DEDICATION

I dedicate this research to which I have always loved

my parents,	
my family,	
my teachers,	
my friends	

ACKNOWLEDGEMENT

My special thanks go to my supervisor Professor. *Mubarak Dirar Abd-Allah* for his invaluable comments and suggestions on both the proposal and the final thesis. I wish to express my deepest appreciation and utmost gratitude to my co-supervisor *Dr. Ali Abdel Rahman Saeed Marouf*, Assistant-Professor Dean of Institute of Laser, Sudan University of science and technology for his supervision, continuous guidance, encouragement, support, kindness and valuable advice which helped to produce this work. My acknowledgment and thanks are to *Dr. Abdellateef Abass*, Institute of Laser, for his helping in experimental work. Thanks also to all my colleagues and friends who worked side by side encouraging me to complete this work.

ABSTRACT

Low-power helium-neon laser recently has been used numerously in medical applications. FTIR and UV-Vis spectroscopic technique is employed to study the spectral differences in the serum of whole blood samples. Human Whole Blood was Irradiated to (He-Ne) laser (λ = 632 nm, power =2 mW) and (He-Ne) laser (λ = 632 nm, power = 1mW) with different times from 10 min to 100 min. Blood samples were collected from healthy volunteers; and exposed to (He-Ne) laser and compared with control. UV-Vis spectrophotometer and FTIR were used to study the effect of laser radiation. FTIR spectrum of non exposed blood showed the peaks due to O-H (free group), C=O (amide I group), N=O (nitro group), and C-H (aromatic group). N-H (Amino acid (amide II) for all exposure times He-Ne laser (λ = 632nm, power=1mW) irradiation, showed significant changes. Increased in transmittance was observed at different exposure times for all groups (C=O, O-H, N=O, C-O & C-H, N-H) and indicates significant decreasing in their concentration. The most effects are found when whole blood was irradiated to He-Ne laser radiation power 2mW for 10 and 20 min and transmittance decreases for C-H, and He-Ne, while transmittance increase for all groups at rest of exposure times. Blood irradiated to He-Ne laser radiation power 1mW for 80 min show decrease of transmittance for groups (N=O, C-H, N-H, C-O, O-H) but an increase for group C=O only is observed. Photodegradation of blood components due to absorption of laser radiation causes changes in the structure and conformational changes in the polypeptide. Human Whole Blood Irradiated to (He-Ne) laser (λ = 632 nm, power =2 mW shows, in Uv-Visible spectra a significant decrease in intensity. Result showed Blood Irradiated to (He-Ne) laser, power = 1 mW absorption intensity decreases for all exposure time except at (10, 40 and 70 min), this fluctuation of light absorption is known as a biphasic response.

مستخلص البحث

تم استخدام ليزر الهيليوم والنيون منخفض الطاقة في الاونة الاخيرة بصورة واسعة في التطبيقات الطبية. تقنيات مطيافية الاشعة تحت الحمراء و الاشعة فوق البنفسجية والمرئية استخدمت لدراسة الفروقات الطيفية في مصل عينات الدم. تم تشعيع دم الانسان بواسطة الليزر (He-Ne) بطول موجي 632 نانوميتر وطاقة 2 ملى وات، والليزر (He-Ne) بطول موجى 632 نانوميتر و طاقة 1 ملى وات، في فترات زمنية مختلفة 10 دقائق الي 100 دقيقة. تم تجميع عينات الدم من متطوعين اصحاء، تم تعريض العينات لليزر الهيليوم والنيون و تم مقارنتها مع العينات غير المعرضة لليزر استخدم مطياف الاشعة تحت الحمراء و الاشعة فوق البنفسجية والمرئية لدراسة تأثير اشعة الليزر اوضح طيف الاشعة تحت الحمراء لعينات الدم غير المشعع قمم عند الزمر الوظيفية (O-H (free group) N-H .C-H (aromatic group) و N=O (nitro group) ،C=O (amide I group) (Amino acid) (amide II). ، لكل فترات التعرض لتشعيع ليزر (He-Ne) بطول موجى 632 نانوميتر وطاقة 1 ملى وات اظهرت تغيرات واضحة، زيادة في النفاذية في فترات تعرض مختلفة لكل المجموعات (C=O, O-H, N=O, C-O & C-H, N-H) و هذه اشارا ت الى نقص واضح في تراكيزها. التأثير الواضح وجد عند تشعيع الدم بالليزر (He-Ne) بطاقة 2 ملى وات لفترة زمنية 10 الى 20 دقيقة وانخفضت النفاذية لكل من C-H, و C-H ، بينما از دادت النفاذية في كل الزمر في بقية الفترات الزمنية. اما الدم المشعع بالليزر (He-Ne) بطاقة 1 ملى وات لفترة 80 دقيقة فقد اظهرت انخفاض في نفاذية المجموعات (N=O, C-H, N-H, C-O, O-H)، ولكن لوحظ زيادة في نفاذية مجموعة C=0 فقط. التحلل الضوئي لمكونات الدم نتيجة امتصاص اشعاع الليزر يسبب تغير في تركيب و تغيرات تشكيلية في البولي ببتيدات و نقص الامتصاص. اظهر دم الانسان المشعع بالليزر (He-Ne) طاقة 2 ملى وات و طول كوجي 632 نانوميتر في طيف الاشعة فوق البنفسجية و المرئية انخفاض واضح في شدة الامتصاص. كما اظهرت نتائج الدم المشعع بالليزر (He-Ne) طاقة 1 ملى وات انخفاض شدة الامتصاص لكل الفترات الزمنية للتعرض (10، 40 و 70 دقيقة)، التذبذب في امتصاص الضوء فيما يعرف بالاستجابة ثنائية الطور

Content

No.	Title	Page
	Dedication	I
	Acknowledgement	II
	Abstract	III
	مستخلص البحث	IV
	Content	V
	List of tables	VIII
	List of figures	IX
	CHAPTER ONE	
	INTRODUCTION	
1.1	Background	1
1.2	Research problem	2
1.3	Precious studies	2
1.4	Objectives of thesis	7
1.5	Research methodology	8
1.6	Thesis layout	8
	CHAPTER TWO	1
	BASIC CONCEPTS	
2.1	Introduction	9
2.2	Laser	9
2.2.1	Laser properties	10
2.2.2	Elements of laser	11
2.2.3	Laser types	13
2.2.4	Laser applications	16
2.2.4.1	Medical applications of lasers	17
2.3	Blood	20
2.3.1	Blood functions	25
2.3.2	Blood types	26

2.3.3	Blood test and results	27
2.4	Laser matter interaction	29
2.4.1	Reflection	29
2.4.2	Light scattering	30
2.4.3	Transmission	31
2.4.4	Absorption	31
2.5	Spectroscopy	36
2.5.1	UV/Visible spectrometer	38
2.5.2	Fourier Transform Infrared (FTIR)	40
	CHAPTER THREE	
	EXPERIMENTAL PART	
3.1	Introduction	43
3.2	Materials	43
3.2.1	Blood samples	43
3.2.2	Instruments	43
3.2.2.1	Laser power 1Mw	43
3.2.2.2	Laser power 2Mw	44
3.2.2.3	SP UV-26 spectrophotometer	44
3.2.2.4	FTIR spectrophotometer	45
3.3	Methods	45
3.3.1	Sample preparation	45
3.3.2	Sample exposure to Helium-Neon laser	46
	CHAPTER FOUR	
	RESULTS AND DISCUSSIONS	
4.1	Introduction	48
4.2	Results	48
4.2.1	UV/Vis spectra results	48
4.2.2	FTIR spectra results	55
4.3	Discussions	67

4.4	Conclusion	72
4.5	Recommendations	73
	References	74
	Appendix	80

LIST OF TABLES

No.	Title	Page
2.1	Tissue changes with temperature increases	35
4.1	The Absorbance of normal and irradiated power 2 mW samples	48
4.2	The Absorbance of normal and irradiated to power 2 mW	49
	samples	
4.3	The Absorbance of normal and irradiated power 1 mW samples	49
4.4	The Absorbance of normal and irradiated to power 1 mW	50
	samples	
4.5	FTIR spectral data (wave number, function group and	55
	transmission) for normal blood control	
4.6	Show the FTIR spectral data (wave number, function group and	56
	transmission) for irradiated blood sample power 2mW	
4.7	Show the FTIR spectral data (wave number, function group and	58
	transmission) for irradiated blood sample power 2mW	
4.8	Show the FTIR spectral data (wave number, function group and	60
	transmission) for irradiated blood sample power 1mW	
4.9	Show the FTIR spectral data (wave number, function group and	62
	transmission) for irradiated blood sample power 1mW	

LIST OF FIGURES

No.	Title	Page
2.1	Laser system	13
2.2	Typical He-Ne tube and structure	15
2.3	3he components of blood	21
2.4	Red blood cell	23
2.5	White blood cell	24
2.6	Platelets	25
2.7	Laser matter interaction	29
2.8	Absorption of the main chromophore	33
2.9	Thermal zones after laser impact	36
2.10	Electromagnetic spectrum	37
2.11	Block diagram of UV/visible spectrometer	40
2.12	Fourier transform infrared spectrometer	41
3.1	He-Ne laser (632.8 nm, 1Mw)	43
3.2	He-Ne laser (632.8 nm, 2Mw)	44
3.3	SP UV-26 Spectrophotometer	44
3.4	FTIR Spectrophotometer	45
3.5	Blood sample	46
4.1	The relation between Absorbance (a) and wavelength (λ) for	50
	whole blood before irradiated to (He-Ne)laser	
4.2	Relation between Absorbance (a) and wavelength (λ) for whole	51
	blood before and after irradiated to (He-Ne) laser power 2 mW	
4.3	Relation between Absorbance (a) and wavelength (λ) for whole	51
	blood before and after irradiated to (He-Ne) laser power 2 mW	
4.4	The relation between Absorbance (a) and wavelength (λ) for	52
	whole blood before and after irradiated to (He-Ne) laser power	
	1 mW at difference exposure time 10,20,30,40 and 50 minute	
4.5	The relation between Absorbance (a) and wavelength (λ) for	52
	whole blood before and after irradiated to (He-Ne) laser power	
	1 mW at difference exposure time 10,20,30,40 and 50 minute	
4.6	Absorption of light at 340nm with different irradiation time	53
4.7	Absorption of light at 340nm with different irradiation time	53
4.8	Absorption of light at 340nm with different irradiation time	54
4.9	Absorption of light at 340nm with different irradiation time	54
4.10	FTIR spectrum for normal blood samples (control)	64
4.11	FTIR spectrum for before and after irradiated blood to He-Ne	65
	laser power 2mW from 10,20,30,40 and50 minute	
4.12	FTIR spectrum for before and after irradiated blood to He-Ne	65
	laser power 2mW from 60,70,80,90 and100 minutes	
4.13	FTIR spectrum for before and after irradiated blood to He-Ne	66
	laser power 1mW from 10,20,30,40 and50 minute	
4.14	FTIR spectrum for before and after irradiated blood to He-Ne	66

	laser power 1mW from 60,70,80,90 and100 minute	
4.15	FTIR spectrum for normal blood sample irradiated to He-Ne	80
4.13	laser power 2mW for 10 mine	80
116	1	90
4.16	FTIR spectrum for normal blood sample irradiated to He Ne	80
4 17	laser power 2mW for 20 min	0.1
4.17	FTIR spectrum for normal blood sample irradiated to He-Ne	81
4.10	laser power 2mW for 30 min	0.1
4.18	FTIR spectrum for normal blood sample irradiated to He-Ne	81
	laser power 2mW for 40 min	2.4
4.19	FTIR spectrum for normal blood sample irradiated to He-Ne	82
	laser power 2mW for 50 min	
4.20	FTIR spectrum for normal blood sample irradiated to He-Ne	82
	laser power 2mW for 60 min	
4.21	FTIR spectrum for normal blood sample irradiated to He-Ne	83
	laser power 2mW for 70 min	
4.22	FTIR spectrum for normal blood sample irradiated to He-Ne	83
	laser power 2mW for 80 min	
4.23	FTIR spectrum for normal blood sample irradiated to He-Ne	84
	laser power 2mW for 90 min	
4.24	FTIR spectrum for normal blood sample irradiated to He-Ne	84
	laser power 2mW for 100 min	
4.25	FTIR spectrum for normal blood sample irradiated to He-Ne	85
	laser power 1mW for 10 min	
4.26	FTIR spectrum for normal blood sample irradiated to He-Ne	85
	laser power 1mW for 20 min	
4.27	FTIR spectrum for normal blood sample irradiated to He-Ne	86
	laser power 1mW for 30 min	
4.28	FTIR spectrum for normal blood sample irradiated to He-Ne	86
	laser power 1mW for 40 min	
4.29	FTIR spectrum for normal blood sample irradiated to He-Ne	87
	laser power 1mW for 50 min	
4.30	FTIR spectrum for normal blood sample irradiated to He-Ne	87
	laser power 1mW for 60 min	
4.31	FTIR spectrum for normal blood sample irradiated to He-Ne	88
	laser power 1mW for 70 min	
4.32	FTIR spectrum for normal blood sample irradiated to He-Ne	88
	laser power 1mW for 80 min	
4.33	FTIR spectrum for normal blood sample irradiated to He-Ne	89
	laser power 1mW for 90 min	
4.34	FTIR spectrum for normal blood sample irradiated to He-Ne	89
	laser power 1mW for 100 min	
<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>