SUDAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

COLLEGE OF GRADUATE STUDIES

Laalt Sty W3 Pyl

A CONTAINER- BASED ARCHITECTURE
FOR THE DESIGN OF PORTABLE CLOUD
APPLICATIONS

Igand) ciligdatl) avanaid Ay glal) e dtaal) & jlanal)

l Sw o “

A thesis Submitted to the College of Graduate Studies,
Faculty of Computer Science and Information Technology,
Sudan University of Science and Technology
In Partial Fulfillment of the Requirements for the degree of
DOCTOR OF PHILOSOPHY in Computer Science

By
Amar Ibrahim Elhaj Sharaf Eldein

Supervisor
Professor

Dr. Hany Hussein Ammar

March 2019

(11) &9 - Dslomall §ygen

Examiners Approval

Declaration of the statues of Thesis
(By Student)

I hereby declare that the contents of this dissertation represent my own work, and
that the dissertation has not previously been submitted for academic examination
towards any qualification. Furthermore, it represents my own opinions, which is an

original intellectual work.

Candidate’s name: Amar Ibrahim Elhaj Sharaf Eldein

Candidate’s signature:

Date:

Declaration of the statues of Thesis
(By Main Supervisor)

I, the signing here-under, declare that I’'m the supervisor of the sole author of the
Ph.D. dissertation entitled:

A Container-Based Architecture for the Design of Portable Cloud Applications

Supervisor’s name: Prof. Hany Ammar
Supervisor’s signature:

Date:

Assigning the copy-right to CGS

I, the signing hereunder, declare that I'm the sole author of the Ph.D. dissertation
entitled:
A Container-Based Architecture for the Design of Portable Cloud Applications

This is an original intellectual work. Willingly, | assign the copyright of this work to
the College of Graduate Studies (CGS), Sudan University of Science and
Technology (SUST).

Accordingly, SUST has all the rights to publish this work for scientific purposes.
Candidate’s name: Amar Ibrahim El Haj Sharaf Eldein

Candidate’s signature:

Date:

DEDICATION

| would like to dedicate my work to
My loving parents, for their prayers,
My brother Mohammed,
My sister Rihab,
Whom have given me all the support for my success.
My teachers,
My colleagues, and

All who assist, support, and encouragement me.

ACKNOWLEDEMENT

First Alhamdulillah. 1 will thank Almighty GOD, who kindly helped me to
complete my thesis. Carrying out a research work and writing the PhD thesis may
become a lifelong experiential journey that reacts and face the challenges. It is a
journey through uncharted routes to a destination, which is not clear and by no
means visible when you set off. You have a direction, but you are not aware of
where exactly you will end up and which path you need to follow to reach your goal.
There are moments you feel that you found your way to your destination, followed
by the ones that you lose it again. Nevertheless, when you reach the end of your
journey, there is only one feeling left, that is fulfillment, you feel that you have
fulfilled the promise to yourself.

Nevertheless, it would be unfair if | didn’t mention that throughout my studies there
were several people who were always standing next to me and supporting me with
their own unique way. However, the gratitude | feel for those people cannot fit
within the limits of this section.
Therefore, 1 would express my deep gratitude personally and with a special way to
each one of those persons.
I would like to gratefully and sincerely thank my supervisor, Professor Dr. Hany
Husain Ammar, for his priceless guidance, continuous support, inspiration,
motivation, encouragement, and immense knowledge. Throughout my studies Prof.
Hany taught me everything | know about conducting academic research, and
provided all the needed to support my research.
Many thanks to all members of the college of Computer Science and Information
technology of the Sudan University of Science and Technology for hospitality,
generosity, and helps.
I would like to extend my thank to the Qatar Research Fund (a member of Qatar
Foundation) NPRP under grant # [7-662-2-247] for funding my research paper's
publication.
Last but not least, | would like to express my deepest gratitude to all my friends for
their continuous encouragement.

AMAR IBRAHIM

ABSTRACT

Cloud computing has recently emerged as a new technology paradigm for
hosting and delivering Information Technology (IT) services to users over the
Internet. Cloud Computing provide optimal and efficient computing through
collaboration, agility, availability and scalability.

Cloud platforms provide essential benefits for organizations such as greater
elasticity. These platforms eliminate the requirement for users to plan ahead for
resource provisioning, faster delivery times. They provide faster delivery times to
through the use of cloud-based data centers and services. However, cloud computing
brings challenges alongside its benefits. First, developers often produce cloud
applications for a specific cloud platform, and does not support portability to
Multiclouds environments. The evolving this application to cloud services end up
with major complexity issues.

To contribute to solving these problems, we proposed a model driven design
approach, relying on development for portability-based design of cloud application
architecture. This architecture can be easily deployed on Multicloud platforms,
avoiding related portability or cloud service provider vendor lock-in problems.

In this dissertation, we present a framework for cloud application architecture
development which encompasses strategic planning, architecture design,
deployment, and evaluation phases. This thesis, within focuses on the architecture
design phase and propose new scenarios based iterative process for architecture
design. We introduce the concept of a scenario container at the architecture design
level and develop the architecture iteratively as an integrated set of containers. In
each iteration, we define the container of application components for one application
scenario.

The proposed development process guides the architect in designing
containerized portable cloud application architectures. We finally propose new
container design patterns that integrate with selected cloud application patterns to
support the development of scenario-based containerized architecture.

We validate the design approach by applying it to two different case studies:
a Student Academic Result Record system, and Hajj and Umrah mobile healthcare

system. In the second case study, we compare our new architecture development
approach with the (TOGAF) enterprise architecture framework.

We verify the deployment of portable architectures on multicloud platforms
using the CloudMIG simulation tool, for migrating e-commerce online pet store case
study to cloud environments. We present simulation results for cloud deployment
options (CDO) based on a medium response time (MRT) of the case study,

considering multiple cloud platform deployment selection.

oaldliund)

Cladd iy Alainy 3an A sl z3seS s gl Lusall Ciela
e Al Aussall Jaai o Y e (peadiiall (IT) Glasbaall a5l 9S50 0 5kl
AL A g pall 5 s sil) A0 o) gall o shadll NS (e Tl Alladl) A sl g
Aol cilaaal] g Aadai¥) g clipdatl) alasii) ddaul 5y shaill

Opeddinaal)l Cililliie g Jie Gl sall dualad 208 dulall Glaid) an
Gladd g S e aladin) A (e gl Jigi Ao yudl 3) sall s 3 Adiiaa) Jakadll
) Chaad dal 55 Aplad) A sall Gl ¢ elld pa s Aplad) L sall e saaieal) SUL)
Al daial Gy shaall J (e il) 8 4licie cilaaill o3 Jsl Leadlia caila
S ikl o2 Gpaaid | (Multicloud) @l Gl () Jamll L8 aexi Vg ¢ A
) 8 o € JSLie) oo Apland) cilaasl)

e e YU ¢ i) apaail) 73 gai g lis 8l ¢ JSLE o328 Ja (8 daalisall
A lenall 028 i (S Jasill 4L e saaieal) dplad) L sall 4y jlexs aranal sk
53l Alall cld Jail) Ald Sl aiad g ¢ Multicloud 32zie Cbaie e A s
Aalaud) daaal)

dal e o dadi Al Alad) il 3y skl 15l Liadd ¢ AL) 028
sl S Aa kY sd apEll ¢ all ¢ Ay jlerall araal ¢ ool jiuY) Jagdadsl)
Al Sl Alea) oo g5 Basa e g sl 2 58] Ga sk e Ay lerall arenal dls s
ik s aranal (5 sie o dyglall 5l o sede Liedd GlEnlill 4 jleral) dnia arena]
Gl S gl aaad ¢) S dalee JS A Gl glall (e AlalSie de ganaS) S JSG 4i)
A apanal (b alaill (5 jlexe da il ghaill ddae 28 5 Gudaill sl 5 5)l Spdal)
s gl anaad Bl 1 8h Wl 1 sl clsall e 4 sead) el ciliyls
e ADlEl lall Ay et acal b jliadl dplad) A sall Gl blail ae JalSs
32 bl

sl e ainlat DA e aveadll zed daia (o @il L a1 b
zall dliiall daall dle N Al g Ul ZuaalY) bl Jas s ;pilisa opilla
Jac) e daall el sk g &jliey Lad ¢ Al Aulall s 3 5 jeall
(TOGAF) ilusus sl
g e i G ¢ CloudMIG 3WSlae 311 aladinly Alarial) 4y jlesall Sl o (gEall a3
A il a5 5 g IV (5 guill jaie Alla Al 50 e Aland) gl) Al
Aae YU Alall)l (MRT) Llaiuy) () Jaw sidd (CDO) dulasdl sl @l jla
ol el cliaiall (e paall sl e

TABLE OF CONTENTS

DEDICATION ...ttt sttt e st et e et e saesbesteanenraenean [
ACKNOWLEDGEMENT ..ottt ettt i
ABSTRACT IN ENGLISH ..ot iii
ABSTRACT IN ARABIC ...t %
TABLE OF CONTENTS ...ttt Vi
LIST OF TABLES ... bbb X
LIST OF FIGURES ..ottt ettt st ne e Xi
LIST OF ABBREVIATIONS ..ottt Xiii
LIST OF APPENDICEScooiiiece sttt Xiv
(O 1 e I
INTRODUCTION . ..ottt sttt sreena e enae e 1
1.1 INEPOTUCTION ...ttt b ettt 1
1.2 Problem STatemMENTc.ooiiiieieee e nre s 2
1.3 RESEAICN QUESLIONSeevreeeeieieieeie e sie ettt e ste et e et e eseesneesteeseesseenneaneenneas 3
1.4 ReSearch HYPOthESESc.ooiiie e 3
1.5 RESEAICN ODJECLIVESeciiiiieieiieite sttt 3
1.6 RESEAICN SCOPEecvviivieie ettt ettt et e s bt e et esre e sre e e e beesaeeneeereas 4
1.7 Research MethodOlOgYc.coueiiiiiiiiiieic e 4
1.8 Research CONtrDULIONSoiviiiiiiiiisee e 5
1.9 ThesiS OrganiZationccccceeieeiieieeie ettt ste e re e e e saeenesreas 6
(O 1 e It I
BCKGROUND AND RELATED WORKccooiiiiiisinieeie s 7
220 A 1] 0o L1 o1 £ o o USSR 7
2.2 Cloud Computing ArChITECTUIEc.veiiiiiiiic e 7

2.2.1 Cloud Computing Definitionscccooiiiiiiiiiieiie e 7

2.2.2 Cloud Service MOEIScuviieiiee e 9

2.2.3 Cloud Deployment MOGEISc.cooeeiiiiiiiiiiieeee e, 10

2.2.4 Cloud Computing CharaCteristiCscccovvveiieiiieiie e 13

2.2.5 Cloud Computing Challenges and ISSUEScovrereneiencniseseeeee e, 13

2.2.6 Cloud Computing APPHCALIONS........ccoiiiiiiiiiieiee e, 16
2.3 Cloud Application ArChiteCUIeooviiiiiiiie et 17

2.3.1 Cloud Computing Reference ArchiteCture..........ccccvevviievvereciiesieese e, 17

2.3.2 Cloud Service Managementcccvevueiieeieerieeieseese e see e eeesee e eeesneas 19

2.3.3 Software Architecture for Cloud Application Development....................... 19

Vi

2.2.3.1 Software Architecture DefinitionScooeevvveeecoeeeee e 20

2.2.3.2 Software Architecture GoalS...........coovvvviviiniinene e 21

2.2.3.3 Software Architecture LIMItations...........ccccevvvieiienneniiesienesie s 21

2.2.3.4 Software Architecture DeSignccccvvveiiieiesie e 21

2.3.4 Model-based Approaches for Cloud Application Development................. 22
2.2.4.1 Model Driven ArchiteCtureccoooveveeieiiieni e 23

2.2.4.2 Cloud Design PatternsS.........ccuecveieiieieeiesiesie e s e e ene e 26

2.4 REIAIEA WOTK ...t 27
2.4.1 Literature SEIECTIONcviieeiiee e 28
2.4.2 Summary of a Related WOrK...........cccoooiiiiiiciicccc e 31
2.4.3 RESUIt ANAIYSIS.....cciiiiiieiiccie ettt nnes 33
2.5 SUMIMEIY ..otttk b et b e bt et s b e bt e et b b e e nennnenne s 34
CHAPTER T uiiiieiniiiiiiiieiiiiieiniieterisesasetsssssnssssasnssssnsessssssnssssssssnss
METHODOLOGY FOR PORTABILITY-BASED DEVELOPMENT CLOUD
APPLICATION ARCHITECTURE DESIGN........cccoiiiieiiieiese e 35
S L INTrOAUCTION ...ttt bbbt et 35
3.2 Cloud Application Portability ANAIYSIScooiiiiiiiiiiieiee e, 36
3.2.1 Portability DefinitionS..........cccoiveiiiiicice e 36
3.2.2 Cloud Portability AdOPLIONcceiieiieicic e 37
3.2.3 Cloud Application Portability SCenarios...........cccovverveverieneeiesiene e 38
3.2.4 Cloud Portability PaaS ISSUEScccciverieiieiiicie e 40
3.2.5 Portability PaaS SOIULIONScoceiiiiicicie e 40
3.3 Cloud Application Architecture Design patternsccocevererenenenenieneeeen, 41
3.3.1 Fundamental Cloud Application Design Patterns..............cccocveveieeieeinennnn, 41
3.3.2 Cloud Design Patterns Portability SUPPOItccoevviieiieiicc e, 43
3.4 Framework for Development Cloud Application architecture...........cc.ccccvevneen. 45
3.4.1 The proposed framework Phases...........cccceeviiiiiiiiiiiiie e 46
3.5 Container-based Design of Portable Cloud Applications.............ccccccvevveiieennn, 48
3.5.1 Container BENefitS........ccoveiiiieiiee e 48
3.5.2 Container for Portable Cloud Applicationcccooceviiiiiciie e, 48
3.5.3 Container Comparison with Related WOrkccccooveviiiiicic e, 48
3.6 Container-based Architecture Design SOIULIONScccooeiiiiieiiiiicceee, 50
3.6.1 Development Process for container-based Design.........ccccccvevveiieeiivecnenne, 50
3.6.2 Development of Independent scenario-based Container Design 52
3.6.3 Multiple Scenarios INtegrationcccevvieerierieniee e 55
3.7 Proposed Container Design Patterns for Portable cloud application. 56
3.7.1 Interface Container Design Patterncccocevveieiieninie e 56
3.7.2 Communication Container Design Pattern...........ccccoevvevevieervsiesieeneeiennnns 57

vii

3.7.3 Data based Container Design Pattern...........ccccoovvvieiieiesiiese e seese e 58

3.7.4 Application Scenarios Container Design Pattern...........cccccveveveiienecinennn, 58
3.7.5 Chain Container Design Pattern...........ccoovvieiieieniniieie e 60
3.8 Proposed method EVAlUALION............cccveiiiieieiie e 60
3.0 SUMIMIBIY ..ttt et e et e e bb e e s bb e e s nbb e e s nbeeeanes 61
(O o 1 el It o N
CASE STUDY1: ARCHITECTURE DESIGN OF MIGRATING STUDENT
ACADEMIC RESULTS WEB SERVICE TO THE CLOUD.....ccccccovviviieinnnnn 62
o I 1 oo [0 Tod o] RPN URPPPR 62
4.2 SAAR ArCNITECTUIEecvieiieieie ettt 63
4.3 Multiple scenarios-based development ..., 65
4.3.1 Scenariol: on Student to view Academic ReSUltS...........ccccovervriiniiniininnn, 65
4.3.2 Scenario2: on Academic Officer to upload ReSUltScccovevvviieieiiiennn, 67
4.3.3 Container-based architecture design for multiple Integration Scenarios69
TN 110 1= YT RPPRPPR 69
CHAPTER V. 1iitiiiiiiiiiiieiniieintniiesesteesassssssnsassssasnssssassssssnssssssssnssssnses
CASE STUDY2: SCENARIO-BASED FOR HAJJ AND UMRAH MOBILE
HEALTHCARE SYSTEM (HUMS)ooiiiiiiiieetee s 71
T8 A 1 0o L1 od £ o o SRS 71
5.1.1 Electronic Health RECOIUS........cccoiiieiiiiie e 71
5.1.2 Mobile TeChNOlOgYcccveouiiieii e 72
5.1.3 Mobile Cloud HealtnCareccovveieiie e 73
5.2 HUMS AICHITECIUIEeveieie et 74
5.3 Enterprise Architecture (EA) Development Approach...........cccccocvevieieeiecnennen. 76
5.3.1 Enterprise Architecture Definitioncccoovviiieiiieni e, 76
5.3.2 TOGAF Development APProachccccocceevveiieiieieeie e eee e 76
5.3.3 The ArchieMate TOOIccooiiiiiiii e 78
5.3.4 HUMS Architecture Design uses EA AppProachccccocevvvevenieienienen, 78
5.4 Scenario-based Container Architecture Design Approachccccccvevvvevieennnne, 81
5.4.1 HUMS AICRITECTUIE ...ovviiiiiiie e e 81
5.4.2 Independent Scenario-based Developmentcccoovveveieneneninieieee, 81
5.4.3 Scenario-based Development Process for retrieving medical records........ 82
5.4.4 HUMS Container-based Architecture designccccevvevieivieiiiecvievieene 82
5.5 A comparison between Development Approachescccceeeevenenenesenieennenns 83
5.6 SUMIMIBIY ...ttt ettt ekt eb e e s s e et e e e e e e sbeeambeeaneeenree e 84

viii

CASE STUDY3: VERIFICATION OF METHODOLOGY USING

SIMULATION TOOL FOR MIGRATING ONLINE PETSTORE 85
6.1 INEFOTAUCTION ...t bbb 85
6.2 Cloud MiG XPress TOON........cciiiiiiicieee e 85
B.2.1 FRALUIES ...ttt 86
B8.2.2 ACHIVITIES ...t bbbt 87
6.3 The Pet Store web-based Application SErviCeccoceveveneniieninisieeeees 87
B.3. 1 OVEIVIBW ...ttt bbbt bbb bbbt 87
6.3.2 Requirements and SPecification............ccccovveviiieie i 88
6.3.3 Use case for CuStomer INtEraCtioNSccoocvervreeneeriesiesiesieeeeseesie e 89
6.3.4 Pet Store Architectural DeSIgNccceiieiieieiie e 90
6.4 Verification Method for Migrating Pet Store Application to the Cloud.............. 91
6.4.1 Select Cloud Candidates.cceivereerieiiieiieie e 92
6.4.2 Create Utalization Model ..., 92
6.4.3 Create Cloud Deployment OPtioNScccccvevieiieieenie e 93
6.4.4 Cloud Deployment Options SImulation ..o, 94
6.5 RESUILS aNd DISCUSSION.......civiiiiiiieiieieieie ettt 95
5.6 SUMIMEBIY .ottt e e e e e e ssb e e e nnb e e e be e e etneeanseas 96
CONCLUSION AND FUTURE WORK ...t 97
REFERENCES.ottt bbb 99
APPENDICES ...ttt 105
LIST OF PUPLICATIONS ...ttt 122

LIST OF TABLES

Table 2.1 Cloud Deployment Services OVerview.................ccceevevennnnn, 9

Table 2.2 Comparison Cloud Deployment Benefits and Risks............... 12
Table 2.3 Actors in Cloud Computing............c.ovevviiiiiirinriiaeanannnn.. 18
Table 2.4 Cloud uses support by MDA Taxonomy..............c.cceevvenenn... 28
Table 2.5 Summary of related MDA for Cloud application development... 31
Table 3.1 QoS Cloud Patterns Support..........c..oovviiririiiiniieiiiiiieinnnn 44
Table 3.2 A summary of related work for container.............................. 49
Table 3.3 Interface container pattern...............oeveiiiiiininieieieneeennnn. 56
Table 3.4 Communication Container pattern...............cooevveeerierennenennn. 57
Table 3.5 Database container pattern.o.ooouieeniiriirieineaneanenenn, 58
Table 3.6 Cloud app scenarios container design..............o.eeveivenenennnn... 59
Table 3.7 Chain container pattern...........c.oevveriiteririnteiiereeneeneneneans 60
Table 4.1 Summary for cloud application pattern selection...................... 66
Table 6.1 Summary for customer actions and description........................ 90
Table 6.2 Median Response Time Simulation Results............................ 95

LIST OF FIGURES

Figure 2.1. Cloud computing Architecture...............cooeviiiiiiiiiiinnnenn.n. 9

Figure 2.2. Cloud computing NIST architecture.................ccc..ece i, 18
Figure 2.3. Cloud Services Management.............c.cooevviiiiiiniiiiineeenn, 19
Figure 2.4. PIMto PSM Models.........ccoooeiiii e 25
Figure 2.5. PIM to PSM Transformation example..................oveeeivininn, 26
Figure 3.1. Research Methodology...........ccooviiiiiiiiiii e 35
Figure 3.2. Portability Scenario Classification.....................cooeveiiinnnnn.. 38
Figure 3.3. Portability between Cloud Providers...............c.cooeviiinen... 39
Figure 3.4. Cloud Application Design Patterns..............c.cooeviievininnnnnn, 43
Figure 3.5. A framework for cloud Application Architecture development... 46
Figure 3.6. The Proposed framework Phases..............ccoveiiiiiiiininnnnn. 46
Figure 3.7. Container-based for Cloud Application Architecture Design...... 51

Figure 3.8. Development Process for Independent Cloud Application 52
ArChIteCtUre DESION. ...

Figure 3.9. Pattern Oriented Analysis Approach.................cc.oooeviiinnn.. 53
Figure 3.10. A container-based development Patterns for cloud application... 55
Figure 3.11. Integration container Interface Pattern.............................. 56
Figure 3.12. Communication container Interaction............................... 57
Figure 3.13. Scenario-based for Integrating specific container scenario...... 59
Figure 3.14. Chain container to get Deployment.....................ooeenenen. 60

Figure 4.1. Layer architecture for student Academic Results Records Web 62
based cloud application..............cooeiiiiiiiii
Figure 4.2. Overview of the Student Academic Results Records Web based 63
cloud application. ..ot

Figure 4.3. Use case diagram for the Academic Result system service......... 64
Figure 4.4. Scenario-based view student Academic Results Records........... 65
Figure 4.5. Container-based design for view student Academic Results 67
[ETol0] (0 KT oF P

Figure 4.6. Scenario-based uploading student Academic Results Records..... 67

Figure 4.7. An annotated container design for Academic officer to upload 68
Student Examinations Results on cloud................coooviiiiiiiiiiinene,

Figure 4.8 An annotated container design for migrating Students 69
Examination Results on Clouds.............cooiiiiiiiiiii

Figure 5.1 The importance of the electronic health record (EHR)............... 72
Figure 5.2. Mobile Cloud Computing Architecture......................coe.e. 73
Figure 5.3. Cloud Health Exchange................cccoooiiiiiiiiiiiiiiieea, 74
Figure 5.4 HUMH system Use case Diagram...................c.cooovviiininnnnn. 75
Figure 5.5 Enterprise Architecture development phases.......................... 77
Figure 5.6 Mobile Application Architecture.............ocvevviiiiinininninann.. 79
Figure 5.7 HUMS using Enterprise Architecture development79

Xi

Figure 5.8 Scenario-based for retrieving EHR overview.......................... 81
Figure 5.9 Annotated scenario-based container design for retrieving EHR.... 82

Figure 6.1 CloudMIG Xpress main SCreen.........o.euvevieeneenianieaneanenannns. 86
Figure 6.2 Home page for online Pet Store web application...................... 88
Figure 6.3 Use case diagram for Pet Store Application........................... 88
Figure 6.4 Use Case between the Customer and the Web Site................... 90
Figure 6.5 Sequence diagram for Pet store using Model View Controller...... 91
Figure 6.6 The selection of Candidate cloud environments...................... 92
Figure 6.7 Workload profile using synthetic approach........................... 93
Figure 6.8 Automatic Optimized method used to create CDOs.................. 94
Figure 6.9 Different optimization process parameters simulated................ 95

Xii

ADM
API
ARTIST

CAAP
CCRA
CDO
CEC
EA
EHR
ERP
HUMS
laaS
IT
MCC
MDA
MID
MRT
MVC
NIST
OMG
PaaS
PIM
PSM
QoS
REMICS

SA
SaaS
SDO
SLA
SMEs
TOGAF
UML

LIST OF ABBREVIATIONS

Architecture Development Method
Application Programming Interface

Advanced software-based service provisioning and migration of
legacy Software

Cloud Application Architectural Pattern

Cloud Computing Characteristics and Reference Architecture
Cloud Deployment Options

Cloud Environment Constraints

Enterprise Architecture

Electronic Health Record

Enterprise Resource Planning

Hajj and Umrah Mobile Healthcare System
Infrastructure as a Service

Information Technology

Mobile Cloud Computing

Model Driven Architecture

Mobile Internet Devices

Median Response Time

Model Viewer Controller

National Institute of Standards and Technology
Object Management Group

Platform as a Service

Platform Independent Model

Platform Specific Model

Quality of Service

Reuse and Migration of legacy applications to Interoperable
Cloud Services

Software Architecture

Software as a Service

Standards Development Organization

Service Level Agreement

Small and Medium Enterprises

The Open Group Application Framework
Unified Modeling Language

Xiii

LIST OF APPENDICES

APPENDIX A: Re-engineer Student Academic Results System for web- 105
based Cloud app SEIVICEc.oriei i
APPENDIX B: Archimate Views for Developing Hajj and Umrah Mobile 110
Healthcare SYStem
APPENDIX C: Simulation of Cloud Deployment Options (CDO) for Online 115
o]] (0]
APPENDIX D: Summary of cloud Application Architecture Patterns............ 121
APPENDIX E: List of Participations...............coooiiiiiiii e, 122

Xiv

CHAPTER |

INTRODUCTION

1.1 Introduction

Cloud Computing has recently emerged as a paradigm for managing and
delivering reliable services over the internet and promises to rapidly changing the
landscape of information technology, ultimately turning utility computing into a
reality, and enable users be able to access applications and data from a Cloud
anywhere in the world (Shawish & Salama 2014).

As a result, most of critical applications migrate to cloud computing. While
Cloud computing has been gaining more popularity, but poses a threat from both
business and technical that affect the cloud success. On the technical side, one of the
main reasons for success or failure is the architectural design of the system. In
addition, customers want to avoid risk and increase flexibility through the movement
of applications and data among cloud providers (Dimitrov 2015).

Software architecture aimed to support system design, architectural patterns,
and process changes as an important concept applied to cloud computing. There is a
need for a software architecture design and development approach to mitigate the
undesirable effects of technology change in clouds for the application components to
provide the best software and hardware configuration to ensure the architecture
design for cloud application is portable to reduce the effects of building and easily
deploying cloud applications between platforms with minimal requirements
modifications, without compromising the efficiency, and utilization of the whole
system (Dimitrov 2015).

Cloud applications using software architecture through architectural cloud
patterns as one of the significant solution, that capture practical knowledge and give
a general solution on how to cope with software architectural problems, based on
using model driven design approach for development and design of cloud application
architecture as an active area of research, since design architecture approach ensuing
software solutions that are more robust, flexible and agile for evolving
applications(Sharma & Sood 2011).

1.2 Problem Statement

Cloud providers produce cloud applications for their a specific cloud
platform, that lock-in enterprise customer and does not support portability across
multiple cloud environments (Ferry et al. 2013; Beslic et al. 2013).

This problem has negatively impacted for cloud provider and enterprises (victims of

the problem). The core solution is applying a new set of processes for designing

portable cloud application architecture for deployment across multicloud platforms.

More challenges for cloud application portability are represented in:-

(1) Cloud providers (e.g. Rack space) promoting options to facilitate portability,
while other not care to accommodating it.

(2) The lack of standardization in cloud computing (Rimal et al. 2011), makes the
task of portability of applications between clouds challenging.

(3) Limited Support for the Migration plan of Enterprise Software Systems to the
Cloud (Gholami et al. 2016).

(4) The portability of applications across various clouds, impose a level of a
complexity, that need additional efforts for developing and to move an
application to/ from one cloud service to another.

e Platform as a Service (PaaS): lack of a consistent platform definition among
PaaS Providers: Some PaaS providers pose greater risks than others, required
major changes in software and caused delays and productivity losses
problems, developers have to address them to create portable applications.

If providers make different selections, then applications use different features

can't be ported, and if provider customized the PaaS features to move the

application back to the same platform on-premises will be difficult.

o Infrastructure as a Service (laaS): lack of alternative providers of a platform:
developers providing all of the software needed for their applications to work
with laaS, since platform moves with the application from one laaS provider
to another and can be ported back to a virtual machine on premises.

(5) Enterprises software system with limited plan to face new technologies and

requirements, such as migrate to the Cloud.

1.3 Research Questions

To conduct the design review objectively, The research aims to answer the
following research questions (RQs) regarding to portability for cloud application
architecture bellows:

(1) RQ1: What are the framework phases to develop a portable cloud application
architecture?

(2) RQ2. What are new design patterns to support the development of cloud
application architecture?

(3) RQ3. How to improve the deployment of portable architecture using a simulation

tool?.

1.4 Research Hypotheses

The hypotheses of this research are formulated as follows:

= The nature of Cloud is dynamic, so number, size, and complexity of
applications need to communicate via a number of domains.

= The process of software architecture design insufficient understood, needs to
use driven techniques with highlighting its importance.

= There is no standard for cloud patterns, we used different concepts in the cloud
patterns solution.

= The proposed methodology is expected to give promising results as it will be
applied in different applications and domains such as web-based application

and Mobile application.

1.5 Research Objectives

The general goal is mainly to focus on using existing development processes
to propose a framework for Cloud Application Architecture development, that ensure
the architecture design for cloud application is portable, easily without affecting the
efficiency and utilization of the whole system. In addition, the specific objectives are
outlined as follows:-

(1) To look at the current status of a large needs of portable cloud applications which
use of the architectural design. This objective has been achieved through:

defining the portability of cloud applications, defining portability scenarios in

3

cloud computing, and determine the suitable development approaches for cloud
application architecture design.

(2) To propose and develop a portability-based methodology, that can used to
enhance previous works on cloud application architecture design.

(3) To evaluate the proposed development framework for portable cloud application
architecture.

1.6 Research Scope

We are concerned with the development of SaaS application design phase,
the research study does not include the second part of operation phase. Our study
assumes that cloud environment is an interface to existing case studies architectures.

The proposed approach focuses on iterative development process to guide in
designing scenarios-based container architecture of portable cloud applications; We
used annotated UML diagrams to understand the application architecture at early
design stages; We proposed containers design patterns developed within identified
cloud application architecture patterns, that can be used to be easily deployed in

multicloud environments.

1.7 Research methodology

Cloud applications are complex and composed of multiple services. In
addition, there is no standard approach for a portable cloud application design that can
be used to face development challenges. We involve strategic design for the process
to develop our architectural design.

Firstly, we surveyed the existing related works in this area; as well, we analyzed the
issues and challenges that have been emerging in various works.

Based on the results of a survey, we set up our framework for portable cloud
application architecture development and its phases, using a model driven
approach.The model driven design (MDD) process is defined outlining the
different phases with a brief description. Each phase contains a set of
activities. The development process used to describe the phases that support the

research method as follows:

(1) Strategic plan: describe system behavior and requirements. Requirements as a
reference for a process to design and deploy portable cloud applications on
different cloud environment.

(2) Develop Architecture Design: define architecture design to be easily
understood and implement changes during run time.

(3) Deployment architecture design: verify portability deployment options using
simulation tools for multiclouds.

(4) Portability evaluation: validate proposed methodology using case studies.

Generally two common domains academia and healthcare.

1.8 Research Contributions

This thesis, focuses within the architectural design phase. The contributions of this
thesis can be summarized as follows:-

(1) We make a comprehensive survey to highlight future research problems in
this area.

(2) Propose a framework for cloud application development to support cloud
application architecture portability.

(3) Propose scenarios-based container architecture design approach, based on an
iterative process for development.

(4) Propose a new containers design pattern, integrate with identified cloud
application architecture patterns, that can be used to support cloud
application architecture development, to be easily deployed on different cloud
environments.

(5) Validate a methodology, using a scenario-based for case studies:-

= Migrate Students Academic Result Records Web base Service to the
cloud.
» Hajj and Umrah Mobile Healthcare System.

(6) Present an integrated enterprise architecture views model based on (TOGAF)
development method, and compared with our proposed method for case study
(Hajj and Umrah Mobile Healthcare System).

(7) Verify deployment using a simulation tool for case study (Migrating Online

Pet Store Application to laaS cloud).

1.9 Thesis Organization

The rest of the thesis is organized in six chapters as follows:

Chapter 11 presents a theoretical background information for studies.
Explains the following concepts: Cloud Computing, Cloud application design
patterns, cloud application architecture development methods, covers the concepts of
cloud application portability. In addition, a review for some related works of cloud
application architecture development.

Chapter 11l introduces and explains the framework of portable cloud
application development phases, focuses in architecture design phase. In addition,
describes our proposed scenarios-based container architecture design approach, and
illustrate new design patterns investigated for portable cloud application architecture
design support.

Chapter IV introduces a case study of web base service Migrating Students
Academic results record to the cloud, we model a system into annotated UML
sequence diagrams, then development processes used to develop multiple scenarios
of case study, using scenarios-based container architecture design for a portable
cloud application.

Chapter V introduces a case study of Hajj and Umrah Mobile Healthcare
System, we describe application architecture, focus on using scenario based for
retrieving patient's Electronic Health Records, then we developed mobile application
using Enterprise architecture using TOGAF development approach. Then we
validate the application using independent scenario-based container design
architecture. We compare our new architecture development approach with the
TOGAF approach.

Chapter VI illustrates the verification of methodology using the CloudMiG
Xpress simulation tool with case study migrating Online Pet Store application to the
cloud and describes the deployment approach, and present the simulation results and
discussion about these results.

At the end, we presented the conclusion and the future work based on the
methodology validation and verification results mentioned the open issues for

researchers. In addition to references and appendices.

CHAPTER I

BACKGROUND AND RELATEDWORK

2.1 Introduction

This chapter aims to give an overview of cloud computing. It also includes
the general concepts of cloud application architecture development. The chapter
describes the preliminary concepts and presents current approaches for design cloud
application architecture. Next, it presents the related works of cloud application
architecture development. A summary of related work is shown in this chapter after
the detailed analysis, based on the driven architecture as new software development

adopted for cloud application architecture design.
2.2 Cloud Computing Architecture

Cloud computing is the new perspective that changes the way we perceive
Information Technology and its applications. Therefore, this chapter presents its
main benefits, main roles in different sectors and how all this can come together
under the perspective. This dissertation considers the technology needed to bring the
idea of software architecture solutions to be developed in a manner that is
independent of technology change, and to design and develop portable cloud
application architecture. The design of application architecture can be deployed on
heterogeneous cloud platforms, giving it the ability to scale easily (Ardagna 2015).
This is different than other forms of cloud computing which may give the user
software applications for them to use.

2.2.1 Cloud Computing Definitions

There is no unique definition for cloud computing. While there may be
confusion about the right definition of cloud computing, it should be underlined for
the gullible readers that cloud computing is not a technology revolution, but rather a
process and business revolution on how we use these technologies that enable cloud

computing as it exists today.

There are different cloud computing(CC) definitions in use, the state-of-the-
art definition from the National Institute of Standards and Technology (NIST) has
been adopted in this thesis.

Definition 1: According to NIST, cloud computing is " a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or
service provider interaction™. (Mell & Grance 2011; Ghanam et al. 2012; Ardagna et
al. 2012). This cloud model is composed of five essential characteristics, three

service models, and four deployment models.

Definition 2: “A Cloud is a type of parallel and distributed system consisting of a
collection of interconnected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based on
service level agreements established through negotiation between the service
provider and consumers.”. Using virtualization techniques, these virtualized
resources, such as hardware, platforms, or services, are dynamically allocated to
scale on demand according to customers’ needs. If a cloud service provider (CSP)
fails to offer the demand, the CSP may outsource to other cloud service providers
(Cheng & Lai 2012).

Definition 3: According to the IEEE computer society cloud computing is: "A
paradigm in which information is permanently stored in servers on internet and
cached temporarily on clients that include desktops, entertainment centers, table
computers, notebooks, wall computers handhelds, etc." so cloud computing provide
every facility as a service, provides infrastructure as a service, software as a service
and platform as a service (Ghanam et al. 2012). In other form is a source for the
dynamic provisioning of computing services, supported by data centers containing a
group of networked Virtual Machines (Cheng & Lai 2012).

Definition 4: Sosinsky (2011) defined it as “Cloud computing(CC) refers to
applications and services that run on a distributed network using virtualized
resources and accessed by common Internet protocols and networking standards. It
is distinguished by the notion that resources are virtual and limitless and that details

of the physical systems on which software runs are abstracted from the user”.

End Users

-

W

\77{"

Resources Managed at Each layer

Business Applications,
Web Services, Multimedia

Softwareas a
Service (Saa$)

Examples:
Google Apps,
Facebook, YouTube
Saleforce.com

Application]

Software Framework (Java/Python/ .Net)
Storage (DB/File)

Microsoft Azure,
Google AppEngine,
Amazon SimpleDB/S3

Platform as a
Service (Paa$)

oty At bty
"""""""""" e ekt Amazon EC2,
Computation (VM) Storage (block) GoGrid
Flexiscale
Infrastructure Infrastructure

as a service (laa$)
CPU, Memory, Disk, Bandwidth

Hardware

Figure 2.1 Cloud computing architecture (Zhang et al. 2010).

2.2.2 Cloud Computing Service Models

The NIST categories cloud computing into three service models, as shown in
Figure 2.1, and described below
Infrastructure as a Service (laaS) model provides infrastructure components to
clients ranging from CPU power to storage are exposed as a resource over the
Internet. Clients dynamically align their infrastructure per their needs, while
resources are provided on demand. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage
deployed applications, and limited control of select networking components (e.g.,
host firewalls).
Platform as a Service (PaaS) model delivers a pre-built application platform to the
client; consists of application development platforms, remotely accessible through
the web and able to connect to locally execute frameworks and IDEs, allowing fast
development and deployment of applications. The consumer has control over the
deployed applications and possibly application hosting environment.
Software as a Service (SaaS) provides software solutions, allows providers to
expose stand-alone applications, running on a distributed cloud infrastructure

completely hidden from customers, as resources through the Internet. The consumer

mange for limited user-specific application configuration settings (Zhang et al.
2010).

2.2.3 Cloud Deployment Models

A deployment models defines the purpose of the cloud and the nature of how
the cloud is located. Acording to the NIST definition, four deployment models are
defined , and described below (Mell & Grance 2011; Ghanam et al. 2012; Ardagna et
al. 2012; Zhang et al. 2010).

A. Public Cloud
A cloud in which service providers offer their resources as services to the general

public. Known as external cloud and describes the conventional meaning of cloud
computing: scalable, dynamically provisioned, often virtualized resources available
over the Internet from an off-site third- party provider, owned by an organization

selling cloud services.

B. Private Cloud

Referred as corporate internal Cloud. Used to denote a proprietary computing
architecture, providing hosting services for private networks. Designed for exclusive
use by a single organization. A private cloud may be built and managed by the
organization or by external providers. A private cloud offers the highest degree of
control over performance, reliability and security.

C. Community Cloud

The cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g., mission, security requirements, policy,

and compliance considerations).

D. Hybrid Cloud

Compose of two or more clouds mentioned above (private, community, or public)
that remain unique entities but are bound together. A hybrid cloud environment
combining resources from both internal and external providers to become the most
popular choice for enterprises. In a hybrid cloud, part of the service infrastructure
runs in private clouds while the remaining part runs in public clouds. Hybrid clouds
offer more flexibility than both public and private clouds. Specifically, they provide
tighter control and security over application data compared to public clouds, while

still facilitating on-demand service expansion and contraction (Zhang et al. 2010).

10

2014).

Table 2.1 Public Versus Private and Hybrid Cloud Computing Services (Goyal

Public cloud

Private cloud

Hybrid Cloud

Available to users from
a third-party provider,
made available via the

Provide many benefits
same as “public”, but
managed within the

Benefits for risks, ICT
functions (e.ge, email,
document production, or

not differ from the
current environment.

§ Internet and may be organization. Are business application
% free or inexpensive to unburdened by network | runtime), handled in
5 | use, such as Amazon and availability issues, or | lower-cost public clouds.
g Web Services(AWS), by the potential security | Functions such as data
& | providing services offer, associated with storage or mission-critical
across open, public public clouds. business applications may
networks. be kept in-house.
Provide best practices, | Private clouds can offer | Hybrid clouds offer greater
o | key benefit: greater the provider and user architectural flexibility.
& | elasticity and lowest greater control, security, | Key benefit: offers greater
S | cost. and resilience than public | business choice and avoids
@ clouds. all-or-nothing approach.
Greater risks in terms Potentially less risk Risks and costs fall
of security, resiliency, | security, resiliency, between public and private
% transparency, and infrastructure, and models.
o | performance. support processes will

11

Table 2.2 A comparison:

Private cloud vs Public cloud vs Hybrid cloud.

Deployment
Public cloud Private cloud Hybrid Cloud
models
Multi-Tenancy- | Single tenancy- Both single tenancy and multi —
Shared only for single use | tenancy. Data stored delivers a
environment. of an organization. | multi - tenant environment, data
Cloud from multiple organizations is

environment

stored in a shared environment,
whereas when data is stored in a
private cloud, it is kept private

for the wuse of a single
organization.
ARG — Inside the organization’s
where the cloud . .
Data center ceilen Inside the network for private cloud
. S organization’s services as well as wherever
location provider’s . 1 .
. network. service provider’s services are
services are . .
there for public cloud services.
located.
Server No sharing of
hardware, resources.
Resource | network and Hardware, storage | Very secure; integration options,
sharin storage are and network are add an additional layer of
g shared by dedicated to the security.
multiple users | use of a single
in the cloud. client.
Delivers
storage as a Delivers internal .
i Manages streamlined
service on a pay | cloud storage that
storage that uses both local and
Cloud per use. Best runs on a .
. off-site resources and serves as a
storage for backups for | dedicated X
.) . gateway between on premise
disaster infrastructure in a .
and public cloud storage.
recovery. E.g. data center.
One Drive.
Sacrifices
Instant and scalability, but
Scalability - provides greater On demand unlimited resources.
unlimited.
control and
security.
Pricing Charged on the | Comparatively High but delivers competitive
structure | usage basis. expensive. advantage.
Good, but
depends on the
Cloud :neg;srijtyes of the Most secure. Secure.
Security)
service
provider.
Low to . .
Performance medium. Very High. Very High.

12

2.2.4 Cloud Computing Characteristics

The essential cloud characteristics highlight as follows:-

= On-demand Self Service: a consumer can provision computing capabilities,
such as server time and network storage, as needed automatically without
requiring human interaction with each service provider.

= Broad Network Access: capabilities are reachable over the network and
accessed through standard mechanisms that promote use by heterogeneous thin
or thick client platforms (e.g., mobile phones, laptops, and PDAS).

» Resource Pooling: provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model by assigning the physical and virtual
resources according to consumer demand. There is a notice of location
independence in that the customer generally has no control or knowledge over
the exact location of the provided resources, but may be able to specify location
at a higher level of abstraction.

» Rapid Elasticity: capabilities can be rapidly and flexibly provided, in some
cases automatically, to quickly scale out, and rapidly released to quickly scale in.
To the consumer, the capabilities available for provisioning often appear to be
limitless and can be purchased in any quantity at any time.

= Measured Service: cloud systems automatically control and optimize resource
used by supplying a metering capability at some level of abstraction appropriate
to the type of service. Resource usage can be monitored, controlled, and reported
for both the provider and consumer of the utilized service by providing

transparency (Mell & Grance 2011).

2.2.5 Cloud Computing Challenges & issues

Cloud computing has been widely adopted, benefits such as agility, elasticity,
availability, and cost efficiency requires software engineered for cloud platforms.
However, due to the concept’s recent development, is still at an early stage. Many
open existing issues surround the use of software services from the cloud (Grundy
2012) have not been fully addressed, while new challenges keep emerging from

applications (Zhang et al. 2010).

13

In this section below, we summarize some of the research challenging issues in cloud
computing of meeting the requirements for cloud computing architecture , also the
challenges of allowing applications and development platforms to take advantage.

Some research issues are given below:-

= Lack of Service Level Agreements (SLA’s): that allow several instances of one
application to be replicated on multiple servers if need arises; A big challenge for
the Cloud customers is to evaluate SLAs of Cloud vendors (Kuyoro et al. 2011).
Currently, SLA prevents wide adoption of cloud computing. Cloud computing
infrastructure services such as EC2 are not yet able to sign the SLA needed by
companies that want to use cloud computing for serious business deployment
(Tsai et al. 2010; Jamshidi et al. 2015). Moreover, business is dynamic. Static
SLA is not able to adapt to the changes in business needs as cloud computing
promises.

= Cloud Data Management & Security: cloud data can be very large,
unstructured or semi-structured, and typically append-only with rare updates.
Data must rely on the infrastructure provider to achieve full data security.

= Migration of virtual Machines: various programs may run on one machine
using virtualization or many machines may run one program. Migration lacks the
agility to respond to workload changes. Moreover, the in memory state should be
transferred consistently and efficiently, with integrated consideration of resources
for applications and physical servers (Kuyoro et al. 2011).

= Lack of Multi-tenancy supports: Multi-tenancy can support multiple client
tenants simultaneously to achieve the goal of cost effectiveness. Currently, one
has three types of multitenancy enablement approaches: virtualization, mediation
and sharing (Jamshidi et al. 2015). There are multiple types of cloud applications
that users can access through the Internet, that have increased security
requirements based on the type of data being stored on the software vendor's
infrastructure. These application requests require multi-tenancy for many
reasons, the most important is cost. Multiple customers accessing the same
services, may affect response times and performance for other customers.

= Novel cloud application architectures: most of the clouds are implemented in
large data centers and operated in a centralized fashion. Although this design

achieves economy-of-scale and high manageability, it also comes with its

14

limitations such high energy expense and high initial investment for constructing
data centers.

Quality Assurance attributes: are met for cloud services, such as performance,
scalability, security, and availability; Cloud performance can vary at any point in
time. Elasticity may not ramp at desired speeds. Given the criticality of many
business applications, analytical techniques are needed to predict QoS and to
reason on software system properties at design-time, but also run-time
mechanisms and policies able to provide end-to-end quality(Ardagna et al. 2012);
Risk Management: there are several concerns such as payment models, security,
legal and contractual, quality and integration with the enterprises architecture and
culture. Thus, proper tools to support such choice could be beneficial and limit
serious financial consequences for a Small and Medium Enterprise (SME).
However, while risk management presents only tools and decision support
methods exists to support selecting and binding to a specific target Cloud, or
taking a decision to move from Cloud to Cloud in case requirements or services
change. Binding to a specific target Cloud can decrease project failure risks, and
not supported neither on the design nor in the run-time level (Ardagna et al.
2012);

Platform Management: platform challenges in delivering middleware
capabilities for building, deploying, integrating and managing applications in a
multi-tenant, elastic and scalable environments. One of the most important parts
of cloud platforms provide various kind of platform for developers to write
applications that run in the cloud, or use services provided from the cloud, or
both. This new way of supporting applications has great potential, such as
development for what that application needs already exists (Kuyoro et al. 2011).
In addition important issue is migrating from one vendor to another based on
changing needs, i.e., the problem of vendor lock-in (Ghanam et al. 2012).

Open standards and Interoperability: most research on issues and challenges
with cloud computing recognize interoperability as a major adoption barrier
because of the risk of a vendor lock-in. Amongst the many problems being
discussed are: the lack of standard interfaces and open APIs, and the lack of open
standards for VM formats and service deployment interfaces. These issues result
in integration difficulties between services obtained from different cloud

15

providers as well as between cloud resources and internal legacy systems
(Ghanam et al. 2012).

= Application Portability: for application portability, the biggest challenges are to
build applications for PaaS platforms. For laaS cloud services, there are in
practice a number of standards that enable portability of applications, while PaaS
platforms can vary widely between different providers (Council 2014). A major
issue is the current difference between the vendor approaches, and lack of
portability and interoperability between cloud platforms at different service
levels, affecting the cloud in several ways, for developers application increases
application design and operational requirements need to react in real time
throughout the application lifecycle and insure quality need (Di Martino,
Cretella, et al. 2015).

2.2.6 Cloud Applications

Applications today are often composite, multi tier applications, consisting of
application components such as user interfaces (Uls), services, workflows and
databases as well as middleware components such as application servers, workflow
engines and database management systems. When moving such a composite
application into the cloud, decisions must be made about putting which tier and even
which component of such an application to which cloud drivers for these decisions
include functional properties of a cloud such as the possibility to run a specific
required middleware and nonfunctional properties such as data privacy, cost and
offered quality of service by a specific cloud provider. Effectively, moving an
application to the cloud is a rearrangement of the application's deployment topology
in which component dependencies are captured.

Cloud computing supports some application features better than others. To
determine Whether application will port successfully, should perform a functionality
mapping exercise. The Process involves determining the critical application features
and then matching them to the cloud provider offering to see if those features can be
supported. The criticality of applications needed to predict Quality of Services and to
reason on software system properties at design time, also run time mechanisms and

policies able to provide end to end quality.

16

The need for developers to be able to design their software systems for
multiple Clouds and for operators to be able to deploy and redeploy these systems on

various Clouds based on the convenience (Ardagna et al. 2012).

2.3 Cloud Application Architecture Development

The development of cloud computing technology is an important issue need
more attention. Software Architecture (SA) and models are helpful for describes
systems structure and its major components (Naumann et al. 2015). Software
architecture and design reflect multiple contributions.

There is a need for developing system architecture and application
development environments that can simplify and benefits from cloud adoption to
improve the tasks, change in clouds for the application provisioned to compute the
best software and hardware configuration to ensure the quality of services (QoS),

without compromising the efficiency and utilization of whole system.

2.3.1 Cloud Computing Reference Architecture

While there is confusion about the right definition of cloud computing, Cloud
Computing Reference Architecture (CCRA) provides a technical blueprint for a system
with a well-defined scope, the requirements it satisfies, and the architectural
decisions, also ensures consistency and quality across the development (Liu et al.
2011). The CCRA is a natural extension to the NIST cloud computing definition, is a
powerful tool used for discussing the requirements, structures, and operations of
cloud computing. It defines a set of actors, activities, and functions that can be used
in the process of developing cloud computing architectures, as well as provide

guidelines for creating a cloud environment, as shown in Figure 2.2.

17

NIST Reference Architecture

Cloud Cloud Provider

Consumer Service Layer Cloud Service

Intermediation
PaasS Business |
| laas
Service
. Aggregation

Service
Arbitrage

Provisioning/

e — Resource Abstraction ity
Security and Control Layer gwien
Audit

{ Privacy ‘ Layer Portability/

| Impact Audit Hardware Interoperability
[Performance l —

: Audit

Cloud Carrier

Physical Resource

e <l e i T = W el 0

Figure 2.2 The NIST Cloud Reference Architecture (Liu etal. 2011).

The NIST cloud computing reference architecture defines five major actors:
cloud consumer, cloud provider, cloud carrier, cloud auditor and cloud broker. Each
actor is an entity (a person or an organization) that participates in a transaction or
process and/or performs tasks in cloud computing (Liu et al. 2011), as shown in
Table 2.3, breifly list the actors in the NIST reference architecture.

Table 2.3 Actors in Cloud computing.

Actor Definition

A person or organization that maintains a business

Cloud Consumer | .\ -tionship with, and uses service from, Cloud Providers,

A person, organization, or entity responsible for making a

LA L service available to interested parties.

A party that can conduct an independent assessment of cloud
Cloud Auditor services, information system operations, performance and
security of the cloud implementation.

An entity that manages the use, performance and delivery of
Cloud Broker cloud services, and negotiates relationships between Cloud
Providers and Cloud Consumers.

An intermediary that provides connectivity and transport of

Cloud Carrier . .
cloud services from Cloud Providers to Cloud Consumers.

18

2.3.2 Cloud Service Management

Cloud Service Management includes all of the service-related functions that
are necessary for the management and operation of those services required by or

proposed to cloud consumers (Liu et al. 2011).

Cloud Service Management

Business Support Provisioning p PO“ab'I':)Yl.
IConfiguration nteroperability
Customer Mgmt ‘ Data Portability
Rapid Provisioning
Copy Data To-From
Contract Mgmt ‘ ¢ L
- Bulk Data Transfer Y
Resource Change Yo
{ 3 Inventory Mgmt ‘ ‘ Service
— Monitoring Interoperability
Cloud & Reporting Unified Cloud
Conatmers Accounting & Billing Management Interface Brokers
Metering System
Reporting & Auditing Portability
VM Images Migration
Pricing & Rating ‘ SLA Management

Application/Svc Migration

Figure 2.3 Cloud Service Management (Liu et al. 2011).

As shown in Figure 2.3, cloud service management can be described from the
perspective of business support, provisioning and configuration, and from the
perspective of portability and interoperability requirements. However, the CCRA
focuses on the requirements of what cloud service providers, not does not represent
the system architecture of a specific system; instead, it is a tool for discussing, and
developing the system-specific architecture (Hogan et al. 2011). Moreover, the role

of'a “cloud service developer” has not been included in NIST CCRA.

2.3.3 Software Architecture for cloud applications Development

The development of a software system involves a large number of design
decisions that eventually lead to an executable specification of its behavior, typically
in the form of source code. For a long time, it has been realized that, next to
behavior, it pays off to be also concerned with a software system’s structure and

organization for reasons of dependability, understandability, and maintainability.

19

Therefore, for large systems, these design decisions not only consider the behavior,
but also the structures of the software system. The key principles on which the
design of software architectures is based are separation of concerns [Dijkstra, 1974]
and abstraction. For complexity of software systems, multiple levels of abstraction
are necessary to ensure designs remain comprehensible (Graaf 2007). This gives rise
to several types of design. Two levels of design are detailed design involve the
decisions related, and higher level of abstraction, design is called software

architecture design, which is the primary key of this thesis.

2.3.3.1. Software Architecture Definitions

It is difficult to capture the notion of software architecture in a single
definition. The software architecture is described in terms of components and
connectors, which can be deployed to distribute configurations (Shin & Gomaa
2007). A software architecture is a description of the subsystems and components of
a software system and the relationships between them. A software architecture is
subsystems and components are typically specified in different views to show the
relevant functional and non-functional properties of a software system. The software
system is an artifact. It is the result of the software design activity.

A more recent definition of software architecture can be found in IEEE- 1471
[2000]: The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its
design and evolution.

An alternative definition that is frequently used is given (Bass et al. 2003): The
software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them (Hutchinson 2011).

The software architecture developed several methods and techniques to support the
architectural design process. One of the key differentiating aspects of the design
methods developed by the SA researchers and practitioners is that they elevate ASRs
from being almost totally ignored to being an important consideration during SA
design. Each of architecture-centric design methods has its strengths and weaknesses.
One way of leveraging their strengths and overcoming weak points is to select
different approaches and techniques from different methods and apply them based on

contextual requirements.

20

2.3.3.2. Software Architecture Goals

The primary goal of the architecture is to identify requirements that affect the
structure of the application. A well-laid architecture reduces the business risks
associated with building a technical solution and builds a bridge between business
and technical requirements (Witt et al. 1993). Some of the other goals are as follows:
= Expose the structure of the system, but hide its implementation details.

= Realize all the use-cases and scenarios.

= Try to address the requirements of various stakeholders.

= Handle both functional and quality requirements.

* Reduce the goal of ownership and improve the organization’s market position.

= Improve quality and functionality offered by the system.

= Improve external confidence in either the organization or system.

2.3.3.3. Software Architecture Limitations
Software architecture is still has the following limitations:-

= Lack of tools and standardized ways to represent architecture.

= Lack of analysis methods to predict whether architecture will result in an
implementation that meets the requirements.

= Lack of awareness of the importance of architectural design to software
development.

= Lack of understanding of the role of software architect and poor communication
among stakeholders.

= Lack of understanding of the design process, design experience and evaluation of
the design (Witt et al. 1993).

2.3.3.4. Software Architecture Design

The architecture design (AD) is typically the most difficult task an architect
undertakes, can be called the 'solution phase' of the life cycle because it defines the
software in terms of the major software components and interfaces (Gorton 2006).
The ‘Architectural Design' must cover all the requirements in the software
requirements design (SRD). The goal of software architecture design is to define the
constraints for dependent design and implementation activities that result in the
development of a system that fulfills its functional and other quality goals.

21

The design stage has two steps, which are iterative in nature. The first
involves choosing an overall strategy for the architecture, based around proven
architecture patterns. The second involves specifying the individual components that
make up the application, showing how they fit into the overall framework and
allocating them responsibilities. The output is a set of architectural views that capture
the architectural design, and a design document that explains the design (Gorton
2006).

2.3.4 Model-based Approaches for Cloud Application Development

As the demand on software system increases, new software methodologies
and techniques are growing to build reliable software, reduce the development effort,
and produce high quality software. Reusing software becomes the main concern of
modern software design methods. Different strategies have been proposed to utilize
the notion of software reuse during different software engineering stages, but our
interest is on the most common and influential two approaches, models and patterns.

Models are used to predict system properties, changes in some parts that will
affect the rest of a system, and communicate key system characteristics to various
stakeholders. The models developed as a paradigm or blueprint prior to
implementing the physical system, or they may be derived from an existing system
or a system in development, as an aid to understanding its behavior (Karakostas
2008), e.g. Model driven architecture (MDA); and cloud design patterns. The main
benefits of MDA from a cloud prespective are the facilitation of portability,
interoperability, and reusability of parts of the system that can be easily moved from
one platform to another, as well as the maintenance of the system through
human-readable and reusable specifications at various levels of abstraction. In the
context of cloud computing, model-driven development can be helpful in allowing
developers to design a software system in a cloud and to be supported by model
transformation techniques in the process of instantiating the system into specific and
multiple clouds (Di Martino, Cretella, et al. 2015). The two different techniques are

introduced and explained in more details in the following section.

22

2.3.4.1. Model Driven Architecture (MDA)

Traditional software design and development processes create applications
for deployment to a specific technology platform, MDA is a model-based approach
to development of software systems, that introduces higher levels of abstraction,
enabling organizations to create models that are independent of any particular
technology platform.

Model Driven Architecture (MDA) is a new paradigm of software
development aimed at raising the abstraction and re-use levels. MDA is adopted as
standard by The Object Management Group (OMG) as an attempt to develop
applications in establishing domain without entirely writing new code (Gavras et al.
2004). Model driven architecture (MDA) is a recent re-using approach in the

software development technique.

MDA Definitions

There are a number of definitions used to describe the use of MDA in
software development, are:-
Definition 1: The MDA is an Initiative proposed by the Object Management Group
(OMG), is an open, vendor neutral, approach to software development which is
characterized by the use of models as the primary artifacts of understanding, design,
construction, deployment, operation, maintenance and modification of a system. It
reflects separation of concerns by separating business functionality from the
implementation technology (Wojcik et al. 2006).
Definition 2: Model Driven Architecture (MDA) is a software development
approach where the models are used as prime artifacts throughout the process of
software development. These models are defined at different levels of abstraction to
represent various aspects of the system (Kleppe et al. 2003). Besides, they are formal
in nature and can be machine processed. The transformation of models from one
level of abstraction to another, or the transformation of models to executable code is
performed by using (semi) automated transformation tools (Wojcik et al. 2006;
Sharma & Sood 2011).
Definition 3: Is the Attribute Driven Design (ADD) method is an approach to
defining a software architecture in which the design process is based on the software

quality attribute requirements, follows a recursive process that decomposes a system

23

or system element by applying architectural tactics and patterns that satisfy its
driving requirements (Wojcik et al. 2006).

MDA Models

A model is useful if it helps to gain a better understanding of the system. In
an engineering context, a model is useful if it helps deciding the appropriate actions
that need to be taken to reach and maintain the system’s goal.

Models of software requirements, structure and behavior at different levels of

abstraction help all stakeholders deciding how this goal should be accomplished and
maintained transformations (Mens & Van Gorp 2006).

Models are specified at different levels of abstraction, tools are used for

transformations between the levels (model to model and model to code).

MDA defines software application at three different abstraction levels:-

1. Computation Independent Model (CIM): specify the computation
independent view of the system, capture system requirements in a vocabulary
familiar to domain practitioners. Software independent business domain model
that bridges the gap between business experts and system experts.

2. Platform Independent Model (PIM): specify the system at the next lower
level of abstraction; capture a platform independent view, focusing on the
operation of the system while hiding specific details. Specifies the functionality
of the system independent of the technology that would be used for its
implementation.

3. Platform Specific Model (PSM): defined at the next lower level of abstraction,
focusing on the details the use of a particular platform, providing a platform
specific view of the system. Specifies the system in terms of implementation

constructs that are specific to the implementation technology.

A single PIM can be transformed into one or more PSMs (Sharma & Sood
2011), as shown in figure 2.4. Each PSM is specific to the technology platform on
which the system would finally be implemented (Kleppe et al. 2003).

24

Transformation
PIM Definition PSM
(Source Model) (Target Model)

Transformation Tool

Figure 2.4 PIM to PSM models (Sharma & Sood 2011).

The key to the success of MDA lies in automated (model-code) or semi-
automated models (model-to-model). Automatiomated model genertae architecture
views from source code (Haitzer & Zdun 2014), while semi-automated approach
demand identified tool for software development process to reduce the efforts that
manual approach (Pilar et al. 2014). The transformation tool executes a
transformation definition that is specified for the purpose of transforming higher-
level, platform independent business models into lower level platform specific
models and finally into executable code. A transformation definition is a set of
transformation rules that together describe how a model in the source language can
be transformed into a model in the target language (Sharma & Sood 2011). The
important concerns the source and target artifacts of model transformation, if
artifacts are programs (i.e., source code, byte code or machine code), we use the term
program transformation, and if software artifacts are models, we use the term model
transformation (Mens & Van Gorp 2006).

MDA for Clouds

MDA architecture used for Design, provisioning, execution, or migration to
the Cloud, is a model-based approach for the development of software systems that
aims at separating the platform-independent design of a software application from its
implementation on a given platform. From the cloud perspective, the main feature
and benefits of MDA are the enablement of portability, interoperability, and
reusability of (parts of) the system, as well as its easy maintenance, through human-
readable and reusable specifications at various levels of abstraction (Di Martino,

Cretella, et al. 2015). Model-driven development in the context of cloud computing,

25

allows developers and enterprise architects to design software systems in a cloud-
agnostic manner. Particularly relevant in designing and managing applications across
multiple clouds, as well as migrating them from one cloud to another. Combining
MDA in the cloud computing domain is currently the focus of several research
groups and projects, such as MODACIouds (Ardagna et al. 2012), ARTIST (Troya
Castilla et al. 2015) and REMICS.

Mode]1
PIM

Vodel merged

2 model
S
PSM1 F‘SM2 F’SMn Mode\n
S

A vertical one-to-many model transformation A horizontal many-to-one model transformation

Figure 2.5 An example of the transformation that takes single(P1M) for cloud
software application mapped to several (PSM) based on defining rules (Sharma &
Sood 2011).

While traditional software design and development processes create
applications for deployment to a specific technology platform, MDA introduces
higher levels of abstraction, enabling organizations to create models that are
independent of any particular technology platform. The strength of MDA lies in the
fact that it is based on widely used industry standards for visualizing, storing and

exchanging software designs and models.

2.3.4.2. Cloud Design Patterns
Cloud computing patterns are logical descriptions of the physical and virtual
assets that comprise a cloud computing solution (Opara-Martins 2017), capturing
best practices on how system applications should be designed. The cloud patterns
benefits development of cloud application architecture (Adewojo et al. 2015),
26

describe how different application components can be integrated to provide
architecture design solution (Yacoub & Ammar 2001), that can be deploying on
clouds.

Cloud patterns arise from the need to provide both general and specific
solutions to recurring problems in the definition of the architectures for cloud
applications. While classical design patterns deal with problems related to different
aspects of software development, cloud patterns mainly focus on the architecture of
the cloud application. Despite the poor flexibility of any vendor-specific patterns,
cloud patterns still represent a valuable means to enhance portability and
interoperability between cloud platforms. Patterns can be used to describe and model
existing cloud applications in a very easily understandable manner, tracing back
cloud implementations to a set of well-known and stable solutions. In this way, it
becomes easier to understand the exact functionalities and responsibilities of a
specific cloud application component, which can later be substituted with a
compliant one having the sam+e or similar characteristics. This approach can be
exploited also in the case of porting non-cloud applications (i.e. Traditional
enterprise applications), describable through classic design patterns, to a cloud
environment, provided a mapping between design and cloud patterns’ participants
exists (Di Martino, Cretella, et al. 2015).

2.4 Related work

Modeling of cloud-based applications is a new research topic, we present our
method based on Model Driven Architecture (MDA) as the most important
paradigms, because the MDA approach becomes an evident choice for ensuring
software solutions developing cloud applications that are robust and flexible. The
main objective of this section, is to present a survey analysis on crosscutting
concerns within the MDA. We analyze the current published research on MDA with
respect to cloud application development. We first classify the research work
accordingly to literature selection, Data filtering and analysis. We discuss some open
issues and challenges that need further research in developing cloud applications

based on MDA, such as cloud application portability.

27

2.4.1 Literature Selection

In this section we survey related work and determined different ways to
compare achievements in development methodologies for cloud applications. We
present a taxonomy of eight categories, according to more cloud uses, as shown in
the Table 2.4.

Table 2.4 Cloud uses support by MDA taxonomy.

| Category Purpose Papers
No
e The ability of computer systems to access, and 3

1 | Interoperability exchange resources with one or more other performers

and to use resources to accomplish its performed

activities according to expected criteria.

Deployment e Help developers to be able design their software 3

2 systems for multiple clouds and for operators to deploy
and re-deploy these systems on various clouds.

e Development of software to mitigate unfavorable 4
effects of technology changes.

3 | Development

e Used as a process of developing software as a service 3

4 initially on the basis of some requirements, also to

Evolution model requirements from iterations to be evolving.

e Used to improve dynamic cloud service in a heuristic
manner with healthiness validated.

e Multi tenancy helps to determine the number of 3
resource provisioning to meet Service Level
5 Quality Objectives.
attributes e To run and manage multi-cloud systems, allows cloud 1

solution that optimizes the performance, availability
and cost of the applications.

e Achieves Reliability and scalability 1
o Achieves Resource Scalability &Provisioning 2
e Deliver services to other users or other services; 3
6 SOA created to satisfy business goals, using web services to
handle communications.
¢ Provide a holistic view to inform decisions when 3
7 Migration migrating to clouds.

¢ Benefits organizations to select efficient transition
architectures to increase productivity and reduce
complexity.

e To analyze the impact of cloud adoption to identify 1

8 Evaluation potential risks and verify that the quality requirements

have been addressed in the design, also to determine

the robustness of systems.

Recently, many researchers presented in different studies approaches to use MDA to

develop cloud applications.

28

Hugo & Manu Sood (2010) explore the interaction between service oriented
engineering and model driven engineering. The presented modeling as a service
(MaaS) allows the deployment and execution for services on the cloud (Bruneliere et
al. 2010), however, model driven used as part of service oriented architecture (SOA)
(Jamshidi et al. 2015), but there is no general agreement on the right set of models,
languages, model transformations and software processes in the model driven
development of SaaS systems. Furthermore, legacy system needs to evolve and be

adapted to be executed as a service.

Frey and Hasselbring (2010) presents a framework to facilitate the migration
of legacy software to the cloud. The steps begin from existing legacy systems, extract
the actual architecture, then use a Meta-model to generate the target model to system
migration (Frey & Hasselbring 2010a). A reference model starts from the cloud
platform to extract elements and vocabulary to create the cloud Meta-model.
However, The model needs to refine the syntax and create a platform independent

modeling language for cloud applications.

Mohammad Hamdaga et al (2011) presents a model driven approach for
building cloud application solutions. The proposed approach presents a Reference
model (Meta model) that facilitates cloud application development from the design to
implementation without depending on specific PaaS or laaS components. This
approach can be used by developers to better understand cloud applications
independent of any specific cloud development environment. Moreover, the
approach can improve developers to select a cloud vendor before porting the legacy

application to the cloud.

Ritu & Manu Sood (2011) implement the MDA approach for the
development of Online Hotel Reservation System (OHRS) that runs as services in
the cloud. An approach based on levels of abstraction, enabling to create models that
are independent of any particular technology platform(Sharma & Sood 2011).
However, the requirement model for Cloud Independent Model (CIM) level
proposed to produce the required systems, but in actual practice the requirements
model needs to be refined into a computational model to generate the process.
However, the platform independent model (PIM) of the OHRS describes the

attributes and operations in a mode that is entirely independent of any programming

29

language or operating system in which the system would finally be implemented.
However, the service useful for building utilized by scale enterprise, but do not
develop the software for the purpose.

FrancescoMoscatoe.tal (2012) their method uses Model driven Engineering
and Model Transformation Techniques to analyze services, focused on using
ontology to build modeling profiles that help to analyze complexity of systems, by
developing open source platform that enables applications to negotiate cloud services
requested by users via interface and targeted platform for developing multi cloud
applications (Moscato et al. 2012). One of the main goals is to enable access of
heterogeneous cloud resources and to avoid locked-in problems. However, using an
ontology achieves interoperability, but requires addition efforts for other quality

services.

Lin and Chang (2012) their approach goals is to achieve architecture design
for evaluating the system performance and determine its robustness based on
measuring the system reliability of a cloud computing system (CCS) (Lin & Chang
2012).

Ardagna et al. (2012) implemented model driven approach for the design and
execution of applications on multiple Clouds (MODACLOUDS) that aims to support
system developers and operators in exploiting multiple Clouds and in migrating
systems from cloud to cloud as needed (Ardagna et al. 2012). They presented
framework used for developing and deploying applications in multi Clouds. In
addition, to enable risk analysis for the selection of Cloud providers, and for the
evaluation of the cloud impact on internal business processes. Furthermore, the work
offers a runtime environment for observing the system under execution and for
enabling a feedback loop with the design environment that allows system developers
to affect performance change and to redeploy applications on different Clouds.
However, there are many challenges such as vendor lock-in (Antoniades et al. 2015)
, applications portability, and cloud data migration are not addressed. In addition,
Risk Management uses primitive tools. However, need to offer Cloud providers for

auto scaling mechanism for interoperability and federation between Clouds.

Nicolas Ferry et al. (2013) proposed Cloud Modeling language (CloudML)
explains that model driven techniques and methods facilitating the specification of

30

provisioning and deployment concerns of multi cloud systems, this will enable the

continues evolution of system between design time and run time activities (Ferry et

al. 2013), argue model driven is suitable for developing complex systems.

There are several projects that aim at addressing challenges by providing

solutions for provisioning, deployment, monitoring and adoption of cloud systems

such as Modeling QoS constraints. In the addition time consuming services are

identified as a challenge for adaptive systems. Moreover, there is a lack of a

systematic engineering process and tools supported by reusable architectural artifacts
(Zhang & Zhang 2009).

2.4.2 Summary of Related work

Table 2.5 Summary of using MDA for cloud application development.

drive process of
software
development.

development and
to enhance the
Return on

development.

Author/s Approach Advantages Limitations Domain
Modeling as a e Using Model ¢ No general
1 | Hugo etal. | Service (MaaS)to | Driven agreement on SaaS
provide modeling | Engineering the right set of |application
2010 and model driven (MDE) for the models, (SOA)
engineering development of languages,
services from the SaaS model
cloud. applications. transformations
e Using SaasS to and software
deploy modeling processes in the
services in the model driven
cloud. development of
SaaS systems.
The MDA e MDA approach | Need an
2 | Ritu Sharma | approach an asset | need in the approach for Web base
& facilitates creation | development of ensuring application
Manu Sood | of good designs | cloud, SaaS in interoperability | (SaaS app)
that easily cope | order to minimize | among the
2011 with multiple | the time, costand | models of cloud
implementation efforts in software
Technologies and | application services.

31

Author/s Approach Advantages Limitations Domain
MODACLOUDS, | Supporting system (e VVendor lock in
Danilo model Driven | developers and on cloud
Ardagnaet | Approach for the | operators in customer to Business
al. design and | exploiting decide on Application
execution of | multiple Clouds. adoption model.
applications on fe Migrating o Risk
2012 multiple Clouds. | applications from | management
Allows early | Cloud to Cloud used primitive
definition and | (performance). tools.
assessment of le Inform evolution fe Quality need
quality at design | process to design | mechanisms to
time. time. be able to deploy
and redeploy
systems.
Mohammad | Defining A e The present Meta |e The lack of
Hamdaga et | Reference Model | model shows standardization
al. (Meta model) for | main cloud and Cloud
developing cloud vocabulary, terminologies Application
2011 application design elements, challenges
environment. configuration portability and
rules and migration
semantic between different
interpretation. cloud
e Facilitates cloud environments.
application
development
from the design to
implementation.
MOSAIC e Simple access to | Do not provide
Francesco | Ontology heterogeneous approaches to
Moscato et | methodology and | resources. model and verify Multi
al Framework, aims e Design interface dependability Agent
at creating, for users and during all phases | System
promoting, open implemented of the life cycle.
2012 source (API)and | existing services. |e Difficult to
platform for e Enable intelligent | achieve
developing multi | service discovery. | interoperability.
cloud oriented e (Q0S) given for
applications. users to avoid
Frameworks locked-in and for
enhance modeling | providers to build
profile for on demand
verification QoS of | services.
cloud services.
Cloud Modeling e Enables the [Model under
language evolution of | development and
Nicolas (CloudML) aims system between | many challenges Multi
Ferry etal | at facilitating the design time and | identified, such Cloud
2013 provisioning, run time | as. Systems
deployment, activities. e Time consuming
monitoring and e Enables development
adaptation of multi | developers ~ to | activities for

cloud systems.

work at a higher

adaptation.

32

level of |e Techniques and
abstraction of | methods to
cloud concerns | prevent failure.
rather than |e Data movements
implementation from region to
details. another without
legal
consequences.

2.4.3 Result Analysis

We provide a survey analysis on MDA with respect to cloud application

development (Ibrahim & Hany 2015). We outline literature selection based on cloud

taxonomy issues as shown in Table 2.4. Furthermore, we compare different MDA

used for cloud application development as shown in Table 2.5, and discuss some

issues and challenges that need further research in developing cloud applications

based on MDA as follows:

There is no generic cloud software architecture for designing and building
cloud applications (Hamdaga et al. 2011), applications with cloud need new
technologies (Gohad et al. 2012) to differentiate the cloud development
paradigm from the existing ones.

Developers argue for the need for model driven approaches and supporting
tools to facilitate the specification (Ferry et al. 2013) of provisioning,
deployment, monitoring and adaptation concerns at design time and at run
time. The need to bind configuration management in order to minimize the
shortcomings (Gitzel et al. 2007).

Need to build cloud applications that offer cloud providers for auto scaling
mechanism for interoperability between clouds (Ardagna et al. 2012).

The lack of standardization and common terminologies that challenges
portability, also need to migrate application's components between cloud
providers as needed (Ardagna et al. 2012).

Lack of interoperability and portability (Gonidis et al. 2012), the difference
between the individual vendor approaches, cause Vendor Lock-in problem.
The risk of lock-in is a major concern for cloud customers. Cloud providers,
in fact, offer proprietary solutions that force cloud customers to decide, at the
early stages of software development the design and deployment models to

33

adopt (e.g., public vs. hybrid Clouds) as well as the technology stack (e.g.,
Amazon Simple DB vs. Google Big table). Thus, the portability of
applications and data between clouds be addressed (Anderson & Rainie
2010).

e The Quality of applications poses a need for developers to be able to design
their applications and for operators to operate, monitor and assure
performance change of cloud applications to be able to deploy and redeploy
on multi Cloud environments.

The above described effort in the area of applications on clouds, the current
literature, indicates that the topic still requires research on new programming

abstractions, developing and presents best solutions.

2.5 Summery

In this chapter, the theoretical background for Cloud Computing has been
presented. Firstly, the chapter explored Cloud computing architecture. These stages
are: cloud definitions, cloud services, deployment models, cloud characteristics,
cloud challenges and issues, and cloud application development. Many efforts have
been reported for solving the problem of developing cloud application architecture.
Different state-of-the-art methods apply different software approaches, techniques
and patterns to design and develop cloud application architecture.

Surveyed research work on using model driven approaches for cloud
application development are explained, based on model driven architecture (MDA).
We covered the major methods, and summarized their features. We also discussed
several open research issues, that provide a better understanding the principles and
challenges of developing applications in the clouds, that help developers, architects
and researchers support, evaluate and predict different methods and techniques.

MDA approaches that promise to reduce the overhead of developing,
configuring, deploying and maintaining cloud applications. Moreover, help of
architecture that can easily improve the quality of the system thus can develop a
product with quality attribute such as portability, interoperability, and reusability of
parts of the system that can be easily moved from one platform to another, as well as
the maintenance of the system through human-readable and reusable specifications at

various levels of abstraction.

34

CHAPTER Il

METHODOLOGY FOR PORTABILITY-BASED DEVELOPMENT
OF CLOUD APPLICATION ARCHITECTURE DESIGN

3.1 Introduction

This chapter describes the methodology applied in this research. As Figure
3.1 shows, this research is accomplished through a number of steps. It begins with a
study on related works in the literature. Then, problem statement and research
objectives are explained. In the next step, cloud application requirements are needed
to support the development of portable cloud application architecture. The details of
the proposed framework phases are presented. It includes the architecture design
phase of the proposed framework. Finally, the evaluation methods of the portability

framework are presented.

Review related literature

Problem Statement

Define Research objectives

Analysis of portable cloud
application

¢Cloud application requirements architecture

Develop a framework for Portable cloud application

eFramework phases

Propose container-based scenario approach

*To achive portable cloud application architecture design

Evaluate a framework

\Verification and Validation for cloud application portability

Figure 3.1. Research Methodology.

35

3.2 Cloud Application Portability Analysis

Chapter 2 presents a background study and extensive literature review about
the overview of cloud computing, cloud application, and models for cloud
application. In order to achieve the first objective, we need to provide cloud
application portability analysis, to help in developing our proposed framework.
Portability defines the ease of ability to which application components are
moved and reused elsewhere, regardless of provider, platform, operating
system, infrastructure, location, storage, data format, or API’s. Portability is
based on a set of attributes that design on the ability of software to be transferred
from one environment to another (Kolb & Wirtz 2017).

3.2.1 Cloud Portability Definitions

As mentioned before, portability is about the ability to move an entity from
one system to another (Council 2014). Cloud portability is a concept that also
concerns both the cloud customer and provider to avoid lock-in of cloud offerings
(Hill & Humphrey 2010).

Definition 1: Cloud portability is defined as the ability to migrate a cloud-
deployed asset to a different provider, and it is a direct benefit of overcoming
vendor lock-in (Opara-Martins et al. 2014).

Definition 2: Cloud Application Portability refers to the ability to move any
component of any of the three cloud service models across cloud platforms (Gonidis
et al. 2012).

Definition 3: Cloud Applications’ Portability is a desirable feature for Cloud
Developers, prevent an effective utilization of multiple cloud providers’ services and
offers among cloud platforms, at different service levels (Di Martino, Esposito, et al.
2015).

Cloud Application Portability enables the reuse and migration of entire applications,
or of some of their components, across cloud PaaS services or even from on premise
environments to the cloud, to minimize efforts when migrating an application, data
or service from one cloud to another, which reduce the need for re-designing and
rewriting parts of the application.

36

3.2.2 Cloud Application Portability Adoption

Enterprises and cloud service providers need to adopt cloud portability,

because cloud application designs increasingly span multiple cloud providers'

platforms, need to ensure designing new applications to run effectively in such

"Multiclouds™ application architectures while avoiding related portability or vendor

lock-in problems (Petcu & Vasilakos 2014). There are many reasons, that let

application portability in clouds is an important concern.

O Economic reasons: is necessary for several reasons.

The customers of the cloud would gain protection over their investments in
their application development. Due to the heterogeneity of the cloud, the
migration of a software application, along with its data, from one cloud to
another, often requires the rewriting of large parts of both the services and the
application, all in order to comply with the new environment to which the
application is migrating.

The cloud service providers interested in enhancing the opportunity for
application portability in order to promote their own attractiveness within a
highly dynamic and demanding market.

Allows the development of third party organizations which would be able to
mediate between the cloud customer and multiple cloud providers. Enable
deployments depending on the customer’s requirements, and all kinds of

necessary adaptations would be provided by the third party.

Q Technical reasons: cloud portability is of immense importance in order to

exploit the cloud elasticity to a maximum extent, as well as to ensure the

continuity in a given application along with its functionality of a service.

Throughout a lifetime of an application, a point might come at which external

resources are required from a public cloud, and so it needs to be redeployed from

a private cloud. This kind of a porting process is triggered by the cloud customer.

Furthermore, in order to achieve continuity, precaution measures such as regular

backups must be made, not only of data, but of application instances as well. This

implies that an application must be able to use various cloud services which in

turn will aid the replication of the application as well as its data. This kind of a

porting process is most commonly in accordance with the provider’s agreements,

and is usually considered in the design phase.

37

O Legal reasons: the laws within a country may change rather abruptly, triggering
the need for software to be deployed from one cloud system to another. A cloud
service provider may also provide faulty service which in turn would call for
immediate redeployment of applications on another cloud platform. In this sense,
efficient portability mechanisms are essential for fast recovery. Situations like the
aforementioned one are also attempting to be avoided by creating contracts which

guarantee a sufficient contingency plans if the cloud provider.

3.2.3 Cloud Application Portability Scenarios

Cloud application portability issues differ according to the target service level
(Di Martino, Cretella, et al. 2015), we have identified five major portability scenarios

for cloud application, discussed in different scenarios as shown in Figure 3.2.

A CcCcucC 1 Portability
saas - - |<ggesa| _ |esgesa|

Paas —--- R =

5209

Non CIoid - --=--1 S D S :

1 } T
Data Service Application System

Hybrid s Public + Private + Hybrid

Figure 3.2. Portability scenario classification (Di Martino, Cretella, et al. 2015).

1) CSCC S1: Customer Switches Providers for a Cloud Service
Scenario addresses the case of customers currently using a cloud service provided
by provider A, wish to switch to an equivalent service from provider B. They are
able to transfer their data or applications within multiple cloud environments with
reasonable expense and minimum disturbance (Rezaei et al. 2014).

Interoperability and portability are illustrated in Figure 3.2 below.

38

®

T T Cloud Provider 2

Cloud Provider 1 / .
Portability (Migration) i -
YV X A~ Y

.-// y \.; Appl \\\ r: \

JI, App 2) p J Appl |
/ A ,f'J / L] /
{ @ ;lnlernpcrahiliry \ @ : 2 | \
‘>__ AP e / }x Apps N\
i Appd i \ e | \
‘ [1~ Tnteroperahility |

q \

e App$ < -

M- 'x/‘\\
S .

Figure 3.3. Portability of an application between cloud providers (Rezaei et al. 2014).
Interoperability refers to the ability of two or more systems or applications to
exchange information, whereas portability refers to ability to move an entity from

one system to another so that it is usable on the target system.

This scenario touches many of the issues associated with portability, as
explained below:-

A. CCUC 1: Cloud Customer Changing SaaS Vendors
The data handled by one vendor’s software should be importable by the
second vendor’s software, which means that both applications need to support
common formats. Standard APIs for different application types will also be
required.

B. CCUC 2: Cloud Customer Changes cloud middleware vendors.
Existing data, queries, message queues, and applications must be exportable
from one vendor and importable by the other. The requirement to achieve this
porting is a common API for cloud middleware. Cloud database vendors have
enforced certain restrictions to make their products more elastic and to limit
the possibility of queries against large data sets taking significant resources to
process.

C. CCUC 3: cloud customer changing VM Hosts.
Cloud customer wants to take virtual machines, built on one cloud vendor’s
system, and run them in another cloud vendor’s system. The main

requirement of this operation is a common format for virtual machines.

39

2) CSC-CB: Cloud Bursting
Focusing on interoperability issues at the laaS level, describes a scenario where
multiple cloud platforms need to work together. Similar to CCUC3.

3) CSCC 5: Migration of Customer Capabilities into Cloud Services.
This scenario addresses the case of a customer, currently running an application
or service on-premise, who wants to move that capability to a public cloud

environment (Di Martino, Cretella, et al. 2015).
3.2.4 Cloud Application Portability PaaS Issues

For application portability, the biggest challenges are for applications built for PaaS
platforms (Council 2014). We focus on cloud applications to be ported across
different platforms, exposed by supporting platform, enabling the application to use
services, also providing access to the capabilities that support the application. PaaS
portability issues are caused by:-

[1] Lack of a shared platform defined among PaaS providers; each provider chooses
the operating system and middleware elements, it will support, if we make
different selections then applications using those features cannot be ported.

[2] Lack of alternative providers of a platform; a provider may make a cloud
version of a server platform available. Providers have been adding services to
their platform, as there are no standards using the added services could lock
applications to a cloud provider.

[3] Portability between the development and operational environments (DevOps).
3.2.5 Platform as a Service (PaaS) Portability Solutions

PaaS generally provide mechanisms for deploying applications, designing
applications for the cloud, pushing applications to their deployment environment,
using services, migrating databases, mapping custom domains, IDE plugins, or a
build integration tool (Pahl 2015). The Following are existing solution approaches
used to achieve PaaS portability:-

[1]. Adopt container technology, such as Docker, for application hosting (Pahl et al.
2017).

[2]. Involved the definition of a common set of standards that need to be adopted by
platform vendors in order to provide uniform services (Gonidis et al. 2012), in

addition hrough protocols, used APIs or through abstraction layers which

40

decouple application development from specific target Clouds (Petcu &
Vasilakos 2014).

[3].Use a cloud technology that deploys PaaS on laaS or bare-metal servers. Cloud
Foundry and Open Shift are examples of these tools, but newer products, such as
Morpheus, are gaining attention.

[4].Service Orchestration: involves microservices architecture to developing a single
applicationas a suit of small services. Organizations could take application
components that need specialized middleware and make them into services that

are called on demand by the rest of the application (Pahl 2015).

3.3 Cloud Application Architecture Design Patterns

Cloud application architecture patterns describe how applications have to be
designed to benefit from a cloud environment, also described how applications
themselves can be offered as configurable cloud services (Zhao et al. 2012). In
addition pattern approach provide solutions to cloud application challenges and
requirements (Erl et al. 2015), guide application developers during the design and
implementation of applications components that use cloud offerings and are
deployed to different cloud types. Benefit cloud application development, reduce
development time, deploy multiple applications, test, configure and integrated
solutions (Brandle et al. 2014).

3.3.1 Fundamental Cloud Application Architecture Design patterns

The following section addresses design patterns taxonomy for cloud application
architecture (lbrahim & Eldein 2016) as in figure3.3. Based on (Fehling et al. 2014)
cloud design patterns based taxonomy as follows phases, which describe abstract
solutions to problems in how cloud application can build on top of an elastic
platform. We cover the fundamental architectural styles that architects and
developers have to be aware of when building a cloud native application categorize
to:-

A. Loose Coupling Architecture: communication separates application
functionality from concerns of communication partners regarding their location,

implement the platform, the time of communication, and the used data format.

41

http://searchcloudcomputing.techtarget.com/tip/Evaluating-OpenShift-vs-Cloud-Foundry-for-open-source-PaaS
http://searchcloudcomputing.techtarget.com/tip/Evaluating-OpenShift-vs-Cloud-Foundry-for-open-source-PaaS
http://searchcloudcomputing.techtarget.com/answer/Why-should-I-consider-a-microservices-architecture

By using Broker solution that can communicate components and multiple
integrated applications to decouple from each other's.

B. Distributed Application Architecture: describe how the application's
functionality may decompose to be distributed among several resources. Cloud
application solutions rely on dividing provided functionality among multiple
application components that can be scaled out independently, redundant
resources ensure that the unavailability of one resource does not affect the
application as a whole.

C. Cloud Application component patterns: patterns of this category refine how
the functionality of a cloud application can be implemented in separate
components. Applications components are developed specifically for cloud
offering and requirements because they are not explicitly specified (Fehling et
al. 2012). Cloud component patterns characterized by three central patterns.

e User interface components: provide application functionality to users.

e Processing components: handle computational tasks.

e Data access components: handle data stored in storage offerings. They can
deal with storage offerings at different cloud providers with different
consistency levels. Data access components can further be adjusted to
inherently support eventual consistency by abstracting data to hide that there
may be data inconsistencies.

D. Multi-tenancy patterns: Multi Tenancy "refers to the capability to host a
single instance of a software solution that serves multiple clients.”. Describe
how cloud applications and individual components can be shared by multiple
customers on different levels of the application stack. Can support multiple
client tenants simultaneously, that achieves the goal of cost effectiveness.

e The shared component: provides functionality to different tenants without
maintaining a notion of tenants itself.

e The tenant-isolated component: does the same, but ensures that tenants do
not influence each other while they access shared functionality.

e The dedicated component pattern: enables some functionality to be
provided exclusively to tenants without sharing it with others.

E. Cloud Integration patterns: describe special application components to enable

the communication across cloud boundaries, as applications are often not

42

standalone and must be integrated with other cloud applications and non-cloud
applications (Fehling et al. 2014).

Application Multi Integration
Component Tenancy patterns
s patterns components
patterns -
T p— S
Management
Tier layers |_‘

Design Patterns for Cloud application

Communication

service Mang
» Storage service e
» Process service

Services support Deployment Model
1)SaaS2)Paas Public / Private

~

Figure 3.4 Design patterns for cloud applications architecture (Ibrahim & Hany
2015) overview.

3.3.2 Cloud Application Patterns Portability Support

Architectural styles and patterns applied to a cloud application, to describe
the structure of the solutions provided to play a basic role in designing and
developing different components of cloud application for different platforms to
deploy and redeploy on the various Clouds (Di Martino, Esposito, et al. 2015). Cloud
design patterns focusing on a general and reusable solution can be applied to any
target environment for cloud computing (Fehling et al. 2011), understanding the
changes to apply, and to enhanced an application architecture (Jiang & Mu 2011).
Architecture include quality attributes such as “efficiency”, "portability”, “usability”,
“maintainability”, etc. We give some overview of many cloud patterns, that support

cloud application portability as shown in Table 3.1.

43

Table 3.1 A summary of Cloud application architecture patterns QoS Support.

(++): Strong support and achieve QoS; (+): Partially support and achieve
QoS; (-): Not achieving QoS.

Since cloud application is in terms of components, it results in high maintainability
and portability. Also, we can easily attach a new component on demand, it will be
easy to scale up an application (Sharma et al. 2015).

We give some overview of many cloud patterns, that support cloud application

portability as below:-

a. Pattern coupling: effects on maintainability, factorability, and reusability when
patterns are coupled in various ways. Patterns are loosely tied together with few
connections, making it easier to separate the patterns. They should promote
quicker, simpler future design changes (McNatt & Bieman 2001).

b. Distributed application: divided functionality among multiple application
components that can be scaled out independently, and support portability
(Fehling et al. 2014).

c. Stateless component: multiple components can share a common external state,
make application most tolerant to component failures, support performance by
reducing requests to the central data store and component instances keep replicas
of central store state information, this can strongly support for application

portability to multiple cloud environments. In stateful application component

44

> 3 > >
2| > = = s | 2 % 2| 2|5
= = = = <
Category Pattern Name z 8|3 |2|E|5|2|E |5 5|5
€ g &|g|€|5|3|2|8|¢€ ¢
— o — Q 'E [<3) <@ o) [() o 2
g 9] Ll < = o T %] > x o E
=)
& | Fundamental | _Loose Coupling |+ e
g Architectures | Distributed Application S I AR (RSO (U R (I (R e e
'8' Stateful Component P R I U R R POV VI I I s
= Stateless Component S I O =T A R e
= Cloud
o Anplication User Interface Component | ++ | ++ | ++ | + | ++ | ++ | ++ | ++ | ++ | ++ | *+
< PP Processing Component S B 4 4 | | A | | | |
g Components == = +
= Data Access Component |+ | |+ | o+
§ Shared Component ++ o | - | |+ PR I I e
a . Isolated Component ++ | ++ + + ++ |+ | 4+ + + -
2 Multi- _ P B R R -
-g Tenancy Dedicated Component n R R N R
o Restricted Data Access - | |- PR R _ _
C Cloud Message Mover - e T R IR [s
. Application Component Proxy ++ | | |+t + + + + + ++ +
Integration ™ Compliant Data Replication | ++ | + | ++ | ++ | ++ | + | + | + | ++ ++
Integration Provider e I I I + ++ | o+ ++
Legend

synchronize their internal state (instances replicate among all instances), this
strong support for scalability, security, maintainability and partially support for
portability and reusability.

d. Multitenancy patterns: is one of software architectural styles and patterns
consists of a single instance of an application with multiple tenants, describe how
application components comprising a SaaS application can be shared between
different customers (Sharma et al. 2015).

e. A restricted data access component: extends the functionality of the data access
component to incorporate data obfuscation if sensitive data may not be retrieved
completely from a less secure environment. Alternatively, data may be replicated

between environments

3.4 A Framework for Development Cloud Application Architecture

Developing cloud application raises portability challenges, requires a
methodical approaches that define and support application portability to the cloud. In
order to establish portable architecture design to cover portability requirements, there
is a need for a development portability framework for cloud applications.

The framework for portable cloud application architecture development, aims
at supporting system developers in designing portable architecture for cloud
applications which can easily migrate (part of)/ system and deploying in multiclouds
platforms as needed. A framework encompasses four phases, strategy and plan
phase, architecture design phase, deployment phase, and evaluation phase.

For the architecture design phase, since there is no standard approach for portable

cloud application architecture design that can be used, the architecture design

approach of portable cloud application is required (as in Figure 3.9). The
architecture design approach based on proposed containers patterns and cloud
application patterns for development. Methodology achieves the following goals:-

e Design quality: to achieve Portability by applying capability for cloud
application component, that minimizes efforts for developers, in addition to
reduce implementation time.

e Run-time quality: to achieve agilely for system operation by communicating
and exchange information to be reused for development (DevOps).

45

Development Architecture
Apps

Requirements Design phase

/)
m ~ Design

Dev Requirements ll: Implementation:
Refinements Portable Architecture Design

(DevOps)

Op Requirements Operation Phase Dep|oyment

Cloud App Cloud App
Environment b Environment

Figure 3.5 A Framework for cloud application architecture development overview.

3.4.1 The Proposed framework Phases

The initial methodology steps involve proposing a development framework to
achieve the second research objectives. The proposed framework divided into

following phases, as shown in Figure 3.6.

1: Strategy Phase |:||:> Identify Architecture Drivers
t modification l analysis
2: Design Phase |:||::> Design Portable cloud app architecture
' refinement ,l, mapping
3: Deployment |:||::> Deployment Model
' refinement testing
4: Evaluate Phase D|:> Evaluate Architecture Portability

Figure 3.6 The Proposed framework phases for developing a portable Cloud
Application Architecture.

46

Phase 1: Portability Strategy Plan

A process need to identify and specify architecture drivers; Identify and select
cloud portability scenario; Describe the behavior and requirements of a system;
Provide a generic description of the application.

Phase 2: Design portable application architecture

Need to adopt an appropriate architecture design for specific application.
Identifying, using cloud design patterns that specifically apply to provide an
application architecture design to deploy on the clouds.

Phase 3: Portable cloud application Deployment

The solution is to develop a portable deployment model to be ported and
deploy to cloud platform, also ported from one cloud platform to another.
Development based on Cloud patterns with a driven design method for mapping
between models.

Phase 4: Evaluation architecture portability

To achieve the third objective (evaluate the proposed portability architecture),
the evaluation is to ensure portable cloud application requirements are met, using
validation and verification.

During the architecture process, the aim of the validation is to increase the
confidence that the architectural design support portability for deployment.
Scenarios-based used as evaluation criteria to support architects and developers
during the evaluation process (lonita et al. 2002). Scenarios are a technique
developed through manual evaluation and testing. Scenarios are related to
architectural concerns such as quality attributes, and they aim to highlight the
consequences of the architectural decisions that are encapsulated in the design
(Gorton 2006). Thus, we evaluate the applicability of our approach in practice by

uses of case studies.

Validating an architecture design poses some tough challenges. The tools for
architecture for a new application, implement and test data required from developed
step to deploy target application on different cloud platforms. We use CloudMiG

simulation tool to evaluate deployment options using a case study.

47

3.5 Container-based Architecture Design of Portable Cloud Applications

We are focusing on phase 2: design portable cloud application architecture.
This is because there is no standard process approach that can used to face challenges

like tightly coupling and poorly designed interfaces.

3.5.1 Container benefits

Containers are used for deployment, but a more concern is needed for
designing portable cloud applications to build better and faster deployment
containers on multicloud PaaS. Container benefits represent in:-

1) Ability to achieve portability with containers (Pahl et al. 2017) .
2) Reduced complexity through container abstractions; allow applications to be
localized within the container, and then ported to other public and private cloud

providers that support the container standard (Linthicum 2016), such as Docker.

3.5.2 Container for portable cloud application

Container is a new technology for portable cloud platform, allow the sharing
of the underlying platform and infrastructure in a secure way. It holds packaged self-
contained, ready-to-deploy parts of applications, to run the applications (Pahl et al.
2017). Container is a standard way to package an application and all its
dependencies that can be moved between environments and run without changes.
Containers work by isolating the differences between applications inside the
container, eliminating the need for instruction level emulation (Dua et al. 2014), so

that everything outside the container can be standardized.

3.5.3 Comparison of a container Related work

Containers are used for deployment, but a more concerns is needed for
designing portable cloud applications to build better and faster deployment
containers on different PaaS. Several works and experiences uses containers,

summarized in the Table 3.2.

48

Table 3.2: A summary of related work for container used.

Author/s Context Problem Proposed solution
Edge cloud Virtual devices to = Edge cloud environment,
architecture, host application and application and service
Various devices | platform services, orchestration can help to manage
Pahl,
Claus suchas IOT,is | and t.he logistics still and orchestratg applications
and Bri:’;\n the context of requ_lred to manage thrOL_lgh. containers as an
Lee. edge clc_)ud architecture setting. appllcat_lon packaging
2015 computing. mec_h_anlsm. o
= Facilitate applications through
distributed multi-cloud platforms
build from a range of networked
nodes.
Identifies the It is difficult to use = Redesign Open Stack
key challenges [containers to deployment architecture to
of manage the cloud enable dynamic service
Kang, containerizing infrastructure, registration and discovery.
e.tal 2016 | infrastructure without sacrificing » Explore different ways to
Services. many container manage service state in
offers. containers, and enable containers
to access the host kernel and
devices.
Container Distributed system = |dentified three types of patterns:
architectures development, need single-container patterns for
BUrNS Ieaqling to for enabl_ing_a system management, single-nqde
e.tal " | design patterns standarpllza_ltlon and patterns of closely-coope_ratlng
2616 for container- regularization. containers, and m_ultl_—node
based patterns for distributed
distributed algorithms,
systems
Container based | Cloud computing = Compare and contrast a range of
technologies has overheads and existing container-based
such as Docker | can constrain the technologies such as Docker for
Kozhirba | allow hosting of | scalability and the Cloud and evaluate pros and
yev, e.tal. | micro-services flexibility, cons and overall performances.
2017 on Cloud especially when
infrastructures diverse users with
different needs wish
to use the Cloud
resources.
Migrate a How software = Creating a plurality of
Jain, composite components to be containers, and communications
Rakesh, [applicationtoa [composite applied? channels between the plurality of
et al. container-based containers, for the software
2018 environment components of the composite
application based on the
containerization plan.

In comparison to the related work for containers (Pahl & Lee 2015; Kang et
al. 2016; Burns & Oppenheimer 2016; Kozhirbayev & Sinnott 2017), all Containers

technology solutions discussed above focus on deployment at run time, such as

49

Docker and Kubernetes for application hosting on the cloud, while the (Jain et al.
2018) is relevant to our work, but concern in provisioning to run the migrate
application on the specific cloud environment. However, to the best of our
knowledge, there is no related work that suggests the use of application containers at

the architecture design phase.

3.6 Container-based Architecture Design Solutions

The proposed approach depends mainly on the architecture design phase of a
framework for developing portable cloud application architecture, as in figure 3.6.
Need to adopt and develop appropriate architectural design solutions depend on the
scenarios-based container design approach, that group application behavior to several
application scenarios in a container, each scenario is a solution using container
patterns to describe cloud application architecture design. Benefits outcome is to
reduce the complexity, minimize dependence, avoid vendor lock-in, and exploits the
functionality benefits that can be achieved through multi cloud architectures. Our
solutions represent in:-

1) Propose Development process to guide in designing containerized portable
cloud applications, for easier and better deployment on multiple cloud
platforms.

2) Propose and uses new container design patterns to describe architecture
design.

3) Present a development patterns approach for designing Scenarios-based
container, that group application behavior to several application scenarios in a
container, each scenario container is a solution that the system can be used,

reducing the complexity.

3.6.1 Development process for Container-based Design

Foe cloud application design, loosely couple identified as design criteria with
application components, that individual application components can use different
cloud offerings requirements. The loose coupling depend on (interdependence,
differentiation, and integration), provide a basis for developing the definition
(Pinelle & Gutwin 2005).

50

Loose coupling is a design strategy which allows us to reduce the
interdependencies between components of a system with the goal of reducing the risk
that changes in one component will require changes in any other component. It’s all
about thinking a problem in generic manner and which intended to increase the
flexibility of a system, make it more maintainable, and makes the entire framework
more stable.

Loose Coupling provides many advantages, such as:-

e Components in a loosely coupled system can be replaced with alternative
implementations that provide the same services, to the same platform,
language, operating system, or build environment.

e In the design of organizational processes, a modular approach with loosely
coupled components produce flexibility, helps to create the ability to
reconfigure the system by enabling new functional process variations.

e Adaptability: future functional requirements to take advantage of the existing

loosely coupled module than build a new, redundant module.

Process approach based on cloud design pattern development to describe
architecture components for cloud application to be configured, mapping between
patterns, identifying and selecting required patterns to decrease the level of
development (Cretella & Di Martino 2012) to gain container design for portable
cloud application. The design process is composed of iterative refinement

development process steps as shown in Figure 3.7.

4: 1:

Verify Select Scenario
Deployment for application

Scenario

3: 2:
Integrate Develop
current Scenario-based
scenario Container
architecture design

Figure 3.7 The iterative development process for multiple scenarios.

51

A

[1].Select Scenario for application: based on application analysis, metric of selecting
scenario with a high frequency of usage.
[2].Develop scenario-base container design: based on proposed container patterns,

the development process for independent scenario steps as shown in Figure 3.8.

5:Integration

? \4

1: Select . . . P " Scenario-based
: Container patterns ; ;
architecture style Refi P | > Container design for
ELE cloud application
architecture

A A

—> 3: Cloud patterns —

Figure 3.8 The development process for independent scenario-based container

design.

[3].Integrate current scenario architecture: integrate step 2, in addition to multiple
develop scenarios with their dependencies into a portable cloud application
container design, as shown in Figure 4 for deployment.

[4]. Verify deployment Scenario: approach based on using approaches and tools to

check deployment options for running cloud applications on multiple clouds.

3.6.2 Development of Independent Scenario-based Container Design

The steps of the development independent scenario-based design are:-

Step 1: Select architecture style for application

Architecture styles characterize families of architectures sharing common

characteristics specification, benefits in:-

* Identify Application type.

* Identify relevant architecture design for application support, based on annotated
UML diagrams to describe software system.

PaaS provide set of capabilities, using PaaS portability as evaluation criteria private/

public to specific applications.

52

Step 2: Define Application components for the scenario

To gain a flexible design need to benefit from loose coupling to allow reuse
and improve portability. Container: focuses on design application components that
represent well-defined communication interfaces containing methods, events, and
properties to be tightly coupled for deployment.
Step 3: Cloud pattern selection

Select adaptive cloud application patterns for scenario, to provide optimal
solutions, and to meet the scenario changes during development.
Pattern oriented analysis approach based on requirements analysis is used (Amar
Ibrahim 2016), consists of major steps. Requirements analysis, is important activities
(Lin et al. 2016), identifying app components and relevant cloud patterns. Adapted
cloud patterns include refinement to trace candidate selected cloud patterns to a

lower level of abstraction to give scalable design.

Application Requirements

,

L» Components
Requirements Analysis

l

' ldentify Scenario
Cloud

Cloud Patterns
o Based
application

patterns
Library Related cloud Cloud patterns
patterns - S selection

Candidate cloud patterns Selected Patterns

Figure 3.9 Pattern Oriented Analysis approach overview (Amar Ibrahim 2016).

53

This section discussed patterns oriented analysis approach (Amar Ibrahim 2016)

steps as follow:-

1) Application Requirements: Application requirements are a detailed description
of application services can be required from a customer, system and software for
a design or implementation.

2) Components Requirements Analysis: Analyze the existing application
requirements to identify problems to be solved and to determine conceptual
components.

Process: finding components to functionally identify problem and generate use

case diagrams. ldentify application component (logical level), if the application is

large analyzed into subsystems and subsystem analyzed in more details. Need to
iterate with other analytical activities:-

e Acquaintance activity: to identify sets of cloud design patterns will be used
in application design (from pattern library) patterns database activity.

e Retrieval: retrieve from patterns repository related patterns, process focus on
how to select given patterns, matching if related patterns should be selected,
to set as candidate design patterns.

3) Identify Scenario: Set of conceptual components for selected system use cases.

4) Cloud pattern selection: Select a set of cloud design patterns that will be used in
the cloud architecture design of each component, based on studying the
relationship between patterns.

Overall output selection of set of cloud design patterns will be used in design for the

various parts of the system.

Step 4: Container patterns Refinement
New candidate design patterns for cloud application architecture generate for
a solution put in a template-based container design patterns deal with how container

be designed to benefit a cloud application.

[5]. Integrate current scenario architecture: integrate step 2, in addition to multiple
develop scenarios with their dependencies into a portable cloud application
container design, as shown in Figure 4 for deployment.

[6]. Verify deployment Scenario: approach based on using approaches and tools to

check deployment options for running cloud applications on multiple clouds.

54

3.6.3 Multiple Scenarios Integration

Move application to another cloud provider, require to build an application in
small containers, that make application to work better, easier on multiple platforms.
We present development patterns for designing portable cloud applications in
containers. The presented design approach, group cloud application behavior to
several application scenarios of components in a container, as in Figure 3.10. The
development processes based on driven design for reuse multiple components of the
cloud application scenario to reduce the complexity. First cloud application
components should be loosely coupled into scenarios of containers to reduce the
dependencies among components. For each independent scenario-based container
design there are fundamental container patterns, as proposed in section 3.6.4 to use
with related cloud patterns, that help in developing container scenario functionalities.
The developed containers scenarios integrate to be portable and easily allow multiple
container scenarios/ independent container scenario for deployment of multiclouds

platforms.

A
Cloud Application

/ S <\
[N N -

[
1 .
: App containers \/ | Ul Container Communication
L gc_epz_:\r_iqs_ 4l | Design Container Design
4
v)
B I T T
J ' <
~——— = i\ I/__ ______\ PSS T
: Related Design Ly Related Design : : Related Design |
| PattermsforDB | Patterns for Ul | | PattemsforDB |
1 container /' \ container) container /'
----- - g e
° s |
, N ¢ S
N p Multiple scenarios i
---------------- U . integration '

Deploy all app scenarios "~
or part of app scenarios -~
7

Application container scenarios-
based design patterns

]
v N N ’
' PaaS Application < X ‘ .]
. s < ~
L services. -~ >~ ‘Cloudl .\\/// (r/

-\
\
. 4
N\

N
Ve

Figure 3.10 A Container based patterns for Portable cloud application design

overview.

55

3.7 Proposed Container design patterns for Cloud Application Architecture

We investigate fundamental Container design patterns for Cloud application

architecture, generate for a solution put in template based container design patterns

deal with how container be designed to benefit a cloud application.

3.7.1 Interface container design pattern
Table 3.3 Cloud Application Interface container design pattern
Category Fundamental Container design patterns for Cloud app architecture
Pattern Name | 2. Interface Container
Scenario container dependencies to other containers, that should be explicit
Intent L . .
by defining interfaces to be used by different containers.
Design How can scenario containers be accessed decoupled from the other

Problem container scenario?.

Create segregate container interface for each scenario design and multiply
_ inherit them into application container.

S[;fjf[?:n Interfaces for each container serves as a bridge between the synchronous
access of the specific scenario container and the asynchronous
communication with other containers scenarios.

1. Communication Container scenario based Patterns.

Related 2. User Interface.

Patterns 3. Data abstractor.

4. Adapter pattern.
Reference Figure 3.10: Integration container interface pattern.
Diagram
4 Scenaro 1
interface
Scenario 1 pattern
Container

container
Interface

Cloud App Container

Scenarios

Scenario 2
interface

pattern

Figure 3.11 Integration container Interface pattern, for each container scenario work
synchronously and for other scenarios works asynchronously.

56

3.7.2 Communication container pattern

Table 3.4 Communication container.

Category Fundamental Container design patterns for Cloud app architecture

Pattern Name | 3. Communication Container

Intent Scenarios containers share application container interface, that want to
collaborate for specific scenarios .
Design How can Container scenario communicate with another scenario container
Problem and isolate scenarios containers from complexity?
Design O Collaboration containers proxy scenario communication to and from
Solution the application container. Simplifies and standardizes the outside of the

application container.

O Enables the heterogeneous of legacy and open-source applications to
present a uniform interface without requiring modification of the
original application container.

Related
Patterns

Adapter pattern

Load Balancer

Interface container scenario design
Data access.

Chain container.

oA wNE

Reference Figure 3.11: Scenario based for integrating specific container scenario into
Diagram application container

Cloud App Container
Scenarios Based Design

Scenario
design3

Interface
Container

Communication
Container

Scenario
Container

Figure 3.12 Communication container interaction with scenario container using
interface container.

57

3.7.3 Database container design pattern

Table 3.5 Data Base container.

Category

Fundamental Container design patterns for Cloud app architecture

Pattern Name

4. Data Base Container

Intent Functionality to store and access data elements is provided by special components
that isolate complexity of data access, enable additional data consistency, and
ensure adjustability of handling data elements to meet different customer
requirements

Design How can the complexity of data storage due to access data consistency be hidden

Problem and isolated while ensuring data structure configure?
Design O Access to different data sources is integrated by a Data Access Component.
Solution O Component coordinates all data manipulation.

O In case a storage offering replaced or the interface of a storage offering
change, the Data Access Component is the only component that has to be
adjusted, ensuring loose coupling between application and cloud offerings.

Related Communication container pattern.
Patterns Interface Container pattern.

Stateless pattern.
Stateful pattern
Storage pattern

orwnE

3.7.4 Application scenarios container design pattern

Scenarios derive the characteristics of architecture directly from the high-

level requirements of the business. They are used to help identify and understand

business needs, and thereby to derive the business requirements that architecture

development has to address. Scenario describes business process, application, or set

of applications that can be enabled by the architecture, and the people (called

“actors”) who execute the scenario (Desfray & Raymond 2014).

58

Table 3.6 Cloud Application scenarios container design

Category

Fundamental Container design patterns for Cloud application architecture

Pattern Name

1. Application Scenarios container

Cloud application divides functionality requirements among multiple

Intent L
application components , using multiple scenarios for certain use case.
Design How can we design the application architecture to define an executable
Problem release that can be migrated easily in multiple cloud platforms?

Design Solution

Define the application architecture design such that we allocate tightly
coupled functional scenarios to one container.

Related 1.Distributed application patterns.

Patterns 2.Layer-based.
Reference Figure 3.9: Scenario based for integrating specific container scenario into
Diagram application container

sd Scenario basedContainer design/

Q App Conainer
X Scenarios Design
cloud app devloper App design App Scenario
Scenarios Components

I
I) I I
| Decompose app component() .

Container App deployment()

[
Select App Scenario() }

[
|
|
|
|
|

Companent functions() :
|
|
|
|
|

secify component()

identify cloud app patiems design suppert() Integration()

Scenario applied()
Scenario based container Designed() Rty

——

Figure 3.13. Scenario based for integrating specific container scenario into

application container.

59

3.7.5 Chain container design pattern

Table 3.7 Chain container.

Category Fundamental Container design patterns for Cloud app architecture

Pattern Name | 5. Chain Container

Intent Multiple scenarios containers, binding into a cloud application container design for
cloud deployment demand in a specific order.
Design How Application container interacts with other containers and get deployed?
Problem
Design The operational scheduling logic is pre-defined in a chain configuration that
Solution enables containers to be bound with various scenarios supported, including the
option of having pushed for deployment and suspend dependently of a scenario.
Related 1. Communication container pattern.
Patterns 2. Interface Container pattern.
3. Scenario container
Reference Figure 3.14: Scenario based for integrating specific container scenario into
Diagram application container

App Container
Scenarios Based Design patterns

Chain
Container

Chain
Container

Figure 3.14 Chain container to get deployed.

3.8 Proposed Method Evaluation

Proposed method evaluation based on the following approaches:-
1) Validate a methodology using scenario- based container design discussed in
chapter 4 and chapter 5 of case studies:-
U Migrating Students Academic Result Records Web base Service to the
cloud.
U Hajj and Umrah Mobile Healthcare System.
2) Verification deployment using a simulation tool, as in chapter 6 of case
study:-
O Migrating Online Pet Store Application to laaS cloud.

60

3.9 Summery

In this chapter, we discussed the methodology adopted for this research. A
research methodology was proposed as an approach to achieve the research
objectives. The proposed research methodology is explained according to the
framework of portable cloud application architecture. The framework development
phases have been explained in detail. For architecture design phase, the development
process for the container design approach has been proposed for multiple scenario
development. In addition, new container design patterns have been proposed for
architecture development support. The next two chapters present the evaluation in

architectural design of case studies for portable cloud applications.

61

CHAPTER IV

PORTABLE ARCHITECTURE DESIGN OF MIGRATING STUDENT
ACADEMIC RESULT RECORDS TO THE CLOUD

4.1 Introduction

There is a little concern for portability to benefit migrating existing
applications to cloud. Migrating application, data or services require efforts pose
many challenges such as data handling, architecting of the web applications to move
among different cloud platforms (Murugesan & Bojanova 2016). Layer architecture
provides features for designing cloud applications; these features decompose the
application into logical layers that benefits, enhance reusability, improve portability,
scalability, and support application changes for migrating (Council 2016) and
deployment in the cloud environments, act as loosely coupling solution to a gain a

flexible portable architecture design.

Presentation Academic Web <Interface>

Load Balancer

v I

Service Queue

Business layer [
Student Academic

Records service
Academic

Results process Tenants
Academic

Academic Results
functions

Scientific Affair
service

Results

Graduate
Certificate service =

Data layer
Y Data Access Data
process
-— <)
— container-based for S
portable cloud app arch

design

Figure 4.1 Layer architecture for student Academic Results Record Web service.

62

Presentation layer enables Academic officer and the system administrator to
add and update Academic Results; Students of college can view their academic
Result Records; Services layer to interact and select academic Examination Result
service; Business layer consists of implementing an application component. For
validation of methodological approaches, a case study had to be designed as
scenarios-based container for migrating to the cloud.

4.2 SAAR Architecture

The case study is motivated by our experience of Students Academic Result
Records System (SARR) for academic college with two different branches, need to
migrate examination results into the cloud, because the application lack of resource
sharing, and time consuming for producing reports. First, we reengineer application
into a web-based, because web application use for developing, deploying, and
maintaining. In addition Web applications is simple to use, scalable to service
requests, and has built-in data store and a flexible interface (Soliman et al. 2013).

Our architecture is based on Cloud computing that provides storage and
computing resources to to produce new Academic service for students. Our Web
application is categorized into two main parts: a front-end and a back-end. The front-
end serves as a Web interacting with students to review their academic results
records. The back-end serves as computing services for storage services for the

migrated data storing , based on public cloud deployment model.

Branch 1

Students

Academic
Results
Migration

Student
Main College

Academic Result ‘ . ' .
Records migrate >
: and view on the I I I
cloud I I I w

Secure login to
view Academic
Result Records

Branch 2

Figure 4.2 Overview of the Student Academic Results Records Web based cloud
application.

63

To better understand the needs of migration to cloud for the case study,
application architecture has been analyzed, defines detailed requirements mapped to
UML scenarios, described a high level includes actors, use cases and sequence
diagrams. Using UML notation as follows:-

(i) Use Case diagram: to describe the functional requirements of application
architecture.
(ii) Sequence diagram: address the dynamic behavior of a system. Used to

understand an interaction scenarios for the system.

uc Main Use Casel /

Student Academic Result Records System

System
configuration
\ Update Academic
AN \ N \

/ﬁninistralor
Generate
SystemReports

/
T

Academic Officer

Upload
Examination
Results

Generate Result
Reports

All actors need to verify their password for login system lﬁ

Figure 4.3 Use case diagram for the Academic Result system service.

The use case diagram illustrates the system objects, to determine the
scenarios of system. The system actors represent in:

1) Academic Officer: login the system, manage every branch students account,
create and update student result, search students' records, adds examination
results for students, entering student examination marks, and generate results
reports;

2) The administrator can view academic results, system maintenance,
aggregating different branches students result records, producing different
Results services in each college branch, and generate system reports; Students

login the system to query and view their academic result details.

64

4.3 Multiple Scenarios-based Development

To better understand, and develop the case study migrating Student academic
for examination results, the requirements for application described using UML
notation. The presented case study developed according to the proposed iterative

development process for multiple scenario steps as in Figure 3.7.

4.3.1 Scenario 1: Scenario-based on Student to view academic results

In regard of the academic result service, we considered that the number of
students remains constant in order to view academic results from different branches.
The requests are submitted to a web server, and the web server interacts with a cloud
server that consists of Multitenancy shared database. Finally, students view the
generated academic result records.

sd Student /
View Academic
Results
Student Student AcademicReltSystem Cloud DB

! |
loop login web for Student Results / ;
! login() :

*login result()
H< -----------------------

|
|
|
|
|
|
|
|
|
|
|
|
|
|

Py

|

Student_id()

Search Exam Results()

Valid Student()

I

I

|

|

|

|

|

|

I

I

|

|

|

|

L Display dudent'sAcadenic Record Results()

LJ‘-

‘ i i
I

Figure 4.4 Scenario-based for view student Academic Results Records use case.

The diagram represents the dynamic view of the system architecture. In
addition, it presents the searching scenario for a specific student. Based on student-

ID, the query moves from the service web to cloud database.

[1]. Scenariol development using cloud application patterns
Selected cloud patterns for application facilitate application developing, application
decomposes into isolated layers of components. Each layer consists of application

65

components providing certain function. Patterns selection based on pattern analysis

for cloud application requirements approach (Amar Ibrahim 2016).

Table 4.1 Summary for cloud application pattern selection.

Dedicated Component

Acquainta . Solution
d Retrieval
nce
1 Fundamental . Makes the system flexible to run different
Architectures Loose Coupling components on different cloud.
2 Stateful Component A synchronized internal state; Replication
Internal state.
3 Cloud Stateless Component Stora_gg Offerings (external); Increase
Elasticity.
Application ies; i
] PPN ey e | Betor Deprdecl o, B Lo
Components | Component : P
auto scaling group.
5 Processing functions to meet different
Processing Component customers, Split into separate functional
blocks (stateless).
6 Integrity of data and coordinates. Allow
Data Access Component multiple customers access the single
instance of the DB.
7 Ensure messages receive are processed
Transaction-based successfully and altered data successfully
Processor after processing. Deliver services to
enhance portability.
8 To improve resource sharing and user’s
access to the system.
Multi- Shared Component Deploying components on selected
Tenancy clouds; Deploying solution mechanism
over clouds; Optimize requirements for
clouds.
9 Ensure isolation between branches by
Tenant-isolated controlling tenant access, processing
Component performance used, and separation of
stored data.
10 Provided exclusively for each tenant using

the application.

66

[2]. Scenariol Container-based architecture design

Stateless DB1

DB
. Data
container GCCESS Stateless DB2
commun_ication Search record Stateless DB3
container

LB pattern Get student
= Student query | g Record

Scenariol-container design

Interface
o | colntamer

Figure 4.5 An annotated proposed scenario-based container design for web-based
Student Results service on clouds.

The figure above present scenario based architecture design diagram. The
diagram explains the use of container patterns with related cloud design patterns, for
specific student to searching academic result records. Based on student-ID, the query

moves from the web service to cloud database.
4.3.2 Scenario 2: Scenario-based on academic officer

An academic officer manages every branch of students account, upload
exams results, updates and maintains student results. Also view student Academic

result details.

sd Upload Data /
Upload Exam
Results
Academic Officer Student AcademicResuliSystem Cloud DB
1
1

I

locp login web service for Student Results /
T

! 1

: LoginSystem () 1

T
I

I

I

I

I

I

;

I

o _____loginResuts) ______| |

I

L I

I

T I

i ExtractStudentsRecords()

ExtractionDone()
e
Uplad Result Records() -

Check compatability()

f=’]

ImportStudentExam Results()

valid()

Exam Result uploaded()

A

?

Figure 4.6 Scenario-based for uploading student Academic Results Records.

67

[1]. Scenario 2 Development using cloud application patterns

Based on cloud patterns selection (Amar Ibrahim 2016) and application
component, each layer provides certain functions. Through user interface pattern:
login to specific college branch via web base service; then check the status of
academic officer requests, through elastic load balancer; The processing component
pattern used to perform specific academic Result tasks, such as result entry, modify,

upload exam data records, generate reports, query via the Service user interface.

[2]. Scenario2 Container-based architecture design

uploading on
Extract Exam ... LB pattern > dedicate DB
records

—— Stateless DB1 |
container FoKer r
Interface Stateless DB2
= j containe
g -
3 -
2 ol iy
S : communication specify Exam records Stateless DB3
=3 h . container
3 Officer login
Chain Insta_nce
container copied

Scenario2-container
design

Figure 4.7 An annotated proposed container design for an Academic officer to
upload Student Examinations Results on a cloud.

For an academic officer to upload students' exam records, we use a Broker to access
different data sources (branch web server). Cloud's side based on stateful pattern: to
create an instance of exam results; Multitenancy patterns used for shared different
college branches database, that help in reducing complexity of separate web
application into self contained services to interact with instances directly using

queue pattern.

68

4.3.3 Container-based architecture design for multiple integration scenarios
Multiple scenarios of usage for a case study, integrate into a container for

designing portable cloud application architecture.

DB
i Broker
container
g Scenariol ~ NE% .
H container

Interface
communication ; Chain

| » container
LB pattern

multi login container container

H Scenario2
— container
Processes

s19sn NINIA

App container Scenarios-
base design

Figure 4.8 An annotated proposed container design for migrating Students
Examination Results on clouds.

Figure 4.8, explain the coupling of multiple scenario dependencies'
architecture design for case study. The diagram is driven design that integrates the
scenarios-based development in a cloud application container design, to facilitate the
portable architectural container designed of case study for deploying on multiple

cloud platforms.

4.4 Summary

In this chapter, we presents Web-base service migrating Student Academic
Examination Results Records on clouds (SAAR) case study. Case study used to
validate our methodology for portability-based of cloud application architecture

design.

We applied our scenario- based development approach on a case study of a
web-based service for student academic result records service to validate our portable
architecture design. First step, we studied the legacy application to migrate students'

records in the cloud, because porting legacy applications, data or services, requiring a

69

significant effort to be invested in putting into in the cloud environment. In the
second step, the system requirements described using UML diagrams.

According to the scenario-based development process, the case study is
evaluated through iterative development steps for multiple system scenarios using
cloud patterns. Multiple scenarios integrated into a container for designing portable
architecture. The portable architecture design solution act as pluggable design,
provides a flexible cloud application architecture that can be easily deployed to
specific cloud / multiple clouds. Moreover, easing the development process,

minimize migration efforts, and prevent lock-in within cloud application.

70

CHAPTER YV

PORTABLE ARCHITECTURE DESIGN FOR HAJJ & UMRAH MOBILE
HEALTH CARE SYSTEM (HUMS)

5.1 Introduction

Information and Communication Technology (ICT) and Internet of Things
(I0T) technologies used to connect human life from different perspectives, such as
smart connectivity, smart home connectivity and smart cities, are forecasted to grow
at an astounding rate. In addition, these devices are expected to accelerate benefits
for major social and environmental needs such as improved healthcare using smart
mobile technology, that supports the backbone of enhancing quality of life (Kuo &
Hsu 2017) .

The Smart Mobile device requires a great deal of effort to benefit from
capabilities such as, Wi-Fi, cameras, storage, GPS and speed processors. As a result,
developers build more complex mobile applications (Elgendy et al. 2014). We
motivate to benefit from smart mobile capabilities (Ahmad et al. 2017) for patient

healthcare in large crowd events.

5.1.1 Electronic Health Records (EHRS)

Electronic Health Record (EHR) is defined as “a longitudinal electronic
record of patient health information generated by one or more encounters in any
care delivery setting”. Included patient demographics, progress notes, problems,
medications, vital signs, past medical history, immunizations, laboratory data, and
radiology reports. Another definition “the set of components that forms the
mechanism by which EHRs are created, used, stored, and retrieved”, allow sharing
health information between different systems in different Care Delivery
Organizations (Youssef 2014). The key benefit, as shown in Figure 5.1, with the
access of medical information that will improve patient safety, enhanced accuracy
health Information, decrease cost and medical errors, more thorough documentation
and increased quality of care and better patient notification.

71

R
Hospital |
Inpatient Ambulatory\

- - >

Long Term Care ‘//

Emergency Room

>

k

=«

Patient

Laboratory

Radiology Pharmacy

Figure 5.1 The importance of the electronic health record(EHR), with integrated
information from multiple resources (Amar & Hany 2017).

5.1.2 Mobile Technology

Mobile Device is a generic term used to refer to a variety of devices that
allow people to access data and information from where ever they are (Kottari et al.
2013). Mobile phones present applications that have been developed to provide
various services and facilities to assist healthcare professionals such as: information
and time management; health record maintenance and access; patient management
and monitoring; clinical decision-making; and medical education and training. In
addition mobile technology provides a number of important benefits to healthcare
such as improve geographic coverage by providing patient care through information
exchange and better connect to healthcare professionals anywhere and anytime
(Ventola 2014), communication capabilities, information sharing facilitate faster
diagnoses and treatment and reducing paper consumption for both hospitals and
healthcare professionals.

Moreover, Smart Mobile technology enables users to access data and services for
patients in the health domain. Mobile Health is an emerging field of medical
technology, where mobile applications developed to provide many tasks and
functions on mobile devices, such as assist the public health activities. Mobile health,
defined as “mobile computing, medical sensor, and communication technologies for
healthcare,” refers as a new approach to health care based on mobile communication
devices such as cell phones and tablets to collect data which increases patients’

information, reduces medical centers efforts, and reduces costs (Duarte et al. 2015).

72

5.1.3 Mobile Cloud Healthcare

Mobile Cloud Computing (MCC) define as an emergent mobile cloud
paradigm which leverage mobile computing, networking, and cloud computing to
study mobile service models, develop mobile cloud infrastructures, platforms, and
service applications for mobile clients (Huang 2011). Mobile Cloud Computing has
many advantages such as improving data storage capacity and processing power
(Lo’ai et al. 2016), improving reliability and availability, scaled to meet
unpredictable user demands, allows portable communication, and integrated different

services from different providers easily to meet the users' demands.

Data center owners or
cloud service providers

Cloud Computing

Mobile network B

1
1
1
1

N
&’r{alelllxe

Mobile Network Services

N
\,
/
/
N /
/
/
A /
\, /
H > i
I >
H i
| '
\ N
' p s
H i
_________ '

Application

seters

Application service providers

Internet service

Mobile users Network operators
fe u w P providers (ISPs)

Figure 5.2. Mobile Cloud Computing Architecture (Lo’ai et al. 2016).

The traditional healthcare method is being replaced by smarter healthcare
such as Mobile Healthcare (Lee et al. 2015). The combination of cloud computing
and mobile networks bring benefits for mobile users, network operators and cloud

providers.

The existing health information systems suffer from many challenges to developing
such as standards for information sharing, high cost of creating independent systems,
management problems, updating and maintenance issues (Setareh et al. 2014).
Solutions depend on the adoption of cloud computing technology in healthcare to
analyze and provide patients’ information from multiple EHR repositories

accurately, securely and fast, to exchange HER as shown in Figure 5.3.

73

Physician Practice
» Lakeview Hospital A

!HHL

Specialist

F

= o , il
- o W Y
A |

Hospital |

- University Hospital

——

. Pathology

v
IS
o
@
o
g

H!HL

= - Central Hospital “ Payers
[rao | m'J

I

f

Hospital IS

Figure 5.3. Cloud Health Exchange (Amar & Hany 2017).

5.2 Hajj and Umrah Mobile Healthcare System (HUMS) Architecture

The role of Information and Communication Technology (ICT) for large
crowd events in smart cities will continue to grow with the growing service demands.
An important service is Healthcare’s use of smart mobile technologies for patients’.
One of the important event is Hajj and Umrah for Muslims.

Hajj is a hard journey and requires great effort. The Hajj is an Islamic event
once every year, while Umrah continues during a year. Muslims from all over the
world arrive to Kingdom of Saudi Arabia (KSA) for the purpose of Hajj or Umrah
or for seasonal work surrounding the holy cities and visiting the historical sites. The
Ministry of Health established hospitals, health centers and employ qualified medical
staff to provide all levels of healthcare to pilgrims such as emergencies for adults,
women and children. To obtain an entry visa for Hajj and Umrah, it is necessary to
get health requirements such as a vaccination certificate for Yellow fever,
Meningococcal meningitis, Poliomyelitis, Seasonal influenza and Zika virus disease
and Dengue (Al-Tawfiq & Memish 2014). In addition, health education is required to
protect pilgrims against infectious and communicable diseases, such as chronic
diseases, hygiene and general cleanliness, protection against food poisoning and heat
exhaustion, managing with the crowds.

74

The following present the requirements with the help of a UML notation, to describe
a high level system architecture includes main system stakeholders and use cases as

follow:-

Q View Patient Profile

Patient

-

Medical Staff

I~

operator

- 1 N
7 N\ . . -
Provide Patient Reports I,’ Retrieve Medical History
1
;
Update Patient Records

Figure 5.4 HUMH system use case diagram.

The different use case for actors' interaction with Hajj and Umrah Healthcare System
(Amar & Hany 2017) are:-

O View patient profile: patient mange and edit his account login password,
initial information includes (trip visa information, hosting agency, location
address Hajji will be transported to, hosting agency and medical record
information).

O Mange Application: used to maintain the records and provide off premises
repository for health information.

O Support EHR Services: when a service used, the request firstly goes to a
service gateway to meet the requirements and then sends the result to the
user.

O Mange Patient Status: include all or part of retrieving medical history for
what a patient is suffering from, provide patient reports for diagnostic test
result and update patient statues, statues can be:-

e Diagnose the problem to give the patient the proper treatment.
e Approve: add or edit new patient status.

e Review: for current patient status.

75

5.3 Enterprise Architecture (EA) Development Approach

Many enterprises have started to develop their architecture capabilities to
utilizing IT resources and deliver business values, based on EA to achieve the vision
and strategic goals by providing the enterprise views used to integrate technology
and business.

There exists a gap between smart mobile technology and development needs
for healthcare companies (Elgendy et al. 2014) that continue to possess increasing
levels of complexity.

Our goal is to develop an architectural container-based design facilitates the
process of getting healthcare services over cloud environment efficient and increase

electronic collection of health information.

5.3.1 Enterprise Architecture (EA) Definition

Enterprise Architecture is a practical management approach, which offers
improvement to an enterprise in many ways. An enterprise architecture is a
conceptual blueprint that defines the structure and operation of an organization,
determines how an organization can achieve effectively its current and future
objectives (Pescosolido et al. 2016).

Enterprise architecture as a planning tool that can be used to design the new
dimension of services which provides solutions to improve the productivity of
enterprises. Without an enterprise architecture, the result could be a source of
duplication, lack of integration, inefficient information exchange, or ineffective

technology support (Ahsan et al. 2010).

5.3.2 TOGAF Development Approach

The Open Group Architecture Framework (TOGAF), describes required
business and ICT architecture. In addition, Provides a step by step approach in
building and implementing EA (Yuliana & Rahardjo 2016); Focuses on the process
to develop and implement architectures.

TOGAF has long been recognized as a major reference in the field of

enterprise architecture. It meets a real need: the need for a common framework that

76

will facilitate the capitalization and mutualization of architectural practices
throughout a community (Desfray & Raymond 2014). More specifically,
O TOGAF is positioned as a generic method, which groups together a set of
techniques focusing on the transformation of enterprise architecture.
L TOGAF can be applied to all types of architecture, including architecture
based on enterprise resource planning systems.
O TOGAF provides a pragmatic view of enterprise architecture, while

highlighting the central role of the organization.

Strategy & 1: Identify Problem and Motivation
Motivation Analysis solution for Mobile Health events
2: Define Objectives
Arc ure
Application 3: Design and Development
Architecture Based on cloud design patterns
4. Software & Hardware

Archi ure Deployment on Clouds

Demonstration 5: Implementation & Migration

Validate solution & Migration plan

Figure 5.5 Enterprise Architecture development phases (Desfray & Raymond 2014).

Architecture Development Method (ADM) is the main entry point to the
TOGAF. The aim of an ADM cycle is to successfully complete a transformation
project, whose aim is to enable the enterprise to respond to a set of business goals.
ADM presents the structure of the method with its phases and transitions (Desfray &
Raymond 2014). The phases define the high-level work stages, which consume and
provide products (deliverables). Each of the phases contributes to achieving
determined strategic objectives. The development phases are:-

1) Business Architecture phase

Based on the required processes to offer services for business applications,

describing application components and interaction, logical data entities and

relationships. Covers strategy, goals, business processes, functions, and

organization.

77

2) Application Architecture phase
Defines software components (applications and data) that support their
interactions of business capabilities and functions. For Data architecture,
dedicated to the organization and management of information.

3) Technology Architecture phase
Describes the techniques and components deployed, as well as networks and

the physical infrastructure upon which the applications and data sources run.

5.3.3 The ArchiMate Tool

The ArchiMate is a visual modeling standard for enterprise and solution
architecture, published by The Open Group. An Open Group standard aligned with
the TOGAF framework for enterprise architecture. The ArchiMate modeling
language is dedicated to enterprise architecture modeling, provides a representation
for models to support the complete architecture development cycle. Added concepts
for modeling strategy, capability-based planning and related domains. Adapting
existing standards, both in order to benefit from tools and to address a wide
community of practitioners familiar with UML and BPMN (Desfray & Raymond
2014).

5.3.4 HUMS Architecture Design uses Enterprise Architecture Approach

We are focusing on application architecture phase. For application
architecture phase, we are adapting TOGAF with architecture development method
(ADM) to propose a high level HUMS architecture design view. Details architecture
views of an ArchiMate model illustrated in Appendix B.

The development steps are:-
Stepl: Mobile Application Architecture design

Need to create architecture that, minimizes costs and maintenance,
requirements. Mobile application be structured as a multilayered application
consisting of presentation, business, and data layers. Each layer is separation of
concern with distinct features. Moreover, layer promotes usability , extendibility,

maintainability and portability for mobile application (Meier et al. 2008).

78

T
Individwal ser |
Mobile Client Application 1 ™
= L Ty
= e T e e N
—_ U Cormpea nents
=S
= Zx - ~
e — Presentaticm Logic Sonmpoments =
= ~ - =
= = =
= = &
= = 5
- - = | £ = =
ﬁ = Application Fagade s o o s
= oo - oo ST T oI ITTooo-—e - = b= =
=5 o= - 2L N B = g || 2
E - Usiness - Business Business L =
= Workflow _I* Components | Entities =] =2
]
E = Data Access | r Data Helpers, y Serwvice
. '
ﬂE Components W _ _Urilities Agents AN A
e iy
1: +
o =S
Local Data Unreliable
and Cache ' Metworks
1 - —
A . 3 A
Data Synchronization
" -+ ~
. ra TN
(2 T) [seviee)
- A o ey
_Mobile Support Infrastructure W,

Figure 5.6 Layer Architecture for Mobile Application (Meier et al. 2008).

Step2: TOGAF Development
The TOGAF and Architecture Development Method (ADM) are used.

Mobile Health Application capabilities
Collection £ Preparation e Diagnose £H Visualization of Access dH
S S - S —
! ! —® i i
Gal}_lm patigut =5 Link —=» _ — Health —=» ___ _ i~ Prepars —> Puzh for —»
mobile medical —-——r—- - EHR. status for ——r* Extranst
records visualize
[i
H W
Input data Data lake Intermediate data set multi Web
i - dim tool
Mobile Health activity Mobile Health activity Mobile Health activity — P id data DB
- szt
Mobile medical record Mobile medical record Mobile medical record —
Patient Profile Patient Profile Patient Profile 1|
Patient Status
5 Application pracess 757 Graupirg =T Flonae relation
F Data object = L ticrs = Access relatiam
!:é Capaility '__rg Realizatcary relationr ,-"'_ Associ=mticory relaticrs

Figure 5.7 Enterprise Mobile healthcare application capabilities based design.

Based on the figure above, mobile healthcare application architecture consists of:-
O Application Capabilities: represent in:-
e Collection: by extending access to information and processes to mobile,

ensures that business continues to run efficiently.

79

Preparation: prepares all data in the mobile featured service from an
enterprise geographical database (EHR).

Diagnostic Analytics: provide accurate analytics on mobile health app
users, measure customer in app behavior events, can make data driven
decisions to increase connection and monetization for Health app.
Visualization: to give the best and accurate data, analyze multiple
sources from anywhere with instance mobile and easily create
integration.

Access: describes a general Mobile Access (MA) capabilities solution to
make work much easier, depending on implementing the solution to
protect across either an un-trusted network or a network of a different

classification level.

O Application Process: consist of:-

Gather Data: Gather Patient Mobile Medical Record.

Link Data: Link EHR.

Health status: from the patient profile, determine health status scale,
such as high risk, low risk, etc.

Prepare for Visualization: describe any effort to help people understand

the significance of data by placing it in a visual context.

U Data Objects: consist of the following:-

Input data object: includes mobile health, activity, mobile medical record
and patient profile. For enterprise goals, patient profile is a demographic
data collected to build and generate a profile for the enterprise's patients
to be used for medical purposes by specialists.

Data lake object: using cloud data storage, to store an amount of online
data, where data are remotely maintained, managed and backed up.
Intermediate data set object: using patient identity for improving cloud

efficiency.

80

5.4 Scenario-based Container Architecture Design Approach

We use our proposed method to evaluate a case study based on selecting
application scenario for development.

541 HUMS Architecture

Hajj and Umrah Mobile Healthcare System (HUMS), provide services for
online access to health records for specific patients, maintains the medical history
records aim to assist medical staff to aid pilgrims by accessing their Electronic
Health Records and gather data for patient's to provide accurate and quality services
(Amar lbrahim et al. 2017). Electronic Health Records are in the cloud database,
shared from multiple healthcare organizations, allow patient to view their health
record profile and for medical staff to view and mange patient healthcare status.

5.4.2 Independent Scenario-based Development

In this thesis, the metric of selecting application scenario depend on a high
frequency of usage. The UML notation in Figure 5.8, for medical staff to retrieve
patient medical records.

sd sequence Diagram J
o O «Functional» «Functional»
x X HUMHs Controller EHR Sewvices
Patient MedicalStati Manager doudAppSenices
! T
| I
1
! l
| Doctor ID]) !
1 -
I jgn
. Patient ID() !

y

|
i
i
|
3
O
1
|
|
\
|
i
i
|
I
|
|
i
|

|
Display Patient Profile()
- ;

CheckAccess)

[i Reterive Medical History()

search patient EHR()

Patient Information()

%

Display patient Diagnods and Treatment()

Display current Patient statues()

Update Patient Record()

I
I
I
|
i
I
-
g m
I
I
|
I

Figure 5.8 Scenario-based for the retrieve medical history use case.

81

The scenario represents the management of access to electronic health record,
supports medical staff and professionals for better patient diagnosis, checking patient
history records, and collaborating with other enterprises such as the patient’s
physician offices, Emergency Medical Services (EMS) and the World Health

Organizations for data exchange over the cloud.

5.4.3 Scenario-based Development process

Scenario-based development process, based on Figure 3.8 for independent
scenario-based container design is adopted. The steps as follows:-
Step 1: Select Architecture style:
Layer architecture is used as shown in Figure 5.6. And we used Hybrid cloud
platform as portability criteria for deploying our application.
Step 2: Independent Scenario Development
Applying cloud patterns for scenario, based on (Amar Ibrahim 2016) to select cloud
application patterns, that used with proposed container patterns for development.
Step 3: Container-based Architecture Design

Integrate step2 into a mobile cloud application container design.

Retrieve

Enterprises network T 0N from /Add
"""" to medical

Stateful Stateless DB1 Bl

i

EHR Data

— services |
I DB Stateless DB2 1]

Interface -
container container

_l

Stateless DB3 iy

processing
communication |
container Update patient record

Check . .
e patient MCC-container scenario
e =

Figure 5.9 Annotated scenario-based container Architecure Design, for searching,
retrieving / adding diagnose EHR.

Jaurejuod ddy
COIN 1S [edIpaN

82

Based on the high frequency of usage, scenario-based for retrieving medical
history records has been selected. Medical staff for Hajj and Umrah push mobile
application over a public network, based on communication container services to
connect through a mobile network provider using interface container pattern as
gateway, based on the load balancer to sending requests. To retrieve patient health
information, we used database container for cloud data service providers, that store
instances of EHR for enterprise health organizations with stateful pattern support.
Then, based on authentication through data access for enterprise health network to
check stateless enterprise database for retrieving patient information record scenario,
in addition we also achieve patient records update by adding new diagnoses and
treatment. The architecture provides flexible services that improve the patient’s

quality of life.

5.5 A comparison of two development approaches with different Design

An architecture design method provides support for a design process to meet
the development goal. The proposed method is compared with Enterprise
Architecture (EA) for development of portable cloud applications. We summarize the
comparison as follows:-

O EA is a business oriented approach provide views, from different
application's functionality to support business processes, while our
container is a scenario-based approach for architecture evaluation.

U Both EA and Container-based approaches use model driven design (MDD)
for a development based on capabilities.

O EA design is developed using TOGAF architecture, defined based on strategy
to represent deployment and allow application components to communicate
and exchange data, while our method based on iterative scenario generate
based on requirements influence by certain stakeholder, that improve the
interaction during system development process (lonita et al. 2002).

U EA goals and capabilities take more time to facilitate architecture, while
scenario is driven architecture to specific services in less time.

O Container-based design evolve container patterns with cloud application

patterns techniques for development and deployment support, while EA

83

collaborate based on capability based planning for deployment target
architecture.

In our experience, scenario-based assessment is particularly useful for
development portable cloud application architecture design through develop

scenarios.

5.6 Summery

This chapter presents a detailed explanation of the scenario-based container
design that has been designed for Hajj and Umrah Mobile Healthcare System
(HUMS) case study. The main objective is to validate our methodology container-
based design for portable cloud application architecture.

Two papers have been published with support in the case study. The first one
presents a Requirements model for HUMS event case study. The objective of the
model is to improve health care procedures during Hajj and Umrah.

The second paper, used Enterprise Architecture to design standard
architecture views for mobile healthcare generic events and integrate ICT services
from different enterprises to retrieve health information, that improved accuracy and
help to make healthcare duties more efficiently.

To validate HUMS case study, the development process for independent
scenario-based container design approach has been designed for portable cloud
application architecture design. In addition, another development approach for the
case study has been designed, based on the TOGAF framework. The comparison for

two development approach has been presented.

84

CHAPTER VI

MIGRATING ONLINE PET STORE APPLICATION TO CLOUD

6.1 Introduction

In the previous two chapters, the architectural design of portable cloud
applications has been validated. This chapter elaborates the details of verifying
deployment options, for case study migrating (an Online Pet store application) to the
cloud. The systems were built on a cloud to benefit it's capabilities for enabling
scalability and cost effectiveness, for migration to laaS and PaaS environments.

There exist different cloud deployment options (CDOs) tools that can be used
to verify cloud deployment options (CDOs), but appropriate support for comparing
CDOs is missing. The CloudMIG simulation tool is used. CloudMIG from OMG’s
Architecture-Driven Modernization (ADM), that supports SaaS providers to migrate
existing enterprise software systems to laaS and PaaS-based cloud environments.
The reason behind choosing a simulation tool, that it is much more powerful, clearer,

and occupies with multiple cloud applications.

6.2 CloudMIG Xpress

CloudMIG Xpress is a Graphical User Interface (GUI) application that
provides tool support for cloud migration approach. CloudMIG aims at supporting
SaaS providers to semi-automatically migrate existing enterprise software systems
for scalability and resource efficient PaaS and laaS-based applications. A focus lies
on the migration of client/ server enterprise systems as those often exhibits varying
user demand. CloudMIG Xpress is developed to support (future) cloud users during
the process of migrating software systems in a cloud environment and allows
conformance checks between deployments and cloud offerings (Bergmayr et al.
2014).

85

[CloudMIG Xpress
File Project View Tools Config Help

Olgad0=:0

$ Code Model (1)
£, Deployment Model (0
il Utilzation Model (0)

[l Cloud Migrtioniew » Recently Used Projects

~ Current System View ~ Cloud Migration View

Model the software system that shall be migrated to the cloud Explore the opportunities of 3 cloud migration
€ 11 Create Code Model o Modify © 2.1 Select Cloud Candidates

55 1.2 Create Deployment Model Medify

il 1.3 Create Utilization Model

] Current System View

T d) ENG

10:36AM

Figure 6.1 CloudMIG Xpress main screen.

The CloudMIG Xpress addresses those kinds of challenges and provides tool support

for the comparison and planning phases to migrate software systems to PaaS or laaS-

based clouds.

6.2.1 CloudMIG Xpress Features

e Focuses on the technical challenges of a migration, also provide tool support

for cloud migration approach.

o Bases on the Eclipse client platform and can be used with several databases.

o Extract code models from Java-based software
e Model the current system deployment
o Create workload profiles from real monitoring data

o Simulate various cloud deployment options

e Graph-based visualization of detecting cloud environment constraints

(CECs).

o Compare the suitability of different cloud profiles (e.g., Costs and CECs).

« Estimate future costs, response times, and SLA violations

86

6.2.2 CloudMIG Xpress Activities

CloudMIG is composed of six main activities for migrating an enterprise
system to a cloud environment. It provides model-driven generation of considerable
parts of the system’s target architecture (Frey & Hasselbring 2010b).

1) Extraction of a model which defines the architecture and an SMM model for
relevant metrics.
2) Selection of a cloud provider, which is defined according to a Cloud

Environment Metamodel.

3) Generation of the target architecture.

4) An Adaptation of the target architecture to accommodate user-specific
requirements.

5) Evaluation of the target architecture using CloudSIM.

6) The transformation of the legacy system to match the target architecture.

6.3 The Pet Store Web-based Application Service

Pet Store is an open source web-based shop system for selling pets like birds
and fishes. It is mainly written in Java and JSP and comprises only 24 Java classes
and 1,432 lines of Java code. We selected pet store as a case study for evaluation.

6.3.1 Pet Store Overview:

Pet Store is an e-commerce application where customers can buy pet products in
various categories online. The application has a Web site through which it presents
an interface to customers.

The Pet Store is original Java based web application powered by Sun
MicroSystems, was built to provide a working model of various components
integrated together and also to demonstrate how different technologies could be used.
The Java Pet Store application demonstrates certain models and design patterns
(Nambiar 2005).

The Pet Store contains three sample applications:

o Java Pet Store: The main Blueprints application.

o Pet Store Administrator: The administrator module for the Java Pet Store.

e Blueprints Mailer: A mini-application that presents some of the Blueprints

design guidelines in a smaller package.

87

a Welcome to the BluePrints Petstore - Microsoft Internet Explorer gl
Fle Edit View Favorites Tools Help o
Qe -) Iﬂ @ fl /-]Sear(h ‘\:‘:/F aaaaa tos) -dg & - [§E @ B
Address €] http:/flacalhost: B080/petstareimain.screen [v| B
Google - ~| fpsearchweb - 2 | 5D 37 blocked [options
R][search wieb [+] 3+ @i- | Emal - @ myvanoo [Games - 9 Basketbal - ¥ Personak v § Music « il Finance + [SianIn |~

~
3 -5 h
-+ Java™ Pet Store et
¥ J2EE™ BluePrints Sample Application .
P PP Account | Cart | Signin
= [« @
[+
&] %) Local intranet

Figure 6.2 Home page for online Pet Store web application
The figure view how users interact with the application,
that allows customers to buy items online.

6.3.2 Requirement & Specifications

In the Pet Store other than the customer, there are other users. Each class of
users has access to specific categories of functionality, and interact with it using
specific user interface (Nambiar 2005). We describe the pet store architecture using
UML notation, as in Figure 6.3.

X

SMdministrator

Approwve
Purchasc Ordor

Managc
Moo ot
X
Ship an Order
<= -mail (Reooive Custom.cr) “i%?ﬁ:c
Oirder Status
Customer

=S¥ st
Credit Card Scrvicos

Figure 6.3 Use case diagram for Pet Store Application.

88

O Customer: A Customer will need some links on the page so as to get quick
access to all tasks. It also requires a catalog and a search mechanism to get an
organized view of items and providing a way to locate items. For the products
all the detail showing their price, availability, picture should be available. A
shopping cart to add and remove items, and a checkout bill showing the total
order cost and billing information.

O Administrator: requires all the features of a customer, modifying options for
the product and the inventory status, such as maintaining inventory is
committed to the database and performing other managerial tasks, and
associated businesses such as suppliers.

O Business: requirement and specifications are mostly related to security.
Hence user authentication is important so that a user is identified to access a
protected area. Some kind of user information, such as a credit card number,
must be transmitted confidentially to the application and some kind of user

administrations must be present for the growing number of users.

6.3.3 Use case for customer Interactions

A customer connects to the application's home page. The customer can browse
through the catalog to see a list of all the products or search for products, the
customer can sign into the application by providing an account identifier and a
password. When the customer signs in, the application can recall information about
the customer such as a preferred shipping address and billing information, buying
preferences, and so on.

The customer then selects a particular product in the list resulting in the detailed
information like image of the product along with pricing information of the product.
When the customer decides to purchase using the shopping cart to order the items in
the shopping cart at any time. When the customer confirms the order, the application
begins to gather shipping and billing information for the order. First, it presents a
form, where the customer can enter shipping information (Nambiar 2005). Finally
the customer confirms the order and the application accepts the order for delivery. A
receipt including a unique order number and other order details is presented to the
customer. The application validates credit card and other information, updates its

inventory database, and optionally sends a confirmation message via email.

89

Figure 6.4 Use Case between the Customer and the Web Site.

Table 6.1 Summary for customer actions and description.

ACTOR ACTION DESCRIPTION

Customer Browse catalog Each category has several products associated
with it

Customer Browse Detail Each product variant has detailed view that
displays the product description, a product image,
price, and the quantity in stock.

Customer Browse Item Each Item is viewed.

Customer Browse Products If we now select a product the application will
display all variants of the product.

Customer Update Cart This allows the user to manipulate the shopping
cart (add, remove, and update line items).

Customer Update Personal Info | This allows user to update his personal
information

Customer Update Account The checkout page displays the shopping cart.

Customer Submit Order The billing and the shipping addresses are
displayed.

Customer Purchase Order The final step wherein the order is committed to

the database.

6.3.4 Pet Store Architectural Design

The Pet Store application is based on the Model View Controller pattern,

separates data presentation, data representation, and application behavior. The

architecture consists of three components: the model, the view and the controller.

90

The model encapsulates the core data and business functionality of the application.
The view encapsulates the task of displaying the information to the user i.e. data
presentation. Each view has an associated controller, which encapsulates the
interaction of the user with the system, and abstracts the system behavior by sending
service requests to the model for some operation on the data. By separating business
and control logic from data presentation, the architecture provides the flexibility to
handle such application complexity. The architecture provides flexibility, reusability,
testability, extensibility, and clear design roles for application components (Nambiar
2005).

View Controlier MModel
VYeb User v v s
¥veb LUser

i NeedSomelnformation :
. o

HandleEvent »_L :
Querylnformation - :
[ResultSet]
P e = S e e S -
DoValidation(.)
E o UpdateViewt) |
e _NotifyUser() ___ | |

Figure 6.5 Sequence diagram for Pet store using MVC model, adpated from
(Nambiar 2005).

6.4 Verification Method for migrating Pet Store to the cloud

The objective of this section, to answer the third research question, using and
explores the CloudMIG Xpress simulation tool to verify cloud application portability
on multiclouds. As mentioned in chapter Ill, a framework for cloud application
development. For deployment phase the developed Architecture design needs to

verify various deployment options to achieve portability on multiple cloud platforms.

In the following subsections, we will discuss the case study verification
through the stage’s steps, using various approaches for simulation to estimated
attributes for deployment as follows:-

91

6.4.1 Select cloud Candidates
Portability achieved by selecting a cloud profiles for Public cloud
environments Google App for Java, Microsoft Windows Azure's virtual machine,

and Eucalyptus cloud.

(53 CloudMIG Xpress = X
File Project View Tool: Config Help

Ois&d|O0=0

Compute Cloud (EC2))
p Engi
© Microsoft Corporation (Microsoft Windows Azure Web Role)

Available Cloud Profiles
Amazon Web Services LLC (Amazon Elastic Compute Cloud (EC2))
G AppEs

jon (Mi

Azure Virtual Machine Role)
ft Windows Azure Web Role)
ft Windows Azure Worker Role)

SE Group Kiel (Eucalyptus)

. 12PM
£ R NG e B

Figure 6.6 The selection of Candidate cloud environments.
Cloud profiles selection, used to evaluate the possibilities of a migration to a specific
provider or many providers.

6.4.2 Create Utilization Model (workload profile)

Workload profiles specify a particular user demand. There are two
approaches, workload synthetic and from monitoring data. We used the first
approach. We used, workloads from synthetic Data approach to be correlated with

the computational capacity of the machine that was used to run the software.

92

) CloudMIG Xpress - I3
File Project View Tools Config Help

Workload Profiles (7]

- Asign MWC >

t: dayls)

() Predefined AR Function:

E Save Profile 2 Piot AR Function & Eit Profile

Figure 6.7 Workload profile using synthetic approach.

e Model period: time period spanning the modeled time framework and a unit of
time.

e Method workload characteristic (MWC) : describes the characteristic values for
modeling a user demand for one or more procedures, functions, or methods.

e Arrival Rate (AR) function: to specify the workload, get assigned to one or more
methods and take a time designation as their argument. AR function has Custom

and Predefined method.

6.4.3 Create Cloud Deployment Option (CDO)

Cloud deployment options (CDOs), comprises a combination of a specific
cloud environment, deployment architecture, and runtime reconfiguration rules for
dynamic resource scaling (Frey et al. 2013).

Methods to create CDOs are either manual or automatic that are comprised of the
code elements of virtual machines included in that cloud environment, and
reconfiguration rules that allow to specify starting and stopping criteria for virtual

machines.

93

\=1
o
BRI 5 Cloud Deployment Option Creation o X _
Compute Best Suited Cloud Deployment Option - e
Step 2 of 3 - Configure the settings for simulating the cloud deployment option candidates -
Configuration
Warkload profile Petstore (synthetic]
SLaviolation if method response time exceads: s v seconds
Simulafion time limit (per candidate): ® - seconds
Gverall tme imit u
Less imparam] veryimporant
Less important 1 Very Impartant
Less important | Very impartant
Bk Cance

Figure 6.8 Automatic Optimized method used to create CDOs.

Our created workload profile (Pet Store (synthetic)) is used as an input to evaluate a
CDO with selected mode configuration. CDO determines which cloud environment,
cloud resource types, deployment architecture, and runtime reconfiguration rules for

exploiting the cloud’s elasticity should be used

6.4.4 CDO Simulation

The optimization process using Cloud Deployment Option Simulator
(CDOSim), and method (Optimized) to evaluate CDOs, and computes potential
costs, response times, and number of SLA violations. Automatic Optimized creating

CDOs for laaS-based cloud profiles that are selected as the input for the simulator.

[Cloud Deployment Option Creation o x
Compute Best Suited Cloud .
Step 3 of 3- Runthe cloud deployr - &l =5
19325
-88.5%
2 17889 ms
2 48%
284028
Detail 557%
Cost Median Response Times (MRT) SLA Violations
200
150
&
% 100
8
50
0 L
> K
=l T
N candidates = i
Proj
Back Net> | swn E

ETTY]
® o) e e B

Figure 6.9 Different optimization process parameters simulated for case study data
using many (cloud environment) candidates.

94

6.5 Results Discussion

This section shows the results of the experiments which were carried out
based on CloudMIG Xpress methods that directly reflect the verification of cloud
deployment options (CDO). The simulation verifying of a case study against
different deployment locations and different attributes scale (Cost, Medium response
time, and SLA violation). Based on the results, the evaluation criteria Medium
Response Time (MRT) was used. Furthermore, the detailed analysis of results is also

provided, as presented in Table 6.2.

Table 6.2 Median Response Time (MRT) Simulation Results for Pet Store data.

simulation Resul Cloud MRT Better than
imufation/Resuit Candidates (Ms) all
R 2 1758.89ms 48%
[_I lllr:".lt‘.unlh.u:‘ﬁ‘
2 3 1758.89ms 64.8%
3 4 1753.46ms 48.1%
4 | | 5 1753.46ms 0.3%

95

The results of the experiment verification are shown in Table 6.2 with
different simulation for response time of the case study, and illustrates the using
many cloud candidates. Even though these factors depend on network locality and
traffic congestion, the main purpose is to show the difference in response time
depending on different conditions. For our case response time includes the send a
request from a client, the time to redirect the request by a load balancer (if there are
several role instances), the time to process it by the application, and to get a response
back from the server. Method cope with all types of cloud environments for

deployment.

6.6 Summery

This chapter has presented the evaluation for case study migrating Online Pet
Store application on the cloud using a simulation tool for verifying deployment
options. Requirements and architectural design for case study have been introduced,

to give a detailed understanding of the cloud application migration.

The CloudMIG Xpress tool has been implemented to verify and support
migrating a case study to the cloud, because there is a lack of tool support to
automate migration tasks. Cloud application portability achieved by selecting
multiple candidate PaaS profiles, each profile includes the corresponding cloud
resources, pricing model, and CEC definitions.

The CloudMIG tool has been simulated for cloud deployment options. The
verification results show different deployment option parameters, we focus on
identifying median response time (MRT), which compared with multiple candidate
cloud profiles.

. There are some drawbacks for the CloudMIG Xpress simulation tool, that
the current version not composed of multiple languages for systems integration. In
addition, Workload profile for monitoring not support interleaved data from several
nodes. Since the tool is available, but its source code has not been published.
Moreover, tool lack of consideration for cloud database migration.

Overall, the CloudMig simulation tool is satisfactory and encouraging,
moreover, provide important insights into future work to support different

programming language to handle the migration of all types of application.

96

CONCLUSION AND FUTURE WORK

One of the important issues that need to be widely adopted against cloud
computing is a portability affect the cloud applications. Cloud application portability
is classified into two parts of vertical PaaS portability and horizontal PaaS
portability, our concern is to architecting and developing cloud applications to be

ported to Multiclouds platform.

An effective development framework for portable cloud applications has been
proposed, and applied for this purpose. The proposed framework for cloud
application architecture has been developed, composed of four phases: strategic
planning, architecture design, deployment, and evaluation. To come up with this, a
comparative survey involving several studied for cloud application architecture
development has been conducted.

The research began with the review of the concepts of cloud computing,
portability, and related works on cloud application portability. The architecture
design phase chosen as a research area, to develop portable cloud application
architecture design that can be used to achieve application portability on multiple
cloud platforms.

To achieve the objective, scenarios-based container design methodology and
new container pattern are performed.

In this research, efforts at designing portable cloud application architecture
include: propose development process to guide in designing containerized portable
cloud applications, propose and uses new container design patterns, and present
scenarios-based container approach, that group application behavior to several
application scenarios in a container to describe architecture design.

Accordingly, the evaluation of the proposed framework has been achieved
through validate two case studies uses scenario-based. The first case study on a web-
based for migrating Student Academic Records to the cloud has been developed,
using multiple scenario development process, while the other case study Hajj and
Umrah Mobile Healthcare System (HUMS) has been developed based on

97

independent scenario development process. The proposed container patterns and
cloud application design patterns applied to support the development of portable
cloud application architecture design. In addition, the second case study HUMS, has
been developed using Enterprise Architecture , based on TOGAF approach.
Assessing the deployment of the proposed framework for cloud application
portability has been verified. The verification of deployment has been approved for
case study migrating Online Pet Store application on the cloud using the CloudMIG
Xpress simulation tool, results verification for a Median Response Time (MRT) has

been achieved.

Future Work

This section presents some recommendations for future work. While many
issues related to this area of research remain to be explored, moreover, this thesis
could be extended in several directions. These issues and directions can be addressed

as follows:

= Develop Automate migration containers for applications to migrate from
cloud to cloud as needed to support the application’s requirements.

= Focus on maintainability during application development to facilitate easier
portability between different architectural platforms (DevOps).

= The developmental design process used various methods and techniques,
need more attention to be standard for easily developing.

= Enterprise Architecture (EA) development approach can be used in a wide
range of health area, such as remote patient monitoring. We are planning to
propose an adaptive model to adopt variations of different events.

= |n case study student academic result records, college need to benefit from
integrated student academic results, by reuse the existing application
component to develop new services, that can assist academic officer to gain
online student's transcript, and certificate services from the system. Need for

adopting Software Product Line (SPL) Development.

98

REFERENCES

Adewojo, A.A. et al., 2015. Cloud deployment patterns: Migrating a database driven
application to the cloud using design patterns. In Proceedings of the World
Congress on Engineering and Computer Science.

Ahmad, A., Altamimi, A.B. & Alreshidi, A., 2017. TOWARDS ESTABLISHING
ACatalogue OF PATTERNS FOR ARCHITECTING MOBILE CLOUD
SOFTWARE. Computer Science & Information Technology, p.19.

Ahsan, K., Shah, H. & Kingston, P., 2010. Healthcare modelling through enterprise
architecture: a hospital case. In Information Technology: New Generations
(ITNG), 2010 Seventh International Conference on. IEEE, pp. 460-465.

Al-Tawfiq, J.A. & Memish, Z.A., 2014. Mass gathering medicine: 2014 Hajj and
Umra preparation as a leading example. International Journal of Infectious
Diseases, 27, pp.26-31.

Anderson, J.Q. & Rainie, H., 2010. The future of cloud computing, Pew Internet &
American Life Project Washington, DC.

Antoniades, D. et al., 2015. Enabling Cloud Application Portability. In Utility and
Cloud Computing (UCC), 2015 IEEE/ACM 8th International Conference on.
IEEE, pp. 354-360.

Ardagna, D., 2015. Cloud and multi-cloud computing: current challenges and future
applications. In Principles of Engineering Service-Oriented and Cloud Systems
(PESOS), 2015 IEEE/ACM T7th International Workshop on. IEEE, pp. 1-2.

Ardagna, D. et al., 2012. Modaclouds: A model-driven approach for the design and
execution of applications on multiple clouds. In Proceedings of the 4th
International Workshop on Modeling in Software Engineering. IEEE Press, pp.
50-56.

Bass, L., Clements, P. & Kazman, R., 2003. Software architecture in practice,
Addison-Wesley Professional.

Bergmayr, A. et al., 2014. Cloud Modeling Languages by Example. 2014 IEEE 7th
International Conference on Service-Oriented Computing and Applications,
pp.137-146. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6978602
[Accessed May 26, 2015].

Brandle, C. et al., 2014. Cloud computing patterns of expertise, IBM Redbooks.

Bruneliere, H., Cabot, J. & Jouault, F., 2010. Combining model-driven engineering
and cloud computing. In Modeling, Design, and Analysis for the Service Cloud-
MDA4ServiceCloud’10: Workshop’s 4th edition (co-located with the 6th
European Conference on Modelling Foundations and Applications-ECMFA
2010).

Burns, B. & Oppenheimer, D., 2016. Design Patterns for Container-based
Distributed Systems. In HotCloud.

Cheng, F.-C. & Lai, W.-H., 2012. The impact of cloud computing technology on
legal infrastructure within internet—focusing on the protection of information
privacy. Procedia Engineering, 29, pp.241-251.

Council, C.S.C., 2014. Interoperability and portability for cloud computing: a guide.

Council, C.S.C., 2016. Migrating applications to public cloud services: roadmap for
success.

99

Cretella, G. & Di Martino, B., 2012. Towards automatic analysis of cloud vendors
APIs for supporting cloud application portability. In Complex, intelligent and
software intensive systems (CISIS), 2012 sixth international conference on.
IEEE, pp. 61-67.

Desfray, P. & Raymond, G., 2014. Modeling enterprise architecture with TOGAF: A
practical guide using UML and BPMN, Morgan Kaufmann.

Dimitrov, D., 2015. Towards cloud application architectural patterns: transfer,
evolution, innovation and oblivion.

Dua, R., Raja, A.R. & Kakadia, D., 2014. Virtualization vs containerization to
support paas. In Cloud Engineering (IC2E), 2014 IEEE International
Conference on. IEEE, pp. 610-614.

Duarte, J.M.G., Cerqueira, E. & Villas, L.A., 2015. Indoor patient monitoring
through Wi-Fi and mobile computing. In New Technologies, Mobility and
Security (NTMS), 2015 7th International Conference on. IEEE, pp. 1-5.

Eldein, A.L.LE.S., Ammar, H.H. & Dzielski, D.G., 2018. Enterprise architecture of
mobile healthcare for large crowd events. 2017 6th International Conference on
Information and Communication Technology and Accessbility, ICTA 2017,
2017-Decem, pp.1-6.

Elgendy, M.A., Shawish, A. & Moussa, M.l., 2014. MCACC: New approach for
augmenting the computing capabilities of mobile devices with Cloud
Computing. In Science and Information Conference (SAI), 2014. IEEE, pp. 79—
86.

Erl, T., Cope, R. & Naserpour, A., 2015. Cloud computing design patterns, Prentice
Hall New York, NY.

Fehling, C. et al., 2011. An architectural pattern language of cloud-based
applications. In Proceedings of the 18th Conference on Pattern Languages of
Programs. ACM, p. 2.

Fehling, C. et al., 2014. Cloud computing patterns: fundamentals to design, build,
and manage cloud applications, Springer.

Fehling, C. et al., 2012. Pattern-based development and management of cloud
applications. Future Internet, 4(1), pp.110-141.

Ferry, N. et al., 2013. Towards model-driven provisioning, deployment, monitoring,
and adaptation of multi-cloud systems. In Cloud Computing (CLOUD), 2013
IEEE Sixth International Conference on. IEEE, pp. 887-894.

Frey, S., Fittkau, F. & Hasselbring, W., 2013. Search-based genetic optimization for
deployment and reconfiguration of software in the cloud. In Software
Engineering (ICSE), 2013 35th International Conference on. IEEE, pp. 512—
521.

Frey, S. & Hasselbring, W., 2010a. Model-Based Migration of Legacy Software
Systems into the Cloud: The CloudMIG Approach.

Frey, S. & Hasselbring, W., 2010b. Model-based migration of legacy software
systems to scalable and resource-efficient cloud-based applications: The
cloudmig approach.

Gavras, A. et al., 2004. Towards an MDA-based development methodology. In
European Workshop on Software Architecture. Springer, pp. 230-240.

Ghanam, Y., Ferreira, J. & Maurer, F., 2012. Emerging issues & challenges in cloud
computing—a hybrid approach. Journal of software engineering and
applications, 5(11), p.923.

Gitzel, R., Korthaus, A. & Schader, M., 2007. Using established Web Engineering
knowledge in model-driven approaches. Science of Computer Programming,

100

66(2), pp.105-124.

Gohad, A., Ponnalagu, K. & Narendra, N.C., 2012. Model driven provisioning in
multi-tenant clouds. In SRII Global Conference (SRII), 2012 Annual. IEEE, pp.
11-20.

Gonidis, F., Paraskakis, . & Kourtesis, D., 2012. Addressing the challenge of
application portability in cloud platforms. In 7th South-East European Doctoral
Student Conference. pp. 565-576.

Gorton, 1., 2006. Essential software architecture, Springer Science & Business
Media.

Goyal, S., 2014. Public vs private vs hybrid vs community-cloud computing: a
critical review. International Journal of Computer Network and Information
Security, 6(3), p.20.

Graaf, B., 2007. Model-driven evolution of software architectures, IEEE.

Grundy, J., 2012. Software Engineering for the Cloud. In IEEE Sof. IEEE, pp. 26-30.

Haitzer, T. & Zdun, U., 2014. Semi-automated architectural abstraction
specifications for supporting software evolution. Science of Computer
Programming, 90, pp.135-160.

Hamdaga, M., Livogiannis, T. & Tahvildari, L., 2011. A Reference Model for
Developing Cloud Applications. In CLOSER. pp. 98-103.

Hill, Z. & Humphrey, M., 2010. CSAL: A cloud storage abstraction layer to enable
portable cloud applications. In Cloud Computing Technology and Science
(CloudCom), 2010 IEEE Second International Conference on. IEEE, pp. 504—
511.

Hogan, M. et al., 2011. Nist cloud computing standards roadmap. NIST Special
Publication, 35, pp.6-11.

Huang, D., 2011. Mobile cloud computing. IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter, 6(10), pp.27-31.
Hutchinson, J.E., 2011. An empirical assessment of model driven development in

industry.

Ibrahim, A. & Eldein, E.S., 2016. Pattern Oriented Analysis for Web Based
Applications on Cloud. , 9(1), pp.1-12.

Ibrahim, A., Eldein, E.S. & Ammar, H.H., 2017. Requirements Model For Hajj and
Umrah Mobile Healthcare System (HUMHS). , 5(1), pp.53-62.

Ibrahim, A. & Hany, A., 2015. Model-Driven Architecture for Cloud Applications
Development , A survey. , 4(9), pp.698-705.

lonita, M.T., Hammer, D.K. & Obbink, H., 2002. Scenario-based software
architecture evaluation methods: An overview. In Workshop on methods and
techniques for software architecture review and assessment at the international
conference on software engineering. pp. 19-24.

Jain, R. et al., 2018. Container provisioning based on communications patterns
between software components.

Jamshidi, P., Pahl, C. & Chinenyeze, S., 2015. Service-Oriented Computing - ICSOC
2014 Workshops. : 8954, pp.6-19. Available at:
http://link.springer.com/10.1007/978-3-319-22885-3.

Jiang, S. & Mu, H., 2011. Design patterns in object oriented analysis and design. In
Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd
International Conference on. IEEE, pp. 326-329.

Kang, H., Le, M. & Tao, S., 2016. Container and microservice driven design for
cloud infrastructure devops. In Cloud Engineering (IC2E), 2016 IEEE
International Conference on. IEEE, pp. 202-211.

101

Karakostas, B., 2008. Engineering Service Oriented Systems: A Model Driven
Approach: A Model Driven Approach, IGI Global.

Kleppe, A.G. et al., 2003. MDA explained: the model driven architecture: practice
and promise, Addison-Wesley Professional.

Kolb, S. & Wirtz, G., 2017. Data Governance and Semantic Recommendation
Algorithms for Cloud Platform Selection. In Cloud Computing (CLOUD), 2017
IEEE 10th International Conference on. IEEE, pp. 664-671.

Kottari, V. et al., 2013. A survey on mobile cloud computing: Concept, applications
and challenges. International Journal of Advances and Innovative Research,
2(3), pp.487-492.

Kozhirbayev, Z. & Sinnott, R.O., 2017. A performance comparison of container-
based technologies for the cloud. Future Generation Computer Systems, 68,
pp.175-182.

Kuo, Y.-H. & Hsu, W.H., 2017. De-hashing: server-side context-aware feature
reconstruction for mobile visual search. IEEE Trans. Circuits Syst. Video Techn,
27(1), pp.139-148.

Kuyoro, S.O., Ibikunle, F. & Awodele, O., 2011. Cloud computing security issues
and challenges. International Journal of Computer Networks (IJCN), 3(5),
pp.247-255.

Lee, Y.S. et al., 2015. Hybrid cloud service based healthcare solutions. In Advanced
Information Networking and Applications Workshops (WAINA), 2015 IEEE
29th International Conference on. IEEE, pp. 25-30.

Lin, J., Lin, L.C. & Huang, S., 2016. Migrating web applications to clouds with
cloud-based MVC framework. In Computer, Consumer and Control (IS3C),
2016 International Symposium on. IEEE, pp. 1039-1042.

Lin, Y. & Chang, P., 2012. Evaluation of system reliability for a cloud computing
system with imperfect nodes. Systems Engineering, 15(1), pp.83-94.

Linthicum, D.S., 2016. Moving to autonomous and self-migrating containers for
cloud applications. IEEE Cloud Computing, 3(6), pp.6-9.

Liu, F. et al., 2011. NIST cloud computing reference architecture. NIST special
publication, 500(2011), pp.1-28.

Lo’ai, A.T. et al., 2016. Mobile cloud computing model and big data analysis for
healthcare applications. IEEE Access, 4, pp.6171-6180.

Di Martino, B., Cretella, G. & Esposito, A., 2015. Cloud Portability and
Interoperability: Issues and Current Trends, Springer.

Di Martino, B., Esposito, A. & Cretella, G., 2015. Semantic representation of cloud
patterns and services with automated reasoning to support cloud application
portability. IEEE Transactions on Cloud Computing.

McNatt, W.B. & Bieman, J.M., 2001. Coupling of design patterns: Common
practices and their benefits. In Computer Software and Applications
Conference, 2001. COMPSAC 2001. 25th Annual International. IEEE, pp. 574—
579.

Meier, J.D. et al., 2008. Mobile application architecture guide. Pattern & Practices,
Microsoft.

Mell, P. & Grance, T., 2011. The NIST definition of cloud computing.

Mens, T. & Van Gorp, P., 2006. A taxonomy of model transformation. Electronic
Notes in Theoretical Computer Science, 152, pp.125-142.

Moscato, F., Di Martino, B. & Aversa, R., 2012. Enabling model driven engineering
of cloud services by using mosaic ontology. Scalable Computing: Practice and
Experience, 13(1), pp.29-44.

102

Murugesan, S. & Bojanova, 1., 2016. Encyclopedia of Cloud Computing, John Wiley
& Sons.

Nambiar, R., 2005. Java PetStore: A Case Study.

Naumann, S. et al., 2015. Sustainable software engineering: Process and quality
models, life cycle, and social aspects. In ICT Innovations for Sustainability.
Springer, pp. 191-205.

Opara-Martins, J., 2017. A decision framework to mitigate vendor lock-in risks in
cloud (SaaS category) migration.

Opara-Martins, J., Sahandi, R. & Tian, F., 2014. Critical review of vendor lock-in
and its impact on adoption of cloud computing. In International Conference on
Information Society (i-Society 2014). IEEE, pp. 92-97.

Pahl, C. et al., 2017. Cloud container technologies: a state-of-the-art review. IEEE
Transactions on Cloud Computing.

Pahl, C., 2015. Containerization and the paas cloud. IEEE Cloud Computing, 2(3),
pp.24-31.

Pahl, C. & Lee, B., 2015. Containers and clusters for edge cloud architectures--A
technology review. In Future Internet of Things and Cloud (FiCloud), 2015 3rd
International Conference on. IEEE, pp. 379-386.

Pescosolido, L. et al., 2016. An loT-inspired cloud-based web service architecture
for e-health applications. In Smart Cities Conference (ISC2), 2016 IEEE
International. IEEE, pp. 1-4.

Petcu, D. & Vasilakos, A. V, 2014. Portability in clouds: approaches and research
opportunities. Scalable Computing: Practice and Experience, 15(3), pp.251-
270.

Pilar, M., Simmonds, J. & Astudillo, H., 2014. Semi-automated tool recommender
for software development processes. Electronic Notes in Theoretical Computer
Science, 302, pp.95-109.

Pinelle, D. & Gutwin, C., 2005. A groupware design framework for loosely coupled
workgroups. In ECSCW 2005. Springer, pp. 65-82.

Rezaei, R. et al., 2014. A semantic interoperability framework for software as a
service systems in cloud computing environments. Expert Systems with
Applications, 41(13), pp.5751-5770.

Setareh, S. et al., 2014. A cloud-based model for hospital information systems
integration. In Telecommunications (IST), 2014 7th International Symposium
on. IEEE, pp. 695-700.

Sharma, A., Kumar, M. & Agarwal, S., 2015. A Complete Survey on Software
Architectural Styles and Patterns. Procedia Computer Science, 70, pp.16—28.

Sharma, R. & Sood, M., 2011. Enhancing cloud SaaS development with model
driven architecture. International Journal on Cloud Computing: Services and
Architecture (IJCCSA), 1(3), pp.89-102.

Shawish, A. & Salama, M., 2014. Cloud computing: paradigms and technologies. In
Inter-cooperative collective intelligence: Techniques and applications.
Springer, pp. 39-67.

Shin, M.E. & Gomaa, H., 2007. Software requirements and architecture modeling for
evolving non-secure applications into secure applications. Science of Computer
Programming, 66(1), pp.60-70.

Soliman, M. et al.,, 2013. Smart home: Integrating internet of things with web
services and cloud computing. In 2013 IEEE 5th international conference on
cloud computing technology and science. IEEE, pp. 317-320.

Troya Castilla, J. et al., 2015. ARTIST: model-based stairway to the cloud. PS-STAF

103

2015: Projects Showcase, part of the Software Technologies: Applications and
Foundations 2015 (2015), p 1-8, pp.1-8.

Tsai, W.-T., Sun, X. & Balasooriya, J., 2010. Service-oriented cloud computing
architecture. In Information Technology: New Generations (ITNG), 2010
Seventh International Conference on. IEEE, pp. 684-689.

Ventola, C.L., 2014. Mobile devices and apps for health care professionals: uses and
benefits. Pharmacy and Therapeutics, 39(5), p.356.

witt, B.l., Baker, F.T. & Merritt, E.W., 1993. Software architecture and design:
principles, models, and methods, John Wiley & Sons, Inc.

Wojcik, R. et al., 2006. Attribute-driven design (ADD), version 2.0, CARNEGIE-
MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.
Yacoub, S.M. & Ammar, H.H., 2001. UML support for designing software systems
as a composition of design patterns. In International Conference on the Unified

Modeling Language. Springer, pp. 149-165.

Youssef, A.E., 2014. A framework for secure healthcare systems based on big data
analytics in mobile cloud computing environments. Int J Ambient Syst Appl,
2(2), pp.1-11.

Yuliana, R. & Rahardjo, B., 2016. Designing an agile enterprise architecture for
mining company by using TOGAF framework. In Cyber and IT Service
Management, International Conference on. IEEE, pp. 1-6.

Zhang, L.-J. & Zhang, J., 2009. Architecture-driven variation analysis for designing
cloud applications. In Cloud Computing, 2009. CLOUD09. IEEE International
Conference on. IEEE, pp. 125-134.

Zhang, Q., Cheng, L. & Boutaba, R., 2010. Cloud computing: state-of-the-art and
research challenges. Journal of internet services and applications, 1(1), pp.7—
18.

Zhao, L. et al., 2012. An architecture framework for application-managed scaling of
cloud-hosted relational databases. In Proceedings of the WICSA/ECSA 2012
Companion Volume. ACM, pp. 21-28.

104

APPENDICES

APPENDIX A

Reengineer Student Academic Results System for Web-based Cloud
Application Service

Legacy application face many challenges to be used and benefit from recent
technology such as cloud technology. In chapter 3, Student academic result record
case study is a desktop application need to benefit from cloud for application data to
provide as a service benefit main college with two branches students to log in and
querying their academic records.

For the realization of this proof of concept a specific multi-tier application
service analyzed using UML for modeling requirements to understand the
application architecture for evaluation methodology; Assistant migration tools for
extracting and migrate application data with PHP- MySql Database have been used,
and the Graphic user interface (GUI) had been designed using Artisteer and Dream
weaver web Design tools. The GUISs are explained as follows:

Explains the license plate detection an extraction stage, and present the experiments

results and discussion about these results.

Collecting a data set for (126) students, from the legacy application. The data
set can be used in the field of Migration legacy application to a PHP MySql database.

105

A.1 Data mapping for student result records

G s Table Tools resultsTable - Microsoft Access
</ TR T EP——— e - =X
mj (—@ E’; ’; o] Text File E‘:J L W =l
(37 | lat | P e 2L S0 ST 93 ree | P L 2 v Cache lict Dzt
Saved | Access Excel SharePoint SaV Get External Data - Excel Spreadsheet ? X
Imports List %3 More - Exp: N
Import
Select the source and destination of the data —
All Access Objects - v Balall - sid
(Search.. 1 130y dalh BCS10010
Tables = Specify the source of the data. BCS10010
= et BCS10010
= apcoroD Elenane: | erslanar Pouments| Bronse... BCS10010
- BCS10010
dlassGpa
Specfy how and where you want to store the data n the current database. ELESTOI
= colleges BCS10010
= HotGraduatedstd (® Import the source data into a new table in the current database. BCS10010
DS 2 e S e e A SO ST T e e e e BCS10010
= pastermors with the imported data, Changes made to the source data wil notbe refiected in the datzbass
= BCS10010
pausedStdGPA () Append a copy of the records to the table: |sbedt BCS10010
3 regit 1f the specified table exists, Access wil add the records to the table, If the table does not exist, Access wil create it, Changes made BCS10010
E e o the source data wil not be refiected in the database. BCS10010
1 states (O Link to the data source by creating a linked table. BCS10010
= stugent Access wil creaite a table that nil maintain alnk to the source data in Excel. Changes made to the source datain Excel will be BCS10010
refiected in the inked tzble. However, the source data cannot be changed from within Access TS
E studentGradation
BCS10010
& sueat BCS10010
H test BCS10010
Queries S BCS10010
%! AppendFinalToResults 1 oYlaisly ebaxl i53be BCS10010
#! appendGradation 1 20 dmay BCS10010
%Y appendNotGraduated Cancel 1/1pbil prosmig Jlos BCS10010
BCS10010
%7 AppendsuppToResults &) 13 50 BCS10010
¥ firstfailureseount - (] 13 50 BCS10010
@} notPausedStdFaurthClass - || Record: 10 <[ior24ms [» bk | [Search |
Datasheet View Num Lock |[E1 &8

3:47PM
ENG

1872018 El

Figure A.1: Extracting Data from legacy system.

A.2 A. License Plate Characters Segmentation

) | s student after edit.csv - Microsoft Excel
a =
=/ Home Insert Page Layout Formulas Data Review View Team @ - 7 X%
p 5 5 (3 connections ¢ = mEm = > B B sl =
o E Bl 5 B RS 4 () (DR = B2 =5 &= 2 ¥ EHEs
From From From From Other Existing Refresh ﬁl Sort. Filter | Textto Remove Data Consolidate What-If Group Ungroup Subtotal -
Access Web Tet Sources- | Connections || All- = ¥ Advanced | Columns Duplicates Validation ~ sis =~ ||~ -
Get External Data Connections Sort & Filter Data Tools Outline)
D8 - j;\ 8
B ™ 0 I N 0 P Q R =
This sareen lts you select each column and set the Data Format. -
1 8id |¥/Sname ~lco [+/Sbat =
2 RBCS300° ll e sl 3 w11] Column data format.
3 RBCS300¢ mu,h,wm'm " @ general ;)
1 RECIIN sen] s s ol 11 B s ‘General converts numeric values to numbers, date values to dates, and al
5 RBCS400 g S puad 2001711 " Oi Advanced Text Import Settings T X
L Date: | DMY
6 RBCS403! ok 0] 038 011 (]
= RBOS404! .;d'-ﬂ‘wmumm.; 171 (O Do notimport columr Settings used to recognize numeric data
8 RBCS404 338 00T s e 502111 B Decmal separator: |;) =
3 RBCS4D4: ok A pils il 51711 10 Thousands seperator: | -
10 RBCS500 ol 5 30 050 bl 1 3
11 RBCSE00 J‘, 2l Jelid 5aai 11] oote - Nnt&:ﬁN;r_wh;:s ;‘\H be m‘sgwat;ed us\nghm‘e rvum‘em settings
FREEEI oo s sema s 1 " ata previen spedfied in the Regional Settings control panel.
13 RBCSE00« soel ool s gl 90111 i Reset Tralling minus for negative numbers
14 | RBCS500! iz oo deluol (o1 " N
15 RBCS500¢ »‘\wwpwmm " =
16 RBCS500; ect o el ool 11]
17 | RBCS500¢ il G gme Jod 2L 11]
18 | RBCS500¢ bl o Byl fun 11 i v
19 RBCSS501(same gl 8358 oLa 11] < >
20 RBCSE01: il ol sl s 5011]
21 RBCS501 ol e \,h,q.d'm] Cancel <Back Einich
22 FBOTEN: bl ola g s sam gibuse i %
23 RBCS501¢ PP N :wﬁw]
24 |RBCSE0T(ot M iz e all 32 11 &
25 RBCSH0T sl s uell sl a0 et 1 i
265 RBCS501(2] ol samma e 11]
27 |RBCS501¢ ol e Al a0 11]
28 RBCS502 Al Jiod g0l 303 sguma 11]
29 RBCS502: ke Al o g 011]
A RRCSEN?« 8 Ll seme Lina"T1] 14
K400 [student after edit <3 0| m — ‘]
Ready ElE] = v ()

Figure A.2: Data Filtering.

106

A.3 The assistant migration tool

Settings SSL
Excel File | C:fUsers/BADRI/Desktops/student. xlsx Browse
MySQL Server Options
MySQL Host/IP | localhost T=iE
MySQL Database | sar_khartoum ® Append Empty Drop
Username | root
=
Password| Success!
bble ffield names
Port
a 1 sheet(s) imported in 1.172 seconds.
| Excel Sheet | MySQL Table | Records |
| student | student_student | 243 | |
, int, warchar...)
Some records loaded BLAMK because software is not licensed.
e
Log
| Excel sheet | rvsoL Table | Records |
| student | student_student | 243 |
Some records loaded BLAMK because software is not licensed.
Import to MySQL Close
Done

Figure A.3: Converted data mapping using the assistant migration tool.

A.4 Uploading Data

[localhost/am.

1 /sarbur % [E] MutiTenancy Users Login x +

ch/import_marks.php @ - Google

il

ol Upload Student Marks From CSV File

Select Department: | Select Department ¥

|#.Get Adobe
Flash player

Registration Academic Results Graduate Contact

iL Upload marks |

>>>>>>>>>[]Sid | Snum-->| 0|0

upload compl

Figure A.4: Uploading data

107

A.5 Upload Data

+

_ MutiTenancy Users Login X

lhost/Amar/Amarbranch/import_marks.php

welcome : buri

@i Upload Student

localhost says:

o [Upload Complete Recerd no :6182]

The file r

csv has been

P

Upload Marks

BN

logout

Figure A.5: Data has been uploaded successfully.

A.6 Target database

x|+

A localhost /127001 / sar_khar X MutiTenancy Users Login X | G Google
0 C 5«
¥ W Albpress | ERPD
M A d i atabase: sar_khartoum »
phpMyAamin
el e] Browse | [sStructure [[SQL 4 Search
Recent Favorites
-
+_) sar_buri -
1 v - [Show all Number of rows:
=_ | sar_khartoum
New
.0 marks +Options
#La student sid Shame co shat Status
+L | student_student BIT11003 2ems jies dilic S 113 st
8 @ sar_omdman BITI2111 o flac 1da s 25l 1 13 s
N BIT13001 Al b meplie adilyd 11 13 i
8.4 student BIT13002 ok oo Gl o N4 s
BIT13003 2ene £ gis i3 e anl m141 s
8-y sarr BIT13004 ahdlic o i sl n 141 s
ew BIT13005 gie sa Coall sas! 114 s
+_ 4 branch BIT13006 2e Jo il sl 1 13 o
+Lil4 dept
#L4 subjects BIT13008 oo 2ol G 2l n 141 d=
#.14 subject_to_dept BIT13009 w2) 2! Goms 2! 1m141 s
std BIT13010 =jm sliesd = jmn sl o144 d=
|} studentdb BIT1301 !4 ae tona s sl N 163 s
BIT13012 & aé dilie Cuhlliac sed n141 s
7 test
1[4 watania
- BIT13014 con G (i 2 n 13 s
D = [MGONS0IE - 2 oot sl e s " o1 d=

khartoum&ttable=student_student8tsql_query=SELECT~ %24~ FROM-+ %60student_student3:60+WHERE+1&ishow_ques

ble: student_student

¢ Insert [Export |5} Import =

25 v

other

sl § 5l gy

EWEI PN T

A

new Status

[1 localhost/phpmyadmin/#PMAURL-15:tbl_sql php?db=sar_khartoum@itable=student_studentéiserver=18itarget=&token=9b6c137d761

Privileges

o2 - a4 x
O v Googe Q| =

[Mobile bookmarks

/" Operations = ® Tracking

¥ More

() Profiling [Inline] [Edit] [Explain SQL [Create PHP Code] [Refresh]

Filter rows:

statusChanged
1
1
0
0
0
0
0
0
NULL
0
0
0
0
0
NULL

0
0

labseat

22

23

6137476124 cfbb3c2336cdad 7668 #quer...

Figure A.6: Display loaded in MySql database (target).

108

A.7 Main Interface

fks Tools Help

ownclou.. | & howtow.. | Home-MIG.. | <> Findout.. | (J Jlyose. | Bl 2o ols.. | il | G daclus.. Main X ik localhosi

t11/main.html

fa ~
“

. .
- ;&STU DENTS ACADEMIC RECORDS]
- e ! tofAcademiciClotdiPortal

__ =

Registration Academic Results Graduate Contact Admission

Main
Registration
Academic
Results
Graduate
Contact

Admission

Downloads

Vision

> My first blog » Excllence and leadership in the field of computer stuides.

Figure A.7: Main GUI for Student Academic Result Records Web Portal.

A.8 Multi Users Interface

E Tools Help

data migr... | (&) 126754.pdf | G saslie.. | W lazg gl S ownclou.. | G howtow.. | Home-MIG... | < Findout.. | [1o wbs. Mut]

1/admission.html c Q Search

ACADEMIC RECORDS
SN VelcomeltofAcademiciClondiPortal

JRpa— .
== -— .
Main Registration Academic Results Graduate Contact

Search

&L MutiTenancy Users Login

Main Multi-tenancy is one such architectural id ion, and under: ding multi-tenancy is a critical

Registration first step towards broader IT cloud adoption_

Academic
Results
Graduate

Contact

Admission

Downloads

> My first blog

> Who will prevail?

Figure A.8: Users login enable cloud web portal user to access functionality into
custom Web sites.

109

A.9 Student Academic Examination Results Service view

eni_result.php C X Search

ENTS ACADEMIC/IRECORDS!

AcademiciClovdiPorntal

- =

welcome amar Academic Result Transcript change Password Logout

\
AR
|

..... =

L
Select Semester : Ok

Academic Record For Semester 1

R e s s s e S P e e b R Fasiaa s i 5
Clab ¢ AE ¢ Codam
Thadind | R | fAGda) | fAmad |

Figure A.9: Secure student login to view the selected semester exams record.

A.10 Student Academic Examination Results Service view

T TESUTLpTTE T

N T —

e e e S -

H Jamall Sl ol el it . asis Aaka [T) aEE Az aaan

D msiAN it Aaha gt 1 Adadt 1ot gl qRadaio i f) e et a it
3.3 3.3 B B = A A B+ B+ B

Figure A.10: Secure student login to view all semester records results.

110

APPENDIX B

A view's model for developing Hajj and Umrah Mobile Healthcare System

Enterprise Architecture is adopted for healthcare solutions to influence and
guide changes in business procedure and information technology. Business models
are used to represent the organization structure and services, business rules and
processes.

The Overall objective is to: Present views of an ArchiMate model for
developing Mobile healthcare for large crowd Events System (MHES) for case study
Hajj and Umrah Mobile Healthcare System, using the TOGAF framework scenario
to describe Enterprise Architecture. Secondary goals, find a suitable Architecture to
help Healthcare services adjust to the Cloud environment; Describe scenario and its
applicability in the new business environment; Facilitate communication between

healthcare providers.

B.1 Enterprise Architecture development phases

Strategy & 1: Identify Problem and Motivation]

Motivation

2: Define Objectives

!

Application 3: Design and Development

Architecture

4: Software & Hardware

g

Demonstration 5: Implementation & Migration

2 = = =

0000

Figure B.1: Secure student login to view all semester records results (Eldein et al.
2018).

111

Enterprise Architecture development phases are represented as follows:-

B.2 Strategy and Motivation Phase

| Quality Healthcare & |
A
[| [
Improve (@) ® Imporve (@)
Medical L ____ Enhanced PatientCare }(—————— visibility of
Diapnosis medical Record
— —
I I
Y E— Y I
IncreaseSucss (g Mobile Medical 2@ ReduceTime @
essPatientTre <]- ---------- ‘| Record Strategy } ------------- D ToAcceess
atment Record
A 25 -
o~ . ~
PR | | | e e e
ManapePatientEvents £ Data Driven Medical History -
" Healtheare Provider |) o _
Manaes _ | Data £ | | Data H |
; Acouistion | | Analvsis

Figure B.2:Capture business requirements and a set of capabilities
To support and use of mobile solutions.

B.3 Strategy and Motivation Phase

.) [as)]
= =
Retriving Patient /7 :I:
Medical Record @
Detrmine How

~--{ Medical Record affect

LinkPatientInfo 8 Diagnosis?
Mohile Medical Record I
v
Analysis linked Data Mobile Health <
Platform Manager

Figure B.3: Strategy analysis goals for healthcare Events

112

B.4 Phase 2: Business Architecture Stakeholders

Stackeholders for Hajj and Umrah Mobile healtheare

— provider

EHR Scientist § Medical Staft Clond Provider 3 Projeet §
‘ Manaeer
- Haj & Unnah §
Pilgrimage § Health platform
Halhowre o——» oo Provider O I
o Health solution D
Hij & Unrah $ provider
Health platform MobieApp D

Figure B.4: Hajj and Umrah Mobile Healthcare analysis roles.

B.5 Phase 2: Business Architecture Services Integration

Hajj & Umrah =
Healthcars Role

Medical Record (OO

Pilgrims Health | :
Records Services -_— Emergency Service
o
Pilgrims HealthcarE> Pilgrims Healthcare (N
Process Function

T / Vaccination Service —

O

Figure B.5: Hajj and Umrah Healthcare Services.

113

B.6 Phase 2: Business Architecture Capabilities and Resources

Pilgrims Medical Records ol
Management
Hajj and Umrah [T Haj and Umrah (00
Healthcare Services App Services
&
Hajj Authority ~ $ Pilgrims Healthcare 3 |
Services Team Mobile Apps

Figure B.6: Hajj and Umrah Mobile Health management capabilities.

B.7 Phase 3: Application Architecture

Mobile Health Application capabilities
|'. Collection :Eﬁ| | Preparation :Eﬁ| | Diagnoss :@| | Visualization :@| | Actess :@|
| Gather patient =>» | Link = _ __.{ Health ::>|_____ [Prepme |::> Pushfurl::}
mobile medical }~ ————— EHE. " status Extranet
records ws.uahze
— S
Input data Data lake Intermediate data sst multi Web
_ _ — dim tool
s Mobile Health activity Mobile Health activity — P id data DB
- =8t
IMobile medical record Mobile medical record Mobile medical record —
Patient Profile Patient Profile Patisnt Profile | |
Patient Siatus

Figure B.7: Mobile Application design and development process.

114

APPENDIX C

CDO Verification uses CloudMiG Xpress for migrating
Online Pet Store Application to the cloud

CloudMIG Xpress provides tool support for the comparison and planning
phases to migrate software systems to PaaS or laaS-based clouds. It originates from
an academic prototype and is built to support research in cloud migration, aims at
supporting SaaS providers to semi-automatically migrate existing enterprise software
systems for scalability and resource efficient PaaS and laaS-based applications.

The deployment options steps for migrating on multiple clouds are explained

as follows:

C.1 Main Interface

E3 CloudMIG Xpress - X
File Project View Tools Config Help

[i] Cloud Migration View

View

& system that shall be migrated to the cloud
e Model of Modify

&% 1.2 Create Deployment Model «f Modify

lll 13 Creote Utilization Model

9:40 AM

al] l G
& =N o B

Figure C.1: CloudMIG Xpress Main GUI.

115

C.2 Source code Extraction

(=]

File Project View Tools

Olg

Config

=l ©=20

1 JPetStore-Migration
[i] Current System View
[i] Cloud Migration View

Help

» Recently Used Projectf

~ Current System View
Model the software syster

£ 1.1 Create Code Mod

12 Create Deploymer
lll 1.3 Create Utilization |

B3 Bxtract Code Model u]

Extract Code Model

{0 -

Step 2 of 2 - Run Extraction Process (may lest a considerable amount of time)

Messages:

- KDM model extracted from third party library 'cglib-2.2 jar ~
- KDM model extracted from third party library ‘commens-logging-1.1.1jar

- KDM model extracted from third party library "hsqldb-1.6.0.10 jar'

- KDM model extracted from third party library ‘jsti-1.2jar'

- KDM model extracted from third party library ‘log4j-1.2.16 jar

- KDM model extracted from third party library 'mybatis-3.0.5jar’

- KDM model extracted from third party library 'mybatis-spring-1.0.1 jar'

- KDM model extracted from third party library 'spring-aop-30.5.RELEASE jar'

- KDM medel extracted from third party library ‘spring-asm-3.0.5.RELEASE jar"

- KDM model extracted from third party library ‘spring-beans-3.0.5RELEASE jar

- KDM model extracted from third party library 'spring-context-3.0.5.RELEASE jar'

- KDM model extracted from third party library 'spring-core-3.0.5.RELEASE jor'

- KDM model extracted from third party library 'spring-expression-3.0.5.RELEASE jar'
- KDM model extracted from third party library ‘spring-jdbc-3.0.5.RELEASE jar’

- KDM model extracted from third party library ‘spring-te-3.0.5. RELEASE jar’

- KDM model extracted from third party library 'spring-web-3,0.5.RELEASE jar'

- KDM model extracted from third party library 'stripes-1.5.6ar'

- Code model extraction was successfull The code model consits of 20 KDM model(s).

< Back Next > Run Cancel

ud migration
of Medify
it Options

T) En

Figure C.2: Extract Knowledge Discovery Meta model (KDM) from source code.

C.3 Deployment model creation

IE3 CloudMIG Xpress

File Project View Tools Config Help
Oleadi©=0 B
[BxampleDir [*Deployment Model &3
1 JPetStore-Migration -
[i] Current System View =
[i] Cloud Migration View [Select

"1 Marquee

Tools ®
[Node

59 Link

XAMP Server

[

Bussines Source Appication

Oveniiew (MiPIps IVENS

IPeiStore
o IPetStore (1)

aopalliance-1.0,ar
asm-3.1jar
cglib-2.2jar
commons-logging-1
hsqldb-1.8.0.10 jar

S]]

s jsti-1.2jar
(o9 logdj-1.2.16ar

mybatis-3.05 jar
mybatis-spring-1.0.1
spring-aop-3.0.5.REL]
g spring-asm-3.0.5.REL
spring-beans-305R
spring-context-3.0.5,
spring-core-3.0.5.REl
spring-expression-3.4
spring-jdbe-3.0.5REL
spring-b-3.0.5 RELEA
spring-web-3.0.5 REL
stripes-1.56,jar

TIEIEIED

o[

v & IPetStore
v [IPetStore
3 (default package)
v i org
v B} mybatis
v jpetstore
£ domain

f# persistence

71) EN

Figure C.3: Deploy Extracted model to server machine.

116

C.4 Create Utalization Model

B3 CloudMIG Xpress - X
File Project View Tools Config Help
les2dO=0
T ExempleDir Workload Profiles
~ 12 JPetStore-Migration Synthetic Workload Profile
I Current System View Name: [1pet store synthetic Workload Profile Code Model
[Cloud Migration View
Node Configuration: | XAMP Server v Methods with assigned MWC: 1
Modeled Periodt day(s) - Complete Code Model
IPetstore
Method Workload Characteristic (MWC)
& Assign MWC > 1 (defaut package)
Median Response Time: 500 ms. 1 org
Avg. Parameter Size - in (sum per call): kB Remove MWC &8 mybatis
H jpetstore
Avg. Parameter Size - out (sum per call): kB 3 domain
@ Account
Amival Rate (AR): B cant
@ Custom AR Function: f(g= [5in(@.31°2500+3000 t: | hour(s) v © addiem
© containsltemld
(O Predefined AR Function: 0On and off (2.g., batch jobs) & gethllCartiters
& getCartltemList
@ getCartlitems
|=| Save Profile 2 Plot AR Function | Bxit Profile © getNumberOfitem:
@ getsubTotal
Custom AR Function © incrementQuantity
- © removeltemByld
Einnn @ setQuantityByltem!
240m @ Cartitem
230m @ Category
7 ’ ® Item
2,000 @ Lineltem
% 1,000 @ Order
5 = = = : : @ Product
Sl 100u 1100 1230l 1330 140 1500 160 170l 18-Ju 190l 20-0ul 2100 22 @ Sequence
Modeled Period: 14 days B persistence
fit) = sinf0 3"t)"2500+3000 5 service

Figure C.4: Synthetic Workload profile with Arrival Time (AR) simulation result.

C.5 Cloud candidates Selection

63 CloudMIG Xpress
File Project View Tools Config Help

Dg2di0=0
£ ExampleDir Ovenview (Pricing (ALl L e CEC Violations

{2 JPetStore-Migration
E Efﬂ':m;ﬁcnv“:zw @), Cloud Environment Constraints
< Cloud Candidates (3) Severity “Waming': 11
€ Amazon Web Senvices LLC (Amazon Elastic Compute Cloud (EC2)) s .
& Google Inc. (Geogle App Engine for Java) . .

& Microsoft Corporation (Microsoft Windows Azure Web Role) SolygERakna Lyl 14
Total: 23 12
B
Hoe
3
4
z

o i3

Warring aitical ereaking

Available Cloud Profiles

Amazon Web Services LLC (Amazon Elastic Compute Cloud (EC2))
Google Inc. (Google App Engine for Java)

Microsoft Corporation (Microsoft Windows Azure Virtual Machine Role)
Microsoft Corporation (Microsoft Windows Azure Web Role)

Microsoft Corporation (Microsoft Windows Azure Worker Role)

SE Group Kiel (Eucalyptus)

Selected Cloud Candidates

osoft Windows

73) EN

Figure C.5: Candidates cloud selected , and Cloud environment Constrains (CEC)
defined in the cloud environment profile.

117

C.6 Cloud Deployment Option (CDO) Creation

a

File Project View Tools Config
Ois&di©= 0]
T ExempleDir

2 JPetStore-Migration
[i] Current System View
[i] Cloud Migration View

[Cloud Deployment Option Creation
Hel

Jew| COmPUte Best Suited Cloud Deployment Option

Step 3 of 3 - Run the cloud deployment optimization process

Current candidate
Simulated candidates: 2
Best cloud deployment option

Cloud environment:

VM instances at start 2
Reconfiguration rules: 2
Details

Amazon Elastic Compute Cloud (EC2)

I Total

Running: 00n:04m: 165

Cost
Better than median of ail
Wedian response times:
Better than median of ail.
SLAviolations:

Better than median of ai

Median Response Times (MRT)

HE-

19328
-88.5%
1758.80 ms
48%
284028

557%

SLA Violations

@
=
s
=
2
=
-
35
@
z
: 0 0 L
=9 1 2 1 2 1 2
. candidates N. candidates Nr. candidates
Pro
—Begt candidate —Median — Best candidate —Median candidate —Median
Back Next Start Cancel

Figure C.6: Simulation result for 2 candidates cloud deployment options in
comparison.

C.7 Cloud Deployment Option (CDO) creation

(aa] [Cloud Deployment Option Creation o X
File Project View Tools Config Hel
Compute Best Suited Cloud Deployment Option .
B S dﬂﬂ\o-\o\NwSzHR he cloud depl e ; -l
t - i it opti ti .
7 EBxampleDir ep 3 of un the cloud deployment optimization process
1= JPetStore-Migration T
(i Current System View Current candidate: I | E— Total
iJ Cloud Migration View simulated candidates: 3 Running: 00h.06m:58s
Best cloud deployment option:
Cost 19325
Cloud environment Amazan Elastic Campute Cloud (EC2) Better than median of ail 0%
VM instances at start 2 Median response fimes: 1758.89 ms
Recanfiguration rules: 2 Better than median of ai 648%
SLAviolations: 284028
[ETS Better than median of ail 56.6%
Cost Median Respense Times (MRT) SLA Violations
200 o 1,000,000
g
150 2 750,00
- F 7S0000 -~
= (]
g 100 = 500,000
8 =
50 @
z
0= ; : : 0 - I
= 1 2 3 1 2 3 1 2 3 F
=]
. candidates N candidates N candidates
Proj
— Best candidate —Median —Best candidste —Median candidate —Median
Back Next Start Cancel

Figure C.7: Simulation result for 3 candidates cloud deployment options in
comparison.

118

APPENDIX D

A summary of Cloud Application Architecture Design Patterns

Category Pattern Name Problem Solution
1 Fundamental Reduce dependencies between Distributed | Broker: to communicating components and decouple
Cloud Loose Coupling Applications and between individual | multiple integrated applications from each other.
Architectures components.
2 How can application functionality be | The functionality of the application is divided into multiple
Distributed Application decomposed to be handled by separate | independent components that provide a certain function
application components?
3 Stateful Component A synchronized internal state Replication Internal state
4 Stateless Component Increase Elasticity (Failures) Storage Offerings (External)
5 User Interface Component Reduce Dependencies Elastic Load Balancer
6 Processing Component Processmq fur_1ct|ons to meet different Split into separate functional blocks (stateless)
customers' requirements
7 Apgllic::l;?ion Batch Processing Component Asynchronous processing delayed §':8(r:eetisgzzynchronous) until conditions are optimal for their
8 Components Data Access Component H'de. & |_so|ate data while ensuring data Integrity of data and coordinates
configuration.
9 How consistent data be presented and | Consistent state is unknown by approximating values or
Data Abstractor inconsistencies hidden from another | abstracting them into more general ones, such as change
application (components and users)? tendencies (increase / decrease).
10 Presented of consistent data Adjusted to allow retrieved data to be consistent
Idempotent Processor :
Duplicate function execution (inconsistency detection)
11 Ensure messages receive are processed
Transaction-based Processor successfully and altered data successfully | Transaction-based Delivery
after processing
12 Timeout-based Message Process messages, guaranteeing all messages | Timeout-based message processor sends acknowledgement
Processor handled or processed at-least-once after has successfully processed the message.
13 Virtual server provides functionality of | Multiple application components hosted on a single virtual

Multi-Component Image

multiple application components

server (to ensure running virtual servers may be used for
different purposes without making provision or
decommissioning operations necessary).

119

Category Pattern Name Problem Solution
14 _ Shared Component Shargd bgtween multiple tenants(individual | Optimize portion of the app_ stacks and app components
Multi-Tenancy configuration) deployed equally to all tenants.
_Shgrgd between mu_ltlple tenants gnabl!ng Ensure isolation between tenants by controlling tenant
. individual configuration and tenant-isolation - .
15 Tenant-isolated Component . access, processing performance used, and separation of
regarding performance, data volume, and
- stored data.
access privileges
16 Dedicated Component Not _shared components be integrated into a | Dedicated appllca_tlon components are provided exclusively
multi-tenant app for each tenant using the application.
Restricted Data Access N compongnt_ e pr(_)wde Dl e Defined privileges for each data element, separate
17 Accesses restriction on different e
Component . restriction data access
Cloud environments
Integration Message queues of different providers be Message Mover integrates message queues hosted in
18 Message Mover integrated different environments, receiving messages from one queue
and transferring it to a queue in other environments.
Application component be accessed directly | Synchronous and asynchronous communication with proxy
19 Application Component Proxy to its hosting environment is restricted. component is initiated and maintained from the restricted
environment access the unrestricted environment directly.
Replicated between environments, how some | Message filters are used to delete and obfuscate certain data
20 Compliant Data Replication environments, handle subsets of the data due | elements in these messages.
P P to laws and corporate regulation? Information about the data manipulations stored in a storage
offering.
How can application components in different
21 Integration Provider environments, belonging to different Using integration components offered by a third party

companies, be integrated through a third-
party provider?

provider.

120

APPENDIX E

List of Participations

The research study detailed in this thesis has yielded several conference and

workshop presentation participant, these include:-

E.1 Conferences

1. Amar Ibrahim Eldein, Hany Ammar ,and Dale Dzielski, 2017, December.
"Enterprise architecture of mobile healthcare for large crowd events."
Information and Communication Technology and Accessibility (ICTA), 2017
6th International Conference on, Muscat, Oman, Sultan Gabous University,
19-21 Dec.2017.

2. Amar lbrahim Eldein, E.S. & Ammar, H.H., 2017. "Requirements Model
For Hajj and Umrah Mobile Healthcare System (HUMHS)",
4thinternational Conference on Islamic Applications in Computer Science
And Technology, 20-22Dec 2016, Sudan.
http://unitechkl.com/iman/pres/37.ppsx, online.

E.2 Work Shop

1. Amar Ibrahim Elhaj Sharaf Eldein. "A framework for Development Cloud
Application Architecture Environment”, Software Engineering
Applications, Challenges Workshop, 10 TH International Computing in
Arabic (ICIA), 12-14 March 2016, Khartoum, Sudan.

MJJ "'R.HM\ i..wjai\ cﬂm 34,3 J'.uhﬁ Jl.b!" ’Q:ml\ ol Gu‘ &A\J._a\ Dles
3)}.\&\ L.i).u:\;&\ Mm 9 (—;}M é}.ﬂ‘)AJ}AM . QH@AJ,\.“ KMJ..IQ Qw S QLJJAS
Msaall 2 sk AN 2016 (e sbe 14-12 3 ikl

121

LIST OF PUBLICATIONS

The research study detailed in this thesis has yielded several internationally
recognized peer-reviewed journals in the areas of cloud computing, information and

communication technologies (ICT), and software architecture. These include:-

[1] Eldein, A.LLE.S., Ammar, H.H. and Dzielski, D.G., 2017, December. Enterprise
architecture of mobile healthcare for large crowd events. In 2017 6th
International Conference on Information and Communication Technology and
Accessibility (ICTA) (pp. 1-6). IEEE.

[2] Ibrahim, A., Eldein, E.S. & Ammar, H.H., 2017. Requirements Model For Hajj
and Umrah Mobile Healthcare System (HUMHS). , 5(1), pp.53-62.

[3] Ibrahim, A. & Eldein, E.S., 2016. Pattern Oriented Analysis for Web Based
Applications on Cloud. , 9(1), pp.1-12.

[4] lbrahim, A. & Hany, A., 2015. Model-Driven Architecture for Cloud
Applications Development , A survey. , 4(9), pp.698—705.

122

