Table of contents

Content	Page
Dedication	I
Acknowledgment	II
Abstracts	III
Arabic Abstracts	V
Table of contents	VII
List of tables	XI
List of figures	XV
List of schemes	XVII
List of Abbreviations	XVIII
Chapter one	
1.Introduction	1
1.1. Quinones	1
1.1.1. Physical properties of quinines	2
1.1.2. Chemical properties of quinines	2
1.1.3. 1,4-Benzoquinones and their applications	4
1.2. Chemical synthesis of <i>p</i> -quinones	4
1.3. α,β- Unsaturated carbonyl compounds	6
1.3.1. Preparation of α,β- Unsaturated carbonyl compounds	6
1.3.2. Biological activities of α,β- Unsaturated carbonyl compounds derivatives	8
1.3.3Isoxazoles	9

1.3.4.Biological activities of isoxazoles derivatives	10
1.4. Quantitative structure activity. (QSAR)	11
1.4.1. Definition of QSAR	11
Aims and objectives	14
Chapter Two	
2.1.Materials and Methods	16
2.1.1.Chemicals	16
2.1.1.Solvents	16
2.1.3.Reagents	16
2.1.4.Thin layer chromatography (TLC)	16
2.1.5. Database	16
2.2. Software	17
2.2.1.ACD/ Labs Software	17
2.2.2. Molecular Operating Environment(MOE) software	17
2.2.3. Statistical package for social sciences (SPSS) Software	17
2.2.4.Spectroscopic Instruments	17
2.2.4.1. Infra-red spectroscopy	17
2.2.4.2. Nuclear Magnetic Resonance (NMR)	17
2.2.4.3. Mass spectroscopy	17
2.2.4.4. General Instruments	18
2.3. Synthetic Methods	18
2.3.1. 2,3,5,6-tertrabromo-1,4-Benzoquinone (Bromanil).(I)	18

2.3.2. α,β unsaturated carbonyl compounds (II- V)	18
2.3.3. Isoxazles derivatives (VI-IX)	19
2.3.4. 2,5-dibromo-3,6-diisoxazolyl-1,4-benzoquinone derivatives (X-XIII).	19
2.3.5. 2,5-diaminoaryl-3,6-dibromo-1,4- Benzoquinone (XIV)	19
2.3.6. ofquinonyl- α,β unsaturated carbonyl compounds derivatives (XV-XVIII).	20
2.3.7. quinonyl- α,β unsaturated carbonyl compounds derivatives (XIX-XXII) from compound (XIV)	20
2.3.8. <i>p</i> -quinones derivatives (X-XIII)	20
Chapter Three	
Results and Discussion	63
3. Discussion	63
3.1. Retrosynthetic analysis of α,β - unsaturated carbonyl compounds, isoxazoles, <i>p</i> -quinone derivatives.	63
3.2. Reaction Mechanism	64
1.The mechanism of the Base catalyzed reaction	64
2.The mechanism of the Acid catalyzed reaction	65
3. 2.3. Reaction mechanism of formation of isoxazole derivatives	67
3. 2.4. Reaction mechanism of formation of <i>p</i> -quinones derivatives	68
3.3.Spectroscopic analysis	69
3.4. Biological activity	75

3.4.1.Antibacterial activity	75
3.4.2. The Method	75
3.5. QSAR Modelling	77
3.5.1. Molecular modelling parameters	80
3.5.2. Selection of subset descriptors	83
3.5.3. Calculation of statistical parameters	85
3.5.4. Validation of quantitative structure-activity relationship model	86
3.6. Molecular Docking Study	89
3.6.1. Molecular Docking Procedure	89
3.7. QSAR Study Analysis	103
Conclusion and recommendation	109
Chapter Four	
References	110
Chapter Five	
Appendix	114

LIST OF TABLES

Title	Page
2.4 Chemical name of the synthesized compounds	26
2.1. Chemical name of α,β unsaturated carbonyl compounds (II-V)	26
2. 2. Chemical name of Isoxazles derivatives (VI-IX)	26
2. 3. Chemical name of <i>p</i> -quinones derivatives (X-XIII)	27
2.4. Chemical name of The synthesized compound (XIV)	28
2.5. Chemical name of α,β unsaturated carbonyl compounds derivatives from the bromanil. (XV-XVIII)	29
2. 6.α,β unsaturated carbonyl compounds derivatives from compound(XIV) .(XIX-XXII)	29
2. 7. <i>p</i> - quinones derivatives (X,XI,XII,XIII)	30
2.5. The reaction conditions for the synthesized compounds	31
2.8.Reaction conditions of the synthesized α,β unsaturated carbonyl compounds derivatives.(II-V)	31
2.9.Reaction conditions of isoxazoles(V-VIII)	32
2.10.Reaction conditions of <i>p</i> - quinones derivatives.(X-XIII)	33
2.11. Reaction conditions of synthesized compound (XIV)	34
2.12. Reaction conditions of α,β unsaturated carbonyl compounds derivatives from the bromanil. (XV-XVIII)	34
2.13.Reaction conditions of α,β unsaturated carbonyl compounds derivatives from compound(XIV). (XIX-XXII).	35
2.14. <i>p</i> - quinones derivatives (X,XI,XII,XIII)	36
2.5. Infra Red Spectrum bands of synthesized compounds	37

2.15. Infra Red Spectrum bands of the synthesized α,β unsaturated carbonyl compounds derivatives.(II-V)	38
2.16. Infra Red Spectrum bands of isoxazoles derivatives (VI-IX)	38
2.17. Infra Red Spectrum bands of <i>p</i> - quinones derivatives (X,XI,XII,XIII)	39
2.18. Infra Red Spectrum bands of synthesized compound (XIV)	40
2. 19. Infra Red Spectrum bands of α,β unsaturated carbonyl compounds derivatives from the bromanil. (XV-XVIII)	40
2.20. Infra Red Spectrum bands of α,β unsaturated carbonyl compounds derivatives from compound(XIV). (XIX-XXII).	41
2.21. Infra Red Spectrum bands of <i>p</i> - quinones derivatives (X-XIII)	43
2.6. (¹ H NMR) Spectrum bands of the synthesized compounds	43
2.22. (¹ H NMR) Spectrum bands of the synthesized α,β unsaturated carbonyl compounds derivatives.(II-V)	43
2.23. (¹ H NMR) Spectrum bands of isoxazoles derivatives (VI-IX)	44
2.24. (¹HNMR) Spectrum bands of p- quinones derivatives (X-XIII)	45
2.25. (¹ H NMR) Spectrum bands of synthesized compound (XIV)	46
2.26. (¹H NMR) Spectrum bands of α,β unsaturated carbonyl compounds derivatives from the bromanil. (XV-XVIII)	47
2.27. (¹H NMR) Spectrum bands of α,β unsaturated carbonyl compounds derivatives from compound(XIV). (XIX-XXII).	48
2.28. (¹ H NMR) Spectrum bands of <i>p</i> - quinones derivatives. (X-XIII)	49

2.7. Mass spectrum bands of the synthesized compounds	50
2.29. Mass spectrum bands of the synthesized α,β- unsaturated	50
carbonylcompounds derivatives . (II-V).	
2.30. Mass spectrum bands of Isoxazoles derivatives.(VI-IX)	51
2.31. Mass spectrum bands of <i>p</i> -quinones derivatives (X-XIII)	52
2.32. Mass spectrum bands of synthesized compound (XIV)	53
2.33. Mass spectrum bands of α, β unsaturated carbonyl	54
compounds derivatives from the bromanil. (XV-XVIII)	
2.34. Mass spectrum bands of α, β unsaturated carbonyl	55
compounds derivatives from the compound(XIV). (XIX-XXII)	
2.35.Mass Spectrum bands of <i>p</i> - quinones derivatives (X-XIII)	56
2.8.TLC of the synthesized compounds.	57
2.36. TLC of the of the synthesized α,β - unsaturated carbonyl	58
compounds derivatives . (II-V).	
2.37. TLCofIsoxazoles derivatives.(VI-IX)	58
2.38. TLC of <i>p</i> - quinones derivatives (X-XIII)	59
2.39.TLC of synthesized compound (XIV)	59
2.40. TLC of α,β unsaturated carbonyl compounds derivatives	60
from the bromanil. (XV-XVIII)	
2.41. TLC of α,β unsaturated carbonyl compounds derivatives	61
from the compound(XIV). (XIX-XXII)	
2.42. TLC of <i>p</i> - quinones derivatives (X-XIII)	62
3.1. Antibacterial Activity of Synthesized Compound.	72
3.2. Structures, 1C50 and pIC50 of the training set compounds	74

(Jaime <i>etal.</i> ,2011).	
3.3. Structures, IC ₅₀ and plC ₅₀ of the training set compounds(Jaime <i>etal.</i> , 2011).	75
3. 4. Structures, IC_{50} and plC_{50} of the training set compounds Jaime <i>etal.</i> ,2011).	76
3. 5. List of chemical descriptors with details used in QSAR modelling.	77
3.6. Values of chemical descriptors with details used in QSAR Modelling of the training set.	78
3.7. Values of chemical descriptors with details used in QSAR Modelling of the training set.	80
3.8. Statistical parameters used for statistical quality of models.	82
3.9. Experimental and predicted activities of training data set compounds and cross validation against the human lung cell line	83
3.10. Predicated biological activity values of the test set.	89
3.11. Docking results of the synthesized 1,4-Benzoquinones derivatives with 4LB9 using MOE software	91

LIST OF FIGURES

Title	Page
Fig.1.1.General classes of quinone substitution.	1
Fig.1.2. Illustration, using benzoquinone as an example, of one of two	3
electron reduction yielding semiquinone and hydroquinone.	
Fig.1.3. Quinones from oximes and semicarbazones.	3
Fig.1.4. Reduction of quinones reaction.	3
Fig.1.5. Reaction of <i>o</i> -quinones with <i>o</i> -phenylene-diamine.	4
Fig.1.6.1,4-Benzoquinone structure.	4
Fig.1.7. Synthesis of 1,4-benzoquinone.	4
Fig.1.8. Preparation of p-quinone from aromatic hydrocarbon	5
Fig.1.9.Preparation of substituted α , β – unsaturated carbonyl compounds.	7
Fig.1.10. Isoxazole derivative structure.	8
Fig.1.11. Synthesis of α , β – unsaturated ketones	8
Fig 1.12.Ring closure reaction of α , β – unsaturated carbonyl compounds	9
Fig.1.13. Isoxazole structure	10
Fig.1.14. 3,5-disubstituted isoxazole preparation reaction.	10
Fig.1. 15 .Main steps involved in the development of a QSAR mode	13
Fig. 3.1.Retrosynthesis analysis of α,β- unsaturated carbonyl	64

compounds.	
Fig.3.2. Retrosynthesis analysis of isxozoles derivatives	64
Fig.3.3. Retrosynthesis analysis of <i>p</i> - quinones derivatives	64
Fig.3.4. The mechanism of the base catalyzed reaction of formation	65
of the α , β –unsaturated carbonyl compound.	
Fig.3.5. Reaction mechanism of the acid catalyzed reaction of	66
formation of , α , β –unsaturated carbonyl compounds	
Fig.3.6. The mechanism of the reaction formation of isoxazole	67
derivatives.	
Fig.3.7. Reaction mechanism of formation of <i>p</i> -quinones derivatives.	69

LIST OF SCHEMES

Title	page
Scheme 2.1. chemical structure of synthesized isoxazoles	21
Scheme 2.2.Chemical structure of synthesized <i>p</i> -quinones derivatives	22
Scheme 2.3. Chemical structure of synthesized α,β -unsaturated carbonyl compounds	23
Scheme 2.4. Chemical structure of synthesized α,β -unsaturated carbonyl compounds derivatives.	24
Scheme 2.5. chemical structure of synthesized <i>p</i> -quinones derivatives	25

LIST OF ABBREVIATIONS

S	Singlet
d	Doublet
m	Multiplied
δ	Chemical shift
g	Gram
Arom	Aromatic
M.P.	Melting point
TLC	Thin Layer Chromatography
Vib	vibration
St	stretching
°C	Degree centigrade
Ml	Millimeter
Tem	Temperature
IR	Infrared spectroscopic
¹H- NMR	Proton nuclear magnetic resonance
DMSO	Dimethyl sulphide oxide
MS	Mass spectroscopy
QSAR	Quantitative structure-activity relationship
LR	Linear regression
LOO	Leave-one out

Q^2	Cross validation regression coefficient
CV	Cross validation
R	Correlation coefficient
r ²	Square of the correlation coefficient
PDB	Protein data bank
MW	Molecular weight
TMS	Tetramethylsilane
MOE	Molecular Operating Environment
SPSS	Statistical package for social sciences
R _f	Retardation factor
pIC ₅₀	Anticancer potential
IC ₅₀	Inhibitory concentration, 50%
LogP(o/w)	Logarithm of octanol-water partition coefficient
RMSE	Root mean square error
S	Standard error of estimate
TPSA	Topological polar surface area
Е	Potential Energy
HF	Heat of formation
E-vdw	Van der Waals Energy
a-acc	number of H-bond donor atoms
a-don	number of H-bond acceptor atoms
ASA	Water accessible surface area

Chi0	Atomic conductivity index order 0
DASA	Absolute difference in surface area
mr	Molar refractivity
Lys	Lysine
Glu	Glutamine
His	Histamine
Asp	Asparagine
Arg	Arginine
Ser	Serine