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Abstract

This research project deals with a new two methods called Fractional
Double Laplace Decomposition Method and Fractional Natural Decompo-
sition Method. The first method was developed by combining the fractional
double Laplace transform and adomain decomposition method. The second
method was developed by combining the fractional natural transform and ado-
main decomposition method. We applied the above methods to find an exact
and approximate solution of different types of fractional telegraph equation.
adomian polynomials were used to decompose the nonlinear terms of the
differential equations. The two techniques are described and illustrated with
some examples using the Matlab to plot the solution in order to compare the
exact outcome. Then the two techniques lead us to say that these methods
have highly accurate and very efficient solutions and can be applied to other

nonlinear terms.
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Chapter 1

Introduction

1.1 Introduction

Fractional Calculus is not a modern mathematical subject “why”? Fractional calculus is
more general than calculus which studies (non-integer) order implies that the calculus is sub-
subject from fractional calculus. Perhaps, this branch of mathematics changes many concept
of different field in nature. Thereby, can use fractional calculus as instrument to describe
various natural phenomenon in a better away. For this reason most scientists’ orientation is
to research about the fractional calculus and the applications such as engineering, finance,
science and applied mathematics to discover more details about these areas and how to apply
fractional calculus in this field. I believe, next decade we will see the fractional calculus
exploitation to the humanity is going to make a revolution in the world. Fractional partial
differential equation is an equation that contains an unknown function of several variables.
Telegraph equation is one of the most important problem in physics engineering. This
equation describes the voltage and current on an electrical transmission line with distance
and time, it represents transmission line model. The equation came from Oliver Heaviside in

the 1880.



1.2 Literature Review

Many authors solved the fractional telegraph equation by different methods to obtain
the exact and approximate solutions. In the literature, authors used powerful methods to
solve fractional telegraph equation, for example in [1] the author applied Laplace transform
method, in [2] the author suggested Laplace variational iteration method to obtain the approx-
imate solution. In [3] the author obtained the approximate solution of the telegraph equation
by using double Laplace transform method, in [4] Homotopy perturbation technique was
used, in [5] radial basis functions and in [6] the author introduced the mixture of a new

integral transform and homotopy perturbation method (HPM).

In this thesis, we used a new two methods, namely fractional double Laplace adomain de-
composition method (FDLDM) and fractional natural adomain decomposition method (FNDM)

for solving fractional telegraph equation.

This first method is a combination of the double Laplace transform method and adomain
decomposition method and the second method is a combination of the natural transform
method and adomain decomposition method. The nonlinear terms can be easily handled
by the use of Adomian polynomials. The technique is described and illustrated with some

examples and uses Matlabe to plot the solution.

This thesis is organized as follows:

In chapter one we took a glance at the literature review and how this research is organized.
In chapter two we discussed and reviewed some concepts concerning the basics of single and
double Laplace transformation, natural transformation and the introduction of decomposition
method and all the tools that are used and are useful in this thesis. In chapter three we
applied the fractional double Laplace adomain decomposition method to solve linear, non
linear, singular and coupled systems of the fractional telegraph equation. Some examples are

given to illustrate our method. In chapter four we used fractional natural adomain decompo-
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sition method to solve linear, non-linear, and a singular fractional telegraph equation. Some

examples are given to support the present method.

1.3 Publications

» Eltayeb, Hassan, Yahya T Abdalla, Imed Bachar, and Mohamed H Khabir. "Fractional
Telegraph Equation and its Solution by Natural Transform Decomposition Method."
Symmetry 11, 3 (2019): 334 , DOI: 10.3390/ sym11030334.

* Yahya T. Abdallah, "Applications of Double Laplace Transform Method to Coupled
Systems of Fractional Telegraph Equations", International Journal of Science and Re-
search (IJSR), https://www.ijsr.net/archive/v8i4/ ART20196834.pdf, Volume 8 Issue 4,
April 2019, 534 - 537



Chapter 2

Mathematical Tools

In this chapter, some basic definition, theorems and special functions are also mentioned,
and reviews are utilized in the other chapters. Some information is given here on the Gamma
and beta functions, Mittag-Leffler function, Wright Function, Griinwald-Letnikov fractional
derivative, Caputo fractional, single Laplace transform, double Laplace transform, natural
transform and Adomian decomposition method. Several theorem are stated without proof

and they refer to the reference for more details.
2.1 Laplace Transform of Fractional Order Derivative

Laplace transform is a very powerful technique for solving fractional telegraph equation.
In the present section, we compile the foundations of the theory and the basic properties of
the Laplace transform that are useful in further thesis.

Single Laplace Transform

Let us recall some basic facts about the Laplace transform.

Definition (2.1.1) :[8] Let f is a real or complex-valued function of the variable ¢ > 0 and s

is a real or complex parameter. we define the Laplace transform of f as follows:

Fls) = Z[f0] = [~ e s (vt @.1)

Whenever the limit exists, and when it does, the integral (2.1) is said to converge. If the

limit does not exist, the integral is said to diverge and there is no Laplace transform defined

4



for f.

Definition (2.1.2) :[8] The original f (¢) can be restored from the Laplace transform F' (s)

which defined the inverse Laplace transform as:

£ = 2V [F(s)] = — / P (s) ds, C=R(s) S (22)

271 Je—ico

where ¢y lies in the half plane of the absolute convergence of the Laplace transform (2.1) .

2.2 Double Laplace Transform

Definition (2.2.1) :[9] Is defined double Laplace transform as:

L.L[f(x,t)] = F(p,s) = /OOO e Pr /Oo e 5 f(x,t)dt dx, (2.3)

0

where z,¢ > 0 and p, s are complex values, and further double Laplace transform of the

first order partial derivatives is given by

ou(zx,t)

%%, [ -

] =pU(p,s) —U(0,s). (2.4)

Similarly, the double Laplace transform for second partial derivative with respect to « and ¢

are defined as follows

0Pu(x,t ou(0,

2.9 [g(;)] = p*U(p,s) — pU(0, ) — ”éxs) , 2.5)
Pu(w,t ou(p, 0

2.4 [%f;")] = s"U(p, s) — sU(p,0) — “g; ) (2.6)

Definition (2.2.2) :[3] The double Laplace transform formulas for the partial derivatives of

an arbitrary integer order are

1o} n—1 ]
£ leﬂt)l =pU(p,s)= Y p* 74 lW] : 2.7)

ox® s ox’



L% [ag(;,t)] = s*U(p,s)— st g [

(2.8)

Definition (2.2.3) :[10] The inverse double Laplace transform .2, *.Z" [F (p, s)] = f(x,1)

is defined by the complex double integral formula as:

d+ioco

1 c+100 1
‘gxil"?éil [F (p75)] = f(l’,t) = 7/ epxdpf/ €StF <p75) d87
c Y Jd

271 —100 —100

(2.9)

where F' (p, s) must be an analytic function for all p and s in the region defined by the

inequalities e > ¢ and Rs > s, where ¢ and d are real constants to be chosen suitably.

Example (2.2.1) :If f(¢) = 1 for ¢t > 0, then

2] = / Tt (1)dt

0

) _e—st
= lim
T—00 S

)

(provided Re(s) > 0).



Now, by induction, one can show that in general

n!
8n+1

Lt = Re(s) >a, forn=1,2,3... (2.10)

Theorem (2.2.4) :[8] (First Translation Theorem). If F'(s) = .Z [f(t)] for R(s) > 0,then
F(s—a)=% {e“tf(t)} (a real, R(s) > a).

Proof. For R(s) > a,

F(s—a) = /Oooe_(s‘“)f(t)dt
= /Oooe—(s—“)f(t)dt
= Z[ef(1)]

Definition (2.2.5) :[8] Now from equation (2.10) we want to generalize the . [tV] from non-

integer value of v, consider

L] = /Oooe_st“dt, (v>—1).

By a change of variables, x = st (s > 0),

w1 - [ ()

1 o0
= / z'e *dx.
0

Sv+1

The quantity [;° e~“¢*~dx is gamma function, Although the improper integral exists and is

a continuous function of R(z) > 0. Then

L] =2t (v>—1,5>0)
Yields , ['(v+ 1) = v!
Example (2.2.3) :For v = —3

cle]=oE e



2.3 Special Functions of the Fractional Calculus

Gamma Function:
Euler’s gamma function I'(2) is a pillar of fractional calculus which plays an important role
in the theory of this branch.
We will give the the main concept of gamma function and properties of it. All the theory and
definition in this section by [7].

Definition of the Gamma Function:
The (Fuler) gamma function I'(2) is defined by the integral

I(z) = /0 T ety Re(z) > 0 @.11)

Limit Representation of the Gamma Function

The gamma function I'(z) can be also represented by the limit due to Euler such as:

o n!(n+ 1)
I'(z) = nh_>HC}O 2(z4+1)...(z +n)’

(2.12)

where we initially suppose $e(z) > 0.

Some Properties of the Gamma Function:

There are basic prominent properties of the gamma function one of these properties is:
[(z+1) =z2I(2), (2.13)
can be easily proved (2.13) by using (2.11) and integrating by parts:
Nz+1)= /Ooo e "rdt = [—e_ttz} Z:;O + z/ooo e 't = 2T(2).

In the case z = 1 then I'(1) = 1 and using (2.11) we obtained for z = 2,3, ... :



Beta Function:
In many cases it is more comfortable to use the beta function instead of a certain combination
of values of the gamma function.

The beta function B(z) is defined by:
1
B(z,w) = / L1 =1 dr,  (Re(z) >0,  Re(w) > 0) (2.14)
0

The relationship between the gamma function and the beta function

Example (2.3.1) : Evaluate the value of I'(3)

Solution.

by definition of Gamma function

We know that

2 1 1 g+1
/ sin? 0 cos?0d = —p (L2 42
0 2"\ T2

Let p = 0 and ¢ = 0 then,

1 (11 1r(x)Tw) 1T(3)T(3)
I_2B<2’2>_2F(z+w) T2 T'(1)



and

Mittag-Leffler Function:
The exponential function, e?, can be defined as series by using Taylor series which is represent

as summation series in one-parameter generalization, and denoted by

[e%) Zk
Eo(2) = ];) Tk 1 1)’ (2.15)

was introduced by G.M. Mittag-Leffler.

A two-parameter function of Mittag-Leffler type plays a very important role in the fractional

calculus, is defined by the series expansion

00 k

z

Mittag-Leffler and Relation to some other functions:

From the definition (2.16) we get some relation with other function, for example:

oo Zk o) Zk
Eiiz)= — =% 2 = ¢, 2.17)
1 ,;)F(k+1) ,;0 k!
00 Zk 00 k 1 o0 > k+1 ez _ 1
Bio() =S~ , 2.18
12(2) ,;F(k’+2) l;}(k;+1 z,;) k+1)! z ( :
00 Zk 0o Zk oo Zk—i—l e —1—2
> I S AN AN - : 2.19
() §r<k+3> Z‘O (k+2) 22 ,;0 (k+2)! 22 (19

10



and in general

1 m=2 _k
Eyn(z) = T {ez — é k:'} . (2.20)
The hyperbolic sine and cosine are also defined by Mittag-Leffler function,
) 0 2k Lk
E271(z ) = kz:% Tk 1) = kz:% o] = cosh(z), (2.21)
00 2k 00 2k+1 :
Pel) Sy T immen e OB

The hyperbolic functions of order n can be generalizations of the hyperbolic sine and cosine

and represented in the terms of Mittag-Leffler function:

o) an—i—r—l

he(2m) = 2 T

= 2" B, ("), (r=1,2,3,..), (2.23)
as well as the trigonometric functions of order n can be generalizations of the sine and cosine

functions:

o) _) nj+r—1 1
2B, (=27, =1,2,3,... 2.24
V=X = Bl G ) e

The function £,(v, a), introduced for solving differential equations of rational order, is a

particular case of Mittag-Leffler function (2.16):

p— v —_— v . .
gt(lj, a) t kEZO F(y 2 1) t 1-517,/4_1, (at) (2 25)

Yu. N. Rabotnov’s function 3, (3, t) is a particular case of the Mittag-Leffler function (2.16)

too:
00 5ktk(a+1)
S (B,1) =t* =1%Fyi1 a1, (BT, 2.26

11



Laplace Transform of the Mittag-Leffler in two-parameter:
Let us consider the relationship (2.16) be led to find the Laplace transform of the Mittag-
Leffler in two-parameter £, 3(z). For this purpose, let the Laplace transform of the function
tke*#! in an untraditional way.

First, let us prove that

o 1
/ etetdt = 2] < 1. 2.27)
0 1Fz2

Indeed, using the series expansion for e, we obtain

00 1 > (£z)k poo > 1
ettt = —— = | et = 3 () = 228
/0 c° 1—2z g:‘; k' Jo c° ,;f 2 1Fz ( )
Second, we differentiate both side of equation (2.27) with respect to z. We get
00 1 k!
—t £zt
dt = = <1 2.29
f, et = 1 = e 2l <1, (2.29)
from equation (2.29) a pair Laplace transform of the function t*e*?t:
¥ emprgrargy — K (Re(p) > |a|) (2.30)
o CEEE A |

Now, the Mittag-Leffler function (2.16) can be substituted in the integral below leads us to

/Ooo N (2] < 1). 2.31)

and we obtain from (2.31) apair of Laplace transform of the function to‘kw_lEg%(j:zta),

(B = 5 Easv)

e Pk LN (L dt = <§Re(p) > |a|a> : (2.32)
/o # (p™ F a)kJrl

12



The particular case of (2.32) fora = = 1

oo k!
/ w5 B (kavE)dt = (R(p) > [a]?). (2.33)
: (vpFa)
Derivative of the Mittag-Leffler Function:
By the Riemann-Lioville fractional-order differentiation oD} (7y is an arbitrary real number )

of series representation (2.16) we obtain
oD} (taw—lEg’fg(Ata)) gkt g0 (3. (2.34)

The particular case of relationship (2.34) for £ = 0, A\ = 1 and integer y equation (2.34) has

the form

d

(dt> (P Bap()®) = 7" Bpm(t),  (m=1,2,3,..). (2.35)

If we take o = “*, where m and n are natural numbers, we obtain

d\" m
—_— B_l m n —= 6_1 m B 1 =
(dt> (t B gt )) 7 B (%) +t §j n) (m,n=1,2,3,...)
(2.36)
We obtain from (2.36) that

d m
<dt> (tﬁflEm,ﬁ(tM)) =t B, s(t™),(m=1,2,3,..; B8=0,1,2,..). (2.37)

Performing the substitution ¢t = zm in (2.35) we obtain

n k

z
Zm’(m’”ﬂm,...

n d m n n
(mZI_m> (s0VEz 5(2)) = 27w Ep g(2)+10 0%
k=1

Taking m = 1 in (2.28), we obtain the following expression:

—k

=1,2,3,.. 2.39
G ) 239

1d
~Unpp, ) = 6nVp, fn—1
ndz( ’B() : n’ )+ Z

13



Differential Equation for the Mittag-Leffler Function:

It is worthwhile noting that relationships (2.26)-(2.30) can also be interpreted as differential

equations for the Mittag-Leffler Function; namely, if we denote
yi(t) =17 Em g (t%) )

ya(t) = 77 B p (1),

then these functions satisfy the following differential equations respectively:

dmy1 n _%k
_ =1.2,3,...
dtm yl 2:: m ), <m7n ) Hy Dy )7
dmyz
dtm™ _yQ(t>:O7 (m:172737-~- 52071727"'77”)’
M-z d mys(t) — ys(t) =tV Zn: - (m,n=1,2,3
n dt : nk), bl ) ) PIEERY
1dy4t

— () — " () =ty (n=1,2,3,..),
k

=1 F(ﬁ - %) 7
Integration Equation for the Mittag-Leffler Function:

Integrating (2.4) term-by-term, we obtain
| Bas )07t = 2 B iy (02), (8>1).
0

Wright Function:

),

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

The Wright function plays an important role in the solution of linear partial differential

equations, e.g. the fractional telegraph equation.

For convenience, we adopt here Madinardi’s notation for the Wright function W (z; o, ().

14



The Wright function defined as:

00 Zk
W(za,B) = kz:;) m. (2.45)

2.4 Fractional Derivatives and Integrals:

In this section, several approaches to the generalization of the notion of differentiation
and integration are considered. The choice has been reduced to those definitions which are
related to applications.

Griinwald-Letnikov Derivative:
Unification of integer-order Derivatives and Integrals:

We derive the derivative of integer order n and n-fold integrals. As will be shown below,
these notions are closer to each than one usually assumes.
Let us consider a continuous function y = f(x). According to the well-definition, the first-

order derivative of the function f(x) is defined by

Df(x) p flgr(l) Y (2.46)
Applying this definition again gives the second and third-order derivative.
pe
2 d*f . f(z) —2f(x—h)+ f(z —2h)
D) = e E 24D
a3 f f(x) =3f(x—h)+3f(x —2h) — f(xz — 3h)
3 _ %
D’ f(z) = 723 }gr(l) 13 (2.48)
As can be easily seen and proved by induction for any natural number 7,
Df(e) = Sk = fim e S (07 () ). 249)
dz" iH [ m ' ’

Where



Or equivalently,

n

n A N m
Do) = G = 3 (1" (1) o=t 2.50)
The case of n = 0 can be included as well.

In view of this expression one asks immediately if it can be generalized to any non-integer,

real or complex number n. There are some reasons that can make us think so:

(1) The fact that for any natural number n the calculation of the n-st derivative is given by

an explicit formula (2.47) or (2.49).

(i) That the generalization of the factorial by the gamma function allows

(AN n! B I'(n+1)
(m) =Cn = ml(n—m)l  T(m+1)T(n—m+1) 51)

which is also valid for non-integer values.

(ii1) He likens of (2.47) to the binomial formula

(a+b)" = i (”)w-mb’n (2.52)

m=0 m

which can be generalized to any complex number o by

P ['(a+1) _
b)" = E e 2.53
(a+9) nzOn!F(a—n+1)a 2:53)
which is convergent if
|b] < a (2.54)

There are some desirable properties that could be required to the fractional derivative,

(1) Existance and continuity for m times derivable functions, for any n which modulus is

equal or less than m.

(i1) For n = 0 the result should be the function itself; for n > 0 integer values it should

be equal to the ordinary derivative and for n < 0 integer values it should be equal to

16



ordinary integration -regardless the integration constant.

(iii) Iterating should not give problems,

D f(x) = D*DP f(x) (2.55)

(iv) Linearity,

D (af(x) + bg(x)) = aD*f(x) + bD%g(x) (2.56)

(v) Allowing Taylor’s expansion in some other way.

(vi) Its characteristic property should be preserved for the exponential function,
D%" = ¢ (2.57)
Example (2.4.1) : Exponential Function:

o ar _ 1; L& n Q& a(m+(afn)h)
D% _llzli%ﬁnz::o(_l) < )e

1 o a—n
= e lim — ;:: (—1)" (O‘> (e) (2.58)

Example (2.4.2) :Powers Function:
The case of powers of x also has some simplicity that allows its generalization. The case of

integer order derivatives

one can be generalized to non-integer order derivatives

I'(a+1)
Tla—atl)"

a—«

Dax(l —

17



Binomial Formula:
In the expression (2.47) the exponential function allows the substitution of the binomial
formula as done in (2.58), but this is not possible for any given function. For applying this

substitution we require the following displacement operator,

duf(z) = f(z+h) (2.59)

whose iteration yields

dyp f(z) = f(z + ah) (2.60)

what allows the application of the binomial formula (2.44) for natural numbers and the

generalized binomial formula (2.45) for complex numbers,

D) = iy 3 (10" (1) ot (0=

— lim (dh _ 1>nf(x) (2.61)

so that it can be generalized for any complex number «

D°f(x) = i (dh - 1)a f(a) 2.6

This sheds more light on the derivative and its generalization using the expression of the

generalized binomial formula (2.45) for non-integer numbers,

D f(z) = lim (dh - 1)af(:v>

-l > e O )

(a+1)
=1
hlgtl)zn'F (a —n+1)

fr+ (a—n)h (2.63)

18



In the case of integer values the summation only extends « terms and it is equal to the ordinary
derivative. Finally, it is obvious that as A goes to 0 and the last equation is equivalent to the
following

T(a+1
D f(x) = }llgr(l) Z T (éafni 0 f(z —nh) (2.64)

2.5 Natural Transform Fractional Derivatives:

Definition (2.5.1) :[12] The Natural transform of a function f(¢) > 0 is the function R(p, s)
and defined by

N[f(t)] = R(p,s) = /OoO e f(pt)dt; s> 0,p>0 (2.65)

Where s and p are the transform variables.
Natural transform of elementary function:
Exponential function
Letf(t) = e when ¢t > 0, where a is constant, the natural transform of this function can be
written as:
N[e™] = /Ooo Pt =5t Iy

b

= lim e (s=ap)t gy
b—o0 Jo

_ [6—(8—ap)t] b 1
= lim = .
b—oo | S —ap S —ap

when p = 1, Eq.(2.65) converges to Laplace transform Eq.( 2.66) and when s = 1, Eq.(2.65)

converge to Sumudu transform Eq.(2.67) respectively defined by
LU0 = F(s) = [ e p(0) dt (2.66)
0

SUB) =Gls) = [ e fot) d, 2.67)

0
Definition (2.5.2) :[13] The Natural Transform of Mittag-Leffler function £, s is defined as

follows:
00 k’-HF k
N*[f(z,t)] = /0 e " f(z, pt)d Z ST Eﬂjfﬁ)) (2.68)
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Definition (2.5.3) :[18] The Natural transform of %(f’t) w.r.t (t) can be calculated as

o a n—1 _a—k—1 le%
0%f(x,t) s S [li 0 f(x,t)] (2.69)

R A A0 -
[ ot ] e (1’78,]7) ];) pa,k wi% ot

Definition (2.5.4) [13, 14]: The inverse natural transform of a function is defined by

st

1 c+io00
NUR(sp)] = f() = 5 [ ¥ R(s,p)ds (2.70)

271 Je—ico

Properties of natural transform:
Linearity property:

Theorem (2.5.5) : If a and b are any constants and f(¢) and g(¢) are functions, then
N [af(t) +bg(t)] = aN [f()] + 6N [9(1)] . (2.71)

First translation or shifting property:

Theorem (2.5.6) :Let f(t) be a continuous functions and ¢ > 0 then

N[e ()] = — [ps ] 2.72)

s—ap |s—ap
Change of scale property:

Theorem (2.5.7) :If N [f(t)] = R (s, p) then

N [f(at)] = iR(sm)- (2.73)

2.6 Adomain Decomposition Method

Adomian Decomposition Method (ADM) is a technique for solving ordinary, linear and
nonlinear partial differential equations. Using this method, it is possible to express analytic
solutions in terms of a rapidly converging series. In a nutshell, the method identifies and

separates the linear and nonlinear parts of a differential equation. By inverting and applying
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the highest order differential operator that is contained in the linear part of the equation, it is
possible to express the solution in terms of the the rest of the equation affected by this inverse
operator. This method was introduced and developed by George Adomian in [11] and is well
addressed in the literature. The Adomian decomposition method consists of decomposing
the unknown function u(z, t) of any equation into a sum of an infinite number of components

defined by the decomposition series.
u(z,t) = i U (z, 1), (2.74)
n=0
differential equation written in an operator form by
Lu+ Ru = g, (2.75)

where L is a lower order derivative which is assumed to be invertible, R is another linear
differential operator, and g is a source term. Now apply the inverse operator L~! to both

sides of Eq.(2.75) and using the given condition to obtain:
u=f— L "'[Ru], (2.76)

where the function f represents the terms arising from integrating the source term g and
from using the given conditions that are assumed to be prescribed. By using Eq.(2.74) then

Eq.(2.76) becomes
Z u, = f— L
n=0

RY un] . 2.77)
n=0

To construct the recursive relation needed for the determination the components ug, u1, us,...
it is important to note the Adomian method suggests that the zeroth component u is usually
defined by the function f described above, i.e. According, the formal recursive relation is
defined by

ug = f, (2.78)

Upy1 = — L [Ruy,),n >0 (2.79)
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and consider the nonlinear differential equation

Lu+ Ru+ F(u) =g, (2.80)

3

the nonlinear term F'(u) such as u?, u3, u?, sinu, e*, uu,, u? ,ect. can be expressed by an

infinite series of the so-called Adomain polynomials A,, given in the form,

F(u) = ZAn(uo,ul,uQ,u3,...). (2.81)

n=0
The Adomain polynomials A,, for the nonlinear term F'(u) can be evaluated by using the

following expression;

_1a
" pldan

FOO )\iui)] n=0,1,23,.. (2.82)
=0

A=0

Assuming that the nonlinear function F'(u) therefore by using Eq.(2.82), Adomain polyno-

mials are given by

Ao = Fluo), (2.83)
Ay = uF (up), (2.84)
Ay = UQF’(UO)+21!u§F”(uO), (2.85)
Ay = ugF’(uo)JruluQF"(uo)Jr;ui’FW(uo). (2.86)

Other polynomials can be generated in a similar manner. By substituting Eq.(2.86) into

Eq.(2.81) we have

F(u) = Ao+ Ap+ Ay + As + ... (2.87)
F(u) = F(uo) +uiF (up) + usF (uo) (2.88)
+21!u§F” (o) + us F (o) (2.89)
+u1u2F"(u0) + ?}!ui’F”l (uwo) + .., (2.90)
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1 17

+§(u§ + 2uyuy +us + . ) F (u) (2.92)
1 n

+§(u‘rf + 3ulug + 3udus + . )F  (ug) + ... (2.93)

The last expansion confirms the fact that the series in A,, polynomials is a Taylor series about
a function u( and not about a point as is usually used. In the following, we will calculate

Adomain polynomials for several forms of nonlinearity that may arise in nonlinear problem.

Case 1: We consider the nonlinear polynomial in the following form
F(u) = u?. (2.94)

where A, = A,(uo,u1,us, ..., u,) are the so-called Adomain polynomials. The first few
polynomials are given by

A() = U%x,

Ay = 2uppUi g,

Ay = 2ug,Ug, + (U1x)27
Az = 2ug,Uszy + 2U, U0,

similar, we get (u;)?, (u,)?, (u2)...ect
Case 2:
F(u) = uy. (2.95)

The A,, polynomials in this case given by:
Ag = F(uo) = uotioe,

Ay = uppuy + UpUig,

Ay = upzus + UglUoy + Uy Uiy,
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As = ugpus + UpUsy + UipUs + U U,

In a parallel manner, Adomian polynomials can be calculated for nonlinear polynomials of

higher degrees.
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Chapter 3

Application of Double Laplace
Decomposition Method for Solving

Fractional Telegraph Equation

Introduction

The fractional telegraph equation is used in signal analysis for the transmission and
propagation of electrical signals and also used modeling reaction diffusion [15]. Recently,
many authors studied fractional telegraph equation by several methods for more specifics we
refer to [2, 3,4, 5, 6, 15].

In this chapter, we present a new technique which is used for solving different types
of fractional telegraph equation which is called fractional double Laplace decomposition
method (FDLDM). It is worth mentioning that the proposed method is an elegant combination

of fractional double Laplace transform method and Adomain decomposition method.
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3.1 Linear Fractional Telegraph Equations

In this section, we are going to apply fractional double Laplace decomposition

methods (FDLDM) to solve linear fractional telegraph equations. In a general case, we

consider linear fractional telegraph equations in the form:

0%u __ 93%u ou
e — o T T W

t>0,0<a<?,

subject to:

w(0,8) = fi(t) and g (0,8) = falt).

In order to solve the solution of Eq.(3.1), we apply the following steps.

Step 1: Applying fractional double Laplace transform to Eq.(3.1), we get

p*lU(p,s) —p tU(0,5) — p2U,(0,5)] = Lo [, t) + ug(w, t) +ul .

Step 2: Using the single Laplace transform for Eq.(3.2), we have

2 [u(0,8)] = Z [f(2)] = F1(s),

21 [ua(0,8)] = Z [9(x)] = F2 (s).

where I (s) and F; (s) are single Laplace transform for boundary condition.

Step 3: By substituting Eq.(3.4) into Eq.(3.3), we obtain

Up,s) =p 'Fi(s) +p ?Fy(s) + pla.iﬂx.iﬂt [ug (2, t) + u(z, t) + ulz, t)] .

Stcp 4: Operating the inverse double Laplace to Eq.(3.5), we have

() = Hiz,t) + L2 ;zxz (g (@) + ez, £) + u(, ]|
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where H(z,t) = 71471 {p_lFl (s) +p2Fy (s)} :

The solution of Eq.(3.6) is given by infinite series as follows
u(z,t) = up(w,t). (3.7)
n=0

Stcp 5: The general solution of Eq.(3.1), is denoted by

i%mw:mung?%1F$J%§w@@+§%mﬁ+g%@ﬂ

(3.8)
We assume that the inverse double Laplace transform exists for each terms in the right side
of Eq.(3.8).

The following examples are selected to demonstrate the above method.

Example (3.1.1) :In [1] consider the following linear fractional telegraph equation:

9%u _ *u | Ou
900 — oz T o T W

(3.9)
t>0,0<a<2
subject to:
u(0,t) =et,  u,(0,t) =e?,
(0,1) (0,1) (3.10)
t>0,0<ax<1.
Stcp 1: By taking the double Laplace transform to Eq.(3.9), we obtain
p* {U(p7 s) —ptU(0,s) — p~2U,(0, s)] = 2% [un(z,t) + u(x, t) + u(zx, t)],
(3.11)
Step 2: Applying single Laplace transform with respect to ¢ for Eq.(3.10), we have
1
— — —t] _
L[wO00] =L w00 =L e = —. (3.12)
Step 3: Substituting Eq.(3.12 ) into Eq.(3.11), we get
pafl pa72
p*U(p, s) — Tl syl L Llug(x, t) + u(z, t) + u(z, t))]. (3.13)
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By simplify Eq.(3.13), we get

1 1
(s+1) +p2(s+ 1)

1
U(p,s) = " + E.,%D%[utt + uy + ul. (3.14)
Step 4: On using inverse of double Laplace transform to Eq.(3.14), we get
1
u(z,t) =e ' faet + L7 LT [.ZED% [ (2, ) + ue(z,t) + u(z, t)]} . (3.15)
pOé

the solution of Eq.(3.8) is given by infinite series as

u(z,t) = § un(z,t),
n=0

Utt(l’,t) + Ut(x,t) = Ao.

(3.16)

Stcp 5: Inserting Eq.(3.16) into Eq.(3.15), to gives

n=0 n=0

s 1
Z Up(z,t) = e "+ xe " + .f;l.i”[l—a {,fxﬁ
n=0 p

i A, + i un (T, t)H (3.17)
we identify the zeroth component ug(z, t) by

up(z,t) =e ' +xe ™, (3.18)
we obtain the recursive relations

Upir(m,t) = LPLH ;fxﬁ [wn(x,t) + Ayl ,n > 0. (3.19)
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From Eq.(3.19), we obtain

_ _x —t zotl ¢
U1<£L',t) = m@ + me ,

_ 2% —t g2otl g
up(,t) = T2arn¢ T Tzt -

23 ¢ p3atl (320)
us(x,t) = TGar € T T €
therefore,
. e xna—l—l
nlx,t) =e" , \ eNO<a<L?2 3.21
un(@,1) = € [F(na+1)+F(na+2) " “ (3-21)
The solution can be written as
_ poed ma+1 1.2& $20+1 x3a x3a+1
u(z,t) = e {1 +x+ T(a+1) + T(a+2) + T(2a+1) + T(2a+2) + T(Bat1) + T(3a+2) o
(3.22)
In order to obtain the exact solution of Eq.(3.9), we set o = 2, thus
u(w,t) =" (3.23)
Example (3.1.2) :In [1] consider the following linear fractional telegraph equation:
% __ 0%u ou
t>0,0<a<?2,
subject to:
uw(0,t) =142 and u,(0,t) =2
(3.25)

t>0,0<x<1.
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By using our method (FDLDM) for Eq.(3.24) we have

o0 1 o0 [e.e] o0
Z Up(x,t) = 14 20+e 2+ 21 41 — 2 Z Upse (2, ) + Z Aty (2, 1) + Z Anl s
n=0 P n=0 n=0 n=0
(3.26)
zeroth component g is given by
uo(z,t) =1+ 22 + e 2, (3.27)

and we obtain the recursive relations
1
Upir (2,1) = L71L7 — Lo (Ui (1) + dupe(z,t) + Ayl |0 > 0. (3.28)
p o

According to (FDLDM) we obtain

Y gratl
u(2,) = Fagny T Fara)

_ 1622 32x2a+1
ug(z,t) = T2atD) T T(2a32)’

643> 12823041 (3.29)
us(z,t) = TGatl) T T(3at2)’
therefore
e 2xno¢+1
n(x, 1) =4" , 4 eENIO<a<?2 3.30
(@) =4 o Y Tia 5 9) n o (3.30)
Hence, the solution of problem Eq.(3.24) is denoted by
- 4> 8xotl 162> 32g20+1 6423 128g32+1
u(z,t) = e +1+2x+ TotD) T T+ T T2arD) T T2as2) T T@asD) T T@Bagz) T - -
(3.31)
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Or

e N 2xna+1
F'(na+1) T(na+2)|’

u(z,t) = e 2+ 1420 +4" V neN,0<a<2 (332

When o = 2, then the exact solution Eq.(3.24) is given by u(x,t) = €2 4 =%,

3.2 Nonlinear Fractional Telegraph Equations

In this section, we apply fractional double Laplace decomposition method (FDLDM)
to obtain the approximate solution of nonlinear fractional telegraph equations.
To illustrate the basic idea of the (FDLDM) for the nonlinear fractional telegraph equa-

tion, we consider the following nonlinear fractional telegraph equation as:

0%u(z, 0%u(z, Ou(zx,
et — gt o S0 4 Nu(a,t) + b, t)

(3.33)
O<a<22,t>0,

with boundary conditions:
U (07 t) =401 (t) and Ug (07 t) = 02 (t) : (334)

Where N is a nonlinear term and h(x, t) is given function of x and ¢.

Analysis of the method:
In order to solve the Eq.(3.33), we apply the following steps:

Step 1: By taking double Laplace transform for both sides of Eq.(3.33) and single Laplace

transform for Eq.(3.34), we obtain

0*u(z, 1) N ou(zx,t)

1 1 1 1
Ulp,s) = G (s)+ 5G2 (s)+ CH (p,s)+ 2Ll =50 ot

+ Nu(z, t)] :
(3.35)
where H (p, s) is double Laplace transform of h(z,t) and G(s), Go(s) are single Laplace

transform of functions g, (t), g2(t) respectively.
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Stcp 2: On using double inverse Laplace transform for Eq.(3.35), we have

u(z,t) =V + L1 [ Lo &, {fﬁggt + Qe o Ny, t)

1 (3.36)
where ¥ = £ 1.Z! [%Gl (s) + I%Gg (s) + }%H (p, s)} :
Stcp 3: Applying the decomposition method, then we consider the solution as an infinite

series given as follows

t) = i U (z, 1), (3.37)
n=0

the nonlinear terms N (u) is decomposed as follow:s

[e.e]

= ZAn(Uo,Ul,U,Q,...,Un), (338)

n=0

where A, = A, (ug,uq,us,...,u,), n = 0 are the Adomian polynomials that represent the
nonlinear term u?(z, t).

Step 4: By substituting Eq.(3.37) and Eq.(3.38) into Eq.(3.36) yields

Eﬁoun(x,t) — U+ Ly [pagxzt Li_'fo“’ Funled) 1 § Bunlot) | z Az, )1

(3.39)
We assume that the inverse double Laplace transform of each terms in the right side of
Eq.(3.39) exists.

In the next example, we demonstrate the applicability of previous method as follows:

Example (3.2.1) :In [3] consider the following fractional nonlinear telegraph equation:

O%u(z,t) _ 0%u(x,t) 8u(x t) —92t 2\2 —t [ 22—
= + +u?(z,t) — e 2 (x — 2%)? — 2¢ ( a),
0] ot? I'(3—a) (340)

x,t>0 and 1 <a <2,

subject to:

u(0,t) =0, u,(0,t) =e" (3.41)
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We follow the above method as:
Step 1: By taking double Laplace transform for both sides of Eq.(3.40) and single Laplace

transform for Eq.(3.41), we have:

U(p, S) _ 1 1o {82u + 6U(xt) 42 ( )

ot?
(3.42)
2 12 24 2 1
- [pa+3(s+2> GO R C R ey
Stcp 2: On using inverse double Laplace to Eq.(3.42), we obtain:
_ - 2gt? 1229%3 | 24a9t4 )
u(z, )= (x - xQ) el — (F(a+3) Tlatd) (a+5)> e
(3.43)
+Z$,19%_ [13%[623§§t +8U($t)+u ( ):”
Where the nonlinear terms u?(z, t) is defined by:
= Au(z,1), (3.44)
Step 3: Inserting Eq.(3.44) into Eq.(3.43) yields:
o _ - 20042 12993 | 24gati) o
nz::() un (@, t) = (x - $2) el — (r(a+3) T Tard) T F(a+5)> e
(3.45)

+L L [;gxﬂ [i’f Pulet) i’f il iﬂAn(a:,t)” :
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Step 4: The components of u(z, t) can be craftily determined by using the recursive relations

ug(w,t) = (x - :L’2) et

_ 212 12913 24zt —2t
w (1) = <F(a+3) Tlard) T F(a+5)> €

ot2

+$x_1°%€_ [136%{ uQ xt)+6u0(wt +A0(.’17 t)

|

Un+2<ﬂ?,t) — gx—léﬁfl [plagx‘:% [% 9?2 unatémt + ioj 3un+1(xt + ioAn+1($,t)1]

and

n=0

n >0,
(3.46)

then the first term is given by:

2
_ — 2012 [ 24214 - —-11|1 _
Ul(l‘,t) = 2 Fat3) ~ T(aid) + F(a+5)] + gx 19% [pagxo% [((ff — x2> e t> ]]

= 0.
(3.47)
The rest terms are given by:
Upro(z,t) =0, (3.48)
therefore,
u(z,t) = (:1: - 932) e’ (3.49)

Example (3.2.2) : Consider the following fractional nonlinear telegraph equation:

0%u(z, 0%u(x, Ou(z,
et = Tt — 2+ (1) — aula, Hua(a, 1) (3.50)
r,t >0 and 0 < a <2,

with boundary conditions

u(0,t) = 0 and u,(0,t) = . (3.51)

By applying the above steps which is given in the solution of Eq.(3.33), we obtain:

ug(w,t) = we'. (3.52)
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and

111 Pup(x,t Ou,(x,t
Ui (z,t) = L7187 E.ZBD% [ 0252 ) _ 8(15 ) + A, (z,t) — xBn(x,t)] ,n>0.
(3.53)
By using Eq.(3.52) and Eq.(3.53), we obtain u; as follows:
_ p-1cp-1| 1 D?ug(z,t)  Oug(w,t) .
w(nt) = 21 [pa,z@.zt { e oet) 4 A (2,) — 2 Bo(x,1) ] s
=0.
Consequently, u,, = 0,n > 1. Having determined the components of u(z, t).
Therefore, the exact solution of Eq.(3.50) is given by:
u(x,t) = xe'. (3.55)

3.3 Singular Fractional Telegraph Equations:

In this section we derive the main idea of fractional double Laplace decomposition

method to solve singular fractional telegraph equation.

Analysis of the method:

We consider singular fractional telegraph equation with boundary condition as follows:
D2u(z,t) = 7 (tug(z, 1)), + u(z,t) + h(z,t), and0 < @ < 1 and z,t >0, (3.56)

subject to:

u(0,t) = f1(t) and u,(0,%) = fa(t), (3.57)
where 1 (tu,(x,t)), is the Bessel operator and h(z, t) is a continuous function.

Proof. In order to obtain the solution of Eq.(3.56), we use the following procedure:
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First: Applying the fractional double Laplace transform for Eq.(3.56), we get:

P [Up, 5) = p~'U(0,5) = p~2U, (0, 5)| = Lo [une(, 1) + Lus(, 1) + u(z, £) + h(x, 1))
(3.58)
Second: Using the single Laplace transform for Eq.(3.57) and substituting into Eq.(3.58),

we obtain:

U(p,s) = ﬁ L% {utt(:p,t) + %ut(x,t) + u} + }%H(p, s) + %Fl(s) + p%Fg(s),
(3.59)
where H (p, s) is double Laplace transform of the function h(x,t) and Fi(s), F5(s) are single
Laplace transform of functions fi(t), f2(t) respectively.

Third: By applying inverse double Laplace transform to Eq.(3.59), we get:

u(z,t) = Gz, t) + L' L7 [piagxﬁ [utt(x, t) + 1ut(x,t) + u] : (3.60)

where G(x,t) = £, 1.2 [ H(p,s) + LFi(s) + L Fa(s)].
Fourth: By using Eq.(3.7) then Eq.(3.60) becomes:

n=0 n=0 n=0

> up(w,t) = G, t) + L1L [Zﬁaiﬂmﬁ [Z Ut (T, 1) + %ngoum(x,t) + > un] ,
(3.61)
Eq.(3.61) can be written as:

u0<CL’, t) :G(l‘, t)a
(3.62)
un+1<x7t) :gz_l"%il |:pzla$m-=%‘, [untt + %unt + unH 9 n 2 0.

Provided that the inverse double Laplace transform of each terms in the right side of Eq.(3.62)

exists.

Now, we demonstrate the applicability of our method by applying numerical problems.
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Example (3.3.1) : We consider the following singular fractional telegraph equation:

D2u(x,t) = 1 (tuy(x, 1)), + u + 2t — 4a? — 2*t2,

(3.63)
r,t>0and 0 < a < 1.
Subject to:
u(0,t) =0, u,(0,t) =0. (3.64)
Appling the double Laplace transform on both sides of Eq.(3.63), we have:
p2aU(p’ 8) _ p2o¢—1(](07 S) _ p2oz—2[]96(07 S) —
(3.65)

22 42 22 [utt(x, t) + %ut(x, t)+ u} ,

ps® pls  p3s°

by using single Laplace transform to Eq.(3.64) and substitute in Eq.(3.65), gives

U(Z% 5) = 2p2a2+!183 - 4p23i35 - p2g!+231,53 + ﬁgxﬁ [utt<x> t) + %ut(x, t) + U} ) (3.66)

using the inverse double Laplace transform for Eq.(3.66) we have:

2a+2 2a+2

z2e T T

u(z,t) = 2F(2a+1)t2 ~ 85 Gats) 2F(20+3)t2

(3.67)
+ L [p?lafx‘ﬁft [utt(x, t)+ %ut(m,t) + UH ,
inserting Eq.(3.7) into Eq.(3.67), gives:
o0 1720‘ IQCH_Q m2a+2
nZ::O up(@,t) = 2P(2a+1)t2 ~ 8FGars) ~ 2T@ats) t?
+$x71°%_1 |:p21a$x°% lzﬂ untt(xv t) + % 20 unt(xv t) + 20 un(xa t)] )

(3.68)
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by using the Eq.(3.68) we find a few terms series as:

2a 2a+2 2a+2

up(z,t) = 2I‘(§a+1)t2 — 8Fg(c2oe+3) - 21“3(6204-&-3) t,
(3.69)
Upy1(z,t) =L L7 {@Zmﬁ [umt(x, t) + %unt(x,t) + un(x,t)H , n>0,
then
x4a x4a+2 $4a x4a+2
1) =8———— — 16 2 t?—2— 3.70
ule ) =8 T O a3 P a1 T (4o + 3) 70)
6o mGOerQ x6a x6a+2
1) =16—— — 24 +2 R E— 3.71
wal ) =10 =y~ MG 13 T T 6a £ 1) T(6a + 3) (-71)
therefore, the (FDLDM) gives us the series solution of Eq.(3.63) as follows:
w(z,t) = up(z,t) +uy(z,t) + ug(z, t) + ug(z, t) + ...
2« 242 242 %oy 4a+2 i¥eY
u(x,t) = 21“(;&+1)t2 - 81"?2a+3) - 21"?2a+3) £+ 8r(fa+1) - 161“3(E4a+3) + 2F(Za+1)t2
x4a+2 xGa 16a+2 xﬁa x6a+2
_2F(4a+3) t + 16F(6a+1) - 24F(6a+3) + 2r(6a+1)t2 — 2I‘(6a+3)t2+"' :
(3.72)
If we take v = 1, we get an exact solution of Eq.(3.63) as u(x,t) = 2t%.
Example (3.3.2) : Consider the following singular fractional telegraph equation:
D2u(x,t) = 7 (tuy(x, 1)), + v — 2 1n(t),
(3.73)
r,t>0 and 0 < a <1,
subject to:
u(0,t) =0, u,(0,t) =In(z). (3.74)
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According to the above analysis method, we have:

u(x,t) = xln(t) + gt In(t) + f;lﬁffl Lﬁlwfxﬁft {Dttu(x, t) + %Dtu(m, t) + ’LLH ,

T(2a+2)
(3.75)
now we define the function u(z, t) by the decomposition series as
u(z,t) = Z U (z, 1), (3.76)
n=0
inserting Eq.(3.76) into Eq.(3.75), gives
S p2a+1
Z—:o Up(z,t) = zln(t) — F(2a12) In(t)+
(3.77)
gx_l"%_l |:p21a$x°% [§ untt(xat) + % § unt(xat) + § un(xat)]] ’
n=0 n=0 n=0
by using Eq.(3.77) we find a few terms of the series of u(x, )
uy = zIn(t) — % In(t),
(3.78)
Up+1 (IE, t) :gxilﬂ_l |:I;21a$;t°% [untt + %unt + un}:| 3 n Z 07
the components u; (z,t), us(z, t), ug(z, t), ... are thus determined as follows:
x2a 1 $2(x+3
'Uq(ff,t) = F(T:-Z) 1n(t) — m ln(t),
1.204+3 x2a+5
UQ(SU, t) :m hl(t) — m h’l(t),
(3.79)

$2o¢+5 x2o¢+7
Ug([lf, t) :m hl(t) — m ln(t),
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therefore, the (FDLDM) gives us the series solution of Eq.(3.73) is
u(z,t) = up(z,t) +uy(z,t) + ug(z, t) + ug(z, t) + ...

I2a+1 x2a+l I2a+3

x2a+5 1‘2a+5 2?20“"7
~Faanre () + Fgarsy () — Farg W) + .o
(3.80)

At o = 1 the exact solution of Eq.(4.6) is given by u(x,t) = zIn(t) .

3.4 Fractional Telegraph Equation Coupled System:

In this section, the fractional double Laplace decomposition method is effectively
implemented for solving coupled systems of fractional telegraph equations.We discuss and
derive the analytical solution of the coupled systems of fractional telegraph equations with

boundary conditions as follows:

“u(x 2u(x u(x
° (%(a,t) =2 07(5270 +2 ét’t) +u(x,t) +o(r,t) + f(x, 1),
“u(x 20(x v(x
Oviat) _ Pulat) | Bled) 4y t) + ul,t) + g(x, 1), (3.81)

0<a<?2 and z,t >0,

subject to:

u(0,t) = f1(t) and u,(0,%) = fa(t),
(3.82)

v(0,t) = g1(t) and v,(0,t) = go(?).
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In order to solve the above system we apply the folowing steps.

First: By applying the fractional double Laplace transform for Eq.(3.81), we get:

p°U(p,s) — p> tU(0,s) — p*2U,(0,s) =

gﬁ{y” +6u(:vt)_|_u(x t)+v(x,t)+ f(z, )],

ot?
(3.83)
p*V(p,s) = p* 'V (0,5) — p 2V, (0,5) =
Second: On using the single Laplace transform for Eq.(3.82), we have:
Zu(0,5) = L [A(1)] = fils),
L, (0,5) = % [fo(t)] = fols),
(3.84)

Z(0,5) = Zi [1(1)] = 51(s),

Z10:(0,5) = 2 [92(1)] = 9a(s),

Third: By substituting Eq.(3.84) in Eq.(3.83), we obtain:

Ulp,s) = -~ £.% [8 uet) 2D Ly, t) + o, )|+ L F (@) + L) + L fals),
Vps) = & Lt [%ﬁ + 20 4y, t) + (e, t)} + L9, 6) + 191(s) + L a(s),
(3.85)
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where f(x,t), §(x, t) are double Laplace transform of f(x, ¢) and g(x, t) respectively.

|

Fourth: Taking inverse double Laplace transform to Eq.(3.85), we get:

ot?

u@¢>:w@¢)+ﬁgtz-[2wfﬁﬁﬁuzf+aﬁ?%+mx¢y+w@w

U(fL‘,t) _ C(l’,t) _}_gxflc%— [ ogpc% {8 v(z,t) + 6v(mt) +U(I t) —I—U(I t):”

12
(3.86)
where
Vi, t) = L L7 L) + L) + S fals)]
(3.87)
Clat) = L7 5 F (@, t) + L01(s) + Hdnls)]
The solution of Eq.(3.81) can be written as infinite series terms such as:
u(z,t) = § un(z,t),
n=0
(3.88)

v(z,t) = § v (, t).

n=0

By substituting Eq.(3.88) into Eq.(3.86), we have

S (. 1) = ¥(z, 1)

n=0

n=0 n=0

—|—.,§/ﬂx_la§/€g_1 llﬁlagxﬁ [ioj 9?2 ugt?mt + ioz 8un mt ioj un(x7t) + %_ozovn(x,t)‘” ,

S va(a, t) = C(a, 1)

n=0

+y g [pzlagziﬂt Lz_:oa vgtzx n Z avn :r:t) + Z vp(z,t) + ngoun(m,t)]
(3.89)
we define the following recursively relations
wo(w, 1) = (x,t) = L L7 [ L f(a,t) + Lfi(s) + L fals)]
(3.90)

UO(*/E’ t) = C(ZL‘, t) = ,,% 19% [%f(l’, t) + %gl(s) + %gQ(S)} >
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and

2'U/n Z, Un T,
Uy (z,t) = L7027 [@fzi’é [8 med) g Qun(nl) 4oy (2, t) + vn($7t)H :

,n > 0.

(3.91)

2vn x, Un (T,
vnsa(2,1) = L4 [.zz [8 alet) y Qnlel) oy (2, 8) + up (1, 1)

Assume that the inverse double Laplace transform of each term on the right side of Eq.(3.91)
exists.
Numerical Examples

We demonstrate the applicability of our method by applying the following examples:
Example (3.4.1) : We consider the following system of fractional telegraph equation:

0%u(x,t) _ O%u(w,t)

Oz ot?

+ augf’t) + u(z,t) + v(z, t) — 3we' — xt,

B uled) — 82255’” + 20D (2, t) +u(a, t) — o — ot — xel, (3.92)

0<a<2 and z,t >0,

subject to:

u(0,t) = 0 and u,(0,t) = €,
(3.93)
v(0,t) = 0 and v,(0,t) = t.
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Solution (3.4.1) : Applying the fractional double Laplace transform to Eqgs.(3.92), we get:

p°U(p,s) —p*~tU(0,s) — p*~2U,(0,s) =

3 o ]%ﬁ+$xo% [QQU(x,t) + 8u(xt) +U(ZE t)+?)(l’ t)]

T p2(s—1) o2

p*V(p,s) —p* 'V (0,s) — p*2V,(0,s) =

= = i+ L | T+ 25 () +ula )
(3.94)

Taking single Laplace transform to Eq.(3.93) and substitute into Eqgs.(3.94), gives:

U(p7 3) = pz(slfl) - pa+2?zsfl) - a+2 D) + jo% |:8 gtgzt + 8u(:c ) + ’LL(ZL’ t) + ’l)(l‘7t):| s

V(p75) = % - pa~1+23 - pa+1252 - pa+2( + go%f {8 gtgt + Bv(z t + U(l” t) + U(QS lf)}

pes
(3.95)
By using the inverse double Laplace transform transform for Eqgs.(3.95), we have:
xa+1 za+1
u(z,t) = we' = 3r5€ — vt
+ gy [ L% [82;;5 D) O gy, t) + oz, t)H
(3.96)

$a+1 xa+1 t Ia+1 t
Tat2)  T(+2)’  T(at2)®

v(z,t) = xt —

VLG BB P G0 () 4 (e
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insert Eqgs.(3.88) into Eqgs.(3.96), gives:

xoz+1 330‘+1
Z Unp+1 (3:7 t) = 1’6 3F(a+2) o mt

n=0

I A/ [;zxﬁ lf Punad) 4 § Ounled) | z up(z,t) + z on(, t)”

xa+1 xa+1 Ia+1 t

nX::O Un+41 ($7t> =t — T(a+2) F(a+2)t - F(Oé‘*‘z)e

+ 27 g0 [;gmﬁ lz Ponlad) | Py Bunld) 4 z vn(a,t) + z U (2, t)]
(3.97)
by applying Egs.(3.90) and Eqgs.(3.91) into Egs.(3.97) , we have

ug(x,t) = ze' — 33 o i

(a+2) T T(at2) t

Un+1($,t) :gxflz—l [1 gﬁ {6 ugt;: ) + <9un(:t t) +un(:v t) —i—’Un(ZL" t)}] N 2 O,m

o zoz«‘ﬁl xa+1 Ia+1 t
vo(w,t) = at — T2 ~ Tar2)! ~ Tat2)€
un+1(l', t) :gx—lzfl [pﬁ(fmz |:82Ugt(2$,t) + avn(m t) + (Un(ﬁC t) + un<x t) Z 07
(3.98)
then,
ma+1 $2a+1 oe+1 m2a+l m2a+l
uy (7,t) =3575 +2) — 05gagaye e’ + Taty? — 2F(2a+2) 25 TZat2)t:
(3.99)
za«kl x2a+1 xoc+1 x2a+1 a+1 x20¢+1
vi(z,t) “T(at2) 25 I'(2a+2) + F(a+2)t —2 (2a+2)t + F(a+2) 6F(2 ¢ ¢,
13a+1 m2a+1 x3a+1 xda—Q—l x2a+1 2a+1
uz(x,t) = = 305575 T(3a+2)€ ¢’ + 1050073 (2a+2) ~ 456053 ~ 0FGary T 2F@ars) T 2TEarn) b
o Z,2a+1 x3o¢+1 x3o¢+l Jj30¢+1 t I2a+1 2o¢+1 t
va(, t) =256ty ~ OtGaty) 4F(3a+2)t — 2853,59)¢ T 2r@aryt T 6I‘(2a+2)
(3 100)
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xa+l 2a+1 Z,w+1 x2a+1 $2a+1

o 3xa+1 T
u(z,t) = we' — T(at2) ¢! T35 ar2) e’ — oy e’ + Tai2)t ~ T(@ats) ~ TEat)!
x2a+1 x3a+1 1.2044—1 x3a+1 x3a+1
Jr?’F(2a+2) ¢ — 10I‘(3a+2) e + F(2a+2)t - T(Ba+2) F(3a+2)t+""
o 1,04+1 wod»l xa+l t xa+l w2a+1 xa+l x2a+l
v(x,t) =zt - T(at2) F(a+2)t T Tr2)€ +F(a+2) T T(2a+2) + F(a+2)t - F(2a+2)t
p2atl p2a+1 p3atl p2a+l p3atl p3atl
_6F(2a+2) e’ + T'(2a+2) T(Ba+2) F(2a+2)t B F(3a+2)t B 6F(3a+2) e't....
(3.101)
If we take o = 2 then we get exact solution of Egs.(3.92) as:
u(z,t) = xe'.
(3.102)

v(x,t) = xt.

Example (3.4.2) : We consider the following system of fractional telegraph equation:

0%u(x,t) _ 0%u(x,t)
x> — Ot?

+ 8ué?t) + u(x,t) + v(z,t) — 3ze’ — wsint,

Palel) - S | 0D 4oy (g, t) + u(x, t) — ze’ — zcost, (3.103)

0<a<?2 and z,t>0,

subject to:

u(0,t) = 0 and u,(0,t) = €,
(3.104)
v(0,t) = 0 and v,(0,t) = sint,

Solution (3.4.2) : By using our method (FDLDM) for Egs.(3.103), we have:
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o0
o wa-‘—l za+1 .
zou(x, t) = we' — 33 Fa1n€ — Tlaty Sint

_’_gxflﬂ—l [plagaco% [§ 9?2 ué;gxt + § 8Un It Z uﬂ(g; t) iovn(a?,t)” )

oo . xa+1 a
nzzjov(ac, t) =xsint — met F(a+2) cost

+ L [pmosft [z St + L 2 4 3 v, 1) + Zoun(x,w]

(3.105)
by applying Egs.(3.90) and Eqgs.(3.91) into Egs.(3.105) , we have
ug(x,t) = we BFQ(CZTQ) 3(52112) sin ¢
(e, t) =227 [sz | Zaahet) 4 2085 1 (1,) + v (1) [ o 2 0

xa+1 t ma+1

vo(z,t) = xsint — Fatn € ~ T(aty COST

Un+1(x7t) :-i”[lﬁffl [ L, 2Lt { vgt;: = + 81}”(&: d + Un(x t) + un(x t)H ,n > 0.

(3.106)
Then,
xa«kl x2a+1 ma+ m2a+1
ui (2, 1) =350575 ) — 105Gargy€ el + a7z SNt — 25(Ga7g) COSt,
(3.107)
a+1 1.2a+1
ni(2,1) =par ¢ ~ OrGarn® T 1 (a+2) cost,
w2a+1 x30+1 (E a+1 T 3a+1
ug(z,t) =105z75¢ — 307 )e + 250507 Sint + 2535 cost,
(3.108)
x2a+1 I3a+1 T a—+1
v2(2,t) =05 (307g) (2a+2) — 287 Gary) T (3 +2) 2r(3 o) COst,
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therefore,

u(x,t) = zet — 3 ’gaH) ~ Tty +2) sint + 3 ”E ) — 10F’(E;Zfz)et + a +2) sin ¢
-2 :’(‘”;:12) cost + 10 f;af?) — 36 ‘f;afz) by 2r(3 +2) sint + 2 9(” _ 5y cost + ..
v(z,t) = xsint — ra(;:jrlz) el — r;f;;) cost + g +1) —6 3(652:2) e+ r;f;jq) cos?
+6 a5 — 28550157 € — 2t COSE+ o

(3.109)

If we take @ = 2 then we get exact solution of Eq.(3.103) as

u(z,t) = ze',

(3.110)
v(x,t) = zsint.

0.25

T T T
Exact Sal.
o Appr.Sol.

02+

015

uix.t)

0ih -

I I I I I L I L
s 01 01 02 02 03 035 04 045 05
X

Figure 3.1: The graph of exact and approximate solutions of u(z, t) for Example (3.3.1).
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Figure 3.2: The approximate solutions of u(z,t) for Example (3.3.1). for a=0.94,0.96,0.98,

035

03

o=0.94

025

02+

uix )

015

0ih -

I I I I I L I L
08 01 015 02 DX 03 035 04 045 05

and 1.
t Exact Solution Approximate Solution | Eg(u) = |u — ug|
a=1 fora =1
0.2 | 0.010000000000000 | 0.010000000000000 1.734723475976807e-18
0.4 | 0.040000000000000 | 0.040000000000000 | O
0.6 | 0.090000000000000 | 0.090000000000000 1.387778780781446¢-17
0.8 | 0.160000000000000 | 0.160000000000000 | 2.775557561562891e-17
1.0 | 0.250000000000000 | 0.250000000000000 | 2.775557561562891e-17
Table 3.1: Exact solution and approximate solution of u(x,t) for Example (3.3.1). with

n=>5lata=1.

3.5

We shall illustrate the accuracy and efficiency of the fractional double Laplace
decomposition method (FDLDM).
Figure (3.1) By discuss the exact solution and approximate solution of example (3.3.1), we

get infinitesimal error equal (2.775557561562891e¢~'7) that means the present method is a

forceful and accurate method.

Figure (3.2) approximate solution of example (3.3.1) the behaviour of the function with

Numerical results:
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various values of fractional & = 0.94,0.96,0.98 and 1, we see that the function u(z,1)
increasing when « is decreasing with increasing the x at the value of ¢t = 1.
Table (3.1) tells us the absolute error for example (3.3.2) by comparing the exact solution
and approximate solution ug obtained by the (FDLDM) at o = 1 and different values of ¢.
In example (3.3.2), the exact solution and approximate solution are equal In(¢*) by cancelling
the noise terms, notice that the solution is verified in Eq.(4.6) when o = 1.

Conclusion:

We have successfully applied fractional double Laplace transform and Adomian decom-
position method to obtain the approximate solutions of the fractional telegraph equation. The
(FDLDM) gives us small error and high convergence. As seen in Table 1, these techniques

lead us to say the method has highly accurate and efficient solutions.
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Chapter 4

Application of Natural Transform
Decomposition Method for Solving

Fractional Telegraph Equation

Introduction

In this chapter, we apply the fractional natural transform decomposition method (FNTDM)
to solve the linear, nonlinear and singular fractional telegraph equations. This method is a
combination of the natural transform and Adomian decomposition methods. The natural
transform method was first proposed by [12] (2008) and was successfully applied to partial
differential equations. In addition, we prove the convergence of our method. Finally, their
examples have been employed to illustrate the preciseness and effectiveness of the proposed

method.
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4.1 Linear Fractional Telegraph Equations:

In the current investigation, the approach is different as we use the natural transform
decomposition method to solve linear fractional of telegraph equation. Furthermore, some
example are given to demonstrating the efficience of the proposed method.In general we

consider the linear fractional telegraph equation with indicated initial conditions as:

0%u(z,t) _ O%u(w,t) Ou(z,t)

3150‘7 - 8:1:27 - 7ot U(ZL‘, t) + h(I, t)v
4.1)
0<a<?2 and z,t > 0.
With initial conditions:
u(z,0) = fi(z) and w(z,0) = fo(z), 4.2)

where h(z,t) is source function.

In order to apply natural transform decomposition technique for Eq.(4.1), we use the
followinf steps.
Step 1: Using definition of the fractional double Laplace transform of partial derivatives for

Eq.(4.1) and single Laplace transform for initial condition, we get:

R, s,p) = L1 (2) + B o (o) + BN* [ 2550 — 240 — (e, t) 1 ho,t)] . @43)

Step 2: Now implementing the inverse natural transform for Eq.(4.3), we obtain:

u(z,t) = ®(x,t) + N7! ZSQZN* [82?52’ 2 — 8U(;;’ 2 — u(x,t)” , (4.4)
where
O(x,t) =N"1 lfl(x) +tfo(z) + ];—OCNJF [h(z, t)}] , 4.5)
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Step 3: inserting Eq.(3.7) into Eq.(4.4), we have:

0 L p® 2 Puy(z,t X Quy,(x,t 0
Zoun(m,t)=<1>(fﬂ»t)+N ' ol Za;)—th)—Zw,w

n=0 n=0 n=0

(4.6)

We assume that the inverse natural transform of each term on the right side of Eq.(4.6) exists.
The first term
up(z,t) = ®(z, 1), 4.7)

consequently, the first few components can be written as:

wi(w,t) = N~ [N+ | Zult) _ Suoled) o 4)]| |

U, t) = N7V | BN+ | Pmlet) _ duled) o (g 4]

(4.8)

us(x,t) = N1 i’—zNJr 32182(;@ — 8“28(5”) —ug(z,t)||,

then we have:

Upir(z,t) = N1

]LO‘NJF l@zun(x,t) B Oup(x,t)

— > 0. .
" 92 Y un(x,t)” ,n>0 4.9)
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4.2 Nonlinear Fractional Telegraph Equations

The main aims of this section to generalise the fractional natural transform de-
composition method to solve the nonlinear fractional telegraph equation, we also study the
convergence and the error behavior to the nonlinear fractional telegraph equation. In addition,
we demonstrate the applicability of the method by some examples and also the solution
has been plotted for different values of a and comparing with exact solution. In order to
elucidate the solution procedure of the fractional natural transform decomposition algorithm,

we consider the following nonlinear fractional telegraph equation as:

0%u(z,t) _ Ou(w,t) _ Ou(zt) NU(%,Z&) + h(x,t),

ot ox? ot
(4.10)
0<a<?2 and z,t >0,
with the initial conditions:
u(z,0) = g1(x) and us(x, 0) = go(x). 4.11)

Where N is nonlinear and h(x,t) is a source term.
In order to obtain the solution of Eq.(4.10) we use the fractional natural transform decompo-
sition method as follows .

Step 1: By using Eq.(2.69) for Eq.(4.10) and single Laplace transform for Eq.(4.11), we

have:
1 p Pp* oy [Pulz,t)  Ou(x,t)
R(Z’,S,p) — 891<x)+ SQQQ(x)+ SaN [ o2 ot NU(ZL‘,t>+h(ZE,t) )
(4.12)
Step 2: On using the inverse natural transform for Eq.(4.12), we obtain:
« O*u(x,t)  Ou(w,t)
— P -1 | PNt ) )N 4.1
u(z,t) (z,t) +N SO‘N [ 9 5 u(z,t)| |, (4.13)

54



where

®(z,t) =N lgl(x) +tga(x) + Z:;NJF [h(x,t)}} : 4.14)

Provided that the inverse natural transform of each term on the right side of Eq.(4.13) exists.

When we use Eq.(3.37) and Eq.(3.38) into Eq.(4.14), we obtain:

> o . 0y, Oy (,t)
St (z,t) = Dz, t) + N7 [N ZLZ’)—Z (@, ZA | (4.15)
n=0 % n=0 Oz n=0
by using the recursive relations
uo(x,t) = O(z,1t), (4.16)
consequently,
wi(z,t) = N1 [p Nt | Pioled) _ duoled) _ AOH,
uz(z,t) =N"! [{;ZN“ [aggﬁ’” S Alﬂ :
4.17)
uz(z,t) =N~ [{;W Purlat) _ Suawt) _ AQH,
then we have:
| Oup(x,t)  Oup(w,t)
ni1(z,t) = N7 |E=NT A,ll, n>0. 4.18
Ups1(x, 1) - l 92 + BT + n > (4.18)
the solution w,,(z, t) can be written as convergent series:
t) =Y un(z,t). (4.19)
n=0
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4.2.1 Convergence Analysis

In this section, the sufficient condition that guarantees the existence of a unique solution
is introduced and we discuss the convergence of the solution.

In the next theorem we follow [19]

Theorem (4.2.1) : (Uniqueness theorem): Eq.(4.18) has a unique solution whenever 0 <

(L1+La+Lg)tet!

€ < 1 where e = (a—1)!

proof (4.2.1). Let E = (C'[I],||.||) be the Banach space of all continuous functions on I =

[0, T'] with the norm ||.||, we define a mapping F' : F — F where
Uni1(z,t) = Pz, 1) + N1 [pNJr {L [un(z,t)] + M [uy(z,t)] + N [un(x,t)]ﬂ ,n>0
SOC

where L [u(z,t)] = % and M [u(z,t)] = a“éjf’t) . Now suppose M [u(z,t)] and L [u(z,t)]

is also Lipschitzian with ‘Mu — Mﬂ‘ < Iy ‘u — ﬂ}and ’Lu — La‘ < Ly ’u — ﬂ‘ where [

and L, is Lipschitz constant respectively and u,u is different values of the function.

N BN (L ulo, )] + M [u(z,6)] + N [u(a, 1)
HFU — FaH:maX

CNC PN | T [ﬂ(m,t)] +M [E(x,t)] +N [ﬂ(m,t)} ]

< max| +N-! [ZN*
tel s

<
£
8
=

|

<
)
®
=

LN BN Ju(a, ) — (o, 1)

< max +L,N™! [I;ZNJ“ ‘u(x, t) — a(x,t)” ,

LN [gjw fue, ) — e, 1)
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< max (Ly + Ly + Ly) [N‘l [ggw u,t) = u(x, 1)

< (Li + Ly + Ls) :N‘l [gjw |u(, t) = u(a, t)HH :

_ (La4La+L3)tle—D
o (a—1)!

u(z, t) = uz,t)|.
Under the condition 0 < € < 1, the mapping is contraction. Therefore, by Banach fixed point

theorem for contraction, there exists a unique solution to Eq.(4.19).

This ends the proof of theorem (4.2.1).

Theorem (4.2.2) :(Convergence Theorem): The solution of Eq.(4.1) and Eq.(4.10) in

general forum will be convergence.

proof (4.2.2). Let S, be the n* partial sum, i.e., S, = 7, u;(x,t). We shall prove that
{S,} is a Cauchy sequence in Banach space E. By using a new formulation of Adomian

polynomials we get:

— n—1~
R(S,) =A.+ X A,
r=0
—~ n—1 ~
N(S,) =A,+ > A
c=0
1S = Simll = max |Sn = Sl = max i:%;rl ui(z, )|,

i=m-+1

NI N[ > L[un_1<x7t>}”

< max| +N7! i’jNJr[ Zn: M[“n—l(l’at)]”

tel i=m—+1

+N-!

PN* l S Az, t)H
i=m-+1
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tel 5%

— max| +N! |ZN* >

- n—1
< max +N-1 [ ENT | 3 M(Snl)—M(SmO] ,

+N-!

PNt [':iﬂ N(Sp_1) — N(Sm_l)l

< LymaxN~!
tel

(BN (1) = (S]]
+L, max N—! {%I\ﬁ [(Sn-1) — (Sm—lm )
Ly e N[N [(Sut) = (Smn)]] ]

?

(L1 + Loy + L3)t(a_1)
(a_ 1), |’Sn,1+sm,1”

Let n = m + 1; then

1Sm+1 = Sinll < €l1Sm — Siill < € 1Sm-1 = Small < ... <™ 51— Soll -

Li+Lo+Lg)te—1)
where ¢ = Latletls)
(a—1)!

similarly, we have, from the triangle inequality we have

150 = Sl < [Smi1 = Smll + 1Smr2 = Smpall + o 4 (150 = Snall

<[lememt 4+ < IS+ Soll,

1—gn™m
<) ),
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since 0 < ¢ < 1 we have (1 — 8”_’”) < 1: then,

gm
190 = Sl < 1= hax [l

However, |u;| < oo (since u(x,t) is bounded) so, as m — oo then ||S,, — S,,|| — 0, hence

{S,} is a Cauchy sequence in E so, the series Yo", u,, converges and the proof is complete.

Theorem (4.2.3) (Error estimate:): The maximum absolute truncation error of the series
solution Eq.(4.18) to Eq.(4.19) is estimated to be:

m

max
tel

u(z,t) — il up(z,t)

<= o |
_1—81115122—}{ Uy |l ,

proof (4.2.3). From Eq.(3.18) and theorem (4.2.2) we have:

é\m
S — S| < T ax [Juall

as n — oo then S,, — u(zx,t) so we have

m

Jutz, ) = Sl <

max [|uy (2, ]|

Finally, the maximum absolute truncation error in the interval [ is

m m

< max ——— |uy (z,1)| = -
_tealxl_gulx, C1-—c¢

max

Jus (e, )]

u(z,t) — f:l un(z,t)

thus, completing the proof of Theorem (4.2.3).

To incorporate our discussion, three examples of of linear and nonlinear fractional tele-
graph equations with specific initial conditions, will be investigated the reliability of the

proposed scheme:
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Example (4.2.1) : Consider the following space-fractional homogeneous telegraph equation:

u(wt) _ Pu(xt) _ Ou(zt) u(z,t)

ot - 0x2 ot
(4.20)
r,t>0 and 0<a <2,
with the initial conditions
u(z,0) = e * and wy(x,0) = —e™ 7. 4.21)

Solution (4.2.1) :: By applying natural transform for Eq.4.20) w.r.t (¢) and substituting the

initial conditions Eq.(4.21), we get:

Pu(x,t)  Ju(z,t)
Ox? ot

1
R(z,s,p) = ;e P P N+[

52

— u(w, t)] , (4.22)

On using the inverse natural transform for Equation (4.22), we have:

ISL:N+ [52u(:v,t) B ou(z,t) _ u(x,t)” ’ (4.23)

T T -1
u(z,t) =e* —te* + N 97 e

the correction function for Equation (4.23), is given by

i @ 2 0%uy,(z,t Oun(z,t) &
> tpai(z,t) = e " —te "N P N+ [Z Lf) — Z (2, Z up(z,1) } ,
n=0 5% n=0 Ox n=0
4.24)
the initial term
up(z,t) = € — te”, (4.25)
Then we have
@ < Puy(x,t Ou(z,t) &
(e, ) = N [P | 32 P80 9 OunlBl) R | nz 0,
5% n=0 ax n=0 n=0
(4.26)
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the first 3" terms is given by

ul(xat) = I‘(:iH) exu
ws(a,t) = —Lotes,
s (4.27)
us(z,t) = T
then general form is successive approximation is given by
to t20¢—1 t30¢—2
) =¢€e"1—-1t — — , 4.28
ulzt) = e ( " Tatn) T@a) TEa-1D ) (428)
0 k1 tkafk+l
t)=¢e" |1 -1 4.29
uz,t) =e +k§< ) Tha—k+2)||’ (4.29)

In order to prove the efficiency of our method, we replace the fractional order a = 2, we get

u(r,t) = e* " (4.30)

Example (4.2.2) : Consider the following space-fractional non-homogeneous telegraph equa-

tion:
Otulet) _ Sulet) _ et (g t) a4t — 1,
(4.31)
r,t>0and 0 < a < 2,
with the initial conditions
u(z,0) = 2 and w,(x,0) = 1. (4.32)

Solution (4.2.2) : By using the technique of natural transform decomposition (Eq.(4.5) then
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Eq.(4.31), becomes:

ta+1 ed

E Up(@,t) = 2% + 1 + (a+1)x + fat2) ~ TlarD

(4.33)
_ o x 02un (z, x Ounp (x, X
PN N Lzo Trualzi) -3 Gunled) —nzoun(x,t)” :
the initial term
up(w,t) = °+t + A (A (4.34)
oy T(a+1) Fla+2) TD(a+1) ‘
then we have:
[ee] fo' o] 82 n ,t o] a n t
> upii(z,t) =N PN+ ZL‘;)—Z Un(2, Zunxt ., n>0
n=0 5% n=0 Ox n=0

(4.35)
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Now the components of the series solution are given by:

o t N t 2 . ta+1 t2a
ui(z,t) = TlatD) ~ TiD? ~ Far2) T 2T@at))
t2a+1 t20¢71 t2a 2 t2a71 2

TT@at2) T T2a)  TRarDT ~ TeaT

_ t2a t2a+1 _ t2a—1 t2a 2
ug(z,t) = 250ar) T Tagy) — Tea) T FRarn?

t20¢71 2 5 t3a71

t3a t3a 1 2
e T OF@at2) ~ OT@arn T 2TEa) T

(4.36)

t3a—2 t3a+1 t3a 2 t3a 2 2
T TBa—1) " T(Bat2) + TBatD) ¥ + TBa—D?*

t3a 1 t3cx t3a 1 2 t3a72 t3a+1
uz(z,t) = 9TGazy) T 9 Gary) — 2G0T +

T(3a—1)  T(3a+2)

tSa 2 tSa -2 t4a t4a

2 22 tho- tlal o
“Ba Y T TGa ¥ T Thar) ~ Taarnd T v 4a) = 3 ®
t4o¢+1 t4a 1 t4a 2 t4a 2 2 t4a73 - t4a73 2
—2Faay T 2Fae) T 8FGamn 3t ? T Fia—y) — Taa—n L
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Then the solution is given by

iun(% t) = wuo(z,t) +w(x,t) +us(z,t) + ...

u(z,t) = x4+t + A (AR P
’ [Na+1) 'a+2) I'(a+1) I'(a+1)

ta ta—i—l t2a t2a+1 tQa—l
e’ - +2 - +
I(a+1) ' +2) F2a+1) T'(2a+2) TI'(2a)
t20¢ 75204—1 t?oz 25201—1—1 t20¢—1
— r? — 7% — 2 + —
T2a+1)" ~ T(2a) T2a+1)  T2a+2) I(2q)
t2a 9 tQOzfl ) t3a71 t3a t3a71 )
-5 -3 2
Tear )" TTew" T TBat2) CTBa+1)  TEa)"
t3a—2 t3a+1 t30¢ ) t3a—2 N t3a—1
_ 5—0
TBa—1) TBat2) TEa+D" "TBa-0" "TBat2)
t3o¢ t30171 t3a72 t3a+1 t3a
+3 —2 z? + - - x’
I'Ba+1) ['(3c) FBa—1) TBa+2) TBa+1)
t3a—2 t4a t4a t4a_1 t4a_1
— 2+ — 224+ 7 -3 22
I'Ba—1) Fda+1) T(da+1) INE%Y ['(4a)
t4a+1 75404—1 t4o¢—2 t40¢—2 25404—3
-2 5 8 -3 L
Tda) " °Tla)  “Tla—1 °T@a-10" " T@a—2)
t4a73 )
_7F(4oz — 2)x + ..

at o« = 2, we obtain the exact solution of standard telegraph equation.
u(z,t) =t + 2° (4.37)

Example (4.2.3) : Consider the following space-fractional nonlinear telegraph equation:

0%u(z,t) _ 0%u(w,t) Ou(z,t)
S = S 4+ S — P (1) 4 au(w, tug(x, t), (4.38)
r,t>0 and 0 < a <2,
with the initial conditions
u(z,0) = z and w(z,0) = . (4.39)
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Solution 4.2.3

By taking natural transform for Eq.(4.38), we have:

“u(z,0) — Z uy(z,0) = Nt O (z.1)

axQ, + Bu(x t)

S R(w,s,p) -

_ U,2<l’, t) =+ J}U(ZE, t)”z(xa t>:| ’
(4.40)

and by the arrangement and substitution the initial condition (4.39) in (4.40), we get

R(z,s,p) =tz + Bo + lp Nt uaﬁ By 8”%’” — u?(x,t) + xu(a:,t)um(w,t)]

(4.41)
and by applying the inverse natural transform for Eq.(4.41), we have
u(z,t) =+t + N~ lp Nt | 200et) | oulet) _2(y ) + zu(z, tug (o, t)
(4.42)
hence,
Z unJrl(xat) = (iL‘ + t$)
n=0
. 50 o0 o0 (4.43)
+N- | EN* [z a”g;;” + Z Bun(zt) z Ap(z,t) +2 Y Bn(x,t)] ,
n=0 n=0
the initial term
up(,t) = (v +tx). (4.44)
Now the components of the series solution are given by:
- Pun(x,t)  up(z,t
Upir(7,1) = N~ %NJr [ u@a(:f ) 4L (’gf ) _ Ap(x,t) +xBn(x,t)] n >0 (445)
ul(l‘7t) = <1"(§11)x) )
Up(z,t) = (ng;mx) , (4.46)
us(x,1) = (FEZis)x)



Since

by substituting o« =

u(z,t) =x +te +

Un(x,t) = up(z,t) + uy(z,t) + ug(x, t) + us(x, t) + ...

a

ta+1

ta+2
T+ ...

F(a+1)x+

telegraph equation in the following form:

023

u(z,t) = xe'

I‘(oz+2)x+

I'(a+3)

021r

02r

019
g 0agr
=

017 F

0B
ol

D15k &
)
D14 o

013

< Appr Sol o =2
022 +  Exact So

L L L L L L ! L !
0 0os 01 016 02 025 03 035 04 045 05

ks

(4.47)

(4.48)

2 in Equation (4.48), we obtain the exact solution of the standard

(4.49)

Figure 4.1: The exact and approximate solutions of u(z, t) for Example 4.2.1 for a = 2.

Table 4.1: Exact and approximate solution of u(x,t) for Example 4.2.1.

t  Exact Solution u Approximate Sol u1g  u = |u — uqg|
0.0 1.648721270700128 1.648721270700128 0.0
05 1.0 1.000000000040401 4.040101586 e—11
1.0 0.606530659712633 0.606530742852590  8.313995659 e—8
1.5 0.367879441171442 0.367886690723836  7.249552393 e—6
2.0 0.223130160148429 0.223303762933655 1.569783692 e—4
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Table 4.2: Approximate solution of u(x,t) for Example 4.2.1.

oa=1.99

o =1.98

o = 1.97

0.0
0.5
1.0
1.5
2.0

1.648721270700128
1.002243362235993
0.609569757949665
0.369222108754806
0.221291547575669

1.648721270700128
1.004498274095028
0.612585971492061
0.371788163947318
0.219269844467107

1.648721270700128
1.006764389796932
0.615579284214978
0.370522335669580
0.217240584657229

Figure 4.2: The Exact solutions and approximate solutions of u(x,t) for Example 4.2.1 for

0.23

022+ =139
& w=198

* g=197

0.21H

Exact Sol.

02
igE]E
I RE
ES
nirt
0Bk
nist

)
014p il

i
0.135

different value for «.

L L L L L L L L L
0 005 01 018 02 025 03 035 04 045 05

X

225

22+

215+

yix )

21r

2051

4
HH
P § 1

+
+
e
+
+¥

L L L I L I
0 00 01 015 02 02 03 035 04 045 05

X

Figure 4.3: The exact solution of u(x,t) for Example 4.2.2.
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Table 4.3: Approximate solution of u(z,t) for Example 4.2.3.
t Exact Solution o =1.95 a=1.90 a =1.85
0.0 0.5 0.5 0.5

1.5
5.0 0.824360635350064 0.830817752645242 0.837755999175080 0.845202109327201

1.0 1.359140914229523 1.378259288907402 1.398076433466764 1.418592017094073

1.5 2.240844535169032 2.276244404149126 2.312171661003479 2.348587393416824
2.0 3.694528049465325 3.748855797997422 3.803171995755493 3.857406067787722

Exact Sol.
35k * o=185
+  @=190
gl @ m=185

L L L L L L I L I
0 o005 01 015 02 02 03 035 04 04 05

X

Figure 4.4: The approximate solutions of u(x, t) for Example 4.2.3 for o = 1.95, a = 1.90,
o = 1.85 and exact solution.
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4.3  Numerical Results

In this section, we shall illustrate the accuracy and efficiency of the (NTDM) by compar-
ing the approximate and the exact solution.

Figure (4.1) confirms the accuracy and efficiency of the natural transform and Adomian
decomposition method and discuss the behaviour of exact solution and approximate solutions
Eq.(4.20) obtained by (NTDM) for the special case v = 2 for Example (4.2.1). We see that
Table 4.1 illustrated the absolute error by computing v = |u — u;9| where u is the exact
solution and uyq is approximate solution of Eq.(4.20) obtained by truncating the respective
solution series Eq.(4.29) at u;9. Approximate solutions converge very swiftly to the exact
solutions in only the 10th order approximations i.e, approximate solutions are nearly identical
to the exact solutions. The accuracy of the result can be ameliorated by generating more terms
of the approximate solutions.

Figure (4.2) shows the exact solution and the approximate solution Equation (4.20) ob-
tained by natural transform and Adomian decomposition method when « decreasing then the
u decreasing.

Table (4.2) discuss the solution of Example (4.2.1) by choosing different values of ¢ =
{0,0.5,1,1.5,2} and the values of u(z,t) decreasing when ¢ increasing for different values
of a =1.99,1.98 and 1.97.

Figure (4.3) Shows when setting v = 2 in the n* approximations and cancelling noise
terms yields the exact solution u = |u — uj9| as n — oo. The analytical solution for the
exact solution and the approximate solution Equation (4.31) obtained by natural transform
and Adomian decomposition method. In addition, the exact solution is presented graphically
in Figure (4.3).

The exact and approximate solutions of Equation (4.38) are presented graphically in
Figure (4.4), the approximate solution is given at &« = 1.99,1.98 and 1.97. The value of
the solution satisfies Equation (4.38) see in Table (4.3) for the values @ = 1.99,1.98 and
1.97.
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4.4  Singular Fractional Telegraph Equations:

In this section, we derive the main idea of fractional natural transform decomposition

method to solve a singular fractional telegraph equation.

Theorem (4.4.1) : We consider singular fractional telegraph equation with initial condition as

follows:

ou(z,t) _ 1 (xau(l“’t)> L 2D |ty 4 b, 1), 0<a <2 and ot >0,
X

ate ox ot
(4.50)
subject to:
u(z,0) = f1(x) and wy(z,0) = fo(x), (4.51)
where % (x%) is the Bessel operator and h(z, t) is a continuous function.

Then the solution of Eq.(4.50) is given by

up(z,t) =2H(z,t) + 5 F1(s) — % F5(s)

Un+1(1’,t) — N1 %N—i- |:lz 6%,;210 4+ 1 Zoaunzt Z 8unmt) + Z un(x t)]]

n=0

,n>0
(4.52)

Proof. We apply the natural transform of partial derivatives for equation Eq.(4.50), we get:

wU(p,s) = 52 Up,0) = 52rUn(p,0) = N* | T 4 10400 4 280 fu(a, ) + (x, b)) |
(4.53)
By substituting Eq.(4.51) into Eq.(4.53) and by using use the property of natural transform

and simplifying, we obtain:

U(p,s) = YNt |Lulet) | 10uled) | ouled) 4y )| 4 LH (2, 8) + L F(s) — % Fy(s),
(4.54)

where H (p, s) is natural transform of h(z, t).
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Taking the inverse natural transform to Eq.(4.54), we get:

w(et) = Gle.t) + N1 [Z:Aﬁ l&%(x,t) N 1 du(x,1) N ou(z,t) +u(:c,t)” . (4.55)

0x? Tz Oz ot

where G(z, t) is the function comes from continuous function and initial condition.
The solution of Eq.(4.50) can be written as infinite series terms (Adomian decomposition

method) such as:

t) =Y un(z,t), (4.56)
n=0
Then Eq.(4.55) becomes:
S (1) = Gla, t)+
n=0
N 00 00 4.57)
NN [Z Palptd 1 30 Qialel) 4 5 2fed) 1 S (a, t>1 ,
n=0 n=0

The method suggests that the zero component ug(x,t) is identified by terms that are not

included under N ! in Eq.(4.57).

up(z,t) =G(x,t)

Un+1(36,t) — N—l Z%N-i- [l;oaué;;ct) + ZO Aunp ( :Bt) Z Bunact) + E un(x t)]] n > 0

(4.58)

Note that the inverse natural transform of each terms on the right side of Eq.(4.58) exists.

Numerical Examples:
In this section, we demonstrate the applicability and stability of our method by applying

numerical examples.
Example (4.4.1) : Consider the following singular fractional telegraph equation:

0%u(z,t)
ot

= 1 (p22) 4 08D 4y, t) + 207 — 202 — 2% — AP, 459)

r,t>0and 0 < a < 2,
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subject to the initial condations:

u(z,0) =0, wu(x,0)=0. (4.60)

By applying the natural transform on both sides of Eq.(4.59) to get:

LU (p,s) = 5U(p, 0) — £=U,(p, 0) =
21 21 212! 21 + | B%u(z,t) 1 Ou(z,t) au(z t) (461)
25~ 2pa ~ s s TN 222 Tz oz T +u(z,t)],
substituting the initial conditions Eq.(4.60) in Eq.(4.61), gives:
U(p,s) = 252 - 2p33;+2 — p32s!3!+3 4 2 LNT gﬂ(g2 0 4 10uen) 4 Oulet) 4 gy
(4.62)
and by using the inverse natural transform for Eq.(4.62) we have:
o 2 ta+1 2 ta+2 ta+2
u(z,t) = 22 F(a+1) -2 T(at2) -2 T(a+t3) — 85 T(at3) 4.63)
2u xX, u\x u\x '
+N~ [1N+ Tpl)  Loue) | Sued) 4y (x,,t) ]
Now we define the function u(z, t) by the decomposition series
t) =Y un(z,t), (4.64)
Insert Eq.(4.64) into both sides Eq.(4.63), gives:
0 . 2 e 9 totl 9 tot2 tot2
nZ:jOun(a:,t) =211 ~ 22 M vy~ 2 Ty~ 8T
(4.65)

+N~

L |8 P04y 8 ooy $ ey § 400,

n=0

72

7t> 7



By using the Eq.(4.65) we find a few terms of the series of u(x, ).

— 2_tot! 2_tt? tot?
ug(x,t) = 222 (a+1) — 2z FatD) — 2z Fat3) — 8% F(at3)

Uy (T,1) =N~ [;J\ﬁ lz dg';f” + 1y Qumled) Z Qunlet) 4 2 U (1, t)] n>0
n=0

n=0
(4.66)
then,
2t2a 1 2 t2a+2 2 t2a+1 t2a+2 t2a+1 t2a
ui(z,t) =2 T2 )_2 T'(2a+3) — 4w T(2a+2) 165 T'(2a+3) — 165 T(2a+2) +8F(2a+1)
(4.67)
t3°‘ 2 t3a—1 2 t3a 2 t30‘+2 t3a+1
us(,1) =22 TGa—1) T 227 T(3a) 4w T(Batl) 2z T(3a+3) — 627 T(3a12)
(4.68)
t3a+2 t3o¢+1 t30¢ t3a 1
24F(3 +3) 48 L' (3a+2) 8F(3a+1) + 161“(3 )
4da—3 da—2 da—1 4o da+1
us(w, t) =227 E y T+ 49321“1(54 1 2x2?(4a) - 10$2F(ia+1) - 8x2rl(f4a+2)
(4.69)
2 t4a+2 t4a+2 t4a+1 t4a t4o¢—2
—2x T(4a+3) 32F(4a+3) 96 T(4a+2) 72F(4a+1) + 24F(40ﬁ1)
Therefore, the (NTDM) series solution is:
u(z,t) = uo(z, t) + uy(z,t) + ug(z, t) + ug(z, t) + ...
2t2a 1 2 t2a+2 2 t2a+1 t2a+2 t2a+1 t2a
u(z,t) =2z ) ~ 27 TEats) — 4w raat2) ~ 10t@ars ~ Oteate) T Otearn
2t2a 1 2 t2a+2 2 t2o¢+1 t2cx+2 t2a+1 t2cx 2 t30¢72
277550y — 27 5 5ars) ~ 4 13ass) — 107Gars) — 107@ars) T 8taarn T 27 tEas
2t3a71 2 t3a 2 t3a+2 2 t3a+1 t3a+2 t3a+1 tSa
+2 (Ba) 4r T(Ba+1) 2r C(3a+3) 6z C(3a+2) 24 C(3a+3) 48 C(3a+2) 8F(3a+1)
t3a 1 2 t4a 3 2 t4o¢ 2 2t4o¢ 1 t4o¢ 2 t4a+1 2 t4a+2
16575y + 277 faamyy T 4 v — 27 Faw — 102 TlarD) ~ 87 Faar2) ~ 27 Ta+3)
t4a+2 t4o¢+l t4o¢ t4o¢72
32 T(4a+3) 96F(4a+2) 72F(4a+1) + 24F(4a—1) +
4.70)
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If we take (« = 2) then we get exact solution Eq.(4.59) of standard telegraph equation as.
u(z,t) = 2°t? (4.71)

Example (4.4.2) : Consider the following singular fractional telegraph equation:

8a§f§’“ =1 (:caua(z’t))m + 8"(‘% D 4 u(z,t) —Inz —tnz,

(4.72)
r,t>0and 0 < a < 2,
subject to:
u(z,0) =0, wu(z,0)=Inzx. (4.73)
By applying the natural transform on both sides of Eq.(4.72), we get
s°U(p,s) = 571U (p,0) = s*Uy(p, 0) = =7 4 2
0?u(x ou(x ou(x,
NS 2+ 2 ()
(4.74)
substituting initial conditions Eq.(4.73) in Eq.(4.72), gives:
Ulp,s) = 85 + SR — B 4 LN+ | 500+ L0t 4 2008 4 u(a,1)
(4.75)
and by using the inverse natural transform transform for Eq.(4.75), we have:
a+l
u(z,t) = In(z) 7y (a+1) + In(z) €a+2) +tIn(z)
(4.76)
Now we define the function u(z, t) by the decomposition series
t)=> uy(z,t), 4.77)
n=0
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Inserting Eq.(4.77) into both sides of Eq.(4.76) gives:

tetl

gjoun(x,t) = In(2) ;s (a+1) +In(2) & ot )—l—tln( x)

(4.78)

NN [Z Palpll 1 5 Duled) 53 Sunl) 4 53 un(x,ﬁ}
n=0 n=0

n=0

By using Eq.(4.78) we find a few terms of the series of u(x, ) :

uozln()( )—Hn()zwr + tIn(z)

Unpa (2, t) =N {;J\H [z Bunz) 4 15> Sunledt) 4 Py Yueted) z Un (2, t)] n>0

n=0 n=0
4.79)
Then the next terms are
t2a+1 t2a t2a71 ta+1 «@
) =1 2 — — 4.80
u(@?) n<x)(r(2a 2 T TRa+1) T@a) T(a+2) T(a+t 1)) (4.50)

o t3a+1 t2a+1 t3a t2a t3a 1 t3a72 t2a71
ua(z, t) ln(m)(r(&wz) = et T O Gar) — 2Tarn) T 3TGa) T TEach — F(?a))

t4a tSa t4a 2 t3a 1 t4o¢—3 t3a—2
uz(x,t) =In(z) (6F(4a+1) — 3 @arn T 4g Fa—T) ~ 9T@Ea) T Fda=2) — T@a=1)

) (4.81)
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Therefore ,the (NTDM) series solution is:
u(z,t) = uo(z,t) +ug(z,t) + ug(z, t) + ug(z, t) + ...

ta+1 t2a+1 t2o¢ t2o¢71 ta+1 to

u($, t) = ln(x) (r(;ﬂ) + I'(a+2) +1+ ' (2a+2) + 2F(2a+1) + [(2a) T(a+2) T(atl)

t3a+1 t2a+1 t3a t2a t3a71 t3a72 t2(¥71

F(Ba+2) T(2a+2) + 3F(3a+1) B 2F(2a+1) + 31“(3(1) F(Ba—1) T(20)
t4a t3a t4a—2 t3a—1 t4a—3 t3a—2

+6F(4a+1) B 3F(3a+1) + 4F(4a—1) B 3I‘(3a) + I'(4a—2)  T(3a—1) + )

(4.82)
The solution of Eq.(4.82) is equal to the exact solution of the standard telegraph equation
(when o = 2):

u(z,t) = tln(zx). (4.83)

Conclusion

We have successfully applied double Laplace transform and Adomian decomposition method
to obtain the approximate solutions of the fractional telegraph equation. The (DLADM) gives
us high convergence and leads us to say this method has highly accurate and efficient solu-
tions.

We have successfully applied the natural transform and Adomian decomposition method
to obtain the approximate solutions of the fractional telegraph equation. The (NTDM) gives
us small error and high convergence. As seen in Tables 4.1-4.3, errors are very small, and
they sometimes deflate as shown in Table 4.3. These techniques lead us to say that the method
1s accurate and efficient according to the theoretical analysis and examples 3 and 4 in the exact
solution and approximate solution of u(x, t) are equal at o = 2 the absolute error equal zero.

we see no difference in the solution in all examples and the two methods double Laplace
transform decomposition method and natural transform decomposition method lead us to the

same solution.
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