1(R%), because ¢ € £1(T). Let € R4, Since by
Lemma (5.3.4), V,mt(z)g € W(Co, L") (R*?) < C,(R*%) we can compute

(f.rDg) = ) GTm@gh

AEA-Z,

B J V,m(2)gdu, - f Vor(2)gdu = (f',n(2)g)

R2d R2d
(Here, the interchange of summation and integration is justified because ¢ and c™ are
summable). Hence f = f' and thus C;r : £*(I) - M'(R?) is surjective. By duality
Cyr is one-to-one from M®(R%) to #(I") and has closed range, whence Cyr is
bounded below on M* (o).

(v) = (vi) is clear.

(vi) = (iii). Suppose G(g, A) is not an co-frame for M* (R%). then there exists a
sequence of functions {f,:n=1}c M*(R?) such that [l f,|| =1 and
supaea |V fn(A)| = 0. Let z, € R?4 be such that |V, f,,(z,)| = 1/2 and consider h,, ==
m(—z,)f,. By passing to a subsequence we may assume that h,, — h in a(M*, M?1) for
some h € M*(R%), and that A—zng [' for some relatively separated T'. Since
[V, hn(0)| = |V, fu(2z0)| = 1/2 by (90), it follows from Lemma (5.3.4)(b) that h # 0.
Given y €T, there exists a sequence {1,,:n = 1} € A such that A,, — z,, - y. Since, by
Lemma (5.3.4), V;h,, = V;h uniformly on compact sets, we can use (90) to obtain that

|Vghn(y)| = lignl%fn(ﬂn - Zn)l = lirgnl](gfn(lnﬂ = 0.
As y € T is arbitrary, this contradicts (vi).
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Theorem (5.3.14) seems to be purely qualitative, it can be used to derive
quantities estimates for Gabor frames. We fix a non-zero window g in M*(R%) and
assume that ||g|l, = 1. We measure the modulation space norms with respect to this
window by |[f||yr = ||I{gf||p and observe that the isometry property of the short-time

Fourier transform extends to M (R%) as follows: if € M®(R%) and h € M1 (R%), then

(b= | Vf@TRGI = 04f, (99)

R2d
For § > 0, we define the M1-modulus of continuity of g as

ws(@)yr = sup |[n(2)g —m(w)gllp
z,weR2d
|z—w|<6

= sup |[v,(n(2)g — n(w)g)|.,- (100)
z,weR?2d
|z—w|<é

It is easy to verify that s l(i)rP (g)r = 0, because time-frequency shifts are continuous
g w6

on M1(R%).

Then we deduce the following quantitative condition for Gabor frames from
Theorem (5.3.14).
Corollary (5.3.15)[356]: For g € M*(R%) with ||gll, =1 choose § >0 so that
ws (P < 1.

If A € R?? is relatively separated and p(A4) < &, Then G(g,A) is a frame for
L*(RY).
Proof. We argue by contradiction and assume that G(g, A) is not a frame. By condition
(vi) of Theorem (5.3.14) there exists a weak limit ' € W(A) and non-zero f €
M®(R%), such that I(gf|F =0. Since p(A) <8, we also have p(I') <4§. By

normalizing, we may assume that ||flly~ = ||V;f|| = 1. For 0 < e <1 — ws(g)p

we find z € R?? such that |V,f(2)| = I{f,n(2)g)| > 1 — €. By lemma (5.3.12), T is
relatively separated and, in particular, closed. Since p(I') < 6 there isa y € I'" such that
|z — y| < &. Consequently, since I(_qf|F = 0, we find that

1—e < [{f,m(2g) — {f,n(Ng)| = {f, m(2)g — n(1)g)|
= [V, f, V,(m(2)g — () )|
< sl v, (g — =9,
= Iflly=lin(2)g =t glls

< ws(g)pr-
Since we have chosen 1 —e€ > wgs(g)y1, We have arrived at a contradiction. Thus

G(g, M) is a frame.
This Theorem is analogous to Beurling’s famouse sampling Theorem for
multiveariate bandlimited functions [371]. The proof is in the style of [394].
We now derive analogouse results for Riesz sequences.
Lemma (5.3.16)[356]: Let g € M1(R%), g # 0, and let {A,,:n > 1} be a sequence of
uniformly separated subsets of R2%, i.e,
igfsep(An) =4 > 0. (101)
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Foreveryn € N, let ¢™ € £*(A,,) be such that ||c"||, = 1 and suppose that

Z cin()g - 0 inM®(RY), asn - o.

A€My,
Then there exist a subsequence (n,) c N, points 4, € A, , a separated set I' © R24,
and a non-zero sequence ¢ € £ (I’) such that

Ank—AnkLF, ask - o«

and Z c;m(A)g = 0.
A€T
Proof. Combining the hypothesis (111) and observation (84), we also have the uniform

relative
suprel(A,) < co. (102)
n

Since ||c"||l., = 1 for every n > 1, we may choose 4, € A, be such that |c}}| = 1/2.
Let 8, ,, € C such that

Ont(A = Ay) = m(=A,)m(A),
and consider the measures pu, = Yjea, O4nC;61-2,- Then by Lemma (5.3.13),
ltnllwoe,ioy S rel(Ay — A)llc loo = rel(A)llc"lo 1. Using  (102) Lemma

(5.3.12) we may pass to a subsequence such that (i) A,, — 1, 5 T for some relatively
separated set I' € R?? and (i) pu, —» p in a(W (M, L®), W(Co, LY))(R??) for some
measure u € W (M, L®)(R?4). The uniform separation condition in (101) implies that
I" is also separated.

Since supp(u,,) € A,, — 4, it follows from Lemma (5.3.10), that supp(u) €T =

. Hence,
n= Z € 6

A€T
for some sequence of complex numbers, and, by Lemma (5.3.13), ||c|le <

eellw a1y < 0.
From (101) it follows that for all n € N, Bs»(,,) N 4, = {4,,}. Let ¢ € C(R?*?)
be real-valued, supported on By ,,(0) and such that (0) = 1. Then

f @du| = lim J pdu,| = lim|cl{ln| >1/2.
R2d " R2d "
Hence u # 0 and therefore ¢ # 0.
Finally, we show that the short-time Fourier transforms of )., c;m(1)g is zero.
Let z € R be arbitrary and recall that by Lemma (5.3.4) V,m(z)g € W (Cy, L*) (R?*%).
Now we estimate

O g, () g)

AeT

> @ g

AeT

= f Vym(2)gdu| = lim j Vym(z)gdun

R2d R2d
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AEA,

< lim Z Orncrm(d—2A,)g g1l ma
AER,

MOO

=tim|lm(~1,) " cfr@g||  Nglly
A€M, e
=tim || " czng||  lglly: =0

A€M, .
We have shown that V; (3 ;er cam(4)g) = 0 and thus ¥ ;er cam(4) g = 0, as desired.
Theorem (5.3.17)[356]: Assume that g € M*(R%) and A <€ (R?%) is separated
separated. Then the following are equivalent.

(i) G(g,A) is a Riesz sequence in L2R%,

(i)G(g,A) is a p-Riesz sequence in MP(R%) for some p € [1,00] (for all p €

[1, 0]).

(iii)G(g,A) is aco-Riesz sequence in M*(R?), ie, C;,:£°([) - MP(R?) is

bounded below.

(iv)Cya: M' — £1(T) is surjective.

(v) Cgr: £2() - M*(R%) is bounded below for every weak limit ' € W(A).
Proof. The equivalence of (i), (ii) and (iii) follows from Corollary (5.3.7)(b), and the
equivalence of (iii) and (iv) follows by duality.

(iv) = (v). Assume (iv) and consider a sequence A — 3, 5T Let A€T be
arbitrary and let {4,,:n € N} € A be a sequence such that 4,, — z,, > 1. By the open
map Theorem, every sequence ¢ € £'(A) with ||c|l; = 1 has a preimage ¢ = C,,(f)
with |[f]l,,2 S 1. With the covariance property (92) we deduce that there exist f, €
M'(R%), such that ¢ = Cy 4, (f) and [|fyllye S 1.

In particular, for each n € N there exists an interpolating function h,, € M*(R%)
such that [[Vyhnl|, S 1,Vhn(2n — 2,) = 1and Vyhy, =0 on A —z,\{A, — 2,}. By
passing to a subsequence we may assume that h, - h in a(M, M°). It follows that
|All2 s 1. Since V;h,, = V;h uniformly on compact sets by Lemma (5.3.4), we obtain
that

Vh(Q) = lirrln Vohn(An — 2) = 1.
Similarly, given y € I'\{1}, there exists a sequence {y,:n € N} € A such that y,, —
Zn, —y. Since 1 #y, forn > 0 we have that y, # 4, and consequently V,h(y, —
z,) = 0. It follows that V;h(1) = 0.
Hence, we have shown that for each A € T there exists an interpolating function
h, € M*(R?) such that ||yl < 1,V,h;(1) =1 and V;hy = 0 on T'\{A}. Given an
arbitrary sequence ¢ € £1(TI") we consider
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f= Z c h;y.

A€r
It follows that £ € M*(R%) and that C,rf = c. Hence, C,r is onto £1(T), and therefore

Cgr is bounded below.

(V) = (vi) is clear.

(vi) = (iii). Suppose that (iii) does not hold. Then there exists a sequence
{c™ :n € N} € £*°(A) such that ||c"||, = 1 and

> g

AEA M>®
We now apply Lemma (5.3.16), with A,, := A and obtain a set I' € W(A) and a non-zero
sequence ¢ € £°(T') such that ¥ 3er cam(A)g = Cgr(c) = 0. This contradicts (vi).

The characterizations of Theorem (5.3.14) suggest that Gabor frames are
invariant under “weak deformations” of A. One might expect that if G(g,A) is a frame
and A’ is close to A in the weak sense, then G(g,A’) is also a frame. This view is too

simplistic. Just choose A,, = ANB,(0), then A, i>A, but A,, is a finite set and thus
G(g, ) is never a frame. For a deformation result we need to introduce a finer notion
of convergence.

Let A € R? be a (countable) set. We consider a sequence {A,, : n > 1} of subsets
of R? produced in the following way. For each n > 1, let 7,;: A » R% be a map and let
A, = 1,(A) = {r,,(1): 1 € A}. We assume that 7,,(1) > 1, as n — oo, for all 1 € A.
The sequence of sets {A, : n = 1} together with the maps {r, : n > 1} is called a
deformation of A. We think of each sequence of points {z,, (1):n = 1} as a (discrete)
path moving towards the end point A.

We will often say that {A,, : n = 1} of A is called Lipschitz, denote by A, 2, A
, if the following two conditions hold:
(L1) Given R > 0,

sup |(zn(D) —1,(X)) = (A =2)| >0, asn— oo.
AATEA
[A-A"|0<R

(L2) Given R > 0, there exist R' >0 and ny, € N such that if |t, (1) —
T, (A")| < R for some n > ny and some A, 4" € A, then [A — 1| < R'.

Condition (L1) means that t,, (1) — 1, (1) > 1 — A" uniformly in |A —A'|. In
particular, by fixing A’, we see that Lipschitz convergence implies the weak
convergence A, gy Furthermore, if {A,, : n = 1} is Lipschitz convergent to A, then so
is every subsequence {A,, :k = 1}.

Example (5.3.18)[356]: Jitter error: Let A € R® be relatively separated and let {A,, :

L
n > 1} be a deformation of A. If sup,|t,,(1) — 1] = 0,as n — oo, then A, A
Example (5.3.19)[356]: Linear deformations: Let A = AZ?¢ € R??, with A an
invertible 2d x 2d matrix, A,, = A,,Z* for a sequence of invertible 2d x 2d- matrices

— 0, asn— oo,

L
and assume that lim A,, = A. Then A, —, A . in this case conditions (L1) and (L2) are
easily checked by taking t,, = 4,47 L.
The third class of examples contains differentiable, nonlinear deformations.
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Lemma (5.3.20)[356]: let p € (d, ]. Foreachn € N, let T, = (T}, ....,T3): R? - R4
be a map such that each coordinate function T)¥:R¢ — R is continuous, locally
integrable and has a weak derivative in L _(R%). Assume that

Tn(O) =0,

|IDT,, —I| > 0 in L*(R%).
(Here, DT, is the Jacobian matrix consisting of the partial derivatives of T,, and the
second condition means that each entry of the matrix DT,, — I tends to O in LP) .

Let A € R be a relatively separated set and consider the deformation A, ==

T,,(A) (i.e.t,, :== T,|5). Then A, is Lipschitz convergent to A.
Proof. Let a:==1— % € (0,1]. We use the following Sobolev embedding known as

Morrey’s inequality (see for example [381, Chapter 4, Theorem 3]). If f:R% —» R is
locally integrable and possesses a weak derivative in LP(R%), then f is a-Holder
continuous (after being redefine on a set of measure zero). If x,y € R¢, then
@) = FO)I S IVfllp(geylx —¥1%  xy€R
Applying Morrey’s inequality to each coordinate function of T,, —I we obtain that
there is a constant C > 0 such that
|(Tox = Toy) — (x = y)|
= |(Tn - I)x - (Tn - I)yl < C”DTn - I”LP(Rd)lx - ylax XYy € ]Rd'
Let ¢, = C||DT,, — I”Lp(Rd), where ||DT,, — I“Lp(Rd) is the LP-norm of |DT,(-) —I|.
Then €,, = 0 by assumption and
|(Tax = Tny) — (x =Y S €lx—yl%  xy ER% (103)
Choose x = A2 and y = 0, then T,,(1) — A for all A € A (since T,,(0) = 0). Hence A,, is
a deformation of A.
If 1, A" € Aand [1 — A'| < R, then (103) implies that
|(T,A — T A") — (A —2A)| < €, R~
Thus condition (L1) is satisfied.
For condition (L2), choose n, such that €, < 1/2 for n = ny, 4,4’ € A then by
(103) we obtain
|((TA—TA))— (A=A <1/21A=-A|*<1/2|(A—=2)|.
This implies that
A=A <2|(T,A —T,A")|, foralln = n,. (104)
Since |T,A — T,,A'| < R, we conclude that |2 — 2’| < 2R, and we may actually choose
R' = max(1,2R) in condition (L2).
Lemma (5.3.21)[356]: Let {A,;:n > 1} be a deformation of a relatively separated set
A € R4, Then the following hold.
(a) If A,, is Lipschitz convergent to A and sep(A) > 0, then lirr111 infsep(A,,) > 0.

(b) If A,, is Lipchitz convergent to A and then lim infsep(A,,) < oo.
n
(c) If A,, is Lipchitz convergent to A and p(A) < oo, then limsup p(4,) < .

n
Proof. (a) By assumption § := sep(A) > 0. Using (L,), let n, € N and R’ > 0 be such
that if |7,,(1) — 7,,(A)| < §/2 for some 1,A' € A and n > ngy, then [ —A'| < R'. By
(L1), choose n; = n, such that forn > n,
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. SIEp |(Tn(/1) Tn(/'l’)) — (1= /1’)| < 6/2.

Claim (5.3.22)[356]: sep(A,) = 6/2 for n = n,.
If the claim is not true, then for some n > n, there exist two distinct points
A, A" € Asuch that |7,,(4) — 7,,(A")| < 6/2. Then |1 — A'| < R’ and consequently
A =2 < [t (D) — 7, (A) — A = )| + |7, (D) — 1, (X)) <6,
contradicting the fact that A is §-separated.
(b) Since A is relatively separated we can split it into finitely many separated sets
A = A' U ..U AF with sep(A¥) > 0.
Consider the sets defined by restricting the deformation t,, to each A*
AE = {1,,(1): 1 € AK}.
As proved above in (a), there exists n, € Nand § > 0 suchthat  sep(AX) > §
foralln > nyand 1 < k < L. Therefore, using (84),
L

rel(A,) < Z rel(AK) S L674, n > n,.
k=1
and the conclusion follows.
(c) By (b) we may assume that each A,, is relatively separated. Assume that
p(A) < . Then there exists r > 0 such that every cube Q,(z):=z+ [-r,7]¢
Intersects. By (L1), There is n, € N such that for n > n,,
sup  |(1,(D) —7,(A)) - @A =2)|_ <. (105)
AAEA
|[A-A"|os6T
Let R := 8r and n > n,. We will show that every cube Qp(z) intersects A,,. This will
give a uniform upper bound for p(A,,). Suppose on the contrary that some cube Qx(z)
does not meet A, and consider a larger radius R’ = R such that A, intersects the
boundary but not the interior of Qg/(z). (this is possible because A, is relatively
separated and therefore closed) . Hence, there exists A € A such that |7,,(41) — z|, = R'.
Let us write
(z-1(D), = kcr,  k=1,...d
o € {—1,1}, k = 1 ., d,
0<cy <R k=1,..,4d,

*A

Y

Fig. (1)[356]: The selection of the point y satisfying (106) and (107).
and ¢, = R’ for some k. We now argue that we can select a point y € A such that
A=V =—6kc,, k=1,..,d, (106)
with coordinates
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2r<c,<6r, k=1,..,d. (107)
Using the fact that A intersects each of the cubes {Q,(2rj):j € Z%}, we first select an
index j € Z4 such that A € Q,(2rj). Second, we define a new index j' € Z¢ by j, =
Ji + 28, for k =1,...,d. We finally select a point € An Q,(2rj") . This guarantees
that (106) and (107) hold true. See Fig. 1.

Since by (106) and (107) |2 — y|, < 61, we can use (105) to obtain
(tn (D) — Tn(]/))k = —6kCt, k=1,..,d,
with coordinates
r<c¢, <7r, k=1,..,d.
We write (z — ‘L'n(]/))k =(z- Tn(A))k + (7, () — Tn(]/))k = 6, (c, — ¢;)) and note
that —7r < ¢, — ¢;/ < R’ — r. Hence,
1z —7,,(¥)|o < max{R' —r,7r} =R' —r,

since 7r = R —r < R’ —r. This shown that Qr/_,.(z) intersects A,,, contradicting the
choice of R'.

The following lemma relates Lipchitz convergence to the weak-limit techniques.
Lemma (5.3.23)[356]: Let A € R be relatively separated and let {A,;:n > 1} be a
Lipschitz deformation of A. Then the following holds.

(@) Let ' € R4 and {1,;:n > 1} € A be some sequence in A. If A, — 7,(1,) 2 T,

thenT € W(A).

(b) Suppose that A is relatively dense and {z,,:n > 1} € R is an arbitrary sequence

if A, — 2, — T, then T € W(A).

Proof. (a) We first note that I' is relatively separated indeed, Lemma (5.3.21) says that
limsuprel(A, — 7,(4,)) = limsuprel(A,) < oo,
n—oo n—oo
and Lemma (5.3.12)(c) implies that " is relatively separated (and in particular closed).

By extracting a subsequence, we assume that A — 4, =T for some relatively
separated set I'' € W (A). We will show that I'" = T" and consequently ' € W (A).

LetR > 0and 0 < € < 1 be given. By (L1), there exists n, € N such that

AL EMNA=X]<Rn=n= |(t.() —1,(1)) —(A—2)| <e. (108)
If n >n, and z € (A — 1,,) N Bg(0), then there exists A € A such that z =1 —
A, and |4 — 4, ] < R. Consequently (108) implies that
|(Tn(/1) - Tn(/ln)) - Z| = |(Tn(/1) - Tn(/ln)) - (/1 - An)' < €
This shows that
(A= 2,) N Br(0) € (A, — 10 (A)) + Bc(0) forn = n,. (109)
Since A — 4, =T and A, — 1t (4) = T, it follows from (109) and Lemma (5.3.9)
thatI'" c T =T.

For the reverse inclusion, letagain R >0and 0 < e < 1.LetR'">0andn, € N

be the numbers associated with R in(L2). Using (L1), choose n; = n, such that
AL EMNA=V] <R, n=n = |(r,;(D) —1,(1)) — A -21)| <& (110)

Ifn>n, and z € (A, — 7,(1)) N Bg(0), then z = 7,(1) — 7,,(A) For some 1 €
A and |t,,(1) —7,(4,)| < R. Condition (L2) now implies that |1 —4,| <R’ and
therefore, using (110) with A" = 4,,, we get

|z = (A =2)| = 1tn(D) =1, (4p)) — (A =) < e
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Hence we have proved that
z€ (A, —7,(1)) N Br(0) € (A—A,) + B.(0), forn=n,.

Since A, —7,(4,) —T and A— 1, —T’, Lemma (5.3.9) implies that T €7 €
W (A), as desired.
(b) since p(A) < oo, Lemma (5.3.21)(c), implies that limsup p(A,,) < . By

n
omitting finitely many n, there exists L > 0 such that A,, + B,(0) = R% for all n € N.
This implies the existence of a sequence {4,, = 1} € A such that |z — 7,,(4,))| < L. By
passing to a subsequence we may assume that z — t,,(1,,) = z, for some z, € R%,

Since A,, — z, 2T and zZ, — T,(1y) = z,, it follows that A,, — 7,(1,,) ST+
z,. By (a), we deduce that T + z, € W (A), as desired.

We now show the main results on the deformation of Gabor systems. The proofs
combine the characterization of non-uniform Gabor frames and Riesz sequences without
inequalities and the fine details of Lipschitz convergence.

First we formulate the stability of Gabor frames under a class of nonlinear
deformations.

Theorem (5.3.1)(a) now follows by combining Theorem (5.3.24) and Lemma
(5.3.20). Note that in Theorem (5.3.1) we may assume without loss of generality that
T,,(0) = 0, because the deformation problem is invariant under translations.

Theorem (5.3.24)[356]: Let g € M*(R%), A € R?% and assume that G(g, A) is a frame
for L2(R%). If A, is Lipchitz convergent to A, then G(g,A,) is a frame for all
sufficiently large n.

Proof. Suppose that G(g,A,,) is a frame. According to Lemma (5.3.5%), A is relatively
separated and relatively dense. Now suppose that the conclusion does not hold. By
passing to a subsequence we may assume that G(g, A,,) fails to be a frame for all n € N.

By Theorem (5.3.14) every G(g,A,,) also fails to an co-frame for M (R%). It
follows that for every n € N there exist f, € M*(R?) such that ||V, fu|| =1 and

ol o,y = SUPIVo fu(Fn ()] = 0. a5 = o

For each n € N, let z, € R?? be such that |V, f,(z,)| = 1/2 and let us consider h,, :=
w(—z,)f,. By passing to a subsequence we may assume that h,, - h in ao(M*, M?) for
some function h e M*®. Since |V h,(0)|=|V,fn(z:)|=1/2, it follows that
|V, h,,(0)] = 1/2 and the weak*-limit h is not zero.

In addition, by Lemma (5.3.21)
limsuprel(A,, — z,) = limsuprel(A,) < oo.

n—-oo n—-oo

Hence, using Lemma (5.3.12) and passing to a further subsequence, we may assume

that A,, — z,,(1,,) > I, for some relatively separated set I' € R24. Since A is relatively
dense, Lemma (5.3.23) guarantees that ' € W (A).

Let y €T’ be arbitrary. Since An—zn(/ln)il“, there exists a sequence
{A heny € A such that 7,,(4,) —z, » y. By Lemma (5.3.4), the fact h, - h in
o(M®,M*") implies that V,h,, — V,h uniformly on compact sets. Consequently, by (90),

VR = lim[Vy o (2 () = 2] = 1im|Vy iy (70 (A))] = 0.
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Hence, h # 0 and ;A = 0 on T € W (A). According to Theorem (5.3.14)(vi), G(g, A) is
not a frame, thus contradicting the initial assumption.

The corresponding deformation result for Gabor Riesz sequences reads as
follows.
Theorem (5.3.25)[356]: Let g € M1(R%), A € R?%, and assume that G(g, A) is a Riesz
sequences reads in L2 (R%).

If A,, is Lipchitz convergent to, then G(g,A,) is a Riesz sequence for all
sufficiently large n.
Proof. Assume that G(g,A) is a Riesz sequence, Lemma (5.3.5*) implies that A is
separated. With Lemma (5.3.21) we may extract a subsequence such that each A,, is
separated with a uniform separation constants, i.e.,

rlllgg sep(A,) > 0. (111

we argue by contradiction and assume that the conclusion does not hold. By passing to a
further subsequence, we may assume that G(g, A,,) fails to be a Riesz sequence for all
n € N. As a consequence of Theorem (5.3.17)(iii), there exist sequences c™ € £*(A,,)

such that ||c™||,, = 1 and
| z C‘Lr'ln(/ln)n(rn (/111)) 9
AEA M®

Thus g,A,, , c™ satisfy the assumptions of Lemma (5.3.16) the conclusion of Lemma
(5.3.16) yields a subsequence (n,), a separated set I' € R?¢, a non-zero sequence c €

£2(I), and a sequence of points {4, : k > 1} € A such that
w
Ay — Ty (Ank) —T

E,An(cn)”Moo = -0, asn—>oo. (112)

and

> (g = Cyr(e) = 0.

yer
By Lemma (5.3.23), we conclude that T € W(A). According to condition (vi) of
Theorem (5.3.17), G(g, A) is not a Riesz sequence, which is a contradiction.
Example (5.3.26)[356]: From [368] or from Theorem (5.3.24) we know that if g €
MY(R%) and G(g, A) is a frame, then G(g, (1 + 1/n)A) is also a frame for sufficiently
large n. For every n we now construct a deformation of the form 7,,(1) == a; ,A where
a; 5 s either 1 or (1 + 1/n) with roughly half of the multipliers equal to 1. Since only
a subset of A is moved, we would think that this deformation is “smaller” than the full

dilation A — (1 +%) A, and thus it should preserve the spanning properties of the

corresponding Gabor system.
Surprisingly, this is completely false. We now indicate how the coefficients a; ,,

need to be chosen. Let R?? = U2, B, be a partition of R4 into the annuli

1l 1 l+1
Bl={ZE]R2d:<1+E> S|Z|<<1+E> }, [>1,

1
B, = {Z € R?%:|z| < (1 + ;)}
and define
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1 if 1 € By,
= 1
a/‘LTL {1 + % lfA E BZl+1'

Since (1 + %) Byi41 = By142, the deformed set A, =1,(A) = {am/l:/l € A} is

contained in U;2,B,; and thus contains arbitrarily large holes. So p(A,) = o and
D~ (A,,) = 0. Consequently the corresponding Gabor system G(g, A,,) cannot be frame.
See Fig. 2 for a plot of this deformation in dimension 1.

(1+1/n)"k (1+1/n)~(k+1)

 E N B EEBEBENEDENNNN,

N

NN
NN
NNNNN

1 \
SEaeEeEEn EEEEEnN
Fig. (2)[356]: A deformation “dominated” by the dilation A — (1 + 1/n)A.
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Chapter 6
Vector-Valued Gabor Frames with Hermits Functions

We show that the main tools are growth estimates for the Weierstrass o-function,
a new type of interpolation problem for entire functions on the Bargmann—Fock space,
and structural results about vector-valued Gabor frames. We characterize those sets S
admitting tight Gabor sets, and obtain an explicit construction of a class of tight Gabor
sets in such S for the case that the product of time-frequency shift parameters is a
rational number. By introducing a suitable Zak transform matrix, we characterize
completeness and frame condition of Gabor systems, obtain a necessary and sufficient
condition on Gabor duals of type I (resp. Il) for a general Gabor frame, and establish a
parametrization expression of Gabor duals of type I (resp. Il). All conclusions are
closely related to corresponding Zak transform matrices. This allows to easily realize
these conclusions by designing the corresponding matrix-valued functions. An example
theorem is also presented.
Section (6.1): Gabor Super Frames

Given a function g € L2(R) and a lattice A ¢ R?, we study the frame property of
the set {e?™42tg(t — A;): 2 = (A4, 1;) € A}. Precisely, write myg = e?™2tg(t — 1)
for the time-frequency shift by 1 = (1,,4,) € R%. Then we call the set G(g,A) =
{myg: 2 € A} a Gabor frame or Weyl-Heisenberg frame, whenever there exist constants
A, B > 0 such that, for all f € L2(R),

2
Al Iy < D [ maghzqa” < BIS gy D)
AEA
Gabor frames originate in quantum mechanics through J. von Neumann and in

information theory through Gabor [418] and nowadays have many application in signal
processing. A large body of results describes the structure of Gabor frames and provides
sufficient conditions for G(g, A) to form a (Gabor) frame, see [412, 420].

We will also study vector-valued Gabor frames in the Hilbert space H =

L*(R, C™) of all vector-valued functions f(t) = (fl(t), ...,fn(t)) with inner product

)= [ F©0g@d = 59 @
The time-frequency shifts ,, z = (9]:;’ )_;oct coordinate —wié; 1by
m,f(t) = e* ™ f(t — x). (3)

The vector-valued Gabor system G(g,A) = {m,g : A € A} is a frame for L?(R,C"), if
there exist constant A, B > 0 such that

Al W oy < ) KE TP < BIf I ony Vf € ZRED.  (4)
2€A
If only the inequality on the right-hand side is satisfied, then the Gabor system G(g, A)

is called a Bessel sequence.

Vector-valued Gabor frames were introduced under the name “super frames” in
signal processing by Balan [409] in the context of multiplexing and studied in [408,424]
for their own sake.The idea of multiplexing is to encode n independent signals
(functions) f; € L>(R),j =1,..,n , as a single sequence that captures the time-
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frequency information of each f;. Fixing suitable windows g; € L>(R) and using
vector-valued notation f = (fi, ..., f,,), one then considers the sequence of numbers
(f,m.9) = Xi=1(fjmag;) for A €A, ie., the inner product in L*(R,C"). These
numbers then measure the time-frequency content of the whole f at the point A in the
time- frequency plane.

Now one requires that f is completely determined by these inner products and
that there exists a stable reconstruction. This requirement leads to the definition of a
vector-valued Gabor frame (4).

The general problem of characterizing all lattices A for which G(g, A) is a frame
seems to be extremely difficult. In fact, this problem is solved only for three classes of

basis functions, namely for the Gaussians H,(t) = e~ a >0, in [432,435], for
hyperbolic secant g(t) = (coshat)~! in [431]. For the one-sided exponential function
g(t) = el y15 0y (¢) [429]. For the Gaussian, our understanding is based on the
connection between the frame property of G(g,A) and a classical interpolation problem
in the Bargmann-Fock space of entire functions. The case of the hyperbolic secant is
reduced to the case of the Gaussian.

For other choices of the g, where the connections for G(g, aZ x bZ) to form a
frame become very different and are often rather intriguing [430]. Even less is known
about Gabor super frames. Necessary density conditions were studied in [408],
sufficient density conditions can be derived from coorbit theory [414] and from the
sampling theory on the Heisenberg group [417]. In particular, these results imply that
for any sufficiently dense lattice A and a mild condition on the vector g the Gabor
system G(g, A) is a Gabor super frame.

We study the frame property of G(h, A) in the case when h is the vector of the
first n + 1 Hermite function h = (H,, ..., H,)). In the scalar-valued case, the study of
Gabor frames with the Gaussian window H, is natural, because the Gaussian minimizes
the uncertainty principle. Likewise, for vector-valued frames, the study of Gabor super
frames with the Hermit window h is natural, because the first Hermite functions are the
unique orthonormal set {f, ..., f,} In LZ(]R) of size n + 1 satisfying the normalizations

¢, dt = 0and [ ¢|f;(&)| dé = 0,j = 0, ..., such that the uncertainty

Z(j |0 de + flef,(f)l ds> )

j=0
IS minimized. Another motivation comes again from 5|gnal processing where Hermite
functions are used, see [425].

The case of the Hermite vector window has been already investigated by
employing techniques related to sampling in the space of band limited functions on the
Heisenberg group. He proved the following result.

Theorem (6.1.1)[406]: let h = (H,, ..., H,). There exists a constant C > 0 with the
following property: If the diameter of the (smallest) fundamental domain of A is less
that C(n + 1)~'/2, then G(h, A) is a frame for L?(R, C**1).

Unfortunately nothing can be said about the constant C within such an approach.
Fuhr uses the so-called “oscillation method” which is used for existence results, but in
general does not yield sharp results.
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We give a complete characterization of vector-valued frames with Hermite
functions. If the lattice is given as A = AZ? for some invertible, real-valued 2 x 2-
matrix A4, let s(A) = |detA| be the area of the fundamental domain of A. The main
result can be formulated as follows.

By specializing to the n-th coordinate of the h, we obtain a condition for scalar-
valued Gabor frames with Hermite functions. The following result was already
announced in [423].

Proposition (6.1.2)[406]: If s(A) < ﬁ then G(H,,, A) is a frame for L?(R).

For n = 0, the case of the Gaussian, we recover (the lattice part of) the results in
[432,435]. Our method of proof yields several new results about the dual window. On
the one hand, we construct a dual window for G(H,,, A) with Gaussian decay in time and
frequency; on the other hand, we derive a new estimate for the lower frame bound of
G(H,, A). Furthermore, we discuss an example for n =1 which suggests that the
sufficient conditions of Proposition (6.1.2) are sharp for all n.

In order to show these results we combine the techniques of Gabor analysis and
complex-analytic methods. The (now) classical structural results related to the scalar
Gabor frame systems can be formulated for the vector case as well. They lead to an
interpolation problem in the Fock space of entire functions.

This problem is not “purely holomorphic: the values of linear combinations of
functions from the Fock space and their derivatives are prescribed in the lattice points;
however, the coefficients of such combinations are anti-holomorphic polynomials. The
classical methods of complex analysis cannot be applied for problems of this kind.
Fortunately, in our particular case, i.e., for the lattices of sufficiently small density, one
may use the well-developed machinery of elliptic functions.

We collect the necessary facts related to vector-valued frames, in particular, the
frame operator and the vector-valued version of the structural theorems: Janssen’s
representation and the Wexler-Raz biorthogonality criteria .the complex analytic tools,
including the Fock spaces and the Weierstrass o-function ,are presented. \We contain the
proofs of Theorem (6.1.12) and Proposition (6.1.2) we also show a result (Proposition
(6.1.14)) indicating that the density condition in Proposition (6.1.2) might be sharp. The
rest contains estimates of dual windows for the Hermitian frames and of the lower frame
bound.

To derive the criterion for Gabor super frames from Hermit functions Theorem
(6.1.12), we need some general results about Gabor super frames, such as Janssen’s
representation of the frame operator and the Wexler-Raz identities. Although these are
among the fundamentals results about Gabor frames, they have not yet been formulated
for Gabor super frames. For convenience and later reference we formulate them
explicitly for Gabor frames on R¢ (instead of R). Since the vector-valued case is a
simple consequence of the well-known scalar-valued case.

Let A = AZ?? be a lattice in R?4, where A is a non-singular real 2d x 2d-matrix.
Let s(A) = |det A| be the volume of a fundamental domain of A. The adjoint lattice is
defined by the commutant property as

N ={ueR*:a(Dnr(u) = n(wWmr(l) forall 1 € A} (6)
If A= aZ%x BZ% then A° = f~1Z% x a1 Z%. For general A = AZ?*¢ c R?
N =gz, (7)
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where AT is the transpose of 4 and J = (_01 (1)) (consisting of d x d blocks) is the

matrix defining the standard symplectic form [415].
Furthermore, from (7) we see that
s(A°) =s(A)~L (8)
The density of A is defined as d(A) = s(A)~1, so that d(A) coincides with the usual
notions of density.
Given two vector-valued functions (windows) y = (y;)T.,g = (g9,)T €

L?(R%,CM), the associated vector-valued Gabor frame-type operator is defined to be

Sf=Shyf = ) {fmgimy. 9
AEA
For arbitrary g,y € L2(R%, C") the right-hand side in (9) defines a continuous operator

from S(R%,C") to S’ (R%, C") with weak*-convergence of the sum.
Under slight conditions on the component functions g; and y; the series in (9)

converges in L?(R%,C™)-norm .Recall that a function g on R% belongs to the
Feichtinger a Igebra M*(R%), if

gl = | Kg.mp)dz < oo, (10)
R24

where ¢(t) = 24/4¢-mt* s the I2-normalized Gaussian. This condition is met if, for
example, both g and its Fourier transform g, decay sufficiently fast, see [420, Ch,7],
and also [419] for discussion and the proofs. The convergence of (9) follows from the
following lemma taken from [420] by looking at each component separately (the
statement is not stated as explicitly as we want it, but follows from combining
Propositions 11.1.4, 12.1.11, and 12.2.1).
LLemma (6.1.3)[406]: If g € M1(R%), then

D KL M < nWllglslIf12 (11)
AEA

and
> Gmg| <n@lgl,liell, (12)
AEA 2

where n(A) = cmax,,c;2a card (AN(K + [0,1]%%)) for some absolute constant ¢ > 0.
As a consequence, if g = (gj): € M*(R%) for j =1,..,n, then the sequence

G(g, M) is a Bassel sequence in L2(R¢, C™) for every lattice.

As in the scalar case, the frame operator can be represented as a sum of time-
frequency shifts over the adjoint lattice.

In the scalar case n = 1, this is a theorem of Rieffel [434] and Janssen [428], the
vector-valued version follows easily from the scalar case. Given a Gabor (super) frame
G(g,N) with g € L>(R%,C"), we say that y € L2(R%,C") is a dual window (with
respect to the lattice A) if

SA, =S, =1 (13)
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Dual windows always exist, a special choice is given by the canonical dual
window y° = (Séfg)_lg; clearly the invertibility of S2, is equivalent to the form
property (4).

From Janssen’s representation we obtain a criterium for the system G(g,A) to
form a frame in L?(R%, C"*) with dual window y, that is a vector analog of the Wexler-
Raz condition.

As in the scalar case we obtain Balan’s necessary density condition [408] by
adjusting an argument of Janssen [427].

Proposition (6.1.4)[406]: (Density theorem). If G(g, A) is a frame for L2(R%, C"), then
s(A) <n L.

Proof. Let y° = S_ ;g be the canonical dual window. Then f = Y;ealf, m,¥°) mag
holds for every f € L2(R%,C™). If f has also the representation f = Y ;e ¢, g then

by [413]
D emaiff <) el

AEA AEA
we apply this argument to the trivial expansion g =1-g 4+ ;400 - m,g. thus we

obtain

g, ¥ ) < Zl<g,7w°)|2 < 1.
. .. . AEA
The Wexler-Raz identities (56) yield

(9.7 = ) (g 1)) = ns(),
j=1

and the result follows.

The Wexler-Raz relations also yield an estimate for the lower frame bound that
deserves to be better known and is stated here for the scalar case.
Corollary (6.1.5)[406]: Assume that G(g, A) is a frame for L2(R%) with some dual y €

M*(R?). Then the optimal lower frame bound A, = ||Sg‘,‘_(1]||;21%2 satisfies

Aope = n(A) Iy Il (14)
Proof. Since f = Sﬁyf = Yaealf,mg ) my. Lemma (6.1.3) implies that

IFIE < nClVIZ: ) Kf.mag )P,

TEA
whence the estimate for the lower frame bound follows.

The following duality result is not needed, but is included for completeness. It
answers a question of our engineering colleague G.Matz, see [425].

The complex analytic techniques we use are concentrated around the Fock space
of entire functions and precise estimates for the Weierstrass o-function. These topics are
closely related: roughly speaking o-function deliver examples of functions of “maximal
possible growth” in the Fock space.

We recall the basic properties of the Fock space, as discussed and proved, for
instance, in [416,420].

The Fock F is the Hilbert space of all entire functions such that
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IFIZ = f IF(2)|2e ™7 dim,, < oo, (15)
C

where dm is the planaer Lebesgue measure. The natural inner product in F is denoted

by ( ). ).'F'
Below we list the properties of the Fock space, which will be used in the sequel.
(a) Each point evaluation is a bounded linear functional in F, and the corresponding

reproducing kernel is the function w - e™2¥, precisely,

F(z) = (F(w),e™Y): VF € F. (16)
(b) A function in F grows at most like the Gaussian (see e.g. [433]), more precisely,
s
|F(2)| = o(l)eilzlz, asz > o, F€ETF. (17)
(c) The collection of monomials
- 1/2
e,(z2) = (F) z" n=0,1,.. (18)

forms an orthonormal basis in F.
(d) Define the Bargmann transform of a function f € L2(R%) by

f— Bf(2) = F(z) = 2V/4e2"/2 f f(D)e ™ e2mtz gt (19)
R

Proposition (6.1.6)[406]: The Bargmann transform is a unitary mapping between
L*(R) and F.

(e) The Hermite functions are defined by
n

d
Ho(t) = cpe™ We-mz, n=01.2,.. (20)

where the coefficients c,, are chosen in order to have ||H, ||, = 1. It is a classical result
that the set of Hermite functions {H,,}3°_, forms an orthonormal basis in L?(R%).
Their image under the Bargmann transform is {e,},—o-the natural orthonormal
basis in F :
BH, (z) = e,(z), n=0]1,... (21)
(f) In what follows we identify C and R?. In particular for each { = £ + in € C we
write ; = 1 ). Define the shift §.: F — F in the Fock space by
BF(z) = ei™ne 1" /2em2 (7 — (). (22)
Then B, is unitary on F, and the Bargmann transform intertwines the Fock space shift
and the time-frequency shift:
With these properties one can easily obtain the inner product of a function F €
L% (R%) with the time-frequency shifts of a Hermite function as in [411]. This quantity is
the short-time Fourier transform with respect to a Hermite function.
Proposition (6.1.7)[406]: Let f € L?(R) and F(z) = Bf (z). Then, for all { € C,

1l _
(f ety = e ™12 ) () (CROMFORQ). - 24)
) k=0

Proof. Using the intertwining property (23), we have )
(fl T[EHn>L2(]R{) = (F» IBEBHn).'F
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1/2 2
- _nl¢l” _
e"™e™ 2 (F(2),e™%(z— ™)

-
- (&)
-
- (%)
n, 1/2 2 n-k

— (T[_> e—ingne_”|g| Z (Z) (=Q)km—n+k %(F(Z),enzz).

n!
k=0

12 7e <O
e 2 3 (1) (~OMF @), 2 kerr)
k
k=0
n

It remains to apply relation (16).
Finally we give a description of the space M! in terms of the Bargmann

z|2

transform. Since |(f,m;H,)| = IBf(z)le‘lz (e.g., [420]or [416]), we obtain the
following reformulation of condition (10).
Proposition (6.1.8)[406]: A function f € L2(R) belongs to M?, if and only if its
Bargmann transform F(z) = Bf satisfies

1l = j F(D)le ™ 2dm,, < o, 25)

C

We collect definitions and known facts about the Weierstrass functions. They will
be used.

Given two numbers w,, w, € C such that

J(w,/wq) > 0. (26)

we consider the lattice A = {m,w,; + m,w,: my,m, € Z} c C. The numbers w4, w, €
C are called periods of the lattice A. A lattice on R? written in the form A’ = AZ? c R?
with det A > 0 coincides with A after the natural identification of R? and C . in this
case wq, w, correspond to the columns of A.

The parallelogram 1, = A[0,1)? with basis on w; and w, is a fundamental
domain for A (also called the period parallelogram). Its area can be expressed through
the periods as

[
S(A) == Area(HA) == detA = S(alwz) = —2(51(1)2 - 52(1)1). (27)
Next consider the Weierstrass sigma-function (o-function):
Z\ Z,7°
—_ —_— 2
o(z) =z 1_[ (1 w)ew 202, (28)
wEeAN’

where A" = A\{0}. The lattice A plays a special role for the Weierstrass o-function: o
has simple zeros precisely on A and no other zeros.

The main property of the Weierstrass o-function is its quasi-periodicity. This
means that there exist n,,n, € C, such that

1

0(z + wy) = —0(2)e™* 2% zeCk=1,2. (29)
See, e.g., [407] for detailed proofs. Furthermore, the constants n, satisfy the Legendre

relation
MWz — N0y = 27, (30)
In order to understand the growth properties of the Weierstrass o-function in
dependence of the lattice, we follow an elegant argument of Hayman [426]. He realized
that, after a proper normalization and growth compensation, the absolute value of o
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becomes a double periodic function. We include this arguments for the sake of
completeness.
Proposition (6.1.9)[406]: Set
4[4 T w1 — Ny
a(A) = NNaW1 — 120>

= , A) = — —. 31
61(1)2 - 620)1 ZS(A) a( ) 20)1(1)2 - (1)2(1)1 ( )

and
ox(2) = 0(2)e*Wz*, (32)
Then the function |, (2)|e @12 is periodic with periods w, and w,.
Proof. It follows from (29) that
10(2 + ) e ME 002 |eaWiztor® = |5(7)[dMIZE ™ | = 17,
where

1
A (2) = z(n, + 2awy, — 2ady,) + (EUkwk + aw? — alwklz), k =1,2.(33)

An explicit calculation, based on relations (31) and (30), shows that
Nk + Za(l)k — Zaék = 0, k = 1,2
and also

1
m(znkwk + aa),zc - alwklz) - 0, k= 1,2

Proposition (6.1.9) now follows.
The periodicity implies a groth estimate for the modified sigma-function o,.
Proposition (6.1.10)[406]: Set

c(A) = sup|op(z)|e~ @Iz, (34)
ZEHA
Then
L|Z|2
loa(2)| < c(A)e2sW)™ | vz eC. (35)
For each € > 0 we have
loy(2)| = e®MIzl*  whenever dist(z, A) > €. (36)

Proof. The function |a,(z)|e~*®2I* is bounded in T, and has its only zeros at the
vertices of II,. Hence it is bounded away from 0 on every compact subset of II, that
does not contain its vertices. Relation (36) follows now from the periodicity.

We show Theorem (6.1.12) and thus give a complete characterization of Gabor
superframes with Hermite functions.

We divide proof into several steps. First we will use the matrix form of the
Wexler-Raz biorthogonality relations (56) and translate these relations to an
interpolation problem on Fock space.

Let, as earlier, h = (Hj);,lzo be the vector-valued window consisting of the first
n + 1 Hermite functions, For each y = (yj);_lzo € L*(R, C™*1) denote

Gi=By, j=01..,n (37)

Taking g = h in the biorthogonality relations (56) and using Proposition (6.1.7). We
can rewrite these relations as an interpolation problem for the function G; € F:

l

SR - 1 l k), -

(yj,nMHl)Lz(R) = o~ imSURY p—Tlu|?/2 _nlll z (k) (—ﬂﬂ)ij(l k)(ll)
k=0
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=s(A)6,00;, Jj,1=01,..,n;u€N. (38)

The G(h,A) is a frame for L*(R,C™*'), if and only if there exist functions G; € F
satisfying (38) and if G(y,A) is a Bessel sequence in L?(R, C**1),

This interpolation problem can be rewritten in a simpler way. Indeed, for each

u € A°\{0} and j € {0,1,...,n}, the system (38) is a triangle linear system in the

n

variables {Gj(m)(ﬁ)} with non-zero diagonal coefficients and zero right-hand side.
m=0

Clearly, it has just zero solutions. Thus if G = (G]-)?:O satisfies (38), then Gj(m) (0 =

0,j,m=0,1,..,nu € A°\{0}. For u = 0, the relations (38) take the form
1
——6P(0) =s(N)8;;, j,l=01,..,n
T '
By adjusting the normalization of the G;, we obtain the following statement.
Proposition (6.1.11)[406]: The Gabor system G(h,A) is a Gabor superframe for
L*(R,€™*1), if and only if there exist n + 1 functions y; € L*(R%) such that G(y;, A) is
a Bessel sequence and G; = By,j=0,..,mn, satisfy the (Hermite) interpolation problem
GV (@) = 6,08, for p€N,j,€=0,..,n. (39)
Theorem (6.1.12)[406]: Let h = (H,, ..., H,,) be the vector of the first n + 1 Hermit
functions. Then G(h, A) is a frame for L?(R, C**1), if and only if
1
s(A) < —— (40)

n+1
Proof. Sufficiency of (40). We use the Weierstrass functions described. Construct the

Weierstrass a-function for the lattice A°, as given by (6).
Let the construct a(A°),a(A°) be defined by (31) and the function o a0y be

defined by (32), where the o-function is constructed for the lattice (A°), consider the
function

S(z) = (J(F)(Z))nﬂ _ O.(Z)n+1ea(ﬁ)(n+1)zz_ (41)
The zero set of S is (A_O) and the multiplicity of each zero is precisely n + 1. In
our case (A°) = ZSZTA") = %s(A) , and the growth estimates (35) and (36) can be
rewritten as

1S(s)| < eg(nﬂ)sm)lslz, forall s € C, (42)
1IS(s)| = eg(n+1)s(A)|s|2' if dist(s, A%) > e. (43)

Now assume that s(A) < (n + 1)~1. Then the functions
Sm(z) = Z""'ll‘m S(z), m=01,..,n (44)

belong to F. they have zero of order n + 1 at each u € A°\{0}, and also

sY)=0, for 0<l<m—1, and SI™(0) = 0.

The solutions G; to the interpolation problem (39) can be now found in the form
n

G = z emiSm»  J=01,..m. (45)

m=j
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These functions have a zero of multiplicity n + 1 at all points from A°\{0}, while,
for each j, the condition Gj(l) = §;, leads one to a triangular system of linear equations

with respect to the coefficients {cm,]-}:l:j with non-zero diagonal entries. Clearly this

system has a (unique) Solution.

It remains to ensure that each system g(yj,A) is a Bessel sequence. Each G;
inherits its growth from the functions S; and from S, thus (42) and Proposition (6.1.8)
imply that y; € M1(R) For j = 0, ..., n. Now apply Lemma (6.1.3).

Necessity. Let now s(A) = (n + 1)~1. The growth estimate (43) implies that

|S(z)| = Const e§|2|2’ whenever dist(z, A°) > e. (46)
Now assume that G(h, A) is a frame for L?(R, C™**1). Then there exists a system
of functions G, G, ..., G, € F which satisfy the interpolation problem (39). The
function G,, has zeros of multiplicity n + 1 at A°\{0} and a zero of multiplicity n at the
origin. Therefore
2l (2)
d(2) = 5@
Is an entire function. Estimates (46) and (17) yield
|®(2)| = 0(]|z]|), z > oo, dist(z,A°) > €.
By the maximum principle, the restriction dist(z, A°) > € can be removed, and thus &
is a bounded entire function. Liouville’s theorem implies that @ is constant:

G,(z) = C@.

But z71S(z) ¢ F , this follows again from (46). Therefore € = 0 and hence G, is
identically contradiction to (39). this completes the proof of necessity [410].

Next we consider scalar-valued Gabor frames with Hermite functions.

We remark that if for some g € L*(R,C"*1) and lattice A ¢ R? the system
G(g,A) is a vector-valued frame in L2(R,C"*1), then trivially, for each j = 0,1, ..., n,
the Gabor system G(g;,A) = {m1g;,1 € A} is a frame for L?(R). More generally, for
each ¢ € C***, ¢ # 0, the system G(h, A) = {m19;,1 € A} with h = ¥7_,¢;g; also is a
frame in L?(R). By applying this observation to the window g = (H,, ..., H,,) We obtain
Proposition (6.1.2), which gives a condition for the one dimensional system with a
Hermite window to be a frame for L2(R). Actually a slightly more general result holds
true.

Proposition (6.1.13)[406]: Let n€Z,n>0 and h=Y}_,cHr,20lckl #0. |If
s(A) < (n+ 1)1, then G(h, A) is a frame for L2(R).

Amazingly enough the sufficient density of Proposition (6.1.13) might be sharp,
as is suggested by following counter-example.

Proposition (6.1.14)[406]: If A = aZ X bZ and ab = 1/2, then G(H,,,,+1,A) IS not a
Gabor frame for L2(R) for all integers n > 0.
Proof. We use a Zak transform argument. For a > 0 the Zak transform is defined as

Zof () = ) flx = al)e?imakE, (47)

k=—c0
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We refer the reader to [420, Sect.8.3] for a detailed discussion of its properties. In
particular it is a unitary mapping between L?(R) and L?(Q,)- the space of square-
integrable functions in the rectangle Q, = [0,a) X [0,1/a). For the case ab = 1/2 the
Gabor frame operator is unitarily equivalent to a multiplication operator on L?(Q,) by
maens of the Zak transform. Precisely,

a 2
ZaSHn.an(x: 6) = (lZaHn(x' €)|2 + ZaHn(x - Erf)l )Zaf(xr E): f € LZ(R)-
Consequently G(H,,, A) is a frame for L2(R) if and only if

0< i&f{<|ZaHn(x, O+ |z, H, (x - %).fr }

< sup (12t (5 1 + [2utty (x=3).¢] )} <0

see relation (8.21)in [420].
Clearly, Z,H,, (x,§) is a continuous function Since H,,,.; is an odd function, its

Zak transform satisfies Z,H,,,,(0,0) = Z,H,, 1 (% 0) = 0. This contradicts the above

criterium, therefore G(H,,,1,/A) cannot be a frame.
In [423, Prop. 3.3] we showed that G(H,,, A) is a frame, if and only if there exists
a y, € L>(R), such that G(y,, A) is a Bessel system and the Bargmann transform G,, =

B, isin F and satisfies the interpolation problem
n

n - — )
> () 6 @ = 8,0 VuEN. (48)
k=0
Note that (48) coincides with (38) for j = [ = n and that for s(A) <1/(n+ 1)
the function

n+1

G,(z) =S,(z2) =cz7lo e

(2) (49)
is a solution of (48) in F.

If s(A) = 1/(n+ 1), then we do not know whether (48) has any solution in F.
the difficulty is that this interpolation problem is not entirely holomorphic, and the
standard complex variable methods do not seem sufficient to investigate this problem.
In the light of Proposition (6.1.14) it is conceivable that the sufficient condition s(A) <
1/(n + 1) in Proposition (6.1.13) is also necessary.

We assume that s(A) < ﬁ and we estimate the L? and M-norm of the dual

window for the frame G(H,,, A). Thought the estimates are simple, they seem to be new
even for the Gaussian case n = 0.
Lemma (6.1.15)[406]: Assume that (n + 1)S(A) < 1 and let y,, be the dual windows

with Bargmann transform G,, defined in (49). Setting = % , then

V(O] + [P, (D] < Ce ™ L, (50)
Furthermore,
_ 1
< o\n+1
and
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1
2
=] '
¥alli2 gy = logT— (n+ 1S

(52)
where c(A) is defined in (34).

Proof. The estimates involve a routine calculation with Gausians and are a consequence
of the growth estimate (35) of Proposition (6.1.10). Set p = 1 — (n + 1)s(A).

For the decay property, we use the inversion formula for the short-time Fourier
transform (e.g., [420,Prop. 3.2.3]) which states

Ya(t) = f Vs 0, Ho ), Ho (6)dm,

C
with absolute convergence of the integral for each t € R. Since by (35)
[V TzHo)| = | By (2) e~ ™12/2 < cemlzl"/2
and since 7., ;¢ Ho(t) = e?™$*Hy (¢t — x) , we obtain that

(0] < C f ~mpE/2 g f 2 g t-2)? gy,

The convolution of the two Gaussmns in thls integral is a multiple of the Gaussian
p .2

e Tarpt by the semigroup property og Gaussians with respect to convolution [420,
Lemma 4.4.5].

The M*-norm of y,, is readily estimated by

Iyl = f G (D)le~ ™7 2dm,
C

— 1
< C(A°)n+1f me—nplzlz/zdmz
C

[ee)

_ — 1
— 27T(A°)n+1j e—npr/zdr — 4-C(A°)n+1 +;

0
For the estimate of ||y, || we have similarly

- _ 2
sy = 1612 = [ 12l 2lom Vet am,

C
When |z| <1 the integrated is bounded uniformly, so this part does not bring an
essential contribution into the whole norm. It follows now from (36) that

oo

1Ynllf2ry = f |z|2e ™12 dm,, = f %e—ﬂprzdr = —log(1 — (n + 1)s(A)).
|z|>1 1
This is the desired inequality.

Finally let us briefly describe how the lower frame bound of the Gabor frame
G(H,, A) with Gaussian window behaves, when the lattice approaches the critical size
s(A) = 1. Since the constants in Lemma (6.1.15) depend on (the excentricity of) the
lattice A, we fix a lattice A with size s(A) = 1 and study the behavior of lower frame
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bound of G(H,,qA), as q tends to 1. As long as q < 1,G(H,, gAA) is aframe by the
classical results in [432,435],however, when g = 1, then G(H,, gA) cannot be a frame
by the Balian-Low theorem [410]. The upper frame bound can be controlled uniformly
with Proposition (6.1.3), therefore the lower frame bound must A converge to 0 as g —
1.
Proposition (6.1.16)[406]: Assume that s(A) = 1 and q < 1. Let A, denote the optimal
lower frame bound of G(H,, gA). Then

Ag = c(1—-q%)?% =c(1~-s(qN))?
for some constant independent of gq.
Proof. Let y, be the dual window defined by (49). Corollary (6.1.19) of the Wexler-Raz
relations and Lemma (6.1.15) imply that

21
Aq = (@®lvollZ) ™ = (16n(gMe((@AY)) (1 - s(qn))”

Thus we need to show that the two constants n and ¢ are bounded, as long as g is
bounded away from 0,q > 1/2, say. Clearly the constant (gqA), which measures the
maximal number of lattice points in a unite cube (Lemma (6.1.3)), can be bounded
uniformly. As for ¢, which is the supremum of the o-function over the period
parallelogram (34), we note that (qA)" = q~'A" and that o,-1,(2) = q~'o5(qz) by
(28), (30) and (31). Consequently, sup; /,<4<1¢(q1A°) < o0, and we are done.

We show how the structural results about Gabor super frames can be derived
from the corresponding well-known results for scalar Gabor frames.
Proposition (6.1.17)[406]: (Janssen representation for Gabor super frames) Assume
that y, g € M*(R%,C"). Then the frame-type operator S{,‘,g can be written as

Sf=Spof = ) TG, f, (53)
UEA®
where I'(u) is the n X n matrix with entries
F(Wi = s Xyp m,9:) (54)
and the sum convergence in the operator norm on L?(R¢%, C").
Proof. We look at the I-th component of Sf. Using definition (9) it can be written
explicitly as a sum of scalar frame-type operators

S = Z(f;ﬂ/lg)ﬂﬂz = 22(]3;7@19])”,1)’1 Z gt

AEA j=1 1A€A
Ifall g j,y; are in M, then the well-known scalar version of Janssen s representation

(53) can be applied to each of the frame-type operators occurring above sum and we
obtain that

SO =sW™ Y > mgpmfy = ) (T@mf),  (55)

UEA® j=1 UEAN®°
as was to be shown.

Proposition (6.1.18)[406]: (Wexler-Raz biorthogonality). Assume that both G(g,A)
and G(y, A) are Bessel sequences in L2(R%, C™). Then G(g, A) is a vector-valued frame
in L2(R%, C™) with dual window y if and only if
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1 .
m(yl,nﬂgj) =6p,0,; for pen,jl=12..,n (56)
Proof. We remark first that time-frequency shifts on a lattice are linearly independent in
the following sense: if ¢ = (C“)ueN € ¢*(A°) and ¥, ep () = 0 as an operator
from M* to (M*')*, then ¢, = 0 for all u € A°. See, e.g., [421,434]. If S;,, = I, then by

Janssen’s representation

n
fi=0fe=s)" Z ZW{JJTM 9i) . fj
UEA® j=1
and so linear independence forces s(A)™*(y,m, g;) = 6,08, Or in shart notation
s(A)TIT () = 6,0l
Conversely, if the biorthogonality condition s(A)™'T'(u) = §,,1 holds, then
obviously S, ,, = 1.
Theorem (6.1.19)[406]: (Janssen-Ron-Shen duality). The Gabor system G(g,A) is a
frame for L2(R%,C"), if and only if the union of Gabor systems U7-1G(g;,A°) is a
Riesz sequence for L? (R%).
Proof. Assume first that G(g, A) is a frame for L2(R%, C™). then the canonical dual is
given by y° = S7'g, and by general frame theory y° satisfies S, ,- = 1. Furthermore,

G(y°, ) is again a frame for L2(R<, C™), in particular it is a Bessel sequence. If
n

=00, Gumu) (57)

j=1 uen°
For some sequence (cj,) € #2({1,..,n} X A°), Then by the Bessel property of
G(g;, A°) for each, we obtain that

n n
2
1B =D, D cumags|[ <B D D loul; = Blicl:

Jj=1 peAN® Jj=1 ueAN®
For the converse inequality we use the Wexler-Raz relations. If £ € L2(R%) is given by
(57), then the coefficients are uniquely determined by
Ciu = (o175

Again, since g(yj,A°) possesses the Bessel property, we find that ||c||5 < A’||f]|3.
Altogether we have shown that the set U_; G(g;, A°) is a Riesz sequence in L*(R).

Conversely, assume that Uj_, § (gj,A°) Is a Riesz sequence that generates a sub-
space K < L*(R%). Then there exists a biorthogonal basis {e; ,} contained in K. By the
invariance of the Gabor systems G(g;, A°), we find that the biorthogonal basis must be
of the form e; , = m,y; for some y; € L>(R%). By the general properties of Riesz
bases, g(gj,A°) is a Bessel sequence for each j, and, after some rescaling, the
biorthogonality states that s(A)~*(m,/y;, m,g¢) = 6,8, According to the Wexler-
Raz relations, this implies that G(g, A) is a frame for L2(R%, C").
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Section (6.2): Gabor Frame Sets for Subspace

We denote by Z, N, Q and L?(R) the set of integers, the set of natural numbers,
the set of rational numbers and the Hilbert space of all squares-integrable functions on
R, respectively. Unless otherwise specified, relations between two measurable sets in R
such as equality, disjointness or inclusion, are always understood up to a set of
Lebesgue measure zero, and similarly, equality or inequality between functions is
always understood in the “almost everywhere” sense. Given any M € N, write N, =
{0,1,...,M — 1}. For ¢ > 0 two measurable subsets S; and S, of R are said to be cZ-

congruent if there exist measurable partitions {Sy,}, _, of S; and {S;.}, . of S such

that S, x = S1x + ck for all k € Z. For a measurable set F in R, we denote by u(F) its
Lebesgue measure.

Let H be a separable Hilbert space, and let I be a countable index set. A
sequence {h,, },,c; in H is called a frame for H if there exist constants A and B with 0 <
A < B < oo such that

AFIZ < D K. k)2 < BIFIP,  f €32 (58)

nel
The maximum constant A and the minimal constant B for the inequalities (58) to hold

are called the upper frame bound and the lower frame bound respectively. The sequence
{h, }..c; is called a Bessel sequence in H if only the right-hand side inequality in (58)
holds. See [437,442] and [456] for the fundamentals of frame theory. Given a,b > 0.
Define the modulation operator E,,;,, m € Z, and translation operator T,,,, n € Z, by
Enpf () = e?™MPf() and Tpaf () = f(: —na), f € L*(R),
respectively. For an arbitrary g € L?(R), we denote by G(g,a, b) the Gabor system
associated with g and the time-frequency shift parameters a, b:
g(gr a,b) = {Em'bT”a'g}m,neZ'
A Measurable set S in R with positive measure is said to be aZ-periodic if S+ na =S
for n € Z. We restrict ourselves to the closed subspace L?(S) of L?(R):
L*(S) :={f € L*’(R) : f = 0 on R\S},

where S is an aZ-periodic set in R. Clearly, it is a Hilbert space with the inner product
in L?(R). We deal with the Gabor systems of the form G(xr,a,b) where F a
measurable subset of is S, and y denotes the characteristic function of F. A measurable
set F in S is called a Gabor frame set (tight Gabor set) in S if G(xr,a,b) is a frame
(tight frame ) for L2(S), and called a Gabor Bessel set in S if G(xr, a,b) is a Bessel
sequence in L%(S).

During the last 20 years Gabor systems have been extensively studied in L?(R)
(see  [443,444,445,451]), and also in the setting of subspaces
[438,446,447,449,454,455]. We concern Gabor analysis in L2(S), where S is an aZ-
periodic set in R. Such a scenario can be used to model a signal that appears
periodically but intermittently. Although classical Gabor analysis tools in L?(R) can be
adjusted to treat such a scenario by padding with zeros outside the set S , Gabor systems
that fit exactly such a scenario might have been more efficient. The following
proposition shows that only periodic S in R are suitable for Gabor analysis.
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Proposition (6.2.1)[436]: Given a,b > 0 and a measurable set S in R with positive
measure. Assume that there exists g € L?(R) such that G(g, a, b) is complete in L*(S).
Then = Uypez(supp(g) + na).

Significant achievement has been made on wavelet sets and frame wavelet sets
(see [437,440,441,450,452,453]). In recent years, the study of Gabor frame sets in
R attracted many mathematicians. In [439], Casazza and Kalton proved that the
characterization of Gabor frame sets in R is equivalent to solving an old open problem
of Littlewoods in complex analysis. Janssen in [444] obtained many interesting results
about Gabor frame sets in R of the form (0, c¢,). With the help of set-valued mapping
defined on certain union of intervals, Gu and Han in [448] provided a complete solution
to Gabor frame sets in R of the form (0, ¢,) for the case of ab being a rational number.
For the irrational case,some related results were also obtained. Given ,b > 0 . For
Gabor analysis in aZ-periodic se, Gabardo and [449] provided some conditions on S for
the existence of a complete Gabor system in L2(S) and the existence of tight Gabor sets.
We devoted to Gabor frame sets (especially tight Gabor sets) in S. The results are also
new evenif §S = R.

We characterize Gabor Bessel sets in R. Focuses on characterization of Gabor
frame sets (especially on tight Gabor sets) in periodic setting. In particular, given a, b >
0 and an aZ-periodic Set S in R. Some results related to Gabor frame sets are given,
and a necessary and sufficient condition on a subset of S being a tight Gabor set is
established. We discuss Gabor frame sets with rational ab. We characterize S admitting
tight Gabor Sets, and obtain an explicit construction of a class of tight Gabor sets in
such in such S. For irrational, we derive a necessary and sufficient condition on S
admitting tight Gabor sets.

We will characterize Gabor Bessel sets in R. We begin with a proposition on set
decomposition .Given a measurable set F in R and a constant ¢ > 0. Define the
function 7, of R into NU{c0} by

T, (x) =card({y € F: y = x + cj forsomej € Z}), x € R. (59)
and
F(c,k) ={x€F:1t.(x) =k}, k€eNU({o}. (60)
Here card (E) denotes the cardinality of E for a set E.
Proposition (6.2.2)[436]: Given a Lebesgue measurable set F in R and a constant ¢ >
0. Define 7, and F(c, k) as in (59) and (60) for k € NU{o} respectively. Then
(i) . is c-periodic.
(iVF(c,k) NF(c,k')+cj)=0 forjeZand k, k' € NU{o} with k # k', and F =

(Uken F(c, k)) U F(c, ).

(iii)For each k € NU{o0}, F(c, k) is measurable, and F(c, k) is a disjoint union of k
measurable subsets F)(c, k), j € Ny, such that all F9(c, k) are cZ-congruent to

the same subset of [0, ¢) where N, = N.

(V)Y ez t(F(c, k) n (F + cn)) ku(F(c, k)) for k € N.

(V) F(c,) = @ when u(F) < oo.
Proof. By the definitions of z.and (c, k), we have the conclusion (i) and F =
(Ugen F(c,k)) U F(c, ). The conclusion (iii) follows from Lemma 1 in [441], and the
equality in (v) is borrowed from Remark 1 in [440]. To show (ii), we only need to show
that
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F(c,k)n(F(c,k')+cj)=0
forj € Zand k, k' € NU{co} with k # k’. We will establish the above result by indirect
proof. Suppose there exists a set E with u(E) > 0 such that E c F(c,k)N(F(c, k") +
cj) for some j € Z and k, k' € NU{oo} with k # k'. Then 7. (-) = k and 7. (- —cj) =
k' on E by the definition of 7., which implies that k = k' by (i). This is a contradiction.
Now we turn to prove (iv). Given k € N. By (ii) and (iii),

F(c,k)N(F + cn) = U (F(c, k) n (F(c, 1)+ cn))

leNU{co}
=F(c,k) N (F(c, k) + cn)
k-1

= U (F(c, k)N (FD(c, k) + C"))

j=0
for n € Z. Also note that all FU(c, k),j € Ny, are cZ-congruent to the same subsets of
[0, ¢) by (iii). It follows that

k-1
Z,U(F(C,k) N(F(c,k)+cn)) = Z z,u(F(c,k) n(F/(c k) + cn))

nez nez j=0

k—1
= >Yu <U (F(c, k)N (FI(c k) + cn))) (61)

j=Q nez
Again by (iii), F*(c, k) is cZ-congruent to F/(c, k) for each (1,j) € N, x N,. It follows

that
Fl(c,k) c U ((Fj(c, k) + cn)),

nez
and consequently,

k-1
F(c k) = U Fl(c, k) U(Ff(c, k) + cn).
. . =0 _ NEL
which together with (61) leads to the conclusion (iv).

Lemma (6.2.3)[436]: Let b > 0 and I" be a subset in R with positive measure such that
=r (% 1). For an arbitrary function f € L*(R), write

FO) = yzezf (+3) 2 (-+3) (62)
Then f € 12 [0,%),
FO = b D 4f, B )™, (63)
YEZ

in L [0%) and the right-hand side series in (62) converges absolutely a.e on R.
Proof. Since I is %Z-congruent to a subset of [O, %) we have

FOl =Y | (+Da (+D)

YEZ
on R. It follows that
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2

|f(.)|2dtzz J|f(t+%)xr(t+%)| dt

o

~ 2
= [l < <o
~ 2 1 F
Then f € L [O’E)’ and Consequently,

f2|f t+ )(r t+]l;)|d

yeZ

N[ =

[J 2|f t+ ) 2 t+Z)| dtJ

1 YEZ

= ﬁ”f” < o, (64)

where we have used the fact that " is %Z-congruent to a subset of [0, %) Therefore,

j f(t)e—mebtdt — Z J t _|_ Xr (t +][;) —mebtdt — (f Emb)(r)

[o:5) " o3)
for m € Z. Also observing that {vbe?”™"} _ is an orthonormal basis for f €
L? [0,%), we obtain the equation (63). Form (64) and %—periodicity of £, it follows that

the right-hand side series in (63) converges absolutely a.e. on R.
Lemma (6.2.4)[436]: Given b > 0 and a measurable set F in R with positive measure.

Then {E,,.pxr}mez is a tight frame for L?(F) if and only if F =F (% 1). In this case,

{E b XF mez 1S a tight frame for L?(F) with frame bound %.

Proof. The conclusions follow from Lemma 2.10 in [449].
Lemma (6.2.5)[436]: Given b > 0 and a measurable set F in R with finite positive
measure. Then {E,.,xr}mez iS @ Bessel sequence in L2(F) if and only if there exists

KeNsuchthatF(%,l)=®fork>K.
Proof. We show the necessity by indirect proof. Suppose {E,.pXr}mez 1S Bessel

sequence in L?(F) with Bessel bound B, and u (F (%,kB)) > 0 for some kg > bB. By
Proposition (6.2.2), F (l kB) can be represented as a disjoint union of kz measurable
subsets FU)( kB) Jj € Ny, such that all FU)( kB) are %Z-congruent to the same
subset of[ ’Z)' Define f = XF(%,kB)' Then
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D Bt X )

mezZ

kp—1
= D D Wiy Bt ")
meZ j=0
kp—1
= fO Z Z (3 ) b X pip(3 1)) €5 (65)
=0 MEZ

onF (%,kB). Applying Lemma (6.2.3) to XF(f)( a) and FO) ( kB) we have

b _
2 (x F(;) EmpX F(;)( e?mim ) z X Fu) V )

meZ YEZ
on R. This together with (65) leads to

Ks
D B ) B tr () = 21 ©)

meZ
n i,kB , Where we have also used the facts that F l,kB can be represent as a
b b

disjoint union of k measurable subsets F) (%,kB),j € Ni,, and that all FO) (%,kB)
are %Z-congruent to the same subset of [O, %) Therefore,

k
D I Empted? =212 > BIFIZ

MEZ
which is a contradiction as {E,,, xr}mez 1S @ Bessel sequence in L2(F) with Bessel

bound B.
Now we prove the sufficiency. For an arbltrary function f € L2 (F),

D Bl = ) Z<f B (1)
meZ meZ
2
- mzz Z(fx EnsX (1 )

By Proposition (6.2.2), for each k =1, ..., k, F (E'k) can be represented as a disjoint

union of k measurable subsets FU) (1,k),j € N, such that all FO (%,k) are %Z-

S|

congruent to the same subset of [0%) It foIIows that

(f)( ( )» mb)( )_z<fXF(1) mbXF(])( ))

form € Zand 1 < k < K. Therefore,

ZZ|<f,EmbxF>|2=ZZ ikzlwpm (1)
me me j
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2

.(66)

K(K +1) Z z z |<fXFu> Evo, O ))

=1 j=0 meZ

Applying Lemma (6.2.4) FU) (Z’ k) leads to

z |<fXF(j)(%’k)'EmbXF(%’ ) f If (©)|?dt,
MmeZ F(J)(% k)

which together with (66) implies that

k-1

k
k+1 K(k +
S U Bl < 2SS [ pwrac= R 2 s

meZ k=1 j=0 F(j)(%,k)

Then {E,.,xrlmez IS @ Bessel sequence in L2(f), as the function f in the above
inequality is chosen arbitrarily.

Theorem (6.2.6)[436]: Given a,b > 0 and a measurable set F in R with finite positive
measure. Then F is a Gabor Bessel set in R if and only if there exists k € N such that

F(%,k) = F(a, k) = @ fork > K.

Proof. Necessity. Suppose F is a Gabor Bessel set in R with Bessel bound B.Then

ZXF(' —-na) = ZD{F(' —na)|?> < bB

nez nez

on R by Proposition 8.3.2 in [437], Also note that {E,,,, ¥ }mez IS @ Bessel sequence in
L?>(F). By Lemma (6.2.5), there exists L € N such that F(a, k) = @ for k > K, when
K > max{b, B, L}.

Sufficiency. Suppose K € N is such that F(%,k) =F(a,k) =0 for k> K.
Write F, = F + na forn € Z. Then E, (%,k) = F(%,k) =@ fork > K, and

z |<f: EmanaXF>|2 < Z|<fXFn'EmbXFn>|2

meZ Nnez

for f € L>(R) and n € Z. So, by the proof of sufficiency in Lemma (6.2.5)
K(K+1)
D U B TaaX)? < == f Tt I
MEeZ

for f € L>(R) and n € Z. It follows that
K(K+1
> U Bl < 2> [17@e e~ nada

NEZ meZ NeEZ R

K
Shal j FOF Y xe(t —nayae

Nnez

for £ € L?(R). Also observing that },,c; Xp(t — na) < Kdueto F(a,k) =@ fork > K
2( +1)
D D W EmsTrae ) ? < ———IIf I

NEZ meZ
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for f € L>(R). That F is a Gabor Bessel set in R.

We will focus on Gabor frame sets, especially on tight Gabor sets in S, where
a,b > 0,and S is an aZ-periodic set in R. We first need to establish two Lemmas.
Lemma (6.2.7)[436]: Given b > 0 and two measurable sets F;, and F, in R with
positive measure. Assume that

1 K
F1=F1(E,1>, Fln(Fz-l'E):@ fOI‘kEZ.
Then

D Bk, B, () = 0 (67)
mez

Holds on R for any f € L*(R).
Proof. Applying Lemma (6.2.3) to F; and f we have

Z(f EmpXr,)e*™ ™ =+ Zf XFl %)

MmeZ YEZ
It follows that

4. Bt s, =5 9 F () Xy, O

meZz YEZ
which, together with F; N (F2 + %) = @ for k € Z, shows the conclusion (67).

Lemma (6.2.8)[436]: Given a,b > 0 and an aZ-periodic set S in R. Then, for an
arbitrary measurable subset F of S with finite positive measure, F is a Gabor Bessel set

in S if and only if there exists k € N such that F (%,k) =F(a, k) =0 fork > K.

Proof. Since E,,;, T,oxr € L?(S) for m,n € Z, F is a Gabor Bessel set in S if and only if
it is a Gabor Bessel set in R. the lemma therefore follows by Theorem (6.2.6).

By Proposition (6.2.1) and Lemma (6.2.8), we obtain the following necessary
condition for a set to be a Gabor frame set in S.
Theorem (6.2.9)[436]: Given a,b > 0 and an aZ-periodic set S in R. Assume that F is
a Gabor frame set in S. Then

() Unez (F (3,1) + na) = S; and
(i) There exists K € N such that F (%k) = F(a, k) = @ fork > K.

The following theorem gives a sufficient condition for a set to be a Gabor frame
setin S.
Theorem (6.2.10)[436]: Given a,b > 0 and an aZ-periodic set S in R. Assume that F
Is a measurable subset of S§ with finite positive measure, and that F satisfies the
following conditions:

() Unez(F(3,1) +na) = ; and
(ii) There exists K € N such that F (% 1) =F(a,k) =0 fork > K.

Then F is a Gabor frame set in S.
Proof. By Lemma (6.2.8), F is a Gabor Bessel set in S, and the function

Hef = ) ) {f EmoToaXe Yo Tnats (68)

NEZ mez
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converges for any f € L2(R). Then it suffices to prove
1
(Hef, ) 2 I, f € L2(S). (69)
When K = 1, we have that F = F (% 1), and consequently,

Hefof) = > KToaf 2 BTt 2 =3 9 [ 1Ot

NEZ mez NEZ F+na

for £ € L2(S) by Lemma (6.2.4).This, together with the condition (i), establishes (69).

When K > 1, by Proposmon (6.2.4), for f € L*(S), Hrf can be be rewritten as
k k-1

Hef = z Z Z z z (f, EmanaX (1)( ))EmanaXF(j)(%,K)

neZ k=1 1=1 j=0 meZ
where F(%,l)n( (— l) 3)—(23 for I'eZ and k,le{1,..,k} with k =+,

1

F (; ) Uiz 1FU)( k),j € N,, are %Z-congruent to the same subset of (O'E)'

Then, by Lemma (6.2.7),

Hpf = z Z Z (f, Emana)( ))EmanaXF(%'k)

NeEZ k=1 mez

ZZ (f, EmpTha , F(La ))Emana)(F(%,l)

NEZ MmeZ

+z z z (f, Emana)( ))Emana)(F(%'k) (70)

NeEZ k=2 mez
for f € L(S). It follows that

(Hef. P2 ) D [(F EnoToa 1)

NEZ mevz

22|< naf)( mb)(( ))

NeEZ mez

for f € L?(S). By Lemma (6.2.4) and the condition (i).

D D Ty Bty =y ] F@®2de = ~|If |12

NEZ mez nEZ

2

2

(71)

+na

for f € L*(S), which together with (71) proves (69)
Theorem (6.2.11)[436]: Given a,b > 0 and an aZ-periodic set S in R. Assume that F
Is a measurable subset of S, and that

F = F(a, 1),andF(%,k) # @ forsomek > 1.
Then F is not a Gabor frame setin S.
Proof. By Proposition (6.2.2), there exist FU) (%,k),j € Ny, such that
F (1’]{) — U FU) (l,k),
b , b
JENE
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that FO) G k) ,Jj € Ny, are mutually disjoint, and they are all %Z—congruent to the same
subset of (0%) Define f(-) := XF(O)( k)(-) — XF(O)( k)(-) then 0 = f € L2(S) and

1 1
b’ b’

— —_ [ b _ . b
(f; Emb TnaXF) - f XF(O)(%,]() (t)e 2mim tdt — f XF(l)(%‘k) (t)e 2wim tdt
F+na F+na
for m,n € Z. Also observing that F = F(a, 1), we have

FO (%,k)nF=F(f) (%,k), FO (%,k)n(F+an) =Q@when0#nez

for j = 0,1. It follows that
2

z |(f; Emana)(F)lz = 2 j- e_znimbtdt - f e_znimbtdt =0,

mnez MmeZ F(o)(%'k) F(l)(%’k)
where we have used the fact that F© (%,k) and F© (%,k) are both %Z-congruent to

the same subset of [0%) Therefore, F is not Gabor frame set in S.

Theorem (6.2.12)[436]: Let a, b > 0 and S be an aZ-periodic set in R. For an arbitrary
measurable subset F of S with finite positive measure, the following statements are
equivalent:

(i) F is atight Gabor set in S.

(ii)Unez(F +na) = Sand F = F (3,1) = F(a, k) for Some k € N.

(ili)There exist k mutually disjoint measurable sets F,, F;, ..., F;,—; in S such that F =
U)’jgé E, forsome k € N,F = F (% 1), and each F, is aZ-congruent to [0,a) N S.
Furthermore, the number k in (ii) and (iii) are the same, and, when one of (ii)

and (iii) is satisfied, F is a tight Gabor set in S with frame bound %.

Proof.
())=>(i1) Suppose F is a tight Gabor set in S with frame bound A. By Proposition

(6.2.1), we have U,cz(F +na) =S. Suppose ,u(F (% ,ko)) > 0 for some
ko > 1. Then, by Proposition (6.2.2),F( ,ko) can be represented as a

1
b
disjoint union of k, measurable subsets FU) (%,ko),j € Ny, such that all
FO (%,ko) are %Z-congruent to the same subset of [O,%). Take f, =
Xp0)(Lip) ANG [1 = Xpo(2y,)- TheN fo fi € L*(S) and (fy, f1) =0 since
1 1 .
F© (Z’ko) nF® (Z'ko) = @ . Define

Hpf:= Z z <fr EmanaXF)EmanaXF
NEZ meZ

for f € L(S). Again observing that F is a tight Gabor set in S with frame bound 4 > 0
leads to

(HFfO'f1> = A(fo'f1> =0 (72)
On the other hand,
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(HFfO'f1> = z (forEmanaXFxEmanaXF»fl)

mmnez

— 2 J e —2mimbt j¢

mnez (o)( o )N(F+na)

X e Znimbtdt
(1)( ko)n(F+na)

For eachn € Z, FU) ( ko) NF(F 4 an) is - Z -congruent to a subset, denoted
by GV, of [0,3) for j = 0,1. It follows that

(Hefo f1) = z Z f o—2mibmt g j p2mibmt gy

NEZ mezZ G(o) G1(11)
(0) €9)
= Z J “ (657 n657).
nez G(O)nG(l)

Note that G.” = G\ and u (Géo)) =pu (F(O) (%,ko» > 0 by Proposition
(6.2.2). This leads to

(Hrfo, f1) > 0,
Which contradicts (72), and therefore F = F (% 1). It, together with Lemma
(6.2.4), yields that

DD K B Taake = D" > KTonaf 2 B )

NEZ MmeZ NEZ mez

=3 [ rora (73)

Nne€Z F+na

for f € L?(S).Next we show that F = F(a, k) for some k € N by indirect
proof. Since u(F) < o,F(a,) =@ by Proposition (6.2.2). Suppose
u(F(a, ky)) >0 and u(F(a, k;)) > 0 for some kq, k, € N with k; # k. Let

fi = XFeaky) f2 = Xrak,- APplying (73) to functions f; and f,, and using
Proposition (6.2.2),we obtain that

k
DD Kfu B Trak)? = A2

MEZ NEZL

k
DD Kfo EmsTrae)? = AN,

MEZNEZL

Which contradicts the fact that F is a tight Gabor set in S.
(it)=(ii1) Suppose that the condition (ii) is satisfied. By Proposition (6.2.2), there exist
mutually disjoint measurable subsets FY(a,k),y € N, such that F =
246



F(a, k) = U{‘j;é FY(a, k), and all FY(a, k) are aZ-congruent to the same subset
S of [0,a). Then

U(S + na) = U(F(y)(a, k) +na) = U(F +na)=S

nez nez nez

For each y € N, which implies that [0,a) NS = [0,a) N (U,ez(S + na)) =
S Since S c [0, a). The conclusion (iii) therefore follows.

(iii)=(i) Suppose that the condition (iii) is satisfied. Since = F (% 1), the equation (73)
holds. It follows that

ZZ|<f,EmbmeF>|2=%l§z | rorda

MEZ neEZ Y=0nez Fy+na
For f € L*(S) since F is the disjoint union of F,,y € Nj. Note that each F, is

aZ-congruent to [0,a) NS, and that {([0,a) NS+ na:n€Z} is also a
partition of S. We therefore have

K
D D K B Taa2e)? = T IFI?

MEZ neZ

For f € L?(S). We then finish the proof as (ii) holds for the same K as in (iii).
By Theorem (6.2.12), we have the following corollary.
Corollary (6.2.13)[436]: Given a,b > 0 and an aZ-periodic set Sin R. If F is a tight
Gabor set in S with frame bound A4, then A = %for some k = 1.

As an immediate consequence of Theorem (6.2.12) and Corollary (6.2.13), We
can obtain a necessary condition of the existence of tight Gabor sets in S, which can be
obtained from Theorem 3.3 in [449] when k = 1.

Theorem (6.2.14)[436]: Given k € N,a,b > 0 and an aZ-periodic set in S in R. If

there exists a tight Gabor set in S with frame bound % , then
bk,([0,a) nS) < 1. (74)
Given positive number a, b such that ab is a rational number. We devoted to
characterization of aZ-periodic set S which admits tight Gabor sets, and to the

construction of a class of tight Gabor sets in such aZ-periodic S. We first need to
establish some auxiliary lemmas.

Lemma (6.2.15)[436]: Let a,b > 0 satisfy ab =

g with p,g € N and gcd(p, q) = 1.
Then {[0,$)+%+na:(l,n)eprZ} and {[ )+——ra+maq (Lr,m) €

N, X N, X Z} are both partitions of R.

Proof. Note that {[Oi) + i:j € Z} is a partition of R. By Lemma 2.3 in [449], to

every j € Z there corresponds a unique (l,n) € N, X Z such that j = lq + np, from
which we can obtain a unique (I,r,m) € N, X N, X Z such that j = lq + (mq —1)p
the lemma therefore follows.

Lemma (6.2.16)[436]: Let a,b > 0 satisfy ab = g with p,q € N and gcd(p, q) = 1,

and let S be an aZ-periodic set in R. For B c N,,, define
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Ig:=<tE€ [0,%): Z Xs (t +é> = Z Xs (t +é) = card(B) (75)

IEN,, IEN,,
if B # @, and

Iy = tE[O,%):Z}(§<t+é)=O . (76)

IEN,

Then
p([0,0)nS) = " card(B)pully).

BCNP

Proof. Write §; = [0,a)NS. By Lemma (6.2.15),

u(So) = xs,(t)dt = J Z Z)(SO (t + é + na) dt.

[ bq) leNy, nez

Note that {S, + na: n € Z} is a partition of S and {IB: B c Np} is a partition of [Oé)
So,

pso = Y [ s (c+3)de="Y card(Bu).

BCNy 15 lEN, BCN,,
Lemma (6.2.17)[436]: Given k € N,a, b > 0 and an aZ-periodic set S in R. Let ab =
gwith p,q € N and gcd(p,q) = 1, and let I be defined as in Lemma (6.2.16) for B c

N,,, Assume that, for @ # B ¢ N, with Iy # @ and (y,]) € N, X B,mp,; € Z and 7,
are mappings from B into N, satisfying rBy(l) * 15,/ (") for (y, 1) # (v, l'). Define

E, = U U(IB TBy(l)a+mBylaq) (77)

(Z):#BCN leB
F = U F,. (78)

IB-'#(Z)
Then F is a tight Gabor set in S with frame bound % =

Proof. By Theorem (6.2.12), it suffices to show that F = (%,1),Fy,y € N, are
mutually disjoint, and each F, is aZ-congruent to [0,a) N S.

fory € N, =, and

First we show that F = (% 1). For this purpose, we only need to prove that k =
0 whenever k € Z satisfies that

!

1 k
E + 5 gy(Da+mg,;,aq = E" + 7 Tpr()a+mp . raq + 3 (79)
forsomey,y' €Ny, B,B'c N, l € B, l'eB",and@ # E C I3, @ # E' C Ips
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Suppose (79) holds, then E' = E + é, where j = (I —-1")q — (TBJ,(I) — TBr’yr(l’)) p+

(Mg, — mgr . )pq — kq € Z. Note that E,E' c [o,i). It follows that j = 0, and
thus E = E’, which in turn implies that B =B’ since E = E' c Ig NIz and [z N Iz =
@ if B # B’. So the equation j = 0 can be rewritten as

(1= 17q = (tay (D) =75, D)p + (May — Mgy, )pq —kq = 0. (80)
It follows that q] (TB,,,(Z) — TBJ,:(I)), and thus 7g, (1) = 15,/(l") since g, (1),
7p, (") € Ny. Therefore, (y,1) = (y',1"), which implies that k = 0 by (80). From the
above argument, we also obtain that F,, y € N, are mutually disjoint.

Fix a y € Ny. Similarly, we can show that FE, is aZ-congruent to a subset of
[0,a). Also observing that F, c S, we have F, is aZ-congruent to a subset of [0,a) N
S. By the above argument, I + % —1y(Da+mp;,aq,0 # B c N, with Iy # @,1 €
B, are mutually disjoint. It follows that

u(F) = ) card(®udly) = u([0,a) n'S)
BCNy,

by Lemma (6.2.16), therefore, E, is aZ-congruent to [0,a) N S.
Remark (6.2.18)[436]: Under the hypothesis of Lemma (6.2.17) the sets of the form

(78) cannot run over all tight Gabor sets in S with frame bound %. Indeed we can

construct other tight Gabor sets in S with frame bound % by cut-and-paste operations to
a set of the form (78), which are not of the form (78). Suppose F is a set of the form
(78). Arbitrarily fix y, € Ny, @ # By S Ny, @ # By < N, with Iz # @ and [, € B,, fix

l
0 # m € Z and decompose I + ;" — Tp, 4, (lo)a + mp_,, ;. aq as

[
IBO + EO - TBO’yo(lo)a + mBO’yojloaq - 51 N 52 * @ Wlth 51152 * @ and Sl N SZ = @
Define

E,, = (E,\S;) U (S, + maq),

F= U E |UE,.

Yo#VENg
Then, by the same procedure as in Lemma (6.2.17). We can show that F is a tight Gabor

set in S with frame bound % Also as F, is not of the form (77), F is not of the form

(78) too.
The following theorem provides us with a necessary and sufficient condition for

the existence of tight Gabor sets with frame bound %-

Theorem (6.2.19)[436]: Given k € N. Let a,b > 0 satisfy ab = S with p,q € N and
gcd(p,q) = 1, and let S be an aZ-periodic set in R. Then there exists a tight Gabor set
in S with frame bound % if and only if

and
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1
kzXS (-+5) <q. 81)
IEN,,
1

on [O,E)
Proof. Necessity. Suppose F is a tight Gabor set in S with frame bound %, then, by
Theorem (6.2.12), there exist k mutually disjoint sets E,, ¥ € N, such that F =
Uyen, B F=F (% 1), and each F, is aZ-congruent to [0,a) N S. Also observing that
{([0,a) N'S) + na:n € N} forms a partition of S by aZ-periodicity of S, we conclude
that {F, + na:n € N} is a partition of S for each y € N, . Then

D as(45)= 2 D (ema )= 305 -+

lEN,, LEN, n€EL IEN, n€EL

on [Oi) for each y € N,,.. Taking sum over y to both sides of the above equality, we

obtain that l
np +
S a(h) =3 V() e

lENp Nez

1
on [0’5)’ where we have used the facts that F = F = U,ey, F, and that F,,y € N,

are mutually disjoint. By Lemma 2.3 in [449], every j € Z corresponds a unique (I,n) €
N, X Z such that j = lq + np, from which we rewrite (81) as

k Yien, Xs ( ‘|‘%) = Ynez XF ( + %) = DleN, LneL XF ( + é + %)
on [0,%). Note that },,cz xr ( +%) < 1 on R due to the fact that F = F (% 1). This

inequality (81) therefore follows.
Sufficiency. By the definition of I in Lemma (6.2.16) and the fact {Iz: B c N}
IS a partition of [0,%), (80) holds on [0,%) if and only if
kcard(B) < q (83)
for @ # B c N, with Iz # @. Then, by Lemma (6.2.17) we only need to show that the
sets of the form (78) are well-defined if (83) holds for @ # B c N,, with Iz #+ @. Note
that the inequality (83) is equivalent to card(N, X B) < g for @ # B ¢ N, with Iy #
@. So there exist k mappings 75, from B into Ng, y € Ny, such that they meet the
requirement in Lemma (6.2.17) for each 75, (1), fix an integer mp,,;. Then we can

define a set of the form (78).
By Lemma (6.2.17) and Theorem (6.2.19), we have the following theorem, which
also gives a class of tight Gabor sets in S.

Theorem (6.2.20)[436]: Given a,b > 0 and an aZ-periodic set S in R. Let ab = SWith
p,q € N and gcd(p, q) = 1. Then there exists a tight Gabor set in S if and only if

> xs(+3) = (59)

lEN,
1 . .
on [O’E)' In this case, define k, by
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1 1
ko = max<k € N:kz)(§<-+5> Sqon[O,E) :
IEN,,
Then every set G, of the form

1
G = U U U (IB + 5 15, (Da + mB,y,laq>

YENy @#BCNy, l€B
Ig#0

Is a tight Gabor set in S with frame bound % for each k € Ny + 1, where I are defined
as in Lemma (6.2.16), 75, are mappings from B into N, satisfying 75, (1) # t5,/(l")
and mg,; € Z for (y,1),(y',l') € N, X B with (y,1) # (y',l') and @ # B c N,, with
Iz + Q.

We begin with the following example. Given k € N and a, b > 0 satisfying % <

: 1 11
ab = gwlth p,q €ENandgcd(p,g) =1. Let0 <e < P letT = Usen, [E’E-l_ 6), and
Iet S = UZENP[F + na). Then

[0,a)NS = U ((Cn (la, (la + Da)) — la).
1eN,
It follows that

u([0,a)NS) < z (T N (g, (la + Da) - la) = Z u(T 1 (la, (la + Da))
IEN, IENg
= u(l) = ep,
which implies that
kbu([0,a) NS) < 1.

However, it is obvious that ZleNq Xs ( +%) =kp > q on (0,e). Then by Theorems
(6.2.14) and (6.2.19), this examples shows that, when ab is a rational number, the
inequality (44) is a necessary but not a sufficient condition for the existence of tight
Gabor set in S with frame bound % Next we will show that, when ab is an irrational

number, (44) is also sufficient for the existence of tight Gabor set in S. However, it is

open how to obtain an explicit expression of general tight Gabor sets in S for this case.
By a careful observation of Theorem 4.2 in [449] and Theorem (6.2.14), we have

the following Lemma.

Lemma (6.2.21)[436]: Given a,b > 0 with ab ¢ Q, and an aZ-periodic set S in R.

There exists a tight Gabor set in S with frame bound % if and only if
bu([0,a)NS) < 1.
Theorem (6.2.22)[436]: Given k € N,a,b > 0 with ab € Q, and an aZ-periodic set S
in R. There exists a tight Gabor set in S with frame bound % if and only if
bku([0,a) NS) < 1. (85)
Proof. By Theorem (6.2.14) and Lemma (6.2.21), we only need to show the sufficiency
for the case that k > 1. Suppose that (85) is satisfied. Note that
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[0,ka) NS = U (([0, a)ns) + ya).

YVEN
It follows that
u([0,ka) N'S) = ku([0,a) N'S), (86)
and thus, bu([0,ka) N'S) < 1. Note that S is also kaZ-periodic. So, by Lemma
(6.2.21), there exists F c S such that {E;;, Trka Xr}mnez 1S @ tight frame for L2(S) with

frame bound % which, by Theorem (6.2.12), implies that F = F (% ,1) and F is kaZ-
congruentto [0, ka) N S. Put

F, = (U([o, @+ + lk)a)) NF

leZ
for y € Ny. Then F = Uyen, F,, and F,, ¥ € Ny, are mutually disjoint. So it suffices to

show that F, is aZ-congruent to [0,a) NS for each y € N by Theorem (6.2.12). By
aZ-periodicity of S and the fact that F, c S for y € Ny,
E, = {Uiez[(([0,@) N'S) + ya) + lka]} N F
for y € Ny. It follows that each F, with y € N is kaZ-congruent to a subset of
([0,a) Nn'S) + ya), and thus aZ-congruent to a subset of [0,a) N'S. So, we only need
to show that u(F,) = u([0,a) nS) for each y € N, by indirect proof. Suppose
u(F,,) <u(l0,a) n'S) for some y, € N,. Also observing that {F,:y € N} is a
partition of F, we have
u(F) = Yyen, #(F) < Ku([0,a) N S).
It together with (86) follows that
p(F) < u([0,ka) N'S),

which contradicts the fact that F is kaZ-congruent to [0, ka) N S.
Section (6.3): Periodic Subsets of the Real Line

For H be a separable Hilbert space. An at most countable sequence {h;};¢ in I
is a called a frame for H if there exist 0 < A < B < oo such that

ANFI < D KF ko) 2 < BIFI, (87)
i€l
for f € H. Where A, B are called frame bounds; it is called a tight frame (Parseval
frame) if A = B(A = B = 1) in (87); and a Bessel sequence in H if the right-hand side
inequality in (87) holda. A frame for 7 is called a Riesz basis if it ceases to be a frame
whenever any one of its elements is removed. Given two Bessel sequences {g;}; and
{hi}ier in H, define the operator Sy, ,: H — H by

Snaf = ) (f.h)g (88)
for f € H. Then S, ; is bounded operator on :Iit§I Let {g;};c; be a frame {h;}, is called
a dual of {g;};e if Sp 4, =1 on H, where I denotes the identity operator. It is well-
known that, for two Bessel sequences {g;};e; and {h;};¢ in ', whenever S, , = I on H,
they are both frames for /£ and are duals of each other. If g; = h; in (88) and {g;}; iS
a frame for 3 with frame bounds A and B, it is also well-known that S, , is bounded

and invertible, that {S;zh;} _ is also a frame for # with frame bounds B~" and A™",
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and a dual of {g;};c;, he which is the so-called canonical dual. The fundamentals of
frames can be found in [466,467,477,488].

Given a positive integer L, let L?2(R,CY) be the vector-valued Hilbert space
L*(R, C*) endowed with the inner product defined by

L
(fh) = 2 f f(x)h ) dxfor f = (f,f,, ..., f),h = (hy, hy, ..., hy)
I=1 R

€ L2(R,CY.
Obviously, it is exactly the direct sum Hilbert space @, L>(R). In what
follows, for fe L2(R,C¥) and 1 <1<L, we always denote by f, its I-th
component. For a,b > 0 and g € L2(R, CY), we define Gabor system G(g,a,b)
by
G(g,a,b) = {E,;, Thag: m,n € Z}. (89)
where

EmpThag = (eznimb91 (- —na),e?™m g, (- —na), ...,e*™™ g, ( —na)).
We also call it vector-valued Gabor system since L is not necessarily 1. When L = 1, it
is the usual Gabor system in L2(R) and called scalar-valued Gabor system in contrast to
a general L. A set S in R with positive measure is said to be aZ-periodic if S + na = S
for n € Z. For such S, we denote by L2(R, C%) the closed subspace of L?(R, CE) of the
form
L*(R,CY) = {f € L>(R,CL): f = 0 on R\S}.

The addresses Gabor analysis on L2(S, CL).

Vector-valued frame is also called Super frame. It was introduced in [461] under
the setting of general Hilbert spaces by Balan in the context of “multiplexing”. Which
has been widely used in mobile communication network, satellite communication
network and computer area network. In recent years, vector-valued wavelet and Gabor
frames in L?(R, C") have interested some mathematicians and engineering specialist
(see [459,460,462,468,469,470,478, 479,481,482]), and in [486,487] vector-valued
analysis also occurred as a technical tool in the study of ordinary frames. Let us first
recall some related works.

Fihr in [470] derived frame bound estimates for vector-valued Gabor system in
L*(R, C*) with window functions belonging to Schwartz space, and obtained estimates
for the window h = (hg, hy, ..., h;) € L2(R, CE*1) composed of the first L + 1 Hermite
functions. Grochenig and Lyubarskii in [478] characterized all lattices A ¢ R? such that
Gabor system {E; T; h: 2 = (A1, 4,) € A} is a frame for L2(R, C¥). Abreu [458] gave a
simple proof of this characterization. It has the advantage of also characterizing all
lattices A c R? such that {E;, Ty, h: 2 = (4,,1,) € A} is a Riesz sequence in L*(R, C*).
Also observe that Brekke and Seip in [464] characterized sets generating multi-window
Gabor frames (resp. Riesz sequences) with Hermite functions. For general vector-valued
Gabor systems, necessary density conditions were studied in [460] by Balan. For
vector-valued Gabor systems with rational time-frequency lattices, a sufficient and
necessary density condition was obtained in [482] by Li and Han. And a Zak transform
matrix method was developed in [484] by Li and Zhou. There authors characterized
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complete vector-valued Gabor systems and Gabor frames, and obtained a
parameterization of all its Gabor duals of a general vector-valued Gabor frame.

The theory of subspace Gabor frames includes two aspects. One is to ask whether
G(g,a,b)a frame for its closed linear span for is given g € L?(R) and a,b > 0, and
[463,465,471,472,473,489] belong to this. The other is, given a,b > 0 and an aZ-
periodic set S in R, to fined g such that G(g,a,b) is a frame for L2(S). See
[474,475,476,480,485]. Gabor analysis on L2(S) interests us because of the following
reasons:

e From the perspective of application .Gabor systems on L2(S) can model a
situation where a signal is known to appear periodically but intermittently, and
one would try to perform Gabor analysis for the signal in the most efficient way
possible while still preserving all the features of the observed data. Although one
can think of the signal as existing for all time and do the analysis in the usual
way, this is not optimal way to proceed if the signal is only emitted for very short
periods of time.

e From the perspective of theory. The aZ-periodicity of S is a natural requirement
since one can show that S must be aZ-periodicity if L?(S) admits a complete
Gabor system. The projections of Gabor frames in L?(R) onto L2(S) onto L?(S)
cannot cover all Gabor frames L2(S). Indeed, let ab < 1, and S be an aZ-periodic
measurable subset of R with positive measure. It is easy to check that, if
G(g,a,b) is a frame for L*(R), then its projection G(gyxs,a, b) onto L2(S) is a
frame for L?(S), where ys is the characteristic function of S. However, when
ab>1and S #R, G(g,a,b) cannot be a frame in L2(R) for any g € L?>(R),
while it is possible that there exists some g such G(g, a, b) is a frame for L?(S).
In addition, Theorems 2.7, 2.12, 3.3, 4.2 and Corollaries 2.13, 4.3 in [475] show
that there exist significant differences between Gabor analysis on L?(S) and one
on L?(R).

For rational ab and g € L?>(R, CL), Li and Zhang in [483] investigated the Gabor
system G (g, a, b) of the form (89). Using a suitable Zak transform matrix, they obtained
a characterization for G(g, a, b) to be a frame, Riesz basis, and orthonormal basis for its
closed linear span. They also characterized the uniqueness of two types of Gabor duals,
and using it they extended the classical Balian-Low Theorem. The classical Ron-Shen
dual principle was pointed out to be invalid under this setting. For general ab and aZ-
periodic set S in R, a densiry Theorem for Gabor systems in L? (R, C-) was presented in
[474, Theorem 1.5] by Gabardo et al. However, nothing is known about general vector-
valued Gabor systems in L?(R, CL) except for [474, Theorem 1.5]. Motivated by the
above works, we consider Gabor systems in L?(S, Ct). By introduction of a suitable Zak
transform matrix, we investigate completeness, frame conditions of Gabor systems, and
two types of Gabor duals for a general Gabor frame. We will work under the following
assumptions:

Assumption (6.3.1)[457]: a,b > 0, and ab =§ with p and q being relatively prime
positive integers.

Assumption (6.3.2)[457]: L is a positive integer.

Assumption (6.3.3)[457]: S is an aZ-periodic set in R.
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Focuses on completeness and frame characterization. We devoted to dual
characterization and expression. For a general frame G(g,a,b) in L?(S,CL). We
characterize its Gabor duals of type | and Il. Obtain an explicit expression of its
canonical Gabor dual. And establish a parameterization expression of all its Gabor duals
of type | and a class of its Gabor duals of type Il. We present an example Theorem for
all previous Theorems. This allows us to easily construct Gabor frames and their Gabor
duals by designing corresponding Zak transform matrices.

We denote by N the set of positive integers, by M, the set of all s X t complex
matrices for s,t € N, by A* its conjugate transpose for A € M., by I the identity
operator and by I, the t X t identity matrix when want to specify its size, by yr the
characteristic function of F for a set F, and by N,, the set N, = {0,1,2, ..., M — 1} for
M eN.For A€My, and® #T c Ng, @ # Q c N, define A g as the sub matrix of
A with row indices in I and column indices in €. In particular, we write Ar g = Ar if
I' = Q. Given a subspace V' of Euclidean Space CH, we denote by P, the orthogonal
projection operator from C* onto V. And we denote by M (g, a, b) the closed linear
subspace of L*(R,CL) generated by G(g,a,b) for g € L>(R,Ct) and a,b > 0. Let
G(g,a,b) and G(h,a,b) be both Bessel sequences in L*(R,CL). Define
Spg: L*(R,CH) - L*(R,C") by

Sh,gf: Z <frEm,anah>Em,anag'

mnewZ
We also make the following conventions: relations between two measurable sets in R

such as equality, disjointness or inclusion, are always understood up to a set of measure
zero. And similarly, equality between two functions is always understood up to a set of
measure zero, and similarly, equality or inequality between two functions is always
understood in the “almost-everywhere” sense.

Let A € M, which we consider as a linear mapping from C* into C*. Define the

mapping A:ker(A)* — range(A) by Ax = Ax for x € (ker(c/l))l. Then A is a
bijection, and thus it has an inverse (A)~1. We extend (A)~?! to an operator AT: CS —
Ct by defining
AT(y+2z) = (A) 'y fory € range(A) and z € (range(c/l))l.
The operator AT is called the pseudo-inverse of A.
Definition (6.3.4)[457]: Let G(g, a, b) be a frame for M'(g, a, b).
(i) If h e M (g, a,b) is such that G(h, a, b) is a Bessel sequence, and that
Sngf =1on M(g,a,b),
then G(g, a, b) is called a Gabor dual of type | for G(g, a, b).
(ii)If h € L?(R, C*) (not necessarily in M (g, a, b) is such that G(g, a, b) is a Bessel
sequence,

{(f EmpTaah}, oyt f € PRED} € {{{f, EnpTuad)},, oo f € 2(R,CH}
and
Sh,g =1on M(g,a,b),
then G(h, a, b) is called a Gabor dual of type Il for G(g, a, b).
Definition (6.3.4) is a direct generalization of Definition 2.1 in [472]. Recall that
the Gabor dual of type | corresponds to the usual Gabor dual where the dual window
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belongs to M (g, a, b).while the dual window is not required to be in M'(g, a, b) for the
Gabor dual of type I, instead the range of the analysis operator of the dual frame is
required to be contained in that of the original frame.

Given a measurable set F in R, a countable collection {F;:i € 1} of measurable
sets is called a partition of F sets is called a partition of F if

UFi =F, and F,NFy=0 fori#i' €L

i€
Given a > 0, two meaéurable sets F, and F, are said to be aZ-congruent if there exists
a partition {F,,:k € Z} of F, such that {F,, + k:k € Z} is a partition of F,. In
particular, only finitely many F; , among {Fl,k: k € Z} are nonempty, and the others are
empty if both F;, and F, are bounded in addition. Let a,b and L satisfy Assumptions
(6.3.1) and (6.3.2). Define Zak transform Z,,: L*(R) — Li,.(R?) by

loc
Zaof V) = Z f(t + aqk)e?™*V for f € L?(R) and a.e. (t,v) € R?
keZ
and vector-valued Zak transform Z,,: L*(R, C*) — Li,.(R?,C") by

loc

Zagf (60) = (Zaghi(t,0), Zag fi(6,V), -, Zag (6, )
for f € L>(R,C!) and a.e (t,v) € R2.

It is easy to check that Z,, has the quasi-periodicity:
Zagf t + kaq,v +n) = e ?"kvZ  f(t,v)
for f € L*(R,CL), (k,n) € Z? and a.e (t,v) € R2. (90)
By [475, Lemma 2.1], the restrictions of Z,, and Z,, to [0, aq) X [0,1) are respectively
unitary operators from L?([0,aq) % [0,1)) and from L?(R,C.Y) onto L2([0,aq) X

[0,1)CL).
For f € L2(R, CL), define the CL»-valued function F(t,v) on R? by
Tl (tr v)
F(t,v) = TZ(f’ 28 (91)
TL (t' v)
where
k
Fi(t,v) = | Zaqfi (t + E'v) (92)
KEN,,

foreach1 <l < Landae. (t,v) € R2.

Definition (6.3.5)[457]: Let a, b, L satisfy Assumptions (6.3.1) and (6.3.2). Given g €

L*(R, C), we associate it with the matrix-valued function G: R? — M, ., Defined by
G(t,v) = (G(t,v), G5 (t, V), ..., GL(t, V) (93)

for a.e. (t,v) € R? where G,(t,v) is the matrix-valued function from R? into M,

given by

k
(G(t,V))rk = Zaqai (t +—-—ra, v) for (r, k) € N; X N,,.

b
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Observe that, even if L =1, G(t,v) is different from Zibulski-Zeevi matrix in
[470], but it is more direct and convenient for our purpose. Similarly, for h,w and f €
L*(R, C), we associate it with H(t, v), W (t,v) and F(¢t,v) as in (93) respectively.

T UGBy

keN, reNg
It is easy to check that A is aqZ-congruent to [0,aq). So, by quasi-periodicity and

unitarity of Z,,, an arbitrary q x L, matrix-valued function defined on [O, é) x [0,1)

with L2 ([0 i) X [0,1)) entries determines a unique g € L?(R, CL) via (93) restricted

to [o,é) x [0,1).
Let a,b,L and S satisfy Assumptions (6.3.1)-(6.3.2). Now we check how a
G (t,v) defined on [0,%) X [0,1) determines a g in L*(S, C"). For E c N,,, define
1 k k
Sk ={t € [O’E>:t+565f0rk EE,t-i'EeSfOI'k € NP\E}
. .l 1
Then {Sg: E c N, } is a partition of [O’E)’ and the set

UU U (s-rarg)

r€Ng ESNy, keNp\g
IS agZ-congruent to [0, aq)\S by Lemma 2.5 in [476]. Moreover,
{Zaqfl[o,aq)x[o,l):f € L (S, CL)}
={F:F € L*([0,aq) % [0,1),CL),F = 0 on ([0,aq)\S) x [0,1)}
by Lemma 2.1 in [475]. So, by quasi-periodicity and unitary of Z,,, for an arbitrary
q X L, matrix-valued function G(t,v) defined on [O,i) x [0,1) with L?([0, aq) X

[0,1)) entries, whenever all its kth columns vanish on Sg X [0,1) for k € N,\E with
E ¢ N, it determines a unique g € L?(S, C*) via (93) restricted to [0,%), [0,1).
In what follows, we always write

k
B(t) ={k € Np:t+E€S}, (94)
D(t) = diag (XB(t)(O)rXB(t)(l)r e X (0 — 1)) (95)
and
D(t) = diag(D(t), D(¢), ..., D(t)) (with L blocks) (96)
fort € R.

Let a, b, L and S satisfy Assumptions (6.3.1)-(6.3.3). Focuses on the completeness
and frame characterization of a Gabor system in L2(S,CL), We begin with some
lemmas.

The following three Lemmas are borrowed from Theorem 2.1 and Theorem 2.2 in
[484] respectively:
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Lemma (6.3.6)[457]: For g € L*(S,CL), G(g,a,b) is a frame for M (g, a,b) with
frame bounds A and B if and only if bA(G(t,v)G*(t,v)) < (G(t, v)G*(t, v))2 <
bB(G(t,v)G" (t,v)) for ae (t,v) € [0,5-) X [0,1).

Lemma (6.3.7)[457]: Let G(g, a, b) be a Bessel sequence in L?(S, CL). Then

rank(G(t,v)) = q fora.e (t,v) € [0, %) x [0,1)

if and only if G(g,a,b) has Riesz property, i.e., ¢ =0 is a unique solution to

Zm,neZ Cm,nEmanag =0 in lZ(ZZ)-
Lemma (6.3.8)[457]: For every j € Z, there exists a Z-periodic Lp X Lp unitary matrix-
valued measurable function U;(v) such that

G' (t+b]—q )H(t+b]—q, v) = Ui (06" (& H(E WU v)

for g, h € L?>(S,C) and a.e. (t,v) € R?,
Lemma (6.3.9)[457]: g € L*(S,C"). Then Pier(sem)(t v),rank(G(t,v)) are both

measurable, rank(G (¢, v)) is iZ-periodic with respect to t and satisfies

rank(G(t v)) <L z)(s (t + ) (97)
Proof. Using an argument similar to Lemma 2 6 in [475], we can prove the
measurability of Py, (¢.0))(t, v) and rank(G (¢, v)). By Lemma (6.3.8), rank(G (¢, v))
IS iz-periodic with respect to t. Also observe that, for each k € UZL=1(NP + (I - 1)p),
we must have k € U, (B(t) + (I — 1)p) whenever the k-th column of G(t,v) is a
nonzero vector. This implies that rank(G(t,v)) is at most LY¥P_. xs (t+ ) the

cardinality of U¥_,(B(t) + (I — 1)p). The proof is completed.
Theorem (6.3.10)[457]: Let g € L2(S, CL). Then the following are equivalent:
(i) M(g,a,b) = L*(S, CL);

(iiyrank(G (£, v)) = X228 xs (t + g) forae. (t,v) € [oi) x [0,1):
(iii)range(G*(t, v)) = range (ﬁ(t)) forae. (t,v) € [0, i) x [0,1);
(V)P range(6* (tv)) = D(t) forae. (t,v) € [O, i) x [0,1).

Proof. By an argument similar to Theorem 2.7 in [475], we can prove the equivalence
between (i) and (ii). Next we prove the equivalence between (ii) and (iii), and the

equivalence between (iii) and (iv) to finish the proof. Write T = U¥: 1(NZ,\B(t) +
(1 — 1)p). For almost every (t,v) € [O'E) [0,1), by the definition of G(t,v) we
deduce that the kth row of G*(t, v) is a zero vector if k € T. This implies that

Xo

X1 ~
range(G*(t, v)) c{x€eCP:x = : , X = 0fork €T ; = range (D(t))

XL,

and thus (i) holds if and only if
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rank(G* (¢, v)) = rank (D(0)) fora.c. (t,v) € [o,%) x [0,1).

Since rank(D(t)) =LYl 0)(5 (t+ ) (if) 1s equivalent to (98). The equivalence
between (ii) and (iii) therefore follows. Observe that D(t) is an orthogonal projection
foreacht € [0, i). It follows that (iii) is equivalent to (iv) [483, Theorem 3.1].
Theorem (6.3.11)[457]: Let g € L2(S,CL). Then G(g,a,b) is a frame for L2(S,CL)
with frame bounds A and B if and only if

bAD(t) < G*(t,v)G(t,v) < bBD(t) fora.e(t,v) € [o, %) x [0,1). (99)

Proof. It is easy to check that

ID®x|”* = (D(©)x,x) and G(t, ID(L) = G(t,v) (100)
for x € CL? and a.e. (t,v) € R2. By Lemma (6.3.6) and Theorem (6.3.10), G(g,a, b) is
a frame for L2 (S, C*) with frame bounds A and B if and only if

bAG(t,v)G"(t,v) < (G(t,v)G"(t,v))" < bB(G(t, V)G (t,v)), (101)

range(G*(t, v)) = range (ﬁ(t)) (102)
forae. (t,v) € [0,%) % [0,1). Observe that (101) is equivalent to
bAI < G*(t,v)G(t,v) < bBIl on range(G*(t, v)). (103)

So we only need to prove that (102) and (103) hold if and only if (99) holds. Suppose
(102) and (103) hold. Then

2

I,

bA||5(t)x||2 <(G*(t,v)G(t,v)D(t)x, D(t)x) < bB||D(t)x

namely,
bA|D@®)x|” < ||6(t,v)D©)x|” < bB||D®Ox||’
for x € C*? and a.e. (t,v) € [0,%) % [0,1). This implies (99) by (100). Conversely,

suppose (99) holds Then, rank(G*(t, v)G(t,v)) = rank (ﬁ(t)) equivalently,

LZ)(S (t + I[j) = rank(G(t v)) fora.e. (t,v) € [O —) [0,1)

and thus (102) holds by Theorem (6.3.10). Also observe that
(G*(t,v)G(t,v)x,x) =(G*(t,v)x,G(t,v)x)
= (G(t,v)D(t)x, G(t,v)D(t)x)
=(G*(t,v)G(t,v)D(t)x, D(t)x)
by (100). So (103) holds by Theorem (6.3.10) and (100). The proof is completed.
By Lemma (6.3.7), and Theorems (6.3.10), (6.3.11), we have
Corollary (6.3.12)[457]: For g € L*(S,CL),G(g, a, b) is a Riesz basis (an orthonormal
basis) for L?(S, CL) with Riesz bounds 4, B if and only if
bAD(t) < G*(t,v)G(t,v) < bBD(t)(G*(t,v)G(t,v) = bD(t)I)
and
p—1
k 1
=1L Xs (t + E) fora.e. (t,v) € [O, E) x [0,1).

k=0
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Let a,b,L and S satisfy Assumptions (6.3.1)—(6.3.3), and G(g, a,b) be a frame
for L2(S,Ct). We devoted to its duals with Gabor structure. We characterize Gabor
duals of type I and 11, present an explicit expression of the canonical dual, and establish
a parametrization expression of Gabor duals of type I and II for G(g,a,b). In
particular, when L = 1, Gabardo and Li [476] investigated the canonical dual and the
uniqueness of Gabor duals of type I and II for a Gabor frame in L2S.

The following three lemmas are borrowed from Lemmas 3.2 and 3.4 in [483] and
Remark 3.2 in [484]:

Lemma (6.3.13)[457]: Let G(g, a, b) and G (h, a, b) be both Bessel sequences. Then

f=Su,f for f= 2 ErnEmy Tnag With ¢ € 2(Z%)
mmnez

if and only if
1 1
6(t,v) = 7 66 VH ()G v) forae. (t,v) € [o, E> % [0,1).

Lemma (6.3.14)[457]: Given g,h € L*(R,CL), let G(g,a,b) and G(h,a,b) be both
Bessel sequences in L2 (R, CL). Then

{{<fi Emanah>}m,neZ : f € L7 (]R, CL)} = {{<fr Emanag)}m,nEZ : f € L2 (]R: (CL)}
if and only if there exists a function B : [O, i) X [0,1) = M, ;,, such that
H(t,v) = G(t,v)B(t,v) fora.e. (t,v) € [Oﬁ) x [0,1).
Lemma (6.3.15)[457]: For a,b > 0 and g € L>(R,CL)G(g,a, b) is a Bessel sequence

in L2(R, C*) if and only if all its entries belong to L <[0 i) X [0,1)).

By the same procedure as in [484, Lemma 4.3], we can prove
Lemma (6.3.16)[457]: Let G(g,a,b) be a frame for M (g,a, b), and h € L*(R, CL).
Then h € M (g,a,b) and G(h,a, b) is a Bessel sequence in M (g, a, b) if and only if

there exists a function A4 : [0,%) x [0,1) » M, , with L® <[0 é) X [0,1)) entries
such that
1
H(t,v) = A(t, v)G(t,v) for ace. (¢, v) € [O,E) x [0,1).

Theorem (6.3.17)[457]: Let G(g, a, b) be a frame for L?(S, CL). Then
(i) G(h, a,b) is a Gabor dual of type I for G(g, a, b) if and only if there exists some

function 4 : [0,%) x [0,1) » M, , with L” <[0 i) X [0,1)) entries such that

H(t,v) = A(t,v)G(t,v),
H*(t,v)G(t,v) = bD(t)

1
a.e. on [0, E) x [0,1).
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(ii)G(h, a, b) is a Gabor dual of type Il for G(g, a, b) if and only if all the entries of
H(t,v) belong to L% ([0 %) X [0,1)), and there exists some function B :

1
[O’E) x [0,1) » M, , such that

H(t,v) = G(t,v)B(t,v),
D(®H*(t,v)G(t,v) = bD(t)

1
a.c. on [0, E) x [0,1).

Proof. By Lemmas ((6.3.3)-(6.3.16)) and Theorem (6.3.10), G(h, a, b) is a Gabor dual
of type I (type II) for G(g, a, b) if and only if

bG(t,v) = G(t,v)H*(t,v)(t,v), (104)

H(t,v) = A(t,v)G(t,v) (H(tv) = G(t,v)B(t,v)) (105)

for a.e. (t,v) € [0,%) %X [0,1) and some g X q (Lp X Lp) matrix-valued function

A(t,v) (B(t,v)) defined on [oi) x [0,1), where A(t,v) has L <[o£) x [o,1)>

entries. So, to finish the proof, we only need to prove that, under the condition (105),
H*(t,v)G(t,v) = bD(t) (D(O)H" (£, v)G(t,v) = bD (1)) (106)

holds for a.e. (t,v) € [0,%) x [0,1) if and only if (104) holds. Suppose H(t,v) =

A(t,v)G(t,v) and H*(t,v)G(t,v) = bD(t). Then
G(t,v)H*(t,v)G(t,v) = bG(t,v)D(t) = bG(t,v).
Conversely, suppose H(t,v) = A(t,v)G(t,v) and (104). Then
range(H*(t, v)G(t,v)) < range(G*(¢t,v)). This implies that H*(t,v)G(t, v) = bl on
rangeG *(t, v) due to the restriction of G(t,v) on rangeG*(t,v) being injective. Also
observe that G(t,v)D(t) = G(t,v) and that rangeG*(t,v) = rangeD(t) by Theorem
(6.3.10). It follows that H*(t, v)G(t,v) = bD(t).
Now suppose H(t,v) = G(t,v)B(t,v). Then (104) holds if and only if
bG*(t,v) = G*(t,v)H(t,v)G*(t,v), equivalently,
bl = G*(t,v)H(t,v) onrange (G*(t,v)). (107)
Since rangeG*(t, v) = rangeD (t) by Theorem (6.3.10), (107) can be rewritten as
bD(t) = G*(t,v)H(t,v)D(t),
which is equivalent to D (t)H*(t, v)G (t, v) = bD(t). The proof is completed.
Lemma (6.3.18)[457]: Let G(g,a,b) and G(h,a,b) be both Bessel sequences in
L*(R,CY). Then
w =Sy f (108)
if and only if

w(t,v) = %G*(t, v)H(t, v)F*(t,v) (109)
fora.e. (t,v) € [0,%) % [0,1).
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Proof. For g,h € L*(R) satisfying {E,,,Tqg : m,n € Z} and {E,,,T,qh : m,n € Z}
are Bessel sequences in L*(R), define Sy ;f = Ymnezlfs EmpTnal)EmpTnag for f €
L*(R). By Lemmas 2.1 and 2.5 in [483], we have that

Zaq (Sh,gf) (t U)

1

1
(i \
= Z kfj- H(u s)fT-'(u S)) —mebue—ans) dudse?™imbt o Zmnvzaqg(t

reENgmmnezZ\ o o

—ra,v)
for a.e. (t,v) € [0,%) x [0,1), which is equivalent to

(Zaq(Sh,gf) (t + %,v)) = %G*(t, v)H(t,v) (Zaqf (t + %,v))
keN,,

forae. (t,v) € [0%) % [0,1) by a simple computation Observe that

Snof = (Z Stugufy ,Eshlngl .- Z ShlgLfl)

It follows that (108) holds if and only |f

k k
(zaqwl, (t +2, v)> - EZ G/ (6, NH V) (zaq (t +2, v))
=1 KeN,,

forae. (t,v) € [0,%) x [0,1)and 1 < l' < L, equivalently,

KEN,,

KEN,,

k
Zaqwlr (t —ra+ B’ v)

1< N :
SO IR e e

I=1 jEN, \NEN,

J
Zaafv (t +3 v) (110)
for a.e. (t,v) € [0%) X [0,1),k €N, and 1 < I’ < L. By a simple computation, (109)
can be rewritten as

L
* 1 * *
Wi(t,v) = EZ G/ (t, V)H,(t, v)F} (£, v)
l_

fora.e. (t,v) € [0,%) x [0,1)and 1 < I < L, equivalently,

k
Zaqwlr (t —ra+ E,v)
L
1 k Ji
EZ Z N; Zaqu' (t—na+b )Zathr (t—na+5,v)
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Zaaf v (t—ra+%,v> (111)
fora.e. (t,v) € [0%) X [0,1) and (r, k) € N, X N,,.
Next we prove the equivalence between (110) and (111) to finish the proof. For
1 . k , k. K\ _ .,
(t,,r, k) € [O,E) € Ny X Ny, define T(t—ra+g) =t +? if (t—ra+;) =t +
%+ maq for some (t',k',m) € [O, %) € N, X Z. Then it is easy to check that 7 is a

bijection from Uren, Uken, ([0 i) —ra+ %) onto Uken, ([0 1) + g) and (111) can
be rewritten as

b
! k,
ZagWy | t +?+maq,v

L
1 k'
=EZ Z Z Zaq9y <t’ - (n—r)a+g+maq,v>
!

=1 jEN, \NENg

k' —k+
Zaqhu <t’ —(n—r)a+ 5 + magq, v)
L kK —k+]
Zagfi| t +T+maq,v : (112)

Since N, — r is qZ-congruent to N, and N, + (k” — k) is pZ-congruent to N,,, (112) is
equivalent to

! k,
Zaqwlr t' + 5 1%

LS ' k , ] ,
=EZZ Z Zaqgl’ t _Tla‘l‘?,v Zath(t —na+E,U) Zaqfl(t

I=1 jEN, \NEN,

o)
by quasi-periodicity of Z,,. It is exactly (110) due to s is a bijection from the set

Uren, Uken, ([O i) —ra+ %) onto Uyen,, ([O %) + %) The proof is completed.
Theorem (6.3.19)[457]: Let G(g,a,b) be a frame for L?(S,Ct), and G(h,a,b) be a
Bessel sequence in L2(S, CL). Then G(h, a, b) is the canonical Gabor dual of G(g, a, b)

if and only if
H(t,v) = bG(t, v)(G*(t, v)G(t, v))Jr fora.e. (t,v) € [0,%) x [0,1). (113)

Proof. G(h, a, b) is the canonical Gabor dual of G(g, a, b) if and only if
Sg.gh = 9, (114)

which is equivalent to
1 1
6"(6,v) = 6" (6, G WH (6v) forac. (&) € [o, E> x [0,1)
by Lemma (6.3.18), namely,
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G(t,v) = %H(t, V)G (6, v)G(t, ) for ac. (t,v) € [o,%) x [0,1). (115)

Then (113) implies (117) due to (G*(t,1)G(t, 1)) 6" (6, V)G (£, V) = PrangeG™ (&, V).
Next we show the converse implication to finish the proof. Suppose (115) holds. Since
the canonical Gabor dual is a dual of type I, we have that H(t,v) = A(t,v)G(t,v) for
some A(t, v) by Theorem (6.3.17). Combined with (115), it follows that

bG(t,v)(G* (6, v)G(t, 1)) = H(t,v)G"(t, V)Gt v) (Gt V)Gt v))
= A(t,v)G(t, V)G* (t, V)G (&, v) (G*(t, )G (£, v))
= H(t,v)
forae. (t,v) € [0,%) % [0,1), where we used the fact that
G (6, v)G(tv) (6" (6 V)Gt 1)) = PangeG (6, 1).
Eq. (113) therefore follows. The proof is completed.
Theorem (6.3.20)[457]: Let G(g,a, b) be a frame for L?(S, CL). Then, for any Bessel

sequence G (h,a, b), we have
(i) G(h,a, b) is a Gabor dual of type I for G(g, a, b) if and only if there exists some

function A : [0, i) x [0,1) » M, , such that
H(t,v) = bG(t,v)(G*(t, V)G (t,v))"
<I — %G*(t, V)AL, v)G(L, v)) + A(t,v)G(t,v) (116)

fora.e. (t,v) € [0, i) x [0,1);
(it) G(h,a,b) is a Gabor dual of type II for G(g, a, b) if there exists some function
A : [0, i) x [0,1) » My, 1, such that

H(t,v) = bG(t,v)(G*(t, V)G (t,v))"
(1 — %G*(t, v)G(t,v)A(L, v)) + G(t,v)A(t,v) (116)

fora.e. (t,v) € [0, i) x [0,1).
Proof. (i) Sufficiency. Suppose (116) holds. Then
H* (£, v)G(t,v) = bG*(t,v)(G(t, v)G* (£, v)) G (t,v) + G* (£, V)A* (t, V)G (¢, v)
—G*(t, V) A" (£, v)G(t,v)G* (¢, v)(G(t, v)G* (¢, v))TG(t, V).
Since G(t,v)G*(t,v)(G(t, v)G* (¢, v))Jr = Prange(G(tvy), We have that
—G*(t,v)A* (t, V)G, V)G*(t, ) (G(t, V)G*(t, v))"

+G*(t,v)A*(t,v)G(t,v) =0
and thus

H*(t, v)G(t, v) = bG*(t,v) (G(t, v)G* (t,v)) TG (¢, v).
So,

H* (£, )G(t,v) = bG*(t,v)G (£, v)(G*(t, v)G(t, )",
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which is P oc(6*(ey)- And then H*(t,v)G(t,v) = bD(t) for ae. (t,v) € [0,%) X

[0,1) by Theorem (6.3.10). Therefore, G(h, a, b) is a Gabor dual of type I for G(g, a, b)
by Theorem (6.3.17).
Necessity. Suppose G(h,a, b) is a Gabor dual of type I for G(g,a,b). Then,

H*(t,v)G(t,v) = bD(t), and there exists some B : [0,%) X [0,1) » My B such
that H(t,v) = B(t, v)G(t,v) for ae. (£,v) € [0, i) x [0,1) by Theorem (6.3.17). Take
A(t,v) = B(t,v) (G(t,v)GT (£, v)). Then
b(G(t,v)G"(t, ) 6 (¢, v) (1 _ %G*(t, V)AL V)G (L, v)) AL, v)G(t,v)
= H(t,v)b(G(t,v)G"(t,v)) G(t,v)
—(G(t,v)G*(t,v))TG(t,v)G*(t,v)H(t, V)
+ (66 &) 6t 6 () (66 v)) 6t v)
~(6(t, Gt v)) Gt v)
= H(t,v) + b(G(t, V)G*(t,v)) G(t, V)G
—b(G(t, )G (t,v)) G (&, v)D(E)
= H(t,v) (118)
due to G (£, v)D(6) = G(¢,v) and G (¢, v)G* (£, v)(G (6, V)G (1)) = Ppne(oieny)- ()
Suppose (117) holds. Then
D(®)H(t,v)G(t,v) = bD(t)(G*(t, v)G(L, v))Jr(G*(t, v)G(t,v))
+D(t)A*(t,v)(G*(t,v)G(t,v)) — D()A(t, v)
x (G*(t, v)G(t, 1))(G*(t, v)G(t, )T (G*(t, v)G (¢, v)). (119)
Observe that (G*(t,v)G(¢, v))Jr(G*(t, v)G(t,v)) = Prange(6*(twy). FrOM (119), we
deduce that
D(t)H*(t,v)G(t,v) = bD(¢t)
forae. (t,v) € [0,%) % [0,1) by Theorem (6.3.10). This finishes the proof.

By Theorems 3.1 and 3.2 in [483], we have the following:

All previous conclusions closely depend on the matrix-valued functions. This
allows us to realize these conclusions by designing the corresponding matrix-valued
functions. We give an example Theorem to illustrate the efficiency of our method.

Suppose S satisfies that

\ k 1
L;Xs -+E < qforaeté€ [O,E).

This is a natural requireme_nt. Define g € L?(S, CL) by
G(t,v) =0for (t,v) € Sy x [0,1) if |Sy| > O (120)
and

G(t,v) = U(t, v)A(L, V)V (L, v) for (t,v) € ([o %) \sq,) x[0,1), (121)
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where U(t,v) is a g X g matrix-valued measurable function which is unitary, and
A(t,v) and V (t, v) is defined as the following:

Observe that {SE @ +EC Np} Is a partition of [O,i) \Sz. We only need to

define A(¢,v) and V(t,v) on each Sp X [0,1) with @ # E ¢ N,, and |Sg| > 0. Suppose
@+ E c N, and [Sg| > 0. Let V(t,v) be an Lp X Lp matrix with Vu%=1(5+p(l—1))(t' V)

being a unitary matrix and other entries outside Vi ( (t,v) being zeros. Now

i (E+p(-1))
we define
A(t,v) = (AX(t,v), A (L, V), ..., AL (V).
Suppose E = kg, kq, ..., kmgy—1 With kg < ky < -+ < kp(5)-1 for some m(E) €
N,,. Take Al(¢, v) such that

0 — AiagAD ) )
A(Nm(E>+(l—1)m(E))><E (t,v) = dlagAE'O &, v), AE'l(t’ V), o) AE.m(E)—l (tv)
and the entries outside A® (t,v) are all zeros, where
(Nm(5)+(l—1)m(E))><E

MG (&0, A (6, V), o, Ay (V) € 125 X [0,1).
Next we compute (G*(t, v)G(t, v)x, x) and (D (t)x, x) with x € C-P.
(G*(t,v)G(t,v)x,x) = (V*(t,v)A*(t,vV)A(t, V)V (L, V)x, x)
= (A" (t, v)A(t, V)V (t,v)x, V(L v)x)
= (A(t, V)V (t,v)x, V(t, v)x), (122)
where
A(t,v) = diag(AW (¢, v)AW (¢, v), ..., AP (¢, v)) (with L blocks)
O NG 21,0 2 0) 2
KD (t,v) = diag |Gy (& )|, |35 @ 0] |2y —a (1)
and other entries outside K(El)(t, v) being zeros.
(D(O)x,x) = (DOV*(t, V)V (t,v)x,x) = (V(t,v) D)V (t, v)x, x)
=(V(t,v)x,V(t, v)x), (123)
where we used the fact that D (t)V (¢, v) = V (¢, v) by the definition of V (¢, v).
Applying Theorems (6.3.10), (6.3.11), Corollary (6.3.12), Theorem (6.3.19) to
G(g,a,b), we have
Theorem (6.3.21)[457]: Define g € L2(R, C*) as above, and L Y'¥_, xs (%) < q. Then
g € L*(S,CL), and
(i) M(g,a,b) = L*(R,C") if and only if, foreach 1 <1 < L and @ # E c N,, with
|Sg| > 0, we have that
’11(51,)1'("') # 0a.e.onS; X [0,1)
fori € Nm(E)-
(i) G(g, a, b) is a frame for L?(R, CL) with frame bounds A4 and B if and only if
Vba < [205()| < VBB a.e. on S; x [0,1)
for1 <I<L,i €Nygand@ # E c N, with |[Sg| > 0;
(iii) G(g,a,b) is a Riesz basis (an orthonormal basis) for L?(R,C!) with Riesz
bounds A4, B if and only if
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VbA <|,1§;>l( )|<\/ (|,1(”( )|— )ae on Sg  [0,1)
for1 <I<L,i €Nygand @ # E c N, with |Sg| > 0, and
-1

L E ( —) = [0 —)
Y qa.c.on|u, ;
Xs / /
k=0

(iv) G(g,a,b) is a frame for 2(R,CL), and has a unique Gabor dual of type I if and
only if

VbA <|A(l)(--)|< bB a.e. on S; X [0,1)
for1<l<LleNm(E)and®¢EcN with |Sg| > 0, and

LZ)(S( )e{o q}ae. on[O —)

(v) G(g,a,b) isa frame for L*(R, C), and has a unique Gabor dual of type II if and
only if

VbA < |28(,)| < VBB ae. on Sp x [0,1)
for1§l§L,ieNm(E)and(z)¢EcN with |Sg| > 0, and

LZ)(S( )e{o p} a.c. on[O —)

(vi) G(g,a,b) is a frame for L*(R, C), its canonical Gabor dual G(h,a, b) is given
by
H(t,v) = bU(t, v)y(t,v)V (¢, v)
fora.e. (t,v) € [0,%) % [0,1), where y(t, v) for a.e. (t,v) € Sy X [0,1) if [Sy| >
0, and

y(6v) = (YO0, y D), . v, v)

is defined on each Sy x [0,1) with |Sg| > 0 as following: each y O (¢t,v) is a g X
p matrix-valued function such that

y® (t,v)

(Nm(5)+(l—1)m(E))xE

= diag ((Ag’)o(t,v)) 1,(,12}')1(&17)) ) (Ag)m(E)(t, v)) 1)

and other entries outside y((lg +(1-1)m(E) )xE
m(E) -

When § = R in Theorem (6.3.21), the above (121) and (122) reduce to
G(t,v) = U(t,v)A(t,v)V (L, v);
where U(t,v) and V(t,v) are respectively gxqg and Lp X Lp matrix-valued
measurable functions, and

A= (A<1> (t, 1), A®(t, v), ..., AD(t, v)) ,

O] — g Q] D D
A, ayppen, (&) = diag (20 (&0, 2 (€ 0), ., 20,1 (6))

(t,v) are zeros.
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with Agi,Np(t, v) € L2 ([0 é) X [0,1)) for 1 <1 < L. So, by Theorem (6.3.21), we

have
Corollary (6.3.22)[457]: Define g € L*(R, CL) as above. Then
(i) M(g,a,b) = L*(R, CL) if and only if, for each 1 < [ < L, we have that
Agszp("') # 0 a.e.on [0,%) x [0,1);
(i) G(g, a, b) is a frame for L2 (R, CL) with frame bounds A4 and B if and only if
VA < |20, ()| < VBB 0, x [0,1
<[40, ] < VBB ace om0, x 101

for1<I<IL;
(i) G(g,a,b) is a Riesz basis (an orthonormal basis) for L?(R,C!) with Riesz
bounds A, B if and only if

VbA < A0y ()| < VBB (|A0 ()| = Vb)ae. on [o, %) x [0,1)

forit<Il<L,and Lp = q;
(iv) G(g,a,b) is a frame for L?(R,Ct) with frame bounds A and B, its canonical
Gabor dual G (h, a, b) is given by
H(t,v) = bU(t,v)y(t,v)V(t,v)

fora.e. (t,v) € [0, i) % [0,1), where

y(&v) = (YD&), v), ..,y P, v))
is defined on [0,%) x [0,1) with y®(t, v) being a g X p matrix-valued function
satisfying

1 1
7, 1ty (6 V) = ding ((Agg,o(t, ) (A v)) (A0 (e0)) )
for1<I<L.
Corollary (6.3.23)[491]: For g" € L?(t — ¢, CL).Then P, er{

oG 2))(t v?), rank(G(t, v?))

Z-periodic with respect to t and satisfies
rank(G(t, v )

< (1+26)pz_:)(5 <t+1fze)' (124)
k=0

Proof. Using an argument similar to Lemma 2.6 in [475], we can show the
measurability of P (t,v?) and rank(G(t,v?)). By Lemma 3.3,

2
are both measurable, rank(G (¢, v?)) is Ve )

ker(G(t v?))
rank(G(t,v?)) is T3z L-periodic with respect to ¢. Also observe that, for each k €

UZ3e(N, + (I — Dp), we must have k € UE2¢((4 + €)(t) + (I — 1)p) whenever the
k-th column of G (¢, v*) |s a nonzero vector. This implies that rank(G (¢, v?)) is at most
(1+2e) X0 C oXs (t + ) the cardinality of U(“Ze)((A +¢e)(t) + (e)p). The
proof is completed.

(1+2¢€)
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Corollary (6.3.24)[491]: Letg" € L?(t — ¢, CL). Then the following are equivalent:
v) MQC,g",1+61+2)= Lz(t —¢,CH;

(vi) rank(G(t,v?)) = (1+ 2€)Xh_ 0)(5 (t + —) for ae. (t,v?) € [ (1+;6)q) X
(0,1);
(vii) range(G*(t,v?)) = range (E(t)) fora.e. (t,v?) € [ (1+2 o ) (0,1);

,
(Vil) P, oo eo) = DO Torae. (6,v2) € [0, 7=20) < (0.1),

Proof. By an argument similar to Theorem 2.7 in [475], we can show the equivalence
between (i) and (ii). Next we show the equivalence between (ii) and (iii), and the

equivalence between (iii) and (iv) to finish the proof. Write T = Ugt3¢(N,\(4 +
e)t)+ (- 1)p) For almost every(t,v?) € [0 (1+2 ¥ ) [0,1), by the definition of

G (t,v?) we deduce that the kth row of G*(¢t,v?) is a zero vector if k € T. This implies
that

X0

Xq ~
range(G*(t,v%)) c{x € CtP:x = . |, xx =0fork €Ty = range (D(t))
XL,_,
and thus (iii) holds if and only if
rank(G*(t vz)) = rank (E(t)) fora.e. (t,v?) € [0 ;)
’ ’ "(1+ 2¢)q

Since rank (D(t)) =(1+2e) ¥ 0)(5( (1+26)), (ii) is equivalent to (125). The
equivalence between (ii) and (iii) therefore follows. Observe that D(t) is an orthogonal

projection for each t € [0, (1+26)q). It follows that (iii) is equivalent to (iv).

Corollary (6.3.25)[491]: Let g" € L?(t —¢,CY). Then G(Xg",1+€,1+2¢) is a
frame for L2(t — ¢, Ct) with frame bounds A and A4 + € if and only if
(1+26)AD(t) < G*(t,v®)G(t,v?) < (1 + 2€)(A +€)D(¢t) fora.e (t,v?)

x [0,1) (126)

x[0,1).  (125)

1

© [O' a+ 26)q>

Proof. It is easy to check that
ID®x|* = (B(©)x,x) and G(£,v2)D(t) = G(t,v?)  (127)
for x e C!? and ae. (t,v?) € R%2. By Lemma (6.3.6) and Corollary (6.3.24),
GQg",1+€,1+ 2¢€) is a frame for L2(t — €, CL) with frame bounds A and A + € if

and only if
(1 + 26)AG(t, v?)G" (t,v?) < (G(t,v2)G* (£, v?))"

< (1+26)(A+¢€)(G(tvHG(t,v?)), (128)

range(G*(t v?)) = range (E(t)) (129)
Fora.e. (t,v?) € [0 (1+2 ¥ ) [0,1). Observe that (128) is equivalent to

(14 26)Al < G*(t,v>)G(t,v?) < (1 +2€)(A + e )l onrange(G*(t,v?))  (130)
So we only need to show that (129) and (130) hold if and only if (126) holds. Suppose
(129) and (130) hold. Then
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(1 + 20A||B@)x|” < (6*(t, v¥)G(t,v?)D(t)x, D(£)x)
<1+20)@A+6)|Pox|’,

namely,
(1+20)A|DOx|” < |6, v)D©O)x|* < (1 + 26)(A + )| D(O)x|”
for x € C!? and ae. (t,v?) € [O, ! ) x [0,1). This implies (126) by (127).

(1+2¢€)q
Conversely, suppose (126) holds. Then, rank(G*(t,vZ)G(t,vZ))=rank(5(t)),
equivalently,

p—1
k
§ _ 2 2
(1+ 2¢) k_OXS (t + g 26) = rank(G(t,v )) for a.e. (t,v*)

1
€ |oagg) % 100
and thus (129) holds by Corollary (6.3.24). Also observe that

(G*(t,v®)G(t,v*)x, x) = (G(t, v*)x, G(t,v*)x)
= (G(t,v>)D(t)x, G(t, v*)D(t)x)
=(G*(t,v®)G(t,v*)D(t)x, D(t)x)
by (127). So (130) holds by Corollary (6.3.24). The proof is completed.
Corollary (6.3.26)[491]: Let G(3,g",1+ €1+ 2¢) be a frame for L*(t — ¢, CL).
Then
(iii) GQ,h",1+ €1+ 2¢€) is a Gabor dual of type I for G(3,.g",1+¢€,1+ 2¢) if

and only if there exists some function A:[O, : )x[o,l)—>]v[q,q with

(1+2€)q
00 1 H 2\ —
L ([0 (1+26)q) X [0,1)) entries such that H(t,v*) =
2 2 * 2 2\ _ D 1
A(t, )G (L, v?), H* (£, v?)G(t,v?) = (1 + 2€)D(t) a.c. on [0, (1+ze)q) x [0,1).

(iv) GQ,-h",1+4+ €1+ 2¢€) is a Gabor dual of type II for G, g",1+€,1+ 2¢) if
) X [O,l)), and there

1
(1+26)q

and only if all the entries of H(t,v?) belong to L® ([0

exists some function A +€: [0
G(t,v?)(A + €)(t,v?),

5 * 2 2\ 5 1
D(OH*(t, v2)G(t,v?) = (1 + 26)D(t) ae. on [o, (1+z€)q) x [0,1).

Proof. By Lemmas (6.3.3)- (6.3.16) and Corollary (6.3.24), G(},,h",1 +€,1 + 2¢) isa
Gabor dual of type I (type II) for G(X.g",1 4+ €,1 + 2¢) if and only if

2\ —
,(1+2€)q) x [0,1) » M, such that  H(t,v?) =

(14 26)G(t,v?) = G(t, v>)H*(t,v?)(t,v?), (131)
H(t,v?) = A(t,v?)G(t, v?),
(H(t,v?) = G(t,v¥) (A + €)(t,v?)) (132)

1
for a.e. (t,v?) € [O, RISy

A(t,v?) (B(t,v?)) defined on [o

) % [0,1) and some g X g (LP x LP) matrix-valued function

L )x[O,l), where  A(t,v?) has

" (1+26)q
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L ([0 : ) X [0,1)) entries. So, to finish the proof, we only need to show that,
(1+2€)q

under the condition (132),
H*(t, v2)G(t,v?) = (1 + 26)D(¢) (E(t)H*(t, v2)G(t,v?) = (1 + 26)5(0) (133)

holds for a.e. (t,v?) € [0, (H;e)q)x [0,1) if and only if (131) holds. Suppose

H(t,v?) = A(t,v?)G(t,v?) and H*(t,v?)G(t,v?) = (1 + 2¢)D(t).Then
G(t, v)H*(t,v?)G(t,v?) = (1 + 26)G(t,v?>)D(t) = (1 + 2€)G(t, v?).

Conversely, suppose H(t,v?) = A(t,v?)G(t,v?) and (131). Then
range(H*(t,vz)G(t,vz)) c range(G*(t,vz)).This implies that H*(t,v?)G(t,v?) =
(1 + 2¢)I on rangeG*(t, v?) due to the restriction of G(t,v?) on range G*(t, v?) being
injective. Also observe that G(t,v?)D(t) = G(t,v?) and that rangeG*(t,v?) =
rangeD (t) by Corollary (6.3.24). It follows that H*(t, v?)G(t, v?) = (1 + 2¢)D(¢t).
Now suppose H(t,v?) = G(t,v?)(A + €)(t,v?). Then (131) holds if and only if (1 +
2€)G*(t,v?) = G*(t,v?)H(t,v?)G*(t,v?), equivalently,

(1+ 2e)I = G*(t,v*)H(t, v?) onrange (G*(t, v?)). (134)
Since range G*(t, v?) = range D(t) by Corollary (6.3.24), can be rewritten as

(1+2€)D(t) = G*(t,v*)H(t,v*)D(t),

Which is equivalent to D (t)H*(t, v?)G (t,v?) = (1 + 2€)D(t). The proof is completed.

Corollary (6.3.27)[491]: Let G, g", 14+ €1+ 2¢) and GX-h",1+€,1 4+ 2¢€) be
both Bessel sequences in L? (R, CX). Then

Y W= Sy (135)
T T

if and only if
W*(t,v?) =

G*(t,v®)H(t, v*>)F*(t,v?) (136)
! ) x [0,1).

(1+2€)q
Proof. For g",h" € L*(R) satisfying {Em+26)Tm+eya+e8” :m, (m+€) € Z} and
{Ema+2eTmreyaseh” : m,(m +€) € Z} are Bessel sequences in L*(R), define
Zr Shr,grfr = Zm,neZ Zr (fr, Em(1+26)T(m+6)(1+6)hr>Em(1+26)T(m+e)(1+e)gr for fr €
L*(R). By Lemmas 2.1 and 2.5 in [483], we have that

1+ 2¢
for a.e. (t,v?) € [0,
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z Z(1+e)q(5hr,grfr)(t: 172)

+ 1

j j (m}w(uz’ S)) e—2m‘m(1+26)u2e—2m’(m+e)(t—e)du2d(t
T

0 0

rENq m, (m+6)EZ

I
>

—€) e27rim(1+26)teZTti(m+6)UZZ(1+E)qgr(t —r(1+ E),UZ)

fora.e. (t,v?) € [0 ) x [0,1), which is equivalent to

(1+2€)

r k 2
Z(1+€)Q(5hr,grf ) t+ 1+ ZE'v
KeN,,

T
2YH 2 Z r k 2
, V2)H(t, v*) (1+6)qf t+1+26;17
r keN,
fora.e. (t,v?) € [0, ﬁ) % [0,1) by a simple computation. Observe that

Z Shr,grfr
T

(1+2¢€) (1+2¢€) (1+2¢)

z Z Shr "1+e)8 1 f1+5’ z Z Shr "1+e)8" fr(1+6)""' z z 5hr1+e'g§ f1r+€ :
€=0 r

€=0

It follows that (135) holds if and only |f

k
Z (Z(1+€)CIW(1+6)' (t to— 1+ 2¢’ 2))
KeN,

“1+2

r
(1+2¢)

+ Z z G(1+6),(t' UZ)H(1+E) (t; vZ) <Z(1+e)qfr <t
k

2
+1+25”)>
KeN,,

fora.e. (t,v?) € [0, ﬁ) X [0,1)and 1 < (I + €)' <1+ 2¢, equivalently,
r k 2
z Z(1+6)qul (t - 'I"(l + E) + 1+ ZE,U )
r
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1+2€¢

1
1+ 2e z z z Z Z(1+€)qg€1+e)’ (t —(m+e)(1+e)

€=0 jeN, r neN,

k

+1+26

J
,v2>Z(1+6)qh’”(1+E)r (t —(m+e)+1+e+ e 26,172)

J 2
X Zareaf aee (£ + 75077 (137)

For ae. (t,v?) € Oﬁ) x[01),k€N, and 1<l+e<1l+2 By a simple

computation, can be rewritten as
(1+2¢€)

2 Glrvey (6 V) Hprse) (8, V) 146 (6, 0)
e=0

* 2y —
Werey (0¥ = 7750

1
(1+2€)q

k
r

l+2€

1
- 1+ 2¢ z Z Z z Z(1+6)qgr(1+e)' (t —(m+e)(1+e€)

€=0 jeEN, r NEeN,

forae. (t,v2) € [o, )x [0,1)and 1 < (1 + €)' < (I + 2€), equivalently,

k J
+ T 2€;V2)2(1+e)th(1+e) (t —(m+e)(1+e)+ n 26,172)
J
X Z Zavoaflise (t —r(+ &)+ v2>, (138)
T

fora.e. (t,v?) € [0, (1+;e)q) x [0,1) and (r,k) € N, X N,,.

Next we show the equivalence between (137) and (138) to finish the proof.

1 . k , k.
For(t,,r, k) € [O, (1+26)q) € N, xN,,, define 7 (t —-r(1+4+¢e)+ E) =+ if

k , k' PR 1
(t—r(1+e)+ﬁ)=t +——+m(1+e)q for some (t,k,m)E[O,TZE)X

N, X Z. Then it is easy to check that 7 is a bijection from Uren, Uken, ([0 (1+26)q) -
k 1 k
r(l+e)+ 1_,_26) onto UkENp ([0’ 1+26) tiize

), and (138) can be rewritten as
k
z Z(1+6)qwr(1+6)’ (t, + 1+ 2¢ + m(l + E)q' 172>
r

273



(1+2¢) ,

1 k
T 1+ 2e Z Z Z Z Z1+a8 (1+ey (t ~ (e =) +e)+

€=0 JjeN, r neNg

+m(1 + €)g, vz)

k' —k+
X Zi1+e)gh (1+e) (t’ —((m+e)—r)(1+e)+ T12¢ +m(1+¢€)g, v2>>

z r Kk 1 2 139
X Zaveyaf pr,o | +W+m( +e)q, v ). (139)

Since N, — r is qZ-congruent to N, and N, + (k" — k) is pZ-congruent to N, (139) is
equivalent to

kl
Z(1+e)qW' (1+e)’ (t + 1+ 2¢’ UZ)
(1+2¢)

1
= > D D Zuroat qrey <t’ —(m+e(1+e)

€=0 JjeN, \neNg

k' J ’
+ 1+ 2€;v2>z(1+e)th(1+e) (t - (m + E)(l + E) + 1+ ZE'UZ) Z(1+e)qfr(1+e) (t
J 2)
1 +2e"

by quasi-periodicity of Z;,¢4. It is exactly (137) due to 7 is a bijection from the set
k k
Ureng Uken, ([0 1 ) —rd+e+ 1+2€) onto Ugen, ([0 : ) + ) The

"(1+2€)q "1+2€ 1+2€

proof is completed.

Corollary (6.3.28)[491]: Let G(3, g",1+¢€,1+ 2¢) be a frame for L%(S,CL), and
GO, h",1+ €1+ 2€) be a Bessel sequence in L?(t — e, CY). Then G(X, h",1 +
€,1 + 2¢) is the canonical Gabor dual of G(3,-g",1 + €,1 + 2¢) if and only if

H(t,v?) = (1 + 26)6(t, v?) (6" (£, v2)G(t,v?))  forae. (t,v?)
1
Proof. G(3,-h",1 + €,1 + 2¢) is the canonical Gabor dual of G}, g",1 + €,1 + 2¢)

if and only if
z Sgr’grhr = z gr, (141)

T
Which is equivalent to

G*t2=;G*tzGt2H*t2f t,v%) €10
(t,v°) 1T 2¢ (t,v*)G(t,v*)H*(t,v?) for a.e. (t, v?) )

by Corollary (6.3.27), namely,

m) x101)
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G(t,v?) = H(t, v2)G*(t,v?)G(t,v?) fora.e. (t,v?)

1+ 2¢
0 ;) x [0,1) (142)
€ [ "(1+4 2e)q T

Then (140) implies (142) due to (G*(t,v?)G(t,v?)) G*(t,v2)G(t,v?) =
:PrangeG*(t: vz)-

Next we show the converse implication to finish the proof. Suppose (142) holds. Since
the canonical Gabor dual is a dual of type I, we have that H(t,v?) = A(t,v?)G(t,v?)
for some A(¢t, v?) by Corollary (6.3.26). Combined with (142), it follows that

(1 +26)G(t,v?)(G*(t, v))G(t,v?))"
= H(t,v?)G*(t,v?)G(t,v*)(G*(t, v?)G (¢, v?))
= A(t,vD)G(t, v))G*(t,v))G(t, v?) (G (t, v2)G(t,v?)) = H(t,v?)

fora.e. (t,v?) € [0, (1+;e)q) % [0,1), where we used the fact that

G* (£, v2)G(t,v?) (G (6, v2)G (6, 12))| = PrangeG™ (£, v2).
Eq. (140) therefore follows. The proof is completed.
Corollary (6.3.29)[491]: Let G(3,g",1+¢€,1+ 2¢) be a frame for L?*(t — ¢, CL).
Then, for any Bessel sequence G(3.-h",1+ €,1 4+ 2¢€), we have
(iii) GQ,h",1+¢€,1+ 2¢€) is a Gabor dual of type I for G(3,.g",1+¢€,1+ 2¢) if

. . . 1
and only if there exists some function A : [0, (1+2€)q) X [0,1) » M, , such that
H(t,v?) = (1+2e)(G(t,v®)G*(t,v?)G(t, v*)TG(t,v?)
(1= 526" (L DALV (E,vD)) + AL )G, v)

(143)

.I.

1
forae. (t,v?) € [o, (1+ze)q) x [0,1):

(iv) GQ,h",1+¢€,1+ 2¢€) is a Gabor dual of type II for (3, g",1+€,1+ 2¢) if

there exists some function A : [0, (1+§6)q) x [0,1) » M, , such that

H(t,v?) = (1 + 26)6(t, v2) (6" (t, v?)G (L, v?))
(1 _ lee(}*(t,vz)G(t,vz)cﬂ(t,vz)> + G(t, v2)A(t, v?)
(144)

1
forae. (t,v?) € [o, (1+ze)q) x [0,1).

Proof. (i) Sufficiency. Suppose (143) holds. Then
H*(t,v?)G(t,v?)
= 1+ 26)6* (t,v®) (G, v?) 6" (t,v?)) 6 (£, v?)
+ G*(t, v?)A" (£, v2) G (L, v?)
— G*(t,v)A*(t,v?)G(t,vH)G* (¢, v?)(G(t, v?)G* (¢, vz))TG(t,vz).
Since G (¢, v*)G* (t, v2) (G (6, v2)G*(t,v%))" = Pype(aew), We have that
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—G*(t, v2)A* (£, v2)G (L, v2)G* (t, v (G (£, v2) G* (£, v?)) "

+ G*(t,v>)A*(t, v*)G(t,v?) =0,

and thus
H*(t,v2)G(t,v2) = (1 + 26)G*(t,v?) (G (£, v2)G* (£, v®)) G (¢, v?).
So
H* (£, v2)G(t,v2) = (1 + 26)G*(t, v2)G(t, v?)(G* (£, v2)G (L, v?))',
which is :Prange(c*(wz)). And then H*(t,v?)G(t, v?) = (1 + 2¢€)D(¢t) for a.e. (t,v?) €

[0 . )x [0,1) by Corollary (6.3.24). Therefore, G(Xh",1+€,1+ 2¢€) is a

" (1+26)q

Gabor dual of type I for G(3,-g",1 + €,1 + 2¢) by Corollary (6.3.26).
Necessity, Suppose G(X.-h",1 + €,1 + 2¢) is a Gabor dual of type I for G(},.g",1 +
€,1+ 2¢€). Then, H*(t,v®)G(t,v?) = (1+ 2¢)D(t), and there exists some B:

1
[0' (1+26)q) x [0,1) = My, ., such that H(t,v?) = B(t,v*)G(t,v*) for ae. (t,v?) €

[0,(1+26)q)><[0,1) by Corollary (6.3.26). Take A(t,v?) = B(t,v?) —

(G(t,v2)G*(t,v?))T. Then

(1+20)(6(6,v)6" (5,v7) 66, v7) (1 -
+ A(t,v*)G(t,v?)
= H(t,v?) + (1 + 26)(G(t, vD)G*(t,vD)) G (t,v?)
— (G(t,v>)G*(t,v*))TG(t, v®)G*(t, v®)H (L, v?)
+(G(t,v)6" (t,v2)) 6 (t, v1) 6" (£, v2) (G(t, v2)G* (£, vD)) G (t, v?)
— (Gt vD)G (¢t vD) 6 (t,v?)
= H(t,v?) + (1 + 26)(G(t, vD)G*(t,vD) 6 (t,v?)G — (1
+26)(G(t,vD)G*(t,vD)) G (t, v?) D (¢)
= H(t, v?) (145)

Due to G(t,v3)D(t) =G(t,v?) and (G(t,vZ)G*(t,vz))(G(t,vz)G*(t,vz))T=
). (i1) Suppose (144) holds. Then

— G*(t,vz)c/l(t,vz)G(t,vz)>

P range(G (£,v?)
D(OH*(t,v>)G(t,v?) = (1 + 26)5(t)(G*(t,vz)G(t,vz))T(G*(t,vz)G(t,vz))
+D(t)A*(t,v?)(G*(t,v*)G(t,v?)) — D(t)A*(t,v?)
X (G*(t, v2)G(t, v2)(G*(t, v¥)G(t, v2) T (G*(t, v?)G(t, v?)). (146)
Observe that (G*(t,v2)G(t,v?)) (6*(t,v2)G(t,v?)) = P - From (146),

we deduce that

range(G*(t,vz)

D(t)H*(t,v*>)G(t,v?) = (1 + 26)D(t)
. ) X [0,1) by Theorem (124). This finishes the proof.

(1+2€)q

fora.e. (t,v?) € [0,
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