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Chapter 1 

Introduction and Basic concept  

1.1 Introduction  

Engineering is concerned with understanding and controlling the materials and 

forces of nature for the benefit of humankind. Control system engineers are 

concerned with understanding and controlling segments of their environment, 

often called systems, to provide useful economic products for society. The twin 

goals of understanding and controlling are complementary because effective 

systems control requires that the systems be understood and modeled. 

Furthermore, control engineering must often consider the control of poorly 

understood systems such as chemical process systems. The present challenge to 

control engineers is the modeling and control of modern, complex, interrelated 

systems such as traffic control systems, chemical processes, and robotic systems. 

Simultaneously, the fortunate engineer has the opportunity to control many useful 

and interesting industrial automation systems. Perhaps the most characteristic 

quality of control engineering is the opportunity to control machines and 

industrial and economic processes for the benefit of society. Control engineering 

is based on the foundations of feedback theory and linear system analysis, and it 

integrates the concepts of network theory and communication theory. Therefore 

control engineering is not limited to any engineering discipline but is equally 

applicable to aeronautical, chemical, mechanical, environmental, civil, and 

electrical engineering. For example, a control system often includes electrical, 

mechanical, and chemical components. Furthermore, as the understanding of the 

dynamics of business, social and political systems increases, the ability to control 

these systems will also increase. Control system is an interconnection of 

components forming a system configuration that will provide a desired system 

response. The basis for analysis of a system is the foundation provided by linear 

system theory, which assumes a cause-effect relationship for the components of a 

system. Therefore a component or process to be controlled can be represented by 

a block, as shown in Figure1.1  
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 Input  Output 

 

Figure 1.1 Process to be controlled 

The input-output relationship represents the cause-and-effect relationship of the 

process, which in turn represents a processing of the input signal to provide an 

output signal variable, often with power amplification. The PID controller is the 

most common form of feedback. It was an essential element of early governors 

and it became the standard tool when process control emerged in the 1940s. In 

process control today, more than 95% of the control loops are of PID type, most 

loops are actually PI control. PID controllers are today found in all areas where 

control is used. The controllers come in many different forms. There are 

standalone systems in boxes for one or a few loops, which are manufactured by 

the hundred thousand yearly. PID control is an important ingredient of a 

distributed control system. The controllers are also embedded in many special 

purpose control systems. PID control is often combined with logic, sequential 

functions, selectors, and simple function blocks to build the complicated 

automation systems used for energy production, transportation, and 

manufacturing. Many sophisticated control strategies, such as model predictive 

control, are also organized hierarchically. PID control is used at the lowest level; 

the multivariable controller gives the set points to the controllers at the lower 

level. It is an important Component in every control engineer‘s tool box. PID 

controllers have survived many changes in technology, from mechanics and 

pneumatics to microprocessors via electronic tubes, transistors, Integrated 

circuits. The microprocessor has had a dramatic influence on the PID controller. 

Practically all PID controllers made today are based on microprocessors. This has 

given opportunities to provide additional features like automatic tuning, gain 

scheduling, and continuous adaptation. PID controller is a common instrument 

used in industrial control applications. It can be used for regulation of speed, 

temperature, flow, pressure and other process variables. 

 

Process 
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1.2 A brief History of Systems and Control 

Control theory has two main roots: regulation and trajectory optimization. The 

first, regulation, is the more important and engineering oriented one. The second, 

trajectory optimization, is mathematics based. However, as we shall see, these 

roots have to a large extent merged in the second half of the twentieth century. 

The problem of regulation is to design mechanisms that keep certain to-be 

controlled variables at constant values against external disturbances that act on 

the plant that is being regulated, or changes in its properties. The system that is 

being controlled is usually referred to as the plant, a passé partout term that can 

mean a physical or a chemical system. It could also be an economic or a 

biological system, but one would not use the engineering term ―plant‖ in that 

case. Houses are regulated by thermostats so that the inside temperature remains 

constant, notwithstanding variations in the outside weather conditions or changes 

in the situation in the house: doors that may be open or closed the x Preface 

number of persons present in a room, activity in the kitchen, etc. Motors in 

washing machines, in dryers, and in many other household appliances are 

controlled to run at a fixed speed, independent of the load. Modern automobiles 

have dozens of devices that regulate various variables. It is, in fact, possible to 

view also the suspension of an automobile as a regulatory device that absorbs the 

irregularities of the road so as to improve the comfort and safety of the 

passengers. Regulation is indeed a very important aspect of modern technology. 

For many reasons, such as efficiency, quality control, safety, and reliability, 

industrial production processes require regulation in order to guarantee that 

certain key variables (temperatures, mixtures, pressures, etc) be kept at 

appropriate values. Factors that inhibit these desired values from being achieved 

are external disturbances, as for example the properties of raw materials and 

loading levels or changes in the properties of the plant, for example due to aging 

of the equipment or to failure of some devices. Regulation problems also occur in 

other areas, such as economics and biology. One of the central concepts in control 

is feedback, the value of one variable in the plant is measured and used (fed back) 
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in order to take appropriate action through a control variable at another point in 

the plant. A good example of a feedback regulator is a thermostat, it senses the 

room temperature, compares it with the set point (the desired temperature), and 

feeds back the result to the boiler, which then starts or shuts off depending on 

whether the temperature is too low or too high. Man has been devising control 

devices ever since the beginning of civilization, as can be expected from the 

prevalence of regulation problems. Control historians attribute the first conscious 

design of a regulatory feedback mechanism in the west to the Dutch inventor 

Cornelis Drebbel (1572–1633). Drebbel designed a clever contraption combining 

thermal and mechanical effects in order to keep the temperature of an oven at a 

constant temperature. Being an alchemist as well as an inventor, Drebbel believed 

that his oven, the A than or, would turn lead into gold. Needless to say, he did not 

meet with much success in this endeavor, notwithstanding the inventiveness of 

his temperature control mechanism. Later in the seventeenth century, Christian 

Huygens (1629–1695) invented a flywheel device for speed control of windmills. 

This idea was the basis of the centrifugal fly-ball governor used by James Watt 

(1736–1819), the inventor of the steam engine. The centrifugal governor 

regulated the speed of a steam engine. It was a very successful device used in all 

steam engines during the industrial revolution, and it became the first mass-

produced control mechanism in existence. Many control laboratories have 

therefore taken Watt‘s fly-ball governor as their favorite icon. The control 

problem for steam engine speed occurred in a very natural way. During the 

nineteenth century, prime movers driven by steam engines were running 

throughout the grim. 

 Definition 1.1  

Processes: The a process defines to be a natural, progressively continuing 

operation or development marked by a series of gradual changes that succeed one 

another in a relatively fixed way and lead toward a particular result or end; or an 

artificial or voluntary, progressively continuing operation that consists of a series 

of controlled actions or movements systematically directed toward a particular 
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result or end. We shall call any operation to be controlled a process. Examples are 

chemical, economic, and biological processes. 

Definition 1.2 

System: Is an interconnection of components forming a system configuration that 

will provide a desired system response. The basis for analysis of a system is the 

foundation provided by linear system, which assumes a cause effect relationship 

for the components of a system. 

Definition 1.3 

The controller: Is an element which accepts the error is some form and decides 

the proper corrective action. The output of the controller is then applied to the 

process or final control element. The controlled variable is the quantity or 

condition that is measured and controlled, the manipulated variable is the quantity 

or condition that is varied by the controller so as affect the value of the controlled 

variable. Normally, the controlled variable is the output of the system. 

Definition 1.4 

A control system: Is a collection of components working together under the 

direction of some machine intelligence .This definition will show you the 

characteristics of the each of proportional (P), the integral (I), and the derivative 

(D) controls, and how to use them to obtain a desired response. The concept of a 

control system is to sense deviation of output from the desired value and correct 

it, till the desired output is a achieved. The deviation of the actual output form its 

desired value is called an error. 

Definition 1.5 

Control: means measuring the value of controlled variable of the system and 

applying the manipulated variable to the system to correct or limit deviation of 

the measured value from a desired value. The measurement of error is possible 

because of feedback .the feedback allows us to compare the actual output with its 

desired value to generate the error .the error is denoted as e(t). The desired value 



  

6 
 

of the output is also called reference input or a set point .the error obtained is 

required to be analyses to take the proper corrective action. 

Definition 1.6 

Automatic Controllers: An automatic controller compares the actual value of 

the plant output with the reference input (desired value), determines the deviation, 

and produces a control signal that will reduce the deviation to zero or to a small 

value. The manner in which the automatic controller produces the control signal 

is called the control action. Figure is a block diagram of an industrial control  

 

Figure1.2 Block diagram of an automatic controller 

System which consists of an automatic controller an actuator a plant, and a sensor 

(measuring element). The controller detects the actuating error signal, which is 

usually at a very low power level, and amplifies it to a sufficiently high level. The 

output of an automatic controller is fed to an actuator, such as an electric motor, a 

hydraulic motor, or a -pneumatic motor or valve. (The actuator is a power device 

that produces the input to the plant according to the control signal so that the 

output signal will approach the reference input signal.)The sensor or measuring 

element is a device that converts the output variable into another suitable variable, 

such as a displacement, pressure, or voltage, that can be used to compare the 

output to the reference input signal. This element is in the feedback path of the 

closed-loop system. The set point of the controller must be converted to a 

reference input with the same units as the feedback signal from the sensor or 

measuring element. 
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1.3 Modern Control Theory Versus Conventional Control Theory 

Modern control theory is contrasted with conventional control theory in that the 

former is applicable to multiple-input, multiple-output systems, which may be 

linear or nonlinear, time invariant or time varying, while the latter is applicable 

only to linear time invariant single-input, single-output systems. Also, modern 

control theory is essentially time-domain approach and frequency domain 

approach (in certain cases such as H-infinity control), while conventional control 

theory is a complex frequency-domain approach. Before we proceed further, we 

must define state, state variables, state vector, and state space 

Definition 1.7 

State: The state of a dynamic system is the smallest set of variables (called state 

variables) such that knowledge of these variables at     , together with 

knowledge of the input for      , completely determines the behavior of the 

system for any time     . Note that the concept of state is by no means limited 

to physical systems. It is applicable to biological systems, economic systems, 

social systems, and others. 

Definition 1.8 

State Variables: The state variables of a dynamic system are the variables making up 

the smallest set of variables that determine the state of the dynamic system. If a least n 

variables                are needed to completely describe the behavior of a dynamic 

system (so that once the input is given for       and the initial state at      is 

specified, the future state of the system is completely determined) , then such n 

variables are a set of state variables. Note that state variables need not be physically 

measurable or observable quantities. Variables that do not represent physical quantities 

and those that are neither measurable nor observable can be chosen as state variables. 

Such freedom in choosing state variables is an advantage of the state-space methods. 

Practically, however, it is convenient to choose easily measurable quantities for the 

state variables, if this is possible at all, because optimal control laws will require the 

feedback of all state variables with suitable weighting. 
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Definition 1.9 

State Vector: If n state variables are needed to completely describe the behavior 

of a given system, then these n state variables can be considered the n 

components of a vector   . Such a vector is called a state vector. A state vector is 

thus a vector that determines uniquely the system state x(t)for any time       , 

once the state at      is given and the input      for        is specified . 

Definition 1.10 

State Space: The n-dimensional space whose coordinate axes consist of the 

   axis,    axis,   ,    axis, where               are state variables, is called a 

state space. Any state can be represented by a point in the state space 

Definition 1.11 

State-Space Equations: In state-space analysis we are concerned with three 

types of variables that are involved in the modeling of dynamic systems: input 

variables, output variables, and state variables. The state-space representation for 

a given system is not unique, except that the number of state variables is the same 

for any of the different state-space representations of the same system. The 

dynamic system must involve elements that memorize the values of the input 

for     . Since integrators in a continuous-time control system serve as memory 

devices, the outputs of such integrators can be considered as the variables that 

define the internal state of the dynamic system. Thus the outputs of integrators 

serve as state variables. The number of state variables to completely define the 

dynamics of the system is equal to the number of integrators involved in the 

system. Assume that a multiple-input, multiple-output system involves n 

integrators. Assume also that there are r inputs                      and m 

outputs                      For such system the state variable representation 

can be arranged in the form of n fist order differential equations  
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The outputs                       of the system may be given by 

                                              

                                             

: 

: 

                     

Then Equations (1.1) and (1.2) become 

                                                                                     

                                                                                     

Where Equation (1.3) is the state equation and Equation (1.4) is the output 

equation. If vector functions f and g involve time t explicitly, then the system is 

called a time varying system. If Equations (1.3) and (1.4) are linearized about the 

operating state, then we have the following linearized state equation and output 

equation: 

                                                                                  

                                                                                  

Where      is called the state matrix     the input matrix      the output matrix, 

and     the direct transmission matrix. A block diagram representation of 

equations (3) and (4) is shown in Figure blew. If vector functions f and g do not 

involve time t explicitly then the system is called a time-invariant system.  

 

Figure 1.3 the linear, continuous time control system represented in state space 



  

11 
 

Definition 1.12 

Digital Control: In most modern engineering systems, there is a need to control 

the evolution with time of one or more of the system variables. Controllers are 

required to ensure satisfactory transient and steady-state behavior for these 

engineering systems. To guarantee satisfactory performance in the presence of 

disturbances and model uncertainty, most controllers in use today employ some 

form of negative feedback. A sensor is needed to measure the controlled variable 

and compare its behavior to a reference signal. Control action is based on an error 

signal defined as the difference between the reference and the actual values. The 

controller that manipulates the error signal to determine the desired control action 

has classically been an analog system, which includes electrical, fluid, pneumatic, 

or mechanical components. These systems all have analog inputs and outputs 

(i.e., their input and output signals are defined over a continuous time interval and 

have values that are defined over a continuous range of amplitudes). In the past 

few decades, analog controllers have often been replaced by digital controllers 

whose inputs and outputs are defined at discrete time instances. The digital 

controllers are in the form of digital circuits, digital computers, or 

microprocessors .Digital processing of control signals involves addition and 

multiplication by stored numerical values. The errors that result from digital 

representation and arithmetic are negligible. By contrast, the processing of analog 

signals is performed using components such as resistors and capacitors with 

actual values that vary significantly from the nominal design values. The speed of 

computer hardware has increased exponentially since the1980s. This increase in 

processing speed has made it possible to sample and process control signals at 

very high speeds. Because the interval between samples, the sampling period, can 

be made very small, digital controllers achieve performance that is essentially the 

same as that based on continuous monitoring of the controlled variable. 

Definition 1.13 

Cost:  Although the prices of most goods and services have steadily increased, 

the cost of digital circuitry continues to decrease. Advances in very large scale 
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integration (VLSI) technology have made it possible to manufacture better, faster, 

and more reliable integrated circuits and to offer them to the consumer at a lower 

price. This has made the use of digital controllers more economical even for 

small, low-cost applications. 

Definition 1.14 

System Order: The order of the system is defined by the highest degree of the 

linear differential equation that describes the system. In a transfer function 

representation, the order is the highest exponent in the transfer function. In a 

proper system, the system order is defined as the degree of the denominator 

polynomial. In a state-space equation, the system order is the number of state-

variables used in the system. The order of a system will frequently be denoted 

with  , although these variables are also used for other purposes. A proper 

system is a system where the degree of the denominator is larger than or equal to 

the degree of the numerator polynomial. 

Definition 1.15 

A strictly proper system:  Is a system where the degree of the denominator 

polynomial is larger than (but never equal to) the degree of the numerator 

polynomial. A biproper system is a system where the degree of the denominator 

polynomial equals the degree of the numerator polynomial. It is important to note 

that only proper systems can be physically realized. In other words, a system that 

is not proper cannot be built. It makes no sense to spend a lot of time designing 

and analyzing imaginary systems. 

Definition 1.16 

Disturbances: A disturbance is a signal that tends to adversely affect the value of 

the output of a system. If a disturbance is generated within the system, it is called 

internal, while an external disturbance is generated outside the system. 
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1.5 Classification of Control Systems  

An Open-Loop Control System  

Those systems in which the output has no effect on the control action are called 

open-loop control systems. In other words, in an open loop control system the 

output is neither measured nor fed back for comparison with the input. One 

practical example is a washing machine. Soaking, washing, and rinsing in the 

washer operate on a time basis. The machine does not measure the output signal, 

that is, the cleanliness of the clothes. utilizes a controller or control actuator to 

obtain the desired response. The open-loop control system utilizes an actuating 

device to control the process directly without using device. An open-loop control 

system uses a controller and an actuator to obtain the desired response. 

 

Figure 1.2 Open-loop control systems (without feedback) 

A closed-loop control system 

Feedback control systems are often referred to as closed-loop control systems. In 

practice, the terms feedback control and closed-loop control are used 

interchangeably. In a closed-loop control system the actuating error signal, which 

is the difference between the input signal and the feedback signal (which may be 

the output signal itself or a function of the output signal and its derivatives and/or 

integrals), is fed to the controller so as to reduce the error and bring the output of 

the system to a desired value. The term closed-loop control always implies the 

use of feedback control action in order to reduce system error. Utilizes an 

additional measure of the actual output to compare the actual output with the 

desired output response. The measure of the output is called the feedback signal.  

Inputs and Outputs 

Systems can also be categorized by the number of inputs and the number of 

outputs the system has. Consider a television as a system, for instance. The 
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system has two inputs: the power wire and the signal cable. It has one output: the 

video display. A system with one input and one output is called single-input, 

single output, or SISO. A system with multiple inputs and multiple outputs is 

called multi-input, multi-output, or MIMO. 

A simple closed-loop feedback control system is a feedback control system is a 

control system that tends to maintain a prescribed relationship of one system 

variable to another by comparing functions of these variables and using the 

difference as a means of control. With an accurate sensor, the measured output is 

a good approximation of the actual output of the system. A feedback control 

system often uses a function of a prescribed relationship between the output and 

reference input to control the process. Often the difference between the output of 

the process under control and the reference input is amplified and used to control 

the process so that the difference is continually reduced. In general, the difference 

between the desired output and the actual output is equal to the error, which is 

then adjusted by the controller. The output of the controller causes the actuator to 

modulate the process in order to reduce the error. The sequence is such, for 

instance, that if a ship is heading incorrectly to the right, the rudder is actuated to 

direct the ship to the left. The system shown in Figure 1.3 is a negative feedback 

control system, because the output is subtracted from the input and the difference 

is used as the input signal controller. The Feedback concept has been the 

foundation for control system analysis. 

 

Figure 1.3 Closed-loop feedback control system (with feedback) 
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The feedback system in Figures 1.3 is single-loop feedback systems. Many 

feedback control systems contain more than one feedback loop. A common multi 

loop feedback control system is illustrated in Figure 1.4 with an inner loop and an 

outer loop. Other varieties of multi loop feedback systems are considered 

throughout this reach as they represent more practical situations found in real-

world applications. However, we use the single-loop feedback system for learning 

about the benefits of feedback control systems since the outcomes readily extend 

to multi loop systems. 

 

Figure 1.4 Multivariable control systems 

Due to the increasing complexity of the system under control and the interest in 

achieving optimum performance, the importance of control system engineering 

has grown in the past decade. Furthermore, as the systems become more complex, 

the interrelationship of many controlled variables must be considered in the 

control scheme.  

Definition 1.17 

Linear Systems: A system is called linear if the principle of superposition 

applies. The principle of superposition states that the response produced by the 

simultaneous application of two different forcing functions is the sum of the two 

individual responses. Hence, for the linear system, the response to several inputs 

can be calculated by treating one input at a time and adding the results. It is this 

principle that allows one to build up complicated solutions to the linear 

differential equation from simple solutions.  
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Definition 1.18 

Nonlinear Systems:  A system is nonlinear if the principle of superposition does 

not apply. Thus, for a nonlinear system the response to two inputs cannot be 

calculated by treating one input at a time and adding the results. Although many 

physical relationships are often represented by linear equations, in most cases 

actual relationships are not quite linear. In fact, a careful study of physical 

systems reveals that even so-called ―linear systems‖ are really linear only in 

limited operating ranges. In practice, many electromechanical systems, hydraulic 

systems, pneumatic systems, and so on, involve nonlinear relationships among 

the variables. For example, the output of a component may saturate for large input 

signals. There may be a dead space that affects small signals. (The dead space of 

a component is a small range of input variations to which the component is 

insensitive.) Square-law nonlinearity may occur in some components. For 

instance, dampers used in physical systems may be linear for low-velocity 

operations but may become nonlinear at high velocities, and the damping force 

may become proportional to the square of the operating velocity. 

Linear Time-Invariant Systems and Linear Time-Varying Systems  

A differential equation is linear if the coefficients are constants or functions only 

of the independent variable. Dynamic systems that are composed of linear time-

invariant lumped-parameter components may be described by linear time-

invariant differential equations that is, constant-coefficient differential equations. 

Such systems are called linear time-invariant (or linear constant-coefficient 

systems).Systems that are represented by differential equations whose coefficients 

are functions of time are called linear time-varying systems. An example of a 

time-varying control system is a spacecraft control system.  

Definition 1.19 

A feedback control system: Is a control system that tends to maintain a 

relationship of one system variable to another by comparing functions of these 

variables and using the difference as a means of control. As the system is 
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becoming more complex, the interrelationship of many controlled variables may 

be considered in the control scheme. 

Definition 1.20 

Step Response: The step response of a system is most frequently used to analyze 

systems, and there is a large amount of terminology involved with step responses. 

When exposed to the step input, the system will initially have an undesirable 

output period known as the transient response. The transient response occurs 

because a system is approaching its final output value. The steady-state response 

of the system is the response after the transient response has ended. The amount 

of time it takes for the system output to reach the desired value (before the 

transient response has ended, typically) is known as the rise time. The amount of 

time it takes for the transient response to end and the steady-state response to 

begin is known as the settling time. 

Definition 1.21 

Percent Overshoot: Under damped systems frequently overshoot their target 

value initially. This initial surge is known as the "overshoot value". The ratio of 

the amount of overshoot to the target steady-state value of the system is known as 

the percent overshoot. Percent overshoot represents an overcompensation of the 

system, and can output dangerously large output signals that can damage a 

system. Percent overshoot is typically denoted with the term P0. 

Definition 1.22 

Settling Time: After the initial rise time of the system, some systems will 

oscillate and vibrate for an amount of time before the system output settles on the 

final value. The amount of time it takes to reach steady state after the initial rise 

time is known as the settling time. Notice that damped oscillating systems may 

never settle completely, so we will define settling time as being the amount of 

time for the system to reach, and stay in, a certain acceptable range. The settling 

time will be denoted as      
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Definition 1.23 

Steady-State Error: Usually, the letter e or E will be used to denote error values. 

Sometimes a system might never achieve the desired steady state value, but 

instead will settle on an output value that is not desired. The difference between 

the steady-state output value to the reference input value at steady state is called 

the steady state error of the system. We will use the variable    to denote the 

steady-state error of the system. 

Figure 1-5 control system 

The error detector compares the feedback signal b(t) with the reference input r(t) 

to generate an error                      

This gives an absolute indication of an error. The rang of the measured variable 

b(t) is also called span Thus                   

Hence error can be expressed as percent of span as 

   
   

         
     

Where    is error as % of span. Errors in a control system can be attributed to 

many factors. Changes in the reference input will cause unavoidable errors during 

transient periods and may also cause steady state errors. Imperfections in the 

system components, such as static friction, backlash, and amplifier drift, as well 

as aging or deterioration, will cause errors at steady state. 
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Definition 1.24 

Controller output rang: Similar to the controlled variable a rang is associated 

with a controller output variable. It is also specified interms of the maximum and 

minimum values. But often the controller output is expressed as a percentage 

where minimum controller output is 0% and maximum controller output is 100%. 

But 0% controller output does not mean zero output.The controller output as a 

percent of full scale when the output changes within the specified rang is 

expressed as 
 

100
minmax

min 





uu

uu
p  

Where   p = controller output as a percent of full scale  

u = value of the output 

umax = maximum value of controlling variable 

umin = minimum value of  controlling variable 

Definition 1.25 

Block Diagrams: A block diagram of a system is a pictorial representation of the 

functions performed by each component and of the flow of signals. Such a- 

diagram depicts the interrelationships that exist among the various components. 

Differing from a purely abstract mathematical representation, a block diagram has 

the advantage of indicating more realistically the signal flows of the actual 

system. In a block diagram all system variables are linked to each other through 

functional blocks. The functional block or simply block is a symbol for the 

mathematical operation on the input signal to the block that produces the output. 

The transfer functions of the components are usually entered in the corresponding 

blocks, which are connected by arrows to indicate the direction of the flow of 

signals. Note that the signal can pass only in the direction of the arrows. Thus a 

block diagram of a control system explicitly shows a unilateral property. Figure 

1–1 shows an element of the block diagram. The arrowhead pointing toward the 
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block indicates the input, and the arrowhead leading away from the block 

represents the output. Such arrows are referred to as signals. 

Definition 1.26 Block Diagram of a Closed-Loop System 

 Figure1-5 shows an example of a block diagram of a closed-loop system. The 

output      is feedback to the summing point, where it is compared with the 

reference input R(s). The closed-loop nature of the system is clearly indicated by 

the figure. The output of the block      in this case, is obtained by multiplying 

the transfer function      by the input to the block     .Any linear control 

system may be represented by a block diagram consisting of blocks, summing 

points, and branch points. When the output is fed back to the summing point for 

comparison with the input, it is necessary to convert the form of the output signal 

to that of the input signal. For example, in a temperature control system, the 

output signal is usually the controlled temperature. The output signal, which has 

the dimension of temperature, must be converted to a force or position or voltage 

before it can be compared with the input signal. This conversion is accomplished 

by the feedback element whose transfer function is     , as shown in Figure 1–

4.The role of the feedback element is to modify the output before it is compared 

with the input. In the present example, the feedback signal that is fed back to the 

summing point for comparison with the input is                    

 

 

Figure1-6 Block diagram of a closed-loop system 

Definition 1.27: State Diagram Representation 

State diagram of a linear time invariant continuous system is discussed here for 

the sake of simplicity. It is a proper interconnection of three basic units.  

1. Scalars  

2. Adders 
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3. Integrators  

Scalars are nothing but like amplifiers having required gain  

 

Scalar  

                                       

  

 

 

Adder 

 

Integrator 

 

 

1-5 Singularity Function 

Steps, Ramps and Impulses 

In the study of control systems and the equations which describe them a particular 

family of function called singularity functions is used extensively. Each member 

of this family is related to the others by one or more integrations or 

differentiations. The three most widely used singularity functions are the unit 

step, the unit impulse and unit ramp. 
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Definition  

A unit step function I(t – t0) is defined by  

        *
                                                                          

                                                                           
 

The unit step function is illustrated in figure blew 

 

A unit ramp function is the integral of a unit step function  

∫        
 

  

   *
                                           

                                                 
 

The unit ramp function is illustrated in fig blew 

 

The unit impulse function δ(t)defined by  

            
    

⌈
            

  
 

Where I(t) is the unit step function 
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1.6 The Laplace transform 

The Laplace transform method is an operational method that can be used a 

advantageously for solving linear differential equations. By use of Laplace 

transforms, we can convert many common functions, such as sinusoidal 

functions, damped sinusoidal functions, and exponential functions, into algebraic 

functions of a complex variable s. Operations such as differentiation and 

integration can be replaced by algebraic operations in the complex plane. Thus, a 

linear differential equation can be transformed into an algebraic equation in a 

complex variable s. If the algebraic equation in s is solved for the dependent 

variable, then the solution of the differential equation (the inverse Laplace 

transform of the dependent variable) may be found by use of a Laplace transform 

table or by use of the partial-fraction expansion technique. 

An advantage of the Laplace transform method is that it allows the use of 

graphical techniques for predicting the system performance without actually 

solving system differential equations. Another advantage of the Laplace 

transform method is that, when we solve the differential equation, both the 

transient component and steady-state component of the solution can be obtained 

simultaneously. 

1-7 Transfer Function and Impulse Response Function  

In control theory, functions called transfer functions are commonly used to 

characterize the input-output relationships of components or systems that can be 

described by linear, time-invariant, differential equations. We begin by defining 

the transfer function and follow with a derivation of the transfer function of a 

differential equation system. Then we discuss the impulse-response function. 

Definition 1.26 

Transfer Function: The transfer function of a linear, time-invariant, differential 

equation system is defined as the ratio of the Laplace transform of the output 

(response function) to the Laplace transform of the input (driving function) under 

the assumption that all initial conditions are zero. Consider the linear time-

invariant system defined by the following differential equation: 
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Where y is the output of the system and x is the input. The transfer function of 

this system is the ratio of the Laplace transformed output to the Laplace 

transformed input when all initial conditions are zero, or 

Transfer function      =  
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By using the concept of transfer function, it is possible to represent system 

dynamics by algebraic equations in s. If the highest power of s in the denominator 

of the transfer function is equal to n, the system is called an nth-order system. 

Convolution Integral 

For a linear, time-invariant system the transfer function      is 

     
    

    
 

Where      the Laplace is transform of the input to the system and      is the 

Laplace transform of the output of the system, where we assume that all initial 

conditions involved are zero. It follows that the output Y(s) can be written as the 

product of      and       

              

Definition 1.27 

Poles of a Transfer Function 

The poles of a transfer function are:  (1) the values of the Laplace transform 

variable s, that cause the transfer function to become infinite or (2) any roots of 

the denominator of the transfer function that are common to roots of the 

numerator. Strictly speaking, the poles of a transfer function satisfy part (1) of the 

definition. For example, the roots of the characteristic polynomial in the 
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denominator are values of s that make the transfer function infinite, so they are 

thus poles.  

Definition 1.28 

Zeros of a Transfer Function 

The zeros of a transfer function are:  (1) the values of the Laplace transform 

variables, that cause the transfer function to become zero, or (2) any roots of the 

numerator of the transfer function that are common to roots of the denominator.  

Example 1.1 

Given the transfer function      in Figure (a), a pole exists at      , and a zero 

exists at    . These values are plotted on the complex S-plane in Figure (b). To 

show the properties of the poles and zeros, let us find the unit step response of the 

system. Multiplying the transfer function by a step function yields  
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Figure 1-7 (a) System showing input and output ;( b) pole-zero plot of the system; 

(c) evolution of a system response. 

 

1.8 Transient and Steady-State Response Analyses: 

In this section it was stated that the first step in analyzing a control system was to 

derive a mathematical model of the system. Once such a model is obtained, 

various methods are available for the analysis of system performance. In practice, 

the input signal to a control system is not known ahead of time but is random in 

nature, and the instantaneous input cannot be expressed analytically. Only in 

some special cases is the input signal known in advance and expressible 

analytically or by curves, such as in the case of the automatic control of cutting 

tools. In analyzing and designing control systems, we must have a basis of 

comparison of performance of various control systems. This basis may be set up 

by specifying particular test input signals and by comparing the responses of 

various systems to these input signals. Many design criteria are based on the 

response to such test signals or on the response of systems to changes in initial 

conditions (without any test signals).The use of test signals can be justified 
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because of a correlation existing between the response characteristics of a system 

to a typical test input signal and the capability of the system to cope with actual 

input signals. The time response of a control system consists of two parts: the 

transient response and the steady-state response. By transient response, we mean 

that which goes from the initial state to the final state. By steady-state response, 

we mean the manner in which the system output behaves as t approaches infinity. 

Thus the system response c(t) may be written as 

                                                                                                 

Where the first term on the right-hand side of the equation is the transient 

response and the second term is the steady-state response. 

Impulse-Response Function 

Consider the output (response) of a linear time invariant system to a unit-impulse 

input when the initial conditions are zero. Since the Laplace transform of the unit-

impulse function is unity, the Laplace transform of the output of the system is 

                                                                                                             

The inverse Laplace transform of the output given by Equation (1-11) gives the 

impulse response of the system. The inverse Laplace transforms of       or 

)())((1 tgsGL   

 is called the impulse-response function. This function      is also called the 

weighting function of the system. The impulse-response function      is thus the 

response of a linear time-invariant system to a unit-impulse input when the initial 

conditions are zero. The Laplace transform of this function gives the transfer 

function. Therefore, the transfer function and impulse-response function of a 

linear, time-invariant system contain the same information about the system 

dynamics. It is hence possible to obtain complete information about the dynamic 

characteristics of the system by exciting it with an impulse input and measuring 

the response. (In practice, a pulse input with a very short duration compared with 

the significant time constants of the system can be considered an impulse). 
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Open-Loop Transfer Function and Feed forward Transfer Function 

The ratios of the feedback signal B(s) to the actuating error signal      is called 

the open-loop transfer function. That is, 

 

Figure 1-8 open-loop control system  

Open-loop transfer function
 

)()(
)(

)(
sHsG

sE

sB
  

The ratio of the output      to the actuating error signal      is called the feed 

forward Transfer function, so that feed forward transfer function 
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If the feedback transfers function      is unity, then the open-loop transfer 

function and the feed forward transfer function are the same. 

Closed-Loop Transfer Function 

For the system shown in Figure blew, the output      and input      are related 

as follows: since 

              

 

               

               

 Eliminating      from these equations gives 

         [             ] 

or 
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The transfer function relating      to      is called the closed-loop transfer 

function. It relates the closed-loop system dynamics to the dynamics of the feed 

forward elements and feedback elements. Thus the output of the closed-loop 

system clearly depends on both the closed-loop transfer function and the nature of 

the input. 

1.9 First –Order Systems 

Consider the first-order system shown in Figure blew (a). Physically, this system 

may represent an RC circuit, thermal system, or the like. A simplified block 

diagram is shown in Figure (b).The input-output relationship is given by 

    

    
 

 

    
                                                                                     

In the following, we shall analyze the system responses to such inputs as the unit-

step, unit-ramp, and unit-impulse functions. The initial conditions are assumed to 

be zero. Note that all systems having the same transfer function will exhibit the 

same output in response to the same input. For any given physical system, the 

mathematical response can be given a physical interpretation. 

Unit-Step Response of First-Order Systems 

Since the Laplace transform of the unit-step function is    , substituting 

          into Equation (1-12), we obtain 

     
 

    

 

 
 

 

Expanding C(s) into partial fractions gives 

     
 

 
 

 

    
 

 

 
 

 

   
 
 
 
                                                         

Taking the inverse taking Laplace transform of Equation (1-13), we obtain 

           ⁄        for                                                               
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Equation (1-14) states that initially the output      is zero and finally it becomes 

unity. One important characteristic of such an exponential response curve      is that 

at     the value of      is 0.632, or the response      has reached 63.2% of its total 

change. This may be easily seen by substituting     in     .That is, 

                 

 

Figure 1-9 Unit-Ramp Response of First-Order Systems 

Since the Laplace transform of the unit-ramp function is     , we obtain the 

output of the system of Figure (a) as 

     
 

    

 

  
 

Expanding C(s) into partial fractions gives 

     
 

  
 

 

 
 

  

    
                                                                 

Taking the inverse Laplace transform of Equation (1-15), we obtain 

              ⁄                                                           

The error signal      is then 

               

      (      ⁄ ) 
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Figure 1-10 Unit-ramp response of the system 
 

As   approaches infinity,       approaches zero, and thus the error signal       
approaches or 

         
The error in following the unit-ramp input is equal to T for sufficiently large t. 

The smaller the time constant T, the smaller the steady-state error in following the 

ramp input. 

Unit-Impulse Response of First-Order Systems For the unit-impulse input, 

         and the output of the system of Figure (a) can be obtained as 

     
 

    
                                                                         

 

The inverse Laplace transform of Equation (1-17) gives 

     
 

 
    ⁄                                                              

The response curve given by Equation (1-18) is shown in Figure(1-11) . 

 

Figure 1-11Unit-impulse response of the system 
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The Property of Linear Time-Invariant Systems 

In the analysis above, it has been shown that for the unit-ramp input the output 

     is 

              ⁄                               
For the unit-step input, which is the derivative of unit-ramp input, the output 

    is 

           ⁄        for t ≥ 0 

Finally, for the unit-impulse input, which is the derivative of unit-step input, the 

output     is 

     
 

 
    ⁄                             

Comparing the system responses to these three inputs clearly indicates that the 

response to the derivative of an input signal can be obtained by differentiating the 

response of the system to the original signal. It can also be seen that the response 

to the integral of the original signal can be obtained by integrating the response of 

the system to the original signal and by determining the integration constant from 

the zero output initial condition. This is a property of linear time-invariant 

systems. Linear time-varying systems and nonlinear systems do not possess this 

property. 

Example 1.2 

Give the following differential equation, solve for      all initial conditions are 

zero use the Laplace transform  
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Solution  

                     

Laplace transforms 

solving for the response Y(s) Yields       
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Where from equation 

 

 

     is sum of the inverse Laplace transform of each term  
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Stability    

Control systems theory as we know it today began to crystallize in the latter half 

of the nineteenth century. In 1868, James Clerk Maxwell published the stability 

criterion for a third-order system based on the coefficients of the differential 

equation. In 1874, Edward John Routh, using a suggestion from William 

Kingdom Clifford that was ignored earlier by Maxwell, was able to extend the 

stability criterion to fifth-order systems. In 1877, the topic for the Adams Prize 

was ‗‗The Criterion of Dynamical Stability.‘‘ The second method of stability is 

root locus method provides a quick means of predicting the closed-loop behavior 

of a system based on its open-loop poles and zeros. 

Second –Order Systems 

In this section, we shall obtain the response of a typical second-order control 

system to a step input, ramp input, and impulse input. Here we consider a servo 

system as an example of a second-order system. 
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Servo System The servo system shown in Figure (a) consists of a proportional 

controller and load elements (inertia and viscous friction elements). Suppose that 

we wish to control the output position c in accordance with the input position r. 

The equation for the load elements is 

           

Where T is the torque produced by the proportional controller whose gain is K. 

By taking Laplace transforms of both sides of this last equation, assuming the 

zero initial conditions, we obtain 

                    

So the transfer function between C(s)and T(s)is 

    

    
 

 

       
 

By using this transfer function. Figure (a) can be redrawn as in Figure (b), which 

can be modified to that shown in Figure (c).The closed-loop transfer function is 

then obtained as 

    

    
 

 

        
 

  ⁄

      ⁄       ⁄  
 

Such a system where the closed-loop transfer function possesses two poles is 

called asecond-order system. (Some second-order systems may involve one or 

two zeros.) 
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Figure 1-12  (a) Servo system, (b) block diagram; (c) simplified block diagram. 

 

Step Response of Second-Order System.  

The closed-loop transfer function of the system shown in Figure (c) above is 

    

    
 

 

        
                                                                  

Which  can be rewritten as 

    

    
 

 
 

*  
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 √(
 
  )

 
 
 +

 

The closed-loop poles are complex conjugates if              and they are 

real if           . In the transient-response analysis, it is convenient to write 

 

 
   

 
 

 
  δ      

Where   is called the attenuation;   the undamped natural frequency and δthe 

dampingratio of the system. The damping ratio is the ratio of the actual damping 

B to thecritical damping     √   
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δ  
 

  
  √   

 

 

Figure 1-13 second order system 

 

In terms of δ and   the system shown in Figure (c) can be modified to that shown 

in Figure, and the closed-loop transfer function           given by 

    

    
 

  
 

           
 
                                                            

This form is called the standard form of the second-order system. The dynamic 

behavior of the second-order system can then be described in terms of two 

parameters δand   . If   δ   , the closed-loop poles are complex conjugates 

and lie in the left-half s plane. The system is then called under damped, and the 

transient response is oscillatory, If δ   , the transient response does not die out. 

If δ   , the system is called critically damped. Over damped systems correspond 

to δ   .We shall now solve for the response of the system shown in Figure()to a 

unit-step input. We shall consider three different cases: the underdamped 

(  δ   ), criticallydamped (δ    ), and overdamped (δ   ) cases. 

(1) Underdamped case (  δ   ): In this case,           can be written 

    

    
 

  
 

   δ          δ       
 

Where      √  δ
 
  .The frequency   is called the damped natural  

Frequency. 

For a unit-step input, C(s) can be written 

     
  

 

     δ      
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The inverse Laplace transform of equation (1-21) can be obtained easily if      is 

written in the following form: 

     
 

 
 

   δ  

    δ      
 
                            

 
 

 
 

  δ  

    δ   
    

 
 

δ  

    δ   
    

 
 

Thus  

   [
  δ  

   δ   
    

 
]    δ          

   [
  

   δ   
    

 
]    δ          

Hence the inverse Laplace transform of equation(1-21) is obtained as 

   [ ]        

     δ           
δ

√  δ
 

        

   
  δ   

√  δ
 

   

(

          
√  δ

 

δ

)

                                   

This result can be obtained directly by using a table of Laplace transforms, from 

equation (1-22), it can be seen that the frequency of transient oscillation is the 

damped natural frequency   and thus varies with the damping ratio δ . The error 

signal for this system is the difference between the input and output and is 

                   

   δ           
δ

√  δ
 

                     

This error signal exhibits a damped sinusoidal oscillation. At steady state, or at 

      no error exists between the input and output.If the damping ratio δ is 

equal to zero, the response becomes undamped and oscillations continue 

indefinitely. The response      for the zero damping case may be obtained by 

substituting δ = 0 in equation (1-22), yielding 
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Thus, from Equation (1-23), we see that   , represents the undamped natural 

frequency of the system. That is,    is that frequency at which the system output 

would oscillate if the damping were decreased to zero. If the linear system has 

any amount of damping, the undamped natural frequency cannot be observed 

experimentally. The frequency that may be observed is the damped natural 

frequency   , which is equal to    √  δ.This frequency is always lower than 

the undamped natural frequency. An increase in δwould reduce the damped 

natural frequency    . If δ is increased beyond unity, the response becomes 

overdamped and will not oscillate. 

(2) Critically damped case (δ    ): If the two poles of           are equal, the 

system is said to be a critically damped one. 

For a unit-step input,             and      can be written 

  
 

      
  

                                                                                                            

The inverse Laplace transform of Equation (1-24) may be found as 

                                                                                   

This result can also be obtained by letting δ approach unity in equation (1-25) and 

by using the following limit: 

   δ  

      

√  δ
 

    δ  

     √  δ
  

√  δ
 

     

(3) Overdumped case (δ   ): In this case, the two poles of           are 

negativereal and unequal. For a unit-step input,             and      can be 

written 

     
  

 

   δ     √δ
    (  δ     √δ

    )  

                        

The inverse Laplace transform of equation (1-26) is 
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  δ √δ

        

 
 

 √δ
   (δ √δ
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  δ √δ

        
 

   
  

 √δ
    

(
     

  
 

     

  
)                                                              

Where     δ √δ
         and      δ √δ

       

Thus, the response     includes two decaying exponential terms. When δ is 

appreciably greater than unity, one of the two decaying exponentialsdecreases 

much faster than the other, so the faster decaying exponential term 

(whichcorresponds to a smaller time constant) may be neglected. That is, if s2 is 

located very much closer to the    axis than –s1 (which means (|  |<|  |), then 

for an approximate solution we may neglect –s1 . This is permissible because the 

effect of –s1 on the response is much smaller than that of –s2, since the term 

involving s1 in equation (1-20) decays much faster than the term involving s2. 

Once the faster decaying exponential term has disappeared, the response is 

similar to that of a first-order system, and C(s)/R(s) maybe approximated by 

    

    
 

δ     √δ
    

  δ     √δ
     

 
  

    
 

This approximate form is a direct consequence of the fact that the initial values 

and final values of both the original           and the approximate one agree 

with each other. With the approximate transfer function C(s)/R(s), the unit-step 

response can be obtained as 
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δ     √δ

    

  δ     √δ
      

 

The time response      is then 

        
  δ √δ

                       

This gives an approximate unit-step response when one of the poles of           

can be neglected. 

1.10 Definitions of Transient-Response Specifications 

In many practical cases, the desired performance characteristics of control 

systems are specified in terms of time-domain quantities. Systems with energy 

storage cannot respond instant onerously and will exhibit transient responses 

whenever they are subjected to inputs or disturbances. Frequently, the 

performance characteristics of a control system are specified in terms of the 

transient response to a unit-step input since it is easy to generate and is 

sufficiently drastic. (If the response to a step input is known, it is mathematically 

possible to compute the response to any input.)The transient response of a system 

to a unit-step input depends on the initial conditions. For convenience in 

comparing transient responses of various systems, it is a common practice to use 

the standard initial condition that the system is at rest initially with the output and 

all time derivatives thereof zero. Then the response characteristics of many 

systems can be easily compared. The transient response of a practical control 

system often exhibits damped oscillations before reaching steady state. In 

specifying the transient-response characteristics of a control system to a unit-step 

input, it is common to specify the following: 

1. Delay time,    

2. Rise time,    

3. Peak time,    

4. Maximum overshoot,    

5. Settling time,    
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These specifications are defined in what follows and are shown graphically in 

Figure . 

1. Delay time, td The delay time is the time required for the response to reach half 

the final value the very first time. 

2. Rise time, tr . The rise time is the time required for the response to rise from 

10%to 90%, 5% to 95%, or 0% to 100% of its final value. For under damped 

second order systems, the 0% to 100% rise time is normally used. For over 

damped systems, the 10% to 90% rise time is commonly used. 

3. Peak time, tp . The peak time is the time required for the response to reach the 

first peak of the overshoot. 

4. Maximum (percent) overshoot,    The maximum overshoot is the maximum 

peak value of the response curve measured from unity. If the final steady-state 

value of the response differs from unity, then it is common to use the maximum 

percent overshoot. It is defined by 

 (  )      

    
     

The amount of the maximum (percent) overshoot directly indicates the relative 

stability of the system. 

5. Settling time, ts .The settling time is the time required for the response curve to 

reach and stay within a range about the final value of size specified by absolute 

percentage of the final value (usually 2% or 5%). The settling time is related to 

the largest time constant of the control system.  

 

Figure 1-14 Unit-step response curve showing  , ts,   , Mp, and    
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1.11 Second-Order Systems and Transient-Response Specification 

In the following, we shall obtain the rise time, peak time, maximum overshoot, 

and settling time of the second-order system given by Equation (1-20). These 

values will be obtained in terms of δ
 
and    .The system is assumed to be under 

damped. Rise time    Referring to Equation (1-22), we obtain the rise time    by 

letting        . 

            δ    

(

         
δ

√  δ
 

       

)

                          

Since   δ      we obtain from Equation (1-28) the following equation 

        
δ

√  δ
 

          

or                        
√  δ 

δ
  

  

 
 

Thus, the rise time tr is 

   
 

  
     (

  

  
)  

   

  
                                                                                  

 

Peak time tp referring to equation (1-22), we may obtain the peak time by 

differentiating (t) with respect to time and letting this derivative equal zero. Since 

  

  
 δ   

 δ   

(

        
δ

√  δ
 

      

)

 

   δ   

(

       
δ  

√  δ
 

      

)

  

and the cosine terms in this last equation cancel each other,      , evaluated at 

      can be simplified to 
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 |

    

 (       )
  

√  δ
 

  δ      

This last equation yields the following equation 

or 

          

                 

Since the peak time corresponds to the first peak overshoot         . Hence 

   
 

  
 

The peak time corresponds to one-half cycle of the frequency of damped 

oscillation. Maximum overshoot MP: The maximum overshoot occurs at the peak  

Time or at  

 

     
 

  
 

Assuming that the final value of the output is unity,    is obtained from equation 

as  

           

  δ      ⁄        
δ

√  δ
 

      

       ⁄     
  δ √  δ ⁄   

 

The maximum percent overshoot is       ⁄          . If the final value 

    of the output is not unity, then we need to use the following equation 

   
          

    
 

Settling time    : For an under damped second-order system, the transient 

response is obtained from Equation (1-22) as 

       
 δ   

√  δ 
              

√  δ 

δ
  for t ≥ 0 
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The curves   
 δ   

√  δ 
 are the envelope curves of the transient response toa unit-

step input. The response curve      always remains within a pair of the envelope 

curves, as shown in Figure 1-15. The time constant of these envelope curves 

is   δ  ⁄  

 

Figure 1-15Pair of envelope curves for the unit step response curve of the system 

Example 1.3 

Consider the system shown in Figure (1-16) , where δ      and        rad/sec. 

Let us obtain the rise time    , peak time    maximum overshoot    and settling 

time     when the system is subjected to a unit-step input. From the given values 

of  δ and     

 

Figure 1-16 Second-order system. 

We obtain       √  δ
       and       δ     

Rise time    : The rise time is 

   
   

  
 

      

 
 

where  is given by 
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The rise time   is thus 

   
   

  
 

         

 
          

Peak time   : The peak time is 

   
 

  
 

    

 
           

Maximum overshoot   : The maximum overshoot is 

         ⁄         ⁄              

The maximum percent overshoot is thus 9.5%. Settling time     : For the 2% 

criterion, the settling time is 

   
 

 
 

 

 
          

For the 5% criterion 

   
 

 
 

 

 
       

 

1.12 Classification of Control Systems  

Control systems may be classified according to their ability to follow step inputs, 

ramp inputs, parabolic inputs, and so on. This is a reasonable classification 

scheme because actual inputs may frequently be considered combinations of such 

inputs. The magnitudes of the steady-state errors due to these individual inputs 

are indicative of the goodness of the system. Consider the unity-feedback control 

system with the following open-loop Transfer function 

     
                     

                      
 

It involves the terms N in the denominator, representing a pole of multiplicity N 

at the origin. The present classification scheme is based on the number of 

integrations indicated by the open-loop transfer function. A system is called type 

0, type 1, type 2,. . . ,if      ,                 ,respectively. Note that this 
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classification is different from that of the order of a system. As the type number is 

increased, accuracy is improved; however, increasing the type number aggravates 

the stability problem. A compromise between steady-state accuracy and relative 

stability is always necessary. We shall see later that, if G(s) is written so that each 

term in the numerator and denominator, except the terms N, approaches unity as s 

approaches zero, then the open loop gain K is directly related to the steady-state 

error. 

1.13 Basic Concept of Controller: 

PID Controllers 

The PID controllers (P, PD, PI, PID) are very widely used, very well and 

successfully applied controllers to many applications, for many years, almost 

from the beginning of controls applications (D'Azzo & Houpis, 1988) (Franklin et 

al., 1994). (The facts of their successful application, good performance, easiness 

of tuning are speaking for themselves and are sufficient rational for their use, 

although their structure is justified by heuristics. These controls called 

proportional-integral-derivative (PID) control - constitute the heuristic approach 

to controller design that has found wide acceptance in the process industries 

(Franklin et al., 1994, pp. 168). 

Classification of Controllers  

The classification of controllers is based on the response of the controller and 

mode of operation of the controller. The controllers are basically classification as 

discontinuous controllers and continuous controllers. 

Continuous controller modes  

In the discontinuous controller mode the output of the controller is discontinuous 

and not smoothly varying. But in the continuous controller mode the controller 

output varies smoothly proportional to the error or proportional to some form of 

the error. Depending upon which form of the error is used as the input to the 

controller to produce the continuous controller output these controllers are 

classified as: 
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1. Proportional control mode  

2. Integral control mode  

3. Derivative control mode  

A proportional-integral-derivative controller (PID controller) is a control   loop 

feedback mechanism (controller) widely used in industrial control systems. PID 

controller calculates an error value as the difference between a measured process 

variable and a desired set point. The controller attempts to minimize the error. by  

adjusting  the  process  through  use  of  a manipulated variable . Many industrial 

processes are controlled using PID controllers. The popularity of PID controllers 

can be attributed partly to their good performance in a wide range of operating 

conditions and partly to their functional simplicity that allow. The error signal 

     is used to generate the proportional, integral, and derivative actions, with the 

resulting signals weighted and summed to form the control signal      applied to 

the plant model. 

Table 1ffect of Increasing the PID Gains KP, KD, and KI, on the Step 

Response 

 

PID Gain Percent  Overshoot Settling Time Steady-State Error 
Increasing KP 

Increasing KI 

Increasing KD 

Increases 

Increases 

Decreases 

Minima 

Increases 

Decreases 

l impact  

Decreases 

Zero steady-state error 

  No impact 

 

 

 

Figure 1-17A structure of a PID control system 

Where      is the input signal to the multivariable processes,  the error signal 

     is defined as                    and       is the reference input signal. A 

standard PID controller structure is also known as the ‗‗three-term‖ controller. 
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This principle mode of action of the PID controller can be explained by the 

parallel connection of the P, I and D elements shown in Figure 1-18 Block 

diagram of the PID controller.  

 

 

Figure 1-18 Parallel Form of the PID Compensator 

These three variables            and    are usually tuned within given ranges. 

Therefore, they are often called the tuning parameters of the controller. By proper 

choice of these tuning parameters a controller can be adapted for a specific plant 

to obtain a good behavior of the controlled system. The time response of the 

controller output is 

             
∫       

 

 

  
   

      

   
 

Proportional Control Action  

In this control the output of the controller is simple proportional to the error       

the relation between the error      and the controller output p is determined by 

constant called proportional gain constant denoted as    . The output of the 
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controller is a linear function of the error     , thus each value of the error has a 

unique value of the controller output. The rang of the error which covers 0% to 

100% controller output is called proportional band, The proportional band is the 

error (expressed in percentage of the range of the controlled variable) required to 

move the output of the controller from its lowest to its highest value. 

Now though there exists linear relation between controller output and the error for  

a zero error the controller output should not be zero otherwise the process will 

come to halt. Hence there exists some controller output    for the zero error. 

Hence mathematically the proportional control mode is expressed as: 

               

Where       = proportional gain constant  

                  controller output with zero error 

The proportional band is mathematically defined by  

    
   

  
 

Integral Control Action 

In a controller with integral control action, the value of the controller output      

is changed at a rate proportional to the actuating error signal     .That is 

     

  
        

       ∫     
 

 

   

Where    is an adjustable constant. The transfer function of the integral controller  

    

    
 

  

 
 

Proportional-Plus-Integral Control Action (PI) 

The control action of a proportional plus-integral controller is defined by 

            
  

  
∫     

 

 

   

or the transfer function of the controller is 
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   (  

 

   
) 

Where   is called the integral time 

Proportional-Plus-Derivative Control Action (PD) 

The control action of a proportional plus- derivative controller is defined by 

                

     

  
 

and the transfer function is 

    

    
           

where    is called the derivative time. 

 

 

Proportional-Plus-Integral-Plus-Derivative Control Action (PID) 

The combination of proportional control action, integral control action, and 

derivative control action is termed proportional-plus-integral-plus-derivative 

control action. It has the advantages of each of the three individual control 

actions. The equation of a controller with this combined action is given by 

            
  

  
∫     

 

 

       

     

  
 

The transfer function of the PID controller looks like the following: 

    

    
   (  

 

   
    ) 

Where   is the proportional gain,    the integral time, and    is the derivative 

time. 

The transfer function of the PID controller is 
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PID pole Zero Cancellation  

The PID equation can be written in this form: 

     
  (   

  

  
 

  

  
)

 
   

When this form is used it is easy to determine the closed loop transfer function.    

     
 

    δ     
 
 

  

  
   

         
  

  
  δ   

Then                                                 
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Chapter 2 

Tuning Method for the Basic (PID) Control 

2.1 Introduction  

In this chapter we will study the tuning of feedback controllers-that is, the 

adjustment of the controller parameters to match the characteristics (or 

personality) of the rest of the components of the loop. We will look at two 

methods for characterizing the process dynamic characteristics: the on-line or 

closed-loop tuning method, and the step-testing or open-loop method. We will 

also look at three different specifications of control loop performance: quarter 

decay ratio response, minimum error integral, and controller synthesis. This latter 

method, in addition to providing some simple controller-tuning relationships, will 

give us some insight into the selection of the proportional, integral, and derivative 

modes for various process transfer functions. Tuning is the adjusting of the 

feedback controller parameters to obtain a specified closed-loop response. The 

tuning of a feedback control loop is analogous to the tuning of an automobile 

engine, a television set, or a stereo system. In each of these cases, the difficulty of 

the problem increases with the number of parameters that must be adjusted. For 

example, tuning a simple proportional-only or integral-only controller is similar 

to adjusting the volume of a stereo sound system. Because only one parameter or 

―knob‖ needs to be adjusted, the procedure consists of moving it in one direction 

or the other until the desired response (or volume) is obtained. The next degree of 

difficulty is the tuning of a two-mode or proportional-integral (PI) controller, 

which is similar to adjusting the bass and treble on a stereo system. Two 

parameters, the gain and the reset time, must be adjusted, so the tuning procedure 

is significantly more complicated than when only one parameter is involved. 

Finally, the tuning of three-mode or proportional integral-derivative (PID) 

controllers represents the next higher degree of difficulty. Here three parameters-

the gain, the reset time, and the derivative time-must be adjusted. Although we 

have drawn an analogy between the tuning of a stereo system and that of a 

feedback control loop, we do not want to give the impression that the two tasks 
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have the same degree of difficulty. The main difference lies in the speed of 

response of the stereo system versus that of a process loop. With the stereo 

system, we get almost immediate feedback on the effect of our tuning 

adjustments. On the other hand, although some process loops do have relatively 

fast responses, for many process loops we may have to wait several minutes and 

maybe even hours to observe the response that results from our tuning 

adjustments. This makes tuning feedback controllers by trial and error a tedious 

and time-consuming task. Yet this is the method most commonly used by control 

and instrument engineers in industry. A number of procedures and formulas have 

been introduced to help enhance tuning effectiveness and give insight into tuning 

itself. We will study some of these procedures in this chapter. However, keep in 

mind that no one procedure will give the best results for all process control 

situations. The values of the tuning parameters depend on the desired closed-loop 

response and on the dynamic characteristics, or personality, of the other elements 

of the control loop, particularly the process. We saw that if the process is 

nonlinear, as is usually the case, then its characteristics change from one 

operating point to the next. This means that a particular set of tuning parameters 

can produce the desired response at only one operating point, given that standard 

feedback controllers are basically linear devices. For operation in a range of 

operating conditions, a compromise must be reached in arriving at an acceptable 

set of tuning parameters, because the response will be sluggish at one end of the 

range and oscillatory at the other. One characteristic of feedback control that 

greatly simplifies the tuning procedure is that the performance of the loop is not a 

strong function of the tuning parameters. In other words, the performance does 

not vary much with the tuning parameters. Changes of less than 50% in the values 

of the tuning parameters seldom have significant effects on the response of the 

loop. Accordingly, we will not show the values of the tuning parameters with 

more than two significant digits. With this in mind, let us look at some of the 

procedures that have been proposed for tuning industrial controllers. 

 



  

53 
 

 

There are many tuning methods, but most common methods are as follows: 

1- Manual Tuning Method  

2- Ziegler-Nichols Tuning Method  

3- Cohen-Coon Tuning Method  

4- PID Tuning Software Methods (ex. MATLAB)  

One form of controller widely used in industrial process control is the three-

terms. This controller has a transfer function 

         
  

 
                                                                        

The equation for the output in the time domain is 

              ∫         

     

  
                                      

The three-term controller is called a PID controller because it contains a 

proportional, an integral, and a derivative term represented by   ,    and 

    respectively. The transfer function of the derivative term is actually 

                                          
   

     
                                                   

But     is usually much smaller than the time constants of the process itself, so it 

is neglected. If we set KD = 0, then we have the proportional plus integral (PI) 

controller 

                                   
    

 
                                                       

When KI=0, we have 

             

Which is called a proportional plus derivative (PD) controller 

The PID controller can also be viewed as a cascade of the PI and the PD 

controllers. Consider the PI controller 
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and the PD controller 

         
    

   

where   
  and   

  are the PI controller gains and   
  and   

  are the PD 

controller gains. Cascading the two controllers (that is, placing them in series) 

yields 

                   

(  
  

   

 
)    

    
    

(  
   

    
   

 )    
   

   
  
   

 

 
 

          
  

 
 

Where we have the following relationships between the PI and PD controller 

gains and the PID controller gains 

     
   

       
  

     
   

  

     
   

  

Consider the PID controller 

         
  

 
     

   
        

 
                                   

    
       

 
 

              

 
 

Where   
  

  
⁄ and    

  
  

⁄ . Therefore PID controller introduces a transfer 

function with one pole at the origin and two zeros that can be located anywhere in 

the s -plane. 

 

Figure 2-1 Closed-loop system with a controller 
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One approach to manual tuning is to first set       and      . This is 

followed by slowly increasing the gain    until the output of the closed-loop 

system oscillates just on the edge of instability. This can be done either in 

simulation or on the actual system if it cannot be taken off-line. 

2.2 Stability  

In this section, a qualitative property of control systems-namely, stability-will be 

introduced. The concept of stability is very important because every control 

system must be stable. If a control system is not stable, it will usually bum out or 

disintegrate. There are three types of stability, bounded-input bounded-output 

(BIBO) stability, marginal stability (or stability in the sense of ROUTH and Root 

LOCUS), and asymptotic stability. 

Routh's Stability Criterion  

The most important problem in linear control systems concerns stability. That is, 

under the conditions will a system become unstable, If it is unstable, how should 

we stabilize the system. In this it was stated that a control system is stable if and 

only if all closed-loop poles lie in the left-half s plane. Most linear closed-loop 

systems have closed-loop transfer functions of the form 

    

    
 

   
     

              

   
     

              
 

    

    
                      

Where the a's and b's are constants and m ≤ n. A simple criterion, known as 

Routh's stability criterion, enables us to determine the number of closed-loop 

poles that lie in the right-half s plane without having to factor the denominator 

polynomial. (The polynomial may include parameters that MATLAB cannot 

handle.) 

 2.3 Routh's Stability Criterion  

Routh's stability criterion tells us whether or not there are unstable roots in a 

polynomial equation without actually solving for them. This stability criterion 

applies to polynomials with only a finite number of terms. When the criterion is 

applied to a control system, information about absolute stability can be obtained 

directly from the coefficients of the characteristic equation.  
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The procedure in Routh's stability criterion is as follows 

1- Write the polynomial in s in the following form: 

   
       

                                                     

Where the coefficients are real quantities, we assume that    ; that is, any zero 

root has been removed. 

2- If any of the coefficients are zero or negative in the presence of at least one 

positive coefficient, there is a root or roots that are imaginary or that have positive 

real parts. Therefore, in such a case, the system is not stable. If we are interested 

in only the absolute stability, there is no need to follow the procedure further. 

Note that all the coefficients must be positive. This is a necessary condition, as 

may be seen from the following argument: A polynomial in s having real 

coefficients can always be factored into linear and quadratic factors, such as 

        and            where a, b, and c are real. The linear factors yield real 

roots and the quadratic factors yield complex-conjugate roots of the polynomial. 

The factor            yields roots having negative real parts only if band c are 

both positive. For all roots to have negative real parts, the constants a, b, c, and so 

on, in all factors must be positive. The product of any number of linear and 

quadratic factors containing only positive coefficients always yields a polynomial 

with positive coefficients. It is important to note that the condition that all the 

coefficients be positive is not sufficient to assure stability. The necessary but not 

sufficient condition for stability is that the coefficients of Equation (2-7) all be 

present and all have a positive sign. (If all a's are negative, they can be made 

positive by multiplying both sides of the equation by -1.) 

1- If all coefficients are positive, arrange the coefficients of the polynomial in 

rows and columns according to the following pattern: 
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The process of forming rows continues until we run out of elements. (The total 

number of rows is           . The coefficients b1, b2, b3, and so on, are evaluated 

as follows 

   
         

  
 

   
         

  
 

   
         

  
 

   
         

  
 

   
         

  
 

   
         

  
 

                            

   
         

  
 

   
         

  
 

This process is continued until the nth row has been completed. The complete 

array of coefficients is triangular. Note that in developing the array an entire row 

may be divided or multiplied by a positive number in order to simplify the 

subsequent numerical calculation without altering the stability conclusion. 

Routh's stability criterion states that the number of roots of Equation (2-7) with 

positive real parts is equal to the number of changes in sign of the coefficients of 

the first column of the array. It should be noted that the exact values of the terms 
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in the first column need not be known; instead, only the signs are needed. The 

necessary and sufficient condition that all roots of Equation (2-7) lie in the left-

half s plane is that all the coefficients of Equation (2-7) be positive and all terms 

in the first column of the array have positive signs. 

Example  2-1 

Let us apply Routh's stability criterion to the following third-order polynomial: 

   
     

                                                                       

where all the coefficients are positive numbers. The array of coefficients becomes 

                            

                        

        
         

  
 

                              

The condition that all roots have negative real parts is given by 

          

 

 

Example  2-2 

Consider the following polynomial 

                                                                          

Let us follow the procedure just presented and construct the array of coefficients. 

(The first two rows can be obtained directly from the given polynomial.  

The remaining terms are obtained from these. If any coefficients are missing, they 

may be replaced by zeros in the array.) 

                   
                       
                        
                      
                          

 

In this example, the number of changes in sign of the coefficients in the first 

column is 2. This means that there are two roots with positive real parts. Note that 
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the result is unchanged when the coefficients of any row are multiplied or divided 

by a positive number in order to simplify the computation. 

Special Cases If a first-column term in any row is zero, but the remaining terms 

are not zero or there is no remaining term, then the zero term is replaced by a very 

small positive number  and the rest of the array is evaluated.  

Example 2-3 

Consider the following equation: 

                                                                                        

The array of coefficients is 

                    

                    

                      

                   

If the sign of the coefficient above the zero ( ) is the same as that below it, it 

indicates that there are a pair of imaginary roots. Actually, equation (2-10) has 

two roots at       If, however, the sign of the coefficient above the zero ( ) is 

opposite that below it, it indicates that there is one sign change. For example, for 

the equation                                                             

the array of coefficients is 

                    

                 

               
 

 
      

                   

Example 2-4 

 Consider the following equation 
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The terms in the s
3
row are all zero. (Note that such a case occurs only in an odd 

numbered row.) The auxiliary polynomial is then formed from the coefficients of 

the s
4
row. The auxiliary polynomial      is 

                   

which indicates that there are two pairs of roots of equal magnitude and opposite 

sign(that is, two real roots with the same magnitude but opposite signs or two 

complex conjugate roots on the imaginary axis).These pairs are obtained by 

solving the auxiliary polynomial equation P(s) = 0. The derivative of P(s) with 

respect to s is 

     

  
           

The terms in the s
3
row are replaced by the coefficients of the last equation, that is, 

8and 96.The array of coefficients then becomes 

                           

                          

                                 

                          

                                

                       

We see that there is one change in sign in the first column of the new array. Thus, 

the original equation has one root with a positive real part. By solving for roots of 

the auxiliary polynomial equation, we obtain 

              

                      

                    

These two pairs of roots of      are a part of the roots of the original equation. 

As a matter of fact, the original equation can be written in factored form as 

follows: 
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Clearly, the original equation has one root with a positive real part. 

Example 2-5 

Consider the system shown in Figure blew. Let us determine the range of   for 

stability. The closed-loop transfer function is 

    

    
 

 

                
                                                   

The characteristic equation is 

                         

The array of coefficients becomes 

                                 

                                   

       
 

  
                          

         
 

 
                    

                                       

 

Figure 2-2 Control system 

 

For stability,   must be positive, and all coefficients in the first column must be 

positive. Therefore, 

  

 
     

When         the system becomes oscillatory and, mathematically, the 

oscillation is sustained at constant amplitude. Note that the ranges of design 

parameters that lead to stability may be determined 

by use of Routh‘s stability criterion. 
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2.4 Ziegler- Nichols Tuning for PID Controller 

The ideas we discuss here are the result of an empirical investigation by Ziegler-

Nichols [1942]. We give two methods for specifying PID parameters. The first 

will be applicable quite often, especially for BIBO stable plants, whereas the 

second makes some assumptions about the nature of the system. Ziegler and 

Nichols developed two techniques for controller tuning in the1940s. The idea was 

to tune the controller based on the following idea: Make a simple tuning, extract 

some features of process dynamics to determine controller parameters from the 

features. One method is based on direct adjustment of the controller parameters 

and Nichols is based on determination of the open loop step response of the 

process, Such rules suggest a set of values of        and    that will give a stable 

operation of the system. However, the resulting system may exhibit a large 

maximum overshoot in the step response, which is unacceptable. In such a case 

we need series of fine tunings until an acceptable result is obtained. In fact, the 

Ziegler–Nichols tuning rules give an educated guess for the parameter values and 

provide a starting point for fine tuning, rather than giving the final settings for 

and in a single shot. Ziegler and Nichols proposed rules for determining values of 

the proportional gain    integral time    and derivative time    based on the 

transient response characteristics of a given plant. Such determination of the 

parameters of PID controllers or tuning of PID controllers can be made by 

engineers on-site by experiments on the plant. There are two methods called 

Ziegler–Nichols tuning rules: the first method and the second method. 

First Method (open loop) 

In the first method, we obtain experimentally the response of the plant to a unit-

step input, as shown in Figure 2–2. If the plant involves neither integrator(s) nor 

dominant complex-conjugate poles,  

 

Figure 2-3 PID control of a plant 
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This method applies if the response to a step input exhibits an S-shaped curve. 

Such step-response curves may be generated experimentally or from a dynamic 

simulation of the plant. The S-shaped curve may be characterized by two 

constants, delay time L and time constant T. The delay time and time constant are 

determined by drawing a tangent line at the inflection point of the S-shaped curve 

and determining the intersections of the tangent line with the time axis and line 

       

 

 

 

Figure 2-4 Unit – step response of plant 

 

Figure 2-5 S-shaped response carve 

 Ziegler–Nichols tuning rule based on step response of plant (first method) 

  

Type of controller  Kp Ti Td 

P 
L

T
 ∞ 0 

PI 0.9
L

T
 

3.0

L
 0 

PID 1.2
L

T
 2L 0.5L 
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The transfers function           may then be approximated by a first-order 

system with a transport Lag as follows  

1)(

)(






Ts

Ke

sU

sC Ls

 

Ziegler and Nichols suggested to set the values of   ,    and    according to the 

formula shown in Table above. Notice that the PID controller tuned by the first 

method of Ziegler–Nichols rules gives 

s

L
s

T
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LsL

T
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KsG d

i
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1
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






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




 

Thus, the PID controller has a pole at the origin and double zeros at    –    . 

Second Method (close loop ) 

In the second method, we first set      and      .Using the proportional 

control action only, increase   from 0 to a critical value     at which the output 

first exhibits sustained oscillations. Thus, the critical gain     and corresponding 

period     .  Ziegler and Nichols suggested that we set the values of the 

parameters   ,    , and    according to the formula shown in Table -1 

 

  Figure 2-6 closed loop system with a  proportional controlled 
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Figure 2-7 Sustained oscillation with period     

 

Table-1 Ziegler-Nichols Tuning Rule Based on Critical Gain    ,and Critical 

Period      

Type of 

controller  

         

P             

PI           
 

   
    

  

PID                              

 

Notice that the PID controller tuned by the second method of Ziegler–Nichols 

rules gives 

s

P
s

PK

sP
sP

K

sT
sT

KsG

cr

crcr

cr

cr

cr

d

i

PC

2

4

075.0

125.0
5.0

1
16.0

)142(
1

1)(


















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
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









 

Thus, the PID controller has a pole at the origin and double zeros at          

Note that if the system has a known mathematical model (such as the transfer 

function), then we can use the root-locus method to find the critical gain      and 

the frequency of the sustained oscillations   , where            ,These values 

can be found from the crossing points of the root-locus branches with the    axis. 
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Example 2-6 

Consider the control system shown in figure 2–7 in which a PID controller is used 

to control the system. The PID controller has the transfer function 

        ⌈  
 

   
    ⌉                                                                          

Although many analytical methods are available for the design of a PID controller 

for the present system, let us apply a Ziegler–Nichols tuning rule for the 

determination of the values of parameters            , and   .Then obtain a unit-

step response curve and check to see if the designed system exhibits 

approximately 25% maximum overshoot. If the maximum overshoot is excessive 

(40% or more), make a fine tuning and reduce the amount of the maximum 

overshoot to approximately 25% or less. Since the plant has an integrator, we use 

the second method of Ziegler–Nichols tuning rules. By setting      and 

      we obtain the closed-loop transfer function as follows 

    

    
 

  

             
                                                                  

The value of   that makes the system marginally stable so that sustained 

oscillation occurs can be obtained by use of Routh‘s stability criterion. Since the 

characteristic equation for the closed-loop system is 

                        

The Routh array becomes as follow  

                             

                             

               
     

 
 

                                  

Examining the coefficients of the first column of the Routh table, we find that 

sustained oscillation will occur if        . Thus, the critical gain       is 
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With gain K, set equal to         , the characteristic equation becomes 

               

 

Figure 2-8 PID controller system 

To find the frequency of the sustained oscillation, we substitute s = i into this 

characteristic equation as follows: 

                        

                   

from which we find the frequency of the sustained oscillation to be      or 

  √ . Hence, the period of sustained oscillation is 

    
  

 
 

  

√ 
        

Referring to Table 2-2, we determine   ,   and   as follows 

             

                

                    

The transfer function of the PID controller is thus 

           
 

   
      

      
 

      
           

 
                

 

 

 

The PID controller has a pole at the origin and double zero at            . A 

block diagram of the control system with the designed PID controller is shown in 
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Figure 2-9. Next, let us examine the unit-step response of the system. The closed-

loop transfer function          is given 

                   

                           
 

 

 

Figure 2- 9The system with PID controller 

It can be reduced by fine tuning the controller parameters. Such fine tuning can be 

made on the computer. We find that by keeping       and by moving the 

double zero of the PID controller to            that is, using the PID controller 

        (  
 

     
        )        

         

 
 

Example 2.7 

the rang of measured variable for a certain control system is 2 mV to12  mV and a 

setpoint of 7mv. Find the error as percent of span when the measured variable is 

6.5 mv  

 Solution : bmax= 12 mv      , bmin= 2 mv      , b=6.5     mv ,     r= 7 mv  

%5100
212

5.67
100

minmax
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


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



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2-5 PID Tuning Gains Toolbox In MATLAB 

The PID control scheme is named after its three correcting terms, whose sum 

constitutes the manipulated variable (MV).The proportional, integral and 

derivative terms are summed to calculate the output of the PID controller. 

Defining u ( ) as the controller output, Controller manufacturers arrange the 

Proportional, Integral and Derivative modes into three different controller 
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algorithms or controller structures. These are called Interactive, Non interactive   

and parallel algorithms. Some controller manufacturers allow you to choose 

between different controller algorithms as a configuration option in the controller 

software PID tuning is the process of finding the values of proportional, integral, 

and derivative gains of a PID controller to achieve desired performance and meet 

design requirements. PID controller tuning appears easy, but finding the set of 

gains that ensures the best performance of your control system is a complex task.  

PID controllers are tuned either manually or using rule based method.  tuning   

Manual methods are iterative and time-consuming, and if used on hardware, they 

can cause damage. Rule-based methods also have serious limitations ,they do not  

support certain types of plant models, such as unstable plants, high-order plants, 

or plants with little or no time delay. You can automatically tune PID controllers 

to achieve the optimal system design and to meet design requirements, even for 

plant models that traditional rule-based methods cannot handle well. An 

automated PID tuning work flow involves: 

1- Identifying plant model from input-output test data  

2- Modeling  PID  controllers  in  MATLAB  using  PID  objects  or  in  Simulink 

 using  PID Controller blocks  

3- Automatically tuning PID controller gains and fine-tune your design 

interactively. 

4- Tuning multiple controllers in batch mode 

5- Tuning  single-input  single-output  PID  controllers   

PID Tuning Toolbox  

Can be use the PID tuning toolbox to determine the parameter of controller 

depend on the system form MATLAB or Simulink  as following step MATLAB. 

Use the PID Tuner to interactively design a SISO PID controller in the feed-

forward path of single-loop, unity-feedback control configuration. 
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r                    y 

  

 

 

 

Figure 2-10 The PID control 

 The PID Tuner automatically designs a controller for your plant. You specify the 

controller type (P, I, PI, PD, PDF, PID, PIDF) and form (parallel or standard). 

You can analyze the design  using  a  variety  of response  plots, and  interactively  

adjust  the  design  to  meet  your performance requirements. To launch the PID 

Tuner, use the pid Tuner command: PID Tuner (sys, type) where sys is a linear 

model of the plant you want to control type is a string indicating the controller 

type to design. 

 

 

sys C 
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PID Controller Type 

The PID Tuner can tune up to seven types of controllers. To select the controller 

type, use one of these methods. Provide the type argument to the launch 

command pid Tuner. In PID Tuner, use the Type menu to change controller types.  

Simulink   

Select the PID controller block form Simulink Library.   

 

Drag the PID controller and place in the Simulink model, and double click on 

block. 

 Example 2-8 

This example shows how to use the PID tuner to design a controller for the plant  

                            
 

      
                                                                  

  Create the plant model and open the PID Tuner to design a PI controller for a 

first pass design.  
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The PID Tuner toolbox 

Examine the reference tracking rise time and settling time. Right-click on the plot 

and select Characteristics  > Rise Time to mark the rise time as a blue dot on the 

plot.  Select Characteristics > Settling Time to mark the settling time. To see 

tooltips with numerical values, click each of the blue dots. 
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  Slide the Response time slider to the right to try to improve the loop 

performance. The response plot automatically updates with the new design.  

 

Moving the response time slider far enough to meet the rise time requirement of 

less than 1.5 s results in more oscillation. Additionally, the parameters display 

shows that the new response has an unacceptably long settling time.    
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To achieve the faster response speed, the algorithm must sacrifice stability. 

Change the controller type to improve the response. Adding derivative action to 

the controller gives the PID Tuner more freedom to achieve adequate phase 

margin with the desired response speed. In the Type menu, select PIDF. The PID 

Tuner designs a new PIDF controller.  

 

The  rise  time  and  settling  time  now  meet  the  design  requirements. You can 

use the Response time slider to make further adjustments to the response .To 

revert to the default automated tuning result, click Reset Design.  
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  Analyze other system responses 

To analyze other system responses, click Add Plot. Select the system response 

you want to Analyze. 

 

 

Example 2-9 

Using MATLAB to find the parameter of PID controller and step response of the 

system  

     
 

         
                                                                             

 

 

 

MATLAB Program 

% …..pid example …. 

num=[1] 

den=[2 10 1] 
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Wp= 

tf(num,den,'iodelay',2) 

Kp=1; 

Ki=0; 

Kd=0; 

Wc=pid(Kp,Ki,Kd) 

 

H=[1] 

Yc= feedback(Wp*Wc,H) 

Step(Yc) , grid on 

Ki=0 

Kd=0 

Wc =pid(Kp,Ki,Kd) 

Mc=feedback(Gc*Gp, H) 

Step(Wc) 

grid on 

 

 

 

Kp=6; 

Ki=1 

Kd=1 
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Kd = 4 
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Simulink 
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Example 2-10 

Obtain the unit-impulse response of the following system: 

    

    
      

 

         
                                                 

MATLAB Program will produce the unit-impulse response. The resulting plot is 

shown in Figure blew then use pid controller  
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MATLAB Program 

% …..pid example …. 

num=[0 0 1]; 

den=[1 0.2 1]; 

Gp=tf (num,den) 

H=[1] 

M=feedback(Gp, H) 

impulse(num, den); 

grid on  

hold on 

title('Unit-Impulse Response of G(s) = 

l/(s^2 + 0.2s + 1)') 

% …. PID  parameter ….. 

Kp=1 

Ki=0 

Kd=0 

Gc=pid(Kp,Ki,Kd) 

Mc=feedback(Gc*Gp, H) 

Step(Mc) 

grid on 

  

 

 

Figure 2-11 Unit-impulse response curve 
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Chapter 3 

Discussion of Computational Approach for Transient 

-Response Analysis with MATLAB 

3.1 Introduction 

The practical procedure for plotting time response curves of systems higher than 

second-order is through computer simulation; in this chapter we present the 

computational approach for the transient-response analysis with MATLAB. In 

particular, we discuss step response, impulse response, ramp response, and 

responses to other simple inputs.  

3.2 MATLAB Representation of Linear Systems  

The transfer function of a system is represented by two arrays of numbers. 

Consider the system 

    

    
 

     

        
                                                                                  

This system can be represented as two arrays, each containing the 

coefficients of the polynomials in decreasing powers of s as follows 

num = [ 2   25] 

den = [1 4 25] 

An alternative representation is 

num = [0   2  25] 

den = [1   4  25] 

In this expression a zero is padded. Note that if zeros are padded, the dimensions 

of "num" vector and "den" vector become the same. An advantage of padding 

zeros is that the "num" vector and "den" vector can be directly added. For 

example, 

num + den = [0  2  25] + [1  4  25] 

= [1  6  50] 
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If num and den (the numerator and denominator of the closed-loop transfer 

function) are known, commands such as 

step(num, den) ,    step(num, den,t) 

will generate plots of unit-step responses .For a control system defined in a state-

space form, where state matrix A, control matrix B, output matrix C, and direct 

transmission matrix D of state-space equations are known, the command 

step (A,B,C, D) 

will generate plots of unit-step responses. The time vector is automatically 

determined when t is not explicitly included in the step commands. Note that the 

command step(sys) may be used to obtain the unit-step response of a system. 

First, define the system by 

                  

or                   

Then, to obtain, the unit-step response, enter 

          

Into the computer, 

when step commands have left-hand arguments such as 

[     ]                                                                         

[     ]                                                                       

[     ]                                                              

Hence it is necessary to use a plot command to see the response curves. The 

matrices y and x contain the output and state response of the system, respectively, 

evaluated at the computation time points t. Note in Equation () that the scalar iu is 

an index into the inputs of the system and specifies which input is to be used for 

the response, and t is the user-specified time. If the system involves multiple 

inputs and multiple outputs, the step command, such as given by Equation (), 

produces a series of step response  
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Example 3 -1 

Consider the following system 

*
  
 

  
 +  *

    
    

+ *
  

  
+  *

  
  

+ *
  

  
+ 

*
  

  
+  *

  
  

+ *
  

  
+  *

  
  

+ *
  

  
+ 

Obtain the unit-step response curves. 

Although it is not necessary to obtain the transfer matrix expression for the 

system to obtain the unit-step response curves with MATLAB, we shall derive 

such an expression for reference. For the system defined by 

            

             

The transfer matrix     is a matrix that relates      and     as follows 

              

Taking Laplace transforms of the state-space equations, we obtain 

                                                                                        

                                                                                                      

In deriving the transfer matrix, we assume that          Then, from Equation 

(3-3), we get 

                                                                                                    

Substituting Equation (3-5) into Equation (3-4), we obtain 

      [           ]                                  

Thus the transfer matrix G(s) is given by 

                  

The transfer matrix      for the given system becomes 

                

*
  
  

+ *
    
     

+
  

*
  
  

+ 

 
 

        
*
   
      

+ *
  
  

+ 
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*
    
        

+ *
  
  

+ 

Hence 

[
  
  

]  [

   

        

 

        
     

        

   

        

] 

Since this system involves two inputs and two outputs, four transfer functions 

may be defined depending on which signals are considered as input and output. 

Note that, when considering the signal   as the input, we assume that signal    is 

zero, and vice versa. The four transfer functions are 

  
  

 
   

        
 

  
  

 
 

        
 

  
  

 
     

        
 

  
  

 
   

        
 

The four individual step-response curves can be plotted by use of the command                              

step (A,B,C,D), MATLAB Program 3-1 produces four such step-response curves. 

The curves are shown in Figure 3-1. 

MATLP Program  

A=[-1 -1;6.5 0]; 

B=[1 1;1 0]; 

C=[1 0 ;0 1]; 

D=0 0;0 0]; 

Step (A,B,C,D) 
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Figure3-1 unit step response curves 

3.3 MATLAB Description of Standard Second-Order System 

As noted earlier, the second-order system 

     
  

 

    δ      
 
                                                   

is called the standard second-order system. Given    and δ, the command prints 

num/den as a ratio of polynomials in s. 

Consider, for example, the case where      rad/sec and δ     . MATLAB 

Program3-2 generates the standard second-order system where      rad/sec 

and δ      

MATLAB Program 

wn = 5; 

damping_ratio = 0.4; 

[num,den]=ord2(wn,damping_ratio); 

num = 5^2*num0; 

printsys(num,den,'s') 

num/den =
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The Unit-Step Response of the Transfer-Function System 

Let us consider the unit-step response of the system given by 

     
 

        
 

MATLAB Program will yield a plot of the unit-step response of this system. A 

plot of the unit-step response curve is shown in Figure 3-2. Notice in Figure 3-2 

that the x axis and y axis labels are automatically determined. If it is desired to 

label the x axis and y axis differently, we need to modify the step command. For 

example, if it is desired to label the x axis as 't Sec' and the y axis as 'Input and 

Output,' then use step-response commands with left-hand arguments, such as 

                    

or, more generally, 

[     ]                    

 

MATLAP Program  

 %- - - - - - - - - - - Unit-step response ------------- 

% ***** Enter the numerator and denominator of the transfer 

% function ***** 

num = [0 0 25]; 

den = [1 4 25];  

% ***** Enter the following step-response command ***** 

step(num,den) 

%***** Enter grid and title of the plot ***** 

grid 

title (' Unit-Step Response of G(s) = 25/(s^2+4s+25)') 
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Figure 3-2 Unit-step response curve 

Impulse Response .The unit-impulse response of a control system may be 

obtained by using one of the following MATLAB commands: 

                  

                  

[     ]                                                                            

[     ]                     

[     ]                   

[     ]                      

[     ]                        

The command impulse (num, den) plots the unit-impulse response on the screen. 

The command impulse (A,B,C,D) produces a series of unit-impulse-response 

plots, one for each input and output combination of the system 

             

            

If MATLAB is invoked with the left-hand argument [     ]  such as in the case 

of [     ]    impulse            the command returns the output and state 

responses of the system and the time vector t. The matrices   and   contain the 

output and state responses of the system evaluated at the time points      has  
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many columns as outputs and one row for each element in       has many 

columns. 

Example 3-4 

Obtain the unit-impulse response of the following system: 

*
  

 

  
 +  *

  
    

+ *
  

  
+  *

 
 
+   

  [  ] *
  

  
+  [ ]  

A possible MATLAB program is shown in MATLAB Program .The resulting 

response curve is shown in figure 3-3. 

MATLAB Program 

A=[0 1;-1 -1] 

B=[0 ;1]; 

C=[1 0]; 

D=[0]; 

impulse(A,B,C,D); 

grid; 

title('Unit-Impulse Response') 

 

 
Figure 3-3Impulse Response 
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Ramp response  

There is no ramp command in MATLAB. Therefore, we need to use the step 

command or the lsim command to obtain the ramp response. Specifically, to 

obtain the ramp response of the transfer-function system      ,divide      by s 

and use the step-response command.  

Example 3-5 

Consider the closed loop system 

    

    
 

 

      
 

For a unit-ramp input,         
  ⁄ . Hence 

     
 

      

 

  
 

To obtain the unit-ramp response of this system, enter the following numerator 

and denominator into the MATLAB program, 

num=[0  0  0  1] 

den=[1  1  1  0] 

and use the step-response command. See MATLAB Program, the plot obtained 

by using this program is shown in figure 3-4. 

MATLAP Program  

%- - - - - - - - - - - -- - - U n it-ramp response --------------- 

% ***** The unit-ramp response is obtained as the unit-step 

% response of G(s)/s *****. 

% ***** Enter the numerator and denominator of G(s) ***** 

num = [0 0 0 1 ]; 

den = [1 1 1 0]; 

% ***** Specify the computing time points (such as t = 0:0.1:7) 

% and then enter step-response command: c = step(num,den,t) ***** 

t = 0:0.1:7 

c = step(num,den,t) 

%***** In plotting the ramp-response curve, add the reference 

% input to the plot. The reference input is t. Add to the 

% argument of the plot command with the following: t,t,'-'. Thus 

% the plot command becomes as follows: plot(t,c,'o',t,t,'-') ***** 

plot(t,c,'o',t,t,'-') 

% ***** Add grid, title, xlabel, and ylabel ***** 
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grid 

title('Unit-Ramp Response Curve for System G(s) = 1/(s^2 + s + 1)') 

xlabel('t Sec') 

ylabel('lnput and Output') 

 

 

 

Figure 3-4 Unit Ramp Response Curve for System 

Unit-Ramp Response of a System in State Space 

Next, we shall treat the unit-ramp response of the system in state-space form. 

Consider the system described by 

             

             

To obtain the response to an arbitrary input, the command lsim may be used. The 

commands like 
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Example  3-6 

Using the lsim command, obtain the unit-ramp response of the following system: 

    

    
 

 

      
 

We use MATLAB Program into the computer to obtain the unit-ramp response. 

The resulting plot is shown in Figure 3-5. 

MATLAP Program 

% - - - - - - - Ramp Response ------- 

num = [0 0 1 ]; 

den = [1 1 1]; 

t = 0:0.1:8; 

r = t; 

y = lsim(num,den,r,t); 

plot(t,r,'-',t,y,'o') 

grid 

title('Unit-Ramp Response Obtained by Use of Command "lsim"') 

xlabel('t Sec') 

ylabel('Unit-Ramp Input and System Output') 

 

 

 

 

Figure 3-5Unit Ramp Response 
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Example 3-7 

Consider the system 

*
  
 

  
 +  *

     
   

+ *
  

  
+  *

 
 
+   

  [  ] *
  

  
+ 

Using MATLAB, obtain the response curves      when the input u is given by 

 1.         

Assume that the initial state is         .A possible MATLAB program to 

produce the responses of this system of the exponential input [       is shown 

in MATLAB Program].The resulting response curves are shown in figures 3-6 

MATLAP Program 

t = 0:0.1:12; 

A = [-1  0.5; -1 0]; 

B = [0;  1]; 

C = [1  0];  

D = [0]; 

%For the response to exponential input u = exp(-t), use the command 

% z = lsim(A,B,C,D,u,t). 

u = exp(-t); 

z = lsim(A,B,C,D,u,t); 

plot(t,u,'-',t,z,'o') 

grid 

title('Response to Exponential Input u = exp(-t)') 

xlabel('t Sec') 

ylabel('Exponential Input and System Output') 

text(2.3,0.49,'Exponential input') 

text(6.4,0.28,'Output') 
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Figures 3-6 Response to exponential input 

Example 3-8 

Consider the mechanical system shown in Figure blew, where           

      N-sec/m, and       N/m. Assume that at       the mass m is pulled 

downward such that            m and              m/sec. The displacement 

     is measured from the equilibrium position before the mass is pulled down. 

Obtain the motion of the mass subjected to the initial condition. The system 

equation is with the initial conditions            m and              m/sec. 

the system equation gives 

              

Figure 3-7mechanical system   
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With the initial conditions             and                 . (x) is 

measured from the equilibrium position.) The Laplace transform of the system 

equation gives 

 [                  ]   [          ]          

                                   

Solving this last equation for      and substituting the given numerical values, 

we obtain 

     
                   

        
 

     
         

       
 

This equation can be written as 

     
           

       

 

 
 

Hence the motion of the mass m may be obtained as the unit-step response of the 

following system: 

     
           

       
 

MATLAB Program will give a plot of the motion of the mass. The plot is shown 

in figure 3-8. 

MATLAB Program 

%- - - - - - - - - - - - - - - Response to initial condition --------------- 

%***** System response to initial condition is converted to 

%a unit-step response by modifying the numerator polynomial ***** 

%***** Enter the numerator and denominator of the transfer 

% function G(s) *****  

num = [0.1 0.35 0]; 

den = [1 3 2];  

%***** Enter the following step-response command ***** 

    step(num,den) 

 % ***** Enter grid and title of the plot *****  

grid 

title('Response of Spring-Mass-Damper System to Initial Condition') 
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Figure 3-8 Response of Spring- Mass-Damper System to Initial Condition  

Response to Initial Condition (State-Space Approach, Case 1)  

Consider the system defined by 

                                                                                           

Let us obtain the response      when the initial condition      is specified. 

Assume that x is an n-vector. First, take Laplace transforms of both sides of 

equation (3-8). 

                      

This equation can be rewritten as 

                                                                                              

Taking the inverse Laplace transform of Equation (3-9), we obtain 

                                                                                                   

(Notice that by taking the Laplace transform of a differential equation and then by 

taking the inverse Laplace transform of the Laplace-transformed equation we 

generate a differential equation that involves the initial condition.)Now define 

                                                                                                              

Then Equation (3-10) can be written as 

                                                                                                

By integrating Equation (3-12) with respect to t, we obtain 
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Where 

                      

Referring to Equation (3-11), the state      is given by      . Thus, 

           

The solution of equations (3-12) and (3-13) gives the response to the initial 

condition. Summarizing, the response of equation (3-13) to the initial condition 

     is obtained by solving the following state-space equations: 

         

        

where 

                      

MATLAB commands to obtain the response curves in one diagram are given 

next. 

[     ]                   

     [            ]      
     [            ]      

. 

. 

. 

    [           ]      

                         

Response to Initial Condition (State-Space Approach, Case 2) 

Consider the system defined by 

                                                                                              

                                                                                                            

(Assume that x is an n-vector and y is an m-vector.)Similar to case 1, by defining 

     

we can obtain the following equation 
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where 

                      

Noting that     , Equation (3-15) can be written as 

                                                                                                              

By substituting equation (3-16) into equation (3-17), we obtain 

                                                                               

The solution of equations (3-16) and (3-18) gives the response of the system to a 

given initial condition. MATLAB commands to obtain the response curves 

(output curves yl versus t, y2 versus t, ... , ym versus t) are shown next. 

[     ]                    

    [        ]      

    [        ]      

. 

. 

    [           ]      

                        

Example 3-9  

Obtain the response of the system subjected to the given initial condition. 

*
  

 

  
 +  *

  
     

+ *
  

  
+    [

     
     

]  *
 
 
+ 

or 

                 

Obtaining the response of the system to the given initial condition becomes that 

of solving the unit step response of the following system: 

         

        

Where  
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Hence a possible MATLAB program for obtaining the response may be given as 

shown in MATLAB Program. The resulting response curves are shown in figure 

3-10. 

MATLAP Program 

t = 0:0.01:3; 

A = [0 1 ;-10 -5]; 

B = [2 ; 1 ]; 

[x,z,t]= step(A,B,t); 

x1 = [1  0]*x'; 

x2 = [0  1 ]*x'; 

plot(t,xl ,'x',t,x2,'-') 

grid 

title('Response to Initial Condition') 

xlabel('t Sec') 

ylabel('State Variables xl and x2') 

gtext('x1 ') 

gtext('x2') 

 

 

Figure3-10 Response of system initial condition 
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Obtaining Response to Initial Condition by Use of Command Initial 

If the system is given in the state-space form, then the following command 

Initial (A,B,C,[initial condition],t) 

will produce the response to the initial condition. Suppose that we have the 

system defined by 

                        

        

Where  

  *
  

     
+          *

 
 
+         [  ]     [ ] 

   *
 
 
+ 

Then the command "initial" can be used as shown in MATLAB Program to 

obtain the response to the initial condition. The response curves x1(t) and x2(t)are 

shown in figure 3-11. 

MATLAP Program 

t = 0:0.05:3; 

A = [0 1 ;-10 -5]; 

B = [0;0]; 

C = [0  0]; 

D = [0 ]; 

[y,x]= initial(A,B,C,D,[2;1],t); 

x1=[1 0]*x'; 

x2 = [0 1]*x'; 

plot(t,xl ,'o',t,xl ,t,x2,'x',t,x2) 

grid 

title('Response to Initial Condition') 

xlabel('t Sec') 

ylabel('State Variables x1and x2') 

gtext('x1 ') 

gtext('x2') 
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Figure 3-11 Response to Initial Condition 

Example 3-10 

Consider the following system that is subjected to the initial condition. (No 

external forcing function is present.) 

                   

                                                

Obtain the response      to the given initial condition. 

By defining the state variables as 

     

      

       

We obtain the following state-space representation for the system: 

[

  
 

  
 

  
 
]  [

   
   

        
] [

  

  

  

]    [

     
     
     

]  [
 
 
   

] 

  [   ] [

  

  

  

] 

A possible MATLAB program to obtain the response     is given in MATLAB 

Program .The resulting response curve is shown in figure 3-12. 
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MATLAP Program 

t = 0:0.05:10; 

A = [0 1 0;0 0 1 ;-10 -1 7 -8]; 

B = [0; 0; 0]; 

C= [1 0 0]; 

D = [0]; 

y = initial(A,B,C,D,[2;1;0.5],t); 

plot(t,y) 

grid 

title('Response to Initial Condition') 

xlabel('t (sec)') 

ylabel('0utput y') 

 

Figure 3-12 Response to Initial Condition 

Example 3-11 

Obtain both analytical and computational solutions of the unit-step response of a 

unity-feedback system whose open-loop transfer function is 
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Solution 

The closed-loop transfer function is 

    

    
 

       

                                 
 

 
      

                   
 

 
      

                     
 

The unit-step response of this system is then 

     
       

                     
 

 
 

 
 

 
 
      

  
 

         
 

   
 

      
  
 

         
 

The time response     can be found by taking the inverse Laplace transform of 

    as follows: 

       
 

 
         

  

  
         

  

 
         

  

 
           for t ≥ 0 

A MATLAB program to obtain the unit-step response of this system . The 

resulting unit-step response curve is shown in figure3-13. 

MATLAP Program 

% - -- - ---- --- - --- U nit-step-response --------- ------ 

num = [0 0 0 5 100]; 

den = [18 32 80 100]; 

step(num,den) 

grid 

title('Unit-Step Response of C(s)/R(s) = (5s + 1 00)/(s^4 + 8s^3 + 32s^2 + 80s + 100)') 
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Figure 3-13 Unit Response  

Example 3-12  

Obtain the response of the closed-loop system defined by 

    

    
 

 

      
 

When the input      is given by 

             

The input     is a step input of magnitude 2 plus unit-ramp input. 

A possible MATLAB program is shown in MATLAB Program. The resulting 

response curve, together with a plot of the input function, is shown in figure 3-14 

MATLAP Program  

num = [005]; 

den = [1 1 5]; 

t = 0:0.05:10; 

r = 2+t; 

c = lsim(num,den,r,t); 

plot(t,r,'-',t,c,'o') 

grid 

title('Response to lnput r(t) = 2 + t') 

xlabel('t Sect) 

ylabel('Output c(t) and lnput r(t) = 2 + t') 
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Figure 3-14 Response to input               
Example 3-13 

 

Obtain the response of the system shown in Figure blew when the input r(t)is 

given by 

  
 

 
   

Solution 

The closed-loop transfer function is 

    

    
 

 

      
 

MATLAB Program produces the unit-acceleration response. The resulting 

response, together with the unit-acceleration input, is shown in figure 3-15. 

MATLAB Program 

num = [ 0  0  2]; 

den = [1  1   2]; 

t = 0:0.2:10; 

r = 0.5*t^2; 

y = lsim(num,den,r,t); 

plot(t,r, '-',t,y,'o',t,y, '-') 

grid 

title('Unit-Acceleration Response') 

xlabel('t Sec') 

ylabel('lnput and Output') 
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Figure 3-15 Response to unit acceleration input 

 

3.4 Modifications of PID Control Schemes  

Consider the basic PID control system shown in Figure (a) blew, where the 

system is subjected to disturbances and noises. Figure (b) is a modified block 

diagram of the same system. In the basic PID control system such as the one 

shown in Figure(b), if the reference input is a step function, then, because of the 

presence of the derivative term in the control action, the manipulated variable u(t) 

will involve an impulse function (delta function). In an actual PID controller, 

instead of the pure derivative term, we employ. 

)193(
1


 sT

sT

d

d


 

Where the value of   is somewhere around 0.1.Therefore, when the reference 

input is a step function, the manipulated variable u(t) will not involve an impulse 

function, but will involve a sharp pulse function. Such a phenomenon is called 

set-point kick. 
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PI-D Control 

To avoid the set-point kick phenomenon, we may wish to operate the derivative 

action only in the feedback path so that differentiation occurs only on the 

feedback signal and not on the reference signal. The control scheme arranged in 

this way is called the PI-D control a Figure shows a PI-D-controlled system. 

From figure blew it can be seen that the manipulated signal U(s) is given by 

       [  
 

   
]        [  

 

   
    ]                             

 

Figure (a) PID controlled system and (b) equivalent block diagram 

    

    
 (  

 

   
    )  

    

     
 

        
    

                          

    

    
 (  

 

   
)  

    

     
 

        
    

 

It is important to point out that in the absence of the reference input and noises, 

the closed-loop transfer function between the disturbance      and the output  

 

 

 

 

 

 

 

     in either case is the same and is given by 
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            [  
 

   
    ] 

                                                       

I-PD Control 

Consider the case where the reference input is a step function. Both PID control 

and PI-D control involve a step function in the manipulated signal. Such a step 

change in the manipulated signal may not be desirable in many occasions. 

Therefore, it may be advantageous to move the proportional action and derivative 

action to the feedback path so that these actions affect the feedback signal only. 

Figure blew shows such a control scheme. It is called the I-PD control. The 

manipulated signal is given by 

       
 

   
       *  

 

   
    +                                     

Notice that the reference input R(s) appears only in the integral control part. Thus, 

in I-PD control, it is imperative to have the integral control action for proper 

operation of the control system.  

 

Figure 3-16 I-PD controlled system 

The closed-loop transfer function Y(s)/R(s) in the absence of the disturbance 

input and noise input is given by 

    

    
 [

 

   
]

       

         ⌈  
 
   

    ⌉
 

It is noted that in the absence of the reference input and noise signals, the closed-

loop transfer function between the disturbance input and the output is given by 

    

    
 

     

         ⌈  
 
   

    ⌉
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This expression is the same as that for PID control or PI-D control. 

The basic idea of the I-PD control is to avoid large control signals (which will 

cause a saturation phenomenon) within the system. By bringing the proportional 

and derivative control actions to the feedback path, it is possible to choose larger 

values for    and    than those possible by the PID control scheme. Compare, 

qualitatively, the responses of the PID-controlled system and I-PD-controlled 

system to the disturbance input and to the reference input. Consider first the 

response of the I-PD-controlled system to the disturbance input. Since, in the I-

PD control of a plant, it is possible to select larger values for KP and    than those 

of the PID-controlled case, the I-PD-controlled system will attenuate the effect of 

disturbance faster than the PID-controlled case. Next, consider the response of the 

I-PD-controlled system to a reference input. Since the I-PD-controlled system is 

equivalent to the PID-controlled system with input filter, the PID-controlled 

system will have faster responses than the corresponding I-PD-controlled system, 

provided a saturation phenomenon does not occur in the PID-controlled system 

Example 3-14 

Show that the I-PD controlled system show in figure is equivalent to the PID 

controlled system with input filter shown in figure  

Solution  

The closed loop transfer function           of the I-PD controlled system is  

    

    
 

   
   

     

       
 
   

          
 

 The closed loop transfer function           

of the PID controlled system with input filter show in figure is 
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The closed loop transfer functions of both systems are the same thus the two 

system are equivalent  

 

 

(a) I-PD controlled system (b) PID controlled system with input filter  
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Chapter 4 

Two-Degrees-of-Freedom PID Control 

4.1 Introduction  

We have shown that PI-D control is obtained by moving the derivative control 

action to the feedback path, and I-PD control is obtained by moving the 

proportional control and derivative control actions to the feedback path. Instead 

of moving the entire derivative control action or proportional control action to the 

feedback path, it is possible to move only portions of these control actions to the 

feedback path, retaining the remaining portions in the feed forward path. In the 

literature, PI-PD control has been proposed. The characteristics of this control 

scheme lie between PID control and I-PD control. Similarly, PID-PD control can 

be considered. In these control schemes, we have a controller in the feed forward 

path and another controller in the feedback path. Such control schemes lead us to 

a more general two-degrees-of-freedom control scheme. We shall discuss details 

of such a two degrees of freedom control scheme in subsequent sections. 

4.2Tow Degree of Freedom Control 

As in most of the existing industrial process control applications, the desired 

value of the controlled variable, or set-point, normally remains constant but needs 

to be changed servo-control or set point tracking operation, we are mainly 

interested in the two-degree-of-freedom(2DoF) implementation of the PID 

control algorithms. The extra parameter that the 2 DoF control algorithm provides 

is used to improve their servo-control behavior while considering the regulatory 

control performance and the closed-loop control system robustness. This 2DoF 

feature can be incorporated both into a PI or a PID control algorithm. Although 

all the controllers with a proportional integral (PI) control algorithm are 

implemented in the same way, have the same transfer function, this is not the case 

with commercial controllers with proportional integral derivative (PID) control 

algorithms. In fact, usually, the control algorithm implementation is manufacturer 

dependent and not all of its variations are available in the same controller.  
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Consider the system shown in Figure blew, where the system is subjected to the 

disturbance input      and noise input     , in addition to the reference input 

    .      is the transfer function of the controller and      is the transfer 

function of the plant. We assume that       is fixed and unalterable 

 

Figure 4-1 One-degree-of freedom control system 

For this system, three closed-loop transfer functions               , 

             , and                may be derived. They are.  
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In deriving            we assumed        and       . Similar comments 

apply to the derivations of           and            The degrees of freedom of 

the control system refers to how many of these closed-loop transfer functions are 

independent. In the present case, we have 

    
      

  
 

    
      

  
 

Among the three closed-loop transfer functions    ,     , and     if one of them 

is given, the remaining two are fixed. This means that the system shown in figure 

4-1 is a one-degree-of-freedom control system. Next consider the system shown 
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in Figure, where       is the transfer function of the plant. For this system, 

closed-loop transfer functions     ,    , and    are given, respectively, by 

    
    

    
 

     

             
                    

    
    

    
 

  

             
                   

    
    

    
 

           

             
                   

 

Figure 4-2 Tow degrees of freedom control system 

           

    
      

  
 

In this case, if     is given, then    is fixed, but     is not fixed, because Gc1 is 

Independent of    . Thus, two closed-loop transfer functions among three closed-

loop transfer functions        , and    are independent. Hence, this system is a 

two-degrees of- freedom control system. Similarly, the system shown in Figure  

4-3 is also a two-degrees-of-freedom control system, because for this system 
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Figure 4-3Tow degree of PID control 

Hence  

           
      

  
 

    
      

  
 

Clearly, if     is given, then     is fixed, but     is not fixed, because Gc2 is 

independent of    .  

Example 4-1 

Consider the two-degrees-of-freedom control system shown in Figure blew The 

plant       is given by 

      
   

      
                                               

Assuming that the noise input N(s) is zero, design controllers Gc1(s) and Gc2(s) 

such that the designed system satisfies the following:  

1. The response to the step disturbance input has small amplitude and settles to 

zero quickly (on the order of 1 sec to 2 sec).  
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2. The response to the unit-step reference input has a maximum overshoot of 25% 

or less, and the settling time is 1 sec or less.  

3. The steady-state errors in following ramp reference input and acceleration 

reference input are zero. 

 

Figure 4-4 Two-degrees-of- freedom control system 

Solution 

The closed-loop transfer functions for the disturbance input and reference input 

are given, respectively, by 

    

    
 

     

             
 

    

    
 

     

             
 

Let us assume that Gc1(s) is a PID controller and has the following form: 

        
      

 
                            

The characteristic equation for the system is 
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Notice that the open-loop poles are located at s = 0 (a double pole) and       . 

The zeros are located at         (a double zero). In what follows, we shall use 

the root-locus approach to determine the values of a and    . Let us choose the 

dominant closed-loop poles at        .Then, the angle deficiency at the 

desired closed-loop pole at         is 

-135
0
  - 135

0
 - 128.66

0
 + 180

0
 = -218.66

0
 

The double zero at         must contribute 218.66
0
. By a simple calculation, 

we find  

          

The controller        is then determined as 

       
            

 
 

The constant   must be determined by use of the magnitude condition. This 

condition is 

|           |          

             
      

 

   

      
 

  |
        

              
|
       

         

The controller Gc1(s) thus become 
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Then, the closed-loop transfer function           is obtained as follow 

    

    
 

     

             
                                

 

   
      

  
                  

 
   

      

 

    

                            
 

The response curve when      is a unit-step disturbance is shown in Figure blew 

 

Next, we consider the responses to reference inputs. The closed-loop transfer 

function            is 

    

    
 

[             ]     
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Then                                  

    

    
 

          

            
 

 
         

                            
 

To satisfy the requirements on the responses to the ramp reference input and 

acceleration reference input, we use the zero-placement approach. That is, we 

choose the numerator of            to be the sum of the last three terms of the 

denominator, or 

                                    

We get 

      
                         

 
 

        
       

 
         

 

Figure 4-5 control system  

Hence, the closed-loop transfer function           becomes as 
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2-DOF PID controller 

The design of control systems is a multi-objective problem, so a two degree-of-

freedom (abbreviated as 2DOF) control system naturally has advantages over a 

one degree-of freedom (abbreviated as 1DOF) control system. The process will 

be controlled with a two-degree-of-freedom proportional integral derivative (PID) 

controller whose output is expressed as in equation (1). A general form of the 2-

DOF PID controller is shown in Figure blew, where the controller consists of two 

compensators                    which are known as 

1.  Set point controller transfer function also known as feed-forward compensator 

which is          and given by  

          [  
 

   
]                                      

2.  Feedback transfer function (feedback compensator) which is       is given by  

         [  
 

   
    ]                              

Where, β is set point weighting factor or controller parameter        and 

         are PID controller parameter that is Proportional Gain   , integral 

time    and derivative time   respectively. The block diagram of this controller is 

shown in figure 4-6 

 

Figure4-6 DOF PID controller structure 
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Where, P(s) = Plant transfer function, u= Manipulated variable, y=controlled 

variable or output, r= set point. Manipulated variable (u) for continuous controller 

is given as  

       [           
 

   
                  ]                       

For the purpose of analysis only, the controller output (4) will be rewritten as 

follows: 

       [       
 

   
]        [   

 

   
    ] 

                           

The closed-loop transfer function from the set-point to the controlled variable is 

given by 

    

    
        

           

            
 

Where, the loop sub index has been suppressed for simplicity. In addition the 

closed-loop transfer function from the load-disturbance to the controlled variable 

is given by 

    

    
        

    

            
 

Which are related by 

                     

Many different ways of discretize the continuous controller of equation 4.  

However  here  forward  difference approximation  is  used  for  integral  mode  

and  backward  difference approximation is used for derivative mode.  So after 

discretizing, final discrete 2-DOF controller equation is 
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Where 
     

     
  is feed-forward compensator and 

     

     
 is feedback compensator, and 

                      are given by following polynomials 

      [     ] 

      [            ]   

      [        

Controller Design:   

The second order processes without time delay are represented by a linear model 

in the form of following general transfer function 

     
 

              
                                               

Where, K is gain,    and    are time constant. Usually  the  design  of  two-

degree-of-freedom  PID controller  is  performed  in  two  stages.  First the 

parameter pid K ,    and   of the feedback controller required to obtain the 

desired regulatory control performance. Second the set-point controller, 

weighting parameter is used to improve the servo-control performance. In what 

follows a different approach is taken to obtained PID controller parameter. The 

complete set of PID controller parameters are obtained using Good Gain method. 

Second to obtained set-point controller weighting parameter is obtained using the 

equation 

     ,
     

  
    - 

So, complete set of parameter of two-degree-of-freedom PID controller are 

obtained by using these two steps. Two simulation examples are provided. The 

first one exemplifies the application of the presented method. The system 
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descriptions used are, however, of higher order and second order system without 

time delay are therefore used. The  performance  of  the  two-degree-of-freedom  

PID controller is compared  to that one of a PID controller, therefore showing  the  

benefits of using  the  2-DOF control configuration. 

 Example 4-2 

Consider that second order controlled process without time delay or fast process 

is given by 

     
 

              
                                                  

Simplifying above process 

     
 

         
 

For above example or second order process 2-DOF PID controller is design. 

Controller parameter obtained using Zeigler –Niclous method, and these 

parameters are                                . 

Proportional Integral Derivative Control Algorithm 

Consider the general controller block diagram depicted in Fig blew. The output or 

control effort of a proportional (P)integral (I) and derivative (D) control algorithm 

is given, in general, by 

            [                    ]                      

If                     and 0 or 100%, depending on the controller action if 

the controller output reaches one of its limits. In  Up is the proportional term or 

proportional control action, given by 

               [         ]                                         

with a proportional gain   ;    is the integral term or integral control action, 

givenby 

        ∫      
 

 

    ∫ [         ]  
 

 

                      



  

123 
 

with an integral gain    ; and    the derivative term or derivative control action, 

given by 

        

     

  
   

 [         ]

  
 

with a derivative gain   . The controller output bias Ub is usually set of controller 

inputs R(t) and Y (t), and output U(t)change in the range from 0 to 100%.The 

controller Action sign, +1 (Reverse) or −1 (Direct), must be selected equal to the 

controlled process gain sign to preserve the negative feedback characteristic of 

the control loop.  

2DoF Standard PID 

 2DoF proportional integral derivative control algorithm is the Standard 

PID whose output is given by the following: 

       ,      
 

  
∫        

 

 

   

      

  
-                               

       {      
 

   
      

   

      
     }                            

 

 

Figure 4-7Two-degree-of-freedom Standard PID controller 

With  
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Where    is the controller gain,    the integral time constant,    the derivative 

time constant, β and γ the set-point weights, and α the derivative filter constant. 

The 2DoF PID block diagram is depicted in Fig above. To avoid an extreme 

instantaneous change at the controller output signal when a set-point step change 

occurs normally γ is set to zero. The equation(4-17) reduces to 

       {            
 

   
[          ]  (

   

      
)     }           

that will be denoted as PID. In addition, in the following it is assumed that the 

measurement noise is filtered, then           . The controller output above 

may be rearranged, for analysis purposes, as follows: 

       (  
 

   
)         (  

 

   
 

   

      
)     

Where the Cr(s) and Cy(s) controller aspects read as 

        (  
 

   
) 

        (  
 

   
 

   

      
) 

2DoF Parallel PID 

The parallel or ―independent gains‖ PID control algorithm  

     (     
  

 
)       (   

  

 
 

   

       
)                               

where the Cr(s)and Cy(s)controller aspects read as 

      (     
  

 
) 

      (   
  

 
 

   

       
) 

2DoF Series or “Industrial” PID 

The 2DoF version of the series ―interacting‖ implementation of the PID algorithm  

       
 (   

 

  
  
)         

 (  
 

  
  
) (

  
  

    
    

)                     

where the       and        controller aspects read as 



  

125 
 

        
 (   

 

  
  
) 

        
 (  

 

  
  
) (

  
  

    
    

) 

Zero –Input  Response  and Zero-State Response 

The response of linear, in particular LTIL, systems can always be decomposed 

into the zero-input response and zero-state response. In this section we shall use a 

simple example to illustrate this fact and then discuss some general properties of 

the zero input response. The Laplace transform is needed for the following 

discussion. 

Example 4-3  

Consider the differential equation 

      

   
  

     

  
        

     

  
                                                  

Many methods are available to solve this equation. The simplest method is to use 

the Laplace transform. The application of the Laplace transform to (4-21) yields, 

                           [            ]        

   [             ]                                                          

Where                 and capital letters denote the Laplace transforms of the 

corresponding lower case letters, Equation (4-22) is an algebraic equation and can 

be manipulated using addition, subtraction, multiplication, and division. The 

grouping of Y(s) and U(s) in (4-21) yields 

                                                            

Which implies 

     
                        

       
 

    

       
                        

This equation reveals that the solution of (2-23) is partly excited by the input      

     , and partly excited by the initial conditions       , and        These 

initial conditions will be called the initial state . The initial state is excited by the 

input applied before      . In some sense, the initial state summarizes the effect 

of the past input           , on the future output y(t), for      .If different past 
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input                      , excite the same initial state, then their effects on 

the future output will be identical . Therefore, how the differential equation 

acquires the initial state at       is immaterial in studying its solution y(t), for 

     . We mention that the initial time        is not the absolute time; it is the 

instant we start to study the system. The response can be decomposed into two 

parts. The first part is excited exclusively by the initial state and is called the 

zero-input response. The second part is excited exclusively by the input and is 

called the zero state response. In the study of LTIL systems, it is convenient to 

study the zero-input response and the zero-state response separately. We first 

study the zero-input response and then the zero-state response. 

Zero-Input Response-Characteristic Polynomial 

Consider the differential equation in (4-21). If         , for t ≥ 0, then  reduces 

      

   
  

     

  
                                                       

This is called the homogeneous equation. We now study its response due to a 

nonzero initial state. The application of the Laplace transform yields, as in (4-24), 

                     [           ]          

which implies  

     
                 

       
 

               

          
 

This can be expanded as 
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Thus the zero-input response is 

          
         

    

No matter what the initial conditions       and        are, the zero-input 

response is always a linear combination of the two functions e
-t
 and e

-2t
. The two 

functions e
-t
 and e

-2t
 are the inverse Laplace transforms of            and  
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          . The two roots -1 and – 2 or, equivalently, the two roots of the 

denominator of (**)are called the modes of the system . The modes govern the 

form of the zero-input response of the system. We now extend the preceding 

discussion to the general case. Consider the nth order LTIL differential equation 

   
            

              
               

               
              

              

Where                                        
  

   
     

        
  

   
     

 

We define  

        
       

             

and 

               
             

Where the variable p is the differentiator d/dt defined by 

      
 

  
           

  

   
           

  

   
     

and so forth. This can be written as 

                  

In the study of the zero-input response, we assume        . Then reduces to 

           

This is the homogeneous equation. Its solution is excited exclusively by initial 

conditions. The application of the Laplace transform yields, as in, 

     
    

    
 

We call D(s) the characteristic polynomial ,The roots of the polynomial D(s) are 

called the modes. For example, if 
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Then the modes are                   , and         . The root 2 and the 

complex roots        are simple modes and the root    is a repeated mode 

with multi- plicity 2. Thus for any initial conditions, Y(s) can be expanded as 

     
  

   
 

  

      
 

  

      
 

  
   

 
  

      
 

and its zero-input response is,  

        
      

            
            

       
   

This is the general form of the zero-input response and is determined by the 

modes of the system. 

Example 4-4 

Consider the system shown in Figure. If 

     
 

              
 

Then the transfer function from r  to  y is 

      
  

                 
 

  

                
 

 

Figure 4-8 unity-feedback system 

We form the Routh table for its denominator: 
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The conditions for G0(s) to be stable are 

     

 
                     

These two inequalities imply 

     
  

 
                       

  

 
       

They are plotted in Figure (a) From the plot we see that                   , 

then k meets both inequalities, and the system is stable. 

Steady-State Response of Stable Systems-Sinusoidal Inputs 

Consider a system with proper transfer function G0(s) = Y(s)/R(s).It is assumed 

that G0(s) is stable. Now we shall show that if             , then the output 

     will approach a sinusoidal function with the same frequency as     If 

              then  

     
   

     
  

Hence, we have 

                     
   

     
        

   

            
 

Because       is stable,       are simple poles of     . Thus      can be 

expanded as, using partial fraction expansion, 

     
  

      
 

  
 

      
                                   

With  

         
   

     
|
     

         
   

    
 

 

  
        

And 

  
  

 

   
         

Since all the poles of       have negative real parts, their time responses will 

approach zero as     Hence, the steady-state response of the system due 

to               is given by 
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         ⌈
        

         
 

         

         
⌉ 

All coefficients of       are implicitly assumed to be real. Even so, the 

function         is generally complex. We express it in polar form as 

              
       

Where        

      |       |  [(         )
 
 (         )

 
]
 

 ⁄  

And  

                   
         

         
 

Where Im and Re denote, respectively, the imaginary and real parts.       is 

calledthe amplitude and      , the phase of      . If all coefficients of       are 

real, then       is an even function of  ,and      is an odd function 

of    ;that is,              and              . Consequently we have 

                
              

        

The substitution of () and () into () yields 

      
       

      

  
       

       
       

  
        

       
  [         ]     [         ]

  
 

                          

This shows that if               , then the output will approach a sinusoidal 

function of the same frequency. Its amplitude equals |       |,ts phase differs 

from the phase of the input by               

         
 .  

The steady-state response of a stable       due to sin mot is completely 

determined by the value of       at      . Thus         is called the 

frequency responseof the system. Its amplitude        is called the amplitude 

characteristic. For example, if               , then        ,        

          = 2/(1.4e
i45

)=1.4e
i45

 G0(j10) = 2/(i l0 + 1) = 0.2e
-i84

 and so forth. The 
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amplitude and phase characteristics of G0(s) =2/(s + 1) can be plotted as shown in 

Figure blew. From the plot, the steady-state response due to       , for any   . 

 

Figure 4-9 Amplitude and phase characteristics 

Example 4-5 

Consider G0(s) = 3/(s + 0.4). It is stable. In order to compute its steady-state 

response due to              , we compute 

       
 

        
 

 

          
             

Thus the steady-state response is 

                                   

Note that the phase -1.37 is in radians, not in degrees. This computation is very 

simple, but it does not reveal how fast the system will approach the steady state. 

Example 4-6 

Consider G(s) = 1/(s + 1)
3
. It has three poles at     . The time constant of 

     is 1 second. The unit-step response of       is 

     
 

      
 
 

 
 

 

 
 

  

      
 

  

      
 

  

     
 

or 
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Figure 4-10 Step response 

Its steady-state response is 1 and its transient response is 

                                   

These are plotted in Figure above. At five time constants, or t = 5, the value of the 

transient response is -0.126; it is about 13% of the steady-state response. At t = 9, 

the value of the transient response is 0.007 or  0.7% of the steady-state response. 

For this system, it is more appropriate to claim that the response reaches the 

steady state in nine time constants. 

Poles and Zeros 

The zero-state response of a system is governed by its transfer function. Before 

computing the response, we introduce the concepts of poles and zeros. Consider a 

proper rational transfer function 

     
    

    
 

Where      and      are polynomials with real coefficients. 

Example 4-7 

Consider the transfer function 

     
    

    
 

             

                
 

We have  

      
     

     
 

                      

           
 

 

 
   

Therefore - 2 is a pole of       Clearly - 2 is a root of D(s). 
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Does this imply every root of       is a pole of     .  

     
    

    
 

          

       
 

 

 
 

It is not defined. However 1'Hopital's rule implies 

     
    

    
|
   

 
     

     
|
   

 

 
           

                  
|
   

 
  

  
   

Thus       is not a pole of     . Therefore not every root of      is a pole of 

    .Now we factor      and then cancel the common factors between     and 

    to yield 

     
    

    
 

                

                
 

      

           
 

We see immediately that s = 1 is not a pole of G(s).Clearly G(s) has one zero, - 3. 

We now discuss the computation of the zero-state response. The zero-state 

response of a system is governed by                  To compute Y(s), we 

first compute the Laplace transform of u(t). We then multiply G(s) and U(s) to 

yield Y(s).The inverse Laplace transform of Y(s) yields the zero-state response. 

This is illustrated by an example. 

Example 4-8 

Find the zero-state response of due to         , for t ≥ 0. This is called the unit-

step response . The Laplace transform of       is 1/s . Thus we have 

              
    

          
 
 

 
 

To compute its inverse Laplace transform, we carry out the partial fraction 

expansion 

     
    

           
 

  

   
 

  

   
 

  

 
 

Where  

           |     
    

      
|
    

 
  

       
   



  

134 
 

           |     
    

      
|
    

 
  

        
      

         |    
    

          
|
   

 
  

 
      

The zero-state response is 

                      

for t ≥ 0. Thus, the use of the Laplace transform to compute the zero-state 

response is simple and straightforward. 

This example reveals an important fact of the zero-state response. We see that the 

response consists of three terms. Two are the inverse Laplace transforms of 1/(s + 

2) and 1/(s + 1), which are the poles of the system. The remaining term is due to 

the step input. In fact, for any u(t), the response is generally of the form 

        
      

                                      

Thus the poles of G(s) determine the basic form of the zero state response.  

Example 4-9 

Consider the system 

              
    

          
 
 

 
 

Find a bounded input u(t) so that the pole -1 will not be excited. If 

               then 

              
    

          
       

 
    

   
 

        

   
   

 

   
 

Which implies 

              

This response does not contain e
-t
, thus the pole -1 is not excited. Therefore if we 

introduce a zero in U(s) to cancel a pole, then the pole will not be excited by the 

input u(t).If U(s) is biproper or improper, as is the case for U(s) = s + 1, then its 

inverse Laplace transform u(t) will contain an impulse and its derivatives and is 

not bounded .In order for u(t) to be bounded, we choose, rather arbitrarily, U(s) = 
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(s + 1)/s(s + 3), a strictly proper rational function . Its inverse Laplace transform 

is 

     
 

 
 

 

 
     

For       and is bounded .The application of this input yields 

     
    

          
 
     

      
 

    

           
 

 
 

      
 

  

      
 

 

  
 

Which  implies  

     
 

 
     

  

 
     

 

 
 

for t > 0. The second and third terms are due to the input, the first term is due to 

the pole -2 .The term e
-1

does not appear in y(t),thus the pole -1is not excited by 

the input.
 
We shall show here that by use of the zero-placement approach 

presented later in this Chapter we can achieve the following:
 

The responses to the ramp reference input and acceleration reference input exhibit 

no steady-state errors. In high-performance control systems it is always desired 

that the system output follow the changing input with minimum error. For step, 

ramp, and acceleration inputs, it is desired that the system output exhibit no 

steady-state error. In what follows, we shall demonstrate how to design control 

systems that will exhibit no steady-state errors in following ramp and acceleration 

inputs and at the same time force the response to the step disturbance input to 

approach zero quickly. Assume that the plant transfer function Gp(s) is a 

minimum-phase transfer function and is given by 

    
    

    
 

where  
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Figure 4-11 control system 

Where N may be 0, 1, 2 and n ≥ m. Assume also that Gc1is a PID controller 

followed by a filter 1/A(s), or 

       
          

 

 

 

    
 

and Gc2 is a PID, PI, PD, I,D, or P controller followed by a filter 1/A(s). That 

       
          

 

 

 

    
 

where some of α, β and γ may be zero. Then it is possible to writ         

        
        

 

 

    
 

where α,β and γ are constants. Then 

    

    
 

  

             
 

 
    
    

  
        

 
 

    

 

 
      

                 
 

Because of the presence of s in the numerator, the response      to a step 

disturbance input approaches zero as t approaches infinity, as shown below. Since 

     
      

                 
      

if the disturbance input is a step function of magnitude d, or 



  

137 
 

     
 

 
 

and assuming the system is stable, then 

           *
      

                 
+
 

 
 

      

        

        
   

 

Figure 4-12 step disturbance input 

The response y(t) to a step disturbance input will have the general form shown in 

Figure a bove. Note that Y(s)/R(s) and Y(s)/D(s) are given by 

    

    
 

     

                 
       

    

    
 

  

                 
         

Notice that the denominators of Y(s)/R(s) and Y(s)/D(s) are the same. Before we 

choose the poles of Y(s)/R(s), we need to place the zeros of Y(s)/R(s). 

Zero Placement 

Consider the system 

    

    
 

    

        
       

         
        

 

If we choose p(s) as 

        
                        

that is, choose the zeros   –          –    such that, together with   , the 

numerator polynomial      is equal to the sum of the last three terms of the 
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denominator polynomial then the system will exhibit no steady-state errors in 

response to the step input, ramp input, and acceleration input. 

Requirement Placed on System Response Characteristics 

Suppose that it is desired that the maximum overshoot in the response to the unit-

step reference input be between arbitrarily selected upper and lower limits for 

example, 2%<maximum overshoot <10% where we choose the lower limit to be 

slightly above zero to avoid having over damped systems. The smaller the upper 

limit, the harder it is to determine the coefficient a‘s. In some cases, no 

combination of the a‘s may exist to satisfy the specification, so we must allow a 

higher upper limit for the maximum overshoot. We use MATLAB to search at 

least one set of the a‘s to satisfy the specification. As a practical computational 

matter, instead of searching for the a‘s, we try to obtain acceptable closed-loop 

poles by searching a reasonable region in the left-half s plane for each closed-loop 

pole. Once we determine all closed-loop poles, then all coefficients a n –1, p   , 

   will be determined. 

Determination of Gc2  

Now that the coefficients of the transfer function           are all known and 

          is given by 

    

    
 

   
        

        
       

         
        

 

 

    

    
    

    

    
 

 
         

                 
 

 
         

        
       

         
        

 

Since Gc1is a PID controller and is given by 

    
          

 

 

 

    
 

           can be written as 
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Therefore, we choose 

                                        

so that  

    
          

 

  

 

    
 

The response of this system to the unit-step reference input can be made to 

exhibit the maximum overshoot between the chosen upper and lower limits, such 

as     maximum overshoot       . 

The response of the system to the ramp reference input or acceleration reference 

input can be made to exhibit no steady-state error. If we wish to further shorten 

the settling time, then we need to allow a larger maximum overshoot for example, 

   maximum overshoot       . The controller     can now be determined  

        
        

 

 

    
 

we have  

    *
        

 
 

          
 

  
+

 

    
 

 
                         

 

  

 

    
 

Steady-State Errors 

Consider the system shown in Figure blew. The closed-loop transfer function is 

    

    
 

    

      
 

 

Figure 4-13 Control system  
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The transfer function between the error signal      and the input signal      
    

    
   

    

    
 

 

      
 

Where the error      is the difference between the input signal and the output 

signal. The final-value theorem provides a convenient way to find the steady-state 

performance of a stable system. 

Since      is 

     
 

      
     

The steady-state error is 

                                 

     

      
 

The static error constants defined in the following are figures of merit of control 

systems. The higher the constants, the smaller the steady-state error. In a given 

system, the output may be the position, velocity, pressure, temperature, or the 

like. The physical form of the output, however, is immaterial to the present 

analysis. Therefore, in what follows, we shall call the output position, the rate of 

change of the output "velocity," and so on. This means that in a temperature 

control system "position" represents the output temperature, "velocity" represents 

the rate of change of the output temperature, and so on. 

Static Position Error Constant    

The steady-state error of the system for a unit-step input is 

          

 

      

 

 
 

 
 

      
 

The static position error constant KP is defined by 

                   

Thus, the steady-state error in terms of the static position error constant K, is 

given by 
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For a type 0 system,                  
               

              
 

For a type 1or higher system   

     
               

                
   

Hence, for a type 0 system, the static position error constant    is finite, while for 

a type1or higher system,    is infinite. 

For a unit-step input, the steady-state error    may be summarized as follows: 

    
 

   
  for type 0 systems 

      for type 1 or higher system 

From the foregoing analysis, it is seen that the response of a feedback control 

system to a step input involves a steady-state error if there is no integration in the 

feed forward path.(If small errors for step inputs can be tolerated, then a type 0 

system may be permissible, provided that the gain   is sufficiently large. If the 

gain   is too large, however, it is difficult to obtain reasonable relative stability.) 

If zero steady-state error for a step input is desired, the type of the system must be 

one or higher. 

Static Velocity Error Constant    

The steady-state error of the system with a unit-ramp input is given by 

          

 

      

 

  
 

       

 

     
 

The static velocity error constant Kv is defined by 

               

Thus, the steady-state error in terms of the static velocity error constant    is 

given by 
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For a type 1system, 

         

                  

               
   

 

Figure 4-14 Response of a type 1unity-feedbacksystem to a ramp input. 

For a type 2 or higher system 

         

                  

                
   

The steady-state error     for the unit-ramp input can be summarized as follows 

    
 

  
   

    
 

  
 

 

 
 

    
 

  
   

Static Acceleration Error Constant    

The steady-state error of the system with a unit-parabolic input (acceleration 

input), which is defined by 

     
  

 
                      

                                      



  

143 
 

          

 

      

 

  
 

 
 

       
     

 

The static acceleration error constant    is defined by the equation 

          
      

The steady-state error is the 

    
 

  
 

Note that the acceleration error, the steady-state error due to a parabolic input, is 

an error in position. The values of    are obtained as follows: 

For a type 0 system 

         

                  

              
   

For a type 1 system, 

         

                  

               
   

For a type 2 system, 

         

                  

                
   

For a type 3 or higher system, 

         

                  

                
   

Thus, the steady-state error for the unit parabolic input is 

    
 

  
 

Note that both type 0 and type 1systems are incapable of following a parabolic 

input in the steady state. The type 2 system with unity feedback can follow a 

parabolic input with a finite error signal. 
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Chapter 5 

PID controller Design 

Introduction 5-1 

This chapter describes methods for finding parameters of a PID controller which  

is  a  special case  of the  problem  of  control  system  design that  was  discussed 

in this Chapter. Design  of PID  controllers  differs  from  the  general  design 

problem  because  the  controller  complexity  is  restricted.  The general  design 

methods  give  a  controller  with  a  complexity  that  matches the  process model 

To  obtain  a  controller  with  restricted  complexity  we  can  either  simplify  the 

process models  so that  the  design  gives  a  PID  controller,  or  we  can  design  

a controller  for  a  complex  model  and  approximate  it  with  a  PID  controller.  

Another  reason  why  special  design  methods  for  PID  controllers  emerged  is  

the desire  to  have  simple  design  methods  that  can  be  used  by  persons  with  

poor knowledge  of control.  The  situation  has  changed  substantially  with  the  

advent of tuning  tools  and  automatic  tuners,  which  have made it  possible  to  

improve the process  knowledge‘s and  permitted  the  use of  more  extensive  

calculations This  has  brought  design  of PID  controllers  closer to  the  

mainstream  of control systems design. 

5-2 Root Locus analysis  

The root locus method provides a quick means of predicting the closed-loop 

behavior of a system based on its open-loop poles and zeros. The method is based 

on the properties of the closed-loop characteristic equation 

                                                                                              

Where the gain   is a design parameter and L(s) is the loop gain of the system. 

We assume a loop gain of the form 

     
∏       

  
   

∏       
  

   

                                                                              

Where                    are the open-loop system zeros and    
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               are the open-loop system poles. It is required to determine the 

loci of the closed loop poles of the system (root loci) as K varies between zero 

and infinity.1 Because of the relationship between pole locations and the time 

response, this gives preview of the closed-loop system behavior for different K. 

The complex equality is equivalent to the two real equalities 

1- Magnitude condition   |    |      

2-  Angle condition                                     

Using the preceding conditions, the following rules for sketching root loci can be 

derived: 

3- The number of root locus branches is equal to the number of open-loop 

poles of  L(s). 

4- The root locus branches start at the open-loop poles and end at the open loop 

zeros or at infinity. 

5- The real axis root loci have an odd number of poles plus zeros to their 

right. 

6- The branches going to infinity asymptotically approach the straight lines 

defined by the angle 

   
           

     
                                                                     

and the intercept 

   
∑   

  

   
 ∑   

  
   

     
 

7- Breakaway points (points of departure from the real axis) correspond to local 

maxima of K, whereas break-in points (points of arrival at the real axis) 

correspond to local minima of K. 

8- The angle of departure from a complex pole pn is given by 

    ∑          

    

   

 ∑       

  

   

                                  

The angle of arrival at a complex zero is similarly defined. 
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Example 5.1 

Sketch the root locus plots for the loop gains 

     
 

          
 

     
 

               
 

     
   

          
 

Comment on the effect of adding a pole or a zero to the loop gain. 

Solution 

The root loci for the three loop gains as obtained using MATLAB are shown in 

blew .We now discuss how these plots can be sketched using root locus sketching 

rules. 

 

Figure 5-1 Root locus for three loop gain 
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1- Using rule 1, the function has two root locus branches. By rule 2, the branches 

start at −1 and −3 and go to infinity. By rule 3, the real axis locus is between (−1) 

and (−3). Rule 4 gives the asymptote angles and the intercept. To find the 

breakaway point using Rule 5, we express real K using the characteristic equation 

as we then differentiate with respect to s and equate to zero for a maximum to 

obtain 

   
           

     
                          

= ± 90, ± 270 

and the intercept             
    

 
    

To find the breakaway point using Rule 5, we express real   using the 

characteristic equation as 

                         

We then differentiate with respect to   and equate to zero for a maximum to 

obtain 

 
  

  
        

Hence, the breakaway point is at      . This corresponds to a maximum of 

  because the second derivative is equal to −2 (negative). It can be easily shown 
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that for any system with only two real axis poles, the breakaway point is midway 

between the two poles. 

2. The root locus has three branches, with each branch starting at one of the open-

loop poles (−1, −3, −5). The real axis loci are between −1 and −3 and to the left of 

−5.The branches all go to infinity, with one branch remaining on the negative real 

axis and the other two breaking away. The breakaway point is given by the 

maximum of the real gain   Differentiating gives which yields    

                   The first value is the actual breakaway point because it lies 

on the real axis locus between the poles and −1 and −3. The second value 

corresponds to a negative gain value and is therefore inadmissible. The gain at the 

breakaway point can be evaluated from the magnitude condition and is given by 

                                                

The asymptotes are defined by the angles 

   
           

     
                          

and the intercept             
      

 
    

The closed-loop characteristic equation corresponds to the Routh table 

                        

                                

            
     

 
             

                        

Thus, at         , a zero row results. This value defines the auxiliary equation 

          

Thus, the intersection with the   -axis is          rad/s. 

3. The root locus has two branches as in (1), but now one of the branches ends at 

the zero. From the characteristic equation, the gain is given by 

   
          

   
 

Differentiating gives 
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                                           = 0 

Which yields                       the first value is the breakaway point 

because it lies between the poles, whereas the second value is to the left of the 

zero and corresponds to the break-in point. The second derivative 

   

   
  

                          

      
 

 
   

      
 

5-3 Root Locus Using MATLAB 

While the above rules together allow the sketching of root loci for any loop gain, 

it is often sufficient to use a subset of these rules to obtain the root loci. For 

higher-order or more complex situations, it is easier to use a CAD tool like 

MATLAB. These packages do not actually use root locus sketching rules. Instead 

they numerically solve for the roots of the characteristic equations    is varied in 

a given range and then display the root loci. The MATLAB command to obtain 

root locus plots is ―rlocus‖.  

 Example 5-2 

Obtain the root locus of the system 

     
   

        
                                                    

using MATLAB enter 

>> g = tf ([1, 5], [1, 2, 10]); 

>>     rlocus (g); 
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Root locus 

 

Figure 5-3 Root locus 
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Example 5-3 

Plot the root locus for unity feedback closed loop system whose open loop 

transfer function is  

     
 

               
                                   

Solution  

Step (1) : find the poles and zeros  

                                       

Zeros =0 

Step (2) : a asymptotes           
∑      ∑     

   
 

         

   
 

  

 
       

 such n number of poles , m number of zeros 

Step (3) : angle of asymptotes   
         

   
     such           

If     
   

 
     

If     
     

 
      

If     
     

 
      

If     
     

 
      

 

Step (4) : Break away point 

Characteristics equations               

    
 

               
      

 

Or  
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   [              ] 

   

   
  [            ] 

Now we set                         
   

   
   

 [            ]    

The breakaway point approximated         

Step (5); To find out imaginary axis erosive we have to form Routh‘s array 

 From equation   

                                                    

                                      

                                        

                  
  

 
                 

       
         

  
 

             

                                          

       

   

 
           

   

 
       

   

 
 

Now Auxiliary equation  

 
  

 
           

   

  
 

   

  

   

  
 

  

 
 

   
  

 
             

 

√ 
          

Step (6) : Angle of departure  
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Root locus Design Specifications and the Effect of Gain Variation 

The objective of control system design is to construct a system that has a 

desirable response to standard inputs. A desirable transient response is one that is 

sufficiently fast without excessive oscillations. A desirable steady-state response 

is one that follows the desired output with sufficient accuracy. In terms of the 

response to a unit step input, the transient response is characterized by the 

following criteria: 

1. Time constant t. Time required to  reach about     of the final value. 

2. Rise time Tr. Time to go from             of the final value. 

3. Percentage overshoot       

   
                        

            
                        

4. Peak time   . Time to first peak of an oscillatory response. 

5. Settling time   . Time after which the oscillatory response remains 

with in a specified percentage (usually 2 percent) of the final value. Clearly, the 

percentage overshoot and the peak time are intended for use with an oscillatory 

response (i.e., for a system with at least one pair of complex conjugate poles). For 

a single complex conjugate pair, these criteria can be expressed in terms of the 

pole locations. 

Consider the second-order system 

     
  

 

    δ     
 
                                                          

Where  is the damping ratio and    is the undamped natural frequency. Then 

criteria 3 through 5 are given by 
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      δ √  δ
      

    
 

  
 

 

  √  δ
 

 

    
 

δ  
 

 The damping ratio δ is an indicator of the oscillatory natureof the response, with 

excessive oscillations occurring at low δ values. Hence, δ isused as a measure of 

the relative stability of the system. Hence   , is used as a measure of speed of 

response. For higher-order systems, these measures can provide approximate 

answers if the time response is dominated by a single pair of complex conjugate 

poles. This occurs if additional poles and zeros are far in the left half plane or 

almost cancel. For systems with zeros, the percentage overshoot is higher than 

predicted, unless the zero is located far in the LHP or almost cancels with a pole. 

However, are always used in design because of their simplicity. Thus, the design 

process reduces to the selection of pole locations and the corresponding behavior 

in the time domain. The root locus summarizes information on the time response 

of a closed-loop system as dictated by the pole locations in a single plot.  

5.4 Root Locus Design 

Laplace transformation of a time function yields a function of the complex 

variable s that contains information about the transformed time function. We can 

therefore use the poles of the s-domain function to characterize the behavior of 

the time function without inverse transformation. Shows pole locations in the s-

domain and the associated time functions. Real poles are associated with an 

exponential time response that decays for LHP poles and increases for RHP 

poles. The magnitude of the pole determines the rate of exponential change.  

A pole at the origin is associated with a unit step. Complex conjugate poles are 

associated with an oscillatory response that decays exponentially for LHP poles 

and increases exponentially for RHP poles. The real part of the pole determines 

the rate of exponential change, and the imaginary part determines the frequency 
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of oscillations. Imaginary axis poles are associated with sustained oscillations. 

The objective of control system design in the s-domain is to indirectly select a 

desirable time response for the system through the selection of closed-loop pole 

locations. The simplest means of shifting the system poles is through the use of 

an amplifier or proportional controller. If this fails, then the pole locations can be 

more drastically altered by adding a dynamic controller with its own open-loop 

poles and zeros. Adding a zero to the system allows the improvement of its time 

response because it pulls the root locus into the LHP. Adding a pole at the origin 

increases the type number of the system and reduces its steady-state error but may 

adversely affect the transient response. If an improvement of both transient and 

steady-state performance is required, then it may be necessary to add two zeros as 

well as a pole at the origin. At times, more complex controllers may be needed to 

achieve the desired design objectives. The controller could be added in the 

forward path, in the feedback path, or in an inner loop. A prefilter could also be 

added before the control loop to allow more freedom in design. Several 

controllers could be used simultaneously, if necessary, to meet all the design 

specifications. Examples of this control configuration. In this section, we review 

the design of analog controllers. We restrict the discussion to proportional (P), 

proportional-derivative (PD), proportional-integral (PI), and proportional-

integral-derivative (PID) control.  

Proportional Control 

Gain adjustment or proportional control allows the selection of closed-loop pole 

locations from among the poles given by the root locus plot of the system loop 

gain. For lower-order systems, it is possible to design proportional control 

systems analytically, but a sketch of the root locus is still helpful in the design 

process, as seen from the following example. 

 

 

 

 



  

156 
 

Example 5-4 

A position control system with load angular position as output and motor 

armature voltage as input consists of an armature controlled DC motor driven by 

a power amplifier together with a gear train. The overall transfer function of the 

system is 

     
 

      
                                                                

Design a proportional controller for the system to obtain 

1. A specified damping ratio  

2. A specified undamped natural frequency    

Solution 

The root locus remains in the LHP for all positive gain values. The closed-loop 

characteristic equation of the system is given by 

             δ      
                                 

Equating coefficients gives 

   δ              
  

Which can be solved to yield 

    √   ,     δ  
 

  √ 
  ,      

Clearly with one free parameter either or   can be selected, but not both. We 

now select a gain value that satisfies the design specifications. 

1. If  is given and p is known, then the gain of the system and its undamped 

natural frequency are obtained from the equations 

   
 

 δ
                      

 

 δ
 

2. If    is given and p is known, then the gain of the system and its damping ratio 

are obtained from the equations 

                                 
 δ  
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PD Control 

As seen from Example above, adding a zero to the loop gain improves the time 

response in the system. Adding a zero is accomplished using a cascade or 

feedback controller of the form 

                                                              

      ⁄  

This is known as a proportional-derivative, or PD, controller. The derivative term 

is only approximately realizable and is also undesirable because differentiating 

noisy input results in large errors. However, if the derivative of the output is 

measured, an equivalent controller is obtained without differentiation. Thus, PD 

compensation is often feasible in practice. The design of PD controllers depends 

on the specifications given for the closed loop system and on whether a feedback 

or cascade controller is used. For a cascade controller, the system block diagram 

was shown in Figure (a) and the closed-loop transfer function is of the form 

       
        

          
                                                      

 

 
           

                
 

Where       and      are the numerator and denominator of the open-loop gain, 

respectively. Pole-zero cancellation occurs if the loop gain has a pole at       In the 

absence of pole-zero cancellation, the closed-loop system has a zero at      , which 

may drastically alter the time response of the system. In general, the zero results in 

greater percentage overshoot. In figure above shows feedback compensation including 

a preamplifier in cascade with the feedback loop and an amplifier in the forward path. 

We show that both amplifiers are often needed. The closed-loop transfer function is 
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Figure 5-4Block diagram of a PD feedback compensated system 

Example 5-5 

Design a PD controller for the type 1 system described 

     
 

      
                                                                       

 

to meet the following specifications: 

1. Specified  and    

2. Specified and steady-state error       due to a ramp input 

Consider both cascade and feedback compensation, and compare them using a 

numerical example. 

Solution 

The root locus of the PD-compensated system is of the form of figure above. This 

shows that the system gain can be increased with no fear of instability. With a PD 

controller the closed-loop characteristic equation is of the form 

                                                       

    δ      
    

Where        and        for feedback compensation 

Equating coefficients gives the equations 

     
             δ   

1. In this case, there is no difference between (K a) in cascade and in feedback 

compensation. But the feedback case requires a preamplifier with the correct gain 

to yield zero steady-state error due to unit step. We examine the steady-state error 

in part 2. In either case, solving for K and a gives 
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    δ      
  

 

 δ    
 

2. For cascade compensation, the velocity error constant of the system is 

   
  

 
 

   

     
                                                                   

The undamped natural frequency is fixed at 

   √   √    

Solving for K and a gives 

   δ√      

  
   

 √     
 

For feedback compensation with preamplifier gain    and cascade amplifier gain 

  , the error is given by 

              [  
    

            
]                  

     
                 

            
 

Using the final value theorem gives the steady-state error due to a unit ramp input 

as 

             

 

  
                 

            
                  

This error is infinite unless the amplifier gain is selected such that         . 

The steady state error is then given by 

      
   

  
     

The steady-state error   ∞  is simply the percentage error divided by 100. 

Hence, using the equations governing the closed-loop characteristic equation 

   
   

  ∞ 
 

 δ  

  ∞ 
   

  

The undamped natural frequency is fixed at 
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 δ

    
 

Then solving for K and a we obtain 

  
 δ

    
   

  
 δ 

      δ        
 

Note that, unlike cascade compensation,   can be freely selected if the steady-

stateerror is specified and  is free. To further compare cascade and feedback 

compensation, we consider the system with the pole p = 4, and require  = 0.7 

and       rad/s for part 

1. These values give           and        . In cascade compensation, 

gives the closed-loop transfer function 

    
        

          
                                                       

For feedback compensation, amplifier gains are selected such that the numerator 

is equal to 100 for unity steady-state output due to unit step input. For example, 

one may select 

                 

                     

Substituting in above gives the closed-loop transfer function 

    
   

          
                      

Therefore, its effect is significant, and the PO increases to over 10% with a faster 

response. For part 2 with       , we specify = 0.7, and a steady-state error of 

4%. Cascade compensation requires              . These are identical to the 

values of part (i) and correspond to an undamped natural frequency       

rad/s. For feedback compensation we obtain      ,           ,  gives the 

closed-loop transfer function 
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With       rad/s. 

The PO for the feedback-compensated case is still 4.6%. For cascade compensation, 

the PO is higher due to the presence of the zero that is close to the complex 

conjugate poles. Having demonstrated the differences between cascade and 

feedback compensation. The angle contribution required from the controller for a 

desired closed-loop pole location      is 

               

                        

Where      is the open-loop gain with numerator      and denominator     . 

Fora PD controller, the controller angle is simply the angle of the zero at the 

desired pole location. Applying the angle condition at the desired closed-loop 

location, it can be shown that the zero location is given by 

  
  

     
 δ   

Example 5-6  

Using a CAD package, design a PD controller for the type 1 position control 

system of example with transfer function 

                                   
 

      
                                       

to meet the following specifications: 

1.   = 0.7 and             .    0.7 and 4% steady-state error due to a 

unit ramp input 

2. The specified steady-state error gives 

   
   

     
 

   

  
    

  

 
                        

The closed-loop characteristic equation of the PD-compensated system is given 

by 
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Let K vary with a so that their product    remains equal to 100; that the 

characteristic equation be rewritten as 

   
 

         
   

The desired location is at the intersection of the root locus with the  = 0.7 radial 

line. The corresponding gain value is       , which yields       .We obtain 

the value of K using the MATLAB commands  

>> g = tf([1, 0], [1, 4, 100]); rlocus(g) 

The time responses of the two designs are identical and were obtained earlier as 

the cascade-compensated responses of figure blew, respectively. 
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PI Control 

Increasing the type number of the system drastically improves its steady-state 

response. If an integral controller is added to the system, its type number is 

increased by one but its transient response deteriorates or the system becomes 

unstable. If a proportional control term is added to the integral control, the 

controller has a pole and a zero. The transfer function of the proportional-integral 

(PI) controller is 

        
  

 
   

    

 
               

  

  
                                

and is used in cascade compensation. An integral term in the feedback path is 

equivalent to a differentiator in the forward path and is therefore undesirable. PI 

design for a plant transfer function G(s) can be viewed as PD design for the plant 

G(s)/s. Thus, can be used for PI design. However, a better design is often possible 

by placing the controller zero close to the pole at the origin so that the controller 

pole and zero ―almost cancel.‖ An almost canceling pole-zero pair has a 

negligible effect on the time response. Thus, the PI controller results in a small 

deterioration in the transient response with a significant improvement in the 

steady-state error. The following procedure can be used for PI controller design. 

Example 5-7 

Plot the root loci for the system shown in Figure 5-5 

 

Figure 5-5 control system 
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Example 5-8 

Design a controller for the position control system 

     
 

       
                                                  

to perfectly track a ramp input and have a dominant pair with a damping ratio of 

0.7 and an undamped natural frequency of 4 rad/s. 

Solution 

Design 1 

Apply Procedure 3.1to the modified plant 
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This plant is unstable for all gains as seen from its root locus plot. The design can 

also be obtained analytically by writing the closed-loop characteristic polynomial 

as 

                        δ     
  

       δ    
    δ      

       
  

Then equating coefficients gives 

      δ                    

      δ        [             ]        

  
   

 

 
 

      

     
       

PID Control 

If both the transient and steady-state response of the system must be improved, 

then neither a PI nor a PD controller may meet the desired specifications. Adding 

a zero (PD) may improve the transient response but does not increase the type 

number of the system. Adding a pole at the origin increases the type number but 

may yield an unsatisfactory time response even if one zero is also added. With a 

Proportional-integral-derivative (PID) controller, two zeros and a pole at the 

origin are added. This both increases the type number and allows satisfactory 

reshaping of the root locus. The transfer function of a PID controller is given by 

        
  

 
       

    δ     
 

 
                       

 δ       ⁄           
  

  

  
 

Where   ,    , and   are the proportional, integral, and derivative gain, 

respectively. The zeros of the controller can be real or complex conjugate, 

allowing the cancellation of real or complex conjugate LHP poles if necessary. In 

some cases, good design can be obtained by canceling the pole closest to the 

imaginary axis.  
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Example 5-9 

Design a PID controller for an armature-controlled DC motor with transfer 

function 

     
 

            
                                                                              

To obtain zero steady-state error due to ramp, a damping ratio of 0.7, and an 

undamped   natural frequency of 4 rad/s. 

Solution 

Canceling the pole at −1 with a zero and adding an integrator yields the transfer 

function 

     
 

        
 

This is identical to the transfer function. Hence, the overall PID controller is 

given by 

       
            

 
 

This design is henceforth referred to as Design 1. 

A second design is obtained by first selecting a PD controller to meet the transient 

response specifications. We seek an undamped natural frequency of 5 rad/s in 

anticipation of the effect of adding PI control.  

The gain is reduced to 40, and the controller transfer function for Design 2 is 

       
                  

 
 

Example 5-10 

Design a PID controller to obtain zero steady-state error due to step, a damping 

ratio of 0.7, and an undamped natural frequency of at least 4 rad/s for the transfer 

function  
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Solution 

The system has a pair of complex conjugate poles, the transfer function 

     
 

       
 

The root locus of the system, and we can increase the gain without fear of 

instability. The closed-loop characteristic equation of the compensated system 

with gain   is 

           

we observe that for a damping ratio of 0.7 the undamped natural frequency is 

      δ                  ⁄⁄  

This meets the design specifications. The corresponding gain is 51.02, and the 

PID controller is given by 

          
        

 
 

In practice, pole-zero cancellation may not occur, but near cancellation is 

sufficient to obtain a satisfactory time response. 

Example 5-11 

Consider a third-order plant model given by 

     
 

        
                                                                                

 If a proportional control strategy is selected, i.e.,      and       in the PID 

control strategy, for different values of   , the closed-loop responses of the 

system can be obtained using the following MATLAB statements 

>>        [       ]   

For     [         ]                                   hold on; end 

figure;          [    ]  
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(a) closed-loop step response 

 

 

b)  Root locus 
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Chapter 6 

Results and Discussion  

Model -1 

For the system shown determine      and      when it is excited by unit step input. 

If for the same system, PD controller having constant          ⁄   is used in 

forward path determine new values of damping ratio,      and       

 

Without controller  

     
   

       
                      

    

    
 

   

          
 

  
                                   

 δ                  

     √  δ
                    

        

 
 δ

√  δ
 

        

      
 

δ  
           

With controller  
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*  

 
  

+    

       
 

           

       
                          

   
    

    
 

          
       

  
          
       

 
          

                
 

 
          

             
  

  
                              

 δ              δ  
     

    
        

 δ is improve ,      √  δ
    √                           

       

 
 δ

√  δ 

             

      
 

δ  
            

In this model we find different in behavior of the system with controller and 

without controller. In controller the damping ratio is improve and overshoot 

decreased to 2.3 from 9.47.    

Model -2 

 The open loop transfer function of a control system is given by  

     
 

           
                                                        

Obtain the gain of proportional controller such that the damping ratio will be 

equal to 0.6? 
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First we find the poles &zeros, Poles 0, -1.-4 & zeros 0 

Then asymptote 

∑      ∑     

   
 

           

   
 

  

 
                         

Angle of asymptote 

   
       

   
 

Such that   n= number of poles ,      m = number of  zeros  

  |   |    |   |      

        

If                          If            

Break away point at -0.46 ,   damping ratio is 0.6 

                 

  
            

 
      

The proportional controller is adding gain to the system its leads to improve the 

time response and reduces the error.    

Model -3 

Suppose the error show in fig blew is applied to a PD controller 

with         and       .2 sec with             . 

 

The output PD controller is  
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 It is necessary to obtain output response 

          

                          slop =2 

              

                               

Thus there is an instantaneous change of               produced by this 

error in the output at t = 0 

Model-4 

An integral controller is used for temperature control within a range 40 – 60
0
C    

The set point is 48
0
C. The controller output is initially 12% when error is zero. 

The integral constant           controller output per second per percentage 

error. If the temperature increases to 54
0
 C, calculate the controller output after 2 

sec for a constant error. 

For integral controller  

       ∫                           

                             

            
   

         
     

Now r = set point = 48
0
 C, b = Actual temperature = 54

0
C 

                       

   
     

     
           

∫            as error is constant 
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The controller change output corresponds to proportional plus integral of the error 

signal, in this model we use PI controller to eliminate the error. 

Model -5 

Consider the control system shown in figure blew: Draw root locus                   

(a)- determine the location of dominant poles to have critically damping response 

then find the time constant the value of K  (b)  Gc(s) is PD controller, design for 

specification, damping ratio 0.707and time constant 0.5 sec.  

 

 Control system 

First we find the poles &zeros, Poles 0, -2.-5 & zeros 0 

Asymptote 

∑      ∑     

   
 

           

   
 

  

 
       

Angle of asymptote 

   
       

   
 

Such that   n= number of poles ,      m = number of  zeros  

  |   |    |   |      

        

If                          If            

Break away point at -0.8804 

Characteristic equation                             
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The closed-loop characteristic equation corresponds to the Routh table  

                            

                                          

                                   

                              

       

                   

The critically damping if  δ                         

  
                        

 
      

  
 

      
       

For δ                   
 

δ  
 

 

      
      

                                 

The PD controller design  

δ   
 

 
 

 

   
   

                  

Then  

      
 

 
     

                

To find the angle  
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(√ )   (√  )

√    
     

       yield Substituting the value of  

  

  
     

  

  
            

          
         

           
 

 

PDcontroller is adding azero to the system its leading to the desired specification 

and improve the transeint response.  

Model-6 

Find the value of paramerter of PID controller using matlab of the system  
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This method is easy and fast to find the parameter of PID controller compare with 

other method. 

Model-7 

Consider the system has transfer function  
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Use Simulink? 
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In this model we find that when we add parameter of PID controller (          

then the system is stable, in case non adding the parameter to the system there is 

oscillations.  

 

 

 

 

 

 

 

  



  

182 
 

Conclusion 

If both the transient and steady-state response of the system must be improved, 

then neither a PI nor a PD controller may meet the desired specifications. Adding 

a zero (PD) may improve the transient response but does not increase the type 

number of the system. Adding a pole at the origin increases the type number but 

may yield an unsatisfactory time response even if one zero is also added. With a 

Proportional-integral-derivative (PID) controller, two zeros and a pole at the 

origin are added. These both increase the type number of the system. 
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