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Abstract 

 

Twistor theory has been invented by R. Penrose in order to generalize gravity. 

He introduced a geometrical model for Minkowski space. This geometrical 

setup has been generalized in solving particle differential equations. In 

particular zero-rest-mass field equation have been treated this way as a Contour 

integral of complex twistor function. In our study we consider geometrical 

interpretations and solutions of conformal field equations. We also studied 

Twistors in curved space-time and related this study to the problem of quantum 

gravity. 
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VIII 

Introduction 

In this thesis we introduced geometrical aspect of Minkowiski space which has been 

generalized to higher dimensions and utilized in solving differential equations. 

Chapter 1  An introduction to Twistor theory was proposed by Roger Penrose in 1967 as a 

possible path to quantum gravity and  has evolved into a branch 

of theoretical and mathematical physics. We proposed that twistor space should be the basic 

arena for physics from which space-time itself should emerge. It leads to a powerful set of 

mathematical tools  that  have applications to Twistor in flat space and Minkowiski geometry. 

Chapter 2 We have introduced the the correspondence and Penrose transform which is a 

complex analogue of the Radon transform that relates massless fields on spacetime  twistor 

space. The twistor space and the twistor transform is also geometrically natural in the sense 

of integral geometry.  

Chapter 3 We have introduced quantum field theory in curved spacetime which is an 

extension of standard, Minkowski space quantum field theory to curved spacetime. In 

addition to canonical quantization and conservation low have been introduced. 

Chapter 4 Is devoted to twistor in curved space in which we have talked about local twistor, 

global twistor and quantization. 

Chapter 5 Consists of the physical general relativity (GR, also known as the general 

theory of relativity or GTR) which is the geometric theory of gravitation published 

by Albert Einstein in 1915 and the current description of gravitation in modern physics. 

General relativity generalizes special relativity and Newton's law of universal gravitation, 

providing a unified description of gravity as a geometric property of space and time, 

or spacetime. In particular, the curvature of spacetime is directly related to 

the energy and momentum of whatever matter and   radiation are present. The relation is 

specified by the Einstein field equations, a system of partial differential equations. 
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Chapter 1 

Introduction to Twistor Theory 

1.1. Introduction 

It is well known that there are a number of unsatisfactory features of our present 

ideas about physics. Among these are the infinite divergences of quantum field 

theory, the lack of a really convincing synthesis of quantum theory and general 

relativity, and perhaps also our dependence upon the notion of a continuum 

without any real physical evidence. Twistor theory is an attempt at anew 

formalism for the description of basic physical processes which has relevance to 

these problems and it is hoped that when the theory becomes more complete a 

new outlook on them will be provided. If the attempt is successful, it would of 

course have very wide implications for all of physics. For everyday purposes 

our present theories would naturally suffice but our viewpoint would be 

changed just as the development of relativity modified our view of Newtonian 

mechanics. Althoughno final assessment of twistor theory‘s success can yet be 

made the results have been sufficiently encouraging for us to feel it worthwhile 

preparing a reasonably up to date and unified account for  the use of colleagues 

in different branches of physics. 

The last two of the difficulties mentioned above are clearly related. If space-

time is no longer regarded as a continuum, it will no longer be valid to think of 

either the quantum fields or the gravitational fields in the usual way. One can in 

fact argue that to accept that there are as many points in       cm or even 

        cm as there are in the entire universe is physically unrealistic and that 

our use of the continuum arises solely from its mathematical utility. We take 

theview that to encompass quantum theory and general relativity satisfactorily 

one needs to do more than simply apply some suitable quantization technique to 
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solutions of Einstein‘s equations. One should rather be thinking of quantising 

space-time itself. This should not be conceived as simply replacing the 

continuum by a discrete set of points but rather as seeking a way of treating 

points as ―smeared out‖ just as quantum theory smears out particles. 

It was shown that one could build up the notion of the Euclidean space 

from the limit of the interaction probabilities of a large network of particles 

quasi-statically exchanging spin. The Euclidean structure in this development 

arises from the combinatorial rules satisfied by total angular momentum in non-

relativistic quantum mechanics. In the same way that SU(2) spinors provide a 

basis for the description of non-relativistic angular momentum, twistor theory 

can be used to describe relativistic angular momentum in a unified way in 

addition to the concepts of spin and orbital angular momentum uniting together. 

The hope is that developments of the twistor picture will eventually enable us to 

construct Lorentzian manifolds to serve as models of space-time. Certainly 

points of space-time are dependent quantities in the twistor formalism, the 

twistors themselves playing the basic role. However the complex continuum 

still plays a large part. Indeed the complex numbers and holomorphic functions 

which are already basic to modern particle physics now appear mixed up with 

the structure of space-time itself.  Nevertheless, holomorphic functions have a 

certainrigiditysuggestive of a possible underlying combinatorial structure. 

       The twistor theory is in fact largely based on ideas of conformal invariance, 

zero-rest-mass particles and conformally invariant fields being taken as a 

fundamental aspect of important parts of physics. In this respect twistor theory 

has a connection with current work by particle physicists, who have been 

exploring the implications of conformal invariance with considerable vigour. 

A twistor of the simplest type can be pictured classically as effectively a zero- 

rest-mass particle in free motion, where the particle may possess an intrinsic 
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spin, and also a phase which can be realized as a kind of polarization plane. 

Such twistors form an eight-real-dimensional manifold. Which  can be 

described in a natural way as a vector space of four complex dimensions. This 

vector space , twistor space, in effect replaces the space-time as the background 

in terms of which physical phenomena are to be described. Space-time points 

can then be reconstructed from the twistor space being represented as certain 

linear subspaces, but they become secondary to the twistors themselves. 

Furthermore, when general relativity and quantum theory both become 

involved, it is to be expected that the concept of a space-time point should cease 

to have precise meaning within the theory. In effect, the space-time points 

become smeared by the uncertainty principle ratherthan the light cones 

becoming smeared. 

As the theory stands it does not provide a formulation of a quantised general 

relativity norhas a full treatment of particles with non-vanishing rest-mass 

emerged. On the other hand, thetheory appears to give correct answers for 

scattering processes involving massless charged particles and photons, i.e. high 

energy limit of quantum electrodynamics. The theory so far appears to be 

successful in avoiding divergences, i.e. the calculations that have been carried 

out do not lead to infinities in the same way as does the conventional formalism 

and it seems that such infinities should be absental together. It is hoped that 

when the theory becomes more complete, this feature will be retained. 

The difficulties confronting the theory in respect of gravitational interactions 

and rest-mass appear to be related to the fact that these are things which break 

conformal invariance. Massless particles and electromagnetic interactions, on 

the other hand, are conformally invariant concepts. The basic formalism 

exhibits manifest conformal invariance, so if conformal invariance is to be 

broken. This must apparently be done explicitly, with the aid of auxiliary 

elements which do not share in the invariance. One possible method of 
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incorporating such elements is suggested by the work described. The essential 

act of faith on which the utility of the twistor formalism depends, is that it 

should be useful to isolate the conformally non-invariant aspects of physics 

from the conformally invariant ones, and that having done this, a large and 

important body of physical processes will be seen as possessing conformal 

invariance. 

Twistors are actually the reduced spinors for the proper pseudo-orthogonal 

group SO(2,4) which is locally isomorphic with, and 2-I homomorphic with, the 

restricted conformal group of flat space-time. They form a representation space 

for the pseudo-unitary group SU(2,2), this in turn beinglocally isomorphic and 

2-I homomorphic with SO(2,4). Thus, the simplest twistors are four-valued 

objects with four complex components, which are acted upon by the 

51parameter conformal group of flat space-time. The four-valuedness of 

twistors has not yet played any very importantrole in this theory. 

One of the most striking features of complex theory is the way in which 

complex numbers and holomorphic, i.e. complex analytic, structure emerge as 

concepts intimately involved in the geometry of space-time. We have become 

accustomed to the very basic role which complex numbers and holomorphic 

functions play in quantum theory, particularly that of elementary particles. It 

seems therefore that complex numbers are  very important constituent of the 

structure of physical laws. The twistor theory carries this further insuggesting 

that complex numbers may also be very basically involved in defining the 

nature of space-time itself. In addition, we shall see that the zero rest-mass field 

equations for each spin all emerge in a very simple way from the complex 

structure of twistor space, being obtained as contour integrals of holomorphic 

functions of twistors. The twistor picture geometrises the usual splitting of field 

amplitudes into positive and negative frequency parts by describing this in 

terms of the position of singularities of holomorphic functions. Thus the twistor 
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formalism has the effect of uniting various aspects of the role, both quantum 

and classical, that complex numbers seem to play in physics. 

The present introduction should be regarded as to some extent provisional. 

Many problems remain to be solved in the theory. Even the difficulties involved 

in merely translating between the twistor formalism and the conventional 

formalism constitute a serious stumbling block. The twistor scattering diagrams 

described do not always appear to be directly translatable into conventional 

terms and this leads to difficulties in interpretation. One must proceed to some 

extent by guesswork, but here severe problems of actually computing the 

twistor diagrams constitute another stumbling block. Nevertheless, despite these 

difficulties, we feel that some new insights into the nature of physical processes 

may possibly be discernable even in the theory as it stands. For example, if the 

twistor diagrams are to be taken seriously from the physical point of view and it 

is tempting to think that they can be then there may be some significance in the 

twistor lines representing a kind of half particle which can be exchanged in 

virtual processes. This would appear to be related to the fact that a twistor is 

really a kind of square root of the structure of a zero rest-mass particle. 

1.2 Conformal Transformations 

There is a certain confusion in the literature owing to the fact that two quite 

distinct concepts are both given the name conformal transformation. 

The first of these, which we shall refer as a conformal rescaling, consists solely 

of a replacement 

     ̂      ̂                                                                

of the space-time metric    by a conformally-related one  ̂     being a 

smooth positive scalarfield on the underlying manifold. Thus the interval ds is 

transformed to   ̂       If     is a flatmetric, then  ̂  will in general not be 
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flat, though it will of course be conformally flat. The conformalrescalings of a 

given space-time form an infinite-parameter Abelian group. The points of 

thespace-time are unaffected by a conformal rescaling. The null cones, the 

causal structure of the space-time, are also unchanged. 

The other type of conformal transformation is what we shall call a conformal 

mapping. This is a smooth mapping   which carries each point of a space-time 

N to a point of some space-time  ̃in such a way that the metric on  ̃ induced by 

  from that ofN is a conformal rescaling of theoriginal metric on  ̃. In other 

words the map   preserves null cone structure Conformal mappings of 

Minkowski space M' to itself have a particular interest. These include the 

Poincaré transformations, which are metric-preserving, and the simple overall 

dilations, whose corresponding rescaling multiplies the metric at each point by a 

constant factor. The remainder  are generated by the in versiotis 

 ̃           
    ̃    ̂   ̂  ̂  

        

Which are a 4-parameter set since the choice of origin is arbitrary. These 

transformations preserve the time sense but involve spatial reflection. They are 

conformal mappings since the induced and original metrics are related by 

  ̂    ̂   ̂           
    

                                

However, these transformations do not involve only the points of   , because 

the null cone of theorigin is sent to infinity. We therefore introduce 

compactified Minkowski space M, which consistsof M‘ together with a closed 

null cone at infinity. We may picture the structure in terms of two cones joined 

base to base, the interior being M‘ and the two bounding cones being identified 

along opposite generators with future sense preserved (see fig. 1). Thus the 

―equator‖   must be consideredas a single point. For fuller discussion of the 

structure of M. Note that one canconsider the equations (1.2) as expressing a 
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coordinate change, rather than a point transformation,on M; and that the null 

cone at infinity is on the same footing as any other null cone in M as far 

asconformal mapping symmetry is concerned. In consequence of the latter, the 

concept ofradiation is not conformally invariant, since it depends on knowing 

where infinity. 

The conformal mapping group of M is of 15 parameters and non-abelian. We 

shall here concern our selves with the restricted conformal group, i.e. the 

subgroup of mappings connected with the 

 

Fig. 1. Identity Map 

Compactified Minkowski space M.          are points at spatial infinity, future 

time infinity and past time infinity respectively,while      are future and past 

null infinity cones. The compactified space has         identified and 

     identified along opposite generators. For typographical reasons, 

“ ”replaces the more usual script   depicted in fig. 1.identity map. This does not 

include the actual mappings (1 .2) but does include their products with space 

reflections. It is 2-1 covered by the six-dimensional pseudo-orthogonal group 
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SO(2,4) which in turn is 2-1 covered by SU(2,2), a group of unimodularpseudo-

unitary matrices. The infinitesimal conformal motions are described by the 

conformal Killing vectors r and are given, for infinitesimal  , by 

            

The vectors   must satisfy 

       
 

 
       

                                                

The general a solution of this is  

                     
            

               

where        [  ] generate the Lorentz rotations (6 parameters),   the 

translations (4 parameters),R the dilations (1 parameter) and   the so-called 

―uniform acceleration‖ transformations (4parameters). (This terminology is 

rather misleading, however, and will be avoided here. A morecorrect use of the 

terminology uniform acceleration is for a coordinate transformation which 

makes the Minkowski metric take the form 

                       

Questions of conformal invariance are handled most easily within the 

framework of conformal rescaling rather than conformal mappings. A physical 

theory will be said to be conformally invariant if it is possible to attach 

conformal weights to all the quantities appearing in the theory in such a way 

that all field equations are preserved under conformal rescalings.   tensor or 

spinor is said to have conformal weight r if we are to make the replacement 

     ̂          under the conformal rescaling       ̂    A flat 

space theory which is Poincartinvariantand also conformally invariant in this 

sense, will then be invariant under the 1 5-parameter conformalgroup. This is 
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because the Poincaré motions of Minkowski space become conformal 

motionsaccording to any other conformally rescaled flat metric. Conformal 

motions obtainable in this wayare sufficient to generate the full conformal 

group. But the type of conformal invariance described above is really more 

general than this since the conformal rescalings need not apply to flat space-

time at all or even to conformally flat space-times. In order to establish 

conformal invariance of a theory, one needs to know how to transform the 

(covariant) derivative operator under conformal rescaling. Remarkably enough, 

this is rather simple rwith in the two-component spinor formalism than within 

the tensor formalism. Since two-component spinors will also play an essential 

role in other aspects of twistor theory, we will next briefly summarise the 

relevant notation and methods.[1] 

1.3. Spinors 

The essential fact on which the 2-component spinor calculus is based is the 

local isomorphism between the Lorentz group and the group SL(2, C) of 

complex unimodular      matrices whichis the covering group of the identity-

connected component of the Lorentz group. It should benoted that this does not 

mean that spinors can only be used in flat space , since it is possible to usethis 

isomorphism locally is curved space-time. Representing the Minkowksi 

components   of   world vector   according to the matrix scheme 

                    ( 
   

    

    
    

)  
 

√ 
(            

           ) 

we find that when the components   undergo a restricted Lorentz 

transformation  the    undergo 

    (
  
  

) ( 
   

    

    
    

).
  

  
/                              
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where         are complex and their matrix has unit determinant, i.e.     

        The hermiticityof     
,i.e. reality of   , is preserved and so is 

{                            }         (    
)                       

We can express (1.7) as 

    
            

          

  

      

where                Primed and unprimed indices must be treated as 

essentially different asregards contractions and permutations, but they are 

related to each other by complex conjugate o ,which converts a primed index 

into an unprimed one and vice versa. 

The correspondence (1.6) shows how one may relate tensor and spinor 

components according to a standard scheme, but there is nothing special about 

this particular correspondence. From the point of view of the abstract index 

notation‘, the essential feature is that each abstract tensor index (four-

dimensional) is to be equated with a pair of  two-dimensional spinor indices, 

one primed and one unprimed. Thus the abstract tensor indices 

                        may be expressed as                      

    
     and we can write 

        
  

The reader who prefers to retain a component description such as that of (1.6) 

can re-express our equations in these terms by use of the in field Waerden 

symbols     
    

   
.)  
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where the  ‘s are skew-symmetrical with           
    

     (i.e. their 

coordinate representationsunder (1.6) are(
  
   

)). We use  ‘s to raise and 

lower indices, thus 

              
                   

            
      

            

The tensor and spinor ―Kronecker deltas‖ will be written   
 and 

  
     

  
  respectively. Thus 

  
    

    
  

 

and 

      
             

      
     

    
  

     
   

 A complex null vector       
       has a spinor form 

    
      

 

Since the matrix of components      
has rank      cf. (1.8)). If    is real, then 

    
      

                                                 

The plus sign occurs if   is future-pointing and the minus if   is past-pointing. 

Note that        (as    is skew) so that         follows directly from 

(1.12). Conversely if     = 0 then    is ascalar multiple of    (or    = 0). 

A spinor   contains more information than the corresponding null vector given 

by (1.12). Anon-zero spinór has a geometrical interpretation, up to an essential 

sign ambiguity, as a null flag. This consists of the corresponding null vector    

(flagpole) and a null 2-plane (flag2) 

 



12 

 

Fig. 2.[1] 

(a) The spinor    defines a null flag. This may be pictured as a polarisation 

vector tangent to the  celestial sphere S. 

(b) shows how   is rotated when the phase of is altered. 

plane element which contains and is orthogonal to the flagpole. This latter is 

defined by the bi vector 

     [    ]
                                         

where      (           )for some   with    
      When the phase of 

  is altered (i.e.           the vector  is unaltered, while   turns through an 

angle 2 . We may consider aspacelike hyper-plane ∑  intersecting the null 

cone  , of a point 0, in S  a 2-sphere .   then describesa point on S, and a vector 

tangent to S which defines a polarisation direction. As   variesthis polarisation 

vector sweeps out the 2-plane tangent to S, and performs one revolution through 

   as  changes by   (see fig. 2). 

Our covariant derivative operator          satisfies 
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(whence         ), and 

              

In curved space-time, we have the relation 

                            
                                   

where the curvature spinors             A have the symmetries 

                                                       

and are related to the curvature tensor      (with sign convention 

(           )           
   by 

                                     

                                                     

                 

(1.16) 

we thus have 

         
 

 
     

 

 
              

(where           
        

 ) and 

                                        

where      is Weyl‘s conformal curvature tensor, whose vanishing is a 

necessary and sufficient conditionfor the space-time to be conformally flat. We 

also introduce, for future use, the completely skew tensor 
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        [    ] 

defined by        (√  )
  

,so that         √  , in a right-handed 

coordinate system. Its spinorequivalent is given by 

                                                                      

Now we can discuss how conformal rescalings affect spinors. Under the 

rescaling      ̂        we take 

  ̂         ̂           

 ̂           ̂ 
   

         
                               

We have  

                                                   

When   acts on spinors of higher valence we simply treat each index in turn 

according to the above scheme so there is one term involving   for each index. 

For example, 

 ̂     ̂   ̂          

                                            

   [     ] 
     

by the 2-dimensionality of spinor space. The covariant derivative of a vector 

transforms as 

 ̂       ̂    ̂      ̂                          
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(using                          
       ). Note that this generates the 

transform under conformal transformations of V applied to tensor indices, as 

(1.19) does for spinors. 

Using this information we find the following transformation laws for the 

curvature 

 ̂            

and 

 ̂                                                                     

where 

                            
 

  
     

 

 
     

The Bianchi identities  [    ]        which are equivalent to 

             [   ]   

become 

   
                   

  
 

which in empty space-time                 simplifies to 
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Finally let us consider some conformally-invariant theories. For example, 

Maxwell‘s equations 

   
             [    ]      

are conformally invariant ifwe set  ̂        and  ̂      (so  ̂    

        ̂        ). Thatis to say we get 

 ̂  ̂
        ̂     ̂[  ̂  ]

      

This may be verified in various ways, e.g. by using the tensor formula for  

 ̂  above, or by usingthe spinor formulae applied to the spinor version 

   
                                                       

of Maxwell‘s equations, where 

                       

with               ̂           When       , (1.24) becomes a 

particular case of the zero-restmassfree-field equations for spin 
 

 
  

    
                                                           

where         is symmetric with   indices. If       we adopt the second-order 

equation 

(   
   

 

 
 )                                                

For each  , these equations are conformally invariant if  ̂                    as 

is readily verifiedusing (1.19). The case       has particular interest since the 

tensor 
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defined from a solution of (1.25) in Minkowski space, satisfies 

         [  ][  ]            [   ]       

(1.27) 

                      (       [    ]      ), 

and represents a source-free gravitational field in the linearised theory. In this it 

is assumed that 

                

where     is the Minkowski metric,   is infinitesimal and    , is some 

symmetric tensor.      is locall  the Weyl or in empty space, Riemann tensor 

for some metric of this form, provided it satisfies (1.27). It should be noted that 

conformal rescaling of the metric gives  ̂               while  ̂      

           For further details of spinor calculus. We note that to describe states 

in quantum mechanical systems, complex vectors and tensors are used. If the 

operator ih      has positive eigenvalue, the quantum state has positiveenergy. 

We will describe these and the corresponding classical states as having positive 

frequency. It turns out the solutions of (1 .25) with positive energy represent 

negative helicity particles and the positive energy solutions of the conjugate 

equation 

                                                             

Have the other helicity. This essential difference reappears. Raising and 

lowering of indices only alters the conformal weight, but complex conjugation 

of the spinor reverses the helicity. 
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For example a free photon wave function is described by a complex Fob. When 

translated into spinor form this gives rise to independent spinors          by 

                         

and           satisfy respectively (1.25) and (1.28). Considering a plane wave, 

we find 

             { (      
   

)} 

                 {  (      
   

)}  

The     thus derived corresponds to the     for a real circularly-polarised 

wave, which is in factleft-handed. Thus the spinor representation of complex 

states splits the states so that the positive energy part of the spinor with 

unprimed indices has negative helicity, while the positive energy part of the 

spinor with primed indices has positive helicity.[1 ] 

1.4. Momentum And Angular Momentum 

In special relativistic dynamics any finite system possesses a total momentum 

   (a 4-vector) and a total angular momentum    skew tensor dependent on 

the origin  .If    ̃, then      ̃  and     ̃           [   ]where 

   is the displacement  ̃.We may define the spin vector 

    
 

 
      

                                                    

Then 

 ̃       

(i) Assume    
      Then the relativistic centre of mass of the system is 

defined to move on theworldline which isthe locus of origins  ̃ such that 
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 ̃  ̃
                                                        

Then, as regards its total momentum and angular momentum the system 

behaves as a single particle moving along this woridline with momentum  ̃  and 

intrinsic spin  ̃  .Equation (1.30) maybe solved for    as 

       
        

       

and this gives a unique time like worldline. The intrinsic spin is 

 ̃   
         

    
                                                         

(ii) However we wish to consider zero rest mass (i.e.        ) to be the more 

fundamental case.Then (1.30) has no solution unless 

    
            

Thus there is no solution unless 

              [   ]        [    ]     

  [   ]      

          

for some constant  , the helicity  whose modulus [ ] is the spi . This equation 

may also be deduced from other points of view about particles.            

being a constant, is a null hyperplane , so it appearr that the centre of mass line 

has become a 3-dimensional region. We can say a little more by considering 

two cases separately: 

(a) Spin [ ]       Then       [   ]where  is some vector, and the centre 

of mass line can be defined as 
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the angular momentum about a point on this line being 

 ̃       

Thus we may pick a specific generator of the hypersurface as the centre of mass 

line, and, as in the case where    
     and [ ]     , the system is completely 

characterised by this line. 

b) Spin [ ]    . In this case all points on the null hyperplane          turn 

out to be on anequal footing. That is, one can find Poincar6 transformations 

under which any two given pointsare dynamically equivalent. In this sense the 

particle is not localised. However, if we take two points       , the necessary 

Poincaré transformation demonstrating the equivalence of a and bis not simply a 

translation, but a translation plus a specific null rotation.[1 ] 

The null vector pa corresponds to a spinor    

                                                                       

uniquely up to phase;          preserves(    
    [  ]) is represented 

by a symmetric spinor,           

              
       

    

  

The equation         takes the form 

          
  
                                           

If we transvect this with    we find    
 
 

 
     which implies that 
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for some     Since any symmetric 2-index spinor is the symmetrised outer 

product of two spinors, the only new information concerning     is that one of 

the factors is   . Thus 

       
     

(   )
     

   
(   

  
)
                                

We can now characterise the pair       
    by the two spinors         (but 

not uniquely, forthe same pair is represented by (            ).This pair is a 

representation of a twisto   .We do not choose to define the twistor    as the 

pair of spinors          since under change oforigin and under conformal 

rescaling the    and     become transformed, whereas the twistor    is 

supposed to remain unaffected. Thus we must think of         simply as a 

representationof the twistor   . In fact twistors have two stages of 

representation. The first, in terms of theabove pair of spinors, is specified by a 

given origin and choice of conformal scale, i.e. of one ofthe conformally related 

flat metrics. (The spinor indices are here just abstract labels‘.) The second is in 

terms of the coordinates of these spinors with respect to some spinor frame. 

Such coordinates will be indicated by the presence of Hebrew indices. 

If   is represented by          then we can take twistor components 

                                                               

We define a conjugate twistor   
 

, to have components 

    ( 
 
  

 
 

  

  
  
)                                     

Dropping the spinor frame, we have the representations                 

 (     
  

)and so 



22 

   
 
             

  

                                                          

using (1.33). Note that the Hermitian form used on the twistor   in (1.37) has 

signature         and that positive       and negative       helicities 

are thus both possible.  When     the twistor is said to be null and represents 

a null worldline. When    , the twistor represents a particle with intrinsic 

spin and there is a sense in which this means that the worldline is displaced into 

the complex. The particle ceases to be localised in M. The remaining will 

develop the twistor concept.  

1.5. Twistors In Flat Space 

The concept of a twistor    and its complex conjugate  ̅  were introduced,    

being represented by a pair of spinors          which define the momentum 

and angular momentum of a massless particle by (1.32) and (1.34),  ̅ being 

correspondingly represented by   ̅   ̅
  . The helicity of the particle is one-half 

the Hermitian norm    ̅ of the twistor. Twistors also have a linear structure 

(i.e.                
       

    
     

     
    so we may expect the 

group of transformations which preserves these structures to have some 

significance. Since the signature of the form    ̅ is        , this group is 

U(2,2). But if we wish to retain the geometrical significance of the phase of a 

twistor in terms of a polarisation plane i.e. the flag plane direction of     then 

we are led to consider the group SU(2,2) this being actually 4-1 homomorphic 

with the restricted conformal group. It turns out that twistors form a 4-1 

representation space for the identity-connected component of the conformal 

group. The algebra of twistors is discussed in detail. Twistor space is 8-real-

dimensional 4 complex dimensions . We may regard these dimensions as arising 

as follows; there is a five-dimensional set of null geodesics in M  consider the 

generators of the light cones with vertices at the points of any fixed space like 
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surface  and on each geodesic one may give the momentum scaling one 

parameter the seventh dimension is the polarisation  phase of    and the eighth 

the intrinsic spin. The non-vanishing of intrinsic spin       implies we do not 

have a uniquely-defined null geodesic, nor can we easily extend our 

interpretation to curved space-times. Twistors are a sort of ―square root‖ of the 

momentum and angular momentum in the same sense in which spinors are a 

square root of vectors. We said that a twistor was represented by a pair of 

spinors in a way dependent on choice of origin and conformal scale. We now 

need to know how the representation alters on change of origin and or scale. Let 

us first consider the effect of a change of origin on the spinors which represent 

the twistor. When    ̅, we have     ̃      
    ̃       

  [   ]. If we further insist that the phase of     be unaltered on translation 

owing to its interpretation as a polarisation plane (flag plane) we find  

 ̃        ̃          
                                       

 given      ̃
  is a function of position   ̃  and may be regarded as a spinor 

field. Actually it corresponds, in the case of null twistors, to a field of null 

directions of straight lines intercepting the worldline. By (1.38) 

      ̃                                                                           

In fact the form (1.38) follows from (1.39). For (1.39) implies    
  ̃  is skew 

inAB so also is    
    

  ̃ and hence (since in flat space we may commute the 

derivative operators) this latter is skew in    and therefore in    . Thus it is 

zero, so    
  ̃ is constant. If this constant is written        . (being skew in 

  ), the general solution of (1.39) is seen to be (1.38).   

 

Since 
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      ̃                                                             

the field  ̃  completely defines the twistor. Moreover, by (1.19), we see that 

(1.39) is invariant under a conformal rescaling with  ̂̃   ̃  Thus a spinor 

field  ̃  satisfying (1.39) can be used as a conformally invariant definition of a 

twistor, which therefore tells us how a spinor representation of a twistor 

behaves under change of origin or scale. It should be noted that change of origin 

preserves     but alters   ,while conformal rescaling preserves    but alters 

   , the point being that, as viewed from the origin, conformal rescalings make 

infinity appear to be in a different place; the spinor     is associated with the 

vertex    of the null cone at infinity in the same way that    is associated with 

the origin O. If we define  dropping the from here onward 

      ̅  
 

Then 

       
 

 
        

                                               

so that W‖ is a conformal Killing vector. However, 

     [   ] 

is not conformally invariant. Thus the angular momentum is not a conformal 

invariant, although   (or  ) 15. In fact, from (1.20)  

 ̂      (      [   ])  

This also follows from  

 ̂                                                          
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and (1 .34) which further implies that  

  
 

 
(   ̅      ̅  

)                                               

is conformally invariant. It is the conformal invariance of (1.39) and (1.43), 

together with linearity, which shows that twistors form a representation space 

(locally) for the conformal group. Now let us consider the equation  

 
  
        

                                                              

which may be regarded as the many-index spinor equation generalising 

 
  
     

  . The equation is conformally invariant if its solution obeys  

 ̂              

If we now form  

                                                            

where   is a solution to (1.25) we find that       satisfies (1.25) for a lower spin. 

In fact (1.44) has        linearly independent solutions if   has n indices, as 

shown explicitly. Each solution in turn, for   given  , may be substituted in 

(1.45).  For example, in the case of linearised gravitation    we can form 

             

which is a Maxwell field. We may ask what charge integralsthis gives. There 

are 10 independent solutions for    , so we will obtain 10 conserved complex 

quantities. These are in fact the energy, momentum and angular momentum. 

These quantities would be complex for a general solution of (l.25) but we get 

only   real quantities for a       derivable from a potential. If the integrations 

are performed at infinity, these quantities give the Bondi-Sachs definition of 
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mass, as applied to a general (shearing) retarded null hypersurface in 

Minkowski space, for linearised theory, so that it becomes clear that the 

―correction terms‖ which distinguish this mass measure from the Newman-Unti 

mass are really necessary  even in linearised theory.  

The equation 

 
  
     

                                                               

which defines a twistor has 4 linearly independent solutions in   . There isa 

difficulty at infinity because to form M we stick the past and future light cones 

together and the one-superfix twistors differ at those points by a factor  , 

essentially because the representation of the conformal group in twistor space is 

via a four-fold covering. For a many-index twistor, one must allow a factor   for 

each superfix and one factor  for each suffix. We could remove this difficulty 

by taking a fourfold covering of M but instead we simply adopt the rule of 

multiplying by   every time we complete a circuit passing through infinity. The 

problem is an illustration of the fact that twistors are like spinors in not being 

local geometric objects (for odd-indexed spinors are multiplied by   when they 

are rotated through   ). [1] 

1.6. TwistorSpace And Minkowski Geometry 

A twistor with       ̅    represents a null real straight line (i.e. the 

worldline of some particle of zero spin). If     there is no such real line, but 

there is in a certain sense a ―complex line‖. Clearly when    ,    and 

         represent the same line so that the most directly geometrically 

interpretable twistor space is the space N of equivalence classes {   } when 

   ,    , i.e. 

  {{           }    ̅        }                    
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which represents the set of null lines in M. We shall therefore consider the space 

C of equivalence classes of twistors, defined like N but without the requirement 

           . This is complex projective three-space      which has three 

complex or six real dimensions. It is not just the com 

 

Fig. 3. Projection of twistor space into C. 

plexification of N, which would have ten real dimensions. In fact even the 

complex points of C may be represented as real structures Robinson congruence 

in M. The conformal transformations of M correspond to projective point 

transformationsof C preserving N. Let us now consider what a point in M 

corresponds to in C. We may define a point in M by the intersection of null 

lines. Suppose two lines are described by twistors                

        .Then the lines meet if there is a common solution to  

        
                             

     

Formally this is  

    
  

 

      ( 
    

     
)                                            
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but of course the corresponding point need not be real, i.e.     
 need not be 

―Hermitian‖. If the lines do meet (i.e.    real) then  

 ̅  
    ̅  

   
      ̅  ̅

   
         ̅ 

 
    

       ̅                                                                      

Thus the necessary conditions for the two twistors to represent real intersecting 

lines are  

   ̅            ̅             ̅                                  

We interpret the condition appropriately when Y and Z are parallel, in which 

case they meet at infinity, i.e. lie in a null hyperplane. This can be shown, 

assuming Y and Z to be non-parallel so that    and    are not proportional and 

then taking a limit for the parallel cas, by testing the Hermiticity of (1.48) by 

taking components with respect to   and   . The three conditions thus derived 

for Hermiticity are simply (1.49). If (1.49) holds, then it is also satisfied if    

(or   ) is replaced by  

           

for any complex numbers     . Thus the line X meets each of Y and Z and so 

belongs to the null cone through the point P with position vector  .This null 

cone can be used to represent P. Thus P is represented in N by the linear set 

        ,i.e. by the complex line P joining points Z and Y which has 2 real 

dimensions and topology   .We may therefore represent this point P by the 2-

index twistor 
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         .
                    

                        
/

       
4
 

 

 
           

   
  

     
      

5                                             

where        
 is the position vector of the point P. Thus the points of M 

correspond up to proportionality to simple skew 2-index twistors, i.e. twistors 

obteying  

     [  ]        [    ]    (     [     ]   )  

We may define the dual twistor    which gives the geometrically dual 

description of the same line by 

    
 

 
                                                        

One may verify that   is real       ̅  where  ̅  is the twistor complex 

conjugate of   .More generally, if   is complex, then its complex 

conjugate ̅ corresponds to  ̅   in the same way that    corresponds to   .In 

fact the imaginary part of   is spacelike, timelike or null respectively according 

as P intersects N in a one real-dimensional set (a curve: topology S), in a point, 

or not at all. If null or time like, the imaginary part of    is future pointing or 

past-pointing according as p lies in      or     . Now we recall that we 

are working in compactified Minkowski space (fig. 1). Suppose P is in fact I, 

the vertex of the null cone at infinity. Null lines at infinity have           

and so the point I corresponds to the twistor  

    ( 
   
  

)                                                     
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This we shall call the ‗infinity twistor‘. Its dual is 

    (
  

      )  

We can normalise skew twistors by 

               (          
  )                         

This fails only if    . And     are proportional, i.e. only if P is at infinity.  

Suppose now that                 . Then by direct calculation we obtain 

                                                       

or for non-normalised twistors  

        (    
  )(      )                  

This is clearly a Poincaré invariant quantity. In fact the subgroup of the 

conformal group which leaves     invariant is just the Poincaré group. We can 

form a conformal invariant from the twistors of four points, namely 

  
(      )( 

     )

(      )  
      

 
          

          
 

which defines a sort of  cross-ratio for any four points in M.  

To sum up, a general complex projective line in the projective twistor space C 

corresponds to a point in   , the complexification of M; a line in N 

corresponds to a real point in M; a point in N corresponds to a null line in M. 

Starting from the space C we can reconstruct    as the Klein representation‖ of 

lines in the complex three-dimensional projective space C, giving    as a 
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quadric fourfold in five-dimensional projective space. In this case all 

dimensions are complex, so    has eight real dimensions.[1]  
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Chapter 2 

Correspondence  And   Penrose Transforms (Zero-Rest- Mass Field) 

2.1.  Solutions   Of   The Zero-Rest-Mass Field Equations  

The question we now discuss is how fields in M are represented in twistor 

space. We shall find that the general zero-rest-mass free fields can be 

remarkably concisely represented by holomorphic (complex analytic) 

functions      and      on the twistor space and its dual,   . But in order to 

make the correspondence we must take suitable contour integrals. Thus only the 

residues at the poles off will be physically meaningful; consequently the 

subsequent formalism will be based on contour integration in C.  

The solutions of the equations (1.25) can be represented by a set of quantities 

            where                 are a pair of basis spinors at the point 

P, and  

             ⏟    
 

     ⏟    
   

 

Now    and    define null twistors through  , namely      say, i.e.   

      
   

   ,    (     
   

  ). Thus we have the quantities  

  (     )                      

If    and   are restricted to be null twistors with real intersection,   rrepresent 

a zero-rest-mass field in M. Such a field may be regarded as defined on some 

three-parameter initial set (Cauchy hypersurface) and thence extended over the 

rest of space by the field equations. In twistor terms it would be economical if 

we could describe the field on M by some field on the (complex) 3-space C, or 

  . So far it appears that we must define the field on pairs of points     in   . 
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Let us take the point P and define a standard tensor and spinor reference frame 

(cf. (1.6)) such that  

      
  

     

√ 
                           

      

√ 
 

 ̃      
 

      

√ 
                             

     

√ 
   

 ̅   ̃    ̅    ̅if and only if   is real.  

   

  ̃
 

     

  
          

   

  
 

     

  
                                 

These equations are automatically satisfied if  

   
 

   
∮    (      ̃     )  
 

                 

where F is a holomorphic (i.e. analytic or regular in the complex sense) function 

ofthree complex variables, the contour K being taken to surround the poles ofF 

in a suitable way. The resulting fields will always be analytic in the real sense 

with respect to        , but we may represent nonanalytic fields as limits of 

analytic ones.  

A real null vector at              has direction given by             

where 

                

for some complex   possibly infinite. For the Minkowski metric is        

     so that          f̅oranull direction. Thus           ̅  

  ̅        ̅ The corresponding (null) twistor is           ( ̅   ̅
  
) 

where 
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 ̅     (
     ̅

     
) 

and    ̅   ̅       . Thence, as  ̅  
       

     

        ( ̅  
  ̅  )      ̅   ̅  (

  

 ̅  
)             ̅        

Thus                (            ̅         ) If we therefore set  

          
     (

  

  
 
   

  
 
   

  
) 

Then      is homogeneous of degree      in   . (We can now check that 

this has the correct 

 

Fig. 1. The Kerr theorem.[2] 

transformation properties under rotation for spin 
 

 
 .) The final formula is 

  (     )  
 

   
∮              
 

                          

We may now generalize by taking any       no longer necessarily null thus 

defining complex fields on complex points        It seems although there is as 

yet no completely satisfactory theorem that the set of such fields is extremely 

general. For a particular field it is clear that f is not unique since all the contour 
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integrals remain the same under      where h is regular inside the contour. 

We may regard this as a sort of gauge invariance. This non-uniqueness off 

would clearly lead to difficulties for any proposed explicit formula giving f in 

terms of     . It is however easy to construct special types of solution forf. For 

example      . is called null if  

       (        ) 

and such a field arises when the contour surrounds only a single simple pole. 

Note that a general symmetric spinor may be written as a symmetrised product 

of one-spinors. More generally, the algebraically special fields  

       (        )
 

appear as integrals round contours surrounding a pole of order       . E.g. 

to obtain type {   } (i.e. Petrov type D) linearized Weyl tensor fields we may 

require that has two triple poles and that the contour separates one of them from 

the other. Since heref has homogeneity degree, it follows that such anf is in fact 

the inverse cube of a quadratic form. If   is algebraically special (e.g. null) 

there is associated with it a shearfree null congruence. If  

                  

then         is a four (real) dimensional surface in a six dimensional space 

(C), and intersects the 5-dimensional surface N in a 3-dimensional set of points . 

This represents a 3-parameter null congruence in M. By a theorem of R.P. Kerr, 

this congruence must be shearfree. The theorem is that a congruence of null 

lines is shearfree if and only if it is representable in C as the intersection of N 

with a complex analytic surface S in C or as a limiting case of such an 

intersection. It was partly this theorem that motivated the study of holomorphic 

functions in twistor space.  
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If we suppose     is a plane (i.e.           )then we obtain by the 

above method a ―linear‖ system of null lines in M,which we may consider to be 

a geometrical picture of the (complex) twistor    (which previously had no 

intuitively obvious picture associated with it). These ―Robinson‖ congruences 

are largely what led to the name twistor, for they are shearfree, and twist with a 

handedness dependent on the sign of    ̅ . 

If we consider a sourcefree spin 
 

 
  massless field in M compactified 

Minkowski space, which has the correct peeling-off behaviour towardsinfinity, 

then the field will not match at infinity unless we take a fourfold covering for 

odd n (twofold for      mod 4). (This is reflected in the behaviour of the 

integrals introduced above since the homogeneity degree of     is      and 

twistors are 4-valued.) Rather than work with awkward covering spaces, 

however, we shall make the convention that a source-free field with the correct 

peeling-offproperties is to be regarded as continuous across infinity if it has the 

right ―Grgin discontinuity‖ at infinity (i.e. a general free wave of spin ~n should 

jump by a factor of     ).  Consider then fields with the correct peeling-off and 

Grgin behaviour which momentum eigenstates, for example, do not have . 

These may be (uniquely) split into positive and negative energy fields. A 

process equivalent to Grgin‘s harmonic analysis technique applied to the 

positive energy fields is the following. Instead of  ̅   ̅  etc., let us take 

twistor coordinates so that we get the more natural-looking 

 ̅    ̅   ̅    ̅    ̅  , the Hermitian form    ̅ ,of signature        , 

being now diagonalised. The orthonormal basis {  }then has two vectors of 

positive and two of negative length. These points give us four planes (fig. 2) and 

the simplest possible function of positive frequency has as its singular region 

just the planes shaded in fig. 2. A general function for spin 
 

 
  fields of positive 

frequency is 
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   ̅   ∑
  ̅  

    ̅  
  

  ̅  
      ̅  

    
           

        

                     

Where          
is a constant and            are nonnegative integers 

satisfying              . IfS is the set of singularities ofthis runction 

then assuming suitable convergence       is disconnected in two pieces, and 

so will yield a positive frequency field. The individual terms in (2.4) will in fact 

form an orthogonal basis according to the scalar product.[2]  

2.2.Quantization 

We start out by considering how to connect the spin s of relativistic dynamics, 

which appeared in the classical twistor picture of angular momentum discussed 

above with the spin s of the zero-rest-mass fieldsjust considered.  

The momentum of a particle with zero-spin was described by      ̅         

while the position of the centre of mass is then determined by         
   . 

As 

 

Fig. 2.[2] 

            ̅  ( ̅    ̅  
) 
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we find that 

     ̅       ̅        ̅  
      

      ̅      (    
 ̅ )

      
     ̅            ̅         

  ̅      ̅    
   

     
                                                                                                    

If    
is real. Thus, taking the exterior derivative, 

      ̅     
   

                                                         

and the right-hand side isjust the two-form preserved under canonical 

transformations, i.e. by Hamiltonian equations. For a fuller account of this 

correspondence. This suggests that we should regard       ̅  as canonically 

conjugate variables. Thus in the passage to a quantum theory we would expect 

      ̅  to become canonically conjugate operators with  ̅       . 

In the operator form  

          (         
 

   
) 

   
    

       
                                                                 

units being chosen so that    . Thus we shall want 

   
 

  ̅ 

( ̅   
 

   
) 

and 

   ̅   ̅  
    

                                                           

where these operators are taken to act on functions   ̅  . Now in the method 

of,   is essentially given by    ̅  , and it is clear from taking complex 
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conjugates that solutions of(1 .28) are similarly described by a function g    . 

Now 

     ̅  
 

  ̅ 

   ̅                    ̅    ̅   ̅    ̅  

                               ̅       
 

   
                    

Previously we had    ̅    , where          being the spin parallel to the 

direction of motion. So consider the operator S defined by  

       ̅   ̅  
  

    ̅  
                  ̅              

then  

       
 

 
(       )             

Forg is homogeneous of degree        and      whereas         

   gives       where k is the homogeneity degree. One may, incidentally, 

say that the fact that   
    in twistor space, i.e. its 4-dimensionality, is related 

to the need for the degree        in the definition off. We also find 

    ̅       ̅   if     , so that the twistor fields corresponding to spinors 

with primed indices are of opposite helicity, as we expect. The fact that the spin 

is half-integral is a consequence of the one-valuedness of f.  We may inquire 

what is the effect of     ̅  when acting on the fields    consider 

                                                                 

which is the result of    ̅ . If              eq. (2.11) corresponds to  

       ̃                                                     
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where  ̃           
   ,and      satisfies the zero-rest-mass field 

equations for spin      . Similarly, if   (    
  
), the operator   

  acts 

so that  

        

 

   
                                                         

      
 

 
                  ̃  

   ̃  
               , where 

      is a solution of the zero rest mass field equations for spin      . Thus 

 ̅  raises, and   lowers, the helicity by one half. 

2.3.The Linear Penrose Transform 

We want to pull back cohomology from   to   and then push it down to 

 . The composition will then be the Penrose transform mapping cohomology 

groups on   to solutions of the massless field equations on    first we shall 

study the pullback of cohomology from   to  . This is essentially a topological 

problem, as it turns out. Let    be an open set in   and let        , which 

is an open subset of  . We want to determine conditions on   and    so that 

data can be transformed from  to   without loss of information. If   is any 

sheaf on    then the topological pullback sheaf      is a well-defined on 

  then the topological Pullback sheaf      is a well-defined sheaf on   . We 

have an isomorphism              , for all     , and this gives rise to a 

natural mapping 

                     

Defined by          we have identified        with      in this definition. 

We want to extend this pullback of   to pullback of cohomology with 

coefficient in  . We can use either Cech cohomology or suitable resolutions of 

 to effect the pullback. For a Cech convering   of  , simply pull back the 
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cover  to a covering   of   and pullback representatives of cocyles of a given 

degree. We want to use specific resolutions, however and we shall develop that 

point of view. 

     We are interested in pulling back   (       ) for some holomorphic 

vector bundle  . Dolbeault‘s Theorem allows us to compute cohomology in 

terms of the fine resolution 

                      
  ̅
        

 ̅
                           

On  , i,e., 

  (      )    (         )  

we want to use this resolutio‘n to effect the pullback of cohomology. Suppose 

we look at this same situation a little more abstractly let 

            

Be a resolution of a sheaf   on    we denote this as 

        

 we denote the index of the complex of sheaves to avoid overusing the symbol 

which we shall use for pullback. Now we suppose that we can compute the 

cohomology of   in terms of the resolution 

          (       )                                                

As in the example of the Dolpeault representation of   {         given 

above. That is, as in the above example,  is a complex of flabby, soft, or fine 

sheaves or more genrally acyclic sheaves; the Dolbeault resolution is, for 

instance fine, and therefore acyclic. Note that resolutions of   with the property 

(2.15) always exist. We can pullback the resolution    obtaining on    
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The differential sheaf (2.16) will be a resolution of      , since it is still exact 

at the stalk level, but it will not necessarily calculate cohomology. for in tstance, 

if    is fine, then       certainly will not be,      will be constant along the 

fibers, and this would not be preserved by multiplication by a cutoff function 

along the fiber direction. Even thouth the resolution (2.16) may not compute the 

cohomology groups          , there is relation given by the spectral 

sequence of the resolution (2.16) namely, there is a canonical homomorphism 

  (           )    {                                                   

This is generalization of the abstract de Rham theorem. Namely, if (2.16) is 

acyclic, then (2.17) is an isomorphism, and this is simply the   abstract, de 

Rehm. Suppose nowin addition that  

           is a homorphism of complexes,                      (2.18) 

That is to say  the diagrams,  

                     

                            

                       

Are commutative. It follows from (2.18) that there is an homomrphism of 

complexes 

       
  

              

And hence a homorphism of the associated cohomolgy 

  (       )                                                        

Now using (2.15),(2.17), and (2.19) we see that we then have an induced 

canonical mapping 



43 

       
  

                                                                   

Now that we have the desired pullback mapping (2.20) of cohomologywe want 

to investigate its behavior. If        has connected fibers, then it is clear 

that 

                     

We want to give similar but higher topological conditions on the fibers of   so 

that (2.20) is an isomorphism for      our major interest for our applications 

will be the case      let us say that the mapping        is elementary if 

the fibers of this mapping             are all connected, and, moreover 

have vanishing first Betti number, i.e.,   (    )     for all      

Remark(2.3.1). Suppose that                ̂            as in, 

then each fiber    of mapping       ̂, for    ̂is biholomorphic to  ̂    . 

suppose, for instance that   is convex in therefore convex. Hence       ̂ 

for this   will be an elementary mapping .This shows that the condition of 

being elementary is not too difficult to check in various cases. We now have the 

following important lemma. If  is a smooth vector bundle over   , then let 

     be the sheaf of  . 

Lemma (2.3.2). Suppose that        is elementary, and that   is a smooth 

vector bundle over    then 

                   

Proof: We define a fine resolution of        by the sheaves of smooth relative 

  forms   
    on   in analogy with (7.1.3): 

            
    

         
→     

    
  
→   

       

This is affine resolution, so by the abstract de Rehm     
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  (          )    (       
    )  

thus  we need to show that 

 (     
    )

  
→  (     

    )
  
→  (     

    )                         

Is  exact. Suppose for each    there is a neighborhood  of  such that the 

sequence 

 (             
    )

  
→  (             

    ) 

  
→  (             

    )        

Is  exact. Let   {  } be an open convering of  with the property that (2.23) 

is exact for each    . Then let     (     
    ), such that        now 

let     (           
    ) satisfy         for all    Now let {  }be a 

partition of unity with respect to the convering    then     is a partition of 

unity with respect to the convering    {     } of   . Define  

  ∑        
 

  

We see that  

    ∑(               
      )

 

 

 ∑         

 

    

Where     
       since     is constant along the fibers of    . 

Thus (2.22) is exact if (2.23) is exact for neighborhods of arbitrary points of    
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Now we shall check that (2.23) is exact for suitable neighborhoods of a given 

Point   . Choose such a neighborhood   so that            i.e., the 

fibration   is trivial over   . Now let              ,  then we see that  

                             

Where    is the rank of   . Thus we need to show that (using (2.21) in the case 

where   is the trivial line bundle) 

 (     
 )

  
→  (     

 )
  
→  (     

 )                               

Is exact  choose     (     
 ) such that        then letting      we can 

consider   as a smooth family of one-forms on open subsets of    with  

Coefficients depending smooth on the parameter      we write      we 

write      as the one-form defined on  { }          now define, for 

            

       ∫  

     

      

     

Where the integral is along any path in  { }        , joining       to 

     . By the assumption that   is elementary, we see that integral is 

independent of the path, and hence we obtain a solution of the equation 

      

On     , and (2.24) is exact, as desired. 

We now have the following fundamental result. 

Theorem (2.3.3) 

 suppose      is an open set,          and   is a holomorphic vector 

bundle on  . If       is elementary, then  



46 

                             

Is a canonical isomorphism. 

Proof: The spectral sequence of the resolution 

                     

Has the form  

  
  

   (              )                 

Since                 , by Lemma (2.3.2), the   -term of the spectral 

sequence has the form, letting                

                                                                                  

                                                                                

  (        )  (        )  (        ) 

It follows that   
     (        )   

      and hence that  

                 (             )  

i.e. that (2.17) is an isomorphism. Now       has connected fibers 

implies that  

 (             )   (         )  

Hence ,  is the composition of three isomorphisms 

  (      )
        
→    (            ) 

         
→     (                )

              
→                    

And the theorem follows. 
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Remark (2.3.4)  

 Buchdahl  has a generalization of this theorem for higher degree cohomology. 

Now let   be any open subset of   , then there is a spectral sequence associated 

to the resolution of the form 

  
  

   (    
    )                                        

This follows and will be a principal tool in the Penrose transform, as we shall 

see below. We have now Pulled back             to  

               isomorphically, if        is elementary. We now want 

to push down                to  . We shall do this for different special 

choices of   and the vector bundle    our first relates to right-handed massless 

fileds on    let    be an open subset of   .  We define 

  
       

  
           [ ]

           [ ]
   

Where the differential operator   
  

maps conformally weighted spinor fields to 

conformally weighteted spinor fields. We call    
 the sheaf of holomorphic 

right-handed massless free fields of helicity   ⁄ . If we consider of   
 on an 

open subset of   we have the right-handed massless field described, i.e., 

symmetric spinor fields which are solutions of 

    
             

Now for any open set     we let            ̂            

As before. following We then have the basic result. 

Theorem (2.3.5). Let  be open in    and suppose      then there is a 

canonical linear transformation 

    ( ̂        )        
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If       ̂ has connected fibers, then  is injective, and if       ̂  is 

elementary, then   is an isomorphism. 

Proof: We already know from Theorem (2.3.3) that  

     ( ̂        )    ( ̂          ) 

Exicts, and is injective or an isomorphism to the topological hypotheses of the 

theorem. We shall show that there is a natural isomorphism 

                        
    

And the theorem will be proved.  We shall use the spectral sequence (2.25) to 

compute                 in terms of the cohomology groups (   

  
       ). Then we shall use the Leray spectral sequence of the fibration 

        

 ̃ 
  

   (   
 
  

       )    (     
       )                 

To relate the cohomology groups   (     
       )to cohomology groups on 

 . Let us handle the Leray spectral sequence first, since it is somewhat simpler. 

For a fixed   

  
 
  

                   

and   
 
  

       are particular nontrivial spinor sheaves which are given 

specifically. Thus the spectral sequence   ̃ 
  

 is degenerate at the second level, 

i.e., we have  ̃ 
  

    for      Hence  ̃ 
  

  ̃ 
  

  and it follows that 

  (     
       )      (   

   
       )                              

For      and   (     
       )     Thus is a version of integration over 

the fibers of the mapping    
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Now returning the spectral sequence (2.25) we can write down the   -term as 

follows (letting         for simplicity) 

                                                                  

  (     
    )

  
→   (     

    )
  
→   (     

    )   

  (     
    )

  
→   (     

    )
  
→   (     

    )   

  (     
    )

  
→   (     

    )
  
→   (     

    )   

Replacing the terms in this array by the corresponding groups  on   under  the 

isomorphism(2.26), the mappings by the induced mappings on the direct image 

sheaves, and we see that the   -term  

                                                                                     

  (    
   

    ) ̌ 
→ 

  (    
   

    ) ̌ 
→ 

  (    
   

    )   

  (    
   

    ) ̌ 
→ 

  (    
   

    ) ̌ 
→ 

  (    
   

    )   

                                                                                               

Now we see that 

  
      {  (    

   
    ) ̌ 

→ 
  (    

   
    )}  

and  
     

     
      moreover, we see from the above diagram that 

  
     

    We see that  

                 
    

Finally we obtain 

                   (            [ ]
 )      

  

→    
 (            [ ]

 )
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If we let     or  , then we see that topological conditions in Theorem 

(2.3.5)  are satisfied. Thus we have the following corollary. 

Corollary (2.3.6). For      

(a)                         
    

(b)                         
    

Are canonical isomorphisms. 

Remark (2.3.7). Theorem (2.3.5) describes every right-handed holomorphic 

massless field locally as each point of   has convex neighborhoods which will 

satisfy the topological hypotheses of the theorem. 

We now turn our attention to the solution of the wave equation, the 

helicity zero case. This is less straightforward then the positive helicity case 

treated above, as it involves second order differential equations. Recall that the 

wave equation has the form on    

                                                                       

Where            
      and  is a scalar function. This is the helicity 

zero massless field equation. We want to extend this to act on conformally 

weighted scalar fields or functions on all of  . We note that  

 
 
   

→        

 
 
   

→      
[ ][ ]   

Since     
         

      and form this we see that       
    is a well-

defined mapping 

     [ ][ ]                 

We can now tensor this with  [ ] and obtain the mapping      which we 

still denote by   and we have 
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     [ ][ ]                                                      ,  

We see that (2.29) is a well-defined differential operator of conformally 

weighted buondlesand the solutions of this equation      on open sets of    

can be identified with the solutions of (2.28) on that same set. The mapping 

(2.29) is conformally with invariant. There are no choices of coordinates in its 

definition. It depends only on exterior differention       and the global     all 

of which are conformally invariant operators. We now use (2.29) to define an 

appropriate sheaf of solutions of the global wave equation. Namely, we define 

  
     {   [ ]   [ ][ ] } 

And we call   
 the sheaf of massless fields of helicity zero on     

  on open 

subsets   of   will then be solutions of the wave equation(2.28) on    we now 

have the following result. 

Theorem (2.3.8). Let   be open in    then there is a canonical linear 

transformation 

    ( ̂      )        
    

If       ̂has connected fibers, then   is injective, and if       ̂is 

elementary, then   is an isomorphism. 

Proof: the proof is identical to the proof of Theorem (2.3.5) except that we 

have to treat the spectral sequence (2.25) for the case     somewhat 

differently, as it does not degenerate  to first order as it did in that case, the  

  -term of (2.25) for     has the form 

  (     
     )    (     

     )    (     
     )   

  (     
     )    (     

     )    (     
     )   

  (     
     )    (     

     )    (     
     )         
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We need to calculate 

 Each column of (2.30) separately in terms of cohomology on  . For   
  

 

  (     
     ), we have the only nonvanishing direct image of 

  (     
     )is   

   
       [ ]   from theorem (2.3.5) therefore we see 

from the Leray spectral sequence (2.26) that 

  (     
     )          [ ]               

  (     
     )      

For the second column of (2.30) theorem 7.1.5 implies that  

  
   

               

And hence from (2.26) we find that  

  (     
     )         

For the third column, we see, again by theorem that the only nonvanishing 

direct image of   
      is given by 

  
   

            [ ] [ ]             

Now there are only nonzero columns in (2.30) and they are separated by zero 

column. It follows that   vanishes identically on   
  

  and hence that   
  

 

  
  

  we define the mapping   to be the mapping induced on   
  by the spectral 

sequence mapping   , i.e., 

       
     

    

Taking into account our calculations above, we see that following array 

represents the   -term of the spectral sequence and the mapping   has been 

singled out from the family of mapping which constitute 
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  (   [ ]                             [ ][ ]  )  

      [ ]                             [ ][ ]    

                                                    [ ][ ]                           

Thus we see that  

        [ ]         [ ][ ]    

One can see that   is the composition of the first order differential operators, 

and hence is asecond order differential operator. It is also conformally invariant 

as all of the operators in the spectral sequence are conformally invariant. We 

shall identify it with the wave operator shortly. First we note that 

  
      {        [ ]         [ ][ ]  }                         

Moreover, we find that   
     

    and   
     

      so by theorem  

                  
                                               

One we have identified   with a constant multiple of  , we see that (2.32) and 

(2.33) will prove the theorem.We now turn to the verification of this last fact. 

Consider the exact sequence of sheaves on   

       
 
  

→        
   

→  [ ]                                   

This is a complex of sheaves, and we can map it linearly to a second complex in 

the following manner: 

     
 
  

→        
 
  

→  [ ]  

                                         
                        

 

 
    

     
 
     

  

→           
 
      

→      [ ][ ]  
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Where the second sequence is the same as the relative de Rham sequence  

  
     

            
→      

     
  
→   

       

Each of the horizontal sequences is a differential sheaf and as such each has a 

spectral sequence associated with it. 

The spectral sequence of the botoom sequence is the one we have been 

considering ((2.25) for    ). The vertical mapping induces mappings on the 

spectral sequences, and, in particular, at the    level. Let  ̃ 
  

 be the spectral 

sequence of the top horizontal complex of sheaves. Noting that        [ ]   

      [ ]    and computing  ̃ 
  

 in terms of cohomology on  , we can 

express the mapping between the two spectral sequences at the   -level for the 

relevant terms in the following manner: 

 

      [ ]   

                                                              

 ̃                                                            [ ]   

                                 [ ]                   
 

 
             

                                          

                                                      
     [ ][ ]   

We see that since (2.34) is exact, this particular differential sheaf is a resolution 

of 0,and hence  ̃ 
      which implies that ̃ 

      and hence that  is an 

isomorphism. In fact,  must be the identity mapping, since it is a canonical 

isomorphism, we see that   is also the identity, and it follows from the 

commutatvitity of the diagram that   
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We have now represented all massless fields of nonnegative helicity in terms of 

cohomological data on  . We now want to consider the case of negative 

helicity. One approach to studying negative helicity is to use the same 

methodology above to represent left-handed fields in terms of cohomology on 

dual projective twistor space           

However, it is also possible to define Penrose transform directly on    let, for 

     

   
     {    

         [ ]         [ ][ ]
 }                                   

Be the sheaf of left-handed massless fields on  of helicity   ⁄   what we want 

to describe is a Penrose transform of the form, for      and for   open in    

    ( ̂       )         
                                         

Let us reconsider the positive helicity case for a moment to illustrate the 

difficulty in defining (2.37). we shall contrast the cases of helicity 2 and-2 for 

simplicity self-dual and anti-self-dual Maxwell fields, respectively . If 

    ( ̂      )        
   

Is given by Theorem (2.3.5), then let    ( ̂      ) , and consider the value 

of        , for a specific point   in  . The fiber of the bundle whose are 

massless fields is given by which, by the results, is isomorphic 

to  ( ̂   ̂    ) using this isomorphism, we see that is obtained by taking the 

cohomology class   and restricting it to the projective line  ̂ obtaining an 

element of the vector space. The Serre duality argument then gives the more 

normal spinor representation of this same vector, which is the value of the 

field     at . Thus, in summary, restricting the cohomology class to  ̂gives the 

value of the field. If   is represented in terems of differential forms, then this is 

the usual restriction of a differential form to a submanifold. Now we consider 
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the same situation for the case of negative helicity. Take an element  

  ( ̂  ), and consider the restriction  | ̂ 
   ̂   ̂ , then we see that since 

  (      
)   , then the restriction is necessarily zero, and so this cannot be 

the value of the field. So simple restrictions of cohomology groups will not 

yield anything in this case. The field at  defined by   turns out to depend on 

the restriction of   to infinitesimal neighborhoods of the submanifold  ̂     

the original integral formulae of Penrose for this negative helicity case involve 

not  only integration that is, the Serre duality part, but also differentiation of the 

integrand, if we think of the cohomology class   as represented by a differential 

form say, then we can expand the differential  form in aTaylor series with 

respect to coordinates normal to the submanifold  ̂( at least locally this makes 

sense in terms of usual power series). The fact that | ̂vanishes says the leading 

term of this series vanishes, it turns out that the value of the field is given by the 

first  nonvanishes. Coefficient of this expansion. If we have helicity    ⁄ , then 

the first nonvanishing coefficient turns out to be at the nth order. This has to all 

be given meaning in turms of the cohomological data. We shall use ideal 

sheaves to represent the normal bundle and essentially expand cohomology 

classes in terms of powers of the conormal bundle let us describe this briefly 

here in a general context, and we shall see a specific paramertrized version of 

this in the proof of the next theorem. 

   Suppose that   is a complex submanifold of a complex manifold    let  be 

the ideal sheaf of the submanifold    and consider the exact sequence  

        ⁄     

We shall see below that the quotient sheaf  ⁄ can be identified with the 

sheaf  , the sheaf of holomorphic functions on the submanifold Y. more 

generally there is an isomorphism which has the form 
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 |    ⁄ ⟫   ⁄ ⟫    ⁄ ⨁                                           

Which is given by the Taylor expansion of a germ of   at any point    . 

Namely, if we choose local coordinates       for   at a point     such that 

  {               }  

Then we have for any       the expansion 

            ∑            

         

  
     

                         

We see that the monomials   
     

  for            give abasis for the 

quotient stalk    
 

  
   ⁄ , which is a finite-dimensional vector space, for each    

the constant term‘ has the form         ⁄  and this shows that   ⁄    ; 

these are the intrinsic holomorphic functions on    the normal bundle     of 

the embedding   in   is defined by the quotient bundle 

           |        

The dual of the normal bundle is     and one can show that 

         ⁄                                                     

Thus we can express the expansion (2.38) in the form 

 |  ∑   ⟪
    

 

                                             

Moreover, the symmetric powers have the form 

  ⟪           ⁄   

Where   ⟪
       , the expansion (2.41) is a formal version of (2.39) in 

coordinates, where there the homomgeneous powers of   in (2.39) are replaced 

by the symmetric powers of the vector bundle   . The left hand side of (2.41) 
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will correspond to a sequence of intrinsic to   of the bundles on the right hand 

side. This is the same as the local correspondence 

  {          } 

In the expansion (2.39). 

   There are two approaches to understanding (2.37). The first is with potentials. 

If we apply the spectral sequence machine to the relative de Rham complex for 

the sheaf        we obtain fields on   which do not satisfy the massless 

field equations. However, if we differentiate these fields appropriately 

differentiate to   th order then we find that we generate massless fields of 

negative helicity, and, at least locally, all such fields can be so represented  . So 

the cohomological machine plus differentiation yields the desired Penrose 

transform. On the other hand, one can obtain the transformdirectly without 

potentials in the following manner (Wells ). We shall show how to calculate the 

field at a point     by expanding a cohomology class in a power series about 

the submanifold  ̂   . Let     ( ̂       )  then  defines naturally by 

restriction an element of    ̂        , which we still call  . Using the 

expansion (2.41) we can write formally 

                

Where 

     ( ̂   ̂( 
   ⟬⟪    ̂

  ))                                         

But one can calculate  that   ̂   ⟫  (where here   is the hyperplane bundle 

of  ̂    ). Recalling that       ,we find that  

    ⟬⟪                    ⟪            ⟬⟪       

But on    we have          so we find that, making the substitutions in 

(2.42), 
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     ( ̂   ̂
      )⟬⟪       

We can evaluate the cohomology groups and we obtain 

     ( ̂   ̂
      )⟬⟪       

Thus we define 

  ( ̂   ̂
      )⟬⟪      {

      

⟪             
  

Then this is a well defined symmetric n-spinor at   and is the value of the field. 

As we shall see in the proof of the next theorem, in fact we have 

        [⟪   ⟬     ]  [       [ ]
 ]

 
  

Here we just wanted to illustrate how to get the field at a single point in terms of 

an expansion. Of course, there‘s no indication there that this field so defined 

should satisfy any equations. That‘s a much more difficult issue which we‘ll 

consider later. 

    To study the negative helicity case we shall need an additional analytical 

hypothesis which was not necessary in the nonnegative case. We shall 

summarize some important facts from the theory of function of several complex 

variables, which is relevant in this regard. A stein manifold   is a complex 

manifold with the property that there exists a function        such that 

   {          } is relatively compact for all     and such that   has a 

posistive-definite coefficient matrix at each point of    this is a generalization of 

the notion of a convex set in     and any convex set in    is Stein, for instance, 

although the defineition is much broader. For instance, for a thorough analysis 

of these important complex manifolds. They are never compact, and they have 

the following important property, which we shall state as a theorems. 
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Theorem (2.3.9). Let   be a Stein manifold, then for any holmlrphic vector 

bundle     

                      

    The proof of this can be found in the references above. it is also true for more 

general sheaves coherent sheaves, which are natural generalizations of the 

locally free sheaves appearing in the theorm. Using Dolbeault‘s theorem, the 

vanishing of cohomology in the in theorem means that we can solve the  ̅-

equation 

 ̅     

For  , if ̅     where   and   are  -valued      -and        - forms on  , 

respectively. In the book by Hormander we find that these differential equations 

are solved by means of the   -methods of partial differential equations. The 

more recent works of Krantz and Range show how to solve these same 

equations using generalizations of the Cauchy integral formula in several 

variables which have been developed by a number of mathematicans over the 

past 15years. The simplest example of a Stein manifold is the unit ball in 

  centered at the origin  {     | |   }   , where we can take     

    | |  as is easy to check. However, the difference of two such balls 

centered at the origin (an annulus in several variables) is not a Stein manifold, 

provided that      there are also domains which are topologically equivalent 

to the ball but which are not Stein (take the ball and press a dimple). 

    After all of this digression on Stein manifolds we can now state the following 

theorem  

Theorem (2.3.10). Let   be an open Stein submanifold of  , then there is a 

canonical  linear transformation, for      

    ( ̂       )     
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Moreover, if        ̂ has connected fibers, then   is injective, and if      

 ̂ is elementary, then  is an isomorpgism. We shall outline the proof in a 

moment, but first we give a corollary. Since    and   are all convex domains 

in the coordinate chart     we see that they are necessarily Stein, and they also 

clearly satisfy the topological hypotheses as we have seen before. Thus we have 

the following immediate consequence of Theorem (2.3.10). 

Corollary (2.3.11). For      

(a)                         
    

(b)                         
    

are canonical isomphisms. 

Proof: We shall give the essential steps of the proof, Penrose and Wells (1981), 

Wells (1979b), Penrose (1977b) and Ward (1977b) for some of the details 

which we leave out. Let us first describe the mapping  . As we said before, 

there are two descriptions. We shall give both, and we shall first give the direct 

approach with power series expansions, and then we shall turn to potentials 

later. 

   We want to expand cohomlogy calasses in   ( ̂    ) about projective 

lines of the form  ̂ for      . But we want to do this in a uniform manner for 

all points, so we shall work on the product space     . The correspondence 

space   is naturally embedded in    by the mapping               , 

and this defines   as a two-codimensional submanifold of    . Let be the 

ideal sheaf of the submanifold  in     we recall from (2.40) that the 

conormal sheaf of the embedding is given by 

         ⁄ |   

         Let us relate this conformal sheaf to the spinor sheaves on      consider 

the sheaf        on     i.e., the Pullback from    of       tensored with the 
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pullback from   of under the natural projections to each  of the factors in the 

Cartesian product. There is a natural on    of this sheaf which we shall call, 

whose vanishing will define   as a submanifold of     

  {                }                               

Let  ⟬  be the vector bundle associated to the sheaf        then at the point 

           the fiber of  ⟬  is given by   
 ⟬      . Choose     , and 

let   be the dual element of   
 (i.e.,         , and let [ ]be the image of   under 

the quotient mapping     ⁄  Then   ⟬[ ]    
 ⟬       choice of  . This 

defines the value of   at the point       . it is easy to verify that   satisfies 

(2.43). Thus we have on    the mapping 

      
  

→     

                     

                                                       

Is a surjective mapping. In terms of components, if    {     } then   and 

  are generators of the ideal  , and any function    has the form  

   
     

  . the mapping (2.44) expresses this in an abstract form. The 

surjectivitity is equivalent to saying that the Jacobian matrix of the two 

components   and   have maximal rank on the submanifold    we also have 

the exact sequence on      

                     

                                                                                 

   
                  |  

We are writing   instead of   to avoid confusion with spinor indices. The 

sequence (2.45) shows that        can be identified with the conormal sheaf 
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         ⁄  (this is a parametrized version of the assertion earlier that 

  ̂   ⟫ ) . Now suppose that   is an open subset of    an d we consider the 

construction applied to    as a submanifold of   ̂   . we claim that  

  (            )    ( ̂          )                  

Is an isomorphism. We shall verify (2.45) in the case     for simplicity. 

On   ̂    we have the short exact sequence 

             

Which yields the long exact sequence on cohomology 

 ( ̂     )   ( ̂  )   

  ( ̂     )                                          

Where we recall that the sheaf   is supported on     ̂   , and we have the 

isomorphism 

  ( ̂       )              

The first arrow in (2.46) is surjecctive, namely one can check that 

                   

 ( ̂      ̂  )          

This follows since any holomorphic on  ̂ is constant since it is constant on each 

of the projective lines, for      and for any two points     in ̂ , there is an 

    so that      ̂  similarly, any holomorphic function on is constant on 

the fibers         for    , and hence corresponds to the pullback of a 

holomorphic function from    now                 by the Leray spectral 

sequence (2.26). Since   is Stein we have that          . Thus we find that  

  ( ̂     )
 
   ( ̂     ) 
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Now consider the sequence (2.45) and its associated long exact sequence. We 

find 

 (         )    ( ̂      ) 

   ( ̂     )                 

 using the Leray spectral sequence(2.26), we see that the first and fourth terms 

vanish, and we conclude that 

  ( ̂      )
 
   ( ̂     )                                      

From(2.47) and (2.48) we deduce (2.45) In the case      

The general case is a continuation of this argument using successively higher 

powers of    intuitively (2.45) being an isomorphism says that the information 

contained within an element of   ( ̂          )depends only on normal 

derivatives to of order at least  , to ‗evaluate the field‘ in effect, we just take the 

n th normal derivative by factoring out          . that is dividing out by this 

power leaves all of the lower order information intact. This process also restricts 

to    since the sheaf                 ⁄  is supported on   . More 

explicitly we have the exact sequence on  ̂     

                          

                            

      
            |   

Where       is the Taylor coefficient of the monomials        (which are 

generators of the nth symmetric power of the conormal bundle). It follows from 

(2.49) that 

                ⁄              
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On   . We now have the Penrose transform as originally given in Wells  of the 

form 

  ( ̂          )
 
←   ( ̂          ) 

                                    

                                    (              )                     

                              

  ( ̂       )
 
   (         [ ]) 

Where   is the Taylor coefficient mapping given by(2.49),   is the Leray 

spectral sequence mapping which is an isomorphism, the top isomorphism is 

given by (2.45), the left-hand vertical mapping is the natural pullback mapping, 

and  , the Penrose transform, is defined as the composition. This is the desired 

mapping from cohomology on  to spinor fields on    but it is not clear from 

this that the image must satisfy any field equations. One way to see that they do 

would be lift the spectral sequence of the relative de Rham sequence to this 

product picture, and deduce the differential equations, as before. We shall not 

carry this out here. The alternative is to see what one gets from the relative de 

Rham sequence itself. This leads to potentials. 

A potential for a negative heliccity field             
   is a spinor field  

      
  (    

       
[ ] ) 

Such that 

                

         (   
   

) 
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 Where the symmetrization in the definition of   refers to the unprimed indices. 

One can check in a straightforward but tedious manner that if         is 

given by (2.51), then   satisfies the negative helicity massless field equations 

(2.36), there is agauge freedom in these potentials, namely, if is a potential 

for       then so is 

  
     

   
   

      
                                                    

For any spinor field      
  (          ). it follows from constructions in 

Penrose and ward , that locally one can always find such a potential, and that 

(2.53) is the only gauge freedom. 

Let us specialize to the case of a left-hand Maxwell field, i.e., a solution of  

    
                                                         

Consider the anti-self-dual two-form 

              

Then (2.53) become simply as we have seen before      , and a potential is 

any one-form  such that       the gauge freedom is simply that      

  , for any holomorphic function   thus the local equivalence of field potentials 

modulo guage  is simply the de Rham sequence. One can rewrite the Rham 

sequence in terms of spinor in a manner that one can see how to show that any 

locally massless field has the description of potential gauge.  We shall show that 

if we use the spectral sequence of the relative de Rham complex, then we get 

the potentials which satisfy (2.51). specifically, there is a Penrose transform of 

the form 

    ( ̂       )   

{                           ⁄                     } {             }⁄           
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The mapping   is an injection or isomorphism depending on the topological 

properties of   as hypothesized, as before. More precisely, the   -term in the 

spectral sequence (2.25) for The case in question, has the following form after 

using the Leray spectral sequence. We also use the fact that  

  (          )    (    
       

[ ] )     for     since  is Stein. 

                                                                                                  

                                                                                                     

                                                                                                      

 (          )
  
  

→  (          [ ] )
    

→   (          [ ] [ ] ) 

where                , and       have            and    indices, 

respectively. Calculating the     term from this   -term, we see that (using 

definition in (2.51)) 

  
   {          } {     }⁄   

Also  
     

    , and   
     

   thus it follows from theorem 2.6.2, as 

before, that 

                 {          } {     }⁄   

By calculating the field at a point of   one can check that the two Penrose 

transforms given by (2.50) and (2.54) differ by a factor of (-2). This uses  the 

helicity raising and lowering operations of Penrose and Eastwood . We refer the 

reader To Eastwood, Penrose and Wells , for this final point, and with this we 

can conclude that the image of (2.50) does satisfy the field equations (2.36).   

2.4 Integral Formulas For Massless Fields 

We saw how massless fields correspond to elements  of wistor 

cohomology groups. Historically, this result arose out of something more down-
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to-earth, namely contour integral expressions for massless fields. In fact, for the 

scalar case the wave equation, an equivalent integral formula was given by 

Bateman , who in turn was developing work of Whittaker. We shall work 

backward, by showing how the Penrose transform. given rise to contour integral 

formulas.  An element of the sheaf cohomlogy group   ( ̂         )can 

be represented by the (Cech) cocycle      
   defined on overlap regions   

  , where {  }is an open cover of  ̂. The corresponding massless field can be 

expresses as a branched contour integral of    . To keep things simple, let us 

consider one only the special case where ̂ is covered by two coordinate charts 

  and   , so that there is only one overlap region    , and the 

representative cocycle consists of a single function       defined on this 

overlap. Then we shall get an ordinary contour integral, rather than a branched 

one.    ̂is a region of twistor space  derived from a region   in  . The two 

open sets  and  are chosen so that for any line  ̂ in ̂, the intersections 

      ̂  

      ̂  

Overlap in an annular region of  ̂ (i.e.,      is homeomorphic to     ). 

The function       is holomorphic on    , and homogeneous of 

degree    in   . of course, if   and   are functions holomorphic on  and , 

respectively, then    represents a coboundary, and 

                                                               

Is regarded as   being equivalent to    We are thinking in terms of the double-

fibrstion picture 

 ̂    
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And we want to use    to construct a massless field on   . The first step is to 

pull     back to   , and this is easily done: the pullback of           is 

            (     
       )                                         

Here         are being thought of as coordinates on    . The function    is 

holomorphic on the intersection of the two sets        and       , which 

cover   . and   homogeneous of degree –    in    . The second, and final, 

step is to integrate out the  -dependence. For the moment, take      then we  

           
 

   
∮        

 

                                 

The integrand of (2.58) contains   factors of    , and   is defined by 

          
                                                       

The canonical holomorphic one-form     on the fibers of   , is homogeneous of 

degree two; so the integrand is homogeneous of degree zero in    . This means 

that, although expressed in terms of the homogeneous coordinates    , the 

integrand of (2.58) is actually defined on the projective   space   ̂. Think of    

as being fixed, and consider the integration   as depicted in by Cauchy‘s 

theorem, the value of the integral does not change if we continuously deform . 

In fact, it depends only on the winding number of  , which we take to be unity. 

Also by Cauchy‘s theorem, the value of the integral does not change if we make 

the co boundary transformation (2.56). So       satisfies the massless free-

field equations  
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Chapter 3 

Quantum Fields In Minkowki Space-Time 

The theory of quantum fields in curved space-time is a generalization of the 

well-established theory of quantum fields in Minkowski space-time.  To a great 

extent, the behavior of quantum fields in curved space-time is a direct 

consequence of the  corresponding flat space-time theory. Local entities, such as 

the field equations and commutation relations, are to a large extent determined 

by the principle of general covariance and the principle of equivalence.  

     It is logical, therefore, to review the relevant aspects of flat space-time 

quantum field theory. This will serve to establish the necessary background, to 

fix our notation, and to highlight those aspects of the theory which can be 

carried over to curved space-time, as well as those which lose their meaning  in 

curved space-time. 

 We discuss the canonical formulation, including the Schwinger action principle 

and the relation between symmetry transformations and conserved currents 

(Schwinger). We review the dynamical descriptions known as the Heisenberg 

picture, Schrodinger picture, and the interaction picture. We introduce the Fock 

representations, in which states are described in terms of their particle content, 

and the Schrodinger representation, in which the states are described field 

configurations, we include discussions of the Maxwell and Yang-Mills gauge 

fields, as well as the Dirac field, and the definitions of spin and angular 

momentum. 

3.1 Canonical Formulation 

Recall that in classical mechanics the equations of a particle or system of 

particles having independent generalized coordinates      and velocities  ̇     

are given by the principle of stationary action. This principle states that the 

action 
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  ∫   

  

  

     ̇                                                                   

Is stationary under arbitrary variations of the    which vanish on the boundary 

of the region of integration. Here   is the Lagrangian of the system. The 

Hamiltonian is defined by 

       ∑    

 

    

where  

   
  

  ̇ 
                                                                    

Is the momentum conjugate to   . The system is quantized by taking the    and 

   to be Hermition operators acting on a Hilbert space, and by imposing the 

canonical commutation relations 

[     ]             [     ]     

[     ]                                                                     

Here     is the Kronecker delta.  We are using units with        form (3.3) 

it follows that        is a function of the coordinate and momentum operators, 

then assuming   can Taylor expanded in   

[    ]   
  

   
                                                                

The above commutation relations imply that the    are a complete set of 

commuting observables with continuous spectra consisting ,in the absence of 

impenetrable (walls) of all real numbers. The same can be said for the    an 

observable is an Hermitian operator with a complete set of eigenstates, the 
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             of the     are the kets |     where    denotes the set of 

eigenvalues   
 of the operators   . Thus, 

  | 
    

 |     

With the normalization 

   |               

We use the conventions of Dirac in distinguishing the eigenvalue of an operator 

by using. Where           is the Dirac  -function. It also follows that 

 

   |      
          

   
   

and  

   |           ⁄    (∑  
   

 

 

   

)  

Where |   is an eigenket of the    having delta function normalization, and we 

have taken the index   to run from   to  . If        is a function of the   and 

  with any well-defined ordering of factors, then 

   |      |     (     
 

   
)                                             

Where  (        ⁄    )is the same ordered function with       ⁄   
   

replacing    in each position. 

   In the Schrödinger or configuration space representation, the abstract 

operators are represented by matrix elements based on the    |     such as 

that of    above, and the states are represented by functions. For example, a 

state |  is represented by the Schrödinger wave function          |    

an example is the wave function    |   above, representing a particle of 
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definite momentum. Similarly, in the momentum-space representation the 

operators are represented by matrix elements formed the |   and the states are 

represented by functions such as    |  . Up to now the description has been 

purely kinematical, with time playing no role. The dynamical evolution of the 

system is governed by the Hamiltonian          we have allowed for the 

possibility that   may have explicit time dependence, as through an interaction 

with an external field. The time evolution may be described in several 

physically equivalent ways, known as pictures.  In the Spichrödinger  picture, 

the fundamental observable   and   do not change with time, rather, the 

dynamical evolution of measurable quantities, such as expectation values of 

observables, is expressed through the time dependence of the ket describing the 

state of the system at each time. The fundamental dynamical equation is that of 

Schrödinger, 

 
 

  
|             |                                                  

Because  may have explicitly time-dependent terms involving  and  , in 

general      and        May not commute. for brevity, we suppress the 

dependence of  on  and    We note in passing that in the Schrodinger 

representation, the Schrödinger equation (3.6) becomes (using  the completeness 

of the |   ) 

    |
 

  
|     ∫    |        |            |      

Or 

 
 

  
         (    

 

   
)                                                   

Where               |       
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The solution of (3.6) is  

|                    

with        satisfiying 

 
 

  
                                                                             

with the boundary condition 

           

The evolution operator        preserves the norm of the state vector and is thus 

unitary, satisfying 

         

From                            it then follows that        
         . 

  In the Heisenberg picture, the describing the state of the system does not 

change with time, while the dynamical evolution of the system is expressed 

through the time dependence of the fundamental observables     And       by 

applying        
 to the Schrödinger picture ket describing the state of the 

system, we obtain a time-independent ket, which can be taken as the ket 

describing the state of the system in the Heisenberg picture. Thus, denoting 

quantities in the Schrödinger picture by subscript   and those in the Heisenberg 

picture by subscript    we have 

|          
 |      |                                                

In order that measurable expectation values remain the same as in the 

Schrödinger picture, the Heisenberg operator 
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Note that the Hamiltonian  in (3.8) is    . When   has no explicit time 

dependence, the solution of (3.8)  is 

           [          ]  

And it follows that   commutes with   so that      . When   does have 

explicit time dependence,        and we must use (3.10) to define   in 

terms of   . In general,   will depend on time through              and 

through further explicit appearance of    denoting by         ⁄  the derivative 

only with respect to this further explicit appearance of    it follows from (3.8) 

and (3.10) that  

 
 

  
   [     ] 

 

  
                                                             

This resembles the classical equation of motion with the Poisson bracket 

replaced by- times the commutator. Of course, we do not need to define the 

Schrödinger the ket describing the state of the system is independent of time and 

that operators    constructed from the      (dropping subscript  ), and  obey 

the Heisenberg stateequation of motion (3.11). When two systems interact 

through a term in the Hamiltonian, which can be regarded as a perturbative 

interaction, it is useful to introduce another picture of the dynamical evolution, 

known as the ‗‘interaction picture. 

 Is in this picture, the ket describing the state of the system evolves as in the 

Schordinger picture, but only the under the influence of the interaction term in 

the Hamiltonian, while operators evolve as in the Heisenberg representation, but 

only under the influence of the unperturbed term in the Hamiltonian. 

    Let us now turn to the canonical quantization of a system of independent real 

fields      , where  refers to the Minkowski space and time coordinates   , 

and the index  includes tensor or spinor indices and internal quantum numbers 

of the field multiplet. We will deal here with bosons and discuss later .The 
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modification of canonical quantization required with fermions. For brevity, the 

index   will often be suppressed; we can usually thing of   as a column or row 

matrix, depending on where it appears in an expression. Canonical quantization 

proceeds as in the previously discussed quantization of a particle. One thinks of 

the classical field      as analogous to the classical       with the spatial 

coordinates  ⃗ regarded as labels like  . Because we are now dealing with a 

continuous label, Dirac  -functions involving  ⃗ will appear where Kronecker 

deltas involving the label   previously appeared. As before, we assume that the 

system is described by an action 

  ∫   

  

  

 [    ]                                                             

Where the Lagrangian  is now a functional of the field   and its first 

derivatives      ⁄       which are denoted collectively by     the subscript 

 indicates that   is a function of  . The Lagrangian  can be expressed in terms 

of a Lagrangian density   as  

 [    ]  ∫    (   ⃗        ⃗   )  

Where    is the spatial volume element, Because   is now a functional, the 

momentum  conjugate to the field    ⃗    is defined in analogy with (3.2) 

through the following functional derivative regarding     as independent of  at 

time   

   ⃗      [    ]  (     ⃗   )⁄  

     ⃗        ⃗    (     ⃗   )⁄                                         

Here, we have used the definition of the functional derivative, which states that 

if  [ ]is a functional of    ⃗ , then under a variation     ⃗  of     which 

vanishes sufficiently fast at spatial infinity, we have 
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  [ ]  ∫   
 

    ⃗ 
 [ ]    ⃗                                            

It follows that if the functional   has form 

 [ ]  ∫    (   ⃗   ⃗   ⃗ )          

Then  

 

    ⃗ 
 [ ]  

 

  
 (   ⃗ )    (

 

      
 (   ⃗ ))  

where   is evaluated at  ⃗. The result in (3.13) follows from this with        

Another consequence is that  

    ⃗  

    ⃗ 
    ⃗   ⃗   

One can regard the action in (3.12) as a functional depending on the space and 

time dependence of  . Then, the Euler-Lagrange field equation below will be 

reconnized as another application of the above result, but for a functional 

depending on one more dimension. The Hamiltonian defined by 

 [   ]  ∫       ⃗         ⃗     [    ]                              

A though we write  [   ]  dependence on spatial derivatives of   or   is 

permitted. The principle of stationary action yields upon variation of the fields 

in (3.12), the Euler-Lagrange field equations 

  .
  

 (   )
/  

  

  
                                                                

where the repeated spacetime coordinate index   is summed over its full range 

of values, in acoordance with the Einstein summation convecention. 
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The field is quantized in analogy with the canonical commutators of (3.3). thus, 

we postulate that 

[    ⃗        ⃗
    ]    [    ⃗        ⃗

    ]    

[    ⃗        ⃗
    ]          ⃗   ⃗                                               

Where, as noted earlier,    ⃗   ⃗  is the Dirac  -function. in a theory of 

interacting fields, if we deal directly with the renormalized fields, then (3.17) is 

somewhat altered by a normalization factor. We are thus dealing here with the 

bare fields, which by definition satisfy the field equations with unrenormalized 

Masses and coupling constants, the   dependence is included in the  

commutation relations to emphasize that in a dynamical picture like the 

Heinberg picture, in which the operators   and   depend on time as do the 

classical fields, the canonical commutation relations must be imposed on the 

fields and conjugate momenta evaluated at the same time. For it follows from 

(3.10) that       and      evaluated at the same time do satisfy (3.3), while 

that is not true in general if they are evaluated at different times. Of course, in 

the Schrodinger picture the fields and conjugate have no time dependence, and   

would not appear in (3.17). The functional analogue of (3.4) follows from the 

above commmutators; 

[    ⃗   [   ]]   
 

     ⃗ 
 [   ]                                      

where we are suppressing the time dependence, taking all fields to be a single 

time    one can now set up a Schrödinger or field representation using the 

eigenstates of    ⃗  defined by 

   ⃗ |       ⃗ |                                                             

  The ket |    corresponds to a state of the system in which the field has con- 

figuration     ⃗ , where   is an ordinary or-c-number function, unlike the field  
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Operator  . Thus, we are using the analogue of the Dirac notation in which 

eigenvalues of the operator    ⃗  are functions denoted by     ⃗   Here the 

prime does not denote derivative, but instead distinguishes a c-number from an 

operator, in ordinary quantum mechanics, it follows from (3.5) that if |   is an 

element of the Hilbert space spanned by the eigenkets |     then 

   |      |    (     
 

   
)    |    

Similarly, we can show that if |  is a state in the space spanned by the 

eignstates |   ,and  [   ]is a functional formed from the field operator and 

conjuguate momentum, then 

    [   ]|    (     
 

   
)    |                                  

Here    |    [  ]is a complex number which is a functional of   . It is 

interpreted as the probability amplitude for finding the field observable   to 

have the configuration or set of values given by      ⃗ when the system is in the 

state described by the vector |    If we work in the Schrodinger picture, then 

(3.20)can be used to turn the Schrödinger equation 

 
 

  
|   [   ]|   

Into the functional differential equation 

 
 

  
 [    ]   [     

 

   
] [    ]                                         

Where  [    ]    |     , and     depend on  ⃗  but not on  . 

     On the other hand, in the Heisenberg picture the state describing the evolving 

system is independent of time, while a general functional   of    ⃗    and 

   ⃗    will depend on time through its dependence on   and  , as well through 
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a possible further explicit dependence on  . Then Heisenberg equation of 

motion is  

 
  

  
 [     ]  [ [     ]  [   ]]   

 

  
 [     ]                                    

The consistency of (3.22) with the Euler-Lagrange equation (3.16) can be 

proved in Minkowski space-time and in the more general curved space-time 

context, we expect that when there are on time-or space-dependent external 

parameters in the Lagrangian, then there should exist a conserved vector 

observable    corresponding to the total energy and momentum of the system. 

For such a Lagrangian, by multiplying the Euler-Lagrange equations by     

and using 

    
  

      
      

  

  
     

we find immediately that 

   
 
                                                                   

where  

  
  

  

       
       

                                           

Here, summation over internal indices  of   and, when the fields are treated as 

operators, symmetrization over field and their conjugate momwnta are 

understood. The tensor    is called the canonical energy-momentum or stress 

tensor, we mention in passing that in order to serve as the source in the Einstein 

gravitational field equations    should be symmetric under interchange of 

indices.This assumes that Lagrangian does not have any explicit dependence on 

the coordinates    .This symmetry is also required if we wish to define a 

conserved angular momentum in terms of the energy-momentum tensor. 
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However, expect in the case of particular forms of  , the expression given in 

(3.24) after lowering the index   with Minkowski metric     is not a symmetric 

tensor . A general manifestly symmetric expression for     will be given later, 

when we deal with curved spacetime. Since both of these expressions for 

  
  will satisfy (3.23) for any system with no explicit time or space 

dependence, we expect on physical grounds that they must each yield the same 

conserved energy and momentum    to within a constant. Furthermore, a 

modification of the canonical    that makes it symmetric, and yields the same 

   and angular momentum as the original canonical   , has been given by 

Belinfante. 

 From(3.23) we have 

∫      
 
     

Where     denotes the space-time volume element, and the intergration is over 

a space-time volume bounded by spatial infinity and two constant –time 

hypersurfaces. Assuming that matrix elements physical interest will be between 

states in which the physical field configuration is of finite spatial extent, we 

obtain by the Gauss divergence theorem the conservation law 

 

  
∫     

     

Where     denotes the special volume element and the integration is over any 

constant-time hypersurface. Hence, 

   ∫     
                                                             

Is the conserved energy-momentum vector. The sign in this definition is chosen 

so that     , as can be verified by comparing (3.15) with (3.24). 
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  As a special case of the Heisenberg field equation (3.22), suppose that the 

functional   is an ordinary function                    with no explicit time 

dependence. Then, (3.22) can be written as  

     [    ]                                                               

Where the partial derivative symbol is used here in the conventional manner to 

indicate that the    are held fixed. In (3.22), the partial derivative symbol 

denoted derivation only with respect to explicit   dependence not coming from 

  and  . The partial derivative in (3.26) includes all  dependence. The result in 

(3.26) is the 0-component of the more general relation 

     [    ]                                                        

The     component, as noted above, follows from (3.22). for      we easily 

verify (3.27) for powers of   and   and thus for functions which can be 

expanded in power series in   and  . For example, suppressing the  -

dependence, which is the same in all arguments, we have 

[   ⃗     ]  ∫   
  ( ⃗

 
)[   ⃗     

  ( ⃗
 
)] 

   ∫   
  ( ⃗

 
)    ⃗       

  ( ⃗   ⃗
 
) 

        ⃗ 
    

Equation (3.27) also follows from a powerful generalization of action principle 

and of Noether‘s theorem, known as the Schwinger operator action principle. 

The action of (3.12) is integrated over a space-time volume   bounded by two 

constant-time hypersurfaces at   and   .  originally stated, the principle deals 

with arbitrary spacelike hypersurfaces, but we work with constant-time 

hypersurfacesfor simplicity at this stage. Consider arbitrary infinitesimal 

variations,      and        , of the coordinates field operators, 
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where       vanishes on the spatial boundary of integration at each time (i.e., 

it vanishes everywhere on the boundary of   except on the interior of the 

constant time hypersurfaces that bound   at   and   ). Then, the Schwinger 

action principle states that the variation of the action   of (3.12) has form 

                                                           

Where the operator      is the generator of the above variation of the 

coordinates and fields at time  . To say that  generates the variation means the 

following. For an operator functional   [   ], we have 

     [   ]                                                            

Where all quantities are evaluated at the same time, and    is the infinitesimal 

variation of  produced by (3.28) and (3.29). that is, 

     [              ]   [    ]  

One can show form (3.30) that the generator has the form 

     ∫   [        
  

 ]                                             

Where   
  is the energy-momentum tensor of (3.24), and 

                                                            

 is the change of the field at a given physical point in space-time (i.e., the local 

variation).The derivation is as follows. The variation   above is defined by 

         

where 
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   ∫   
  ( 

              ) 

and 

  ∫    (          )  

Here, both integrals are taken over the same physical volume  , with   and    

denoting the same physical point of the system in space-time, and thus related 

by (3.28). this way of viewing the transformation is  the coordinates undergo a 

transformation from   and   , but the physical system does not change. 

   Alternatively, it is possible to adopt the active viewpoint taken by Messiah  in 

which  and    are regarded as describing a change of the physical system 

relative to a single coordinate system, such that event at   is dragged to   . In 

the active viewpoint, the volume  is infinitesimally displaced to a new physical 

volume   , related to   by (3.28). we can write 

   ∫  

  

   ( 
            ) 

 ∫  

  

   (                         ) 

 ∫  

  

             ∫  

 

  2
  

  
    

  

 (   )
     3  

The volume of integration in the second integral has changed to   because the 

integrand is already of first order. Corresponding events on the boundaries of   

and   are related by the infinitesimal displacement    . Let     denote      , 

where  is an outward normal to the boundary of   at a point  , and    is an 

element of surface area (ie., hypersurface volume ) on the boundary of   at  . 
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Then, the scalar product      
  is the volume of the cylindrical four-volume 

element capped at   by the surface area    and extending along     from the 

boundary of   to that of   . Then, denoting the boundary of   by    , the 

surface integral, 

∫    
  

            

Is equal to following difference of volume integrals over   and   : 

∫  

  

          ∫  

 

          

Because the difference is just the integral of  over the infinitesimal volume 

lying between the boundaries of   and   . 

Hence, 

        

 ∫  

  

    
         ∫  

 

  2
  

  
    

  

 (   )
     3  

Converting the surface integral to a volume integral by the Gauss divergence 

theorem, and using the identity, 

  

 (   )
        2

  

 (   )
   3    .

  

 (   )
/    

In the second term, we are left with the result 

   ∫  

 

    2     
  

 (   )
   3  
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 Here, the Euler-Lagrange equations (3.16) have been    . It is convenient to 

express our result in terms of the local variation     defined in (3.33), one has 

                                 

To first order. Consequently, (3.29) gives 

          (   )     

Hence 

   ∫  

 

    2
  

   (   )
     

   
 3                       

Where   
  is the energy-momentum tensor of (3.24). it follows that    

           , with     given by (3.32), which completes the derivation. 

Under an infinitesimal translation, we have            , so that    vanishes. 

therefore, 

     (   )     

Using the fact that for a translation     is constant, we now find that the 

generator is  

       
   

Where    is the momentum operator of (3.31) for the commutator of   with an 

operator functional  [   ].let us write (3.31) for the case when   is a function 

  formed from and the    .then, 

    
  

  
     

  

 (   )
       

The Euler-Lagrange equations follow, as usual, by demanding that    is zero 

for the subset of variations such that     vanishes on the boundary   . 
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Upon using the form of     for a translation, we find 

    (   )  
   

Using these results in (3.31), we obtain immediately (3.27).The transformations 

of (3.28) and (3.29) are said to be a symmetry or invariance of the Lagrangian 

density   if  

 (               )   (          )                                         

Recall that in   and   , the integrals are taken over the same physical volume   

and   refer to the same physical point in space-time. Therefore, the action is 

invariant when (3.35) holds, and we have     . in that case, (3.30) implies 

that   is a constant of the motion. Furthermore, (3.34) implies that 

   
                                                                    

With the conserved current 

   
  

 (    )
      

   
                                    

  It follows that when a translation in the    direction is a symmetry of the 

Lagrangian density, then the operator    is a constant of the motion. In 

Mikowski space-time, the Lagrangian density of a free field is symmetric under 

space and time translations, which implies that energy and momentum are 

conserved. In curved space-time, because of the presence in the Lagrangian 

density of the metric, we will find that for a free field (i.e., one influenced by 

gravitation alone), only the component of   along the direction of an isometry 

of the spacetime is conserved. 

3.2 Particle 

The Schrödinger representation based on the eigenvectors of the fields operator 

  emphasizes the field aspect of the quantized field theory. Let us now trun to a 
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representation which emphasizes the dual particle aspect of the quantum field. 

one expects that since the particle aspect and wave properties of a system are 

known to be complementary, rather than simultaneously measurable, the 

observable corresponding to particle number, for example, will be constructed 

from both the field   and its non-commuting momentum  , we must first 

understand how to describe a system of free particles. Then, mutually 

interacting particles can be described through a perturbative description in 

which the free particles appear at early times and emerge again at late times. 

Therefore, we consider for now a single Hermitian free-scalar(or pseudo-scalar) 

field described by the Lagrangian density 

  
 

 
(              )                                          

for example, this equation described a free neutral pion (which is a pseudo-

scalar, i.e., odd under parity). The charged field is discussed below. The free 

spin-1massless (Maxwell) and massive (Proca) fields and the free spin-    

(Dirac) field will be described. Non-abelian massless gauge fields of spin-1 as 

the Euler-Lagrange field equation (3.16) gives 

                                                                 

where          . we shall work in the Heisenberg picture, in which the 

quantum field satisfies (3.39), which is known as the Klien-Gordon equation. 

The canonical momentum of (3.13) is  

                                                            

The field and conjugate momentum are assumed to be operators satisfying the 

canonical commutation relations of (3.17). from (3.24) for the stress tensor and 

(3.25), we find the energy and momentum observables 

   
 

 
∫   (   ( ⃗ )

 
     )                                          
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∫                                                          

 recall that symmetrization over non-commuting fields was understood in 

(3.24), and hence in    because the Lagrangian density   is a scalar under space 

and time translations, the energy and momentum of the system are conserved. 

One can also check, using the commutation relations, that   commutes with    

because   is also a scalar under the group of homogeneous Lorentz 

transformations, there are six further conserved generators in four-dimensional 

space-time, corresponding to rotations about axes perpendicular to the six 

planes determined by pairs taken from the four coordinate axes (i.e., three 

spatial rotations and three boosts or velocity transformations). 

  If      and      are two solutions of (3.39), then the following scalar product 

is conserved, 

            
 

 
∫   {  

   ⃗         ⃗   }  {    
   ⃗       ⃗   } 

  ∫     
  ⃡                                                    

The scalar product is linear with respect to the second argument and antilinear 

with respect to the first. Furthermore, we have        
              

    
  . 

  A complete set of positive energy or positive frequency solutions of the Klein-

Gordon equation (3.39) in a space-time of dimension  is 

  ⃗⃗
               ⁄      

   ⁄    [ ( ⃗⃗  ⃗     )]                            

3.3 Basics Of Quantum Field In Curved Space-Times 

The successful predictions of general relativity are convincing evidence that 

gravitational phenomena are most clearly it gravitational influence by curving 

pace-time, and we study the propagation of particle and wave on this curved 
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background. It I then natural to study the propagation. Of quantum fields in 

curved pacetime in order to search for new effect of gravitation. At this level, 

the gravitational field itself Is not quantized, and the methods of Minkwoski 

pace time quantum field theory are carried over as much as possible. As we 

shall see, this modest extension of quantum field theory has turned out to be 

richer in consequences then we could have anticipated.  Among other thing, it 

gives rise to the physically important processes of particle creation in 

cosmological and black hole spacetimes. The same amplification process that 

creates particles in an expanding universe is responsible for creating, in the 

context of an early inflationary expansion, the primordial fluctuation that are 

now observed with astonishing accuracy in the cosmic microwave background 

(CMB) radiation. These same primordial fluctuations also appear responsible 

for the large-scale structure of the universe. The creation of particles by black 

holes in necessary for maintaining the second law of thermodynamics in their 

presence. This process of radiation and cvaporation of black holes is an 

important facet in the fundamental search for a microscopic explanation of the 

entropy of black holes; a search which appears to be leading to new and exciting 

physics connecting gravitation and quantum theory. Quantum field theory in 

curved space-time also provides a new dynamical explanation of the connection 

between pin and statistics, and brings out some new features of Minkowski 

pace-time physics, such as the excitation of accelerated detectors. This partial 

listing is sufficient motivation to turn now to the basis of the theory of quantized 

fields in curved space-time. 

3.4 Canonical Quantization And Conservation Law 

Consider a set of fields       propagating in a curved space-time with invariant 

line element 
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The metric        will be treated as a given unquantized external field. We will 

assume that the spacetime has a well-defined causal structure and set of Cauchy 

hypersurfaces. The set of fields       to be quantized may include linearized 

gravitational wave perturbations propagating on the background       . Let   

denote the dimension of spacetime, with    being the time coordinate and 

         being the spatial coordinates. The action  is constructed from the 

field   , so that it is invariant under general coordinate transformations 

(diffeomorphisms): 

 *                  
  

    +   [                 ]                    

The simplest way to construct such an action is to start with the Minkowski 

space-time action and replace ordinary derivatives    by covariant derivatives 

    
  by    , and     by the invariant volume element    | |  ⁄   where 

     (   )  This is called the minimal coupling prescription, and is 

consistent with the Einstein principle of equivalence, according to which local 

gravitational effects are not present in a neighborhood of the space-time origin 

of a locally inertial frame of reference. Occasionally, we can further increase the 

symmetry by the addition to the Lagragian of a term which does not vanish at 

the origin of a locally inertial frame, and such a possibility will also be 

considered. The action already involves       through       when additional 

terms are included, it may also involve higher derivatives of    . 

The requirement that variations of the action 

  ∫    (        )                                                   

Vanish with respect to variations of the fields    which are zero on the 

boundary of integration, then yields the Euler-Lagrange equations 
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  .
  

 (    )
/  

  

   
                                                     

The general covariance of (3.48) is insured by the invariance of the action    

Note that   is a scalar density, transforming like | |  ⁄ . Variation of the action 

with respect to the external field    does not in general vanish because we have 

not include an additional term proportional to the scalar curvature   in (3.47). 

Such a term given rise to the geometric part of the Einstein gravitational field 

equations. However, because of the invariance of   under general coordinate 

transformations,    will be zero under the change in     induced by an 

infinitesimal coordinate transformation 

                                                        

Where   and   refer to the same event in spacetime. Under this transformation 

we have 

         
  

     
   

    

   

    
        

Which yields the variation, 

           
  

                                                

Where    denotes the Lie derivative, 

                                                                   

Let us assume that         and     
     are zero on the boundary of the region 

of interagtion defining the action   of (3.47).  then , under the infinitesimal 

coordinate transformation, we have 
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   ∫   
  

       
          

Because variations in  produced by the changes in the dynamical fields 

  vanish as a consequence of (3.48)and the boundary conditions on     With 

      given by (3.50)and (3.51), the invariance of   under coordinate 

transformations requires that       Hence, with        | |  ⁄   

    ∫                                                        

Where we have defined the tensor 

      | |  ⁄
  

       
                                                    

And have used its symmetry under interchange of indices. Then from (3.52) and 

    
      | |  ⁄   (| |  ⁄      )  (   

  )            

It follows that  

∫   (     )      

And because    is arbitrary, we must have 

   
                                                               

This is generally covariant generalization of (3.23). further more,    as defined 

by (3.53)symmetric, which is not true in general for the canonical energy-

momentum tensor     of (3.24), the symbol     was used for the canonical 

energy-momentum tensor,    ,but from now on     will refer to the 
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symmetric energy-momentum tensor, from  (      )     it follows that 

      
 

    
 

 

    
, 

    
 

| |  ⁄

  

    
                                                   

The sign convention in our definition of      in (3.53) is chosen so that    will 

be positive for the classical electromagnetic field. If we were to use the opposite 

metric signature, then the signs on the right-hand sides of (3.53) and (3.55) 

would also be opposite. We can calculate the symmetric energy-momentum 

tensor     in curved space-time and then go to the flat space-time limit, theory 

obtaining a symmetric energy-momentum tensor satisfying    
    in 

Minkowski spacetime. For any isolated system in Minkowski spacetime, both 

    and     yield a conserved energy-momentum vector    , which, as noted 

earlier, is unique. In curved space-time it is the symmetric energy-momentum 

tensor     defined in (3.53) which describes the matter and radiation and 

couples to the gravitational field through the Einstein field equations. In a 

general curved space-time, the tensor density     of weight     defined by 

(3.24) does not satisfy     
   as it does in Minkowski spacetime, nor any 

simple generalization of that equation. The Schwinger operator action principle 

continues to hold in curved pace-time for an arbitrary infinitesimal 

transformation of the form given in (3.28)and(3.29), provided that under the 

transformation             or 

  
  

                                                                    

In that case, the derivation leading to (3.34) goes through as before with the 

canonical stress tensor now called   
 , because we have          it is not 

necessary for the Euler-Lagrange equation to hold for the external field      
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note that the metric     is not included here among the fields   of (3.34).Thus, 

under a transformation of the coordinates and fields given in (3.28)and (3.29), 

and for which (3.56)holds, we have  

                                                                   

With 

     ∫     [        
    ]                                     

Where, as noted above,   
 is defined by the right-hand side of (3.24). Here the 

integration is on constant time hypersurface, and 

   
  

       
                                                                     

As before, with suitable operator ordering and regularization,   as the generator 

of the transformation, satisfying 

     [   ]                                                                

Where   is a functional of the    and      

As in Minkowski space-time, (.16) will hold with 

[    ⃗        ⃗
    ]      [    ⃗        ⃗

    ]     

[    ⃗        ⃗
    ]          ⃗   ⃗                                        

Which I appropriate for bosons, or 

{    ⃗        ⃗
    }      {    ⃗        ⃗

    }     

{    ⃗        ⃗
    }          ⃗   ⃗                                        
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Which is appropriate for fermions. Here    ⃗   ⃗  is the Dirac  -function 

satisfying ∫        ⃗   ⃗     ⃗      ⃗  with the integral being over the 

spacelike hypersurface t-constant. The above commutation relations are 

imposed on independent field components. They may be modified when gauge 

conditions are present. one can show that    ⃗     and    ⃗   ⃗  each transform 

as spatial scalar densities under transformations of the spatial coordinates on the 

constant hypersurface. Hence, (3.61) and (3.62) are covariant under 

transformations of the spatial coordinates on the hypersurfase, and are therefore 

the spatially covariant generalization of the corresponding relations thathold in 

flat space-time. One can also show that they are consistent with the equations of 

motion of the fields, in the sense that if they hold on one constant-t spatial 

hypersurface, then they also will hold on the other constant-t spatial 

hypersurfaces. Furthermore, for bosons we can define a complete set of 

commuting Hermitian fields, and define a basis |   for the Hilbert space of 

state vectors, as in Mickowski spacetime, through (3.19). this gives a field or 

Schrödinger representation. For a system of fermions, we can define a set of 

Hermitian commuting quantities which are bilinear in the fields and build a 

Hilbert space of state vectors spanned by the simultaneous eigenvectors of these 

bilinear operators. There are several cases of interest when   is conserved. The 

simplest is when      and      is a symmetry of  . Then (3.56) is trivially 

satisfied, and the symmetry of   implies that     so that   is independent of 

time. One also has, in that case,    
    with 

   
  

 (    )
                                       

note that   is a vector density of weight    , so that we have 

  ((| |   ⁄   )    )thus, in curved space-time the electric charge and the 
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generators of internal symmetries continue to be conserved. The generator   is 

also conserved when       but is such that (3.56) holds, and the fields   are 

components of a spacetime tensor. Then, invariance under coordinate 

transformations implies that       and (3.57) implies that  is constant. For 

example, if it is possible to choose a coordinate system in which a particular 

coordinate, say     does not appear in        , then under a translation in the 

   direction (3.56) holds, and furthermore we have          It follows that 

   ∫                                                               

Is constant since     and the other components of      may not be constants, it 

does not follow that          is constant. a similar expression involving the 

symmetric energy-momentum tensor      also holds. In deriving that result, we 

will also work in a more covariant language. A coordinate transformation for 

which (3.56) holds is called an isometry of the spacetime. For an infinitesimal 

isometry of the form 

                                                                       

With      it follows from (3.50) and (3.56) that 

                                                                       

A vector field satisfying (3.66) is called a Killing vector of the space time. As a 

consequence of the symmetry of      and (3.54) we have 

    
                                                              

But since       is a vector, we have    
      | |   ⁄   (| |   ⁄      )  

and it follows that  
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  (| |   ⁄      )                                                        

Hence 

   ∫    
 
     

                                                        

Is constant, where          | |   ⁄   In the case when the coordinates are 

such that       is independent of a particular coordinate, say   , then    

    is a Killing vector field, and (3.69) reduces to    ∫    
 
 being 

constant. In such a case, (3.64) should yield the same    to within possibly an 

additive constant independent of the configuration. Thus, in a general curved 

spacetime, we have shown that    
      and in a space-time having special 

symmetries or isometries as implied by the existence of one or more Killing 

vector fields   , we have   (| |  ⁄   
  

 )    and    ∫    
 
  

 is 

constant. Let us now consider again a general curved space-time without special 

isomtries. An invariance of the action which is of interest is curved space-time 

conformal invariance . certain fields, such as the electromagnetic and massless 

Dirac fields in curved space-time, exhibit an invariance of the action under 

conformal transformation of the metric and field, as defined below. An action 

 [     ](suppressing derivatives for brevity) is conformally invariant if  

 [     ]   [ ̃  ̃  ]                                              

Where 

 ̃                                                                 

 ̃                                                                   
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Here      is an arbitrary function and   is a dimensionless constant. Consider 

an infinitesimal conformal transformation with 

                    |    |                                   

Then        and from (3.71) and (3.72), 

          ̃                                                 

        ̃                                            

From (3.70), if      vanishes sufficiently rapidly on the boundary of the region 

of integration, 

     ∫   2
  

  
    

  

    
     3  

If we assume that   satisfies the Euler-Lagrange equation,     ⁄    that it 

follows that 

  ∫   
  

       
            

And because      is arbitrary, 

  

       
          

From which we have 

    
                                                             

Thus, conformal invariance of the action implies that trace of the energy-

momentum tensor is zero. We will find later that a theory based on a classical or 
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bare action which is conformally invariant will in general lose its conformal 

invariance in the quantum theory as a result of renormalization. The energy-

momentum tensor thus acquires a non-vanishing trace, known as the trace or 

conformal anomaly. We have discussed the action, field equations, symmetric 

energy-momentum tensor, generators of field transformations, commutation or 

anti commutation relations, Hilbert space of state vectors in the field 

representation, isometries and conservation laws, and conformal invariance. 

Having built a foundation for our discussion, it us consider next the curved 

space-time generalization of the free neutral scalar field. 

3.5  Scalar Field 

Following the minimal coupling prescription based on the principle of 

equivalence and described. The action of the free neutral scalar field based on 

the Lagrangian density of (3.38) becomes in curved space-time 

  ∫                                                           

with 

  
 

 
| |  ⁄ (              )                                        

For the scalar field we have         ,this is a special case of the more 

general Lagrangian density 

  
 

 
| |  ⁄ (                   )                                        

Where   is a dimensionless constant and   is the scalar curvature of the 

spacetime,           We use the following conventions metric 

signature     
       

 
      

 
     

   
 
     

   
 
    and 
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   , in agreement with Birral and Davies  or (-,-,-) in the notation of 

Misner, we will carry out discussion for this more general Lagrangian. One 

reason is that when we include an interaction term such as | |   ⁄      with a 

constant (dimensionless in four-dimensional space-time), then a term of the 

form | |   ⁄     is needed for renormalization. Another reason is that when 

   and     ⁄ (in four dimensions), the action is invariant under the curved 

spacetime conformal transformations. The case    is referred to as minimal 

coupling. The magnitude of  cannot be very large, because if   has a non-zero 

value, then the term in the Lagrangian that is proportional to     can cause the 

effective gravitational constant to very with time and position as a result of such 

variations in  . Consider an infinitesimal conformal transformation of the form 

of (3.73) and (3.75) with    
 

 
  

        ̃      (      )                                        

      ̃    .  
 

 
    /                                      

Under this transformation, we have in four dimensions to first order in   

| |  ⁄  | ̃|  ⁄        | |  ⁄   

     ̃             

  
     

     
   

 

 
   

       
                 

                                                      

Then, working to first order in  , the transformed Lagrangian density with 

     and     becomes 
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 ̃  
 

 
| ̃|  ⁄ ( ̃     ̃    

 

 
 ̃ ̃ ) 

 
 

 
      | |  ⁄ {          [(  

 

 
 )   ] [(  

 

 
 ) ]

 
 

 
[         ]       } 

 
 

 
| |  ⁄ {                     

 

 
    

 

 
      } 

  
 

 
| |  ⁄            

 

 
| |  ⁄       

     (
 

 
| |  ⁄         )                                  

Since 

| |  ⁄     (| |  ⁄       )  

Hence, the conformally related actions differ only by a surface term and the 

field equation for   is form invariant under conformal transformations. Since a 

finite conformal transformation with           [    ]can be built from an 

infinite product of infinitesimal transformations (with   being the sum of the 

infinitesimal   ), we must have for a finite conformal transformation with 

     ̃         

   ̃       

that  

 ̃      (| |  ⁄           )                                      
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This has the same form in terms of  as in the infinitesimal case; and again the 

field equation is form invariant. In   dimensions, the value of   in (3.79) which 

makes the classical theory conformally invariant under the transformation of 

(3.71) and (2.28(, with         ⁄ , is   [      ]         

Working with   and   arbitrary, the Euler-Lagrange equation for the 

Lagrangian density (3.79) reads 

                                                       

and (3.53) gives the symmetric energy-momentum tensor, 

           
 

 
          

 

 
         (    

 

 
    )  

  [                 ]                                                               

This satisfies, as a consequence of (3.85), 

   
                                                              

and in four dimensions 

  
           

 

 
                                              

As we know from the previous, (3.87) is a consequence of consequence of 

coordinate invariance and (3.88) of conformal invariance for the unquantized 

field. In the quantized theory, (3.88). The calculation of (3.86) proceeds briefy 

as follows. Using the identities 

                                                     

 | |  ⁄  
 

 
| |  ⁄                                              
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                  (               )                                     

This gives  

   
 

 
∫   | |  ⁄ {

 

 
       ( 

                  )

      
     

  [               (               )] 
 }  

Using the identities (taking     and its first derivative to be zero on the 

boundary of the region of integration) 

∫   | |  ⁄               
  ∫   | |  ⁄          

   

and 

∫   | |  ⁄               
  ∫   | |  ⁄                 

    

We then obtain 

    
 

 
∫   | |  ⁄          

With    given by (3.86), as was to be shown. The scalar field is quantized by 

imposing the canonical commutation relation of (3.61). the appropriate 

generalization of the scalar product (3.43) is 

         ∫     | |  ⁄      
   ⃗    ⃡     ⃗          
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Where the integral is taken over a constant  hyp ersurface. If   and   are 

solutions of the field equation (3.85) which vanish at spatial infinity, then 

        is conserved, since 

 

  
         ∫       (| |  ⁄      

  ⃡   ) 

   ∫     | |  ⁄   ( 
    

  ⃡   ) 

  ∫       (| |  ⁄      
  ⃡   )     

The first term of the second equality above is zero by virtue of the field 

equation, and second term gives a contribution at spatial infinity which vanishes 

(this also vanishes if we use normalization in a cube with periodic boundary 

conditions on    and    . We have used the basic identity 

   
  | |   ⁄   (| |  ⁄   ) valid for any vector field  , in the derivation. 

In terms of a general space-like hyper surface   with future-directed unit normal 

  and hypersurface element     the scalar product (3.92) is 

         ∫   | |  ⁄

 

    
  ⃡                                     

We can show that this scalar product is conserved under deformations of  . 

Suppose      such that  and    form the spacelike boundaries of a volume   

there may also be timelike boundaries of   at spatial infinity. Then by the Gauss 

divergence theorem 

                    ∫   

 

   (| |  ⁄   
  ⃡   ) 
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  ∫   

 

 | |  ⁄   (  
  ⃡   )     

As a consequence  of the field equation. We discussion of the scalar field in a 

general curved space-time, it will be instructive to look at a specific model , the 

amplitude of the initial perturbations is taken as a parameter set by the 

observations. Thus, this amplitude is precisely known, but understandably 

difficult to predict from our current limited knowledge of fundamental physics 

at the very high energies relevant to cosmological inflation . As in any theory 

where infinites occur, we could regard the infinities as a manifestation of the 

incompleteness of the theory. This may be the case here. However, once the 

amplitude of the initial nearly scale-invariant perturbations can be predicted 

from fundamental physics, the correctness of including the adiabatic 

subtractions will become a question that can be tested by observation. As noted 

earlier, we have only considered here inflationary potentials having non-

negative effective mass,     . If    (     )   were negative, as occurs for 

some inflationary potentials, the effective value of   evidently would be 

negative.  A separate analysis would be necessary in such a case. We do not 

discuss that further here. A word on interacting quantized fields and on 

algebraic quantum field theory in curved space-time. Canonical quantization of 

quantum field theory in curved space-time has opened our eyes to new 

phenomena in which general relativity quantum field theory are intertwined in a 

convincing and sometimes remarkable manner. As we have explained above, 

particle creation in the early inflationary universe is the most likely source of 

the perturbations that led to the observed anisotropies of the CMB radiation and 

of the observed statistical feature of the larg-scale structure of the universe. 

Accurate measurements of these features continue to support this explanation. A 

second phenomenon that probes the deepest reaches of current physics is the 
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remarkable temperature of a black hole. This is a consequence of quantum field 

theory in curved spacetime and is necessary for the second law of 

thermodynamics to encompass systems in general relativity in which black 

holes exist, such systems currently serve as attesting ground for developing new 

fundamental physical theories that combine gravitation and quantum theory. 

The fact that the particle concept itself becomes ambiguous in a general curved 

space-time was also discovered in the above cited works of Parker and related 

of the vacuum and the irreducible uncertainty in the measurement of particle 

number. These result were obtained for the spacetimes of isotropically 

expanding universes; and therefore must be a feature of general curved space-

times in the absence of special symmetries. The adiabatic condition serves as a 

requirement on physically acceptable states, and determines the singularity 

structure of expectation values of products of fields. The Hadamard 

         also specifies the singularity structure of the symmetrized two- 

function of the quantized field. Both conditions give natural generalizations of 

the singularity structure that is found in Minkowski spacetime are they 

equivalent? It has been shown, by comparing the expansion of the Hadamard 

from of such expectation values and the cooresponding expectation values 

formed states satisfying the adiabatic condition (i.e. adiabatic vacua), in space-

times where they are both defined, that the expansions are the same to all orders 

(Pirk 1993). As we will see in the next chapter, these series expansions are in 

general asymptotic and not convergent, so an adiabatic vacum or a Hadamard 

state‘‘is not unique, but corresponds to alarge class of acceptable states. The 

Hadamard condition appears to be a natural generalization of the adiabatic to 

arbitrary cureved space-times. When sufficient symmetries are present, as in the 

Robertson-Walker space-times, the adiabatic condition gives a relatively simple 

and direct way to deal with the infinities that appear in the expectation values of 

products of fields in the limit that the fields are evaluated (with a suitable 

measure) at the same point. 
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Luders and Roberts (1990) showed that there is aunique local quasi –

equivalence class of physically relevant states, and that this class can be 

specified in a Robertson-Walker spacetime by using the concept of an adiabatic 

vacuum state. It was shown in Junker and Schrohe (2002) that the definition of 

adiabatic vacuum states can be generalized to a general curved spacetime 

manifold by using the Sobolev wavefront set, and that this definition is also 

applicable to interacting field theories.Interestingly, Hadamard states form a 

special subclass of the adiabatic vacuum states defined by this method. 

 The fact that there is no unique vacuum state in a curved spacetime having 

insufficient symmetries motivates the search for a way to formulate quantum 

field theory in curved space-time in a way that does not out any particular state 

to serve as the basis of a Fock or Hilbert space formulation. In streater and 

Wightman (1964), it was rigorously shown that a field theory in Minkowski 

space-time is defined by the vacuum expectation values of products of field 

operators. The algebraic approach to quantum field theory in Minkowski space-

time makes use of such expectation values to define the theory starting from the 

algebra of products of field operators and from the symmetries of the vacuum 

state in Minkowski           . Arthur Wightman, around 1971. suggested 

that the methods of algebraic quantum field theory that had been developed in 

flat space-time, when suitably generalized to curved space-time, would give a 

rigorous way to formulate quantum field theory in curved space-time without 

reference to a particular vacuum state in the absence of sufficient symmetries of 

the curved space-time. This suggestion of Wightman was the motivation for the 

discussion following in Parker and Fulling (1973), where the algebraic approach 

to quantum field theory in curved space-time was described. Aspects of the 

algebraic approach to quantum field theory in curved space-time are also 

discussed by Fulling (1989). A satisfactory understanding of how to formulate 

the theory of a free quantized field in curved space-time by means of the 
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algebraic approach was obtained by the mid-1980s, as developed in the works 

of Fulling (1972), Ashteker and others. The algebraic formulation does not 

supplant the canonical formulation of quantum field theory in curved space-

time, but serves to frame the theory in a way that does not single out any 

particular state vector.  

      Starting in the early 1970s, the canonical and path integral approaches were 

used to define quantities, such as expectation values of energy-momentum 

tensors of free fields, that involve formal products of fields evaluated at the 

same spacetime point. Analogous formal products of field operators also appear 

in interacting quantum field theory. They present many more problems than do 

free fields when renormalization is considered. At about the time as the energy 

momentum tensor of free fields were being studied, investigations of interacting 

quantized fields in various curved space-times were undertaken. In order to use 

the momentum-space methods of quantum field theory that had been developed 

in flat space-time, Bunch and Parker (1979) introduced a local momentum-

space representation using Riemann normal coordinates in a general curved 

space-time. This local momentum-space representation. Using this method, they 

carried out the renormalization of a scalar field with a quartic self-interaction to 

one-loop order in a general curved space-time. This is non-trivial because there 

are curvature terms that are not present in flat space-time and cannot be 

canceled by means of counterterms in the Lagrangian. Nevertheless the 

curvature terms do cancel one another. This raised the conjecture that physically 

viable interacting theories that are renormalizable in Minkowski spacetime are 

also renormalizable in curved spacetime. For the quartically self-interacting 

scalar field, this was proved to all orders in a general curved spacetime by 

Bunch(1981b). We will discuss the use of the local momentum-space method to 

analyze    theory to two-loop order. 
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3.6    Accelerated   Detector  In  Minkowski Space -Time 

A fundamental process related to quantum field theory in curved space-time is 

the radiation detected by an accelerating observer in Minkowski space-time. 

Quantum field theory in the coordinate system appropriate to a set of 

uniformaly accelerated observers in Minkowski space-time was first studied by 

Fulling . The Minkowski metric when expressed in Rindler coordinates remains 

static, permitting the definition the creation and annihilation operator 

appropriate to the spacetime of the accelerated observers. Fulling defined these 

operators and found the Bogolubov transformation relating them to the usual 

Minkowski creation and annihilation operators of a set of interial observers. He 

discovered that Minkowski space-time vacuum, having no particles with respect 

to the inertial creation and annihilation operators of the accelerated observers. It 

remained unclear how to interpet those ‗‘particles.‘‘ In Davied (1975), it was 

pointed out that the spectrum of the latter particles (obtained from the 

Bogolubov transformation found by  Fulling ) was a blackbody specttrum 

having a temperature given by      ⁄ , where   is the constant acceleration of 

the observers. The correct interpretation of these ‗‘particles‘‘ was discovered by 

Unruh. By considering an accelerated detector coupled to a quantized scalar 

field Unruh showed that the detector would be excited with the same probability 

distribution as a similar detector bathed in blackbody radiation. Therefore, we 

will refer to the thermal response of an accelerated detector as the Fulling-

davies-Unrnh effect. There are excellent treatments of these accelerated 

detectors in the literature, beginning with Unruh‘s own exposition (Unruh 

(1976). We derive the Fulling- Davies-Unrnh effect by applying the page 

approximation to a zero-temperature field in Minkowski space-time. The page 

approximation is exact in Minkowski spacetime and shows that a uniformly 

accelerated observer detects a local temperature given by      ⁄ . See the 

derivation leading.  
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Chapter 4 

Twistors In Curved Space-Time 

Local twistors, on the other hand, have a well-defined existence (whether 

null or non-null) and a linear and complex analytic structure. But they are 

necessarily defined relative to points in the space-time so they cannot in 

themselves be regarded as a satisfactory generalisation of the flat-space twistors, 

adequate to form a basis for a formalism in which space-time points are to be 

regarded as derived objects. Local twistors give rise to a conformally invariant 

calculus on a space-time manifold. This may have some utility as such; but the 

main value of the local twistor concept lies in its use in the definition of 

asymptotic twistors.  

The asymptotic twistor concept is one which applies only to a space-time 

which is asymptotically flat. However this is the situation appropriate to an S-

matrix theory of gravitation and consequently has great relevance for the twistor 

quantisation programme. The space of asymptotic twistors has a complex 

analytic structure with a non-linear  Hermitian scalar product defined giving rise 

to a (pseudo-) Kählerian (and hence also a symplectic) structure. A brief 

discription of local twistor theory will be given here and global twistor theory 

and its relation to gravitational scattering will be discussed.  

4.1 Local Twistors 

We define a twistor space at each point of space-time. This twistor space 

may be thought of as the direct sum of a spin-space and a conjugate spin space. 

However the exact way in which the twistor space splits up as a direct sum 

depends on the choice of conformal scaling. More explicitly, a local twistor    

at a point   can be represented, with respect to the metric      by a pair of 

spinors          at  . Under a conformal rescaling we will have  

 ̂          ̂
        ̂                                                   
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 This is consistent with the behaviour already encountered in flat space-time 

since in that case we have  

 ̂    ̂   ̂               
                               

whence  

   ̂
  ̂      

             
                                         

 follows from  

           
                                                        

 However this last equation can only be maintained in conformally-flat space-

time. Nevertheless it supplies motivation for (4.1) which will be retained for 

local twistors in curved space-time. The calculation of covariant derivatives of 

local twistors is most easily accomplished by introducing projection and 

injection operators from the twistor space to the two spin-spaces which 

represent it. Thus we define 

  
         

      
 

sucn that     
                etc. and 

  
   

    
    

     
           

    
  
       

    

  
   

 
         

   
 
  ̅ 

      
  ̅ 

        

Under conformal rescaling we will have     ̂     while   ,    
 

transform by (4.1). Thus we see that 

 ̂ 
    

          ̂                
   

 ̂   
     

          ̂ 
    

           
       

We now have to decide how the projection operators vary as we pass from one 

point to another. We find  
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We have        
                so that 

  
        

  
     (  

        
   )

   
     

{  
            

                          }  

These forms (4.7), (4.8) are required in order to give a conformally invariant 

twistor derivative as can be checked using (4.1) and (4.6), and because in flat 

space, constant local twisters (i.e. those annihilated by     ) will now 

correspond to our former global flat-space twistors. When referred to a basis 

(4.8) has, in all, 64 components, 48 of them being zero.   
  satisfies the usual 

requirements of a derivative (linearity and the Leibniz rule) and it commutes 

with complex conjugation and contraction. We may now consider 

  
   

 
   

 
  

   [  
    

 
]  

Acting on a scalar function  , this gives us 

[   
 
   

 ]   (  
   

 
   

 
  

 )      
   

  
 
                                    

Where 

    
   

  (  
   

   
 
   

 
  

   
 )  

Then 

    
   

    ,[  
 
   

 ]      
   

  
 
-                                 

Where 
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[  
 {  

           
 

     
(     

  
 ̅                 

      )}

         
     ̅

 
      

 
]  

These define a torsion twistor     
   

 and a curvature twistor     
   

 The spinor 

components of     
   

 given by (4.11) involve      and   
      .  

Note that, by the conformal transformation rules for twistors, any local 

twistor   
 

 for example, defines a conformally invariant spinor        If 

thisspinor vanishes, then each of   
   ,    

 

 
   

    
, is conformally invariant. 

If  
       and   

       then    
  is conformally invariant, etc. etc.. Thus 

any non-vanishing local twistor defines at least one non-vanishing conformally 

invariant spinor. In particular we can apply this to     
   

 (to obtain 

           
 )or to derivatives  

     
   

   
   

 
    

   
etc., or to such derivatives to 

which symmetry operations have been applied. (K. Dighton has shown how to 

obtain the Bach tensor and other conformally invariant tensors in this way.)  

4.2. Global Twistors 

 Consider a null geodesic Z with a parallelly propagated spinor     

defined along it whose flagpole direction is tangent to Z. By analogy with the 

situation in flat space we may reasonably identify such a structure as a null 

(global) twistor in curved space. This description is conformally invariant. (We 

do not give a spinor representation of a twistor relative to each point, nor can we 

use our former description of a non-null twistor.) Null twistors form a seven-

dimensional manifold N (5 dimensions for the set of null geodesics, 2 for the set 

of spinors    ). We shall consider N to be embedded in an abstract 8-

dimensional manifold C, the points of C—N representing, formally, the non-

null twistors. This is done because the structure of N is most easily described as 
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that induced from the embedding of N in C, the structure of C being describable 

in simple terms. No precise geometrical definition of the elements of C—N will  

be given.  The space C will have a symplectic structure. Symplectic structures 

are only possible in even dimensional spaces, and symplectic manifolds of the 

same dimension are locally congruent. The symplectic structure of C induces on 

N a structure which has geometric significance in the space-time. This structure 

on N expresses relations between neighbouring points of N, these relations 

representing geometrical connections between the null geodesics (and     

spinors) that the points of N represent. Such geometrical connections must refer 

to properties of null geodesics. For example, the fact that a congruence of null 

geodesics has vanishing rotation, i.e. is (null) hypersurface forming, is such a 

property and it turns out that this property is simply describable in terms of the 

symplectic structure of C. The shear of a null congruence, on the other hand, is 

something which. in a general curved space-time, can be defined only in 

relation to points on the null geodesics. A null congruence which is shear-free at 

one point will, in the presence of conformal curvature, generally be shearing at 

other points. Recall that the Kerr theorem established a close connection 

between the shear-free condition for null congruences in flat space-time and the 

complex analytic structure of the C-picture. The fact that the concept ―shear-

free‖ cannot, in general curved space-times, beapplied to null geodesics in their 

entirety, strongly indicates that C cannot generally be given a geometrically 

meaningful complex analytic structure. Let us investigate the structure of C for 

a particular type of curved space-time  , namely one which possesses two 

regions    and    of flat space-time separated by a curved region of  , 

through which null geodesics can pass from    to   . This will enable us to 

examine the structure of C in relation to the structure we have previously 

obtained for flat space-time. By involving two flat metrics we shall be able to 

isolate the structure of C as that which is common to the structures induced by 

each of    and   . Now in each of    and    we can represent twistors in 
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terms of pairs of spinors and hence in terms of four complex components 

             (subject to    ̅   ). The expressions     ̅ and     

  ̅ define forms on N which as we shall show are the same whether the 

coordinates   are defined in    or in   . Each of the 

forms       ̅                    ̅  define structure of 

geometrical significance in  . It turns out, in fact, that 4, measures time 

separation between neighboring geodesics, while   measures rotation. Let us 

consider two examples, both of flat spaces       joined across a null 

hypersurface K, the (degenerate) metric of K being the same whether induced 

by    or   . The curvature resides entirely within K, having the form of a 6-

function on K.  Take two flat spaces 

     
   (          ̅)     

     
   (            ̅ )                                 

joined on the null hyperplane           where          

      (  ̅).This has a  -function in curvature on the join rather as the surface 

of a cylinder of finite extent has, at the join of the end and the side - both of 

which are flat. The Ricci curvature is (essentially)             ̅,while the 

conformal curvature is (essentially)                       ̅ .Einstein‘s 

empty space field equations yield 

   

    ̅
                      ̅( ̅)                                            

  being a holomorphic (i.e. complex analytic) function. Similarly join flat 

spaces 

     
              ̅                        

     
                 ̅                                       
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along       (a null cone) with        (  being a holomorphic function); 

       |     |.It turns out that this automatically satisfies Einstein‘s vacuum 

field equations. In these examples the passage of a null geodesic through       

is determined by the condition that it is orthogonal to the same vectors within 

      on each side of the join. (The behaviour can also be found by 

considering an appropriate limit of   spaces.) This tells us how a twistor is af-

fected by an impulsive wave. In both cases the null geodesic is scattered in a 

way that can be formulated in Hamiltonian terms. Let use this explicitly in 

terms of example A. A twistor   representing a null line, with coordinates, has 

                          ̅               

           ̅     ̅       ̅       ̅  

Thus it satisfies 

                      ̅                                                 

     ̅                                                              

since we are considering a point on K where      . The starred version  also 

holds. Thus 

      ̅                                                    

In order to write the remainder of the starred version of (4.15) in terms of   , 

  ,   we need to use the fact that    and   are orthogonal to the same vectors 

in K at the point    K. Denoting a direction at    K by         in the 

     system we have       if the direction lies in K. For the direction to be 

orthogonal to that of   we require 

             ̅    ̅                                            
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whence, from (4.15) 

    
    

  
 

  ̅ ̅ 

  
                                                      

The starred version of this gives, from (4.12), 

   
  

  
   

  

  ̅
  ̅  

     

   
 

  ̅   ̅̅ ̅̅̅

   ̅̅ ̅̅̅
                                     

Equations (4.18) and (4.19) must represent identical conditions         ̅since 

they must give the same 2-plane element. Hence 

             
  

  
                                                       

Equations (4.15), (4.16) and (4.20) define the ratios of the     components in 

terms of the ratios of the    components, by elimination of   and  . With the 

most convenient choice of scale factor we can set 

         
  

  
                   

                  (   
  

  
)                       

where       ̅   ̅ . Setting 

      ̅   |  |                                                          

we can write (4.21) comprehensively as  

                                                                        

The same formula, with   real and homogeneous of degree one separately in 

  and in  ̅ , is also valid for case B, though   now depends on (    , rather 

than  . In the infinitesimal change case we find 
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  ̅ 

                         ̅   
  

   
                              

which are equations of the Hamiltonian type and so preserve the symplectic 

structure. 

   ̅        ̅   
  

   
  (

 

   )⟬ (
 

  ̅ 
)   (

 

  ̅ 
)⟬ (

 

   )       

  ̅   are all preserved in the sense that                           

    

    
     

   
   and so on. If we define 

[    ]    
  

   

  

  ̅ 

  
  

  ̅ 

  

   
                                            

then  

   [   ]                                                                                   

         ( 
  

  ̅ 

)           
   

  ̅   ̅ 

  ̅                          

and from these one can check the invariances mentioned above. If we consider 

any weak gravitational wave of any shape whatever, which separates two 

regions of flat space-time, then we are led to equations of exactly similar form 

to the above. This is because weak gravitational waves can be superposed 

linearly and can be broken down into a superposition of waves of the above 

types only. (Actually plane waves alone will suffice for this.) The 

corresponding  functions are likewise linearly composed of those above.  

We must define what we mean by     on the N associated with a general 

curved space. 

       ̅      
                                                                  

         ̅            
[    ]
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where for the right hand expressions of (4.28b) we take    to be the tangent 

vector field of a congruence of geodesics. In curved space we use these as 

definitions of    . This is possible because     
  and        , as forms 

applied to connecting vectors of neighbouring geodesics, are constant (the 

constancy in this sense of        abeing the well-known Lagrange identity 

and since N (modulo the phase factors) has been identified with the space of 

null geodesics the forms     will be invariantly defined on N. The expressions 

(4.28) lead to the interpretations of  , and   mentioned before as respectively, 

time-displacement and rotation of neighbouring null geodesics. 

In both the examples A and B above we find, provided Einstein‘s vacuum 

equations hold, that we may write 

      ̅                                  ̅̅ ̅̅  

    ̅  
  

  

   
                                                 

where       is holomorphic and homogeneous of degree 2 in   .Explicitly, for 

the case A, we have 

   |  |  ̅ . 
   

  
/   ̅  

   (     )                                        

so we obtain (4.29) if 

            ∫

   

  

  

 ̅       

The infinity twistor appears in (4.29) because gravitation is not conformally 

invariant:    is the conformal-symmetry breaking term which tells us ―where‖ 

infinity is.  
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We can similarly treat electromagnetic scattering, introducing charged 

zero-rest-mass particles, with momentum   The acceleration of such a particle 

is 

  
            

where e is the charge and    the Maxwell field. This gives well-defined 

equations of motion for the particle even though its rest-mass is zero. We can 

consider an idealised situation similar to that of the gravitational impulse waves 

considered above. Here we take two regions of field-free space separated by an 

electromagnetic plane or spherical wave of 6-function amplitude. A zero-rest-

mass particle on either side of the wave may be described by a null twistor. The 

wave imparts an impulse to the particle and so defines a transformation of the 

twistor space from one side to the other. The transformation again turns out to 

be of Hamiltonian form, hut now, in the infinitesimal case   turns out to be 

homogeneous of degree zero separately in   and in  ̅ , where        

  ̅ with      (  ) holomorphic and of degree zero in 

  (assuming   satisfies the free-space Maxwell equations). The treatment may  

Fig 6. 
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likewise be extended to any infinitesimal scattering by linear superposition of  

such waves, and hence of the corresponding   functions. We have encountered 

holomorphic functions in both the gravitational and electromagnetic cases. 

But in general these have poles, and if not, then   is a bilinear function of 

    ̅ . For the fields of this latter simple type the null geodesics emerge 

ultimately unscattered although waves can come in and go out (fig. 6). 

However, in general cases where the wave possesses singularities, singularities 

in the function can exist and scattering occurs. For instance in example B above 

one can see from the fact that there is no non-singular non-constant harmonic 

function on a 2-sphere that the behaviour of      on the null cone joining the 

two flat spaces must be singular on at least one generator of the cone. This 

singularity could be cancelled by putting together an appropriate set of such 

cones but we would then be back to the situation of (fig. 6) wherethere is no 

scattering. 

4.3. Quantization  

We wish to pass from the scattering of zero-rest-mass particles by a 

(weak) gravitational or electromagnetic wave to the scattering of zero rest mass 

fields. In general a zero rest mass field            is defined by a holomorphic 

function     .We may now ask how to transform in order to represent the 

scattering of the   field. A somewhat formal answer is provided if we use the 

correspondence  ̅        suggested by the fact that   and  ̅  are 

canonically conjugate variables. Thus, we write 

 (    
 

  ̅ 
)           ̅    
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and apply it to  . We are here regarding   as describing the effect of a fixed 

given gravitational field. Now with the   considered above for the scattering of 

massless particles by weak gravity we get 

   
 

   
    

  

   
  (   

  

   
)

 

   
                                    

the commutation being possible because      is skew. Thus no factor ordering 

problem arises. Similarly we would have 

        0
  ̅

  ̅ 

1
 ̅   

 

   

 

which is more awkward! However we aim to consider matrix elements 〈 | | 〉 

and therefore need not evaluate    | ⟩ as such, for 

〈 | | 〉  〈 |  | 〉  〈 |  | 〉 

and we may take   to act on ⟨ | writing   (
 

  ̅ 
)       ̅   ̅ . So far we 

have not defined what we mean by ⟨ |  ⟩ and our next task is therefore to set up 

a Hilbert space of functions . In doing so we can be guided by the need for 

suitably nice formal formulae and agreement with the scalar product used by 

Fierz. Form     we may construct a series of potentials      
           ⏞      

         

 satisfying 

    

   

    
        

{
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At each step there is a gauge freedom in choice of
   

  

. Following Fierz, we may 

now define (with suitable numerical constant  ) 

〈 | 〉  ∫
 

     

 
        

          
                                      

where   is a spacelike surface. One must (and can) check that this is gauge 

independent, independent of the choice of surface, that one may interchange   

and   yielding a Hermitian symmetry, and that the product is conformally 

invariant.  Our next task is to express the scalar product in terms of 

           . Physically meaningful answers must be contour integrals since 

if  is replaced by    where       is nonsingular inside the integration contour 

of eq. (2.20) the field is not changed. Let us investigate the form that such a 

contour integral must take. Suppose we have                    which is a 

function homogeneous of degree (  ) in each variable. To integrate one must 

define a differential form          , so that the integral depends only on the 

homology class (relative to the space less regions of singularity) ofthe region of 

integration (i.e. we require that the resulting object is a genuine contour 

integral). For this we use 

   
 

 
      

            

   
 

 
 
    

              

} 

                    

We then find that                  as required for∮            to be 

dependent on the homology class of the contour, and that the integral is a scalar, 

as we desire. To illustrate the value of such contour integrals let us digress for a 

moment. If we take       to represent an electromagnetic field, then 

∮        gives the charge integral for a source for the field. In a 
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gravitational field the function     introduced before is of degree   , so we 

take 

∮            

and find this is the twistor describing the energy momentum and angular 

momentum of a source for the field. The same differential forms are now used 

for the scalar products in terms off and g. We must insert additional factors so 

that          has the correct homogeneity degree i.e.        . For    

     this may be done by 

∮      ⏟  
          

     ⏟  
          

(   
 )

   
                                           

since there is then a 6-dimensional contour not homologous to zero in the 16-

dimensional subspace of        where          
   are non-singular (i.e. 

there is a contour surrounding the singularities). However for      this 

formula is no longer satisfactory since the       
    singularity disappears. If 

we consider defining successive factors (as   increases) by integrating the 

previous ones, the factor for       will be log    
  ,which is not 

homogeneous. So we take 

   2
    

  

 |     | 
     

3                                              

and one does then find an answer which is independent of the auxiliary twistors 

          With these definitions it can be checked that the basis functions used 

in (2.21) are orthogonal. The functions        do satisfy the formal property  

       
   

            
                                                           

 which in fact is what is really used in actual calculations. 
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4.4. Curved Twistor Spaces 

The theory of twisters described is relevant only to flat space- time; can it be 

generalized to a curved space-time background? The theory of curved twistor 

spaces arises out of this problem. Despite considerable progress, no completely 

satisfactory generalization exists; we shall look at some of the different 

approaches to the problem. For a more detailed review, the reader is referred to 

penrose & ward (1979). We shall also review topic which, although it does not 

involve curved space-time, is closely related: the use of curved twistor space 

techniques in self-dual theories. 

(a) Twisters in curved space-time 

Let me be a curved space-time; we would like to define twistor in M. one 

possibility is to have a separate twistor space    for each point  of  ; in 

effect, such local  twisters are constructed in the tangent space at  , which of 

course is a copy of Minkowski space-time. If we move a long a curve in the 

space-time, there a natural way of propagating a local twistor along the 

curve: this is known as local twistor transport. In general, this transport is not 

Integrable (i.e. if we propagate a local twistor around a closed loop, then it 

may not return to its original value). 

A more global approach is based on the correspondence between null 

twisters and null geodesics. Let     be the space of null geodesics in M. in 

general     might fail to a have a Hausdorff manifold structure, because of 

the occurrence of pairs of conjugate points on the on the null geodesics in  . 

Let us for simplicity avoid this difficulty by taking   to me the whole space-

time, but a suitable subregion of the space-time. The following question now 

arises:is     naturally embedded in a three-complex-dimensional projective 

twistor space    ? To throw lifgt on this question, recall the kerr theorem: 

shear-free congruences of null geodesics in Minkowski space-time 
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correspond to the intersection with    of a holomorphic surface in   . 

However, if a shear-free congruenceenters a region of space-time where is 

conformal curvature, then it picks up shear (penrose 1968a). in a general 

curved space-time, therefore, there are no shear-free congruences (although  

there are congruences which are shear-free ‗for an instant‘ e.g. where they 

intersect some space like hypersurface). 

Thus the kerr theorem suggests that the complex structure of twistor space is 

destroyed by conformal curvature. An investigation of that happens when 

null geodesics pass through an impusive plane-fronted gravitational wave 

reveals this phenomenon explicitly. 

Thus it appears that the above question has to be answered in the negative. 

However, there are ways of avoiding the difficulties. One of these is to fix a 

point on each null geodesic, so that the shearing effect of gravitation no 

longer matters; this leads to the theory of hypersurface twistores. Another 

way is to consider complex space-times in which the right-handed (or left-

handed) half of the conformal curvature vanishes, so that there exist ‗‘half-

shear-free null congruences. This leads to the on linear graviton construction. 

These two theories will now be described. 

(b) hypersurface tiwstors 

Details of the theories of hypersurface twisters and a symptotic twisters may 

be found in Penrose & ward MacCall (1972); Penrose (1975); ko, Newman 

& Penrose (1977); Penrose & ward (1977b). the essential idea is that one 

picks a point on each null geodesic by taking its intersection with a fixed 

hypersurface S. the theory is simplest if S is taken to be Space like and to 

intersect each null geodesic exactly once. But one may also consider the case 

when S is null, even though one then has to think of tow to deal with the null 

geodesics lying entirely in S. in particular, in an a symptotically flat space-
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time (hawking &Ellis 1973) one can take      or     ; the hypersurface 

twisters one then obtains are called asymptotic twistore. 

The precise definition of hypersurface twisters will not be given here. 

Briefly, a hypersurface twistor is a certain type of complex curve in the 

complexification of the hypersurface S. the space       of hypersurface 

twisters with respect to S is a three –dimensional complex manifold 

containing     as a real hypersurface. The complex structure of 

     depends on S and contains some (but not all ) of the information about 

the space-time metric on S. it is an unsolved problem to determine exactly 

how much information about the metric is contained in the structure of 

     . 

Remarks (4.4.1). (1) the kerr theorem is replaced by a hypersurface kerr 

theorem; an analytic congruence of null geodesics which is shear-free at S 

corresponds in the twistor picture to the intersection with    of a 

holmorphic 2-surface in        

(2) since hypersurface twisters are localized to the hypersurface S, one 

cannot expect there to be a contour integral formula which solves the 

massless field equations on the curved space-time background. In any event, 

the existence in curved space-time of ordinary massless fields of helicity 

greater than one is severely constrained by the Buchdahl conditions. 

(3) If S is null, then there is a naturally defined scalar product      ̅  on   

     ; it is the generalization of the flat-space scalar product      . 

The definition for the case     is given in Penrose & MacCallum (I972)and          

the definition for the case of a general null hypersurface is essential1 the same;     

  see Penrose & Ward (1979) . A twistor Z in       is null (i .e.lies in PN' and 

so corresponds to a null geodesic) if and only if      ̅    the scalar product 

in turn leads to a KMhler structure on PT(S) : the KMhlerform is 
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     ̅ 

      ̅                                                             

The Kyihler curvature is related to the space-time curvature; see Ko, Newman 

& Penrose (1977), 

(4 ) Hypersurface twistor spaces have been constructed in some specific space- 

times, for example in plane-fronted waves [                    

              ]and in Schwarzschlld space-time [              

                            ],taking   in both cases to be the null 

hypersurface v = constant (Ward 1977) . In both cases,       turns out to be 

flat. i.e . to be an open submanifold of     . If one takes two hypersurfaces    

(given by     ) and     (given by     ). one can relate the twistors in 

       to those in        as follows . There is a natural map from the twistors 

in       to those in       since null twistors in either ) or       correspond 

to null geodesics in the space- time. Now extend map to the whole space 

      ; one then obtains a canonical translation, preserving the 2- form (4.1) . 

The map is non - holomorphic and the way in which the gravitational curvature 

between the     and    "shifts" the complex structure of twistor space. 

(c) The Nonlinear Gravitonthe curvature tensor of a space- time is made up of 

two parts: the Wey lconformal curvature tensor       and the Ricci tensor     . 

The Weyl tensor can be split up into its self- dual and anti -self- dual parts : 

           
       

   

     
  

 

 
(      

 

 
            )  

     
  and      

 are complex conjugates of each other. However, if we 

complexify the space-time by allowing the coordinates to become complex 

andanalytically extending the space-time metric (assuming it to be real analytic 

to begin with), then     and       become complex tensors;      
  and      

 are 

then no longer complex conjugates. More generally , 1·le can consider complex- 

Riemannian 4-spaces which are not necessarily the complexifications of real 
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space- times. Such a complex space is said to be right- (or anti -self- dual) 

if     
           It is clear from the above discussion that a right- flat 

space cannot be the complexification of a real space - time, unless it is flat. 

However, it is possible for a complex space , or a real space with signature 

++++ or ++-- , to be right- flat without being flat . Such spaces have arisen in 

two differ areas of genera l relativity : 

(1) The theory of H-space (Newman 1976; Hansen, Newman , Penrose & Tod 

1978; Ko, Ludvi9sen, Newman & Tod 1978) . H-space is a complex right-flat 

space which is naturally associated with the   or    of an asymptotically flat 

space- time . The theory of If-space is closely related to asymptotic twistor 

theory. 

(2) Gravitational instantons and the approach to quantum gravity which 

involves functional integration ;n positive definite 4-space. 

H-space and asymptotic twistor theory is closely associated with Penrose's 

(1976) nonlinear graviton construction . Penrose proved essentially the 

following result. 

Theorem (4.4.2). There is a one- to -one correspondence between 

(i) right- flat spaces M; and 

(ii) curved twistor spaces PT , t0gether with a certain pairof differential forms 

on PT . 

The construction tell s one how to go back and forth between (i) and (ii). 

It is a generalization of the flat -space correspondence - plane in space- time  

point in PT. The concept of an a -plane is generalized to that of an  - Surf ace in 

the curved space- time ~1. The condition for a three - parameter family of a- 

surfaces to exist is precisely      
   . The lines in PT generalize to compact 

holomorhic curves (satisfying certain topological conditions) in PT. 

Thus given a right- flat space M, we can take the corresponding curved twistor 

space PT to be the space of a -surfaces in fl. Conversely, given PT , take   to 
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be the space of compact holomorphic curves in PT . Thiscorrespondence as it 

stands is between 

(i) complex 4-man   folds M with conformal metric satisfying      
   ; and 

(ii) curved twistor spaces PT . 

The extra structure on H represented by having? a right- flat metric (as opposed 

to just a conformal metric) corresponds in PT to having the two differential 

forms mentioned in Penrose ' s theorem above . 

   In principle the construction can be used to find all right - flat metrics. In 

practice, only certain special cases and classes have so far proved tractable. One 

of the first examples was the right- flat analogue of the Schwarzschild solution; 

this space is also known as the antiself-dual Taub -NUT space (Hawking 1977) . 

For more recent progress on this problem. 

(c)  Original problem was that of defining twistors in curved space- time . 

Clearly neither hypersurface twistors nor the nonlinear graviton can be regarded 

as a completely satisfactory solution to this problem . The former theory suffers 

as a result of being localized t o a particular hypersurface , the latter applies 

only to right -flat spaces . What one really needs is something which is 

analogous to the nonlinear graviton , but which applies to a general space- time . 

Some preliminary ideas aimed at this have been put forward, but the problem is 

as yet unsolved. 

(e) Self- Dual Gauge Theories 

The gravitational field is usually thought of in terms of geometry, and this 

geometric interpretation is a crucial feature of the nonlinear graviton 

construction described above . There is a large class of field theories which have 

a neat geometric interpretation; they are called gauge theories. from the 

mathematical point of view, gauge theories are described in terms of 

connections on principal bundles or vector bundles. 

Let G be a Lie group (the gauge group) and let B be a principal G-bundle 

(or its associated vector bundle) over space- time. Let A be a connection on B; 
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A is called the gauge potential . The corresponding gauge field is the curvature 

F of the connection. If we choose some of B. to act as a basis . then A and F 

may be represented (respectively) as a 1-form and   - form on M. taking values 

in the Lie algebra of G. The form F is then given by 

     [   ]                                                      

The Bianchi identities    [   ]    follow from (4.2). The Yang- 

Mill/;Equation  are 

    [    ]      

where      
 

 
      

   is the dual of  . A Yang-Mills field is a curvature 

form F which satisfies the Yang-Mills equations . If the gauge group G is U(l) . 

then the Yang - Hills theory is the same as Maxwell theory . The case   

       pives the theory originally introduced by Yang and Hills. 

We are interested here in special types of Yang - Mills field, namely those 

which are self- dual or anti - self-dual (i . e .                    . Clearly 

it follows from the Bianchi identities that any self- dual or anti - self- dual 

curvature automatically satisfies the Yang the Yang -Mlills equations . There is 

ac:orrespondence between anti - self-dual (" left-handed") Yang -Ni11s fields 

and certain holomorphic vector bundles over projective twistor space: this is 

described. This is preceded by a discussion of the Max~lel1 case. A study is 

made of a particular 11axwell field , namely the anti - self-dual part of the 

Coulomb field . The Maxwell construction can also be looked at from the point 

of view of asymptotic twistor theory and H-space theory. 

  More details about the t wistor technique for solving. 

    The problem of dealing with Yang-Mills fields which are not self- dual or 

anti - self-dual. using twistor methods . is still unsolved. There have been two 

approaches to the problem . One of these may be found in Witten (1978) and 

Isenberg. 
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Chapter 5 

The  physical  Meaning  Of  General  Relativity 

GR is the discovery that spacetime and the gravitational field are the 

same entity. What we call"spacetime" is itself a physical object, in many 

respects similar to the electromagnetic field. We cansay that GR is the discovery 

that there is no spacetime at all. What Newton called "space", andMinkowski 

called "spacetime", is unmasked: it is nothing but a dynamical object -the 

gravitationalfield- in a regime in which we neglect its dynamics . 

In Newtonian and special relativistic physics, if we take away the 

dynamical entities -particlesand fields- what remains is space and time. In 

general relativistic physics, if we take away thedynamical entities, nothing 

remains. The space and time of Newton and Minkowski are reinterpretedas a 

configuration of one of the fields, the gravitational field. This implies that 

physical entities-particles and fields- are not all immersed in space, and moving 

in time. They do not live on space-time. They live, so to say, on one another . 

It is as if we had observed in the ocean many animals living on an island: 

animals on the island .Then we discover that the island itself is in fact a great 

whale. Not anymore animals on the island, just animals on animals. Similarly, 

the universe is not made by fields on space-time; it is made by fields on fields. 

This book studies the far reaching effect that this conceptual shift has on QFT .  

One consequence is that the quanta of the field cannot live in space-time: 

they must build  " space-time" themselves. This is precisely what the quanta of 

space do in loop quantum gravity . 

We may continue to use the expressions "space" and "time" to indicate 

aspects of the- gravitational field, and I do so in the book. We are used to this in 

classical GR. But in the quantum theory ,where the field has quantized 

"granular" properties and its dynamics is quantized and therefore only 
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probabilistic, most of the "spatial" and "temporal" features of the gravitational 

field are lost .Therefore for understanding the quantum gravitational field we 

must abandon some of the emphasis on geometry. Geometry represents well the 

classical gravitational field, not quantum space-time. This is not a betrayal of 

Einstein's legacy: to the contrary, it is a step in the direction of "relativity" in the 

precise sense meant by Einstein. Alain Connes has beautifully described the 

existence of two points of view on space: the geometrical one, centered on the 

space points, and the algebraic, or "spectral" one, centered on the algebra of the 

dual spectral quantities. As emphasized by Alain, quantum theory forces us to a 

complete shift to this second point of view, because of noncommutativity. In the 

light of quantum theory, continuous space-time cannot be anything else than an 

approximation in which we disregard quantum noncommutativity. In loop 

gravity, the physical features of space appear as spectral properties of quantum 

operators that describe our interactions with the gravitational field .The key 

conceptual difficulty of quantum gravity is therefore to accept the idea that we 

can do physics in the absence of the familiar stage of space and time. We need 

to free ourselves from the prejudices associated with the habit of thinking of the 

world as "inhabiting space" and "evolving in time". We describe a general 

language for describing mechanical systems in this generalized conceptual 

framework . 

5.1 Background Independent Quantum Field Theory 

Is quantum mechanics compatible with the general relativistic notions of 

space and time, It is provided that we choose a sufficiently general formulation. 

For instance, the Schrödinger picture is only viable for theories where there is a 

a global observable time variable t; this conflicts with GR, where no such 

variable exists. Therefore the Schrodinger picture makes little sense in a 

background independent context. But there are formulations of quantum theory 

that are more general than the Schrödinger picture. I describe a formulation of 
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QM sufficiently general to deal with general relativistic systems. (For another 

relativistic formulation of QM.) Formulations of this kind are sometimes 

denoted "generalized quantum mechanics". I prefer denoting quantum 

mechanics" any formulation of quantum theory, irrespectively of its generality, 

as "classical mechanics" is used to designate formalisms with different degrees 

of generality, such as Newton's, Lagrange's, Hamilton's or symplectic 

mechanics. On the other hand, most of the conventional machinery of perturb 

bative QFT is profoundly incompatible with the general relativistic framework. 

There are many reasons for this:  

• The conventional formalism of QFT relies on Poincare in variance. In 

particular, it relies on the notion of energy and on the existence of the non 

vanishing hamiltonian operator that generates unitary time evolution. The 

vacuum, for instance, is the state that minimizes the energy. Generally, there is 

no global Poincare invariance, no general notion of energy and no nonvanishing 

hamiltonian operator in a general relativistic theory.  

• At the roots of conventional QFT is the physical notion of particle. The 

theoretical experience with QFT on curved space-time  and on the relation 

between acceleration and temperature in QFT indicates that in a generic 

gravitational situation the notion of particle can be quite delicate. (This point is 

discussed.)  

• Consider a conventional renormalized QFT. The physical content of the theory 

can be ex-expressed in terms of its n-point functions W(xi,... ,xn). The n-point 

functions reflect the in variances of the classical theory. In a general relativistic 

theory, invariance under a coordinate transformation               implies 

immediately that the n-point functions must satisfy  

              (            
     )                             

and therefore (if the points in the argument are distinct) it must be a constant!  
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Clearly we are immediately in a very different framework from conventional 

QFT.  

•Similarly, the behavior for small |    | of the two point function of a 

conventional QFT  

       
        

|   | 
                                                    

expresses the short distance structure of the QFT. More generally, the short 

distance structure of the QFT is reflected in the operator product expansion  

          ∑

 

     

|   | 
                                                      

Here |     | is the distance measured in the spacetime metric. On flat space 

for instance |    |                (       )  In a general relativistic 

context these expressions make no sense, since there is no background 

Minkowski (or other) metric    . In its place, there is the gravitational field, 

namely the quantum field operator itself. But then, if standard operator product 

expansion becomes meaningless, the short distance structure of a quantum 

gravitational theory must be profoundly different from that of conventional 

QFT. As we shall is precisely the case. There is a tentative escape strategy to 

circumvent these difficulties: write the gravitational field      as the sum of 

two terms  

                                                                    

where                is a background field configuration. This may be 

Minkowski, or any other. Assume that                defines spacetime, 

namely it defines location and causal relations. Then consider      as the 

gravitational field, governed by a QFT on the space-time background defined by 
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            . For instance the field operator      is assumed to commute at 

spacelike separations, where spacelike is defined in the geometry determined by 

              . As a second step onemay then consider conditions on 

               or relations between the formulations of the theory defined by 

different choices of                 This escape strategy leads to three orders of 

difficulties: (i) Conventional perturbative QFT of GR based on A.5) leads to a 

non renormalizable theory. To get rid of the uncontrollable ultraviolet 

divergences one has to get to the complications of string theory, (ii) As 

mentioned, loop quantum gravity shows that the structure of spacetime at the 

Planck scale is discrete. Therefore physical spacetime doesn't have a short 

distance structure at all. The unphysical assumption of a smooth background 

               implicit in may be precisely the cause of the ultraviolet 

divergences, (iii) The separation of the gravitational field from spacetime is in 

strident contradiction with the very physical lesson of GR. If GR is of any guide 

in searching for a quantum theory of gravity, the relevant spacetime geometry is 

the one determined by the full gravitational field     , and the separation A.5) 

is misleading. A formulation of quantum gravity that does not take the escape 

strategy  is a background independent, or general covariant QFT. The main is 

develop the formalism for background independent QFT. 

 

Fig. 1 
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5.2 Quantum Space-Time: Spinfoam  

To be able to compute anything we want from a theory, it is not sufficientto 

have the general definition of a theory. A road towards the calculation of 

generic transition amplitudes in quantum gravity is provided by the spinfoam 

formalism. Following Feynman's ideas, we can give         a representation 

as a sum over paths. This representation can be obtained in various manners. In 

particular, it can be intuitively derived froma perturbative expansion, summing 

over different histories of sequences of actions of H that send    into  .  

A path is then the worldhistory of a graph, with interactions happening at 

the nodes. This worldhistory is a two-complex, as namely a collection of faces 

(the world-histories of the links); faces join at edges (the world histories of the 

nodes); in turn, edges join at vertices. A vertex represents an individual action 

of  . An example of vertex, corresponding to the action of  , is illustrated in 

Figure 1. Notice that moving from the bottom to the top, the two-complex goes 

precisely from the graph on the left hand side to the one on the right hand side. 

Thus, a two-complex is like a Feynman graph, but with one additional structure. 

A Feynman graph is composed by vertices and edges, a spinfoam by vertices, 

edges and faces. Faces are labelled by the area quantum numbers ji and edges 

by the volume quantum numbers   . A two-complex with faces and edges 

labelled in this manner is called a "spinfoam" and denoted  . Thus, a spinfoam 

is a Feynman graph of spin networks, or a world history of spin networks. A 

history going from s' to s is a spinfoam a bounded by    and   In the perturbative 

expansion of        , there is a term associated to each spinfoam a bounded by 

  and   . This term is called the amplitude of a. The amplitude of a spinfoam 

turns out to be given by (a measure term      times) the product over the 

vertices   of a vertex amplitude        The vertex amplitude is determined by 

the matrix element of   between the incoming and the outgoing spin networks 

and is a function of the labels of the faces and the edges adjacent to the vertex. 
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This is analogous to the amplitude of a conventional Feynman vertex, which is 

determined 

 

 

by the matrix element of the Hamiltonian between the incoming and outgoing 

states. The physical transition amplitudes         are then obtained by 

summing over spinfoams bounded by the spin networks   and   .  

         ∑
 

       

    ∏

 

                               

More generally for a spin network s representing a closed surface  

     ∑
 

    

    ∏

 

                                   

In general, the Feynman path integral can be derived from Schrodinger theory 

by exponentiating the Hamiltonian operator, but it can also be directly 

interpreted as a sum over classical trajectories of the particle. Similarly, the 

spinfoam sum (5.6) can be interpreted as a sum over spacetimes. That is, the 

sum (5.6) can be seen as a concrete and mathematically well defined realization 

of the (illdefined) Wheeler-Misner-Hawking representation of quantum gravity 

as a sum over four-geometries  
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 (       )   ∫
         

[  ]      
 

 
 [ ]

                  

Because of their foamy structure at the Planck scale, spinfoams can be viewed 

as a mathemat-mathematically precise realization of Wheeler's intuition of a 

spacetime "foam". I describe various concrete realizations of equation (5.6), as 

well as the possibility to directly relate (5.6)with a discretization of (5.8). 

5.3. General Relativity  

Lev Landau has called GR "the most beautiful" of the scientific theories. 

The theory is first of all a description of the gravitational force. Nowadays it is 

very extensively supported by terrestrial and astronomical observations, and so 

far it has never been questioned by an empirical observation.  

But GR is far more than that. It is a complete modification of our 

understating of the basic grammar of nature. This modification does not regard 

the sole gravitational interaction: it regards all aspects of physics. In fact, the 

extent to which Einstein's discovery of this theory has modified our 

understanding of the physical world and the full reach of its consequences have 

not been completely unraveled yet.  

Nor an exhaustive description of the theory. For this we refer the reader 

to the classic  on the subject. Here, we give a short presentation of the 

formalism in a compact and modern form, emphasizing the reading of the 

theory which is most useful for quantum gravity. We discuss in detail the 

physical and conceptual basis of the theory, and the way it has modified our 

understanding of the physical world. Let   be the "space-time" four-

dimensional manifold. Coordinates on M are written as           where    

                       Indices                  are spacetime tangent 

indices. The gravitational field   is a one-form  
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with values in Minkowski space. Indices                  label the components 

of a Minkowski vector. They are raised and lowered with the Minkowski metric 

    . The reason that led Einsteinto understand that the gravitational field has 

this form are discussed. We call "gravitational field" the tetrad field rather than 

Einstein's metric field         There are three reasons for this: (i) the standard 

model cannot be written in terms of   because fermions require the tetrad 

formalism; (ii) the tetrad field   is nowadays more utilized than   in quantum 

gravity; and (iii) we think that   represents the gravitational field in a more 

conceptually clean way than  . The relation with the metric formalism is given.  

The spin connection   is a one-form with values in the Lie algebra of the 

Lorentz group   

  
         

                                              

where  
  
     

  
  It defines a covariant partial derivative    on all fields that 

have Lorentz     indices:  

   
     

      
                                                   

and a gauge covariant exterior derivative   on forms. For instance, for a one-

form    with a Lorentz index,  

               
                                                    

The torsion two-form is defined as  

                      
                               

A tetrad field e determines uniquely a torsion free spin connection     [ ], 

called compatible with  ,by  

            [ ]                                       
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The explicit solution of this equation is given below in  the curvature R of   is 

the Lorentz algebra valued two-     

    
      

                                          

defined by 

  
       

     
     

                                  

A region where the curvature is zero is called "flat". Equations (5.13) and (5.16) 

are called the Cartan structure equations. The Einstein equations "in vacuum" 

are  

       
                                                   

The equation relating e and to and the Einstein equations (5.17) are the field 

equations of GR in the absence of other fields. They are the Euler-Lagrange 

equations of the action  

 [   ]   
 

    
∫        

      [ ]                   

                                

G is the Newton constant3; A is the cosmological constant, which I often set to 

zero below. Inverse tetrad. Using the matrix   
    , defined as the inverse of the 

matrix we define the Ricci tensor and the Ricci scalar  

  
        

  
  
                                                               

And the Ricci scalar 

    
   

 
                                                                

and write the vacuum Einstein equations (5.17) as  
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Second order formalism. Replacing   with [ ] in (5.10) we get the equivalent 

action  

 [ ]   
 

    
∫      (           [ [ ]]

  
                 

    )                                                                                                         

The formalism in (5.18) where e and   are independent is called the first order 

formalism. The two formalism are not equivalent in the presence of fermions; 

we do not know which one is physically correct, because the effect of gravity on 

single fermions is hard to measure. Self dual formalism. Consider the self dual 

"projector"     
  

   
  

 

 
   
     

      
  

 

 
   

                                        

where             Define the the complex SO(3) connection  

  
        

   
   

                                        

Equivalently,  

                                              

We can use the complex self dual connection   (3 complex one-forms), instead 

of the real connection     
      real one-forms), as the dynamical variable for GR. 

(This is equivalent to describing a system with two real degrees of freedom   

and   in terms of a single complex variable            ) In terms of A1, the 

Einstein equations read  

      
    (         

        )                                   

where              
     is the curvature of A   These are the Euler-

Lagrange equations of the action  
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 [ ]   
 

    
∫(      

               
           )         

which can be obtained adding to the action (5.18) an imaginary term that does 

not change the equations of motion. The self dual formalism is often used in 

canonical quantization, because it simplifies the form of the hamiltonian theory.  

 Plebanski formalism. The Plebanski self dual two-form is defined as  

∑

 

     
                                                    

That is  

∑

 

                                                  

and so on cyclically. A straightforward calculation shows that ∑ satisfies  

 ∑

 

     ∑

 

     
    ∑

 

                             

The algebraic equations for a triplet a of complex two-forms S*  

  ∑

 

   ∑

 

      ∑

 

   ∑

 

     ∑

 

   ∑

 

  

∑

 

   ∑

 

                                                                         

are solved by equation (5.28), where e1 is an arbitrary real tetrad. The GR 

action can thus be written as  

 [∑  ]   
 

    
∫ 4∑

 

         ∑

 

   ∑

 

5          
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where ∑  satisfies the Plebanski constraints (5.31). The Plebanski formalism 

is often used as starting point for spinfoam models. 

5.4  Field Theory  

There are several ways in which a field theory can be cast in hamiltonian form. 

One possibility is to take the space of the fields at fixed time as the 

nonrelativistic configuration space Q. This strategy badly breaks special and, in 

a general covariant theory, general relativistic invariance. Lorentz covariance is 

broken by the fact that one has to choose a Lorentz frame for the t variable. Far 

more disturbing is the conflict with general covariance. The very foundation of 

general covariant physics is the idea that the notion of a simultaneity surface all 

over the universe is devoid of physical meaning. It is better not to found 

hamiltonian mechanics on a notion devoid of physical significance.  

A second alternative is to formulate mechanics on the space of the 

solutions of the equations of motion. The idea goes back to Lagrange. In the 

generally covariant context, a symplectic structure can be defined over this 

space using a spacelike surface, but one can show that the definition is surface 

independent and therefore it is well defined. This strategy as been explored. The 

structure is viable in principle and has the merit of showing that the hamiltonian 

formalism is intrinsically covariant. In practice, it is difficult to work with the 

space of the solutions of the field equations, in the case of an interacting theory. 

Therefore we must either work over a space that we can't even coordinatize, or 

coordinatize the space with initial data on some instantaneity surface, and 

therefore, effectively, go back to the conventional fixed time formulation.  

The third possibility, which we consider here, is to use a covariant finite 

dimensional space for formulating hamiltonian mechanics. we noticed above 

that in the relativistic context the double role of the phase space, as the arena of 

mechanics and the space of the states, is lost. The space of the states, namely the 
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phase space   is infinite dimensional in field theory, essentially by definition of 

field theory. But this does not imply that the arena of hamil-hamiltonian 

mechanics has to be infinite dimensional as well. The natural arena for 

relativistic mechanics is the extended configuration space   of the partial 

observables. Is the space of the partial observables of a field theory finite or 

infinite dimensional Partial observables in field theory consider a field theory 

for a field       with   components. The field is defined over spacetime   

with coordinates  , and takes value in a   dimensional target space    

         

                                                            

For instance, this could be Maxwell theory for the electric and magnetic fields 

    ( ⃗⃗  ⃗⃗), where      . In order to make physical measurements on the 

field described by this theory we need   measuring devices to measure the 

components of the field  , and 4 devices to determine the spacetime position  .  

Field values   and positions   are therefore the partial observables of a field 

theory. Therefore  the operationally motivated relativistic configuration space 

for a field theory is the finite dimensional space  

                                               

which has dimension    . A correlation is a point       in C. It represents a 

certain value     of the fields at a certain spacetime point    . This is the 

obvious generalization of the       correlations of the pendulum of the 

example.  A physical motion  is a physically realizable ensemble of correlations. 

A motion is determined by a solution      of the field equations. Such a 

solution determines a 4-dimensional surface in the     dimensional) space C: 

the surface is the graph of the function (5.33). Namely the ensemble of the 

points (      ). The space of the solutions of the field equations, namely the 
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phase space  , is therefore an (infinite dimensional) space of 4d surfaces   in 

the      )-dimensional configuration space C. Each state in   determines a 

surface   in C. Hamiltonian formulations of field theory defined directly on 

         are possible and have been studied. The main reason is that in a 

local field theory the equations of motion are local, and therefore what happens 

at a point depends only on the neighborhood of that point. There is no need, 

therefore, to consider full spacetime to find the hamiltonian structure of the field 

equations. we refer the reader to the beautiful and the ample references therein, 

for a discussion of this kind of approach. we give a simple and self-contained 

illustration of the formalism below, with the emphasis on its general covariance. 

5.5 Quantization And Classical Limit  

In general, a quantum system          has a classical limit which is a 

relativistic mechanical system       describing the results of observations on 

the system at scales and with accuracy larger than the Planck constant. In the 

classical limit, Heisenberg uncertainty can be neglected and a commuting set of 

partial observables    can be taken as coordinates of a commutative relativistic 

configuration space   If we are given a classical system defined by a non 

relativistic configuration space   with co-coordinates    and by a relativistic 

hamiltonian           a solution of the quantization problem is provided by the 

multiplicative operators   , the derivative operators  

        
 

   
                                              

and the Hamiltonian operator  

   (       
 

   
)                                
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on the Hilbert space       [     ], or more precisely, the Gelfand triple 

determined by   and the measure    . The physics is entirely contained in the 

transition amplitudes  

               | |                                  

where the states |  ⟩ are the eigenstates of the multiplicative operators   .  

In turn, the space   has the structure  

      [ ]                                             

As we shall see, this remains true in field theory and in quantum gravity. The 

space   was defined for finite dimensional systems, for field theories and in the 

case of gravity. In the limit      the Wheeler-DeWitt equation becomes the 

relativistic Hamilton-Jacobi equation (3.59) and the propagator has the form 

(writing         )  

          ∑

 

      
   

 

 
        

                       

where       
   are the different branches of the Hamilton function, as in (3.89). 

Now, the reverse of each path is still a path. The Hamilton function and the 

amplitude of a reversed path acquiresa minus, giving  

          ∑

 

      
     .

 

 
      

  /                   

and   is real. Assuming only one path matters,  

                    .
 

 
        /                            

and we can write for instance  
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This equation provides a precise relation between a quantum theory (entirely 

defined by the prop-propagator        ) and a classical theory (entirely 

defined by the Hamilton function        ). Using this equation can be written 

in the suggestive form  

   
   

 

 
                                                         

Examples (5.5.1): pendulum and timeless double pendulum  

Pendulum. An example of relativistic formalism is provided by the quantization 

of the pendulum described in the previous: The kinematical state space is 

      [ 
      ]  The partial observable operators are the multiplicative 

operators   and t acting on the functions        in  . Dynamics is defined by 

the operator   given in (5.18). The Wheeler-DeWitt equation is therefore  

.   
 

  
 

  

  

  

   
 

   

 
  /                              

  is a space of solutions of this equation. The "projector" operator       

defined by   is given in (5.23), and defines the scalar product in    Its matrix 

elements              between the common eigenstates of a and t are given by 

the propagator (5.11). They express all predictions of the theory. Because of the 

specific form of  , these define a probability density in a but not in  , as 

explained. Equivalently, the quantum theory can be defined by the boundary 

state space       [ ], where   is the boundary space of the classical theory, 

with coordinates            , and the covariant vacuum state 〈         | 〉   

             , which determines the amplitude     〈 | 〉 of any possible 

outcome      of a preparation/measurement experiment. Timeless double 

pendulum.An example of a relativistic quantum system which cannot be 

expressed in terms of conventional relativistic quantum mechanics is provided 
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by the quantum theory of the timeless system (5.40). The kinematical Hilbert 

space    is   [       ], and the Wheeler-DeWitt equation is  

 

 
.   

  

   
   

  

   
         /                              

5.6. Quantum Field Theory  

We assume the reader is familiar with standard quantum field theory (QFT). 

Here we illustrate the connection between QFT and the relativistic formalism 

developed above, and I recall a few techniques that will be used in are particular 

importance are the distinction between Minkowski vacuum and covariant 

vacuum, the functional representation of a field theory, and the construction of 

the physical Hilbert space of lattice Yang-Mills theory.  

We have seen that a classical field theory can be defined covariantly by 

the boundary space   of closed surfaces a in a finite dimensional space   and a 

relativistic hamiltonian   on      For instance, in a scalar field theory 

         has coordinates       , where    is a point in Minkowski space 

and   a field value. A surface a is determined by the two functions  

    [    ⃗     ⃗ ]                                        

and determines a boundary 3-surface     ⃗ in Minkowski space   and 

boundary values  (    )        of the field on this surface.  

A quantization of the theory can be obtained, precisely as in the finite 

dimensional case, in terms of a boundary state space    of functionals  [ ] on 

 . Notice however that the difference between the kinematical state space   

and the boundary state space   is far less significative in field theory than for 

finite dimensional systems. In the finite dimensional case, the states       in   

are functions on the extended configuration space  , while the states            

in   are functions on the boundary space          In the field theoretical 
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case, both states have the form  [ ]. The difference is that the states in   are 

functions of an "initial" surface a, where     ⃗  can be for instance the spacelike 

surface       ; in this case a contains only half of the data needed to 

determine a solution of the field equations. On the other hand, the states  [ ] in 

  are functions of a closed surface a. In fact, the only difference between   

and   is in the global topology of  . If we disregard this, and consider local 

equations, we can confuse   and K . The relativistic hamiltonian is given . The 

complete solution of the classical dynamics is known if we know the Hamilton 

function  [ ], which is the value of the action  

 [ ]     [   ]   ∫
 

                              

where   is the four-dimensional region bounded by    ⃗  and      is the 

solution of the equations of motion in this region, determined by the boundary 

data  (   ⃗ )      ⃗ . If there is more than one of these solutions, we write 

them as       and the Hamilton function is multivalued  

  [ ]    [    ]    ∫
 

 (             )                         

The relativistic Hamiltonian gives rise to the Wheeler-DeWitt equation  

 [          
 

   
   

 

  
]   ⃗  [ ]                          

precisely as in the finite dimensional case. The Hamilton-Jacobi equation can be 

interpreted as the ikonal approximation for this wave equation.  

The complete solution of the dynamics is known if we know the 

propagator  [ ], which is a solution of this equation. Formally, the field 

propagator can be written as a functional integral  

 [ ]    ∫
 (   ⃗⃗ )    ⃗⃗ 

[  ]  
 

 
 [   ]
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Of course one should not confuse the field propagator  [ ] with the Feynman 

propagator. The first propagates field, the second the particles of a QFT. The 

first is a functional of a surface and the value of the field on this surface, the 

second is a function of two spacetime points. To the lowest  

order in  , the saddle point approximation gives  

 [ ] ∑

 

  [ ]  
 

 
  [ ]

                                      

There are two characteristic difficulties in the field theoretical context 

that are absent in finite dimensions: the definition of the scalar product and the 

need to regularize operator products. In finite dimensions, a measure     on   

is sufficient to define an associated    Hilbert space of wave functions. In the 

field theoretical case, we have to define the scalar product otherwise. The scalar 

product must respects the invariances of the theory and must be such that real 

classical variables be represented by self-adjoint operators. This is because self-

adjoint operators have real spectrum, and the spectrum determines the values 

that a quantity can take in a measurement. Given a set of linear operator on a 

linear space, the requirement that they are self-adjoint put stringent conditions 

on the scalar product. As we shall see, in all cases of interest these requirements 

are sufficient to determine the scalar product.  

Second, local operators are in general distributions and their products are 

ill defined. Operator products arise in physical observable quantities as well as 

in the dynamical equation, namely in the Wheeler-DeWitt equation. In 

particular, functional derivatives are distributions. In the classical Hamilton-

Jacobi equation we have products of functional derivatives of the Hamilton-

Jacobi func- functional, which are well defined products of functions. In the 

corresponding quantum Wheeler-DeWitt equation, these become products of 
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functional derivatives, which are ill-defined without an appro-appropriate 

renormalization procedure.  

5.7. Functional Representation  

Consider a simple free scalar theory, where      . we describe this well 

known QFT in some detail in order to illustrate certain techniques that play a 

role in quantum gravity. In particular, I illustrate the functional representation of 

quantum field theory, a simple form of the Wheeler-DeWitt equation, the 

general form of  [ ], and its physical interpretation. The functional 

representation is the representation in which the field operator is diagonal. The 

quantum states will be represented as functionals  [ ]   〈 | 〉  where | ⟩ is 

the (generalized) eigenstate of the field operator with eigenvalue    ⃗   The 

relation between this representation and the conventional one on the Fock basis 

| ⃗⃗       ⃗⃗ ⟩ is precisely the same as the relation between the Schrodinger 

representation      and the one on the energy basis | ⟩, for a simple 

harmonic oscillator. I also illustrate the way in which the scalar product on the 

space of the solutions of the Wheeler-DeWitt equation is determined by the 

reality properties of the field operators.  

To start with, and to connect the generally covariant formalism described 

above with conven-conventional QFT, let's restrict the surface    ⃗  in a to a 

spacelike surface     ⃗        ⃗  in Minkowski space. Then     [      ] and 

 [ ]    [      ]  The Hamilton-Jacobi equation  

  
 

  
                                                       

5.8. Space-Time Relational Versus Quantum Relational  

We discussed, the main idea underlying GR is the relational interpretation of 

localization: objects are not located in space-time. They are located with respect 

to one another. I have observed that the lesson of QM is that quantum events 
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and states of systems are relational: they make sense only with respect to 

another system. Thus, both GR and QM are characterized by a form of 

relationalism. Is there a connection between these two forms of relationalism?  

Let us look closer at the two relations. In GR, the localization of an object 

  in spacetime is relative to another object (or field) O, to which S is 

contiguous. Contiguity, or, equivalently, Einstein's "spacetime coincidence" is 

the basic relation that constructs space-time. In QM, there  

are no absolute properties or facts: properties of a system S are relative to 

another system   with which S is interacting. Facts are interactions. Thus, 

interactions form the basic relations between systems.  

But there is a strict connection between contiguity and interaction. On the 

one hand,   and   can interact only if they are contiguous. If they are nearby in 

spacetime. This is locality. Interaction requires contiguity. On the other hand, 

what does it mean that   and   are contiguous? What  

else does it mean besides the fact that they can interact   Therefore contiguity is 

manifested by interacting. In a sense, the fact that interactions are local means 

that there is a sort of identity between being contiguous and interacting.  

Thus, locality ties together very strictly the spacetime relationalism of GR 

with the relation-relationalism underlying QM. It is tempting to try to develop a 

general conceptual scheme based on this observation. This could be a 

conceptual scheme in which contiguity is nothing else than a man-

manifestation, or can be identified with the existence of a quantum interaction. 

The spatiotemporal structure of the world would then be directly determined by 

who is interacting with whom. This is of course very vague, and might lead 

nowhere, but I find the idea intriguing. 
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5.9 Quantum Space  

It is time to begin to put together the tools developed in the first part of the 

book, and build the quantum theory of spacetime. The strategy is simple. We 

"quantize" the canonical formulation of GR described at the beginning, 

according to the relativistic QM formalism detailed. This deals with the 

kinematical part of the theory: states, partial observables and their eigenvalues. 

The deals with dynamics, namely with the transition amplitudes.  

Structure of quantum gravity, we have seen that GR can be formulated as 

the dynamical system defined by the Hamilton-Jacobi equation (5.9)  

   
    ⃗ 

  [ ]

   
   ⃗ 

  [ ]

   
   ⃗ 

                                          

where the functional  [ ] is defined on the space   of the 3d SU(2) connections 

   
   ⃗ , and is invariant under internal gauge transformations and 3d 

diffeomorphisms, that is  

    
   ⃗ 

  [ ]

   
   ⃗ 

       
   ⃗ 

  [ ]

   
   ⃗ 

                                       

where the variations    
   ⃗  and     are given in D.12). Equivalently, the 

theory is defined by the hamiltonian  [   ]       
  
  

   
 on      

Following the prescription, a quantization of the theory can be obtained in 

terms of complex valued Schrodinger wave functionals  [ ] on  . The 

quantum dynamics is inferred from the classical dynamics by interpreting  [ ] 

as   times the phase of  [ ]. Namely interpreting the classical Hamilton-

Jacobi theory as the ikonal approximation of a quantum wave equations; semi 

classical "wave packets" will then behave according to the classical theory. This 

can be obtained defining the quantum dynamic by replacing derivatives of the 

Hamilton-Jacobi functional  [ ] with derivative operators. The two equations 
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(5.54) remain unchanged: they simply force  [ ] to be invariant under   (2) 

gauge transformations and   diffeomorphisms. Equation (5.53) gives  

   
    ⃗ 

 

   
   ⃗ 

 

   
   ⃗ 

 [ ]                                           

This is the Wheeler-DeWitt equation, or Einstein-Schrodinger equation. It 

governs the quantum dynamics of spacetime. In other words, the dynamics is 

defined by the hamiltonian operator     [         ]. 

More in detail, we want a rigged Hilbert space           , where S is 

a suitable space of functionals  [ ]. Partial observables are represented by self-

adjoint operators on  . Theireigenvalues describe the quantization of physical 

quantities. The operator  , formally given by the Pfield theoretical 

generalization of (5.58)  

    ∫ [  ]   ∫        ⃗⃗    ⃗⃗                                

sends   to the space of the solutions of (5.55). Its matrix elements between 

eigenstates of partial observables define the transition amplitudes of quantum 

gravity. These determine all (probabilistic) dynamical relations between any 

measurement that we can perform.  

A preferred state in   is | ⟩, the eigenstate of the geometry with zero 

volume and zero area. The covariant vacuum is given by | ⟩     | ⟩  If we 

assume that the surface  ⃗ coordinatized by t is the entire boundary of a finite 

spacetime region, then we can identify K with the boundary space K. The 

correlation probability amplitude associated to a measurement of partial 

observables on the boundary surface is            〈 | 〉, where | ⟩is the 

eigenstate if the partial observables corresponding to the measured eigenvalues.  
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