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ABSTARACT 

Various methods to study the electric charge distribution on conductors were 

presented in details in this thesis. The electrostatic potential is mediated by 

potential law that varies as Yukawa potential instead of coulomb potential.   

To simplify this physical problem and its solution, the method of images was 

used for the different way.  Yukawa potentials were used to determine the 

position and magnitude of the image charges on different shapes of conductors. 

Then the charge density distribution on these conductors was calculated.  The 

charge density distributions on the surface of these conductors in case of 

Yukawa potential are plotted using Maple program and compared with the 

charge distribution in the case of using Coulomb law. 
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 الوستخلص

 ػهًٍت يخخصصت اثحمذٌى بؼط انطشق انؼهًٍت  انخً َششث فً دٔس حى فً ْزِ انذساست

ع انشسُت انكٓشبٍت ػهى انًٕصلاث فً زانت  أٌ اندٓذ انُاشئ ػٍ انشسُت ينذساست كٍفٍت حٕص

انُمطٍت ٌخخهف ػٍ اندٓذ انًسسٕب بٕاسطت لإٌَ انخشبٍغ انؼكسً نكٕنٕو ٌٔخغٍش ٔفك خٓذ 

. ٌٕكأا 

كًا اسخخذيج طشٌمت انصٕس فً ْزِ انشسانت نذساست حٕصٌغ انشسُت انكٓشبٍت ػهى 

ٔرنك بافخشاض أٌ اندٓذ انُاشئ ػٍ انشسُت انُمطٍت ٌخخهف ػٍ اندٓذ . انًٕصلاث

زٍث حى اسخخذاو .  انًسسٕب بٕاسطت لإٌَ انخشبٍغ انؼكسً نكٕنٕو ٌٔخغٍش ٔفك خٓذ ٌٕكأا

 فً ْزِ انذساست نخسذٌذ يٕظغ صٕسة بطشٌمّ يخخهفّخٓذ ٌٕكأا بذلا يٍ خٓذ كٕنٕو 

انشسُت انكٓشبٍت أٔلا ٔيٍ ثى إٌداد كثافت انشسُت انسطسٍت باشخماق اندٓذ بانُسبت نٕزذة 

. انًخدّ انؼًٕدي

يٕصم ػهى شكم )حى حطبٍك طشٌمت انصٕس ندٓذ ٌٕكأا ػهى ًَارج يخخهفت يٍ انًٕصلاث 

. (نٕذ يخصم بالأسض ٔ يٕصم كشٔي يخصم بالأسض ٔ يٕصم كشٔي يشسٌٕ يؼضٔل

 فً سسى Mapleاسخخذو بشَايح . بؼذ زساب كثافت انشسُت انسطسٍت نكم ْزِ انًُارج 

 يغ حهك  انُخائح انًسسٕبت باسخخذاو لإٌَ اانًُسٍُاث ٔ يماسَت انُخائح انًخسصم ػهٍّ

يٍ خلال يماسَت انُخائح احعسج اًٍْت ًَٕرج انصٕسة فً حبسٍط .انخشبٍغ انؼكسً نكٕنٕو

 . يكٍ إٌداد كثافت انشسُت انسطسٍت ػهى سطر انًٕصلاثيانًسأنت كًا 
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Chapter One 

Introduction 

1.1 Introduction 

Coulomb‟s Law is a fundamental principle describing the electric force between 

isolated charges, and represents the first quantitative law achieved in 

electromagnetism. The degree of confidence with which the law is 

experimentally known to hold was investigated after the law was put forth by 

Coulomb in 1785. The electrodynamics for massive particles suggests that a 

photon with a finite rest mass will cause a deviation from the inverse square 

law. So, modern interpretations of the possible deviation from Coulomb‟s 

inverse square law are usually associated with the non-zero photon mass. In this 

article, we first give a historical review of the foundation of Coulomb‟s inverse 

square law. Then, the experimental searches for validity of Coulomb‟s Law, 

particularly in its inverse square nature, are generally introduced. Based 

onProca‟s equations, the unique. 

Simplest relativistic generalization of Maxwell‟s equations, the link between the 

deviation from Coulomb‟s Law and the upper limit on the photon rest mass 

based on the concentric-spheres apparatus established in the classical 

experiment of Cavendish is reviewed. Up to now, all the experiments show no 

evidence for a positive value, and the experimental result was customarily 

expressed as an upper limit on the deviation or on the photon rest mass. As a 

representative method with the double mission of testing of the validity of 

Coulomb‟s Law and of the photon rest mass, possible improvements for this 

kind of experiment are discussed. 

The famous inverse square law in electrostatics, first published in 1785 by 

Charles Augustin de Coulomb, 
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is known as the fundamental law of electrostatics. As the first quantitative law 

in the history of electricity, Coulomb‟s inverse square law has played a crucial 

role and made great contributions to the development of electricity and 

magnetism, and other related fields. Coulomb‟s Law, along with the principle of 

superposition, gives Gauss‟s Law and the conservative nature of the electric 

field, which may be generalized Using the Lorentz transformation to obtain 

Maxwell‟s equations. Even then, the Validity of Coulomb‟s Law has been 

tested. 

Continuously over the past centuries. Based on the classical ingenious scheme 

Devised by Henry Cavendish [1, 2], modern experiments usually yield not only 

the result of possible deviation from Coulomb‟s inverse square law, but that of 

the upper limit on the photon rest mass [3, 7]. 

The photon, as the fundamental particle of electromagnetic interaction, is 

generally assumed to be mass less. This hypothesis is based on the fact that a 

Photon cannot stand still for ever. However, a nonzero photon mass could be so 

small that present-day experiments cannot probe it. Taking into account the 

uncertainty principle, the photon mass could be estimated using   2ctm  
to 

have a magnitude of about 10
−66

 g while the age of the universe is about 10
10

 

years, which gives the ultimate limit for meaningful experimental measurements 

of the photon mass. Up to now, there is no positive result for the photon rest 

mass or the deviation from Coulomb‟s inverse square law. The experimental 

results just serve to set an upper bound to the photon mass and the deviation 

from the exponent 2 in the inverse square law. The aim of this paper is to give a 

review of the main ideas and results of the investigations intended to test 

Coulomb‟s Law and pertinently to improve the upper limit on the photon rest 

mass. 
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1.2 The Problem 

The great triumphs of Maxwell an electromagnetism and quantum 

electrodynamics were based on the hypothesis that the photon should be 

particlea with zero rest mass. The photon could carry energy and momentum 

from place to place and light rays would propagate in vacuum with a constant 

velocity c being independent of inertial frames, which was the second postulate 

in Einstein‟s theory of special relativity. As a result, the velocity of a particle 

with finite mass would never reach the constant c. The fact that light could not 

stand still made the assumption reasonable and it was difficult to find any 

counter-examples in theory. Still, experimental efforts to improve the limits on 

the rest mass of the photon in other words, to challenge the accepted theories of 

the time have continued since the time of Cavendish or earlier, even before the 

concept of the photon was introduced. So in case of nonzero photon mass the 

universal constant c will be different and Maxwell equation will reduced to 

proca form. 

1.3 The Aim Of Study 

The aim of this thesis is to construct moral idea to study charge distribution in case 

of potential deviating from inverse square coulombs law. 

1.4 General Method And Technical Background 

From the time of Cavendish or earlier, Coulomb‟s inverse square law has been 

tested directly or indirectly. Experiments with higher precision and involving 

different dimensions have been performed over the years. It is now customary to 

quote tests of the inverse square law in one of the following two ways [8] 

(a) Assume that the force varies with the distance r between two point charges 

according to the phenomenological formula 1/r
2
+q and quote a value or limit for q, 

which represents departure from the Coulomb inverse square law. 

(b) Assume that the electrostatic potential has the „Yukawa‟ form
rr

e   instead of 

the Coulomb form 1/r and quote a value or limit for  or 1

 . Since tcm   the 



3 
 

test of the inverse square law is sometimes expressed in terms of an upper limit on 

the photon rest mass. Geomagnetic and extraterrestrial experiments give   or mγ, 

while laboratory experiments usually give q and perhaps μγ or mγ. 

(c) Using method of images to calculate charge density and maple program to 

construct graphical representation. 

1.5 Presentation of the thesis 

This thesis contain five chapters chapter one was an introduction in chapter two 

Photon rest mass and effect of nonzero mass of photon on charge distribution, in 

Chapter three conductors in the electrical field chapter four charge density on 

Conducting needle chapter five results and conclusion and recommendations. 
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Chapter Two 

Photon Rest Mass and Nonzero Mass 

 of Photon on Charge Distribution 

2.1 Introduction    

The famous inverse square law in electrostatics, first published in 1785 by Charles 

Augustin de Coulomb, is known as the fundamental law of electrostatics. As the 

first quantitative law in the history of electricity, Coulomb‟s inverse square law 

has played a crucial role and made great contributions to the development of 

electricity and magnetism, and other related fields. Coulomb‟s Law, along with 

the principle of superposition, gives Gauss‟s Law and the conservative nature of 

the electric field, which may be generalized using the Lorentz transformation to 

obtain Maxwell‟s equations. Even then, the validity of Coulomb‟s Law has been 

tested continuously over the past centuries. Based on the classical ingenious 

scheme devised by Henry Cavendish [1, 2], modern experiments usually yield not 

only the result of possible deviation from Coulomb‟s inverse square law, but that 

of the upper limit on the photon rest mass [3, 7]. 

The photon, as the fundamental particle of electromagnetic interaction, is 

generally assumed to be mass less. This hypothesis is based on the fact that a 

photon cannot stand still for ever. However, a nonzero photon mass could be so 

small that present-day experiments cannot probe it. Taking into account the 

uncertainty principle, the photon mass could be estimated using   2ctm   to 

have a magnitude of about 10−66
 g while the age of the universe is about 10

10
 

years, which gives the ultimate limit for meaningful experimental measurements 

of the photon mass. Up to now, there is no positive result for the photon rest mass 

or the deviation from Coulomb‟s inverse square law. The experimental results just 

serve to set an upper bound to the photon mass and the deviation from the 

exponent in the inverse square law. 
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2.2 The Photon Rest Mass and Related Experiments 

The great triumphs of Maxwellian electromagnetism and quantum 

electrodynamics were based on the hypothesis that the photon should be a particle 

with zero rest mass. The photon could carry energy and momentum from place to 

place and light rays would propagate in vacuum with a constant velocity c being 

independent of inertial frames, which was the second postulate in Einstein‟s 

theory of special relativity. As a result, the velocity of a particle with finite mass 

would never reach the constant c. The fact that light could not stand still made the 

assumption reasonable and it was difficult to find any counter-examples in theory. 

Still, experimental efforts to improve the limits on the rest mass of the photon in 

other words, to challenge the accepted theories of the time have continued since 

the time of Cavendish or earlier, even before the concept of the photon was 

introduced. 

A finite photon mass may be accommodated in a unique way by changing the 

inhomogeneous Maxwell equations to the Proca equations, the theoretical 

expressions of possible nonzero photon rest mass introduced by Proca [9] and de 

Broglie [10]. In the presence of sources    and J, these 

Equations may be written as (SI units) 

 

                                                                                       (2.1) 

 

                                                                                                  (2.2) 

  

0. B                                                                                                              (2.3) 

 

                                                                               (2.4) 

 

Together with the field strengths ABTAE  ,  and the Lorentz 

condition 
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




2

0

. 

t

B






A
t

JB 2

000  







6 
 

 

                                                                                            (2.5) 

Where φ and A are the scalar and the vector potentials, which uniquely determine 

the field, and )(1 cm  is a characteristic length, with 0m  as the photon 

mass. If 0m , the Proca equations would reduce to Maxwell‟s equations. The 

Proca equations, the relativistic ally invariant modification of Maxwell‟s 

equations, provide a complete and self-consistent description of electromagnetic  

Phenomena [7]. 

     In four-dimensional space the Proca equations can be rewritten as 

(□
2
 - μγ)Aμ= -μ0Jμ                                                                                           (2.6) 
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Table 2.1.shows several important limits on the photon rest mass m . 

Author (date) Ref. Experimental scheme Upper limit on mγ /g 

Terrestrial results 

Goldhaber et al (1971)                      [4] Speed of light                                                                5.6 × 10−42
 

Williams et al (1971)                         [13] Test of Coulomb’s law                                                1.6 × 10-42 

Chernikov et al (1992)                       [14] Test of Ampere’s law                                                  8.4 × 10-46 

Lakes (1998)                                        [15] Static torsion balance                                                     2 × 10-50 

Luo et al (2003) [16] Dynamic torsion balance                                                  1.2 × 10-50 

Extraterrestrial results 

de Broglie (1940)      [10] Dispersion of starlight                                                       0.8 × 10-39 

Feinberg (1969) [17] Dispersion of starlight                                                                   10-44 

Schaefer (1999) [18] Dispersion of gamma ray bursts                                     4.2 × 10-44 

Davis et al (1975) [19] Analysis of Jupiter’s magnetic field                                   8 × 10-49 

Fischbach et al (1994) [20] Analysis of Earth’s magnetic field                                   1.0 × 10-48 

Ryutov (1997)                                 [21] Solar wind magnetic field and plasma                                       10-49 

Gintsburg (1964) [22] Altitude dependence of geomagnetic field                      3 × 10-48 

Patel (1965) [23] Alfv´en waves in Earth’s magnetosphere                          4 ×10-47 

Hollweg (1974) [24] Alfv´en waves in interplanetary medium                      1.3 × 10-48 

Barnes et al (1975) [25] Hydromagnetic waves                                                          3 × 10-50 

DeBernadis et al (1984) [26] Cosmic background radiation                                             3 × 10-51 

Williams et al (1971) [27] Galactic magnetic field                                                         3 × 10-56 

Chibisov (1976) [5] Stability of the galaxies                                                          3 × 10-60 

 

Where Aμand Jμare the 4-vector of potential (A, iφ/c) and current density 

 (J, icρ), respectively. The d‟Alembertiansymbol □
2
is equal to ∇ 2

−∂
2
/∂ (ct)

 2
. In 

free space, the above equation reduces to 

(□
2
 - μγ)Aμ= 0                                                                                          

(2.7) 

Which is essentially the Klein–Gordon equation for the photon. The 

characteristic length scale 1

 , namely the reduced Compton wavelength of the 

photon, is an effective range in which the electromagnetic interaction would 

exhibit an exponential damping by exp( 1

 r). 
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2.3 Effect of Massive Photon on the Static Electric Field 

Once the photon is provided with a finite mass, three immediate consequences 

may be deduced from the Proca equations: the frequency dependence of the 

velocity of light propagating in free space; the third state of the polarization 

direction, namely the „longitudinal photon‟; and some modifications in the 

characteristics of classical static fields. All those effects are useful approaches 

for laboratory experiments and cosmological observations to determine the 

upper bound on the photon mass. 

What is of interest in this paper is the effect of a massive photon in a static 

electric field. In the case of a massive photon, the wave equation will be 

modified for all potentials (including the Coulomb potential) in the form 

 

                                                                               (2.8) 

For a point charge and in the static case, this yields a Yukawa type potential, 

 

                                                                                 (2.9) 

and the electric field 

r
rr

Q
rE 
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

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 exp(

1

4
)(

2

0

)                                                                      (2.10) 

Inspection of equations (2.8), (2.10) shows that if rr 1

 then the inverse 

square law of forces is a good approximation, but if rr 1

 , then the force law 

departs from the prediction of Maxwell‟s equations. Up to now, finding the 

exponential deviation from Coulomb‟s Law provides the most reliable test for 

the photon rest mass in terrestrial experiments, in that those laboratory tests 

have the advantage of free variation of the experimental parameters [7]. As for 

large scale observations, the limits usually come from the analyses of 

astronomical data of the cosmological magnetic field. However, those results 

are essentially order-of-magnitude arguments due to the incomplete knowledge 

0

2

2

2
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2 1
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)exp(
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about the structure of the large scale magnetic field [11, 12]. In section 4 will 

review those laboratory experiments in detail. 
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Chapter Three 

Conductors in the Electric Field  

3.1 Introduction 

Conductors are in all electric devices. They are as common in electrostatics as 

in other areas of electrical engineering. Nevertheless, it is important to 

understand how they behave in electrostatics. This behavior explains some 

useful electromagnetic devices. 

In addition, in many non-electrostatic applications conductors behave similarly 

to the way they do in electrostatics. So this chapter is important beyond its 

application to electrostatics. 

3.2 Behavior of Conductors in the Electrostatic Field 

Conductors have a relatively large proportion of freely movable electric 

charges. The best conductors are metallic (silver, aluminum, copper, gold, etc.). 

They usually have one free electron per atom, an electron that is not bound to its 

atom, but moves freely in the space between atoms. Because of their small 

mass, these free electrons move in response to any electric field, however small, 

that exists inside a conductor. The same is true for all other conductors, e.g., 

liquid solutions and semiconductors, except that inside such conductors both 

positive and negative free charges can exist. The number of free charge carriers 

is smaller and their mass greater than in metals and electrons, but this has no 

influence on the behavior of conductors in the electrostatic field. 

Let us make an imaginary experiment. Assume that this book is a conductor. 

Suppose that it has both free positive and negative charges in equal number. If 

the book is not situated in the electric field, the number of positive and negative 

free charge inside any small volume is the same, and there is no surplus electric 

charge at any point in the book. To be more picturesque, imagine that positive 
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charges are blue and negative yellow. If mix blue and yellow we get green, so 

your book will look green both over its surface and at any point inside. 

What would happen if establish an electric field in the book, for example, by 

means of two electrodes on the two sides of the book, charged with equal 

charges of opposite sign. Let the positive electrode be on your left. The electric 

field in the book will then be directed from left to right. You would notice that 

blue (positive) charges move from left to right (repelled by the positive 

electrode), and that yellow (negative) charges move from right to left. 

consequently, the right side of the book will become progressively more blue 

(positive), and its left side progressively more yellow (negative). 

The surplus charges in the body created in this manner are known as electrostat-

ically induced charges. They are, of course, the source of an electric field. 

Because the positive induced charge is on the right side of the book, and the 

negative on its left side, this electric field is directed from right to left, i.e., 

opposite to the initial electric field that produced the charge. As the amount of 

the induced charge increases, the total field inside the book becomes 

progressively smaller and the motion of charges inside the book decays. In the 

end, the electric field of induced charges at all points inside the book cancels out 

the initial electric field (due to the two charged electrodes). Thus reach 

electrostatic equilibrium, in which there can be no electric field at any point 

inside our conductive book. 

          Form this simple imaginary experiment, we conclude the following:  

if we have a conducting body in an electrostatic field, and wait until the drift 

motion of charges under the influence of field stops (in reality, an extremely 

rapid process) the electric field of induced charges will exactly cancel out the 

external field, and the total electric field at all points of a conductor will be zero. 

Thus the first fundamental conclusion is 
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 Inelectrostatic E= 0 inside conductor                                                             (3.1) 

With this knowledge, let us apply gauss law to an arbitrary closed surface S that 

is completely inside the conductor. Because vector E is zero at all points on S, 

the total charge enclosed by S must be zero. This means that all the excess 

charge (if any) must be distributed over the surfaces of conductor: 

In electrostatics, a conductor has charges only on its surface.                      

Because there is no field inside conductors, the tangential component of the 

electric field strength, E, on the very surface of conductors is also zero 

(otherwise it would produce organized motion of charge on its surface): 

In electrostatics, 0tan gentialE  on conductor surfaces.                                       (3.2) 

Because the tangential component of E is zero on conductor surfaces, the 

potential difference between any two points of a conductor is zero. This means 

that the surface of a conductor in electrostatics is equipotential. Because there is 

no E inside conductors either, it follows that all points of a conductor have the 

same potential. 

In electrostatics, the surface and volume of a conductor are equipotential.   

Finally, a simple relation exists between the normal component, En of E on a 

conductor surface, and local surface charge density, σ. To derive this relation, 

consider a small cylindrical surface, similar to a coin, with a base ∆S and a 

height ∆h → 0. One base is in the conductor and the other in air (Figure.3.1). 

Let us apply Gauss' law to the closed surface of the cylinder. There is no flux of 

E through the base inside the conductor (zero area). The flux of E through the 

cylinder is thus equal only to  
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Figure.3.1 a small cylinder of negligible height with one base in the conductor. 

 

 

0


nE

                                                                                                             
(3.3) 

Normal component of electric field strength close to conductor surface 

The simple conclusions in Equation. (3.1) through (3.3) are all need to know to 

understand the behavior of conductors in the electrostatic field. 

3.2.1 Charged Metal Bal 

Suppose that a metal ball of radius a is situated in a vacuum and has a charge Q. 

How will the charge be distributed over its surface [We know from Equation 

(3.2) that Q exists only over the conductor surface.] Because equal charges 

repel, due to symmetry the charge distribution over the surface of the ball must 

be uniform. The surface charge density is therefore simple. 24 aQ    Let us 

determine E and V due to this charge.  

          Due to the uniform charge distribution, vector E is radial and has the 

same magnitude on any spherical surface concentric to the ball. (Is such a 

surface an equipotential surface).Can use Gauss' law to find the magnitude of 

vector E on any of these surfaces: 

 

 

Note that the sphere encloses no charge if r < a. thus 

0
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
Q
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This expression is the same as the one for the field of a point charge Q at the 

center of the ball. On the surface of the ball (r=a), 
0

)(


aE as predicted by   

Equation (3.3). It follows that outside the ball, the potential is the same as that 

of a point charge Q placed at the center of the ball. Inside the ball the potential 

is constant, equal to that on the ball surface, that is 

004
)(







a

a

Q
av 

                                                                                              
(3.5) 

3.2.2 Charged Metal Wire 

Consider a very long (theoretical, infinitely long) straight metal wire of circular 

cross section of radius a. let it be charged with Q' per unit length. 

What are the field and potential everywhere around the wire? 

            Due to symmetry, the charge will be distributed uniformly over the wire 

surface. It is not difficult to conclude that, as the result of this symmetrical 

charge distribution, vector E is radial. Its magnitude depends only on the normal 

distance r from the wire axis and can be determined by Gauss' law. 

             For the application of Gauss' law, we adopt the cylindrical surface 

shown in Figure.3.2. There is not flux through the cylinder bases because vector 

E is tangential to them. The total flux through the closed surface is therefore 

equal to the flux through its cylindrical part. Applying Gauss' law gives 
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Figure.3.2.Segment of an infinitely long straight wire of circular cross section of radius a. 
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Note that if ar  the surface encloses no charge. Thus, 
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 ar        ,       0)( rE  ar                                                         (3.6) 

(Electric field of straight, infinitely long, uniformly charged thin wire) 

Because the surface charge density on the cylinder is )(),2( rEaQ    the wire 

surface can be written in the form. 0)( aE
 This of course, is the result as 

obtained by applying Equation (3.3). 

The determination of potential is slightly more complicated consider a point P at 

a containing P and the wire axis. Recall that we can adopt any path from P to R 

in determining the potential. Choose the simplest: first a radial line from P to 

the distance rR from the wire axis, and then a line parallel to the axis to R, 

Figure.3.2. Along the first path segment, E and the line element are parallel, so

     drrEdLrEdLrEdIE . , because the line element, dL  becomes the 

differential increase in drr, . Along the second poth segment 0. dIE . Thus have  
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(Potential of straight, infinitely long, uniformly charged thin wire) 

See that in this case cannot adopt the reference point at infinity, because  

Log∞ → ∞ . 

The expressions in Equations (3.6) and (3.7) are also useful for noninfinite 

wires, as long as we are interested in the field at points close to the wire and 

away from the ends. Because metallic wires are used often in electrical 

engineering, these equations are important. 

3.3 Charge Distribution on Conductive Bodies of Arbitrary Shapes  

Only for symmetrical isolated conductors is the charge distribution on their 

surface known actually, inferred from symmetry. For conducting bodies of 

arbitrary shape the determination of charge distribution is one of the most 

important and the most difficult problems in electrostatics. Except in a few 

relatively simple cases, it can be determined only numerically. For many 

applications, it is useful to have a rough idea what the charge distribution is like. 

In estimating the charge distribution, the following simple reasoning can be of 

significant help. 

We know that on an isolated metal sphere the charge is distributed uniformly. 

Also know that if the radius of the sphere is a and the surface charge density on 

it isσ, then the potential of sphere is 0)( aaV   (Equation 3.5). Let us use this 

expression to estimate the charge distribution on a more complex conducting 

body. 

Consider a charged metal body sketched in (Figure.3.3). It consists of a larger 

sphere of radius a, onto which are pressed part of two smaller spheres of radii b 

and c. 



17 
 

Close to points A, B, and C indicated in the figure, the surface charge density is 

not the same. These three points are, however, at the same potential, V because 

the body is conductive. because charges that are close to a certain point 

predominantly contribute to the potential at the point, roughly speaking the 

surface charge density A  is approximately that of a sphere of radius a at the 

potential V. there for, according to Equation.(3.5) avA 0   .Similarly, 

bvB 0  , and cvc 0   .Thus, for the conducting body shown in (Figure.3.3), 

cBA cba   . 

 

Figure.3.3. A charged metal body 

 

 

Because the surfaces charge density is proportional to the local electric field 

strength, cBA cEbEaE  . 

These are simple but important approximate result. They tell us that the surface 

charge density at different points a metal body is approximately inversely 

proportional to the curvature of the surface of the body at these points. This 

means that the largest charge density and electric field strength on charged 

conductive bodies is around sharp parts of the body. 
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An application of Equation (3.7), for example, is a simple method for 

discharging aircraft. During flight, the plane becomes charged due to air 

friction. this charge could produce large fields during landing that in turn could 

produce a spark resulting in parts, the charge density and, consequently, the 

electric field at these points become very high and the air ionizes(i.e., becomes 

conductive). A large portion of the charge "leaks" through these conducting 

channels into the atmosphere. 

3.4. Charged Conductors 

Now suppose inject charge into the conductor. Since like charges repel, the 

injected charges will move as far away from each other as possible, without 

leaving the conductor. This implies that the charge must reside on the surface of 

the conductor. Moreover, the field within the conductor must be zero. Because 

the conductor is in equilibrium. By definition, this means that there is no net 

migration of charge. If there is no net migration of charge, this implies that the 

free charges experience a net electric force of zero, that is, zero electric field. 

 

 

 

Figure.3.4 Injected Charge into the Conductor 
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3.4.1 A Hollow Conductor 

Consider a conductor with a net charge of +1 μC. As noted, the charges will 

migrate rapidly to the surface of the conductor and distribute themselves in such 

a way that the electric field within the conductor is zero. Suppose that the cavity 

within the conductor contains a +2 μC charge. Because the field within the 

conductor is zero, the field on the Gaussian surface shown is necessarily zero. 

Therefore, according to Gauss‟s law, the net charge enclosed by the Gaussian 

surface must also be zero. 

The only way the net charge enclosed by the Gaussian surface can be zero is if, 

in addition to the +2μC in the cavity, there is also within the Gaussian surface a 

charge of –2μC. It comes from the free charges in the conductor, which are 

attracted to the +2μC charge. In the only place it can: on the inner surface of the 

conductor. Moreover, the inner surface charge is distributed so that its field plus 

that of the +2μC charge sum to zero, as it must, outside the cavity, that is, 

within the conductor. 

But since the net charge of the conductor is +1μC, and its inner surface has a 

charge of –2μC, it follows from charge conservation that a charge of +3μC must 

exist somewhere in or on the conductor. A net charge cannot reside in a 

conductor in equilibrium. Nor can it reside on the inner surface, because if it did 

the net charge there would be –2μC + 3μC = 1μC, contradicting Gauss‟s law. 

Therefore, the +3μC charge must reside on the conductor‟s outer surface. 
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Figure.3.5 a conductor with a net charge 

 

3.4.2 A Hollow Spherical Conductor 

Consider a neutral spherical conductor in equilibrium with an internal cavity 

containing a net charge –q. The fact that the conductor is neutral means that its 

net charge is zero. 

1. The charge on the inner surface of the cavity is +q.  

2. The charge on the outer surface of the conductor must therefore be –q.  

3. Amazingly, in this case, this charge is uniformly distributed. Because the 

inner surface charge exactly cancels the field in the conductor due to the charge 

in the cavity and, consequently, the conductor behaves exactly like a neutral 

spherical conductor without a cavity. 
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Figure.3.6. Neutral spherical conductor in equilibrium with an internal cavity containing a net 

charge –q. 
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  Chapter Four 

Charge Density on Conducting Needle  

4.1 Introduction  

Imagine a straight of conducting wire, length 2a, on which place an electric 

charge Q (Figure.4.1). Question: in the absence of external fields, how will the 

charge distribute itself along the wire That is, what is the equilibrium linear 

charge density; it seems obvious that coulomb repulsion will push charge out 

toward the ends, just as the charge on a solid conductor flows to the surface. 

However, it is not clear how much of the charge goes to the ends; presumably 

some of it is left spread out along the length of the "needle."  

The question sounds simple enough, and it must surely have been considered 

long ago by Sommerfeld, Smythe, Stratton, or maybe even Maxwell himself. 

However, we have found no reference to it in the literature. The reason may be 

that the problem as it stands is ill posed: the answer apparently depends on the 

particular model used to represent the needle. If we think of it as a solid object, 

we are obliged to specify its profile: is it (say) an elongated ellipsoid (Section 

4.2.1), or is it perhaps a thin circular cylinder (Section. 4.2.2) As we shall see, 

these two cases lead to radically different results, and the differences seem to 

persist even in the limit as the number of beads goes to infinity (and the charge 

on each one goes to zero). Alternatively, we might model the system as a 

collection of charged "beads" on a string stretched between -a and +a (see. 

4.3.1). Can solve for their equilibrium positions, and examine the limit as the 

number of beads goes to infinity (and the charge on each one goes to zero). Or 

might put the beads at fixed locations along the string, and solve for the 

equilibrium partitioning of the total charge (Section.4.32). Will these two 

"bead" models yield the same effective linear charge density To what solid 

shape (if any) do they correspond Unfortunately, for more than four beads it is 

prohibitively difficult to perform the calculations analytically, and we must 
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resort to numerical methods. [However, if substitute a Hook's law interaction 

for the true Columbic one, the problem is exactly soluble.] 

      In this paper we explore each of these models: solids in (Section.4.2) and 

beads in (Section.4.3). After that, as a sort of "reality check," it is instructive to 

compare the two-dimensional analog: the charge density on an infinite 

conducting "ribbon" (of width 2a and infinitesimal thickness). This problem has 

the virtue that it is well defined and exactly soluble, so the methods applied 

earlier to the needle can be put to rigorous test (Section.4.4). In the concluding 

section (Section.4.5), we summarize our results, and return to the question of 

what this problem really means. 

4.2 Solid Models 

4.2.1 Ellipsoidal  

The charge density on an ellipsoidal conductor  

 
1

2

2

2

2

2

2


c

z

b

y

a

x

                                                                                              
(4. 1) 

With total charge Q is [28] 
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Here a,b, and c are the three semi-axes (Figure.4. 2). 

  To calculate the total charge dQ on a ring of width dx, note that an element of 

area dA on the surface is related to its projection in the xz plane by  

dAdxdz cos                                                                                                     (4.3) 

Where ɵ  is the angle between the y axis and the unit vector ń normal to the 

surface: 

nj  .ˆcos                                                                                                         (4.4) 

Now, ń can be calculated by taking the gradient of    
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Thus  
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Evidently the charge on a patch of surface above dx dz is  

dxdz
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The total charge on the ring is four times the charge on one quadrant: 
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From Equation (4.1) we have  
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The integral simplifies if we let   
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Figure.4.1. conducting “needle 
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Astonishingly, the effective line charge dxdQx )(  is constant [29] 

aQx 2)(                                                                                                      (4.11) 

Since this result is independent of b and c, it holds in the limit b, 0c  when the 

ellipsoid collapses to a line segment along the x axis. Conclusion: If the needle 

is the limiting case of an ellipsoid, then the linear charge density is constant. In 

this case the tapering of the ends exactly cancels the tendency for charge to push 

out toward the extremities.

 
4.2.2. Cylindrical 

The exact charge distribution on a conducting cylinder is not known. In his 

pioneering study, Smythe [30] remarks that “the literature is blank on this 

subject;" Taylor [31] adds that the problem “must be regarded as intractable 

from the point of view of conventional methods." A number of authors have 

extended and improved Smythe's preliminary results [32], but the limiting case 

of zero radiuses remains elusive. 

Smythe begins by expressing the surface charge density on the ends (σe) and on 

the sides (σs) in the form of two series:  
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Figure.4.2. Conducting Ellipsoid. 
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Figuer.4.3. Conducting Cylinder. 

 

Where R is radius of cylinder (Figure.4.3). (The functional form of the 

singularity at the “corners" is dictated by a general theorem [33]: it goes like 

31  where   is the distance from the edge. Smyth's ansatz simply incorporates 

this structure in a power series expansion.) An approximate solution is obtained 

by truncating the sums at n=r and n=s, respectively. Smythe provides an 

algorithm for determining the coefficients An and Bn and a criterion for 

choosing the optimal values of r and s, for a prescribed degree of accuracy. He 

applies the technique to particular values of the aspect ratio b≡ a/R ranging from 

4

1
up to 4, but he does not explore the large-b regime that concerns us here. 

  In truth, smythe's method is not well suited to our problem. It is pretty clear 

that we need only one term in the B series, and off-hand one would suppose that 

the larger r is the better. However, in practice the calculation is wildly unstable, 

and many of smythe's own numbers (obtained with the aid of a desk calculator) 

are incorrect. Taylor refined smythe's method, using a slightly different series 

that converges more rapidly. Applying Taylor's technique, with b=1000 and 

r=10, obtained the linear charge density plotted in (Figure.4.4). This graph 

appears to confirm our intuition that a portion of charge pushes out to the two 

ends, leaving the density relatively flat toward the middle. 
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       However, Djordjevic, drawing on extensive numerical studies using a quite 

different approach, reports that the charge density on a long conducting cylinder 

is essentially constant  aQx 2)(  over the entire rod, except in the 

 

 

 

Figure.4.4. Linear charge density on a conducting cylinder, using a= 1, Q=1, and R= 0.001. 

 

 

Figure. 4.5. Four Equal Charges on A finite Wire.  

 

Immediate vicinity of the two ends; the length d of the regions over which it 

deviates significantly is proportional to R (specifically, Rd 5 ), and the total 

charge on these two end caps is proportional to R/a. If Djordjevic is right, then 

the charge density in the limit 0R  is constant for the entire cylinder, as it is 

for the ellipsoid. 

4.3. Bead Models 

4.3.1. Fixed Charge  

Suppose we place 2n equal point charges (q=Q/2a) on the line from x= -a to 

x=a. Our task is finding their equilibrium positions. If n=1, the two charges will 

obviously repel out to the ends. However, for n=2 the problem is already 
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nontrivial. The outermost pair will be at a ; let x denote the position of the 

other two (Fig.5). The force on the charge at +x is  
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Setting F equal to zero yields a quartic equation: 

  3222 16axxa                                                                                               (4.13) 

To which the numerical solution is  

x= 0.36148a                                                                                                                   (4.14) 

In general, the 2n charges are at ±  axxxx nn  ,,...,, 121 , and the force on the i th 
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Setting Fi= 0 (for i=1, 2,…, n-1) yields n-1 coupled equations for the 

equilibrium positions of the charges. For example, with n=6 (12 charges), we 

find  

X1=0.10010a, 

X2= 0.29913a, 

X3= 0.49441a,  

X4= 0.68241a,  

X5= 0.85692a,  

However, what we really want is not so much the position of each charge as the 

effective charge density, λ(x). To this end we compute  
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Where 
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Is the center of the interval. The resulting plots (using Q=1 and a=1) for n=5, 

10, and 100, are shown in Figure 4.6.  
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Figure 4.6. Charge Densities for (a) n=5, (b) n=10, and (c) n= 100. 

 

Graphs appear to converge as n increases, suggesting that there is a well-defined 

limit function as  n . Indeed, an expression of the form 
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(Inspired by Smythe's treatment of the finite cylinder) fits the results quite well 

(see Figure.4.7), if A=0.384985 and B = 0.083684. However, we have no 

theoretical justification for this form, no ab initio means for calculating the 

parameters A and B, and, in fact, no real assurance that the graphs converge at 

all. 

 

 

 

Figure.4.7. Graph of Equation. (4.7) superimposed on( Figure 4.6). 

 

4.3.2. Fixed position  

The previous model is algebraically cumbersome because the variables we seek 

(the positions of the charges) appear quadratically, and in the denominator. 

Even for the simplest (nontrivial) case (n=2) this led to a quartic Equation 

(4.12).  

An alternative model, in which fix the positions of the particles and let their 

charges vary, yields a system of linear equations.  

For example, with four evenly spaced beads there are two distinct charges: 

q1 at ± a/3, and q2 at ±a (Figure.4.8). In equilibrium, the net electrical force on 

q1 (at a/3) is zero - the force to the left (due to q2 at a) balances the force to the 

right (due to q2 at -a and q1 at -a/3):  
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Where d= 2a/3 is the separation between the charges. It follows that  
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;                                                                                                  (4.19) 

On the other hand, the sum of all the charges is Q, so  

221 Qqq  .                                                                                                                   (4.20) 

Solving, we find  
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Similarly, for n=3 we obtain  
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(4.22) 

In general, for 2n charges a distance  122  nad .Apart, there are n unknowns,  

q1, q2,...,qn (Figuer.4.9). The force on charge qi is 

 

 

 

Figure.4.8. Four Equally Spaced Charges on A finite Wire. 

 

 

Figure.4.9. The 2n Evenly Spaced Charges on A finite Wire. 
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In equilibrium Fi =0,so 
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Where i=1,2,3,...,n-1 (qn, of course, is subject to the extra constraining force of 

the wire). Meanwhile, the total charge is Q: 





n

i

i

Q
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1 2
                                                                                                   (4.24) 

Taken together, (4.22) and (4.23) provide n simultaneous linear equations for 

the n unknowns. The corresponding charge density is  
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Where  dixi 21 . The resulting plots for n=5, 10, and 100 are shown in Figure 

4.10. Again the graphs appear to converge as n increases and to the same 

function as before (compare Figures4.6 and 4.10). 

   An interesting variant on this approach is suggested by the 

work of Ross. Instead of adjusting the charge distribution so as 

to make the force on each charge vanish, we require that the 

potentials be equal at point midway between the charges. The 

potential at point d/2 to the left of qi is 

                   

                               (4.26) 

 

Letting, vd04   where V is the common potential, we obtain n linear 

equations, 
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Which, together with (4.23), determine the n + 1 unknowns  ,,....,1 nqq  For 

example, when n=2 we find Qq )92(1  , Qq )185(2  . IN Finguer.4.11 we graph 

the charge densities for n=5, 10, and 100; the agreement again convergence to a 

common shape. 

 

 

 

Figure.4.10. Charge Densities Using the Fixed-Position Method: (a) n=5, (b) n=10, and (c) 

n=100. 
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4.4. Infinite Conduction Ribbon 

4.4.1. Exact Solution  

The analogous case of an infinite conducting ribbon, of width 2a and 

infinitesimal thickness (Figure.4.12), can be solved exactly. For this is a strictly 

two-dimensional problem (the potential is plainly independent of z), and hence 

accessible to the method of conformal mapping. If A is the net charge per unit 

length (in the z direction), the potential V(x,y) is given (implicitly) by 

theequation 

 

                                                           (4.28) 
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Figure.4.11. Charge Densities using Ross' method: (a) n=5, (b) n=10, and (c) n=100.  

 

 

                                                                                             (4.29) 

Equipotential are ellipses, with semi-axes a cosh(v/v0) and a sinh (v/v0). As 

V→0 they collapse to a line, -a < x < +a, along the x axis. (In this problem it is 

convenient to set the potential equal to 0 on the conductor.)  

   The charge density on the ribbon is determined by the discontinuity in the 

normal derivative of V: 

 

                                                                (4.30) 
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Figure.4.12. Infinite Conducting Ribbon. 
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So 

 

                                                               (4.32) 

 

And hence  

 

                                                                                           (4.33) 

 

The is the exact charge density on a conducted ribbon - the, analog to the 

formula that has remained so elusive in the case of the needle. It is potted in 

(Figure 4.13) (for A-1 and a=1). As expected, the charge is repelled out toward 

the edges of the ribbon. 

4.4.2. Wire Models  

4.4.2.1. Fixed Charge  

Consider an array of 2n infinite wires running parallel to the z axis in the xz 

plane, free to move in the x direction between -a and + a (Figure.4.13). If each 

wire carries the same linear charge density  , what are their equilibrium 

positions   ±(x1, x2,...,xn ≡ a)? The force per unit length on the i th wire is  
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Figure.4.13. Charge Density on A ribbon. 

 

 

 

Figure.4.14.Array of Parallel Wires with Equal Charges. 

 

 

                                                 (4.34) 

 

Setting fi equal to 0 (for i=1,2,...,n-1) yields n-1 equations for the equilibrium 

positions of the wires. For example, if n=2 we find  51 ax   = 0.447a; if n=3, 
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(4.35) 

With nA 2  

 iii xxx  1
2

1
.                                                                                                               (4.36) 

In (Figure.4.15) we plot numerical solutions for n=5, 10, and 100. The results fit 

the exact solution (4.32) very well. 

4.4.2.2. Fixed Position  

Suppose now that the wires are evenly spaced, a distance  122  nad  apart, 

but their charges  n ,...,, 21  are variable (Figure.4.16). The force per unit 

length on the i th wire is 

  

                                                         (4.37) 

 

At equilibrium 0if , from which it follows that  
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This gives us n-1 equations in n unknowns- the remaining constraint is 

 

                                                                                                                        (4.39) 

For example, if 2n , we obtain ,166.061 AA  AA 333.032  ; if 3n ,       

      .269,014539,124.014518,107.029031 321 AAAAAA    In Figure 

4.17 the resulting surface charge )(x is plotted for n=5, 10, and 100; again, the 

graphs are in close agreement with the exact answer. 
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Figure.4.15. Surface Charge by Constant Charge Method: (a) n=5, (b) n=10, and (c) n=100. 
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Chapter Five  

Result and Conclusion and  

Recommendation  

5.1 Introduction 

One of the foundations of electrostatics is Coulomb‟s law. Major 

electromagnetic laws are built upon this law. As a direct consequence of this 

law (or its equivalent, Gauss‟s law), any excess charge placed on a conductor 

must lie entirely on its surface. According to Coulomb‟s law, excess charges 

given to a conductor will move away from each other and distribute themselves 

about the conductor in such a manner as to reduce the total amount of repulsive 

forces within the conductor and that both the charge and the field inside the 

conductor will vanish [34], [39]. 

Testing this law has been a subject for many experiments over the past two and 

a half centuries [34], [35]. Any deviation from inverse square law would 

suggest a finite range for electromagnetic force, implying a nonzero photon rest 

mass. Rest mass of the photon provides indirect test of the deviations from 

exactness of Coulomb‟s law. If the photon mass is zero, Coulomb‟s inverse-

square law is the foundational law in electrostatics. Experiments measure 

deviations in the exponent of inverse-square law and photon rest mass are 

increasingly exact. The most recent ion interferometry experiment measures the 

value of the exponent to be a few times  10
-22

 and detect a photon rest mass at 

the level of 9 × 10
-50

 grams [34]. Detection of any deviation from Coulomb‟s 

law would have far-reaching implications. Maxwell‟s equations and much of 

the standard model would have to be modified. The notion that absolute 

electrostatic potential is arbitrary would have to be abandoned, along with many 

other tenets of classical electromagnetism [34]. 

In an interesting papers, Spencer [36] and Griffiths and Uvanovic [37] studied 

distribution of excess charge within a conductor for laws rather than inverse 
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square law such as Yukawa‟s law or power law. In these two cases they found 

that some of the charge goes to the surface, and the remainder distributes itself 

uniformly over the volume of the conductor. 

In this paper we introduce the method of images to study the distribution of 

charges in cases where the potential is depending on the photon rest of mass. 

And give a theoretical extension work to the experimental results that detect a 

photon rest mass at the level of 9 × 10
-50

 grams and as a result a deviating from 

Coulomb‟s Law. This paper is also important to understand physics of 

molecules and electron transport through a single molecule which offers a 

highly promising new technology for the production of electronic chip. 

5.2 Method and Results 

5.2.1 Method of Images for Yukawa Potential and Grounded Spherical 

Conductor 

The reaction field of a point charge due to surrounding medium can be 

represented by the method of image charge. The method of images allows us to 

solve certain differential form of electric potential problem without specifically 

solving a differential equation of this problem. 

The potential Φ(x) everywhere outside a conducting sphere can be calculated 

by using method of images. As illustrated Figure.5.1 we consider conducting 

sphere with radius R = a. For convenience, place the sphere at the origin. We 

assume a point charge q outside the sphere and defined by position vector y. By 

symmetry, the image charge lie on the line connecting the charge and the origin 

of the sphere and will be located inside the sphere at position vector y. If the 

sphere is grounded then the potential everywhere on the sphere equal zero. 

Now we are able to calculate the magnitude and the position vector y of an 

image charge q′  that is required to make the potential equal zero on the 

surface of the grounded sphere. Total Yukawa potential [37] Φ(x) due to the 
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assumed charge q and its image charge q′ at any point P is given by Equation 

(5.1). 

 

                                                          (5.1) 

If the sphere is grounded, then the 

potential at the surface of the sphere vanishes 

 (x = a) = 0, thus: 

 

 

 

Figure.5.1. Two-dimensional schematic illustration of a conducting sphere of radius a with a 

point charge q outside and image charge q
/
inside. 
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Where n̂   and nˆ  are unit vectors in the direction of x and y respectively. To 

satisfy the boundary condition 

0)(  x at R = a, we must have: 

 

                                                                           (5.3) 

 

More generally, the potential in the neighborhood of an uncharged grounded 

conducting sphere is given by Equation (5.3): 
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Substitute Equation (5.5) in Equation (5.4) and then differentiate to get the 

actual induced charge density on the surface of the grounded uncharged 

conducting sphere: 
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The total charge on the sphere may be found by integrating Equation (5.6) over 

all angles. The total surface induced charge is equal to the magnitude of the 

image charge for Coulomb potential. But in case of Yukawa potential the total 

surface induced charge is less than the value of the image charge. This result 

implies that small portion of the induced charge distributed itself inside the 

volume of the conducting sphere. The rest of the induced charge is distributed 

itself on the surface of the conducting sphere. Some values of the total induced 

surface charge on grounded conducting sphere are given in Table5.1 for both 

Coulomb and Yuakawa potentials. 

Table.5.1. Total induced surface charge normalized to − q on grounded 

conducting sphere and a =1.0.  

 

 

Potential  

 

 

 

 Parameters  

K a/y       q
/
      Total surface charge     Total volume charge 

 

Coulomb 0 0 2.0 0.50000q 0.5 0.0 

Yukawa           0.008 2.0 0.49697q 0.4932 0.0037 

Yukawa            0.5 2.0 0.34592q 0.2267 0.1192 

Yukawa             1.0 2.0 0.23931q 0.1087 0.1306 

 

5.2.2. Method of Images for Yukawa Potential and Insulated Charged 

Spherical Conductor 

We can generalize Equation (5.4) for an insulated conducting sphere. 

Consider insulated charged sphere with total charge Q in the presence 

of a point charge q. The potential Φ(x) everywhere outside the sphere 
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is superposition of Equation (5.4) Yukawa potential of a point charge           

(Q − q) at the center of the conducting sphere, charge q and image 

charge q′ is given Equation (5.7): 
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The surface charge density: 
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The charge density given by Equation (5.8) in units of 24 aq  is plotted in 

Figures 5.2 and 5.3 as a function of the angle  for different values of k, ya and

qQ . The total surface charge, for insulated charged sphere with total charge Q, 

is calculated by integrating Equations (5.8) with respect to all angles. For k = 0, 
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we find that the total surface charge is equal to the magnitude of the total charge 

of (Q). This means that all the charge is distributed on the surface of the 

conducting sphere and no charge is distributed inside the sphere. For values of k 

different from zero (k > 0), we found that portion of the total charge is 

distributed inside the volume of the sphere. In Figure 4, the magnitude of the 

total surface charge normalized to q and the total volume charge normalized to q 

for insulated charged sphere with total charge Q, are displayed for  

( 1qQ , 2ya ) as a function of k. Note that the charged conducting sphere is 

insulated in this case and has a unit radius a. 
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5.3. Conclusion 

In accord with the experimental work we show that the charge distribution 

greatly depends on the photon rest 

 

 

Figure5.2.The surface charge density normalized to 
24 aq   for conducting insulated 

charged sphere has unit radius and 2ya  is plotted as a function of angle  . 

 

 

Figure5.3.The surface charge density normalized to 
24 aq   for conducting insulated 

charged sphere has unit radius and 4ya  is plotted as a function of angle  . 
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Figure.5.4.The magnitude of the total surface charge normalized to q and the total volume 

charge normalized to q, are displayed for   2,1  ayqQ  as function of k. Note that the 

charge conducting sphere has unit radius. 

Form which it concluded that   

If photons have nonzero mass there will be many consequences: 

a. Speed of light will not be the universal constant. 

b. Coulombs Law will deviate from the inverse square law.  

c. Maxwell equation will reduce to proca equation. 
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5.4  Recommendation  

1. More experimental work should be held in order to find the upper limit of 

photon mass. 

2. The sensitivity of the equipment which are used to determine the photon 

mass bust modified to determine the mass of photon accurately.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

 البرنبهج الوستخذم في رسن الونحنيبث

 

(يىكبوا و كىلىم) في حبلت لىح هىصل اولا  

with(plots): 

k:=1.; 

                                     1. 

d:=1.0; 

                                     1.0 

A:=plot((k/(r^2+d^2)+1.0/(r^2+d^2)^1.5)*exp(-

k*(r^2+d^2)^0.5),r=0..5,symbolsize=2,thickness=2,color=red,sym

bol=circle,legend="yukawa k=1.0 d=1"): 

B:=plot(1.0/(r^2+d^2)^1.5,r=0..5,color=blue,thickness=1,symbol=

diamond,legend="couolomb k=0  d=1"): 

display(A,B);      

(يىكبوا و كىلىم) في حبلت كرة هىصلت هتصل ببلأرضثبنيب  

 

with(plots): 

k:=0.00824; 

                                k := 0.00824 
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ay:=1.0/2.0; 

                             ay := 0.5000000000 

a:=1.0; 

                                  a := 1.0 

y:=a/2.0; 

                              y := 0.5000000000 

z:=(1.25-cos(theta))^0.5; 

                                                 0.5 

                         z := (1.25 - cos(theta))    

A:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-

2.*(ay)*cos(theta))^1.5,theta=0..Pi,color=red): 

ay:=1.0/4.0; 

                             ay := 0.2500000000 

y:=a/4.0; 

                              y := 0.2500000000 

z:=(17.0/16.0-(0.5)*cos(theta))^0.5; 

                                                      0.5 
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                   z := (1.062500000 - 0.5 cos(theta))    

B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-

2.*(ay)*cos(theta))^1.5,theta=0..Pi,color=black): 

ay:=1.0/2.0; 

                             ay := 0.5000000000 

a:=1.0; 

                                  a := 1.0 

y:=a/2.0; 

                              y := 0.5000000000 

C:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue): 

ay:=1.0/4.0; 

                             ay := 0.2500000000 

a:=1.0; 

                                  a := 1.0 

y:=a/4.0; 

                              y := 0.2500000000 
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d:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green): 

display(A,B,C,d); 

(يىكبوا و كىلىم) في حبلت كرة هىصلت هشحىنت و هعزولتثبلثب  

 

> with(plots): 

> ay:=1.0/2.0; 

 

> k:=0.00824; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> Qq:=0.0; 

 

> z:=(1.25-cos(theta))^0.5; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-
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k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

> k:=0.00824; 

 

> ay:=1.0/2.0; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> z=(1.25-cos(theta))^0.5; 

 

> Qq:=-1.0; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

> k:=0.00824; 
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> ay:=1.0/2.0; 

 

> a:=1.0; 

 

> y:=a/2.0; 

 

> z=(1.25-cos(theta))^0.5; 

 

> Qq:=1.0; 

 

> A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

> B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

> display(A,B); 

k:=0.00824; 

                                   0.00824 

ay:=1.0/2.0; 

                                0.5000000000 
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a:=1.0; 

                                     1.0 

y:=a/2.0; 

                                0.5000000000 

z:=(1.25-cos(theta))^0.5; 

                                              0.5 

                           (1.25 - cos(theta))    

Qq:=3.0; 

A:=plot(ay*(1.0-ay^2)/(1+ay^2-2.*ay*cos(theta))^1.5-

(Qq+ay),theta=0..Pi): 

B:=plot(k*(ay-cos(theta))*(exp(-k*(y-a)*z)-exp(-k*y*z))-k*(1-

(ay)*cos(theta))*(exp(-k*(y-a)*z))/(1+(ay)^2-

2.0*(ay)*cos(theta))+(1-(ay)*cos(theta))*(exp(-k*(y-a)*z))-ay*(ay-

cos(theta))*(exp(-k*y*z))/(1.0+(ay)^2-2.*(ay)*cos(theta))^1.5+(-

k*(ay-cos(theta))+k*(1-ay*cos(theta)))*exp(-k(y-a)*z)/z-1.0*exp(-

k(y-a)*z),theta=0..Pi): 

display(A,B);  

(قبنىى القىة العكسي و كىلىم)في حبلت لىح هتصل ببلأرض  سابؼا  

> with(plots): 

> n:=1.1; 
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> d:=1.0; 

 

> 

B:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=red,thickness=3,leg

end="yukawa n=1.1"): 

> 

A:=plot(1/(r^2+d^2)^(1.5),r=0.0..4.0,color=blue,thickness=3,legen

d="coulomb n=1"): 

> n:=1.5; 

 

> 

C:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=black,thickness=3,l

egend="yukawa n=1.5"): 

> n:=2.0; 

 

> 

l:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=green,thickness=3,le

gend="yukawa n=2.0"): 

>  

> n:=2.5; 

 

> d:=1.0; 
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> 

e:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=orange,thickness=3,l

egend="yukawa n=2.5"): 

> n:=2.9; 

 

> 

f:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=brown,thickness=3,l

egend="yukawa n=2.9"): 

> n:=3.0; 

 

> 

g:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=yellow,thickness=4,l

egend="yukawa n=3.0"): 

 

> n:=3.5; 

 

> 

h:=plot(1/(r^2+d^2)^(n/2+1),r=0.0..4.0,color=gray,thickness=4,le

gend="yukawa n=3.5"): 

> display(A,B,C,l,e,f,g,h); 

(القىة العكسي و كىلىم) كرة هىصلت هتصلت ببلأرض خبهسب  

> with(plots): 

> ay:=1.0/2.0; 
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> n:=1.1; 

 

>  

> ay:=1.0/2.0; 

 

> 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-          

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=1.1"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.5; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-          

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2),theta=0.0..Pi,color=red,thickness=4,l

egend="yukawa n=1.5"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-                     

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=1.5"): 
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> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=2.9; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-                

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2),theta=0.0..Pi,color=red,thickness=4,l

egend="yukawa n=2.9"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=4,legend="

yukawa n=2.9"): 

> display(A,B); 

 

(القىة العكسي و كىلىم)في حبلت كرة هعزولت و هشحىنت سبدسب   

> with(plots): 

> ay:=1.0/2.0; 

 

> n:=1.1; 

 

> Qq:=-3.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.1 Qq=-3"): 

 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.1; 

 

> Qq:=-3.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.1 Qq=-3"): 

> ay:=1.0/4.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.1; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.1 Qq=-1.0"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.1; 

 

> Qq:=-1.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.1 Qq=-1.0"): 

> ay:=1.0/4.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=1.5; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=1.5 Qq==1.0"): 

> ay:=1.0/2.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=1.5; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=1.5 Qq=-1.0"): 

> ay:=1.0/4.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

> n:=2.9; 

 

> Qq:=-1.0; 
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> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=re

d,thickness=2,legend="power law a/y=0.5 n=2.9 Qq=-1.0"): 

> ay:=1.0/2.0; 

 

> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=blue,thickness=2,legend="

Coulomb a/y=0.5 n=1.0"): 

> display(A,B); 

> ay:=1.0/4.0; 

 

> n:=2.9; 

 

> Qq:=-1.0; 

 

> A:=plot(n*(ay)^n*((1-ay*cos(theta))-ay*(ay-

cos(theta)))/(1+ay^2-

2.0*ay*cos(theta))^((n+2)/2)+n*(Qq+ay^n),theta=0.0..Pi,color=bl

ack,thickness=2,legend="power law a/y=0.25 n=2.9 Qq=-1.0"): 

> ay:=1.0/4.0; 
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> B:=plot(ay*(1.-ay^2)/(1.+ay^2-

2.*ay*cos(theta))^1.5,theta=0..Pi,color=green,thickness=2,legend=

"Coulomb a/y=0.25 n=1.0"): 

> display(A,B); 

> ay:=1.0/2.0; 

 

>  

 

>  

 

>  

>  

 

>  

> DISPLAY(A,B); 
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