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Abstract

The transmission distance of any WDM fiber-optic communication system is
eventually limited by fiber losses and it was introduced from fiber attenuation,
connectors, splices, dispersion, interference and bending causes the power
reduction in optical fiber communication. This loss limitation was mostly
overcome using tunable optical filters, devices in which the desired channel
is to be selected at the receiver with negligible crosstalk and small insertion
loss.

In this thesis different kinds of tunable optical filters such as: Fabry-Perot,
Machzehnder and Acuosto-Optic filters are implemented to compensate losses.
From the obtained results, it will be shown that a WDM optical system with
a Machzehnder filter gets the best performance to compensate losses than
Fabry-Perot and acuosto-optic filters in terms of Q-factor, BER, eye height
and threshold when a fiber length, attenuation coefficient and input power
design parameters are changed. Also fabry-perot filter produced better results

at all cases than acuosto-optic filter which has a bad performance than others.
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Chapter one

Introduction

1.1 Introduction

According to a large frequency of optical carrier the high capacity of com-
munication systems will be achieved. To extending the system capacity a
multiple optical channels of transmission will be used.Channel multiplexing
can be done in the optical-domain through OTDM and WDM, respectively.
In WDM multiple optical carriers at different wavelengths are modulated by
using independent electrical bit streams and are then transmitted over the
same fiber. WDM system consist more components one of them is tunable
optical filter. The function of it is to pick a preferred channel at the receiver.
It needs a wavelength-selective method and can be subdivided into two cate-
gories according on whether optical interference or diffraction is the essential
physical mechanism. There are many kinds of optical filters namely Fabry—
Perot, Mach—Zehnder, grating-based Michelson and Acousto-Optic filters [[].

1.2 Problem Statement

When an optical signal is transmitted over a long distance, the loss from fiber
attenuation, connectors, splices, dispersion, interference and bending causes
the power reduction in optical fiber communication. Hence there are many
filtering technologies can be used to compensate these losses, and there is a

need to evaluate their performance.

1.3 Proposed Solution

The proposed solution is to use tunable optical filters like Fabry—Perot, Mach—
Zehnder and acousto-optic filter to enhance the performance in the transmis-
sion of Wavelength-Division Multiplexing optical fiber networks, since a tun-
able filter is a device which filters out one channel at a specific wavelength

that can be changed by tuning the pass band of the optical filter.



Chapter One: Introduction

1.4 Objectives

The aim of this research is to evaluate the performance of filtering (Fabry—
Perot, Mach—Zehnder and acousto-optic) for Wavelength-Division Multiplex-
ing based optical fiber networks in terms of Quality-factor,Bit Error Rate,Output

power ,eye height , threshold all this parameters in eye diagram.

1.5 Methodology

This thesis will simulate using Opti-System software. The performance of
WDM optical networks will be evaluated when the data will be transmitted
along the optical fiber transmission line that will be use different types of tun-
able optical filters with special lengths of fiber cable, attenuation coefficients
and input powers of the source. Then system performance with different
tunable optical filters will be compared in terms of Quality-factor, Bit Error

Rate, Eye height and Threshold to show the best one in the all scenarios.

1.6 Thesis organization

The thesis will be organized as follows: Chapter 2 discusses a literature review
of Tunable Optical Filters. Chapter 3 discuss a system model and design ap-
proach. Chapter 4 presents the implementation, simulation and experimental

results. Finally, chapter 5 presents conclusions and recommendation.



Chapter Two
Background and Literature Review

2.1 Multiplexing techniques

In norm, the capacity of optical fiber systems can surpass high bit rates in
terms of Tera bit per second because of a huge frequency related with carrier.
But there’s a limitation in practice for the bit rates comes from dispersion
and the nonlinearities. So to deliver a simple method for increasing the bit
rates; multiplexing will be used. Multiplexing techniques can be classified as
scheduled multiple-access techniques [fixed assignment] and a random multi-
ple access techniques. Scheduled multiple-access technique is simple in routing
of data than the other but their utilization is inefficient. Multiplexing can be

represented in optical domain through different techniques such as WDM,
OTDM, SCM and CDM [2].

I¥lv
-

v

Figure 2.1: Multiplexing process

2.1.1 WDM technique

In WDM technique a large bandwidth (high bit rate) can obtain by a fiber
optic because a several carriers modulated by autonomous electrical bits and
transmitted over the similar optical fiber then in receiver passes through de-
multiplexer for separation process. So it used in different Low-loss transmis-

sion windows [3].
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Figure 2.2: Wavelength Division Multiplexing

2.1.2 OTDM technique

In OTDM technique a distinct channel transmit several TDM channels to can
increasing the bit rate to higher as possible [@].In additions the OTDM differ

from WDM in the usage of line codes and optical sources [B]
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Figure 2.3: Optical Time Division Multiplexing

2.1.3 SCM technique

In SCM a multiple carriers can be used to transmit a multiple channels
through a specific medium. In other words a low bit rate per channel but

a large number of channels will carried in some different networks applica-

tions [H] .
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Figure 2.4: Subcarrier Multiplexing.

2.1.4 CDM technique

In CDM spread-spectrum technique will be used for coding every channel over

a much broader region than the original signal [H]
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Figure 2.5: Optical Code Division Multiplexing illustrations.

2.2 Tunable Optical Filters

In WDM system, a tunable filter positioned at the receiver is used for channel
selection process. According to original physical mechanism Optical filters can
be classified into optical interference or diffraction. Based on this classifica-
tion there are four types of filters shows in the figure below: (a) Fabry—Perot
filter; (b) Mach—Zehnder filter; (c¢) grating-based Michelson filter; (d) Acousto-
optic filter. The desirable properties of a tunable optical filter include: (1)
wide tuning range to maximize the number of channels that can be selected,

(2) negligible crosstalk to avoid interference from adjacent channels, (3) fast



Chapter Two: Background and Literature Review

tuning speed to minimize the access time, (4) small insertion loss, (5) polar-
ization insensitivity, (6) stability against environmental changes (humidity,

temperature, vibrations, etc.), and (7) last but not the least, low cost [§].

- A\rL -
ﬂvs&
B Avch—h A
1 2 3 4 5 Optical frequency ——

Figure 2.6: Channel selection mechanism.
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Figure 2.7: Four types of tunable optical filters.

2.2.1 Fabry—Perot Filter

Fabry—Perot interferometer can be tunable if its length is controlled by a
piezoelectric transducer electronically [see Fig. 2.7(a)] and the spacing be-
tween two sequential peaks, called as the frequency spacing or free spectral
range. FP filters uses the air gap between two optical fibers to get a high-

reflectivity mirrors [@] It can be tuned using thermo-optic and Micromechan-

ical tuning [10]- [L1).

2.2.2 Mach-Zehnder Filter

Mach—Zehnder interferometers can be formed by connecting the two output

ports of a 3-dB coupler to the two input ports of another 3-dB coupler [see
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Fig. 2.7(b)] for splitting and interfering process. The first coupler splits the
input signal equally into two parts, which acquire different phase shifts (if the
arm lengths are made different) before they interfere at the second coupler,

also can be made by silica waveguides on a silicon substrate [12].

2.2.3 Grating-based optical Filter

Grating-based optical filter acts as a reflection filter and can be controlled by
a grating period in terms of bandwidth and central wavelength. The reflective
nature of fiber gratings is often a limitation in practice and requires the use
of an optical circulator. Fiber grating filter with an optical circulator can be

used for a narrowband transmission [13].

2.2.4 Michelson optical Filter

Michelson interferometer can be formed by using a 3-dB fiber coupler, two
fiber gratings and two arms of interferometer [see Fig. 2.7(c)| to realize trans-
mission filters [14]. Most of these schemes can also be implemented in the
form of a planar lightwave circuit by forming silica waveguides on a silicon

substrate.

2.2.5 Acousto-optic Filter

Acousto-optic filters use acoustic waves to formed grating dynamically and it
has tuning range wider as possible to match an applications in optical FDM.
The physical mechanism behind the operation of acousto-optic filters is the
photoelastic effect through which an acoustic wave propagating through an
acousto-optic material creates periodic changes in the refractive index (cor-
responding to the regions of local compression and rarefaction). [see Fig.
2.7(d)] [15].

2.3 Literature Review

In [16], developed both a mathematical model of Fabry-Perot interferometer
(FPI) in s-domain and a relationship between tilt angles () with the variation
of ‘Psv’ to realize the behavior of extrinsic Fabry-Perot interferometer cavity
(EFPI) under tilted condition. In [17], demonstrated a novel absolute strain

measurement system by use a Fabry-Perot interferometer (FPI) formed by
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cascaded high-reflection chirped fiber Bragg gratings (CFBGs) with opposite
chirp directions demodulated by a wavelength-scanning distributed feedback
(DFB) laser diode. The laser wavelength scanning rate can be improved by
increase the frequency and/or the amplitude of the scanning signals.

In [[18], proposed and demonstrated a necessary condition for the ultrasonic
transducers needed based on microfiber grating for photo acoustic imaging.
Results show different characteristics through measure of different mode in-
terference on peak temperature and refractive index sensing. In [19], proposed
and demonstrated an optical fiber temperature sensor based on cascaded in-
terferometers. Results achieved the sensitivity is 6 times higher than in single
interferometer. Also shows different sensitivity change by a change of optical
path difference of Mach-Zehnder interferometer.

In [20], proposed and demonstrated a high gain and high directivity Fabry-
Perot resonator antenna with metamaterial lens operating around 14GHz.
Results shows the novel left-handed metamaterial (LHM) unit that achieve
a greater negative refraction effect with only one-side fabricating on the di-
electric board and pen shaped beam is well improved. In [21], demonstrated
both athermal and flat-topped transmission in a Mach-Zehnder (MZ) filter.
Athermal performance, minimum insertion loss and feature size is measured
also the device can be scaled up to multi-channel WDM filters.

In [22], demonstrated both compact low-loss thermo-optic single Mach-
Zehnder interferometers (MZIs) and two cascaded MZIs on a silicon nitride-
on-insulator platform, which work as tunable filters in the visible range. In
[23], demonstrated an acousto-optic tunable filters (AOTFs) optimized for
operation in the 2-4 m region. Despite the inherently high RF drive-power
requirement at longer wavelengths, practical Acousto Optic Tunable Filters
[AOTFs] may be built operating to the transmission window limit of 4.5 m.
A further improvement is possible using carefully optimized resonant designs.

In [24], demonstrated a double-filtering method based on two acousto-optic
tunable filters for hyper spectral imaging application, the hyper spectral imag-
ing system was built based on two AOTFs. Preliminary results shown that
the hyper spectral imaging system based on the two acousto-optic tunable
filters is completely doable. In [25], proposed and demonstrated an all-fiber
acousto-optic tunable band pass filter based on a coreless optical fiber core
mode blocker. Results show an optimization in response with an asymmetric

configuration. Also demonstrate a lowest insertion loss when the device is
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operated as a band pass filter.
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Chapter Three
System Model and Design Approach

3.1 Introduction

In this Chapter, we explain the system design of filtering for Wavelength
Division Multiplexing based optical fiber networks, then evaluating the effect
of limiting factors (fiber length, attenuation coefficient and input power) in
terms of quality-factor, bit-error rate, eye height and threshold when we use
a Fabry—Perot, Mach-Zehnder and Acousto-Optic tunable filters.

3.2 System Model

In this section we explain the system model of this research. Consider 4 WDM
optical fiber networks as shown in the Figure Ell . In the transmission side an
optical signal modulated with the electrical signal indirectly and multiplexed
with the other optical signals then passed through an optical fiber cable and
a tunable optical filter until reach the receiver side after demultiplexed oper-
ation.

Each transmitter used the Non return to zero modulation format to gener-
ate the electrical signal from the output of Pseudo Random Bit Sequence gen-
erator. An optical signal can be generated by used continuous wave LASER

then both signals externally modulated optically at 12 Gbps with extinction

1. RX,
o, RX,
Optical Fiber Cable TUNABLE
. - " FILTER
X, — ‘ RX5
12 RX,

Transmition Medium
Transmitter Side Receiver Side

Figure 3.1: 4 WDM optical fiber networks
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ratio of 30 dB by using a Mach-Zehnder modulator which is a famous type of
optical modulators.

All optical signals with different frequencies (from 193.1 to 193.4 THZ)
that generated are multiplexed optically with a (4-to-1) WDM multiplexer
and lunched to a single mode fiber with a dispersion of 16.75 ps/nm/km.
A tunable filter with different types is connected with a fiber cable to com-
pensate dispersion and nonlinear effects in transmission system. An output
signal from a tunable filter is also demultiplexed optically by (1-to-4) WDM
demultiplexer, and each signal with specific frequency (from 193.1 to 193.4
THZ) is finally passed to a PIN photo detector to convert the optical signal
back into the electrical signal. Overall system performance can be evaluated

by using a BER analyzer which is connected at the end of the receiver side.

3.2.1 System model with Fabry—Perot Filter

In this case an optical filter cavity or interferometer is produced by two mirrors
with a length between them that controlled electronically by a piezoelectric
transducer [§]. The following equation can be used to calculate the FSR

between the transmitted peaks

C
AVL =g (3.1)

where n, is the group index of interactivity material of Fabry—Perot filter,
c is the speed of light and L is the length. Also the filter bandwidth, can be
given by

AVL

AVFP = — (3.2)
where F': finesse of the FP filter. If internal losses are neglected, the finesse
is given by
™R
F = .
(1—R) (3.3)

where R is the mirror reflectivity.

3.2.2 System model with Mach-Zehnder Filter

In this case an optical filter interferometer is produced by using a two 3-dB

coupler [8]. The following equation can be used to calculate the transmittivity

12
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of a chain of m such interferometers

M
T(v) = H cos? (Vrm), (3.4)

m=1
where V is the frequency and 7 is the relative delay in the two arms of the

Mach-Zehnder interferometer

3.2.3 System model with Acousto-Optic Filter

In this case an optical filter grating is produced dynamically by using acoustic
waves [8]. The following equation can be used to calculate the channel whose

wavelength A satisfies the Bragg condition
A = AnAg, (3.5)

where An is the TE-TM index difference and A, is the acoustic wavelength

3.3 Limiting factors for performance of the WDM networks

One of the limiting factors is fiber losses for a reason of power reduction in
the receiver side [§]. The following equation shows the Beer’s law that govern
changes in the average optical power P of a bit stream propagating inside an

optical fiber 5
P

o

where « is the attenuation coefficient. The relation between input and output

—aP, (3.6)

power in terms of attenuation coefficient and fiber length is given by
Pyut = Py exp (—al). (3.7)

Attenuation coefficient can be expressed in units of dB/km by using the

relation

10 Pout
a=—— log, ( qu ) ~ 3.343q, (3.8)

and refer to it as the fiber-loss parameter.

3.4 Performance evaluation of the WDM networks

The system model evaluated its performance in terms of quality factor, bit-

error rate, eye height and the threshold.

13
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3.4.1 Quality factor

The @ factor is inversely proportional to the BER [8]; also it’s related to SNR
by the following equation

Q = (1N,)?, (3.10)

where 7 is the quantum efficiency and N, is the receiver sensitivity

3.4.2 Bit-error rate

Around an average value a sampled value fluctuates from bit to bit, depending
on whether the bit corresponds to 1 or 0 in the bit stream. An error occurs
when a sampled value less than a threshold value for bit 1 and vice versa for

bit 0, because of receiver noise [8]. The BER is given by
1
BER = 5 [p(0 | 1)+ p(1] 0)], (3.11)

where p(01) is the probability of deciding 0 when 1 is received and p(10) is the
probability of deciding 1 when 0 is received. Also the BER is given by

1
BER = Eerfc (%) (3.12)
@
2 \F) ( - ) (3.13)
Qv2Il '

_1 Ny
= 2erfc < 5 ) (3.14)

3.4.3 Eye height

An optical receiver performance may change with time, for this reason the
eye diagram is best suitable in this case; closing of the eye is a measure of
degradation in receiver performance and is related with subsequent increase
in the BER and vice versa [8]. This observation relates eye closure to the
BER and it is quantified (in dB) as

(3.15)

eye opening after transmission >

5. = —101
eye 0810 (eye opening before transmission

14
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3.4.4 Threshold Considerations

Simply to get the threshold condition is to detect how the amplitude of an
optical mode changes during one round trip in a definite cavity. The decision
circuit compares the output from the linear channel to a threshold level, at
sampling times determined by the clock-recovery circuit, and decides whether
the signal corresponds to bit 1 or bit 0. The greatest sampling time is maxi-
mum corresponds to the situation in which the signal level difference between
1 and 0 bits [§].

3.4.5 Eye Diagram

A method which is often used to obtain a qualitative indication of the perfor-
mance of a regenerative repeater or a PCM system is the examination of the
received waveform on an oscilloscope using a sweep rate which is a fraction
of the bit rate. The display obtained over two bit intervals duration, which
is the result of superimposing all possible pulse sequences, is called an eye
diagram or pattern [8]. An illustration of an eye diagram for a binary system
with little distortion and no additive noise is shown in Figure (a) @ It may
be observed that the diagram has the shape of a human eye which is open and
that the decision time corresponds to the center of the opening. To regener-
ate the pulse sequence without error the eye must be open thereby indicating
that a decision area exists, and the decision crosshair (provided by the de-
cision time and the decision threshold) must be within this open area. The
effect of practical degradations on the pulses (i.e. intersymbol interference
and noise) is to reduce the size of, or close, the eye, as shown in Figure (b)
@. Hence for reliable transmission it is essential that the eye is kept open,
the margin against an error occurring being the minimum distance between

the decision crosshair and the edge of the eye [26].

15
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Amplitude
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Threshold level

Decision time
(a) (b)

Figure 3.2: Eye Diagrams in binary digital transmission
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Chapter Four
Results and Discussion

4.1 Introduction

In this chapter we discuss the performance analysis of filtering for WDM based
optical fiber networks is evaluated by OptiSystem simulation. We will discuss
the result of the performance analysis for WDM based optical fiber networks
for different filtering types and limiting factors and then compared with each
other.

4.2 Performance Analysis For Filtering WDM Based
Optical Fiber Networks

The initial values of various components in the system as follow:

o CW Input Power: 0 dBm

« CW LASER frequency: (193.1-193.4 THz)

o Fiber length: 40 Km

» Reference wavelength: (1552.7-1551.2 nm)

o Mach-Zehnder modulator extinction ratio: 30 dB
 Attenuation coefficient: 0.1 dB/Km

o Bit rate: 12 Gbps

« PIN photodiode responsitivity: 1 A/W

o PIN photodiode dark current: 10 nA

4.2.1 Performance Analysis With a Fabry—Perot Tunable Filter

The initial Fabry—Perot optical filter properties as follow:

Frequency: 193.1 THz
Bandwidth: 5 GHz
Free spectral range: 5 GHz

Insertion loss: 0 dB

17
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e Depth: 100 dB

In this case the following limiting factors are taken to see the performance of
Fabry—Perot optical filter.

4.2.1.1 Effect Of Fiber Length

In this case the following parameters are taken to see the effect of fiber length.

e Input power: 0 dBm

 Attenuation coefficient: 0.1 dB/Km

Figure @, Figure @, and Figure @, show the system performance pa-
rameters when the fiber length is equal to 40 Km. Next, the fiber length is
set to 80 Km and the performance is shown in Figure @, Figure @, and
Figure @ Next, the fiber length is set to 120 Km and the performance is
shown in Figure , Figure @, and Figure . Next, the fiber length is
set to 160 Km and the performance is shown in Figure , Figure , and
Figure . Finally, the fiber length is set to 200 Km and the performance is
shown in Figure , Figure , and Figure . The figures are presented
in the next pages, which is shown that in the case of fiber length 40 Km
(Highest Performance) a clearly output signal and open eye in the diagram
also shown maximum Q-factor, Eye Height, Threshold and minimum BER.
The performance gradually degraded until reach fiber length 200 Km (Lowest
Performance), which is shown that a noisy output signal and closed eye in the
diagram also shown minimum Q-factor, Eye Height, Threshold and maximum
BER.

The following table, Tables [1! concluded the presents a summary of the
results obtained from Figure @ to Figure §.17

Table 4.1: FP,Evaluation(Z=40 to 200Km,a=0.1dB/Km,P,n=0dBm)

Length (Km) | Max .Q-Factor | Min. BER | Eye Height | Threshold
40 12 9e-032 3e-004 5e-005
80 11 5e-030 10e-005 5e-005
120 6.7 9e-012 3e-005 2.9e-005
160 2.9 2e-003 -6e-007 1e-005
200 0 1 0 0

18
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Figure 4.15: FP,Q-factor and BER(L=200Km,a=0.1dB/Km, P,n=0dBm)
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4.2.1.2 Effect Of Attenuation Coefficient

In this case the following parameters are taken to see the effect of fiber at-

tenuation coefficient.

e Input power: 0 dBm
o Fiber length: 40 Km

Figure ¥.19, Figure ¥4.20, and Figure

parameters when the fiber attenuation coefficient is equal to 0.1 dB/Km.

4.21, show the system performance

Next, the attenuation is set to 0.2 dB/Km and the performance is shown in
1.2, Figure B.23, and Figure {1.24.

0.3 dB/Km and the performance is shown in Figure

Figure Next, the attenuation is set to
4.25, Figure §.26, and
Figure . Next, the attenuation is set to 0.4 dB/Km and the performance
is shown in Figure , Figure , and Figure . Finally, the attenuation
is set to 0.5 dB/Km and the performance is shown in Figure , Figure ,
and Figure . The figures are presented in the next pages, which is shown

that in the case of an attenuation 0.1 dB/Km (Highest Performance) a clearly

output signal and open eye in the diagram also shown maximum Q-factor, Eye
Height, Threshold and minimum BER. The performance gradually degraded
until reach an attenuation 0.5 dB/Km (Lowest Performance), which is shown
that a noisy output signal and closed eye in the diagram also shown minimum
Q-factor, Eye Height, Threshold and maximum BER.

The following table, Tables concluded the presents a summary of the
results obtained from Figure ¢.19 to Figure Y.33

Table 4.2: FP,Evaluation(L=40Km,a=0.1 to 0.5dB/Km, ;n=0dBm)

Attenuation | Max .Q-Factor | Min. BER | Eye Height | Threshold
(dB/Km)

0.1 12 9e-032 3e-004 5e-005
0.2 2e-019 9.6e-005 4e-005
0.3 6e-008 2.5e-005 2e-005
0.4 2.6 41e-004 -3e-006 8e-006
0.5 0 1 0 0
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Figure 4.19: FP,Q-factor and BER(L=40Km,a=0.1dB/Km, P,n=0dBm)
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Figure 4.20: FP,Threshold and eye height(L=40Km,a=0.1dB/Km, P,;n=0dBm)
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Figure 4.21: FP,Input and output signals(L=40Km,a=0.1dB/Km, P,n=0dBm)
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Figure 4.26: FP,Threshold and eye height(L=40Km,a=0.3dB/Km, P,n=0dBm)

B Oscilloscope Visualizer Oscilloscope Visualizer_1
Dbl Choii On Objects 1o open properties. Move Obycts with Mowse Drag Dbl Cick On Objects % open properties. Move Dbjects with Wouse Drag
- A - sinlinimain 1l
€ -
g
a
is F

20m

°Mﬁ' *

2n En Bn n n sn 8n i

P ampatude / Amphtude |

Figure 4.27: FP,Input and output signals(L=40Km,a=0.3dB/Km, P,n=0dBm)
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Figure 4.29: FP,Threshold and eye height(L=40Km,a=0.4dB/Km, P,n=0dBm)

.i Oscilloscope Visualizer Qscilloscope Visualizer_1
D Chck On Objects to open properties Move Objects with Mouse Drag Ded Chck On Objects 10 cpen progertes. Move Objects with Mouse Drag
- m ninlinimmia .
[7] [ 1 2l | |
g i LERLOAn
8 ! R
is i
!5 g |
=] i 'I"‘ L., !].Ir |’|| g "I" M II
& WL TN O KA
z 0 met) " 2n o et "
[\ Armpltunte / Ampitude [ -
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4.2.1.3 Effect Of Input Power

In this case the following parameters are taken to see the effect of Input power.

« Attenuation coefficient: 0.3 dB/Km
o Fiber length: 40 Km

Figure #.34, Figure #.35, and Figure %.36, show the system performance

parameters when the Input power is equal to 0dBm. Next, the Input power is

equal to 2dBm and the performance is shown in Figure ¢.37, Figure 4.38, and

Figure #.39. Next, the Input power is equal to 5dBm and the performance is

shown in Figure .40, Figure #.41], and Figure 4.42. Next, the Input power is

equal to 7dBm and the performance is shown in Figure .43, Figure #.44, and
Figure . Finally, the Input power is equal to 9dBm and the performance

is shown in Figure , Figure , and Figure . The figures are pre-

sented in the next pages, which is shown that in the case of an input power

9 dBm (Highest Performance) a clearly output signal and open eye in the di-
agram also shown maximum Q-factor, Eye Height, Threshold and minimum
BER. The performance gradually degraded until reach an input power 0 dBm
(Lowest Performance), which is shown that a noisy output signal and closed
eye in the diagram also shown minimum Q-factor, Eye Height, Threshold and
maximum BER.

The following table, Tables concluded the presents a summary of the
results obtained from Figure .19 to Figure #.33

Table 4.3: FP,Evaluation(L=40Km,a=0.3dB/Km,P,n=0 to 9dBm)

Input Power | Max Min. BER | Eye Height | Threshold
(dBm) .Q-Factor

0 ) 6e-008 2.5e-005 2e-005
2 7 6e-013 5e-005 3e-005
5 10 2e-022 13e-005 4e-005
7 11 5e-029 21e-005 5e-005
9 12 Te-032 34e-005 6e-005
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Figure 4.34: FP,Q-factor and BER(L=40Km,a=0.3dB/Km,P;n=0dBm)
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Figure 4.35: FP, Threshold and eye height(L=40Km,a=0.3dB/Km, P,n=0dBm)
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Figure 4.38: FP,Threshold and eye height(L=40Km,a=0.3dB/Km, P,;n=2dBm)
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Figure 4.39: FP,Input and output signals(L=40Km,a=0.3dB/Km,P,n=2dBm)
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Figure 4.42: FP,Input and output signals(L=40Km,a=0.3dB/Km, P,n=5dBm)

36



Chapter Four: Results and Discussion

E BER Analyzer E BER
04 Cick Cin Objects B open properties. Mpve Cbcts wilh Mowss Crag Dt Cici e Objecty 1s spen properties. Wowe Objecss with Mouse Deag
Tiemse: it pe o) 'I‘urlrn;‘m .
= == a
B g
B
izl g
A
2

Figure 4.43: FP,Q-factor and BER(L=40Km,a=0.3dB/Km, P,n=7dBm)
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Figure 4.44: FP,Threshold and eye height(L=40Km,a=0.3dB/Km,P,n=7dBm)

.‘ Oscilloscope Visualizer Oscilloscope Visualizer_1
D& Chck On Objects to open properties. Wowe Objects with Uouse Orag Dt Chok On Objects b open properties. Move Obyects with Mouse Drag
T T T T T 2
- M 1— m { I — M 3
& &

B0 m

Ampiituds (3400
400m

Xm

Figure 4.45: FP,Input and output signals(L=40Km,a=0.3dB/Km, P,n=7dBm)

37



Chapter Four: Results and Discussion

@ 05
P \vam v el e ), 0 o ]

L]
fLa n&lm&.hm_m_ ﬁ B patse [

Figure 4.46: FP,Q-factor and BER(L=40Km,a=0.3dB/Km,P,n=9dBm)

BER Analyzer 5 BER
s ek G Obgerctn 10 pes praperies Wave Oty wilh Wouse Drag T Chch O DDy o o progenes. Mawe Oteeciy with Mouse Drag
mnﬁm , paric)

o Sl
E= A0y

Amplitue s}

A0 p
LT

1 o

0%
° Time .y Tina {1 o

Figure 4.47: FP, Threshold and eye height(L=40Km,a=0.3dB/Km,P,n=9dBm)

ﬁ Oscilloscope Visualizer I'I‘ Oscilloscope Visualizer_1
Died Chck On Objects b open properties. Wowe Objcts with Wosse Draeg Dol Cick On Obgects to open proparties. Move Dbcts with Nouss Orag
T TR ’ | .
E g o 1 l
& I |
; |
FE i.
]
k i
§ z
L} Il | i | . 11 f - |
] = Ml * b !|'|| e
1
n En . an 1n 2n n renetet on Hn
Amphtude | Amphtude |

Figure 4.48: FP,Input and output signals(L=40Km,a=0.3dB/Km, P;n=9dBm)

38



Chapter Four: Results and Discussion

4.2.2 Performance Analysis With a Mach-Zehnder Tunable Filter

The initial Mach-Zehnder optical filter properties as follow:

e Delay: 0s
o Coupling coefficient: 0.5
o Additional loss: 0 dB

4.2.2.1 Effect Of Fiber Length

In this case the following parameters are taken to see the effect of fiber length.

e Input power: 0 dBm

 Attenuation coefficient: 0.1 dB/Km

Figure #.50, Figure {.51, and Figure

4.52, show the system performance

parameters when the fiber length is equal to 40 Km. Next, the fiber length

is equal to 80 Km. and the performance is shown in Figure {.53, Figure

1.54, and Figure 4.55. Next, the fiber length is equal to 120 Km. and the

performance is shown in Figure .56, Figure 4.57, and Figure #.58. Next, the

fiber length is equal to 160 Km. and the performance is shown in Figure

Figure ¥4.6(, and Figure ¥4.61]. Finally, the fiber length is equal to 200

and the performance is shown in Figure

1.62, Figure

4.63

, and Figure

4.59

Km.

4.64.

Y

The figures are presented in the next pages, which is shown that in the case

of fiber length 40 Km (Highest Performance) a clearly output signal and open

eye in the diagram also shown maximum Q-factor, Eye Height, Threshold and

minimum BER. The performance gradually degraded until reach fiber length

200 Km (Lowest Performance), which is shown that a noisy output signal

and closed eye in the diagram also shown minimum Q-factor, Eye Height,

Threshold and maximum BER.

The following table, Tables @ concluded the presents a summary of the

results obtained from Figure to Figure

39



Chapter Four: Results and Discussion

Table 4.4: MZ,Evaluation(L=40 to 200Km,a=0.1dB/Km, ,n=0dBm)

Length (Km) | Max .Q-Factor | Min. BER | Eye Height | Threshold
40 39 0 4e-004 2e-004
80 19 le-084 13e-005 7.3e-005
120 8 3e-014 4e-005 3e-005
160 3.3 5e-004 2e-006 1.2e-005
200 0 1 0 0
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4.2.2.2 Effect of Attenuation Coefficient

In this case the following parameters are taken to see the effect of fiber at-

tenuation coefficient.

e Input power: 0 dBm
o Fiber length: 40 Km

Figure §.66, Figure 4.67, and Figure §4.68, show the system performance

parameters when the fiber attenuation coefficient is equal to 0.1 dB/Km.

Next, the attenuation is set to 0.2 dB/Km and the performance is shown in

Figure ¥4.69, Figure U.70, and Figure 4.71. Next, the attenuation is set to

0.3 dB/Km and the performance is shown in Figure .72, Figure ¥.73, and
Figure . Next, the attenuation is set to 0.4 dB/Km and the performance
is shown in Figure , Figure , and Figure . Finally, the attenuation
is set to 0.5 dB/Km and the performance is shown in Figure , Figure ,
and Figure . The figures are presented in the next pages, which is shown
that in the case of an attenuation 0.1 dB/Km (Highest Performance) a clearly

output signal and open eye in the diagram also shown maximum Q-factor, Eye
Height, Threshold and minimum BER. The performance gradually degraded
until reach an attenuation 0.5 dB/Km (Lowest Performance), which is shown
that a noisy output signal and closed eye in the diagram also shown minimum
Q-factor, Eye Height, Threshold and maximum BER.

The following table, Tables @ concluded the presents a summary of the

results obtained from Figure .66 to Figure Y.80

Table 4.5: MZ,Evaluation(L=40Km,a=0.1 to 0.5dB/Km,P,;n=0dBm)

Attenuation | Max .Q-Factor | Min. BER | Eye Height | Threshold
(dB/Km)

0.1 39 0 4e-004 2e-004
0.2 19 2e-080 13e-005 8e-005
0.3 8 2e-014 4e-005 3e-005
0.4 3.1 11e-004 6e-007 1.2e-005
0.5 0 1 0 0

47



Chapter Four: Results and Discussion

Wy /P (=UOIjenusl)y pue o)y ZJN YIm Wo)sAs o], :G9'f 031

B PS5y S5 M0 Nid FRIN3p0oY 1V ERuRg 35y THN WOPUEY-Cpnas

ZHL 00T = Wy Aouanbauy ssddny wgp (= awog
THL 531 = b Aousnbas Fmo £ IOIERpOy] PR Z-EY THL #E6) = AcuRnbauy
£ sSTAERY NaM — £ =51 0
. | gy SRR [RRIL = ARRRRRR el
. =
- - ; 914 1€3650) — ssug e vg = e g 0
§ ATy Whseds 2090 ! e el £ . FUINDIS IG WORUEL-ORNatY
i 4 <%
"l.?.m Q) oD B8R4 ZHN 070
HLLL _ b
TH W ug . §L0 = Aowenbay jjoinD - : m_ _.Llo.
£ ML psseg S5 M0 : 8P 0 = S501 [ELONIPDY WEP 0= amog
W §'0 = 100y 300 Bugdno) _ THI £E61 = ASuBnbas
= . 1 = 0nRaNs s 0=AERQ 2 IoiEmpoy| BpUNEZ-yoeT E e T
| RS mpmwoss i) SRUET woR
¥ NI Jo10a13paioyg ; e — ey DOWed = R+
TH e g . G0 = Aousnbayy jpoang m& 4 .qvmx - = LY
7 i=u4 PSSeg Ssed Mo — . - = e _| ; S/swE e g = WE G
= e £ io1mudD SSNd ZHNIE WORUEN-0pnesd
= / 4 t .
2 Nid sormaparoyg ____ a—a"[T0
TH MBI UG . 510 = Asuanbay jong
| Aipd EERE SRR MO . afe WED 0= Awod
— THL ZEEl = AUBNDI
= LTIIENEDN BpUNRZ-UoeN | RS MO
[T S = e =t R
i F- ] S s
TH e U . 520 = Aowsnbasy jponDy = & S/swg aMEl g = eI Bg

~= \[ -u_nm- = [ [=—={"010
m.-m....- p WER = Bwag
= THL L1 = Aduantag
AT AoosoEsg ! REE] MO
L !
fing ;“+
smzfEuy use I0jEIRURS) BEING THNG B8 BRG] =

e “, . -
m@ oo o e o e o o A o P B o e S e S o e e o o i o e u-.--.-.qu:uq.-:q._l m mﬂ.ummmmmHuuuuuuum@.éu:m:_”_.ﬁm

48




Chapter Four: Results and Discussion

[E BER Analyzer [& BER Analyzer
D6l Chck On Objects o open properfies. Move Objects with Mouse Drag Dél Click On Dbjects o s, Move Obiects
Time (bit period) Time (bt pericd)

40

400

30
300 0

o8

200 u
Arrplitude (.43

200 W
Amplitude (a.u.)

100
100

10

Time (bit period)
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Figure 4.72: MZ,Q-factor and BER(L=40Km,a=0.3dB/Km,P,n=0dBm)
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4.2.2.3 Effect Of Input Power

In this case the following parameters are taken to see the effect of Input power.

« Attenuation coefficient: 0.3 dB/Km
o Fiber length: 40 Km

1.82, Figure 4.83, and Figure
parameters when the Input power is equal to 0dBm. Next, the Input power is
4.89, Figure .86, and
4.87. Next, the Input power is equal to 5dBm and the performance is
1.88 Figure 1.89, and Figure ¥1.90. Next, the Input power is
equal to 7dBm and the performance is shown in Figure #.91 Figure #.92, and
Figure . Finally, the Input power is equal to 9dBm and the performance

is shown in Figure , Figure , and Figure . The figures are pre-

sented in the next pages, which is shown that in the case of an input power

Figure 1.84, show the system performance

equal to 2dBm and the performance is shown in Figure

Figure

shown in Figure

9 dBm (Highest Performance) a clearly output signal and open eye in the di-
agram also shown maximum Q-factor, Eye Height, Threshold and minimum
BER. The performance gradually degraded until reach an input power 0 dBm
(Lowest Performance), which is shown that a noisy output signal and closed
eye in the diagram also shown minimum Q-factor, Eye Height, Threshold and
maximum BER.

The following table, Tables @ concluded the presents a summary of the
.82 1.96

results obtained from Figure to Figure

Table 4.6: MZ,Evaluation(L=40Km,a=0.3 dB/Km,P,n=0 to 9dBm)

Input Max .Q-Factor | Min. BER | Eye Height | Threshold
Power

(dBm)

0 8 2e-014 4e-005 3e-005

2 12 5e-035 8e-005 5e-005

5 22 2e-111 17e-005 9e-005
7 33 de-241 29e-005 14e-005
9 36 2e-279 46e-005 15e-005
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4.2.3 Performance Analysis With An Acousto-Optic Tunable Filter
4.2.3.1 Effect Of Fiber Length

In this case the following parameters are taken to see the effect of fiber length.

e Input power: 0 dBm
 Attenuation coefficient: 0.1 dB/Km

Figure #.98, Figure #.99, and Figure %.100, show the system performance

parameters when the fiber length is equal to 40 Km. Next, the fiber length

is equal to 80 Km. and the performance is shown in Figure 4.101, Figure
, and Figure . Next, the fiber length is equal to 120 Km. and the

performance is shown in Figure , Figure , and Figure . Next,

the fiber length is equal to 160 Km. and the performance is shown in Figure

, Figure , and Figure . Finally, the fiber length is equal to 200

Km. and the performance is shown in Figure #1.110, Figure §.111), and Figure

4.112. The figures are presented in the next pages, which is shown that in

the case of fiber length 40 Km (Highest Performance) a clearly output signal
and open eye in the diagram also shown maximum Q-factor, Eye Height,
Threshold and minimum BER. The performance gradually degraded until
reach fiber length 200 Km (Lowest Performance), which is shown that a noisy
output signal and closed eye in the diagram also shown minimum Q-factor,
Eye Height, Threshold and maximum BER.

The following table, Tables @ concluded the presents a summary of the

results obtained from Figure 4.98 to Figure §4.112

Table 4.7: AO,Evaluation(L=40 to 200Km,a=0.1dB/Km,P;n=0dBm)

Length (Km) | Max .Q-Factor | Min. BER | Eye Height | Threshold
40 9 3e-017 22e-005 5e-005
80 8 3e-015 8e-005 3.4e-005
120 5.2 1le-007 2e-005 2.2e-005
160 2.6 4e-003 -3e-006 9e-006
200 0 1 0 0
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Figure 4.98: AO,Q-factor and BER(L=40Km,a=0.1dB/Km, P,n=0dBm)
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Figure 4.99: AO,Threshold and eye height(L=40Km,a=0.1dB/Km, P;n=0dBm)

E Oscilloscope Visualizer ﬁ Oscilloscope Visualizer_1
Dbi Cick On Objects to open properties. ave Objects with Mouse Drag Bt Cick On Ot Jove Ot
" [ § TR EIT r* A
g .
g
3 1
I |V
g
g
8
BRI Ll
2 5 ] " Fd s Thme L] 1Mn
Time
f = | —
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Figure 4.108: AO,Threshold and eye height(L=160Km,a=0.1dB/Km, P,n=0dBm)
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Figure 4.109: AO,Input and output signals(L=160Km,a=0.1dB/Km, P;n=0dBm)

66



Chapter Four: Results and Discussion

E] BER Analyzer |E] BER Analyzer
Dbl Chick On Objects to open properties. Move Objects with Mg Dbl Chck On Objects to open properties. Move Objects with Mo
Time (bit period) o Time naa‘ts period) \
05 1 /] E d
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Figure 4.111: AO,Threshold and eye height(L=200Km,a=0.1dB/Km,P,n=0dBm)
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4.2.3.2 Effect Of Attenuation Coefficient

In this case the following parameters are taken to see the effect of fiber at-

tenuation coefficient.

e Input power: 0 dBm
o Fiber length: 40 Km

Figure #.113, Figure #4.114, and Figure 4.115, show the system performance

parameters when the fiber attenuation coefficient is equal to 0.1 dB/Km.
Next, the attenuation is set to 0.2 dB/Km and the performance is shown
in Figure {.116, Figure #.117, and Figure 4.118. Next, the attenuation is
set to 0.3 dB/Km and the performance is shown in Figure 4.119, Figure

, and Figure . Next, the attenuation is set to 0.4 dB/Km and
the performance is shown in Figure , Figure , and Figure .

Finally, the attenuation is set to 0.5 dB/Km and the performance is shown

in Figure , Figure , and Figure . The figures are presented in

the next pages, which is shown that in the case of an attenuation 0.1 dB/Km

(Highest Performance) a clearly output signal and open eye in the diagram
also shown maximum Q-factor, Eye Height, Threshold and minimum BER.
The performance gradually degraded until reach an attenuation 0.5 dB/Km
(Lowest Performance), which is shown that a noisy output signal and closed
eye in the diagram also shown minimum Q-factor, Eye Height, Threshold and
maximum BER.

The following table, Tables @ concluded the presents a summary of the

results obtained from Figure §.113 to Figure ¢.134

Table 4.8: AO,Evaluation(L=40Km,a=0.1 to 0.5dB/Km,P,n=0dBm)

Attenuation Max .Q-Factor | Min. BER | Eye Height | Threshold
(dB/Km)

0.1 9 3e-017 22e-005 5e-005
0.2 7 2e-012 8e-005 3e-005
0.3 4 3e-006 1e-005 1e-005
0.4 2 107e-004 -7e-006 9e-006
0.5 0 1 0 0
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Figure 4.116: AO,Q-factor and BER(L=40Km,a=0.2dB/Km, P;n=0dBm)

E] BER Analyzer B BER Analyzer
Dbl Click On Objects to open properties. Move Objects with Mo} Dbl Click On Objects to open properties. Move Objects with Mo
Time (bit period) Ti
0s

o a =9 =
=2+ 8 =2 =
e | ES =3
3 2lls 2
| |
§ H §

= = =N =l

Factor A Min BER A Threshold BER Pattern Factor } MinBER }, Threshold ) Height / BER Pattern
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Figure 4.123: AO,Threshold and eye height(L=40Km,a=0.4dB/Km, ,n=0dBm)
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Figure 4.124: AO,Input and output signals(L=40Km,a=0.4dB/Km,P;n=0dBm)
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4.2.3.3 Effect Of Input Power

In this case the following parameters are taken to see the effect of Input power.

« Attenuation coefficient: 0.3 dB/Km
o Fiber length: 40 Km

Figure 4.128, Figure 4.129, and Figure #.13(, show the system performance

parameters when the Input power is equal to 0dBm. Next, the Input power

is equal to 2dBm and the performance is shown in Figure #.131, Figure §.132

Y

and Figure #.133. Next, the Input power is equal to 5dBm and the perfor-

mance is shown in Figure #.134, Figure #.135, and Figure #.136. Next, the

Input power is equal to 7dBm and the performance is shown in Figure #4.137,

Figure , and Figure . Finally, the Input power is equal to 9dBm

and the performance is shown in Figure , Figure , and Figure .

The figures are presented in the next pages, which is shown that in the case

of an input power 9 dBm (Highest Performance) a clearly output signal and
open eye in the diagram also shown maximum Q-factor, Eye Height, Thresh-
old and minimum BER. The performance gradually degraded until reach an
input power 0dBm (Lowest Performance), which is shown that a noisy out-
put signal and closed eye in the diagram also shown minimum Q-factor, Eye
Height, Threshold and maximum BER.

The following table, Tables @ concluded the presents a summary of the
results obtained from Figure §.128 to Figure {@4.142

Table 4.9: AO,Evaluation(L=40Km,a=0.3 dB/Km,P,n=0 to 9dBm

Input Max .Q-Factor | Min. BER | Eye Height | Threshold
Power

(dBm)

0 4 3e-006 1.7e-005 1.8e-005
2 6 4e-009 4e-005 2.5e-005
5 7 de-014 10e-005 3.6e-005
7 8 7e-017 17e-005 4.5e-005
9 8.5 1le-017 27e-005 6e-005
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Figure 4.130: AO,Input and output signals(L=40Km,a=0.3dB/Km, P;n=0dBm)
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Figure 4.139: AO,Input and output signals(L=40Km,a=0.3dB/Km,P;n=7dBm)
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4.2.4 Comparison Of Performance Evaluation Of Filtering For WDM
Based Optical Fiber Networks

The tables presented in the following subsections presents a conclusion of the

previous experimental observation. The results are summarized for various

cases of the fiber length (see section ), different values of attenuation

(see section ) and the impact of input power (see section )

4.2.4.1 Different Fiber Length

The parameters used to test the cases of different fiber lengths are listed as

follows.

e Fiber Length = 40,80,120,160 and 200 Km
« Fiber Attenuation = 0.1 dB/Km
e Input Power = 0 dBm

Table ¥.10 and Figure #.143 summarizes the results maximum Q-factor

given for different fiber lengths. Table ¢.11 and Figure 4.144 summarizes the

results minimum BER given for different fiber lengths. Table #.12 and Figure

4.145 lists the results for maximum eye-height, and finally, Table {.13 and

Figure #.14¢ lists the results for maximum threshold, which is shown that
when a fiber length changed from 40 to 200 Km the Q-factor, Eye Height
and Threshold when: (1)MZ filter used will be maximum, (2)FP used will be
moderate and (3)AO used will be minimum. Also shown that the BER when:
(1)MZ filter used will be minimum, (2)FP used will be moderate and (3)AO

used will be maximum.

Table 4.10: Max .Q-Factor (MZ, FP, AO) with different fiber length

Length (Km) | MZ Filter | FP Filter | AO Filter
40 39 12 9
80 19 11 8
120 8 6.7 5.2
160 3.3 2.9 2.6
200 0 0 0
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Figure 4.143: Max .Q-Factor (MZ, FP, AO) with different fiber length

Table 4.11: Min. BER (MZ, FP, AO) with different fiber length

Length (Km) | MZ Filter | FP Filter | AO Filter
40 0 9e-032 3e-017
80 le-084 5e-030 3e-015
120 3e-014 9e-012 1e-007
160 5e-004 2e-003 4e-003
200 1 1 1

81



Chapter Four: Results and Discussion

+10* Min BER (MZ,FP,AQ) with different fiber length
4 . . . : -

as b @ FP £
—#-no| *
-
25t
@
T
(s8]
15¢
il
05t
D - ® - -
40 60 80 100 120 140 160

Fiber Length (Km)

Figure 4.144: Min. BER (MZ, FP, AO) with different fiber length

Table 4.12: Max .Eye Height (MZ, FP, AO) with different fiber length

Length (Km) | MZ Filter | FP Filter | AO Filter
40 4e-004 3e-004 22e-005
80 13e-005 10e-005 8e-005
120 4e-005 3e-005 2e-005
160 2e-006 -6e-007 -3e-006
200 0 0 0
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Figure 4.145: Max .Eye Height (MZ, FP, AO) with different fiber length

Table 4.13: Max. Threshold (MZ, FP, AO) with different fiber length

Length (Km) | MZ Filter | FP Filter | AO Filter
40 2e-004 5e-005 5e-005
80 7.3e-005 5e-005 3.4e-005
120 3e-005 2.9e-005 | 2.2e-005
160 1.2e-005 1e-005 9e-006
200 0 0 0
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Figure 4.146: Max. Threshold (MZ, FP, AO) with different fiber length

According to all above results when a fiber length is changed, the Mach-
Zehnder Filter gives best results than others filters. Also Fabry—Perot Filter

gives better results than Acousto-Optic Filter in terms of Q-factor, BER, Eye
height and Threshold.

4.2.4.2 Different Fiber Attenuation

The parameters used to test the cases of fiber attenuation are listed as follows.

e Fiber Length = 40 Km
« Fiber Attenuation = 0.1,0.2,0.3,0.4,0.5 dB/Km
e Input Power = 0 dBm

Table §.14 and Figure §.147 summarizes the results the maximum Q-factor

given for different cases of fiber attenuation. Table U.15 and Figure @.148

summarizes the results the minimum BER given for different cases of fiber
attenuation. Table and Figure lists the results for the maximum

eye-height, and finally, Table and Figure lists the results for max-

imum threshold, which is shown that when a fiber attenuation changed from
0.1 to 0.5 dB/Km the Q-factor, Eye Height and Threshold when: (1)MZ
filter used will be maximum, (2)FP used will be moderate and (3)AO used
will be minimum. Also shown that the BER when: (1)MZ filter used will be

minimum, (2)FP used will be moderate and (3)AO used will be maximum.
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Table 4.14: Max .Q-Factor (MZ, FP, AO) with different fiber attenuation

Fiber Attenuation (dB/Km) | MZ Filter | FP Filter | AO Filter
0.1 39 12 9
0.2 19 7
0.3 8 4
0.4 3.1 2.6 2
0.5 0 0 0
i Max Q-Factor (MZ,FP,AQ) with different fiber attenuation
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Figure 4.147: Max .Q-Factor (MZ, FP, AO) with different fiber attenuation

Table 4.15: Min. BER (MZ, FP, and AO) with different fiber attenuation

Fiber Attenuation (dB/Km) | MZ Filter | FP Filter | AO Filter
0.1 0 9e-032 3e-017
0.2 2e-080 2e-019 2e-012
0.3 2e-014 6e-008 3e-006
0.4 11e-004 41e-004 107e-004
0.5 1 1 1
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Figure 4.148: Min. BER (MZ, FP, and AO) with different fiber attenuation

Table 4.16: Max .Eye Height (MZ, FP, AO) with different fiber attenuation

Fiber Attenuation (dB/Km) | MZ Filter | FP Filter | AO Filter
0.1 4e-004 3e-004 22e-005
0.2 13e-005 9.6e-005 8e-005
0.3 4e-005 2.5e-005 1e-005
0.4 6e-007 -3e-006 -7e-006
0.5 0 0 0
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Table 4.17: Max. Threshold (MZ, FP, AO) with different fiber attenuation

Fiber Attenuation (dB/Km) | MZ Filter | FP Filter | AO Filter
0.1 2e-004 5e-005 5e-005
0.2 8e-005 4e-005 3e-005
0.3 3e-005 2e-005 1e-005
0.4 1.2e-005 8e-006 9e-006
0.5 0 0 0

87



Chapter Four: Results and Discussion

. 10°* Max Threshold (MZ,FP,AO) with different fiber attenuation
25 . T T T . T T

—=—NZ
— % —AD

Threshold
&

-
T

P

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fiber Attenuation (dB/Km)

Figure 4.150: Max. Threshold (MZ, FP, AO) with different fiber attenuation

According to all above results when attenuation coefficient of a fiber is
changed, Mach-Zehnder Filters gives best results than Fabry—Perot and Acousto-
Optic Filters in terms of Q-factor, BER, Eye height and Threshold.

4.2.4.3 Different Input Power

The parameters used to test the cases of input power are listed as follows.

e Fiber Length = 40 Km
 Fiber Attenuation = 0.3 dB/Km
e Input Power = 0,2,5,7 and 9 dBm

Table §.18 and Figure §.151 summarizes the results the maximum Q-factor

given for different cases of input power. Table #.19 and Figure #.152 summa-

rizes the results minimum BER given for different cases of input power. Table

4.20 and Figure #.153 lists the results for maximum eye-height, and finally,
Table #.21] and Figure #.154 lists the results for maximum threshold, which is
shown that when a fiber input power changed from 0 to 9 dBm the Q-factor,
Eye Height and Threshold when: (1)MZ filter used will be maximum, (2)FP
used will be moderate and (3)AO used will be minimum. Also shown that the
BER when: (1)MZ filter used will be minimum, (2)FP used will be moderate

and (3)AO used will be maximum.
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Table 4.18: Max .Q-Factor (MZ, FP, AO) with different Input Power

Input Power (dBm) | MZ Filter | FP Filter | AO Filter
0 8 5 4
2 12 7 6
o 22 10 7
7 33 11 8
9 36 12 8.5

Max Q-Factor (MZ,FP,AQ) with different Input Power

Input Power (dBm)

Figure 4.151: Max .Q-Factor (MZ, FP, AO) with different Input Power

Table 4.19: Min. BER (MZ, FP, and AO) with different Input Power
Input Power (dBm) | MZ Filter | FP Filter | AO Filter

0 2e-014 6e-008 3e-006
2 oe-035 6e-013 4e-009
D 2e-111 2e-022 de-014
7 4e-241 5e-029 7e-017
9 2e-279 7e-032 le-017
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Figure 4.152: Min. BER (MZ, FP, and AO) with different Input Power

Table 4.20: Max .Eye Height (MZ, FP, AO) with different Input Power
Input Power (dBm) | MZ Filter | FP Filter | AO Filter

0 4e-005 2.5e-005 | 1.7e-005
2 8e-005 5e-005 4e-005

D 17e-005 13e-005 10e-005
7 29e-005 21e-005 17e-005
9 46e-005 34e-005 27e-005
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Figure 4.153: Max .Eye Height (MZ, FP, AO) with different Input Power

Table 4.21: Max. Threshold (MZ, FP, AO) with different Input Power
Input Power (dBm) | MZ Filter | FP Filter | AO Filter

0 3e-005 2e-005 1.8e-005
2 5e-005 3e-005 2.5e-005
D 9e-005 4e-005 3.6e-005
7 14e-005 5e-005 4.5e-005
9 15e-005 6e-005 6e-005
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Figure 4.154: Max. Threshold (MZ, FP, AO) with different Input Power

According to all above results when an input power to the fiber is changed,
also, Mach-Zehnder Filter gives best results than Fabry—Perot and Acousto-
Optic Filters in terms of Q-factor, BER, Eye height and Threshold.

4.3 The pass band characteristics of tunable optical filters

Figure §.155, Figure §.150, and Figure {.157

, show the pass band character-
istics of Fabry—Perot, Mach-Zehnder and Acousto-Optic Filters respectively.
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Figure 4.156: The pass band of MZ filter
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Chapter Five

Conclusions and Recommendations

5.1 Conclusions

This thesis concentrates on the different tunable filtering types for WDM
based optical fiber networks, which is an important optical component in
multi-channel systems. We analyzed the effects of fiber length, fiber atten-
uation coefficient and an input power from the laser source to the optical
fiber on the performance of tunable optical filters in terms of Q-factor, BER,
Eye-height and Threshold and we achieved a good results when we use both
optical filters Fabry—Perot and Mach-Zehnder than Acousto-Optic Filter.

In chapter’2 we introduced the literature Reviewer on the different tunable
optical filters types. The following two aspects are presented in this literature
Reviewer: 1) the basic principle of tunable filters is introduced and classified
into three Fabry—Perot (FP), Mach-Zehnder (MZ) and Acousto-Optic (AO)
tunable filter. In FP, an interferometer can be electronically controlled its
length by using a piezoelectric transducer, also the air gap can be used be-
tween two optical fibers to get a high-reflectivity mirrors. In MZ, an interfer-
ometer can be made by using two a 3-dB couplers for splitting and interfering
process. In AO, a grating dynamically formed by use acoustic waves and it
has tuning range wider as possible to match an applications in optical FDM.
2) Reviewed an improvements in a mathematical model of FP interferome-
ter in s-domain and improve a novel absolute strain measurement system by
using the same interferometer with high properties. Also there are an im-
provements in a MZ interferometer (MZI) by using Athermal, flat-topped,
compact low-loss thermo-optic single (MZIs) and two cascaded MZIs with
high performance transmission. Also there are an improvements in AO filter
to operate in 2-4 m region by using carefully optimized resonant designs.

In chapter’3 we concentrated the analyze system model of this thesis and we
have considered the system design of filtering for Wavelength Division Mul-
tiplexing (WDM) based optical fiber networks, then we discussed the effect
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of limiting factors (fiber length, attenuation coefficient and input power) in
terms of quality (Q) factor, bit-error rate (BER), eye height and threshold
when we use a Fabry—Perot, Mach-Zehnder and Acousto-Optic tunable filters.
In chapter’4 we discussed the performance analysis of filtering for WDM based
optical fiber networks was evaluated by OptiSystem simulation. We discussed
the result of performance analysis for WDM based optical fiber networks in
different filtering types and limiting factors then compared with each other
and we observe that when a fiber length, attenuation coefficient and an input
power to the fiber was changed the Q-factor, Eye Height and Threshold will
be: a)maximum when a MZ filter used, b)moderate when a FP used and
¢)minimum when an AO used. Also shown that the BER will be: a)minimum
when a MZ filter used, b)moderate when a FP used and ¢)maximum when
an AO used. According to this observations a Mach-Zehnder Filter give a
high performance and best results than Fabry—Perot which is moderate and

an Acousto-Optic which is a lowest one.

5.2 Recommendations

There are many types of optical tunable filters can be used to compensate
the attenuations and it required to evaluate their performance. In this thesis
Fabry—Perot, Mach-Zehnder and Acousto-Optic Filters is evaluated, therefore
it’s recommended to consider other types such as Michelson optical filter and

Grating-based optical filter in the future research.
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