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Abstract

In this thesis the problem of steady two-dimensional Laminar magneto-hydrodynamic
forced convection flow over a non-isothermal wedge with effects of viscous dissipation
and stress work is presented. The governing partial deferential equations are trans-
formed into highly nonlinear dimensionless partial differential equations by introduc-
ing a suitable transformation and then they were solved numerically using spectral
local linearisation method (SLLM). Results are presented to illustrate the effects of
the controlling parameters; namely, Prandtl number and Eckert number on the fluid
velocity, temperature and rate of heat transfer. Numerical data for the Nusselt num-

ber have been shown in graphical type for various governing parametric.
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Chapter 1

Introduction

Most problems in science and engineering are governed by nonlinear differential equa-
tions. When those equations are strongly nonlinear, exact solutions are not easily
obtained and we often resort to approximate numerical solutions. There are many
well established numerical schemes such as the Runge-Kutta schemes, the Keller-box
method, the shooting method, and finite element and volume methods. The main
disadvantage of numerical solutions, however, is that they may not give any insights
into the structure of the solution, particularly when the problem involves many em
bedded parameters. Numerical methods may also give discontinuous points on the
solution curve, Paripour et al. [1]. Moreover, some numerical methods may not be
stable or uniformly convergent. In such cases is often made to either the classical se-
ries method or other perturbation methods to find approximate analytical solutions.
The main disadvantage of traditional perturbation methods, however, is that they
require the presence of a large or small parameter in the problem to be solved. Re-
cent analytical techniques include the Lyapunov artificial small parameter method,
Lyapunov [2], the Adomain decomposition method, Adomian [3], the homotopy per-

turbation method, He [4, 5] and the homotopy analysis method, Liao [6, 7, 8, 9, 10].




These methods may not always be convergent or valid. For example, the Adomain
decomposition method has a small convergence region, Jiao et al. [11]. In this study
we use two innovative semi-numerical methods for solving strongly nonlinear systems

that arise in the study of fluid flow problems.

The objective of this study is to demonstrate the spectral local linearisation
method (SLLM) to systems of nonlinear ordinary and partial differential equations.
The method, originally introduced by Motsa et al. [12, 13, 14], was used to solve
nonlinear differential equations. Through the objective, we used to test the accu-
racy, computational efficiency and general validity of spectral relaxation technique
in solving systems of highly nonlinear differential equations that arise in fluid flow

problems.




Chapter 2

Spectral Local Linearisation

Mehod

2.1 General governing equation system

Consider a system of m nonlinear ordinary differential equations in m unknowns
functions z(n) i = 1,2,3, .....,m where 7 is the independent variable. The system can

be written as a sum of it’s linear L and nonlinear N components as

Liz (0),22(0) 5 2m )] + Nz1(n), 22 (1), ooy 2m(m)] = H(n),  (n) € (a,),
(2.1)

subject to the boundary conditions
A,L' [Zl ((1,) , 21 (a) y ey my (a)] = Kaﬂ', B,L [Zl (l)) ) (l)) 5 veeey Zm(b)] = Kb,i, (22)

where A; and B; are linear operators and K, ; and K ; are constants fori =1,2,....,m.

Define the vector Z; to be the vector of the derivatives of the variable z; with respect




to the dependent variable n, that is

Zi= [0, 20,.,2, |, (2.3)

7?,

where z( ) =2, 2 Z(p) is the pt" derivative of z; with respect to n and n; (i = 1,2,..,m) is

the highest derivative order of the variable z; appearing in the system of equations. In
addition, we define L; and N; to be the linear and nonlinear operators, respectively,
that operate on the Z; for 4 = 1,2,..,m, with these definitions, equation (2.1) and
(2.2) can be written as

L [Z1, Zo, ... Zm) + Ni [Z1, Zo, .. 2] = Zza“”zf’) +N; (21, Doy ... D) = Hiy(2.4)

4,770
j=1 p=0

where oz[P] are the constant coefficient of z( , the derivative of z; (j = 1,2, ...m) that
appears in the i" equation for i = 1,2,...,m. Noting that, for each variable z; in
the derivatives in the boundary conditions can at most be one less than the highest
derivative of z; in the governing system (2.1) we define the vector Z. to be the vector

of the derivatives of the variable z; with respect to the dependent variable n from 0

up to (n; — 1), that is

K3 7 ? Z

7, = [z@, A (“f”] , (2.5)

The boundary conditions(2.2) can be written as

mn—l

A, [Zl(a),zz(a),.. ] SN BE (@) = Koy v=1,2,.0m0, (26)

7=1 p=0

m Tl]—l

Bg[zl(b),zg(b),‘..f ] SN A ) = Koy 0= 1,2, (27)

j=1 p=0

where ﬁ[ﬁ and 737]] are the constant coefficients of zJ(P ) in the boundary conditions,

and m,, ms, are the total number of prescribed boundary conditions, at © = a and

4




x = b respectively. We remark that the sum m, + my is equal to the sum of the

highest orders of the derivatives corresponding to the dependent variable z;,that is

Mg + My = Zm, (2.8)
=1

2.2 Spectral Local Linearisation Method (SLLM)

Let us consider a system of m nonlinear ordinary differential equations in m unknowns
functions z(n) 4 = 1,2, 3, .....,m where 7 is the independent variable. The system can

be written as a sum of it’s linear L and nonlinear IN components as

L[zl (7’]),2‘2 (n)a""azm (77)]+N[Zl(77),2:2 (77)7"">Zm(77)} :H(n), ne [CL, b]a (29)

To develop the iteration scheme, we apply local linearisation of N; about Z;, (the
previous iteration) to the %" non-linear equation assuming that all other Zyy(k #1)

are known. Thus, at the ith equation, N; is linearised as follows

, ON;
Ni[Z1, Zay ooy Zn) = Ni[Z1 s ooy Zmp) + ?Z%[ZM, Ty ooy Znp)(Zi — Ziy), (2.10)
1

ON; ON;

Li{Zl,r+1, ey Zm,r+l] =+ 5Z—i[...]Zi’r+1 = H; + 97 [‘--]Zi,r — N'i[Zl}r, . Zm,.,«](Q.ll)

where [...] denotes [Z1r, Zoy, -y Zmy) and Zipq1 and Z;, are the approximations
of Z; at the current and the previous iteration, respectively. Thus, starting from
an initial approximation Zig, Za0, -, Zmp, the proposed iterative scheme (2.9) is
then solved as a loop until the system converges at a consistent solution for all the
variables. To solve the iteration scheme (2.9), it is convenient to use the Chebyshev
pseudo-spectral method as in previous section. For this reason the proposed method
is referred to as the spectral local linearization iteration method (SLLM). Before
applying the spectral method, it is convenient to transform the domain on which the

governing equation is defined to the interval [—1,1] on which the spectral method

5




can be implemented. We use the transformation n = (b — a)(t + 1)/2 to map the
interval [a, b] to [~1,1]. The basic idea behind the spectral collocation method is the
introduction of a differentiation matrix D which is used to approximate the derivatives

of the unknown variables z;(n) at the collocation points as the matrix vector product

m N
Zi
d =" DuZ(ty) = D%, 1=0,1,..,N (2.12)

where N + 1 is the number of collocation points (grid points), D = 2D/(b — a), and
Z = [2(to), 2(t1), ..., 2(tw)]" is the vector function at the collocation points. Higher

order derivatives are obtained as powers of D, that is

7 = D,Z;. (2.13)




Chapter 3

Two Dimensional Flow Over a

Non-Isothermal Wedge

Consider the problem of the effects of viscous dissipation and stress work on the

steady two-dimensional Laminar magneto-hydrodynamic forced convection flow over

a non-isothermal wedge [15], all the fluid properties are assumed to be constat .Inter-

ducing the boundary Layer approximation, The governing equation for the continuity,

momentum and energy can be written as follows.

ou Ov
+

s oy
ou v 0w dUs B2
U%—f—v@—l/@-i-Um—%‘l-T(Uw—u),

U +V—— =5 + = Upo—— +

2 2 2 3
o 8T T v ((9U> __“;( oo ﬁuw)+9§£u2. (3.3)

oz oy oy C,\dy Cp de




The boundary conditions are defined as follows:

Y 00U = U, 1 =T, (3.4)

where z and y are coordinates measured along and normal to the surface, respectively,
u and v are the velocity components in the z and y directions, respectively, v is
the kinematic viscosity. ., = az is the velocity of the potential flow outside the
boundary layer, C' is a positive number, o is the electrical conductivity. By is the
externally imposed magnetic field in the y—direction, p is the density. The induced
magnetic field and the Hall effect are neglected. T is the temperature of the fluid, «
is the thermal diffusivity, C,, is the specific heat at constant pressure, a is a positive
number, The subscripts w and oo refer to the plate surface and ambient conditions
respectively. The stream function ¢ is defined by v = g—,’é’ and v = —%‘f, there fore, the
continuity equation is automatically satisfied. Invoking the following dimensionless

variables

oB%x Y (Uooz ) 2 v T -T
£=T00, pY(Te=2)t, fem =y dem =g =g #9)

Plco Uoo TV )2 w

By substituting equation (3.5) into Egs. (3.2)-(3.3), yields

m o Loen N /Q_f_l_ //%
451 +£(1—f)—£<f o) %), (3.6)
Loy, 1oy 112 / N2 _ /@_/?_Ji
Lo e md - er e =€ (P0G ) )
subject to the boundary conditions
n=0:f=0, f=0, =1
n—roo: fl=1, 6=0. (3.8)




In the foregoing equations, the primes denote the differentiation with respect to
n. Here £ is the magnetic parameter. Pr = v/a is the Prandtl number. Ec =

u?,/CpTw — Too] is the Eckert number.




Chapter 4

Numerical Experment

To solve equations (3.6) and (3.7) along with the boundary conditions (3.8), the
spectral local linearisation method (SLLM) was used, see Motsa et al. [12, 13, 14].
This method is preferred since it has been shown to be accurate and generally easier

to use compared to other common numerical methods such as finite differences.

We start by reducing the order of equation (3.6) from third to second order. To
this end, we set f’ = u, so that equation (3.6) becomes

1 5} ,0
u"+5fU’+€*€u=f(u52—L—u5§>a (4.1)

f=u. (4.2)

The spectral local linearisation method(SLLM) approach is used to decouple the
equations leading to a linear system which is subsequently solved using the Cheby-
shev spectral collocation method. The basic idea behind the SLLM stems from the
combination of the Gauss-Seidel method for decoupling equations and the Newton-

Raphson based quasi-linearisation. In this regard, linearisation in the momentum
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equation (4.1) is applied only in terms involving u(n) and its derivatives. All other
terms are assumed to be known from previous iterations. The terms involving f(n)
are assumed to be known from previous iteration while the updated solution for u(n)
at the current iteration is used. Similarly, in Eqn (3.7), only terms in 6(n) are lin-
carised if there is nonlinear terms while terms in f(n) and u(n) are assumed to be
now known at the current iteration (denoted by (r +1)). Thus applying the LLM on
Eqns (3.7) and (4.1) gives

ou.
u:—[-l + a'l,ru;q_l + g Ur41 + azr = Q4,r 87;—1 ) (43)
fra1 = Uri1, (44)
7 89r+1

og

where the primes denote partial derivatives with respect to 1. The boundary condi-

tions are given by

fr+1(77a 0) =0, Ur+l(77a 0) =1, 9T+1(777 0) =0,

Upy1(n,00) =0, brpa(n, 00) = 0. (4.6)

The coefficients in (4.3) and (4.5) are defined as

ofr s O _
6 =-£-¢ B¢ ) €+5ur 86 A4r = Euy

Ofr
bl,r = Pr ( fr—i—l +£ fg_l> ’ bz,r = PTEC[U;?_H — fuT_H -+ .fufﬂ], bg’r = P"”‘S“r{—l-

fr+1 +€

To solve the linearised system of (4.3) — (4.5) we employ the Chebyshev spectral
collocation method to discretize in the - direction and use an implicit finite difference

method in the &-direction. To this end, we define the grid points on (7, &) as

1; = COS T " =nA¢, (4.7)




where N,, N¢ are the total number of grid points in the n- and £-direction, respectively,
and A¢ is the spacing in the ¢-direction. The finite difference scheme is applied with
centering about a midpoint halfway between "' and £". This midpoint is defined
as £MF: = (eM1 4 €7)/2. The derivatives with respect to 7 are discretized in terms
of the Chebyshev differentiation matrices. Applying the centering about é”*'% to any
function, say f(n,£) and its associated derivative, we obtain
flog, €712 = fr47 = LAl H; i

af n+1/2 f‘jTH-l o f]n
<"8E> T A

(4.8)

In applying the Chebyshev spectral collocation method, the continuous derivatives
in the unknown functions are approximated by matrix-vector products of the so-
called differentiation matrices at the collocation points. Before the spectral method
is applied, the domain 7 € [0,7c] is transformed to the domain ¥ € [-1,1] by
using the mapping 7 = 7o (Y + 1)/2. The basic idea behind the spectral collocation
method is the introduction of a differentiation matrix D which is used to approximate
the derivatives of the unknown variables f, u and h, at the collocation points Y;

(5=0,1,....,Np).

of i
Em =Y Dif(V,&) =DF, j=0,1,.., Ny, (4.9)
n n="nj k=0

where N, + 1 is the number of collocation points, D = 2D/7e0, where the matrix D
is of size (N, + 1)(NV, + 1) and its entries are defined as

D, = GCP ik §,k=0,1,2,3 .., N
ik Ck,(}/j_yk), J v I g by Ay Dy ey LV,
Dy = — 2t k=1,2,3, ..., N,—1
kk — 2(1_Ykg)> T Ly Ly Iy eyt )

2N2 +1
002——n6—=—DNnNn,

12




with

B 2, k=0,Ny;
C — (410)
1, -1<k<N, -1

which

[f (Y0, ), f(Y1,6), o0y (Yo 1T,
[u(Yo, €), u(Y1,€), e (Y, g)Fa
[6(Yo,£),0(Y1,), - 0¥, I,

F
U
C)

are the vector functions at the collocation points. In general, a derivative of orders

for the function f(n) can be transformed as
FO(n) — D°F, ul)(n) — DU, 6°)(n) — D6, (4.11)

where s is the order of the derivative. Thus, applying the spectral local linearisation

method in 7 and finite difference method in & gives

AU = BT, + K,
AQFT+1 - KQ, (412)

4,071 = By, + K,

13




where

1
= (DZ + diag[a; ,]D + diaglas,|T) — Agdlag[h ]
1
B, = — (D* + diag[a,|D + diaglaz,JI) - ‘Al‘gdiag[a‘i»f]
K, = as .y
Az = D Ky = u,
=3 (D2 + diag[b1,]D) — A—gdlag[bs v]
By = L (D2 + diag[by, ]D) - ———diag[bg |
2 " NG "
KB = bS,r

with boundary conditions

Ur+1(n0)€n) = 0) U1‘+1(77Nn76n) =1
Frpa(nn,,€") =0,
0,41(m0,€™) =0, ©,41(nn,,€") =0,

In the above equations ©, U and F correspond to the approximate values of 6(n, £ ), u(n, §)

and f(n, &) at the collocation points. The approximate solutions for f and 6 are ob-
tained by solving (4.12). The convergence and stability of the iteration schemes are
assessed by considering the norm of the difference in the values of the approximate
functions between two successive iterations. Thus, for each iteration scheme, we define

the following maximum error F at the (r + 1)th iteration:

E = max(|| Fy1 — Fr oo, 1Ur41 — Urlloos [|©r+1 — CHIISYE (4.13)

The unknowns f, v and # were iteratively calculated, for a given number of collocation

14



points N,, until the following criteria for convergence was satisfied at iteration 7 :

E <k, (4.14)

where € is the convergence tolerance level.

15




Chapter 5

Results and Discussion

In this part we present the SLLM results for the solution of the governing equations
(3.6)-(3.7). In all the spectral method based numerical simulations a finite computa-
tional domain. In order to obtain a clear insight into the physics of the problem, the
effects of various governing parameters on the fluid properties and physical quantities
are presented in Figs. 5.1 5.3.

Fig. 5.1 depicts change in the velocity and temperature profiles with £ respectively.
We observe that an increase in ¢ leads to an increase in the momentum boundary
layer thickness. Hence, there is enhancement in the velocity of the fluid along the
surface. On the other hand fast fluid has less thermal boundary layer, thus reduces
the temperature of the fluid.

Fig. 5.2 shows the effects of the Prandtl number Pr and the Eckert number Ec on the
temperature profile respectively. Prandtl number characterizes the ratio of thickness
of the viscous and thermal boundary layers, therefore, the thermal boundary layer
thickness is seen to decrease with increasing values of Pr, thus leading to temperature
profile decreasing. On the other hand, the temperature profile increases with Fc due

to increasing in the thermal boundary layer thinness.

16




Fig. 5.3 presented changes in the rate of heat transfer due to change in the Prandtl
number Pr and the Eekert number Ec. The local Nusselt number enhances with in-

creasing the Prandtl number Pr. The local Nusselt number decreases with increasing

the Fckert number Fe.

—£-05
08t \ -=-E=10
N E=15
\ e E =20
o6
= k)
g p\
0.4 A\
K
A
A
02 N
N
N
N
o . ‘
0 2 4 6 8
7
(a)

Figure 5.1: Velocity and temperature profiles for difference values of with Pr = 0.72
and Fc = 1.

1 :
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‘ —0.01
os : ~ =~ 0.03
. 0.05
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= : |
. < b
: <z ;x:‘.\
0.4r 1oy
x‘:\
(R
0.2 \\V'n,\‘\
NS
SO h'* ~
0 ,“...J"'u"al"-“"‘"'
30 0 L

Figure 5.2: Effects of Prndtl number Pr and Fckerd number Ec on temperature
profile respectively.
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Figure 5.3: Effects of Prndtl number Pr and Eckerd number Ec on the rate of heat
transfer respectively.
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Chapter 6

Conclusion

In this work we have studied the two-dimensional Laminar magneto-hydrodynamic
forced convection flow over a non-isothermal wedge. Assuming the boundary layer ap-
proximation in present of a suitable transformation a dimensionless nonlinear partial
differential equations obtained from the governing equations with associate governing
parameters such as the Prandtl parameter and Echert number. Effects of the govern-

ing parameters on heat transfer coefficients and fluid flow characteristics have been

studied graphically.
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