# Sudan University of Science & Technology College of Graduate Studies

Determination of the He-Ne and diode laser beam parameters by ISO method And compare it with the theoretical values

A Thesis Submitted for Partial Fulfillment for the Degree of M.Sc. in Physics

By

**Kawther Bakhiet Ismail Hammad** 

Supervised by

Dr. Ahmed Hassan Sabah el kheir

## June 2008

# **Approval Page**

| The Thesis of        | •••••                                   |
|----------------------|-----------------------------------------|
| Is approved.         |                                         |
| Thesis Title         | • • • • • • • • • • • • • • • • • • • • |
| •••••                | •••••                                   |
| •••••                | •••••                                   |
| 1. External Examiner |                                         |
| Name                 | •••••                                   |
| Sign                 | Date                                    |
| 2. Internal Examiner |                                         |
| Name                 | •••••                                   |
| Sign                 | Date                                    |
| 3. Supervisor        |                                         |
| Name                 | •••••                                   |
| Sign                 | Date                                    |

## بسم الله الرحمن الرحيم

:قال الله تعالي

ا... وَمَا أُوتِيتُم مِّن الْعِلْمِ إِلاَّ قَلِيلاً ا

صدق الله العظيم

( الإسراء الآية(85)

1×

Dedication
I dedicate this thesis
To my Parents
To my Family
Specially

To my Father

To My Mother

To my husband

To my Teachers

### Acknowledgement

At first, I thank my God for helping me to complete this thesis. I thank with great appreciation, my supervisor Dr.Ahmed Hassan Sabah-Elkheir for his valuable guidance and support.

Thanks to college of postgraduate studies, and great thanks to institute of laser- Sudan University of Sciences and Technology.

My thanks to the staff of physics department-Sudan University of Sciences and Technology.

Deep thanks to all those people who assisted me to finish this thesis.

#### الخــــلاصة

فى هذا البحث تم قياس معلمات كل من شعاعي الهيليوم نيون ليزردو الطول الموجي 632.8 نانومتر وبقدرة 1 ملى واط (صمم خصيصاً لتجارب فيزياء الليزر) وشعاع ليزر الثنائي التجاري دو الطول الموجي 651.6 نانومتر وبقدرة 1 ملى واط، وذلك بتطبيق طريقة المنظمة العالمية للقياس (الايزو) ومقارنتها بالقيم المحددة نظرياً لمثل هذه الليزرات،

تُم أُولاً الْتأكد من الطول الموجَى لليزر الثنـائي التجـاري ومـن ثم اسـتخدمت الأطـوال الموجيـة فـى حسـاب كـل مـن عـرض الشعاع والتفرق ومعامل الانتشار ومعامل الحد الزمني للحيود

برهنت الدراسة على ان تطبيق طريقة الايزو لتحديــد معلمــات شعاع الليزر تعطى نتائج تتطابق الــى حــد كـبير مـع الحســابات النظرية لمعلمات شعاع ليزر الهيليوم نيون والثنائي .

#### **Abstract**

In this study the parameters of the He-Ne laser beam with wavelength 632.8nm, and power 1 mW and commercial diode laser with wavelength 651.6nm, and power1mW were measured, by applying the method of the International Standard Organization (ISO) system, and compared with the values that stated for the used lasers.

First, the wave length for He-Ne and diode laser was measured for assurance. The results obtained were used for calculation beam width, diffraction angle, propagation factor (K) and time limit diffraction factor  $(M^2)$ .

The study proved that, applying the ISO method for determining of laser beam parameter gives a result that agreed to large extend with the theoretical calculation of the beam parameters.

## **Contents**

| Chapter One: Introduction & Basic concepts                          |
|---------------------------------------------------------------------|
| 1.1 The Helium –Neon Laser1                                         |
| 1.1.1: Introduction                                                 |
| 1.1.2: The Helium Neon Laser Combination5                           |
| 1.1.3: Power supply of the He-Ne laser tube                         |
| 1.1.4: Applications of He-Ne laser5                                 |
| 1.1.5: He-Ne laser beam characteristics6                            |
| 1.2 Introduction to diode laser8                                    |
| 1.2.1: Structure of the diode laser9                                |
| 1.2.2: Diode laser temperature sensitivity11                        |
| 1.2.3: Slope Efficiency                                             |
| 1.2.4: Lasing action                                                |
| 1.2.5: Diode laser operating characteristics                        |
| 1.2.6: Classification of semiconductors14                           |
| 1.2.7: Applications and advantages of laser diode18                 |
| Chapter Two: Theoretical background about laser beam                |
| parameters                                                          |
| 2.1: Introduction                                                   |
| 2.1.1: Three dimensional wave equation and electromagnetic waves.20 |
| 2.1.2: Plane wave solutions to the wave equation21                  |
| 2.1.3: Spherical wave solutions to the wave equation21              |
| 2.1.4:: Phase variation of spherical waves along transverse plane20 |
| 2.1.5: Bases for defining laser-beam mode structure22               |
| 2.1.6: Solution of the Gaussian laser beam24                        |
| 2.1.7: Spherical Gaussian laser beam25                              |
| 2.1.8: Spot size and Radius of curvature of a Gaussian beam27       |

| 2.2: Laser Beam Divergence                         | 29 |
|----------------------------------------------------|----|
| 2.2.1: Divergence angle                            | 29 |
| 2.2.2: The near and far field                      | 30 |
| 2.2.2.1: Far field                                 | 31 |
| 2.2.2.2: Near field                                | 31 |
| 2.3: The beam Quality (M <sup>2</sup> )            | 31 |
| 2.3.1:. The beam Quality                           | 32 |
| 2.3.2: Measurement of beam Qualities               | 35 |
| 2.3.3: Importance of beam Quality for Applications | 37 |
| 2.3.4: Optimizing laser beam Quality               | 38 |
| 2.3.5: Beam Quality in nonlinear optics            | 39 |
| 2.4: Propagation factor (K)                        | 40 |
| 2.5: Power (Energy) density distribution function  | 41 |
| 2.5.1: Terms and definitions                       | 41 |
| Chapter Three                                      |    |
| Experimental work                                  |    |
| 3.1: Introduction                                  | 44 |
| 3.2: The equipments                                | 44 |
| 3.2.1 The He-Ne laser source                       | 44 |
| 3.2.2 The knife-edge                               | 44 |
| 3.2.3 Detector                                     | 45 |
| 3.2.4 (CRO) cathode ray Oscilloscope               | 46 |
| 3.2.5 Diode laser                                  | 47 |
| 3.3 The He-Ne laser experiments                    | 47 |
| 3.3.1: Procedure                                   | 47 |
| 3.4.: The Diode laser Experiment (1)               | 48 |
| 3.4.1: The Objective                               | 48 |

| 3.5: The Diode laser parameters experiment (2)49           |
|------------------------------------------------------------|
| 3.5.1: Equipments49                                        |
| 3.5.2: Procedure49                                         |
| Chapter four                                               |
| Results and discussion                                     |
| 4.1: The He-Ne laser50                                     |
| 4.2: Discussions for He-Ne laser parameters53              |
| 4.3: Calculations for He-Ne laser parameters54             |
| 4.4: Calculations of the diode laser wave length56         |
| 4.5: Results and analysis for diode laser experiment (2)58 |
| 4.5.1: The Results                                         |
| 4.5.2: Analysis for the diode laser experiment60           |
| 4.5.3: Calculations for diode laser beam parameters62      |
| Discussion64                                               |
| Conclusion                                                 |
| References66                                               |

## List of figures

| Figure number |                                                  |               |
|---------------|--------------------------------------------------|---------------|
|               |                                                  | Page          |
|               |                                                  | num           |
|               |                                                  | ber           |
| (Figure (1.1  | Energy level diagram for He-Ne laser             | <u>2</u><br>5 |
| (Figure (1.2  | Schematic diagram of a helium neon laser         |               |
| (Figure (1.3  | Structure of semiconductor diode laser           | 10            |
| (Figure (1.4  | Diode laser light output characteristics for 3   | 11            |
|               | different temperatures                           |               |
| (Figure (1.5  | The output of diode laser as a function of drive | 14            |
|               | current                                          |               |
| (Figure (1.6  | Simplified classification of major types of      | 15            |
|               | diode laser                                      |               |
| (Figure (1.7  | Structure and index of refraction for various    | 17            |
|               | junction in types of the aluminum gallium        |               |
|               | arsenide                                         |               |
| (Figure (1.8  | Example of an index-guided structure             | 18            |
|               |                                                  |               |
| (Figure (2.1  | Compared the displacement at an instant of the   | 24            |
|               | skin on the drum and of the field vector across  |               |
|               | the laser beam                                   |               |
| (Figure (2.2  | Electric field variations across transverse beam | 25            |
|               | diameters and the corresponding burn patterns    |               |
|               | such beams would produce on a target-for         |               |
|               | different TEM <sub>mn</sub> modes                |               |
| (Figure (2.3  | $TEM_{00}$ laser beams passing through a         | 26            |
|               | converging lens                                  |               |
| (Figure (2.4  | Axial variation and transverse variation         | 28            |
| (Figure (2.5  | Gaussian spherical beam propagation in the z     | 29            |
|               | direction                                        |               |
| (Figure (2.6  |                                                  |               |
|               | Divergence of the laser beam                     | 31            |
|               | Divergence of the fasci beam                     |               |
| (Figure (2.7  | Calculation of the beam quality from the         | 37            |
| (118410 (2.7  | measured caustic                                 | 0,            |
| (Figure (3.1  | The knife-edge                                   | 45            |
| (Figure (3.2  | Detector                                         | 45            |
| (Figure (3.3  | CRO) Cathode Ray Oscilloscope)                   | 46            |
| (Figure (3.4  | Diode laser                                      | 47            |
| (1 15ul (J.+  |                                                  | <b>' '</b>    |

| (Figure (3.5 | The experimental set-up to determine He-Ne    | 48 |
|--------------|-----------------------------------------------|----|
|              | laser parameters.                             |    |
| (Figure (3.6 | (Diode laser set-up (1                        |    |
|              |                                               | 48 |
| (Figure (3.7 | (Diode laser set-up (2                        | 49 |
| (Figure (4.1 | Plot of relative power (mW) Vs Knife-edge     | 75 |
| (11guic (4.1 | position (μm)                                 | 52 |
| (Figure (4.2 | Normalized Gaussian distribution              | 54 |
|              | Power (mW) Vs knife-edge position (μm)        |    |
| (Figure (4.3 | Plot of relative power Vs knife-edge position | 60 |
| (Figure (4.4 | Normalized Gaussian distribution              | 61 |
|              |                                               |    |
|              |                                               |    |

## List of tables

| Table (1) | the data obtained for the He Ne laser parameters | 51 |
|-----------|--------------------------------------------------|----|
| (Table (2 | the data obtained for the diode laser parameters | 59 |
|           |                                                  |    |