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ABSTRACT

This study is concerned with derivation of quantum relation in a curved
space —time . The importance of this study emerges from the use of energy and
momentum in many applications. This study use mathematical derivation trend.
The research problem is related to the lack of suitable consistent relations for
qguantum eigen equations in a curved space , beside lack of relations for the
special quantum evolution in the interaction model. Therefore this research
aims to use the expression of time and distance in a curved space time to find a
useful expression of energy and momentum Eigen equations in a curved space
.These relation are used to derive the corresponding relation in the Euclidean
space . The corresponding Energy —momentum relation for both curved and
Euclidian space gives a relation between energy and momentum typical to that
obtained from the energy and momentum Eigen equation . The expression of
mass in a curved space similar to that of the generalized relativity is also
found.

Using generalized special relativity a useful expression of the perturbed
momentum is found . This expression is used to describe the behavior of the
guantum system in the interaction model . It is found that the spatial evolution
of the Schrodinger equation in the interaction model is similar to that of time
evolution , where the time differential is replaced by the space one, and the
Hamiltonian by the momentum operator . The same holds for the unitary
operator , where the time integral is replaced by the space one and the
Hamiltonian with the momentum operator .

The unitary operator in the Heisenberg picture and the spatial evolution of
the quantum system was found by using simple mathematics and the ordinary
laws of differentiation and integration . This expression describes successfully
the spatial evolution of the quantum operator . The metrics in the curved space
is found to be related to the Lorentz transformation coefficient .
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Chapter one

Introduction

(1.1) History Of Quantum Mechanics (Q.M)

Quantum theory is the theory that is concerned with atomic world
based on the radical theoretical proposals that were not based on
accepted classical physics . The Quantum mechanics was created between
1900 and 1925 . Atthe end of 1900, Max . Planck presented a new
form of the black body radiation spectral distribution Law , based
on a revolutionary hypothesis . He postulated that the energy of an
oscillator of given frequency cannot take arbitrary values between zero
and infinity , but can only take on the discrete values . However , it
was not long before the quantum concept was used to explain other
phenomena . Indeed, in 1905 , A . Einstein was able to interpret the
photoelectric effect by introducing the idea of photons, or light quanta
. And in 1907 he used plank formula for the average energy of an
oscillator to derive the law of Dulongand Patitconcerning the specific
heat of solids . subsequently N. Bohr in 1913 was able to invoke the
idea of quantisation of atomic energy levels to explin the existence of
line spectra . [1,2,3]

In 1924 , L . debrolie mode a great unifying , but speculative ,
hypothesis ,that just as radiation has particle —like properties, electrons
and other material particles possess wave-like properties . The particle
properties of electromagnetic waves are also demonstrated in the
Compton Effect and using the momentum and energy .

In 1924 de Broglie suggests particles can behave as waves in 1925. Thus
the atomic world particles have dual particle - wave nature  Werner
Heisenberg introduces Matrix Mechanics to consider observable quantities .
He used matrices , which were not that familiar at the time to describe the
dual nature of atomic particles .[4,5]

Erwin Schrodinger proposes wave mechanics , he used waves , which is
more familiar to scientists at the time . Heisenberg’s and Schrédinger’s
formulations were competing Eventually, Schrédinger showed they were
equivalent; different descriptions which produced the same predictions . Later
on the so called interaction picture is introduced to simplify solving problems of
quantum systems .

Applied quantum mechanics is widely in spectrum , For example spectral
techniques are used in mineral exploration as well as identifying
Chemical compounds . laser is widely wused in telecommunication ,
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computer , and medicine .These techniques were based on quantum physics .
Atoms are building block of matter . Atoms themselves consist of elementary
particles like electrons, protons and neutrons . The behavior of atoms described
by quantum lows . The one which is biased the classical Newtonian energy —
momentum relationship is known as Schrodinger equation [6]. That who riles
on relativistic energy —momentum relation is Known as Klien — Gordan and
Dirac relativistic quantum equations [7]. Fortunately a quantum law
successfully describes a wade veriety of phenomena , like atomic spectra of
isolated atoms beside the spectra of some solids like semi-conductor (SC).
However quantum mechanics (gm) suffer from noticeable setbacks .For instant
there is no quantum gravity low that moreover the unification of force under the
umbrella of quantum low is so difficult within the framework of conventional
quantum lows [8]. Also the superconductivity behavior for high temperature
superconductors (HTSC) can hot be described easily and fully by the existing
models [9]. This forces many researchers to construct new models that modify
quantum lows to cure some of these defects [10,11]. These attempts encourages
to purpose quantum model that can help in finding quantum gravity equation .
This model was an expression of the wave function in a curved space to find
energy and momentum Eigen equation in a curved space .

Quantum laws are used to describe the behavior of atoms and elementary
particles . According to the time evolution there are three versions . The first
one is the Schrodinger picture in which the time evolution is described by the
wave function . The second one is the Heisenberg picture in which the time
evolution is described by the operator . The third representation is the so called
interaction representation in which the time evolution of the system is described
by the wave vector and the operator which is the interaction Hamiltonian
instead of the total Hamiltonian [3,12.13]

These versions succeeded in describing the time evolution but says nothing
about the spatial evaluation of the quantum system . This motivated some
authors to propose some models to cure this defect [14,15,16] .In one of them
the ordinary Schrodinger equation is developed to describe the behavior of the
system using the momentum operator [17]. In another approach the system by
using a perturbed momentum [18,19] . Different attempts were also be made to
make quantum laws more flexible in describing the quantum system [20,21].
This encourages to construct a new model to help in describing the spatial
evolution of the quantum system .

Quantum systems are described by operator and wave function . In the
Schrodinger representation the evolution of the quantum system is described by
the wave function . In the Heisenberg picture the evolution is described by
operator [22.2]. The change from the Schrodinger to the Heisenberg picture
time evolution is done by using mathematical transformation . Schrodinger
picture is needed for the probability distribution ,while the Heisenberg picture
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time evolution is needed for the quantum average of the physical quantity
[3,14]. This transformation is different from the Lorentz transformation which
aims to find the effect of motion and fields on the physical quantities[13,16].
The quantum system is described by these transformation services successfully .
However the spatial evolution of the quantum system is not fully supported
.Some attempts have been made to derive Heisenberg spatial evolution of the
quantum system [23, 24,25] but it needs to be done by another simple approach.

(1.2) Research problem

The research problem stems from the lack of useful expression for
quantum eigen equations in a curved space . Also the spatial evolution of the
quantum system in the interaction model dos not recognized .

(1.3) Literature review

A seminal paper published and one by M . Dirar recognises the effect
of friction by using Maxwell's equation [26] . Another attempts’ were
made by M . Mamoun based on harmonic oscillator expression for
energy is also mode to derive new Schrédinger equation[27] .

Different attempts were made to modify Schrodinger equation [28, 29, 30].
Some of them work in a curved space —time [31, 32, 33] . Some of these
attempts tries to describe quantum gravity [34, 35, 36] . While some are
concerned with bulk matter [37.38,39].

The paper published by Nilesh P.BARDE,(2015) derive Schrodinger equation
from wave —mechanics , Schrodinger time independent equation , classical
Hamilton —Jacobi equation [29]

The concept of time dependent Schrodinger equation (TDSE) is mostly
complex for advanced learners . It is shown that TDSE may be derived using
wave mechanics ,time independent equation , classical &Hamilton —Jacobi's
equation . similar attempts have bee done earlier by some researches . However
, this work provides a comprehensive , lucid and well derived derivation |,
derived using various approaches , which would make this article unique .

Another work was done to derive Schrodinger equation .In the work of
PRANAB RUDRA SARMA ,(2010), he derive Schrodinger equation from
Hamilton —Jacobi equation using uncertainty principle [30] .In deriving
Schrodinger's wave equation the momentum and energy of a particle are taken
to be operators acting on a wave function .Here one shows that the wave
equation can be directly derived from the classical Hamilton —Jacobi equation ,
if a basic uncertainty is assumed to be present in the momentum .In this
derivation one dose not have to assume the momentum and energy to be
operators .



The unitary operator in a curved space time was also tackled by some works.
The work done by C.FRONSDAL , determine unitary operator in a curved
space .He discuss only the case of constant curvature . Then operators of
angular and linear momentum exist , and we show that the interesting
irreducible unitary representations of the group of motions reduce very simply
to those of the inhomogeneous Lorentz group in limit of zero curvature[40].

In the paper of L.C.W. Jeronimus , (2012).Elementary particles can be
indentified with the unitary irreducible representations(UIR,S) of the isometry
group of a given space time . These (UIR,S)are labeled by the eigenvalues of
asimir operators of the isometry group and hence they represent invariant
physical properties of the elementary particles . These properties therefore
depend entirely on the space time background of the particle . To compare these
labels for different space time background , one can use the method of
contraction[41] . D.Aresnovic ,(2014) derived Lagrangian formulation of
quantum mechanical from Schrodinger equation . It is developed and illustrated
on eigenbasis of the Hamiltonian and in the coordinate representation . The
Lagrangian formulation of physically plausible quantum system results in a
wall defined second order equation on a real vector space . The Klein —Gordon
equation for areal field in shown to be the Lagrangian form of the corresponding
Schrodinger equation[42] .

Schrodinger and Dirac equation are also derived using new approach .In the
work done by Spyros Efthimiades ,he derived the Schrodinger and Dirac
equation from basic principles[43]. First we determine that each eigenfunction
of a bound particle is a specific superposition of plane wave states that fulfills
the averaged energy relation . The Schrodinger equation is derived to be the
condition the particle eigen function must satisfy , at each space -time point in
order to fulfill the averaged energy relation . The same approach is applied to
derive Dirac equation involving electromagnetic potentials .Effectively , the
Schrodinger and Dirac equation are space —time versions of the respective
averaged energy relations .

In the work of Steven Carlip , (2019) , gravity is asymptotically safe |,
operators will exhibit anomalous Scaling at the ultraviolet fixed point in a way
that makes the theory effectively two —dimensional .A number of independent
lines of evidence , based on different approaches to quantization , indicate a
similar short —distance dimensional reduction . The physical question of what
one means by "dimension” in quantum space time , and the possible
mechanisms that could explain the universality is shown in terms of curved
space quantization[44] .

Quantum gravity models are discussed by Giampiero Esposito , (2011). The
various commenting theories , e.g. string theory and loop quantum gravity ,
have still to be checked against observations .Classical and quantum
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foundations are necessary to study field —theory approaches to quantum gravity
.The passage from old to new unification in quantum field —theory ,needs
canonical quantum gravity , the use of functional integrals , the properties of
gravitational intentions , the use of spectral zeta-functions in the quantum theory
of the universe , Hawking radiation ,some theoretical achievements and some
key experimental issues [45 ].

A work was done by some anthers to derive Schrodinger equation using the
concept of amplitudes .K .Young and S. S. Tong , (2014) ,uses principle of
least action , is used to drive Schrodinger equation . The advantages of using the
action S over Newton's laws are explained , through examples using
generalized coordinates and bringing in the concepts of the lagrangian and the
Hamiltonian . Quantum amplitudes along a path are simply summed over all
possible paths leads to Schrodinger equation . The geodesic equation in general
relativity is also quickly sketched as a simple extension of the least action
principle [46].

Maxwell F. Parsons , (2017), uses Hubbard model to study exotic phases of
matter using strong correlations in quantum many —body systems. Quantum gas
microscopy affords the opportunity to study these correlations .Here one report
site—resolved observations of antiferromagnetic correlations in a two-
dimensional , Hubbard —region optical lattice and demonstrate the ability to
measure the spin —correlation function over any distance .One measure the in —
situ distributions of the particle density and magnetic correlations , extract
thermodynamic quantities from comparisons to theory ,and observe statistically
significant correlations over three lattice sites . The temperatures that reached
approach the limits of available numerical simulations . The direct access to
many-body physics at the single —particle level demonstrated by the results will
improve understanding of how the interplay of motion and magnetism gives rise
to new states of matter[37].

(1.4) Aim Of The Work

The aim of this work is to use momentum perturbation to find the
spatial evolution in the interaction model and Schrodinger equation in a curved
space-time . This is achieved by finding the momentum eigen equation in the
interaction picture and obtaining unitary operator. The Schrodinger equation in
a curved space is found from the form of the wave function and the coordinate
in a curved space.

(1.5) Thesis Lay Out :

The thesis consists of 4 chapters . Chapter one and two are devoted
for introduction and theoretical background . While chapter three and four are
concerned with contribution and results beside discussion and conclusion .



Chapter 2

Theoretical Background

(2.1) Introduction:

According to the Laws of quantum mechanics the state of motion of a
particle is specified by the wave function . The fundamental question is to
predict how the state of motion will evolve in time .

In guantum mechanics the equation of motion is the time-dependent
Schrodinger equation . the time-dependent Schrbédinger equation determines
the wave function at any other time .

(2.2) Planck Discovery :

In 1900 Planck discovered a formula for black body radiation that is in
complete agreement with experiment at all wave lengths. [47]

Planck 's analysis led to the curve shown is figure blow [48].

Intensity Classical theory

Experiment

v

Figure (2.2.1)

Figure (2.2.1) comparison of the experimental results with the curve
predicted by the Rayleigh Jeans classical model for the distribution of the
blackbody radiation [49, 50].

As Known the concept of quantization developed by Planck in 1900 the
quantization model assumes that the energy of light wave is present in bundles
of energy called photons , hence, the energy is said to be quantized . Any
quantity that appears in discrete bundles in side to be quantized , just as charge
and other properties are quantized.

According to Planck’s theory , the energy of photon is proportional to
frequency of electromagnetic wave .



E = hf (2.21)
Where E is the energy , f is frequency and h is plank constant .

It important to not that this theory retains some features of the particle
theory of the light .

Planck mode two bold and controversial assumption concerning the nature
of the oscillating molecules at the surface of the blackbody.

The molecules can have only discrete units of energy E,
E,, = nhf (2.2.2)
There n=1,2,3.....

Where n is a positive integer called a quantum number and f is
frequency of the vibration of the molecules . Because the energy of molecules
can have only discrete values given by equation (2.2.1) the energy is quantized ,
each discrete energy value represents a different quantum state .

The molecules emit or absorb energy in discrete plackets called photons.

The key points in Planck theory is radical a assumption of quantized
energy state . This development the birth of quantum theory when Planck
presented his theory , most scientists (include Planck) did not consider the
qguantum concept to be realistic . Hence , Planck and other continued to search
for a more rationale explanation of blackbody radiation . However , subsequent
development showed that a theory based on the quantum concept ( rather than
on classical concept ) had to be used to explain many other phenomena at
atomic [51,52].

(2.3) The Schrodinger equation :

The Schrodinger equation is the key equation of quantum
mechanics.

This second partial differential equation determines the spatial shape
and the temporal evolvement of wave function in a given potential and for a
given boundary conditions .

The one dimensional Schrodinger equation is used when the particle of
interest is confined to one spatial dimension nature of many semiconductor
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hetero structures, the Schrodinger equation is sufficient for most applications
[53].

To derive the one — dimensional Schrodinger equation , one starts with
the total energy equation (i,e) the sum of kinetic and potential energy V(x)

PZ
ot V(ix)=E (2.3.1)
Multiply both side by the wave function i gives

Ep =2+ vy (2.3.2)

Substitution of the dynamical variables by their quantum mechanical

operators which act on the wave function Y (x,t) , this yields the one-
dimensional time — dependent Schrodinger equation .

The operators were found by using the wave function of a free particle which is
given by
Y =4 pllkx—wt) — 4 e%(Px—Et)
Where
h
P=-= hk (2.3.3)

E =hf =ho (2.3.4)

k and w are the wave number and angular frequency respectively.
Differentiating Y w.r.tto t and x gives

. 0
lhat—Egl)

h2 02 p?
— == (2.3.5)

2m 0x?2

Thus substituting (2.3.5) in (2.3.2) gives Schrodinger equation.

hZ

B ) + V), t) = —2lyt) = Ep(nt)  (236)

2mdx

The left side of this equation can be written by using the Hamiltonian or
total energy operator .



h? a2
= _%E + V(X) (2.3.7)

T

By using the notation of the Hamiltonian operator the time-dependent
Schrodinger equation can be written as

Hy(x, t) = ———w(x ) (2.3.8)

Since the Schrodinger equation is partial differential equation , the product
method can be used to separate the equation in to spatial and temporal parts .

Y(x, t) = X()T (@) (2.3.9)
Where X (x) depends only on (x) and T(t) depend only on (t) .

Insertion of equation (2.3.9) into the Schrodinger equation one gets .
L AX(x) = —— 27t
X(x) ( ) T( t) ot ( )

—AX(x) = iiT( 0 (2.3.10)
€9) ()

The right side of this equation depends on (t) only , while the left side
depends on (x) because (x) and (t) are completely intendment variables.

The equation can be true if the both sides are constant .

ih 9T (¢t)
P— = constant

T(t) ot

T(t) = e (2.3.11)

Substitution this result into equation (2.3.9) yields to the time- dependent wave
function .
Y(x, t) = X(x)e ™ (2.3.12)
If E is real , then the wave function has amplitude X (x) and has a phase
_ipt
e n

One now consider the case where the potential V , is not a function of time
and where , according to classical mechanics , energy is conserved.
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If V is time independent one can apply the standard separation of
variables ,technique to the Schrodinger equation an in(2.3.9) , for the time
independent .

One get

~ 2 X + V)X () = EX(x) (23.13)

The solution of equation (2.3.13 ) depends on the particular form of V (x)
. The above equation is Known as the one — dimensional time —independent
Schrodinger equation .In the special case of free particle , the origin of

potential energy can be chosen so that V' (x) = 0 and asolution to (2.3.13) is
then

X(x) = Aeth* (2.3.14)

1/
Where K = (2mE /hz) ?and A is a constant . Thus the wave function has
the form ; (w = E/h) ;

P = Ae'lr—t) (2.3.15)

In the case of any closed system , therefore , we can obtain solutions to the
time- dependent Schrodinger equation corresponding to a given value of the
energy of the system by solving the appropriate time-independent phase factor
(2.3.11).

Provided the energy of the system is Known and remains constant (and it is
only this case which one shall be considering for the moment ) the phase factor
, T ,has no physical significance . In particular , one that the probability

distribution , 1|2, is now indentical to | X (x)|? , so that the normalization
condition becomes [54]

2 1X@)12 =1 (2.3.16)
Dirac Notation :

The physical state of the system represented in quantum mechanic by
elements of liner space ,Hilbert space , these elements are called state vector .
one can represent the stat vectors in different basics by mean of function
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expansion. This is analogous to specifying a Euclidean vector by components in
various coordinate system .

The manning of a vector is, independent of the coordinate system chooses
represents its components .

To free state vector from coordinate meaning Dirac introduced what was to
become an invaluable notation in quantum mechanics has denoted the state

vector 1 by what he called the Ket vector [3)) , its complex conjugate 1* by a
bra (1| and the scalar (inner) product (@, 1) by the a bra — Ket (@[) :

Y - ) (2.3.17)
P - Y (2.3.18)
@,¢) - (DY) . (2.3.19)

When a Ket (or bra) is multiplied by a complex number , one get also a Ket
(or bra).

In the wave mechanics one deal with wave functions Y (x,t) , but in the

more general formalism of quantum mechanics one deal with Ket vector ) .
for every Ket there exists a unique bra and vice versa . So that Ket represents

the system completely ,and hence 13) means knowing all than on classical
concepts had to be used to explain phenomena ate atomic level .[38]

(2.4) Klein — Gordon equation :

Schrodinger equation can not describes very fast particles which moves with
speed near to that of light [1] . This is since Schrodinger equation is derived
from classical Newtonian energy . To describe fast particles one must use
Einstein energy — momentum relation [55 ,56].

E? = P2C? + my2C* (2.4.1)
Multiply both side by 1 yields

E*y = P2C*Y + my2C*Y (2.4.2)
Using equation (2.3.3) yields

22 E*yY — h2vZy) = PXY (2.4.3)

Jat?
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A direct insertion of (2.4.3) in (2.4.2) gives

_hzaz_ll) — _Cthvzlp + 2C4l/)
otz Mo

Which is the Klein —Gordon equation .

(2.5) Dirac equation :

(2.4.4)

Klein — Gordon equation describes successfully spin less particles , but it
can not describe particles having spins [57,58]. This motivates to construct

linear energy —momentum relation in form
E=ca.P+ ffm,C?
Multiply both sides by 1) to get

EY = ca. Py + fm C*Y

Using equation (2.3.3) , yields

h =gy  lvp=ry
Jat i

Inserting (2.5.3) in (2.5.2) to get

o 0 h
lha—‘f = 20 VY + By
Which is the Dirac equation .

(2.6 ) Harmonic Oscillator :
The potential energy of the harmonic oscillator is given by [59]
_1, 2
V= > kx
Thus time independent Schrodinger equation takes the form

hZ 1
—— U+ -kx’u=Eu
2m 2

To simplify this equation , define y and « to satisfy
y=ax (%k)l =a

Thus inserting (2.6.3) in (2.6.2) yields

12
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U+ (A=9yDu=0 (2.6.4)

Where
2mE _ 2E
A= T he (2.6.5)
And
k = mw? (2.6.6)
For classical oscillator . Now try a solution
12
u=He 2’
p _1,2
U =[H—-yHle ?
; 5 ,q L2 , _12
U= |AH-H-yH|e? —y[H-yHle ?
z _12

=|f-2y-y2H-H|e? (2.6.7)
A direct substitution of (2.6.7) in (2.6.4) gives
H=2yA+(A—1DH=0 (2.6.8)
Consider now H to be in the form
H=Ya,y%5, H=Ysa,y*! A=Y s(s — 1ag ys2 (2.6.9)
Inserting (2.6.9) in (2.6.8) gives

Ys(s—Dasys?+X[A—1-2s]lagy* =0 (2.6.10)
Thus
(s +2)(s+Das+2y°+Y[A—1—2s]la;y* =0 (2.6.11)
Equating the coefficients of y* gives
(s+2)(s+Dagyp +[A—1—2s]la; =0
hence

_ [2s+1-1]

Us+2 = (o pory % (2.6.12)

13



For the wave function to be finite , the thus polynomial must have finite terms .

the lesttermis n.

Thus

H=Ya,y’ ,S=n

It follows that

a, #0 A1 =0 ,  Ap2 =0

Substitute (s = n) in (2.6.12) to get

_ [2n+1-1]
Unt2 = iDmez)

In view of equation (2.6.14) , one gets

_ [2n+1-2]
T (+)(n+2)

This requires

2n+1—-1=0

There fore

A=2n+1

Bearing in mind equation (2.6.5)
2E = 2n+ Dhow

Thus the energy of the harmonic oscillator is given by

E = (n+2)hw

(2.7) Hamiltonian formalizm Of quantum laws :

(2.7.1) Lagrange's and Hamilton's equation :

(2.6.13)

(2.6.14)

(2.6.15)

(2.6.16)

(2.6.17)

(2.6.18)

(2.6.19)

In this sec on one , considers tow reformulation of Newtonian

mechanics , the Lagrangian and the Hamiltonian formalism .

The first is naturally associated with configuration space , extended by
time . while the latter is the natural description for working in phase space .

14



Lagrange developed his approach in 1764 in study of the libration of the
moon but it is best thought of as general method of treating dynamics in terms
of generalized coordinates for configuration space . It so transcends its origin
that the Lagranian is considered the fundamental object which describes a
quantum field theory [60] .

(2.7.2) Lagrangian for unconstrained systems :

For a collection of particles with conservative forces described by
potential we have in inertial Cartesian coordinates [61]

The left hand side of this equation is determined by Kinetic energy function

: " oT : : .
as the time derivative of the momentum P; = P ,while the right hand side is
l

. . 0 .. .
derivative of the potential energy ,— a—g As T is independent of x;and U is
l

independent of x; in these coordinates .we can write both sides in terms of the
Lagrangian . L = T — U which is then a function of both the coordinates and
there velocities . Thus we have established .

——— == (2.7.2)

Which once we generalize it to arbitrary coordinates , will be known as
Lagrange's equation .

We assume we have a set of generalized coordinates {q;} which
parameterize all of coordinate space , so that each point may be described by

the {g;} or by the {x;},i,j € [1, N] and thus each set may be thought of as a
function of the other and time .

qj=qj(x1,X2, .. Xy t)  Xi =Xi(q1,92, - qn,T). (2.7.3)

We my consider L as a function of the generalized coordinates g jand ¢, and
ask whether the same expression in these coordinates .

—— —— =0 (2.7.4)

Also vanishes . The chain rule tells us

15



oL Z 0L 0dqg Zi%
0x dqy 0xj dqy 0xj

(2.7.5)

The first term vanishes because g depends only on the coordinates x; and t
, but not on the x;,

s oy 24, %9
qj = Lige t 5 (2.7.6)

94j _94j
ax;  0x;
Using this in (2.7.5)

oL oL %

0x; a ]a_q] + 0x; (277)

Lagrange's equation involves the time derivative of this .For any function
f (x,t) of extended contended configuration space , this total time derivative is

o _y O ;. Lo
at = % ox; Xj + 5 (2.7.8)

Using Leibnitz ,rule on (2.7.7) and using (2.7.8) in the second term we find A

ddL ,d oL 6q, oL 0%qj . 9%q;
dt 0%; =2 (dt 9d; 6xl + 94, 0 x0T K t axiat) (2.7.9)
On the other hand the chain rule also tells us

oL 0oL oq; N~ OL 0

axl aq] axi aq] axi

Where the last term does not necessarily vanish , as g; in general depends on
both the coordinates and velocities . In fact from (2.7.6)

aq]' _ aqu' i 62qj
ox;  “ox;dxy” T ax;ot
oL aq, oL 0%q; 0%q;
— = ; — X 2.7.1
axl =2j5g dq; dx; +2; 9q; 2k dx;0x, " K + dx;0t (2.7.10)

Lagrange's equation in Cartesian coordinates says (2.7.9)and (2.7.10) are
equal and in subtracting them the second terms cancels so [61]

16



_ d oL  dL. 99,
0=Y; (&a_qj — O_qj % (2.7.11)
aq; o :
The matrix a—zj_ IS nonsingular as its inverse ,so have derived Lagrange's
l
equation in generalized coordinates
d oL 0L
————=0 (2.7.12)
dtdq; 0q;

Thus we see that Lagrange's equation are form invariant under changes of the
generalized coordinates used to describe the configuration of the system .

(2.7.3) Lagrangian for constrained system :

We now to generalize our discussion to include constraint . At the
same time we will also consider possibly neoconservative forces .As we
mentioned in section , we often have a system with internal forces whose effect
is better understood than the forces them selves , with which we may not be
concerned .

We will assume the constraints are holonomic , expressible as k real function
¢bo (1, ... Ty, t) = 0, which are somehow enforced by constraint forces Ff

on the particles { i } . there may also be other forces , which we will call ﬁiD
and will treat as having a dynamical effect . These are given by known function
of the configuration and time , possibly but not necessarily in terms of a
potential .

We will assume that the constraint forces in general satisfy this restriction that
no net virtual work is done by the forces of constraint for any possible virtual
displacement . Newton's law tells us that

Pi=F =Ff +FP. (2.7.13)
We can multiply by an arbitrary virtual displacement
Yi(FP P).6% = — %, Ff.67 =0 (2.7.14)

Where the first equality would be true even if 67; did not satisfy the constraints
but the second requires 67; to be an allowed virtual displacement

Yi(FP - P).6% =0 (2.7.15)

17



Which is known as D,Alembert's principle .

N

or; . . . .
Then 94 is no longer an invertable or even square , matrix , but we still have
J

, of; . | OF
A =Y, 50y +51 (2.7.16)

But fore a virtual displacement At = 0 we have

o7
6qj

Differentiating (2.7.16 ) we not that

av; o7
L 27.18
24, ~ 9a, ( )
6vl %7 . 0%7; d
+ =— 2.7.19
aq] Zk aq]an U dq;ot dt q] ( )

Where the lest equality comes form applying (2.7.18 ) with coordinates g ;

i
rather than x; to f = 20,

The first term in the equation ( 2.7.16) stating D,Alembert's principle is
- - - 6?

The generalized force Q; has the same form as in the unconstrained case .

The second term of (2.7.19) involves

i Fidr; = ) it 9 q;

_v 4. B 07 d 07;
_Z]dt(ZlPl'an lep (dtaq)
d = 07; 017
:ZjE(ZiP l)6 Zl] l6Q]

9%,
_Zjdt(z:l iVi . g )5611 Zimivi-a_qj 5611'

18



a4 9T  oT
= Z[Ea_qj_ a—qj]&lj (2.7.21)

Where we used (2.7.18) and (2.7.19) to get the third line . Plugging in the
expressions we have found for the two terms in D,Alembert's principle .

407 _ 9T _ Qj] 5q; = (2.7.22)

We assumed we had a holonomic system and the g's were all independent
, S0 this equation holds for arbitrary virtual displacements 6q; , and therefore

S - — ;=0 (2.7.23)
Now let us restrict ourselves to forces given by a potential , with
F,—V;U({F},t) , or

aTi

qu

V= - Y@ (2.7.24)
aqj .

Qj = _Zj

Notice that Q; depends only on the value of U on the constrained surface
also, U is independent of the g; ' s, SO

d dT oT au d o(T-U) o(T-U)

war 9 T = 0=a s~ : 2.7.25
dt aq]. aq]. aq]. dt aq]. aqj ( )
d dL oL

acdq, 94, 0 (2.7.26)

This is LaGrange's equation , which we have now derived in the more general
context of constrained system .

(2.7.4) Hamilton's Equation :

We have written the Lagrangian as function of q;, g;and t, so itis a

function of N + N + 1 variables . For a free particle we can write the Kinetic

2

. 1 . 2
energy either as Zmx” oras P /Zm' more generally , we can reexpress the

dynamics in terms of the 2N + 1 variables g ,p, and t.
The motion of the system sweeps out a path in the space (q , g , t) or path in
(q,p,t) . Along this line , the variation of L is[62]

19



L ;. oL oL
dL = 34 5=da, +5-dg, ) +5hde

. . 0
= % Prdq, + Prdq, + 5 dt (2.7.27)

Where for first term we used the definition of the generalized momentum and

. . : : oL .
in the second we have used the equation of motion Pj, = 9ar .Then examining
k

the change in the Hamiltonian H = )}, P, q; — L along this actual motion .
dH = X (Prdqy + qxdPy) — dL

= ¥, qed — PredPy) — St (2.7.28)
If we think of g, and H as functions of g and P , and think of H as function

of q, P, and t we see that the physical motion obeys .

0H . 0H 0H oL

G =5—| Px=—7—| . — =-= (2.7.29)

The first two constitute Hamilton , equations of motion , which are first
order equations for the motion of the point representing the system in phase
space .

Let's work out a simple example , the one dimension harmonic oscillator .

_ : 1. .
Here the kinetic energy is T = mez , the potential energy U = %kx2 , SO

1 ., 1 : : oL .
L= mez - Ekx2 ,the only generalized momentum is P = o5 = mX, and the

Hamiltonian is

_ 2 2 1 2 1
H=Px-1=P"/, - (P om = Ekxz) =P om 5kt (2730)
Not this is just the sum of the kinetic and potential energies , or the total energy

Hamilton's equation give

. d . 0
x=22 =2 p=-_2 - _kx=F . (2.7.31)
apl,

m axp

These two equations verify the usual connection of the momentum velocity
and give Newton's second law .

20



The identification of H with the total energy is more general than our particular
example . If T is purely quadratic in velocities , we can write T =

EZU m;;q;q; in terms of symmetric mass independent of velocities

1 .
L=2X;mi;qiq; — U@ (2.7.32)
oL .
k

Which as matrix equation in a n- dimensional space is P = M. g Assuming M is
invertible , we also have ¢ = M~1.P | so

H=PTg-1L
= PTM~1.p— (%qTMéz —U(q))
=PTM~LP _%PT M L M.M™1.P+U(q)

=SPTM™LP+U(Q) =T +U (2.7.34)

So we see that the Hamiltonian is indeed the total energy under these
circumstances .

New let's assume L is regular, so
A1:TQS xc TQ
(¢.9) » (g, P) (2.7.35)

This lets us have the best of both worlds : we can identify treat q; , P; ,L ,H
etc, all as function on x(or TQ) . Thus writing

q; (function on TQ)

For the function
d; o A" (function on x)

In particular

oL :
P; = %0 (Euler — LaGrange equation)
l

21



Which is really a function on TQ , will be treated as a function on x . Now let's
calculate

__ 0L JL .

= P;dq; + P;dq; (2.7.36)
While
dH = d(P;q,— L)
= q;dP; + Pidq; — L
= q;dP; + P;dq; — (P;dq; + P;dq;) (2.7.37)
So
dH = q,dP; — P;dq,) (2.7.38)
Assume the Lagrangian L = TQ — R is regular, so

A:TQ> xc T*Q

q,.9) ~ (q,P)

Is a diffeomorphism . This lets us regard both L and the Hamiltonian H =
P;q; — L as function on the phase space X .

And use (q,, q,)als local coordinates on x . As we've seen this gives us
dL = Pi dql + PLdCIL
dH = PldPl - Pldql)

But we can also work out dH directly , this time using local coordinates
(q, P;) toget

0H 0H

Since dP;, dq; form a basic of 1 —forms, we conclude .

. 0OH OH
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These are Hamilton's Equation .
(2.7.5) Lagrangian formalism of Schrodinger equation :

The Lagrangian equation for a quantum system described by the wave function
Y is given by

aal/f* - % (atgw*) - % (axgzp*) =0 (2.7.41)

Where Y* acts as a field variable . For Schrodinger equation consider
the Lagrangian

Lz ok h? * *
L =-imp _%axlp oY = VY'Y

LE ]k h? * *
L =—inp™h — — 0,0, — Vipyp (2.7.42)
Differentiating L w.r.ttoy*,y* gives
oL
=Y
) oL .
o o —inp (2.7.43)
Thus
oL ( 3L \ _ .. 3P
E(aaxw*) = —ih7
Also
oL h?
Hence
oL h?
Ox (G g7 = ——0%y (2.7.44)

A direct insertion of (2.7.43) and (2.7.44) in(2.7.41) gives

_ A Y
v+ in 2+ 292y = o

23



Thus

2
ih = — X 52y + vy

ot 2m

In 3-dimension

TR

Which is the ordinary

(2.8) Principle of least action :

The principle of least action is based on the action integral [62]

I=["Ldx;=0

8= [ 8L6x; =0

But the Lagrangian depends on g, d;q and x; hence :

L=L(q,0:;q9,x)
Thus using calculus of variation

oL oL
oL = ESC[ + 99:q E)lq

= 5269 + 0 |73 0ia| = 8; 55| 54

- 5ozl s -alo

Inserting (2.8.3) in (2.8.1) gives

- AL

B oL oL

= J |32 = % |3a.2l| 89— 554 94(D) + 55— 64 (D)
B - oL 1]

—f a—ai m 56]Xm =0

Thus

oL oL

o= 0i[554] =0
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Choosing the field variables to be

9=y (2.8.6)
One gets

oL oL a( 0L _

oy Oc (aatw*) B Z(aaxlp*) =0 (2.8.6)

Using the same Lagrangian in section (2.8.5) and the same steps , one gets
again Schrodinger equation in the form

20 _ b o
%L = — vy + vy (2.8.7)

(2.9) Gravity ,Curved Space ,and Newtonian Limit :
The space — time interval in a curved space —time is given by [63,64,65]
c?dt® = —g,,dX"dXY (2.9.1)

Where ¢, T, g, X* stands for speed of light , proper time , metric and
coordinates .

However in .Eucleadian space it takes the form

ctdr? = —(,, dy*dyF (2.9.2)
Where y depends on x, i.e

y =y*(x") (2.9.3)

Thus according to the laws of partial differential equations

dy® = 2= dxn (2.9.4)

T OXH

Equation (2.9.3) can be rewritten explicitly in the form

yEXH) = yeXh X2, L XK) (2.9.5)
Where

p _ 0y
dyf == dxY (2.9.6)

Inserting (2.9.4) and (2.9.6)in(2.9.2) gives
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c2de? = —up 2L dX™ g)y(  dxv (2.9.7)

Using equation (2.9.1) and(2.9.7) , yields

dy“ ay
—GuydXHdXY = —(pp = SE 37 dxXtdxy (2.9.8)
Thus
0y© 0yP 299
(“36X#6XY (29.9)

Consider now a freely falling particle and elevator under the action of a
gravitational field .

Thus for elevator no acceleration exists . Hence

_ a?ys

=—5= 0 (2.9.10)
Therefore

_ &yt _dh (2.9.11)

dz? dr ' drt

Inserting x in equation (2.9.11) gives

dy* dx*
a)yw —|=0 (2.9.12)
d [0y dx* | dy®d°xF
dr axu] o Toxa gz =V (2.9.13)
Now let f be defined
dy“*

Where f also depends on x , i.e
f=f&XLx%. . X80 (2.9.15)

Thus its total differentiation becomes

df = 2L dxr (2.9.16)

oxv

Hence
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a _ of ax’
dr  0XY dt

Thus equation (2.9.13) becomes

[df] axH dzx* 0
drl drt dt?

In view of (2.9.17) one gets

of dXV] ax# = Ody%d*x* 0
0xY dr | dr OXH dr2

Hence

0 [ay“ dx? dx* = 0y d’x*

0xY Lox*l dr dr oX" de2

Therefore

azy"‘ ax¥dx* | Oy®ad*x* _ 0
0XYOXH| dt dr OXH drz
Multiply both sides of (2.9.20) by

ax*
dy“

Then using the fact that

ayaaxl_ /1_{1,1:‘[[
axrayr  H 0, A#u

Equation (2.9.19) becomes

ax¥ dx® [ax 9%y« dy®* 9xA) d2xH
=0

dtr dt |0y*O0XYoxH oxt dy«l dr?

dXY dx# 9x* 9%y“ 2 d2xH 0

dtr dt O0y® dXYoxH Bogrz

But

2 d2x#  d?x?
K dr2 dt?

There fore equation (2.9.24) reduces to

ri dx¥dx# | a’x* 0
KY dr dr drz

27

(2.9.17)

(2.9.18)

(2.9.19)

(2.9.20)

(2.9.21)

(2.9.22)

(2.9.23)

(2.9.24)
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Where

A = Xt 'y
HY ™ 9ya axvox#
1 gull _
Ly = T[ Juyw + Guvy T Goy,ul

_ 99y
gﬂy'U - aXU

The Riemann Crystofal symbol satisfies
A — A

liy = Iy

FM’}, =0 Jgau = constant

(2.9.1)Newtonian Limit :

In the Newtonian Limit the velocities

dx dy dz
dt ' dt 'odt

Are very small compared to light speed , where

x9 =ct xl =

=X
Z=y x3 =z
Therefore
d d
iy ;t (;Ct 2Foo( )2 + 111(—)2 + Fzz( )2 + 1133(5)2

But since the velocities are small thus one can assume that

dx d dz
=0 , 2X=0 |, =0
c2dt

c2dt cdt

Fore (A = p)equation (2.9.26) becomes
dt]? [a2xH .2
[ [Em+ ermb@?] = o

For a particle moving a long the x axis

u=1 , Xt=X'=x

Where
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(2.9.29)
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(2.9.31)

(2.9.32)
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(2.9.34)

(2.9.35)
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d2xt d2X1 [ ” ]
dt? dr2 1:2 dt

dt[ ][dr @ [Zi (2.9.37)

dZxk  d?x  d?x (dt)?

dt2  dr?  dt? (E) (2.9.38)
thus
d?x (adt
L) + e =0 (2.9.39)
Therefore
Tx = —crp (2.9.40)
When one considers only time and x components

A _ 1 3y99ap
I =—39 Y —=— e (2.9.41)
a=0 |, '8 =0 (2942)
Thus

1 d

Igo = =59 5.2 (2.9.43)
For very week field , the metric becomes
9y =Yy T hﬂy - 9w = 6/'1)/ + hxly (2.9.44)
Where h is very small and much Less than one , and
Oy = F1 (2.9.45)
And
h, <1 (2.9.46)
xl=x ,‘u=1 y:l (2947)
Thus equation (2.9.43) reads
T =Ty =—1g"1 e = 2 g1 2w (2.9.48)

2 ox1 2 Ox
For
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U= 0 , Y = 0
Equation(2.9.44) becomes

oo = oo + hoo = oo + hoo

A _p1 — _ 1 110000theo) _ 1 _110h00
1—60_[60_ Zg Ox o 2 0x

Similarly the spatial component can be wirillen as
gly — yly 4+ hxly
Where
A=1 ,y=1
Again , one can write
11 = 711 4 plt
Where
h't « 1

Thus equation (2.9.51)reads

dh dh 1 dh
I—E)O — __((11 + hll) 00 _ (11 00 - h11 6_;0)
Since
htl «1 hoo < 1

It fOllows that

A _ 11 ah
Igo = —-C -
But
(11 =1
Hence

A 1 ahoo
1—60 T2 ox

Thus equation (2.9.40) reads
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(2.9.50)

(2.9.51)

(2.9.52)

(2.9.53)

(2.9.54)

(2.9.55)

(2.9.56)

(2.9.57)

(2.9.58)

(2.9.59)

(2.9.60)



dzx .2 ahoo

7 =T (2.9.61)
In 3-dimension

d2 2

— =—Vhy, (2.9.62)

On the other hand Poisson equation takes the form

Cx _ _pg (2.9.63)

dt?
This equation comes from the Newton second law

mEE —F = PV = —Vm@ = —mVo (2.9.64)

dt?

Thus comparing equations and
Roo = — = (2.9.65)
(oo = —1 (2.9.66)
Thus from (2.9.50) one gets
Goo = oo+ hoo = —(1+2) (2.9.67)
(2.10) Einstein Gravitational Field Equation :

According to Poisson equation [66,67]
V20 = 4nGp (2.10.1)

Where p is the matter density . Thus from equation (2.9.67) , one get

2

72goo = —= V0 (2.10.2)

Rearranging

8mGp

P2g0 = — (2.10.3)

c?2

This equation can be written in a tonsorial form for time —time component to
be in the form

871G
Goo =~ Too (2.10.4)
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More generally , for all components , one gets

8mG
GMV = - C_ZTHY (2105)

Where G, represents the geometrical tensor and T, the matter tensor .

Differentiating w .r.t x* gives

8nG
Guyin =~ Tuy (2.10.6)

Since the energy momentum tensor is conserved thus

Tyyu =0 (2.10.7)
thus
Gy =0 (2.10.8)

This can be satisfied when
1
Guy = Ryy — 3 guyR (2.10.9)

Thus according to equation (2.10.5) Einstein equation

takes the form

1 8TG
Rli)/ - E gHVR = _C_ZTHV (21010)

(2.11)Potential Dependent Frictional Schrodinger Equation:

This work is done by treating particles as harmonic oscillator one
obtains the friction energy related to the momentum . The energy and the
corresponding Newtonian operator is found . This results in a new Schrodinger
equation accounting for the effect of friction . This new equation shows that the
energy and mass are quantized , if one treat particles as strings the radioactive
decay law and collision probability is also derived.[68,69,70]

(2.11.1)Schrodinger equation for frictional medium :

According to Plank and de Broglie hypothesis the quantum quanta are treated
as wave packets .

According to string theory matter building blocks are treated as vibrating string
. Motivated by this hypothesis , the energy dissipated by friction can be derived

32



consider now a frictional force F¢ in terms of mass m , relaxation time Tt and
velocity v to be [71,72]

Er== (2.11.1)

T

Considering matter building blocks as strings the speed is given by
v = pyelt (2.11.2)
Thus , the displacement is given by :

4

x=[vdt=v,[e®tdt="e'" = % (2.11.3)

The total dissipative energy E is given by :

m mv? imv? —imv? i (1
o= [ Epode = fody = 2 2 In (1,0

2iwt 2i2wt 20T wT

-t (P—Z) (2.11.4)

wT \Z2m

But the total energy can be expressed in terms of the kinetic and potential
energy V in the form

2
E=K+V=;;+v (2.11.5)
Thus according to equation (2.11.5)and equation (2.11.4) Ef is given by
—i
Ef=—(E—V) (2.11.6)

But using plank hypothesis the energy E is given by :
E =hw (2.11.7)

In view of equations(2.11.6)and (2.11.7) the frictional energy is given by

—ih ih
Ep =i (E=V)=2(E-V)
_ v _
Ep =" (E 1) (2.11.8)

Thus the Hamiltonian classical relation for a particle in frictional medium is
given by
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E=H=s+V+2(1-1)=2 +v+2(L5) (2.11.9)

Therefore
2 _ (P? ih
E? = (- +V)E+=(V — E) (2.11.10)

To find the Schrodinger equation corresponding to this relation , one multiplies
both sides of equation (2.11.10) by Y to get :

E%2y = (% 4 v) B += (V- E)Y (2.11.11)

Considering the wave function

(2.11.12)

Eyp =ihZ (2.11.13)

2
2 LY = g2y (2.11.14)
Similarly differentiating the wave function respect to x yields

azp_i-
6x_hP1/)

Ea_lpzpl/)

i 0x
2
—h? 27"2’ = —h2v%) = P%y (2.11.15)

Thus inserting equations (2.11.13), (2.11.14)and (2.11.15)into equation
(2.11.11) yields

_h262_¢ = (—h—zvz + V) iha—¢+?(—iha—¢+ V¢)

dx? 2m ot dt
02 ] h2 0 h2 9 ih
—h? 2% = in (—%VZ +V)a—‘f+Ta—‘f+%V1p (2.11.16)
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(2.11.2)Harmonic oscillator solution :

To see how friction force consider the solution of equation(2.11.12)in

the form

¥ = e tu@) = FOUW) = fu

A direct substitution in equation(2.11.16) gives

. h?2 —i . Eh? .h
E%fu =ih (—%Vzu 4 Vu)f(%) —i—fu+i-Vfu
Dividing both sides of equation (2.11.18)by f yields
E?u=+E (—ﬁvzu + Vu) LU

2m ht T
Dividing both sides of equation (2.11.19)by +E yields
(B+2)u= -y (1+8)
T 2m TE

hZ
——Vu+c¢,Vu=Eu
2m 1

Where
ih
Cl — 1+E
T

For harmonic oscillator on finds

V = Lkx?
2

Thus substituting this expression in equation(2.11.20) gives

h? 2 1,..2
-V u+clzkx = Eu
m
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Let now
ko, =c1k (2.11.24)
Therefore equation (3.2.23) become

hZ

2m

Vu + %koxz = Eu (2.11.25)
Thus substituting equation(2.11.21)into equation(2.11.25) gives

B =E+2=(n+)ho (2.11.26)
E=(n+;)ho -2 (2.11.27)

The frequency is given according to equation (3.2.24)and equation (2.11.21)to
be

ko - m(l)z

C1k=(1+i—2)k=mw2

(E+2)k =mw’E (2.11.28)
Thus

mw? ~Lin
E _( < 1) 3 (2.11.29)

From (2.11.27) and(2.11.29)
0= mTwZ + (n + %) hw
m = (1 + %)i (2.11.30)
t(n+;) ) @2
Thus from equation (2.11.30) one find the mass is quantized
(2.11.3) radioactive decay low and collision probability :
Consider equation (2.11.16) for constant potential Vo

Using the separation of variables let the wave function y be in the form
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Y@, t) = fOulr) = fu

A direct substitution of equation (2.11.31)in equation (2.11.16)gives

Ry az_f_(_ﬁz ) ( a_f) thof h? of

huatz_ ZmV +V0ulh6t +TatV0uf+Tuat

Thus

(—he 2L By MOy (R gy )y (in2)
ot? 0 T Ot U= 2m o Ut ot

Divide both sides of equation (2.11.32)by fu to get

: a_f)‘l(_ 2 92f _ iVoh _Ea_f)_z(_ﬁ 2 ) _
(lhat h ot? T f tat) u 2mV +VoJu=Eo

Taking the time part of equation(2.11.33)only gives

0%f iVoh h2of .
h ot2 T T ot lhEO

Consider the case when the potential vanishes

V0:0
Hence
w20 _h23F _ o of
h at2 Tat_lhant

Consider now a solution

i
f= Ae nEt
of i
L =_1Ft
ot h
0%f i E?
- TREf=—%

Inserting equation (2.11.37) in equation (2.11.36) yields
2p Mpe _L

E?f +ZEf = ihEy (—-Ef)

Dividing both sides of equation (2.11.38)by gives

E2+2F =E,E
T
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Rearranging both sides of equation (2.11.39) gives
E? = (E,—2)E
Dividing both sides of equation (2.11.40)by E gives

= (5,-2)

T

Inserting equation (2.11.41) in equation (2.11.37)gives

i

—i ih t
f= Ae?(EO‘?)t = Ade e nbot

Hence

t i
f = Ae e kot

Since the probability and number of particles are given by

-2t

n=IfP=ff= A%~

Equation (3.2.43) is the ordinary radioactive decay low with

A= % : ng = A®?
.e.

n =nye
This expression also gives collision probability P with

p=n , py=A4A?

T ="/,
To get

-t
p = pyew

Equation (2.11.47) is the ordinary collision probability relation
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(2.12)Time Dependent Schrddinger Equation for Two Level
Systems to Find Traverse Relaxation Time :

This model was made by in this work Schrodinger equation in energy
space for two level system was used to find transverse relaxation time . By
suggesting sine and cosine beside complex solutions a useful expression for
transverse relaxation time was found . When electric interaction dominate , i.e.
for dielectric materials the transverse relaxation time depends on the electric
dipole moment . However the magnetic materials having magnetic spin and
magnetic dipole moment , it depends on the internal filed as well as spin
quantum number .[71,73]

sinwt =1 (2.12.1)
A

WwT ==
2

nr=02="1==L (2.12.2)

20 4rf _4f

(2.13) Quantum and Generalized Special Relativistic Model for
Electron Charge Quantization :

This research was done by the explanation of electron self-energy and
charge quantization. In this work one quantizes electron and elementary
particles charges on the basis of electromagnetic Hamiltonian in a curved space
—time at vacuum stage of the universe , using quantum spin angular momentum
an Klein —Gordon equation beside generalized special relatively . Electron
charge is found to be quantized and the electron self-energy is finite . the radius
of the electron is also found .[74]

In this case according to generalized special relativity model the electron mass
is given by

20,

m = ( _c_Z) my (2.13.1)
Assume for simplicity

m=108m, =103 x9x 10731 =9 x 10" 8kyg (2.13.2)
Thus

h h  6.63x1073*

In = = =
0™ 2mc ™ 4mmc  2m9x10-18x3x108
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ro = 1.954 x 1072°m (2.13.3)

Which is quite reasonable as far as nucleus or proton radius for very light atoms
are

r, = 107 %m r, = 107"°m (2.13.4)

(2.14)Classical Newtonian Model For  Destruction  of
Superconductors by Magnetic Field :

Newton second law is used to describe the destruction of super
conductivity for type 1& type 2.The electron is assumed to be affected by
external electric and magnetic field as well as the internal magnetic field. The
conductivity and resistance depends on the internal as well as external magnetic
field . For type 1 the superconducting state is destroyed when the external
magnetic field exceeds the maximum internal field . For type 2 the
superconductivity is destroyed partially in the region where the local maximum
field is the lowest , and enters completely when the external field exceeds the
maximum local internal field .[75]

Thus the maximum produced atomic fields is

by, = B (2.14.1)

2r

Where the maximum current produced is

| = Z&%0%m (2.14.2)

2w

Where

1
w, = /% (2.14.3)

Thus the internal field attains maximum value

bim = bam (2.14.4)
When B exceeds this maximum value in the region of lowest B;, i.e

B > Bip, (2.14.5)

The resistivity will no longer vanishes , where
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p = —oimL 5, (2.14.6)

ne

(2.15)Energy Quantization of Electrons for Spherically
Symmetric Atoms and Nano Particles According to Schrodinger
Equation :

Schrodinger equation for spherical atoms and nano particles was used to
describe the behavior of electrons and phonons by treating them as strings
oscillating thermally and under the action of external force .The solution shows
that for thermally excited phonons and electrons the energy and frequency are
quantized . For electrons excited by external force the energy and frequency are
also quantized . The energy in both cases resembles the zero point energy for
harmonic oscillator of the quantum system .The solution also describes free as
well as bounded electrons . The results obtained agree with previous models and
observation [76].

E,=+ i:f;f (2.15.1)
When
wy =0
E =ho (2.15.2)

Butwhen w =0
E = ~haw, (2.15.3)

This represents thermal photons With minimum energy which represents rest
mass energy . In view of equation (2.15.1) and (2.15.3) the phonon energy is
quantized .

(2.16) Time Independent Generalized Special Relativity
Quantum Equation and Travelling Wave Solution:

The effects of fields on physical systems is recognized using the
generalized special relativity (GSR) . A new gquantum equation Dirac equation
consisting of a potential term is derived .[77]

(2.16.1)Potential dependent Dirac quantum equation :
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According to GSR model the linear energy is given by

1 _1
E = goézﬁmgcz + goo/zca.p = Bmgc? (1 + mOVCZ) +c (1 -
vV
mocz) a.p (2.16.1)
Where
1 1y v
2 _ 2 _
oo ~— 1+ myc? ' Yoo = 1- myc?

Multiplying both side of equation (3.7.1) byl gives
vV %4
EY = c(l —E)a.plp + (1 +E),Bmoczl/)
|74 |74
E*Y = cE (1 _E) oa.pyY + E (1 +E),Bm0C21/J

@ E2p = c(E = V)a.py + (E + V)Bmoc?y

E%Y = ca.pEY — cVa.pyp + Bmgc?EY + fmyc?Vy (2.16.2)
Where

A s O ~ h-
E—>H:lha and p=p=-V (2.16.3)

From equation (2.16.2) and (2.16.3)

202 _ 1o T (0¥ ho . 5 (0
—h F_Ch a.V(g)—cVa?le+Lhﬂmoc (¥)+

Bmoc?Vyp (2.16.4)
From (2.16.4) , by suggesting a solution

iE

0 . 0?
a_‘f = —iwg a_tf = —wy2 Y (2.16.5)

A direct substitution of (2.16.5) in (2.16.4) gives
h2wy2yY = ch?wya. Vip + ichVaVy — Bmyc?hwoyp + Bmyc?Viy
, (2.16.6)
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Where

E=hw0 ) EO =m0C2
E*Y = chEa Vy + ichVa Vi — BE EY + BE VY

(2.16.7)

e Wt (E2y) = e~'@o!(chEa Vu + ichVa Vu) + e ™ot (BE + BV)E,yu

1

(2.16.8)

The time decaying exponential term can be cancelled on both sides to get

(E2 — B(E 4+ V)Ey)u = ch(E + iV) aVu
This can be written as

ciu— VU = ¢c3 aVu + icyV aVu
Where

c; = E? - BEE,, c; = +BEy,c3 = chE ¢,
(2.16.2) Travelling wave solution

W = Aeiler—wt)

But

) = e~iot U= e—iwtu(z)
u=Ae*  Vu=iku

ciu— cVu = ik[a](c3 +icyV ) u
Equating coefficients of u and wvu yields

—iC1

1 = ik. aC3 ) k == - lko

Cza cosO

From equation (2.16.11)

—i(E-BE ]
— ( B 0)—lk0
Czha cos
c, = —i%k.ac, = k. ac
2 = LUl = K.UCy

C
k.o = ka cosf = 2
Cq
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€2

- Cqo cosO

_ _BEy _
cha cos6

1

The first expression for k in equation (2.16.12) where k = —ik, gives

P = AehoTg~iwt (2.16.19)
The second expression for k in equation (2.16.12)where k — k; gives

Y = Aetkir—wt) _ u( r )e—iwt

u(r) =u=Ade" (2.16.20)

Consider the outer most shell where electrons occupy this shell when the radius
of the atom is a. in this case

lu@|? =1

lu(a)| =1

cosk,a + isink;a =1 (2.16.21)
Thus

coskya=1 , sinkja=0 kja=2nn

There fore

ke, =22 (2.16.22)

a
Thus the momentum is given by
p=hk, == (2.16.23)

hence the energy takes the form

E? = c?p? + my2ct (2.16.24)
E? = S0 4 mg2ct (2.16.25)

The liner energy is given by

E =ca.p + fmyc?
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cahn

E= + Bmyc? (2.16.26)

a
It is very interesting to not that the velocity is given by

Vo = Aof = 1= 22220 (2.16.27)

k cq
Becomes infinite when
¢, =E(E—BEy) =0

E = BE, (2.16.28)

Where equation (2.16.27) gives
V, =0 (2.16.29)
In this case equation (2.16.16)gives
ko =0 (2.16.30)
Thus equation (2.16.19)become in the form
P = Ae't (2.16.31)

This represents a stationary oscillating wave .Fortunately equations
(2.16.29) and (2.16.31) describe the behavior of biophotons which are
stationary waves that spread themselves simultaneously through the surrounding
media.

(2.17) Describing a Bell and Breathe Solitons by Using Harmonic
Oscillator soliton :

Schrodinger harmonic oscillator equation in the momentum space in
friction medium (Harmonic Oscillator Soliton model )was used to describe
properties of two types of solitons , permanent and time dependent . First one a
bell soliton has a permanent profile , while other one is breathers have an
internal dynamic , even so ,their shape oscillates in time .[78]

ih
2¢o 2¢o 0 Imh2w?
@ =5 ih 8 iAo
0 Tmc2h2w, 0 Tmc2h2(2mfAg)
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iko

nrcimy,

a=fo— = Bo — i¥xg (2.17.1)

Where one assumes mc? = hw,
y = (mrc?m?yy) ! (2.17.2)

The solioton in the momentum space is given by

P(p,t) = P(p)f (t) = Ae~@telrP xog=Fr®
Y(pt) = Ae—BP? oiyp*xo-wt) oivp*xo (2.17.3)

(2.18)Relativistic Hamiltonian Formalism in Quantum Field
Theory and Micro- Noncausality :

An attempt is made to extend Heisenberg —Pauli 'stheory of quantized
fields in a relativistically invariant way . the transformation theory of Dirac is
used as a basis for that purpose . It is assumed that a mass variable is
canonically conjugate to an invariant —time variable , being a common time to
all fields. Considering that the field function in the usual quantum field theory
are those expressed in terms of a mass representation , we transform the field
functions into those in an invariant —time representation . It is shown that in the
new representation a relativistic Hamiltonian formalism of quantum field theory
can be obtained and the configuration space method in nonrelativistic case can
be generalized .The new formalism is applied to the bound states problem . It
shown that ,fore the interaction between two particles in bound states , the
condition of micro-noncausality plays an important role . As simple examples ,
the bound states of deuteron —like and hydrogen —like systems are discussed .
For simplicity the new formalism is developedfor charged spin zero fields , but
the extensions to other cases is obvious [79].

1

Si(R,w)~ (I:;I)E sin(lvl logR + A), (2.18.1)

1

S,(R, w)~ (I:;I)E sos(lvl logR + A), (2.18.2)

The boundary conditions
[S1(R,0)G](0) =0 (2.18.3)
G(R,R) = A(R)S,(R,w) — B(R)S{(R, w), (2.18.4)
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One fields

1

A(R) = (isinhnlvl)asin [ﬁ(v) +A— || log%], (2.18.5)
B(R) = (isinhnlvl)z sos [B(v) +A—|v| log%], (2.18.6)
P = p el (2.18.7)

v

(2.19) Solitary wave solutions for nonlinear fractional
Schrédinger equation in Gaussian nonlocal media:

This article is devoted to the study of nonlinear fractional Schrodinger
equation with a Gaussian nonlocal response . We firstly prove the existence of
solitary wave solution by using the variational method and Mountain Pass
theorem . Numerical simulations are presented to verify the findings of the
existence theorem .And we also investigate the impacts of Gaussian nonlocal
response and fractional —order derivatives on the solitary waves , which enable
us to perform control experiments for the development of rogue waves in
quantum mechanics and optics [80].

Ly = JJraq KoUx = yDIun )17 [t GO~ un () () dxdy — [[, Ko(lx —

YD1 Tue 1" 2ug () () dxdy — [f2, Ko(lx = yDlun(y) —
uo NP [un () — U GO (un (x) — U (X))@ (x)dxdy (2.19.1)

By a variant of Brezis — Lib's Lemma , we know that I;, - 0 asn — oo . Thus
we have (J (u,, — uy), @) » 0asn — oo . for a fixed 1 > 1, setting ¢ = u,, —
Ug

lpn = uoll? < f (16021t = 10| + Aty — ) dix

Rd
(= o)ty = g) + B [y Kol = YDatn(¥) = o (0)IP 11 () —
Uy (017 dxdy < (tn = o),y = o) + C[| (=) /2y = up)|; It =
u)IPE™ 50, (2.19.2)

LZ

As n - 0 thanks to (J (u, — up), up — ug) 2and [lu, — up)ll,z > 0
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(2.20) Summary and Critique :

Different attempts were made to modify Schrodinger equation to use it
to describe bulk mater[81, 82,83].

Some of them are used describe super conductivity or super fluidity [84,85].

Some modifications are used to describe the early universe to solve some
cosmological problems [86,87].
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Chapter 3

Methods Theoretical Derivation of Interaction
Schrodinger and Heisenberg Picture Spatial Evolution In
a Curved Space- Time

(3.1) Introduction :

The spatial evolution of the system in the interaction picture is deduced ,
beside the derivation of Schrodinger equation in a curved space time . The physical
meaning of the metric is also exhibited here.

(3.2)Interaction picture:

The conventional wave function v is related to that of interaction
picture ¥, according to the relation

Y = e~ Moty

) = e~ Holp), (3.2.1)
Y, is the wave function in the interaction picture . The Schrodinger equation is
given by

idp
L= iy (3.2.2)

By redefining the wave function , one needs the Schrodinger equation to be in
terms of H; only , where H; represent the interaction Hamiltonian . Inserting
(3.2.1) in (3.2.2) the L.H.s gives

ide_iHOtllII

= e ot (Hy gy + 531 (323)

dt

but the action of the Hamiltonian on vy gives

N —h?V?
fip = (——+ 1)y
—h2vy2 .
= ( —+ V)e Hoty, (3.2.4)
Since the expectation value is the same in all representations , it follows that
(Y1 Hiipy = (PH|Y) (3.2.5)
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In view of equation (3.2.1) the r.h.s of (3.2.5) is given by

(WIH|p) = (1,e Mot He Mot ), (3.2.6)
Comparing (3.2.5) and (3.2.6) yields

H; = e iHotfJe~iHot — eiHot(H, 4 H;)e~1Hot

— elHotHOe—lHot _l_ elHotHle—lHot — elHote—lHotHO + elHotHie—lHot

= H, + e'fotH;e~1Hot (3.2.7)
Where
I:I = gOOHO (328)

Thus form (3.2.6) and (3.2.7)

(w|A[p) = @1 Holp); + (1 eHotH;e Hot i), (3.2.9)
In interaction picture , H, should give no contribution . thus

(W1, Holp); = (¥ |[Ho|y;) = 0 (3.2.10)
(WIR[p) = (r[eMe Hie™ ot ) (3211)

Comparing (3.2.11) and (3.2.5) one gets

(Y Hily;) = (¢1|eiH°tHie_iH°t|¢1)

HI — eiHotHie—iHot

(3.2.1)The Interaction picture for spatial Evolution :

In Schrodinger picture

2 dlY) 5
l W_ P|l/J> (3.2.12)

Define the interaction state to be
W), = UE)Ip) = elPoXjy)
1) = e PoX|y), (3.2.13)

Since the expectation values in Schrodinger and interaction pictures are equal it
follows that
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W1, P i) = @l P ) (3.2.14)
(W1, P 1)y = (1, e'PoX P e~ PoXyh), (3.2.15)
If one assumes that
P=P,+P (3.2.16)
Thus
(W1, P1p); = (1, e™PoX Py e™PoXap), 4 (i1, e'PoX P e~ PoX ),
= (1, Py 1), + (1, e™Po* P e7PoX ), (3.2.17)

Assuming that

(Y1, Py 1Y) =0 (3.2.18)
(W1, P); = (1, e™Pox P e tPoX ), (3.2.19)
Thus

P, = etPo* p,g~tPo¥ (3.2.20)

This relation can also be fond by using equation (3.2.12),(3.2.13) and (3.2.16)
to get

—iPx .
ih ™ = ( Py + P)e PoXip), (3.2.21)
For h=1

. o dl . .

i(—i Pye oXp),) + ie“POXd—ll;)I = Pye P*1), + Pie tPo¥pp),

. o dl . .
Pye Po*pp), + i e thoX —;/;)I = Pye PoX|yh), + Pe tPoX ),
i e tPox DL = po=iPoxyy), (3.2.22)

Multiplying both sides by e*fo* gives

(S = giPoxpe=iP¥ ), (3.2.23)
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But the formal expression for wave function evolution in the interaction picture

IS

. diyp)
l dxl = Pj1Iy),

Thus comparing equations (3.2.23) and (3.2.24) gives

PI — elPOX Pie—lPox

ih:_x 1Y) = Piy),

Let now the eigen vector be in the form

1Y) = U)o

Where at t = ¢,

P=0 1) = 1)

Thus form (3.2.24)

U=U(ty) =1

Hence equations (3.2.26) and (3.2.28) gives

ih ¥ — o
dat

Thus

l), = constant

(3.2.24)

(3.2.25)

(3.2.26)

(3.2.27)

(3.2.28)

(3.2.29)

I.e it is independent of x . A direct substitution of (3.2.27) in (3.2.26) gives

X1 1 X1
j dU == | PuUdt
Xo

1
Uxy) = U(xo) = 5 [ PiUAL
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Fort = t,, one can write the U of the integrand to be

U(x) = UCxo) =5 [ PLU(to)dx’

U(x) =1— %f;‘: Pdx’ (3.2.32)
Consider now the next point where

Xy > Xy Xy =Xy

X2 i X2
f dU=—- j P,Udx”
X1 h X

1

i [*2
U(xy)) —U(x;) = _ﬁj P,Udx”
X1

Ux,) = U(xy) — % f P(x) [1 _ % j 1P,(x')dx'] dx”

0

= U(xy) + (i) f;: P (x)dx” + (_h—lz)zf;; f;;l Pi(x") P (x")dx"dx”
(3.2.33)

(3.3)Energy —-momentum relation and Eiegen equations in a
curved space time :

The energy within the framework of the GSR and SR are given by

9ooE? = gxxP?C? + goomo*C*, E§ = P5C? + my*C* (3.3.1)
Where is the ordinary SR energy .

Thus the GSR energy E is given by

_ /2
E = gOO EO (332)
The wave function in the curved space is thus

o = AeH)PxELD (3.3.3)

Energy Eigen equation and time independent Schrodinger equation in the
Euclidean space takes the form

ih 22 = Egyp (3.3.4)
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Also the momentum Eigen equation in the Euclidian space is given by

%le _hoy _ P, (3.3.5)

i 0x

In a curved space GSR Wave function for free particle is given by
P = Ae(h)WoxPx=500ED (3.3.6)

Where dt. = \/goodt dx. = /Gxxdx

Schrodinger equation in the curved space , where the time is denoted by ¢, ,
can read

b0 _ o 0p _ ih [ ooy _ i _ V900 0 _
e = 3 vt = Joos [V00 ot thOOElp] VooV = EV (330)

Thus

ih 2 = Ey (3.3.8)

at,

But form (3.3.3)

ih 22 = gy (3.3.9)

Jdtc

This is completely consistent with equation(3.3.8) . conversely from (3.3.6),
(3.3.9) and (3.3.2)

o o
w2 Y

att’: \/ggoat
5 O
lha_lf =4/ JooEY = Egp
Thus

V9ooE = Ep (3.3.10)
which agrees with equation (3.3.4)and (3.3.2)

=El/J

The momentum Eigen equation for the momentum in Euclidean space takes the
form

2% = pyyp (3.3.11)
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In curved space , the momentum Eigen equation becomes

h 0y

Taxc =Py

With

dx,. = \/gxxdx (3.3.12)
Thus

h oY

T Py (3.3.13)
Thus , one can write

h @

o = VPP (3.3.14)
Comparing this relation with (3.3.11)

Py = /GxxP (3.3.15a)
Where

Py = /G, PY (3.3.15hb)
Thus equation (3.3.14) and (3.3.15a) gives

h @

?5”[’ = Py (3.3.15¢)

This is the ordinary momentum Eigen equation in the Euclidian space.

The velocity in a curved space is define to be

_ dx
V= de,
V= VO dx _ ‘/g_xxvo (3.3.16)

- VYoo dt v 39oo

But the momentum in curved space an Euclidean

P=mv

Py = myv, (3.3.17)
Using equation (3.3.15)
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-1

P = (gxx) /ZPO
Thus

mv = (gxx)_lmovo

V0o — Y0 (3.3.18)

m = z My = my
(‘/gxx) Ixx

Since in driving GSR , one assumes that

Gox =1 (3.3.19)
It follows that

m = ,/gooMo (3.3.20)
But the mass in GSR is given by

m = —2%70__ (3.3.21)

f 2
doo =v /Cz

For mass at rest

v=20
m = 2222 = fgo0 My (3.3.22)

This relation is consistent with equation (3.3.20)

To find the expression , which relates E to P in a curved space ---time on
uses the relation

c?dt? = c?goodté — gy dx?

1

_ d 21z
y = (3) = 900 — 9 2] (3.3.23)
Thus
E =mc? = gooymgy = _Joomoc? (3.3.24)

2
Yo
‘Igoo_gxxc_z

But from(3.3.16)

2 _ 2
gxxvo = ZJooV
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E = JoomoC?E
\/QOOEZ_gxxPZC2

2 2.2 _ 2.2 4
9ooE“ — gooP c” = ggompe

9ooE? = gooP?c* + ggomic* (3.3.25)
Setting

E§ = gooE? , P§ = gooP? , Mo = gooMy (3.3.26)
One gets

E3 = Péc? + mjc* (3.3.27)

However , when one replaces v, by v in equation (3.3.23), one gets

1

' = [goo — g 2 (3.3.28)

As a result , energy becomes

2 2
_ JooMopC _ JooMpC
VI00E2—gxxV?/c? goom?C4—gxxym? v2C?
m2c4
2
- JooMpC
900E%—gxxP? C?
E2
’E
GooMoC

E =
\/gooEz_gxxPZCZ

gooEz - gxxPZCZ = g§0m5c4
9ooE? = guxP?c? + ggomgc* (3.3.29)
By setting

E(%:gOOE2 »P()Zzgxxp2

1

Eo=g2E ., Py=+/0xxP (3.3.30)
This relation agrees with (3.3.10) and (3.3.15a) one gets
E§ = Péc? + misc* (3.3.31)

Where
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fflo = gOOmO (3332)

The energy of harmonic oscillator in a curved space can be found from the
Schrodinger equation in a curved space which is given by

L 0P W Y
lha—tC—El/) lha goot—El/J

. 0

ih3; = \/goo EY = Eo) (3:333)

For harmonic oscillator in Euclidean space
Eo = (n+3)ho (3.3.34)

A+x)"~1+nx

Forx <1

E=x (3.3.35)
= (1= (-92)

o) 2= (1+2) (3.3.36)
This approximation is justifiable since ni—fz <1 20 <mc?

Which means that the total energy is the greater than potential energy . Thus
equation (3.3.30) gives

E = Ey(go0) 2 = Eo (1+2) (3.3.37)
= (1) 1+ e

E= (n + %) ho + Cﬂ(n + %) hw (3.3.38)
E=E(1+5)=E(1+ ;“0":’2) = E, (1+ ;—Z) = E, + V, (3.3.39)

(3.4) Time evolution of quantum system within the frame work of
generalized special relativity :

The energy in generalized special relativity is given by
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E = mc? = —Zoomoc” _ _ __ JooFo
\/900_172/02 \/900_172/02

For very small velocity compared to the speed of light
vKLc

Thus

1 1

E = g2,Eo = g2,Eo

Using the fact that (v < E,m¢@ < c¢?m, ¢ < c?)

1 1
g2 = (1+2%/ ;)2

E=(1+5)E =(1+25)E

meoc?

VEO

E=E0+_=E0+V
Eo

Thus the corresponding Hamiltonian is given by

f=A,+0,

(3.4.1)

(3.4.2)

(3.4.3)

(3.4.4)

Where H, standing for the unperturbed Hamiltonian , while H; represents the

interaction Hamiltonian which causes perturbation .

To explain equation (3.2.10)and to simplify treatment ,it is convenient to
modify Schrodinger equation . This modification requires the time evolution of
the wave equation to be in terms of the interaction Hamiltonian instead of the

total Hamiltonian . This requires
) = en o[y,
), = v o'[y)

iyt

[Y) = [P)en

LdlY)
lh7 = Hll/))

A A

H=H,+H,
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h 2 _ )

dt
d H,t n
lha e h ] = Hll/))
) —lH t/_ a d n
lh[ (5 ), + 'W1 fil)
—lH t —lH t lH t

—H e n |YP), +H e n |Y), +ihe n dlw)’

—lH t

—(H +H)e h ),

—lH t LH t —LH t

A d|> A
=Mlyen [1p), +the n = +He T |y,

ifi,t
Cancelling terms and multiplying both side by e gives

lHt lHt
ih P = e n [y),

To simplify this equation it is convenient to define operator

lHOt —lHot

H—ehHeh

Inserting equation(3.4.10) in equation (3.4.11) yields

d

(3.4.8)

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

Which is ordinary Schrodinger equation in the interaction representation .

This equation can also be derived by bearing in mind that the expect value

is the same in Schrodinger and interaction picture . i.e

(Wi H) = (1/J|1H1|1/J)1
In view of equation (3.4.5) , (3.4.7) and (3.4.11) one gets

—lH t

<¢1|ﬁ|¢1> |1/J)Ie h (H +H)e h (¢|

—lH t —lH t —lH t —lH t

[Y)e v H e » (Y|, +[P)e He (Y,
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<¢1|ﬁ0|1/)1> + (l/’|,ﬁ,|¢>1 (3.4.14)

This means that for equation (3.4.14) and (3.4.13) to be typical to each other ,
the expectation value in Schrodinger picture . This can be satisfied only when

Hohb)l =0
Thus
(Wi [Hy|wr) =0 (3.4.15)

Which conforms with equation (3.2.10)

This consistent with the fact that in the interaction picture the original
Hamiltonian is absorbed in the wave vector and disappear as an energy operator
according to this transformation .

id,t

W) = ), =€ [1h)

. . . iHpt ~ —ifigt

H=H,+H, > H, =en He n (3.4.16)
This is equivalent to make

H, -0 (3.4.17)
Thus it is quite natural to have

H,-»0=H,yp), =0 (3.4.18)

This explains equation (3.2.10)

(3.5) Momentum perturbation equation in the interaction
picture:

The momentum operator is related to the spatial differential change according
to the relation

p=37 (3.5.1)

In one dimension

h

~ 0
P==— (3.5.2)
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To see how the momentum operator look like in a curved space time , one uses

the expression for x and t in a curved space time for velocity ,i.e.

_dxe _ \/Gxxdx
"~ dtc Jgoodt
Where

dxe = /gxxdx , dt. = vV Joodt
But in schwardzcheid solution and special relativity
Ixx = Joo

Where

dt =/ goodty , o dx =/ Gxxdxg
2

Yxx :VZ = (1_17 /CZ)

Thus equation (3.5.3) and (3.5.5) gives

1 dx 1

" goodt  goo °
Which is the expression for the velocity in a curved space —time .
The momentum in curved space —time takes the form
P =mv
Where the mass is given by

JooMo
/goo—viz/cz

Inserting equation (3.5.7) in (3.5.9) yields

m =

1
P=mpy= JooMoVo — Po(goo _ UiZ/Cz) 2

doo /900—771-2/62

Where the momentum in Euclidean free space is given by

Py = myvy

Bearing in mind that for weak fined
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g00=(1+i—f—vi2/c2)

The momentum is given by

1

P =P, (1 +i—f— viz/cz)_E

This expression relates momentum in a curved space —time to that in Euclidean
space .

Since the potential is less than the total energy

vy < E

me® < myc?

Therefore

Z<1 (3.5.12)
Similarly the kinetic energy is also less than the total energy . Hence

%moviz < mgyc?

vZ < c? (3.5.13)

As a result

(=B e/e) = (1 h 23
. (moﬁ)—lmoviz)

= <1 + Tz’cz

= (1+5) = (1+ g—z) (3.5.14)

0

Where the free space Lagrangian is defined to be
LO = TO - VO (3515)

Hence , the curved space operator can be written as sum of perturbed and non —
perturbed momentum in form

P=p(1+ g—) =P, + P, (3.5.16)
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Where the perturbed momentum is given by

p, = 2 (3.5.17)

Ey

To explain equation (3.2.18), the Schrodinger Hamiltonian is related to the
interaction one according to the relation
iPyx

W)y =en [Py,

—iPgx

(W] =l e

The spatial evaluation of the system is related to momentum operator according
to the relation

(3.5.18)

== [y) = Ply) (35.19)

i dx
In view of equation (3.5.18) and equation (3.5.19)

h 0X h[i o @Pox 0X g
- ——eh |¢>1=;[gpoe h|yp); +en EWJ)I

i dx

L Pox . iPox h Pox g
= (Po+P)en [pyPoe v ) +7en —lp)
Pox Pox
= Poe v [Y); + Pe v [Y),

—iPox

Multiply both sides by e n one gets

—if’ox I:f’ox

h a
-l =en Pen )
h a ~
7 ox [¥) = Pily) (3.5.20)
Where

—iPox  iPox
Pp=e n Pen (3.5.21)

The mathematical form of equation (3.5.21) can also be found using the fact
that the expectation values are the same in all representations .

Thus
(W|Plw) = (W[P[y), (3.5.22)
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With the aid of equation (3.5.16) (3.5.21) and (3.5.22) one gets

—iPox .« iPox
(Y|, e n (P0+Pi)e h ),

—iPgx iP —iPgx iﬁox

=@l e n P v )+l e n Pen [Py

= (Wl Py [); + 1, Py, (3.5.23)
Equation (3.5.23) should be typical to (3.5.22) this requires

Wl, Py ) =0 (3.5.24)

One can prove this by bearing that in the interaction picture

—i1'50x

W) = ) =e v |¢h)

—iPgx iPox

p=ﬁ0+ﬁi—>ﬁlz € h Pieh

(3.5.25)

In view of equation (3.5.20) and (3.5.16) it is clear that P, gives no contribution
to the equation of motion . Thus as if

P -0 (3.5.26)
Thus

Poly); =0}, =0 (3.5.27)
Hence is equations(3.5.23) becomes

(w|Ply) = W, Py 1y), (3.5.28)

Which is typical to equation (3.5.22).

(3.6) Spatial evolution of unitary operator :

The spatial evolution of the wave function in the wave vector space
takes the form

h d A~
T dx lY) =P lyY), (3.6.1)
The unitary operator 2 can be defined to be

) = Ul (36.2)
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Where the stationary wave vector is defined to satisfy

x=x9=0

Pr=0 (3.6.3)
W) = 1Y) = [P(x = 0))r = ) (3.6.4)
[Y(t = 0)); = [P)e = U(0) [1ho) (3.6.5)
Hence

U, = U0) =1 (3.6.6)
But since at

x=x,=0

P =0 (3.6.7)

It is follow that

h dlpe) _ h dlpo _

i odx i dx 0 %o (3.6.8)
Thus

|Y)o = constant (3.6.9)

Inserting (3.6.2) and(3.6.9) in (3.6.1) gives

h

= U)o} = PUC) o) (3.6.10)
Therefore

hod,

- —U=PU (3.6.11)

Thus using iterated integral method and approximation , the zeroth , first
,second orders of U are given by

X1 _ i X1
fxo du _— foo Pludx
Where

1u%)—u@@=ég§auguuym (3.6.12)
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When

X1 >X9 ., X1 R Xg (3.6.13)
UCxy) = U(xo) + = [ Prxg) Ulxo) dxo = Ulxg) + I (3.6.14)
Similarly

[ du= ﬁ [ Pudx (3.6.15)
U(xz) = UCxy) = + 72 P () U(x) dx (4.6.16)
When

Xo > X1, Xy =Xy (3.6.17)

UCxp) = UCe) + 5 [ Py () UCxy) dxy

[

U(xy) = U(xq) + h

szpl(xl) [U(xo) + 1] dxy

UCx,) = Uxo) + o +5 [ PG [UCxo) + Io] dxy (3.6.18)

(3.7) Heisenberg Picture :

In Heisenberg picture the time evolution of the system is described by
operators instead of the wave function (wf) . Thus one needs changing
Schrddinger equation
ih 29 = g

dx_

Or

ih 22 = Hiy) (3.7.1)
Where

H=H,+H, Y(t) =P(r,t) (3.7.2)

To shift time dependence of 1 to be that of the operator O by defining
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1(£)) = U®) 1P (0)) = Uihy) = Ui)o = UI)y
P(6) = s Yo =Yy (3.7.3)
S= Schrodinger H= Heisenberg

Thus the wave function in the Schrodinger picture and Heisenberg picture are
related according to the relation

)s = UMD )y = U 1)
s = Uy = U)o (3.7.4)

Two methods can be used to find Heisenberg equation of motion . In the
simplest one , one uses the fact that the expectation values in all representation
take the same form . Thus the expectation of the operator O are equal , i.e

W1, On 1Y) = (1,05 11h)s

W1, U710, Un)y (3.7.5)
Oy = U 1o, U (3.7.6)
To find U, one must solve (3.7.1) to get

W)~ 2 e

)  ih

ay) _ H
[y = [yt 3.7.7)

) ==[Hdt+ c

) = cle%ifﬁdt = e%ifﬁdtcl (3.7.8)
Butatt =0
1P(t)) = 1P(0)) = 1)y = ¢4

) = end Ty (3.7.9)
From (4.7.3) it follows that

U(t) = en /et (3.7.10)
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from (3.7.1) and (3.7.3)
ih =2 1), = AU, (3.7.11)

Since the wave vector is time independent it follows that

ihZ =fiu
dt
ih f[U= [ Hdt
ar _ H
- =J 7t (3.7.12)
1 A
Inu=—[H dt (3.7.13)

To find the second term consider again the action of the integral on

Y, , to get
. d
fH dtiyp,) = jih&dtnpo)

= i [22dr = i) (3.7.15)

Assume that

[Hdt=H [dt=Ht (3.7.16)
Thus
[ dtipo) = AOP,) = (ih T t) o) = thipo) (3.7.17)

Thus the assumption (3.7.16) is true .
Hence

Ht
lnu = E + CO

—ift

U(t) = U =eloen (3.7.18)

To find C,, one can use relation (3.7.3), Where at t=0

1% (0)) = U0)1p(0))
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Thus
uU)=1I (3.7.19)

According to equation (3.7.18)

U0) = U =eb (3.7.20)
There fore

—ift
Ut)=e n (3.7.21)

In this work plank constant h is assumed to be unity to get

—-iAt

Wy () =UE) =e n =e iHE (3.7.22)

Where the subscript H is used to differentiate it from that in the interaction
picture

In view of equations (3.7.6) and (3.7.21)

At —ifdt

Oy =enOge n

Differentiating both sides with respect to time yields

dOy —i . Mt -t  iAegd, -t —j ifle  —ifie
—— — _fleh B h —e h ——¢ h h
It " He h Oe ' +e 5t e H e h Oge
L A A aOS aoS
= S0y — - Oyl + (50 = = [, 0y ]+(5 (3.7.23)

Comparing this equation (3.7.9)with equation (3.7.3), yields
U= e%ifﬁt = e%ig

Ul = end (3.7.24)
Where

g=[%dt=[Hdt

dg
—=H (3.7.25)
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This equation (3.7.25) together with equation (3.7.6) can be used to obtain the
time evolution equation of the Heisenberg operator .

Therefore , ones get:

don _ 1 TP
m —dt[ll o, U] = [eh oen ]
= rildg ethehg +gehgd—ehg —Eethehg d“z
05

é[H Oy, OyHI+(5)n
do
i = L [H,04]+GDn (3.7.26)
On other

7 . d . .
(f Hdt)ip,) = flhadtlll))o = ih [ diyp), = ihip), (3.7.27)

But the same result (3.7.27) can be found if one proposes that

H=m=

To be out of the integration sign to get

[ Hdtwp)y = H [ dtrp)y = ih= [ dewp ) = [ dtip),

lh ~tIp)o = ihtip), (3.7.28)
Thus comparing(3.7.27)and (3.7.28) yields

[Hdt =H [dt = in

H=in (3.7.29)
Thus from (3.7.9), (3.7.24)and(3.7.29)

U=t =0)=en/Hdt =0 =] (3.7.30)

(3.7.1)New Derivation of Heisenberg special Evolution :

In this work an new tread based on the unitary operator which is found
using some simple mathematical techniques besed on the ordinary
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differentiation and integration is used . The quantum average of the momentum
operator in the Schrodinger and Heisenberg picture is also used . Acting on the
wave function by momentum operator

ih< 1p) = Piyp) (3.7.31)
The unitary operator is defined by
1P (x)) = 1P(x))s = U 1P(0)) = U(x)1)o

= U)o = W)y (3.7.32)

The quantum average of the operator O is equal in the Schrodinger and
Heisenberg picture .Therefore

<¢|H Oy 1)y = (djlsos 1P)s
W1, Oy 1Y)y = (Y1, U105 Uih)y (3.7.33)
Hence the operator in the Heisenberg picture is given by

Oy = U~10, U (3.7.34)

[y =5 Pdx

Lnw) == [ Pdx + C;

) = er) Paxc, (3.7.35)
But at

x=0 1Y) =1P0))==Cy (3.7.36)
Thus equation (3.7.35)and (3.7.32) give

1) = end POy = e Oy = o D) (3.7.37)
Where

foo) = [Ldx = [ P(x)dx

Thus
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p=%
dx

Hence equation(3.7.2) and (3.7.9) can be compared to get
M = e/ POIx _ () _ i
Thus equation (4) is given by

Oy =e theﬁf

The spatial evolution of the operator is therefore given by :

do d do L | e ieg
WOn _ LY =S i + e W 40 Gf _ Lo geid &
dx h dx dx h dx

£1PO ~04P1+ (%),

T =04, P1+(3),

i dx

On the other hand

[Pdxip), = f——dx It,l))o
dexII,D)O fdxll,l))o = Il/J)O

The same result can be obtained by suggesting that

To be out of integration to get

[ Pdxip)y = P [ dxp)o =22 ()h)e = > b
Thus

[Pdx=P[dx="=

Form (4.7.25) , when

) = 1P)x =0

Ux=0)=U —eﬁfpdxze():l
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(3.7.2)Special and General Relativistic Meaning of the Matrix:

The proper length or proper time | a relativistic space- time takes the general
form

c?dt? = —g,,dxtdx? = —g,’wdx”'dx”' (3.7.45)

Consider two space points in the frame s and s’ that measured simultaneously .
In this case

dx® =0 dx” =0
Therefore
Grxdx? = —gidx” (3.7.46)

An observer at s observe arod which is at rest in s moving with constant
speed v . So

2
Ixx = 1 ) -gJ,CX =1-"Y /CZ (3-7-47)

To get the ordinary length contraction relation

dx = /1 —V*/ pdx’ = ydx' (3.7.48)

When s’ moves with speed of light
dt' =0 x' = c? (3.7.49)
Thus from (4.7.45)

—c2dt? — g, dx% = —gl dx" (3.7.49)
—* = Vg = =€ gy

Thus since

Gxx = —1

Gix=1-""/, (3.7.50)

!

Consider also a clock at rest at a certain point in s’ . In this case one must use

the time metric relation to get
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dx® = /gz)odxor

1

dt=(1-v"/ 3) *at’ (3.7.51)

1

—(1_7v%/ \?
It is very interesting to note that
Jxx = Jx (3.7.52)

This conforms to Schwarzschild solution . thus in a curved space time
(Curved = C) which is equivalent to an accelerated frame s’ with respect to an
observer which is at rest in s

dx, = \/grcdx' (3.7.53)
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Chapter 4

Results , Discussion and Conclusion

(4.1) Introduction :

In this chapter consist of the results , discussion and
conclusion .

(4.2) Results:

For the first time the spatial evolution of the quantum system in the
interaction picture has bee obtained in the form [see(3.2.26)

ih:—xu/)), = P, (4.2.1)

The viability and the reality of this equation comes from the fact that its form
resembles the ordinary form momentum eigen equation . It also of resembles
the time evolution when replacing time with coordinate and Hamiltonian with
momentum operator. The unitary operator is given by equation (3.2.33)

i x2 rrs i xl r d rs
U(X2)=U(x1)—ﬁJ PI(X )ll—ﬁj PI(X)dX]dX
X1 Xo
=U(x,) + (%) fxxlz P, (x"dx” + (_h—lz)f;czl f;;l P (x”) P, (x)dx"dx”
(4.2.2)

Which describes its spatial evolution .Its viability comes from the fact that is
resembles the time dependent one with the time replaced coordinate and
Hamiltonian with the momentum operator . The energy relation in a curved
space time is given by equation (3.3.9)

ih 2 = Ey (4.2.3)

at,

From which one can deduce the relation between energy in a curved space and
Eucleadian space in the form

E = (900)_%E0 (4.2.4)

Which conforms with the fact that for static mass
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m = (goo)_%mo (4.2.5)

1 1
E=mc? = (900)_5m0C2 = (goo) 2E, (4.2.6)
The same hold for momentum .

The momentum in a curved space time is given according to equation (3.3.12)
by

hayp
i 0x,

Py
With

dx. = \/Gxxdx (4.2.7)
When compare it with that of Eucleadian space (4.3.15c¢)

RO = pyy (4.2.8)

i 0x
It gives
1
P = (goo) 2Py (4.2.9)
Using the proper time relation [see(3.3.23)]

c2dt? = c?goodtE + gurdx?

1

- d 21z
|4 t= (d—z) = [gOO — Gxx :_g]z (4.2.10)
One gets
E§ = Pgc? + mict (4.2.11)

Which resembles the ordinary energy —momentum relation with the mass given
by equation (3.3.32)to be

m= Jgom, (4.2.12)

Which resembles that of GSR for static mass . The perturbed momentum is
given by

P=p(1+ g—) =P, + P, (4.2.13)
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This means that the field changes momentum through the lagrangian which
consists of a potential term . This effect can not be recognized by the ordinary
model.

The comparison of the proper interval shows that the metric space components
related to Lorentz coefficient y through the relation

! 2 —
Ixx = 1— v /CZ =Y 2 (4.2.14)

(4.3) Discussion :

The wave function in a curved time-space is given by equations
(4.3.1) and (4.3.6) . Using this expression together with definition of time in a
curved space —time in equation (4.3.10) , the curved space-Eigen equation take
a form typical to Euclidian space ,this is very apparent when comparing
equation (4.3.5) and(4.3.7) . It is very striking to note that the energy Eigen
equation in curved space-time [equation (4.3.9)] can be used to derive the
energy Eigen equation in the Euclidean space . the same hold for momentum
Eigen equation in curved space in equation (4.3.12) can be used to derive that
Euclidian space in equation (4.3.15.c).Fortunately , the relation between the
momentum in a curved space and momentum in equation (4.3.30) is typical to
that obtained for Eigen equation in equation (4.3.10) and (4.3.15.3) .

Appling energy Eigen equation for harmonic oscillator in a curved space-
time shows that the energy in the curved space-time is equivalent to the
existence of additional potential term typical to that Newton . This means that a
particle in a curved space behavior is typically to behavior of particle moving in
a potential .

The energy expression (4.4.1) in a curved space —time within the frame
work of GSR is utilized to get a useful expression for the Hamiltonian (4.4.4).
here one assumes that the velocity is less than the speed of light . Both of
Schrodinger equation and expectation Values of the Hamiltonian in
Schrodinger and interaction picture(see (4.4.11)&(4.4.16)). These tow
expression are typicall each other only when the unperturbed Hamiltonian gives
no contribution to the energy in the interaction picture . This is in agreement
with the fact that the Hamiltonian in the interaction picture is only that wich
causes perturbation .

Spatial evolution of the quantum system in the interaction picture is also
derived using the expression of the momentum in a curved space-time within
the frame work of the GSR. Here one assumes that the velocity is less than the
speed of light and the potential is also less than the rest mass energy . The
perturbed momentum is found to be proportional to the Lagrangin of the system
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thus also to the perturbation energy (see(4.5.3) . Fortunately this new
expression resembles that of the Hamiltonian , where the time differential is
replaced by the space one and the Hamiltonian is replaced by the momentum
(see (4.5.20) . The expression of the momentum using the Schrodinger equation
is typical to the one found by equating the expectation values in the interaction
picture and Schrodinger picture as shown in equations (4.5.25)& (4.5.21) . This
requires that the unperturbed momentum to give no contribution in the
interaction picture as shown in equation (4.5.24) . Finally the spatial evolution
of the unitary operator is derived using the momentum operator . It is very
interesting to note that this spatial evolution resembles that of time but here one
replaces time integral by spatial one , and the Hamiltonian by the momentum
operator.

Using the quantum average of Hamiltonian of the quantum system in
equation(4.7.5) and the definition of the unitary operator in (4.7.6)one finds
the expression of the unitary operator in the Heisenberg time evolution equation
in (4.7.26). Using the quantum average of momentum operator of quantum
system in the Schrodinger and Heisenberg picture in equation (4.7.33)beside
integration and differentiation technique ,one finds the functional form of the
unitary operator defined in equation(4.7.32) . Then the Heisenberg spatial
evolution is found in equation (4.7.41). The proper length in a curved space is
written in equation(4.7.46). comparing this expression with the corresponding
Special relativity expressions , one finds that the spatial and time metric is
related to the Lorentz transformation factor as shown in equations (4.7.47)&

(4.7.51). They satisfy a Schwarzschild relation.

(4.4) Conclusion :

The energy and momentum Eigen equation in a curved space can be used
to derive that the Euclidean space using the energy —momentum relation
analogous in Euclidian and curved space . Its the expression of mass in a
curved space was similar to that of GSR.

A useful expression of the spatial evolution of the quantum system in the
interaction picture was derived . This expression was found to be typical to the
Hamiltonian one when one replaces the time differential with the spatial one .
Another expression of the spatial evolution of the unitary operator was also
found to be typical to that of the Hamiltonian one . Here one replaces the time
integral with the spatial one , and the Hamiltonian with the momentum .

The spatial evolution of the quantum system was found using unitary
operator and simple mathematics based on the ordinary differentiation and
integration . The metrics in the curved space time was found to be related to the
Lorentz transformation factor.
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