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Chapter (1) 

Differentiable Manifolds 

We discuss some fundamental concepts, preliminary notions and some funda-

mental results that is required for the development of the subject in the disserta-

tion. Specifically, the notions of manifold, function, and vector field, and the 

concept of differentiability (smoothness). 

The notion of a differentiable manifold is necessary for extending the methods of 

differential calculus to spaces more general than ℝ𝑛 . 

Differentiable manifold is a type of manifold that is locally similar enough to a 

Euclidean space to allow one to do calculus. Any manifold can be described by a 

collection of charts. 

1.1: Topological Manifolds 

A topological space is called separable if it contains a countable dense subset, 

i.e., there exist sequences  𝐶𝑖 𝑖=1
∞  of elements of the space such that every non-

empty open subset of the space contains at least one element of the sequence. 

Let 𝛭 be a separable topological space. We assume that 𝛭 satisfies the Haus-

dorff separation axiom which states that any two different points in 𝛭 can be se-

parated by disjoint open sets. 

 An open chart on 𝛭 is a pair (𝑈, 𝜑) where 𝑈 is an open subset of 𝛭 and 𝜑 is a 

homeomorphism of 𝑈 onto an open subset of ℝ𝑛 , where ℝ𝑛  is an 𝑛-dimension-

al Euclidean space. 

1.1.1. Definition. Let 𝑋 be an arbitrary set. A local parametrization of 𝑋 is an in-

jective mapping 𝜑: 𝛺 → 𝑋 from an open subset 𝛺 of ℝ𝑛  onto a subset of 𝑋.  

The inverse 𝜑−1: 𝜑(𝛺) → 𝛺 of such a parametrization is called a chart because 

through 𝜑−1 the regions im𝜑 ⊂ 𝑋 is “charted” on 𝑈 ⊂ ℝ𝑛   just as region of the 

earth is charted on a topographic or a political map. 

 𝜑−1 is also called a local coordinate system because through 𝜑−1 each point 𝑝 ∈ 

im𝜑 corresponds to an 𝑛-tuple of real numbers, the coordinates of 𝑝. 
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1.1.2. Definition.  Let 𝛭 be a topological space. A covering of 𝛭 is a collection 

of open subsets of 𝛭 whose union is 𝛭. A covering  𝑈𝛼 𝛼∈𝐴  of 𝛭 is said to be 

locally finite if each 𝑝 ∈ 𝑀 has a neighborhood (an open subset of 𝛭 contain- 

ing 𝑝) which intersects only finitely many of the sets 𝑈𝛼  . 

A Hausdorff space 𝛭 is called paracompact if for each covering  𝑈𝛼 𝛼∈𝐴  of 𝛭 

there exists a locally finite covering  𝑉𝛽  
𝛽∈𝐵

which is a refinement of   𝑈𝛼 𝛼∈𝐴 

(That is, each 𝑉𝛽  is contained in some 𝑈𝛼 ). It is known that a locally compact 

Hausdorff space which has a countable base is paracompact. 

1.1.3. Definition.  An 𝑚-dimensional manifold in ℝ𝑛  is a nonempty 𝑆 ⊂ ℝ𝑛  sa-

tisfying the following property for each point 𝑝 ∈ 𝑆. There exists an open neigh-

borhood 𝑊 ⊂ ℝ𝑛  of 𝑝 an 𝑚-dimensional embedded parameterized manifold  

𝜎: 𝑈 → ℝ𝑛   with image 𝜎 𝑈 = 𝑆 ∩ 𝑊 .  

1.1.4. Definition. A topological space 𝛭 is locally Euclidean of dimension 𝑛 if 

every point 𝑝 in 𝛭 has a neighborhood 𝑈 such that there is homeomorphism 𝜑 

from 𝑈 onto an open subset of ℝ𝑛  . We call the pair (𝑈, 𝜑: 𝑈 → ℝ𝑛 ) a chart, 𝑈 a 

coordinate neighborhood or a coordinate open set, and 𝜑 a coordinate map or a 

coordinate neighborhood system on 𝑈. We say that a chart (𝑈, 𝜑) is a centered at 

𝑝 ∈ 𝑈 if 𝜑 𝑝 = 0.  

1.1.5. Definition. Suppose 𝛭 is a topological space. We say that 𝛭 is a topolo- 

gical manifold of dimension 𝑛 or topological 𝑛-manifold if it has the following 

properties: 

(i) 𝛭 is a Hausdorff space, 

(ii) 𝛭 is locally Euclidean of dimension 𝑛, and 

(iii) 𝛭 is second-countable. 

1.1.1: Some Examples of Topological Manifolds 

(a) The Euclidean space ℝ𝑛  is covered by a single chart (ℝ𝑛 , 𝐼ℝ𝑛 ), where 

 𝐼ℝ𝑛 : ℝ𝑛 → ℝ𝑛  is the identity map. It is the prime example of a topological mani-

fold.  Every open subset of ℝ𝑛  is also a topological manifold, with chart (𝑈, 𝐼𝑈). 

Recall that the Hausdorff condition and second countability are “hereditary prop-

erties” that is, they are inherited by subspace: a subspace of a Hausdorff space is 
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a Hausdorff and a subspace of a second countable space is second countable. So 

any subspace of ℝ𝑛  is automatically Hausdorff and second countable. 

(b) (Spheres). Let 𝑆𝑛  denote the (unit) 𝑛-sphere which is the set of unit length 

vectors in ℝ𝑛  : 

𝑆𝑛 =  𝑥 ∈ ℝ𝑛+1:  𝑥 = 1  

It is Hausdorff and second countable because it is a subspace of ℝ𝑛 . 

To show that it is locally Euclidean, for each index 𝑖 = 1, … , 𝑛 + 1, let 𝑈𝑖
+denote 

the subset of 𝑆𝑛  where the 𝑖-th coordinate is positive 

𝑈𝑖
+ =   𝑥1, … , 𝑥𝑛+1 ∈ 𝑆𝑛 : 𝑥𝑖 > 0  

Similarly, 𝑈𝑖
− is the set where  𝑥𝑖 < 0. For each 𝑖, define maps 𝜑𝑖

±: 𝑈𝑖
± → ℝ𝑛   by 

𝜑𝑖
± 𝑥1, … , 𝑥𝑛+1 = (𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛+1) 

where the hat over 𝑥𝑖  indicates that 𝑥𝑖  is omitted. 

Each 𝜑𝑖
± is evidently a continuous map, being the restriction to 𝑆𝑛  of a linear 

map  on ℝ𝑛+1. 

It is homeomorphism onto it is the unit ball 𝐵𝑛 ⊂ ℝ𝑛 , because it has a conti-

nuous inverse given by 

𝜑±−1
 𝑢1, … , 𝑢𝑛 = (𝑢1, … , 𝑢𝑖−1, ± 1 −  𝑢 2, 𝑢𝑖 , … , 𝑢𝑛). 

Since every point in  𝑆𝑛+1 is in the domain of one these 2𝑛+2 charts, 𝑆𝑛  is local-

ly Euclidean of dimension 𝑛 and is thus a topological 𝑛-manifold.  

(c) The simplest examples of manifolds not homeomorphic to open subset of 

Euclidean space are the circle 𝑆1 and the 2-sphere 𝑆2, which may be defined to 

be all points of 𝔼2, or 𝔼3, respectively, which are at unit distance from a fixed 

point 0. 

These are to be taken with the subspace topology so that (i) and (iii) are imme-

diate. 

To see that they are locally Euclidean we introduce coordinate axes with 0 as 

origin in the corresponding ambient Euclidean space. Thus in the case of 𝑆2 we 
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identify 𝔼3 or ℝ3, and 𝑆2 becomes the unit sphere centered at the origin. At each 

point 𝑝 of 𝑆2 we have a tangent plane and a unit normal vector 𝑁𝑝  . There will 

be a coordinate axis which is not perpendicular to 𝑁𝑝  and some neighborhood 𝑈 

of 𝑝 on 𝑆2 will then project in a continuous and one-to-one fashion onto an open 

set 𝑈′  of the coordinate plane perpendicular to the axis.  

 1.1.2: Coordinate Charts 

Let 𝛭 be topological 𝑛-manifolds. A coordinate chart (or just a chart) on 𝛭 is a 

pair (𝑈, 𝜑), where 𝑈 is an open subset of 𝛭 and  𝜑 ∶ 𝑈 → 𝑈  is a homeomor-

phism from 𝑈 to an open subset 𝑈 = 𝜑 𝑈 ⊂ ℝ𝑛 .  

If the addition 𝑈  is an open ball in ℝ𝑛 , then 𝑈 is called coordinate ball. 

The definition of a topological manifold implies that each point 𝑝 ∈ 𝑀 is con-

tained in the domain of some chart (𝑈, 𝜑).  

If 𝜑(𝑝) = 0 we say that a chart is centered at 𝑝. Given a chart (𝑈, 𝜑) we call the 

set 𝑈 a coordinate domain, or a coordinate neighborhood of each of its points. 

The map 𝜑 is called a (local) coordinate map, and the component functions of 𝜑 

are called local coordinate on 𝑈.  

1.1.3: Compatible Charts 

Suppose  𝑈, 𝜑: 𝑈 → ℝ𝑛  and  𝑉, 𝛹: 𝑉 → ℝ𝑛  are two charts of a topological 

manifold. Since 𝑈 ∩ 𝑉 is open in 𝑈 and 𝜑: 𝑈 → ℝ𝑛  is a homeomorphism onto an 

open subset of ℝ𝑛 , the image 𝜑 𝑈 ∩ 𝑉  will also be an open subset of ℝ𝑛 . 

1.1.6. Definition. Two charts  𝑈, 𝜑: 𝑈 → ℝ𝑛 ,  𝑉,   𝛹: 𝑉 → ℝ𝑛  of topological 

manifold are 𝐶∞-compatible if the two maps 

𝜑 ∘ 𝜓−1: 𝜓 𝑈 ∩ 𝑉 → 𝜑 𝑈 ∩ 𝑉 , 

 𝜓 ∘ 𝜑−1: 𝜑 𝑈 ∩ 𝑉 → 𝜓 𝑈 ∩ 𝑉  

are 𝐶∞ . 

These two maps are called the transition functions between the charts. 

If 𝑈 ∩ 𝑉 is nonempty, then the two charts are automatically 𝐶∞-compatible. 
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1.1.7. Definition. A 𝐶∞-atlas or simply an atlas on a locally Euclidean space 𝑀 

is a collection 𝔄 =   𝑈𝛼 , 𝜑𝛼    of pairwise 𝐶∞-compatible charts that cover 𝑀, 

i.e., such that 𝑀 =  𝑈𝛼𝛼 . 

We say that a chart (𝑉, 𝜓) is a compatible with an atlas   𝑈𝛼 , 𝜑𝛼   if it is com-

patible with all charts   𝑈𝛼 , 𝜑𝛼  of the atlas. 

1.1.8. Lemma. Let   𝑈𝛼 , 𝜑𝛼   is an atlas on a locally Euclidean space. If two 

charts (𝑉, 𝜓) and (𝑊, 𝜎) are both compatible with the atlas   𝑈𝛼 , 𝜑𝛼   then they 

are compatible with each other. 

Proof. Let  𝑝 ∈ 𝑉 ∩ 𝑊. We need to show that 𝜎 ∘ 𝜓−1 is 𝐶∞ at 𝜓 𝑝 .  

Since   𝑈𝛼 , 𝜑𝛼   is an atlas for 𝑀, 𝑝 ∈ 𝑈𝛼  for some 𝛼.Then 𝑝 is in the triple in-

tersection 𝑉 ∩ 𝑊 ∩ 𝑈𝛼  . 

Now 

𝜎 ∘ 𝜓−1 =  𝜎 ∘ 𝜑𝛼
−1 ∘  𝜑𝛼 ∘ 𝜓−1  is  𝐶∞ on 𝜓 𝑉 ∩ 𝑊 ∩ 𝑈𝛼   

Hence at 𝜓 𝑝 . Since 𝑝 was arbitrary point of  𝑉 ∩ 𝑊 , this proves that 𝜎 ∘ 𝜓−1 

is 𝐶∞ on 𝜓 𝑉 ∩ 𝑊 .   

Similarly 𝜓 ∘ 𝜎−1 is 𝐶∞ on 𝜎 𝑉 ∩ 𝑊 . ∎  

1.1.9. Definition. A differentiable structure on a topological manifold 𝛭 is a 

family 𝔄 =  𝑈𝛼 , 𝜑𝛼  of coordinate neighborhoods such that  

(1) The 𝑈𝛼  cover 𝛭,  

(2) For any 𝛼, 𝛽 the neighborhoods  𝑈𝛼 , 𝜑𝛼  and 𝑈𝛽 , 𝜑𝛽  are 𝐶∞-compatible. 

(3) Any coordinate neighborhood 𝑉, 𝜓 compatible with every 𝑈𝛼 , 𝜑𝛼 ∈ 𝔄 is 

itself in 𝔄. 

1.1.10. Definition. A smooth or 𝐶∞-manifold is a topological manifold 𝛭 to-

gether with a maximal atlas. 

The maximal atlas is also called a differentiable structure on 𝛭. 

Statement. In the 𝐶∞
-atlas all Jacobians  det 𝜕𝑥𝑖 𝜕𝑦𝑘   are nonzero. 

Proof. Since 𝑥  𝑦   and 𝑦  𝑥   are both 𝐶∞
 we have det 𝜕𝑥𝑖 𝜕𝑦𝑘  ≠ 0 . 

1.1.11. Definition. Oriented atlas is such that all det 𝜕𝑥𝑖 𝜕𝑦𝑘  > 0 . 
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Oriented manifold ≔ there exists an oriented atlas. 

1.1.12. Definition. Let 𝛭 be a smooth manifold of dimension 𝑛, a function 

𝑓: 𝑀 → ℝ is said to be 𝐶∞  or smooth at a point 𝑝 in 𝛭 if there is a chart (𝑈, 𝜑) 

about 𝑝 in 𝛭 such that 𝑓 ∘ 𝜑−1, a function defined of the open subset 𝜑(𝑈) of ℝ𝑛  

is 𝐶∞  at 𝜑(𝑝). 

 The function 𝑓 is said to be 𝐶∞  on 𝛭 if it is 𝐶∞  at every point of 𝛭. 

1.1.4: Examples of Smooth Manifolds 

(i) (Euclidean Space) .The Euclidean space ℝ𝑛  is a smooth manifold with a sin-

gle chart  ℝ𝑛 , 𝑟1, … , 𝑟𝑛 , where 𝑟1, … , 𝑟𝑛  are the standard coordinates on ℝ . 

(ii) (Open subset of a manifold). Any open subset 𝑉 of a manifold 𝛭 is also a 

manifold. If    𝑈𝛼 , 𝜑𝛼   is an atlas for 𝛭, then  (𝑈𝛼 ∩ 𝑉,  𝜑𝛼  𝑈𝛼∩𝑉   is an atlas for 

𝑉, where  𝜑𝛼  𝑈𝛼∩𝑉 : 𝑈𝛼 ∩ 𝑉 →  ℝ𝑛  denotes the restriction of 𝜑𝛼 to the subset 

𝑈𝛼 ∩ 𝑉. 

(iii) (Manifolds of dimension zero). In a manifold of dimension zero, every sin-

gleton subset in homeomorphic to ℝ0 and so is open. Thus, a zero dimensional 

manifold is a discrete set. By second countability, this discrete set must be coun-

table. 

1.1.13. Lemma. Let 𝑆 ⊂ ℝ𝑛  be non-empty. Then 𝑆 is a 𝑚-dimensional manifold 

if and only if it satisfies the following condition for each 𝑝 ∈ 𝑆: 

There exist an open neighborhood 𝑊 ⊂ ℝ𝑛  of 𝑝, such that 𝑆 ∩ 𝑊 is the graph of 

a smooth function 𝑕, where 𝑛 − 𝑚 of the variables 𝑥1,…,𝑥𝑛 are considered as 

functions of the remaining 𝑚 variables. 

1.1.14. Definition.  A neighborhood of a point 𝑝0 in 𝛭 is any subset of 𝛭 con-

taining all 𝑝 whose coordinate point 𝑥(𝑝) in some coordinate system satisfy 

 𝑥 𝑝 − 𝑥 𝑝𝑜  < 𝜖, for some 𝜖 > 0. A subset of 𝛭 is open if it contains a 

neighborhood of each of its points, and closed if its complement is open. 

1.1.15. Definition. If 𝛭 and 𝑁 are manifolds, the Cartesian product  

𝑀 × 𝑁 =   𝑝, 𝑞 : 𝑝 ∈ 𝑀, 𝑞 ∈ 𝑁  
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becomes a manifold with the coordinate systems (𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑚 ) where 

 𝑥1, … , 𝑥𝑛  is a coordinate system of 𝛭,  𝑦1, … , 𝑦𝑚  for 𝑁. 

1.1.16. Definition. Let 𝑁 and 𝛭 be manifolds. And let 𝑓: 𝑁 → 𝑀 be a conti-

nuous mapping.  A mapping 𝑓 is called a homeomorphism between 𝑁 and 𝛭 if 𝑓 

is continuous and has a continuous inverse 𝑓−1: 𝑀 → 𝑁. 

In this case the manifolds 𝑁 and 𝛭 are said to be homeomorphic. 

1.1.17. Definitions. Given two manifolds 𝑁 and 𝛭, a mapping 𝑓: 𝑁 → 𝑀 is said 

to be 𝐶∞  or smooth if for every 𝑝 ∈ 𝑁 there exist charts (𝑈, 𝜑) of 𝑝 and (𝑉, 𝜓) of 

𝑓(𝑝) with 𝑓(𝑈) ⊂ 𝑉 such that 𝜓 ∘ 𝑓 ∘ 𝜑−1: 𝜑 𝑈 → 𝜓 𝑉  is a 𝐶∞-mapping (from 

ℝ𝑛  to ℝ𝑚 ). 

Let 𝑢1, … , 𝑢𝑛   be a local coordinate system on 𝑈𝛼 and 𝑦1 , … , 𝑦𝑚  a local coordi-

nate system on 𝑉𝛽 . 

 If 𝜑 is a differentiable map of 𝑀 into 𝑁, then locally 𝜑 can be expressed by a set 

of differentiable functions: 

𝑦1 = 𝑦1 𝑢1, … , 𝑢𝑛 , … , 𝑦𝑚 = 𝑦𝑚  𝑢1, … , 𝑢𝑛 . 

By a differentiable map of a closed interval  𝑎, 𝑏  into a manifold 𝑀, we mean 

the restriction of a differentiable map of an open interval 𝐼 ⊃  𝑎, 𝑏  into 𝑀. 

By a differentiable curve in a manifold 𝑀, we shall mean a differentiable map-

ping of a closed interval  𝑎, 𝑏  of ℝ into 𝑀. 

We shall now define a tangent vector (or simply a vector) at a point 𝑝 of 𝑀. Let 

ℱ(𝑝) be the algebra of differentiable functions in a neighborhood of a point 𝑝. 

 Let 𝛾 𝑡  (𝑎 ≤ 𝑡 ≤ 𝑏) be a differentiable curve in 𝑀 with 𝛾 𝑡0 = 𝑝. The vector 

tangent to the curve 𝛾 𝑡  at 𝑝 is a map 𝑋: ℱ 𝑝 → ℝ defined by 

𝑋𝑓 =  𝑑𝑓 𝛾 𝑡  

𝑑𝑡
 
𝑡=𝑡0

. 

In other words, 𝑋𝑓 is the derivative of 𝑓 in the direction of the curve 𝛾 𝑡  at 

𝑡 = 𝑡0. The vector 𝑋 satisfies the following two conditions: 

(1)  𝑋 is a linear map of ℱ(𝑝) into ℝ. i.e., 
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𝑋 (𝑎𝑓 + 𝑏𝑔) = 𝑎𝑋 (𝑓) + 𝑏𝑋 (𝑔) for 𝑓, 𝑔 ∈ ℱ (𝑝), 𝑎, 𝑏 ∈ ℝ; 

 

(2)  𝑋 is a derivation: 𝑋 (𝑓𝑔) = (𝑋𝑓) 𝑔(𝑝) + 𝑓(𝑝) 𝑋𝑔 for 𝑓, 𝑔 ∈ ℱ(𝑝). 

The set of maps 𝑋 of ℱ(𝑝) into ℝ satisfying these two conditions forms a real 

vector space. 

 Let 𝑢1, … , 𝑢𝑛be a local coordinate system defined in a coordinate neighborhood 

𝑈 of 𝑝. For each 𝑖,  𝜕 𝜕𝑢𝑖  𝑝  is a map from ℱ(𝑝) into ℝ satisfying conditions (1) 

and (2) above. We shall show that the set of vectors at 𝑝 forms the vector space 

with basis  𝜕 𝜕𝑢1  𝑝 , … ,  𝜕 𝜕𝑢𝑛  𝑝 .  

Given a curve 𝛾 𝑡  with  𝛾 𝑡0 = 𝑝, let 𝑢𝑖 = 𝛾𝑖 𝑡  be its equations in terms of 

𝑢1, … , 𝑢𝑛 . Then we have 

 
𝑑𝑓 𝛾 𝑡  

𝑑𝑡
 

𝑡0

=   
𝜕𝑓

𝜕𝑢𝑖
 

𝑝

 
𝑑𝛾𝑖 𝑡 

𝑑𝑡
 

𝑡0

𝑛

𝑖=1

. 

Thus every vector at 𝑝 is a linear combination of  𝜕 𝜕𝑢1  𝑝 , … ,  𝜕 𝜕𝑢𝑛  𝑝 .   

Conversely, for a given linear combination 𝑋 =  𝑎𝑖 𝜕 𝜕𝑢𝑖  𝑝𝑖 , let us consider 

the curve defined by 

𝑢𝑖 = 𝑢𝑖 𝑝 + 𝑎𝑖𝑡,    𝑖 = 1, … , 𝑛. 

Then 𝑋 is the vector tangent to this curve at 𝑡 = 0. 

To prove the linear independence, we assume that  𝑎𝑖 𝜕 𝜕𝑢𝑖  𝑝𝑖 = 0 .  

Then we have 

0 =  𝑎𝑖  
𝜕𝑢𝑗

𝜕𝑢𝑖
 

𝑝

= 𝑎𝑗 ,    𝑗 = 1, … , 𝑛. 

Consequently, we obtain the following 

1.1.17. Proposition. Let 𝑀 be an 𝑛-dimensional manifold and 𝑝 ∈ 𝑀. If 𝑢1,…,𝑢𝑛 

is a local coordinate system on a coordinate neighborhood containing 𝑝, then the 

set of vectors at 𝑝 tangent to 𝑀 is an 𝑛-dimensional vector space or ℝ with basis 

 𝜕 𝜕𝑢1  𝑝 , … ,  𝜕 𝜕𝑢𝑛  𝑝  . 



9 
 

A vector field 𝑋 on a differentiable manifold 𝑀 is a function that assigns to each 

point 𝑝 ∈ 𝑀 a tangent vector 𝑋𝑝 ∈ 𝑇𝑝𝑀 to 𝑀 at 𝑝. If 𝑓 is a differentiable func-

tion on 𝑀, then 𝑋𝑓 is a function on 𝑀 such that  𝑋𝑓  𝑝 = 𝑋𝑝𝑓. A vector field 

𝑋 is called differentiable if 𝑋𝑓 is differentiable for every differentiable function 

𝑓 on 𝑀. 

In terms of a local coordinate system 𝑢1, … , 𝑢𝑛 , a differentiable vector field 𝑋 

can be expressed by 

𝑋 =  𝑋𝑖 𝜕

𝜕𝑢𝑖

𝑛
𝑖=1 , 

 where the coefficients 𝑋𝑖  are differentiable functions. 

Let  𝔛 𝑀  be the set of all differentiable vector fields on 𝑀. Then 𝔛 𝑀  is a real 

vector space under the natural addition and scalar multiplication. 

Given two vector fields 𝑋, 𝑌 on 𝑀, we define the bracket  𝑋, 𝑌  as a map from 

the ring of functions on 𝑀 into itself by 

                                      𝑋, 𝑌 𝑓 = 𝑋 𝑌𝑓 − 𝑌 𝑋𝑓 .                                      (1.1.1) 

Then  𝑋, 𝑌  is again a vector field on 𝑀. In terms of a local coordinate system 

𝑢1, … , 𝑢𝑛 , we write 

𝑋 =  𝑋𝑖 𝜕

𝜕𝑢𝑖

𝑛

𝑖=1

   ,   𝑌 =  𝑋𝑗 𝜕

𝜕𝑢𝑗

𝑛

𝑗=1

 

Then we have 

                         𝑋, 𝑌 𝑓 =   𝑋𝑘 𝜕𝑌𝑗

𝜕𝑢𝑘
− 𝑌𝑘 𝜕𝑋 𝑗

𝜕𝑢𝑘
 𝜕

𝜕𝑢𝑗

𝑛
𝑗 ,𝑘=1 .                                (1.1.2) 

With respect to this bracket operation, 𝔛 𝑀  becomes Lie algebra over ℝ (of in-

finite dimension). In particular, we have the Jacobi identity: 

                 𝑋, 𝑌 , 𝑍 +   𝑌, 𝑍 , 𝑋 +   𝑍, 𝑋 , 𝑌 = 0                                      (1.1.3) 

for 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀  . 

We may regard 𝔛 𝑀  as a module over the ring ℱ 𝑀  of differentiable functions 

on 𝑀 as follows: 
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If 𝑓 ∈ ℱ 𝑀  and 𝑋 ∈ 𝔛 𝑀 , then we define 𝑓𝑋 by  𝑓𝑋 𝑝 = 𝑓 𝑝 𝑋𝑝  we have 

 𝑓𝑋, 𝑔𝑌 = 𝑓𝑔 𝑋, 𝑌 − 𝑓 𝑋𝑔 𝑌 − 𝑔 𝑌𝑓 𝑋 

for 𝑓, 𝑔 ∈ ℱ 𝑀  and 𝑋, 𝑌 ∈ 𝔛 𝑀  . 

1.1.19. Definition. A 𝐶∞
 mapping 𝐹: 𝑀 → 𝑁 between 𝐶∞ manifolds is a diffeo-

morphism if it is a homeomorphism and 𝐹−1 is 𝐶∞
. 𝑀 and 𝑁 are diffeomorphic if 

there exists a diffeomorphism 𝐹: 𝑀 → 𝑁. 

1.1.20. Definition. Let 𝐹: 𝑁 → 𝑀 be a map and 𝑕 a function on 𝑀. The pull-back 

of 𝑕 by 𝐹 denoted by 𝐹∗𝑕, is the composite function 𝑕 ∘ 𝐹. 

A function 𝑓 on 𝑀 is 𝐶∞  on a chart  𝑈, 𝜑  if and only if its Pull-back 

 𝜑−1 ∗𝑓  by 𝜑−1 is 𝐶∞  on the subset 𝜑 𝑈  of Euclidean space. 

1.1.21. Definition. A complex manifold 𝑀 is a Hausdorff second countable top-

ological space 𝑋, with an atlas 𝒜 =   𝑈𝛼 , 𝜑𝛼 : 𝛼 ∈ 𝐴  the coordinate functions 

𝜑𝛼  take values in ℂ𝑛  and so all the overlap maps are holomorphic. The number 𝑛  

is called the complex dimension of 𝑀 and one writes 𝑑𝑖𝑚ℂ𝑀 = 𝑛. 

A maximal set of charts is now called a complex structure. 

1.1.22. Definition. A topological space 𝑀 is called an 𝑚-dimensional manifold-

with boundary 𝜕𝑀 ⊂ 𝑀, if the following conditions hold: 

1. 𝑀 is a Hausdorff space, 

2. For any point 𝑝 ∈ 𝑀 there exist a neighborhood 𝑈 of 𝑝, which is homeomor- 

phic to an open subset 𝑉 ⊂ ℋ𝑀  and  

3. 𝑀 has a countable basis of open sets. 

1.1.23. Definition. The stereographic projection from the North Pole 𝑁 =

 0, … ,0,1  (resp., South Pole 𝑆 = (0, … ,0, −1)) of the sphere 

𝑆𝑛 =   𝑥1, … , 𝑥𝑛+1 ∈ ℝ𝑛+1:   𝑥𝑖 
2

𝑛+1

𝑖=1

= 1  
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Onto the equatorial plane 𝑥𝑛+1 = 0 is the map sending  𝑝 ∈ 𝑆𝑛 ∖  𝑁 (resp., 𝑝 ∈

𝑆𝑛 ∖  𝑆 ) to the point where the straight line through 𝑁 (resp., 𝑆) and 𝑝 intersects 

the plane 𝑥𝑛+1 = 0.  

The inverse of the stereographic projection is the map from 𝑥𝑛+1 = 0 to 𝑆𝑛 ∖

 𝑁  (resp., 𝑝 ∈ 𝑆𝑛\ 𝑆 ) sending the point 𝑞 in the plane 𝑥𝑛+1 = 0 to the point 

where the straight line through 𝑞 and 𝑁 (resp., 𝑆) intersects 𝑆𝑛 .  

1.1.24. Definition. Let 𝛷: 𝑀 → 𝑁 be a 𝐶∞
 map. A point 𝑝 ∈ 𝑀 is said to be criti-

cal point of 𝛷 if the differential 𝛷∗: 𝑇𝑝𝑀 → 𝑇𝛷 𝑝 𝑁 is not surjective (or onto).  

A point 𝑞 ∈ 𝑁 is said to be a critical value of 𝛷 if the set 𝛷−1 𝑞  contains a criti-

cal point of 𝛷. A point of 𝑁 which is not a critical value is called a regular value 

of 𝛷. 

Let 𝑓 ∈ 𝐶∞𝑀. A point 𝑝 ∈ 𝑀 is called a critical point of 𝑓 if 𝑓∗𝑝 = 0. If we 

choose a coordinate system  𝑈, 𝑥1, … , 𝑥𝑛  around 𝑝 ∈ 𝑀, this means that 

𝜕𝑓

𝜕𝑥1
 𝑝 = ⋯ =

𝜕𝑓

𝜕𝑥𝑛
(𝑝) = 0. 

The real number 𝑓(𝑝) is then called a critical value of 𝑓. A critical point is called 

non-degenerate if the matrix 

 
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥 𝑗
(𝑝)  

is non-singular. Non-degeneracy does not depend on the choice of coordinate 

system. 

1.1.25. Definition. A frame on an 𝑚-dimensional manifold 𝑀 is an ordered set 

of vector fields 𝒱 =  𝑉1 , … , 𝑉𝑚   having the property that they form a basis for 

the tangent space 𝑇𝑝𝑀 at each point 𝑝 ∈ 𝑀. 

1.1.26. Definition. A subset 𝑆 of ℝ𝑛  is said to have measure zero if for 

every 𝜀 > 0, there is a covering of 𝑆 by a countable number of open cubes 

𝐶1, 𝐶2, …, such that the Euclidean volume  𝑣 𝐶𝑖 < 𝜀∞
𝑖=1 . 

A subset 𝑆 of a differentiable 𝑛-manifold 𝑀 has measure zero if there exist a 

countable family  𝑈1, 𝜑1 ,  𝑈2, 𝜑2 , … , of charts in the differentiable structure of 

𝑀 such that  𝜑𝑖 𝑈𝑖 ∩ 𝑆  has measure zero in ℝ𝑛  for every  𝑖 = 1,2, … . 
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1.1.27. Theorem (Sard‟s Theorem). Let 𝑀 and 𝑁 be two manifolds of dimension 

𝑚 and 𝑛, respectively. If the  𝛷: 𝑀 → 𝑁 is a differentiable map. Then the set of 

critical value of 𝛷 has measure zero. 

1.1.28. Theorem (Inverse Map Theorem). Let 𝑓 =  𝑓1, … , 𝑓𝑛 : 𝑈 → ℝ𝑛  be a 𝐶∞  

map defined on an open subset 𝑈 ⊆ ℝ𝑛 . Given a point 𝑥0 ∈ 𝑈, assume  

𝜕 𝑓1, … , 𝑓𝑛 

𝜕 𝑥1, … , 𝑥𝑛 
 𝑥0 ≠ 0. 

Then there exists an open neighborhood 𝑉 ⊆ 𝑈 of 𝑥0 such that: 

(i)  𝑓 𝑉   is an open subset of ℝ𝑛 ; 

(ii)   𝑓: 𝑉 → 𝑓 𝑉  is one-to-one; 

(iii)  𝑓−1: 𝑓 𝑉 → 𝑉  is 𝐶∞
. 

1.1.29. Theorem (Implicit Map Theorem). Denote the coordinates on  ℝ𝑛 × ℝ𝑚  

by  𝑥1, … , 𝑥𝑛 , 𝑦1, … , 𝑦𝑚 . Let 𝑈 ⊆ ℝ𝑛 × ℝ𝑚  be an open subset, and let 

𝑓 =  𝑓1, … , 𝑓𝑚 : 𝑈 → ℝ𝑚  

be a smooth map. Given a point  𝑥0, 𝑦0 ∈ 𝑈, assume: 

(i) 𝑓 𝑥0, 𝑦0 = 0 ; 

 

(ii)   
𝜕 𝑓1 ,…,𝑓𝑚  

𝜕 𝑦1 ,…,𝑦𝑚  
 𝑥0, 𝑦0 ≠ 0 . 

Then, there exist an open neighborhood 𝑉 of 𝑥0 in ℝ𝑛  and an open neighborhood 

𝑊 of y0 in ℝ𝑚  such that 𝑉 × 𝑊 ⊂ 𝑈, and there exists a unique 𝐶∞  map 𝑔: 𝑉 →

ℝ𝑚 , such that for each  𝑥, 𝑦 ∈ 𝑉 × 𝑊 :  

𝑓 𝑥, 𝑦 = 0  if and only if  𝑦 = 𝑔 𝑥 . 

1.1.5: Further Examples of Manifolds 

A hemispherical cap (including the equator) or a right circular cylinder (includ-

ing the circles at the ends) is typical examples of manifolds with boundary. 

 Except for the equator, or the end circles, they are 2-manifolds and these boun-

dary sets are themselves manifolds of dimension one less. In fact, they are ho-

meomorphism to 𝑆1 or 𝑆1 ∪ 𝑆1 in these two cases. An even simpler example is 
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the upper half-plane 𝐻2, or more generally 𝐻𝑛 , where we shall mean by 𝐻𝑛  the 

subspace of ℝ𝑛  defined by 

𝐻𝑛 =   𝑥1, … , 𝑥𝑛 ∈ ℝ𝑛 : 𝑥𝑛 ≥ 0 . 

Every point 𝑝 ∈ 𝐻𝑛  has a neighborhood 𝑈 which is homeomorphism to an open 

subset 𝑈′  of ℝ𝑛  except the set of points  𝑥1, … , 𝑥𝑛−1, 0 , which obviously forms 

a subspace homeomorphic ℝ𝑛−1, called the boundary of  𝐻𝑛  and denoted by 

𝜕𝐻𝑛 .  

We shall define a manifold with boundary to be a Hausdorff space 𝑀 with a 

countable basis of open sets which has the property that each 𝑝 ∈ 𝑀 is contained 

in an open set 𝑈 with a homeomorphism 𝜑 to either (a) an open set 𝑈′  of 𝐻𝑛 -

𝜕𝐻𝑛  or (b) to an open set 𝑈′   of  𝐻𝑛  with 𝜑 𝑝 ∈ 𝜕𝐻𝑛 , that is, a boundary point 

of 𝐻𝑛 .  

It can be shown (as consequence of invariance of domain) that 𝑝 ∈ 𝑀 is in one 

class or the other but not both; those 𝑝 of the first type are called interior points 

of 𝑀 and those 𝑝 mapped onto the boundary of 𝐻𝑛  by one, and hence by all, ho-

meomorphisms of their neighborhoods into 𝐻𝑛  are called boundary points.  

 The collection of boundary points is then denoted by 𝜕𝑀 and is called the boun-

dary of 𝑀. It is a manifold of dimension 𝑛 − 1. 

1.1.30. Definition (Tangent Spaces). Let 𝑀 ⊂ ℝ𝑘  be a smooth 𝑚-dimensional 

manifold and fix a point 𝑝 ∈ 𝑀. A vector 𝑣 ∈ ℝ𝑘  is called a tangent vector of 𝑀 

at 𝑝 if there is a smooth curve 𝛾: ℝ → 𝑀 such that 

𝛾 0 = 𝑝,      𝛾  0 = 𝑣. 

The set 𝑇𝑝𝑀 ∶=  𝛾  0 : 𝛾: ℝ → 𝑀 is smooth, 𝛾 0 = 𝑝  of tangent vectors of 𝑀 

at 𝑝 is called the tangent space of 𝑀 at 𝑝. We also write 𝑇𝑝 𝑀  instead of 𝑇𝑝𝑀.  

We denote the union of tangent spaces 𝑇𝑝 𝑀 , for 𝑝 ∈ 𝑀, by 𝑇 𝑀 .  

A tangent vector field to 𝑀 is a continuous function 𝐹: 𝑀 → 𝑇 𝑀  such that 

𝐹 𝑝 ∈ 𝑇𝑝 𝑀  for each 𝑝 ∈ 𝑀.  

1.1.31. Definition. Let 𝑀 be a smooth 𝑚-dimensional manifold, and let 𝑇𝑝𝑀 be 

the tangent space at some 𝑝 ∈ 𝑀. The cotangent space 𝑇𝑝
∗𝑀 is defined as the dual 

vector space of 𝑇𝑝𝑀, i.e., 
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                                  𝑇𝑝
∗𝑀 ∶=  𝑇𝑝𝑀 

∗
.  

In other words 𝜔𝑝 ∈ 𝑇𝑝
∗𝑀 if and only if 𝜔𝑝 : 𝑇𝑝𝑀 → ℝ is a linear map. We denote 

the action of 𝜔𝑝  on a vector 𝑋𝑝 ∈ 𝑇𝑝𝑀 by 

𝜔𝑝 𝑋𝑝 =  𝜔𝑝 , 𝑋𝑝  

Since 𝜔𝑝 is a linear map we have 

  𝜔𝑝 , 𝑋𝑝 + 𝜆𝑌𝑝 = 𝜔𝑝 𝑋𝑝 + 𝜆𝑌𝑝 = 𝜔𝑝 𝑋𝑝 + 𝜆𝜔𝑝 𝑌𝑝 =  𝜔𝑝 , 𝑋𝑝 + 𝜆 𝜔𝑝 , 𝑌𝑝  

and we may also take, in effect by definition,  

 𝜔𝑝 + 𝜆𝜂𝑝 , 𝑋𝑝 =  𝜔𝑝 + 𝜆𝜂𝑝  𝑋𝑝 = 𝜔𝑝 𝑋𝑝 + 𝜆𝜂𝑝 𝑋𝑝  

                                            =  𝜔𝑝 , 𝑋𝑝 + 𝜆 𝜂𝑝 , 𝑋𝑝  . 

Thus ⟨ , ⟩ is a linear in each of its entries.  

For each 𝑓 ∈ ℱ 𝑀 , the total differential 𝑑𝑓 of 𝑓 is defined by 

  𝑑𝑓 𝑝 , 𝑋 = 𝑋𝑓 

for 𝑋 ∈ 𝑇𝑝 𝑀 . If 𝑢1, … , 𝑢𝑛  is a local coordinate system in 𝑀, then the total dif-

ferentials  𝑑𝑢1 𝑝 , … ,  𝑑𝑢𝑛 𝑝  form a basis of 𝑇𝑝
∗ 𝑀 . In fact, they form the dual 

basis of the basis  𝜕 𝜕𝑢1  𝑝 , … ,  𝜕 𝜕𝑢𝑛  𝑝  of  𝑇𝑝 𝑀 .  

1.1.32. Definition (The Maximal Rank Condition). Let  𝐹: 𝑀 → 𝑁 be a smooth 

mapping from an 𝑚-dimensional manifold 𝑀 to an 𝑛-dimensional manifold 𝑁.  

The rank of 𝐹 at a point 𝑥 ∈ 𝑀 is the rank of the 𝑛 × 𝑚 Jacobian matrix 

 𝜕𝐹𝑖

𝜕𝑥 𝑗   at 𝑥, where 𝑦 = 𝐹 𝑥  expressed in any convenient local coordinates 

near 𝑥. The mapping 𝐹 is of maximal rank on a subset 𝑆 ⊂ 𝑀 if for each 𝑥 ∈ 𝑆 

the rank of 𝐹 is as large as possible (i.e., the minimum of 𝑚 and 𝑛). 

 The definition of the rank of 𝐹 at 𝑥 does not depend on the particular local coor-

dinates chosen on 𝑀 or on 𝑁. For example, the rank of  𝐹 𝑥, 𝑦 = 𝑥𝑦 on ℝ2 is 1 

at all points except the origin (0, 0) since its Jacobian matrix  𝐹𝑥 , 𝐹𝑦 =  𝑦, 𝑥  is 

nonzero except at  𝑥 = 𝑦 = 0. (Here, subscripts denote derivatives, so 𝐹𝑥 =

𝜕𝐹 𝜕𝑥 , etc.) 
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1.1.33. Theorem. Let 𝐹: 𝑀 → 𝑁 be of maximal rank at 𝑥0 ∈ 𝑀. Then there local 

coordinates 𝑥 =  𝑥1, … , 𝑥𝑚   near 𝑥0, and 𝑦 =  𝑦1, … , 𝑦𝑛  near  𝑦0 = 𝐹 𝑥0  

such that in these coordinates 𝐹 has the simple form 𝑦 =  𝑥1, … , 𝑥𝑚 , 0, … ,0 , if 

𝑛 > 𝑚, or  𝑦 =  𝑥1 , … , 𝑥𝑛 , if  𝑛 ≤ 𝑚. 

1.1.34. Definition. A 𝑞-dimensional distribution on a manifold 𝑀 is a mapping 

𝐷 defined on 𝑀 which assigns to each point 𝑝 in 𝑀 a 𝑞-dimensional linear sub-

space 𝐷𝑝  of 𝑇𝑝𝑀.  

 A 𝑞-dimensional distribution 𝐷 is called differentiable if there are 𝑞 differentia- 

ble vector fields on a neighborhood of 𝑝 which, for each point 𝑄 in this neigh- 

borhood, form a basis of 𝐷𝑄 .  

The set of these 𝑞 vector fields is called a local basis of the distribution 𝐷.  A 

vector field 𝑋 belongs to the distribution 𝐷, and we write 𝑋 ∈ 𝐷 if, for any point 

𝑝 ∈ 𝑀, 𝑋𝑝 ∈ 𝐷𝑝 .  

A distribution 𝐷 is said to be involutive if, for all differentiable vector fields 𝑋, 𝑌 

belonging to 𝐷, we have  𝑋, 𝑌 ∈ 𝐷. By a distribution we shall always mean a 

differentiable distribution. 

1.1.35. Definition (Submanifolds). Let 𝑀 be a 𝐶∞ manifold. A manifold 𝑁 is a 

submanifolds of 𝑀 if there is a one-to-one 𝐶∞-map 𝑖: 𝑁 → 𝑀 such that 𝑑𝑖 is one-

to-one at every point. We call 𝑖 an imbedding and say that 𝑁 is imbedded in 𝑀 

by 𝑖. 

1.1.36: The Differential of a Map 

Let 𝐹: 𝑁 → 𝑀 be a 𝐶∞
 map between two manifolds. At each point 𝑝 ∈ 𝑁, the 

map 𝐹 induces a linear map of tangent spaces, called its differential at 

𝑝, 𝐹∗: 𝑇𝑝𝑁 → 𝑇𝐹(𝑝)𝑀 as follows. 

 If 𝑋𝑝 ∈ 𝑇𝑝𝑁, then 𝐹∗ 𝑋𝑝  is the tangent vector in 𝑇𝐹 𝑝 𝑀 defined by   

              𝐹∗ 𝑋𝑝  𝑓 = 𝑋𝑝 𝑓 ∘ 𝐹 ∈ ℝ  for 𝑓 ∈ 𝐶𝐹 𝑝 
∞  𝑀                      

here 𝑓 is a germ at 𝐹(𝑝), represented by a 𝐶∞ function in a neighborhood of 𝐹(𝑝). 

In terms of local coordinates, 



16 
 

𝐹∗ 𝑋𝑝 = 𝐹∗   𝑋𝑖
𝜕

𝜕𝑢𝑖

𝑚

𝑖=1

 =    𝑋𝑖
𝜕𝐹𝑗

𝜕𝑢𝑖

𝑚

𝑖=1

 

𝑛

𝑗 =1

𝜕

𝜕𝑦𝑗
. 

Consequently, the differential 𝐹∗ defines a linear map from 𝑇𝑝𝑁 to 𝑇𝐹 𝑝 𝑀, 

whose local coordinate matrix expression is just the 𝑛 × 𝑚 Jacobian matrix 

 𝜕𝐹𝑗 𝜕𝑢𝑖   of 𝐹 at 𝑝. 

Let  𝐹: 𝑁 → 𝑀 and 𝐺: 𝑀 → 𝑃 be smooth maps of manifolds, and 𝑝 ∈ 𝑁. The dif-

ferential of 𝐹 at 𝑝 and 𝐺 at 𝐹 (𝑝) are linear maps 

𝑇𝑝 𝑁 
𝐹∗,𝑝
  𝑇𝐹 𝑝 𝑀

𝐺∗,𝐹 𝑝 
     𝑇𝐺 𝐹 𝑝  𝑃. 

1.1.37. Theorem (The Chain Rule). If 𝐹: 𝑁 → 𝑀 and 𝐺: 𝑀 → 𝑃 are smooth 

maps of manifolds and 𝑝 ∈ 𝑁, then 𝐺 ∘ 𝐹 is smooth at 𝑝, and  

(𝐺 ∘ 𝐹)∗,𝑝 = 𝐺∗ 𝐹𝑝 ∘ 𝐹∗,𝑝 . 

Proof.  Let 𝑋𝑝 ∈ 𝑇𝑝𝑁 and let 𝑓 be a smooth function at 𝐺 𝐹 𝑝   in 𝑝. Then 

  (𝐺 ∘ 𝐹)∗𝑋𝑝 𝑓 = 𝑋𝑝(𝑓 ∘ 𝐺 ∘ 𝐹) 

and 

  𝐺∗ ∘ 𝐹∗ 𝑋𝑝 𝑓 =  𝐺∗ 𝐹∗𝑋𝑝  𝑓 =  𝐹∗𝑋𝑝  𝑓 ∘ 𝐺 = 𝑋𝑝 𝑓 ∘ 𝐺 ∘ 𝐹 . 

Remark: The differential of the identity 𝕀𝑀 : 𝑀 → 𝑀 at any point 𝑝 in 𝑀 is the 

identity map 𝕀𝑇𝑝𝑀 : 𝑇𝑝𝑀 → 𝑇𝑝𝑀, because   𝕀𝑀 ∗𝑋𝑝 𝑓 = 𝑋𝑝 𝑓 ∘ 𝕀𝑀 = 𝑋𝑝𝑓, for 

any 𝑋𝑝 ∈ 𝑇𝑝𝑀 and 𝑓 ∈ 𝐶𝑝
∞ 𝑀 . 

1.1.38. Corollary. If 𝐹: 𝑁 → 𝑀 is a diffeomorphism of manifolds and 𝑝 ∈ 𝑁, 

then 𝐹∗: 𝑇𝑝𝑁 → 𝑇𝐹 𝑝 𝑀 is an isomorphism of vector spaces. 

Proof. To say that 𝐹 is a diffeomorphism means that it has a differentiable in-

verse 𝐺: 𝑀 → 𝑁 such that 𝐺 ∘ 𝐹 = 𝕀𝑁  and  𝐹 ∘ 𝐺 = 𝕀𝑀 . 

By the chain rule, 

(𝐺 ∘ 𝐹)∗ = 𝐺∗ ∘ 𝐹∗ = (𝕀𝑁)∗ = 𝕀𝑇𝑝𝑁, 
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(𝐹 ∘ 𝐺)∗ = 𝐹∗ ∘ 𝐺∗ = (𝕀𝑀)∗ = 𝕀𝑇𝐹(𝑝 )𝑀 . 

Hence,  𝐹∗ and 𝐺∗ are isomorphism. ∎ 

1.1.39. Corollary (Invariance of Dimension). If an open set 𝑈 ⊂ ℝ𝑛  is diffeo-

morphic to an open set 𝑉 ⊂ ℝ𝑚 , then 𝑛 = 𝑚. 

Proof. Let 𝐹: 𝑈 → 𝑉 be a diffeomorphism and let 𝑝 ∈ 𝑈. By Corollary 1.1.38, 

𝐹∗,𝑝 : 𝑇𝑝𝑈 → 𝑇𝐹 𝑝 𝑉  is an isomorphism of vector spaces. Since there are vector 

space isomorphisms 𝑇𝑝𝑈 ≃ ℝ𝑛  and 𝑇𝐹 𝑝 ≃ ℝ𝑚 , we must have that 𝑛 = 𝑚. ∎  

1.1.40. Differential Forms 

Differential forms are generalizations of real valued functions on a manifold. 

 Instead of assigning to each point of the manifold a number, a differential 𝑝-

form assigns to each point a 𝑝-covector on its tangent space. 

For  𝑝 = 0, differential 0-form is a scalar function 𝑓 𝑥 : 𝑀𝑛 → ℝ. And for 𝑝 =

1, differential 1-form is a convector field 𝜔 written in the form 

𝜔 =  𝜔𝑖 𝑥 𝑑𝑥𝑖 . 

For 𝑝 = 𝑛, differential 𝑛-form = object of integration: 

Ω = 𝑓 𝑥 𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛 ,           (locally) 

such that for 𝑥 = 𝑥 𝑦  we have 

Ω = 𝑓 𝑥 𝑦  𝑑𝑥1 ∧ …∧ 𝑑𝑥𝑛 , 𝑑𝑥𝑖 =
𝜕𝑥 𝑖

𝜕𝑦 𝑗
𝑑𝑦𝑗 ,                   (summation in 𝑗). 

1.1.41. Definition. Differential 𝑘-form in  𝑀𝑛  is a smooth quantity Ω which lo-

cally in every chart of atlas  𝑥1, … , 𝑥𝑛  can be written in the form 

Ω =  𝑓𝐼 𝑥 𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 = 𝑓𝐼𝑑𝑥𝐼
𝐼 , 

𝑑𝑥𝐼 = 𝑑𝑥𝑖1 ∧ …∧ 𝑑𝑥𝑖𝑘 , where 𝐼 =  𝑖1 < 𝑖2 … < 𝑖𝑘 , and for 𝑥 = 𝑥 𝑦  we have 

 Ω = 𝑓𝐼 𝑥 𝑦  𝑑𝑥𝑖 = 𝑔𝐽  𝑦 𝑑𝑦𝐽 , 𝑑𝑦𝐽 = 𝑑𝑦𝑗1 ∧ …∧ 𝑑𝑦𝑗𝑘 ,  𝑗1 < 𝑗2 < ⋯ < 𝑗𝑘 .  

The symbols 𝑑𝑥𝑖  form an associative algebra under multiplication ∧ (Exterior 

Product), such that 
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𝑑𝑥𝑖 ∧ 𝑑𝑥 𝑗 = −𝑑𝑥 𝑗 ∧ 𝑑𝑥𝑖     (Bilinear, associative) 

If 𝜔 =  𝜔𝐼𝑑𝑥𝐼
𝐼  is a 𝑝-form defined on an open subset of ℝ𝑛 , we define 

a  𝑝 + 1  - form called exterior derivative of 𝜔 as 

𝑑𝜔 ∶=  𝑑𝜔𝐼 ∧ 𝑑𝑥𝐼 .

𝐼

 

1.1.42. Definition. A (smooth) 𝑘-dimensional vector bundle is a pair of smooth 

manifolds 𝐸 (the total space) and 𝑀 (the base), together with a surjective map 

𝜋: 𝐸 → 𝑀 (the projection), satisfying the following conditions: 

(i) Each set  𝐸𝑝 ∶= 𝜋−1 𝑝  (called the fiber of 𝐸 over 𝑝) is endowed with the 

structure of a vector space. 

(ii) For each 𝑝 ∈ 𝑀, there exist a neighborhood 𝑈 of 𝑝 and a diffeomorphism 

𝜑: 𝜋−1 𝑈 → 𝑈 × ℝ𝑘 , called a local trivialization of 𝐸, such that the following 

diagram commutes: 

𝜋−1 𝑈 
𝜑
→ 𝑈 × ℝ𝑘

𝜋 ↓ ↓ 𝜋1

𝑈 = 𝑈

 

(where 𝜋1 is the projection onto the first factor). 

(iii)The restriction of 𝜑 to each fiber,𝜑: 𝐸𝑝 →  𝑝 × ℝ𝑘 , is a linear isomorphism. 

1.1.43. Definition. If 𝜋: 𝐸 → 𝑀 is a vector bundle over 𝑀, a section of 𝐸 is a 

map 𝐹: 𝑀 → 𝐸 such that 𝜋 ∘ 𝐹 = 𝐼𝑑𝑀 , or equivalent, 𝐹 𝑝 ∈ 𝐸𝑝  for all 𝑝. 

It is said to be a smooth section if it is smooth as a map between manifolds. 

1.2: Riemannian Manifolds 

1.2.1. Definition. A Riemannian metric on a smooth manifold 𝑀 is a tensor field 

𝑔 of type (0, 2) that is symmetric   𝑖. 𝑒., 𝑔 𝑋, 𝑌 = 𝑔 𝑌, 𝑋   and positive defi-

nite  i. e. , 𝑔 𝑋, 𝑋 > 0 if 𝑋 ≠ 0  . A Riemannian metric thus determines an inner 

product on each tangent space 𝑇𝑝𝑀, which is typically written 

 𝑋, 𝑌 ∶= 𝑔 𝑋, 𝑌  for  𝑋, 𝑌 ∈ 𝑇𝑝𝑀. 
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A manifold 𝑀 with Riemannian metric 𝑔 is called a Riemannian manifold. If the 

metric is not positive definite it is called a pseudo Riemannian manifold. 

The notion of derivatives can be generalized to manifolds with the concept of a 

connection. 

1.2.2. Definition. An affine connection on a manifold 𝑀 is a rule ∇ which as-

signs to each 𝑋 ∈ 𝔛 𝑀  a linear mapping ∇𝑋  of the vector space 𝔛 𝑀  into itself 

satisfying the following two conditions: 

  1  ∇𝑓𝑋+𝑔𝑌     = 𝑓∇𝑋 + 𝑔∇𝑌;  

 2  ∇𝑋 𝑓𝑌  = 𝑓∇𝑋𝑌 +  𝑋𝑓 𝑌 

for 𝑓 , 𝑔 ∈ 𝒯 𝑀 , 𝑋, 𝑌 ∈ 𝔛 𝑀 . The operator ∇𝑋  is called the covariant differen-

tiation with respect to 𝑋.  

We denote by 𝔛 𝑀  the set of all differentiable vector fields on 𝑀. And denote 

by 𝒯 𝑀  the set of differentiable real-valued functions on 𝑀. 

We define the covariant differentiation of a function 𝑓 with respect to 𝑋 by  

∇𝑋𝑓 = 𝑋𝑓. 

Thus for any tensor field 𝑆 of type (0, 𝑠) or (1, 𝑠) we define the covariant deriva-

tive ∇𝑋𝑆 of 𝑆 with respect to 𝑋 by  

 ∇𝑋𝑆  𝑋1, … , 𝑋𝑠 = ∇𝑋 𝑆 𝑋1, … , 𝑋𝑠  −   𝑆 𝑋1, … , ∇𝑋𝑋𝑖 , … , 𝑋𝑠  ,

𝑠

𝑖=1

     1.2.∗  

for any 𝑋𝑖 ∈ 𝔛 𝑀 , 𝑖 = 1, … , 𝑠. In a similar way we can define the covariant of a 

tensor field of type (𝑟, 𝑠), but for our purpose (1.2.*) is sufficient. 

The tensor field 𝑆 is said to be parallel with respect to the affine connection ∇ if 

we have 

∇𝑋𝑆 = 0 , for any  𝑋 ∈ 𝔛 𝑀 . 

The torsion tensor 𝑇 of an affine connection ∇ is a tensor field 𝑇 of type (1, 2) 

defined by 

𝑇 𝑋, 𝑌 = ∇𝑋𝑌 − ∇𝑌𝑋 −  𝑋, 𝑌 , 
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for any 𝑋, 𝑌 ∈ 𝔛 𝑀 , where  𝑋, 𝑌  is the Lie bracket of vector fields 𝑋 and 𝑌 de-

fined by 

 𝑋, 𝑌  𝑓 = 𝑋 𝑌𝑓 − 𝑌 𝑋𝑓 , 

for any 𝑓 ∈ 𝒯 𝑀 . A torsion-free connection is an affine connection with va-

nishing torsion tensor field. 

1.2.3. Lemma. A connection  ∇ is local: if 𝑈 is an open subset of 𝑀,   𝑋 𝑈 ≡ 0 ⇒
 ∇𝑋𝑌 𝑈 ≡ 0 and  ∇𝑌𝑋 ≡ 0  for all 𝑌 ∈ 𝔛 𝑀 .  

Proof. Let  𝑝 ∈ 𝑈 and choose 𝑓: 𝑀 → ℝ such that 𝑓 ≡ 0 on a neighborhood of 𝑝 

and 𝑓 ≡ 1 outside 𝑈. Then  𝑋 𝑈 = 0 implies that  𝑓𝑋 = 𝑋, and hence 

 ∇𝑋𝑌  𝑝 =  ∇𝑓𝑋𝑌  𝑝  

                         = 𝑓 𝑝  ∇𝑋𝑌  𝑝  

                                                              = 0, 

 ∇𝑌𝑋  𝑝  =  ∇𝑌 𝑓𝑋   𝑝  

                                                 =  𝑌𝑓  𝑝 𝑋 𝑝 + 𝑓 𝑝 ∇𝑌𝑋 𝑝  

= 0. 

Since 𝑝 is an arbitrary point of 𝑈,   ∇𝑋𝑌  𝑈 ≡ 0 and   ∇𝑌𝑋  𝑝 = 0. ∎  

1.2.4. Definition. Suppose ∇ is an affine connection on 𝑀 and 𝑓 is a diffeomor- 

phism of 𝑀. A new affine connection ∇′ can be defined on 𝑀 by  

∇𝑋
′ 𝑌 = 𝑓∗

−1 ∇𝑓∗𝑋𝑓∗𝑌 , 

for  𝑋, 𝑌 ∈ 𝔛 𝑀 . 

The affine connection ∇ is called invariant under 𝑓 if  

∇= ∇′ 

In this case 𝑓 is called an affine transformation of 𝑀. Similarly we can define an 

affine transformation of one manifold onto another. 

1.2.5. Theorem. On a Riemannian manifold 𝑀 there exist one and only one af-

fine connection satisfying the following two conditions: 
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(1) The torsion tensor 𝑇 vanishes, i.e., 𝑇 𝑋, 𝑌 = ∇𝑋𝑌 − ∇𝑌𝑋 −  𝑋, 𝑌 = 0; 

(2) 𝑔 is parallel, i.e., ∇𝑋𝑔 = 0.  

Proof. Existence: given vector fields 𝑋 and 𝑌 on 𝑀, we define ∇𝑋𝑌 by setting 

2𝑔 ∇𝑋𝑌, 𝑍 = 𝑋𝑔 𝑌, 𝑍 + 𝑌𝑔 𝑋, 𝑍 − 𝑍𝑔 𝑋, 𝑌 + 𝑔  𝑋, 𝑌 , 𝑍 + 𝑔  𝑍, 𝑋 , 𝑌  

                           +𝑔 𝑋,  𝑍, 𝑌                                   (∗) 

for any vector field 𝑍 on 𝑀. Then the mapping  𝑋, 𝑌 → ∇𝑋𝑌 defines an affine 

connection on 𝑀. From the definition of ∇𝑋𝑌, we have 𝑇 𝑋, 𝑌 = 0 and  

𝑋𝑔 𝑌, 𝑍 = 𝑔 ∇𝑋𝑌, 𝑍 + 𝑔 𝑌, ∇𝑋𝑍 , 

which shows that ∇𝑋𝑔 = 0, that is  ∇ is a metric connection on 𝑀. 

Uniqueness: By a straight forward computation, we can see that,  

If  ∇𝑋𝑌 satisfies  ∇𝑋𝑔 = 0 and 𝑇 𝑋, 𝑌 = 0, then it satisfies the equation which 

defines ∇𝑋𝑌.  ∎   

The connection ∇ given by  ∗  is called the Riemannian connection (sometimes 

called the Levi Civita Connection). 

Putting 𝑋 = 𝜕 𝜕𝑥 𝑗 ,  𝑌 = 𝜕 𝜕𝑥𝑖  and  𝑍 = 𝜕 𝜕𝑥𝑘  in  ∗ , the components 𝛤𝑗𝑘
𝑖   of 

the Riemannian connection with respect to a local coordinate system 

 𝑥1, … , 𝑥𝑛  are given by 

 𝑔1𝑘𝛤𝑗𝑖
1

1

= 𝑖  
𝜕𝑔𝑘𝑖

𝜕𝑥 𝑗
+

𝜕𝑔𝑗𝑘

𝜕𝑥𝑖
−

𝜕𝑔𝑖𝑗

𝜕𝑥𝑘
  

1.2.6. Isometric Immersion: 

Let 𝑀 and 𝑀  be a Riemannian manifolds with Riemannian metric 𝑔 and 𝑔  re-

spectively. A mapping 𝑓: 𝑀 → 𝑀  is called isometric at a point 𝑥 of 𝑀 if 

𝑔 𝑋, 𝑌 = 𝑔  𝑓∗𝑋, 𝑓∗𝑌  for all 𝑋, 𝑌 ∈ 𝑇𝑥 𝑀 . In this case, 𝑓∗ is injective at 𝑥, be-

cause 𝑓∗𝑋 = 0 implies 𝑋 = 0. A mapping 𝑓 which is isometric at every point of 

𝑀 is thus an immersion, which we call an isometric immersion. If moreover, 𝑓 is 

one-to-one, then it is called an isometric imbedding of 𝑀 onto 𝑀 .  

In this case, the differential of the isometry 𝑓 commutes with the parallel transla-

tion. 
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An immersion 𝑓 (or an embedding) of a Riemannian manifold (𝑀, 𝑔) into anoth-

er Riemannian manifold   𝑀 , 𝑔   is said to be isometric if it satisfies the condi-

tion 𝑓∗𝑔 = 𝑔. In this case, 𝑀 is called a Riemannian submanifold (or simply a 

submanifold) of  𝑀 . 

1.2.7. Definition. Let  𝑀, 𝑔  and  𝑀 , 𝑔   be Riemannian manifolds. A map 

𝜑:  𝑀, 𝑔 →  𝑀 , 𝑔   is said to be conformal if there exists a function 𝜆: 𝑀 → ℝ 

such that 𝑒𝜆 𝑝 . 𝑔𝑝 𝑋𝑝 , 𝑌𝑝 = 𝑔 𝜑 𝑝  𝑑𝜑𝑝 𝑋𝑝 , 𝑑𝜑𝑝 𝑌𝑝  , for all 𝑋, 𝑌 ∈ 𝐶∞ 𝑇𝑀  

and 𝑝 ∈ 𝑀. The positive real valued function 𝑒𝜆  is called the formal factor of 𝜑. 

A conformal map with 𝜆 ≡ 0 i.e., 𝑒𝜆 ≡ 1 is said to be isometric. An isometric 

diffeomorphism is called an isometry. 

1.2.8. Definition. Let  𝑀 , 𝑔   be a Riemannian manifold and 𝑀 be a submanifold.  

For a point 𝑝 ∈ 𝑀 , we define the normal space 𝑁𝑝𝑀 of 𝑀 at 𝑝 by 

𝑁𝑝𝑀 =  𝑋 ∈ 𝑇𝑝𝑀 : 𝑔 𝑝 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝑇𝑝𝑀 . 

For all 𝑝 ∈ 𝑀 we have the orthogonal decomposition 

𝑇𝑝𝑀 = 𝑇𝑝𝑀 ⊕ 𝑁𝑝𝑀. 

The normal bundle of 𝑀 in 𝑀  is defined by 

𝑁𝑀 =   𝑝, 𝑋 : 𝑝 ∈ 𝑀, 𝑋 ∈ 𝑁𝑝𝑀 . 

1.2.9 The Levi-Civita Connection (The Riemannian Connection) 

In the Euclidean space ℝ3 there are at least two ways to define a line segment. 

(a) A line segment is the shortest path connecting two given points. 

(b) A line segments is a smooth path 𝛾:  0,1 → ℝ3 satisfying 

                                                         𝛾  𝑡 = 0                                               1.2.1  

Since we have not said anything about calculus of variations which deals pre-

cisely with problems of type (a), we will use the second interpretation as our 

starting point. We will soon see however that both points of view yield the same 

conclusion. 
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Let us first reformulate (1.2.1). As we know, the tangent bundle of  ℝ3 is 

equipped with a natural trivialization, and as such, it has a natural trivial connec-

tion ∇0 defined by  

∇𝑖
0𝜕𝑖 = 0   ∀ 𝑖, 𝑗 , where 𝜕𝑖 ∶= 𝜕𝑥 𝑖 ,  ∇𝑖 ∶= ∇𝜕𝑖

 

i.e., all the Christoffel symbols vanish. Moreover, if 𝑔0 denote the Euclidean me-

tric, then 

 ∇𝑖
0𝑔0  𝜕𝑗 , 𝜕𝑘 = ∇𝑖

0𝛿𝑗𝑘 − 𝑔0 ∇𝑖
0𝜕𝑗 , 𝜕𝑘 − 𝑔0 𝜕𝑗 , ∇𝑖

0𝜕𝑘 = 0, 

i.e., the connection is compatible with the metric. Condition (1.2.1) can be reph-

rased as 

                                   ∇𝛾  𝑡 
0 𝛾  𝑡 = 0,                                                           1.2.2  

So that problem of defining “Lines” in a Riemann manifold reduces to choosing 

a “natural” connection on the tangent bundle. 

We would like this connection to be compatible with metric, but even so, there 

are infinitely many connections to choose from. The following fundamental re-

sult will solve this dilemma. 

1.2.10. Proposition. Consider a Riemann manifold  𝑀, 𝑔 . Then there exist a 

unique symmetric connection ∇ on 𝑇𝑀 compatible with the metric 𝑔 i.e., 

𝑇 ∇ = 0,      ∇𝑔 = 0. 

The connection ∇ is usually called the Levi-Civita connection associated to the 

metric 𝑔.  

1.2.11. Definition. The connection ∇ is symmetric if  

                         ∇𝑋𝑌 − ∇𝑌𝑋 =  𝑋, 𝑌                                                              (1.2.3) 

for all vector fields 𝑋, 𝑌 ∈ 𝔛 𝑀 .  

1.2.12. Lemma. Let 𝐸𝑖  be a local moving frame such that  𝐸𝑖 , 𝐸𝑗  = 0, 1 ≤

𝑖,   𝑗 ≤ 𝑛 (for instance 𝐸𝑖 = 𝜕𝑖  could be a coordinate frame). Then 𝛻 is symme-

tric if and only if  

 𝛤𝑖𝑗
𝑘 = 𝛤𝑗𝑖

𝑘 , 1 ≤ 𝑖,   𝑗, 𝑘 ≤ 𝑛 
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Proof. ∇𝐸𝑖
𝐸𝑗 − ∇𝐸𝑗

𝐸𝑖 =  𝛤𝑖𝑗
𝑘 − 𝛤𝑗𝑖

𝑘 𝐸𝑘 . ∎  

1.2.13. Definition. The connection ∇ is compatible with the metric 𝑔 if 

                                 𝑋 𝑌, 𝑍 =  ∇𝑋𝑌, 𝑍 +  𝑌, ∇𝑋𝑍                                     (1.2.4) 

for any three vector fields 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀 .  

1.2.14. Lemma. Let 𝐸𝑖  be a local moving frame. Then ∇ is compatible metric 𝑔 

if and only if 

𝐸𝑘𝑔𝑖𝑗 = 𝛤𝑘𝑖
ℓ 𝑔𝑗ℓ + 𝛤𝑘𝑗

ℓ 𝑔𝑖ℓ, 1 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ 𝑛 

Proof. 𝐸𝑘 𝐸𝑖 , 𝐸𝑗  −  ∇𝐸𝑘
𝐸𝑖 , 𝐸𝑗  −  𝐸𝑖 , ∇𝐸𝑘

𝐸𝑗  = 𝐸𝑘𝑔𝑖𝑗 − 𝛤𝑘𝑖
ℓ 𝑔𝑗ℓ − 𝛤𝑘𝑗

ℓ 𝑔𝑖ℓ. ∎  

1.2.15. Definition. A geodesic of a Riemann manifold  𝑀, 𝑔  is a smooth path 

𝛾:  𝑎, 𝑏 → 𝑀 

satisfying 

                                         ∇𝛾  𝑡 𝛾  𝑡 = 0                                                       1.2.5  

where ∇ is the Levi-Civita connection. 

Using local coordinates  𝑥1, … , 𝑥𝑛  with respect to which the Christoffel sym-

bols are  𝛤𝑖𝑗
𝑘 , and the path 𝛾 is described by 𝛾 𝑡 =  𝑥1 𝑡 , … , 𝑥𝑛 𝑡  , we can 

rewrite to geodesic equation as a second order, nonlinear system of ordinary dif-

ferential equations. 

1.2.16. Theorem. The operator ∇𝑋  has the following properties: 

(i) ∇𝑋  is derivation of the mixed tensor algebra 𝑇; 

(ii) ∇𝑋  preserves type of tensor; 

(iii) ∇𝑋  commutes with contractions.  

On a manifold 𝑀 with an affine connection, we put 

                              𝑇 𝑋, 𝑌 = ∇𝑋𝑌 − ∇𝑌𝑋 −  𝑋, 𝑌 ,                                      (1.2.6) 

                             𝑅 𝑋, 𝑌 = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇ 𝑋 ,𝑌 ,                                   (1.2.7) 

where 𝑋, 𝑌 are vector fields on 𝑀. Note that 
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𝑇 𝑋, 𝑌 = −𝑇 𝑌, 𝑋  and 𝑅 𝑋, 𝑌 = −𝑅 𝑌, 𝑋 . 

A Riemannian manifold 𝑀 or a Riemannian metric 𝑔 on 𝑀 is said to be complete 

if the metric function 𝑑 is complete, that is, all Cauchy sequences converge. It is 

well known that the following conditions on 𝑀 are equivalent: 

(1)  𝑀 is complete; 

(2)  Every bounded subset of 𝑀 with respect to 𝑑 is relatively complete; 

(3)  All geodesic arc can be extended in two directions indefinitely with re-

spect to the arc length. 

1.2.17. Theorem. (Hopf-Rinow Theorem) Let  𝑀,   ,    be a connected Rie-

mannian manifold, and 𝑝0 ∈ 𝑀. The following are equivalent: 

a. 𝑒𝑥𝑝𝑝0
 is defined in 𝑇𝑝0

𝑀; 

b. Closed bounded subset of 𝑀 are compact; 

c.  𝑀, 𝑑  is a complete metric space; 

d.  𝑀,   ,    is (geodesically) complete; 

e. There is a sequence of compact sets 𝐾𝑛 ⊂ 𝐾𝑛+1 ⊂ 𝑀,  𝐾𝑛𝑛 = 𝑀  such 

that if  𝑝𝑛 ∉ 𝐾𝑛  ∀𝑛⟹ lim𝑛→+∞ 𝑑 𝑝0, 𝑞0 = +∞.  

In addition, any of these is equivalent to the following: 

f. ∀ 𝑝, 𝑞 ∈ 𝑀, there is a minimizing geodesic joining 𝑝 and 𝑞. 

1.2.18. Corollary. 𝑀 compact ⟹ 𝑀 is complete ∀   ,  .   

1.2.19. Theorem (T. Levi- Civita (1929)) if 𝑀 is a Riemannian manifold, then 

there exists a unique connection (called the Levi- Civita connection) for which 

                            ∇𝑋𝑌 = ∇𝑌𝑋 +  𝑋, 𝑌                                                            1.2.8  

                       𝑋 𝑌, 𝑍 =  ∇𝑋𝑌, 𝑍 +  𝑌, ∇𝑋𝑍 ,                                              1.2.9  

for all differentiable vector fields 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀 .  

Proof. Since at each point the inner product is a non-degenerate bilinear form, to 

calculate ∇𝑋𝑌 it suffices to calculate  ∇𝑋𝑌, 𝑍  for any 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀 .  

To this end we have, using (1.2.8), (1.2.9) alternatively, 

         ∇𝑋𝑌, 𝑍 = 𝑋 𝑌, 𝑍 −  𝑌, ∇𝑋𝑍   
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                        = 𝑋 𝑌, 𝑍 −  𝑌, ∇𝑍𝑋 −  𝑌,  𝑋, 𝑍   

                      = 𝑋 𝑌, 𝑍 − 𝑍 𝑌, 𝑋 +  ∇𝑍𝑌, 𝑋 −  𝑌,  𝑋, 𝑍      

                     = 𝑋 𝑌, 𝑍 − 𝑍 𝑌, 𝑋 +  ∇𝑌𝑍, 𝑋 +   𝑍, 𝑌 , 𝑋 −  𝑌,  𝑋, 𝑍   

                    = 𝑋 𝑌, 𝑍 − 𝑍 𝑌, 𝑋 + 𝑌 𝑍, 𝑋 −  𝑍, ∇𝑌𝑋 +   𝑍, 𝑌 , 𝑋 −  𝑌,  𝑋, 𝑍   

                   = 𝑋 𝑌, 𝑍 − 𝑍 𝑌, 𝑋 + 𝑌 𝑍, 𝑋 −  𝑍, ∇𝑋𝑌  −   𝑍,  𝑌, 𝑋  +

                               𝑍, 𝑌 , 𝑋 −  𝑌,  𝑋, 𝑍   

Therefore, we have 

 ∇𝑋𝑌, 𝑍 = 1

2
 
𝑋 𝑌, 𝑍 + 𝑌 𝑍, 𝑋 − 𝑍 𝑋, 𝑌 −  𝑋,  𝑌, 𝑍  −  𝑌,  𝑋, 𝑍  

−  𝑍,  𝑌, 𝑋  
      (1.2.10)                                                                                                

That is, if we are given the restrictions (1.2.4), (1.2.5), then we have the explicit 

calculation of  ∇𝑋𝑌, 𝑍 -thus ∇𝑋𝑌 is uniquely determined. 

To establish the existence of ∇, one takes (1.2.10) to define ∇ and verifies direct-

ly that ∇ indeed defines a connection satisfying (1.2.8), (1.2.9).∎ 

1.2.20. Definition. The Riemann-Christoffel curvature tensor is the map 

𝑅: 𝔛 𝑀 × 𝔛 𝑀 × 𝔛 𝑀 → 𝔛 𝑀  

defined by 

𝑅 𝑋, 𝑌 𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇ 𝑋 ,𝑌 𝑍 for 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀 . 

1.2.21. Proposition. The curvature tensor 𝑅 satisfies the following symmetries: 

1. 𝑅 𝑋, 𝑌 𝑍 = −𝑅 𝑌, 𝑋 𝑍.  

2. 𝑅 𝑋, 𝑌 𝑍 = 𝑅 𝑌, 𝑍 𝑋 + 𝑅 𝑍, 𝑋 𝑌 = 0.  

 3.  𝑅 𝑋, 𝑌 𝑍, 𝑊 = − 𝑅 𝑋, 𝑌 𝑊, 𝑍 . 

4.  𝑅 𝑋, 𝑌 𝑍, 𝑊 =  𝑅 𝑍, 𝑊 𝑋, 𝑌 . 

1.2.22. Definition. A connection is said to be flat if its curvature vanishes identi-

cally. 
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1.2.23 Sectional curvature 

Sectional curvature is the generalization (to any Riemannian manifold) of the 

classical notion of the Gaussian curvature of a surface in ℝ3. All we need know 

for this research is that if 𝑀 has constant sectional curvature 𝑐 then 𝑀 is locally 

isometric to a domain in one of the following “models”: 

 Euclidean space  c = 0 , spherical space  𝑐 > 0 , or hyperbolic (i.e., Loba-

chevski) space  c < 0 .  

If 𝑐 = 0 one also says that 𝑀 is flat. 

The analogous notion in a Kählerian manifold is constant holomorphic sectional 

curvature 𝑐; the corresponding “model spaces” are 𝐶𝑛   if 𝑐 = 0 ,       

 𝐶𝑃𝑛   if 𝑐 > 0 , and the unit disc in 𝐶𝑛  with “Bergman kernel metric” if  𝑐 < 0. 

Let  𝑀, 𝑔  be a Riemannian manifold. We shall give a geometric interpretation 

of the Riemannian curvature tensor of 𝑀. 

Let 𝑝 be a point of 𝑀. For each 2-dimensional subspace π of the tangent space 

𝑇𝑝𝑀, let 𝑆π ⊂ 𝑀 be the surface in 𝑀 that is the image under exp𝑝  of π, or rather 

the image of the part π where exp𝑝  is a diffeomorphism, 𝑆π = exp𝑝 π ∩ 𝜀𝑝 .  

We give 𝑆π the induced metric so that 𝑆π ⊂ 𝑀 is a Riemannian embedding. Note 

that the tangent space of 𝑆π is 

𝑇𝑝𝑆π = 𝑇𝑝exp𝑝 π ∩ 𝜀𝑝 =  exp𝑝 
∗
𝑇0π = 𝑇0π = π ⊂ 𝑇𝑝𝑀. 

1.2.24. Definition. Sectional curvature at 𝑝 ∈ 𝑀 is the function that to any tan-

gent plane π ⊂ 𝑇𝑝𝑀 to the manifold associates the Gaussian curvature 𝐾 π =

𝐾 𝑆π 𝑝  at 𝑝 of the Riemannian surface 𝑆π.  

1.2.25. Proposition. The sectional curvature of the tangent plane π ⊂ 𝑇𝑝𝑀 is 

𝐾 𝜋 = −
𝑅𝑚(𝑋, 𝑌; 𝑌, 𝑋)

 𝑋 2 𝑌 2 −  𝑋, 𝑌 2
 

where 𝑋, 𝑌 is any basis for π.  

If the sectional curvature is equal to a constant 𝑐 for all plane sections, 𝑀 is 

called a space of constant curvature or a real-space-form. 
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1.2.26. Corollary. If 𝑀 has constant sectional curvature 𝑐 ∈ ℝ, then  

𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑐  𝑋, 𝑊  𝑌, 𝑍 −  𝑋, 𝑍  𝑌, 𝑊  . 

1.3: Symplectic Manifolds 

A symplectic form on a manifold 𝑀 is a closed non-degenerate 2-form Ω. Here 

non-degenerate means that for all 𝑝 ∈ 𝑀 if there is a vector field 𝑋 ∈ 𝑇𝑝𝑀 such 

that 𝛺 𝑋, 𝑌 = 0 for all 𝑌 ∈ 𝑇𝑝𝑀, then 𝑋 = 0.  

1.3.1. Definition. A symplectic manifold is a pair  𝑀, 𝛺 , a manifold and a sym-

plectic form on it. 

For algebraic reasons symplectic manifolds must have even dimensions. In sym-

plectic manifolds, there is a kind of special submanifolds, called isotropic sub-

manifolds were the symplectic form restricts to zero. The most important case of 

the isotropic submanifolds is that of Lagrangian submanifolds, which is defined 

as follows. 

1.3.2. Definition. A Lagrangian submanifold is an isotropic submanifold of max-

imal dimensions, namely half the dimension of the ambient symplectic manifold. 

 1.4: Kӓhler Manifolds 

A complex analytic manifold id defined as a space covered with complex coor-

dinate charts in such a way that the coordinates undergo holomorphic coordinate 

transformations in the common region of the charts. A Riemann surface, 𝐶𝑛  and 

its projective space 𝐶𝑃𝑛−1 are simple examples.  

Any 𝑛-dimensional complex manifold 𝑍 is also a real (analytic) manifold 𝐾 of 

dimension 2𝑛 with 𝑧𝑟 = 𝑥𝑟 + 𝑖𝑦𝑟  as complex coordinates for 𝑥𝑟 , 𝑦𝑟  as real 

coordinates  𝑟 = 1, … , 𝑛 . The tangent space 𝑇𝑧 𝑍  of  𝐶𝑛  can be endowed with 

a canonical automorphism 𝙹: 𝑢 → 𝑖𝑢 such that 𝙹 defines an almost complex 

structure  𝙹2 = −𝐼  on 𝐾. 𝙹 is said to be a complex structure if and only if its 

torsion tensor 𝑁 ≡ 0, i.e., 

𝑁 𝑋, 𝑌 ≡  𝙹𝑋, 𝙹𝑌 −  𝑋, 𝑌 − 𝙹 𝑋, 𝙹𝑌 − 𝙹 𝙹𝑋, 𝑌 = 0                          (1.4.1) 

for every 𝑋, 𝑌 of 𝐾. 
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1.4.1. Definition. An almost complex structure on a differentiable manifold 𝑀 is 

a differentiable map 𝙹: 𝑇𝑀 → 𝑇𝑀, such that: 

(i) 𝙹 maps linearly 𝑇𝑝 𝑀  into 𝑇𝑝 𝑀  for all 𝑝 ∈ 𝑀;  

(ii) 𝙹2 = −𝙸 on each 𝑇𝑝 𝑀 , where 𝙸 stands for the identity map. 

1.4.2. Definition. A pair  𝑀, 𝙹  is called an almost complex manifold if 𝙹 is an 

almost complex structure on 𝑀. 

1.4.3. Definition. Let  𝑀, 𝙹  be a complex manifold, dimℂ 𝑀 = 𝑛, and 𝑔 is 

Riemannian metric. Then 𝑔 on a complex manifold 𝑀 is called Hermitian if 

𝑔 𝙹𝑋, 𝙹𝑌 = 𝑔 𝑋, 𝑌 , i.e., 𝑔 and 𝙹 are compatible, for any 𝑋, 𝑌 in 𝑇 𝑀 .  

𝐾 is a Kähler manifold if it is Hermitian and ∇𝙹 = 0, where ∇ is an affine con-

nection on 𝐾. The two form 𝜔 of a Hermitian 𝐾 is defined by 

ω X, Y = g X, 𝙹Y . 

1.4.4. Remark. Since 𝙹2 = −𝙸𝑑, it is equivalent to 𝑔 𝙹𝑋, 𝑌 = −𝑔 𝑋, 𝙹𝑌 .  

The form 𝜔 𝑋, 𝑌 ∶= 𝑔 𝑋, 𝙹𝑌  is a skew-symmetric. 

1.4.5. Definition. The differential form 𝜔 is called the Hermitian form  𝑀, 𝙹, 𝑔 .  

1.4.6. Definition. A complex Hermitian manifold is called Kähler if 𝑑𝜔 = 0, 

that is, 𝜔 is closed. 

 Example: 𝐶𝑛 , with the Hermitian metric 

 𝑑𝑠2 =  𝑑𝑧𝑟𝑑𝑧−𝑟

𝑟

 

is Kähler. 

We say that  𝑀, 𝙹, 𝑔  is an almost Hermitian manifold if tangent bundle of 𝑀 

has an almost complex structure 𝙹 (i.e. 𝙹2 = −𝙸) and a Riemannian metric 𝑔 

such that 

 𝑔 𝑋, 𝑌 = 𝑔 𝙹𝑋, 𝙹𝑌  

for 𝑋, 𝑌 ∈ 𝛤 𝑇𝑀 . Here 𝛤 𝑇𝑀  denotes the lie algebra of vector fields on 𝑀.  

The manifold 𝑀 is orientable and even dimensional 2𝑚. 
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1.4.7 Some Important Classes of Almost Hermitian Manifold (AH-Mani-

fold). 

An AH-manifold with 𝙹 integrable is called a Hermitian manifold (H-manifold).  

The fundamental 2-form 𝛺 an AH-manifold is defined by  

𝛺 𝑋, 𝑌 = 𝑔 𝑋, 𝙹𝑌 , for any 𝑋, 𝑌 ∈ 𝛤 𝑇𝑀 . 

An AH-manifold is called an almost Kähler manifold (AK-manifold) if 𝛺 is 

closed. Using the Levi-Civita connection  ∇ of an AH-manifold (𝑀, 𝙹, 𝑔), we de-

fine a nearly Kähler manifold (NK-manifold) and a quasi-Kähler manifold (QK-

manifold) by the conditions: 

 𝑁𝐾 :  ∇𝑋𝙹 𝑌 +  ∇𝑌𝙹 𝑋 = 0 

   𝑄𝐾 :  ∇𝑋𝙹 𝑌 +  ∇𝙹𝑋𝑌 𝙹𝑌 = 0 

for all 𝑋, 𝑌 ∈ 𝛤 𝑇𝑀 .  

An AH-manifold is Kähler if and only if  ∇𝙹 = 0. An AH-manifold is Hermitian 

if and only if: 

   𝐻               ∇𝑋𝙹 𝑌 −  ∇𝙹𝑋𝙹 𝙹𝑌 = 0. 

We have the strict inclusion relations 

𝐾 ⊂ 𝐴𝐾 ⊂ 𝑄𝐾 ⊂ 𝐴𝐻            𝐾 ⊂ 𝑁𝐾 ⊂ 𝑄𝐾       𝐾 ⊂ 𝐻 ⊂ 𝐴𝐻. 

The Kähler manifolds form a very interesting class of manifolds in differential 

geometry. It is well known that the geometrical and topological structure of these 

manifolds is very rich. 

The nearly Kähler manifolds, which are not Kähler, are perhaps the most intere-

sting  nonintegrable almost Hermitian manifolds. 

Now we define the class of locally conformal Kähler manifolds (𝑙. 𝑐. 𝐾 mani-

folds) which has been developed mainly in the last 20 years. 

AH-manifolds is called 𝑙. 𝑐. 𝐾-manifold (𝑀, 𝙹, 𝑔) if each of points has a neigh- 

borhood 𝑈 on which the restriction of the metric 𝑔 is conformal with a Kähler 

metric 𝑔′ on 𝑈, such that   𝑔 𝑈 = 𝑒𝑥𝑝 𝑓𝑈 𝑔′ where 𝑓 is a differentiable function 

on 𝑈. 
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Equivalently, a H-manifold is 𝑙. 𝑐. 𝐾-manifold if and only if there exists on 𝑀 a 

closed 1-form 𝜔, called the lee form, such that  𝑑𝛺 = 𝜔  𝛺.  

A 𝑙. 𝑐. 𝐾-manifold with parallel lee form is called a generalized Hopf manifold 

(𝑔. 𝙷 -manifold). 

 We shall suppose  𝜔 ≠ 0 everywhere. For a 𝑔. 𝙷 -manifold the lee 1-form 𝜔 has 

constant length:   

let   𝜔 =
𝑐

2
. We denote  𝑢 =

𝜔

2
. let 𝑈 be the vector field defined by  𝑔 𝑈, 𝑋 =

𝑢 𝑋  for all 𝑋 tangent to 𝑀 and  𝑉 = 𝙹𝑈.  

We say that an AH-manifold 𝑀 is a para-Kähler manifold or a 𝐹-space if the 

curvature tensor 𝑅 satisfies  

                  𝑅 𝑋, 𝑌, 𝑍, 𝑊 = 𝑅 𝑋, 𝑌, 𝙹𝑍, 𝙹𝑊                                                (1.4.2) 

for all  𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝛤 𝑇𝑀 .  

1.4.8. Remark. Kähler manifolds are the main object of complex algebraic geo- 

metry (algebraic geometry over ℂ). 

1.5: Contact Manifold 

1.5.1 Definition. A contact manifold 𝑀 is an odd dimensional manifold with a 1-

form 𝜔 such that 𝜔  𝑑𝜔 𝑛 ≠ 0, where dim 𝑀 = 2𝑛 + 1 and the exponent de-

notes the 𝑛𝑖𝑕  exterior power. We call 𝜔 a contact form of 𝑀.  

Assume now that (𝑀, 𝜔) is a given contact manifold of dimension 2𝑛 + 1. Then 

𝜔 defines a 2𝑛-dimensional vector bundle over 𝑀, where the fiber at each point 

𝑝 ∈ 𝑀 is given by 

𝜉𝑝 = ker ωp . 

Since  𝜔 ∧  𝑑𝜔 𝑛  defines a volume form on 𝑀, we see that  

Ω ∶= 𝑑𝜔 

is a called non-degenerate 2-form  𝜉 ⊕ 𝜉 and hence it defines a symplectic prod-

uct of 𝜉 such that  𝜉,  Ω 𝜉⊕𝜉  becomes a symplectic vector bundle. A conse-

quence of this fact is that there exists an almost complex bundle structure 
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𝙹 : 𝜉 ↦ 𝜉 

compatible with 𝑑𝜔. i.e., a bundle endomorphism satisfying: 

 1  𝙹 2 = −𝐼𝑑𝜉 ,  

 2  𝑑𝜔 𝙹 𝑋, 𝙹 𝑌 = 𝑑𝜔 𝑋, 𝑌  for all 𝑋, 𝑌 ∈ 𝜉,  

 3  𝑑𝜔 𝑋, 𝙹 𝑋 > 0 for 𝑋 ∈ 𝜉\0.  

1.6: Sasakian Manifold 

1.6.1. Definition. Let 𝑆 be a   2𝑛 + 1 -dimensional manifold equipped with a 

structure (𝜑, 𝜉, 𝜂, 𝑔) such that: 

(1) 𝜑 is a (1, 1) tensor field, 

(2) 𝜉 is a vector field, 

(3) 𝜂 is a field of a 1-form, 

(4) 𝑔 is a Riemannian metric. 

Assume, in addition, that for any vector fields 𝑋 and 𝑌 on 𝑆, (𝜑, 𝜉, 𝜂, 𝑔) satisfy 

the following algebraic conditions: 

 1  𝜑2𝑋 = −𝑋 + 𝜂 𝑋 𝜉,  

 2  𝜂 𝜉 = 1,  

 3  𝑔 𝜑𝑋, 𝜑𝑌 = 𝑔 𝑋, 𝑌 − 𝜂 𝑋 𝜂 𝑌 ,  

 4  𝑔 𝜉, 𝑋 = 𝜂 𝑋 ,  

and the following differential conditions 

 5  𝑁𝜑 + 𝑑𝜂⨂𝜉 = 0, where 

𝑁𝜑 𝑋, 𝑌 =  𝜑𝑋, 𝜑𝑌 + 𝜑2 𝑋, 𝑌 − 𝜑 𝜑𝑋, 𝑌 − 𝜑 𝑋, 𝜑𝑌  

is the Nijenhuis tensor for 𝜑. 

 6  𝑑𝜂 𝑋, 𝑌 = 𝑔 𝜑𝑋, 𝑌 .  

Then 𝑆 is called a Sasakian manifold. 
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1.6.2. Example. A standard example of a Sasakian manifold is the odd dimen- 

sional sphere 

𝑆2𝑘+1 =  𝐶𝑘+1 ∋  𝑧1, … , 𝑧𝑘+1 :  𝑧1 2 + ⋯ +  𝑧𝑘+1 
2

= 1 ⊂ 𝐶𝑘+1, 

viewed as a submanifold of 𝐶𝑘+1. Let 𝙹 be standard complex structure on  𝐶𝑘+1, 

𝑔  the standard flat metric on  𝐶𝑘+1 ≡ 𝑅2𝑘+2, and 𝑛 be the unit normal to the 

sphere. The vector field 𝜉 on  𝑆2𝑘+1 is defined by 𝜉 = −𝙹𝑛. If 𝑋 a tangent vector 

to the sphere then 𝙹𝑋 uniquely decomposes onto the part parallel to 𝑛 and the 

part tangent to the sphere. Denote this decomposition by 

 𝙹𝑋 = 𝜂 𝑋 𝑛 + 𝜑 𝑋 . 

This defines the 1-form 𝜂 and the tensor field 𝜑 on  𝑆2𝑘+1. Denoting the restrict-

ion of  𝑔  to 𝑆2𝑘+1 by 𝑔 we obtain (𝜑, 𝜉, 𝜂, 𝑔) structure on 𝑆2𝑘+1. It is a matter of 

checking that this structure equips 𝑆2𝑘+1 with a structure of a sasakian- Einstein 

manifold. 

This construction is, in a certain sense, a Sasakian counterpart of the Fubini-

study Kähler structure on  𝐶𝑃𝑘 .  

 

 

 

 

 

 

 

 

 

 

 



34 
 

Chapter (2) 

The Theory of Submanifolds 

We study problems in submanifold theory since the invention of calculus and it 

was started with curvature of plane curves. For a surface in Euclidean 3-space 

one has the two important quantities, namely, the mean curvature and the Gauss 

curvature. The mean curvature is an extrinsic invariant which measures the sur-

face tension of the surface arisen from the ambient space. 

2.1: Submanifolds of the Euclidean Space 

We consider some aspects of the extrinsic geometry of a submanifold 𝑀 of di-

mension 𝑚 of the Euclidean space ℝ𝑚+𝑛 , with 𝑛 ≥ 1. When 𝑛 = 1, 𝑀 is a 

hypersurface and has locally a well defined unit normal vector field which can be 

extend to the whole hypersurface if it is orientable. This normal vector field de-

fines a map, called the Gauss map, from 𝑀 to the unit hypersphere in ℝ𝑚+1. A 

great deal of the extrinsic geometry of the hypersurface 𝑀 can be derived from 

the Gauss map and its derivative map, the shape operator. The shape operator is, 

at each point of 𝑀, a self adjoint operator from the tangent space of 𝑀 at 𝑝 to it-

self. Its eigenvalues are called the principal curvatures and when they all are 

equal at a given point 𝑝, the point 𝑝 is called an umbilic point. A hypersurface is 

totally umbilic if all its points are umbilic points. 

At each point 𝑝 of a submanifold 𝑀 of codimension 𝑛 > 1, there is an 𝑛-

dimensional space of normal vectors to 𝑀 at 𝑝. One can define a shape operator 

on 𝑀 along a fixed unit normal vector field on 𝑀. 

A hypersurface in ℝ𝑚+1 is a codimension one submanifold. The notion of a 

submanifold of an abstract smooth manifold will now be defined. 

In fact, there exist two different notions of submanifolds, „embedded submani- 

fold‟ and „immersed submanifold‟.  

The examples of surfaces in ℝ3-the sphere and the torus-are special cases of the 

general notion of a submanifold. Naїvely, given a smooth manifold 𝑀, a subma-

nifold 𝑁 ⊂ 𝑀 should be a subset which is also a smooth manifold in its own 

right. There are also several methods of describing submanifolds, either implicit-
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ly by the vanishing of some smooth functions, or parametrically by some local 

parametrization. 

2.1.1. Definition.  A submanifold of a manifold 𝑀 is a pair (𝑁, 𝜑), where 𝜑 is a 

differentiable map from a manifold 𝑁 into 𝑀 such that, for each point 𝑝 ∈ 

𝑁,  𝜑∗ 𝑝  is injective. In this case, 𝜑 is called an immersion. If, furthermore, 𝜑 is 

also injective, (𝑁, 𝜑) is called imbedded submanifold of 𝑀 and 𝜑 is an imbed-

ding. 

Facts: (1) Recall the subspace topology. Let 𝑋 be a topological space and let 

𝑆 ⊂ 𝑋 be any subset, then the subspace or relative topology on 𝑆 (induced by the 

topology on 𝑋) is defined as follows. A subset 𝑈 ⊂ 𝑆 is an open if there exist an 

open set 𝑉 ⊂ 𝑋 such that 𝑈 = 𝑉 ∩ 𝑆. In this case 𝑆 is called a (topological) sub-

space of 𝑋. 

(2)The rank of a linear transformation  𝐿: 𝑉 → 𝑊 between finite dimensional 

vector space is the dimension of the image 𝐿(𝑉) as a subspace of 𝑊, while the 

rank of a matrix 𝐴 is the dimension of its column space. If 𝐿 is represented by a 

matrix 𝐴 relative to a basis for 𝑉 and a basis for 𝑊, then the rank of 𝐿 is the same 

as the rank of 𝐴, because the image 𝐿(𝑉) is simply the column space of 𝐴. 

 2.1.2. Definition. Let 𝑀 be a smooth manifold. A submanifold of 𝑀 is a subset 

𝑁 ⊂ 𝑀, together with a smooth, one-to-one map 𝜑: 𝑁 → 𝑁 ⊂ 𝑀 satisfying the 

maximal rank condition everywhere, where the parameter space 𝑁  is some other 

manifold and 𝑁 = 𝜑 𝑁   is the image of 𝜑. In particular, the dimension of 𝑁 is 

the same as that of 𝑁 , and does not exceed the dimension of 𝑀.  

The map 𝜑 is often called an immersion, and serves to define a parametrization 

of the submanifold 𝑁. Often such a submanifold is referred to as an immersed-

submanifold, to emphasize the difference between this definition and other no-

tions of submanifold.  

2.1.3. Definition. A regular submanifold 𝑁 of a manifold 𝑀 is a submanifold pa-

rametrized by 𝜑: 𝑁 → 𝑀 with the property that for each 𝑥 in 𝑁 there exist arbi-

trarily small open neighborhoods 𝑈 of 𝑥 in 𝑀 such that 𝜑−1 𝑈 ∩ 𝑁  is a con-

nected open subset of 𝑁 .  
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2.1.4. Lemma. A 𝑛-dimensional submanifold 𝑁 ⊂ 𝑀 is regular if and only if for 

each 𝑥0 ∈ 𝑁 there exist local coordinates 𝑥 =  𝑥1, … , 𝑥𝑚  defined on a neigh- 

borhood 𝑈 of 𝑥0 such that  

𝑁 ∩ 𝑈 =  𝑥: 𝑥𝑛+1 = ⋯ = 𝑥𝑚 = 0 . 

Such a coordinate chart is called a flat coordinate chart on 𝑀. Note that, in view 

of this lemma, for regular submanifolds 𝑁 ⊂ 𝑀 we can dispense with the para-

metrizing manifold 𝑁  and just treat 𝑁 as a manifold in its own right.  

 Namely the flat local coordinates 𝑥 =  𝑥1, … , 𝑥𝑚  on 𝑈 ⊂ 𝑀 induce local coor-

dinate, namely 𝑥 =  𝑥1, … , 𝑥𝑛 , on 𝑈 ∩ 𝑁 . The parametrization thereby is re-

placed by the natural inclusion 𝑁 ⊂ 𝑀.  

2.1.5. Theorem. Let 𝑀 be a smooth 𝑚-dimensional manifold, and 𝐹: 𝑀 →

ℝ𝑛 , 𝑛 ≤ 𝑚, be a smooth map. If F is of maximal rank on the subset 𝑁 =

 𝑥: 𝐹 𝑥 =   0 , then N is a regular,  𝑚 − 𝑛 - dimensional submanifold of 𝑀.  

 2.1.6. Definition. A subset 𝑁 ⊂ 𝑀 is called a smooth embedded 𝑛-dimensional 

submanifold in 𝑀 if for every 𝑝 ∈ 𝑁, there exists a chart  𝑈, 𝜑  for 𝑀, with 𝑝 ∈

𝑈, such that  

𝜑 𝑈 ∩ 𝑁 = 𝜑 𝑈 ∩  ℝ𝑛 ×  0  =  𝑥 ∈ 𝜑 𝑈 : 𝑥𝑛+1 = ⋯ = 𝑥𝑚 = 0 . 

 The codimension of 𝑁 is defined as: codim 𝑁  = dim 𝑀 − dim 𝑁.  

 If 𝐹: 𝑁 → 𝑀 is a differentiable map, we define the rank of 𝐹 at 𝑝 ∈ 𝑁 to be the 

rank of the linear map 𝐹∗: 𝑇𝑝𝑁 → 𝑇𝐹(𝑝)𝑀; it is of course just the rank of the ma-

trix of partial derivatives of 𝐹 in any coordinate chart, or the dimension of 

 Im 𝐹∗ ⊂ 𝑇𝐹 𝑝 𝑀.  

If 𝐹 has the same rank 𝑘 at every point it has constant rank, and write rank 𝐹 =

𝑘. 

2.1.7. Definition. A differentiable mapping 𝐹: 𝑁 → 𝑀 is called an immersion if  

rank 𝐹 = dim 𝑁 at all points of 𝑁. 

Similarly a differentiable mapping 𝐹: 𝑁 → 𝑀 is called a submersion if  

rank 𝐹 = dim 𝑀. 
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One special kind of immersion is particularly important. A (smooth) embedding 

is an injective immersion 𝐹: 𝑁 → 𝑀 that is also a topological embedding, i.e., a 

homeomorphism onto its image 𝐹 𝑁 ⊂ 𝑀 in the subspace topology.  

2.1.8. Implicit Submanifolds 

Instead of defining a surface S in ℝ3 parametrically, an alternative method is to 

define it implicitly by the vanishing of a smooth function: 

𝑆 =  𝐹 𝑥, 𝑦, 𝑧 = 0 . 

Let 𝑓: 𝑀 → 𝑁 be a smooth maps between manifolds. We say that 𝑓 is a local dif-

feomorphism at 𝑝 if 𝑓 maps neighborhood of 𝑝 diffeomorphically onto a neigh-

borhood of 𝑓 𝑝 .  

2.1.9 Theorem (The inverse function theorem).Suppose that 𝑓: 𝑀 → 𝑁 is a 

smooth map whose derivative 𝑑𝑓𝑝  at the point 𝑝 is an isomorphism. Then 𝑓 is a 

local diffeomorphism at 𝑝.  

2.1.10. Definition. A point 𝑝 ∈ 𝑀𝑚  is called a regular value of a smooth map 

𝑓: 𝑀𝑚 → 𝐿𝑙 , 𝑚 ≥ 𝑙, if for any point 𝑥 ∈ 𝑓−1 𝑝  the differential (tangent map) 

𝐷𝑓 𝑥  has rank 𝑙.  

2.1.11 Remark Let 𝑀𝑚  be a smooth manifold and 𝑁𝑛  a submanifold equipped 

with the induced topology. The restriction of the chart  𝑈𝑝 , 𝜑𝑝  to 𝑁𝑛  provide a 

chart on 𝑁𝑛 .Thus 𝑁 is a topological manifold and the induced charts          

 𝑈 𝑝 ∩ 𝑁𝑛 ,  𝜑𝑝  
 𝑈(𝑝) ∩𝑁𝑛     ,    𝑝 ∈ 𝑁𝑛          provide a smooth atlas for 𝑁.  

2.1.12. Theorem (Implicit function theorem). Let 𝑀𝑚  and 𝑁𝑛  be a smooth ma-

nifold with 𝑚 ≥ 𝑛, and let 𝑞 be a regular value of a smooth map 𝑓: 𝑀𝑚 → 𝑁𝑛 . 

Then the set 𝑓−1 𝑞  is a smooth submanifold of 𝑀𝑚 .  

2.1.13. Embeded Submanifolds 

Smooth submanifolds are modeled locally on the standard embedding of ℝ𝑘  into 

ℝ𝑛 , identifying ℝ𝑘  with the subspace   

 (𝑥1, … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛): 𝑥𝑘+1 = ⋯ = 𝑥𝑛 = 0  

 of  ℝ𝑛 . Somewhat more generally, if 𝑈 is an open subset of ℝ𝑛 , a 𝑘-slice, of 𝑈 is 

any subset of the form  
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𝑆 =   𝑥1, … , 𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑛 ∈ 𝑈: 𝑥𝑘+1 = 𝑐𝑘+1, … , 𝑥𝑛 = 𝑐𝑛  

for some constant 𝑐𝑘+1, … , 𝑐𝑛 . 

Clearly any 𝑘-slice is homeomorphic to an open subset of ℝ𝑘 . 

 Let 𝑀 be a smooth 𝑛-manifold, and let (𝑈, 𝜑) be a smooth chart on 𝑀. We say a 

subset 𝑆 ⊂ 𝑈 is a 𝑘-slice of 𝑈 if 𝜑(𝑆) is a 𝑘-slice of 𝜑(𝑈). A subset 𝑁 ⊂ 𝑀 is 

called an embedded submanifold of dimension 𝑘 (or an embedded 𝑘-submani-

fold or a regular submanifold) of 𝑀 if for each point 𝑝 ∈ 𝑁 there exists a chart 

(𝑈, 𝜑) for 𝑀 such that 𝑝 ∈ 𝑈 and 𝑈 ∩ 𝑁 is a slice of 𝑈. In this situation, we call 

the chart (𝑈, 𝜑) a slice chart for 𝑁 in 𝑀, and the corresponding 

coordinates 𝑥1, … , 𝑥𝑛  are called slice coordinates.   

 The difference 𝑛 − 𝑘 is called the co-dimension of 𝑁 in 𝑀. 

2.1.14. Lemma. Let 𝑀 be a smooth manifold and 𝑁 a subset of 𝑀. Suppose 

every point 𝑝 ∈ 𝑁 has a neighborhood 𝑈 ⊂ 𝑀 such that 𝑈 ∩ 𝑁 is an embedded 

submanifold of 𝑈. Then 𝑁 is an embedded submanifold of 𝑀.  

The proposition below explains the reason for the name “embedded submani-

fold”.  

2.1.15. Proposition. Let 𝑁 ⊂ 𝑀 be an embedded 𝑘-dimensional submanifold of 

𝑀. With the subspace topology, 𝑁 is a topological manifold of dimension 𝑘, and 

it has a unique smooth structure such that the inclusion map 𝑁 ↪ 𝑀 is a smooth 

embedding.  

2.1.16. Proposition (Smoothness of inverse map). Suppose 𝑀 and 𝑁 are 

smooth manifolds of the same dimension, and 𝐹: 𝑀 → 𝑁 is a homeomorphism 

that is also a smooth immersion. Then 𝐹−1 is smooth, so 𝐹 is a diffeomorphism. 

2.1.17. Proposition. Let 𝑆 be a regular submanifold of 𝑁 and 𝒰 =  (𝑈, 𝜑) a col-

lection of compatible adapted charts of 𝑁 that over 𝑆.Then   𝑈 ∩ 𝑆, 𝜑𝑆   is an 

atlas for 𝑆. Therefore, a regular submanifold is itself a manifold. If 𝑁 has dimen-

sion 𝑛 and 𝑆 is locally defined by the vanishing of 𝑛 − 𝑘 coordinate, then 

dim 𝑆 = 𝑘.  

2.1.18. Level Sets of a Function 

A level set of a map 𝐹: 𝑁 → 𝑀 is a subset  
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𝐹−1  𝑐  =  𝑝 ∈ 𝑁: 𝐹(𝑝) = 𝑐  

for some 𝑐 ∈ 𝑀.The usual notation for a level set is 𝐹−1 𝑐 , rather than the more 

correct 𝐹−1  𝑐  . The value 𝑐 ∈ 𝑀 is called the level of the level set 𝐹−1 𝑐 .  

If 𝐹: 𝑁 → ℝ𝑚 , then  

𝑍 𝐹 ∶= 𝐹−1 0   

is the zero set of 𝐹. Recall that 𝑐 is a regular value of 𝐹 if and only if either 𝑐 is 

not in the image of 𝐹 or at every point 𝑝 ∈ 𝐹−1 𝑐 , the differential  𝐹∗,𝑝 : 𝑇𝑝𝑁 →

𝑇𝐹(𝑝)𝑀 is surjective. The inverse image 𝐹−1 𝑐  of a regular value is called a reg-

ular level set. If the zero set 𝐹−1 0  is a regular level set of 𝐹: 𝑁 → ℝ𝑚 , it is 

called a regular zero set.  

2.1.19. Theorem (Regular Level set theorem). Let 𝐹: 𝑁 → 𝑀 be a 𝐶∞  map of 

manifolds, with dim 𝑁 = 𝑛 and dim 𝑀 = 𝑚. Then a nonempty regular level 

set 𝐹−1 𝑐 , where 𝑐 ∈ 𝑀, is a regular submanifold of 𝑁 of dimension equal to 

𝑛 − 𝑚.  

2.1.20. Definition. A subset 𝑁 ⊂ 𝑀 is called an immersed submanifold if 𝑁 is a 

smooth 𝑛-dimensional manifold. And the mapping 𝑖: 𝑁 → 𝑀 is an immersion.  

2.1.21. Theorem. Let 𝑓: 𝑁 → 𝑀 be a constant rank mapping with 𝑟𝑘(𝑓) = 𝑘. 

Then for each 𝑞 ∈ 𝑓 𝑁 , the level set 𝑆 = 𝑓−1 𝑞  is an embedded submanifold 

in 𝑁 with co-dimension equal to 𝑘. 

2.1.22. Definition. Let 𝑀 be a 𝑛-dimensional manifold, 𝑆 a subset of 𝑀. A point 

𝑝 ∈ 𝑆 is called a regular point of 𝑆 if 𝑝 has an open neighborhood 𝑈 in 𝑀 that 

lies in the domain of some coordinate system 𝑥1, … , 𝑥𝑛  on 𝑀 with the property 

that the points of 𝑆 in 𝑈 are precisely those points in 𝑈 whose coordinate 

satisfy 𝑥𝑚+1 = 0, … , 𝑥𝑛 = 0 for some 𝑚. This 𝑚 is called the dimension of 𝑆 at 

𝑝.  
 

Otherwise 𝑝 is called a singular point of 𝑆. 𝑆 is called a 𝑚-dimensional (regular) 

submanifold of 𝑀 if every point of 𝑆 in regular of the same dimensions 𝑚. 
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2.1.23. Examples of Regular Submanifolds  

(1) (Hypersurface). Show that the solution set 𝑆 of 𝑥3 + 𝑦3 + 𝑧3 = 1 in ℝ3 is a 

manifold of dimension 2.  

Solution: Let 𝑓 𝑥, 𝑦, 𝑧 = 𝑥3 + 𝑦3 + 𝑧3. Then 

𝑆 = 𝑓−1 1 . 

 Since 

𝜕𝑓

𝜕𝑥
= 3𝑥2,   

𝜕𝑓

𝜕𝑦
= 3𝑦2,   and  

𝜕𝑓

𝜕𝑧
= 3𝑧2, 

the only critical point of 𝑓 is (0, 0, 0), which is not in 𝑆.Thus, 1 is a regular value 

of 𝑓: ℝ3 → ℝ.  

By the regular level set theorem (Theorem 2.1.19) 𝑆 is a regular submanifold 

of ℝ3 of dimension 2. So 𝑆 is a manifold. Proposition (2.1.17).  

(2) (Solution set of two polynomial equations). Decide whether the subset 𝑆 

of ℝ3 defined by the two equations  

                                                                  𝑥3 + 𝑦3 + 𝑧3 = 1 

                                                                                   𝑥 + 𝑦 + 𝑧 = 0 

is a regular submanifold of ℝ3.  

Solution. Define 𝐹: ℝ3 → ℝ2 by 

 𝑢, 𝑣 = 𝐹 𝑥, 𝑦, 𝑧 =  𝑥3 + 𝑦3 + 𝑧3, 𝑥 + 𝑦 + 𝑧 . 

Then 𝑆 in the level set 𝐹−1 1, 0 . The Jacobian matrix of 𝐹 is  

                                𝙹 𝐹 =  
𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧
 =  3𝑥2 3𝑦2 3𝑧2

1 1 1
 , 

where 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
  and so forth. The critical points of 𝐹 are the points  𝑥, 𝑦, 𝑧 where 

the matrix 𝙹(𝐹)  has rank < 2. That is precisely where all 2 × 2 minors of 𝙹(𝐹) 

are zero:  

 3𝑥2 3𝑦2

1 1
 = 0,              3𝑥2 3𝑧2

1 1
 = 0                     (∗) 
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(The third condition  

 3𝑦2 3𝑧2

1 1
 = 0 

is a consequence of these two.) Solving  ∗ , we get 𝑦 = ±𝑥,  𝑧 = ±𝑥.  

Since 𝑥 + 𝑦 + 𝑧 = 0 on 𝑆, this implies that  𝑥, 𝑦, 𝑧 =  0, 0, 0 . Since (0, 0, 0) 

does not satisfy the first equation 𝑥3 + 𝑦3 + 𝑧3 = 1, there are no critical 

points of 𝐹 on 𝑆. Therefore, 𝑆 is a regular level set. By the regular level set theo-

rem, 𝑆 is a regular submanifold of ℝ3 of dimension 1.  

2.1.24. Theorem. If 𝑀 is an 𝑟-dimensional regular submanifold of ℝ𝑛  then for 

every 𝑝 ∈ 𝑀 there exist at least one 𝑟-dimensional coordinate plane 𝑃 such that 

linear projection 𝑃 → ℝ𝑛  restricts to a coordinate system for 𝑀 defined in a 

neighborhood of 𝑝.  

2.1.25: First Fundamental Form of a Submanifold 

The important geometrical characteristic of a submanifold is its first fundamental 

form. Let 𝛾 be a curve in a submanifold. Then parameters 𝑢1, … , 𝑢𝑛  are certain 

functions of parameters 𝑡:  

𝑢𝑖 = 𝑢𝑖 𝑡 , 𝑖 = 1, … , 𝑛. 

The position vector of 𝛾 has the form:  

𝑟 = 𝑟 𝑢1 𝑡 , … , 𝑢𝑛 𝑡  = 𝑟  𝑡 . 

A general rule given us an expression for the arc-length of 𝛾:  

𝑠 =    𝑟 𝑡
′ 

2
 𝑑𝑡

𝑡2

𝑡1

. 

Differentiating 𝑟  𝑡  as a composite function we get  

𝑟 𝑡
′ =  𝑟𝑢 𝑖  

𝑑𝑢𝑖

𝑑𝑡

𝑛

𝑖=1

 

Therefore  
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 𝑟 𝑡
′ 

2
=   𝑟𝑢 𝑖  𝑟𝑢 𝑗  

𝑑𝑢𝑖

𝑑𝑡

𝑑𝑢𝑗

𝑑𝑡

𝑛

𝑖 ,𝑗 =1

 

The coefficients of the first fundamental form are the functions  

𝑔𝑖𝑗 =  𝑟𝑢 𝑖  𝑟𝑢 𝑗  . 

The form  

𝑑𝑠2 =  𝑔𝑖𝑗  𝑑𝑢𝑖  𝑑𝑢𝑗

𝑛

𝑖 ,𝑗 =1

 

is called the fundamental form.  

We say this form is induced by the metric of ambient Euclidean space. The 

length of any curve in the submanifold is the integral  

𝑠 =  𝑑𝑠 =    𝑔𝑖𝑗  𝑑𝑢𝑖  𝑑𝑢𝑗

𝑛

𝑖,𝑗 =1

. 

For two given directions  

𝑎 = 𝑟𝑢 𝑖  𝑑𝑢𝑖 ,   𝑏 = 𝑟𝑢 𝑗  𝛿𝑢𝑗 , 

we get their scalar product as  

 𝑎𝑏 =  𝑎  𝑏 cos 𝜑 =  𝑔𝑖𝑗  𝑑𝑢𝑖  𝛿𝑢𝑗  

Since  

 𝑎 =   𝑔𝑖𝑗  𝑑𝑢𝑖  𝑑𝑢𝑖 ,           𝑏 =   𝑔𝑖𝑗  𝛿𝑢𝑖  𝛿𝑢𝑗 , 

we can evaluate the cosine of the angle between 𝑎 and 𝑏 by the formula  

cos 𝜑 =
 𝑔𝑖𝑗  𝑑𝑢𝑖  𝛿𝑢𝑗

  𝑔𝑖𝑗  𝑑𝑢𝑖  𝑑𝑢𝑗  𝑔𝑖𝑗  𝛿𝑢𝑖  𝛿𝑢𝑗
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A property of the manifold is intrinsic if it depends only on the metric. All intrin-

sic properties form the intrinsic geometry of the manifold.  

By the first fundamental form we define the volume of a submanifold, which is a 

notion analogous to the area of a surface. Consider an infinitely small 𝑛-

dimensional curvilinear parallelepiped, which is built on coordinate curves as its 

edges. Its volume 𝑑𝑉 is approximately equals the volume of a straight line paral-

lelepiped:  

𝑑1𝑟 = 𝑟𝑢1  𝑑𝑢1, … , 𝑑𝑛𝑟 = 𝑟𝑢𝑛  𝑑𝑢𝑛 . 

Given 𝑛-vectors 𝑎, 𝑏, … , 𝑐 in 𝑛-dimensional Euclidean space 𝐸𝑛 , the volume of a 

parallelepiped built on them equals a mixed product, that is, the determinant of 

an 𝑛-matrix formed with the coordinate of vectors as rows:  

𝑉 𝑎. 𝑏. … , 𝑐 =  

𝑎1  𝑎2 …𝑎𝑛

𝑏1   𝑏2 …𝑏𝑛

…   …  ……
𝑐1  𝑐2 ⋯𝑐𝑛

  

Evidently  

𝑉2 𝑎. 𝑏. … , 𝑐 =  

𝑎1   𝑎2 ⋯𝑎𝑛

𝑏1   𝑏2 ⋯𝑏𝑛

…   ………
𝑐1  𝑐2 ⋯𝑐𝑛

  

𝑎1  𝑎2 ⋯𝑎𝑛

𝑏1   𝑏2 ⋯𝑏𝑛

…   ………
𝑐1  𝑐2 ⋯𝑐𝑛

 =  

𝑎2   𝑎𝑏 ⋯  𝑎𝑐 

 𝑎𝑏    𝑏2    ⋯
…    …  …

 𝑎𝑐   ……𝑐2

  

Apply the latter formula to 𝑑1𝑟, … , 𝑑𝑛𝑟, which lie in tangent space 𝑇𝑝𝑀. If we 

denote det 𝑔𝑖𝑗   by 𝑔, then  

𝑑𝑉 =  𝑔 𝑑𝑢1 …𝑑𝑢𝑛 . 

Hence, the volume of the submanifold 𝑀 is equal to 

𝑉 =  𝑑𝑉 =   𝑔 𝑑𝑢1 …𝑑𝑢𝑛

𝑀

. 
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2.2. Submanifolds of a Riemannian Manifold 

We develop the basic concepts of the theory of Riemannian submanifolds, and 

then to use these concepts to derive a quantitative interpretation of the curvature 

tensor. 

Let  𝑖: 𝑀 → 𝑀  be an immersion of an 𝑛-dimensional manifold 𝑀 into an 𝑚-

dimensional Riemannian manifold  𝑀 , 𝑔  . Denote by  𝑔 = 𝑖∗𝑔  the induced Rie-

mannian metric on 𝑀. 

 Thus, 𝑖 become an isometric immersion and 𝑀 is also a Riemannian manifold 

with the Riemannian metric 𝑔 𝑋, 𝑌 = 𝑔  𝑋, 𝑌  for any vector fields 𝑋, 𝑌 in 𝑀.  

The Riemannian metric 𝑔 on 𝑀 is called the induced metric on  𝑀. In local com-

ponents,  𝑔𝑖𝑗 = 𝑔𝐴𝐵𝐵𝑗
𝐵𝐵𝑖

𝐴   with 𝑔 = 𝑔𝑖𝑗 𝑑𝑥 𝑗𝑑𝑥𝑖  and  𝑔 = 𝑔𝐵𝐴𝑑𝑢𝐵𝑑𝑢𝐴 . 

If a vector field 𝜉𝑝  of  𝑀   at a point 𝑝 ∈ 𝑀 satisfies 

                                                      𝑔  𝑋𝑝 , 𝜉𝑝 = 0                                            2.2.1  

For any vector  𝑋𝑝  of 𝑀 at 𝑝, then  𝜉𝑝  is called a normal vector of 𝑀 in 𝑀  at 𝑝. 

 A unit normal vector field of  𝑀 in 𝑀  is sometimes called a normal section 

on 𝑀, or a normal direction on 𝑀.  

By 𝑇⊥𝑀, we denote the vector bundle of all normal vectors of  𝑀 in 𝑀 . Then, 

the tangent bundle of 𝑀 , restricted to 𝑀, is the direct sum of the tangent 

bundle 𝑇𝑀 of 𝑀 and the normal bundle 𝑇⊥𝑀 of 𝑀 in 𝑀 , i.e., 

                                           𝑇𝑀  
𝑀

= 𝑇𝑀 ⊕ 𝑇⊥𝑀.                                           2.2.2  

We note that if the submanifold 𝑀 is of codimension one in 𝑀  and they are both 

orientable, we can always choose a normal section 𝜉 on 𝑀, i.e., 

                               𝑔 𝑋, 𝜉 = 0,                  𝑔 𝜉, 𝜉 = 1,                                     2.2.3  

where 𝑋 is any arbitrary vector field on 𝑀. 

We denote by ∇  the Riemannian connection on 𝑀  with respect to its Riemannian 

metric  𝑔 . The Riemannian connection ∇  has no torsion, that is, 

                                          ∇ 𝑋 𝑌 − ∇ 𝑌 𝑋 −  𝑋 , 𝑌  = 0,                                    (2.2.4) 
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and is metric, that is, 

                 ∇ 𝑋  𝑔  𝑌 , 𝑍   = 𝑔  ∇ 𝑋 𝑌 , 𝑍  + 𝑔  𝑌 , ∇𝑋 𝑍                                      (2.2.5) 

where 𝑋 , 𝑌  and 𝑍  are arbitrary vector fields on 𝑀 . 

2.2.1. Definition. (The Second Fundamental Form) We define the second funda-

mental form of the submanifold 𝑀 (or immersion 𝑖) to be the map (or bilinear 

form) 

𝑕: 𝛤 𝑇𝑀 × 𝛤 𝑇𝑀 → 𝛤 𝑇⊥𝑀  

given by: 

𝑕 𝑋, 𝑌 = ∇ 𝑋𝑌 − ∇𝑋𝑌 

                                                                      =  ∇ 𝑋𝑌 
⊥

. 

where 𝑋, 𝑌  are extended arbitrarily of  𝑀 .   

If 𝑕 = 0 identically, then submanifold 𝑀 is said to be totally geodesic, where 

𝛤 𝑇⊥𝑀  is the set of the differentiable vector fields on normal bundle of 𝑀. 

Totally geodesic submanifolds are simplest submanifolds. 

2.2.2. Lemma. The second fundamental form is  

(a) independent of the extensions of 𝑋 and 𝑌, 

(b) bilinear over  𝐶∞ 𝑀 ; and 

(c) symmetric in 𝑋 and 𝑌. 

Proof. First we show that the symmetry of  𝑕 follows from the symmetry of the 

connection ∇ . 

Let 𝑋 and 𝑌 be extended arbitrarily to 𝑀. Then 

𝑕 𝑋, 𝑌 − 𝑕 𝑌, 𝑋 =  ∇ 𝑋𝑌 − ∇ 𝑌𝑋 
⊥

=  𝑋, 𝑌 ⊥ . 

Since 𝑋 and 𝑌 are tangent to 𝑀 at all points of 𝑀, so their Lie bracket. Therefore 

 𝑋, 𝑌 ⊥ = 0, so 𝑕 is symmetric. 
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Because  ∇ 𝑋𝑌 
𝑝

 depends only in 𝑋𝑝 , it is clear that 𝑕 𝑋, 𝑌  is independent of the 

extension chosen for 𝑋, and that  𝑕 𝑋, 𝑌  is linear over  𝐶∞ 𝑀  in 𝑋. By symme-

try, the same is true for 𝑌.  ∎  

2.2.3. Proposition. Let ∇ and ∇  be the respective Levi-Civita connections of 𝑀 

and 𝑀 . Then we have  

∇𝑋𝑌 =  ∇ 𝑋𝑌 
𝑇
 

where 𝑋, 𝑌 are arbitrarily extensions to vector field on 𝑀 .  

2.2.4. Definition. Let 𝑀 be an 𝑛-dimensional submanifold of an 𝑚-dimensional 

Riemannian manifold  𝑀 , 𝑔  . By 𝑕, we denote the second fundamental form of 

𝑀 in 𝑀 .  𝐻 = 1

𝑛
 𝑡𝑟𝑎𝑐𝑒 𝑕  is called the mean curvature vector of 𝑀 in 𝑀 . If 

 𝐻 = 0, the submanifold is called minimal. 

Let  𝑖: 𝑀 → 𝑀  be an immersion of an 𝑛-dimensional manifold 𝑀 into an 𝑚-

dimensional Riemannian manifold  𝑀  with the Riemannian metric  𝑔 .  Denote 

by 𝑔 = 𝑖∗𝑔  the induced metric on 𝑀. Equipped with 𝑔, 𝑖 becomes an isometric 

immersion. We shall identify 𝑋 with its image  𝑖∗𝑋 for any  𝑋 ∈ 𝑇 𝑀 .  

If 𝑋, 𝑌 are vector fields tangent to 𝑀, we put 

                            ∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝑕 𝑋, 𝑌                                                      2.2.6 , 

where  ∇𝑋𝑌 and 𝑕 𝑋, 𝑌   are the tangential and the normal components of  ∇ 𝑋𝑌, 

respectively.  

Formula (2.2.6) is called the Gauss formula. 

2.2.5. Proposition. ∇ is the Riemannian connection of the induced metric 

𝑔 = 𝑖∗𝑔  on 𝑀 and 𝑕 𝑋, 𝑌  is a normal vector field over 𝑀 which is symmetric 

and bilinear in 𝑋 and 𝑌. 

Proof. Replacing 𝑋 and 𝑌 be 𝛼𝑋 and 𝛽𝑌, respectively, 𝛼, 𝛽 being functions on 

𝑀, we have 

 ∇ 𝛼𝑋 (𝛽𝑌) = 𝛼  𝑋𝛽 𝑌 + 𝛽∇ 𝑋𝑌  

                                             =  𝛼 𝑋𝛽 𝑌 + 𝛼𝛽∇𝑋𝑌 + 𝛼𝛽𝑕 𝑋, 𝑌 , 



47 
 

from which we find 

                                ∇𝛼𝑋  𝛽𝑌 = 𝛼 𝑋𝛽 𝑌 + 𝛼𝛽∇𝑋𝑌                                        (2.2.7) 

                                 𝑕 𝛼𝑋, 𝛽𝑌 = 𝛼𝛽𝑕 𝑋, 𝑌                                                     (2.2.8) 

Equation (2.2.7) shows that ∇ defines an affine connection on 𝑀 and equation 

(2.2.8) shows that 𝑕 is bilinear in 𝑋 and 𝑌 since additivity is trivial. 

Since the Riemannian connection  ∇  has no torsion, we have 

0 = ∇ 𝑋𝑌 − ∇ 𝑌𝑋 −  𝑋, 𝑌  

                                          = ∇𝑋𝑌 + 𝑕 𝑋, 𝑌 − ∇𝑌𝑋 − 𝑕 𝑋, 𝑌 −  𝑋, 𝑌 , 

from which by comparing the tangential and normal part, we obtain 

∇𝑋𝑌 − ∇𝑌𝑋 =  𝑋, 𝑌  

and 

𝑕 𝑋, 𝑌 = 𝑕 𝑌, 𝑋 . 

These equations show that ∇ has no torsion and 𝑕 is a symmetric bilinear map. 

Since the metric 𝑔  is parallel, we can easily see that 

∇𝑋𝑔 𝑌, 𝑍 = ∇ 𝑋𝑔  𝑌, 𝑍 = 𝑔  ∇ 𝑋𝑌, 𝑍 + 𝑔 (𝑌, ∇ 𝑋𝑍) 

                                           = 𝑔  ∇𝑋𝑌 + 𝑕 𝑋, 𝑌 , 𝑍 + 𝑔 (𝑌, ∇𝑋𝑍 + 𝑕 𝑋, 𝑍 ) 

= 𝑔  ∇𝑋𝑌, 𝑍 + 𝑔 (𝑌, ∇𝑋𝑍) 

= 𝑔 ∇𝑋𝑌, 𝑍 + 𝑔(𝑌, ∇𝑋𝑍) 

for any vector fields 𝑋, 𝑌, 𝑍 tangent to 𝑀. This shows that ∇ is the Riemannian 

connection of the induced metric 𝑔 on 𝑀. ∎  

We call 𝑕 the second fundamental form of the submanifold 𝑀 (or of the immer-

sion 𝑖). Let 𝜉 be a normal vector field on 𝑀 and 𝑋 be a tangent vector field on 𝑀. 

 We decompose ∇ 𝑋𝜉  as 

                                        ∇ 𝑋𝜉 = −𝐴𝜉𝑋 + 𝐷𝑋𝜉,                                          (2.2.9) 
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where −𝐴𝜉𝑋 and 𝐷𝑋𝜉 are the tangential and normal components of ∇ 𝑋𝜉 respec-

tively. We can easily see that 𝐴𝜉𝑋 and 𝐷𝑋𝜉 are both differentiable vector fields 

on 𝑀 and normal bundle on 𝑀, respectively. 

Moreover, (2.2.8) implies that 𝑕 𝑋𝑝 , 𝑌𝑝  depends only on 𝑋𝑝 , 𝑌𝑝 ∈ 𝑇𝑝𝑀, not on 

their extensions 𝑋, 𝑌. Formula (2.2.9) is called the Weingarten formula. 

2.2.6. Proposition. Let 𝑀 be a submanifold of a Riemannian manifold  𝑀 , 𝑔  .  

Then 

(a) 𝐴𝜉 𝑋  is bilinear in vector fields 𝜉 and 𝑋. Hence, 𝐴𝜉 𝑋  at a point 𝑝 ∈ 𝑀 de-

pends only on vector  𝜉𝑝  and 𝑋𝑝 . And 

(b)For each normal vector field 𝜉 of 𝑀 and tangent vectors 𝑋, 𝑌 of 𝑀, we have  

                                      𝑔 𝐴𝜉𝑋, 𝑌 = 𝑔  𝑕 𝑋, 𝑌 , 𝜉                                     (2.2.10) 

Proof. Let 𝛼 and 𝛽 be any two functions on 𝑀. Then, we have  

                       ∇ 𝛼𝑋  𝛽𝜉 = 𝛼∇ 𝑋 𝛽𝜉 = 𝛼  𝑋𝛽 𝜉 + 𝛽∇ 𝑋𝜉                         (2.2.11) 

−𝐴𝛽𝜉  𝛼𝑋 + 𝐷𝛼𝑋  𝛽𝜉 = 𝛼 𝑋𝛽 𝜉 − 𝛼𝛽𝐴𝜉𝑋 + 𝛼𝛽𝐷𝑋𝜉.   

This implies that 

                                            𝐴𝛽𝜉  𝛼𝑋 = 𝛼𝛽𝐴𝜉𝑋                                         (2.2.12) 

and   

                                         𝐷𝛼𝑋  𝛽𝜉 = 𝛼 𝑋𝛽 𝜉 + 𝛼𝛽𝐷𝑋𝜉.                         (2.2.13) 

Thus, 𝐴𝜉𝑋 is bilinear in 𝜉 and 𝑋, since additivity is trivial. This proves (a). To 

prove (b), we notice that for any arbitrary vector field 𝑌 tangent to 𝑀, we have 

                              0 = 𝑔  ∇ 𝑋𝑌, 𝜉 + 𝑔  𝑌, ∇ 𝑋𝜉                   

                           = 𝑔  ∇𝑋𝑌, 𝜉 + 𝑔  𝑕 𝑋, 𝑌 , 𝜉 − 𝑔  𝑌, 𝐴𝜉 𝑋  + 𝑔 (𝑌, 𝐷𝑋𝜉) 

                                   = 𝑔  𝑕 𝑋, 𝑌 , 𝜉 − 𝑔 𝑌, 𝐴𝜉𝑋 .  

This shows (b).  ∎  
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Let 𝑇⊥ 𝑀  denote the normal bundle of the immersion 𝑖: 𝑀 → 𝑀 . From (2.2.11) 

we find 

𝐷𝛼𝑋  𝛽𝜉 = 𝛼 𝑋𝛽 𝜉 + 𝛼𝛽𝐷𝑋𝜉.                    

Moreover, it is easy to verify that 

                                                    𝐷𝑋+𝑌 = 𝐷𝑋 + 𝐷𝑌 .                                     (2.2.14) 

Equations (2.2.13) and (2.2.14) justified that 𝐷 is a connection on the normal 

bundle 𝑇⊥ 𝑀 .  

In fact, we have the following 

2.2.7. Proposition. 𝐷 or (∇⊥) is a metric connection in the normal bundle 

𝑇⊥ 𝑀  of 𝑀 in 𝑀  with respect to induced metric on  𝑇⊥ 𝑀 .  

Proof.  From (2.2.13) we see that 𝐷 defines an affine connection on the normal 

bundle 𝑇⊥𝑀. 

 Moreover, for any two normal vector fields 𝜉 and 𝜂 in 𝑇⊥𝑀, we have 

∇ 𝑋𝜉 = −𝐴𝜉𝑋 + 𝐷𝑋𝜉;      ∇ 𝑋𝜂 = −𝐴𝜂𝑋 + 𝐷𝑋𝜂. 

Hence, we get 

𝑔  𝐷𝑋𝜉, 𝜂 + 𝑔  𝜉, 𝐷𝑋𝜂 = 𝑔  ∇ 𝑋𝜉, 𝜂 + 𝑔 (𝜉, ∇ 𝑋𝜂) 

                                           = ∇ 𝑋𝑔  𝜉, 𝜂 = 𝐷𝑋𝑔  𝜉, 𝜂 . 

This shows that 𝐷 is a metric connection.   ∎  

A normal vector field 𝜉 on 𝑀 is said to be parallel in the normal bundle, or simp-

ly parallel, if we have 𝛻⊥𝜉 = 0 identically. 

2.3. Equations of Gauss, Codazzi and Ricci 

Let 𝑓:  𝑀 , 𝑔 →  𝑀 , 𝑔   be an immersion isometric. Denote by ∇  and ∇   the me-

tric connections of 𝑀 and 𝑀 , respectively. 

For vector fields 𝑋 and 𝑌 tangent to 𝑀, the tangential component of  ∇ 𝑋𝑌 is 

equal to ∇𝑋𝑌.  

Let:      𝑕 = ∇ 𝑋𝑌 − ∇𝑋𝑌                                                                                   2.3.1  
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The 𝑕 is a normal bundle valued symmetric (0, 2) tensor field on 𝑀 which is 

called the second fundamental form of the submanifold. Formula (2.3.1) is 

known as the Gauss formula. 

For a normal vector 𝜉 at the point 𝑥 ∈ 𝑀. We put 

𝑔 𝐴𝜉𝑋 , 𝑌 = 𝑔  𝑕 𝑋, 𝑌 , 𝜉 .                                                                      2.3.2  

Then 𝐴𝜉  is a symmetric linear transformation on the tangent space 𝑇𝑥𝑀 of 𝑀 at 

𝑥, which is called the shape operator (or the Weingarten map) in the direction of 

𝜉. The eigenvalues of 𝐴𝜉  are called the principle curvatures in the direction of 𝜉. 

 The metric connection on the normal bundle  𝑇⊥𝑀 induced from the metric 

connection of  𝑀  is called the normal connection of 𝑀. 

Now, Let 𝑀 be a submanifold of a Riemannian manifold  𝑀 , 𝑔  , and 𝑕 and 

𝐴𝜉  denote the second fundamental form and shape operator of 𝑀, respectively. 

The covariant derivative of 𝑕 and 𝐴𝜉  is, respectively, defined by  

 ∇ 𝑋𝑕  𝑌, 𝑍 = 𝐷𝑋𝑕 𝑌, 𝑍 − 𝑕 ∇𝑋𝑌, 𝑍 − 𝑕 𝑌, ∇𝑋𝑍  

and 

 ∇𝑋𝐴 𝜉𝑌 = ∇𝑋 𝐴𝜉𝑌 − 𝐴𝐷𝑋 𝜉𝑌 − 𝐴𝜉∇𝑋𝑌 

For any vector fields 𝑋, 𝑌 tangent to 𝑀 and any vector field 𝜉 normal to 𝑀. If 

∇𝑋𝑕 = 0 for all 𝑋, then the second fundamental form of 𝑀 is said to be parallel, 

which is equivalent to ∇𝑋𝐴 = 0.  

By direct calculations, we get the relation 

𝑔  ∇𝑋𝑕  𝑌, 𝑍 , 𝜉 = 𝑔  ∇𝑋𝐴 𝜉𝑌, 𝑍  

Let 𝐷 denote covariant differentiation with respect to the normal connection. For 

a tangent vector field 𝑋 and a normal vector 𝜉 on 𝑀, we have 

                                 ∇ 𝑋 𝜉 = −𝐴𝜉𝑋 + 𝐷𝑋𝜉                                                     2.3.3     

where  −𝐴𝜉𝑋 is the tangential component of  ∇ 𝑋𝜉. (2.3.3) is known as the Wein-

garten formula, named after the 1861 J. Weingarten (1836-1910). 
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Let 𝑅 and 𝑅  and 𝑅𝐷  denote the Riemannian curvature tensors of  ∇ , ∇  and 𝐷, re-

spectively. Then the integrability condition for (2.3.1) implies 

 𝑅  𝑋 , 𝑌 𝑍 = 𝑅 𝑋 , 𝑌 𝑍 + 𝐴𝑕 𝑋 ,𝑍 𝑌 − 𝐴𝑕 𝑌 ,𝑍 𝑋 +  ∇ 𝑋𝑕  𝑌, 𝑍 − 

                                                                          ∇ 𝑌𝑕  𝑋 , 𝑍                         (2.3.4) 

For tangent vector fields 𝑋, 𝑌, 𝑍 of 𝑀, where ∇  is the covariant differentiation 

with respective to the connection in 𝑇𝑀⨁𝑇⊥𝑀. The tangential normal compo- 

nents of (2.3.4) yield the following equation of Gauss: 

 𝑅 𝑋, 𝑌 𝑍 , 𝑊 =  𝑅  𝑋, 𝑌 𝑍, 𝑊 +  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  − 

                                                                         𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊                  2.3.5   

and the equation of Codazzi: 

            𝑅 𝑋, 𝑌 𝑍 ⊥ =  ∇ 𝑋𝑕  𝑌, 𝑍 −  ∇ 𝑌𝑕  𝑋, 𝑍  ,                                    2.3.6  

where 𝑋, 𝑌, 𝑍 and 𝑊 are tangent vector of 𝑀,  𝑅 𝑋, 𝑌 𝑍 ⊥  is the normal com-

ponent of 𝑅 𝑋, 𝑌 𝑍 and     ,     is inner product. 

If the Codazzi equation vanishes identically, then submanifold 𝑀 is said to be 

curvature invariant submanifold. 

Similary, for normal vector field 𝜉 and 𝜂 the relation 

        𝑅  𝑋, 𝑌 𝜉 , 𝜂 =  𝑅𝐷 𝑋, 𝑌 𝜉 , 𝜂 −   A𝜉  , A𝜂  𝑋, 𝑌                                  2.3.7  

holds, which is called the equation of Ricci. 

Equations (2.3.1), (2.3.3), (2.3.5), (2.3.6) and (2.3.7) are called the fundamental 

equations of the isometric immersion 𝑓: 𝑀 → 𝑀 .  

As a special case, suppose the ambient space 𝑀  is a Riemannian manifold of 

constant sectional curvature c. Then the equations of Gauss, Codazzi and Ricci 

reduce respectively to 

 𝑅 𝑋, 𝑌 𝑍, 𝑊 =  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  −  𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊   

                                                +𝑐  𝑋, 𝑊  𝑌, 𝑍 −  𝑋, 𝑍  𝑌, 𝑊  .                     2.3.8  

                   ∇ 𝑋𝑕  𝑌, 𝑍 =  ∇ 𝑌𝑕  𝑋, 𝑍 ,                                                         2.3.9  
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                𝑅𝐷 𝑋, 𝑌 𝜉 , 𝜂 =   A𝜉 , A𝜂  𝑋, 𝑌  .                                                   2.3.10  

  

These formulas at that time already published by G. Mainardi, (1800-1879) in 

[Mainardi 1856]. 

The fundamental importance of formulas was fully recognized by O. Bonnet 

(1819-1892) in [Bonnet 1867]. The equations of Gauss and Codazzi for general 

submanifolds were first given by A. Voss in 1880. The equation (2.3.10) of Ricci 

was first given by G. Ricci (1853-1925) in 1888. 

2.4. Proof the Gauss, Codazzi and Ricci Equations 

2.4.1. Proof of Gauss Equation 

 𝑅 𝑋, 𝑌 𝑍, 𝑊 =  𝑅  𝑋, 𝑌 𝑍, 𝑊 +  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  −  𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊   

Proof. Let 𝑀 be an 𝑛-dimensional submanifold of an 𝑚-dimensional Riemann- 

ian manifold 𝑀 .  

 Let 𝑅  denote the curvature tensor of Riemannian manifold 𝑀 . Then for any vec-

tor 𝑋, 𝑌, 𝑍 tangent to 𝑀, we have      

𝑅  𝑋, 𝑌 𝑍 = ∇ 𝑋∇ 𝑌𝑍 − ∇ 𝑌∇ 𝑋𝑍 − ∇  𝑋 ,𝑌 𝑍 

Applying the Gauss formula (2.4.1.1), we find that 

𝑅  𝑋, 𝑌 𝑍 = ∇ 𝑋 ∇𝑌𝑍 + 𝑕 𝑌, 𝑍  − ∇ 𝑌 ∇𝑋𝑍 + 𝑕 𝑋, 𝑍   

                 −   ∇ 𝑋 ,𝑌 𝑍 + 𝑕  𝑋, 𝑌 , 𝑍  . 

                  = ∇𝑋∇𝑌𝑍 + 𝑕 𝑋, ∇𝑌𝑍 + ∇ 𝑋𝑕 𝑌, 𝑍 − ∇𝑌∇𝑋𝑍 

                              −𝑕 𝑌, ∇𝑋𝑍 − ∇ 𝑌𝑕 𝑋, 𝑍 − ∇ 𝑋 ,𝑌 𝑍 − 𝑕  𝑋, 𝑌 , 𝑍 . 

     = 𝑅 𝑋, 𝑌 𝑍 + 𝑕 𝑋, ∇𝑌𝑍 − 𝑕 𝑌, ∇𝑋𝑍  

                               −𝑕  𝑋, 𝑌 , 𝑍 + ∇ 𝑋𝑕 𝑌, 𝑍 − ∇ 𝑌𝑕 𝑋, 𝑍 , 

where 𝑅 denotes the curvature tensor of the submanifold 𝑀. Let 𝜉1,…,𝜉𝑚−𝑛 be  

orthonormal normal vector fields of 𝑀 and let hx  be the corresponding second 

fundamental forms, that is, 
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h X, Y = hx(X, Y)ξ
x
, 

where h is the second fundamental form of the submanifold 𝑀. 

By using Weingarten formula (2.4.1.4) we obtain 

𝑅  𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌 𝑍 − A𝑕 𝑌,𝑍 𝑋 + A𝑕 𝑋 ,𝑍 𝑌 +  ∇𝑋
⊥𝑕  𝑌, 𝑍 − (∇𝑌

⊥𝑕) 𝑋, 𝑍  

The tangential component of this equation gives 

𝑘  𝑌, 𝑍 𝑋 −  𝑋, 𝑍 𝑌 =  𝑅  𝑋, 𝑌 𝑍 
T

= 𝑅 𝑋, 𝑌 𝑍 − A𝑕 𝑌,𝑍 𝑋 + A𝑕 𝑋 ,𝑍 𝑌, 

And the normal component gives 

0 =  𝑅  𝑋, 𝑌 𝑍 
⊥

=  ∇𝑋
⊥𝑕  𝑌, 𝑍 −  ∇𝑌

⊥𝑕  𝑋, 𝑍 . 

If 𝑊 is another vector field, then Gauss equation can be rewritten as: 

𝑘  𝑌, 𝑍  𝑋, 𝑊 −  𝑋, 𝑍  𝑌, 𝑊  =  𝑅 𝑋, 𝑌 𝑍, 𝑊 −  𝑕 𝑌, 𝑍 , 𝑕 𝑋, 𝑊  + 

                                                                                                𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊  . 

Therefore, we get that: 

  𝑅  𝑋, 𝑌 𝑍, 𝑊 =  𝑅 𝑋, 𝑌 𝑍, 𝑊 +  𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊   −  𝑕 𝑌, 𝑍 , 𝑕 𝑋, 𝑊  . ∎  

As a special case, suppose the ambient space 𝑀  is a Riemannian manifold of 

constant sectional curvature 𝑘 . Then the equation of Gauss becomes: 

 𝑅 𝑋, 𝑌 𝑍, 𝑊 =  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  −  𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊   

                                     +𝑘  𝑋, 𝑊  𝑌, 𝑍 −  𝑋, 𝑍  𝑌, 𝑊  . 

2.4.2. Proof of Codazzi Equation 

Since:                        ∇ 𝑋𝑕  𝑌, 𝑍 =  ∇ 𝑌𝑕  𝑋, 𝑍 ⇒ 

 𝑅 𝑋, 𝑌 𝑍 ⊥ =  ∇ 𝑋𝑕  𝑌, 𝑍 −  ∇ 𝑌𝑕  𝑋, 𝑍  ⇒ 

            0 =  ∇ 𝑋𝑕  𝑌, 𝑍 −  ∇ 𝑌𝑕  𝑋, 𝑍 . ∎ 

2.4.3. Proof of Ricci Equation 

Since: 
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 𝑅  𝑋, 𝑌 𝜉, 𝜂 =  𝑅𝐷 𝑋, 𝑌 𝜉 ,   𝜂 −   A𝜉 ,   A𝜂  𝑋, 𝑌 , 

where 𝑅𝐷 denotes the curvature tensor of the normal connection ∇⊥ on the nor-

mal bundle 𝑇⊥𝑀. 

Appling the Gauss and Weingarten formula, we find that 

𝑅  𝑋, 𝑌 𝜉 = ∇ 𝑋∇ 𝑌𝜉 − ∇ 𝑌∇ 𝑋𝜉 − ∇  𝑋,𝑌 𝜉 

                                             = ∇ 𝑋 −A𝜉𝑌 + ∇𝑌
⊥𝜉 − ∇ 𝑌 −A𝜉𝑋 + ∇𝑋

⊥𝜉  

                           +A𝜉  𝑋, 𝑌 − ∇ 𝑋,𝑌 
⊥ 𝜉 

                                    = −∇𝑋 A𝜉𝑌 − 𝑕 𝑋, A𝜉𝑌 − A∇𝑌
⊥𝜉𝑋 

                                         +∇𝑋
⊥∇𝑌

⊥𝜉 + ∇𝑌 A𝜉𝑋 + 𝑕 𝑌, A𝜉𝑋  

                                                           +A∇𝑋
⊥𝜉𝑌 − ∇𝑌

⊥∇𝑋
⊥𝜉 + A𝜉∇𝑋𝑌 − A𝜉∇𝑌𝑋 

                                                                     −∇ 𝑋,𝑌 
⊥ 𝜉 

                                      =  ∇𝑌𝐴 𝜉𝑋 −  ∇𝑋𝐴 𝜉𝑌 + 𝑅⊥ 𝑋, 𝑌 𝜉 

                                            +𝑕 𝐴𝜉𝑋, 𝑌 − 𝑕 𝑋, 𝐴𝜉𝑌 . 

Here,  𝑅⊥ 𝑋, 𝑌 𝜉 = ∇𝑋
⊥∇𝑌

⊥𝜉 − ∇𝑌
⊥∇𝑋

⊥𝜉 − ∇ 𝑋 ,𝑌 
⊥ 𝜉 is the curvature tensor of the 

normal bundle with respect to the normal connection ∇⊥, the so-called normal 

curvature tensor of 𝑀.  

The normal part gives the so called Ricci equation. Namely: 

0 = (𝑅  𝑋, 𝑌 𝜉)⊥ = 𝑅⊥ 𝑋, 𝑌 𝜉 + 𝑕 𝐴𝜉𝑋, 𝑌 − 𝑕 𝑋, 𝐴𝜉𝑌 . 

If 𝜂 is another normal vector field of 𝑀, the Ricci equation can be written as 

 𝑅⊥ 𝑋, 𝑌 𝜉 , 𝜂 =   A𝜉 , A𝜂  𝑋, 𝑌  

where  A𝜉 , A𝜂  = A𝜉 A𝜂 − A𝜂 A𝜉 .  

If 𝑅⊥ = 0, then the normal connection of the submanifold 𝑀 is said to be flat. 
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When  𝑅  𝑋, 𝑌 𝜉 
⊥

= 0, the normal connection of the submanifold 𝑀 is flat if 

and only if the second fundamental form is commutative, i.e.  

 𝐴𝜉 , 𝐴𝜂  = 0 

for all  𝜉, 𝜂. If the ambient space 𝑀  is real space form, then  𝑅  𝑋, 𝑌 𝜉 
⊥

= 0 and 

hence the normal connection of 𝑀 is flat if and only if the second fundamental 

form is commutative. 

On the other hand, if the ambient space 𝑀  is a space of constant curvature 𝑐, then 

we have 

                           𝑅  𝑋, 𝑌 𝑍 = 𝑐 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌                              

for any vector fields 𝑋, 𝑌 and 𝑍 on 𝑀 .  

2.5. Fundamental Theorems of Submanifolds 

2.5.1. Existence Theorem: Let (𝑀, 𝑔) be a simply-connected Riemannian 𝑛-

manifold and suppose there is a given 𝑚-dimensional Riemannian vector bundle 

𝑣 𝑀  over 𝑀 with curvature tensor 𝑅𝐷 and a 𝑣(𝑀)-valued symmetric (0, 2) ten-

sor 𝑕 on 𝑀. For a cross section 𝜉 of 𝑣(𝑀), define 𝐴𝜉  by 𝑔 𝐴𝜉𝑋, 𝑌 =  𝑕 𝑋, 𝑌 , 𝜉  

where     ,   is the fiber metric of 𝑣(𝑀). If they satisfy (2.3.8), (2.3.9) and 

(2.3.10), then 𝑀 can be isometrically immersed in an  𝑛 + 𝑚 -dimensional 

complete, simply connected Riemannian manifold 𝑅𝑛+𝑚 𝑐  of constant curva-

ture 𝑐 in such way that 𝑣(𝑀) is the normal bundle and 𝑕 is the second fundamen-

tal form. 

2.5.2 Uniqueness Theorem: Let 𝑓,  𝑓 ′ : 𝑀 → 𝑅𝑚 𝑐  be to isometric immersions 

of a Riemannian 𝑛-manifold 𝑀 into a complete, simply connected Riemannian 

𝑚-manifold of constant curvature 𝑐 with normal bundles 𝑣 and 𝑣′  equipped with 

their canonical bundle metrics, connections and second fundamental forms, re-

spectively. Suppose that there is an isometry 𝜑: 𝑀 → 𝑀 such that 𝜑 can be cov-

ered by a bundle map 𝜑 : 𝑣 → 𝑣 ′ which preserves the bundle metrics, the connec-

tions and the metrics, second fundamental form. Then there is an isometry 𝛷 of 

𝑅𝑚 (𝑐) such that      𝛷 ∘ 𝑓 = 𝑓 ′  ∘ 𝜑. 

2.6. Theorem. Suppose 𝑀𝑛  is a submanifold of ℝ𝑛  and is given the induce Rie-

mannian metric   ,  . Then the curvature 𝑅 of 𝑀 is given by the formula: 



56 
 

 𝑅 𝑥, 𝑦 , 𝑧, 𝑤 = 𝑕 𝑥, 𝑤 ⋅ 𝑕 𝑦, 𝑧 − 𝑕 𝑥, 𝑧 ⋅ 𝑕 𝑦, 𝑤  

for 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑇𝑝𝑀; the dot product on the right hand denoting the usual dot 

product in ℝ𝑁 .  

Proof. If 𝐷 is the Levi-Civita connection on ℝ𝑁, since Euclidean space has zero 

curvature, 

𝐷𝑋𝐷𝑌𝑍 − 𝐷𝑌𝐷𝑋𝑍 − 𝐷 𝑋 ,𝑌 𝑍 = 0 for  𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀𝑛 . 

Hence if  𝑊 ∈ 𝔛 𝑀 ,  

                     0 =  𝐷𝑋𝐷𝑌𝑍 − 𝐷𝑌𝐷𝑋𝑍 − 𝐷 𝑋 ,𝑌 𝑍 ⋅ 𝑊  

                       = 𝑋 𝐷𝑌𝑍 ⋅ 𝑊 −  𝐷𝑌𝑍 ⋅  𝐷𝑋𝑊 − 𝑌 𝐷𝑋𝑍 ⋅ 𝑊 + 

 𝐷𝑋𝑍 ⋅  𝐷𝑌𝑊 −  𝐷 𝑋 ,𝑌 𝑍 ⋅ 𝑊 

                      = 𝑋 ∇𝑌𝑍, 𝑊 −  ∇𝑌𝑍, ∇𝑋𝑊 − 𝑕 𝑌, 𝑍 ⋅ 𝑕 𝑋, 𝑊 − 𝑌 ∇𝑋𝑍, 𝑊  

+ ∇𝑋𝑍, ∇𝑌𝑊 + 𝑕 𝑋, 𝑍 ⋅ 𝑕 𝑌, 𝑊 −  ∇ 𝑋 ,𝑌 𝑍, 𝑊  

                   =  ∇𝑋∇𝑌𝑍, 𝑊 − 𝑕 𝑌, 𝑍 ⋅ 𝑕 𝑋, 𝑊 −  ∇𝑌∇𝑋𝑍, 𝑊 + 

                              𝑕 𝑋, 𝑍 ⋅ 𝑕 𝑌, 𝑊  − ∇ 𝑋 ,𝑌 𝑍, 𝑊  

=  𝑅 𝑋, 𝑌 𝑍, 𝑊 − 𝑕 𝑌, 𝑍 ⋅ 𝑕 𝑋, 𝑊 + 𝑕 𝑋, 𝑍 ⋅ 𝑕 𝑌, 𝑊 . 

as desired. ∎  
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Chapter (3) 

Some Special Submanifolds 

Let 𝑀 be an 𝑛-dimensional Riemannian submanifold of a Riemannian manifold 

𝑀 . A point 𝑥 ∈ 𝑀 is called a geodesic point if the second fundamental form 𝑕 

vanishes at 𝑥. The submanifolds is said to be totally geodesic if every point of 𝑀 

is a geodesic point. A Riemannian submanifold 𝑀 is a totally geodesic submani-

fold of 𝑀  if and only if every geodesic of 𝑀 is a geodesic of 𝑀 .  

 Let 𝑀 be a submanifold of 𝑀  and let 𝑒1, … , 𝑒𝑛  be an orthonormal basis of 𝑇𝑥𝑀. 

Then the mean curvature vector 𝐻    at 𝑥 is defined by   

𝐻   = 1

𝑛
 𝑕(𝑒𝑗 , 𝑒𝑗 )𝑛

𝑗=1 . 

The length of 𝐻    is called the mean curvature which is denoted by 𝐻. 𝑀 is called 

a minimal submanifold of 𝑀  if the mean curvature vector field vanishes identi-

cally.  

 A point 𝑥 ∈ 𝑀 is called an umbilical point if 𝑕 = 𝑔 ⊗ 𝐻    at 𝑥, that is, the shape 

operator 𝐴𝜉  is proportional to the identity transformation for all  𝜉 ∈ 𝑇𝑥
⊥𝑀.  

The submanifold is said to be totally umbilical if every point of the submanifold 

is an umbilical point.  

A submanifold 𝑁 of a Riemannian manifold 𝑀 is called parallel submanifold if 

the second fundamental form 𝑕 is parallel, that is,∇ 𝑕 = 0, identically. 

3.1 The First Variational Formula. 

First of all we need the following algebraic result. 

3.1.1 Lemma. Let 𝐴 𝑡 =   𝐺𝑖𝑗  𝑡   ; 𝑡 ∈ 𝙸 be a smooth family of 𝑚 × 𝑚 ma-

trices such that 𝐴 0 = 𝐼  (the identity matrix). Then  

 𝑑
𝑑𝑡

𝑑𝑒𝑡 𝐴 𝑡   
𝑡=0

= 𝑡𝑟𝑎𝑐𝑒 𝐴′ 0  . 

Let 𝑀  be a Riemannian manifold and let 𝑓: 𝑀 → 𝑀  be an immersion where 𝑀 is 

a compact oriented manifold with boundary 𝜕𝑀. 
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3.1.2 Definition. By a smooth variation of 𝑓 we mean a 𝐶∞- mapping 𝐹: 𝙸 ×

𝑀 → 𝑀 , where 𝙸 = (−1,1), such that 

(a) Each map 𝑓𝑡 = 𝐹 𝑡, .  : 𝑀 → 𝑀  is an immersion. 

(b) 𝑓0 = 𝑓. 

(c) 𝑓𝑡  𝜕𝑀 = 𝑓 𝜕𝑀  for all 𝑡 ∈ 𝙸. 

Let 
𝜕

𝜕𝑡
 denote the canonical vector field along the 𝙸 factor in 𝙸 × 𝑀 and set 

𝐸 = 𝐹∗
 𝜕
𝜕𝑡

 
𝑡=0

. E is called the deformation vector field of the map 𝑓 and it is con-

sidered as a section of  𝑇(𝑀)⨁𝑁(𝑀). Finally, let A(t) be the volume of M at 

time t, i.e., let 𝑑𝑉𝑡  be the volume element of the metric induced by 𝑓𝑡  and set 

𝐴 𝑡 = ∫ 𝑑𝑉𝑡𝑀
 then we have 

3.1.3 Theorem (The First Variational Formula): 

 𝑑𝐴

𝑑𝑡
 
𝑡=0

= −  𝐻, 𝐸 𝑑𝑉0 

3.2. Minimal Submanifold in Euclidean Space 

Let 𝑀 be a Riemannian manifold of dimension 𝑚. Consider the Laplace operator  

 ∆: 𝐶∞𝑀 → 𝐶∞𝑀.  For 𝑓 ∈ 𝐶∞ 𝑀  choose a local orthonormal frame field 

 𝑒1, … , 𝑒𝑚   in 𝑀.  Then  

                                            ∆𝑓 = 𝑒𝑖𝑒𝑖 𝑓 −  𝛻𝑒 𝑖
𝑒𝑖 𝑓                                  (3.2.1) 

Around each point 𝑝, there are local coordinate  𝑥1, … , 𝑥𝑚 , where the Rieman-

nian metric on 𝑀 can be written as 𝑑𝑠2 = 𝑔𝑖𝑗 𝑑𝑥𝑖𝑑𝑥 𝑗 . If we denote  

  𝑔𝑖𝑗  = (𝑔𝑖𝑗 )−1    and    𝑔 = det 𝑔𝑖𝑗  , then 

                                   ∆𝑓 = 1

 𝑔

𝜕

𝜕𝑥 𝑖   𝑔 𝑔𝑖𝑗 𝜕𝑓

𝜕𝑥 𝑗                                            (3.2.2) 

In general, for any differential form with values in a vector bundle we can define 

exterior differential operator 𝑑 and codifferential operator 𝛿 and the Hodge Lap-

lace operator 𝑑𝛿 + 𝛿𝑑. 
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The minus sign of the Hodge-Laplace operator acting on a smooth function 𝑓, a 

cross-section of the trivial bundle 𝑀 × 𝑅 is just the ordinary Laplace operator 

                                             ∆𝑓 = −𝛿𝑑𝑓                                                       (3.2.3) 

Any 𝑓 ∈ 𝐶∞𝑀 satisfying ∆𝑓 = 0 is called a harmonic function. 

We have the Hopf maximum principle for harmonic functions: any harmonic 

function on a Riemannian manifold has to be a constant, if it attains the local 

maximum in an interior point.  

3.2.1. Proposition (Xin 2003). Let 𝜓: 𝑀 → ℝ𝑛  be an isometric immersion with 

the mean curvature vector 𝐻, then  

                                                  ∆𝜓 = 𝑚𝐻                                                    (3.2.4) 

 where ∆𝜓 = (∆𝜓1 , … , ∆𝜓𝑛)  

 Proof. Note the fact 𝑋 𝜓 = 𝜓∗𝑋 ≅ 𝑋 for any 𝑋 ∈ 𝑇𝑀.  Let  𝑒𝑖  be a local or-

thonormal frame field. Then  

∆𝜓 = 𝑒𝑖 𝑒𝑖 𝜓  −  𝛻𝑒 𝑖
𝑒𝑖 (𝜓) 

        = 𝛻 𝑒 𝑖
𝛻 𝑒 𝑖

𝜓 −  𝛻𝑒 𝑖
𝑒𝑖 (𝜓) 

                                                        =    𝛻 𝑒 𝑖
𝑒𝑖 − 𝛻𝑒 𝑖

𝑒𝑖  

    =  𝛻 e 𝑖
𝑒𝑖 

𝑁
= 𝑚𝐻. ∎ 

3.2.2. Corollary. An isometric immersion 𝜓: 𝑀 → ℝ𝑛  is a minimal immersion if 

and only if each component of 𝜓 is a harmonic function on 𝑀.  

3.2.3. Remark. In this case the equation (3.2.4) reduces to ∆𝜓 = 0. However, 

this is not a linear equation, since the induced metric would change when the 

immersion 𝛹 changes, and so does the operator ∆. 

From Corollary (3.2.2) and the Hopf maximum principle we have immediately:  

3.2.4. Corollary. There is no compact minimal submanifold in Euclidean space. 

From Corollary 3.2.4, it is natural to ask the question whether there exists a 

bounded but complete minimal submanifold is Euclidean space. This is the well 
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Known Calabi-Yan problem, which has been answered positively a few years 

ago by Nadirashivili.  

From the first variational formula:  

𝑑

𝑑𝑡
v𝑜𝑙  𝑓𝑡𝑀  𝑡=0 = −   𝑛𝐻, 𝑉 𝑑v𝑜𝑙

𝑀

 

where 𝑉 =  𝑑𝑓𝑡

𝑑𝑡
 
𝑡=0

 to be the variational vector field along 𝑓. 

We know that  𝐻 = 0 is the Euler-Langrangians equations for the volume func- 

tional of immersed submanifolds in an ambient manifold. What is the equation 

look like? Let us see the simplest situation. In  ℝ𝑛+1 a minimal graph 𝑀 is de-

fined by  

𝑥𝑛+1 = 𝑓 𝑥1, … , 𝑥𝑛 . 

We denote 𝑓𝑖 =
𝜕𝑓

𝜕𝑥 𝑖
 . The induced metric on 𝑀 is 𝑑𝑠2 = 𝑔𝑖𝑗 𝑑𝑥𝑖 𝑑𝑥 𝑗 , where  

𝑔𝑖𝑗 = 𝛿𝑖𝑗 + 𝑓𝑖𝑓𝑗 . 

Denote  𝑤 =  1 +  𝑓𝑖
2

𝑖   . We have  𝑔𝑖𝑗 = 𝛿𝑖𝑗 −
1

𝑤2
𝑓𝑖𝑓𝑗  . The unit normal vec-

tor to 𝑀 is  

𝑣 =
1

𝑤
 𝑓1, … , 𝑓𝑛 , −1 . 

It is obvious that 

∇ 𝜕

𝜕𝑥 𝑖

𝜕

𝜕𝑥 𝑗
=

𝜕

𝜕𝑥𝑖
 0, … ,0,1,0, … ,

𝜕𝑓

𝜕𝑥 𝑗
 =  0, … , 𝑓𝑖𝑗   

and 

  𝐵 𝜕

𝜕𝑥 𝑖
𝜕

𝜕𝑥 𝑗

, 𝑣 =  ∇ 𝜕

𝜕𝑥 𝑖

𝜕

𝜕𝑥 𝑗
, 𝑣 = −

1

𝑤
𝑓𝑖𝑗  

From 𝐻 = 0 it follows that  𝑔𝑖𝑗 𝑓𝑖𝑗 = 0. Thus; we obtain the minimal hypersur-

face equation 
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                               1 +  𝑓𝑖
2 𝑓𝑖𝑗 − 𝑓𝑖𝑓𝑗𝑓𝑖𝑗 = 0                                             (3.2.5) 

which is equivalent to  

                                 
𝜕

𝜕𝑥 𝑖  
1

𝑤

𝜕𝑓

𝜕𝑥 𝑖 = 0                                                                 (3.2.6) 

When  𝑛 = 2 in (3.2.5) reduces to  

                    1 + 𝑓𝑦
2 𝑓𝑥𝑥 − 2𝑓𝑥𝑓𝑦𝑓𝑥𝑦 +  1 + 𝑓𝑥

2 𝑓𝑦𝑦 = 0                             (3.2.7) 

where we denote 𝑥 = 𝑥1, 𝑦 = 𝑥2. It is a nonlinear elliptic PDE. On a minimal 

submanifold in ℝ𝑛  there is another important equation. In fact, we have  

3.2.5. Proposition (Xin 2003).  Let 𝑀 be an oriented hypersurface with constant 

mean curvature in ℝ𝑛+1 and with second fundamental form 𝐵. Let 𝑣 the unit 

normal vector to 𝑀. Then for any fixed vector 𝑎 ∈ ℝ𝑛+1 ,  

                                      ∆ 𝑎, 𝑣 +  𝐵 2 𝑎, 𝑣 = 0                                           (3.2.8) 

Proof. Choose a local orthonormal frame field  𝑒𝑖  with 𝛻𝑒 𝑗
𝑒𝑖 = 0, at the consi-

dered point. Then  

∆ 𝑎, 𝑣 = 𝛻𝑒 𝑖
𝛻𝑒 𝑖

 𝑎, 𝑣  

           = 𝛻𝑒 𝑖
 𝑎, 𝛻 𝑒 𝑖

𝑣  

          =  𝑎, 𝛻 𝑒 𝑖
𝛻 𝑒 𝑖

𝑣  

                          =  𝑎 , 𝛻 𝑒 𝑖
(𝛻𝑒 𝑖

𝑣 − 𝐴𝑣 𝑒𝑖 )  

             =  − 𝑎 , 𝛻 𝑒 𝑖
𝐴𝑣(𝑒𝑖)  

                                      = − 𝑎 , 𝛻𝑒 𝑖
𝐴𝑣 𝑒𝑖 + (𝛻 𝑒 𝑖

𝐴𝑣 𝑒𝑖 )𝑁  

Noting that the ambient Euclidean space has vanishing curvature and the unit 

normal vector field 𝑣 is parallel in the normal bundle,   

                         𝛻𝑒 𝑖
𝐴𝑣 𝑒𝑖 = 𝛻𝑒 𝑖

 𝐵𝑒i𝑒𝑗
 , 𝑣 𝑒𝑖  

                                            = 𝛻𝑒𝑖
 𝛻 𝑒𝑖𝑒𝑗

 , 𝑣 𝑒𝑗  

      =   𝛻 𝑒𝑖
𝛻 𝑒𝑖𝑒𝑗

 , 𝑣 +  𝛻 𝑒𝑗𝑒𝑖
 , 𝛻 𝑒𝑖

𝑣  𝑒𝑗  
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                  =   𝛻 𝑒𝑗
𝛻 𝑒𝑖

𝑒𝑖  , 𝑣 +  𝛻 𝑒𝑗
𝑒𝑖  ,  𝛻 𝑒𝑖

𝑣 
𝑇
  𝑒𝑗  

                                    =    𝛻 𝑒𝑗
 𝛻𝑒𝑖

𝑒𝑖 + 𝐵𝑒𝑖𝑒𝑖
  , 𝑣 +  𝛻𝑒𝑗

𝑒𝑖  ,  𝛻 𝑒𝑖
𝑣 

𝑇
  𝑒𝑗  

               =  𝐵𝑒𝑗
𝛻𝑒𝑖

𝑒𝑖  , 𝑣 +  𝑛𝛻𝑒𝑗
𝐻 , 𝑣 = 0 

Therefore,  

∆ 𝑎 , 𝑣  = − 𝑎 ,  𝛻 e𝑖
𝐴𝑣(𝑒𝑖) 

𝑁
   

                                     = − 𝑎 , 𝐵𝑒𝑖
𝐴𝑣(𝑒𝑖) = − 𝑎 , 𝑣  𝐵 2. ∎ 

3.3. Minimal Submanifold in the Euclidean Sphere 

Let 𝑀 ⊂ ℝ𝑛  be an embedded submanifold, and for any  𝑝 ∈ 𝑀  and 𝑋 ∈ 𝑇𝑝 ℝ𝑛 . 

Let 𝑋𝑇  denote the orthogonal projection of 𝑋 onto 𝑇𝑝 𝑀   . Suppose now that 

𝛹: 𝑀 → 𝑀 ⊂ ℝ𝑛  is an immersion with mean curvature vector fields 𝐾 in 𝑀  and  

𝐾∗ in ℝ𝑛 . Then  

                                              𝐾 =  𝐾∗ 𝑇 =  ∆𝛹 𝑇                                        (3.3.1)  

3.3.1. Proposition (Xin 2003). Let 𝑀 be a Riemannian 𝑚-manifold and let 

𝛹: 𝑀 → 𝑆𝑛 ⊂ ℝ𝑛  be an isometric immersion. Then 𝛹 is a minimal 

immersion 𝑆𝑛  if and only if    

                                                 ∆𝛹 = −𝑚𝛹                                                    (3.3.2) 

Proof. By equation (3.3.1) above we see that 𝛹 is minimal if and only if for 

all 𝑝 ∈ 𝑀, ∆𝛹 𝑝  is parallel to the normal to  𝑆𝑛  at  𝛹 𝑝 , i.e., if and only if  

∆𝛹 = 𝜆𝛹 for some 𝜆 ∈ 𝐶∞(𝑀). 

However, from the lemma says that: Let 𝐴 𝑡 =  𝐺𝑖𝑗  𝑡  , 𝑡 ∈ 𝐼  be a smooth  

family of 𝑀 × 𝑚 matrices such that 𝐴 0 = 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦.  

Then 
d

dt
det  A t   

t=0
= trace  At 0  .  And the condition that  𝛹 2 = 1 we see 

that if  ∆𝛹 = 𝜆𝛹, then  

0 = 1

2
∆ 𝛹 2 =  𝛹 , ∆𝛹 +  𝛻𝛹 2 = 𝜆 𝛹 2 +  𝛻𝛹 2 = 𝜆 +  𝛻𝛹 2 . 
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 Hence, 𝜆 = − 𝛻𝛹 2 = −   𝛹𝑘  ,  𝛹𝑘  𝑘 = −  𝛹∗  𝑘  2
𝑘 = −𝑚, and the 

proposition is proved. ∎ 

Thus we see that the minimal immersions of a differentiable manifold 𝑀 into 𝑆𝑛  

are just those immersions whose coordinate functions in the ambient Euclidean 

space are eigenfunctions of the Laplace-Beltrami operator in the induced metric 

with eigen𝑣𝑎𝑙𝑢𝑒 = −𝑑𝑖𝑚 𝑀 .  

Moreover, we have the following useful fact. 

  For each 𝑟 > 0  let,  

𝑆𝑛 𝑟 =   𝑥1 , … , 𝑥𝑛+1 ∈ ℝ𝑛+1:  𝑥𝑘
2

𝑘 = 𝑟2 . 

3.3.2 Proposition (Takahashi 1966). Let 𝑀 a Riemannian 𝑚-manifold and 

𝛹: 𝑀 → ℝ𝑛+1 an isometric immersion such that   

∆𝛹 = −𝜆𝛹 

for some constant 𝜆 ≠ 0.Then  

i. 𝜆 > 0  

ii.  𝛹 𝑀 ⊂ 𝑆𝑛 𝑟  , where 𝑆𝑛 𝑟  is a hypersphere of ℝ𝑛+1 centered at the 

 origin 0 and 𝑟2 =
𝑚

𝜆
 , 

 iii.  The immersion 𝛹: 𝑀 → 𝑆𝑛 𝑟  is minimal.  

Proof. From Proposition (3.3.1) we have that ∆𝛹 = −𝜆𝛹 = 𝐾, and therefore at 

any point 𝑝 ∈ 𝑀 the vector 𝛹 𝑝  is normal to the immersion. Hence, for any 

tangent vector field 𝑋 on 𝑀 we have   

𝑋.  𝛹 , 𝛹 = 2 𝑋. 𝛹 , 𝛹 = 2 𝛹∗𝑋 , 𝛹  = 2 𝑋 , 𝛹  = 0 

  And it follows that  𝛹 2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ≝ 𝑟2.Then, as above, we have   

0 =
1

2
∆ 𝛹 2 =  𝛹 , ∆𝛹 +  𝛻𝛹 2 = −𝜆𝑟2 + 𝑚 , and so 𝜆 =

𝑚

𝑟2
> 0. 

The minimality of 𝛹 follows immediately from equation (3.3.1). ∎ 
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  3.3.3. Corollary. Let  𝐺 𝐻  be a Riemannian homogeneous space where 𝐺 is 

compact Lie group and where the isotropy representation of 𝐻 (on the tangent 

space at the point 𝑒. 𝐻 ∈ 𝐺 𝐻 ) is irreducible.   

 Let 𝐸𝜆 =  𝜑 ∈ 𝐶∞ 𝐺 𝐻  : ∆𝜑 = −𝜆𝜑  be a non-trivial eigenvalue space of the 

Laplace-Beltrami operator, and introduce on 𝐸𝜆  an inner product invariant under 

the natural action 𝜑 ⟼ 𝑔∗𝜑 = 𝜑 ∘ 𝑔 of 𝐺 on 𝐸𝜆 . Choose an orthonormal basis 

𝜑1 , … , 𝜑𝑁  for 𝐸𝜆  in this inner product. Then, for an appropriate real number 

𝛼 ≠ 0 the mapping  𝛹 =  𝛼𝜑1  , … , 𝛼𝜑𝑁  is an isometric minimal immersion 

𝛹: 𝐺 𝐻 → 𝑆𝑁−1 𝑟  for some 𝑟 > 0 . 

3.4. Totally Geodesic Submanifolds 

The notion of totally geodesic submanifolds was introduced in 1901 by J. Hada- 

mard (1865-1963).  Hadamard defined (Totally) geodesic submanifolds of a 

Riemannian manifold as submanifolds such that each geodesic of them is a geo-

desic of the ambient space. This condition is equivalent to the vanishing on the 

second fundamental form on the submanifolds. One dimensional totally geodesic 

submanifolds are nothing but geodesics. Totally geodesic submanifolds are the 

simplest and the most fundamental submanifolds of Riemannian manifolds.    

Totally geodesic submanifold of a Euclidean space is affine subspace and totally 

geodesic submanifolds of a Riemannian sphere are the greatest spheres.   It is 

much more difficult to classify totally geodesic submanifolds of a Riemannian 

manifold in general.  

The notion of totally geodesic submanifolds is a higher dimensional generaliza-

tion of geodesics. But, those are very few in general situation. Note that geodes-

ics are critical points of the arc-length functional. 

The simplest example gives the plane 𝔼2 ⊂ 𝔼3. Geodesics in 𝔼2 are the straight 

lines only. At the same time they are geodesics in ambient space 𝔼3. So, the 

plane is a totally geodesic submanifold in 𝔼3. 

We are going to state the criterion for the surface to be totally geodesic. 

Let 𝜏 be a unit tangent vector to the curve in n-dimensional submanifold M. De-

compose its curvature vector ∇ 𝜏𝜏 in 𝘮-dimensional Riemannain manifold 𝑀  into 

tangent to and normal to M components: 
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                                         ∇ 𝜏𝜏 =  ∇ 𝜏𝜏 
𝑇

+  ∇ 𝜏𝜏 
𝑁

.                                      (3.4.1) 

From what was proved above.  ∇ 𝜏𝜏 
𝑇

= ∇𝜏𝜏. Hence 

                                   ∇ 𝜏𝜏 = ∇𝜏𝜏 +  ∇ 𝜏𝜏 
𝑁

.                                                 (3.4.2) 

If 𝛾 is geodesic in M, then ∇𝜏𝜏 = 0. Therefore 𝛾 is geodesic in 𝑀  if and only if 

 ∇ 𝜏𝜏 
𝑁

= 0. We have ∇ 𝜏𝜏 =  ∇ 𝑢𝑖
𝑎𝑖𝑢𝑖 

𝑁
𝑎𝑗 = 𝑎𝑖𝑎𝑗  ∇ 𝑟𝑗

𝑟𝑖 
𝑁

= 𝑎𝑖𝑎𝑗𝐿𝑖𝑗
𝛼 𝜉𝛼 . 

The normal 𝜉𝛼  is linearly independent. Hence 𝑎𝑖𝑎𝑗𝐿𝑖𝑗
𝛼 = 0 for all 𝛼 = 1, … , 𝑝. If 

this supposed for any 𝜏, then 𝐿𝑖𝑗
𝛼 = 0. So we conclude the following: 

3.4.1 Theorem A submanifold M is totally geodesic if and only if its second 

fundamental forms are identically zero. 

 3.4.2 Theorem (Cartan's Theorem) Let 𝑀 be a Riemannian 𝑛-manifold 

with 𝑛 ≥ 3. For a vector 𝑉 in the tangent space 𝑇𝑝𝑀 at 𝑝 ∈ 𝑀 denoted by 𝛾𝑉 the 

geodesic through 𝑝 whose tangent vector at 𝑝 is 𝑉.   

Denoted by RV t  the (1, 3)-tensor on T𝑝𝑀 obtained by the parallel translation of 

the curvature tensor at 𝛾𝑉 𝑡  along the geodesic 𝛾𝑉 . Also define (1, 2)-tensor 

𝑟𝑣 𝑡  on  𝑇𝑝𝑀 by   

𝑟𝑣 𝑡  𝑥, 𝑦 = 𝑅𝑉 𝑡  𝑣, 𝑥 𝑦,  𝑥, 𝑦 ∈ 𝑇𝑝𝑀. 

The following result of È. Cartan provides necessary and sufficient condition for 

the existence of totally geodesic submanifolds in Riemannian manifolds in gen-

eral.  

Let 𝑉 be a subspace of the tangent space 𝑇𝑝𝑀 of a Riemannian manifold 𝑀 at a 

point 𝑝. Then the following three conditions are equivalent. 

(1)   There is a totally geodesic submanifold of 𝑀 through 𝑝 whose tangent space 

at 𝑝 is 𝑉. 

(2)  There is a positive number 𝜖 such that for any unit vector 𝑣 ∈ 𝑉 any 

𝑡 ∈  −𝜖 , 𝜖 , 𝑅𝑣 𝑡  𝑥, 𝑦 𝑧 ∈ 𝑉 for any 𝑥 , 𝑦 , 𝑧 ∈ 𝑉.  

(3)  There is a positive number 𝜖 such that for any unit vector 𝑣 ∈ 𝑉 and 

any 𝑡 ∈  −𝜖, 𝜖 ,  𝑟𝑣 𝑡  𝑥, 𝑦 ∈ 𝑉 any 𝑥, 𝑦 ∈ 𝑉. 
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3.4.3. Proposition [O'Neill 1983, p.104]. For a submanifold 𝑀 of a Riemannian 

manifold 𝑀 , the following assertions are equivalent:  

a. 𝑀 is totally geodesic in 𝑀 ;  

b. every geodesic of 𝑀 is a geodesic of 𝑀 ;  

c. the geodesic 𝛾𝑣  of 𝑀  with initial velocity 𝑣 ∈ 𝑇𝑝𝑀 is contained in 𝑀 for small 

time (and hence is a geodesic in 𝑀).  

Proof. Since 𝑕 is symmetric, 𝑀 is totally geodesic in 𝑀  if and only if 𝑕 𝑋, 𝑋 =

0 for all 𝑋 ∈ Γ 𝑇𝑀  if and only if 𝑕 𝑣, 𝑣 = 0 for all 𝑣 ∈ 𝑇𝑀. 

 Gauss's formula (2.2.6) says that this is the case if and only if  ∇ 𝑋𝑋 = ∇𝑋𝑋 for 

all 𝑋 ∈ Γ 𝑇𝑀 . If this equation is true, plainly every geodesic in 𝑀 will be a 

geodesic in 𝑀 . Conversely, assume every geodesic in 𝑀 is a geodesic in 𝑀 . 

Given 0 ≠ 𝑣 ∈ 𝑇𝑝𝑀, let 𝛾𝑣  be the geodesic in 𝑀 with 𝛾𝑣
′  0 = 𝑣. Extend 𝛾𝑣

′   to a 

smooth vector field 𝑋 ∈ Γ 𝑇𝑀  defined on a neighborhood of 𝑝. Since 𝛾𝑣  is also 

a geodesic of 𝑀 , we have 

∇ 𝑋𝑋 = 0 = ∇𝑋𝑋. 

This proves the equivalence between  (a) and (b). Next, if (b) holds, then the uni-

queness of geodesics for given initial conditions says that all geodesics of 𝑀  in-

itially tangent to 𝑀 come from geodesics of 𝑀, which implies (c). Finally, 

∇𝑋𝑋  is the tangential component of ∇ 𝑋𝑋 for X ∈ Γ 𝑇𝑀 , so a geodesic 

of 𝑀  which is contained in 𝑀 is a geodesic of 𝑀, which finishes the proof of the 

equivalence between (b) and (c). Note that the geodesic 𝛾𝑣  as in (c) is entirely 

contained in 𝑀, if 𝑀 is complete. ∎  

3.4.4 Corollary. A connected complete totally geodesic submanifold 𝑀 of a 

Riemannian manifold 𝑀  is completely characterized by 𝑇𝑝𝑀 for any given 

𝑝 ∈ 𝑀.  

Proof. In fact, it follows from the Hopf-Rinow theorem and Proposition (3.4.3) 

that 𝑀 = exp 𝑝 𝑇𝑝𝑀 , where exp  denotes the exponential map of 𝑀 .  

3.4.5 Proposition. (Totally geodesic submanifolds of space forms) The con-

nected complete totally geodesic submanifolds of:  
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a. ℝ𝑛  are the affine subspaces;  

b. 𝑆𝑛  are the great subspheres, namely, intersections of  𝑆𝑛  with linear subspaces 

of  ℝ𝑛+1;  

c.  ℝ𝐻𝑛  are the intersections of hyperboloid model with linear subspaces of ℝ1,𝑛 .   

Proof. (a) Affine subspaces are clearly totally geodesic in ℝ𝑛 . Since a totally 

geodesic submanifold is completely determined by its tangent space at a point, 

there can be no other examples. (b) 

Great circles of the subsphere are great circles of 𝑆𝑛 , so this is a totally geodesic 

submanifold.  

The rest follows as in (a). The proof of (c) is similar.  ∎  

3.4.6 Theorem (cf.[Klingenberg 1995,1.10.15, p.95]). Let 𝑓:  𝑀 , 𝑔  →  𝑀 , 𝑔   

be an isometry of the Riemannian manifold  𝑀 , 𝑔  . Then every connected com-

ponent 𝑀 of the fixed point set  𝑦 ∈ 𝑀 : 𝑓 𝑦 = 𝑦 , with the induced Riemannian 

metric is a totally geodesic submanifold. 

3.4.7 Examples: 

(a) A geodesic 𝛾: ℝ → 𝑀 can be viewed as a totally geodesic submanifold of 

dimension one. 

(b) Consider the standard sphere 

 

𝑆𝑛 ∶=   𝑥1, 𝑥2, … , 𝑥𝑛+1 ∈ ℝ𝑛+1; 𝑥1
2 + 𝑥2

2 + ⋯ + 𝑥𝑛+1
2 = 1 . 

 

For 1 ≤ 𝑘 < 𝑛 the 𝑘–sphere 

 

𝑆𝑘 =   𝑥1, 𝑥2, … , 𝑥𝑛+1 ∈ 𝑆𝑛 ; 𝑥𝑘+1 = ⋯ = 𝑥𝑛+1 = 0  

is a totally geodesic submanifold of 𝑆𝑛 . It is the fixed point set of the isometry 

 𝑓: 𝑆𝑛 → 𝑆𝑛 : 

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛+1 =  𝑥1, 𝑥2, … , 𝑥𝑘 , −𝑥𝑘+1, … , −𝑥𝑛+1 . 

One can see immediately that any complex 𝑘–dimensional totally geodesic sub-

manifold of 𝑆𝑛  is of this form up to an isometry of the sphere. 
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3.5. Totally Geodesic Submanifolds of Symmetric Spaces 

The class of Riemannian manifolds with parallel Riemannian curvature tensor, 

that is, 𝛻𝑅 = 0 was first introduced independently by P. A. Shirokov 

(1895 1944) in 1925 and by Levy 1926. 

An isometry 𝑆 of a Riemannian manifold 𝑀 is called involutive if its iterate 

𝑆2 = 𝑆 ∘ 𝑆 is the identity map. 

A Riemannian manifold 𝑀 is called a symmetric space, if for each point 𝑝 ∈ 𝑀 

there exists an involutive isometry 𝑠𝑝  of 𝑀 such that  𝑝 is an isolated fixed point 

of 𝑠𝑝 . The 𝑠𝑝  is called the (point) symmetry of 𝑀 at the point 𝑝.   

Denote by 𝐺𝑀 , or simply 𝐺, the closure of the group of isometrics generated by 

 𝑠𝑝 : 𝑝 ∈ 𝑀  in the compact open topology. Then 𝐺 is a Lie group which acts say 

at 0, is compact and 𝑀 = 𝐺 𝐻 . 

Every complete totally geodesic submanifold of a symmetric space is a symme- 

tric space.  

For a symmetric space 𝑀, the dimension of a maximal flat totally geodesic sub-

manifold of 𝑀 is a well defined natural number which is called the rank of 𝑀, 

denoted by 𝑟𝑘(𝑀).  

3.6. Totally Umbilical Submanifolds 

Let 𝑁 be an 𝑛-dimensional submanifold of an 𝑚-dimensional Riemannian mani-

fold 𝑀 with metric 𝑔. ∇ and ∇  be the covariant differentiations on 𝑁 and 𝑀, re-

spectively. Then the second fundamental form h of the immersion is defined by 

the equation  

                             𝑕 𝑋, 𝑌 = ∇ 𝑋𝑌 − ∇𝑋𝑌                                                (3.6.1), 

where 𝑋 and 𝑌 are vector fields tangent to 𝑁. The submanifold 𝑁 is said to be 

totally umbilical if   

                                        𝑕 𝑋, 𝑌 = 𝑔 𝑋, 𝑌 𝐻,                                             ( 3.6.2) 

 for all vector fields 𝑋, 𝑌 tangent to 𝑁, where    

                                                 𝐻 = 1

𝑛
 𝑡𝑟𝑎𝑐𝑒 𝑕                                                   3.6.3  
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 is the mean curvature vector of 𝑁 in 𝑀.                                                                                                     

The length of 𝐻 is called the mean curvature of 𝑁 in 𝑀. A totally umbilical sub-

manifold with vanishing mean curvature is a totally geodesic submanifold.  

A totally umbilical submanifold with nonzero parallel mean curvature is called 

an extrinsic sphere. Totally geodesic submanifolds are the simplest submanifolds 

in Riemannian manifolds. It corresponds to linear subspaces of Euclidean spaces.  

Despite its simplicity, totally geodesic submanifolds in rank one symmetric 

space are not classified until 1963.Totally geodesic submanifolds in other sym- 

metric spaces has been studied rather extensively in the last few years.   

Extrinsic spheres can be regarded as the extrinsic analogous of the ordinary 𝑛-

spheres in Euclidean spaces. It can be considered as the simplest example sub-

manifolds next to totally geodesic submanifolds. The class of totally umbilical 

submanifolds includes the class of all totally geodesic submanifolds and extrinsic 

spheres. The class of totally umbilical submanifolds with constant mean curva-

ture lies between these two classes. Give a Riemannian or Kӓhler manifold 𝑀, it 

is fundamental and interesting to know the relationship between those classes 

and find some fundamental properties of them.  

3.6.1. Proposition. A totally umbilic submanifold of dimension at least two in a 

space form is an extrinsic sphere.  

Proof. Differentiate (3.6.2) with respect to 𝑍 ∈ 𝛤 𝑇𝑀  and use ∇𝑔 = 0 to get  

 ∇𝑍
⊥𝑕  𝑋, 𝑌 = 𝑔 𝑋, 𝑌 ∇𝑍

⊥𝐻. 

Now the Codazzi equation (2.5.6) says that  

𝑔 𝑋, 𝑌 ∇𝑍
⊥𝐻 = 𝑔 𝑍, 𝑌 ∇𝑋

⊥𝐻. 

Since dim 𝑀 ≥ 2, we can choose 𝑌 ⊥ 𝑍 and 𝑋 = 𝑌 to deduce ∇𝑍
⊥𝐻 = 0. Since 𝑍 

is arbitrary, 𝐻 is parallel. ∎  

3.6.2. Propostion. A totally umbilical submanifold 𝑀 in a real space form 𝑀  of 

constant curvature 𝑐 is also of constant curvature.  

Proof. Since 𝑀 is a totally umbilical submanifold of 𝑀  of constant curvature 𝑐, 

by using equations (3.6.2) and (2.3.8), we have  
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𝑔 𝑅 𝑋, 𝑌 𝑍, 𝑊 = 𝑐 𝑔 𝑌, 𝑍 𝑔 𝑋, 𝑊 − 𝑔 𝑋, 𝑍 𝑔 𝑌, 𝑊   

                                         +𝑔(𝐻, 𝐻) 𝑔 𝑌, 𝑍 𝑔 𝑋, 𝑊 − 𝑔 𝑋, 𝑍 𝑔(𝑌, 𝑊)  

                                        =  𝑐 + 𝑔(𝐻, 𝐻)  𝑔 𝑌, 𝑍 𝑔 𝑋, 𝑊 − 𝑔 𝑋, 𝑍 𝑔(𝑌, 𝑊  

This shows that the submanifold 𝑀 is of constant curvature 𝑐 +  𝐻 2 for 𝑛 > 2.  

If 𝑛 = 2,   𝐻 = constant follows from the equation of Codazzi. This proves 

the proposition. ∎  

3.6.3. Proposition (Chen 1973, p. 50). A totally umbilical submanifold 𝑀 in a 

space form ℝ𝑚 (𝑐) is either totally geodesic in ℝ𝑚 (𝑐) or contained in a hyper-

sphere of an (𝑛 + 1)-dimensional totally geodesic subspace of ℝ𝑚 (𝑐). 

3.7. Totally Umbilical Submanifolds in Conformally Flat Spaces 

Let 𝑁 be an 𝑛-dimensional submanifold of an 𝑚-dimensional Riemannian mani-

fold 𝑀 with metric 𝑔. Let h be the second fundamental form of 𝑁 in 𝑀. Then h is 

normal-bundle-valued symmetric 2-form on 𝑁. Let 𝜉 be a normal vector field on 

𝑁, we write   

                             ∇ 𝑋𝜉 = −𝐴𝜉 𝑋 + 𝐷𝑋𝜉,                                                 (3.7.1) 

 where −𝐴𝜉 𝑋  and  𝐷𝑋𝜉 denote the tangential and normal component of  ∇ 𝑋𝜉, 

respectively. Then we have  

                           𝑔 𝐴𝜉 𝑋 , 𝑌 = 𝑔 𝑕 𝑋, 𝑌 , 𝜉                                          (3.7.2) 

A normal vector field 𝜉 on 𝑁 is said to be parallel if 𝐷𝑋𝜉 = 0 for all tangent vec-

tor fields 𝑋. Let 𝑅, 𝑅  and 𝑅𝑁  be the curvature tensors associated with ∇, ∇  and 𝐷. 

For example, 𝑅𝐷 is given by  

𝑅𝐷 𝑋, Y = 𝐷𝑋𝐷𝑌 − 𝐷𝑌𝐷𝑋 − 𝐷 𝑋 ,𝑌    

 for 𝑋, 𝑌 tangent to 𝑁.  

For vector fields 𝑋, 𝑌, 𝑍, 𝑊 tangent to 𝑁 and vector fields 𝜉, 𝜂 normal to 𝑁, the 

equation of Gauss and Ricci are then given respectively by 

𝑅  𝑋, 𝑌; 𝑍, 𝑊 = 𝑅 𝑋, 𝑌; 𝑍, 𝑊 + 𝑔 𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊  − 

                                                                𝑔 𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  ,                       (3.7.3)    
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    𝑅  𝑋, 𝑌; 𝜉, 𝜂 = 𝑅𝑁 𝑋, 𝑌; 𝜉, 𝜂 − 𝑔  𝐴𝜉 , 𝐴𝜂   𝑋 , 𝑌  ,                          (3.7.4)                                                 

 where 𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑔 𝑅 𝑋, 𝑌 𝑍, 𝑊  , …, etc. 

For the second fundamental form 𝑕, we define the covariant derivative in 

𝑇𝑁⨁𝑇⊥𝑁, denote by ∇ 𝑋𝑕, to be  

 ∇ 𝑋𝑕  𝑌, 𝑍 = 𝐷𝑋 𝑕(𝑌, 𝑍) − 𝑕 ∇𝑋𝑌, 𝑍 − 𝑕 𝑌, ∇𝑋𝑍                           (3.7.5)                                               

The equation of Codazzi is given by  

 𝑅  𝑋, 𝑌 𝑍 
⊥

=  ∇ 𝑋𝑕  𝑌, 𝑍 −  ∇ 𝑌𝑕  𝑋, 𝑍 ,                                             (3.7.6) 

where ⊥denote the normal component.  

 Let 𝑋 and 𝑌 be two orthonormal vectors tangent to 𝑁. The sectional curvature 

𝐾 𝑋  𝑌 , of plane section 𝑋  Y spanned by 𝑋, 𝑌 is given by  

      𝐾 𝑋 Y = 𝑅 𝑋, 𝑌; 𝑌, 𝑋                                                                          (3.7.7) 

 Let 𝐸1 , … , 𝐸𝑛  be an orthonormal frame tangent to 𝑁. Then   

     𝑆 𝑋, 𝑌 =  𝑅 𝐸𝑖 , 𝑋; 𝑌, 𝐸𝑖 
𝑛
𝑖=1                                                                 (3.7.8) 

defines a global tensor field S of type (0, 2), called the Ricci tensor of 𝑁. Moreo-

ver, from the tensor field 𝑆, we can define a global scalar field  

              𝜏 =  𝑆(𝐸𝑖 , 𝐸𝑖)
𝑛
𝑖=1                                                                            (3.7.9) 

This scalar field is called the scalar curvature of 𝑁. 𝑁 is called an Einstein space 

if the Ricci tensor of 𝑁 is proportional to the metric tensor. And 𝑁 is said to be 

locally Symmetric, if its curvature tensor is parallel, that is 𝛻𝑅 = 0. It is well-

known that every irreducible locally symmetric space is Einsteinian. A Rieman-

nian manifold is called a real-space-form if it has constant sectional curvature. 

  For a Riemannian manifold N of dimension n, we define a tensor field of type 

(0, 2) by  

        𝐿 𝑋, 𝑌 = −1

𝑛−2
𝑆 𝑋, 𝑌 + 𝜏

2 𝑛−1 (𝑛−2)
𝑔 𝑋, 𝑌                                        (3.7.10) 

Then the Weyl conformal curvature tensor 𝐶 is defined by  

𝐶 𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌 𝑍 + 𝐿 𝑌, 𝑍 𝑋 − 𝐿 𝑋, 𝑍 𝑌 + 𝑔 𝑌, 𝑍 𝐿∗𝑋 − 
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                                           𝑔 𝑋, 𝑍 𝐿∗𝑌                                                               (3.7.11) 

where L∗ is the (2,5)-tensor associated with 𝐿, that is,  

            𝑔 𝐿∗𝑋, 𝑌 = 𝐿 𝑋, 𝑌                                                                     (3.7.12) 

 A Riemannian manifold of dimension ≥ 4 is conformally flat if and only if its 

Weyl conformal curvature tensor vanishes. Moreover, the Weyl conformal cur-

vature tensor vanishes identically for Riemannian manifolds of dimension ≤ 3.  

The follows Result is well-Known.  

3.7.1. Proposition (Schouten 1954). Every totally umbilical submanifold of di-

mension > 3 in a conformally flat space is conformally flat.   

For the totally geodesic submanifold in conformally flat spaces, we have the fol-

lowing characterization.  

3.7.2. Proposition (Chen, Vanhecke and Verstraelen 1978). A minimal submani-

fold 𝑁 of a conformally flat space 𝑀 is a totally geodesic submanifold if and on-

ly if   

           𝐿 𝑋, 𝑌 = 𝐿  𝑋, 𝑌                                                                             (3.7.13) 

for all 𝑋, 𝑌 tangent to 𝑁, where 𝐿  denotes the corresponding quantity for 𝑀.  

The following result is well-known which in fact follows easily from equation 

(3.6.1).  

3.7.3. Proposition (Chen 1979). Submanifold 𝑁 in a Riemannian manifold is to-

tally geodesic if and only if every geodesic in 𝑁 is a geodesic in 𝑀.  

One dimensional totally geodesic submanifolds are geodesic, they exist exten-

sively. In fact, for every point 𝑝 in a Riemannian manifold 𝑀, and every tangent 

vector 𝑇 at 𝑝, there always exists a geodesic through 𝑝 with 𝑇 as its velocity vec-

tor at 𝑝. 

However, totally geodesic submanifolds and totally umbilical submanifolds of 

higher dimensions do not necessarily exist in general. In fact we have the follow-

ing two results of E. Cartan and J. A. Schouten:  

3.7.4. Theorem (Carten 1946). Let 𝑀 be an 𝑚-dimensional Riemannian mani-

fold. If there exist an integer 𝑛;  2 ≤ 𝑛 ≤ 𝑚 − 1 , such that for any 𝑝 ∈ 𝑀 and 
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any linear 𝑛-subspace 𝑉 of 𝑇𝑝𝑀, there always exist a totally geodesic submani-

fold 𝑁 through 𝑝 with 𝑇𝑝𝑁 = 𝑉, then 𝑀 is real-space-form.   

3.7.5. Theorem (Schouten 1954). Let 𝑀 be an 𝑚-dimensional Riemannian mani-

fold. If there exist an integer 𝑛, 3 ≤ 𝑛 ≤ 𝑚 − 1, such that for any 𝑝 ∈ 𝑀 and any 

linear 𝑛-subspace 𝑉 of 𝑇𝑝𝑀, there always exist a totally umbilical submanifold 𝑁 

through 𝑝 with 𝑇𝑝𝑁 = 𝑉, then 𝑀 is a conformally flat space.   

Moreover we have  

3.7.6. Theorem (Miyazawa and Chūman 1972). Every totally umbilical subma-

nifold of dimension ≥ 4 in a locally symmetric space is either totally geodesic or 

conformally flat.  

 Theorem 3.7.6 was generalized to totally umbilical submanifolds in conformally 

recurrent space by Z. Olszak.   

3.8. Totally Umbilical Submanifolds in Kӓhler Manifolds 

Let 𝑁 be a Kӓhler manifold with complex structure 𝙹, Kӓhler metric 𝑔. Then we 

have 𝛻𝙹 = 0, thus we obtain  

        𝑅 𝙹𝑋, 𝙹𝑌 = 𝑅 𝑋, 𝑌 ,                                                                             (3.8.1) 

                       

𝑅 𝑋, 𝑌 𝙹𝑍 = 𝙹𝑅 𝑋, 𝑌 𝑍                                                                                (3.8.2) 

Therefore, the sectional curvature of 𝑀 determined by any orthonormal vector 𝑋 

 and 𝑌 satisfies  

    𝐾 𝑋 Y = 𝐾 𝙹𝑋  𝙹Y ,                                                                           (3.8.3) 

𝐾 𝑋  𝙹Y = 𝐾 𝙹𝑋  Y                                                                                (3.8.4) 

For a unit vector 𝑋 the holomorphic sectional curvature 𝐻(𝑋) determined by 𝑋 is 

defined by  

𝐻 𝑋 = 𝐾(𝑋  𝙹𝑋). 

A Kӓhler manifold is called a complex-space-form if it has constant holomorphic 

sectional curvature 𝑐. It is known that the curvature tensor of such Kӓhler mani-

fold satisfies  
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𝑅 𝑋, 𝑌 𝑍 = 𝑐

4
 
𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 + 𝑔 𝙹𝑌, 𝑍 𝙹𝑋 − 𝑔 𝙹𝑋, 𝑍 𝙹𝑌

+2𝑔 𝑋, 𝙹𝑌 𝙹𝑍
    (3.8.5)                 

 Let 𝑁 be an 𝑛-dimensional Kӓhler manifold. We introduce a tensor field 𝚪 of 

type (0, 2) by   

Г 𝑋, 𝑌 = − 1

𝑛+4
𝑆 𝑋, 𝑌 +

𝜏

2 𝑛+2 (𝑛+4)
𝑔 𝑋, 𝑌                                           (3.8.6) 

 

Then the Bochner curvature tensor 𝐵 is defined by   

𝐵 𝑋, 𝑌; 𝑍, 𝑊 = 𝑅 𝑋, 𝑌; 𝑍, 𝑊 + Г 𝑋, 𝑊 𝑔 𝑌, 𝑍 − Г 𝑋, 𝑍 𝑔 𝑌, 𝑊  

                   +Г 𝑌, 𝑍 𝑔 𝑋, 𝑊 − Г 𝑌, 𝑊 𝑔 𝑋, 𝑍 + Г 𝙹𝑋, 𝑊 𝑔 𝙹𝑌, 𝑍  

                   −Г 𝙹𝑋, 𝑍 𝑔 𝙹𝑌, 𝑊 + Г 𝙹𝑌, 𝑍 𝑔 𝙹𝑋, 𝑊 − Г 𝙹𝑌, 𝑊 𝑔 𝙹𝑋, 𝑍  

                      −2Г 𝙹𝑋, 𝑌 𝑔 𝙹𝑍, 𝑊 − 2Г 𝙹𝑍, 𝑊 𝑔 𝙹𝑋, 𝑌                      (3.8.7)                             

A Kӓhler manifold is called Bochner-flat if its Bochner curvature tensor vanish-

es.  

Let 𝑀 be a Kӓhler manifold with complex structure 𝙹. A submanifold 𝑁 of 𝑀 is 

said to be holomorphic if the complex structure 𝙹 carries tangent spaces of 𝑁 in-

to tangent spaces of 𝑁. It is called totally real if 𝙹 carries the tangent spaces of 𝑁 

into normal spaces 𝑇⊥𝑁 of 𝑁. 

3.9. Extrinsic Spheres.  

Let 𝑁 be a 𝑛–dimensional submanifold of a Riemannian manifold 𝑀 with   ,   as 

its first fundamental form. Let ∇  be the Riemannian connection on 𝑀 and let ∇ 

be the induced connection on 𝑁. Then the second fundamental form 𝑕 of the 

immersion is given by 

𝑕 𝑋, 𝑌 = ∇ 𝑋𝑌 − ∇𝑌𝑋 

where 𝑋 and 𝑌 are vector fields tangent to 𝑁. It is well known that 𝑕 is a normal-

bundle valued symmetric 2–form on 𝑁. The submanifold 𝑁 is said to be totally 

umbilical in 𝑀 if there exists a normal vector field 𝐻, called the mean curvature 

vector field, such that 

𝑕 𝑋, 𝑌 =  𝑋, 𝑌 𝐻. 
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When 𝑕 vanishes identically 𝑁 is called a totally geodesic submanifold of 𝑀. A 

totally umbilical submanifold with parallel non–zero mean curvature vector (this 

is 𝐷𝐻 = 0 and 𝐻 ≠ 0 where 𝐷 denotes the normal connection of 𝑁 in 𝑀) is 

called an extrinsic sphere. A circle is by definition a 1-dimensional extrinsic 

sphere. 

The following theorem of Nomizu-Yano gives a characterization of extrinsic 

spheres by circles. 

3.9.1. Theorem [Nomizu and Yano 1974]. Let 𝑁 be an 𝑛-dimensional  𝑛 ≥

2 submanifold of a Riemannian manifold 𝑀. If, for some 𝑟>0, every circle of 

radius 𝑟 in 𝑁 is a circle in 𝑀; then 𝑁 is an extrinsic sphere in 𝑀. Conversely, if 𝑁 

is an extrinsic sphere in 𝑀 then every circle in 𝑁 is a circle in 𝑀.  

As for geodesics, circles always exist at every point 𝑥 and every direction 𝑇 in a 

Riemannian manifold.  

3.9.2. Theorem (Chen 1979). Let 𝑁 be an 𝑛-dimensional submanifold in a Rie-

mannian manifold 𝑀. Then 𝑁 is an extrinsic sphere in 𝑀 if and only if 𝑀 admits 

an  𝑛 + 1 -dimensional totally geodesic submanifold 𝑁 ′ such that 𝑁 lies in 𝑁 ′ as 

an extrinsic hypersphere.  

Thus the maximal dimension of extrinsic spheres is less than the maximal di-

mension of totally geodesic submanifold in a Riemannian manifold by at least 

one.  

 If the ambient space 𝑀 is locally symmetric, we have the following sharper re-

sult.    

3.9.3. Theorem (Chen 1979).  Let 𝑁 be an 𝑛-dimensional submanifold in a lo-

cally symmetric space 𝑀 .Then 𝑁 is an extrinsic sphere in 𝑀 if and only if 𝑁 is a 

real-space-form and 𝑁 is an extrinsic hypersphere in an  𝑛 + 1 -dimensional 

real-space-form 𝑁 ′ which is imbedded in M as a totally geodesic submanifold.  

It is known that every real-space-form admit extrinsic hyperspheres.  

  A submanifold 𝑁 in a Kӓhler manifold 𝑀 is called a purely real submanifold if 

𝑇𝑁 ∩ 𝙹 𝑇𝑁 =  0 . 

For extrinsic spheres in Kӓhler manifolds, we have the following.  
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3.9.4. Theorem (Chen 1979). If 𝑁 is an extrinsic sphere of a totally geodesic 

submanifold 𝑁 ′ of constant curvature in a Kӓhler manifold 𝑀, then either 𝑁 is 

purely real or 𝑁 ′ is flat. 

Combining theorems (3.9.3) and (3.9.4) we have immediately the following.  

3.9.5. Theorem. If 𝑁 is an 𝑛-dimensional extrinsic sphere in a Hermitian locally 

symmetric space 𝑀, then either 𝑁 an extrinsic sphere in a flat totally geodesic 

submanifold or dim 𝑁 ≤ 1

2
dim 𝑀. 

A complete extrinsic sphere in a Euclidean space is nothing but an ordinary 

sphere. It is natural to ask when an extrinsic sphere is isometric to an ordinary 

sphere.  

3.9.6. Corollary (Chen 1979). Every complete, extrinsic sphere in a compact 

symmetric space is isometric to an ordinary sphere.  

This corollary follows from theorem (3.9.3) simply because every hypersphere in 

real projective spaces (or spheres) are isometric to an ordinary sphere. For ex-

trinsic sphere in Kӓhler manifolds with flat normal connection we have the fol-

lowing.  

3.9.7. Theorem (Chen 1976).  A complete, simply- connected even- dimensional 

extrinsic sphere 𝑁 in a Kӓhler manifold 𝑀 is isometric to an ordinary sphere if 

its normal connection is flat (that is, 𝑅𝑁 ≡ 0.)  

   For extrinsic spheres with flat normal connection in Hermitian symmetric 

spaces we have:  

3.9.8. Theorem (Chen 1977). If 𝑁 is a complete, 𝑛-dimensional, simply- con-

nected extrinsic sphere with flat normal connection in a Hermitian locally sym-

metric space 𝑀. Then dim 𝑁 ≤ rank 𝑀 and 𝑁 is a isometric to an ordinary 𝑛-

sphere.  

  Now, we shall give the proof of the following.  

3.9.9. Theorem (Chen 1979).  Every totally umbilical hypersurface 𝑁 of an 

Einstein space 𝑀 is either totally geodesic or an extrinsic sphere.  

  Proof. Let 𝑁 is a totally umbilical hypersurface of an Einstein space 𝑀. Then 

we have  
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                       𝑕 𝑋, 𝑌 = 𝑔 𝑋, 𝑌 . 𝐻,                                                             3.9.1  

where 𝑋 and 𝑌 are vector fields tangent to 𝑁. By (3.7.5) we see that  

                     ∇ 𝑋𝑕  𝑌, 𝑍 = 𝑔 𝑌, 𝑍 . 𝐷𝑋𝐻;                                                   3.9.2  

Therefore equation (3.7.6) of codazzi reduces to  

                 𝑅  𝑋, 𝑌 𝑍 
⊥

= 𝑔 𝑌, 𝑍 . 𝐷𝑋𝐻 − 𝑔 𝑋, 𝑍 . 𝐷𝑌𝐻.                             3.9.3  

Let 𝐸1, … , 𝐸𝑛  be an orthonormal basis of 𝑇𝑥𝑁, 𝑥 ∈ 𝑁. Then we have  

             𝑅  𝐸1, 𝐸𝑖 𝐸𝑖 
⊥

= 𝐷𝐸1
𝐻.                                                                        3.9.4  

Consequently, we get  

                𝑅  𝐸1, 𝐸𝑖 ; 𝐸𝑖 , 𝐻 = 1

2
 𝐸1 𝛼

2 ,                                                              3.9.5  

where 𝛼2 = 𝑔 𝐻, 𝐻 . Thus the Ricci tensor 𝑆  of 𝑀 satisfies  

                            𝑆  𝐸1, 𝐻 = 𝑛−1

2
 𝐸1 𝛼

2 .                                                          3.9.6  

On other hand, since 𝑀 is Einsteinian, 𝑆  𝐸1, 𝐻 = 0. Thus  𝐸1 𝛼
2 = 0. 

 Since 𝐸1can be chosen as any unit vector tangent to 𝑁, the mean curvature 𝛼 is 

constant. 

If 𝛼 = 0, 𝑁 is totally geodesic. If 𝛼 ≠ 0, then by the assumption on codimen-

sion the mean curvature vector 𝐻 is parallel. Thus 𝑁 is an extrinsic sphere. This 

proves the theorem.  

3.10. Parallel Submanifolds 

The first fundamental form, that is, the metric tensor, of a submanifold of a Rie-

mannian submanifold is automatically parallel, thus, ∇𝑔 ≡ 0 with respect to the 

Riemannian connection ∇ on the tangent bundle 𝑇𝑀.   

3.10.1. Definition. A submanifold M of a Riemannian submanifold 𝑀  is said to 

be parallel, if the second fundamental form 𝑕 of M is parallel, that is 

 ∇ 𝑕 ≡ 0 with respect to the connection ∇  on 𝑇𝑀 ⊕ 𝑇⊥𝑀. 
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3.10.2. Proposition. A submanifold 𝑀 in 𝑀  is parallel if and only if the parallel 

transport of the second fundamental form with respect to ∇⊥  along curve in 𝑀 is 

equal to the second fundamental form acting on the parallel transport of two tan-

gent vectors to 𝑀 along the same curve.  

Proof. Let 𝑝 ∈ 𝑀 and 𝛾: 𝐼 ⊂ ℝ → 𝑀 a curve in 𝑀 with 𝛾 𝑡0 = 𝑝. Consider two 

vector fields 𝑈, 𝑉 ∈ 𝔛 𝛾  so that 𝑈𝑝 = 𝑢 and 𝑉𝑝 = 𝑣, and ∇𝛾 ′𝑈 = ∇𝛾 ′𝑉 = 0.  

 Assume that 𝑀 is parallel, i.e. ∇ 𝑕 = 0. Because the parallel transport defines a 

unique vector field it is sufficient to prove that ∇
𝛾 ′
⊥ 𝑕 𝑈, 𝑉 = 0. In fact,  

∇
𝛾 ′
⊥ 𝑕 𝑈, 𝑉 = 𝑕 ∇𝛾 ′𝑈, 𝑉 + 𝑕 𝑈, ∇𝛾 ′𝑉 = 0 

Conversely, let us assume that 𝑕 𝑢, 𝑣 ∗⊥
= 𝑕 𝑢∗, 𝑣∗ . Then  

  ∇ 𝑕  𝛾 ′ 𝑡0 , 𝑢, 𝑣  
𝑝

=   ∇𝛾 ′
⊥ 𝑕 𝑈, 𝑉 − 𝑕 ∇𝛾 ′𝑈, 𝑉 − 𝑕 𝑈, ∇𝛾 ′𝑉   

𝑝
 

                                       =  ∇
𝛾 ′
⊥ 𝑕 𝑈, 𝑉  

𝑝
= 0. 

Because 𝑝, 𝑢, 𝑣 and 𝛾 can be chosen arbitrary this implies ∇ 𝑕 = 0. ∎  

The first result on parallel submanifolds was given by V. F. Kagan in 1948 who 

showed that the class of parallel surfaces in 𝐸3 consists of open parts of plans, 

round spheres, and circular cylinders 𝑆1 × 𝐸1. U. Simon and A. Weinstein 

(1969) determined parallel hypersurfaces of Euclidean (𝑛 + 1)- space.   

A general classification theorem of parallel submanifolds in Euclidean space was 

obtained by D. Ferus in 1974.  

An affine subspace of 𝐸𝑚  or a symmetric 𝑅-space 𝑀 ⊂ 𝐸𝑚 , which is minimally 

embedded in a hypersphere of 𝐸𝑚  as described in [Takeuchi-Kobayashi 1965] is 

parallel submanifold of 𝐸𝑚 .  

D. Ferus (1974) proved that essentially these submanifolds exhaust all parallel 

submanifolds of 𝐸𝑚  in the following sense: A complete full parallel submanifold 

of the Euclidean 𝑚-space 𝐸𝑚  is congruent to   

 1  𝑀 = 𝐸𝑚0 × 𝑀1 × … × 𝑀𝑠 ⊂ 𝐸𝑚0 × 𝐸𝑚1 × … × 𝐸𝑚𝑠 = 𝐸𝑚 , 𝑠 ≥ 0, or to 

 2  𝑀 = 𝑀1 × … × 𝑀𝑠 ⊂ 𝐸𝑚1 × … × 𝐸𝑚s , 𝑠 ≥ 1, where each 𝑀𝑖 ⊂ 𝐸𝑚 𝑖  is  
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an irreducible symmetric 𝑅-space.  

3.10.3. Definition. For an 𝑛-dimensional submanifold 𝑓: 𝑀 → 𝐸𝑚 , for each 

point 𝑥 ∈ 𝑀 and each unit tangent vector 𝑋 at 𝑥, the vector 𝑓∗ 𝑋 and the normal 

space 𝑇𝑥
⊥ determine an  𝑚 − 𝑛 + 1  dimensional subspace 𝐸 𝑥, 𝑋 of 𝐸𝑚 .The 

intersection 𝑓(𝑀) and 𝐸(𝑥, 𝑋)  defines a curve 𝛾 in a neighborhood of 𝑓(𝑥),which 

is called the normal section of 𝑓 at 𝑥 in the direction 𝑋. A point p on a plane 

curve is called a vertex if its curvature function 𝜅(𝑠) has a critical point at 𝑝.   

 Parallel submanifolds of 𝐸𝑚  are characterized by the following simple geome-

tric property: normal sections of 𝑀 at each point 𝑥 ∈ 𝑀 are plane curves with 𝑥 

as one of its vertices.  

3.10.4. Definition. A submanifold 𝑓: 𝑀 → 𝐸𝑚  is said to be extrinsic symmetric 

if, for each 𝑥 ∈ 𝑀, there is an isometry 𝜑 of 𝑀 into itself such that 𝜑 𝑥 = 𝑥 

and 𝑓 ∘ 𝜑 = 𝜎𝑥 ∘ 𝑓 where  𝜎𝑥  denotes the reflection at the normal space 𝑇𝑥
⊥𝑀 at 𝑥 

that is the motion of 𝐸𝑚  which fixes the space through 𝑓(𝑥) normal to 𝑓∗ 𝑇𝑥𝑀  

and reflects  𝑓 𝑥 + 𝑓∗ 𝑇𝑥𝑀  at 𝑓(𝑥). 

3.10.5. Definition. The submanifold 𝑓: 𝑀 → 𝐸𝑚  is said to be extrinsic locally 

symmetric, if each point 𝑥 ∈ 𝑀 has a neighborhood 𝑈 and an isometry 𝜑 of 𝑈 

into itself, such that 𝜑 𝑥 = 𝑥 and 𝑓 ∘ 𝜑 = 𝜎𝑥 ∘ 𝑓 on 𝑈. 

 In other words, a submanifold 𝑀 of 𝐸𝑚  is extrinsic locally symmetric if each 

point 𝑥 ∈ 𝑀 has a neighborhood which is invariant under the reflection of 

𝐸𝑚with respect to the normal space at 𝑥. 

 D. Ferus (1980) proved that extrinsic locally symmetric submanifolds of  𝐸𝑚  

have parallel second fundamental form and vice versa.   

A canonical connection on a Riemannian manifold (𝑀, 𝑔) is defined as any me-

tric connection ∇c  on 𝑀 such that the difference tensor 𝐷  between ∇c  and the Le-

vi-Civita connection ∇ is ∇c-parallel.  

 3.10.6. Definition. An embedded submanifold 𝑀 of 𝐸𝑚  is said to be an extrinsic 

homogeneous submanifold with constant principal curvature if, for any given 

𝑥, 𝑦 ∈ 𝑀 and a given piecewise differentiable curve 𝛾 from 𝑥 to 𝑦, there exists an 

isometry 𝜑 of 𝐸𝑚  satisfying  

 1   𝜑 𝑀 = 𝑀,       



80 
 

 2   𝜑 𝑥 = 𝑦, and     

 3    𝜑 ∗ 𝑥 𝑇𝑥
⊥𝑀: 𝑇𝑥

⊥𝑀 → 𝑇𝑥
⊥𝑀 coincides with 𝐷 -parallel transport along 𝛾. 

          C. Olmos and C. Sanchez (1991) extended Ferusʼ result and obtained the 

following:  

 Let 𝑀 be a connected compact Riemannian submanifold fully in 𝐸𝑚 , and let 𝑕 

be its second fundamental form. Then the following three statements are equiva- 

lent:  

i. 𝑀 admits a canonical connection 𝛻𝑐  such that 𝛻𝑐𝑕 = 0, 

ii. 𝑀 is an extrinsic homogeneous submanifold with constant principal 

 curvature, 

iii. 𝑀 is an orbit of an 𝑠-representation, that is, of an isotropy representation 

of a semi simple Riemannian symmetric space.  

3.10.7. Definition. Regarding the unit  𝑚 − 1 -sphere 𝑆𝑚−1 as an ordinary 

hypersphere of  𝐸𝑚 , a submanifold 𝑀 ⊂ 𝑆𝑚−1 is parallel if and only if 𝑀 ⊂

𝑆𝑚−1 ⊂ 𝐸𝑚   is a parallel submanifold of 𝐸𝑚 . 

Consequently, Ferusʼ result implies that 𝑀 is a parallel submanifold of 𝑆𝑚−1 if 

and only if 𝑀 is obtained by submanifold of type (2).  

3.11. Examples 

The minimal surface equation (3.2.7) is a nonlinear partial differential equation. 

It is hard to solve. Besides the linear functions, what are its solutions? As early 

as 1776 J. L. Meunier obtained two nonlinear solutions to the equation firstly. 

Their graphs are catenoid and helicoid.  

The catenoid is defined by  

                        𝑥 = cosh−1  𝑥2 + 𝑦2,                                                   (3.11.1) 

Take a catenary in 𝑋-𝑍 coordinates plane. Letting it rotating about 𝑍-axis gives 

the catenoid. 

 Furthermore, we have the following result. 

  3.11.1. Proposition.  Any minimal surface which is also a surface of revolution 

in ℝ3 is a catenoid or a plane up to a rigid motion in ℝ3.   
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The catenoid is a complete surface whose Gauss curvature is  

                       𝐾 =
1

 𝑥2+𝑦2 2
                                                                   (3.11.2) 

and the total curvature   

                ∫ 𝐾𝑑𝑀
𝑀

= −4𝜋                                                                   (3.11.3) 

The helicoid is defined by  

                     𝑧 = tan−1 𝑥

𝑦
                                                                      (3.11.4) 

Let a line in 𝑋-axis screw about 𝑍-axis. The result surface is a helicoid.  

The helicoid is also a complete surface with the Gauss curvature   

𝐾 = −
1

 1 + 𝑥2 + 𝑦2 2
 

Its total curvature is infinite.   

3.11.2. Proposition. Up to a rigid motion a ruled minimal surface in ℝ3 has to be 

a helicoid or a plane.   

Consider a special solution to (3.2.7) of the type  

𝑓 𝑥, 𝑦 = 𝑔 𝑥 + 𝑕(𝑦) 

By direct computation we obtain   

                  𝑓 𝑥, 𝑦 =
1

𝑎
log

cos 𝑎𝑥

sin 𝑎𝑦
                                                            (3.11.5) 

Its graphs is called Scheck's surface which we obtained in 1835.  

We now give some examples of minimal submanifolds in the sphere.  

Let 𝛹: 𝑀 → 𝑆𝑛 ⊂ ℝ𝑛+1 and 𝛹 ′: 𝑀′ → 𝑆𝑛 ′
⊂ ℝ𝑛 ′+1 be minimal immersions. For 

any constants 𝑐 and 𝑐 ′  

𝑐𝛹⨁𝑐 ′𝛹 ′: 𝑀 × 𝑀′ → ℝ𝑛+𝑛 ′+2 

is also an isometric immersion of the product manifold 𝑀 × 𝑀′ to ℝ𝑛+𝑛 ′+2.  
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If we choose 𝑐 and 𝑐 ′ with 𝑐2 + 𝑐 ′
2

= 1, then the image of 𝑀 × 𝑀′ under 

𝑐𝛹⨁𝑐 ′𝛹 ′ lies in the spheres 𝑆𝑛+𝑛 ′+1.We know that induced metric on 𝑀 under 

𝑐𝛹 is 𝑐2𝑑𝑠2, where 𝑑𝑠2 is the original metric on 𝑀. Then, the Laplacian on 𝑀 

with respect to the metric 𝑐2𝑑𝑠2 in 
1

𝑐2
∆𝑚  . 

 By Proposition (3.3.1)  

1

𝑐2
∆𝑚 𝑐𝛹 =

1

𝑐2
𝑐∆𝑀𝛹 = −

𝑚

𝑐2
 𝑐𝛹 , 

so dose for 𝑐 ′𝛹 ′ and  

∆𝑀×𝑀′ 𝑐𝛹⨁𝑐 ′𝛹 ′ =
𝑚

𝑐2
𝑐𝛹⨁

−𝑚′

𝑐 ′
2 𝑐 ′𝛹 ′. 

If 𝑐 and 𝑐 ′ also satisfy  

𝑚

𝑐2
=

𝑚

𝑐 ′
2  , 

then by Proposition (3.3.1) we obtain a minimal immersion  

   

𝑐𝛹⨁𝑐 ′𝛹′: 𝑀 × 𝑀′ → 𝑆𝑛+𝑛 ′+1. 

In particular, 𝑀 = 𝑆𝑛  and 𝑀′ = 𝑆𝑛 ′
 we have the Clifford minimal hypersurface 

𝑆𝑛   
𝑛

𝑛+𝑛 ′
 × 𝑆𝑛 ′

  
𝑛 ′

𝑛+𝑛 ′
 → 𝑆𝑛+𝑛 ′+1                                                        (3.11.6) 

A unit normal vector to the Clifford minimal hypersurface is  

 𝑣 = −𝑐 ′𝛹 + 𝑐𝛹, 

because it is orthogonal to 𝑑𝛹, 𝑑𝛹 ′, and to 𝑐𝛹 + 𝑐 ′𝛹 ′.  

Hence,its second fundamental form is:  

− 𝑑𝑥, 𝑑𝑣 = 𝑐𝑐 ′  𝑑𝛹, 𝑑𝛹 −  𝑑𝛹 ′, 𝑑𝛹 ′   

On the other hand, its induced metric is  

𝑑𝑠2 = 𝑐2 𝑑𝛹, 𝑑𝛹 + 𝑐′2
 𝑑𝛹′ , 𝑑𝛹′  . 
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Noting that  

𝑐 =  
𝑛

𝑛+𝑛 ′
       and      𝑐′ =  

𝑛 ′

𝑛+𝑛 ′
 

it has principal curvature  
𝑛 ′

𝑛
 with the multiplicity 𝑛 and− 

𝑛

𝑛 ′
  with the multipli- 

city 𝑛′. Therefore, the sum of squares of the principal curvature is 𝑛 + 𝑛′, which 

is the squared norm  𝐵 2 of the second fundamental form 𝐵 for the Clifford  

hypersurface  (3.11.6). We thus have  

                                     𝐵 2 = 𝑛 + 𝑛′                                                           (3.11.7) 

Let us consider another minimal submanifold in the sphere. Let  

𝑃 𝑑 =  homogeneous polynomials of degree in ℝ𝑛+1  

and  

𝐻 𝑑 =  𝑓 ∈ 𝑃 𝑑 : ∆𝑓 = 0 . 

Then  

𝑆𝐻 𝑑 =   𝑓 𝑆𝑛 (𝑐); 𝑓 ∈ 𝐻(𝑑)  

denotes the spherical harmonic functions of degree 𝑑.  

 3.11.3. Lemma. If 𝑓 ∈ 𝑆𝐻 𝑑 , then  

                          ∆𝑆𝑛 (𝑐)𝑓 =
−𝑑(𝑛+𝑑−1)

𝑐2
𝑓                                                        (3.11.8) 

Proof. Let  𝑒𝑖 , … , 𝑒𝑛  be an orthonormal frame field in 𝑆𝑛 𝑐 , 𝑣 =
𝑥

𝑐
 be the unit 

normal vector field along 𝑆𝑛 . Then  

       ∆𝑆𝑛 (𝑐)𝑓 = 𝑒𝑖𝑒𝑖 𝑓 −  ∇𝑒𝑖
𝑒𝑖 (𝑓)  

          = 𝑒𝑖𝑒𝑖 𝑓 + 𝑣𝑣 𝑓 −  ∇ 𝑣𝑣(𝑓) + 𝐵𝑒𝑖𝑒𝑖
 𝑓 − 𝑣𝑣 𝑓 + ∇ 𝑣𝑣 𝑓        3.11.9  

            = ∆ℝ𝑛+1𝑓 + 𝑛𝐻 𝑓 − 𝑣𝑣(𝑓) 

            = −
𝑛

𝑐
𝑣 𝑓 − 𝑣𝑣 𝑓 , 
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where 𝐻 =
1

𝑐
𝑣 is the mean curvature vector of 𝑆𝑛 𝑐  in ℝ𝑛+1.  

Since 𝑓 is a homogeneous function,  

      𝑣𝑓(𝑥) 𝑆𝑛 (𝑐) =  1
𝑐

𝜕

𝜕𝑡
𝑓(𝑡𝑥) 

𝑡=1
=

𝑑𝑓

𝑐
                                                          (3.11.10) 

And  

 𝑣𝑣𝑓(𝑥) 𝑆𝑛 (𝑐) =  1
𝑐2

𝜕2

𝜕𝑡2
𝑓(𝑡𝑥) 

𝑡=1
=

𝑑 𝑑−1 𝑓(𝑥)

𝑐2
                                           (3.11.11) 

Substituting (3.11.10) and (3.11.11) into (3.11.9) gives (3.11.8) and the proof is 

completed.   ∎  

Proposition 3.3.2 and Lemma 3.11.3 enable us to define minimal immersions by 

using homogeneous spherical harmonic functions  

𝑆𝑛   
𝑑(𝑛 + 𝑑 − 1)

𝑛
 → 𝑆𝑁 1 , 

where 𝑁 + 1 = dim 𝑆𝐻 𝑑 . In the case of 𝑛 = 2 and 𝑑 = 2 we have 𝑆2  3 →

𝑆4, which can be realized by the map   

𝛹 𝑥, 𝑦, 𝑧 =  
1

 3
𝑥𝑦,

1

 3
𝑥𝑧,

1

 3
𝑦𝑧,

1

2 3
 𝑥2 − 𝑦2 ,

1

6
 𝑥2 + 𝑦2 − 2𝑥2     

                                                                                                                  (3.11.12) 

where 𝑥2 + 𝑦2 + 𝑧2 = 3. It is called the veronese surface which is an imbedding 

of the real projective plane of curvature 
1

3
 into 𝑆4.  

The Clifford minimal hypersurface and the veronese surface are important mi-

nimal submanifolds in the sphere.  

3.12. CR-Submanifolds of a Kӓhler Manifold 

Let 𝑀  be a Kӓhler manifold with complex structure 𝙹, 𝑁 a Riemannian manifold 

isometrically immersed in 𝑀 , and 𝒟𝑥  the maximal holomorphic subspace of the 

tangent space 𝑇𝑥𝑁 of 𝑁. If the dimension of 𝒟𝑥  is the same for all x in 

𝑁, 𝒟𝑥  gives a holomorphic distribution 𝒟 on 𝑁. 
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 Recently, A. Bejancu introduced the notion of a CR-submanifold of 𝑀  as fol-

lows. A submanifold 𝑁 in a Kӓhler manifold 𝑀  is called a CR-submanifold if 

there exist on 𝑁 a differentiable holomorphic distribution 𝒟 such that its ortho-

gonal complement 𝒟⊥  is a totally real distribution, i.e. 𝙹𝒟⊥ ⊆ 𝑇𝑥
⊥𝑁. 

Let 𝑀  be a complex 𝑚-dimensional Kӓhler manifold with complex structure 𝙹, 

and 𝑁 a real 𝑛-dimensional Riemannian manifold isometrically immersed in 𝑀 . 

We denote by   ,   the metric tensor of 𝑀  as well as that induced on 𝑁. Let ∇ 

and ∇   be the covariant differentiations on 𝑁 and 𝑀 , respectively. Then the Gauss 

and Weingarten formulas for 𝑁 are given respectively by  

                            ∇ XY = ∇XY + σ X, Y                                                    (3.12.1) 

                            ∇ Xξ = −AξX + DXξ                                                       (3.12.2) 

For any vector fields 𝑋, 𝑌 tangent to 𝑁 and any vector field 𝜉 normal to 𝑁, where 

𝜎 denotes the second fundamental form, and 𝐷 the linear connection, called the 

normal connection, induced in the normal bundle 𝑇⊥𝑁.The second fundamental 

tensor 𝐴𝜉  is related to 𝜎 by 

                       𝐴𝜉𝑋, 𝑌 =  𝜎 𝑋, 𝑌 , 𝜉                                                          (3.12.3) 

For any vector field 𝑋 tangent to 𝑁, we put  

                                𝙹𝑋 = 𝑃𝑋 + 𝐹𝑋,                                                            (3.12.4) 

where 𝑃𝑋 and 𝐹𝑋 are the tangential and normal components of 𝙹𝑋, respectively. 

Then 𝑃 is an endomorphism of the tangent bundle 𝑇𝑁, and 𝐹 is a normal bundle 

valued 1-form on 𝑇𝑁. For any vector field ξ normal to, we put   

                     𝙹𝜉 = 𝑡𝜉 + 𝑓𝜉,                                                                            3.12.5  

where 𝑡𝜉 and 𝑓𝜉 are the tangential and normal components of 𝙹𝜉, respectively. 

Then 𝑓 is an endomorphism of the normal bundle 𝑇⊥𝑁 and t is a tangent bundle 

valued 1-form on 𝑇⊥𝑁.  

A Kӓhler manifold 𝑁 is called a complex space form if it is of constant holomor-

phic sectional curvature. We denote by 𝑀  𝑐  𝑜𝑟 𝑀 𝑚 𝑐    a complex 𝑚-

dimensional complex space form of constant holomorphic sectional curvature. 

Then the curvature tensor 𝑅  of 𝑀  𝑐  is given by  
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𝑅  𝑋, 𝑌 𝑍 = 𝑐

4
 
 𝑌, 𝑍 𝑋 −  𝑋, 𝑍 𝑌 +  𝙹𝑌, 𝑍 𝙹𝑋 −  𝙹𝑋, 𝑍 𝙹

+2 𝑋, 𝙹𝑌 𝙹𝑍
                    (3.12.6) 

for any vector fields 𝑋, 𝑌 and 𝑍 tangent to 𝑀  𝑐 . We denote the curvature ten-

sors associated with ∇ and 𝐷 by and 𝑅⊥  respectively.  

For the second fundamental form 𝜎, we define the covariant differentiation ∇  

with respect to the connection in  𝑇𝑁 ⊕  𝑇⊥𝑁  by  

 ∇ 𝑋𝜎  𝑌, 𝑍 = 𝐷𝑋 𝜎(𝑌, 𝑍) − 𝜎 ∇𝑋𝑌, 𝑍 − 𝜎 𝑌, ∇X𝑍                              (3.12.7)                                         

for any vector fields 𝑋,𝑌 and 𝑍 tangent to 𝑁. The equations of Gauss, Codazzi, 

and Ricci are then given respectively by  

𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑅  𝑋, 𝑌; 𝑍, 𝑊 +  𝜎 𝑋, 𝑊 , 𝜎(𝑌, 𝑍) −  𝜎 𝑋, 𝑍 , 𝜎(𝑌, 𝑊)    

                                                                                                                 (3.12.8) 

 𝑅  𝑋, 𝑌 𝑍 
⊥

=  ∇ 𝑋𝜎  𝑌, 𝑍 −  ∇ 𝑌𝜎  𝑋, 𝑍                                             (3.12.9) 

𝑅  X, 𝑌; 𝜉, 𝜂 = 𝑅⊥ 𝑋, 𝑌; 𝜉, 𝜂 −   𝐴𝜉 , 𝐴𝜂  𝑋, 𝑌                                       (3.12.10) 

where 𝑅  𝑋, 𝑌; 𝑍, 𝑊 =  𝑅 𝑋, 𝑌 𝑍, 𝑊 …etc, 𝑋, 𝑌, 𝑍, 𝑊 are tangent to 𝑁, 𝜉 and 𝜂 

are normal to 𝑁, and ⊥ in (3.12.9) denotes the normal component.   

3.12.1. Definition. A submanifold 𝑁 of a Kӓhler manifold 𝑀  is called a CR-

submanifold if there is a differentiable distribution 𝔇: 𝑥 → 𝔇𝑥 ⊆ 𝑇𝑥𝑁 on 𝑁 satis-

fying the following conditions:  

i. 𝔇 is holomorphic, i.e.𝙹𝔇𝑥 = 𝔇𝑥  for each  𝑥 ∈ 𝑁, and 

ii. the complementary orthogonal distribution 𝔇⊥: 𝑥 → 𝔇𝑥
⊥ ⊆ 𝑇𝑥𝑁 is totally real, 

 i.e. 𝙹𝔇𝑥
⊥ ⊂ 𝑇𝑥

⊥𝑁 for each 𝑥 ∈ 𝑁. 

If dim 𝔇𝑥
⊥ = 0  respectively, dim 𝔇𝑥 = 0 , then the CR-submanifold 𝑁 is a ho-

lomorphic submanifold (respectively, totally real submanifold).  

 If dim 𝔇𝑥
⊥ = dim 𝑇𝑥

⊥, then the CR-submanifold is an anti-holomorphic submani-

fold (or generic submanifold). A CR-submanifold is called a proper CR-subma-

nifold if it is neither holomorphic nor totally real.   
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We shall always denote by 𝑕 the complex dimension of 𝔇𝑥  and by 𝑝 the real di-

mension of 𝔇𝑥
⊥, i.e. 𝑕 = dim𝐶𝔇𝑥  and 𝑝 = dim𝑅𝔇𝑥

⊥. 

We denote by 𝜈 the complementary orthogonal subbundle of 𝙹𝔇⊥ in 𝑇⊥𝑁. 

Hence we have  

            𝑇⊥𝑁 = 𝙹𝔇⊥ ⊕ 𝜈,    𝙹𝔇⊥ ⊥ 𝜈                                                   (3.12.11) 

 

Let 𝑀  be a Kӓhler manifold. Then we have  

𝛻 𝙹 = 0 

If N is a CR-submanifold of 𝑀 , then (3.12.1) and (3.12.2) give  

                     𝙹∇𝑈𝑍 + 𝙹𝜎 𝑈, 𝑍 = −𝐴𝙹𝑧𝑈 + 𝐷𝑈𝙹𝑍                                      3.12.12  

for 𝑈 tangent to 𝑁 and 𝑍 in 𝔇⊥ . 

3.12.2. Lemma (Chen 1981). Let N be a CR–submanifold of a Kӓhler manifold 

𝑀 . Then we have  

                   ∇𝑈𝑍, 𝑋 =  𝙹𝐴𝙹𝑍𝑈, 𝑋 ,                                                                 (3.12.13) 

                 𝐴𝙹𝑍𝑊    = 𝐴𝙹𝑊𝑍,                                                                            (3.12.14) 

                   𝐴𝙹𝜉𝑋    = −𝐴𝜉𝙹𝑋,                                                                         (3.12.15) 

 for 𝑈 tangent to 𝑁, 𝑋 in 𝔇, 𝑍 and 𝑊 in 𝔇⊥ , and 𝜉 in 𝜈. 

Proof. (3.12.13) and (3.12.14) follow immediately from (3.12.12). And (3.12.15) 

follows from that fact that  𝜎 𝙹𝑋, 𝑌 , 𝜉 =  𝛻 𝑌𝙹𝑋, 𝜉 =  𝙹𝜎 𝑋, 𝑌 , 𝜉 . 

3.12.3. Lemma. Let N be a CR-submanifold of a Kӓhler manifold 𝑀 . Then for 

any 𝑍, 𝑊 in 𝔇⊥  we have  

                          𝐷𝑊𝙹𝑍 − 𝐷𝑍𝙹𝑊 ∈ 𝙹𝔇⊥                                                          (3.12.16) 

𝐏𝐫𝐨𝐨𝐟. For any 𝜉 in 𝜈 and 𝑍, 𝑊 in 𝔇⊥  we have  

 𝐴𝙹𝜉𝑍, 𝑊 = − 𝛻 𝑍𝙹𝑍, 𝑊 =  𝐷𝑍𝜉, 𝙹𝑊 = − 𝜉, 𝐷𝑍𝙹𝑊  

Thus we obtain  
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 𝜉, 𝐷𝑊𝙹𝑍 − 𝐷𝑍𝙹𝑊 =  𝐴𝙹𝜉𝑍, 𝑊 −  𝐴𝙹𝜉𝑊, 𝑍 = 0 

Since this true for all 𝜉 in 𝜈, (3.12.16) holds.  

  From Lemma (3.12.2) it follows that we have   

𝙹 𝑍, 𝑊 = 𝙹 𝛻𝑍𝑊 − 𝛻𝑊𝑍 = 𝐷𝑍𝙹𝑊 − 𝐷𝑊𝙹𝑍. 

Thus by Lemma (3.12.3) we obtain  

3.12.4. Lemma (Chen 1981). The totally real distribution 𝔇⊥  of a CR-

submanifold in a Kӓhler manifold is integrable.  

3.12.5. Lemma. Let 𝑁 be a CR-submanifold of a Kӓhler manifold 𝑀 . Then 𝔇 is 

integrable if and only if  

 𝜎 𝑋, 𝙹𝑌 , 𝙹𝑍 =  𝜎 𝙹𝑋, 𝑌 , 𝙹𝑍  

for any vectors 𝑋, 𝑌 in 𝔇, and 𝑍 in 𝔇⊥ . 

3.12.6. Lemma. For a submanifold 𝑁 in a Kӓhler manifd 𝑀 , the leaf 𝑁⊥ of  

𝔇⊥  is totally geodesic in 𝑁 if and only if  

                             𝜎 𝔇, 𝔇⊥ , 𝙹𝔇⊥ = 0                                                    (3.12.17) 

The following Lemma can be obtained easily from Lemma (3.12.3.4).  

3.12.7. Lemma. If (3.12.17) holds and 𝔇 is integrable, then for any 𝑋 in 𝔇 and 𝜉 

in 𝙹𝔇⊥, we have 

                                        𝐴𝜉𝙹𝑋 = −𝙹𝐴𝜉𝑋                                                 3.12.18  

 Let 𝑃, 𝐹, 𝑡 and 𝑓 be the endomorphism and vector-valued 1-forms defined by 

(3.12.15) and (3.12.16).  Put  

                 𝛻 𝑈𝑃 𝑉 = 𝛻𝑈 𝑃𝑉 − 𝑃𝛻𝑈𝑉,                                                     (3.12.19) 

                  𝛻 𝑈𝐹 𝑉 = 𝐷𝑈 𝐹𝑉 − 𝐹 𝛻𝑈𝑉 ,                                                (3.12.20) 

                    𝛻 𝑈𝑡 𝜉 = 𝛻𝑈 𝑡𝜉 − 𝑡𝐷𝑈𝜉,                                                       (3.12.21) 

 

                       𝛻 𝑈𝑓 𝜉 = 𝐷𝑈 𝑓𝜉 − 𝑓𝐷𝑈𝜉                                                  (3.12.22) 
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for 𝑈, 𝑉 tangent to 𝑁, and 𝜉 normal to 𝑁. Then the endomorphism 𝑃 (respective-

ly, endomorphism 𝑓, 1-forms 𝐹 or 𝑡) is parallel if 

𝛻 𝑃 = 0 (respectively,   𝛻 𝑓 = 0,    𝛻 𝐹 = 0,   or   𝛻 𝑡 = 0). 

 From (3.12.12), (3.12.13) and (3.12.15) we obtain  

            𝛻 𝑈𝑃 𝑉 = 𝑡𝜎 𝑈, 𝑉 + 𝐴𝐹𝑉𝑈                                                          (3.12.23) 

3.12.1. CR-Products in Kӓhler Manifolds 

According to Lemma (3.12.4), every CR-submanifold 𝑁 of a Kӓhler manifold is 

foliated by totally real submanifolds.  

3.12.1.1. Definition. A CR-submanifold 𝑁 of a Kӓhler manifold 𝑀  is called a 

CR-product if it is locally a Riemannian product of a holomorphic submanifold 

𝑁⊥  and a totally real submanifold 𝑁⊥  on 𝑀 . 

 First we give the following characterization of CR-products.  

3.12.1.2. Theorem (Chen 1981). A CR-submanifold of a Kӓhler manifold 𝑀  is 

CR-products if and only if 𝑃 is parallel, i.e.,   

𝛻 𝑃 = 0. 

Proof. If 𝑃 is parallel, (3.12.23) gives  

                   𝑡𝜎 𝑈, 𝑉 = −𝐴𝐹𝑉𝑈                                                                (3.12.1.1) 

for any vectors 𝑈,𝑉 tangent to 𝑁. In particular, if 𝑋 ∈ 𝔇 then 𝐹𝑋 = 0. Hence 

(3.12.1.1) implies  𝑡𝜎 𝑈, 𝑋 = 0, i. e.,  

                                      𝐴𝙹𝑍𝑋 = 0,                                                                     (3.12.1.2) 

for any 𝑍 in  𝔇⊥  and 𝑋 in 𝔇.Thus by Lemma (3.12.15)  and Lemma (3.12.16)   

we know that 𝔇 is integrable and the leaf 𝑁⊥of 𝔇⊥  is totally geodesic in 𝑁. Let 

𝑁⊥ be a leaf of 𝔇. For any 𝑋, 𝑌 in 𝔇, and 𝑍 in  𝔇⊥, (3.12.1)  and Lemma 

(3.12.2)  give  

0 =  𝐴𝙹𝑍𝑌, 𝑋 =  𝙹𝐴𝙹𝑍𝑌, 𝙹𝑋 =  𝛻𝑌𝑍, 𝙹𝑋 = − 𝑍, 𝛻𝑌𝙹𝑋 . 

 From this we may conclude that 𝑁⊥  is totally geodesic in 𝑁, and 𝑁 is a CR–

product in 𝑀 . 
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Conversely, if 𝑁 is a CR-product, then  𝛻𝑈𝑌 ∈ 𝔇 for any 𝑌 in 𝔇 and 𝑈 tangent 

to 𝑁. Thus by (3.12.2.1) and (3.12.2.2), we may obtain  

 𝙹𝜎 𝑈, 𝑌 = 𝜎 𝑈, 𝙹𝑌 . 

From this, together with (3.12.1) and (3.12.2) we may prove that  

 𝛻 𝑈𝑃 𝑌 = 0. 

 Similarly, from ∇U Z ∈ 𝔇⊥  for any 𝑍 in 𝔇⊥  and 𝑈 tangent to 𝑁, we may also 

prove that  𝛻 𝑈𝑃 𝑍 = 0. 

From the proof of Theorem (3.12.1.2) we have the following.  

3.12.1.2. Lemma. A CR-submanifold 𝑁 in a kӓhler manifold 𝑀  is a CR-product 

if and only if  

𝐴𝙹𝔇⊥𝔇 = 0 

 Remark. In Bejancu-Kon-Yano proved that if 𝑁 is an anti-holomorphic subma-

nifold and 𝛻 𝑃 = 0, then 𝑁 is a CR-product.  

 3.12.1.3. Lemma (Bejancu 1986). Let 𝑁 be a CR-product of a Kӓhler 

manifold 𝑀 .Then for any unit vectors 𝑋 in 𝔇 and 𝑍 in  𝔇⊥  we have  

𝐻 𝐵 𝑋, 𝑍 = 2 𝜎(𝑋, 𝑍) 2, 

 where 𝐻 𝐵 𝑋, 𝑍 = 𝑅  𝑋, 𝙹𝑋; 𝙹𝑍, 𝑍  is the holomorphic bisectional curvature of  

𝑋  Z . 

Proof: Let 𝑁 be a CR-product in 𝑀 .Then we have (3.12.1.2) for any 𝑍 in 𝔇⊥ and 

𝑋 in 𝔇. Thus by equation (3.12.9) of Codazzi we obtain  

𝑅  𝑋, 𝙹𝑋; 𝑍, 𝙹𝑍 =  𝐷𝑋𝜎 𝙹𝑋, 𝑍 − 𝐷𝙹𝑋σ 𝑋, 𝑍 , 𝙹𝑍 , 

where we have used the fact that 𝑁𝑇  is totally geodesic in 𝑁. Since 

 𝜎 𝔇, 𝔇⊥ , 𝙹𝔇⊥ = 0, (3.12.1.2) and (3.12.1.3) imply  

𝑅  𝑋, 𝙹𝑋; 𝑍, 𝙹𝑍 =  𝜎 𝑋, 𝑍 , 𝐷𝙹𝑋𝙹𝑍 −  𝜎 𝙹𝑋, 𝑍 , 𝐷𝑋𝙹𝑍  

                          =  𝜎 𝑋, 𝑍 , 𝙹𝛻 𝐽𝑋 𝑍 −  𝜎 𝙹𝑋, 𝑍 , 𝙹𝛻 𝑋𝑍  
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                                                      =  𝜎 𝑋, 𝑍 , 𝙹𝜎(𝙹𝑋, 𝑍) −  𝜎 𝙹𝑋, 𝑍 , 𝙹𝜎(𝑋, 𝑍)            

                                                              (3.12.1.4) 

Thus by (3.12.1.2) and Lemma (3.12.7) we obtain the lemma.  

3.12.1.4. Theorem (Chen 1981). Let 𝑀  be a kӓhler manifold with negative ho-

lomorphic bisectional curvature. Then every CR-product in 𝑀  is either a holo-

morphic submanifold or a totally real submanifold. In particular, there exist no 

proper CR-product in any complex hyperbolic space 𝑀 𝑚 𝑐  𝑐 < 0 .  

3.13. Totally Real Submanifolds 

Let 𝑀 be an 𝑛-dimensional Riemannian manifold and 𝑀  be a Kähler manifold of 

dimension 2 𝑛 + 𝑝 , 𝑝 ≥ 0. Let 𝙹  be the almost complex structure of 𝑀  and let 

𝑔  resp. 𝑔   be the Riemannian metric of 𝑀  resp. 𝑀  . We call 𝑀 an totally real 

submanifold of 𝑀  if 𝑀 admits an isometric immersion into 𝑀  such that for all 𝑥,  

𝙹  𝑇𝑥 𝑀  ⊂ 𝑣𝑥(𝑀), where 𝑇𝑥 𝑀  denotes the tangent space of 𝑀 at 𝑥 

and 𝑣𝑥  the normal space at 𝑥. By a plane section we mean a 2-dimensional linear 

subspace of a tangent space. A plane section 𝜏 is called holomorphic (respective-

ly, anti -holomorphic) if  𝙹 𝜏 = 𝜏   respectively, if 𝙹 𝜏 is perpendicular to 𝜏 . A 

totally geodesic submanifold 𝑃𝑛(ℝ) in 𝑃𝑛(₵), 𝑆1 × 𝑆1 in 𝑃2(₵) and an immer-

sion 𝑃𝑛(₵) → 𝑃𝑛 𝑛+2 (₵) defined by  𝑧𝑖 → [𝑧𝑖𝑧 𝑗 ] give typical examples of total-

ly real submanifolds. 

3.13.1. Proposition (Chen and Ogiue 1974). Let 𝑀 be a submanifold immersed 

in an almost Hermition manifold 𝑀 . Then M is a totally real submanifold of 𝑀  if 

and only if every plane section of 𝑀 is antiholomorphic.   

 Proof. Let 𝑋 be an arbitrary vector in 𝑇𝑥 𝑀 , and let 𝑒1 = 𝑋, 𝑒2, … , 𝑒𝑛  be a basis 

of 𝑇𝑥 𝑀 .We denote by 𝜏𝑖𝑗  the plane section spanned by 𝑒𝑖  and 𝑒𝑗 .  

Assume that every plane section is antiholomorphic. Then 𝙹 𝜏1𝑗  are perpendicular 

to 𝜏1𝑗  for 𝑗 = 2, … , 𝑛. Therefore 𝙹 𝑋 is perpendicular to 𝑒1, 𝑒2, … , 𝑒𝑛  so that  

𝙹 𝑋 ∈ 𝑣𝑥 . this implies that 𝑀 is a totally real submanifold of 𝑀. The converse is 

clear.  ∎ 
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Chapter (4) 

Submanifolds of Finite Type 

4.1. Introduction 

The study of submanifolds of finite type began in the late 1970's through B. Y. 

Chen's attempts to find the best possible estimate of the total mean curvature of a 

compact submanifold of a space and to find a notion of “degree” for submani- 

folds of Euclidean space. Similar to minimal submanifolds,  submanifolds of fi-

nite type are characterized by a variational minimal principle in a natural way. 

 The main objects of studies in algebraic geometry are algebraic varieties. Be-

cause an algebraic variety is defined by using algebraic equations, one can define 

the degree of an algebraic variety by its algebraic structure. 

On the other hand, according to Nash's imbedding theorem, every Riemannian 

manifold can be realized as a Riemannian submanifold in some Euclidean space 

with sufficiently high codimension. However, one lacks the notion of the degree 

for Riemannian submanifolds in Euclidean spaces. 

The family of submanifolds of finite type is huge, which contains many impor-

tant families of submanifolds, including minimal submanifolds of Euclidean 

space, minimal submanifolds of hypersphere, parallel submanifolds as well as 

equivariant immersed compact homogeneous submanifolds. 

On one hand, the notion of finite type submanifolds provides a very natural way 

to apply spectral geometry to study submanifolds. One the other hand, one can 

also apply the theory of finite type submanifolds to investigate the spectral geo-

metry of submanifolds. 

4.2. Order and Type of Submanifolds 

As mentioned in introduction, one lacks the concept of degree for a submanifold 

of a Euclidean 𝑚-space 𝔼𝑚 .  However, one can use the induced Riemannian 

structure on a submanifold 𝑀 of 𝔼𝑚  to introduce a pair of well- defined numbers 

𝑝 and 𝑞 associated with the submanifold 𝑀.  

Here 𝑝 is a natural number and 𝑞 is either a natural number  ≥ 𝑝 or  +∞ . We 

call the pair  𝑝, 𝑞  the order of submanifold 𝑀; more precisely, 𝑝 is the lower or-
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der and 𝑞 the upper order of the submanifold. The submanifold is said to be of 

finite type if its upper order is finite and it is of infinite type if its upper order is 

+∞.  

The order of a submanifold is defined as follows. 

Let (𝑀, 𝑔) be a compact Riemannian 𝑛-manifold with Riemannian connection ∇. 

And let ∆= −trace ∇2 denote the Laplacian operator of (𝑀, 𝑔) acting as an ellip-

tic differential operator on 𝐶∞ 𝑀 , the space of all smooth functions on 𝑀. It is 

well known that the eigenvalues of ∆ form a discrete infinite sequence: 

        0 = 𝜆0 < 𝜆1 < 𝜆2 < ⋯ ↗ ∞.                                                           (4.2.1) 

Let 𝑉𝑘 =  𝑓 ∈ 𝐶∞ 𝑀 : ∆𝑓 = 𝜆𝑘𝑓  be the eigenspace of ∆ with eigenvalue 𝜆𝑘 . 

Then 𝑉𝑘  is finite dimensional. We define an inner product (  , ) on 𝐶∞ 𝑀  by 

                            𝑓, 𝑕 = ∫ 𝑓𝑕 𝑑𝑉
𝑀

                                                               (4.2.2) 

where 𝑑𝑉 is the volume element of (𝑀, 𝑔) and for 𝑓, 𝑕 ∈ 𝐶∞(𝑀), then the de-

composition  𝑉𝑘
∞
𝑘=0  is orthogonal with respect to this structure. Moreover 

 𝑉𝑘
∞
𝑘=0   is dense in 𝐶∞ 𝑀  (in 𝐿2

 -sense). 

Since 𝑀 is closed, 𝑉0 is one-dimensional and it consists only of constant func-

tions. 

If we denote by ⨁  𝑉𝑘  the completion of  𝑉𝑘 , we have 

 

                            𝐶∞ 𝑀 = ⨁ 𝑘𝑉𝑘 .                                                                 (4.2.3) 

For each function 𝑓 ∈ 𝐶∞ 𝑀 , let 𝑓𝑡  denote the projection of 𝑓 onto the subspace 

𝑉𝑡   𝑡 = 0,1,2, … .  Then we have the following spectral decomposition: 

                 𝑓 =  𝑓𝑡
∞
𝑡=0 ,  in 𝐿2– sense .                                                           (4.2.4) 

Because 𝑉0 is 1-dimensional, for any non-constant function 𝑓 ∈ 𝐶∞ 𝑀 , there is 

a positive integer 𝑝 ≥ 1 such that 𝑓𝑝 ≠ 0 and  

        𝑓 − 𝑓0 =  𝑓𝑡𝑡≥1 ,                                                                                      (2.4.5) 
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where  𝑓0 ∈ 𝑉0 is a constant. If there are infinite many 𝑓𝑡ʼs which are nonzero, 

we put 𝑞 = +∞.  

Otherwise, there is an integer 𝑞, 𝑞 ≥ 𝑝 such that 𝑓𝑞 ≠ 0 and 

                    𝑓 − 𝑓0 =  𝑓𝑡
𝑞
𝑡=𝑝                                                                            (4.2.6) 

If we allow 𝑞 to be +∞, we have the decomposition (4.2.6) in general. The set  

                   𝑇 𝑓 =  𝑡 ∈ 𝑁0: 𝑓𝑡 ≠ 0                                                                4.2.7   

is called the order of 𝑓. The smallest element in 𝑇(𝑓)  is called the lower order of 

𝑓, denoted by 𝑙.𝑜.(𝑓), and the supremum of 𝑇(𝑓)  is called the upper order of 𝑓, 

denoted by 𝑢.𝑜.(𝑓). A function 𝑓 in 𝐶∞ 𝑀  is said to be of finite if 𝑇(𝑓) is a finite 

set, i.e., if its spectral decomposition contains only finitely many non-zero terms. 

Otherwise 𝑓 is said to be of infinite type. 𝑓 is said to be of 𝑘-type if 𝑇(𝑓) con-

tains exactly 𝑘 elements.  

For an isometric immersion 𝑥: 𝑀 → 𝔼𝑚  of a compact Riemannian manifold 𝑀 

into a Euclidean 𝑚-space, we put  

                          𝑥 =  𝑥1, … , 𝑥𝑚 ,                                                                      (4.2.8) 

where 𝑥𝐴  is the A-th Euclidean coordinate function of 𝑀 in 𝔼𝑚 . For each  𝑥𝐴 , we 

have  

      𝑥𝐴 −  𝑥𝐴 0 =   𝑥𝐴 𝑡
𝑞𝐴
𝑡=𝑝𝐴

, 𝐴 = 1, … , 𝑚.                                                 (4.2.9) 

For each isometric immersion 𝑥: 𝑀 → 𝔼𝑚 , we put  

                       𝑝 = inf  pA  
A

,        𝑞 = sup  qA  
A

                                                         (4.2.10) 

where A ranges among all 𝐴 = 1,2, … , 𝑚 such that  𝑥A −  𝑥A 0 ≠ 0. It is easy to 

see that 𝑝 and 𝑞 are well-defined geometric invariants such that 𝑝 is a positive 

integer and 𝑞 is either +∞ or an integer ≥ 𝑝. By using the (4.2.8), (4.2.9) and 

(4.2.10) we have the following spectral decomposition of 𝑥 (in vector form); 

 

                                𝑥 = 𝑥0 +  𝑥𝑡
𝑞
𝑡=𝑝   .                                                                 4.2.11  
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An immersion 𝑥 is sometime said to be of mono-order (bi-order, tri-order…) if 

there are only 1 (2, 3…) of 𝑥𝑡  which is (are) non-zero. If 𝑝 = 𝑞, we just say that 

𝑥 is order 𝑝. We define 𝑇(𝑥) by  

                                           𝑇 𝑥 =  𝑡 ∈ 𝑁0: 𝑥𝑡 ≠ 0 . 

The immersion 𝑥 or the submanifold 𝑀 is said to be of 𝑘-type if 𝑇(𝑥) contains 

exactly 𝑘 elements. Similarly we can define the lower order and the upper order 

of the immersion.  

The immersion 𝑥 is said to be of finite type if its upper order 𝑞 is finite; and the 

immersion is said to be of infinite type if its upper order is +∞.  

For an isometric immersion 𝑥: 𝑀 → 𝔼𝑚  of a compact Riemannian manifold 𝑀 

into 𝔼𝑚 , the constant vector 𝑥0 in (4.2.11) is exactly the center of mass of 𝑀 

in 𝔼𝑚 .  

Given two 𝔼𝑚 -valued functions 𝑣, 𝑤 on 𝑀, we define the inner product 𝑣, 𝑤 by  

                     𝑣, 𝑤 = ∫  𝑣, 𝑤 𝑑𝑉
𝑀

                                                               (4.2.12) 

where  𝑣, 𝑤  denotes the Euclidean inner product of 𝑣, 𝑤.  

For an isometric immersion 𝑥: 𝑀 → 𝔼𝑚  of a compact Riemannian manifold 𝑀 

into 𝔼𝑚 , the components of the spectral decomposition (4.2.11) are mutually or-

thogonal, i.e.  

                         𝑥𝑡 , 𝑥𝑠 = 0, 𝑡 ≠ 𝑠                                                               (4.2.13) 

One cannot make the spectral decomposition of a function on a noncompact 

Riemannian manifold in general. However, it remains possible to define the no-

tion of a function of finite type and the related notions of order… etc for those 

functions. For example, a function f is said to be of finite type if it is a finite sum 

of eigenfunctions of the Laplacian. More precisely, a function is of finite type if 

it can be written as a finite sum: 

                                                                           𝑓 =  𝑓𝑖
𝑘
𝑖=1  

where 𝑓1, … , 𝑓𝑘  are (non zero) eigenfunctions of the Laplacian with 

eigenvalues 𝜆𝑡1
, … , 𝜆𝑡𝑘

 are assumed to be mutually distinct.   

We define the order 𝑇(𝑓) of 𝑓 to be the set  𝑡1 , … , 𝑡𝑘 ; Moreover,  
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𝑢. 𝑜.  𝑓 = 𝑚𝑎𝑥 𝑇 𝑓  and 𝑙. 𝑜.  𝑓 = 𝑚𝑖𝑛 𝑇 𝑓 . 

Similarly, for an isometric immersion 𝑥: 𝑀 → 𝔼𝑚  of a non-compact manifold 𝑀 

into 𝔼𝑚 , the immersion (or the submanifold) is said to be of finite type if it ad-

mits a finite spectral decomposition  

                       𝑥 =  𝑥𝑡
𝑞
𝑡=𝑝 ,   ∆𝑥𝑡 = 𝜆𝑡𝑥𝑡                                                             ( 4.2.14) 

for some natural numbers 𝑝 and 𝑞. Otherwise, the immersion is said to be of in-

finite type. When 𝑀 is compact, the compact 𝑥0 in spectral decomposition 

(4.2.11) is a constant vector.  

However, when 𝑀 is noncompact, the component 𝑥0 is not necessary a constant 

vector. A finite type immersion 𝑥: 𝑀 → 𝔼𝑚  is said to be null if the component 

𝑥0 in its spectral decomposition (4.2.14) is non-constant.  

For instance, a null 2-type immersion is an immersion with the following simple 

spectral decomposition:  

                              𝑥 = 𝑥0 + 𝑥𝑝 ,   ∆𝑥 = 𝜆𝑝𝑥𝑝 ,                                              (4.2.15) 

for some non-constant vector functions 𝑥0, 𝑥𝑝 , where 𝜆𝑝  is a non-zero eigenvalue 

of the Laplacian of 𝑀.  

It is easy to see that if two isometric immersions 𝑥 and 𝑦 of a Riemannian mani-

fold 𝑀 into a Euclidean space is congruent, then they have the same order, 

i.e.,𝑇 𝑥 = 𝑇(𝑦), hence they also have the same type number.  

For finite type isometric immersions of a Riemannian manifold, we have the fol-

lowing general result.  

 4.2.1. Theorem (Chen 1996). Let 𝑥: 𝑀 → 𝔼𝑚  be a 𝑘- type isometric immersion 

of order  𝑇 𝑥 =  𝑡1 , … , 𝑡𝑘  and 𝐿: 𝔼𝑚 → 𝔼𝑁  be a linear map. If the composition 

𝐿 ∘ 𝑥: 𝑀 → 𝔼𝑁 is isometric, then 𝐿 ∘ 𝑥 is of finite type.  

  Moreover, the type number of 𝐿 ∘ 𝑥 is at most 𝑘 and the order 𝑇 𝐿 ∘ 𝑥  is a sub-

set of the order  𝑇(𝑥)  of 𝑥.  

This result follows simply from the fact that a linear combination of some linear 

combinations of eigenfunctions of the Laplacian is also a linear combination of 
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eigenfunctions of the Laplacian. For example, let 𝛾: 𝑆1 1 → 𝔼4 be a 2-type 

isometric immersion of order  1,3  given by   

       𝛾 𝑠 =  1

 2
𝑠𝑖𝑛 𝑠 , 1

 2
𝑐𝑜𝑠 𝑠 , 1

3 2
𝑠𝑖𝑛 3𝑠 , 1

3 2
𝑐𝑜𝑠 3𝑠 

𝑇
,                              (4.2.16) 

which is regarded as a column vector and let 𝐿 be the linear map from 𝔼4 into 𝔼3 

defined by  

                   𝐿 =  

 2   0   0   0
0    −1

 2
    0   1

 2

−1

 2
    0   1

 2
   0

                                                                     4.2.17   

Then the composition 𝐿 ∘ 𝛾: 𝑆1 1 → 𝔼3 is an isometric immersion given by 

𝐿 ∘ 𝛾(𝑠) =  𝑠𝑖𝑛 𝑠 , −
1

2
𝑐𝑜𝑠 𝑠 +

1

6
𝑐𝑜𝑠 3𝑠 , −

1

2
𝑠𝑖𝑛 𝑠 +

1

6
𝑠𝑖𝑛 3𝑠 

𝑇
 

which is also a 2-type curve of order  1,3  lying fully in 𝔼3 but not fully in 𝔼4. 

4.2.1. Remark. Theorem 4.2.1 implies, in particular, that if 𝑥: 𝑀 → 𝔼𝑚  is an 

isometric immersion and 𝑥 = 𝐿 ∘ 𝑥: 𝑀 → 𝔼𝑚 ⊂ 𝔼𝑚  where 𝐿: 𝔼𝑚 ⊂ 𝔼𝑚  is inclu-

sion, then 𝑇 𝑥 = 𝑇 𝑥  .  

4.2.2. Remark. For an isometric immersion 𝑥: 𝑀 → 𝔼𝑚  of a Riemannian 𝑛-

manifold into 𝔼𝑚 , one has the following formula of E-Beltrami:  

                                         ∆𝑥 = −𝑛𝐻                                                             (4.2.18) 

where 𝐻 denotes the mean curvature vector of the immersion.  

4.2.3. Remark. Let 𝑥: 𝑀 → 𝔼𝑚  be an isometric immersion a Riemannian 𝑛-

manifold. Then the Laplacian operator ∆ of 𝑀 gives rise to a differentiable map   

                             𝐿: 𝑀 → 𝔼𝑚                                                                           (4.2.19) 

which is called the Laplace map. The image 𝐿(𝑀) of the Laplace map is called 

the Laplace image and the transformation 𝔗: 𝑀 → 𝐿 𝑀  from 𝑀 onto the Lap-

lace image via the Laplace operator is called the Laplace transformation of the 

immersion 𝑥: 𝑀 → 𝔼𝑚 .  

The Laplace map of a submanifold in a Euclidean space is closely related with 

the submanifold via Beltrami's formula (4.2.18).  
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4.3. Finite Type Submanifolds 

We recall some basic definitions, results and formulas.  

 Let 𝑥: 𝑀 → 𝔼𝑚  be an isometric immersion of a (connected) Riemannian mani- 

fold 𝑀 into the Euclidean 𝑚˗space 𝔼𝑚 . Denote by ∆ the Laplace operator of 𝑀. 

The immersion 𝑥 is said to be of finite type if the position vector field of 𝑀 in 

𝔼𝑚 , also denoted by 𝑥, can be expressed as finite sum of 𝔼𝑚 -valued eigenfunc-

tions of the Laplace operator, i.e., if x can be expressed as  

                                  𝑥 = 𝑐 + 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘                                                   4.3.1  

where 𝑐 is a constant vector in 𝔼𝑚  and 𝑥1, … , 𝑥𝑘  are nonconstant 𝔼𝑚 -valued 

maps satisfying  

                         ∆𝑥𝑖 = 𝜆𝑖𝑥𝑖 , 𝑖 = 1,2, … , 𝑘                                                         4.3.2  

The composition (4.3.1) is called the spectral decomposition or the spectral reso-

lution of the immersion 𝑥. In particular, if all of the eigenvalues 𝜆1 , … , 𝜆𝑘  asso-

ciated with the spectral decomposition are mutually different, then the immersion 

𝑥 (or the submanifold 𝑀) is said to be of 𝑘-type. In particular, if one of 

𝜆1, … , 𝜆𝑘  is zero, then the immersion is said to be of null 𝑘-type.  

Clearly, every submanifold of null 𝑘-type is non-compact. A submanifold is said 

to be of infinite type if it is not of finite type. In terms of finite type submani-

folds, a result of states that a submanifolds of 𝔼𝑚  is of 1-type if and only if it is 

 either a minimal submanifold of 𝔼𝑚or a minimal submanifold of a hypersphere 

of 𝔼𝑚 .  

For a sphere isometric immersion 𝑥: 𝑀 → 𝑆𝑐
𝑚−1 ⊂ 𝔼𝑚 , the immersion is called 

Mass-symmetric in 𝑆𝑐
𝑚−1 if the center of gravity of 𝑀 in 𝔼𝑚  coincides with the 

center 𝑐 of the hyperspheres 𝑆𝑐
𝑚−1 in 𝔼𝑚 .  

4.4. Minimal Polynomial of Finite Type Submanifolds 

For a finite type submanifold 𝑀 satisfying (4.3.1) and (4.3.2), the polynomial 𝑃 

defined by   

                     𝑃 𝑡 =  (𝑡 − 𝜆𝑖)
𝑘
𝑖=1 ,                                                                 (4.4.1) 
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satisfies  𝑃 ∆  𝑥 − 𝑐 = 0. This polynomial 𝑃 is called the minimal polynomi-

al 𝑀. For 𝑛-dimensional submanifold 𝑀 of a Euclidean space, the mean curva-

ture vector 𝐻 satisfies Beltramiʼs formula:  

                                     ∆𝑥 = −𝑛𝐻                                                                           (4.4.2) 

 It follows from (4.4.2) that the minimal polynomial 𝑄 also satisfies 

𝑄 ∆ 𝐻 = 0. 

Conversely, if 𝑀 is compact and if there exists a constant vector 𝑐 and a non-

trivial polynomial 𝑄 such that 𝑄 ∆  𝑥 − 𝑐 = 0 or 𝑄 ∆ 𝐻 = 0 , then 𝑀 are al-

ways of finite type. This characterization of finite type submanifold via the mi-

nimal polynomial plays an important role in the study of finite type submani-

folds.  

When 𝑀 is non-compact, the existence of a non-trivial polynomial 𝑄 satisfying 

 𝑄 ∆ 𝐻 = 0 does not guarantee 𝑀 to be finite. On the other hand, if either 𝑀 is 

one dimensional or 𝑄 is a polynomial of degree 𝑘 with exactly 𝑘 distinct roots, 

then the existence of the polynomial 𝑄 satisfying 𝑄 ∆  𝑥 − 𝑐 = 0 for some 

constant vector 𝑐 does guarantee that 𝑀 is finite type.  

4.4.1. Proposition (Chen 1984). Let M be a compact submanifold of 𝔼𝑚 . Then 

𝑀 is of 1-type if and only if 𝑀 is a minimal submanifold of a hypersphere of  

𝔼𝑚 . 

For finite type submanifolds, we have the following characterization theorem. 

4.4.2. Theorem (Chen 1984). Let 𝑀 be a compact submanifold of  𝔼𝑚 . Then 𝑀 

is of finite type if and only if there is a polynomial 𝑄(𝑡) ≠ 0 such that 

 𝑄 ∆ 𝐻 = 0, where H is the mean curvature vector of M in 𝔼𝑚 . 

4.5. A Basic Formula for ∆𝑯 

The following basic formula of ∆𝐻 derived in plays important role in the study 

of submanifolds of low type as well as in the study of biharmonic submanifolds:  

∆𝐻 = ∆𝐷𝐻 +  𝑕 𝑒𝑖 , 𝐴𝐻𝑒𝑖 
𝑛
𝑖=1 + 2𝑡𝑟𝑎𝑐𝑒 𝐴𝐷𝐻 + 𝑛

2
 𝑔𝑟𝑎𝑑 𝐻, 𝐻                 4.5.1   

 where ∆𝐷is the Laplacian operator associated with the normal connection  𝐷, h 

is the second fundamental form, and  𝑒1, … , 𝑒𝑛  is a local orthonormal frame of 



100 
 

𝑀. In particular, if 𝑀 is a hypersurface of a Euclidean space 𝔼𝑛+1, then formula 

(4.5.1) reduces to  

∆𝐻 =  ∆𝛼 + 𝛼 𝑕 2 𝜉 + 2𝑡𝑟𝑎𝑐𝑒 𝐴𝐷𝐻 + 𝑛

2
𝑔𝑟𝑎𝑑 𝐻, 𝐻 ,                                (4.5.2)     

where 𝛼 is the mean curvature and 𝜉 is a unit normal vector of 𝑀 in 𝔼𝑛+1.  

Similar formulas hold as well if the ambient space is pseudo-Euclidean.  

4.6. 𝜹-Invariants and Ideal Immersions 

Let 𝑀 be a Riemannian 𝑛-manifold. Denote by 𝐾(𝐻)  the sectional curvature of a 

plane section 𝜋 ⊂ 𝑇𝑝𝑀, 𝑝 ∈ 𝑀. For any orthonormal basis 𝑒1, … , 𝑒𝑛  of  𝑇𝑝𝑀 the 

scalar curvature 𝜏 at 𝑝 is  

𝜏 𝑝 =  𝐾(𝑒𝑖  𝑒𝑗 )

𝑖>𝑗

 

 Let 𝐿 be a 𝑟-subspace of  𝑇𝑝𝑀 with 𝑟 ≥ 2 and let  𝑒1, … , 𝑒𝑟  be an orthonormal-

basis of 𝐿. The scalar curvature  𝜏(𝐿) of 𝐿 is defined by   

                     𝜏 𝐿 =  𝐾(e𝛼 𝑒𝛽 )α<𝛽 ,1 ≤ 𝛼, 𝛽 ≤ 𝑟.                                      (4.6.1)               

  For given integers 𝑛 ≥ 3, 𝑘 ≥ 1, we denoted by 𝑆(𝑛, 𝑘)  the finite set consisting  

of 𝑘-tuples  𝑛1, … , 𝑛𝑘  of integers satisfying 2 ≤ 𝑛1, … , 𝑛𝑘 < 𝑛 and  𝑛𝑖 ≤ 𝑛𝑘
𝑖=1 .  

Put 𝑆 𝑛 =  𝑆 𝑛, 𝑘 𝑘≥1 . For each 𝑘-tuple  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛 , B. Y. Chen in-

troduced in 1990s the Riemannian invariant 𝛿 𝑛1, … , 𝑛𝑘  by   

𝛿 𝑛1, … , 𝑛𝑘  𝑝 = 𝜏 𝑝 − 𝑖𝑛𝑓 𝜏 𝐿1 + ⋯ + 𝜏(𝐿𝑘) ,                                   (4.6.2) 

𝑝 ∈ 𝑀, where 𝐿1, … , 𝐿𝑘  run over all k mutually orthogonal submanifold of Tp𝑀 

such that dim 𝐿𝑗 = 𝑛𝑗 , 𝑗 = 1, … , 𝑘. For an 𝑛-dimensional submanifold of 𝔼𝑚  and 

 for a 𝑘-tuple  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛 , B. Y. Chen proved the following general sharp 

inequality:  

                     𝛿 𝑛1, … , 𝑛𝑘 ≤
𝑛2(𝑛+𝑘−1  𝑛𝑗 )

2 𝑛+𝑘− 𝑛𝑗  
 𝐻 2,                                                 (4.6.3) 

 where  𝐻 2 =  𝐻, 𝐻  denotes the squared mean curvature of 𝑀.  
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A submanifold 𝑀 of 𝔼𝑚  is called 𝛿 𝑛1, … , 𝑛𝑘  ideal if it satisfies the equality 

case of (4.6.3) identically. Roughly speaking, ideal submanifolds are submani-

folds which receive the least possible tension from its ambient space.  

4.7. Proper and 𝝐-Super Biharmonic Submanifolds 

An immersed submanifold 𝑀 of a Riemannian manifold 𝑀  is said to be properly 

immersed if the immersion is a proper map, i.e., the preimage of each compact  

set in 𝑀  is compact in 𝑀. 

A hypersurface of a Euclidean space is called weakly convex if it has nonnega-

tive principle curvatures. Also, a hypersphere of an  𝑛 + 1 -sphere is called iso-

parametric if it has constant principle curvatures. The total mean curvature of a 

submanifold 𝑀 in a Riemannian manifold is defined to be  

∫ 𝐻 2𝑑𝑣. 

Let 𝑀 be a submanifold of a Riemannian manifold with inner product    ,  .  Then 

𝑀 is called 𝜖–superbiharmonic if it satisfies   

                            ∆𝐻, 𝐻 ≥  𝜖 − 1  𝛻𝐻 2,                                                           (4.7.1)                               

  where 𝜖 ∈  0,1  is constant.  

 For a complete Riemannian manifold  𝑁, 𝑕  and 𝛼 ≥ 0, if the sectional curva-

ture 𝐾𝑁 of 𝑁 satisfies  

              𝐾𝑁 ≥ −𝐿(1 + 𝑑𝑖𝑠𝑡𝑁(. , 𝑞0)2)
𝛼
2                                                          (4.7.2) 

For some 𝐿 > 0 and 𝑞0 ∈ 𝑁, then we call that 𝐾𝑁  has a polynomial growth 

bound of order 𝛼 from below.  

4.8. Spherical Hypersurfaces of Finite Type 

4.8.1. Finite Type Spherical Hypersurfaces 

In contrast to Euclidean hypersurfaces, there do exist many 1–type and 2–

typespherical hypersurfaces.  B. Y. Chen proved in that every compact hypersur-

faces of a hypersphere 𝑆𝑛+1 ⊂ 𝔼𝑛+2, not a small hypersphere, is mass-

symmetric and of 2-type if and only if it has non-zero constant mean curvature 

and constant scalar curvature.  



102 
 

Consequently, every isoparametric hypersurfaces of a hypersphere is either of 1-

type or mass-symmetric and 2-type. Since there exist non-minimal isopara-

metric hypersurfaces in hyperspheres, there do exist 2-type hypersurfaces of 

hyperspheres.  

4.8.2. Finite Type Hypersurfaces of a Euclidean Space 

The class of submanifolds of finite type is very large. For example, minimal 

submanifolds of hyperspheres are of 1-type. Isoparametric hypersurfaces of a 

hypersphere are either of 1-type or of 2-type. Moreover, parallel submanifolds 

and compact homogeneous Riemannian manifolds, equivariantly immersed in a 

Euclidean space, are of finite type.  

On the other hand, very few hypersurfaces of finite type are known. For exam-

ple, no surfaces of finite type in a Euclidean 3-space are known, other than mi-

nimal surfaces, circular cylinders and spheres.  

In views of these facts, B. Y. Chenʼs proposed more than a decade ago the fol-

lowing basic problem in the theory of finite type.  

Problem 1. Classify finite type hypersurfaces of a Euclidean space. In particular, 

classify finite type surfaces of a Euclidean 3-space. For compact finite type sur-

faces in a Euclidean 3-space, B. Y. Chen  

Conjecture 1: The only compact finite type surfaces of a Euclidean 3-space are 

the spheres.  

For closed 2-type hypersurfaces of a Euclidean space we have the following re-

sult proved by the B. Y. Chen and H. S. Lue. 

4.8.2.1. Theorem (Chen and Lue 1988).  

(1) Every compact 2-type hypersurface of a Euclidean space has non-constant 

mean curvature.  

 (2) If 𝑀 is a 2-type hypersurface of a Euclidean space with constant mean cur-

vature, then 𝑀 is of null 2-type.   

Also we have the following result on 2-type hypersurfaces.  
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4.8.2.2. Theorem (Chen 1991). Null 2-type hypersurfaces and open portions of 

hyperspheres are the only hypersurfaces of a Euclidean space with have non zero 

constant mean curvature and constant scalar curvature. 

For null 2-type surfaces, we have the following:  

4.8.2.3. Theorem (Chen 1988). A surface 𝑀 in a Euclidean 3-space is of null 2-

type if and only if 𝑀 is an open portion of a circular cylinder.  

Theorem 4.8.2.3 implies that null 2-type surfaces in 𝔼3 have nonzero constant 

mean curvature and constant scalar curvature. 

4.9:  2- Type Submanifolds in 𝔼𝑚 

For an n-dimensional submanifold 𝑀 in 𝔼𝑚, we denote by 𝑕, 𝐴, 𝐻, ∇, and 𝐷, the 

second fundamental form, the Weingarten map, the mean curvature vector, the 

Riemannian curvature and the normal connection of the submanifold 𝑀, re-

spectively. A submanifold 𝑀 is said to have parallel mean curvature vector if 𝐷𝐻 

= 0 identically. For a hypersurface 𝑀, the parallelism of mean curvature vector 

equivalent to the constancy of mean curvature 𝛼 =  𝐻  .  

If the submanifold 𝑀 is closed (i.e., 𝑀 is compact and without boundary), then 

every eigenvalue 𝜆𝑡 of ∆ is ≥ 0 and the only harmonic functions on 𝑀 are con-

stant functions. In this case, the constant vector 𝑐 in the spectral decomposition 

(4.3.1) is nothing but the center of mass of 𝑀 in 𝔼𝑚. A submanifold 𝑀 of a 

hypersphere 𝑆𝑚−1 in 𝔼𝑚 is said to be mass-symmetric if the center of mass of 𝑀 

in 𝔼𝑚 is center of the hypersphere 𝑆𝑚−1 in 𝔼𝑚. We study 2- type submanifolds 

in Euclidean space with parallel mean curvature vector. 

Since 2-type submanifolds are the “simplest submanifolds” next to minimal 

submanifolds, 2-type submanifolds, in particular mass-symmetric spherical 2-

type submanifolds, deserve special attention. 

Mass-symmetric spherical 2-type submanifolds have some special properties. 

For instances, every mass-symmetric spherical 2-type submanifolds has constant 

mean curvature (which is completely determined by its order and such a sub-

manifold is pointwise orthogonal).  

4.9.1. Theorem. Let 𝑀 be a 2-type submanifold. If 𝑀 has parallel mean curva-

ture vector, then one of the following two cases occurs, 
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(i) 𝑀 is spherical; 

(ii) 𝑀 is of null 2-type. 

In particular, if 𝑀 is closed, then 𝑀 is spherical and mass-symmetric. 

Proof. Let 𝑋, 𝑌 be two vector fields tangent to 𝑀. Then, for any fixed vector 𝑎 in 

𝔼𝑚, we have 

𝑋𝑌 𝐻, 𝑎 =  𝐷𝑌𝐷𝑋𝐻, 𝑎 −  ∇𝑌 𝐴𝐻𝑋 , 𝑎 −  𝐴𝐷𝑋𝐻𝑌, 𝑎 −  𝑕 𝑌, 𝐴𝐻𝑋 , 𝑎 , (4.9.1) 

where   ,   denotes the inner product of 𝔼𝑚. Let 𝑒1,…,𝑒𝑛 be an orthonormal local 

frame field tangent to 𝑀. Then equation (4.9.1) implies 

       ∆𝐻 = ∆𝐷𝐻 +   𝑕 𝑒𝑖 , 𝐴𝐻𝑒𝑖 + 𝐴𝐷𝑒𝑖
𝐻𝑒𝑖 +  ∇𝑒𝑖

𝐴𝐻 𝑒𝑖                          (4.9.2)                  

where  

     ∆𝐷𝐻 =   𝐷∇𝑒𝑖
𝑒𝑖
𝐻 − 𝐷𝑒𝑖

𝐷𝑒𝑖
𝐻                                                                 (4.9.3) 

is the Laplacian of 𝐻 with respect to the normal connection 𝐷. Regard ∇𝐴𝐻 and 

𝐴𝐷𝐻  as (1, 2)-tensor 𝑀 and we set 

∇ 𝐴𝐻 = ∇𝐴𝐻 + 𝐴𝐷𝐻  

Then we have 

    ∇ 𝐴𝐻 =    ∇𝑒𝑖
𝐴𝐻 𝑒𝑖 + 𝐴𝐷𝑒𝑖

𝐻𝑒𝑖                                                               (4.9.4) 

Let 𝑒𝑛+1, … , 𝑒𝑚  be an orthonormal normal basis of 𝑀 such that 𝑒𝑛+1 is parallel 

to 𝐻. Then we have 

           𝑕 𝑒𝑖 , 𝐴𝐻𝑒𝑖 =  𝐴𝑛+1 
2𝐻 + 𝑎(𝐻)                                                   (4.9.5) 

where 

𝐴𝑟 = 𝐴𝑒𝑟
,     𝐴𝑛+1 

2 = 𝑡𝑟 𝐴𝑛+1 
2, 

and 

      𝑎 𝐻 =   𝑡𝑟 𝐴𝐻𝐴𝑟  𝑒𝑟
𝑚
𝑟=𝑛+2                                                                 (4.9.6) 
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is called the allied mean curvature vector of 𝑀 in 𝔼𝑚. Combining (4.9.2), (4.9.4), 

(4.9.5) and (4.9.6), we have the following useful formula: 

     ∆𝐻 = ∆𝐷𝐻 +  𝐴𝑛+1 
2𝐻 + 𝑎 𝐻 + 𝑡𝑟 ∇ 𝐴𝐻 .                                        (4.9.7) 

Moreover, we also have the following 

     𝑡𝑟 ∇ 𝐴𝐻 =  𝑛

2
 𝑔𝑟𝑎𝑑 𝛼2 + 2𝑡𝑟𝐴𝐷𝐻 ,   𝛼2 =  𝐻, 𝐻 .                                  (4.9.8) 

Therefore, if 𝐷𝐻 = 0, then we have 

∆𝐷𝐻 = 𝑡𝑟 ∇ 𝐴𝐻 = 0 

which implies 

           ∆𝐻 =  𝐴𝑛+1 
2𝐻 + 𝑎 𝐻 .                                                                  (4.9.9) 

Now, assume that 𝑀 is of 2-type in 𝔼𝑚. Then the position vector 𝑥 of 𝑀 in 𝔼𝑚 

has the following spectral decomposition: 

   𝑥 − 𝑐 = 𝑥𝑝 + 𝑥𝑞 , ∆𝑥𝑝 = 𝜆𝑝𝑥𝑝 ,      ∆𝑥𝑞 = 𝜆𝑞𝑥𝑞                                        (4.9.10) 

For (4.9.10) we have 

∆2𝑥 =  𝜆𝑝 + 𝜆𝑞 ∆𝑥 − 𝜆𝑝𝜆𝑞 𝑥 − 𝑐 .                                                          (4.9.11) 

On the other hand, we also have 

∆𝑥 = −𝑛𝐻                                                                                                   (4.9.12) 

Therefore, by using (4.9.9), (4.9.11), (4.9.12), we obtain 

 𝐴𝑛+1 
2𝐻 + 𝑎 𝐻 =  𝜆𝑝 + 𝜆𝑞 𝐻 +  𝜆𝑝𝜆𝑞/𝑛  𝑥 − 𝑐 .                            (4.9.13) 

From (4.9.13) we have either 𝜆𝑝𝜆𝑞 = 0 or 𝑥 − 𝑐 is normal to 𝑀 at every point in 

𝑀. If 𝜆𝑝𝜆𝑞 = 0, then 𝑀 is of null 2-type. If 𝑥 − 𝑐 is normal to 𝑀, then  𝑥 −

𝑐,𝑥−𝑐 is positive constant. In this case, 𝑀 is contained in a hypersphere 𝑆𝑚−1 

centered at 𝑐. In particular, if 𝑀 is closed, then because 𝜆𝑝  and 𝜆𝑞  are positive, 𝑀 

cannot be null. Moreover, in this case, because 𝑐 is the center of mass of 𝑀 in 

𝔼𝑚, 𝑀 is mass-symmetric in 𝑆𝑚−1. ∎ 

4.9.2. Corollary. Every 2-type closed hypersurface of 𝔼𝑛+1 has nonconstant 

mean curvature. 
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For surfaces in 𝑆3(𝑟), we have the following classification theorem. 

4.9.3. Theorem (Chen 1984). Let 𝑀 be a compact, mass-symmetric surface of 

𝑆3(𝑟) in ℝ4. Then 𝑀 is of 2-type if and only if 𝑀 is the product of two plane cir-

cles of different radii, that is, 𝑀 = 𝑆1 𝑎 × 𝑆1 𝑏 , 𝑎 ≠ 𝑏. 

For the proof, see [B. Y. Chen, Total Mean Curvature and Submanifolds of Fi-

nite Type, P. 279]. 

4.9.4. Theorem. Let 𝑀 be a closed 2-type surface in 𝔼𝑚 . Then 𝑀 has parallel 

mean curvature vector if and only if 𝑀 is the product of two plane circles with 

different radii. 

Proof. If 𝑀 has mean curvature vectors, then 𝑀 is one the following surfaces (cf. 

[B.Y.Chen, Geometry of submanifolds, P.106]): 

(1)  a minimal surface of 𝔼𝑚 , 

(2) a minimal surface of a hypersphere of 𝔼𝑚 , 

(3)  a surface in a 3-dimensional linear subspace 𝔼3 or 

 

(4)  a surface in a 3-sphere 𝑆3 in a 4-dimensional linear subspace. 

 For the first two cases, 𝑀 is of 1-type which contradicts to the hypothesis. If 𝑀 

lies in a 3-dimensional linear subspace, then, by Theorem (4.9.1), 𝑀 is a 2-

sphere which is of 1-type again.  

If 𝑀 lies in a 3-sphere, then by parallelism of 𝐻, we see that the mean curvature 

is constant and so 𝑀 is mass-symmetric. Consequently, according to theorem 

(4.9.3), we know that 𝑀 is the product surface of two plane circles with different 

radii.  ∎  

4.9.5. Spherical 2-type hypersurfaces: 

Problem 2. Study and classify 2-type hypersurfaces in a hypersphere of 𝔼𝑛+2. In 

particular, classify 3-dimensional 2-type of a hypersphere 𝑆4 in 𝔼5. 

4.10. Biharmonic Submanifolds 

let 𝑥: 𝑀 → 𝔼𝑚  be an isometric immersion.As we mentioned in preliminaries, the 

position vector of 𝑀 in 𝔼𝑚  satisfies  
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                                               ∆𝑥 = −𝑛𝐻                                                              (4.10.1) 

Formula (4.10.1) implies that the immersion is minimal if and only if the immer-

sion is harmonic, that is  ∆𝑥 = 0. An isometric immersion 𝑥: 𝑀 → 𝔼𝑚  is called 

biharmonic if we have   

                     ∆2𝑥 = 0, that is,   ∆𝐻 = 0                                                       (4.10.2) 

It is obvious that minimal immersions are biharmonic.  

Problem 3. Other than minimal submanifolds of 𝔼𝑚 , which submanifolds of 𝔼𝑚  

are biharmonic?  

From (4.10.1) and (4.10.2) it follows that there are no compact biharmonic sub-

manifolds of positive dimension in 𝔼3. Moreover, by using the formula  

∆𝐻 =  ∆𝛼 + 𝛼 𝑕 2𝜉 + 2𝑡𝑟 (𝐴𝐷𝐻) +
𝑛

𝑔
 𝑔𝑟𝑎𝑑 𝐻, 𝐻 , 

B. Y. Chen's proved in 1985 that every biharmonic surface in 𝔼3 is in fact a mi-

nimal surface. 

Conjecture 2.The only biharmonic submanifolds in Euclidean Spaces are the 

minimal ones.   

4.11. Submanifolds Theory and Parallel Transport. 

The most symmetric of all Riemannian manifolds (𝑀, 𝑔) are the real space 

forms, i.e., the manifolds with contant sectional curvature 𝐾 = 𝑐.Their (0, 4) - 

Riemann Christoffel curvature tensor 𝑅 is given by 𝑅 = 𝑐

2
𝑔 ∧ 𝑔, (∧ denoting the 

Nomizu Kulkarni product of (0, 2)-tensor), and they were characterized by Rie-

mann, Helmholtz and Lie as the Riemannian spaces which satisfy the axiom of 

free mobility. The class of the real space forms can be obtained by applying pro-

jective transformations to the locally flat spaces, i.e., to the manifolds (𝑀, 𝑔) for 

which 𝐾 = 0, or equivalently, for which 𝑅 = 0. The Riemann-Christoffel curva-

ture tensor according to Schouten essentially measures the change of direction 

when a vector 𝑣 ∈ 𝑇𝑝𝑀 is parallelly transported all around infinitesimal coordi-

nate parallelograms to a vector 𝑣∗ ∈ 𝑇𝑝𝑀.  

The locally flat spaces are characterized by the fact that such parallel transport 

leaves 𝑣 invariant, i.e., such that 𝑣∗ = 𝑣 for all such coordinate parallelograms 

cornered at 𝑝.  
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In the 1920ties, Cartan introduced the locally symmetric spaces, i.e. the Rieman-

nian manifolds  𝑀, 𝑔  for which R is parallel,∇𝑅 = 0, where ∇ denotes the Levi-

Civita connection of  the metric. As shown by Cartan, the locally symmetric 

spaces are the Riemannian manifolds for which locally all geodesic reflections or 

symmetries 𝜎𝑝  in all points 𝑝 of 𝑀 actually are isometries, and, as shown by 

Levy, they can also be characterized as the Riemannian manifolds for which the 

sectional curvature 𝐾 𝑝, 𝜋  remains invariant under parallel transport along any 

curve in 𝑀, i.e. for which 𝐾 𝑝∗, 𝜋∗ = 𝐾 𝑝, 𝜋 ,where 𝜋∗ ⊂ 𝑇𝑝∗𝑀 is the plane ob-

tained by moving 𝜋 parallelly form 𝑝 to 𝑝∗ along any curve 𝛾 joining 𝑝 

and 𝑝∗.The study of the locally symmetric spaces was independently started by 

P. A. Shirokov.  

Every locally symmetric space satisfies 𝑅 ⋅ 𝑅 = 0, whereby the first 𝑅 stands for 

the curvature operator of (𝑀, 𝑔), i.e. for tangent vector fields 𝑋 and 𝑌 one has 

𝑅 𝑋, 𝑌 = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇ 𝑋,𝑌 , which acts as a derivation on the second 𝑅 

which stands for the Riemann-Christoffel curvature tensor. The converse howev-

er does not hold in general. 

 The Riemannian manifolds for which 𝑅 ⋅ 𝑅 = 0 are called semi-symmetric 

spaces and were classified by Z. Szabὀ. They can be characterized by the geome-

tric property that, up to second order,  𝐾 𝑝, 𝜋∗ = 𝐾 𝑝, 𝜋 , whereby 𝜋 is any 

tangent 2-plane to 𝑀 at 𝑝 and 𝜋∗ is the tangent 2-plane to 𝑀 at 𝑝 obtained by 

parallelly transporting 𝜋 all around any infinitesimal coordinate parallelogram 

cornered at 𝑝. For short, their sectional curvatures are invariant under parallel 

transport around infinitesimal coordinate parallelograms. 

In the 1980ties, R. Deszcz introduced the pseudo-symmetric spaces as follows. 

Let 𝑄 𝑔, 𝑅 ≡ ∧𝑔 ⋅ 𝑅 be the Tachibana tensor of a Riemannian manifold (𝑀, 𝑔), 

i.e. the (0, 6)-tensor  ∧𝑔 ⋅ 𝑅 where the metrical endomorphism  𝑋 ∧𝑔 𝑌 : 𝑇𝑀 →

𝑇𝑀 given by  𝑋 ∧𝑔 𝑌 𝑍 = 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 acts as a derivation on the (0, 

4)-curvature tensor 𝑅,then 𝑀 is said to be pseudo symmetric if the (0, 6)-tensors 

𝑅 ⋅ 𝑅 and 𝑄(𝑔, 𝑅) are proportional, i.e. if 𝑅 ⋅ 𝑅 = 𝐿𝑄 𝑔, 𝑅  for some scalar va-

lued function 𝐿: 𝑀 → ℝ. This function is called the double sectional curvature or 

the sectional curvature of Deszcz.   
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The class of pseudo symmetric manifolds can be obtained by applying projective 

transformations to the semi symmetric manifolds, i.e. to the manifolds for which 

𝐿 = 0.   

In analogy with the above intrinsic symmetries of Riemannian manifolds con-

cerning their Riemann-Christoffel curvature tensor 𝑅, table 1 list the correspond-

ing extrinsic symmetries of submanifolds concerning their second fundamental 

form.  

TABLE.1. Comparison between intrinsic and extrinsic symmetries 

Intrinsic Extrinsic 

  Flat space                         𝑅 = 0 Totally geodesic     𝑕 = 0 

  Space form                       𝑅 = 𝑐

2
 𝑔 ∧ 𝑔 Totally umbilical    𝑕 = 𝑔𝐻 

  Locally symmetric       ∇𝑅 = 0 Parallel                     ∇ 𝑕 = 0 

  Semi-symmetric      𝑅 ⋅ 𝑅 = 0 Semi-parallel      𝑅 ⋅ 𝑕 = 0 

Pseudo-symmetric  𝑅 ⋅ 𝑅 = 𝐿𝑄 𝑔, 𝑅  Pseudo-parallel  𝑅 ⋅ 𝑕 = 𝐿𝑄 𝑔, 𝑕  

 

Let  𝑀𝑛 , 𝑔  and  𝑀 𝑛+𝑚 , 𝑔   be two Riemannian manifolds with dimension 𝑛 

and 𝑛 + 𝑚, and with respective Levi-Civita connections ∇ and ∇ . Assume that 

(𝑀, 𝑔) is isometrically immersed in  𝑀 , 𝑔  .We can decompose the covariant de-

rivative ∇  of two tangent vector fields 𝑋 and 𝑌 to 𝑀, i.e. 𝑋, 𝑌 ∈ 𝔛 𝑀 , into its 

tangential and normal part as follows,  

                                 ∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝑕 𝑋, 𝑌 ,                                                    4.11.1  

where 𝑕(𝑋, 𝑌) is normal to 𝑀 and 𝑕 is called the second fundamental form. 

 Equation (4.11.1) is known as the Gauss formula. A submanifold is called total-

ly geodesic if 𝑕 = 0.  

We can further define the normal connection ∇⊥  through the decomposition of 

the tangent vector field 𝑋 ∈ 𝔛 𝑀  into its tangential and normal parts,  

                          ∇ 𝑋𝜉 = −𝐴𝜉𝑋 + ∇𝑋
⊥𝜉,                                                        4.11.2  

where 𝐴𝜉  is called the shape operator with respect to 𝜉. The shape operator is re-

lated to the second fundamental form by 𝑔 𝐴𝜉𝑋, 𝑌 = 𝑔  𝑕 𝑋, 𝑌 , 𝜉 . 
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Equation (4.10.2) is known as the Weingarten formula. A point 𝑝 of 𝑀 is called 

umbilic if 𝑕 𝑢, 𝑣 = 𝑔 𝑢, 𝑣 𝐻, for all 𝑢, 𝑣 ∈ 𝑇𝑝𝑀.  𝐻 is called the mean curva-

ture vector field, or the Bompiani vector field, of the submanifold 𝑀 in 𝑀 .  

The Bortolotti-Van Waerden connection ∇  of 𝑀 in 𝑀  acting on 𝑕 gives, 

 ∇ 𝑕  𝑋, 𝑌, 𝑍 ∶= ∇𝑋
⊥ 𝑕 𝑌, 𝑍  − 𝑕 ∇𝑋𝑌, 𝑍 − 𝑕 𝑌, ∇𝑋𝑍 , 

with 𝑋, 𝑌, 𝑍 ∈ 𝔛 𝑀 .  

4.11.1. A Geometrical Interpretation of Semi-Parallel Submanifolds 

We will give some geometrical interpretations of totally geodesic and parallel 

submanifolds in terms of parallel transport. Further, we will present a new geo-

metrical interpretation of semi-parallel submanifolds. Every semi-parallel sub-

manifold satisfies condition 𝑅⊥ 𝑋, 𝑌 𝐻 = 0. However, the converse is not true 

in general. We call spaces which satisfy this condition 𝐻-semi-parallel because 

for these spaces the mean curvature vector 𝐻 is invariant under parallel transport 

around infinitesimal coordinate parallelograms.  

Let 𝛾: 𝐼 ⊆ ℝ → 𝑀 be a curve in a Riemannian manifold 𝑀. Choose points 

𝑝 = 𝛾 𝑡0  and 𝑝∗ = 𝛾 𝑡0
∗  on the curve and a vector 𝑣 ∈ 𝑇𝑝𝑀. Let 𝑉 be the 

unique vector field along 𝛾 such that  

𝑉 𝑡0 = 𝑣,    ∇𝛾 ′ 𝑉 = 0, 

where ∇ is the Levi-Civita connection of (𝑀, 𝑔). Then we call 𝑣∗ = 𝑉 𝑡0
∗  the 

parallel transport of 𝑣 from 𝑝 to 𝑝∗ along the curve 𝛾 with respect to the connec-

tion ∇.  

If 𝑀 is immersed in another Riemannian manifold 𝑀 , we can also transport the 

vector 𝑣 parallel along 𝛾 in 𝑀  with respect to the Levi-Civita connection ∇  

of  𝑀 , 𝑔  .  

The following result can be proven straightforwardly.  

4.11.1.1. Proposition. A submanifold 𝑀 in 𝑀  is totally geodesic if and only if 

the parallel transports of tangent vectors to 𝑀 with respect to the connections ∇ 

on 𝑀 and ∇  on 𝑀  are the same.  
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Given a curve 𝛾 in 𝑀 and two vectors 𝑢, 𝑣 ∈ 𝑇𝑝𝑀, with 𝛾 𝑡0 = 𝑝, we have the 

vector 𝑕 𝑢, 𝑣  in the normal space of 𝑀 at the point 𝑝, 𝑇𝑝
⊥𝑀. At the point 

𝛾 𝑡0
∗ = 𝑝∗, we can consider two normal vectors. First, the parallel translate 

of 𝑕 𝑢, 𝑣  by ∇⊥, which we denote by 𝑕 𝑢, 𝑣 ∗⊥, and secondly, the vector 

𝑕 𝑢∗, 𝑣∗  obtained after first parallelly translating 𝑢 and 𝑣 by ∇, and then apply-

ing 𝑕.  
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Chapter (5) 

Chen’s Inequality and Some Invariants 

We study submanifolds satisfying Chen's equality in an Euclidean space and the 

conditions 𝑅 ⋅ 𝑃 = 0 and  𝑃 ⋅ 𝑃 = 0 in an Euclidean space. Also we study pseudo 

symmetry type hypersurface in the Euclidean space 𝔼𝑛+1 satisfying B. Y. Chen's 

equality. 

5.1. Introduction 

One of the basic problems in submanifold theory is to find simple relationships 

between the extrinsic and intrinsic invariants of a submanifold. B. Y. Chen es-

tablished inequalities in this respect, called Chen inequalities. The main extrinsic 

invariants include the classical curvature invariants namely the scalar curvature 

and the Ricci curvature; and the well Known modern curvature invariant namely 

Chen invariant. 

In 1993 Chen obtained an interesting basic inequality for submanifolds in a real 

space form involving the squared mean curvature and the Chen invariant and 

found several of its applications. This inequality is now well known as Chen's 

inequality; and in the equality case it is known as Chen's equality. 

Now we give the following general Lemmas for later use. 

5.1.1. Lemma [Chen 1993]. Let 𝑎1, … , 𝑎𝑛 , 𝑐 be 𝑛 + 1 𝑛 ≥ 2  real numbers such 

that  

                 𝑎𝑖
𝑛
𝑖=1  2 =  𝑛 − 1   𝑎𝑖

2 + 𝑐𝑛
𝑖=1                                                       5.1.1  

Then 2𝑎1𝑎2 ≥ 𝑐, with equality holding if and only if 𝑎1 + 𝑎2 = 𝑎3 = ⋯ = 𝑎𝑛 . 

Proof. If 𝑛 = 2 there is nothing to prove. So we may assume 𝑛 > 2. Because 

(5.1.1) can be written as  

 𝑛 − 2 𝑎𝑛
2 − 2  𝑎𝑖

𝑛−1
𝑖=1  𝑎𝑛 +  𝑛 − 1  𝑐 +  𝑎𝑖

2𝑛−1
𝑖=1  −   𝑎𝑖

𝑛−1
𝑖=1  

2
= 0    5.1.2  

and 𝑎𝑛  is real number, we have  

                   𝑎𝑖
𝑛−1
𝑖=1  

2
=  𝑛 − 2   𝑎𝑖

2 + 𝑐 + 𝑒𝑛−1
𝑛−1
𝑖=1  ,                              5.1.3  
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for some real number 𝑒𝑛−1 ≥ 0.  

If 𝑛 = 3, this implies 2𝑎1𝑎2 = 𝑐 + 𝑒2 ≥ 𝑐. From (5.1.1) with 𝑛 = 3, it follows 

that 2𝑎1𝑎2 = 𝑐 if and only if 𝑎3 = 𝑎1 + 𝑎2.  

If 𝑛 > 3, by continuing the same process  𝑛 − 2  times, we obtain  

  𝑎𝑖

𝑘

𝑖=1

 

2

=  𝑘 − 1   𝑎𝑖
2 + 𝑐 + 𝑒𝑛−1 + ⋯ + 𝑒𝑘

𝑘

𝑖=1

 , 𝑘 = 2, … , 𝑛 − 1,    

                                                                                                                      5.1.4  

for some non-negative numbers 𝑒2, … , 𝑒𝑛−1. In particular, we obtain  

2𝑎1𝑎2 = 𝑐 + 𝑒𝑛−1 + ⋯ + 𝑒2 ≥ 𝑐. 

If 2𝑎1𝑎2 = 𝑐, then 𝑒𝑛−1 = ⋯ = 𝑒2 = 0. Hence (5.1.4) yields  

             𝑎𝑖
𝑘
𝑖=1  

2
=  𝑘 − 1   𝑎𝑖

2 + 𝑐𝑘
𝑖=1  ,    𝑘 = 2, … , 𝑛.                     5.1.4–𝑘  

From (5.1.4-𝑘), we may obtain  𝑘 − 2 𝑎𝑘 = 𝑎1 + ⋯ + 𝑎𝑘−1. Therefore, 

𝑎3 = ⋯ = 𝑎𝑛 = 𝑎1 + 𝑎2.   ∎  

Let 𝑀 be an immersed 𝑛-dimensional submanifold of an 𝑚-dimensional Rie-

mannian manifold 𝑅𝑚 𝑐  of constant sectional curvature 𝑐. Denote by 𝑕 the 

second fundamental form of the immersion. Then the mean curvature vector 𝐻 

of the immersion is given by 𝐻 =
1

𝑛
 𝑡𝑟𝑎𝑐𝑒 𝑕.  

We choose a local field of orthonormal frames 𝑒1, … , 𝑒𝑛 , 𝑒𝑛+1, … , 𝑒𝑚  in 𝑅𝑚 𝑐  

such that, restricted to 𝑀, the vectors 𝑒1, … , 𝑒𝑛  are tangent to 𝑀 and 

hence 𝑒𝑛+1, … , 𝑒𝑚  are normal to 𝑀.  

Let  𝑕𝑖𝑗
𝑟  , 𝑖, 𝑗 = 1, … , 𝑛; 𝑟 = 𝑛 + 1, … , 𝑚, be the coefficients of the second fun-

damental form 𝑕 with respect to e1, … , en , en+1, … , em . Then we have  

𝑕𝑖𝑗
𝑟 =  𝑕 𝑒𝑖 , 𝑒𝑗  , 𝑒𝑟 =  𝐴𝑒𝑟

𝑒𝑖 , 𝑒𝑗   

where  ⋅,⋅  denotes the inner product.  

 Denote by 𝑅 the Riemannian curvature tensor of 𝑀. Then the equation of Gauss 

is given by   
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   𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑐  𝑋, 𝑊  𝑌, 𝑍 −  𝑋, 𝑍  𝑌, 𝑊  +  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  − 

                                                                         𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊                    5.1.5   

Denote by 𝐾 𝜋  the sectional curvature of 𝑀 of the plane section 𝜋 ⊂ 𝑇𝑝𝑀, 

𝑝 ∈ 𝑀. For any orthonormal basis of tangent space 𝑇𝑝𝑀, the scalar curvature 𝜏 at 

𝑝 is defined by  

                        𝜏 =  𝐾 𝑒𝑖 ∧ 𝑒𝑗  
𝑛
𝑖 ,𝑗 =1 ,                                                             5.1.6  

where 𝑒1, … , 𝑒𝑛  are orthonormal vectors tangent to 𝑀.  

5.1.2. Lemma [Chen 1993]. Let 𝑀 be an 𝑛-dimensional  𝑛 ≥ 2  submanifold of 

a Rie-mannian manifold 𝑅𝑚 𝑐  of constant sectional curvature 𝑐. Then  

                   inf 𝐾 ≥
1

2
 𝜏 −

𝑛2 𝑛−2 

𝑛−1
 𝐻2 −  𝑛 + 1  𝑛 − 2 𝑐 .                      5.1.7  

Equality holds if and only if, with respect to suitable orthonormal frame fields 

𝑒1, …, 𝑒𝑛 , 𝑒𝑛+1, …, 𝑒𝑚 , the shape operators 𝐴𝑟 = 𝐴𝑒𝑟
,  𝑟 = 𝑛 + 1, … , 𝑚, of 𝑀 in 

𝑅𝑚 𝑐  take the following forms:  

                       𝐴𝑛+1 =

 

 
 

𝑎  0  0 ⋯ 0
0   𝑏  0 ⋯ 0
0   0  𝜇 ⋯ 0
⋮    ⋮    ⋮  ⋱  ⋮
0  0  0  0  𝜇 

 
 

, 𝑎 + 𝑏 = 𝜇,                                     5.1.8  

 

                            𝐴𝑟 =

 

 
 

𝑕11
𝑟    𝑕12

𝑟     0 ⋯  0

𝑕12
𝑟 − 𝑕11

𝑟   0 … 0
0        0     0 ⋯  0
⋮         ⋮      ⋮   ⋱   ⋮
 0      0     0   0   𝜇 

 
 

, 𝑟 = 𝑛 + 2, … , 𝑚.                       5.1.9  

Proof. From equation (5.1.5) of Gauss we have  

                                      𝜏 = 𝑛2 𝐻 2 −  𝑕 2 + 𝑛 𝑛 − 1 𝑐.                           5.1.10  

Let 𝛿 = 𝜏 −
𝑛2 𝑛−2 

𝑛−1
 𝐻 2 −  𝑛 + 1  𝑛 − 2 𝑐.                                               5.1.11  

Then (5.1.10) and (5.1.11) yield  
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                𝑛2 𝐻 2 =  𝑛 − 1  𝑕 2 +  𝑛 − 1  𝛿 − 2𝑐 .                               5.1.12   

Let 𝜋 ⊂ 𝑇𝑝𝑀 be a plane section. If we choose an orthonormal frame 𝑒1, … , 𝑒𝑚  

such that 𝜋 = span 𝑒1, 𝑒2  and 𝑒𝑛+1 is in the direction of the mean curvature 

vector 𝐻, then (5.1.12) gives  

  𝑕𝑖𝑖
𝑛+1𝑛

𝑖=1  
2

=  

 𝑛 − 1    𝑕𝑖𝑖
𝑛+1 

2𝑛
𝑖=1 +   𝑕𝑖𝑗

𝑛+1 
2

𝑖≠𝑗 +    𝑕𝑖𝑗
𝑟  

2𝑛
𝑖,𝑗 =1

𝑚
𝑟=𝑛+2 + 𝛿 − 2𝑐 .                                                      

 5.1.13    

By applying Lemma 1.5.1 we obtain  

2 𝑕11
𝑛+1 𝑕22

𝑛+1 ≥   𝑕𝑖𝑗
𝑛+1 

2
𝑖≠𝑗 +    𝑕𝑖𝑗

𝑟  
2𝑛

𝑖 ,𝑗 =1
𝑚
𝑟=𝑛+2 + 𝛿 − 2𝑐.               5.1.14  

From this we get  

𝐾 𝜋 ≥     𝑕1𝑗
𝑟  

2
+  𝑕2𝑗

𝑟  
2
 

𝑗 >2

𝑚

𝑟=𝑛+1

+
1

2
  𝑕𝑖𝑗

𝑛+1 
2

𝑖≠𝑗 >2

+
1

2
   𝑕𝑖𝑗

𝑟  
2

𝑖 ,𝑗 >2

𝑚

𝑟=𝑛+2

 

         +
1

2
  𝑕11

𝑟 + 𝑕22
𝑟  2𝑚

𝑟=𝑛+2 +
𝛿

2
≥

𝛿

2
 .                                                         5.1.15  

Combining (5.1.11) and (5.1.15), we get (5.1.7).  

If the equality signs of (5.1.7) holds, then the inequalities in (5.1.14) and (5.1.15) 

become equalities. Thus, we have  

                          𝑕1𝑗
𝑛+1 = 0, 𝑗 > 2;   𝑕𝑖𝑗

𝑛+1 = 0, 𝑖 ≠ 𝑗 > 2;  

                           𝑕1𝑗
𝑟 = 𝑕2𝑗

𝑟 = 𝑕𝑖𝑗
𝑟 = 0, 𝑟 = 𝑛 + 2, … , 𝑚;  𝑖, 𝑗 = 3, … , 𝑛; 

                         𝑕11
𝑛+2 + 𝑕22

𝑛+2 = ⋯ = 𝑕11
𝑚 + 𝑕22

𝑚 = 0.  

Furthermore, we may choose 𝑒1, 𝑒2 such that 𝑕12
𝑛+1 = 0. Moreover, by applying 

Lemma (5.1.1), we also have  

𝑕11
𝑛+1 + 𝑕22

𝑛+1 = 𝑕33
𝑛+1 = ⋯ = 𝑕𝑛𝑛

𝑛+1 . 

Therefore, with respect to a suitable frame field, the shape operators of 𝑀 take 

the forms (5.1.8) and (5.1.9).  
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The converse of this can be verified by straight forward computation.   ∎  

Let  𝑀, 𝑔 , 𝑛 ≥ 3, be a connected Riemannian manifold of class 𝐶∞ .We denote 

by ∇, 𝑅, 𝐶, 𝑆 and 𝜏 the Levi-Civita connection, the Riemann-Christoffel curva-

ture tensor, the Weyl conformal curvature tensor, the Ricci tensor and scalar cur-

vature of (𝑀, 𝑔), respectively. The Ricci operator 𝑆 is defined by  

𝑔 𝑆𝑋, 𝑌 = 𝑆 𝑋, 𝑌 , 

where 𝑋, 𝑌 ∈ 𝜒 𝑀 , 𝜒 𝑀  being Lie algebra of vector fields on 𝑀. We next de-

fine endomorphism 𝑋 ∧ 𝑌,  𝑅 𝑋, 𝑌  and 𝐶 𝑋, 𝑌 𝑍 of 𝜒 𝑀  by  

                                 𝑋 ∧ 𝑌 𝑍 = 𝑔 𝑌, 𝑍 𝑋 − 𝑔 𝑋, 𝑍 𝑌 ,                            5.1.16  

                                  𝑅 𝑋, 𝑌, 𝑍 = ∇𝑋∇𝑌𝑍 − ∇𝑌∇𝑋𝑍 − ∇ 𝑋,𝑌 𝑍,                      5.1.17    

𝐶 𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌, 𝑍 −
1

𝑛−2
 𝑋 ∧ 𝑆𝑌 + 𝑆𝑋 ∧ 𝑌 −

𝜏

𝑛−1
𝑋 ∧ 𝑌 𝑍,              (5.1.18)                                                                                                                

The Riemann Christoffel curvature tensor 𝑅 and the Weyl curvature tensor 𝐶 of 

(𝑀, 𝑔) are defined by  

                            𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑔 𝑅 𝑋, 𝑌 𝑍, 𝑊 ,                                   5.1.19  

                              𝐶 𝑋, 𝑌, 𝑍, 𝑊 = 𝑔 𝐶 𝑋, 𝑌 𝑍, 𝑊 ,                                        5.1.20  

respectively, where 𝑊 ∈ 𝜒 𝑀 .  

For a (0, 𝑘)-tensor field 𝑇, 𝑘 ≥ 0, on (𝑀, 𝑔) we define the tensors 𝑅 ⋅ 𝑇 and 

 𝑄 𝑔, 𝑇  by  

   𝑅 𝑋, 𝑌 ⋅ 𝑇  𝑋1, … , 𝑋𝑘 = −𝑇 𝑅 𝑋, 𝑌 𝑋1, 𝑋2, … , 𝑋𝑘   − ⋯− 

        𝑇 𝑋1, … , 𝑋𝑘−1, 𝑅 𝑋, 𝑌 𝑋𝑘 ,                                                                         5.1.21    

𝑄 𝑔, 𝑇  𝑋1, … , 𝑋𝑘 ; 𝑋, 𝑌 =  𝑋 ∧ 𝑌 𝑇 𝑋1, … , 𝑋𝑘 − 𝑇  𝑋 ∧ 𝑌 𝑋1, 𝑋2 , … , 𝑋𝑘  

−⋯− 𝑇 𝑋1, … , 𝑋𝑘−1,  𝑋 ∧ 𝑌 𝑋𝑘 ,                                                             5.1.22  

respectively.  

If the tensors 𝑅 ⋅ 𝑅 and 𝑄 𝑔, 𝑅  are linearly dependent then 𝑀 is called pseudo-

symmetric. This is equivalent to 

                                               𝑅 ⋅ 𝑅 = 𝐿𝑅𝑄 𝑔, 𝑅 ,                                  5.1.23  
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holding on the set 𝑈𝑅 =  𝑥: 𝑄 𝑔, 𝑅 ≠ 0 𝑎𝑡 𝑥 , where 𝐿𝑅  is some function  

on 𝑈𝑅. If  𝑅 ⋅ 𝑅 = 0 then 𝑀 is called semi-symmetric.  

If the tensors  𝑅 ⋅ 𝑆  and    𝑄 𝑔, 𝑆  are linearly dependent, then 𝑀 is called Ricci-

Pseudo-symmetric. This equivalent to  

                                                    𝑅 ⋅ 𝑆 = 𝐿𝑆𝑄 𝑔, 𝑆                                      5.1.24  

holding on the set 𝑈𝑆 =  𝑥: 𝑆 ≠
𝜏

𝑛
𝑔 𝑎𝑡 𝑥 , where 𝐿𝑆 is some function on 𝑈𝑆 .  

Every pseudo-symmetric manifold is Ricci pseudo-symmetric but the converse 

statement is not true. If 𝑅 ⋅ 𝑆 = 0 , then 𝑀 is called Ricci-semisymmetric.  

If the tensors 𝑅 ⋅ 𝐶 and 𝑄 𝑔, 𝐶  are linearly dependent then 𝑀 is called Weyl-

pseudosymmetric. This is equivalent to  

                                               𝑅 ⋅ 𝐶 = 𝐿𝐶𝑄 𝑔, 𝐶                                           5.1.25  

holding on the set 𝑈𝐶 =  𝑥: 𝐶 ≠ 0 𝑎𝑡 𝑥 . Every pseudosymmetric manifold is 

Weyl pseudosymmetric but the converse statement is not true. If 𝑅 ⋅ 𝐶 = 0 then 

𝑀 is called Weyl-semisymmetric. 

 The manifold is a manifold with pseudosymmetric Weyl tensor field if and only 

if 

                             𝐶 ⋅ 𝐶 = 𝐿𝐶𝑄 𝑔, 𝐶                                                           5.1.26  

holds on the set 𝑈𝐶, where 𝐿𝐶  is some function on 𝑈𝐶.The tensor 𝐶 ⋅ 𝐶 is defined 

in the same way as the tensor 𝑅 ⋅ 𝑅.  

5.2. Submanifolds Satisfying Chen’s Inequality 

Let 𝑀 be an 𝑛-dimensional submanifold of an  𝑛 + 𝑚 -dimensional Euclidean 

space 𝔼n+m . The Gauss and Weingarten formulas are given respectively by 

∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝑕 𝑋, 𝑌   and    ∇ 𝑋𝜉 = −𝐴𝜉𝑋 + ∇𝑋
⊥𝜉 

for all  𝑋, 𝑌 ∈ 𝑇𝑀 and  𝜉 ∈ 𝑇⊥𝑀, where  ∇ , ∇ and ∇⊥ are respectively the Rie-

mannian, induced Riemannian and induced normal connections in 𝑀 , 𝑀 and the 

normal bundle 𝑇⊥𝑀 of 𝑀 respectively, and 𝑕 is the second fundamental form re-

lated to the shape operator 𝐴 by 
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   𝑕 𝑋, 𝑌 , 𝜉 =  𝐴𝜉𝑋, 𝑌 . 

The equation of Gauss is given by 

         𝑅 𝑋, 𝑌, 𝑍, 𝑊 =  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍  −  𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊                   (5.2.1) 

for all 𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝑇𝑀, where 𝑅 is the curvature tensor of 𝑀. 

The mean curvature vector 𝐻 is given by 𝐻 =
1

𝑛
𝑡𝑟𝑎𝑐𝑒 𝑕 . The submanifold 𝑀 is 

totally geodesic in 𝔼𝑚+𝑛  if 𝑕 = 0, and minimal if 𝐻 = 0.  

Let  𝑒1, … , 𝑒𝑛  be an orthonormal tangent frame field on 𝑀. For the plane section 

𝑒𝑖 ∧ 𝑒𝑗  of the tangent bundle 𝑇𝑀 spanned by the vectors 𝑒𝑖  and 𝑒𝑗  𝑖 ≠ 𝑗  the sca-

lar curvature of 𝑀 is defined by 𝜏 =  𝐾 𝑒𝑖 ∧ 𝑒𝑗  
𝑛
𝑖 ,𝑗 =1  where 𝐾 denotes the sec-

tional curvature of 𝑀. Consider the real function inf 𝐾 on 𝑀𝑛  defined for every  

𝑥 ∈ 𝑀 by  

 inf 𝐾  𝑥 ∶= inf 𝐾 𝜋 : 𝜋 is a plane in 𝑇𝑥𝑀
𝑛 . 

Note that since the set of plane at a certain point is compact, this infimum is ac-

tually a minimum.  

5.2.1. Lemma [Chen  1993]. Let 𝑀, 𝑛 ≥ 2, be any submanifold of 𝔼𝑛+𝑚 . Then  

                                            inf 𝐾 ≥
1

2
 𝜏 −

𝑛2(𝑛−2)

𝑛−1
 𝐻 2 .                            (5.2.2) 

Equality holds in (5.2.2) at a point 𝑥 if and only if with respect to suitable local 

orthonormal frames 𝑒1, … , 𝑒𝑛 ∈ 𝑇𝑥𝑀
𝑛 , the Weingarten maps 𝐴𝑡  with respect to 

the normal sections 𝜉𝑡 = 𝑒𝑛+𝑡 , 𝑡 = 1, … , 𝑝 are given by  

𝐴1 =

 
 
 
 
 
 
𝑎  0  0  0 … 0
0  𝑏  0  0 … 0
0  0  𝜇  0 … 0
0  0  0  𝜇 … 0
⋮   ⋮  ⋮    ⋮ ⋱ ⋮
0  0 0  0 …𝜇 

 
 
 
 
 

 

                                                    𝐴𝑡 =

 
 
 
 
 
𝑐𝑡     𝑑𝑡     0 … 0
𝑑𝑡    −𝑐𝑡   0 … 0
0      0       0 … 0
⋮      ⋮       ⋮   ⋱ ⋮

0     0       0 … 0 
 
 
 
 

,     𝑡 > 0  ,                  (5.2.3) 
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where 𝜇 = 𝑎 + 𝑏 for any such frame,  inf 𝐾(𝑥)is attained by the plane 𝑒1 ∧ 𝑒2. 

The relation (5.2.2) is called Chen's inequality.  

Remark. For dimension 𝑛 = 2, the Chen's equality (5.2.2) is always true (Tri-

vially satisfied).  

We denote shortly 𝐾𝑖𝑗 = 𝐾 𝑒𝑖 ∧ 𝑒𝑗  . Let 𝑀 be an 𝑛-dimensional  𝑛 ≥ 3  subma-

nifold of an Euclidean space 𝔼𝑛+𝑚  satisfying Chen's equality. Then, from Lem-

ma 5.2.1 we immediately have the following  

                                      𝐾12 = 𝑎𝑏 −   𝑐𝑟
2 + 𝑑𝑟

2 ,𝑚
𝑟=1                                 (5.2.4) 

                                          𝐾1𝑗 = 𝑎𝜇,                                                                    (5.2.5) 

                                          𝐾2𝑗 = 𝑏𝜇,                                                                     (5.2.6) 

                                           𝐾𝑖𝑗 = 𝜇2,                                                                      (5.2.7) 

                                 𝑆 𝑒1, 𝑒1 = 𝐾12 +  𝑛 − 2 𝑎𝜇,                                           (5.2.8) 

                                𝑆 𝑒2, 𝑒2 = 𝐾12 +  𝑛 − 2 𝑏𝜇,                                            (5.2.9) 

                                𝑆 𝑒𝑖 , 𝑒𝑖 =  𝑛 − 2 𝜇2,                                                        (5.2.10) 

and      

                          𝑆 𝑒𝑖 , 𝑒𝑗  = 0 if 𝑖 ≠ 𝑗                                                         5.2.11 . 

where 𝑖, 𝑗 > 2. Furthermore,   𝑅 𝑒𝑖 , 𝑒𝑗  𝑒𝑘 = 0 if 𝑖, 𝑗 and 𝑘 are mutually different. 

From now on we assume that 𝑀𝑛  is hypersurface in 𝔼𝑛+1.  

5.2.2. Corollary. Let 𝑀 be a hypersurface of 𝔼𝑛+1, 𝑛 ≥ 3, satisfying Chen‟s 

equality then  

                     𝐾12 = 𝑎𝑏, 𝐾1𝑗 = 𝑎𝜇, 𝐾2𝑗 = 𝑏𝜇, 𝐾𝑖𝑗 = 𝜇2,                               5.2.12   

where 𝑖, 𝑗 > 2. Furthermore, 𝑅 𝑒𝑖 , 𝑒𝑗  𝑒𝑘 = 0 if 𝑖, 𝑗 and 𝑘 are mutually different.  

5.2.3. Theorem [Dillen, F., Petrovic, M., and Verstraelen, L. 1997]. Let 

𝑀𝑛 , 𝑛 ≥ 3, be a submanifold of 𝔼𝑚  satisfying Chen‟s equality. Then 𝑀𝑛  is se-

misymmetric if and only if 𝑀𝑛  is a minimal submanifold (in which case 𝑀𝑛  is 
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(𝑛 − 2)-ruled) or  𝑀𝑛  is a round hypercone in some totally geodesic 

space 𝔼𝑛+1 of  𝔼𝑚 .  

Now our aim is to give an extension of Theorem (5.2.3) for case 𝑀 is a pseudo-

symmetric hypersurface in the Euclidean space 𝔼𝑛+1.  

5.2.4. Lemma. Let 𝑀, 𝑛 ≥ 3, be a hypersurface of 𝔼𝑛+1 satisfying Chen‟s equal-

ity. Then  

                              𝑅 𝑒1, 𝑒3 ⋅ 𝑅  𝑒2, 𝑒3 𝑒1 = 𝑎𝜇𝑏2𝑒2,                              5.2.13  

                                  𝑅 𝑒2, 𝑒3 ⋅ 𝑅  𝑒1, 𝑒3 𝑒2 = 𝑏𝜇𝑎2𝑒1.                                 5.2.14  

Proof. Using (5.1.21) we have  

 𝑅 𝑒1, 𝑒3 ⋅ 𝑅  𝑒2, 𝑒3 𝑒1 = 𝑅 𝑒1, 𝑒3  𝑅 𝑒2, 𝑒3 𝑒1  

                                                                                  −𝑅 𝑅 𝑒1, 𝑒3 𝑒2, 𝑒3 𝑒1  

                                                                               −𝑅 𝑒2, 𝑅 𝑒1, 𝑒3 𝑒3 𝑒1  

                                                                                 −𝑅 𝑒2, 𝑒3  𝑅 𝑒1, 𝑒3 𝑒1        5.2.15   

and  

 𝑅 𝑒2, 𝑒3 ⋅ 𝑅  𝑒1, 𝑒3 𝑒2 = 𝑅 𝑒2, 𝑒3  𝑅 𝑒1, 𝑒3 𝑒2  

                                                                                  −𝑅 𝑅 𝑒2, 𝑒3 𝑒1, 𝑒3 𝑒2  

                                                                                 −𝑅 𝑒1, 𝑅 𝑒2, 𝑒3 𝑒3 𝑒2  

                                                                               −𝑅 𝑒1, 𝑒3  𝑅 𝑒2, 𝑒3 𝑒2 .        5.2.16   

Since  

𝑅 𝑒𝑖 , 𝑒𝑗  𝑒𝑘 =  𝐴𝜉𝑒𝑖 ∧ 𝐴𝜉𝑒𝑗  𝑒𝑘  

then using (5.2.12) one can get  

𝑅 𝑒1, 𝑒3 𝑒1 = −𝐾13𝑒1, 𝑅 𝑒1, 𝑒3 𝑒3 = 𝐾13𝑒1 

                          𝑅 𝑒2 , 𝑒1 𝑒1 = 𝐾12𝑒2,           𝑅 𝑒2, 𝑒1 𝑒2 = −𝐾12𝑒1               5.2.17  

𝑅 𝑒2, 𝑒3 𝑒2 = −𝐾23𝑒2, 𝑅 𝑒2, 𝑒3 𝑒3 = 𝐾23𝑒2. 
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Therefore substituting (5.2.17), (5.2.12) into (5.2.15) and (5.2.16) respectively 

we get the result.  

5.2.5. Lemma. Let 𝑀, 𝑛 ≥ 3, be a hypersurface of 𝔼𝑛+1 satisfying Chen‟s equal-

ity. Then  

                         𝑄 𝑔, 𝑅  𝑒2, 𝑒3, 𝑒1; 𝑒1, 𝑒3 = 𝑏2𝑒2                                       5.2.18  

                          𝑄 𝑔, 𝑅  𝑒1, 𝑒3, 𝑒2; 𝑒2, 𝑒3 = 𝑎2𝑒1                                           5.2.19  

Proof. Using the relation (5.1.22) we obtain  

𝑄 𝑔, 𝑅  𝑒2, 𝑒3, 𝑒1; 𝑒1, 𝑒3 =  𝑒1 ∧ 𝑒3 𝑅 𝑒2, 𝑒3 𝑒1 − 𝑅  𝑒1 ∧ 𝑒3 𝑒2, 𝑒3 𝑒1  

                                   −𝑅 𝑒2,  𝑒1 ∧ 𝑒3 𝑒3  −𝑅 𝑒2, 𝑒3   𝑒1 ∧ 𝑒3 𝑒1 .             5.2.20   

and  

𝑄 𝑔, 𝑅  𝑒1, 𝑒3, 𝑒2; 𝑒2, 𝑒3 =  𝑒2 ∧ 𝑒3 𝑅 𝑒1, 𝑒3 𝑒2 − 𝑅  𝑒2 ∧ 𝑒3 𝑒1, 𝑒3 𝑒2  

                               −𝑅 𝑒1,  𝑒2 ∧ 𝑒3 𝑒3 𝑒2   − 𝑅 𝑒1, 𝑒3   𝑒2 ∧ 𝑒3 𝑒2 .          5.2.21   

So substituting respectively (5.2.17) and (5.2.12) into (5.2.20) and (5.2.21) we 

obtain (5.2.18)-(5.2.19). ∎  

5.2.6. Theorem [Ӧzgür, C. and Arslan, K., 2002]. Let 𝑀, 𝑛 ≥ 3, be a hyersur-

face of 𝔼𝑛+1 satisfying Chen‟s  equality. Then 𝑀 is pseudosymmetric if and only 

if  

 i  𝑀 = 𝔼𝑛 , or  

 ii  𝑀 is a round hypercone in 𝔼𝑛+1, or  

 iii  𝑀 is a minimal hypersurface in 𝔼𝑛+1(in which case 𝑀 is  𝑛 − 2 -ruled), or  

 iv  The shape operator of 𝑀 in 𝔼𝑛+1 is of the form  

                                       𝐴𝜉 =

 
 
 
 
 
 
𝑎  0  0  0 ⋯ 0
0  𝑎  0  0 ⋯ 0
0  0  2𝑎 0 ⋯ 0
0  0  0 2𝑎 ⋯ 0
⋮   ⋮    ⋮    ⋮  ⋱ ⋮
0  0  0 ⋯  2𝑎  

 
 
 
 
 

                                                    5.2.22  
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Proof. Let 𝑀 be a pseudosymmetric hypersurface in 𝔼𝑛+1.Then by definition 

one can write  

 𝑅 𝑒1, 𝑒3 ⋅ 𝑅 𝑒2, 𝑒3  𝑒1 = 𝐿𝑅𝑄 𝑔, 𝑅  𝑒2, 𝑒3, 𝑒1; 𝑒1, 𝑒3                           5.2.23  

and  

 𝑅 𝑒2, 𝑒3 ⋅ 𝑅  𝑒1, 𝑒3 𝑒2 = 𝐿𝑅𝑄 𝑔, 𝑅  𝑒1, 𝑒3, 𝑒2; 𝑒2, 𝑒3 .                          5.2.24  

Since M satisfies B.Y. Chen equality then lemma 5.2.4 and lemma 5.2.5 the equ-

ations (5.2.23) and (5.2.24) turns, respectively, into  

                            𝑎𝜇 − 𝐿𝑅 𝑏2 = 0                                                              5.2.25  

and  

                                 𝑏𝜇 − 𝐿𝑅 𝑎2 = 0                                                                5.2.26   

i) Firstly, suppose that 𝑀 is semisymmetric, i.e., 𝑀 is trivially pseudosymmetric  

then 𝐿𝑅 = 0. 

 So the equations (5.2.25) and (5.2.26) can be written as the following  

𝑎𝑏𝜇 = 0. 

Now suppose 𝑎 = 0, 𝑏 ≠ 0 then 𝜇 = 𝑏 and 𝑀 is a round hypercone in 𝔼𝑛+1. 

If 𝑎 ≠ 0, 𝑏 = 0 then  𝜇 = 𝑎 and similarly 𝑀 is a round hypercone in 𝔼𝑛+1.  

If 𝜇 = 0 , then 𝑀 is minimal. If 𝑎 = 0, 𝑏 = 0 then 𝜇 = 0 so 𝑀 = 𝔼𝑛 .  

ii) Secondly, suppose 𝑀 is not semisymmetric, i.e., 𝑅 ⋅ 𝑅 ≠ 0. For the subcases 

𝑎 = 𝑏 = 0,    𝑎 = 0,   𝑏 ≠ 0 or 𝑎 ≠ 0,  𝑏 = 0 we get 𝑅 ⋅ 𝑅 = 0 which contradicts 

the facts that 𝑅 ⋅ 𝑅 ≠ 0. Therefore the only remaining possible subcase is a ≠ 0, 

𝑏 ≠ 0. So by the use of (5.2.25) and (5.2.26) we have  𝑎 − 𝑏 𝜇 = 0. Since 

 𝜇 = 𝑎 + 𝑏 ≠ 0 then 𝑎 = 𝑏 and by Lemma 5.2.1 the shape operator of 𝑀 is of 

the forms (5.2.22). This completes the proof of the theorem.  
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5.3. Projective Curvature Tensor of Submanifolds Satisfying 

Chen's Equality. 

We consider projectively semi-symmetric submanifolds satisfying Chen's equali-

ty in an Euclidean space. We also consider submanifolds satisfying the 

condition 𝑃 ∙ 𝑃 = 0.  

The projective curvature tensor 𝑃 of an 𝑛-dimensional Riemannian manifold (𝑀, 

𝑔) is defined by   

             𝑃 𝑋, 𝑌 𝑍 = 𝑅 𝑋, 𝑌 𝑍 −
1

𝑛−1
 𝑆 𝑌, 𝑍 𝑋 − 𝑆 𝑋, 𝑍 𝑌 .                    (5.3.1) 

  It is well-known that if the condition 𝑅 ∙ 𝑃 = 0 holds on 𝑀, then 𝑀 is said to be 

projectively semi-symmetric.  

  So from (5.2.4)-(5.2.10) we have the following corollary:   

5.3.1. Corollary. Let 𝑀 be an 𝑛-dimensional  𝑛 ≥ 3  submanifold in an Eucli-

dean space satisfying Chen's equality, then  

                                              𝑃122 =
𝑛−2

𝑛−1
 𝐾12 − 𝑏𝜇 𝑒1,                              (5.3.2) 

                                              𝑃133 = 𝜇  𝑎 −
𝑛−2

𝑛−1
𝜇 𝑒1,                                 (5.3.3) 

                                              𝑃131 =
1

𝑛−1
 𝐾12 − 𝑎𝜇 𝑒3,                                 5.3.4  

                                             𝑃233 = 𝜇  𝑏 −
𝑛−2

𝑛−1
𝜇 𝑒2,                                  5.3.5  

                                              𝑃211 =
𝑛−2

𝑛−1
 𝐾12 − 𝑎𝜇 𝑒2                                (5.2.6) 

                                               𝑃232 =
1

𝑛−1
 𝐾12 − 𝑏𝜇 𝑒3,                               (5.3.7) 

and   

                                      𝑃𝑖𝑗𝑘 = 0 if 𝑖, 𝑗, 𝑘 are mutually different.                (5.3.8)    

5.3.2. Theorem. Let 𝑀 be an 𝑛-dimensional  𝑛 ≥ 3  submanifold of an Eucli-

dean space 𝔼𝑛+𝑚  satisfying Chen's equality. If 𝑀 is projectively semi-symmetric 

then  
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(i)  𝑀 is totally geodesic, or  

(ii)  𝑀 is minimal, or  

(iii)  𝑀 is a round hypercone in some totally geodesic subspace 𝔼𝑛+1 of 𝔼𝑛+𝑚 , or 

(iv)  inf 𝐾 = 0, or  

 v  𝑎 = 𝑏, in this case if 𝑛 = 3 then 𝑀 is totally geodesic, if 𝑛 = 4 then 𝑀 is a 

pseudosymmetric hypersurface of  𝔼5 which has a shape operator of the form  

                                             𝐴1 =  

𝑎   0  0  0
0   𝑎  0  0
0  0 2𝑎 0

 0  0  0  2𝑎

 ,                                          (5.3.9) 

or   

(vi) 𝑀 is a submanifold in some totally geodesic subspace 𝔼𝑛+𝑚−1 which has 

shape operators of the form (5.2.3).  

Proof. Assume that the condition 𝑅 ⋅ 𝑃 = 0 holds on 𝑀. Then, we can write 

         𝑅 𝑒1, 𝑒3 . 𝑃  𝑒2, 𝑒3, 𝑒1 = 𝑅 𝑒1, 𝑒3 𝑃 𝑒2, 𝑒3 𝑒1  

                                           −𝑃 𝑅 𝑒1, 𝑒3 𝑒2, 𝑒3 𝑒1 − 𝑃 𝑒2, 𝑅 𝑒1, 𝑒3 𝑒3 𝑒1 

                                                            −𝑃 𝑒2, 𝑒3 𝑅 𝑒1, 𝑒3 𝑒1 = 0                      5.3.10   

and  

        𝑅 𝑒2, 𝑒3 . 𝑃  𝑒1, 𝑒3, 𝑒2 = 𝑅 𝑒2, 𝑒3 𝑃 𝑒1, 𝑒3 𝑒2  

                                          −𝑃 𝑅 𝑒2, 𝑒3 𝑒1, 𝑒3 𝑒2 − 𝑃 𝑒1, 𝑅 𝑒2, 𝑒3 𝑒3 𝑒2 

                                                       −𝑃 𝑒1, 𝑒3 𝑅 𝑒2, 𝑒3 𝑒2 = 0.                         5.3.11  

Then, using (5.2.4)-(5.2.7) and (5.3.2)-(5.3.8), we get  

                𝑎𝜇 𝑏𝜇 −  𝑛 − 2 𝑎𝑏 +  𝑛 − 2   𝑐𝑟
2 + 𝑑𝑟

2 𝑚
𝑟=1  = 0                  5.3.12  

and 

             𝑏𝜇 𝑎𝜇 −  𝑛 − 2 𝑎𝑏 +  𝑛 − 2   𝑐𝑟
2 + 𝑑𝑟

2 𝑚
𝑟=1  = 0                     5.3.13  

Case I. If 𝑀 is totally geodesic, the condition 𝑅 ⋅ 𝑃 = 0 holds trivially.  
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Case II. If 𝜇 = 0 , then 𝑀 is minimal.  

Case III. If 𝜇 ≠ 0 and 𝑎 = 0 then 𝜇 = 𝑏.Hence, from (5.3.13), we get 

  𝑛 − 2   𝑐𝑟
2 + 𝑑𝑟

2 𝑚
𝑟=1 = 0. This gives us 𝑐𝑟 = 𝑑𝑟 = 0. So, 𝑀 is around hyper-

cone in some totally geodesic subspace 𝔼n+1 of 𝔼n+m .  

Case IV. If 𝜇 ≠ 0 and 𝑏 = 0, then we obtain again the same result in case III. 

Case V. 𝑎, 𝑏, 𝜇 ≠ 0 , then from (5.3.12) and (5.3.13) we obtain 𝑎 = 𝑏, or 𝜇 = 0, 

or 𝐾12 = 0.  

If 𝜇 = 0, then 𝑀 is minimal. If 𝐾12 = 0, then inf 𝐾 = 0. Assume that 𝑎 = 𝑏. 

Then, from (5.3.13) we have  

 4 − 𝑛 𝑎2 +  𝑛 − 2   𝑐𝑟
2 + 𝑑𝑟

2 

𝑚

𝑟=1

= 0. 

In this case, if  𝑛 = 3, then 𝑐𝑟 = 𝑑𝑟 = 0. Hence, 𝑀 is totally geodesic. If  𝑛 = 4, 

then 𝑐𝑟 = 𝑑𝑟 = 0, so by theorem (5.2.6), 𝑀 is a pseudosymmetric hypersurface 

in some totally geodesic subspace 𝔼n+1 of 𝔼n+m , which has a shape operator of 

the form (5.3.9).  

Case VI. If  𝑎 = 𝑏 = 0, then 𝑀 is a submanifold in some totally geodesic sub-

space  𝔼𝑛+𝑚−1, which has a shape operators of the form (5.3.9). This completes 

the proof of the theorem.   ∎  

5.4. Chen Invariant or 𝛿-Invariant. 

5.4.1. Definition of Chen Invariant 

Let 𝑀 be a Riemannian manifold of dimension 𝑚 and let  𝑒1, 𝑒2, … , 𝑒𝑚   be an 

orthonormal basis of the tangent space 𝑇𝑝𝑀 at any point 𝑝 ∈ 𝑀. Then the scalar 

curvature 𝜏 at 𝑝 ∈ 𝑀 is given by  

𝜏 =  𝐾 𝑒𝑖 ∧ 𝑒𝑗  

1≤𝑖<𝑗≤𝑚

. 

For any point 𝑝 ∈ 𝑀, we denote 

 inf 𝐾  𝑝 = inf 𝐾 𝜋 : 𝜋 ⊂ 𝑇𝑝𝑀, dim 𝜋 = 2 . 
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where 𝐾 𝜋  denotes the sectional curvature of 𝑀 associated with a plane section 

𝜋 ⊂ 𝑇𝑝𝑀 at  𝑝 ∈ 𝑀.  

The Chen first invariant 𝛿𝑀 at any point 𝑝 ∈ 𝑀 is defined as 

𝛿𝑀 𝑝 = 𝜏 𝑝 −  inf 𝐾  𝑝 . 

Let 𝐿 be a subspace of  𝑇𝑝𝑀 of dimension 𝑟 ≥ 2 and let  𝑒1, … , 𝑒𝑚   an ortho-

normal basis of 𝐿. The scalar curvature 𝜏 𝐿  of the 𝑟-plane section 𝐿 is defined 

by 

𝜏 𝐿 =  𝐾 𝑒𝛼 ∧ 𝑒𝛽 

1≤𝛼<𝛽≤𝑟

. 

Given an orthonormal basis  𝑒1, … , 𝑒𝑚   of the tangent space 𝑇𝑝𝑀, we simply de-

note by 𝜏1…𝑟  the scalar curvature of the 𝑟-plane section spanned by 𝑒1, … , 𝑒𝑟  . 

The scalar curvature 𝜏 𝑝  of 𝑀 at 𝑝 is nothing but the scalar curvature of the 

tangent space of 𝑀 at 𝑝, and if 𝐿 is a 2-plane section, 𝜏 𝐿  is nothing but the sec-

tional curvature 𝐾 𝐿  of 𝐿.  

Geometrically, 𝜏 𝐿  is nothing but the scalar curvature of the image exp𝑝 𝐿  

of 𝐿 at 𝑝 under the exponential map at 𝑝.  

For an integer 𝑘 ≥ 0 denote by 𝑆 𝑛, 𝑘  the finite set consisting of unordered 𝑘-

tuples  𝑛1, … , 𝑛𝑘  of integer ≥ 2 satisfying 𝑛1 < 𝑛 and 𝑛1 + ⋯ + 𝑛𝑘 ≤ 𝑛. De-

note by 𝑆(𝑛) the set of unordered 𝑘-tuples with 𝑘 ≥ 0 for a fixed 𝑛. For each 𝑘-

tuple  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛  the Riemannian invariants 𝛿 𝑛1, … , 𝑛𝑘  𝑝  is defined 

to be  

                  𝛿 𝑛1, … , 𝑛𝑘  𝑝 = 𝜏 𝑝 − inf 𝜏 𝐿1 + ⋯ + 𝜏 𝐿𝑘  ,               5.4.1.   

where 𝐿1, … , 𝐿𝑘  run over all 𝑘 mutually orthogonal  subspaces of 𝑇𝑝𝑀 such that 

dim 𝐿𝑗 = 𝑛𝑗 , 𝑗 = 1, … , 𝑘.We note that the Chen invariant with 𝑘 = 0 is nothing 

but the scalar curvature 𝜏.  

Similarly, we have also defined 𝛿  𝑛1, … , 𝑛𝑘  𝑝  by  

                 𝛿  𝑛1, … , 𝑛𝑘  𝑝 = 𝜏 𝑝 − sup 𝜏 𝐿1 + ⋯ + 𝜏 𝐿𝑘  ,                (5.4.2) 

where 𝐿1, … , 𝐿𝑘  run over all 𝑘 mutually orthogonal subspaces of 𝑇𝑝𝑀 such that 

dim 𝐿𝑗 = 𝑛𝑗 , 𝑗 = 1, … , 𝑘.  
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Obviously, one has  

                                     𝛿 𝑛1, … , 𝑛𝑘 ≥ 𝛿  𝑛1, … , 𝑛𝑘 ,                             (5.4.3) 

for any 𝑘-tuple  𝑛1 , 𝑛2, … , 𝑛𝑘 ∈ 𝑆 𝑛 .  

For simplicity, a Riemannian manifold M is called an 𝑆 𝑛1, … , 𝑛𝑘 -space if it sa-

tisfies 𝛿 𝑛1, … , 𝑛𝑘 = 𝛿  𝑛1, … , 𝑛𝑘  identically. It follows from (5.4.1) and 

(5.4.2) that a Riemannian 𝑛-manifold is an 𝑆 𝑛1, … , 𝑛𝑘 -space if and only if 

𝜏 𝐿1 + ⋯ + 𝜏 𝐿𝑘  is independent of the choice of k mutually orthogonal sub-

space 𝐿1, … , 𝐿𝑘  which satisfy dim 𝐿𝑗 = 𝑛𝑗 ,   𝑗 = 1, … , 𝑘.  

Let  𝑒1, … , 𝑒𝑛  be any orthonormal basis of 𝑇𝑝𝑀. Then we denote the scalar cur-

vature of the 𝑗-space spanned by 𝑒𝑖1
, … , 𝑒𝑖𝑗  by 𝜏𝑖1…𝑖𝑗 .  

Let #𝑆(𝑛) denote the cardinal number of 𝑆(𝑛). Then #𝑆(𝑛) increases quite rapidly 

with 𝑛. For instance, for  

𝑛 = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, …, 20, …, 50,…,100,…,200,…, 

#𝑆 (𝑛) are given respectively by  

1, 2, 4, 6, 10, 14, 21, 29, 41, 54, 76, …, 626,…, 204225,…, 190569291,…,3972999029387,….  

In general, the cardinal number #𝑆 (𝑛) is equal to 𝑝 𝑛 − 1, where 𝑝 (𝑛) denotes 

the partition function.  

The asymptotic behavior of #𝑆(𝑛) is given by  

 

#𝑆 𝑛 ≈
1

4𝑛 3
exp  𝜋 

2𝑛

3
  𝑎𝑠 𝑛 → ∞. 

For a submanifold 𝑀 of a real space form 𝑀  𝑐 , Chen has given a basic inequali-

ty in terms of the intrinsic invariant 𝛿𝑀  and the squared mean curvature of the 

immersion as  

                   𝛿𝑀 ≤
𝑚2 𝑚−2 

2 𝑚−1 
 𝐻 2 +

1

2
 𝑚 + 1  𝑚 − 2 𝑐.                        (5.4.4) 
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The inequality (5.4.4) also holds well in case 𝑀 is an anti-invariant submanifold 

of complex space form 𝑀  𝑐 .  

Note:   

𝛿 𝑛1 , … , 𝑛𝑘  𝑝 = 𝜏 𝑝 − inf 𝜏 𝐿1 + ⋯ + 𝜏 𝐿𝑘   

where 𝐿1, … , 𝐿𝑘  run over all 𝑘 mutually orthogonal subspaces of 𝑇𝑝𝑀 with 

dim 𝐿𝑗 = 𝑛𝑗 ,    𝑗 = 1, … , 𝑘. In particular we have: 

𝛿 ∅ = 𝜏   𝑘 = 0, the trivial 𝛿– invariant ,  

𝛿 2 = 𝜏 − inf 𝐾, where 𝐾 is the sectional curvature,  

𝛿 𝑛 − 1  𝑝 = max Ric 𝑝 .  

The non-trivial  𝑘 > 0  𝛿-invariants are very different in nature from the “clas-

sical” scalar and Ricci curvatures; simply due to the fact that both scalar and 

Ricci curvatures are the “total sum” of sectional curvatures on a Riemannian 

manifold.  

5.4.2. Relations Between 𝜹-Invariants and Einstein Conformally Flat Mani-

folds.  

A manifold (𝑀, 𝑔) is called conformally flat, if locally we can write 𝑔 = 𝑕 · 𝑔0 

where 𝑔0 = Euclidean metric, and 𝑕, a positive real valued function on 𝑀.  

 A well-known theorem of Weyl is that: if dim 𝑀 ≥ 4, then (𝑀, 𝑔) is confor-

mally flat if and only if C = 0. Where  

 C = R −
1

n − 2
ℛ𝑖𝑐 +

𝑠𝑐

 𝑛 − 1  𝑛 − 2 
𝙸 

(Here, 𝑛 = dim 𝑀, and 𝑅 is Riemannian curvature structure defined by 

𝑅 𝑋, 𝑌 𝑍 = ∇ 𝑋,𝑌 𝑍 −  ∇𝑋 , ∇𝑌 𝑍 

and 𝙸 is (1, 3) tensor field given by  

𝙸 𝑋, 𝑌 𝑍 =  𝑋, 𝑍 𝑌 −  𝑌, 𝑍 𝑋 

and ℛ𝑖𝑐 is Ricci curvature structure defined by  

ℛ𝑖𝑐 𝑋, 𝑌 𝑍 =  𝑅𝑖𝑐 𝑋, 𝑍 𝑌 − 𝑅𝑖𝑐 𝑌, 𝑍 𝑋 +  𝑋, 𝑍 𝑅𝑖𝑐0𝑌 −  𝑌, 𝑍 𝑅𝑖𝑐0𝑋  
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where 𝑅𝑖𝑐0 the corresponding linear transformation defined by  

 𝑅𝑖𝑐0𝑋, 𝑌 = 𝑅𝑖𝑐 𝑋, 𝑌  

and 𝑠𝑐 = 𝑠𝑐𝑎𝑙𝑎𝑟 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = 𝑡𝑟𝑎𝑐𝑒 𝑅𝑖𝑐0).  

By using the notion of 𝛿-invariant, we have the following simple characteri-

zation of Einstein spaces which generalizes the well-known characterization of 

Einstein 4-manifolds given by I. M. Senger and J. A. Thorpe.  

5.4.2.1. Theorem. Let 𝑀 be a Riemannian 2𝑟-manifold. Then 𝑀 is an Einstein 

space if and only if we have  

                                          𝜏 𝐿 = 𝜏 𝐿⊥                                                      5.4.5  

for any 𝑟-plane section 𝐿 ⊂ 𝑇𝑝𝑀, 𝑝 ∈ 𝑀, where 𝐿⊥  denotes the orthogonal of 𝐿 

in 𝑇𝑝𝑀.  

Proof. Let 𝐿 be an arbitrary 𝑟-plane section at 𝑝. Choose an orthonormal basis 

 𝑒1, … , 𝑒2𝑟  at 𝑝 such that 𝐿 is spanned by 𝑒1, … , 𝑒𝑟 . 

If 𝑀 is an Einstein space, then the Ricci curvatures of 𝑀 satisfy  

       𝑅𝑖𝑐 𝑒1 + ⋯ + 𝑅𝑖𝑐 𝑒𝑟 = 𝑅𝑖𝑐 𝑒𝑟+1 + ⋯ + 𝑅𝑖𝑐 𝑒2𝑟                       5.4.6  

equation (5.4.6) yields 𝜏 𝐿 = 𝜏 𝐿⊥ .  

Conversely, suppose that we have 𝜏 𝐿 = 𝜏 𝐿⊥  for any 𝑟-plane section 

 𝐿 ⊂ 𝑇𝑝𝑀. Then we have  

                                         𝜏12…𝑟 − 𝜏2…𝑟+1 = 𝜏𝑟+1…2𝑟 − 𝜏1𝑟+2…2𝑟 .                 5.4.7  

Equation (5.4.7) implies  

𝐾12 + ⋯ + 𝐾1𝑟 −  𝐾 𝑟+1 2 + ⋯ + 𝐾 𝑟+1 𝑟 =  

𝐾 𝑟+1  𝑟+2 + ⋯ + 𝐾 𝑟+1  2𝑟 −  𝐾1 𝑟+2 + ⋯ + 𝐾1 2𝑟  , 

which yields  𝑅𝑖𝑐 𝑒1 = 𝑅𝑖𝑐 𝑒𝑟+1 . Since 𝑟 > 1, this implies that 𝑀 is Eins-

tein.∎  

We first prove the following generalization of a result of Kulkarni. 
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5.4.2.2. Theorem. Let 𝑀𝑛  be a Riemannian manifold with 𝑛 ≥ 4, and let 𝑠 be 

any integer satisfying 2 < 2𝑠 ≤ 𝑛. Then 𝑀 is conformally flat if and only if for 

any orthonormal set  𝑒1, … , 𝑒2𝑠  of vectors one has  

                            𝜏1…𝑠 + 𝜏𝑠+1…2𝑠 = 𝜏1…𝑠−1 𝑠+1 + 𝜏𝑠 𝑠+2…2𝑠                        5.4.8  

Proof. For 𝑠 = 2 this is Kulkarni's result. For completeness, we include a proof 

of this case.  

If 𝑀 is conformally flat, Weyl's conformal curvature tensor vanishes. Thus 

                𝐾𝑖𝑗 =
1

𝑛−2
 𝑅𝑖𝑐 𝑒𝑖 + 𝑅𝑖𝑐 𝑒𝑗   −

𝜏

 𝑛−1  𝑛−2 
, 𝑖 ≠ 𝑗                5.4.9  

from which we conclude that  

                           𝐾𝑖𝑗 + 𝐾𝑘ℓ = 𝐾𝑖𝑘 + 𝐾𝑗ℓ, for distinct 𝑖, 𝑗, 𝑘, ℓ                  5.4.10  

Conversely, if (5.4.10) holds for distinct 𝑖, 𝑗, 𝑘, ℓ, then by fixing 𝑖, 𝑗, 𝑘 in 

(5.4.10) and summing up over all remaining ℓ, one obtains  

 𝑛 − 2 𝐾𝑖𝑗 + 𝑅𝑖𝑐 𝑒𝑘 =  𝑛 − 2 𝐾𝑖𝑘 + 𝑅𝑖𝑐 𝑒𝑗                                          5.4.11  

fixing 𝑖, 𝑗 in (5.4.11) and summing up over all remaining 𝑘, we obtain (5.4.9), 

which implies the vanishing of Weyl's conformal curvature tensor. Therefore, 𝑀 

is conformal flat.  

Now we prove the theorem for 𝑠 > 2.First we prove that a conformally flat space 

satisfies (5.4.8). So suppose that 𝑀𝑛  is conformally flat and let s be any integer 

satisfying 2 < 2𝑠 ≤ 𝑛.  

From Kulkarni's result we know that 𝐾𝑖𝑠 + 𝐾𝑘𝑠+1 = 𝐾𝑖𝑠+1 + 𝐾𝑘𝑠  for any 𝑖 < 𝑠 

and 𝑘 > 𝑠 + 1. 

 Therefore we have that  

𝜏1…𝑠 + 𝜏𝑠+1…2𝑠 = 𝜏1…𝑠−1 +   𝐾𝑖𝑠 + 𝐾𝑠+1 𝑠+1+𝑖 

𝑠−1

𝑖=1

+ 𝜏𝑠+2…2𝑠  

                                                = 𝜏1…𝑠−1 +   𝐾𝑖𝑠+1 + 𝐾𝑠𝑠+1+𝑖 
𝑠−1
𝑖=1 + 𝜏𝑠+2…2𝑠   

                                             = 𝜏1…𝑠−1 𝑠+1 + 𝜏𝑠𝑗 +2..2𝑠. 
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Next we prove (5.4.8) implies conformal flatness. For this we use (5.4.8) twice 

to obtain  

   0 =  𝜏1…𝑠 + 𝜏𝑠+1…2𝑠 −  𝜏1…𝑠−1 𝑠+1 + 𝜏𝑠𝑠+2…2𝑠   

            − 
 𝜏1…𝑠−2𝑠+2𝑠 + 𝜏𝑠+1 𝑠−1 𝑠+3…2𝑠 

− 𝜏1…𝑠−2 𝑠+2 𝑠+1 + 𝜏𝑠𝑠−1 𝑠+3…2𝑠 
                                                 (5.4.12) 

It is clear that 𝐾𝑖𝑘  does not occur in (5.4.2.8) unless both 𝑖 and 𝑘 belong to the set 

 𝑠 − 1, 𝑠, 𝑠 + 1, 𝑠 + 2 .  Taking this into consideration, (5.4.12) becomes  

0 = 2  𝐾𝑠−1 𝑠 + 𝐾𝑠+1 𝑠+2 −  𝐾𝑠−1 𝑠+1 + 𝐾𝑠𝑠+2  , 

and Kulkarni᾽s result implies that 𝑀 is conformally flat.   ∎  

In general, the 𝛿-invariants 𝛿 𝑛1, … , 𝑛𝑘  are independent invariants. However, 

theorem (5.4.5) implies that, for a 2𝑟-dimensional manifold, we have the follow-

ing relations  

                         2𝛿 𝑟 − 𝛿 𝑟, 𝑟 = 2𝛿  𝑟 − 𝛿  𝑟, 𝑟 .                                   5.4.13  

For any 𝑘-tuple  𝑛1 , … , 𝑛𝑘 ∈ 𝑆 𝑛 , let us put  

                            ∆ 𝑛1, … , 𝑛𝑘 =
𝛿 𝑛1 ,…,𝑛𝑘 

𝑐 𝑛1 ,…,𝑛𝑘 
,                                               5.4.14  

Since a Riemannian 𝑛-manifold with 𝑛 ≥ 3 satisfies inequality  

 ∆ 2 > ∆ ∅ = 𝜏 

if and only if inf 𝐾 < 𝜏
 𝑛 − 1 2  .  

Thus, a Riemannian 𝑛-manifold  𝑛 ≥ 3  with vanishing scalar curvature satisfies  

∆0 2 > ∆0 ∅  

automatically, unless 𝑀 is flat.  

For compact homogeneous Einstein Kӓhler manifold, we also have the following 

relationship between the 𝛿-invariants and scalar curvature.  

5.4.2.3. Proposition. Let 𝑀 be a compact homogeneous Einstein Kӓhler mani-

fold with positive scalar curvature. Then, for each  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛 , we have  
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∆ 𝑛1, … , 𝑛𝑘 ≤  2 −
2

𝑛
 ∆ ∅ , 

where 𝑛 denotes the real dimension of 𝑀.  

5.4.2.1. Lemma. For a given integer 𝑗 with 2 ≤ 𝑗 ≤ 𝑛 − 2, if 𝑀 is an 𝑆(𝑗)-space, 

then it is an 𝑆 𝑗 + 1 -space.  

Proof. For simplicity, we start with a special case 𝑗 = 3. If 𝑀 is an 𝑆(3)-space, 

then 𝜏123  is a number, say 𝑐, which is independent of the choice of the 3-plane. 

In particular, from the definition of scalar curvature of a 𝑗-plane, we have  

       𝜏234 = 𝜏1234 − 𝐾12 − 𝐾13 − 𝐾14 = 𝑐,                                                  (5.4.15) 

where 𝐾𝑖𝑗  denotes the sectional curvature of the 2-plane spanned by 𝑒𝑖 , 𝑒𝑗 .  

On the other hand, since 𝑀 is an 𝑆(3)-space, we have  

              𝐾12 + 𝐾13 + 𝐾23 = 𝑐,                                                                           5.4.16  

              𝐾13 + 𝐾14 + 𝐾34 = 𝑐,                                                                             5.4.17  

             𝐾12 + 𝐾14 + 𝐾24 = 𝑐.                                                                               5.4.18  

Summing up (5.4.16)–(5.4.18) we obtain  

             𝜏1234 + 𝐾12 + 𝐾13 + 𝐾14 = 3𝑐                                                        5.4.19  

Combining (5.4.15) and (5.4.19), yields  𝜏1234 = 2𝑐. Since the orthonormal basis 

can be chosen arbitrarily, this implies that 𝑀 is as 𝑆(4)-space.  

In general, if 𝑀 is an 𝑆(𝑗)-space ,then  

𝜏2…𝑗 +1 = 𝜏1…𝑗 +1 − 𝐾12 − ⋯− 𝐾1𝑗+1 = 𝑐                                                      5.4.20  

On the other hand, similar to (5.4.19) we also have  

 𝑗 − 2 𝜏1…𝑗 +1 + 𝐾12 + ⋯ + 𝐾1𝑗 +1 = 𝑗𝑐                                                         5.4.21  

Combining (5.4.20) and (5.4.21) yields  𝑗 − 1 𝜏1…𝑗 +1 =  𝑗 + 1 𝑐.   

This implies 𝑀 is an 𝑆 𝑗 + 1 -space.    ∎ 

The 𝑆 𝑛1, … , 𝑛𝑘 -spaces are completely by the following two propositions.  

5.4.2.4. Proposition. Let 𝑀 be a Riemannian 𝑛-manifold with 𝑛 > 2.Then 
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(1)  For any integer 𝑗 with 2 ≤ 𝑗 ≤ 𝑛 − 2, 𝑀 is an 𝑆(𝑗)-space if and only if 

𝑀 is a Riemannian space form.  

(2)  𝑀 is an 𝑆 𝑛 − 1 -space if and only if 𝑀 is an Einstein space.  

5.4.2.5. Proposition. Let 𝑀 be a Riemannian 𝑛-manifold such that 𝑛 is not a 

prime and 𝑘 an integer ≥ 2.Then   

(1)  If 𝑀 is an 𝑆 𝑛1, … , 𝑛𝑘 -space, then 𝑀 is a Riemannian space form unless 

 𝑛1 = ⋯ = 𝑛𝑘  and 𝑛1 + ⋯ + 𝑛𝑘 = 𝑛, and  

(2)  𝑀 is an 𝑆 𝑛1, …𝑛𝑘 -space with 𝑛1 = ⋯ = 𝑛𝑘  and 𝑛1 + ⋯ + 𝑛𝑘 = 𝑛 if and 

only if 𝑀 is a conformally flat space.  

5.5. Fundamental Inequalities Involving 𝜹-Invariants 

Let 𝑀 be an 𝑛-dimensional submanifold of a Riemannian 𝑚-manifold 𝑀 𝑚 . We 

choose a local field of orthonormal frame 𝑒1, …𝑒𝑛 , 𝑒𝑛+1, … , 𝑒𝑚  in 𝑀 𝑚  such that, 

restricted to 𝑀, the vectors 𝑒1, … , 𝑒𝑛  are tangent to 𝑀 and hence 𝑒𝑛+1, … , 𝑒𝑚  are 

normal to 𝑀. Let 𝐾 𝑒𝑖 ∧ 𝑒𝑗   and 𝐾  𝑒𝑖 ∧ 𝑒𝑗   denote respectively the sectional 

curvatures of 𝑀 and 𝑀 𝑚  of the plane section spanned by 𝑒𝑖  and 𝑒𝑗 . The Gauss 

and Weingarten formulas are given respectively by  

                   ∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝑕 𝑋, 𝑌 ,                                                                    5.5.1  

                        ∇ 𝑋𝜉 = −𝐴𝜉𝑋 + 𝐷𝑋𝜉                                                                        5.5.2  

for any vector fields 𝑋, 𝑌 tangent to 𝑀 and vector field 𝜉 normal to 𝑀, where 𝑕 

denotes the second fundamental form, 𝐷 the normal connection and 𝐴 the shape 

operator of the submanifold.  

Let  𝑕𝑖𝑗
𝑟  , 𝑖, 𝑗 = 1, … , 𝑛; 𝑟 = 𝑛 + 1, … , 𝑚, denote the coefficients of the second 

fundamental form 𝑕 with respect to 𝑒1, … , 𝑒𝑛 , 𝑒𝑛+1, … , 𝑒𝑚 . Then we have  

                 𝑕𝑖𝑗
𝑟 =  𝑕 𝑒𝑖 , 𝑒𝑗  , 𝑒𝑟 =  𝐴𝑒𝑟

𝑒𝑖 , 𝑒𝑗  ,                                                   5.5.3  

where   ,   denotes the inner product. The mean curvature vector 𝐻    is defined by  

                   𝐻   = 1

𝑛
𝑡𝑟𝑎𝑐𝑒 𝑕 = 1

𝑛
 𝑕 𝑒𝑖 , 𝑒𝑖 

𝑛
𝑖=1 ,                                                       5.5.4  

where  𝑒1, … , 𝑒𝑛  is a local orthonormal frame of the tangent bundle 𝑇𝑀 of 𝑀.  
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The squared mean curvature is then given by  

                               𝐻2 =  𝐻   , 𝐻    .                                                                          5.5.5  

A submanifold 𝑀 is called minimal in 𝑀 𝑚  if its mean curvature vector vanishes 

identically.  

Denote by 𝑅 and 𝑅  the Riemann curvature tensors of 𝑀 and 𝑀 𝑚 , respectively. 

Then the equations of Gauss and Codazzi are given respectively by  

 

𝑅 𝑋, 𝑌; 𝑍, 𝑊 = 𝑅  𝑋, 𝑌; 𝑍, 𝑊 +  𝑕 𝑋, 𝑊 , 𝑕 𝑌, 𝑍   

                                                                                  − 𝑕 𝑋, 𝑍 , 𝑕 𝑌, 𝑊  ,              5.5.6   

           𝑅  𝑋, 𝑌 𝑍 
⊥

=  ∇ 𝑋𝑕  𝑌, 𝑍 −  ∇ 𝑌𝑕  𝑋, 𝑍 ,                                      5.5.7   

where 𝑋, 𝑌, 𝑍, 𝑊 are tangent to 𝑀 and ∇𝑕 is defined by  

 ∇𝑕  𝑋, 𝑌, 𝑍 = 𝐷𝑋𝑕 𝑌, 𝑍 − 𝑕 ∇𝑋𝑌, 𝑍 − 𝑕 𝑌, ∇𝑋𝑍 .                                 5.5.8  

for vectors 𝑋, 𝑌, 𝑍, 𝑊 tangent to 𝑀.  

A submanifold 𝑀 is called a parallel submanifold if we have ∇ 𝑕 = 0 identically. 

For each  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛 , let 𝑐 𝑛1, … , 𝑛𝑘  and 𝑏 𝑛1, … , 𝑛𝑘  denote the con-

stants given by  

𝑐 𝑛1, … , 𝑛𝑘 =
𝑛2 𝑛+𝑘−1− 𝑛𝑗  

2 𝑛+𝑘− 𝑛𝑗  
                                                                       5.5.9  

𝑏 𝑛1, … , 𝑛𝑘 =
1

2
 𝑛 𝑛 − 1  −  𝑛𝑗  𝑛𝑗 − 1 𝑘

𝑗 =1                                         5.5.10  

For any isometric from a Riemannain submanifold into another Riemannian ma-

nifold, we have the following general optimal inequality.  

5.5.1. Theorem (Chen, 2005). Let 𝜑: 𝑀 → 𝑀  be an isometric immersion of a 

Riemannian 𝑛-manifold into a Riemannian 𝑚-manifold. Then for each point 𝑝 ∈

𝑀 and each 𝑘-tuple  𝑛1, … , 𝑛𝑘 ∈ 𝑆 𝑛 , we have the following inequality:  

𝛿 𝑛1, … , 𝑛𝑘  𝑝 ≤ 𝑐 𝑛1, … , 𝑛𝑘 𝐻
2 𝑝 + 𝑏 𝑛1, … , 𝑛𝑘 max 𝐾  𝑝             5.5.11  
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where  max 𝐾  𝑝  denotes the maximum of the sectional curvature function of 

 𝑀 𝑚  restricted to 2-plane sections of tangent space 𝑇𝑝𝑀 of 𝑀 at 𝑝.  

The equality case of inequality (5.5.11) holds at 𝑝 ∈ 𝑀 if and only if the follow-

ing conditions hold:  

(1) there exists an orthonormal basis 𝑒1, … , 𝑒𝑚  at 𝑝, such that the shape operator 

of 𝑀 in 𝑀 𝑚  at 𝑝 take the following form:  

𝐴𝑒𝑟
=  

𝐴1
𝑟…0                    
⋮   ⋱   ⋮              0
0…𝐴𝑘

𝑟                  
          0                𝜇𝑟𝐼

 , 𝑟 = 𝑛 + 1, … , 𝑚,                                                5.5.12  

where I is an identity matrix and 𝐴𝑗
𝑟  is a symmetric 𝑛𝑗 × 𝑛𝑗  submatrix such that   

𝑡𝑟𝑎𝑐𝑒  𝐴1
𝑟 = ⋯ = 𝑡𝑟𝑎𝑐𝑒  𝐴𝑘

𝑟  = 𝜇𝑟                                                          5.5.13  

(2)  For any 𝑘 mutual orthogonal subspaces 𝐿1, … , 𝐿𝑘  of 𝑇𝑝𝑀 which satisfy   

𝛿 𝑛1, … , 𝑛𝑘 = 𝜏 −  𝜏 𝐿𝑗  

𝑘

𝑗 =1

 

at 𝑝 we have 𝐾  𝑒𝛼𝑖
, 𝑒𝛼𝑗

 = max 𝐾  𝑝  for any 𝛼𝑖 ∈ 𝛤𝑖 , 𝛼𝑗 ∈ 𝛤𝑗  with  0 ≤ 𝑖 ≠ 𝑗 ≤

𝑘, where  

                                 𝛤0 =  1, … , 𝑛1 ,  

                                  ⋯  

                                𝛤𝑘−1 =  𝑛1 + ⋯ + 𝑛𝑘−1 + 1, … , 𝑛1 + ⋯ + 𝑛𝑘 ,        

                                  𝛤𝑘 =  𝑛1 + ⋯ + 𝑛𝑘 + 1, … , 𝑛 .  
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