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CHAPTER ONE 

INTRODUCTION 
 

1.1 Introduction:  

The determination of the pavement thicknesses was based purely on 

experiments until the 1920 years. These experiments were developed also with 

the time. The rigid pavements, like those of conventional concretes, can be 

analyzed by the plate theory. The plate theory supposes that the concrete slab is 

a medium thickness plate with plane sections before and after strains. If the 

wheel is placed close to the center of the slab, then only the plate's theory can be 

used for the rigid pavements. The plate's theory or the layer’s theory can be 

used when the load is applied to the slab center (Zdiri, 2009). 

 

The design methods were developed by various organizations for the 

determination of the necessary thicknesses of pavements. The analytical 

solutions, developed thereafter, vary from the "Closed-form Formulas" to the 

complex derivations which are valid for the determination of the stress and the 

deflection in the rigid pavements. But with the development of the powerful 

finite element method, is notice a significant evolution in the analysis of the 

rigid pavements. Various finite element models have been developed for 

analyzing the behavior of concrete pavement systems. For these analyses, 

computer programs were developed by using the finite element method such as 

ILLI-SLAB, WESLIQID, J-SLAB, FEACONS-IV, SLAB2000, WESLAYER , 

ABAQUS and ANSYS .The main advantage of these approaches is the 

evaluation of the critical load transfer phenomena and the stress distributions in 

the rigid pavements like the roller compacted concrete ( RCC) slabs. Many 

researchers employed the finite element packages in order to analyze the 

behavior of concrete pavements. This enabled the prediction of stresses and 

displacements  (Modelling of the Stresses and Strains Distribution in an RCC 

Pavement Using the Computer Code "Abaqus" ( Zdiri, 2009).  

 

In 2011 the Federal Aviation Administration (F.A.A) developed 3D Finite 

Element program (FEAFAA 1.2) uses for analysis airport rigid pavement (Brill, 

2011). 
 

 Using ANSYS software a model can be developed for the study of airport rigid 

pavements and its foundation. For such a study 3D finite element models are 

developed using FE program to obtain results which are compared with 

analytical models results. 
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1.2 Problem Statement 

The structural analysis of highway and airports rigid pavements has mostly 

centered on the evaluation of stress. The overstress giving rise to cracking in the 

structure has been considered as a principal indicator of failure of pavements. In 

turn, design of airport concrete pavements has centered on avoiding the 

formation of such cracking by keeping the level of stress below the allowable 

concrete strength . The use of the finite element method enables the accurate 

prediction of stresses and displacement. Thus the development of 3D finite 

element model for the analysis and design of rigid runway pavements is 

required.  

1.3 Objectives 
 

The main objective of this study is to develop and implement a pavement 

response model using a finite element program in predicting stresses and 

deflections in rigid pavements.  

 

The specific objectives are: 

 

1. To study the importance of the improvement of stress prediction to 

provide safe design. 

2. To learn how to use the finite element method in the analysis of rigid 

pavements. 

3. To develop 3D finite element model for the analysis and design of rigid 

runway pavements using ANSYS program. 

4. To predict the displacement and stress that cause premature failure  

5. To verify the accuracy of the result of the model by comparison with 

published results.  

 

1.4 Methodology 

The following steps are performed: 

1. Collect data of materials prosperities and design thickness of rigid 

pavement from F.A.A international report. 

2 Analyze data and calculate the stress and deflection using Westergaard 

theory. 

3 Use Finite element program (ANSYS) to create a rigid pavement model 

and apply the load with the given materials properties. 
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5. Compare the results of model with the result of analytical method and 

draw calculations and present recommendations.  

1.5 Outlines of Thesis 

Chapter one provides information about the nature of this study and discusses 

the research problem. It contains the introduction, problem, objectives, and 

methodology. 

 

Chapter Two oriented as a literature review about "Modelling of stress and 

deflection of airport rigid pavement using finite element analysis". It focuses on 

the part "rigid pavement response model". It also illustrates the general methods 

and previous studies used in analysis of concrete pavement. 

 

Chapter Three emphasizes on "Methods of analysis and design". It illustrates in 

detail the equations and theories used in analysis and design of concrete 

pavement. 

  

Chapter Four discusses the results of analysis method including analytical 

method and finite element analysis.  

 

Finally, chapter Five summarizes the findings and conclusions of this research 

as well as the suggested recommendations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

CHAPTER TWO 

LITERTURE REVIEW 
 

2.1 Background: 

Pavement structural analysis includes three main issues material 

characterization theoretical model for structural response and environmental 

conditions .Three aspects of the material behavior are typically considered for 

pavement analysis (Yoder and Witczak, 1975): 

 

(1) The relationship between the stress and strain (linear or nonlinear). 

 (2) The time dependency of strain under a constant load (viscous or non 

viscous); 

 (3) The degree to which the material can recover strain after stress removal 

(elastic or plastic). 

Theoretical response models for the pavement are typically based on a 

continuum mechanics approach. The model can be a closed-formed analytical 

solution or a numerical approach. Various theoretical response models have 

been developed with different levels of sophistication from analytical solutions 

such as Boussinesq’s equations based on elasticity to three-dimensional 

dynamic finite element models (Wei Tu, 2007). 

 

2.2 Rigid Pavement Response Models 
 

Because of concrete’s high elastic modulus, the Portland cement concrete 

(PCC) slab supplies most of the structural capacity, and tends to transfer the 

traffic loads to a relatively wider area than does asphalt, producing a very 

different stress distribution from the one generated by a flexible pavement. 

Furthermore, variable slab sizes, the presence of different types of 

discontinuities (longitudinal and transverse joints), a variety of load transfer 

mechanisms (dowel bars and aggregate interlocks), and high sensitivity to 

environmental conditions (temperature curling and moisture warping) make the 

analysis of rigid pavement a more complicated and challenging problem. The 

multi-layer elastic theory is generally not considered an appropriate tool for 

rigid pavement response analysis (Wei Tu, 2007). 

 

2.2.1 Westergaard’s Analytical Solution 

 

The early advances in rigid pavement analysis started in the 1920s. In 1926, 

Westergaard derived closed form analytical solutions for stresses and 

deflections due to thermal curling and traffic loading in jointed rigid pavements. 

To simplify the problem, he assumed that the subgrade cannot transfer shear 
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stresses. The subgrade is characterized by a single parameter, the modulus of 

subgrade reaction or the k value. The vertical pressure of the subgrade to the 

concrete slab is a constant which equals to subgrade reaction ( k ) times the 

vertical deflection. The following assumptions were made in Westergaard’s 

original work (Westergaard, 1926a): 

1) The concrete slab acts as a homogeneous, isotropic, elastic solid in 

equilibrium; 

2) The classic Kirchhoff plate theory is assumed for the concrete slab and the 

transverse shear stresses are ignored; 

3) The reaction of the subgrade is only vertical and is proportional to the 

deflection of the slab. 

4) The concrete is resting on a set of springs with the spring constant k , 

independent of the slab deflection. 

5) The thickness of the slab is uniform 

6) Three loading conditions are considered: interior, corner, and edge. 

7) The loading pressure is assumed to be distributed uniformly over a circular or 

semi-circular area with radius (a) shows in (Figure 2.1) 

8) The slab is only subjected to one load. 

 

 
 
Figure 2.1 Three Loading Conditions for Westergaard Equations (Westergaard, 1926a) 

 

 

2.2.2 Improved Models Based on Westergaard’s Theory 

 

Since Westergaard’s original work, some researchers have made improvements 

on Westergaard’s theory. Pickett and Ray (1951) developed influence charts 

that allow the Westergaard equations to be applied to multiple wheel loadings. 

Two cases were considered in their study: the Winkler (dense liquid) subgrade 

and the elastic solid subgrade. Pickett and Ray’s influence charts have been 
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used by the Portland Cement Association (PCA) for rigid pavement design. The 

charts for interior loading were used for the design of airport pavements (PCA, 

1955).  

 

As stated by Wie Tu, 2007,  "Salsilli et al. (1993) applied the Newton-Raphson 

iteration procedure to convert multiple wheel loadings to an equivalent single 

loaded area that would produce the same bending stress and used this 

transformed loading in Westergaard’s equations. Three-wheel load 

configurations were considered: dual, tandem and tridem" 

 

2.2.3 Finite Element Models 

 

Although closed-form analytical solutions are very desirable for practicing 

engineers in routine pavement analysis and design, the assumptions made to 

develop those solutions place too many limitations on the application. To 

overcome the limitations of analytical solutions, the finite element method has 

become a widely used tool for rigid pavement analysis since the early 1970s. 

 

Chen etal (2002) presented a review including the following studies of the 

pavement finite element modelling: 

 

1. Wang and his colleagues (1972) study of the responses of rigid 

pavements to wheel loads using a two dimensional (2D) linear elastic 

finite element model. The concrete slab was modeled with medium-thick 

plate elements assuming the classical plate theory based on Kirchhoff 

hypothesis.. Stresses and deflections computed with the finite element 

model were compared with those from Westergaard’s equations. The 

comparison showed that the analytical solutions give lower stresses and 

deflections. 

 

2. Huang (1974) study presenting another 2D elastic finite element model 

for rigid pavements. In his model, the foundation was modeled as an 

elastic continuum and the effect of load transfer from adjacent slabs and 

loss of contact were considered as well.  

 

3. Following the early developments of 2-D elastic finite element models, 

Tabatabaie and Barenberg (1978, 1980) development of a more general 

2-D finite element program called ILLI-SLAB. The concrete slab was 

modeled using medium-thick elements like earlier models but the effect 

of bonded or unbonded base layer could be incorporated using a second 

layer of plate elements below the slab. The subgrade was modeled as 

Winkler foundation and dowel bars at joints were modeled as discrete bar 

elements.  
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4. The modification and extension by Chou (1981) The 2-D finite element 

program developed by Huang and Wang (1973). Two programs were 

developed: WESLIQID and WESLAYER. Both programs were based on 

the classical medium-thick plate theory. The main difference between the 

two was the subgrade modeling.  

 

5. Huang (1983), Huang and Deng (1985) extension of the earlier model 

KENSLABS to include the capability of modeling multiple slabs and 

various load transfer mechanisms in a manner similar to the ILLI-SLAB. 

The subgrade was characterized as an elastic half space. The loss of 

subgrade contact and the effects of mesh refinement were also studied. 

 

6. The development of a finite element program called RISC as part of a 

mechanistic design procedure for rigid pavements for FHWA 

(Majidzadeh et al. 1984). In this program, the concrete slab was modeled 

using thin elastic shell element assuming Kirchhoff’s theory.  

 

7. Tayabji and Colley (1984) development of a 2D finite element program 

called JSLAB to analyze jointed reinforced concrete pavements. The slab 

was modeled using medium thick plate elements. The subgrade was 

modeled as a Winkler foundation.  

 

8. Tia et al. (1987) development of a 2D finite element program named 

FEACONS (Finite Element Analysis of Concrete Slabs) to analyze the 

response of jointed concrete pavements to load and temperature 

variations. Similar to other 2-D finite element program, the concrete slab 

was modeled using medium-thick plate elements while the subgrade was 

assumed as a Winkler foundation.  

 

9. Krauthammer and Western (1988) investigation of the effects of shear 

transfer on pavement behavior using a 2D plane strain dynamic finite 

element model developed in the commercially available finite element 

program ADINA.. 

 

10. Ioannides and Donnelly (1988) examination of the effect of subgrade 

nonlinearity using a existing 3D finite element program called GEOSYS. 

Linear 8-node brick elements were used to model the slab and subgrade, 

with varying degree of mesh refinement.  

11. Channakeshava et al. (1993) development of a 3-D, nonlinear static finite 

element model to study the 3-D response of plain concrete with doweled 

joints. The slab were modeled with 20-node, quadratic isoparametric 

brick elements. The subgrade was modeled as a Winkler foundation with 
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three discrete linear springs at each node on the base of the slab. Both 

wheel loads and thermal loading induced by diurnal temperature cycling 

were considered in their study. 

 

12. Zaghloul et al. (1994) investigation of the load equivalent factors by 

using a 3-D, nonlinear dynamic finite element model with the 

commercially available finite element program ABAQUS. The slab and 

subgrade were modeled with 3-D brick elements. The concrete was 

modeled as a bilinearly elastic-plastic solid. The granular base, subbase 

and subgrade were modeled with an elastic-plastic Druker-Prager model. 

The clayey subgrade was modeled using a Cam-Clay model. The 

predicted deflections for the static loading  condition were compared with 

those determined from Westergaard’s analytical solution and a separate 

finite element program to verify the model.. 

 

13. Chatti et al. (1994) extension of the existing static 2-D model ILLI-SLAB 

to a linear dynamic finite element program, called DYNA-SLAB, to 

study the effects of dynamic loading applied by trucks on the response of 

rigid pavements. The concrete slab was modeled with plate elements and 

the foundation was treated as a Winkler foundation or a layered visco-

elastic medium over a rigid or an infinite half-space.  

 

14. Uddin et al. (1995) report on a study of the effect of pavement 

discontinuities on surface deflections of a rigid pavement subjected to a 

standard FWD load using a 3-D elastic finite model with the general 

purpose finite element program ABAQUS. The concrete slab, cement-

treated base, and subgrade were modeled using 3-D elastic brick 

elements. Cracks in the pavement were modeled using gap elements 

while dowels were modeled with beam elements.  

 

15. Kuo et al. (1995) development of a 3D elastic finite element model using 

ABAQUS to investigate the various factors affecting rigid pavement 

support including base thickness and stiffness, interface bonding, slab 

curling and warping due to temperature and moisture gradient, load 

transfer at the joints and lane widths. Significant effort was made to 

determine the optimum mesh refinement and best element type. The 

subgrade was treated as a Winkler foundation. The interface between 

layers was modeled using a membrane element coupled with a special 

interface element. The model was verified by comparing the model 

predictions with both Westergaard’s analytical solution and the 

predictions from the 2D finite element model ILLI-SLAB.  

 



9 

 

16. Zaman and Alvappillai (1995) study of the effect of moving aircraft loads 

on a jointed multi-slab rigid pavement system using a 2-D dynamic finite 

element model. The pavement slabs were modeled using 4-noded, 

rectangular medium-thick plate elements. The subgrade was treated as a 

viscoelastic Winkler foundation. The dynamic interaction between the 

aircraft and pavement was modeled using a parallel spring and dashpot 

with an associated mass. Longitudinal joints were modeled using discrete 

displacement springs while transverse joints were modeled as doweled, 

and debonding and gaps between dowels and slabs were allowed.  

 

17. Masad et al. (1996) development of a 3-D finite element model using 

ABAQUS to examine the response of rigid pavements to the thermal 

loading. Both the slab and subgrade were modeled with 8-noded brick 

elements. The slab and foundation were both assumed to be linearly 

elastic. Longitudinal joints, friction and loss of contact between the slab 

and foundation were considered in the analysis. Both linear and nonlinear 

temperature gradients were examined.  

 

18. Study reported by Kim et al. (1997), a 3D elastic finite element model 

was developed using ABAQUS to analyze the response of a single rigid 

pavement slab to the heavy multiple-wheel loading applied by aircraft 

landing. The slab, cement-treated base, and subgrade were modeled using 

linear hexahedral elements. Bonded and unbonded bases were considered 

in the analyses.. Different wheel configurations were examined including 

single, dual, and triple tandem axle loading.  

 

19. Brill et al. (1997) development of a 3D static finite element model for 

rigid pavements using the public domain finite element program 

NIKE3D. Unlike most 3D finite element models, the slab was modeled 

with 4 noded plate elements while the subgrade was modeled using linear 

8 noded hexahedral elements. Different types of joints between slabs 

were considered, including aggregate interlock and dowel shear transfer 

mechanism modeled with linearly elastic hexahedral elements. 

  

20.  3D static finite element model, EVERFE, was development of by Davids 

(1998) to model the response of jointed plain concrete pavement systems 

to wheel loads and environmental effects. The slab, base, and subgrade 

were modeled using 20 noded quadratic hexahedral elements. All 

pavement layers were treated as linearly elastic materials. A Winkler 

foundation was modeled below the subgrade using an 8-noded quadratic 

interface element. The dowel and aggregate interlock mechanisms were 

modeled with specialized elements and constitutive relations. Linear, 
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bilinear, and trilinear thermal gradients through the slab thickness were 

simulated. 

 

As stated by Wie, 2007, all the finite element models that have been developed 

for rigid pavement analysis are based on displacement formulations. In a 

displacement based finite element model, the displacement functions are 

assumed. The displacements at the nodes of the elements are calculated first as 

the primary variables. Then the stresses and strains, which are more important 

for design purposes, are calculated by numerically differentiating the 

approximate solutions. In a pavement structure, the interfaces between layers 

are usually locations of large stress and strain gradients because of the 

discontinuity in material properties. Although accurate displacement and in-

plane stress distributions can be predicted, predictions of transverse stress 

distributions across the pavement thickness are generally not accurate due to the 

inherent limitations of displacement based approaches.  
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CHAPTER THREE 

METHODS OF ANALYSIS AND DESIGN 

 

3.1Introduction: 

 
Three methods can be used to determine the stresses and deflections in concrete 

pavements: closed-form formulas, influence charts, and finite element computer 

programs. The formulas originally developed by Westergaard can be applied 

only to a single wheel load with a circular, semicircular, elliptical, or 

semielliptical contact area. The influence charts developed by Pickett and Ray 

(1951) can be applied to multiple wheel loads of any configuration. Both 

methods are applicable only to a large slab on a liquid foundation. If the loads 

are applied to multiple slabs on a liquid, solid, or layer foundation with load 

transfer across the joints, the finite-element method should be used. The liquid 

foundation assumes the subgrade to be a set of independent springs. Deflection 

at any given point is proportional to the force at that point and independent of 

the forces at all other points. This assumption is unrealistic and does not 

represent soil behaviors. Due to its simplicity, it was used in Westergaard's 

analysis. However, with the ever-increasing speed and storage of personal 

computers, it is no longer necessary to assume the foundation to be a liquid with 

a fictitious k value. The more realistic solid or layer foundation can be used. 

The finite element computer program such as ANSYS and ABAQUS based on 

the finite-element theories and various types of foundations. (Huang, 2004) 

 

3.2 Analytical Methods: 

 
Analytical methods used are either closed form formula or influence charts. 

 
3.2.1 Closed-Form Formulas 

 

These formulas are applicable only to a very large slab with a single wheel load 

applied near the corner, in the interior of a slab at a considerable distance from 

any edge, and near the edge far from any corner. The formulas are defined as 

follows: 

 

a) Corner Loading  

 

As presented by Huang, 2004, the Goldbeck (1919) and Older (1924) formula is 

the earliest one for use in concrete pavement design. The formula is based on a 

concentrated load P applied at the slab corner. When a load is applied at the 

corner, the stress in the slab is symmetrical with respect to the diagonal. For a 

cross section at a distance x from the corner, the bending moment is Px and the 
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width of section is 2x. When the subgrade support is neglected and the slab is 

considered as a cantilever beam, the tensile stress on top of the slab is: 

 

     
  

 

 
      

 =    
  

  
                                               (3.1) 

 

Huang, 2004 also stated that 

 

Westergaard (1926b) applied a method of successive approximations and 

obtained the formulas: 

 

 

    
  

  
    

    

 
                                                 (3.2) 

 

    
 

   
          

    

 
                                         (3.3) 

 

 

in which     is the corner deflection,   is the radius of relative stiffness, a is the 

contact radius, and k is the modulus of subgrade reaction . 

 

Ioannides et al. (1985) applied the finite-element method to evaluate 

Westergaard's solutions. They suggested the use of the relationships: 

 

    
  

  
    

 

 
                                                         (3.4) 

  

    
 

   
            

 

 
                                             (3.5) 

 

in which c is the side length of a square contact area . If a load is applied over a 

circular area, the value of c must be selected so that the square and the circle 

have the same contact area: 

 

                                                                             (3.6) 

 

b) Interior Loading 

 

As presented by Huang, 2004,  the earliest formula developed by 

Westergaard (1926b) for the stress in the interior of a slab under a circular 

loaded area of radius a is  
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                                                         (3.7) 

 

in which   is the radius of relative stiffness and: 

 

    when                                                                    (3.8) 

                     when                                (3.9) 

 

For a Poisson ratio of 0.15 and in terms of base-10 logarithms, equation (3.7) 

can be written as: 

 

    
      

  
      

 

 
                                                          (3.10) 

 

The deflection equation due to interior loading (Westergaard, 1939) is 

 

    
 

    
   

 

  
    

 

  
         

 

 
 
 

                                     (3.11) 

 

c) Edge Loading 
 

As presented by Huang, 2004, presented of generalized solutions for maximum 

stress and deflection produced by elliptical and semielliptical areas placed at the 

slab edge. Setting the length of both major and minor semiaxes of the ellipse to 

the contact radius a leads to the corresponding solutions for a circular or 

semicircular loaded area. In the case of a semicircle, its straight edge is in line 

with the edge of the slab. The results obtained from these new formulas differ 

significantly from those of the previous formulas. According to Ioannides et al. 

(1985), the following equations are the correct ones to use: 
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                                                (3.14) 

 

                  
          

     
   

              

 
                                      (3.15) 

 

With the exception of equation for a semicircular loaded area, all of the closed-

form formulas presented so far are based on a circular loaded area. When a load 

is applied over a set of dual tires, it is necessary to convert it into a circular area, 



14 

 

so that the equations based on a circular loaded area can be applied. If the total 

load is the same but the contact area of the circle is equal to that of the duals, as 

has been frequently assumed for flexible pavements, the resulting stresses and 

deflection will be too large. Therefore, for a given total load, a much larger 

circular area should be used for rigid pavements, Figure 3.1 shows a set of dual 

tires and the area of each tire is 

 
  

 
                           0.28326L

2
+0.24L

2
 =                 (3.16) 

    
  

       
                                                                                             (3.17) 

 

The area of an equivalent circle is: 

                                                            (3.18) 

 

     
         

 
     

  

       
                                                                  (3.19) 

 

So the radius of contact area is: 

 

a=   
         

  
  

  

 
 

  

       
                                                                    ( 3.20) 

 

 
Figure 3.1 set of dual tires(Huang,2004) 
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3.2.2 Influence Charts  

 
As presented by Huang, 2004, 

 

influence charts based on liquid foundations (Pickett and Ray, 1951) were used 

previously by the Portland Cement Association for rigid pavement design. The 

charts are based on Westergaard's theory with a Poisson ratio of 0.15 for the 

concrete slab. Only charts for interior and edge loadings are available, the 

interior loading being used for the design of airport pavements (PCA, 1955) and 

the edge loading for the design of highway pavements (PCA, 1966). (Huang, 

2004) 

 

Interior Loading 

 

Figure 3.2 shows the applications of influence charts for determining the 

moment at the interior of slab. The moment is at point 0 in the n direction. To 

use the chart, it is necessary to determine the radius of relative stiffness   
presented in the following equation: 

 

    
    

          
 
    

                                          (3.21) 

 

By counting the number of blocks N covered b y the tire imprints, the moment 

in the n direction M can be determined from: 

 

  
    

     
                                                             (3.22) 

 

The stress is determined by dividing the moment by the section modulus: 

 

    
  

  
                                                                   (3.23) 

 

For the tire imprints shown in Figure 3.2, the moment is under the center of the 

lower left tire in the lateral direction. If the moment in the longitudinal direction 

is desired, the tire assembly must rotate 90° clockwise so that two of the tires lie 

in the zone of negative blocks, and the moment becomes much smaller. Figure 

3.3 shows the influence chart for deflection due to interior loading. The chart is 

axisymmetric, and the blocks are formed by concentric circles and radial lines. 

The deflection is at the center of the circles. The use of the chart is similar to 

that of Figure 3.3. After the number of blocks covered by the tire imprint is 

counted, the deflection can be determined as: 
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                                                           (3.24) 

 

   
    

        
                                                                (3.25) 

 

 

 
Figure 3.2 Application of influence chart for determining moment (1 in. = 25 .4 mm). 

(Huang, 2004). 

 

 
Figure 3.3 Influence chart for deflection due to interior loading. (Huang, 2004) 
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3.3 Numerical Methods:  
 

3.3.1 Basic Introduction: 

 

The analysis of stress and deformation of the loading of simple geometric 

structures can usually be accomplished by closed-form techniques. As the 

structures become more complex, the analyst is forced to use approximations of 

closed-form solutions, experimentation, or numerical methods. There are a great 

many numerical techniques used in engineering applications for which digital 

computers are very useful. In the field of structural analysis, the numerical 

techniques generally employ a method which discretizes the continuum of the 

structural system into a finite collection of points (or nodes)/ elements called 

finite elements. The most popular technique used currently is the finite element 

method (FEM). Other methods include trial functions via variational methods 

and weighted residuals, the finite difference method (FDM), structural 

analogues, and the boundary element method (BEM). Some of the main 

numerical methods are outlined as follows: 

 

3.3.2 The Finite Difference Method (FDM) 

 

In the field of structural analysis, one of the earliest procedures for the 

numerical solutions of the governing differential equations of stressed 

continuous solid bodies was the finite difference method. In the finite difference 

approximation of differential equations, the derivatives in the equations are 

replaced by difference quotients of the values of the dependent variables at 

discrete mesh points of the domain. After imposing the appropriate boundary 

conditions on the structure, the discrete equations are solved obtaining the 

values of the variables at mesh points. The technique has many disadvantages, 

including inaccuracies of the derivatives of the approximated solution; 

difficulties in imposing boundary conditions along curved boundaries, 

difficulties in utilizing non-uniform and non-rectangular meshes. 

 

3.3.3 The Boundary Element Method (BEM) 

 

The boundary element method developed more recently than FEM, transforms 

the governing differential equations and boundary conditions into integral 

equations, which are converted to contain surface integrals. Because only 

surface integrals remain, surface elements are used to perform the required 

integrations. This is the main advantage of BEM over FEM, which require 

three-dimensional elements throughout the volumetric domain. Boundary 

elements for a general three dimensional 

solid are quadrilateral or triangular surface elements covering the surface 
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area of the component. For two-dimensional and axisymmetric problems, only 

line elements tracing the outline of the component are necessary. 

 

Although BEM offers some modelling advantages over FEM, the latter can 

analyze more types of engineering applications and is much more firmly 

entrenched in today’s computer-aided-design (CAD) environment.  

 

3.3.4 Finite Element Method (FEM) 

 

3.3.4.1 Basic Concept 

 

Finite Element Method (FEM) was first developed in 1943 by R. Courant, who 

utilized the Ritz method of numerical analysis and variation calculus to obtain 

approximate solutions to vibration systems. The finite element method is a 

numerical procedure that can be applied to obtain approximate solutions to a 

variety of problems in engineering. Steady, transient, linear, or nonlinear 

problems in stress analysis, heat transfer, fluid flow, and electromagnetism 

problems may be analyzed with the finite element method 

 

In the finite element method of analysis, a complex region defining a continuum 

is discretized into simple geometric shapes called finite elements. The material 

properties and the governing relationships are considered over these elements 

and expressed in terms of unknown values at elements corners. An assembly 

process duly considering the loading and constraints results in a set of 

equations. Solution of these equations gives the approximate behavior of the 

continuum 

 

3.3.4.2 Basic steps in the Finite Element Displacement Method 

 

The following are the steps adopted for analyzing a structural engineering 

problem by the finite element method: 

 

1. Discretization of the domain 

 

The continuum is divided into a number of finite elements by imaginary lines or 

surfaces. The interconnected elements may have different sizes and shapes. The 

choice of the simple elements or higher order element straight or curved, it’s 

shape, refinement are to be decided before the mathematics formulation starts. 

 

2. Identification of variables 
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The elements are assumed to be connected at their intersecting points referred to 

as nodal points. At each node, generalized displacements are the unknown 

degrees of freedom.  

 

3. Choice of approximating functions 

 

Once the variables and local coordinate system have been chosen. The next step 

is the choice of displacement function. This function represents the variation of 

the displacements within the element. The function can be approximated in a 

number of ways. The displacement function may be approximated in the form 

of 

a linear function or a higher order function. The shape of element or the 

geometry may also be approximated. The coordinates of corner nodes define the 

element shape accurately if the element is actually made of straight line or 

plates. 

 

4. Formation of the element stiffness matrix 

 

After the continuum is discretized with desired element shapes, the element 

stiffness matrix is formulated. With the exception of a few simple elements, the 

element stiffness matrix for majority of elements is not available in explicit 

form. As such they require numerical integration for their evaluation. The 

geometry of the element is defined in reference to a global frame. In many 

problems such as those of rectangular plates, the global and local axis systems 

are coincident and for them no further calculation is needed at the element level 

beyond computation of element stiffness matrix in local coordinates. 

Coordinates transformation must be done for all elements where it is needed. 

 

5. Formulation of the overall stiffness matrix 

 

After the element stiffness matrices in the global coordinates are formed, they 

are assembled to form the overall stiffness matrix. The assembly is done 

through the nodes, which are common to adjacent elements. At the nodes, the 

continuity of the displacement function and possibly their derivatives are 

established. The overall stiffness matrix is symmetric and banded. 

 

6. Incorporation of boundary conditions 

 

The boundary restraint conditions are to be imposed in the overall stiffness 

matrix. There are various techniques available to satisfy the boundary 

conditions. In some of these approaches, the size of the stiffness matrix may be 

reduced or condensed in its final form. To ease the computer programming 
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aspect and to elegantly incorporate the boundary conditions, the size of the 

overall stiffness matrix is kept the same. 

 

 

7. Formulation of element load matrix 

 

The loading inside the element is transferred at the nodal points and consistent 

element load matrix is formed. Sometimes, based on the typicality of problem, 

the load matrix may be simplified. 

 

8. Formation of the overall load matrix 

 

Like the overall stiffness matrix, the element loading matrices are assembled to 

the vector of concentrated nodal loads form the overall loading matrix. This 

matrix has one column per loading case and it is either a column vector or a 

rectangular matrix depending on the number of loading conditions. 

 

9. Solution of simultaneous conditions 

 

All the equations required for the solution of the problem are now developed. In 

the displacement method, the unknowns are the nodal displacements. The gauss 

elimination and Cholesky’s factorization are the most commonly used 

procedures for the solution of simultaneous equations. These methods are well 

suited to a small or moderate number of equations. For large sized problems, a 

frontal technique is one of the methods of obtaining solution. For systems of 

large order, Gauss-Seidel or Jacobi iterations are more suited 

 

 

10. Calculation of stress or stress-resultants 

 

In the previous step, nodal displacements are calculated and these values are 

utilized for the calculation of stresses or stress-resultants. This may be done for 

all elements of the continuum or it may be limited only to some predetermined 

elements. Results may be obtained by graphical means. It may be desirable to 

plot the contour of the deformed shape of the continuum. The contour of the 

principal stresses may be one of the sought after items for certain category of 

problems. 
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3.3.4.3Three Dimensional Element  

 

a) Basic Finite Element Relationships 

 

The basic steps are the derivation of the element stiffness matrix, which relate 

the nodal displacement vector     to the nodal force vector      are described 

below. 

 

Considering a body subjected to a set of external forces, the displacement 

vector at any point within the element       is given by 

 
                                                                                            (3.26) 

 

Where, [N] is the matrix of shape functions,       the column vector of nodal 

displacements. 

 

The strain at any point can be determined by differentiating the displacement 

vector as: 

 
                                                                                                (3.27) 

 

 

Where, [L] is the matrix of differential operator. In expanded form, the strain 

vector can be expressed as: 

    

 
 
 

 
 

  
  
  
   
   
    

 
 

 
 

  

 
 
 
 
 

 
 
 
 

  

  
  

  

  

  
  

  
 

  

  

  

  
 

  

  

  

  
 

  

   
 
 
 
 

 
 
 
 

                                                                        (3.28) 

 

 

Substituting from equation displacement into strain gives: 
 

                                                                                              (3.29) 

 

Where, [B] is strain-nodal displacements matrix given by: 
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                                                                                                  (3.30) 

 

The stress vector can be determined by using the appropriate stress-strain 

relationship as: 

 

                                                                                                    (3.31) 

 

 

From the above equations, the stress-nodal displacement relationship can be 

expressed as: 

 

                                                                                                (3.32) 

 

b) Eight-Noded Solid Element 
  

3-D concrete solid is used for the 3-D modelling of solids with or without 

fibers. The solid is capable of cracking in tension and crushing in compression. 

In concrete applications, for example, the capability of the solid element may be 

used to model the concrete, while the rebar capability is available for modelling 

fiber behavior. The element is defined by eight nodes having three degrees of 

freedom at each node: translations of the nodes in x, y and z-directions. The 

element is bounded by six quadrilateral faces and has eight nodes. The 

geometry of the element is described by the Cartesian coordinates (xi,yi,zi) ) of 

the eight nodes each node i has three degrees of freedom  ( ui,wi , vi). Figure 

3.4 Solid 3D concrete element Fig. 3.4(a) shows an eight noded element with 

node numbering and the natural coordinates. 

 

 
Figure 3.4 (a)Solid 3D concrete element 
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Figure 3.4 (b) 8-node hexahedron and the natural coordinate’s ξ, η, μ 

 

 

The displacement can be expressed as 

                                                                                                        (3.33) 

 

Where, [N] is the matrix of shape functions 

 

      
               
               
               

                         (3.34) 

 

{q} = the column vector of nodal displacements i.e.(Xi, Yi, and Zi are 

displacement components of node i. 

 

Element strain matrix 

 

can be written as 

 

{ε}= {B} {q}                                                                                           (3.35) 

 

 
Where 
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                          (3.36) 

 

 

Element stress 

 

The stresses σ at any point with in the HEXA 8 element are evaluated using 

{σ}= [D] [B] {q}-[D]                                                                                 (3.37) 

 

Where the          is the initial strains due to thermal expansion 

 

Element stiffness matrix 

 

[k]=       [D] [B] d                                                                                    (3.38) 

 

 

c) 3D Plate Finite Element:  

 

A plate is a three dimensional solid body with one of the plate dimensions much 

smaller than the other two, zero curvature of the plate mid-surface in the 

reference configuration and loading that causes bending deformation and shell 

is a three dimensional solid body with one of the shell dimensions much smaller 

than the other two, non-zero curvature of the shell mid-surface in the current 

configuration and loading that causes bending and stretching deformation. Table 

3.1 shows the several different plate theories. and figure 3.5 (a & b) shows the 

thin finite plate element. 

 

 

 
 

Figure 3.5 (a) 
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Figure 3.5 (b) 

Figure 3.5 Plate and Shell finite element three dimensional (cirak, F., 2016) 

 

Table 3.1 several different plate theories (Cirak, F., 2016). 

 Thick thin very thin 

Length/ 

thickness 

5 to 10 10 to 100 > 100 

physical 

characteristics 

transverse shear 

deformations 

Negligible transverse 

shear deformations 

geometrically 

nonlinear 

 

 

 

For the thin rectangular plate element (Huang, 2016) Figure 3.6 shows a 

rectangular finite element with nodes i, j, k, and 1. At each node there are three 

fictitious forces and three corresponding displacements. The three forces are a 

vertical force Fw, a moment about the x axis F x, and a moment about the y 

axis F y. The three displacements are the vertical deflection in the z direction 

w, a rotation about the x axis  x, and a rotation about the y axis  y . The 

positive direction of the coordinates is shown in the figure and the positive 

direction of moments and rotations can be determined by the right-hand rule. 

For each element, the forces and displacements are related by:  

 

 

  
  
  
  

  =        

  
  
  
  

                                                                                       (3.39) 

 

in which      is the element stiffness matrix of a plate. At any given node, 

 

     

   

    

    

                                                                                                   (3.40) 
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                                                                                                      (3.41) 

 

 
Figure 3.6 A thin rectangular plate element. (Huang, 2004). 

 

 

 

 

 

3.3.4.4 Foundations under Slab Finite Element (Huang, 2004): 

 

Three different types of pavement foundation can be assumed: elastic, solid, and 

layer. Westergaard's theory and most of the finite element computer programs in 

use today are based on the liquid foundation. The use of liquid foundations 

results in a banded matrix for the simultaneous equations and requires very little 

computer time to solve. However, with the much faster speed and larger storage 

of personal computers, the more realistic solid and layer foundations should be 

used, if needed. The liquid foundation is also called a Winkler foundation, with 

the force deflection relationship characterized by an elastic spring. The term 

"liquid" does not mean that the foundation is a liquid with no shear strength, but 

simply implies that the deformation of the foundation under a slab is similar to 

that of water under a boat. According to Archimedes' principle, the weight of 

the boat is equal to the weight of water displaced. This is similar to the case 

where a slab is placed on an infinite number of springs and the total volume of 

displacement is proportional to the total load applied. The stiffness of a liquid 

foundation is defined by: 
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                                                                                                            (3.42) 

 

in which k is the modulus of subgrade reaction; p is the unit pressure, or force 

per unit area; and w is the vertical deflection. for the subgrade, k can range from 

50 to 800 pci.  Figure 3.4 shows the replacement of the large number of springs 

under a rectangular plate element, with a length of 2a and a width of 2b, by four 

identical springs at the corners. The force on each spring is equal to the unit 

pressure p multiplied by the area a  b. the force at node i, Fwi , is related to the 

deflection 

at node i, wi, by 

 

                                                                                                      (3.43) 

 

Equation 3.44 can be applied directly when the node is located at the corner of a 

slab. If the node is located at the edge or interior of a slab, superposition of two 

or four adjoining elements is required to obtain the force displacement 

relationship. 

 

 

 
FIGURE 3.7 elastic foundations under a plate element (Huang, 2004). 

 

3.3.4.6 Slab–Subgrade Contact (Huang, 2004) 

 

An important factor that affects the design of concrete pavements is the contact 

condition between slab and foundation. Both Westergaard's analysis for liquid 

foundations and Pickett's analysis for solid foundations are based on the 

assumption that the slab and foundation are in full contact. This assumption is 

valid if there are no gaps between slab and foundation, because the weight of 

the slab naturally imposes a large pre compression on the foundation, which 

will keep the slab and foundation in full contact. However, this is not true when 

the slab is subjected to curling or pumping, which results in a separation 

between slab and foundation. 
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3.3.5 ANSYS Program Descriptions (Bourde,G., 2017) 

 

The ANSYS computer program is based on the finite-element method, in which 

the slab is divided into rectangular finite elements with a large number of nodes. 

Both wheel loads and subgrade reactions are applied to the slab as vertical 

concentrated forces at the nodes and ANSYS is useful to final element 

simulations for pavement uses SOLID for pavement, CONTA 174 and TARGE 

173 to define contact between them.  

 

a) SOLID186 Element Description   

 

SOLID186 is a higher order 3-D 20-node solid element that exhibits quadratic 

displacement behavior. The element is defined by 20 nodes having three 

degrees of freedom per node: translations in the nodal x, y, and z directions. The 

element supports plasticity, hyper elasticity, creep, stress stiffening, large 

deflection, and large strain capabilities. It also 

has mixed formulation capability for simulating deformations of nearly 

incompressible elastoplastic materials, and fully incompressible hyper elastic 

materials.  

 
Figure 3.8 SOLID186 homogenous structural solid geometry (ANSYS manual, 2015) 

 

b) CONTA174 and TARGE170 
 

The 3-D contact surface elements (CONTA173 and CONTA174) are associated 

with the 3-D target segment elements (TARGE170) via a shared real constant 

set. ANSYS looks for contact only between surfaces with the same real constant 

set. For either rigid-flexible or flexible-flexible contact, one of the deformable 
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surfaces must be represented by a contact surface. Real constant R1 is used only 

to define the radius if the associated target shape (TARGE170) is a cylinder, 

cone, or sphere. Real constant R2 is used to define the radius of a cone end at 

the second node. 

 
 

 
 

Figure 3.9 CONTA174 and TARGE170 for solid and shell element (ANSYS manual, 2015) 
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CHAPTER FOUR 

RESULTS AND DISSCUSION 
 

4.1 Analysis and Design Data: 

 
4.1.1 General description of case study: 

 
The data of design of rigid pavement of JFKIA constructed in August 2010, 

obtained from F.A.A report study of "review of concrete airport pavement 

presented in international conference on best practices for concrete pavements 

shows in Appendix (B) includes projects, single slab test, typical strain 

responses, critical stress and FAARFIELD model. Table 4.1 shows the typical 

of several aircrafts and Table 4.2 shows the Contact area for different tire 

imprint. 

 
Table 4.1 Data for Several Typical Aircrafts. (Yoder and Witzak 1975)  

Type of plane Max 

Gross 

Weight 

(Ib×    ) 

Type of 

Gear 

Main Gear 

Dimension 

(in) 

Max Load 

Each Main 

Assembly 

(Ib×    ) 

Tire 

Pressure 

(psi) 

Boeing 707-320C 336.0 Twin-

Tandem 

56×34.5 157.0 180 

Boeing 707-120B 258.0 Twin-

Tandem 

56×34 120.0 170 

Boeing 737 111.0 Twin 30.5 25.8 148 

Boeing727-100 170.0 

 

Twin 34.0 76.9 166 

Boeing747 713.0 Double 

Twin-

Tandem 

58×44 166.5 204 

McDonnel-Douglas 

DC10-10 

413.0 Twin-

Tandem 

54×64 194.0 177 

McDonnel-Douglas 

DC8-43 

318.0 Twin-

Tandem 

55×30 148.0 127 

McDonnel-Douglas 

DC9-15 

91.0 Twin 24 42.4 174 
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Table 4.2 Contact area for different tire imprint (Rehman etal, 2011) 

Imprint shape Wheel pressure (MPa) Contact area (sq. mm) 

Circular 0.67 60000 

Rectangular 0.67 61575 

Ellipse 0.67 60416 

Actual 0.67 60318 

 
For the analysis and selection of the appropriate contact area, same tire pressure 

is applied for different imprint shape of equal contact area and thus the effect of 

maximum principal stresses and strains are measured. Tire contact dimension is 

selected from the suggested rules of PCA method, that is circular, rectangular or 

ellipsoid area which is equivalent to actual contact area and difference in 

stresses and strains are observed.  

The materials of rigid pavements consist of slabs of Portland cement concrete 

placed on a subbase that is supported on a compacted subgrade. Like flexible 

pavements, a properly designed rigid pavement provides a nonskid surface 

which prevents the infiltration of water into the subgrade, while providing 

structural support to aircraft which use the pavement. The subbase under rigid 

pavements provides uniform stable support for the concrete slabs. As a rule, a 

minimum thickness of 4 (in) is required for all subbases under rigid pavements. 

There are various types of mixtures which are acceptable for rigid pavement 

subbases including:  

 

Item P-154—Subbase Course 

Item P-208—Aggregate Base Course 

Item P-209—Crushed Aggregate Base Course 

Item P-211—Lime Rock Base Course 

Item P-301—Soil Cement Base 

Item P-304—Cement Treated Base Course 

Item P-306—Econocrete Subbase Course 

Item P-401—Plant Mix Bituminous Pavements 

Item P-403—HMA Base Course 

For rigid pavements accommodating aircraft greater than 100,000 lb maximum 

gross weight a stabilized subbase is required, which include items P-304, P-306, 

P-401, and P-403. 
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In this study, an approach being made to establish the proper tire configuration, 

tire, contact area and inflation pressure using the traditional methods and 3D 

finite element software “ANSYS” to analyze stresses and deflection behavior of 

airport rigid pavement regarding the application of finite element in design 

purpose. Stresses and deflection are used more and more to predict pavement 

distresses, and thus the relative condition of the various layers in the pavement 

structure, the constitutive relationship of stress and deflection in FEM is 

required to understand and Review the state of art of airport rigid pavement 

response models for characterization of stresses and deflection and elucidate the 

importance to improve the stress prediction to prevent premature failure caused 

by loading and pavement layers. 
 

4.2 predictions of stress and deflection in J.F Kennedy runway 

pavement using analytical model: 

 
4.2.1 Design Data and Properties  

 

A runway concrete pavement is of size 120 in ×120 in having thickness h = 12 

in, load is having circular contact area of radius = 13.5 in and load applied on a 

circular area p = 166.5 ksi , foundation stiffness k = 165 psi   a modulus of 

elasticity and Poisson ratio is 4000000 psi and 0.15 respectively and calculated 

radius of relative stiffness l = 43.47 in . a pavement is analyzed by Westergaard 

closed form solution. Figure (4.1) shows the configuration for interior loading 

and table 4.3 shows the result of stress and deflection according to interior case 

of slab. 

 Y 

 

 

 

 

 

 

X 

 

 

 
 

 

 

Y 

 

Figure (4.1) System configuration of interior loading. (F.A.A, 1998) 

 Data: 

H = 12 in 

p = 166.5  psi 

k= 165 psi 

E = 4000000 psi 

µ = 0.15 

l= 43.47 in 

a =13.54 in 

120 in        

24 in 

24 in  
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For the runway statement uses the Westergaards theory in interior case. For 

both stress and deflection 

 

4.2.2 Stress Analysis: 

 

Step (1): calculate stress equation parameters from given design data of JFKIA:  

 

b=             - 0.675 h =                 - 0.675 (12) = 12.81 

 

    
    

          
 

    

   
           

               
 

    

          

 

Step (2) Stress Calculation 

 

By using Eq 3.10: 

 

    
      

  
      

 

 
           

             

   
      

     

     
         

= 775.003 psi 

 
4.2.3 Deflection analysis: 

 
By using Eq 3.11  

    
 

    
   

 

  
    

 

  
         

 

 
 
 

   

 

= 
      

              
   

 

  
    

     

        
         

     

     
 
 

    = 0.0679457 in                              

 
 

Table 4.3 stresses and deflection results using analytical method 

 Method  Stresses ( psi) Deflection (in) 

Westergaards solution 775.003 0.0679457 

 

4.2 Finite Element Analysis Model Result 

 
4.2.1 Design data and properties 

 

The model of airport concrete plate is of size 120 inch ×120 inch having 

thickness 12 inch is created in static structure analysis in ANSYS. A load of 
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166.5 ksi having circular contact area of radius a=13.54 (in) is applied on the 

plate. Foundation for plate is modelled as elastic foundation (Spring foundation) 

having foundation stiffness k=165 psi and modulus of elasticity is 4000000 and 

Poisson’s ratio is 0.15 respectively and the friction ratio Slab/Foundation was 

taken equal to 1.5. All the edges of pavement are infinite edges due to 

Westergaard theory assumptions. 8 noded tetrahedron element is used to model 

the pavement. Figure (4.2) shows airport pavement model. The report of 

ANSYS program include units, model geometry and coordinate system and 

materials data shows in appendix (A).  

  

 

Figure (4.2) Pavement model of size 120 in× 120 in 

 

 

Figure (4.3) shows interior loading position where load is applied. Figure (4.4) 

meshing of pavement model, Figure (4.5) stresses developed in the pavement 

due to interior loading and Figure (4.6) deflection that occurred in the pavement 

and maximum deflection is under the load patch.  
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Fig (4.3) interior loading position where load is applied. 

 

 

 

 
 

Figure (4.4) meshing of pavement model 
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4.2.2 Finite Element Model result: 

 

a) Stress Analysis: 

 

 

 
Figure (4.5) stresses developed in the pavement due to interior loading 

 

 

b) Deflection Analysis: 

 

 
Figure (4.6) deflection occurred in the pavement and maximum deflection is 

under the load patch. 
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 Table (4.2) shows the results of stresses and deflection of 3D model obtained 

the maximum and minimum values. 

 

 

Table 4.4 maximum and minimum stresses and deflection results using finite 

element  

  

Method Stresses ( psi) Deflection (in) 

Max Min Max Min 

ANSYS Program 1096.4 0.6654     0.083138 0.031604 

 

4.3 Comparison Results: 
 

From above results (stress and deflection) between the analytical method and 

finite element method, the maximum stress in finite element analysis occurs 

actually under the aircraft tire imprint is 41.4 % more than stress of analytical 

method occurs in any point in centerline actually causes about  30 ( in) from the 

load position in finite element model  are presents in figure 4.8 and the 

maximum deflection in finite element analysis occurs actually under the aircraft 

tire imprint is 22.4 % more than deflection of analytical method occurs in any 

point in centerline actually causes about 20 (in) from  the load position in the 

finite element model  are presents in figure 4.9. 

 

Then, the numerical 3D modelling method using computer code ANSYS is 

concluded a reliable method for the determination of the stress and deflection in 

the concrete slab. The differences between this method and the 2D method are 

due to the difference in the adopted assumptions such as reference temperature 

compressive strength, coefficient of thermal expansion of concrete materials 

and the friction ratio between the layers (slab and foundation). 

 

 
Figure (4.8): comparison between Westergaards and FE stresses results. 
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Figure (4.9): comparison between Westergaards and FE deflection results. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 
 

Investigation of behavior prediction of airport concrete 

pavement leads to the realization that the behavior of airport 

pavement is highly complex. The reaction of the pavement to 

design aircraft loading can be described by a large number of 

parameter each dependent on a set of variables. The fatigue 

cracks and erosion in concrete pavement causes by over 

stresses. this study illustrates the use of finite element 

method, in the analysis of rigid pavement systems subject to 

interior loading. It is shown that the finite element method is 

capable of simulating the observed responses of rigid 

pavement subject to pressure of design aircraft. The work 

described in this study deals with the finite element 

modelling for obtaining the maximum stresses and 

deflections in concrete slab and comparing with westergaards 

solutions. Results derived from analysis and comparison lead 

to the following secondary conclusions: 
 

1. Position of maximum stresses and deflection are 

predominantly closer to the center of slab. 
 

2. 3DFEA by using ANSYS are very close to Westergaard’s closed 

form solution for interior loading condition by more than 70% 

nearest.  
 

3. Finite Element Method can be applicable and reliable tool for 

analysis of runways concrete pavement. 

 

3.2 Recommendations  

 

 As a result of this study it is recommended that the finite 

element program ANSYS is to be used for analysis, design, 

and sensitive studies of input parameters for concrete 

pavements. 
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For future studies the following is recommended: 

 

1. Analysis of stress and deflection for the case when the aircraft load is 

applied at the edge and corner of the runway concrete slab and 

compare with the ANSYS model 

 

2. Stress and deflection analysis for the multi layers (concrete pavement, 

base and subbase) should be further investigated for the case when a 

full circular dual and tandem load is applied at the interior, edge and 

corner of the pavement 

 

3. Calculation stress and deflection in airport pavements, due to the 

variation of the material properties and dynamic load (Non Linear 

analysis) 

 

4. Creation of a new model of ANSYS including the reinforcements 

concrete (ties and bars) and elastic joints and analysis of stress and 

deflection with static and dynamic load of aircraft for single slab and 

multilayer's and determined of maximum tensile stress comparing with 

analytical method 

 

5. Creation of new model of stress and deflection of flexible airport 

pavement with different asphalt materials properties and dynamic load  

 

6. Verification of the stress-based pavement model by comparing the 

prediction of deflection and stress from the aircraft stress by using 2D 

methods and compare with the 3D model. 
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Appendix (A) : ANSYS Report 

 

Project 

First Saved Friday, June 29, 2018 

Last Saved Tuesday, July 03, 2018 

Product Version 15.0 Release 

Save Project Before Solution No 

Save Project After Solution No 
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TABLE A-1 

Unit System U.S. Customary (in, lbm, lbf, s, V, A) Degrees rad/s Fahrenheit 

Angle Degrees 

Rotational Velocity rad/s 

Temperature Fahrenheit 

Model (A4) 

Geometry 

TABLE A-2 
Model (A4) > Geometry 

Object Name Geometry 

State Fully Defined 

Definition 

Source 
C:\Users\DELL\Desktop\New folder 

(2)\pavement\md3_files\dp0\SYS\DM\SYS.agdb 

Type DesignModeler 

Length Unit inches 

Element Control Program Controlled 

Display Style Body Color 

Bounding Box 

Length X 120. in 

Length Y 120. in 

Length Z 12. in 

Properties 

Volume 1.728e+005 in³ 

Mass 14358 lbm 

file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%23UNITS
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2313
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2314
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2318
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2324
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2323
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2326
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2315
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%23126
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2330
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2333
file:///C:/Users/DELL/AppData/Roaming/Ansys/v150/Mechanical_Report/Mechanical_Report.htm%2398
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Scale Factor Value 1. 

Statistics 

Bodies 1 

Active Bodies 1 

Nodes 5529 

Elements 2904 

Mesh Metric None 

Basic Geometry Options 

Parameters Yes 

Parameter Key DS 

Attributes No 

Named Selections No 

Material Properties No 

Advanced Geometry Options 

Use Associativity Yes 

Coordinate Systems No 

Reader Mode Saves 
Updated File 

No 

Use Instances Yes 

Smart CAD Update No 

Compare Parts On Update No 

Attach File Via Temp File Yes 

Temporary Directory C:\Users\DELL\AppData\Roaming\Ansys\v150 

Analysis Type 3-D 

Decompose Disjoint 
Geometry 

Yes 

Enclosure and Symmetry 
Processing 

Yes 

TABLE A-3 
Model (A4) > Geometry > Parts 

Object Name Solid 

State Meshed 

Graphics Properties 

Visible Yes 

Definition 

Suppressed No 

Stiffness Behavior Flexible 

Coordinate System Default Coordinate System 

Reference Temperature By Environment 

Material 

Assignment Concrete 

Nonlinear Effects Yes 

Thermal Strain Effects Yes 

Bounding Box 

Length X 120. in 

Length Y 120. in 

Length Z 12. in 

Properties 

Volume 1.728e+005 in³ 

Mass 14358 lbm 

Centroid X 60. in 

Centroid Y 60. in 
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Centroid Z -6. in 

Moment of Inertia Ip1 1.7402e+007 lbm·in² 

Moment of Inertia Ip2 1.7402e+007 lbm·in² 

Moment of Inertia Ip3 3.446e+007 lbm·in² 

Statistics 

Nodes 5529 

Elements 2904 

Mesh Metric None 

Coordinate Systems 

TABLEA- 4 
Model (A4) > Coordinate Systems > Coordinate System 

Object Name Global Coordinate System 

State Fully Defined 

Definition 

Type Cartesian 

Coordinate System ID 0.  

Origin 

Origin X 0. in 

Origin Y 0. in 

Origin Z 0. in 

Directional Vectors 

X Axis Data [ 1. 0. 0. ] 

Y Axis Data [ 0. 1. 0. ] 

Z Axis Data [ 0. 0. 1. ] 

Connections 

TABLE A-5 
Model (A4) > Connections 

Object Name Connections 

State Fully Defined 

Auto Detection 

Generate Automatic Connection On Refresh Yes 

Transparency 

Enabled Yes 

TABLE A- 6 
Model (A4) > Connections > Contacts 

Object Name Contacts 

State Fully Defined 

Definition 

Connection Type Contact 

Scope 

Scoping Method Geometry Selection 

Geometry All Bodies 

Auto Detection 

Tolerance Type Slider 

Tolerance Slider 0. 

Tolerance Value 0.42532 in 

Use Range No 
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Face/Face Yes 

Face/Edge No 

Edge/Edge No 

Priority Include All 

Group By Bodies 

Search Across Bodies 

Mesh 

TABLE A- 7 
Model (A4) > Mesh 

Object Name Mesh 

State Solved 

Defaults 

Physics Preference Mechanical 

Relevance 0 

Sizing 

Use Advanced Size Function Off 

Relevance Center Medium 

Element Size Default 

Initial Size Seed Active Assembly 

Smoothing Medium 

Transition Fast 

Span Angle Center Coarse 

Minimum Edge Length 12.0 in 

Inflation 

Use Automatic Inflation None 

Inflation Option Smooth Transition 

Transition Ratio 0.272 

Maximum Layers 5 

Growth Rate 1.2 

Inflation Algorithm Pre 

View Advanced Options No 

Patch Conforming Options 

Triangle Surface Mesher Program Controlled 

Patch Independent Options 

Topology Checking Yes 

Advanced 

Number of CPUs for Parallel Part Meshing Program Controlled 

Shape Checking Standard Mechanical 

Element Midside Nodes Program Controlled 

Straight Sided Elements No 

Number of Retries Default (4) 

Extra Retries For Assembly Yes 

Rigid Body Behavior Dimensionally Reduced 

Mesh Morphing Disabled 

Defeaturing 

Pinch Tolerance Please Define 

Generate Pinch on Refresh No 

Automatic Mesh Based Defeaturing On 

Defeaturing Tolerance Default 

Statistics 
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Nodes 5529 

Elements 2904 

Mesh Metric None 

TABLE A-8 
Model (A4) > Mesh Numbering 

Object Name Mesh Numbering 

State Not Solved 

Definition 

Node Offset Default 

Element Offset Default 

Compress Node Numbers Yes 

Static Structural (A5) 

TABLE A-9 
Model (A4) > Analysis 

Object Name Static Structural (A5) 

State Not Solved 

Definition 

Physics Type Structural 

Analysis Type Static Structural 

Solver Target Mechanical APDL 

Options 

Environment Temperature 71.6 °F 

Generate Input Only No 

TABLE A-10 
Model (A4) > Static Structural (A5) > Analysis Settings 

Object Name Analysis Settings 

State Fully Defined 

Step Controls 

Number Of Steps 1. 

Current Step Number 1. 

Step End Time 1. s 

Auto Time Stepping Program Controlled 

Solver Controls 

Solver Type Program Controlled 

Weak Springs Program Controlled 

Large Deflection Off 

Inertia Relief Off 

Restart Controls 

Generate Restart Points Program Controlled 

Retain Files After Full Solve No 

Nonlinear Controls 

Newton-Raphson Option Program Controlled 

Force Convergence Program Controlled 

Moment Convergence Program Controlled 

Displacement Convergence Program Controlled 

Rotation Convergence Program Controlled 

Line Search Program Controlled 

Stabilization Off 
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Output Controls 

Stress Yes 

Strain Yes 

Nodal Forces No 

Contact Miscellaneous No 

General Miscellaneous No 

Store Results At All Time Points 

Analysis Data Management 

Solver Files Directory 
C:\Users\DELL\Desktop\New folder 

(2)\pavement\md3_files\dp0\SYS\MECH\ 

Future Analysis None 

Scratch Solver Files 
Directory  

Save MAPDL db No 

Delete Unneeded Files Yes 

Nonlinear Solution No 

Solver Units Active System 

Solver Unit System Bin 

TABLE A-11 
Model (A4) > Static Structural (A5) > Loads 

Object Name Pressure Elastic Support 

State Fully Defined 

Scope 

Scoping Method Geometry Selection 

Geometry 1 Face 

Definition 

Type Pressure Elastic Support 

Define By Components   

Coordinate System Global Coordinate System   

X Component 0. psi (ramped)   

Y Component 0. psi (ramped)   

Z Component -292. psi (ramped)   

Suppressed No 

Foundation Stiffness   200. lbf/in³ 

FIGURE A-1 
Model (A4) > Static Structural (A5) > Pressure 



49 

 

 

Solution (A6) 

TABLE A-12 
Model (A4) > Static Structural (A5) > Solution 

Object Name Solution (A6) 

State Obsolete 

Adaptive Mesh Refinement 

Max Refinement Loops 1. 

Refinement Depth 2. 

Information 

Status Solve Required 

TABLEA- 13 
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information 

Object Name Solution Information 

State Obsolete 

Solution Information 

Solution Output Solver Output 

Newton-Raphson Residuals 0 

Update Interval 2.5 s 

Display Points All 

FE Connection Visibility 

Activate Visibility Yes 

Display All FE Connectors 

Draw Connections Attached To All Nodes 

Line Color Connection Type 

Visible on Results No 

Line Thickness Single 

Display Type Lines 
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TABLE A- 14 
Model (A4) > Static Structural (A5) > Solution (A6) > Results 

Object Name 
Total 

Deformation 
Equivalent 

Elastic Strain 
Equivalent Stress 

Maximum 
Shear Stress 

Directional 
Deformation 

State Obsolete 

Scope 

Scoping 
Method 

Geometry Selection 

Geometry All Bodies 

Definition 

Type 
Total 

Deformation 
Equivalent 

Elastic Strain 
Equivalent (von-

Mises) Stress 
Maximum 

Shear Stress 
Directional 

Deformation 

By Time 

Display Time Last 

Calculate Time 
History 

Yes 

Identifier 
 

Suppressed No 

Orientation   X Axis 

Coordinate 
System 

  
Global 

Coordinate 
System 

Results 

Minimum 
3.1604e-002 

in 
1.6635e-007 

in/in 
0.6654 psi 0.37133 psi -3.7966e-003 in 

Maximum 
8.3138e-002 

in 
2.745e-004 

in/in 
1096.4 psi 549.45 psi 3.7929e-003 in 

Minimum Value Over Time 

Minimum 
3.1604e-002 

in 
1.6635e-007 

in/in 
0.6654 psi 0.37133 psi -3.7966e-003 in 

Maximum 
3.1604e-002 

in 
1.6635e-007 

in/in 
0.6654 psi 0.37133 psi -3.7966e-003 in 

Maximum Value Over Time 

Minimum 
8.3138e-002 

in 
2.745e-004 

in/in 
1096.4 psi 549.45 psi 3.7929e-003 in 

Maximum 
8.3138e-002 

in 
2.745e-004 

in/in 
1096.4 psi 549.45 psi 3.7929e-003 in 

Information 

Time 1. s 

Load Step 1 

Substep 1 

Iteration 
Number 

1 

Integration Point Results 

Display Option   Averaged   

Average Across 
Bodies 

  No   
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Material Data  

Concrete 

TABLE A-15 
Concrete > Constants 

Density 8.3093e-002 lbm in^-3 

Coefficient of Thermal Expansion 1.e+007 F^-1 

Specific Heat 0.1863 BTU lbm^-1 F^-1 

Thermal Conductivity 9.6298e-006 BTU s^-1 in^-1 F^-1 

TABLE A-16 
Concrete > Compressive Ultimate Strength 

Compressive Ultimate Strength psi 

4619 

TABLE A-17 
Concrete > Compressive Yield Strength 

Compressive Yield Strength psi 

0 

TABLE A-18 
Concrete > Tensile Yield Strength 

Tensile Yield Strength psi 

0 

TABLE A-19 
Concrete > Tensile Ultimate Strength 

Tensile Ultimate Strength psi 

0 

TABLE A-20 
Concrete > Isotropic Secant Coefficient of Thermal Expansion 

Reference Temperature F 

-436.67 

TABLE A-21 
Concrete > Isotropic Elasticity 

Temperature F Young's Modulus psi Poisson's Ratio  Bulk Modulus psi Shear Modulus psi 

 
4.e+006 0.15 1.9048e+006 1.7391e+006 
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Appendix (B) : FAA report

 
Figure (B-1) FAA Airport Instrumentation Projects 

 

 

 

 
Figure (B-2) Single Slab Test 
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Figure (B-3) JFK – Typical Strain Responses 

 

 

Figure (B-4) JFK – Detail – Gage 8B 
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Figure (B-5) Critical stress was not directly involved in the thickness design. 

 

 

 

 
Figure (B-6) FAARFIELD model. 
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Figure (B-7) Surface Strain Gage Full-Scale Tests 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


